Cyclopedia of american Horticulture



Plate X. Prominent American Horticulturists.

## Cyclopedia of

## American Horticulture

COMPRISING SUGGESTIONS FOR CULTIVATION OF HORTICUltural plants, descriptions of the species of FRUITS, VEGETABLES, FLOWERS AND ORNAMENTAL PLANTS SOLD IN THE UNited states and Canada, together WITH GEOGRaphical and biographical sketches

BY

## L. H. BAILEY

Professor of Horticulture in Cornell University

Assisted by<br>WILHELM MILLER, Ph.D.<br>Associate Editor

AND MANY EXPERT CULTIVATORS AND BOTANISTS

## Sllugtrated with ober <br> 

$$
\begin{gathered}
\text { IN Four Volumes } \\
E-M
\end{gathered}
$$

Toronto
VIRTUE \& COMPANY
10 ADELAIDE STREET EAST
1900

Copyright, 1900 ,
BY THE MACMILLAN COMPANY

## COLLABORATORS

## I. Partial list of contributors to the cyclopedia

The asterisk designates the contributors to the second rolume. Many of the contributors have also assisted in reading proofs and in other ways.

Adams, Geo. E., Asst. Horticulturist, R. I. Exp. Sta., Kingston, R. I. (Rhorle Island.)
*Aves, Oakes, Asst. Dir. Botanic Garden, and Instructor in Botany in Harvard Univ., Cambridge, Mass. (Sererul genera of Orchids.)
*Archdeacon \& Co., Commission merchants, New York, N. Y. (Mushroom.)
Arnold, Jr., Geo., Florist, Rochester, N. Y. (China Aster.)
Arthler, Prof. J. C., Purdue Univ., Lafayette, Ind. (Physiology of Plants.)
*Atkinson, Geo. F., Prof. of Botany, Cornell Unir., Ithaca, N. Y. (Mushroom.)
Balmer, Prof. J. A., Horticulturist, Wash. Exp. Sta., Pullman, Wash. (Washington.)
*Barclay, F. W., Gardener, Haverford, Pa. (Herbaceous Perennials, Aster, Eryngium, etc.)
*Barnes, Charles R., Prof. of Plant Physiology, Univ. of Chicago, Chicago, Ill. (Fertilization. Flower.)
*Barnes, William H., Secretary Kans. Hort. Soc., Topeka, Kans. (Kimsas.)
*Bayersdorfer, H., Dealer in florists' supplies, Philadelphia, Pa. (Everlasting flowers.)
Beach, Prof. S. A., Horticulturist, N. Y. Exp. Sta., Geneva, N. Y. (Com. Thinning.)
Beadle, C. D., Botanist and horticulturist, Biltmore, N C. (Bamboo.)
*Beal, Prof. W. J., Mich. Agric. College, Agricultural College, Mich. (Grass. Has real proofs of many genera of grasses.)
Beckert, Theo. F., Florist, Allegheny City, Pa. (Bougainvillaca.)
*Berckmans, P. J., Pomologist and nurseryman, Augusta, Ga. (Laucns for the South. Magnolia. Melia. Michelia. Has read proof of mamy groups of importance in the South.)
*Blair, Prof. J. C., Horticulturist, Ill. Exp. Sta., Champaign, Ill. (Greenhouse Glass. Illinois.)
*Brandegee, Mrs. Katharine, Botanist, editor of Zoẻ, San Diego, Calif. (Mammillaria, Melocactus, and other cacti.)
*Breckner, Nichol N., Dreer's Nursery, Riverton, N. J. (The article "Ferns." Many groups of tenaler ferns.)

Buffum, Prof. B. C., Horticulturist, Wyo. Exp. Sta., Laramie, Wyo. (Wyoming.)
*Burnette, Prof. F. H., Horticulturist, La. Esp. Sta., Baton Rouge, La. (Louisiana.)
Butz, Prof. Geo. C., Asst. Horticulturist, Pa. Fxp. Sta., State College, Pa. (Carnation. Peansyluania.)
*Cameron, Robert, Gardener, Botanic Garden of Harvard Univ. (Various articles and much help on rare plants. Alpinia, Campanula, Eehinocactus, etc.)
*Canning, Edward J., Gardener, Smith College, Botanic Gardens, Northampton, Mass. (Mumy articles and much help on rare and difficult plants. Anthurium, Echeinocactus, Epiphyllum, Gloximia, etc.)
*CARd, Prof. Fred W., Horticulturist, R. I. Exp. Sta., Kingston, R. I. (Nebraska. Botany and culture of bush-fruits, as Amelanchier, Berberis, Blackberry, Buffalo Berry, Currant, Loganberry.)
*Clinkaberry, Henry t., Gardener, Trenton, N J. (Certain orchids, as Lelia.)
Соок, O. F., Div. of Botany, Section of Seed and Plant Introduction, Dept. of Agric., Washington, D. C. (Cotice.)
Corbett, Prof. L. C., Horticulturist, W. Va. Exp. Sta., Morgantown, W. Va. ( IFest Virginia.)
*Coulston, Mrs. M. B., Formerly assistant editor of Garden and Forest, Ithaca, N. Y. (Mitchelia, and some other matice plants.)
*Collter, John M., Professor and Head of the Dept. of Botany, Univ. of Chicago, Chicago, Iilinois. (Echinocuctus.)
*Cowen, J. H., formerly Assistant in Horticulture, Colo. Exp. Sta., Ithaca, N. Y. (Certain Colorado plants, as Lepachys, Leucocrinam.)
*Craig, Prof. John, Horticulturist, Ia. Exp. Sta., Ames, Ia. (Canada. Gooseberry. Kale. Kohlrabi.)
Craig, Robert, Florist, Philadelphia, Pa. (Araucaria. Arolisia. Codioum.)
*Craig, W. N., Gardener, North Easton, Mass. (Mushroom.)
Cranlall, Prof. C. S., Horticulturist, Colo. Exp. Sta., Fort Collins, Colo. (Colorado.)
*Cushman, E. H., Gladiolus specialist, Euclid, Ohio. (Gladiolus.)
*Darlingtoy, H. D., Wholesale florist, specialis in heaths ard hard-wooded plants. (Epacris. Leptospermum. Has read proof of many articles on hard-wooded plants.)
*Davis, K. C., Science teacher, Ithaca, N. Y. (Genrra in Ramunculacere.)
*Dayp, J. Burtt, Asst. Botanist, Univ. of Calif. Exp. Sta., Berkeley, Calif. (Acacia. Eucalyptus. Maytenus. Myrtacere.)
*Deane, Walter, Botanist, Cambridge, Mass. (Herbarium. Hus helped on varions betanical problems.)
*Dewey, Lister J., Div. of Botany, Dept. of Agric., Washington, D. C. (Mentha.)
Dorner, Fred, Caruation specialist, Lafayette Ind. (Carnation.)
Dorsett, P.H., Associate Physiologist and Patholo gist, Dept. of Agric., Washington, D.C. ( Fiolet.)
*Douglas, Thos. H., of R. Douglas \& Sons, nurserymen and specialists in conifers, Waukegan, Ill. (Larix.)
Duggar, B. M., Asst. Cryptogamic Botanist, Cornell Exp. Sta., Ithaca, N. Y. (Pollen.)
*Dunving, D. M., Amateur, Auburn, N. Y. (Grapes under Glass.)
*Dupey, Louis, Wholesale florist and specialist in hard-wooded plants, College Point, L. I. (Erica. Has read other articles on heath-like plants.)
Earle, Prof. F. S., Horticulturist, Ala. Polytechnic Institute, Auburn, Ala. (Alabama.)
Earle, Parker, Horticulturist, Roswell, N. M. (New Mexico.)
${ }^{*}$ Egas, W. C., Amateur, Highland Park, Ill. (Eremurus. Has helped on hardy plants.)
Eisele, J. D., Foreman Dreer's Nursery, Riverton, N. J. (Cordyline.)
Elliott, William H., Florist, Brighton, Mass. (Asparagus plumosus.)
*Emerr, S. M., Director Mont. Exp. Sta., Bozeman, Mont. (Montana.)
*Endicott, Johs, Bulb-grower, Canton, Mass. (Littonia.)
${ }^{*}$ Endicott, W. E., Teacher, Canton, Mass. (Achimenes. Acidnthera. Ixia. Has made important. corrections in many articles on bulbs.)
Erans, Walter H., Office of Exp. Stations, Dept. of Agric., Washington, D. C. (Alaska.)
*FAwcett, Wm., Dir. Dept. Public Gardens and Plantations, Kingston, Jamaica. (Tropical fruits, as Cherimoya, Marmalade Plum, Egg Fruit, Mango, Mangostecn, Nutmeg.)
*Fernow, Prof. B. E., Dir. College of Forestry, Cornel Unir., Ithaca, N. Y. (Conifers. Forestry.)

Finlayson, Kenneth, Gardener, Brookline, Mass. (Diosma.)
*Fletcher, S. W., Horticulturist, ithaca, N. Y. (Ipomea and other Convolvalucea. Helianthus and reluted genera.)
*Franceschi, Dr. F., Manager S. Calif. Acelimatizing Ass'n, Santa Barbara, Calif. (Nare plants of S. Calif., as Disylirion, Flacourtict, Fouquiern, Fucrat, Hazardia, etc. Has real many proofs and made numerous corrections.)
*Gallowar', B. T., Chief Div. Veg. Phys. and Path., Dept. of Agric., Washington, D.C. (Floriculture. Has read articles on fungi.)
*Garfield, C. W., Horticulturist, Grand Rapids, Mich. (.Michigan.)
*Gerard, J. N., Amateur, Elizabeth, N. J. (Many articles, especially on bulbous plants, as Crocus, Iris, Muscari, Narcissus. 1
*Gillett, Edward, Nurseryman, Southwick, Mass. (Hardy Ferus. Liparis. Has read numerous proofs on natice plants.)
Gofy, Prof. E. S., Horticulturist, Wis. Exp. Sta., Madison, Wis. (Hisconsin.)
Gocldd, H. P., Asst. Entomologist and Horticulturist, Md. Exp. Sta., College Park, Md. (Brussels Sprouts. Celeriac.)
*Green, Prof. S. B., Horticulturist, Minnesota Exp. Sta., St. Anthony Park, Minn. (Minnesota.)
*Grees, Wm. J., Horticuiturist, ․ .io Exp. Sta., Wooster, Ohio. (Ohio. Greenhouse sub-irrigation.)
*Greenlee, Miss Levnie, Bulb-grower, Garden City, N. C. (Ixiu.)
*Greiner, T., Speciaiist in vegetables, La Salle, N. Y. (Garden cegetables, as Artichoke, Asparagus, Bean, Cress, Co:n Salad, Kohlrabi, Lettuce.)
*Grey, Robert M., Gardener, North Easton, Mass. (Numerons important ore?id groups, as Cypripedium, Epidendrum, Lyaste, Maxillaria, Masderallia.)
*Groff, H. II., Gladiolus specialist, Simeoe, Ont. (Gladiolus.)
Gurney, James, Gardener, Mo. Botanical Garden, St. Lonis, Mo. (Cacti.)
Mide, J. Fh., Nurseryman and pomologist, South Glastonbury, Conn. (Connecticut.)
*Halsted, Prof. B. D., Rutgers College, New Brunswick, N. J. (Diseases. Fungus.)
${ }^{*}$ Havsen, Geo., Landscape architect and botanist, Berkeley, Calif. (Epidendrum.)
Hansen, Proî. N. E., Horticulturist, S. Dak. Exp. Sta., Brookings, S. Dak. (South Dakota.)
*Harris, F. L., Gardener, Wellesley, Mass. (Lisianthus. Medinilla.)
*Harris, W., Acting Dir., Dept. Public Gardens and Plantations, Kingston, Jamaica. (Mammee Apple and some other tropical fruits.)
*Harris, W. K., Florist, Philadelphia, Pa. (Fiews clastica. Help on Lilium Harrisii.)
*Hasselbring, Heinrich, Asst. in Botany, Comell Lniv., Ithaca, N. Y. (Iris and most orchids from Gongora to Masterallia.)
*Hastings, G. T., Asst. in Botany, Cornell Univ., Ithaca, N. Y. (Some tropical plants, ass Berria, Bertholictia. A fere grasses, as Hicroclloe, Holcus, Hordeum.)
*Hatrield, T. D., Gardener, Wellesley, Mass. (Nomerons and ruried contributions, as Gesnera, Glaxinia, Luchenalia, Leca, Macrozamia.)
*Hedrick, U. P., Asst. Prof. of Horticulture, Agricultural College, Mich. (Ecaporation of Fruit.)
*Henderson \& Co., Peter, Seedsmen, 37 Cortlandt St., New York, N. Y. (Bulbs. Eccremocarpus.)
*Herringtos, A., Gardener, Florham Farms, Madison, N. J. (Chrysanthemum coccineum. Hollyhock.)
*Hexamer, Dr. F. M., Editor American Agriculturist, New York, N. Y. (Several biographica sketches, as Fuller, Harris.)
Hicks, G. H., late of Dept. of Agric., Washington, D. C. (sced-testing.)
*Hicks, Henry, Nurseryman, Westport, L. I. (Ligustrum.)
*Higgins, J. E., Horticulturist and teacher, Honolulu, H. I. (Hutaiian Istands.)
Hill, E. G., Florist, Richmond, Ind. (Begonia.)

* Нitchсоск, A. S., Prof. of Botany, Kansas State Agric. College, Manhattan, Kans. (Most of the genera of grasses in the second volume.)
*Hoopes, Josiah, Nurseryman, West Chester, Pa. (Hedges.)
*Horsford, Fred. H., Nurseryman and specialist in Lilies, Charlotte, Vt. (Alpine Girrlens. Lilium. Has read proof of mamy articles on native plants.)
*Hunn. Charles E., Gardener, Cornell Exp. Sta., Ithaca, N. Y. (Forcing of Vegetables. Mignonette.)
*Huntler, Prof. F. A., Idaho Exp. Sta., Moscow, Idaho. (Idaho.)
Hutchins, Rev. W. T., Sweet Pea specialist, Indian Orchard, Mass. (Sicect Pea.)
*Irish, H. C., Horticulturist, Mo. Botanical Garden, St. Louis, Mo. (Capsicum. Lactuca.)
Jackson \& Perkins Co, Nurserymen and specialists in Clematis, Newark, N. Y. (Clematis.)
*Jeffers, A., Editor "Cornucopia," Norfolk, Va. ( Kale.)
Jordan, A. T., Asst. Horticulturist, New Brunswick, N. J. (New Jersey.)
*Karss, M. G., Div. of Botany, Dept. of Agric., Washington, D. C. (Minor vegetables, as HorseRadish. Herls, as Hyssopus; also Ginseng and Glycyrrhiza.)
*Kearvey, Jr., T. H., Div. of Botany, Dept. of Agrie., Washington, D. C. (Three archial !encra, Grammangis, Grammatophyllam, Halemarie.)
*Keller, J. B., Florist, Rochester, N. Y. (Many groups af hardy herbaceous peremmia's. Article on "Herbacerns Perennials.")
*Kelsey, Harlan P., Landscape architeet, Boston, Mass. (North Carolina plants, as Galax aul Lowcothoè.)
Kennedy, P. Beveridge, Horticulturist, Nev. Exp. Sta., Reno, Nev. (Many yenera of grasses. Begonia.)
*Kerr, J. W., Nurseryman, Dentos Md. (Mary) land.)
Kiff, Robert, Florist, Philadelph.a, Pa. (Cutflorers.)
Kinser, L. F., Horticulturist, Kingston, R. I. (Celery.)
Lager \& Hurrell, Orchid cultivators, Summit, N. J. (Cattleya.)

Lake, Prof. E. R., Horticulturist, Ore. Exp. Stá., Corvallis, Ore. (Oregon.)
*Landreth, Burnet, Seedsman, Philadelphia, Pa. (David Landreth.)
*Lalman, G. N., Instructor in Horticulture, Cornell Univ., Ithaca, N. Y. (Geranium. Impatiens. Pelargomium.)
Loxsdale, Edwin, Florist, Chestnut Hill, Philadelphia, Pa. (Conservatory.)
*Lord \& Burnham Co., Horticultural arehitects and builders, Irvington-on-Hudson, N. Y. (Greenhouse Construction.)
Lothrop \& Higgins, Dahlia specialists, East Bridgewater, Mass. (Ialilia)
*MacPherson, James, Landscape gardener, Trenton, N. J. (Euphorbia. Has read proof of several orehid genera.)
*Manning, J. Woodward, Horticultural expert and purchasing agent, Boston, Mass. (I'yrethrum. Hardy herls. Has read pronf of many groups of herbaceous peremials)
*Manning, Warren H., Landscape architect, Boston, Mass. (Article, "Herbaceous Perenmials.")
*Masos, Prof. S. C., Berea, Ky. (Labeling. Layering.)
*Massey, Prof. W. F., Horticulturist, N. C. Exp. Sta., Raleigh, N. C. (Figs. North Carolina.)
Mathews, F. Schuyler, Artist, 2 Morley St., Boston, Mass. (Color.)
*Mathev s, Prof. C. W., Horticulturist, Ky. Exp. Sta., Lexington, Ky. (Kentucky.)
*Mathews, Wm., Florist and orchid grower, Utica, N. Y. (Various rare and important orchids, as Gongora, Grammatophyllum, Ionopsis, Limatodes, Miltonia.)
*Maynard, Prof. S. T., Horticulturist, Mass. Hatch Exp. Sta., Amberst, Mass. (Massachusetts.)
McDowell, Prof. R. H., Reno, Nev. (Nevada.)
Mofarland, J. Horace, Horticultural printer and expert in photography, Harrisburg, Pa. (Border.)
*McMillen, Robert, Wholesale grower of mignonette, Pearl River, N. Y. (Mignonette.)
*McWilliam, Geo., Gardener, Whitinsville, Mass. (Dipladenia, Luculia.)
Mead, T. L., Hortieulturist, Oviedo, Fla. (Crinum. Has helped in motters of extreme southern horticulture.)
*Mefhan, Joseph, Nurseryman, Germantown, Philsdelphia, Pa. (Idesia.)
*Meredith, A. P., Gardener, South Lancaster, Mass. (Humea.)
Moon, Samufl C., Nurseryman, Morrisville, Pa. (Trees for ornament.)
*Monris, O. M., . Horticulturist, Okla. Exp. Sta., Stillwater, Jkla. (Indian Territory. Oklahoma.)
*Munson, T. V., Nurseryman and grape hybridist, Denison, Tex. (Grape culture in the South.)
*Munsgar, Prof. W. M., Horticulturist, Me. Exp. Sta., Orono, l'e (Maine.)
Newfll, A. J., Gardener, Wellesley, Mass. (Certain orchids.)
*Norton, J. B. S., Botanical Assistant, Mo. Botanical Garden, St. Louis, Mo. (Euphorbiacea. Manihot. Sercrel botanical mezles, as Lithrea.)
Ogston, Colin, Gardener and orehid cultivator, Kimball Conservatories, Rochester, N. Y. (Demirobium.)
*Oliver, G. W., Gardencr, U. S. Botanic Gar - mis, Washington, D. C. (Many articics on palms, aroids, sucentents and rave plants, and much help (m proofs. Alstromeria. Amaryllis.)
Orpet, Edward O., Gardener, So. Laneaster, Mass. (Many articles. Border. Cyelamen. Dianthus, and certain orchids.)
*Parsons, Jr, Samuel, Landscape architect, New York, N. Y. (Lasw.)
Peacock, Lawrence K., Dahlia specialist, Ateo, N. J. (Iahlin.)

Powfle, Prof. G. Harold, Horticulturist, Del. Exp. Sta., Newark, Del. (Cherry. Delavare.)
Price, Prof. R. H., Horticulturist, Tex. Exp. Sta., College Station, Tex. (Texas.)
*Purdr, Carl, Specialist in California bulbs, Ukiah, Calif. (California native plants, as Brodiaa, Calochortus, Erythronium, Fritillaria.)
Rane, Prof. F. W., Horticulturist, N. H. Exp. Sta., Durham, N. H. (Now Hampshire.)
*Rawson, Grove P., Florist, Elmira, N. Y. (Lantame.)
*Rawson, W. W., Seedsman and market gardener, Boston, Mass. (Cucumber. Lettuce.)
*Reasoner, E. N., Nurseryman and horticulturist, Oneco, Fla. (Many artieles, and much help on extreme southern horticulture. Casalpinit. Cocos. Guava. Kumquat. Lemon. Lime. Mango.)
*Rehder, Alfred, Specialist in hardy trees and shrubs, Jamaica Plain, Mass. (Botamy and culture of most of the hardy trees and shrubs.)
*Robfrts, Prof. I. P., Dir. College of Agric., Cornell Unir., Ithaca, N. Y. (Drainage. Fertility. Mamure. Potato.)
*Rolfs, Prof. P. H., Botanist, S. C. Exp. Sta, Clemson College, S. C. (Eggplant. Ftorida.)
Rose, J. N., Asst. Curator, U. S. Nat. Herb., Smithsonian Institution, Washington, D. C. (Agare.)
Rose, N. Jonsson, Landscape Gardener to New York City Parks, New York, N. Y. ( Curions exotics.)
*Roth, Filibert, Asst. Prof. of Forestry, N. I. State College of Forestry, Cornell Univ., Ithaca, N. Y. (Fugus.)
*Rowlee, Prof. W. W., Asst. Prof. of Botany. Cornell Univ., Ithaca, N. Y. (Definitions. Liat tris. Mymphea. Salix.)
Sargent, Prof. C. S., Dir. Arnold Arboretum, Jamaica Plain, Mass. (Alies.)
*Scott, Wm., Florist, Buffalo, N. Y. (Important florists' phants and flouers, as Acacia, Conrallaria, Cyclamen, Cytisus, Smidx, Metrosideros, etc.)
Scott, Wm., Gardener, Tarrytown, N. Y. (Berfolonia and other durerf temer foliage plants.)
Semple, James, Specialist in China Asters, Bellevue, Pir. (Aster.)
*Sexton, Joseph, Founder of the pampas grass industry, Goleta, Calif. (Gyncrium.)
*Shins, Charles H., Inspector of Experiment Stations, Univ. of Calif., Berkeley, Calif. (California, Fig, Loganberry, ete.)
*Shore, Robert, Gardener, Botanical Dept., Cornell Luiv., Ithaca, N. Y. (Varions articles, as Actly;ha, Bedding, Dichorisandra, Episcea, Fittonir, Hymenophyllum. 1
*Siebrecht, Henry A., Florist and nurseryman, New York and Rose Hill Nurseries, New Rochelle, N. Y. (Much help on rare greewhouse plants, particularly orehids and palms. Dracama. Fieus. Fuchsia. Gardenia. Ixora. Lapageria. Lawrus.)
*Sisonds, O. C., Supt. Graceland Cemetery, Buena Ave., Chicago, Ill. (Landscape Cemeteries.)
*Slingerland, Prof. M. V., Asst. Prof. Economic Eutomology, Cornell Univ., Ithaca, N. Y. (Insecticides. Insects.)

Smith, A. W., Cosmos cultivator, Americus, Ga. (Cosmos.)
Smith, Elmer D., Chrysanthemum specialist, Adrian, Mich. (Chrysanthemum.)
*Smith, Jared G., Div. of Botany, Dept. of Agric., Washington, D. C. (Nearly all palms. I'arious genera, as Centaurea, Cerastium, Cotylerlon.)
*Spencer, John W., Fruit-grower, Westfield, Chautauqua Co., N. Y. (Grapes in the North. Help) on importent fruits.)
*Starnes, Prof. Hugh N., Horticulturist, Ga. Exp. St., Athens, Ga. (Georgia.)
Stinson, Prof. John T., Dir. Mo. Fruit Exp. Sta., Mountain Grove, Mo. (Arketrsas.)
*Strong, Wm. C., Nırserymin, Waban, Mass. (Ǩenrick.)
*Tart, Prof. L. R., Horticulturist, Mich. Agric. College, Agricultural College, Mich. (Greenbouse Heating. Hotbets.)
*Taplis, W. H., Specialist in palms and ferns, Holmesburg, Philadelphia, Pa. (Culture of many palms, ferns and foliage plants.)
*Taylor, Wm. A Asst. Pomologist, Div. of Pr. molog. , Dept. of Agric., Wishington, D. C. ( Varions artioles on muts, us Hickory.)
*Thilow, J. Otro, of H. A. Dreer, Inc., Philadelphia, Pa. (Leek. Muskmelom.)
*Thompson, C. H., formerly Asst. Botanist, Mo. Botanical Garden, St. Louis, Mo. (Some genera of cocti, as Echinocerus, Epiphylhum.)
*Thorbern \& Co., J. M., Seedsmen, New York, N. Y. (Hyacinth. Hate read many proots ot bulbs, amumals, vegetables, herbs, etr.)
Tormey, Prof. J. W., Biologist, Ariz. Exp. Sta., Tucson, Ariz. (Arizona. Inte. Opmutia.)
*Tracs, S. M., Horticulturist, Biloxi, Miss. (Mississippi.)

* Pracs, Prof. W. W., Seedsman. Detroit, Mich. (Cablage. Lettuce. Michiyan.)
*Trelease, Dr. ${ }^{\cdots}$..., Dir. Mo. Potanical Garden, St. Louis, Mo. (Certain elesert plents of the lily family, as Aloe, Apicra, Gasteria, Hatorthia.)
*Tricker, Wm., Specia'ist in aquatics, Dreer's Nursery, Riverton, N. '. (Aquarium. líost Aquatirs, as Li anathemum, Limmocharis, Nymphore, Velumbium, Victorin, etc.)
*Troop, Prof. Javes, Horticulturist, Ind. Exp. Sta., Lafayette, Ind. (Indiamm.)
*Terner, Wm., Gardener, Tarrytown-on-Hudson, N. Y. (Forcing of Fruits. Mushroom.)

Tuttle, H. B., Cranberry-grower, Valley Junction, Wis. (Cramberry.)

* Cnnfrwood, Plof. L. M., Colmmbia University, Sew York, N. Y. (Botany of all ferns.)

Van Deman, H. E., Pomologist, Parksley, Va. (Date.)
*Vaughas, J. C., Seedsman and florist, Chicago, Ill. (Christmas Greens.)
*Vick, James, Editor "Viek's Magazine," Rochester, N. Y. (Malrariscus. Melothria.)
*Voorhees, Prof. Edward B., Dir. N. J. Exp. Sta., New Brunswick, N.J. (Fertilizers.)
Waldron, Prof. C. B., Horticulturist, N. Iak. Exp. Sta., Fargo, N. Dak. (North Dakota.)

* Walker, Ernest, Horticulturist, Ark. Exp. Sta., Fayetteville, Ark. (Annuals. Basket Plants. Heliotrope. Hatering.)
*Watrous, C. L., Nurseryman and pomologist, Des Moines, I:i. (Iowa.)
*Watson, B. M., Instructor in Horticulture, Bussey Inst., Jimaica Plain, Mass. (Colchicum. Cuttage. Forcing Harily Plants. House Plats.)
Watts, R. L., Horticulturist, Tenn. Exp. Sta., Knoxville, Tenn. (Tennessec.)
*Waugir, Frof. F. A , Horticulturist, Vt. Exp. Sta., Burlington, Vt. ( Beet. Carrot. Cucumber. Greens. Lilium. Pentstemon. Salarl Plents. Vermont.!
*Webber, H. J., In charge of Plant Breeding Labsatory, Div. of Veg. Phys. and Path., Dupt. of Ayric., Washington, D. C. (Citrus. Murraya simi, other citrous genera.)
*Welbhoćse, Col. Fred, Fruit-grower, Fairmount, Kans. (K゙onstls.)
*Wheeler, If. J., Dir. R. I. Exp. Sta., Kingston, R. I. (Lime.)
*Whitsey, Mibton, Chief, Div. of Soils, Dept. of Agric., Washington, D. C. (Irrigution. Soils.)
*Whitten, Prof. J. C., Horticulturist, Mo. Exp. Stil., Columbia, Mo. (Missouri.)
*Whrte, R. B., Amateur, Ottawa, Ont. (Hemerocallis. Lilium.)
*Wickson, Edward J., Prof. of Agrieultural Practier, Univ. of Calif., ard Horticulturist, Calif. Exp. Sta., Berkeley, Calif. (Almomu, Abricot, Cherry, Grape, Lemom, Lime, ete., in Califormia.)
*Woolso:- G. C., Nurseryman, speciaiist in hardy herbaceous perennials, Passatic, N. J. (Mertonsia. Has read mumerous proofs.)
* Wortman, S. W., Mushroom-grower, Iselin, N. J. (Mushroom.)
*Wiegand, K. M., Instructor in Botany, Cornell Unir., Itbaca, N. Y. (Coreopsis. Cordyline. Cyperis. Inraceua. Juncus. Lysimachia. Musar. Myosutis).
*Wrman, A. P.. Asst. to Olmsted Bros., Landscape Architects, Brookline, Mass. (Diren, Epigara, Exochorda, Halesia, Hypericum, Kerria. Liquidambar, amd other haraly trees and shrubs. Also Lathyrus, Lupinus.)


## II. Partial list of those irho hare hssisted by reading proof, AND IN OTHER WASS.

Andrews, D. M., Nurseryman, Boulder, Colo. (Natice western plants, especially new hardy cacti.)
Ball, C. D., Wholesale florist, Holmesburg, Philadelphia, Pa. (Ferns. F,liage Pltuts. Palm.s.)
Barker, Michael, Editor "American Florist," Chicago, Ill. (.Mumy suggestions.)
bassett \& Son, Wm. F., Nurserymen, Hammonton, N. J. (Native plants, as Hibiscus.)
Berger \& Co., H. H., New York, N. Y. (Japhnese and Californian plants.)
Bessey, Chas. E., Prof. of Botany, Univ. of Neb., Lincoln, Neb. (Natire plants, purticularly grasses. 1
Betscher Bros, Florists, nurserymen and seedsmen, Canal Dover, Ohio. (Gladiolus.)
Blanc, A., Seedsman and plantsman, Philadelphia, Pa. (Cacti. Norelties.)
Boardman, S. L., Sec. Maine Hort. Soc., Augusta, Me. (Maine.)
Bhackftt, Col.G. B., Pomologist, Dept. of Agric., :"ashington, D. C. (Hicoria. Hickory. Juglans.)
Braunton, Ernest, Gardener, Los Angeles, Calif. (Many valuable notes on plants cult. in Calif.)
Breck \& Sons, Joserf, Seedsmen, Boston, Mass. (Portrait of Joseph Breck.)
Budd, Prof. J. L., Horticultural author, Ames, Iowa. (Iova. Important fruits.)
Budlong Bros., Pickle-makers, Providence, R. I. (Cucumber. Martynia.)
Burbank, Luther, Hybridist, Santa Rosa, Calif. (Glatiolus.)
Bush \& Sons \& Meissner, Bushberg, Mo. (Grapes.)
Caldwell, Geo. C., Prof. of Agric. Chemistry, Cornell Univ., Ithaca, N. Y. (Fertility. Fertilizers. Lime.)
Clare, Miss Josephine A., Asst. Librarian, Dept. of Agric., Washington, D. C. (Information as to species after the date of Index Kercusis.)
Clinton, L. A., Asst. Agriculturist, Cornell Exp. Sta., Ithaca, N. Y. (Lime.)
Coates, leonard, Napa City, Calif. (Fruit Culture in California.)
Coville, Frederick V., Botanist, Dept. of Agric., Washington, D. C. (Juniperus. Sugyestions in various matters.)
Cranefield, Fred, Asst. Horticulturist, Wis. Exp. Sta., Madison, Wis. (Irrigation.)
Dailledolze Bros., Wholesale florists, Flatbush, Brooklyn, N. Y. (Mignonette.)
Dandridge, Mrs. Danske, Amateur, Shepherdstown, W. Va. (Hardy plants.)
Davenport, Geo. E., Botanist, specialist in ferns, Medford, Mass. (Several genera of ferns.)

Day, Miss Mary A., Librarian, Gray Herbarinm of Harvard Lniv., Cambridge, Mass. (Rare luoks.)
Devros, Dr. G., Amateur in bamboos, New Orleans, La. (Bumboo.)
Dock, Miss M. L., Harrisburg, Pa. (Bartram.)
Downer's Sons, J. S., Fairport, Ky. (Kentuchy.)
Dreer, H. A. (Inc.), Seedsmen and plantsmen, Philadelphia, Pa. (Mamy amd raried serrices, especially in aquatics, ferns, foliage plants amb rare anmuals.)
Elliott, J. Wilkinson, Landseape arehitect, Pittsburs, Pa. (Kochia, anel some herbaccous peremials.)
Ellwanger \& Barry, Nurserymen, Rochester, N. Y. (Harrly plants.)

Fisiler, Jabez, Fruit-grower, Fitchburg, Mass. (.Massachusetts.)

Ganong, W. F., Prof. of Botany, Smith College, Northampton, Mass. (Cacti.)
Goodman, L. A., Fruit-grower, Westport, Mo. (Missouri.)
Halliday Bros., Florists, Baltimore, Md. (Azillea. Camellia.)
Harris, J. S., Fruit-grower, La Crescent, Minn. (Minnesota.)
Heiss, J. B., Florist, Dayton, Ohio. (Palms.)
Hutt, R. L., Prof. of Horticulture, Ont. Agric. College, Guelph, Ont. ( Kite. Kohtrabi.)
Jones, Rev. C. J. K., Los Angeles, Calif. ( Various Califormian plants.)
Jordan, Dr. W. H., Dir., N. Y. Exp. Sta., Geneva, N. Y. (Fertility. Fertilizers.)
Kedzie, Dr. R. C., Prof. of Chemistry, Mich. Agric. College, Agricultural College, Mich. (Fertility. Fertilizers. Lime.)
*King, F. H., Prof. of Agricultural Physics, Madison, Wis. (Irrigation, Mulching, etc.)
Latham, A. W., Secretary Minn. Hort. Soc., Minneapolis, Minn. (Minnesota.)
Lupton, J. M., Market-gardener, Gregory, L. I. (Cabbage.)
Mackenzie, R. R., Manager bulb departme: * J. M. Thorburn \& Co., New York, N. !. (Many important lulls.)
Makepeace, A. D., Cramberry-grower, West Barnstable, Mass. (Cranlerry.)
Manda, W. A., Nurseryman, South Orange, N. J. (Orchitl pictures.)
Manning, Jacob W., Nurseryman, Reading, Mass. (Dried specimens of herbaceous perennial plents.)
Manning, Robert. Sec. Mass. Hort. Soc., Boston, Mass. (Biographical sketches. Horticulture.)

May, John N., Florist, Summit, N. J. (Florists' Flowe -.)
Meehan, "hos., Nurseryman, Germantown, Pa. (The article" Horticulture.")
Miller, E. S., Specialist in bulbs, Floral Park, L. I. (Many articles on bulbs.)

Mudge, W. S., Hartland, N. Y. (Muskmelou.)
Nanz \& Necier, Florists and seedsmen, Louis: ille, Ky. ( Kentucky.)
Nash Geo. V., Asst. N. Y. Bot. Garden, Bronx Park, N. Y. ; Genera of grasses.)
Parsons, Samuel, Nurseryman, Flushing, L. I. ( The article "Horticultwe.")
Pendergast, W. W., Pres. Minn. Hort. Soc., Hutchinson, Minn. (Minnesofa.)
Pierson, F. R., Nurseryman, Tarrytown-onHudson, N. Y. (Bulls.)
Powell, Geo. T., Pomologist, Ghent, N. Y. (Important fruits.)
Ragan, W. H., Div. of Pomology, Dept. of Agric., Washington, D. C. (Indiana.)
Rider, Prof. A. J., Trenton, N. J. (Cranberry.)
Robinson, Dr. B. L., Curator Gray Herbarium of Harvard Univ., Cambridge, Mass. ( Гarious articles on native plants.)
Robinson, John, Author of "Ferns in their Homes and Ours," Salem, Mass. (Several articles on ferns.)
SANDer \& Co. (A. Dimmock, Agent), New York, N. Y. (Recent importations, particularly orchids (and palms.)
Schllutheis, Anton, Nurseryman and florist, College Point, N. Y. (Woody plents from Aus. tralia and the Cape, as Erica.)
Scoon, C. K., Fruit-grower, Geneva, N. Y. (Cherry.)
Scribner, F. Lampson, Agrostologist, Dept. of Agric., Washington, D. C. (Genera of grasses.)
Sears, Prof. F. C., School of Horticulture, Wolfville, Nova Scotia. (Camada.)

Seavey, Mrs. Fannie Copley, Landscape gardener, Brighton, IIl. (Landscupe Gardening.)
Sifady Hill Nursery Co., Boston, Mess. (Herbaceous perennials.)
Smav, Thos., Prof. of Agric., Vniv. of Minn., Minneapolis, Minn. (Medieago. Melitotus.)
Slaymaker, A. W., refut-giowe, Camden, Del. (Delcuca"e.)
Smith, Irving C., Market-gardener, Green Bay, Wis. (Kohtraiti.
Stanton, Geo. Ginseng specialist, Summit, N. J. (Ginserig.)

Storrs \& Harrisos, Nurserymen, Painesville, Ohio. ( $\mathrm{I}^{-}$rimus plants.)
Suzleif $\mathbb{E}$ Iida. Yokohama Nursery Co., New York, N. Y. (Japmese plants.)

Todd, Frederick G., Landscape architect, Montreal, P. Q. (Hardy trees amd shrubs.)
Vick's Sons, James, Seedsmen, Rochester, N. Y. ( Jariou: plants.)
Ward, U. W., Wholesale florist and carnation specialist, Cottage Gardens, Queens, L. I. (Carnation.)
iWebb, Prof. Wesley, Dover, Del. (Delavare.)
Wedge, Clarence, Frnit-grower, Albert Lea, Minn. (Minnesota.)
Wheeler, C. F., Prof. of Botany, Mich. Agric. College, Agricultural College, Mich. (Hypericum. Mimulus.)
White, J. J., Cranberry-grower, New Lisbon, N. J. (Cranberry.)

Willard, S. D., Nurseryman, Geneva, N. Y. ( Important fiuits, as Cherry.)
Wittbold, Geo., Florist, Chicago, Ill. (Palms and ferns.)
Wright, Charles, Horticulturist, Seaford, Del. (Delanare.)
Yeomans, L. T., Fruit-grower, Walworth, N. Y. (Exaporation of fruits.)

## ABBREVIATIONS

## I. of generai expressions



## II. of botanical terms



## III. OF BOOKS AND PERIODICALS

To aid the student in the verification of the work, and to introduce him to the literature of the various subjects, citations are made to the portraits of plants in the leading periodicals to which the American is most likely to have access. These references to pictures have been verified as far as possible, both in the MS. and in the proof. A uniform method of citation is much to be desired, but is extremely difficult, because periodicals rarely agree in methods. With great reluctance it was decided to omit the year in most cases, because of the pressure for space, but the student who lacks access to the original volumes may generally ascertain the year by cousulting the bibliographical notes below.

An arbitrary and brief method of citation has been chosen. At the outset it seemed best to indicate whether the cited picture is colored or not. This accounts for the two ways of citing certain publications containing both kinds of pictures, as The Garden, Revue Horticole, and Gartenflora.

The figures given below explain the method of citation, and incidentally give some hints as to the number of volumes to date, and of the number of pages or plates in one of the latest volumes.

A few works of the greatest importace are mentioned elsewhere by way of acknowledginert (p. xy). The standard wo:ks on the bibliography of botany are Pritzel's Thesaurus and Jackson's Guide to the Literature of Botany ; also, Jackson's Catalogue of the Library of the Royal Botanic Gardens, Kew.
A.F. . . . The American Florist. Chicago. A trade paper founded August 15, 1885. The volumes end with July. Many pictures repeated in "Gng." ( $14: 1524=$ vol. and page. )
A.G. . . . American Gardening. New York. Represents $1+$ extinct horticultural periodicals, including The American Garden (1888-1890). Founded $1879(?)(20: 896=$ vol. and page.)
B. . . . . The Botanist. Edited by Maund. No years on title pages. Founded 18:39. 8 vols., 50 colored plates in each vol. $(8: 400=$ vol. and col. plate.) Cumulative index.
B.B. . . . Britton \& Brown. An illustrated Flora of the Northern ['. S.. ete. New York. 1896-1898. ( $3: 588=$ vol. and page.)
B.F. . . See F.
B.H. . . . La Belgique Horticole. Ghent. 35 vols. (1851-1885.)
B.M. . . . Curtis' Botanical Magazine. London. Founded 178\%. The oldest current periodical devoted to grarden plants. The vol. for 1899 is vol. 125 of the whole work. Index to first 107 volumes by E. Tonbs. London. ( $7690=$ col. plate.)
B.R. . . . Botanical Register (1815-1847). Vols. 1-14 edited by Edwards: vols. 15-33 by Lindley. In vols. 1-23 the plates are numbered from 1-2014. In vols. 24-33 they are numbered independently in each vol. There are 688 plates in vols. 24-33. "An Appendix to the First Twenty-three Volumes" (bound separately or with the $2^{-}$vol.) contains an in' $x$ to the first 6. .ols. An index to vols. 24-31 may be found in vol. 31. (3:3:50=vol. and col plate.)
D. . . . . Dana. How to Know the Wild Flowers. New York. 1893. ( $298=$ page.)
Eni. . . . Emerson, G. B. Trees and Shrubs of Massachusetts. Boston. 2 vols. 149 plates.
F. . . . . The Florist. London. 1840-1884. (1884: $192=$ year and page pp. col. plate.) Editors and title pages changed many times. Known as the Florist, Florist's Journal and Florist and Pomologist. Sometimes improperly called British Florist.
F.C. . . . Floral Cabinet. Knowles \& Westcott. London. 1837-1840. (3:137 vol. and col. plate).
F.E. . . . The Florists' Exchange. New Iork. A trade paper, whose pictures sometimes are repeated in "A.fi." Foumled Dec. 8, 1838. (11:1298 = vol. and page.)
F.J. . . . See F.
F.M. . . . Floral Magazine. London. Series I. 18611871, 8vo. Series II. 18i2-1881, 4to. (1881:450=year and col. plate.)
F.P. . . . See F.
F.IR. . . . Florists' Review. Chicago. A trade paper. Vol. 1, Dec. 2, 1897, to Mav 26, 1898. Two vols. a year. $(4: 660=$ rol. and page. $)$
F.S. . . . Flore des Serres. Ghent. (184:-1880.) Inconsistent in numbering, but the plate numbers are always found on the plate itself or on the page opposite. Valuable bn+ perplexing indexes in :ols. 15 and 19 (23:2 $481=$ vol. and col. plate.)
G. C. . . . The Gardeners' Chronicle. London. Series I. (1841-18.3) is cited by year and page. Serics II. or "New Series" (187t1886), is cited thus: $11.26: 824=$ series, volume and parr. Series III. is cited thus: III. 26:416. Two vols. a year, beginning 1874. A select index is scattered through 1899 and 1880. Consult II. 12: viii (1879), and similar places in subsequent vols.
G. F. . . . Garden and Forest. New York. 1888-1897. ( $10: 518=$ vol. and page.)
G.M. . . . Gardeners* Magazine. London. Ed. by Shirley Hibherd. Founded 1860. Vols. $31-12$ are cited. (4:2:8:2 = vol. and page.)
Gr. . . . The Garden. London. Founded 1871. Two vols. a rear. (56:1254=vol, and col. plate. $\overline{2} \mathrm{f}, \mathrm{p} .458=$ rol. and page containing black figure.) An Index of the first 00 vols. Was separately published. ('omplete Index of Colored Plates to ad of 1888 in vol. 54, p. 334.
Gng. . . . Gardening. Chicago. Founded Sept. 15, 1892. Vols. end Sept. 1. - $\overline{1}: 381=$ vol. and page.)
Gt. . . . . Gartenflora. Berlin. Founded 18.is. (Gt. $45: 140=$ vol. and col piate. lit. $48 . \mathrm{p}$ ( $: 0=$ rol. and page containing black tigure.)
G.W.F. . . Gondale's Wild Flowers of America. Boston, 1886. ( $50=$ col. plate.)
HBK. . . Humboldt. Bonpland \& Kunth. Nova Genera et Species, etc. Paris. 1810-2. 7 vols. Foliu.
I. H. . . . L'Illustration Horticole. Ghent. (18ँit-1896.) (43:72= vol. and col. plate.) The volumes were numbered continuonsly, but there were is series. Series $1 .=18.54-63$. Series $I I=1864-69$. Series $111 .=1890-80$. Series $\mathrm{IV}^{2}=1881-86$. Series $V .=188$ i $^{-}$ 93. Serics VI. $=1894-96$. The plates were numbered continuously in the tirst 16 vols. from 1 to 614 : in vols. $1--33$ they min from 1 to 619 : in series $V$. from 1 to 190: in Series VI. they hegin anew with each vol. Valuable indexes in vols. 10 and 20. Series V. in 4to, the rest 8 vo.
J.H. . . . Journal of Horticulture. Jondon. Founded in 1848 as The Cottage dardener. Series 111. only is eited, beginning 1880. (III. 39:504=series, vol.. page.
K. Wr. . . . See F. C.
L. . . . . In rol. 1 of this work, sometimes means Lindenia, sometimes Lowe's Beautiful

* Leaved Plants. See"Lind." and "Lowe."
L.B.C. . . The Botanical Cabinct. Loddiges. 181i33.100 plates in each vol. Complete index in last vol. $\quad(20: 2000=$ rol. and col. plate.)
Lind. . . . Lindenia, Ghent. Founded 188.5. Folio. Devoted to orehids.
Lowe . . . Beatiful Leared Plants. E. J. Lowe and Howard. London. $1864,(60=$ col. plate. $)$
M. . . . A. B. Freeman-Mitford, The Bamboo Garden. London. 1896. (2:4=page.)
M.D.G. . . Möller's Deutsche Gärtner Zeitung. Erfurt. Founded 1886. (1897:425=year and page.)
Mn. . . . Mechan's Monthly. Germaitown, philadelphia. Founded 1891. (9:192 = vol. and page opposite col. plate.)
N. . . . . Nicholson. Dictionary of Gardening. Vols. $1+(188+1887)$. Vol. 5 in preparation.
P.F.G. . . Lindley \& Paxton. Flower Garden. London. 1851-5ె3. 3 vols. tio.
P.G. . . . Popular Gardening. Buffalo. 1885-90. ( $\overline{5}: 2: 0=$ vol. and page.)
P.M. . . . Paxton's Xíagazine of Botany. London. 18:34-49. ( $16: 376=$ vol. and pare opposite col. plate.) Vol. 15 has index of first 15 vols.
R. . . . . Reichenbachia. Ed. by゙ Fred. Sander. London. Founded 1886. Folio.
R.B. . . . Revne de l’Horticulture Belge et Etrangère Ghent. Founded 1875! (23:288= vol. and page opposite col. plate.) In the first rol. of the Cyclopedia "R.B." sometimes means Belgique Horticole, but the confusion is corrected in later rols., where Belgique Horticole is abbreviated to "B.H."
R.H. . . . Revue Horticoie. Dates from 1826, but is now considered to have been founded in 18:9. (1899:596=year and page opposite col. plate. 18!9, p. $596=$ year and page opposite black figure.)
S. . . . . Schneider. The Book of Choice Ferns. London. In 3 vols. Vol. 1, 1892. Vol. 2 , 1093.
S.B.F.G. . Sweet British Flower Garden. London. Series 1., 1823-29, 3 vols. Series $11 .$. 1831-38, 4 vols.
S.H. . . . Semaine Horticole. Ghent. Founded 1897. ( $3: 548=$ year and page.)
S.M. . . . Semaine Horticole. Erroneously cited in this fashion a few times in tirst vol.
S.S. . . . Sargent. The Silva of North America. $1: 3$ rols. Vol. 1, 1891. Vol. 12, 1898. ( $12: 1 ; 20=$ rol. and plate, not colored.)
S.7. . . . Siehold \& Zuccarini. Flora Japonica. Vol. 1. 18:3-44. Vol. 2 by Miquel, $18 i \boldsymbol{u}$. $(2: 150=$ vol. and plate.)
V. or V.. M. Vick's Magazine. Rochester, N. Y. Founded 1878. Vols. numbered continuously through the 3 series. Vols. begin with Nov. (23:250=vol. and page.) Sometimes cited as "Vick."
** Additional abbreviations und explenations will be found in the introductory pages of Vol. I.

$$
\leftarrow
$$

$5$

## Cyclopedia of American Horticulture

EARTH NUT, EARTH PEA. English names for the Peanut, or Goober, Aruchis hypogua. Also $A$ pios.

EATONIA (Amos Eaton. American botanist, 176 184:: author of popular Manual of Botany of the United Sutes, which was for a long time the only general work available for American students). Givemineer. A North Amsican genus of 4 ur 5 spories of tufted perennial grases. Three kinds have been catalogued by Wilfred Br thertou, Rochester, Mich.

> A. D'nicle dense, spike-like, strict.
obtusàta, Gray. Spikelets crowded on the short, erect panicle-branches: "piwr empty glume roundedobovate, very obtuse. Dry soil.

## AA. Panicle more loose and slender.

Pennsylvánica, Gray Ľ゙s. 3-6 in. long: paniclebranches lax, hotding. Moist woods and meadows.
Dúdleyi, Vasey. Lvs. 1-2 in. long: panicle branches spreading in flowering time, afterwards erect.
A. S. Hitcheock.

## EBONY. Diospyros Ebenus.

ECBALLIUM (Greeis, to throue out). Cucurbiticece. Squikting Cuoumber. The Squirting Cucumber is one of the most annusing and diseoncerting of all piants. Few if any cultivated plants fire their seeds at one with such startling suddenness and force. It is a hardy annual trailing vine, easily grown in any garden. When ripe, the oblong, prickly fruit squirts its seeds at the slightest touch, or sometimes at the mere vibration of the ground made by a person walking by. The boy or girl who did not like this plant never lived. Some of the old herbalists called this plant Cucumis asininus. Another curious fact about the plant is that a powerful cathartic is made from the juice of the fruit, which has been known for many centuries. A preparation of it is still sold in the drug stores as Trituratio Élaterini. Ecballium has only one species, and is elosely related to the important genera Cucumis and Citrullus. With them it differs from Momordica in lacking the 2 or 3 scales which close the bottom of the calyx. Other generic characters are: prostrate herb, theshy, rough hairy: Ivs. heart-shaped, more or less 3-lobed: tendrils wanting: Hs. yellow, the staminate in racemes, pistillate usually from the same axils with the staminate ils.: calyx $\overline{5}$-cut. It is a native of the middle and eastern Mediterranean regions, especially rich, moist forests. Sins, in the Botanical Magazine, says the plant "is generally considered as an annual, but if the soil is dry and the situation sheltered, the root will survive two or three winters, and the plants will flower earlier and spread farther than those of the same year."

Elatèrium, A. Rich. (Momórdica Elatèrium. Linn.). Squirting Cucumber. Fig. 74. Described above. B.M. 1914.
W. M.

ECCREMOCARPUS (Greek, pendent fruits). Bignoniacers. Three to five species of tall, somewhat woody plants from Peru and Chile, climbing by bran shed tendrils at the end of the twice pinnate leaves, and having very distinct flowers of somewhat tubular shape, which are colored yellow, orange or scarlet. The species mentioned below is doubtless perennial in sonthern California, where it is said to show best when climbing orer shrubbery, but in the East it is treated as a tender annual and is perhaps usually trained to a trellis or south wall. It bears flowers and fruits at the same time, and the orange flowers make an effective contrast with the pale green foliage. The genus belongs to an order famous for its superb tropical climbers, but in its own
tribe only two genera have any horticultural fame, and that small. These are Jucaranda and Colea, having ib 2-celled ovary, while that of Eccremocarpus is 1-celled. Eccremocarpus has two sections, in one of which the eorollas are cylindrical, but in the section Calampelis, to which $E^{\prime}$. scober beloness, the corolla has a joint at a short distance beyond the calyx, then swells out on the under side, and suddenly constricts into a neek before it reaches the small, circular mouth, surrounded by short, rounded lobes.
scàber, Ruiz \& Par. (Calimpelis scìber, D. Don). Although the specific name means rough, the wild plant is only sparingly puberulous, and in cultivation entirely glabrous. About 10 ft . high: lvs. bipinnate; lfts. obliquely cordate, entire or saw-toothed: fls. 1 in. long, orange, in racemes. July, Aug. Chile. B.k. 11:9:39.

Peter Henderson \& Co.
ECHEVERIA. All referred to Cotyledon.
ECHINACEA (rreek, echinos, hedgehog; alluding to the sharp-pointed bracts of the receptacle). Compósita. Priple Cone-flower. Four species of North American peremnial herbs, two of them from Mexico, the others native to the United States, and cultivated in our hardy borders. They are closely related to Indbeckia, but their rays range from Hesh color, through rose, to purple and crimson, while those of Rudbeekia are yellow or partly (rarely wholly) brown-purple. The high disk and the downward angle at which the rays are pointed are charming features of Echinaceas. The disk is only convex at first, but becomes egg-shaped, and the receptacle conical, while ludbeckia has a greater range, the disk from globose to colnmnar. and the receptacle from


## 744. Ecballium Elaterium ( $\times 1 / 3$ ).

sonical to cylindrical. Echinaceas and Rudbeckias are stout, and perhaps a little coarse in appearance, but their fowers, sometimes $\mathfrak{G i n}$. across, are rery attractive, and borne in succession for two months or more of late summer. With the growing appreciation o. hardy bcrders and of native plants, it should be possible to procure 4 or 5 distinct colors in the flower, associated with low, medium and tall-growing habits. They do well
in ordinary soils, and may be used to help cover unusually dry and exposed spots. They respond well to rich soil. especially sandy loam, and prefer warm and sunny sites. They are perennials of easy culture. l'rop. by division, though not too frequently; sometimes by seeds. The roots are bluck, pungent-tasted, and are said to be used in popular medicine under the name of Black Sampson. Bentham \& Hooker refer Echinacea to Rudbeekia.
purpurea, Monch. Commonly not hairy, typically taller than $E$ ancustifolia, 2 ft . or more high: lvs. ovate-lanceolate, or the lower ones broadly ovate, often 5 -nerved, commonly denticulate or sharply serrate, most of them abruptly contracted into a margined petiole: rays at first an inch long and broadish, later often 2 in. long or more, with the same color rauge as $E$. engustifolin, but rarely almost white. Rich or deep soil. Va. and Ohio to Ill. and La.

Var. serótina, Nutt. ( $\boldsymbol{E}$. intermedia, Lindl.). The varitetal name means late-fowering, but the chief point is the hairy or bristly character of the plant. L.B.C. 16:1539. 1'. M. 15:79.-J. B. Keller says " this is, perhaps, the best form of the genus for garden purposes, the rays being much brighter colored, broader and not rolling at the edges."
angustifolia, DC. Bristly, cither sparsels or densely: les. narrower than in $E$.' purpurea, from broadly lanceolate to nearly linear, entire, 3 -nerved, all narrowed gradually to the base, the lower into slender petioles: flower-heads nearly as large as in E. purpurert, but sometimes much smaller. Prairies and barrens, Saskatchewan and Noh, to Tex., east to Ill., Tenn. and Ala. B. M. ${ }^{2} 81$. G.W.F. 25. - This species has several forms, which approach and run into $E$ '. purpurea.
L. H. B.

ECHINOCACTUS (rreek, spine and caclus). Cacticecr. A very large genus of globular, strongly ribbed, and strongly spiny forms. Sometimes they become very short-eylindrieal ; occasionally the ribs are broken up into tubercles which resemble those of Mammillaria; and rarely spines are entirely wanting. The flowers usually appear just above the young spine-bearing areas, but sometimes they are further removed, and occasionally they are in the axil of a tubercle. The ovary bears seales which are naked or woolly in the axils, and the fruit is either succulent or dry. The genus is well dereloped within the United States, about forty species having been recognized, but its extreme northern limit is the southern borders of Colorado, C'tah, and Nevada, apparently having spread from the great arid platean regions of Mexico proper and Lower California. The genus extends throughout Mexico and Central America, and is well represented in the drier regions of South America. The genera Astrophytum and Lophophora are here included, although they seem to be very different from the typical forms of Echinocactus. It is impossible to identify with certainty all of the specific names found in trade catalogues, but the following synopsis contains the great majority of them. In all cases the original descriptions have been consulted, and in some cases it is certain that a name originally applied to one form has been shifted to another. The following synopsis may be useful, therefore, in checking up the proper application of names, but it may thus leave some of the common species of the trade unaccounted for No attempt is made to group the species according to relationships, but a more easily handled artificial arrangement, based chiefly upon spine characters, is used. It must be remembered that the species are exceedingly variable, especially under cultivation, and large allowance must be made for the characters given in the key and in the specific descriptions.

Echinocactus Poselgerianus, A. Dietr., proves to be Mremmillaria Scheerii. The following horticultural names have not been identified: E.chrysanthus (chrysactenthus?), Drageanus trifurcatus.

John M. Coulter.
When starting with newly collected plants of Echinocactus the mutilated roots should be well cut back to within an inch or two of the base of the plants. If the plants are procured in early summer, the best way to get new roots on them is to place the plants on a bench
of a greenhouse with a southern exposure, in a monnd of fline gravel about eight or ten inches deep. Insert the base of the plants in the gravel and syringe them overhead once a day on bright days. The gravel gets very hot with the sun, and in this they root freely in three or four weeks. When well rooted they can be placed in pots. A good compost consists of six parts of good fibrous loam, one part sand and one part brick rubble. Pots should be just large enough to hold the plants and should be drained about one-flifth of their depth. Front March to May is a good time to pot established plants, but if the soil is good and the drainage all right they can remain in the same pots for two or three years.
The plants should receive all the sunlight possible at all times of the year. During the winter they should be watered very sparingly, but in spring and summer they can be watered freely and syringed overhead on bright days. In winter Echinocactus require a night temperature of from $45^{\circ}$ to $30^{\circ}$ Fahr., and the atmosphere should be perfectly dry. Propagation is effected by seeds, cuttings and grafting. Robert Cameron.

The diversity of form exbibited in the genus Echinocactas since the genera Astrophytum and Lophophora are now included, makes this one of the most interesting of the whole Cactus family. Cnlike most globular forms of Cacti, they do not readily produce offsets; consequently they nust be propagated by seeds if one wishes to increase these plants in quantity. Seeds of Echinocactus, and, in fact, most cartaceons plants, will germinate as freely as seeds of other plants, provided they have been allowid to ripen properly before gathering and carefully dried afterwards. From the experience of the writer, who has raised some hundreds of seedling Cacti and sown them every month in the year, he has found the months of May and June to be by far the most favorable for germination. Seeds of Echinocactus will then germinate in five or six days, while during the winter months it takes almost as many weeks. Opuntias will germinate in even less than six days. They germinate most readily of all the Cactacea, and grow the fastest afterwards, while Manmillarias are the slowest to gemninate and grow the slowest afterwards. The sceds shonld be sown in well-drained 4 -inch pots in a finely sifted mixture of one part leaf-mold, one part loan and one part charcoal dust and silver sand. The surface should be made very smooth, ond the seeds pressed lightly into the soil with the bottom of a flowerpot and then covered with about three-eighths of an inch of fine silver sand. This allows the scedlings to push through readily and prevents the soil from crusting on the surface of the pots, as they usually have to stay in their seedling pots at least one year. The pots should be placed in a greenhouse where they will receive plenty of light but not the direct sunlight, for, although Cacti are natives of desert regions, the writer has found from experience that the seedlings will simply roast if exposed to full sunlight under glass. For the first winter, at least, the seedlings should be kept in a temperature of not less than $60^{\circ}$ and carefully looked over every day to ascertain the condition of the soil, for, although they should be kept on the dry side, they must nerer be allowed to become quite dry during the seedling stage. When about a year old they may be transplanted to shallow pans not more than 6 inches in diameter, and prepared with the sane mixture as for seedling pots. These pans will be found better than small pots, because the soil may be kept more evenly moist and the seedlings do better in consequence.

When grown from 2 to 3 inches in diameter soedling Echinocactus may be transferred to pots, using sizes only just large enough to accommodate them, as they make but few roots. Pot them in a mixture of two parts fibrous loam, one part leaf-moid and one part pounded brick and silver sand. During the spring and summer months, established plants may be given a liberal supply of water. but must be stidiously watered during the fall and winter months. During the winter they should be given a light position in a dry greenhouse, with a night temperature of $45^{\circ}$ to $50^{\circ}$, and a rise of $10^{\circ}$ by day. For the summer, they may be either kept in an airy greenhouse or placed in some convenient position ontside, plunging the pots in the soil or

## ECHINOCACTUS

in some light non-conlucting material. Some of the spectes will commence to blossom in May and others at intervals turing the summer. The flowers vary considerably in size, and embrace a good runge of color, from white to deep yellow, and from the faintest purple o deep rose. They do not readily produceseed (in New Fingland, at least) unless artitheially fertilized. Like most of the Cactus family, the more cylindrical species will roalily unite when grafted upon other kinds, not only in the same genus, but in othergenera of Cactacea, und for weak-growing species it may often be an ndrantage to graft upon bone stronger-growing species. C'ereus Fiumanni (or C'. colubrimus) makes an excellent stock to gruft upon, choosing stock plants of reasonable size and height. The system known as "wedgegrafting " is perhaps best for the purpose, and the early spring months, or just as the growing season is about to conmence, is the best time for grafting.
If plants of Echinocactus can be kept in a healthy conelition, they are not much troubled with insect pests; mealy-bug is their worst anemy and should be removed at once with a clean mucilage brush. As a guide to amateurs, the writer has found the following to be among the most easily grown: Echinocuctus cupricornis, $E$. coptonogouиs, $E$. cornigerus, $E$. Grusoni, $E$. horizonlhalomius, $\boldsymbol{L}^{\prime}$. longihematus, E. myriostigma, $\boldsymbol{E}$. setispinas, E'. T'exensis, E'. W'illiamsii and E'. Wislizeni

Edward J. Canning.

Anhalonium, 51.
arrigens, 30.
Astrophytum, 50.
bicolor, 35 .
brevihamatus, 5.
apricornis, 15.
coptonogonus, 13 cornigerus, 9. rispatus, 30. ylindraceus, 2. Echidne, 23 electracanthus, 29. Emoryi, 25. flacorirens, 36. irusoni, 44. lielophorus, 28. hexadrophorus, 31 horizonthalonins, ingens, 20. intertextus, 37. Johnsoni, 39.

NDDEX.
Lecontei, 42.
 euciactar hus ongilsamatus ongilamatus, 3 .
Jophophora, 51. fophophora, 51
lophothele, 82. lophothele, 32.
micromeris: see micromeris: see
Mamemillaria. Mamemilla
Mirbelli, 19. Mirbelli, 19.
Monvillii, 11. Monvillii, 11. myriostigma, 50 obvallatus, 29 . Oreutti, 38. ornatus, 19. orthacanthus, 36. Ottonis, 34. Pfeifferi, 12. phyllacanthus, 17. pilosus, 4. polycephalus, 40.
polyancistrus, 10. recturvus, "6 Rineonensis, 15 robristus, 33. Sa: illensis, 45. Scopa, 46. setispinus, 27. Sileri, 43. Simpsoni, 48. sinuatas, 6 . Texensis, 24. Treculianus. 6 turbiniformis. 49 uncinatus, $1,7$. Fanderoyi, 23. viridestens, 41. Fisuaga. 20. Whipplei. 8. Williamsii, 51. Wislizeni, 4. Wrightii, 1.
A. Spines, or some of them, hooked.
B. Central spine solitary.

1. Wrightii íE. uncinùtus, var. Wrightii, Engelm.). Oral, $3-6 \mathrm{in}$. high, $2-31 / 2 \mathrm{in}$. in dianı.: radial spines 8 , arranged as in uncinatus; central spine solitary, angled, flexuous and hooked, elongated ( $2-6$ in.), erect, strawcolor, with dark tip: flowers $1-1 \frac{1}{2}$ in. long, dark purple. Texas and northern Mexico.

Bв. Central spines 4.
c. Some or all of the spines amulate.
2. cylindràceus, Engelm. Globose to ovate or oratecylindrical, simple or branching at hase, becoming as much as 3 ft . high and 1 ft . in diam.: ribs 13 in younger specimens, 20-27 in older ones, obtuse and tuberculate: spines stout, compressed, more or less curved, reddisb; radials about 12 , with $3-5$ additional slender ones at upper edge of areola, 1-2 in. long, the lowest stouter and shorter and much hooked; centrals 4 , very stout and 4 -angled, about 2 in . long and one-twelfth to $2 \%$ in. broad, the uppermost broadest and almost straight and erect, the lowest decurvel: flowers yellow. Southwestern United States and Lower California.
3. longihamátus, Gal. Subglobose or at length ovate, becoming 1-2 ft. high: ribs 1:3-17, often oblique, broad, obtuse, tuberculate-interrupted: spines robust, purplish or variegated when young, at length ashy; radials 8-11, spreading, straight or curved or flexuous, the upper and lower ones $1-3$ in. long, the laterals $2-4$ in.; centrals 4 , angled, the upper ones turned upwards, straight or curred or twisted, the lower one stonter, elongated (3-8 in.), flexuous and more or less hooked: flowers yellow, tinged with red, $2 \frac{2}{2}-31 / 2$ in. long. Texas and Mexico.
4. Wislizeni, Engelm. At first gholose, then ovate to cylindrical, $1^{2 / 3}-4 \mathrm{ft}$. high: ribs $21-25$ ( 13 in small specimens), acnte anl obligue, more or less tnberculate: radial spines three-flifths to 2 in. long. the 3 upper and 3-5 lower ones stiff, straight or curved, annulate, red (in old specimens the 3 stout upper radials move towarl the center and berome surrounded by the upper bristly ones), the 12-20 laternls (sometimes additional shorter ones above) bristly, elongated, flexuons, horizontally sprealling, yellowish white; centrals 4, stout, angled, and red, one and thre-flfths to three and one-fifth in long, the 3 upper straight, the lower one longest (sometimes as much as $4-5 \mathrm{in}$. ), very robust (that and channeleal above), hooked downward: tlowers yellow or sometimes rell, two to two and three-fifths in. long. From suuthern C゙tah to northern Mexico and Lower California.

## cc. Vone of the spines ammulate.

5. brevihamàtus, Engelm. Cilobose-ovate, very dark green: ribs 13 , deeply tuberculate-interrupted, the tubercies with a woully groove extending to the base: radial spines mostly 12 , terete, straight, white or yellowish, with dusky tips, 1/2-1 in. long, the upper longer; central spines 4 (rarelv 1 or $\ddot{2}$ additional ones), flattened, white with back tips, the 2 lateral ones divergent upward, straight or a little recurved, 1-2 in. long, the uppermost one weaker, the lower stoutest and darkest, porrect or deftexed, hooked downward, 3 , 1 in. long: flowers funnelform, rose-color, $1-1 \frac{1}{2}$ in. long. South western Texas and New Mexico.
G. sinuàtus, Dietr. (E. Treculiimus, Labour.). Globose, 48 in. in diam., bright green: ribs 13, ollique, acute, tuberonlate-interrupted, the tubercles short grooved: radial spines $8-12$, setiform and flexible, the

6. Echinocactus Emoryi, var, rectispinus

3 upper and 3 lower purplish brown and stralghtish (the lower ones sometimes more or less booked). four-fifths to 1 in . long, the $2-1 ;$ laterals more slender. Icnger ( 1 to one fond two-fffths in.), often Hattened, puberulent and whitish. sometimes Hexuous or hooked; eentral spines 4. puberulent, yellowish (or purplish variegated), the is upper ones slenter, flattened or subangled, crect and generally straight (rarely hooked), one and thrce-Hfths to "If. Iong, the lowest one much stouter, thattened or even chameled, straw-color, Hexuoms, more or less hooked (somethmes straight), 2-4 in. long: Howers yellow, "-3 in. long. Texas, Arizona, and northern Mexico.
7. uncinatus, Gal. Glaucescent, globose to oblong: ribs 1:3, obtuse, tubereuhate-interrupted: radial spines For 8. 1-2 in. long, the w'; "r 4 or siraw-color, straight, flattened, the lower 3 p. Alish, tercte and hooked; centrals $f$, the upper is rather stont and straight, about 1 in . long, the bowest one very long, flattened, hooked at apex: Howers brownish purple. Northern Mexico.
8. Whipplei, Engelm. Globose-ovate, 3-5 in. high. 2-4 in. in dian.: ribas $1: 3-15$ (often oblique). compressen and tubereulately interrupted: radial spines usually 7 , compressed, straight or slightly recurved. $1 / 2$ to threeflfthe in. long, lower ones shorter than the others, all white exereting the two darker lowest laterals: central spines $f$, widely divergent. the uppermost one flattened, straight and white. 1 to one and three-fifths in. long, turned upward in the plane of the rulials (completing the circle of radials), the others a little shorter, quadrangular compressed, dark brown or black, becoming reddish and timally ashy, the elaterals straight, the lowest one stonter mid sharply hooked townward: flower greenish red. Northeru Arizona.

BBB. Central smmes $\bar{j}$ to $S$.
9. cornigerus, DC. Globose or depressed-globose. 10-16 in. in dian.: ribs about 21, very acute and wave (not tuberculately interrupted): radial spines t-10. white and comparatively shonder, or wanting: centrals red and very robnst, angular-compressed, with long, sharp, horny lips, the upper 3 erect-spreating, 1-11/2 in. long, the lower 2 weaker and declined, the central one longer, more risid and keeled, very broad (one-fifth to one-third in. and hooked downward: Howers purple, $1-1 \frac{1}{2}$ in. long. Mexico and Cential America.
10. polyancístrus, Engelm. \& Bigel. Orate or at length subeylindrie, becommg $4-10 \mathrm{in}$. high and $3-4 \mathrm{in}$. in diam.: ribs 13-17. obtuse, tuberculately interrupted; radial spines 20 or more, compressed and white. the uppermost wanting, the 4 upper ones broader and longer (1-2 in.) and dusky-tipped, the laterals shorter (fourfifths to one in.), the lowest very short ( 1 in. in.) and subsetaceous: central spines of several forms, the uppermost one (rarely a secont similar but smaller one above or beside it) compressed-quadrangular, elongated (:3-5 in.), white with lasky tip, curved upward, the other 2-10 teretioh or subangled, bright purple-brown: upper ones long ( $2-4 \mathrm{in}$.) and mostly straight, the others gradually shortening (to about 1 in .) downward and sharply hooked: flowers red or yellow, 2 to two and two-fifths in. long and wide. Nevada and southeastern California.

## AA. Spines not hookerl.

B. Central spines none or indistinct.
11. Monvillii, Lem. Stout, glohose and bright green: ribs 13-17, tuberculate, broadest towarl the hase, undinlate: tubercles somewhat hexagonal, strongly dilated below: radial spines $9-12$, the lower ones somewhat longer, very stout, spreading, yellowish translucent, reddish at base: central wanting: Howers varying from white to yellow and red. Paraguay.
12. Pfeifferi, Zucc. Oblong-globose, becoming 1-2 ft. iigh and 1 ft . in diam.: ribs 11-13, compressed and somewhat acute: spines 6 , abont equal, rigid, straight, divergent or erect, pale transparent yellow with a brownish base; very rarely a solitary central spine. Mexico.
13. coptonógonus, Lem.. var. màjor, Salm-Dyck. Depressed, from a large indurated naked napiform base, $\underline{2}-4 \mathrm{in}$. across the top: ribs $10-1 \overline{5}$, acute from a broad base, more or less transversely interrupted and sinuous: spines 3. anmulate, rery stout and erect from deeply sunken areolx, reddish when young, becoming ashy
gray: upper spine stontest, erect and straight, or slighty enrved upward, thattened and keeled, and oreaslonally $t$ wisted, $1 \frac{1}{2}-\underline{-2} 1 / 4 \mathrm{in}$. long; the two laterals erectdivergent, straight or slightly eurved, terete above and somewhat quadrangular below, $1-1 \frac{1}{2}$ in. long; all from an mbruptly enlarged base: flowers not seen, but said to be small and white, with purplish median lines. Mexico.
14. multicostatus, Hildmann. Depresset-globose: ribs very numerous. 90 to 120 , compressed into thin plates which run vertically or are twisted in every direction: spines excuedingly variable, in some cases wanting entirely, in others 3 or 4. short, rigid, and tranalue ont yellow; in others more numerons, larger, and often thattish; In still other cases very long and that, interlacing all over the plant: no centrals: Hower white, with a broad putple stripe.
15. capricórnis, A. Dietr. Globose: ribs about 11 , broal, spotted all over with white dots: clusters of spines distant, usually seen only near the apex; spines 5-10. long and Hexuous; eeltrals not distinct: flowews large, yellow. Mexico.
16. Rinconéngis, Poselg. Cylindrical, covered with Ivory white spines whichare tipped with crimson: spines 3. with nocentrals: Hower large, purple-crimson, darker at base. Northern Mexico.
17. phyllacánthus, Mart. From globose to cylindrical, with depressed vertex, simple or proliferons, two and one-third to three and three-fiftis in. broad: rilss $40-5$ (sometimes as few as 30 ). very much crowded and compressed, thin, acute, very wavy, continnous or somewhat interrupted: ralial spines $\overline{5}$ (sometimes bor 7 ), straight and spreading, the 2 lowest ones white, rigid, one-sixth to one-fourth in. long, half as long as the ㅇ darker. angled, larger laterals, the uppermost spine thin and broml, channeled abure, faintly annulate, flexible, grayish pink, three-fifths to 1 in . long; central spines none: tlowers small, dirty white. Mexico.
BB. Central spine solitary (sometimes 2-4 in E. crisputus, helophorus, end setispinus, or unating in lophothele).
C. Ribs less thin 13.
18. lencacánthus, Zucc. Somewhat clavate-cylindrical, pale: ribs $S-10$, thick, obtuse, strongly tubereulate, the areola with strong wool: radial spines 7 or 8 , similar, straight, fincly pubescent, at first yellowish, at length white: central spine solitary, more or less crect, rarely wanting: Howers light gellow. Mexico.
19. ornàtus, DC. (E. Mirbélli, Lern.). Subglobose: ribs 8 , broad, compressed, vertical, thickly covered with close-set white woolly spots, making the whole plant almost white: radial spines $\overline{7}$, straight, stout, yellowish or becoming gray; central spine solitary. Mexico.
20. ingens, Zucc. (E. V'isniga, Hook.). Very large (sometimes as much as 10 tit. high and ns much in eircumference). globnse or oblong. purplish toward the top: ribs 8, obtuse, tuberculate: areole large. distant, with very copious yellowish wool: radial sp. s 8 or more: central spine solitary; all the spines shated yellow ant red or brownish, straight, rigith, and interwoven: flowers bright yellow, about 3 in. broad. Mexico.
21. horizonthalonius, Lem. Glaucons, depressed-globose or at length ovate or even cyliniric with age, 2-8 in. high, $21 / 2-1 \mathrm{in}$. in diam. : ribs $8-20$ (fewer in very young specimens), of ten spirally arranged, the tubercles scarcely distinct by inconspicuous transverse grooves: spines 6-9, stout, compressed, reddish (at length ashy). recurced or sometimes almost straight, nearly equal, four-fifths to $11 / 2 \mathrm{in}$. long (sometimes long and slender and almost terete, sometimes short, stout and broad): radials $5-8$, upper ores weaker, lowest wanting; a single stouter decurved central (sometimes wanting): flowers pale rose-purple, $21 / 2$ in. long or more. New Mexico and northern Mexico.
cc. Ribs 18-2?.
22. electracánthus, Lem. Globose or thick cylindrical, becoming 2 ft . high and 1 ft . in diam.: ribs about 15 : radial spines about 8 , equal. rigid, spreading, yellowish, about 1 in . long: the central one solitary, red at base: flowers clear yellow. Mexico.
23. Echidne, DC. (E. V'anlerwyi, Lem.). Depressedglotose, $5-7$ in. In diam.. $3-1$ in. high: rils 13 , acute: radlal spines 7 , broad, rigil, spremling, yellowish, 1 in . or more long: central spine solitary and searcely longer than the others: Howers bright yellow, 1 in . or more long. Mexico.
21. Texénsis, Hopf. Mostly ilepressed (sometimes globose), $8-1 \underline{i} \mathrm{in}$. In diam., $4-6 \mathrm{ln}$. high, simple: r.bs mostly 21 (sometimes 27, and in smaller specimens 13 or 14 ) and undulate: spines stout and fasciculate, reddish, compressed; the extcrior tion it radiant, stralghtfilh or curved, uneque, $\frac{1}{2}$ to four-flfths in. long in some cases, one r.nd ne-fith is ? in. in others, much shorter than the solitary and stout recurved contral, which is sometimes one-sixth to $1 / 4 \mathrm{in}$. broall: Howers about onefifth in. long, parti-colored (scarhet and orange below to white above). Texas a ad northeastern Mexico.
2.). Emoryi, Encelm.. var. rectispinus, Engelm. Fig. 74. Globose, at length crlindrical: ribs $1: 3-21$, obtuse and strongly tuberculate: ridial spincs -9 , very unequal, the 3 upper ones $4-5$ in. long, the lower $11 / 2-3$ in. long and paler; the central very long (1:2-1:3 in.), straight or sliphtl - decurved. Sonthwestern ['nited States and northern Mexico.
26. recúrvus, Link \& Otto. Sulglohose and very stont: ribs about lot, covered with broad. dark red spines, the radials spreading, the central one recurved and very stout, Mexico (:).
27. setispinus, Engelin. Suliglobose, 2 to three and one-fifth in. in diam.: ribs 13 , more or luss ollique. often undulat or somewhat interrupted: radial spines 14-16. setiform Alexible, two-fifthes to four-fifthe in. long, the uppermost (the longest) aml lowest ones yellowish brown, the laterals white; central spinces $\mathbf{1}-3$, setiform and flexuous, clark, 1 to one and one-tifth in. long: Howers funnelform, one and three-flfths to 3 in . long, yellow, scarlet within. Texas and Mexico.
28. helóphorus, Lem. Depressed globose, light green, with purple-red veins: ribs about 20 , compressen, ob, tuse: radial spines 9-12, very stont and porrect; central spines $1-4$, stronger and annulate; all the spines pearlgray. Mexico.

## CCC. Rilis 30 or more.

29. obvallàtus, DC. Oborate-globose, depressed: ribs very numerous, vertical: spines most abundant towards the apex. unequal, sprealise, stout, whitish; the 8 upper radials and solitary contral strong, the others (espe cially the lowest) small: Howers purple, with whitish margin. Mexico. - The name was suggested by the appearance of the terminal cluster of flowers surrounded by a fortification of strong spines.
30. crispàtus, DC. (E. tirrigens, Tink). Globose, 5 in. or more high: rilos $30-60$, compressed and sharp, more or less undulate-crisped: spines $7-11$, widely spreading, more or less flattened, the upper larger and brown at tip, the lower shorter and white, or all of them brown: flowers purple. or white with purple stripes. Mexico and Central Anerica.
cccc. Tuberculate, as in Mammillaria.
31. hexædrophorus, Lem. More or less globular, dark gray: ribs deeply tuberculate, giving the appearance of a Mammillaria, with hexagonal tubercles: radial spines 6 or $\overline{7}$ radiating like a star; central spine solitary, erect, longer; all the spines annulate, reddish brown: flowers white, tinted with rose. Mexico.
32. lopothèle, Salm-Dyck. Globose, strongly tubereulate, after the manner of Mammillaria: tubereles quad. rangular, bearing clusters of $5-10$. more or less porrect. long, rigid, and equal spines: central solitary or wanting: flowers white or yellowish. Mexico.
bвb. Central spines 4 (2 or 3 in Sileri and sometimes 3 in Scopa).
c. Rils less than 13.
33. robústus, Otto. Clavate and stout: ribs about 8 , compressed, vertical radial spines about 14, the upper ones slender, the lowest 3 stronger; central spines 4 , 4-angled at base, transversely striate, the lowest one largest; all the spines purnle-red, 11/2-3 in. long: flowers golden yellow. Mexico.
34. Ottonis, Link \& Otto. Depressed.glohose or ovate, $3-4 \mathrm{in}$. high: ribe $10-12$, obtuse: radial sphes $10-18$, slender, Jellowish, more or less straight and spreading, about $1 / 2 \mathrm{in}$. long; central spines 4 , duskg red, strouger, the uppermost very whort, the two laternls horizontal, the lowest longest ( 1 in. ) and deffexed: Howers lemonyellow, becoming $2-3$ in. in dianeter. Mexico.
35. bicolor, Gal. (ilolose-ovate, stout, $11 / 2-1 \mathrm{in}$. in diam., sometimes beecming of in. high: ribs 8 , ollique and obtuse, eompressed, tulerculate-interruptiol: lower radials and centrals variggated red and white; radials 9-1̄, sprealing and recurved, slember and rather rigid, the lowest one $1 / 2 \mathrm{in}$. lonip, the laterals $1-2$ in. long and about equaling the e-t Hat Hexuous ashy upper ones; centrals 4 , that and flexhoms. $1 \frac{1 / 2}{2}-3$ in. longe, the uppermost thin and not lomger than the erect and rimid laterals, the lowest very stout, porrect and very long: fowers finnelform, lright purple, $\quad-3$ in. long. Northern Mexico.
cc. Rils 1u-2~.
36. orthacánthus, Link \& Otto. (E. flnionirens, Scheidw.). (ilobose, yellowish green: ribs 12 or 13, vertieal, acute: radial spines 14. uncinit. straight and spreading: central spines 4 . stronger, the lowest tho largest: all the spines rigid, annulate, and grayish white. Nexico.
37. intertéxtus, Fngelm. Orate-glohose, 1-4 in. high: ribs $1: 3$, acoute, somewhat oblipue, tuberculate-interrupted, the tuhereles with a woolly groove: spines short and rigid, roddish from a whitish hase and with dusky tips; radial lo-2, elosely appressed and interworen, the upper 5 to 4 setaceous and white, straight, one-fifth to $\frac{1}{2} \mathrm{in}$. long, the laterals more rigid aud a

38. Echinocactus myrlostigma.
little longer, the lowest stout and short, a little recurved; centrals t. the 3 upper ones turned upward and excceding the radials and interworen with them, the lower one very short, stont and porrect: Howers about 1 in. long and wide, purplish. Texas and northern Mexico.
39. Orcuttii, Engelm. Cylindrical, $2-31 / 2 \mathrm{ft}$. high, 1 ft . in diam., single or in clisters up to 18 or more, not rarely decumbent: rilos $18-20$. often oblique: spines extremely variable, angled to Ha :, $1 / 4-3 \mathrm{in}$. wide; radials 11-13, unequal, lowest and several laterals thinnest; centrals 4: tlowers about 2 in . long, deep crimson in center, bordered by light greenish yellow. Lower California.
40. Johnsoni, Parry. Oral, 4-6 in. high: ribs 17-21, low, rounded, tuberculately interrupted, close set, often oblique, densely covered with stontish reddish gray spines: radial spines $10-14$, three-fifths to one and onethird in. long. the upper longest: centrals 4 , stouter, recursed, about $1 \frac{1}{2} \mathrm{in}$. long: Howers ? to two and threefifths in. long and wide, from deep red to pink. Etah, Nevada, California.
41. polycéphalus, Engelm. \& Bigel. Globose (6-10 in. in diam.) to orate ( $10-16 \mathrm{in}$. high, $5-10 \mathrm{in}$. in diam.) and cylindrical (reaching 24-28 in. high and about 10 in . in

## ECHiNOCACTUS

dlam.), profusely branched at base: ribs 13-21 (oceasionally 10 ): spines $8-15$, very stout and compressed, more or less recurved and redidis; radials $4-11$. comparatively slender (the uppermost the most sle der), 1-2 in. long; the 4 centrals much stouter and longer ( $11 / 2$ to two and four-fifths in.), very unequal, the uppermost one usually broadest and curved upward. the lowest one usually the longest and decurved: flowers yellow. From Utah to northern Mexico.
41. Viridéscens, Nutt. Globose or depressed, simple or branching at base, $4-12 \mathrm{in}$. high, ti-10 in. in diam.: ribs 1:-21 (fewer when young), compressed and scarcely tuberculate: spines more or less curved and sometimes twisted, reddish below, shading into greenish or yellow ish above; radials $9-20$, two-fifths to four-tifths in. long, the lowest shortest, robust, and decurved; centrals 4 , cruciate, much stouter, compressed and 4 -angled, fourfifths to one and two-fifthe in. long, the lowest broadest, longest and straightest: flowers yellowish green. about one and three-fifths in. long. Southern California.
42. Lecontei, Engelm. Resembles Wislizeni, but often somewhat taller (sometimes becoming 8 ft . high and 2 ft . in diam.l, usually more slender, and at last clavate from a slender base: ribs somewhat more interrupted and more obtuse: lower central spine more flattened and broader. curved (rather than hooked) or twisted, usually not at all hooked, sometimes as much as 6 in. long: flower rather smaller. From the Great Basin to Mexico aid Lower California.
43. Sileri, Engelm. Globose : ribs 13. prominent, densely crowded, with short rhombic-angled tubercles: radial spines 11-13, white; centrals 3. biark. with pale base, three-fifths in. long, the upper one slightly longer: flower scarcely 1 in . long, straw-colored. Ctah.
44. Grùsoni, Hildmann. Globose, completely corered by a mass of almost transparent golden spines, which give the plant the appearance of a ball of gold: centrals 4, curved. Howers red and yeliow. Mountains of Mexico. -From illustrations it is evident that the radial spines are somewhat numerous and widely spreading, and that the centrals are prominent and more or less deflexed.
45. Saltillénsis, Poselg. Verv stout, glohose: ritz 15-19, compressed, dark sreen: spines very prominent. $5-7$ in a cluster, stout and porrect. sometimes becoming 5 in. long: ceutrals 4. Mcsico.-Schumann makes this a variety of $E^{\prime}$. ingens.
cce. Ribs 30 or more.
46. Scòpa, Link \& Otto. More or less cylindrical. 1 ft . or more high, $2-4$ in. in diameter, at length branching abore : ribs $30-3 t$, nearly vertical, tuberculate; radial spines $30-10$, setaceous, white; central spines 3 or 4 , purple, erect ; sometimes all the spines are white: flowers yellow. Brazil. - The speeies is exceedingy plastic in form, branching variously or passing into the cristate condition.

## BBBB. Central spines $5-10$.

47. pildsus, Gal. Globose. 6-18 in. high : ribs 13-18, compressed, little if at all interrupted : radial spines represented by 3 slender ones at the lowest part of the pulvillus or wanting; centrals fi, very stout, at flrst purplish, becoming pale yellow, the 3 upper ones erect, the 3 lower recurved-spreading: flowers unknown. Northern Mexico.
48. Simpsoni, Engelm. Subglobose - depressed.turbinate at base, simple, often clustered uree and one-tifth to tive in. in diam.: ribs $8-13$, onlyir icated be the spiral arrangement of the prominent tula reles, which are $1 / 2$ to three-fifths in. long, somewiat quadrangular at base and cylindric above: exterior spines $20-30$, slender, rigid. stiaight, whitish, $1 / 3-1 / 2$ in. long, with 2-5 additic'al short setaceous ones above; interior spines 8-10, st. - "ellowish and recidish brown or black above, ere ading, two-fifths to three-fifths in. long; no traly ce. al spine: Howers three-fifths to four-fifths in. long and nearly as broad, yellowish-green to pale purple. Mountains of Colorado, Ctah and Nevada.

## AAA. Spines entirely wanting.

49. turbiniformis, lfeiff. Depressed-globose, grayish green, with $12-14$ spirally ascending ribs, cut into regular rhomboidal tubercles; tubercles that, with a depressed pulvillus, entirele naked excepting a fen small setaceous spines upon the younger ones: Howers white. with a purplish base. Mexico.-The depressed and spineless body, with its surface regularly cut in spiral series of low, flat tubercles, gives the plant a very characteristic appearance.
50. myriostigma, Salm-Dẹck (Astrophỳtum myriostigma, Lem.). Fig. iti. Depressed-globose, 5 in . in diam.: rilis 5 or 6 , very broad, covered with numerous somewhat pilose white spots, and with deep obtuse sinuses: spines none: flowers large, pale yellow. Mexico.
51. Williamsii, Lem. (Anhalonium Williamsii, Lem. Lophóphona Williamsii. Coult.). Hemispherical, from a very thick root, often densely proliferous, transversely lined below by the remains of withered tubercles: ribs usually $s$ (in voung specimens often 6), very broad. gradually merging above into the distinct nascent tubercles, which are crowned with somewhat delicate pencillate tufts, which become rather inconspicuous pulvilli on the ribs: Howers small, whitish to rose. Texas and Mexiro. - The well-known "mescal button," used by the Indians in religious rites.
52. Lewinii, Hennings (Anhaldnium Ler.inii, Hemnings. Lophophore Lewinii, Coult.). Like $E$. W"illinmsii, but a much more robust form, with more mumerous (usually 13) and hence narrower and more sinuous ribs, and mach more prominent tufts. Along the Rio Grande.

John M. Collter.
Other names of Fehinocacti mar be looked for under E hinocereus and Dimmillaria. Echinocactns and Mammillaria are distinguished chietly by the way in which the fls. are horne.-terminal on the tubercles in the former, and axillary to tubercles or ribs in the latter. In extermal appearance they are very similar. Some species may be referred to either genus or to hoth. Iínmmillaria micromevis (Fig. 302) is considered by some to be an Edhinocactus. The strong resemblances between these two genera may be seen by wnariag the Echinocacti in Figs. 745 and 746 with the Mammillaria in Fig. $746 a$. See, also, Figs. 1335-7 under Mammillaria.

ECHINOCEREOS (spiny Cereus). Crecticece. Stems usually low and growing in thick clusters, which sometimes reach a considerable size: ths., as a rule, mostly short funnel-form: ovary and tube covered with bracts, from the axils of which are produced to a greater or less extent wool, bristles and spines: fr. glohose to ellipsoidal, covered with spines until ripe. The genus is so closely allied to Cereus, and merges so gradually into it, that it seems impossible to draw a sharp line of distinction between them, and, indeed, hy some authors they are combined under Cereus. For culture, see C'uctus, Cereus, and E'chinocactus.

## INDEX

arifer, 19
adustus. its.
Berlandieri, 3.
Blankii, 4.
earspitosus, 24.
(hloranthus, 20. chrysocentrus, 13 . enccineus, 17. conglomeratus, 14. conoideus, 17 . cteruides, 2 . 3 . dasyacanthus, 22
dubins, 7.
Engelwannii, 13. enneacanthus, 6. Fendleri. 12. gonacanthus. 9. longisetus, 10. Merkeri, 8 . Mojavensis, 16. pactispinus, 9. peetinatus, 24 . phoeniceus, $1 \%$.
polyacanthus. 18 . proxambens, 5. rigidissimus, 24. Rofteri, 11. rutispinus, 24. Scheeri, 2. stramineus, 15. triglochidiatus, 9. tuberosus, 1. variegatus. 13. viriditiorus, 21.
A. Stems small, slender, cylindrical, much resembling cereus.

1. tuberosus, Riimpl. (Cerens tuberòsus, Poselg.). Stems cylindrical, upright, or later reclining, clustered, from a number of more or less globular or ellipsoidal tuberous roots, the lower part woody and about the size of a tead pencil, the ; aper part more fleshy, about $1 / 2 \mathrm{in}$. in diam., reaching a length of $1-2 \mathrm{ft}$ : : ribs about 8 , straight, low, rounded: areolm very close together: radial spines 9-12, horizontally spreating, straight, white, thin subulate, very short; central solitary, subulate, from a tuberous base, about twice the length of the radials, white or brownish, with darker brown or black tips, directed upward, appressed: Hs. from the end of the stem, about 2 in. long, tube covered with an abundance of white wool intermingled with bristles, rose-red to purplish: fr. ovoid, green, covered with the white wool and bristles. Cex. and northern Mex.
AA. Stems prostrate. sometimes the branches upright when young, mostly less then 1 in. in diam.
2. Scheèri, Lem. (Cereus Scheìri, Salm-Dyck). Branching freely from the base of the stem and forming dense clusters; branches upright or ascending, about 8 in. long by 1 in . in diam., slightly tapering toward the apex, dark green: ribs 8-9, straight or sometimes inclined to spiral, separated above by sharp grooves, which become flattened toward the base, low arched: areolm $l^{*}$ tle more than $1 / 4 \mathrm{in}$. apart, round, yellowish white: radial spines $7-9$, spreading, needle-like, the under pair the longest, about $1 / 4-3 / 2 \mathrm{in}$. long, white with yellowish bases; centrals 3, the lower the longest, about $3 / 8 \mathrm{in}$., red with brown bases; later all the spines become gray: fl. red, from the upper part of the stem, about 5 in . long: ovary and tube bracteate and furnished with abundance of wool and spines. Mex.
3. Berlandièri, Lem. (Cevens Berlandièri, Engelm.). Stems prostrate, riehly branching, forming dense clasters, the branches upricht or ascending. $2-3 \mathrm{in}$. long or longer by $1 / 2-3 / 4 \mathrm{in}$. in diam., light or dark green, and in young growth often jurplish: ribs $\bar{i}-6$, broken up into as many straight or spiral rows of tubercles, tubercles conical, pointed : areolse $\% / 8-5 / 8$ in. apart. round, whitewoolly, soon naked: radial spines $6-8$, stiff bristle-form, thin. horizortally spreading, white. about $3 / 8 \mathrm{in}$. long, the upper ose sometimes light brown and somewhat stronger; central solitary, yellowish brown, sometimes reaching $3 / 4 \mathrm{in}$. in length: fls. from the upper lateral areolæ, 2-3 iz. long, red to light pink: fr. ovoid, green, bristly. Southern Tex. and northern Mex.
4. Blánkii, Palm. (Cereus Blánkii, Poselg.). Branching freely from the base and thus foming clusters: stems columnar, tapering above, about 6 in. long by 1 in . in diam., dark green: ribs $5-6$ (rarely 7), straight, almost divided into tubercles: areolre about $\mathrm{s} / 8 \mathrm{in}$. apart, round, white curly-woolly, later naked: radial spines mostly 8 , horizontally spreading, the under pair the longest, reaching about $3 / 8$ in, in length, all stiff,
straight, thin, white or the upper ones carmine-red when young, later reddish brown; central solitary, por rect, later deflexed, $1-1 \frac{1}{4} \mathrm{in}$. long, white or brownish, black when young : fls, from near the crown, $21 / 2-3$ in. long, purple-red to violet. Mex. R.H. 1865:90.
5. procúmbens, Lem. (Cereus procuimbens, Engelm.). Branching from the lower part of the stem, and so forming clusters: branches procumbent or ascending, angled, at the base tapering into eylindrical, $1 \frac{1}{2}-5$ in. long by $1 / 2-3 / 4$ in. in dian. : ribs mostly 5 , rarely 4 , straight or spiral, on the upper portion of the branch almost divided into tubercles : areola $1 / 4-1 / 2$ in. apart, round, sparingly white curly-woolly, soon naked: radial spines $4-6$, subulate, stiff, straight, sharp, in young growth brownish, then white, at the base often yellowish and the tip brownish, horizontally spreading, the upper the longest, reaching $1 / 4 \mathrm{in}$. in length; central solitary, or absent on the lower arcolx, somewhat stronger, $3 / \boxed{x}-3 / \pi$ in. long, darker: fls. lateral, from just below the crown, $3-4$ in. long, carmine-red to violet, with white or yellowish throat: fr. ellipsoidal, green, $5 / 8 \mathrm{in}$. long. Mex.
6. enneacánthus, Engelm. (Cereus enneacánthus, Engelmr.). Freely branching at the base of the stem, and thus forming thick, irregular clasters: branches ascending, usually $3-5 \mathrm{in}$. long by $11 / 2-2 \mathrm{in}$. in diam., green or sometimes reddish: ribs $8-10$, straight, often divided by transverse grooves into more or less conspicuous tubercles: areola $3 / 8-5 / 8$ in. apart, romd, white curly-woolly, soon naked: radial spines $7-12$ (mostly 8 ), horizontally spreading, needle-form, straight, stiff, translucent white, base bulbose, the under one longest, reaching about $\frac{1}{2}$ in., the upper one very short ; central solitary, or seldom with two additional upper ones, straight, porrect or deffexed, round or angled. whitish to straw-yellow or darker, $3 / 8-1 \frac{1}{2}$ in. long; later all the spines are gray: fls. lateral, from near the crown or lower, $13 / 4-21 / 2$ in. long, red to purplish : fr. spherical, green to red, spiny, $3 / 4-1 \mathrm{in}$. long. Tex. and northern Mex.

AAA. Stems erect, more than 1 in . in diamete'

## B. Ribs of stem 9 or less

7. dùbius, Rümpl. (Cerers dibbirs, Engelm.). Tol erably thickly clustered; stems branching at the base, crlindrical or elongated ellipsoidal, $4^{1 / 2-7}$ in. high by $11 / 2-21 / 4$ in. in diam.: ribs $7-9$, undulate: areole $3 / 8-5 / 8$ in. apart, round, covered with short curly white wool, later naked: radials $5-8$, subulate, horizontally spreading, stiff, round or faintly angled, the lower ones usually the longest, about 1 in . long, the upper ones about half as long, or sometimes absent, transparent white; centrals $1-4$, stronger and longer, bulbose at the base, straight or curred, reaches $21 / 2$ in. in length, the lowest one longest, straight, porrect or deflexed, the upper ones sprealing: fls. lateral, 2 in. long, rose-red to violet: fr. spherical, greenish to purple-red, covered with bundles of deciduous :Dines. Tex. and northern Mex.
8. Mérkeri, Hildm. Stems at firstupright, columnar, later reclining, and by branching at the base forming clusters, in new growth bright green, later gray to graybrown and corky: ribs $5-9$, undulate to more or less tuberculate: areole $3 / 4 \mathrm{in}$. and more apart, round, white velvety, later naked: radial spines $6-9$, the upper ones the longest, reaching $11 / 4 \mathrm{in}$. in length, somewhat confluent with the centrals, subulate, spreading, straight; centrals $1-2$, stronger, reaching a length of 2 in.; all the spines are white, nearly transparent, with red-tinted bulbose base. Northern Mex.
9. paucispinus, Riimpl. (Cereus pauсispiния. Engelm.). Clustered in irregular bunches: stems eylindrical to oroid, $4-7 \mathrm{in}$. high by $13 / 4-3 \mathrm{in}$. in diam.: ribs $5-\bar{z}$, undulate : areolse $3 / 8-5 / 8 \mathrm{in}$. apart, round, white wowily, later naked: radinl spines 3 -6, spreading, subulate, straight or curred, round, bulbose at the base, the lowest one longest, reaching $3 / 4 \mathrm{in}$., light colored, the upper enes reaching to about $1 / 2 \mathrm{in}$., reddish or brownish; central solitary or none, reaching about $1 \frac{1}{2} \mathrm{in}$. in length, somerrhat angled, brown-black, porrect or upright; later all the spines blackish: fls. 2 in. or more long, dark scarlet to yellowish. Tex. and Colo.

Var. triglochidiàtus, K. Sch. (Echinocereus triglochidiatus, Engelm. Cereus triglochididtus, Engelm.). Radial spines usually 3 , sometimes as many as 6 , strong, angled, base bulbose, straight or curved, about 1 in . long, soon ash-gray. Tex. and New Mex.

Var. gonacánthus, K. Sch. (E’chinocereus gonacánthus, Lem. C'ereus gonacainthus, Engelm. and Bigel.). Radial spines 8 , very large, angled and sometimes twisted, the upper strongest, reaching nearly 3 in . in length, light or dark yellow with brown tips ; central always present, deeply grooved, often thattened, 3 in . or more long. Colo.

## BB. Ribs of stem about 2-13.

10. longisètus, Lem. (Cereus longisètus, Engelm.). Stems clustered, eylindrical, covered with long, dirty white spines, about 8 in . high by 2 in . in diann.. light green: ribs 11-14. straight, undulate: radial spines 18 20 , straight, compressed, base thickened, subulate, flexuose, usually horizontally spreading, interlocking with adjacent clusters, the lower laterals the longest, reaching $3 / 8 \mathrm{in}$. in length, the upper more bristle-like and the shortust, all white ; centrals $\overline{2}-7$, longer, reaching $21 / 2$ in., stronger, the upper ones scarcely longer than the longest radials; all are bulbose at the base; the three lower ones the longest and deflexed, spreading and sometimes curred: fls. red. Mex.
11. Rótteri, Rümpl. (Cereus Rö̀tteri, Engelm.). Loosely open clustered: stems upright, 4-6 in. high, 23 in . in dian., eylindrical or ovod: ribs $10-13$, straight: radial spines $8-15$, subulate, thickened at the base, stiff, sharp, straight or slightly curved, the laterals longest, about $1 / 2$ in., the upper ones shortest, reddish with darker tips; centrals $2-5$, stouter, bulbose at lase, $1 / 4-$ $3 / 8 \mathrm{in}$. long, the lower ones the longest; later all the spines are gray: fls. lateral, from near the crown, $21 / 2-3$ in. long, parple-red to violet: fr. short ellipsoidal, spins, green, $3 / 4 \mathrm{in}$. long. Tex. to Ariz. and northern Mex.
12. Féndleri, Riimpl. (Cereus Féndleri, Engelm.) Irregularly clustered: stem eylindrical or rarely ovoid or even globose, sparingly branching, $3-7 \mathrm{in}$. high by $13 / 4-21 / 2$ inch in diam. : ribs $9-12$, straight or slightly spiral, undulate : radial spines $7-10$, subulate, straight or curved, the lowest or the two lower laterals the longest, about 1 in., stronger, quadrangular, white; the two next higher brownish; the upper ones round, white and much shorter: all are bulbose at the base: central solitary (or in old plants 3-4), very strongly thickened at the base, round, black, sometimes with a lighter colored tip, curved upward. reaching a length of $1 \frac{3}{4} \mathrm{in}$.: Hs. lateral, from near the crown, $2-31 / 2 \mathrm{in}$. long, dark carmine-red to purple and violet: fr. ellipsoidal, sping, green to purple-red, about 1 in . long. Colo., Utah and south to northern Mex. B.M. 6533 .
13. Engelmannii, Lem. (Cereus Engelmannii, Parry). Stems clustered, cylindrical to ovoid, 4-10 in. high, $13 / 4-21 / 2$ in. in diam., light green: ribs $11-13$, undulate : radial spines $11-13$, somewhat angled, stiff, sharp, straight or somewhat curved, horizontally spreading, the lowest or lower laterals the longest, about $1 / 2$ in., the upper ones the shortest, whitish with brown tips: centrals 4, stiff, straight, angled, stout, the lowest one deflexed, white to dark-colored, reaching a length of $21 / 2$ in., the upper ones alout $1 / 2$ as long, spreading, brown: fls. lateral, from just helow the crown, $13 / 4-21 / 2$ in. long. purple-red: fr. ovoid, green to purple-red, spiny, later naked, about 1 in . in diam.; pulp purplered. Calif. to Utah and south into Mex.

Var. chrysocentrus, Engelm. and Bigel. The three upper centrals golden yellow, the lowest white. Mojave desert, Calif.

Var. variegatus, Engelm. and Bigel. The three upper centrals curved, horn-colored and mottled with black. Utah, Nev. and Calif.
14. conglomeràtus, Först. Stems clustered, columnar, s mewhat tapering above, reaching a height of 1 ft . and 2 in. in diam., light green: ribs 12-13, strongly undulate. tubercled above: radial spines $9-10$. glossy, spreading, the lower pair the longest, base vellow; centrals 1-4, the lowest straight. porrect, reaching a length of $11 / 2 \mathrm{in}$. and more, somewhat stronger than the rest. Northern Mex.

## ECHINOCERELS

15. stramineus, Rümpl. (Cereus stramineus, Engelmann). Clustered in thick, irregular bunches: stems ovoid to cylindrical, $4-8 \mathrm{in}$. long, $11 / 2-21 / 2$ in. in diam.: ribe 11-13: radial spines $7-10$ (usually 8 ), horizontally radi ate, straight or slightly curved, subulate, sharp, round or the long lower ones angled, transparent white, toler ably equal in length, about $1 / 2-3 / 4 \mathrm{in}$. or the lower ones sometimes longer and reaching a length of $1 \frac{1}{2} \mathrm{in}$.; cen trals $3-4$, much longer, stronger, twisted, angled, straw

16. Echinocereus chloranthus.
yellow to brownish, when young reddish transparent, the upper ones shortest and spreading upward, the lower ones porrect or depressed : fls. lateral, $21 / 2-31 / 2$ in long, bright purple-red or deep dark red to scaylet: fr. ellipsoidal, about $11 / 2 \mathrm{in}$. long. covered with numerous spines, purple-red. Tex. to Ariz. and northern I-fex
17. Mojavénsis, Riimpl. (Cereus Mojarénsis, Encelm. and Bigel.). Stems clustered. ovoin, reaching 3 in. in height by 2 in. in diam.: ribs $8-12$, conspicuously undulate: radial spines $5-8$, the lowest pair the iongest, reaching about $21 / 4 \mathrm{in}$. in length; all are white with brown tips, subulate, straight or curved, strongly bulbose at the base; central solitary, or sometimes absent, stronger and somewhat longer and darker colored; later all the spines become gray: fis. 2-3 in. long, deep carmine: fr. ellipsoidal, about 1 in . long. Mojave desert of Ariz., Nev. and Calif.
18. pnœniceus, Lem. (Echirncereus coccineus, Engelm. Cereus phœ๐iceus, Engelm.). Stems irregularly clustered. ellipsoidal to short cylindrical, 2-4 in. high by $11 / 2-21 / 4$ in. in diam.: ribs $8-11$, straight: spines bristle-form, straight, round; radials $8-12$, white $1 / 4-1 / 2$ in. long, upper ones shortest; centrals 1-4, stouter, white to yellow or brown, with bulbose base: fls. from upper lateral areola scarlet-red, with the corolla threat yellow. Colo. to Ariz.

Var. conoideus, Engeln. (Echinocereus conoídeus, Rumpl. Cereus conoideus, Engelm.). Central spine long and rohust: ths. large, red. Nouthern Calif. and northwest Mex.
18. polyacánthus, Engelm. (C'ereus polyacinthes, Engelm.). Stems clustered, forming thick masses. cy lindrical to ellipsoidal: ribs 9-13: radial spines 8-12, robust, subulate, stiff and sharp, under one the longest, nearly 1 in., upper ones scareely $1 / 2$ in., white to reddish gray with dark tips ; centrals $3-4$, bulbose base, stronger, about the length of the radials or the lowest sometimes reaching 2 in., horn-colored; later all the spines become srar: Hss. lateral, about $13 / 4-21 / 4 \mathrm{in}$. long, dark scarlet to blood-red: fr. spherical, about 1 in . long, greenish red, spiny. Tex. to Calif. and northern Mex.
19. ácifer, Lem. (Cereus ácifer, Otto). Stems thickly elustered, $6-8 \mathrm{in}$. high by $11 / 2-2 \mathrm{in}$. in diam., beconing gray and corky with age: ribs 9-11, usually 10: radial spines usually 9 , spreading, under pair long est, about $1 / 2$ in., in young growth white, later horn-colored to gray, the upper ones brownish; central solitary, straight, porrect, at first ruby red, later brown, 1 in. long: fls. lateral, 2 in. and more long, clear scarletred, with a yellow throat and sometimes a carmine border. Northern Mex.

## bвb. Ribs of stem 13 or more.

0. chloránthus, Riimpl. (Cereus chlorínthus, Engelin.). Fig. iti. Stems in small clusters, eylindrieal, slightly tapering above, $4-9 \mathrm{in}$. high by $2-21 / 2 \mathrm{in}$. in diam.: ribs $13-18$, straight or rarely spiral: radial spines $1 \geqslant-20$, horizontally spreading and appressed, sharp, the shortest one about $3 / 8 \mathrm{sin}$. long and white, the lower laterals a little longer and have purple tips; centrals $3-\overline{5}$, or in young plants absent, bulbose at the base, the upper ones shortest, about the length of the radials, and darker colored, with purplish tips, the lower ones stouter, ahout 1 in . long, deflexed, white; frequently all the spines are white: H1s. lateral, little more than 1 in . long: orary and tube white bristly; petals green : fr. ellipsoidal, about $1 / 2 \mathrm{in}$. long, spiny. Texas and New Mexico.
1. viridiflorus, Engelm. (Cereus viridiflorus, Engelm.). Stems solitary or only in age forming small, loose clusters, cylindrical or elongated ellipsoidal. 3-7 in. high by 1-2 in. in diam.: ribs 13 : radial spines $12-$ 18, horizontally radiate, pectinate, straight or somewhat curved, subulate, the lower laterals the longest, about $1 / 2$ in., translucent ruby red, the others white ; centrals usually absent, rarely 1 , strong, about $3 / 4$ in. long, curved upward, red with brown point: fls. lateral, from just below the crown, broad funnel-form, little more than 1 in. long: orary and tube spiny: corolla green, with a broad darker olive green to pink stripe down the middie of each petal : fr. ellipsoidal, about $1 / 2 \mathrm{in}$. long, greenish. Wyo. and Kans. to Tex. and New Mex.
2. dasyacánthus. Engelm. (Ceveus dasyacínthus, Engelm.). Stems solitary or sometimes forming open clusters, ellipsoidal to short cylindrical: ribs 15-21, straight or sometimes slightly spiral, obtuse : radial spines $20-30$. straight or sometimes slightly curved, subulate, stiff, sharp, pectinate, white with red or brown tips, later gray, the laterals longest, $1 / 2-1 \mathrm{in}$., the upper ones shortest, about $3 / 8$ in., those of one cluster interlocking with those of the adjacent clusters; centrals $3-8$, the lower one longest, white with colored tips, mostly with bulbose bases: fls. from near the crown of the stem, large, 21/2-3 in. long: ovary and short tube covered with white, reddish tipped stiff bristles; corolla rellow: fr. $1-1 \frac{1}{2} \mathrm{in}$. long, ellipsoidal, spiny, green to reddish. Tex.
3. ctenoides, Lem. (Cereus ctennides, Engelm.). Stems solitary or rarely branching, cylindrical to elongated ovoid, reaching a height of 6 in . and a diam. of $2 \frac{1}{2}$ in.: ribs $15-16$, usually straight: radial spines $1: 3-$ 22 , horizontally radiate, pectinate, subulate, bases bulbose and laterally compressed, stiff, straight or often slightly curved, the laterals longest and about $3 / 8$ in., the upper ones very short, white or sometimes with brownish tips; centrals $2-3$ or rarely 4 , superposed, coarser, bulbose at the hase, short and conical to $1 / 4 \mathrm{in}$. long, reddish; later all the spines are gray: fis. lateral,
from near the crown, $21 / 2-3$ in. long: ovary and short tube white bristly: corolla yellow, with greenish throat. Tex. and northern Mex.
4. pectinàtus, Engelm. (Cereus pectinatus, Engelm.). Clustered stems cylindrical or ovoid, reaching a height of 10 in . by 3 in . diam.: ribs $13-23$, ing a height of 10 in. 16 -30, pectinate, horizontally spreading and appressed, straight or curved, the laterals longest, round, hardly $3 / 8$ in. long; central usually absent, or as many as 5 , which are short, conical and superposed, white, with tips and bases variously colored with pink, yellow or brown; later all become gray: fls. lateral, from near the crown, $01 / 2-1$ in. long: ovary tuberculate and spiny, light to dark rose-red or rarely white: fr. globose, spiny, green to reddish green. Mex.

Var. adústus, K. Sch. (Cereus aduistus, Engelm.). Like the type, but with black-brown to chestnut-brown spines. Mex.
Var. rigidissimus, Engelm. (Cereus cándicans, Hort. ('. vigulíssimus, Hort.). Ralnbow Cactes. Fig. 748. Stems comparatively shorter and thicker: radial spines $16-20$, coarser and stiffer. straight or very little curved; base thickened, white, yellow or red to brown,


## 748. Echinocereus pectinata, var. rigidissimus.

these colors commonly arranged in alternating bands around the plant, the spines of adjacent clusters interlocking; centrals absent. Tex. to Ariz. and northern Mex.
Var. cæspitòsus, K. Sch. (Ěhinocereus cespitǹsus, Engelm. Cereus cospitòsus, Engelm.). Radials 20-30, curved, clear white or with rose-red tips : centrals absent, or 1-2 very short ones. Indian Terr., Tex. and Mex.
Var. rufispinus. K. Sch. Of more robust growth: radial spines eurved, red. Mex.
Horticultural names unidentified: $E$. polycéphalus. $-\boldsymbol{E}$. sangúneus. - E. Ľehri. - E. rispénskii.-E. paucupina, no doubt a mutilation of paucispinus.-E. Schlini=E. Scheeri?
C. H. Thompson.

ECHINOCYSTIS (Greek, hedge-hog and badder; from the prickly fruit). C'ucurbitacece. Wild Crecmber. Wild Balsam-Apple. This genus contains a hardy native annual vine which is a great favorite for home arbors, although not especially beautiful in foliage, fower or fruit. Its bladdery fruits about 2 in . long, covered with weak prickles, are a source of unfailing delight to children, who love to make them burst. It is one of the quickest growing of all vines, and is therefore useful in hiding unsightly objects, while the slower-growing shrubbery is getting a start. The latest reviewer of the gourd family (Cogniaux, in DC. Mon. Phan. vol. 3, 1881) makes three sections of this genus, and this plant the sole representative of the second section, or
true Echinocestis, because its juicy fruit bursts irregularly at the top, and contains $\because$ cells, each with 2 Hattish seeds.
lobata, Torr. \& Gray. Lrs. wider than long, deeply 5-lobed, slightly emarginate at the base: tendrils 3-4branched: staminate fls. snall, in many-fld. panicles longer than the lys.; calyx glabrous: fr. egg-shaped, sparsely covered with prickles. Saskatchewan to Winnepeg, south to Va. and Ky., west to Colo. A.G. 14: 161. R.H. 1895, p. 9. G.C'. Ill., 22:271. Sometimes becomes a weed.
W. M.

ECHINOPS (Greek. like a herlgehog; alluding to the spiny involucral scales). Compósite. Globe Thistle. A large genus of thistle-like plants, with blue or whitish flowers in globose masses. The structure of one of these globes is very curious. Each Hower in the globe has a little involucre of its own, and the whole globe has one all-embracing involucre. Another way of saying the same thing is "heads 1 -fld., crowded into headlike glomes." More or less white-woolly herbs: lvs. alternate, pinnate-dentate or twice or thrice pinnatisect, the lobes and teeth prickly.

Globe Thistles are coarse-growing plants of the easiest culture, and are suitable for naturalizing in wild gardens and shrubberies. An English gardener with an eye for the picturesque (W. Goldring) recommends massing them against a background of Boccomia cordata, or with such boldly contrasting yellow- or whiteflowered plants as Melianthus rigiclum or Melianthus multiflorus. The best species is $E$. Ruthenicus. A few scattered individuals of each species are not nearly so effective as a condensed mass or group of one kind. $E$. Ruthenicus flowers in midsummer and for several weeks thereafter. The silvery white stems and handsomely cut priekly foliage of Globe Thistles are interesting features. They make excellent companions for the blue-stemmed Eryngiums. All these plants are attractive to bees, especially $E$. exaltatus, which has considerable fame as a bee-plant. Globe Thistles are sometimes used abroad for perpetual bouquets.
A. Leaves not pubescent nor setulose above.

Ritro, Linn. Tall, thistle-like plant, with pinnatelobed lvs., which (like the stems) are tomentose beneath, the lobes lanceolate or linear and cut, but not spiny: involucre scales setiform, the inner ones much shorter: Hls. blue, very variable. Var. tenuifolius, DC. ( $E$. Ruthénicus, Hort.) has the lower leaves more narrowly cut, more or less spine-tipped. Gn. 45:951.-Perennials of S. Eu., growing - -3 ft . high. They bloom all summer. Lrs. sometimes loosely webby above.

AA. Leaves pubescent or setulose above.
Bannáticus, Rochel. Lrs. hairy-pubescent above, tomentose beneath (as also the stems), the lower ones deeply pinnately parted, the upper pinnatifid, spiny: fls. blue. Hungary. R.H. 1858, p. 519.
exaltatus. Schrad. Tall biennial, the stem nearly simple and glandulose-pilose, the lvs. pinnatifid, scarcely spiny: fls. blue. Russia. B.M. $245 \overline{7}$ as $E$. strictus, Fisch. Distinguished by its simple, erect stem. The garden $E$. commutdtus may be the same as this.
sphærocéphalus, Linn. Tall ( $5-\bar{i} \mathrm{ft}$.) perennial: lrs. pinnatifid, viscose-pubescent above, tomentose below, the teeth of the broad iohes yellow-spined: fls. white or bluish. S. En. B.R. $5: 356$.
L. H. B.

ECHINOPSIS (Greek, hedgehog-like). Cacticece. SEAcrohin Cactés. Stems spherical to ellipsoidal or rarely columnar: ribs prominent and usually sharp-angled: fls. usually long trumpet-shaped, ovary and tube covered with linear-lanceolate, cuspidate bracts which becone longer toward the outer end of the tube, where they pass gradually into the outer petals, in their axils bearing long, silky, wavy hairs and usually a few rather rigid bristles. This is a well marked genus, though by some authors combined with Cereus, confined entirely to South America. Culture as for Cereus.

## A. Ribs of stem divided into more or less evident

 tubercles.Pentlandii, Salm-Dyck. Stem simple, later oranching, spherical or ellipsoidal, reaching 6 in . in diam.:
ribs 12-15, divided between the areolw into oblique compressed tubercles: rudial spines $9-12$, spreading, straight or slightly curved, yellowish brown, the upper the longest and strongest, reaching $1 / 2-11 / 4$ in.; central solitary, or seldom in pairs, porrect, curved, $1-1 \frac{1}{2}$ in., rarely 3 in. long: fls. lateral, $2-21 / 2 \mathrm{in}$. long, yellow, orange, pink to scarlet-red: fr. spherical, green, $3 / 4$ in. in diam. P'eru. B.M. 4124.

## AA. Ribs of stem not diviled.

B. Flowers red or pink.
múltiplex, Zuce. Stems at first rather clarate, later globose to ellipsoidal, abundantly branching, $6-12$ in. in diam. and the same in height, or rarely taller, light green to yellowish: ribs $12-14$, straight, scarcely undulate: radial spines about 10 , subulate, straight, yellow to yellowi h brown, with darker tips, reaching $3 / 4 \mathrm{in}$. in length, rery unequal, horizontally spreading; centrals mostly 4 , of these the lowest is the longest, reaching $1 / 2$ in., somewhat porrect at first, later cursed and deflexed, darker colored than the others: fls. rare, lateral, 11-15 in., rose-red. S. Braz. B.M. 3 - 89 .

Var. cristàta, Hort. Stems flat and spreading in growth, like an open fan or the flower stalk of the common garden cockscomb, spines reduced to fine, stiff bristles. This is merely a montrosity of the species.
oxygona, Zucc. Stems at first simple, nearly spherical or rarely clavate, becoming short columnar, reaching $11 / 2 \mathrm{ft}$. in height and 1 ft . in diam., gray-green, darkfr above: ribs $13-15$, straight or wavy at the base : radial spines $5-15$, horizontally spreading, very unequal, reaching $5 / 8$ in., subulate. obliquely upright ; centrals, $2-\overline{5}$, somewhat langer, straight, porrect or deflexe.s, dark horn-colored, with black tips: fls. commonly many together, lateral, reaching 13 in . in length. pink to car-mine-red, the inner petals lighter than the outer ones. S. Braz.
triumphans, Jacobi. This is a hrbrid between $E$. E'y. riesii and oxygona, with pink double flowers.

## Bв. Flowers white.

Eyrièsii, Zucc. Stem simple, commonly branching later, at first somewhat depressed, later short to rather tall columnar, reaching a height of 2 ft . and a diam. of

743. Echinopsis gemmata.

4-6 in., dark green: ribs 11-18, straight, undulate, with sharp-angled margins: radial spines about 10 , scarcely more than $1 / 8 \mathrm{in}$. long. rigid, straight, slender conical, pointed, dark brown to black; centrals 4-8, but very litthe different from the radials: fls. lateral, $10-15 \mathrm{in}$. long,
white: fr. small, ellipsoidal, about 1 in. long. S. Braz., Uruguay and Argentine Republic. B.M. 3411. B.R. 20:1707.
gemmàta, K. Sch. (E. turbindta, Zucc.). Fig. 749. Stem simple or sometimes branching, at first low spherical or short columnar, later more top-shaped, reaching 1 ft . in height by $4-6 \mathrm{in}$. in diam., dark green: ribs $13-14$, rarely more, straight or sometimes slightly spiral with sharp or obtuse margins, which are but little or not at all undulate; central spines appear first, about 3-6 in number, very short, stiff, black; later the radials appear, about $10-14$, longer, horizontally spreading, at first yellowish brown, later horn-colored: fls. lateral or from the upper areolæ, 9-10 in. long, clear white, with a pale greenish midline in the petals. $\mathbf{S}$. Braz.
tubiflora, Zuce. (E). Ducalii, Hort. E. Zuccarínii, Pfeiff.). Stems spherical to ellipsoidal, at first simple but later more or less branching, reaching 10 in . in height by 8 in.:in diam., dark green: ribs 11-12, straight, with margins inconspicuously undulate: radial spines numerous, sometimes as many as 20, unequal, horizontally or obliquely spreading, yellowish white with brown tips, sometimes darker; centrals $3-4$, the lowest the longest, reaching $5 / 8$ in., later deffexed: fis. lateral. about 14 in. long, white with pale green midline in the petals. S. Braz. and Uruguay. B.M. 3627.
Echinopsis Mulleri is a horticultural name only.
C. H. Thompson.

ECHINOSTACHYS (spiny head, from the Greek). A bromeliaceous genus, now referred by Mez to Echmea, which see. Three species have been offered in the Amer. trade: E. Hýstrix, Wittm., for which see p. 28. E. Pineliana, Wittm., which is E. Pineliana, Baker: 2-3 ft.: peduncle and braets brilliant red: Ivs. banded, spine-edged: spike dense, 2 in. long, spiny: petals yellow, the tips fringed and incurved. Brazil. B.M. 5321. E. Van Houtteana, Van Houtte, is X. Van Houttedna, Mez (Quesnelia Van Houtteana, Morr.). Lvs. inany, strong spined, sometimes white-banded beneath : fls. white, blue-tipped, in a crowded spike: 1-2 ft. Brazil.
L. H. B.

ECHITES (Greek, riper; possibly from its poisonous milky juice or from its twining habit). Apocyndcea. A large genus of tropical American twiners related to Dipladenia. and of similar culture. Differs technically from Dipladenia in the 5 -lobed disk and the glandular or 5-scaled calyx.

Andrewsii, Chapman (E. suberécta, And.). Lrs. 11/2-2 in. lung, close together, oral or oblong, mucronate, acute or rounded at the base, margins revolute: peduncles axillary, $3-5-\mathrm{fl}$., shorter than the lrs.: fls. yellow; corolla tube 1 in . long, $1 / 2 \mathrm{in}$. wide, much dilated abcre the insertion of the stamens, bell-shaped, scarcely longer than the lobes; anthers tapering into a long, bristle-like awn: glands of the nectary 5, rounded, as long as the ovaries. Sandy shores, S. Fla. W. Indies.
paludosa, Vahl. Lis. oblong, oval-oblong, or lanceo-late-oblong, rounded toward the mucronate top: calyx segments glandular, devoid of an interior scale, oblong, mucronate-blunt, spreading; corolla tube funnel-shaped above a 'ylindrical base; anthers oblong-lanceolate, acuminate. rounded-cordate at the base, hirsute on the back above.
umbellàta, Jacq. Lrs ovate c" nate: H1s. greenish whi devoin of an interior scate. larged below the middle. ta rigid, tapering from a hasi te ast, $\varepsilon \ldots \because$ is. W. Indies. W. M.

ECHIUM (Greek, meaning unknown). Borragind̀ceo. Viper's Bciloss. Coarse herbs and shrubs, with spikes of blue, violet, red or white flowers. Their nearest ally of garden value is Cerinthe, but they are very distinct in general appearance. L'. fastuosum, for instance, has dark hlue, 5 -lobed flowers about half an inch across, in spikes 6 inches long and 2 inches wide, perhaps as many as 200 fls . in a spike. Great masses of stamens are thrust out and add to the interest, and the young flower-buds look like pink 5 -pointed stars. Three kinds are cult. out-
doors in California. There being no published American experience with their cultivation under glass, the following points are gleaned from The Garden 42, p. 884 (1892). In rich soil they grow coarse and scarcely flower, and the flowers are never as richly colored as when the plants are more or less starved. Biennials seed freely, and the seed is sown as soon as gathered. E'. callithyrsum is a greenhouse shrub or small tree which produces hundreds of spikes during sunmer. After Howering "the old stems or branches are cut back, when the plant breaks away again, ani in this way may be had in bloom aimost at will." Cuttings strike freely, flower soon, and make good pot-plants. Seedlings require a greater age and size before blooming. L'. fastuosum is the handsomest of the shrubby kinds, grows $2-4 \mathrm{ft}$. high. has long, pale green lvs., covered with soft white hairs, and fls of a peculiarly brilliant deep blue. In California, Franceschi says, Echiums are eminently suited for dry places, and need good drainage. E. vulgare is a common weed in the East.

## A. Fls. dark blue.

cándicans, Linn. f ( $E$. fastudsum, Jacq. f., not Ait.). Forms a bush 3 ft . high, but flowers at 3 ft ., and its foliage is green when fresh, hoary white when dry. Branches thick, leafy toward the tips: lvs. lanceolate, the upper ones smaller, crowded and narrower: panicles much looser than the spikes of $E$. fastuosum: fls. ses sile, pale blue, the buds reddish purple. Madeira. B.M. 6868. B.R. ]:44. - The fls. are sometimes said to be streaked with white or all white.

> AA. Fls. pale blue.
fastuòsum, Ait., not Jacq. This has darker blue fls. in a dense spike and perhaps less hoary foliage than $\boldsymbol{E}$ candicans. This was Hooker's conception in 1886 of the relation of the two species, but De Candolle formerly held the opposite opinion. Canaries. R.H. 1876:10. Gn. 10:50.
aAA. Fls. white.
simplex, DC. Woody but biennial and not branched: lvs. ample, oval-lanceolate: panicle very long, cylindrical, spike-like, the spikelets 2 -fld., pedicelled: stigmas simple.
W. M.

## EDELWEISS. See Leontopodium.

EDGEWORTHIA (after M. P. Edgeworth, English botanist in E. Indies, and his sister Maria). Deciduous shrub, with stout branches: Irs. alternate, entire, short petioled, crowded at the end of the branches: fls. in dense, peduncled heads, axillary, on branches of the previons year, with or before the lvs., apetalous; perianth tubular. 4 -lobed, densely pubescent outside; stamens 8 , in 2 rows stigma elongated: fr. a dry drupe. One species from Himal. to Japan, the bark of which is used for papermaking. Ornamental shrub, with handsome foliage and yellow, fragrant ths. Hardy 'uly South, thriving in any good, well-drained garden s if; if grown in pots a sandy compost of peat and loam, with sufficient drainage given, will suit them. Prop. by greenwood cuttings in spring under glass; also by seeds, obtained from dealers in Japanese plants.

Gárdneri, Meissn. (E. papyrifera, Zucc. E. chrysántha, Lindl.). Lrs. elliptic or oblong-lanceolate, appressed pubescent when young, glabrous above at length, 3-8 in. long: fls. about 1 in . long, densely clothed with yellowish silky hairs outside, in dense heads about 2 in. in diam. B.M 7180. B.R. 33:48. F.S. 3:289. - Cannot withstand the long, dry summers South.

Alfred Rehder.
EDRAIANTHOS. See Wahlenbergia.
EDWARDSIA. The leguminous genus of this name is now included in Sophora.

## EEL-GRASS. V'allisneria spiralis.

EGGPLANT (Solànem Melongèna, Linn.). Solanìcece. Guliea Squash. Aubergine of the French. This plant is a native of the tropics, probably from the East Indies, hut its native land is not known. It is cultivated to a greater or less extent throughout the entire tropical
regions. The first reports of its use as a vegetable come from India, hence the above assumption. In the United States it is cultivated as a vegetable as far north as New York, but it usually grows to greater perfection in the southern states. The demands for it during the early months of the year have not been fully supplied. Its cultivation demands as much a specialist as either celery or tobacco, while the specialization must be in a different direction from that of either one of these. Nearly all of the fruit that grows to proper size is edible, and there is no special demand for particular thavors. Eygplants are forced under glass to a limited cxtent for home use. They require the temperature of a tomato house, and great care must he taken to keep off red spider and mites. In order to insmre large fruits, practice artificial pollination. Non-pollinated fruits will grow for a time, but always remain small (Fis. 750). (Cf. Bailey, ForcingBook.
soil. - Eggplant will grow on almost any soil in the South, but it develops to greater perfection on a rich, deep, loamy soil free from de-
750. Non-pollinated fruit.

Propagating the Seedlings. - The time required to bring plants into bearing from seeds varies with the conditions of the soil mid temperature. During cool weather the plants grow very slowly, but during hot weather they grow rapidly and mature fruit in much less time. Those who wish to have early fruit and are able to use hotbeds or propagating houses should sow the seed $1 \because 0$ to 150 days before the fruit is wanted. Pre pare the hotheds as for other seedlings, and sow in rows a few inches apart. When these are beginning to show their leaves, or when the seedlings are beginning to look spindly, they should be pricked out and transferred to another bed. In this each plant should be given about a 2 -inch square; then the may be fored until the plants crowd one another in the bed, when they should be transferred again. When the plants have attined the size of 6 inches, and the atmosphere will permit, they may be set out in the field.

A somewhat more laborious, hut at the same time more successfu] plan, is to plant the seedlings in 2 -ineh flower pots, and then shift to larger ones as often as the plants become pot-bound or crowd one another in the bed. Fig. Tisl represents a plant, three-tenths natural size, just taken from a tlower pot and ready to be shifted to a larger one. By shifting until 6 -inch pots are reached, the Eggplant may be forcel along without injury to blooming size or even to a size when fruit is beginning to set, and then set out in the field without injury to the plants or crop.

Eggplant growers should bear in mind constantly that from the time of sprouting the seeds to the larresting of the crop, the plants cannot stand a severe shock in their growth without detriment to the crop. When the plant is once started it should then be foreed right along, and never allowed to become stunted during its growth. The amount of damage done by neslecting plants before they are set to the field varies with the severity of the shork and the leagth of time during which the plant undergoes the disadrantageons conditions. If it becomes necessary to harden the plants off before setting them to the field, this should be done gradually.

Culture in the Field.-After the field has been thoroughly prepared in the way of plowing and fertilizing, which should have been done at least two weeks before the plants were set out, the rows should be laid off from 3 to 4 feet apart. The plants may be set from 5 to 4 feet apart in the row, varying with the varieties to b, used and the soil. Tillage should he continued, a ad varied according to the conditions of the weather. Dur-

751. Pot-grown plant ready for setting in the field.
ing a wet season it is well to cultivate the land as deeply as possible, while during dry weather cultiration should be shallow, simply sufficient to keep the weeds from growing, to keep the soil well aired, and to keep a mulching of dry soil ou the land. Under ordinary circumstances it does not pay to prune or pinch out the buds, but where the season is short this may be re resorted to with some advantage. If it is desirable to
have the fruit attain a certain size before frost, one may begin to pinch out the blossoms and new growth about thrte weeks before its usual occurrence. This same

process will be of adrantage where the fruit is to be brought into market at a certain time.
Markeliug. - As a rule, it is better to cut the fruit from the plant than to break it, especially if the work is done by careless laborers. After cutting, it may be placed in large market baskets and hauled to the packing house. For distant market, the fruits should lie wrapped separately in heary brown paper. The proper crate for this vegetable is the barrel erate. As this is considered one of the staple vegetables, we do not gain much by using fancy wrappers or packing it in fine crates, hence we may use such material as may be left over from shipping fancy vegetables. It also stands shipment to distant markets, so that, if there is no danger of reduction in price, it is quite as well to ship by freight as by express.

Fitrieties.-There are only a few varieties offered in the market. The New York Improved Spineless mutures a little earlier than the Black Pekin. The New York Purple (Fig. 752), Black Pekin, and the N(w York spineless are excellent for shipping purposes. The above varieties are the black-fruited, and the most popular in the Cnited States, while the white-fruitel sorts are said to be the most popular in Europe. For home use, the white-fruited varieties are preferable, but as these make poor sellers in the United States, we must raise the purple sorts for market. For home gardens, the early and small Early Dwarf Purple (Fig. 754), is useful. It is particularly recommended for northern climates. There are three main types of Eggplants, as follows (Bailey, Bull. 26, Cornell Exp. Sta.): The commoner garden varieties, Solanum Melongina, var. esculentum, Bailey (Figs. 752. 753); the longfruited or "serpent" varieties, S. Melongèna, var. serpentimum, Bailey; the Early Dwarf Purple type, var. depressum, Bailey (Fig. 754). See Solanum. The socalled Chinese Eggplant is a different species, for which eonsult Solanum.

Secd-growing. - This is by no means a diffeult operation, and may be done profitably in certain sections of the South. For this purpose all defective or dwarfed plants in the field should be cut out. By a little attention one will be able to know when the seeds hare matured sufficiently for gathering. At this time the eggs usually turn a lighter color or even somewhat yellow. The fruit should be gathered and carried to the packing house, where it may be left in a pile for 2 or 3 days, as there is very little danger from rotting. When a sufficient number have been collected the laborers may be set to paring off the extra amount of meat on the outside of the seed. The remaining core may then be cut
longitudinally into quarters or eighths, using a dull knife to avoid cutting the seed. After a quantity of these have been pared, they may be placed in a barrel and covered with water. The barrel should not be made more than two-thirds full. In a day or two fermentation will set in and the meaty portion will macerate from the seed. The seed may then be separated from the mat by means of sieves, using first wide-meshed ones to remove the nieat and then finer-meshed ones to screen out the seed from the finer pulp. The seed should not be allowed to stand more than 2 or 3 days in the macerating barrel, as the heat evolved by fermentation and the heat of the summer is liable to canse them to germinate. After separating the seed from the pulp, it should be dried in the shade and wrapped in secure packages. By covering with tin foil or oil paper, the atmospheric moisture will be kept out and molding prevented.

Diserises. - The most destructive of diseases in the lower South is a blight fungus which attneks the plant just beneath the surface of the ground, causing the softer tissues at this point to rot off and the plant to die. The fungras is not able to penetrate the harder portion of the stem, consequently the plant lingers along for weeks after being attacked. A number of attempts have bern made to cause this blight fungus to produce fruiting organs so that it could be classified, but up to the present this has proved futile. In such cases as this we have no rem.edy. Aftor the plant is attacked, it is usually doomed. Much. however, can be tone in the way of prerenting the spread of this fungus. If all plants are destroyed as soon as found to be affected, the fungus cannot perfect its selerotia, or rusting state, and thus its propagating is prevented. The normal home of this


## 753. Long White Eggplant.

fungus is in decaying vegetable matter. If, therefore, we keep our field free from this sort of material we will do much to prevent this fungus from being present. Some soluble form of fungicide, as Eau Celeste

## EICHHORNIA

or potassium sulphide, may be sprayed about the roots of the plants to good ndvantage. Practice rotation of crops.

A second form of blight is cunsed by Bacillus solunacearum, Smith. This disease has its origin of infection in the leaves, and is introduced by means of insects which have fed upon diseased plants and carried the infection to the well ones. The disease works rapidly down the tissues, and causes the denth of the leaf and thally of the whole plant. The only remedy for this is to destroy all plants that are affected with the disease as soon as detected, and killoff all insects. When this disease is known to be present in a section, it is best to set the plants as far apart as practicable. In this way the danger of infection from insects is somewhat reduced. When the disense is known to be present in a field it should not be planted to this crop.
Insect E'nemies. - Among the most annoying of the insect enemies wo must place the cut-worm (larvo of

754. Sprays of Early Dwarf Purple Eggplant.

Noctudire). These insects are almost omnipresent, and when nearly full grown are liable to cut off plants that are 4 or 5 inches high. It is not common for one insect to cut off more than a single plant, but in ordinarily fertile soil there are enough cut-worms present to destroy the entire ficld. So that, on the whole, it becomes rery annoying. Where these insects are quite destructive, it is possible to kill them with poisoned bran or poisoned cotton-seed meal, sweetened with syrup oi sugar.

Another insect that does more or less damage is the cotton-holl worm (Heliothis armigera). This insect does its damage by boring a hole into the stems or the fruit. In the latter case it causes it to rot before it is picked, or possibly in transit. As the fruit becomes larger there is less danger of attank from this insect, so that the main trouble occurs in the earlier stages of its growth.

The Eggplant aphis (Siphonophora cucurbitce) is one of the most annoying pests to this crop. It usually makes its appearance about the time the crop is fit to ship, and appears in such numbers that the plants are ruined in the course of a week or two. The insect attaeks the lower surface of the leaves, making it difficult to reach the pest with insecticides, but persistent efforts and a good tobacco decoction, applied with a fine nozzle, will giveconsiderable relief. Anthracnose (Glousporium melongene) does not canse great damage to this crop, but is one of the agents that reduce the profits. "It may be recognized by its producing decided pits in the fruit, upon which soon appear minute blotehes bordered with pink." Bordeatux mixture may be used to good advantage for preventing this disease.
Phoma Solani frequently causes dampluz-off in the hotbed. It often renders a who'e bed worthless. P!ants
affected with this fungns usually fall over as if eaten off by some insect. Some plants, however, continue a misernhle existence and finally die. Careful examination will reveal the point of injury, which is at the ground level. The best preventive is to use well drained beds, and then avoid excessive watering. Whendamping-off is detected in a seedling bed, the atmosphere mid surfae soil shonld be dried as rapldy as possible, followed by one application of fungicide.
P. H. Rolfs.

EGLANTINE. Liosa Eiglantgria. Lass properly applied to Riubus Rigletuteria and liosa rubiginosa.
EGYPTIAN BEAN. Same as Black Bean, Dolichos Lablab.

EGYPTIAN LOTUS. See Nymphat Lotus; also Nelumbium.

EHRETIA (G. D. Ehret, botanical painter, born in Germany, 1708, died in England, 1770). Borroginicer. About 50 species of tender trees and shrubs, found in the warmer regions of the world. Two species are cult. outdoors in S. Calif. and 2 others in European greenhouses. Plants with or without rough, short hairs: lve altornate, saw-toothed or not: fls. small, often white, in cymes, corymbs, terminal panicles, or rarely all borne in the upper axils. The 2 species described below are tvergreen trees in S. ('alif., attaning a height of 30 ft . Seeds may be obtained through dealers in Japanese plants.

> A. Lis. sum-toothed.
> B. Foliuge hairy.
macrophylla, Wall. Lis. ovate, acute, sharply toothed, with long, harsh, rigid hairs above and soft pulescence beneath: panicle terminal, pubescent: calyx cilinte: fr. globose, obscurely 4 -grooved. Himalays.s.

## Bb. Foliage not hairy.

acuminàta, R. Brown ( $L^{\prime}$. serrìta, Roxb.). Heliotrope Tree. This belongs to a different tribe of the same family with the H-liotrope, and the white Hs. have a honey-like odor. Lis. oblong-lanceolate, acuminate: panicles terminal and axillary: fls. elustered, sessile. Trop. Asia ond Aust.-"Drupes red, the size of a pea; said to be edible." $E . N$. Reasoner, Oneco, Fla.

## AA. Les. usually not toothed.

ellíptica, DC. Tree, 15-50 ft. high: lrs. oral or ablong, sometimes saw-toothed, nearly hairless, or w"th minute hairs and very rough above: fr. a yellow globose drupe, the size of a small pea, with edible thin pulp. Tex., Mex.
W. M.

EICHHORNIA (after J. A. F. Eichhorn, a Prussian). Pontederidcer. This genus includes the Water Hyaeinth (see Fig. $75 \overline{5}$ ), the famous "million dollnr weed" that obstructs navigation in the St. John, river, Florida, and is a source of wonder and delight is every collection of tender aquaties in the North. The eurious bladders made by the intlation of the petioles help the plant to float freely. About flowering time the plant sends down anchoring roots which, if the water be only 3 or 4 inches deep, penetrate the soil. The true Hyacinths belong in an allied order; the Pickerel-weed, in the allied genus Pontederia, the ovary of which by abortion is 1 -celled, and each cell 1-ovuled, while Eichhornia is 3 -celled and many-oruled.

The plants of this order have been greatly confused by botanists, partly because the fugacious, membranous flowers are not well preserved in dried specimens, and partly because of variaion in form of leaves, depending upon whether the plants grow in deep or shallow water, or in mud. The common Water Hyacinth sends ont two kinds of roots, the horizontal ones often thick and fleshy, and apparently for reproductive purposes, the rertical ones long, slender, and clothed with innumes able small, horizontal fibers. Water Hyacinths are oí servenlture and are propagated by division or seed If grown in about 3 in . of water, so that the roots ray reach the soil, the petioles become elongated and the plant becomes weedy and unsatisfactory.
A. Leaf-stultis inflated: inner serinnth-segments not serruted.
speciosa, Kunth (E. crixsipes, Solms. Pontedèria crissipes, Mart.). Fig. inn. Lus. in tufts, all constricted at the middle, bladder-like below, sheathed many-nerved: scape 1 ft . long, with wary-margined sheaths at and above the middle: fls. about 8 in a loose spike, pale viole ';-lobed, the upper lobe larger and having a large patch of blue, with an oblong or pear-shaped spot of bripht yellow in the middle: stamens 3 long and 3 short, all curred upwards towards the tip. Braz. 13.M. ©ass, erroneously, as Pontederia azureu. I.H. 34 14. A.F. 亏. inl. Var. màjor, Hort., has rosy lilae flowers. Var. aurea, Hort, has yellowish flowers.
AA. Leaf-stalks not inflated: inner perianth-segments beautifully serrate.
azürea, Kunth. Lis. on long or short not-inflated petioles, very variable in size and shape: scape often as stout as the leaf-stalk, gradually dilated into a hooded spathe: fls. scattered or crowded in pairs along a stout, hairy, sessile rachis; perianth bright pale blue, hairy outside, inner segments beantifully toothed, the upper a trifle larger, with a heart-shaped spot of yellow, which is margined with white. Braz. B.M. 6487. G.C. II 25:17. I.H. 24:20. K.H. 1890:i40. - One plant will become 5 or 6 ft . acrass in one season.

Wis. Tricker and W. M.
ELEAGNUS (aneient Greek name, meaning a kind of willow; from elaios, oive). Eiluagnicea. Shrubs or small trees: lrs. alternate, decidnous or persistent, entire or nearly so, clothed more or less with silvery or brownish scales: Als axillary, solitary or in elusters, apetalous ; perianth companulate or tubular, 4-lobed; stamens 4, included, on very short filaments: fr. a 1 -seeded drupe. About 15 species in S. Europe, Asia and N. America. Highly ornamental shrubs with handsome foliage and mostly decorative frs.; the fls. are ineonspicuous, but mostly fragrant. Some of the deeiduous species, as $E$. argentea, longipes, multiflora and umbellata, are hardy North, while the evergreen ones are hardy only South. A distinct feature of some species, as E. argentea, angustifolia and pariifolia, is the conspicuous silvery hue of their foliage, while $\boldsymbol{E}$. longipes is the most ornamental in fruit. They grow in almost any well drained soil, also in limestone soil, and prefer sunny position. Prop. by seeds and by euttings of mature and half-ripened wood; also sometimes increased by layers and by root-cuttings; varieties and rarer kinds can be grafted on seedlings of vigorous growing speeies.
Index of names (varieties and synonyms in italics): angustifolia, $1 . \quad$ Juponica, 2. aureo-varieyata, 8. macrophylla, 7. pungens, 8 . aureo-variegata, 8.
edulis, 5. edillis, 5. $\begin{array}{ll}\text { macrophylia, } \\ \text { maculata, } 8 . & \text { reflexa, } 8 . \\ \text { Simoni, } 8 .\end{array}$ Frederici varieyata, hortensis, 1. $\begin{array}{ll}\text { machata, } 8 . & \text { Simomi, } 8 . \\ \text { multitlora, }\end{array}$ umbellata, multiftora, 4. umbellata, 3 . orientalis, $1 . \quad$ variegata, 8.
A. Les. deciduous.
B. Branchlets and Trs. beweath silvery white, without any brown scales.

1. angustifolia, Linn. (E. /orténsis, Bieb.). Oleaster. Shrub or small tree, to 20 ft , sometimes spiny: lvs. lanceolate or oblong-lanceolate, quite entire, light green above, $\because-3 \mathrm{in}$. long: fls. short-pedicelled, $1-3$, axillary, on the lower parts of the branches; perianth campanulate, tube about as long as limb, yellow within, fragrant; style at the base included by a tubular disk: fr. oval, yellow, coated with silvery scales. June. S. Europe, W. Asia. Var. orientalis, Schlecht. (E. orientalis, Linn. f.). Spineless: lvs. often oblong or oval, clothed more with stellate hairs beneath than witl scales, usually glabrous above at length: fr. rather large. Var. spinosa, Dipp. ( $E$. spinòsa, Linn.). opiny: lvs. linear-lanceolate or lanceolate, scaly above and densely scaly beneath: fr. smaller. L.B.C. 14:1339. B.R. 14:1156.
2. parvifollia, Royle (E. Japónica, Hort.). Shrub or small tree, to 20 ft ., with erect stems and spiny, spreading branches: lrs. elliptie-ovate or oblong-lanceolate, crisped at the margin, usually with stellate hairs above, glabrous at length, silrery beneath, $1 / 2-3 \mathrm{in}$. long: fis. axillary, usually crowded on short lateral branchlets, short pedicelled; perianth narrow, tube longer than
limb, whitish within, fragrant: fr. glolose or nearly so, densely silvery when young, pink when ripe, $1 / 3 \mathrm{in}$. long. June. Himalayas, Japan. B.R. $29: 51$. Mn. 5:145. - Not quite hardy North. Sometimes eult. under the name of E. reflest, which species, however, is evergreen. Var. Japonica macrophylla is advertised, but probably does not belong to this species.

3. Eichhornia speciosa $(\times 1 \cdot 6)$.

Bв. Branchlets with reddish or yellowish brown scales und sometimes siluery besides: lrs. silvery white bencath, often with fiel broun scules.

> c. Fr. juicy, scarlet-red or brounhish red.
3. umbellàta, Thunbg. Spreading shrub, to 12 ft ., often spiny, with vellowish brown branchlets, often partially silvery: lvs. elliptic or ovate-oblong, silveryscaly above, without brown scales beneath, erisped at the margin, $11 / 2-3 \mathrm{in}$. long: fls. yellowish white, fragrant, axillary, $1-3$ usually crowded on short lateral branchlets; tube of perianth longer than the limb: fr. glohose or roundish oval, searlet, $1 / 4-1 / 3 \mathrm{in}$. long, erect, rather shortstalked, clothed with silvery scales when young, ripening late in fall, while the similar $E$. parifolia ripens much earlier. May, June. Japan. A.G. 12:206. M.D.G. 1899:569.
4. multiflòra, Thunbg. Sprealing shrub, to 8 ft , spineless; branchlets reddish brown: lus. elliptie or ovate-oblong, with scales or stellate hairs above, often glabrous at length, usually with few brown scales beneath: fls. 2-3, axillary, usually crowded on short lateral branchlets; tube longer than the limb: fr. acid, oval or roundish-oval, scarlet. $1 / 4-1 / 3 \mathrm{in}$. long, erect or nodding, with brown scales when young, ripening in July or August, rarely later: pedicel as long as or somewhat longer than fr. May, June. Japan. M.D.G. 1899 : 569. - Very variable species, and perhaps the former and the following are only varieties of it.
j. longipes, Gray (E. édulis, Hort.). Goumr. Fig. 756. Shrub, to 6 ft ., with reddish brown branchlets: lys. elliptic, ovate or obovate-oblong, with stellate hairs above, usually glabrous at length, mostly with scattered brown scales beneath, $1-2 l / 2$ in. long: Hs. $1-2$, axillary, on the lower part of the branches or on short branchlets, yellowish white, fragrant; tube as long as the limb: fr. pendulous, oblong, $3 / 4 \mathrm{in}$. long, starlet, on slender peduncles, much longer than the fr.; fr. with brown scales when young, ripesing in June or July, of agreeable, slightly acid flavor. April, May. Japan. China. B.M. 7341 (as E. multiflora). G.F.1:499. G.C. 1873:1014. Gng. $1: 275,277$.
cc. Fr. rather dry, silvery white.
6. argéntea, Pursh. Erect shrub, to $12 \mathrm{ft} .$, spineless, stoloniferous, with reddish brown branchlets: lvs.ovate
or oblong-lanceolate, silsery on both sides, often with seattered brown scales beneath, $1-3 \mathrm{in}$. long: fls. 1-3, axillary, yellow within, fragrant: fr. oval or roundish oval, densely clothed with silvery scales, short-pedicelled, $1 / 3-1 / 2 i n$. long. May, June. Canada, south to Quebec, Minnesota, Ütah, B.B. 2:4G7.

756. Elseagnus longipes ( $\times 1 / 2$ ).

## AA. Lis. evergreen : usually flowering in fall.

7. macrophylla, Thunbg. Spineless shrah, to 6 ft . with silvery white branchlets: les. broad-ovate or broad elliptic, on stont and rather long petioles, scaly abov, usually glabrous at length, silvery white beneath: fls. axillary, with silvery and brownish scales ontside tube companulate, abruptly narrowed at the base, as long as limb. Japan.
8. púngens, Thunbg. Spreading shrub, to $6 \mathrm{ft} .$, mostly spiny, with brown branchlets: lis. oval or oblong, undulate and often cremulate at the margin, at length glabrous above, silvery beneath, more or less interspersed with brown scales, $2-4 \mathrm{in}$. long: fls. in axillary clusters: tube cylindrical, slightly narrowed at the base, longer than the limb: fr. short-stalked, about $3 / 4 \mathrm{in}$. long, with silvery and brown scales. Japan. Var. Frederici variegàta, Hort. Ľ゙s. with yellow center and green margin. Var. maculàta, Hort. With large yellow blotches. A. G. 13:122. Var. Simoni, Hort. Lus. rather large, ob-long-elliptic, with few brown scales beneath or nearly without. Var. Simoni tricolor, Hort. Lers. like the former, but variegated with yellowish and pinkish white. Viar. refléxa, Hort. Branches spineless, elongated and flexile: lvs. with scattered brown scales beneath. Var. variegàta, Hort. Les. margined yellowish white. Var. aúreo-variegàta, Hort., probably belongs here.
E. ferruginea, A. Rich. Spineless evergreen shrub, with spreading brown brauches: lvs. with yellowish and brown scales beneath; perianth with quadrangular, abruptly contracted tube: fr. long-stalked. Japan.-E. glàbra, Thunbg. Spineless evergreen shrub, with brown branches: lrs. shining above, with yellow and brown scales beneath: perianth with slender, tubular tube, gradushly narrowed toward the base $t$ wice as longas the limb: fr. short-stalked. Japan. - E. reflexa. Morr. \& Deene. (E. glabra $\times$ pungens). Evergreen shrub, with brown hranches: lve. glabrous above, whitish beneath, densely interspersed with gellowish and light brown scales, giving the under surface a bronzy golden hue: perianth with slender tube: fr. short-stalked. Japan.-E. reflexa. Hort. $=$ E. pungens var or E. parvifolia.

Alfred Rehder.
ELIEIS (Greek, olice). Palmàcea, tribe Cocoiner. Tropical spineless palms with pinnate foliage, of which the best known is the Oil Palm of western Africa, whose red fruits, borne in large clusters, yield the palm oil of commerce, which is used in making candles and soap. Young plants are grown for ornament in S. Calif., and under glass North. The other 6 species are from tropical S. America. The genus is separated from Cocos by the $1-3$-seeded fruits, with 3 pores above the middle.

Guineénsis, Jacq. Oil Palm. Stems stout, 20-30 ft. coarsely and deeply ringed : leaves $10-15 \mathrm{ft}$.: petiole spiny-serrate; leaflets linear-lanceolate, acute, the same color above and below. F.S. 14:1492.-Elxis Guineensis, from an early stage in growth, is one of the most ornamental palms. Until it reaches several feet in height it is a slow grower, consequently we do not see
much of it, except in collections. It does best in a warm temperature, although it will thrive in an intermediate house. Seeds are always obtainable from sereral of the large European houses. It is but little grown as a commercial palm, as young plants do not show their full character. Given same treatment as Arecalutes. cens, will grow well. This treatment includes night temperature of $65^{\circ}$ and plenty of water.

Jared G. Smith, G. W. Oliver and W. H. Taplin.
ELEOCARPUS (Greek, olire-fruit). Tilidcen. This genus ineludes a tender evergreen flowering shrub of very distinct appearance. The creany white petals, charmingly fringed, the bright red sepals and pedicels, and the mass of yellow stmmens are the chief features. The racemes contain $2-\bar{b}$ pendulons flowers, which are ahout half an inch across, and fragrant. This plant was once advertised by Pitcher and Manda, and may exist in a few choice collections. The gemus has about 50 species, all from tropical Asia, Anstralia and the Prcific isles. In the tropies they are trees, with alfernate, rarely opposite lvs., which are entire or saw-toothed, and in some species sparingly spotted with black beneath: fls. axillary, in racemes; petals glabrous or silky: drupes oblong or globose.
grandiflorus, James Smith. A much-branched shrub, about 7 ft . high under glass: Ivs. considerably clustered at the ends of branches, $3-6 \mathrm{in}$. long, broadly lanceolate; petinle a fonrth to 1 in . long, with a few distant sawteeth, or more or less round-toothed or wavy-margined: sepals $\overline{5}$, red outside, white inside: petals 5. Java. B.M. 4680.-Lvis. rather leathery, dark green above, paler beneath. Warmhouse. Prop. by cuttings of nearly ripened wood. Not common.
E. cyàncus, Sims, named for its blue fruits (which are not known in cultivation), has broader and less tapering lvs., with more numerous teeth, and membranons texture, and the sepals are white outside. Australia. B.M. 1737.
W. M.

ELEOCOCCA is all referred to Aleurites cordala.
ELEODENDRON (Greek for olive tree, from the resemblance of the fruit to that of the olive). Celastricece. Perhaps 40 species of shrubs or small trees in tropical countries, chiefly in the Old World tropics. Lys. simple, entire or crenate. opposite or alternate, thickish, frequently evergreen: ths. inconspicuous, greenish or white. in axillary clusters; calyx 4-5-parted; petals 4-5, and exceeding the calyx; stamens $4-\overline{5}$ : orary single, surrounded by a fleshy ring: fruit a small tleshy drupe. Certain plants which, before they had bloomed, were referred to Aralia, are now known to belong to this genus, representing a distinct natural family. Culture of Aralia.
orientale, Jacq. (Arellia Chabrierri, Hort.). A most graceful and handsome plant, with linear-lanceolate alternate, shining, drooping leaves, $10-1 \%$ in. long, and with a reddish rib. Madagascar, Mauritius. R.H. 1891, p. 224. A.F. 10:1041.-Holls its lower foliage well, or throws out new foligge to take the place of that which drops. In the early descriptions, the plant was said to have pinnately compound lrs., but what were taken for leaflets are really lus. Still a rare and choice plant in this country. Thrives in either an intermediate or a warm house. Prop. by single-eve cuttings in small pots, kept rather warm. See, also, p. 8i.
australe, Vent. Int. into S. Calif. from Australia, and prized for its holly-like foliage. In its native habitat it is a tree $30-40$ feet high, producing useful close-grained wood.
L. H. B.

ELAPHOGLOSSUM. Sce Acrostichum.
ELDER and ELDERBERRY. See Sambucus.
ELECAMPANE. Iииla Helenium.
ELECTRO-HORTICULTURE is a term used by Siemens to designate the application of the electric light to the growing of plants. The term is an unfortunate one, since the use of electric light is not an application of electricity itself to plant-growing, but is merely a device for securing illumination. Any strong
artificial light hastens assimilation, and thereby causes plants to grow more rapidly. The practical questions to be considered are, therefore, the expense of using the light and determining whether there are injurious elements in the spectrum of the given light.

The spectrum of the electric are light is the spectrum of carbo:a plus that of certain gases incident upon combustion. The spectrum of the are light is rich in rays which lie beyond the luminous part, and these rays are very injurions to most plants. These rays of the ultra-violet part of the spectrum are eliminated by a plain glass, so that when the eiectric light is su:rounded by a globe, or when the light is hung above the roof of the greenhouse, the injuries are reduced to a minimum. Long-continued experiments at Cornell University have shown that each kind of plant behares in its own way in the presence of electric light. It is not possible to prophesy what the results nay be in a giren speeies. A few plants, as tomatoes, English cucumbers, and carrots, seem to be very little affected either injuriously or beneficially. Nearly all flowers are hastened into bloom by the influence of the light, and their colors are oftell brighter than under normal conditions; but in many instances they do not last so long. The best results are secured if the light is applied to the plants when they hare reached nearly or quite their full stature. If applied very early in their growth, they tend to make flowers before the plant has attained sufficient size. In thoriculture, therefore, the chief practical value of the electric arc light seems to be its influence in hastening the Howering of certain plants in dark climates, or when plants must be had for a definite season. For instance, if the light is applied to Easter lilies for a month before their normal blooming time, the period of bloom may be hastened from four to ten days.
Lettuce has shown greater beneficial results from the application of the electric light than any other plant with which careful experiments hare been made. Lettuce whieh receives light from the arc lamp for half of each night may be expeeted to reach marketable size from one to two weeks before the normal crop.
As a rule, better results are secured when the light runs only half the night. A common tro-thousand candle-power light has a marked effect on the growth of many plants at a distance of sixty to even one lundred feet. The incandescent light has a similar influence, but not so marked. The incandescent or Welsbach gas light is also capable of hastening the growth of plants.
As now understood, the application of the electric light to the growing of plants is a special matter to be used when the climate is alnormally cloudy or when it is desired to hasten the maturity of crops for a particular date. Only in the case of lettuce has it been proved to be of general commercial importance; and even with lettuce. it is doubtful if it will pay for its cost in climates which are abundantly sunny. For the literature of the sulject, consult the publications of the Experiment Stations of Cornell University and of West Virginia.
L. H. B.

ELEOCHARIS (Greek-made word. meaning delighting in marshes). ('yperàcop. Rush-like native plants, mostly of low, wiry growth, and commonest in marshes and on muddy shores. They are mostly perennial. The culms are simple, terete or angular. bearing a spherical or oblong head of inconspicuous tis.: Irs. usually reduced to mere sheaths. They are interesting for the borders of ponds, and are very easy to naturalize. Three species hare been offered ly collectors: E. equisetoides, Torr. A shore plant, with terete hollow culms 2-3 ft. high. and cylindrical heads about the thickness of the culm: resembles horse-tail (Equisetumı). E. acicularis, R. Br. Hair-like, 6 in. high, making grass-like mats. E. ovàta, R.Br. Culms nearly terete, 12 in. high: head gloL. H. B.

ELEPHANT'S EAR is a name for Begonias. The Elephant-Ear Caladium is a Colocasia.

## ELEPHANT'S FOOT. Testudinaria.

ELE:TARIA (natire name). Scitomindicer. Differs from Amomum in technical characters, as in the slender tube of the perianth, the presence of internal lobes in
the perianth, and the flaments, not prolonged begond the anther. l'erhaps only 2 species, although more have been described. E. Cardamomum, Maton, affords the small Cardamous of commerce, which are the drjed capsules, and which are used in medleine. The large or China Cardamons are from species of Amomum. The Cardamons of Nepal and Bengal are Amomum; those of S. India are Elettaria. The Elettaria is native to India, but is cult. in Jamaica, and it will no doubt thrive In parts of S. Fla. Plants hare been offered by Reasoner Bros. The Cardamon plant grows $5-10 \mathrm{ft}$. high, bearing an erect, jointed, closely sheathed stem, and lanceolate scuminate entire nearly sessile lys, often 2 ft . long: fls. purple-striped. It is said to prefer shade and a moist soil. In three or four years plants give full crops, but they become more or less exhausted after bearing three or four crops. Prop. by dividing the roots and by seeds. Cnder glass, handled the same as Alpinia.
L. H. B.

ELEUSINE (Greek, E'leusis, the town where Ceres, the goddess of harvests, was worshipped). Gramineip. Crab Grass. Yard Grass. Coarse, tufted annuals, with the stout unilateral spikes digitate at the apex of the culm. Spikelets several-fll.; arranged in two rows along one side of a continuous rachis, rachilla articulate above the empty glumes: Hs. perfect or the upper one staminate: grain loosely enclosed by the floglume and palet. Species 5 or 6 in tropical regions of the Old

758. Eleusine coracana. ( $\times 1 / 2$.)
coracàna, Gærtn. African Mhlet. Fig. $\overline{0} 8$. Erect, $2-4 \mathrm{ft}$ high, closely related to and much resembling $E$. lnlicu. Can be distinguished from it by its stouter habit, shorter, broader and larger spikes.-Cult. in India, China and Japan for the grain. Beer is brewed from the prain in Abyssinia. In cult. in America as an ornamental grass. Coracana means "of the crows."
Barcinonénsis, Costa. Culms tufted, 6 in. to 1 ft . high: leaf-blades short, about one-sixteenth of an in.

Wide, obtuse at the apex: splkes broad, 2-4, digitate, 1-11/2 in. long: spikelets closely imbricate, $5 \cdot \mathrm{fl} .-$ Int. into Amer. on ballast, and in cult. as an ornamental plant.
P. B. Kenneny.

ELEUTHEROCOCCUS (Greek, eleutheros, free, and kokkos, kernel; the seeds are easily detached from the flesh). Aralincece. Ornamental hardy shrubs, with numerous erect, spiny stems, rather large, digitate lys., inconsplcuous greenish Hs, and black berries in umbels. They prefer a some what moist and rich soll, and are well adapted as single specimens on the lawn or in borders of shrubberies for the handsome bright green foliage. I'rop. by seeds and root-cuttings. Three species in E. Asia, with alternate, long-petioled, digitatelvs.: Hs.small, greenish, polyg-amous-dioclous, 5-merous, pedicelled, in terminal, peduncled umbels: 'erry roundish oval, black, shinius, 5 -seeded.
senticosus, Maxim. Shrub, to 15 ft., the branches densely covered with slender spines: lfts. 5 , rarely 3, oblong, usually narrowed at the base, acute, sharply and doubly serrate, sparingly hispid above. with bristly hairs on the veins beneath, 4-6 in. long: fr. about $1 / 3 \mathrm{in}$. high. 12:393.

759. Winter bud of Elodea. Nat size.

July. N. China. Gt. Alfred Rehider.

ELIOT, JARED, author of the first American book on agriculture, was born November 7.1685 , and died April 22,1763 . He was the grandson of John Eliot, the "apos* tle of the Indians," and was pastor at Killingworth, Coun., from October 26, 1709, until his death. He was a botanist, and the leading consulting physician in New England. He introduced the mulberry tree into Connecticut, wrote an essay upon the silkworm, and discovered a process of extracting iron from ferrugineous sands. His "Essays upon Field-Husbandry," begun in 1743, formed the first American book devoted exelusively to agriculture. It is now extremely rare. He was a high-minded, progressive and useful citizen. Many of his sermons were separately reprinted. Jared Eliot and Samuel Deane were among the few agricultural writers of note in the period before American horticulture was considered distinct from agriculture. W. M.

ELLIOTTIA (after Stephen Elliott, South Carolina's early and excellent botanist. For a fine portrait and sketch of him, see G.F. 7:20t-206). E'ricicerr. A genus falited to Rhododendron and Ledum, with three species, of which the most interesting is an extremeiy rare native southern shrub, with delicate white Howers, an inch in diameter, composed of 4 slender petals, and borne in racemes $6-10 \mathrm{in}$. long. John Saul once advertised it, and P. J. Berckmans, of Augusta, Ga., still cultivates it. The two Asiatic species are inferior in size and beauty of tlowers. Important generic characters which distinguish this genus from Leiophyllum and Cladothamnu. are : flowers terminal, racemose; petals $3-5$, entire: anthers $4-10$, opening by irregular cracks: ovary $3-5$-celled.
racemosa, Muhl. Shrub, 4-10 ft. high, branches slender: ivs. alternate, oblong, acute at both ends. gla.nig-lar-mucronate, entire, thin, membranous, 3-t in. luag, $1-1 \frac{1}{2} \mathrm{in}$. wide; petioles slender, grooved, hairy, about 1 in. long: calyx lobes 4 , short, rounded: stamens 8 : fr. unknown. Wet, sandy woods of S. C. and Ga. G.F. i: 205.
W. M.

The plants formerly offered by John Saul were incorrectly named, and he refunded whaterer amount had been charged for all plants sold by him. Thes proved to be Styrax grandiflora. The only plants now known to exist are a few specimens collected by the writer, in company with Dr. Asa Gray in 1873, in a patch in Columbia county, Ga., which covered an area of about

3 acres. This was afterwarls cleared, and not a restige of Filliottia remalns. A suall patch is safl to exist in Edgefleld county, S. C., near the city of Augusta, Ga., but all my efforts to find it have falled.
The only plants which the writer has ever been able to propagate came from suckers. A few of these were sent to the Arnold Arboretum and to Kew Gardens. No seed has ever been produced upon our specimens, which are now 15 feet high.
P. J. Berckmans.

## ELM. See C'lmus.

ELODEA (Greek, marshy). IIydrocharidicea. This genus contains perhaps 9 species of aquatic herbs, in cluding the Ditch-moss, an interesting hardy perennial plant found in slow streams and ponds nearly theoughout North America, except the extreme north. It is particularly desirable for home and school aquaria. It is a slender, wholly submerged plant, with branching stems 4 in . to 3 ft . long, according to the depth of the water. The pistillate H. are raised to the surface by their long calyx tubes, and Hoat there. The minute staminate fls., which are rarely seen, commonly break off below, rise to the surface, float about, open, and shed their pollen. The fruit ripens below the surface, and the seeds rise. This plant is now found abundantly in Europe, being sometimes known in England as "Babington's Curse," from the man who introluced it. It reached England in 1841 and choked up many canals and waterways, notably the Cam. It was rery abundant in 1852 and $18 \pi 3$, but leelined in the next few years. Dirks, geese and swans are fond of it, and rendergreat service in getting rid of it. It can be used for manure where it grows in sufficient quantities. Like many other water plants, it makes heavy buils in the fall (Fig. 759), which drop to the bottom and grow in the spring.

Canadénsis, Mich. (Andicharis Cunadénsis, Planch. A. Alsinastrum, Bab.). Water-werD. Dıtch-moss. Water Thyme. Water Pest. Les. in wh irs of 3 or 4 , or the lower ones opposite, linear. minutely toothed or not, $2-7$ lines long. $1 / 2-2$ lines wide : fls. White; calyx tube of the pistillate $H$ s. $2-12 \mathrm{in}$. long: spathes $\overline{5}-7$ lines long. B.B.1:93. W. M. Tricker and W. M.

## ELODES. See Hypericum.

ELSHOLTZIA (John Sigismund Elsholtz, author of an unpublished Flora Marcica, the MS. of Thich is in the Royal Library, Berlin) Labiata. Herbs or undershrubs, in temperate and tropical Asia, with fls. in spikes: calcx tubular, 5 -toothed ; corolla oblique or 2lipped. the upper lip 4 -toothed in the typical species (described below), the lower longer and entire or somewhat crenulate ; stamens 4, separated. One is in the Amer. trade.

760. Elsholtzia cristata.
cristàta, Willd. Fig. $\mathbf{7 6 0}$. Twelve to 18 in. high, with opposite, petioled, ovate-oblong toothed lvs. and small, light blue fls. in crowded, more or less 1 -sided spikes: calyx enlarging in fr. Asia. B.M. 2560.-Hardy annual, with very aromatic foliage and attractive, upright habit. Said to be a good bee plant.
L. H. B.

ELYMUS (Greek, rolleel up or enveloped). Gra. mineir. L,yme Guass. Wilib Rye. Erect perenalal Grasses, with flat or convolute lrs. and closely-fld. terminal spikes: spikelets $2-6$-fld., often long-awned, the uppermost imperfe't, sesalle, in pairs (rarely $\ln 3$ 's or 4's), at the alternate notches of the continuons or articulate rachis, forming terminal spikes; empty glumes acute or awn-pointed, persistent and subtending the fls. like an involucre. Species about 20, In the temperate reglons of Eu., Asia and N. Amer. For E. Hystrix, see Asperellu.
arenàriug, Linn. Sea Lyme Grass. Stout, coarse perennial, e-8 ft . high, with strong, creeping rootstocks: les. long, rigid, smooth: splkes dense, terminal, 6-12 in. long; spikelets about 1 in . long and 3-4-fld. - One of the best grasses known for binding the drifting sands of our Atlantic and Paciflc consts, especially when combined with Beach Grass (see Ammophila arenaria). The sced is also used by the Digger Indians for food.
Canadénsis, Linn. Canada Lyme Grass. Terrel Grass. Rather stout, smooth perennial, 3-5 ft . high, with broad, flat lvs. 6-12 in. long: spikes $4-9 \mathrm{in}$. long, exserted, nodiling; splkelets very rigid, 3 -5.fld.: fl. glumes long-awned. Common in low thickets and along streams in rich, open woods throughout the country. - Cult. as an ornamental plant. Var. glaucilolius, Groy ( $E$ '. glancifslius, Hort.), is pale and glaucous throughout, with usually more slender arns. Cult. as an ornamental grass.
condonsàtus, Presl.Giant RyE Griss. The largest of the native Rye Grasses. growing to the height of 5-10 ft.: culms in dense tufts, stout: spikes 8 in . to $11 / 2 \mathrm{ft}$. long, very vari able, compact or interrupted, bearing branching clusters of spikelets at each joint. Common in the Rocky mountain regions and the Paciflc slope. - U'seful for binding the loose sands on railway banks. Cult. as an ornamental grass.
glaùcus, Regel. A glau-cous-leared, dense, cespitose, hardy perennial grass $3-4 \mathrm{ft}$. high, with very short, smooth lvs. and erect, elongated spikes : spikelets in 2 's, erect, usually 5 -fld., densely vil-lous-pubescent, short. arned. Turkestan.-Rarely in cult. as an ornamental grass. P. B. Kennedy.

EMILIA (perhaps a personal name). Compósitor. Herbs, perennial or annual: related to Senecio, but always without rays: heals rather small, the involucre very simple and cup-shaped, with no small


## 761. Emilia flammea.

 Separate head $\times 1 / 3$. outer scales: akenes with 5 acute ciliate angles: florets all perfect. A dozen or more species have been described from Africa, tropical Asia and Polynesia. One species in common cult.flámmea, Cass. (E. sagittàta, DC. E. sonchifolia, Hort., not DC. E. sonchifolia, Linn., var. sagittèta, Clarke. Cacdlia coccinea, Sims, B.M. 564. C. sonchifolia, Hort., not Linn. C. sagittdta, Vahl. Se-
nécio sagittiths, Hoffim.). Tassel Flower. Flora's Paint Bresif. Fif. 761. A neat anmal, erect, 1-2 ft., glabrous or sparsely hairy, the long stems terminated by clusters of small searlet (gollen yellow in the form called Cacdlia litea, Hort.) heads: lvs. knce-oblong or orate-lanceolate, clasping the stem, remotely crenatedentate: incolucre seales much shorter than the florets. E. Ind., Philippines. - This much-named annual is one of the commonest gardeh flowers. It is of the easjest culture in any good soil. Blooms from July until frost, If sown as soon as weather is settled.
E. purpùrea, Cass. (E. sonchlfolla, DC., not Hort. Caenlia sonchifolia, Linn. Senecio sonchifolia, Moench). Radical lvs. often more or less lyrate, stem lvs. broader and clasping, the heads fewer In the cluster and the involucre seales nearly as long as the torets. Apparently not in cult. in this country.

亡. H. B
ENCELIA (meaning obscure). Compositc. About 20 species of American herbs, chiefly western, often wooty at base. The following was introduced by Franceschi, Santa Barbara, Calif., and has fls. $21 / 2$ in. across, with yellow rays and a black disk. Has probably never been tried in the East.
Californica, Nutt. Woody at base, 2-4 ft. hiph, strong-scented, rather hoary, or becoming green: Irs. 1-2 in. long, ovate to broadly lanceolate, usually entire, indistinctly 3 -ribbed from the base, abruptly stalked: rays numerous, $2-4$-toothed: seeds oborate, with long, silky hairs on the callous margins and a shallow noteh at the tip.
EY MENANTHE (Greek, enduring flower; the persisteni corollas retain their shape when dry like everlasting flowers). Hydrophyllaceo. Half a dozen annual herbs from western North America, of which the most interesting species was introduced to cultiration in 1892, under the name of California Yellow or Golden Bells. It grows $9-12$ in. Ligh, forming bushy plants, each branch loaded with broadly bell-shaped, pendulous, unwithering flowers, about half an inch long, of creany gellow. The general effect of a branch suggests the lily-of-the-ralley, but the foliage is pinnatifid. The lasting character of the $H$. distinguished the genus from its allies, the nearest of any garden value being Phacelia. Corolla lobes 5 ; stamens 5 ; style "-cut. The species named below belongs to a section of the genus, with calyx lobes broader downward, and coarsely pitted seeds. All the others hare the calyx lobes broader upwards and the seeds more or less wrinkled transversely.
penduliflora, Benth. California Yellow ois Golden Bells. Somewhat sticky, with long or short, soft hairs: lvs. pinnatifid, lobes numerous, short, somewhat toothed or sharply cut: orules about 16 : seeds 1 line long. Calif. G.C. III. 11:399. W. M.

EMPETRUM (Greek, en, in, petros, rock; growing often on rocks). Empetrdcec. Crowberry. Evergreen, hardy, prostrate or creeping, leath-like shrubs, with small, crowded lrs., inconspicuous purplish Hs., and globose, red or black, edible berries. They grow best in moist, sandy or peaty soil, and are especially handsome for rockeries. Prop. usually by cuttings of nearly ripened wood in late summer under glass. One species through the northern hemisphere in mountainous and arctic regions, also in S. America. Lrs. generally linear, thick, alternate: fls. diæcious, small, 1-3 axillary, nearly sessile, 3 -merous: fr. a 6 - 10 -steded drupe.
nigrum, Linn. Lrs. linear to linear-oblong, glabrous or nearly so, entire, $1 / 6-1 / 4 \mathrm{in}$. long: fls. purplish: fr. black, about one-fifth in. in diam. Var. purpureum. DC. Fr. red. Arctic and boreal N. Am. Var. rùbrum, DC. ( $E^{\prime}$. rubrum, Vahl). Young branches and margins of lrs. villous, hence the plant grayish green: fr. red. Antaretic S. Am. B.R. $21: 1783$.

Alfred Rehde?
ENCEPHALARTOS (Greek, en, within, kephale, head, and artos, bread; alluding to the bread-like interior of the trunk). Cyeaddcece. Grand ereacs from tropical and southern Africa, grown chiefly for their splendid eyergreen foliage. Nineteen or less stecies. The finest picture of an Encephalartos in any American peribdical is probably that in Garden and Forest $4: 209$, accompany-
ing in article from William Watson, of Ket, whose remarise tre here condensed. These plants are specially suited for large conservatories, the fronds being not easily injured. They sheula succeed outdoors South. Some of the Kew specimens must be nearly a century old. The trunks of some kinds grow only a few inches in man. years. The specimen illustrated had a stem 5 ft . in circunferer e, nearly 3 ft . ingin, and crowned by 107 leaves, each 3 ft . long, and rigid. A whorl of new leares is produced ench year, the latest one having 34 fuil sized leaves. The whole head was about $71 / 2$ feet in diameter. Most kinds prefer a sunny, tropical house, but E. brachyphyllus and perbaps others may be grown in a cool greenhouse if kept a little dry in winter. The cones are always interesting and often very decorative. Those of $\dot{L}$. villosus are twice as large as a pireapple, orange-yellow, half-revealing the scarlet fruits.

Cycads are propagated by s ods; also by offsets or suckers. They are slow-growing, except in very warm houses. They like a strong, loamy soil. While inaking new growth ther need plenty of water. See Cycas. The woolliness of the stem and leaf-segments varies with the age of the plants and of the leares.

The pith and central portion of the cones of some species form an article of food among the Kaffirs, hence the common name of Kaffir Bread. The most widely known species in cultivation are $E$. villosus, $E$. Altensteinii and E'pungens. Though very handsome Cycads, they are by no neans popular.

Some other Creads frequently produce seed in conservatories, but Encephalartos sildom does, and plants are, therefore, usually imported. Dry trunks, weighing frequently from $50-\overline{5}$ pounds, have been received from Sourh Africa. They often remain dormant for a year or more, and do not make ornamental spesimens for two or more vears.

In the following descriptions "rachis" refers to the midrib of the leaf on which the leaflets or segments are borne. and "petiole" means the portion of the izaf below where the leaflets begin.
A. Leaflets toothed (sometimes entire in No. 1).
B. Petiole 4-angled: foliage glaucous, i. e., covered with plum-like "bloom."

1. hórridus, Lehm. Trunk woolly or not: leaflets opposite or alternate, lanceolate, mostly entire, sometimes toothed. Var. glaúca is presumably more glaucous than the type. B.M. 5371.

вв. Petiole sub-cylindrical: foliage not glaucous.

> c. Leares dark green : trunk not unolly.
2. Aisisnsteinii, Lehm. Leaflets mostly opposite, lanceolate. B.M. $7162-3$. G.C. II. 6:392, 393, 397 ; III. 2:281; 12:489-93.
cc. Leares light green: trunk woolly.
3. villòsus, Lehm. Leaflets opposite or alternate, linear-lanceolate. B.M. 6654. R.H. 1897:36. G.C. II. 1:513; 3:400; 7:21; 13:181.

AA. Leaflets not toothed (except in young irs. of Nos. 8 and 3, and also in No. 1).

## B. Foliage glaucous.

4. Léhmanni, Lehm. (Cycas Lêhmanni, Hort.). Trunk not woollr: rachis and petiole obtusely 4 -angled; leaflets nearly opposite, narrowly or broichly lanceolats rarely 1 -toothed. Git. 1865:477.

## BB. Folicge not glaucous.

c. Apex of lecflets mostly obtuse, pointless.
5. longifolius, Lelmm. Trunk not woolly, at length tall: rachis and petiole 4 -cornered but hattish above: lowest leaflets often 1-3-toothed, margin somewhat revolute: wool soon vanishing from the rachis and flets. Var. revolutus, Miq.. has the margins more di- inetly revolute. Var, angustifolius has narrower, flat leaflets. Var. Hodkeri, DC., lias narrowly lanceolate leaflets, not glancous but intense green, aud rachis not wonlly. B.M. 4903 , erroneously named $E$. Caffer, is referred to this place by a recent specialist, though the leaflets are distinctly pointed in the picture.

## ENDIVE

CC. Ap:x of leaflets always strong-pointed. D. Form of leaflets linear.
E. Margin of leaflets revol:te.
6. cycadifolius, Lehm. (E. Friderici-Guiliélmi, Lehm. E'. cycudifolius,var. F'riderici-Guiliélmi, Rod.). Tıunk woolly at first: rachis and petiole ashy-pubescent: leaflets opposite and alternate, linear. 1.H. 29:459. G.F. 4:209.

EE. Margin of leaflets not revolute.
7. púngens, Lehm. (Zamia púngens, Ait.). Rachis and petiole glabrous: leaflets long-linear, dark green, rigid, flat, striated beneath. Var. glaúca is also sold.

## DD. F'orm of ieaflets lancpolate.

## E. Rechis glabrous.

8. Cáffer, Miq. (E. Ciffra, Hort.). Petiole 3-angled: leaflets alternate, narrower at the base. twisted, the younger one with 1 or 2 teeth. R.Hi. 1869, p. 233. Not B.M. 4903 , which is $E$. longifolius, var. Hookeri.

## EE. Rachis spidery-pubescent.

9. Caifer, var. brachyphsllus, DC. (E. brachyphýllus, Lehm.). Kachis and blades of the lower leatlets spidery pubescer ${ }^{\text {t }}$ : male cones sessile instead of peduncled. The pinna are erect, and longer and narrower than in E. Caffer
F. M., P. J. Berckmans and W. H. Taplin.

ENCHOL RIUM, Consult Tillandsiu.
ENDIVE (Cichòrium Endivia). Compósita. See Cichorium. During summer and fall, well-blanched heads of Endive may be found in all our large city markets. and are appreciated to some extent, especially among the foreigu part of our population. We seldom see Endive in Amer can home gardens, or in small local markets. In the sence of lettuce during the latter part of the seasne, badive serres as an acceptable

762. Green Curled Endive tied up for blanching.
salad, and is well worthy of greater attention than it receires, especially as it is of easy culture. Select any ordinary good garden soil. Sow seed thinly in drills, which need not be more than a foot apart, but thin the plants promptly to about the same distance in the rows, and keep free from weds, and also well cultivated and boed. When the plants have attained nearly their full growth, gather up the leares and tie them lightly at their tips (Fig. 762). In from two th three weeks' time, according to weather conditions, the heart will blanch beautifully, and the plant should then be promptly used or marketed, as decay sets in soon after this stage of development. Tue blanching may also be done by slipping a large-sized but short tile or piece of tile over each plant, after the leaves are gathered up and held elosely together.

The varietal differences are slight, and consist mostly
in variations of form of leaves. The standarii ra-iety grown in America is called Green Curled. In Eu:opean catalogues we tind a number of rarieties listed and described. Among them Moss Curled, Rouen, and Broadleared $n_{t}$ the most popular.
T. Greisier.

ENEMIES. This word is found increasingly useful to include the work of Insects and Diseases, which see. Also cons'It Spraying and Tools.

ENKIANÍIUS (Greek words, referring to siape of the Andromeda-like flowers). Also written Einkyanthus. Eiricacece. A genus of 5 species of shrubs, allied to our familiar Andromeda, Zenobia and Pieris (the last of which it most resembles in habit), and distinguished from these genera by the obtuse anthers, 2 horned at the top on the hack. and long nores: seeds 3-5-winged. China, Japan and Himalayas. L'.Juponicus is very showy in autumn, with its brilliant yellow foliage more or less marked with red, and its strongly contrasting biack berries. In early spring it hears numer ous umbels of An lromeda-like fls. Pot-grown plants are obtained through dealers in Japanese plants. The species is hardy as far north as Washingion. D. C., and perhaps farther. Eukianthus is a genus of glabrous shrubs: branchlets somewhat whorled: buds furnished with deciduous bracts: lvs. stalked, leathery and evergreen or membranous and deciduous, entire or minuteiy toothed: fls. in terminal umbels, white, rosy or searlet, drooping or merely nodding; calyx small, 5-cut; corolla urceolate or broadly bell-shaped, with 5 spreading or reflexed lobes; stamens 10: ovary 5 -celled. Four kinds are grown abroad under glass. Equal parts of loam and peat, and careful potting, are adrised. Prop. by cuttings of ripe wood, inserted under glass in spring without heat; also, by layering out of doors.

Japonicus, Hook. Lrs. crowded at the ends of branchlets, $11 / 2-2$ in. long, short-stalked, oborate when young, ovate when older, acute, serrulate, deciduous: Hs. drooping, pure white; pedicels 8 lines long, glabrous; corolla globose, witil 5 sacs at the base, a contracted mouth, and 5 sinall, revolute lobes: capsule narrow, erect. Japan. B.M. 5822. R.H. 1877, p. 467. G.C. III. $21: 357$.
E. campanulatus, Nicholson. Fls. axillary, drooping, in short racemes, dark red thronghout, without sacs at the base; pedicels sometimes minntely hairy, 6-9 lines long, corolla 4 lines across, with 5 erect lobes. In the forests of Japan sometimes 30 ft . high. Has brilliant foliage. Northern Jap. B.M. 7059.-E. Himalaicus, Hook. Lis. --3 in. long, narrower above the middle and more tapering than in E. Japonicus, and acuter at the base, pubescent beneath when young: fls. drooping, 6-1 in an umbel: pedicels hairy: corolladull yellowish red, streaked brighter ned, without sacs at the base, and erect lobes. B.M. 6460 . R. H. 1883, p. 512 . The bright red petiole es and leaf-margins are possessed to a lessel degree in the next species, but this has yellowish pedicels and the next species red ones.$E$.quinqueflorrus, Lowe. Lrs. longer petioled than in the rest, oval, and more abruptly pointed; calyx colored like the corolla instead of green, as in the other kinds: As. drooping, scarlet, sometimes white at tips, with 5 sacs, which are shorter than in E. Japonicus. R.H. 1849:2?1. B.M. 1649. G.C. III. 21:357. B.R $11: 884-5$. The buds are particularly interesting.
W. M.

ENTADA (a Malabar name). Legumindsce. A genus of 13 species of tropical, woody, spineless climbers, with bipinnate lvs. White fls., in spike-like racemes. One kind has lately been introduced from the West Indies to the southern states. It makes a quick growth. Petals free or slightly cohering, valvate : stamens 10 , free, exserted: anthers crowned with a deciduous small gland: ovary many-oruled. The lrs. often beartendrils. Some of the species yield "Sea Beans" (G. F. 7:503).
polystachya, DC. At length tendril-bearing: pinnæ in 4-6 pairs: lfts. in 6-8 pairs, oblong, rounded at apex: racemes in terminal panicles: pod obloug, straightish. Trop. Amer.

ENTELEA (Greek, complete; the stamens all fertile, a distinguishing feature). Tilidear. Perhaps 3 species of trees from New Zealand and Tahiti. Ths following is said to be an extremely fast grower in S. Calif., and is cult. abroad under glass, but, from the picture cited, it seems not worth the space in northern greenhouses. Lvs. 5 -nerved, stellate-pubescent: fls, white, in terminal
cymes; sepals 4-5; petals 4-5; stamens numerous, free: ovary 4 - 6 -celled; sells many-ovuled: style simple.
arboréscens, R.Br. Attuining 30 ft .: the heart-shaped outline of the leaf broken on each side, about two-thirds of the way toward the tip, by a projection $1 / 2 \mathrm{in}$. long or nearly as long as the tip of the leaf: lvs. 6 in. long, 4 in. ride, doubly serrate. New Zeal. B.M. 2480.-Int. by Franceschi.

ENTEROLOBIUM (meaning not obrious). Legumindse. Six species of tropical trees, of which 2 have been incroduced into S. Calif. Unarmed: lvs. bipinnate: tls. greenish, in large heads or clusters; corolla 5 toothed; stamens any number up to 10 , purple or white.

> A. Pod bent back in a complete circle.
cyclocárpım, Griseb. Pinnæe in $4-9$ pairs: lfts. in 20-30 pairs. unequel-sided, oblong, pointed. Cuba, Jamaica, Venezuela.

As. Pod forming half or two-thirds of a circle.
Timb $\vee a$, Mart. "A truly magnificent tree, with shininh ark and spreading head, sure to become popular in the South. Hardy at Naples, Italy."-Franceschi.
EOMECON (Greek, eastern poppy). Papaverdacee. A rare, hardy herbaceous perennial plant with .rhite fls., destined to no great popularity, but interesting to lovers of hardy borders. Hooker writes. "A beautif-a' monotypic genus, intermediate between is vlc horum and Sanguinaria, differing from both in the scapose habit, racemoss fis. and sepals confluent in a membranous, boat-shaped spathe, and further from Stylophorum in the form of the lrs. and color of the fls., and from Sanguinaria in the four petals and elongate style." The plant is hardy with Woolson at Yassaic, N. J.
chionántha, Hance. Rootstock creeping, ascending, fu!l of yelow sap: Irs. all from the root ; stalks twice as long as the blades; blades $3-6 \mathrm{in}$. long, heart-shaped, concare, broadly sinuate, rounded ar the 'spex, bright pale green abore, almost glaucous beneath: scape 1 ft . high, reddish: Hs. 2 in. across, white; petils 4. Spring. China, not Japar. B.M. 6871.
W. M.

## EOPEPON: See Trichosanthes.

EPACRIS (Greek-made name, upon the summit; referring to their habitat). E'pacridacea. About 25-30 heath-like shrubs of Australia, New Zealand, etc., of which half a dozen or less are grown as cool greenhouse pot-plants. Lrs. small and entire, usually sharppointed, sessile or short-stalked, scattered or sub-opposite: fls. small and axillary, short-stalked, the flowering stems being elongated leafy spikes. The fls. are regular and pefect ; calyx bracteate; corolla tubular, 5 toothed, white or shades of purple and red; stamens 5: ovary 5 -loculed, ripening int, sither a fleshy or capsular fruit. Distinguished from . ricas by the bracteate or scaly calyx, and the anthers opening by slits rather than pores. In the Oid World, Epucrises are prized by those who grow beaths, and many good rarieties are known. They bloom in early spring or late winter. The varieties of $\boldsymbol{L}$. . impressa may be flowered for Christmas; perhaps others may be so treated. A carnation house, $50^{\circ}-55^{\circ}$, suits them well. There are double-fld. forms. The most important to the horticulturist are:
impressa, Labill. Three ft., erect, twiggy, downy: lrs. horizontill or deflexed, narrors-lanceolate and sharp: As. rather large (often $1 / 2$ in. long), tubular, pendent, on very short stalks, red or white. B.M. 3407. There are many forms : var. parviflora, Lindl., B.R. 25:19; $\boldsymbol{E}$. campanuldta, Lodd., With broader fls., L.B.C. 20:1925; E. ceroflora, Grah., B.M. 3243 ; E'. nivalis, Lodd., snow white, L.B.C. 19:1821, B.R. 18:1531; E. variabilis, Lodd., blusin, L.B.C. 19:1816; longiflora, Cav. (L'. minidta, Lindl. E'. grandifldra, Willd.). Stems roolly, straggling: lrs. ovate-pointed or cordatepointed, sessile or nearly so, many-zerved: fls. long (nearly 1 in.), red at base and white at the limb, cylindrical. B.M. 982. B.R. 31:5.-Handsome. Var. sylen. dens, Hort., has brighter colors.
acuminata, Benth. Lrs. ovate, acuminate, clasping, ascending: fls. small, red, the corolla tube not much exceeding the calyx.
purpuráscens, R. Br. Lrs. orate-acuminate, troughshaped, tipped with a long curved point or spine: Hs. short, the calyx nearly equaling the corolla, white or pinkish. There is a double-fld. form. L.B.C. 3:237. G.C. II. 5:340. - Probably identical with E. pulchell $t$, Car.
obtusifdlia, Smith. Les. small, elliptic or linear, thick and obtuse : fls. small, white, the spikes more or less one-sided. L.B.C. $3: 292$.
Other trade names are $\boldsymbol{E}$. ardentissima. Fls, crimson. $-\boldsymbol{E}$. hyacinthifloma, var. candidissima, white, early, and var. fülhyacinthifloma, var. candidisima, white, early, and var. fil-
gens, pink.-E. hybrida superba is merely a catalogue name for gens, pink.-E. hubrida superba is merely a catalogue name for
mixed kinds or Epacris.-E. rubella. Fls. bright red.-E. salmixed kinds or Epacris.-E. rubélla. Fls. bright red.-E.s.
mònea.
L. H. B.

The genus Epacris (though perhaps not as well known as the Ericas, with which they are usually grown, requiring the same culture) furnishes the cool greenhouse with some of the most beautiful hard-wooded flowering plants known, the fls. embracing a good range of color. Where a good variety of these plants is grown, the flowering period extends from the end of January to the end of April. After flowering, the upright or bushy species should receive whatever pruning may be necessary to secure a well-shaped plant, while the pendulous varieties will require the shortening of only the strongest branches to induce a more eren growth. If necessary. potting should be done at this time, and those which do not need repotting should have the drainage of their pots made perfect, as a water-logged condition of the soil is fatal to these plants. The soil best suited to them is two parts good fibrous peat, one part leafmold, and one part silver sand. In potting, small shifts should be giveu and the soil pressed as firmly as possible in the pots. After potting and pruning, the plants should be placed in a temperature of $60-65^{\circ}$, and sringed on all fine days to encourage fresh growth. During the summer they should be placed outside, in a position where they would receive some shade during the hottest part of the day, and the pots should be plunged in ashes or other non-conducting material. Careful water : is necessary at all times with these plants. If a red to become dry, they will lose their lower los., wheh spoils their appearance; at the same time a saturated condition of the soil is fatal to them. Though they may be propagated by sceds, the use of cut tings of the young growth is more expeditious. These should be about 1 inch in length and the tip ends of the young growths. They may be inserted thickly in pans of slarp silver sand, with a glass bell-jar placed orer them to keep them close. The pans should be plunged in the propagating bed and the cuttings carefully watered and shaded till rooted. The moisture which collects in the bell-jars should be wiped out two or three times a day, and a little ventilation from the bottom admitted after about the third day, removing the bell-jars altogether as the cuttings become rooted, which usually takes two or three weeks. When nicely reoted, they should be potted singly into thumb-pots and grown along, pinching when necessary to induce a bushy habit.

Edward J. Canning.
It is a good plan to plunge pots of Epacris in an oper position and cover the plants during june and July with lath racks. About August, begin to remore the racks a few hours each day until the middle of September. Then remove the racks altogether. This practice hardens the wood and insures the setting of buds. A top dressing is a great help to Epacris and all hardwooded plants. Hay or straw, run through a hay cutter, makes the kest dressing. It can he put on quickly and evenly; it protects from the sun; it is light; it dries quickly, and has no bad effects, as manure does in the case of some hard-woorled plants. The writer has found the following sorts do well: Diadem, Eclipse. Her Majesty, Model, Rose Perfection. hyacinthiflora and vars. candidissima and fulgens, impressa alba, miniata vars. superba and splendens, rubra superba.

## H. D. Darlington.

EPHEDRA (ancient Greek name, used by Pliny for the Horse-tail). Guetacea. Generally low, muchbranched shrubs, often procumbent and sometimes climbing, the green branches resembling much those of

Equisetum, bearing minute, scale-like, sheathing lrs. in distant pairs or whorls: ths. inconspicuous, but fr. in some species decorative, berry-like and scarlet. They are but rarely grown, and most of them are tender; half hardy North are E. distuchya, foliuta, Necudensis, trifurca. They can be used for covering dry, sandy banks or rocky slopes, and are prop. by seeds or by suckers and layers. About 30 species from S. Europe, N. Africa, Asia and in extra trop. Amer. Fls. dioe cious, in small aments, forming usually peduncled axillary clusters; staminate fl. with a $2-4$-lobed perianth and with the 2-8 stamens united into a column ; pistillate fl.with an urceolate perianth, including a naked ovule, developing into a nutlet; in some species the bracts of the ament become fleshy, and form a berry-like syncarp. Latest monograph by O. Stapf, in Denkschr. Akad. Wissensch., Wien, Vol. 56 (1889), (in German and Latin).
E. distàchya, Linn. (E. rulgaris, Linn.). Lov Iften procumbent, 1-3 ft., pale or bluish green: lis. one-t ifth in. long aments usually clustered, staminate oblong: Hs. with about stamens, pistillate $\stackrel{0}{ }$-fld.: fr. berry-like. S. Europe, W, Asia Var. monostachya, Stapf. Ameuts usnally solitary- - E.folicita, Boiss. (E. Kokanica, Rgl.). Procumbent or erect, to 15 ft . bright or bluish green: lvs. $1 /-1-10 \mathrm{in}$. long: aments usually clustered, ovate; staminate-orate fls. with 3-4 stamens; pistil late 2-fld: fr. berry-like. W. Asia--E. Nebrodénsis, Tineo Erect, with rigid, pale green branches: lvs. $1 / 8 \mathrm{in}$. long: aments solitary or few; staminate glolmlar ; pistillate 2 -fld.: fr. berry like. Mediterr. region to Himal. - E. Necudénsis, Wats. Erect $2-3 \mathrm{ft}$., with pale or bluish green branches: $1 \mathrm{rs} .1 / 8 \mathrm{in}$.: aments usually solitary ; staminate orate G-8-Hd.; pistillate 2 -fld.: fr dry, with ovate bracts. Calif., New Mex-E. trifüca, Torr Erect, with rigid. yellowish or pale green branches: lvs. in $3^{\circ} \mathrm{s}$ connate, about $1 / 4 \mathrm{in}$. long: aments solitary : pistillate l-fll.: fr. dry, the roundish bracts with transparent margins. Ari zona to Colorado.

Alfred Rehder.
EPIDENDRUM (upon trees, alluding to their epiphytal habit). Orchidicea, tribe Épidéndrear. Epiphrtes: inflorescence simple or branched, ncarly always terminal: claw of the labellum more or less alnate to footless column, the blade spreading and usually deeply lobed: pollinia 4, 2 in each anther cell, separated. Nearly 500 species discovered and lescribed from central America.

Epidendruns are noted as the rankest weeds amongst the orchid tribes. The remarkab, success in the rais ing of lyybrids, be it in the g.nus itself, or with the related Cattleva and Laplia, has opened a wide field for the hyl ridist. Epidendrum seedlings grow freely; the time required to bring them to the flowering stage is little compared with other orchids, and it is lyt a ouestion of a short time till the blood of the Epidendrums will be infused into the meaker hut more gorgeons flowers of genera more diffeult to grow. It is also the long stem and the grace of the racemes of the Epidendra, as well as the odor of some of their species, which the hybridist will try to blend with the largeness of shortstemmel flowers, of Cattleyas for instance. We therefore give helow a list of the species but rarely found under cultivation. but the ralue of which will call for and justify large importations of their kind leefore long.

George Hansex.
It is scarcelt possible to apply any one rule for the cultivation of this widely divergent and large genus, which includes many hundreds of variable individuals geographically distributed all over tropical America. For conrenience they are treated under their several separate sections.

Section I.-Barkeria embraces sereral decidnous, small-growing species which generally deteriorate sooner or later under cultivation. They succeed best in small baskets, suspended from the roof in rough, loose material, such as coarse peat fiber, with a small quantity of live chopped sphagnum moss added to retain moisture, this compost freely interspersed with pieces of charcoal or broken crocks or potsherds. They are all subjects for the coolhouse, require a free, moist atmos phere, shade from the sun while growing, and must be syringed frequently overhead in bright weather. After the plants hare matured growth they should be removed to a rather sunny location and be syringed orerhead often enough to keep them in sound condition until they start new action. While resting during winter the tem-
perature may range from $50^{\circ}$ to $55^{\circ}$ Fahr. at night, and a few degrees higher during the day. They are increased by division. This shou!d take place as the plants start growth action in early spring, allowing at least three pseudobulbs to each piece.

Section II. - Encyclium, of which $E^{\prime}$. atropurpureum, E. nemorale and E.prismatocarpum are good examples, may be grown either in pots or baskets in equal parts clean peat fiber and live chopped sphagnum, with a liberal amount of drainage, and excepting E. vitellinum, Which must be grown cool, they require a raoist sunny location with a winter temperature of $58^{\circ}$ to $65^{\circ}$ Fahr. by night and several degrees advance during the day. In February and March, many species will start root or growth action; such as need it should then be repotted or top-dressed, as occasion requires. The temperature should be increased several degrees, and a greater amount of water be allowed with frequent orerhead syringing on bright days. Ventilation should be given whenever the weather will permit, to keep the young growths from damping-off and the atmosphere active; at this time the plants will need light shading to prevent sun-burning. The stock is increased by cutting nearly through the rhizome 3 or 4 bulbs behind the lead, when starting action; this will generally cause the latent eyes to grow, but the pieces should not be removed until the new growth is well advanced.

Section III.-Aulizeum includes such species as $E$. ciliare, $E$. cochleatum, ete., the several requirements being identical with the preceding.

Section IV.-Euepidendrum. These are mostly tall growing reed-like species, of which $E$. erectum and E. radicans afford good illustrations. They are best adapted for pot culture. The pots should be two-thirds filled with drainage and the compost-consisting of about equal parts peat fiber and live sphagnum, well mixed-pressed in firmly about the roots, leaving the surface raised a little above the rim in the center when finished, to shed off surplus water. While the plants are growing they require a shaded, moist location, a day temperature of about $75^{\circ}$ Fahr., with $\overline{5}$ or 10 degrees less at night. They should not be kept too wet at the roots, but overhead syringing in bright weather is very beneticial. While at rest, in winter the temperature should be modified 10 degrees and a more sunny location be given, with less frequent syringing, enough only to keep the canes or pseudobulbs in sound condition. Young plants often form in the axi!s of the upper leaves, and on the old flower stems it is hest to let these young plants remain until they start their second growth, as they can be more safely removed at that time.

Section V.-Psilanthemum contains but one species, E. Stumfordiunum, whieh requires the same general treatment as those in Seetion II. Robert M. Grey.
and green ins., crimson spotted, fragrant. Mexico to New Granada. B.M. 4ī9. G.C. III. 17:655.

## AA. Inflorescence terminal.

B. Stems without bulbs: leaves distichous, alternate: only top of column free from lip. (E'uepidendrum.)
2. Catillus, Reichb. f. (E. imperdtor, Hort.). Fls. cinnabar red. New Granada. I.H. 21:162.
3. cinnabarinum, Salzmann. Stems $3-4 \mathrm{ft}$. : fis. orangered, 2 in. in diam., lobes of lip deeply fringed. Beautiful species. Braz. B.R. $28: 2 \overline{5}$.
4. ebúrneum, Reichb. f. Stems terete, 2-3 ft.: fls. 3-4 in. in diam., yellowish green; lip ivory white, with yellow calli. Panama, in swamps. B.M. 50 43.
5. ellípticum, Graham (E. crassifòlium, Hook.). Fls. on long scapes, clustered, rose or purple, $1 / 2 \mathrm{in}$. in diam. Braz. B.M. 3543.
6. Endresii, Reichb. f. Stems 6-9 in.: racemes 9-12. flowered: fls. 1 in. in diam., pure white: lip and column spotted purple. Costa Riea. G.C. II. 23:50t.
․ evéctum, Hook. Stems $3-5 \mathrm{ft}$ : peduncles nodding, 2 ft. : fls. rich purple, lip deeply fringed. New Granada. B. M. 5902 .
8. leucochilum, Klotzsch (E. imperìtor, Hort.). Stems 2 ft : Hls. $\mathbf{5}-9$, on long pedicels, greenish yellow, lip pure white. New Granada, $6,000-9,000 \mathrm{ft}$.
9. paniculàtum, Ruiz \& Par. Stems $3-4 \mathrm{ft}$ : $\mathrm{fls} .3 / 4 \mathrm{in}$. across, lilac-purple. lip whitisin yellow. Venezuela to Peru, high altitudes. Most free-flowering and best of paniculate species. B.M. 5731 . I.H. 22:211.
10. radicans, Paron (E. rhizóphorum, Batem.). Stems semi-scandent, up to 5 ft . long, long white roots from opposite the leares: fls. up to 2 in. in diam., numerous; most brilliant of the red-flowering species. Guatemala, amongst heary grass. Gn. $-14: 412$.

BB. Stems thickened into pseulobulbs.
c. Pseudolullds 2-1-leared: labellum aluate less than Tulf: column broat-u'inged. (Burkeria.)
11. élegans, Reichb. f. (Barkèria élegans, Knowles \& Weste.). Stems terete, $1 \underline{2}$ in.: pedicels ${ }^{2} 4 \mathrm{in.:} \mathrm{ths} 5-.\bar{\imath}$, nodding, $11 / 2$ in. in diam., lilac-purple; lip whitish, with purple bloteh. Pacitic eoast of Mexico. B.M. 4ist.
12. Skinneri. Bateman (Barkeria Skinneri, Past.). Lrs. ovate-oblong, sheathing the slender stem: peduncle terminal, bearins rose-lilac flowers about 1 in . across: petals and sepals nearly equal, petals so twisted at the base as to present dorsal surface to the observer: labellum ovate, with 3 raised lines. Guatemala. B.R. 29:1881. P.M. 15:1 (var. major).
index.
atropurpureum. 1. atrantiactum, -9
bicornutum and dentatum are 1 i acriums.
Bras-avole, 16.

C.apertianum, 20. Catillus. 2. riliare, 23 . cimabarinum, 3. | cochleatum, 24. |
| :--- |
| crussifolium, | dichromum, 1\%. elegans, 11. evectum, $\overline{-}$. eflipticum,

en. Endresii, 6. falcatum, 25. fragrans, 26. Godseffianum. $\mathbf{0} 0$. imperator, 2.8 leacochilum, 8.

Lindeyanum. 13. maculatum, 1. macrochilum, 16 nemorale, 18. odoratum osmanthum, 19. paniculatum, 9. Perkinsonianum, ค5. prismatocarpum, ralic. radicans. 10. rhizophorum, 10. rоseиm. 15. sanguineum is a Bronghtonia. Skinneri, 12. spectabile, 14. Stanfordianum, 1 tibicinus is a Schomburgkia. venosum, 22.

## A. Inflorescence radical.

(Psilanthemum.)

1. Stamfordiànum, Batem. Stems fusiform, 12 in. long: lis. T-9 in.: large panicles of yellow
violacenm is Cattleya ritellinum, 10
2. Lindleyànum, Reichb. f. (Barkeria Lindleydna, Batem.). Stems slender: fis. numerous, about 2 in. across, rose-purple; labellum with a white disk; petals broader than the sepals. Central America, 1839.
3. spectábile, Reichb. f. (Barkèria spectábilis, Batem.). Flor de Isabal. Stems tufted, cylindrical, 4-5 in. high: lvs. 2: raceme about 6-fld.: fls. 3-4 in. across, bright lilac ; sepals linear-lanceolate; petals orate-lanceolate; labellum white at base, red-spotted. Guatemala.
cc. Pseudobulbs 1-2-, rarely B-leaved, labellum aduate at base, or not up to the middle, column not ringed. (Encyclium.)
4. atropurpùreum, Villd. (E. marrochilum, Hook.). Pseudobulbs ovoid, $3-4 \mathrm{in}$. high: lvs. lanceolate, $12-15$ in. long, dull purple colored: peduncle $6-10$-fld.: fls. $21 / 2$ in. in diam., purplish brown upon greenish ground; lip yellowish white, with crimson stripes. Mex. to Vene zuela. B.M. 3534. A.F. 6:609
var. roseum, Reichb. f. Sepals and petals purpllsh, lip bright rosy. Guatemala. P.M. 11: 243 .
5. Brassávolæ, Reichb. f. Pseudobulbs pear-shaped: lvs. $6-9$ in.: racemes $18-24 \mathrm{in} ., 6-9$-fld.: fls. 4 in. across, sepals and petals narrow, yellowish brown; lip trowelshaped, purple, white and green. Mex. to Guatemala, $8,000 \mathrm{ft}$. B.M. 5664.
6. dichromum, Lindl. Fls. white, lip rose-colored, yellow and downy at base. Brazil.
7. nemoràle, Lindl. Pseudobulbs sub-globose, 3-4 in. high: lvs. $9-12 \mathrm{in} .:$ peduncles 2 ft long, corered with warts : fls. 3-4 in. in diam., rose-colored; lip rosy maure, streaked with purple. Mex. B.M. 4606. G.C. [I. 24:332. A.F. 6:633.
8. osmánthum, Rodrigues (E. Godseffid̀num, Rolfe. E. Capartitmum, Lindl.). F s. $1 \frac{1}{2}$ in. across, in large panicles. light green, suffused with brown: lip white, lined with rose-purple, fragrant. Braz.-One of the handsomest species.
9. prismatocarpum, Reichb. f. (E. maculdtum, Hort.). Pseudobulbs ovoid, tapering, 4-5 in.: lvs. 12-15 in.: fls. $11 / 2$ in. across, pale yellow-green, with purplish black spots; lip pale purple, with yellow tip and white border. Cent. Amer., $5,000 \mathrm{ft}$. B.M. 5336
10. vitellinum, Lindl. Pseudobulbs oroid, 2 in. long: lvs. $6-9$ in.: petluncles $15-18$ in., $10-15$-Howered: ths. cinnabar-red; lip and column orange. Mex., $6,000-9,000$ fí. B.M. 4107. G.C. III. 10:141.

Var. màjus, Veitch. Pseudobulbs shorter : racemes denser: fls. larger and more brilliant. G.C. III. 12:159. - Very superior to the species; type no longer imported.
ccc. Pseudobulbs 1-2. rarel! 3-leaved: lip adnate up to apex of column. (Aulizeum.)
22. vendsum, Lindl. Butterfly Orchid. Scape 1 ft ., with white sheaths: lrs. 3, 4-6 in. long, linear-lanceolate: scape tumid at base, $\bar{j}-7$-fld.: fls. pink, chocolate and green, about 1 in . long, lasting a long time. On oaks, etc., Mes. - Of easy culture. The Florida representative of this species is $E$. Tumpense, Lindl. See 9th Rept. Mo. Bot. Gard. 137, plates 38, 39.
23. ciliàre, Linn. Pseudobulbs clavate, $4-6$ in.: lvs. $4-6$ in., springing from sheathing bract: peduncles $5-7$ flowered: fls. yellowish green; lip white. Tropical America, between 5th and 20th parallel of north latitude. B.R. 10:784. - Plant resembles a Cattleya. Introduced to cult. in 1790 .
24. cochleàtum, Linn. Pseudobulbs $3-4$ in. : lvs. 6 in.: racemes 4 -7-flowered: fls. 3-4 in. across, greenish white; lip deep purple beneath, light green above, with maroon hlotch on each side, column white. Trop. Amer. from Fla. to New Granada. B.M. 572. - Introduced 1787, first epiphytical orchid to Horer in England.
25. Ialcàtum, Lindl. (E. Parkinsonid̀num, Hook.). Pseudobulbs thin, raising from running rhizomes, monophyllous: lvs. 6-12 in., fleshy, channeled on one side: peduncles $2-5$, sheathed, 1 -Hlowered: fls. 5 in . across, greenish yellow: lip white, greenish at apex. Mex. to Guatemala. B.M. 378 . - Plants grow inverted.
26. fràgrans, Swartz. Pseudobulbs fusiform, monophyllous, 3-4 in.: lis. 8-12 in.: fls. inverted, 2 in. in diam., very fragrant, pale greenish or whitish; lip crimson streaked. Guatemala, through the West Indies to northern Brazil. B.M. 1669.
27. aurantiacum, Batem. Once classed in the separate group of Epicladium, now often accented as a species of Cattleya, where it was first referred by Don. The plant grows with, and much resembles C'attleya Skinneri. Fls. 1½ in. across, orange-red. Guatemala.
Garden hybrids: $E$. Berteleyi (Stamfordianmm $\times O^{\circ}$ Brien-ianum).-E. Burtoni (O'Mrienianum $\times$ Ibaguense). - E. Dellense (xanthinum $\times$ radicans). $-E$. elegúntulum (Wallisii $\times$ Endresio-Wallisii). G.C. III. 19:361.-E. Endresio-Wällisii.$\boldsymbol{E} .0$ Brieniànum (evectum $\times$ radicans). G.C. III. 3: 7 IT. $-\boldsymbol{E}$. Phrebus ( $O^{\prime}$ Brienianum $\times$ vitellimum).-E. radicainti-Sta infor-diànum.-E. rádico-vitellinum.-E. Wállisio-ciliàre.-E. xản-tho-rullicans.
Euepidendrum: E. arachnoglóssum, André. Sts. 4-5 ft.: fis. rich purple-lilae; lip fringed, with orange ealli. New Granada. R.H. 188":5̄5. - E'. cnemidóphorum, Lindl. Sts. 4-6 ft.: racemes ample, drooping: fts. purple, brown and yellow, fragrant. Guatemala, 7.000 ft . B.M. $5656 .-E$. conópseum, R. Br. Scape few- to many-fld.: lws. 1-3, thick: fls, green, tinged with purple, the sepals spatulate and revolute, the petals narrower and obtuse. S. Fla. and S. Once offered by RasonerE. Cooperiànum, Batem. Sts. $2-3 \mathrm{ft}$. ths. yellow- §reen; lip bright purple. Braz. B.M. 56, ${ }^{\text {L }}$.-E. Ellisii, Rolfe. Fls. car-mine-rose, very handsome. Columbia.- $\boldsymbol{E}$. fúlgens, Brongn. Fis. orange-scarlet, in crowded racehac. Guiana to Braz.-E. gracilis, Lindl., was once offered by John Saul.-E. Ibaguènse, gracilis, Lindl.: Was once offered by H .B.K. Sts. $9-3 \mathrm{ft}$ : Hs. orange-scarlet ; lip yellow. New Granada to Peru, 400 ft . $\boldsymbol{E}$. myriánthum. Lindl. Sts. 3-5 ft . : enormous panicles of rich purple fls.; lip with 2 yellow calli. Guatemala. B.M. $\mathbf{5 5 5 6}$. Once offered by Saul.-E. nocturnum. Linn. Sts. $2-3 \mathrm{ft}$.: peduncles 8 - 10 -flowered: fls. white and yellowish. 5 in. across, very fragrant. S. Fla. and Mexico to Peru and West Indies, B.M. 3298. Once offered by Reasoner.-E, palpigerum, Reichb. f. Fls. beautiful lilac. Mexion.-E. Pfívii. Rolfe. Sts. $4-6 \mathrm{ft}$. high: fls. light purple: lip with white disk, in numerous racemes. Costa Rica- - E. Pseud epidéndrum, Reichb. f. Sts. 2-3 ft.: fls. 3 in. in diam. green; lip orange-red and yellow. Cent. Amer., 4,000 ft. B.M 59\%9. - E. raniferum. Lindl. Sts. $2-3 \mathrm{ft}$.: ths. yellow-green, thickly spotted with purple. Mex. to Guiana. B.R. 28:42.-E rigidum, Jacq., was once catalogued by Reasoner.-E. Schómburgkii, Lindl. Sts. $\mathbf{E}^{-3} \mathrm{ft}$.: fls. vermilion. Guiana, Brazil, Quito. B.R. $94: 53 .-E$, syringothýrsis, Reichb. f. Sts. 4-5 ft.: His. deep prrple; lip and column with orange and sellow. crowded in long racemes. Bolivia, $8,000-0,000 \mathrm{ft}$. B.M. 6145 .$E$. Willisii, Reichb. f. Sts. 4-6 ft.: fls yellow, some purple spots; lip orange and purple, upon white ground. New Granada, $+000-1,000 \mathrm{ft}$. Has lateral as well as terminal racemes Once offered by Saul.
Eneyclium: E. idrena, Reichb. f. Fls. yellow, reined brown; lip yellowish white, purple-streaked. Brazil. - E. alitum, Batem. Fls. 2 in. across, purple and green; lip yellowish, streaked with purple, fragrant. Cent. Amer. B.M. $389 \chi_{0}-E$. bifidum, Aublet. Fls, pale green, dotted with purple; lip rose orange and white. W. Indies. Gniana. B.R. 22:1879.-E. Fri derici-Guiliélmi, Warsc. \& Reichb) f. Bulbs 4-5 ft.: fls. dark purple: base of lip white and yellow. Peru, $6,000-8.000 \mathrm{ft}$ I.H. 1s:48. Once offered by Saul. -E. gallopavinum, Reichb. f. Fls. brown: lip yellow, in large racemes. Brazil. - E. oncidi oddes, Lindi. Panicles up to 6 ft . long: fis. yellow and brown, sweet-scented. Stately species. Guiana. B.R. 19:1623. Once offered by Saul.-E. phoeníceum, Lindl. Panicles 2-3 ft.: fls. deep purple, mottled green: lip rich violet, stained crimson. Handsome. Cuba.-F. virycitum, Lindl. Scape up to 7 ft .high: Hls. small, up to 20 , greenish, stained brown. Mexico.

George Hansen.
EPIG庄A (Greek, epi, upon, gaia, earth; in reference to its trailing growth). Ericacere. This genus includes our charming Trailing Arlutus, which in New England at least is the most popular of all our wild flowers. Creeping, branching, slightly woody, more or less rough hairy shrubs: lvs.alternate and entire, petiolate, leathery and evergreen : Hs. monopetalous, perfect, large, dimorphous or discious, sessile in axillary or terminal clusters; sepals 5; corolla salver-shaped, with 5 -parted spreading border; st umens 10, attached to the base of the corolla; style columnar; stigma 5 -lobed : ovary oroid, 5-celled, many-ovulen; capsule depressed-globose, encircled by the persistent calyx. Two species, N. E. America and Japan. The E'. corlifolia quoted in Index Kewensis as South American is prohably not of this genus. It seems to be known only from the old description of Swartz (1702).

The cultivation of the Trailing Arbutus, especially in localities where it has been exterminated by ruthless "Mayflower parties," always attracts interest. Only
a brief cpitome is here given. For fuller detalls, consult G.F. 5:202 and 8:15; also "The Nursery Book," which gires the experience of a specialist. Occurs in sandy and rocky woods, especially under evergreen trees in earliest spring. Thrives only in a humid soil and shady situations. Transplanted with difficulty. When a too great shock is received from difference of ex posure, change of temperature, etc., it dies within 2 or 3 years, if established at all. Sinall plants must be procured, removed without harming the roots, and planted under the same conditions of soil and exposure with the greates ${ }^{+}$care. They may also be taken up in late September or October. new roots formed in the greenhouse or coldframe, wintered in a coldpit, but not planted until the second spring. Best on the north side of a hill, in light, sandy soil, mixed with leaf-mold. Once established it spreads rapidly. Prop. by division of old plants, layers or cuttings. Seeds are rarely found, but when found may be used, though slow to develop.
rèpens, Linn. Trailing Arbutces. Ground Laterel. Mayflower. (The Mayflower of English history aud literature is the Hawthorn.) Fig. 763. Spreading on the ground in large patches, with hirsute branches 6 -15 in. long just beneath the lrs., sending out roots and leafand flower-bearing stalks every $2-3$ in.: lvs. oral or nearly orbicular, thick, acute or obtuse, cordate or rounded at the base, glabrous above, hirsute below, green on both sides, $1-3$ in. long, petioles hairy: fis. spicy fragrant, few or several crowded in clusters, practically dioccious, either stamens or pistils being abortive, the female ths. larger and whiter, the male smaller and rosy. Em. 431. G.W.F. 37. Mn. 3:17. Gn. 45, p. 193. Newfoundland to N. W. Terr., south to Fla., Ky. and Mich. chiefly east. The vernacular name is pronounced $A r^{\prime}$ -bu-tus, not Ar-bu' tus.
A. Phelps Wrman.

EPILALIA and EPICATTLEYA are bigeneric hybrids. See G.C. III. 16:639; 21:233; 2.:83; 23:391.

EPILOBIUM (Greek, upon the pod; the flower and pod appearing together). Onagracece. This genus includes hardy herbaceous perennial plants, thriving in any soil, with willow-like foliage, and large, showy spikes of deep pink or rosy crimson fls.borne from June to August. They are particularly suited for naturalizing in meadows for mass effects. A genus of about 65 species, widely scattered in temperate and frigid regions: lierbs, or sub shrubs, erect, sprawling or creeping: lvs. alternate and opposite, toothed or not: fls. axillary or terninal, solitary or in spikes or racemes, rosy purple or flesh-colored, very rarely yellow; calyx tube scarcely, if at all, produced beyond the ovary; petals 4 , obovate or obcordate, erect or spreading; stamens 8: ovary 4 -celled; seeds comose.

The taller species, like $\boldsymbol{E}$. angrstifolium and hirsutum, make rery rank growth in moist places, and are therefore especially alapted for the wild garden or for naturalizing along the water's edge and in low meadows. The underground runners travel great distances, and the plants spread fast when not kept in bounds. Prop. by dinision or seeds.
angustifolium, Linn. (E'. spicatum, Lam.). Gkeat Willov Herb. Fire Weed. In cult. mostly branched and $3-\overline{5} \mathrm{ft}$. high; in the wild simple or branched, $2-8 \mathrm{ft}$. high: Ivs. alternate, very short-petioled, lanceolate, entire or minutely toothed, $2-6$ in. long, 4-19 lines wide, pale beneath, acute, narrowed at bases: fls. spreading, in long, terminal spike-like racemes, petals rounded at tip; stigma 4-lobed: capsules 2-3 in. long. Eu., Asia, N. Amer. B.B. 2:481. Var. alba, Hort., has pure white flowers suitable for cutting; also occurs wild. This rariety was perfected in England. It forms a compact bush.
hirsùtum, Linn. Stout, $2-4 \mathrm{ft}$. high, with short but conspicuous soft hairs: lrs. oblong-lanceolate, usually opposite, sessile and often clasping, with many small, sharp teeth, 1-3 in. long, pubescent on both sides: As. erect, axillary, about 1 in . across; petals notched. Ballast Weed from Europe. English names are Codlins and Cream, Fiddle Grass.

EPIMEDIUM (Greek, like Medion, a plant said to grow in Media; a name from Dioscorides, retained by

Linnæus). Berberidacea. This genus contains some of the daintiest and most interesting plants that can be grown in the hardy border, and $E$. wacranthum, particularly, is as distinct, complicated and fascinating as many of the rare, tender and costly orchids. The whole tribe to which it belongs is exceptionally interesting, and is one of the most striking of those rare cases in which the cultural, botanical and artistic points of riew have much in common. A well grown collection of these plants in pots would almost certainly win high praises and prizes. Of the 12 genera of this tribe, only Berberis and Nandina are shrubs, all the rest being herbs, with creeping, underground stems, and all small, choice, curious, and cultivated to a slight extent, except Bongardia and Leontice. Podophyllum contains our mandrake; Caulophyllum the quaint blue cohosh; and the others are Aceranthus, Achlys, Diphylleia, Jeffersonia and Vancoureria. A collection of all these plants should make a charming study. What appear to be petals in E. macranth 1 m are really the inner row of sepals, colored like petals, and performing their functions, while the long spurs or nectaries are supposed to be highly

764. Epimedium macranthum.
$a$, E. alpinum, var. rubrum; b, E. pinnatum, showing 3 types of spur or nectary.
specialized petals. Epimedium has 8 sepals and 4 petals, which are mostly small and in the form of nectaries: stamens 4: capsule opening by a $r$ re on the back: lvs. pinnately twice or thrice dissected. They grow a foot or two high. For E. diphyllum, see Aceranihus, which is distinguished by its Hat, not nectarylike petals, and its lvs. with a pair of leaflets on each of the 2 forks of the petiole. Of their culture J. B. Keller writes, "They thrive best in partial shade, and are particularly well suited for rockeries and the margins of shrubberies. Almost any soil will answer for them. The peculiar bronzy tints of the young foliage contrast well with the variously colored Howers. Prop. by division." These plants are suitable for pot-culture and for forcing. The Garden $48, \mathrm{p} .486$, shows what a charming picture can be made of the foliage alone when cut and placed in a bowl. The plants retain their foliage all winter, especially in sheltered spots under trees.
A. Spurs conspicuous, often 1 in . long, sometimes twice as long as the showy inner sepals.
macránthum, Morr. \& Decne. Fig. 764. Lvs. thrice ternate ; leaflets cordate-ovate, unequal at the base, sharply toothed; petioles with short, spreading, conspicuous hairs : outer sepals sometimes colored bright red, remaining after the larger and showier parts of the A. have fallen: inner sepals orate-lanceolate, violet: spurs white. Japan. B.R. 22:1906. P.M. 5:151. Not Gn. 46:984, which is E. pinuatum. Var. níveum, Voss (E. níeum, Hort.), has pure white fls. Var. roseum, Voss (E. ròseum, Hort. E. níveum, var. roseum, Hort.), has fls. white, tinged with pink or pale rosy red. Var. violàceum, Voss ( $E$. violàceum, Morr. \& Decne.), has violet spurs, shorter than in $E$. wacrunthum, but mach larger than in the other species. B.M. 3751. B.R. 26:43. P.M. 4:123. - A very interesting species.
AA. Spurs medium-sized, nearly as long as the inner sepals.

## B. Immer sepals bright red.

alpinum, var. rùbrum, Hook. (E. rùbrutn, Morren). Fig. 764. Lis. biternate (but Hooker's picture shows a tendency to the thrice ternate condition), minutely toothed : spurs white, marked with red, as in Fig. 764 , which shows the very distinct appearance of the flower. Japan. B.M. j6il. R.B. 3, p. 33, t. 6 (1853). Hooker says this differs in no way from $E$. alpinum, except in the larger and red fis., while the type which grows wild in England (though probably not native) has dull reddish yellow fls., and, though advertised, is probably not in cultivation.

```
вв. Inner sepals ichitish or pule yellou.
```

Musschiànum, Morr. \& Decne. Lrs. only once ternate, sharply toothed, as in $E^{\prime}$. macranthum: all floral parts whitish or pale yellow. Japan. B.M. 3ity. - The least showy kind, but worth growing in a collection, its spurs having an individuality difficult to describe. Var. rubrum, of Pitcher \& Mandla's catalogue, is presumably an error, as a red-fld. form would be very unexpected.
AAA. Spurs much shorter than the inner sepals, being, in fact, merely small nectur-glands.
B. Les. once or twice termate.
pinnatum, Fisch. Fig. 764. Lis. usually biternate, with 5 leatfets, 3 above and 1 on each side; leatlets with a deeper and narrower basal cut than in $E$. macranthum: Hs. typically bright yellow; nectaries red, a third or fourth as long as the inner sepals. Shady mountain woods of Persia and Caucasus. B.M. 4456 . Gn. $46: 984$, erroneously as $E$. macranthum. Gn. 48, p. 486.

Var. élegans, Hort., presumably has larger, brighter and more numerous ths. E. sulphureum of European catalogues is regarded by J. W. Manning and J. B. Keller as a pale yellow-tld. form of $E$. pinnatum. but by Voss as a variety of $E$. macranthum. A yellow form of the violet-fld. $E$. macrunthum would be very surprising.

Var. Colchicum, Hort. (E. Colchicum. Hort.). has brilliant golden yellow fls. and nectaries $1-1 \frac{1}{2}$ lines long.

## BB. Lis. alacays once ternate.

Perralderiànum, Cosson. This is the African representative of $E$. pinnatum, from which it differs in the key characters and also in the much more strongly cili-ate-toothed leaffets. Its flowers are a "paler yellow than the typical $E$. pinnatum. It is far from improbable that specimens connecting them will be found in southern Eurone, if not in Africa." Algeria. "B.M. 6509.-Lrs. remain all winter. Less desirable than $E$. pinuatum.
E. diphýllum, Lodd. See Aceranthus diphyllus.-E. niveum is catalogued by Van Tubergen as a synonym of Musschianum, but the chances are that all the plants adrertised as E. niveum are E. macranthum, rar. niveum. The spurs are so obviously longer in E. macranthum that there is no excuse for confusion.
W. M.

EPIPACTIS (Greek, epipegnuo; it coagulates milk). Orchiddcec. Hardy terrestrial orchids of minor value. The first mentioned may be obtained through dealers in
native restern ar. J Japanese plants; the second is listed in the American euition of a Dutch catalogue. Leafy orchids with creeping rootstocks and unbranched stems: lvs. ovate or lanceolate, with plaited veins: fls. purplish brown, nearly white or tinged red: lower bracts often longer than the fls.; sepals free, spreading, nearly as large as the petals; lip free, deeply concave at base, without callosities, narrowly constricted and somewhat jointed in the middle, the upper portion dilated, petaloid.

Royleàna, Lindl. (E. gigantéa, Dougl.). Stout, 1-4 ft. high: lvs. from orate below to narrowly lanceolate above, $3-8$ in. long: fls. $3-10$, greenish, strongly veined with purple. June, July. Wash. to Santa Barbara, east to S. Utah and W.Tex., on banks of streams. Also Himalayas. Int, by Pringle and Horsford, 1883. Mn. 8:145.
atrorubens, Schult. \|(E. mubiginosa, Crantz). Les. often reddish: fls. and ovary dark purple; lip oval, acute, or slightly notched: bracts equaling the fls. or rarely longer. July-Sep. Eu., W. Asia.

EPIPHRONITIS is a bigeneric orchid hybrid of Epidendrum and Sophronitis, for a charming picture of which see R.H. 1896:476. It has about 10 fls ., chiefly a brilliant scarlet, set off with bright yellow. Gt. 46, p. 555.

EPIPHYLLUM (on a leaf; referring to the leaf-like branches on which the Hs. grow). Cacticece. Crab Cactes. This genus is confined to Brazil, so far as known, where the plants grow as epiphytes upon the trees, along with orchils, growing in large clusters on the branches: stems tlat and jointed, becoming rounded

765. Epiphyllum truncatum.
with age, bearing arcolæ only on the margins and more or less truncated ends, from which grow the new branches and fls.: fls. more or less conspicuously zygomorphous: ovary devoid of hracts, and those of the tube comparatively large and colored as the petals. The genus is closely allied to Phyllocactus, and, indeed, the last two species are referred by some authors to that genus. In cultivation many forms have been produced through hybridization between the different species and with Phyllocactus and Cereus, so that typical plants are rarely met with.
C. H. Thompson.

Epiphyllums are among the most useful as decorative plants of all the Cactaceæ. Their brilliant colored blossoms, together with the profusion with which they are usually borne, makes them worthy of a place in every collection of plants. They are propagated by cuttings, which root readily when inserted in an ordinary propagating bed. Being low-growing or pendent-habited plants, they are very useful subjects for hanging baskets. Like most of the Cactus family, they may be grafted readily upon other Cacti. When grown as potplants, they are often grafted to elerate them above
the pots, so as to show them off to better adrantage when in flower. Pereskia aculeata and $P$. Bleo are the stock most commonly used for grafting Epiphyllums upon, though some gardeners prefer grafting upon Cereus triangularis, taking clean, healthr pieces about 1 foot in length, first rooting them and establishing them in pots, then grafting when active growth of the Epiphyllums commences in spring. It is said by some gardeners that Epiphyllums do better and may be brought into flower earlier by grafting on Cerells triangularis. Other species of Cereus may also be used as stock plants for grafting upon, especially the uprightgrowing species, as $C$. colubrinus. Thesystem known as wedge-grafting is the best method.

When grown upon their own roots, the soil best suited to them is tiro-thirds fibrous loam and one-third leaf-mold, with a fair proportion of silver sand and pounded brick added to keep the soil porous, as they are very impatient of too much moisture at the roots. The pots or pans in which they are grown must also be well drained. They require careful watering at all times, but during the fall and early winter they should receive only enough to keep them from shriveling. They are best kept in the greenhonse the whole year round, giring them an abundance of air during the summer to insure well ripened growth. A temperature of $45-50^{\circ}$ during winter will be sufficient, though a higher temperature mas be given after January 1 if wanted in flower earlier.

Edward J. Canning.
truncàtum, Haw. Crab Cactes. Christmas Cactes. Fig. 765. Stems much branched and hanging in large bunches from the trees: joints oborate to oblong, with strongly truncate apex, $11 / 4-2 \mathrm{in}$. long by about $3 / 4-1 \mathrm{in}$. broad, bright green, margins coarsely serrate, with $1-3$ large, acute teeth on each side, the 2 upper ones forming more or less incurved horns on either side of the truncation: areole bearing a few short, yellowish or dark colored bristles, or sometimes none: tls. horizontal, growing from the truncated end of the younger joints, strongly irregular, $21 / 2-31 / 2$ in. long, in various shades of red: fr. pear-shaped, red, about 3/8in. in diam. Braz. B.M. 2562. G.C. III. 19:9. - Most of the forms in cultivation are hybrids between this species and some other of the genus or with Cereus. Fig. 766. A common basket and rafter plant.

Russelliànum, Hook. Stems more upright, with pendent branches: joints $3 / 4-1 \frac{1}{2}$ in. long by $3 / 8-3 / 4 \mathrm{in}$. broad, oblong or elliptical to obovate. light green; margins crenate, with $2-1$ areolæ on either side, bearing a few very short dark gray bristles: Hs. from the end of the youngest joints, red, 13/4-21/4 in. long: fr. red, 4 -angled or narrow-winged. Braz. B.M. 3 IT7.

Gærtneri, K. Sch. (E. Russellidnum, var. Giertueri, Reg.). Easter Cactus. Stems of more upright habit, with drooping branches: joints long-oblong or elliptical to oborate, $5 / 8-21 / 4 \mathrm{in}$. long by $1 / 2-1$ in. broad, dark green, margins crenate, with about 5 areolæ on either side, bearing 6-12 rather stiff, long. yellow or brown bristles, and are especially conspicuous on the truncated apex, where they form a considerable beard: fls. from the apex of the youngest joints, $21 / 2-3$ in. long, scarlet-red: fr. red. Braz. B.M. 7201 .

Epiphyllum Guedeneyi, Houllet $=$ Phyllocactus sp.
C. H. Thompson.

EPIPHYTES, or air plants, grow on trees or other plants without robbing them of food. Orchids are the most famous examples among garden plants. Some or-
chids, however, grow in the soil, and others are true parasites. Plants that live on decaying organic matter, and have lost more or less of their leaf-green, are called saprophytes. Many mosses are Epiphytes.

EPISCEA (Greek, shaly; they grow wild in shady places). Gesneràces. Probably the best garden form of this genus is the refined and elegant basket plant, $\boldsymbol{E}$. cupreata, with its rich, coppery colored, softly hairy leaves, shown in Fig. 767. The genus has perhaps 30 species, all tropical American. Herbs with long, short or no hairs: stem from a creeping root, branched or not: lvs. opposite, equal or not in size : fls. pedicelled, axillary, solitary or clustered ; corollas mostly scarlet, rarely whitish or purplish; tube straight or curved. more or less spurred at the base;
 limb oblique or nearly equal; lobes 5 , spreading, rounded.

Eipiscea cupreata is one of the standard basket plants, especially for the warmest greenhouses. It can also be used in prramids and mounds, as told under Fittonia. As it does not require so close an atmosphere as the Fittonias, it can be grown in some living rooms and per haps outdoors in summer in a shady place. Its chief charms are the slender, trailing labit, the soft hairiness of the leaves, the coppery hue, which is often laid on like paint in two broad bands skirting the midrib, and the rarer and perhaps finer metallic bluish luster of which one occasionally gets a glimpse in a finely grown specimen. Give rery rich, fibrous loam, and in summer partial shade.

## A. Fls. uhite.

Chontalensis, Hook. (Cyrtodelra Chontalénsis, Seem.). Stems stout, more or less ascending, dark reddish purple, 6-10 in. long: lis. opposite and irregularly whorled, 3-4 in. long, oblong-ovate, crenate, obtuse, rounded at the base, decidedly conrex on both sides of the midrib and between the much-sunk veins, margins recurved, green. marked with regular purple patches, which adrance from the margins between the veins toward the millib and are more or less oblong: fls. in 1's and 2's ; corolla tube with a sac at the base, the limb oblique, $11 / 2-2 \mathrm{in}$. across. With small and regular but conspicuous and beautiful teeth. Chontales region of Nicaragua. B.M. 5925. R.B. 22:241. F.S. 18: 1924.

## AA. Fls. scarlet.

cupreàta, Hanst. (Achimènes cupreàta, Hook.). Fig. 767. Stems slender, creeping, branched, rooting at the joints, with a main branch rising erect a few inches, which bears the fis. and the largest Irs.: lvs. coppercolored above: fls. solitary, 9 lines wide, scarlet, with a small sac and denticulate limb. Nicaragua. B.M. 4312. Var. viridifolia, Hook., has green foliage and larger fls., 1 in. across. B.M. 5195.
coccinea, Benth. \& Hook. (Cyrtodeira coccinea, Hort., B. S. Williams). Lrs. dark metallic green, 3-4 in. long, 2 $1 / 2-3$ in. wide. Free-flowering.

Robert Shore and W. M.
EQUISETOM contains the weed known as Horse-tails, or Scouring-rushes. They are suitable for naturalizing in waste and wettish places. They hold sandy banks. The following have been advertised by dealers in native

Flants: E. arvénse, hiemdle (Fig. T68), limosum, praténse, robustum, scirpoldes, syluaticum, variegdum. For descriptions, consult the manuals. They grow usually in moist or swale-like places. They are Howerless plants, allled to ferns and club-mosses

ERAGROSTIS (Greek, loce and grass). Gramíner. Love Grass. Annual or perennial grasses, with herbaceous stems of carious habits, and from 6 in. to several feet tall. Culms simple or often branched. Intlores. cence composed of very variable panicles. either close and narrow, or loose and willely spreading: spikelets 2 -many-Hd., the uppermost imperfect. Closely allied to Poa, from which it can be distinguished by its 3-nerred fl.-glumes, which are destitute of any woolliness. The species are very variable and their limits hard to define. About 100 species occur in the warm and temperate regions of both hemispheres, few of which are of any agricultural or borticultural ralue. The following are cult. as "ornanental grasses" in Hower gardens.
Abyssinica, Link. A branching, leafy annual, $2-4 \mathrm{ft}$. high, with widely spreading capillary panicles of many spikelets: lrs. 12-14 in. long, rough on the upper side, ligule a mere ring: panicles slender, gracefully drooping, grayish when in full bloom: spikelets $\overline{5}-i$-Ad., one-fifth of an inch long. Africa. - In cult. as an ornamental grass for bouquets. Grain used as food in Africa. By some referred to Poa.
amábilis, Wight \& Arn. (Poa amdbilis, Linn.). An erect grass 6 in . to 1 ft . high, with inconspicuous linear-lanceolate lis., ciliate at the base: spikelets very large and broad, closely resenubling quaking-grass (Briza), 16-24-fld. India. - In cult. as an ornamental grass.
élegans, Nees. Feather Love-Grass. An erect grass 1-2 ft . hish, with smooth culms and rough lrs.: panicles closely contracted, dense: spikelets very small, $4-7$-fld., numerous, and presenting a feather-like appearance in mass. S. Amer. - In cult. as an ornamental grass.

## 768.

Equisetum
maxima, Baker, Large Love-Grass. A Common tall, robust plant, 2-3 ft. high, with lanceolate Common acuminate lys., cordate at the base: panicles
rush. very lax and broad, 6-9 in. long: spikelets oblong, flattened, very large, $1 / 2-1 / 3$ in. long. Madagascar. - One of the most ornamental species of the genus.
collina, Trin. ( $E^{\prime}$. suatiolens, Becker). 'Fig. 769. An erect. leafy annual, 1-3 ft. high, with densely fld., spreading panicles: spikelets 6-13-fld., numerous, one-fifth in. long: pedicels of spikelets and branches of panicle rough: lvs. smooth beneath, rough above. Asia. - The species is rery rariable under cult., many different forms being found. In cult. as an ornamental grass for bouquets.
E. major, Host. Stink Grass. A common species, growing chiefly in cultivated or waste ground. When fresh it emits a strong, unpleasant odor. - Intr. from Ea. - E. pectinàcea, Nees. Meadow Comb-Grass. A very pretty perennial grass, with showy colored spikelets. A native of the eastern. sonthern and middle states. It is often gathered for dry bonquets. Should be int. into cult. for ornament.
The seed sent out by a leading seedsman as containing fire different species ( $E$. elegans, amabilis, maxima, suareolens, and Poa amabilis), when grown proved to be one and the same thing; viz., E. suaveolens. This statement is mane from specimens grown by Professor Tracy, of Starkville, Miss., in 1885, and also observed by myself in 1897 , both in the Hort. and the Bot. Gardens at Cornell Cniversity.
P. B. Kennedr.

ERANTHEMUM (Greek, lovely flouer). Acanthd. cece. Perhaps 30 species of tropical shrubs and subshrubs, some of which are cultivated chiefly for their foliage and others for their flowers. Lrs. entire or
rarely coarsely toothed: fls. white, lllac, rosy or red, borne in rarious ways; bracts and bractlets narrow, small; corolla tube long, slender, cylindrical throughout or rarely with a short throat; limb j-parted ; stamens 2: urules 2 in each cell: seeds 4 or fewer. The genus Drdalacanthus, although in a different tribe, is separated only by a combination of technical characters, but the garden forms of both genera described in this work are all distinguishable at a glance. For culture, see Justicia. Consult Dadalacanthus.

## A. Fls. purple.

laxiflorum, Gray. Height $2-4 \mathrm{ft}$.: Irs, on the same plant rarying greatly in size and shape, those near the ths. $2-3 \frac{1}{2} \mathrm{in}$. long, $8-15$ lines wide; petioles $2-6$ lines long, widest below at or above the middle, more or less ovateoblong, obtuse, narrowed at the base: fls. in cymes; stamens 2, perfect, sharp-pointed. Fiji. B.M. 6336.

## AA. F'ls. pure white.

tuberculatum, Hook. Easily told while growing by the many small roundish and rough elevations on the branches: lrs. small, $3 / 8-5 / 8 \mathrm{in}$. wide, rarely if ever 1 in . long, broadly ellipitical, obtuse or notched, almost sessile: fls. numerons. borne singly in the axils, in summer: corolla tube very long and slender, $11 / 2 \mathrm{in}$. long; limb 1 in across: stamens scarcely exerted. Habitat unknown. B.M. 5405 .

AAA. Fls. white, speckled with red-purple.
B. Folinge wetted with yellow.
reticulàtum, Hort. (E. Schómburgkii, Linden). Height 4 ft .: upper les. $2-7 \mathrm{in}$. long, ovate-lanceolate, oharacteristically netted with vellow; lower lvs. 6-10 in. long, not netted, but the veins prominent and yellow: His. racemose; corolla speckled with blood-red at the mouth ; anthers reddish brown, exserted. Possibly Australia. B.M. 7480. I.H. 26:349.


## 769. Eragrostis collina ( $\times 1 / 4$ ).

BB. Foliage not netted with yellow.
Andersoni, Mast. Les. lanceolate or elliptic, narrotred into a short stalk: fs. in a spike 6 in. long; lower middle lobe of the corolla larger and speckled with purple. Trinidad. Gn. $45: 943$.

The following trade names belong to plants grown chiefly for
their foliage. Probably many of them belong in other genera. -E. albo-marginatum. Les. broadly margined with white and irregularly suffused gray.-E. atrozanguineum, Hort. Int. by W. Bull. 1875. Les. large, dark wine-parple, or blackish crim. son, ovate entire, opposite, stalked. Said to endure the hottest sunshine - E. cultratum. "Lrs, shining, thick, deep-veined." $\boldsymbol{E}$. Eldoràdo. Lis. preenish sellow veins deeper yellow. $-\boldsymbol{E}$, nerium rubruin of Pitcher \& Manda's catalogue, presumably a misprint for nercum-rubruin, has lss. "irregularly shaped. shaded with light and dark green, and blotehed with yellow. which darkens to reddish purple." Possihly $=$ Fittonia Ver Which darkens to reddish purple, Possibly blackish lvs.-E schaffelti1.- E. nigrescens. Presumably with blackish lebech \& Wadley.
The following trade names are accounted for in other genera: E. igneum. See Chamaranthemum. - E. nertosum and pul. chellum. See Deedalacanthus.
W. M.

ERANTHIS (Greek, er, spring, and anthos, a flower; from the early opening of the Howers). Rununculdace. Wister Aconite. Low perennial herbs, with tuberous rootstock: basal les. palmately dissected, one stem-leaf sessile or amplexicaul just beneath the large yellow f.: sepals $\bar{j}-8$, petal-like; petals small, 2-lipped nectaries; stwmens numerous; carpels few, stalked, manyoruled, becoming follicles. About 7 species, natires of Europe and Asia. Very hardy, and at home in halfshady places, among shruibs or in the bor der: very desirable because of the very early bright fls. Prop. by dirision of ronts. The place where the tubers are planted should be marked during the summer, when the foliage is dead.
The earliest generic name is Cummirum. which was given in Hill's British Herbal, p. 47 , pl. 7 ( 17566 ), or 51 vears before Salis bury made the name Eranthis.
hyemalis, Salisb. (Helléborus hyemdlis. Linn.). Fig. 770. Erect, 5-8 in.: basal les. long. petioled: involucre 1215 -parted. the bright yellow-fls. alwars ses. sile; anthers oblong. Jan.-March. Naturalized from Eu. B.M. 3. Mn. 8:43. G.C. II. $11: 245$
Var. Cilicica, Muth. (E. Cilicica, Schott \& Kotschy). Much like the above. Involucre of deeper and more numtrous lobes: anthers orate instead of oblong; sepals broader, being about $1 / 2 \mathrm{in}$. across; follicles always straight. Season a few weeks later. - The stems, when grown in gardens, said to be red-browr. Roots of this were first sent to England from its native home near Smyral in 1892. Rare in Amer. G.C. III. 13:266. Gn. 45. p. 192 (note).

Sibirica, DC. Much drarfer, sellom orer 3-4 in. high: Hs. bright yellow, a little smaller than those of $E$. hyemalis, 5 -sepaled. Siberia.
J. B. Keller and K. C. Dayis.

EREMURUS (Greek name, probably referring to their tall and striking aspect in solitary and desert places). Lilidere. These hardy desert plants when in flower, with their great flower-stalks taller than a man, and crowned with a spike of fls. from $1-\frac{1}{\mathrm{ft}}$. long, are amongst the most striking spectacles in the choicer gardens of the North and East. Their roots are clusters of fleshy fibers: their les. all from the root, in dense rosettes, Jong and linear: ths. white, yellow or rosy; perianth bell-shaped or more widely spreading, withering and persisting or finally dropping away; segments distinct or very slightly united at the hase; stamens 6: orary 3-celled; seeds 1-4 in each cell, 3-angled.
W. M.
E. robustus and E. Himaluicns are probably the hardi-
est of all the tall, desert-inhabiting plants of the Lily family - a family including the Poker Plant, the Aloes, the Yuccas, and many others that are not so tall and strikIng in appearance or e!se too tender to grow outdoors in the North. Large specimens of $E$. robustus will annually produce a flower-stalk 8 ft . or more high, with racemes 4 ft . long, remalning in bloom for a month. After flowering the lrs. disappear entirely, but early in spring they reappear, and should then be covered with a box or barrel, to protect the forming flower-stalk from late frosts. A mound of ashes over the crown in winter is advisable, or a box with water-tight top flled with dry leaves. Both species like a rich soil, moist but well drained, and plenty of water in the flowering period, but none afterwards. Prop. by division, or slowly by seeds. Large plants are expensive, but they can sometimes be obtained large enough to flower within a year or so of purchase. It tries one's patience to wait for seedlings to reach flowering size. The flowers look like small stars.
IV. C. Egan.

## A. Flowers rosy

B. Le's. linear-ligulate.
robustus, Regel. Root-fliers thick and fleshy: lrs. glaucous, glabrous, linear-ligulate, 2 ft . long, $1 / 2-2 \mathrm{in}$. wide, roughish on the margin, with minute recurred teeth: raceme $4-41 / 2$ in. Wide: stamens about as long as the perianth. Turkestan. B.M. 6726. Grig. 6:52, 324. Gn. 46, p. 335. Mn. 8:123. J.H. III. $29: 267$.

B8. Le's. orate-lanceolate.
Elwesii, Micheli ( $E$ : Eluesiàuus, Hort.). Les. light green, ovate-lanceolate, obtuse, flat, not at all rough at the margin, shorter than in $E$. robustus, nearly triangular, eren more glaucons, and beginning to decay at the time of flowering: perianth segments with a band of deeper color down the middle. Habitat? R.H. $1897: 280$. Gn. 54, p. 99. G.C. 111. 24:137.-Int. by Leichtlin as D. robustus, var. E'luesii.

## As. Fiouers white

Himalàicus, Baker. Root-fibers thick and fleshy: Irs. 9-12, ligulate, flrm, persistent, $1-11 / 2 \mathrm{ft}$. long, $6-15$ lines wide abore the middle: raceme $3-3 \frac{1}{2} \mathrm{in}$. wide: stamens about as long as the perianth. Himal. B.M. 7076. Gn. 49, p. 131. G.C. II. 16:49.
asa. Fls. some shade of yellou.
B. Color light yellou.
spectábilis, Bieb. Root-fibers thick and fleshy: lvs. $6-15$, lorate, slightly glaucous, $12-18 \mathrm{in}$. long, $6-12$ lines wide abore the middle, noticeably narrowed at the base: raceme $1-1 \frac{1}{2} \mathrm{ft}$. long, 2 in . wide: stamens orange, finally twice as long as the perianth. Asia Minor, Persia. B.M. 4870.

## BB. Color pure yellow or orange.

Búngei, Baker. Lrs. contemporary with the fis., linear, 1 ft . long, less than 3 lines wide: raceme $4-5$ in long, 2 in. wide: stamens finally twice as long as the perianth. Persia. - Var. perfectus, Hort., is sold.

BBB. Color orange.
aurantiacus, Baker. Closely allied to E'. Bungei, but live plants have less acutely keeled lrs.: root-fibers tapering upwards, and orange fls. and stamens. Bokhara, Turkestan. B.M. 7113.
W. M.

ERIANTHUS (Greek, uoolly flower). Gramineo. Woolly Beard Girass. Plume Grass. Tall and stout reed-like perennials, with the spikes crowded in a panicle and clothed with long, silky hairs, especially in a tuft around the base of each spikelet. Spikelets in pairs, one sessile, the other pedicellate. Glumes 4, the fourth enclosing a hermaphrodite flower and arned. Species about 18, in the warmer regions of both hemispheres.

Eriunthus Ravennce is the best hardr substitute for the pampas grass, which is the most famous of all tall, pluny grasses. For general purposes and for aquatic groups and bedding it has no peers in the North except Arundo Donax and a few tall bamboos. These latter, however, are grown for their foliage effects, and whi'e the plumes of Arundo are highly ornamental, they are only an incident in the North, where frost often cuts dov $n$
the plants before they flower. The general appearance of Erianthus is striking and unique, and for the plume like character of its Howers it has few if any rivals.
Ravénnz, Beaur. (Siccharum Ralénne, Muir.). Wool Grass. Pleve Grass. Ravessia Grass. A tall, har'ly grass, $4-7 \mathrm{ft}$. high, very ornamental, eitler planted alcue or in company with other grasses: lus, very long, linear, pointed, band-like, sometimes violet, with astrong white rib in the center. The foliage forms graceful clumps, from which rise long and handsome plumes, resembling the pampas grass (Gynerium argeuteum). Southern Europe. R.H. 1890, p. 546. Gn. 54, p. 496. Its cultivation is not difficult in ordinary garden soil. A sunny situation is preferable. May be propagated by livision or by seed. It is exquisite for lawns, and flowers the first season if sown very early. The plumes are fine or winter use when dried.
P. B. Kennedy and W. M.

ERICA (practically meaningless; probably not from ereiko, to lureak, as commonly stated). E'ricicece. Heatif. This is the genus that the gardener usually means by "Heath." The Heath or heather of English literature and history belongs to the closely allied genus Calluna. The next most important group of cultivated "Heaths" is Epacris, which, however, belongs to a different order. Ericas are low-growing, evergreen, much branched shrubs, with needle-like lrs. in whorls of 3-6, and great numbers of small rosy. white, or rarely yellow Hs., of which the most important types are the bellshaped, the tubular, and the ventricose, the last being swelled at the base, and then tapering to a narrow neck just below the 4 spreading lobes. Erica is an enormous genus, and the hybrids are past reckoning.
Only a few of the European Heaths are hardy in America, and we have no native Heaths at all in this hemisphere. Of about 14 kiuds of Erica grown outdoors in Europe to produce large showy masses, only 3 are hardy here. and it is safest to cover these with evergreen boughs in winter. Two others ( $\boldsymbol{L}$. Mediterranea and E. Lusitanica) we grow under glass somewhat The tree Heath of southern Europe ( $k$. arboreu) will probably never be a feature of our southern landscapes.
The halcyon days of the Heaths were front about 1806 (when the English took the Cape of Good Hope) until the middle of the century. Andrews' colored engravings of Heaths (1809) marks the first flush of their popularity. Practically, if not absolutely, all the Heaths that are grown on a large scale hare been developed from the South African species. The old English gardeners still lament the glorious days when the hard-rooded plants of Australia and the Cape formed the chief feature of European indoor horticulture. They complain that the present acneration is aut wiling to give them the care they deserse. This is especially true of America. Nevertheless, according to William Watson, of Kew (in Garden and Forest, 1892, p. 136), Heaths are stiil grown in surprising quantities. Speaking of $E$. hyemalis, he says: "It may be said with truth that no other plant is grown in such enormous quantities for the London market. At least a dozen nurserymen might be named whose annual output of this one Heath amounts to from 20,000 to 30,000 plants each." He pictures a plant in a 5 -inch pot, with about 15 shoots a foot high, and loaded with perhaps 1,000 flowers. Such plants sell at Christmas for about 36 cents. "The flowers remain fresh for at least a month. The popularity of this Heath is thus easily accounted for: it is cheap, very pretty when in flower, and lasts just long enough to satisfy the masses who like window-plants and change. The plants perish almost as soon as the flowers - that is, all those which find their way into the window of a house, or into a small greenhouse. And this accounts for the enormous number disposed of every year. In England $E$. hyemalis is certainly one of the most valuable plants ever introduced." (In America Heaths are of minor importance, eren at Easter, and the kind grown most extensively for Christmas seems to be $E$. melanthera.) Watson adds: "It is strange that a plant which has enjoyed an exceptional popularity in England for something like fifty years should never have been figured in any English publication or work until now. I have not been able to trace the origin of the plant, nor
find any picture of it in any book to which I have access here. Nor can any of those who have paid attention to garden Heaths assist me."
The great trouble with Heaths is the immense amount of care they need. Few, if any, classes of plants require more attention. Hence the growing of Heaths for the market is extremely specialized, and there is not a retail catalogue in the country that offers more than one species. Nevertheless, all the kinds described below are grown conmercially, and are of the first importance in the genus. The stock is largely imported from England. Germany has a very different set of varieties, and France still another, and there are few cases among cultivated plants showing so great a difference in the three countries. The risks of importation are considerable, and the tendencies toward American independence in this line seem to be gaining.
Another difficulty in Heath culture is the poor quality of peat obtainable in America. In England the peat is

771. Erica hyemalis.

From 300,000 to 400,000 plants of this Heath are sold in London every Christmas.
more fibrous, and has been formed in past ages largely by the decay of the native heather.
The soft-wooded kinds are the ones most gromn. The hard-wooded sorts require a longer period of growth and more thorough ripening of the wood.
Apparently only one yellowr-fld. Heath is cult. in America, E. Cureudishedna. Unless otherwise stated, the species described below come from the Cape.

In general the Ericas do not grow well in this climate on account of the extreme heat of the summer months, but some varieties grow and flower even better here than in Europe. The choice of the soil is very important. A light peat, mixed with sharp, coarse sand is about the best we can get here. After flowering, the plants should alrays be cut down to keep them bushy at the base and well shaped. They will then receive a good repotting, using always very clean pots and plenty of drainage. Cuttings are made from December to April, preferably from young plants, the tender shoots, about 1 inch in length, being best. These are planted firmly in a pan filled with clean, fine sand, and covered with a bell-glass, or in a bex covered tightly with a pane of glass. Bottom heat is not necessary. When rooted, the cuttings should be potted in small pots, and when well started should be
given as much air as possible. It is well to bring the Ericas out of the greenhouse as early in the spring as possible. The pots should be plunged in a good situation, where plenty of air and sunlight can be had. They should be wintered in a greenhouse extremely well rentilaterl, and a temperature not higher than from $40^{\circ}$ to $45^{\circ} \mathrm{F}$. When in bud the plants should not be allowed to dry out too much. Once would be enough to cause the loss of all the buds. Very often the Heaths are attacked by a disease similar to mildew, caused by an excess of humidity in the air. As this disease is very contagious, it is well, as soon as nuticed, to use sulphur in powder or sul phate of copper in solution until the plants are rid of it.

Index of species described below:

| assurgens, 13. | gracilis, 7. | prestans, 6. |
| :---: | :---: | :---: |
| Bothicelliana, 17. | herbacea, 1. | regerminans, 3. |
| Caffra, 13. | hiemalis, 5. | Tetralix, 4. |
| carnea, 1. | hyemalis, 5. | translucens, 18. |
| Cavendishiana, 11. | Lusitanlea, 14. | ragans, 2. |
| Cacendishii, 11. | Mediterranea, 16. | rentricosa, 17. |
| codonodes, 14. | melanthera. 8. | Vilmoreana, Wil. |
| cupressina, 15. | Parmentierii, 6. | moreana and Wil- |
| cylindrica, 12. | persoluta, 13. | morei, 10. |

ragrans 9.
A. Hardy Heaths.
B. Spring-bloomin $\qquad$ 1. carnea
B. Spring-blooming ilo............
BB. Summer-aud fall-blooming.
c. Inflorescence luterul .......... 2. vagans
cC. Inflorescence terminul.
D. Overy densely covered with long, rough hairs........... 3. stricta DD. Ovary with short, soft hairs. 4. Tetralix
aA. Tender Heaths.
B. F'ıll-blooming.
C. Corolla club-shaped or funnelshaped........................ 5. hyemalis
cc. Corolla widest at base, tapering to a much constricted neck. 6. præstans
ccc. Corolle globose, the lobes very short ..............
ristmas-blooming.
BB. Christmas-blooming.
C. Corolla lobes long and spread. ing ............................. 8elanthera
cc. Corolla lobes long ind revolute 9. fragrans
ccc. Corollit lobes short and ruther erect.
10. Wilmorei

BBB. E'uster-blooming.
c. Fls. yellow.......................11. Cavendishiana
cc. F'ls. rosy to white.
D. Corollu tubular.............. 12. cylindrica

DD. Corolla globose. E. Li's. in threes.
F. Fls. white...................13. persoluta fF. Fls. rosy. ..................14. Lusitanica EE. Lis. in fours..............15. cupressina
DDD. Corolla urn-shaperl, i. e.,
longer than DD, and more
constricted at the neck....16. Mediterranes
DDDD. Corolla rentricose, i. e..
surelled at the base, and
tapering slowly to a mar-
row neck
17. ventricosa
18. translucens

1. cárnea, Linn. (E. herbìcea, Linn.). Height 6 in.: 1vs. in $4^{\circ} \mathrm{s}$ : inflorescence lateral : corolla broadly bellshaped: anthers exserted: ovary glabrous. Mar.-May Alps. L.B.C. $15: 145$ 2. B.M. 11. Gn. $54: 1177$ (a charming picture). The bright rosy-fld. form is the best and most striking. There are pale red and pure white varieties. The most popular of all hardy Ericas. Very easily prop. by division. We should try E. Mediterranea, var. hybrida, Hort., said to be a cross with E. carnea, and in England thriving almost as well in loam as in peat. See Gn. 55, p. 125, and 54, p. 262.
2. vagans, Linn. Cornish Heath. Lrs. in 4 's or 5 's: sepals small, ovate, obtuse ; corolla ovate-bell-shaped; anthers orate-oblong, 2-parted, exserted : orary not hairy. W. Eu. and Medit. - Fls. pale purplish red. Grows 3-4 ft. in England: 1 ft . With J. W. Manning, Reading, Mass. Var. álba has white fls. Var. capitàta, grows 1-2 ft . high with Meehan at Germantown, Pa. and has "small whitish fls. with a purplish tip."
3. stricta, Don. Corsican Heath. Les. in 4's, a little more erect than in Nos. 3 and 5 : sepals lanceolate, obtuse; corolla ovoid-oblong, narrowed at the throat; anthers awl-shaped or awued, included: ovary densely covered with loug, rough hairs. Corsica.-Attains 4 ft . in England, but grows 1-2 ft. high with Meehan, at Germantown, Pa. Branches strict, rigid.
4. Tetralix, Linn. Bell Heather. Cross-leaved Heath. Lis. in 4's, margin folded back: tls. rosy; sepals orate-lanceolate, ciliate; anthers awl-shaped or awned, included: ovary with short, soft hairs. WW. Eu. - Foliage grayish. Height in England 6-12 in. With Manning, at Reading, Mass., about 8 in.
5. hyemalis, Hort. Fig. Titl. Written also hiemalis. Watson thinks it may be winter-flowering form of $k$. perspicut, figured in L.B.C. 2:102 and $18: 1778$ as $E$ '. Linnoama. Fls. rosy pink, tipped white. Var alba has white fls. With L. Dupuy, Whitestone, L. I.. it flowers in Sept. G.F. 5:137. Gn. 41:856. H. D. Darlington says it is very distinct from $E$. perspiсни.
6. præstans, And. (E, Parmentièrii, Loduiges). Lrs. in 4's, somewhat incurved: bracts crowded: fls. nearly sessile, white, faintly flushed pink at base, in terminal groups of 4 or more; sepals ovate, rough-margined; anthers scarcely acute. Sep. Varieties are pictured under rarious names in L.B.C., plates 154, 1695, 197 and 1804.
7. grácilis, Salisb. Lrs. in 4's, somerhat erect: bracts remote: sepals smaller, lanceolated; anthers with a short, sharp point. L.B.C. $3: 244$ (pale riolet). "Fls. purplish red." Var. autumnàlis, Hort. Fls. Sep. Var. vernàlis, tls. in Oct. and Nov.
8. melanthèra, Linn. Fig. 772. Lrs. in 3's, obtuse, grooved on the back, younger ones often rough, with glands; bracts mostly crowded: fls. rosy; sepals obo-


## 772. Erica melanthera.

vate, keeled, colored; anthers black: orary villous. Not L.B.C. 9:867, which may be a form of $\dot{E}$. nigrita. Flowers in Dec. and Jan. A.F. 11:1133 and 12:579. F.E. 9:333.
9. fràgrans, And., not Salisb. Lrs. opposite, erectappressed, acute, always glabrous: bracts loose, sepallike: fls. in 2's; sepals ovate, keeled, green : ovary glabrous or slightly bristly at the tip. Habitat? B.M. 2181. L.B.C. 3:288.
10. Wilmorei, Knowles \& Westc. (A. Wilmoreana and Vilmoredna, Hort.). Hybrid : corolla tubular, bulged below the lobes, slightly velvety-hairy : fls. in 1 's -3 's, rosy, tipped white. R.H. 1892, p. 202. A.F. $4: 251$. G.C. III. 19:201.-Var. glaúca, Carr., has nearly glaucous foliage. Var. calyculata, Carr., has a large additional calyx. R.H. 1892, p. 203. In England flowers in spring.
11. Cavendishiana, Hort. ( E. Cdvendishit, Hort.) Hybrid of E', depressa $\times$ E. Pulersonii. Lis. In t's, margins revolute: ths. in $2-4$ 's ; corolla tubular ; stamens included; anthers awned. P.M. 13:3. G.C. 1845 p. 435. F.S. 2:142. A.F. 12:1143. Ging. 5:331. G.C'. II. 18:213 and 20:597.
12. cylindrica, And. and Hort., not Wendl. or Thunb. Important hybrid of un known parentare, eult. since 1806. Lis. in t's: fls. nearly sessile: curolla 1 in . long, brilliant rosy refl, with in faint circle of dull blue mbout two-thirds of the way from the base; anthers awned, included: ovary glalirons. L. B.C. 18:1734. R. H. 1859, p. 42. - Fils. very showy and unusually long. The oldest E. cytindrice. That of Wendland is a yellow-fld. species unknown to cult.
13. persolùta, Liun. Fig. 773. Essentially a white-fld. and very variahle species, particularly as regards hairi. ness. Luss. rerect or spread. ing, hirsute or glabrous: corolla small, originally $11 / 2$ lines long: lohes ovate, 2-3 times shorter than the tube, the sinuses acute, narrow. S. Afr. The numerous ra-
 Erica persoluta. rieties Bentham found impossible to separate either in the wild or in cultiration. Var. hispidula, Benth. Slightly hirsute: lvs. $21 / 2-3$ lines long, routh: anthers subovate. Var. lævis, Benth. Lvs. shorter, blunter, often appressed, glabrous; anthers subglobose. Var. sabcarnea, Benth., has the corolla lobes more evident. To this last variety ISentham seems to refer most of the horticultural rarieties cult. under the name of $E$. persolutu. E. assuirgens, Link., he refers to the first varisty; $\boldsymbol{E}$. Ciffra of Linnaus to the first, but of L.B.C. $2: 19 \%$ (and the trade?) to the second. $E$ E. regérminans of Linntus is a distinct species (figured in L.B.C. 17:1614 as E.. Smithiana): of the trade $=E$. persolutu, var. hispídula; of L. B. C. $18: 1 \pi 28=\boldsymbol{E}$. persoluta, var subctirnea. Flowers in February and March, while the other species, numbered from 12-18. mostly Hower in March and April.

14. Lusitánica, Rulolph ( $E^{\prime}$. corlonodes, Lindl.). Spanish Heath. Branches tomentosepubescent: lis. Elabrous and orary glabrous. W. En. B.R. 20:1698. G.C. Il. $\overline{1}: 4 \mathrm{tin}$; 111 . 19:487. I.H. 43, p. 321. (in. 54: 1190: 55. p. 125.-Hardy in Eng. land, but not here.
15. cupressina, Forbes ( $E$. turrigera, Salish.). Lus. glabrons, subciliate or naked : in florescence terminal: Hs. pedicellen, in $1-4$ 's: hracts remote: sepals finally reflexed; sinuses of the corolla acute, narrow. Probahy a hybrid cult. since 1802. F.E. 9:333.
19. Mediterrànea, Limm. ( $E^{*}$ cirnen, var. oecidantalis, Benth.). Fig. itt. This is considered by Bentham a western form of $E^{j}$. carners (No. 1). with a little smaller ths., curolla a tritte wider at the apex, and anthersshortly exserted instead 774. Erica Mediterranea. anthersshortly exserted instead
of the trade is hardy in Encluded. and, Mediterroned perhaps second of the trade is hardy in England, and perhaps second
ouls to $E$. cumea in popularity there. In America it seems to be cult. only under glass. B.M. til. (in. if: 1190; 55, p. 403.

1i. ventricdsa, Thunb. Ľs. in 4 's, incurved to spread. Ing, with pilose margins: inflorescence terminal: sepals keeled; anthers with 2 very short ears, or awned, in cluded: ovary glabrous. B.M. 3ino. Is.B.C. 5:431. Var. grandiflora, with tubes orer $1 / 2 \mathrm{in}$. long. L.B.C. $10: 94 \%$. The following varieties are cult. by L., Dupuy: Bolhcelliant, breviflora, carnea rosea, cintra, hirsilas allat. magnifica, superbet, tricolor. See K.H. 1sis. p. 4ith and 1880:50. Gn. 45, p. 87. A.F. 10:1111. F.F..9:333.
18. translucens, Andr. Perhaps the first of all the garden hybrids between $\boldsymbol{k}$., fubillora and $\boldsymbol{E}$.. ventricosa. Les. rigid, with or without long, soft, red hairs: fls. in umbel-like heads; bracts renote; corolla rosy, x-9 lines long; tube narrowly ventricose, pubescent: limb short, spreading: orary sessile. Andr. Henths, 295. Benthans considers this a synonym of $E \cdot$ spurin. Amdr. Heaths. 60. Schultheis says " it is the tinest Erica grown: a poor propagator but good grower. Takes 3 mose to rout.
The following are mostly kinds that have heen grown sne. cessfully in suasl guantities liy $A$. Schultheis hat have never been advertiseal in American trade catalogues. $H=$ hard. wooded; the rust are soft-womled. S. Africa, unless stated
E. ampullicer, Cort. Lss. ciliate, mueronate: bracts eolored: fis. mosily in t's: corolla vent ricose, verysticky, tyyically white, lined with red, limb spreading, white. Var. rubra. Hort., is the only form cult. H.M. 303. L. IB.C. 6:50k. H.-E. aristita, And. Readily distinguished by the long bristle which ends the Ivs.: les. recurvelf: ths. in t's: semals keeled with red: corolia lvs. recorved: ths. in ts: sepals keeled with red corolla

 barbata, And. Bristly and gandalarombescent: 4 , in is:
 tubular, slightly inflatel: limb erect or scarcely open. L. B.C. 9:842-E. Burnetti, Hort., nut in Index kewensis.-E. con spicua, Soland. is "sjecies with club-shaped, villous fis and villons los. int's. Viar. splendens, Klotzseh, with the lres and sepals shining green and pubescent corollas, includes E. elata, And. L.1s.C. 18:17nx. - E. Deromiana is not in Index Kewensis. H. - E. elata, ind. $=$ E. conspicua. var. splendeus. - E. Irbyina. And. Allied to E. ampullacea. lout with corolla narrower at the base and iapering with perfect regularity to just below the limb, where it has a prominent red balfe. It is also distinctly lined with red, and the sepals are green, though the bracts are colored, as in E. ampullacea. L.B.C. 9:816. H. - E. nigréscens, once advertised by Pitcher \& Manda, is presumably E. melanthera (H. D. Darlington), -E.pillida. A monfused name. The oldest plant of this name is Salistmry.w whirh has an urn-shaped corolla, fls. often in '3's muleseent and hirsute branches and
 probably the tnbuler-tll. hybrid of Louldiges in L.B.C. 14:1355, which has axillary and terminal fls., and lvs. in 4 's to $6{ }^{\circ} \mathrm{s}$. $-\boldsymbol{E}$, perspicua. Wendl., has a tubular or slightly club-shaped corolla, prs. in 4 's, pubescent or rough hairy, and ths. in l-3s, latt the plant in the trade is probably E. perspicusides, Forbes, a hyplant in the rade an longer and woollier hairs, ths. somewhat in umbels, nearly 1 in . long. Only var, erecta is grown here.-E.sundrineary is grown by Louis Dupuy.-E. tricu,or is jerhaps the mot and is grown by Louis Dumy, - E. trinar la ferhaps the most confused name in the genus, and apparenty one of the important himds alroad, orhere it has many varieties and synnayms. In the trade it seemsto stand for a handsome Heath, with lvs. in fodistinctly ciliateand terminated by ithistle: fls, in umbelsof 8-10, 1 in. long, a little tow inflateyl at the base for the typical tubular form, rosy nt the base, then white, then green, and then suddenly constricted into a short neck; pedicels red and
exceptionally long. This description ia from L.B.C. 1 ?: 1105 (as exceptionally long. This description is from L. IB.C. $12: 1105$ (as
E. eximia) one of the carliest pictures of these charming hy. E. eximia) one of the carliest pictures of these charming hybrids which lenthan refers to the habrid E. aristella, fonkes.
Those who expert to import Ericas from the Ohd World will he grateful to A. *hulteis for the following list of kinds which he has ben unable to grow successfully at college Point, L. I.: Soft-wooded kinds. $E$. cerinthoides, colorans, intermedia, mammosa, mirabilis: hard-woolded, jasminoides, Marnochinna. LoEis Deper and W. M.
ERIGENIA (Greek, suring-lonru). IMbellifere. Habbisger of sphisg. Amonotypic genus. É. bulbosn, N゙utt., is low, nearly stemless. hardy, from a deeplying talier, with ternately hecompound leaves and small umbels of minute white flowers. A ferr plants may have been sold be collectors and dralers in native phants. B.B. 2:54. The (ireek pronnnciation of the word was Erigenia, but usuage, euphony and analogy warrant the use of Erigenia.
L. H. B.

ERIGERON (Greek, old man in spring; the young plants are somewhat hoary). Composite. Fleabane. The garden Fleabanes are hardy booder plants, suggesting our native asters, hut blooming much earlier, and growing in tufts like the English daisy, thougl usua!lv from 9 in . to 2 ft . high. The gents has per haps itn species scattered ower the world, particularly

## ERIGERON

in temperate and mountalnous regions．Stem－lvs．en tire or toothed ：fls．solitary，or in corymbs or panicles： rays in 2 or more series，mostly rose，violet or purple rarely crean ceolored or white，and one klud has splendi， orange towers．
The garden fleabanes are practically all perennials A few annmals are harmbess and pretty weeds．Some apecios have roots that are bicminal．bit they increase oy offacts，and make larger clumps from year to year They are of easy culture．I．B．Keller flinds that they do hest when somewhat shaded from the midday sun They are casily prop，by sereds or dirision．and doubt less by cuttinge，if there were sufficjont doanand．Small divided plants set ont in early spring prodnce grood sized flowering plants the flrst year．A gonel show of bloom may be liad from seeds sown outderers as early as possible in spring．Some the masses of these plants in the hardy border or wild garden are much mare desir－ able than an isolated specimen or two of each kind．The most popular speries is $E:$ ：apecinsa，of which double and white－fld forms shonld appear beetore lonke．A present it is the best kimd．that has the rich，soft colors． from rose to violet and purple．$A$ ．furantideus has dazzling orange tls．，and is undque in the genus．

## A．ト＇ls．oranje．

aurantiacus，Repel．More or less velvety：height 9 in．：Irs，ovaloblong，clasping at the base，more or less tristed：heark one on a stem ：involucral scales loose， reflexed．July，AuL．Turkentan．K．H．1882：©x．Gn． 52．p．48\％．－Perhaps the showiest of the genus．Sold as ＂Double Orange Daisv．＂

AA．Fls．creamy or thite．
B．Les．linear．
ochroledcus，N゙utt．Heipht 9－18 in．：stems mostly not branched：lvs，rather rigid：rays $40-60$ ，white or pur－ plish，never yellow．firavelly hills and plains N．Wyo． and Mont．to Ctah．－This and the next are rare kinds． sold by collectors and dealers in native plants，and not cult．abroad．

BB．Lis．broader，lancenlute to ovate or oborate．
Howellii，Gray．Height alome 1 ft ：root－lvs．obovate： stemeles．ovate，half－clasping：rays 30－30，1－y lines wide，white．Cascade Mts．，Oregon．
mucronàtus，DC．Lis．lanceolate．narrowed at base， ciliate，mostly entire，often with a long，callons mucru． Mex．J．B．Keller cultivates a lilac－fld．plant from the Himalavas as $t$ ．mucrometues，which he says is the same as littudenie trilobu，which see．

AAA．Fls．rosy，vinlet or purple．
B．Rays 100 or more，mostly marrore：les．entire． C．Flower－hatls large． D．In＇olucre hairy．
E．Meight about $z$ ft．：stems several－fld
speciòsus，DC．（Stenúctis speciosut，Lindl．）．Height $11 / 2-2 \mathrm{ft}$ ：hairs few，lonse：stem very leafy at top： root－lvs．more or less spatulate：stem－lys．lanceolate， achte，halfechaping．B．C．to Gre near the coast．B．M． 360\％．B．R．19：15：7．Gn．52：114！．Var．supérbus，IIort．， sold abrond，has lighter colored and more numerons fis． Var．major，Iort．，has broader r ：s and brighter colors．
ex．Height 9－15 in．：stems usuctlly 1－fld．
glaùcus，Ker－Cawl．Lx゙s．slightly glancous：root－lve． rarely e－3－toothed．Pacitic cuast，where it flowers most of the yar．B．R．1：10．Gn．50，p． 484.

## DD．Inenlucre not hairy．

macránthus，Nutt．Height $10-20$ in．：hairs numerous and long or short，sometimes nearly nbsent：lus．lanceo－ late to ovate．Rocky Mts．Wyo，to New Mex．and S．W． Litah．Gn．52，p．484．－A good species．Blooms later than the eastern species．Violet．Hardy．

## cc．Flower－heads（or disk）small．

glabellus，Nutt．Height 6－20 in．：root－lvs．spatulate： stem－lvs．lanceolate，gradually narrowing into bracts： involucre bristly，or at least pubescent：rays violet－
purple or white．Minn．to Rockies．An．52，p．485．B．M．
 Andrewn，Boulder，Colo．Much cult．abroud．

## BB．Rinys i0 or less，triler：lis．entire or toothed．

c．Lis．almoat or quite entire．
D．Stems with severul Ils．in a corymb．
Villársil，Bell．Root biennlal：height 1 ft ．：lvs．with 3 or 5 nerves，ronghish：fls．corymbose．Fin．IB．K．
 said to be a parent with $f_{i}$ undemticeres of $E_{\circ}$ hybridus rosmes，Hort．．，Hage de Schmidt．This is said to re－ semble $f:$ Villursii in habit，and $t$ ．aurentincus in form of tis．but no：in color．Said to bloom freely from May to autumn．
nid．Stems mostly i－fld．
salsugindsus，Gray．Helght 12－20 in．：upper stem－ lrs．with a charmeteristic mucro．The slightly viscid character of the involucre is particularly designative． Wet ground，on hipher mountains，Alaska to Calif．and New Mex．B．M．4942．

CC．Lirs．coursely tonthed ubove the middle．
bellidifolius，Muhl．Pook Romin＇s I＇mantans．Makes new rosctes by offsets from underground stems： height 2 ft ．：root－lvs．wider above the middle than in most species：stem－1rs．fewer：Hs．spring．Damp bor－ ders of woorls．Canala to III．and La．B．M．2403．B．B． 3：388．D．2．37．－＂Fils．clear blue，on long stems．＂－ J．W．Manuing．W＇eedy．

E．purpùreum，Hort．，accordling to H．A．Ireer，＂rarely exceeds 10 in ．in height，and has medium－sized Hs，of soft． rosy prole，horne in graceful，spreading panicles．＂Form of E．pacranthus？

W．M．
ERINUS（a name derired from Dioscorides）．Scroph－ ularidcer．The most popular species of this small genus is a hardy，tufted plant 3 or 4 in ．high，suited for steep sides of alpine gardens，where it produces in spring its racemes of small purple，rosy or white fis． Root－lis．crowded，opposite：stem－lvs．alternate，oblong－ spatulate，with a fow coarse，rounded teeth：corolla lobes 5 ，obovate，the 2 upper ones slightly smaller： stamens 4 ，in two groups，incladed．

The sucret of success in alpine Lardens is said to be a constant supply of moisture with perfect drainage．As a class，ulpine＇s are impatient of standing water，and Erimus，which is a favorite，particularly so．J．B． Keller writes that Erinus should be phanted in steep parts of the rockery where water cannot lodge on rainy days or in the winter and spring months．He adds that they nefd slight shate from midday sun．Dirided plants are chictty sold in America．but the amateur can soon produce a good carpet by the use of seeds．When well established，the seeds are self－sown and the off spring gain in hardiness．It may be safest to keep a pot or two in a coldframe over winter，until the plant can take care of itself．In Fingland，seeds can be sown in earthy holes of brick walls，and Gn．4．）p．134，shows a charming picture made by informal masses of flower ing Erinus naturalized on some old stone steps
alpinus，Linn．Lrs．hairy：racemes $2 \frac{1}{2} \mathrm{in}$ ．long：fls． $1 / 2$ in．across．purple．April－June．Momatains of W．Eu． B．M．310．－Viars．albus and carmineus，Hort．，have white and crimson fls．respectively．

The following trule names a：e accounted for in Zaluzianskia：E．duples，gracilis，Paxtoniana and speciosu．

W．M．
ERIOBOTRYA（Greek，iroolly cluster）．Rosdcece Ten or twelve species，mostly East isian，have been referred to this genus，but some authors restrict it to the one species described below，and others refer all the species to Photinia．Fls．large，white，fragrant，in a terminal rusty－woolly cluster；calyx thick，5－toothed； petals 5 ，crenulate：orary $3-3$－loculed，each locule 1 － oruled．
Japónica，Lindl．（Photinia Japónica，Gray）．Lo－ quat．Japan Plem and Medlar（erroneously）． Small tree， $10-20 \mathrm{ft}$ ．，with thick，evergreen，oval－oblong remotely－toothed lvs．near the summits of the branches，
the under surface rustr-tomentose: fr. a pear-shaped yellow pome (Fig. 775), with lurge seeds and an agreeable acid tlaror. B.R. 5:365. A.G. 12:19. - The Loquat is native to China and Japan, but is much planted in the Gulf states and westward. It bl ims from Aug. until the approach of winter, and ripes its clustered fr. in rery early spring. The fruit is often seen in northern markets. It is a profuse hearer in congenial climates.

775. Loqua: $(\times 3 / 4)$.

Loquat is an excellent decorative plant, either as an evergreen lawn tree south of Charleston, or as a potplant in the North. Grown from seeds, it is a most satisfactory conservatory subject, resisting uncongenial conditions.
L. H. B.

## ERIOCNEMA. Consult Bertolonia.

ERIODENDRCN (Greek, wonlly tree; alluding to the woolly fiber inside the fruit, called "ceibo" and "pochote" by the Mexicans, and used by them for stufting pillows). Mralcacer. Ten species of tropical trees, thorny or not: Irs. digitate; leatlets $3-\bar{T}$, entire: Hs. solitary or clustered, large or medium-sized, rosy or whitish; petals oblong, pubescent or woolly: column of stamens with 5 branches at the top, each bearing $2-3$ anthers. E. occidentale, G. Don, is cult. by Franceschi, Santa Barbara, Calif., as Ceiba occidentalis.
ERIOGONUM (Greek. woolly joints). Polygonàcea. About 100 species, chiefly northwest American herbs, tufted subshrubs' or slender annuals, mostly densely woolly: lvs. crowded at the base of the stem, alternate, entire. E.compósitum, Dongl., perhaps the best known, has countless minute 6 -lobed neutral colored fls., dull white to rosy, borne in contpound umbels 5-6 in. deep and broad. The following have been alvertised, but are practically unknown in our gardens: E. campanuldtum, compósitum, flìum, heracleoilles, incanum, microtiécum var. effùsum, иरечт, niulum, ovиlifòlium, spherocéphalum, thymolles, umbellìtum. These kinds have been adrertised by D. M. Andrews, Boulder, Colo., E. Gillett, Southwich, Mass., and F. H. Horsford, Charlotte, Vt. Consult American manuals and floras, and Proc. Am. Acad., vols. 8, 12 and 14. Should these attain any garden importance they may he reviewed in an annual continuation of this work. Species are usually found on calcareous soils.
W. M.

ERIOPHORUM (urool-bearing, from the Greek; allud ing to the heads of fruit). Cyperdcen. Perennial rushlike plants, growing in swales: fls. in dense heads, the bristles very numerous and often becoming greatly elongatel in fruit. None of them is known in cult., but the following have been offered hy collectors: $E$. alpinum, Linn. ; E'.cyperimum, Linn. ; E.linedtum,Benth.\& Hook.; E. polystachyon, Linn.; E. raginàtum, Linn.; E. Viryinicrm, Linn. All these are wild in the northern states. Useful for bog gardens. Avoid late fall planting.

ERIOPHYLLUM (Greek, woolly-leaved). Compósitce. Perhaps a dozen species, all from western N. Amer. One kind cult. in a few hardy borders is a low, tufted, herbaceous perennial, with much divided lvs., covered with wool beneath (each stem learing about 5 ), and 8 rayed, yellow heads, 2 in. across, borne in a loosely forking fashion on peduncles $3-7 \mathrm{in}$. long. T're genus was included in Bahia by Bentham and Hooker, but is now kept distinct largely becanse of the permanently erect involucral bracts: seeds mostly t-angled, and pappus of nerreless and mostly pointless, colorless portions.
cæspitòsum, Dougl. (Actinálla lanìtu, Pursh, not Nutt. Buhiu lundtu DC.), described aboro. has been advertised by E. Gillett. B.R. 14:1167 is badly drawn as to iuvolucre and pappus.

ERIOPSIS (Greek, like Erio, an orchid of the Epidendrum tribe, which it resemoles when not in flower). Orchiddcen. Five Peruvian ochids of the Vanda tribe allied to Acacallis and Warrea. Lus. plicate; racemes 2 or 3, basal : fis. open, small, maxillaria like, together: lip 3-lobed, the lateral lohes broad and erect. Cool house orchids, requiring the treatment of Cattleya.
biloba, Lindl. P'seudobulbs 3 inches long: lrs. lanceolate: Hs. 1 in. across; sepals sid petals yeliow, with orange-red margins: labellum yellow spotted with brown. Colombia. B.R. 33:18.
rutidobulbon, Hook. Stouter in habit than the above: pseudobulbs wrinkled, dark colored: racemes drooping: sepals and petals orange-yellow, with deeper colored margins; labellum white. with purple spots. Antioquia, in exposed positions on the stems of palms. Peru. B.M. 4437.

Helenæ, Kriinzlin. Said to be "the finest in this small and rare genus. It differs greatly in habit from the other members; the bulbs somewhat resemble those of Epidendrum Brassacole, but are much stronger, and bear three long. coriaceous. ciark, glossy, green leaves. The flowers are twice as large as those of $E$. biloba, and are borne on tall, arching scapes. The sepals and petals are orange-colored, margined with purple, the lip similar, but with a yellow bloteh, spotted with purple at the base."-Sinder d Co., 1899.

Oakes Ames.
ERIOSTEMON (Greek, wonlly stamens). Rutàcec. Coolhouse erergreen shrubs from Australia, with starry, 5 -petaled fls. an inch wide, of white or blush pink. Practically unknown in America, but abroad considered amongst the finest of hard-woorled winter or springblooming Australian plants. The nurserymen mostly graft them on stocks of Correa, an allied genus, which has tubular fis. instead of free petals. Lis. alternate, entire, glandular-dotted: stamens 8-10, free, shorter than the petals; anthers pointed. Much care is needed to produce well-trained specimens. With the growth of wealth in America, more of the Australian hard-wooded plants wili be grown by skilled gardeners in our finer establishments. The following kinds can be imported from Europe.
A. Foliage linear or narrowly lanceolate.
B. Le's. linear.
scaber. Paxt. Iss. corered with minute roughnesses: petals white, tipped pink. P.M. 13:127.

## BB. Lis. narrouly lanceolate.

linifdius, Seghers. Lvs. broadest at middle, tapering both ways. R.B. 20:97.-Probably an old garden form of some well-known species.

> AA. Foliage conspicuousty uider.
> B. Lis. 10-12 limes as lons tes broad. c. Aper abruptly pointed.
myoporoides, DC. Lrs. widest at the middle, tapering erenly botn ways: petals white, glandular on the back. B.M. 3180 .
cc. Apex blunt.
salicifolius, Sm . This willow-leared speeies has perhaps the handsomest foliage. Lrs. widest above the middle, tapering more gidually to the base than to the apex: petals bright, soft pink. B.M. 2854.

## BB. Le's. s-4 times as long as broad.

intermèdius, Hook. Lrs. 9-18 lines long, elliptical, abruptly pointed: petals lanceolate, white, but tipped with pink outside in the bud like the rest: ovary placed on a flat disk and not ringed at the base. lrobably of garden origin. Intermediate between $E$. myoporoides and buxifolizes. B.M. 4439.
buxifolius, Sm . Lrs, as in E. intermedius, though perhaps smaller: petals obovate. white, tipped pink: orary sunk into a double disk of 2 rings. B.M. 4101.E. densifldrum, Seghers., R.B. $20: 97$, looks like a prolific horticultural varie ${ }^{+}$y of this species. W. M.

ERITRICHIUM. For bl. barbigerum, see Krynitzkia. For EI. nothofulcum, see Plagiobothrys.

ERODIOM (Greek, a heron; alluding to the beaked fruit). Geranidcer. Heron's Bill or Stork's Bill. This genus contains a few low-growing, hardy herbaceous perennial plants, with finely cut foliage and ths. suggesting our wild and hardy (ieraniums, from which they differ in having only 5 instead of 10 anther-bearing stainens, the other 5 being reduced to scales; also the tails of the carpels hairy inside. The common Geraniums of our home windows and summer flower-beds are the blended product of Pelargonium zonale and P.imquinans, and originally had the " upper petals distinctly smaller than the 3 lower ones, as do the other wild Pelargoniums from the Cape of Good Hope, while Erodium and the true genus, Geranium, of which a few sorts are eultivated in our hardy borders, hare all 5 petals nearly equal in size. They also have small glands alternating with the petals, which are absent from Pelargonium. Erodium has about 50 widely scattered species. Herbs, rarely somewhat woody or tufted: lss. opposite or alternate, one often smaller than its mat -, stipuled, toothed, lobel or dissected: fls. mostly in umbels, of various shades, from crimson-pink to purple, with darker blotches on the 2 upper petals and the venation outlined in darker shades.
These plants are chiefly for the front row of the hardy borlers and the rock-garden, where they thrive in a gritty loam. They like dry; sunny spots, and may be trusted with a conspicuous position, being chiefly ralued for their steady succession of bloom from June to August. Divided plants are chiefly sold here, but the species are easily prop. be seeds. Of $E \cdot$. mosrhatum only seeds are sold, and these are sown annually, the species not being hardy. Nos. 1 and 4 are not native to America, being essentially Asian, but they grow wild in California and to some extent in eastern states. Some Erodiums can be grown in chinks of walls, but not $E^{\prime}$. Manesrati, which is the strongest-growing, showiest and best kind.

1. cicutàrium, İHérit. Tufted, lower and more slender than No. 4 , less glandular, often with coarse, soft short hairs: lvs. oblong, 1-2-pinnate; lifts. small, nearly sessile, the uppermost eonfluent, more sharply and deeply cut and with narrower lobes: stipules small, acute: sepals with 1 or 2 terminal bistles: filaments not toothed. Mediterranean regions, Asia. Mn. 7, p. 127.
2. macradenium, L'Hérit. Remarkable for the great length of the roots when twisting among rocks, and strong odor of the foliage. Less. hairy, glandular, $11 / 2-2 \mathrm{in}$. long. oblong, pinnate: segments pinnatifld, rachis with a toothed wing: As. light purple, the 2 upper petals a shade darker, and the spots nearly black. Pyrenees. B.M. 5665.
3. Manescàvi, Coss. Height $10-18$ in.: Irs. attaining 6 in . long, $21 / 2 \mathrm{in}$. wide: segments alternate, ovate, shortstalked, dentate, with sometimes a deeper cut: fls. at best 2 in. across, strong rosy purple, the spots of the upper petals only a shade or two darker. Pyrenees. Gn. 5.5:1220.-Colors stronger and more uniform than No. 3.
4. moschàtum, L'Hérit. Mostly stout and glandular: ltts. large, short-stalked, ovate to elliptical, serrate, broad-lobed: stipules large, rather obtuse : sepals not terminated by bristles: flaments 2-toothed. Mediterra. nean, Orient.
W. M.

ERPETION. All referred to Viola.

ERUCA (etymology in dispute; probably from the Latin to burn, in allusion to the hot seeds). Crucifere. Perhaps half a dozen herbs of Eu. and W. Asia, annual or biennial. Allied to Brassica: differs in the shorter more turgid silique, with keeled valres; style elongated; seeds in two rows. E. sativa, Mill., Roquette or Tira, is the only species cult. in this country. It is a weedr, hispid annual, resembling a Mustard, 2-3 ft . high, with lyrate-pinnatifid los. and creamy fellow Hs See Roquette.
L. H. B.

ERYNGIUM (a name used by Theophrastus for some sort of thistle). Umbellifere. Sea Holly. The Sea Hollies are among the most bizarre of garden plants, and are chiefly valued for the steel-blue or purplish cast of their rigid stems, prickly foliage and teasel-like heads. They look like thistles, and do not suggest any relation to the umbelliferous family of which the flat-topped, white-flowered umbels of wild carrot are a common example. The genus has perhaps 100 species, mostly spiny herbs. The petals are white. All those described below are perennial.
The Sea Hollies are too quepr and striking to be used as elements in the most restful and natural home-pictures, and their proper place is the hardy border, the natural repository for all sorts of curious things. Here they perpetually challenge one's curiosity and interest. There are two very distinct groups of them, one with much-cut foliage, as shown in Fig. 76 , the other the

776. Eryngium ameths inum.
"Pandanus grcup," with long, undivided leares. A very different list of species is cult. abroad, but the main types are here now, and a collection of kinds is not as artistic as well massed groups of a single kind. They are slightly used in subtropical bedding. The dried stems retain their color, and are sometimes hung
up in living-rooms. The plants mostly gave from 2-3 ft. high and head out in July and Sep. J. B. Keller adrises a light soil and sunny situation. E'. temethystivum is probably the favorite. Meehan says that $E \cdot$.planum is much visited by bees. The weak point of Eryngiums is that they are slow to recover from the shock of division. This makes it difficult to work up a stock at home sufficient to make an effective group. D. Dewar, in his garden monograph of the group, Gn. 46, p. 5 2.2, says that The only safe way to increase the Sea Hollies is by seed. "Sow the seed in pans as soon as gathered, and place in a coldframe. The seeds will germinate in the spring, and if properly managed will be ready to plant out the following year." It is said that many of the species are less showy and satisfactory here than in England.
A. Lis. divided into raliating segments.
B. Bracts longer then the heads.
c. Vrumber of bracts 10-20.

1. Root-les. deeply notched at the base and merely toothed at the margin.
2. alpinum, Linn. Bracts $10-20$, a little longer than the oblong heads Alps. R.H. 1876, p. 113. B.M. 922. Bn. 46:993. - There is a white variety.
DD. Root-l's. less depply motehed at the base, elsewhere more dissected.
3. Oliveriànum, Laroch. Bracts $10-12$, more rigid and ferrer-toothed than in $E$. ulpinum: heads ovate. Orient. Gn. 45, p. 293.

> CC. Nimber of bracts 6-9.
> D. Root-l's. deeply cut.
3. amethýstinum, Linn. Fig. Ti6. Root-lvs. pinnatifid: bracts $7-8$, few-toothed at the base. much longer than the globose beads. Eu. Gn. 46, p. 522, and 55, p. 454. E. colestinum, a trade name unknown to our botanies, is the same thing, according to J.B. Keller.

DD. Root-lis. merely crenate-dentate.
4. gigantèum, Bieb. Root-ivs. deeply cordate: bracts 8-9: head orate. Armenia. Gn. 46, p. 523.

B3. Bracts as long as or shorter then the heads. c. Cpper stem-lis. $\overline{5}$-parted.
5. flànum, Linn. Middle stem-lrs. stalkless, undivided: bracts 6-7: head rotund. Eu., N. Asia.

> cc. Cpper stem-lis. about S-parted.
6. Léav enworthii, Torr. \& Gray. Height $1-3 \mathrm{ft}$. : stemIrs. stal'tess, somewhat clasping : heads ovoid-oblong. Kons. to Tex., Mex. B.B. 2:52.2.

## AA. Lis. undivided, long and linear.

7. aquáticum, Linn. ( $E$. yuccefolium, Michx.). Height 2-6 ft.: stem striate, unbranclirl hraached above: lys. mostly clasping. finely par. times 3 ft . long, $11 / 2 \mathrm{in}$. Wide. heads globose-ovoid. U. S. B.iR.


In No. 1 the involucre is a deeper blue than in Nos. 2-5; in No. 7 the invo:-une is not colored and the Hs. are white or pale. No. 1 needs deep soil and partial shade. No. 3 alsomakes a good bog plant. No. 7 grows well in either wet or dry sitwations. Heights of the first fire species, 2-3 ft.; 3-5, $2-31 / 2 ; 3-4,3-4$.
F. W. Barclay.

ERYSIMUM (possinly means blister-drawing). Cruciferce. Of this big genus we cultivate two brilliant yellow and orange, spring- and summerblooming, hardy "annuals," scarcely, if at
all, inferior to the true wallhowers (Cheiranthus) for general purposes, and two lower-growing and perhaps earlier-blooming rock-garden plants. The gellus has 70-100 species of biennial and perenuial herbs, with long, soft, appressed, e-parted hairs: lvs. narrow, linear or oblong, entire or variously toothed: ths. orange or yellow, rarely purple, often fragrant ; petals 4: style persistent.

Although the two most popular kinds are biennials, the gardeners think of them as annuals. Their seeds can

778. Erysimum asperum $\left(X^{2} / 3\right)$.
be sown in the fail and produce earlier bloom than if sown in spring. Fig. $7 T$ shows the last flowers open at the top of the pyramid, while the seed porls are swelling below.

The rockery kinds, J. B. Keller writes, do well also in the front row of the border and on dry banks. They like full exposure to sunlight, and in the spring months are completely covered with bright flowers. Divided plants only, not secds, are offered by American dealers. In Gn. 24, p. 4(;2, it is said that $E$. ochrolencum on level ground is likely to lose its lower lss, and to perish on heary soils in hard winters. It thrives best when frequently divided, and may be prop. by cuttings.
A. Plants biennial: height $12-18$ in.
B. Fls. yellou.
ásperum, DC. (E. Arkunsìmum, Nutt.). Figs. 7त̈, 778. Height l-3ft. in the wild, ly-18 in. in gardens: lis. dentate or entire upper ones mostly entire: fls. $1 / 2 \mathrm{in}$. across: pods rough, $1 \frac{1}{2}-4 \mathrm{in}$. long, 4 -sided, nearly erect. L.S. $E$. Arkunsamom is merely a western and broaderleaved form. B.B. $2: 152$.

BB. Fls. orange.
Perofskiànum, Fiseh. \& Mey. Pods shorter than in the above, and standing out more nearly at right angles, not so stiff and straight, constricted below the narrower style. Caueasus, Atghanistan. B.M. 3757. 1'.M. 6:245. - There are strains of seed saved by Vilmorin-Andrieux \& Co., from compact and dwarf plants suitable for edgings. (E'. Perofskianum nuenum,R.B. 13:101. E'. nunum compuctum uureum, Gt. 46, p. 194. Eौ. compuctum aureum, Peter Henderson \& Co.).

As. Plants perennial: height mostly 4-6 in.: rockgurden plants.
rupéstre, DC. (E'. pulchéllum, J. Gay). Stem rather woody at base: lvs. somewhat dentate; stem-lvs. oblong, the hairs short, dense, 2-3-parted, Asia Minor. R.H.

1880, p. 412. - Woolson. Passaic, N. T., keєps the names separate. His plants of $\boldsymbol{E}$. rupester have "citron-yellow fls." $E$. ruprestre is "more spresding."
ochroleùcum, DC. (E. Rhóticum, DC.). Height 4-12 in.: stems yellowish, creeping: lvs. entire or the upper with a few short, sharp teeth. Spain. J. W. Manning's plants of $\boldsymbol{E}$. Rhaticum he considers same as $E$. pulchellum. They "grow 6 in. high, and have bright yellow fls. in May." Woolson's plants of S'. cearoleucum, "from the Alps of Jura," have pale yellow Hs.
W. I

ERYTHEA (OLe of the Hesperides, Daughter of Evening). Palmàcer, tribe Coryphew. Spineless palms with solitary robust caudices, ringed at the base, ciothed above with dead leaf-sheaths. Leaves terminal, the younger ones tomentose, orbimular, flabellately manyparted, the lobes lacerated at the apex, intermingled with tibers, infolded; rachis short; ligale long; petiole stout, smooth or spiny along the margins; spadices long, white tomentose: branches stout; spathes many, sheathing the peduncle, thick-coriaceous, densely tomentose; bracts and bractlets distinct; fis. pale: fruit globose, small. Species 2. Southern California.
This small group of American palms includes two species only, as far as known at present, these being $E$. armata, which is known locally as the "Blue Palm,"and $E$. edulis, the latter commonly known as the "Guadalupe Palm," from the fact that it has only been found in a wild state on the island of Guadalupe, off the coast of southern California. The plants in question belong to the fan-leaved section of palms, and bear much resemblance to Brahea, the segments of the leaves being adorned with whitish filaments. In the gardens of Suntia Barbara, California, the Erytheas are planted out, and in a few years form very handsome trees, but in less farored latitudes they may be cultirated in the same manner as Kentias or Latanias, flourishing in a night temperature of $60^{\circ}$ when grown in a rich and open soil and abundantly suppiied with water.
armàta, Wats. (Brahèa armitta, Wats.). Blue Pals. Tall and slender, 40 ft . high : los. very glaucous; petiole narrow, deeply channeled, margined with numerons stout, more or less hooked, slightly spreading spines; segments $30-40$, sub-lacerate at the apex, slightly filiferous. Lower California. G.C. III. 20: 425.
édulis, S. Wats. (Brahèa édulis, Wendl.). Stem 30 ft . high, 15 in. thick, with thick, corky bark; sheaths tibrous, at length glabrous: petioles stout, 1 in. wide, planoconvex, unarmed on the acute margins, fibrous-pubescent or glabrate above; ligule $2-3$ in. long, densely silky-tomentose; blade 3 ft .; segments $70-80$, at first tomentose, lacerate at the apex and fibrous on the edges. California. R.H. 1893, p. 997, and 1897, p. 77. G.C. III. 13:507; 22:157. Jared G. Smith and W. H. Taplin.
ERYTHREA (Greek, red; alluding to the fls. of some species). Gentiandece. This includes two hardy plants with bright, deep rose fls., one of which is a rockery plant from the Azores, the other a Californian annual which deserves general eultivation. The Howers have slender green tubes an inch long, and a spreading limb of 5 oblong lobes, each half an inch long. The style of E. renusta is curious. Though longer than the stamens, it does not stand above them, but bends down and stands off at one side. The genas has possibly 30 widely seattered species, and no near allies of garden value. These plants bloom in summer and autumn.
Of $E$ '. diffust, J. B. Keller writes: "A light, sandy loam, in a protected nook of the rockery, with partial shade, is required for this charming little alpine plant. It must be planted in a well sheltered position, and requires protection from sun and severe frost in winter, but the little plant is well worth all the extra care we may have to expend on it in winter. Prop. by cuttings, seeds or livision."
Mássoni, sweet ( $\boldsymbol{L}^{\prime}$. diffùsa, Woods). Heicht 4 in.: stems ascending, tufted, not branched above. 1-3-hl.. fls. lateral. Azores. Annuals in Azores. biennial in western Europe. - The plant cult. under this name is considered perennial by our nurserymen.
venusta, Gray. Height 6-10 in.: stems erect, 4 -angled, cymosely branched, as many as 14 -fld.: los. $1 / 2-1$ in.
long, oblong or orate oblong, very blunt: corolla lobes said to be yellow at the base, but in the picture the fls. hare a white eye. Calif. B.M. 6396. - The largest flowered species.

ERYTHRINA (from Greek for red). Leguminosce Coral Tree. Herbs, shrubs or trees, with large and shows papilioniceous fls., represented by $20-30$ species in tropicai countries. Lrs. pinnately 3 -follolate, with glaulibliform stipules. Fls. mosdy red and in dense ra cemes; calyx 2 -ipped; standard fy,$\infty$ or very nearly so; tenth stamen free, or united only half its length: fr. a slender, more or less twisted pod. Plants usually spiny; very rapid growers. Erythrinas are mach prized garden plants. Some of them, particularly the herbaceous kinds, are frequently planted out in the summer. In the house they demand an intermediate temperature. Give rich soil and frequent waterings. In the woody species, aim to have well-ripened wood for flowering, for the bloom is produced on mood of the preceding year. The herbaceous species are propagated by division of the rootstock; aiso by cuttings from shoots springing from the oid roots. Woody species prop. by cuttings of growing wood. All species prop. by seeds, whenever these are obtainable.
A. Herbaceous species (or treated as such). These die down at the end of the season, and the roots may be stored after the manner of Dahlias. It is lest to start the roots before planting them out, particularly in the N. In their native countries, these species are more or less woody.
Crísta-gálli, Linn. ( $E$. luurifolia, Jacq.). Common Coral Tree. Bushy and woody, sometimes developing a very short trunk, but the flowering branches dying back after blooming, the stronger branches coming annually or periodically from near the root: stem and petioles somewhat spiny: lfts. ovate-oblong or lanceoblone, acuminate, entire: fls. large, brilliant erimson, the keel nearly as long as the down-folding standard, the wings rudimentary. Braz. B.M. 2161.-Runs into many forms, varying in the shade of red, some of them with variegated lvs. South of Washington, stands out of doors if protected. In the North the fleshy roots are taken up and stored. Valuable for summer bloom. Fls. in large, terminal racemes. Madame Belanger is a popular garden form.
compacta, Bull. Of very compact habit: fls, rich crimson. Probably a form of the last.
speciosa, Andr. Bush-like, reaching $8-12 \mathrm{ft}$., but usually eut back as $E$. Crista-galli is: stems and lis. prickly: lfts. broad and more or less 3-lobed, pointed, veiny: fls. in pubescent racemes, rich crimson. W. Ind. B.R. 9:750.-Stem green, very prickly.
herbàcea, Linn. Stems several and herlaceous. from a very thick root, $2-4 \mathrm{ft}$. high, the flowering ones nearly leafless: Ifts, ovate to hastate: petioles long, more or less prickly: fls. 2 in. long and very slender, deep scarlet, in loose racemes l-2 ft. long: seeds scarlet. N. Car. to W. Ind. Common on Gulf coast of Alat. and Miss. B.M. 877.-E. Bidwillii, Lindl., is a beautiful hybrid of this species and $E$. Crista-galli (the latter the pollen parent), with herbaceous shoots and an ascending vexfllum. B.R. 33:9.
AA. Wooly or tree-like species. Greenhouse plants, or planted in the open in S. Calif. and S. Fla.
Humeàna, Spreng. (E). Cáffra, Hort.). Often treelike and 30 ft . or more, the stem and petioles very sping: petioles long: Ifts. rhomboid-ovate, acuminate: peduncles axillary and strictly ereet, longer than the los., white-warty: Hs, verticillate-spiked on the ends of the peduncles, long and slender, deflexed. brilliant scarlet fading to purple. S. Afr. B.M. Y431. B.R. 9:736.
Corallodéndron, Linn. Corat Tree. Tree, prickly: lfts. ovate-rhomboid: calyx teeth obsolete: standard erect, linear-ohlong, scarlet: seeds scarlet, usually with a black spot. W. Ind.
Other Erythrinas hare been introduced into S. Calif.: $\boldsymbol{E}$. Bogoténsis, said to grow 50 ft . high. from Colombia; $E$. insignis, Todaro, of unknown habitat, 100 ft .; $\boldsymbol{E}$. vidrum, Todaro, 100 ft ., of unknown habitat.
L. H. B.

ERYTHROCH 庆TE, or ERYTHROCH $̇$ ETON. See Senecio Japonicus.

ERYTHRONIUM (from the Greek word for red). Liliàcer. Dog's-Tooth Violet. Adner's Tongle. Handsome plants of the north temperate zone. Four belong to the Old World, four to eastern N. America, one is found in the Rocky monntains, while in the cool woods and high monntains from northern California to the British possessions the genus is represented by nime species and a number of well marked varieties. Erythroniums have bulbs standing erect and from oblong to linear in form, two radical leares, which in most species are handsomely mottled : scape slender and leafless, producing from one to many flowers. The perianth consists of six similar divisions, usually recurved, six stamens and a single 3 -lobed style. The species are confused and are much in need of revision. See


Watson. Proc. Amer. Acad. Arts \& Sci. 14:260: 22:479. Baker, Journ. Linn. Soc. 14: 296 . Weathers, (i.C. Ill. 20:361.
The Erythroniums are most interesting spring flowers. They succeed in any light soil, particularly in partial shade. In common with all herbaceous perennials, especially those which produce bulls or corms, they profit by a winter malch of leaves or litter. The western Erythroniums are all plants of the cool woodlands, except a few which grow ht such altiturles as to reach like conditions. They thrive best in shade, a thoroughly drained soil, moist and rich in mold, a surface covering of half rotten leaves tending to equalize conditions. Ans good fibrous material, as fibrous peat, cocoanut fiber or sp" "in bark, or even well rotted sod, will answer the puri e to lighten the soil and give that abundance of moh they delight in. l'ockets in shaded rockwork give ideal situations. They will thrive naturalized on cool, wooded slopes, and where the drainage is good will thrive in grass. The leaves ripen before the grass is cut and the effect is very fine. Simply planted in boxes in a loose soil, rich in mold, and left year after year in a shaded spot, they sometimes give splendid bloom. EL. Hartwegii flowers vervearly, and stands more heat and dryness than any other variety. E. purpurascens and E. montanum. from high altitudes, tend to throw up their growth very late, and are on that account rather difficult to cult. E. grandiflorum flowers very early, and must be given a cool situation and be
kept back, to secure any length of stalk. All of the other western species are very satisfactory garden plants. The propagation of E. Dens-Canis and varieties, the eastern American species and $E$. Hartuegii, is by offsets. All of the other western species can be increased only by seeds. The eastern species should be planted at least 5 in. deep.
A. Fls. always solitary, and without a crest near base of inner petals: leares handsomely mottled: offsets feu.-Old World species.
Dens-Cànis, Linn. The European species: in the type Hs. are rosy purple or lilac: stem $4-6$ in. high. Variations are white, rose-colored or flesh-colored. Var. longifolium, Hort., varies in its narrower leaves and larger flowers. Far. Sibiricum, Hort., from the Altai Mts., is taller. - Little known in Amer. gardens.
AA. Fl. solitary. withent a crest on inner petals: producing offsets.-Eastern American species.
Americànum, Smith. Common Adder's Tongle. Fig. 779. Lvs. mottled: fls. yellow; the segments recursed: buib with long offshoots. Eastern U.S. and Canada, to Fla. and Ark. Runs into many forms. The following names belong with it: $E$. lanceolidum, Pursh; E. angustatum, Raf.; $E$. bructè̀tum, Boott.
ábidum, Nutt. Lis. not mottled, narrow: fls. White, yellow at base ; segments recurved. Ont. and N. F. to Tex.
mesachòreum, Knerr. Lrs. not mottled: fls. lavender, the segments not recurved: earlier than the last. Iowa to Kiansas.
propúllana. Gray. Lrs. small. green or slightly mot. thed: Hs. rose colored, with yellow base: offsets produced from the stem sheath. Southern Ontario and Minnesota.
AAA. Fls. 2-4, sometimes more (rarely only 1-fld.).West American species. The lrs. are richly mottled. except in $\boldsymbol{E}$. grandiflorm. The corms do not produce offsets, except in $E$. Hartwegii. Inner petals with auricles except in $E$. Howellii. All except $E$. purpurascens have large and showy ths.

## B. Style 3-cleft.

grandiflòrum, Pursh (L'. gigantèum, Lindl.). Lvs. mmottled: stem slender, $1-\overline{5}$-fll.: fls. very bright yellow; petals recurved; anthers yellow.

Var. álbum, Hort. (E. montànum, Hort.). Like the type, except the Hs. are white, yellowish at center, and with a slight greenish cast.
Var. minor, Morien, is smaller.
Nuttalliànum, Schult. Like $\boldsymbol{E}$. grandiflorum, and perhaps a variety of it, but has red anthers.
Hártwegii, Wats. Bulb-bearing offscts: lrs. mottled: fls. 1-fi, mostly in a sessile umbel, large, light yelloworange at center. Foothills of the Sierra Nevada mountains in California. G.C. III. $20: 361$.
revolùtum, Smith. Lers. 1-1, mottled in white and light brown: Hs. nearly always 1 or 2 ; petals narrow and curved; style large and stout; filaments from subulate (awl-shaped) to deltoid, opening from white flushed with pink to pinkish purple, becoming purple. J.H. III. $35: 523$.

Var. Bolánderii, Hort. (E. grandiflorum, var. Smithii, Hook.). Differing from the type in having white Hs., tardily becoming purple, and in being smaller.
Var. Johnsoni, Purdy (E. Jóhnsoni, Bolander). Very similar to the type, but lys. mottled in dark hrown and looking as if coated in rarnish, and Hs. dark rose with orange center. Gin. $51: 1106$. G.C. III. 19:549; $25: 253$.
Var. præcox, Purdy. Lrs. mottled in mahogany, the most heautifully in any Erythronium: the Hs., usually $2-4$, are creamy white with orange ceuter.
Var. Wátsoni, Purdy. Differs in having a full. creamy white fl., orange at center, and usually banded with brown above the buse; in foggy weather the fl. is bellshaped: lis. mottled in brown.-One of the finest of Erythroniums.

Var. albillorum, Hort. (E. giguntèum, var. albiflòrum, Hort. E. grandiflorum, var. albiflorum, Hook.). This differs from var. W'atsoni only in being pure white, with a delicate greenish cast. B.M. 5714. F.S. 20:2117. G.C. III. 3:556; 15:621.

BB. Style not divided.
citrinum, Wats. Lrs. mottled: stem 1-3-fld.: petals broad, strongly recurved, light yellow, orange at center, the tips becoming pink.

Héndersonii, Wats. Lrs. mottled in dark brown: petals strongly recurved, pale purple, with a very dark purple, almost black, center. G.F. 1:317. G.C. III. 3:653; 15:623. В.М. 7017.
purpuràscens, Wats. Lrs. not mottled but shaded in dark metalic tints: small, spreading ths. crowded in a raceme, light vellow (almost white), center orange, becoming purplish. -The smallest of our Erythroniums. Properiy an alpine.

T10wellii, Wa+s. Lrs. mottled: scape 1-3-fid.: fls. pale $y$ flow with orange base, becoming pinkish.-Of the I acitic coast Erviluroniuns, this alone is destitute of the ear-shaped appendages at inner base of petal.

Carl Purdy.
ERYTHROXYLOM (Greek, red wood: true of some species). Linicere. Coca. The Cocoa plant, the lvs. of which are of vast importance in medicine, can be grown in the extreme south of Florida and California, and is rarely cult. under glass in the North for its economic interest. It is a shrub $5-6 \mathrm{ft}$. higin, with rusty brown, slender branches, on the extreme tips of which the lis. are borne. Below the lvs.. on the wood of the preceding year, which is reddisli, clusters of $3-5$ yellow 5 -lobed His. a quarter of an inch across spring from the protection of the small scales that line the branchlets, and which are colored like the bark. The native country of the Coca being still uncertain, it is necessary for purposes of description to take as the trpe the earliest described form, which happens to be a Peruvian one, named by Lamarck Eirythroxylum Coct, and figured in the Botanical Magazine 1894, plate 7334 . The liss. of this form are about $21 / 2 \mathrm{in}$. long, oblong-olovate, tapering to a short stalk, rounded at the apex, the midrib extending beyond into a short, sharp point.

Cocoa is grown commercially on a large scale throughout South America. Peru produces fifteen million pounds of the dried leaf every year, Bolivia half as much, and the rest of South America very much more. The irs. are chewed to prevent hunger and fatigue. Dr. H. H. Rushy, of New York, in the Therapeutic Gazette, says, "The effects of Cocaine as a nerve stimulus applied to intellectual and emotional activity are ruinous. It takes away appetite, abolishes the sensations of hunger and thirst. lessens waste during exertion, and decreases the exhaustion of ill-fed laborers and travelers. Beyond this, Cocaine has no supporting or nourishing power whatever, and its essential action is enfeebling. Every attempt made to support by it athletic conpetition has resulted in failure or even disaster." Cocaine is an excellent anæsthetic, and is particularly useful in operations on the eye. Coca should not be confused with Cocoa and Cacao. which are discussed under Theol, roma. The literature of Coca, from every point of riew down to the year 1859, is reviewed in the Kew bulletin for that year. W. M.

ESCALLONIA (Escallon was a Spanish traveler in S. Amer.). Suxifragicece. About 40 South American evergreen shrubs or trees, with scattered entire or serrate, orate or lanceolate lus, viscid branches, strongodorous tis. in terminal racenes or panicles: petals 5 , linear-spatulate; stamens $\overline{5}$; anthers orate-oblong; style simple, the stigma capitate and $2-3$-lobed: ovary $2-3$-loculed. A few species have been introduced in the S.. chiefly in S. Calif. They are of easy culture; rapid growers. Some of them will no doubt prove half hardy as far north as Washington. Spring and summer.
Montevidénsis, DC. (E. floribínda, Hort.). Nearly erect bush, branches cylindrical: Irs. 2-4in. long, elliptic or linear-oblong, obtuse or nearly so, narrowed into a distinct petiole, minutely dentate : fls. white, $1 / 2 \mathrm{in}$.
across, in a large, terminal panicle-like cyme. B.M. 6404. B.R. 17:1467.
pulverulénta, Pers. (E. Berteriuna, DC.). Shrubs, hairy all over: Irs. elliptic and obtuse, serrate : ths. white, in erect, terminal racemes: branches trigonal.
virgàta, Pers. (E'. Plilippid̀na, Mast. EU. virgàta, var. Philippidua, Engl.). Half-hardy shrub south of Washington, with rod-like light brown branches: liss. nearly sessile, not glandular nor odorous, linear or oblong-spatulate, serrate: fls. white, small, in dense racenies terminating the branchlets.
Organénsis, Gardn. Half hardy S.. $-\mathbf{n} \mathrm{ft}$., branches red and angled: lvs. elliptic or oblong, crowded, serrate, glossy: tis. pink, in close, terminal clusters. B.M. $42 \overline{4}$. -Excellent.
rùbra, Pers. Twiggy shrub, glandular-pubescent: livs. rather small, obovate-lanceolate, sharp-toothed: fls. long-tubular, red, in short, terminal clusters. B.M. $2890^{\circ}$

## L. H. B.

ESCHSCHOLZIA (J. F. Eschscholz, of Kotzebue's scientific expedition). Papuceràcea. About a dozen low, pale or glaucous herbs, annual or perennial, with dissected, alternate lvs., and large, showy rellow or whitish fls.: sepals 2: petals 4; stamens numerous: stigmas $4-6$ : capsule long and slender like a silique, 1-loculed. The calyx forms a hood which is pushed off over the bud as the petals expand (see detail at the left in Fig. 780). The torus or receptacle (from which the capsule arises) is prominently widened or dilated. Monogr. in Gray, Syn. Fl. N. Amer. 1:90-92. Commonly spelled Eschscholtzia.

780. Eschscholzia Californica ( $\times 1 / 2$ ).

Californica, Cham. California Poppy. Fig. 780. Perennial, but cult, as an annual, 10-20 in. high, forming mats: lvs. petioled and divided into linear parts:

## EUCALYPTUS

fl. saucer-shaped, opening in sunshine, 2-3 in. across yellow or orange or cream-colored : pol 3-4 in. long, strong-ribbed: torus large and funnel-shape. Calif. and Ore., mostly along the coast. B.M. 2887. B.R 14:1168. R.H. 1894, p. 381. - One of the most popular garden fls. It is treated as a hardy annual. Seeds may be sown very early. It stands considerable cold, and blooms after the first frosts. If well protected, plants of one season's growth will pass the winter and give some bloom the following spring. It sometimes self sows. Very attractive as an edging, because of its interesting bluish foliage. There are double-fll. forms. Very variable, and cult. under a rariety of names, as C. maritima, Hort. (not Greene). C. veiria, Hort. (trade name for mixed varieties). ( . atrantiaca, Hort., and C. alba, Hort. The so-called white varieties are not yet pure white. Do not bear transplanting well.

Var. cròcea, Hort. ( $E$. cròcea, Benth.). Fls. deep orange: torns very whilely expanded: calyx bud longattenuate. B.R. $20: 1677$. B.M. 3495.

Var. Doùglasii, Gray ( $E$. Doùglasii, Benth.). Rather more slender, and hooms earlier: ths. pure yellow.
tenuifolia, Hook. Lower, with finer-cnt and denser foliage, the long divisions being almost capillary: fis. small ( 1 in. across), light yellow. overtopping the lvs.: torus less prominent. Calif. B.M. 4812.
L. H. B.

## ESTRAGON. Irtemisia Dracunculus.

EUCALYPTUS (Greek, eu, well; kalyptn, to cover as with a lid: the calyx limb covering the flower before anthesis, then falling off in the form of a lid or cover). Myrticec. Gum Tree. Mostly trees, frequently of immense size; a few of the alpine and sub-alpine species shrubby : los. simple, entire (Fig. 781), in the seedlings and young shoots of many species horizontal, opposite, sessile and cordate; in the adult mostly vertical (occasionally horizontal), alternate, petiolate and varying from broadly ovate to lanceolate-acuminate and falcate, thick or thin, always rigid, penniveined, glabrous.

781. Eucalyptus globulus ( $\times 1 / 3$ ) Shoots on a young plant.
except rarely in the young shoots, sometimes covered with a glaucous wax : umbels solitary and axillary or paniculate, near the ends of the branchlets, usually white: fls. in umbels of 3 to many, rarely solitary ; calyx tube obeonical eampanulate or oblong, adnate to the orary at the base; lobes connate, forming a lid which separates by a circumscissile dehiscence; petals wanting
(or adnate to the calyx-lid); stamens numerous, in many rows, usually free, frequently inflexed in bud; anthers small, mostly distinctly longer than broad and opening by parallel longitudinal slits, often almost kid-ney-shaped and opening by divergent longitudinal slits, or truncate and opening by terminal pores; style undivided: fr. a capsule, opening at the top by 3-6 valves; seeds numerous, mostly angular, only a few fertile. For structure of fruit and calyptra, see Figs. 78.788 . A genus of about 140 species, all Australasian, excepting perhaps 5 found in the East Indies. Valuable hardwood trees, mostly of rapid growth : the timber is exceedingly durable and largely used in Australia by shipbuilders, railroad engineers, implement makers, and for building purposes. Felling for timber should be effected towards the end of the dry season, when the flow of the sap is least active. Ring-harking, if necessary, should be performed during the latter part of the cool, or the carlier part of the warm season, so that by largely exhausting the sap, the fewest or no new shoots will rise from the root (Mueller). The leaves of many species contain a valuable antiseptic, volatile oil, which is distilled for pharmaceutical purposes. The hark of several species yields a resin (kino) containing tannin in commercial quantities, on account of which the name of Gum Trees is applied to the genus. E. globulus has been very widely distributed over the globe through the persevering efforts of the late Baron Von Mueller; it is frequently planted in the malarial regions of warm climates, as at the Campagna at Rome, with very beneticial effect. (Sanitarians will be interested in "Eucalyptus in Algeria and Tunisia, from an hrgienic and climatological point of view," by ir. Edward Pepper, Proc. Amer. Phil. Soc. $35: 39-56$.$) In England the same$ species is grown extensively for subtropical gardening, on account of its distinctive glaucous hue and symmetrical growth, but in that climate it needs the protection of glass in winter. But few species are really hardy; most of them, howerer, can be grown successfully in California and countries enjoying a similar climate.
For ready determination of species in this critical genus, it is necessary to have adult leaves, mature buds, Howers, and mature fruit: immature fruits are often very misleading. Monographed in part ly Baron von Mueller in his Eucalyptographia (cited here as F.v. M. Eucal.), in which 100 species are carefully illustrated. Bentham describes 135 speeies (almost the whole genus) in his Flora Australiensis, Vol. 3. The following key has been adapted from Lmehmann's Dichotomous Key, published in 1898: the descriptions have been sumnarized from the Eucalyptographia, and subsequently verified by reference to herbarium specimens wherever these were available. References to Hook. Icon. mean Hooker's Icones Plantarmm.

Culture in the E'ust: Eucalypti are most casily raised from seeds, which generally germinate freely. These should be sown thinly in pots or pans of light, sandy soil. and placed in a little heat. E. globulus, when intended to be used for subtropical bedding or for a group on a lawn, is best sown in August and grown on through the winter, for use the following season. In this way much larger and better plants may be obtained than when sowing is deferred to the spring. It is best to raise new plants each rear, as lifted specimens do not regain their beanty of the preceding season. Being fast-growing plants, considerable space must be allowed when they become established, either in the open ground or in pots. A rather rich soil, composed of loam and decared manure, with the addition of some char. coal, to keep it open, is most suitable. E', maculata, varcitriolora, is very useful for growing in pots in the conservatory, its lemon-scented leaves rendering it a general farorite (Nicholson).

Culture in the South: The process of raising Eucalypts is one of extreme simplicity. Well-ripened seeds, shallowly sown (on open mursery ground, or, should the species be a rare or select one, in wool boxes or seed pans) germinate quickly; when about hand-high the seedlings should be transplanted in the mursery, to check the downward arowth of the roots and to promote the formation of lateral rootlets. fit to retain some soil while moving such seedlings to places of permanency. The operation of transplanting should be carried out in
the cool season, best under a cloudy sky, and the seedlings ought not to get dried up in any way during the process of removal, regular daily watering for some time afterwards being recpuisite. Eucalyptus seedlings for shipment to places only a few days' distance may be simply packed in elosed cases without much soil ; for transmittal to longer distances, they must be well established in pots or bamboo pieces. In this respect Eucalypts should be treated like most pines and other coniferous trees, and, like them, cannot be transplanted when they have attained any size, even when provided with a good ball of earth. But their distribution by means of seeds is the easiest method, on account of the durability and small size of the latter. (F. v. Mueller: adapted).

## INDES.

acmenioides, 31 . albens, $\stackrel{3}{3}$ alpina, 35. amyghalina, 47 angustifolia,4\% Baileyana, 42. huprestinm. 15 calophylla, 5. citriodora, 1. coccifera, 44. colossen, 11. coriacea, 10. cormuta, 37 . corymbosa, corynocalyx, 8 crebra, 23. diversicolor, 11 doratoxylon, 9. drepanophylla, 22. fircifolia ${ }^{6}$ firitolia, 6. globulus, 34.
gomphocephala, 33 . piperita, 16 . goniocalyx, 4. Planchoniana, 17 (iumuii, 45. hemmastoma. 46. hemiphloia, 3. Lehmatuni, 36 . leptophleba, ㅇ.. loucosylon, 13. 1, ngifolia, 12,47 maculata, 1. marginata, 9 megacarpa, 40 melanophloia, 20 . melliodora, 19. mencrocorys, 28 obcortata. 39. obliqua, 18. orcidentalis, 38. palleus, 14. pamells, 14. paniculata, 7. pilularis, 30 . platypus, 39. polyanthemos, 2. punctata, $\because \underline{2}$. reglans. 47. resinifera, 26 Risloni, $3:$. robusta, "4. rosea, 14. costrata, 50. rudis, $\grave{2}$. saligna, 27. iderisphloist, 21. sideroxylon, 14 8. lachnirarpa, S.ewartians, 49. teretirornis, 51. trimutha, 31 . rimutho, 3 . uncinata, 43. viminalis 4.
A. Fruit-ralres quite enclosed in the cupsule (see also Fo. 2.5, $E$. mergimatu: fruit must be quite mature in order to determine this point).
B. Fls. mostly in terminal or lateral panieles, not simple umbels (occasionally the inflorescence will appear to be puniculate in section BB also, ow ing to the fallin! off of the leaces, so that it is necessary to look for the leaf-scars in placing doubtful specimens): les. scattered, petiolate (except sometimes in seedlings amd robnst shoots).
C. Lis. of equal color on both sides (see also 1 lo. 4 and Ko. $\sim, E \cdot$ corymbosa amel $E$. paniculata).
D. Fruit at teast $1 / 3$ in. in diameter, more or less ureeolate: fls. and fruits pedicellate.

1. macalàta, Hook. Spotted Gem. Handsome tree, 150 ft . high: hark smooth, whitish or reddish gray, mottled with bluish white or hrown reddish spots: lvs. lanceolate; veins feathery-sprealing: anthers opening by parallel longitudinal slits: lid double. F.v.M. Eueal. 3:4. Hook. Icon. 619. - Timber vatuable for ship-builders, wheelwrights and coopers, and for blocks for street paving.
Var. citriodora, Bailes (E. citriodora, Hook.). Lemonseented Glom. Handsonie tree: trunk slender: bark smooth, white: branchlets long, slender and drooping: lys. very long and narrow, light green, strongly lemonscented: fls, creamy white. May-July.-A faworite ornamental tree, of rapid growth in the warmer parts of California: subject to frost. Timber valuable for piles and girders: volatile oil used in perfumery: the young plants useful for window or cool greenhouse culture.

DD. Fruit rarely exceding $1 / 4 \mathrm{in}$. in diameter.
2. polyánthemos, Schau. Red Box-tree. Well branched tree, from 40 ft . or less to 150 ft . high: bark brown or ash-gray, persistent, roughish: lis. from orbicular to ovate, dull and grayish green on both sides: lid depressed- or pyramidal-hemispherical and faintly pointed: fls. small, white, in close panicles. deseribed as resembling gigantic heads of mignonette; outer stamens sterile; fertile anthers truncated, opening by terminal pores. F.v.M. Fucal. 3:9. Hook. Icon. 8i:- Fairly rapid grower. Timber extremely hard and durable, unsurpassed for fuel, and much used in Aus-
tralia for ties and wheelwrights' work. Very useful for bees, flowering in Jan. and Feb.
3. hemiphldia, F. F. M. Australian Box-tree. Tree, 90 ft . or less high: bark of trunk persistent, solid, grayish and somewhat wrinkled; of branches deciduous, in flakes or long strips: les. from lanceolate-falcate to ovate-lanceolate, thick and rigid, often ashy gray; lateral veins diverging at a very acute angle: lid conical: anthers very minute, globular, opening by lateral, pore-like apertures. F.v.M. Eucal. 5:5.Timber hard and tough, valued in Australia for railroad ties, telegraph poles, shafts, spokes, ete.; also makes excellent fuel.

Var. álbens, Moore ( $\boldsymbol{E}$. álbems, Miq.). White Boxthee. Bark dull green, persistent: lis. glaucous or mealy white: fls. chalk-white.
CC. Lis. paler beneath than abore: lranchlets glabrous.
D. Fruit urceolate (urn-shaped) over $1 / 2 \mathrm{in}$. long: lid of calyx not broader than the tabe, tearing off along an irregular suture: anthers alistinctly longer than broud, opening by almost parallel lonyitudinal slits.
E. Size of fruit under 1 in . in diameter.
4. corymbosa, Smith. Bloodwood. Small tree: outer bark persistent, rough-furrowed, gray and turning somewhat black; inner gellowish or reddish brown; that of the upper branches smooth and often reddish: Irs. lanceolate, only slightly eurved, firm; midrib very prominent, lateral reins very numerous, fine, almost transversely spreading; oil-dots ineonspicuous: peduncles and pedicels long, slender: fls. yellowish white, fragrant: lid depressed-hemispherical, short-pointed: fr. large, oval-urn-shaped. Ang.-Decem. F.v.M.Eucal. $5: 2$. - Timber very hard when dry, durable under ground, and much used in tustralia for fence posts, rails, railroad ties, and rourh building purposes: bark yields about 28 per cent tannic acid; dried lvs. about 18 per cent.
EE. Size of fruit exceeding 1 in . in diameter: les. turning the surface more than the edge, to the zewith; reins feathery-spreading.
5. calophýlla, R. Br. Medium-sized, umbrageous tree: bark persistent, dark, deeply furrowed: lvs. broad- or lanceolate-ovate, firm and thick, conspicuously stalked: Hhs. large, white, rarely pink, in large elusters: lid thin, patellar: fr. large, smooth, ovate-urn-shaped, border compressed; seeds very large, black, not winged. JulyOct. B.M. 4036 (as E. splachnicarpa). F.r. M. Eucal. 10:2. G.C. 1II. 20:661.- Omamental tree, but of rather slow growth and subject to frost. Fruits polished and sold for pipe bowls: good shade-tree for avenues: valuahle for bees, flowering late into the fall: bark contains tannin.
6. ficifolia, F.r. M. Crimson-flowered Elcalyptus. Figs. 782, 783. Handsome, umbrageous dwarf tree or tall shrub, of symmetrical halsit: bark persistent, furrowed: Ivs. broad- or ovate-lanceolate, rigid, comspicuously stalked; veins almost transcerse: Hls. crimson or searlet: fruits large, smooth, urn shaped-ovate; border compressed; seeds pale brown, broadly wiuged. Aug., Sept. F.s. M. Eucal. 7:3.- Very

782.

Fruit and bud of E. ficifolia. ( $\times 1 / 3$.) ornamental ; adapted to the lemon-belt: a shady, heat-resistiug avenue tree, withstanding drought. Fruits polished for pipe bowls.

## DD. Fruit truncate-orate, perlicellate.

7. paniculàta, Smith. Red Ironbark. Mediumsized tree: lark persistent, hard. rough : Irs. rather thin: fls. sometimes borne in axillary umbels: lid thin, conical, semiovate; outer stamens sterile; anthers minute, truncate, opening by minute pores at the summit; stigma dilated, distinetly broader than the summit of the style: calyx-tube and fr. sometines 4 -ribbed. May. F. v. M. Encal. 5:8. - Tinuber hard and durable, lasting under grombl: valuable for railroad ties, fencing and building purposes.

BB. Fls. in simple, axillury umbels: fr. with 3 or more cells, and mot exceeding 1 in. in length. (See ulso E'. paniculatu, No. \%.)
c. Lid projecting beyonl the rim of the calyx tube: anthers distinctly longer then brourl, opening by almost parallel longitudimul slits.
8. corynocalyx, F.v. M. SuGak Gim. Tree, 120 ft high : bark smooth: lvs. elongate-lanceolate, slightly curved, somewhat paler beneath: lial alnost hemispherical: fr. urn-shaped-ellipsoid, longitudinally streaked. June-Sept. F.v.. M. Eucal. 2:?.-The best ilrought-resisting tree for desert regions (Mueller); the foliage contains but little oil, is sweetish, and is browsed by stock. Needs proteetion from sea breeze when planted along the coast. An ormamental tree used for roadside planting in southern C'alifornia. Timher hard, strong, durable; useful for railroad ties and fence posts. Said to be the quickest-growing shade tree for regions exposed to hot, bleak winils: will stand $18^{\circ} \mathrm{F}$.

783. Eucalyptus ficifolia ( $\times 1 / 3$ ).
CC. Lid not projecting bryaml the rim of the culys-tube. D. Lis. opposite: unthers minute, not longer thun broal (rectrl! oivel), opening by longitudinal slits.
9. doratóxylon, F. V. M. SPEAK-wOOD. A pretty, small tree or tall slirub: bark smooth, greenish white: lvs. stalked, narrow, laneeolate: umbels bent downward, on recurved, slender, compressed peduncles: lid terminating in a beak-like point: outer filaments sterile. F.v. II. Encal. 4:4.-Graceful tree, of slender havit: timber firm and elastic.

DD. Li's. scattered.
E. Leaf-ieins several, longiturlinal, almost parallel u-ith the millrib.
10. coriàcea, Cunn. ( $t$ '. puuciflora, Sieb.). White GLM. Handsome tree: branches spreading ; branchlets slender and more or less drooping: bark smooth, whitish gray: lvs. broad, elongated, thick: lid hemispherical, twiee or thrice shorter than the tube, usually quite blunt: anthers almost kidney-shaped, opening by very divergent, longitudinn slits: fr. shortly-pedieelled. Nor.-Feb. F.v. M. Fical. 3:G.-An alpine tree, and one of the hardiest species. Cattle browse on the foliage in seasons of drought. Timber used for fuel, fences and building purposes; sometimes badly affected with scale.

EE. Leaf-veins all more or less diverging from the midrib.
F. Foliage much paler beneath (see also Vo. 2:5, $E$ maryimata): authers almost heurt-shuped, opening by lonyituainal slits.
11. diversicolor, F. v. M. (E. colóssea, F. r. M. E’. diversicolor, Var. colossea, Hort.). KARin. Very tall, synmetrical tree, attaining 12 ft . in diameter: bark smooth, white: lvs. scarcely inequilateral, dark green and shining above; veins feathery-spreading, fine : lid nearly hemispherical : fls. white. in heary clusters; stamens all fertile. March-May, and again in Novem.
F. r. M. Eucal. $\overline{5}: 4 .-A$ rapid grower, profuse bloomer, and considered a good tree for bees. Timber elastie, valued for building purposes, shafts, musts and fence rails.
FF. Foliage of equal color on looth siales, or nearly so. G. Pedicels elonuated: lid conical.
12. longifolia, Link. Woollybutt. Tall tree: hark persistent, gray, rongh or wrinkled, somewhat fibrous: lvs. clongated; veins very spreading: lid broadly conical, acute, pale : stamens all fertile; anthers cunente- or oblong-oval, opening by longitudinal slits: stigma not dilated: fr. rather large, bell-shaped, semiorate, angular: margin outwardly ascending. F.v.M. Eucal. 2:4. -Flowering almost continuously. Valuable for bees.
13. leucóxylon, F. v. M. Ẅhte Ironbark. Tall tree, usually branching below: bark mostly deciduous, smooth, pale: lvs. narrow-lanceolate, grayish or dull green: fls, usually in 3 's, white or rarely pink: lid semiovate, pointed: outer stamens sterile; anthers truucated, opening by apical pores; stigma much dilated: fr. slightly contracted at the oriffee, rarely slightly angular. Jan.-Apr. F.v. M. Eucal. 1:4. - Viluable bee tree, making an excellent honey. Timber superior to that of almost any other Encalypt for certain morposes. Valued for hardness and durability; used by wagon- and ship-builders, also for railroad ties and underground work, for axe hamlles and for turning. Will grow on stony ridges not adapted to ordinary cultural purposes.
14. sideróxylon, Cunn. ( $E$. leucórylon, var. siderórylon, Authors). Red hrovisakh. Perhaps not specifically distinct from $k$. . lencoxylon: usuadly not branched below: bark persistent, rough, dark red: lrs. green: Hs. white or yellowish.
Var. ròsea, Hort. (E. leucórylon, var, ròsen, Hort.). Lrs. green: fls. rosecolored. Mareh, Apr.-A handsome form and profuse bloomer.

Var. pállens, Auct. ( $E$. leucbxylon, var. paillens, Benth. E. leqcóxylon, var. pillida, Hort. E.. siderdxylon, var. pillid", Hort.). Liss. silvery gray: fls. red.A profuse bluomer.
gG. Perlicels short or none: fertile seeds not winged. m. Fr. much contracter at the orifice, murly globular: outer unthers kichucy-shupeal, opening by divergent slits.
15. bupréstium, F. r. M. Shrub, 10 ft . high: lrs. about 2 in. long, narrow; oil-dots much concealed: ths. small, ahmost pear-shaped in bud: lid hemispherical, pointed: inner anthers opening by large, roundish pores: fr. nearly 1 in. in diam., truncate-globular, grayish; margin compressed. July, Aug. F.v. M. Eucal. 6:1.-Valuable for bees.
16. piperita, Smith. Peppermint Stringy-bark. Tall tree: bark persistent, gray, rough and fibrous: oildots copious, transparent: lid broad-conical, acute: fr. about $\frac{1}{4}$ in. in diam. F.v. M. Eucal. 3: S .

Hh. Fr. luit sligletly or uot at all contracted.
I. Dismeter of $f r$. nearly 1 inch.
17. Planchoniàna, F.v. M. Tree, 100 ft . high: peduncles erect, broadly compressed : pedicels very short or almost none: lid narrow-conical, from a semi-ovate base, about as long as the calyx-tube, both longitudinally streaked: anthers orate or roundish ovate, opening by longitudinal slits. July. F. V. M. Eucal. 4:6. - A profuse bloomer. Timber heavy, harl and durable; well adapted for sawing, but not easy to split.

## II. Diameter of $f r$. rarely exceeding $1 / 2 \mathrm{in}$.

J. Culyx-tube and lid gramular, rough.
18. obliqua, L’Her. (E. fissilis, F. r. M.). Stringr. bark. Tall tree: bark persistent, grayish, very tibrous, but rather soft and fragile : lrs. rery inequilateral at base : peduncles nearly terete, mostly slender : calyx tube terete: lid hemispherical, depressed or scarcely pointed. March-May. F.v. M. Eucal. 3:5.-Much valued in Australia for bees. Will grow on poor, dry soil, but subject to frost in California. Wood useful only for cheap, rough work.

## JJ. Calyx-tube and lid smooth.

19. melliodora, Cunn. Honey-scented Gùm. Spread. ing tree, 120 ft . high: bark more or less persistent below, roughish, brownish gray without, yellowish within: fls. small: lid conichemispherical: onter stamens sterile; anthers minute, truncated, opening by terminal pores: fr. truncate-globular, not exceeding $1 / 3 \mathrm{in}$. in diam., mostly t-celled. Feb.-Aps.-F.r.M. Eucal. $2: 5$. -Timber used by wheelwrights and ship-builders: makes excellent fuel: ths. partienlarly rich in neetar, and much sought by bees.
AA. Fruit-rulies either quite exserted or the points reaching the level of the rim. (Fruit must be fully mature in order to render this point determinable.)
B. Fls. generully panicled: anthers renate-cordate, opening by longitudinal slits: les. of equal color ou both sides.
c. Liss opposite, more ar less orate.
20. melanophloia. F. v. M. Silver-leaved Ironbark. Small tree: bark persistent. deeply furrowed, blackish: les. glancons or mealy white, sessile. from cordateovate or orbicular to orate-lancolate, obtase or acute: peduncles 3 - to 8 -flowered: anthers very small and globular; cells parallel and distinct: fr. truncate-globular, 2 or 3 lines long.
Cc. Lis. scattered, lanceolate.
21. siderophldia, Benth. Large-leaved Ironbark. Tree, 1.0 ft . high: bark wholly persistent, deeply and somewhat anastomosingly furrowed; furrows yellowish or dark brown: lvs. clongated: lid conical, very acute, about 3 lines long: outer filaments straght in bud; unthers very minute, roumlish: stigma not dilated. October. F. v. M. Eucal. 4:8.- Timber very strong, hard and durable: used for ralload ties, wharf piles, spokes and tool-handles.
2.2. drepanopbýlla, F. v. M. Low, stunted tree: bark ribbed, dark gray: les. thin, often over 6 in. long; reins fiae, numerous, parallel and very diverging: umbels 3- to 6 -Howered: Hs. large; calyx-lid about as long as the tulue (not exceeding " lines long): fr. 3 to 4 lines in diameter: valves level with or hardly projecting beyond the rim. Said to be near $E$. crebra, differing mainly in the large flowers and in the larger, harder and more globular fruit.
Var. leptophlèba, Luchm. (E. leptophlebt, F.T. M.), is said to be chiefly distinguished by the lrs. being thicker and the veins more oblique. Timber strong, hard and very durable; used for bridges, mine props and fence posts.
22. crèbra, F. v. M. Narrow-leaved Irosbark. Tall tree: bark persistent throughout. dark, almost blackish, ridged and deeply furrowed, solid: lis. narrow, linearlanceolate, thin: lid semiovate-conical, not exceeding 2 lines long: filaments inflexed in bud; stigma dilated: fruit-valres level with or hardly projecting bevond the rim, not exceeding: lines in diameter. F. ©. M. Eucal. 5:3. - Timber heary, hard, elastic and durable; used for railroad ties, piles, fonce posts, and in the construction of bridges and wagons; also suitable for splitting into palings.
BB. Fls. mostly in simple axillary umbels: fruits not exceeding 1 in . in diam. c. Lis. paler beneath.
D. Calyptra lid broader than the calyx-tube.
23. robusta, Smith. Swamp-mahogani Guy. Fig. 784. Handsome, symmet rically branching tree, 100 ft . high: bark of trunk persistent, rough, dark brown; of the branches reddish: lis. large, oral-lanceolate, long-pointed,dark green, coriaceous; the veins almost horizontally spreading: peduncles broadly flattened: fls. large, creamy white: calyx pale ; lid hemispherical below, eylin-dric-conical pointed above; anthe:s oblong - oral, opening by parallel longitudinal slits. Fine

24. Fruit and buds of E. robusta ( $\times 1 / 3$ ).
arenue tree: profuse bloomer, especially raluable for bees. Dec.-Feb. F.v. M. Eucal. 7:8.-Timber remarkably durable; used for ship-buidding. Wheelwrights' work, mallets, ete.: seems to thrive well in low, sour, swampy ground near the seacoast.
vD. Culyptra lis not broader than the calyx-tube.
E. Fruit $1 / 2$ in. or more in diameter.
25. marginata, Smith. Jakrah. Talltree: barkpersistent, somewhat flbrous: leaf-veins spreading: lid conical: stamens all fertile, the outer not intlexed in the bud; anthers cordate-kidney-shaped, opening by divergent longitudinal slits: fr.-valves very short, scareely or not at all exserted. Apl., May. F. v. M. Eucal. 7:5.-Valuable hardwool tree, requiring a warm climate: timber not attacked by teredo; used for wharf piles, underground work, telegraph poles, railroad ties, floorings, rafters, shingles and furniture; it is easily worked, makes a tine tinish, takes a good polish; used in Eng. land for street paring.

## EE. Fruit under ½ in. in diameter.

F. Length of lid usually tuice or thrice that of the calyx tube.
26. resinifera, Smith. Kivo Eucalypt. Tall tree: bark of trunk persistent, rough, of branches deciduous: leaf-reins pinnately spreading: oil-dots pellucid, more or less ubliterated: lid conical: stamens all fertile, inHexed in the hud ; anthers longer than broad, opening by parallel longitulinal slits. F.v.M. Eucal. 1:9.Timber valued for its strength and durability; particularly good for fucl; used in Syduey for street paving.
FF. Length of lid shorter than or aqualing that of the calyx-tube.
G. Foliage much paler beneath: lateral reins numerous, iery spreading.
2*. saligna, Smith. Tall tree: bark gray and smooth: leaf-reins featherv-spreading: oil-dots numerous but mucin concealed: peduncles lroadly compressed; pedicels very short or none: lid hemispherical, short pointed: stamens all fertile; anthers longer than broad, opening by parallel longitudinal slits. Nov. F.v.M. Eneal. 2:8.-Said to be hardier than $E$. globulus; prefers rich, alluvial soil.
28. microcorys, F.r.M. Tallow-wood Girm. Tall tree: bark persistent throughout, wrinkled: lves. thin, of almost papery consistence, copionsly dotted with pellucid oil-glands, paler and opayue beneath; veins spreading: pedicels elongated, club-shaped. almost continuous with the calyx tube: lid depressed-hemispherical, hardly jointed : anthers very minnte, almost heart-shaped, opening by divergent slits. F.v.M. Eucal. 2:6.- Timber hard, durable, easily worked; used preferably for wood bricks; also for railroad ties, knees and breasthooks in ship-building, and telegraph poles.
GG. Foliage slightly paler bencath, the lateral veins not revy close and moderately spreading.
H. Fruit brondest at the orifice: fertile seeds much larger than the sterile ones: stamens all fertile: anthers longer than broul, opening by parallel longitudinal slits.
29. punctàta, DC. Leather-Jacket. Hickory Gum. Beautiful spreading tree, 100 ft . or more high: bark smooth and dark, thick, most of the outer deciduons: lrs. thin; reins divergently spreading: peduncles broad, strongly compressed: pedicels angular, thick: lid bluntly conical. F.v.M. Eucal. 6:T.- Timber hard, tough and very durable, suitable for fence posts, railroad ties, wheelwrights' and ship-builders' work.
нн. Fruit contracted at the orifice: fertile seeds not much laryer than the sterile ones: stomens all fertile: authers kidney-shaped, opening by divergent longitudinal slits.
30. pilulàris, Smith. Blackbutt. Tree, 300 ft . or less high: bark of trunk persistent, blackish gray outside, somewhat fibrous and brownish inside; of branches smooth, gray or whitish: lvs. rather less shining below than above: peduncles strongly compressed: lid attenu-
ate, from a broadly conical base: fr. about 4 lines in diameter; rim thick. F.v.M. Eucal. 3:7. - Timber suitable for floor boards railroad ties, telegraph poles, and wood bricks for street paving.

785. Eucalyptus globulus.


EE. Lid not or only slightly broader then the calyx-tube.
F. Calyr-tube and lid warty; anthers larger than broad, opening by nearly parallel longitulinal slits.
34. globulus, Labill. Blée Gl’M. Figs. 781, 785, 786. Tree, 300 ft . or less high: bark grayish or bluish white, smooth except at the base of the trunk: lvs. lanceolate, thick: calyx-tube and lid covered with bluish white wax: fr. large, angular. Dec.-Feb. F.v.M. Eucal.f:: G.C. II. 15:601; III. 2: 784; 10:737. - Very attractive to bees, but the nectar has a strong and unpleasant odor. In Callfornia more extensively planted than any other Gum, and readily spreading by voluntary seedlings. Will stand protracted drought without irrigation in a region of only 8 or to inches annual rainfall (Franceschi). The most rapid-growing species. Timber used in Australia by ship-builders for planking and keels: also for fence rails, telegraph poles, railroad ties, shafts and spokes. It has been recommended for wine easks. Will tolerate $19^{\circ} \mathrm{F}$. Fig. 785 shows the stamens (i) and the structure of the bud. Nos. 1-4 are $1 / 2$ nat. size; 5 is on a larger scale. No. 4 is a section of a bud.
35 . alpina, Lindl. Shrub, 12 ft . high: lvs. inequilaterally half-ovate, blunt. acute on young shoots, leathery: Hs. sessile in the leaf axils, solitary or few: fr. large, 8 lines wide, ahmost hemispherical, not angular. Sept.Nov. F.v. M. Encal. 2:1.-A very rare and interesting alpine species, possibly suitable for street planting.
FF. Calyr-tube and lid smooth or rough, but not warty: lvs. much exceeding 1 in . in length.
G. Stamens not inflexed in the bud (see also No. 51, E. tereticornis): peluncles broadly flattened: calyx lid lon!, cylindrical, obtuse: anthers ellipsoid, opening by parallel longitulinal slits.
36. Léhmanni. Preiss. Tall shrub or small tree: bark coming oft in irregular sheets, roughish and reddish: fls. greenish yellow; calyx lid often $11 / 2 \mathrm{in}$. long: orary conrex at the top: fr. half immersed in the receptacle, about $1 / 2 \mathrm{in}$. in diameter; valves connivent into a cone, tapering into the persistent base of the style. JulySept. - Valuable ornamental tree.

3-. cornùta, Labill. Yate Tree. Large tree: calyx lid $1-1 \frac{1}{4}$ in. long: filaments vellow: ovary almost on a level with the calyx rim, the top that or at length slightly convex; style thickened at the base: fr. free (not immersed in the receptacle). Iuly-Sept. F.v.M. Eucal. 9:1.-Closely related to the preceding. Used successfully as a roadside tree in southern California; adapted to the lemon belt, and tolerating alkaline and saline soils (Franceschi). Prefers a somewhat humid soil. Timber hard, tough and elastic, suitable for shafts and frames

787. Fruits and buds of
E. occidentalis ( $\times 1 / 3$ ). of carts, and considered equal to ordinary ash wood. B. M. 6140.
38. occidentàlis. Endlich. Flat-topped Vate. Fig. 787. Tall tree: bark deciduous, mostly smooth : lis. narrowlanceolate: calyx lid $1 / 2-3 / 4 \mathrm{in}$. long; flaments yellowish: fruitvalves only half exserted, awlshaped, free. F.v. M. Eucal. 6:5.-Individuals show great diversity in time of flowering, so that specimens may be found in blossom at any time between August and April.
39. plátypus, Hook. (E. nbrovdèta. Turcz.). Tall shrub, 30 ft . or less high: bark smooth. grayish: lis. petiolate, leathery, broad-obovate, blunt, shining: peduncles flattened and winged, beut downwards: Its. sessile, dull red or vellowish white, not conspicuous: calyxtube prominently angular, much broader than the coniccylindrical lid: fr. truncate-orate, rery angular, border compressed: Howering almost continuously, but never much at a time. F.r. M. Eucal. 7:6. Hook. lcon. 849.
GG. Stomens inflexcel in the bud: fruits from $1 / 2$ to 1 in . in diameter.
40. megacárpa, F.v. M. Tree, 100 ft . or less high: bark deciduous, smooth, grayish white: peduncles sharply 2 -edged and dilated upwards: fls. 1-2 or 3, ses-
sile; anthers with a large dorsal gland near the apex: fr. large, slightly angular-streaked; valves thick, convergent, emersed; border broad, depressed. F.r. M. Eucal. 6:3.
gac. Stamens inflexed in the buls: fruits mostly uniler 1/2 in. in diameter: les. lancoolute, rarely lin. ear: calys-tube and lid not ribbeal.
-f. Chlyx-tube angular: pedicels flattened.
41. goniocalyx, F.r. M. Bastard Box Tree. Tall tree: peduncles compressed : pediecls very short and angular or wanting; calyx-tube conspicuously angular: lid pyramidal-hemispheric: fr. angular: valves deltoid, almost cuclosed. August. F.v. M. Eucal. 1:3.-Ascends to 4.000 ft . elevation. Timber expecially esteemed for wheelwrights' work; also used for house-building, fence rails, etc.; excellent for fuel.
нн. Calyr-tube aud pedicels terete: fr.-rilues short, often leltoill.

1. Capsule inserted below the rim of the culyx-tube, or on " level with it.
J. Frs. urcenlute (i.e., urn-shaped).
2. Baileyàna, F.v. M. Tall tree: bark persistent throughont, fibrous: foliage dense and shady: lvs. much dotted: anthers bromlly corlate, opening by divergent slits: fr. rather larse. globular-urn-shapeol, 3-celled; ralves deltoid, slightly exserted. F. F. M. Encal. 3:1.Will grow well on sandy suil. Timber splits easily, is tough and durable; used for fence posts, tete.
JJ. Frs, mostly orate-truncate, mever urcenlute: pedicels shori; calys-lin hemispherical, mostly blunt and shorter thin the tube.
к. Leaf-reins fine, uumerous, very divergent.
3. uncinàta, Turcz. Shrub, branching from near the base with several thin stems: bark deciduous, smooth and grayish or reddish: lis. firm, very light green, narrow: Hs. small; stamens remaining bent inward in anthesis: anthers very minute, almost globular, opening by terminal pores: fr. very small. F.v. M. Eucal. 4:10. -A very hardy speciec.

кк. Leaf-veins not nemerous, very oulique.
44. coccfera, Hook. Small, glaucous tree : lvs. thick and shining. under 3 in. long: peduncles short, thick and much flattened upwards: calyx-tube narrow-turbate, tapering at the base, prominently angled: lid short, broad, that or depressed, rugose: anthers kilneyshaped, opening by divergent, longitudinal slits: fr. almost flat on the top. Tasmania, $3.000-1,000 \mathrm{ft}$. elevation. B.M. 463\%. (i.C. II. 1:2:113; 13:395; III. 2:787, 78!) 3: 799, 801; 9:169.-Perhaps only a sub-alpine form of $E$. amygdulina.
4.. Günnii, Hook. Cider Gcy. Small, often scrubby tree: lves. thick, shining, less than 3 in. long: calyx-lid shining, hemispherical. short-pointed: anthers almost oval, opening by parallel longitudinal slits: capsule somewhat sunk below the narrow rim of the calyx-tube. A very hardy species. Cattle and sheep readily browse on the foliage, as it lacks the peculiarly pungent Encalyptus odor. May, June. G.C. II. 19:437; III. 2:781; 11:787.

Var. undulàta, (E. Gúnnii, F. r. M. Eucal. 4: $\quad$., not of Hook. E. mululita, Luchm., not of F. … Mi.). Swamp Gum. Tall tree: Irs. longer (over 3 in.), broad and somewhat undulate: fr. top-shaped. - Yields agreat deal of nectar, and flowers earlier than $E$. viminalis. Timber strong and useful.
jus. Frs. ovate or globose, truncate: rim rather broal and flat; anthers broader than long almost kidney-shaped, opening by divergent longitudimal slits: lis. green: bark of trunk smooth or filurous.
46. hæmastoma, Smith. White Gicm. Tree: lvs. broad; reins spreading, prominent: outer stamens sterile: fr. short, ovate-truncate, with a reddish apex. F. F. M. Eucal. 2:3. - Will grow on poor, sandy land. Timber of inferior quality.

4i. amygdalina, Labill. Peppermint Gum. Tall tree: bark persistent on trunk and lower branches, fibrous:
lvs, rather small, narrow-lanceolate, attenuate into the petiole; reins not much spreading; oildots large and not very numerons, translucent: fr. globost, truncate or shortly ovate. F. v. M. Fucal. 5:1. B.M. 3206. B.R. 11:947 (as E. lowgifotia). C.C. MI. 6:16. -Timber not strong, but suitahle for shingles, rails, stares, inner building material, ete. Foliage yields more volatile oil than that of my other species tested.

Var. régnans, F.r. M. Giant Gum. Very tall tree, (415 ft. or less high): bark usually smooth, whitish, fibrous only near the hase: lus. large, broad-lanceolate; oil dots very fine, numerous.

Var. angustifolia, F. F.M. Graceful, spreading tree: branchlets drooping: lvs. very narrow: fls. very numerous in the umbel. Jan.-ipl, and more or less throughout the year.
11. Capsule ruised above the rim of the culyx-tube: lis. mostly lurge, inequilateral; reins wery direrging: stems uf young plants nearly terete: anthers longer than broul, opening by paralled longitudinal slits.
J. Flowers mostly three in an umbel.
48. viminalis, Labill. Manna Gucm. Fig. i88. Tall and graceful, spreading tree, 300 ft . or less high: hark persistent, roughish and dark-colored(never tibrous), or deciduous, very smooth and grayish white: seedling leares lanceolate: pedicels almost none or very short: lid semi-ovate, mostly shortpointed. F.v. M. Eucal. 10:10. G. C. III. 4:597.-A hardy speceies, withstanding considerable frost andstrong winds. Timber not as strons as that of many other species, but frequently em-
788. Fruits and buds of
E. viminalis ( $\times 1 / 2$ ) ployed for shingles, fence rails and ordinary buildint purposes. Sheep will feed on the folage. A valuably seedlings. Seed said to retain its vitality ten years.

JJ. Flowers more then three in an umbel.
49. Stuartiàna, F.v. M. Apple-scented (fum. Tall, branching tree, with dense, drooping foliage ; elosely related to $E$. viminalis, and distinguishable from the latter when it has more than 3 flowers in an umbel, by the fibrous bark and roundish seedling leaves: pedicels almost none: calyx-lid almost hemispherical or shortly ane bluntly conical. Mareh-May. F.v.M. Eucal. 4:9. - One of the hardiest species: timber used mostly for feneing and fuel.
50. rostrata, Schlecht. Red Gicm. Tree, 200 ft . or less high: bark early deciduous, smooth, ashy gray or whitish: pedicels conspicuous: ealyx-lid acuminate, usually ending in a beak (oceasionally blunt). Apl., May. F. F. M. Eucal. 4: T. - Useful forbees. Prefers a moist suil with a clayey subsoil; thrives in ground periodically inumetated for a considerable time, and eren in slightly saline places: stands $22^{\circ} \mathrm{F}$. in Italy. Timber hard, heary, strong and extremely durable, either above or under ground or in water; suitalle for fence posts, piles and railroad ties; also extensively used in shipbuilding and for wood bricks for street paving; said to make a better fuel than wood of $E$. globulus. Somewhat hardier than $E$. glounlus.
51. tereticórnis, Smith. Flooded Gum. Tall tree: bark smooth: peduncles elongated: pedicels conspieuous: calyx-lid conical, not beaked, often much elongated: fr. almost globose through the broad, asconding rim. Apr., May. F.r.M. Eucal. 9:8. - Closely related to E. rostruta. Will thrive on undrained ground. Timber used by wheelwrights.
52. rudis, Endl. Tree, 80 ft . high, or less: bark per sistent, rough: peduncles $1 / 3-1$ in. long: pedicels short: calyx-lid conical, not beaked; commissural line between calyx tube and lid prominent: rim of fr. only slightly ascending. Sep.-Nor. F.v.M. Eucal. 10:8.Stands drought better than many others, and promises

## ELCCHARIS

to make a beantiful avenue tree: young growth of a deep copper color ; adapted to the lemon belt (Franceschi).
E. botryoldes, Smith. Placed next after E. robnsta in the key. Tall tree: lid not bromler than the angular calyx tube. F. V. M. Eucal. 4:2. Timber valuable, - E. cilriodira, Hook, $=$ thaculata, var, clsriodora.-E. decipiens, Endlieh. Placed next after E. gonlocalyx in the key. Tree, it ft. high: calyx tube and pedlicels terete: capsule raisel above the rim of the calyx
 eugenioliles, Sieb. White STHNGY-bark. Plamed seoond after E. Gunnll, var, undulata, in the key. Tree 200 ft , high: ths. more than 3 In an umbel: fr. ovateurgholose, trunente: rim narrow, the valves Insertel somewhat helow it. March-Sept. F. .. M. Eucal. 10:4. Timber valuable,-E. eximin. Schaner. Morstan hloodwoon. Placed next before E. maceniatain the key. Tree, about 80 ft . high: fls. cream-coloretl, sessild, in Oct. krs. Tree, ahont $F$, M Eucal $9: 3$. Wrool makes sond fuel. Handfrs. sessile. F. A Eisca. 9:2. Woon makes gon fuel Hand
 Placed after E. Planchomiana in the kry. Shrub or small tree: frs. rarely exceeting in. in diam.: weiluncles ereet, short and thick, usually much flattened. F.v.M. Encal. 5:6. "Will hre in mere sand and brave the most scorching hot winds, but will bear some frost. The lvs. supply a considerable pruportion of the mercantile Eucalyptis oil."-E. macrorhimeha, F. v. M. Placed before F. viminalis in the key. Leat-veins very oblique: fls, and frs. on short pedicels: lid conical: anthers kid-ney-shaped, opening by divergent longitudimal slits. F. y. M. Eucal. 1:5.-E. microtheca, F. v. M. Placed next to E. siderophloia in the key. Lid not exceeding "gines in length: fr.0 valves murh exserted. F. r. M. Eucal. 10:6. One of the hest treus for desert tracts; tolerates the intense, scorrohing heat of a desert summer, and a winter temperature of $15^{\circ} \mathrm{E}$. Timber valuable for cabinet work, ete.-E. miniàta, Cunn. l’laced after E. paniculata in the kes. Fls. in simple umbels, brilliant orange-eolor: fr. with 3 or more cells, nearly 2 in. long. F.w. M. Eucal. 6:4. A handsome ornamental tree-E. obtusifiora, Auct. virgata (below)--E. piancita, a garien name. Is a synonym of some other species.-E'. tetráptera, Turcz. Shrub, 10 ft . high: ths. very large, axillary, solitary, oll a recurved, flat, and very broad peduncle; calyx tuhe almost obverse-prramidal, sharply quadrangular, hroader than the pyramidal-conical lid: stamens red. F. v. M. Eural. 2: 10. One of the most ornamental species of the genns.-E, rirgitia, Sieh. (E. ohtasitlora, DC.). Placed second after E. obliqua in the key. Shrul, $10-1.5$ ft. high: hark smonth: Ivs. large, falcate: umbels generally enclosed in large bracts while in bud. J. Burrt Davy.

EUCHARIDIUM (from the Greek for charming). Ontgrece. Two Californian herlsallied to Clarkia, but differing in having the calyx tube much prolonged beyond the ovary, stamens $t$ amd opposite the sepals and not appendaged at the base. E. concinnum, Fisch. d Mey. ( $E$. granliflorum, Fisch. \& Mey.), is a graceful garden annual, growing 1 ft . high. D'ubescent or glabrous: lis. small, oblong, petioled, entire: fls, rosecolored, nearly or quite an inch across; calyx tube thli form, an inch or more long; filaments filiform; petals 3-lobed. Of easy culture in any garden soil. 13.R. 23:1962. В.М. 3589. І.Н. 1846:81; 1857, p. 299. E. Bréweri, Gray, is an ammal l ft. high. Lus. 1 in, or more long, narrow-lancenlate: petals large, obcordate, with a narrow lobe in the derp terminal sinus: filaments clubshaped.
L. H. B.

EUCHARIS (very gracefn?, from the Greek). Ama. ryllidicere. Perianth tube straight or curved, the throat dilated; segments broad and spreading; perianth cup either entire or toothed between the filaments: ovules 2 to many in each of the 3 locules: fts. white, in umbels, very showy, standing on long. stout scapes: lis. broadorate, narrowed into distinct petioles. Six or eight handsome species from Colombia. Rootstork short and bulb-like. The species are confused. $E$. grendiflori, $E$. condida and $E$. subedentata are the well-marked types. The fls. in Fig. i 89 , adapted from authentic plates, will distinguish the types. Hybridizes with Crcenlina (see Ureeocharis). Monogr. by Baker. Amaryllideæ.
L. H. B.

The Amazon Lilies, as Eucharis are popularly called, are among the most desirable of warmhouse bulbous plants, being not only very beautiful but also very free in the production of flowers.
When grc $-n$ in pots, they require a coarse, fibrous soil. composed chiefly of rotted sod, and enriched with about one-fourth of dry cow manure and a sprinkling of bone dust. The pots should be well drained, for much water is needed during the growing season, but frequent potting should be aroided, as the roots are im-
patlent of disturbance. Shading from fuli sunshine ts required, except during the winter months, and a night temperature of $60^{-}-70^{\circ}$ is best for these piants. By dryling off the Eucharis to some extent for a few wesks, a crop of flowers may be had at almost any season, provhiling the bulbs are strongand heclthy, but they should never be dried to such a degree that all the foliage is lost, else the hulbs will be much weakened.
Goon results are also had from planting ont the Eucharis on a bench in a warmhouse, the soil and treatment being much the same ns for pot-grown specimens. The only insects lialle to give murh trouble in connecthon with these plants are mealy bugs and thrips, and these may be controlled by thorough syringing.
W. H. Taplas.
A. Cup tonthed and protruled from the perianth-tube.
grandiflora, Planch. (E'. Amuzónica, Línd.). Amazon lily. Star of bethlehem (a name alsu applied to Ornithognhum). Fig. ©89. Bull, globular, ${ }^{2} \mathrm{in}$. in diam.: lis. $2-4$ to each stem: scape $1-21 / 2 \mathrm{ft}$, bearing an $u m-$ bel of $2-4$ large ( 4 in. anross), very fragrant star-liko As. on pedicels nearly or guite 1 in . loug: the segments whong and obtuse ; cup forming a distinct projecting tuhe. F.S. $9: 957$; 10:1016-17. B.M. 497. Gn. 48, p. ${ }^{\circ} 17$. G.C. III. 7:193; 16: 665. A.F. $5: 363 ; 8: 445$. F.E. 8:1000. F.R. 1:11; 2:364.

789. Eucharis.

Leaf of E. granditiora, aud ths, of (a) subedentata, (b) Sinderi, (c) granditlora, (d) candida.

Car. Moorei, Baker, may be expected to appear in the Amer. trade. It has smaller, rounder and thicker los. and smaller fls., with the cup lined with yellow.

Mástersii, Baker. Bulb often smaller: scape 1 ft . high, hearing 2 nearly sessile fls. in the umbel, the perianth segments orate and spreading and shorter than in the last: cup forming a shallow frilled or notched collar. B.M. 68:31. G.C. I1. 24: $721 .-$ Possibly a hybrid of E. grandiflora and E'. Sanderi.

AA. Cup almost entirely joined or adnate to the perianth-tube (the uirged filaments may project).
cándida, Planch. Fig. 789, $d$. Bulb globose, bearing stolons, " 'in. in diam.: scape somewhat flattened, glaucous, $1-1 \frac{1}{2} \mathrm{ft}$. high, bearing $6-10$ short-pedicelled fis.
in an umbel: segments oblong, acute, more or less reflexpd: winged yellow flaments projecting, united at the base only. F.S. 8:788. - Smaller-fld. than $\boldsymbol{K}^{\prime}$. grandiflora.
Sánderi, Baker. Flig. 789 b. Bulb ovold, 1-2 In. In diam.: seape terete, 1 ft, , bearing $2-3$ nearly sessile white fls. : segments ovate, 1 ln . or more long: yellowish cup, very narrow, like a collar or rim, and bearling the short, curved Hlaments on its edge. B.M. "ifief; G.C. I1. 19:349. - By some thought to be $n$ hybrid of $E$ : grandeflora and $h_{\text {. couliela. Var. multillora, Baker. }}^{\text {com }}$ Fls. smaller, 4-6, striped green. B.M. 6831.
subedentàta, Bentli. (Calliphrìriu subdentitn, Baker). Fig. 789 a. Bulb ovoid, $1 \frac{1}{2}$ in. in diam.: scape slender, 1 ft : fls. $6-8$, on pedicels 1 in . or less long; tube 1 In . Jong, funcl-shaped above; scements oblong, ascending, I in. long; eup wanting, or represented only by obscure teeth on the fllaments. I.H. $28: 415$. B.M. 6:89. - A small-thd. species.
E. Bakeridnn, N. E. Br. Has the perianth of E. grandlflora and stamens of H. eandida: ths. $21 / 2$ th, across, pure white: thbe not enlarging emphatically at the top: cup projecting from the bases of the segments, not toothed. B.M. T1H. G.C IIT. $\mathbf{i}: 417$ : 12:209.-E: Elmetäna. Sander. Hybrid of E. San deri and F. grandiflora. Easier to grow than E:. Sandert. G.U. III. $26: 345-E$. Lahmanni, Regel. F'ls. about 4, 11/2 in. across, the spreading corons with 12 long. narrow teeth, the perianth segments spreading or retlexed. (it. $\$ 8: 1300$ - E.Livii, Baker. Kobust : is. 4 in. across, the sprealing onter segments 1 in . wide and the 3 inner ones incurved. Perhaps a natural hybrid of E. grandiflora and E. Sanderi. G.C. III. 13: 339 : J.H. III $2 \star: 111,-\boldsymbol{E}$. Stèvensi, N. E. Br. Free-llowering: very like E. Sanderi, and a garden hybrid of that speries and E. candida J.H. III. 30:253. Gn. 46:974. G.C. III. 17:365. L. H. B.

EUCNIDE (Greek-made word, referring to the sharp, nettle-like hairs). Lousdcew. Three western American lierlos, by some authors referred to Mentzelia. Fls. yellow; calyx-tube oblong, the lim's persistent, $\bar{\sigma}$-lobed; petals 5 , united at the base and inserted on the throat of the calyx; stamens numerous, the flaments fliform: ovary 1-loculed, hearing a 5 -cleft style. E. bartoni oides, Zuce. (Mentzilia burtonioides, Benth. and Hook.), is sometimes cult. It is a pretty summer-flowering annual, thriving in warm garden soil. Stems about 1 ft . more or less decumbent, hispid-hairy: les. alternate, petioled, hroad-ovate and toothed-lobed: ths.large, on long pedicels, the petals ovate-pointed, the numerous yellow hair-like stamens projeeting and brush-like. It is half succulent. Mex. aml Tex. B.M. 4491, as Microspérma burtonioides, Walp.
L. H. B.

EUCODONIA is now referred to telimenes.
EUCOMIS (Greek, beautiful hair). Liliacer. Cnpe bulbs, half hardy, producing great radical rosettes of long leaves and a strong, leafy-topped spike of greenish flowers from the center. Fls. regular, 6 -parted, rotate; stamens 6: orary broad and short, olitusely 3 -angled. Prop. by offsets. The bulls may remain in the open if in a warm place and well protected. Will stand considerable frost. Of easy culture. Let the bulbs remain where planted. In the N. treated as glasshouse plants.
undulàta (E. rigia, L’Her.). Royal Crown. Lers. long-oblong, spreading or recurving, undulate: scape 2 ft ., bearing very numerous green or yellow-green fls. underneath a crown or canopy of les.: bulb orate. B.M. 1083
punctata, L'Her. Pineapple Flower. Lrs. erectsprealing, long and narrow, channeled, undulate, brown spotted bencath: seape 2 ft , , spotted: fls. green, the ovary brown. B.M. 913. F.S. 2e:2307. A form with lrs. striped beneath with brown is var. stridta, Sims. (B.M. 1539.)
bicolor, Baker. Stamens and margins of perianth segments bright purple, otherwise close to $E$. punctata, but lvs. unspotted (saill to be a spotted var.). Foreign dealers offer var. maculdta.
L. H. B.

EUCRYPHIA (Greek for well covered). Rosicece. Three or four southern hemisphere resinous trees or shrubs, with opposite, evergreen simple or pinnate lrs. and showy white ths. E. pinnotifolia, Gay, is a shrub hardy in parts of England, with large white hypericum-
llke 4 -petaled fls. and rose-like follage. IB.M. 7067. G.C. 1I. $14: 333$; III. $9: 613 ; 10: 217$; 15:109; 2:3:15(fr.). K. cortifoliti, Car., has 5 petals and simple serrate les. C.C. 111. 20:2ti,-Netther of these is in the American trade. Worthy of trial in the South.

EUGENIA (named in honor of Prince Engene of Savoy). Myrticpo. Trees or shrubs: lvs. evergreen, opmosite, mostly flnelv penniveined: fls. white or creamy: fr. a drupe-like berry, usually globular and 1 -seedled. Habit and inflorescence of Myrtus. For cult. and prop., see Myrius. See Myrtus, also, for E: Ügni.
A. F'ls. solitary on axillary peduncles: petals free.

Michelii, Lam. Cayenne, or Subinam Cherry. Pitavia. Shrul, 20 ft : Irs. ovate-lanceolate, glabrous: peduncles shorter than the glossy lrs.: berry cherrylike, ribbed, about i in. in dimm., edible, with a delightful spley, acid Hasor. Ripe in May and Iune. Brazil. Hardy in southern Fla. and southern Calif. R.H. 1889, p. 532. - Much esteemed for jellies, and in great demand. Čseful, also, as a pot-plant, freely producing its showy red fruits.
Brasiliénsis, Lam. Gremichama of Brazil. Shrub, 6 ft : 1 ss . oval or obovate-oblong, bluntish, scale-like along the branches, 3 in . long, $11 / 2 \mathrm{in}$. broad: fr. edihle, scarlet the size of a cherry. April. B.M. tiod. R.H. 1845:425.
AA. Fls. in s-forking panicles or cymes ; petals free and spreadin!!.
myrtifolia, Sims (E. ansirillis, Wendl.). Bresh Chemry. Shrub, 6-12 ft.: lvs. petiolate, ${ }^{2}-3$ in. long, oborate to nemrly lanceolate, rather thick, dark and glossy green: peduncles $3-\bar{J}$-Hd.: fr. edible, red or violet, about 8 lines in diam. crowned by the persistent calyx lobes. Austral. Hardy in the South. A.G. $11: i \overline{5} 6$. B.M. 2?30. - Chietly grown for ornament. Used for hedges in Calif.
Jámbos, Linn. Rose Apple. Jamrosade. Jambos. Tree, $00-30 \mathrm{ft} .: \mathrm{lvs}$. $\mathrm{narrow-lanceolate}, \mathrm{acuminate}, \mathrm{long}$, thick and shining, resembling those of an oleander: fr. $11 / 2-2 \mathrm{in}$. thick, white or yellowish, with a tinge of blushpink on one side, edible, rose-scented, apricot-flavored. E. Indies. Stove. B.M. 1696.-Valued for jelly-making.

AAA. Fls. in s-forking punicles or cymes; petals united into a calyptra.
Jambolana, Lam. Jambolan, or Jambolan Plum. Tall shrub or tree : lis. obtuse or shortly acuminate, $4-6$ in. long, "-3 in. lroad: berry edible. varying from the size of a cherry to that of a pigeon's egg. E. Indies.
E. apiculata, DC., Chile, has oral apiculate lvs. and 3-fld. axillary peduncles. Perhaps a Myrtus. J. Burtt Davy

EULALIA, Treated under Miscanthus.
ediaria. Misprint for Eulalia.
EULOPHIA (Greek, handsome crest). Orchidìcece, tribe lindea. Terrestrial herlis with membranaceous 1is. and conspicuous pseudohulbs; scape basal, severalfld.: sepals and petals spreading, similar, ascending ; labellum 3-lobed; pollinia 2. - The culture of Calanthe will apply to this genus.
maculàta, Reichb. f. Pseudobulbs ovate, compressed: lvs. orate, spotted or blotched: Hs. small; upper sepal hood-shaped, lateral ones acuminate, reddish brown; petals broader, whie or pale rose; labellum cordate, with twe crimson spots, triangular in ouiline, near the base, utherwise white. Braz. B.R. 8:618 (Angracum).
scrípta, Lindl. Lers. linear, subdistichous: fs. purple and vellow; sepals and petals linear-oblong; labellum 3-lobed, lateral lobes rotund at the apices. Madagascar.

OAhes Ames.
EOLOPHIELLA (diminutire of Eulophia). Orchidd̀cer, tribe Vándece. Pseudobulbs fusiform, elongated: lvs. elliptic, plicate: raceme from the base of young growths, with violet rachis: fls. white, fleshy; labellum articulate with the base of the column. Two epiphytes, from Madagascar.

Elisabethæ, Lind. © Rolfe. Fls. 2-21/2in. across, usually $2-4$ in the drooping cluster; sepals and petals ovate; labellum oscillatory; anterior love yellow. B.M. 338 . R.B. 21:181. 1.H. 40:173.

Peetersiàna, Krainz. (Giremmatophyllum Romplericumm, Reichb.f.). Lrs. $2-4 \mathrm{ft}$. long: scape $3-4 \mathrm{ft}$. long: 1ls. 3-4 in. across: sepals bright parple and blotched at tip; petals purple, unblotehed; lip white, purplehordered, with 4 erect crests. G.C.III. © 200. Gn. 53 , 1r. 379 . (See (

Oakes A…s.
EOONYMUS (ancient (Freek name). Syn., Eion: airs. Celastriceir. Spindle Tree. Burnisg Bu'sh. Straw. berry Bu'sh. Ormamental, deciduons or evergreen shrubs of upright or sometimes procumbent or creeping habit, with opposite simple liss. and rather inconspicuous greenish, whitish or purplish fls. in axillaryeymes; very attractive in fall, with their handwome scarlet, pink or whitish, capsular frs.. showing the bright orange seeds when opening. and with the splendid fall coloring which most of the species assume, expecially $E^{\prime}$. "laties, E. Humiltominnus, E'uropats and atropurpureus. The Spindle Trees grow in almost any soil, and are well adapted for shrubheries. Nost of the cultivated deciduous species, except those from Himalayas, are hardy North, while of the evergreen ones only $\boldsymbol{E}$. radicans is fairly hardy, and, on account of its greater hardiness. is often used Norih as a substitute of the ivy for covering walls, rocks and trunks of trees, climbing, if planted in good soil, to a height of 15 and sometimes 20 ft . E. Europuis, and South the evergreen $E$. Jiponicus, are sometimes used for hedges. Prop. by seeds, usually stratified and sown in spring, or by cuttings of ripened wood in fall. The evergreen species grow readily from cuttings of half-ripened wood under glass in fall or during the winter in the greenhouse. Varieties are sometimes grafted or budded on stock of their typical species. About 40 species are known in the northern hemisphere, extending also from S. Asia to Australia. Shrubs or small trees, with usually more or less quadrangular branches and opposite, usuaily glabrous and serrate lvs.: tls. small, in axillary cymes, $4-5$-merous, generally perfect; style and stamens short, the latter inserted on a disk: fr. a $3-5$-lobed, somewhat flezhy capsule, each dehiscent valve containings 1 or 2 seeds enclosed in a generally orange-colored aril: the seed itself is usually white. The wood is tough, closegrained and light-colored, often almost white, and used, especially in Europe, for the ma.ufacture of small articles. The bark of the American species has medical properties.

INDEX.
alatus, 3.
abbo-marginatus,12.
Americanns, 1. 8 .
angustifolius, 1. argenteo - margina. thes, 13.
argenteo - variegatus, 12.
at ropurpurens, 6, 8. aureo-rariegatus, aureo
12.
bures. +. 11
Bungeanus, 11
columnaris, 12.

Europress, 6.
lacescens, 12. grarilis, 13. Hamiltonianus, 9. - ${ }^{1}$ ponicus, 12. Коориаипі, 5. latitolius, $\overline{-}$ linifolins. 5. Maachii, 9. macrophyllus. 12. merlio-jictus, 12. microphy'ぃ! II. naturs, $\overline{5}$. obovituc. pullens, 12.
pulchellus, 12. yyramidalis, 12. radicins, 13.
repens, 13.
reticulatus. 13. robustus, 1.. roseo . marginattes, 13.

Sieboldianus, 9, 10. subtriflerus, 3 . Thunbergianus, 3. variegatus, 2. venriegatus, 2.
verrucosus, 4. riridi-rariegntus,12. Ieddoensis, 10.
A. Foliage dociduous.
B. Capsules tuberculate, depressed-glabose: fls.5meroles.

1. Americànus, Linn. Strawberry Bush. Upright shrub, to 8 ft .: l-s. ovate-lanceolate or oblong-lanceolate, usually acute at the base, acuminate, crenately serrate, $11 / 2-3$ in. long: peduncle slender. few-fld.: fls. yellowish or reddish green: fr. pink. June. From southern N. York sonth. west to Tex. L.B.C. 14:1322. B.B. $2: 394$. - Var. angustifolius, Wood (E. angustifolius. Pursh). Lrs. lanceolnte or linear-lanceolate, half-evergreen South.
2. obovàtus, Nutt. (E. Americintes, var. obovàtus, Torr. \& Gray'). Procumbent shrub, with rooting stem and erect branches. to 1 ft .: 1 rs . obovate or elliptic-obovate, crenately serrate, lisht green, 1-2 in. long: fis. purplish: capsule usually ? ${ }^{\text {?.celled. May. From Canada }}$ to Indiana and Kentucky. G.F. 9:385,-It may be used
for covering the ground under large trees, or for borders .ff shrubberies. Var. variegatus, Iort., has the lis. aarked pale yellow.

BB. Capsules smooth: fls. generully 4-merous.
c. Fr.dirided to the lase into $\not \pm$ or less nearly sepurute pods.
3. alàtus, Maxim. ( $C$. Thunbergituus, Blume). Spreading shrub, to 8 ft.: branches with $2-4$ broad, corky wings: lvs. elliptic or obovate, acute at both ends, sharply serrate, 1-2 in. long: fls. 1-3, short-peduncled, yellowish : capsule purplish, small. May, June. China, Jap. - Var. subtriflorus, Franch. \& Sav. Branches not winged: fls. 1-5.

> cc. Fruit more or less \&-5-lobed.
> D. Branches densely u'arty.
4. verrucossus, Scop. Erect shrub, to 6 ft : liss. ovatelanceolate, crenately serrulate acuminate, $1-21 / 2 i n$. long: fls. slender-pethmeled, 1-3, brownish: capsule deeply 4 lobed, yellowish red; seed black, not wholly covered by the orange aril. Southeastern Eurone, W. Asia.

## DD. Branches smooth. <br> E. Authers yellow.

5. nànus, Bieb. Low shrub, to 2 ft., With slender, often arching or sometimes procumbent and rooting branches: Ivs. linear or linear-oblong, mucronulate, entire or remotely denticulate and revolute at the margins, $1 / 2-11 / 2 \mathrm{in}$. long: fls. slender-peduncled, purplish: capsule deeply 4 -lobed, link; seed brown, not wholly covered by the orange aril. May, June. W. Asia to W. China.-Handsome shrub for rockeries and rocky slopes, forming a graceful, pendulous, standard tree if grafted high on E. Europeeus. Fruit ripens in August, earliest of all species. $\boldsymbol{E}$. Koopmanni is a form of this.
6. Europæus, Linn. Fig. 790. Erect shrub or sometimes small tree, to 20 ft : : 1 rs . orate or oblong-lanceolate, acuminate, crenately serrate, $11 / 2-21 / 2 \mathrm{in}$. long : fis. yellowish, in few fld. cymes: capsule 4-lobed, usually

pink. May. Europe to E. Asia. B.B. : 9 ?. ©iving with narrower and broader lvis. There are varieties with variegated lves. and some with ........ ferent colors, as var. fructu airopurpùreo
 (var. lencocarpe. Hort.), with whitish frs. Vur. wiropurpùreus, Arb. Kew., has rather narrow purplish lvs.
i. latifolius, Scop. Shrub or small tree, to 20 ft .: winter buds slender, about $1 / 2$ in. long: lvs. oborate-oblong, acuminate, crenately serrate, $2-4$ in. long: fls. rellowish, often $\overline{5}$-merous, in slender-peduncled, rather many-fld. cymes: capsule pink, large, with winged lobes. S. Europe, W. Asia. B.M. 2384,-A very decorative species, with handsome foliage and large frs.

> EE. Authers purple.
> F. Fls. purple.
8. atropurpùreus, Jacq. Burning Bush. Shrub or small tree, to 20 ft .: Irs. elliptic, acuminate, obtusely serrate, pubescent bequth, $1 \frac{1}{2}-5$ in. long: fls. purple, in slendet-peduncled, many-fld. cyines: capsule deeply 3-4-lobed, scarlet. June. E. N. Amer.; west to Montana. B.B. 2:394. E. Americinus, Hort.

## FF. Fls. yellowish or whitish.

9. Hamiltoniànus, Wall. (K. Mà̀ckii, Rupr.). Shrub, rarely small tree, to 30 ft ., with almost terete branches: lvs. elliptic to ovate-lanceolate, acuminate, serrulate, 2-5 in. long: fs. in 3-12-thi. cymes: capsule deeply 4lohell, with rounded valves, pink (yellowish in the Himalayan form) ; seed usually not wholly coveres by the aril, grayish brown. June. Himalaya to Manchuria. Var. semipersistens, Rehder (E. Sieboldidnus, Hort., not Blume). Lvs. elliptic, long-acuminate, half evergreen, keeping its bright green foliage South until midwinter: fr. bright pink. ripening very late.
10. Sicboldiànus, Blume (E. Yeddoénsis, Hort.). Shrub or small tree, to $25 \mathrm{ft} .:$ lvs. ovate-elliptic or elliptic, crenately serrate, shortly and abruptly acuminate, usually puberulous on the veins beneath when young: lus. $3-6$ in. lons, $1-21 / 2 \mathrm{in}$. broad: cymes $5-20$-fld.: capsule pink, slightly lobed and 4 -angled, with 4 narrow, thick wings: seed scarlet. June. Jap.-This species is often confounded with the former, but easily distinguished by its larger and much broader los.
11. Bungeanus, Maxim. Shrub, to 15 ft ., With slender branshes: lis. slender-petioled, ovate-elliptic or ellip-tic-lanceolate, long-acuminate, finely serrate, $2-4$ in. long: Hs. in rather fow-Hd. but numerous eymes : fr. deeply 4 -lobed and 4 -angled, yellowish: seeds white or pinkish, with orange aril. June. China, Manchuria, M.D.G. 1899:569. - Very attractive with its rather large, profusely produced frs., remaining a long time on the branches.

## AA. Foliage evergreen.

12. Japonicus, Linn. Upright shrub, to 8 ft., with smooth and slightly quadrangular or striped branches: Ivs. obovate to narrow-elliptic, cuneate at the base, acute or obtuse, obtusely serrate, shining above, $11 / 2-21 / 2 \mathrm{in}$. long: fls. greenish white, 4 -merous, in slender-peduncled, 5 - to many-fld. cymes: capsule depressed, globose, smooth, pink. June, July. S. Jap.-A very variaule species. Var. macrophyllus, Sieb. (var. robustus, Hort.). Lvs. oval, large, $21 / 2-3 \mathrm{in}$. long. Var. micruphyllus, Sieb. (E. pulchéllus, Hort. E'urya microphýlla, Hort.). Lvs. small, narrow-oblong or oblong-lanceolate. Var. columnàris, Carr. (var. pyrimidalis, Hort. ). Of upright, columnar habit: lys. broadly oval. There are many rarieties with variegated lvs.; some of the best are the following: Var. argénteo-variegatus, Rgl. Lvs. edged and marked white. Var. aùreo-variegàtus, Rgl. Les. blotched yellow. Var. albo-marginatus, Hort. Lus. with white, rather narrow margins. Var. meddo-pictus, Hort. Les. with a yellow blotch in the middle. Var. pallens, Carr. (yar. flavescens, Hort.). Las. pale yellow when young; similar is var. aureus, Hort.. but the yellow is brighter and changes quicker to green. Var. viridi-variegàtus, Hort. (var. Due el'tnjou, Hort.). Lrs. large, bright green, variegated with yellow and green in the middle.
13. radicans, Sieb. (E. Japómicus, var radicans, Rgl.). Low, procumbent slirub, with often trailing and rooting or climbing loranches, climbing sometimes to 26 ft. high: branches terete, densely and minutely warty: lrs. roundish to elliptic-oval, rounded or narrowed at the base, crenately serrate, usually dull green above, with whitish veins, $1 / 2-2$ in. long: H . and fr . similar to the former, but fr. qeuerally of paler color. June. July. N. and M.Jap. R.H. 1885. p. 295. (i.C. 11. 20:793.Closely allied to the former, and considered by most botanists as a variety; also very variable. Var. Carrièri, Vauv. Low shrub, with ascending and spreading branches: Irs. ollong-elliptic, about 1 1/2 in. long, somewhat shining. Var. argénteo-marginàtus, Hort. Lvs. bordered white. Var. roseo-marginatus, Hort. Lis. bordered pinkish. Var. reticulatus, Rgl. (var. pictus Hort., var. ar!énteo-variegatus, Hort.). Lvs. marked white along the veins.
E.echinc̀tus, Wall. Usually creeping or climbing, with rooting branches: lvs. orate-lauceolate: fr. spiny. Himal. B.M. $2767 .-E$. fimbridus, Hort.inot Wali= pendulus.-E. grandiflorus, Wall. Shrub, to 12 ft .: lvs ohovate or olovate-oblong, finely and acutely serrate: fls, white, four-fifths of an in across: fr. globose, yellow. Himal.-E. occidentàlis, Nint. Shrub, to 15 ft .: winter hads rather large: lvs. ovate or elliptic-lanceolate, irregularly serrulate: fts. 5-merous; purple: fr. slightly
lobed. Ore., Calif.-E. oxyphýllus, Miq. Shrub or small lobs. ovate or obovate, acuminate, rather large, serrulate: lrs. ovate or obovate, acuminate, rather large, serrulate: merous, purple or whitish : fr. globose. Jap.-E. pendutus. Wall. (E. fimbriatus, Hort. bergre, sate sharply wen lulons branchlets: lvs. oblong lance late, sharpy serrate,
shining, $3-6 \mathrm{in}$. long: fr. with 4 tapering wings. P.F.G. $2: 55$. F.S. 7, p. 71 .

Alfred Rehder.
EUPATORIUM (from an ancient persona! name). Compósitce. More than 400 species, mostly of warm or tropical countries, herbs or shrubs. Heads discoid (rayless), the florets 3 to many: perfect: involucre eylindrical, bell-shaped or henispherical. the imbricated bracts in 2 or more series: receptacle flat or conical, naked: corolla regular, 5 -toothed, slender-tubed: akenes 5 -angled, truncate: pappus a single row of hair-like, scabrous bristles: perennials.

Gardeners know two classes of Eupatoriums, the giass honse and the hardy kinds. The latter are native species which only lately have been introduced to the trade as border plants. The glasshouse species are seen only $i_{1}$ the larger or amateur collections, as a rule, although some of them aze old garden plants. They are confused as to kinds. These species demand the general treatment of Piqueria (or Stevia), a cool or intermediate temperature and pot culture. They are easy to grow. Prop. readily by cuttings. They are useful for winter bloom. Of all Eupatoriums the individual heads are small, but they are aggregated into showry masses. For E. cælestinum, see Conoclinium.

791. Leaves of glasshouse Eupatoriums ( $\times 1 / 3$ ).
a. E.riparium; b, E.triste; c, E.glandulosum; d, E.glabratum.

## A. Glasshouse or warm-country species. <br> в. Heads purplish.

serrulatum, DC. Shrubby: stems pubescent: Ivs. opposite, very short-sialked, lanceolate $n$ lance-oblong, the stalk ciliate, toothed and prominently nerved: heads aggregated into large purple or rosy tufts. Brazil and Urugnay. R.H. 1894:304. Gt. 44, p. 570. G.C. III. 18:265.-Choice.
atrorubens, Nicholson (Hebeclinium atrórubens, Lem.). Lrs. large, ovate-pointed, eiliate and hairy on
the reddish reins, opposite, toothed: heads red or purple, aggregated into a very large red-raged truss. Mex. 1.H. 9:310.
iánthinum, Hemsl. (Hebeclinium iánthinutm, Hook.). Sub-shrub, but soft-wooded, the terete branches rustypubescent: lvs. opposite, long-petioled, cuneate-ovate and serrate: fls. light purple, in a large, compound, terminal corymb. Mex. B.M. 4544.

792. Eupatorium perfoliatum ( $X^{1 / 3}$ ).

BB. Heads white (plants vulumble for cut-flowers).
glechonophýllum, Less. ( Ageràtum conspicuum, Hort.). Half shrubby: lvs. opposite. oval-pointed or oratelanceolate, nearly glabrous, 3-nerved, toothed, petiolate: fls. pure white, about 30 in each head. Chile.-Tender glasshouse perennial ; but it may be flowered in the open the first year if seeds are sown early.
ripàrium, Regel. Fig. 791 a. Diffuse, becoming woody at base, 2 ft ., the stems thin and usually reddish and puberulent: lvs. opposite, lanceolate-acuminate, narrowed into a long petiole, prominently 3 -ribbed, dentate or crenatedentate : heads in rather compact, longstalked clusters. S. Amer. - Good winter bloomer. Best wor the florist.
triste, DC. (E. trifote. Hort.). Fig. 791 b. Strong herb (sub-shrub in the wild). with hairy more or less angled or striate stems: lvs. long-petioled, ovate or ob-long-ovate, hairy and rugose (reminding one of elm or nettle lvs.), very veiny, crenate-deutate: fls, many, bright white, in a large, terminal corymb. Mts. of Jamaica. - Now becoming popular as a pot subject and for cut-fiowers
glandulosum, HBK. (E. adenóphorum, Spreng. E. allen(inthum, Hort., not DC. E'. Americanum, Hort.). Fig. $791 c$. Diffuse, at length somewhat decumbent at base, the branches ylandular-hairy: lis. deltoid- or cuneate-orate, slender-petioled, coarsely and sometimes unevenly crenate-dentate, sparsely pubescent below: heads pure white, ageratum-like, in close clusters. Mex.
glabràtum, HBK. (E. Élegans, Hort. E. Tutifilium, Hort.). Fig. 791 d . Shrubly, erect, with thin, hard, gla-
brous brown stems : lis. thickish, small, lance-oblong or orate-oblong, tapering into a strong petiole, bluntacute, undulate or small-toothed: fis. (sometimes blush) in ascending clusters, which combine to form a strong, terminal panicle. Mes.

## AA. Hardy or border plants. <br> B. Heads purple.

purpùreum, Linn. Joe-Pre Weed. Tall, rank plant of low grounds (reaches $8-9 \mathrm{ft}$.) : lvs. whorled, oblong or lanceolate, acuminate, coarsely serrate and veiny: heads in large, compound clusters, purple to Hesh-color (rarely almost white). Var. maculàtum, Darl. ( $E$. muculùtum, Linn.), is mostly lower and roughish pubescent, the stem purple-marked. Var. amœัenum, Gray. Still lower, ( 2 ft . high). nearly glabrous, the lys. often opposite. - A good species for lold effects in a border or against shrubbery. Common, and widely distributed.

> вв. Heads white.
C. Le's. perfoliate (united around the stem).
perfoliàtum, Linn. Boneset. Thoročghwort. Fig. 792. Stout, rank-smelling, pubescent, 3-5 ft.: Irs. lanceolate, rugose and pubescent, finely toothed: heads in dense white cymes.-Common in low ground. Much used in domestic medicine. Excellent for striking effects, particularly in low grounds.

## cc. Les. not perfoliate.

altíssimum, Linn. Tall (reaches $\overline{\text { ® }}-8 \mathrm{ft}$.).densely pubescent, branchy: lvs. opposite, lanceolate-acuminate, the petiole very short, remotely dentate or entire: heads only 5 -fd. Open places, Pa. southward.
álbum, Linn. One-3 ft., pubescent: Irs. opposite, nearly or quite sessile, oblong or lance-oblong, coarsely serrate. Sandy soil, E. states.
ageratoldes, Limn. f. White Snakeroot. Fig. 793. Neat. glabrous, branchy herb, 3-4 ft.: lvs. opposite, thin, orate with broad base, acuminate, coarsely and sharply toothed: heads small, in a loose but ample inflorescence. Rich woods, Can. to La.
aromáticum, Linn. Resembles the last, but usually pubescent: lvs. thickish and blunt or merely acute, the teeth blunt, later-flowering. Dry soil, E. states.

Var. melissoides, Gray ( $\boldsymbol{E}$. Freisere and E.cordifolium, Hort.). Slender and roughish, strict: heads 5 -12-fd.: lvs. subcordate-ovate or oblong, obtuse, crenulate-dentate, sometimes with coarser teeth, the petioles very short. S. E. states.

Various species of the old genus Hebcclinium may be expected in amateur collections, especially $E$. macrophýllum, Limn. (H. macrophyllum, DC.), with very large subcordatetoothed lvs., purple heads and purpla-hairy stems. R.H. 1866: 350. Other glasshouse species are: E.grandiflorum, André, are:
with
rugose cordate toothed lvs. and reddish heads (R. H. 1882:384); E. Haageànum, Regel $\mathbb{E}$ Korn., with ovalnum, Rege coarsern, and small, white heads; E.micraiuthum, Less., from Mex. (known in eult. as $\mathbf{F}$. Weinmannianum, Regel \& Kicrn.), with elliptic-lanceolate lrs. and large, fagrant white heads ( $\mathrm{Gn} .47, \mathrm{p}$. 44. G.C. II. $5: 53$ ) : E. probum, N.E. Br., with oval, velvety lve., white heads, and whole plant glandular-sticky (G.C. III. 7:321).


EUPHORBIA (classical name, said by Pliny to be in honor of King Juba's physician ; possibly from the Greek word for fat). Euphorbidcece. Spurge is a name sometimes applied to the genus as a whole, but is, perhaps, better restricted to one or more species. One of the largest plant genera, of perhaps a thousand species, not less than 700 , of very diverse habit, and found in
st temperate and tropical regions. Many are desert blants, and the greater number grow in dry and sterile places.
Herbs, shrubs or trees, often fleshy and cactus-like, or low and prostrate weeds; but all characterized by a single pedicellate-pistillate flower, with a 3 -celled, 3 seeded ovary, without floral envelopes or with a minute ealy, surrounded by numerous staminate thowers consisting each of a single stamen, the insertion of which is represented by an articulation with the pedicel, the whole surrounded by a more or less cup-shaped involucre, with 5 lobes, and bearing $1-\overline{5}$ glands of various shapes betreen the lobes. The staminate flowers are usually subtended by minute bracts. The glands often bear petal-like appendages, the whole involucre (or cyathium) closely simulating a perfect flower (Fig. 794).

Most of the species have abundant milky juice, and the cactiform species have been thus distinguished from cacti, but many cacti also have milky juice. The juice of most species is acrid poisonous, especially if it comes in contact with mucous membranes or open sores. The juice from some of the species is used in medicine as a purgative.

Monographed by Boissier in DeCandolle's Prodromus, 15, pt. 2 (1862). See local floras and Norton, Rept. Mo. Bot. Gard. 11, for native species. Works like Nicholson's Gard. Dict. and Bois' Dict. d'Hort. describe a number of cultivated species. See also Fobe, in Monatsschrift für Kakteenkunde, 8:42 (1898).

Many of the fleshy species are cultivated by lovers of succulents for their curious shapes; and a few are valuable for their ormamental foliage. The flowers are usually too minute to be noticeable. Some, like E'. corollata (Fig. 794), E. maculata, E'. Cyparissias and E. marginate, are weeds in America, but not troublesome. The $g^{\prime}$ eat majority of the species are insignificant herbs. The species are remarkally free from injurious insects, and are rarely attacked by a few fungi.

The fleshy species are grown much the same as cacti (which see), but the culture is less difficult, and they do well with warmer treatment. In winter they are kept in a dry and cool house, $50^{\circ}$ to $55^{\circ}$ F., with good light and little water. Drips must be carefully aroided. In summer the pots should be plunged ontdoors in hot, dry situations. with a moderate supply of water and especially good drainage. It is better to protect them from continued rain, but most species do well without this. The more fleshy species, like $E$. Cuput-Meduse and $E$. meloformis, require more heat and better care than the others. They are propagated by cuttings. Grafting has not been practiced to a great extent, as with cacti, but seems possible. They do not require a rich soil, and do well in a coarse, sandy loam, or some say in any kind of soil.

The shrubby species, like $E$. atropurpurea and $E$. dendroides, do well with the i.eatment of the more fleshy kinds. See D. A. W. and F. S. Curtis, in Sharon Cactus Guide, Mar. and May, 1897.

The few hardy species of ornamental value make good border plants or are suitable for the rockery. They are mostly propagated by dirision. The annuals are easily grown from seeds.
E. pulcherrima and E. fulgens are good winter-flowering greenhouse plants, and require special treatment. E. fulgens succeeds well in the warmest parts of the house. in pots, or best planted out like roses and trained upon the wall or strings. It is propagated from cuttings taken in June, when the old plants have started to grow, kept in a warm frame until rooted, and then kept growing with heat, any transfers being made with as little root disturbance as possible. If stocky show plants are wanted, several cuttings may be planted in one pot and checked two or three times during summer by repotting, and kept pinched back freely to secure branches. They are best kept cooler when in flower, but are very sensitive to cold or sudden changes in temperature. After flowering they are kept dry for a few months. For the cut sprays they are best grown from cuttings each year. They last very well when cut. The culture of the Poinsettia is very similar. To secure plants with large heads, the general plan is to grow from cuttings anmally, but the old plants may be continued. Old plants that have been resting may be introduced
to heat and moisture in late spring, and will soon give a liberal supply of cuttings, which are usually taken from the young wood. Successive sets of cuttings may be made at later periods if different sized plants are wanted. When well started, the potted plants are plunged outdoors till September, with plenty of water, light and sunshine and good drainage. They do well in rich, heary loam in 5 - - -in. pots. They are apt to drop their leaves if exposed to cold orother unfarorable conditions. In autumn they are transferred to the greenhouse, with moderate temperature. When the bracts begin to appear, give more heat and some manure water to expand them. When in flower, reduce the temperature to preserve them longer. After fluw ering the pots may be stowed away in a dry, warm place till spring, under the benches will do. When the buds are cut the great objection is that they wilt easily. This may be obriated by dipping the cut ends in boiling water, or kecping them in water for a few days before using. See Gricve. G.C. III. 9:106, and Hatfield in Gard. and Forest 9:496.
$\boldsymbol{E}$. splendens is another winter bloomer, and may be treated as the sacculents, with more heat and water. It will do well in living rooms, and bears some flowers all the year. It bears rough treatment well, and is propagated by cuttings from the young growth, which root with the greatest ease.
J. B. S. Norton.

Cultcre of Poinsettia.-Euphorbia pulcherrima and varieties are fine shrubs, evergreen or deciduous, according to the elimates in which they are grown. They are found at considerable elevations in Mexico, and subtropical conditions encourage their highest derelopment. The original plants were introduced by a Dr. Poinsett, of Charleston, S. C., who sold them to the late Robert Buist, about 1833. Buist was a famous Scetch nurseryman of Philadelphia, who, during the early seventies, also distributed the so-called double rariety. He sent both forms to Europe, and never quite forgare the botanists for changing the name which he gave the plant-Euphorbia Poinsettiana.
Under natural conditions Poinsettias form large bushes fron $5-10$ feet high and 12 or 14 feet in diameter, with woody bases and hollow annual growths. Flowers small,yellow, surrounded by an involucral crown of intense crimson leares, the whole as large as a sombrero when well developed, varying to the smaller growing variety with creamy white bracts. Their highest development he: been noted at Kotergherry, on the Nilgiri mountains of South India, at an elevation of about 6,000 feet, with a rainfall of 50 inches. The minimum temperature varies from $51^{\circ} \mathrm{F}$. in January to $60^{\circ}$ in July and August, the maximum from $66^{\circ} \mathrm{F}$. in January, gradually increasing to $70^{\circ}$ in July and August. In parts of the Mediterranean basin, in sonthern California and similar climates, and in many parts of the tropics at the sea level, the plants are grown, but do not reach such great perfection, for they become deeiduous and often stunted. The period of flowering in the northern hemisphere is from late November to March.
There are several ways of managing the plants in cultivation. They are propagated by single eyes, by 4 - or 5 -inch cuttings of the one-year-old wood, or by young shoots with a heel of hard wood about March, or by the green tops about the end of August. If they are intended for pot culture as large plants, they simply require shifting along to 8 - or 10 -inch pots, with good drainage and good, turfy soil, with rather more sand than is commonly used for roses. After these large plants have bloomed, they may be stowed away to rest in a dry, light shed with a temperature of not less than $50^{\circ}$. Do not water them, and before the buds wake up
in spring, shate them out, prune them to an eye or two, cut out the dead parts, repot them, and presently they will start to grow again. They may be gradually hardened, plunged outdoors and grown in the full sun during summer, giving them a shift during growth if extra luxuriance is desired. If bench culture is desirable, plants may be turned into the ground from 4 -inch pots, or even from the propagating bed, grown until the end of August or later southward, the leaves stripped from all the stems but the upper foot or so, lifted, and laid flat on the benches, with a bushel or so of good soil over the roots and about an inch over the benches in the spaces. The next rank of plants may have their tops laid well over the roots of the first, and so proceed until all are planced. The ends soon turn upas growth starts, and the heads are very large and fine with suitable temperature and attention. Sometimes mealy bug gets into the heads. It may be dricen out by a moderate stream of water from a hose, supporting the heads with one hand to avoid breaking. They are quite brittle. The milkiness produced by cutting may be got rid of by standing the stems in water, for it is sticky, stains, and is disagreeable. For small pot-plants the green tops, about 6 or 8 inches long. may be taken in August, dibbled into well drained 4 -in. pots, set on mild bottom

795. Euphorbia marginata ( $\times 1 / 3$ ).
heat. or placed in a rather humid equable temperature southward. They must not be over-watered or too densely shaded, when they will soon strike, form handsome little plants, often with leaves to the pots. and be very useful for many purposes. For detailed points by professional growers, see A.F. $11: 28.7,457$; $12: 536$.

James Macl'herson.
The following is an alphabetical list of the names in the American trade

Abyssinica, 20. alcicornis. 16. antiqnorum, 1". arborea, 3 ? at ropurpurea. 2. Beaumeriana. 3. cecruleseens, 19. Canariensis, 18. candelabrum, $\cong$. Caput-Medusar, 24 cereiformis, 26. corollata, 2 .

Cyparissias, 35
dendroides, 31. drupifez̃. 10 cchinus. 23. erosa, 26. fulgens, 3 . crandicornis, 13. grandidens, 16. grandifolia, 10.
Grantii, 32.
Haranensis, 1 . hematodes, 39.
hept agona, 30. Hermentiana, 14. heterophylla, 5 . Hystrix. ${ }^{7}$ i. jacquiniaflora, 3 . lactea, 12, 15. Lathyris, 28. mamillosa, 11. marginata. 1. meloformis, 25. Mexicana? Myrsinites, 37 .

Natalensis, 36
neriifolia, 9.
Palmeri, 34.
pandurata.
pendula, 6.
Pfersdorffii, 21 .

ELPHIORBIA

## A. Involucres flower-like, with 4 or 5 petaloid appendages

1. marginàta, Pursh ( E . variegùta, Sims). Snow-on-the-Morvtan. Fig. T95. Plant 2 ft . high, pubescent, dichotomously many-branched: lvs. numerous, with stipules, light green, $1-3$ in. long, ovate-subcordate to oblong-lanceolate, the upper ones margined, with white or some entirely white : involucres in the forks of the branches, their appendages large, white. JulyOct. Plains from Dakota to Texas and extending eastward. B.M. 174. Git. $30: 218$. - Hardy annual, used for its white foliage in bedding and mixed borders in sunny situations.
2. corollàta, Linn. Flowering Spurge. Fig. 794. Plant 11/2-3 ft. high, usually glabrous, slender and diffusely branched above: lvs. without stipules, ovate-oblong to lanceolate, $1-2 \mathrm{in}$. long, those of the inflorescence much smaller and opposite; appendages of the numerous involucres 5 , white, conspicuous for the genus. July-Oct. Rather dry soil in east U. S. B.M. 2992. L.B.C. 4:390. F.R. 1:969.-A hardy herbaceous perennial, used like Gypsophila for cutting and as a bedder in light soil. Very variable in size and shape of plant, leaves and inflorescence.
3. fúlgens, Karwinsky ( $E$. jacquiniuflora, Hook.). Scaklet Plime. Fig. 796. Small shrub, with slender, drooping branches: lvs. long-petioled, lanceolate, bright green ; involucres in small axillary cymes, their 5 conspicuous bracts bright orange-scarlet. Mexico. B.M. 3673. G.C. II. 19:816. - A handsome winter-hlooming plant, used for cut-flowers or for specimen plants.
AA. Involueres uithout petaloil appendages to their glands, but the glands or subtending bracts sometimes colored petal-like.
B. Stem herbaceous or shrubby, uot fleshy: upper leares colored: stipules glunduiiform: inflorescence cymose.
4. pulchérrima, Willd. (E. Poinsettidna, Buist. Poinsettia pulehérrima, Grah.). Ponsettia. Fig. 797. A shrub, $2-6 \mathrm{ft}$. high, branched: lis. ovate-elliptical to lanceolate, entire, sinuate-toothed or lobed, or panduriform, 4-6 in. long, somewhat pubescent, becoming narrower, more entire and of the brightest vermilion-red above; involucres greenish, with one large vellow gland. Nov.-Feb. Moist, shaded parts of tropical Mexico and Central America. B.M. 3493. G.C. I1I. 21:125, 193.-Sometimes cut, usually used for specimen plants and in masses. A gorgeous plant. Varieties with white and yellow bracts occur. Var. plenissima, Hort., has a double series of bracts and forms a wider and higher head. G.C. III. 5:17.
5. heterophylla, Linn. (E., panduritta, IIort.?). Mexican Fire I'lant. Hypocrite Plant. Paintey Leaf. Fine-on-the-Mountain. Anvéal Ponsettia. Amual, nearis glabrous, $2-3 \mathrm{ft}$. high : lvs, ovate and sinuatetoothed or fiddle-shaped, or some of them linear or lanceolate and entire, dark green, the upper bright red at the base or only the tips green, involucral glands 1 or 2. July-Sept. Eastern and central U.S. to Peru. Mn. 2, p. 53. Gt. 39, p. 105. - Easily crown in sunny places and also in pots indoors. White and yellow variegated forms are in cultivation in this country.
BB. Stem more or less fleshy or spiny, often euctuslike: leares small, none or soon deciduous; inrolueres single or feu together.
C. Branches short cylimlrical. smooth, quill-or rush'ike, slender.
6. péndula, Boiss. Branchlets many, slender, pendulous: lis. very small, opposite. S. Africa?
7. Tirucalli, Linn. ( $\boldsymbol{H}^{\prime}$. rhipsaloides, Lem.). A tree, 20 ft . high, with many slender subverticillate ascending branches; twigs $4-8 \mathrm{in}$. long: $15 \mathrm{~s} .5-8$ lines long, few, alternate. E. Africa and India.-A striking plant.
cc. Branches fleshy, a spine on each side of every leaf or leaf-scar, in a few ti:e leaf transformed into a thirid thorn between them.
D. Podaria (the projections bearing leaves and spines) distinct: branches cylindrical or obsoletely angled.
8. spléndens, Bojer. Chows of Thorns. Fig. 798. Stems $3-1 \mathrm{ft}$. long, $1 / 2-1 \mathrm{in}$. thick, covered with stout spines almost an inch long, somewhat twining : branches few: lvs.few, on the young growth, obovate to oblong-spatulate, thin, bright green, 1-2 in. long; inrolucres in long-peduncled dichotomous cymes, near the ends of the branches, each closely subtended by two broadly ovate bright red bracts. filaments forked. Madagascar, flowering all the year, but mostly in wintur. B.M. 2902. L.B.C. 18:1713.-Coolhouse piant. The red bracts, with green leaves on the sinuous spiny stems, are striklng. It can be trained into ornamental forms.
9. neriifolia, Linn. Arhorescent or shrubby: stem obtusely 5 -angled, $3-7 \mathrm{ft}$. or more high: the small mammiform podaria in rows, with short, dark colored, dirergent spines: branches mmerous, bearing obovateoblong, olinse, thick lis., $3-5$ in. long at the summit : small, sessile cymes of greenish involncres in the upper axils. June, July. E. Indies. - Large lvs. persistent from autumn to spring. Cristate forms are in cult.
10. drupifera, Schum. \&Thorn. (E, grandifolia, Haw.). Arborescent: stem terete: branches obsoletely 4-5angled; spines small : los. terminal, obovate-cuneate, obtuse or retuse. $\bar{j}-8$ in. long: small cymes asillary, peduncled: capsule drupareous. Guinea.

11. mamillosa, Lem. Lotr, cespitose: branches less than an inch in diam.: polaria elougated, conical, in 5 spiral rows: les. and spines small, soon deciduous.
DD. Podaria confluent into ribs: branches more or bess acutely wing-angled.
E. Grouths or branches 3-angled (sometimes 4-angled, especially on the main "xis, and in E.alcicornis flat).
12. antiquòrum Linn. (F. Havanénsis, Hort.? E. $_{\text {E }}$. láctea, Hort.?). Shrub, 8-10 ft. high : branches erectsprealing, jointed; angles compressed, renand dentate, the teeth 1 in . long; spines $1-3$ lines long: lvs. minute, orate-spatulate or rotund. India, and naturalized in other places, notably the W. Indies, where it is used for hedges. - Cristate forms are in the trade, as E. lactea monstrosa? and E. Harenensis cristata.
13. grandicornis, Gobel. Fruticose: branches 3 in. wide; angles broadly winged, deeply lobed and sinuate; spines large, 1-2 in. long, light colored. S. Afr. Neu-
bert's Deutsche Garten Mag. 46:301. - A striking plant, with the widest rings and longest spines of all.
14. Hermentiàna, Lem. A shrub, 3-4 ft. high, with many non-jointed, erect branches, their edges repanddentate and broad, slightly concare faces, white-mar-

15. Euphurbia pulcherrima ( $\times 1 \cdot 5$ ).
bled when young; spines $2-21 / 2$ lines long: lis. lanceolate or lance-spatulate, $3-5$ in. long. Gabon river, $W$. Afr. - Considered one of the best.
16. láctea, Haw. A shrub: branches erect; faces 1-3 in. wide, plano-conrex. yellow and green striped: edges subcompressed, repand dentate; spines $2-3$ lines long. East Indies.
17. grándidens, Haw. Tree, $20-30 \mathrm{ft}$. high and as much as 3 ft . in diam.: branches slender, $1 / 2-3 / 4$ in. wide, numerous, erect-spreading, making a rounded head in old plants; faces almost plane; angles deeply lobed-dentate; spines $3-5$ lines long, slender: lrs. very small, triangular. S. Afr. G.C.1I. 26:-201.-E. alcicornis, Hort, is probably a form of this with Hat branches.
18. triangularis, Hort. Par. Stem 3-7 ft. high, trian-$g^{-1}$ ar: numerous branches erect, with convex faces dark greeu: the winged angles sharply toothed and shortspined. S. Afr.

EE. Grouths or branches with 4 or more angles or rarely 3 -angled.
18. Canariénsis, Linn. Shrub or tree, 12-20 ft. high, with many 4-6-angled suberect branches, as much as 3 in. thick, from the base; angles subentire; spines 2 lines long, black: lvs. almost none. Canary Islands. Gn. 53, p. 46. G.C. 1I. $20: 629$.
19. viròsa, Willd. (E. cemuléscens, Haw.). A shrub as much as 15 ft .high, much branched:branches $4-5$ - or sometimes 3 -angled, 1 in . thick, ascending; angles lobed; epidermis bluish: spines strong, $4-\overline{5}$ lines long, black. S. Afr.
20. Abyssínica, Rausch. Stem robust, $30-40 \mathrm{ft}$. high, $9-14 \mathrm{ft}$. in greenhouses: branches few. $4-6$ in. in diam., dark green; angles 5-8,obtuse but prominent ; edges undulate; spines short, recurved : lvs. minute, spatulate. Abyssinia. Gn. 52, p. 106. G. C. III. 20: 497.Much resembles C'eveus Peruvianus.
21. Pférsdorifii, Hort. Trunk round, $11 / 2-21 / 2$ in. thick, 9 -ribbed. much branched when old ; spines large, 4- 8 lines long.
22. candelàbrum, Trem. \& Klotzch. Tree, 20-30 ft. high, with ahead $60-80 \mathrm{ft}$. in circumference: trunk short and thick, densely branched: branches 3-4-angled;
spines short. Trop. Afr.-See E. Tirucalli for some plants sold under this name.
23. officinàrum, Linn. Fruticose: branches $21 / 2-3$ in. thick, $9-13$-angled, deeply sulcate; edges repand; spines red. divergent or deflexed. 1-11/ lines long: lis. minute. N. Afr. R.H. 1875:330-37.-E. Boaumeriana, Hook. \& Coss., and E. echinus, Hook. \& Coss., are closely related species from the same region.
ccc. Branches with spines, if any, not stipular, but in the place of les. or branches
D. Spines not present.
24. Càpat-Medùsæ, Linn. Medésa's Head. Stem short, obconical, fleshy: branches numerous from the apex, soon declined around the main stem with their ends erect, $1 / 2 \mathrm{in}$. or more in diam., $6-12 \mathrm{in}$. long, corered with depressed, keeled tubercles, each bearing a small. linear-lanceolate leaf ; glands of the involucre white, rather conspicuous, the outer lip palmatifid. S. Afr. L.B.C. 14:1315. - Curious and rather rare. Var. major, Ait. (E. Commelini, DC.), is a large, erect, unbranched form, perhaps originating from branch cuttings.
25. meloformis, Ait. Fig. 799. Globose or pyriform, $3-5$ in. in diam., leeply $8-10$-costate, the ribs ohscurely tuberculate on the almost acute angles, the sides transversely dark and light green striped or wrinkled when old: the few small Irs. and fls. ric the depressed apex: the old forked branches of the intorescence subpersistent lut not spinose. A few small branches similar to the main stem usualiy present. S. Afr. L.B. C. $5: 436$. A.G. 11:463.-A very interesting and rare plantin Amer. Best grown only under glass. Often mistaken for a cactus.
799. Euphorbia meloformis.

DD. Spines formed of the sterite pedunctes.
26. cereiformis, Linn. (E'. eròsa, Willd.). Erect, 3 ft . or more high. little branched: branches erect, with 8-13 tuberculate ribs: lvs. rery small: peduncles usually with only one involucre, the sterile ones forming dark colored spines 4-7 lines long. S. Afr. L.B.C. 14:1334. E. polẏgona, Haw., with more prominent and spiral ribs, and E. heptágona, Linn., with $\bar{i}-8$ ribs and sulci between them more obtuse, are closely related South African species.
27. Hýstrix, Jacq. A shrub, 2-. 3 ft . high, not ribbed: porlaria depressed: lvs. 2-3 in. long, linear; spines numerous, l-2 in. long, erect-spreading. S. Afr. Jacq. Hort. Schoenb. 207.
BBB. Stems herlaceous or woody, scarcely ever slightly fleshy-stemmed: inflorescence umbellate: stipriles none.
c. Lis. below the umbel decussate : tall herbs.
28. Láthyris. Linn. Caper Spurge. Mole Plant. Fig. 800. Annual, $2-3 \mathrm{ft}$. tall : lrs. long, lance-linear, those of the inflorescence ovate-acuminate: glands short-horned: capsules somewhat fleshy. Eu., and naturalized in eastern U.S. Rept. Mo. Bot. Gard. 11, pl. 11.-Calt. in old gardens. Capsules sometimes pickled. Seeds nsed as a purgative. Sairl to drive moles from its neighborhood (see Cornell Bull. 61:331).
cc. Lis. usually clusteral at the ents of the branches: shrubs.
29. atropurpùrea, Brouss. A shrub, 3-6 ft. high, branched: the pale, glaucous green, spreading or ilrooping lvs. crowied at the ends of the branches, $2-3$ in. long: umbel 5 -10-rayed; involucres surrounded by 2 larte, dark purple, broadly ovate, obtuse, connate bracts. March. Teneriffe. B.M. 332l.- Plants known as $E$. atropurpured and $E$. sanguinea in America, and used for hedding, are in part $E$. hrmatorles. Boiss.. a species of Section A not well known to botanists, and partly a purplish var. of $E \cdot$ pulcherrimu.
30. Règis-Jubæ, Webb. Like the last, but Irs, narrowly linear and bracts not dark purple; incolucral gland with 2 short horns. 'Teueriffe.
31. dendroides, Linn. A large, branching shrub, more foliaceous than the two preceding: leaves linear-lanceolate, obtuse or acute; floral leaves yellowish, rhomboidorbicular, mucronate, glands truncate or semi-lunate. Mediterranean region. R.H. 1887:160. Gn. 36, p. 203.
32. Grántii, Oliv. Small shrub with lanceolate leaves, large, long acmminate, ovate bracts and palmate glands. E. Africa. This and the E. arborea offered by Blanc probably belong in this section, though the E. Grontii of American dealers may possibly be Synadenium Grantii, Hook.
ccc. Liss. below the umbel alternate; glands olal in the first species, in the others two hormed: leafy herbs.
33. epithymoides, Jacq. (E. polychròma, Kern.). A herbaceous perennial, a foot or more high, with oblong, dark green leaves, floral leaves different shades of yellow at flowering time. May. Europe. B.M. 2.258. - Grow ing in a fine, compact clump, uncomnon in gardens.
34. robústa, Small, and Pálmeri, Engeln., are manystemmed perennials, the former from the Rocky mountains, the latter from S. Calif., a foot high, more or less, with small ovate leares and roughened seeds. They have been offered for sale, but have little cultural value.
35. Cyparissias, Linn. Herb, perennial from root buds, the short plume-like branches covered with spreading, narrow linear, dark green leaves an inch long: seeds smooth. Europe. L.B.C. 2:118. G.C. II. ©2:469. Rept. Mo. Bot. Gard. 11, pl. 50.-Cult. in old gardens for its paoss-like growth. Naturalized and a weed in east U.S.
36. Natalénsis, Bernh. Stems many, 1/2-1 ft. high: umbel $3-5$-rayed, head-like: leaves crowded, narrow linear-lanceolate, subcoriaceous. S. Africa.
37. Myrsinites, Linn. Perennial herb: many declined stems corered with large, Heshy, glacous, obovate or orate-oblong, concave, pointed leaves: umbel $7-12$-rayed: glands and flowers yellow. Europe. - A plant of old gardens, good for rockeries.

800. Euphorbia Lathyris.

Seen endwise to show 4 -ranked leaves.
Plants in cult. in Europe but not in the American trade: Fleshy forms: E. anacantha, Ait.-E. bupleurifolia, Jacq. Short, thick, scaly stem, with a cluster of large leaves at the top-E. Böjeri, Hook. NearE. splendens. - E. Breomi=E. Bojeri -E. Capénsis. Hort.- E. clanféstina, Jacq.- E. enneágona, Haw. $=$ cereiformis, Linn.-E.fimbriàta, Hort.?-E. Fournièri,

Rebut, a Madazascar species near E. lophogona, Lam. - E. glo bùsa, Sims. B.M. $26: 4 .-E$. ylomerata, Hort.-E. helicothele Lem. =E. Nivalia, Buch.-E, imbricata, Vahl.-E. Lemairadna Boiss. Like E. grandicornis, but spines much shorter.-E lophógona, Lam. Peculiar club-shaped stem, with large leaves above and cristate stipules. Malazascar-E. macrogliphut Lem.--E. mamilli ris, Linn.-E. Montieri, Hort.-E. pentigona, Haw.-E. piscatüric. Ait.- E.pyrifolia, Lam.,near lophogonat. E. serpifürmis, Boiss. $=$ E. scopiformis.-E. squarròsa. Haw. $F^{\text {: }}$ stapelizeforr is. Hort.-E.tetráyona, Haw.-E. tithymaloides, Linn. $=$ Pedilanthus tithymaloides. $-E$. trigona, Haw.-E tuberculàta, Jacд-E. xylophylloides, Brongn.
Shrubby or tree-like forms: $\boldsymbol{E}$. balsamifera, Ait. $\boldsymbol{E}$. Berthe boti. Bolle.-E. colletioldes. Benth.-E. laurifollia, Lam.-E mellifera, Ait.-E. misera, Benth.-E. plumerioìles, Teysman -E. punicea, Swartz. G.C. II. 15:599.-E. resiniferat-E. 8colopérdria. Don.
Herbareous forms: E. Alęppica, Linn.-E. Charàcias, Linn - E. Shamexỳ̀ce, Limn- E. falcùta, Linn. - E.geniculuta,Orteg -E. helioscòpia, Limn.-E. Ipecacuanhe, Linn. Dant of nast U. S. coast region, root furnishing one of the officinal U. S Iruss.-E. Layiscie, Sprens. - E. Petrelus. Linn.-E. pilosa Lin t.-E. pilulifera, Limn-E Epinisa, Linn.
O ners not well known: E. Amèlia, Hort.-E. aptýlla Brouss.-E. articulùta, Hort.-E. aurèlia, Hort. $=$ E. Amelia?E. cupput-odoriuca, Hort.-E. Cüput-Simire, Hort.-E. Cussỳtha péadula Hort - $\boldsymbol{E}$ colubrina Hort - $E$ Coiperi Hort - $E$. l'ntüta, Hort.-E. de Sumetiana, Hort.-E E. erécta, Hort.- $\mathbf{E}$. a'ntuta, Hort. - E. de Smetiana, Hort. - E. erectit Hort. - E Cubinta. Hort.-E. fundis. Hort.-E. gardenupfoha, Hort. E. gracilis, Hort.-E. Houlletiina, Hort. - E. Houlliti. Hort. $-E$. Mrminii, Hort. $=$ E. Kranssimat $=$ E. ernbescens, E. Mes. E. longifolia, Hort - E. Mangulor, Hurt. $=$ E. Mogador, Hort. -E. Mouritònia, L.-E. Morini, Hort.-E. obtùsa, Hort.- E. ornthopns, Jacq.-E. Paroènsis, Hort.-E. prilchra, Hort.- E Pulletinina, Hort.-E. Rebutti, Hort.-E. Richárdi. Hort. = E Richardiana.-E. Suharionsis. Hort. - E. San Salvador, Hort.E. serpentarie. Hort.-E. viperina, Hort.-E. Waltonénsis Hort.
J. B. S. Norton.

EUPTELEA (Greek eu, well, handsome, and ptelea, elm). Trochodenlrùcece. Ornamental shrubs or simall trees, with alternate, long-petioled, simple lrs. and small fls. appearing before the foliage, resembling vomewhat the alder in habit and foliage. Three species from Himalayas to E. Asia, of which the half bardy Japanese species is sometimes coltivated; it prefers somewhat moist situations aud is frop. by seeds or by grafting on cheir own roots.
polýgama, Sieb. \& Zuce. Shrub or small tree, to 20 ft : : irs. long-petioled, usually roundish orate, cuspidate. coarsely and irregularly dentate, slightly pubescent on the veins beneath, $2-4$ in. lone: Hs. in small, axillary, peeluncled clusters, polygamous-diocions, apetalons: stamens and carpels numerous: fr. consisting of nicny small winged nutlets, similar to the elm frs. Japan, C'hina. S.Z. i2.

Alfred Rehder.
EU̇RY (Greek for large, but of no application). Ternsfremidicer. Perhaps 20 shrules of southern Asia ant Mataya, with small diœcious Hs., berrv-like frs., and simple, glabrous evergreen lvs.: fls. in axillary clusters, or rarely solitary ; petals and sepals 5: stamens 15 or less (rarely only il, joined to the base of the corolla: ovary usually 3-loculed. The Euryas are allied to Camellias, and require much the same treatment. They are grewn for foliage rather than for fls. Demand an intermediate temperathere and a peaty soil. Prop. by cuttings taken from the tips of growing shoots. E. Japonica, Thmmb. ( $E$. Sieboldii, Hort.), is the common species, and is very variable. The variegated form of it (known in the trade as $E$. latifolia rariegita) is one of the best glasshouse decorative pot shrubs: lys. variabie in shape, usually ovate-acuminate and irregularly toothed or notched, short-petioled, irregularly hlotched with white : fls. \&reenish white, in small, axillary clusters. Japan. V.M. 23:5.
L. H. B.

EURYALE (mythological name). Nymphectece. One species, the Indo-Chinese representative of Vicioria Regin, from which it differs in having all the stamens fertile (in Victoria the inner ones are sterile) and in the very small flower, and in other technical characters. E fèrox, Salisb.. is the species. The lis. are $1-1 \mathrm{ft}$. across circular, purple and spiny-ribbed beneath, dark green and uneren above: fls. small, prickly outside, the calyx reddish inside and the $20-30$ purple petals shorter than the calyx lobes; stamens numerous: fr. a small, many-
seeded, globular berry, bearing the remaius of the calyx on its top; seeds edible. B.M. 14i7. Long cult. in China. Treated as an annual. Has attracted little attention since the introluction of Victoria. As far north as Pcilalelphia it is hardy, sowing itself every season. It is ferociously spiny.
E. Amazónica, Poepp., still advertised in catalogues. is Victoria Regia.
L. H. B. and Wm. Tricker.

EURYCLES (Greek-mate name, of no particular application). Amaryllidaces. Two south hemisphere bulbous plants, allied to Hymenocallis and Pancratium. Perienth-tube cylindrical, the segments oblong-lanceolate and nearly equal; stamens inserted in the throat of the tube: lvs. broad and stalked, with prominent curring veins and interlocking veinlets: fls. white, in umbels. Cf. Baker, Amaryllideæ, p. 130. E. sylvéstris, Salisb. (E. Amboinénsis, Loud.). Brisbane Lily. Scapes 1-2 ft., bearing an umbel of $10-40$ handsome, creamy white fls. (2 in. across), lvs. round-corlate, with a very short, blunt point. B.M. 1419, as Pancratium Amboinense. B.R.9:715, as Pancratium Australasicum, Lindl. R.H. 1879, p. 456; p. 457 as E. Australasicu, Loud. Malava, Philippines, N. Australia. Grow in coolhouse, as for Pancratiums.
L. H. B.

EUSCAPHIS (Greek, eu and scaphis, ressel; alluding to the shape and the handsome color of the dehiscent capsule). Celustrácece. Ornamental shrub, with rather large pinnate, opposite lrs., small whitish fls. and attractive brownish red frs. in erect panicles, with shining black seeds. Monotypie genus allied to Staphylea, but with upright panicles and the capsules divided to the base into 3 dehiscent, leathery pods. It grows in almost any good garden soil, but is only half-hardy North. Prop. by seeds and greenwood cuttings under glass.
staphyleoldes, Sieb. \& Zuce. (E. Japonica, Dipp.). Shrub, to $10 \mathrm{ft} .:$ lfts. $7-11$. ovate-lanceolate, glabrous, serrate, $11 / 2-3$ in. long, tach with 2 small stipules: fls. perfect, 5 -merous, small, in many-fld. panicles: fr. consisting of $1-3$ pods, each with 1-2 seeds. May, June Jap. S.Z. 67.

Alfred Rehder.
EUSTREPHUS (Greek, referring to the climbing habit). Liliucen One or two Australian plants, botanically related to Lapageria. but much less showy. In habit, suggestive of smilax ( 1 sparuthes medeoloides) E. latifolius, R. Br., is a tall, half-twining, branchy herb, more or less woody at the hase, bearing alternate, stiff, linear-lanceolate, short-stalked lvs. and small. axillary, drooping light blue ths. with spreading, ciliate perianth segments : fr. a dry herry: liss. -4 in. long, sharp-pointed: fls. less than 1 in. across. B.M. 1245. Of easy culture, either in the glasshouse border or in pots. Very useful for table decoration and for design work.
L. H. B.

## EUTACTA. Found under Araucariu.

EUTERPE (mythological name). Palmacea, tribe Arecere. Slender, erect, spineless palms. with solitary or fasciculate, ringed ceudices. Lus. terminal, equally pinnatisect: segments harrowly linear-lanceolate, long, and gradually acuminate or ensiform, membranaceons, plicate, the thickened margins recurved at the base; rachis and petiole 3 -sided toward the hase, convex on the back. concave above; petiole elongated; sheath very long, eylindrical, entire: spadix panicuiately brancled. rachis elongated: branches slender, graduatly shortening above, usually scaly, thick at the base. erect-spreading in fl.: spathes 2, coriaceous or membranaceous, lanceolate, the lower one the shorter, split at the apex, dorsally 2-keeled, the upperone symmetrical, split down the ventral side: bracts bordering the furrows : bractlets ovate-acute: fls. small, white, sessile in the furrows of the spadix: fr. like a pea, purple. Speeies about 8. Trop. Amer. and W. Indies.
édulis, Mast. Para Palm. Assai Palm. Stem, 60-70 ft. high, 8 in. thick, flexuous: liss. spreating; sheatlis $3-41 / 2 \mathrm{ft}$.; petiole $1 \frac{1}{2} \mathrm{ft}$.: blade $6-9 \mathrm{ft}$.; segments linear, spreading, deflexed, 60-80 on each side, densely crowded, $28-36$ in. long, $3 / 4-1$ in. wide. Brazil.
oleràcea, Mast. Cabbage Palm. Fig. 801. Stem $60-100 \mathrm{ft}$., scarcely 1 ft . in diam. at base, attenuate above, flexuous: Irs. arcuate-spreading, $4-6 \mathrm{ft}$. long, the apex more or less deffexed; segments pendent, linearlanceolate, the upper 2 ft . long, 1 in . wide, many-nerved. Braz. - Fig. 801 is adapted from Martius' Nat. Hist. of Palms.

801. Euterpe oleracea.
montana, R. Grats, ${ }^{+} \mathrm{em} 10 \mathrm{ft}$. high, swollen at the base, ringed: Irs. 4 , ag, elliptical-obovate; segments lanceolate, entire fiabrous, alternate; petiole 2 ft . long, scaly beneath, $九 .{ }^{\prime}$. ad : rachis plano-conrex below, subtriangular tov"ards the apex. Grenada. B.M. 3874.

## Jared G. Smith.

Euterpes constitute a small group of spineless palms, said to include 8 or 10 species in all, but of these there are but 3 species commonly found in cultivation, namely : $\boldsymbol{E}$. edulis, $\boldsymbol{E}$. montana and $\boldsymbol{E}$. oleracea. These are found under varying conditions in Central and South America and the West Indies, and all three species are valuable as food-producers to the natives of those countries. E. edulis grows in great quantities in the low. lands of Brazil, where it is known as the Assai Palm, owing to the fact that its seeds are macerated in water, and by this means is produced a beverage known as Assai. E. oleracea is the well-known Cablage Palm of the West Indies, growing in the lowlands near the coast, while E. montant is the Mountain Cabbage Palm, and is frequently found at considerable altitudes in the same islands, and consequently does not attain the great dimensions of $\boldsymbol{E}$. oleracea.

The Euterpes do not present any special cultural difflculties, being free-rooting and rapid-growing palms, a night temperature of $65{ }^{\circ} \mathrm{F}$., and abundant moisture, being among their chief requirements. A good. turfy loan, with the addition of about one-tifth of stable manure while in the compost heap, provides a suitable soil. From their habit of forming a tall, struder stem without suckering from the base, the Euterpes are liable to become rather leggy specimens. When under cultiration, and for trade purpuses, it is advisable to group 3 or 4 of the soung plants together, thus producing a more bushy specimen. White sate is one of the worst pests to which these palms are subject, and soon ruins the foliage muless cure is taken. Seeds germinate in a few weeks if sown in a warm greenhouse, and the young plants make better progress when moderately shaded.
W. H. Taplin.

## EUTOCA. Now referred to Phacelia.

EVAPORATING OF FRUIT. While the domestic operation of drying truit has been practiced ever since men looked beyond their immediate wants and stored food for time of greater need, and while dried fruit has long been an article of commerce, yet unthl a few decales ago only the most primitive methods were used in the drying process, and the industry, commercially, was confined to a few favored regions in Europe. The modcen industry is scarcely more than a quarter century old. Its almost inconceivable growth in Ancrica in this brief time is one of the industrial phenomena of the epoch. Spurred into activity by the encroachments of the American product in their markets, the European producers, by the adoption of better methods, and by governmental encouragement, have increased greatly their output of dried fruit. And so, from an adjunct to fruit growing for home use, drying fruit has become, within recent years, one of the main branches of horticulture.

Fruit may be cured in the sun, or it may be cured in drying machines, called evaporators. That cured in the sun is called by the producer dried fruit; that in evaporators, evaporated fruit. By far the greater part of the world's product is cured in the sun.
Sun-lrying fruit.-In countries having a sufficiently warm and dry climate, as Greece and Turkey, and parts of France, Spain and western America, fruit is dried almost wholly in the sun. The fact that in these farored localities the drying capacity is limited only by the acreage of sunshine, makes it certain that the proportion of sun-dried fruit will always be vastly greater than that of evaporated fruit. Drying fruit in the sun is a simple process, but one hedged in by many little arts and methods which facilitute the work and improve the product In general, the process is as follows: the fruit is graded, bleached by sulfur, if a light colored product is desired, in the case of prunes dipped or pricked. and is then spread on trays to be exposed to the sun. When the drying process is finished the fruit is again graded, In most cases put through a sweat, and then "finished, in various ways, as by dipping or glossing.

Evaporating fruit. - There are hosts of styles of evaporators, but all possess in common a chamber for the reception of the fruit, through which a current of warm air is forced, or the fruit is forced through the air, or both, the object being to remove the aqueous matter from the fruit as quickly as possible, and the principle being that warm air will absorb more moisture than cool air. The saturated air must not remain in contact with the fruit. Siace different fruits exact different conditions, one should be able to change the temperature and velocity of the air current in the drying chamber at will. To make the product homogeneous, current and temperature must be equal in all parts of the evaporator. It is obvious that simplicity in the machine and economy in heat and in room are cardinal virtues in a good evaporator. It is the rule to start the evaporation of large fruits at a low temperature and finish at a high one, but with berries the reverse is true. Some operators start their apples high and finish at a low temperature.

The following are definitions of the somewhat technical terms used in the industry: Bleaching is the pro-
cess of changing the dark entor of fruit to a lighter hue, or of preventing the discoloration; generally accomplished by sulfuring. Bloaters are prunes which in drying swell up to an abnormal size; generally produeed by fermentation in over-ripe fruit. Dipping is the process of cutting the skin of fresh prunes to facilitate curing. The operation is performed by sml) merging the fruit in boiling lye. Cured fruit is sometimes dipped in one of various solutions as a "finishing" process. Drip is the syrupg liquid which oozes from prunes in the process of evaporation; it generally characterizes a poor prune or a poor evaporator. Frogs are cured prunes having an abormal shape; a condition caused by curing unripe fruit. Pricking is the process of puncturing the cuticle of fresh prunes. It is done ny means of a machine, the essential part of which is a board covered with projecting needles, over which the prones must pass. It accomplishes the same end as ye dipping. Sizes is a term used to indicate the number of cured pruntes it takes to make a pound. The "four sizes" known in the markets are $60 \mathrm{~s}-\mathrm{f0s}, 70 \mathrm{~s}-80 \mathrm{~s}$, $80 \mathrm{~s}-90 \mathrm{~s}, 90 \mathrm{~s}-100 \mathrm{~s}$. Shuaring is the formation of globules of sugar on the cuticle of cured prunes. Sulfuring is a process curcl fruit is put through to give it a lighter color. The fruit is subjected to fumes of burning sulfur before being exposed to the sun or put in evaporators. Suecuting is a process cured fruit is subjected to before packing, in which it is put in a room at a high temperature and allowed to become moist.

C'uring different fruits.-Apples and pears are peeled, cored, cut in rings or quarters, and sulfured, before being placed upon the drying trays. The time required for curing is about three days out of doors and six to twelre hours in the evaporator. There is considerable trale in apples called "dumplings," which are whole apples peeled and cored. Double the time is required in evaporating them, but the price is higher.
Apricots, peaches and neetarines must be fully ripe before drying and without bruises. They are pitted, and may or may not be peeled. If peeled, the operation is done with machines or with lye, though the use of the latter is considered a bad practice. The fruit is placed on the trays cup side up). About three days are required for drying in the sun and about eight hours are required for evaporating. The cured product should be of a translucent amber color.

Berries are seldom sun-dried for the markets. For evaporating they are placed on trays in quantities of from sixteen to thirty quarts, given a temperature of about 175 degrees at the start, and are finished in from four to five hours, at a temperature of about 100 degrees. After being taken from the evaporator, they are piled for sweating in a warm, ventilated room.
Figs for drying must be gathered when fully ripe. Some growers prefer drying in shade rather than in sun. Eraporators are seldom used. The fruit is not allowed to dry hard, and before packing must be well sweated. Usually, for "finishing," they are dipped in salt water or syrup. The drying process requires from five to eight davs.

Prunes are allowed to ripen until they fall to the ground. Before being spread on the trays they are dipped or pricked in orler to thin or crack the skin, that the moisture may easily escape, and dripping be prerented. Sun-drying requires from one to three weeks, while from sixteen to thirty hours are required for eraporation. A thorongh sweat prevents the sugaring so common to this fruit. Before packing they are graded in sizes. Dipping as a "finishing" proce.ss is practiced by many prorlucers. A good prune is soft, smooth and meaty, with loose pit, and of an amber, dark red or golden hue, depending upon the rariety.
Grapes for raisins are sun-dried. They must be picked when fully ripe, the bunches, and the berries on the bunches, being sorted as the picking progresses. The operation of drying must be watched with eare. The process requires from eight to fourteen days, during which time the bunches must be turned at least once. A sweat is given before packing. Raisins are graded into half a dozen or more brands for the market.
U. P. Hedrick.

EVENING PRIMROSE. See Enothera.

EVERGREEN. Sald of plants which do not shed all their foliage at any one time, thereby remaining green; or of leaves which persist for two or more years. In all evergreen plants, the old leaves shed after a time, when they become so overshadowed or crowded as to be of no further use to the plant. The leaves of pines and spruces persist for three to flfteen years.
In the popular mind "Evergreen" and "Conifer" are the same, but some conifers are deciduous, as the larches and taxodiums. Moreover, in the tropics most trees and shrubs are evergreen or nearly so. In the mind of the gardener, evergreen and conifer are thoroughly dissociated, and in works on gardening hundreds of greenhouse plants are called "evergreen," which represents dozens of families besldes the Coniferm. Evergreens other than conifers are sometimes called "Broad-leaved Evergreens." See Comifers.

EVERLASTING. A term applied to flowers or plants which retain their shape and other characteristics after being dried. Equivalent to the French word Immortelle (see Revue Horticole, 1890, p. 52l).
The most important commercially of the flowers which retain their form and eolor in a dried state are tho French Immortelles, Helichrysum aremarium. These flowers are used very extensively in France in their natural yellow color, for the manufacture of memorial wreaths and crosses, which, being constructed very compactly, are exceedingly durable, even in the severest weather, and are exported in large numbers to all parts of the world. The flowers bleached white, or bleached and then dyed in various colors, are also shipped in enormous quantities, either direet to this country or through some of the large exporting houses of Germany. Approaching the French Immortelles in aggregate value are the so-called Cape Flowers, Helichrysum granlifiorum, which have reached an enormous sale in this country within a few years, and have largely supplanted the Immortelles on account of their silvery texture and greater beanty every way. They are naturally white, but require bleaching in the sun to give them the desired luster. They come from the Cape of Good Hope, and reach this country mainly via Hamburg.
The common Everlasting of Anierican and English country gardens, Helichrysum bracteatum, is the only one of these everlasting flowers grown to any extent in America, and more or less extensive cultiration of them, commercially, has been practiced in this country, but still a large percentage are imported. They come in white, straw and brown colors naturally, and take readily to a variety of artificial tints; these, together with Ammobium alatum and the well known GlobeAmaranth, Gomphrena globosa, are grown and used to a considerable extent by the country folk in the construction of the many forms of wreaths, stars, and other Christmas greens, which they sell in the city markets in large quantities, but their sale by wholesalers and jobbers for general consumption is very limited. Statice incana, cultirated or wild from the swamps of southern Europe, and Gypsophila in several species are used to a considerable extent, and the sale of Statice especially, which is popular in combination with Cape Flowers in memorial designs, is quite an item with the dealers in florists' supplies.
Of the dried grasses, the Pampas Plumes of California, Gynerium argenteum, native of South America, are tho only American production attaining any great commercial importance. Their beantiful silky plumes, unapproached by any other horticultural product, are used in enormous quantities for decorative purposes, and are an important item of American export. They are used mainly in sun-bleached state, but more or less dyeing, often parti-colored, is also done. Bromus brizeformis is the most extensively used of the smaller grasses. It is mostly imported from Europe, via Erfurt, but has been grown in considerable quantity in Michigan. It can be imported, however, including duty, for about 25 per cent less than it is possible to grow it in this country It is handled in the natural state. Briza maxima, another popular grass, is grown in Italy, whence it is shipped to America, Philadelphia being the largest importing port. Briza merlia, a medium sized grass, and Briza minima, the flowers of which are as fine as saw-dust, are also

## ENHIBITIONS

handled in the same manner as Briza maxima, very little of the B.minima being used dyed.however. Phleum pratense, Stipa pennute, and various kinds of oats have more or less eommercial value, heing used considerably in the manufacture of imitation flowers and straw goods, but from a florist's standpoint, they are not important. The most important conmercially of the imported grasses is the Italian wheat, the quantities used in this country for the manufacture of sheaves for funeral purposes being enormous, and increasing yearly. It comes in many grades of fineness and length of stem. In this country all attempts to cultivate it in competition with the European proluct have failed.

Outside of wheat, it is generally true that the use of dried grasses and flowers in this country is on the decline. The fordness of our people for fresh Howers, and the abundance in which these are now offered, everywhere, at all seasons, is largely responsible for the decadence of the fancy for dried Howers. Another factor is the artificial Hower industry, which. in France particularly, has attained a wonderful merfection, the materials being principally metal, porcelain, wax or cloth. In Europe, especially in Germany, the grasses seem to maintain their popularity, and it is to these foreign-born people that a large part of the material imported here goes.

A number of our native Composites-of the genera Gnaphalium, Antennaria and Anmphalis-are called Everlastings, and are often used in home decorations, particularly in the country; but they hare no commrcial rating.
H. Bayersdorfer.

EVODIA (Greek, pleasant odor). Rutacea. Betreen 20 and 30 trees or shrubs of the Old World tropics, with opposite, punctate, simple or compound les. and small fls., in terminal or axillary cymes. Fls. unisexual; sepals and petals $4-5$; stamens $4-5$, inserted at the base of a cup-shaped disk; stimna 4 -lobed. Warmhonse evergreens. Prop. by cuttings of half-ripened wood. E. élegans, Hort.. from New Guinea, is a new plant resembling Arulia elegantissima. Lrs. prominently 3 lohed, undulate and crenate. E. formosa is another new species int. 1900 by Sander \& Co.

EXACUM (classical name, of no significanee to these plants). Gentioniecere. An oriental genus of about 20 species. including 3 kinds of herbs. treated either as anmuals or bientials, with a-lobed ths of lilac, blue or dark purplish blue. Cult. in a very few greenhouses. The gemus has no allies in its tribe of garden value. Herbs, dwarf and ammal, or tall and paniculate-branching: lys. sessile. elasping or short-stalked: fls. small or attainins 2 in. across, lilac, violet, blue or white, pedicelled or not, in forking cymes; calyx 4-5-parted, the segments keeled, winged or flat and 3 -nerved; corolla tube short: lobes 4 or 5 , ovate or oblong, twisted; stamens 4 or $\overline{5}$, attached to the throat, with very short filaments.

According to "K.F." in Gng. 6:209, E. affine can be grown in a greenhouse where the temperature ranges from $\min ^{\circ} \mathrm{F}$. The showier indigo-blue $E \boldsymbol{E}$. vermthum requires a warmer house. The color of the ths. of $E$. offine varies according to the treatment. If kept in bright. sunny quarters they assume a bluish lilac color; in the shade. blue to deep blue. Plants flower in August. If specimens in $\overline{5}-\mathrm{in}$. pots are desired. sow in March of the same vear: for larger sbecimens, sow in Angust of the preceding year. The plants must be kept in a cool but not draughty greenhonse or frame in summer, and shaded from fierce sunlight. The nsual precautions needed for very small seeds should be observed. They should receive their moisture from below, as orerhead sprinkling disturbs the sprouting seeds.

## A. Li's. with stulks often $\frac{1}{2}$ in. long.

affine, Balf. Stem cylindrical, 1-2 ft. high, much branched from the base: 1 rs. $1-1 \frac{1}{2} \mathrm{in}$. long, ellipticovate, fuintly $3-5$-nerved: sepals with a broad wing on the back; corolla f-9 lines wide: lobes almost rounded. Socotra. B.M. 6824. A.F. 13:1104. Gng. 6:229. R.H. 1883, p. 512. Gะ. 34:1108. G.C. II. 21:605.

## A. Li.s. Meerly or quite stalkless.

B. Corollu lobes rounded.

Zeylánicum, lRoxb. Annual: stem f-sided, branched only abore: lvs. becoming 3 in . long, strongly 3 -nerred, elliptic-oblong, acuminate, narrower than in $E$. affine, and tapering: Hs. $11 / 2 \mathrm{in}$. across, in terminal. leafy corymbs; sepals broally winged; corolla lobes oborate, obtuse. Ceylon. B.M. 4423 (sky-blue, with a dash of purple). R.H. 18:9. p. 23S.

Bb. Corolla lobes tupering to a point.
macránthum, Arn. ( $E$. Zeylinicum, var. macrinthum). Stem (ylindrical, slightly branched: los. as in $E$. Zeylunicum. thourh perhaps more variable from base to summit: Hs. $\because$ in. across. In both species there is a uarrow ring of yelluw at the mouth, to which the conspicuous clusters of stamens are attached. Ceylon. B.M. 47 II (deep purplish blue). (B.C.III. 15:331. - The best of the genus. The rich, dark blue is worth striving for. Reintroduced by Sander \& Co. $1899 . \quad$ W. M.

## EXCECARIA sebifera. See ぶupirm.

EXHIBITIONS of horticultural products may be made for either of two purposes, -to illustrate the subject or thing itself, or to illustrate anideal. As a matter of fact, all Exhibitions of domesticated products are for the latter purpose. If an Exhibit were made of what a species actually is-whether dahlia, peach or pumpkinhostility would be aroused, for in that case the incapa. bilities as well as the capabilities of the plant would be shown. Exhibits are really made up of those selected forms which most nearly approach an ideal. This ideal may be a commercial one or an artistic one. The commercial ideal is likely to be held up as the only one. It is usually held dogmatically. and ont who has another ideal is a heretic. A so-ealled show plant, as a chrysanthemum or a dahlia, may represent only one of the many possibilities of the species: and earh of these possibilities may be worth the cultivating. It is a signiticant fact that many of the commercial types are not the most artistic or the most satisfactory ones. They are usually those which are most certain to give uniformly protitable results to the grower. The constant forcing of these types on the public attention tends to popularize them. The chrysanthemm admirahly illustrates these remarks : the extra-large show hooms are less satisfactory and agreeable to most persons than freer, smaller and more individual blooms.

The Exhibition ideal in any fruit or plant has a powerful influence on the evolution of the plant. Penple breed for that ideal. They discard those forms which contradict the ideal. Persons who care less for the formal ideal than for varicty, individuality and artistic merit are amateurs in the best sense of the word. Skilled amateurs usually deal with more varied and difficult subjects than the professionals or commercial growers. It is remarkable how plants have been bred to the Exhibition standard. The practice of carding and dressing of the carnation in earlier times has produced the highcentered. Hat-bottomed carnation of today. In England. the carnation ideal has been an entire or rose-leaf petal; in America. the ideal is amolerately fringed petal. Perhaps the effect of the Exhibition ideal is nowhere so well seen as in the custom of exhibiting single blooms: it has developed the individual flower rather than the plant as a whole. The chrssanthemum, dahlia and camellia are examples. The Oll World custom of showing single blooms of thorists' flowers in holes in a board or in sand-like so many heads in a pillory-enforces the ideal of the single fower. Fortunately, this type of Exhibition has had little popularity in this country. A comparison of the pictures of prize Exhibition subjects in European and American journals wonld show some interesting contrasts. It would contrast single-flower or single-specimen ideals with bouquet ideals in florists' flowers.

In general terms, the entire plant is the unit, rather than the flower or fruit alone. The love of flowers is only the beginning of wisdom. The love of plants is a higher stage. It is pleasing that American Exhihitions are more and more diven to plants and to artistic displays. The Old World Exhibitions, while emphasizing
the single-flower ideal in florists' plants, are very rich in displays of specimen phats of other kinds.

Every Exhibition should make its motive or animus clear. The visitor should know whether it is the purpose to show forists idcols, mmateurs' idenls, or both. The best Exhibition of any subjeet is that which shows all its possibilities and merits. The tendoncy is for the amateur's ideals not to be seen at the shows. There are fewer prizes for these ideals, and the amateur leaves his choicest things at home. Yet the amateur is the conservator of meritorious plants. He holdsinteresting and artistic varieties and species decule after decade, and prerents their loss. It is the mateur who has kept the old Laciniatum chrysanthemum against the changing moods of the trade. Consiler that the greater number of species described in this Cyclopedia are known only to the amateur. Our horticulture would be poor indeed if only commercial ideals should presail.
A leading value of an Exhibition is to maintain a society. The annual or perionlical show keeps alive interest in the society, and thereby enables the society to extend its benefleent work. The great disphays made by the American Pomological Society, the Society of American Florists, the American Carnation Society, and other organizations, are excellent examples of the value of an Exhibition in aiding to maintain a society with educational functions. This gives a suggestion for the loeal improvement society: have an Exhibition in spring and fall. Invite the professional growers to show their specialties at the local show. It is well to make some one plant or group of plants a central feature of each show; and this plant shonld he shown in all its varions forms. Endeavor to interest people in plants themselves, even though they may not show the formal ideals of the plant-breeder. fiood subjects for these contral features are the different fruits and vegetables, roses, carnations, chrysanthemums, dahlias, gladioli, spring bulbs, aquatics, bog plants, alpine plants, cacti, orchids, poppies, sweet peas, violets, ferns, peonies, orhamental autumn fruits, wild fowers, bloom of hardy shrubs, foliage or blom of forest trees, and vines.

Aside from these technical uses of the Exhibition in illustrating the progress of plant-breoding, the show also may be made a powerful means of extending and deepening the love of nature. In this guise it will appeal to evory porson. not to hortieulturists only. In every sehool an Exhibition once or twice a year should be male an adjunct of nature-study instruction. Such an Fxhibition should not stop with plants, but include all natural objects. It should not be a technical horticultural Exhibit : and therefore, its further discussion is not germate to this work.
L. H. B.

EXOCHORDA (fron cxo, external, and ciorile, a cord or thong; suggested by the free placentary cords supposed to be external to the carpels). Rosucece. Hardy shrubs or small trees, remarkable for the structure of the fr., which is composed of $\overline{5}$ small, bony carpels, adhering around the central axis in a star-like manner. Allied to Spirgea. Prop. hy seods. cuttings and layers. Soeds are produced only on old phants; euttings root slowly and with diflionlty; layering is best. Seed propagation is advisable when seeds ean be obtained.
grandiflora, Lindl. Pearl Bu'sif. Fig. 802. Well known garden shrub, n. often over ti-8 ft., but sometimes 15 ft .: lus. petiolate, lanceolate-oblong, whitish helow, very strong toothed on strong shoots, but almost entire upon the ohder parts, stipuled: fls. appear with 1 s . in long, terminal racemes of 5 or 6 tls., pure white; ralyx deeply 5 -eleft; petals $\overline{5}$, narrow. roundish and clawed; stamens $10-15$, short : fr. of abony, w-valved carpels joined to a common axis, each with 1 large, tlatwinged seed. Apr., May. Central China. F.S. $9: 954$ Git. ${ }^{7}: 1455 . \quad$ R.H. 1896 , pp. 324,325 . J. H. III. $34: 483$. B.M. 4795. A.F.6:343. Gng. 5:97. G.C.II. 16:73; III. 7:613. - Open habit and with thin, uninteresting foliage. Individual tis of no value. Eseful only in bloom. when it is a dazzling white, the most brilliant shrub of its season. Can be kept in shape hy pruning, but better back of or massed with other shrubs. Thrives in any good soil.

Alberti, Regel. Of greater vigor, darker foliage,
covered with spikes of pure white Als., 8-10 on a spike. Becomes if ft . Turkestan. For its garden value, see Ging for Oct. 1, 1899 .
A. l'helps Wrman.

EXORRHIZA (ero, out, outslde, rhiza, root: alluding to the large airial roots above the ground). Palmelcece. High-growing palm, with struight, smooth stem, supported at the base hy larke nërial, sping roots: lvs. large, pinnate. Allied to Kentia, but distin guished by the imbricate sepals of the sterile ths., the elongated, subulate thaments of the stamens. by the roundish-ovate sepals of the pistillate ths. and by the parietal ovale. In Kentia the orule is basal and erect.

Wendlandiàna, Becc. (Kẻntia exorrhiza. Wendl.). Often more than 60 ft . high: lves. $10-1: \mathrm{ft}$. long: pinna alternately arranged, 1-2 in. from each other, beeoming 4 ft . long and $\pm$ in.broad, 3 -nerved: spadix appearing below the los., enveloped in thick, coriaceous, hoat-shaped spathes. Fiji Islands.

EXPERIMENT STATIONS exist in all the states and territories of the ['nited States, and in the Canadian provinces, maintained by the general governments. These constitute the most extensive series of agricultural research stations in the world. In Alabama, Conneeticut, New Jersey and New York there is also a station maintaned in whole or in part by state funds. The total number of regular stations in the United States, to the close of the fiscal year, June 30 , 1898, was $\overline{54}$. The total income of these stations was $\$ 1.210 .921 .1 \%$. In the work of administration and inquiry, these stations that year employed 669

802. Exochorda grandiflora. ( $\times 1 / 3$.) persons, of whom 77 were horticulturists. In that year, these stations published toti reports and bulletins. The mailing lists aggregated half a million names. Summaries of all these publications are published by the Office of Experiment Stations. Department of Agriculure, Washington, in the monthly "Experiment Ŝtation Record."

In the lominion of Canada there are fire Experimental Farms. One of these is known as the Central Experimental Farm, and is located near the eapital, Ottawa, and serves the purposes of the two large provinees of Ontario and Quebee. The other four are branch Experimental Fiums, sites for which have heen selected in different parts of the country, as follows: One at Nappan, Nova scotia, which serves for the three maritime provinces; ascond at Brandon, Manitoba, which serves the purposes of that large prairie province : a third at Indian Head, N. W. T., which serves the purposes of the provisional districts known as the Northwest Territories of Canada; and the fourth is at Agassiz, in the coast climate of British Columbia, al 1 meets the need of the latter important province. The grant made for the maintenance of the five Experimental Farms has been $\$ 75,000$ per annum until 1899 , when this was increased to $\$ 80,000$. it the Central Farm there are six officers engaged in research, and two at each of the branch farms, excepting at Agassiz, 13. C., where there is only one. The publications relating to the work at all the Experimental Farms are issued from the Central Farm at Ottawa.

FABA. See licia.
FABIANA (after Francisco Fabiano, Spanish botanist). Solundecte. This group is a series of surprises. It contains 1 li species of heath-like shrubs from South America. Theyaredwarf, erect, much branched, and $E$, imbricatit has irs. suggesting an arborvita, being scalelike, overlapping, aud densely crowded. The tlowers resemble a heath in sice and profusion, and their culture is the same as Erica. They belong to the same family with the potato. The fls are club- or funnelshaped, of semi-cylindrical portions grown together at the edices and crowned by a limb of 5 short, rounded, spreading lobes. At present it seems to be cult. only in S. Calif. and the South. Abroad it is cult. under glases in winter and put outhoors in summer.
imbricàta, Ruiz \& Par. Height 3 ft .: lrs. scale-like, imbricated: Hs. sessile, white. Spring. Peru, B.R. 2з:59.

FAGELIA (after Caspar Fagelins). Legumindsa. A fast-growing, twining subshrub from S. Africa, covered with clammy hairs, and bearing all summer axillary racemes of pea-like tls. which are yollow, the keel tipped violet. Cult, outdoors in S. Cali!. and abroad under glass. The plant is allied to Cajanus, but is a genus by itself, chiefly becuuse its seeds are strophioled, pod swollen, not flattened, and the 2 upper calyx lobes nearly distinct.
bitumindsa, DC. Leaffets 3. B.R. 3:261, as Glycine, showing fls. also reined with red.

FAGOPYROM (beech wheat, from the likeness of the fruit to a leerch-nut). Polygondcere. Probably only two species of Eu. and N. Asia. Quick-growing annuals, with alternate deltoid or hastate les., small honeyscented fls. in racemes or panicles, 5 -parted calyx, 8 stamens, 1 -loculed ovary ripening into a Houry, 3-angled akene.
esculéntum, Monch. Beckwheat (which see). Fig. 276, p. 186. Lrs. large and broad, long-petioled: fls. white, in panicled or corymbose racemes: akene or grain with regular angles.

803. Fagus ferruginea $(\times 1 / 3)$.

Tatáricum, Gertn. India Wheat. Deckwheat (which see). More slender: lvs. smaller and hastate or arrow-shaped, shorter-petioled : fls. greenish or yellowish, in small, simple racemes akene with wary or
notched angles. ['seful in short-season climates and on poor soil.
L. H. B.

FAGUS (ancient Latin name). Cupuliferce, tribe Fagiterr. Beech. Tall, deciduous, hardy trees, of noble, symmetrical habit, with smooth, light gray bark and clema dark green fuliage, which is rarely atticked by insects or fumgi. They are among the most ornamental and beatiful trees for park planting, and attractive at every senson, especially inspring, with the young foliage of a tender, delicate green, and the graceful, drooping heads of the stmminate fls. The Americanami the European species are much alike, but the first has the loark of a lighter color, the head is broader and more ruundish, and the lvs. less shining, but turning clear yellow in fall, while the latter has a more ovate head and shining foliage, which turns reddish brown in fall and remains on the branches almost through the whole winter. It is sometimes used for tall hedges. In Europe the Beech is a very important forest tree, and the hard and very close-graned wood is largely used in the manufacture of different articles and for fuel; but it is not very durable in the soil. The sweet nuts are edible, and in Europe an oil is pressed from them, used for cooking and other purpeses. The Beech prefers dryish situations, and grows best in sandy loam and in limestone soil. Prop. by seeds sown in fall where there is no danger of them being eaten by mice, or dried after gathering and kept mixed with dry sand until spring. The young plants should be transplanted every second or third year; otherwise they make long tap-roots, and cannot always be transphanted successfully. The varieties are grafted on seedling stock, usualiy in the greenhouse in early spring; grafting in the open usually gives not very satisfactory results. Five species occur in the cooler regions of the northern hemisphere, all large, deciduous trees, with alternate, distichous, dentate or nearly entire lvs.: As. monceions, with the lvs.; staminate in slender-peduncled, pentulous heads appearing at the base of the young shoots; perianth 5 - 7 -lobed; stamens 8-13; pistillate with 3 styles, usually two in an axillary peduncled involucre : fr. a brown. ovate, triangled nut, 1 or 2 in a prickly, dehiscent involucre. The species of the southern hemisphere, often included under Fagus (as $F$. betuloides and others), form the genus Nothofagus, which see.
ferruginea, Ait. ( $F$. Americdna, Sweet. $F$. airopuniced. Sudw. ). Amemican Beech. Figs. 803, 804. Tree, to 80 ft ., rarely 120 ft : 15s. orate-oblong, acuminate, coarsely serrate, silky bencath when young, with 9-14 pairs of veins, dark bluish green abore, light yellowish green beneath. $21 / 2-i$ in. lonte involucre covered with slender, straight or recurved prickles, $3 / 4 \mathrm{in}$. high. E. A. Amer., west to Wis, and Texas. S.S. 9:444. Em. 182. G.F 8:125. A.G. 12:711. Var. latifolia, Loud., with broader and larger, strougly toothed les.
sylvática, Linn. Ev゙ropean Beech. Fig. 804. Tree, to 80 ft .. or rarely 100 ft . lvs . ovate or elliptic, remotely denticulate, silky beneath and ciliate when young, with $\overline{5}-9$ pairs of veins, dark green and fiossy ahove, pale beneath, 2-4 in. lons: involucre with mostly upright prickles. about 1 in. high. M. and S. Europe to Cancasus. Fig. 804 contrasts the lvs. of the American and European species. A great number of varieties are in cultivation, of which the following are the most remarkable: Var. heterophylla, Loud. (var. asplenifolir. Lodd.). Les. cleeply cut, often almost to the midrib, into narrow lobes. A very graceful variety, forming a dense and low, shrubbytree. Mn. 1.p.61. P.G. 3:163. Var. pendula. Lodd. With long, pendulous branches, the larger limiss mostly horizontally spreading. Gn. 55, p. 267. G.F. 1:32. Var. purpurea, Ait. (var. utropurpurea, Hort.). Fig. 805. Lrs. purple. A form with very dark purple les. and of compact habit is var. purpurea Riversi, Hort. There are other forms, differing in the
shade of purple，and also some with rosy pink varia． gateel Ivs．Viar，purpurea péndula，llort．，lias purple Ivs and pendulons branches，but is of slow growith． Var．Zlatia，spmeth，lyas yellow follage．Isess impurtant varieties，lut sometimes grown，are the fullowing：Var． cristata，Lodd．，with deeply toothod，curlod．sumall and elustered lvs．：of slow growth．Var．incisa，Hort．Simi－ lar to var．hetcrophylla，bint lys．less deeply cirt．Var．macrophýlla，llort． Lex．large，qo Bin ．lomg．Var．quercoldes， P＇ars．（var．gherifuliet，Ilurt．）．W＇ith leeply toothed and simate，rather nar－ row lus．Var，tor－ tajsa，Hort．IWarf Gurm，with twistedt and contortod branches and small lis．

F．Japóniea，Maxim． La゙s，small，chliptic，cro nan：involacere small， shember－peethucleyl，halt as long its the nuts．Jit－ pan．－F．Níbuldi，Eudl． 1がく，wate，shortly marn－ ninate．crenate，with 9－11 pairs of veins： lonser prickles of tho involurere＂hanging lites slomler linesir or olwo Axia to．Jipan．
－lefred Rembil．
Both in Furope and the eastern LV．S．the Berech formse extenvive forexts．It is to－day the common hard－ Wond tred of Central Eiurope，particonlarly in Demmat and liamany，raised as pure growth or mixture．It ro－ guirew a loamy，preferably caleareons soil，shams peor
 fers morth and east expusures，endures much shade． protects and improses the suil，and prondaces large ammonts of wool pre acre．The wool is heatry（sp．Ler．
 durable．Berech is mot nuod as bilaling lamber，hat is extonsively used for ordinary woolen ware，farmiture． wherlwright and cooperage stock．

F．Rotn．
FAIR MAIDS OF FRANCE．Doulle forms of Rid nuисиlas menififolius．

FAIRY LILY．（＇ouprerit peclumeulata．
FANWORT．Ser C＇ulombu．
FARFUGIUM．Sne Spurvio hirmpferi．
FÁTSIA（from a Japanese name）．Araliàcor．This gemas is deubly intoresting as producing the famons riee paper of the Chinese，and two supurh rivals of the castor oil plant in hold，subtropicall effects，made by large Ivs．which spread ont like fingers．Fratsia has is species of trees or small shrubs lefonging to the I＇anax series，in which the proals are valvate，while in the Aralia series they are more or less overlapping，but the sidee aftixed at the hase．Within the lomax seri s， Pamax itself has the pediecl articulated umber tho flower．while in Fitsia and Aconthopanax the pedicel is continuous will the thowrer．Fatsiat is distinguished from the hardier and lass familiar but worthy Arinthopanax whe theater length and distinctness of the stylos．
While Fatsias require more care in the：North than the hardy Aratias．their massive，subtropieal appearanee is highly distinet．A profeet sumemen is figured in（iar－ dening $\bar{i}: 133$ ，where W．R．Smith says of $F$ ．papyrifore： ＂This plant produces the heautiful substance known as rice paprer：it qrows to 10 ft ．high．with astem 4 in ．in diam．．full of white pith like the cliler：in a full－grewn specimen the pith is about 1 in ．in diam．It is divided into pieces $: 3 \mathrm{in}$ ．long，amb loy tid of a sharp instru－ ment is unrolled，forming the thin，narrow sheets known as rice paper，greatly used by the（＇himest for drawing figure of plants and animals，ant alco for making artio ficial flowers．Until abont 1 sin the souree of this sub－ stance was unkuown to seientists．The Chinese，on in－
fuiry，gave very fanciful fifures and descriptions of it． ＊＊It is destincd to be a poophle＇s juant，as onf－ lasif ind of the ront will grow had form a fornd phat the flrst season．It has survived must winters for the past the years in Washington，1）．（＇．＂


 phylle．For contrast with foathery and cut－leaved fols－ age．ho sugerests hambos，atucubas，ent－leaved maples and varions iviow．For enlture of fatsias as ereenhouse plants，see Imblis．＇The two orisutal speedes are mo armeal．$t^{\prime}$ ．horrihle，from wostern N．Amor．，is a simby plant colt，abroad．Siabort and Voss deelare that mont ＂f the plants suld as F＇atsia foponiron nre Areliat spiseoses．These plants like shathe．F＇ull sumlight for sth hour or two in enty morning is rhongh．＇Thes shombl have a shaltor－spot，where the wind will mot whip their foliagn
papyrifera，Bunth．© Ilacok．（ I millia pupyrifern，IIook．）．
 stellatte，more or lass deceidnonvilewn：mathrelver reabh－
 sinus vary derp：As．incomapicums，white，in sessile，
 Cing．$\overline{5}: 1: 33$ ．（in．45，p．32： 1.
Japónica，Decne．\＆Planch．（A rillia Tıpfiniert，Thunb．，
 finally shining grean：ths．in malnels．Jap．；（hina，－ Ahrosid are cult．forms with white or golden margins and is form retienlated with gold markings．W．M．

## FEATHER GERANIUM．（＇henoporlium Botrys．

FEIJOA Sellowiana is considered a promising fruit
 thick，amel 4 －orllod．＇The thesh is thick，white，pulpy and watcre，with a supary taste，resombling the pineapple and thic shata，aml with a trong，agrowable ofor．Int．
 Gil．ist，p．Uus．Orter Myrtuert．

FELICIA（for Herr liolix，a Germsur oficial）．Com－ prisiter．Narh like Astor，from which it differs in having pappras bristles in onte series．and in other torehnical charamers．Foney to ith herbs or subshrubs in Afr．


805．Good specimen of Purple Beach－Fagus sylvatica， var．purpurea．
amellodes，V゙uss．（Cineràrif amelloides，Linn．Astar rofmulifolius，＇1humb．A．Cuprusis，Dess．Ifulluer re＇éstis，C＇iss．IB．rotundifolia，Ness．A．amolloriters．

D('.). Blue Daisf. Blue Marguerite. Fig. 806. An old greenhouse plant, 1-2 ft., with roundish ovate opposite Ins. and large, solitary heads of an exquisite sky-blue. S. Afr. B.M. 949 (as Cimeraria esmelloides). A.F. 13:657. F.R. 1:674. Gng. 6:149.-There is a varie gated-lva. var. (I.H. ©:896). Grown easily from rattings. Handled like a ('ineraria; or, if grown from spring cuttings for winter bloom, like a chrysanthemum, but with more heat in the fall. An elegant pot-plant, and usefal for beddling in a protected place. L. II. B.

FENDLERA (after Augustus Fendler, a German naturalist, botanical explorer of New Mexico). Strifrughcere. Low, spreading shrub, with small, opposite, greyish foliage, covred in June along the slender, arching branches with grateful white ths. resembling in shape a Maltese cross. Hardy in New England, and grow ing best in a welldrained, sandy or peaty soil and sumy position. A very handsome and gracefil plant for sumny rockeries or rocky slopes. l'rop. by seeds or by greenwod cuttings under glass. One species from Texas to Mexico ; allied to Philadelphus. Fls. ustally solitary at the end of short lateral branchlets ; calyx lobes and petals 4 : stamens 8 : ovary almost superior: fir. a 4 -relled. dehiment capsule, with flat, oblong seeds.

806. Blue $r$ aisy -Felicia
amellodes $(\times 1 / 3)$.
rupicola, Engelm. and Gr. To 4 ft . IVs. linear-lanceolate or linear-oblong, o-nerved, revolute at the marsin, \&revish tomentose beneath, $1 / 2-1$ in. long: fls. milky white, I in. arross; petals rhombic ovate, with distinct claw. spreading; stampn= erect. June. (i.F. 2:113. R.H.1891, p.42. M.D.(4. 1899:231.

Alfrei Rehりer.
FENNEL. Species of Faniculum (Vmbellifera). a'rnuals or treated as such. used as salad on condimental herbs. Native of S. Europe. The common Fennel ( $\boldsymbol{F}$. officimèle, Limn. ) is grown mostly for its young lves. which are us"d in flavoring, and also for its aromatic seets. Leaves sometimes aiten raw. Sow seeds in late fall to ensure early armination in spring, or sow in early spring. In any enod soil, the plant comes to maturity quickly.
The Florance or Swent Fonnel is $\boldsymbol{r}$. Alatce. DC. The haves of the crowed leaf-stalks are much thickened, making a balb-like enlargement above the gromm. This thickened base has anoval form in cross-section. Earth-ing-up blanches these thickened leaf-bases, and after b, iling they are fit for ating. A good Fenmel botom may be 3 or 4 inches hish. This is an Italian vegetable, but is in the Aner. trada. Aasily cultivated annuel; matures quackly. Sow in spring, and later for sureassion.
Giant Famel is cult. for urnamera, and is deseribed unter Ferulle. Fennel Flower is a name of Nisella.
L. H. I3.

FENUGREEK ('Prigonellu F'enum-(iracum, literally Gres hay). An ammal legome indigenous to western Asia. cultivated and widely haturalized in Mediterrantan comotries; littlegentin America. The serels aro I ar $\because$ lines long. hrosntish yollow and marked with an oh. litue furrow half their lemeth. They muit a peatuliar odor, amb contain starel:. Incilage. a hitter extractive, a
yellow coloring matter, and 6 per cent of fixed and volatile oils. As human food they are used in Egypt, mixed with wheat flour, to make loread; in India, with other condiments, to make curry powter; in Grecce, either boiled or raw, as an addition to honey; in many oriental countries, to give phmpness to the female hmman form. The plant is ased as an esculent in Hindostan; as an early fodder in Egyit, Algiers, France, and other countries bordering the Mediterranean. Formerly the seed was valued in medicine; now it is employed only in the preparation of emollient cataplasms, cuemata, ointments and plasters, never interuaily. In veterinary practice it is still esteemed for poultices, condition powders3, as a vehicle for drugs, and to diminish the nauseating and griping effects of purgatives. It is commonly used by hostlers to produce glossy coats upon their horses and to give a temporary fire and vigor; by stockmen to excite thirst and digestion in fattening animals; by mamufacturers of patent stock foods as a flavoring ingredient. Fenugreek does not suceeed upon clays, sands, wet or sour soils. It yields most seed upon well drained loams of medium texture and of moderate fertility; most fodder upon rich lands. For seed production, potash and phosphoric acid should be applied: for forage, nitrogenous manures. Deepl plowing and thorough harrowing are essential. Ten to 20 mornds of seed should be used broadeast. or 7 to 10 pon : to a drills 18 inches apart. Thinning when tho pla are 2 ur 3 inches tall, and clean culture throughout the stason until blossoming time, are necessary for a seed crop. The crop may be mowed, dried and threshed four or five inonths after seeding. An average yield should be about 9.0 pounds an acre. As a grean nimure. Fenugreek is inferior to the clovers, vetches and other popular green manures of this country. It possesses the power of obtaining nitrogen from the air by mans of root tubereles.

## FENZLIA. See Gilia

## FERDINANDA aminens. See Poducturium.

FERN. The plants included under this name comprise an entire order, made up of several distinct families. They include plants varying in size from a hairlike, ereeping stem bearing a fow simple, moss-like leaves, to tall trees 40 or more feet in height, with a caudes or trank nearly a foot in diameter. Singularly cuors $y^{2}$, the extremes in size are both found in tropical res: , whe most of the species abound. Most of the or' "ry natis species, as well as the great majority of the $e$ in cultivation, consist of an erect underground stem or rootstock with leaves, often ealled fronds, clus. tered in dense crowns, or in the cases of creeping stems with sattered leaves. The Forn plant represents the asexual plase of growth (sporophyte), producing its spores normally in spore cases (sporungin, Fig. 807) which are borne in masses (sori, Fig. 808) on the back or margin of the leaf, or in a fow cases are srouped in spikes or panicles, or in rare cases spread in a layer owar the entire ander surface of the leaf. The sexual stage (actmetophyte) develops from the germinating spore, and consists of a heart-shaped prothallus (Fig. 809), which bears the sex-organs (archeqones. female, and (entherids, male) on the under surfare. After fertilization in the archegone, the egg develops dircetly into a young Forn plant (Fig. 809). Many Ferns also propagate regetatively by rumners of offsets, ly bulblet-like buds, and in cortain speries the tips of the leaves bond over athd take root, as in our common Walkingleaf (Camptoserus, which see).

Great diversity has existed in the matter of the separation of the Ferns into

807. Sporangium or sporecase of a Fern. genera. Hooker, relying manly on artificial characters drainn largely from the sorus, recognized only alout 70 genera, many of them heterogeneans groups of plants with little resemblance in structure. habit or natural affinities. John smith, relying on stem characters, Presl on variation in senation mud hahit, Fóe, Moore, ant others, have recognized a much
greater number of genera, ranging from 150 to 250 , or even more. In the very unequal treatment by Diels in Die Natürlichen Pflanzenfamilien (Engler-Prantl), some 120 genera are recognized. A somewhat similar difference prevails in regard to the number of species. The Synopsis Filicum of Hooker and Baker(1874), sapplemented by Baker's New Ferns (1832), recosnizes some 2,700 species. It is the too common tendency in this woin, to fail to recognize many valid species which have been described liy German and French botanists, and (2) to mass under one name very diverse groups of species from distant quarters of the world from 8 to 10 species not infrequently appearing as a single so-called "variable species."
808. A sorus or fruitdot oi a Ferr When we add to the number represented by these two omissions the species recently described, the nurnber of Ferns will approximate 4,000 , and possibly exceed $t_{h}$ + number. New forms are constantly coming in from it is explored parts of the world, and within the vears several new species have been described nited States, including some from the bet$1:$ : knor portions. Of this number some 200 species are in a msional cultivation in America, but the spe: a-m the bulk of the Fern trade do not exceed two dozen. In Europe several hundred species have long been in cultivation. Most of the species thrive best in the insular regions of the tropics, the island of Jamaica alone furnishing 500 species and Java nearly 600. About 165 species are native in the United Siates, representing some 35 genera; our native species are so widely dis tributed that not more than from 25 to 50 will be found within the limits of one state, and the common species of the best locality do not number more than 20.

The Ferns belong to a group of spore-bearing plants, with vascular (woody) tissue in stem and leaves; this group is technically known as the Pteridophytes, and is composed of three orders; riz. fie Equisetales, including the horsetails and scouring rushes; the Lycopodiales, including the selaginellas and the club mosses, or ground pines; and the Filicales, including the true Ferns and their nearer allies.

The families of the order Filicales muy be distinguished. ollows:

## A. Sporss of one sort (isosporous)

B. Sporangia with no ring, rising from the interior tissues of the leaf. (Eusporangiate Ferms.)

1. Ophioglossàceæ. Adder's tongue Ferns. Prothallium subterranean, without chlorophyl; sporangia borne in spikes or panicles on branches distinct from the foliage leaves.
2. Marattiàceæ. Coarse Ferns with sporangia on the under surface of the leaf, arranged in circular ${ }^{-}$boatshaped receptacles: prothallium above ground, oreen.

BB. Sporangia rising from an epidermal cell, with an elastic ring of peculiar cells, which assist in scattering the spores by rupturing. (Leptosporangiate Ferns )
c. Leares filmy.
3. H: Menophyllàceæ. Filmy Ferns. Sporangia attached a thread-like receptacle -sising in a cup at the end of ": leaf: ring complete, $L$, montal or oblique.
cc. Leaves more firm, herbaceous or leathery.
D. Ring incomplete or rulimentary: sporangia in panicles.
4. Osmundàceæ. Flowerivg Fervs. Coarse swamp Ferns developing copious green spores early in the season: sporangia in panicles at the apex or middle of the leaf.
DD. Ring apical: sporangia tsually single umler a scale, or in panictes.
5. Schizæàceæ. C"pright or climbing Ferns $\pi$ rith orate sporangia, which open vertically.
dDD. Sporangia sessile, either single or united in clusters of $3-6$.
6. Gleicheniàceæ. Terrestrial Ferns with firm texture and usually dichotomous leaves: sporangia opening vertically, in clusters of 3-6.
7. Ceratopteridàceæ. Aquatic Ferns with succulent foliage: sporangia scattered, with a broal ring: leaves of two sorts, the sterile floating.
dDDD. Sporangia mumerors. collected in definite clusters (sori).
8. Cyatheàceæ. Mostly tree Ferns with sessile or short-stalked sporangia in conspicuous receptacles, opening obliquely (Fig. 632).
9. Polypodiàceæ. Ferns with stalked sporangia (Fig. 807), which burst transversely: sori covered with a membranous indusium or sometimes naked. This family contains five-sixths of all the Ferns.
AA. Spores of two sorts: minute microspores and conspicuонs macrospores. (Heterosporous.) These spores develop into two sorts of prothalli, the microspores developing only antherids. and the mucrospores only archegones.
10. Marsiliàceæ. Small plants rooting in mud, the leaves either quadrifoliate or reduced to mere filamentous petioles: sporangia borne in oval eonceptacles. Often aquatic, with the leaves floating on the surface of water in pools or lakes.
11. Salviniaceæ. Small or minute plants with the aspect of liver-worts, floating on the surface of pools: sporangia in mostly spherical conceptacles.

The literature on the Ferns is rery extensive, since they have ever been attractive plants in cultivation. Many of the species have been illustrated in elaborate treatises by Schkuhr, Kunze, Hooker, Greville, Blume, Fée, Mettenius, Moore, and others. Our native species have been illustrated in the two quarto volumes of D. C. Eaton, "The Ferns of North America." A valuable summary of the more common Fern species is found in Dr. Christ's "Die Farnkriiuter der Erde" (1897), and the most recent structural and morphological treatment is by Sadebeck, in Engler-Prantl: "Die Natiirlichen 1"Hanzenfamilien." Schneider"s "Book of Choice Ferns" is the most complete treatise on the species under cultiration. A useful American horticultural manual is liobinson's "Ferns in their Homes and Ours."
L. M. Underwood.

An excellent little handbook for the wild species of this country is Underwool's "Native Ferns and their Allies."
L. H. B

Growing Hardy Ferns. - Our hardy Ferns fill a place in our North American flora very worthy of our careful study and admiration. They seem to require so little care, and yet give such general satisfaction, and there is such a variety-suited to every taste and con-dition-that no one need do without them. About 20 useful native kinds are evergreen, including the Oregon Cliff-brake and Cheilonthes vestita of the southern states. They are very easy of cultwre in our New England climate. About 20, like the Maidenhair, that die down through the winter but have perennial roots, are also easy to grow. In the general cultivation of these hardy Ferns, plant them in a moist, shady situation, with good drainage, and with about one-third leaf-mold. Go to nature in selecting the Ferns. Yet it is a fact that some of these Ferns, like Wooduardia Virginica, found growing so common in wet swamps, will thrive
in our garden soil planted with Polypodium rulgare, which nature plants among the rocks and on great boulders well up the mountain side, thus proving to us that it is not always necessary to plant in the same situation as we find them in the wild. As a rule, we get the best results when planted in shade, yet there are some exceptions, like Dicksonia, which is such a prominent feature on our northern New England hillsides. Many dreary places shut out from the sunlight may be beautified by a clump of Ferns, and fill the place as no other plant wili do. The native kinds will survive our New England winters without covering, but they are all benefited by a mulch of leaves or boughs. Be sure that th, Fern lorder is protected from strong winds (Fig. 810). Against the shady or half-shady side of a house is a good spot, if there is no drip from the eaves. It is best to select rather young and small clumps when hunting Ferns in the wild. When once established, these will persist and thrive for years.
It is much better to move Ferns in early spring or late autumn, when not in growth; but we may wish to plant them in summer, when they are in full growth. In this latter case cut off all the new frcals: this will retard evaporation, or keep the plant from wilting. Get the roots into the soil with as little exposure to the air as possible, and (with a very few exceptions) new fronds will spring up, giving nearly as good results as if planted in early spring. No doubt a great majority of failures from planting when in full growth are due to not cutting back.

Edward Gillett.

810. Hardy Ferns against a house foundation-The Ostrich Fern.

Many species will thrive under other conditions than those in which they grow most Iuxuriantly in a wild state, and, in general, the species are tenacions of life whereever placed; but as the leanty of Fern foliage is brought out only by luxuriance of growth it should be the aim to plant only where such may be obtained. Ferns are exceedingly easy to tra, lant, and with care may be removed from native hants during the summer, though it is always to the conservatica of the strength of plants to more them when dormant. In planting Ferns, especially those of small size, the spattering of soil on the fromds by rain must be presented by covering the earth with material such as gravel or moss for the smaller species and leares for the more rigorons. The smaller species ane easily smothered with leares, and some of the stronger, as Dicksonia and Aspidium Novebortcense, do not endure coarse corering. The evergreen species should preferably be given a position shaded in winter, such as a bank with northern exposure. The best species for plonting in sunlight
are Pteris aquilina, Osmundas, Dicksonia, Onoclea se:zsibilis and Aspidum Noveboracense. When planting in sunlight, give a moister situation and a heavier mulch than if planting in shade. A light soil is preferable, but, except for the species with running rootstocks, is not necessary. The soil may be enriched with any manure not given to heating. For species native only of limestone soils, old plaster should be mixed with the soil. An application of any manure to Ferns growing in turf is apt to stimulate the grass to the crowding out of the Ferns.

Following are notes, drawn from experience, on the cultivation of some of the common native Ferns:

Adiantum pedatum prefers light, loose, rich soil in cool, moist shade, with yearly mulch of leaves. Soil conditions are more important than shade. Where established in a wild state will endure the full sumshine coming with the removal of trees until soil conditions change or it is crowded ont by stronger plants.

Aspidium ucrostichoides shonld be given shade both summer and winter for hest results, and in no case can shade in summer be omitted. The plants will endure sunshine for a few years but will not be thrifty, and will eventually die.

Aspidium Bootti is found in a wild state in moist, shaded positions, but will grow well in shade in quite dry positions.

Aspidium cristatum prefers moist to wet soil in shade. It will not endure strong sunlight.

Aspidirm Goldianum prefers deep, moist, rich soil in cool shade.

Aspillium marginale wants rich soil in rather deep shade during the entire year, but will grow well in partial shade, and endure even full sunlight, though not growing so luxuriantly.

Aspidium Voveboracense does best in rather moist, rich soil in partial shade, but will endure full sunlight with good soil conditions.

Aspidium Thelypteris prefers quite moist situations with at least partial shade.

Asplenium angustifolium thrives on rich rather moist soil in shade. Avoid complete removal of fronds when planting in early fall, as this Fern quickly sends up new fronds to the weakening of the following season's growth.

Asplenium ebeneum prefers partial shade. Care must be taken to prevent smothering by leaves und to plant where the least likely to he heared by frost. It is found most plentifully as a native on banks growing with grass and other plants in partial shade. The fronds are evergreen, but become discolored in severe weather.

Asplenium Filix-fommina prefers rich, moist soil in chade.
Asplenium montanum does well in continual shade.
Asplaium pinnatifilum and A. Trichomanes need shate during the entire year.

Cumptosorus rhizophyllns in the wild state is found in cool, shaded positions not subject to excessive drought or moisture. It prefers a moist atmosphere, but this is not necessary. Avoid any covering of leares.

Cryptogremmet recrostichoides should be grown in shade. It will not endure much sun, at least not a remoral to a sunny position.

Cystopteris frugilis should be planted in shade in positions where it will receive no covering of leaves. The fronds die in early August in the drier situations. It will grow in positions which become exceedingly dry iii midsummer. It forces well in a coolhouse.

Dicksonia pilosiuseula prefers shady, moist situa tions where it does not receive any covering by falling leaves of large size. Grows well in sunshine. May be transplanted at any season, and takes kindly to heary enrichment.

Onoclea sensibilis prefers a rich, moist soil in partial shade or full sumshine. It will also grow in shade.

Onoclea Struthiopteris should be given a rich, moist soil with at least partial shade. The fronds will "burn" in fierce sunlight.

Osmunda cinnamomea prefers moist. partially shaded situations, but will grow well in full sunshine in rich soil not exceedingly dry.

Osmunda Claytoniana, a native of low ground, both

in shade and sunshine, but will grow equally well in rich soil only fairly moist.

Osmunda regulis prefers a peaty soil in very wet, boggy position in partial shade, but will grow as well in full sunshine if soil is rich and not dry.

Pellece atropurpurea prefers rather dry positions in partial shade, winter and summer, with soil not defleient in lime. It will not endure heary mulching. Will grow in full sunshine, but not to its full size. It may be transplanted at any searon.

Phegopteris Dr!opteris prefers good soil in shate not over moist or dry. Avoid coating of leaves. It is a heautiful species and useful for planting on rockwork in ibade. The fromes die in Augnst.
Pheropteris hexagonoptera needs good soil in shade. Fronds die down rather early.

Phegopteris polypodioides prefers moist, shaded positions, but will grow in any good soil not too dry. The fronds die down in late summer, especially in the drier positions.

Polynodium rul!are prefers good, light soil in well drained but moist situations in shade, with no other plants growing with it. It will endure very dry places, but will be dwarfed. Will also do well in full sunlight if suil conditions are good. As a native it grows in positions where it does not receive any yearly coating of fallen leaves, and, wherever planted, should not be covered with eoarse material. Flant perfectly evergreen; heisht 6-10 in.
Peris aquilina, to be grown to perfection, should have considerable sunlight, with moist, rich soil, kept cool and loose with a coating of leaves or other material. In such a position it should grow $4-5 \mathrm{ft}$. high, with other dimensions corresponding. However, it will grow in almost any position. Although easy to transplant, it is likely to do poorly until established. It has strong. creeping rootstocks, so that attention is necessary to $\mathrm{k} e \mathrm{ep}$ a healtly group within bounds. The earliest fronds put forth die in late summer, but those of later gnowth remain green until frost, so that with attention to the removal of dead fronds a group will look well until fall.

Woodurardia angustifolia wants a moist situation in deep shade. Does well in moist peat north of a lank or wall. Will endure full sunlight in positions where it has become established, but will not grow well when transplanted to surny position.
F. W. Barelay.

Cclutcre of Tender Ferns. - To grow commercial varieties of Ferns protitably, the first care should be to secure the necessary number of properly built and equipped houses, with a conveniently arranged workshop. The house which gives the most general satisfaction runs north and south. Have an even-span roof, with a fall to roof of 6 inches to the foot. Its benches should be arranged to be about 7 feet wide, with a 24 inch path on either side. In an 18 -foot house this will permit of having a 7 -foot center table, two $31 / \frac{1}{2}$-foot side benches and two $2 t$-inch paths. Benches should not be move than 3 feet above the walks, as this will bring every part of the benuh within easy reach. and will permit of every plant being in constant sight and easily cured for, which fact is essential in the proftable cultivation of trade Ferns.

The width of house is immaterial, but when henses aljoin, a width of 27 feet has heren found to he very satictictory as this permits the construction of thres fon benches, two 24 -inch paths, and two paths $2 \frac{1}{2}$ feet wille maler each gutter.
Thoroush provision shombl be made for rentilation.
 at least 3 foes in widhh shomhl he provided, with some reliable apparatus for raising same. Heating is the next important concideration. Either steam or hot watter will give equally grod results if properiy installed. The safest way for the average grower is to give the heating contract to some reliable firm. Whator taps slould be so arranged that a 2 -foot hose attarhed to same will easily reach any part of tine house. A 2.)-foot hose can easily he carried about without injuring oither itself or henches and plants; and iron pipe is of only half the cost of good hose. In most Fern houses elrip is a source of great annoyance, and should he presented by the use of hrip-bars, by having a drip-groove plowed
into the headers immediately under the rentilating sash, and also by having a groove in sides of gutter plates. This very slight additional expense will very soon pay for itself by saving a great number of plants, especially when growing very small Ferns in houses, such as have been transplanted from spore-pots into boxes. Ventilators should fit into a groove in ridge of nouse and be hinged to the ridge. When ventilators are so arranged, air, which is very desirable on a good many warm, rainy days in the summer, can be given without having plants in the houses suffering from excessive moisture. Burning of the foliage will also be avoided, as the plants will at no time be exposed to the direct rays of the sun. Ventilators hinged on hexder and opening on ridge will always give trouble. No matter what kind of covering is puit over the opening, if it efficiently excludes the burning sun's rays it will also prevent the ingress of air.
Propagating room should be prorided for ; and in the case of general trade Ferns raised from spores, it is a very safe rule to calculate on having from 60 to 70 square inches of room in the propagating frame for every 1,000 plants desired. The propagating frame should be $31 / 2$ feet wide, have sides 9 inches high, and, to insure an even moisture, its bottom should be covered to the thickness of 1 inch with fine cinders with the fine ashes removed, which make very clean and efficient drainage material. The frame should be covered with light sash constructed with drip-bars, to carry off condensation.

Shading of Fern honses should hare elose attention. It is best effected by the application of a suitable wash to the outside of glass on roof. The following composition for a wash has given excellent results for a number of years: To 2 gallons of benzine or turpentine add 1 pint (or more, accorling to time the shading is desired to remain on houses) of linseed oil, 5 pounds of pure white lead and enough whitening to make proper thickness (which can rery easily be ascertained by applying some of it to a piece of glass while adding the whitening) ; thoroughly mix and apply to outside of glass with a soft brush of the ame width as glass. This shading, by the addition o. more or less linseed oil, may be made to stay on houses up to one year. If properly applied in spring, it will be just right during the hot days of summer, and in the fall and winter. when more light is gradually required. the frosts gradually will have reduced the shading, thus admitting more light at the necessary time.
Much time, annoyance and expense will be sared by a careful arrangement of the workshon, or potting roomi, a thing which in most cases is totally neglected. It should be so built that potting benches are abrut 3 fert abore the floor and 5 feet wide. They may be permatnently constructed of substantial material, in order that a number of pots of different s ses cim be conveniently stered, and that potting material can be thrown from cart or wagon directly onto potting benches. By an improper arrangement of rorkshop great expesise. lose of time and material are incurred by having to hamtle material repeatedly in small quantities.
Propagation by Maths of Spores. - To grow Ferns from spores successfully, it is adsisable to sterilize soil in which spores are to lie sown, whieh can best be done by subjecting it to a higl temperature by means of steam under a pressure of from 10 to 15 pounds: and for this purpose a properly eonipped workshop should be provided with a tisht lox about 3 by 3 by 8 feet or larger if an meommonly large number of Ferns is 0 he frown. It should be titted with a grating made of $2-$ inch laths spaced one inch apart and placed 2 inchos from hottom of the hox. This grating may he coverad with lurlap, and if a $3 /$-inch steam pipe is fitted between botom of box and grating, and connected to highest. [oint of steam boiler (to insure getting perfectly dry steam) we are ready to sterilize the scil. After havinis cooled off, the soil is in practically the same condition as before as far as moisture, friableness, ete, are concerned. and this cannot be said of soil that has been sterilized by burning and by other methots. This steaming process will effectually destroy all forms of life in the soil and loave it tor the use of spores plone. In most localities, tho water used for moistening spores
is impure and full of the spores of low forms of plant life, which are very destructive to the prothali of Ferns. To prevent this, the workshop should be provided wit'l a receptacle in which the water intended for use on Ferns while in the prothalhs state can be raised to a boiling temperature, which will effectually destroy all spores that may be present in the water. This is best done by leading a 1 -inch steam pipe to within 0 inches of the bottom of the receptacle and turning on a reasonable pressure of steam. If boiled 12 hours before intended for use, it will be cool enough to be applied, and will be pure. A Fern workshop should also be provided with a dry eloset, having a number of shelves about 12 inches apart, for storing Fern spores.

In beginning the eultivation of Ferns, it is advisable to purchase the spores from some reliable firm which makes Fern-growing a speciality, until a sufficient number of stock plants can be grown to supply spores for home demand. Spores will do about equally well in pots or pans. Pans 12 inches square and 4 inches deep are used for that purpose, as also are the 6 -inch common flower pots. The le-inch pans should be supplied with $11 / 2$ inches and the 6 -inch pots with 3 inches of coal cinders for drainage. Soil for sowing spores on is best composed of five parts, in the proportions of two parts good garden soil, two parts of tinely serecned peat and one of sharp, clean propagating sand. Leaf-mohd may be used instead of peat, if easier to procure. This soil should be thoroughly sterilized, as already directed. The spore pots should he filled with the soil to within $1 / 4$-inch of the top; press firmly. The rest of the pots should be filled with the same composition after it has been passed through a screen of about $1 / 3$-inch mesh, then made absolutely level, firmly pressed and thoronghly watered with sterilized water. Three or four hours after watering will be the beat time to sow spores. The spores should be thinly scatteref over the surface of the soil, a quantity that can be $\mathrm{r} \therefore$ on a surface of onefourth of a square inch being abundant to sow one 1 inch pan. Spores should not be covered with soil. Immediately after sowing, the sash of the propagating frame should be tightly closed and kept so until spores show signs of germination, when a small quantity of air should be given and gradually increased, so that by the time the first small fronds have made their apparance they may have been suffieiently hardened off to have the sash removed entirely. In sowing spores. Ereat care will be necessary to prevent them from getting mixed. Fern spores being very minute and so light that the slightest movement of air will carry them lone dis. tances. While sowing spores, all spore pots shombld be kept tightly covered. Being kept in a very elose and humid atmosphere after sowing, the spores should not require any watering for one or two weeks, hy which time they will have sufficiently settled not to be dislodged by a very gentle overhead watering. which should be given whenever soil shows the least sign of eing dry. Sterilized water should be used until after de first fronds have been formed. As soon as the first the fronds have made their appearance, care should be ken to weed out all undesirable varieties. which, even with the rery best of care. will occasionally crepp in. A temperature of $65^{\circ} \mathrm{F}$. should be maintained in the propagating lonse.
As somn as the first 'ittle fronds are evenly f ned all over the surface the pot, the little plants should be transferred in clumps of four or five plants each, to well drained pans (Fis. 811) or boxes filled with soil composed of one-half rich garden soil and onehalf peat or leaf-mold, inoly screened. In transplanting. great care should be xercised not to cover the remaining prothalli. but to ave them just level with the surface of the soil. The umps of plants should be kept as loose as possible, as is will give each individual plantlet a better chance to mi the necessary number of rootlets, and it will. later
on, also be eaxier to separate the plants. Boxes for transplanting Feris are most convenient when $\&$ inches deeb, 14 mehes wide and ied inches long. These boxes will old about 200 plants placed about one inch apart. As soon as the little plants have formed two or three fronds each. they should he separnted and transplanted singly inio boxes similarly prepared as before, where they may remain until sufficiently strong to be potted intin 2 or $23 / 4$-inch pots.

Times of sowing Fern spores are the first weeks of March. July and Getober. When :naking three sowings a year, and allowing a sufficiently longer time for slower growing varieties, a constant supply of plants will be assured. In calculating on time of sowing spores of commereial varieties of Ferus, it will be leelpful to divide them into two elasses, as some varieties are considerably slower of growth and will consequently have to be sown earlier, in order to be ready for sale at the same time as the more rapid-growing ones. The following popular commerrial varipties will require from 9 to 10 months between times of sowing and potting. The names are those which the plants bear in the trade:

Adiantum cuneatum.
Doodia aspera multifida. variegatiam, grandiceps,
Bansei:
derormm,
Fergusonii.
gracilimmm,
mundulum, tenerum.
Wiegandii,
Cibotium Schiedii, regale,
Cyathea medullaris.
Cyrtomium caryotoldeum,
Fortunii.
Divallia tenuifoliastrieta,
Veitchiana,
Dicksonia (Balantium) allotre
tira.
tirs.
Doryopteris nohilis
Lastrea aristatia,
" chrysoloba,
" opara,
Lygodium Japonieum,
-ephrodiun sandens.
Cephrolepis exaltata cordata compacta.
Platyloma Bridgesii. faleata.
Polypodium aurenm fraxinifolium, etr.. Doodia aspera
setosiom
Peris Victoria

The following trade varieties will develop into plants large enongh to lee potted in abont six monthis after sowing spores:

Aliantum pulescens, hispic.nlum,
Alsophila mustralis.
(jymnogramma coblomelanos

> chrysopholla,
deromposita,
Permviania,
sulph rea,
Lomaria ciliata,
" gibla,
platyptera.
Nephrodium immersum eris tatum
Vephrot crum,
Onychilim Japonieum

Pteris argyraen,
Cretica albo-lineata

- makniticia
l!ayii.
nobilis,
hastata,
adiantoides
internata,
Sieboldii.
leptos.hylla
Ouviarili
selrulata
" eristata
Tremula.
Wimsettii

It should also be borne in mind, when calculating time of sowing, that spores sown in the autumn will require about four weeks longer for development than those sown at other times of the year.
Fern spores are borne on the back or under side of fronds. In some cases they are borne maked on under surface of frond, while in others they are produced under a scale-like membrane or indusimm. In some crases, as in Pteris, the edue of the pinne is folded back over the spores, while in Alliantums a small part of the leaflet is folded back over ecch little fruit-dot to serve as a shield or indusium. Davallias form a small sack-like receptacle at the extromily of the pinnas. The proper time of gathering spores is when they assume a light brown, rather dry appearance, or in the indusium-bearing kinds when the indusium or shiehl legins to open. Spores should be gathered on a dark day when the fronds are slightly moist, as they will be better retained in that condition. and will not be so liable to get mixed when disturbed. Fronds, or parts of them. should be cut oft entirely in most cases. put up in tight paper bags and stured on shelves in a dry closet for a week, by whicb
time, in most cases, they will be sufficiently dry to have spores removed from them by rubbing the frond in a sieve which has about 20 meshes to the inch. When thus separated from fronds the spores should be put up in small seed-bags and placed in air-tight jars until required for sowing. Cared for in this manner, perfect success has been invariably secured, even after keeping $s_{i}$ pores for years.

Propagation by Other Means.-Some Ferns form little plants at the ends of pinnmand of fronds, which upon attaining to sufficient size may be detached from parent plants, planted into shallow, well-drained seedpans, and for a week or two left in the propagating frame, where they will soon form roots, when they can be potted. Among such are Adiuntum caulatum, A. Edyeworthii, A. 'unulutum, var. Iolabriforme, Aspleuium Belangerii, A. bulbiferum, A. sulicifolium, Gymungremma schizonhylla, var. gloriosa, Polystichtm cusmlare, var. proliferm, and many more.

A rery useful decorative Fern is Vephrolepis datallioilles, var. furcons, and it will make a beantiful sieci. men plant in a comparatively short time. To grow large quantities, the old plants should be cut back to within ( 6 inches of surface of soil and placed in a house where a bottom heat of $90^{\circ} \mathrm{F}$. may be secured, when they will soon form a large number of short, strong fronds. At this time they may be divided into a number of small plants, potted off and placed in the same position as the parent plants. A somewhat slower method is to plant ont a nimber of plants on a bench into 5 inches of soil, in which soil the rhizomes. running over the surface, will form a number of small plants, which may be detached and grown on.

A beautify Fern is Adiantum Fírleyense, and it deservedly ranks as the greatest favorite anong Fernlovers. It is best propagated by division. From old plants. cut off all fronds down to the rbizones, wash off soil, cut rhizomes into pieces 1 -inch long, insert same into well-drained Fern boxes about $1 / 2$-inch apart, in $11 / 2$ inches of clean, sharp propagating sand. Place same in propagating frame in a temperature of $70^{\circ} \mathrm{F}$. In this position each little fragment of rhizome will form two or three little frouds in about 15 or 20 days, when the may be potted off singly into 2 -inch pots and kept in a temperature of $70^{\circ} \mathrm{F}$. The soil best adapted to A. F'o. leypuse is finely chopped sod which has been piled for about six months, with one-fifth well decomposed cow manure added. To attain perfection in $y$ rowth and coloring. A. Furlegense shonld be kept in a light, airy and sumy house, in which every condition of moisture and atmosphere can te kept under absolute control. In a house of this kind, the greatly admired and beautifully pinkish tint may be easily obtained and fronds will bo hardy and of good substance. A temperature of $70^{\circ}$ F. is at all times desirable.

General lemarks on Ferngrowing. - To grow Ferns such as are used for jardinieres and decorative work (Fig. E12), and mentioned in the tro preceding lists, a temperature of no less than $5.0^{\circ} \mathrm{F}$. shoula be maintained at all times at night in coldest
812. A good specimen. weather, with a rise of temperature in the daytime of 10 or $15^{\circ}$. To keep Ferns in a healthy and growing condition, to prevent and to kill insect pests and diseases, a proper condition of atmosphere should be carefully maintained at all times. Extremes in heat, moisture or dryness shonlal nerer be allowed. On a warm, dry, sunny day, when agreat dea' of air has to be admitted., much of the moisture of the house is eonsequently earried off: it will be of great benefit then to syringe the Ferns once or twice a day, also to occasionally dampen floor of houses. An excessively dry atmosphere induces the development of the rery troublesome pests, thrips and red spider. On damp and rainy days a saturated atmosphere should be prevented by supplying a iittle artificial heat. even if some air has to be admitted at the same time. Thic slight expense of heating on damp days will abundantly pay for itself by cansing the growth of stron: thrifty plants. An excessive'y monst
atmosphere causes parts of fronds of a great many plants to turn black and to rot off, besides indueing the development of almost incurable fungoid diseases.
In the selection and growing of stock plants, the careful grower should always be on the watch for types which are most perfeet in shape, in character of individual fronds, in coloring, freedon of producing spores, and exeuption from the attacks of insects and fungous diseases. In a large number of Ferns a great difference between the different plauts of the same species will be apparent to the careful observer. Some plants of same species have beautifully developed fronds, but are carried on long. weak stems, which makes them unfit for general use. Others may be of compact, sturdy


81s. A home-made Fern case.
habit of growth, but with poorly shaped individual fronds. In some individuals the coloring will be greatly superior. By closely studying all these points and by continually selecting only the most perfect types of Ferns from the young plants, we can in a few years work up a very desirable and superior stock. The same stock plants of the rapid-growing varicties of Ferns should not be carried over for more than three or four years, but young and more desirable plants should continually be selected and grown to take their places.

The stock should be shifted into larger pots whenever necessary, and placed in a light, airy house, in Which all necessary conditions are umder perfect control, and in which a temperature in coldest weather of $50^{\circ} \mathbf{F}$. at night, with it rise of 10 or $15^{\circ}$ in daytime, can always be maintained. The house shonld be shaded just enough to prevent fronds from turning yellow. Proper attention to atmospheric conditions of stockhouse should never be neglected. Stock plants should not be permitted to remain pot-bound for too long a period of time, except with a few varieties, such, for instance, as Alsophilas, Dicksonias, Cyatheas, Cibotiums, Pteris Tremula, P. argyreara, some Davallias. Polystichum coriaceum, etc., which, if given too much nourishment, will often be very slow in setting spores.
Inseets which are most troublesome to Forns are thrips, red spider, scale and mealy bug. They are mainly present in a too dry atmosphere. Thrips, red spider and mealy bug are easily prevented by a properly moistened atmosphere, also by spraying of foliage once a wetk with tobaceo water. As tobacco greatly varies in strength, every grower will have to determine to his own satisfaction how strong to make his solution. The preparation known as "Rose-leaf tobarco extract," has proved very efficient in destroying these insect pests. To 50 gallons of water add one quart of the extract, and apply with some good insecticide sprayer and a force pump. Fifty gallons of this solution wiil be enough to spray 100,000 Ferns in $21 / 4$-inch pots.
Bearing in mind the foregoing advice, the amateur Fern-grower may determine the proper way in which to raise his plants. He may not har a Fern house, but he can have a tis. + glass bor or Wardian case (Fig. 813).

The bottom should be a zinc tray, to prevent drip on the floor and to prevent too rapid drying out of the soil. The top or roof of the box should be hinged, so that it can be raised. In this miniature greenhouse many interesting Ferns can be grown. Lycopodiums and Selagi nellas (which see) are treated in inuch the same way as Ferns.

Nichol N. Brcickner.
Growing Ferns from Spores by the Amatelcr. Ferns may be raised from spores at almost any season of the year, though the early spring months are best. The shallow pans 2 in. deep by 6 in diameter, now sold by pot manufacturers, we have fonnd, after repeated trials, best to sow Fern spores in. These should be filled to within half an inch of the top with a mixture of sifted peat, leaf-mold and silver sand in equal proportions, the surface being marle very fine and even. By sowing the spores thinly we have found that they are not as liable to the attacks of fungus during the prothallus stage. They should not be covered with soil, as in sowing seeds. Each pan should be placed in a pot-saucer. and all the water necessary to keep the soil moist should be poured into the sancer and allowed to soak up throngh the soil. This not only prevents the spores being floated into clusters, but probably filters the water of any germs of low forms of vegetable life which might prove injurions to the spores during germination. After the prothallus stage is passed thisprecaution is unnecessary: as soon as the young Ferns begin to develop fronds, they may be watered freely overhead with a fine rose. The pans should be placed in a temperature of $63^{\circ}$ to $\overline{65}$, in a shaded position. Each pan should be covered with a pane of glass to keep the surface evenly moist, taking care to remove the moisture which collects on the glase at least twice daily; but as soon as the spores have germinated. which, in most cases will be in about ten days, these should in ;radually removed. A close wateh must be kept for fungus during the prothallus stage and if a pan should show the least sign of it, it should at once be isolated from the rest and a little fine sulphur dusted upon it ; if this fails to check it the prothall should be at once transplanted to fresh pans of soil, which usually checks it. The chief reasons for fungus are sowing the spores too thickly, a too stagnant atmosphere after germination, and a dripping greenhouse roof. As soon as the young Ferns begin to make fronds, they may be transplanted.

Edward J. Caxning.
FERN BALLS are the dried rhizomes of Ferns. imported from Japan. Dealers start theminto growth, and sell them when the mass is well eovered with its delicate regetation. To start them into growth, the balls are drenched in a tob of water and then hung in a warmhouse, not in direct sunlisht. When the plants are well started. gradually expose them to more light and to a cooler air. Give liquid manure if they do not grow satisfactorily. The species are mostly Davallias. oftenest apparently $D$. bullata and $D$. Maritsii.
L. H. B.

FERNS, POPULAR NAMES OF. Adder's Tongue F., Ophioglossum vulgatum. Beech F., Phegopteris. Bird'snest F., Thumnopteris Niuns-Avis. Bladder F., C'ystopteris. Boston F., Nephrolepis exultutu, var. Bostonipusis. Bristle F., Trichomanes. Buckler F., Dryopteris. Californian Gold $\mathbf{F}$., Gymmonremma triangularis. Chain F., Woorderardice. Christmas F., Polystichum ucrostichuirles. Cinnamon F., Osmuиlı cinuamompи. Climbing F., Lygomium. Deer F., Lommurit. Elk's Horn F., Platycerium ulricorue. Female F., Asplenium Filis-formine. Filmy F., Hymenmphyllum. Floating F., C'eratopteris. Flowering F., Osmumde; sometimes also Anemia. Gold F., Gymwoymemmi. Grape F., Botrychinm. Hart's-tongue F., Phyllitis Sculopendrinim. Hartford F.. Lygendium julmutum. Holly F.. Pulystichum Lenchitis. Lace F., (hoilunthes !! encillime. Lady F., Aspleninm Filix-fxmimu. Lip F., ('heimnthes. Maidenhair F., Adiantum; more particularly A. Cupillus-leneris abroad and A. pentutum at home. Male F.. Iryopteris Filix-mes Marsh F., Dryopteris Thelypteris. Oak F., Phegopteris Drurpteris. Ostrich F., Matteuccin Struthinpteris. Pod F., Ceratop. leris thalictroides. Rattlesnake F., Botrychinm ${ }^{1}$ 'r. ginianum. Roval F., Osmumda vegnlis. Sensitive F., Onocleu sensibilis. Shield F., Dryopleris. Stag-horn
F. See Platycerinm. Sun F., Phegopteris. Sweet F., Myrica asplenifolia; abroad, various Dryopteris., Sword F., Vephrolepis exaltuta. Venus' Hair F., Adi. antum Cupillus-leneris. Walking F., Camptosorus rhizophyllus. Wall F., Polypodium rulgare. Wallrue, Asplenium Ruta-mururia. Washington F., Vephrolepis exaltata, var. Washingtoniensis.

FERRARIA (Giovanni Battisti Ferrari, 1584-16.53, Italian Jesuit, botanical writer and collaborator with the celebrated artist Guido Keni). Iridicea. There are 7 species, all from the Cape of Good Hope, rarely growing more than 6 in . high. They have a large, irregultor corm and very glaucous foliage, the lowest Irs. being long and linear, the rest ovate, clasping, successively smaller, and topped by inflated sheaths from which emerge the oddest Hls. imaginable. These have 6 triangular, spreading, crisped, petal-like lobes, wonderfully marked with many dull colors, as yellow, green, purple and brown. Each spathe contains several fls., and the fls. are united at the very hase, connivent and cup-shaped helow the spreading loines. The fls. last only from morning to afternoon of a single day, but there is a fair succession. Some are visited by carrion flies. Only one species, $F$. umdulata, is advertised at present but the other 6 are doubtless of equal interest. The first is the olflest kind in cult. It was known to pre-Linnman authors as Flos Indicus and Gludiolus Indicus. E. S. Miller writes that the bulbs should be stored like Gladiolus in a dry, warm place, away from mice.

## A. Fls. alull broumish purple.

undulata. Linn. Stem stout, erect: upper les and spathes $1 \frac{1}{2}-2$ in. long: ths. 0 in. across. largely dull purple; anthers oblong, with parallel cells. B.M. 144.

## AA. Fls, greonish.

uncinàta, Sweet. Ľs. 2-3, linear: fls. 2, "cream colored, edged with sage green." according to W. F. Endicott.

## AAA. Fls. derk purple.

atràta, Lodd. Less.about 4, sword shaped: fls. 3-4.
Other names are advertised by Dutch bulb growers, but are not to be foum in Index Kewer or Flora Capensis: F. Canarimsis, cerlestis, Gonchiflora. ge diflora. immacnlath. liliacen and rosef. These can perhaps be accounted for under Tigridia, where F. Paronia belongs.

FERTILITY of soils: that condition of soils which makes them productive. The elements of productivity are. a full supply of available plant-food, a suitable and continuous supply of moisture, good physical conditions of the soil, coupled with suitable seed and climate.
Land may contain vast quantities of potential nitrogen, p tash and phosphoric acid and other phant-tood. and yet be unfruitful, - infertile. Nost of the potential plant-food in the soil is lazy. not available in sutficient quantities in a single season to produce maximum crops. Average arable land which contains from $3,000-4.000$ pounds of nitrogen. an equal amount of phosphoric acid and four times as much potash in the first 8 inches of an aref, may produce only 15 bushels of wheat per acere, which requires. with the straw, hit "4, 13 and 20 pounds of these three eloments reppoptively. Tharefore, land may contain aroat abomdance of potential plant-food anil yet not contain enourh of that which is avalabla for a full crop. To make land more fertile, one or more of the following moans may be employed. L'sually deeper and more thorough tillate should first be resorted to, since most lands, lig reason of careless farming. "ontain much inert plant-food. Superior tillage is almost certain to produce fruitfoness. and therefore should be resorted to before more expensive methods are tried. Tillage not only makes plant-food more available, but it improves the physical conditions of the soil, thereby making it more romfortable for the plant: it maty also assist in relieving the land of surplus water, and sive to the soil the power of retaining large stores of moisture by capillary action.

Moisture plays such an important part in productireness that it may be said to constitute its prime finctor. Clay soils are usually composed of such fine particips that water percolates through them slowly or not at all. The rainfa l then must either run off over the surface,
or remain to be evaporated. The nim shonld be to so prepare the land hy sulndrainaige, plowing and surfuee tillage, and by introilucing ut leust oue crop of tap-ronted plants in the rotation, that the surplus water will tilter through the soil in a reasonable time. Percolation of ritinwater throngl soils makes them more frishle and warmer in spring. ärates the land, promotes bentefioinl boblogical and chemionl changes, and brings to the soil the nitrogenons compounds contained in the rainwater Soils which are reasonably porous have the power of retaining more moisture, and of giving it up to plants when needed to a greater extent, than either open sandy ar elose clay soils do. Fertility, which results in fruit falness, is governed very lurgely by the water and moisture conditions of the suil. and these, in turn, are largen governed by the texture of the land and the amount of humus whieh it contains.

Legumes, used either as a harvest or cover-crop, promote fertility. A cover-crop of clovers planted Aumust 1, and analyzed fit days after planting. contained of nitrogen, in roots and tops, per acre as follows:

|  | Tops | Ronts | Tutal |
| :---: | :---: | :---: | :---: |
|  | Lus. | Lbs. | L.lis. |
| Crimson elover | .195 | 30 | 15i |
| Red elover. | 63 | 40 | 103 |
| Mammuth clove | 67 | 78 | 145 |

Clovers and other legumes may be used to fix and store up the uneombined nitrogen of the air and to digest and make available the mineral constituents of the land, thereby greatly increasing the fertility of the soil

Barn manures. when properly cared for and intelliEently applied, not only furnish aceeptable plant-food but liumus as well. Fertility and hioh productivity usually may be maintained many years by means of superior tillage, leguminous harvest and cover-crops, und the manures of the farm. In some cases a high strite of ftertility can be maintained only ly oceasional applications of commereial mineral fertilizers. as phosphates and potash, but too often expensive fertilizers have been substituted for tillage, legraminons plants and barn manures.

Fertility may frequently be promoted hy light applications ( 20 to 30 bushels per acre) of quick lime. rime may serve to make plant-food more available, improve soil texture and correct acidity. Its use is especially recomnended on clay and moist lands and in orchards where the ground is much shaded. Applieations of gypsum and salt are sometimes beneficial in maintaining fertility, but they. as well as lime, usually act indirectly, as the soil is seldom deficient in these constituents so far as they are required as plantfood. On high-priced lands. especially those devoted to horticulture, the soil should be made and kept fertile-well up to its highest productive power.

Sometimes soils are rendered unfruitful by the presence of deleterious substances, as organic acids or alkaline salts, or a superabundance of some one or more of its usually use ful ingredients, as water or nitrogenous matter. An excess of nitrogen stinulates the growth of stalk and straw at the expeatse of grain, or in the orchard it rends to the formation of wood rather than to fruitfulness. The acilits should be corronted by lime, as noted above, the surjlus water 1 emoved by drainage, the nitrogenous natter reduced by the production of such crops as are not harm. fully affected by its supur abundance, such as forage crops which are prized for their foliage rather than for their seeds, while the alkalinity may sometimes be over. come by deep tillage or irrigation.
I. P. Roberts.

FERTILIZATION. The union of two sex-cells, a male cell und a female eell, to form a new one capable of growing into a plant. The term was formerly used in include the transfer of pollen to the stigma (e.g., D.arwin's "On the Fertilization of Orchils by Insects"), hat this process is now gencrally distinguished as Pollimation, which see. In the bwer plants, fertilization cefn be much more readily (olssrred than in the sued plants, heranse in the latter it takes bane inside of opaque parts. and therefore can he studien only by the most careful microseopical methots. The process of fertilization is here described as it oremrs in lilies. In other seed phants it differs in details.

The generative cell (g. Fig. 814) is produced by the pol ben grain before it laves the anther. It is usually lentimalat, and placed at one end of the grain. Its most important part is the spherical nucleus, which occupies the eenter When the pollen grain is conreyed to the stigma (s, Fig. 815), the larger cell (t, Fig. 8lf, nourished be food it absorbs from the stigma. grows. forming a long tube (p), Fis. 815), which traverses the nar row triangular canal (1, 2, 3 Fis. 815) that leads down the long style to the ovary. In many plants the style is not hollow. In this case and often when it has a caual, the prilen tube pushes its way between the cells of the style, living on the food it absorbs. About the time the tulue begins to grow (or later) the generative cell divides into two. These male cells, or sperms, migrate down the tube ( $p$ t. Fig. 815). which makes its way into the opening between the inner integrument (i, Fig. 816) of the ovule, penetrates the body of the ovule and enters the em-bryo-sac ( $\boldsymbol{E}$, Fig. 816). Its direction of growth is determined by substances, probably chiefly the sugars, contained in the parts which it traverses.

While the pollen tube has been growing, the female cell has been forming in the embryo-sac ( $L$, Fig. 816). The nucleus of this huge cell, originally single, has dirided into two, these into four, and these into eight nuclei, four migrating to each end. Then one from each group advances toward the middle of the sac and the two fuse into one (e, Fig. 816). One group of three (sometimes after dividing again and again, sometimes oulv the original three) mas organize cells at the antip odal erd of the embryo sac (A, Fig. 816). In the lilies, however, this does not go far, and two of the three antipodal nuclei are seen to be already reduced in size and partially disorganized. They have no further history. The group of three nearest the point of entrance of pollen tube accumulate the living protoplasm about them and thus organize three naked cells. Two of these (called synergidre) usually begin to disorganize betore the pollen tube reaches them, but may persist until then or even later. In the lilies they usually disappear early. The third is the egg, or oösphere. When the pollen tube enters the embryo-sac, its end be comes softened and bursts. permitting one or bath of the male cells to migrate from it. One male nucleus
( 5 . Fig. 816) fuses with the nucleus of the egk (f. Fig. 816), and fertilization is complete. The other, heretofore supposed to be disorganized, is now said to fuse with the endosperm nuclens (e. Fig. 816). The fertilized egg begins at once to grow and forms the em-

816. Part of an ovule of Lilium Philadelphicum.

Cublengthwise; i, i, inner integument, encosing. except at a harrow orifice where the pollen tube, pt, enters, the body of the orule, which is chietty occupien by the large embryo site $\boldsymbol{E}$. $A$, antipodal end of embryo sac with three muclei. one much disorganized. $e$, the endosperm nuclens, just being formed by fusion of two nuelei from the respective ends of the embryo sac. $\xlongequal{\prime}$ male nuclens, which has just migrated from pollen tube and is about to fuse with of the egg muclens. The synergidit have disappeared. Magnitied 670 diameters.
bryo. while the endosperm nuclens divides and forms cells in which food may be stored for the embryo when it resumes growth at the time of germination.

Chakles Rell Barnes.
FERTILIZERS. There is one fact that has been fairly well e-tablished by experiment and inquiry, namely, that fruits. flowers and vegetables are benefited wy the intelligent application of manures and fertilizers, ind that. in the majority of cases, such application is uhlowed hy protit. In the first place, these crops should 1. . .lasition for purposes of fertilization according to thwir perion of growth. the first class including the perennia! fruits and flowers, and the second, the annual flowers and resetables. Those of the first class differ from ordinary crops in that a longer season of preparation is rupuired. during which time the growth is veqetative ratier than productive, though upon this vefetative trowth depends the quality and value of the fruit or flower obtained. The growth of both tree and frnit is dependent, too, not only upon the food acquired Nuring its year of growth, but also upon that previonsy acquired, and which has been stored up in bul and branches.

The tree fruits include apples, pears, peaches, plums, cherries, apricots, ete. It may be regarded as a safe assumption that the fertility elements, phosphoric acid,
potash and lime, contribute matcrially to the proper growth and hardening of the wood, as well as the maturation of the fruit. The necessity for added nitrogen is, on the whole, much less; it should be applied as the need for it appears in the lack of vigor of the tree.

In the next place, it is safe to assume that the materials which furnish these elements or constituents in slowly available forms are lifble to be quite as useful, except under special conditions, as those which ure quickly available, because the tree growing continuonsly, though slowly, is able to obtain from the gradually dissolving substances a sufficient amount for its daily neels. Hence, as a mule, fertilizers for fruit trees may include the less available and cheuper forms of constituents.

Apples and Peades. - On soils of good natural character, the fertilization of apples and pears need not begin until the trees reach the bearing period, when an annual dressing of 400 pounds per acre of either of the following mistures shonld be applied in early spring, and plowed in:

No. 1.-One part, or 100 pounds each, of ground bone, acid phosphate and muriate of potash.

So. 2. - Cone and one-half parts, or 100 pounds, of ground bone, and one part, or 100 pounds, of muriate of potash.

As the trees grow older, these dressings shomld be increased. While no definito rules ean he latd down as to the most protitable amoments tomply, the best growers find that for mature trees it prys to use from 1.000 to 1.500 poumls ammally, In miny cases nitrogen, in addition to that contained in the mixture, should be used, the kind and form depending, perhaps, upon the relative cost more than upon any othor one thing. the minimum amount to be 20 pounds per acre, or an equivalent of 1.5 pounds of nitrate of soda. In many cases it is possible to ohtain the necessary nitrogen from the growing of lomminous crops, as crimson clover and red clover, though when these are used they should be plowed down early in the spring, in order that their growth may not interfere with the growth of the tree. If they are allowed to remain until mature, they absorb not only the fond that may be necessary for the growth of tree and fruit, but the moisture also, and thas they frequently injure rather than improve the crop prosperts. (In poor soils, the necessity for fertilization is naturally greater. In fact, on these liberal fertilization -500 promds per acre-should precede the setting of the trees, and be continued annually. On these soils. too, green manuring. as a source of nitrogen, can be practiced with safety for a longer period than in the preceding case.
Peaches. - Peaches differ from apples and pears in respect to fertilizing. The demands for adhed plantfood are proportionately greater in the early life of the tres. and are different becatuse of their more rapid growth, their early bearing, and the exhanstive eharacter of the crops. On sorils of good natural charactor, howerer, the necessity for fertilizing is seldom apparment until after the first or secend rear of growth. That is. good soils will provide sutliciont food for a normal development of leaf and wood, and any additional fertilization would have the tendency to unduly increase the tree growth. (On medinm and poor soils, the setting of the trees should be preceded by a fertilization, preforably broadcast in spring, and plowed in. with one or the other of the mixtures recommended for apples and pears, as follows:

To. 1.-Che part or 100 pounds each, of ground bone. acid phosphate ard mmriate of potach.

So. 2. - One and one-half ports, or 150 pounds of ground bone and one part, or 100 pounds, of muriate of potash.

On the better soils, No. 2. and on the poorer, No. 1, at the rate of 400 to 600 pounds per acre, which should be followed by the application of the more soluble fertilizeis, immediately the trees begin to bear. The need of nitrogen is often very marked. and is shown by a lack of vigor of the tree. Nitrate of sonda applied broadcast in early spring has proved a very valuable form of nitrogen. since it is appropriated br the roots during the early seacon. and if a sufficient abundance of the minerals is present, it enables a normal development of
leaf and branch. If the fuick-acting nitrogenons fer tilizers are applied late, or if too large applications of the slower-acting nitrogenous materinls are applied early, the tendency is to provide for a continuous feed ing on nitrogen, and thus encourage an undue development of leaf and branch, which does not permit the ripening of the wood before the begiming of winter. Thus, on these soils, in addition to an munual application of the basic formula, from 100 to 150 pounds of nitrate of sola. 200 ponnds of acid phosphate and 100 ponmeds of muriate of potash shomld be applied early in the season and carefully worked into the soil.
Phoms, Cherbies And Apheots,-The fertilizing of these fruits, when grown on the different relnssis of soils. need not differ materially from that recommended for peaches under the same emblitions, though cherries. particularly, require, in addition, a relatively greater supply of lime, which should be applied at the rate of 30 bushels per acre once in about five years, and thoroughly incurporated with the soil.
smatal Frots and Bemmes.-Tiese, in respect to their general charanter, correspond more nearly with the vegetable crops than with the cereal grains or fruits, hence, in most cases, natural sourers of plant-food are ignored, and the more ruickly available materials, particularly nitrogenons and phosphatic, applied.
In the case of strawberries, it is desirable that the soil in which the plants are set should be supplied with soluhle and availab: phosphoric acid ; hence an application, broalcast previous to setting, of from 500 to 800 pounds per acre of the nixture No. 1 , is recommended. The nitrogen should also be in quickly arailable forms, and should be supplied in sufficient quantities at time of setting the phant to enable it to mature, and thas to better withstand the rigors of winter. Henee. an additional application of 100 pomnds of dried blood, or its equivalent in nitrate of sola or ammonia, is advisable, particularly on soils uot previously well enriched with organic nitrogenoms matter. In the spring of the sea son during which the tirst crop is harvested. Iressing with a quiek-acting fertilizer, rich in nitrogen, is desirable, carefully applied between the rows. and preferably worked into the soil.
Kaspberries and hackberries also require a soil well enriched with the mineral elements, to insure an abundant and strong growth of canes. The need for nitrogen, while apparent, is less markel than in the ease of the strawberries, and the slower-arting forms serve a good purpose, provided they are not applied in too great quantities, so as to enconrage a large growth of phant, which does not fully mature. An annual application of mixture $\mathrm{N}, 2$ is recommended at the rate of 400 to tion pounds per acre.
Currants and goweberries are less likely to need mitrogen than the other berry crops, becanse of the tendency to the development of mildew. In common with the other crops mentioned. they shonald be abondantly supplied with the minerals (phosphoricacid and potash). and mixture No. 1 may be used at the rate of 500 to 1.000 pounds per acre.

Grapes. - Grapes are more exhaustive than moit of the fruit crops, largely becanse of the larger total crop hatrested, and the special need is for phosphoric arid and potash. These elentests may be supplied by mixtures No. 1 or No. 2, and verv liberal dressings are rec-ommended-from 800 to 1.000 pounds per acre anmu-ally-after the hearing prerioll hegins
Roses and other Flowerinti Phaits. - In the growing of fowers and herbaceous plants, phosphoric atid is particularly needed, and it has been demonstrated that ground bone is one of the most useful forms from which to obtain it, since it furniches both nitrogen amb phocphoric acid in slowly avalable forms. A cood mixture for both the field and prepared soils may consist of foner parts of ground hone and one of muriate of potash, applied at the rate of four pounds per square rom, and preforably worked into the soil previous to setting the plants: the after application may be made in the fall at the same rate.

Vegetable Crops. - Vegetables constitute a gromp of plants distinguished from all others, both becanse of their pecnliar habits and of their purposes of growth. Both having an important bearing upon fertilization,
they should all be supplied with an abumance of availahbe fork. Since nitrogen is the one element that more than any other stimulates leaf and stem growth, its use is extremely beneflial for all of these crops, and becanse of their relatively high commereinl value the guantity of fortilizer way be greatly in excess of that for the other gronps. While a classitlcation of these crops is possible, a fertilizer of the following eomposition may bo regarled as a basie mixture for the entire group:


The nitrogen should he derived in part from quickly available sonrees, and the phosphorice acid should be all soluble or available, nof the potash from moriate. This should be applied in part broadcast, and in part in the row at time of phanting, at the rate of 1,000 to 1.5150 fromels per acre, and upon soils naturally poor, two or three additional annual top-dressings with nitrate of soda. at the rate of from 50 to 100 pounds per acre, will prove very servicenble.

Edward B. Voomees.
FERULA (possibly the stems were anciently used as ferulest. L'mbellifere. Giant Fensel. This large gemus incheles " hardy herbs, which are, perhaps, the tallest plants cult. for ornament in this large (but from the parden stampoint unimportant) order. They are valued for the excessive theness with which their foliage is cat, and their clasters of perhaps $40-50$ umbels of minute vellow ths. borne on stont stems, which rise far nhove the foliage. F. Tingitana, Linn., from N. Africa, has lvs. 4 times ternately pimatisect, somewhat glaneons. B.3l. Feri. The common error that it comes from Spain mes back to Morison, 1680. Lindley originated the false notion that this plant is the soure of grm ammoniat. F. communis, Linn., from S. En., has deef green lvs., with more linear segments and nore compact hakit.
W. M.

FESSENDEN, THOMAS GREEN, elitor and author, 17:1-1837. founded "The New England Farmer" at Bos. ton in 1829 , and edited it until his death. The present "New England Farmer" is not the lineal successor of Fessenden's paper. Fessenden is chietly noted as a satirical poet. and he was more of a literary man than a gardener. He was born at Walpole, N. H., was graduated at Dartmonth College in 1796, and studied law. He went to England in $180 \%$, and there pulbished his humorous beem, the "Terrible Tractoration." He settled in Boston about 180t. In addition to "The New England Farmer," he edited the short-lived "Horticultural Register," and "The Silk Manual." He wrote "The Complete Farmer and Rural Economist." "The New American Gardener." and "The American Kitchen Gardener," three books of a eyclopedic nature designed to cover the fields of agriculture, horticulture and vegotable gardening respectively. They adhered very closely to the contomporaneons English type of hortienltural writing. These books profess to have passed through many editions, bint they were little altered from issue to issue. They often seem to leck the enthusiasm of direct contart with growing plants. Fessenden's time was one of gencral farming, and the view-point of girdening was mostly that of the home or amatenr. He lived before the dnys of specialized farming on a large scale, and of commercial horticulture and Horiculture. During the greater part of his editorship of "The New England Farmer" there was lmat one other important American agricultural paper. "The tmerican Farmer," which was published at Baltimore beginning 1819. The most important contemporancons American writings on horticulture of a cyelopedic nature were "The American Gardener's Calendar." by Bernard M"Mahon, Philadelphia, 1806, and "The American Gardener" of John Gardiner and David Hepburn, Georgetown, D. C., 1804. For a eopy of "The Country Lovers," Fesseuden's once famous song to the tune of Yankee Doodle, together with Hawthorne's pen-picture of the man, and an account of his interesting life, see Duyekinck. Cyc. Am. Lit. 1:595-599.
W. M.

FESTU̇CA (an aucient name of uncertain meaning) Graminew. Fescce Grass. Usually cespitose, perennial grasses of varying habit. Les. rather dry, harsh and usually narrow. Spikelets several, in dense or loose and spreading panicles; empty glmmes unequal, mostly keeled; flowering-glumes not keeled, pointed. Species about 80, in all parts of the world. They are essentially permanent pasture grasses, but some are useful for lawns and ornamental purposes.
glaùca, Lam. (Festuca oi:ina, var. glaùca, Hack.). Blue Fescue Grass. A handsome, tuited, hardy perennial grass, with deep, silvery blue leaves resembling the common Sheep's Fescue (Festuca orina) and by most authors regarded as a variety of it. Les. very narrow, conduplicate : panicle somewhat one-sided and short: spikelets 3 -8-fid., with a short awn. - An attractive plant for edgings or for contrast of foliage with deeper colored plants. Cften used also in hanging-baskets, window-boxes and the rockery. It will grow aimost anywhere if not too densely shaded. Propagated by division of the tufts.
amethýstina, Host. ( $F$. ovina, var. psammóphila, Hack.). A very pretty grass with violet-colored cuim and sheaths: lvs. sonewhat thin and long, blue-green: panicles slightly branched, small, often violet-colored: spikelets short-awned, seldom awnless. Europe.-Useful as an ornamental grass in the garden for dry, sunny places. Propagated by division.
Various Fescues are used in pastures and in lawn grass mixtures. F. duriuscula, Linn. (Festnea ovina, var. duriusenla Hack.). A slender, densely tufted perennial grass, $1-2 \mathrm{ft}$. high: lvs. very fine, radical, closely resembling Sheep's Fescue. Panicle open. Eu. Thrives on dry, sandy soils unfit for the growth of better grasses. It possesses some value as a lawn grass, bu f used for this purpose shonld be sown thickly and unmixed with other grasses. $-F$. heterophýlla, Lam. A rather slender perennial European grass, $2-+\mathrm{ft}$. high: lrs. of two distinct forms, the radical ones 3 -nerred, narrow, hairy and foided to ether: those on the culms ruch broader, Hat, and 5-i-ribbed panicle large open and noiding at the apex En . It is an excellent grass for woodland parks. where it is too shady for the successful growth of other lawn grasses.
P. B. Kennedy.

FETTICUS. Another name for Corn Salad.
FEVERBUSH. See Benzoin
FEVERFEW. Chrysanthemum Parthenium.

## FEVER TREE is Pinckneya pubens.

## FEVERWORT. Triosterm.

FIBER PLANTS are treated only incidentall in this work. Dirision of Publications, U. S. Departinent of Agriculture, Washington, D. C., issues free publications of the Office of Fiber Investigations.

FICUS (ancient Latin name). Urticdceo. The Fig, the India Rubber Plant, the Banyan Tree and the Creeping Fig of conservatory wells belong to this vast and natural genus, which has over 600 species scattered through the warmer regions of the world. Ficus has no near ally of garden value. It is a genus of trees or shrubs and climbers, with milky juice. In the common Fig the liss. are deeply lobed, hut in most of the other species they are entire or else the margin is wary or has a few teeth or an occasional small lobe. The lvs are nearly always alternate, $\boldsymbol{F}$. hispida being the only species of those described below which has opposite lrs. The foliage in Ficus varies all the way from leathery to membranous, and is astonishingly variable in venation, so that the veins are very helpful in telling the species apart. What the horticulturist calls the Fig, or fruit, is the fleshy receptacle, while the fruit of the botanist is the seed inside (Fig. 817). In the following account fruit is used instead of receptacle.
The fertilization or caprification of the Fig is one of the most surprising, interestins and complicated chapters in natural history, and is of great practical importance. See $\boldsymbol{F}$ ig, where the culture of $\boldsymbol{F}$. Carica is dis cussed.
The most important ornamental plant in the genus is the India Rubber Plant ( $\boldsymbol{F}$. eiastica), which probably
ranks amongst the 25 must popular foliage plants for home use indoors. Its culture is given below at length. This is one of the most important rubber-producing plants. See Rubber Plants.
The Creeping Fig ( $F$, pumila, better known as repens or stipulata), is one of the commonest s.nd best climbers for covering conservatory walls. It clings close and makes a dense mat of foliage, which is about as dark in color as the English iry. The plant has been cult. since 17i1, but within the last quarter century has come to be recognized as the best plant there is for its special purpose. Once in a long while it fruits in conservatories, and the fruiting branches are very unlike the barren ones. They stand out from the conservatory wall instead of lying flat and ose. The lvs. of the barren branches are less than an inch long and heart-shaped, with one side longer han the other at the base and a rery short petiole : the lvs. of fruiting branches are 2-3 inches long, elliptic-oblong, narrowed at the base, and with a petiole sometimes half an inch long.
Among the many wonders of the geris Ficus are the epiphytal habit of some, the brige spread of the Banyan Tree ( $\boldsymbol{F}$. Remghulensis), and the fact that some species ripen their fruits under ground. Some of the tallest tropical trees are nembers of this genus, and often they begin life by climbing upon other trees. The Ficus often overtops and outlives the other tree, which may be seen in every stage of decay, or may have entirely disappeared, leaving the giant climber twined spirally around a great hollow eylinder. The Banyan Tree sends down some of its branches (or aërial roots) into the soil, these take root, make new trunks, and eventually produce a great forest, in which it is impossible to tell the original trunk. The Banyan in the botanic

817. Young Figs.

Showing how they arise from the axils of the leaves gardens at Calcutta sprung froi: a seed probably dropped by a passing bird into the crown of a date palm a little more than a century ago. The main trunk is now 42 ft . in circumference; there are 232 additional trunks, many of them $8-10 \mathrm{ft}$. in circumference, and the branches extend over an area 850 ft . in circumference, forming a dense evergreen canopy through which sunlight never penetrates. The Banyan under which Alexander camped, and which is said to have sheltered $\mathbf{7 , 0 0 0}$ men, now m asures $2,000 \mathrm{ft}$. in circumference and has 3,000 trunks. Other species have the same method of propagation, but F. Benghalensis is the most famous.
The various species of Ficus are cultirated for fruit, for ornament in greenhouses, and for shade outdoors in the extreme South, as indicated in the key by A, AA, and AAA. The shade trees are procurable from southern Florida and southern California.

## Index of names (synonyms :- italic):

aurea, 18.
australis. 7.
Benghalensis, 20. Carica. 1. elastica. 2 and 14. erecta, 3 . glomerata, 11. hispida, 10 . Indica, 19.
pumila, 8.
quercifolia, 5.
radicans, 9 .
religiosa, 21.
repens, 8 .
тepens,
retusa, 17.
rubiginosa, 7 and 13.
stipulata, 8 .

## A. Cult. for fruit

1. Càrica, Liın. Figs. $817,821,822$. Height $100-30 \mathrm{ft}$.: lrs. 3- $\mathbf{n}$-lobed, the lobes more or less wary-marained or lobed, and with palmate veins, whereas nearly all species menticned below are pinnately veined: fr. single, axill: pear-shaped. Supposed to be a native of Caria, i ...ia Minor. Makes a fine pot-piant, and fruits fre, is northern conservatories. For culture, see Fig.

AA. Cult. indoors for ornament, hence not tall trees under these conditions.
B. Habit erect, not climbing.
c. Under surface of les. not rusty
D. Foliage not variegated (except in a vaviety of No. 2).
E. Les, entire or with margins uacy, not lobed.
F. Verves numerous, 50 pairs or so.
2. elástica, Roxb. India Rubber Plant. Figs. 818, 820. Lvs. 3-12 in. long, shining, leathery, oblong to ellipt:c, with an abrupt, dull point; nerves parallel, running at nearly right angles from midrib to margin: fr. in pairs, sessile, in axils of fallen lvs., covered at first by a hooded involucre, when ripe greenish yellow, $1 / 2 \mathrm{in}$. long. Damp forests of trop. Asia. G.F. ${ }^{2}: 54 \overline{7}$ - Becomes 100 ft . high in tropies, but becomes unsightly under glass at 8 or 10 ft . Cult. plants mostly have a single stem, but there is a growing demand for compact and branching plants. Var. va. riegàta (var. aurea, Hort.) is much less popular. Lrs. creamy white or yellow near the edges. J. D. Eisele says it is liable to fungous diseases. This species is also grown South as a shade tree. The nervation is very characteristic. So, also, is the handsome rosy sheath which incloses the young lvs., and which soon drops off. This is regarded as a stipule of exceptionally great size.
FF. Nerves about 8 pairs.
3. erécta, Thunb. Extraordinarily variable : shrub to small tree, glabrous, pubescent, or almost strigose : lrs. broadly ovate, obovate or elliptic (lanceolate in rar. Sieboldii), entire or with here and there a iobe, or rather coarselydentate abore the middle: fr. single or in pairs, peduncled or subsessile, and either globose and not stalked or pear-shaped and long-stalked. Hima-
818. Leaf of Rubber Plant. showing venation. F . elastica ( $\times 1 / 4$ ). layas. China, Japan. B.M. 7550 (where the lrs. look rather leathery). Procurable through dealers in Japanese plants.
fff. Nerres about 3 pairs.
4. macrocarpa, Wight. Becomes a large, climbing tree: Ivs. 5 in. long, membranous, broadly ovate; petiole 2-2 $1 / 2$ in. long: fr. 1-2 $1 / 2$ in. thick, spotted, globose, in cauline clusters. India. - This name was once adr. by John Saul, who spoke of the plant as a shrub with leathery lvs.

> EE. Lis. deeply lobed, not merely uary.
5. quercifolia, Roxb. The oak-leared form is the typical one, but King includes $\boldsymbol{F}$. humilis, Roxb., in which the lvs. are serrate or nearly entire and not lobed. Les. 2-5 in. long, "thickly membranous;" verves 5 -7-pairs; petiole $1 / 2-1 \mathrm{in}$. long: fr. in axillary pairs, egg- or peashaped. Burma, Nalaya, where it is a shrub, often creeping or decumbent. L.B.C. 16:1540 (fruiting soon after importation, when 2 ft . high). Adr. 1895 by Pitcher and Manda. Voss refers this, with many other synonyms, to $F^{\prime}$. heterophylla.

## DD. Foliage variegated.

6. Parcelli, Veitch. Lrs, thin, membranous. light green, mottled with cream-whi 2 , more or less in the
manner of mosaic, oblong-oval, acuminate, dent 3 . Islands of Pacific. F.S. 22:2273. F.M. 1874:124. - Int. by Veitch about 187t. A warmhouse shrubby olant; probably the most popular of the variegated forius of Ficus. J. D. Eisele says it is readily prop. ly cuttings of halfripened wood placed in sand in brisk iottom heat. Also cult. in S. Calif., where it bears tricolored fr.
Cc. Ender surface of young lis. rusty.
7. rubiginòsa, Desf. (F. austrùlis, Willd.). Lrs. leathery, rounded or cordate at base, notched at tip: fr. mostly in paies, globular, $5-6$ lines thick, usually warty. Australia, where it throws out aërial roots like the Banyan Tree. B.M. 2939. - The rusty color is a beautiful feature. Voss considers this a form of $F$. elastica.

BB. Habit climbing or trailing.
c. Form of les. orate, obtuse, unequally heart-shaped at bass.
8. pùmila, Linn. (F. stipulàta, Thunb. F. rèpens, Hort., not Rottl.). Creeping Fig. Fig. 819. Prostrate or climbing shrub, clinging close to conservatory walls and then Hattened. Lis. more or less 2 -ranked, on rery short petioles, ovate, obtuse, entire or slightly wary, rounded or cordate at the base, often unequally; reins prominent below. Japan, China, Australia. B.M. 6657. R.H. 1891:448. G.C. 1I. 14:560, 561, 717. Var. minime ( $\boldsymbol{F}$. mínima. Hort.) has smaller lvs. The species is sometimes used for hanging baskets. cc. Form of les. oblong-acuminate, slightly notche? t bese.
9. radicans, Desf. Garden plant, with green, ollwhy. acuminate lvs. and trailing habit. Imperfectly known. Habitat unknown. Var. variegàta, Hort. W. Bull.. has lvs. irregularly marked with creany white. the variegation beginning at the margin. G.C. 1II. 22:185. A.G. 19:52\%. Int. 1897.
AAA. Cult. outdoors in southern Fla. and Calif. for shade, etc., hence often tall trees.
B. Arrangement of les. usually opposite.
10. hispida, Linn. f. ( $\boldsymbol{F}$. oppositifòlia, Willd.). Shrub or small tree: lvs. entire or toothed: fr. clustered on old wood or leafy branches, hispid, yellowish. Asia. Trop. Australia.

BB. Arrangement of lis. alternate.
C. Texture of lis. membranous, not leathery.
D. Lis. tapering to a point; base entire, obtuse.
11. glomeràta, Roxb. Cluster Fig. Lvs. 4-7 in. long; nerves 4-6 pairs: fr. clustered on leattess, scaly branches, pear- or top-shaped, $11 / 4 \mathrm{in}$. thick, reldishi. India, Burma. - "A quick-growing, evergreen shade tree."-Reasoner. "A dense shade tree: lvs. have a peculiar metallic luster: small fruits, much relished by cattle and children."-Franceschi.
DD. Les. with an abrupt, short, acuminate apex ; base notched.
12. infectoria, Roxb. Lrs. $31 / 2-5$ in. long; nerves $5-7$ pairs : fr. in axillary pairs, sessile, globose, $1 / 4 \mathrm{in}$. thick, whitish, flushed and dotted. Trop. Asia, Malaya. Grows 60 ft . high, and is one of the best shade trees.
cc. Texture of lis. leathery, not membranous.
D. Under surface of lus. rusty.
13. rubiginosa, Desf. Described at No. 7 .

DD. Under surface of lus. not rusty.
E. Stipules very lrage, rosy, inclnsing the young lus. when young oud falling off afterwurds.
14. elestica, Roxb. Described at No. 2.
15. macrophylla, Desf. Moreton Bay Fig. Lus. 6-10 in. long, $3-4 \mathrm{in}$. wide : stipules 2-4 in, long: fr. nearly globular, $9-12$ lines thick, axislary, in 3 's or 4 's, or sliort, thick peduncles. Austral.-Much planted in southern and middle California. where, howerer, it does not perfect seed. $F$. von Mueller says it is perhaps the grandest of Australian arenue trees.
EE. Stipules not exceptionully large and not rosy or deciduous.
F. Iroung lis. densely covereä with wool beneath.
16. Pálmari, Watson. Tree, 8-12 ft. high, branching near the ground: lvs. 3 in. long, 2-21/2 in. wide ; petiole 1 in . long: fr. in pairs, axillary, globose, $1 / \frac{\mathrm{in}}{}$. thick. Discovered on San Pedro Martin Island, northwestern Mexico, 1887. - Perhaps the best adapted to severely hot and dry places. Franceschi says it attaine 30 ft .
fr. Foung li's. not woolly.
(.) Base of lis. narroued.

## H. Stipules glabrous.

17. retussa, Linn. (F. nitida. Thunb., and Hort., not Blume). Lis. $2-4$ in. long; nerves 5 or 6 pairs; petiole $3-6$ lines loug: fr. sessile, in pairs, axillary, 4 lines thiek, yellow or reddish. Trop. Asia, Malaya. - A large evergreen tree with a few aërial roots.
18. aùrea, Nutt. Branches pale, smooth, furrowed : lvs. 3-4 in. long, smooth, oblong, entire, narrowed but obtuse at each end, stout-petioled: fr. orange-vellow, globose, 4 lines thick. S. Fla. - Reasoner sars it is a handsome decorative plant for the florist, and that it grows 60 ft . high. Chapman describes it as a small tree; he says nothing about stipules. Tender in Santa Barbara.

## нн. Stipules not glabrous.

19. Indica, Lun. Not the Banvan Tree. Glabrous throughout, except stipules: lis. $\dot{4}-\bar{i}$ in. long; nerres about $4-6$ pairs, not very prominent ; petiole $4-12$ lines long: stipules $6-9$ lines long: fr. in crowded pairs. sessile, globose, smooth, yellowish red, 4 lines thick. Trop. Asia, Malaya. - This species is grestly confused in botanical literature with $F$. Bengholensis, but $F$. Indicu does not take root from its branches, as does the Banyan Tree. In recent writing $F$. Indica is often given as a syonrm of $\boldsymbol{F}$. Bem tensis, but the distinctions here given are those made by King. in Flora British India 5: 499 (1890). Tree grows 50 ft . bigh.

## gg. Base of liss. rounded

H. Nerves about 5 pairs: $7 \mathrm{rs} .4-8 \mathrm{in} .70 \mathrm{ng}$.
20. Benghalénsis, Linn. Baxyan Tree. Also written Bengalensis. Young parts softly pubescent: nerves prominent: petiole 6-18 lines long; stipules $9-12$ lines . g : fr. in pairs. sessile. globose. puberulons, red,

819. The Creeping Fig on a conservatory wall.

Ficus pumila, better known as $\boldsymbol{F}$. repens ar $F$. stipulata.
about the size of a small cherry. Trop. Africa, India. A tree, $\mathbf{i} 0-100 \mathrm{ft}$, high, rooting from the branches, thus forming accessory trunks and extending the growth of the tree indefinitely. For an explanation of the confusion between Benghalensis and Indica. see Hooker's Flora Brit. India 5:499, 500 .
нн. Nerves about 8 pairs: les. $41 / 0-7 \times 3-4 \frac{1}{2}$ in. long.
21. religioza, Linn. Pefpll Tree of the Hindoos. Petiole 3-4 in. long; scipules minute : fr. in axillary pairs, sessile, dark purple, $1 / 2 \mathrm{in}$. thick. India. Gn. 1. p. 435. - Grows 100 ft . high, and the lvs. suspended on their long, flexible petioles, rustle in the slightest breeze.
F. Afzélii, G. Don, is a plant from S. Afr., never described by Don. The plant in the traide is said to be F.eriobotroides. Once advertised for indoor ornament by Pitcher \& Manda. F. carnòsa, Hort. Advertised 1895 by Pitcher \& Manda for in-doors.-F. Cheuvierii. Hort. In Europe this is said to be second only to F. elastica. Franceschi says it has broader and more oval lvs., and comes from New Caledonia, where it attains 60 ft . J. D. Eisele says that it has oval lvs. with creamy white veins, is strong.growing, and should be valuable for subtropic:al gardening - $F$ Comperi Hort is cult indoors from trop A mer Adsertised 1895 by Piteher \& Manda-F Cüninghaini is a Advertised of preat size prolucing aïrial roots. introduced by California Experiment Station, and recommended by Reaby Calformia experiment Soation, and recommended by Reasoner Bros. for house culture in the South. Presumably

 rertised. A creeper whe selately doter and colored beneath. It is a form of $F$. punctata, with lvs. oblong or subrhomboid, obtuse, not tapering below. India. Before No. 8 in the key.-F. licida, Dryand. From India, but not described in Flora of British India. Advertised 1893 by John Saul for indoors.-F. princeps, Kunth \& Bouché, Braz. Cult. by Franceschi, who says it grows 60 ft . high and has magnificent foliage, which is bronze and copper-colored when young. - F. pyrifôlia may be F. Benjamina, ererta, Fontanesii or rubra. The name is advertised by Yokohama Nursery Co., who also advertise $F$. erecta.
W. M.

Fices elastica, or the Rubber Plant as it is known all over this country, is perhaps the most popular and satisfactory house plant that has ever been cultivated. It is a plant for the million. Some florists have several houses especially Geroted to the propagation and cultivation of this tough and thrifty plant. There are also thousands upon thousands of young plants er rooted cuttings from thumb-pots imported into this - untry, especially from Belginm and Holland, for marketing every spring. It is estimated that from 75,000 to 80,000 Rubber Plants were sold in America during the last year. There are several varisties of the Rubber Plant, but the true Ficus elastica is the best, both for growing and for selling. It can be easily told from the smallerleaved variety, which is smaller and lighter colored in all its parts, the stem being smoother, and the sheath that covers the young leaves lacking the brown tint, which often rums into a bright and beautiful Indian red.
The method of propagating now popular in America employs old, bushy stock-plants, either in pots or tubs, or planted out into a bed where the night temperature can be kept from $60^{\circ}$ to $75^{\circ} \mathrm{F}$. As soon as the young shoots are $5-6 \mathrm{in}$. long they are operated upon. An incision is made at the place where it is intended to root the young plant, eutting upward on a slant midway between two eyes, making the ent anywhere from 1-2 in. long, according to the thickness and length of the young shoot or branch. A small wedge, as a piece of match, is then inserted to keep the cut open. A large handful of cleav damp, well prepared moss is then placed around the b:anch to cover the cut and is tied moderately firm with twine or raffia. Some use a small piece of charcoal for a redge in the cut; others coat the two cuts with a mixture of charcoal dust and lime. The latter practice. in the opinion of the writer, is beneticial in that it expedites the callusing of the euts and the rooting of the young plant after being cut and mossed. The moss should be kept constantly moist, and the higher the temperature, within reasonable limits, the quicker the rooting process goes on. The roots of the young plant usually appear on the outside of the oval-shaped bunch of moss. A complete cut can then be mate below the moss and the young plant potted. The smaller the pot at first the better. The leaves of the young plants should be tied up in order that they may not be infured by coming in contact with one another or by lying flat on the pots. The young plants now require a gentle bottom heat and frequent syringing. - a dozen times on clear days. As soon as the young plants are taken from the stock-plant, a little wax should he put on the end of the cut to prevent the miiky sap from escaping. The best time of the year to propagate and root Ficus is from the first of January to May. The European growers never start much before the Christmas holidays; and from then until spring they make all their cuttings.
The oller method of propagating Rubber Plants is still the farorite one abroad; it employs single-eye cuttings. Sometimes, if the branches are rery thick, only one-half the stem is taken with the eye and a single
leaf, the leaf being curled up and tied with raffia. and the small piece with the eye set into the propagating bed. This is a bed of sharp sand, or sometimes of sand and chopped sphagnum moss or fine cocoa-tiber. Frequently the single-eye cuttings are put at once into the smallest sized thumib-pot, with a mixture of very finely ground potsherd and charcoal filling about one-half the pot, and either soil or sand for the balance. A small stick is used to hold the leaf npright. These pots are plunged into the propagating benches in either sand,

820. Ficus elastica, the Rubber Plant of florists.
\#moss or fiber, and a steady bottom heat of from $75^{\circ}$ to $80^{\circ}$ is applied and kept up until the plants are rooted. As a rule, such beds are inclosed in a glasshouse, in order to ketp about them close. warm and moist atmosphere. Only ventilation enough to permit the moisture caused by the eraporation to escape is allowed on these beds. In this country, propagation by the first describer method can be continned nearly all the rear round. Fron experience of both methods, the writer can say that the top-cutting and mossing process is better by far, especially where plenty of stock plants can be maintained.

After being shifted from the smaller sized pots into 3- or f-in. pots, the young plants will stand a great deal of liquid manure as soon as they are rooted through or become somewhat pot-bound. JIany propagators plant out the young plants from 3 - and 4 -in. pots into coldframes after the middle of May, or when all danger of night frost is past. They do very well in the bright, hot. open sun. but must receive plenty of water. After being planted out in frames, they should be potied not later than September, and for early marketing as early as in August. The plan of planting out and potting in the later part of summer or early autumn is a very practieable one, as the plants do not suffer so much from the severe heat during the summer.
H. A. Siebrecht.

Within recent years a much-branched or tree-shaped style of Rubber Plant has attained a considercble degree of popularity. It is possibie to produce such a plant by topping it at any desired height while it is in a free growing condition. However, the best shaped plants are obtained only by natural branching. in order to induce Rubber Plants to branch ircely without the interrention of topping, it is necessary to keep the plants dry and cool for two or three months in the spring. in order to get them thoroughly rested. Ther: plant them in a frame or in open ground that has been
highly fertilized, and give plenty of water. When the plants start into growth they will be inclined to "break;" that is, to make branches from the axils of many of the leaves all along the stem. By this method handsome, tree-shaped specimens of the Rubber Plant may be secured by the following autumn.
W. K. Harris.

FIG is Ficus Carica, a native of Asia. See Ficus. It is a warm-temperate fruit, although it will stand 10 to 20 degrees of frost under farorable conditions. It was early introdused into North America, but excepting on the Pacific coast it has never been more than an amateur fruit. It has been known to fruit in the open in Michigan without other protection than a high board fence inclosure, but usually if grown north of Philadelphia the plants are lifted in early November, with good balls of earth, kept in a dryish cellar over winter, and planted out the next spring. From Philadelphia to the Carolinas they may be bent to the ground and covered with earth or pine boughs. The fruit is borne on the young wood, and often on young trees. This fruit is really a hollow pear-shaped receptacle with many minute sceds (botanically fruits) on the inside; it grows like a branch from the side of the shoot. Inferior, runwild forms are frequent in the southern states, where they are sometimes called "old man and woman" by the negroes. Figs may be grown under glass, being planted permanently in a border after the manner of hothouse grapes. They usually bear better if the branches are trained more or less horizontally. Two or more crops may be expected in one year under glass. Eastern nur serymen sell Fig trees. As early as $183 \%$ Kenrick ("New American Orchardist") described 2 ? varieties. Popular varieties for amateur cultiration in the east are Turkey, White Genoa, Black and Brown Ischia. In order to facilitate the ripening of the fruit in cool climates or under glass, it is a custom to dress the surface of the nearly full grown Figs with sweet oil. As a dessert fruit Figs are usually eaten in the fresh state, in which condition they are scarcely known to people in cool climates. They are also cooked. The commercial Fig is the dried fruit.

The Fig is propagated very easily from hardwood chittings, as grapes are. Take cuttings in the fall, entting just below a bud. If wood is scarce, single-eve cuttings may be used, being started preferably in a frame. From euttings, bearing plants may be expected in 2 to 4 years. New varieties are obtained from sceds.
Various fruit books give directions for the growing of Figs. Publications in California and of the United States Department of Agriculture discuss them. But the only indcpendent American writing seemis to be Jemes T. Worthington's "Manual of Fig Culture in the Northern and Middle States." Chillicothe, Ohio, 1869. Althongh regularly coprrighted, it is a panaphlet of only 10 pages. It recommends the laying-down of the trees in late fall and corering them with earth. This practice gave better results than covering with other naterial, or carrying the trees over winter in cellars, either in tubs or transplanted from the open.

Incident to the commercial cultivation of Figs in California, there has been much discussion of the necessity of capritication or fertilization by means of the Fig wasp The necessity for caprification, as well as the nature of the process, was first established by Dr. Gustav Eisen; see "Biological Studies on Figs, Caprifigs and Caprification" (Proc. Cal. Acad. Sci. Ser. 2, Vol. V. 1896). In this paper Dr. Eisen demonstrates for the first time that there are three distinct classes of edible Figs, those which here have been termed Smyrniaca, Hortensis and Intermedia, and that some of these required caprification and others not. Another point established by him was that caprification was entirely a process of pollination, and not due to the sting of the Fig insects, as had been previonsiy held by certain investigators. In this atd other Hig work, the United States Department of Agricul ure has taken an active part. Dr. Howard, U.S. Entomologist. has done much towards introducing the wasp. As early as 1890, H. E. Vinn Deman, then U. S. Pomologist, introduced a few cuttings of the Smyrna Fig and large quantities of the Capri, and these were distributed in the Fig-growing sections of the country. The Smyrna Fig was first hand-pollinated in 1891 bg

Dr. Eisen at Niles, Calif. The wasp was introduced several times without success, but the Department of Agriculture took hold of the matter in 1898, and in 1899 succeeded in estahlishiniz the insect (sent from Algeria by Mr. Swingle) in Mr. Roeding's orchard at Fresno, Calif
For further notes on Figs, see Bulletin No. 5, Dirision of Pomology, U. S. Dept. of Agric., by Gustav Eisen (1897), Bulletin 20 , new series, Division of Eutomology, Dept. of Agric., and rarious California writings. A recent full account of Smyrna Figs, by J. Burtt Davy, is in the Pacific Rural Press, Nov. $\because \overline{5}, 1899$. L. H. B.
Fig Culttre in the Carolinas. - Enthusiasm in regard to Fig culture in the eastern part of the country has been very much dampened by the two or three severe winter spells of late years. Several methods of winter protection have been tried. A plan, which was so successful in northern Maryland, of bending them down and mounding with earth, will not do in North Carolina and southward. If the soil froze up and remained frozen, as it does in nortbern Marylend, it would be all right. But here there is more warm than cold weather in winter, and during the warm and wet spells the buried branches simply rot, and are worse off in the spring than those to which no protection is given. In normal winters most varieties of Figs get along very well without protection, but when the mercury drops to $10^{\circ}$ or $12^{\circ}$ above zero, even if the wood escapes, the early crop is destroyed. When the trees are branched in bush form from the ground, the best protection here is to bend them down to the ground and cover thickly with green pine boughs. If in standard shape and kept pruned so, the loct method of all is to thateh the entire ree with corn stalks and broom sedge, placing a thick layer of corm stalks upright around the body of the trees, and tying them in closely at the top and banking the earth up against the butts, and then to thatch every limb separately with broom sedge, tring as we go. The trees come out in better shape from this than from any other mode of protection. There is a great deal of difference in the natural hardiness of the different varieties. The Celestial is one of the hardiest. Doree Narbus is reputed the hardiest in California, but was killed outright here. Next to Celestial comes the Brown Turkey, the Brunswick and Pegustrata. Adriatic is too tender to be of any use in North Carolina. Station Smyrna, from the California Station, seems to be almost as hardy as the Celestial. A few years ago Brown Turkey Figs were plen iful in the Raleigh market at 75 cts. per bushel, but for two or three years past hardly any have been offered.
W. F. Massey.

Fig in California. - The Fig, a native of southwestern Asia, is one of the most ancient, beautiful and valuable of all rruit trees, and its more general culture in suitable districts of the United States is much to be desired. There are several recognized botanical varieties of the Fig (Ficus Carica), of which the following can be noted: (1) Ficus Carica, var. sylvestris, the wild Fig of Asia Minor, commonly called the Capri Fig. The frait of this kind is not edible, but the little Fig wasp (Blastophaga psenes, breeds therein. (2) Ficus Carica, var. Smyrniaca, the true Smyrna Fig, which does not mature its fruit unless the flowers are cross-pollinated by hand or by the friendly agency of the Blastor haga, which pollinating is termed caprification. (3) Ficus Carica, var. hortensis, the common Fig of gardens and orchards. (t) Ficus Cavica, var. intermedia, a type of Fig which matures one crop, but needs cross-pollination for the main, or second crop.

The last three of the above four botanical rarieties of Figs, especially the third, have become the parents of many horticultural forms. The best drying Figs of commerce belong to the second class, Smyrniara, while nearly all of the fine table and preserving sorts are varieties of hortensis. Nearly all cultivated varieties of Figs yield three crops, more or less distinct according to the variety, the location and the season. The second crop is the important one, but the first crop in some varieties is much esteemed for table use. Ripe Figs can be gathered in many California Fig orchards from late in July until rains and fro t destroy the fruit.

Figs have been grown on the Pacific coast for much more than a century. Trees were probably at Loreto

Mission, Lower California, before 1710, and reached the Alta California Missions soon after their establishment. Vancouver found Fig trees at Santa Clara in 1792. At the present time the Fig is cultivated in almost all parts of the state of California. The tree stands a range of temperature of from $18^{\circ}$ to $120^{\circ}$ Fahr., and the only portions of California really unsuited to its growth are certain cold or foggy districts. In the drier parts of the state it needs irrigation, as do other fruit trees. Some of the old Fig trees in California are of immense size.

821. White Adriatic Fig

It is not uncommon to see trees with trunks of more than 2 feet in diameter. One tree in Stanislaus county is 60 feet in height, covers a circle 70 feet across, and has o trunk that girths 9 feet. The great Banyanlike Fig tree at General Bidwell's, Butte county, illustrated in the Century Magazine for October, 1892, has trailing or descending branches, which have taken root at many places, and the whole group now covers a circle more than 150 feet in diameter.

Varieties. - There are many horticultural varieties of the Fig, probably not less than 150 distinct sorts in cultivation under innumerable synonyms. Their classification is by shape, color of skin and color of flesh. The shape is round or turbinate in some sorts; pyriform or obovate in others. The skin varies in color in different varieties from green, through pale vellow, buff, light brown, reddish brown and purple, to black. The flesh is almost white, opaline, or various shades of red; it can be described as melting, spicy, juicy, coarse or even dry in a few old sorts which seem but a few removes from the wild. The size varies from sorts hardly as large as a green-gage plum to others that sometimes weigh 4 or 5 ounces apiece. The Fig most often planted in California came from the old Missions, and is known as California Black, a hardy and very productive sort. Properly dried jt is an excellent Fig, but the dark color renders it less marketable than the white varieties. It is a revy popular table Fig. The white Fig most generally planted in Caliornia is the so-called "White Adriatic," which is the "Grosse Verte" of France and the "Nebian" of Hogg. The best dried Figs yet produced commercially in Culifornia are of this variety, which does not need caprification. Where is a large and inreating demand f̈cr California dried Figs, which are
not yet equal in quality to the Smyrna product, but can be sold at a lower price.

The following $\mathbf{2 5}$ varieties of Fig are now freely cultivated in California, and extensively grown by the nurseries: Adriatic (Grosse Verte), Agen, Angelique, Black Ischia, Black Marseilles (Black Provence or Re culver), Bourjassote Blanc, Brown Turkey, Brunswick, California Black, Capri, Celeste (Celestine), Col di Signora Nero, Drap d'Or, Du Roi, Grossale, Ladaro, Negro Largo, Ronde Noire, Ronde Violette Hative, Royal Vineyard, San Pedro, Smyrna, White Genoa (Grosse Marseilles), White Ischia, White Marseilles (Petite Marseilles). The California Experiment Station has grown at various places the above 25 varieties, and, in addition, about $3 \overline{5}$ others, thus testing a collection of some 60 sorts, and these have becn widely distributed for 6 or 8 years. The list includes Abondance Precoce, Brianzola, Black Brogiatto, Bellona, Bordeaux. Brown Ischia, Dalmatian, Doree Narbus, Rocardi, Ruhrado, Verdal Longe, 3 varieties of Smyrna, Osborne Prolific, Pastiliere and an especially fine variety, Hirta du Japon, a medium-sized, turbinate, dark purple Fig with yellowish white flesh and high quality. This last named variety, with Angelique, Early Violet. Brown Turkey and a few others, is excellent for house culture or fore ing. The best sources in France, Spain and Italy have been drawn upon for the various importations of Figs upon which these collections are based.

Acreage. - About 5,000 acres of land in California have been planted in Figs. mostly in small tracts seldom exceeding 20 acres. The leading Fig counties, as far as area is concerned, are Los Angeles, Santa Bar bara, San Bernardino, Butte and Fresno, but the counties of Alameda, Santa Clara, Solano, Sacramento, Stanislaus, San Joaquin, Placer, Yuba, El Dorado and Shasta contain some of the finest groves and specimen trees.

The Smyrna Figs.-After many atternpts, the true Smyrna Figs were introduced on quite an extensive scale by the San Francisco Bulletin in 1882, by the late James Shinn, and by George Roeding, of Fresno. From these different importations, California became well stocked with both the Capri and Smyrniaca types. The Fig wasp was obtained in July, 1891, by James Shinn, but the locality was unsuited to its propagation. It was again introduced at various times by the United States Department of Agriculture and by Mr. Roeding, until it now seems to be fairly well established at Fresno. The Smyrna Fig was first hand-pollinated in 1891 at Niles and also for several seasons at Fresno, producing Figs which when dried were of superior quality. In 1899 Mr. Roeding's Smyrna Figs, caprified by the little Fig wasp, bore a Fig crop. Several large orchards of the true Smyrna Figs, in various varieties, and many Capri Fig trees are ready for colonies of this usefu! Blastophaga, and it is hoped that a new industry can now be developed in various parts of California.

Propugution. - The Fig grows very readily from cuttings. Use well ripened wood of the previous season's growth, cut at the joint, and give them the same treatment required for grape cuttings. They will even grow from single-eye cuttings. Bottom heat is not necessary in California, where the cuttings are set in the nursery in December or January, and are ready for the orchard in a yea:. In the castern states, winter-made cuttings can be started with bottom heat, or in ti't open air in April.

Budding is best done by the ammular or ring method so useful for the chestnut and walnut. The Fig can be cleft-grafted, say in February in California, but extreme eare must be taken to exclude the air. Seedlings are easily grown from the featile seetis of the imported Emyrria Figs. and from the few fertile seeds occasionally appearing in common varieties.

Planting, C'ulture, etc. - The Fig tree in California requires much space, hence it is used as an arenue tree, or if in orchard form other trees are set between, to be afterwards removed. In good soil Fig trees, like walnuts, should finally stand not less than 40 feet apart.

Little pr-ning is requrred for the Fig. Trees grown for table Figs are headed low, about 18 inches from the
ground, to facilitate picking. Trees grown for drying Figs are headed higher, so that the ground can better be kept smooth and clean, for the Figs are usually al lowed to ripen and fall. Cultivation is necessary until the trees completely shade the ground.
Figs begin to bear early in California, often the second or third year. Some trees prove barren, or very poor bearers, and must be replaced by others. Cuttings for propagation should always be taken from well-matured wood of bearing trees. The tree appears to be as long-lived as the olive, has very few insect enemies, and is not subject to disease. The fruit in some districts in some seasons ferments on the trees ("Fig-sour"). This sometimes seems to come from over irrication, sometimes from lack of vitality, and more often occurs with very juiey and tender varieties.

Caprification.-The problems connected with Fig capritication have long been discussed, and the necessity for the process has been strenuously denied by many writers. But there is no doubt that Figs of the true Smyrna type east their Figs unless caprified, for old trees are now growing in California and bear no crop. Cases otherwise reported prove to be of some different, or hortensis, variety. Fig caprification has been dis cussed in various papers in the publications of the State Board of Horticulture, by Dr. Eisen and others, in the publications of the Divisions of Pomology and Entomology, at Washington, and by W. T. Swingle in Science October 20, 1899
The true Smyrna Figs, which are of several varieties and doubtless capable of much improvement, yield two crops, the first of which fails, because no pollen is then obtainable from the wid or Capri trees. Both earlier and later rarieties of wild Figs than we now have are needed by horticulturists. The wild Fig now produces three crops, but onlv one is useful for caprification ; the others are barren of pollen, but are necessary to main tain the Fig wasp. Only 30 Capri Figs are needed to caprify a large Fig tree, so abundant are the insects and the pollen in good seasons, and one tree of the wild Fig is sufficient for one hundred Smyrna trees. The male of the Fig wasp is without wings, but the female has wings and saw-like mandibles; she cuts her way through scales which interlock over the apex of the half grown Smyrna Fig. She loses her wings in entering, dies in the Fig, and is absorbed by the regetable cells; if her eggs are deposited they also perish, and the continuance of the species depends upon those individuals that remain upon the wild Fig trees. The whole story is one of the most interesting known to entomologists.

Fig-drying in California (Fig. 829). - The forvign methods so far as tested in California are not practicable under labor conditions, and not entirely satisfac tory in any case. Some growers let Figs fall from the trees, picking such as shrivel on the trees without dropping ; others let all the Figs fall. Picking is best with the finer sorts. Allow the Figs to shrivel on the trees; pick with great care. place on slat trays, bloomend down, and subject to sulphur fumes, if bleaching is desired. Fxpose to the sun; turn the fruit over in

822. Young Fig tret, and Fig-drying in open air. California.
next day begin to "Fig-pull", or press each Fig between the fingers to keep it from "drying hard". In 4 or 5 days the Figs can be placed in the shade, and in a ciay or two "dipped" in boiling water, to further reduce the coarse ness of the skin, close tise pores and color the fruit.

Subsequent sweating and "processing" vary much as with prunes, raisins and other dried fruits. Exceeding care, cleanliness and long experience are all-important in the production of a high-grade article.
The dried Fig crop of California is large, and increasing. In 1886 the total product was but 100,000 pounds. In the $\overline{5}$ years ending with 1899 it was $14,945,000$ pounds, an average of $2,989,000$ pounds per annum. White Adriatic, Black Californian and to a small extent Whito Marseilles were the varieties producing this amount.
Culture in the eastern states. - The culture of the Fig in the northern and middle parts of the United States is extremely interesting, but is essentially different from California methods, or even from those prevailing in the southern states. The tree is not hardy enough to endure the climate excepting when grown as a bush, and protected in winter, usually by covering it with several inches of soil. In the southern middle states a heavy covering of straw or of evergreen branches is often sufficient. The first crop of fruit is all that can usually be expected in the extreme north; the second crop sometimes ripens in the middle states.
South of Virginia, many varieties of Fig are readily grown in the open ground. The experiments of Berckmans, Massey, Normand, Reasoner ind others plainly show that the Fig is well adapted to a large area of the southern states, but chiefly for table use - not for drying, which seems to require a less moist summer atmosphere. The Fig cannot be carried far to market in a fresh state, and therefore its extended cultivation to supply local demands will long be profitable. Even in California the fruit markets are with difficulty kept supplied, and many large towns seldom have fresh Figs on the stands.

Charles M. Shinn.
FIG. Adam's F. is Musa paradisiaca. Barbary F., Opuntia vulgaris. Devil's F., Argemone Mericana. Hotientot's F., ficsembryanthemum edule. Indian F., Opuntia rulguris. Keg F., Diospyros Kaki. Pharaoh's F., Sycomいrus antiquorum.

## FIG-MA:ZIGOLD. Mesembryanthemum.

filago Germanica, the Cotton Rose, is a cottony anma. plant somewhat like Leontopodium, which is now and then collect ad by tourists and dyed like immorte!les. It was calleă Merba impia by the old herbalists, hecause a new generation of clustered heads rises out of the parent cluster as if undutifully exalting itself. Fully described in botanies.

FILBERT. Old World species of Corylus.
FILIPENDULA. See Ulmaria.
FINGER GRASS. Species of Chloris and Panicum. FIORIN. Agrostis stolonifera and alba.

FIR should not be used to mean anything outside the genus Abies, but popularly it includes many trees known to nurserymen and others as Picea. Fir is also used loosely and inaccurately to include conifers of other genera.

FIRE-CRACKER, FLORAL. See Brevoortia.
FIRE-ON-THE ZOUNTAIN. Euphorbia heterophylle.

## FIRE-PINK. Silene rirginica.

FIRE-PLANT is E'uphorbia heterophylla.
FIRE-WETD. Epilobium angustifolium and Erechtites hieracifolia.

## FISH-GRAS霊. See Cabomba.

FITTONIA, Elizabeth and Sarah Mary Ficton, authors of "Conversations on Botany." and friends of Robert Brown). Acauthdeca. Three species of low-growing Peruvian herbaceous perennisis, valued for the brilliant variegation made by red or white venation of their large, heart-shaped lvs. Fls. borne singly in the axils of the overlapping btacts, which form a peduncled, terminal
spike; calyx segments linear-bristly; corolla tube slender: lip long, narrow, shortly lobed at the apex.

F'ittonia argyroneura (Fig. 823) and $\boldsymbol{F}$. Verschaffeltii are among the showiest and most satisfactory of tropical trailing plants that are grown for their foliage. Heat, moisture and shade are the main factors in their culture. They are standard plants in all the finer collections, and require a cioser atmosphere than that of the ordinary living room. They are chiefly grown in wide, shallow pans on wire frames filled with moss and pent, some sand, and a little very finelv rotted manure.


## 823. Fittonia argyroneura ( $\times 1 / 4$ ).

They can be trusted with the most conspicuous position, as they are always on dress parade. They look well on a cerner, with the pan tilted up somewhat so that some of the foliage may hang down. It is a good plar it place the pan on a small inverted saucer in a large satucer of water chietly for the sake of a continuous suppiy of moisture, but also to foil the slugs, which are about the only enemies of these fine plants. A fine, large specimen can be quickly and easily secured by the use of a nur:ber of small plants. As fast as they grow they can be $p$ gged down in their porous rooting medium. If a specimen has to be neglected for a long while it can be quickly renewed by covering with a little soil the bare portions of stem and pegging them down.

Fittonias are also amongst the finest elements in "pyramids" or mounds along with Philodendrum. Cissus discolor, Episcea cupreata, Nephthytis and Selaginellas. There is often a bare, unsightly space under the benches that can be transformed into a tangle of tropical creepers by the use of such plants. A board can be placed slanting toward the walks asic covered with rotten stumps, chunks of peat, and moss for the plants to run in. The open borders near the walks have hardly good enough drainage. They can also be pegged down in mossy coverings for tubs of palms, as they can stand unlimited watering. On the whole, they are ideal plants for tropicai conservatories, and it would be hard to orerstate their merits.

## A. Habit erect: height $11 / 2 \mathrm{ft}$.

gigantèa, Linden (Gymuostàchyum gigantèa, Hort.). Subshrubby, branching : stems reddish violet only between the joints, with 4 ranks of silky, white, erect hairs: lrs. opposite, elliptical, not notched at the base. with 2 ranks of hairs, tapering more than in the other species. durk, shining green; veins carmine-red: fts. pale, with a reddish brown band in the middle of the side and urper lobes, and a dark yellow spot in the middit of the lower lip. R.H. 1869, p. 186. I.H. 16:61I.

## AA. Hnbit trailing: height about 6 in.

## B. Veins red.

Verschaffeltii, E. Coëm. (Fittonia and Eranthemum rubronervum and rubrovenosum, Hort. Eranther'um

## FITTONIA

FLORICULTURE
589
mbro-venium, Veitch. Gymnostuchyum Verschaffeltii, Lemaire). Lrs, ovate, notehed at the base, dull green, often yellowish, veined carrine. F.S. 15:1581. 1.H. 10:372. Var. Pearcei (F. and G. Plarcei, Hort.). Lvs. light, bright green ; veins light, bright carmine ; under surface somewhat glaucous. Var. Daveana ( $F$. Ddue tha, Hort.). Once sold by J. Saul. "Foliage with light center, bordered very dark green." More robust than the type and with veins of stronger red.

## B. Veins white.

argyroneùra, E. Coëm. Les. dark, shining green. F.S. 16:1664. Gn. 36, p. 527, and 2, p. 319. - The velvetiness of the upper surface of $\vec{k}$. Verschaffeltii is due to large, projecting epidermal cells with an apical nucleus. lnstead of these characteristic cells, $\boldsymbol{k}$. argyroneura . 's small cells and conical hairs, which are partitioned off and have tubercles at the base.

## Robert Shore and W. M.

## FIVE-FINGER. Potentilla.

FLACOURTIA (Etienne de Flacourt, 1607-1660, General Director of the French East India Co., Governor of Madagascar and author of a history of Madagascar). Bixdcere. This genus contains a spiny hedge and fruit piant called the Rambustan or Governor's Plum. It is a dense-leaved plant with purple fruits, grown only in S. Calif. The whole order, with its 29 genera and 160 species, contains no plants of garden value except a few Azaras and A beria Caffra, another tropical spiny hedge and fruit plant. Lva. short-stalked, toothed : fls. small, diœcious, in small racmes or glomes ; sepals 4-5, seablike, ciliated, overlapping; petals none; stamens many; strles 2 to many : ovary $\mathbf{2}-5$-celled: fr. a berry. In Aberia the sepals scarcely overlap. F. Ramontchi, L'Hérit., the Governor's Plum, comes from India, Malaya and Madagascar

## F. Fraǐceschi and W. M.

fLAG, iris. Cat Tail F., Typha. Corn F., Gladiolus. 8weet F., Acorus Calamus. Yellow F., Iris Pseudacortis.

## FLAME-FLOWER. Kniphofia aloides

FLAX. As fiber pionts are treated only incidentally in this work, the reader is referred to certain publications of the Department of Agriculture. Report No. 10 of the Office of Fiber Investigations containe 30 pages published in 1898. Farmers' Bulletin No. 27, published 1895 , is a summary in 16 pages. Another summary may be found in the Year Brok for 1897. Flax is occasionally cult. for ornament, shd is therefore described under Linum.
FLAX, False, is Camelina. New Zealand F., Phormium tenax. Toad F., Linaria.

## FLEABANE. Eirigeron.

flemfngia (John Fleming, Pres. Medical Board of Bengal; author of "A Catalogue of Indian Medicinal Plants and Drugs"). Leguminòse. This genus includes two shrubs, cult. only in S. Calif. and S. Fla. Herbs, subshrubs or shrubs of the Old World tropies, erect, prostrate or twining: lvs. mostly with 3 digitate leafiets, rarely 1 ; stipules none: fls. red or purple and mixed with yellow, in crowded racemes or panicles; stamens 9 and 1: pod short, oblique, swelled, 2 -valred: seeds spherical.
congésta, Roxb. Shrub, somewhat erect: lfts. broadly lanceolated, the side ones2-nerved, middle one 3-nerved: racemes axillary, dense, shorter than the leaf-stalks. India. "Rich, ornamental foliage fls. purple."-Franceschi.
F. strobilifera, R. Br.. has been introduced recently in S. Fla. It has drooping fascicles of white pink-striped fls. and large yellow bracts: lvs. simpit, ovate, acute: piant shrubby.
FLOATING HEART. Limnanthemum.
FLORA'S PAINT BRUSH is a common name for Emilia flammea.

FLORICULTURE. The cultivation of plants for ornamental purposes is known as Floriculture. The work is limited largely to herbaceous or small plants, and is confined for the most part to greenhouses and other glass structures. In this country Floriculture did not assume much importance until about 1825 . Prior to that time a number of firms were devoting considerable attention to the work, but their field was so broad that they could hardly be called florists. After the year named, affairs generally were in a more settled condition, and there began to be a marked increase in all lines of business. The eastern states were rapidly increasing in population and wealth, especially near Boston, New York, Philadelphia, Baltimore and Washington, and with this increase came a demand for tlowers.
Philadelphia was one of the flrst cities in which Floriculture assumed importance. This was due to the fact that a great deal of wealth had accumulated there, and the people therefore had time and opportunity to cultivate a love for the beautiful in the shape of flowers. Philadelphia had adrantages also due to climate and to the active work of several horticultural societies which were organized early, and did much to extend the interest already awakened. Boston was also a center for Floricultural work, and many fine estabiishments were located in that vicinity. New York was behind nost of the other cities, largely because the time of her frople was very fully occupied with business affairs.
From 1830 to 1840 much progress was made in all branches of the work. Kapid improvement in greenhouse construction had been brought about, and many facilities were afforded growers for heating and ventilating their greenhouses, which materially anded in the production of better stock. The change from tues to hot water was the most important innovation of the period. About 1850 other improvements which had a marked influence on the industry were made in greahouse construction. Chief among these may be mentioned the abandonment of movable sashes and the substitution of fixed roofs, the use of larger-sized glass, and the bedding of the glass in putty instead of placing the putty on the outside. These imnrovements may appear trivial at the present time, but c.se $^{-}$marked an important advance in greenhouse construction. In those early days the principal plants grown for cut-flowers were camellias, tuberoses, heliotrope, bourardias, etc., and for bedding and for ornamental and other purposes, fuchsias, geraniums and bulbs of various kinds.

By 1860 commercial Floriculture had assumed considerable importance. The establishments in the main, however, were devoted to many diverse lines of work; that is, the commercial florists of the time were required, through the demands of the market, to grow not only cut-fowers, but also plants for ornament and for bedding. Things went on for the most part in this way until after the civil war, when there began an era of plant-growing. which continued until about 1868 or 1870. At this time plants of all kinds were in demand in preference to cut-flowers, consequently many new establishments were started, and these devoted practically all their space to growing ornamental stock. The rose. which had come into general use as early as 1830, was rapidly superseding the camellia. Carnations were also being grown to a considerable extent, and much attention was devoted to lilies and other bulbous crops, such as hyacinths, tulips, ete. About this time violets began to attract attention, and the introduction of the variety Marie Louise gave an impetus to the work which was destined to have a marked infiuence on an important phase of Floricultural development.

About 1880 there was a noted increase in the demand for cut-Howers, and in a short time this business assumed important proportions. Soon there was a rush to change from the growing of plants for ornament and for bedding to the forcing of roses, carnations and other crops for the flowers alone. This demand for cut-flowers had an important bearing on methods of culture and the construction of houses, and it was found necessary in many cases to modify existing methods and to change the construction to suit the demands of the time.

During the past twenty-five years the demand for cutflowers has been constantlv ines acing, and, while the same is true of plants, the demand for fowers has been
proportionally greater. As a result of the increasing desire for flowers, there have been developed methods of haudling them which prior to 1870 were unknown. The best growers have found it necessary to specialize in order to keep pace with the demands of the trade for the highest grade of Howers, hence we have specialists in rose-growing, carnation-growing, violet-growing, etc. The immense number of flowers produced required special methods for handling, and therefore there have been developed wholesale commission houses, retail stores, exchanges, muction sales, and other arrangements for quickly disposing of stock. See Cut-Flowers.
As already pointed out, the industry has assumed the most importance near large cities, owing to the great demand in such places for both plants and flowers. The cities which now lead in the handling of stock of this kind are New York. Chicago, Boston and Philadelphia. The greatest amount of glass devoted to Floriculture is found in New York, Illinois, Pennsylvania and New Jersey, in the order named. There are now probably not less than nine or ten thousund floral establishments in the United States, representing a money value of from twenty-two to twenty-three million dollars, and giving employment to not less than fffteen thousend people. The annual output from these establishments, considered from the retailer's stampoint, is in the neighborhood of twenty-five million dollars. Of this amount from twelve to fourteen millions are annually spent for flowers and the remaining ten or twelve millions for plants.
The rose is the most important cut-flower grown, and there are not less than six million dollars' worth sold every year in this country. This means an annual production of fully one hundred million fow ers. The carnation is the second Hower in importance. It is estimated that there is sold annually fully four million dollars' worth of this Hower, representing a production of not less than one hundred million fowers. The violet is third, with a production of seventy-fise million flowers, valued at seven hundred and fifty thousand dollars. Chrysanthemums are only a part-year erop, but they represent a value of half a million dollars. Of miscellaneous flowers, such as lilies, hyacinths, tulips, orchids, etc., there are probably between two and three million dollars' worth sold annually. The varieties of roses, carnations and chrysanthemums grown for flowers are constantly changing, but the varieties of violets have changed bat little in twenty years.

The number of plants sold, including palms, ferns and bedding stock of all kinds, will probably exceed one hundred millions, estimating that the arerage sized pot for the country as a whole is 3 inches, and the average price 10 cents per pot.

To properly conduct the fine retail establishments in our cities, a large force of emploves is required. These establishments are carried on with every attention to methods for attracting mud holding trade. The stores are models of elegance, and their methods of handling the erops, such as having special decorators, show windows, fine delivery wagons, messenger boys, ete., makes the business expensive.
As a rule, florists are such busy people that few of them have time to write books on their specialties. consequently the works on this industry can be counted on the fingers of one hand. The first work of importance was Peter Henderson's "Practical Floriculture," which was issued in 1867. New editions of this were isuld from time to time, but nothing further was published until 1893, when M. A. Hunt's "Hors to Grow CutFlowers" appeared. More recently we have Taft's "(ireenhouse Management," which covers the whole field of plant-growing under glass, and also the "Florists' Manual." by William Scott.
B. T. Galloway.

FLORIDA HORTICULTURE. Fig. 824. The history of Horticulture in Floridadates from the earliest settlements, and even prior to that period the aborigines carried on a desultory plant growing. The peculiarity of the soil, however, prohibited the extension of this work except in a few isolated places. It was necessary to introduce commercial fertilizers before Horticulture could make rapid progress in this state. Up to the time of commercial fertilizers, it was thought that the hammocks were
the only places capable of raising fruit, the rest of the arable land being so sandy and wanting in plant-food that remunerative crops could not be grown on it excepting after it had been "cow-penned."

Such a soil, containing often over 90 per cent sand and insoluble matter, at first sight would seem to be absolutely worthless for Horticultural purposes, but with the advent of the new Horticulture it becomes the ideal soil. We have here a lodgment for plants in which oceurs no material that will prove deleterious to the erop, and all we have to do is to add to it the ma terial that will cause the plant to grow to the necessary size and produce fruit of the desired quality. Beautiful thin-skinned oranges grow only on land properly fertilized and not on soil impregnated with great quantities of organic nitrogen, i.e., fertile lands.

Circumscribed Areas. - In building up of the land from the ocean bed, referring espesially to peninsular Florida, the wind and waves have sorted the particles to some extent and have elevated various portions more than others. The separation of the larger particles of sand from the finer, with a porous substratum, has produced what is called a"scrub." The railroad surveys indicate that the maxim elevation in peninsular Florida is about 150 feet. Thus it happens that, although this land is thirsty, it is rarely or never spent of its capillary moisture. The areas of scrubs may vary in size from a few acres or even less to many thousands, but they are always sharply defined, having a specialized flora. The soil in a hammoek is of a finer texture and is not infrequently underlaid by clay. It often oceurs that land of this texture is only a few feet above sea level, or it may be elevated and rolling, but is always covered with a good growth of hard wood or of cabbage palmetto, or both This elass of land has long been desirable for Horticultu ral purposes, and is still regarded as valuable; these re fions are more or less isolated, and vary in extent. Such land usually contains sufficient fertility to raise severa crops of regetables. Flat-woods land is usually level, varving in fertility from 96 per cent of sand and insoluble matter to that which will produce a crop of tomatoes. This class of land comprises about nine-tenths of the land of the Peninsula. With proper treatment it raises good crops and is capable of remarkable improvement The characteristic plant of this land is the long-leared pine (Pinus pulustris)

Horticultulial Regions. - The foregoing discussion relates to the state independent of latitude and climate. The state is also divided into four regions, according to climate and latitude: (1) western Florid t. thet portion of the state lying west of the Aucibla river; (2) east ern Florida, that portion of the state lying between the Aucilla river and a line drawn from the mouth of the St. John's river to Cedar Kevs; (3) centrel Florida, that portion of the state lying between eastern Florida and southern Florida; (4) southern Florida,-ineluding the counties of Brevard, Dade, Monroe, Lee, DeSoto and Manatee.

Citroces Frcits develop best on hammock and flat woods land, preferring the cabbage palmetto hammocks or a hammoek containing a misture of palmetto and hard wood. The lime (Citrus Medicus var.) alone does well on the shell and coquina lands oi southern Florida. The lemon is the best stock for high flat-woods land. For western Florida the Satsuma or inge is the best variety. For eastern Florida varieaie, that mature their fruit before Christmas may be phated. In central Florida all the varieties of Citrus do well, especially toward the south and in protected localit es. The following sweet oranges do especially well in southern Florida: Centennial, DuRoi, Exquisite, Hart's Late, Higler's Late, Homosassa, Jaffa, Madam Vinos, Majorea, Maltese Oval, Nonpareil, Parson Brown. Pineapple and Thorpe. Of the Mandarin group,-China. Cleopatra, Dancy's Tangerine, Japan Tangerine and King. Of the Bitter Orange group, - Phillips Bitter Sweet. Of the Pomelos, -Aurentium, Hart, Josselyn. Seedless and Walter. Of the Kin-Kans,-Marumi and Nagami. Of the Citron group, -Lyman, Iemon and Orange. Of Shadlocks, - Blood, "Forbidden Fruit" and Manmoth.

Peaches grow in all sections, preferring hammoek or rolling flat-woods land or even level flat-woods land if perfectly drained, but the varieties best adapted to
different regions rary eonsiderably. Among those adapted to western Florida we have Alexander, Early Cream, Elberta, Florida Crawford, General Lee, Inperial and Powers' September. For eastern Florida, Angel, Bidwell's Late, Colon, Ferdinand, Honey, Imverial, Oviedo, Taber, Triana and Waldo. For central Florida,-Angel, Bidwell's Early, Bidwell's Late, Maggie, Peento, Waldo and Fum lum. For southern Florida, - Angel, Bidwell's Early, Bidwell's Late, Maggie, Peen-to, Ium Yum, and others.
plums, as a whole, are adapted only to western and castern Florida, preferring hammock and flat-woods land. Burbank does well in the western section. In the eastern section Babcock, Botan and Burbank do well.
Pears. - Kieffer, LeConte and smith pears do well in western and castern Florida on hammock or flat-wools land.
Grapes grow rapidly, but need careful attention to be kept in good bearing condition for a period of yenrs. Hammock land is preferable for them. The native varieties grow to an immense size and produce great quantities of fruit with a minimum attention. Of 1 . motundifolia, the Scuppernong and Thomas grow luxuriantly in all sections. Flowers grows well in western, eastern and central Florida. Of the true Vitis section of this genus, Cynthiana, Ives and Norton do well in western Florida: Cynthiana, Ives, Niagara and Norton do well in eastern Florida; Cynthiana, Niagara and Norton in central Florida.

Kafi (Japanese Persimmon). -This fruit needs good hammock land or well drained high, or more or less undulating flat-woods land. It is better adapted to western, eastern and central than to southern Florida. The following rarieties do well in western, eastern and ceutral Flerida, and under most favorable cireumstances in southern Florida: Costata, Hyakume, Okame, Taber's No. 109. Tane-nashi, Tsuru, Yeddo-ichi and Yemon.
Miscellaneots Tree Freits.- Under favorable conditions Jennings and Red Astrachan apples may be f:uited in western Florida; Santa Fé apricot in western and eastern Florida. Figs do fairly well for home use and for canning or candying in eastern and central Florida. They need a compuct, fine-textured soil. The following varieties fruit more or less abundantly: Black Ischia, Bline Genoa, Brown Turkey, Brunswick, Celestial, Green Ischia, Lemon and W'hite Marseilles.

Mulberries will grow on hammock or good quality of flat-woods land in all sections of the state. The following varieties have given good crops: Downing, Hicks and Stubbs. Pomegranates make a more or less ornamental fruit. Acid, Purple and Sweet do well in western, eastern and central Florida. Pecaus do best on low hammock land, especially in western Florida. They succeed well in eastern and central Florida, but have not been introduced into southern Florida sufficiently to permit detinite statement.
Strawberries. - The growing of this crop is controlled largely by efficient and reasonable transportation. If the crop cannot be placed upon the market promptly it is worthless. The development of this industry is, therefore, coincident with that of efficient and reasonable railroad transportation. Probably nine-tenths of the fields of the state are planted on moist flat-woods land, or what is locally known as gall-berry flats. Sueh land is cleared and thoroughly drained by means of open ditches. On such land strawherries begin to ripen in January and continue until May or June if properly cultivated, though the season of profitable shipment rarely extends beyond the middle of April. Especially prepared refrigerator cars, so constructed that the ice tank is filled from the outside, the water melted from it carried off without entering the car, keeping the apartment occupied by berries dry and cool in transit. are now carried by some railroads on express trains. The plants are usually set out every year, in August, September and October, and bear a good crop the following spring. The most successful strawberry growers continue to cultirate a portion of the old field to secure new plants to be used the following fall for p!anting out the new field. Cloud, Newnan, Lady Thompson and Wilson do well in western, eastern and central Florida.

Pineapples find their most congenial habitat on scrub land. Soil from pineupple fields contains a large per cent of sand and insoluble matter, -as high as 98 per cent. The land must be well drained, free from any standing water, evenduding the rainy season. The most extensive pineapple area is located on the sand hills near the coast. The charncter of the vegetation and physical condition of these hills or dunes is essentially that of the scrub land of the interior. The slat sheds or pineapple sheds, which are constructed to afford a half shade, serve a good purpose in summer as well as in
winter. In sumbser the slats reduce the amount of sunshine that renchos the plants and consequently the intensity of heat, though prooably not the total warmoth. In winter they interfere with rapid radiation, which would occur as the result of a sudden frecze or of a frost. The slat shed is a simp'e structuro, the essential part of it being the roof or covering, which is made of boards or slats fasteved so as to leave an opening between the boards or slats equal to tie space covered $b ;$ them. These vary in size from a common plastering lath to boards 4 inches wide. The height of the covering above the ground varies from 6 feet to rarely more than 10 . The most extensive fields are located in southern Florida. Smaller areas have been planted in central Florida; nearly all of these are protected by sheds, some of the sheds being so constructed that the roof may be closed completely. The islands or kevs underlaid with coraline breccia form one of the most suitable habitats for this plant, while the low, fertile islands or keys are worthless for a pineapple plantation. Red Spanish is cultivated more extensirely than all theother varieties combined. It is a hardy variety, and one suited to extensive planting with a minimum anount of attention. For extensire culture Egyptian Queen, Porto (Puerto) Rico and Ripley Queen do well generally. Smooth Cayenne is promisinc, because not spiny. The total amount of fiuit produced annually varies considerabiy, but has probably not exceeded 100,000 whole barrel crates. This, however, is only a fraction of the possibility and probability of pineapple growing in Florida.

Bananas are cultivated only for local markets, Jut form a source of considerable revenue to a number of plantations. The land best adapted to them is a low, moist hammoek or a luy head, especially such soil as is compored largely of muck. Baraça (Red Jamaica), Cavendish, Golden, Hart's Choice and Orinoco ("Horse Banana") are leading varieties in southern Florida.

GÜA. - The guava has attained eonsiderable importance, chough as yet it is not cultivated extensively. Plantations exist in various portions of the state, but the greater quantity used in canning and for jelly is collected from uncultivated or from originally native growth. The native varieties grow well on any fertile soil that is mell drained. Fertile soil on coral breccia is a favorite spot for the wild guara. The most

## FLOWER

desirable raricties are the common native guava, White Winter, Cattley and Chinese. The native varieties yield the bulk of the fruit used. The Cattley and Chinese do well in central and southern Florida, while the White Winter and native varieties grow to greatest perfection in southern Florida.

Mangoes have not been grown exten yively for northern markets. The greatest difficulty has been that of securing trees of unquestionable valne for setting out a grove. Since the difficulty in the way of grafting and budding has been orercome, the groves will multiply rapidly. Up, to the present tim: the lual markets have demanded more fruit than h: a been supplied them. Well drained first-class flat-wo ds land and fertile high hammocks furnish good soil fur mangoes. Apricot and No. 11 (Apple) are favorite varieties. They are grown mostly in sonthern Florida, though fruited in southern portions of central Florida.

Cocoancts ure contined to southern Florida and along the seacoast. While the trees continue to grow when transplanted to the higher lands, they need the low, moist lands of the coast for fruiting and for highest development.
The Aviccado Pear has entered the markets to some extent. The soil should be like that for mangoes. Their cultivation is contined to central and southern Florida.
Vegetables. - There are several classes of soils upon which regetables are grown extensively; viz., hammock, that-woods, the low islands around the coast, and the marl or drained lands. The low hammocks, especially those composed almost exclusively of cabbage palmetto, produce the largest crops and probably the largest protits, while flat-woods land is probahly more extensively cultivated than any other. In a general way all the classes of land mentioned above are capable of $g$ owing most or all of the vegetables occurring in the markets. Certain vegetables show a general preference for certain classes of land. A hiph hardwool hammock grows beans, beets, cabbage, canliflower. collards, eggplant, Irish potatoes, lettuce, watermelons, muskmelon, onion, okra, English peas, pepper, radish, squashes, rutabaga, tomato and sweet potato well; though first-class tlat-woods land grows cabbage, cauliflower, egsplant, lettuce, watermelon, muskmelon, onion, tomato and sweet potato to greater perfection. Low cabl ge palmetto hammocks grow beets, cabbage, caulithower, celery, cucumbers, lettuce, nutmeg melons and tomatoes to best advantage. The low islands around the coast have areas varying in size from a few square rods to many acres in extent.-sometimes reaching a mile in length of unbroken rows. The most important crops grown on these islands are beans, eggplant, peppers and tomatoes. The marl or drained lands of the southeast coast raise principally tomatoes, peppers, egeplant and okra.
P. H. Rolfs.

## FLORIDA ARROW ROOT. Zamia integrifolia.

## FLORIDA SWAMP LILY. See Crinum Americanum.

FLORISTS' FLOWERS. This term is considerably used in England to include a group of plants that number their horticultural varieties by the hundreds, and in which the original species or trpes are no longer cultivated, or else cultivated merely for their interest as protetypes. The list includes $40-50$ groups of plants, or even less. In America the term florists' Howers is little usel, and is mostly restricted to certain cut-fl wers of great importance to florists, without regard to whether their caricties are numerous or not. Thus, the calla lily, Easter lily, heliotrope, lily-of-the-valley, Marguerite. mignonette, sweet alyssum and tuberose are of considerable commercial importance to florists, but they are not extremely prolific in rarieties. Inasmuch as the cut-flower trade has been greater than the plant trade in America, the American florist hardly thinks of the following plants as florists' flowers: azalea, calceolaria, cineraria, fuchsia, geranium, gloxinia, pelargonium, primula, nor such old-fashioned favorites as A nemone coronaria, auricula, camellia, polyanthus and ranunculus. The English writers often speak of the dahlia as a florists' flower, and sometimes also the other very variablo -rmmer bulbs, as canuas, gladiolus,
and perhaps lilies, though the American florists sell comparatively few Howers cut from these plants in sum. mer. Of hardy border plants, the following are very rich in horticultural varieties: China asters, poppies, stocks, sweet peas, troprolum and verbena (all of which are annuals), and the following perennials: holly. hocks, pansies, peonies, phlox, pyrethrum. Others of great im portance are aquilegia, campanuia and eschscholzia, but these are mostly less rich in horticultural varieties. It has been said that Horists' flowers are always propagated by cut tings or other asexual parts, but this definition would exclude calceolarias and cinerarias, which come fairly true from seed. In America the four mos important cut-Howers? are the rose, carnation, violet and chry. santhemum. Consult Floriculture and Cut-flowers.

FLOWER: technically, a short stem carrying one or more specialized leares which bear sporangia. The word is commonly applied to those flowers whose sporangial leares are protected and made conspicuous by colored leares. It is also popularly applied to these clusters of colored leaves even when the sporangial leaves are wanting, as in hydrangeas. snowballs, chrysanthemums and most "double Howers."
When most completely developed, a flower consists of the central short stem, the forms, to which the other parts (leaves) are attached. The leaves, passing from below upwards, are distinguishable inte fluinl leavas, or the sepals and petals; and the sporanrial leaves. othe stamens and carpels. The number of iese parts is sariable. When "double" flowers are produced, the floral leares usually are multiplied at the expenss, of the sporangial ones. In Fig. 825 all these paris are shown. The ovary, showing six ovules, sits on the torus or receptacle. On the ovary are three styles. Stamens are at the side. The sepals rise above the petals.
Bracts. - The leaves growing on or near the branches of the flower eluster are usnally different in form and size from the foliage; they are called bracts. Note the bracts on the carnation flower (Fig. 3(66). Sometimes they are bright-colored and are an attractive supplement to the flower, being popularly looked upon as a part of the Hower, as in scarlet sage, flowering dogwood (Fig. 558 ) and poinsettia (Fig. $\mathbf{7 9}^{\circ}$ ). In the arum family (Fig. 79, 137. 146, 318, 734) a single huge bract envelops

the entire flower-cluster. When the bracts grow very close to the torus they are almost indistinguishable from the outer floral leaves, as in the strawberry (Fig. 827) and hepatica (Fig. 834).

Torus. - The torus is the short stem or axis on which flower leares are borne. It differs from other parts of the stem chiefly in that, after the rudiments of the flower
leaves are formed, the intervening parts grow rery little, and so do not separate the successive leaves or circles of leaves. The torus is more or less broadened or elongated to permit the suitable growth of the crowded

leares. In the stramberry it is high, dome-shaped (Figs. 826, 827) ; in the raspberry the torus remains (S, Fig. 828) when the little drupes are removed: in the rose it is urn-shaped, bearing the leaves on the edge and inner face ; in the mouse-tail it is much elongated. When a number of Howers are crowded together their leaves are developed from a common torus, as in sunflower and chrysanthemum and other members of the Composita (Fig. 829). The common torus may be broad and flat, with the flowers scattered over it, as in Dorstenia (Fig. 732) ; or even hollow, as in the fig (Fig. 821), with the minute flowers on the nearly enclosed inner face.

Floral leares. - The leaves of the flower form two series; the outer protective and attractive leaves, the floral leaves, and the inner sporangial leaves. The floral leaves are usually distinguishable into an outer set, the calyx, and an inner set, the corolla. The calyx leaves, when separate, are called sepuls, and the corolla leares petals. The sepals are more or less different from the petals in size, shape and color. They are of enest green, and usually smaller and simpler than the petals. In the bud they usually completely corer the inner leaves. The sepals and petals oftentimes do not remain distinct throughout their development, but each set grows as a single piece; a fact which has been made the basis of classification of the angiosperms. Corollas of a single piece are said to be gamopetalous (Fig. 830). The sepals are more commonly inseparate than the petals.
The apparent union of the floral leaves comes about generally in this way: On the young torus the rudiments of the sepals and petals arise as rounded knobs, which for a longer or shorter time grow independently.

829. Section of a compositous head. Showing the common torus at $e$.

If they derelop independently until their growth ceases, the sepals or petals are distinct, each one being separately attached to the torus. On the other hand, after the leaf rudiments have grown independently for a time, a zone of the torus, both under and between two or more adjacent rudiments, may begin to grow, lifting them on
its margin. In that case, when fully grown the calyx or corolla appears as a single piece, whose free edge is more or less deeply lobed, according to the relative duration of independent development of the rudiments.
The calyx and corolla are sometimes united. This comes about in a similar way. Each begins to develop independently; later the tissue between calyx and corolla shares in the growth and both are raised on a common base.

The form of the mature floral leaves depends largely on the relations of the tlower to insects, which visit the flowers for nectar or pollen. The floral leaves are often irregular and unequal, so as to form suitable landing places, nectar glands, guides to the nectar, etc., -all devices to facilitate the proper transfer of pollen by the visitors; e.g., the sweet pea and other papilionaceous flowers, most orchids, etc. (see Pollination).

The color of the corolla and adjacent parts is due to the presence in the cells of colored sap or special colorbodies. In the latter case the pigment is sometimes crystalline. It is not possible to determine without ml croscopic examination in which way the color is pro-

830. A gamopetalous corolla of Eggplant.
duced. Most blues are due to celored sap; many yellows and reds to color-bodies.

The velvety appearance of many petals is produced by the outgrowth of the surface cells into conical or dome shaped protuberances.

The odor of tlowers is usually due to the presence of volatile oils in the surface cells of the petals or sepals, or both. These oils are present in small amount only. They are sometimes found only on the outer face, or only on the inner face, or they may even be restricted to certain lines or patches.

The stamens. - The stamens commonly consist of two parts, a stalk, the filament, bearing a larger portion, the anther (Fig. 831). The filament is usually rigid enough to sustain the weight of the anther, but at maturity it is sometimes so long and slender that the anthers hang as by a thread (so in grasses). The filament is sometimes so short as to seem wanting; the anther is then said to be sessile. The filaments are often united with one another or with the corolla by the mode of growth already described. In the latter case the stamens seem to arise from the corolla. Only rarely are the stamens and carpels united.

The anther is the part of the stamen which bears the spore-cases or pollen sacs (sporangia). (The sporangia are not always borne on stamens. In a few plants they are sunk in the stem of the flower.) Of these there are commonly four, more rarely two or one. When the anther was looked upon as a chambered body, the sporangia were called

831. Staminate
flower of Willow.
Showing two stamens; their anthers are at $a$. thecæ, or cells. Thus in descriptive botany the anther is said to be "2-celled" or "A-elled." The sporangia are partly free and partly imuedded in a mass of tissue
which joins them, called the conmectire. This sometimes is extensive, and in a few plants is developed into peculiar forms to aid in pollination, e. g., in salvias.
The sporangia at maturity consist of two or four (rarely more) layers of cells, constituting a wall, surrounding a quantity of spores, the pollen. The inner portion of the wall consists of a layer of cells whose membranes are irregularly thickened, usually in bands, so that in drying they warp the wall, rupturing it at the weakest place. The lines of weakness are usually detinitely localizerl, so that each anther breaks in a regular way. (u) The rupture may run along the whole length of the anther. In that case it commonly lies at the junction of a pair of sporangia (the left-iand groove in a, Fig. 8:31), which become confluent, so that the dehiscent antiner may seem to have only two sporangia, when it really has four. The pollen is thus emptied out practically at once, though the break may begin at the top and progress to the base. Examples: lilies, grasses. (b) The slit may be vory short and gape widely, so that a pore is formed through which the pollen is gradually sifted (Fig. 832). Examples: the heaths. (c) In some plants the line of s curved, and the Hap, so re-
breakege is curved, and the nap, so re leased, bends outward on drying, lifting like a hinged lid, and closing again in dampness. Examples: Mahonia, barberry, cinnamon.
The pollen spores are, at maturity, sin gle cells, each with a rather thick wall, which is often studded with bosses, or points, or is variously riclyed. In anemophilous plants (see Pollination) the polren is dry and powdery; in entomophilous plarits it is usually moist and coherent. In milkweeds and orchids the whole of the pollen from each sporangium is held together in a mass by interwoven threads (Figs. 149, 513). By the time the sporangia discharge the pollen, each spore has begun a development which it completes on the stigma to which it is transferred. See Fertilization
Corpels. - The carpels are the sporangial leares which occupy the center of the flower. The number of carpels is very variable. Csually they are fewer than the f:ral leares. In most fowors the earpels

833. Pistillate flower of Willow.
Showing one compound pistil; $s$ stigma; st,style; $o$ ovary. are united one to another to form a structure known as a compound pistil (Figs. 82.7. 833. 835, 836). When the carpels are separate, each develops as a simple pistil. Of these there may be one or many (Figs. 834, 837).
The pistil, if simple, first appears as a ring-like ridge about the center of the torus. If compound, knoblike rudiments of the component carpels first appear, but the growth early involves the torus between, griving rise to an elevated circular ridge. This carpellary ring gradually grows upward, partially or completely inclos-

83. Head of simple pistils in Hepatica. ing one or more chambers, in which the ovules arise. At a time when the ovules (which ripen into seeds) were supposed to be comnarable to the eggs of animals, the larger chambered part of the pistil in which they are formed was called the ovory, a name which it still retains in descriptive botany. The pistil is often prolonged abore the orary. This part is the style.

An orule is a fleshy sporangium, jacketed by one or two (rarely three) outgrowths from the base, the integuments, which almost inclose the sporangium proper (nucellus). Within the sporangium of the ovule, several ( 1 to 40 ) spores begin to deselop. Of these, however, rarely more than one reaches maturity. This spore is never set free as the pollen spores are. It therefore acquires no thick wall, and in a
section of the sporangium appears as a cavity within the delicate tissue which surroumds it. It later becomes the so-called embryo sac, within which occurs the process of fertilization (which see).
The ovales commonly arise upon certain lines or ridges which project into the pistil chamber, more rarely upon the whole interior surface of the ovary. These lines or ridges are called placenta. See Figs. 825, 835, 837.
In a simple pistil there is usually but one placenta (Fig. 837). In a compound pistil the union of the carpels may be such as to produce a l-chambered ovary, or the ovary may contain as many chambers as there are carpels
835. Section across the compound Distil of Tulip.
Showing central placentaanc three-chambered ovary. (Fig. 835). In the former case the placentre will project inward from the wall of the ovary; in the latter they will be aggregated at the conter, from which they may project out ward into the chambers of the ovary. When the ovules are numerous, the placentre are often enlarged to form an adequa ${ }^{*}$ urface for their attachment, as in the pot. ( 1 tomato (see also Fig. 837).
In nsiderable number of plants the orules arise upon the torus itself, a ring of which grows upward, cup-like. From the edge of this cup arise the floral and sporangial leaves, the ovnles developing on its sides or base. The carpels then form amere roof over the ovule chamber.

The style is sometmes slender and very $\operatorname{lon}_{c}$ ( $1 \cdot p$ to several inches; see Fig. 836); sometimes short and thick (Fig. 833). Its length and form are adapted to the means by which the pollination of the pistil is secured. In some cases the style is practically wanting. Its interior is occupied by a tissue whose cells are pushed aside and partly digested by the growing pollen tube (see Fertili zation). It is not infrequently traversed by a canal, a prolongation of the ovule chamber

Some portion of the style, or when that is wanting a portion of the outer surface of the ovary itself, is adapted to the reception of the pollen spores. This receptive surface, whatever its form or location, is called the stigma (Figs. 833, 836). In many cases the upper part of the style is enlarged into a knob or club-shaped or lobed portion, the area of the receptive surface being thus increased. In other cases the style is elongated. and the receptive surface is a long line upon

836. Compound pis. til of catnip. Showing 4-parted ovary,long style,2stig mas ( 8 ). one or more sides of the elongated stylt. In other cases the style is much branched, as in the grasses, and these branches constitute the stigma. At the time the pollen is being discharged, the stigmatic surfaces are often covered by a sticky secretion. All of these devices are adaptations to insure the lodgment, adhesion and nutrition of the pollen spores (see Pollination).

837. Section across simple pistil of May Apple. Showing single placenta and ovules.
The stimulus resulting from fertilization often accelerates the growth of the pistil or causes it to resume growth if it had ceased. The various changes in size, texture, color, etc., result in the production of fruit.

Charles Reid Barnes.

FLOWER-DE-LUCE. The origin of the Fleur-de-lis of the French coat of arms is not known. By some it is supposed to represent the head of a spear, by others the flower of a lily. It hise also heen derived from the points of a crown and from several animal forms, as bees and toads. Apparently the Iris has nothing to do with the heraldic Fleur-fle-lis. This name as applied to lris is of later origin and of a purely botanical significance, referring chiety to $I$. Germanica. See under "Fleur," Larousse, Dictionaire du XIS Siècle, 8:450.

## H. Hasselbring.

FLOWER-FENCE, BARBADOES. Poinciana pulcherrima.

## FLOWER-OF-AN-HOUR. Hibiscus Trionum.

FLOWERING MAPLE. See Abutilon.
FLY POISON. See Zygadenus.
FOLIAGE PLANTS. A term used to designate plants which are grown for the general effect of their foliage rather than for their flowers. The term is indefinite. In some cases, and more correctly, it is used for plants with unique or interesting leares-usually color. 1-as coleus, Rex begonia, peperomia, cetathea, farfugium. In other cises it is used to designato plants of full foliage and graceful hahit, - plants whicu are prizef for their general habit quite as much as for the characters of the individual leaves. Of this latter class, ferns, palms, grevillea, screw pine, arancaria are leading exah.ples. The latter ciass contains the most popular commercial subjects, and they are much used in room and table decorations. The plants are often rentid for use in temporary decorations. For the culture of Foliage Plants, refer to the various genera.
FONTANESIA (after Réné Louiche Desfontaines, prominent French botanist, 1752-1833, director of the botanical garden at Paris). Olecicere. Ornamental deciduons shrubs, with opposite, rather narrow, entire lys. ©:i whitish tls. in short, terminal pancles. They retain the foliage unchanged until late in fall, and are well adapted for shrubberies, growing in any good garden soil. F'. Fortunei in nearly hardy North, F. ph:llureoides only half-hardy. Prop. readily by greenwood cuttings under glass in early summer ; also by layers, by grafting on privet, and by seeds. Two species from W. Asia and China. Glabrous shrubs, with slender, quadrangular branches: fls. perfect : calyx lobes and petals 4: stamens 9, exceeding the petals: fr. a flat, winged nutlet.
Fortunei, Carr. ( $\boldsymbol{F}$. Califómica, Hort.). Shrub, to 15 ft .: Irs. lanceolate or ovate-lanceolate, acuminate, shining, quite entire, $2-4 \mathrm{in}$. long: ths. in axillary and terminal clusters, forming a narrow, leafy panicle: fr . broad oval or ovate, $1 / 4-1 / 3$ in. long. May. Junc. China. R.H. 1859, p. 43. - Sometimes united with the following, to which it is superior by its more rigorous growth, the darker and larger foliage, and by the greater hardiness.
phillyræoides, Lab. Shrub, to 10 ft : : Irs. orate-lanceolate or narrow-elliptic, mostly with rough. minutely denticulate margin. $11 / 2-21 / 2$ in. long: Hs. almost like the former. W. Asia. L.B.C. 14:1308. Var. angustifolia, Rehder ( $F$ '. angustifolia, Dipp.). Lv̌s. narrow-lanceolate or ollong-lanceolate. Alfred Rehder.

FORAGE FLANTS are treated only incidentally in this work, as they belong to agriculture rather than to horticulture. They are mostly grasses and leguminous plants, and have a "ery large special literature, much of Which can be obrained free from the U.S. Department of Agriculture, Washington, D. C. Write to the Division of Publieations.

FORBIDDEN FRUIT. See Citrus Decumana and G.F. 9:163.

FORCING. The word Forcing is rariously used. Properly, it should designate the growing of plants outside their usnal or normal season. This distinguishes Forcing from the ordinary purpose of the glasshouse, which is to imitate the usual season in which
plants grow. For example, begonias are not forced: we endearor to protect them and to give them the season and the conditions under which they grow in the wild. $C$ rnations when flowered in the winter are forced, because we transpose their seasons. Chrysanthemmms blooming in Octoher and November are not forced: they are only protected. Sometimes the word Forcing is used

838. House constructed without rafters.
in a rery special sense, to denote the production of flowers from bulbs or tubers in a very short time under the influence of a very high temperature. Thus, the lilyof-the-ralley may be placed in a temperature of $90^{\circ}$ or above, and the large buds be forced to throw out ineir flowers before the plant obtains a firm foot-hold on the soil.

A Forcing-house is a building in which plants are forced; but the term las come to denote a siniple glasshouse in which plants are grown only for sale, in distinction from private conservatories, or more elaborate structures which are used for the display of plants. See Greenhouse.
The Forcing industry in America is very large. Heretofore it has confined itself mostly to Cut-Flowers (which see), but pot-plants, vegetables and fruits are receiving more and more attention. The staple forced flowers are the rose, carnation, violet, lily-of-the-railey, and various bulbs. These are treated under their respective names. Of vegetables, the most important Forcing species is lettuce. This is followed by tomato, cucumber and radish. Other vegetables are of very minor importance as Forcing products. The growing of fruits under glass

is receiving increasing attention in this country. Very little of this fruit-raising is really Forcing. however, since the glass inclosure is used chiedy to protect the plants and to enable better care to be given: the fruit does not ripen much ahead of its normal season. Of this category are glasshouse grupes. Strawberries are really forced, however, the whole period of vegetation and bloom being greatly forwarded. Much attention is now given by florists to the Forcing of hardy blants; and this is one of the most delightful of horticultural operations for the amateur. Many of our native plants can be forced with the greatest satisfaction, but the business is usually confined to imported stock of florists' plants.

The Forcing-house should be of the simplest construc-
tion. The plan should secure the greatest amount of light, economy of space and of heating, and directness and simplicity in every operation. The simple sash-bar frame, without rafters (Fig. 838) is the most satisfac-

840. Uneven span Forcing-house, 20 ft . wide, on a side hill. Heated by steam.
tory when properly constructed. The side walls should be low and the roof comparatively flat. Usually there is no glass on the side walls. Under most conditions, the house should run north and south, particularly if even in span (Fig. 839), but the lay of the land and the location of existing features usually determine the di ection. If the house runs east and west, or if it stands on sloping land (Fig. 840), an uneven or broken span is usually advisable. The widely different opinions respecting the merits and demerits of the different spans are proof that each is good under certain circumstances. It is the prevail ing opinion that, in broken spans. the long roof should be to the south ; yet some of the best newer houses hare the short spanwhich is then very steep-facing the south (Fig. 843).

In America, all forcing-houses añ are heated by means of small wrought-iron pipes, which fit
 together with threads. The old-time cast-iron flues may be employed for conservatories, but they are too bungling for Fore-ing-houses. Theydo not admit of sufficient modification in lay-out to adapt them to the long and often crooked runs of Forcing-house establishments. The wrought-iron pipes are heated either by steam or water. Each srstem has its advocates. which means that each has its merits. Steam is less costly to install. since less pipe is required. It also admits of greater variation in the lay-out. Crooks and obstaeles are more easily orereme. In a large esetablishment, the place may be heated up sooner. Hot water gives a milder heat because the pipes are less

841. Uneven span Forcing-house, 30 ft . wide. Hot water.
hot. Of itself, it is less liable to fluctuations. Theoretically, it is less expensice in fuel; but in practice, the cost of running is found to depend more on the character of the particular system aud the operations of the fireman than on the medium itself. When properly installed, steam is as uniform in action as water, and it is adapted to larger areas and to higher temperatures.
The ideal shape for a Forcing-house is probably in the proportion of breadth to length as 1 is to 4 or 5 . The best honses are rarely less than 18 or 20 ft . Wide, and rarely more than 30 to 35 ft . Srom 400 to 500 ft . is considered to be the greatest protitable length. Houses of greater length are now building, but they must be considered an experiment. Parallel houses are often "nested" with good results, - the adjoining houses resting on a common wall. When the various houses are to be used for one kind of crop, the partitions between them may be omitted: a sery large space may then be covered with practically one house without the necessity of rearing a high roof.

The accompanying illustrations (Figs. 838-843) show various current styles of Anierican Foreing-houses. For further discussion of glass houses, see Greenhouse.
L. H. B.

The Winter Forcing of Vegetables.-The growing of regetables under glass for the winter market has developed within the past ten years to large pronortions. It has grown from the small compartment in private houses deroted to a small supply of
842. Lean-to lettuce house, 26 ft . wide. Hot water.
lettuce and radishes to entire ranges of modern houses, in which are grown almost the entire list of tender vegetables. The special crops, however, are usually confined to four, the management of which is here discussed,lettuce, radishes, tomatoes and cucumbers.
The Forcing of any winter crop is a matter of principles rather than practice, since local conditions have everything to do with the methods of culture and the kinds of regetables forced. It frequently happens that the same regetable is grown with equal snecess in soils of widely different character by different cultivators. Skill in management and close attention to details are the requirements necessary to success. Two fundamental elements, however, are essential: heat and light. The former is needed by all erops; the latter is almost imperative when fruit is wanted. With such crops as lettuce, radish, rhubarb and asparagus, in which the vegetative part only of the plant is wanted, bright sunlight is not absolutely necessary; lut with such crops as tomatoes, cucumbers, melons and beans, in which the fruit is the aim, no amount of heat will prove a substitute for sunlight in ripening the pollen, which is often the critical factor in the results. Therefore, a situation where the maximum of sunshine may be had should be selected if such crops are to be grown.

The construction of the house is not a matter of the first importance. The three-quarter span house perhaps
furnishes as nearly as possible the best condition for forced crops. However, an even-span or shed-roof house grows many crops to a high degree of perfection. As to the inside arrangement of the house, the crops to be grown will have much to do in the matter. Coolhouse crops, as lettuce, radish, and the like, are well grown in solid beds; while heat-loving plants, as tomatoes, cucumbers, melons, etc., should be planted on benches built over the pipes. This means that +2 cost of building a greenhouse depends very much on what crop one expects to grow. The saving in benches and heat in houses deroted to cold crops is considerable, while the ease with which such crops may be grown recommends them to the beginner.
The best paying crops are probably cucumbers and tomatoes; the most exacting. melons. The demand for melons, however, is limited, and the cost of prodncing good Havored, well ripened fruits in winter is high. Having stated what we conceive to be underlying principles in the winter Forcing of all vegetables, we may consider each of the important crops separately.
Lettuce. - The ideal soil for lettuce would be a well drained gravelly or sandy loam, but with care in watering a soil of heary texture may be made to produce excellent crops of the loose, open varieties. The heading or cabbage lettuce is more exacting if a fine quality is desired. The first crop of lettuce from the houses should be ready to use by the middle of Norember. For this crop seed should be sown in September, allowing on an average from 6 to 8 weeks for the crop to mature. A temperature of $55^{\circ}-60^{\circ}$ through the day, with a drop to $40^{\circ}$ or $45^{\circ}$ at night, will suit all varieties, but in the case of the heading varieties a rise of 5 to $10^{\circ}$ at the time of heading will finish off the crop more uniformly.
Rudishes require the sane general treatment as lettuce and may be grown in the same house. As radishes mature in about half the time lettace does, the radish seed may be sown between the rows of roung lettuce plants, and the product is out of the war when the lettuce begins to need the entire space.
Tomatoes being a bothouse crop, require a temperature of $75^{\circ}$ by day, with a drop of about $5^{\circ}-10^{\circ}$ at night. This is one of the crops which is dependent on the sun, because the pollen must be dry and light in order to pollinate the pistils and prode e fruits. The soil for tomatoes may be on the heary order, and contain a large proportion of fibrous loam, with well rotted manure. As to chemical fertilizers, the best results are to be obtained not from those rich in nitrogen, but from potash and phosphoric acid, as these elements are largely responsible for a slower growth of plant and fruit and a firmer texture and higher flavor of marketable product. To obtain a good yield of fruit through the winter months, it will be necessary to pollinate each flower. This may be done very rapidly. The pollen is jarred into a spoon-like receptacle, and the end of the pistil is touched with the accumnlated pollen. As spring approaches and the sun becomes stronger, a simple jarring of the plants is all that is needed. As to training, the single-stem nethod has been found to be the best, as the plants can be set much closer and still allow plenty of room to work around each one. This method consists in the pinching out of all lateral growths. Train the stem to a cord, and support the heariest clusters by strings (Fig. 84t). Plants from seeds sorn in August will ripen fruits about the first of January, and shonll continue in bearing until May. A succession may be had by growing fresh lots in pots or boxes to take the place of exhausted plants. The season of forced tomatoes may be thus continued until the outdoor product fills the market.

Cucumbers are much forced in the eastern states. Cucumbers are a very exacting crop, and need special care in growing. The White Spine type is perhaps more generally grown in this country than the long Forcing cucumber of the Old World, which has been grown and selected for its Forcing qualities for many years. One of the reasons why the former is the more generally grown is its adaptability to relatively unfarorable conditions. It grows in the full sunlight, is more able to resist attacks of mildew and red spider, and sets its fruit with more freedom than the Old World types. One other reason may be that the people of this country

have not become accustomed to the long, thin fruit of the English varieties. The English or forcing varieties require partial shade through their season of growth. Seeds sown singly in 3 inch pots in August will, if they have no check, bloom and set fruits in December. The fruits of the White Spine type reach edible maturity 2 and often 3 weeks before the Finglish type. The $h_{1}$ in which cucum. bel re grown must be arranced with heat below the benchos, as it is of the greatest importance that the plants make a rapid growthand receive no check due to the cooiing of the soil. The soil should be a good pasture sod, partially rotted, and mixed with one-fourth the bulk of leaf-mold and sand. If there is danger from damp-ing-off of the vines at the surface of the soil, the plonts may be set in a handful of sand, which will allow the water to soak away, leaving the stem of the plant comparatively dry, If the vines are on a central bench, they may be trained to a vertical trellis made of wire, or. if on side benches, to wires run along the roof far enough frem the glass to hold the leares away from frosts. As the flowers open, hand pollination will be resorted to if the crop be of the White Spine type. Pick a staminate flower, strip back the corolla, and insert the column of the anthers into the pistillate flower. The English varieties are not pollinated, unless it is desired to secure seeds.

Melons are certainly the most difficult of winter crops to handle. The midwinter ripening of the fruits requires more painstaking care and closer attention than any other crop. The plants, from seed - leaf to fruit,
without the slightest
844. Strand of winter Tomatoes.

at least $5^{\circ}$ higher than for cucnmbers. Hang the fruits in slings (Fig. 845). Melons ripening in fall or spring are more easily managed.

Beans may be easily forced in houses where cucumbers or melons are growing, using rich, moist soil and strong bottom heat. They are usually grown in pots, 3 or 4 plants in a 6 -inch pot. They make a very rapid growth, and the green pods are fit to use in from 8 to 10 weeks from the time the seed is sown. While growing the plants should be sprayed with water irequently, as they are very subject to attacks of red spider. The bean is self-fertile, and need not be pollinate!? (Fig. 846)

Asparagus and liheburb are forced from ohd roots brought in from the garden, and suljected to a gentle heat. The crop is made from the material stored up in the old rocts, few new roots growing through the forcing period. The old roots are thrown away after being forced, and others brought in fur the next crop. Both these crops may be grown in out-of-the-way places, under the benches, in corners of the potting shed, or in fact anywhere where heat and moisture may be had. One method of forcing rhubarb is to grow it entirely in the dark. This produces a very tender stalk with very little foliage.
C. E. Hund.

Forcing or Fruits. - The house best adapted for fruit-growing is one running north and south, span roof curvilinear, with ventilation both sides, top and bottom. It is important to be able to give a large quantity of air, especially for ripening the wood after the growth is dune. The next thing to be considered is the borders. To produce high-class fruit. erfect drainage is necessary. For very early forcing an inside border will answer the purpose, hit the most satisfactory way is to have both outside and inside borders. A depth of 3 ft . of prepared soil is sufficient, - ith 9 in . of drainage material on the bottom. Should there be a natural out let for the drainage water, well and good, otherwise artificial means must be resorted to. The width of the out.jitle border should be 15 ft . An outside border is particularly advantageous for vines and peach trees, which will last much longer in a healthy, vigorous condition if allowed a root-run outside the greenhouses. A sod cut from the pasture, suitable for growing roses, would be ideal for the borders. The writer does not recommend making a border very rich, for too often young vines are poisoned with food at the start. A sprinkling of coarse crushed bone and charcoal shouid be mised with the soil. In the use of charcoal one should be governed by the nature of the soil; if the soil is extra heary, use charcoal more freely. A topdressing f cow-manure mixed with soil is a good thing when starting a house. A medium loam, neither stiff nor too heary, answers the purpose.

The trees also may be grown in pots and tubs. One adrantage is that a special fruit house is not necessary. Many a house is going idle during the summer months that would grow fruit to perfection. Any light house must be grown in heat without the slightest in a strong, loamy soil, which is retentive enough to hold moisture at the roots but not heary enough to become sour. No shading of the glass is required, but air should be given freely on all days when possible. The plants are trained as are cucumbers, except that the central shoot should be pinched out as soon as the plants are well established in the bench, allowing 3 or 4 lateral branches to grow to the height of 4 or 5 feet, when these in turn should be pinched back. In setting the fruits, it is best to wait until a number of pistillate blossoms are open on a plant and pollinate them at the same time, as it often happens that if one fruit starts into growth some time before other flow ers are pollinated, the other fruits fail to set until the first one reaches considerable size. Pollination is accomplished in the same manner as with cucumbers. and should be done on sunny days, when the houses are dry. Except during the time of setting the fruits, the house should be moist and the leaves sprayed frequently. The temperature of the melon house should run
with plenty of air will grow fruit satisfactorily. One of the main points is in the watering. Should the trees get too dry, or on the other hand saturated, the chances are that the fruit will turn yellow and drop, but with good judgment and a certain amount of care success is as-
ard Black Hamburg, which is easy to handle and a very satisfactory variety. A companion to it is Buckland Sweetwater, a white grape ripening at the same time, though of second-rate quality. Its earliness, however, makes it worthy of a place.

Muscat of Alexandria should have a house to itself. To finish this noble $\mathrm{gra}_{1}$ e to perfection requires more heat than ordinary. It can ke grown with fair results in a mixed house, but where there are three compartments for early, midseason and late varieties, the midseason compartment should be planted to Muscats. Madresfield Court is also a grape of fine quality. Unfo:tunately it is difficult to handle, although it is venally planten in a house with such easily handled varieties as Gros Maroc, Gros Colmar, Barbarossa, Mrs. Prince. Alicante. For another view, see Grupe.

Peaches and Nectarinos. - The same depth of border recommended for the grape rines will be all right for the peach. These, also, must hare perfect drainage or the trees will soon get into a sickly condition. The peach and nectarine have a tendency to rank growth when planted in the border. Care should be taken not to make the border too rish. It is an easy matter to apply food when the trees aeed it. The writer has found a light application of wood ashes two or three times in the season a capital thing. Crushed bone is also beneficial. When starting the house, a top-dressing of soil and cow-manure, say two of soil to one of manure, should keep the trees in a healthy condition. One important point in starting a peach house, especially early in the season, say the first of Jnnuary or earlier, is to start easy. Nothing is gained by rushing, There are numerous rarieties of peaches and nectarines adapted to Forcing. The following is a selection of the best that the writer has grown under glass: Peaches, EarlyHaie Early, Alexander, Condor, Mountain Rose, Haine's Early; Midseason-Foster, Bellegarde, Noblesse, Oldmixon Free; Late-Crawford's Late, Sea Eagle, Princess of Wales, Lady Palmerston.

Nectarines, Early-Cardinal, Early Rivers, Adrance, Lord Napier ; Midseason-Improved Downton, Dryden,


Byron, Elruge, Milton ; Late-Chaucer, Newton, Spencer, Stanwick, Humboldt, Victoria. Trees for planting in the house should be especially prepared for the work. A year would be lost with such trees as are usu-
ally offered for sale. For plating in the border, choose fan-trained trees, 2 or 3 years old, providing they have been properly transplanted: (See Pruning.)

849. Azalea, received from Europe, now pruned for forcing.

Indoor peaches and nectarines, with proper care, are profitable for 10 years after planting. The following temperatures for the peach house are suitable for early Forcing: for the first two weeks, $40^{\circ}$ by night and $50^{\circ}$ by day ; then a rise to $45^{\circ}$ by night and $55^{\circ}$ or $60^{\circ}$ by day, with the sun, which should carry them until their blooming period; then $50^{\circ}$ by night and $60^{\circ}$ to $70^{\circ} \mathrm{by}$ day, with sun heat ; after the fruit is set, a rise of $5^{\circ}$ or $10^{\circ}$ on mild nights would be all right, with the day temperature correspondingly increased. Peaches delight in fresh air; therefore air shonld be given at every opportunity. Syringe the trees twice a day in bright weather; hold off while the trees are in blossom; after the fruit is set, syringe again twice every bright day, andi once a week with whale-oil soap, using enough soap to just color

850. Rhododendron, received from Europe, ready for forcing.
the water. This is a good remedy for greenfly, spider, etc., and produces a fine, glossy foliage. It is better to disbud by degrees rather than to remove a large quantity of foliage at once, which would naturally cause a check to the tree. Disbudding requires good judgment.

The shoot, if not needed, should be pinched, leaving three or four leaves to derelop the fruit. Trees that are properly cared for during the summer months need little pruning in the winter. Probably the hardest task of all to the grower is thinning the fruit, but this must be done. There cannot be any set number for a tree to carry. Judgment must be used in that respect. Nectarines can be cropped more heavily than peaches. After the crop is gathered, all the useless wood should be cut away to allow plenty of light and sunshine around the wood that is intended for the following season. When the wood is thoroughly ripened $\mathrm{i}^{+}$is in condition to stand zeru weather. The temperature of pach houses can go down belov zero without a bud being killed. In fact, it is not necessary to use any artificial heat until starting the house. Close the house down frosty nights; open up in the morning before the temperature rises much, and avoid exciting the buds. Sometimes one has warm days during the wiuter months. On such days it is well to keep doors as well as rentilators open.
All the peaches and nectarines recommended for the peach house are admirably adapted for pot work.

Other fruits may be alded to these, as apples, pears, plums, cherries, figs, apricots, etc. (see articles under these headings). The following are some of the best varieties the writer has grown: Plums-Golden Esperin, Jefferson, Denniston Superb, Green Gage, Grand Duke, The Czar, Early Transparent ; Pears - Magnet, Princess, Sour. dn Congres, Lonise Bonne de Jersey, Pitniaston Duchess, Beurre Diel; Apples-Williams Favorite, Benoni, King of the Pippins, Washington, King of Tompkins County, Belle de Pontoise, Bismarck, Peasgood Nonesuch, Lady Henniker, Thomas Rivers, Alexander, Cox Pomona. Wm. Turner. Forcing Hardy Plants. -An economical method of obtaining large quantities of flowers in winter: extensively used by conmercial florists for cut-flowers and flowering plants. Plants usually forced are hyacinths, tulips,

851. Lilac pruned for forcing. narcissus and other Dutch bulbs, lily-of-the-valley, astilbe, dicentra, hybrid perpetual roses, Deutzia gracilis, hybrid rhododendrons ( $R$. Sinensis, i.e., Azalea mollis), and Ghent azaleas, and lilacs. For other plants, see A.G. 14:402 (1893).
This mode of procuring flowers at small cost has always been more or less in vogue among plantsmen, and of late years has receired fresh impetus, owing to the heary demands for decorative plants at Easter. It is not only an inexpensive method of getting flowers, but with most plants, after a little experience, the time of blooming can be easily calculated. The process has limitations, at any rate with our present knowledge of the matter, inasmuch as, with the excention of "retarded plants" and a few bulbs, it is not practicable in late autumn and early winter. It is possible, however, that by using "retarded plants," i.e., plants held over their natural time of flowering by keeping them in cold storaze at a temperature sufficiently low to prevent growth, this difficulty may eventually be overcome. Except, however, with lily-of-the-valley, which is admirably adapted to this practice, we know little of the possibilities of this form of Forcing: it is hoped that other plants, equally useful, may be treated in this way. It is evident that, on account of the cost of storage, bulky plants could not be handled.
The requirements for successful Forcing are: (1) a
good knowledge of the plants; (2) proper preparation; (3) a period of rest; and (t) proper care after the plants are brought into heat.
Those plants force most easily which bloom in spring and early summer, Late-bloomin ${ }_{\mathrm{t}}$ kinds, like Rhododeniron maximum, Clethra and Hydrangea paniculata, var.grandiflora, do not gire good resuits. No success is obtained with asters and goldenrod, unless they are retarded. These points musr be studied out by the grower.
Trees and shrubs should se specially prepared for Forcing by careful cultivation for 1 or 2 years bei. $\theta$ use. They cau be planteu out of doors, with plenty of room o deve! pp, or tipy can be grown in pots; the latter method being used with vigorous plants, which are apt to run to growth without developing flower buds Close pruning is necessary, and root-pruning is helpful Grafting, which has a tendency to dwarf and hasten maturity, is also used with strong growers. Sometimes both growing in pots and grafting are employed, as in lilacs. Query: Could we learn anything in these particulars from the Japanese method of dwarfing plants?
A plant fit for Forcing must be compact, both top and roots; economy in space is essential. It is now possible to obtain from the French, Dutch and Belgian nurseries many plants grown for this purpose. A few come porgrown, but most of them are from the open ground: very little of this work is done in American nurseries. Figs. 849-851 show the ruethods of preparing woody piants for Forcing.

Herbaceons plants should be prepared for Forcing wich equal care, and the process may require several years. the remosal of the flower buds and growth, under high cultivation, in close, compact clumps, apparently produces the same results that prining and grafting accomplish for trees aud shrubs. Fig. 852 shows the ront-clump of an herb prepared sor Forr. ing.

Plants that have once been forced are commonly thrown away. It is generally cheaper to buy new stock, but lilacs, azaleas, etc., can be planted out and will recorer sufficient strength in 2 years for $\begin{array}{ll}\text { entra roots prepared } \\ \text { for forcing. } & \begin{array}{l}\text { cient strength in } 2 \text { years for } \\ \text { a second Forcing, or for }\end{array} \\ \text { other use. Some species, }\end{array}$
iburnum plicatum, staphylea, colchicum, etc, if $\begin{array}{ll}\text { entra roots prepared } \\ \text { for forcing. } & \begin{array}{l}\text { cient strength in } 2 \text { years for } \\ \text { a second Forcing, or for }\end{array} \\ \text { other use. Some species, }\end{array}$
iburnum plicatum, staphylea, colchicum, etc, if like Viburntm plicatim, staphylea, colchicum, etc, in seem to do better the second year. This is probably ex. plained by the fact that insufficient preparation was given for the first trial, the first Forcing being really "proper preparation" for the second Forcing.
Hardy plants must hare a period of rest for success. ful Forcing, the time required varying in different species. One cannot tell, except by experiment, that Paper White narcissus will force easily in November and December, while the double Von Sion will not; the individual equation of each kind is an element which must be considered. There is a popular notion that freezing will shorten the time for resting, or, at any rate, is conducire to the welfare of the plant. This idea dees not seem io stand any practical test. After potting, do not subject the plants to severe frosts ( 10 or $12^{\circ}$ F.), or else the roots, now much exposed, may suffer. The large buds of lilac and rhododendron may also be injured if frozen hard.

Pot the plants as soon as they ripen their growth in autumn, beginning in September with herbaceous stock, and continuing until severe frost. It is possible, but not desirable, to lift some things ${ }^{*}$ after the ground is frozen hard. Plants received from abroad are potted on arrival, or, if furnished with a ball like azaleas (Fig. 849), they can be stored and not potted until bronght into heat. Distch bulbs are boxed or potted as they are received, and buried in the earth or piled in stacks and covered with enough. leaves and litter to exclude frosts. Lily-of-the-valleg, stilbe and dicentra are kept in their pack-
ing cases in a coui pit until ready for use. Large plants in tubs and boxes can be covered with leaves and kept out of doors, but most plants should be stored in a cool cellar, pit or frame kept at a temperature of $35^{\circ} \mathrm{F}$.; a temporary variation of $5^{\circ}$ either way does no harm. It is well to delay this storage until as late in the season as possible, but it must be done before screre weather.

853. Forcing Lily-of-Valley in pots.

Tbey can be stowed compactly, in several tiers if necessary. It must be remembered that no growth is to be allowed while stored; it is their period of rest, and this must be enforced. Good rentilation must be given on bright days and every precaution taken against an accumulation of moisture: if the plants are well watered when put away very little will be required afterwards. Dampness is most serious with evergreens, like kalmia, and sucb things as Phlox subuluta. This stock should hare the , iriest positions, or it can be placed in shallow frames 2 1t. deep, which are drier than deep pits. In severe weather the pits are often covered with snow a week or more, but the plants will not suffer if this huppens but once or twice during the winter. At such times mice and squirrels wili make trouble unless trapped or poisoned.

Nothing except retarded plants, a few bulbs and one or two kinds of prunus shonld be brought in before November. December 15 to January 1 is as early as it is safe to begin Forcing most hardy plants: it will be found that as the days lengthen the results will be nore satisfactory. At first the plants must be kept cool, $45^{\circ} \mathrm{F}$. or thereabout. Syringe twice a day until the buds swell: after growth starts the treatment is the same as that

854. Forced Trillium.
given greenhouse plants, and they can be put in a much warmer house if so desired. It is at this time that care in handling, particularly in the matter of heat, makes it possible to time the period of blooming so accurately, but it is impossible to give any general rules to satisfactorily cover these matters.

A few plants, like lily-of-the-valley, can be placed di-
rectly in a Forcing-box or pots, generally made orer the pipes in the hottest house, where a temperature of $80^{\circ}$ to $95^{\circ} \mathrm{F}$. can be maintained. They are first soaked in water for a day or two and then kept in this heary heat until flower buls are well dereloped (Fig. 8i3). Tulips, hya cinths and

855. Forsythia suspensa, var. Sieboldi ( $\times 1 / 2$ ). other bulbs, sometimes an nzalea orlilac, can also be hurried up in such a box, but it is dangerous, and not good practice; be + and more lastilag flowers come with ordinary treatment. Trilliums (Fig. 8̄̄4) and various earlyHowering wild plants may be forced with satisfaction.

Although no rules can be given for the time required in Forcing, it is knowledge not hard to acquire with even surprising exactness. Nothing is likely to require more than three months in houses ranging from $45^{\circ}$ to $5.9^{\circ}$ F.-i. e., after bringing in from the pits. A month or six weeks is good time to allow in February and March, but with the same plants and temperatures more time would be needed earlier; with the advauce of the season, the work is quicker and less uncertain. There is great difference in plants. Rhodolendrons (the hybrids) require eight weeks or more, but one species will often bloom in March, within twenty-four hours. Plants like the rose, which must make a growth before the buds form, take more time than azaleas. The difference between dull and bright weather is an important factor, but with extra firing, or the ase of the Forcingbox, these matters even mp, and the average time of flowering is wonderfully even. In this work, a man with good plant sense is most likely to succeed.

## B. M. Watson.

FORESTIERA (after Forestier, a French physician). Syn. Adilia. Oledcece. Deciduous, rarely evergreen trees or shrubs, with opposite, entire or serrate, generally rather small trs., inconspicuous yellowish fls. and small black or bluish berries; without much decorative value, and but rarely cultivated. They cannot be grown North, except $F$. acuminata and $F$. lignstrina, whish are tolerably hardy in New England. They grow in almost any soil, and are propagated by seeds and layers. About 15 species in N. Amer.. from Illinois south; also in Mex. and W. Indies. Fls. dicecions, apetalous, with or without calys, in small, axillary clusters in early spring, before the lvs.; stamens 2-4: fr. a small, mostly black, 1- or 2 -seeded berry.
acuminàta, Poir. (Adelia acuminùta, Michx.). Deciduous shrub, to 10 ft . high, sometimes spiny, glabrous: lrs. slender petioled, orate-oblong or orate-lanceolate, remotely serrate, $11 / 2-4 \mathrm{in}$. long : staminate fls. in dense clusters; pistillate fls. in short panicles: fr. narrow, oblong or cylindrical, falcate, acute. $1 / 2 \mathrm{in}$. long. W. Illinois to Texas. Michx. Fl. Bor. Amer. $2: 22 \overline{5} . ~ B . B$. 2:603.
ligustrina, Poir. (Adèlia ligustrima, Michx.). Deciduous shrub, to 6 ft ., pabescent: lvs. elliptic-ohovate to oblong, obtuse, appressed-serrulate, abont 1 in . long: fls. in fascicles: fr. sessile, short-oroid, obtuse, $1 / 4 \mathrm{in}$. long. Tenn. to Fla. and Ala.
F. Nèo-Mexicàna, Gray. Shrub, to $10 \mathrm{ft} .:$ lvs. spathulate, al-
most entire, usually glabrous, grayish green and rather small: fr. ovate or short-oblong, obtuse, $1 / 3 \operatorname{in}$. Texas to N. Mex. and Colorado.

Alfred Rehder.
FORESTRY is the rational treatment of forests; this treatment may vary with tho object in view. Forests may subserve various olojects, giving rise to three classes of forests: they furnish wood materials for the arts-supply forests; they furnish a soil cover, which prevents the blowing of the soil and formation of sand dunes, or which retards the erosion and washing

856. Flowers of Forsythia suspensa, var. Fortunei. Natural size
of the soil and regulates the waterflow, or which acts as a barrier to cold or hot winds, and exercises other beneficial influences on climate and surroundings - protection forests; or finally, they furnish enjoyment to the
esthetic and sporting elements in man, as game precerves an'l parks-luaury foiests. Any two or all three objects ma:" be attaned simnlt ineously in the same for. est. In thr end, and in a n.ure linited seas Forestry is the art and business of making mon is the grow. ing of wood crops, just as agriculturo :bl 'inrticulture are finally concerned in producing values "om food crops. In the economy of agriculture, wood-c ps inuy be grown on land which is too poor for fleld crops.

This art is divided into two distinct and mo cor less independent branches, namely silviculture, the techni cal branch, and forest regulation, the business branch. Silviculture is a branch of the larger subject arboriculture, and comprises all the knowledge and skill applied in prodncing the wood crop, relying mainly on natural sciences. While horticulture and silviculture have both to deal with trees, their object and with it their treatment of trees are totally different: the orchardlst works for the fruit of the tree, the landcape gardener for the pleasing form; in both cases the object is attained by the existence of the tree and its single indiridual development; the forester is after the substance of the tree, the wood; his object is finally only attained by the removal of the tree itself. He deals with masses of trees rather than individuals: it is logs in quantity and of desirable quality, clear of knuts, not trees, that he is working for; hence, his treatment differs from that of the horticulturist. Since his crop takes many years to mature, sometimes a century and more, in order to carry on a continuous Forestry business, from which to secure annual returns, special arrangements peculiar to this business must be made: these arrangements, naturally infuenced by the economic conditions of the coun. try, form the subject of forest regulation.

The horticulturist, as such, is mainlyinterested in the rational treatment of such forests as have a protective value, influencing climatic, soil and water conditions in general and locally.
B. E. Fernow.

FORGET - ME - NOT. Myosotis.

FORSYTHIA (after
William Forsyth, prominent English horticulturist, director of the royal garden at Kensington, 1737-1804). Oledcea. Golden Bell. Highly shrubs, with opposite, ornamental, free-flowering shrubs, with opposite, simple or ternate lis. and slender branches in early spring. One of the showiest early-flowering shrubs,
with handsome, clean foliage, remarkably free from insects or fungi, and remaining unchanged until late in fall. The upright forms are well adapted for the borders of shrubberies and the pendulous form for covering walls, fences, arbors or $p$ rehes. They grow in almost

858. Forsythia viridissima ( $\times 1 / 2$ ).
any kind of garden soil., and are hardy North. Prop. readily by greenwood and hardwood cuttings : also by seeds. The branches of the pendulous form often take root at the tips when toucbing the ground, and send forth vigorous shoots, like some brambles or the walk-ing-fern. Two species in China, much cult. in Japan, and one recently discorered in southeastern Europe. Low shrubs, glabrous throughout, with slender, quadrangular branches and opposite, serrate les.: fls. 1-3, axillary, pedicelled: calyx and corolla deeply 4-lobed, lobes of the corolla oblong, longer than the campanulate tube; stamens 2, included: fr. a 2-celled, dehiscent capsule, with many winged seeds.
suspénsa, Valıl. Shrub, to $3 \mathrm{ft} .$, but the branches often lopping on the ground and taking root: Irs. broad-ovate or oblong-ovate, serrate, 3-4 in. long : fls. $1-3$, about 1 in . long, golden yellow, tube striped orange yellow within; calyx about as long as tube : capsule ovate, about 1 in . long. China. S.Z.3.-Two varieties can be distinguished. Var. Sièboldi, Zabel ( $F$. Sieboldi, Dipp.). Fig. 85\%. Low shrub, with very slender, pen dulons or trailing branches: lis. mostly simple, broadovate or orate. B.M. 4995 . F.S. 12:125\%. Gn. 33, p. 563 A.G. 13:94. G.F. 4:79. Var. Fórtunei, Rehder (F'F Fór tunei, Lindl.). Fig. 856 . Of more vigorous growth, with upright or arching brauches: Irs. often ternate, ovate or oblong-ovate: corolla with more narrow and twisted segments. R.H. 1861:291. $\boldsymbol{F}^{\prime}$.suspeusa is an excellent shrub for the margins of groups, because it finally rolls over and meets the greensward. It can also be trained over an arbor. Less common than $F$. viridissima, but better.
intermèdia, Zabel ( $F$. suspénsa $\times$ viridissima). Shrub, with slender, erect or arching branches: liss. ovate-lanceolate, sometimes 3 -lobed or ternate, coarsely serrate, 3-4 in. long: fls. almost like those of $\boldsymbol{F}$. suspensa Fortunei. Gt. 1885:1182 and 40:p. 397.-Often confounded with forms of $\boldsymbol{F}$. suspensa. In foliage it resembles much the following, which has the lvs. narrower, always simp!e, usually serrate only above the middle, with smaller teeth. It is as hardy as $\boldsymbol{F}$. sus. pensa and rery floriferous.
viridissima, Lindl. Figs. 857, 858. Shrub, to 10 ft., with green, erect iranches: lrs. oblong-1 nceolate or

## FOXGLOVE

lanceolate, always simple and generally serrate only abore the middle, very dark green, $3-6 \mathrm{in}$. long: fls. about 1 in . long; corolla with rather narrow, twisted lobes of bright, somewhat greenish yellow ; calyx about half as longas tube. B.M. 4587. F.S. 3:261. B.R. $33: 39$. -Less hardy and graceful than the other species.
F. Europiva, Deg. \& Bald., from Albania, has small, oratelanceolate, quite entire lvs.

Alfred Rehder.
FOTHERGILLA (after John Fothergill, eminent English physician, who introduced and cultivated many new plants, 1712-1780). Hamamelidiceer. Hardy ornamental shrubs, with alternate, deciduons, simple, dull green Iss. and showy spikes of white tls. in spring with the lvs.: the distinct foliage resembles somewhat that of the alder, or more that of Hamamelis, and turns yellow late in fall. They grow best in moist, peaty or sandy soil. Prop. by seeds, not germinating until the second year, or by layers, which take two years to root; the first species also by suckers and rootcuttings. Two elosely allied species in the S. Alleghanies: low shrubs, with the branches densely stellate-pubescent: los. stipulate, dentate-crenate : fls. in terminal spikes, perfect. apetalous; calyx cam-

859. Fragaria Chiloensis.
panulate, 5 - - -lobed ; stamens numerous, with the filameuts thickened toward the end : capsule dehiscent, 2 -celled and 2 -seeded.
Gárdeni, Murr. ( $\boldsymbol{F}$. alnifolia, Linn. f. F'. Caroïna, Britt.). Low shrub, with generally spreading branches, to 3 ft .: Ivs. oblong or oborate, rounded or cuneate at the base, coarsely dentate above the middle, pubescent and pale or glaucous beneath, 1-2 in. long: spikes orate or oblong, 1-2 in. long, leatless at the base: stamens $1 / 3-1 / 4 \mathrm{in}$. long, sometimes pinkish. B.M. 1341. G.F. 8:445. L.B C. 16:1507.
màjor, Lodd. ( $\boldsymbol{H}$. monticola, Ashe. $\boldsymbol{F}$. alnifilin, var. major, sims). Bushy shrub, with upright branches, to 6 ft : lvs. broadly obovate or roundish, oval, cordate or truncate, coarsely crenate or undulate even to the base, sometimes nearly glabrous beneath, 21/g-5 in. long: spikes $1 / 1 / 2-3 \mathrm{in}$. long, with $1-3 \mathrm{ivs}$. at the base : stamens 1/6 in. long, white. B.M. 1:442. L.B.C. 16:1520.-This species is superior to the former on account of its dense, pyramidal habit, larger lvs. and showier fls. Alfred Rehder.
FOUNTAIN PLANT. Amurantus sulicifolins.
FOUQUIERIA(Pierre Ed. Fouquier, professor of medi. cine at Paris). Tamariscicele. C'aNillewood. Fouc species of plants from the deserts of Mex. and New Mex., of whichone is cult. in the larger rockeries of Calif., and is interesting as being an example of an order far removed from the Cactacero in fls. and fr., but reduced to something of their habit by the desert. It is often cult.

by the Mexicans to make an impenetrable, spiny hedge. The plant has small and comparatively few lrs., borne in clusters in the axils of the spines. Fls. With a fun-nel-shaped tube 1 in . or more long, and 5 spreading lobes.
spléndens, Engelm. Coach-whip. Vine-Cactes. Jacob's Staff. Ocotillo. Shrub, 6-10, or even 20 ft . high, branching near the base: branches long, gray, furrowed, erect: Irs. obovate, rounded at apex, wedgeshaped at base, $1 / 2-1$ in. long: inflor. racemose, thyrsoid: Hs. scarlet or brick-red: stamens $8-12$, exserted: seeds white, with a long fringe of spirally thickened hairs. W. Tex. and Ariz. to S. Calif. A.G. 13:759.
F. Franceschi and W. M.

FOURCROYA, See Furcrea.
FOUR-0'CLOCK. See Mirabilis Jalapa.
FOXGLOVE. Digitalis.

FRAGARIA (Latin frugrare, fragrance, from the smell of the fruit). Rosicere. Strawberry. A small genus of low perennial herbs in the north temperate zone and along the American Cordilleran region. The Ivs. are palmately 3 -foliolate and toothed, all from the crown of the plant: tls. white or yellow, in corymbose racemes on slender, leafless scapes, sometimes lacking stamens; calyx deeply 5 -lobed and reinforced by 5 sepal-like bracts; petals 5 , obovate; stamens many, short ; pistils many, on a conical receptacle, becoming small and hard akenes nod persisting on the entarging receptacle. The enlarged receptacle becomes pulpy and edible in the Strawberry, or Fragaria proper, but it remains small in Duchesnea. See Figs. 826, 827. Fragarias propagate naturally by means of runners.

The Fragarias are exceedingly variable. About 130 specifie names have been applied to them, but there are probably not more than a dozen forms which are distinct enough to be clearly distinguished as species. Bentham and Hooker would reduce them all to three.. four species. Of the true Fragarias, four species-types


## 861. Fragaria Virginiana.

are interesting to the horiculturist as the parents of the garden Strawberries, $-F$. Chiloensis, the original of the ordinary cultivated Strawberries of America; $F$. V'irginiana, which was early domesticated, and of which some trace still remains in cultirated rarieties: $\mathcal{F} . m o s$ chata, the Hautbois, and $F^{\prime}$. vesca, the alpine and perpetual Strawberries, which are little cultivated in this country. Aside from these, the Indian Strawberry, or Duchesnea. is culticated as a basket and rock plant. For a sketch of the evolution of Strawberries, see Essay 25, Bailey's "Survival of the Unlike." The classical work on Strawberries is Duchesne's "Histoire Naturelle des Fraisiers." 1766. See Struwberry.
A. True Strawberries, bearing an edible "ber y" (or receptacle), and with a more or less upright habit: fls. white.
B. Lis. normally overtopping the fls. and fr.: akenes mostly sunken in the flesh of the herry.
Chiloénsis, Duchesne. Fig. 859. Low, but stout in all its parts: lvs. thick, more or less glossy above, bluish
white below, blunt-toothed: floclusters forking and long-rayed, the peduncle short, soon lopping on the ground: runners mostly appearing after the fruit is gone: berry large and firm, dark-colored, more or less musky in tlavor, reinforced by a very large calyx or hull. Pacific coast region of S. Amer. A common wild Strawberry of the Pacifle slope of N. Amer. is referred to this species, but it is a question whether it is identical with the S . American form.

Var. ananássa, Hort. ( $F^{\prime}$. ananíssa, $F$. tincta, $\mathcal{F}$. calyculatu, Duchesne. F. grandifldru, Ehrh.). PiNe Sthawbekis. Common Gabien Sthawberky. Taller growing: lus. larger and thinner, mostly lighter green on both sides: fr. larger, running into very many kinds.
Virginiàna, Duchesne ( $F^{\prime}$. Iowénsis and $\boldsymbol{F}^{\prime}$. Illiménsis, Prince). Scarlet or Vikginian Sthawherkr. Figs. $860,861,862$. Nore slender: lvs, thinner, light green abore and below, the upper surface with sunken veins: tl.celusters small, with a few hnoging fruits ar the top of a rather long peduncle: runners usually appearing with the fruit: berry small, light scarlet, globular or oblong-conical, usually with a constriction or neck underneath the moderate-sized calys or hull. E. North Amer.-Variable. The larger and more hairy forms have been separated ns var. Illinoénsio, Gray, but it is difficult to deflae them from the type; and the same is true of the boreal forms, which have been detached as $F$. Caurdensis, Michx. A few early varieties of Strawberries, as Crystal City, seem to he wholly or partly of $F$. l'irginiana origin.
BB. Li.s. normally shorter then the floclusters: akenes usually not sunken in the flesh of the berry.
vésca, Linn. (F. semperflòrens, Duchesne). Alpine and Perpetual Sthawbermes. Erect and dark green, only
862. Fruit of Fragaria Virginiana. Nat. size. sparsely hairy, the lrs. thin and light green as compared with the foregoing species, very sharp-toothed: usually oblong-conical, the akenes very prominent, hull spreading. Eu. - The American representative of this species-common in woods N. - is thought by some to be a distinct species, and it has received the name $\boldsymbol{F}$. Americann, Britt.; but it is doubtful if it can he separated. See Figs. 863, 86t. The true $F$. resca is thought to be sparingly naturalized eastward. The native plant of en bears white fruit. The cult. forms are rarely seen in this country, but the quality is hish, and they are deserving of more attention in home grounds. Variable in cult. There is a form with leatlets reduced to one ( $\boldsymbol{F}$. monophylla, Duchesne, B.M. (i3). This type of Strawberry bears more continuously than $\boldsymbol{F}$. Chiloensis and $\boldsymbol{F}$. Virginiant. The so-called Mexican or Ererbearing Strawberry which has been introduefd at times is $F$. Mexicana, Schlecht.. which is another form of the rescan type. On the Pacific slope. the type possibly may be represented by $F$. Califormica, Cham. \& Schlecht.
moschàta, Duchesne ( $F$. elàtior, Ehrh.). Hactbois. Taller. usually diœecious, more pubescent, the calyx or hull strongly reflexed from the fruit: berry duli red, musky. Eu.-Cult. forms rarely seen in Amer.
ad. Duchesnea. Receptacle lessfleshy, tasteless: hubit trailing: fls. yellour.
Indica, Andr. Neat trailing plant with small oborate crenate-dentate leaflets, solitary long-pedicelled fis., and calyx bracts toothed. India. Naturalized E. - Very useful as a basket trailer.
L. H. B.

FRAGRANT BALM. Monarda didyma.

FRAME. Fig. 863. A box without permanent top or bottom which is designed, when covered with glass or other transparent material, as a place in which to grow plants. When supplied with artificial bottom heat, the frame is part of a hotbed; when supplled only with sun

heat, it is part of a coldframe. The Frame may be of any size, but the normal size is $6 \times 12 \mathrm{ft}$., an aren which accommodates four $3 \times 6 \mathrm{ft}$. sashes; and this $6 \times 12$ area is understood when one speaks of "a Frame." See Hotbed
L. H. B.

## FRANCISCEA. Included with Brunfelsia.

FRANCOA (Fr. Franco, Valencia, sixteenth century). Srrifragicere. Three species of Chilean perennial herbs, with turnip-like (lyrite) lvs. and terminal, dense racemes of white or pink its. borne in summer. They are interesting as haring points in common with Crassulaceae, Rosacer, Galax and even Dionrea. They grow about 2 ft . high, and in the North could perhaps be wintered in a coldframe. Scape-bearing, glandular-nilose or tomentose: rhizome thick, many-headed: lvs. plan-dular-dentate: tis. 1 in. across, as many as 36 in racemes 6 in. long: floral narts in 4's, rarely 5 's; petals obovate, clawed.

## A. Fls. uhite.

ramosa, D. Don. Taller, woodier and more branching than the others, and distinguished by pubescent inflorescence. Leaf-stalks not margined: fls. smaller. Hardy at Washington, D. C., according to J. Saul, with spikes 2 ft . long and 1 in. thick.

## AA. Fls. mostly pink.

B. Leaf-stalhis broally uinged at the base.
sonchifolia, Car. Lower lobes continuous with the broad margin at the base of the leaf-stalk: petals deep rose, dark-spotted. B.M. 3309.

BB. Leaf-stalks not winged at the base.
appendiculàta, Cav. Lower lobes distant from the base of the stalk: petals pale rose, rarely spotted. B. M 3178 (shows a white longitudinal band on petals). B.R. 19:1645, where Lindley said (1833), "It thrives better if


It accommodates four sashes.
ana and $F$. cuspidata grow well even in drier situations. They are generally readily transplanted and grow rapidly when young. Prop. by seeds gathered in fall and sown immediately, or stratified and sown in spring, corered about 1 in. high with good soil; sometimes remain dor-
mant untll the second year. The varieties and rarer kinds are budded in lete summer or grafted in spring on the seedlings of any of the common species. About si) species in the temperate region of the no:thern hemisphere south to Cuba; about 15 of the species grow in N. Amer. and nearly as many in E. Asia. Trees or shrubs, with odd-pinnate, rarely simple, opposite lis. without stipules: fls. in panicles, dhecious or polygnmous, with or without calyx or with calyx and a $2-6$ partel corolla with generally llnear segments; ${ }^{+}$.omens generally $2:$ ovary 2 -celled: fr a 1 -seeded, winged samara.
ncuminata. 7.
Americana, 7.
alba, 7.
kosci, 9.
Brageana. 2.
Carolinianh, 12.
epiptera. 7
excelsior. 10
ftoribunda, 1 and suppl.
jughandifolia. 7.
lanceolata, 8.
index.
lentiscifolia, 17
ongicelspis, 3. Mamischuriea, monophyil
nigra, 13.
Copip-Anglice, 7.
Oregona, 11.
Ornus. 1. pannosa, 9.
parvifolia. 2, 17.
Pennsylvanira. 8. platycarpa. 1:.
potamophila, 18
potamophia, publiervis, 5. quadrarvis.alata, 13. quarrangulata, rotunifiobia, 1 and suppl. sambucifolia. It sambucifolia. 1 serratifolia, Slebolilinns,
simplicifolia. simplicifolia. 16 viridis. 8.

866. Fraxinus excelsior ( $\times 1 / 3$ ).
A. Fls. With culyx and corolla perfect or polygamous.
(Subgenus Ornus.)
B. Winter-buls gray.

1. Ornus, Linn. (F'. floribriuda, Hort., not Wall.). Small tree, becoming 25 ft .: Ifts. generally 7 , stalked, oblong-ovate or orate, irregularly serrate, rufously pubescent on the midrib beneath, $2-31 / 2 \mathrm{in}$. long: Hs. whitish, fragrant, in dense, terminal panicles $3-5$ in. long : fr. erect, narrow-oblong, truncate or emarginate at the apex, about 1 in. long. May, June. S. Eu., W. Asia. Gn. 48, p.286. - Var. latifolia, Ait. ( $F$. rotendifolia, Hort., not Lam.). Lfts. roundish orate or broadly ovate-oblong.
2. Bungeana, DC. Small tree, to 15 ft ., or shrub: lfts. generally 5, stalked, ovate, obovate or roundish, obtuse to short-acuminate, serrate, glabrons, $1-1 / \frac{1}{2}$ in long: panicles to $2 \%$ in. long, many-fld. fr. narrow-oblong, obtuse or emarginate. May. China. G.F. і:5.Var. parvifolia, Dipp. Lfts. about 1 in . long, broadly rhombic or roundish.

AR. Winter-huls brown or nearly black.
c. Corolla divided to the base: stamens with rather loug filaments.
3. longicuspis, Sleb. \& Zucc. Slender tree, to 30 ft , with rufonsly pubescent winter-huls: $1 \mathrm{fts} .5-7$, stalked, oblong-lanceolate, long-acuminate, obtisely serrate, almost glabrous, $\quad-4 \mathrm{in}$. long: tis. in rather slender, narrow panicles, to 4 ln . long; petals linear, acute: fr. oblanceolate. May. Japan.
4. Sieboldiàna, Blume. Small tree: winter-buds mostly glabrous and often almost black: Ifte. 5-7, al most sessile, elliptic or oblong-lanceolnte, ncmminatr, terrate, usually pubescent along the millih benenth, 2-4 in. lons: pancles like the former; petals lincarspatulate, obtuse : fr. ollanceolate. May. Jap., Corea.
5. pubinervis, Blume. Small tree: Ifts. $\overline{-111}$, ovate or ovate-oblong, acute or achminate, serrate, pubescent on the veins beneath, $11 / 2-4 \mathrm{in}, \mathrm{long}$ : panicles less narrow than in the former: petals small und caducous. Jap. - Prc ably $\boldsymbol{F}$. serrutifolia, Hort., belongs here.
cc. Corolla with short thbe: unthers almost sessile.
G. cuspidata, Torr. Shrub or small tree, to 20 ft , with dark, reddish brown buds: Ifts. usually 7 , slender stalked, lanceolate or oblong-lauceolate, acuminate, coursely serrate, almost glabrous, 1/6-2 in. long: fls. fragrant. in $3-4$-in. long panicles: fr. spatulate-oblong. April. Texas to Arizona and N. Mex. S.S. 6: :60. Handsome Howering tree for temperate regions.

AA. Fls. without rorolla, appetring before the lus.
1:F'ls. lliccious, with the calys persistent on the fr.: anthers linearor linearooblong: lfts.!generally ह-o: buls broun. (sub. gеиия Leptalix.)
C. Fr. oblinceolute or lanceolate.
D. Branches and petioles glabrous.
7. Americàna, Líun. ( $\boldsymbol{F}$. NòueAngliv, Mill. F. (ilba, Marsh.). White Ash. Fig. 867. Tall tree, to 1:0 ft.: Ifts. 以enerally 7 , stalked. ovate to ovate-lanceolate, entire or denticulate, dark green above, glancous beneath, $3-5 \mathrm{in}$. long: fr. linear-oblong, with terete body, the wing not decarrent, $1 \frac{1}{2} \mathrm{in}$. long. From Canada to Fla., west to Minnesota and Texas. S.S. 6:268. Em. 377. - Very variable. Var. acuminàta, Wesm. ( $\boldsymbol{F}^{\prime}$. acuminutu, Lam. $\boldsymbol{F}^{\prime}$. epiptert, Michx. $\boldsymbol{F}^{\prime}$. Americana, var. glunca, Hort.). Lfts. dark green and shining above, rery glaucous and almost glabrous beneath, entire. Var, juglandifolia, Rehd. ( $\boldsymbol{r}$. iuglandifolia, Lam.). Lfis. less shining above, usually broader, more or less pubescent beneath, serrate at least above the middle. This is the northern form, while the former is more common in the southern ste.tes. Var. albo-marginata, Hort. Lfts. edged white.
8. Isnceolàta, Borkh. (F. víridis, Michx in part. F'. Pennsylvánica, var. lanceolita. Sarg.). Green Ash. Tree, to $60 \mathrm{ft} .: 1 \mathrm{fts}$. 5-9, short-stalked, ovate to oblong-lanceo late, irregularly serrate. green on both sides, almost plabrous, 2-5 in. long: fr. oblanceolate, with decurr. + wing, hence body margined, about $11 / \mathrm{m}$ in. long. Canada to Fla., west to Rocky Mt $\cdots$. S.S. $6: 272$.

> DD. Branches, petioles and liss. beneath pubescent, it least when young.
9. Pennsylvánica, Marsh. ( $\boldsymbol{F}$. pubéscens, Lain.). Red Ash. Tree, to $60 \mathrm{ft} .:$ lfts. $5-9$, stalked, ovate to oblong-lanceolate, acuminate, crenately serrate or entire, pubescent beneath, 3-6 in. long: fr. linear-spatulate, about 2 in . iong, with somewhat decurrent wing. Canada to Fla., west to Dakota and Mo. S.S. 6:271. - Var. aucubæfolia, Hort. Lrs. blotched yellow, less pubescent. Var. Bosci,

Hort. With dark green, shining foliage. Var. panndsa, Hort. Similar to the former, but liss. larger and narrower.
10. velùtina, Torr. ( $\boldsymbol{N}^{\prime}$. pistuciafolia, Torr.). Tree, to 40 ft ., with velvety pubescent, rarely glabrous branches: lfts. 5-9, sometimes reduced to 3 or even 1 , shortstalked, oval to lanceolate, entire or remotely serrate, yellowish green, firm and thick at maturity, pubescent or nearly glabrous beneath, $2-4$ in. long: fr. spatulate, with inarginless body. Texas to Arizona and N. Mexico. S.S. 6:267. - Not harily North.
11. Oregòna, Nutt. Tree, to 80 ft .: petioles sometimes ghobrous at length : lfts. $7-9$, almost sessile or short stalked, oblong or elliptic, acuminate, entire or obscurely and remotely serrate, light green, $21 / 2-6$ in. long, thick and firm at maturity: fr. oblong-obovate, with decurrent wing, about 116 in, long. Wash. to Calif. S. S. 6:276.
cc. Fr. elliptic or broadly spatulate, body compressed with the wing all iround.
12. Caroliniàna, Lam. (F'. platycírpa, Michx.). Water Ash. Tree, to 40 ft ., with pubescent or glahrous branches: lfts. $5-\overline{\text { }}$, stalked, ovate or oblong, acuminate, serrate, rarely entire, rubescent or glabrous beneath, 2-5 in. long: fr. 1-9 in. long, with pinnately veined wing, often 3 -winged. Virginia to Fla., west to Arkansas aud Texas. S.S. 6:97t-i5.
bB. F'ls. without caly. (omly Vo. 13 has a deciduous minute calyx): anthers cordute, rarely liroadly oblong: lft.. generally more than $i$, nearly glabrous. (Subgenus Fraximester.)
c. Branches t-angled and usually winged.
13. quadrangulata, Michx. Blue Ash. Tree, to 80, rarely $1: 20 \mathrm{ft} .: 1 \mathrm{fts} .7-11$, short-stalked, orate to lanceolate, acuminate, sharply serrate, yellowish

868. Key of Fraxinus
nigra.
Nat. size. green on both sides, $3-5 \mathrm{in}$. long: ils. perferet: fr. ohlong. emarginate, winged all round, 1-2 in. long. From Michigan to $\rightarrow$ isas and Tennessee. S.S. 6:263.
cc. Branches terete or nearly so.
D. Bloom dixcious: rachis at the buse of Ifts. with thick rufous tomentum.
14. nigra,Marsh. ( $\boldsymbol{F}$.sambucifolia, Lam.). Black Ash. Fig. 868. Tree, to 80 ft . : lfts. 9-11, sessile, oblong-lanceolate, rounded at the base, acuminate, sharply serrate, green on both sides, dark above, 3-6 in. long: anthers broadly oblong: fr. narrow-obtong, with decurrent wing. From Canada to Virginia, west to Mo. S.S. 5:264-65. Em. 38‥
15. Mandschùrica, Rupr. Tree, to 100 ft .. with obtusely quadrangular branches and dark brown buds: lfts. 9-11, almost sessile, orate to obloug-lanceolate, sharply serrate. pubescent or hispid on the veins beneath, 3-6 in. long: fr. oblong-lanceolate, $1-1 \frac{1}{2} \mathrm{in}$. long. Manchuria, Corea, Saghalin, Japan. Valuable tree of vigorous growth.
Dv. Bloom perfect or polygamous: wehis uithout con spicuous rufous tomentum.

## E. Buds bluck.

16. excélsior, Linn. Fig.866. Tall tree, to 120 ft . : buds black: Ifts. 9-13, almost sessile, oblong-ovate or ovatelanceolate, acute or acuminate, serrate, dark green above, paler beneath, ${ }^{2}-5 \mathrm{in}$. long: fr . oblong, often emarginate, about $11 / 2 \mathrm{in}$. long. Eu., W. Asia. Many different varieties are cultivated, some of the most distinct being the following: Var. álbo-marginàta, Hort. Lfts. edged white. Var. albo-variegàta, Hort, Lfts. blotehed white. Var. aùrea, Loud. With yellow branches. Var. aùrea pendula, Loud. With pendulons yellow branches, but a somewhat weak grower. Var asplenifolia, O. Ktze. (var. scolopendrifolia, Hort.). Lfts. very narrow, almost linear. Var. crispa, Willd. (var. atrovirens, Hort., var. cucullata, Hort.), with very dark green curled and twisted Ivs.; of slow growth. Var. diversifolia, Ait. ( $\boldsymbol{F}$. heterophylla, Vahl. F'. simplicifolia laciniata, Hort.
F. rufu, Hort., not Bose). Les. simple or 3-parted, usually incisely dentate. Var, monophylla, O. Ktze. ( $\boldsymbol{F}^{\prime}$. monophyllu, Desf. F'. simplicifolia, Willd.). Les. simple, ovate, serrate, rarely with 1 or 2 small lfts. at the base. Var. nana, Loud. (var. polemoniifolia, var, globosa, Hort.). A compact, slow growing, dwarf form with rery small lvs. Var. pendula, Ait. With pendulous branches. One of the best pendulous trees for forming arbors and shady seats.

## EE. Buda brou'n.

17. parvifolia, Lam. ( $\mathcal{F}$. ientiscifolia, Desf.). Shrub or small tree, to 15 ft ., with slender, of ten purplish branches: lfts. i-13, sessile, obovate or obovate-lanceolate, acute, serrate, $1-2 \mathrm{in}$. long: fr. oblong, obtuse or acute. W. Asia, S. Europe. Var. pendula, Dipp., with pendulous branches, forming a graceful small weeping tree.
18. potamóphila, Herd. Small tree, to 30 ft ., with rather stout, upright branches: lfts. $7-13$, stalked, rhombic-ovate or ovate-lanceolate, serrate, acute or acuminate, $1-21 / 2 \mathrm{in}$. long: fr. linear-oblong, Tur' estan, Songaria.
F. angustifolia, Vahl. Allied to F. parvifolia. Lfts. oblonglanceolate or lanceolate, serrate, to 3 in. long. S. Eu. N. Afr. W. Asia.-F. anómala, Wats. Small tree. to $\because 0 \mathrm{ft} .$, with guadrangular branches: lis. simple or pinnate, roundish or round ish ovate, $1 \frac{1}{2}-2$ in.: fr. obovate. Colo., Ctah. S.S. 6: $266 .-F$ argentea, Loisel., is a var, of $\mathfrak{F}$. rotundifolia, but in gardens often other Ashes, especially varigated forms, are cult. under this name. -F. Rerlandieriàna, DC. Allied to F. lanceolata. Tree, to 70 ft .: 1 fts . $3-5$, ovate or obovate, serrate, downy along the veins beneath, to 4 in long. Texas to Mexico. S.S. 6:273.F. Biltmoreina, Beadle. Allied to F. Americana. Tree, to 00 ft .: branches pubescent: lfts, $i-9$, oblong-lanceolate, pubescent heneath, $3-6 \mathrm{in}$. long. fr. $11 / 2 \div \mathrm{in}$. long, emarginate, with elliptic,

19. Freesia refracta, var. Leichtlinii,
marginless body. N. Carolina.-F. dimórpha, Coss. \& Dur. Allief to $F$. xanthoxyloides. Shrub: lfts. $\mathbf{5}^{-7}$, roundish ovate to oblong. crenately serrate, $1 / 2-1 \mathrm{in}$. long. N. Africa. Tender. $-F$ dipétala, Hook. A Arn. Allied to F. cuspidata. Shrub: lfts. 5-\%, elliptic or ovate, serrate or entire, $1 / 2-4$ in. long: ils. with 2 5-b, elliptic or ovate, serrate or entire, $1 / 2-4$ in. long: ils. With 2
obovate petals. Calif., Mexico. S.S. $6: 261$. Tender.-F. floriobovate petals. Calif., Mexico. S.S. 6:261. Tender.-F. flori bunda. Wall. Allied to F . longicuspis. Tree, to 40 ft .: lfts. $5-7$ ovate-lanceolate, serrate, reticulate beneath. $2-4 \mathrm{in}$. long: pani cles large, to 10 in . long: petals oblong. Himalayas. Tender. F. Grégyi, Gray. Allied to $F$. cuspidata. Small tree: lfts. $3-7$,
oblong-oborate, crenately serrate, or entire, $1 / \frac{1}{-1}$ in. long: fr.
 Hook. f. Aılied to F. Bungeana. Shrub: lfts. 5, almost sessile, obovate to ovate-lanceolate, entire or serrate, acute, 1-3 in. long. China. B.M. 6678.-F. oxycárpa, Willd. (F. oxyphylla, Bieb.). Alled to F. parvifolia. Tree, to 60 fa : lfts. i-11, lanceolate, serrate, pubescent along the midrib beneath, $1 / / 2-3$ in. long: fr. oblanceolate, acute. S. Eu., W. Asia.-F. profinda, Bush. Allied to F. Pennsylvanica. Lfts. $7-9$, oblong-lanceolate, acuminate, entire, $3-6 \mathrm{in}$. long, tomentose beneath: fr. $2-21 / 2 \mathrm{in}$. long, with decurrent wing. Ark., Mo.-F. raibocäpa, Regel. Shrub: lfts. 3-j. oblong or oblong-obovate, usually entire, obtuse, 1-2 in. long: fr. strongly faleate, with obovate not decurrent wing. Turkestan, Buchar. - F'. Régeli, Dipp. Probably only var. of $F$. potamophila, with darker green, broader and less acute lits. Turkestan.-F. rhynchophýlla, Hance. Large tree: ds large, thickly corered with rufous tomentum: Ifts. oblong-obovate, remotely crenate-serrate, $2-\frac{1}{4}$ in. long: is perfect apetalous, with a calyx. China. G.F.6:485. Fs, rotumdifolia Lam. Allied to F. Onnus. Small tree, to Of ft - lfts $5-9$ roundish or roundish obovate irregrlarly 2ift.: lfts. 5-9, roindish or roundish obovate, irreguariy serrate. S. Europe.- $F$. Sogdiana, Bge. Allied to F.angustifolia. Small tree: lvs. often in 3 's and rather crowded: lits. 3-5, lanceolate, serrate, $2-4$ in. long. Tnrkestan. - F. tamariscifolia, ahl. Alied to F. parvifolia. Small tree: lfts. 9-11, short-stalked, ohlong-lanceolate, serrate, 1-3in. long. W. Asia. $-F^{*}$. Texénsis, Sarg, Allied to F. Amerieana. Tree, to 40 ft : litts. 5 , broadly oval or ovate, rounded or acute at the apex, $1 / 2-21 / 2 \mathrm{in}$. long. Texas. S.S. 6:270.-F. Theo phrasti, Nonv. Duh., is a var. of F. Ornus, but in gardens other forms are sometimes eult. under this name. $-\boldsymbol{F}$. Turkestánica Carr. =F. Sogdiana. - F. xanthoxyloides, Wall. Shrub or small tree, to $2.5 \mathrm{ft} .:$ lfts. $5-9$, oblong, crenulate-serrate, $1-: \mathrm{in}$. long. Himalayas. Belongs to the subgenus Sciadanthus, having per fect adetalous ths. with calyx.

Alfred Rehder.
FREESIA (the author of this genus never explained the name). Iriddcer. Freesias (Fig. 869) are amongst the dozen most popnlar bulbous plants for fall planting and winter blooming, and next to the Chinese narcissus, which can be grown in pure rater, they flourish in home windows with less care than most other lulbs. They have tubular Hs., white or pale yellow, borne in a pretty fashion that makes them amengst the most highly individualized of all garden plants. The $\overline{5}-\overline{7}$ tls. are upright and strung along a jointed axis which is suddenly oent back almost at right angles to the vertical peduncle. (This habit is an accentuation of that of Tritonia, from which Freesia is essentially distinguished by the 2-cut strle.) $O$ : the splendid and almost numberless bulbs from tho Cape of Good Hope (including the iris, amaryllis, and lily fantilies) Freesias are, next to gladiolus, the most popular, though not so variable as lxias. This popularity is a growth of the last quarter century or less, though Freesias have been in cultivation since 1816 or earlier. Conservative botanists now suppose that the Freesias are all originally of one stock, which species should be called $\boldsymbol{F}$. refracta. The extrentes of variation in form are shown in Figs. 869 and 870 , from the long and slender tube of var. albn to the short and broader tube of var. Leichtlinii. One of the earliest pictures of the plant is that in the Botanical Register for 1816 (Plate 135, as Tritonia refrácta), a part of which is reproduced in Fig. $8 ; 0$ to show the great irregularity of the corolla lobes at that early period, and the straggling habit of the As., some pointing down and others up. The colors in the plate are unattractive, almost repulsive, being a sickly green throughout, with a strong orange color on the tips of the 3 lower lobes. The garden evolution of the Freesias has proceeded along two lines. The greatest effort has been expended to produce a pure white flower, and in the best strains the white color is mostly associated with a long at.d slender tube. The ideal of a yellow flower is less popular, and is mostly associated with the shorter and broade: tube. In both cases the forms with straggling inflorescence and irregular corolla lobes have been relentlessly suppressed. One may easily see how strongly 2 -lipped and gaping were the flowers of 1816 , and how strongly the tube was bulged upon one side. Any tendencies toward such forms in morlern bulbs are signs of degeneration or carelessness somewhere. In pedigree plants the lobes are beautifully rounded and the flowers symmetrical. Perhaps the rost charming picture of the two prevailing ideals is Plate 847 of the Gsrden, vol. 22, 1882. One of the eailiest pictures of the short-andi broad-tubed yellow type is that in I.B.C. 19:18:0, published in 1832 as Tritonia odordta. The
probable course of evolution and degeneration in Freesias is pictured in Ging. $7: 197$ and A.F.14:1179. In the pursuit of either ideal, the yellow spots have been considered objectionable. The original stock seems to hare a trace of violet color, which sometimes shows itself in varying intensity, sometimes in spots or lines, sometimes in a suffused tint. Lately some fine effects are said to hare been secured with this minor color, but it is doubtful if the violet hue will ever produce anything of the first importance. Less inportant pictures of Freesias are in Mn. 8, p. 87. A.G. $17: 539$. Gn. 51, p. 304. G.C. IlI. $3: 588 ; 19: 391,392,397$. The writer has not seen the older figures in Jacq. Ic. t. 241 Redouté, Lil. t. 419 and Git. 808. For garden monographs,see Gng. $7: 196$, and Gn. 22, p. 94.


The following points are taken with ouly trifling changes from $F$. A. Waugh's review of Freesias in Gig. 7:196: "As a florist's flower the white Freesias are most raluable, the whiter the hetter. The original type of Freesia refracta evidently had a strong tendency toward the yellow color; this keeps turning up with great persistence in $F^{\text {. refracta alba. There is }}$ always a certain per cent of yellow mixture, even in the finest strains. Sometimes it is only $2-3$ per cent; sometimes it is 50 per cent; usually it runs about $5-10$ per cent. The causes of this are not certain. A Californian makes a quasi admission of the allegation that Ameri can grown stock shows more yellow than the European grown, and suggests that the strong sunlight of his state accounts for the tendency toward yellow fls. Experiments by V. A. Clark show that the yellow color is formed under the direct oxidizing influence of sunlight. In general it seems that the greater amount of yellow is correlated with stronger growth. Plants which grow very vigorously show darker green leares and more of the peculiar sulfur color. White flowers are often, like white leares, a sign of weakness in the plant. This makes it difficult to keep a stock of Freesias rigorous and at the same time selected to a high degree of purity as regards the flowers."
Freesias are much forced by florists, chiefly for cutflowers at Christmas. If cut when only 2 Hs, are out, the rest will open. They can be had in flower fron Christmas until June by successional plantings from Aug. to Feb. For the best results the largest and highest priced bulbs should be planted as early as Aug. One of the strong points of Freesias, howerer, is that planting may be delayed longer than with many other bulbs. Bulbs may be dried off gradually in the pots and kept diry during summer. Repot; the larger bulbs will bloom, but will not give so good results as medium size imported bulbs not previously forced.

In the home window Freesias will Hower in 6 weeks after growth starts. Their fragrance is delightful. They are not so particular as the other important bulbs about being potted long before they are wanted for forcing and stored in a cool place, where the tops are held back while the roots develop. Be careful to have good drainage. There is danger of overwatering until the plants are in flower.

The wholesale production of Freesia bulbs is an important industry. The Channel Islands have long been known as one of the most favored localities for growing Cape bulbs. Freesias are comparatively little grown in Holland. The centers of the industry seem to be shifting. The Bermuda Islands now have a small share of the trade, and California has the largest share of any of the American states at present.
A. Fls. distinctly 2 -lipped: inflorescence straggling: colors dull; spots prominent.
refracta, Klatt. Fig. 870. The original type no longer in cultivation. Lrs. linear: spathe-ralves small, oblonglanceolate, scarious:

AA. Fls. and inflorescence more nearly regular: colors purer; spots not prominent.
B. Tube typically long, slender and gradually narroued.

Var. álba. Fig. 870. Lrs. and spathe-valves as in var. odorata.
BB. Tube typically short, broad, suddenly constricted. c. Color pale yellou.

Var. Leichtlinii. Fig. 869. There is a subvariety major int. by Sutton.
cc. Color bright yellou.

Var. odorata. Lrs. broader and less rigid than in the type: spathe-valves broader and more obtuse. Subrarieties with various colors are lictea, lilacina, formòsa and Klatteàna.
ccc. Color orange.

Var. aùrea. Odorless, later than the rest and more uncertain.
Other kinds of less importance are crispa, tricolor, xanthospica, purpurascens and xanthospila. These names do not appear in American catalogues. Bella is a variety highly praised by some.
W. M.

FREMONTIA (after John Charles Fremont, distinguished western explorer, who discovered it in 1846). Syn. Fremontodéndron. Ste:culiàcece. Beautiful freeflowering shrub, with alternate, rather small, yalmatelylobed lvs. and large yellow fls. appearing in great profusion in June. It is not hardy North, and in cool regions it should have a sunny and sheltered position, preferably against a wall of southern aspect; it prefers well-drained, rather dry soil, and dislikes, especially during the winter, an excess of moisture. Prop. by seads or by greenwood cuttings under glass in summer. One species in California, allied to the Mexican Cheiranthodendron : shrub or small tree, with stellate pubescence: lvs. alternate, slender-petioled : fls. solitary on short, lateral branchlets, apetalous; calyx large, deeply 5 -parted, with 3 small luracts at the base; stamens 5 -connate toward the base into a tube: fr. a 5 celled, dehiscent capsule with many seeds.
Californica, Torr. To 20 ft .: lvs. generally roundish orate, cordate or rounded at the base, obtuse, 3 - to 5 lobed or almost entire, whitish or ferrugineous pubes. cent beneath, $3 / 4-1 \frac{1}{2}$ in. long : calyx $11 / 2-3$ in. across. deep yellow, with stellate hairs outside, villous at the base within; lobes orbicular: capsule densely beset with hispid hairs, 1 in. long. S.S. $1: 23$. B.M. 5591. Gn. 3. p. 55; 29:525 and 33, p. 566. F.S. 22:2349. R.H. 1867:90. I.H. 13:496. В.H. 17:13.

## Alfred Rehder.

## FRINGE TREE. Chionanthus Virginica.

FRITILLARIA (Latin fritillus, commonly understood to be a checker-board, but may have meant dice-box). Lilidece. This genus includes the Crown Imperial and
the Fritillaries, hardy, bulbous plants, mostly lowgrowing and spring-blooming, with drooping or nodding tls. which are oiten checkered or tessellated with dark purple and grecn, but some also have brighter colors. They resemble lilies in having drooping or nodding fls., but their anthers are fixed at the base, while those of the lilies are fastened on the back but are free to swing about. Lilies, too, have funnel-shaped fls., while Fritillaries and tulips have bell-shaped tis., and tulip fls. are erect. Nearly all the Old World Fritillaries resemble tulips in having coated bulbs, while all the American Fritillaries resemble lilies in having scaly bulbs. It is a curious fact that the Cape of Good Hope, which has supplied the world with so many excellent bulbous plants, has no lilies, tulips or Fritiliaries.

By far the most popular kinds are the Checkered Lily

871. Common Snakn's-head or Checkered Lily. (Fritillaria Meleagris.)
Faithfully redrawn from Besler's Hortus Eystettensis, published in 1613. (Incorrect as to stamens and pistil.)
and Crown Imperial, Figs. 871,874 . These are the hardiest, the easiest to cultivate and the most variable. The Crown Imperial is one of the most characteristic plants of old-fashioned gardens, but it has been banished from many modern gardens because of its strong fotid odor. It is the most robust of all the species, and until 1897 was supposed to be the only one with its fls. in umbels, all the others being solitary or in racemes. It is a truly imperial plant, and rejoices the children early in every spring by its marvelous pearly drops of nectar, which seem never to fall. F. Meleagris, the most popular of the purple kinds, is the common Snake's Head or Checkered Lily, so called from the tessellation of purple and green, which is prettiest when as sharply and regularly defined as possible. This plant grows wild in moist English meadows, and can be naturalized in large quantities in such situations. It is the only kind that can be used for all the purposes mentioned below and for cut-fls. Other ancient inhabitants of European gardei a are $\boldsymbol{F}$. latifolin, luten and Persica, for the last of whic.lwe are indebted to "Mr. Nicholas Lete,
a lover of all fair flowers," by whose "procurement," Parkinson says, it was secured through Turkey. All the remaining kinds are rarer.

As a rule, the kinds that are chiefly purple or green, or mixtures of both colors, are dull, unattractive and curious compared with the few kinds that have brilliant yellow or red. Of the duller and purple kinds, 2 of the choicest, next to $F$. Meleagris, are $\boldsymbol{F}$. tulipifolia (which is Hamed like a tulip and never checkered) and $F$. Camtschatcensis. great masses of which in Alaska make one of the " summer sights" renembered by the tourists. The white in Fritillaries is perhaps almays more or less greenish, and the white color in $\boldsymbol{H}$. Meleagris is as good as in any species. By far the most brilliant of the genus is $F$. recurva, which is also the most difficult of culture. Next in brilliancy come $\boldsymbol{F}$. lutea, aurea. Moggridgei and pudica, all highly individual and all sellow, some checkered, others not.
The culture of Fritillaries is rather complicated, 2 kinds capable of being naturalized, some cult. in borders, some in rockeries and others in pots. The Crown Imperial, being exceptionally vigorous, requires the deepest planting, richest soil and most room. The earth should be trenched. Well rotted manure may be worked into the soil 6 in. below the bulbs and the bulbs set on a level 6 in. from the surface of the ground. This species has the largest fls. in the genus. If possible it should be shaded from the midday sun, as southern exposures are said to make the fls. smaller and shorter liven.
In border cultivation the essential peculiarities are a sheltered, shady site, early fall-planting, division every 2 or 3 vears, and as a rule a warm, deep, sandy loam, which is not too cold or too retentive of moisture. Bulbs of the taller kinds may be planted 3-4 in. deep; bulbs of the dwarf kinds may be set at half that depth. As all Fritillaries increase rapidly by offsets, it is desirable to lift and divide the plants at least every 3 years, or the small bulbs will rob the big ones. For the same reason Fritillaries are rarely prop. by seeds.
The dwarf and rare sorts require more care and de serve some leaf-mold in their soil. "E. J.," in Gn. 52 , pp. $242-244$, says that such plants require an evergreen carpet through which they may spring, and recommends Sedum Hispanicum or its var.glaucum as the most per fect carpet possible, taking the least from the soil and giving the least possible resistance to the plants below. "Such carpets must of necessity be plants of very dwarf, reeping growth, such as some of the smailer, mossy saxifrages or aubrietias, that do not mind frequent disturbance and are easily replaced." For the principles of culture in rockeries and pots, see Alpine Gardens and Bulbs.
Our native Fritillaries, which include the bright-fld. recurva and pudica, are confined to the Pacific coast. Of these Carl Purdy makes 2 cultural groups, based on the character of bulb, the kind of soil and the conditions of shade. The irst group contains $\boldsymbol{F}$. biflora, lilia. cea and pluriflora: the second $F$. atropurpurea, coccinea, lanceolata, pariflora, pudica and recuria. The former grow in open fields in heary clay soils: the latter in shidy woois, in well drained soils, but $F^{r}$. pudica does not need as much shade as the others of its group, and must have sandy loam and slight shelter. It is a native of the sandy sage brush region, east of the Sierra Nerada and Cascade Mts. The bulbs of the first group are composed of thick, heavy scales attached to a thin, rhizomatous base; in the second group the bulbs are of one piece, and low-conical in form, their sides thickly corered with small, round, white rice-like offsets. For the first group Purdy recommends a rich loam, and a slight shade to draw out the stems and prolong the bloom; for the second group a light, loose soil, rich in mold, a sheltered place and considerable shade. At the best these are not profuse in their bloom. E. J. advises that the bulbs of $F$. recurva should be planted with the least possible delay.
The key to the various subgenera given below is essentially Baker's in his monograph in Latin in Jour. Linn. Soc. $14: 251$ ( 1875 ); it rarely happens that the botanical and horticultural interests agree in using such simple and obrious characters as those of the bulb and style. The nectaries or glands are less useful and
reliable, but they help to give a sense of the natural groups in this large genus.
A. Bulbs tunicated (i.e., coated).

$$
\text { B. Style } \overline{3} \text {-cut. }
$$



Ee. Glands uide............--14. Monocodon DD. Glunds obscure, equal,

BB. Style undivided.
c. Glands equal, obscure ....15̄-17. Amblimion
CC. Glands unequal, prominent
D. Glands long $\qquad$ 18. Korolkowia DD. Glands short Rhinopetalcy As. Bulbs scaly.
B. Style undivided ...............19-21. Therisia BB. Style 5 -cut.
C. Capsules acutely angled.
D. F'ls. solitary or race-
mose. . . . . . . . . . . . . . . . . 2 -25. Goniocarpa
dD. Fls. in iombels............ 26. Petilicim
cc. Cupsule obtusely angled ...ei-30. Liliorhiza

Armena, 16. atropurpurea, 24. aurea. 9.
bitlora, 29.
Camschatcensis, 30. coccinea. 25.
delphinensis, 3.
Elwesii, 14
Imperialis, 26.
Kamschatcensis, 30. lanceolata, 22 .
latifolia, 7 .
index.

1. Meleàgris, Linn. Figs. 871-873. Distinguished from No. 2 by the glands $5-6$ lines long and stigmas half as long as the style. Typically l-fld. England and Norway, througlı central Eu. to Caucasus. Gn. 32:626; 47, p. 330; 52, p. 243.-In the English meadows whitish and purplish forms are found which are more or less checkered. The Dutcli bulb-growers keep at least 10 kinds distinct. The extremes of color-range are (1) a greenish white, (2) a sufficient degree of purple to make the checkering as distinct as possible, and (3) an approach to yellow. Some kinds bear 2-3 fis.; some are double; some fls. spread so widely as to be almost funnel-shaped.
Var. contorta, an old monstrosity, instead
2. Stamens
and pistil of Fritillaria Meleagris.
From Flora Danica, show ing the 3 -cut stigma, anim portant character in this genus.

Libanotica, 20. liliacea, 28 . lutea, 8 .
Meleagris. 1. meleagroides, 11. minor, 11.
Moggridgei, 3.
palliditlora 13.
palliditlora. 10.
parvitiora, 23
Persica, 19.
pluritlora, 21, 27.
pudica, 17. Pyrenaica, 12. Raddeana, 26. Ruthenica, 6. Sewerzowi, 18 Thunbergi, 4. tubæformis, 3 tulipifolia, 15. verticillata. 4 Walnjewi, 5 Whittalli, 2.
 of segments free all the way, and a shouldered base, has the lower third of the erianth united into a funnel-shaped tube. The yellow of some tls. is conjectured to be the result of a cross with $\boldsymbol{F}$. Iutea made before Gerarde's time, say 1630. In Eng. land the species flowers toward the end of April. It is the best"all-round"species.
2. Whittallii, Baker. Height 1 ft .: stem 1-Hd.: lrs. linear, glaucous: fls. checkered green and brown. Mt. Taurus. Int. 1893.

873. Strange form of doub ling in the Checkered Lily. Pictured as early as 1613.
3. tubæformis, Gren. \& Godr. (F. delphinénsis, Gren.). Distinguished by the glands $3-4$ lines long and very short stigmas. Alps. Baker gives the same color range as for $\boldsymbol{F}$. Meleagris, but "D.K.," in Gn. 32, p. 537, regards as the typical color a purplish brown, faintly marked with yellow, belonging to a plant that fls. in July. However, the most desirable form is var. Moggridgei, Boiss. (F. Moggridgei, Hort.), with its bright yellow, checkered inside with bright red or redlish blown. This is a dwarfer form from the maritime Alps, with wid re lvs. (6-9 lines), longer stigmatic cusps, ap. proaching $F$. lutea, and essentially yellow-fll. G.C. II. 13:532. Gn. 18:244. F.M. 1880:405.-It blonms in mid. April. Var. Burnàti, Planchon, bright plum, checkered
greenish yellow; has a broadly bell-shaped, smaller fl. which is even earlier and has smaller glands.
4. verticillata, Willd. ( $F$. leucánthu, Fisch.). This and No. 5 are distinguished from Nos 6-10 by the greater beight of the former and their lvs. curled at the tips into tendrils. Height $11 / 3 \mathrm{ft}$. : stems often $1-$, sometimes 2-5-fld. : fis. White or yellow, never checkered or spotted.

874. Crown Imperial-Fritillaria Imperialis.

Altai Mts. B.M. 3083. - In the type the lvs. are numerous, 20-40; anthers barely half as long as the filaments: style no longer than the ovary, but in var. Thùnbergii ( $\dot{F}$. Thunbergii, Miq.) the upper lvs. are oftell sparse: anchers as long as the filaments: style $11 / 2-2$ times as long as the ovary. G.C. II. 13:532. It is doubtful if the yellow-fld. form is cult.
5. Walujèwi, Regel. Probably belongs here, as its Irs have tendrils. It is the only kind that is silver-white outside and crimson-brown spatted white or yellow inside. Turkestan. Gn. 52:1137.
6. Ruthénica, Wickst. Height 1-2 ft.: stem 1-3-fld. : lvs. 6-20: fis. livid purple, obscurely checkered. Caucasus.

7-9. latifolia, Willd., and its allies F. lùtea, Miller, and F. aurea, Schott. These three names may be taken as representing the 3 well-marked types of color: F. latifolia representing the extreme of dark purple and green without yellow ; $\boldsymbol{F}$. aurea, at $t^{\prime \prime}$ e other extreme, being essentially yellow, the checker marks smaller and more sharply defined, and the colors of the brightest ; $F$. lutea an intermediate form, essentially yellow, but greenish, and with the purple checker-marks duller in color and not so sharply defined and regular. In this sense the pictures may be referred to the types as follows : B.M. 853 and 1207 to $\mathcal{F}$. latifolia; B.M. 1538 to F. lutea; B.M. 7374, R.H. 1878, p. 287, Gin. $42: 867$, J.H. 1II. 28:357, and probably Gt. 840, Fig. 1 (not seen by the author) to $F$. aurea. $F$. latifolia represents the extreme width of lvs., and $F$. aurec is said to differ in having the lower lis. often whorled. All these grow $1 / 2-1 \mathrm{ft}$. high. One of the most anciently cultivated of all Fritillaries is $F^{\prime}$. lutea, which is found promiscuously mingled with the wider-leaved form, both wild and cult. At present the most popular of the three is probably $F$ aurea, which began a new era of prosperity about 1894 with its reintroduction by Leichtlin. All flourish in the Caucasus region. The Dutch bulb-growers advertise 10 varietics of $F$. latifoliu.
10. pallidiflora, Schrenk. Allied to 1 and 12, but with more numerous, broader les., and larger fls. Height 6-15 in.: lvs. 8-25: t1s. 1-6. Siberia. B.M. 6725 (green, with a few dark purple spots). Gt. 1857:209. R.H. 1880, p. 215. G.C. II. 19:573. - "Pale yellow." I'an Tubergen.
11. meleagroldes, Patrim. ( $F$ '. minor, Ledeb.). Height 1-2 ft.: stem very slender, mostly 1-fld.: lvs. 3-6, narrowly linear: fls. dark purple, spotted green; anthers a third the length of the filaments. W. Siberia. B. M. 3280.
12. Pyrenaica, Linn. Height 1-1 $1 / 2 \mathrm{ft}$., mostly 1 -fld.: lvs. 6-10, linear, glaucous: fls. dark purple, spotted green; anthers twofifths the length of the filaments. Pyrenees. B.M. 664, not 952 or 1216 .
13. Oranénsis, Baker. Height $1-11 / 2 \mathrm{ft} .:$ lower lvs. lanceolate: upper lis. linear: fis. dark parn', obscurely checkered green. Mt. Oran. G.C. I1. 13:341.
14. Elwesii, Roiss. Les. 5-6: fls. green, flushed purple on back and tips, not checkered. Lycia. B.M. 6321, erroneously, as $F$. acmopetala.
15. tulipifolia, Bieb. One of the choicest and daintiest kinds. Very distinct. Foliage glaucous blue: fls. resembling a tulip in shape, and with a chalky look outside. Height 2-8 in.: stem 1-fld.: lvs. $3-4$, elliptic, concare, nerreless, $11 / 2-21 / 2 i n$. long: fls. solitary, inside rusty brown-purple, not checkered, outside dark glaucous blne, streaked with the same purple. Caucasus. B.M. 5969.
16. Armèna, Boiss. Height 6-12 in.: stem 1-fld.: Ivs. 4-5, lower lanceolate, ulper linear: fls. between funnel- and bell- shaped, dark purple, not checkered. Armenia. B.M. 6365. J.H. III. 35 :83. Var. fúsco-lùtea, Hort., tawny yellow.
17. pùdica, Spreng. Lvs. 3-6, lower ones strap-shaped, of ten opposite (while in $F$. tulipifolia and $A$ rmena they are alternate), upper ones linear: fls. pale or dark yellow, rarely purple, never checkered. N. W. Amer. Gn. 13:133. R.H. 1895, p. 229. G.C. III. 19:403. J.H. III. 32:295. Mn. 4:49. - The stamens (as in Nos. 14 and 15) are nearly as long as the perianth. "Deep orange yellow, fragrant." Vun Tubergen.
18. Sewérzowi, Regel. Height 1-11/2 ft.: lowest lvs. lorate-lanceolate, 1 in . wide, of ten opposite, upper lrs. lanceolate, 6-7-nerved, $3-4$ in. long: pedicels $3-6$ lines long: fls. 6-10, green, not checkered, but with a few purple spots outside; filaments purple; anthers green.

Turkestan. Gt. 760. B.M. 6371. J.H. III. 30:319. G.C. III. 1:457.
19. Pérsica, Linn. Robust, 2-3 ft. high : lvs. 40-60, glaucous, linear, $4-6$ in. long, $6-9$ lines wide : raceme 10-50-Hd.: fls. small, bell-shaped, slightly odorous, lilacpurple, sometimes chalky outside and lined with purple but never checkered; stamens a trifle shorter than the perianth. Orient. Fls. end of April or beginning of May. B.M. 1537. Var. minor, Sims, B.M. 962 (excluding synonymy), has smaller tis. and anthers barely exserter.
20. Libanótıca, Baker. Closely resembling No. 19, but with $6-30$ strongly odorous fls., pale lilac, with darker vertical veins; stamens a third shorter than the perianth; anthers purplish. Palestine, rocky and shady parts of Mt. Lebanon.
21. pluriflora, Torr. Height $1-1 \frac{1}{2}$ ft. : $1 \mathrm{rs} .8-12$, lowest often opposite, oblanceolate, the rest narrower: raceme t-12-thl.: ths rosy purple, not checkered. Calif. G.C. III. 21:23 (a central band of purple down each segment). - "Pale reddish purple." Van Tubergen.
92. lanceolàta, Pursh. This and Nos. $23-2 \overline{0}$ are natives of W. N. Amer., and grow 1-11/2 ft. high. Stem 1-3-fid.: lvs. $A_{2}-10$, lanceolate, whorled: fts. pale purple, mostly distinctly checkered Var. grácilis, Hort., dark purple.
23. parriflòra, Torr. Stem 5 -20-fld.: lvs. about 9, linear: As. purple, suffused green, not checkered.
24. atropurpùrea, Nutt. Stem 1-6-fld.: lvs. 12-20: fls. dark purple obscurely checkered with greer. Recent. -Said to rival $F$. recurva.
25. coccinea, Greene. Stem 1-4-fld.: lvs. 4-12 in 2 or 3 whorls at middle of stem : fls. yellow and scarlet. checkered.
26. Imperialis, Linn. (Imperialis corondta, Dum. Cour.). Crown Imperial. Fig. 874. Height 2-3 ft.: Ivs. numerous, crowded, ascending, $1 / 2-1 \mathrm{in}$. wide, highest often in whorls of 8-10: tls. end of March. B.M. 194 and 1215. Gn. 46, p. 101 and 52, p. 243. A.G. 13:488. R.B.20:196. - Thereare single and double forms in yellow and red, and kinds with foliage striped white, and with gold. The Dutch growers also advertise Aurora, Maximus, and William Rex, red; Sulphureus, sulfur yellow; and Crown upon Crown. Anierican dealers add Couronne Orange and Red Slagzwaard. Var. longipétala, Hort. Gn. $56: 1247$. For morc than a century $F$. Imperialis has been the only species in cult. With fls. in umbels, but Max Leichtlin writes to G.F. 7:177 (1897), that F. Raddedna belongs to the same group, blooms earlier, and has straw-colored fls . of a different form from F . Imperialis, and adds: "This is likely to cause a revolution in the Imperialis strain when once it has been carefully hybridized.'
27. recúrva, Benth. This has stamens only a little shorter than the perianth, while in the next 3 species they are only half the length of the perianth. Utterly distinct from all other Fritillaries by the color of the fis., which are bright red outside without a trace of purple, and brilliant yellow inside, spotted with red. Height 6-24 in.: stem 2-8-fld., purple, mottled green: lvs. 6-12, lower ones in whorls of 3-4, linear, ascending: fls. narrow, bell-shaped. Calif. B.M. 6264. Gn. 18:257. Var. pluriflora, Hort., is perhaps the best strain.
28. liliàcea, Lindl. Height 6-12 in.: stem 1-6-fld.: lvs. 9-15: fls. between funnel-and bell-shaped, whitish, veined green, not checkered. Gt. 1871:715.
29. biflora, Lindl. Height 6-9 in.: stem 1-2-fld.: lvs. 4-8: fis. same shape as in F. liliacea, pale purple, suffused green, scarcely checkered.
30. Camtschatcénsis, Ker-Gawl. Mostly written Kamtschatcensis and variously misspelled. (Lílium Camtschatcénse. Linn.). Brack Lity. Height 6-18 in.: stem 1-3-fld.: lvs. $10-15$, dark purple. Siberia, Alaska to Calif. Gn. 25:432; 52, p. 242. F.S. 12:1232.
F. citrina is cult., but little known. See Gn. 52, p. 243.
W. M.

FBGLiCHIA (J. A. Frælich, physician of Ellwangen, monographed Gentiana, 1796, died 1841). Amarantàcea. Eight species of woolly or hairy North American
annuals, found chietly in West Indies, Mex. and Brazil. Les. oppositr: spikes opposite, terminal: Hs. perfect, 3 -bracted ; calyx tubular, 5 -cleft, hardened and spiny crested in fr. F. Floridana, Moq., has been advertised for sale only rarely in America. It is cult. abroad. Height 1-3 ft.: lvs. linear to oblong: spikes 2 in . long or more: fls, white and woolly, set off by small blackish bracts. July-Sep. B.M. 2603, as Oplothec: Floridana.
W. M.

FROG-BIT in America is Limuobium ; abroad Hydrocharis Morsus-rance.

FROST. The hoar Frost which injures plants is frozen dew. An object cools at nightfall and the moisture of the air condenses upon it, forming dew. If the temperature then fails below the freezing point, Frost results. Frost is a local phenomenon. It ordinarily occurs in the lower places where the cold air settles; also when the sky is clear, since radiation of the earth's heat is then more rapid. It occurs in still nights when currents of air of varying temperatures are not set in motion. Frosts must be distinguished from freezes. The latter are wide-area disturbances. They are associated with storm centers. They often occur over a wide range. They frequently accompany high winds. Frosts can often be prevented, but freezes are usually beyond the control of man.

Frost is prevented when the temperature is not allowed to fall below the freezing point. The temperature is usually controlled by indirect means. The greatest immunity is to be expecteci when an artificial cloud can be spread over the area. This cloud prevents the radiation of the earth's heat, and thereby prevents the rapid fall of temperature. The basis of this artincial cloud is usually smoke, but if the smoke carries with it a large amount of rapor of water, it will afford a more complete protection. The best material for making the smokecloud is something which will burn with a slow, smouldering fire and afford quantities of smoke. Materials which burn quickly not only afford little smoke, but they are likely to cause upward currents of air which may be injurious. The actual heat of the fire counts for nothing except in the immediate vicinity. Componnds which contain much tar are usually efficient. Of home resources, damp straw or hay, loose manure, prunings of trees, and other litter are among the best. It is essential that the piles be comparatively small and rather numerous. On level lands it is best to have these piles on all four sides of the area at a distance apart of not more than 10 to 30 feet. On somewhat steep slopes the piles may be placed on the upper side, since there usually is a slow current of air moving down the hillside which will carry the smoke over the plantation. The piles should be as wet as possible and yet burn. Usually Frost occurs in the latter part of the night. It is important, therefore, that the smudges be kept up all night if full protection is secured. It is best for a man to sit up and derote himself to the husiness. Brush piles made of dry trimmings are inefficient for Frost protection. Moist litter of some kind which burns rery slowly should be rixed wi+t $-\boldsymbol{m}$. Of late years variouspreparations of $\therefore \operatorname{rrn}^{\wedge}$ ad tar have been perfected for the making $0_{2}$ : to protect. the n'l when one has large areas to protect. the
materials to se .
In small ar ?as, Frost mi y be prevented by sprinkling the plantation with water at nightfall. Any derice which keeps the air in motion will also tend to prevent Frost; but such devices are impracticable except on a very small scale. In cranberry bogs Frost may be prevented by completeiy flooding the plantation.

Frosted plants may be recuperated by keeping them cool and rather dark for a day or two and syringing the tops with cold water. Do not let the sun strike them while they are frozen. Extract the Frost very gradually.
Farmer's Bulletin 34, of U. S. Dept. Agric., has 24 pages devoted to Frost.
L. H. B.

FROSTWEED. Helianthemtm Canadense.
FRUIT-GROWING. Treated under Pomology.

## FUCHSIA

FUCHSIA (Leonard Fuchs, 1501-1565, Gerinan professor of medicine, and a botanical author). Onagrdece. Sixty or 70 species, the greater part in tropical America, but three or four in New Zealand. They are very variable in character. The common Fuchsias are known to us as small herbs, but some of them are shrubs in their native countries. $F$. excorticata, of New Zealand, is a tree $30-40 \mathrm{ft}$. high, whereas $\boldsymbol{F}$. procumbens, of the

875. Fuchsia speciosa.

The common garden Fuchsia ( $\times 1 / 3$ ).
same country, is a weak, trailing herb. The fls. are showy; calyx-tube prolonged beyond the ovary and hell-shaped to tubular, with 4 spreading lobes; petals 4 , sometimes 5 , or in some species wanting; stamens usually 8, often exserted: style long-exserted, the stigma prominent: fr. (seldom seen under glass) a 4 -loculed soft berry. Of the many species, less than half a dozen have enterell largely into garden forms. The common garden kinds have come mostly from $\boldsymbol{F}$. Magellanict. This species was introduced into Great Britain from Chile in 1788 . or ahout that time. It is variable in a wild state as well ns in cultivation, and plants subsequently introduced from South America were so distinct as to be regarded for a time as distinct species. Eren at the present day some of the forms of $\boldsymbol{F}$. Magellanica are commonly spoken of as species, so much do they differ from the type. As early as 1848 , 541 species and varieties - mostly mere garden formswere known and named (Porcher, "La Fuchsia, son Histoire et sa Culture"). The Fuchsia reached the height of its popularity about the middle of this century. At the present time it is prized mostly for window gardening and conservatory decoration. The garden forms of the present day are with difficulty referred to specific types. The long-tubed or so-called speciosa forms are probably hybrids of $\boldsymbol{F}$. Magellanica and $\boldsymbol{F}$. fulgens (Figs. 875, 876). Others are evidently direct varieties from the stem types. There are many full double forms. For the history and the garden botany of the Fuchsia. see Hemsley in the Garden 9:284 and 11:70; also Watson, the Garden 55:74.

Fuchsias are amongst the easiest of house plants to grow. The essential points are to have vigorous young plants and not to overpot ; the plants blom better if the roots are somewhat confined from the time that the plant reaches the required size. Any garden soil is suitable. Give the temperature of an ordinary living room, or that required for geraniums. Fuchsias grow readily from seeds, when these are obtainable, and blonming plants should be secured in less than a year. They are commonly grown from slips, or cuttings, of the nearly matured growing wood. Make the cuttings of one or two joints-preferably two.-allow two leaves to remain, but snip them in two to check loss from evaporation, and insert half their length in sand or washed gravel. In four or five months blooming plants should be obtained. For fall bloom. make cuttings in spring. For spring bloom, take cuttings in early fall or
late summer. After flowering, the plants may he kept cool aud comparatively dry if they are to be bloonied again ; but it is usually more satisfactory to start a new lot each year from cuttings. However, one or two old and large specimen plants, in tubs or large pots, may be a desirable addition to the conserratory. Old plants may becut back severely, and the young growth which is thrown out will gire profuse bloom. Screen from full sunlight, keep the atmosphere moist, syringe if insects become troublesome, and give a rich soil. Most of the Magellanica types may be left in the open in the South if protected with mulch. There are Fuchsia hedges in S . Ireland and parts of England belonging to this type.
L. H. B.

One of the great merits of the Fuchsia is that all of the strong and robust-growing types make excellent outdoor decorative plants in summer, and are especially adapted for shady and half shady places where few other plants will answer. This is particularly true of plants which have been kept over winter and have been trained into large bush plants or standards. After the first year, they make fine specimens, and they can be kept and used in this manner and for these purposes for many years. They can be stored in a cool greenhouse, light cellar or any other cool, out-of-the-way place, where hydrangeas, oleanders and such stock is wintered, leaving them in their pot-bound, semidormant state all winter, giving just enongh moisture to keep them alive. The latter part of March or the beginning of April in the North, the plants can be started into growth, and as soon as root action begins they can be repotted or retubbed, using rich, open loam, with plenty of good drainage, and can remain in those pots or tubs for another year. When in bud or bloom, fre quent application of liquid manure is very beneficial. Fuchsias are great feeders. They flower best when plunged with their pots or tubs in the ground outdoors, and can be left out until very late in the season, as they are nearly semi-hardy, and stand a little frost without serious injury.

Cult. by H. A. Siebrecht.
Varions Latin names of horticultural forms occur in the trade, but the following represent all the important botanical types in cultivation in this country:
alba, 6.
artorescens, 7
elegans, 1 .
coccinea. 1, 3. conica, 1. corymbitiora, corymbitiora,
decussata. 1. decussata. 1 .

Exmiensis, 1 fulgens, 4. globosa. 1. gracilis, 1.
Lozeei
Loveri, 1
macrostemma, 1.

> Magellanica, 1. procumbens, 8 purnila, 4.
> Riceartoni, 1
> speciosa. 2.

> | syringrefolia, |
| :--- |
| tenella | tenella. 1.

## A. Fls. drooping.

B. Calyx-tube mostly shorter than ihe lobes (or in F. speciosa sometimes as long again): petals obovate aud retuse, convolute in the bud.-Ladies' Ear-Drops.

1. Magellánica, Lam. (F. macrostémma, Ruiz \& Par. $\boldsymbol{F}$. coccinea, Curtis, not Aiton). Calyx tube littie longer than the orary, oblong or short-cylindrical : petals normally blue, and shorter than the red and oblong-lanceolate calyx lobes; stamens long-exserted : lrs. opposite or in $3 *$, lance-ovate, very short-petioled, dentate. Peru and S. to Terre del Fuego. B.M.97. The leading types are as follows:
Var. globòsa ( $\boldsymbol{F}$. globd̀sa, Lindl.). Fls. small and short, the bud nearly globular and the tips of the sepals cohering even after the flower begins to burst; calyx tube very short. A profuse bloomer, and a common type amongst old-fashioned Fuchsias. Probably of garden origin. B.R. 18:1556. Gn. 55, p. is.
Var. conica ( $\boldsymbol{F}^{\prime}$ cónica, Lindl.). Small fll., the bud conical-oblong; calyx tube nearly as long is the lobes; petals nearly equal to the calyx lobes. Raised from seeds brought from Chile. B.R. 13:1062.
Var. discotor ( $\boldsymbol{F}$. discolor, Lindl. F. Ldwei, Hort.). Dwarf and hardy: fls. small, with slender, short tube and wide-spreading, rather narrow calyx lobes, which are somewhat longer than the tube: branches deep purple: lvs. undulate-toothed. Falkland Isl. B.R. $21: 1805$.

Var. grácilis ( $\boldsymbol{F}$.grícilis, Lindl. $\boldsymbol{F}$. decussita, Grah.). Very slender and graceful, the fls. drooping on very long pedicels: tube slender, nearly as long as the narrow, spreading lobes:Ivs, narrow, strong-toothed. Chile. B. R. 10:847; 13:1052. B. M. 2507. Gn. 55, p. 74. Mn. 2, p. 186. - Possibly a distinct species.
 Hort., F. Axoniénsis, Hort. (G.C.II. $20: 565$ ), $\boldsymbol{F}$. élegans, Paxt., $F_{\text {. }}$ Riccurtoni, Hort., $F^{\prime}$. tenélla, Hort., and others. Some of these are probably hybrids with F'. Magel. lanica.
The short-flowered Fuchsias are less popular than formerly, but many varieties are now in cult. Of this set the Storm King is a representative.
2. specídsa, Hort. ( $F$. hỳbrida, Hort.). Figs. 875, 876. The greater part of present-day garden Fuchsias are of the long-tubed type shown in the illustrations. These are probably hybrid derivatives of $\boldsymbol{F}$. Magellanica and $F$. fulfens. Amongst the named sorts every gradation will be found, from the short-tubed Storm King to the Earl of Beaconsfield with fls. 3 in. long.
3. coccinea, Ait. Not innown to be cult. in America, and inserted here for the purpose of clearing up the syinonymy of $F^{\prime}$.coccinea. This species appears to have been introduced before $\boldsymbol{F}$. Magellunica, and it was named $\boldsymbol{F}$.coccinea by Aiton. $\boldsymbol{F}$. Magellanica, however,


## 876. Theresa, a form of Fuchsia speciosa ( $\times 3 / 4$ ).

"usurped its name and spread it to every garden in the kingdom, whilst the true plant lingered in botanic gardens, lastly surviving (greatly to the credit of the Baxters, father and son) in that of Oxford alone." The species was lost from its introduction in 1788 to its rediscovery in an Oxford garden in 1867; meantime forms of $\boldsymbol{F}^{\prime}$; Magellanica passed as $\boldsymbol{F}^{\prime}$. coccinea. " $F$.
coccinea is much more graceful than any of the varietles of $\vec{k}$. Magellanica, flowers eren more freely, and is readily distinguished by the almost sessile leaves with broad bases, and the bairy twigs and petioles; further, its follage turns of a bright crimson when about to fall." -J. I). Hooker, B.M. 5740. Probably Brazilian.
BB. Calyx-tube thrice or more the length of the lobes: petals pointed, nearly or quite as long as the calys lobes.
4. fülgens, Mog. \& Sesse. Stem somewhat succulent, glabrous, often red-tinged: lis. large and coarse, cordate ovate, soft, small-toothed : fls. in terminal, leafy clusters or racemes, the red long-tubular calyx-tube 2-3 in.long and very slender at the base; the calyx lobes short and pointed, greenish at the tip, not very widely spreading; petals deep scarlet, pointed; stamens only short exserted. Mex. B.M. 3801. B.R. $94: 1$. Gn. 55, p.75. R.H.1881:150 (var. pumila).- A brilliant plant, sometimes seen in choice conservatory collections. Evidently a parent of the $F \cdot s p \in$ ciosa tribes.
5. triphylla, Linn. Fig. 877. Low and bushy ( 18 in. high), pubescent: lis.often in 3's, small. oblan-

877. Fuchsia triphy'la ( $\times 1 / 3$ ). dentate, green above and purple pubescert beneath fls. $11 / 2$ in. long, in terminal racemes, cinnabar-red, the long tube enlarging towards the top; petals very short; stamens 4, not exserted. St. Domingo, West Indies. B.M.6795. Gn. $41: 839$. I.H.43, p. 94. - Known in botanical collections and sparingly in the trade. The species has a most interesting history, for which see the citations made above. Upon this plant Plumier founded the genus Fuchsia in 1703, giring a rude drawing of it. Upon Plumier's description and picture Linnmens founded his $\boldsymbol{F}$. triphylla. Plumier's figure is so unlike existing Fuchsias that there has been much speculation as to the plant which he meant to portray. No Fuchsia was known to have four stamens or to be native to the West Indies. In 18.7 Hemsley wrote of it: "The figure, howerer, is so rude that nobody, I believe, has been able to identify it with any living or dried plant. Possibly it is not a Fuchsia at all in the sense of the present application of the name, for it is represented as haring only four stamens." But in 1873 Thomas Hogr, of New York, secured seeds of a St. Domingo Fuchsia which turns out to be Plumier's original, thus bringing into cultivation a plant which had been unknown to science for 170 years. It came to the attention of botanists in 1882. For a discussion of further confusion in the history of this plant, see Hemsley, G.C.II. 18, p. 263-4.
6. corymbiflora, Ruiz \& Par. Tall but weak grower, needing support when allowed to attain its full height, therefore excellent for pillars and rafters: lvs. large, ovate-oblong and tapering both ways, serrate, pubescent : fls. deep red, hanging in long brilliant corymbs; calyx tube $3-4 \mathrm{in}$. long and nearly uniformly cylindrical, the lobes lance-acuminate and becoming reflexed; petals deep red. lance-acuminate, about the length of the calyx lobes; stamens length of the petals. Peru. B.M. 4000. Gn. 11:58; 55:1203. F.J. 1841:161. Var. alba, Hort., has white or nearly white calyx-tube and lobes. F.S. 6:547. Gn. 55:1208-A very handsome plant, but not common.

## A. Flouers erect.

7. arboréscens, Sims (F. syringcefòlia, Carr.). A shrub: Ivs. lance-oblong and entire, laurel-like: fls. pink-red, small, with a short or almost globular tube,
in an erect terminal naked lilac-like panicle; calyx lobes and petals about equal in length. Mex. B.M. 2620. - Little grown, but excellent for winter tlowering.
8. procumbens, Cunn. Trailing Fuchsia. Trailing Queen. Trailing: Ivs.alternate, small ( $1 / 3-1 / 2 \mathrm{in}$, acioss), cordate-ovate, long-stalked: Hs. solitary and axillary, apetalons, the short calyx tube orange and the reflexing obtuse lobes dark purple, anthers blue: plant dicecious. N. Zeal. B.M. 61:39.-A very interesting little plant, suitable for baskets.
Species which are not known to be in the Amer. trade are $\boldsymbol{F}$. ampliata, Benth. Fls. large, scarlet, long-tubed, drooping. Colombia. B.M. 68:-F. bucilliris, Lindl. Compact, with short-jointed branches: Hs. very small, Haring-monthed, rosy, drooping. Mex. B.R. 18:1480.-F. cordifólia, Benth. Fls. 2 in. long, slender, drooping, hairy, red, on very long pedicels. Mex. 13.K. 27:70.-F. Dominiäna, Hort. Garden hybrid with long drooping red tis. of the speciosa type. F.S. $10: 1004$. -F. ma crántha, Hook. Largest-fld. Fuchsia; $4-6$ in. Iong, pink-red, in large, droopiny clusters. Colombia, Peru. B. I. 4233 .-F $\boldsymbol{F}$. microphylla, HBK. Dwarf, small-lvd., with deep red, smali microphylla, HBh. Dwarf, smalliva, with deep ferd, small axillary, drooping tis.: pretty. Mex. B.R. $10: 12.19 .-F$. serratifolia, Ruiz © Pav. Fls. long-tubed, speciosa-like, on drooping pedicels from the axils of the whorled lvs. pink, with greenish tinge: handsome. Peru. B.M. slender-tubed, in drooping clusters: resembles F. corymbifera. Peru. B.M. $5096 .-F$. spléndens. Zuce. Shrubby, hairy : Hs. drooping, with a short, thick red tube, short, greenish lobes and petals, and longexserted stamens. Mex. B.N. 408 ?

> L. H. B.

FULLER, ANDREW S., horticultural writer, was born in Utica, N.Y., on August 3, 1828, and died May 4, 1896, at his home at Ridgewood, Bergen county, N. J. Fig. 878. When quite young he removed with his jarents to Barre, N.Y., where his father tilled a small farm. At the age of 18 he went to Milwaukee, Wis., where he worked at the carpenter's trade, and became particularly skilful in the construction of greenhouses, and built a small one for himself on a city lot. Here he brought together a

878. Andrew S. Fuller.
varied collection of plants, the care of which founded the nucleus of his later attainments and renown as a horticulturist. While he lived in Milwaukee he married Miss Jennie Crippen. who survives him. They never had any children. In 1855 they mored to Flushing, L. I., N.Y., when William R. Prince offered Mr. Fuller the management of his greenhouses. But his ambition did not allow him to remaln long in the employ of others, and in 1857 he removed to Brooklyn, N. Y., and engaged in grape and small fruit culture, which were then in their infancy. Here he gare particular attention to the improvement of the strawberry by cross-fertilization and selection of the best of the many thousands of seedlings raised by him. The most famous of these were Brooklyn Scarlet, Monitor and Colonel Ellsworth, the first of which was generally recognized as the highestflavored strawberry in existence at the time, although too soft for market. The entire stock of 300.000 plants was parchased by the "New York Tribune," which sent
them out as premiums to its subscribers, in consequence of which they have been widely known as the "Tribune strawberries." It was during this period that Fuller wrote his first book, the "Strawberry Culturist." In this work he brought together and systematized all that was known about the subject at the time, combined with the results of his own practical experience. Tbe principles underlying scientific strawberry culture, as well as the practical hints and directions for carrying on the work in the garden and field, are given in so thorough and admirable a manner that even now, after 40 yenrs since they were written, it would be difficult to improve upon them. Realizing the necessity of having more ground for experimentation, and in order to escape the noise and turmoil of the city, he bought a large piece of land near Ridgewood, N. J. This, when he moved on it, early in the sixties, was little more than a barren waste, but under his constant care it was not long before it developed into one of the most charming homes and interesting and instructive garden spots in the country. Almost every species and variety of ornamental trees and shrubs hardy in the locality were represented, and his collection of small fruits was the most complete in the country. These furnished him unequaled means and material for observation, studyand identification, the results and accounts of which he made known in the clear, concise, convincing style for which his writings have be come famous. A.S. Fuller was an indefatigable worker, physically as well as mentally. Immediately after the publication of the "Strawberry Culturist," he commenced working on the "Grape Culturist." This was followed by the "Small Fruit Culturist," "Practical Forestry," "Propagation of Plants," and the "Nut Culturist." The last of them he was fond of calling his "monument," as he did not intend to write another book, and so fate decided that it should be. He died a few days after he had finished his manuscript, and never saw the completed book, of which he was perhaps more proud than of any other of his works, yet in the history of horticultural literature his "Small Fruit Culturist" will, no doubt, occupy the foremost rank. It was more instrumental in the development and building up of the great industry to which it is devoted than any other book written before or after, and in any land. It was translated into German und published in Weimar in 1868. His books contain but a small part of his writings. His editorial and other contributions to the "American Agriculturist," to "The Rural New-Yorker," of which he was part owner for atime, the "New York Sun," of which he was agricultural editor for 26 years, "American Gardening" and other periodicals sould fill hundreds of volumes. He was also editor of the "Record of Horticulture," 1866-1867. While Mr. Fuller was principally known as a horticulturist, there was hardly a branch of natural science to which he had not devoted more or less attention. His entomological collection, especially that of coleoptera, was one of the most complete in the country; his mineralogical and archeological collections contained many rare specimens, and his horticultural library was one of the most complete in the United States. Personally, Mr. Fuller was a charming man, liberal and hospitable almost to a fault. He was a man of striking personality, of decided character and opinion, and an implacable foe to sham and deceit. In whatever he undertook be was almays a leader, never a follower; he was always on the lookout for new grounds to traverse, and nothing made him happier than when a new problem presented itself for solntion, but as soon as it was solved his interest in it ceased. During the later years of his life, although in good health, Mr. Fuller left his place but seldom. but in his earlicr years he traveled considerably, and took an active and leading part in the meetings of the American Pomological Society, the American Institute Farmers' Club, the Fruit-Growers' Club, and many kindred societies, of which he was an active or honorary member
F. M. Hexamer.

FUMARIA (fumus, smoke). This genus includes the common Fumitory, $\boldsymbol{F}$. officinalis, formerly held in great repute for rarious ailments, but now practically banished from medical practice. Seeds are still rarely sold to those who have faith in old physic gardens. The plant is fully described in our commonest botanies, and has a large literature, which is especially interesting to
those who delight in lerbals. As an ornamental plant, it is far surpassed by Adlumia. The genus gives name to the family fumariacere.

## FUMITORY. F'umaria officinalis

FUNGICIDE (see Spraying) is a material used to destroy fungi or to prohibit their growth. The leading Fungicides are materials which contain sulfur or copper. Bordeaux mixture is the chief Fungicide in use at the present time. It is a mixture of blue vitriol (sulfate of copper) and lime, in water. The usual formula is

| Copper sulfate | 6 lbs . |
| :---: | :---: |
| Lime | $t$ libs. |
| Water | 50 gals |

The copper sulfate is dissolved in the water, and milk of lime is added. In spraying large areas, it is better to prepare stock solutions for the Bordeaux mixture rather than to make each batch in the quantities called for by the formula. The sulfate of copper may be put into solution and kept in this condition indefinitely, ready for use. A simple method is to dissolve 40 or 50 pounds of sulfate in as many gallons of water, pulverizing the material and hanging it in a coffee-sack in the top of the barrel. A gallon of water, therefore, means a pound of sulfate. The lime may also be slaked aud kept in readiness for use. Slake it into the creamy condition familiar to masons, cover lightly with water, and then close the box or vessel to prevent the water from evaporating. When making the Bordeaux mixture, pour the requisite quantity of the stock solution of sulfate of copper into the barrel, and then fill the barrel half full of water. Now add the lime (which should be diluted with water), stir, and add enough water to satisfy the formula. In order to test whether the sulfate has been neutralized by the lime, a little ferrocyanide of potassium may be applied to the mixture. Place a spoonful of the Bordeaux mixture in a saucer or plate, and add a drop of the ferrocyanide. If a red color appears, the mixture needs more lime. If the test solution is added directly to a tank or barrel of the mixture, the color reaction is likely to be lost in the mass. An excess of lime insures the safety of the mixture.
The Bordeaux mixture is used for many parasitic fungous diseases. It is not only inimical to fungi, but it adheres to foliage and stems for a long time. Best results are secured when it is applied before the fungus has become established. Bordeaux mixture is usually more satisfactory when it has not stood long.
The sulfate of copper is the active Fungicidal ingredient of the Bordeaux mixture, but if applied alone, in water, it is very caustic to foliage, and it does not adhere long. For the treatment of dormant trees and shrubs it may be very useful, since it can be used strong, and is thereby very destructive of fungi. For dormant wood it is often used 1 lb . to $10-15$ gallons of water.

The greatest competitor of Bordeaux mixture is a mixture made by dissolving carbonate of copper in ammonia and then diluting the solution with water. It is sometimes used on ornamental plants and nearly ripe fruits, since the Bordeaux mixture renders them untidy. Onf ounce of copper carbonate will be dissolved by 1 pint or less of very strong ammonia. This concentrated liquid can be kept indefinitely. When to be used, dilute with 8-10 gallons of water.
Dry sulfur is a Fungicide. It is sometimes dusted on plants in glasshouses for surface mildews, and it is much used in California vineyards. It is oftenest used as a rapor in houses. If smeared on the heating pipes, the fumes will give a perceptible odor in the house, and will prevent the mildews of roses, cucumbers, and other plants. The sulfur must not be burned, for the fumes of burning sulfur are fatal to plants. L. H. B.

FUNGUS (plural, F'ungi; adjective, fungous). The class Fungi includes all those plants which are popularly known as musirooms or toadstools, puffballs, rusts, smut, molds and mildews. These, however, form but a small part of the total number. There are many others which are inconspicuous, like the yeasts, or which are of no special economic importance and hence have escaped popular notice. All the parts of a fungous
plant are seldom seen. That part whleh is usually ex posed to riew, and which is popularly designated as a Fungus, is merely the fertile or fruit-bearing part of the plant. A mushroom is the fruit of a Fungus. The vegetative part, that which supplies and elaborates materials for the growth of the plant, and which, in a way corresponds to the roots and leaves of higher plants, is hidden away in the ground, in decaying wood and other organic matter, or within the tissues of other living plants upon which the Fungus feeds.
Both the vegetative and the fruiting part of all Fungi, èaceping some oí tho jeasia, are made up entirciy of microscopic threads, which are very much branched and divided into elongated cells by crogswalls at irregular intervals. These threads are called hyphe. The vegetative hyphe considered collectively are spoken of as the mycelium or spawn of the Fungus in the same sense in which we speak of the routs of a tree.
In the lomer Fungi, such as molds and wost of the parasitic species, the niycelium is comparativelv simple, consisting of much-branched threads which course through the nutrient material upon which they grow, or, in the case of parasitic Fun. gi, either among the cells, or, as mildews, on the surface or their hosts. At the fruitirg time many threads grow cut from the substratum to the light and air. These threads remain simple or become branched like the trunk of a tree, and finally bear spores at the ends of the threads or branches. Examples of these plants are the blue mold on jam, etc.,

879. A Fungus.

A mildew, showing the mycelium in the leaf tissue and the hanging spore - bearing threads. Much magnified. the common bread mold, and nearly all the Fungi which form spots or a white coating on leaves. The mycelium of toadstools and other higher Fungi is of much greater extent and more highly developed than that of the molis. It is often seen as a cottony weft form ing white patches on posts and boards exposed in damp, dark places. It can always be found on sticks and on decaying leares in the woods. The white threads in fire-fanged manure are also mycelium. Perhaps the best known form of mycelium is the spawn in bricks, commercially known as "mushroom spawn." In nature the mycelium of these plants often forms strands as much as an eighth of an inch in thickness. It grows for varying periods of time, sometimes for rears, in the ground, in decaying organic materials, or in fallen and standing trunks, etc., until it is ready to fruit.

The fruit of these plants is not formed from a single, erect thread, but of many hundreds of threads which arpear above the substratum as a thick bundle or as a tuberculiform mass. The threads increase in length and send out many branches which become closely interwoven, gradually building up the fleshy umbrella-like bodies, or the hard shelving masses, which we know as toadstools, mushrooms, etc. The spores are borne on the lower, protected side of the fruit bodies on gills or spines, within honey-combed pores, or directly upon the smooth. lower surface.

All Fungi grow on living or dead organic matter. They have no chlorophyll, and hence cannot assimilate carbon from carbon di-oxid.
H. Hasselbring.

A Fungus is a plant of very low organization consist ing of one or more cells multiplying its kind by cell division and by spores. It contains no green substance (chlorophyll), and grows either as a saprophyte upon

880. Sci. ime of the rust Fungus on the leaf of a ho! ly hock.
non-living organic matter or derires its food directly from another living orsinism, und is then a true parasite. Fungi are very common, and range in size from the large hard-shell fungus upon logs and the puffball and toadstool in the rich earth to the delicate moulds that infest bread and other foods, and the still more microscopic forms that protuce fermentation, as yeast in dough and other species employed in making beer. Some of the toalstools are very richly tinted with red, yellow, brown and even blue, and a few are deadly poisonous, as the "death cup" and the "fy agaric," which grow upon the decaving organic matter in shaded places. Others are wholesome, and are grown as articles of food, the leading species of which is the mushroom, Agaricus campestris. More highly prized still is the truffle, which is produced under ground and hunted by hogs, which find them by their odor, and even muzzled hogs are trained to unearth them.

One of the parasitic species, ergot, infests the heads of rye, changing the grains into much enlarged horny purplish masses called "spurred rye" because of the resemblance of the fungous grains to a cock's spur. This is extremely poisonous, and when eaten by live stock with the hay or grass has been known to destroy whole herds. This Fungus furnishes one of the most valuable in the whole long list of drugs. Many other fungi grow in the heads of grain, the most conspicuous being the corn smut, which changes the whole ear possibly into a large mass of dark slime when wet. and brown dust when dry. This dust is the myriads of spores which the Fungus produces to secure its reproduction. In a similar manner other smuts destroy the oats, wheat and very many kinds of grasses and other plants.

The rusts are similar Fungi which thrive upon the juices of plants and produce patches of orange or yellow upon leaf or stem, the discolored portion being usually swollen and the skin more or less broken.

There is another group of Fungi known as the mildews, and these usually produce a fine whitish coating to the diseased part, due to the fine stalks that come from the surface of the plant and bear the spores.

Fungi love warmth and moisture for their greatest activity, and therefore they are more in evidence in midsummer when wet weather prevails than at other times. The spores are so small and light that they float in the air, and it is only when substances like canned goods have these spores excluded by first killing those
present and preventing access of others, that they will keep unattacked, - that is, sweet and edible. Substances can be easily inoculated by introllucing the germs, as mold into potatoes, rust into a tree, or yeast into dough. The number of kinds of Fungi is high among the thousands, and new species are being found each month, but they are so small that only specialists can understand the microscopic differences that separate one kind from another. Many Fungl have certaln forms which are assumed in the cycle of life, and in this they resemble insects with their larval, pupal and imago stages. This polymorphic nature has made the study of the Fungi very puzzling. While a few of these plants are poisonous, and many destructive to life, the greatest majority are scavengers, reducing the waste products to simpler and harmless forms. We could not get on well without this minute and humble race of plants.

For further discussion, see Diseases.

## Bybon D. Halsted.

FONKIA (Ludwig P. Funke, 175\%-1807, and H. C. Funk, 1771-1839. German naturalists). Lilidecte. Div Laly. Plantain Lily. Five or six Japanese perennia! herbs, producing attractive clumps of foliage and interesting blossoms. Fls. in terminal racemes or spikes, white or blue ; perianth funnel form, 6-parted and more or less irregular, the lobes not widely spreading ; stamens 6, the filaments filiform, the anthers long-oblong and versatile : pod oblong and angled, many-seeded, splitting into 3 valves (Fig. 884); seedl. flat and black, winged at the apex. Monogr. by Baker, Jour. Linn. Soc. 11:366. See also, Mottet, R.H. 1897, p. 114.

Funkias are hardy and of the easiest culture. Their dense stools or clumps of foliage are in place along walks or drives and in the angles against buildings. A continuous row along a walk gives a strong and pleasing character. Make the soil rich and deep. The clumps improve with age. The large-leaved kinds grow rigorously in moist, shady places. Of some varieties

881. Colonies of a Fungus on a plum leaf. The dead tissue sometimes falls out. leaving a shothole effect.
the lvs. are strikingly variegated. Bloom in summer. Foliage is killed by frost. Prop. by dividing the clumps; some species produce seeds freely, and seedlings can be grown readily if seed is sown as soon as ripe.
A. Fls, white, ascewling: Il.-brctet very large, with a smaller one inside.
subcordata, Spreng. (F. dlba. Sweet. F'. liliiflòra, Hort. F'.Jupónica, Hort., at least of sone. F', macríntha, Hort. $\boldsymbol{F}^{\boldsymbol{H}}$. cordata. Hort., not Sieb.). Fig. 88:. Lws. large, broadly cordateovate, with a short, sharp point, green, many-ribbed: Hs. large, 4-6 in. long, with an open bell-shaped perianth, waxy white, the base of the tube surrounded by a broad bract: spike short, the bracts very prominent. - The commonest species in old yards, and an excellent plant. The fls, have an orangelike odor. Clumps of foliage grow 12- 20 in . high. B.M. 1433, as Memerocullis Juponicu.

Var. grandiflora, Hort. ( $F$. granilifldra, Sieb. \& Zuce.), has very long and large fls. G.C. III. 4:153. $\boldsymbol{F}$. macraintha, Hort., probably belongs here.

## AA. Fls, blue or lilac, more or less inclined or nodding: bract 1. B. Lis.glaucous.

Sieboldiàns, Hook. (F. Sièboldii, Lindl. F. glainca, Hort. F. Sinénsis, Sieb. F'. cucullita, Hort. F'glau-

882. Funkia subcordata ( $\times 1-5$ ).
céscens, Hort. $F^{\prime}$ corddta, Sieb.). Differs from the last in the metallic blue color of the less cordate lvs., in the inclined bluish or pale-tinged, more slender-tubed and smaller fls. (which do not rise above the foliage), and in having only one small bract at the base of the fi. B.M. 3663. B.R. $25: 50$. L.B.C. 19:381? ${ }^{\circ}$, as Hemerocallis Sieboldtiana. There is a form with the body of the leaf yellowish white and the edge green. L. 69.-Lf. blade and petiole each 1 ft . long, the foliage therefore overtopping the fls. The plant usually cult. as $F$. Sieboldiana is probably F. Fortunei.

Fortunei, Baker. Differs from $\boldsymbol{F}$. Sieboldiana in having smaller lvs. and the racemes much overtopping the
foliage, as in other Funkias. Petiole 2-3 in. long; blade cordate-ovate, $4-5 \mathrm{in}$. long: raceme $1 / 2 \mathrm{ft}$. long on a stem or scape 1 ft . long: fls. pale lilac, funnelshape, 1/6 in. long, the segments lanceolate and ascending and half as long as the tube. -Excellent. Generally cult. as $\boldsymbol{F}$. Sieboldiana, and many of the pictures of that name probably belong here, as, apparently, (in. 38, p. 79 ; A.G. $11: 157$; A.F. $6: 33^{22}$. It is probable that the garden synonymis cited under $I^{\prime \prime}$. Sieboldiana are usually applled to plants of $\boldsymbol{k}$. F"ortunei.

## вв. Leaves green.

ovàta, Spreng. ( $\boldsymbol{i}^{\prime}$.corrìlea, Swert. $F$. lanceoldtu, Sieb.). Figs. 883, 88t. 885. Less. broad-ovate, 5-10 in. lonis and half as wide, usually tapering to the petiole, but sometimes subcordate: raceme long and lax: fl. with a short, sleuder tube and suddenly expanding into a bell-shape, $11 / 2-2$ in. long, nodding, deep blue. B.M. 894, as Hemerocallis cierulea. Mn. 1:73. - The
commonest blue-thaspecies: commonest blue-fld.species: usually known as $\boldsymbol{F}$. cierulea. F., murgindta, Sieb., is a form with white-bordered lis.
lancifolia, Spreng. (F. Jupónicu, Hort.,of some). Lus. lanceolate to narrowly ovatelanceolate, the blade 6 in . or less long and 2 in. $\mathbf{r}$ less wide: raceme lax, fi10 -fll., on a tall, slenter stem: fis. $11 / 2 \mathrm{in}$. or less long, the tube slender and gradually enlarging upward, pale lilac. Var. álbo-marginàta, Hort. ( $\boldsymbol{F}$. cillo-marginàta, Hook., B.M. 36̈̃̃) has the lvs. edged white. Var. undulàta ( $\boldsymbol{F}$. undulita, Otto \& Dietr.) is a form with undulate white-margined Ivs.-Graceful. Fis. smaller than those of $F^{\prime}$. rrata.
F. aùrea. Hort., variegated forms of various species.- : elata. Hort., "bears ta.l seanes of pale bine fls. F gigantèa, ort.,has "long sp"-es o blue tis." - F.marginùta, Hort. $=$ F. lancifolia.var. abb-marginp ta.-F. tardiflòra, Hort. $=$ ? - F. univittüta, Hort. $=$ F. lanc.fo.ia var. $-F$. variegàta, hort. $=$ variegated forms of various species, usually of F. ovata or F.lancifolia.$\boldsymbol{F}$. viridis-marginàta, Hort., is probably a form of $\mathbf{F}$. ovata.
L. H. B.
1755-1809,

FURCRİA (Ant. François de Fourcroy, 175i-1809, chemist). Syn., Fourcroya, Fourcraa, F'urcroyn, Fur-
crœa. A marylliddcea. About 17 species of succulent desert plants from tropical Anserica, particularly Mexlco, some with spiny foliage like Agare, others with minutely toothed margins like Beschorneria. They occasionally bear immense loose panicles of greenish white fls., suggesting those of Yucca filamentosa, which are known to every plantlover of the North. The perianth of Furcræa is whitish and wheel-shaped; in Agave greenish yellow, fun-nel-shaped. The filaments in Furcrea have a cushionlike swelling at the base, which is absent from Agare. Furcræa is cultirated much in the same way as Agave,

884. Old capsule of Funkia ovata. Nat. size.
except that the Furcreas are given more heat and water. $\boldsymbol{r}$. giganter has a very pretty variegated form, which suakes a useful pot-plant.

As a rule, Furcraas bear fruit not more than once, and then die without producing suckers. However, they produce while iu flower an immense number of bulbels. which may be used for propagation. It is impossible to say at what size or age the plants will bloom. Grown in pots, they may take a century. On the other hand, plants from bulbels have been known to flower at 3 years.

885. Funkia ovata. (See page 619.)
A. Texture of les. firm: spines usually present, deltoid: no minute teeth on margin. (Fiurcraa proper.) E. Trunk s-4 ft. long: spines absent.
gigantea, Vent. Les. 4-6 ft. long, 4-6 in. broad at middle, $21 / 2-3$ in. above base, usually without marginal spines, rarely with a few near the base: peduncle $20-40$ ft . Iong: odor of tis. strong. Trop. Amer. Naturalized in Manritins, Madagascar, India. B.M. 2950. G.C.III. 23:227. R.H. 1857, pp. 206, 207. Var. variegata, Hort., has variegated lvs.

BB. Trunk none or short: spines present. c. Length of les. 12 ft . or more.
altíssima, Todaro. A recent and little known species named at Palermo, Italy. Franceschi writes that it has. hardly any trunk: lrs. bright green, with very few
spines, 12 ft . Jong or more, erect, not drooping. It is tenderer than the other kinds.

## Cc. Length of les. $\delta-6$ ft.

elegans, Todaro. LFs. 4-5 in. broad at middle, 3 in. above base, rough on the back; prickles large: peduncle $20-25 \mathrm{ft}$. long. Mex.

> ccc. Length of lvs. 2-3 ft.
D. Prickles usually large-sized.

## E. Panicle reaching 10-12 ft.; brawches slightly compound.

Cubensis, Haw. Lvs. 3-4 in. broad above middle, $11 / 2$ in. abuve base, the tip convolute; prickles large, dis. tant, hooked: peduncle $5-6 \mathrm{ft}$. long. Odor of tls . faint. This and $F$. gigantea are widely spread in trop. Amer. and often cult. in the Old World. They are the oldest in cult. All the rest are rare. Var. inérmis, Baker, is spineless. B.M. 6543. F. Lindeni, Jacobi, has variegated Ivs. I.H.21:186.

EE. Panicle reaching 30 ft .; brunches copiously compound.
tuberdsa, Ait. Les. a trifle longer and narrower than in $F$. Cubensis, 2-3 in. broad: tis. sweet scented. Int. by Franceschi, 1900.

## vD. Prickles middle-sized.

pubéscens, Todaro. Baker does not say that the lvs. are not convolute at the tip, nor does he distinguish the lvs. from those of $\boldsymbol{F}$. Cubensis, except in the smallersized prickles. It is presmmably the only species in Furcraa proper with a pubescent ovary. Peluncle scarcely longer than the lvs.: panicle $\overline{5}$ times as long as the peduncle : branches copiously compound. Trop. Amer. B.M. 7250.
AA. Texture of les. flexible and uary: spines absent: minute teeth on margin. (Subgemus liazlia.)
B. Trunk $\delta-6$ ft. high: lus. gluwcous.

Bedinghaúsii, K. Koch ( $\boldsymbol{F}$. Roézlii, André. Yücea Parmentièri, Roezl. Rézzlia règia, Hort.). Lvs. 3-4 ft . long. 3-4 in. broad at middie, 1 in . abore base, permanently glaucous on both sides, very rough on the hack: inflor. $15-0 \mathrm{ft}$. high. Mex. R.B. 186:3, p. $32{ }^{\circ}$; 1883, p. 133 (full history). R.H. 1887, p. 353: 1895. pp. 468, 469. B.M. 7170. Gin. 52, p. 197. G.C. Ill. 9:489.

в8. Trunk finally 40-50 ft. high: lis. not glaucous.
longæva, Karw. \& Zucc. Les. 4-5 ft. long, 4-5 in. broad, narrowed to 2 in . above base, the roughness on the back only on the keel: inflor. 40 ft . long. Mex. $B$. M. 5519 . G.C.II. 16:653.

> F. Franceschi, G. W. Oliver, and W. M.

FURZE. Ulex, particularly $\boldsymbol{U}$. Europcus.

## G

GAILLARDIA (personal name). Compositr. About a dozen American herbs (largely of Atlantic N. Amer.), with alternate, simple, more or less toothed, punctate IFs. and solitary yellow or rec, showy heads: ray tls. usually neutral, of ten with 2 or more colors or shades: disk flis. mostly purple, the styles with slender hispid branches; involucre with two or more rows of leafy scales. Gaillardias are popular and worthy garden plants. There are two types, - the aunual forms, which are derived from G. pulchella and G.amblyodon, chlety from the former; and the perennials, which issue from $G$. aris. tata. The species are variable and confusing.
Amongst hardy perennial plants, Gaillardias are conspicuous for profusion and duration of flowers. A constant succession is produced all summer until very late in autumn. They produce a most gorgeous effect in beds or borders. Moreover, they are highly recommendable for cut-flower purposes, as they last for a long time in water, and can be gathered with ample, self-supporting stems. They thrive best in light, open, well drained soll, and should have the full benefit of air and sun. In heavier or in moistureretaining ground the plants are often winter-killed. The perennial forms are propagated by division, seeds or cuttings in August or September: also by root cuttings in early spring. Seedlings do

886. Gaillardia puichella, var. picta ( $\times 2.5$ ).
nct reproduce the parent ; therefore, if we are in possession of an extra good rariety, we must resort to the other modes of propagstion, though for general
purposes we may rely on seed sowing, as this involves less labor, but the cuttings make the better plants. $G$. grondiflora and its many varieties are garden forms of (i.aristata. Gireat improvements hare been introduced in late years. Some of these are highly colored and of extraordinarily large size, many of the flowers measurfug 4 to 5 in . across, as in the variety named Jas. Kelway. Another class has quilled florets (G. fistulosa), of which Buffalo Blll is an excellent sample-a large, pure yellow, with maroon disk. Vivian Grey is also a re markable and most distinct variety, with clear yellow, fringed rays and disk of the same color.

Cult. by J. B. KEller.
A. Annual Gaillardias: fls. normally mostly red.
amblyodon, Gay. One-2 ft., erect, leafy, hirsute: Ivs. oblong or spatulate, sessile and auriculate, entire or nearly so: lobes (or teeth) of the disk corollas short and obtuse: rays numerous, brown-red or maroon throughout their length. Tex. F.S. $21: 2149$. -Somewhat cult. amongst garden annuals, and worthy.
pulchélla, Foug. Erect. branching, 12-20 in., soft-pubescent: Irs. oblong, lanceolate or spatulate, rather soft, wearly sessile, either entire or the lower ones lyrate-pinnatifid: lobes of disk ths. acute or awned: heads 2 in . across, the flat rass yellow at top and rosepurple at base. Ark. and La. to Ariz. B.M. 1602, 3551 as G. bicolor.

Var. pícta, Gray (G.picta. Hort.). Fig. 886. The common carden form under cult., having larger heads and of various colors. B.M. 3368. R.H. 1852:20. In one form (G.fistulosu, G. tubulosa, G. Lovenziana, Hort.), the ray florets and sometimes the disk Horets are enlarged and tubular. Fig. 88\%. R. H. 1881, p. 377; 1885:156.

AA. Perennial Gaillardias: fls, normally yelloue.
aristàta, Pursh (G. grandiflòra, G. lùtea, G. márima, and $G$. perénnis, Hert.). Erect, 2-3 ft.: 15 s . rather thick, lanceolate or oblong, sometimes spatulate, varying from entire to sinuate pinnatifid: lobes of disk corollas acute or awned: heads $3-4$ in. across, the flat rays vellow, or in cult. varving to red (particularly at the base). Plains W. B.M. 2940. B.R. 14:1186. Gng. 2:345. -This is the common perennial Gaillardia of gardens (calt. under many names). Blooms the first year from seed. From G. pulchella it is distinguished by taller growth. firmer lvs., yellower heads, and less attenuate lobes of the disk fis.; but it is practically impossible to distinguish the two, except that one is aunual and the other perennial.
L. H. B.

GALACTIA (Greek, gala, milk; some kinds said to have a milky juice). Leguminostu. Perhaps 50 species of prostrate or $t$ wining perennial herbs or erect shrubs, widely scattered. They are of the smallest hort. value, and are chiefly distinguished by the calyx lobes, 4, entire. acute: fls. in racemes, or the lower ones clustered in the axils: pods linear. Two kinds, once adr. by E. Gillett.

## A. Leaflets $\stackrel{\text { B. }}{ }$

glabélla, Mich. Prostrate, glabrous: stems matted. usually branching, l-2 ft. long: lfts. elliptic, often notched at tip: fls. 4-10, reddish purple: poils slightly pubescent. Dry, sandy soil. N.Y. to Fla. B.B. e:335.

## GALANTHUS

AA. Leaflets $\boldsymbol{\gamma}-9$.
Elliottii, Nutt. Lfts. elliptic-oblong, notched, pubescent beneath: fls. white, tinged red: pod silky. Dry soil. S. C. to Fla.

GALANTHUS (Greek, milk flocer). Amaryllidàcece. Snowdrop. The flowers of Snowdrops (G. nivalis, Fig. 883) are amongst the smallest and daintiest ot our common hardy cultirated spring-blooming bulls. Much seutiment attaches to them, and in many an old-fashioned garden they are the earliest flowers of the new year. They often bloom in early March, before all the snow has gone. Their pendulous white flowers, with the "heart-shaped seal of green" dear to Rossetti, hold a unique place in the affections of lovers c: gardens. Snowdrops are amongst the very few Howers a nature in which the green color is decidedly attrective to our senses. At first sight the fls. seem to aave 3 large white petals, inclosing a green and white tube with 6 tips, but a se ond glance shows that the parts that function us petals are the outer segment: of the perianth, while the 3 inner ones, with their $2-10$ ied tips, are not grown together, but overlap slightly, forming a rather crude but stiffish tube. It would be interesting to know whether the green marks have any relation to calyx tips. Each plant has a glubose coated bulb, 2-3 lvs., grows 6-9 in. high, and bears usually only 1 flower. which emerses from a spathe. Behind the perianth is a globose green body, which is the orary.
In a congenial spot, moist, cool and shads, the plants increase satisfactorily, and sometimes, without any care whatever, form a bed from which literally thousands of flowers may be picked at what is, perhaps, the most desolate and wearisome moment of the year. (For a fine picture of Galanthus, naturalized in the grass, see G. M. 34:184.) The leares are linear and channeled, and in dark, shining masses make a rich, quiet effect. They come out with the fis., attain their full growth later, and commonly die down in midsummer or fall. A fine large bed of Snowdrops is more to be desired than many novelties, rarities, or any individual plants of indifferent health and vigor. The bulbs are cheap, and should be ordered in liberal quantities. In purity, mociesty and simplicity, Sncwdrops have perhaps no peers among kardy spring-blooming bulbs other than squills, grape hyucinths, and the glory-of-the-snow (Chionodoxa)

Crocuses are more cheerful and more brilliant plants, with larger and more rariously colored flowers

An era of new in terest in Snowdrons becan about 1875, with the introduction of the "giant" kind (G. Elucesii, Fig. 889), but those who do not care for " large violets" will be likely to cling to the smail Snowdrops. Never theless, G. Elvesii is very distinct, and should be the first choice if any large kinds are desired, and to secure the best forms the con noisseur should buy
imported tulbs of its varieties. The only kinds known so far to possess a patch of green at the base of the inner segments are G. Elucesii and Fosteri. Considering that there are only 2 main types in this genus, nivolis and E'luesii, the profusion of Latin names (especially since 1888, the date of Baker's"Handbook of the Amaryllides") is rather trying, except to the connoissent who, unlike the gencral public, is chiefly interested in the largerflowered forms and the novelties.

There are several types of minor importance. The
autumn-flowering kinds, representing many Latin names, as Octobrensis, Corcyrensis, Reglue Olgo, are usually weak-growing plants. However, much is hoped from $G$. Cilicicus, especially by the florists, who bave hitherto found no Snowdrop that could be profitably forced for Cbristmas. Doubleness seems to add nothing to the beauty of Snowdrops. So far it seems to have affected only the inner segments of $G$. nivalis and G. Eluesii. Yellow Snowdrops are also practically unknown in America. In these the heart-shaped spot and the ovary are yellow inctead of green. Of these, $G$. flacescens is said to have brighter markings than $\boldsymbol{G}$. lutescens.
W. M.

The Galanthus is a true winter flower, and one of the rew kinds of bulbs which grow naturally in partial shade, and suffer by actual baking of the bulbs. They are found naturally in northern exposures, and conditions similar to these inure to their welfare in gardens. The October kinds must be grown in frames, for the leaves will not ripen in the open. The fall-flowering forms are mostly Grecion, and they all show a white line in the channeled face of their leaves. G. nivalis fowrs in the writer's garden, at Elizabeth, N. J., in a mild January, and G. Elwesii is even earlier. Among the choicer kinds are G. Imperati, G. Ikarice (rery distinct, Scillalike lvs.), G. Whittalli and G. . Melrillei major, quite the finest forms of $G$. niralis. For general culture no form of Galanthus is so universaily setisfactory as $G$. nivalis. The writer has had diappointing results with G. Fisteri, and cannot see that G. Cancasicus, var. maximus, is any great gain in size.
The yellow markings on Snowdrops are sigrs of degeneracr. Among the flowers each season, though more frequent at some times thars others, will be found those with light colored markings and occasionally some white ones, but these plants show lack of rigor. In G. Eluesii the spathes are sometinues 2 -fld. instead of one. All the fall-flowering kinds are rather delicate and decidedly costly, and promise nothing for forcing. G. Elwesii would be best for gentle forcing. The fall-flowering kinds are probably all forms of $G$. nivalis, including G. Olga, which Baker keeps as a distinct species

## J. N. Gerard

Index of names accounted for below:

Byanntinus, 12.
Cassaba, 5.
Cancasicus, 4.
Ciliciens. 2.
Corcurensis, 1
Elwesii, 5.
Erithra, $\dot{5}$
Fosteri, 9
granditiorus. 11
Ikariz. 8.
Imperati, 3
latifolius, 7
maximus, 4, 11.
nivalis, 1.
ochrospilus. 5.
plicatus, 10.
robustus. 5.
unguiculatus, 5.
Whittalli, 5.
A. Lis. merelychanneled, not plaited. B. Wialth of les. small, 8-4 lines.
c. Base of les. not very narrow.

1. nivàlis, Linn. Common Snowdrop. Figs. $888,889$. Bulb 6-12 lines thick: basal sheath split down one side: lrs.glaucous, finally $6-9 \mathrm{in}$. long: outer perianth segments oblong, 6-12 lines long; inner segments green only at the sinus. Feb., Mar. Pyrenees to Caucasus. R. H. 1880, p. 148. G.M. $34: 154$. G.C.II. 11:237. Gt. 48, p. 23! There are large-fld. and double forms. Var. Corcyrensis and others flower in Nov. At least 2 varieties have yellow instead of green markings. Var. refléxus has outer segments reflexed. G.M. 34:155.
cc. Base of lis. very narrow.
2. Cilicicus, Baker. Less robust than Fostert, with much narrower lis., which are narrowed gradually firm the middle to a very nurrow base. Gr $n$ color as in niralis. Bulb $1 / 2 \mathrm{in}$. thick: lvs. whitish neath; outer segments oblong, 9 lines long, $3-4$ lines broad: stamens more than half as long as the inner segments. Mt. Taurus. in Cilicia. where it fls. Nov, to Mar. Int. 1898. See G. C. III.21:214. Pictured in G. C. III. 23:79. A.F. 13:1137. Gng. 6: 244. F.E. 11: 282. Gt. 48, p. 228

BR. Width of lus. medium, 6-9 lines long.
c. Foliage moderately glaucous.
D. Outer segments of perianth 12-15 lines long.
3. Imperàti, Bertol. Fls. larger than in G. nivalis; outer segments more spatulate. Naples and Genoa. This and Coucasicus are regarded by Baker as subspecies of nivalis. G.C.II. 11: 237. G.M. 34:155.

DD. Outer segments 9-12 lines long.
4. Caucásicus, Baker ( $\boldsymbol{F}$. Redoùtei, Rupr.). Lrз. finally 8-9 in. long, mostly 9 lines broad; outer segments oblong-spatulate, with a very narrow claw. Fls. later than niralis. Caucasus. Van Tubergen seems to ca alogue var. maximus of this species, but consult No. 11.

## cc. Foliage very glaucous.

D. Inner segments with lohes rather spreading or crisped.
5. Elwesii, Hook. Giant Snomdrop. Fig. 889. Bulb larger and fls. more globose than in nivalis: outer segments oblong-spatulate, $9-15$ lines long, ( $6-9$ lines broad: inner segments green in the lower half and also around the sinus. Mts. of Asia Minor. B.M. 6166. R.H. 1880 , p. 148. G. C. II. 11: 236. G.M. $34: 154$. The inner segments are narrowed suddenly just below the apical lobes, which are square and much larger than in Fosieri. They also form a narrower tube than in

889. Galanthus nivalis and Elwesii.

The upper fls. are G. nicalis. The lowest one is G. Elvesii The middle tis. are a variety of $G$. Elvesii.
3:471. Gng. 5:180 Gt. 48, p. 225. Gn. 55, p. 206), ochrospilus, unguiculàtus (G C. III. 17:361), and Erithræ, or Whittalli (Gn. 57, p. 45), which has the largest fls. $G$. robuistus. Hort., seems never to have been accounted for by Baker. It may perhaps be G. E'luesii, var. robustus which is a trade name. It is broad-lvd. and glaucous.
1)D. Inner segments with iobes not spreading or crisped.
6. Grecus, Orph. Very near Elwesii, but differing as above and in the smaller fls. and narrower onter segments. April. Chios.
bBb. Wilth of lis. gratest, $2-12$ lines.
c. Green color only near the sinus.
D. Colored on both silles of the inner segments.
7. latifolius, Rupr. Bulb 1 in. thick: lvs. lorate, bright green; outer segments oblong-spatulate, 6-9 lines long; inner segments green around the sinus, inside and out: anthers suddenly narrowed to a sharp point, while in nivalis and Elwesii they are gradually narrowed. Caucasus, where it fls. in Mar. G.C. II. 11:237; 15:404; 1868:578. Gt. 48, p. 229.

DD. Colorpd on only one side.
8. Ikariæ, Baker. Resembles Fosteri in foliage, and Elwesii not in coloring but in the square, crisp lobes of the inner segments, which tend to recurre. Outer seg-
mente nearly 1 in . long: stamens rather shorter than the inner segments; green colcr occupying half the outside of the inner segments. Island of Nikaria (the classical lkaria). See G C 1II. 13:506. Gn. 52. p. 361 and 49, p. 330. Int. 1893.
cc. Green color also on ibe lower half of the inner segments.
9. Fósteri, Baker Resembles latifolius in foliage and Elwesii in flower, but the apical lobes of the inner seg. ments are short and erect, and smaller than in Elwesii. Also the stamens are not more than half as long as the inner segments, while in nivalis, Elwesii and latifolius they are three-fourths as long. Asia Minor. Int. 1889. G.M. 34:154.

AA. Li's. plaited, the edges permanently rolled $1 \cdots k$. B. Green color only near the sinus.
10. plicatus, M. Bieb. Bulb larger than in nivalis: outer segments oblong f.om a very narrow hase, very conrex on the back, 9-12 lines long, wide-spreading or even reflexed: inuer segments green in the upper half. with a white edge. March, April. Crimea. This is much confounded with $G$. Coucusicus. G.C. II. 11:236. B.R. $7: 545$. B.M. 2162. G.M. 34:15̄5.
11. grandiflorus, Baker (f. míximus, Baker, not Velatowsky). Possibly a hybrid between piicatus and sonie form of nivalis, remarkable for its robust habit and green color, extending more than half way down towards the base of the inner segments. Int. 1893. See G.C. III. 13:354, 656. See also G. Caucasicus, var. marimus, No. 4.

Br. Green color also on the lower half or the inner segments.
12. Byzantinus, Baker. Intermediate between plicatus and Elwesii. "Lrs. 3 in. broad," which seems hardly possible, glaucons on both sides, especially beneath ; margins distinctly and permanently recurved; outer segments oblong, conrex on back, 9 lines long, $\dot{4}$ lines broad, apical lobes somewhat retlexed and crisped: stamens much shorter than inner segments. Int. 1893. See G.C. I11. 13:296
W. M.

GELAX (Greek, gala. milk; alluding to the whiteness of the Howers). Diapensioceo. Galax lrs., with their lovely shades of red or bronze, furnish some oi the most artistic decorative material for Christmos. The diapensia family has only 6 genera, and all of them are monotypic or nearly so. The family seems to be nearly crowded out in the struggle for existence, and its geographical distribution is interesting. Galax is distinguished from the other genera by the corolla 5 parted, with entire segments: stamens connate with the spatulate staminodes: anthers 1-celled: style very short. The plant has long been cult. in hardy borders and rockeries for its beautifully tinted, persistent lrs. and its slender spikes of ths. borne in July. The plant grows about $6-9 \mathrm{in}$. high, and is native to the mountains of Virginia to Georgia. J. B. Keller recommends a northern aspect in the lower part of the rockery, where the plants can have shade and moisture. Prop. by division. Galax is usually called "Coltsfoot."
aphylla, Linn. Galax. Rhizome perennial : lrs. all from the root, heart-or kidney-shaped, crenate-dentate, often tinged with red or hronze, with radiating nerves and slender petiole, sheathing at the base. B.M. 754. (i.F. 5:605. "Aphylla" means "leatless," referring to the scape.
W. M.

The use of Galax leares for decorative purposes in a commercial way dates back only to 1800 , when they were introduced to the northern florist trade by the writer, who had experimented with them for several years before that date, sending to hospitals and individuals. The reports received fully justified the introducer in advertising the leaf widely as a forist's decorative material for making wreaths, crosses, and in fact all designs for which ivy leaves up to that time had been employed almost exclusively. To-day Galax leares hare to a great extent taken the place of iry leares, being less expensive, casler handled and kept, and furnishing long, wiry stems. The brilliant bronze
leaves supply a color long needed in this class of work. The sizes of the leares vary, also, from $1 / 2$ inch or less to 5 inch 3 in diameter, further extending their usefulness. Small green Galax leaves are now used extensively for bunching with violets, taking the place of the violet leaves. Une of the features of the holiday season in Boston is the fakir with his stand of violets bunched with green Galax. They come in again and are used the same way at the first touch of spring, when the early trailing arbutus or "May lower" appears on the street. They can be arranged to cover much more space than the iry leaves, and do not have to be wired, as is the case with the latter. The keeping qualities of Galax are remarkable, and they are now used the year round from cold storage. Outdoor designs, as in cemeteries, will keep fresh and bright for months if not dried out, but otherwise require no care. A farorite arrangement of Galax leaves is to place them loosely in a small rase, where they will retain their bright colors and shape for weeks even in a close, warm room, though most of the leaves are used, commonly with flowers, in designs made up by the florist. As a Christmas decoration they stand preëminent, and their general good qualities mentioned abore cause them to be used throughout the year, more, perhaps, than any other decorative green, ferns possibly excepted.

In Philadelphia a few seasons ago an enterprising young woman introduced a novel and taking innovation in the shape of potted Galax plants for society dinners. Small, brilliantly colored green and bronzelvs. were ar. ranged in tiny pots, specially designed by Messrs. Sackett \& Company, and placed at each plate, to be carried away by the guests as souvenirs. They were also sold through one of Philadelphia's leading merchants by thousands. The larger cities, Boston, New York, Philadelphia and Chicago, use the largest quantities, though many of these are retailed again to smaller cities and towns all over the United States and Canada, and there is a large export trade now established in them, mostly to Germany and the Netherlands. In 1S93-1900, about 70 tons were sold.

The area over which Galax is collected extends from Virginia to Georgia, and is so vast that there is no danger of exterminating the plant by collecting the leares, eren if it were injured thereby, which does not seem to be the case. It is not practicable to grow the plants for the harrest of leaves, at least in America, the process being too expensire. Under cultiration they would perhaps not arerage one perfect salable leaf per plant, as a speck or wormhole renders the leaf unfit for decorative purposes. In Europe Galax has been tried with varying success under glass, the leaves bringing a very high price.

Galax aphylla is a beautiful ground-corering plant, specially adapted to the Rhododendron border, where the soi and situation alike are suitable to its growth, an delights in stiade and a cool, moist, peaty loam. Its charms are far better known in England, howerer, than at home. The leares, when full grown, are always bright green, the brilliant bronze shades appearing later when the plant ripens and the frosts begin. Then when they are exposed to the direct rays of the sun the alternating freezing and sun action cause the leares to turn in a short time, though sometimes this occurs to an extent before any freezing weather. In dense shade they always remain green. In spring, when the sap begins to start, the leaves often turn green or dingy again. and eventually die down the second season.

Harlan P. Kelsey.
GALEANDRA (Greek for helmet and stamen). Orchid àcea, tribe Vándec. A genus of deciduous epiphytes. Lrs. distichous, membranaceous: labellum infundibuliform: scpals and petals equal, spreading: column erect, winged: pollinia 2. Culture as for Eulophia.

Devoniàna, Lindl. Stem erect: lrs. linear-lanceolate, sheathing at base: sepals and petals lanceolate, reddish brown, with green margins; labellum whitish, veined in front with crimson. From the banks of the Rio Nigro. B.M. 4610. I.H. $21: 176$. A.F.6:699.

Baderi, Lindl. Stems subcylindric, nearly fusiform: lvs. lanceolate: racemes terminal, drooping: fls. large;
sepals and petals similar, lanceolate, yellowish; labellum pale yellow in the throat, interior portion purplish. Mex. S. B.R. 26.49. P. M. $14: 49$.

D'Escagnolleàna, Reichb. f. Stems tercte, tapering both ways: lvs. lanceolate, pointed: racemes terminal and drooping: sepals and petals similar, ascending, narrow, yellowish; lip funnel-form or nearly bell-form, fluted, with a rose-purple blotch on the lower limb. Brazil. I.H. 34:22 (1887).

Oakes Ames.
GALEGA (Greek, gala, milk: supposed to increase the flow of milk). Leguminoser. Of 109 names of species in this genus, only 6 are now retained, most of the rest being referred to Tephrosia. The 2 plants mentioned below are hardy herbaceous perennials of the easiest culture, about 3 ft . high, with odd-pinnate Irs . and pea-shaped tis. of purplish blue or white. They do not require frequent division, make bushy plants, and bear in July and Aug. many dense, axillary and terminal racemes of fls., which are useful for cutting. Seeds of Goat's Rue are still offered abroad among miscellaneous agricultural seeds, but the plants are little known in this country.
A. Leaflels lanceolate: stipules broadly lanceolate.
officinàlis, Linn. Gost's Rue. Height 2-3 ft.: lfts. mucronate: Hs. purplish blue. Eu., W. Asia. Var. álba or álbiflora is commoner in cult. Gin. 50, p. 269.-A rosecolored variety is sold abroad; also a dwarf, compact, lilat-fld. variety.

AA. Leaflets lanceolate: stipules broadly ovate.
orientalis, Lam. Foliage and stipules iarger: fls. purplish blue, nodding: pods pendulous. Caucasas. B.M. 2192. B. R. 4:326. - "Height $21 / 2-4 \mathrm{ft}$. rootstock creeping: ste simple." J. B. Keller.
J. B. Keller and WV. M.

GALIUM (Galion was the name of a plant mentioned by Dioscorides as used in curdling milk. G. verum is used locally abroad for this purpose). Rubidcea. Bedstraw or Lady's Bedstraw, because of the legend that one of these plants was in the hay on which the mother of Christ rested. This genus contains $150-250$ species, widely scattered in temperate regions, mostly weeds, oiten harsh to the touch, but frequently beautiful in their regular, mathematical habit, caused by the whorled

890. Whorled foliage of a Bedstraw-the native Galium Aparine. Natural size.
arrangement of the lrs. A few plants are slightly useci abroad in carpeting rockeries, but G. Mollugo is a standard plant with many florists who bave a hardy border Their delicate sprays of minute white flowers
are used to lighten the effect of bouquets of other fis., notably sweet peas, which can hardly be arranged with their own foliage, and which in large masses are inclined to look heavy and lumpy. Gypsophilas, which are used for the same purpose, bloom later. They have an equal infinity of detail, which baffles the eye to comprehend. The botanist's analysis of all this misty delicacy and airy grace is "fls. in axillary and terminal, trichotomons cymes and panicles. "He also declares that the lis. are really opposite, the intervening members of the whorls being stipules. Fig. 890. Galiums are annual or perennial herbs, with 4 -angled, slender stems and small, white, Jen, yellow or purple fls.; corolla wheel-shaped, 4-lobed: tamens 4: styles 2. The following are perennials $f$ in creeping rootstocks, with white fis. in terminal panicles.
A. Lvs. in 4's: fruit hairy.
boreale, Linn. Height $1 / 2-11 / 2 \mathrm{ft}$. : stem rather firm, erect and slightly branched: lvs. lanceolate or linear, 3 -ribbed, scarcely rough at the edges, often 1 in . long: petals with very short, incurved points. Native.
AA. Lis. in 8's or 6 's: fr. smooth or slightly granulated.
Mollugo, Linn. Stem $\mathbf{1 - 3} \mathrm{ft}$. long, more or less branched: Ivs. obovate to oblong or linear, more or less rough at edges, always terminated by a little point: petals abruptly narrowed into a relatively long point. - This is known in some places as "Baby's Breath," although that name is also given to Gypsophilas (which see). Eu. Perennial.
GALPHIMIA (anagram of Halpighia). Malpighidcece, an order of almost no horticultural value. This genus includes a yellow-fld. shrub cult. in the extreme South, and valued for the exceptional length of its flowering season. The genus has a dozen or less species, mostly Mexican. Shrubs or subshrubs: lvs. opposite, slightly glaucous on both sides or beneath, entire or obscurely toothed, glandular at the margin or base of blade or at the tip of the leaf-stalk: racemes terminal: fls. yellow or reddish. G. nítida, probably a recent species, is cult. by E N. Reasoner. Three or four other kinds are rarely cult. under glass abroad.

GALTONIA (after Francis Galton, the distinguished anthropological writer). Giant Summer Hyacinth. One of the few Cape bulbs that are practically hardy. This fine plant grows 3-5 ft. high and produces racemes $9-12 \mathrm{in}$. long of white, funnel-shaped, pendulous fls. in July or later. The plants should be heavily mulched if left outdoors where winters are severe. In farored localities the bulbs may be left for several years with increasingly better results. Large clumps are desirable. They hare been suggested for cemetery planting. The genus differs from hyacinths mainly by its more numerous and flattened seeds. The other 2 species are inferior to the following, which was introduced by Leichtlin in the early seventies, and now holds a permanent place in horticulture. The plants prefer a rich, open, moist soil:
cándicans, Decne. ( $\Pi y$ acinthus candicans, Baker). Fig. 891. Bulb large, round, coated: lvs. lorate-lanceolate, $21 / 2 \mathrm{ft}$. long: scape often 4 ft . high: rasemes 12-20-fld.: Hs. fragrant. F.S. $21: 2173$. G.C. 1871:380: 1872:1099 and II. 15:273. R.H. 1882, p. 32. P.G. 3:101. A. G' 17:281.
W. M.

GAMBOGE. See under Garcinit.


GAMOLEPIS (Greek for united scales; referring to the involucre). Compositce. About a dozen S. African herbs or small shrubs, somewhat allied botanically to Chrysanthemum. Les. alternate and mostly pinnatisect: peduncles 1 -headed, the heads bearing 1 series of yellow, pistillate rays, the disk ths. perfect: akenes without pappus, wingless and glabrous.
ánnus, Less. ( $G$. Tagètes, DC.). Fig. 892. Annual, of wiry growth, a foot or less high, very floriferous: lrs. pinnate or pinnately parted, $5-7$ lobes or leaflets on either side of the rachis and the leaflets entire or lobed: involucre nearly or quite urn-shaped, the scales joined more than half their length: fl.-heads bright yellow or orange, $3 / 4 \mathrm{in}$. across.-Hardy or half-hardy. Of easiest culture from seeds in sunny places, and most excellent for ribbon borders and for low mass effects. Continuous bloomer. L. H. B.

GARCINIA (L. Garcin, who lived and collected in India, and wrote in the eighteeuth century). Guttiferce. This genus includes the Mangosteen, which is declared by some comnoisseurs to be one of the rarest and most luscious of all tropical fruits; also the Gamboge Tree, whose resinous juice yields a well-known pigment and purgative. The Mangosteen is cultivated in the West Indies; the Gamboge Tree is also cult. in S. Fla. It is a broad-leared tree of slow growth. The Mangosteen is about the size and shane of an orange, with rind considerably thicker, and ediblesegments of form and arrangement like those of an orange. It is brilliantly colored outside with rich purple. The persistent stigmas and calyx lobes are seen in Fig. 893. The flavor is said to suggest something between a grape and a peach. Numberless efforts are said to have been made to naturalize this tree in the tropics without success. The successful ripening of this fruit under glass
is usually regarded as a consummate achievement in the art of gardening.

Mangostàna, Linn. Mangosteen. Fig. 893. Height 20 ft .: lvs. 7 -8 in. long, elliptic: fls. reddish; petals 4: fr. about $21 / 2$ in. in diam. B.M. 4847. L.B.C. $9: 845$. F.S. 22:2359. G.C. II. 4:657.

Morella, Dest. Gamboge Tree. Height $30-50 \mathrm{ft}$. : lrs. more tapering at both ends: fls. y $\in l l o w i s h: ~ f r . ~ r e s e m-~$ bling a Morello cherry in size and shape.
W. M.

The Mangosteen is a native of the Malay peninsula and archipelago. It is cultivated, and bears fruit in some parts of Ceylon and in a few spots in the Madras Presidency, but no success has been obtained in its cultivation in other parts of India. DeCandolle, in his "Origin of Cultivated Plants," says: "Among cultivated plants it is one of the most local, both in its origin, habitation and cultivation." In the West Indies it is successfully cultivated in Trinidad and Jamaica, but only in spots where the climate is moist, hot and fairly equable all through the year; for instance, in the Jamaica Botanic Gardens it bears good crops of fair-sized fruit at Castleton, in a val-
conducted on a smaller scale than those of agriculture, and by more intensive methods. Gardening and horticulture are really synonymous terms, but, by usage, a horticulturist is supposed to have a more extended training and wider range of activities than a gardener. Moreover, the word Gardening now suggests more of the prirate, homelike and personal point of view, whereas the most distinctive feature of American horticulture is the immense commercial importance of fruit-growing on a greater scale than that of Old World Gardening, and a marked emphasis of the professional side of a fruit-grower's work. The history and discussion of Gardening are, therefore, set forth in this book under Horticulture. Large private places are often divided into Fruit Garden, Kitchen Garden and Flower Garden. Fruit-growing is the same as Pomology (which see). Kitchen-Gardening, in its widest sense, is the same as Vegetable-Gardening (which see), or the nore learned word, Olericulture; but the expression Kitchen-Gardening is now less common, and generally indicates the private and uncommercial point of view, whereas Market-Gardening and Truck-Gardening (which are practically the same) are now the chief words used for the wholesale and commercial side of Vegetable-Gardening in the U. S. Flower-Gardening, a third primary division of Gardening, is the same as Floriculture (which see). Under Ornamental Gardening and Landscape Gardening are explained the two different prints of view in the use of plants and flowers for their own sakes or when grouped for artistic effects, the naturelike or picturesque conception being set forth under Landscape Gardening, and the artificial or merely decorative styles under Ornamental Gardening. America being the only country where cut-flowers are commercially more important at present than the trade in potted plants, a special article is devoted to Cut-flowers in this work. Other departments of Ornamental Gardening are treated under Greenhonse Management, Alpine Gardens (including Rock Gardens), Aquatics (including Bog Gardens), Trees, Shrubs, Herbaceous Perennials and Annuals.

GARDENER'S GARTER. Arundo Donax, rar. variegata, and Phularis arundinacea, var. picta.

GARDENIA (after Alexander Garden, M.D.,of Charleston, S.C., a correspondent of Linnæus). Rubiàce(e. This includes the Cape Jasmine, a tender shrub 2-6 ft. high, with thick, evergreen foliage and large double, waxy Camellia-like, fragrant fls. It blooms from May to Sept. in the South, where it is often used for hedges, and is hardy as farnorth as Va. In the middle of the century the Cape Jasmine was considered one of the finest stove shrubs in cultivation, but with the waning popularity of Camellias the doom of the Cape Jasmine as a conservatory plant was sealed. The Camellia has a greater rango of color, and has had hundreds of varieties, while its scented rival has had barely a dozen. The flowers of the Cape Jasmine have nerer been so perfectly regular as those of a Camellia, and the plants are very subject to insect enemies. Their bloom is successional rather than close, and large plants are therefore not so showy as Camellias. They are considerably grown abroad for cutfls. in early spring, young plants a season or two old being used for best results. The variety with variegated foliage is dwarfer and weaker growing. The true botanical name of the Cape Jasmine is $\boldsymbol{G}$. jasminoides, a name almost never used in the trade. "Cape Jasmine" itself is one of the most remarkable cases of the vitality of an erroneous popular name. The single-fld. form was
introduced much later than the double, and has always been less popular. The earliest picture of a living plant with single fls. was published in 1820 in B.R. 449. Some fine plants still known to the trade as Gardenias are now placed in the allied genera Randia and Mitriostigma. These two genera hare a many-celled ovary, while that of Gardenia is 1-celled. The calyx in Gardenia is often tubular, in Mitriostigma 5-parted, in Randia various. The testa of the seeds is membranaceous in Randia; in Mitriostigma rather fibrous. Gardenias are obtainable chiefly through southern and Californian dealers. Cape Jasmines are also handled by importers of Japanese plants, who sometimes offer seeds also. G. lucide was probably introduced by Reasoner, and $G$. Rothmanni by Franceschi. For the true Jasmines (which belong to the olive family, and are often trailing plants), see Jasminum.
G. florida and G. radicans have long been figured separately, and our nurserymen still keep the names distinct. The only difference which DeCandolle records is that G. florida is more shrubby and $f$ rect, with elliptical lus. acute at both ends, growing spontaneously in China and cult. in Japan, while G. radicans has a stem that takes root, lanceolate lvs., and is a mative ot Tapan. Both plants, DeCaudolle wrote, were cult. in India and at the Cape. Ellis founded the genus upon a double-fld. specimen, which he figured in the Phil. Trans. Roy. Soc. Lond. in 1761. In 1816 Sims pictured a donble form in B.iI. 1842 with these remarks: "In the way that Gardenia ralicans is treated in our stoves, the stems show no disposition to put forth roots: but probably would were they suffered to come in contact with the earth. It is doubtful whether it has ever been seen in this country, or even in China, with a single flower. There is a conntry, or aven wint china, with a single flower. floridere from which it differs very little, except in the lesser size of its tlowers and leaves, which last are narrowed at both extremities. The tlowers have nearly the same fragrant smell, and the plant, tlowering more freely und being more easily propagated than flowering more freely and being more easily propagated than the true Cape Jasmine, it has of late much taken the place of this last, and is frequently sold for it." Before 1800 , Sir J. Smith wrote in Rees' Eneyc.: "The original idea and character of this genus are taken from G.florida, commonly called 'Cape Jasmine.' This was first brought to England by Capt. Hutchinson (of the Godolphin Indiaman), who, about the middle of the last century, met with a bush of it in full flower, somewhere near the Cape of Good Hope, probably in a culti*ated state. He brought the whole plant in a pot to England. * * * Mr. Gordon, the nurseryman, having obtained layers from the tree, propagated it so successfully that he is said to
hive gained more than 500 l. by the prodnce. It is now frehive gained more than 500 l . by the prodnce. It is now frequent in our gardens, treated as a stove plant, though it chiefly requires heat in the early spring to make it bloom, being at other times a hardy greenhouse plant. The tiowers c.ve the size and aspect of a double Narcissus poeticus, with a sweet and very powerful scent, resembling the flavonr of ginger. They turn buff as they fade." From the above evidence, and from the pictures cited below, it seems clear that if the trade names G. Fortumei, florida and radicans really represent 3 disíinct varieties, the only single distinction that can be made is in width of foliage; Fortunei having lvs. $\underline{\underline{i n}}$. wide, florida $1-1 \frac{1}{2}$ in., and radicans ${ }^{1 / 2-1} \mathrm{in}$. wide.

## A. Corolla tube cylindrical.

в. Calyx uith $\operatorname{s}$ long teeth.

## C. Ribs on the calyx.

jasminoldes, Ellis. (G. florida, Linn. G. radicans, Thunb.). Cape Jasmine. Discussed above. For pictures of double forms, see B.M. 1842 and 2627 and B.R. $1: 73$; single, B.R. 6:449 and B.M. 3349; normal and variegated ioliage, R.H, 1864, p. 30. China. Var. Fortuniàna, Lindl. (G.F'órtunei, Hort.). B.R.32:43. F.S. 2:177. R.B. 23:241. In 1893 John Saul advertised G. cimellicflibra in addition to $G$. radicans, $G$. flrrida and vars. major and majéstica. G. Sinénsis grandiflòra of Berger's catalogue perhaps belongs here.

## CC. Ribs not present.

lùcida, Roxb. Buds resinous: lvs. oblong: stipules annular, variously divided at the month, unequally lobed. India, Burma, Luzon. - The cal. teeth are not decurrent, as in the Cape Jessamine, and thus the calyx does not bare the ribbed look.

* BB. Calyx tubular, with 5 very short teeth.
amœna, sims. Differs from all here described in haring numerous strong spines nearly $1 / 2 \mathrm{in}$. long, which are axillary. Les. oval, acute, short-stalked: fls. subterminal ; corolla tube 1 in . long, longer than the lobes, which are 6 , obovate, white, with margins incurvel enough to show the rosy back. India or China.


## ввв. Calyx spathe-like.

Thunbérgia, Linn. f. Lrs. broadly elliptic, acute, with pairs of glands along the midribs: fls. 3 in. across, pure white ; corolla lobes 8, overlapping. S.Afr. B.M. 1004. -"Dwarf-growing."-Franceschi.

## AA. Corolla tube short and wide-throated.

B. F's. 3 in. long and broad.

Rothmannia, Linn. f. Very distinct in foliage and fl. Les. with pairs of hairy glands along the midrib: calyx ribbed, with 5 long teeth, equaling the short, cylindrical portion of the corolla tube; corolla tube rather suddenly swelled, ribbed: lobes 5 , long-acuminate, whitish, spotted purple in the month. S. Afr. B.M.690. L.B.C. 11:1053.-"Fls. pale yellow."-Franceschi.

## BB. Fls. $11 / 2 \mathrm{in}$. long and broad.

globòsa, Hochst. Lrs. oblong, short-acuminate; leafstalk nearly $3-5$ lines long: ths. white, inside hairy and lined pale yellow; calyx small, with 5 very short teeth; corolla tube wide at the base and gradually swelled; lobes 5, short-acuminate. S. Afr. B.M. 4791. F.S. 9:951.
G. citriodòra, Hook = Mitriostigma axillare.-G. Stanleyàna, Hook. = Randia maculata.
W. M.

Gardenia jasminoides (the true Cape Jasmine) has again become very popular, eveu suggesting its popularity thirty years ago, when its wax-like, fragrant blossoms were highly fashionable. Then several of the leading Horists erected special houses for it, in order that they might flower it in the winter season. The writer had charge of one of these houses. The atternpt to bloom them in midwinter was, however, ouly partly successiul, for it is against the nature of the plant to force it into bloom before the turn of the sun in, say, January. If the plants have been well established the previous summer and are well set with flower buds, they can be successfully forced into bloom in a sunny greenhouse, giving them stove heat and frequent syringings with tepid water. The plants will be entirely covered with their great blossomis. To grow and prepare such plants, cuttings with two or three joints or eyes of well-ripened rood should be made in December or January, putting them into the propagating bed of sharp sand, with a bottom heat of not less than $75^{\circ}$, and keeping close until callused. Then air can be admitted. After rooting, they should be potted into small pots and grown on until the middle of May, when they can be planted out into a coldframe or old hotbed, into a rich, sandy loam, giving them the full sun and treating them the same as Ficus elastica is now grown. Abundance of water and frequent syringing are essential. Pinch the shoots, so as to make the plants bushy and branchy. In the latter part of Angust or beginning of September the plants should be potted into $5-, 6$ - or 7 -inch pots, according to their size, then placed either in a hotbed with gentle bottom heat or in a house where a moist stove temperature can be maintained until the plants are well rooted. During this period they should be slightly shaded, after which the plants can be hardened off and put into their winter quarters. Put in a cool greenhouse where Azaleas or Camellias or other New Holland or Cape stock is wintered, until their time for forcing into flower arrives, in the eariy part of the new year.

There is considerable difference between the large-leaf or Fortuniana variety and the common $G$. jasminoides. While the same treatment will answer for both, and the f. of the former is much larger, it is not so protitable for commercial purposes as the ordinary $G$. jasminoides. There is also a difference between these and the variety known as $G$. radicans, and its variesated variety, radicans fol. var. These plants grow much dwarfer, and their habit is more radicant or flat or prostrate in growth. Their foliage is myrtle-like and the flowers are much smaller and are less valuable. These, however, make good flowering (dwerf) pot-plants under similar treatment. The variegatec. form is cultirated in great abundance in Japan, in the gardens in semi-tropical sections. None of the other varieties is of much commercial importance, and they have value only in botanical collections.
H. A. Siebrecht.

GARDEN LEMON. See under Cucumis Melo.

## GARDOQUIA betonicoldes = Cedronella Mexicana.

GARLAND FLOWER in the South sometimes means Hedychiun coronarium. Often means Daphne Cneorum.

## GARGET. Phytolacca decandra.

GARLIC (Allium sativum, Linn.). Hardy perennial bulbous plant, closely allied to the onion. It is native of southern Europe. It has flat leaves, and the bulb is composed of several separable parts or bulbels, called cloves. These clores are planted, as onion sets are, in spring or in fall in the South. They mature in summer and enrly fall. If the soil is rich, it may be necessary to break over the tops to prevent too much top growth and to make the bulbs better, as is sometimes done with onions. This is done when the top growth has reached normal full size. The cloves are usually set 4-6 in. apart in drills, in ordinary garden soil. The bulbs are used in cookery, but mostly amongst the foreign population. Strings of bulbs b: . ded together by their tops are common in metropolitan markets (Fig. 894).
L. H. B.

GARLIC PEAR. See Ciatara.

GARRYA (after Nicholas Garry, secretary of the Hudson Bay Company). Including F'adyènia. Cornìcec. Ornamental evergreen shrubs with opposite, petioled, entire lrs., with the small greenish white or yellowish fls. in catkin-like, often pendulous spikes, and with dark purple or dark blue berries. None of the species is hardy North, but G. Veatchi, var. flavescens, and also $G$. Fremonti, which are the hardiest, can probably be grown north to New York in sheltered positions, while the others are hardy only South. Thes are weil adapted for evergreen shrubberies, and the staminate plants are especially decorative in early spring with the
894. Garlic, as strung for market. showf, yendulous catkins, Thich bloom in midwinter. The Garryas thrive well in a well-drained soil and in sunny, sheltered position; in England they are often grown on walls. Prop. by seeds or by cuttings of half-ripened wood under glass; also by layers and sometimes by grafting on Aucuba. About 10 species in W. N. America from S. Oregon to S. Mexico, mest to W. Texas. Shrubs with exstipulate lrs.: fis. diœcious, apetalous, $1-3$ in the axils of opposite bracts on elongated, often drooping, axillary spikes; staminate fls. With 4 sepals and 4 stamens, ristillate with 2 sepals and 2 styles and a 1 celled ovary: berry 1-2-seeded, rather dry.
elliptica, Dougl. Shrub, to 8 ft : Ivs. elliptic to oval oblong, obtuse or acute, usually undulate, glabrous above, densely tomentose beneath, $11 / 2-3 \mathrm{in}$. long: 3 fis. in the axils of short and broad, pointed bracts; spikes
rather dense, staminate 2-12 in. long, often branched, pistillate $1-3 \mathrm{in}$. long: fr. globose, silky tomentose. Calif. to New Mex. B.R. 20:1686. Gn. 33, p. 562; 51, p. 257; 53, p. 449; 55, p. 258. -This is the handsomest species, and stands about $10^{\circ}$ of frost (sometimes more) in a sheltered position.
Thureti, Carr. (G. elliptica $\times$ Fidyeni). Shrub, to 15 ft : : lvs. elliptic to elliptic-oblong, at length glossy and glabrous abore, whitish tomentose beneath, $2-5$ in. long: bracts remote, orate-lanceolate, with usually 1 H . in each axil; spikes shorter than those of the former: fr. ovoid, tomentose. Originated in France. R.H. 1869. p. 17; 1879, p. 154, 155.
G. Fádyeni Hook. (Fadyenia Hookeri, Griseb.). Shrub, to $1.5 \mathrm{ft} .:$ lvs. elliptic to oblong, acute or mucronulate, glossy above, tomentose beneath or almost glabrous at length, $\mathbf{2 - 4} \mathrm{in}$. long: bracts oblong-lanceolate, . emote: fr. tomentose. Jamaica, Cuba.-G. Fremonti, Torr. Shrub, to 10 ft .: lvs. ovate to oblong, acute, glabrous on both sides, yellowish green, 1-3 in. long: spikes dense, $2-5 \mathrm{in}$. long, with short bracts: fr. pedicelled, glabrous. Ore to Calif. G.C. II. 15:431.-G. macrophýlla. Benth. Shrub, to 6 ft : lvs. ovate to obloug-ovate. glabrous above, villons-pubescent beneath, $2-5 \mathrm{in}$. long: spikes dense and short: fr. sessile. Mexico-G. Veatchi, Kelloge. Spreading shrub, to 8 ft .: lrs elliptic-orate to elliptic-ohlong. acnte, vellowish green, silky-tomentose beneath, $11 / 2-21 / 2$ in. long: spikes dense, 1-9 in. long: fr, sessile, usually silky tolong: spikes dense, 1-2 in. long: fr. sessile, usually silky to ment/ se. Nevada to Calif. and N. Mex.-Var. flavescens. Coult. \& Er ins (G. flavescens. Wats.), has the lvs. smaller, longer petic ad and less pubescent: it is the more northern form and Cedros 1 iand, Lower California. Alfred Rehder.

GARÜGA (native name). Burseràcece. This includes a deciduous East lndian tree, reaching 60 ft ., and cult. in S. Fla, and Calif. for its fruits, which are the size of a gooseberry, and are eaten raw, but chietiy pickled. The genus has 6 species in tropical Asia, Amer. and Australia. Tomentose trees: lvs. crowded at tips of branches, alternate, odd-pinnate; lfts. opposite, subsessile, serrate: fls. polygamous, panieled; calyx bellshaped, 5 -cut; petals 5 , inserted on the tube of the calyx above the middle: orary 4-5-celled; orules in pairs: drupe with 5 , or by abortion 1-3, stones, which are wrinkled and finally l-seeded.
pinnàta, Roxb. Lrs. nearly villous; lfts. obtusely crenate. India and Malaya. - Also cult. abroad under glass.

## GAS PLANT. Consult Dictamnus

GASTERIA (Greek, gaster. belly; referring to the swollen base of the fls.). Lilidcere. About 50 species of greenhonse erergreen succulents, allied to Aloe, and native of South Africa. Rather small plants, mostly acaulescent, with usually elongated leares, crowded in 2 ranks or a loose rosette. Flowers with a rosy ventricose, curved tube and short, suberect, greenish seg ments, about as long as the stamens and pistil. Several species are proliferous on aborted peduncles. Hybrids are frequent between the species, and with other genera of the tribe. Gasterias flower in winter. For culture, see Aloe.
A. Leaves tapering gradually to the point, concaveconvex or concavely s-sided.
verrucòsa, Haw. (Alde verrucosa, Mill.). Lve. in two straight or at length twisted ranks, narrow for the genus, dull gray, very rough, with small white tubereles. Саре. В. М. 837.
carinàta, Haw. (Alde carind̀ta, Mill.). Lvs. at length spreading in every direction, an inch or more broad, mostly inequilaterally 3 -sided, dull, greener, the greener protuding tubercles coarser and more separated. B.M. 1331 (except left-hand leaf).
excavàta, Haw. Like the last, but without raised tubercles. Doubtfully distinct from the next. Cape.
glàbra, Haw. (Alde glabra, Salm-Dyck. A. carindta, var. subgldbra). Les. larger, green, somewhat glossy, some of the coarse, remote, pale dots persistently elevated. Cape. B.M. 1331 (left-hand leaf).
acinacifdlia, Haw. (Alde acinacifolia), Lrs. dark green, more elongrited, somewhat glossy, the scattered pale dots not raised. Cape. B.M. 2369.
púlchra, Haw. (Alde puilchra, Jacq.). Lrs. sometimes purplish, narrower and longer, the rather coarse, pale dots not elevated. Cape. B.M. 765.
nitida, Haw. (Alde nitida, Salm-Dyck). Lrs. green, more or less glossy, short, deltoid, very thick, the coarse, pale dots not elevated, and the margins nearly smooth. Cape. B.M. 2304.

AA. Leaces with nearly parallel margins, ubruptly pointed or micronate.
B. Leutes strap-shaped, one or both faces flat or concale, the margins frequently doubled.
intermèdia, Haw. (G. verrucosa, var. intermedia). Lvs. 2-ranked, more rounded on the back than usual in the group, and some of them tapering as in verrucosi, grayish, rough, with numerous pale tubercles. Cape. B.M. 1322 ( as Aloe lingua).
scabérrima, Salm-Dyck ( $G$. iutermèdia, var. aspérrima. G. verrucòsa, var̈. scabérrima. Alòe scabérrima). Lvs. thinner, less concave and tapering, often swordshaped, very rough, with coarse white tubercles.
disticha, Haw. (G. denticulda, Haw. Alde dísticha, Thunb. A. lingut, Thunb. A. linguiformis, Mill.). Lvs. somewhat concaro-convex, from apple-green becoming dull gray, eranescently pale dotted, smooth, rough-margined. Cape.

Var. conspurcâta, Haw. (G. conspurcìta, Haw. Alòe conspurcdta, Salm-Dyck). Lis. With less roughened margin, the numerous, more persistent, pale dots not elerated.
Var. verrucòsa (Ald̀e linguiformis, var. verrucòsa). Lrs. ronghened by the persistent elevation of some of the more remote greener dots.
Var. angulàta, Haw. (Alòe anguldta, Willd.). Lvs. nearly flat on both surfaces, one or both margins acutely doubled.
sulcata, Haw. (Alde sulcìta, Salm-Dyck). Lrs. very concave, with angular, conspicnously elevated and mostly incurved margins, the green dots sometimes protruding. Cape.
nigricans, Haw. (Alòe nigricans, Haw. A. lingua, var. crassifolia). Lvs. plano-convex, rather turgid, from dark green with pale dots becoming uniformly purplish, smooth, the occasionally doubled margins very minutely roughened. Cape. B.M. 838 (as Aloe lingua, var. crassifolia).

Var. subnigricans, Haw. (G. subnigricans, Haw.). Greener, the sparse dots somewhat elerated and the margins rough, especially below.

## BB. Leaves sworl-shaped, turgid, polished.

planifolia, Bak. Lus. 2 -ranked, n-edged, narrow, long, biconvex, dark green, with numerous rather large, often contluent pale blotehes, the margin denticulate next the apex. Algoa Bay.
maculàta, Haw. (Alòe maculàta, Thunb. A.oblíqua, Haw.). Lis. obliquely 2-ranked, occasionally 3-edged, often twisted, broad, with confluent pale blotehes, the margin entire. Cape. B.M. 979.
picta, Haw. (G. and A. Bowiedna). Lrs. spirally 2 ranked on an elongated stem, somewhat purplish, broad, from biconvex becoming concave, smooth margined or a little roughened near the middle. Cape.
marmoràta, Bak. Lvs. spirally 2-ranked, often 3edged, narrow. elongated, smooth, entire or the lower partly rough-margined, highly polished, coarsely palemarbled. Cape?
parvifolia, Bak. Lvs. spreading in all directions, mostly 3-edged, rery short and thick, duller green. with less confluent, smali, pale dots, which are often slightly elevated. Cape.

Wm. Trelease.

## GASTONIA Palmata. See Trevesia.

GASTRONEMA. A section of Cyrtanthus.
GAULTHERIA (named by Kalm after Dr. "Gaulthier," a physician in Quebec, whose name was really
written Gaultier). Ericdeed. This ineludes the Wintergreen and some other ornamental low aromatic plants with alternate, evergreen Irs.. white, pink or scarlet, often fragrant fls. in terminal or axillary racemes or solitary, and with decorative, berry-like red or blackish fr. G. procumbens is fully hardy North, while the other $N$. American species need protection during the winter; they are well adapted for borders of evergreen shrub beries as well as for rockeries, and in suitable soil they are apt to form a handsome evergreen ground-cover. Most of the foreign species can be grown only South or as greenhouse shrubs. Some have edible fruits, and an aromatic oil used in perfumery and medicine is obtained from $G$. procumbens and several Asiatic species. They grow best in sandy or peaty, somewhat moist soil and partly shaded situations. Prop. by seeds, layers or suckers, dirision of ohler plants, and also by cuttings of half-ripened wood under glass. About 90 species in the warmer and subtropical regions of Asia, Australia, and in America from Canada to Chile. Erect or procumbent shrubs, rarely smal! trees, usually hairy and glandular: lvs. petioled, roundish to lanceolate, mostly scrrate : fls. in terminal panicles or axillary racemes or solitary; calyx 5-parted; corolla urceolate, 5-lobed; stamens 10 ovary superior: fr. a 5-celled, dehiscent capsule, usually enclosed by the fleshy and berry-like calyx.
procúmbens, Linn. Wintergreen. Checkerberry. Boxberisy. Partridge Belriy. Stem creeping, sending up erect branches to 5 in . high, bearing toward the end 3-8 dark green, oval or obovate, almost glabrous lis., 1-2 in long, with ciliate teeth : fls. solitary, nod ding; corolla ovate, white, about $1 / 4 \mathrm{in}$. long: fr. scarlet. July-Sept. Canada to Ga., west to Mich. D. 73. B.M. 1966. L.B.C. 1:82.

Shallon, Pursh. Low shrub, to 2 ft ., with spreading, glandular-hairy branches: Irs, roundish-orate or ovate, cordate or rounded at the base, serrulate, $2-4$ in. long: fls. nodding, in terminal and axillary racemes; corolla ovate, white or pinkish: fr. purplish black, glandular hairy. May, June. Brit. Columbia to Calif. Called "shallon" or "salal" by Indians. B.M. 2843. B.R. 17:1411. L.B.C. 14:1372.
G. antipoda, Forst. Shrrib, to 5 ft ., sometimes procumbent, hairy: lvs. orbicular to oblong, $1 / 1-1 / 3$ in.: $\#$. solitary, white or pink, campanulate. N. Zealand, Tasmania.-G. coccinea, HBK Shrub, to $2 \mathrm{ft} .$, hairy : lvs. roundish ovate, about 1 in.: Hls slender-pedicelled, in elongated, secund racemes; corolla ovate pink. Venezuela. R.H. 1819:181.-G. ferruginea, Cham. \& Schlecht. Small shrab, rufously hairy: lvs. ovate or oblong 1-2 in.: fls, almost like the former. Brazil. B.M. 4697.-G fragrantissima, Wall. Shrub or small tree, glabrous: lvs. elliptic to lanceolate, $21 / 2-31 / 2$ in. long: racemes axillary, erect shorter than the lvs.; corolla white or pinkish, globular ovate Himalayas, Ceylon. B.M. 5984.-G. nummularoides, D. Don (G. Nummulàrir, DC.). Procrmbent: branches densely ru fonsly hairy: lvs. orbicular to ovate, $1 / 2-1 \mathrm{in}$. long: fls solitary ovate, white. Himalayas. G.C. H. 22:457. P.F.G. 2:164.-G ocatifolia, Gray. Procumbent, with ascending and sparingly hairy branches: lvs ovate, acute, $1-1 \frac{1}{2}$ in. long: fls. solitary campanulate: fr. scarlet. Brit. Columb. to Ore.-G. pyroloides Hook.f. \& Thom. (G. pyrolæfolia, Hook.f.). Low shrub, sometimes procnmbent, almost glabrons: lvs. elliptic-obovate, about 1 $1 / 2 \mathrm{in}$. long: racemes few-fld., axillary. Himal., Japan.

Alfred Rehder.
GAU̇RA (Greek, superb). Onagràcea. This includes several herbs which are distinct in appearance, but scarcely possess general garden value, though they are pleasant incidents in the hardy borter of those who like native plants. The bloom ascends the slender racemes too slowly to make the plants as showy as possible. The best kind is G. Lindheimeri, which has white fls. of singular appearance, with rosy calyx tubes. Gaura is a genus of $20-25$ species of annual and perennial berbs confined to the warmer regions of N. Amer.: Irs. alternate, sessile or stalked, entire, dentate, or sinuate: fls. white or rose, in spikes or racemes; calyx tube deciduous, obconical, much prolonged beyond the ovary, with 4 reflexed lobes; petals clawed; stamens mostly 8, with a small scale-like appendage before the base of each filament; stigma 4 -lobed, surrounded by a ring or cuplike border: fr. nut-like, 3-4-ribbed, finally 1-celled, and $1-4$-secded. Gauras are easily prop. by seed. They prefer light soils, and the seedlings can be transplanted directly into permanent quarters.

## A. Meight 3 ft.: fls. white

Lindheimeri, Engelm. \& Gray. Lvs. lanceolate, with a few wavy teeth and recurved margins. Tex. G.W.F. 23. R.H. 1851:41, and 1857, p. 262.
A. Meight 1 ft.: fls. rosy, turning to scarlet.
coccinea, Nutt. Lers. numerous, lanceolate to linear, repand-denticulate or entire: tls. in spikes: fr. 4-sided. Tex.
W. M.

GAYLUSSACIA (after J. L. Gaylussac, eminent French chemist; (lied 1850). Syn., Allnària. Ericatcere, tribe Vacciniec. Evergreen or deciduous shrubs with alternate, short-petioled, entire or serrate livs., white, red, or reddish green ths. in lateral racemes, and blue or black mostly edible fruits. The deciduous species are hardy North, but are of little decorative value, while the evergreen speeies, all, except the half-hardy $G$. bruchycere, inhabitants of the S . American mountains, are often very ornamental in foliage and fls., but tender and hardly cultivated in this country. They grow best in peaty or sandy soil and shaded situations. Prop. by seeds, layers or division; the evergreen species by cuttings of half-ripened wood under glass. See also luccinium for cult. About 40 species in N. and S. America, closely allied to Vaccinium, distinguished by the 10 celled orary, each cell with one ovule.
A. Lis. evergreen, obtusely serrate.
brachýcera, Gray. Low shrub, with creeping and ascending stem and spreading angled glabrous branches: les. oval, glabrous. $1 / 2-1 \mathrm{in}$. long: racemes short, with few white or pinkish fls.: fr. black. May, June. Pa. to Va. B.M. 928. L.B.C. T:648 (as Vaccinium buxifolium).
A. Les. deciduons, entire.
в. Fls. in loose racemes: corolla campanulate.
dumdsa, Torr. \& Gray. Shrub. to 2 ft ., with ereeping stem and almost erect, somewhat hairy and glandular branches: lvs. obovate-oblong to oblanceolate, mucronate, shining above, leathery, $1-2$ in. long: fls, white or pinkish; bracts foliaceous and persistent: fr. black, usually pubescent, rather insipid. May, June. Newfoundland to Fla. and La. B.M. 1106 (as Vaccinium).
frondosa, Torr. \& Gray. Blue Heckleberry. Dangleberry. Tangleberry. Shrub, to 6 ft ., with spreading, usuadly glabrous branches: lvs. oblong or ovalobovate, obtuse or emarginate, pale green abore, whitish beneath, membranaceous, 1-2 in. long: Als. slender-pedicelled; corolla broadly campanulate, greenish purple: fr. blue, with glaucons bloom, sweet. May, June. N. H. to Fla., west to Ky.. preferring moist, peaty soil. Em. 2:451. G.C. III. 7:580.
ursina, Torr. \& Grar. Shrab, to $4 \mathrm{ft} .$, with somewhat pubescent, sprealing branches: lvs. obovate to oblong, acuminate, membranaceous, $2-4$ in. long: Hs. white or pinkish: fr. finally black, insipid. May, June. N. and S. Carolina. Harlan P. Kelsey writes of this species: "Shrub 2-6 ft. high; very local in a few counties in southwestern North Carolina, though commor in these stations. Locally it is known as 'Buckberry,' a name given by the native mountaineers from the fact that deer feed on the very abundant clustered fruit in late summer. The berries are much used for pies and jams, and have a most peculiar and pleasant acid flavor, unlike any other Vaccinium. It promises to be a raluable addition to our garden fruits."

Bb. Fls. in short, sessile racemes: corolla ovate.
resindsa, Torr. \& Gray. Erect shrub, to 3 ft ., resinous when young: liss oval or oblong-lanceolate, mucronulate, yellowish green above, pale beneath. $1-1 \frac{1}{2} \mathrm{in}$. long: fls. short-pedicelled, nodding, reddish: fr. black, rarely white, sweet. May, June. Newfoundland to Ga., west to Wis. and Ky., preferring sandy or rocky soil. Em. 451. B.M. 1288 (as Vaccinium).
G.Pseudo-Faccinium, Cham. \& Schlecht. Erergreen, usually glabrous shrub, to 3 ft ., with elliptir, entire lvs. and red fls. in secund, many-fld. racemes. Brazil. B.R. $30: 62$. R.H. 1845:285.

Alfred Rehder.

GAZANIA (after Theodore of Gaza, 1393-1478, translator of Aristotle and Theophrastus). Compósitu. This group contains some of the thest of the subshrubby composites from the Cape of Good Hope. They have an astonishing range of color, - pure white, yellow, orange, scarlet, and the backs of the rays are in some cases rich purple, and even azure-blue. Their foliage is of ten densely woolly beneath, and the range of form is amazing. Speaking of G. uniflore. Harvey says: "Frequently all the lvs. are quite simple; in other speeimens some lys, are deeply 3-lobed, the rest simple, and in our var. pinnata, which grows intermixed with the other varieties, the upper lvs. are quite simple, the lower either 3 -lobed or pinnately 5 - 7 -lobed, all on the same branch!" The group is also remarkable for the spots near the base of the rays of $G$. Paconio and some others. These markings suggest the eyes of a peacock's tail. The plants are also remarkable for their behavior at night, when they close their fls. and turn their foliage enough to make the woolly under sides of the liss, more conspicuous. The genus has 24-30 species, which are herbaceous, mostly peremial, rarely annual, with short stems or none: liss. crowded at the crown of the root, or seattered along the stem : involucral scales in 2 or several rows, eup-like at the base: akenes wingless, villous: pappus in 2 series of very delicate, scarious, toothed scales, often hidden in the wool of the akene. Harvey in Flora Capensis 3:471. N. E. Brown in Gn. 47, p. 288.
Gazanias are now rarely met with in some of the oldestfashioned florists' estalishments. Few of the more prominent firms keep them now, and they may be said to be practically out of cultivation in America. All the kinds described below are old garden favorites abroad, particularly $G$. rigens, a common bedding plant, eult. for nearly a century and a half, but whose preeise habitat has never been ascertained. Importers are urged to procure (from the Cape if necessary) the other kinds recommended by Brown, at least the perennial sorts, which are $G$. jurinecefolia, subulatr, longiscupa, miflora, var. leucolema (exceptionally woolly on both sides of the lvs.), rigens, var. purpirea, armerioides and caspitosa. These are presumably equally desirable with the older sorts, though not necessarily of the same ease of culture. G. montima, Spreng., a new species, may be expected in American trade in 1900 . It has yellow fls., and is figured in Gt. 48, p. 584. Of the annual kinds Brown recommends G. Burchellia, Lichtensteini and tenuifolia. Gazanias are amongst the most conspicuous and characteristic of the subshrubby composites at the Cape, being brilliant objects in the sandy wastes. They are said to be of easy culture in our cool greenhouses, and are commended for summer use in the borders of those who ean keep them under glass in winter. They can be rapidly prop. in midsummer by cuttings made from the side shoots near the base and placed in a close frame.
A. Color of heads yellow.
B. Rays not spotted: heads $\underset{\sim}{2}$ in. across.
uniflora, Sims. Stems spreading 6-12 in. or more from a center: Irs. rarying as mentioned above. The woolliness also varies greatly: sometimes the whole plant is snowr white; sometimes the whiteness is confined to the under sides of the les. B.M. 2970. L.B.C. 8:795.The involucre is woolly, according to Harvey, but the pictures cited do not show it. This and G. rigens have short stems, with branches alternately leafy, while $G$. vinnata, Pironia and pygmota have little or no stem, and the livs. radical or tufted at the ends of the short branches.
BB. Rays spotted at base: heads 3 in. or more across.
pinnàta, Less. Lvs. commonly pinnate (some simple); lobes oblong or linear in several pairs: peduncle longer than les.: involucral scales acuminate, particularly the inner ones. Harvey names 6 botanical rarieties.
Ad. Color of heads orange: rays spotted at base: heads \& in. or more across.
B. Le's. mostly entire and sputulate.
C. Basal markings containing brown.
rigens, R. Br. Stems short and densely leafy or diffuse, laxly leafy, with ascending branches: lus. sometimes sparingly pinnatifid, i. e., with only 1 or 2 side
lobes. B.M. 90 shows a head of scarlet rays, with basal markings of brown, black and white.

## cc. Busal markings without brown.

spléndens, Hort. Fig. 895. Hybrid, said to resemble $G$. unifloru in habit but dwarfer and more compact. Of the kinds in common cult. it is nearest to G. Pavonia in coloring of fls.

## bв. Lis. mostly pinnate.

Pavdnia, R. Br. Peacock Gazania. B.R. 1:35 shows markings of brown, white, yellow and blue, which are marvelous in design and precision of execution. Involucral scales short, the inner broad, acute or subacute.

895. Gazania splendens ( $\times 1 / 2$ ).

## aAA. Color of heads white above.

pygmæ̀a, Sond. Lvs. spatnlate, entire. Rays white, striped purple beneath. Gn. 47:1011. I.H. 43:53. B.M. 74⿹\zh26. Var. maculàta, N.E. Br. Rays pale creamy white, with a blackish spot at the base, reverse striped dull purple. Var. superba, N. E. Br. Rays white, unspotted, reverse striped bluish. This species is very unreasonable about its involucral scales, which may be short or long. sometimes cup-shaped at the base, and again almost free. This upsets one of the most important features of Harvey's key.
W. M.

## GEAN. Prunus Avium.

## GEIGER TREE. Cordia Sebestena

GEISSORHIZA (Greek words alluding to the coats of the bulb, which cover it somewhat like overlapping tiles). Iriddeede. About 30 species of Ixia-like, halfhardy Cape bulbs, which are dormant from Aug. to Nov., and are usually flowered under glass in spring and early summer. The spathe-valves are all green and nembranous at the tip, while in Ixia the outer spathe-ralve is short, brown and notched at the tip. The genus has a wide range in habit and in color of fls., but these plants are presumably inferior to Ixias for general culture. The following species is adrertised in some of the Dutch bulb catalogues that are printed in English.

Latest monograph by Baker in Flora ('apensis 6:65-76 (189t-97).
Rochénsig, Ker. Lvs. glabrous, basal ones narrow, few-ribbed: stem-sheath loose and swelling: As. 1-2 in. across; perianth tube shorter than the spathe; segments with a nectary at the base. B.M. 598 (not 672, as stated in Index Kewensis), where the whole plant is a trifle over 3 in . high and the fls. purple, with a dark red eye, the latter surrounded by a pale blue circle.
GELSEMIUM (from an Italian name of the true Jessamine, which belongs to a different order). Loganiacere. A genus of only 2 species, the typical one being the Carolina Yellow Jessamine, our native woody twiner of the South, which climbs on trees and bears shining evergreen foliage and a piofusion of axillary clusters of bright yellow, very fragrant, handsome tls., 1 in. or more long, in early spring. Lvs. opposite, membranous, the leaf-stalks joined by a transverse stipular line: calyx 5 -parted; corolla open funnel-shaped, the 5 lobes broad and imbricated in the bud; stamens 5; anthers arrow-shaped; style slender; stigmas 2, each 2 -parted, lobes linear: ovary 2-celled: pod oval, flattened contrary to the partition, 9-valved, many-seeded: seds winged. The cymes of the Chinese species are terminal and trichotomous, of ours axillary, 1-3-thl. Reasoner considers ours one of the best of southern vines, and says: "Not cult. to the extent it deserves. Will grow on any land, rich or peor, wet or dry. Quick-growing, and for sereral weeks in spring literally covered with its lovely fragrant yellow flowers." It is somewhat grown for winter bloom in northern conservatories. Preparations of the rhizome and roots are common in drug stores. Properties nervine, antispasmodic, sedative.
sempérvirens, Ait. St. purplish: Irs. small, lanceolate or ovate, acute or subcordate at the base, short-petioled. Mar., Apr. Margins of swamps and rivers. Va. to Fla. A double-fld. form is advertised.
W. M.

GENIPA(Brazilian name). Rubidcere. This includes a West Indian shrub allied to the Cape Jasmine and barely known to American horticulture. Genipa and Gardenia are hard to separate. Small trees: lvs. with short or no stalks, opposite, large, leathery, obovate or lanceolate, shining: cyrnes axillary, fewfld.: fls. white to yellowish; calyx limb bellshaped, truncated, or 5-toothed; corolla salvershaped, limb twisted to the left, 5 -parted; stigma club-shaped or bifid: ovary 1-celled: placentas 2, almost touching each other in the axis: berries edible.
clusiifolia, Griseb. Shrub on naritime rocks of Cuja, etc.: Irs. 4 in. or less long, black when dried. obovate, glabrous: corymbs short-peduncled: calyx limb 5 -cut : corolla glabrous: berry ovoid.
GEDISTA (ancient Latin name). Leguminòsce. Ornamental low shrubs with small deciduous or half evergreen lrs., showy yellow Hs., generally in terminal racemes or clusters, appearing profusely in spring or summur, and followed by small, insignificant pods. None of the species is quite hardy North, but G. tinctoria, Anglica, Germanica and some other European species will do well in a sheltered position or if somewhat protected during the winter, while the others are more suited for cult. in southern regions. They are well adaptell for corering dry, sandy banks and rocky slopes, and fo borders and rockeries. They grow in any welldrained soil, and like a sunny position. Prop. by seeds, sown it spring, aiso by layers and by greenwood cuttings uader glass. About 80 species in Europe, Canar. N. Afr., W. Asia. Allied to Cytisus, but without callose appendage at the wase of the seeds: branches usually striped, sometimes spiny: lvs, entire, alternate, rarely opposite, simple, sometinies 3 -foliolate: fls. yellow, rarely white, strle hardly curred; calyx 2-lipped, with the upper lip deeply 2-parted. The Genista of florists is Cytisus.

## A. Color of fls. white

monospérma, Lam. (Retàma monospérma, Boiss.). Shrub, to 10 ft ., with slender grayish branches, almost
leatiess: 1rs. small, simple or rarely 3 -foliolate, generally linear or linear-spatulate, silky: fis. white, fragrant, in short lateral racemes; corolla silky; calyx purple: pod broadly oval, 1-2-seeded. Feb.-April. Spain, N. Afr. B.M. 683.


## As. Color of fls. yellowe.

## B. Twigs striped, not winged.

C. Pod globular, indehiscent, 1-seeded.
sphærocarpa, Lam. Similar to the former, but lower and less silky, almost leafless: fls. yellow, very small, in numerous panicled racemes; corolla glabrous. May, June. Spain, N. Afr.

## cc. Pod oval to linear, dehiscent.

D. Branches almost leafless at flouering season or lis. very small and scarce.

## E. Fls. in terminal heads, sessile.

umbellàta, Poir. Erect shrub, to 2 feet, with rigid branches, forming a dense bush: lvs. simple or 3 -foliolate, lanceolate or linear-lanceolate, silky, $1 / 4-1 / 2 \mathrm{in}$. long: corolla silky, over $1 / 3 \mathrm{in}$. long: porl linear-oblong, tomentose, 2-5. seeded. April, May. Spain.
E. Fls. in racemes, pedicelled.
ephedroides, DC. Erect shrub, to 3 ft ., with rigid branches: lrs. sessile, simple or 3 -foliolate, linear, almost glabrous: fls. in many-fld. terminal racemes, small; standard much shorter than keel: pod oral, 1-seeded, silky. April, May. Sardinia, Corsica.

ABtnénsis, DC. Shrub, to 6 ft ., with slender branches : lvs. simple, small, linear, silky: fls. axillary, forming loose, terminal racemes, fragrant; keel shorter than the standard : pod glabrous at maturity, oblique-oval, 1-2-seederl. June, July. Sicily, Sardinia. B.M. 2674.
vD. Brawches leafy, with conspicuous lex. (only $\dot{G}$. virgata sometimes scarcely leafy).

## E. Spiny.

fèrox, Poir. Erect shrub, to 6 ft ., with many stout spines: lvs. simple, rarely 3 -foliolate, oblong to obovate, almost glabrous: fls. in numerous terminal racemes along the branches; corolla glabrous, over $1 / 2 \mathrm{in}$. long, fragrant: pod linear, densely silky, many-seeded. Spring. N. Africa. B.R. 5:368.

Germánica, Linn. Erect or ascending spiny shrub, to 2 ft ., with villous branches: lis. ellipticoblong. ciliate: fls. small. in 1-2 in. long racemes: podoral. villous, fewseeded. June, July. M. and S. Europe.
ex. Not spiny: lis. always simple. F. Fls. in racemes: erect shrubs.
G. Frt. villous or silky. 1-t-seecied.
virgàta, Link. (Spártium virgètum, L'Hér.). Shrub, to 8 ft ., with slender branches: lis. lanceolate to elliptic, silky-villous, $1 / 4-1 / 2$ in.long: fls. in numerous short, 3-G-fld. racemes; standard and keel silky: pod oblong, 1-3-seeded, villous. May, July. Madeira. B.M. 2265.
florida, Linn. Erect shrub, to 6 ft., with glabrous striped branches: Irs. spatulate-oblong or lanceolate, silky beneath, $1 / 3-2 / 3 \mathrm{in}$. long: fls. in dense, many-fld. racemes; corolla glabrous: pod oblong or narrow-oblong, silky, 2-4-seeded. April-July. Spain.

GG. Frt. glabrous or netrly so, s-10-seeded.
polygalafolia, DC. Erect shrub, to 6 ft ., with somewhat silky branches: lrs. spatulate-oblong, glabrous above, sparingly silky beneath, $1 / 2-2 / 3 \mathrm{in}$. long: fls. in many-fld. slender racemes; standard and wings glabrous, keel silky: pod oblong or narrow-oblong, almost glabrous, 3-6-seeded. May-July. Spain.
tinctoria, Línn. Dyer's Greenweed. Fig. 896. Erect shrub, to 3 ft ., with striped, glabrous or slightly pubescent branches: lvs. oblong-clliptic or oblong-lanceolate, almost glabrous, ciliate, $1 / 2-1 \mathrm{in}$. long: racemes many fld., panicled at the ends of branches: corolla glabrous: pod narrow-oblong, glabrous or slightly pubeseent, 6-10seeded. June-Aug. Europe, W. Asia: naturalized in some places E. B.B. 2:271.
Var. plèna, Hort. With double fls. Var. virgàta, Mert. \& Koch ( G. Virgata, Willi., not Link, not Lam. G. eldata, Wender.). Of more vigorous growth, to 6 ft . high: pod 3-6-seeded. Southeast Eu.

FF. Fls. axillary: duarf, procumbent shrub.
pilosa, Linn. Dwarf, procumbent or ascending: lvs. cuneate, oblong or obovate, clark green and almost glabrous above, silky beneath: fls. axillary, 1-2, often racemose toward the end of branches: pod linear, silky, 5-8-seeded. May, June. M. and S. Eu., W. Asia.

## Bв. Twigs broadly 2 -winged.

sagittàlis, Linn. (Cýtisus sagittulis, Mert. \& Kech). Dwarf, procumbent, with ascending or erect, mostly simple branches: lrs. ovate to oblong, villous: fls. in terminal, short racemes ; corolla glabrous : por linearoblong, silky. May, June. Eu., WW. Asia
G. alba, Lam. $=$ Cytisus albns. - G. Andreàna, Puissant $=$ Cyti sus scoparius, var. Andreanus.-G. Anglica, Linn. Spiny shrub, to 3 ft., sometines procumbent, glabrous: lvs. oval to linear-oblong, bluish green : racemes few-fld. M. Europe.-G Anxíntica, Ten. Allied to G. tinctoria. Dwarf, diffuse: lvs. elliptic, obtuse, glabrous: fls. in racemes. italy. S.B.F.G. 2:266-G. aspalathoides, Lam. Low, spiny shrub: lvs. simple or 3 -foliolate: fls. 1-3, axillary, forming loose, terminal racemes: pod many-seeded. N. Africa.-G. Canariensis, Linn. $=$ Cytisus Conariensis. - G.cindicans,Linn. $=$ Cytisus candicans. G. eläta, Wender. $=$ G. tinctoria, var. virgata.-G. Hispánica, Linn. Allied to G. Germanica. Dwarf, silky: ths. in head-like, short racemes. Hardy in western N. Y., flowering after the middle of May. A spiny plant with oblongles. L.B.C.18:1738. R.H. 1838:36.-G.junced, Lam = Spartium junceum.-G. Maderénsis, Wb, $=$ Cytisus Maderensis.-G. ovata, Waldst. \& Kit. Allied to G. tinctoria. To 1 ft ., with ascendingorerect branches: lvs ovate to lanceolate, villous: pod villous. S.E.Eu. L. B. C.5:489.G. polygalcefolia, Hort., not DC. $=$ G. tinctoria. - G. prostrata, Lam $=$ Cytisus decumbens $-G$, racemòsa, Hort. $=$ C'ytisus race-mosus.-G radiata Scop. Erect shrub with opposite rigid mosus.-G. radiata, bcop. Erect shirib, with opposite rigid branches: ivs. simple or 3 -foliolate: fis. in 3 -6-fld. heads: pod oval, silky. S. E. Europe. B. M. $2 \mathbf{2} 60$. - G. Retuma, Nichols. $=$ cr. monosperma.-G. scariosa, Viv. $=$ G. triangnaris. - G. scopa:ia, Lam. $=$ Cytisus scoparius.-G. Sibirice, Hort., not Linn. $=$ G. tinctoria. - G. triongularis, Willd. Dwarf, with ascending or prommbent triangular branches, glabrons: lvs obovate to lanceolate. with transparent margin: fls. in short racemes. Italy, S. E. Eu. L. B. C. 12:113J (as G. scariosa) - G. virgata, Willd., not Lam., not Link, nor DC. $=$ G. tinctoria, var. virgata. Aifred Rehder.
GENTIANA (after Gentius, king of Illyricum, who is said to have discorered the tonic value of these plants). Gentiunicec. Gentians are amongst the most desirable of alpine plants, and of blue towers in general, but they are generally considered difficult to establish. The genus is the largest in the order, and from a garden point of view the most important. About 180 species, widely scattered in temperate and mountainous regions. Chiefly perennial herbs, rarely anuual or biennial, often dwarf, diffuse or tufted, sometimes crect and slender, or even tall and stout: lis. opposite, mostly sessile: fls. blue, violet, purple, rarely dull yellow or white ; foral parts typically $\overline{5}$, rarele $4-7$.
The Blue Gentian, celebrated by tourists in the Alps, is probably mostly the stemless Gentian, $G$. acculis. This was brought to English gardens so long ago that all record of its introduction is lost. It is by far the most popular kind in cultivation. This species is by some split into 5 distinct species, of which G. angustifolia of Villars (not Michaux) is nearest to the Gentianella of English gardens. It has been so much modified in cultivation that it now has stems 4-6 inches high, and
the rootstock is so stoloniferous that the plant has to be cut back every year when used for edgings in English gardens. In France it is easily grown in a compost of one-half humis or leaf-soil and one-lialf good vegetable mold, to which may be added a little sund. Correvon writes: "It can be multiplied by means of offsets, but it is infinitely better to raise it from seed, and, in doing this, it should not be forgotten that the seeds of this group of Gentlans are very tedious, and, nore especially, very capricious in germinating. I have sown seeds of $G$. acaulis, some of which did not germinate for 12 months, while others (which I must say were more recently gathered) germinated in a few weeks. The seedlings should be potted as soon as possible and while they are very young. They will begin to flower in about 3 years from the time of sowing, rarely sooner." Except G. Andrewsii, G. Saponaria and G. puberula, and perhaps a few others, Gentians do not thrive as well in America as in England. Our seasons are too hot and dry. Whenever possible, give a damp atmosphere.
it is rash to generalize on Gentian culture, because some plants are tall, others dwarf, some found on mountains, others in lowlands, some in moist soil, others in dry lands, while some like limestone and others cannot endure it. The annual kinds are of interest only to the expert. Alpine plants in general are unique in requiring an extremely large water supply, combined with extremely good drainage. Another difficult problem is to keep the plants as cool as they are on the mountains without shading them more than nature does. Gentian seeds are small, and in germination slow and uncertain. They should be sown as soon as gathered, for the thorough drying out of small seeds is, as a rule, soon fatal. Gentians are difficult to establish, and dislike division of the root, but are well worth patient years of trial, for they are very permanent when once established. Naturelike alpine gardens are one of the latest and most refined departments of gardening, and Gentians are one of the most inviting groups of plants to the skilled amateur. Consult Alpine Gidulens.

There are several Fringed Gentians, but ours (G. crinita, Fig. 897 ) is perhaps the most beautiful of Gentians, and one of the choicest and most delicate of American wild flowers. It has been proposed as our national flower, and, while sought after less than the trailing arloutus, it is in even greater danger of extermination in certain states because it is a biennial, and because it has never been successfully cultivated. Seeds of $G$. crinita hare long been advertised by one American dealer, but at the Cornell Experiment Station these have never been germinated. The Fringed Gentian is, however, firmly rooted in American literature, and from the time of Bryant's ode many tributes in verse have been paid to its unique beauty. The daily unfolding of its square-ridged and $t w i s t e d$ buds has been watched in thousands of homes. By the artists its blue is often considered the nearest approach to the color of the sky, but it must be confessed that a shade of purple often appears in the older flowers.
The Gentian enthusiast should hasten to procure a copy of "The Garden" for Aug. 24, 1805, which contains Correvon's fine cultural monograph of Gentians translated from R.H. 1893, p. 525, and 1894, p. 42. Correvon cultivates his Gentians at Geneva, Switzerland. The writer of the present article has searched Correvon's monograph for facts concerning season of bloom, habitat and cultural directions, which are scattered below.
Correron makes 4 cultural groups of Gentians:
I. Tall Gentians for general culture: species whose roots are more or less stout, which are of relatively easy culture, and therefore suitable for borders, rockwork and landscape gardening. Typical plant, G. lutea: others are G. affinis, alba, Audrevisii, asclepiader, Bigelovii, Burseri, Cruciaft, decumbens, Fetisoui, gelidf. Kesselringi, macrophylla, Olivieri, Pueumonanthe, Porphyrio, Saponaria, sceptrum, septemfila and Walujewi.
II. Low-growing Gentians: species whose roots being less stout are adapted to rockwork, and for the open ground only when a special compost is provided. Includes $G$. acaulis and the species into which it is sometimes divided.
III. Tufted Gentians: species with sessile flowers growing little above the level of the ground, and suited
for the same positions as Group II. Typical plant, $G$. veruu: others are G. Bavaricu, imbricata, Oregana, ormita, Pyrenaict, and pumila.
IV. Rare Gentians: species which cannot be grown without some special knowledge and practleal experience. Typical plant, G. purpurea; others are G. ciliata, Froplichii, punctatu, and prosumably all the rest.

The two most popular Gentians in American cultiva tion seem to be $G$. ucuulis and Andrevsii. These are, perhaps, followed by $G$. Cruciuta, puberula and Suponaria. The plant which King Gentius knew is probably $G$. luted, the root of which furnishes the Gentian of drug stores. From the same sources comes the liqueur or cordial called "Gentiane."

Index of names : those marked with an asterisk (*) appear in American trade entalogues: the rest are cult. abroad. The plants are perennials and mountain-loving, unless otherwise stated.
${ }^{*}$ acaulis. 51.
adsceudens, 3.
*Cruclata, 45.
nffinis, 29.
*alba, 7. algdda, 10 and 11.
alpina, 55.
*Andreirsid, 22.
cingulosn, 48.
*ingustifolia, 52 and 31.
*asclepiadea, 19 barbata, 16. Bararica, 49
*Bararica, 49.
Burseri, 39
*calycosa. 3 .
eampestris, 12.
Carpastris, 12.
Carpatica, 40 .
Cateshici, 21 and 22.

- Cllasta, 15.
cordifolia, 28
cordifolia, 28

Pannonica, 42.
*Parryi, 36.
Pneumonanthe, 20.
Porphyrio, 31.
pseudo - Pneumo nanthe, 23.
prostrata, 25.

* puberula, 41 .
pumila, 50.
*punctata. 6.
*purpurea, 4.
Pyrenaica, 24. quinqueflora, 17. *quinquefolia, 17. rubra, 5.
*Saponaria, 21.
*scabra, 26.
*scabra, 26.
*sceptrum,
*septemfida, 28.
*septemfida,
serrata. 16.
serrata. ${ }^{16}$.
Thomasti, 4.
trifora,
verna, 48.
A. Calyx spathe-like, split in tuo. B. Color of fls. yellowish.
C. Form of corollu wheel-shaped... 1. Iutea
cc. Form of corolla club-shaped, at
least in bud....................... .. Burseri
BB. Color of fls. blue or purple, at least ubove.
C. Corollu plaiterl..................... 3. decumbens
cc. Corolla not plaited.
D. Authers groun together........ 4. purpurea

DD. Anthers free...................... 5. rubra
AA. Calyx with a tubular portion, and usually $\bar{y}$ lobes.
в. Color of fls. yellowish, or areenish white.
c. Style distinct: capsule not stalked 6. punctata
cc. Style none or very short: capsule stitlked.
D. Meight 2 ft .
7. alba

DD. Height $9-12$ in........................ 8. . ochroleuca
DDD. Height 6 in. or less.
E. Lobess of calyx longer then the calyx tube.
9. frigida

Ee. Lobes of calyx shorter than the calyx tube.
F. Lis. lanceolate-linear.........10. algida

FF. Lis. orate-lanceolate..........11. gelida
вв. Color of fls. blue or purple.
c. Corolla not plaited.
D. Glimels found at the base of the filaments.
E. Calyx 4-cut........................ 12. campestris EE. Calyx $\overline{\text {-cut. . . . . . . . . . . . . . . . . 13. Moorcroftiana }}$
DD. Glands not found at the base of the filaments.
E. Fringed Gentians: culyx 4 -cut.
F. Copsule raised on a distinct stalk.
G. Apex of lobes fringed, the sides less so ...................14. crinita
Ga. Apex of lobes not fringed, base fringed...................15. ciliata
FF. Capsule on a very short stalk.16. serrata

EE. Not fringed : cnlyx ş-cut: corolla lobes tipped with a sharp point
$\qquad$
cr. Corolla plaited.
D. Stigmas 2, aluexys tiatinet.
E. Capsules finally raised on a distinct stulk.
F. Anthers permanently grown together.
G. Calyx as long as the corolla.18. Fralichii
co. Calyx one-half or one-third as long as the corolte.
H. Seeds not at all ringed..... 19. asclepiadea

ни. Seeds slightly winged.

1. Fls. open ......................20. Pneumonanthe
II. Fls. closenl, blue.............21. Saponaria

ннн. Seeds strongly winged.

1. F'ls. closell, purple..........22. Andrewsii
II. Fls. open........................3. linearis

Fr. Anthers free, at least finally.
G. Number of corollu lobes 10..24. Pyrenaica

Ga. Nimber of curolla lobes 5
(rarely 4).
H. Calye 4-lobed

HII. Calyx $\overline{0}$-lobed.

1. Lex. distinctly rough abote (hispid-scubrots)..........6. scabra
2. Les. distinctly rough at the margins (scabrous).
J. Lobes of calyx shorter than the calys tube.............
JJ. Lobes of culyx as long as the culys tube.
к. Corolla lobes orate, acute, a little longer than the much cut uppenduges...28. septemfids
кк. Corolla lobes oblong-lancenlute, obtuse, thrice as tong us the much cut appendages..................
3. Le's. not distinctly rough aboce or at margins.
J. Seeds not at all uinged.
k. Form of corolla lobes linear-oblong ...........30. Olivieri
Kk. Form of corolla lobes ovate, often broadly so.
L. F'ls. solitary.
m. Peduncled..................31. Porphyrio

3m. Not peduncled..........32. ornata
LL. F'ls. in clusters of $B-\bar{j}$ or more.
M. Lis. lanceolate-lineur..33. triflora
ma. Le's. ovate to oblonglanceolate.
s. Height 2-4 ft.
.34. sceptrum s.. Height 9-12 in.
o. Calyx lobes orate, about as long as the calyx tube...........35. calycosa
oo. Calyx lobes linear, moderately or much shorter than the calyx tule
36. Parryi

JJ. Seeds umged (at the base in K'urroo: in Bigelovii wings narroue, thickish).
к. Height 2-8 in.: fls. spot tell.
L. Pedicel $1 / 2 \mathrm{in}$. long or more.....................37. Karroo
ll. Pedicel very short, practically absent ...........38. Newberry
кк. Meight 1-2 ft.
L. Fls.in a dense spike....39. Bigelovii

Lh. Fls. 1-few or several
M. Appenlages conspicu. ous, sometimes nearly as long as the corolla
$\qquad$ 40. Oregans
my. Appendages only halias
long as the corolla
lobes ...................41. puberuls
E. Capsute sessile.
F. Authers grown together: style distinct: seeds uinged.
G. C'alyx 5.cut, the lobes longer than the calyx tube.........
aG. Culyx entire, truncute, indis tinetly 5 -lobed.

Pannonica

5r. Authers free: style usually not distinct: seeds not aringed.
6. Lis.6-12 in. long: calyx $\dot{0}-1$, lobecl..............................
GG. Lers. m
lobed.
4. macrophylla
$\qquad$
DD. Stigmiss contiguous, ruther funnel-shuped, the margin cre-mete-fimbriate.
E. Anthers free: style elistinet.
F. Calyx pellucia, reiny.

FF. Calys lealy. $\qquad$ 6. Carpatíca
G. Seeds winged.
47. imbricata

Ga. Seeds not uinged.
H. Liss. orate...................... 48. verns

ни. Le's. olovute........................49. Bavarica
нин. Leх. linear........................... pumils
EE. Anthers connate: style short..5l. acaulis
F. F'ls. spotted.
G. Color sky-blue.
Ga. Color violet-thlu
$\qquad$
52. angustifolia

FF. F'/s. uot spotted.
G. Corolle broadly bell-shaped.
H. Size of fls. large
54. Clusii

ни. Size of fls. small.................5. alpina
GG. Corollu almost cylinirical..56. Dinarica

1. lùtea, Linn. Fls. in dense, umbel-like cymes; corolla 5-6-parted; lobes oblong-linear, acuminate; anthers free: style none. July-Sept. Eu., Asia Minor.-Prop. only by seed. Sow seed in Nor. incoldframe. Seedlings appear the following March and April. In May and June prick them out under a coldframe, and in Aug. transfer young plants to pots, where they should be kept until needed for permanent outdoor use, Be very careful never to break the roots. Sometimes cult. abroad for medicine.
2. Búrseri, Lapeyr. Les. T-nerved : corolla mostly 6-cut; lobesovate-oblong, acute: anthers conuate; style distinct. June, July. Pyrenees. - Cult. like 1.
3. decúmbens, Linn., f. (G. alscéniens, Pall.). Les. linear-lanceolate, margins scabrous: ths. blue; corolla narrowly obconical, toothed between the lobes; lobes 5 , orate; anthers connate, finally free. Himal., Sib. JuneAug. B.M. 705, 723. - Cult like 1.
4. purpùrea, Linn. Lrs. orate-oblong, 5 -nerred: fls. purple above; corolla tube yellowish, club-shaped; lohes mostly 6 , oborate-subrotund, one-third the length of the tube. Aug., Sept. Eu. L.B.C. 6:583 shows a rich, dull purple, with no trace of blue. - Compost of sphagnum and heath soil. Be careful not to break the roots.
5. rùbra, Clairv. (G. Thómessii, Gillab.). One of 5 or more natural hybrids between $G$. lutea and some species of the section Colanthe. which includes $G$. punctata, purpurea, Pannonica, and Burseri: fls. purplish out side. Swiss Alps.
6. punctàta, Linr. L_ss. 5-nerved : calyx 5-7-cut: corolla tube bell-shaped; lobes ovate, mnticons, one-third the length of the tube; anthers finally free. Middle Eu. The spots are not arranged in any definite order. This belongs to the section Colanthe, in which the seed has a wing of the same color, while the next 5 species belong to the section Pneumonanthe, in which there is no wing, cr it is of a different color. - Cult. like 18.
7. \&lba, Muhl. St. stout: lvs. acuminate, with a clasp. Ing hase: fls. in a terminal head, with single or clustered ones in the upper axils; dull white, commonly tinged yellowish or greenish; corolla resembling $G$. Supenarit, but more bell-shaped and open; lobes ovate, short, little if at all spreading. Low grounds and mountain meadows, N. Amer. B.M. 1551, erroneously, as G. ochro-leucu.-Cult. like 20.
8. ochroleùca, Frœel. St. ascending: lrs. ovate-lanceolate and obovate: ths. in crowded terminal. nerrly ses. sile, leafy cymes; corolla yellowish white, club-shaped,
connivent at the apex. N. Amer. Not B.M. 1531 or 1551. Var. intermedia, Griseb. (G. intermélia, Sims, not L. B. C. $3: 2181$, may be a hybrid between this and $(\dot{F}$. A nulrewsii. It resembles 6 , ochroleuca in having calyx lobes of unerual lengtha, but as long as or longer than the calvx tube, and freeanthers: it resembles $d$. Indreasii in the tinge of purplish bhue. B.M.s30:3. Var, incarnata, Grisci. (G.inearmila, Sims). B. M. 13.6 from (arolina is not cult. These forms are not considered worthy of varietal rank in Graỵ's Syn. Fl.
9. frigida, Hank. Lšs. spatulute-linear, obtuse: ifs. 1 or 2 at the top, sometimes a few in the upper axils; calyx not laterally cut, and half as long as the corolla or more; calyx teeth lanceolate, a litte longer than the calyx tube; corolla club-shaped, plaits not cut. Carpathian Mts.; also N. Amer. - This is the true type of (I. Prigidn, which is not in cultivation, but is inserted to make clear the differences between $\mathcal{B}$. alyida of I'allas and of Steven.
10. algida, Pall., not Stev. (G. Prigiele, var. dilgida, Griseb.). Lve. laneeolate-linear: fls, "-5 at the top and distinctly pellicelled; calyx laterally cut and one-third the length of the corolla; calyx teeth linear-lanceolate, hardly as long as the calyx tube and sometimes only half as long: corolla between club- and bell-shaped; plaits cut with a few erenate teeth. Altai Mts., E. Siberia, N. Am. Gn. 17. 1. 31:3, smme na Gn. $\because 7$, p. 89; 48, p. 146, and N. 2:60, Fig. 93. - This grows t-5 in. high has numerous stems and fls. nearly $21 / 2$ in. long, whitish, with blue spots in longitudinal lines. The writer has not seen Git. 1006 .
11. gélida, M. Bieb. (G. rilgida, Stev., not Pall.). Les. ovate-lanceolate, 3 -nerved: Hs. few and terminal, or many in the upper axils, peduncled; calyx tecth linear-oblong, acute, nearly as long as the calyx tube or shorter than it: corolla rather bell-shaped, yellowish white, its lohes broadly wate, twice as long as the calyx and trice as long as the lacerated plaits. June, July. Cinueasus. Not P.M. 7:5, which is G. septemfilut, var. corlifolia. - "Light, deep, cool soil and full sunlight." correvon.
12. campéstris, Linn. Annual: fls. dark purplish blue; calyx 4-cut; corolla nearly bowl-shaped, crowned; anthers free; style noue.
13. Moorcroftiàna, Wall. Annual, 4-10 in. high: fls. pale blue; calyx j-cut; corolla fumel-shaped. Himal. B.M. 6727 , where tis. are shown as pale purple.
14. crinita, Frol. Fig. 897. Fringed Gentian. Biennial : erect, branched, 1-2 ft. high: lvs. lanceolate or orate-lanceolate, acutish, from a rounded or subcordate party clasping base: corolla lobes wedge-obovate: seeds roughened by scales or needle-like projections. Moist woods and meadows. N. Amer. B.M. 2031. D. $2 \overline{5}$. G.W.F. 19. Mn. 4:161. B.B. 2:613. -The ribs of the calyx (made by the decurrent lobes) are one of the minor beauties of this plant, and are probably more pronounced than in the other Fringed Gentians here deseribed.
15. ciliàta, Linn. Perennial: stem flexuose, scarcely branched: Ivs. linear, obtnse: corolla lobes obovate-oblong: seeds smooth. Dry limestone soils. Eu. Not B.M. 639, which is $\mathbf{G}$. serrata. - Hardly 3 per cent of Correvon's seedlings have flowered. He recommends a heary, compact soil which is almost clayey, and full sunlight.
16. serràta, Gunn. (G. barbita, Frcel. G. detónsa, Griseb. G. detónsa, var. barbitt, Griseb.). Annual: stem erect, branching, 3-18 in. high: Ivs. linear or lancelinear: corolla lobes oblong or spatulate-obovate, fringed around the apex and sides or sometimes either part nearly bare. Wet lands, Ural and Altai Mts., Caucasus, N. Amer. B.B. $2: 614$. B.M. 639 erroneously as $G$. cilitata. - No plants appear to be advertised as $\dot{G}$. serratu. $G$. barbate is a trade name abroad.
17. quinquefolia, Linn. (G. quinqueflora, Hill, Lamarck and others). Annual: height 1-2 ft., the larger plants branched: ivs. 3-7-nerved: intlorescence thyr-soid-paniculate: clusters $3-5$-fld.: fls. bright blue; calyx one-fifth or one-fourth as long as the narrowly funnel-shaped corolla. N. Amer. Probably the form in cult. is var. occidentalis, Gray. Height $2-3 \mathrm{ft}$.,
paniculateif much branohed: inflorescence more open: calyx halt the length of the broader corolla. B.B.2:615. B.M. 3496. - Very pretty.
18. Frallichii, Jan. Stems short, almost tufted: fls. blne, solitary, pefluncled. nearly as long as the stem: corolla not spoted. Very rare in Alps, limestone rocks. - Eavily grown on rockwork in compost of equal parts of sphagnum, heath soll and vegetable mold. Half-exposure to suulight.
19. asclepiadea, linn. Stem strict: calyx teeth very short: the. in spike-like racemes, dark blue: corolla club-shaped; ealyx one-third as long as the corolla: seeds not winged. July-Sep. S. Fu., C'ucasus. B.M. Jois. Gn. 48, p. 143, and it, p. 39. - The white-flal. form is excellent. Shade or half-shadn, and moist, deep soil rich in humus.
20. Pneumonánthe, Linn. Stem erect: fls. dark blue in a cyme-like ruceme (the top ths. opening tlrst); corolla club-shaped; lohes ovate, acute, mucronate, much longer than the appendages. Aug.-Oet. Mountain marshes. Eu., N. Asia. Var. guttata, Sims, is dotted white. B.M. 1101. - TRequires a conl, deep, spongy soil, rich in humms. Dislikes lime, and prefers sandy soil. Does remarkably well when planted on margins of ponds or brooks. Prop. by seed or division." Correron.
21. Saponària, Linn. (G. Cateslrri, Walt., not And.). Babrel or Soapwort Gestias. Stem ascending: tis. light blue, club-shaped; calyx lobes linear or oblong. mostly as long as the calyx tube; corolla lobes short,

22. Fringed Gentian-Gentiana crinita ( $\times 1 / 2$ ).
broad, roundish, erect. little, and often not at all longer than the 9 -cleft and manr-toothed intervening appendages. N. Amer. B.M. 1039. - (Hooker is probably wrong in referring this picture to $G$. Anlrewsii, though the calyx lobes in the plate are not narrow enough.) Cult. like 20.
23. Andrewsii, Griseb. (G. Catesbwi, And., not Walt.) Closed, Blind or Botrle Gentian. Fig. 898. Stem ascending: Hs. nurplish blue; calyx lobes lanceolate to
orate, usually spreading or recurved, shorter than the calyx tube; corolla lobes entirely obliterated, the teeth at the top being supposed to be the remains of the appendages often found between the corolla lobes in other

24. Closed GentianGentiana Andrewsii. ( $\times 1 / 4$.) species. July, Aug. Moist places, N. Amer. B. M. 6421. D. 273. B.B. 2:616. Gn. 27:477. L.B.C. 9:815 erroneously as G. Sapo-naria.-A white-fld. form is cult. For culture, see 20.
25. lineàris, Froel. (G. pseudoPneumonánthe, Schult.). Stem strict, 1-2 ft. high: tss. blue, 1-5 in the terminal cluster: corolla narrowly funnel-shaped; lobes erect, roundish ovate, obtuse, a little longer than the briangular, acute, entire or 1-2-toothed appendages. Bogs, N. Amer. B.B. 2:617.
26. Pyrenàica, Linn. Stem tufted, about as long as the fl.: lvs. with a cartilaginous, scabrous margin: fls. solitary, dark blue ; coroila funnel- or nearly bowl-shaped. Mar, June. Eu., Asia Minor. B.M. 5742.-Very distinct and dainty. Cultivated like 48.
27. prostrata, Hanke. Annual, dwarf: lvs. white-margined: fls. blue, solitary, the parts nsually in 4's; corolla saiver form, in fruit inclosing the rapsule. N. Amer., Asia.
28. scabra, Bunge. Stem erect, leafy: fls. dark blue, clustered ; corolla bell-shaped. E. Asia. G. Fortuni is considered a variety by recent anthorities. Var. Buérgeri is advertised by Yokohama Nursery Co.
29. Fortuni, Hook. Lrs. rather distant, 3-nerved : terminal fls. rather clustered; corolla lobes blue, spotted white; outside of tube green; plaits blue, terminated by 3-toothed appendages, much shorter than the corolla lobes. China. B.M. 4776. F.S. 9:947. I.H. 1:36. - Now thought to be a variety of $G$. scabra.

28, septémfida, Pall. Lvs. lanceolate ("ovate," Grisebach), 3-5-nerved: fls. dark blue, in head-like cymes; calyx lobes linear ; corolla club-shaped. July-Oct. N. Asia, Orient. B.M. 129 and 1410 (both purple outside and dotted brown within; the lobes of the latter spotted white). L.B.C. 1:89. Gn. 54, p. 37. P.M. 8:51. Not F.S. 8:765.

Var. cordifdlia, Boiss. (G. cordifolia, C. Koch), has heart-shaped lrs.: corolla tube greenish white outside, unspotted within; lobes narrower, unspotted. B.M. 6497. P.M. $7: 5$, erroneously as G. gelida.-The name septemflda is misleading, as $\bar{i}$-lobed corollas are very rare. Cult. like 1.
29. affinis, Griseb. Lower lvs. oborate-oblong; upper Irs. lanceolate, acutish : fls. dark blue, in racemiform cymes: calyx lobes oblong-linear ; corolla narrowly obconical, open. Northwestern Amer. Gn. 46, p. 77, and 48, p. 139. B.B. 2:615 (where corolla lobes are pictured erest, but said to be spreading). - Cult. like 20.
30. Olivièri, Griseb. Fls. dark blue, in umbel-like cyones ; corolla narrowiy obcoaical ; plaits triangular, ne.rrly entire. Junt-Aug. Mountain pastures, Asia. By recent authority referred to $G$. decumbens. - Cult. like 1 .
31. Porphýrio, J. F. Gmel. (G. angustifòlia, Michx., not Vill.). Lvs narrowly linear: fis. blue, somewhat brown-dotted (also a snow-white variety with a greenish hue outside); corolla funnel-shaped ; anthers connirent but never connected. Julr, Aug. Moist pine barrens, N. Amer. B.B. $2: 618 .-$ Cult. like 20.
32. ornàta, Wall. Les. broadly linear: fls. blue, streaked; calyx lobes spreading; corolla ventricose; lobes very short, spreading. Himal, B.M. Galt. G.C. 11. 20:396.
33. triflora, Pall. Stem erect : fls. dark blue ; corolla club-shaped. E. Siberia.
34. scéptrum, Griseb. Lrs. oblong-lanceolate: fls. dark blue; corolla club-shr ed: seeds winged on one side according to Grisebach, ut Gray says not winged. Aug., Sept. N. W. Anier. - Cult. like 1, except that it requires half shade and a rather peaty soil.
35. calycdsa, Griseb. Lrs. ovate: fls. dark blue, commonly solitary, according to Gray; corolla oblonerfun-nel-shaped; appendages triangular-awl-shaped, laciniate or 2 -cleft at the tip. N. W. Amer.
36. Párryi, Engelm. Lvs. somewhat glaucous, orate to oblong-lanceolate: fls. purple-blue, appendages narrow, deeply 2 -cleft. N. W. Amer.
37. Kurrod, Royle. St. tufted, as high as 7 in.: lower lvs. lanceolate, upper linear: fls. blue, spotted white inside, $1-3$ on a stem; corolla bell-shaped. Himal. Gn. 17:224. B.M. 647 ${ }^{\circ}$. Var. brevideng has shorter calyx lobes. J.H. III. 30:3.
38. Néwberryi, Gray. St. 2-4 in. high: lower lrs. obovate or spatulate: fls. pale blue, white inside, greenish dotted; corolla broadly funnel-shaped. N. W. Amer.
39. Bigelovii, Gray. St. G-16 in. high, equally leafy to the summit: fls. purple; corolla more narrowly funnelform and smaller than in G. affinis. July, Aug. N. Mex. B.M. 6874. - "Soon forms large clumps, often with 40-50 stems from a single plant, each bearing 10-20 bright blue Als." D. M. Andreic.
40. Oregana, Engelm. Height 1-2 ft.: 1vs. ovate: fls. blue ; corolla broadly funnel-shaped, orer 1 in . long, lobes short, roundish. July, Aug. N. W.. Amer.
41. pubérula, Michs. About 1 ft . high: lvs. oblonglanceolate to lanceolate-linear: fis. blue; corolla open-funnel-shaped, $11 / 2-2$ in. long; lobes ovate. N. W. Amer. B.B. 2:615.
42. Pannónica, Scop. Lower lvs. broadly elliptical, 5 nerved, margin scabrous; upper ones ovate-lanceolate, 3 -nerved: fls. purple above; calyx $\overline{5}$-- - cut ; corolla leathery; anthers connate at first, finally free. Eu.
43. Gaudini, Thom. Natural hybrid with the habit of $G$. purpurea, but the membranous corolla of $G$.penctata: fls. rosy violet. Eu.
44. macrophylla, Pall. Lrs. lanceodate, distant, rery spreading: internodes unequal: Hs. dark blue. July, Aug. B.M. 1414, not L.B.C. 3:218. - Cult. like 1.
45. Cruciàta, Linn. (Crucidta verticilldta, Gilib.). Lrs ovate-lanceolate, crowded, erect-spreading; internodes equal: fls. dark blue. June-Aug. Eu., N. Asia.-Cult. like 1. Limestone and full sunlight.
46. Carpática, Kit. Lvs. oborate: fls. dark blue (as are the next 4 species) ; corolla funnel-shaped. Carpathian Mts. - Little known.
47. imbricata, Frcel. Lrs. acute, margins scabrous, (the next 3 species with smooth margins): corolla lobes subrotund. June, July. Limestone rocks, Alps. - In this and the next 3 species, the corolla lobes are usually crenate, half the length of the tube, and 6 times the length of the plaits. "Eastern and granitic Alps." Correvon. Cult. like 49
48. verna, Linn. Tufted: stem angled: lvs. orate or orate-lanceolate : fls. solitary; calyx membranaceous; corolla nearly borl-shaped; lobes orate. obtuse. Apr.June. Eu., Caucasus. B.M. 191. L.B.C. $1: 62$. R.H. 1859, p. 250 . Gn. 48, p. 139. G.C. II. 24:373. Var. alàta, Griseb. (G. anguldsa, M. Bieb.), is taller and has the nerves of the rentricose calyx produced into wings. Rockwork, in a compost of heath-soil, finely crushed granite, and vegetable mold, with full sunlight.
49. Bavárica, Linn. Calyx lobes lanceolate: corolla funncl- or nearly bowl-shaped; lobes obovate, obtuse: ovary sessile: seeds not ringed. May-Aug. Cent. Eu F.S. 7:651. L.B.C. 13:1256. J.H. III. 35:585. Gn 15:174 (poor). - The pictures cited all show a salvershaped corolla. "Requires a soil that is peaty, or at the very least porous and cool, well drained, and capable of retaining an abundant supply of moisture, although it may be fully exposed to the sun. In the alpine garden here we grow them in pure sphagnum moss on a wall facing due south, but che plants which we raise for sale are growi in pots in a conpost of sphagnum, heath-soil and sand. Finest of Group III." Correvon.
50. pumila, Jacq. Stem 3-4-angled: calyx lobes linear: corolla lobes ovate, ncute. June, July. Tyrolese and Carinthian Alps.
51. acaùlis, Linn. Gentianella. Stemless Gentian. By the botanists of continental Europe this is often split up into the 4 or $\overline{5}$ following species. The plants that Linnæus had in mind were probably mostly Clusii and Kochiana. For pictures of $G$. actulis in its widest sense, see B.M. 52. G.C. III. 15:236. Gn. 48, p. 146 , and 54 , p. 39, and F.S. 2:3:2421, where a more detailed account of the 4 following species is given.
52. angustifolia, Vill., not Michx. Stoloniferous: lvs. linear-oblong, narrowing towards the base, glistening above : fls. spotted with sprightly green; calyx lobes more or less spreading, oval, abruptly contracted at the base. May, June. Limestone rocks, Alps. - Considered by Correron the handsomest species of the whole genus.
j3. Kochiana, Perr. \& Song. Les. large, flat, thin, spreading, oval or broadly oblong, light green: calyx lobes oblong, limp, more or less contracted at the base and separated by truncate sinuses; corolla with 5 blackish green s:ots on the throat. May. June. Common in pastitres on granitic Alps. - Dislikes lime.
54. Clùsii, Perr. and Song. Lrs. lanceolate-acute, leathery: fls. dark blue; calyx lobes pressed close against corolla, not contracted at base, and separated by acute sinuses. May, June. Limestone rocks, Alps.
55. alpina, Vill. Stem almost wanting: lvs. small, glistening, curving inwards and imbrieated, forming rosettes which incurve at about the middle: fls. dark blue. May, June. Granitic Alps. - This and G. Kochiona "require a compost of one-third crushed granite, one-third heath soil, and one-third vegetable loam, and should be planted on mekwork half exposed to the sun."
56. Dinarica, Beck. Lrs. broad, thick, erect: fls. dark blue. Alps of S. and E. Austria.
The following are trade names abroad of Gentians not sufficiently described for insertion above: G. Arcernénsis, Hort. Perhaps avar. of Pneumonanthe. Fls, Napoleon blue. See G. C. II. $20: 40 .-\boldsymbol{G}$. Charpentieri. Thom. Naturally hybrid, intermediate between lutea and punctata: corolla spotted red: ealys j-cut. Grisebach does not say whether the corolla is not plaited, anthers always free, and style none. Alps, above Engadine.G. Fetisowi, Regel. St. erect, tall: fls. deep bue. China. Gt. 1069.-G. Hangsti, Hausm. $=$ ( $\mathbf{r}$. Kummeriana.-G. Késselringi, Regel. Height about 8 in.: Hs. whitish, dotted violet outside. Turkestan. Gt. 1087.-G. Fizmmeriana, Sendt. Hybrid bet ween lutea and Pannonica. Fis. yellowish.-G. Fállichiana. Height ${ }_{8-12}$ in.: fls. clear blue.-G. Walujéri, Regel \& Schmalh. Fls. whitish, lotted pale blue. Turkestan. Gt. 1140.
W. M.

GENUS, pl. GENERA (i. e., kind), is a term used in natural history to designate agroup of species. As with species, so the Genus is an indefinite conception, varying with the author. The chief value of the conception is its use in aiding us conveniently to arrange and name plants and animals. The name of the Genus is the first of the two words in the name of the plant: thus, in Brassica oleraceu, Brassica designates the Genus, and oleracea the particular Brassica of which we are speaking. It is impossible to trace the origin ci the genusconception in natural history, but it is usually ascribed to Konrad Gesner (Zurich, 1516-1565). L. H. B.
GEONOMA (Wittstein gives this ponderous explanation: "Greek, geonomos, skilled in agriculture: for this tree puts forth buds at the apex of its siem which become new trees"). Pulmacerp, tribe Arècea. Slender spineless palms with ringed, reed-like stems: lis. terminal or alternate; blade entire, 2 -lobed at the apex, or more or less pinnatisect: segments acuminate, 1 -nerved, with the margins broadly recurred at the base; rachis acute above, convex on the back; petiole nearly cylindrical, concare at the base above; sheath tubular; spadices ascending or recurved, simple, forked or paniculately branched, slender or stout, often colored; spathes 2, often deciduous before flowering, or obsolete, tho lower one partial, truncate, concave, the upper compressed or fusiform: fls. borne in the furrows of the spadix, at length partially exserted, when in 3's the upper one pistillate: cells of the anthers twisted: fr. small, globose, black. Species about 100. Tropical America. For G. Ghiesbreghtidna, see Calyptrogyne.

Jared G. Smith.

Several of the members of this extensire genus of small-growing palms are useful for the greenhouse, though most attractive while in a small state, from the fact that Geonomas soon begin to form a stem, and when aged become rather scantily furnished specimens. These palms are by no means difficult to grow, and do not require a very high temperature, their natural habitat being the mountains of Central and South America, some of the species being found at an altitude of over 4,000 feet above sea level. Geonomas form part of the undergowth on their native mountains, and are said never to appear in tho open country unsheltered by trees of larger growth; therefore, shade is necessary for them when cult. under glass.

The old practice of growing Geonomas in a very light, peaty soil does not seem to be the only method, for excellent results have been secured wy gruwing them in a good loam, well manured and well drainel, giving an abundance of water and a night temperature of $60^{\circ}$. Red spiders and thrips are the most troublesome insects to which these plants are subject, and both of these pests multiply much more rapidly if the plants are sept too warm and dry.
The most usefil species from a commercial point of view is G. Riedeliana (G.gracilis), which reminds one of Cocos Weddelliana, but has longer leaflets. Those marked thus (*) are cult. under glass in the North ; those marked thus ( $\dagger$ ) are cult. in S. Calif. only; the others are culc. indoors North and also in S. Calif., except $G$. Spixiana, which is cult. only in S. Fla. The picture of $G$. Spixiana below is adapted from Martius' work on palns.

899. Geonoma Spixiana.

A tall palm, as it grows in the tropics.

## A. Lus. simple, 2 -lobed at the aper.

B. Cuneate-oblanceolate, rusty, tomentose.

Bpiziàna, Mart. Fig. 899. Stem slender, solitary, 6-9 ft . high: blades 3 ft . long, bifureate one-fourth of their length, each lobe lanceolate-acuminate, divergent. Western Brazil.

BB. Cuneate-orate, plicate.
Seèmanni, Hort. Low, 1-3 ft. high : lvs. all alike, tho first 9 in. long, the later ones 10 in . long, short-petioled, triangular, with broad, searious margins- blade feather veined. Central America.

## GEORGIA

AA. Les. pinnate.
3. Basal leaf-segments narrow; the upper ones the broadest.
*acaúlis, Mart. Aeaulescent : lvs. long-petioled, 3-4 ft. high; blade unequally pinnatisect, 22-25-nerved on each side; basal segments 4 lines wide, spreading, the middle and upper erect-spreading at an acute angle, 3/4-4 in. wide, the apical very wide. Central Brazil.

BB. Broat and narmou segments irregularly intermingled.

## c. Blacle of leaf 6 ft . long: petiole 1 ft . long.

+Pohliàna, Mart. Stem 12-15 ft. high, slender, densely ringed, colummar or reedy : segments very unequal, linear-lanceolate, falcate-acuminate, few-nerved and many-nerved intermixed, 16-20 in. long. Trop. Brazil.

$$
\text { cc. Slade } 2-21 / 2 \text { ft.: petiole } 4 \mathrm{in} . \text { long. }
$$

†élegans, Mart., rar. robusta, Dr. Stem 6 ft . high, 3-4 lines in diam.: segments rarely 3 , usually 5-7, 1 nerved, $10-14$ in. long, some 4 lines wide, intermixed with broader, many-nerved ones, all long, falcate-acumi nate. Central Brazil.

ввв. Leaf segments all alike (except the connivent "picul ones).
c. Alternate, remote, linear, scurfy.
*Riedeliàna, H. Wendl. ( G. grácilis, Lind. \& André). Habit of Cocos Weddelliana, the whole plant sparsely covered with caducous, brown, shining scales : petiole slender, $11 / 2 \mathrm{ft}$. or more long, terete below, flattened above: rachis triangular, bisulcate above : lva. spreading, drooping at the apex: sepments $10-12$ in. long, about 9 lines wide, linear-acute, elegantly recurved, the 2 terminal oues connivent. Brazil. 1.H. 21:163.
CC. Equidistant: petiole half as lone as the bladc.

Schottiana, Mart. Stem 9-i5 ft. hich, 1-1 $1 / 4 \mathrm{in}$. thiek : Ivs. recurved, spreading; petioie half or more than half as long as the blade; sefments about 35 on each side, 10-12 in. long, two-fifths in. wide, eguidistant, linear or linear-linceolate, very long acuminate. E. Brazil.
The following are imperf setly described, but are in the trade: *G. imperì̀lis, Linden.- ${ }^{*} G$. princeps, Linden.- ${ }^{*} G$. Pynar tiona. Hort. Belongs under A. © re of the smallest lys. measures 28 in . long by 10 in . at the broadest. Has not flowered yet, and the genus is therefore uncertain. R.H. 1898, p. 262. G.C. III. 23:253. F.E. 10:886.-G. speciòsa, Barb.-Rodr.

Jaked G Smith, W. H. Taplin and W. M.
GEORGIA, HORTICOLTURE IN. Fig. 900. The climatology of Georgia is unique. Latitude and altitade combine to exaggerate the four and one-half degrees covered by the state from south to north into at least ten, thereby embracing an extraordinary range of climate. In something less than 300 miles a transition is effected from a subtropical to an almost boreal vegetatio:.

P'seeeding northwestwardly from the eoast, the countrv rises gradually until ic culminates in the Blue Ridge, the highest peaks of which (in Towns county, on the Tennessee line) stand a little inore than 5,000 feet high. Intermediately may be found as varied a elimate, and consequently as extended a range of horticultural production, as can lie met with in a journey of a thousand miles due writh and south, in a region of normal elevation, such as the Mississippi valley.

Measurably the geology of the state corresponds with its elevation and consequent cimatology, and is not complex except in the extreme northwestern portion. Two formations-the tertiary and metamorphic-cover nin tenths of its area. The Sea Islands, and coast for a short distance inland, are alluvial or quarternary, and here the vegetation is of a subtropical character-palmettoes and live-oaks on the is:ands and pines and hammock growth inland, togethe with the citrus, fig and olive families, where cultivated.

Slightly beyond the tide-water limit begins the vast swerp of the pine forests, known locally as the "Wiregrass Region," which extends inland some 160 miles, on an average, covering nearly the whole of the tertinry formation. A range of low sard hills, about 300 feet high, extending diagonally across the state, separates the ter-
tiary and metamorphic regions. At its base the land has attained an average altitude of less than 200 fect

From the summit of this ridge or terrace, formerly the primordial sea-beach, stretches the metamorphic region -the -ed clay or cotton belt-rising gradually toward the northwest until the Piedmont escarpment is reached -another low hill range on the southern side of and parallel to the Chattahoochee river valley. The height of this escarpment varies froal 1,000 to 1,500 feet. Beyond this are the Appalachian foothills and then the


Apple and cherry belt.
Peach and grape belt. Fig and ci. beit.
900. Georgia, to show horticultural regions.
mountains, in rery irre
nation, their spurs radiating in all directions.
In extreme northwest Geortia the surface dips in a general way toward the Tennessee river valley (elevation 700 feet), interspersed, however, with a chas of mountains and coves, with a complex tangle of geologicai formations, from lower silurian to eocene.
The prevailing natural growth of the tertiary is yellow pine-that of the metamorphic region hard woods, embracing nearly all of the North American species, oak and hickory predominating.
All this has been a necessary preface to a dirision of the state into separate horticultural areas, which correspond in the main with its geological features, and may be classified as follows :
Horticultural Areas : Corresponding Geological Divisions.

1. Fif and Citrés Belt...

Quarternary Formation 2. Pearsanh Melon Belt. $\qquad$ .Tertiary Formation 3. Peach and Grape Beit $\qquad$ ..Metamorphic Formation

1. The Fig and Citrus Belt.-In this zone the citrus family does not thrive indigenously, nor is it planted for commercial purposes. Yet oranges and lemons live and bear unprotected, though latterly subject to injury from frost. It is the home of the Ogeechee lime, and formerly both indigo and the olive flourished on the Sea Islands, but their culture has been for many years abandoned. Figs grow to perfection. About the ports-especially Savannali-heary trucking is followed for the northern market-chiefly potatoes, strawberries, cabbages, celery, tomators. onions and peas.
2. The Pear and Melon Belt.-The sandy soil of the tertiary is especially adapted to the nelon and the oriental pear-the former over its entire area, the latter mainly in the southern part. These form two of the leading horticultural industries in this section. The Georgia melon is extensively shipped and widely known through out the continent. Zymotic blight has of late greatly checked the pear industry, and discouraged the growers. In isolated locations, wherever there exist well defined elevations above the surrounding country-islands, possibly, of the tertiary sea, prematurely uplifted-they have been converted into vass peach orchards of hundreds of thousands of trees-in the Marshallville and Fort Valley district (the birthplace of the Elberta) running into millions.

Japan plums also thrive in the "Wiregrass," aud are now attaining considerable commercial importance. Figs yield abundant crops throughout this zone. Most of the Labrusca type of grapes and all of the Estivalis type succeed admirably in the elerated portions and are beginning to be extensively cultivated; but the Scuppernong (Vitis rotundifolia) is the typical grape of the section. The strawberry does only moderately wellfrequently summer-scalils. All blackberries thrive, but raspberries are not generally successful.

But the "Wiregrass" is the home of the sweet potato. Here the pumpkin yam and Georgia yam attain their highest perfection.
3. The Peach and Grape Belt. - It is an anomaly that while the metamorphic region, with its red clay soil-especially on the Piedmont escarpment-is the home of both the peach and the grape, most of the great commercial orchards of the state are located in the "outcropping peach districts" of the tertiary. Cheaper lands and earlier maturity are the cause. Yet naturally the metamorphic region is peculiarly adapted to peach and grape culture, and it was here that both attained their first development in this state. More species of grapes and a greater number of varieties of each species will attain perfection in middle and Piedmont Georgia than in any one region of America east of the Rockies-a sweeping assertion, but facts sustain it. Labruscas, Vulpinas, ※istivales, Rotundifolias-all seem equally to thrive ; but prices are poor, and grapes are everywhere giving way to peaches, with apples on bottom lands, although this is mot an apple region.
Japan plums usually do not do so well as in the "Wiregrass." Native plums are not profitable-even the Wild Goose is unsatisfactory. Figs are uncertain, and in the northern portion of the zone require winter protection. Strawberries and blackberries are excellent, and raspberries quite successful in the Piedniont area and northward. Gooseberries and some currants do well in certain portions of the mountains, but not souti of the escarpment.
4. The Apple and Cherry Belt.-Apples do not do equally well throughout the entire division styled the "Tennessee Dip." Yet in many localities, especially in the mountain coves, they thrive as well as in western N. Carolina or Vermont. This is notably the case in Pickens, Gilmer, Murray and Fannin counties, which are famons for their apples. Cherries, especially Morellos, form a safe crop here, and, in general, most of the horticultural productions of a much higher latitude find a place.

Insect and fungous affections have to be combated in all parts of Georgia, just as elsewhere (except in certain portions of the mountains, where neither are as yet introduced). Growers are generally learning, however, the value of the spray pump.

The San José and other scales hare invaded the state, especially in the southern portion, where some twentyodd counties report infestation. But they are being intelligently combated, for the most part, and it is hoped that they will be steadily held in check.

The main trouble with the Georgia fruit-grower (aside from pear blight and the premature blooming of peaches) is the curculio. Thousands of dollars are annually spent in "jarring" for this pest, but it still remains a serious menace.

Hugh N. Starnes.
GEORGINA. A synonym of Dahlia, which still lives in the form of "Georginen," the popular name of Dahlias in Germany

## GERANIUM, FEATHER. See Chenopodium Botrys.

GERANIUM (Greek, crane; from the resemblance of the fruit to a crane's bill). Geranidcec. Crane's-bill Generally herbaceous plants, usually caulescent: lva. simple, alternate or opposite and much loveu, sometimes almost radical: fls. regular; sepals 5 . imbricated; petals 5 ; stamens 10, in two rows; anthers 10 : seeu when ripened serarated irom the ovary and with its awn bent sitat ously. The genus Erodium, its nearest ally, has but the inner row of stamens furnished with anthers and the awn of the seed is bent spirally. The Geraniums of common specel are classed in the genus Pelargonium, having at the side of the pedicel a distinct narrow tube and zygomorphic flowers. The genus Geraniunt has over 150 species, found in the temiperate zones particularly of the northern hemispheres, very few in the tropics. Valued for the border or rockery, and the roots of some, as $G$. maculatum, find use in nedicine on account of their astringency. Thrive well in ordinary garden soil, and are propagated by seeds and division of roots.

The following is an alphabetical list of species and rarieties described below:
album, 17. 18, 19.
argenteum, 1.
Armenum, 4. Backhousianum,4. Balkanum, 21. cinereum, 2. collinum, 11 Endressi, 5. erianthum, 13
ilore pleno. 9. Ibericum, 8 . incisum, 13. Lancastriense, 6. Londesii, 11. macrorrhizum, 7. maculatum, 14. phæum, 10. platypetaluni, 8.
plenum, 14.
pratense. 9.
Richardsoni, 20. Robertianum, 3. sauguineum, 6. Sibiricum. 21. sylvaticum, 21. tuberosum, 21. Wallichianum, 16.

## A. Fls. تed or pink.

B. Stature very ducarf.

1. argénteum, Linn. Sifier-leaved Crane's-bill. About 3 in . high : lvs. almost radical. on long petioles, $j$-i-parted, with 3 -fid line:r lobes, both surfaces hoary: peduncles almost radical, 1-or 2-fld.: fls. large, pink, with darker reins: petals emarginate. Middle of June to Aug. Carnic A!ps. B.M. 504. L.B.C. 10:948. - One of the best for the rockery. Often acts as a biennial in N. E.
2. cinèreura, Cav. Grat Crane's-bill. Like G. argentenm, bue 2 -fld. anil paler in color: lvs. not as hoary in appearance. June, July. Pyrenees.
3. Robertiànum, Linn. Herb Robert. Red Robin. About 9 in. high : lvs. thin, ovate-orbicular, 3-5-parted, with 3 -fid pinnatifid lobes: peduncles slender, 2 -fld. fls. small, bright crimson. June to Oct. Amer., Eu., Asia and N. Afr. B.B. 2:341. - For the rockery, and delights in a moist soil and some shade. Odor disagreeable.

## Bb. Stature 1 ft . or more.

4. Armènum, Boiss. (G. Backhousidmum, Regel ?). About $21 / 2 \mathrm{ft}$. high : lvs. radical, upright, orbicular, with 5 deep lobes: Hs. about $1 \frac{1}{2}$ in. across, inclining to a dark erimson. All season at irregular intervals. Armenia. R.H. 1891, p. 350.-A. very vigorous and floriferous species. Sometimes growing 4 ft . high.
5. Endressi, J. Gay. About 18 in. Ligh: Irs. opposite, palmate, 5 -lobed, upper ones 3 -lobed, serrated: peduncles axillary, 2 -fld.: petals entire, fringed at base, light rose, darker reined. Summer. Pyrences. - Among the best for the border, and useful for cutting.
6. sanguineum, Linn. About $11 / 2 \mathrm{ft}$. high, with stem occasionally forked, erect : lvs. all petiolate, mostly 7 parted, with $3-5$-lobed linear lobules: peduncles long, mostly 1-fld.: fls. very large, blood-red. June to Aug. Eu.-One of the best species in cult.

Var. Lancastriénse, Hort. A dwarfer form, smailer and with less deeply lobed foliage. Fls. lighter in color, veined purple.
7. macrorrhizum, Linn. A large-rooted species, about $11 / 2 \mathrm{ft}$. high, with a stem suffiruticose at base: lvs. smooth, round, ?asal ones 5 -lobed, cauline 3 -lobed, toothed and often colored red: calyx inflated ; petals spatulate and blood-red in eolor. May to July. S. Eu. B.M. 2420 .

## AA. Fls. blue or violet.

8. Ibèricum, Cav. Iberian Crane's-bill. From 1-1 $1 / 2 \mathrm{ft}$. high : stem erect and leafless below, above dichotomously branched, villous: Ivs. opposite, 5 - 7 -parted, with deeply cut lobes and toothed lobules: fls. 1 in . across, in showy, open panicles, violet. July, Aug. Iberia. B.M. 1386.
Var. platypétalum (G. platypétalum, Fisch. and Mey.). Slightly shorter than the parent, with lrs. less deeply lobed and lobes less pointed: Hs. deeper and richer in color, and also larger.
9. praténse, Linn. Meadow Crane's-bill. About $\mathbf{2 1} / 2 \mathrm{ft}$. high, with an upright round stem: lvs. mostly hand-shaped, with 7 lobes, each deeply cut : peduncles mostly 2 -fld., drooping after flowering : fls. large, blue; petals entire. June, through Aug. Eu. - Var. flore plèno. Not as tall as parent. Very numerous deep blue fls. in clusters. June and July, and often again in fall.

10. Geranium maculatum $(\times 1 / 3)$.
aAA. Fls. dark blue, almost black.
11. phæum, Linn. About 2 ft . high, with upright, short-haired stem, glandular above: Ivs. 5-7-lobed and deeply toothed: peduncles $1-2$-fld.: petals spreading, obovate, unequally notched and often with a small spur, very dark blue, almost black, with white spot at base of each petal. May, June. Cent. and western Eu.-A good border plant.

## aAAA. Fls. purple in urious shades.

11. collinum, Steph. (G. Londesii, Fisch.). Height 2-3 ft.: stem angular and slightly decumbent: lvs. palmately 5 -parted, deeply divided and cut: petals entire, purple, with a tinge of violet. Juae, July. Eastern Eu.
-One of the showiest in its season. Should be cut back before seeding, to induce second bloom.
12. Frèmontii, Torr. About 1 ft . high, sometimes subacaulescent: upper ivs. 3-5-cleft, lower ones 7 -cleft, with 3 -fid or incised lobes: fls. light purple. Rocky Mts. Recently introduced. Blooms all summer.
13. incisum, Nutt. (G. eriainthum, Lind.). About 1 ft . high, leafy branched: lvs. finely cut: pedicels conspicuously glandular-pubescent: petals with stiff white hairs, inner surface purple, about 1 in . wide. Ore. - A hardy species well worth growing. Not perfectly hardy near Boston.
14. maculàtum, Linn. Wild or Spotted Crane'sBiLL. Fig. 901. The common American species, about $11 / 2-\mathrm{ft}$. high: stem angular: basal lvs. long-petioled, deeply 3-5-parted; stem-leaves opposite, shorter petioled: peduncles $\mathbf{1 - 5}$, inflorescence often unbellate: fis. $1-11 / 2 \mathrm{in}$. broad, rose-purple; petals woolly at base. June, July. N. Amer. G.W.F. 3. B.B. 2:341.-Showy native species; should be more in cultivation. Grows best in somewhat wet places. Var. plènum, a doubleflowered variety of deeper color.
15. Richardsoni, Fisch. \& Trautv. About $11 / 2 \mathrm{ft}$. high: lvs. thin and terminal, lobe of the uppermost lvs. longer than the often greatly reduced lateral lobes: pedicels conspicuously glandular pubescent: fls. large, reddish purple; petals with long white hairs on inner surface. Colo. and west.-Stems and young growth tinged with red.
16. Wallichiànum, D. Don. Of prostrate trailing habit: stem and lis. covered with silky hairs: lvs. light green, 5 -parted, with deeply toothed lobes: fls. large, purple, borne sparingly all summer. Himalayas. B, M. 2377.-For the rockery.

## AAAAA. Fls. white.

17. Ibéricum, var. album. A white-fld. var. of No. 8.
18. macriàtum, var. album. A white-fld. var. of No. 14.
19. pratense, var. album. A white-fld. var. of No. 3.
20. Richardsoni. This species (No. 15) in its native habitat is usually white, mostly roseate-veined.
21. Sibíricum, Linn. Siberian Crane's-bill. A slender, somewhat forked plant, villous, 1-2 ft. high: les. deeply 3-5-parted: peduncles slender, usually 1-fld.: fls, very small, dingy white. June through Aug. Siberia, and naturalized near New York. B.B. 2:341.Another form under same name, with brick-red fls., said to be in eultivation.
G. Balkànum, Hort. A hardy plant, with fragrant foliage: fls. on radical stems, 1 in. across, dark magenta. June.-G. sylfls. on radieal stems, in. across, dark magenta. uune, -G. syl
raticum. Linn. About 2 ft . high, with a soft-haired, upright, raticum, Linn. About 2 ft . high, with a soft-haired, upright, purple or violet. June, July. The common wood Geranium of Europe.-G. tuberisum, Linn. Tuberous-rooted, $9-15 \mathrm{in}$. high, with stem at base naked: lvs. many-lobed, linear and serrate: pedicels 1-2-fld.: tis. large, violet. May. S. Eu.
G. N. Ladman.

GERARDIA (after John Gerarde, 1545-1607, perhaps the most popular of the herbalists). Scrophularidcea. Hardy annual and perenniai berbs, all American, and mostly of the Atlantic states, with yellow or rosy purple is., in late summer and autumn, the latter color rarely varying to white: lvs. mainly opposite: calyx 5 tooth ir cleft; corolla bell-to funnel-shaped, broad throated, 5 -parted, the 2 posterior lobes often smaller and more united; stamens commonly more or less hairy; anthers more or less approximate in pairs: capsule globose, 2-groored: seeds usually angled, loose coated. The first 3 species deseribed below belong to a section in which the roots are more or less parasitic. These plants are therefore ratber difficult to cultivate, and are offered only by collectors. G. tenuifolia is offered by one deaier, the seeds presumably gathered in European gardens.

## A. Flls.yellow.

B. Corolla pubescent outsille: biennial or annual.

Pediculària, Linn. Pubescence partly glandular and riscid, especially on the pedicels and calyx, while in the next 2 species there is no glandular pubescence. Lis. $1-2$ in. long, all pinnatifid. N. Am.

BB. Corolla glabrous ouiside: perennial.
C. Height $\mathcal{S - G} f$ f.
quercifolia, Pursh. Stem at first glaucous: lower lrs. 3-5 in. long, 1-2-pinnatitid: upper lis. citen entire. Dry woods, N. Am.

## cc. Meight 1-2 ft.

lævigata, Raf. Not glaucous: lvs. $11 / 2-4$ in. long. Oak barrens, etc., N. Am.

AA. Fls. rosy purple rarely varying to white. B. Height 1 ft .
tenuifolis, Vahl. Height 1 ft : branching, paniculate: inflor. racemose: lvs. mostly narrowly linear: corolla $1 / 2 \mathrm{in}$. long. Low or dry ground, N. Ain.

## BB. Height 2-3 ft.

linifolia, Nutt. Perennial: lvs. erect, very narrowly linear, 1 line wide: calyx teeth minute; sorolla 1 in. long. Low pine barrens, N. Am. Not cult., but said to be a parent with Pentstemon pulchellus of G. hybrida, Hort. Int. by Haage \& Schmidt, 1899. The poor cut in S.H. 2:485 seems nearer Pentstemon than Gerardia.
W. M.

## GERMANDER. See Teucrium.

GESNERIA (Conrad Gesner, Zurich, 1516-1565, celebrated naturalist, and considered to be the originator of the idea of genus in taxonomy). Gesnerdcer. Sometimes written Gesnera. More than 50 herbs of tropical America (chiefly Brazilian), with simple, opposite lis. and showy tubular Hs. in terminal short panicles or fascicles. Calyx campanulate, 5-parted ; corolla long, straight or curved, more or less ventricose, the base often distinctly swollen or gibbous, the limb mostly shallow-toothed and nearly regular or bilabiate; stamens 4, didynamous (in pairs under the upper lip); style 1, long; glands on the disk in the fl. Handsome warmhouse plants (mostly tuberous) allied to Achimenes, Gloxinia, Isoloma and Streptocarpus. Some of the Gesnerias of the trade belong to Nmgelia, which differs, amongst other things, in having an annular or ringed disk rather than a disk of distinct glands.
L. H. B.

Gesnerias are tuberous bulbous, or rhizomatous plants. They are natives of tropical S. America and Mexico, and all have a period of rest corresponding with the dry season. The stems rise directly from the rootstock. They are clothed with opposite, mostly heartshaped, sometimes ovate, leaves. They are densely hirsute; the hairs often are brightly tinted, giving them a sheen like the plumage of birds, so that they are quite as much admired for their handsome foliage as for the flowers. The inflorescence is generally a branched corymb, and the flowers are tubular-labiate, with the limb rarely flattened, as in Achimenes. Gesnerias are not nearly as popular as they once were, probably on account of the transitory character of their corollas, which are continually falling, lasting but a day or two. The roots must be kept in a moderately warm place, such as would suit Gloxinias. They should be kept in the pots in which they have grown, and be watered about once a week during the resting period. It is a mistake to suppose the roots can be kept in dry sand and still retain their vitality. When the roots show a tendency to send up stems is the time to start them, picking out the advanced ones first. In this way a long season can le secured. They need a light soil to start with, about equal parts leaf-soil, loam and sand, and should be placed in a moderate temperature. Very little water will be required until they are well started. If it is desired to increase stock, sinaller bulbs may be boxed off, and cuttings made of surplus shoots. Seeds are produced rather freely, and some good hybrids are in cultivation. As they advance in growth, larger pots will be needed, and a little stronger soil,-the mixture divided into four parts, adding well-decayed manure. They will take abundance of water and some liquid manure when coming into bloom. If neatly trained they make handsome specimens. Their beautiful foliage is liable to be spoiled by impurities or sediment in water, so that we aroid overhead syringing, particularly as they develop. After blooming, a good light place should be given, and
the plants watered until they show signs of going to rest. As they are naturally an undergrowth, a light shading will be beneficial in the hottest weather.

Cult. by T. D. Hatfield.

## A. Lis. green.

cardinalis, Lem. (G. macríntha, Hort.). Stem 6-12 in. high, stout and hairy: lvs. large, cordate-ovate, cre-nate-dentate, petioled : fls. red, tubular, hairy, slender (2-3 in. long), the upper lip projecting and the lower one almost wanting, borne in a terminal, more or less flat cluster. Nativity unknown. Gn. 42:874.-G. Dwrali, Hort., is evidently only a slender form of this species.

Héndersoni, Hort. Lrs. velvety green : fls. 3 in. long, brilliant scarlet, in a large truss. Probably of garden origin.
longiflora, Hort., is a small-leaved species, with drooping, long-tubed nicotiana-like white fls. Gn. 33:644.Tre botanical position of this plant is in doubt. It is not the G. longiflora, HBK., which is purple-fld., nor G. longiflora, DC., which is $\mathbf{A}$ chimenes longiflora. By some it has been confounded with Isoloma longifolium, Decne.

AA. Lis. richly colored, at least underneath.
Leopoldi, Scheidw. Compact: stem erect from the large, depressed tuber, thinly hairy: lrs. verticillate in 4's, broadly orate-acuminate, more or less unequal at base, dentate, green above and purple beneath: Hs. longtubular, thinly hairy, the lobes nearly equai; light searlet, in a rather loose, umbel-like cluster. Nativity not recorded. F.S. 7:704-5. Gn. 53:1176.
Donkelæriàna, Lem. (G. Dónkelarii, Hook.). Stem often 2 ft. tall : lvs. large, cordate-ovate, erenate, hairy, green and purple-tinged above and purple beneath : tis. tubular-campanulate, the rounded lobes nearly equal, dull red, 2 in. long, hanging from long pedicels in a large panicle. Variable. Colombia. B.M. 5070. R.B. 21:97. F. 1853:241.
Exoniensis, Hort. Hybrid : lrs. relrety, with red and purple hairs: tis. bright orange-red, in close clusters.
refúlgens, Hort. Hybrid: Ivs. cordate-oval, red-hairy: fls. deep red or vermilion. - One of the best.
G. cinnabarina, Lind., is a Nregelia.-G. Guatemalénsis, Hort. "a free grower and bloomer, fls. orange," was once offered by Saul. - G. jasmimiflora. Hort., "fls. of the purest white, freely produced, heantiful," once offered by Saul. -G. oblönga, Hort., fls, orange, offered once by Sanl. - G, robrista, Hort., "vermilion, beautifully spotted and tigered," offered once by Saul.-G. zebrina, Paxt., see Nagelia. The Gesuerias are much confused by hybridizing and breeding.
L. H. B.

GECM (Greek, geuo, to have a taste; referring to the roots). Rosacece. This genus includes some fine hardy border and rock plants, some of which are valued for their bright red fls.; some for their pure yellow fls.; others for their long plumy fruits. Herbs, with a perennial rhizome, sometimes stoloniferous: root-lvs. crowded, odd-pinnate, the alternate lobes often smaller, terminal ones largest ; stem-lvs. few, mostly of 3 lfts. or bract-like: fls. 1-2 in. across, solitary or corymbose. More than 30 species, mostly in temperate and frigid regions.
The plumy kinds are all contained in the subgenus Sieversia. $G$. Chiloense is the best species, and in the gardens is commonly seen in double forms. A gardener writes that "inferior forms show scarcely any duplicity." Geums are of easy culture, and are prop. by division or seed. It is said that they hybridize freely if grown together. The dwarf kinds are suited only to the rockery. Correvon, of Genera, Switz., writes that G. reptans is one of the best of the rockery kinds, and needs full sumlight. For G. triflorum he adrises half exposure to sun and a light, moist soil. G. rivale grows naturally in marshy places.
A. Plumy Geums: style in fruit long and plumose.
в. F'ls. yellow.

## c. Plants spreadiny ty runners.

réptans, Linn. Root-lvs. interruptedly pinnatifid: upper les. 3-lobed : fis, erect; petals obcordate. Eu. Gn. 45:956. - The purple styles are pretty.

## CC. Plants not spreading by runners.

## D. $\boldsymbol{R}$ oot-les. pinnatifid.

montanum, Linn. Calyx lobes entire, while those of reptans are often 3-cut at apex. S. En. G.C. II. 13:425. Gn. 45, p. 285.

DD. Root-les. kidney-shaped.
radiàtum, Miclix. Very hirsute. Root-lys. 2-5 in. broad: stem 1-5-fld.: bractlets minute. Mountains of N. C.-Int. by H. P. Kelsey.

## BB. Fls. bright red, umixed with yellow. <br> \section*{c. Lateral lobes of lis. minute.}

coccineum, Sibth. \& Sm., not Hort. "Stem-1rs. 3lobed: root-lrs. lyrate, the terminal lobe largest, cor-date-reniform: fls. erect. Mt. Olympus in Bithynia."
The abore is an exact translation of the entire description given by Sibthorp and Smith, Flora Greeca, t. 485.The chances are that all the plants in the trade under this name are really $\boldsymbol{G}$. Chiloense.
cc. Lateral lobes of les. 1 in. long.

Chiloénse, Balb. (G. cóccineum, Hort., not Balb.). "Stem-lvs. 3-parted, laciniate; root-lvs. interruptedly lyrate, pilose: terminal lobe rotund, somewhat 3 -lobed, crenate: Hs. panicled: carpels villous." The above is a literal translation of B.R. 16:1348, where the terminal lobe is shown to be $21 / 2$ in. each way. Chile. B.R. 13:1088, and under 1099. L.B.C. 16:1527. Gn. 14:156; 45, p. 284. R.H. 1890, p. 305, and 1881, p. 309, all erroneously as $G$. coccineum.

Var. miniàtum, D.K. (G. minid̀tum, Robt. Parker), has fls. about 2 shades lighter in color. A robust form growing $2-3 \mathrm{ft}$. high, easily prop., and Hs. from Apr. to end of July. Gn. 38:772, where it is supposed to be a hybrid of $G$. Chilouse, var. grantiflorum $\times G$.aureum, which is a rubust many fld. form of G. montanum, or else of $\boldsymbol{G}$. Chiloense $\times \boldsymbol{G}$. urbanum.
Var. grandiflorum, D.K., is an improved form. "The double-fld. form of this seems to be a more general favorite, the blooms lasting longer, though I think they lack the elegance of those of the simple form. They begin tc expand soon after May and are prodnced until Oct." D.K.. in Gn. 38, p. 299.

ввв. Fls. chiefly dull red, mixed uith yellou.
triflòrum, Pursh. Low, softly hairy: lfts. very numerous and crowded, deeply cut: ths. 3 or more on long peduncles: calyx purple, as long as the petals. Coulter says the petals are erect. Arctic Am. L.B.C. 17:1609. "Fruit showy all summer." Woolson.

AA. Not long und plumy in fruit.
B. Style jointed and bent in the middle.
c. Fls. purplish orunge.
rivale, Linn. Root-lvs. lyrate; stem-Ivs. few, with 3 lobes or lfts.: calyx brownish purple; petals purplish orange. N. temp. regions. Var. album is also sold.
cc. F'ls. gollen yellou.
macrophyllum. Willd. Eastern plant, which F. W. Barclay says is offered by collectors, and prefers a moist, sunny place. B.B. 2 : ㅇำ .

BB. Style not jointed, straight.
Rossii, Serirge. Slightly pubescent above: scape 1-3fld.: styles glabrous. Colo., arctic regions.-Fls. large, bright yellow.
G. atrococcineum. Hort., may be a typographical error for G. trosanguineum.-G. atrosanguineum, Hort., is presumably a form of $G$. Chiloense, with darker fls. than the type, and sold mostly. if not entirely. in its double condition.- $G$. Japonicum, Thunl., is sold, but little known. St. flexuose, hirsute: lvs. 3-5-lobed, hirsute: Hs, erect, yellow: petals as long as the calyx: fr. hirsute, awned, recurved. Japan.
W. M.

GEVUINA (from the Chilean name). Also written Guevina. Proted̀cece. One species, G. Avellàna, Molina (Syn., Quidria heterophŷlla, Ruiz \& Pav.). Chilean Nut. Chile Hazel. An evergreen tree, with large, alternate pinnate, dark green, glossy lvs. and white, hermaphrodite fls. in long, axillary racemes. Fruit about the size of a cherry, coral red when ripe, the seed hav-
ing a pleasant flavored kernel, resembling the hazel in taste and largely used by the Chileans. Sparingly grown in California. Prop. by seeds or by green cuttings under glass.
W. A. Taylor.

GHERKIN. A small Cucumber. The Burr or West Indian Gherkin is C'ucumis Anguria.

GIBB, CHARLES, Canadian horticulturist, and author of important works on Russian fruits and other hardy trees, was loorn at Montreal June 99, 1842, and died at Cairo, Egypt, March 8, 1890, while returning from a collecting trip in China and Japan. In 1872 he brought to Montreal the first canned fruit exhibited in Canada. His farm at Abbotsford, Province of Quebec, contained the best collection of hardy fruits, trees and ornamental shrubs in Canada. His trip to Russia in 1882 with Prof. J. L. Budd, the subsequent importations, his second trip to Russia, and his various publications on hardy trees make part of a chapter of great interest and significance in the history of American horticulture. His travels were extensive. His chief works are "Ornamental and Timber Trees not Natives of the Province of Quebec" (a comprehensive list of species of possible value for Canada), "Report on Russian Fruits," "Hasty Notes on the Trees and Shrubs of Northern Europe," "Russian Apples Imported by the Department of Agriculture, Washington, in 1870" (an elaborate comparison of Russian opinions and American experience), "Nomenclature of the Russian Apples," "Of Translating and Reudering into Euphonious English Unpronounceable Russian Names, also Throwing Out Synonyms," and "Fruits for the Cold North." For a fuller account, with portrait, see Annals of Horticulture, 1890, 287-290.
W. M.

GIDEON, PETER M., pioneer pomologist of the northern Mississippi states, 1818-1899, resided since 1853 on Lake Minnetonka, Minnesota, and devoted his efforts to the production of apples of sufficient hardiness to withstand the climate. He was born in Ohio. He afterwards lived in Illinois. From boyhood he seems to have been possessed of the idea to raise seedling fruits. He was one of those rare indiriduals who sets a distinct ideal and strives for it throughout a lifetime in spite of every adversity. These are persons of strong and uncompromising wills. They often antagonize their fellows: but their works are usually beneficent. Gideon conceived that the amalgamation of the Siberian crab and the common apple would give the perfect apple for the Northwest. His seedlings were numerous. Several of them have been named and disseminated, and are of ralue. But his greatest achievement, the Wealthy apple, was of pure Pyrus Malus stock. This variety is now one of the standard apples of his geographical region, and it is gaining favor elsewhere. It is a boon to the Northwest. Even when in poverty, it is said that Mr. Gifleon spent his last dollar to buy the seeds from which this apple came. He was instrumental in distributing 10,000 apple seedlings in Minnesota, and some of these are now attracting attention. His work was wholly empirical, yet he did so much and continued his work for so long a time that the results have contributed to the knowledge of plant-breeding. Probably no other American has labored so long and devotedly for the attainment of a specific ideal in the apple. Portrait and enlogies will be found in The Minnesota Horticulturist, Jan., 1900
J. H. B.

GILIA (Philipp Salrador Gil, Spanish botanist of the latter half of the eighteenth century, collaborator with Xaurez). Polemonitcee. American herbs, mostly of western North America, of nearly 100 species, as the genus is now understood by most botanists. Fls. small, of many colors, the corolla funnel-form to bell-shape or sometimes salver-form, 5-lobed; stamens 5, inserted near the base of the corolla tube, the filaments usually naked: ovary 3 -loculed. with axile placentre, the stigmas 3 (or sometimes 2). Gilia is a very polymorphic genus, into which Gray now (Syn. Fl. 2, pt. 1, suppl.) throws Collomia, Linanthus. Leptosiphon, Leptodactylon, Navarretia, Hugelia, lpomopsis, Fenzlia. In this conception, Gilia is defined as follows: "Fls. naked, not in-
volucellate; calyx partly herbaceous, scarious below the sinuses; lobes narrow and acute; corolla salverform or funnel-form to campanulate or almost rotate;

902. Gilia grandiflora ( $\times 3 / 4$ ).
flaments not bearded at base : seeds wingless : herbs, or a few suffruticose."
Several of the Gilias are popular garden annuals or biennials (a few perennial). They are of the easiest culture, being vigorous, hardy and floriferous. They are mostly dwarfish, and are excellent for low masses, edgings or rockeries. Seeds may be sown where the plants are to grow. Any good soil will suit them.

Following are the names in the American trade:
achilleæfolia, 8. aggregata, 11. alba, 6, 13. 16. androsacea, 14. aurantiaca, 10. aurens, 15. capitata, 6. carmineus. 15. coccinea, 2. Collomia, 1, congesta, 4 .
coronopifolia, 10 debilis, 5
densiflora, 13. dianthiflora, 16. dianthoides, 16. elegans, 10, 11.
Fenztia, 16
grandifiora, 1.
Ipomopsis, $10,11$. laciniata, 7 .

Leptosiphon, 13, 14 liniflora, $12 . \quad$ [15 linifolia, 12. micrantha, 15. minima, 3. Navarre ${ }^{2}$. 3 nivalis. 9.
rosea. 9,15 sanguinea, 10 speciosa, 16. tricolor, 9.
A. Lis. normally alternate, entire or pinnately cut or divided (lower les. sometimes opposite).
B. Fls. in tense heads, which are subtended by leafy incolucres.
c. Foliage entire or at least not much parted.

1. grandiflora, Gray (Collomia grandiflora, Dougl.). Fig. 302. Erect, with minutely pabescent reddish stems, 1-2 ft. high: Irs. linear-lanceolate or oblong, narrowed below but scarcely petioled, entire, acute: Hs. many, in dense terminal heads, buff or salmon color, redder in side, 1 in. long. Plains, W. of Rocky Mts. B.M. 2894. B.R. 14:1174. -This and the next are interesting annuals. Useful as bee plants.
2. coccinea, Gray (Colldmia coccinet, Lehm.). More slender: stems not red: lvs. narrower (mostly linear) somewhat cut at the ends: fls. smaller, slender-tubed, yellow or buff outside and brick-red inside. Chile. B.R. 19:1622.
cc. Folitge pirnately parted or compound.
3. minima, Gray (Navarrètia mínima, Nutt.). Dwarf and tufted ( 3 in. or less high), nearly glabrous: Ivs. needle-like, pinnately parted: fls. white, the corolla scarcely exceeding the white-hairy calyx. In arid districts, Dak. W.
4. congesta, Hook. A foot or less high, erect or spreading, tufted: Ivs. mostly 3 - $\overline{\text {-divided }}$ into linear divisions: corolla white, the oral lobes nearly as long as the tube: calyx teeth long-pointed, nearly equaling the corolla. A small-fld. species growing from Wyo. W.
BB. Fls. not in close heads, but more or less scattered: or if capitate, the heads not leafy-subtended.
c. Plant perennial: seed only 1 in a locule: fls. small.
5. débilis, Wats. Two in. or less high: Ivs. oblong, entire or 2-3-lobed, petioled: fls. solitary and nearly sessile, the purple corolla $2 / 3$ in. long. the tube exceeding the calyx. S. Utah. - Offered by collectors.
cc. Plant annual: seeds more than 1 to the locule: corolla distinctly tubular, but relatively small.

> D. Inflorescence capitate.
6. capitàta, Dougl. Fig. 903 . Plant 18 in . to $21 / 2 \mathrm{ft}$. tall, the stems long and nearly straight between joints: tis. about $1 / 2 \mathrm{in}$. long, in dense, nearly globular heads, which terminate long, naked stems; corolla lobes lancelinear, acute: lvs. cut into very unequal linear lolees. Calif. and Ore. B.M. 2698. B.R. 14:1170.-An old favorite. There is a white form (var. alba). There is also a var. major.
7. laciniàta, Ruiz \& Pav. Much like the last in botanical characters, and possibly a form of it; lower and much more slender, the leaf-divisions mostly very narrow (usually almost thread-like), the heads smaller or the fls. sometimes even scattered. Chile. - The fine foliage and compact habit make this species an excellent garden plant.
DD. Infiorescence mixed, capitate on the main branches, scattered on the others.
8. achilleæfolia, Benth. Fig. 904. Stout (2-3 ft.) and very branchy and bushy, the early main branches terminating in large, dense heads, but the later, finer growth bearing scattered fls.: lvs. small, with short, linear lobes or teeth: fls. large, violet or purple-blue,

the corolla lobes oblong or ohovate : capsules large. W. Calif. B.M. 5939 (showing only capitate inflorescence). - An old garden plant. Fls. vary to white and rose.


DDD. Inflorescence scattered or loosely cymulose.
9. tricolor, Benth. Fig. 905. A very diffuse, twiggy grower, $2-21 / 2 \mathrm{ft}$. high, sparsely pubescent: lvs. few on the full grown plant, small, with many short, very narrow or needle-shaped divisions: fls. comparatively large ( $3 / 4 \mathrm{in}$. long or nearly so), nearly or quite bellshaped, the corolla 2-3 times the length of the calyx ; color of the roundish lobes violet and passing to whitish at the base, of the throat brown-purple and of the tube yellow. W. Calif. B.M. 3463. B.R. 20:1704.-One of the commonest of garden annuals. There is a whice form ( $G$. micèlis, Hort.) and a rose-colored form ( $G$. rosea, Hort.). Thrives with the least care, and is always a profuse bloomer.
ccc. Plant biennial: seeds fere or many in each locule: fls. large aud long-tubular, red (running into uhite forms ), the corolla very much surpassing the subulate calyx lobes. (Ipomopsis.)
10. coronopifollia, Pers. (Ipomópsis élegans, Poir. I. aurantiaca and I. sanguínea, Hort.). Standing Cypress. Stem strict and unbranched, sometimes 6 ft . high, very leafy : lvs. pinnate, the divisions needle-like and about 1 in . long: fls. many, $11 / 2 \mathrm{in}$. long, long-trum-pet-shape, borne along the sides of the summit of the stem, the calyx inconspicuous amongst the short bractlvs., the corolla scarlet or pink-red aud dotted and yellowish within, rarying to orange. its lobes obtuse or nearly so and flaring. In dry soil, S. Car., south and
west. B.R. 20:1691.-Common old garden plant, and worthy. Fls. scentless.
11. aggregàta, Spreng. (Ipomópsis élegans, Lindl.). Differs in mostly shorter stature and more slender habit, with redder (sometimes white) fragrant fls., with acute and reflexing corolla lobes. Neb., south and west. B.R. 15:1281.-Probably not in cult. The fls. are fiery scarlet or sometimes nearly white. A very showy biennial.
AA. Lis. opposite, entire, or, if alternate (as in No. 12) palmately parted.
B. Foliage very fine, the lis. cut into thread-like or linear divisions.
c. Corolla rotate-bell-shape, with a short, flaring tube.
12. liniflòra, Benth. (G'. linifolia, Hort.). Fig. 906. Ten to 20 in. high, diffuse and branchy: lower lvs. mostly opposite, but the upper alternate, all palmately divided to the base in needle-like or spurrey-like divisions: fls. rather large for the size of the plant, the corolla white or blush, nearly rotate, the thin lobes obtuse. Calif. B.M. 5895.-A useful tufty garden aunual. The name liniflora is meant to designate the resemblance of the fls. to those of Linum tenuifolium; but some catalogre maker, evidently thinking that the name meant linearflouered, and was therefore inappropriate or an error, has changed the name to $G$. linifolia, under which name it is known in the trade.

## cc. Corolla salver-form, with a filiform and elongated tube (Leptosiphou).

13. densiflora, Benth. (Leptosiphon densifldrus, Benth.). Erect or even strict, 1-2 ft., hairy: 1rs. with many filiform somewhat rigid divisions: tis. in rather close heads, lilac or white, $1 / 2-3 / 4 \mathrm{in}$. long; tube of the corolla scarcely longer than the leaves; lobes of the corolla spreading. obtuse, often dentate, nearly or quite as long as the tube. Calif. B.M. 3578. B.R. 20:1725.Common garden annual. The white-fld. form is known as var. alba, Hort.
14. androsàcea, Steud. (Leptosiphon androsaceus, Benth.). Much like the last, but the tube rery slender and much exserted beyond the calyx and leares: fis. 1 in. long, pink, lilac or white, in rather close heads, the corolla lobes ovate-acute and entire, much shorter than the tube, $12-18$ in. Calif. B.M. 3491. P.R. $20: 1710$.
15. micrantha, Steud. Fig. 907. Tufted, 8 in. or less high, the stems most leafy near the top: lvs. short, fascicled: fls. with an exceedingly slender thread-like tube which is $1-1 \frac{1}{2} \mathrm{in}$. long, and projecting prominently above the upper fascicles of lis., the corolla lobes spreading and obtuse ; color range very wide, -from purple to lilac, red, yellow and white. Calif. - A popular and important bedding plant. Forms of it are known as Leptosiphon aureus, carmineus, hybridus, and rosens.

16. Gilia liniflora ( $\times 2 / 3$ ).
17. Gilia micrantha ( $\times 1 / 2$ ).

BB. Foliage of entire (but narrow) lu's.
16. dianthoides, Endl. (Fénzlia dianthifldra, Benth.). Fig. 908. Tufted, 6 in. or less high: lvs. narrowly linear. opposite : fis. 1-1 $1 / 2 \mathrm{in}$. long, lilac or purple, with yellowish throat, the flat-spreading lobes denticulate or
nearly fringed. S. Calif. B.M. 4876. R.H. 1865:10.A cholce little annual, excellent for edgings and rockwork, bearing a profusion of pink-like fls. The fls. sometimes vary to white (F゙enzliar albn, Hort.). A large-fld. form is called C'. speciosa. L. H. B.

GILL. Nepeta Gie. choma.
GILLENIA (a German physician of the seventeenth century, Arnoldus Gillenius). Rosdcer. Two East American perennial herbs, with 3 -foliolate nearly sessile lvs. and
908. Gilia dianthoides. The Fenzlia of gardens.

GINKGO(Chinese name). Coniferce, tribe Tixece. One tree, with wedge-shaped lvs., As. small and mostly dicecious. Pistillate fl. solitary, the single naked ovule ripening into a drupe. Staminate fls. in slender, loose eatkins.

910. Ginkgo fruit and seed. Natural size.
biloba, Linn. (Salisbùria adiartifolia, Smith). Ginhgo. Maldenhair Tree. Kew Tree. Figs. 909, 910. A tall, sparsely branched, usually slender tree, attaining a height of $60-80 \mathrm{ft}$ : $\mathrm{lvs} .3-\mathrm{i}$, clustered, fanshaped. divided at summit, with thickened margin, striated on both sides with numerous parnllel veins: fls. dicecious; male catkins slender, stalked; females on long footstalks, in pairs, of which one usually aborts: fruit a drupe, consisting of an acrid, foul-smelling pulp surrounding a smooth, angular oval, cream-colored, thinshelled, sweet-kerneled nut. Northern China. F.S. 10, p. 119. G.C.III. $5: 265$, 269. G.F. 1:175. A.G. $12: 268$. Gng. 6:194.

Introduced to America early in the century, and generally successful on good soil in the eastern states as far north as eastern Massachusetts and central Michigan and along the St. Lawrence river in parts of Canada. Of special value for solitary planting to secure picturesque effects. Considerably planted in Washington, D.C., where it is growing in esteem as a street tree becanse of its upright habit and freedom from insect injury. Easily propagated from seed, stratified in autumn; varieties by budding and grafting. Several horticultural forms are recognized, including laciniata, pentula and rariegata.
The foul odor of the ripe fruits, which continue to mature and drop during a period of some weeks, constitutes the chief objection to the species as a street tree, or near dwellings, and suggests the adrisability of propagating from staminate trees by grafting or budding, for planting in such locations. The kernels, which have a sweetish, slightly resinous flaror, are bighly esteemed for food in China and Japan, and are gathered from fruiting trees in Washington for such use by Chinese laundrymen.
The word Ginkgo seems to be pronounced witio a hard initial G in the orient, but in English a soft G should be used. The name is often spelled Gingko, but the other spelling is preferable because Linnaus spelled it so in the generic name.
W. A. Taylor.

GINSENG (Pànax quinquefòlium, linn. P. Gínseng, Meyer. Aràlia quinquefòlia, Decne. \& Planch.) is to the Chinese more than quinine or any other drug is to Americans. As its name Panax implies, it is a panacea, being employed for all the ills that flesh is heir to. Though credited with stimulating, aromatic, alterative,
carminative and tonic properties, the root is with us seldom used except as a demulcent. The reverence in which it is held, and the high price that it commands in China, led to extensive search for a substitute, which resulted in the discovery in 1716 of American Ginseng, Panax quinquefolium, near Montreal, Canada. This root was favorably received by the Chinese, and soon became an important article of export. During the past 40 years the price of American Ginseng has advanced nearly 700 per cent, but owing to the energetic hunt for the root, to the destruction of forests and to the gathering of plants at improper times, the wild supply has greatly decreased. With the adrancing prices and the diminishing supply came experiments in Ginseng cultivation, most of which failed through ignorance of the plant's peculiarities. The seed ripens in Sept. If dry it will not germinate until the second year, but if fresh and properly kept nearly all the seeds will germinate the flrst season. The soil must be a light, friable loam, free from stones, etc., rich in humus and well drained; the plants must be well supplied with shade and moisture. Cultivated Ginseng already commands a considerably higher price than the wild root, and, though no returns can be expected from a plantation until it is 3 or 4 years old, the industry is found to be profitable by the men that have given it careful attention.
Ginseng beris can be located in orchards, gardens, or woods, where the roots may remain without danger of deterioration for several years after they first attain marketable size. The roots are so valuable that they are likely to be stolen, and beds should, therefore, be placed where they can be guarded.
M. G. Kalns.

For further information on Ginseng, send to Dir. of Publications, Dept. of Agriculture, Washington, D. C., for Bulletin No. 16 of the Div. of Botany, revised by M. G. Kains in 1898, or consult Kains' Ginseng, its cult., etc., Orange Judil Co., 1899.
W. M.

GLADIOLUS (diminutive of Latin gladins, a sword. from the shape of the Ivs. of the tirst-described species). Iridicece. Gladioli are amongst the most popular of all garden plants, and particularly of the class known as summer-flowering bulbs, ranking in popularity with cannas, dahlias, lilies and iris, and having probably no other rivals. They are also the most important, commercially, of all the "Cape bulbs."

About 140 species of cormr us herbs, which bear lilyform fls. in spikes at the summit of a scape. Fl. more or less tubular, the tube usually funnel-shaped (enlarging upwards); segments 6 , more or less unequal. strongly narrowed or eren clawed at the base, the upper ones often hooded or roofed over the opening or mouth of the flower; stamens 3, inserted on the tube; stigmas 3, on a long strle : orary 3 -loculed. Fig. 911. Monogr. by Baker, Irideæ, pp. 198-299 (1892).

About 15 of the species are natives of Europe and western Asia. A few have been discovered on the mountains of tropical Africa. The larger part of the species are South African, however (Cape Colony and Natal), and of these species the habitat is not mentioned in the following synopsis. The Europe-Asian species are little cultirated in this country. Some of them are hardy. The $S$. African species, variously hybridized, have given rise to the numerous and excellent garien strains. There are semi-double forms.
L. H. B.

## I. THE CULTURE OF GLADIOLI

A. From the amateur's point of vieu.

The essentials of Gladiolus culture can be told in a sentence: the corms should be planted as early in spring as the soil can be fitted: they flower the same season in July and August, and can be stored over winter in any cool. dry cellar that will keep potatoes. Late spring frosts do not penetrate the soil deep enough to hurt the early planted corms. The blooming season can be easily prolonged until frost by successive plantings from April to July 4. The flowers are excellent for cutting, and last a week in water. Some varieties need staking, but stakes are objectionable on general principles, even when neat and slender. Seedlings are easily raised, and the process is described in the next paragraph. Gladioli are easily forced to flower in Novem-
ber and December, as the corms can be kept dormant by the simplest kind of cold storage. It is common for florists to hold some corms in a cool place until August; then plant them in boxes of rich soil $4-5 \mathrm{in}$. deep, and keep the boxes outdoors until frost. After frost-time the corms are brought into a cool greenhouse, where they flower within two months. New corms form above the old one, and bloom the next season (Fig. 912). Cormels or "spawn" also form on offishoots: these bloom in tro or three years.
L. H. B.

AA. From the commercial point of view.
The culture of Gladioli is re:y easy, and can be conducted under nearly any of the conditions suitable for potatoes. Gladioli succeed best in a sandy loam which is retentive of moisture. For successful commercial culture it is essential that such soil conditions are ob-- qinable. Planting should be commenced as early in the spring as the proper working of the soil will permit. Such preparation of the soil as puts it in a loose, friable condition will answer. Probably the ideal soil is a sod, fall plowed and then most thoroughly worked in the spring. Strong, fresh stable manure should be avoided. If soil is not sufficiently rich in plant-food it is best to use all strong manures on a previous season's crop of some other kind. Any complete fertilizer is beneficial when thoroughly worked through the soil, at the rate of 600 to 1,000 pounds per acre. The ground being prepared, it shonld be furrowed 4 in . deep and from 24 to 36 in. apart, necording to method of cultivation. If fine, round bulbs are to be grown, and the stock for planting exceeds $11 / 2 \mathrm{in}$. in diameter, it will be necersary to place the bulls right side up in the furrow by hand, either in single or double rows ' in . apart. Bulbs of lesser size can be scattered as evenly as possible along the furrow, with an average of 10 or 12 to the foot of furrow. Clean culture throughout the growing season is essential. Cutting the spike of flowers is a help to increasing the size of the bulbs. Four months is sufficient for the growth and maturity of the bulb. To harvest, loosen the soil and lift the bulbs by their tops, and lay on the ground to dry off and ripen. Should weather permit

911. Parts of a Gladiolus flower.
ther can be entirely ripened out of doors. Cut the tops off close to the bulb, pulling off the old bulbs and roots, and place in thin layers in crates and store in a cool, dry place. If circumstances require, the tops can be trimmed off at once on lifting, and the bulbs taken under cover for cleaning and drying.
Gladioli are increased in three ways : (1) by natural division from the parent corm; (2) by seed; (3) by the small corms growing at the base of the new corm.

In the first method all that is necessary is to separate the corms growing from the original, elther when clean. ing in the fall or before planting in the spring.

When seeds are sown, the seedlings should all produce corms of flowering size in 3 years. Seed should be planted very early in the open ground on rich, sandy soil and not allowed to suffer in the least for lack of

912. Gladiolus corm growing above the old one. Also shows cormels.
moisture. At the end of the first season's growth the corms of the seedlings will be the size of peas, and can be stored under the same conditions as large corms. The second season plant the corms as if they were garden peas. Some will bloom the second year, and all should bloom the next.

Increasing stock by the small corms or bulblets is the most common method, and the one by which a variety is perpetuated. The small corm is but a cutting or eys, and ean be stored in bags, boxes or other suitable ras ceptacles and kept from frost. It is a help to sprouting if the corms are not allowed to dry out during the period of rest. They should be planted like 1-year seedlings, making blooming bulbs the first and second year.

## E. H. Cushman.

## aat. From the American hybridizer's point of view.

The garden evolution of Gladioli in general is explained at length below. The writer has been asked to present the American share in this interesting history. Some ten years ago, when the writer began, under the inspiration of Luther Burbank, his own work in hybridization, the best American-grown stock available was the Hallock collection of some 400 named varieties of Gandavensis and about 100 of the earlier Lemoine hybrids, all of European origin. After trial, the writer placed them all in mixtures.

About this time Luthe: Burbank begau to offer a few named varieties, but shortly afterwards sold his whole stock, the collection being now in the writer's hands. This collection, in the opinion of the writer, is the best strain of Gandavensis. The varieties were largely of rariegated types, with many of unique markings and peculiar form. Burbank had giren particular attention to varieties calculated to withstand the hot, dry winds of California, and had originated several with specially stiff petals, quite distinct from the ordinary types. The peculiarity of the flowers blooming around the spike like the hyacinth was also his contribution. All of his varieties are now grown in mixture by the writer with the exception of a white rariety, which promises to be distinct and valuable for some time to come. However, the vitality of Burbank's strain is remarkable, and in the opinion of the writer it is greater than that of all the other strains of so-called American hybrids which constitute the principal stocks of commerce on this continent.

The latter strains have probably been largely produced from self-fertlized seed of Eiuropean and American varieties, themselves the product of natural selection, thus carrying to their progeny the objection of a weak and degenerate parentage.
The work of Dr. Van Fleet, of New Jersey, was carried on more for scientifle than commercial results, and reaped a deserved success. However, the writer has found that the offspring of a pure species is less stable than that of well-balanced cross-bred varieties, the former system handing down few varieties of permanent commercial value, though they are in themselves valuable as parents for the foundation of new strains.

The best work of a semi-professional character, in the opinion of the writer, has been done by T. S. Moore, of Indiana, who has spared no trouble or expense in procuring choice material upon which to buidd, and with satisfactory results. As to $G$. cruentus (a strain of reds), the writer thinks that little is to be gained by its use, as we have too many reds miready. Its roots tend in this climate to early and rapid degeneration.

The writer believes that the beauty of the individual flower is the highest ideal, though vigor of plant and vitality of variety are also necessary. He regards the Gladiolus as a cut-flower rather than a garden plant, and believes higher satisfaction is gotten from cutting the spike when the first bud opens than from leaving the flowers to open outdoors.

A new strain of great interest is composed of the hybrids of the G. Papilio, var. major, a most interesting species in which the under color, a unique shade of blue, is overlaid with dull terra-cotta. In seedlings raised by the writer these colors have separated, producing the most beautiful heliotrope and clematis blues and rich velvety purples, colors ifuite unknown in the older sections.
Another strain likely to be presented soon is the product of the old species $G$. dracocephalus. The flowers of the hybrids are corered with minute dots similar to those of the species. The species and its hybrids have exceptional vigor and vitality.

Glatioli are most adaptable to all soils, providing reasonable assistance is given. Clean, sandy loam is preferable, fertilized at least every other autumn with well-rotted manure, which is carefully covered below the depth of planting. Before spading or plowing the ground it is well to dress freely with fresh, hardwood ashes. On heavy clay use leached ashes freely, and cover deeply all the green vegetable refuse and leaves that hare been partially rotted under the manure pile since the previous autumn. Also fill in the trenches with sand or loam. In swamp muck and vegetable deposit, a mixture of sand added yearly is all that is needed, the trenches being filled with sand at planting. Cold, springy swamp lands with the water half filling the trenches at planting, have given perfect satisfaction with blooming bulbs, that have been developed on the other soils. Water should be freely used during the season of active growth; moderately with blooming stock before budding in order to ripen the plant; then again freely before the buds show color and until after blooming. Full exposure to the sun and air is necessary for the best results.
H. H. Groff.

## II. THE KINDS OF GLADIOLI.

alatus, 2.
angustus, 5.
atroviolaceus, 7 .
biflorus, 8.
blandus, 29
Brenchleyensis, 27.
Bride, 26.
Byzantinus, 13.
cardinalis. 17.
Childsii, 30 .
Colvillei. 26.
communis, 12 concolor, 4. crispitlorus, 6.
dracocephalus, 19. tloribundus, $23, \because 6$. Frobeli, 31. Gandavensis, 27. grandis, 3 . Leichtlini, 16. Lemoinei, 28. Milleri, 25. Nanceianus, 29. nanus, 26. Natalensis. 20. oppositiflorus, 24. Papilio. 15. psittacinus, 20.
purpureo - auratus 21.

Quartinianus, 9.
ramosns, 26 .
Saundersii, 18
segetum, 14.
sulphureus, 10.
trimaculatus, 5.
tristis, 4.
Turicensis, 32.
versicolor. 3.
rinulus, 11.
vittatus, 11.
Watsonius, 1.

Other Latin names are in the trade. but they are mostly or wholly garden forms.
I. Species.-Few of the original species of Gladioli are in cultivation in their pure form. When grown at
all，they are prized chiefly as oddities，or becanse of their botanical interest．The following species are either offered at the present time in American trade or are parents of modern garden forms ：
A．Fl．with＂long，slender，cylimirical curved tube， which is enlarged in the middle：segments neurly equal．
1．Watsonius，Thunb．Corm smal？，globose：stem slender， 18 in．or less，with 1 long，narrow－linear aud stifiteaf and $3-3$ short，sheathing lvs．：fls．$\because-4$ ，in a lax 1－sided spike，！ $\mathbf{y}$ in．or less long，bright red，the wide－ sprealing segments oblong and acute．B．M．450．－ Little known in this country，but offered by the Duteh growers．
AA．Fl．short aml open，the tube shart or scarcely any； segments rery prominently cluced，usumlly unequal．
2．alàtus，Linn．Small，the stem only 4－8 in．high， and slender ：lvs．3－4，linear and rigid：fls．3－4 in a lax spike，the curved tube $1 / 2 \mathrm{in}$ ．long，the perianth bright red and often strongly veined；segments very unequal， the 3 lower tongue－like and protruded，the others obo－ vate or nearly orbicular，all of them differently colored toward the base．B．M．586；592（the var．Vama－ quensis）．

AsA．F＇ls．of medirm length，with a funnel－shaped tube，which is fluring at the top：segments nur－ roured belour，but not distinctly cluced．（Glutio－ （ns proper．）
B．Les．linear（ $1 / 2 \mathrm{in}$ ．or less wille）－except sometimes ill Tos．5， 10.
C．Perianth－segments acute．
3．grándis，Thunb．（ $G$ ．versicolor＇，André）．Stem slender， 2 ft or less：lys about 3，linear or nearly terete，strongly ribbed：fls． 6 or less， 3 in ．long，with a curved tube；segments nearlv equal，oblong－lanceolate and cuspidate，as long as the tube and twice longer than the stamens，recurved and often wary，yellowish or creamy，tinged and striped with purple－brown： seeds winged．B．M． 1042.

4．tristis，Linn．Very like the last：fls． $2-4$ ，somewhat smaller ；segments shorter than the tube and not twice longer than the stamens，acute，yellowish white with purple or brown pencilings．or（in G．eaneolor，S：alish．）， almost white or uniform yellow．B．M．こっこ，1098．G．F． 8：5．

5．angústus，Linn．（G．trimacuidatus．Lam．）．Small and slender species（ $10-20 \mathrm{in}$ ．tall）：les． $3-4$ ．very nar－ row：fls．2－6，long－tubed．white，the oblong segments shorter than the tube and the 3 lower ones with a char－ acteristic purple median line ending in a heart－shaped mark．B．M． 602.

Cc．Perianth－segments obtuse．
D．Color purple or violet．
6．crispiflòrus，Herb．（G．imbricitus，Linn．，var． crispiflorus，Baker）．Stem 1－2 ft．，rather slender：Irs． $2-3$ ，sometimes $1 / 2 \mathrm{in}$ ．broad：f1s． $4-10$ ，the tube $1 / 4 \mathrm{in}$ ． long and curved，the segments ohovate（ 1 in ．long）， crisped or wavy on the edge，dark purple，more or less marked with white aud red：seeds winged．E．Eu．and W．Asia．－Hardy or nearly so．

7．atroviolàceus，Boiss．Stem 1－2 ft．high：lrs． 3. closely ribbed．firm：fls．few，the tube $1 / 3 \mathrm{in}$ ．long and curved，the obovate segments 1 in ．long and dark purple or violet－blue：seeds globose．W．Asia．－Hardy or nearly so．

8．biflorus，Klatt．Dwarf（ 1 ft ．or less）：lf．single， very narrow：fls．$\because-3$ ，the tube nearly straight，the ob－ long segments twice as long as the tube，lilac．

DD．Color essentially yellow or orange．
9．Quartiniànus，Rich．Strong， $2-4 \mathrm{ft}$ ．：lvs．3－4，rigid， sometimes nearly ensiform：fls．4－9，in an open spike， large，the narrow cursed tube $1 \frac{1}{2}$ in．long；upper seg－ ments hooled，the others smaller and more or less re－ flexed，bright yellow or yellow flushed and feathered with scarlet．B．M．6739．G．C．III．24：467，and Gn． 5̄5：1295（var，superbus）Mts．of Trop．Afr．－Not known
to be in the Amer，trade，but attracting attention in Europe．One of the best of the genus．
10．sulphureus，Baker．Stout，but low：Irs．3－4 the blade short and somewhat ensiform：Hs．6－8，large，the curved tube $11 / 2 \mathrm{in}$ ．long，soft bright yellow；upper seg－ ments cucullate，the 3 lower ones small．Mt．Kilhman－ jaro．Gn． $38: 76:(!)$

DDD．Color（under color）white or Hearly 80.
11．vittàtus，Hornem．（ $G$ ．vímulus，Klatt）．Low：Iss． 3－4，very narrow：As．3－i；，nearly arect，the slightly curved tube nearly or quite an inch long，whitish， the 3 lower segments with a purple central blotch．
an．iellues ensiform（ $1 / 2$ in．or more lroad，and flat or fluttisk）．
c．Under－or body－color essentially purple．
12．commûnis，Linn．Stem $11 / 2-21 / 2 \mathrm{ft}$ ： 1 ss ．3－4， 1 ft ．or less long：fts． $4-8$ ，small（ $11 / 2 \mathrm{in}$ ．long）， with a curved tube；segments bright purple （flesh－colored in the var．curnews），nearly equal in length，all connivent or touching（making a narrow fl．），the 3 lower ones long－clawed and with a median line：seeds broad－winged． France，Germany．B．M．86，1575．－Hardy．Lit－ tle known in cult．in this country．

13．Byzantinus，Miller．Fls．more and larger， plant more robust，segments more spreading at maturity，although the 3 upper ones are contig． uous，dark purple，the 3 lower ones with a prominent white median line：seeds winged． Mediterranean region．B．M． 874．－Hardy．Little known in gardens．
14．segètum，Ker．Differs from $G$ ．Byzantinus in having globular（not winged）seeds， and in the flaring or spreading segments of the bright purple， oborate－obtuse sepals．Cana－ ries and Mediterranean region． 13．M． 119. －Hardy．Little grown． Early．

15．Papilio，Hook．Stem 2 ft． or often more：lvs．about 4 ， rigid， 1 ft ．or more long：tls． 6 － 12，with a curved tube，pale pur－ ple or lilac，yellow in the threat； upper segments oborate and hooded， $11 / 2 \mathrm{in}$ ．long，the lower ones very narrow helow and marked with large red－brown blotehes．B．M．Ба̄б．－Handsome．Va－ ries to white in cult．
cc．Tnder－or body－color essentially rel（No． 20 may be smaght here）．
16．Leichtlini，Baker．Stem about 2 ft ．tall，terete ：lvs．about 4， 1 ft ． long：tls．6－8，large，with a cursed tube $1 \frac{1}{4} \mathrm{in}$ ．long，crimson and yellow； upper segments obovate and conni－ rent， 3 loter ones much smaller and acute，spreading，red at tip but yellow and minutely red dotted below．

17．cardinàlis，Curt．Tall：fls．many， nearly erect，bright scarlet，the tube $11 / 2$ in．long and nearly straight；upper segments long－spatulate（ 2 in．long）， scarlet，the 3 lower ones shorter and narrower，with a large white blotch． B．M． 135.

18．Saùndersil，Took．f．About 2 ft ． lvs． 4 － $\mathbf{i}$ ，strongly ribbed and stiff：fls． $6-8$ ，large，bright scarlet，the tube 1 in ． to $1 \frac{1}{2}$ in．long and curved； 3 upper segments long－spatulate，uniform scar－

913．Gladiolus Gandavensis． （ $\times 1 / 3$ ．） let，connivent（ 2 in．long）， 3 lower smaller，white－ blotched and spotted．B．M．5873．Gn．12：83．－Hand－ some．
ccc. Under- or body-color essentially yellow.
19. dracocéphalus, Hook. f. Stem stout. 2 ft. or less: Ivs. 3-4, rather firm: fls. 3-6, of medium size, yellowish green, the tube ( 2 in . or less long) curved; upper sefg. ments elliptic-obovate and more or less hooded, yellow ish and closely striate with purple, the other segments much smaller and reftexing, mostly green and purple spotted. B.M. 5884.-Odd.
20. psittacinus, Hook. (G. Nututinsis, Reinw.). Stem 3 ft . high, stout: lvs. about 4, rather rigid: fls. many and large, with a curved tube nearly or quite 2 in . long, rich yellow but thickly grained and overlaid with red (particularly about the margins of the segments); upper segments obovate and hooded, the lower much smaller and reflexing. B.M. 3032. B.R. 17:14t? L.B.C. 18:1756. - One of the leading parents of garden Gladioli.
21. purpùreo-auràtus, Hook. f. Stem 3-4 ft., very slender: Irs. $3-4$, short: ths. 10 or more, primrose-yel low, medium in size, the curved tube less than 1 in . long; segments obovate, not widely spreading, the lower ones with a purple blotch. B.M. 5944. G.F. 2:89.-Hand some. A parent of modern Gladioli.
ccce. Culer or body-color white. (Forms of No. 15 may be sought here.)
22. blándus, Ait. Stem 2 ft. or less tall : lvs. usually 4: Hs. few, white and red-tinged, the curved tube $1 \frac{1}{2}$ in. long; segments all oblong or oblong-spatulate and flaring or recurved, some of them red-marked in the throat. Variable. Sometimes pure white (B.M. 648), and some times flesh-color (B.M. G45).-An old garden plant.
23. floribúndus, Jacq. Stem short ( 1 ft. ), producing fls. from near its base : lv3. usuatly 4: Hs. 12 or less, large, white tinged with pink, the slightly curved tube 2 in . or less long; segments obovate or spatulate, obtuse, wide-flaring, red-lined. B.M. 610.
24. oppositiflorus, Herb. Much like the last, but fls. more numerous and smaller, in a distichous (or 2-sided) spike, white, sometimes marked with rose. B.M. i242 G.C. III, 13:291. Gn. 45:963. - A very handsome plant growing 3-6 ft. high, and producing spikes 2 ft . long.
25. Milleri, Ker-Gawl. Stem 12-00 in.: Irs. about 4: fls, rather large, $4-5$, nearly erect, milk-white, the tube 2 in . or less long and nearly straight; segments oblong and nearly acute. B.M. 632.
II. Hybrids. - The garden Gladioli are hybrids of rarious kinds and degrees. Of many, the parentage is so confused that it cannot be made out. However, there are four main lines of development or divergence, represented in the late-flowering Gandarensis, Lemoinei and Nanceianus, and the early-flowering Colvillei. An important article on the hybridizing of Gladioli, by Robert T. Jackson. will be found in G.F. 2:88. - Some of the points of merit of the modern Gladiolns are : good constitution; good substance or texture of flower; brilliancy and definiteness of color; large size; long spikes ( $20-25$ blooms).
26. Colvillei, Sweet (G. cardintilis $\times$ tristis). Fls. open or flaring, with oblong-acute segments, scarlet with long blotches at the base of the lower segments : early-flowering: spikes short. Hardy south of Washington with some protection. R.H. J895, p. 289. G.C. III. 12:90. Gn. $28: 520 ; 34: 680 ; 50$, p.66. - The oldest of the garden forms.
Runs into many types and strains. The modern white-flowered type, represented by The Bride, is best known in this country. Small forins are known as $G$. nanus. Some forms are known as G. floribundus.
Another form of early-flowering Gladioli is known as G. ramosus, Paxt. (issue of G. cordinulis and oppositiflorus), but it is probably no longer possible to distinguish these two groups.
27. Gandavénsis, Van Houtte (G, psittacinus $\times$ cardinalis). Fig. 913. Upper segments nearly or quite horizontal or hooded, the colors in bright shades of red and red-yellow, variously streaked and blotehed : late-flowering: spikes long. The commonest old-time type of zarden Gladiolus. F.S. 2:84(1846). R.H. 1846:141. P.M. 11:27. - First offered to the tratle by Van Houtte, Aug. 31, 1841. M. Souchet, of Fontainebleau, France.
did much to improve the Gandavensis type by repeated selections and breeding. By Herbert and some others, Gandavensis is considered to be an offspring of $G$. pziftacinus $\times$ oppositiflorus. C. Frenchleyénsis is one of the Gandavensis tribes.
28. Lemoinei, Hort. ( 8 . Gandarensis $\times$ purpurpo. (ateratus). Fig. 914. A modern race characterized by highly colored yellow, red and purplish tis., purpleblotched on the lower segments, with a more or less bell-shaped form of corolla-the segments broat and heavy and the upper ones horizontal or strongly hooded. Girown by M. Lemoine, Nancy. France, and first shown

914. Gladiolus Lemoinei (on the right), and G. Nanceianus.
29. Nanceiànus, Hort. (G. Lemoinei $\times$ G. Saundersii). Fig. 914. Robust, with very large, open-spreading fls., the two side segments widely flaring and sometimes measuring 6-8 in. from tip to tip; upper segment long and upright. First exhibited by Lemoine, the raiser, in 1889. The finest race, characteristically is fullopen and large fls., in brilliant shades of red and purple. Gn. 41:846. G.C. III. 13:131.
30. Childsii (G. Gamdavensis $\times$ Saumdersii). Fls. similar to $G$. Lemoinei in shape and color. Originated by Max Leichtlin, Germany.
31. Fræ̀beli, Hort., is G. Gandavensis $\times G$. Saundersii, var. superbus.
32. Turicénsis, Hort. . is of like parentage. G.F. 3:89. -This and the last are the work of Frobel \& Co., Zurich. They are of recent origin.
L. H. B.

GLADWIN, Iris fotidissima.
GLASS. The important subject of greenhouse glass is treated under Greenhouse Glass.

GLASSHOUSE. Ans glass structure in which plants are grown, particularly one which is large enough to admit the operator. It is a generic term. See Greenhouse.
GLASSWORT. Salicormia.
GLAUCIUM (name refers to glaucous foliage). Papareràcea. Horned Poppy. A dozen or more herbs of S. En. and W. Asia; annuals, biennials or occasionally per-
ennials, a few of which are grewn for their large poppy. like fls. and glaucous-blue foliage. Sepals 2: petals 4: stamens many: ovary with 2 (rarely 3 ) cells, the stigmas miter-shaped, the fruit beeoming a long silique-like capsule: Irs. alternate, lobed or dissected. Glauciums are low, branchy herbs, often somewhat sucenlent, with large fls., mostly yellow or orange, but varying to red and purple. The fls. are usually short-lived, but they are borne in rapid succession. They are well adapted for foliage effects in borders or edgings. Of easy culture in any good soil. They prefir an open, sumuy situation. Mostly prop. by see i, but the prennial kinds by division; however, the perennials are short-lived, and usually had best be treated as biennials;
915. Glaucium luteum, they should be grown from seed.
lùteum, Scop. (G. flùz'um, DC.). Figs. 915, 916. Stems stout, l-2 ft., pubescent: radical lvs. 2-pinnate and hairy, the upper clasping and sinuate-pinnatitid: ths. generally solitary, on long stems. -3 in. across, yellow or orange. En.-Sparingly naturalized E. Perennial or biennial; sometimes grown as an annual.
corniculàtum, Curt. (G. phoniceum, Gaert. G. rùbrum, Hort.). Lower: radic:al lvs. pinnatific, pubescent. the upper ones sessile and truncate at the base: tls. red or purplish, with a black spot at the base of each petal. En. - Mostly annual. G. Fischeri, Hort., is probably a form of this.
I. H. B.

GLAZIOVA. See Cocos insigris.
GLECHOMA. See Vepeta.
GLEDITSCHIA (after Gottlieb Gleditsch, director of the botanic garden at Berlin; died 1780). Sin Gleditsia. Leguminosse. Honey Locest. Ornamental deciduons trees, often with large branched spines on trunk and branches: branches spreading, forming a broad graceful rather loose head, with tinely pinnate foliage, generally light green and turning clear vellow in fall; the greenish fls. appearing in racemes early in summer are inconspicuous, but the larce. flat pods are ornamen-

916. Glaucium luteum ( $\times 1 / 3$ ).
tal and the fertile tree is therefore to be preferred for planting. $G$. triacunthos is a useful native. $G$. Japonict and G.feror are almost hardy North. They are very valuable trees for park planting and for avenues, and make almost impenetrable hedges if planted thickly and proned severely. The coarse-grained wood is durable and strong. The pulp of the pods of $G$. triacauthes is sweet when fresh, hence the name Hones Locust, but becomes bitter at length ; in Japan it has been used as a substitute for soap. The Gleditschias are of vigorous growth and thrive in almost any soil. Prop.
by seeds sown in spring' about 1 in . deep, they should b soaked in hot water before being sown; varieties ano rare kinds are sometimes grafted on seedlings of $\boldsymbol{G}$. triacanthos in spring. About 10 species in N. America, Asia and Africa. Lvs. alternate, abruptly pinnate, often partly bipinnate on the same leaf, or wholly bipinnate, both usually on the same tree: fls. polygamous; calyx lobes and petals $3-5$, stamens $6-10$ : pod compressed, mostly large and indehiscent, $1-$ many-s ${ }^{r-1} \mathrm{ed}$.

## A. Porl thin-walled: lis. pinnate witn more than

 12 lfts., or bipinnate.triacánthos, Linn. Honey or Sweet Locust. Three thorned Acacla. Fig. 917. Tree, $\mathbf{7 0 - 1 4 0}$ rt., usually with stont simple or branched spines 3-4 in. long: lvs 6-8 in. long, with pubescent grooved rachis; pinnate with $20-30$ lfts., bipinnate with $8-14$ pinne; lfts. oblonglanceolate, remotely crenulate-serrate, $3 / 4-1 \frac{1}{2}$ in. long: Als. very short-pedicelled in $1 \frac{1}{2}-3 \mathrm{in}$. long, narrow racemes: pod 12-18 in. long, slightly falcate and twisted at length. May, June. From Pa. south to Miss., west to Neb. and Tex. S.S. 3:125, 126. - Var. inérmis, DC. Unarmed or nearly so, of somewhat more slender and looser habit. Var. Bujoti, IIort. (G. Bujòti péndula, Hort.). With slender, pendulous branches and narrower lfte.
Japunica, Miq. Tree, $60-70$ ft., with somewhat con.. pressed, often luranched spines, $\mathbf{2}-1$ in. long: Irs. $10-$ 12 in. long, with grooved and slightly winged, puberulous rachis, pinnate with $16-24$ lfts., bipinnate with 8-12 pinner; lfts. ovate to oblongnearly lanceolate, obtuse, entire or remotely crenulate, lustrous above, $9 / 4-2$ in. long: fls, short-pedicelled, in slender racemes: pod 10-12 in. long, twisted, bullate, with the seeds near the middle; pulp acid. Japan, China. G.F. 6:165.- Var. purpurea,

917. Gleditschia triacanthos. ( $\times 1 / 3$.) Rehd. (G. Sinénsis, var. purpùrea, Loud. G. coccibea, Hort. G. Sinensis, var. orientidlis, Hort.). Lfts. broadly oval to oblong-oval, obtuse or emarginate, $1 / 2-1 \frac{1}{2} \mathrm{in}$. on the pinnate, smaller on the bipinnate lvs.
fèrox, Desf. Tree, with compressed, large, usually branched spines: lvs. with grooved, almost glabrous rachis, usually bipinnate; pinnee $6-10$, with many lfts.; ifts. orate-lanceolate to lanceolate, acute, minutely and remotely crenulate, $1 / 3-1 \frac{1}{2} \mathrm{in}$. long. China. Often cult. under the name G.ma:racantha, Sinensis var. Japonica and horrida and usually referred to $G$. Simensis, but seems more closely allied to G. Japonica. Var. nàna, Hort., is a shrubby, often less spiny form.

## AA. Pod thick - walled: 7vs. pimmate, with 4-12 lfts., rarel: bipinnate.

Sinénsis, Lam. Tree, to 40 ft ., with stout conical often branched spines: lve. $5-7$ in. long, with grooved pubescent rachis, and 8 - 18 lfts.; lfts. ovate or oblong-ovate, obtuse or acute, crenulate-serrate, reticulate bereath, $3 / 4-2 \mathrm{in}$. long: tls . distinctly pedicelled, in slender racemes: pod almost straight, thick, $4-7$ in. long, $1-11 / 2$ in. broad. China.
G. aquática, Marsh. (G. monosperma, Walt. G. inermis, Mill., not Linn.). Watek or Swayl Locest. Tree to 60 ft , with mostly simple spines: lus. pinnate, with 12-18 ovate-oblong. crenulate lfts., or bininnate, with $G-8$ pinnes: ped thin, ellip. tir, 1 -seeded, $1-2$ in. long. From Carolina south, west to Texas. S.S. 3:12-2-28-G. austrilis, Hemsl. Tree with large spines: lfts. very oblique, oblong, crenate leathery, shining: pod with coriaceous walls, $4-5$ in. long. 3. China-G. Cáspica, Desf. Allied to $G$. triacanthes. Las, pinnate with $1 \underline{2}-20$ ovate, erenulate $1 \mathrm{fts} .$, or bipinnate with $6-8$ pinne: pod thin, pulpy, 1012 in. long.-G. Fontaaèsi, Spach. $=$ G. macracantha. - G. hórrida

Wil d. $=$ G. Sinensis.-G. macracantha, Desf. Allied to G. Sinensis; spines and litts. generally larger: pod $4-6 \mathrm{in}$. long. $3 / 4$ in. broad, often almost cylindrical. China.

Alfied Rehider.
GLEICHENIA (W. F. Von Gleichen, 1717-1783). Gleicheniticer. A genus of about 30 species of ferns from the tropical and south temperate zones, growing naturally in dense thickets. The leaves fork, often several times, and the family is characterized by dorsal sori composed of a few nearly sessile sporangia; these are surrounded by a broad transverse ring, and open vertically. The species after the third are often catalogued under Mertensia, a name which, because used for a genus of flowers, must give way to Dicranopteris if they are separated and placed in a distinct genus, where they probably belong.

## A. Ultimate lobes small, roundish.

B. Sorus of 3-4 sporangia, superficial.
rupéstris, R. Bi. Lobes rounded or obtusely quadrangular, the margins thickened and recurved, somewhat glaucous beneath. Australia. Var. glaucéscens, Moore, has lis. of thicker texture, which, when young, are very glaucous on both sides, contrasting with the reddish purple stalks.
circinàta, Swz . Lobes ovate or rotund, with the rachides pubescent when young ; $3-5$ times forking, the ultimate pinnules 1 in . long. Austral., New Zealand.

Var. spelúncæ, Hort. (G. spelíncex, R.Br.). Lrs. pendent but not curving ; pinnules curved inward, form ing small carities. Var. semivestita, Labill. (G. semivestita, Hort.), differs in its close and very erect habit, and flat, deep green pinnæ. Var. Méndelli, Mcore ( $G$. Mendelli, Hort.). More robust and compact than the type, with flat, thicker and glancous lvs. Gn. 51, p. 472.
BB. Sorus of 2 sporangia concealed in slipper-shaped lobes.
dicarpa, R.Br. Lvs. 2-4 times forked, with the lobes strongly arched, rotund or narrow, with the under surface rusty-hairy. Australia.

AA. Ultimate lobes pectinate: sori near the middle of the reinlets.
c. Leaf, after first forking, tipinnate.
glaùca, Hook. Primary branches elongate, 2-3 ft. in length ; rachises with rusty scales ; pinnæe $4-8 \mathrm{in}$. long, with closely placed entire segments, glaucous beneath. China and Japan.
cc. Leaf with fan-shaped divisions.
flabellata, R. Br. Lvs. 2-3 times forked, the divisions ascending. 6 in . or more long. elliptic-lanceolate; ultimate divisions linear. Australia.
longipinnàta, Hook. Branches of the Irs. repeatedly dichotomons; pinnæ up to 2 ft . long, 3 in . wide. Trop. Ameri a.
…A * 'h.afe' thehes rith a pair of forked pinne:
igzag. repeatedly dichotomous.
dici : $\quad$ : aum. With a distinct pair of pinne arising in. if the forked branches; segments not de $i^{\prime \prime}$ : 'iropical regions generally, but several species have been confused here, as in many of the widely distributed species.
L. M. Underwood.

GLÓBBA (Malayan name). Scitaminècere. This genus, which belongs to the same family with the cannas and ginger plant, contains some herbaceons conservatory plants with rhizomes and habit of canna, and a singular floral structure. Only one species is known to be cult. in America. This is known to the trade as $G$. coccinea, which is really $G$. atrosanguinea, figured at B.M. 6626. Index Kewensis is clearly in error in referring $G$. coccinea to $G$. albo-bracteata, as is plain from G.C. II. 18:71. Veitch introduced in 1881 a plant under the provisional name of $G$. coccinea, as it was supposed to be a new species, but the next year it was identified with $G$. utrosanguinea. This plant was highly praised in 1893 by John Saul, who said substantially: "Plants in bloom the greater yart of the year: stems much crowded, 12-18 in. long, gracefully arching on all sides: fls. scerlet and yellow, in dense racemes." The credit for the
discovery of this plant is generally given to F. W. Burbidge, but in G. C. II. 18:407 Burbidge gives the honor to Curtis. For culture, see Alpinia.
atrosanguinea,Teijsm. \& Binnend. ( $G$. coccinea, Hort., Veitch). Stem slender, becoming 2-3 ft. high: lvs. $3-4$ in. long, elliptic, acuminate at both ends; sheaths purplish, pubescent, closely clasping the stem: lower Howerless bracts distant, brown, 6-9 lines long: upper and Howering bracts crowded, red: fls. $1 \frac{1}{2}$ in. long; corolla yellow, tubular, thrice as long as calyx. Borneo. В. М. 6626 .
W. M.

GLOBE AMARANTH. Gomphrena.
GLOBE FLOWER. See Trollius.
GLOBE HYACINTH. Consult Muscari.
GLOBE MALLOW. See Sparalcer.
GLOBE THISTLE, See Echinops.
GLOBE TULIP. See Calochortus.
GLOBULARIA (the flowers in small, globular heads). Globulariaces. About a dozen species of Old World heibs, subshrubs and shrubs, with small blue fls. mostly in globular heads. Lrs. from the root, or alternate, leathery, entire or with a few sharp teeth. Probably the commonest and best species is $G$. tricosantha, which thrives at the front of well-drained borders, but is particularly showy in the rockery. For this and G. rulgaris and its forms, J. B. Keller advises rather moist but well-drained soil and partial shade. Prop. by division or seed.

## A. Hardy herbaceous plants about 6-12 in. high.

## B. Root-lis. 1-nerred.

trichosántha, Fisch. \& Mey. Height 6 in.: root-les. spatulate, 3 -toothed at apex; stem-!vs. obovate or oblong, mucronate, sessile. July, Aug. Asia Minor. Syria "Lvs. turn blackish purple in fali."- Woolson.

## BB. Root-les. 5-nerved.

vulgàris, Linn. Height $8-12$ in. : root lvs. oborate, petiolate, nearly entire, apex entire, notched or mucronate: stem-lvs. lanceolate, sessile. S. Eu., Caucasus. July, Aug. B.M. 2256.

## As. Tender subshru'.

Alỳpum, Linn. Lrs. obovate-oblong, mucronate or 3 -toothed at apex. Mediterranean regions.-Cult. in S. Calif. by Franceschi, who says it is covered with fls. all winter. Also cult. abroad under glass.
W. M.

GLORIOSA (Latin for glorious). Syn., Methónica. Lilideca. Three tropical species, all African, and one also Asian. They are tall, weak-stemmed plants, supporting themselves by means of tendril-like prolongations of the alternate, lanceolate or lance-r, rate lrs.: fls. many and showy, long-stalked, borne singly in the axils of the upper lvs.; perianth of 6 distinet long segments, which are undulate or crisped, and reflexed after the manner of a Cyclamen. variously colored; stamens 6, long and spreading, with versatile anthers: ovary 3 loculed; style long, and bent upward near the base. Odd and handsome plants, to be grown in a warm house. They are not difficult to grew. The brightest fls. are produced in sunlight. The plants grow from tubers. These tubers should be rested in early winter, and started in pots in January to March. The plants bloom in summer and fall. When potting the old tubers, offsets may be removed (when they occur) and grown separately for the production of new plants. The tubers may be cut in two for purposes of propagation. Let the plants stand near a pillar or other support. Give freely of water when the plants are growing. In this country they are sometimes bedded out in summer. W. J. Endicott cultivates (Iloriosa outdoors in summer at Canton, Mass., and finds that the plants so treated are not much inclined to climb and flower as freely as under glass. In Florida, they may be grown permanently in the open. Suecess with Gloriosa depends on having strong bulbs. Consult Bulbs.

## A. Segments (or petals) much crisped.

supérba, Linn. Cimbing LiLs. Stem 5 - 10 ft . high: Ivs. ovate-lanceolate; segments $3-4$ in. long and less than an inch wide, opening yellow, but changing to yellow-red and deep scarlet. Africa, Asia. B.R. 1:77. Gn. 38:784. R.B. 23:121.

## As. Segments somewh $t$ undulote, but not erisped.

simplex, Linn. (G. viréscens, Li'rdl. G.Plántii, Loud.). Fls. opening yellow, and remaini. go in shade, but becoming deep yellow-red when exposed to the sun; wider than in G. superba, barely undulate and wavy, and not prolonged or hooked at the end as in the latter species. Africa. B.M.2539. Var. grandiflòra, Nichols. (Methónica grandiflora, Hook.), has fls. 8 in. across. B.M. 5216.
G. Abyssinica, Rich., said to be the largest-fld. species, seems not to be in cult.
L. H. B.

JLORY OF THE SNOW. Fanciful name for Chionodoxa.

## GLORY PEA. See Clianthus.

GLOXINERA. Name given to hybrids of Gloxinia (Sinningia) and Gesneria. See Gloxinia.

## GLOXINIA. The

riloxinia was founded by $r$ of P. B. Filoxin, a botaL'Heritier in 1785 (name. uculatu of Brazil. Early nist of Strassburg) upon ©....uch plant was introduced, and it attracted much attention: this plant was named Gloxinia speciosa by Loddiges in his Botanical Cabinet in 1817, and it was there figured. In the same yea' it was flgured by Ker in the Botanical Register, and also by Sims in the Botanical Magazine. Sims wrote that the plant was "already to be found in most of the large collections about town [Loidon]." These writers re er the plant to the Linnæan class Didynamia, hut Ker also suggests that it may belong to the Campanulacer. This Gloxinia speciosa was the forerunner and leading parent of the garden Gloxinias, plants which are now referred to the family Gesneraceæ; but it turns out that the plant really belongs to Nees' genus Sinningia, founded in 1825 on a Brazilian plant which he named S. Helleri. All our garden Gloxinias are Sinningias, but to gardeners they will ever be known as Gloxinia; therefore, we will trace the evolution of them here.
Gloxinia has no tubers: Sinningia has. Gloxinia has a ring-like or annular disk about the ovary: Sinningia has 5 distinct glands. The Sinningias are either stemless or stem-bearing, with a trumpet-shape or bell-shape 5 -lobed and more or less 2 -lipped corolla, a 5 -angled or 5 -winged calyx, 4 stamens attached to the base of the corolla, and with anthers cohering at the tips in pairs, and a single style with a concave or $\xlongequal[2]{ }$-lobed stigma. The garden Gloxinias belong to the subgenus Ligeria (subgenus of Sinningia). which has a short stem or trunk, and a broad-limbed hell-shaped flower.
The true Gloxinias are not florists' flowers, and they are little known in cultivation. They are apparently not in the American trade. The old $G$. muculate is figural in the Garden 39:801 (p. 3if4), and it is probably ... be found in choice collections in the Old World. It p:oduces knotty rootstocks, which, as well as the leaves, may be used for propagation. It is also figured in B.M. 1191. G. glabrita, Zucc., from Mex., is the G. glabru, Hort., Achimenes gloxiviceilort, Forkel, and Plectopoma gloxiniflorum, Haust. It is a stemmy plant, with white 1ls. with yellow-spotted throat. (B.M. 4430 , as $G$. fimbriata, Hort.) Plectopoma is now referred to Gloxinia. A few forms of this were once offered by Saul, but, with the exception of $P$.gloxiniflorum, they are probably all garden forms.
The garden Gloxinias (genus Simingia) are nearly stemless plants, producing several or many yery showy bell-like tis. each on a long stem. Glorimia speciosa originally had drooping ths., but the result of continued breeding has produced a race with fls. nearly or quite erect (Figs. 918, 919). The deep bell of the Gloxinia is very rich and beautiful, and the erect position is a decided gain. The fls. also have been increased in size and number, and viaried in shape and markings ;
the lvs. also have become marked with gray or white. The color of the original Gloxinia speciosa was apparently a nearly uniform purple. The modern races have colors in white, red, purple and all intermediate shades: some are blotched, and others are fine-spotted or sprinkled with darker shades. It is probai! that the larger

918. Gloxinia of the florists.
part of the evolution in the common greenhouse Gloxinia is a direct development from the old G. speciosa, but hybridity has played an important part. One of the earliest recorded series of hybrids (1844) was with Sinningia gutteta, which is a plant with an upright stem and bearing rather small spotted ths. in the axils of the lrs. (B.R. 13:1112). The issue of this cross showed little effect of the $S$.gutiata, except a distinct branching habit in some of the plants (B.R. $30: 48$ ). It is possible, however, that $S$. guttuta has had something to do with the evolution of the spots on the present-day flower, although the original $G$. speciost was striped and blotehed in the throat. The student who wishes to trace some of the forms of garden Gloxinias may look up the following portraits : B.M. 1937, speciosa itself; B.M. 3206, var. albiflora; B.M. 3934, var. macrophyia variegata; B.M. 394:3, var. Menziesii; F.S. $3: 200$, Zeichleri (hythrid); F.S. 3:268; F.S. 4:311, Fyfiana (hybrid); F.S. 6:610; F.S. 10:1002; F.S. 14:14:34-6; F.S. $16: 1699$ and 1705; F.S. 17:1768, 1762-1776; F.S. 18:1846, 1878, 1885, 1918-19; F.S. 19:1955, double forms; F.S. $21: 2164$; F.S. 20: 2324. I.H.42: 39, 41. Gt. $47: 79$; Gt. 48 , p. 80 . Gn. $15: 168 ; 43: 909 ; 52$, p. 268 . R.H. 1s46:301, Teuchlerii; R.H. 1848:201. Fyfiana; 187才:70, variabilis; R.H. 1883, p. 248. For florists' plants, see A.F. 11:7; A.G. 14:49; Gng. 6:83. There are many Latin-made names of garden Gloxinias, but the plants are only forms of the G. speciost type. One of the commonest current trade names is $G$. erossifolia, a name applied to some of the best and largest-growing strains.

There are donble forms of Gloxinia, in which an outer but shorter corolla is formed. These forms are more curious than useful. Gloxinia (Sinningia) has been hybridized with Gesneria; and the hrbrid progeny has been called Gloxinera (G.C. 111. 17:145, Fig. 29). L. H. B,

Gloxinias are general favorites with most people. Their large tubular and richly colored blossoms, together with their soft, velvety green leares, make a gorgeous display when in flower. Being natives of tropieal America, they require stove temperature during their growing season. Though they may be grown so as to flower at almost any season of the year, yet they are naturally summer-flowering plants, ind do best when treated as such. They are propagated by seeds, or by cuttings male of leares or stems. Seeds are preferuble, unless one wishes to increase some very choice colored variety, when it is best to propagate by leaf cuttings,
using partly matured medium sized leavers with a small portion of leaf-stalk attached (Fig. 624, p. 423). These may be inserted in an ordinary propagating bed, where, if kept rather on the dry side, they will soon root and form tubers, when they may be potted and grown on. Seeds should be sown in a warm temperature early in February, in pans or shallow boxes containing a finely sifted mixture of peat, leaf-mold and silver sand in about equal proportions. The seedlings will begin to appear in about ten days, when great care must be exercised in watering, or they will "damp-off," as gardeners term it. In fact, success with these plants throughout the year depends largely upon the care excreised in watering. Even in their most actire growth the water always should be given from the spout of a watering can, taking care not to wet the leaves, though they like a warm, humid at mosphere during their growing season. As soon as the seedlings can be conveniently handled, they should be potted singly into thumb pots and grown on rapidly, using in subsequent shifts a misture of two parts leafmold, 1 part good fibrous loam and 1 part peat. The plants must be well shaded from sunlight and placed in a position free from draughts. The seedlings should begin to flower by the middle of August, when they should be given an abundance of air. After Howering, the leaves will begin to mature, when water should be gradually withheld. As soon as the leaves have all ripened off, the pots should ie stored away in some convenient place for the winter, in a temperature of about $45^{\circ}$, giving just sufficient water to keep the tubers from shriveling. Towards the middle of February the tubers will show signs of starting into growth. A batch should be started at this time, choosing the tubers which appear most active, and the remainder should be held back for another month; this will give a much longer period of blossoming. The tubers should have all the old soil shaken off and be potted again in clean, well drained pots, using sizes just large enough to accommodate the tubers, the compost being the same mixture as before recom-

919. Modern Gloxinia blooms ( $\times 1 / 3$ )
mended. They should be given but little water until actice root growth commences. As soon as the pots are filled with roots, they should be shifted on at once into the pots they nre intended to flower in, as frequent shifts would more or less damage their leaves, which bave a tendency to eling round the sides of the pots. The first batch should come into tower in June. When
carefully grown, Gloxin:as are particularly free from insect pests or fungous diseases, aud the same tubers can be grown for several years.

Edward J. Canning.
As Gloxinias are essentially tropical plants, they require a temperature of $60^{\circ}$ (night) if started early; yet seedlings raised during summer time do splendidly when planted in coldframes. When a select collection is desired, it is customary to plant hundreds of seedlings in frames for the summer. A large majority of these will bloom, from which a number of the best is selected. In connection with this method of culture, it is interesting to note that nearly all the plants which fail to bloom are strong growers, making grand specimens the following season, and the majority of them will be purple-flowered. The more upright-growing plants of red and pink shades are the first to bloom; and curiously, also, the latest plants to start of any age are generaliy the best. Although cultural directions usually insist on care in watering so as to aroid wetting the foliage, we have never been careful to follow these instructions closely, except when the plants are coming into bloom, but we realize that it might be detrimental in moist, dull weather. The greatest objection we have to metting the foliage is on account of sediment from the water making a deposit on the bright, hairy foliage, taking away the luster which gives such a healthy and effective appearance to well-bloomed plants.
T. D. Matfield

## GLYCERIA. Referred to Panicularia.

GLYCINE (Greek for sucet). Leguminosce. Perhaps 15 or 20 species in tropical Asia, Africa and Australia, mostly twining vines. The Glycines are allied to Dolichos, Vigna and Phaseolus: the cult. species are distinguished by small and hairy fls. in short axillary racemes; stipules very small and free from the petiole: leaflets (3) large and thin: seeds short or globular and pea-like. In this country Glycine is known only in the Soy Bean, G. hispida, Maxim. (Fig. 195, p. 137), which is an ereet, hairy annual from Japan and China. It is also known as the Soja Bean, Coffee Bean and Coffee Berry. It grows 2-4 ft. high, making a rank, bushy herl, and bearing axillary clusters of small hanging, hairy pods, with constrictions between the seeds. The seeds are nearly globular, pea-like, usually white (e, Fig. 191, p. 136). In China and Japan the beans are much used for human foed, but in this country the plant is grown for forage, having begun to atract attention about 25 years ago. The beans may be used as a substitute for coffee; and for this purpose the plant is often sold. The Soy Bean, in the form in which we know it, seems to be unknown in a wild state. It is probably a domesticated form of Glycine Soja, Sinb. \& Zucc., which is wild in Japan. These two species are united by some authors and semarated by others (see Franch. \& Sar. Fl. Jap. 1:108. Maxim. Bull. Acad. St. Petersb. $18: 398$ ). For purposes of perspicuity and definition, they may well be kept separate in the books. The Soy Bean has also been separated es a distinct genus under the name of Soja hispidt, Monch; but this disposition is now mostly given up. For the economic merits of Soy Beons, see various experiment station reports; also Farmers' 13ull. 58, U. S. Dept. of Agric. It has been recommended as a drought-resisting erop
Glycine was once applied to Wistaria. It is sometimes used for that genus at the present day in foreign lists.
L. H. B.

GLYCYRRHIZA (Greek, sueet root). Legumindsu. Licorice, also spelled Liqcofice, and Lickoriee. This genus contains the plant whose roots produce the Licorice of commerce. Seeds in pods are listed by a few dealers with miscellancous agricultural seeds. The genus has about a dozen widely scattered species of perennial herbs, often glandular: lvs. odd-pinnate; lfts. of indefinite number, rarely 3 , entire, with minute glands or teeth: fls. blue, violet, white or yellowish, in axillary racemes or spikes, which are peduncled or sessile.
glàbra, Linn. Height 3-4 ft.: lfts. orate, subretuse, subglutinous beneath: spikes peduncled, shorter than the lrs.: Hs. distant: pods glabrous, 3-1-seeded. Summer and autumn.
W. M.

The roots of Glycyrrhiza, a native of southern Europe and central Asia, are used extensively by druggists; in America by brewers and manufacturers of plug tobaceo; in Turkey, Egypt and France to make cooling drinks. Our supply-more than one and a half million dollars' worth in 1890 -is derived mainly from Spain. Portugal, Italy, Turkey and Russia (Transcaucasia), the roots from Spain and Italy being considered best, and those from Turkey poorest on account of their bitterness. The soil for Licorice must be deep, mellow. moist, rich and free from stones. Plants are usually set in rows, 3 ft . or more apart, and not less than 1 ft . asunder. After the plants have covered the ground, they are allowed to shift for themselves for 3 or 4 years. Harvesting is primitive, the roots being exposed by the plow and pulled by hand. Large quantities of roots are thus left to produce a succeeding crop or to overrun the field as weeds. One ton to the acre is considered a fair yield; 1.6 cents a pound an average price. In America the only fields worthy the name are in California, where Licorice is not considered very paying. Experiment and experience with it are, however, but little more than begun.
M. G. Kalns.

## GLYPTOSTROBUS. Sce Tarodium.

GMELINA (after one of five distinguished German botanists named Gmelin). Verbenicere. Eirht species of E. Asiatic and N. Australian trees and slirubs, bearing yellow or brownish irregular Hs. sometimes nearly 2 in. across. A very few plants may be cult. in European warmhouses, and in America only in S. Fla. and S. Calif. outdoors. The genus produces a fancy timber similar to teak, which is a product of the same order. Vitex and Clerodeadron are better known congeners. Spiny or not: shoots tomentose: lvs. opposite, entire, toothed or lobed: Hs. in panicled cymes, tomentose at least while young; corolla tube slender below; limb oblique, 5 - or 4 -lobed; stamens 4 , didynamous.
A. Les. becoming 9 in . long, 6 in . wille.
arbòrea, Roxb. (G. Rheèdii, Hook.). Unarmed tree, sometimes attaining 60 ft ., deciduous, flowering with the young lys.: Irs. cordate-ovate. India, Malaya. B.M. 4395. Cult. only in S. Calif. by Franceschi, who keeps G. Rheedii separate.

$$
\text { AA. Lis. } 1 / 2-1 \frac{1}{2} \text { in. long. }
$$

Asiática, Linn. (G. parififora, Pers., a typographical error for $G$. parrifòlia. Roxb.). Shrubly, sometimes spinescent: ivs ovate or oborate, entire or lobed. India, Ceylon.

GNAPHALIUM, See Leontopodium and Helichrysum. There are rarious native Gnaphalimms, but they are not in cultivation. G. lanatum of gardeners is $M e$ lichrysum petiolatum.

GOAT'S BEARD is usually Spirar Armencus; also the genus Tragopogon, to which the Salsify or Oyster Plant belongs.

## GOAT'S FOOT. Oxalis Caprina.

GOAT'S RUE. See Gulega.
GOBO. See Burdock.
GODETIA. Included in Enothera.
GOLDEN CHAIN. Laburnum vulgare.
GOLDEN CLUB. Orontium.
GOLDEN DEWDROP. Fanciful name for Duranta Plumieri.

GOLDEN FEATHER. See Chrysanthemum parthenioides.

GOLDENROD. Solidago.
GOLDEN SEAL. Hyclrastis.
GOLD FERN. Gymnogramma

GOLDFUSSIA. Included in Strolilanthes.
GOLD THREAD. Coptis trifolia.
GOMBO, Gumbo, or Okra. See Hibiscus esculentus.
GOMPHRENA (name suggested by Gromphrena, Pliny's name for some Amaranth, supposed to be derived from grapho, to write or paint; alluding to the highly colored or "painted" foliage). Amarunticece. This genus includes the Globe Amaranth, a common everlasting flower of easy culture. It is also known as Bachelor's Button, though two other utterly distinct plants (Centurrea C'yamus and Ramuсиlus acris) have the same popular name. The flower-heads are an inch or less in diameter, globose, of many colors, and chiefly remarkable for the showy bracts, which hide the true flowers. In a family remarkable for brilliant foliage this genus seems to be the only one valued for everlastings. Nearly all the other everlasting flowers of importance belong to the Compositie. Gomphrena has about 70 species, mostly in the warmer parts of America and Australia, but the Globe Amaranth is widely dispersed throughout the tropics. Herbs erect or prostrate, pubescent to villous, with or without a leafy involucre: tls. short or long, white or colored: bracts short or long, concare, and keeled, winged or crested on the back. For culture, see Anuuals and E'cerlasting Flowers.
globdsa, Linn. Globe Amaranth. Bachelor's Bettos. Height 18 in. or less: lus. eliiptic to obovate, the largest 4 in. long, $11 / 2$ in. wide, tapering to a petiole. July. B.M. 2815. R.H. 1890, p. 522. F.R. 1:333. The following names of horticultural varieties indicate the range of color: vars. alba, aúrea, cárnea, nana compácta $(=$ alba $)$, purpùrea, striàta, violàcea. Dwarf and compact forms are likely to be associated with any color. There is a narrow-leaved form of this species which Voss calls G. Haageàna, Kl. (G. aurantida, Hort. G. coccinea, Decne.), which has lanceolate lvs., often 6 times as long as broad. The lvs. are rarely $1 / 2 \mathrm{in}$. wide. R.H. 1854:161. All are easily grown annuals.
G. gnaphalioides, Vahl. See Pfaffia.
W. M.

GONANIA is a typographical error in some nursery catalogues for Gotrenite.

GONGORA (after Don Antenio Caballero y Gongora, Bishop of Cordova). Includes Acropera. Orchiddeer, tribe lónderp, subtribe Cyrtopodiép. I small genus of plants with curious spotted Hs., not common in cultivation, and of little value except for collections. Distinguished from the other members of the subtribe by being epiphytic, having the dorsal sepal adnate to the column, and by its many-fld. raceme. Dorsal sepal erect, spretading, thus appearing to spring from the hase of the column: lateral sepals spreading or reflexed from the base of the column, wider ; petals small, adnate to the base of the column; labellum contimuous with the column, narrow and theshy, with 2 thick lateral horned or aristulate lobes, and a central one which is saccate or even folded, forming a vertical plate: column erect or ascending, not winged: pseudobulhs sulcate, sheathed, bearing 1 or 2 large, plicate lvs.: Hs. borne in a long, loose, pendent raceme arising from the base of the pseudobulles.
Gongoras are extremely free-flowering, and grow easily in a mixture of shagnum and peat, with a little charcoal added for drainage. During the growing season they require plenty of water, and brisk heat. In the winter they require little water, but should be kept in a moist atmosphere in a cool, shaded house. They grow well with Cattleyas, or in a temperature of $60^{\circ}$ in winter and $80^{\circ}$ in summer. Some growers prefer to use fine fern root packed tightly and for a top finish a little fine moss found in damp meadows, instead of sphagnum, which in this climate is quick to decay.
A. Lateral sepais ovate or oblong, truncate.
truncàta, Lindl. Pseudobulbs deeply furcate : lateral sepals rotund, oblong, truncate, the upper one ovate, keeled; petals minute, ovate; sepals and petals pale straw color, spotted with purple; base of labellumi compressed in the middle, 2 -horned: apex ovate, canaliculate. B.R. 31:56.

## AA. Lateral sepals broad, ovate, pointed.

B. Fls. light sepia brown: ovary much incurved.
galeàta, Reich. f. (Maxillitria galeùta, Lindl. Acropert Lóddigesii, Lindl.). Pseudobulbs ovate-conical, clothed with membranous scales: lvs. broadly lanceolate, 6 in. long: racemes drooping, $6-8$ in. long, with $6-12$ pale sepia brown ths.: dorsal sepal galeate; petals sinall, oblong-truneate; labellum 3-lobed; lateral lobes inflexed, middle one saceate. The plants bear several short, rather large-fld. racemes. Aug. Mex. B.M. 3563. L.B.C. 17:1645.

Bв. Fls. yellow: ovary somerhat incurced.
Armenlaca, Reichb. f. (Acropèra Armeniaca, Lindl.). Pseudobulbs ovate, sulcate, ?-lvd.: raceme loose, bear ing many yellow ths.: sepals orate, rounded, apiculate, the lateral ones oblique; petals one-half as long as the column; labellum fleshy; apex orate, plane, acuminate, base tuberculate, erested. B.M. 5501.
adA. Lateral sepals lunceolate to ovete-lunceolate. B. Fls, chocolate-brotn, spotted.
atropurpurea, Hook. Pseudobulbs oblong-cylindrical, leeply sulcate, 2 -lvd.: lvs. about 1 ft . long, lanceolate, subplieate: racemes numerous, " ft . long, bearing many chocolate-colored, spotted Hs. about 2 in. in diam.: margins of the sepals revolute; petals small, twisted at the apex; labellum 4 -horned at the base; apex folded so as to form a vertical triangular plate. This species is the most common in eultivation. It is nearly always in Hower during the summer. Trinidad. B.M. 32e0.

## BB. Fls. yellou', spotted.

quinquenéryis, Ruiz \& Pavon (G. muculata, Lindl.). Pseudobulbs ovate-oblong, deeply furrowed, o-Ivd.: Irs. broadly lanceolate, 5 -plaited: racemes many, 2 ft . long, with numerous yelle f fls. spotted with dark red: lateral sepals reflexed, meeting in the back; petals small, linearoblong, from the middle of the column; lip 4 -horned at base: apex folded, tapering to a setaceous point. A curious plant, much resembling $G$. atropurpuret except in color and form of ths. May-Aug. B.M. 3687. B.R. 19:1616.
bвb. Fls. dull red-purple spotted, with a yellow labellitm.
trícolor, Reichb. f. (G. muculata, var. trícolor, Lindl.). Pseudobulbs ovoid, $21 / 2 \mathrm{in}$. long, deeply furrowed: lvs ovate-oblong, acuminate, abont $\overline{\mathrm{j}}$-ribbed, 6 in . long: raceme slender, pendulonc. lax-fld., 6-10 in. long: pedicels with ovary $11 / 2-2 \mathrm{in}$. $n \mathrm{~g}$, speckled like the raehis: fls. about 2 in. long: dorsal sepals laneeolate, with revolute margins, tip recurred: lateral sepals ovate-lanceolate, with revolute margins, dull red-purple, with a pale, stont midrib: free portion of the petal spreading, upcurved, lanceolate, speckleii: labellum golden yellcw, base cuneiform saccate, truncate in front, with an ann on each side, apical part broadly funnel-shaped, with a spurlike, slender, speckled tip, gihbous behind: column slender, speckled. B.M. 7530. B.R. 3:3:69.
G. fuscitta, Hort. (Acropera fuseata and luteola, Hort.), has been cult. for many years, but no deseription is available.
H. Hasselbring and Wm. Mathews.

GONIOMA (Greek, gomia, angle, corner; the corona cornered near the topl. Apocyndecere. A monotrpic genus contaming a South Africau shrub. John Saul, of Washington, D. C., spoke of it as having racemes of double white fls.. borne on the point of every shoot, and suggesting the Cape Jessamine by their form and fragrance. He probably had some other plant in mind, for aceording to Dec'andolle, Gonioma has yellowish fls., only a third of an inch long, borne in evmes which are shorter than the lrs., the lis. being $13 / 4-2 \mathrm{in}$. long. Saul aiso adrertised "Tabernomontana Camellieflora pleno Clory of the Day," which may have been a variets of the common Tabernomontama coronavit. Gonioma differs from Tabernemontana in having the ovules arranged in 2 series instead of an indefinite mumber of series.
Kamássi, E. Mer. (Tabernmmontìn Camássi, Regel). Height $16-20 \mathrm{ft}$.: les. opposite or the upper ones in 3 s, oblong-lanceolate, entire, leathery, 4-6 lines wille: cymes small, terminal, $8-10$-fid.: fls. salver-shaped, yel
lowish, 3 lines long; tube a little wider at the middle and angled, constricted at top, pilose within from the middle to the top; lobes a third as long as the tube, ovate, cordate, twisted to the right in the bud; style 2 -cut.

GONIOPHLEBIUM. A subgenus of Polypodium, with anastomosing reins; by some regarded as a genus. For G. suburriculatum, see Polypotirm.

GONIOPTERIS (Greek, angled fern). Polypodideere. A genus of tropieal ferns allied to Phegopteris, with naked romded sori and the lower veinlets of contiguous segments or lobes united. By some placed under Polypodimm.
crenàta, Presl. Lrs. 1-2 ft. long, on stalks nearly as long. with a terminal pinnar $6-8$ in. long, often 2 in. Wide, and $4-8$ similar lateral pinma; margins bluntly lobed; sori near the main reins. Cuba and Mexieo to Brazil.
L. M. Underwood.

GOOBER is a commoner name in the South than "Peanut," which is the universal name in the North. For culture, see Peanut; for botany, see Arachis.

GOODIA (after Peter Good, who found the plant in N. S. Wales). Lc guminòsce. An Australian genus of 2 species of shrubs, with pea-like ths., chiefly yellow, but with red markings. Both species have long been eult. in a few conservatories abroad, but the pubescent species is now forgotten and the glabrous one, in America is cult. chiefty in S. Calif. outdoors. Un derglass ihese shrubs are treated like Cape heaths or Australian hardwooded plants. The genus has no near allies of garden value. It belongs with 4 other Australian genern to the sub-tribe Bossiza, in which the les. are mostly simple : stamens coalesced into a sheath, which is split athove: seeds strophiolate. From these 4 genera Goodia differs in having 3 leaflets, and its racemes terminal or opposite the lvs. instead of axillary.
A. Schultheis writes that Goodias are oecasionally seen in florists' windows in America. Wm. Watson, of Kew, says the fls. are very fragrant, and remain on the plant a long time. He adds (G.F.2:244): "Probably this plant, if taken in hand by the florists, would prove quite as useful for spring flowering as the popular $C y$ tisus racemosns."
lotifolia, Salisb. Often misspelled "latifelia," but the :!ame means "lotus-leaved." Glabrous shrub deseribed above. B.M. 958. J.H. 1HI. 29:484.-Likkely to be confused with Argyrolobium Aubreusiamm, belonging to the Crotalaria subtribe, in which the seeds are not strophiolate. In Argyrolobium the 3 leatlets are digitate and the stipules, bracts and bractlets small but persistent. $A$. Audrensianum has sparsely silky lvs. In Goodia the 3 leatlets are pinnately arranged, and the stipules. braets and bracclets very eranescent. W. M.

## GOOD.KING

 HENRY.
920. Guodyera pubescens.

Orchiddcer, tribe Neottiér. This genus includes the Rattlesnake Plantain and a few other dwarf terrestrial orehids of minor importance which are cult. chietly for their variegated foliage. They grow a few inches high, with scapes $8-15 \mathrm{in}$. high at most. About 25 species. Lvs. radical, usually reticulately veined: tls. in dense or loose spikes; labellum saccate; anther on the back of the column.

## A. Mardy native plants.

B. Labellum strongly inflated, with a short tip.
pubéscens, R. Br. Rattlesnake Plantain. Fig. 920. Lis. ovate, deep green; veins netted, white: scape stout: spike dense, ovate in outline before anthesis: tls. glohular, whitish; beak of stigma short, obscure. Aug. N. F. to Fla., west to Mich. and Minn. L.B.C. 1:1. B.B. 1:474. Mn. 2:54. F.S. 15:1555. A.G. $12: 281$ and $13: 520$. Should he grown in ordinary loam mixed with pine needles and dry pine twigs. Not well suited for greenhouse cult.

## bi. Labellum saccate, with an elongated tip.

C. Beak of the stigma shorter than its body.
rèpens, R . Br. Lrs. ovate to ohlong-lanceolate; veins dark: spike 1 -sided: labellum with a recurred tip. L.B.C. 20:1987. B.B. 1:474. Rhodora, 1, plate 1. Var. ophiddes, Fernald (Fig. 921). is the commoner form of this species, with very broadly marked lvs.
cc. Beak as long as or longer than the stigma.
tesselàta, Lodd. ( $G$. pubéscens, var. minor). Lrs. broadly orate to oblong-lanceolate; renation exceedingly variable: scape slender: spike loose: fls. white; labellum less saccate than in G. repens : tip straight. B.M. $2 \overline{5} 40$. L.B.C. $19: 95=2 . \quad$ Rhodora 1, plate 1. Confused by tradesmen with the next. -Should be planted out in a rockery in shade, the roots being firmly placed among dead pine needles and loam. Referred by Index Kewensis to $G$. pubescens.

BBB. Labellum searcely sar cate, margin incolute.
Ménziesii, I indl. Plant rather large: veins netted: spike somewhat 1 -sided. Western U. S. to northern N. Eng. B. B. 1:475. - Advertised by Dutch dealers.

AA. Tender exotics, cult.under glass.
B. Lis. with a whitish milrein.
velùtina, Maxim. Fls.whitish, tinged rose. Japan. F.S. 17:17̈9.
bв. Lis. with white, netted veins.
Schlechtendaliàna, Reichb. f. (G. Jupónica, Blume). In general appearance like $G$. tesselata. Lis. ovate: spike loose: fls. white. Japan.-Once advertised by Pitcher \& Manda.

## G. Davsomir̀na and G. discolor. See Hæmaria.-G. quer.

 cicola. See Physurus.Oakes Ames.

## GOORA NUT is a name for the Coia.

GOOSEBERRY. The Gooseberry and the currant are two of the hardiest types of bush fruits. The native forms range far iorth into British America (see Ribes). Seedlings of these are also rery havdy. English varieties are comparatively tender. The Gooseberry appears not to have been cultivated for more than 300 years. There was, however, a remarkable increase in the number of varieties in England between 16:50 and 1750. The (iooseberry became a favorite fruit with the Lancashire wearers, who should he credited with this great development. Miller 1781, says it would be useless to attempt an enumeration of rarieties. In America the Gooseberry has been a neglected fruit. With wild forms in abundance, types greatly superior to those from which the

immense English varieties were derived, with a crying need for better table varieties, practically nothing has been done to improve the natives. Our natives have not been improved primarily because the American people have never acquired or cultivated a taste for the fresh fruit of the Gooseberry. In England the fruit of many of the large, flne-Havored varieties is used uncooked. In America the fruit of the Gooseberry is thought of only in connection with pie (tart) or jan, and when transformed into these food products, flavor, while of some importance, is but a minor consideration. The claim that English Gooseberries are less palatable than the natices is quite true, when passed upon from this standpoint. The best cooking apples are not usually prized in the raw state on the table, and vice versa. The point is this-and it is worth mak-ing-that there are dessert Gooseberries and also sulinary Gooseberries. We should keep the classes distinct, and work for the production of varieties with the vigor of our natives and quality and size of fruit of the best European. Houghton was produced nearly $T 0$ years ago, and Downing from Houghton seed, grown by Charles Downing, about 40 years ago (see Bailey" Evolution of our Native Fruits"). These two varieties represent the American type, although it is possible that Downing is the result of a cross between Houghton and some European variety. The habit of the plant partakes somewhat of European characteristies. Fowning is the more popular.

Site and preparation of soil. - The largest and finest native bushes are found upon rich bottom lands. Moist, but not soggy, clay loams give best results. No alnount of fertilizing will bring sandy soil into condition suitable to the successful culture of the Gooseberry anywhere in this country cscept, perhaps. along the north Atlantic and north Pacitic seaboards. Good results have been secured in the Lake Ontario fruit region on reddish, cal careous clay. In such situations the fruit does not drop easily, and the plants are usually free from mildew. On the east and west coasts the aspect or lay of the land is of less importance than in the interior. In the mid-continental region a sharp, north slope on a cool, clay loam ridge is essential to the fullest success. A clover sorl turned under and thoroughly worked up is an excellent preparation for the Gooseberry plantation. A heavy preparatory application of barnyard manure may tend to make the soil too porous and too easily dried out. If applied the season previous to setting the plants, and the land is cropped with potatoes, it will be left in good condition to receive the Gooseberries.

Gooseberries, particularly the English kinds, will endure more shade than most fruit plants, provided the soil is suitable. Good results are often secured by planting in rather densely shaded city gardens. Where these conditions prevail, special attention should be paid to maintaining an open head, in order to disceurage the growth of mildews.

Planting and training. - The Gooseberry vegetates at a low temperature. It should, therefore, be planted as soon as the ground can be worked in spring. A better plan is to plant carly in autumn. It may he transplanted successfully as early as August 15 sonth of latitude 42 degrees, and north of that line from Scptember 1 up to the beginning of frosty weather. When set out late in autumin, the surface of the ground should be thoroughly mulched with straw or manure. The English varieties grow somewhat larger than the American type, and require rather more space. The plants are variously distanced, according to the inclination of the grower; $6 \times 3$, $\overline{5} \times 3$, and $4 \times 4 \mathrm{ft}$. apart for garden culture are the commoner distances at which the plants are set.

The training of the Gooseberry is exceedingly simple. It bears most freely on 2 - and 3 -year-old wood. The aim
should be to keep a continuous supply of vigorous shoots. As they become enfeebled, cut them out. Encourage spurring by cutting back when a varicty indulges in a rambling habit, like Josselyn (Red Jacket). In the Enst, it is recommended to thin the head to lessen the tendency to mildew. This is probably good advice, buc in the West it does not apply with the same force ; rather cut out the weaker branches, and prevent mildew by other methods. Thin, also, to facilitate fruit picking. Prune to encourage upright
922. Ribes Grossularia in bloom. Nat. size.

@23. Leaves of Ribes Grossularia.
Natural size.
growth, when cultivating varieties like Mountain Seedling and Honghton. The bush form, with several stems, is to be preferred to the single stem; plantations last longer in bush form, and are more productive.

Tillage and fertilizing. $-\ln$ the east and west coast climates, and in the lake region, clean culture may be given; but in the interior, mulching with strawy manure or barnyard litter is fetter than mulching with soil. Cool, rich soil constitutes an essential to suceess. Guod results have been obtained by the use of coal ashes as a mulch. This is, of course, only an amateur's method. and not feasitle on a commercial scale. The Gooseberry is grown with a fair degree of success between young orchard trees on the loose soils bordering the upper waters of the Mississippi and Missouri rivers. The practice is not to be commended from the standpoint of the welfare of the orchard. Gooseberries are also grown between grape rows-a practice hardly to be commented. Practice only shallow tillage.

Picking, marketing, and conserving.-Picking Gooseberries is an uncomfortable and generally uncongenial occupation. The best native varieties, as a rule, are those most completely armed with thorns. A little practice, however, will cnable a dexterous picker to secure the

924. Crown Bob, an English Gooseberry ( $\times$ 3/4 ).

925. Ir.dustry, one of the English Gooseberries. Nearly natural size.
berries without receiving much punishmeni in return. The berries cluster along the lower side of the bearing branch. They are best removed by elevating and steadying the branch with one hand while the other hand rapidly removes the berries, working from the base upwards. Picking costs between 1 and 2 cents per quart usually $11 / 2$ cents. English Gooseberries should be marketed either in quart boxes or in $\overline{5}$-pound Climax baskets.
American rarieties are nearly always picked green, and are usually called for in considerable quantities for stewing, jam making or for canning. These are shipped in 10-and 20 -pound baskets. Beach, ir Bull. 114, N. Y. Exp. Sta., gives the following reasons for marketing Guoseberries in the green condition: "(1) The hard, green fruit is not as easily injured in picking and packing as the pulpy ripe fruit, and it will stand transportation better. (2) The fruit that is allowed to ripen on the bushes is exposed longer to attacks of sunscald and mildew, and should long-continued rains follow a period of drought, the ripening fruit is liable to crack and spoil. (3) The ripening of fruit is an exhanstive process, from which the tree is partly relieved when the fruit is marketed green. (4) The proceeds from the green fruit usually compare favorably with the proceeds from the ripe fruit, although the large English varieties sometimes bring the highest prices of the season."

Gooseberries are rery palatable if canned just before reaching maturity. Sugar should be used in the proportion of one-third to one-ha!f pound to each quart of berries. When treated in this way, Gooseberry pie may be enjoyed at any time during winter. Gooseberry jam is indulged in to a consiterable extent by residents of Iowa, Nebraska, Minnesota and Dakota. Wild berries are gathered and largely used for the purpose, their aromatic acidity giving a spiciness to the finished prod-
 in bloom ( $\times 2 /$ ).
thoides. Natural size.
uct which is notably santing in that made from cultivated types.
Types and varieties. - Practically, there are two types of Gooseberries in cultivation.

1. The European (Ribes Grossularia, Figs. 922, 923), characterized by stocky, upright growth, light-colored spines, thick, glossy lvs. and large, variously colored ir. The plants are less hardy than our natives or their hybrids, are affected by our hot summer suns, and are very susceptible to fungous troubles. prominent among which is millew. The New York Experiment Station recommends the following varieties : Crown Bob (Fig. 924 ) ; red, large, round, of good quality. Industry (Fig. 925), Lancashire Lad; fr. dark red, nearly round; plant prolific, healthy. Prince Harry; one of the largest, green, good quality.
2. Americans, and hybrids between European and American species, usually classed with Americans (Figs. 926. 927, 928) : lvs. thinner thar in $R$. Grossularia; leafstalks hairy, spines borne singly, fr. small, reddish green, shading off to purple. Pale Red may he coasidered a good type of the species. Varieties: Champion

3. An American Gooseberry $(\times 1 / 2)$-Ribes oxyacanthoides.
partakes largely of European characteristics. Downing is the most widely planted of all Gooseberries in America (Fig. 929) ; fruit medium size, oval, green; plant upright, vigorous, healthy゙, productive. Houghton, an old favorite; fr. small, round. dark red, mood quality. Pearl; almost identical with Downing, of which it is a seedling. Josselyn; fr. large, red, oral; plant vigorous and prolific. Another promising native type is $R$. Cynosbati, represented by the Mathews. of lowa origin.

Propagation. -This is effected in three principal ways. (1) Cuttings: The Gooseberry does not "strike" very readily from cuttings. Native varicties root more freely than English types. The cuttings may be taken in the fall, as soon as the wood is ripened. They sloould be 7 to 9 in. long. They may be set in the ground at once, or tied in bundles and buried in the ground, or stored in a cold cellar over winter. The cellar must be coldalmost down to freezing point. Fall-set cuttiuss should be planted obliquely, so that the heaving of the ground will not throw them out. Set enttings in nursery row 3 feet apart and give clean culture. (9) Layers: Propagation by layering is the common nursery practice. For this purpose, plants $\overline{5}$ or 6 years old are uscd. They should be vigorous and healthy. They should be cut back severely in the antumn or early spring. This encourages a dense, hushy growth. The layering is done by plowing a furrow against the row on cach side and forcing the branches down by throwing soil directly on top of the bushes. In moist regions a comparatively small amount of covering is necessary. In dryish regions 5 or 6 inches of soil is necessary. In the fall the soil is removed and the rooted luanches separated from the parent bush, learing buds for the production of shoots the following season: or, the entire plant may be taken up and divided. (3) Root-cuttings: Native Gooseberries may also be propagated by cuttings of the roots. The plants are taken up in the fall with all roots possible. The latter are cut into 2 - or 3 -inch lengths and

929. Downing Gooseberry.
packed in boxes of earth, which are stored in a cold cellar. In spring the pieces of roots are planted in nursery rows, covered with " inches of soil. English varieties are not readily propagated by this method. When singlestem plants are desired, they should be grown from enttings. In order to discourage sprouting tendencies the buds above the roots should be removed-disbulded. Layer plants are best for producing the bush form of plant used almost exclusively in America.

Diseases. - The Gooseberry, as a rule, is affected seriously by only two plant parasites, mildew and leaf-spot. The former attacks the English varieties, while the latter is the chief fungous enemy of Anierican varicties.
Mildew (spherothect Mors-lur): This is the bugbear of English varieties in America. It has tone more to disconrage the cultivation of this type than anything else. This fungus attacks shoots, foliage aml fruit. It covers the affected part with a gray, frost-like coating. This turns to a dirty brown laterion. It is a surfacegrowing parasite, and the web-like covering may bo peeled from the fruit in its early stages. The ends of the shoots and younger leaves are attacked first, causing the bush to take on a stunted appearance. Remedies formildew: (1) Sanitary: circulation of air secured by a favorable site, good drainage and proper training. (2) Fungicides: (a) Potassium sulphide, liver of sulphur 1 oz. to 2 gals. Water. Spray 4 or 5 times, ut intervals of 6 or 8 days, beginning with the unfolding of the leares. (b) Bordeaux mixture may be used with good results for the first two applications. It stains the fruit when applied after the fruit is half-grown. (c) Dilute copper sulphate. 1 oz. to 15 gals. water, may be used throughout the season.

Leaf-spot (Septoria Ribis): This disease attacks the leares only. It produces numerous small brown, irregularly shaped spots or patches on the lys. This spotting causes a premature dropping of the lvs., often before the fruit is fully developed. Remedy: Spray carly in the season, and again after harvesting the fruit, with Bordeanx mixture.

Injurious Insects. - (1) The inported Currant worm: The larva of a saw-fly attacks the foliage soon after fruit sets. The attack is first made on the lower leaves. From this point the worms work upward on the bush, stripping the leaves in their line of march. The worms are exceedingly voracious, and will defoliato a bush in 2 or 3 days. The mature insect is a saw-fly, which deposits its eggs on the under side of the leaf. Usually two broods occur during the season. Treatment: Spray with arsenical poison early. Bordeanx mixture and Paris green may be used in combination for the early spray. Fow the later sprays, fresh powdered hellebore, at ${ }^{\text {ll }}$ te of 1 lb . to 50 gals. of water, is effective. Thr wer should not wait for the insect to make its pearance, but should ward off danger as soon as the fis appear by spaying with Bordeaux misture and Paris green, which will adhere to the foliag: and be on the spot when needed. Other injurions insects are the Gooseberry fruit worm (Epochre ('andensis), which burrows in the green fruit, causing it to drop. Remedy: Destroy infested berries.
2. Currant borer (Psenocerus supernotatus): The larva of a moth. Eggs are laid near the tip of the cane, down the center of which the larra tumels. Infested canes are readily detected. They should be cut out and burned. San José scale and four-lined leaf-bug are sometimes injurious. When a plantation is infested by the former it should be thoroughly treated with whale oil soap mixture in winter, diluted kerosene on sunshiny days in spring, or, in had cases of infestation. it will probably be wisest to root up and destroy the bushes. Kerosene emulsion is used against the four-lined bug with success.

John Craig.
GOOSEBERRY, BARBADOES. See Pereskia.
GOOSEF00T. Vernacular for Chenopolium.

GORDONIA (after James Gordon, an English nurseryman; died 17̈80). Ternstremidce⿻日. Ornamental trees and shrubs with alternate, simple, rather large, deciduous or persistent lvs., axillary, showy white Hs. and a woody capsule. Only $G$. pubescens is hardy north to Mass., while the others are cultivated only in subtropical regions. They all hare very handsome shining foliage, and produce their large white fls. even on rather small plants. They grow best in a somewhat moist, peaty or sandy soil. Prop. by seeds, layers or cuttings from half-ripened wood under glass. About 15 species in the S. Atlantic states and subtrop. and trop. Asia. Fls. solitary and axillary toward the end of the branches; sepals and petals 5 , rarely more; stamens numerous: capsule 5 -cellerl, dehiscent with 2 or many usually winged seeds in each cell.
P. J. Berckmans writes that a large tree in the Bartram garden, near Philadelphia, was long supposer? to be the only living specimen of $C$. mubescens. All other specimens in eultivation are believed to have been propagated from the Bartram tree, which has lately died. All efforts since $\mathbf{1 7 9 0}$ to rediscover this tree in the South have failed.

## A. Foliage deciluous.

pubóscens. L’Hérit. (G. .1 lhamilet. Sarg̣.). Shrub or tree, to 30 tit.: lves obovate-oblong, narrowed into a short petiole, sparingly serrate, bright grewn and shining above, wlabrous, turning searlet in fall, 5-6 in. long: tis. short-pedicelled, pure white, about 3 in. across; petals rommdish obovate, with crenulate margin, eoneave: capsule slobular. Sept., Oct. Georgia, but not found arain since 1790. S.S. 1:29. (i.W. F. 47. Mn. 6:201. Gng. 7:167. M.D.G. $1899: 2 \mathrm{~J}$. -One of the few trees that tlower in autumn.

## As. Foliage evergreen.

Lasiánthus, Ellis. Lobloldy Bay. Tree, to 60 ft , usually shrubly in cult.: lis. obovate-lanceolate, narrowed into a short petiole, crenately dentate, dark green and shining above, 4-6 in. long: fls. long-pedicelled, white, $\because-21 / 2 \mathrm{in}$. across; petals oblong-oborate; stamens short: eapsule orate. July, Aug. Va. to Fla. and Miss. S.S. 1:2I. B.M. 668.
an5mala, Spreng. Large shrub: lrs. oblanceolate, narrowed into a rery short petiole, entire or serrate, dark green above, 3-fin. long: fls, almost sessile, creamy white, 2-3 in. across; petals roundish obovate. Nor. S. China. B.M. 4019 (as Polysporit erillaris). B.M. 2047 and B.R. $4: 349$ (as Cemellin axilluris).
G. Javánica, Rolliss. See Sehima Noronhre.

Alfred Rehder.

## GORSE. Llex Europiens.

GOSSYPIUM (name nsed by Pline, probably from the Arabic). Mralucere. CotT N (which see). Probably not more than a dozen original species, although more than 100 have been described. The species which have produced the cultivated Cotton are now much confased. Two or three species are in the trade for ornamental purposes: G. Davidsonii, Kellogg, from Lower California. : wooly plant with handsome vellow but rather small ths. (l in. lons), and small cordate, mostly entire Irs. G. Sturtii, F. Muell. A shrub of several feet, more or less marked with black dots: lys. broadly ovate, entire: fls. large, purple, with a dark center.
L. II. B.

GOUANIA (Antoine Gonan, 1733-1S21, professor of botany at Montpelier, Francel, Mhtmmicece. This genus includes the "Chawstick" of Jomaica, a rapid-growing, shrubly vine, with pretty heart-shaped los, grown sometimes for ornament in the extreme south. It is suitable for sereening unsightly object.. The stems are chawed in the West Indies. Tooth hrushes are made from the frayed ends and tooth-powder from the pulverized wool. The genns has about 30 speeies of shrubs, sometimes tall elimbers, tendril-hearing: branches long and slender: les. alternated, petiolate, penninerved. entire or dentate: fls. in clusters. arranged along axillary and terminal, elongated pednncles; disk 5-lobed; style 3-fid: capsule with 3 indehiscent berries.

Domingensis, Linn. Lvs. usually 11⁄2-2 in. long, elliptical, glabrate, with blunt, distant serratures; veins tapering towards the margin : capsule winged, emarginate. West Indies.

## GOUMI. See E'Tragnis.

GOURD. In England, a gereric name for species of Cucurbita (which see). In America the term is used to designate those cueurbitous fruits which are hardshelled, and are used for ornament or for the making of domestic utensils. The Gourd of history is probably Lagenaria. In the northern United States, the small, hard-shelled forms of C'ucurbita Pepo (rar. ofiferu) are commonly understood when the word Gourd is used. The Gourds in the Amer. trade are referable to their species as follows:
Anaconda, Lagenaria vulgaris.
Apple-shaped, Cucurbita Pepo.
Bicolor, Cucurbita Pepo.
Bonnet, Luffa.
Bottle-shaped, Lagenaria culgaris.
Calabash, Lagenaria culgaris. Coloquinte, Cucurbita Pepo. Dipper, Legeneria culgaris.
Dipsaceons, Cucumis dipsnceus.
Dish-cloth, Luffa.
Egg. Egm-shape, Cucurbite Pepo.
Gooseherry, Cucumis Anguria.
Hedgehog, Cucumis dipsaceus. Hercules' Club, Lagenaria culgaris.
Maté Goard, small form of Lagenaria vulguris.
Mock Orange, Cucurbita
Pepo.
Onion-shaped, Cucurbita Pepo.
Orange, Cucurlita Pepo.
Ostrich Ege, Cucumis dip. sacens.
Pear*haped, Cucurbita Pepo (Fig. 597).
Powder Horn, Lagenaria rulparis.
Riag, Luffa.
Serpent or Snake (not Suake Cucumber, which is a Cueamis). Lagenariu vulguris anl T'richusanthes.
Sponge, Luffa.
Spoon, Letgruaria nulgaris.
Sugar'Trough, Lagenaria vulguris.
Tashkent. Cucurbita Pepo.
Turk's Turban, Cucurbita Pepo.
Veretable Sponge, Luffa.
Wax gourd, Benincasa cerifera.

GRAFTAGE comprises the process and operation of inserting a part of one plant into another, with the intention that the part shall grow on the foster root, together with all the questions which arise in relation to the practice. It is a comprehensive or generic term, whereas grafting is a specific term designating merely the operation. The term Graftage (analogue of the French greffage) was proposed by the present writer in 1887.

Grafting is one of the oldest of the arts of plant-craft. It is probable that the real art of grafting hats held more or less as a professional or class secret in the ancient world, for the writers seem to have only the raguest notion of its possibilities and limitations. Vergil writes (Preston's translation):

But thou shalt !end
Grafts of rude arbute unto the walnut tree.
Shalt hid the unfruitful pla ne sound apples bear,
Chestnurs the beech, the as, blow white with the pear, And, under the elm, the sow on acorns fare.
It seems to have been a popilar misconception that any kind of plant will grow on ar other. Pliny asserts thit the art of grafting was tauytht to man by nature. Birds swallow seeds, and these sseds, falling in "xome eleft in the bark of a tree," germinate and make plants. "Hence it is that we see the cherry growing upon the willuw, the plane upon the le rel, the laurel upon the eherry and fruits of varions tints and hues all springing from the same tree at once." This, of course, is not grafting at all, but the implanting of seeds in earthfilled chinks and cracks, in which the plants find a congenial foothold and soil. But the ancients have left us abundant testimony that genuine graftine was employed with success. Pliny describes a cleft-graft. He gives sereral precantions: the stock must be "that of a tree suitable for the purpose," and the graft must be "taken from one that is proper for grafting: the incision or eleft must not be made in a knot; the graft must be from a tree "that is a good bearer, anl from a young shont;" the gratt must not be sharpened or pointed "while the wind is blowing;" "a graft should not be used that is tou fall of sap, no, be Hercules! no more than one that is dry and parched;" "it is a point most
religlously observed, to insert the graft during the moon's increase."
The accompanying cut (Fig. 930) reproduced exact size from Robert Sharrock's "History of the Propagation and Improvement of Vegetables," $16 i=$. shows various kinds of grafting in vogue orer two centuries ago. Following is the literal explanation of the plate :

930. Sharrock's illustration of the modes of Grafting. 1572.

## The Exemplification of the Operations by the Figure.

a. Denotes the ordinary entting of the bark for inoculation $b b$. The sides of the bark lifted up for the putting in of the shiela.
$c$. The shield taken off with the bud, which lies under the stak of the leat elit off.
n. The shield put into the stock to be bound up
d. The bark cut out in an oblong square, according to another usual way of inoculation.
g. The shield ent out for the fitting th
$n$. The sane shield put into the stork
A variation of the formentioned why. by cutting off the luper part of the ololique square, und binding the ower bart down upon the shiehd.
o. The shiedd so put in to be lonnud up.
e. Another variation lyy siting the bark, that the bond and leaf may stand forth at e, and the bark slit be bonnd down upen the shielil.
h. A eross cat for inseulation.
$i$. The same cross ent lifted np, in this tigure somewhat too big.
$k$. The shiell ent off to be put therein.
p. The shield but in.
gor \%. The ent of ryon or stock for whip-grafting.
$r$. The cut of cyou and stimek for shoulder-grafting.
8. The cut of the ryons and slit of the stock for grafting in the cleft.
$x$. The stock set for ablactation or approach.
u. The eyon of the branch for the same operation
12. The toranch that is to be taken off liy cireumposition
3. The brameh that lears up the mold to the disharked place.
4. The branch of a earmation to be lad.
5. The joynt where the slit begins.
6. The next joynt whare the slit is pronped noen, with a piece of a carnation leaf put in.
Herein are seen the germs of all the grafting practices of the present day, together with some practices of layering. Sharrock treated the whole sulject of graftins under the head of "Insitions," and here he minutely deweribes the cleft-graft, and speaks of it as "the common way of grafting.". The practice which we new know as inarehing or grafting by approach, he signiticantly calls "Ablactation" (that is, suckling or weaning). Now that so much is said about the proper and careful selection of cions, it is interesting to read sharrock's advice on this subject : "food baring trees are made from Cyons of the like fruitfulness. * * Cyons are hest chosen from the fairest. strongest shits, not from under shoots or suckers, which will be long ere they bear fruit, which is contrary to the intention of gratting." But we have seen that Iliny gave similar advice before the Christian era, -which is only another illustration of the fact that most of our current notions have their roots deep in the past.
The chief othice of grafting is to perpetuate a variety. It is employed in those cases in which plants do not bear seeds, or in which the seeds do not come true or are difficult to germinate, or when the phants do not propagate well by cuttings or layers, It is also employed to increase the ease and speed of multiplying plants. A third office is to produce some radical change in the nature of the cion, as rendering it more dwarf, more fruitful, or otherwise changing its habit. A fourth general office of grafting is to adapt plants to adverse soils or climates. An example is the very general use of the peach root in the southern states upon which to work the plam, as the peach thrives bettor than the plum in sandy soils. The practice in Russia of working the apple on ronts of the Siberian crab is an example of an effort to make a plant better able to withstand a very sesere climate.
In common practice. the effect of the stock on the cion is rather more a meehan cal or phrisical onc than physiolorical or chemical. The influcnces are very largely those which are associated with greater or less growth. As a rule, each part of the combined jlant-the stock and cionmaintains its individuality. There are certain cases, how"ver, in which the cion seems to partake of the nature of the stock ; and others in which the stock par takes of the nature of the cion. There are recorled instances of a distinct chance in the flavor of frut when the cion is put upon stock which bears fruit of very different character. There are some varieties of apples and pears Which, when worked upon a seedling root. will tend to change the habit of growth of that root. Examples are Northern Siy and Whitney apples, which, when grafted on a root of unknown parentage, tend to make that root grow very

931. Stick of buds. ( $\times 1 / 3$.)
deep in the soil. All these instances seem to be special cases, or exceptions to the general rule that each part maintains its individuality. Keasons for this change of nature in these cases hare not been determined, and in most cases such results are not to be predicted. The most marked effect of stoek on the cion is a dwarfing influence. Dwartlng may be expected whenever the stock is of a smaller stature than the cion. The most familiar example is the dwarf pear, made by working the pear on quince stock. Supplying a plant with a slow-growing root is only the begiming of the making of a dwarf. The plant must be kept dwarf by subsequent pruning and other care. It is significant that there is comparatively little demand for large-growing forms of woody plants, whereas there is a great demand for dwarf forms.

Extended experiments on plants which are not commonly grafted have thrown considerable light on the possible mutual intluences of cion mitstock. The researches of Daniel (whose latest contribution comprises nearly all of vol. 8 of Ann. Sci. Nat. Ser, 8 , Botany, 1893 ) show that the stock may have a specilic induence on the cion, and that the resulting characters may be hereditary in seedlings. These experiments, as also those of Vöchting, have thrown much light on the physiology of grafting and the variation induced by it, but they will not modify the practices of horticulturists nor greatly change our ideas respecting the results to be obtained from accustomed operations. Experionce has

932. Shield-buding $(\times 1 / 2)$.

933. The bud set in the matrix $(\times 1 / 2)$.

934. The bud tied.
long since determined what general and practical results are to be expected from grafting.

The limits within which grafting can succeed are to be determined only by experiment. These limits are often within the species, and usually within the genus, but there are instances in which plants of distinct genera intergraft with success, as in some of the cacti. But generic and graftage limits are not comparable: genera are only arbitrary divisions proposed for purposes of classification, and intersrafting. like intercrossing, has no necessary relation to these conceptions. In general, the closer the affinity of cion and stock, the better the union. When stock of the same species cannot be secured. it is allowable to choose another species. Thus it has been impossible to secure Japanese plum stocks upon which to grow the rarieties of Japanese plums, and peach, Marianna, myrobalan and domestica plum stocks have been used. In some cases another species grows more readily from seed, is cheaper, is less liable to fungous injury in the nursery, or has some other practical advantage. Thus. most domestica plums (Prmus domestica) in the North are worked on the myrobalan ( $P$. cerasifera) ; most sweet and sour cherries
grafting, particularly in the Old World. Cases of poor unions and the difliculties of sprouting from the root or stock are cited as proofs that graftage is injurious and devitalizing. But these are instances of poor graftage. They show what should not be done. Properly done, on plants of proper affinity, graftage is not devitalizing. It is essential to moderu horticulture. There are disadvantages, to be sure, but the advantages overbalance. There are disadvantages in wearing boots. There is no use in arguing against things which are indispensable.
The ways or fashions of grafting are legion. There are as many ways as there are ways of whittling. The operator may fashion the union of the stock and the cion to suit himself, if only he apply cambium to
 Cleft-grafting cambium, make a close joint, and properly protect the work. Thus, Thouin in his "Monographie des Greffes," 1821 , describes 119 kinds of grafting. All kinds of grafting may be classitied into three groups :

1. Bud-grafting or budding. In the old days called inoculation.
2. Ciongrafting, or what is now thought of as grafting proper.
3. Grafting by approach, sometimes called inarching.

A word may be needed about the terminology of graftage. As already explained, grafting is merely the operation of inserting a part of one plant into another; but it is ordinarily restricted to grafting by means of short twigs or cions, and budding is used to designate the insertion of single buds which are severed from the branch on which they grew. Stock is the plant or part on which the grafting is done. Cion is the part inserted into the stock, although it is usually restricted to cuttings of twigs, and does not include detached buds. In many writings the word is spelled scion, but the other is shorter and etymologically more correet. When the writer found it necessary to use the word in print, he chose the shorter form, although it is not commended by the dictionaries. It has been said that cion is an anatomical term. It may be; but it was originally a horticultural term. The early horticnltural writings used cion and cyon. Scion is later, and has nothing to commend it except usage ; but the usage is not uniform. The word graft is sometimes used in the sense of cion, but it would better be used for the completed thing, - the new plant or part made by the joining of cion and stock.

Brading. - The operation of budding consists of inserting a single detached bud underneath the bark of the stock. It is employed only in stocks of small diameter, and preferably in those not more than one year old. The operation may be performed whenever the bark will peel and whenever mature buds may be graft obtained. The bark will peel in early spring and again in late summer or early fall, and the operation of budding in the open ground is therefore performed at those times. In the spring the buds are secured from twigs of the previous season's growth. At the second budding season, in late summer or early fall, the buds are secured from growing twigs of the season. At that time of the year the buds will be sufficiently developed to be easily recognized and handled. Budding is much employed in nurseries. Peaches. eherries, plums, and most stone fruits, are habitually budded rather than ciongrafted. In the East apples and pears are usually budded in the nursery; but in the West apples at least are usually root-grafted. It is practicable to insert buds in the tops of young trees, rather than cions, for the purpose of
changing the tree into a different variety. Sometimes the buds are inserted in limbs which are two and three years old; but it is usually preferable, if the tree is of some age, to cut back the tree somewhat heavily the previous season or the previous spring, in order to get a growth of suckers into which the buds may be set. Third-rate stocks are sometimes set in nursery rows and budded the following July in western nurseries.
The cutting from which the buds are taken is known to budders as a stick (Fig. 931). In early spring budding, this stick is the last year's growth of the variety which it is desired to propagate. Later in the season the stick is the twig which is grown during that season. Not all the buds on the stick are strong enough or good enough for budding. The budder will usually discard the weak ones at the top and at the bottom, unless he is very much pressed for buds, as may be the case with new or rare varicties. If the stick is taken late in the season the leaves will be on; but these are quickly cut off to prevent too much evaporation from the cutting. About one-fourth of an inch of the leaf-stulk is left to serve as a handle to the bud.
The ordinary operation of budding is that which is shown in the illustrations. It is known as shield-budding. from the shape of the removed bud. With a thinbladed, sharp knife, the operator slices off the bud by placing his thumb beneath the bud and making a deft and quick stroke of the blade. Just under the bud he cuts a little into the wood. Some budders afterward remore this bit of wood; but this is not essentinl. If this wood is somewhat hard and dry, or if it carries some pith with it, it may scrve to dry out the bud or to prevent intimate contact with the cambium of the stock. In ordinary operations this truncheon of wood is not removed. Most budders cut all the buds on a stick before t?.e: insert any of them; but they are allowed to bang to the stick by their upper or lower ends, being snipped off by ine knife as fast as they are needed (Fig. 931).

The stock is first prepared by removing all the leares and twigs from the area which is to be budded. In the case of nursery stock, it is customary for a boy to strip the lower leaves of the stock a day or so in advance of

939. Cleft-grafting of an old tree.
the budding. If the stripping is done three or four days or a week before the budding, it will sometimes cause the bark to set and, therefore, interfere with the operation. Nursery trees are usually budded as near the ground as the operator can work-not more than 2 or 3 inches above the surface. In most cases, the budder prefers to
set the bud on the north side of the stock in order that it may be shaded from the hot sum.
A T-shaped incision, just through the bark, is made on the stock (Fig. 932). The crosswise incision is usually made first. As the operator takes his knife from the last incision which be makes, he gives it a deft turn to right and left and loosens the thaps of the lark, so that the bud can easily be inserted. The buid is now taken from the stick and shoved into the matrix underneath the bark until it is entircly within the cleft (Fig. 933). A boy follows and ties the bud, making 4 or 5 deft turns and holding the strand by covering the lower end underneath one of the turns (Fig. 934). No wax or other eovering is used. Any soft strand maty be used for this purpose. It was the dil custom to use basswood bark, which was taken in the spring from the inner layers of the bark of the basswood tree. This materin was then macerated in water and afterwards pounded to make it soft. larn is also used. At the present time raftia is universally employed. This is the stripping of an oriental palm, and it can be bought in the market at about 20 cents per pound, and at that price is cheaper than home-made materials; it is also better. It is eustomary to lay it on the ground or in a damp place over night in order to soften it and to allow the operator to flatten out the strands. This raflia is eut in Bark-grafting. the length to suit before the tying is begun, and the bunch of strands is then held underneath the belt or carricel in a box. For budding, the operator prefers a small, thin-hladed knife, with a rounded or thumb-shaped cutting surface (Fig. 935).
When budding is performed late in the season, the bud does not throw out a shoot until the following spring. It merely grows fast or "sticks" to the stock. Two or three weeks after the setting of the bud, the bandage is cut so that it wiil not restrict the swelling of the stock. If the stock grows very rapidly, it may be necessary to cut the bandage before that time. Nothing more is done with the tree until the following spring, at Which time the whole tree is cut off abont one inch above the hud. This one bud now throws out shoots and makes a very heary growth, being impelled by the strong root. During this first scason of growth a peach tree will attain the height of four to six feet, and be ready for market in the fall. If the bud is set carly in the spring it will throw out a shoot the same season; but ordinarily it would not make the growth in one season that the bud loes in the other case. Spring budding in the open air is rarely employed in nursery practice. It is sometimes used in the top-budding of established plants. In all budding practices, it is important to keep down the suckers from the stock.
In the South a peach tree may be large enough in Tune, if the seeds are planted in February or March. to be hudded. The ind will grow the same year, and by fall will make a salable tree. This operation of budding in early summer on stocks which grow that year is known as June-hndding. As a rule, Jume-hudded trees are smaller than fall-buded trees: but they can be obtained one year sooner.
There are many other kiuds of budling. Some of these will be found in American writings. None of these other styles of budding, however, is of commer. cial importance in this country.

Grafting proper is the operation of inserting a twig or a woody cion into a stock. The kinds of grafting are very many. Few are described here. They may be chassitied in respect to the place or position of the cion on the stock: root-grafting, or the insertion of the cion in the root of the stock; cromn-grafting, or the insertion of the cion at the crown (surface of the ground): stemgrafting, or the insertion of the cion in any part of the main stem or trunk: top-grafting, or the insertion of the cion in the top or branches of the plant. Grafting may again be classified in respect to the maturity of the cion: dormant wood grafting: and softwood or herba-
ceous grafting, in which the cion is taken from green or growing wood.
It is customary to classify grafting in respect to the way in which the union is made. There are three general types in common use in this country: cleft-grafting, whip-grafting, veneer-grafting.

Cleft-grafting consists in splitting the stock and inserting a wedge-shape clon into the cleft. It is employed only in rather large stocks, preferably in those which are an inch or more Indiameter. The stock is cut oft, and it is split wlth a knife made for the purpose. The cleft is then held open by a wedge and the cions are inserted in the shide of the cleft in such position that the cambiums of the stock and cion are in contact (Fig. 936). The whole surface is then securely waxed in order to prevent evaporation and to protect the wounds from the sun (Fig. 937). Cleft-grafting is performed in early spring. The cions are taken some time previously from the last year's shoots. They are stored in the cellar or other cool place in order that they may be perfectly dormant. It is customary to cut them of three buds' length; but if the shoot is very long-jointed and if the variety is new or rare, and the wood therefore scarce, they may be made of one or two buds. The wedge-shaped part should he somewhat thicker on the outside in order that it may be clasped tightly in the eleft (Fig. 938). It is customary to have one bud near the top of the wedge. Although this hud is corered with wax, it is the most likely to grow, since it is nearest the source of food supply and is dess injured by external conditions. It pushes through the wax. It is customary to insert two cions in all stocks, even though only one branch is desired. By inserting two cions, the chances of success aredoubled.and the wounds heal better if a twig grows on each side. After a year or two, one of the cions may lie cut off if desired.
There are many kinds of grafting. wax, but the one which is most serviceable for applying with the hands in the open air is made by melting together one pound (hy weight) of ren. dered tallow, two parts of beeswax and

943. Tree grown from a long-cion root-graft.
four parts of resin. The melted liquid is poured into a pail or tub of water, when it immediately hardens. It is then pulled until it is light-colored and develops a grain.

It is then put away for future use, and will keep indefnitely. When used, the warmth of the hands will cause it to soften. The hands should be greased to prevent it from sticking.

Cleft-grafting is the methol usually employed in the top-grafting of fruit trees, as apples, pears, plums and cherries. Old peach trees are rarely changed over to a new variety. If they are, budding is employed, as already suggested: the llmbs are headed back so that new

944. Grafting knife ( $\times 1 / 2$ ).
wood is secured in which the buds may be set. It is important, in all top-working of fruit trees, to keep down the suckers which spring up around the cion, and which sometimes completely choke it. In changing over the top of a fruit tree, all the leading branches should be grafted (Fig. 9:9). It is well to stand at some distance from the tree and make a mental picture of how the tree will look when the new top is secured: the grafts should be set in approximately a radius from the center of the tree. It is rare that the stoek should be larger than two inches in diameter where the cions are set. On some of the main branches it will be necessary to graft side branches lower down in order to fill the top and to afford footholds to pickers and pruners. It will require from three to four vears to change over the tree to a new variety. Each yeur a little more of the original top is removed, and the cions take more aud more of the space.
Bark-grafting (Fig. 940) is a most excellent method of grafting fairly large limbs, since it does not injure the stock so much as the cleft-graft. The cions are cut thin and inserted between the bark and wood. The bark is securely bound to hold it tight, and the entire surface is waxed, as in cleft-grafting. This method is called crown-grafting by the French and English.

U\% ip -!rafting is employed in the nursery and on very small stocks. It is not used in top-grafting except now and then on small limbs. The pictures sufficiently illustrate how the work is done. The cion and stock should be of approximately equal size. Each is cut off in a slanting direction, and a split or tongue is made near the middle. The same shape is given to cion and stock (Figs. 941, 9t-). The object of the tongue is to hold the parts together securely; it also presents more contact. The cion is then bound to the stock, preferably by means of maxed cord. If the graft is above ground. the wounds should be thoroughly waxed over the string. If the graft is below ground, the tie will be all that is necessary: the moist earth packed around the wound will prevent eraporation and protect it.
The chief use of the whipgraft is in root-grafting, which is employed chiefly

945. Veneer-grafting. on apples and mostly at the West. In the East, other things being equal, budded npple trees are preferable to root-grafted trees. In the West, however, it is necessary to have apple trees on roots of known hardiness. The seedling stocks are not of known hardiness, even though the seeds have come from the hardiest varieties. It is therefore customary to use cions 6 to 12 in . long, grafted onto pieces of roots $21 / 4-4 \mathrm{in}$. long (Fig. 942). The graft is set so deep that only the top bud of the cion projects above the surface. The piece of root acts as a nurse, and roots may start from the cion itself (Fig. 943). When the tree is transferred to
the orchard, the original root may be cut off in case it is not very vigorous; although this is not done if the union seems to he good and the foster roots are strong. This root-gratinge is done in winter (Dec. and Jan. preferred); the grafts are stored in clean sawdust, sand or moss in a cool cellar, and are set in uursery rows in the open early in the spring, after the manner of grape cuttings.

The waxed string, with which the whip-grafts are tied, may be made by dropping a ball of yarn into the melted grafting wax which is spoken of above. In tive minutes the wax will have penctrated the ball, but the straud can readily be unwound. The best material for this purpose is No. 18 knitting cotton. This is strong enongh to hold the worl together, and yet weak enough so that it may be broken in the hands without cutting the fingers. It will ordinarily decay during the year, and thereby not interfere with the growth of the tree. If the grafting is done in a room at a living temperature, the


## 946. Veneer-grafting.

waxed string should be soft enough to stick to the stock without being tied. Four or five turns are made around the vuion. Waxed Manila paper. cut in narrow strips, is also much used; also single strand cotton "chain" ( $r$ warp-thread, either waxed or not waxed.
Any sharp knife with a handle large enough to be grasped readily is useful for whip-grafting. The blade should be thin, and tho steel of best quality. The handle shouldalso be strong. Fig. at shows a common form of grafting knife. Good shoe-knives may he used.

Veneer-grefting. - This style of grafting, which is considerally used under glass with fancy and ormamental plants. consists in simply champering the surfaces of cion and stock and applying the one to the other (Fig. 945). The cion is bomm to the stock ly ratlia or uther material. If the graft is in the open the womats are thoroughly waxed ; but in the 'ouse they may he covered merely with moss. This style of union is used with herbaceous plants, as well ns on hard woot. Sumetimes the stock is severed at the point of union, as in Fig. 945 ; but in other cases it is not serered nor headed back until the cion has taken hold (Fig. 946). In the latter case, the stock is not injured in case the graft does not grow.

Herbaceous grafliug. - Pelargoniums, chrysanthemums and other soft-wooded greenhouse plants are
sometimes grafted for the novelty of having more than one variety growing on the same root. Probably most herbaceous plants can be grafted readily, with the exception of the endogens, which do not lend themselves to the operation, although there are instances in which grafting has heen made successful on them. order to succeed with an herbaceons cion, it is necessary that the room be rather close and moist in order that evanoration may not be very rapid. One should entearor to secure the general conditions which obtain in a good propagating house. The temperature should he kept rather below the normal for that species until union has taken place. It is usually best to cover the union with moss or some other material in ora... to protect the wound and to check evaporation. Best results are secured when the cion is firm in texture, as also in the case of herbaceous cuttings. The kind of graft is of less importance, although it is customary to use the reneer-graft cions, since there is less injury to the stock and the outer surfaces are easily applied to each other. The cion ordinarily consists of one or two joints, and if the leaves are large, they are cut in two, as in the making of softwood cuttings.

Intorching. - In those cases in which union takes place with mucls diflinulty, it is possible to eifect the conjunction by allowing the cion to grow fast to the stock before the cion is severed from its own roots. The plant which it is desired to have grow on the stock is bent over to the stork, the surfaces of the two are exposed so that the cambiums may he pressid clos together, and the two are then bound until union take ${ }^{-}$ place. In some casos a tongue is made in both the cion and the stock, much as in whip-grafting, so that the surface of contaci is greater and the parts are held together more securely. When the cion las become thoroughly established on the stork. the cion is severed from its own root and the top of the stock is cut off. This inarching or grafting by approach is also ustal in the greenhouse when it is desired to transcer the whole top or the whole branch of ore plant to another. The illustration (Fig. 947) shows such a case. Inarching is s.ldom employed in this country in a commereial way.
lnarching is sometimes employed to unite two branches into one for the purpose of making a specimen fruit grow larger. If, for example, a twig of an apple tree is inarcherl into a limb just back of a fruit. the extra food supply may cause that fruit to grow larer. and a finer specimen may be obtained. This use of the graft is employed only for the purpose of sceuring extra fine specimens for exhibition or other purposes.

Bridge-grofting. - Wounds or girdles may be bridged by cions, as in Fig. 948. Trim the edges of the girdle to the fresh, firm tissue. insert cions which are whittled wedgeshope at each emd, draw bandages around tlat eunk so as to hold the free edges of the bark and the ends of the cions, and pour melted was over the work. This operation is perfor ed in spring, with dormant cions. Prevent the buds from throwing out shoots.

948. Bridgegraftiosk.

If the cions are placed close together, they will soon unite along their sides and make a continuous covering of the wound.
Literutare.-For further discussion of the whole subject of grafting, the reader is referred to current works on fruit-rrowing ; also to the two American special books on the sulbect-Fuller's "Propagation of Plants" and Bailey's "Nursery-Fook." In Engli:sh work, "Baltet's "Budding and Grafting" is standard. It is an Eng lish version of "L'Art de Greffer."
L. H. B.

GRAM, or CHICR PEA. Cicer arietinum.
GRAMMANGIS (Greek, grammu; perhaps referring to the markings of the Hs.). Orchidiceer, tribe Vindeep Species abont 4, of Madagascar and Java. Pseudobulbs short and thick, with foliage-leaves only at their summit, hence not enclosed in the leaf-sheaths: fl.-clusters from the base, many-fld., pendulous: Hs, not spurred middie sepal strongly concave, lateral sepals somewhat sac-shaped at base, free, spreading ; petals ascending, somewhat different in form and co'or: lip 3-lobed, with erect lateral lobes and recurved - :ق, $\quad$ column slender, winged. Nearest Cymb: ......................... in haring the foliage-leaves only . $\quad$ e. © the pre. hulb, and the rostrllumucrescent-sn" 6. the
dium it is triangular). From Grammato

- m see), Grammangis differs in the attacht
ich len masses and in the position of its fohase leaics Best cultivated in baskets lung near the glass, where the light is most intense. The plants can also be grown successfully in pots placed near the glass, or fasten d to blocks, but in the latter case they must be given more water.
Ellisii, Reichb. f. (Grammatophy̆llum Éllisii, Lindl.). Pseudobulbs $i-11 \mathrm{in}$. long, each bearing $\overline{5}-6$ lvs.: lus. $1 / 2-2 \mathrm{ft}$. loug: sepals yellow, elegantly marked with dark transverse lines; petals and lip pale pink, the latter with a strong mid-nerve. Summer. Madagascar. B.M. 5179.
G. Míttoni, B. \& H. (Cymbilinm Hútoni, Hook. f.). Pseudobulls of a single internode, $3-\overline{5} \mathrm{in}$. long, elongated, obovoid green: lvs. in pairs, 6 - 8 in. long, $2-91 / 2$ in, wide, dark green, coria feolns: raceme abont 10 -1ld., dro - ing: sepals olecate, re curved, light brown outside, stre . at transversely inside with chorolate "olor, lip greenish, with chocolate stripes. June. Javib. B.M. 56it. T. H. Кearney, JR.

GRAMMANTHES (Greek, letter-flower: the netals of the full-colored varieties with a darker marklike a letter $V$, whence also the name of the synonymous genus : "ou anthes). C'rassulacer. This genus inchudes a small, half-hardy, annual, succulent plant, with thick, fleshy lvs. and yellow ths., which grows about 6 in. high and is used for edgings, haskets and pots. All the 9 specific naines are now referred to one, $G$.gentianoides. Beside the type, 4 wotanical varieties were recognized in Flora Capensis 2:331 (18t1-2). Calyx bell-shaped, . mi. 5 -fld. : corolla tube cs long as the calys limb $\overline{5}-6-10 m$. carpels 5-6, many-ovuled, with awl-s. .ned styles: scalcs minute, and evanescent: follicles many-seeded.
gentianoides, nc . Glabrous, somewhat glaucous: branches forking: stems rigid, filiform: lys. opposite, distant: fls. orange, yellow, or creamy white, and matised as above described, Cape. B.M. 4607 and 6401. F.: $5: \overline{5} \mathrm{l}$. The type (var. vera, Haw.) has lys ovateoblmg: limb of corolla ovate-oblong. a third longer than the stamens. Var. chloræflora, Haw., has lvs. oblong or linear: fls. a little larkor; limb of corolla ovatelanceolate, twice as long as the stamens.
IV. M.

GRAMMATOPHYLLUM (Greek, aramma, a line or streak, and phyllon, leaf: probably referring to the parallel leaf-veins). Orchidiceu, tribe l'ímicte. A small genus of perhaps 8 or 9 e , iphytic species, of which about half are weildetined, unhabiting the islands from Madagasear to the Philippines and New Guinea. The genus includes some of the largest and showiest of cultivated orchids. Roots numerous: stems or $\mathrm{p}^{\text {s. }}$ idobulhs many-leaved: lrs. lone, ribbon-shaped, ick, evergreen : racemes long-stalked, lonseiy mai 1. , springing from near the base of the pseudobul. is.
large, not obviously spurred; sepals and petals nearly equal, spreading; lip comparatively small, with margin entirely free, 3-lobed, with erect lateral lobes; column slender. Allied genera are Grammangis and Cymbidium, from both of which Grammatophyllum differs in having the pollen masses each borne upon an appendage of the stalk, while in the two related genera they are attached to a commor stalk without special appendages.
The few species in cultivation are such infrequent bloomers that the nowtring of a fine example is something of an erent. They are propagated from pieces of the pseudobulbs. The plants are best grown in goodsized and well-drained pots filled with peat, and need considerable water while actively growing. They should be allowed to rest occasionally. Season of bloom and further cultural details with each species.
T. H. Kearney, Jr.

Cultivate Grammatophyllums in shallow perforated pans three-fourths filled with broken potsherds. The solid part of the potting material should be of fern fiber packed very tight and thin. Place near the strongest sunlight, under lightly shaded glass. Keep a temperaturs of $70^{\circ}$ to $95^{\circ}$ in the growing season. Give plenty of water while growing. They need a long season of rest, without water, in a shaded house, in a temperature of $50^{\circ}$ to $55^{\circ}$.

Wh. Mathews.
A. Pseudobulbs very long, comparatively slender.
speciosum, Blume ( $G$. Stenderidinum, Hort.). Letter Plant. Pseudobulbs $6-10 \mathrm{ft}$. long, slender, hexnous: lvs. 2-ranked, 1-2 ft. long: flower clusters open, sometimes $\mathfrak{f} f \mathrm{ft}$. long from the base of the stalk: fls. numerons, 6 in . in diam., clear yellow, spotted with deep redpurple. Winter. Malayan region, notably Java. G.C. IH. 7:297; 14:15; 22:145, 147; 13:1. B.MI. 5157. - This magnificent plant, one of the very largest of its family, has been well-named the "Queen of Orchids." A huge individual growing on a tree in the open at the Botanical Garden of Buitenzorg, Java, has the following dimensions: diameter of whoie plant, 18 ft .: collar about the trunk of the tree formed by the closely interwoven roots i $1 / 2 \mathrm{ft}$. in diameter, $21 / 2 \mathrm{ft}$. thick, and over 3 ft . high: flower-clusters (appearing at the same time) $50-60$, each 2 ft . or more in lengtl and beariner $\boldsymbol{i} 0-100$ flowers. Aul it must be remembered that this hage plant is an epiphyte! Temperature, especially soil temperature, should be carefully regulated in growing this plant. Owing to the brighter light. it does better in American than in European hothouses.
A. Psendsbulbs comparatively short and thick, Teafy only at summit.
n. Fls. areenish or yellowish, spotted with broun.

Fenzliànum, Reichb. f. (G. Measuresìmum, Hort.). Les. t-6: il. clusters sometimes 15 at one time. each over 5 ft . long and containing over 60 fls : sepals and petals narrow, cream color to greenish yellow, tipped and spotted with brown and purple; lip streaked with purple. Apr. Island of Amboina. Philippine Islands(?). J.H. III. $99: 123$. ( $\mathrm{I}, \mathrm{M} .34: 384$. - The fls. are smaller and the spots fewer and smaller than in Rumphianum.
Rumphiànum, Miq̧. (C. Guilélmi II, Kriinzlin). Pseudobulbs 6 - 8 in . long, ovoid or fusiform: les. 1-2 ft. long: raceme aodding or hanging, $3-f t$. long from the base of the stalk: Hts, often $30-3.5,3 \mathrm{in}$. in diameter, green ontside, green blotched with brown-purple within; sepals and petals similar; lip purple-veined, downy. Molncca Islands, Borneo, New Gninea, and (?) the Philippines. B.M. 7507. - A large, sh ry spocies.

BB. Fls. brown, strecencel with green.
multiflorum, Lindl. Levs. 3-4: fl. clusters nearly 2 ft . long. Summer. Philippine Islands. P.M. 6:217.-This very desirable species has not yet found its way into American trade. It is easily grown, either in a pot filled with ar il-drained"eompost of he: ". soil and poisherds," or merely fastened to copper wire and hung from the roof.
G. Éllisii, Lindl. $=$ Grammangis Ellisii.-G. indeterminèle,


GRANADILL :onsult Passiflora.

GRAPE. The Grape is probably the oldest of domesticated fruits. It is probable that wine was made from it before the species was brought into cultivation. It seems to have been cultivated at the dawn of history. Its product was certainly no rarity in Noah's time.
ments finally failed because of the incursions of the black rot.

Of all countries, North America is richest in species of Vitis (see the article Vitis). These species range from ocean to ocean and from the British possessions to the tropies. The species which has keen most improved is Vitis Labrusca of the Atlantic slope, although it seems to possess less native merit than some of the southwestern species-types. Of this species are the Concord and Catawba types (Figs. 449-951). To some extent it has been hybridized with Vitis vinifera (as in Agarram, Lindley, Barry, and others of E. S. Rogers' varieties), and with native species. Already a number of the popular varieties represent such wide departures that th.ey cannot be referred positively to any species. Of these, Delaware and Isabeila are examples. The second most important species, in point of amelioration, is Vitis estivalis, from which several of the best wine Grapes have sprung (Fig. 952). The Post-oak Grape (Vitis Linsecomi, or V. (esticulis, var. Linsecomi) of the Sounuwest, is one of the most promising species, and already has given excellent results in hybridization. See Figs. 953, 954. V. rotundifolia of the South has siven the Scuppernong and a few less known forms. Beyond these species, there are none which have given varieties of great commercial importance, although considerable has been done in improving them. Some of the best of the wild species are practically untouched; there is only a comparatively small area of our great country which has yet developed large interests in Grape-growing: the Grape-types of a century hence, therefore, may be expected to be very unlike the present day varieties. For an extended sketch of American Grape history, see "Evolution of Our Native Fruits." The American Grape literature is voluminous. Fifty authors have written on the subject. Yet there is very little of this writing which catches the actual spirit of American Grapegrowing ; this fact, together with the intrinsic intricacy and diversity of the subject itself, makes it seem wise to devote considerable space to the Grape in this Cyelopedia.
While the native Grape was being ameliorated in the East, the Old World Iitis rinifer a was becoming es tablished on the Pacific slope. In fact, Vitis vinifera has there run wild. The phylloxera and mildew are not native there, and the climate better suits the species. The Pacifie coast viticulture, therefore, is of the Old World kind. Wine is the leading revenue of the Grape.

We now know that the phylloxera or rcci-louse can be eraded when the vinifera Grape is grafted on native or resistant stocks, and the mildew can be combated by fungieides. Of late years, therefore, new efforts have been made to grow the wine Grape in the eastern states, and in the southern latitudes some of these experiments promised well for a time. However, so great attention is required in order to produce a satisfactory product as to discourage the growing of vinifera varieties in the open in the East. Vinifera types will always be special Grapes in the East, adapted on! y to particular conditions, for it is not to be expected that they can compete with

The Grape of history is the Old World Vitis vinifera, the "wine-bearing Vitis," probably native to Asia. The paramount use of the Grape always has been the production of wine. A subsidiary value is the production of raisins; and another is the production of fruit for the dessert and for culinary uses. Great efforts were made to introduce the cultivation of the European Grape into the American colonies, but the efforts resulted in failure. It was not until the latter part of the present century that the chief causes of this failure became known : the depredations of the phylloxera and mildew, -and even then the causes were discovered largely because these enemies had made incursions into the rineyards of Europe. In the meantime, one or two of the native species of Vitis had been ameliorated, and American viticulture had become established on a unique and indigenous basis, and the fruits are grown to eat rather than to drink. So fully did the early American ventures follow European customs that the Grapes were usually planted on terraced slopes, as they are on the Rhine and about the continental lakes. Even to this day the terrace ridgen can be traced in seme of the slepes about Cincime ati, where Lorawirth and others cultirated the Grape fifty years and more ago. Those early esperi-

950. The Labrusca type of Grape, comprising most of the common American varieties.

the more easily grown and cosmopolitan native varieties Under glass, however, the vinifera varieties thrive; below a special discussion is given to this branch of the subject.

The greatest develonment of the natire Grape industry has taken place in New York and Ohio, hordering lakes and large streams. These areas are the lower Hudson river valley ; the region of the central-western New York lakes; the Lake Erie region of New York, Pennsylvania and Ohio. There are also important Grape interests in Ontario, Michigan, and other northern parts. There is considerable interest in Grape culture in the cooler parts of Georgia and Alabama, and there are enlarging areas in the country extending from the Ozark region southward. Nearly all the country, excepting the northernmost parts, raises Grapes, but in most cases the growing of them cannot be said to be extensive enough to be called an industry. Although the Grape sections of the North hug the water areas and the land, therefore, is often steep, all Grape growers prefer nearly level land. The Old World plantations are largely on very steep lands: such lands, by virtue of their warmth and drainage, are thought to give an extra quality of wine. These ideas were brought to this country, and many of our carly vineyards were planted on terraced slopes. But we grow Grapes for a different purpose from the Europeans. and land is cheap and labor is dear. Old World methods cannot be followed in the American commercial plantations.

The ideal bunch of Grapes is one which is of medium size for the rariety, compact, uniformly developed and ripened throughout, containing no small or diseased berries, and with the hlowm intact. A very dense or crowded eluster is not the most desirable, for all the berries cannot develop fully. and the clnster is not easily handled when the fruit is caten. Fig. 90; shows at cluster of good shape and compactness; Fig. 956 is too broad and irregular; Figs. 957 and 958 are rather too dense and compact.
The American Grape is essentially a dessert fruit. It is eaten from the hand. There are several manufactured
 products, but, with the exception of wine, they are Fex of minor importance. Americans are not a winedrinking people, and wine is a secondary output of the Grape in the eastern states, although there are many large wine-cellars in New York and Ohio, and the product is of excellent quality. Enfermented grape juice is a product which deservedly is growing in popularity. The lack of econdary domestic uses of the Grape is one reason for the very serious gluts in the markets. Howerer, one year with another, the protit on a good vineyard may be expected to exceed that on the staple farm crops.
The American book literature of the Grape is nearly as large as that of all the tree fruits combined. early - season Labruscas. but of poor quality ( $\times 3 / 4$ ).

Pruning and Training. - A Grape vine is pruned in order to reduce the amount of rood (that is, to thin or to limit the amount of fruit), and to keep the plant within manageable shape and bounds. A vine is trained

952. Horticultural product of Vitis æstivalis-Onderdenk. seedling of Herbemont ( $\times 5 / 8$ ).
in order to keep it off the ground, out of the may of the workmen, and to so arrange the fruit that it will be weli exposed to light and air. In order to understand the pruning of Grapes, the operator must fully grasp this principle: Fruit is borne on urool of the present season, which arises from wood of the previous seuson. To illustrate: A growing shoot, or cane of 1599, makes buds. In 1900 a shoot arises from each hud; and near the base of this shoot the Grapes are borne ( 1 to 4 clusters on each). This is shown in Fig. 959. The 1899 shoot is shown at the top. The 190C shoot bears 4 clusters of Grapes. While every bud on the 1899 shoot may produce shoots or canes in 1906 , onlv the strongest of these new shoots will hear fruit. The skilled Grape grower can tell by the looks of his cane (as he prunes it, in winter) which buds will give rise to the Grapeproducing wood the folloxing seatson. The larger and stronger huds usually give best results; but if the cane itself is very big and stout, or if it is very weak and slender, he does not expect good results from any of its buds. A hard, well-ripened cave the diameter of a man's little finger is the ideal size.

The second principle to bes mastered is this: A eine should berer only a"limited number of clusters,-say from 30 to 80 . A shoot bears ciusters near its hase: beyond these clusters the shoot grows into a loug, leafy cane. An averace of two clusters may be reckoned to a shoot. If the vine is strong enough to bear 60 clusters, 30 good buds must be left at the annual praning. How much a vine should be allowed to bear will ciepend on the rariety, distance apart of the vines, strength of the soil, age of the vine, system of pruning, and the ideals
of the grower. The Concord is one of the strongest and most productive of Grapes. Twelve to 15 lbs. is a fair crop for a mature vine; 20 lbs . is a heavy crop; ${ }^{2} \mathrm{~F}$ lbs. is a very heavy crop. An average cluster of Concord will weigh $1 / 1-1 / 3 \mathrm{lb}$. The vine may be expected to carry from 30 to 60 clusters; and the annual pruning will leave from 15 to 30 buds

Since the bearing wood springs from new canes, it follows that the fruit of the Grape is each year borne farther from the main trunk of the vine. Observe that the fruit of wild vines is borne besond reach when they climb over thickets and trees. It is a prime object of the Grape-grower to obviate this difficulty. The third prin. ciple in the pruning of Grape vines is this: The bearing uood should be kept near the original trank or head of the vine. When one cane is sending out fruit-bearing shoots, another shoot is taken out from near the main trunk or head to furnish fruit-bearing shoots for the
any time. These are usually weak and are remored, but now and then a strong one arises. Spur pruni $r$ is now rarely used except in Grapes grown on arbois or under glass, in which eases it is necessary to liave a long, permanent trunk. On arbors it is best to carry one arm or trunk from each root to the top of the framework. Each year the lateral canes are cut back to spurs of two or three buds. The pruning of glasshouse Grapes is discussed under Grapes under Glass.
The current systems of pruning renew to a head-or to the main trunk-each year. The trunk of the vine is carried up to the desired height-to one of the wires of the trellis-and one or more canes are taken out from its top each year. The object is to keep the bearing wood near the main trunk and to obviate the use of spurs. This type of pruning is illustrated in Fig. 961. This engraving shows the head of a vine seven years old, and on which two canes are allowed to remain after each annual pruning. The part extending from $b$ to $f$ and $d$ is the base of the bearing cane of 1892 . In the winter of $1892-3$, this cane is cut off at $l$, and the new cane, $e$, is left to make the bearing wood of 1893. Another cane sprung from $f$, but it was too weak to leave for fruiting. It was, therefore, cut away. The old stub, $b, f, d$, will be cut away a year hence, in the winter of 1893-4. In the meantime, a renewal cane will hare grown from the stubl $c$, which is left for that purpose,

953. Hybrid of Vitis Linsecomi and a Fox Grape derivative-Husmann ( $\times \frac{5}{8}$ ) away after the fruit is off. ' $\Gamma$ stantly renewed; and the new bearing wood the following ! There are some systems of Gr: back to the root every year or 1 called renewal systems; but e pruning must practice renewal in

An old system of renewal was Flg. $9 u^{\prime}$ illustrates this. The hor: manent $a \cdot m$ or branch. We will su 1890. In 1891 a shoot grew upwa three clusters of fruit. In the fall it two buds being left to supply the sho ing vear. This short branch is now et one shoot was wanted for the next ye were left in case one should be inju. branch grew from one of these buds: i the fall it was cut back to $b$. In 1893 a $s$ from one of the buds, $c$. Thiss the spure by year, becoming a forking, complicated, st After a few years it may become weak: the this, and if a new shoot should start from th near the base of the spur, he encouraces it a all of the old spur: thus he renews back ag: main vine. Shoots from adrentitious or secon are likely to spring from the main arm or the
veis cut
is con-
to give newals.
i renew
re been
Grape
ither.
spurs.
is a per-
strew in
ro or
, ack to $\pi$, he succeed pur. Only tro buds - 1892, a fruit: in ill grow tes vear branch. re: sees uin arm iuts off to the - buds
ar at
and the old cane, $b d$, will be cut off just beyond it, between $c$ and $f$. In this way, the bearing wood is kept close to the head of the rine. The wound a shows where an old stub was cut away this winter, 18923 , while $l$ shows where one was cut off the previous winter. A scar upon the back of the head, which does not show in the illustration, marks the spot where a stub was cut away two years ago, in the winter of 1890-1. This method of pruning can be $k \epsilon_{i}{ }^{\prime t}{ }^{\circ} \mathrm{p}$ almost indefinitely, and if care is exercised in : ping the stubs short, the head will not enlarge out of rovortion to the growth of the stock or trunk.
There are two common styles of training in use in the northern states, but each of them practices essentially the system of renewals which is described in the last paragraph. One sty le of training carries the trunk only to the lowest wirt of the trellis. The canes-usually 2 in number-are tied horizontally on the bottom wire, and the bearing shoots are tied, as they grow, to the two wires above (Fig. 962). This is an upright system. The other style carries the trunk to the top wire. The canes are tied on the top wire, and the bearing shoots hang. This is the drooping or Kniffin system. If the shoots run wut on the top wire by clinging to it by tendrils, they are torn loose, so that they will hang: this is a rery necessary practice. There is controversy as to the romparative merits of these systems, which proves that

955. Grein Golden. A good Grape cluster.

956. Eaton.
each has merit. It is probable that the upright system is better for the slender or shorter varicties, as Delaware, and also for those whose shoots stand erect, as Catawba. The Kniffin has distinct merit for strong-growing varieties, as Concord; it is also cheaper, since it reauires no summer tying. Grape-training is a rery special subject; it is diseussed at length, with many illustrations, in "The Pruning-Book."

One-or 2-year-old vines are planted either in the fall or early spring. At planting, the vine is cut back to 3 or 4 buds and the roots are well shortened. If all the buds start, the strongest one or two may be allowed to grow. The canes arising from thi. -.... should be staked and allowed to grow through the season: or in large plantations the first-year canes may be allowed to lie on the ground. The second year this cane should be cut back to the same number of eyes as the first year. After growth begins in the second spring, one of the strongest shoots should be allowed to remain. This cane may be grown to a single stake through the second summer. At the end of the second year the cane may be cut back to the bottom wire of the trellis, if upright training is to be employed. The cane may be strong enough at this time to be made the permanent trunk of the Kninin trainng, but in most cases the trunk is not carried to the top wire until the third year.

The main pruning is performed when the vine is dormant. The ideal time is Jannary and Felruary in the North, although the work is often begun in November if the area is large. Pruning in spring cavses the rine to bleed, but bleeding is not injurious. But late pruning interferes with tillage, and the buds are likely to be injured after they are swollen. Summer pruning is now practiced only to the extent of puiling out suckers and weak shoots, and eren this is not always done. Head-ing-in the rine in summer is likely to start side growths, which are useless and troubiesome.
Propagation. - The Grape grows readily from seeds

957. Moore Early.

958. Massasoit.
which may be kept over winter and germinated in the house early in the spring. They may be even planted in beds in the open, but the proportion of failures will
be greater. Seeds produce new varieties, and they are used only in an experimental way.

The commercial propagation of Grapes is done by means of hardwood cuttings. These cuttings are taken in the winter from the trimmings of vineyards. In all ordinary cases they are made of two or three buds' length, preferably three (Fig. 963). They are cut as soon as the canes are trimmed, tied in smmll bundles, and these bundles are then buried half their depth in damp sand in a cool cellar. By spring the cuttings will be nore or less callused. The cuttings are planted in the open on the approach of warm weather. A loose, loamy soil is selected, and it is well and deeply prepared. The cuttings are inserted until only the upper bud stands at the surface of the ground. These cutticgs are placed 6 to 8 inches apart in rows, and the rows are far enough apart to allow of horse cultivation. These cuttings may give plants large enough for sale the following fall; but it is usually preferred to let the plants grow two years before they are put upon the market. In such cases it is customary, in many of the best nurseries, to transplant at the end of the first season. When wood is scarce, the canes are sometimes cut

959. Fruit-bearing of the Grape.
to single eyes. In this case about an inch of rood is left on either side of the bud. Single-eve cuttings are nearly always started under glass, preferably on the greenhouse bench. If they are started in February, they will be large enough for transplanting in a well-prepared seed-bed very early in the spring. Green wood cuttings are sometimes used in the summer time with new and rare varieties, but thes are not in general favor. In California, rooted vines of one year are preferred; and in soil in which cuttings root readily, they are sometimes planted directly in the rinevard.

Tue Grape is easily grafted. Because of the flexible nature of the rine, howerer, it is customary to make the graft below the surface of the ground. An ordinary cleft-graft is the one which is usually employed. The whole vine is cut off 4 or 5 inches below the surface, and the graft is inserted in the sarae fashion as in apple or pear trees. The surface may then be waxed or covered with clay or other naterial, to keep the water ont of the cleft, although if the earth is firmly packed around the graft and no water stands, the union mar be perfectly satisfactory without any cover (Figs. 964-5). Vines of any age may be grafted. It is important th. ${ }^{*}$

## GRAPE

the cions be perfectly dormant. These cions are taken and stored in the same way as cuttings. The grafting should be done very early in the spring, before the sal starts. Grafting may also be done late in the spring, after all danger of bleeding is over : but, in that case, it is more diflicult to keep the cions dormant, and the growth is not likely to be so great during the first season. Vine yards which are composed of unprotitable varicties may bo changed to new varieties very readily by this means. Vinifera rarieties can also be grafted on our common phylloxera-resistant stoeks by the same method. Almost any method of grafting can be employed upon the Grape vine if the work is done beneath the surface.
Diseases. - The Grape is amenable to many insect and fungous attacks. The most serious difficulty is the phylloxera, which. however. is practically unknown as an injurions pest on the native Grapes. On the vinifera virieties it is exceedingly serious, and it is working great devastation in many of the vine: ards of the Old World and of the Pacitic coast. The most practicable means of dealing with this pest is to graft the vinifera vines on native or ecsistant roots.
The mildew and black rot are the most serious of the fungous entmies. The mildew ( 1 eronnspora viticola) is the more common form of rot in the North. In the South the black rot (Lurstadia Biducellii) is very serious. Both these diseases cause the berries to decay. They also attack the leares, particularly the mildew, causing the leares to fall and preventing the Grapes from maturing. It is the mildew which has worked such havoc in European vineyards. The mildew is most serious on thin-leared and smoothleared varieties, as the I)claware. It causes yellowish patches to appear on the leares, with frost-like colonies on the under sides. It canses the berries to decay with a gray and finally a brown rot, the berries usually remaining small and firm but not greatly wrinkled. The black rot causes the berries to become rery hard, dry and shriveled, and the epidermis is covered with minute pimples (Fig. 966). The treatment for both these diseases is the same-spraying with Bordeaux mixture. In regions in which the diseas as have not been very frevalent, it is usually sufficient to berin the spraying after the fruit has hegun to set, and to spray two or three times, as the case seems to require. When the diseases have lieen very prevalent, however, it is better to begin before the buds swell in the spring.


In infested vinemards. the foliage and diseased berries should be raked $r$ and burned in the fall.

The anthracnose or scab (Sphace!omu ampelinum) is a very serious fungous disease. It is most apparent on the fruit, where it makes a hard, scably patch. Its most serious work, however, oceurs on the stems of the

962. Upright system of Grape training.

At the winter proning, all the top will he cut away except two canes near the center: these two will be laid down in opposite directions on the bottom wire for the next season's fruiting.
have been named and described. Many foreign varieties have been introduced. Yet. in any region the number of useful commercial varieties is usually less than a dozen. Of the American Grapes (those aside from viniferas), the Concord is the eosmopolitan variety. Others of great prominence are Worden. Niagara, Catawha, Delaware. For the South, consult Munson's article, below. For the Pacific viniferas, consult W'ick son's accomnt, below. Following are notes on varieties by Ralph Bush, of the old firnt of Bush \& Sons. Bushberg, Mo. This firm was established shortly after the civil war by Isidor and Ralph Bush, father and son. In the early seventies tir firm became Bush \& Son \& Meissner, by the entering of G. E. Meissner. The recent death of the elder Bush and Meissner has left the firm in the hands of Ralph Bush \& Sons. It is this firm which publishes the Grape manual already mentioned. In that work and in Mitzky"s"Native Grape," great numbers of varieties are lesoribed. Mr. Bush's remarks on varieties of Grapes, made for this occasion, are as follows:
"The planting of vineyaris, both for market and amateur purposes, is on the increase. The inclination in planting tends more towards quality than to quantity; that is, from the many inquiries and orders. the main question seems to be the adaptation of the variety to the scil or the purpose. In former years the planter, without question, would order so many Concord. Hart ford. Ives, Elrira, fte, and in rare cases, one or two of a better variety. Now there is no demand whatever for Hartford, much less for Ives and Elyira, while the planting of even the Cunerord is on the deerease. The general tendency around the great lakes is still to plant the Catawha, and it certainly thrives very well. In many parts of Ohio, Indiana, Kentucky and Tennessee the Noah and Niagara are in great demand; as also the Delaware, Norton Virginia and Cynthiana for wine purposes. In the section south of the Ohio rirer, as also in the western statcs, such kinds as Moore Early, Moore Diamond, Brighton, Worden, Cottage, Niagora,
and many of the Rogers hybrids are now planted. In the soutkern states, from Texas to Georgia, the Niagara, Herbemont, Cunningham, as also Norton Virginia and Cynthiana, are most frequently wanted."
L. H. B.

Grapes in the North. - Seeking a proper location for Grapes in the northern states cast of the Rocky mountuins, one should make $n$ distinction between (irapes planted for commercial purposes and those planted for domestic use. If for the former, the climatic conditions must be so perfeet that a cropean be depended on ench season with the same certainty as the appearauce of the tax collector or the annual interest on the mortgage. If for the latter, the chances min be such as to give a yield of Grapes three years out of tive. which is better than no Grapes at all. Any section in which dent corn has aliheral season in which to mature is a practicable place for a household vineyard, provided the early ripening varicties are selected. For this "יurpose, for black or deep purple, may be gested Moore Early and Worden. During the past three years the Campbell is often favorably mentionfl. For white or pale green, the (ireen Mountain, sometimes called the Winchell, and for red the Brighton, are good varieties.

The best location for a commercial vincyard is along the shores of our lakes or large rivers. The adrantage of such locations is due almost entirely to protection from late and early frosts. I)uring the early development of the Grape imlustry, many loose illeas were prevalent that eertain spots within the different Grape zones had some special magic of sunshine, or temperature, or draught of air, or alcaemy of the soil, that gave such superior quality of fruit. The earlier vineyards at Hammondsport, N. Y., were planted upon sterp hillsides-so stecp that terraces were sometimes formed, which made culti$i^{+i}$ n and harvesting expensive. Such locations were p. ably considered superior to all others hecause some one had seen Girapes grown in similar locations along the Rhine. It was nlso said that the west hank of the lake was superior because the Grapes receiver the morning sun. Henry O. Feirchild, a pioncer and progressive vineyardist, in time proved the foolichness of the idea by planting a rinevard on the cast side of the lake, where the lay of the land made cultiration more easy and the Grapes received the afternoon sun. In later years, when the Grapes from either shore

964. Cleft-grafting the Grape. reached the market, no consumer could tell whether the fruit reecived the morning or afternoon sum. The first vinevards planted in the Lake Eric belt were at Brocton, Chautuaqua county. The industry clung about that initial location niany years, for it was a popular belief that there was some special current of air passing
from the hills to the lake at that special point taat did not pass elsewhere. Now there are more than 25, 000 aeres of vineyard planted between Silver Creek and Harbor Creek, and the yield of that area for the season of 1899 was about 7,000 car loads. The only marked diference
of Grape product in all that area is the difference between the ronscientions and the careless packer. If there was ever any reason for such an idea as the quality of fruit being influenced by location, it whs probably due to the inexperience of some ontside planter, which led him to put up too much or too little wood, and imperfect ripening or the fruit was the result. The conclusion was jumped at that the difference was due to a heaven-born blessing of location, instead of good judg-

ment in pruning. It is the common thing for mriters to lay much stress on "southern slopes" and "sunny slopes," but in most cases they have said so because some one has said so before them, and not because they swoke from experience. Scarcely an are of the 25,000 planted to vineyards in the Chautauqua belt but faces the north, and is in full view of Lake Erie, as the seats of a theater face the stage.

There is one feature of location upon which much stress must be laid, even in the lake zones, and that is opportunity for frost drainage. It is a well attested fact that the cold air settles in the bottom of a valley; therefore, the bottom of a ravine is usually colder in frosty nights than the hillside. It often happens that a late spring oa early fall frost will injure Grapes in the lower location, and not on the slopes. This is a factor that planters of all fruit should observe.

There has been as much nonsense written about the best soils for Grapes as there has been about best location. One has a vineyard planted on the gravel of what was once the beach of Lake Erie, when it had a higher level than at present. His neighbor across the road has a vineyard planted on a very stiff clay, which was once the bottom of the lake. One gets juist as large yields and just as fine quality of fruit as the other. The only difference is that the former, being on the gravel. is able to work his soil earlier than the latter; his fruit ripens earlier, so that he is able to borrow all of the neighbor's harvesting tools. Another neighbor has a vineyard extending across both clay and gravel, and he would not sell one acre cheaper than another. In commercial planting. the period of protection from frosts should be broad enough so that the difference in ripening from gravel or clay should not make a differ, ice of success or failure. For domestic planting, the gravel would be preferable. The soils of which most serious yarning should be given are those containing a very liberal supply of availahle nitrogen. All experienced fruit-growers know of the impossibility of early fiuting of trees or vines which are naking a rampant growth. There is no fruit so easily intexicated by nitrogen as the Grape. Lorg-jointed canes are always to be aroided. Besides heing less fruitful, a riotous growth of Grape vine is far more liable to mildew and to other diseases than those of sober growth. One of the surprises in the
development of the Chautauqua Grape zone is that some of the so-called poor land has given vineynrds as productive as any,-land that previously had been given over to sheep pasture, briers and mulleins. This land was poor in nitrogen, but no doubt had a fair supply of arailable potash and phosphoric acid, which Grapes most require.
In preparing land for vineyard planting, it is necessary to lay great stress on the importance of first removing nll trees, stumps and large rocks, for when the trellis is put up all tillage of the soil will be in a straight line and one way. A favorite way of disposing of boulders is to


Showing how it should he pruned.

bury them about twenty inches deeper than one thinks necessary, for they have a vesatious way of overcoming the power of gravitation and ereeping out of their graves. The real reason for this apparent freak is the compacting of the soil in later years. If any open ditches should eross the line of the Girape rows, they should be supplied with tile and the ditch tilled so as to make long "bouts" possible. Short rows and frequent turning should be avoided as much as possible. Turning at the end of a row is lost labor, and the time it occupies would enable a team to cultivate over a hundred feet straight ahead.

The rows in nearly all the commercial vineyards are 9 feet apart, and the vines are planted 8 feet apart in the row. This makes 605 plants per acre. If the land is sod, plow into narrow lands, so that the center of the dead-furrows are 9 feet apart, and plant in the bottom
of the dead-furrow When the plow is set to eut a furrow 8 to 9 inches deep, the dead-furrow will hare about the required depth for planting. If the ground is stubble, plow the whole fleld, and then lay out rows by striking ndonble-furrow. Much care shonla be exereised to have the rows perfectly straight and to plant the vinesstraight in the row. This has a prnctical use, besides appealing to the professional pride of all good farmers. If the plants are not straight in the row, the posts cannot be set straight; and if the posts are not straight the wires composing the trellis will bind on the posts which are out of line, and they cannot be easily tightened in spring.
No. 1 vines, of one season's growth from cuttings, are much to be preferred to so. 2 vines of the same period of growth. A young plant, stunted in growth either by constitutional reasons or accident, has a handicap that usually follows it all through life. For the same reason, avoid planting e-year-old plants, as often they are the second season's growth of what was a cull the year before. Cull plants and cull men are seldom worth the cost of reformation. Spring planting is universally followed in the North. It should be completed by the last of May. Some vineyards planted during the last half of Jume have developed into good production, but it was due to the grace of favorable weather and soil. Fig. 967 represents a fair No. 1 Grape vine. The few roots at $l \mathrm{c}$ should be trimmed, as well as the main borly of the roots shown by segment of circle ef. The pruning facilitntes planting, and the removed parts would make no root growth of value if retained. The stem of the vine can be cut back to two or three buds, as shown by a b. Six quarts of well pulverized fertile soil, well packed about the roots, will hold the plant in place and keep it moist until the furrow can be filled by plow ing, if on stubble, or by frequent harrowing and eulti vating if ous sorl. During the first season. all cultivation necessary for conservation of moisture should be giren. If no tilled crop is planted, this tillare ean be done by enltivating or harrowing crosswise alternately. But little hand-work in weeding will be required. W"hether some hoed crop be planted between the rows the first season is a question of profit for each vineyardist to decide. It adds something to the expense of cultivation. It is generally no detriment to the growth of the Grape vines. After the first season, the ground should not be planted to other crops.

The general appearance of an infant vineyard at or about the middle of the first season's growth is shown in Fig. 968. Lay great stress upon the importance of a rigorous and even growth during the first and second years. If such is not attained, many years will be required for the vines to recover, and sometimes they nover reach the standurd of a good vineyard. Even rines planted after the second year to fill vacancies require fonstant coddling to bring them up to the average. In the spring of the second year the shoots or canes of the previous season's growth should be ent back to three or four buds, and the canes should be thinned out according to the vigor of the vine-one cane for a feeble growth, and three or four for a decidedly vigorous growth. In all other respects, the second year's manarement should be a repetition of the first.

In the spring loeginning the third year will come the most considerable expense of the undertaking-that of putting up the trellis. There are many forms of training Grapes, and some of them so peculiar that special trellises must be constructed. There are three popular styles of Grape training in the commercial Grape tields of the North: Kniffin system, as practiced in the Hudson river valley; the Hish Renewal system, as practiced aloner Lakés Keuka. Canandaigua and Seneca; and the Chantauquat system, as practiced along the Lake Erie ralley. It is impossible to say which of the three is preferable. A man's preference usually depends on how he was brought up-like his polities and religion. In horticultural meetings. advocates of the rarious systems argue the merits with much partisan fervor. It is clear to me that the essential point to be attained in any srstem is to hang up the rines so that fruit ant foliage can obtain the greatest amount of air and sunshine, all of which ean be secured by several methods. The common form of trellis may be illustrated by a high

908. A vineyard in its first summer.
wire fence, as shown in Fig. 969 ; but the Kiniflin system omits the bottom wire.

The vineyardists of the Chantauqua Grape belt have developed a mode of pruning and training of Grapes which has many features pecnliar to that distriet. The trellis is made of two wires, of No. 9 or No. 10 gauge, and chestnut posts. The posts are frum 6 to 8 feet in length, and cost 1 eent per lineal foot at the railroad station. In later years, since experience has shown how important air and sunshine are in ripening the fruit, 8 -foot posts ure most commonly used. Grape posts shoukl be somewhat heavier than those commonly used for wire fence-from onf-third to one-half larger-and the heaviest should be sorted ont for the end posts, for these bear the strain of the wire. An experienced farmer need not be tohl that they should be sharpened with a true leal-pencil taper, excepting the crooked ones, which should be so beveled as to counteraet the erook in driving.
The usual distance apart for the posts in the row of Cirapes is one post to every three vines, or, in other words, 27 feet, and for ease in stretehing the wire, they should be in as straight a line as possible. The posts are driven, but a hole should first be made by an unusually large crowbar with a bulb near the lower end. After the posts are stuck into the holes, they are most conveniently driven by the operator standing in a wagon which is hauled throngh the row by a horse. A fair weight of manl is 12 pounds, and it requires a good man to swing one of that size all day. Iron mauls are com. monly used beeause they are the cheapest, but one with an iron shell filled with wood "brooms" or frays the top of the post less than the iron manl. Eighteen inches is a fair depth to drive the posts on most soils. If the proprietor delegates the driving to another man, he would better direct that 20 to 22 inches be the proper depth, for to the man swinging the maul the post seems deeper than it really is.
A vineyard should have a break or an alley at right angles to the rows as oftel as every 50 Grape vines. for the purpose of dumping Grape brush and shortening the trip when lualing fruit. If the vineyard is in fair thrift, longer rows will give so much brash as to be in. convenient in hauling out.

The end posts should not only be the largest of the lot, but should also be well braced. The most common mode is the "hypotenuse brace," consisting of a stiff rail or a $4 \times 4$ scantling 12 feet long, with one ent notehed into the post about midway between the two wires, and the other end resting on the groumd against a 2 -foot peg of about the same size as the end post.

The wires (two wires in the Chautauqua trellis)
should be strung on the windward side of the post; that is, on the side from whieh the prevailing winds come. This is very important when the wind is blowing at 30 to 40 miles an hour, and the vines have sails of many square fect of follage, and perhaps three and four tons of fruit per acre. The staples should be of the same gange of wire as that used in barbed wire fences, but about one-half inch longer, unless the Grape posts should be of hard wood, like locust ; then fence stuples will be long enough. The bottom trellis wire is usually placed from 28 to 32 inches from the ground. Owing to the arm system of pruning in the Chwutauqua Grape belt, the height of the lower trellis wire is permanent. The upper trellis wire is, in many instances, raised as the vineyard comes to maturity. The first year of fruiting it may not be more than ed inches above the lower wire, and year by year be raised to 30 und $3:$ inches. It is noi advisable to go more than 36 inches apart without putting in a middle or thirt wire. Each spring many of the posts will sag, and the upper wire will be slack, and many of the brares will be out of place. All of t. ase fanlts shonld be corrected just before tying up the cancs in spring.

A large part of the pruning is done in the winter months-some beginning in the fall soon after the crop is harvested. Two grades of labor can be employed in this operation-the skilled and the unskilled. The mau of skill, or the expert, goes ahead and hocks out. He stands in front of a vine of far more tangled brush than that seen in Fig. 962 , and, at a glance, tells by a judgment ripened by much observation, just how many buds are required to ballast and not over-ballast the vine for another year. As the expert stands iefore the vine making the estimate, he misht be likened to a man weiphing a ham with steelyards, pushing the weight bactward and forward, noteh by noteh, finding the point of balance. 'The expert, with his pruning shears, makes a dive here and a lunge there, a clip at the bottom and a snip at the top, and with a few more seemingly wild passes all wood is severed from the bearing vine, but the number of buds desired to give fruit another year are left. The unskilled help, who receives possibly a dollar a day less than the expert, follows the expert, cutting the tendrils and other parts of the vine that are attached to anything but the trellis. The next process is "stripping" the brush, and it is one involving brute force. raged clothes and leather mittens. If the laborer

969. Illustrating the bracing of the end post in a fence or trellis.
does not put on a ragged suit, he will be apt to have one before he is done with his job. There is a little knack even in doing this work to the best advantage. The dismembered vines still hang to the upper trellis and often cling with considerable tenacity, and a particular jerk or yank, more easily demonstrated than de-
scribed, is most effectual to land the brush on the ground between the rows.
The next operation is to haul the brush to the end of the row. Many tools have been devised for this purpose, some of them involving considerable expense. It is now the general practice to use a simple pole-one a little larger than would be used to bind a load of logs, and not so large as required in binding a load of hay. It may be a sapling about 4 inches at the butt and $21 / 2$ inches at the top, and 10 to 12 feet long. The small end is to be held in the right hand, and the butt end to be pushed along the ground. A horse is hitehed to this pole by a rope drawn through an inch hole about 4 feet from the butt or ground end. When starting at the end of the row, it stems that the straight pole wonld not gather any brush at all. It is a question of catehing the first wad, and all the rest of the brush will cling to it. At the end of the row the brush is hauled to a convenient pile, where it is to be burned, and is dumped by letting the end of the pole held in the hand revolse over towards the horse. If the pole hits the horse, the operator will see that there is not enough stretch of rope between the pole and whiffletree, and more must be provided.
Tying is done by women, boys and girls, and cheap men. The tying niaterials are wire, wool-twine, raftia, willow and carpet-rags. The horizontal arms, at the lower wire, are more or less permanent, and they are loosely confined to the wire, always by string or willow. The vertical canes, which are fastened to the top trellis, are now commonly tied with annealed wise of No. 18 gauge, and cut in lengths of 4 inches. The econony in using the wire is the despatch in tying, and the fact that the work can be done on cool days when light gloves are necessary. The use of wire has been strenuously opposed by people who have never used it. The objection has been that the fine wire would rhafe the cane so that the cane would break and fall from the trellis. Such instances oceur rarely, and when they do it is so late in the season that the tendrils of the vine are ample to hold it to the trellis. The cane should be tied to the windward side of the wire for the same reason that the wire was stapled on the windward side of the post. In using the wire tie, the operator stands on the opposite side of the trellis from the cane, and follows the movements as illustrated in Figs. 970-973. This operation puts on the wire with the fewest number of movements, binds the cane snug to the trellis, and makes a loop that falls from the trellis on the following season, when the cane is torn away. The tying wire

970. Tyirg with wire. The first movement.
should be fiboroughiy annealed, so that it can ve easily kent and give no springy reaction after being warked. This wire is also useful in tying thorny shrubs to a trellis when a mittened hand is necessary to ho! branches in place while the other hand makes th

To recommend varieties is a difficult and pen
matter. Frapes, like most other fruits, are influenced in character by difference of location. There are many more Concords sold than any other variety, yet by the fastidious Grape eater it is thought far inferior te many other varieties. However, as it is the sort the public most want, and is a good yielder, it is probably the most


## 971. The second movement.

profitable to plant. For the past few years many have wished that all their Concords were Niagara. for the reason that the yield of the latter has been good and the crop l,rought at least ten dollars per ton more when sold in bull:. Perhaps this condition is only temporary. The Catawba is of excellent Havor; it is latest to ripen and an excellent variety for storage. When placed in good cellars, and an even low temperature is maintained, but not low enough to freeze, this variety will keep in good shipping condition until the last of March and first of April. These are standard commereial varieties in New York and Ohio. Worden is excellent for a near-by market, but does not stand long journeys well.
Many fruits are better picked before fully ripe, of which the pear is a conspicuous example. Grapes have not that characteristic, for no maturing de relopment goes on after the fruit is harrested. As soon as the full ripening period has been reached, the clusters should be gathered by carefully cutting and placing in trays which hold from 25 to 35 pounds. The care in handling should almost equal that taken with eggs. After picking, the fruit should be placed in a fruit house built upon the principle of an ic - house, but so arranged as to give free access to the cooling night air, and to be closed each morning to protect from the heat of the day. By such means the temperature can in time be worked down to $40^{\circ}$, which cheeks excessive evaporation, thereby keeping the stems green and the fruit plump. This is the ideal method, but is far from being attained or even sought in many large commercial districts. The practice is far more closely observed in the Lake Keuka (N. Y.) and adjacent lake districts than in the Chautauqua district. In the former locality many Conc, rds are stored in this manner and shipped in fine condition during November and December, and Catawbas during the balance of tb winter. In the latter district the fruit is sent almost direct from the vine to the consumer. This directness means haste and carelessness that is much to the detriment of the Grapes when they reach the market.

From 1893 to 1899 the price of Grapes steadily declined, and with the decline came a casting about for means to economize in harvesting. One of the ways dereloped towards that end has been to require that the woman who packs should increase her daily ontput from 809 -pound baskets to 200 . The woman fulflled the requirements without working any harder in one case than the other. The increase is at the expense of quality of packing, which at first was at the expense of the consumer or shipper, but in the final outcome resulted in less demand for the Grapes. The public may be fooled part of the time, but sooner or later smart prac-
tices will come back to the point from which they started like a boomerang. Grapes designed for shipment are packed in climax baskets. The size prevailing in the Keuka district are "poneys,' having a gross weight of less than five pounds. In the Chautauqua district the 8 -pound is the almost unirersal size. The reason


## 972. The third movement.

for such distinct custoins is due to the demands of the markets to which the Grapes are shipped. Shipments of the Keuka section go to the Atlantic cities, and those from Chautauqua go to the west.
In the Lake Keuka district of western New York there are a number of wine cellars involving large capital, two or three of which make excellent champagne. This industry began at Hamnondsport in the sixties, and several varieties of Grapes were planted solely for wine purposes, but the quality of the fruit was not good for table use. In the Chantanqua district the wine industry has received little attention compared to that given in the Keuka district. There has been no opportunity for the blending of several juices, for the reason that the Concord is so nearly the universal rariety planted. But another industry-that of bottling Grape juice as it comes from the press-has lately been established, anil promises considerable derelopment.

The methods of marketing Grapes are of great variety. During the season of 1893 and 1894 there was formed in the Lake Keuka district and adjacent lakes a coöpera tive marketing association composed of producers. This association was incorporated and officered by its own members, and represented over three-fourths of the production of that district. The plan was to maintain prices more evenly and to secure a better equalization of supply and of markets. This association was abandoned after two years' trial. The failure was not due to excessive cost in selling nor want of integrity of the officers, but to inability "to pull together," and a desire of each producer to be independent, hoping to do a little better for himself than the association could do for him.

The Chautauqua district has had two periods of cö̈perative shipments, and each of longer duration than that of the Keuka field. The tirst was for the seasons of 1892, 1893 and 1894. The plan was resumed again in 1897, and continued through the seasons of 1898 and 1899. For the season of 1897 the association represented about 85 per cent of the acreage of the district beginning at Silve Creek, N. Y., and continuing to Harbor Creek, Pa., comp rising about 25,000 acres.
These associations, no doubt, serve a good purpose in giring a more even distribution of fruit in different markets. When there is no concert of action the market of a certain city may be ;oor! $y$ supplied to-day and an advance of prices follows, a state of affairs quickly known to all shippers, with a result that everyone, trying to benefit by such an advantage. Will consign to that market, making an aggregate far beyond the demand; and a sharp decline ${ }^{-F}$ prices will follow. A unisn represent-
ing a high percentage of acreage cerent such gluts, provided the over-supply or under-consumption is not such that all the availabie markets in the country are not glutted, a state of affitirs that is liable to happen at mid-harvest, when double the number of cars is forced on the market.
The total shipments from the Chautauqua district for seven seasons have been as follows:

|  | No. of Cars |
| :---: | :---: |
| 1893 | . 3.100 |
| 1894 | . 3,600 |
| 189.3 | . . 3.200 |
| 1896 | . . 4,0.0 |
| 1897 | 6,000 |
| 1898 |  |
| 1899 | . 7,000 |

A. B. Clothier, of Silver Creek, N. Y., gives the following as the expense of planting and developing an acre of Grapes:

S. S. Crissey, of Fredonia, N. Y. horticultural editor of the "Grape Belt," without goi into details, puts the total cost of an acre of vineyar it from $\$ 75$ to $\$ 80$, Which practically agrees with that of Mr. Clothier. These are men of experience and wide observation, and their estimates may be considered to be representative and reliable.
Mr. Clothier gives the following estimate for the cost of labor for an acre of Grapes in bearing, per season:
Cost of pruning, pulling brush, tapping posts, righting
braces, stretching wires, tying of vines, and cultira-
tion per acre........................................... $\$ 1200$
Cost of picking into crates, 4 tons cf Grapes..............
Cost of having to station and loading in car, 4 tons of

$\overline{\$ 2050}$
Mr. Crissey's estimate is a little higher, making cost under the same conditions to be $\$ 23$.

As to the yield of an acre of Grapes in the Chautauqua belt, the variation is great. A vineyardist who has any expectation of standing in line with progressive men


## 973. The tie complete.

should expect to have a record of 4 tons 0 : Concords per acre. This is more than the average, bit unless a man can exceed the arerage in any line, there is small chance for him to succeed.

As to prices, the variation during the past $s$ ?ren years has been greater than that of the yield. Grapes hare
been sold at less than $\$ 10$ per ton, and at more than $\$ 15$. When more than the latter, it is risky for the seller to be too confident of a much higher price for any great length of time; and if less than the former, the buyer would better secure his supply as soon as possible. An arerage price is, sas, $\$ 12.50$. This gives a gross income for a 4 -ton acre of Concords as $\$ 50$, and a net income from $\$ 27$ to $\$ 30$. Be it remembered that this is for Grapes in crates. The cost of packing 4 tons of Grapes in 8 -pound baskets, including baskets, would be from $\$ 28$ to $\$ 30$. The prices for Concords in crates or baskets vary so much that it may be advantageous to sell in either way. A man with a small vineyard and a large family would pack in baskets, when another who had to pay all his help or who found help scarce would sell by the ton in crates.

John W. Spencer.
Grapes in the South. - The region south of the 38th degree north latitude has in it more native species of Grapes than all the world besides. This alone would lead one to suppose the South naturally adapted to rineyard culture. Yet New York, Ohio and California up to the present far excel it in vineyard area, although only three or four species are natire in these states. The cause of this is that diligent experimenters and originators have produced tarieties of good marketable value adapted to those regions, from natives of those regions, or hybrids of natives with hardiest foreign kinds. In the case of California, the vinifera varieties are mostly grown because the climate and other conditions are so similar to those of the native region of the rinifera. But the South has chiefly planted the northern and foreign varieties which succeed but indifferently in most southern localities, and has neglected almost entirely its native varieties until quite recently. Now experimenters have shown that most excellent and very successfu! varieties of all colors and seasons can be and have be produced by selection and hybridization of some of the large, fine-fruited varieties.

While the foregoing predicts by actual existence in practical market vineyards in a number of localities in the South what is in store for the South as a whole, the present state of Grape culture in the South at large is a different affair. Irformation gathered from best sources throughout the South shows that Grape culture is a very small industry. It shows that the leading varieties caltivated in the northern secticas of the South are Catawba. Concord, Delaware, Early Victor, Elvira, Ires, Moore Early, Moore Diamond, Niagara, Nonton Virginia, Perkins, Worden, Wyoming. Facorable mention is made of America, Beacon, Brilliant, Campbell Early, Gold Coin, Green Mountain, Laussel, Ozark, Presly.
East of Texas and south of Tennessee, the following are chietly planted: Brighton, Champion, Concord, Delaware, Diana, Diamond, Elvira, Goethe, Hartford. Herbemont, Ives, Missouri Reisling, Moore Early, Niagara, Norton Virginia [Cynthiana]. Perkins, Worden. Of the Muscadine class for wine: Flowers, James, Misl, Scuppernong. Thomas. Farorable mention, of varieties testing. is made of Brilliant, Bertrand, Carman, Fern, Gole Coin, Jaeger, Laussel. Marguerite, Superb. In the southTestern section. West the 96th meridian, are chiefly plant:d the IIerbemeat, Jaequez [Black Spanish, Lenoir], Niagara and Golden Chasselas, Malaga and some other rinifera varieties near the gulf coast and in western Texas under irrigation. By several who have had them under trial for several years farorable mention is made of Bertrand. Brilliant, Cqrman, Fern, Jacger. Laussel, Marguerite, Muench, Ne a, Perry, as furnishing successful table and wine Grapes for this region.
For Georgia. Profescor !fugh N. Starnes gives me the iollowing notes: "Leading varieties in order named: Ires, Concord, Niagara, Delaware, Moore Early, Goethe, Lindles, and for wine Norton Virginia, Scuppernong and Thomas.

CGeneral distance $10 \times 10$; Delawares $8 \times 8$; Rotundifollas 30 ft . apart. Single stake spiral method of training chiefly used, and either sfur renewal or cane renewal prining employed, according to circumstances. Some gr wers employ trellises instead of single stakes, using either one or two wires and adopting the umbrella Kniffin or low wire arm spur Kniflin system of training. accorling to circumstances. See Bulletin No. 2s, Georgia Experiment Station.
"Very little wine is now made in this state, and that is nearly all claret from Norton Virginia, Ives or Concord. In southern Georgia a poor article of Scuppernong wine is made, but it is not adapted to trained palates-too foxy. Delaware and Goethe blended are sometimes used to make a very good Rhine wine, and when properly handled sometimes produce an excellent article. Goethe must, reinforced with 20 per cent of California brandy, makes a good pale sherry; yet it is difficult to sell wine here profitably. When it can be sold at all, prices range from 50 cts, to $\$ 2$ per gallon, according to the grade. Grape vinegar, while generally regarded as inferior to cider vinegar, will bring about 25 or 30 cts. at retail and 20 cts . wholesale, and at these figures is more profitable than wine.
"When sold fresh the Grapes are generally shipped in refrigerator cars in 10 -pound baskets to different northern points. Later shipments take a southerly direction to Atlantic and Gulf seaports. Sometimes the regulation 6- or 9 -carrier peach crates are used for shipping Grapes, bat are not as satisfactory as the 10 -pound separate baskets. Delawares are generally shipped in 5 pound baskets. Returns are uncertain. They vary from $11 / 2$ cts. per lb. to 5 cts., according to cireumstances. Sometimes as high as 10 cts . is realized on very early and very late shipments or with choice Grapes, but this is scldom. Distilleries pay three-fourths of 1 cent per pound delivered, or gather and pay $1 / 2$ cent per pound. If only 1 ton per acre of Grapes is the yield, the gross return (and also the net return) per acre would thus be from $\$ 10$ to $\$ 15$. This is more than cotton ordinarily nets. With two tons per acre of Grapes, which is not an enormous yield, the return would be $\$ 30$ per acre delivered at the still. To those who have no seruples in regard to so disposing of their crop, this is probably the most profitable method. There are local stills in almost every county.
"There is not much encouragement nor for Grape raising in Georgia, and rineyards are annually being destroyed by hundreds of acres. Some planting, howerer, is still going on in southern Georgia, in the "wire grass" country, where the industry is still found profitable by reason of the fact that the northern market may be entered ahead of competition, and also that insects and fungous pests hare not yet put in an appearance in that region." See Georgia.

Planting, Training, etc.-The vines of the true southern Girapes, such as Herbemont and the Post-oak Grape hybrids, are planted liv to 14 feetapart, in rows 9 ft . apart, while such northern varieties as are planted are set $\delta$ feet apart in row. The Muscadines, such as Scuppernong. are mostly grown upon arbors about 7 feet high and rarely or never pruned, although trained on trellis, as are other Grapes, and, pruned early in fall, after leaf-fall, succeed excellently. The culture is mostly with the plow, turning first away and then to the rows, hoeing the space along the row not reached by the plow. The trellis mostly used is the 3 -wire trellis; first wire at 18 to 24 inches from the ground, and the others successively 1 foot apart, above the first. The training is generally an indifferent attempt at the Kniffin system, and no system is generally carried out. Some pinch back the leading shoots once, few twice. Some use single posts and spur-prune. A ferr have mate the Munson canopy trough trellis of 3 wires, and report most farorably of it.

Fungicides are used successfully by some. Others plant only such as Ives, Norton Virginia, Moore Early, Perkins, and some other varieties not subject to rot and mildew, so as to avoid spraying. They also avoid, thereby, having Grapes of the finer qualities, and get only the lowest prices. From such mostly come the report that Grape culture with them is unprofitable. So it should be, as such Grapes in the market hare the effect to depress prices on all kinds of Grapes, as any grower knows. In the moister parts of the South, black rot, downy mildew and ripe Grape rot are rery prevalent, but, excepting the ripe rot, are readily overcome by the Bordeanx mixture spray properly applied.

Few growers in the South use fertilizers in their vineyards. Some use barnyard manure, but the more intelligent use cotton seed or cotton-seed meal in connection with ground bone, kainit and soluble phos phates.

Marketing and Profits. - The crop is mostly marketed fresh in the local or near-by markets, as the ordinary freight and express rates will not permit profitable returns on the varieties mostly grown. But it has been demonstrated that fine Grapes that will carry well can easily be grown in the South, and, when handled in best manner in neat baskets, are quite profitable.

There are a few established wineries in the South, which use Ires, Norton Virginia, Herbemont, LeNoir, and some of the Scuppernong and other Muscadine rarieties. The chief complaint of wine-growers is that legislation brought about by the prohibition movement is adrerse and often entirely prohibitive. In consequence, some hare bottled the juice fresh under some sterilizing process, but the people are not yet educated un to the use of this excellent, healthiti, nourishing beverage, yet the demand for it is growing, and may be largely increased by enterprising makers.

Reports collected from all parts of the South state the profits all the way from nothing up to $\$ 150$ per acre, sometimes higher, and it is clearly evident that the intelligence and enterprise of the planter is the chief element in controlling profits. Of course, loealities, soils and varieties play important parts, but an intelligent grower would not select poor locality, situation, soil and varieties to start with, just as he would not pursue poor methods in the conduct of the business. As an illustration, the writer knows persons who bring to the Denison [Tex.] market, a place of 20,000 population, Ives and Perkins Grapes in bushel baskets, getting, by hard work, about one cent a pound, while others bring in neat 8 pound baskets, carefully packed, Delaware, Brilliant, Diamond, Niagara, Ronimel and others of like good qualities, and get from 30 to 50 cents per basket the season through, with brisk sales and no grumbling.

It may be said, in conclusion, that the South promises everything to the wide-awake, intelligent Grape-grower, for its capabilities are unlimited in the production in quality and stason when no other section competes with it, and it has rast markets at home and in the great cities just north of it.
T. V. Menson.

Grapes on the Pacific Slope. - The Grape industries of California are established upon the success of the rinifera species. There are two wild species in the state, Vitis Culifornica and V. Arizonica, but by a popular error the term California Grape has been often used to indicate the Mission Grape, which was introduced from their earlier establishments in Lower California by the padres, who entered the territory now comprised in the state of Califormia in 1769 , to extend their missionary work among the aborigines. This Mission Grape has never been fully identified with any rariety now giown in Europe, and whether the padres brought it to America in the form of seeds or cuttings is not known. The difficulty in identifying it has led many to consider it a seedling. but it is just as reasonable to hold that it was, two hundred years ago, an esteemed variety which was displaced in the course of viticultural progress by better varieties, and its survival at the California Missions is due to its isolation from that progress. It was this Grape which was found in Califo-nia by the early American settlers, and very large areas of it were planted, but for the last thirty years it has decreased in favor rapidly, being displaced by many other varieties of superior value for various purposes. These varieties are almost whols: of the vinifera species. The native American varieties and their improved offispring thrive in California when given suitable situation and culture, but they do not meet any encoaraging market demand. A very few packages glut the San Franciseo market for their kind, while the vinifera table varieties are selling in large quantities. Only a few individuals give any consideration to American varieties for wine, and none of them are suited for raisins. The only attention given to the American species is in the use of some ef them as phylloxera-resistant roots, upon which to graft the vinifera varieties, as is done in France; and California experience is a close reproduction of French results in this circumrention of the insect. It seems procable, although sume districts are still free from inrasion, that in the end all our vinifera vineyards will be upon American roots.

Grape-growing upon a large scale began in California rery soon after the American occupation. In the fifties,
collections of the leading European varieties were introduced, and state aid was secured for the promotion of riticulture. The first raisins were shown in 1863 , and a considerable wine product was attained soon after, but the sale of it was attended by many disappointments, and discouragement ensued. In the later seventies the wine interest was revived by better demand for the product, and a new propaganda for extension on better lines and with more suitable methods and better varieties, was earnestly taken up. Again the state granted funds liberally, and the agitation resulted in vine planting and cellar construction in the valleys and foothills all over the state. The product increased more rapidly than the demand for it, and the quality of much of it was success-

974. The common short-pruning system used for the Vinifera Grape in California.
fully impeached. Losses and disappointments were again encountered, and the area of wine Grapes was largely reduced by abandonment, by the advancement of the phyllosera and by the inroads of a peculiar disease mhich has baffled effort to determine its cause, though thousands of acres have been swept away by it. Even the lessened wine product found most acute trade issues to meet, which were temporarily overcome by growers' coöperative effort until the constantly shrinking production met an adrancing demand, and profitable prices for wine Grapes were again secured. This fact has again stimulated interest in planting, even with the greater incestment required by resistant roots, and the century closes with a renewal of confidence which bids fair to again extend the wine industry of the state.
The raisin interest of the state did not attract wide attention until about $18 \overline{5}$, but it advanced with great rapidity until 1894 , when a product of 103 million pounds was reached and a decline of value below the cost of production ensued. As events have proved, this decline was largely due to lack of proper system in marketing, for a period of loss and depression has been followed by return to prices yielding a profit throurgi control of the marketing by a coüperative association of the growers. This experience came just in time to save the raisin interest from large sacritices, and points the way to future maintenance. The shipping of table Grapes from California to the markets of the eastern states has reached an aggregate of about a thousand car loads on several different years, and is one of the fixed features of overland fruit shipment. The area of Grapes in California in 1900 is about 140,000 acres: one-seventh table Grapes, two-sevenths raisin Grapes and four-sevenths wine Grapes, as nearly as can be estimated.
The Grape has a wider range of adaptation in California than any other single fruit. It endures all elevations to which commercial fruit-growing is carricd; it thrives in the most intense valley heat if amply supplied with water be irrigation. It aceert; all fertile soils, but is most profitable upoa 'ight, $\lrcorner \mathrm{p}$, warm loams, both in the valleys and on the hillsides. All rarieties which will bear well with such treatment are grown with low stumps and very short pruning, which diseards nearly all of the previous scason's growth. Only a few varieties are given longer canes and the support of a wire or a high stake.

The training of the vinifera Grape is rery unlike that of the native Grapes. The stocks are kept to low, strong stumps, and the bearing shoots are not trained or are tied to stakes. Trellises are not used. Fig. 97t shows 3 epochs in the common style of pruning, the right-hand figure representing the mature vine.
Though hundrets of varieties of vinifera have been introduced from Europe and Asia during the last half century, only a few have survived cultural and commercial tests and are now planted. For raisins the prevailing rarieties are White Muscat of Alexandria, and the Muscatel Gorto Blanco and the Malaga, with the Sultana and Thompson Seedless for seedless raisins: for table Grapes, in addition to the foregoing, the Flame Tokay, Emperor, Cornichon, Black Malvoise, Rose of Peru, Black Hamburg, Chasselas varieties and Verdal are chiefty grown, though, of course, a much larger list prevails for local uses. In wine Grapes there is naturally a larger list to meet local requirments of soil and climate and to produce the various kinds of wine.
Acceptable rarieties for dry wines are:
Red (Claret and Burgumdy).-Zinfandel. Carignan. Mataro Monrastel, Petile Sirah. Petit Bouschet, Alicante Bouschet, Grenache, Valdepenas, Cabernet Sauriguon. St. Macaire, Be clan. Mondense. Blue Elbling. Refoseo, and Barbera.
White (Sauterne. Hock. ete.) -Semillon, Sauviguon Blane and Vert, Johannisburg Riesling, Franken Riesling. Traminer, Chasselas Dore ( intedel), Chanche Gris, Burger, Folle Blanche, Feher Szagos, Green Hungarian, Palomino, White Pinot, Thompson seedless.

Varieties for sweet wines are:
Ports.-Mission, Malroisie, Grenache, Trousseau,
Sherry and Mateira.-Mission. Palomino, West White Prolitic, Verdelho, FeherSzagos. Sultana. Thompson Seedless.

Angelica, Museat, ete.-Mnseat of Alexadria, Muscatella, Furnint (Tokay wine)

In regions of the Pacific coast north of California, vinifera varieties are less widely grown, and locations meeting their requirements mast be selected with much care and circumspection. The number of varieties is much smaller than in California, as there is no prodnet of wine or raisins. hut of table Grapes only, and they are almost wholly early ripening kinds, which can mature in the shorter growing season at the North. On the other hand, the American varieties are widely grown, the Concord. Delaware, Moore Diamond, Moore Farly, Niteara and Worden being most favorably reported.
E. J. Пichson.

Grapes Under Glass, - Under glass, the European rarieties alone are used. This spocies, l"itis vinifera, is the vine of the ancients, and is indigenous to the more salubrious parts of eastern Asia and southern Europe. It is referred to in the earliest mythological writings of ancient Egypt and thence on mumberless occasions, notably in the Bible and the Now Testament. The story of the spies from the promised land, with its generous illustration, has excited the admiration and perhaps questioned the credulity of many of us. It is only fair, howerer, to state that the size of the chuster there represented has been amply borne out in recent years. The type litis rinifera, if there ever was a type, has become so merged and moditied by cultivation in differ ent climates and countries that it is dificult to trace it at the present day. Over 2,000 varieties have been described, covering the widest range in size, color, texture and flavor, genera appearance and quality.

For disparity of size, we have the diminutive Black Corinth, from which the Zante currants are prepared, and the giant Gros Colman, now extensively grown for commereial purposes under glass in England; and for con trast in color we have the bee viful Rose Chasselas and the pink and white Frontimans and Muscats, with their superb qualities and flavors, growing by the side of the blue-black Alicante of thiek skin and coarser texture, but valuable for its late-keeping quality ; and worth more than all the others put together, we have the Black Hamburg, combining all the good qualities, and easy of eulture.

Probably in no branch of horticulture is the garleners' skill more generously rewardei than in Grapegrowing under glass. In England it has been ar essential feature of horticultural work for more than a century, $r$ sulting in fruit of a finer quality and flavor than that grown in the open air, and very often enormons
clusters, weighing from 20 to 30 pounds. Started there as a matter of luxury, it has become of late years a matter of protit, and rineries of large extent have been erected for commercial purposes. Probably this work has been retarded here by the introduction of the many very excellent varieties of our native Grapes, so easily groirn in the open air and so constantly improved by hybridizing with the European, and undoubtedly this work will yet result in a much closer approach to the standard of European quality.

The essential difference between American and European kinds is that in the American the pulp separates from the skin, is usually tough and more or less acid, so that it is disagreeable to remove the seeds, while in the European t'e pulp adheres to the skin, is tender and sweet throughout, and the seeds are easily removed. European Grapes, when well grown, are raluable and agreeable for the use of invalids, and, uncioubtedly, in the judgment of the majority of people, surpass in quality any ther fruit grown.

The subject of Grape cultivation under glass may be divided under several heads, as follows: The Houses; The Border: The Vines; The Fruit.
The Houses.-These are mainly of two forms, spanroof and lean-to, with oceasional modifications between. Unless one has ample time and a desire to study their construction, it is better to have plans and estimates furnished by professional buiders.
Span-roof houses are adapted to large places with spacious grounds, and particularly when an ornamental effect is desired. On account of their exposure on all s:des, they require very careful attention, especially if used for early forcing of Girapes. Where early work is not desired, or for use without artificial heat, their disalrantage is not so apparent. Houses without artificial heat, known as cold graperies, wre in earlier years in more gencral use than those with heat, but have about disappeared with the introduction of the motern economical heating apparatus, and the very preat advantage in the use of the same, if only to a limited extent.

Lean-to houses, on account of their snug construction and protection from northerly or prevailing winds, are especially desirable for early forcing of crapes (Figs. 97.976 ). Often a stable or other building can be utilized for the north sile, but generally a wall of briek or stone is erected for this purpose. Such a wall can be covered on the ontside with Ampelopsis tricuspidata, or Crimson hambler roses, producing a beatitul and ornamental effeet. A good house, on a small scale, can be made of hotbed sash (Fig. 976),

Foundations for the other three sides or for a span-roof vinery can be constructed of masonry or wood. Masonry is preferable, as the conditions of requisite heat and moisture are very destructive to wood work, especially near the gromad. With masonry, piers are crected, starting from solid ground and up to near the surface. They

975. A good lean-to Grape house.

The roots rain throngh the wall to an outside border.
of 2 feet between, and opposite each space a vine is to be planted inside the house, as hereafter described. Stroug capstones, thick enough to come slightly above the surface of the border and abont 18 inches wide, are then laid from pier to pier. On such a foundation a superstructure can be erected with some contidence. For the base of the superstructure masonry is preferable, about 18 inches in height being necessary before the glass work begins. A hollow wall. construeted of hard lrick and cement, is desirable, and openings should be left for ventilation. The upper surface of these walls shoull be cosered with cement. If constructed of wool, the same general plan shoald be carried out, using the most durable kind only.
Aside from its durability, masonry has an advantage over wood in being a better equalizer of temperat're, and the heary baek wall of a lean-to house can be made of great value for this purpose. The general plans of the superstructure are shown in the illustrations. It should present as much glass surface as possillle. The frame can be of iron or wood, as preferred. Light, heat and moisture are the great features desired, also a generons supply of air under favorable conditions. The glass should be of gool quality, otherwise blisters will burn the foliage and fruit. Simall ventilators overed with wire gauze should be built in the foundation walls, and large ones at the upper part of the house. Ventilation should always be free from a draft or sudden ehange of temperature. A draft is just as unpleasant to a sensitive vine in a house as it is to a human being, mad if subjected to it disense is sure to follow, mildew being the tirst evidence: and yet a generous supply of air is a prime requisite in growing Grapes under glass, especially during the ripening period. Previous to that time the lower ventilators shonlil be very carefully used, some growers never opening them until the Grapes begin to color, and the new growth and foliage are somewhat hardened. More or less air is always admitted around the glass in a very equable manner and thence to the upper ventilators.

The modern heating apparatus, consisting of a boiler in an adjacent pit for heating water, with circulating pipes throughout the house, as shown in illustrations on Greenhouse, is a very perfeet and economical supplies. of heat, and it should be erected by a practical buidder. A little heat at a critieal time will often save a house full of Grapes, and, while it can be dispensed with, its advantages are very material.

It is possihle to truit Grapes in henches in pots, removing the pots when the fruit is past, and using the house for other purposes ( Fig .975 ).

The Border. - A good borter is of great importance, as no permanent success can be ohtained withont it, and probably the difference between success and failure more often lies here than in any other feature.

It is a good plan to construet vineries so that their borders can be somewhat elevated above the surrounding ground, as better drainage is thus secured, and good drainage is imperative (Fig. 975). The border should fill the house inside and extend outside adjacent to where the rines are planted at least 6 feet when first made, and to this outside border additions should be made every two or three years of from 2 to 4 feet until a width of 20 feet is secured. The horder can hardIy be made too 976 . Lean-to grapery glazed with sash. rich, provided the material is well decomposed. A mixture of six parts good loany turf from an old pasture or piece of new ground, and one part of well
prepared manure, one part old plaster or mortar, and one part of ground hone, all to be well ecmposted together, will meet all the requirements. If the subsoil is clay, a foundation of old brick and mortar is very desirable to insure drainage. The border above this should be from 2 to 3 feet in depth. No trees or shrubs should be permitted to extend their roots into it, a very common cause of trouble, and nothing whatever should be grown on it, although the temptation to try a few melons or some lettuce is often too great to be overcome, and

977. Even-span house, with the vines plunged in pots.
these probably do a minimum of damage. In such a horder, if properly supplied with water, the vine roots will remain at home, and not go wandering off into trouble. Where extra early work is not lesired, no at tempt should be made to keep the frost entirely ont of the border during the winter, as this is apt to result in a heavy, sodden surface in spring. It is better to spade it up roughly just before winter and cover with a good coat of manire. permitting the frost to enter the ground some inches. In the spring it is dug over again and, when raked off presents a rich, lively surface. The inside border is to be covered with a coat of well-rotted manure, and spaded up and well watered at the time of starting the vines. For midseason work, from February 15 to March 1 is the proper time to do this in New York state, the inside border carrying the vines nicely until the outside border is in shape a month or more later. Then without hard foreing early Grapes can be brought in by the last of June or July, and the later ones through the following two or three months. It is much better to store late Grapes in modern Grape rooms, where they can be kept fresh and $p$ hump for several months through the winter, than to attempt extra early work by starting vines in heated borders in November and December.

The limes. - The amateur should purchase these from some nurseryman of established reputation. Vines 1 or 2 years old are better than ohder ones. For supporting the vines, light cast-iron brackets are secured to the rafters, and these support wires rumning lengthwise of the house about 15 inches from the glass, and to these wires the vines are tied as fast as they grow. The vines are to be planted inside the house about a foot from the front wall and about 4 feet apart, placing one opposite each opening in the foundation as before described. It is not desirable to plant them along the back wall of a lean-to house. Ther should be cut back to two or three buds near the ground, and when these start the strongest shoot only is selected for training and the others rubled off. As this shoot adrances it is tied to the wires, and it may reach the limit of the house by July 1 , or perhaps not until September 1, depending on the care, the vigor of the vine, and the border. Once there, the ond is pinched and the cane continues to strengthen and incresse in size and store up material in the lateral buds until the end of the season, when it is taken down and pruned to one-third its length, laid on the ground and covered fro:n the sun for the winter. Care should be taken that mice do not eat out the buds, as once out they ean never be restored. In the spring of the second rear, or as soon as it $:=$ desired to start the rines, they are tied $r_{i}$ again, and the terminal shoot again trained to the top of the house, where it is stopped as before.

Any fruit appearing on this shoot should be removed. The lateral shoots that start out each way below the terminal should be thinned to about 12 or 15 inches upart on each side. This is an important feature, especially if we adopt the spur system of pruning, which we will first consider, for we are now establishing our vine for a long term of years, and it is desirable to have it $85 m-$ metrical with the side shoots, and iruit evenly distributed over its entire length. An example of a well balanced vine is given in the illustration of the Muscat Hamburg. A few clusters of fruit may be taken from this part of the vine this second year, and the laterals should be pinched at two eyes beyond the cluster, and as they break pinched again through the season. As soon as the leaves fall, the vines are again taken down for pruning. The terminal should be shortened about onehalf and the side shoots cut back to a bud very close to the main stem, when it goes through the winter as before.

At the beginning of the third year the terminal again goes to the top of the house without fruit, when it is stopped and the laternls are allowed to bear as before, say not more than one pound of fruit per foot of the main stem. We now have our vine established to the top of the house, and the only pruning in after years is to cut the laterals each year close to the main stem. A bud will nearly always be found in the first oneeighth inch, sometimes several of them. When these start, the strongest is selected and the others rubbed off, unless one is desired for training to the opposite side to fill a vacancy there. When the vines attain full strength, two pounds of fruit per foot of main stem can be grown, but heary loads require great care. Too heavy a load eauses shanking, and then all is lost. The stems of the berries wither and the fruit turns sour before ripening. Rigid pinching of the laterals is very important. Commence at the second joint beyond the cluster, or about 18 inches from the main stem, and

978. Pruning to spurs.

A long or old spur is shown on the left.
pinch thereafter as fast as new shouts break and show a lea.. Pinch early and often. It has been said that a good garderer can carry the summer prunings from a large viecry for an entire season in his rest pocket. Some tequire a wheelbarrow. At the place where the laverals start, a spur soon forms on tie main stem, from
which the system takes its name. It often becomes severa! inches in length and quite ungainly. This spur systern of pruning is represented in Figs. 978-980.
In the other system of pruning, known as the "long rod" or "long cane" system, a new cane is grown up froun a bud near the ground every year as often as desired to replace the old one, which is entirely removed. It is often desirable to do this. If the vine is well established, this new cane can be fruited its entire length the first season, the laterals being pinched, as before described. 1t will produce finer fruit, but it is not as safe with a heavy load as an old cane.
An ample supply of water judiciously and freely used, particularly at the time of starting the vines, is an absolute necessity. It should not bo applied in the house, however, during the period of hossoming, as a dry air is advantageous for the transfer of the pollen for fertilization.
An important feature is thinning the clusters and establishing the load a vine has to carry. This requires experience and judgment. As a rule, about one-half the clusters should be removed -often more-care being taken to balance the load evenly on each side. This should be done as early as the general form of
 the clusters can be seen, except with the Muscats and other shy setting kinds, when it nay be well to wait for the berries to set, as some clusters set perfectly while others fail.
Thinning the berries should be attended to promptly, selecting cool days and mornings for this work. Close growing kinds, like Alicante, cannot be commenced on too early after setting, and it is much better to crowd this work than to have it crowd the operator. In many varieties one-third to one-half the berries have to be removed. Experience is the only guide in this. A pointed stick is very useful with the vine scissors, and never touch the clusters with the fingers.
Tying up the shoulders of the clusters is necessary to permit a free circulation of air and light, otherwise the interior may decay, and, once started, the cluster is soon gone. The principal diseases or troubles to guard against are mildew and red spider. The remedy for the former is sulfur, and for the latter moisture. Mildew is generally brought on by a sudden change of temperature. A vigorous condition of the vine has much to do in resisting it. Red spider will almost always appear in the hot weather of July and August if the rines are allowed to become too dry.

Thrips are sometimes very injurious, but can be controlled with nicotine, which, if properly applied, will not injure the fruit. Thrips and red spider, if not taken in time, multiply rapidly, and "an ounce of prevention is worth a pound of cure" in thesc cases.

Perhaps, in a general way, the most important requisite of all is a large amount of enthusiasm and love for the work. This is necessary to insure the continued care and culture requisite to permanent success.

The Fruit Varieties. - As said before, very many varieties exist, but probably not one-half of these are in active cultivation at the present time. Varieties are adapted to localities, soils, climates, etc. Perhaps 50 have been grown under glass in this country. Of these we will consider a few of the moze prominent.
The Black Hamburg is more extensively grown and of more value for this purpose than all others put together, because it meets the requirements of the ordinary cultivator, and will stand abuse and neglect and stili give fair results better than any other kind. It rarely gives very large clusters, but is a free bearer, sets perfectly, will carry heary loads and matures early. Under better care the appearance and improrement in
quality is remarkable, and it can be made as good as the best. It is the variety with which the novice begins. Many houses consist entirely of Black Hamburgs, and many that do not would give far better satisfaction if they did.
Muscat of Alexandria is the best of the white varieties for general cultivation. It requires a higher temperature and longer season than the Black Hamburg to come to perfection, and will keep longer after cutting than that kind. When well grown and ripened it may be taken as a standard of quality. Sce Fig. 980.

Muscat Hamburg is a black Grape, probably a cross between the two above named varieties, and presenting marked characteristics of each. It has beautiful tapering elusters of fine quality.
Barbarossa is a good variety for those ambitious to grow large clusters, and when well grown is of tine quality. It is a late black Grape, requiring a long season to ripen well, but repays for the trouble by keeping thereafter for a long time. Clusters frequently grow to 8 or 10 pounds in weight, measuring about 24 inches each way, and they have been grown to more than double this weight.
Other large-growing varieties are the White Nice and Syrian, the latter of which is said to be the kind that the spies found in the land of promise. Clusters of 20 to 30 pounds weight are conmon to these two coarse-growing kinds, but their quality is so poor that they are now rarely grown.

Grizzly Frontignan is a beautifully mottled pink Grape -quite a deep pink sometimes-and has long, slender clusters. In quality and flavor it is unsurpassed by any other Grape, and it ripens rather early.
Royal Muscadine is an early white Grape of fair quality and good habit; frequent in English houses.

Gros Colman, a large black Grape of fine quality and a late keeper, is now grown largely for commercial purposes in England and sent to this side to supply our wants in this line in spring. The berries frequently measure $41 / 2$ inches around, and it therefore requircs early and severe thinning.

Alicante is a black Grape of very distinct eharacter, seeming to depart somewhat from the vinifera type, very juicy, and of fair quality. It has a very thick skin, and is about the best for long keeping.

Lady Downs is another late black Grape of gond quality, but not adapted to all localities. Rose Chasselas, a small red Grape, is the earliest and very beautiful. Trentham Black, the earliest black Grape, has small clusters, but large, soft berries quite like Alicante.

980. Muscat of Alexandris.

Bearing on spurs (as explained in Figs. 9:8, 979).

Foster Seedling is a beautiful midseason, ambercolored Grape, with large clusters and berries sometimes liable to crack. Madresfield Court Muscat is a

982. Floret of a Grass (rye). Much enlarged.
$c c$, floral glume and palet ; $a$, stigmas ; $l l b$, stamens.
midseason Grape-fine in quality, but also inclined to crack. This trouble can often be controlled by twisting or slitting the stems of the clusters, thereby checking the flow of sap.
Many other popular varieties are described in rarious works devoted to Grape eulture.
For other notes on Grapes under glass, see the article on F'orcing.
D. M. Dunning.

GRAPE-FRUIT. See Citrus Decumana and Pomelo.
GRAPE HYACINTH. Museari botryoides.
GBAPE, SEASIDE. Coccoloba uvifera.
GRAPTOPHYLLUM (Greek words referring to the variegated foliage). Acanthicece. An oriental genus of about 5 species of tender slirubs, one of which is eult. in a very few American conservatories for its variegated foliage, and is said to be rery popular in India and through the tropics. No two lvs. are marked exactly alike, but the yellow color is near the marib rather than at the margins. The genus is close to Thyrsacanthus, but in Thyrsacanthus the fls. are not so distinctly 2-lipped. Lrs. opposite, entire (in one species spiny-dentate), often colored: fls. reddish purple, wide gaping, clustered either in a terminal thyrse or in the axils; corolla tube inflated abovn; upper lip with 2 short recurred lobes; lower lip 3-cuc; stamons 2. For culture, see Justicia.
horténse, Nees ( $G$. pictum, Griff. Justiric picta, Linn.1. Caricature Plant. Height finally 6-8 ft.: 10.s.

## GRASS

elliptic, acuminate, irregularly marked with yellow along the midrib: fls. crimson, in axillary whorls; corolla pubescent. Habitat ! B.R. 15:1207. Lowe 45. (B.M. 1870 shows a variety with reddish brown coloring).

GRASS (Gramine ). Annual or perennial herbs (some hamboos woody), mostly tufted or decumbent, rarely climbing, often creeping and rooting at the base. True roots fibrous. Stems (culms) simple or branching, usually hollow (wheat), sometimes solid (maize) between the nodes. Leaves springing from the noles, alternate, in two vertical rows on the stem: the sheaths closed

983. Spike of a Grass (rye), containing many flowers.
when young. but usually split down one side in maturing; ligule a thin tongue-like growth at ine aps of the sheath; blade entire, parallel-veined, commonly long and narrow; a 2 -keeled membranous prophyllum (or leaf) always standing between each branch and the main axis. Spikelets in panicles, racemes or spikes. usually consisting of 2 (rarely 0 , 1 , or more than 2 ) chaffy empty glumes at the base of a short axis ! rachilla), which supports one or more floral glunees, in the axil of each of which is commosily 1 flower. Flowers
perfect or imperfect, destitute of true calyx or corolla. Between each floral glume and Hower are usually 2 (rarely 3) minute hyaline scales (lodicules). Stamens 3 (rarely 1, 2 or more than 3); pistil 1: ovary 1-celled, 1-oruled; styles 2 (rarely 1 or 3), usually plumose: fruit (grain or caryopsis) seed-like, often enclosed by the palet and its tloral glume. Seed erect, closely corered by the thin pericarp; embryo small, on one side of the base of the endosperm. Figs. 981-98t show the structure of various Grass tlorets.

Pereunial Grasses, such as those commonly grown for meadow, pasture or lawn, produce large numbers of sterile shoots that hear leares from very short stems, but no flowers. There are many widely different plants, which in popular language have the name "grass" at tached to them, such as knot-grass, rib-grass, cottongrass, sea-grass, eel-grass, sedge-grass, scorpion-grass, but these do not belong to the family here under r onsid eration. Neither are the clovers and their allies, or the sedges and rushes, to be called Grasses. No othe: plants are truly entitled to this name, excepting those answering to the description above given.

The plants most likely to be mistaken for Grasses are the sedges (Cyperaces), of which there are large numhers in great variety frequently found on wet land. Tho lest popular way to distinguish Grasses from sedges is this: the leaves of sedges are arranged on 3 sides or angles of the stem, while on Grasses they are found on 2 sides, alternate and 2-ranked. In making use of this test, care must be taken to select well grown, erect stems. Most sedges have solid stems and most Grasses have hollow stems. To learn to distinguish plants of the Grass family is easy, but to discriminate between spe eies is difficult.

Among the species most commonly known are timo thy, red top, June-grass, orchard-grass, meadow fostail, the fescues, oat-grass, sweet-vermal, quack-grass, Bermuda-grass, sugar cane, chess, and the cereals, such as wheat, barley, rye, oats. rice, sorghum, Indian corn. In number of species the Grass family occupies the fifth place with $3.5(\mathrm{~m}$, while the composita, legumes, orehids and madderworts are larger. In number of indi viduals, the Grasses excel any other family. Seed plants are arranged in 200 to 220 families, and of all these the true Grasses are of greatest importance to man ; in fact, they are of more value as food for man and domestic animals than all other kinds of vegetation combined. None of these families is more widely distributed over the earth's surface, or is found in greater extremes of climate or diversity of soil.

The species are very numerous in tropical regions, where the plants are usually scattered, while in a moist, temperate climate, though the species are less numerous, the number of plants is enormous, often elothing rast areas. Where soil is thin or moisture insufficient, the Grasses grow in bunches more or less isolated Plants of one section of the family Panicacere predomi mate in the tropics and warm temiperate regions, while plants of the other section, Poacer, predominate in temperate and cold regions

Orerstocking dry grazing districts checks the better Grasses, destroying many of them, and encourages the bitter weeds which multiply and oceupy the land.

A Grass extends its domain by running rootstocks, by liberating seeds enclosed in the glumes, which are caught by the breeze, by some passing animal, or the nearest stream; the twisting and untwisting of awns bury some of them in cracks, crevices or soft earth. In ease a growing stem is thrown down for any reason, several of the lower nodes promptly elongate on the lower side and thus bring the top into an erect position. Each sheath supports and holds erect the tender lower portion of the internode, where it is soft and weak; it also protects the young branches or panicles. Thrifty blades of Grasses suitable for pasture and lawn elongate from the lower end, so that when the tips are cut off the leaves do not cease to elongate, but renew their length. When exposed to sun or dry ..ir, the blades derelop a thicker epidermis, and, by shrinking of sonie of the relicate bulliform cells of the upper epidermis, the diminish their surface as they roll thelr edges inward or hring them together, like closing an open book. When the plant is in flower the minute and delicate lod:-
enles become distended just in time to spread the glumes and liberate the stamens.
Grasses are not so much employed for ornamenting homes as their merits warrant. By selecting, some can be found suited to every week of the growing season, though many of them are in their prime during June. the month of roses. Wild rice (Zizania) is tine for rich soil in the margins of ponds, and masses of reed grass for deep beds of moist muck. For massing or for borders the following and others are stately: Arundo $\boldsymbol{N}_{0}$.

984. Staminate spikelet of a Grass (maize).

Showing twn tlorets, one of wich (with three stamens) is expanded. 1, 1, empty glumes: 2, 2, palets. Enlarged.
nax, A. conspicua, maize, pampas gr:ss. Eulalia, ribbon grass, Audropogon formosus, A. Halepensis, Asperella Hystrix, Tripsacum. For glaucous blue-green, use Elymus aremuriut. F'estucu glauca and Poa cosia. For potting and borilers, there are striped varieties of Dactylis, Anthoxanthum, Alopecurus. Holcus lanatus, H. mollis, Poa tricialis, Phleum pratense; and others may soon be produced. For table decoration nothing is better than the elegant, airy panicles of large numbers of wild Grasses, such as species of Poa. Kueleria, Eatonia, Panicum, Paspatun. Eragrostis, Muhlenbergia, Bromus, Festuca, Agrostis, Deschampsia, Uniola, Briza, Cinna pendula. For large halls and exhibitions, what surpasses sheaves of wheat, barley, rice, oats or any of the wild Grasses ? For decoration, Grasses should be cut before ripe, dried in the clark in an upright position, and may be used in that condition or dyed or bleached. For paths, nothing is more pleasing than strips of well mown lawn.
Drainage keeps out sedges and encourages the better Grasses; manure and irrigation help the best Grasses to choke and diminish most weeds. Enough has already been done to show that rich rewards are sure for him who patiently and intelligently attempts to improve Grasses for any purpose whatever by selection and crossing. Quack-grass is excellent for holding embankments; Ammophila arenaria for holding drifting sands. The Grass family furnishes its full quota of weeds, among them quack-grass, crab-grass, chess, June-grass, sand-bur, stink-grass.
Turf-forming Grasses are those that spread freely by creeping rootstocks, such as June-grass, quack-grass, Bermuda-grass, Rhode Island bent and red-top, while most others are more or less bunchy. For nurthern regions not subject to severe droughts, sow Rhode Island bent and June-grass both, or cither one alone; for northern regions, which are liable to suffer from dry weather, sow June-rrass and plant Bermuda-grass. These two on the same ground supplement each other in different kinds of weather, securing a green carpet during every part of each growing seasou. W. J. Beal.

GRASSES, POPULAR NAMES OF. There are few Grasses which hold commanding positions as speclmen plants, although the agricultural values of Grasses are thanscentent. Some of the commoner veruacular Grass names are given below, with references to the proper genera: Animated Oats, A vena. Artificial G., sometimes used for certain forage plants, as sorghum, but also leguminous plants, as clover, lucerne, sainfoin. Awnless Brome G., Bromus inermis. Beach G., Ammophilu crenuriu. Bear G., unusual name for ${ }^{\text {Fucca }}$ filimentosu. Beard E., Anilropogon: also Polypogon Monspeliensis. Bengal G., Seturia Italica. Bent G., Agrostis. Bermuda G., Capriola Dactylon. Blue-eyed G., Sisyrinchium. Blue G., Pou. Blue Joint G., Calum. agrostis C'anadensis. Bog G., Carex. Bristly Foxtail G., Seturia mugra. Brome G., liromus. Buffalo G., Buchloë dluctyloides. Canada Blue G., Poa compressu. Canary G., Phslaris Cumariensis. Cat-tail G., Phleum pratense. China G., Behmerirs nivea. Citronella G.. Andropogon Firlus. Cotton G., Eriophorim. Couoh G., Agropyrum repens. Crab G., Eleusine and I'enicum sanguinale. Creeping Bent G., Agrostis stulomiferc. Crested Dog's Tail, Cynosurus cristetus. Deer G., Rhexia Virginica. Dog's Tail G.. Cynos. urus. Eel G., Vullisneriu spiralis. English Rye G., Lolium perenne. Esparto G., šlipu tenacissima. Feather G., Stipa pewnata. Feather Sedge G., Anlropogon succharoilles. Fescue G., Festuca. Finger-comb G., Dactyloctenium. Finger G., Chloris. Fowl Meadow G., Poa serotina. Fly Away G., Agrostis scubra. Fourleaved G., Paris quenlrifolic. Foxtail G., Alopecurus pratensis. Golden Top G., Lamurckia aureet. Guinea G., Panicun jumentorum; also erroneously used for Andropngor: Malepensis. Hair G., Agrostis scubra. Hare's Tail G.: Lugurus ovatus. Hassock G., Deschumpsidt cospitosa. Herd's Grass in New England is timothy (Phie am pratense) ; in Pennsylvania, Fiorin (Agrostis讠ulygris). Holy G., Hierochloa bovenlis. Hungarian G., Setaria Italice. 'Italinn Rye G., Lolium Italicum. Japanese Lawn G., Zoysitt purgens. Job's Tears G., Coir. Johnson G., Andropogon Halepensis. June G., Poa pratensis. Kentacky Blue G., Poa pratensis. Large Quaking G., Brizu maximu. Little Quaking G., Brizu minor. Love G., Eragrostis elegans. Lyme G. of upholstery is Deschampsia cespitosa. Marram G., Am. mophila arenaria. Meadow Foxtail G., Alopecurus pratensis. Myrtle G., Acorus Calamus. 0 at G., Arrhenatherum arenaceum; also various species of Avena. Orchard G., Dactylis glomeruta. Palm-leaved G., Punicum sulcatum. Pampas G., Gynerium. Pepper G., Lepidium: also Pilulurit globulifera. Plume G., Erianthus Ruvennae. Pony G., Calamagrostis stricta. Purple Bent G., Calamovilfa brevipilis. Quack, Quick, or Quitch G., Agropyrum repens. Quaking G., Briza. Rattlesnake G., Briza maxima. Ray G., Lolium perenne. Red Top G., Agrostis vilgaris. Reed G., A rundo, Bamboo. Reed Bent G., Calamagrostis. Reed Canary G., Phalaris arundinaceu. Rescue G., Bromus unioloides. Rhode Island Bent G., Agrostis canina. Ribbon G., Phalaris arundinacea, var, variegata. Rough Bent G., Agrostis scibra. Roughish Meadow G., Poa trivialis. Rough-Stalked Meadow G., Poa tririalis. Rye G., Lolium perenne. Sand G., Calamovilfa longifolia. Scurvy G., Cochlearia officinalis. Scutch G., Capriola Dactyion. Seacoast Bent G., Agrostis coarctata. Seneca G., Hierochloa borealis. Sesame G., Tripsacum. Sheep's Fescue G., Festuca orina. Silk G., Agrostis scabra. Silver Beard G., Andropogon argenteus. Sour G., local name for Rumex Acetosella. Squirrel-tail G., Hordeum. Siar G., Callitriche; also locally for Hypoxis and Aletris, Striped G., Phalaris arundinacea, var. variegata. Sweet-scented Vernal G., Anthoxanthum odorutum. Tall Meadow Oat G., Arrhenatherum elatil!s. Tickle G., Agrostis scabra. Tear G., Coix Lachryma.Jobi. Texas Blue G., Poa arachnifera. Timothy, Phleum. Tufted Hair G., Deschampsia cespitosa. Vanilla G., Hierochloa borealis. Viper's G.. Scorzonera. White Bent G., Agrostis alba. Whitlcw G., Draba, especially D. verna and Saxifraga tri actylites. Wood Meadow G., Poa nemoralis. Woolly Beard G., Erianthus. Worm G., Spigelia; also Sedum album. Yellow-eyed G., Xyris. Zebra G., Miscanthus Sinensis.

## GRASSWORT. See Cerastium.

GRATIOLA (Latin, grace or facor, from its reputed healing qualitie ; Scrophularidcea. This genus contains an unimportant trailing annual, which grows wild in wet, samly places from Qwebec to Fla, and bears yellow fls.. half an inch long, from June to September. G. aùrea, Muhi., was once offered by collectors. It is a glandular plant, with lvs. lanceolate, entire or remotely dent culate, and 2 sterile filaments. B.B.3:162.
C.3AVESIA (after C. L. Graves, who collected in Madagascar). Melestomdcerp. Three species of dwarf warmhouse foliage plants, natives of Madagascar, and

985. Asa Gray at 76 years.
cult. in a few American conservatories. For culture and for distinctions from allied genera, see Bertolonia, under which name most of the varieties are still known.
guttàta, Triana (Bertolonia guttàta, Hook.). Caulescent, erect: branches obtusely 4 -angled: petioles long, densely scurfy-powdery: lvs membranous, 5 -nerved, rotund at base, slightly scurfy above and spotted, under side and calyx scurfy-powdery. cymes terminal, sereralfld. Int. 1865, and first described at B.M. 5524 as B.gnttata, where the lis. are shown with fairly well defined, double, longitudinal rows of roundish pink dots. F.S. $16: 1690$ is probably a copy of B.M. 5524. (See, also, Gt. 1865, p. 385, and B.H. 1865, p. 225 .) Var. supérba, Hort., I.H.26:359 (1879) is shown, with more and larger reddish purple spots, which are less regularly arranged. Var. Legrelleána (B. Legrelledua, Van Houtte). An alleged hybrid obtained by Van Houtte and figured in F.S.23:2407. Coigneux refers this plate to Gravesia guftata, but no fls. are shown, nor have the lvs. any spots. The nerves are outlined in white, and some of the cross reins for short distances. Var. Alfred Bleu is brilliantly spotted and lined with bright red, the nerves boilly outlined, the cross veins interruptedly outlined. I.II. 41:13(1894). Var. margaritàcea, Nicholson (B. margaritacea. Fort. W. Bull=Sonerila mar-


GRAY, ASA (Fig. 985), bocanist knd naturalist, was born in Paris, Oneida count! N. Y., Nov. 18, 1810, and died in Cambridge, Mass., J \%n. 30, 1888. His father was a tanner. He studied meticine, but never practiced it. He early became intervated in botany, and entered into correspondence with Dr. Lewis C. Beck and Dr. John Torrey, both of whom were well known botanists of the time. In 1833, Gray became assistant to Torrey, who held the chair of chemistry and botany in the New York College of Physicians and Surgeons. From this connection dates his serious botanical work. His first book, the "Elements of Botany," appeared in 1836. To the schools, howerer, he became best known through his "Lessous," which first appeared in 185\%. To the last revision of this book, in 1887, he gave the name "Elements of Botany," thus reviving the title of his maiden effort. The" Botanical Text Book"first appeared in 1842: it went to a sixth edition in 1879. From the first this work was accepted as the highest autho:ity on the subjects which it treated; and it is to-day the model for the formal presentation of morpholozy and taxonomy. Gray is further known as an author of textbooks in the admirable books for youth, "How Plants Grow," 1858, and "How Plants Behave," 18i2. Gray's texts at once became standards, and have done more to make botany teachable in the schools tnan any other American works. They are expressions of the older or topical method of presenting plant subjects, as contrasted with the newer ideals which first introduce the pupil to biological or life problems. They will always be known as having marked an epoch in the teaching of botany in America.

Gray was chiefly known for his taxonomic and lescriptive work with plants. It fell to his hand to review the North American flora. The western country was largely unknown botanically. The collections of government surveys and of individuals went to him for study. His publications on this new flora are voluminous and criticel. He also revieved the floras of many of the Pacific islands and of Japan. His most ambitious work was the "Synoptical Flora of North America." This great work began to appear in 1838, at which time be was a junior author with Torrey. After having passed to two volumes, comprising the orders from Ranunculacese through Composite, the work was discontinued until, in 1878, he published the Gamopetalm after Compositæ. In 1884, be published the families from Caprifoliacea through Composita. The necessity of studying the wealth of new material resulting from the extension of the national domain made the completion of the work impossible in the interim. The work is still in progress by Gray's successors.
Gray's most widely known systematic work is the "Manual of the Botany of the Northern United States," which first appeared in 1848, and which he took through five editions. The sixth edition, from the hand of Sereno Watson, Gray's successor in "axonomic work, appeared in 1889. From the first it has been the standard flora of its region. In 1868, Gray supplemented the manual by the "Field, Forest and Garden Botany," which was designed as an easy introduction to the commoner wild and cultivated plants. Gray regarded this as his poorest work, yet it met a need and has been deservedly popular. It has been our most acceptable account of cultivated plants. It lacks the critical spirit of his other works, and the accounts of the cultipated plants were drawn largely from literature, rather than from the plants themselves. Working chiefly with taxonomic questions, Gray found little interest in plants which, by domestication, have been made to vary to the confusion of the old specific bounds. Yet it is remarkable how accurately he indicated the species which have been chiefty concerned in the evolution of garden forms, and how comprehensively he covered the field of the domestic flora. A revision of the "Field, Forest and Garden Botany " was made in 1895.
In his view of species, Gray accepted the dominant English ideal as held by tbe Hookers and by Bentham. Species were large conjunctive groups: he tended to make few rather than many. There were indications of a revolt from this point of view in the later years, but
his personality and influence prevented any great defecthon. At the present time, the pentulum seems to hare swung to the opposite extreme. Species are small disfunctive groups: authors tend to make many rather than few. It will probably be a decade or more before the specles-idenl swings back to the middle point, where only a pendulum can rest.
Gray was a philosophical naturalist. He was one of the first of the great American naturalists to espouse the main argmment of Darwin's "Origin of Species." n this respect he stands in bold contrast to his great colleague Agassiz. Gray's influence was the greater because he was known to be a pronounced theist. He entered the conflict which arose between organic evolnton and theology, and did much to heal the schism. His writings on the evolution controversies were published in two volumes, "Darwiniana" and "Natural Science and Religion."
Gray was a constructive philosopher, as well as a citic. His essay on the "Relations of the dapanese Flora to that of North America," was one of the first masterful attempts to explain the principles of the distribution of species. This essay stands for the following conceptions: that species have one origin; that distribution orer the earth is due to physical causes; that the origin of the north temperate flora is circumpolar. One who is unfamiliar with the points of riew of his time cannot catch the full significance of these conclusions. They are now accepted, not challenged. Into philosophical discussions of cultivated plants he made few excursions, although his paper on the running out of varieties has become a standard; and in his many reviews he made occasional contributions to this field.

Asa Gray was a lovable man. He was gentle, quiet, sweet-tempered; intellectually he was keen and penetrating. Both by his personality and his teaching, he exerted an incalculable influence on American botany, and, indeed, on American biological science. In Europe he became a representative of what was best in American science. Harvard College, in which he held a professorship from 1842 until his death, became the Mecca of every American botanist. Here he built up the most important herbarium and botanical library in the New World. He was the master of American botany.

Gray's writings were voluminous. He was known as one of the most skilful of American reviewers and biographers. His scattered untechnical writings were republished in two rolumes in 1889, by Professor Sargent, as the "Scientific Papers of Asa Gray." See the "Letters of Asa Gray," 2 vols., 1893, by his widow, Jane Loring Gray.
L. H. B.

GREENHOUSE. In America the word Greenhouse is used generically for any glass building in which plants are grown, with the exception of coldframes and hotbeds. Originally and etymologically, however, it means a house in which plants are kept alive or green: in the Greenhouse plants are placed for winter protection, and it is not expected that they shall grow. The evolution of the true Greenhouse seems to have begun with the idea of a human dwelling honse. At first larger windows were inserted; and later, a glass roof was added. In early times it was thought best to have living rooms above the Greenhouse, that it night not freeze through the roof. Even as late as 1806, Bernard McMahon, rriting in Philadelphia, felt called upon to combat this idea. The old or original conception of a Greenhouse as a place for protecting and storing plants is practically extinct, at least in America (Fig. 986).
Other types of plant houses are the conservatory which see), in which plants are kept for display; the forcing-house (see Forcing), in which plants are forced to grow at other times than their normal season; the store or warmhouse ; the propagating pit. Originally the warmest part of the plant-house, that part in which tropical plants were grown, was heated by a stove made of brick, and the house itself came to be called a store. This use of the word store to designate the warmest part or room of the range is unirersal in England, lut in America we prefer the word warmbouse (and this word is used in this Cyclopedia). Originally, hothouse was practically equiralent to store, but this term is
little used in this country, and when used it is mostly applied generically in the sense of Gireenhouse.

It will thus be seen that there is no one word which is properly generic for all glass piant houses. The word glasshouse has been suggested, and it is often used in this work; but there are other glass houses than those used for plants. It seemis best, therefore, to use the word Greenhonse for ali glass buildings in which plants are grown; and usuge favors this conclusion.
The long, low Greenhouse range, of the type which we now know in our commercial establishments, probably had a different origin from the high-sided Greenhouse. The glasshouse range appears to have developed from the practice of protecting fruits and other

986. The old-time Greenhouse.

With opaque roof and sash-made sides (Abercrombie, 1;86).
plants against a wall. In European countries, particularly in England, it is the practice to train fruits and other plants on stone or brick walls, in order that they may be protected from inclement weather and receive the greater sun heat which is stored up in the masonry. It occurred to Nicholas Facio Duilhier to incline these fruit walls to the horizon so that they would receire the greater part of the incident rays of the sun at right angles. He wrote a book on the subject of "Fruit-Walls Improved," which was published in England in 1699. Facio was a mathematician, and be worked out the principle of the inclined walls from mathematical considerations. Such walls were actually built, but according to the testimons of Stephen Switzer, who wrote in 17.24 , thes walls were not more successful than those which stood perpendicularly. Certain of these walls on the grounds of Belroir Castle, and over which grapes were growing, received the additional protection of glass sash set in front of the inclined walls and over the vines. In addition to this, flues were constructed behind the wall in order that heat might be given. Tho construction of hollow heated walls was not uncommon in that day. The satisfactory results which followed this experiment induced Switzer to design glass-covered walls. The "glasshouse" which he pictured in the "Practical Fruit-Gardener" (1731) represents a Greenhouse $31 / 2 \mathrm{ft}$. Wide in the clear, Fig. 987 . At the back of this house is an inclined heated wall on which the grapes are grown. Three and one-half ft. in front of this, a framework is erected to receive the sash. There are 3 tiers of openings or windows along the front, the two lower ones of which are for mindow sash, and the upper one is vacant in order to provide for ventilation and to allow space to receive the lower sash when they are lifted up. The whole structure is covered with a roof or coping. Switzer declares that the introduction of these covered, sloping walls "led the world" to the "Improvement of glassing and forcing grapes, which was never done to that Perfection in any Place as it is upon some of the great Slopes of that elevated and noble Situation of Belwoir Castle." Johnson, in his "History of English Gardening," quotes the remarks of Switzer, and makes the statement that the use of these walls "led to the first erection of a repular forcing structure of which we have an account." The immediate outcome of these covered walls seems to have been the lean-to Greenhouse, and from that has developed the double-span glass range of the present day. Long before Switzer's time p!ants were forced in a crude way, even by the Romans, mostly by beirf placed in baskets or other movable receptacles, so that they could be place under cover in inclement weather; but the improveraeais of Facio and Switzer s sem to have been
ainongst the earliest attempts to make low glass ranges for plants, particularly in England.

It was about the beginning of the nineteenth century that great improvements began to be made in the glasshouse. This new interest was due to the introduction of new plants from strange countries, the improvement of heating apparatus, and the general adrance in the art of building. The ideals which prevailed at the opening o the century may be gleaned from J. Loudon's "Treatise on Several Improvements recently made in Hot-Houses." London, 1805. One of the devices recommended by Loudon will interest the reader. It is shown

## GREENHOUSE

Location, Plans, Grading, Foundations, Framework, Glazing and P'inting, Plunt Tables. Ventilation, Heating.

Locution. - Greenhouses which are intended for use in connection with the garden should be placed, for convenient attendance, within the garden inclosure or along its boundary. A good location for the garden will usually be found the best one for the Greenhouse.

A conservatory or Greenhouse designed for a prirate place, where specimen and blooming plants will be kept for the pleasure of the family and entertainment of visitors, should be attached to the dwelling or located as

987. Switzer's glasshouse, built on an inclined wall. 1731.
in Fig. 988. The bellows is used for the purpose of forcing air into the house, that the pla ts may be supplied with a fresh or non-vitiated atmosphere. "By forcing the air into the house, once a day or so, double the quantity of air which the house usually contains" can be secured. The house could be "charged." The tube leading from the bellows is shown at $b$; it discharges at $c$. Curtains run on the wire, $i$; the curtain cord is at $f$.
All commercial structures are now built on the plan of the long, low glass range, with very little height at the eares. The taller glass structures, if built at all, are used for conservatory purposes or as architectural features. The general tendency of the building of glass structures is towards extreme simplicity (Fig. 1005). In the extreme South, lattice-work buildings are sometimes used for the protection of plants, both from light frosts and from the sun (Fig. 989). The heating which is now employed in this country is of three different kinds: hotwater under very low pressure or in the open tank system; het water in practically closed circuits; and steam. Hot water under low pressure is an old-time idea of heating, and is not now popular in this country except for conservatories and private establishments. The heary, cumbersome pipes are not adapted to laying over long distances and under varying conditions. The commercial houses are now heated by means of wrought-iron pipes, which go together with threads. The comparative merits of steam and hot water in these wrought-iron pipes are much discussed. For large establishments, particularly those which are on various elerations, and which are likely to be changed frequently, steam is preferable; and, on the whole, it seems to be gaining in faror for commercial establishments. It requires no more attention on the part of the overator, when modern heaters are used, than hot water. However, the merits of one system or the other are very largely those of the individual establishment and apparatus, and the personal choice of the operator (see Forcing).
The special American literature on Greenhouse construction and management will be found in the following books: Leuchars' "Hot-Honses," 1850; Henderson's "Practical Floriculture," first ed., 1869; Field's "Greenhouse as a Winter Garden," 1869; Hunt's "How to Grow Cut-Flowers," 1893; Taft's "Greenhouse Construction," 1893; Bailey's "Forcing Book," 1897; Taft's "Greenhouse Management," 1898."
L. H. B.

Greenhouse Construction. - For convenience, this subject may be considered unter the following heads; i.e.,
dear as possible in a well-kept part of the grounds. A conservatory does not require a full southern exposure. Most decorative plants thrive as well or better and continue in bloom for a longer time if kept in a house haring plenty of light, but so located as to receire but little direct sunlight. Large ranges of glass adapted to a variety of purposes are generally kept separate from other buildings. In parks the location should be near a main entrance.
The location of a range of glass for commercial purposes, where the elements of expense and profit are to hare the first consideration, is of great importance. The chief items which determine the desirability of a suitable location are the adaptability and value of the land, cost of fuel delivered, ampla and inexpensire water supply, and proximity to a market. The top of a bleak hill or the bottom of a valley should both be aroided. Level land, or that having a southerly slope, is the best.

Plans. - When a site for the proposed Greenhouse has been decided upon, full plans should be made before commencing to build. The plans should embrace not only the glass, which is required at once, but should provide for the largest increase which can be anticipated. In this way houses can be erected which are convenient to work and have a good appearance, with small extra cost for building only part at a time. Attention should be giren to the special peculiarities of the location, like the exposure to the sun, grade of ground, shape of lot, and best location for the heating apparatus. Each com-

988. Loudon's device for charging a Greenhouse with air. 1805.

to the light adapted to the plants fo. Which it is provided.
It will readily he seen that to locate and plan a range of glass to the best adrantage requires skill and experience. In a communication recently received by the

An inexpensive wall of rubble stone work or of concrete is all that is needed in the ground. The part of the wall showing above grade may be of plain brick or faced with stone, to correspond with the construction of other surrounding buildings. A good substitute for these masonry walls is found in the use of cast-iron posts in connection with double boarding. A removable base at the ground line, which can readily be renewed, adds very much to the value of this construction, making it durabla and satisfactory. It has been quite cxtensively adopted by thorists in honse $s$ for commercial purposes and for small aud inexpensive Greenhouses. It is recommeaded for such houses.

Framework. - The consiruction bist adapted for conservatories, park houses and Greenhouses, and for private places where the improvements are desired to be permanent in character and attractive in appearance, is the combination of iron and wood. In this system, the main frame which supports the weight and strain is of iron or strel, wood being used in the frames for the setting of the glass, and to form a non-conductor, of creat advantage in the heating of the house. The iron work in this style of construction usually consists of cast-iron sills capping the foundation walls, wrught-iron rafters setting on the sills, about 8 feet apart and rumning from sill to ridge, forming the side post and rafter in one piece, castiron gutters, and angle-iron purling between the rafiers, all securely bracketed and bolted together, forming a complete framework of metal, light, strong and durable. The wood used consists of light sash bars for the setting of the glass, sashes for ventilation, and doors. This woodwork being entirely supported by the metal frame, and not being used where it will be continually wet, will be found as durable as any other material, and for many reasons better adapted for the requirements of a Greenhouse roof. This combination system of metal and wood construction has been extensively adopted by florists and large growers of cut-flowers, though generally with the cast-iron post style of foundation. The first cost is somewhat increased over an all-wood construction, but in view of its greater durability and saring in repairs, it will be found in the end the better investment. In cases in which the roof water is not needed for Watering the houses, an one level. When the variation in the grade of the ground is not too great, the floor line should be at the highest point of the grade. In the case of a long house, the Hoor line is sometimes made the same as the natural grade, but such an arrangement is to be aroided when possible. For locations on a hillside, the different apartments may hare different floor levels, with necessary steps between them.

All the sod and loam should be removed from the space to be covered by a Greenhouse, and all the filling necessary made with subsoil. The latter should be laid in thin layers and each wet down and thoroughly tamped. Loam used for filling under a Greenhouse is apt to become sour, and will continue to settle for a long time, cansing much trouble and annorance.

Foundations.-Ton much care cannot be given to the preparation of good foundations. These are nsually of brick, but may be made of stone or concrete. The brick walls take up less room in the house than stone, and are usually less expensive. The foundation walls should be extended down to a point below the frost line, generally 3 or 4 feet deep, and are usually raised about 2 feet above the grade.
darken a house in the cold winter weather, when light is most needed. The double-boarded sides, when erected with care, are warmer than ordinary masonry walls.

Cast-iron gutters are provided to collect the rainwater from the roof. By exposing the inner side of these gutters to the heat of the house, they are kept free of ice in the winter. Small metal clips fastened with screws are used to connect the wood sash bars to the cast-iron gutters, angle-iron plates and purlins. This method of securing the sash bars in place is very convenient in case of repairs, and renders the structure practically portable. A careful examination of any old Grcenhouse will show that the parts of the frame which decay first those pieces of wood which are joined together, fo ater penetrating the joints soon destroys the wood. This trouble is largely avoided by arranging the frame so that each piece of wood is fastened directly to the iron frame instead of to another piece of wood. Joints between wood and iron do not rot the wood, the latter being preserved by the corrosion of the metal.
The curvilinear form of house (Fig. 990) is ornamental and particularly well adapted for conser vatories, palm houses and show houses of all kinds. It is preferred for vineries and fruit houses, as the form allows the canes to be supported on the line of the roof without a sharp bend at the plate line. The light in a curved house, being admitted at different angles, is better diffused and more natural than when reflected through a long pane of straight glass. The cost of a curved roof is slightly greater in the construction, but the arched frame is stronger and will keep its shape better than a house with straight lines, thus largely compensating for the extra cost. For special purposes and locations, special forms of frames may be used. Good forms of commercial houses are shown in Figs. 991, 992. The latter is the most popular form for the forcing-house.
For small Greenhouses and those adapted for the use of amateurs, a frame made chiefly of wood will be found quite satisfactory. An improved method of framing is to use small rafters of wood from 5 to 8 feet apart, with cast-iron brackets at ridge and plate; these rafters are connected by light angle-iron cross purlins, and the latter support very light sash bars spaced for glass between the rafters. The ridge is usually supported by gas pipe posts, and when the rafters are of considerable length additional supports are placed under their centers, instead of darkening the house by rafters of greater size. In this way the roof can be made as light as the metal construction first described, and will nearly approach it in durability and finish. Details of construction of wooden houses are shown in Figs. 993, 994.
It is generally admitted that the so-called "sash bar construction" is not the best or lightest method of construction, but as the absence of most of the framing reduces its cost so that it is the cheapest to build, it remains a popular method of putting up a commercial Greenhouse. Circulars showing the various methods adopted by the dealers in Greenhouse material can readily be obtained by applying to them.
The best rood to use for Greenhouse framework and plant-beds is undoubtedly cypress. In purchasing this lumber, care should be taken that only that grown in the states bordering on the Gulf of Mexico be selected. This will be found of a dark red or brown color, quite soft and easily worked. There is an inferior variety of cypress growing farther north, which is light in color, hard and springy, and apt to be shaky. As the latter variety is cheaper than red gulf cypress it is frequently used by those who do not know the difference, to the serious detriment of the work and the loss of reputation of cypress for such purposes.


In the market there are three .... ies of cypress lumber, and it is important to know which to select The best grade is known as "firsts and seconds," and calls for lumber with a small amount of sap on the edges and occasionally a small sound knot. This is the quality which should be ordered for all the framework of the roof, sash-bars, etc. In order to make the material entirely free from sap there will be a waste in cutting up this quality of from 10 to 20 per cent. The second grade is known to the trade as "selects." This name indicates that it has been graded so that one face of each piece of lumber is of about the same quality as the "firsts and seonds," the other face generally being largely sap. This quality is only fit for outside boarding in Greenhouse construction; it has too much sap. The cost is usually about tive dollars per thousand less than the best grade. As it looks to the inexperienced eye almost the same as the best grade, too much of it finds its way into Greenhouse structures. Such sap lumber will yot last more than from two to five years. Too great care cannot be exercised to avoid its use. The third grade of cypress lumber is termed "cutting up," and is so called because it embraces all the pieces which have imperfections, such as large knots, splits, etc., which bar them from the better grades. This is a good quality to purchase for base boards and plant tables, for by cutting out the sap and objectionable knots it will be found satisfactory for these purposes. The "cutting up" grade costs about ten dollars less per thousand than the "firsts and seconds." The percentage of waste in cutting up will be somewhat greater than in the other grades.

Cypress lumber which has been in use for guiters, sash-bars, plates, etc., in Greenhouses where high temperatures have been maintained is still, after many years, appa ently in as good condition as when first used. Owing to the porous texture of the wood, the paint, when applied, sinks in and does not make as fine a coat as on some other woods, but because of this fact the paint adheres to the wood better and lasts longer.

Glazing and Painting.-Ordinary sheet or window glass is in general use for greenhouse glazing. It is better to use only the thickness known to the trade as "double thick." This weighs from 24 to 26 ounces per square foot. The thickness known to the trade as "single thick" weighs only about 16 ounces to the square foot, and is entirely too frail for the purpose. There is very little difference at present in the quality of the imported French or Belgian and the American
glass. The weight of most of the glass of American manufacture is about 2 ounces greater per foot than the imported, and therefore proportionately stronger. This greater strength is of considerable importance in the additional security which it affords from damage caused by that enemy of the florists, the hail storm. There is a great difference in the quality of the glass made by different manufacturers in its adaptation to Greenhonse use. This difference is caused chiefly by
the joints, nor does it provide any means of escape tor the condensed water from the under side of the glass, which is a very serious objection. In ordinary glazing, where each light laps over the one below, the condensed water passes through $t^{\prime}$ e joints to the outside, forming a perfect remedy for this trouble. The difference in the cost is very slight, if anything, provided the work is equally well done, as the value of the putty omitted is fully offset by the extra cost of the caps.

The painting of a Greenhouse roof is very important part of the work. Owing to the extremes of heat, cold, dryness and moisture to which it is exposed, the conditions are decidedly different from ordinary buildings. Three-coat work is the best. The priming coat on the rood work should be mostly oil, ard, as far as possible, the material should be dipped into a tank of paint. Irou and steel fraining material should be primed with a metallic paint. The priming coat should be applied before
the quality of the material used in the glass, making it more or less opaque, and in the number of small knots, causing lenses, which concentrate th sun's rays ind burn the foliage of the plants. This la defect in the glass cannot be wholly guarded ag. st, as the product of a factory does not always run tl same, so that any favorite brand cannot be fully rened upon in this respect. The lenses which burn will be found in all the different grades of glass, firsts, seconds and thirds, with little, if any difference, the grading being done chiefly for other defects, such as affect the value of the glass for window purposes. For these reasons, in selecting the gliss for a Greenhouse, it requires experience to decide what make of glass it will be best to purchase. It will be well to purchase from some one who makes a specialty of furnishing glass for Greenhouses, or call in the aid of some friend who has had experience in building, and can give intelligent advice.
The second quality of glass is usually selected for the best Greenhouse work. The standard widths are from 12 to 16 inches, and lengths vary from 16 to 24 inches. A favorite size is 16 by 24 inches. This is about as large as it is practical to use double thick glass, and makes a roof with comparatively few laps.

It is not safe to purchase fourth quality of glass or the so-called "Greenhouse glass" frequently offered by window glass dealers, as both of the grades contain the culls and lights only fit to glaze cheap sash for market gardeners, and is of doubtful economy even for this purpose. Rough plate or ribbed glass is not adapted for a Greenhouse roof. It not only obscures the light, but is so brittle that the breakage is greater than with the double thick sheet-glass. It is also very difficult to set it so as to make a tight roof on account of the uneven lines of the ribbing. Recently a few conservatories have been glazed with thick, polished plate-glass, inaking rery handsome roofs, but rather expensive.
To set glass properly in a Greenhouse roof, it should be bedded in the best putty on wood sash bars and lapped at the joints. The bars should be spaced accurately, so that the glass will fit the rabbets with not over one-sixteenth of an inch allowance, and the panes of glass should lap each other not more than from oneeighth to one-quarter of an inch. Zinc shoe nails fasten the glass best, using from 4 to 6 to each pane, according to the size of the light. No putty should be used on the outside of the glass. A comparatively new system of glazing has been adopted by some florists, in which no putty is used, but the glass is placed directly on the rabbets of the bars and the ends of the panes are butted together and held in place by wood caps fastened to the sash bars. This system does not make a tight roof, allowing considerable water to enter the house through
the material is exposed to the weather. The materis. of the second and finishing coats should be pure linseed oil and white lead. Experience has shown that this material is the best for this work. The color should be white, or a light tint of any desired shade may be used, but no heavy color should be adopted which requires coloring matter in place of the lead in the mixing. Each coat should be applied thin and well rubbed out. While the appearance may not be quite as fine when the work is first done, the paint will not peel off, and will last longer and form a better protection for the structure than when it is put on in thick coats. It will also form a good base for repainting, and this should be done in a similar manner. It is economical to repaint a Greenhouse every two years, ana generally one coat will be sufficient.

Plant Tables.-Stages for plants in pots or raised beds for planting out usually cover the entire area of a Greenhouse, except the walks, and their cost constitutes a considerable proportion of the expense. Palms are usually grown in solid beds or in pots or boxes sitting on the ground. Many regetables are grown in solid beds near the ground level. Roses and carnations are usually in raised beds. Angle-iron frames supported on adjustable gas pipe legs, with slate or tile bottoms, form the best plant tables (Fig. 995). Wood bottoms, which can be readily renewed, are frequently substituted, saving a part of the first cost. When the table supports are of wood care should be taken that they are not fastened

993. Details of gutter.

994. Details of ridge (B) and eave (C).
against any part of the framework of the house, unless iron brackets are used so as entirely to separate the wood work.

Ventilation. - No Greenhouse is complete without a good ventilating apparatus. About one-tenth of the roof should be arranged to open or close for rentilation. though this percentage will vary according to the form of house and the purpose for which it is used. It is not
desirable to open all the ventilators in a long house with one set of apparatus, for frequently one end will not need as much ventilation as the other end, or may be affected by the wind forming a current lengthwise of the house. To aroid this a Greenhouse 200 feet long should have 3 or 4 sets of apparatus, which can be operated separately. In all Greenhouses of considerable width, it is desirable that ventilation should be provided on both sides of tile ridge, so that the ventilation can be given on the "leewarl" side, which will present the wind from blowing directly into the house.

Meating. - The success of the Horist, gardener or amateur in the management of a Greenhouse depends largely on the satisfactory working of the bating apparatus. There are two systems of Greenhouse heating which, when the apparatus is properly installed, are economical and satisfactory; viz., hot water and steam. The open-tank hot water heating has more advantage in its adaptation to general use than any other, and is so simple that its management is readily understood by any one. It is practically antomatic, and is capable of maintaining an even temperature for ten hours without attention. Low pressure steam heating is well adapted to large commercial ranges, ald to large conservatories in parks and private places, where a night attendant can be kept in charge of the fires to turn on and shut off steam from the radiating pipes as the changing outside temperature may require. The heating of Greenhouses to the best advantage under the varying conditions of climate and interior requirements, demands, like the designing of Greenhouses, the services of an experienced specialist in horticultural work

Lord \& Burnham Co.
Greenhouse Glass. - The selection of glass for Greenhouses, and the nature of the imperfections which render it undesirable for such use, are questions which have received much attention from horticultural writers, and which have brought forth a variety of answers. Three qualities are essential in all glass to be used in Greenhouse construction: first, minimum of obstruction to solar rays; second, strength sufficient to withstand the strain of winds and storms, especially hail; and third, freedom from defects rendering it liable to burn plants grown under it.

It is an established fact that plants thrive best under a clear and transparent glass, which lets through the greatest possible percentage of the sun's rays. This includes all the solar rays, calorific or heat rays and astinic or chemical rays, as well as the colorific or light rays. Clear white glass of the grade known as "single thick " (12 panes to the inch) lets through from 60 to 70


## 995. Details of iron-frame benches.

per cent of the sun's rays, common green glass of the same thickness, 52 to 56 per cent, and "double thick" ( 8 panes to the inch) common green glass from 50 to 52 per cent. This percentage is reduced by other colors, dark blue glass letting through but 18 per cent. In connection with the matter of tint, it should be noted that some glass, especially clear white glass purified with arsenic acid, or that in which a large amount of potash is used in proportion to the amount of lime used in manufacture, becomes dull after long exposure to the weather, the dullness being occasioned by the eftlorescence of salts contained in the glass. Before this disintegration has proceeded too far, the crust or efflorescence may be removed with muriatic acid.
The strength of glase depends upon its thickness and
the thoroughness of the annealing. Glass is annealed by passing through a series of ovens, where it is raised to $n$ high heat and then gradually cooled, whatever toughness and elasticity the finished product may contain being due to this process. The thickness of glass varies, not only with grades (single and double thick), but also more or less within the grades, and even with different parts of the same pane. Single thick glass is too thin for use in Greenhonses, and in selecting iny glass for such a purpose it should be examined pane by pane, and all showing marked variation in thickness, either between panes 0 o: in different parts of the pane, rejected. A pane of varying thickness is much more liable to breakage from climatic changes or sudden shocks than one which is uniform in this regard. From the foregoing statements it will be seen that, in general, the ordinary double thick green glass is best, as regards both tint and

996. Burned areas on a Begonia leaf. strength, green glass being less liable to change in tint than white, and the double thick being the stronger grade. By green glass is meant simply the ordinary sheet glass, the green color of which is only noticeable when looking at a cut edge.
The idea has lumg been more or less prevalent that such visible defects in sheet glass as the so-called "bubbles," "blisters" and "stones," produce a focusing of the solar rays passing through them, thus burning the foliage of plants grown under glass containing these defects (Fig. 996). This view has heen held by glass manufacturers and horticulturists alike, and seems not to have been publicly contradicted until 1895 (Bull. 95 , Cornell Unirersity Agric. Exp. Sta., p. 278). In view of the erroneousness of this theory, it is rather remarkable that it should have gained such prevalence. Nearly all bubbles and blisters are thinner in the middle than at the periphery, being thus concave rather than convex lenses, and actually diffising the rays of light passing through them rather than producing destructive foci. While it is true that sand stones or knots in glass may produce foci, these points of focus scarcely ever exist more than a few inches trom the surface of the glass, and consequently these defects can do no damage when occurring in roofs several feet distant from the growing plants below.
The only full and complete series of experiments on this subject in this country (conducted at the Cornell University Agricultural Experiment Station, the Physical Laboratory of Cornell University, and a glass factory in Ithaca, New York, but yet unpublished) shows the true cause of the burning by glass to be the rariation in thickness of the entire pane, or portion of same, thus causing a prismatic or lens-like effect (Fig. 997), which causes a more or less distinct focussing of the sun's rays at distances varying from 5 or 6 feet to 30 feet, or even more, from the glass.

This defect usually occurs along the side or end of the pane, and is not visible to the eve. but may be easily detected by the use of the micrometer caliper or by testing in the sunlight. It nayy be found in all kinds of glass, and is caused by a reduction of the upper or pipe end of the cylinder from which sheet glass is made, by the glass blower, to facilitate the removal of the "cap" or neck end of the cylinder, by which it is attached to the pipe while being blown. The defect, as before stated, is one which may be found in all grades and qualities of sheet glass, of both foreign and domestic manufacture. The fact is well known that differenees in the thickness of spectacle lenses, which are imperceptible to the ege, may produce sufficient refraction to materially vary the direction of rays of light
passing through such lenses, and it is not difficult to see that the same effeet may be produced by similarly imperceptible variations in the thickness of sheet glass. That this is the case has been conclusirely shown by the series of experiments before mentioned. These also show that buris on plants, caused by defective glass roofs, oceur in lines and not in isolated spots, burns of the latter description being usually the result of a

997. Refraction of light rays by an irregular pane of glass.
weakening or deterioration of tissue, due to carelessness in the matter of rentilation, humidity of the atmosphere and water, and temperature of Greenhouses, rather than to defects in the glass of roofs.
If, therefore, it is not possible to obtain glass of uniform thickness with certainty, it may be found cheaper and often fully as satisfactory to purchase the lower or common grades of double thick glass, using in the roof only those panes which show, after testing in the sunlight for foci, an entire lack of the prismatic character which makes them dangerous to plants grown under them.
J. C. Blaik.

Greenhouse Heating. - In all sections in which the temperature drops below the freezing point, it is necessary to provide some artificial msans for heating Greenhouses. Nearly all modern siructures are warmed either by steam or hot water, alchough hot air flues are oceasionally used. While hot water is preferred for small ranges of glass, as it can be depended upon to furnish an even degree of heat when left for a number of hours, steam is more commonly used for extensive plants, as the cost of piping the houses is much less than when hot witer is used. Steam boilers require more attention than hot water heaters, but when there is more than 10,000 or 12,000 square feet of glass, it is best to hare a night fireman and watchman, and the extra expense can be made up by the saving in the cost of fuel, as it will be possible to use a lower grade of coal. Under these conditions the cost of running a steam plant will be as low as with hot water, but in small houses, where hard coal is used, and the fires receire no attention for six to eight hours during the night, hot water heaters will be cheapest to operate, and will be most satisfactory. See, also, the article Forcing.
As the various flowers and vegetables grown under glass require different temperatures, the piping of Greenhouses has to be varied accordingly. Thus, although it may vary from 3 to $5^{\circ}$ for different varieties of the same species, our common plants require the following night temperature: violets and lettuce, 45 to $50^{\circ}$; radishes and carnations, 50 to $55^{\circ}$ : roses and tomatoes, $60^{\circ}$; cucumbers and stove plants, $70^{\circ}$.
Brilers.-Whether steam or hot water is used for heating, the best boilers for honses with less than 2,000 feet of radiation are of cast iron, but for larger houses, especially when steam is used, boilers of a tubular pattern are commonly preferred. Althoumh it is not usually practiced, it will be safest and often cheapest in the end if two or more boilers of medium size are used instead of one large boiler of the same capacity as the small ones combined. When only one boiler is used it might result in the loss of all the plants in the house if any accident should happen to it in serere weather, while if
two or more boilers are used, and are so arranged that any of them can be cut off, the danger from this source will be greatly lessened. The use of two or more smell boilers will also be found much more economical than one large one during the fall or spring, when it will 'he far cheaper to maintain a fire in one of the small boilers than in a large one.
In selecting a boiler, it is always desirable to have one sufficiently large to afford the necessary heat without foreing the fire, as this will not only give more satisfactory results, but will result in the economy of fuel and labor, and will prolong the life of the boiler. Boiler makers generally use some definite ratio between the size of the grate and the amount of fire surface in the boild $r$, but this raries with the size of the boiler and the efficiency of "ie fire surface. In small hot water boilers, with very effective fire surface, the ratio between the two is frequently as small as 1 to 15 , while in larger boilers it is often as great as 1 to $3 \overline{3}$, and even more where hard coal is used and the boilers have constant attendance. For small Greenhouses it is desirable to have the grate sufficiently large to permit of leaving the fire without attention for eight to ten hours in the severest weather, while for a large range of houses it is customary to employ a night fireman, and a grate much smaller proportionately could be used. In steam boilers the capacity is generally rated at about 100 square feet of radiation for each horse-power; and an average of about 15 square feet of fire surface is considered equivalent to a horse-power, it being customary to estimate that 12 square feet in large boilers and 18 feet in very small ones will equal one horse-power. Thus, in boilers of medium size, an area of 10 square feet of grate will answer for 250 square feet of heating or fire surface, and this will be sufficient for nearly 1,700 feet of radiating surface, where steam is used; and, as hot water requires about two-thirds more radiation, a boiler of the above size will answer for from 2,800 to 3,000 square feet of hot water radiation. In using the above figures for small boilers that will not have attendance during the night, it is generally adrisable to make an allowance for this of about 25 per cent, and, when a boiler is required for 1,000 feet of ridiation, select one that would be rated at 1,250 feet.
For large ranges, tubular steam boilers will generally be more satisfactory. Good results will be secured from those either of fire-tube or of water-tube construction, and many prefer them when hot water is used; but when tubular boilers are used for hot water heating, although good results may be secured when a regular steam boiler is employed, it is adrisable to have them made without a steam dome, and to have the entire shell filled with tubes (Fig. 998). As a rule, these boilers will be less expensive than cast-iron boilers, and if properly eared for, will be nearly as durable.

During the past few years a large number of coil boilers hare been constructed for hot water heating. These boilers are generally from 4 to 6 feet long, and are


## 998. Horizontal tubular boiler for hot water.

made from wrought-iron pipe, varying in size from 1 to 2 inches in diameter, but when constructed from 1 -inch pipe ther are not rery durable, as the pipe itself is comparatively thin, and wherever the threads are exposed it is quiekly eaten through. There is also more trouble from the boiling over of the water than when larger pipes are used, and when boilers are constructed of 1 -inch pipe it is necessary to have either an elevated expansion tank or to run it as a closed system. In making the boiler the pipes are eut of the desired length, usually of 5 or 6 feet, and the ends are connected either by return bends or by manifolds, so as to
form a number of vertical coils, each containing from six to ten pipes. The upper ends of the manifolds are joined at the front end of the heater and connect with a flow pipe, while the lower ends of the rear manifolds are joined to the returns. As a rule, the grate is of the same width as the coil, and from one-half to two-thiris as long. Although a box cuil is much cheaper than a cast-iron heater, when we add to its cost the expense for grate, doors and other fittings, and of bricking it in, the amount saved will not be large, especially as the coil

999. Flow and supply pipe for under-bench flows.
boilers are, as a rule, not more than one-half as lasting as cast-iron boilers, most of which are complete and require no brick work or trimmings.

Hot Water Piping.-Modern hot water heating systems do not differ particularly from those in which steam is used, except that larger sized pipes are required to afford the necessary radiation. Formerly 4 -inch castiron pipes were used in the piping of Greenhouses, but as the joints are packed with oakum, cement or iron filings, they frequently give trouble by leaking, and it is much more difficult to make changes or repairs than when smaller wrought-iron pipes with screw joints are used. Owing to the large volume of water in the pipes, the circulation is necessarily quite sluggish, and it is not easy to secure the high temperature in the water that can be obtained from smaller pipes. Another objection to these large pipes is, that it is not possible to carry the flows overhead, as is often cesirable.

When the flow pipes supnly a number of houses, or if the heater is at some distance from the Greenhouse to be warmed, it is best to start from the boiler with one large pipe, or with two pipes leading out from different sides of the boiler, rather than to carry independent pipes to each house. If there are several houses to be heated, it is advisable to have the heater located at the north end or side of the houses, as near the center as possible, and carry the flow pipe along the ends of the houses just over the doors, although, if necessary, they may be beneath the level of the doorways. From this main pipe one or more supply pipes can lead into each of the houses. The size of the main feed pipe, as well as of the branch pipes, should be in proportion to the amount of radiation that they supply; and, in determin ing the amount that can be handled by pipes of different sizes, it is advisable to use somewhat larger supply pipes when all of the radiation, both flow and return is under the benches than when the flow pipes at least are orerhead. A similar allowance should be made when the boiler is partly above the level of the returns, as compared with a system in which the radiating pipes are a number of feet above the top of the boiler, since in the latter case a much smaller supply pipe will suffice. In a general way, the following sizes can be used as supply pipes: $11 / 2$-inch pipes for 75 to 100 square feet of radiation; 2 -inch pipes for 150 to 200 square feet; 21/2inch for 250 to 350 ; 3-inch for 400 to $600 ; 31 / 2$-inch for 600 to 800 ; 4 -inch for 1,000 to 1,200 ; and 5 -inch for 1,500 to 2,000 square feet of radiation. The supply pipes should, if possible, rise vertically from the heater to a point higher than the highest point in the system and then should have a slight fall, say 1 inch in 20 feet, so that there will be no opportunity for the pocketing of air in the pipes. It will, howerer, make but little dif-
ference whether the pipes run up-hill or are given a slight downward slope, and the former arrangement may be used where it vill best suit the conditions. In case the pipes are carried under the benches, and it is inipossiole to sink the boilers much below the level of the coils, it will be well to have the flow pire run vertically from the boiler to a height of 8 or 10 feet (Fig. 999), and then branch and run horizontally along the ends of the houses, taking off the supply pipes for each and dropping them below the level of the benches.
It is often desirable to have some or all of the flow pipes overhead, as this will greatly improve the clrculation and will aid in preventing cold drafts of air upon the plants. Sume make use of a single large flow pipe in each honse. This is located upon the posts, a foot or so beneath the ridge, and carries the water to the farther end of the house, where branch pipes connect with the coils, but a better distribution of the heat can be secured in houses more than 10 feet wide if two or more pipes are used. These can be upon the ridge and purlin posts, and it is often desirable to have one upon each of the wall plates. The number and size of these flow pipes will depend upon the width of the houses and the size of the coils that they supply. The amount of radiating surf $n 9$ in the flow pipe itself should be added to that in the cois, in determining the size of supply pipe that will be required. For long houses it will often be necessary to use one or more 3 -inch pipes, but ordinarily 2 inch or $21 / 2$-inch pipes distributed upon the posts and wall plates will give the best results.

The size of pipe used for the returns will depend upon the length of the coils and their height above the boiler, as the pipes for elevated short coils may be smaller than those of considerable length that are below the top of the boiler. Ordinarily 2 -inch pipe will be desirable for coils more than 75 feet in length, and will be preferable to a smaller size when they are only 50 feet in length, if the flows are under the benches and the lowest part of the coils are below the top of the boiler. For short coils, pipes as small as $11 / 4$-inch may be used where they are somewhat elevated, but for ordinary commercial Greenhouses $11 / 2$-inch pipe is better up to 50 to 75 feet, and 2 -inch pipe for all others, as, while small pipe furnishes the most effective radiation, the increased friction impedes the circulation.
If a single large flow pipe is used, it is often desirable to have one or more of the returns elevated upon the purlin posts and wall plates, but ordinarily the radiating surface should be distributed upon the walls (Fig. 1000), and under the benches in houses where, as is now generally the case, there are walks along the side walls. In houses in which it is undesirable to have bottom heat, all of the pipes may be upon the walls; and this is also the usual arrangement when solid beds are used, except in wide houses, in which case a portion of the returns may be upon the sides of the beds, beneath the walks, or elevated upon the purlin and ridge posts. The pipes in the coils may be connected at their ends either by means of manifolds or by tees and close nipples, but in either case provision should be made for the expansion of the

1000. Pipe work for modern greenhouse heating. A wall coil.
pipes, which may be done in the case of rertical coils by running them partly across the ends of the houses and in the horizontal coils by the same neans, or by placing the header at the lower end of the coil and a foot or so lower, and connecting it with the ends of the pipes by means of nipples and right and left ells.

When all of the pipes are under the benches or upon the walls, a single large pipe may be used as a flow to supply all of the others in the coil, or two or more of the pipes of the cazn size, as the returns may be used as flow pipes. The ie f'res can be so arranged that they will each sujp ', ', or more returns, or they may eonnect with a head from which all of thu return pipes start. Care should $u$ taken to give all of the return pipes a slight fall, an. it will be best if this is only enough to insure their being kept free from vir. It will be safest to give the sraller pipes a slope of one inch in 15 feet, but 2 -inch pipes, if carefilly graded and securely supported at intervals of 10 feet, will give good results if the fall is not more than! inch in 3 ! feet. This is often of considerable importance in long nouses where it is not possible to sink the heater so is to give the returns a fall of 1 inch in 10 or 15 feet, as i often recommended. It should be understood that better circulation can be secured when a return pipe has but a sligit slope if cufficient to keep it free from air, with a vertical drop of the return pipe at the lower end, than when the coil has a much greater fall in running from one end of the house to the other, if this brings the lower end of the coil down to about the level of the main return. The circulation in a coil fed by an under-bench flow will we quite unsatisfactory when the lower end of the coil is below the top of the heater, if it is connected at its own level with the return pipes from other coils, that are considerably higher, and especially if they are fed by elevated fiow pipes. When overhead flow pipes are used, the slope of the returns will necessarily be toward the heater, but when the pipes are all under the benches the slope may be in either direction, and if connected at the end nearest the heater it will be necessary to run a return pipe of the same size as the supply pipe, back from the farther end of the house, unless there are a number of houses in the range, when a main return pipe can be run across the farther end of the houses, to which coils can be connected. If a coil is made up of two or more pipes of the same size, a part of which are flows and the others returns, it will be advisable to run all of these pipes down hill; although, if there are only one or two flow pipes, and the lower end of the coil is considerably above the heater, a good circulation can be secured if the flow pipes run up hill to the farther end and are brought back with a downward flow. The downhill system, with a flow pipe running to the farther end of the house, has two advantages, as it does away with the necessity of air valves, or other openings for the escape of air, except at one point, which should be the highest in the system, and it provides for a somewhat more even distribution of the heat, the farther end of the houses being fully as warm as the end nearest the boiler. Where there is a large range of houses and overhead pipes are not desired, the difference in temperature that can be secured at the two ends of the houses will not be marked if the coils are connected with the main flow pipe at the end nearest the boiler, and are joined with a main return pipe pass. ing alons the farther end of the houses, and if the coils upon the walls are carried along the ends of the houses to the doors.

For all hot water heating plants an expansion tauk is necessary (Fig. 999). This may be made from heary galranized sheet-iron, or a riveted boiler iron tank may be used. It should be connected with the heating pipes, but the point of connection will make little difference, although when the downhill system is used, if the pipe leading to the expansion tank starts from the highest point of the system it will make the use of air valves unnecessary. The tank may be located only slightly above the highest point of the system, but it will be best placed at least 10 to 15 feet higher, as the elevation of the tank
will lessen the danger of the boiling over of the water in the system, and make it possible to secure a higher temperature in the water of the coils than when the tank is not thus elevated. Trouble from the boiling of the water in the heater is most likely to occur when the flow or return pipes are too small, and when the fire surface in the boiler is composed of small, wroughtiron pipes or drop tubes. When there is a proper adjustment between the size of the boiler and the radiating surface, and the return connections are of sufficient size, there will be little danger from it.

Estimating Hot Water Radiation.-Owing to the great variations in temperature and the differences in the construction of Greenhouses and in their exposures, it is impossible to give an explicit rulc regarding the amount of radiation to be required under all conditions; but experience has shown that, in well-built houses, any desired temperature can be secured, for various minimum outside temperatures, when there is a certain ratio between the amount of radiating surface and the amount of exposed glass and wall surface, supposing, of course, that there is a proper adjustment between the size of the boiler and radiating surface, and that the system is so arranged as to give good results. Thus, when a temperature of $40^{\circ}$ is desired in sections where the mercury does not drop below zero, it will be possible to maintain a temperature of $45^{\circ}$ inside the Greenhouse when there is 1 square foot of radiating surface to $4 \frac{1}{2}$ square feet of glass. Under the same conditions, $50^{\circ}$ can be secured when there is 1 foot of pipe to 4 of glass, and $55^{\circ}, 60^{\circ}, 65^{\circ}$ and $70^{\circ}$ can be obtained when there is, respectively, 1 square foot of pipe to each $31 / 2,3,21 / 2$ and 2 square feet of glass. For outside temperatures slightly under or above zero, there should be a proportionate increase or decrease in the amount of pipe used, and if the houses are poorly constructed, or in an exposed location, it will be desirable to provide increased radiating surface. Under the best conditions the temperatares mentioned could be obtained with a slightly smaller amount of radiation, but the greatest economy, so far as both coal consumption and labor are concerned, will be secured when the amount of radiation recommended is used. In determining the amount of exposed glass surface, the number of square feet in the roof, ends and sides of the houses should be added, and to this it is always well to add one-fifth of the exposed wooden or other wall surface, and if this sum is dividel by the number which expresses the ratio between the area of glass and the amount of radi-
of glass and the amount of radi-
ation, it will give the number of square feet of heating pipe to be required. The
unit of measurement of wrought -iron pipe is the in. terior diam-


[^0]

If they must be employed, special hot-water fittings should be secured.
In conservatories with high side walls, it is desirable to place the flow pipes at the plate and tie returns on the wall or under the tables. Figs. 1001, 1002 and $100{ }^{\circ}$ illustrate the lay out of pipes for water in a carnation, rose and violet house.
Hot Water Ender Pressure. - In some large Greenhouses the hot water systems have been placed under pressure by closing the expansion tank. To prevent any danger of the blowing up of the system, a safety-valve. with a weight set so as to allow the water to escape before the danger point is reached, is attached either to the tank or expansion pipe. The systen being completely closed, the water as it warms is placed under pressure. and steam cannot be formed. This makes it possible to raise the temperature of water in the coils quite a number of degrees higher than when an open tank is used. As there is even more danger from an explosion of a system when the water is under pressure than when steam is used, care should be taken to see that the safetyralve is in good working order, and that it is set at a point well below the danger limit.
When water is carried under pressure, it permits of the use of smaller flows and returns, and a considerable reduction in the amount of radiating surface. On the other hand, it is less economical in fuel than the open system, and requires rather more attention. The pressure system cannot be recommended for use under all conditions, and it will generally be best to have the piping adapted for all except the most severe weather, and then to have it so arranged that the system can be clnsed, if it becomes necessary to do so in order to maintain the desired temperature.

Piping for Steam. - The arrangement of the heating pipes for use with steam need not be unlike that above described for hot water, except that smaller flow and returu pipes are used. When there is but one or two houses it is well to use overhead flow pipes, as a rule only one being required in a house. A 2 -inch flow pipe will be sufficient for 400 square feet of radiation, and $21 / 2 \cdot, 3 \cdot, 31 / 2 \cdot$ and 4 -inch supply pipes will answer, respectively, for 700 , $1,000,1,400$ and 1,900 square feet of radiation. For long houses it will be best to use $11 / 4$-inch pipe for the coils, but l-inch pipe will answer for houses 100 feet or less in length. The coils should, of course, run down hill, but if overhead supply pipes are not used the connection may be made at the end of the house nearest the boiler and the return pipe may be placed underneath the coil. In order to prevent the wate: from backing up in the coils it is desirable that they should be at least 18 or 20 inches above the lerel of the water in the boiler, while 3 or 4 feet would be eren better. There should be an automatic air valve at the lower end of each coil, and, in order to regulate the amount of steam, a shut-off ralve should be placed in both flow and return pipes. Unless there are several coils in each house it will always be well to have valves upon a number of the pipes in the coils, so that all but one or two can be cut off if desired. To prevent the water from being forced out from the boiler when the steam is turned into the houses, there should be a check valve in the return pipe near the heater.
The amount of radiation which will be required to secure anr desired temperature will vary to some extent with the amount of pressure that is carried in the boiler, but, as a rule, this is not more than tive pounds, and often no pressure at all is used. It will ordinarily be best to have the radiation sufficient to furnish the temperature desired in ordinarily cold weather without carrying any pressure, and then by raising the pressure to from fire to ten pounds secare the heat that is needed during cold waves.
In letermining the amount of radiation for a steamheated house. 1 square foot of pipe will answer for 9 square feet of glass, when $40^{\circ}$ is desired, and for 7,5 and

3 where $50^{\circ}, 60^{\circ}$ and $70^{\circ}$, respectively, are required. Fig. 1004 illustrates piping for steam in a rose house.

Heating by Flues. - Where fucl is cheap, and when either a low temperature is desired in the house or the outside temperature does not drop much below the freezing point, hot-air tlues may be used, but while the cost of constructing them is not large, the danger from fire is so great that they are not always economical. A brick furnace is'built at one end of the house, and from this a 10 - or 12 -inch flue is constructed to carry the smoke and hot gases through the house to the chimnes, which may be at the farther end, or directly over the furnace, the flue in the latter case making a complete circuit of the house. When the houses are more than 60 feet long, it is alvisable to have a furnace at each end, and the Hue will then extend only to the center of the house and return to the end from which it started. The first 30 feet of the flue should be of fire brick, but beyond that it can be constructed of sewer pipe. While either hard or soft coal may be used, the best results will be secured with 3 - or 4 -foot lengths of hard wood. Where the temperature does not drop more than 10 or $12^{\circ}$ below zero, a temperature of $40^{\circ}$ may be maintained in
$\qquad$

among amateurs. The housewife is alwass asking how to make her wax-plant bloom, without knowing that it would bloom if she would let it alone in winter and let it grow in spring and slimmer. What we try to accomplish by menns of :ortilizers, forcing and other special practices may often be accomplished almost without effort if we know the natural season of the plant. Nearly all Greenhouse plants are grown on this principle. We give them conditions as nearly normal to them as possible. We endeavor to accommodate our conditions to the plant, not our plant to the conditions. There are some plants which it is possible to make bloom in abnormal seasons, as roses, carnations, lilies: these wo may force (see Forciny). But these forcing plants are few compared with the whole number of Greenhouse species. The season of normal activity is the key to the whole problem of growing plants under glass; yet many a young man has served an apprenticeship, or has taken a course in an agricultural college, without learning this principle.
The second principle fri n the plant side is this: The greater part of the growth shoutal be macie before the plant is expected to bloom. It is natural for a plant first to grow: then it blooms and makes its fruit. In the great majority of cases, these two great functions do not proceed simultaneously, at least not to their full degree. This principie is admirally illustrated in woody plants. The gardener always impresses upon the apprentice the necessity of sechring "well ripened wood "of Azaleas, Camellias, and the like, if he would have good flowers. That is, the plant should have completed one eycle of its life before it begins another. From immature and sappy wood only poor bloom may be expected. This is true torge degree even in herbaceous plants. The regeta stage or cycle may be made shorter or longer by . incler or larger pots, but the stage of rapid growth inus. be well passed before the best bloom is wanted. rerilizer applied then will go to the productivi of tlowers; but before that time it will go to the production of leaf and wood. The stronger and better the plant in its vegetative stage, the more satisfactory it will be in its blooming stage.

Closely like to the last principlo is the law that checking grou'ih, so long as the plent remains heulthy, induces fruitfulness or floriferousuess. If the gardener continues to shift his plants into larger pots, he should not expect the best results in bloom. He shifts from pot to pot until the plant reaches the desired size; then lie allows the roots to be confined, and the plant is set into bloom Over-potting is a serions evil. When the blooming habit is once begun, he may apply liquid manure or other fertilizer if the plant needs it. The rosegrower or the cucumber-grower wants a shallow bench, that the plants may not run too much to vine.

Most plants demand a particular season of imactivity or rest. It is not rest in the sense of recuperation, but it is the habit or custom of the plant. For ages, most

1003. Violet house with water heating.
plants have been forced to cease their activities becanse of cold or dry. These habits are so fixed that the plants must be humored when they are grown under glass. Some plants have no such definite scasons, and will grow more or less continuously, but these are the exceptions. Others may rest at almost any time of the year; but most plants have a definite season, and this season must be learned. In general, experience is the only guide as to whether a plant needs rest; but bulbs and tubers and
thick rhizomes always signify that the plant was obliged, in its native haunts, to carry Itself over an unpropitious season, and that a rest is rery necessary, if not absolutely essential, under domestlication. Instinetively, wo let bulbous plants rest. They usually rest in our winter and bloom in our spring and summer, but some of them -of which some of the Cape bullos, as Nerines, are examples - rest in our summer and bloom in fall.

1004. Rose house, $150 \times 20 \mathrm{ft}$., piped for steam.

The natural habitat of the plant is significant to the cultivator: it gives a suggestion of the treatment under which the plant will be likely to thrice. Unconsciously the plant-g. uwer strives to imitate what he conceires to be the conditions, as to temperature, moisture and sunlight, under which the species grows in the wild. We have our tropical, temperate and cool houses. Iet, it must be remembered that the mere geography of a plant's native place does not always indicate what the precise nature of that place is. The plant in question may grow in some unusual site or exposure in its native wills. In a general way, we expect that a plant coming from the Amazon needs a hothouse; but the details of altitude, exposure, moisture and sunlight must be learned by experience. Again, it is to be said that plants do not always grow where they would, but where they must. Many plants which inhabit swamps thrive well on dry lands.

The upshot of all this is, that the habitat and the zone give the hint: with this beginning, work out the proper treatment. Examples are many in which eultirators have slavishly followed the suggestion given by a plant's nativity, only to meet with partial failure. Because the Dipladenia is Brazilian, it is generally sup posed that it needs a hothouse, but it gives best results in a coolhouse. Persons often make a similar mistake in growing the pepino warm, because it is Central and South American. Ixia is generally regarded in the North as only a glasshouse subject because it is a Cape bulb, yet it thrives in the open in parts of New England, when well covered during winter.
The best method of propagation is to be determined for exch species; but, as a rule, quicker results and stockier plants are obtained from cuttings than from-seds. Of necessity, most Greenhouse plants are grown from cuttings. In the great majority of cases, the best material for cuttings is the nearly ripe wood. In woody plants, as Camellias and others, the cutting material often may be completely woody. In herbaceous plants, the proper material is stems which have begun tu harden. Now and then better results are secured from seeds, even with perennials, as in Grevillea and Impatiens Sultani.

Coming, now, to some of the principles which underlie the proper management of the house, it may be said, first of all, that the grower should attempt to imitate a natural day. There should be the full complement of continuous sunlight; there should be periodicity in temperature. From the lowest temperature before dawn, there should be a gradual rise to midday or later.

As a rule, the night temperature should be $10-15^{\circ}$ Fahr. below the maximum day temperature in the shade. A high night temperature makes the plants soft and tends to bring them to maturity too early. It makes weak stems and flabby flowers. The temperature should change gradually: vioient fluctuations are fatal to good results, particularly to plants which are grown at a high tomperature.
In Greenhouse cultivation, every plant is to receive individuml cure. In the fiell, the crop is the unit: there we leal with plants in the aggregate. In the Gireenhouse, each plant is to be sared and to receive special care: upon this success depends. There should b-a vacant places on the Greenhouse bench; room is too

and bottom of the soll; aud in pots it takes place from all shles. H'ater on a rising tempernture. This advice is particularly applicable to warmhouse stuff. Watering is a cooling proeess. The foliage should not go intu the night wet, particularly if the plant is soft-growing or is a warmhouse subject. Wieterspuringly or not at all when evoporution is slight, as in dull weather.
In all Greenhouse work, see that the soil is thoroughly comminutcel amb that it contains much sand or fiber. The amount of soil is small: see that it is all usable. In the garden, roots may wander if gool soll is not at hand: in pots they cannot. The excessive watering in Greezhouses tends to pack the soll, particularly if the water is applied from a hose. The soil tends to run together or to puidle. Therefore, it should contain little silt or clay. The gardener's practice of adding sand to his Gireenhouse soil is thus explained.

Fentilation is employed for the purpose of reducing temperature amb of lessening atmos. pheric moisture. Theoretically, it is emploved also for the purpose of introducing chemically fresh air, but with the opening and shutting of doors, and the unaroidable leaks in the house, it is not necessary to give much thought to the introduction of mere fresh air. Ventilating reduces the temperature by letting out warm air and letting in cool air. The air should be admitted in small quantities and at the greatest distance from the plants in order
valuable. All this means that every care should be taken to so arrange the house that every plant will have a chance to develop to its utmost perfection. Patient hand labor pays with Greenhouse plants. The work cannot be done by tools or by proxy. Therefore, the gardener becomes skilful.

Every caution should be taken to prevent the plants from becoming diseased or from being attucked by insects. The greater part of insect and fungous troubles in the Greenhouse are the result of carelessness or of mistakes in the growing of the plants. Determine what diseases or pests are likely to attack any plant; discover under what conditions these discases or pests are likely to thrive: then see that those conditions do not arise. Keep the house sweet and clean. Destroy the affected parts whenever practicable. Then if trouble come, apply the fungicide or the insecticide. Remember that the very protection which is given the plants, in the way of equable conditions, also protects their enemies: therefore, it is better to count on not having the difficulties than on curing them. If diseases or pests have been troublesome, make a complete change of soil or stock before the next season, if practicable. At least once every year there is an opportunity to rid the place of pests. Many gardeners carry their troubles year by year by trying to fight them, when they might succeed by trying to aroid them.

The higher the temperature and the more rapid the grouth, the greater the care necessary to insure good results. Plants grown under such conditions are soft and juicy. They are easily injured by every untoward circumstance, particularly by drafts of cold air. Let a draft of cold air fall on cucumbers or rapid-growing roses, and mildew will result in spite of Bordeaux mixture and brimstone.

In durk weather, grow the plants slow. If g: en too much heat or too much water, they become soft and flabby, and fall prey to mildew, green fly and other disorders. A stocky plant is always desirable, but particularly in the dull weather and short days of midwinter: at that time, take extra precautions in the management of the house.

Watering plants under glass requires more judgment than any other single operation. Apply water when the plants need it, is a gardener's rule, but it is difficult to apply because one may not know when they need it. Yet, if the gardener will put the emphasis on the word need he will at least be cautioned; novices often apply the advice as if it read, Apply water when the plants will stand it. Water thoroughly at each application. Mere dribbling may do more harm than good. Many people water too frequently but not enough. Remember that in benches eraporation takes place from both top
to avoid the ill effects of drufts on the plants. Many small openings are better than a few large ones. Ventilate on a rising temperature.
Most plants require shading in the summer under glass. Shading is of use in mitigating the heat more than in tempering the light. A shaded house has more uniform conditions of te nperature and moisture. If plants are grown soft and in partial shade, they aro likely to be injured if exposed to bright sunlight. Sunscalding is most common in spring, since the plants are not yet inured to bright sunshine and strong sun heat. Tue burning of plants is due to waves (not bubbles) in the glass. It should be said that, other things being equal, the larger the house the easier is the management of it. It is less subject to fluctuations of temperature and moisture. In the "nesting" of houses, one house protects the other from the weather. A good commercial American Greenhouse plant is shown in Fig. 1005.
L. H. B.

GREENS, CHRISTMAS. The Christmas Greens industry has developed to an enormous extent within a few years. Some twenty years ugo, when florists began to use lycopodium, e dozen barrels were all that was used in a single season in many of our lower cities. To-day the output in the United States is probably nearly 200 tons-about 40 car loads.
The materials now used, mentioned in something like their order of commercial importance, are holly, lycopodium (also known as bouquet green, ground pine, club moss, etc.), mistletoe, laurel, and cedar clippings. Other articles of similar utility are wild smilax, hardy ferns, needle pines, outdoor paim leaves, Florida moss, galax leares and leucothoé sprays: these all come from the South.
Lycopodium is one of the $o^{1} d e s t$ and commonest of decorative materials. During seasons of long continued "Indias sunmer," a surplus is frequently gathered by careless pickers and dumped on the market. The choicest picked stock being obtainable only through the regular and well established trade channels, such sources are usually the only ones in case of early snow storms, which prevent the gathering of it. Choice stock from eastern Vermont, northern New York and Pennsylrania has been usually handled in large sugar barrels, tied in carefully arrauged bunches, weighing perhaps one-half to one pound each. These bunches are packed in the barrels in layers, with roots toward the center. The quantity is always limited and the price 25 to 35 per cent higher than the Wisconsin and Michigan stock. Lycopodium, as handled in the West, comes almost entirely from northern Wisconsin, and is gathered from the north end of Lake Michigan, in the vi-
cinity of Sturgeon Bay, west nearly to St. Paul. The green belt in that state annually moves northward as the country becomes settled and as the woods and swamps are depleted. This plant seems to thrive best in moist, shaded localities, and when plucked out by the roots, as is done when gathering, is not replacel by new growth of its kind. More open situations and drie ground prodnce lycopodium of a lighter and yellowish color, and consequently of less decorative value. Indians pick the hest green, but are unreliable when exact dates must be met. The arerage season's output from Wis consin is perhaps 35 car loads, or 150 to 200 tons.
The use of holly in a commercial way has grown from a rery smali beginning to its present proportions within ffteen years. Entil the last six years nost of the holly was handled by wholesale seedsmen and florists. With in that time the sale of holly has been taken up by the produce commission honses in large cities, therely tre bling the volume, but reducing the quality. Delawate and Maryland furnish the best stock of what is known as eastern holly, while Tennessee and some other parts of the South shlp what is usually an inferior quality. Holly is almost always packed in unif.rm cases $2 \times 2 \times$ ft . Freezing, while packed in cases, damages it but lit tle, provided the holly be allowed to thaw out in a very cool and preferably dark place, where the temperature is not allowed to exceed $45^{\circ} \mathrm{F}$. If, however, frozen holly is shipped in warm express cars, the foliage may turn black in a night.
English holly has occasionally been imported into the United States and into Canada, but never satisfactorily commercially. The eastern cities use mistletoe from England and France, brought over in fast steamers. The ber ries are much larger than those of the American mistletoe, which grows chiefly in Tennessee, Kentucky, Arkansas, Texas and New Mexico. It is usually shipped in crates of about 112 pounds, and the sultry quarters on shipboard often cause the loss of the leares. The western states use probably not more than 8,000 to 10,000 pounds of American-grown stock from the localities named. It is also shipped in other kinds of packages. Mistletoe is very liable to damage from frost.
Cedar clippings are now but little used during the holiday season, but on other occasions, where open air decorations are desired, they are frequently made into ropins or wreaths. Laurel from Maryland and Virginia is mostly used in eastern states
Wild smilax, in light eases, usually in three sizes, is shipped by express mostly from Alabama and Georgia. It is as liable to injury by freezing as mistletoe, but is not damaged if allowed to thaw out gradually before removal from the case. About $\$ 10,000$ worth is used annually.
Eight million hardy ferns were recently offered by one wholesale dealer in Christmas Greens. These ferns are largely gathered in Massachusetts and Michigan.

Among the newest and most artistic materials for Christmas decoration are galax leaves and leucothoë sprays, which are here figured and are elsewhere fully described. Galax grows in the mountains from North Carolina to Georgia, and nowhere else in the world.
For further particulars concerning this industry. see American Florist 14:598-600 (1898). For the artistic side of Christmas decoration, see illustrated articles by F. Schuyler Mathews in American Florist 8:48t and 9:493.
J. C. Vatghan.

GREENS, EDIBLE, or POT-HERBS. This term Greens is generally applied in America to any Pot-herb that is to say, to any green herbage which is cooked and served separately from the other principal and secondary dishes of a square meal. The term Greens is usu ally used for the mess of cookery which is brought to the table. It is not so often applied to the plants growing in the garden. In the garden, perhaps, they are herbs-Pot-herbs-though this term is not so much em ployed as it conveniently might be. Greens are served early in the spring, when the appetite craves anything which tastes like out-of-doors
All sorts of plants are used as Pot-herbs. Almost any thing which shows a succulent growth in the spring is likely to be tried by somebody. Turnip tops, potato leares, pig-weeds, purslane, and many other apparently
impossible herbs, are often impressed into the service. The really good Pot-heris are comparatively few, however. Probably the best are dandelion, spinach, mustard (various species), endive, chard, beet-top and knle.
The following plants have been more or less used as Pot-herbs:

Buck's-horn Plantain, Plantago Coronopus.
Callfornia D'eppergrass. Brassica Jajonica.
Cardoon. Cyuetra C'urdunctulus.
Charl. Beta eulgaris.
Chervil, Anthriscus Cerefolium
Chicory. Cichorium Intybus.
Chinese Amaranth, Amarantus Gangeticus.
Chinese Artlchoke. Stachus Sicbolili (S. affinis or S. tuberifera).
Chinese Cibblage, Jirassica I'e-Tsai.
Chinese Cabbage, IPrassica Chinensis.
Chinese Mnstard, Iirassica junced.
Chives, Allium Schoenoprasum.
Corn Salad. Falerianella ulitoria
Cress, Lepidium satica.
Mealow Cress, Curdamine pratensis.
Para C'ress, spilanthes oier tcea.
Upland Cress, Barbarea eulgaris and pracox.
Other so-called Cresses, as Eppidium Chilense, Lepidium piscielium, Lepidium Firginicum, Senebiera pinnatifida, Sasturtium Indicum, Gynandropsis pentaphylla.
Dandelion, Taraxicum officinale
Dock, Humex several species
Endive, Cichoritum Endiria.
Globe Artlehoke, Cynara Scolymus.
Good King Henry, Chenopodium lionus-Irenricus.
Goosefoot, Chenopodium, mostly C. album.
Ice Plant, Mesembryanthemum erystallinum.
Italian Corn Salad, Valerianella eriocarpa.
Kale, Brassica aleracea.
Lettuce, Lactuca (especially the wild species, some of which are excellent).
Malabar Nightshade, Basella alba and Basella rubra
Mustard, Brassica specles.
Nasturtiums, Tropoolums.
Orach, Atriplex hortensis.
Parsley, Opium Petroselinum.
Pepper-grass, Lepidium specles.
Pigweed, Amarantus species.
Pokeweed. Phytolacca decaudra.
Quinoa, Chenopotium Quinoa.
Kocket Salid, Eruca satica.
Rosella, Mibiscus Sabdariffa.
Salad-Burnet, porterillm Sanguisorba.
Sorrels, various, Oxalis crenata, O. tetraphylla.
Spinach, Spinacia oleracea.
Tuberous-Rooted Chinese Mnstard, Erassica napiformis.
Turkish Rocket, Bunias orientalis
Turkish Rocket, Bunias
Winter Purslane, Montia perfoliata.
Culture. - Pot-herbs are wanted at the earliest possible moment in the spring. They are, therefore, often grown in hotbeds, frames, or in greenhouses (see Spinach, Daudelion, Mustard, etc.). They must be succulent and tender. It is necessary, on this account, that they be quickly grown in loose, very rich, well-drained soil, with plenty of water. Specific directions for the cultivation of the various plants will be found under the several heads.
F. A. Watgh.

GREENWEED. Genista tinctoria.
GREGORIA. See Douglasia.
GRENADIN or GRENADINE. A type of Carnation.
GREVILLEA (Chas. F. Greville, once vice-president of the Royal Society of England, and a patron of botany). Protecice.e. Trees or shrubs, of nearly 200 species, mostly Australian, of which one is everywhere cult. in this country as a decorative pot-plant. Fls. small, perfect, mostly in pairs in the clusters or racemes, apetalous, the calyx with 4 recurved parts; stamens of 4 sessile anthers borne on the sepals; style 1, long and curved: lrs. alternate, of many forms: fr. a follic ${ }^{2}, \frac{\text { w }}{}$ with 1 or 2 winged seeds.
robusta, Cunn. Silk Oak. Fig. 1006. One of the most popular of all fern-leaved pot-plants, and easily grown from seeds (which are imported in large quantities). When young (from 2-5 ft. high) it makes a most graceful subject. In glasshouses it is not grown to large size, and, therefore, little is known of the great size which it attains in its native forest. According to Von Mueller, it is "indigenous to the subtropical part of

East Australia, rising to 150 feet, of rather rapid growth, and resisting drought to 2 remarkable degree; hence one of the most eligible trees even for desert culture, though naturally a sylvan plant. The wood is elastic and durable, valued particularly for staves of casks, also for furniture. The richly developed golden yellow trusses of flowers attract honey-sucking birds and bees through

1005. Grevillea robusta ( $\times$ / $/ 6$ ).
several months of the year. The seeds are copiously produced and germinate readily. Rate of growth in Victoria, 20-30 ft. in 20 years. In Ceylon it attained a stem-circumference of 5 ft . in 8 years." In California and S. Fla. it is a valuable lawn tree. When grown in the open, it will stand some frost. As a glasshouse plant it is grown almost wholly from seeds, and is used in its young state; as the plant becomes old, it loses its leares and becomes ragged below. It thrives in the temperature suited to geraniums or roses, and it stands much hard usage and neglect. It is popular as a window subject. Best results with Grevillea are usually secured by raising a fresh stock every year, from seed sown late in winter or in spring. The following winter or spring they will be in $4-6$-in. pots, and will be in their prime. The young plants need frequent repotting to keep them in good condition. Grevillea robusta has come to be generally known as aflorists' plant within the past ten years. Ivs. twice-pinnatind, the ultimate divisions narrow and pointed and sometimes lobed, pubescent. B.M. 3184. A.G. 14:115. A.F. 4:413. -In the West Indies the plant is much grown, and it is often trimmed to desired shape. In exposed places the foliage becomes golden in cast.

There are no other Grevilleas in the Amer. trade, but follow. ing are accessible portraits of other species: cauthifolia, Cunn. B.M. 2807 - (i. alpestris, Meissn. (G. alpina, var. Lindl.). B. 1.5007 R.H. 1887:108. R.B. $23: 145 .-G$. annulifera. Muell. 1B.M. 6687.-G. arenària, R. Br. (G. canescens,
R.Br.). B.M. 31 s .-G. asplenifolia, Knight. B.M. 7070 R.H.

 R.Br. $=$ G. arenaria. - G. ericifolia. R.Br. B.M. 6:61.-G. fasciculata, R.Br. B.M. 610ラ,-G. Milliàna, Mnell. B.M. 752t-G. Hookeriana, Meissn. B.M. 6879.-G. intricita, Meissn. B.M. 5919-G. juniperina, R. Br. (G. sulphurea, Cunn.). G.C. II. 26: 469 .-G. lineitris, R.Br. B.M. 2661 . - G. longifolia, R. $\mathrm{Br}_{\mathrm{H}}=\mathbf{( i}$. asplenifolia.-G. macréstylis, Muell. B.M. 5915-G. Preissei, Meissn. B.M. $5837 .-G$. pulchélla. Meissn. B.M. 5979.-G. punf. cea: R.Br. B.M. 6698-G. rosmarinifolia. Cunn. B.M. 59 I; (i.C. II. $\overline{5}: 529 .-G$. sericea. R.Br. (G. dubia, R.Br.). B.M. 3798. -G. sulphürea, Cunn. $=\mathbf{G}$. juniperina.-G. Thelemanniàna Hueg. R.H. 1882: 456 .
L. H.B.

GREWIA (Nehemiah Grew, of Corentry, 1628-82, author of a work on anatomy of plants). Tiliticer. This includes two little known plants slightly cult. in S. Fla. A genus of about 60 species of trees and shrubs in the warmer parts of the Old World, often having
stellate pubescence : lvs. entire or serrate, 3-7-nerved $\cdot$ ths. yellow or rarely purple, in axillary, few-fld. cymes or terminal panicles; petals 5 , with pits or glands inside at the base; stamens indefinite: drupe 1-4-stoned. G. Caffra, Meissn., from Natal, was int. by Reasoner Bros. in 1891. A bushy plant, with pink star-shaped fls. borne during most of the year. G. denticulàta, Wall., from India, was never described. Under this name Reasoner cultivates a plant "resembling a mulberry in growth, which bears enormous quantities of acid drupes, about the size of cranberries; used for pickling."
GREYIA (after Sir George Grey, once Gorernor of Cape Colony). Sapiudacea. A monotypic genus, containing a small tree from Natal, which bears large pikes of pendulous, 5 -petaled, scarlet fls., and is cult. outdoors in S. Calif. and abroad under glass in many botanic gardens. In R.H. 1894:252 the plant is shown at its best, with a spike 6 in. long and $2-3 \mathrm{in}$. wide, containing probably over 100 fls., each three-fourths of an inch across. In France this tree flowered from the $n d$ of autumn througlivut the winter. The long-exse.
amens with reddish purple anthers make a strikiue sture. The structure of the As. is so peculiar that Larvey referred the genus doubtfully to the saxifrage family. In European greenhouses Grevia is a shrub requiring full sunlight, thorough ripening of the wood and a season of rest before flowering. In Natal it flowers in August or September, which is early spring there. Europeans recommend a sandy loan. Prop. by seeds or by cuttings from half-ripened wood.
Sútherlandi, Hook. \& Haw. Small tree, with thick, naked branches: lvs. elustered at the ends of the branches, $2-3 \mathrm{in}$. long, orbicular, ovate or oblong, deeply cordate at base, toothed; petiole 9-12 lines long; disk cup-shaped, with 10 marginal teeth, each crowned by a peltate gland; stamens 10 : ovary laterally 5 -lobed, 5 celled; orules numerous, in 2 series in the inner angle of the cells: fr. capsular, 5 -valved : seeds albuminous B.M. 6040. R.H. 1894:252. G.C. II. 19:625. J.H. III. 30:101.

GRIFFINIA (after William Griffin, who brought these plants from Brazil). A maryllildacei. Seven species of Brazilian bulbs, with distinct foliage and fls, about $21 / 2 \mathrm{in}$. across, which are more or less tinged with lilac or rose. Like many other genera of the amaryllis family, bulbs of flowering size are too costly for gencral use. Les. usually petioled, and with a very broad blade : perianth tube none or very short; the 3 lower segments narrower than the upper: orary 3-celled: stigma capitate, rarely 3 -fld: umbel 6-15-fld. Gritfinia is distinguished from many other genera by its 2 ovules, which are basal and collateral. See Baker, Amaryllideæ.
As there seems to be no recorded Anierican experience with these fine bulbs, the following English experience is taken from W. Watson's article in The Garden 50, p. 209: "Griflinias are called stove plants. They do not always thrive under cultivation, but where they do they are strikingly ornamental. Herbert states that in Brazil they are buried 8 inches deep in strong loam, the scape and leaves rising to the height of 2 feet, whereas in our stoves they rot when potted in strong soil. He recommends light peat and saud for them. bat they thrive when planted in fibrous loam three parts, leafmold one part, and a good sprinkling of silver sand. The bullos should be partly buried and the pots carefully drained. During winter the plants rest and require no water. They should be placed on a dry shelf in a warm or intermediate house and kept there until about March, when growth recommences and the flower-spikes push up. The plants ought to be at their best in May, though they do not appear to flower at any definite time under cultivation. They may be male to flower in winter by forcing, but the probable result of tui is the sickening of the bulbs. The lvs. are deciduous, new ones being developed along with the flower-spikes, as in the Hippeastrums. The plants require moderate supplies of moisture, both at the root and orerhead, and a light position. They do not ripen seeds under cultivation, but may be propagated by means of offsets from the bulbs."
A. Stigmu capitate.
hyacinthins, Herb. Bulb globose : lvs. 6-9 in. long, 2-3 in. broad, rounded at the base to a channeled petiole as long as the blade : scape 1-2 ft. long : pedicels none or verv short : stamens much shorter than the segments. B.R. 2:163 (as Amaryllis hyacinthina. Upper segments tinged blue, lower ones nearly white). J.H. III. 31:37i. Var. máxima, Gn. 50, p. 209, is probably the best gaiden forni. Called "Blue Amaryllis" in some catalogues.

## Ad. Stigma distinctly S-cut.

Blumenàvia, K. Koch \& Bouché. Bulb ovoid : Ivs. 4-5 in. long, cuneately narrowed to a petiole, shorter than the blade: scape $6-8 \mathrm{in}$. long: pedicels $1 / 2 \mathrm{in}$. long: stamens as long as the perianth. B.M. $\overline{5} 666$ (veins rosecolored). R.H. 1867:32. Gn. $50: 1083$ (veined and flushed with rose).
GRINDELIA (Prof. Hieronymus Grindel, of Riga and Dorpat). Compósite. This genus contains 2 plants from which a fluid-extract is obtained that is used externally against poisoning by "poison ivy." They are hardy plants sometimes cult. for their showy yellow fls., which are $11 / 2-2$ in. across and borne freely all summer. A genus of about 14 species of American herbs, sometimes shrubby, of coarse habit, mostly natives of the U.S. west of the Mississippi. Lus. sessile or partly alasping and usually serrate and rigid: heads terminating the branches. The plants often have a sticky balsam, especially the hearls before and during flowering, whence they are called "Gum-plants" in California, particularly $G$. robusta, which is the common one. The 2 species described below have roots that are perenuial aud shortlived, but sometimes annual. These plants are also wholly glabrous, and have firm or rigid leaves.
Grindelias are of the easiest culture, and are prop. by division, cuttings or seed. G. squtrose is hardy in the East: G. robusta is sold in Calif. They are best for wild places and trying situations. J. W. Manning says that $G$. squarrosa grows freely in all soils. J. W. Keller writes that it does best in a light, open, moderately rich soil. In California it is common on dry hills. According to John S. Wright, both species grow in salt marshes and on alkaline soil, being indiscriminately gathered for medicinal purposes. The extract is also tonic and sedative, and is used in asthma. The rays are numerous, sometimes 30 , about $1 / 2 \mathrm{in}$. long.
squarrosa, Dunal. Shrubby, branched from base, 1-2 ft. high : outer akenes usually squarely truncate and even at summit. B.M. $1 \mathbf{7 0 6}$.
robústa, Nutt. Gum-Plant. Herbaceous: lvs. larger and more rigid: akenes all, or some outer ones, 1 -toothed or bordered at the summit. Fls. throughout the Californian winter. Collected stock is offered. W. M.

GRISELINIA (after Franc Griselini, Venetian botanist, middle of eighteenth century). Including Decostea. Corndcece. This includes a tree and a shrub with large, glossy, laurel-like foliage, rarely cult. in the South, and nearly hardy at Washington. A genus of 8 species of trees, shrubs or climb. ers from New Zealand, Chili and Brazil, with lrs. alternate, often inequal-sided, leathery: fls. minute, in glabrous or pubescent racemes or panicles.
littoralis, Raoul. Tree, 30 ft . high: lvs . ovate or oblong, wadge-shaped or narrowed into is petiole: veins obscure beneath. New Zealand.
lùcida, Forst. f. Shrub, 10-12 ft. high: lvs. obovate or oblong, very unequal at the base; reins distinct ieneath. New Zeal. Not cultivated here. Var. macrophylla (G. macrophylla, Hort.) is a large-leaved form. G. lucida is prized in Europe for apartments. Showy. Requires shade and moisture.

## GROMWELL. Lithospermum.

GROUND CHERRY is Physalis; in the Old World Prunus Chamecerasus. Ground Hemlock or American Yew, is Taxus Canadensis. Ground Ivy. Nepeta Glechoma. Ground Laurel. Old World name for E'pi-
giea repens. Groundnut, Apios and Panax; also Old World name for peanut or goober (Arachis). Ground Pine, Lycopodium. Ground Pink, Phlox subulata.

GROUNDSEL. See Senecio. Groundsel Tree. Baccharis hulimifoliu.
GRUMICHAMA. Eugenia Brasiliensis.
GRUMILEA. All referred to Psychotria.
GUAIACUM (native West Indian name). Zygophylldcece. Guaiacum is kept in every good drug store, and the tree which produces the resin used in medicine has a hard, heavy wood, used for blocks and pulleys, rulers, etc. It is cult. to a very slight extent in S. Calif. and in tropical Fla. for ornamental value. The genus has 8-10 species of trees or shrubs, mostly tropical American, and all have hard wood and abundant resin : lvs. opposite, abruptly pinnate, leathery : Ifts. 2-14, entire: peduncles borne in pairs between the deciduous stipules, 1-fld.: Hs. blue or purple: sepals 4-5, deciduous, unequal ; petals $4-\overline{5}$, broadly obovate ; stamens 8-10, inserted in the short, inconspicuous disk.
officinale, Linn. Middle-sized or low tree, inhabiting arid plains from the Fla. keys to Venezuela. Lfts. in pairs, evergreen, a quarter to half an inch long.

GUAM, ISLAND OF. See Ladrones.
GUAVA (species of Psidium, which see). Fig. 1007. The Guara, in its various species, is so easily cultivated and spreads so readily from seeds that it is almost a weed in tropical countries. In Florida and other sections near the tropies it is at home, and succeeds admirably on any soil not too wet. It usually bears in its second year from seed, or after frosting down, hence if a winter passes without seriously damaging the tops, a considerable amount of fruit is produced the succeeding summer and autumn. The strictly tropical species and varieties are the best for all purposes, and make the finest of jelly and preserves. The Cattley and the Chinese are now cultivated in Florida; when dormant they will stand a temperature as low as $22^{\circ} \mathrm{F}$. The foliage of these two sorts is very ornamental, being a rich, glossy green, not unlike that of Camellia Japonica.
The Guara is most readily propagated from seed, but is quite variable, hybridizing so easily that to secure a certain fine variety recourse must be had to grafting or
$\square$

$\qquad$
be potted off when rery small, and kept growing in pots until wanted for permanent setting in the orchard, as the plants in open ground do not transplant well. Rooted cuttings, of course, should be treated the same as seedling plants as to final handling.

Guavas grow well on any soil, sandy or clayey, rich or poor, dry or moist; but they will not live in a bog. On too rich soil the growth is apt to be rank and the quality of the fruit injured. This fruit tree is as easily grown under sheds as is the pine-apple in Florida, and when thus protected is certain to bear abundantly, even well out of the tropics.
E. N. Reasoner.

GUAZUMA (name of Mexican origin). Sterculiuicea. Seven or eight tropical American (one also Javan) trees, with sinall white, pink or yellow fls. in shortpeduncled, axillary cymes. Petals 5, often 2-parted: stamens 10 , united into a tube or column, some of them sterile; styles 5 : fr. a 5-loculed nut the size of a filbert: lrs. 2 -ranked, serrate. Allied to Theobroma, but that genus has a berry-like fr., entire Irs., fascicled or solitary fls., and a different staminal column. G. ulmifolia, Lam., the "Guacima" of Mexico, is offered by Franceschi. It becomes a large tree: branchlets powdery: Irs. orate to oblong-lanceolate, somewhat pointed, oblique at base, powdery beneath when young but becoming glabrous: nut nearly globular, with 5 furrows. The tree is said to yield medicinal preparations.

GUELDER ROSE. See Viburnum Opulus.
GUERNSEY LILY. Nerine Sarniensis.
GUEVINA. See Gevuina.
GUILIELMA. See Bactris.
GOINEA HEN FLOWER. Fritillaria Meleagris.
GUIZOTIA (after Guizot, the celebrated historian). Compósite. This genus has 5 species of annual herbs from tropical Africa, one of which has some economic interest from its oil-producing seeds. Neither this nor closely allied genera have much ornamental value. The plants have yellow heads, about 2 in. across, with 8 broad, 3 -toothed rays and a leafy outer involucre. Seeds can be obtained by the pound from S. Fla., and they are listed among miscellaneous agricultural seeds in a few of the largest European catalogues. The plant is cult. in India for the oil.
Abyssínica, Cass. (G. oleífera, DC. Verbesina satíva, Roxb.). Ivs. opposite, lanceolate, clasping, remotely serrate. В В.M. 1017.

## GOM TREES. See Eucalyptus and Acacia.

GUNNERA (J. Ernst Gunner, 1718-1773, was a Swedish bishop and botanist, and wrote a local flora). Haloragdcece. The little family Haloragaceæ comprises about 100 widely scattered and heterogeneous species in 9 genera. In the northeastern states are the aquatic genera Callitriche, Proserpinaca, Hippuris, Myriophyllum. These comprise small and mostly inconspicuous plants. In the Australian region are the endemic genera Loudonia and Meionectes; and there remain Serpicula, Gunnera, and Haloragis, with very wide and disjointed distributions. Gunnera has perhaps a dozen known species in S. Afr., Abyssinia, Java, Tasmania, Harraii and S. Amer. In general appearance the Gunneras are wholly unlike our native haloragaceous plants. The lrs. are gigantic and more or less orbicular, radical : fls. perfect or imperfect, small, packed in a great cob-like spike; petals 2 or none ; calyx none, or with $2-3$ lobes; stamens 1 or 2 : ovary 1 -loculed, bearing 2 filiform styles : fr. a drupe. They are perennial herbs, and with protection the two following species may be grown even in some of our northern states.

Gunneras are perhaps the noblest of all lawn foliage plants. To produce satisfactory effects, rich, moist ground is indispensable. The plants must never suffer for want of water. Full exposure to sun is adrisable, but they should be sheltered from severe winds, else the leaves will be damaged. Ample winter protection
should be provided for. A liberal covering of leares or litter, held in place by brush or branches, will generally keep them from harm. Apply the covering in December and remove early in spring. Prop. by division. Seeds are also employed, and they can now be readily secured.
manicàta, Lind. Stem thick and very short, the titanic crown of lvs. rising from the ground : petioles often as tall as a man, prickly : blades becoming 5 to 10 ft . across, orbicular in general outline, variously lobed, crenate, furrowed and channeled along the great veins: fls. green: spikes dense and tapering, of ten more than 1 ft . in diam. and 3-4 ft. tall. S. Brazil. I.H. 31:531. Gn. 45, p. 21 : 50, p. 455 ; 54, p. 385. G.C. III. 14:589. G.F. 8:55. - The crown of lis. sometimes measures from $25-35 \mathrm{ft}$. across. This is the better species.

Chilénsis, Lam. ( G. scàbra, Ruiz \& Par.). Not so robust, the lrs. smaller and less spiny, and the fl.-spikes less tall: fls. reddish. R.H. 1862, p. 310 ; 1894, p. 397. Gin. 49, p. 151. G.C. II. 26:425; 11I. 8;665.-Longer known in cult. Thrives in drier soil.
L. H. B. and J. B. Keller.

GUTIERREZIA (personal name). Compósitce. About 18 species of herbs or subshrubs, often resinous, all American, mostly western N. American. They are miuch brauched from the base, and hare narrow, entire lis. and clusters of small yellow heads.

Euthàmiæ, Torr. \& Gray. More or lẻss woody at base, seldom over 1 fc . high: involucre turbinate, 2 lines long: rays and disk-fls. each $3-9$ : akenes silky-pubescent; pappus of about 9 chaffy scales. N. W. N. Amer.

GUZMANIA (A. Guzmann, Spanish naturalist). Bromeliècecr. Includes Caraguata. About 70 tropical American Bromeliads, of which several are fairly well known ornamental glasshouse subjects. They closely resemble the erect-growing Tillandsias, but differ in technical characters: fls. in a simple spike-like terminal cluster, tubular, the outer segments or calyx oblong and obtuse, the inner or petals shorter than the tube; anthers inserted on the throat of the tube, and united by their edges around the style. Grown in the warmhouse, along with Billbergia and Tillandsia, which see for culture. Closely allied to Echmea. Many species are cult. in fanciers' collections in the Old World. For G. picta, see Nidularium. For G. Ejegrelliana, see Hohenbergia. G. rosea, a name which has appeared in the Amer. trade, is probably an Æchmea. Monogr. by Mez, DC. Monogr. Phaner. 9 (1896).
A. Corolla (or segments) purple or red.
lingulàta, Mez (Caragud̀ta lingulàta, Lindl. C. spléndens, Bouché. C lingulata spléndens, Hort.). Epiphyte: Irs. many, lanceolate or ensiform, $11 / 2 \mathrm{ft}$. long, remotely toothed: spike becoming drooping, showily red-bracted: expanded fl. about as long as the long-pointed bracts, the tube yellowish and the limb blue-purple. W. Indies, Cent. Amer., and adjacent S. Amer. B.R. 13:1068. F.S. 11:1091. - Handsorne. Var. cardinàlis, André (Caragù̀ta cardinalis, André). Bright scarlet: very showy. Columbia. I.H. 27:374. R.H. 1883:12.

## AA. Corolla (or segments) white.

trícolor, Ruiz \& Pav. ( $G$. frigrans, Hort., at least in part. G. grandis, Hort., in part. G. maculata, Hort., in part. G. monostàchya, Rusby). Lis. several to many, broad and more or less recurved, entire on the edges, usually shorter than the stout, erect spike: lower bracts green streaked with black, upper ones red-tinged: corolla white. W. Indies, Cent. Amer., S. Amer. L.B.C. 5:462. F.S. 9:918. B.M. 5220.- Interesting because of its combination of green, red and white. Some, at least. of the horticultural plants which pass as $G$. fragrans belong to Achmea eburnea, Baker (Canistrum Lindeni, Mez. Nidulirium Lindeni, Regel). This species is further mentioned under Nidularium.

Devansayàna, Morr. (C'arciguita Devansaydna, Morr.). Lrs. about 20, narrow linear or ensiform, brown-striped on the back: fis. white, in a dense, oblong spike, the scarlet bracts oval. Equador.


AAA. Corolla (or segments) yellow.
Melindnis, Regel (Caraguata Melindnis, Morr.). Les. strap-shaped, green above and brown-tinted beneath: Hs. yellow, subtended by oblong red bracts. French Guiana.
L. H. B.

GYMNOCLADUS (Greek, naked branch; referring to the naked branches, which in winter are destitute of twigs). Leguminosce. A genus of 2 species, one of which is a scarce native tree, the Kentucky Coffee Berry, so called because its seeds were used for coffee west of the Alleghanies before and during the Revolutionary War. It is a desirable shade tree for city streets, and is especially interesting in winter. It is a clean, stout tree, bright and graceful in appearance and free from disease, growing from $30-60 \mathrm{ft}$. high in cultivation, and not leafing out until the middle of May, after the other trees are in full foliage. It is thornless and has compound foliage. Grows with erect divisions,making narrow, pyramidal head. Branchlets very stout and destitute of spray: Hs. white, diœcious or polygamous, in terminal racemes: pods long, hanging. Grows naturally in bottom lands and richest soils. May be planted in any soil, but thrives best in deep, rich, or rather humid soil. Prop. by seeds and cuttings.
Canadénsis, Lam. (G.disica, C.Koch). Kentuckr Coffee Tree. Fig. 1003. Height in the wild, io-l00 ft.: lvs. large, twice pinnate with 4 - $\bar{i}$ pairs of partial leaf-stalks, each partial leaf-stalk with $5-13$ orate, acute lfts., except the lowest of $11 \mathrm{ft} ., 1-3 \mathrm{in}$. long, standing edgewise. Racemes many-fld. and elongated, nearly white, terminating branches of the season; staminate clusters $3-4 \mathrm{in}$. long; pistillate 10-12 in., and compact: ovary sessile: pods $6-10 \mathrm{in}$. long, fiat, scythe-shaped, dark reddish

1008. Gymnocladus Canadensis-Kentucky Coffee Trec.
brown, hanging unopened all winter. Early summer. S. Ontario to Penn., Tenn., Minn., Neb. and Indian Terr. S.S. 3:123, 124. R.H. 1897, p. 491. B.B. 2:261.
G. Chinénsis, Baill., with smaller, more numerous lfts. and much thicker pods, is not cult. A. Phelps Wrman.

GYMNOGRAMMA (Greek, a naked line; referring to the sori). Also written Gymnogramme. Polypodiacea. An unnatural aggregate of plants of very dissimilar
habit, arreeing in the possession of naked sori, which extend along the veins in various lines. A large number of the species are coated on the under surface with a white or yellow waxy powder, which has given the names of Gold Ferns or Silver Ferns. Two species occur in the West, the "Golden-back" of California, and a species less common from Arizona and other parts of the Southwest. Over 80 species of wide distribution have been included in the genus, which by many is divided into a series of natural genera. The name Gymnogramma itself is probably not tenable.

## argyrophylla, 9.

 anrea, 6.ca'omelanos, 8. chrysophylla, 4. decomposita, 7 . decomposita, ${ }^{\text {deg }} \mathbf{2}$.

## index. hispida, 1.

 Laucheana, 4. magnifica, 8.Peruviana, 9.
pulchella, 11.
schizophylla, 2.
sulphurea, 5 Tartarea, 10 Tatarica, 10
triangularis, 3. Wettenhalliana, 11.
A. Under surfaces of lis. not powdery.
B. Lis. pentagonal, hairy on both sides.

1. hispida, Mett. A low plant, $5-8 \mathrm{in}$. high, with pentagonal, palmate lvs. 1 in . or more either way, densely corered on both sides, but especially below, with strigose hairs. Has been incorrectly referred to G. Ehrenbergiana. Tex., Ariz., Mex.-Hardy.
вв. Lus. triangular-lancenlate, naked; ultimate segments narrow.
2. schizophylla, Baker. Lrs. 18-24 in. long, quadripinnatifid, the stalks, rachises and divisions slender, the ultimate segments finely cui. A comparatively recent introduction; very graceful in cultivation. Jamaica. A.G. 18:421. G.F. $2: 533$, A.F. 10 827. I.H. 31:522. Gn. 48, p. 417. Var. elegantíssima ( $G$. elegantissima. Hort. W. Bull.), has reddish brown rachises.
AA. Ender surfaces with warlike powder. (Gold and Silver Ferns.)
B. Powder yellow: lis. about as broad as long.
3. triangulàris, Kaulf. Fig. 1009. LTs. $2-5$ in. wide and long, on stall:s 6-12 in. long, dark green above, be:jw deep golden yellow, or occessionally white; lower pinnæ much larger than the others, del toid; the upper lanceolate.
 Calif. to B.C. Gn. 48, p. 444. -
4. Gymnogramma triangularis $(\times 1 / 3)$. A white powdered variety with a riscous upper surface and coarser cuttings (rar. viscossa, D. C. Eaton) is found in S. Calif.

BB. Powder yellou: les. lanceolate, several times as long as broad.

## c. Les. scarcely more than bipinnate.

dhrysophylle, Kaulf. Lrs. 12-18 in. long, with . h stalks and rachises, the segments slightly pin-
1 .c the base: powder golden yellow. W. Indies to $\therefore$ - J. 1856:201. G.C. III. 23:373. - Often considered 2 var. of $G$. calomelanos. Var. Laucheana (G. Lauch.edna, Hort.), has triangularlvs. except in its subvariety gigantea. Gn. 48, p. 437.-By many this species is considered a variety of $G$. calomelanos.

## cc. Evs. tripinnatifid to quadripinnate.

5. sulphurea, Desr. Lrs. 6-12 in. long on chestnut broxn stalks, the pinnæ long, tapering, less than $1 \frac{1}{2} \mathrm{in}$. wide at base, the pinnules compact, with 3-7 divisions; powder sulfur-yellow. W. Indies.
C. aùrea, Desr. Lrs. 6-12 in. long, 7-10 in. wide, deltoid ; pinnæ deltoid, $2-3$ in. Wide at base, the ultimate divisions cuneate. Madagascar. - By some this is referred to G. argentea, Mett., a similar fern with white powder.
6. decompósita, Baker. Lrs. $1 / 2 \mathrm{ft}$. Iong, I ft. broad, deltoid, quadripınnate or even 5 -pinnate; pinnæ close, lanceolate, with the ultimate divisions linear and 1nerved: powder rather scanty. Andes. F.R. 2:25. G.C. III. 11:365. F.1874, p. 148.
bвb. Pouder white: lv's. lanceolate.

## D. Segments acute.

8. calomélanos, Kaulf. Stalks and rachises nearly black: lvs. $1-3 \mathrm{ft}$. long, with lanceolate pinum; segments often with a large lobe-like auricle at the upper side of the base. West Indies to Brazil. A.G. $14: 303$. - The most variable species of the genus. G. magnifica, Hort., is probably one of the many garden varieties. Var. chrysophylla is here considered a distinct species. (See No.4.)

## DD. Segments obtuse, rounded

9. Peruviàna, Desv. Lvs. 6-12 in. long, $3-5$ in. wide, with dark chestnut-brown stalks; pinnw somewhat regularly pinnatifid on both sides below. Mexico to Peru. By some considered a var. of $G$. calomelunos. Var. argyrophylla (G. argyrophýlla, Hort.), is silvery on both sides.
10. Tartàrea, Desf. (G. Tatárica, Hort.). Lvs. 9-18 in. long, $2-\bar{j}$ in. broad, with closely set pinnae, tapering gradually to a point; pinnules scarcely divided or cut, mostly merely crenate. Trop. Amer. from Mex. southward.

DDD. Segments fan-shaped or wedge-shaped.
11. pulchélla, Linden. Lis. 6-12 in. long, 4 in. Fide, the lower pinna much the largest; pinnules imbricated; texture rather thin. Venezuela. Var. Wettenhaliadna, Moore ( $G$. Wettenhalliana, Hort.) is a garden variety, with pale sulfur-yellow powder.
G. Japónica. See Dictyogramma Japonica.
L. M. Underwood.

Gold and Silver Ferns are amongst the choicest and most distinct of all ferns in cultivation, by reason of the beautiful golden or silvery powder that covers the backs of the fronds. The best Gold Fern is G. chrysophylla; the best Silver Fern is G. calomelanos. Unfortunately, however, these fine subjects scarcely thrive anywhere but in a warm conservatory. The finest Gold or Silver Fern will present an unsightly appearance if syringed or watered overhead, as the water carries off the farina. Moreover, many a fine specimen is spoiled by overwatering at the roots in winter time or directly after repotting. The Goid Fern shown on Plate XI, which was considered one of the finest specimens of Gymnogramma ever raised in America, a plant that had been carefully kept for many years, was destroyed one winter by orerwatering. In the summer time, when these ferns are growing freely, there is little danger of over-watering, always provided the drainage be thorough. In the winter Gold and Silver Ferns should have a drier atmosphere, and less water will suffice. Plants in small pots should be lowered into a pail of water. Do not soak them again until they show indications of dryness. Large specimens should never be watered with the hose; always use the watering can. A critical time with Gold and Silver Ferns is after repotting, and many promising specimens are ruined as a result of premature watering at this time. When the plants are well established and the roots have taken fresh hold in the new soil they will need more water.

Gold and Silver Ferns like a drier atmosphere than the majority of ferns, particularly in winter. Hence they should not be placed on low benches. Elevate them in some way so that they can get the warmer and drier air of the conservatory. Young specimens should be placed on shelves or brackets near the light. Older plants may be set upon a large inverted pot or fern pan. A plant grown from spores shows its true character early. A year's growth produces fine little ferns, in 2 or $3-\mathrm{in}$. pots, with fronds 4 or 5 in . long, the young ferns being 2 or 3 in . high. Another year's care will give handsome specimens a foot or more high.
The first thing to do with Gold and Silver Ferns is to give them a special place where they can receive special care. For potting a light mixture is desirable. In the Old World, loam is usually not recommended, but for large specimens the writer has had best success in using 2 parts of fibrous loam, 1 part peat broken or chopped
in good sized pieces, and 1 part leaf-mold, with a little sand and some charcoai to keep the soil porous. These ferns can hardly have too much light, and need slight shade only in summer. In winter the night temperature should be $55^{\circ}$ to $60^{\circ}$, with a day temperature $5^{\circ}$ to $10^{\circ}$ higher. Be sure to give these ferns a drier atmosphere and less moisture at the roots in winter than in summer. However, the plants must not be allowed to get too dry.

The writer prefers to grow large specimens in pans rather than in pots, as the roots have more room to spread. Surface rooting can be encouraged by a light mulch of chopped moss, some fine peat and sand. Keep the crown of the plant a little elevated. It is necessary to hare plenty of drainage. A good potting soil for young plants consists of 2 parts peat and 1 part sand. Repot in February, before the young growth has started. If repotting is delayed too long the young fronds will be injured. Robert Shore.

GYMNOPETALUM (Greek, naked petal). Cucurbitàcece. A genus of 6 species of tropical oriental vines, of which one, G. Cochinchinense, is cult. chiefly for its ornamental gourds. It is a tender perennial plant, and is said to have small white fis. borne in late summer and autumn. It is advertised only in the largest seed catalogues, under the name of Scotunthus tubiflorus. Scotanthus was formerly thought to be a closely allied genus, differing only in the staminate fls. possessing bracts and 3 bristle-like rudiments of an ovary, while the staminate fls. of Gymnopetalum, by the old definition have no bracts or minute ones, and but 1 rudiment of an orary. The latest monograph of the Cucurbitacer is by Coigneaux in DC. Mon. Phan. vol. 3, 1881. He includes Scotanthus in Gymnopetalum, and distinguishes G. C'ochinchinense from the 5 other species by the following characters: fls. monœcions, white; calyx teeth long lin-eac-awl-shaped; calyx shortly villous, not tomentose: lvs. ovate, angled or slightly lobed: fr. 10 -ribbed.

Cochinchinénse, Kurz (Scotínthus tubiflòrus, Naud.) Musk-scented: stem much-branched, slender, grooved creeping or climbing, $5-71 / 2 \mathrm{ft}$. long: lvs. about $11 / 2-21 / 2$ in. long, 1-2 in. wide: fr. bright red, ovoid, rather acute at the base, produced at the apex into a long point which withers and remains, 2 in . long, more than 1 in . thick.

## GYMNOPTERIS. See Acrostichum.

GYMNOSPORIA (Greek, naked seeds; because in some species the seeds have no false coat, or aril). Celastràcece. This includes a pretty evergreen spiny shrub. cult. in S. Calif., and suitable for hedges. A genus of about 60 species of shrubs or small trees, growing in warm regions: branches often spiny: lrs. alternate, without stipules : fls. in small, forking cymes; sepals, petals and stamens 4-5, the last inserted underneath the disk, which is broad, wavy or lobed; style 2-3-lobed: capsule obovoid or nearly globose: seeds $1-2$ in each cell G. serrata, from Himalayas, is cult. at Santa Barbara Calif., from seeds sent to $\boldsymbol{F}$. Franceshi by the Botanic Garden of Rome.

GYMNOSTACHYOM stands as a good genus, but for the trade forms, see Fittonia.

## GYMNOTRIX. See Pennisetum.

GYNANDROPSIS (Greek words : the stamens look as if they were borne on the ovary). Cappariddcece. This genus includes a tender annual plant with 5-7 leaflets, and flowers resembling the spider flower, or Cleome. It is known to the trade at present as a Cleome, but Gynandropsis is distinguished by having a long torus (or receptacle), which is produced into a slender body (or gynophore) which is elongated at the middle, and bears the istil to which the filaments are united. Cleome has a short torus, which often has an appendix on the back. Stamens about 6 in Gynandropsis: in Cleome 4-6, often 10. Gynandropsis has about 10 species, found in the warmer parts of the world. Leaflets 3-7: fls. white or purplish; sepals deciduous; petals entire or crenulate, obovate, with a slender claw : seeds
idnes-shaped or orbieular, compressed, with a wrinkled r tubercled coat. For culture, see Cleome
speciosa, DC. (Cleorme speciosa, HBK.). Rather velrety towards the top: lfts. $5-7$, subserrulate, oblong, acuminate. Mex.
W. M.

GYNERIUM (Greek, woolly stigmas). Graminecr. This genus was until 1897 held to include the Pampas Grass (Gynerium argenteum), which has long been considered the finest of all tall, plumy grasses, as also the most important, commercially, of all ornamental grasses. Plumes of Pampas Grass are shipped in large quantiies from California to Europe, and are dyed various colors. In nature the plumes are silvery white, with varieties ranging from rose to carmine, violet and purple. They are often $2-3 \mathrm{ft}$. long. Pampas Grass is grown commercially only in California. The plumes are not col lected in South America or shipped therefrom. The plumes of the male plants are much inferior to those of the females, and California growers exercise the greatest care to allow no male plants ia the plantation. In this country the plumes are sold chiefly to persons of foreign birth. (See E'ierlastings.) As a border plant, the Pampas Grass is not perfectly hardy in the North, the best sub stitute for it being Erianthus Ravenuw. Horticulturally, Pampas Grass is not to be compared with the Giant Reed (Arundo Donax), as the two things represent two different types of beauty. The Arundo is valued for its bold habit, of which the tall, reedy stems are an impor tant feature, while its plumes are wholly inciciental, being smaller than those of the Pampas Grass, and often not produced before the northern frosts.
The plumes of Pampas Grass and of Uva Grass ( $G$. saccharoides) are both sold in London, and are presum ably distinguished in the trade. Uva Girass is too tender to be grown even in southern California. In England Pampas Grass is generally hardy, while Ura Grass is known only to a very few hothouses. Uva Grass is the original species of Gynerium, and is now considered to be the only species in that genus, the Pampas Grass having been removed in 1897 to the new genus Cortaderia. Pampas Grass should henceforth be catalogued by nurserymen as Cortaderia argentea. Uva Grass should be tried in southern gardens, as also another plant said by critics to be far more beautiful than either, namely Cortuderia jubata, which is chiefly known to the trade as Gynerium arcuato-nebulosum.

Pampas Grass can be grown in sheltered spots as far north as Rochester, N. Y., if well protected in winter. A box well filled with dry leaves, hay or straw, and in verted over the clumps, will generally keep them from harm. Perfect specimens can be obtained only in light, rich soil, with moderate moisture, at least in the early stages of growth. Prop. readily by division in spring, or by seeds, which may produce flowering plants in 2 years.
The popular name "Pampas Grass" is now unchangeable, but the plant does not grow on the pampas or vast grassy plains of South America, but in the mountains. All the evidence tends to show that it is confined to the neighborhood of water courses and to depressions where there is a constant and sufficient supply of underground water." The manner in which this misleading name became fixed is explained by O. Stapf, of hew, in his excellent monograph of this group in G.C. III. 22:358, 378, 396 (1897). In this place Stapf rives 5 species of Cortaderia, and another is added in 13.M. 7607 . In S. America the Pampas Grass and some of its allies are called Cortadero; hence the generic name Cortaderia. Cortaderias are widely distributed in S. America.

Cortadèria argéntea, Stapf (Gymerium argénteum, Nees). Pampas Grass. Fig. 1010. Grows in individualized, large, thick tussocks: rhizome very short culms biennial, 3-6 ft. high, excluding the panicle : lvs. mostly crowded at the base; sheaths increasing in length from the base upwards from 2 in . to $21 / 2 \mathrm{ft}$., several to many times longer than the internodes: sexual dimorphism of the spikelets slight (apart from the genitalia): spikelets 3 -6-fld.. the uppermost florets more or less rudimentary. For habit sketches, see R.H. 1890
p. 489. Gng. 5:89. G.C. III. 26:654. J.H. III. 35:43. A.G. 14:323. F.S. 12, p. 179.

None of the following varictal names have botanical rank, but they probably are fairly distinct horticulturally, and so far they have appeared only in connection with the name Gynerium. Var. monstrosum is perhaps the most robust, and var. nanum (which grows about 3 ft . high), the dwarfest. The others here mentioned are supposed to be the same height as the type. A slender form with narrower foli age is var. elegans, with lvs. a fourth of an inch wide

1010. Pampas Grass. (Seg Gynerium.)
and staiks 5 - 7 ft. high. R.H. 1862, p. 150. It has subvarieties with white striped foliage, var. elegans-niveolineatum, and spotted with white, var. elegans-niveovittatum. The preceding varieties, except where notei, have the height of the type and white plumes. Th next four varieties differ from the type in having colored plumes : vars. ròseum, violàceum, purpùreum and carmineum, the names indicating the different colors Varieties with white-striped foliage are album variegà tum and Stenackeri foliis variegàtis. Varieties with rellow-striped foliage are aureum variegàtum and Wesserlingi variegàtum. Var. Roi des Roses was said by John Saul to have foliage striped with rose, but others describe it as a rosy-plumed variety.
When advertised under Cortaderia, these names should all have the feminine endings, as monstrosa, ete.

Cortadèria jubàta, Stapf (Gynèrium jubdtum. Lem. G. urcuato-nebulosum, Hort.). Differs from Pampas Grass in the rather laxer, more graceful plume, with longer, more flexuous, nodding branckes, somewhat smaller spikelets, more delicate glumes, and in the longer, very slender staminodes of the pistillate fls The plume is lavender-colord, and the plant has been killed by a temperature of $3^{\circ} \mathrm{F}$. Grows in a dense tuft, perennial, but with biennial culms: spikelets $3-5$ fld. The plume is $1-2 \mathrm{ft}$. long. B.M. $\mathbf{7} 607$. G.C. III 26:658. Gn. 55. p. 93. R.H. 1885, p. 200. Gn. 15, p. 179 Int. by Lemoine, of Nancy, France. Probable synonyms are $G$. roseum Rendlateri and $G$. argenteum carmina tum Rendlateri. F.S. 20:2075.-Not so well known as the other two species.
Gyneriunı saccharoides, Humb. \& Bonp. UVA Grass. Rhizome creeping: culms perennial, $12-30 \mathrm{ft}$. high: Ivs. rather evenly distributed over the culm, those near the base gradually withering away, leaving the stem aaked $4-14 \mathrm{ft}$. above ground: sheaths nearly equal (except the lowest), about 6 in. long, slightly longer than the internodes: sexual dinorphism of the fls, very conspicuous: spikelets 2 \%l. B.M. $7352 .-$ Essentially a more tender plant than the Pampas Gasass.
J. B. Keller and W. M.

The growing of Pampas plumes for profit in California has been carried on for over 95 years. Pampas Grass was introduced into the United States about 1848. In the northern states it is frequently planted on the lawn in summer, and upon the approach of cold weather transferred in a tub to a cellar for winter protection. In California, a hill will sometimes attain a height of 20 ft ., a diameter as great, and a weight of 2,000 pounds. Such plants would be quite inconvenient for our northern friends to handle in the cellar.
Plants are easily produced from seed, but as the sex and variety are very uncertain, stock is usually increased by dividing the female plants, the plumes of which are mach more beautiful than those of the male. The growing of Pampas Grass on a commercial seale dates from 1874 , when the difference in sex was discorered.
In 1872 the writer sowed seed which in tro ycars gave several hundred plume-bearing plants. Even then the rariations in color and fineness were very marked.

In 1874 , it was found that by pulling the immature plumes from the sheaths and exposing them to the hot sun the male plumes would hang hearily like oats, while the female plumes would become fluffy, and light and airy. In November, 1874 , samples of the female plumes were sent to Peter Henderson \& Co., New York. Three hundred were ordered at once, and the following day instructions were received to double the order and send by express. This was the first lot of good plumes erer sent east from California, and was the begimning of the present Pampas industry. The writer's plantation was increased each year uatil 1889, when it comprised about 5,000 hills. There were a number of other extensire plantations in the neighborhood of Santa Barbara. The crop of 1889 was estimated at $1,000,000$ plumes. The demand has been good, but the prices have never been as high as at the beginning of the industry. The first prices were $\$ 200$ per 1,000 plumes. The decrease in price was gradual until 1886, when sales were slow at $\$ 30$ per 1,000 plumes. Some of the growers did not harrest their crops that year, and destroyed their plauts. In the fall of 1887 plumes were in demand at $\$ 40$ per 1,000 , and in 1888 they were scarce at $\$ 50$ and $\$ 60$ per 1,000 . The following spring there was an increase in acreage. Since then the industry has had its ups and downs, and the price has ruled low for several years, the present prices being $\$ 13.50$ and $\$ 14$ for first-class, and $\$ 8$ to $\$ 9$ for second size.
Pampas Grass should be put on the best valles land and set 10 by 16 feet apart. Before planting, the ground should be deeply plowed and put in first-class condition. In selecting stock, divide only female plants that preduce the finest white plumes. Young hills produce the best plants. From old hills the best plants are obtained around the outside, those in the center of the stool being mostly worthless unless planted in large clumps. Some plumes will be produced the first gear after planting. They will not be first-class, but are worth saring. The second rear, if well grown, they should produce 80 to 150 plumes to the hill. Not all plantations will yield this much. The third and fourth years there will aú ive much change in the vield. As a plant gets older the plumes are larger but the vied is less. After 8 or 10 cears a quantity of dead matter will bare accumulated, and the hills should be trimmed or burned.

The appearance of the plumes is a signal for great activity among those who have large fields. The grass should be so trimmed early in September, before the plumes appear, that each hill will be easy of access. Young plants ripen their plumes two or three weeks earlier than old ones, and some varieties are earlier than others. It requires exercise of judgment to pick the plumes at the proper time. They are generally ready when they are exposed from the husk a few inches and have a fluffy look. It is well to try a few at this stage, and if they cure well at the stem end when dry they are all right, but if they do not become fluffy at the stem end they have been picked too young. If the plume looks dark and seedy at the 'top when eured, it was too old when picked. Some varieties, especially those producing very long plumes, shonld be allowed to remain soniewhat longer on the plant than those of the short-plumed
varieties. By trying a few of each variety, the time of ripening can soon be ascertained. Some varieties are pulled from the husk in the tield; others have to be hauled to husking benches, where the husk or sheath is remored. Some planters husk them like corn : others use a knife set in such a way as to split the husk without injuring the plume. When the husk has been split, a quick jerk or strike on the table will extract the plume. The plumes are then taken to the drying ground and evenly spread in long rows. This ground should be made smooth and free from anr trash that is liable to adhere to the plumes. Clean stubble ground is the best. The plumes are left on the ground three days and two nights to cure, and are turned and shaken once each day. They are next packed away as broadly and smoothly as possible on shelves in a dry building, where they should lie ten days or two weeks, or until the stems are thoroughly dried, at which time they are ready for market. They are packed in two grades: the first-class, haring plumes $\mathbf{2 6}$ inches long and over, clear of stem (sometimes as long as 45 inches), is packed in eases that measure three-quarters of a ton and contain 3,000 plumes; second class stock is packed in cases of the same size, the plumes being 17 to 26 inches long clear of stem, and 6,000 in each case. If shipping by express, the writer uses bales of about 2,000 plumes, covered with canvas or burlap and some light strips of wood at the corners. If the plumes are packed smoothly and evenly they will withstand heary pressure. Careful all-round cultivation is necessary to produce good plumes. About three-quarters of a million plumes are grown at Santa Barbara at the present time.
The best market at present is London, the next Hamburg. Berlin, Denmark, New York and Philadelphia take a few. Pampas plumes are colored in London. In America the pure white plumes give the best satisfaction.

Joseph Sexton.
GYFURA (name refers to the tailed stigmas). Composita. Twenty or more herbs (rarely somewhat shrubby) of tropical Asia, Africa and Australia. Les. alternate, entire or lobed, numerous; heads diseoid, the florets commonly all fertile, not rery showy. The Gynuras are attractive glasshouse herbs, usually requiring a moderately high temperature. Genus allied to Senecio and Cineraria.
aurantlaca, DC. Velvet Plant. Stout and branchy, - -3 ft ., with almost succulent stems, densely clothed with violet or purple hairs: lrs. large and soft, ovate, jagged-toothed, hairy, short petioled or the upper ones clasping, overlaid with iridescent purple: heads in a terminal cluster, yellow or orange. Java. I.H. 28:436. One of the handsomest of recent foliage plants. In winter it may be grown in the conservatory or warmhouse, but in the summer it may be bedded out in a warm and protected place. It grows rapidly, and makes a most satisfactory display of colored leafage. It is readily propagated by cuttings in the house, as geraniunis are.
Other species, but not known to be in the Amer. trade, are: G. auriculàta, Cass. (G. ovalis, DC. Cacalia ovalis, Ker.).

1011. Gypsophila muralis.

Only slightly villous: Irs. oval, entire or repand, green both sides: Hs. yellow, fragrant. China. B.R. 2:101.-G. biculor, DC., $0-3 \mathrm{ft}$., of looser growth than the alove, glabrous: Irs. lance orate, somewhat downy, short-petioled, deep-toothed or pinnatifd. green above and purple beneath: fis orange. Moluceas. B. M. $5123 .-$ G. ordtis. DC. $=$ G. anriculata.-G. sarmentosa, DC. Climbing, with purple glabrous stems: Ivs. narmow, ovate to lanceolate, acuminate petioled, remotely smalltoothed, green and pirple-ribbed. Warmhouse plant from Malayan Is. B.M. 724.
L. H. B.

GYPSOPHILA (gypsum-loving, becanse it likes calcarcous soils). Caryophylldeea. European and Asian herbs, bearing a profusion of small Hs., and usefu! for mist-like effects in mixed borders and as trimming in bouquets. There are perhaps 60 species. Senals 5. :nited below, but the calyx naked at the base (not bracted, as in some related genera) : petals 5 , clawed, very small, usually white: styles 2: pod 4-valved: Ivs. small, entire, opposite. Very branchy or spreading, slender herbs, with scant foliage when in bloom. Of easiest culture, in open, rather dry places. They are desirable for rock work. They make an excellent effect as filling amongst slirubbery; also good for covering unkempt places with a mass of delicate bloom. Hardy.
A. Plant annual.
1012. Gypsophila elegans.
Naturai size.
B.M. 6699. Gn. 47, p. 422. - Of creeping habit; excellent for rockwork.

BB. Lers. long: plant glabrous or nearly so.
paniculata, Linn. Baby's Breath. Fig. 1013. Dif. fuse and rather tall-growing ( $2-3 \mathrm{ft}$.), forking: Ivs. lin-ear-lanceolate, the largest 3 in . long, but becoming smaller towards the inflorescence, sharp-pointed: fls. white, very numerous: pedicels ?-3 times as long as the calyx. Eu. - A very popular plant, especially for use in the trimming of bouquets. A most graceful subject. Stems stiff and wiry, therefore excellent for cutting. A picture of its use in floral arrangement will be found in A.F. 6:340.
acutifdlia, Fisch. Very like the last, but the plant greener, the Ivs. narrower (indistinctly 3 nerved) and the pedicels scarcely longer than the calyx. Caucasus. - G. paniculata seems some times to be cult. under this name.

Stèveni, Fisch. (G. glaùca, Hort.). Lower than $G$. paniculata, glau-cous-green : lvs. linear lanceolate and carinate, mostly radical; fls. rather larger, white, the panicles smaller than those of $G$. paniculata; petals shorter than the calyx. Caucasus.
rèpens, Linn. Stems trailing or prostrate, ascending at the ends, not glaucous: lvs. lin ear, sharp-pointed, glabrous: fls. rather large, white or rose, the petals about twice longer than
 the sepals and the pedicels usually much longer. Alps and Pyrenees. B.M. 1448.-Best adapted to the rockers.
L. H. B.

HABENARIA (Greek, a rein or strap; referring to the shape of parts of the flower). Orchiddecer, tribe Ophrýdece. Rein Orcmis. 'Terrestrial leafy herbs, resembling orchis in habit: tubers usually undivided, rarely lobed: As. in terminal racemes or spikes, rarely solitary; sepals subequal, free or cohering at base, erect or spreading; petals usually smaller, often 2-lobed; lip spreading or drooping, long or short-spurred at base, its blade entire or 3 - - -fid; column very short, sessile; rostellum usually 1 -toothed or lobed; glands naked; anther cells parallel or divergent: capsule ovoid or oblong, erect. The lateral lobes are sometimes fringed, giving the flower a graceful appearance. Species about 400, very widely distributed in temperate and tropical regions.

Few species of Habenaria are of much horticultural importance, especially in this country. Some of the exotic kinds enjoy some faror as stove plants in England, while there are a number of hardy North American species which can be recommended for outdoor cultivation in boggy places. II. Susannne, carnea, militaris and

1014. Habenaria carnea.
other East Indian species are best grown in a moderately warm house, needing good light and a fair amount of water. It is recommended to repot them after the resting season in a compost of peat, moss, loam and crock dust, with the tuber resting upon the crocked up bottom of the pot and the growing point just beneath the soil. They should then be given a good supply of water
until after flowering. These Habenarias are much like Bletia in their requirements.
The most popular species at present seem to be $\boldsymbol{H}$. ciliaris, fimbriuta and psycodes, but these give a very imperfect conception of the beauties of the genus, although in the opinion of the writer, $\boldsymbol{I}$. ciliaris is the showiest orchid in temperate North America. The native species are procurable through collectors and dealers in native plants: foreign species through Dutch bulb growers; and $\boldsymbol{H}$. radiata through dealers in Japanese plants.

Index of species described below:

| bifolia, 29. | Elwesii, 18. | nivea, 13. |
| :---: | :---: | :---: |
| blephariglottis, 15. | fimbriata, 4. | obtusata, 27. |
| Bonatea, 19. | gigantea, 17. | odoratissima, 2. |
| bracteata, 24. | gracilis, 33. | orbiculata, 28. |
| carnea, 6. | Hookeriana. 30. | peramœena, 3. |
| chlorantha, 20. | Hookerii, 30. | psycodes, 5. |
| ciliaris, 8. | hyperborea, 31. | pusilla, 11. |
| cinnabarina, 10. | integra, 7. | radiata, 21. |
| conopea, 1. | lacera, 23. | rhodocheila, |
| conopsea. 1 | leucophzea, 22. | Susanne, 17 |
| cristata, 9. | leucostachys, 14. | tridentata, 25. |
| dilatata. 35. | longecalcarata, 16. | Unalaschcensis, 34. |
| elegans, 32. | militaris, 11. | virescens, 26. |

A. Fls. purple: lip s-parted: stems leafy.
B. Segments of lip entire: bracts nearly equaling the flowers.

1. conópsea. Benth. (Gymuadènia conópsea, R.Br. G. conoper, French authors). Deadmax's Fingers. Fls. violet-purple to Hesh-colored, rarely white, fragrant, medinm-sized; spur longer than ovary, sometimes twice as long. June, July. Europe, N. Asia. - There is an $I$. conopsea of Reichenbach dating from 1854, whereas Bentham's dates only from 1880.
2. odoratíssima, Franch. (Gymnadènia odoratissima, A. Rich.). Fls. intensely red-purple, aromatic, only half as large as in the preceding; spur shorter than ovary. May, June. Europe.

BB. Segments of lip toothed.
3. peramð̀na, Gray. Rather tall: fls. large and showy, violet-purple; middle segment of lip 2-lobed. July, Aug. N. J. to Va. and Ill. B.B. 1:466.
bBb. Segments of lip deeply and copiously fringed.
4. fimbriàta, R. Br. Fls. lilac, rarely white, fragrant; petals laterally toothed. Summer. New Brunswick to Mich. and Mts. of N. C. A.G. 12:152. G.F. 10:483. B.B. 1:466.
5. psycddes, Gray. Three ft. or less high: fls. many, crowded, much smaller than in fimbriata, lilac, rarely white, fragrant. July, Aig. Newfoundland to Minn. and high mountains of N. C. B.B. 1:466.

AA. Fls. pink throughout: les. all radical.
6. cárnea, N. E. Brown. Fig. 1014. Lrs. dull green, spotted with white : fls. few, loosely clustered, light pink, fading nearly white; lip large; spur over 2 in. long. Penang. G.C. III. 10:729. Gn. 47:1005. G.M. 36:642. G.F. 4:487. J.H. III. 33:319. R.B. 21:44.This species, one of the most beautiful of the genus, is apparently not yet in American trade.

> AAA. Fls. orange.
B. Color orange-yellow throughout. c. Lip nearly or quite entire.
7. integra, Spreng. Two ft. or less high, leafy: fls. small, crowded. July. N. J. to La., near the coast. B.B. 1:463.

> cc. Lip fringed or lacerate.
8. ciliàris, R. Br. Yellow Fringed Orchis. Fig. 1015. Fls. crowded, brilliant orange; petals fringed at apex; spur about twice as long as lip; lip long-fringed. Aug. Eastern U. S. B.M. 1668. B.B. 1:464.-A striking species.

## habenaria

9. cristàta, R. Br. Smaller: fls. much smaller; petals merely toothed; spur little exceeding the lip. July N. J. to La. near the coast. B.B. 1:464.
bв. Color cimabar-orange, the sepals red-spotted outside.
10. cinnabarina, Rolfe. Small: stem leafy: lip 3 lobed; spur straight, nearly equaling ovary. Madagas car. - Not in Amer. trade.
aAAA. F'ls. with green sepals and petals: lip brilliantly colored.
11. militàris, Reichb. f. (II. pusilla, Reichb. f.). Bluish glaucous: fis.numerous; lip scarlet, trifid, midlobe bifil; spur long and very slender, greenish white. Cochin China. R.H. 1888:396. J.H. I1I. 33:53. G. M. 36:436. - The anthor says of this fine plant: "No English soldier can boast a jacket of a deeper scarlet than the lip of our plant." Not in Amer. trade.
12. rhodocheila, Hance. Nearly related to militaris, but fls. fewer and subcorymbose; petals almost helmet-shaped; lip varying from deep rose-pink to cinnabar and madder; spur dull yellow. China, B. M. 7571. - Not in Amer. trade.

AAAAA. Fls. white to green or greenish yellou.
B. Color pure white. c. Lip entire.
13. nivea, Spreng. Lvs., except 1 or 2 lowest, bract-like : fls. numerous, loosely clustered, small; spur very slender. Summer. Del. to Ala. B.B. 1:462.
14. leucostachys, Wats. Usually tall and stout: lvs. several: fls. many, rather large. Idaho to Ariz., Calif. and Oreg. Mn. 6:81.-Nearly related to $H$. dilatata, but distinguished by its spur greatly exceeding the sepals.

## Cc. Lip fringed.

15. blephariglottis, Poir. Fls. much as in ciliaris, but somewhat smaller; petals slightly erose at apex; spur about 3 times as long as lip. July. Newfoundland to N. C.

16. Habenaria ciliaris. or Yellow Fringed Orchid. ( $\times 1 / 4$.) and Minn. B. B. 1:465. Mn.8:113.-One of our finest natives.

## ccc. Lip 3-parted.

16. longecalcaràta, A. Rich. Liss. all radical: fls. 1-3, large, long-stalked; middle lobe of lip narrow, lateral ones broader, unevenly fringed; spur twice as long as ovary, with pedicel. July, Aug. India. B.M. 7228.-Not in Amer. trade.
17. Susánnæ, R. Br. ( $\boldsymbol{H}$. gigantèa, Don). Stem tall, stout, leafy: As. $3-\overline{5}$, very large, fragrant : broad, fanshaped side lobes of lip deeply fringed; midlobe tongueshaped, entire; spur more than twice as long as ovary and pedicel. India, Malaya, China. B.M. 3374. G.C. III. 16:279. J.H. III, $29: 226$. - This and the preceding are among the largest-fld. and showiest Habenarias. Not in Amer. trade.
BB. Color partly or wholly green, or greenish yellou.
c. Lip deeply $\delta$-lobed or 3 -parted.
D. Petals cleft or parted into 2 lobes or segments.
18. Elwesii, Hook. Erect, leafy: fls. few, large, greenish yellow; petals cleft almost to base into long, slender, sickle-shaped, hairy segments; lip smooth, the segments long and slender. India. B.M. i478.-A remarkable species.
19. Bonàtea, Reichb. f. (Bonatea speciòsa, Wilh.). Stout, leafy: fls. rather large, light green and white;
lobes of lip, especially central one, tubular towards hase. S. Afr. G. C. 111.17:743.-Cult.like Disa grandiflore.

DD. Petals not cleft or parterl.
E. Spur sac-shaped: lobes of lip entire.
20. chlorántha, Spreng. Les. clasping : fls. not exceeding bracts, greenish. Mascarene lslands.
ex. Spur long and slender.
F. Middle lobe of lip entire, the others fringed.
21. radiàta, Spreng. Petals exceeding sepals; spur greenish white, about equaling the ovary. Aug., Sept. Japan.

## FF. All loves of lip deeply fringed.

22. leucophæa, Gray. Four ft. high or less: fs. large, whitish or greenish, fragrant; petals erose; spur exceeding orary. July. N. Y. to Minn. and Ark. B.B. 1:465.
23. lácera, R. Br. Raggert Orchis. Smaller: fls. greenish yellow; spur not equaling owary. June, July. Nova Scotia to Ga. and Mo. B.B. 1:165.
Cc. Lip merely toothed or slightly lobed: fls. inconspicuous.
D. Fls. miech shorter than the conspicunus bracts: spur sac-shuped, short.
24. bracteàta, R. Br. Fls. ©reenish; spur often white. Summer. Northeastern U. S. to B. C., Eu. B.B. 1:463. DD. Fls. nearly equaling or exceeding bracts: spur long and slender.
E. Li's. 1-2 near base of stem.
25. tridentàta, Hook. Fls. greenish, loosely clustered; lip wide at apex, 3-toothed; spur incurved. July, Aug. Newfoundlaud to Minn., Fla. and La. A.G. 12:153. B.B. 1:463.

## EE. Lis. is or more.

26. viréscens, Spreng. Leafy: fls. greenish; lip only slightly exceeding petals, with 2 lateral teeth and a nearly basal wart. July. Range of preceding. B.B. 1:464.
ccc. Lip entire: fls. inconspicuous.
D. Lurge les. all basal.
$\therefore$ Leaf solitary.
27. obtusata, Richards. Spike loosely-fld.: fis. yellowgreen; lip deflexed; spur about equaling lip. Summer. Across B. Amer., south to N. Y. and Col. B.B. 1:461.

## E. Leaves 2.

## F. Spur much exceeding ovary.

28. orbiculata, Torr. Lvs. orbicular, lying on the ground: fis. numerous, loosely clustered, greenish; lip white, obtuse. July, Aug. Across B. Amer. and Minn. to mountains of N. C. B.B. 1:461.
29. bifolia, R. Br. Betterfly Orchis. Les. oblong: fls. white, with tips of spur and lip greenish, fragrant in the evening. May, June. Eu.

## FF. Spur about equaling ovary.

30. Hookeriàna, Gray (H. Hoùkeri, Lindl.). Lis. oval, obovate or orbicular: fls. greenish vellow ; lip acute. Summer. Nora Scotia to N.J. and Iowa. B.B. 1:4!1.

DD. Large lis. several above the buse.
E. Spike commonly dense.
31. hyperbòrea, R. Br. Fls. greenish ; petals, obtuse lip and slender spur all about equally long. Summer. Northern U. S. to Nova Scotia and Alaska. B.B. 1:462.
31. élegans. Boland. Large liss. all on lower part of stem: Hs. numerous, small, greenish; sepals 1-nerred, all alike; spur filiform. Vancouver Island to Calif.

EE. Spike commonly loose.
F. Spur short, sac-shaped.
33. grácills, S. Wats. Three ft . high or less : spike long, many-fld.: fls. greenish; spur about equaling lip and sepals. Ore. and Wash.

## FF. Spur not sac-shaped.

3. Unalascheensis, Wats. Fls. white or greenish. sepals, petais and lip about equal; spur slender, barely to nearly twice longer than lip. Summer. Unalaska to Calif. and Útah. - Near II. elegans, but more slender, with a longer and more open spike. It is referred by some to the genus Herminium.
4. dilatàta, Gray. Fls. greenish white; lip widened or even auricled at base ; spurabout as long, incurved. Summer. Cooler parts of N. Amer. A.G. 12:153. B.B. 1:4i:- More slender and narrower-leared than $I I$. hyperborea.
T. H. Kearney, Jr.

HABERLEA (after a professor of botany at Pesth, who died in 1831). Gesnerdcere. This includes a dainty little hardy herbaceous perennial plant, which is tufted and bears in spring a few scapes 4-6 in. high, with 2-5 nodding, violet-colored, 5 -lobed, tubular fls., each about 1 in . long and 1 in . across. Only 1 species is known, and it is found wild only in a few miles of a single valley in Thrace, where it abounds on the southern slope of the Balkans on shaded schistose rocks. Only 4 species of Gesneraces are found wild in Europe, and 3 of them are said to be confined each to one spot. The allied genus Ramondia has the same habit and is equally desirable. The corolla of Haberlea has a conspicuous tube, which is thrust out of the calyx nearly $1 / 2$ in., and 5 lobes, 2 of which are much smaller than the others, while in Ramondia the flower seems to be wheel-shaped, with 5 equal petais, becanse the corolla tube is very short and inconspicuous and the lobes deeply cut.
Haberlea has 4 included didynamous stamens and a bell-shaped calyx. Ramondia has exserted, equal stamens and a wheel-shaped calyx. Haberlea was int. to cult. about 1881 by Leichtlin, and few, if any, of our skilled amateurs know the plant. It is not advertised in America. For culture, see Ramondia.

Rhodopensis, Friv. Clothed everywhere with soft, spreading hairs, except the corolla: lrs. $2-3 \mathrm{in}$. long, obovate-or ovate-oblong, obtuse, coarsely crenate, thick, leatherv, few-nerved: calyx 5 -cleft; corolla pale lilac. B.M. 6651 .
W. M.

## HABRANTHUS. Included in Hippeastrum.

HABROTHAMNUS is all referred to Cestrum. $I$. fasciculdtus $=C$. fasciculatum ; II. elegans and $I$. coccineus elegans=C'. elegans; II. Vewelli=C. Newelli.

## HACKBERRY. Cellis occidentalis.

HACKMATACK, or TAMARACK. Larix Americana.
HEMANTHUS (blool flower). Amaryllidicer. Blood Lily. Between 30 and 40 African bulbous plants, of which the greater part are natives of the Cape region. Fls. showy, often numerous, in umbels; perianth straight and erect, with a short, cylindrical tube; segments longer than the tube, narrow, equal; stamens 6 , inserted in the throat of the perianth, usually exserted, the anthers versatile; style illiform and erect, on a 3 loculed ovary: fr. berry-like, indehiscent. The fls. are red or white, on a solid scape, which is little, if any, longer than the cluster of root-lrs.: they lack the corona of many amaryllidaceous plants. Monogr. by Baker in Amaryllidex, 1888 - but the S . African species are rerised by him mora sently in Flora Capensis, vol. 6. See, also, Flora Trop. Africa, vol. 7.

Hæmanthuses, like most Cape bulbs, are summer- and autumn-flowering; or, when started iudoors or in frames, blooming in spring or early summer. The fls. often precede the lis. The foliage is usually large and luxuriant, and the scape is often handsomely colored. The fls. are sometimes as much as 2 in . across, and produced in great ball-like heads nearly or quite a foct through. Yet the species are essentially curiosities in this country. The culture given Nerine suits them well. Their season of growth is usually not more than three or four months, and the remainder of the year they may be laid away in the pots. When growing, give plenty of rather weak liquid manure, keep in an intermediate or warm house, and when in bloom keep them somewhat cooler. Avoid overpotting. Prop. by offsets, which usu-
ally form freely; and until they do form, the bulbs will probably not need repotting, Separate the offsets when growth is beginning. In this country they are sometimes flowered in pots plunged in a warm, protected border, blooming in summer and fall. For II. torica. rius, see Buphane disticha.

## A. Leares thin or membranaceors.

B. Spathes and perianth segments sprealing.
multiflorus, Martyn (II. tenuifldrus, Herb. II. Kiflbreyeri, Baker). Bulb globose, 3 in, or less in diam.: ivs, $3-1$ on a short, separate stem, the petiole short and sheathing, the oblong blade $6-12 \mathrm{in}$. long, with $6-8$ veins each side of the milrib: scape straight, $1-3 \mathrm{ft}$. high, green or red-spotted: umbel often 6 in. in diam., containing $30-100$ tls., which are usually blood-red, with lineaf 3 -nerved segments twice or more as long as the tube; red flaments long-exserted, bearing prominent yellow anthers. Trop. Africa. Variable. B.M. 961, 1995, 3870. L.B.C. 10:912; 20:1948 (erroneously as $\boldsymbol{H}$. рииісеиs). F.S. 1:58; 23:2377. 1.H. 26:354. Var. 8upérbus, Hort., is an improved brilliant-colored form.

Kátherinæ, Baker. Bulb globose, 2-3 in. in diam.: lrs. $3-5$, on a short, separate stem, appearing with the fls., with a short, spotted petiole, the blade oblong, 9-14 in. long and 4-6 in. broal, the lateral veins 8-10: peduncle 1 ft . tall, spotted toward the base: umbel sometimes 9 in . in diam., densely many-fid.: fls. bright red, $2-21 / 2$ in. long, the lanceolate reflexing segments litide longer than the cylindrical tube; red flaments exserted. S. Afr. B.M. 67i8. - Name spelled both Katherime and Katharine, even by Baker; but the former spelling is the original. In cult. the lvs. become "about 3 ft . in length and of a bright pale green color-apple-green, as it is usually called-anc the venation is more strongly marked than is usual in $I I$. multiflorus, I. cinnabari. $^{\text {. }}$ nus and other allied kinds."-Burbidge, Gn. 49, p. 160, with figure.

Líndeni, N. E. Brown. Lvs. 6-8, in 2 ranks, arising from a thick, solid rootstock, nearly or quite evergreen; petioles long, winged; blade $10-12 \mathrm{in}$. long and $3-5 \mathrm{in}$. wide, long-ovate, lanceolate or ovate-oblong, acute, the base rounded or subcordate, with a longitudinal fold either side of the midrib: scape $11 / 2 \mathrm{ft}$. tall, arising from the side of the lrs., flattened on one side, more or less spotted: umbel globular, 6-8 in. in diameter, with 100 or more scarlet fls. opening in succession: fls. 2 in . across, the tube $3 / 4 \mathrm{in}$. long, the lobes longer and linearlanceolate and acute. Congo. (i. C. III. 8:437; 13: 483. I.H. $37: 112$; $40: 172$, Fig. 1: 41, p. 18. Gt. 46, p.217. G.M. 36:220. J.H. III. 28:73. - Handsome
Bв. Spathes and perianth segments erect or ascending.
puníceus, Linn. Bulb nearly globular, 2-3 in. in di ameter: lis. 2-4, from the bulb, the petiole one-half the length of the blade, the blade $6-12 \mathrm{in}$. long and 2-4 in. broad, oblong, strongly undulated, the main veins about 6 on each side the rib: scape $6-15 \mathrm{in}$. tall, spotted: umbel globose and dense, $3-4 \mathrm{in}$. in diameter, bearing many scentless, pale scarlet, gellowish red or rarely white fls. 1 in . long: perianth tube cylindrical, shorter than the lanceolate 3 -nerved segments: filaments red, 1 in. long. S. Africa. B.M. 1315.

## As. Lis. thick and fleshy. <br> B. Bracts and fls. white.

álbiflos, Jacq. Bulb or tuber compressed sidewise, with thick, 2-ranged scales: 1rs. $2-4$, appearing with the fls., nearly erect, obtuse, $6-8 \mathrm{in}$. long and nearly half as broad, narrowed to the base, green and glabrous, but ciliate on the edges: scape less than 1 ft . tall, pale green, bearing a dense, globular umbel 2 in. in diameter: fls. $3 / 4$ in long, the linear segments much exceeding the tube. S. Africa. B. M. 1239. L. B. C. 7:602. Var. pubéscens, Baker, has lrs. hairy above. L.B.C. 8:702. B.R.5:382. II. Clirkei, Hort., is a hybrid of this species and $C$. coccineus.

## BB. Bracts and fls. red.

coccineus, Linn. Bulb compressed sidewise, 3 in. in diam., the scales many, thick, 2 -ranged: lvs. 2, suberect lingulate, reaching 2 ft . long and 8 in . broad, narrowed to the base, green and glabrous, not ciliate: seape 6-10
in. tall, compressed, mottled: bracts large and thick, ascending and forming a cup, in which the red fls. are borne: ths. I in. long, with linear segments and a short tube. S. Africa. B.M, 1075. L.B.C. 3:240. Var. coarc tatus, Baker, has smaller Ivs. and shorter bracts. B.R. 3:181. - Odd plants.
tigrinus, Jaeq. Lvs. elliate on the margins, 1 ft . or less long, spotted on the lower part of the back; scape 6 in., red-spotted: umbel dense, 2 in. or less in dian.: bracts shorter than in the last (not over 2 in . long), bright red: As. 1 in. or less long, with very short tube. S. Africa. B.M. 1705.
L. H. B.

HEMARIA (Greek, referring to the blood-red under surface of the lvs.). Orchidicect. A genus of 4 species of terrestrial orchids, known to the trade chietly as Goodyera. They are really dwarf stove foliage plants, and are to be cult. like Aneetochilus. In Hamaria the lower lip is swelled above its base into a wide claw and is provided with a pouch-like sac at base, and a blade of 2 divergent lobes; in Goodyera the blade of the lip is small and not elawed Both genera belong to a large group in which the lip either has no spur or sac, or if the latter is present, it is included between the sepals; while in Ancectochilus the lip has a prominent sac or spur projecting between the lateral sepals.

The leaves of $\boldsymbol{H}$. discolor are green above and red below. It is, however, not nearly so brilliant as IIcmaria Dausoniana, which has the same red color beneath, and is beautifully netted above with red or yellow. In both species a dozen or more small fls., chiefly white, are horne on a densely hairy scape. Alfred Rehder writes that these plants seem much easier to cultivate than Anœctochilus. He has succeeded in growing Anœectochilus only under hand glasses, but has grown Hamaria without a hand glass in large, shallow pans, with the rhizomes ereeping in sphagnum.

## A. Liss, not netted-veined above.

discolor, Lindl. (Goodyèra discolor, Ker.). Blade of les. oblong, 3 in . long. 3 in.wide. China (Brazil, according to Loddiges). L.B.C.2:148. B.M.205. B.R. $4: 271$. -John Saul's plants had white longitudinal markings.
A. Les. brilliantly metted-veined above.

Dawsoniàna, (G. Deiwsonii, Boxall. Ancetochilus Davsoniùus, Low). Blade of lvs. elliptic, 3 in. long, $11 / 1 \mathrm{in}$. wide. Burma, Philippines. B. M. 7486 (veins of 2 lvs. blood-red; of the other almost wholly yellow). John Saul says "golden purple" veins.
H. Hasselbring.

HAIRBELL or HAREBELL. Campumule rotundifolie.
HAEEA (after Baron ron Hake, German friend of botany). Protedcece. A genus of Australian shrubs, slightly cult. indoors abroad and outdoors in S. Calif. The genus is too polymorphous and unimportant to be described at length here. Ninety-five species are fully described in English, with an elaborate key in Flora Australiensis $5: 489$ ( 1870 ).
A. Length of les. 1-2 inches.
pugioniformis, Cav. Height usually 2-4, rarely 8 ft .: lvs. all entire, terete, smooth, rigid, 1-2 in. long: fls. few, in axillary, sessile elusters. L.B.C. $4: 353 .-$ Franceschi says it is an odd plant, which at a dis. tance looks like a pine and lias whitish fls.

an oblong raceme which is $1-3 \mathrm{in}$. long. G.C. II1. 19:85. -Int. in 1899 ly Mrs. T. B. Shepherd, who says that there are 5 or more racernes in a bunch.

$$
\text { вв. Nerves few, } 1-8 \text {. }
$$

C. Fls. Ved. in globular heads.
laurina, R. H.. Tull slurub, attaining 10 ft : 1 vs . 4-6 in. long, 3 - or 5 -nerved, often sickle-shaped, on long petioles: fls. in a globular head, 11/e-2 in. thick, from which the numerous showy white stigmas project 1 in . or more in every direction. blooms in the Californian winter. B.M. 7127 G.C. II. 23:149.-Called Sea Urcuin on the Riviera.
cc. Fls. pink, in long racemes.
ulicina, R. Br. Lvs. usnally linear-lanceolate or linear, pungent, 4-8 in. long, prominently 1 3 -nerved beneath: perianth and pedicels gla brous: fr. rarely above $1 / 2$ in. long, with a short. straight beak. - The foliage resembles the Euro pean furze.
W. M.

HALESIA (Stephen Hale, 167ī-1761, author of a famous work on "Vegetable Statics"). Syn., Mohrodéndron. Styraciceco. Silveriz Bell. Snowdrop Tree. The common Snowdrop Tree (H. tetrdptera) is a fine, hardy, small-sized tree, which is covered with a bewildering, eluudy mass of small, snowy white flowers, borne about the middle of May, becore the foliage of the tree appears. The genus has only 4 species, and is exelusively North American, if we place the Japanese II. hispida in the genus Pterostyrax by reason of

1017. Halesia tetraptera, var. Meehani. the subterminal inflorescence and smaller and fleshier fruit. Small trees and shrubs, more or less stellate pubescent: lus. rather large, membranous, ovate-oblong, acuminate, more or less denticulate, slender-petioled, deciduous, light green: inflorescence lateral: fls. snowwhite, bell-shaped, drooping, on slender pedicels, in fascicles or short racemes along the whole length of the branches, borne in the axils of lys. of the preceding year: calyx obconical, slightly 4-8toothed, adnate to the 3-4-celled ovary; corolla bellshaped, epigynous, $4-5$ cleft or parted nearly to the base; stamens 8-16: ovary 2-1-celled, 4 orules in each cell: fr. a drupe, dry, oblong, longitudinally 2-4winged, tipped with the style and minute calyx teeth.
The common Snowdrop Tree, II. t. traptera, is found in woods and along streams, but thrives in almost any good soil. Its habit is round-headed, irregular and somewhat pendulous, rather light and twiggy. It is adapted to shrubberies and lawns in almost any position, but prefers a somewhat sheltered place and a welldrained, rich soil. It is easily transplanted. It often grows in bush form, but may be grown as a tree when cut to one shoot and given ample room. The flowers
multilineàta, Meissn. Tree or tall shrub: lus. flat, 6-8 in. long, with many very fine nerves: fls. pink, in
are rather short-lived, except in var. Meehani. Prop. most commonly by layers, also by root-cuttings in spring and autumn; and by seeds, which should be kept constantly moist, as they rarely gerninate until the second year if allowed to dry. $H$. diptera is hardy as far north as Philadelphia, but of doubtful hardiness farther north, though it may become acclimatized. Thrives best in a cool, deep loam. Prop. by seeds, which should never be allowed to dry, and by grafting on II. tetraptera.
tetráptera, Linn. Fig. 1016. A small tree or shrub $8^{\circ}-10^{\circ}$, whose fis. resemble those of a snowdrop. Lis. orate or orate-ob!ong, finely serrate, dark green and glabrous abore, pale green and stellate-pulescent below, 2-4 in. long: tls. in lateral clusters of 2-4; corolla 4 -lobed, 1 in . long : ovary 4 -celled: drupe ellipsoidal, longitudinally 4 -winged, $1-1 \frac{1}{2} \mathrm{in}$. long. Va. S and W. B.M. 910. Mn. 5, p. 194. S.S. 6:257. (ing. 2:247. A.G. 14:211; 18:438. M.D.G. 1899:352-3. Var Meehani, Sorqent (H.Mè̀hari, Hort.). Fig. 1017. Habit wholly unlike thit of the type, round, bushy and more upright, from a distance looking like an apple tree, 12 ft. high. Has thicker, rugose, dark green lvs., on young plants glancular serrate, and smaller, more numerous ils with sho t calyx-tubes and cup-shaped corollas, without the narıow base. Seems barren, but is not a hy brid. Growth smaller. G.F. 5:535. Gng. 2:247.
diptera, Ellis. A small tree or shrub from the South not easily distinguished from $I I$. tetraptera. The lis. are larger, ovate, green on both sides, coarsely serrate and downy: fls. white, on long pedicels, in racemes of 2-4, more showy than those of $H$. tetraptera; petals 4. nearly distinct, 1 in . long : ovary 3 -celled : drupe with 2 large opposite wings and 2 obsolete. Early June. S.S. 6:259. - Plant not so large as of $\Pi$. tetraptera: lis. larger and fls. more showy.
II. cormmbdsa, Nich. $=$ Pterostyrax corymbosa. - H. hispida, Mast. $=$ Pterostyrax hispida. - H. parviflora, Miehx. Much like H. tetraptera, but shrubby, with smaller ths. and $\%$-winged fr. Ga. and Fla.
A. Phelps Wyman.

HALIMODENDRON (Greek, salt tree; referring to the maritime habit of the plant). Legumindste. A genus whose sole representative is a hardy deciduous shrub $4-10 \mathrm{ft}$. high, growing in the dry, barren saltfields of Siberia. It is characterized by the small, equally pinnate lrs. ending in sharp, stinging spines, and composed of 1-2 pairs of clean lfts., and by the rather large rose-purplish fls., in 2-3 fld. !ateral fascicles from the old nodes at the base of the sumnise shoots, appearing from May-July. The branches are whitish and prickly, with small petiolar spines. In cultivation the shrub is very hardy, enduring both drought and cold, and, while it thrives in sandy soils, it succeeds, also, in saline or alkaline. The rosy fls . and the airiness of the fine lvs. make it very ornamental. It is propagated by sceds, layers and cuttings, or may be grafted upon the common Laburnum, upon Caragana arberescens, or Colutea arborescens.
argénteum, Fisch. Salt Tree. Les compound; lfts. spatulate or long-oval, mucronate, blue-green, more or less pubescent: fis. irregular, papilionaceous; calyx cup-shaped, with 5 short teeth: petals of nearly equal length; standard orbicular, with the sides turned backward; keel obtuse, straight; stamens diadelphous, unequal: ovary stipitate, few-ovuled: style filiform: pod inflated, ovoid, hard, depressed in the seed-bearing portion, $6-7$ in. long; seeds oval, sub-compressed. B.M.1016. R.H. 1876:30, as H. speciosum. A. Phelps Wyman.

HALLERIA (Albrecht von Haller, 1708-1777, Swiss physician and naturalist, and professor at Göttingen). Scrophularidicer. About 6 species of shrubs from Africa and Madagascar, one of which is cult. indoors abroad and outloors in S. Calif. H. lùcida, Linn., grows 4-6 ft. high, has opposite, ovate, acuminate, serrate lvs., and axillary clusters of about 6 reddish, tubular fls., each about 1 in . long. The fls. are bulged on one side, with 2 short teeth in one lip and 3 in the other, and sometimes yellowish at the base. Stamens 4, didynamous, exserted. B.M. 1it4. - Sometimes called African Honersuckle.

HALOPHYTUM. See Hoplophytum.

HAMAMELIS (Greek, hama, together, and melon, apple or fruit: fruits and flowers at the same time). Hamameliddcere. Witch Hazel. Hardy ornamental shrubs or small trees, with decid'ous, alternate, shortpetioled Ivs., yellow fls. in axilla y clusiers, appearing late in fall or early in spring, and with capsular fruits. Valuable on account of their blooming at a time when hardly any other shrub outdoors is in flower; well adapted for shrubberies ; of compact, bushy habit and with handsome foliage, turning bright yellow, orang 3 or purple in fall. It thrives best in somewhat moist, peaty and sandy soil The Japanese species likes a more sumy position than the American, and is less moistureloving. Prop. by seeds, which do not germinate until the second year, or by layers; rarerkir is also by grafting on seedlings of $H$. Virginiana in spring in the greenhouse. Three closely allied species in eastern $N$. Amer., China and Jap. Lएs. stipulate, crenate-dentate: fis. in short-peduncled, nedding, axillary, few-fld.

1018. Witch Hazel, Hamamelis Virginiana.

Showing flowers and fruits. Natural size.
clusters, perfect ; calyx 4-parted; petals 4, linear, crumpled; stamens 4 , very short: fr. a dehiscent, woody, 2 -celled capsule, with 2 shining black seeds. The seeds are shot out with considerable force. Occasionally writers spell the common name Wyeh Hazel, but there seems to be little historical reason for it. Witch, as used in Witeh Hazel and Witch Elm, is probably alliei to ueak, refe rring to a drooping or straggling habit.
Virginiàna, Linn. Fig. 1018. Shrub or small tree, attaining $25 \mathrm{ft} .:$ lvs. oblique and corlate at the base, obovate, coarsely crenate, pubescent on the reins beneath, $4-6$ in. long; petals bright yellow, $1 / 2-3 / 4 \mathrm{in}$. long; calyx dull brownish yellow inside : fr. surrounded by the calyx to one-half. Sept., Oct. Canada to Fla., west to Neb. and Tex Eim. 472. S.S. 5:198. B.M. 6684. L.B.C. 6:598. A.6. $11: 657$ and 17:771.

Japonica, Sieb. and Zucc. Shrub or small tree, to 30 ft.: Irs. roundish to oblong-ovate or obovate, sinuately crenate, prominently veined beneath, glabrous or pubescent, 2-4 in. long: petals $3 / 4 \mathrm{in}$. long, yellow; calyx loles revolute. purplish or yellow inside: fr. only at the base surrounded by the calyx. Feb.-April. Japan. - There are 2 varieties. Var. arbòrea, Rehd. (II arborea, Mast.). Lvs. larger, usually more roundish an:of firmer texture: petals golden yellow; calyx deep purple inside: of more vigorous growth. B.M. 6659. R.H. 1891:479.
G.C. II. 1:187 and 15:20., ant III. 9:247. G.M. 34:94 Var. Zuccariniàna, Arb. Kew. Tar. smaller and thinner: petals canary yellow; calyx pr. .or brownish yellow inside. G.F. 4:257. Gn. 17, p. 251. Alfred Rehder.
hamelia (Henry Louis Duhamel du Monceau 1700-1782, prominent French bot nical author). Rubiàcere. This genus contains a tender shrub with large clusters of scarlet-orange fls. much prized in Fla., and recently urged for northern conservatories under the name of "Scarlet Bush." About 13 species of tropical and subtropical American shrubs, glabrous or pubes cent: Ivs. opposite or in whorls of 3-4, petioled, ovate oblong, acute at both ends: fls. in terminal, 2-3-forking cymes, yellow, retdish or scarlet, with pedicels short or none; corolla tubular or almost bell-shaped, about 5-rible $\mathfrak{l}$; limb with $\overline{5}$ short lobes; stamens $\overline{5}$ : ovary 5-celled: berries small, ovoid, 5-lohed, many-seeded. Hoffmania s distinguished by its $2-$ - $\%$-eelled berry.

IIametia patens, a native of the West fndies and S. Florida, along the coast, a beantiful and almost unknown plant, should become a favorite in greenhouse culture. The lys. have a purplish hue at some seasons of the year, and the fls. are of a bright orange-red color. In Florida it must surely become a farorite for open-air planting, as it is there rarely killed down by frost, and when it is it sprouts up readily from the root, and blooms the following summer. It is in bloom for many months, and without doubt could be forced at any season. With are it becomes a woody shrub, $5-12 \mathrm{ft}$. in height. The fls. are succeeded by handsome black berries, which are retained a long while.
A. Fls. scerlet-orange: berries ovoid, black.
pàtens, Jacq. Lus. typically in 3 's, rarely 2-5, more or less villous pubescent: crmes 2-is-forked, disposed in a pedunculate, terminal umbel. B.M. $2 \overline{5} 33$,
A. Fls. orange-yellow: bervis globular, purple.
sphærocárpa, Ruiz \& Pav. Lvs. in 3's, oblong, hirsute on both sides: cymes disposed in terminal panicles: corolla tubular, distinctly 5 -cornered: berries hispid. Woods of Peru.

## E. N. Reasoner and W. M.

## HAPLOPAPPUS is Aplopupp::s.

HAPLOPHY゙LLDM. See Ruta.
HARBINGER OF SPRING. Erigenia bulbosa.
HARDENBERGIA (after Franziska, Countess of Hardenberg, sister of Baron Huegel, a well known tiaveler.) Leguminòse. Three Australian twining herbs or subshrubs, with long racemes of small fls., ranging from white through pink and rosy purple to violet-blue, often with 1 or 2 green or yellowish spots on the standard. The genus is told from Kennedyaby the different habit, smaller, more numerous, differently colored fls., short calyx teeth and by the keel, which in the 2 species described below is much shorter than the wings. Botls are cult. abroad under glass by those who are skilled in managing Australian woody plants. The species first mentioned is cult. outdoors in Calif.; the second was once offered by John Saul, of Washington, D. C. These plants can be trained into bush form. Monograph in Flora Australiensis 2:246 (1864).
A. Leaflets solitary : pods flet, with dry pulp inside. monophýlla, Benth. Lfts. usually $2-3$, or even 4 in. long, obtuse, varying from broadly cordate-ovate to narrowly lanceolate: fis. less than $1 / 2 \mathrm{in}$. long, in 2 's or rarely 5 's, as many as 3 in a raceme, and the upper racemes often forming a terminal panicle: pod that, with dry, pithy pulp inside. B. $2: 84$. B.M. 263, 2169 . L.B.C. 8:758 and $20: 1940$. B.R. $11: 944$ and 16:13:36. R.H. 1896, p. 431. R.B. 22:169. - Has many synonyms. The fls, range from white through rose and purplish to pure violet, hut are never distinctly blue. Var. álba is cult.
AA. Leaflets 3 or 5 : pod turgid, without pith or pulp.
Comptoniana, Benth. Lfts. 3 or 5 , and in the latter case the side ones in 2 opposite pairs, which are not distant as in other 5-leafleted members of the tribe: Hs. in pairs or clusters of 3-4 along the racemes. B.R. 4:298,

22:1862 and 26:60. R.H. 1882, p. 344. J.H. III. 30:361. The fls, are stid to hare the same size, color and structure as in H. monophylla, but in cultivation the blue or violet-blue form has probably been most popular. Var. alba is cult
II. retiesa. Benth., is an anomalous species not cult. All cther names in this genus are synonyms of the 2 species deseribed above.
W. M.

## HARDHACK. Spirea tomentosa.

## HARD HEADS. Centaurel nigra.

HARDI PLANTS. The wori "hardy" covers many distinet ideas. It is used to distinguish plants that can be cultivated outdoors the rear round from plants that must be grown under glass part or all of the year. For example, in this Cycloperlia plants are spoken of as hardy as far nor: as Wa: iton, D. C., New York, Boston or Montreal, meaning that the plants are not killed by the winters at these places. In its widest sense, "hardy" indicates resistance to all kinds of unfavorable conditions. Thus, while all the common geraniums are tender plants, one varicty may be hardier than another becanse it withstands intense heat and drought and general neglect. In general, however, the unqualified word "hardy" indicates that the plant is able to withstand the winter of the given place. See the articles Berder and Landscape Gardeming. Smaller divisions of the sutject of Hardy Plants are discussed under Alpine Gardens (including Kock Gardens) and Aquatics (including Bog Plants).

HAREBELL. Campanula rotundifolia.
HARICOT (French name for Phaseolus vulgaris). Same as Kidney Bean of the English. It is the common garien bean of America, as distinguished from the Windsor or Broad bean, the Lima bean, etc. See Bean.
HARINA. See Wallichia.
HARLEQUIN FLOWERS. Spuruxis.
HARPALIUM. All referred to Helianthus.
HARRIS, JOSEPH (Fig. 1019), agricultural author, was born June $29,18 \div 8$, in the village of Shawbury, England, and died at his home at Moreton Farm, near Rochester, N. Y, Nov. 18, 1892. Iis father and forefathers for several generatiors were farmers; it is, therefore, but natural that he should have inherited a keen interest in everything pertaining to rural life. From early youth he showed a re markable fondness for investigation and experimentation, in the pursuit of which he found gratification by his stuly of agricultural chemistry with Messrs. Lawes \& Gilbert, on their famous experiment farms at lothamsted. It was during this period that he laid the foundation of his future useful ness in the cruse of rational and scientific agriculture and horticulture. In the year 1849 he came to Amer

1019. Joseph Haris. ica, and soon become onc of the foremost and most reliable writers for the rural press. His "Walks mud Talks on the Farm," which appeared in the "Genesee Farmer" in 1864-65, attracted general attention, and in 1866, when the "Genesee Farmer" was purchased by the "Anierican Agriculturist," Mr. Harris joised the editorial staff of this paper and continued his "Walks and Talks" in each number up to 1876. After an intermission of e,ght years,
he resumed them again until the increasing demands of his seed business upon his time presented him from continuing them. In all there were 171 chapters. It is to be regretted that these "Walks and Talks" have never been published in book form, as they constirute a decidedly unique feature in our egricultural literature. These articles were written in the form of conversations with the "Deacon," who was his neighbor and one of the oldest farmers in the town, and not, as has often been supposed, a fictitious character. They are narratives of actual experiences on the farm. and talks about things that cceupied his thought for the time, and have, therefore, an intensely practical character throughout. He lets the Deacon state that farming is a poor business, and then patiently talks him out of it, and convinces him that the only farming that pars is "high farming," making a garden of the entire farm. He cherished the idea that the intelligent farmer must put his questions to the soil and not to his neighbor, and then hare the patience to wait and read the answers when they come. He had an abiding belief in manures aud cleau lant, and in all his writings he earnestly endearored to impress upon his readers that the real source of fertility must be looked for in the stores of plant-food lying dormant in the soil, and that tillage, underdraining and thorough cultivation are the means by which we develop and render this plant-food available, and that the real basis of success is faith aecompanied by good works. His books, "Harris on the Pig," "Talks on Manures," and "The Use of Nitrate of Soda" are all of the same practical stamp. His last book, "Gardening for Young and Old," as its title indicates, is intended as a guide for the boy and his grandfather at the same time, but with the mental reservation that it should be principally for the young folks. Mr. Harris realized the need of more gardening and better cardeners, and had strong faith in the promising future of seel srowing in this country. In the development of these lustries he saw bright opportunities for the boys, because they were young and could afford to wait, and especially becanse they would be more liable to adopt new processes. In this work he makes a strong plea for a more general cultivation of flowers, losing no opportunity to convince the reader that the beauty of flowers elevates the tastes, and their cultivation gives health and pleasure. These and similar sentiments perrade all his writings, and may well serve as a keynote to his life's aim. Whatever work he undertook he did with a full heart and convineing earnestness. His writings and teachings hare left an indelible impress upon legions of eultivators of the soil, because he was sound in princuple and honest in his convictions. In summing up his life-work, it is safe to assert that no one has done more in this country to dignify rational and profitable agriculture and horticulture than Joseph Harris.
F. M. Hexamer.

HARTWEGIA (Theodor Hartweg collected in Mexico for the Horticultural Society of London, and found these plants near Vera Cruz). Orchidicece. A genus of 2 species of tender epiphytic orchids from tropical America, growing about a foot high and bearing purple Hs. The genus has the habit of Epidendrum, section Amphiglottis, but differs in haring the labellum saecate at the base, in which respect the genus approaches Ponera; however, Ponera has a very different habit. $H$. purpurea was once advertised by John Saul. Rest them in a coolhouse Oct. to Mar. Growing temperature should be $65-90^{\circ}$.
purpùrea, Lind. Lrs. solitary, leathery, orate-lanceolate, equally terete with the stem, many times shorter than the thread-like peduncle: Hs. small, purple: sepals acute, a little larger than the petals; limb of the lip white at the base, callous. Mex.
H. gémma, Reichb. f. "This is a most lovely gem." wrote Reichenbach. and "much better than its predecessor." Gemma, therefore, does not mean "trin," as sometimes stated. Lis. solitary, semi-terete, thick, acute, channelled. bloteliel with solackish volet: fle, amethyst-purple, in a small, 1-hranched panicle; odd sepal acute obtusely strap-shaped; equal sepals panicle; oud sepal acute,
oblong-acute. Cent. Amer.

HARVEST BELLS. Gentana Pneumonenthe.

HASSOCK GRASS. Consult Deschampsia.
HASTINGSIA (S. Clinton Hastings, promoter of Californian botany). Liliticere. Two bulbous plants of the Pacifie slope, with white or greenish fls. in many-fld. panicles or racemes: perianth segments distinct, each obscurely 3-nerved; stamens 6; style short. Hastingsias hare strong, nearly naked stems, arising from a scaly bulb: Irs. thick. The two species are offered by collectors, but they are little known in eult. Treatment as for Camassia. H. alba, Wats., is 2-3 ft . high: lvs. $1 / 2 \mathrm{in}$. or less wide : raceme simple or nearly so, 1 ft . long, densely fld., the fls. $1 / 4 \mathrm{in}$. or less long, white or greeuish white; stamens equaling the segments. N. Calif. northward. H. bracteosa, Wats. Bracts narrow and nearly equaling the Hs., which are larger than in the other, and white; stamens half as long as segments: lvs. longer. Oregon.
L. H. B.

HAW, or HAWTHORN. Consult Cratugus.
HAW, BLACK. Viburnum prunifolium.
HAWAIIAN ISLANDS, HORTICULTURE IN, Fig. 10:0. The group known as the Hawaiian or Sandwich Islands is located about 2,100 miles from San Francisco, in a southwesterly direction. It lies between the parallels $18^{\circ} 50^{\prime}$ and $23^{\circ} 5^{\prime}$ north latitude and between the meridians $150^{\circ} 40^{\prime}$ and $160^{\circ} 50^{\prime}$ west longitude.

AREA. - The five most important islands have an area of about 6,200 square miles, or rather less than that of Massachusetts, and ertend about 380 miles from northwest to southeast.
Climates. - It is hardly possible to speak of the climate of Hawaii (as the whole group is sometimes called), for there are so many different climates in this small area. The extent of the rainfall, for example, which forms so important a factor in the horticultural conditions of a countrs, is decidedly different in different regions and even in localities within a few miles of each other. To understand the climatic conditions, it is neeessary to recall that these islands are of volcanic formation, their central parts and the larger part of their area being occupied by rugged and high mountains, with valleys lying between the ranges and narrow plains near the coast. Being in the path of the northeast trade winds, the windward side of the islands receires an abundant rainfall throughout the year, while the southwest shores are comparatirely dry. Thus, at Honolulu, on the sonthwest shore of Oahu, the annual rainfall arerages about 38 inches, while that of the city of Hilo, on the windward side of the island of Hawaii. measures 12 feet. Eren within a very narrow range, as, for example, the limits of the city of Honolulu, there is great variety of rainfall, certain localities receiving frequent rains throughout the year, while others only two or three miles distant practice irrigation constantly. Some of the great sugar-cane plantations depend wholly upon the natural supply of water, while others could not grow cane at all without their expensive systems of artesian wells and irrigation.

Similarly there is a great variation in the temperature in different parts of this small but important country, but exceedingly slight variations with the ehanging seasons. The windward side is cooler than that which is sheltered by the mountains, but in no part of the islands is the heat so intense as would be expected from their location within the tropics. Only rarely, in the hottest localities, does the mercury rise to $90^{\circ} \mathrm{F}$. Again, the rariation in elevation from sea level to many thousand feet gives a like rariation in temperature, so that some of the mountains of the largest island are covered with snow during a part of the year. In short, so far as climate is concerned, the Lawaian Islands offer all that could be asked for great and diversitied horticultural industries.

Hobticulteral Districts. - Only a small percentage of the total area of the country is suitable for cultivation. The tillable portions are, in general, the plains along the coast and the valleys anong the monntains. By far the larger part of such lands is now oceupied by sugar-cane plantations, which are to be found on every important island of the group. There

1020. Hawaiian Islands. The chief horticultural regions are at A, B, D, E.
are some extensive coffee sections on the island of Hawaii, particularly the district of Kona, whose coffee has established a reputation for peculiar excellence of flaror. There are no large areas deroted to horticulture, but perhaps the most inportant horticultural regions, at the present time, are on the islands of Hawaii and Oahu. Some of the elevated lands of Maui help to supply the Honolulu market with potatoes. The main horticultural areas are designated on the map by the letters A, B, D, E.

Present Statcis of Horticcltere.-As will be seen from the foregoing statements, horticulture is as yet quite undeveloped. Almost all the scientific effort and investigation in agriculture (using that term in its wider meaning) hare been deroted to sugar-cane, for until recently the sugar planters' experiment station has been the only agricultural institution in the islands. There is, however, some considerable variety of horticultural products, and the cultivation of some of these has assumed commercial proportions. Among the latter in the field of pomology is the banana, of which there are many different varieties in the country. Some of these grow wild in the woods, as do also oranges and limes. Bananas and a few pineapples are the only fruits grown to any extent for export, though the people are awakening to the horticultural possibilities, and some are planting other fruits. The export of bananas for the year 1898 amounted to 76,000 bunches, and the home consumption, though no record is taken of it, rould doubtless be found considerably greater. These are raised chietly by the Chinese, but there are also white men in the business who, by their superior skill, produce a finer fruit.
The oranges are seed...gs almost without exception, but some of these are, in the writer's opinion, well worthy of propagation, haring a flavor which many prefer to that of the fruit imported from California. The island of Hawaii produces most of the home-grown oranges in the market, but the gardens of all the islands hare their orange trees.

Grapes for the Honolulu market are grown for the most part by the Portuguese within the limits of the city. The Isabella and the Concord are the only two varieties that have succeeded thus far, but there can be no
doubt that this is due merely to the lack of scientific and persistent effort. Peaches thus far have failed, and possibly for the same reason. They, however, do not take any decided season of rest. Girapes are pruned twice per year frequently-in fact usually-and are made to produce two crops per year. Among the other fruits which are much esteemed are the cocoanut, papaya (Carica Papay(1), alligator pear (Persea gratissima), mango, fig, guara, lime, and other tropical and subtropical fruits. Apples hare been grown on the higher elevations of Hawaii, but plums, pears and apricots have not yet been made to succeed to any extent.
Vegetable gardening is conducted chiefly by the Chinese, who grow most of the commoner and more easily managed regetables. These are marketed from house to house in baskets, balanced on a pole orer the shoulfer. The taro (Colocasia), which when manufactured into "poi" forms the chief food of the natives, is also now grown chiefly by the Chinese.
In floriculture, asters and carnations and a few other flowers are produced by the Portuguese and natives in the vicinity of Honolulu for sale in the fower market, which eonsists of the open sidewalk lined with Hawaiian men and women sitting against the buildings sleeping or smoking or making "leis." These "leis" (lays) are solid wreaths of flowers, which, according to Harraiian custom, are thrown about the shoulders of friends departing on a voyage. This is mentioned here since more flowers are probably sold in this form than in any ether war. Many plants, such as carnations, riolets, pansies and the like, when grown on the lower lands, are cultirated in boxes raised some distance from the ground, for the ground temperature seems to be rather too ligh to produce the best results. Hawaii is not quit: so much a "land of flowers" to-day as in years gone by, for in recent years a most derastating pest, commonly known as the Japanese beetle, has driven the rose and other plants almost completely out of cultivation. This, which is the most important insect enemy to horticulture, has been combated with its natural enemies in the way of fungi, and, though still a serious pest, its numbers are not so great as formerly.

Landscapegardening may be mentioned, since it bears so close a relation to horticulture. Much money has
been spent in the "improvement" of home grounds, and some architectural gardening is to be found, but naturalistic landscape gardening is, as yet, in its infancy in the islands, though nature furnishes so many excellent types.

Possibilities of Horticulture. - There can be no doubt that the climates and the qualities of the soils are such as to give to this country a very brilliant future in the production of varied and superior hortizultural products. The amount of available land, howerer, is limited, since the larger tillable tracts are already used in the production of sugar-cane, and will probably remain so occupied. Still there are a good many small areas admirably adapted to horticulture.

Then, too, the matter of market is one which must be considered, since for all articles which cannot be shipped on a six days' voyage, the cultivator is limited at present to but one city of about 30,000 inhabitants and another good-sized town. Again, the highly developed horticulture of California lies between Hawaii and the great American markets. These home towns, however, are likely to double and treble their present population during the next few vears, and while there are to-day many tons of fruit and regetables imported from California on every cold-storage steaner which arrives, there does not seem to be inmediate cause for alarm regarding the market. An outlet for fruits and vegetables during the winter scason is hoped to be found in California, and a colony of American settlers is now de veloping this trade.

Many minor industries are being tried, such as the cultiration of the vanilla bean, various fiber plants, the castor oil bean, and the like, and doubtless some of these will prove valuable additions to the agriculture o" the country. The future of Hawaian horticulture is nut an easy subject upon which to prophesy at the present time, but one upon which many greatly interested in the country's welfare are now thinking. A government experiment station is greatly needed to aid in the solution of some problems connected with the subject.
J. E. Higgins.

HAWKWEED. Mieracium. Various species of Crepis are known as Hawksbeard.

HAWORTHIA (A. H. Haworth, an English botanist of the beginning of the century, who wrote much and well on succulents). Lilidcea, tribe Aloinec. Acaulescent or short-stemmed succulents: lvs. mostly rather small, crowded in short or less commonly elongated rosettes: fls. white, rosy-striped, with somewhat irregular spreading limb, the style and stamens included. Cape region. Cultivation and propagation as for Aloe, Gasteria and Apicra, to which the genus is closely related.

Latest monograph, Baker, in Flora Capensis, vol. 6, 1896-7.
albicans, 25.
arachnoides, 24 aristata, 23. aristata, ${ }^{1} 1$. aspertua, 19. attenuata, 7 . coarctata, 6. concara, 16. cuspidata, 20 . cymbafolia. 16. eymbiformis, 16. exparsa, 3. fasciata, 8.
herbacea, 2 .
index.
A. Foliage on an elongated stem. (Aspect of Apicra.) B. Les. concare, never coarsely uhise-dotted.

## c. Arrangement of lis. 3-ranked.

1. viscòsa, Haw. (Alòe viscòsa, Linn. A. trianguldris, Lam. A piera viscosa, Willd.). Les. broad and short, densely imbricated, appressed, with spreading apex minntely scabrous or viscidly punctate. B.M. 814.-In the type the leaf rows are vertical, but several marked rarieties occur, in some of which they are prominently spirally twisted.
2. tortuosa, Haw. (Alde tortuosu, Haw.). Lvs. more elongate, less crowded, not spreading at apex, in strongly twisted rows, scabrous. B.M. 1337 (as A loe rigida).Varies into several named forms.
cc. Arrangement of les. many-ranked: stem shorter.
3. rigida, Наш. ( $\boldsymbol{H}$. expánsи, Haw. Alde rigida, KerGawl. A. expdinsa, Haw.). Lvs. spreading or recurved, somewhat attenuate, scabrous on the back. L. B. C. 15:1430.
4. scàbra, Haw. (Alde scàbra, Schult. f.). Lrs. suberect in a shorter rosette than usual, thick and rather obtuse, nearly plane abore, both faces rugose-scabrous.

## BB. Li's. mostly biconvex, white-dotted.

5. Reinwardtii, Haw. (A lòe Reimwardtii, Salm-Dyck). Fig. 1022. Lrs. erect, often plano-conrex, inflexed at apex, very acute, somewhat veined beneath, the back or both faces with numerous elevated white tubercles in more or less evident rows.
6. coarctàta, Haw. (H. Reimuardtii viridis, Alde coarctita, Schult. f.). Lrs. thicker, clearer green and more succulent, strongly biconrex, the back with a few scattered, scarcely elerated whitish dots.

7. Hawaian vegetation. Shorring the Rowal Palm as it grows in Honolulu.

AA. Foliage in a compact rosette.
B. Margin of lis. not horny.
C. Shape les. lanceolate. (Aspect somewhat of A loe humilis.)
D. The lus. coarsely whitetuberculate.
7. attenuàta, Haw. (Alòe attemuitu, Haw. Apicra attemudta,Willd.). Lvs. thick, attenuate, rigidly spreading, rather concavo-convex, scabrous or often shite-dotted above, the back with the white tubercles mostly in transverse rows. B.M. 1345 (as Aloe Ridula).
8. fasciàta, Haw. (Alo e fascidta, Salm-Dyek. Apicra fascidta, Willd.). Lis. more turgid, suberect, merely acute, not scabrous, the large white dorsal tubercles confluent in rather distant transverse bands.
9. margaritifera, Haw. ( $\mathrm{H}_{\text {. }}$ mijor, Duval. Alde mar garitífera, Burm.). Lrs. turgid, spreading, merely acute, both faces with scattered coarse white tubercles, which often turn green on the upper surface. P.G.57. Varies into several named forms.
vD. The les. less conspicuously white-tuberculate.
10. rugòsa, Bak. (Alde rugòsa, Salm-Dyck. H. Rídula aspèrior). Les. long attenuate, spreading, plano-convex, both faces with irregularly placed, rather coarse greenish tubercles.


## 1022. Haworthia Reinwardtii.

11. subulàta, Bak. (Alde subulàta, Salm-Dyek). Like the preceding, but the scattered or rugosely confluent tubercles very small, whitish.
12. Rádula, Haw. (Alde Rádula, Jacq. A pìcra Rídula, Willd.). Lrs. shorter, the white tubercles finer. Cape.
13. hybrida, Haw. Lrs. short, more turgid, the upper face somewhat rugose, the lower with seattered green tubercles. Cape?
cc. Shape of lus. orate to deltoid, succulent, not tuberculate, sprading, the rosette often somewhat elongated.
14. tessellàta, Haw. (Alòe tessellàta, Schult.f.). Lrs. acute or acuminate, setosely denticulate, scabrous beneath, the smooth upper surface with pale lines anastomosing in squares.
15. recúrva, Haw. (Ald̀e vecúrva, Haw. Apicra recúria, Willd.). Lvs. entire, scabrous beneath, the smooth upper surface longitudinally pale striate. B.M. 1353 .
16. cymbiformis, Haw. (H. concd̀ $\cdot$, Haw. Alde cymbiformis, Haw. A. cymbefolia, Schrad. Apleva cymbafolia, Willd.). Lrs. entire, smooth, rather obtuse, longitudinally striate. B.M. 802.
ccc. Shape of les. cuneutely prismatic, pellucid.
D. The lis. erect, obliquely truncate, with deltoid, palestriate apex.
17. mirábilis, Haw. (Ald̀e mirribilis, Haw. A picra mirábilis, Willd.). Lrs. ciliate-denticulate on margin and keel, sparingly tuberculate beneath. B.M. 1354.
18. aspérula, Haw. (Ald̀e aspérula, Schult. f.). Lvs. entire, finely scabrous.
19. retùsa, Haw. (Alde retùsa, Linn. Aplera retùsa, Willa. Catevùla retìsa, Medic.). Lrs, entire, smooth. B.M. 455.

DD. The les. crecto-spreading, pointed, smooth.
20. cuspidèta, Haw. (Alòe cuspillìtu, Schult. f.). Les. stout, rather concare, entire, nearly erect, the setulose apex obscurely longiturlinally or retieulately striate and sometimes truncate, but very obliquely so.
21. túrgida, Haw. (Alòe túrgida, Schult. f.). Lvs. small, spreading, very turgid, acute, entire, longitudinally striate.
22. reticulàta, Haw. (Alòe reticulita, Haw. A. pùmila, Linn. A. herbd̀cea, DC. A. uruchnoldes reticulàta. Apicra reticuldta, Willd.). Lus. as in the last, or slightly ciliate on the angles, the striations anastomosing. B.M. 1315 . L.B.C. $14: 1354$.
23. altilinea, Haw. (H. mucronita, H. limpida and H. aristatu, Haw. A lòe cltilínea, Schult. f.). Lrs. entire, aristately pointed, longitudinally striate.
24. arachnoides, Haw. (Alòe arachnoìten, Mill. Apicra arachnoldes, Willd. Caterdla arachoidea, Medic.). Lrs. more flattener.-triquetrous, aristately pointed, the angles ciliate-toothed. B.M. 756.

BB. Margin and keel of li's. horny-bordered.
25.álbicans, Haw. (H. lacis, Haw. Alòe lerigàta, Schult. A. ílbicans, Haw. A. marginàta, Lam. Aplcra álbicans, Willd.). Lvs. broad, 3-sided, acute, entire, smooth or with a few dorsal tubercles, white-bordered. B.M. 1452.

William Trelease.
HAWTHORN. See Cratorgus.
HAWTHORN, EAST INDIAN. Raphiolepis ovata.
HAZÁRDIA (Barclay Hazard, Californian botanist). Compósitu. This includes a small Californian subshrub, with silvery leaves and peculiar, not pretty, heads of fls., borne in August. It is suitable for rockeries and bedding out, but there are better woolly-leaved plants in cult. The genus has about 4 species of stout, tomentose, deciduous shrubs of the islands off the coast of Calif.: heads white-tomentose, numerous, in large cymose panicles, which terminate the branches; rays $\overline{5}-8$, neutral, very short, ligulate or irregularly 5 -toothed or lobed, pale yellow changing to brownish purple. In $1887 \mathrm{E} . \mathrm{L}$. Greene made this new genus, remarking that it differs from Diplostephium mainly in habit, the paucity, reduced size, and different color of its rays. It also lacks the tuft of hairs characteristic of the style-tips of Corethrogyne.
detónsa, E. L. Greene. (Corethrógyne detónsa, Greene). Lrs. of firm texture, 3-5 in. long, oborate-oblong, coarsely serrate: upper surface of older lvs. partly divested of the white tomentum which covers all other parts of the plant. F. Franceschi and W. M.
HAZEL. See Corylus. Chilean Hazel is Gevuina Avellana.

## HEAL-ALL, Brunella.

HEART'S EASE. Old English name for Pansy, Viola tricolor.
HEARTSEED or BALLOON VINE. Cardiospermum.
HEATH, HEATHER. The common Heather of Old Worid literature is a hardy plant, Culluma vulgaris. The greenhouse Heaths are from the Cape of Good Hope and Europe, and belong to the genus Erica. For St. Dabeoc's Heath, see Daborcia.

HEATING is discussed under Gireenhouse Heating, Construction and Management.

## HEBECLINIUM. All referred to Eupatorium.

Hechtia (J. G. H. Hecht, who died in 183\%). Bromelidece. A genus of 15 species of Mexican succulent plants, one of which is perhaps cult. in a very few fanciers' collections of tender plants for its dense rosettes of ricurved sping lvs., which are purple above from the midile to the tip and silverybeneath. The genus is distinp, ished by having diœcious tls. The tls, have no decorative value, being one-third of an inch across, white, in
small sessile, axillary, yellow-bracted heads, borne at intervals of an inch or so on a very slender scape 2 ft . long. Give perforated pots and high temperature. Mon. by C. Mez in DC. Mon. Phan. 9:543-551 (1896).

Elomeràta, Zucc.( $\boldsymbol{H}$. Ghièsbrechtii, Lem.). Lvs. 10-18 in. song, rigid, leathery, 9-12 lines wide at base, narrowed gradually to the sharp-pointed apex: bracts sheathing, acuminate : corolla 3-lobed nearly to the base; stamens 6: ovary 3-celled. B.M. 5842. I.II. 10:378. - Soil of chopped moss, old manure and charcoal.

HEDEOMA (Greek, sweet smell). Labiata. American Pennyroyal. This is a plant of no ornamental value, but the seeds are offered by our nurserymen to those who cultivate the plant for its medicinal oil, which is commonly sold in drug stores. It is claimed to be offensire to mosquitoes, and the plant can be easily naturalized in dry, sandy spots. It is common in woods and along roads. The genus has about 16 species, all American. The Pennyroyal of the Old World is Mentha Pulegium, sometimes cult. for its lrs. and tops, which are used as culinary herbs.
pulegioldes, Pers. American Pennyroyal. Annual, 6-18 in. high: stem very slender, much branched, pubescent: Iss. opposite, ovate to oblong-obovate, sparingly serrate in the upper portion, mostly obtuse at the apex and narrowed at the base, $1 / 2-11 / 2$ in. long: fls. in axillary clusters; corolla purple, 2-lipped, the lower one with 3 large lobes. July-Sep. B.B. 3:106.

HEDERA (ancient Latin name of the Iry). Aralidcea. IVY. Ornamental erergreen climbing shrubs, with alternate, entire or palmately $3-5$-lobed, long-petioled lvs., inconspicuous greenish tls. in terminal, pelluncled umbels, appearing in fall, and black, rarely yellow, red or whitish berries. Sone small-lvd. forms may be grown North if protected during the winter, but most of the larger-lvd. and variegated forms are too tender north of the middle states. The Ivy is a very valuable plant for covering walls, rocks, trunks of trees and trelliswork, and sometimes climbs rery high. It may also be used for covering walls in cool greenhouses, for screens in drawing-rooms and for hanging baskets. It is a popular window-garden plant, enduring many uncongenial conditions and thriving without bright sunlight. In shady

1023. Hedera Helix $(\times 1 / 3)$.

Form with white-ribbed leaves.
places under trees it makes a handsome evergreen carpet, and is also often used for borders of shrubberies or flower beds. It grows in almost any soil, but best in a somerrhat moist and rich one, and in shaded positions. The climbing or creeping branches do not flower; fis. are produced on erect, bushy branches, appearing on old, high-climbing plants only. Prop. by cuttings of half-ripened wood at any time of the year in the greenhouse or in frames, or, in more temperate regions, in
the open ground in fall; gentle bottom heat will hasten the development of roots considerably; also increased by layers and by seeds. The slow-growing forms, especially the shrubby ones, are often grafted on cuttings of strong-growing varieties. Two species in Eu., N. Afr. and Asia. Fls. perfect ; calyx 5-toothed; petals and stamens 5: ovary 5-celled: fr. a 3-5-seeded berry. Many Araliads have been described formerly as species of Hedera which are now referred to other genera. A good popular monograph is Shirley Hibberd's "The Iry: A Monograph, comprising the history, uses, characteristics, and affinities of the plant, and a descriptive list of all the garden Ivies in cultivation." London, $18 i 2$.

Helix, Linn. Ivy. English Ivy. Fig. 1023. High climbing or creeping: lvs. usually 3-5-lobed, dark green abore, pale or yellowish green beneath,-those of the flowering branches entire, generally ovate: calyx with minute teeth; calyx, pedicels and tips of young branches covered with grayish white stellate hairs: fr. black, sometimes yellow. Eu., Canaries, N. Afr., Asia.-A very variable species, of which more than 60 varieties are cult. in European gardens. Some of the most remarkable are the followiug: Var. Algeriensis, Hort. Lrs. roundish or broadly ovate, entire or slightly 3 -lobed, rather large, bright green; a variegated form has the lvs. edged yellowish white. Var. arboréscens, Loud. (II. arbörea, Hort.). Not climbing, forming an erect, low shrub: Irs. ovate to elliptic, entire. This variety is gained by using flowering branches for propagation. There are also some variegated forms, as Silver Queen, with silvery variegated lrs. Var. aurantiaca, André. Les. rather small, ovate or triangular-ovate, entire or 3 -lobed, the middle lobe often with few coarse teeth, greyish green: fr. orange-red. R.H. 1884:8t. Var. Canariénsis, DC. Lvs. large, roundish orate, entire or slightly 3 -lobed, bright or yellowish green, to 8 in . broad, those of flowering branches often broader than long. Canaries. Tender. Var. Càvendishi, Hort. (var. margindta minor, Hort.). Slow-growing, with rather small dull green lvs., edged creamy white, striped red or pink infall. Var. chrysocarpa, Ten. (II. chrysocárpa, Walsh. H. poetùrum, Bertol.). Lvs. rather small, usually 3 -lobed, grayish green: fr. yellow. Var. conglomeràta, Hort. Slow-growing: lvs. crowded, small, entire or 3-lobed, undulate. R.H. 1890, p. 163. Var. crenàta, Hort. ( $\Pi$. vitifolia and $\Pi_{\text {. }}$. digitùta nòva, Hort.). Similar to rar. digitata, but lobes shorter and broader, crenate at the margin, light green. Var. deltoldea, Hort. Lrs. rather small, bluntly deltoid, almost entire, blackish green, changing to dull purplish bronze in fall. Var. digitàta, Loud. Lrs. rather small, deeply palmately lobed, with narrow lobes and prolonged middle lobe M.D.G. 1897:229. S.H. 2:237. Var. Donerailénsis, Hort. Lrs. small, usually 3 -lobed, with rather short, spreading lateral lobes: of compact growth. Var. gracilis, Hort. Lrs. rather small, with broad, short lobes, dull green, bronzy in fall. Var. Hibérnica, Koelne ( $H$. Scótica, Hort.). Lvs. large, with short and broad lobes. Var. lobàta major, Hort. Similar to the preceding, but lrs. somewhat smaller, more deeply lobed and lobes narrower. Var. maculàta, Hort. (H. latifolia maculita, Hort.). Similar to var. Hibernica: lvs. spotted and striped yellowish white. Var. Maderénsis variegàta Hort. Similar to var. Canariensis: livs. not or slightly lobed, edged white. Tender. G.C. II. 15:657. Var. marginata, Hort. Lis. broadiy triangular-orate, irreg ularly borlered yellowish white, striped red or pink in fall: of somewhat slow growth. Var. marginàta rùbra, Hort. (vars. trícolor, elegantissima, Cullisi, Hort.). Like the preceding, but edges of lis. becoming red in tall. Vur. marmoràta, Hort. Similar to var. Hibernica, but les. irregularly blotehed yellowish white. Var. palmàta, Hort. Similar to var. digitata, but lobes broader, and middle lobe not much prolonged. Var. rhombea, Arb. Kew. ( $\Pi_{\text {. rhómbea, Sieb. \& Zucc.). Lrs. rather }}$ small, generally broadly orate, entire or slightly lobed, those of flowering branches elliptic or rhombic-orate, narrowed toward the base. Japan. Var. rhombea-variegàta, Hort. (M. submarginìta, Hibberd. H. Japónica rariegita, Hort. H. Japónica argéntea, Hort.). Lrs. like those of the preceding, but with narrow white margins. Var. sagittifolia, Hort. Les. rather small, with triangular middle lobe and short, blunt lateral lobes,
dull dark green. Var. variegàta, Hort. Lrs. lighter green, edged and blotched yellowish white.

Colchica, C. Koch ( $\boldsymbol{H}$. Rægueriàna, Hort. $\boldsymbol{H}$. corid̀cea, Hibberd). High climbing, but usually less high than the common Irg. Lis large, broadly orate, cordate, alnost entire, rarely slightly 3 -lobed, bright green, of firm texture, those of flowering branches generally ob-long-orate : calyx lobes triangular-ovate, conspicuous; calyx, pedicels and tips of roung branches coated with golden yellow scales: fr. black. W. Asia. Var. dentata, Hibberd (H. dentata, Hort.). Lrs. with remote small teeth, of somewhat thinner texture. G.M. 30:388. Var. purpurea, Hibberd. Lvs. purplish.

## Alfred Rehder.

HEDGES. Living green fences are used for two distinct purposes-defense and ornament. Ornamental Hedges may be rendered defensive by stretching tightly 2 or 3 strands of barbed wire through the center of the Hedge. So far, no plant has yet been tested that meets all the requirements of the farmer for a truly impassable barrier, although the Osage orange (Maclura ainrantiaca) possesses more recommendable features than any other hardy tree. This tree, howerer, is not bardy in the northernmost states. Next to this, perhaps, rauks the honey locust (Gleditschia triacanthos), with many warm admirers and adrocates. The hawthorn of Europe (Crategus Oxyacantha) may not be planted in this country with any chance of success, owing to fungous enemies, and all of the large-sized thorny shrubs fail in important characters. A perfect thorn Hedge requires unremitting care, and must conform to an established rule, the most important being entire freedom from weeds and a systematic pruning. The preparation of the soil for a Hedge consists in thoroughly plowing and cultivating an area 6 feet wide and the length the Hedge is proposed to extend. If this spaceshould be fertilized and cropped the year previous to planting, vegetation will be greatly accelerated. The plants must be shortened, both top and root, and set 9 inches apart in a single row. The double row, as formerly adrised by some growers, is now practically obsolete, and justly so, being difficult to cultirate and preserve free from weeds. A trench or furrow is opeced through the center of the cultivated strip of a sufficient depth to admit the roots without bending In setting, the soil must be made firm with the aid of a rammer, a practice unexcelled for aiding growth, and, indeed, preserving plantlife after removal. Pruning is simply an annual necessity from the first, excepting when the Hedge is intended to be plashed, and even in such cases, after the laying process, pruning must never be onitted during sumner. This work is greatly accelerated and consequently cheapened by shearing when the plants are young and tender, say during the month of July. As to the best outline, a plain triangle, or what may be more sightly, the curvilinear or Gothic arch, is desirable, and a flat top is to be discouraged, as a body of snow lodged on the latter invariably injures the symmetryand beauty of any Hedge. The ornamental Hedge proper may be either evergreen or deciduous, and yet in the so-called California privet (Ligustrum ovelifolium) are united, to a certain extent, both conditions. Taking into consideration its almost faultless character for the purpose, we may assign it a prominent position at the head of the list.

Among strictly evergreen plants, the Norway spruce (Picea excelsa) succeeds most saisfactorily. For a combination of cheapness and general utility, the American arborritæ (Thuja occidentalis) may be placed next, although for decided beauty nothing can supplant the common hemlock (Tsuga Canadensis). The number of available deciduous trees and slirubs suitable for Hedging is so extensive that to specify eren a few is unnecessary. Flowering shrubs may, however, claim preference, and such attractire species as Cydonia Japonica, Deutzia scabra, some of the spireas, viburnums, etc., may be employed with good effect. Species of Berberis are occasionally used with marked success, especially the purple-leaved variety, although rather formal in character. The most serious annoyance to the Hedge grower is the presence of unwelcome roody vines, such as poison iry (Rhus Toxicodendron), Japan evergreen
honeysuckle (Lonicera Juponica), etc., and the ouly remedy is to persistently remove them by hand as soon as discovered. The attacks of insects may be treated similarly to those which injure our trees and shrubs. The charming little Berberis Thunbergi is a model of beauty and utility, owing to the brilliant autumual tints of its foliage and abundant crops of scarlet fruit. Other good plants for special uses are Russian mulberry, Riamnus, and Ligustrum Ibota. Josiah Hoopes.

HEDYCHIOM (Greek, sueet snow; the large white fls. are sweet scented). Scitamindcec. Butterfly lily. Ginger Lilf. Garland Flower. Something like 25 tropical Asian erect, leafy, rhizomatous herbs allied to canna and ginger. Fls. in a terminal spike or thyrse; stamen 1, with a 2 -loculed anther surrounding the style; staminodia sometimes present; flower-tube slender, with six divisions, one of which is enlarged and lip-like. Hedychiuns are strong-growing plants, very ornamental, both in foliage and in flower. They are essentially fall bloomers, although they may be made to bloom more or less continnously under glass. After blooming, gradually dry off the rhizomes, and let them rest for a time. Pot them up in spring or early summer, and give them rich soil and plenty of water and an occasional supply of liquid manure. The rhizomes may be dirided every two or three years. They need an abundance of water. In fact, the pots may be set half their depth in water, and $\boldsymbol{H}$. coronarium is often immersed until only the crown is emersed. The common white-flowered species is $H$. coronarium. This requires warmhouse treatment for best results, although it often flowers well when plunged in a warm, halfshady place in the open. The species do not stand frost, but they may be left out in the South if well protected. The flowers are very fragrant; in fact, their odor may be too heary for a small room.

## A. Fls. white.

coronàrium, Kœnig. Three to 5 ft .: lrs. canna-like, green, pointed: tls. very large (3-4 in. across), longtubed, pure white or the lip sometimes blotched green, the 3 outer segments narrow, the lip large and erect and more or less lobed. India. B.M. 708. L.B.C. 6:507. -Handsome and worthy. Needs warm quarters. Said to hare been sold as Myrosma carmefolia, but that name belongs to a wholly different plant.

## AA. Fls. yellow or red.

flà rum, Roxbg. Fls. large, orange; corolla tube cylindrical, $21 / 2$ in. long; segments spreading, the outer ones linear, acute and an inch or so long, the lip rery large and rounded, retuse ; stamen not exserted. India. B.M. 3039 (and 2378 ?).

Gardneriànum, Roscoe. Tall: fls. light yellow, odd, short-stalked in the terminal spike, but the red filament long-projected beyond the segments; lip oral and short 3-toothed, the other segments narrow: fr. red and showy. India. B.M. 6913. B.R. 9:7\%4. J.H. III. 32:239 (in fruit). G. C. III. 11:176 (plate erroneously labeled $H$. coronariam). - The best of the genus, and hardier than II. coronaritm.
coccineum, Buch.-Ham. Fls. rather small, scarlet, the filament lonr-projected; lip nearly or quite entire: f.bracts conspicuous. India. L.B.C. 8:705. L.H.B.

HEDYSARUM (Greek for sueet smell). Leguminòsce. Two or 3 North American herbs, and about 60 in the Old World. Perennial herbs or subshrubs, with odd pinnate les., and often showy racemes of red, purple or white, small pea-ike fls.; ealyx 5 -cleft, the teeth nearly equal. Standard obcordate or obovate; keel nearly straight and longer than the wings; stamens 9 and 1 ; fr. a flattened jointed pod. Very closely allied to Desmodium, but the latter genus has 3 -foliate lvs. Many of the Hedysarums are attractire border plants. They are of easiest culture in a light and open, well-drained soil. Give a sunny place. Hardy. Prop. by division and seeds. For the Sainfoin, sometimes known as $I$. Onobrychis, see Onobrychis.
A. Fls. normally red (varying to white).
coronàrium, Linn. French Honeysuckle. Perennial or biennial, "-4 ft. tall, branchy. An old garden plant
with red, fragrant fls., crowded in axillary spikes or racemes: lis. with $3-7$ pairs of elliptic or roundish, somewhat pubescent lfts. Eu. Var. album, Hort., has white 17 .

## AA. Fls. normally purple (varying to white).

multijùgum, Maxim. Hardy perenuial of angular, stragglinge owth, $2-5 \mathrm{ft}$. high, very showy, and worthy of general cult. Fls. violet or purplish magenta, with yellow blotches, in racemes $8-18 \mathrm{in}$. long, all summer: ivs. 4-6 in. long, containing 6-12 pairs of grayish green oval, small lfts. Mongolia. Gn. 53:1170. G.C. III. 18:8, 9.-Of recent introduction. Very fine for rockwork.
boreale, Nutt. ( $\boldsymbol{H}$. Americhuum, Britt.). Erect or half-decumbent herb, simply or nearly so, 1-3 ft.: lfts. $5-10$ pairs, glabrons, oblong or oblanceolate: fls. violetpurple, varying to white, the calyx teeth ovate-acute and shorter than the tube. Labrador and northern N. England across the continent.

Mackenzii, Richards. Much like the last, but somewhat pubescent: fls. larger, calyx teeth arrl-like and acuminate, and longer than the tube. Colo. N. and W.

## L. H. B

HEDYSCEPE (Greek, sweet covering). Palmdeece. Umbrella Palm. This includes one of the many palms known to the trade as a Kentia, and resembles that genus in habit and foliage, but is distinct in flower. In Kentia the tis. are arranged in 4 ranks, and the ovule is fastened at the bottom of the cell, while in Hedyscepe (and its cultivated allies, Kentiopsis, Veitehia, Nenga, Archontophœnix, Rhopalostylis and Dictyosperma) the fis. are spirally arranged in the branches of the spadix, and the orule is fastened at the side. From the allies abore mentioned Hedyscepe is distinguished by the following characters: staminate ths. with narrowly lanceolate sepals, 9-12 stamens, with long filaments : pistillate fls. with petals like the sepals and valvate at the apex. As a house plant, $H$. Canterburyana is dwarfer and more spreading than the two Howeas, and has a lighter shade of green.
H. Canterburyana, a very handsome palm, is the only species belonging to the genus, and, like the important Howeas (or Kentias of commercial horticulture), is only known in a wild state on Lord Howe's Island, where it


## 1024. Hedyscepe Canterburyana.

is known as the "Umbrella Palm" from the recurring habit of its foliage. It grows at a greater altitude than the Howeas, not appearing below the 900 -feet level, and from this it may be inferred that a slightly lower temperature is more suitable for this palm; but in a general way the same conditions as those required by the so-called Kentias will give good results with this subject, namely, a night temperature of $60^{\circ}$ to $62^{\circ} \mathrm{F}$., moderate shading throughout nearly the whole year, plenty of water, and a rich and rather heary soil. These palms respond freely to generous treatment. As a commercial palm, $\boldsymbol{H}$. Canterburyana is not very popular as yet, partly owing
to the higher cost of seeds and the frequently low percentage of germination, aud purtly from the fuct that in a young state this palm is by no means a rapid grower. In regard to hardiness of foliage, it is fully equal to the Kentias, and for gracefulness and symmetry of growth will compare favorably with any of the commercial species. In S. Calif. it is cult. outdoors.

Canterburyàna, H. Wendl. \& Drude (Kéntia Canterburyd̀a, F. Muell.). Úmbrella Palm. Fig. 1024. Tall, spineless palm, with a thick, stout caudex: lys. terminal, dense, equally pinnatisect, the numerous segments linear-lanceolate, acuminate, the lower nerves recurved at the base, rather remote from the margin; rachis arched, recurving: spadix with a short peduncle, and thickened, flexuose brancjes; areolz lax: fls. medium: fr. ovoid, large. R.H. 1873, p.218. F.R. 1:85. The illus tration (Fig. 1024) is adapted from Martius.

## Jared G. Suth and W. H. Taplin.

HEERIA (commemoratire of Oswald Heer, Swiss botanist). Melustomàcece. Includes Meterocéntron. According to the latest monographer (Cogniaux, DC. Monogr. Phaner. 7), the genus has 6 Mexican and Central American species. They are herbs or shrubs, erect or prostrate, with opposite membranaceous pinnately nerved (rarely 3 -nerved) entire lvs., and white, rose or purple irregular tis. in panicles or rarely solitary. Not to be confounded with Centradenia, which has ringed stems, unequal-sided Irs. and calys teeth small and much shorter than the calyx tube. Stamens 8, very unequal, the 4 larger ones with long appendages or comnections: ovary loculed: petals 4.-Warmhouse plants, requiring the culture of Centradenia, but grown chiefly for the fls., whereas Centradenias are grown also for foliage. H. ròsea, Triana (Heterocéntron Mexicinum, Naud., H. ròseum, Br. \& Bouché) is the only species in general cult. A foot or more high, with 4 -angled (but not winged) stem: lvs. elliptic, obtuse or acute, pinnate-nerved : fls. bright rose, in a large, terminal panicle, showr. B.M. 5166. I.H. 3:97. Var. álba, Hook., is a white-fld. form.
L. H. B.

## HELENIÓPSIS. See Heloniopsis.

HELENIUM (possibly the author had in mind Helenus. the son of Priam, but he left no record of the application of this name). Compúsiter. Sveeze Weed. About 25 species of hardy annual and perennial herbs, bearing yellow fls. from early summer to late autumn. Only the perennials are in cultivation. Stem erect, usually branching abore: lvs. alternate, narrowly to broadly lanceolate, entire or toothed, glandufar-dotted : petiole and stem sometimes winged: heads solitary or corymbose, yellow or brownish.

The genus closely resembles Helianthus, but differs in having elongated. often top-shaped fruits, which are never compressed and are usually silky villose; while the fruits of Helianthus are generalls more or less 4 sided ard are smooth. In Helenium the receptacle is naked; in Helianthus it bears paleaceous bracts, which subtend the florets.

Heleniums thrive best in a rich, moist soil, with a sunny aspect, and are propagated by seeds, cuttings or division. All the species are very easily grown, the only serious difficulty being a white aphis which sometimes attacks the roots. If plants look unhealthy they should be lifted, washed with an insecticide and reset in a new place. The commonest species in cult. is $\boldsymbol{H}$.autumnale, but perhaps the most valuable species forgeneral planting is $H$. Hoopesii, which is one of our earliest blooming composites, and is also desirable for the border or for cut-tiowers. U. Hoopesii. Bolanderii and autumnale will give bloom in succession from May-Oct. The first two are also attractive when grown in pots, but they do not flower from seed the first year, either in pots or in the open.
A. Stem and branches ringed.

## B. Disk yellow.

autumnàle, Linn. (H. gravdiflòrum, Nutt.). Fig. 1025. Stem $2-6 \mathrm{ft}$. high, roughish, leafy: Irs. mostly toothed, smooth: heads 1-11/ in. across, numerous, borne at the end of short, very leafy stalks: rays drooping, 3-cleft. lemon-yellow to rich orange ; disk yellow. July-Oct.

Moist places, Can. to Fla. and west to B. C. and Ariz. B. M. 2994. Gn. $29: 533$; 55:1216. A.G. 12:682. G.C. III. 10: $\mathbf{1 3 3}$. - Very showy. It has distinct merit for the back of borders, but is niore appreciated in Europe then in America. There are several garden forms: var. pumilum is 1-2 ft. high, a rery free bloomer, hand is largely grown for cut-flowers in some places; var. grandiflorum


Commonly known as Sneezeweed.
and var. supérbum are unusually vigorous and large-fld.; var. striatum has a maroon and gold disk, with yellow rays variously striped and splashed with rich crimson. J. H. III. 31:293. This should be distinguished from the striped forms of $\boldsymbol{H}$. undiflorum.

## BB. Disk brown or purplish.

c. Lis. all entire: heads solitarg or fett, long-stalked.

Bigelovii, Gray. Stem 2-3 ft. high, nearly smocth: upper lrs. narrow to oblong-lanceolate, lower spatulate: heads commonly $11 / 2-21 / 2$ in. broad: rays $3 / 4 \mathrm{in}$. long: flower-stalk slender. Aug. Wet ground, Calif. S.H. 1:373.
Bolánderi, Gray. Stem 1-2 ft. high, stout, somewhat pubescent : lvs. oblong to orate-lanceolate, the lower oborate: heads commonly 3 in. wide: rays often 1 in . long: flower-staliks thick, bollow. Jnne-Sept. Low ground, N. E. Calif. Gn. 29, p. 191. R.H. 1891, p. ®T.Sometimes grown as $\boldsymbol{H}$. grandiflorus.
cc. Lower IVs. toother : heads numerous, corymbose, short-stalked.
nudiflorum, Nutt. Stem 1-3 ft. high, roughish, leafy : lower les. spatulate, toothed: heads $1-1 \frac{1}{2} \mathrm{in}$. across: rass wedge-shaped, drooping, yellow, brown-purple or striped with both colors. July-Oct. Moist soils, N.C. to Fla., west to Ill. and Tex.-A garden form, var. grandicéphalum striatum, has fls. over 2 in. across.

## AA. Stem and branches not winged.

Hoòpesii, firay. Stem 1-3 ft. high, stout, slightly tomentose when young, but soon smooth, branching abore into an umbel of several to many fls.: Irs. thickish, entire: heads usually borne singly on long stalks, commonly 3 in. wide : rays but slightly drooping; disk yellow. May-Sept. Rocky Mts.-A rery fine border plant, and especially raluable for cut-fls.
H. Doùglasii, Hort. = Monolopia major.-H. tentifòlium, Nutt. Annual. A weed in the southers Atlantic and south western states. Stem $8 \ln$. to 2 ft , high, very leafy: lvs. thread like, entire, sessile, often whorled. Va., Fla., west to Mo. and Tex. S. W. Fletcher.

HELIANTHELLA (Greek, resembling Helianthus). Compósiter. Eleven species of hardy perennial herbs from North Amer., with showy gellow Hs, borne in hutumn. The species described below is adrertised by a western dealer in na:ive plants. Stem commonly unbranched: lvs. mosily scattered and sessile, linear or lanceolate, entire: heads solitary or few, with yellow rays agu a yellow or brownish disk. The single species in cultivation is easily grown in a variety of soils, and is propagated by seeds or by dividing the rootstocks.
Helianthella belongs to a group of genera distinguished from Helianthus by having the fruits laterally compressed instead of thick and obtusely angled. Other cultivated genera of this group are Actinomeris, Encelia and Verbesina, which are distinguished from one another by combinatious of fruit and pappus characters.
quinquenérvis, Gray. Stem $2-4 \mathrm{ft}$. high, nearly smooth: lvs. mostly opposite, 4-9 in. long: heads 3-5 in. broad, long-stalked, solitary or a few below in the axils of the lrs., with an involucre of large, leafy bracts : rays pale yellor, $1 \frac{1}{2}$ in. long. June-Sept. Rocky Mts.

## S. W. Fletcher.

HELIANTHEMUM (Greek for sun flower). Cis tidcee. Rock Rose. Sun Rose. Frostweed. Herbs or subshrubs in temperate and warm climates of Old and New Worlds. The species are confused, and estimates of their numbers rary from 30 to more than 100 . Fls. opening in the sun, mostly gellow, usually in terminal clusters; petals 5, soon falling; stamens muny: ovary imperfectly 3 -loculed, containing numerous seeds; style 1: stems hard and more or less woody: lrs. small, linear or oblong, entire, often grayish. Helianthemums are evergreens or nearly so, forming low mats of herbage, and bearing a profusion of fls. in hot weather. They are especially adapted for rockwork and borders. They thrive in rather poor soil. Although the following species are fairly hardy in the North, they profit by a protection of mulch. Prop. mostly by dirision; also by seeds and by cuttings of half-ripe wood. See Cistus. Sweet's "Cistiner" (1825-1830, London) is the monumental work on these plants. See, also. Nicholson in Gn. 26, p. 420, for a running account of the garden forms.
Canadénse, Michx. Frostweed. Diffuse, 2 ft . or less high, caulescent : lrs. oblong, linear, or oblanceolate, nearly sessile: fls. solitary or 2 together, 1 in . across, bright yellow, the sepals hairy. In rocky and sandy soil, Me. to N.C. and Wis. G.W.F.29.-Sold by collectors. The later axillary branches produce smail apetalous fis.

Chamæcistus, Mill. Usually less than 1 ft . tall, procumbent, forming mats: 1rs. linear-lanceolate or broader, numerous at the base of the plant, small, hoary beneath but green and hairy abore: fls. normally yellow, in loose, more or less nodding racemes, on hairy pedicels. Eu.. N. Afr., W. Asia. - This is the cominonly cult. species, running into many forms. It is much less grown in this country than in Eu. It is an excellent rockwork plant. There are double-flowered forms; also forms with red and copper-colored fls. The following names occurring in trade lists are to be referred to this species-group: angustifòlium, ailba-plèno, auríntea. plèn, cròceum, cйpreım, grandiflorum, hyssopifolium, lùtea plèno, mutihile, purpùrea-plèno, rhodánthemum, rhodánthum, variabile, vulgàre.
ocymoldes, Pers. (H. Algariénse, Dun. Ciotus Algarvénse, Sims,. Shrub, 2-3 ft., twiggy, nearly erect, hoary-pubescent: Irs. opposite, linear-oblong or spatulate, the tips recurved: fls. bright yellow with a purple eye, $1 \frac{1}{2}$ in. across, in corymbose clusters. Spain and Portugal. B.M. 5621.-Little known in this country. Hardy in England.
formosum, Dun. (Cístus formòsus. Curt.). Spreading, much-branched, tomentose, but becoming nearly or quite glabrous with age: lvs. elliptic to lance-oborate,

## HELIANTHUS

short-stalked: fls. large (2in. across), yellow, with black eye, on slender, hairy pedicels. Portugal. B. M. 264. Gn. 26:466; 53, p. 131. G.M. 34:246. - Perhaps the most show of the genus. Excellent for rockwork. The branches are erect, reaching $3-4 \mathrm{ft}$. Not bardy North.
umbellatum, Mill. Diffuse, 1-2 ft. tall: lvs. small, linear or linear-lanceolate, revolute on margins, more or less viscid: Hs. umbellate or whorled, white. Eu.
L. H. B.

HELIANTHUS (Greek, helios, the sun, and authos, a flower). Compósite. Susplower. This genus includes the common annual Suntlower, and about 15 hardy herbaceous perennial plants, rather coarse in habit, with yellow fis., which are mostly large, numerous and borne in autumin. Altogether there are about 80 species, mostly N. American. Les.generally opposite below and alternate above, but this is not a constant character: heads pedunculate, solitary or corymbose, terminating the stem or brarches: disk-fls. perfect, yellow, brown or purplish, with a tubular 5 -limbed corolla; rays neutral, yellow. The genus is very variable, and there are also many natural hybrids; hence the species are difficult to delimit. The old notion that the Hower-heads follow the sun from east to west has recently been substantiated for MI. anumus. (See Botanical Gazette, vol. 29:197.) Garden monographs are found in Gn. 27, p. 66; 45. p. 372 ; 49, p. 326 and 55, p. 146.

Sunflowers are of the easiest culture, and are adapted to a variety of soils. They are seen to best advantage when planted inmasses, rathes than assolitaryspecimens, and should be given plenty of room, being gross feeders.
 to be harmonious near the house, but find an effective setting in the background, against the shrubbery border. A few species, however, especially $\boldsymbol{H}$. orgyalis and H. debilis, are worth growing for their foliage alone. The annual species are prop. by seeds or cuttings; the perennial chiefly by division. All rarieties of $H$. multiflorus root readily from both soft and hardwood cuttings. The double forms rarely produce fertile seeds and must be prop. by division. The seeds of annuals may be planted directly in the border, but it is best to start them indoors in March. Perennial kinds, particularly forms of $H$. multifloris, should be taken up in late fall or early spring, every two years, and the rootstocks divided and replanted; otherwise the roots will ramble away, and the flowers will deteriorate. All thrive in a light, dry soil; but $H$. annuus and $H$. gigcenteus may be used to advantage for drying malarial spots. Sunflowers do not thrive in rery shady places.
S. W. Fletcher.

Sunflowers ( $\Pi$. annuus) are cultirated extensively in Russia, India and Egypt; less widely in Turkey, Germany, Italy and France. The seeds from the largeseeded variety are sold upon the streets in Russia as we do peauuts, except that they are eaten raw. The smallseeded variety is preferred for the manufacture of oil. When cold-pressed, a citron-gellow, sweet-tasting oil, considered equal to olive or almond oil for table use, is produced. The resulting oil-cake, when warm-pressed, yields a less edible fluid, which is used for lighting, and in such arts as woollen dressing, candle-and soap-making. The oils dry slowly, become turbid at ordinary temperatures and solid at $4^{\circ} \mathrm{F}$. For stock and poultry feeding, and for other purposes, Sunflower oil-cake is about equal in value to that of thas-and cotton-seed. The cake is largely exported by Russia to Denmark and Sweden, and to some extent to other European markets. Sunflower stems and heads make an excellent paper, and the stems furnish a fine fiber that compares favorably with silk. They are, howerer, generally used for fuel. since the above industries have not been developed.

Sunflowers grow readily in many soils, but best results are obtained upon light, rich, calcareous or alluvial land, well supplied with moisture and unshaded by trees. White, clagey and poor soils are unfarorable. Preparation of the soil should be thorough; deep fall plowing followed by spring harrowing being preferred to spring preparation. The seeds are generally sown in drills running north and south, 30 in . apart, 9 in. asunder in the drill, and 1 in . deep. Sometimes they are transplanted from nursery beds when 4-6 in. tall. About
a week after the plants appear they are thinned to 18 in asunder. From 4 to 6 pounds of the seed will sow an acre. Cultivation is the same as for corn, except that when the plants reach a height of $3-1 \mathrm{ft}$., the inferlor

1026. Helianthus debilis. Nearly half size.
flower heads should be remored, leaving only 4 or 5 on the principal stem. In windy climates hilling is sometimes necessary to prerent blowing down.

On some farms the roots are harrested as they ripen and placed upon floors or movable pole racks to dry. Upon larger areas they are cut to the ground when most of the heads hare ripened and piled, heads up, to cure. The former method insures a much higher grade of oil, and is therefore preferred. Every effort is matle to prerent fermentation, either in the heads or in the pile of seeds, since this injures the quality of the oil. When thoroughly dry the heals are eithcr placed on racks or piled, face downward, on a floor and beaten with flails. The seeds are then spread thinly, shoveled over occasionally, and allowed to become perfectly diy before being sent to the mill. The arerage gield is about 50 bushels to the acre. The percentage of husks ranges from 40 to 60 ; and the oil from 15 to 28 . As a general rule, 100 bushels of seed will yield 33 bushels of kernels, 100 bushels of kernels from 280 to 320 gallons of oil of both qualities.
Russian Sunflower, a large-seeded variety, producing a single head, grows 8 ft . tall, but is less esteemed for oil production than the small-seeded varieties.

In America the Sunflower industry may be said to have hardly commenced, there being at present but two well-dereloped markets for the seed.
M. G. Kaiss.

## INDES.

angustifolius. ${ }^{\text {B }}$
ancustis, 1.
argophyllus, 2. atrormbens,. Cal:ornicus, 1, 30 cucumerifolius,
lemapilis, 3.
lehilis, 3.
divaricatus, 12.
doronicoides, 16. kiganteus, 13 . grosse-serratis, 10. hirsutus, 21 . levigatus, 8 . letifiorus, 19. Maximiliaui, 14. Missouriensis, 6.
mollis $1 \%^{\circ}$. multitiorus, 11. orgyalis, 4. pumilus, is. rigidus, 6 . rigidus, 6.
strumosus. trachelifolius, 22. tuberosus, 15.

> A. Annиals: les. long-petioled: disk brown or purplish.
> B. Stem erect, stout, simple or branching abote
> 1. annuus . argophyllus
> BB. Stem diffuse, slender, brunching freely from the base....
> As. Perennials by creeping rootstocks: les. sessile or short. petioled.
> 8. Disk brown or purplish.
> c. Les. linear, entire (except
> the lou'er), sessile...... 4. orgyalis 5. angustifolius
> cc. Lis. ovate to bronil-ianceolate, mostly toothed, nurrowed at the base into a winged petiole.
> 6. rigidus 1. atrorubens
> BB. Disk yellowish.
> C. Ntem smooth belore, the branches often slightly rough or pubescent.
> D. Li's. pale beneath...... 8. lavigatus
> 9. strumosus
> 10. grosse-serratus
> DD. Les.green on both sides. 11 . ocapetalus CC. Stem mough or heriry belous 1. Rootstocks thickered in-
> to one or more fleshy tubers. 13. giganteus Maximiliani . tuberosus
> DD. Rootstockis all slender
> E. Louer le's. sessile or with a clasping buse. . . . . . . . . . . 16. doronicoides 1\%. mollis
> ex. Louer lis. shortpetioled.
> F. Stem 1-2 ft., not
> branching.....18. pumilus
> FF. Stem usuily over
> $3 \mathrm{ft} .$, branching.19. latiflorus
> 20. Californicus 21. hirsutus
> 22. trachelifolius

1. ánnuus, Linn. Common Sunflower. Stem 3-12 ft., rough-hairy, often mottled: lrs. 4-12 in. long, broadly ovate, acute, the lower cordate, coarsely serrate, rough on both sides: fls. 3-6 in. wide in wild specimens, often 14 in cult. July-Sept. Minn. to Tex., west to Wash. ard Cal. Gn. 27, p. 68. Gt. 43, p. 95 (as İ. lenticularis). B. R.15:1265 (as H. Tenticuluris).-A valuable economic and ornamental plant. The los. are used for forlder, the fls. Field a yellow dye, the seeds furnish an oil and are used for food. It is grown for food chiefly in Russia. H. anneus has long been in cult. as an ornamental, and has raried into many distinct forms. Common varieties are: Var. Californicus, very large and double; var. citrinus, with primrose-colored rays (Gn. 49, p. 327); var. globosus fistulosus, having enormous globular heads; var. nanus fl. pl.(Globe of Gold), dwarf and double, raluable for borders; Russian Giant, $10-12 \mathrm{ft}$. high, single, grown mostly for seed; var. variegatus, with variegated lvs., but not especially attractive.
2. argophyllus, Torr. \& Gray. Silvery-leated Sciflower. Stem usually $4-5 \mathrm{ft}$. high, soft grey, with a dense, silky pubescence, especially the upper branches. Otherwise like $\Pi_{\text {. }}$ a тиuus, into which it seems to vary under cultivation if the seedlings are not constantly selected for their silky character. Texas. The var. Texana, Hort., which does not differ botanically from the type, is an attractive form of this species. R.H. 1857, p. 431. Gn. 12, p. 280; 27, p. 67; 5J, p. 147.
3. debilis, Nutt. (II. cucumerifolins, Torr. \& Gray). CuCUMBER-LEAVED SUNFLOWER. Fig. 1026 . St. $1-4 \mathrm{ft}$. high, hairy throughout: branches often mottled with purple or white, each one bearing a fl.: lvs. $1-4 \mathrm{in}$. long, ovate to triangular, generally with a cordate base, thin, glossy, irregularly toothed or entire: $11 \mathrm{~s} .2-3 \mathrm{in}$. wide, on slender peduncles. July-Sept. Fla. to Texas and westward. G.C. I11. 17:167. Gt. 44, p. 3i1. B.M. 7432. Gn. 49:1064. This is one of the best for cut-fls. It needs a sandy soil.

4. Clump of Helianthus orgyalis.
5. orgyàlis, DC. Fig. 1027. Stem S-10 ft. high, strict, smooth, very leafy: lrs. $8-16 \mathrm{in}$. long, slightly rough, drooping: tis. numerons, lemon-rellow. Sept., Oct. Dry plains, Neb. to Tex. and westward. Gn. 27, p. 67; 55, p. 147. F.R. 2:146. - This species has distinct and
attractive foliage, which is not at all coarse. A well grown plant will produce spikes of fls. nearly 4 ft . long.
6. angustifolius, Linn. Swamp Sceflower. Stem $2-6 \mathrm{ft}$. high, simple or branching above, slightly rough: lvs. 2-7in. long, somewhat tufted, drooping, with rolled edges, smooth or slightly rough: fis. $2-3 \mathrm{in}$. wide, few or solitary. Aug.-Oct. Wet land, N. Y. to Fla., west to Ky, and Tex. B.M. 2051.
7. rigiơus, Desf. (H. Missouriénsis, Schwein.). St. $1-3 \mathrm{ft}$. high (rarely 5-8 ft.), strict, sparingly branched, rough or hairy: lvs. 6-12 in. long, oblong to ovate-lignceolate, firm, thick, rough-hairy, eutire or slightly toothed: fls. $21 / 2-4$ in. wide, showy, long-stalked; raysnumerous, about $11 / 2 \mathrm{in}$. long; lisk sometimes yellow at first, turn, og brown. Aug.-Oct. Mich. to Tex, and west to Col. B.R. 6:508 (as H. atrombent), B.M. 2020 (as II. $^{\text {. }}$ diffusus). B.M. 2668 (as H. atrorubens). Gn.27, p.68.After $I I$. decapetalus this species is one of the best perennial Suntlowers. It varies under cultivation chiefly in the direction of doubling and in lengthening the blooming period. Some of the best garden varieties are æstivalis, grandiflorus, semi-plènus and Miss Mellish.
8. atrórubens, Linn. Purpleddisk Sunflower. St. $2-5 \mathrm{ft}$. high: lvs. usually thin, sometimes hoary beneath : fls. about 2 in . across; rays few ( 10 to 16 ), rarely over 1 in . long; disk dark red. Otherwise like H. rigidus, to which it is inferior. Va. to Fla., west to Ohio and La.
9. levigatus, Torr. \& Gray. Stem 2-5 ft., simple or branched above: lre. 3-6 in. long, lanceolate, smooth, entire or slightly toothed: fls. $1-1 \frac{1}{2}$ in. broad, few or solitary; rays $6-10$, usually less than 1 in . long. Aug.Oct. Va. to N. C.

10. Helianthus decapetalus, var. multiflorus. (See species No. 11.)
11. strumdsus, Linn. St. 3-7 ft. high, usually branching, often glaucous: lrs. $3-8 \mathrm{in}$. long, ovate-lanceolate, rough above, entire or toothed: fls. $21 / 2-4 \mathrm{in}$. across; rays $8-15,1-11 / 2$ in. long. July-Sept. Open woods, Can. to Ga. and west to Wis. and Ark. Var. mbllis, Torr. \& Gray. Lrs. downy beneath. B.M. 3689 (as H.mollis, Lam.).
12. gròsse-serràtus, Martens. St. 6-10 ft. high, rery smooth, glaucous: lvs. long-lanceolate, slender-petioled,
rough above: fls, many, cymose, 1-3 in. broad. Aug.Oct. Pa, to Mo., south to Tex. - Passes into H.giganteas.
13. decapetalus, Linn. Stem 2-5 ft. hlgh, branched above: lvs. $3-8 \mathrm{ln}$. long, ovate-lanceolate, sharply serrate, thin, rough above, finely pubescent beneath : fls. 2-3 in. across, numerous; rays generally more than 10 , in spite of the specitic nume. July-Sept. Moist soils, Quebec to Gia., west to Mich. and Ky. G.C. II. 16:601.Under cult. it has giren rise to the horticultural var. multiflorus ( $H$. тиltiflorus, Hort.). Fig. 1028. B.M. 227. G.C. III. 10:421. Gn. 27:476, pp. 71, 74 ; 45. p. 373. Gt. 43, p. 554 . Ging. 3:83. F.R. 2:413. The many garden forms of var. multilloris differ mainty in the extent of doubling, season of blooming, habit of plant and size of $f$. Among the best are: Var. flore pleno and var. grandiflorus, almost completely double; var. major, ths. larger than common; var. máximus, very large, single fis. with pointed rays; Soliel d'Or, with quilled florets, like a Cactus Dahlia. Multifforus varieties are the most popular of perennial Sunflowers, and deservedly so. If the double forms are grown on poor soil, or are allowed to remain for several years without being divided, they become single.
14. divaricatus, Linn. Fig. 1029. Stem 1-6 ft. high: lvs. sessile, rough above, pubescent beneath, standing out nearly at right angles to the stem : fis. few or solitary, 2 in across. Juls Dry woodlands, Can. to Fla., west to Neb. and La.
15. gigantèss, Linn. Indian Potato. Stem $3-12 \mathrm{ft}$ high, stout: Ivs. $3-7 \mathrm{in}$. long, lanceolate, very rough, serrate or nearly entire: fls, usually several, $11 / 2-3 \mathrm{in}$. broad, mostly long-stalked; rays $10-20$, barely 1 in . long, cupped, pale yellow : seeds smooth. Aug.-Oct. Wet ground, Can. to Fla., west to Neb. B.M. 7555. D. 165. - Var. subtuberdsus, Bourgeau. A northern form with unusually fleshy roots, which were formerly col lected by Indians for food. Hence "Indian Potato."
16. Maximiliani, Schrad. Stem generally 2-4 ft. high, sometimes $8-10$ : 15s. inclined to be trough-shaped: fis on short, densely pubescent peduncles; rays 15-30, generally $11 / 2$ in. long, deep yellow. Otherwise like $H$.giganteus, of which it is probably the western form. Aug.Oct. Dry plains, west of Mississippi river.
17. tuberdsus, Linn. Jerusalem Artichohe. Stem 5-12 ft., branched abore. Ivs. 4-8 in., usually ovate, acuminate, serrate, rough abore, finely pubescent beneath: fls. several or numerous, $2-3 \mathrm{in}$. across; rays 12-20: seeds pubescent. Gn. 27:68. B.M. 7545.-Frequently cultivated for its edible tubers. See Artichoke, Jerusalem.
18. doronicoldes, Lam. Stem 3-7 ft. high: Ivs. 4-8 in. long, orate oblong, narrowed towards both ends, rough on both sides : fls. numerous, in loose panicles; rays 12-20, broad. Otherwise as $H$. latifolius. Aug., Sept. Dry soils, Ohio to Mo. B.M. 2778 (as II. pubescens).
19. mollis, Lam. Stem 2-5 ft. high, stout, rery leafy, hoary villose, at least when young : lvs. 3 - 5 in. long, ovate-lanceolate, white-pubescent or rough on upper side: fls. solitary or few, 2-3 in. broad; rays 15-25. July-Sept. Barren soiis, Ohio to Ga., west to Ia. and Tex. Gn. 55:1212.
20. pùmilus, Nutt. Stem rough and hairy throughout : lrs. only $5-7$ pairs, 1-4 in. iong, ovate-lanceolate : fls. few, short-peduncled. Eastern Rocky Mts. and adjacent plains.
21. letilldrus, Pers. Showy Sunfower. Stem 4-8 ft. high, leafy: lvs. $4-10 \mathrm{in}$. long, ovate-lanceolate, more or less serrate, rough on both sides: fls. several. 2-4 in.

broad, short-peduncled ; rays $15-25$, about $1 \frac{1}{2}$ in. long, showy. Prairies, Ind., Ill., Wis. Gn. 45:960. G.M. 31:204. - A desirable Helianthus. The garden form $\boldsymbol{H}$. semiplemus is better than the type. Resembles tall-growing forms of $H$. rigidus, but disk yellow.
22. Californicns, DC. Stem 3-8 ft. high. Ivs. lanceolate, rough on both sides: Hs. loosely paniculate. Calif. - Most of the plants grown under this name are a garden form of $\boldsymbol{H}$. anuuиs.
23. hirsùtus, Raf. Stem 2-4 ft. high, densely hairy : lrs. ovate-lanceolate, thick, very rough, pubescent and pale beneath: fls. severnl, $2-3$ in. across. July-Oct. Dry soils, Pa. to Ga., west to Wis. and Texas.
24. trachelifolius, Mill. Resembles strumosus, but stem and fl.-stalks usually rough-hairy and liss. thinner, green on both sides. Aug., Sept. Dry soil, Pa. to Wis. S. W. Fletcher.

HELICHRYSUM (Greek for sun and gold; referring to the Hower heads). Composita. Syn., Elichrysuon. Nearly 300 Old World herbs or shrubs, mostly African and Australian. Some of them are grown for everlastings, being, with Helipterum, amongst the most important plants for that purpose. Easily grown as hardy annuals in any garden soil. Fls. of two kinds, the outermost ones with pistils only: involucre dry and chafflike, the stiff overlapping scales glabrous, often colored: heads large, +erminating the branches, normally yellow, but now varying into many colors in long-cultivated forms.
A. Le's. oblong or nar our ; groun for everlastings. B. Heads large, solitary.
bracteàtum, Andr. Fig. 1030. Stout annual, 11/2-3 ft. tall, somewhat branched, the terete stems nearly or quite glabrous: lvs. many and rather large, oblong-lanceolate, narrowed to a short petiole, entire, green: heads terminating the branches, $1-21 / 2$ in. across, yellow or orange, the short and obtuse involucre-scales imbricated. Australia. - Perhaps the most important single everlasting fl. grown in this country, particularly for bold or heavy design work. It is very variable, particularly in color. The heads are pure white in var. album, Hort. (H.álbum, Hort. П. niveum, Grah. B.M. 3857); scales tipped with red in var. bicolor, Hort. (Elichrysum bicolor, Lindl. B.R. 21:1814); dark scarlet in var. atrococcineum, Hort. ( $H$. atrococcineum, Hort.) ; dark blood red in var. atrosanguineum, Hort. (H. atrosanguineum, Hort.). The forms with very large heads are often known as $H$. macrinthum, Hort. The double forms are often known as $I$. monstròsum, Hort. Other portraits of this species will be found in B.R. 24:58. R.H. 1851:101.

## вв. Heads medium to small, in clusters.

c. Color yellow or orange.
arinàrium, DC. A foot or less high, herbaceous: Irs. plane, white-woolly, the lower ones oblong-obovate and long-attenuated into a petiole, the upper ones linear-lanceolate and acute: heads globular, in compact little corymbs, bright yellow. Perennial, in sand, France.-Apparently not cult. in this country. See Everlasting.
orientale, Gærtn. (Gnaphalium orientale, Linn.). Stem simple, $11 / 2 \mathrm{ft}$. or less tall: lis. oval-oblong to lanceolate, obtuse, sessile, rather small: heads bright yellow, small, globular, in corymbs. S. Eu. to Asia Minor. Much cult. in Mediterranean regions, but little known in this country.
apiculàtum, D. Dou. Perennial, 1-2 ft., tomentose, leafy below: Ivs. lance-spatulate, the base more or less spatulate: heads $1 / 2 \mathrm{in}$. across, in small heads or clusters, orange-yellow, the scales sharp-pointed. Australia. -Little known in this country.

## cc. Color white or nearly so.

giandifldrum, Less. Perennial, somewhat woody, decumbent at the base: lvs. crowded near the base, sessile, oborate to oval or oblong, obtuse, wroolly on both sides: heads hemispherical, in corymbose clusters, glossy, cream-color, $1 / 4 \mathrm{in}$. across. S. Afr.
diosmæfolium, Sweet. Tall, upright: Irs. very small, narrow-linear ( $1 / 2$ in. or less long), the margins revolute:
heads small and numerous, white. - Cult. in S. Calif. by Franceschi. Australia; sometimes grows 20 ft. high.

AA. Les. ovate or broader: border and vase plant.
petiolàtum, DC. (Gnuphìlium lanàtum, Hort.). Tender perennial, cult. for its long, woolly stems and woolly lis., either as an edging in ribbon borders or as

1030. Helichrysum bracteatum $(\times 1 / 3)$.

One of the choicest everlastings.
an ornament in lawn vases: lrs. petiolate, orate and broad at the oase, obtuse : heads (not often seen in cult.) in branched cymes, the involucre scales obtuse, cream-white. S. Afr.-An old garden plant. Prop. by cuttings from stock plants carried over winter.

HELICODEA. See Billbergia.
HELICODICEROS (Greek, spirally 2-horned). Ard̀cew. The extraordinary plant shown in Fig. 1031 is known as the "Hairy Arum" and sold by the bulb dealers as A rum crinitum. When in flower it has a disgusting odor, which attracts carrion tlies and bright green insects, as uncanny as the plant itself. The plant is the only species in its genus, the hairiness of the spadix being a very distinct character. Helicodiceros and Dracunculus are alike in having few ovules, which are fastened at the top and bottom of the cell, but in the latter the staminate and pistillate fls. are close together, while in the former they are separated by a sterile portion. Arum differs from both genera in having the orules fastened in 2 series at the side of the cell. The lvs. of Arum are spear-or arrow-shaped, while in the other two they are pedately cut. Latest monograph in Latin by Engler in D.C. Mon. Phan. 2:604 (1879).

This plant is worth growing once, since it is one of the great curiosities of horticulture. It may be secured

## HELIOTROPIUM

from bulb dealers in the fall and flowered under glass in the spring. It is a most vile-smelling plant when in full flower. The plucky artist who drew the accompanying picture of this arum wrete at the bottom of his drawing, "Air'em."

1031. Helicodiceros muscivorus ( $\times 1 / 6$ ).
muscivorus, Eng. ( $\Pi$. crinitus, Schott. Arum crinttum, Ait. Jraciuculus crinitus, Schott). Fig. 1031. Fieight $11 / 2$ it.: spathe-limb purple, covered with purple 'aairs. Corsica, B.R. 10:831. F.S. $\overline{5}: 44 \bar{j}$. W. M.
HELICJNIA (Mt. Helicon, in Greece, seat of the Muses). Scitamindere. Foiage plants allied to Musa. Perhaps 25 to 30 species in tro oical America. The plants are grown in a warmhouse a ong with Alocasias, Anthuriums and Calatheas: the directions given for the cultivation of Calathea apply very well to Heliconia. Under the name of Wild Plantain or Balisier, II. Bihai is cult. outdoors in S. Fia. and along the Gulf of Mex. It is an evergreen shrub rivaling the bananas in foliage and scarlet and black flower-sheaths. E. N. Reasoner classes it among plants that sprout up readily in the extreme South if killed by frost, and recommends it as a house plant for the South.

From Musa, Heliconia differs chiefly in having a dry, often dehiscing, 3 -loculed, 3 -seeded fruit. Fls. in clusters below the lrs., subtended by biacts after the way of Musa; sepals 3, linear, free or somewhat joined to the corolla; corolla short-tubed; stamens 5; staminodium 1: lvs. large and striking, often beautifully marked; stems arising from a strong rootstock. Various species have been introduced into cult., kut the following are the only ones appearing in the Amer. trade.
Bihái, Linn. Balisier. Wild Plantain. Becoming $10-15 \mathrm{ft}$. tall, banana-like: lvs. oral or oblong-oral, longpetioled, transversely rithed, the blades $3-\overline{5} \mathrm{ft}$. long: blossom sheaths very large, scarlet and black, the fls. red or orange. W. Indies and S. - A most striking plant, but rarely seen in glasshouse collections. It is naturalized in the Old World tropics.
aùreo-striatta, Hort. Perhaps a form of the preceding: lvs, beautifully striped along both midrib and transverse veins with golden yeilow: stems striped with yellow and green: leai-limb oval-acuminate. I.H. 29:464; 42, p. 289 (where a list of the best kinds will be found). S.H. 2, p. 133. F.R. :3:493. - Very handsome. The best known kind.
ilistris, Hort., is of the general style of the last, but the. . and veins ne marked with pink. Var. rubricaulis, Hort., has more red, the petiole being bright vermilion. R.H. 1896:36 (where a review is made of the species). R.B. 21, p. 69. Gn. 52, p. 359.
angustifolia, Hook. Drarfer: lrs. long and narrow, 116-21/2 ft. long. 3-6in, wide, green: ths. yellowish green, $6-10$ in each red bract. S. Amer. B.M. 4475. L. H. B.

HELIOPHILA (Greek, sun-loving). Cruciferce. This genus includes a blue-flowered half-hardy annual, that grows about 3 in . high and is advertised at present only in the very largest catalogues of flower seeds. The genus contains about 61 species of annual and subshrubby perennials, natives exclusively of S. Africa. There are no near allies of garden value. The dehiscent pod is an important character of the genus. Other important generic characters are porls sessile or pedicelled, 2 -celled, 2 -valred: seeds in a single row, often winged. The racemes are long and leafless, and the fis. yellow, white, rosy or sky-blue. Latest monograph in English by Sonder in Flora Capensis 1: 35-54 (1859-60). For general culture, see Anunals.
The plant in the trade is known as II. arabioides, Sims, which Sonder refers to H. pilosa, Lam., var. incisa, Sonder. H. pilosr is a very variable species, with stem 6-24in. high, erect or diffuse, simple or unbranched from the base: lower lvs. often opposite, the rest alternate: fls. normally sky-blue, with a yellow center, but the natural varieties include lilac and yellow. The typical $I$. pilosa has a stem that is rough with spreading hairs: Ivs. hairy, either oblong or linear, entire or sometimes lobed near apex, cuncate at base: pods linear, erect or spreading. Var. incisa, Sonders, has lis. linearcuneate, 3 -cut at the apex, racely 5 -cut, the lobes linear or acuminate. B.M. 496.
W. M-

HELIOPSIS (Greek, like the sun). Compósitoe. About 10 species of hardy herbaceous plants, bearing numerous yellow fis. in autumn, and all native to N. America. They are all perennials except one, and that is not cultivated. They are not common in gardens because of the more attractive forms in Yelianthus. II. levis, var. Pitcheriana, however, deserves wider popularity. Heliopsis has no pappus, while in Helianthus the pappus has 2 awns. In Heliopsis the rays have pistils, but may be fertile or sterile. In Helianthas the rays have no pistils at all. Stem erect, loosely branching: heads yellow, long-stalked, borne in loose terminal or axillary panicles: lvs. opposite, petioled, 3-ribbed, oblong-ovate to ovate-lanceolate, coarsely toothed. For culture, see Melianthus.
lævis, Pers. Stem 3-5 ft. high : lvs. 3-5 in. long, thinnish, smooth on both sides or roughish above: fls. numerous, $11 / 2-21 / 2$ in. broad, long-stemmed. July-Oct. Open places, r. . to Fla., west to Ill. and Ky. B.M. 3372. Var. Pitcheriaua (H. Pitcherid̀na, Hort.). A dwarf, more branching and bushy form, $2-3 \mathrm{ft}$. high, with a
ad of 3-4 ft.: fls. produced much more freely than preceding and a deeper yellow. One of the best plants for the perennial border, being especially $\$$ culuable for cutting and for planting in dry places. Int. 1895 by Pitcher \& Manda. A.G. 16:323. F.R. $2: 259$.
scàbra, Dunal. Differs from $H$. levis chiefly in being rough throughout: upper lis. sometimes entire: heads few, nften solitary. Dry soils, Me. to N. J. and west to Mo. J.H. 33:359. B. ㄹ. 7:592 (as I. canescens).-Passes into læris.
S. W. Fletcher.

## HELIOTROPE. See Meliotropium.

HELIOTROPIJM (heliotropic; turning to the sum). Boragindcea. A widely spread genus in warn regions, of more than 100 species. Herbs or rarely shrubs, with small flowers in terminal, forking clusters and alternate simple leaves: corolla short funnel-form or sal-rer-shape, the throat mostly open (sometimes constricted); stamens 5, attached to the tube, not exserted, the filaments very short: ovary 4 -loculed and splitting into 4 nutlets (or two 2-loculed nutlets) when ripe, surmonnted by a simple styie. There is a Heliotrope ( $\boldsymbol{H}$. Curassaticum, Linn.) native to the S. Atlantic states, with white fls. and oblong or linear lys.; also a naturalized species (II. Indicum, Limn.) with bluish scented fls. and lance-orate rugose lis. The florists' Heliotropes seem to be derivel from 2 species. H. Peruvianum, Linn., is perhaps the leading species. Fig. 10:32. Lus. oval or oblong-lanceolate, very veiny, not conspicuously narrowed at the base: fls. small, in a close cyme, the corolla tube little longer than the calys. Peru. B.M. 141.-Vanilla-scented. H. corymbossum, Ruiz \& Pav.
(II. grandiflòrum, Don), has longer and relatively narrower lvs., which are distinctly narrowed to the base, flower-clusters larger and more open, tls. nearly twice larger and the corolla tube nearly twice longer than the calyx ; calyx teeth longer and narrower. Peru. B.M. 1609. Narcissus-scented. Many of the large-trussed and large-flowered garden varieties are apparently of this species rather than of the former; or possibly the two are hybridized. Originally both species were violetflowered, but the colors are now in various shades of purple, and there are white-flowered forms. H.Voltaireànum, Hort., occurs in our tradelists. It is a compact garden form, said to be a hybrid. P.M. 16, p. 100. Another species, H. Europæum, Linn., is rarely seen in old collections, particularly South, and it is sparingly naturalized. It is a hoary-downy herb 6-18 in. high, with longpetioled oval Irs., and white fls. in scirpioid racemes.
L. H. B.

The Heliotrope is a warmth- and sun-lowing plant, preferring a rich, light soil, good drainage and plenty of ( $\times 1 / 2$. $\quad$ drainage and plenty of than many other plants from becoming dry. It wilts easily, and should never be allowed to lack for moisture in soil and air. Quickly becoming pot-bound, it requires frequent shifting.
The Heliotrope strikes readily from terminal cuttings of the tender shoots in about eight or ten days. Florists root the cuttings in pure sand. Cuttings should hare a temperature at night of about $50^{\circ}$, with $5^{\circ}-10^{\circ}$ of bottom heat. They should be kept from flagging by careful watering and shading as needed. When the cuttings have formed roots about half an inch long, they shouid be transplanted to small pots or shallow boxes of light soil, placed where they will have a night temperature of about $60^{\circ}$, sheltered from currents of air, watered and shaded as needed until established.
The Heliotrope may also be grown readily from seed. These should be sown in shallow flats in light soil, in a temperature of about $65^{\circ}$, covered lightly and kept nicely moist. When well up they may be treated as cuttings.
For forcing, the Heliotrope should have a good exposure to the sun, a temperature of about $60^{\circ}$ at night, rich soil, good drainage and careful watering. The plant is preferably grown in benches in 6 inches of soil. A plant easily covers an 18 -inch square.
In the open ground plants should have a sunny situation and moist soil. Here it corers a space $21 / 2 \mathrm{ft}$. square, and attains a height of $2-3 \mathrm{ft}$. They should not be set out till danger of spring frosts is past.
The plant is comparaticely free from diseases and insect pests. Cuttings and seedlings are sometimes destroved by the damping-off fungi, and under conditious of neglect, plants sometimes beconie infested with mealy-bugs, aphides, or the red-spider. Sometimes plants are ruined by a disease known among florists as the "black rust," an ailmeut similar to or identical with that affecting the Verbena. It usually appears on plants in an enfeebled condition, resulting from being potbound, from sour soil or over-potting, followed by too low temperature, as well as from other causes. Badly liseased plants should be destroyed. Others are sometimes benefited by syringings and waterings with fiesh and tolerably strong tobacco tea, in place of the usual waterings. Repotting and occasional applications of Weak manure water, with perhaps a higher temperature, will also be found helpful.

Ernest Walier.
Apart from its use as a border plant and for bedding, being a universal farorite. it usually forms part of the stock in trade of florists who do a local business, :ank-
ing next to the Geranium as a pot-plant for spring trade. For cut-Howers in winter it is equally popular, wut its lasting qualities when cut are uncertain. Suecessful growers assert that for best results, strong stems and good keeping qualities, it sinuld be grown in a moderately covi, siry house. Some of the hest the writer has seen were grown in a house suited to violets and mignonette, in which the temperature seldom ruse to $50^{\circ} \mathrm{F}$, at night.
Stout, soft cuttings make the best plants, and root easily in a temperature of $60^{\circ} \mathrm{I}$. From the time they are inserted, sufficient water must be given to prevent wilting. A propagating bed is not required. Ordinary flats will do-the medium half-leaf soil and sand. They must be well shaded for a week or so. They are very liable to the cutting bench fungus, and should be potted or boxed off as soon as rooted, which should be in ten or twelve days. Any light soil will do, and it need not be rich for the first shift.
For winter Howers, cuttings may be taken in July and treated as above. Some of the plants among the spring batch with straight stems may be grown along for standards by taking out the side shoots until 2 ft . high. These make handsome drooping specimens. By pruning about midsummer they may be kept in good condition for years. Stock intended for spring cuttings is better grown continuously in pots, as the plants lift badly in the autumn.
The plants do not lift well. The writer prefers to grow a few left-over bedding plants for stock. Cuttings struck in June or July and grown continuously indoors make the best plants for winter flowers. Tall young plants may be grown into standards by taking out the side shoots until they reach 2 or 3 feet in height. and then letting them branch out. Shifted along, they make large specimens in 12 -inch pots, and may be kept in good condition for years by judieious pruning, topdressing and the use of manure water.

Heliotrope is extensively used as a bedding plant, is a favorite in window-gardens, and is much grown by florists for cut-flowers. The ease with which it may be grown either in pots or the garden, the color and fragrance of its dainty flowers, and the continuity of bloom, have all contributed to make it a general favorite.
There have been numerous garden varieties and a number of hybrids - white and the differenttints of blue predominating. Floral catalogues rarely mention, however, more than 6-8 varieties. Madame de Blonay has for rears been a farorite white, while Queen of Violets is perhaps the finest of the blues. Chieftain is a lighter tint. Albert Delaus is a varicty with gollen variegated foliage, but variegated Heliotropes are undesirable. Among seedlings donble forms occasionally appear. They have no special merit, and are seldom perpetuated.

## T. D. Hatfield.

## HELIPTERUM

 (Greek for sum and wing; saill to refer to the light-plumed pappus). C'ompésitor. Including Acroclinium and Fhothónthe. About 50 species in Australia and S. Africa, of which a few are cult. as everlastings or immortelles (see Eiverlastiugs). The cult.
## HELLEBORUS

kinds are annual herbs (or grown as such), of easiest cultivationin any garden soil. Fls. mostly perfect, with 5-toothed open corollas: akenes woolly, bearing a pappus of many plumose bristles: involucre glabrous, cbovate or top-shaped, silvery or rose-colored: plants mostly glabrous. This and Helichrysum are anongst the most important of everlasting flowers.

> A. Heads large, many-flowered. B. Les. broad.

Mánclesii, Muell. (Rholánthe Mainglesii, Lindl. Roccárlia Mánglesii, Voss). Fig. 1033. Neat glaucous annual, $12-18 \mathrm{in}$. tall, with very slender, long pedicels, bearing pretty nodiling heads: lvs. thin, oval orelliptic, clasping: involucre silvery-chaffy, the ray florets originally clear, handsome pink, but now rarying to white ( $\boldsymbol{R}$. ilba, Hort.), and to dark red ( $R$. atrosanguinea, Drumm.). Var. maculàtum (R. maculata, Drumm. Roccárdia Mánglesii, var. maculata, Voss), is usually larger, with shorter Ivs. and involucre flecked with red: rays pink or white. Austral. B.R. 20:1703.-A charm ing plant, and one of the few everlastings which retains much of its grace and beauty after being dried. There are double-fld. forms, i. e., those with all or nearly all the florets ligulate. Excellent also for pot culture. Seeds of the mixed rars. are sometimes sold under the name Rhodanthe varius.
bв. Les. linear.
roseum, Benth. (Acroclinium ròseum, Hook. Roccárdia ròsea, Voss). Fig. 1034. Annual, 1-2 ft. high, glabrous, with many strict simple branclies from the crown, each stem terminated by one large head: Irs. numerous, alternate, small and linear: rays many, pointed, brigit

1034. Helipterum roseum $(\times 1 / 2)$.

1035. Helipterum Humboldtianum ( $\times 1 / 2$ ).
pink (or varying to white in $H$. ilbum, Hort.). Austral. 13. M. 4801.-A very serviceable and handsome plant.

AA. Meads small, clustercal.
Humboldtiànum. DC. ( $I$. Súnfordii. Hook. Roccrivelia Humboldtidint, Voss). Fig. 1035. Aunual (or cult. ns
such), erect or with a decumbent base, the stems somewhat branching: lis. (and stems) white-tomentose, linear or lance-linear, pointed, alternate: heads small, oblong, yellow, in a dense corymbose truss. Australia. B.M. 5350 .
corymbiflorum, Schlecht. (Roccírdia corymbiflòra, Voss). Annual, lower than the last, more branchy: lvs. broader: heads $2-3$ times larger, top-shaped, in small corymbs, the prominent rays white. Australia.
L. H. B.

## HELLEBORE. See Melleborus.

HELLEBORUS (ancient name of $H$. orientalis, meaning unknown). Ranunculàcere. Hardy herbaceous perennials, about 8 species, natives of Europe and western Asia. Erect, with large palmately dirided lvs., the basal long-petioled, the upper sessile and sometimes reduced to bracts: fis. large, white, greenish, red, purple, or yellowish; sepals 5, broad, petal-like, mainly persistent; petals small, tubular, furnished with claws; stamens many; carpels $3-10$, sessile, forming leathery, many-seeded capsules, dehiscent at the apex.
All the kinds will turive in ordinary garden soil, but for the best results use a soil of rich loam and coarse sand, with a top-dressing of rotten manure. A moist, well-drained, partially shaded situation is preferable. The species may be planted in shrubbery borders, and In rockeries, or if wanted for cut-flowers they should be planted in beds. An important point is not to disturb the plants when once established, as they are very sensitive to frequent changes of location. All the species bloom before spring arrives; a few midd days in December or January will bring out the budts of $\boldsymbol{H}$. niger varieties, and the others are not far behind. They are easily forced under glass. Strong plants should be taken up into large pots and gradually inured to a warm temperature. Blossoms may thus be brought forth at any time desired in winter. Prop. best by division in fall or spring; but if seeds mature they will germinate well if planted immediately in pans or in rich, open ground. Seedlings should bear flowers the third season. Monographs by J. G. Baker in G.C. II. T:432 (1877 and by Thos. Moore in G.C. II. 11:431 (1879).

## A. Lis. dying annually, thin.

víridis, Linn. Stem scapose: rootstock creeping: 1 basal leaf $8-12$ in. broad, on petiole $6-10 \mathrm{in}$. long; segments $\bar{i}-11$, oblong, acute, sharply serrate : H.-stem hardly exceeding the basal leaf, bearing 3-6 fls. and large. leaf-like bracts: fls. large, yellowish green; sepals broadly oblong, obtuse, spreading: capsules about 4, as long as the sepals, transversely ribbed; style erect. Eu. Nat. in eastern states. G.C. II. 25:553.Not so much used as the other species here given.

Var. purpuráscens, Waldst. \& Kit. Differs chiefly in the central leaf-segments being deeply palmately cleft, and the fls. much tinged with purple, especially on the outside. Hungary. B.M. 3170 .

## AA. Lis. evergreen, coriaceous.

B. Flower-stem never more than once forked: fls. 1 or 2.
niger, Linn. Christmas Rose. Fig. 1036. Stemless: rootstock short, black: only 1 leaf somewhat irregularly dirided into lobes, toothed on the outer half : petiole 5-7 inches long: flower-stem simple or once branched: fls. very large; sepals white, or flushed with purple: capsules 6-8. Rocky places, Eu. B.M. 8. Gn. 55, p. 13.

Var. angustifdlius, Hort. (var. minor, Hort.). Plant and leaf similar, but His. small. Very pretty. G. C.II. 21:85, and III. 21:19.

Var. altifolius, Hayne (rar. mojor, Hort. Var. múri $m u s$, Hort.). Petiole reaching 1 ft . in length: fls. the largest in the genus, $3-5 \mathrm{in}$. across, and often several on same stem. Gn. 14:142; 48:1021. G. C. 11. 20:693. A.G. 11:63.

Bв. Flower-stem forkel 2 or 3 times: fls. several or many.
orientalis, Lam. Stemless; short creeping rootstock: 1 radical leaf, $i-9$-lobed; segments 6 in. long, $11 / 2-2$ in. broad, acute, serrate in the outer half, pubescent, with strongly raised veins beneath; petiole 1 ft . long: flower-

## HELWINGIA

stem over 1 ft . high, forked above, 2-6-fid., large, leaflike bracts; sepals roundish, imbricated, white, purple beneath and purple edges, spreading: capsules oblong, shorter than the sepals, transversely ribbed: style erect or incurved. Asia Minor. Gn. 47, p. 136. - There are numerous varieties of this beautiful species.

## c. Purple-fld. varieties.

Var. C6lchicus, Regel. Stem purple-spotted, quite glaucous: 1 leaf to each flower-stem: fls. 3-6 on a stem, deep bright purple, both inside and out. Asia Minor. B.M. 4581 (as M. utrorubens). Gt. 1860:293. Var. Col-chicus-punctàtus, T. Moore. Fls. deeper plum-purple, more glaucous, exquisitely mottled inside with innuner-

1036. Christmas Rose, Helleborus Niger ( $\times 1 / 3$ ).
able dark dots. Gn. 16:189, f. 8. -One of the handsomest of all the Hellebores.
Var. Abchásicus, A. Braun. Much like var. Colchicus, but differing in haring 2 or more les. to a fower-stem. Caucasus region. Gt. 1866:496 (as H. Caucasicus, var. Abchasicus, Regel).

Var. atrorubens, Waldst. \& Kit. Only 1 leaf on a flower-stem. glabrous, thinner in texture than in the rest of the orientalis group: segments narrow: fls. 2-4 on a stem; sepals dark purple outside, greenish purple within. Hungary. R.H. 1865: 231. - A connecting link between the viridis and orientalis groups.

Var. rùbro-parpureus, Hort. ( $H_{1}$ atropurpùrea, Hort.). A seedling of var. atrorubens, with bold foliage and purple flower-stems: fls. spreading, deep purple. Characters well fixed and very handsome. Gn. 16:189, f. 1. R.H. 1884:564.

Purple-fld. hybrids of the varieties of $I$. orientalis are found in the trade under the following names: Var. elegans; var. iridescens; $\boldsymbol{F}$. C. Heinemann, fls. very large, imbricated, deep purple and mottled: Frau Irene Heinemann, tls. rose-purple outside, greenish white, with dark lines and dots inside; Gretchen IVeinemam, red-fld., strong grower; Hofgarten-Inspector Martuig, fls. rose-purple without and greenish within; Apotheker Bogren, rose-purple, very large.

> cc. White-fld. varieties.

Var. Olympicus, Lindl. Glabrous : fls, small, but spreading, very numerous; sepals green on outer surface, white within. Bithynia. B.R. 28:58.-Hybrids closely allied to this hare been given the trade names: Willy Schmidt and Prof. Dr. Schleicher.

Var. guttàtus, A. Braun. Glabrous, green stem: sepals green outside, white within and elegantly spotted with purple crimson dots. Caucasus region. - Two allied hybrid forms are named: Commerz Benary and Albin Ótto. Gn. 16:189, f. 4.

Var. antiquorrum, A. Braun. Glabrous, green mottled stem: fls. as in var. Olympicus, but more imbricated, maintaining the bell-shaped form. B.R. 28:34 (as $\boldsymbol{H}$. orientalis, Lindl.). Gn. 16:189, f. 3.

## ccc. Green-fld. variety.

Var. Caucásicus, A. Braun. Lvs. very glossy; segments more oblong than in the type, often 3 or 4 in. broad: sepals round, pale green, much imbricated. Caucasus region.
K. C. Davis.

HELMET FLOWER. A conitim, Coryanthes and Schtellaria.

HELONIAS (Greek, swamp-loving). Lilì̀cec. SWamp Pink. This genus includes a rare hardy perennial bulbous plant which grows in bogs from northern N.J. to N.C., and is sold by dealers in native plants. In very early spring it bears a hollow scape $1-2 \mathrm{ft}$. high, crowned by a raceme $1-3 \mathrm{in}$. long, composed of perhaps 30 pink or purplish fls., each $1 / 2$ in. across, 6 -lobed, and with 6 blue anthers. The genus has probably only one species, the other plants called Helonias being largely referred to other genera, which are distinguished in Britton and Brown's Illustrated Flora 1:399. The genus is placed by Britton and Brown in Melanthaceæ, an order included in the Liliaceæ by Bentham and Hooker. Helonias has a short, stout rootstock like a leek. The allied Heloniopsis is also in the trade.
bullàta, Linn. Swamp Pink. Stud Pink. Les. several or numerous, thin, dark green, clustered at the base of the scape, $6-15 \mathrm{in}$. long, $1 / 2-2 \mathrm{in}$. wide, with fine parallel nerves: scape stont, bracted below. Apr., May. B.M. 747. L.B.C. 10:961. B.B. 1:402. -Int. by H. P. Kelsey.

Helonias, which is perfectly hardy, is so easily propagated by division that it is hardly worth while to grow from seed. Under cultivation, also, it seems to rarely mature perfect seed. It multiplies itself rapidly from offsets, a single plant often providing a dozen others in a season. It is found growing in dense shade and also in the full glare of the sun, always in wet sphagnum bog in the latter case, while in the shade it sometimes spreads to dry ground. Although one of the showiest of all American bog plants, it is comparatively little known here, though better in England. It makes an elegant pot-plant.

Harlan P. Geisey and W. M.
HELONIOPSIS (Greek, like Helonias). Lilidece. This includes an herbaceous plant resembling our swamp pink, Helonias bullata, in the color of its fis. and stamens, but the fis. are larger and fewer, and the lvs. numerous and tufted. The style in Heloniopsis is a conspicuous feature, being long and red, tipped with a purple undivided stigma, while in Helonias the style is very short and 3-cut. Both genera are separated from numerous allied genera by the septicidal dehiscence of their capsules. The fls. are bell-shaped, drooping, deep pink, 6-lobed, with 6 red filaments and purple-blue stamens. The genus bas about 4 species. The following grows in the mountains of Japan at an altitude of $2,000-$ $7,000 \mathrm{ft}$., and is presumably hardy. It was once offered by John Saul, of Washington, D. C.

Japonica, Maxim. Rootstoch short, stout, with long root fibers: lvs. oblanceolate, persistent, greeu tinged purple: seeds small, very numerous, with a conspicuous tail at each end. B.M. 6986.

HELWINGIA (after G. A. Helwing, 1666-1748, a Germanclergyman, who wrote on the botany of Prussia). A ralid̀cere. A curious deciduous shrub, remarkable for the reason that the small, inconspicuous greenish fls. are borne in clusters on the midribs of the liss. at about the center of their upper surfaces. Of not much decorative value and therefore rarely cultivated, but interesting on account of the unusual position of the fls.; ten-
der North. It seems to grow in any soil that is somewhat moist. Prop. by greenwood cuttings under glass. Two species in Jap. and Himal. Fls. diœecious, shortpedicelled, with obsolete calyx, 3-5 petals and stamens and 3-4-celled ovary: fr. a berry-like, 3-4-seeded drupe.
Japónica, A. Dietr. (II. rusciflòra, Willd.). Bushy shrub, 3-5 ft. high: lis. petioled, ovate or elliptic-ovate, acuminate, serrate, stipulate, $11 / 2-3 \mathrm{in}$. long: fls. in June, the staminate generally with 3 , the pistillate with 4 petals. Jap. S.Z.86. A.G. 13:8.

## A. Phelps Tyman.

HEMEROCALLIS (Greek, beautiful by day; because the blossoms close at night). Lilideceu. Yellow Day Lilies. This genus includes the Lemon Lily ( $\boldsymbol{H}$.flava), which is one of the hardiest and most delightful of all herbaceous perennial plants. It easily ranks among the 50 most popular plants for the home garden. All the blue and white Day Lilies belong to the genus Funkia: all the yellow and orange Day Lilies belong to Hemerocallis. The Yellow Day Lilies have narrow, grass-like foliage, and their tlowers have wider funnels. The blue and white Day Lilies have very broad foliage, which is not at all grass-like. The flowers of Funkia are borne in racemes; of Hemerocallis in corymb-like panicles.
Hemerocallis has only 7 species, all of which are cultivated. The plants are all remarkably free from enemies, and need no protection of any kind, eren in the severest winters. The roots are bundles of fleshy tubers, and are sometimes classed with bulbs in catalogues of nurserymen. Small plants will Hower freely the first year. Clumps can often be left undivided for 4 or 5 years without a loss in size or number of flowers, but as a


## 1037. Lemon Lilies-Hemerocallis flava.

general thing all robust-growing herbaceous perennials should be divided every second year. In old clumps the roots often become firmly matted near the middle, and the wasteful competition between the too-numerous roots weakens the vitality of the plant. Next io $M$. flaira, the oldest garden favorites among the Yellow Day Lilies is H. fulta, sometimes called Brown Day Lily, and erroneously in some catalogues the Lemon Lily. $H$. fulcu is a taller plant, with later and orange-colored fls. and wavy inner segmerts. Within five years a new species, $\boldsymbol{G}$. amrantiucu, has come into great prominence, and its var. majorly some connoisseurs is considered the finest of all Day Lilies. As a rule, donble forms are not as popular as the types, and for the writer they lack the simplicity and lefinite character of the single flowers. Yellow Day Lilies have a wholesome fragrance. The individual flowers are short-lived, but there is a good succession. The plants thrive in almost any garden soil, but are most luxuriant along the borders of ponds or moist places, and in partial shatle. The flowers are excellent for chtting. P'lants prop. by division.
R. B. Whyte gives the sucression of bloom at Ottama, Canada, as follows: H. Dumortierii. June 4: minor: Mildendorfii and Thumbergii. June 11: rulilens, June 18: fulcu, July 2: auramtinca, var. mujor, July 9: fulwa, var. K'uraso, July 23, and distichu fl. pl., July 30. He
adds that $H$. Dumortierii, curentiaca var. major and $H$. rutilums differ from all others in the fls. being red dish brown outside, which is very marked in the bud.

## A. Fls. fragrant.

B. Inner segments of perianth firm: veins not joined by cross reins: color yellow
c. Blossoms in June.
flàva, Linn. Lemon Lily. Fig. 1037. Lvs. 18-24 in. long, $6-8$ lines wide: scapes longer than the lrs.: corymb 6-9-fld.: pedicels 12-24 lines long: tube 6-15 lines long. Europe, temperate Asia. B.M. 19. A.G. 17:437. Gn. 48, p. 400. - In some important works on gardening the color is erroneously given as orange.

## cc. Blossoms in July.

Thúnbergii, Baker. "Except for its later flowering, Thunbergii does not differ materially from flara." Baker. Les. $6-71 / 2$ lines wide: corymb loose, $8-10$-fld., with 1 or 2 fls. lower down: tube nearly 1 in . long: fts. lemon-yellow, opening widely, 3 in. across: segments membranous, crisped. Japan. Int. 1890.-Rare. R. B. Whyte writes that the fls. are not nearly as large as those of $H$. flara, appear in June, and that $H$. Thunbergii differs from all others in having the upper 6 to 10 in . of the scape thickened and flattened.

BB. Inner segments membranous and wacy at the murgin: a few veins joined.
c. Le's. 2-s lines wide tube and pedicel long: color of fls. yellow.
minor, Mill. (II. graminet, And., not Schlecht. $\boldsymbol{H}$. graminifolit, Schlecht.). Les. 15-18 in. long, darker green than in the other species: scapes about as long as the .rs.: corymb 3 - 6 -fld.: pedicels $3-24$ lines long. July, Aug. N. Asia. B.M. $8 \overline{6} 3$.
cc. Les. 6-8 lines wide: tube very short: color of fls. orenge.
Dumortièrii, Morren (II. rìtilans, Hort.). Height $11 / 2-2 \mathrm{ft}$.: lvs. $12-15 \mathrm{in}$. long : scapes hardly as long as the lvs.: corymb $2-3$-flll.: pedicels $3-6$ lines long: fls. $2-21 / 2$ in. long, while they are $3-4 \mathrm{in}$. long in all the other species; inner segments 5-6 lines wide. Jap. B.H. 2:43. Gn. $31: 589 .-H$. Sieboldii is now practically abandoned as a trade name. The yellow-hd. species of this name is $H$. Dumortierii ; the blue-fld. species pictured in L.B.C. 19:1869 and P.M. $5: 25$ is Fienkitu Sieboldii. Var. flòre plèno ( $H$. dísticha pleno, Hort.) is less cu.t. This species is the earliest to blossom. R. B. Whyte considers $\boldsymbol{H}$. rutilans distinct.

## CCC. Lis. 8-12 lines wide

D. Color of fls. orange : tube s-9 lines long.
aurantiaca, Baker. Height $21 / 2-3 \mathrm{ft}$. : lvs. more than 12 lines wide: corymb 6-8-Hd.: Hs. bright orange, opening less widely than any other species. July. Jap. or E. Siberia? - The type was introduced to cult. in 1890 and has rapidly giren way to var. major, Baker, introduced 1895, which is largerin all parts. Les. 12-18 lines wide: tube 9 lines long: fis. when expanded $5-6 \mathrm{in}$. across. July-Sept. Jap. G.C. III. 18:71. Gn. $48: 1041$ and 50, p. 17. J.H. III. 31:157. A.G. 18:179.-Closest to Dumortierii, from which it is chiefly distinguished by its much larger, later and more reddish tis. and longer tube.

DD. Color of fls. yellow: 'tube 5-6 lines long.
Middendorfii, Traut. \& Mey. Name variously misspelled. Height $1-1 \frac{1}{2} \mathrm{ft}$. : lvs. $15-18$ in. long, $8-12$ lines wide: scapes about as long as the lvs.: corymb $2-4$-fll.: pedicels almost none : inner segments 9 -iv lines wide. Amur region. Gt. plate 522. R.H. 1897, p. 139.

## AA. Fls. not fragrant.

fülva, Linn. (H. dístiche, Don). Les. 18-2t in. long, 9-15 lines wide: corymb 6-12-fll.: As. orange; pedicels short ; inuer segments with wavy margins, with numerous veins joined by cross veins. July, Aug. En1., temperate Asia. B.M. 64 (central liand of white). Mn. 5. 1. 193. Var. Kwanso (H. Kucunso, Hort.), the "Double Orange Lily," blooms longer than any singlefld. form, according to Meehan. Git. 500. It has a sub-
rariety with variegated lvs. Var. flore plèno, Hort., is shown in F.S. 18:1891, with a red spot on the middle of each segment. Gn. 48, p. 401. R.H. 1897, p. 139. Var. variegata has a stripe of white down the middle of each leaf.
W. M.

HEMICY゙CLIA (Greek, semi-circular; referring to the scar or furrow on the seed). E'uphorbidece. This includes a spreading tree, attaining a height of 40 ft ., which is cult. in S. Calif. by Franceschi, who values it for its "beautiful holly-like lvs, and red fruits." The genus has about 9 species, natives of India, Ceylon and the Eastern Archipelago, with no near allies of garden value. Trees or shrubs: lrs. alternate, petioled, entire, leathery when full grown: fls. diocious; petals none; sepals of staminate $\mathrm{tls} .4-5$, the inner often larger and somewhat petal-like: fr. a globose or oroid, indehiscent drupe: seed by abortion, usually solitary. H. Austra. lasica is told from the other 2 Australian species by its very short filaments and glabrous ovary.
Australàsica, Muell. Arg. Lvs. broadly orate to orate-oblong, obtuse, $11 / 2-3$ in. long, finely veined below: fr. nearly $1 / 2$ in. long, very smooth, red and succulent, enclosing a stone.

HEMIONITIS (Greek, mule; the plants erroneously supnosed to be sterile). Polyporliticer. A genus of tropical ferns, with copiously netted veins and naked sori following the reins. Eight or 9 species occur in the tropics of both hemispheres. The plants are dwarf, and are grown in Wardian cases by a few fanciers in the Old World. For culture, see Ferns.
H. palmàta. Linn. Lvs. palmate, ${ }^{2-6}$ in. wide, with 5 nearly equal triangular divisions, those of the sterile lvs. less acute; surfaces pubescent. W. Indies, Mex., S.Amer.-H.élegans, Dav. Lvs. 4-10 in. wide, with a broad sinus at the base and 5 long slender, lanceolate divisions: plant smooth. Mex. G.F. 4:48J.
L. M. Undermood.

HEMITELIA (Greek, uith half a roof; referring to sori). Cyathedcere. A genus of tree ferns of the tropics, with round or semiglobose sori and an inferior indusium, consisting of a scale which is often indistinct and deciduons. Some 20 species occur in both hemispheres. For culture, see Ferus.
H. Guianénsis, Hook. Rachis slightly scaly and hispid: Irs. bi-tripinnate, the secondary rachis distinctly winged, especially at the upper portion: sori few in each segment, usually $2-4$; indusium ciliate and often lobed. Var. Parider, Hort., is the form commonly in cultication. British Guiana. I. H. $24: 280$. -H. Lindemi, Hook. Lrs. pinnate, the pinnor distant and slightly stalked, $6-12$, n.long, $1-1^{2} / 4 \mathrm{in}$. broad, the base truncate or wedge-shaped : sori in 2-3 irregular lines near the margin Venezuela. I.H. 42:46.
L. M. Underwood.

HEMLOCK in Old World literature is what we call Poison Hemiock, an umbelliferous herb named Conium maculatum. By Hemlock, Americans mean Hemlock Spruce, an evergreen tree, Tsuga Canadensis.

HEMP. Common Hemp is Camabis satira (which see). Bowstring H., see Sunsevieria. Manilla H., Musa textilis. Sisal H., Agave rigida, var. Sisalana.

HEN-AND-CHICKENS. A proliferons form of the English daisy, bellis perennis; also the thick-leared rosettes of Cotyledon, used in carpet-bedding and known as Echereria.

## HENBANE. Hyoscyamus niger.

HENDERSON, PETER (Plate X.). 1822-1890, marketgarlener, florist, seedsman and author, was born at Pathhead, near Edinhurgh, Scotland, in 1822, and died in Jersey City, Jan. 17, 1890. He was trained in Old World methods of gardening, came to America in 1843, worked under Geo. Thorburn and Robert Buist, and in 1847 began business in Jersey City as a market-gardener, with a capital of $\$ 500$, saved by 3 years' hard work. He continued to live there until his death. The publication of "Gardening for Profit" in 1865 marks an era in Anerican horticulture. It was the flrst American book devoted entirely to market-gardening, and it helped to induce many persons to enter the business. By the time
of his death about 150,000 copies of the book are said to have been distributed. It was written in an aggiegate of 100 hours, when the author was working 16 hours a day, largely at manual labor. At the noon interrals and late at night he wrote this work lying on his back, with a pillow under his head. The secret of its success, and of the author's, was the invention of new methods adapted to operations on a large scale. The second edition in 1874, and the third in 1887, are both thorough re visions.
"Henderson's Practical Floriculture," 1868, was an epoch-making book in commercial floriculture. Up to this time most works on flower-gardening had been written for the amateur. This point of view is necessarily the commoner one, and Henderson's contribution to it was "Gardening for Pleasure," 1875. In the compilation of "The Handbook of Plants," 1881, he was largely aided by C. L. Allen, and in the second edition, 1890, by W. J. Davidson. "Garden and Farm Topics" was issued in 1884, and in the same year appeared "How the Farm Pays," a stenographic report of conversations between Wm. Crozier and Peter Henderson. It is claimed that nearly a quarter of a million copies of his various works hare been sold. His seed business was founded at New York in 1865. Lately more than 200,000 copies of the various catalogues have been distributed annually
Few men, if any, have done so much to simplify and improve methods of handling plants for commercial purposes. His greenhouses were an object lesson to many visitors, his methods were widely copied, and his business successes were the goal of ambitious marketgardeners and florists, among whom he was for many years the most commanding figure. He was a frequent contrihutor to the horticultural and agricultural magazines, and during his forty-two years of business life is supposed to hare written or dictated at least 175,000 letters. Two-thirds of these letters were written with his own hands, and he always replied promptly to inquiries about methods of cultivation. A self-made man, simple and abstemious in his habits, he was a tireless worker. He combined in a high degree the faculties of growing plants and of business ability. His mastery of details was complete. His books are exceptionally readable, his powerful personality appearing through every page. The records of his personal experience are practical, ingenious and fertile in suggestion. An account of his life is published in a memoir of 48 pages by his son, Alfred Henderson.
W. M.

## HENFREYA. See Asystasia.

HEPATICA (liver-like, from the shape of the leaves). Ranunculdace. Hepatica. Liver Leaf. A genus of 3 species, natires of the north temperate zone. Stemless, low perennials: Ivs. 3-lobed and sometimes toothed; appearing after the flowers and remaining green over winter: scapes 1-fld., with an involucre of 3 small sessile lvs. simulating a calyx: sepals petal-like, white, pink or purple: akenes shortbeaked, pubescent. Fig. 1038. The plants prefer shade, but do fairly well in open places. They should remain undisturbed from year to year, in rich, well Irained loam. Well suited to the north or east slope of a rockery. Plants kept in pots in a coldframe until midwinter will quickly bloom at any time desired if removed to a warm rom or greenhouse. Prop. by

1038. Flower of Hepatica. Natural size. division or seed.
triloba, Choix. (Hepritica Mepítica, Karst. Anemòne Hepática, Linn. A. tritolıa, Hort.). Scapes 4-6 in.: lobes of Irs. obtuse: fls. $1 / 2-1$ in. across; sepals oral or


The flowers of Hepatica droon and close at night.
oblong, obtuse. Earliest spring. Eastern U. S., Eu. and Asia. B. M. 10. B. R. $5: 387$ (as H. Americana). White, blue and pink-fld. forms have been fixed in cultivation, and are known as var. alba, Hort.; var. cærùlea fl.-pl., Hort.; rar. rùbra fl.-pl., Hort. Gn. 26:448. G.C. 1873, p. 645 (var. marmorata, Moore).
acutiloba, DC. (H. triloba, var. acìta, Pursh. Anemòne acutíloba, Lamson. H. acùta, Britt.). Fig. 1039. Much like $I$. triloba, but with the lobes of the lve. ovate and acute, occasionally the lateral lobes 2-cleft (rarely the middle one); akenes slightly stipitate. Eastern U.S.
angulòsa, DC. (Anemòne angulòsa, Lam.). Plant tufted as in the other Hepaticas, hairy: lvs. 3-5-lobed, lobes often serrate: involucre near the f. toothed: fls. large, blue, whitish or reddish. Hungary. B.M. 5518. G.C. 1865:698. Gn. 26, p. $2 \overline{5} . \quad$ K. C. Davis.

HEPBURN, DAVID, was joint author with John Gardiner of the second American book on horticulture. This was published at Washington, D. C., in 1804. The name of Gardiner appears first on the title page, but it may be inferred that the practical experience in the book is alnost wholly Hepburn's. He had had 40 years of experience in gardening, half of the time in England and half in America. He was employed by General J. Mason for 6 years on Mason's Island, Georgetown. He had also been emplosed by Governor Mercer. The book was well made for the time. It sa 16 mo , and contains 204 pages of practical directions. The calendar style is used. The first part ( 100 pp .) is de yoted to the kitchen garden. The second part consists chiefly of "Fruits, Flowers, and Shrubs "( 82 pp.$)$. This is followed by a few pages on hops, hothouses and greenhouses. The
second edition (Georgetown, 1818) contains 348 pages. It includes "A Treatise on Gardening, by a citizen of Virginia." This occupies 80 pages. The copy owned by the Massachusetts Horticultural Society possesses this manuscript note: "This treatise is by John Kandolph, of Williamsburg, father of Edmund Randolph, Secretary of State during the arlministration of General Washington." Robert Manning writes that this note may have been made by General Dearborn. A third edition was published at Washington in 1826, and contained 308 pp
W. M.

HERACLEOM (named for Hercules, who used it in medicine, according to Pliny). Lmbelliferu. This includes 3 hardy herbaceous plants sometimes called Giant Parsley or Giant Cow-parsnip. They are not suited for general gardening, but are sometimes grown in wild gardens or parks, or as single specimens on lawns, where a very bold and striking object is desired. They are coarse herbs, growing 5-6 ft. high, with broad foliage, which is their chief beanty. According to J. Woodward Manning, they are adapted to all soils, hut prefer a rich, moist soil, and hence do well at the edge of running water. Manning adds that these plants should never be allowed to go to seed. J. B. Keller writes that if these plants are grown on an open, sunny lawn, they should be liberally supplied with water at all times. Prop. by division or seed. The genus Heracleum has $50-70$ widely scattered species and no near allies of garden value.

## A. Plants perennial.

lanàtum, Mich. Lrs. trisect, tomentose beneath; segments petiolulate, rotund, cordate, lobed: leatlets of the involucel lanceolate: fr. oval-orbicular. N. Amer., W. Asia. Mn. 4, p. 164.
villòsum, Fisch. (H. gigantèum, Fisch.). Height 8-12 ft.: lis. sinuate-pinnatifid, sharply serrate, acuminate, woolly-tomentose beneath; leaflets of involucres short, bristly, deflexed: umbels sparingly rayed: fr. elliptic. ciliate, woolly on the back. G.C. III. $3: 437$ and $20: 271$. - Keller says the fls. are nearly white, and borne in Aug. and Sept., in denser umbels than those of H. Sibiricum.

1940. The Goose Tree of the herbalists.

## AA. Plant biennial.

Sibiricum, Linn. Lrs. scabrous to hirsute, pinnate or decply pinnatifid; segments lobed or palmately parted, serrate : petals about equal: fr. subrotund-oral, deeply notched at the apex. Eu., N. Asia. - Keller says this bears yellowish green fis. in July and Alug.
W. M.

HERBA IMPIA of the old herbalists is Filayo Germunica.

HERBALS. Books on plants, published from the fourteenth to the middle of the eighteenth century, were largely written from the mediciual point of view, and were often called Herbals. The scientific point of view of plant-knowledge is conveniently dated from 1753, when Linnzus published his "Species Plantarum." Of the herbalists, John Gerarde is probably read most at the present time. His style is chatty, quaint and personal. One of the notions accepted by the early herbalists was that of the regetable lamb, which is pictured in this work under Cibotium (Fig. 470). Another idea that fascinated these wortly plant-lovers was that of the barnacle goose tree. Fig. 1040 is reproduced from a book by Duret, 1605, and shows how the fruits that fall upon dry land become "flying birds," while those that fall into the water become "swimming fishes." Other conceptions of this goose tree are reproduced in the Gardeners Magazine $35: 749$ (1892). Almost every large li brary possesses a few Herbals, as Matthiolus, Bauhin, L'Obel and Fuchsius. The largest collec tion of Herbals in America is the one given by the late E. Lewis Sturterant to the Missouri Botanical Garden at St. Louis.

HERBARIUM. A collection of dried plants systematically named and arranged. Every horticulturist who takes delight in his profession should have an Herbarium, as it increases immensely the value and pleasure of his work. Every amateur, nurseryman and florist is hereby strongly urged to make a collection of dried specimens of the plants in which he is particularly interested. It need not be expensive nor consume much time, and the process of drying a plant is simple and easy. An Her barium is like a reference library, and is equally invalnable.
Unfortunately, lovers of cultivated plants rarely care for pressed specimens because they are so lifeless and colorless. Yet there is no surer way for a nurseryman to keep his stock true to name than by making an Herbarium. There are many universities and colleges in America where botanists are glad to verify the names of plants for the sake of the duplicate specimens. This is one of the most practical and useful ways in which botanists and horticulturists can coöperate. The unnecessary waste in time and money caused by confused nomenclature and confused labels is one of the difficulties of a large collection of growing plants.
Eren in the largest nursery of hardy plants specimens can be taken by one man in two days in late spring, of everything that is in characteristic condition at that time. Three hundred specimens can be secured in two days in our best nurseries. Even after the spring rush is over there is time to get most of the important springflowering plants in flower or fruit, and from that time two or three hours a week is enough to keep up with the procession of flowers. Sometimes interest can be aroused in a young student, who will be glad to do all the work for the sake of duplicates.

Use merchandise tags or acheap substitute in the form of pieces of paper about 7 in . long, 1 in . Wide, with a longitudinal slit a little more than 1 in . long near one end. Pass one end of this piece of paper through the slit, and draw it ciose about the stem of the plant, learing plenty of room for the trade name of the plant, the date, and the color of the flowers. It is very useful also to add the height of the plant, and anything else that is not likely to show in a dried specimen. When a basketful is gathered, place each specimen between a

1041. A common method of mounting Herbarium specimens.
folded newspaper page. Each newspaper page, with its inclosed specimen, is then placed between "driers." These are large pieces of felt paper, a kind which is even more absorbent than blotting paper. A hundred driers cost a dollar. Put a board on top of each pile and weight it with stones. Shift the driers daily for a week or so, and then at longer intervals, until the specimens are wholly dry. A better way of drying plants, particularly in a small way, is to use a frame press (to be purchased of dealers in botanists' supplies), provided with cords and straps for tightening the bundle and giving the requisite pressure. Specimens are discouraging looking objects while in press, but when they are carefully prepared and properly mounted on standard size paper ( $111 / 2 \times 161 / \frac{1}{4}$ in.), with neat labels giving the name, locality, habitat, date and collector, they not only become attractive but are of great scientific ralue.
The finer and more artistic quality in Herbarium work differs only in the degree of care bestowed at every stage of the process. Some of our elementary botanies give full instructions for making an Herbarium. See, also, the "Horticulturist's Rule Book." Herbaria are notably poor in cultivated plants. For the critical study of garden plants, an Herbarium is a necessity. The sheets are kept in heavy manila paper folders or covers, each genus by itself. The regulation size for this genus cover when folded is $113 / 4 \times 16 \frac{1}{2} \mathrm{in}$. Lay the sheets flat (Fig. 1041). Take pains to select specimens which show flowers, leaves and fruits; and herbs should show the roots.

Walter Deane.
HERBERTIA (Wm. Herbert, 1778-1847, Dean of Manchester, distinguished botanist, author of "Amaryllidaceæ," and ardent lover of bulbs). Iriddcea. Seven species of American bulbous plants, with fugitive blue or lilac fls. borne in summer. One species is procurable through Dutch growers. It grows less than a foot high. The bulbs may be started in coldframes. The genus is distinguished by the complete absence of a
perianth tube. The showy outer segments are about 1 in. long, and obovate, the inner ones about as long as the stamens. For culture, consult Bullos and Tigridia. Mon. by Baker, Irldea, $189 \%$.
pulchélla, Sweet. Bulb globose, $1 / 2 \mathrm{in}$. thick or more tunics brown: les. about 4, linear, plaited, 3-6 in. long: spathes $1^{16}$ in. long: outer segments lilac, with a white claw spotted lilac. Chile. H.M. $3866^{\circ}=$.

HERB LILIES. Alstrameria.
HERB OF GRACE. Futu grateolens.
HERB-PARIS, Paris quadrifolia.
HERB-PATIENCE. See Rumex.
HERB-ROBERT. Geranium Robertianum.
HERBS. An Herb is a plant which dies to the ground each year. It may be annual, as bean, candytuft, pigweed; biennial, as mullein, parsnip; perennial, as burdock, foxglove, rhubarb. To the gardener, however, the word Herb is ordinarily synonymous with herbaceous perennial; and he usually has in mind those particular perennial Herbs which are grown for ornament, and which remain where iney are planted. Goldenrods, bleeding beart, sweet william, hollyhock, daffodils are examples. To many persons, however, the word Herb is synonymous with Sweet Herb, und it suggests sage and tansy.

Herbs have two kinds of values, - their intrinsic merits as individual plants, and their value in the composition or the mass. It is usually possible to secure both these values at one and the same time. In fact, the individual beauty of Herbs is enhanced rather than diminished by exercising proper care in placing them. Planted with other things, they have a background, and the beauties are brought out the stronger by contrast and comparison. It is quite as important, therefore, to consider the place for planting as to choose the particular kinds of plants. The appreciation of artistic effects in plants is a mark of highly developed sensibilities. Happily, this appreciation is rapidly growing; and this fact contributes to the increasing popularity of landscape gardening and ornamental gardening. Some of the best effects in Herb planting are to be seen in the wild, particularly along fences, roads and streams. In interpreting these native effects, the planter must remember that Herbs are likely to grow larger and more bushy in cultivation than in the wild. H? should cover the bare and unseemly places about the borders of his place (Fig. 1042). He may utilize a rock or a wall as a background (Fig. 1043). He may hide the ground line about a post (Fig.

1042. An informal Herb border.
1044) or along a fence. Some of the commonest Herbs are handsome when well grown and well placed. (See Fig. 1045.) Always plant where the Herbs will havo relation to something else.-to the general design or handling of the place. This will usually be about the

Boundaries. The hardy border is the unit in most planting of herbs. See Figs. 1042, 1046. A rockwork Herb border (Fig. 1047 ) is often useful in the rear or at one slde of the premises. Fill sume of the corners by the house (Fig. 1048). In remote parts of the grounds, halfwild effects may be allowed, as in Fig. 1049. A pond or

1043. Planting against a rock back-ground.
pool, even if stagnant, often may be utilized to advantage (Fig. 1050). A good Herbout of place may be worse than a poor Herb in place. But when Herbs are grown for their individual effects, give pienty of room and good care: aim at a perfect specimen (Figs. 1051, 1052) For further hints on related subjects, see Lumbsape Gurdening; also Bortler.
L. H. B.

Herbaceols Perennials from the Landscape Architect's Point of View. - No clear definition can be drawn between herbaceous perennials, biennials end annua!s, between Herbs and woody plants, for there are tender Herbs that would in a warmer climate become shrubs or eren trees, biennials that become perennials from stolons or offset 3 , and annuals that become biennials from seed germinating late in the season. Strictly speaking, however, herbaceous perennials are plants haring perennial roots with tops that die to the ground annually, such as the columbines, larkspurs, day-lilies, peonies, and most sedges, grasses and ferns. It is customary, however, in publications relating to this class of plants as well as in actual use, to include closely allied species with evergreen foliage, such as statice, yucca, sempervirums and certain pentstemons, together with plants baving more or less woody and yersistent aboveground stems, such as the suffruticose artemisias and the evergreen creeping species of phlox, reronica, vinca, the iberis, the helianthemums, and many alpine plants, while most bulbous-rooted plants which are true herbaceous perennials are separately classified and grown as bulbs.

Herbaceous perennials are an exceedingly important element of landscape, for they predominate in the mat of grassy or sedgy plants, covering dry or wet open fields and in the surface regetation under woods and shrubby thickets, either as a grass crop, composed of a comparatively few suecies cultirated for economic purposes, or as a wild growth made up of many species. The most attractive of these native plants are being cultirated and improved more and more from year to year for ornamental purposes, and are planted in the flower garlen, in artificial plantations of shrubbery and in the wild garden. It is to such natives and to exotics of the same class, which are cultirated for a similar purpose, that reference is to be made hereafter.

Fifty years ago nearly every well-to-do family maintained a flower garden, in which there were from 50 to 150 species and varieties of herbaceous perennials, and there were few of the humbler families that did not have a dozen or more species established about their homes. Such plants were distributed by exchange among neighbors and mere propagated and offered at retail by dealers, who, howerer, gradually allowed their stock of plants to run low or abandoned them altogether, until many kinds dropped out of cultiration or were neglected in faror of the tender "bedding out "plants that were brought suddenly into faror by the displays at the Philadelphia Centennial Exposition.

There has been, particularly during the last 15 years, such an increasing interest in herbaceous perennials that there are now offered in the catalogues of American
nurserymen and collectors of native plants, nearly 3,000 species and varieties, exclusive of the many garden forms that are distinguished chiefly by the color of their flowers.
In use, the species and varieties of herbaceous perennials may be broadly separated into three groups.

1044. One may hide the ground line with Herbs or Shrubs.

First, plants for the garden that require the favorable conditions of a highly cultivated ground, and careful attention to attain perfection and to persist and increase from year to year. This would include many exotics, some native species and most of the horticultural varieties. Many of such species which would find a congenial place only in the garden have attractive Hovers which are so fugitive that they can only be enjoyed on the plant. Other species which are suitable to cut flowers from can hardly be grown in the flower garden in suffrcient quantity to liberally meet the floral requirements of the home, and they should be grown in quantity in the kitchen garden or in a special cut-Hower garden, for their crops of flowers. Included among plants of diffcult cultivation with fugitive towers are the rock or alpine plants, many of which are offered in European catalogues but few of which will thrive here, and for such as will succeed more favorable conditions are usually found in a well-draiued border than in an artificial rockery.

Second, plants for the shrubbery, having aggressive habits, which make them rather objectionable in the flower garden, but fit them to withstand successfully the crowding of shrubs. This class of plants will give variety and prolong the flowering season of shrub borders about lawns, and would be made up chiefly of stronggrowing natives and a few of the more persistent exotics.

Third, plants for the wild garden, including the apecis that require for success some one of the many special conditions prevailing in uncultivated or uncultivable land, or which are so rampant as to require the restraint that some one of these natural conditions will provide. This class of plants would be made up chiefly of natives and a few of the more persistent exotics, and they would be used to enrich groups of native plants under woods, in meadows, streams and ponds and on hedges and poor soil. These are attractive plants that will and do grow successfully under all these conditions without special cultivation, and many of them may be already on the ground. If every plant in a group of natives is watched for at least a year, it will be found that many are so attractive at one season or another that they will be retained and developed in beauty by the gradual removal of the less desirable kinds, for which others that are more desirable may be substituted. (See also the article Wild Gardening.)

In arranging plants in new plantations, or in modifying existing plantations in gardens, lawns or woods, much more effective landscape compositions and more agreeable color effects can be
secured by using large quantities of a few sorts than by using a few individuals of many kinds. Groups of diffferent speckles should be selected that will give from period to period during the flowering season effective and dominating masses of foliage and color, and all other plants of the garden which appear at the same time should be made subordinate to these. (Consult, also, the article Border.)

Herbaceous perennials are propagated by divisions and from offsets, cuttings and seed. Some kinds, as dictamnus and paparer, may be propagated by root cuttings. The exotic species of gardens and many of the more readily grown natives can be obtained in wholesale quantities from nurserymen. A few exotics and a very large number of attractive native species can be procured in wholesale quantities from collectors of native plants, many of whom also offer nursery-grown plants of the best natives and of a few exotics. The attractive native plants in any region can be transplanted with little difficulty if they are collected with a good soil of earth about the roots.

Warren H. Manning.
The Culture of Herbaceous Perennials. - A good number of the herbaceous perennials in cultivation are exceedingly easy of cultivation, thriving well in any moderately rich soil of suitable physical condition, and enduring our winter cold and changeableness and summet heat and drought. There are, however, other spedcis which do not grow well in our American climate, except during more moderate seasons or when placed where the climate is locally morlitied. Whether the plants one desires to grow be easy or difficult of culture, one should aim first of all for a luxuriant growth, for any time or labor saved by poorly preparing the soil, or any money saved by the use of weak or stunted plants, will be regretted later. Unless it is intended to imitate the effect of certain barrens in nature, a garden without luxuriance is lacking in an essential quality.
The preparation of ground for planting consists, in the order of their importance: in making the soil by openness and fineness suitable for root penetration to a depth of from 18 in . to 2 ft .; in providing underground drain. age at a depth of at least $21 / 2 \mathrm{ft}$.; in making the soil supficiently fertile; and in making the surface soil not liable to "baking."

Depth and physical condition of soil are very important, and should be one's first care. If the season is short and work must be rushed, it is better to omit the manuring and to devote all one's energy to securing a deep feeding area for the roots and a fine physical condition of the soil. In the hardy border the roots of plants are able to pencetrate far more deeply into the soil than they do usually in a wild state or in ordinary field culture. This vigor of root growth reaching to good depth, as compared with that of equal vigor but nearer the surface, gives not only greater endurance of drought but aids the plant to

 , (
endure changeableness of weather, and particularly adis to its hardiness. There are many plants which are barily only if protected until the roots are thoroughly established. This is more often noticed with trees and

1046. A mixed Herbaceous border.
strong-rooted plants which are able to penetate deeply into the subsoil, but the same applies to herbaceons plants, except that it is usually necessary to loosen the subsoil to ensure penetration by their finer roots to a satisfactory extent. It is not necessary to make the subsoil equal in richness to the upper portion, but it should preferably be mixed with a portion of the surface soil.

The fine roots are the feeding roots and the surfaces of the soil particles are their feeding ground, so that in making the soil particles smaller the feeding surface in the soil is increased, thus allowing for more roots and making available a greater part of the plant-food in the soil. A fine physical condition can usually be obtained by turning the soil over a few times. No soil should be turned or handled when too moist to crumble, as the clay in the soil is quick to become puddled, and therefore impervious to feeding roots.

Underground drainage is necessary, since roots cannot grow in soil filled with stagnant water. Where the natural subsoil drainage is not sufficient, artificial means should be used. Unless the drainage is good many plants will be injured during the rainier seasons or killed during winter. Plants that are not firmly established are often easily killed by excess of moisture about the roots during their dormant season; for instance, many bog plants otherwise perfectly hardy will winter-kill if planted late in the fall. A further fact showing the effect of water on dormant roots is that many plants, if cut down low enough in the fall to allow water, as from melting snow, to reach the root through the hollow plant stems, will often be entirely rotted by spring. Thus, when it is necessary to destroy goldenrod the dry stems can be mowed in late fall with a sharp scsthe. The vulnerability of the root to water coming through the plant-stem may be easily seen by comparing in the spring roots of corn, the stalks of which were cut at different heights the previous fall.

The subject of feeding plants in general is treated at some length under Fertilizers and Fertility, which see. In the hardy border no large amount of coarse or highly fermentable material should be used. The enrichment of the soil should, if possible, be made while preparing the border, . 3 any fertilizers used should be well mixed with the soil. Eren if a liberal amount of
stable manure is arailable, it is well to use some potash or phosphoric acid in connection with it. A light top-dressing of manure given in the fall will keep up the fertility of the soil and afford a slight winter protection, which is appreciated by even the hardiest plants. Orer-richness as well as porerty

1047. An Herb-covered rock work
to be protected, by what is on hand or easily obtainable, and by the presence or not of mice or other rermin, which often work under such material as straw and destroy the plants. Protected plants should be examined
during the winter, and if mice are present they may be killed or driven away by placing a few drops of carbon' bisulphide in each hole found. (This is also a good way to rid coldframes of these pests. Plenty of rentilation should be given at the time, as the gas evaporated is destructive to vegetation. As the gas is heavler than air, it sinks for the most part down the holes.) If, however, mice are not troublesome, there is no better material for keeping out cold and shedding water than straw. Nature's plan for plant protection is to use the follage and stems of the plants themselres, the whole ground surface being covered as the weather grows colder with successire coatings of snow, which protection again grows lighter as spring approaches. This is still the idenl winter protection for plants, but snows are likely to disappear in midwinter, and mice are well adapted to live under nature's laws. Where mice are troublesome a light material may be made by composing leares, manure rakings from lawns, greenhouse waste, weeds not in fruit as pulled during the season, and the like. The material should be earthy enough to keep mice out, and loose enough to permit of easy removal in spring. It should also be loose enough not to hold too mush water in winter. Sawdust and charcoal are examples of such material. Most of the plants that are largely cultivated need no protection, but all herbaceous perenvials, unless they are evergreen or easily smothered, are benetited by a slight covering to protect the soil from alternate freezing anc thawing. When the plants are evergreen a covering to supply shade is often desirable. Other plants, such as Melianthus decapetalus fl. pl., really need protection, not to exclude frost, but to lessen considerably the severity of the rinter. Still others, as many of the lilies, are best corered to the exclusion of frost. In general, the plants we endearor to grow which need complete protection have crowns below the surface, and so may be corered with any amount or kind of material. When it is de sired to thoroughly protect crowns on the soil surface, flats may be first placed over the crowns before adding the protection. Late fall plantings should, in almost all cases, be protected to some ex tent. since plants are less hardy when poorly established in the soil.

Propagation of Herbaceous Perennials.The methods of propagation most used are by seed, hy plant division, and by cuttings.
Propagation by seed is generally not of use for the perpetuation of horticultural rarieties, though to a raried ex. tent with different species any variety tends to reproduce its varietalcharacteristics more perfectly the longer it becomes established as a variety. However, some of our garden

1048. A rear corner. embellisised with weeds.
plants have been separated inte their present number of razieties or forms mainly by continual propagation by seed and plant selection, and such may be sutisfactorily increased by seed. An example might be taken in the hollyhock, although, if a group be left to resow itself, or no seed selection be maintained, it will soon become mainly composed of single-flowered plants by reason of their greater seed production. In general, propagation by seeds is satisfactory for all established species and for such raricties and forms as have been thoroughly established either by nature's slow processes or by man's continual selection.
Seed-sowing is not, however, alwars an easy way to increase many of our garden plants, as there are often a few small items necessary to know concerning a species before success can be assured. Seeds of some perennials remain dormant for a long season after sowing, and, in general, they are very much slowerin starting than annuals. Some require more heat than others to germinate, while others require a very cool soil. Many plants brought into cultivation from foreign countries or milder parts of our own land do not produce seed which will remain sound orer winter in the soil, nor do seedlings of all hardy perennials withstand the colder season: for instance, Papucer orientalis, a hardy plant itself, produces a great quantity of seed which germinates readily as it falls, but the seedlings will not survive the winter unprotected.

A general rule for seed sowing would read: Sow the seed when ripe, and then maintain such conditions of temperature and moisture as the seed would receive in the native habitat of the plant.

Native American plants not from decidedly milder parts and many foreign species may be easily increased by sowing of seed when ripe in the open ground. Among such might be included rudbeckia, aquilegia, coreopsis, monarda, asters (perennial), delphiniums. dicitalis, Dienthus barbatus, and phlos, all of which will bloom the following season.

Plants generally hare one or rarely two particular seasons for blooming, and unless of sufficient size and suitable condition when that season approaches they will wait for its recurrence kefore showing flowers; so that by sowing seed early in the spring and giving good cultural attention to the plants, we may expect to flower many plants naturally blooming late in the year. or such as are somewhat floriferous at nearly all seasons: for in stance, Lobelia crerlinalis and other Iobelias, many natire asters, Gaillardia aristata, Bellis perennis, etc.

The propagation of plants by division is simply the separation of a larger clump of roots and crowns into smaller plants. In the case of plants having buds on the roots, this division may be carried further, and small pieces of the root used to grow other plants.
The separation of plants as practiced in the garden is not usually so much for the purpose of increase as to avoid over-crowding of roots and crowns, with loss of vigor to the plent; for instance, a plant of iris haring been undisturbed for a number of years, becomes a tangled circular mat of rootstocks, which in the center cannot find room to grow, and so the plant appears as a large clump of roots, throwing up foliage only on the outer ring. The period during which a plant may remain in anynne place without needing separation wil vary with the rigor of growth of the plant in each position; for instince, a group of plantain lily in a facorable situation will need separation every two years, while in a poorer piace it might remain four. However, the average length of time for a few typical species may be given thus: Bellis perennis, pompon chrysanthemums, and other strong-spreading, shallow-rooted and easily established plants do best with yearly separation: Phlox maculata and monarda every two years; helianthus, asters and many of the compositre and Phlox decussatia about every three years; Convallaria majalis and many spring-flowering bulbs every four years; while such plants as peonies niay be left for a longer period.
In general, better flowers are obtained from a plant with but one crewn than when $t w$ or more are left, but unless the new growths are crowding out the central portions or are themselves too numerous to make a rigorous growth possible, division is not necessary. In fact, many plants require a better establishment in the soil than can be given by transplanting or than they can quickly obtain, and such are best undisturbed untilquite over-crowded. The question is whether by dividing a plant better flowers and foliage may be obtained than by allowing it to become more thoronghly established.
The time of the year for separation will vary as to the blooming season of the plant; that is, for early-blooming plants late summer or early fall, and for late-blooming plants either late fall or spring, preferably the latter, as mans otherwise hardy plants are either weakened or killed if disturbed in the fall.
Propagation by cuttings is rarely useful for the amateur, in the case of herbaceons perennials, but it is an important commercial method. Plants may be obtained from almost any plant having foliage stems by taking a short piece of the growing wood with a bud, either lateral or terminal, and placing the lower end in moist sand or other material suitable for root growth. It is usually necessary to have the lower end of the cutting a node of

1050. Pool made attractive by planting of Herbs
the stem, and to make the temperature of the material in which it is placed higher than that of the atmosphere (which is the relation of the soil and air in sunshine), and to diminish the eraporation from the exposed parts of the cutting by maintenance of a moist atmosphere


## 1351. A healthy clump of Joe Pye Weed.

and by remoral in part of the foliage on the cutting. Some experience will be necessary to know the best temperatures for sand and atmosphere and the most desirable degree of ripeness in the wo do be taken, as they will vary somewhat with species. In general, any cutting of growing wood will form roots in moist sand at a temperature suitable for vigorous root growth of the plant. The increase of plants by cuttings has the ad rantages of being rapid and of allowing the perpetuation of any variation noticed on a portion of any plant. See Cuttage.

Whicherer method of propagation is used, selection of stock for increase should be practiced. If by seed, then the best seed from the best plant should be taken. It is considered by many growers that seeds borne the least number of nodes from the root tend to produce dwarfer and earlier-blooming plants, while the opposite is equally certain. All plants vary, and often the seeds which will produce the most striking variations are the slower to germinate and weaker as seedlings, but any mistreatment of young plants is apt to be against any desirable improvement. The double flowered and highly colored forms of our garden plants are generally the results not only of intercrossing of species or selection, or both, but of intense and perfect culture. A poor, starred plant may not retrograde itself, but it is apt to produce seed which will vary to suit its location.

In propagating by division, the aim should be not only to secure rigorous plants but to select for increase such plants as appear to be the best. Cuttings also should be obtained from selected plants-and the more so since the method is rapid.
F. W. Barclat.

The Most Poptlar Kinds.-If all hardy herbaceous perennials were divided into 3 groups, based upon their popularity, the first group would perhaps include 10-12 kinds. the second $30-50$, and the third would be too numerous to list in detail. Several of the largest dealers in these plants were āsked for such selections, basing their judgment on actual sales and general experipnce. Replies were received from Ellwanger \& Barry, J. Woodward Manning, and the Shady

Hill Nursery Co. These reports agree as to the 6 most popular hardy herbaceous perennials. These are anemone, hollyhock, larkspur, iris, peony, phlox. The next 4 farorites are columbine, poppy, rudbeckia and sunflower. These are probably the 10 most popular plants of their class in America. To fill out the list to a dozen, one might choose 2 of the following 10: Campanula, chrysanthemum, coreonsis, dianthus, dicentra, eulalia, funkia, gaillardia, hemerocallis, pyrethrum. The following list of 12 is selected on a different principle by W. C. Egan, who writes that a bed composed of the following will produce flowers from early spring to late fall in the following order: Phlox subuluta, lily-of-the-valley, bleeding heart, iris (German and Japanese), peony, larkspur, platycodon, phlox (tall), rudbeckia Golden Glow, gaillardia, Roltonia latisquama, sunflower. In the South the 12 most popular kinds would make a very different list. $P$. J. Berckmans writes that the following are hardy at Augusta, Ga., and are probably most popular in the South: Canna, carnation, chrysanthermum, dahlia, violet, verbena, German iris, Japanese iris, funkia, helianthus, phlox, hollyhock.
An analysis of 4 northern lists gives the following 33 as favorites of the second rank. The agreement would have been much closer if bulbs, grasses and subshrubs had been excluded:

| Achillea, | Gaillardia, | Monarda, |
| :--- | :--- | :--- |
| Aconitum, | Geraninm, <br> Alyssum, | Enothera, <br> Asclepias, |
| Gypsophila, | Platycodon, |  |
| Aster, | Heleninm. | Ranunculus, |
| Astibe, | Helleborus, | Sedum, |
| Boltonia, | Henchera, | Silene, |
| Campanula, | Hibiscus, | Spirma, |
| Dicentra, | Iberis, | Statice, |
| Dictannus, | Lobelia, | Trollius, |
| Digitalis, | Lychnis, | Veronica, |
|  |  | Vinca. W. M. |

Selections rior Special Purposes. - The following lists are intended to be suggestive, not complete (not all of them in Amer. trade):

1. For shady places.-Only those which really need shade are here mentioned. Other important kinds succeed in full sunlight and also in partial shade.

> A. Requiring deep shade.

2. For dry places. - The following will endure extremely dry locations, and are therefore desirable for naturalization. They can endure neglect and drought:

[^1]Dianthus arenarius,

## Draba.

Genista sagittalis,
Helianthemum,
Linaria,
Reseda glauca.

The following are desirable for dry situations, but $\varepsilon$ re not as hardy in this respect as the preceding:
A. Blooming in spring.

| Ethionema, | Hepatica, |
| :--- | :--- |
| Anemone Caroliniana, | 1beris, |
| nemorosa, | Iris pumila, |
| " Pulsatilla, | Lotus corniculatus |
| Cerastium, | Saxifraga, |
| Iaphne Cneornm, | Peonys |
| Erysimum, | Phlox (creeping). |

AA. Blooming in summer.

| Anthemis, | Galtonia, |
| :--- | :--- |
| Aquilegia, | GYpsophila, |
| Arenaria, | Heliopsis, |
| Aster amellus, | Hieracium, |
| Campanula, | Inula, |
| Coronilla lberica, | Iris Germanica, |
| Cytisus, | Ononis, |
| Dictamms, | Prrethrum Tchilatchewi, |
| Eryngium, | Suphorbia corollata, | Euphorbia corollata, Yucea.

AAA. Blooming in autumn.

| Aster, | Erodium, |
| :--- | :--- |
| Calandrinia, | Eulalia, |
| Callirhoë, |  |
| Geranium |  |

Callirhoē.
Eulalia.
Callirhoe
Geranium Ibericum, etc.,
Helianthemum
Centanrea dealbata,
Coronilla varia,
Corytalis.
Desmodium,
Linnm,
Enothera,
Platycodon,
3. For moist and wet places.-In the following subgroups those marked with a star ${ }^{*}$ ) demand the treatment indicated; the others will also thrive with a less degree of moisture:

## A. Near the uater's edge.

| Acorus, <br> Anemone Apennina, ". rivularis. Virginiana, | Monarda didyma, <br> Myosotis, <br> Polygouum amphihinm. Sachalinense |
| :---: | :---: |
| *Butomus, | *Rannnculus aquaticus, |
| *Calla palnstris, | tluitans. |
| *Carex riparia. | hederaceus, |
| Iris psendacorus, | Typha. |
| AA. Moi | ounds. |
| Achillea Ptarmica fl. pl., | Helenium, |
| Aconitum, | Lobelia, |
| Anemone alpina, | Lethrom, |
| palmata, | Mertensia, |
| *Arenaria Balearica, | Phlox divaricata, |
| Ariszerna, | Podophyllum Emodi, |
| Arnica, | Polygonatum, |
| Arundo, | Polygonum, |
| Astillue, | Primula, |
| Boltonia, | Pyrethrum uliginosum, |
| *Cardamine pratense fl.pl., | *Saxifraga rivularis, |
| Chelone, | $\underset{\text { Uinbrosa, }}{\text { Virgiensis, }}$ |
| *Coryicifuga, | Sir Virginiensis. |
| *Corvdalis solida, Dodecatheon. | Spirea, |
| Dodecatheon, | Trillium, |
| Funkia, | Trollius. |

4. For carpets and edgings. - The following are all more or less low and dense:
A. Blooming in spring
Ethionema. Henchera (spring to fall).

Ajnga,
Ajnga,
Arabis,
Armeria (suring to fall),
Asperula,
Aubrietia,
Dapline.
Erysimum,
Iberis,
Lotus comiculatus,
Phlox amœena,
." reptans,
Polemoninm,
Viola cornuta (spring to fall).

AA. Blooming in summer.

| Achillea Clavenæ, | Hieracinm, |
| :--- | :--- |
| Arenaria, | Saponarian. |
| Aster alpinns. | Silene acanis, |
| Campanula (dwarf), | alpestris, |
| Cio alisabet |  |

Campanula (dwarf),
Saponaria
Silene acanlis:
Dianthus,

- Elisabethe
aAA. Blooming in autume.
Achillea aurea,
Armeria,
Ceratostigma Larpentæ,
Erodiam,
Helianthemum,
Heuchera,

Silene Shafte,
Tunica Saxifraga,
Viola cornuta.
5. For cut-flouers. - In the following lists 1 stands for spring, 2 for summer, and 3 for autumn:

## A. Blooming in spring.

fithionema,
Alyssum,
Anemone sylvestris Astilbe (1-2). Centaurea montana.
Doronicum,
Hesperis ( $1-2$ ),
Heuchera (1-3),
Iberis,
Lychnis Viscaria,
Lupinus (1-2),
Myosotis (1-2),
AA. Blooming in summer.
Anthericum Liliastrum,
Aquilegia.
Campanula.
Centaurea Ruthenica,
Cheiranthus,
Clematis,
Delphinium,
Dianthus.
Eryngium,
Euphorbia,
Omphalodes,
Papaver (1-2),
Peony,
Primula, (1-2), (1-3),

Spirea (1-2),
Viola odorata.

Gypsophila
Hemerocallis,
Iris.
Linaria,
Rudbeckia,
Statice,
Thalictrum,
Trollins.
Valeriana,
Veronica.

Phlor dicaricata,
Pyrethrum hybridum
Pyrethrum Tchihatchewi
Rannneulus ( $1-2$ ),
antumn.
Arhilea (2-3).
Aconitrum (2-3),
Anemone Japonica,
Anthemis tinctoria (2-3), Arenaria graminifolia,
Aster,
Aster,
Cedronella,
Centranthus.
Chrysanthemum masi
mum (2-3)
Coreopsis $(2-3)$,
Crocopsis (2,
Graillardia (2-3),
Heleninm (2-3),
Helianthemum' (2-3),

Henchera (1-3)
Lilium (2-3),
Lsehnis Flos-cuculli, vespertina,
Phlox paniculata, suffruticosa,
Platycodon (2-3).
Polygonum affine cuspidatum,
Pyrethrum uliginosum,
Salvia farinacea (2-3),
Saponaria (2-3),
Senerio (2-3),
Stokesia (2-3).
Viola cornuta (2-3).
6. For lold effects. - The following hare striking and characteristic habit, and are desirable for prominent positions as single specimens or as exclusive groups. Some are foliage plants, the flowers being inconspicuous or not to be counted upon. Tall means 5 ft. or more; the others are of medium height, $2-4 \mathrm{ft}$ :
A. Flowers incidental.

Acanthns,
Arundo (tall),
Bamboes.
Elymus (tall;

Ferula,
Guunera (tall).
Gunnera (tall),
Polygonum (tall).
B. Tull.

Bocconia,
Cephalaria,
Cimicifuga,
Crambe,

Erianthus,
Eulalia,
Helianthus orgyalis. Rudbeckia Golden Glow.

Funkia.
Ligularia,
Symphytum (variegated), Yncea.

Anemone Japonica,
Bamboos,
Dlematis recta.
7. For forcing and greenhouse decorution.-The following are good subjects for potting. Helleborus and Saxifraga can be forced for Christmas. Those in the first list can be forced for Easter. Those in the second list are desirable for indoor decoration between Easter and the burst of spring outdoors:
A. For forcing.


HERBS, ORNAMENTLL. See Herbacebus Peren. nials.

HERBS, POT. See Greens.
HERBS, SALAD. See Greens and Salad Plants.
HERCULES' CLUB. Aralia spinosa. Also Zanthoxylum Clava-Herculis.

HERMODACTYLUS (Greek, Mercury's fingers; from the arrangement of the tubers). Irilacere. SNake'shead lkis. This is a hardy tuberous plant closely allied to Iris, the fls. purplish black and green, of a quaint and peculiarly attractive beauty. The plant is procurable from Dutch and Italian growers. The genus differs from Iris only in the l-zel'ed orary with 3 parietal placentæ; Iris has a 3-celled orary.
tuberòsus, Salisb. (Iris tuberòsa, Linn.). Tubers 2-4, digitate, 1 in . long: stem 1 - fld ., I ft. or more high: les. $2-3$, glaucous, 4 -angled, $1-2 \mathrm{ft}$. long: outer perianth segments 2 in. long, dark purple; inner ones green. Apr. B.M. 531. F.S. 11:1083. G.C.II. 23:672.
J. N. Gerard.

HERNANDIA (Francisco. Hernandez, physician to Philip II of Spain, traveled in West Indies 1593-1600, and wrote on natural history of Spain). Lauràcere. Jack-1N-a-Box. This includes $H$. ovigeru, a tree from Mauritius, which grows 40 ft . high, and is cult. in S . Calif. by Franceschi, who says it has light green, glossy lvs. with a red spot in the center, and large, whitish, egg-shaped fruits. The genus has 9 widely scattered species of tropical trees: lis. alternate, entire, ovate or peltate, 3-7-nerved: fls. in a loose panicle, the extreme branches terminated by a 4-j-bracted involucre. Of the 3 fls . in an involucre, the central one is pistillate and sessile, the lateral ones staminate and pedicelled. H. sonora, Linn., from India, is much used in Europe for subtropical bedding, and produces a juice that re mores hairs from the face without pain. Its staminate fls. have their oarts in 3's or 4's and the filaments have one gland at the base, while in $H$. origeve the floral parts are always in 3 's and there are two glands at the hase of each filament. $H$. sorora has peltate or cordate lvs. 7-12 in. long and 4-6 in. wide.
ovigera, Linn. Lvs. 6-7 in. long, 41/2-6 in. wide, oblong, acuminate, palminerved: fr. an egg-shaped drupe, borne on a stalk and obscurely ribbed.

HERNIARIA (Greek; supposed to cure hernia or rupture). Illecebràcere. Herniary. Rupture-wort. This includes a hardy herbaceous perennial plant, which grows about 2 in. high and produces inconspicuous greenish ths. in summer. It makes a dense mat of moss-like foliage, which turns a deep bronzy red in winter. It is much used in carpet-bedding and to a less extent in rockeries and for edgings of hardy borders. Recommended for covering grares. It thrives in the poorest soils, makes a solid covering, and is by some regarded as one of the most valuable of hardy trailers. Prop. by division or seed. Grows wild in England, and is kept in many large collections of hardy plants.

The genus has $8-23$ species, which are widely scattered, but all grow in sandy places, chiefly near the sea. It has ne near allies of great garden value, but 2 species of Paronychia are cult. for the same purpose and are easily tok apart by general appearance. Herniaria and Paronychia are alike in their 5-parted perianth and 2 stigmas, but in Hermiaria the segments are blunt, while in Paronychia they are hooded near the apex and have a horn or small sharp point on the back near the apex. Herniaria is composed of annuals or perennials with roots of short duration, and they are all much branched, trailing plants, either glabrous or hirsute: lrs. opposite, alternate or clustered, small, entire: fls. minute, crowded in the axils; sepals, petals and stamens 5 : seed solitary.
glàbra, Linn. Liss. obovate, rarely orbicular, glabrous except a few hairs at edges, which are usually recurved: fls. in a leafy spike or the lower ones at considerable intervals. July, Aug. Eu., Asia.
W. M.

## HESPERANTHA

HESPEROCHIRON

HESPERANTHA (Greek, evening flocer). Iriddceæ. Twenty-six species of Cape bulbs, 3 of whieh are procurable from Dutch growers. They belong to the Ixia tribe and are much inferior to Ixias for general cultivation, but have fragrant flowers, opening at evening. The genus is still more closely allied to Geissorhiza, and differs only in having longer style-branches and spathevalves always green instead of sometimes brownish above. The corms are $1 / 2$ in. thick or less: lvs. 2-5: fls. 2-10 in a lax, distichous spike; inner segments white; outer ones red outside. For culture, see Iria and Bulbs. Mon. by Baker in Iridex, 1892, and in Flora Capensis, rol. $6,1896-7$.

> A. Foliage hairy.
pildsa, Ker. Corm globose : Ivs. 2, linear, erect, strongly ribbed, 3-6 in. long: outer segnents claret-red. B.M. 1475 (outer segments speckled with color).

AA. Foliage not hairy.
B. Li's. sprealling, 2-3 in. long.
falcàta, Ker. Corm conic: Irs. 2-1, lanceolate: outer segments claret-red. B,M. 566, as Ixia fulcata.

BB. Les. erect, 4-cin. long.
graminifòlia, D. Don. Corm globose: lvs. 3-5, linear: cuter segments reddish brown. B. M. 1255, as Geissorhiza setuced.

HESPERIS (Greek, evening, same root as resper; Howers more fragrant at evening). Cruciferce. This in cludes the Dame's Rocket, a rigorous, hardy herbaceous perennial plant, forming c!umps $2-3 \mathrm{ft}$. high, branched from the base, and covered with showy termifal pyramidal spikes of 4 -petaled flowers, resembling stocks. The colors range from white through lilac and pink to purple. The double forms are most popular. Rockets bloom from June to Aug., and have long been cult. in cottage gardens. J. B. Keller writes: "The ordinary single forms are not worth growing in the border, but may be used in wild gardens. The double Rockets are considered amongst the best hardy plants, being very productive of bloom and extremely useful for cutting."
The genus has about 20 species in Europe, Asia Minor and Siberia. Herbs, biennial or with a stem that is perennial at the base, pilose, the hairs simple, forked or glandular : stem-lvs, usually sparse, ov ate or oblong, entire, dentate or lyrate : fls. in loose racemes often fragrant; petals 4 , long-clawed: pods long, linear, cy:indrical : seeds numerous, winged or not. The genus is allied to the stocks, but has a somewhat different habit and the bypocotyl incumbent not accumbent.
matronàlis, Linn. Rocket. Sweet Rocket. Dame's Violet. IDamask Violet. Fig. 1053. Lrs. ovate-lanceolate, 2-3 in. long, toothed: pods $2-4$ in. long, straight, much contracted between the seeds. Eu., N. Asia. Escaped from gardens in Eng. Gn. 53, p. 293 and 49, p. 339 (a lovely garden view).
W. M.

HESPEROCALLIS (Greek, evening beauty). Lilidece. This genus of only one species belongs to the group of desert plants of the Lily family, of which the common Yuccu filamentosa is the best hardy type. It is a native of Colorado, and is also said to grow in Calif. and Mex. Franceschi writes that the large, waxy white or greenish Hs. are very fragrant, and that the bulb should be deeply planted in perfectly drained soil. This genus, like Yucca and Cordyline, has an indefinite number of orules in each cell, while in Dracma the ovules are solitary and in Dasylirion 3 in each cell. Hesperocallis bears its fls. in an unbranched raceme, while the other genera named here bear their fls. in panicles. All have woody stems. Other important generic characters of Hesperocallis are the funnelshaped perianth and the loculicidal dehiscence of the capsule.
undulàta, Gray. Bulb large, corm-like: stem stout, 1-2 ft. high, 5-8-fld.: lvs. linear, Heshy, keeled, 3-6 lines wide, wary margined: tls. $11 / 2-2$ in. long; segments $5-7$ nerved.

HESPEROCHIRON (Greek, hesperos, originally evening, but here western, i. e., in the direction of the setting sun, and Chiron, a centaur distinguished for his knowledge of plants; hence "Western Centaury," these plants being at first placed in the Gentian family). Hydrophyllacece. A genus of 3 species of northwest American tufted perennial herbs with scapes bearing solitary, rather large whitish fls. The nearest allied genera of garden value are Phacelia and Emmenanthe, which are

1053. Dame's Rocket or Sweet Rocket Hesperis matronalis ( $\times 1 / 2$ ).

Yery distinct in color of fls., general appearance and cymose intlorescence. It is still doubtful whether Hesperochiron is in the right order. Dwarf, stemless perennials or possibly biennials : irs. entire, spatulate or oblong : As. purplish or nearly white, with parts normally in 5 's, rarely in 6's to $\overline{7}$ 's; style 2-cut; capsule 1celled, loculicidal, 15-20-seeded: seeds minutely netted or wrinkled. Procurable through Californian specialists aud collectors.

## A. Corolla lobes shorter than the tube.

Californicus, Wats. L.rs. numerous: corolla somewhat oblong, bell-shaped. Hills and meadows. B.R. 10:833 (as Nicotiana nant).

## AA. Corolla lobes longer than the tube.

pùmilus, T. C. Porter. Lrs. fewer : corolla nearly wheel-shaped; tube densely bearded within. Springy and marshy grounds in mountains.
W. M.

## HEUCHERA

## HESPEROSCORDUM. Consult Brodicea.

HETEROCENTRON. See Heeria.
HETEROMELES is included in Photinia.
HETEROPAPPUS (Greek, two kinels of pappus). Compósito. This includes a plant that lovers of our native Asters and Boltonias should not neglect. It is a hardy herbaceous perennial plant that bears azure-blue asterlike fls. in summer. The genus is closely related to Aster, having the habit of the Asters of the section Calimeris. The plant in the trade is known as Calimeris Tatarica. Heteropappus is closely related to Boltonia and is not far from Callist phus, which contains the China Asters. The chief botanical distinction resides in the pappus, which in the large group containing Callis tephus and Aster is composed of numerous bristles ar ranged in one or more series, while Boltonias and Heteropappus belong to a group in which the pappus is anomalous. In Boltonia it is composed of very short, somewhat chaffy bristles, with the addition usually of 2-4 awns not longer than the aisene. In Heteropappus the pappus of the rays is composed of very short, somewhat chaffy bristles, while in the disk-fls. it consists of numerous slender bristles arranged in 1 or 2 series.

Heteropappus is a genus of 2-4 species from Japan and China. Herbs, erect, branched above : lrs. alternate, entire or coarsely toothed: heads in loose irregular panicles or solitary at the tips of branches : rays white or sky blue. See Calimeris.
hispidus, Less. (Calimeris Tatárica, Lindl.). Stem roughish: lvs. linear, acute, pubescent: branches spreading, usually unbranched and bearing 1 head: involucral scales acuminate, hirsute, herbaceous, not white-margined. Japan. Sandy places of Mongolia.

HETEROPHRAGMA (Greek, an odd kind of capsule). Bignonidcea. This includes a tropical tree that is very rare in cultivation. It grows $30-50 \mathrm{ft}$. high, with 5-7 leaflets, which are $7-9 \mathrm{in}$. long and about 5 in . wide, and swelling tubular 5 -lobed Hs. 2 in. wide and deusely woolly outside. The plant was once offered in this country as Bignnnia adenophylla, but Bignonia belongs to a tribe in which the dehiscence of the capsule is septifragal or septicidal, while Heterophragma belongs to a tribe in which the dehiscence is loculicidal. Hetero. phragma is a genus of 3 species of trees from India and Africa. Lrs. opposite, arge, pinnate: Hs. rosy, yellow or orange, glabrous or tomentose outside; calyx irregular, 3-5-lobed during anthesis: capsule long, cylindrical or compressed, falcate or twisted, loculicidally 2 -valved; septum flat or 4-angular: seeds winged on both sides.
adenophýllum, Seem. (Bignònia alenophýlla, Wall.). Leaflets broadly elliptic, pubescent when mature: Hs. brownish yellow, densely woolly : capsule cylindrical, twisted, $1-3 \mathrm{ft}$. long, 1 in . wide, resembing a cork screw. India.

HETEROSMILAX (Greek, another kind of Smilax). Lilidece. This includes an ornamental climber with the habit of Smilax, but the perianth is undivided (instead of 6-parted, as in Smilax) and the mouth is minutely dentate. It resembles Smilax in having diœecious fls., borne in umbels and tendril-bearing stalks. The genus contains 5 species of woody climbers from India, Malaya, China and Japan: lis. 3-5-nerved: fls, small or very small. Latest monograph in Latin in DC. Mon. Phan 1:41 (1878).

Japonica, Kunth. Les. with stalks about 1/2in. long, blades about 4-5 in. long: staminate fls. unknown. Japan, where it is cult. for the roots, which are used in medicine.

HETEROSPATHE (Greek, a different kind of speithe). Palmicece. Also written Heterospatha. A genus of only 1 species, native of the small island of Amboyna, the Dutch headquarters in the East Indies. It is said by. Sander and Co. to be a rare and highly ornamental palm, with graceful, spreading habit and pinnatisect leaves, the segments being long, slender and tapering. Its nearest allies of garden value are Verschaffeltia and Dypsis, in which the stigmas are basilar in fruit, while

Heterospatha belongs to a group in which the stigmas are eccentric or lateral in fruit. Other important generic characters are the 6 stamens with versatile anthers and the 1 -celled ovary. The plant is procurable from importers and from S. Fla.
elàta, Scheff. Tall, unarmed: Irs. terminal, Iong-petioled, equally pinnatisect; segments numerous, lanceolate, narrowed at both ends, acuminate, 1 -nerved, margins thickened and recurved at the base; rachis round on the back, flat on the face; sheath short, fibrous, swelled at the base: spathes 2 , the lower 2 -crested, the upper much longer. A very worthy palm.

HEU̇CHERA (Johann Heinrich von Heucher, 16\%1iti, professor of botany at Wittenberg). Saxifragdece. This includes $H$.sanguinea which probably ranks among the half-dozen best plants with small, red Howers. It is very desirable for the hardy border, where it blooms from spring to late fall. It is also useful to florists for cutHowers and for forcing. All the Heucheras resemble our dainty wild tlower, the Bishop's Cap (Mitella) in their habit, as they have a tuft of heart-shaped, $\overline{5}-9$ lobed, crenate leares, from which spring a dozen or so slender scapes a foot or more high with small fls. borne in panicles, giving a delicate and airy effect.

Heuchera belongs to a group of genera including Mitella and Tiarella, in which the ovary is 1-celled. In Heuchera the petals are 5 or 0 , and entire; in Mitella 5 , 3 -fid or pinnatifid; in Tiarella $\overline{5}$ and entire. Heuchera has 5 stamens; Mitella 5 or 10 ; Tiarella 10. The capsule of Heuchera is inferior, 2-beaked; in Mitella superior, not beaked; in Tiarella superior, compressed. Heuchera has about 20 species, all North American and ranging from Mexico to the arctic regions.

The attractive and petal-like portion of $\Pi$. sanguinea is the calyx, the petals being small in all Hencheras (often shorter than the calyx). The other species are attractive by reason of their general habit, and particularly the graceful, open panicle. $\Pi$. sanguinea came into prominence about 1884 and is now, according to J. $\mathbf{B}$. Keller, one of the most popular of hardy perennials. The others are procurable from the largest dealers in native plants and from western collectors. They range from 3 in. to 3 ft . high, averaging about $1 \frac{1}{2} \mathrm{ft}$., and bloom in summer, having greenish white or purplish fls. J. B. Keller writes that almost any good garden soil suits them, an: that they are not particular as regards exposure to sunlight (though an open situation is preferable), and that they look well in borders, rockeries, separate beds and elsewhere. Prop. by division or seed.
A. Stamens and styles included (or in H. pubescens scercely exserted).

## B. Scapes hairy.

c. Iuflorescence a panicle.
D. Calyx not promineutly oblique. i.e., the lobes equal or nearly so.

## E. Margin of les. pointed, with distinct teeth.

sanguínea, Engelm. Coral Bells. Crimson Bells. Height $1-11 / 2 \mathrm{ft}$. : scapes pilose below, glandular pubes. cent abore: fls. typically bright red, but in horticultural rarieties ranging from white through pink and rose to dark crimson. New Mex.. Ariz. The best pictures are B.M. 6999, Gn. 26:463. Others are Gt. 45, p. $57 \overline{7}$. I.H. 43, p. 334. Mn. 8. p. 75. A.G. $17: 201$. R.H. 1898, p. 431. R.B. 22, p. 216. S.H. 2:120. G.C. III. 4:125. P.G. 4:35. Var. álba (II. ílba, Hort.) has pure white fls., and was int. about 1896 by Haage \& Schmidt. Var. spléndens, int. 1898 by the same firm, has dark crimson tls. Var. robústa, or grandiflòra, Hort., aceording to J. B. Keller, is an improvement on the type, the bells being larger and the color brighter. Var. hybrida ("Rosy Morn"), Hort., according to D. M. Andrews, is "more robust than the type, foliage deeper cut and the divisions more pointed: fls. rosy pink." Andrews adds that var. alba comes true from seed.
ee. Margin of les. with crenations merely acute or blunt.
pubéscens, Pursh ( $\boldsymbol{H}$. ribifòlia, Fisch. \& Avé-Lall.). Height $9-12$ or 15 in .: scapes densoly glandular pubescent, at least above. Rich woods, IIts, of Penn. to N.

## HEUCHERA

HIBISCUS
C. B.B. 2: 179.-" Evergreen foliage marbled with bronzy red."- Woolson.

DD. Culyx prominently oblique.
hispida, Pursh. Height $2-4 \mathrm{ft}$. Woods, Va. to Idaho. B.B. 2:180.
cc. Inflorescence a spike.
cylindrica, Dougl. Height 10-24 in. Yellowstone Park westward. B.R. 23:1924.

BB. Scapes not hairy.
c. Inflorescence a loose panicle.
parvifolia, Nutt. Height $1 / 2-2 \mathrm{ft}$. New Mes. to Mont.
cc. Inflorescence lenser, spicate.
bracteàta, Ser. Height 3-6 in. Colo.
AA. Stamens and styles much exserted, at least at first.
в. Length of calyx $3-j$ lines.
rubéscens, Torr. Height 8-15 in.: scape usually leatless, glabrous or somewhat scabrous: margin of lvs. ciliate. New Mex. to Nev.

## BB. Length of calyx $11 / 2-3$ lines.

Americana, Linn. Alum Root. Height 2-3 ft.: scape leatless or with a few small lrs., more or less glandular-hirsute. Dry or rocky woods, Ont. to La. and Minn. B. B. $2: 179$. R.H. 1898, p. 431.-"Has mottled foliage."-Gillett.

ввв. Length of caly. $1-1 \frac{1}{2}$ lines.
C. Scupe villous, i. e.. densely covered with long, soft hairs.
villòsa, Michx. Height 1-3 ft.; scape mostly leafless. Rocky places, Va. to Ga. and Tenn. B.B. 2:179.
Cc. Scape thinly covered with minute glandular hairs.
micrantha, Dougl. Height 1-9 ft. Calif. B.R. 15:1302. R.H. 1898, p. 431.

The following names are seen in trade catalogues but not in Index Kewensis. H. purpuráscens was advertised 1898 , by H . Correvon, Geneva, Switzerland. Plante in American trade are not yet large enough for identican trade are uot yet large enough for the south
fication. $-H$. Wheelleri was found in the fication.-H. Wheeleri was found In the South some years ago, and Thomas Meehan, who
has not examined it closely, tays it looks like has not examined it closely, fays it looks like
a form of H . Canadensis with variegated lvs. W. M.

HEVEA (from the Brazilian name). Euphorbidicece. This includes the tree that produces the Para rubber of commerce. The genus contains 11 species of tall trees from Brazil and Guiana, furnishing the milky juice called caoutchouc: Ivs. altemate, long-stalked, the 3 leaflets entire, feather-reined, membranous or leathery: His. small, mone cious. Important generic characters are the 3 leatlets, loose panicles, 5 -toothed or 5 -lobed calyx, and $5-10$ stamens, the filaments united in a column under the rudimentary ovary. The nearest ally of garden value is Jatropha, in whi ${ }^{\cdots}$ the fls. have petals, while Herea belongs to a groap in which the petals are lacking. This plant may possibly be cult. under glass for its economic interest in a few botanical collections. It was once advertised by Reasoner Bros., Oneco, Fla. The conmon "rubber plant," extensively cult. North as a honse plant, is the East India Rubber Plant, Ficus elusticu.

Brasiliénsis, Muell. Arg. South American Rubber Tree. Height 60 ft .: lfts. membranous: staminate fis. With buls narrowly ovoid-conical and dise small,

, many-lobed, tomentose; anlong, elliptic-lanceolate. Brazil.

HEXISEA (Greek, six equal things; because the attractive and bright colored parts of the flower are 6 , and of equal size). Orchidicere. Should have been written Hexisia. This includes a small epiphytic plant which John Saul once advertised as "hearing profuse panicles of bright vermilion flowers twice a year." The genus belongs to a subtribe closely related to Epidendrum but with different pollinia. Stems terete or angled, with usually 2 lvs. at the apex of each annual growth. New growths arise in the axils of the Irs., the entire stem being thus made up of long, fusiform, pparently superimposed pseudobulbs, with 2 lvs. at each node. Lrs. ferr, narrow : racemes terminal, the short-peduncled furnished with overlapping, leathery scales: ths. orange or purple; anthers semi-globose; pollinia 4, in 1 series. Four species, ranging from Mexico to Guiana.
bidentàts, Liudl. Height 6-8 in.: stem branched, forming spindle-shaped, many-grooved internodes: lis. in pairs, 2-t in. long, 3 lines wide, channelled, notched. Panama. B.M. ©031. G.M. $3^{7}: 19$.

## H. Hasselbring.

HIBISCUS (old Latin name). Malvucer. Marsh Mallow. Rose MalLow. A polymorphous genus, allied to Gossypium, Abutilon, Althæa and Malva, the species widely distributed in temperate and tropical countries. Herbs or shrubs, or even trees, with lvs. palmately veined or parted. Parts of the H. in 5's; calyx gamosepalous, 5 -toothed or 5 -cleft, subtended by an involucel of narrow bracts; corolla usually campanulate, showy, of 5 distinct petals; stamens united into a 5 -toothed columin: ovary 5 -loculed, bearing 5 styles: fr. a dry, more or less dehiscent capsule. Between 150 and 200 species. Horticulturally, there are four general groups of Hibiscus-the annuals, the perennial border herbs, the hardy shrubs, and the glasshouse shrubs. The culture and treatment vary with these groups.

## aculeatus, 6.

A fricanus. 1. anemonceflorus, 13.
atrorubens, 13. bicolor, 13.
brilliantissimus, 21. calyeinus 18 . camellceflorus. 13. carminatus, 21 . chrysanthus, 18, 21 cisplatinus, 19. coccineus, 7 . coelestis. 13. Cooperi, ${ }^{2} 1$. Crimson Eye, 9. Denisoni, 20. elatus. 15 eleyantissimus, 13. esculentus, 4. frutex, 13.
fulgens. 91.
fulgidus, 21. granditlorus, 12.
Hamaboo, 14.
heterophellus, heterophyllus, $1 \%$. incanus, 10. kermesinus, 21.
lasiocarpus. 11.
Leopoldii, 13.
lutevs, 노.
Manihot, 5.
militaris, 8.
Moschentos, 9.
mutabilis. See Supul. list. paeoniflorus, 13. palustris. 9 . purpureus, 13. ригригеня, Rosa-Sinensis, 21. Rosella, 3. rosens, 9. ruber, 13. Sabdariffa, 3. Sinensis, 21. speciosus, $\overline{\text { C. }} 13.13$ sub-violaceus, 21. Syriacus, 13. tiliacens. 16. totus albers, 13. Trionum, ${ }^{\text {a }}$. vesicarius, 1. vinlaceus, 13. zebrinus, 21.
1054. Hibiscus vesicariusH. Africanus of gardens. $(\times 1 / 2$.

## A. Annuиls. <br> B. Plant low and diffuse.

1. vesicàrius, Cav. (H. Africìnus, Hort.). Flower-of-an-hour. Bladder Ketmia. Tralling Hollyhock. Fig. 1054. A foot or 2 high, bushy-spreading, the main branches becoming prostrate, usually hispid-hairy: lvs. $3-5$-parted, the upper ones 3 -parted, with the middle lobe much the largest, the lobes linear-oblong or sometimes widening upwards, coarsely notched, the root-lvs. undivided: fls. solitary fu the upper axils, opening wide in the sunshine but closing in shadow, 1-3 in. across, sulfur-yellow or white, usually with a brown eye; pedicel elongating in fr., and the calyx becoming much inflated. Cent. Afr.-An interesting annual, blooming freely throughout the hot weather of summer, and thriving in any open, warm place. Seeds are usually sown where the plants are to stand. Excellent for rockwork.
2. Trionam, Linn., to which the above species is usually referred, has much wider and more spatulate and relatively shorter leaf-lobes, which are round-toothed or lyrately lobed: Hs. smaller. From S. Eu. and Afr. B. M. 209.-Sometimes a weed about cult. grounds.

BB. Plant mostly tall, strict and stout.
3. Sabdariffa, Linn. (H. Rosélla, Hort.). Jamaica Sorrel. Roselle. Strong, $5-7 \mathrm{ft}$. high, nearly glabrous, the stems terete and reddish: root-lvs. orate and undivided, the upper ones digitately 3 -parted, the side lobes sometimes again lobed; lobes lanceolate-oblong and crenate dentate : fls. solitary and almost sessile in the axils, much shorter than the long leaf-stalks; calyx and bracts red and thick, less than half the length of the yellow corolla. Old World tropics. - Widely calt. in the tropics, and now grown somewhat in S. Fla. and S . Calif. for the fleshy calyxes, whict., when cooked, make an excellent sauce or jelly with the flavor of cranberry. The green seed pod is not edible The juice from the calyxes makes a cooling acid drink. Thrives in hot, dry climates.
4. esculéntus, Linn. (Abelmóschus esculéntus, Moench). Okra. Gumbo. Mostly strict, 2-6 ft., the stems terete and more or less hispid: lvs. cordate in outline, 3 -5-lobed or divided, the lobes ovate-pointed and coarsely toothed or notched: fls. solitary and axilIry, on inch-long peduncles, yellow, with a red center: if. a long ribbed pod ( $5-12 \mathrm{in}$. long), used in cookery. Trop. Asia. - For culture, etc., see Okra. A large-fld. form (var. speciosus, cf. H. Manihot) in Gt. 43, p. 623.

## AA. Perennial herbs, mostly grown as border plants.

These plants are late summer and fall bloomers, with hollyhock-like Hs. They send up new, strong shoots or canes each year. Many of them are perfectly bardy in the N., but even these profit by a mulch corering. Others are tender in the N., and the roots should be taken up after frost and stored in a dry, warm cellar. Keep them just moist enough to maintain life in them. Many times the roots of these berbaceous species are set in large pots in the spring, and they then make most excellent specimens. All the species require a deep, rich soil and plenty of water.
B. Foliage green and usually glabrous.
5. Mánihot, Linn. Tall and stout (3-9 ft.), glabrous or hairy: lvs. large, palmately or pedately 5-9 parted into long and narrow oblong-lanceolate dentate lobes: involucre bracts oblong-lanceolate, falling after a time (as does the calyx) : fls. large ( $4-9 \mathrm{~m}$. across), pale yellow (sometimes white), with a purple eye: capsule oblong and hispid. Old World tropics, and spontaneous in S. states. B.M. 1702; 3152 (lvs. inore cut). S.H. 2:263. - This is apparently the Sunset Hibiscus of the trade; also the Queen of the Summer Hibiscus. In botanical works, $H$. Manihot is said to be an annual, but as known to horticulturists it is a perennial. For a discussion of this point as related to the limitations of the species, see G. C. III. 29:249; Gn. $53, \mathrm{n} .127$ (and plate 1157). Botanically, the species is allied to H. esculéntus. Nothardyin the open in the North, but the roots may be taken up in the fall and carried over winter in a warm, dry cellar. In the middle states and South, it may be expected to survive if well mulched. Grows readily from seeds,
blooming late the first year if the seeds are started under glass.
6. aculeàtus, Walt. Not very stout, 2-6 ft. tall, hispid all over but not tomentose nor whitish: lvs. roundish
.
ordut
nearly or quite glabrous above, the long petiole often joined to the peduncle: involucre bracts linear, nearly or quite as long as the tomentose calyx: Hs. very large ( $4-\frac{1}{-1} 8 \mathrm{in}$. broad), light rose-color (or white in var. albus), with a purple eye: capsule glabrous. Marshes along the coast from Mass. to Fla. and west to L. Michigan. B.M. 882. B.R. 17:1463; 33:7. Mn. 2:161. Gug. 2:297. H. roseus, Thore, of Europe, a rose-colored form, is considered to be a naturalized form of this American specles. R.H. 1879:10.-One of the best of the Marsh Mallows, thriving in any good garden soil. Of easiest culture and perfectly hardy. Slooms in Aug. and Sept. The foliage is strong and effectire. The most generally cultivated of the hardy herbaceous kinds. The form known as Crimson Eye (clear white with a crimson center) was introdaced 1894 by Wm. F Bassett \& Son. It was found in a swamp in New Jersey. There is some question, however, as to whether it is specifically the same as $I$. Moscheutos. The fls. are pure white (except the center), expand wide, and the fis. are bronze-tinted. The carpels are more attennate.
10. incanus, Wendl. Much like $H$. Moscheutos, and sometimes passing for it in the trade: lvs. smaller and narrower, ovate-lanceolate, not lobed, serrate-toothed: ths. sulfur-vellow, with a crimson eye. S. Car. and south. -Seems to be hardy in the North with a mulch protection.
11. Californicus, Kell. Strong growing, 5 ft ., the stem terete or slightly grooved above, more or less pubescent: lus. distinctly cordate, orate, shallow-toothed and not lobed. dull ashy gray beneath: involucre bracts hairy: corolla white or rose, with a purple eye, $3-5$ in. across : capsule pubescent. Calif.-Gray regards this as a form of $H$. lasiocarpus, Xav. (var. occidentillis, Gray). A portrait of $\Pi$. lasiocurpus will be found in G.F. 1:426. Although the name 1. . Culifornicus is common in the trade, it is a question how much of the stock, if any, is this species. Certainly some of it is M. Mos. cheutos. From $H$. Moscheutos this specios is told by its cordate ashy-tomentose iss. and hairy-ciliate involucre bracts. The plant known to the trade as $\boldsymbol{H}$. Culifornicus is hardy.
cc. Les. strongly lobed.
12. grandiflorus, Michx. Tall and stout ( $3-8 \mathrm{ft}$.), the terete reddish stem becoming glabrous: lis. large, 3 lobed, the lobes ovate-acuminate or orate-oblong-acuminate, the side ones widely spreading, blunt-toothed or even again lobed: fls. rery large (6-8 in. across), white or rose, with deeper ere. Ga., Fla. west.-Aside from the large fls. and lobed lrs., this is very like $H$. Moscheutos. It is doubtful if the true II. grandiflorus is in the trade.

AAA. Shrubs, hardy in the Forth (or in the middle states).
13. Syriacus, Linn. (Althrea frùtex, Hort.). Shrcbby Althea. Rose of Sharon. Figs. 1056, 1057. Shrub, 6-12 ft. high, much branched, nearly or quite glabrous: lvs. rather small, short-petioled,

1056. Capsule of Hibiscus Syriacus. strongly 3 -ribbed, triangular- or rhombic-orate, mostly 3 -lobed and with many rounded teeth or notches: fls. solitary in the axils on the soung wood (late in the season), somewhat bell-shaped, 2-3 in. long, rose or purple, usually darker at the base : pod short, splitting into 5 valves. Asia. B. M. 83. R. H. 1845:133 ( Far. speciosus, with double fis.). -One of the commonest of ornamental shrubs, and hardy in Ontario. It is immensely variable in character of fls., the colors ranging from blue-purple to violetred, flesh color and white; also full double formis. There are forms with rariegated lvs. Colored plates of some of the double-Hd. forms will be found in Gn. 52:1150. The species thrives in any good soil. Prop. by seeds, by cuttings of ripened wood taken in the fall, and named vars. by grafting on the common
seedling stock. Nativity uncertain, but probably not Syrian, as Linnæus supposed : probably native in China. To this species belong such trade names as
 H. tòtus cilbus, H. Lèopoldii, H. pıonifldrus, H. coléstis, H. violdceus, H. anemonvfldrus, $_{\text {. }}$. atrórubens,

14. Hamabo, Sieh. \& Zucc. A Japanese species offered by importers but not yet tested in this conntry, and probably not hardy south of the southern-middle states: $6-10 \mathrm{ft}$. high, closely pubescent: lvs. roundish, with an abrupt short point, irregularly shallowly toothed, white

1057. Hibiscus Syriacus ( $\times 1 / 2$ ).
tomentose: involucre of scales united at the base: fls. solitary in the upper axils, large, yellow, with a darker base.
AAAA. Shrubs of glasshouses, or permanently planted out in the far South.

## B. Les. hoary beneath.

15. elàtus, Swartz (Parítium Plìtum, G. Don). Mocntain Mahof. A West Indian tree, now introduced in S. Calif.: Irs. round-cordate, short-cuspidate, entire
involucre leciduous (with the calyx), 8-10-toothed: As. 4 in . long, opening primrose color in the morning, then changing, as the day adrances, to orange and deep red. - This species, the next, and probably others, yield the Cuba bast, used for tying cigars and for other purposes. Lvs. and shoots medicinal: wood durable.
16. tiliàceus, Llın. (Pıritium tiliàceum, Juss.). Kound-headed tree $20-30 \mathrm{ft}$. high: lvs. round-cordate and short-acuminate, entire or obscurely crenate: involucre persistent (with the calyx), $\mathbf{1 0}$-toothed: tis. $2-3$ in. long, yellow. Old World tropies, but naturalized in the W. Indies and at Key West. - Offered recently by Reasoner. Evergreen. Sprouts from the base if frozen.

## BB. Le's. usuully green both sides.

17 heterophyllus, Vent. Tall shrub of Australia, int. in S. Calif., where it is a free aud showy bloomer: nearly glabrous: lvs. varying from linear to lanceolate and elliptic-oblong and from entire to 3 -lobed, $5-6$ in. long, usually serrulate and sometimes white beneath: ths. large ( $3-4 \mathrm{in}$. long), white, with a deep crimson eye, the calyx tomentose: capsule hairy.
18. calycinus, Willd. (H. chrystinthes, Hort.). Small shrub from $S$. Africa, and sparingly known in this country: pubescent: lis. long-stalked, round-cordate, somewhat $3-\bar{j}$-angled and $\bar{j}-\overline{3}$-nerved, crenate, hairy or velvety: fls. on axillary peduncles which are shorter than the petioles, large, yellow, with a dark center: involucre bracts 5, bristle-pointed: capsule tomentose. - To be grown indoors, but may be planted out in the summer with good results. Probably valuable for permanent planting in the extreme $S$.
19. cisplátinus, St. Hil. Bushr, 3-5 ft.: stems glabrous but prickly: lys. deltoid-lanceolate or deltoidovate, 3-lobed, coarsely toothed, sparsely hairy on the veins: fls, solitary, $4-5$ in. across, light pink, with darker color in the eye and sometimes darker on the margins. Brazil (this side the Platte river, whence the specitic name). R.H. 1s98:480. Gng. 7:50.-Little known in this country. It is a late fall bloomer, and may be planted out in summer. It seeds freely, and these, sown as soon as ripe. will give blooming plants for the following fall. Handsome.
20. Dénisoni, Burb. Small glasshouse shrub, flowering when very simall, glabrous: lis. thick and rather stiff, slender-stalked, elliptic-ovate, entire or obscurely crenulate, acmminate, dull green: fls. terminal, large, white, $4-\overline{5}$ in. across. Nativity unknown, but int. from Austral. F.M. 1876:232.-A good greenhouse plant, requiring warm temperature.

1058. Hibiscus Rosa-Sinensis ( $\times 1.5$ ).
21. Ròsa-Sinénsis, Linn. ( $H$. Sinénsis, Hort.). Chinese Hibisclus. Shoeblack Plant. Fig. 1058. In glasshouses a shrub) $3-8 \mathrm{ft}$. high, but reaching 20 ft . in subtropical regions, glabrous: lvs. rather large, thin and shining green, broad-ovate to lance-orate, somewhat tapering to the base, acuminate, coarsely and unequally toothed: involucre bracts linear, free, as long as the calyx tube: tis. solitary in the upper axils of the new
growth, on peduncles which exceed the petioles, bright rose-red, $4-5 \mathrm{in}$. across, with a projecting red column of stamens and pistil. Asia, probably China: now dis. tributed in warm countries, and one of the best known old-fashioned conservatory pot-plants. B.M. 158 . I.H. 29:44. G.C. III. 2:509. Gn. 53, p. I2T.- It is now immensely variable. Forms are double-ttd., and others are orange, yellow, bright red, magenta, and parti-colored. Var. Cooperi, Hort. (II. Cooperi. Hort.), has narrow white-marked lys. and distorted scarlet fls. Trade names belonging to this species are $I$. brilliantissimus, $I$. carmindtes, H. chrysinthus. $_{\text {I }}$. fílgidus, II $_{\text {. fúlyens, }}$ II. kermesinus, II. liteus, $\boldsymbol{H}$. miniutus, II. sub-violitceus, H. zebrimus. Hibiscus Rosa-Sinensis is a sum-mer-flowering shrub which always attracts attention. It is often phanged in the open with other subtropical stuff. It is easy to grow in ordinary potting soil. In winter keep it slow by witholding water and keeping in a temperature not above $50^{\circ}$. In spring head the plants in and start them up to get the new wood on which the tlowers are borne. Give plenty of water when growing, and syringe frequently. Prop. readily by softwood cuttings in spring, or by hard cuttings in fall.
H. Archeri, Hort., is a hybrid of H. Rosa-Sinensis and H. schizopetalus, raised by A. S. Areher, Antigua. West Indies, Much like H. Rosa-Sinensis. Fls. red. Gin. $5 \mathbf{J}: 1 \geq 21 .-H$. Cim eroni, Knowles A Weste. Tall shrub, with heart-shaped 3-lobed Ivs. and large, solitary, cream-colored, red-veined Hs. Madag. B.M. 39:36. The plant figured under this name in Gn. $53: 116$ is probably a form of H . Rosi-Sinensis.-II. wutubilis, Linn. Tree-like or tall shrub, lvs. cordate, 5 -angled, toothed, downy: fls, axillary, opening white or pink but changing to deep red by night: involucre bracts shorter than calyx. China. Cult. in tropical and subtropical regions. Recently introd. in S. Fla. tropical and subtropieal regions. Recently introd. in S. Fla. schizopétulus, Hook. f. Allied to H. Rosa-Sinensis: fls. penduschizopetalus, Hook. f. Allied to H. Rosa-Sinensis: fls. pendin-
lous, the recurving petals beautinuly cut, the involucre none, lous, the recurving petals beautifully eut, the involucre none,
the fruit long and bearing glabrous seeds. E. tropical Afr. B. the fruit long and bearing glabrous seeds. E. tropical Afr. B. M. 6524. F.S. $23: 239$ - -8 . One of the handsomest of the genus, -H. spléndens, Fras. Shrub, 12-90 ft., soft-tomentose, prickly: lvs. cordate-ovate, palmately 3-5-i-lobed: fls. very large, rose red. Anstral. B.M. 3025. B.R. 19:1699. Handsome.-H.Surat tensis, Linn. Trailing, with palmately 3-5-parted lrs.: fls, yel low: involucre bracts with odd nail-like spines. India, but widely distributert. G.C. III. 9:529--H. venùstus, Blume. Very like H. mutabilis, but involuere braets broad. Java. B. M. 1 lis3.-H. villòsus, undetermined trade name. L. H. B.

HICKORY-NUT. Notwithstanding the high esteem in which the nuts of sereral species of Hickory have been held since the settlement of America by the white men, but little progress has been marle in their domestication and improvement. Out of the 9 or 10 species recognized by botanists, not more than 3 or 4 bave been found sufficiently promising from an economic standpoint to justify conspicuous effort at amelioration. Of these the Pecan ( $I$. Pecou) stands easily first, followed in order of apparent value by the Shagbark (Little Shellbark), H. ovata; the Shellbark (Big Shellbark), H. luciniosa, and the Pignut, II. glabru. The Pecan differs in its requirements of soil and climate from the other species, and is described separately under Pecan. For the botany of the Hickories, see IIcoria.

In Havor and quality of kernel the Shagbark is esteemed by most Americans as the choicest of native nuts, thongh in these respects the Shellbark is but lit tle inferior to it. The thinner shell and larger proportion of kernel have given the former precedence over the latter in most cultural efforts; though the thrifty growth, symmetrical form and luxuriant foliage of the latter renler it one of the most handsome and useful of native trees for roadside or lawn planting. The Shag bark has the broader area of natural distribution, beins found in localities throughout most of the United States to the eastward of the Great Plains, except on the low lands of the South Atlantic coast and Gulf states. The Shellbark is mainly confined to the ralley of the Mis sissippi and its larger tributaries, extending eastrard, however, into eastern Pennsylvania and western New York.
The Pignut, which is similar to the Shagbark in area of distribution, is much inferior to the others in quality, but shows wider variation than either in this respect and has disclosed at least one variety of distinct cul tural merit.

As the Hickories, other than the Pecan, are slow-
prowing species at best, they should not be planted on other than fertile soll. The Shellbark is native to river bottoms, and requires richer land than the others, which endure a rather wide range of soil characteristics, provided there is sufficient depth and good drainage. Deep, well-drained, fertile loams, either of sandy or clayey nature, are acceptable to all the species.
Propagation. - All the species are propagated by seed. Planting is frequently done in autumn, but, to lessen the destruction by rodents, is more safely done in early spring. In such case the freshly gathered nuts, after removal from the hulls, shonld be stored in slightly dampened sand during the winter, or stratified, as other tree seeds. Uniformity of growth is promoted by planting nuts where trees are to stand, as the transplanting process in ordinary seasons is accompanied by a considerable loss. If trees must be transplanted, it is probably best to transplant annually in nursery rows, in rich soil, to promote growth of fibrous roots and to lessen the shock of final transplantation to the permanent location.
The propagation of the Hickories by budding and grafting is exceedingly difficult, even the most experienced propagators of woody plants failing to secure more than a small percentage of success. Most growers favor cleft crown-grafting in the spring, on established stocks of the same species. The operation is performed just us stocks are starting into growth, using dormant cions with terminal buds and mounding up to the top bud with fine earth. As the stocks are in condition only for a few days, the process is uncertain and expensive.
One of the most successful propagators of woody plauts, Jackson Dawson, of Arnold Arboretum, recommends the use of the Bitternut ( $\boldsymbol{H} . \operatorname{minima}$ ) as a stock, growing seedlings in boxes 4 in . deep for one or two years, until of sufficient size for grafting. Under this plan the seedlings should be transferred to pots in the autumn and taken into the greenhouse about January 1. He advises side-grafting these close to the collar. As soon as the roots begin to start, the grafted trees in pots must be plunged in sphagnum to the top bud and left until March to callus. Root-grafting, as commonly practiced, has rarely been found to succeed.

Oue promising method of root-propagation suggested by Fuller consists in the "turning up or exposing at the surface of the ground of side roots, severed from the parent tree." Their lower extremities are left in place for one or two seasons, until a distinct top has been formed through the arency of adventitions buds on the exposed portions. Though a slow and expensive process, this is probably more certain than any other method yet developed. In some instances, where the tops of trees have been killed, the rarieties have been perpetuated through this practice by promptly turning up and staking roots that were yet alive.
Plonting should be done in autumn, or as early in spring as the ground can safely be worked. An abundance of rich soil should be used in the holes, as much of the success in transplanting depends upon a prompt and vigorous root-growth. If clean cultivation cannot be practiced, a heary mulch should be applied, and be maintained for several years, until the tree is well established. After this, little

care is needed, except to guard against the attacks of leaf-eating insects.
Production and Use.-Large quantities of Shagbarks are consumed in our cities, but the supply is mainly from the forests.
In some sections, choice second-growth trees have been preserved along fences anil roadsides, and these are usually found to yield larger crops and finer nuts than the forest trees. In purtions of southeastern Penusylvania there is a large production of nuts from such trees. In that section the nuts are marketed in the form of kernels free from shells, for use by confectioners and bakers. The cracking of the nats is done by women and childrer on the farms, this work constituting a domestic industry of some importance at certain seasons. As the use of Shagbarks in cooking is apparently increasing, it is important that trees vearing hoice nuts shall be preserved and cared for. The characteristics that determine commercial value are: first, cracking quality; second,thinness of shell; third, size; fourth, plumpness and flaror of kernel; fifth, productiveness.

Numerous apparently natural Hickory hybrids have been brought to notice, but those thus far discorered have given little evidence of cultural value. The most important are the Nussbaumer and McCallister nuts, which are described under Pecill.

Varieties. - In consequence of the diffculty with which the Hickories are propagated by budding and grafting, few nurseries offer other than seedling trees. Several choice varieties of Shagbark have been described and named because of desirable characteristics, however, and several of these have been propagated in a small way by crown-grafting on established trees. Grafted trees of one variety, the Hales, can be obtained in small numbers at one or two nurseries. No varieties of the Shellbark have been offered by nursersmen. The illustrations (Fig. 1059) are adapted from the Nut-Culture Bulletin of the U.S. Dept. of Agric.
The more important varieties are the following:

Shatibark: Curtis.-Comn. A smooth nut of medinm size, slightly compressed: kernel plump. light in color and of good quality: slell thin: cracking quality good.
Dorer.-Pa. A medium-sized angular nut. rather broad at the base, but having a long and sharp basal point: shell moderately thin; cracking quality good: quality good.
Eliot.-Conn. Ot medium size, compressed. angular, ovate, with prominent tip: kernel plump; flavor mild and pleasant : shell thin; cracking quality gool.
Hales (Hale's P'apershell). - N. J. Large. quadrangular, slightly compressed, with a peculiar way surface: kernel rather deeply corrugated, hut plump and of good quality, retaining its sweetness for two years or more : shell thin and of fair cracking quality. The Hales nut is the first named variety of Hickory, having been thescribed and illustrated by A. S. Fuller in "The Rural New-Forker" in 1870. It is probably the only sort now obtainable at the nurseries. The original tree bears a fair crom annually. and numerous yonnger trees grafted from it are now in bearing.
Jachson. Ohio. A compressed oval nut of large size: kernel large plump, and of excellent quality: shell thin; cracking quality medium. Fig. 1059 .
1059. Forms of Hicoria ovata

1. Orate form. 2. Long-ovate form. 6, 6a. Meriden. 7.Jack son. 8,8a. Milford. Nat. size.

Leaming. - Mo. A large nnt of fine flavor and excellent crack. ing qually, the kernel comiug out in unbroken halves. Meriden.-Conn. Large, oblong, compressed: kernel large and of gool quality: shell rather thlek, but cracks well. Fig. 1059
Milford.-Mass. A compressed orate nut, medinm to large in size, with large, plump kernel of excellent quallty: crack well: one of the best nuts set brought to notice. Fig. 1059.

1060. Follage and pistillate flowers of Hicoria Pecan.

Rice.-Ohio. Angular, ovate, medinm to large in size: kernel plump, bright and of tine quality: shell thin and of good cracking quality: tree regularly productive.

Woodbourne. - Pa. Long, compressed ovate. large and smooth: kernel tender and of very highquality: shell rather thick, but cracks well.
Pigyct: Of the somewhat nnmerous sweet-flavored forms found in this species, the following one at least has been deemed worthy of perpetuation beranse of its delicate flavor, thin shell and excellent cracking quality.
Brackett.-Iowa. Roundish compressed, smooth and of grayish color. medium to large in size: kernel plump, sweet and of delicate flaror: shell very thin, and easily freed from the kernel.

WM. A. T y y or.
HICORIA (from its aboriginal name) Syn., Cirya. Juglandicer. Hickory. Hardy ornamental trees, with rather large, deciduous odd-pinnate lys., small ereen ish fls., the staminate ones in conspicnous pendulous racemes, and with rather large, green, dehiscent fruits
enclosing a mostly edible nut. The Hicsories are among the most beautiful and most useful trees of the American forest, and are all very ornamental park trees, with a straight, sometimes high and slender trunk and a large, graceful, pyramidal or oblong head of generally light green foliage, turning from yellow to orange or orange-brown in fall. They are hardy North except $\boldsymbol{H}$. Pecan, aquatica and myristicaformis, but M. Pecan thrives rarely in Massachusetts in sheltered positions. Most of the species have heary, hard, strong and tough wood, much valued for many purposes, especially for handles of tools, manufacture of carriages and wagons, also for making baskets and for fuel. The nuts of some species, as $H$. Pecan and $H$. oveta, also $H$. Inciniatit and some varieties of $H$. glabra and $I I$. alba are edible, and are sold in large quantities, mostly gathered from the woods, though in later years orchards of improved rarieties have been planted. A large number of insects prey upon the Hickory, attacking the wood, foliage and fr., for which see the Fifth Ann. Rep. of the U. S. Entom. Com., p. 28.-329. There are also some fungi causing sometimes an early defoliation of the trees.
The Hickories generally grow best in rich, moist soil, but some, especially $I$. glabra, $H$. alba and $H$. orata, grow equally well in drier localities. They are of rather slow growth, and difficult to transplant if taken from the woods; therefore the seeds are often planted where the trees are to stand, but if grown in the nur sery and transplanted several times when young, trees $6-10 \mathrm{ft}$. bigh may be transplanted successfully. Prop. usually by seeds stratitied and sown in spring in rows about 3 in . deep; named varieties may be grafted in spring in the greenhouse, on potted stock of $H, \mathrm{mimima}$ which seems to be the best species for this purpose, reneer- or splice-grafting being usually employed ; sometimes also increased by root sprouts. For futher horticu!tural advice, see Mickorynut and Pecan.
There are about 10 species of Hickory, all in E. N America from Canada to Mexico. Branches with solid pith: Ivs. alternate, without stipules, with $3-17$ serrate Ifts.: fls. monœcious, apetalous, appearing with the lvs.; staminate fls. in axillary, slender, pendulous catkins, each f. with 3-10 stamens, borne in the axil of a 3 -lobed bract; pistillate fls. in a terminal, 2-10-fld. cluster or spike, consisting of a 1-celled ovary enclosed by a 4lobed involucre: fr. globular to oblong, with a husk separating into 4 ralres and a bony nut, incorpletely $2-4$-celled. See also Rep. Missouri Bot. Gard. 7, p. 28 42, pl. 1-23, and Rep, of U.S. Dept. of Agric. Div of Pomol. Nut-Culture ( 1896 ), cited below as U.S.N.C (the first number referring to the plate, the second and third to the figure).
A. Scales of buds valwate, 4-6: fr. with winged sutures; nut usually thin-shelled: lfts. $\dot{-}-18$, usually falcate.
B. Nut mostly elongated, almost terete: husk thin, splitting to the base: kernel sueet.
Pecán, Britt. (Carya olicefórmis, Nutt.). Pecan. Fig. 1060. Tall tree, to 170 ft., with the branches pubes cent when young: bark deeply furrowed, grayish brown: lfts. 11-17, short .. stalked, oblong. lanceoiate, acuminate, serrate or doubly serrate, tomentose and glandular when young, usually glabrous at length, $4-7 \mathrm{in}$. long: staminate catkins almost sessile: fr. 8-10 in clusters or spikes, oblong, $11 / 2-31 / 2$ in. long; nut oroid or oblong. smooth, brown, irregularly marked with dark brown, 2-celled at the base; keruel sweet. From lowa and Ind. sonth to Alab. and Tex.; also in Mexico. S.S. 7 :

1061. One form of Pignu -H. glabra. Natural size. S.C. $1,8,9$. This species is the most important as a fruit tree, an 1 many named varieties are cultivated in the southern states, but it is tender North. The wood is less raluable than that of the other spectes. Hy brids of this species are known with $H$. minima, alba
and laciniosa, for which see Rep. Mo. Bot. Gard. 7, pl. 20-23 and Gug. 2:226. See Pecan.
myristicæformis, Britt. (Curya myristiceformis, Nutt.). Nutmeg-Hickory. Tree, to 100 ft . with dark brown bark, broken into appressed scales: lfts. $5-11$, short-stalked or almost sessile, ovate-lanceolate, the uppermost much larger and obovate, serrate, scurfy-pubescent beneath when young and with brown seales above, at length dark green above, silvery and lustrous beneath, $3-5 \mathrm{in}$. long: staminate catkins peduncled: fr. generally solitary, short-ovoid or obovate, about $11 / 2 \mathrm{in}$. long; nut ovoid, reddish brown marked with irregular spots and stripes, thick-shelled, 4 -celled below; kernel sweet. From S. Car. to Ark. and Mex. S.S. 7:342-43.A very decorative species on account of its handsome foliage, but not hardy North.
bв. Nut usually as broad as long, compressed with irregularly angled or reticulate surface, thinshelled, 4 -celled below: kernel bitter.
aquática, Britt. (Carya equiticu, Nutt.). Waterhickory. Bitter Pecan. Usually small tree, rarely to 100 ft ., with light brown bark separating into long, thin plates: Ifts $\mathbf{i}-13$, sessile or short-stalked, lanceolate, long-acuminate, finely serrate, yellowish tomentose when young, glabrous at length. fr. 3-4, ovoid to broadly obovate, $1-1 \frac{1}{2} \mathrm{in}$. long; husk thin, splitting to the base; nut obovate, much compressed, irregularly angled and ridged, dull reddish brown; kernel very bitter. From Va. to HII., south to Fla. and Tex. S.S. 7:344-45. U.S.N.C. $12, ~ \overleftarrow{1}-8$.
minima, Britt. (Curya amára, Nutt.). Bitter Net. Swamp-Hickory. Tree, to 100 ft .: bark grayish brown, broken into thin scales: young branches and petioles glabrous: lfts. 5-9, ovate-lanceolate to lanceolate-acuminate, densely serrate, pubescent when young and glandular, almost glabrous at length, 3-6 in. long: fr. 2-3, broally oborate or subglobose, winged from the apex to the middle, $3 / 4-11 / 2 \mathrm{in}$. long; husk thin, splitting somewhat below the middle; nut slightly compressed, roundish, abruptly contracted into a short point, irregularly


## 1062. Characteristic growth of the Pignut Hickory. Hicoria glabra.

reticulate ; kernel bitter. Quebec to Minn., south to Fla. and Tex. S.S. 7:340-41. Em. 으.-A valuable park tree, with handsome, rather broad head, growing in cult. more rapid!y than other Hickories.

1063. Hicoria glabra, var. microcarpa-the false Shagbark.

4A. Scales of buds imbricate, more than 6: fr. not or slightly uinged at the sutures: nut usuully thick-shelled, 4 -celled belou: lfts. 3-9, not fulcate, the uppermost larger and generally obovate.
B. Buds small, $1 / 4-1 / 2 \mathrm{in}$. long: husk thin: mut slightly or not anglea.
glàbra, Britt. (Caryu parcina, Nutt.). Pignct. Figs. 1061,1062 . Tree, occasionally to $1 \because 0 \mathrm{ft}$.. with usually dark gray fissured bark and slender, glabrous branchlets: Ifts. 3-7, almost sessile, oblong to oblong-lanceolate, long-acuminate, sharply serrate, almost glabrous, 3-6 in. long: fr. usually ovoid or oborate, the sutures usually slightly winged toward the apex and the husk splitting mostly only half way to the base; nut usually brownish, not angled ; kernel mostly astringent. S.S. 7:352-53. A.G. 11:386-7. U.S.N.C. 12, 5. - A very handsome park tree, with rather narrow-oblong head and slender, often pendulous branchlets, especially in the following var. A very variable tree, and the following varieties are considered by some botanists as distinct species.

Var. microcárpa, Trel. (Carya microcárpa, Nutt.). Figs. 10633-6. Bark more or less shaggy: lfts. quite glabrous, often somewhat broader: fr. subglobose; husk splitting nearly to the base; nut grayish or whitish, angled, rather thin-shelled, often broader than long; kernel sweet. From Quebec to Mich., south to Fla. A. G. $11: 381-88,1,2$, 5, 8, 10. U.S.N.C. 12, 4,6.-Often very distinct. Probably $\boldsymbol{I}$. borealis, Ashe, belongs to this variety. Var. odoràta, Sarg. Similar to and often united with the former. Bark fissured,

1064. Fruit of H. glabra. 1065. Twig of var. microcarpa, the false Shagbark. Natural size.

liccria glabra. var. microcarpa.
not shagey : lfts, generally broader, orate or ohlongorate, glandular: fr. more orodd, splitting almost to the base; nut gray or brownish, sllghtly angled. S. S. 7:354 (partly). Var. villdsa, Sarg. (H. pillidi, Ashe). Bark deeply fissured: lfts. $5-7$, hairy along the midrib beneath and the rachis covered with tufts of hair: fr . subglobose to oroid; nut brown, thick-shelled. Mo. to Del. and Ala. S.S. 7:355. G.F. $10: 305$

1066. Habit of the false Shagbark. H. glabra. var. microcarpa.

BB. Buds large, 1/2-1 in. long: nut angled; kernel sueet
C. Bark not shaggy : branches and petioles tomentose: outer buld-scules folling in autimm: husk not separating quite to the base.
alba, Britt. (Carya tomentosa, Nutt. Not to be confounded with $C^{\prime}$. albe, which is $M$. ovata). Mockernut. Big Bud Hickory. Tree, rarely attaining to 100 ft .: lfts. $7-9$, almost sessile, oblong-lanceolate, long-acuminate, usually finely serrate, glandular and tomentose beneath, very fragrant when crushed, $4-8 \mathrm{in}$. long: fr. globose to pear-shaped, $11 / 2-3 \mathrm{in}$. long; nut light brown, globular to oblong, slightly compressed, angled, narrowed toward the apex, thick-shelled; kernel small, sweet. Mass, to Ontario and Neb., sonth to Fla. and Tex. S.S. 7:350-51. U.S.N.C. 12, 1-3. Em. 229.
cc. Bark shaygy, light gray: branches and petioles glabrous or pubescent: husk ver!g thich, separuting to the lase: outer bud-scules persisting throwgh the uinter.
laciniòsa, Sarg. (Carya sulcìta, Nutt. H. acuminita, Dippel). Big or Bottom Shellbakk-Hickory. King Nut. Tall tree, occasionally to 120 ft : branchlets orange-red: lfts. $\boldsymbol{i}-9$, oblong-lanceolate, acuminate, serrate, pubescent when young, usually glabrous at length, 4-8 in. long: fr. generally oblong, 2-3 in. long; nut yellowish white, oblong, but sometimes as broad as long. slightly compressed and obscurely 4 -angled. pointed at both ends: kernel sweet. N. Y. to Iowa, south to Tenn. and Ind. Terr. S.S. 7:348-49. U.S.N.C. 11.
ovàta, Britt. (C'arya dilba, Nutt.). Sharibark-Hıckory. Also Little Shellbark-Hickory, although the

## HIF:RACIUM

latter name by some is applled to the preceding. Figs. $106 \bar{i}$, 1068. Tree, occavionally to 120 ft . : Ifts. generally 5, sessile, oblong or oblong-lanceolate, acuruinate, serrate, densely timbriate, pubescent and glandular when young, glabrous at length, 4-6 in. long: fr. subglobose, about $1 \frac{1}{2}-23 / 9$ in. long; nut white, oblong to broadly obovate, 4 -angled; kernel sweet. From quebee to Minn., south to Fla. and Tex. S.S. 7:316-47. Em. 21ї. U.S.N.C. 10. A. G. $11: 386,6,9 ; 387,3 ; 388,11$. Gng. 7:51. A.F. 14:339. - Next to Pecan the best as a fruit tree, especially for the northern states, where Pecan is not quite hardy. Several named varieties are in trade, of which probably var. Holesi, Hort., with large, thin-shelled nut, is the best known. An ornamental, often very picturesque tree; the stout branches forming a rather broad, usually somewhat open head.
H. Caroline-septentriondilis. Ashe. Allied to H. ovata: fr. smaller: lifts. 3-5, oblong-lanceolate, glabrons. N. C. to Gia.-H. Mexicana,
Engelm. Tree, with shagey bark and tomen-tose-pubescent Irs.: fr. depressed, with rather thick husk and broad, sharply 4 -angled, white nut. Mex. The only species not native to the Pecan, but lfts. broader, less falcate almost sessile; nut smaller, much darker, with somewhat rough surface: kernel hitter. Texas.

## Alfred Rehder.



HIDALGOA ("after the Mexican Hidalgo"). Syn., Chilelsia. Compósitue. This includes a tender herbaceous vine, allied to Dahlia, with scarlet fls. about 21/2 in. across, introduced in 1899 by John Lewis Childs, under the name of Childsia Wercklei, or "Treasure Vine." Hidalgoa is closely allied to Dablia and Coreopsis, but differs from both in the large, fertile akene of the rays and in the sterile disc-fls., the styles of which are entire or very shortly 2 -lobed. Only 2 species were hitherto recognized, both from Central America. From these $H$. Wercilei differs in its more compound lvs. and much larger heads. Suitable for cool, shady verandas.

Wércklei, Hook. (Chiletsia Wércklei, J. L. Childs). Tall, woody at base, much branched, climbing by petioles: lvs. opposite, pinnately ternatisect, $11 / 2-21 / 2 \mathrm{in}$. long, 2 in . wide, the teeth tipped reddish brown: petiole $11 / 2-2$ in. long, coiled at base: peduncle axillary, as long as the lvs., 1 -fld.: rays about 10. Costa Rica. B.M. 7684. J.L. Childs' Cat. Rare Flowers, etc., 1899, p. 1 , with colored plate. A.G. 20:570.
W. M.

HIERACIUM (Greek, a hut $k$; the ancients thought that hawks sharpened their eyesight by using the sap of these plants). Compoisita. Hawnweeds. Over 250 species of hardy herbaceous perennials, mostly native to Eu. and S. Amer., some of which are bad weeds in

1068. Fruit of Hicoria ovata, the Shagbark Hickory. Natural size. The cross-section is to show structure, not to show a good horticultural fruit.
the eastern states. Lrs. often toothed, but never deeply lobed: heads usually small, loosely paniculate or cymose, rarely solitary: rays truncate, 5 -toothed at the apex : seeds angular. The genus passes into Crepis,
from which it is distinguished by having stiff, usually brownish, rarely white pappus, and oblong or columnar seeds. The cultivated spectes bear in summer and autumn a succession of small gellow or orange-colored Hs. There is one white-fll. species, $\boldsymbol{H}_{\text {. }}$, nicule. They are often worth growing in rockeries and waste places, but care should be taken to prevent them from crowding out more desirable plants. $H$. rillosum is the most desirable species. Hawk weeds will grow in almost any soil or aspect. They are propargated chiefly by dividing the stolons, or by seeds, and if left to themselves will soon form a dense mat of herbage over the poorest of soils. The Old Wordid species are much confused.
A. Flowering stem leafless or with 1-5 lus.: liss. mostly in a rasette at base of stem.
B. Scapes unbrunched above, bearing but a single heal. Pilosélla, Linn. Mouse-eak Hawkweed. Stem slender, $4-12 \mathrm{in}$. high, stoloniferous, densely hairy throughout: Ivs. entire, oblong or spatulate, narrowed into a petiole: fls. 1 in . broad, pale yellow, sometimes striped or tinged with red or purple. - Commonly flowers the whole season. Int. from Eu. and common in dooryards and fields. Ont. to Pa, and Mich.
BB. Scapes ranched above, bearing several to many $\begin{gathered}\text { hents. }\end{gathered}$ hertls.
c. Basal lis, coarsely toothed.
vulgàtum, Fries (II. umbrosum, Jord.). Stem 1-3 ft. high, slightly glaucous: basal lvs. $2-5 \mathrm{in}$. long, oblong to lanceolate, acute at beth ends, petioled, petioles usually pubescent. July-Sept. Int. from Eu. Lab. to N. J. cc. Basal les. entire or very finely tootheal.
D. Le's. mostly oborute to oute, purple-veined.
venosum, Linn. Rattlessake Weed. Stem 1-3 ft. high, slender, smooth or nearly so: Irs. $1-1$ in. long, obovate to spatulate, subsessile : fls. $1 / 2-3 / 4 \mathrm{in}$. wide, hright yellow. Aug.. Sept. Dry woods, Me. to Ga. and west to Man. and Neb. D. 133.-A common plant in woois. Adrertised by one dealor in native plants.

DD. Liss. mostly spatulute to ohlong, green-veined.
aurantiacum, Linn. Orange Hawkweed. Stem 6 in. to 2 ft . high, slender, somewhat hairy: heads $1 / 2-1 \mathrm{in}$. across, short-stalked, orange to orange-red. June-Oct. Nat. from Eu. by roadsides and in fields, Ont. to Pa. A had weed if allowed to spread. It is worthy of being established in high and dry parts of a rockery, where few other plants can grow.
præáltum, Vill. (II. stoloniferum, Bess.). Plants usually spreading very rapidly by stolons: stem $2-3 \mathrm{ft}$. high, slender, glaucous, hairy at base: basal lvs. entire: heads $1 / 2 \mathrm{in}$. across, in an open cyme, bright sellow. June-Sept. Nat. from Eu. along roadsides in N. Y.; sometimes troublesome in cult. land.

AA. Flowering stem leafy, at least below. B. Stem branchiny from the base.
ramosum, Waldst. \& Kit. Lys. orate to lanceolate, narrowed at the base, toothed, hairy on margin and beneath: lower lvs. petioled, upper ones subsessile. July-Sept. Eu.
nivale, Froel. White Hawkweed. Differs from $H$. ramosum chietly in having white ths, and glaucous, somewhat leathery lis., which are not hairy on the margin. A white Harkweed is advertised and, according to Gray, this is the only white-fld. species in the genus. Tyrolese Alps.
bв. Stem unbranched below. c. Whole plant silky-rillose.
villdsum, Jacq. Shaggy Hawkweed. Stem 1-2 ft. high, often 4 ft . under cult.: basal lis. oblong-lanceolate to lanceolate, narrowed at the hase, finely toothed; stem-lvs. sessile, the upper half clasping: fls. $11 / 2-2$ in. across, bright golden. June-Aug. Eu. Gn. 46:994.The silvery foliage and showy fls. of this species make it more desirable for the garilen than any other Hieracium now in cultivation. It is easily kept from spreading.
cc. Plant smooth or slightly pubescent.

Canadénse, Michx. Stem 1-5 ft. high, slender: lvs. orate-oblong to lanceolate, acute, serrate, sessile, the
upper with clasping base: fls. 1 in . across. June-Aug. Dry woods, N. S. to Pa., west to 1B. C. and Ore.

Gronovii, Linn. Stem l-3 ft. high, stiff: Ivs. hairy, the upper oval or ohlong, broadly sessile, the lower obovate to spatulate, narrowed into a short petiole: $\mathrm{fls} .1 / 2-3 / 4 \mathrm{in}$. wide. Sandy solls, Can. to Fla., west to Mo and La.
S. W. Fletcher.

HIEROCHLOE (Greek, holy grass; in northern Europe it is scattered before churches on saints' days). Also written Hierochloa. Graminea. This genus contains the fragrant Vanilla Cirass, the sterile shoots of which are woven by the North American Indians into small mats, haskets and boxes. These retain their fragrance for years. It is a genus of 13 species of aromatic perennial grasses with creeping rootstocks, tlat leaves and contracted or open panicles, found in temperate and frigid zones. The spikelets are 3 -thl., only the terminal fl. perfect. Vanilla dirass is not a good forage plant, as most animals dislike it. The seed seems to be nowhere obtainable, and only one American dealer advertises plants of it. The odor is like that of the common annual sweet vernal grass, Anthosinthum otorutum, but is more powerful. Hierochloe is closely allied to Anthoxanthum, but is distinguished by the 3 -thl. spikelets and rather loose panicles, Anthoxanthum having l-fld. spikelets and contracted panicles.
borealis, Roem. \& Schult. (II. odorùta, Wahl.). VAnilla Grass. Holy Grass. Seneca Grass Sweetscented Grass. Rather slender, smooth, 1-2 ft. high: lvs. short: panicle brownish, spreading, 2-4 in. long. June, July. Eu., N. Amer. B.B. 1:13?.
G. T. Hastings.

HIGGINSIA. See Hoffmaunir.
HIMANTOGLOSSOM. All included in Orehis.
HIPPEASTRUM (knight or horse and star, from some fancied resemblance in $H$. equestre, perhaps of the equitant lvs. and the star-shaped corolla-opening). Amarylliddece. Includes Habranthus. From 40 to 50 tropical American bulbous plants, now much hybridized. Closely allied genera are Amaryllis, Crinum, Sprekelia, Brunsvigia, Zephyranthes, Lycoris, Sternbergia, Vallota, which see. The fls. are large and showy, two to several being borne on a stout, hollow, leathess scape; perianth tube evident, often long, dilated in the throat; segments erect-spreading, nearly or quite equal; filaments (6) distinct, of en with small scales between.

The Hippeastrums are usually known in gardens under the general name of Amaryllis: and their culture is given in full under that name. Many of them are noble garden plants, but the high price of the bulbs prevents them from becoming popular, although they may be grown easily from seeds. Most of the species were first described in the genus Amaryllis, but that genus differs in its solid scape and absence of scales between the filaments.

Very many of the names in trade catalogues are of horticultural forms; and many of them cannot be referred positively to any of the original species. For the Belladoma Lily, see Amaryllis: for Atamasco Lily, see Zephyranthes; for Josephine Lily, see Brunsvigia. For Amaryllis arrea, see Lycoris; for A. candilla, see Zephyrunthes; for A. formossissimn, see Sprekelia; for A.giganten, see Brunsvigia; for A. longifolia. see Crinum: for A. lutea, see Sternbergia; for A. Nerine, see Nerine; for A. orientulis, see Brunsvigia: for $A$. ornata, see Crinum: for A.speciosa or purpurell. see Vallotu. Latin-form names which do not appear in the following account are very likely to be horticultural forms.

Ackermanni, 3. acuminatum, Alberti 9. anlicum, anitum,
eitrinum, 12. citrimum,
cocatum, 12. crocatum,
equestre. 6. fulgidum, $6,12$. ignescens, 6 . Johnsoni, 14.
Leopoldi, 10.
ndex.
major, c.
Maraneusis. 8 . miniatum, $1 \geq$. parimum, ${ }^{\text {patypetala }}$ platypetala. 3 . procerum, 11 . psittacimm,
puleherrimum. pulcherrimum. 3. pulrernientum, ${ }^{\text {nymochroum, }}$. pyrrochron
Regine, 9.
reticulatum, $\overline{6}$.
Reezli, 6.
rutilum, 12. solandrittorum. 1. spathaceum. 6 . spathaceum, 6 . splendans,
striatiolium,
s. stylosum. B . stylosum. S .
subbarbatum. 12. Vittatum. 13. Walteri, 6.

The genus divides itseif into the narrow-leared (lvs. linear) and broad-leared sections. All the common garden serts belong to the latter section. The species which are chiefly known in cnlt., or which have been parents of hybrid races, are contrasted below. In some species the Howers precede the leaves.
A. Perianth tul, 4-5 in. long, very slender.

1. solandriflorum, Herb. Bulb ovoid. $3-4 \mathrm{in}$. in diameter, with a short nfek: Irs. appearing with the fls., 1-2 ft. long. 1-9 in. wide, blunt: scape somewh st Hattened, $2-3 \mathrm{ft}$. tall, bearing $2-4$ declined greenish white ths.: perianth tube cylindrical, nearly as long as the obovate sometimes purple-ribbed segments; stamens not ex serted. S. Amer. B. M. 2573; 3771. L. B. C. 12:1200. I.H. $35: 58$. - Apparently little known in gardens, but is the parent of hybrids.

AA. Perithth tube short (usually not more then $1 \mathrm{in} . \operatorname{long})$.
B. Throat constricted or closed by a neck or collar.

## c. Stigma 3-parted.

2. aùlicum, Herb. Lily-of-the-Palace. Bulb oroid, 3-4 in. in diameter, with a short neck: lvs. 6-9.1-2 ft . long, 2 in. broad. bright green, the end blunt or nearly so, appearing with the Hs.: scape scarcely longer than the lvs., stout, terete, usually bearing 2 large red tls., of which the segments are green at the base: segments $5-6 \mathrm{in}$. long, the "2 upper inner ones much broader than the others, all of them obovate and somewhat pointed; corona in the throat green; stamens shorter than the perianth; filaments red. Brazil. B.M. 3311. B.K 6:44. Git. 45, p. 417.-One of the best, and common in tine trade. The form known as var. platypétala, Lindl., B.R. 12:10:88, with broader petals and more rolsust habit, is in the trade.
3. Áckermanni, Hort., is a garden hybrid, with large crimson fls. The var. pulcherrimum, Hort., with crimson, green-striped fis., is best known.
4. psittacinum, Herb. Bulb 3-4in. in diameter, with a long necs: lvs: with the Hs., 6-8, lightly glaucous, becoming nearly or quite 2 ft . long: scape stout, $2-3 \mathrm{ft}$. tall, bearing a 2-4-Hd. umbel: perianth segments $4-5$ in. long, oblong and acute, undulate, the edge crimson, the main part green but crimson-striped; stamens much shorter than the perianth. S. Hraz. B. R. 3:199. L. B. C. 13:1204.-Appar ently little known in cult., but it has been a parent in hybridizations.

## cc. Stigma capitate.

5. pardinum, Dombr. Brilb globular, 2-3 in. in diameter, with a short neck: lis. $5-\overline{5}$, appearing with the fis. but not fully developed until after the fls. a.e gone, becoming 2 ft . long and 2 in . broad, narrowed to the base: scape nearly terete, $11 / 2 \mathrm{ft}$. tall, glancons. usually bearing 2 spotted fls.: perianth segments $4-\overline{3}$ in. long, oulong but much narrowed at the base, acute, greenish yellow and much spotted with red, not striped. the lowest inner segment narrowest; stamens declined, shorter than the perianth. Peru. B.M. 5645.-A handsome species, with As. 6-7 in, across, offered in the American trade, and also a parent in the modern spotted L . obrids

## BB. Throat wot constricted.

C. Stigma capitate or only obscurely lobed.
D. Tube of periauth $1 / 2-1 \mathrm{in}$. long.
6. equéstre, Herb. Barbadoes Lily. Bulb globular, 2 in. in diameter, producing offsets freely, with brown scales and a short neck: lvs. 6-8, developing fully after the Hs., $12-20$ in. long and br soming about 2 in. wide, narrowed to the point: scar, $1-2 \mathrm{ft}$., terete, glancous: fls. 2-4. 4-5 in. across, the green tube 1 in . long. the segments oborate-pointed, bright red with greer at the
base, the 3 inner ores narower than the outer; stamens shorter than the perianth. Mexico to Chile and Brazil. B. M. 305. - An old garden species, one of the best for winter and spring blooming. There are several garden forms and hybrids, with larger and better ths. Var. splëndens, Truff., R.H. 1895:578 (var. W'ílteri, Wittm., Gt. 44, 14:8), is larger in all its parts, fls. red, and the pedicels are longer. Var. fúlgidum, Hort. (not $H$. fulgiAum, Herb.), has brilliant orange segments margined with white. Var. ignéscens, Hort., is deep clear scarlet, witlı white throat and white bars on the segments. Tar. major, Hort., has very large, bright orange fls., with a green central star. B.R. 3: 234. H. hízzli, Regel, H. pyroóhroum. Lem., I. H. 11: 420, and $H$. spathàcemm. Sims, B.M. 3 , 15 , are regarded by Baker as forms of this species. There are double-fld. forms.
7. reticulàtum, Herb. Bulb nearly globular. with a short neck: lvs. appearing with the Hs., rather short and broad for the genus, being oblanceolate, 1 ft . long and ? in. broad, thin and bright green: scape about 1 ft . tall, nearly terete, bearing $3-6$ : sellated or chect ced Hs. 4-5 in. across. fls. bright mauve or pur-ple-red, with cross lines and bars of crimson, the segments oborate and much narrowed below; stamens shorter than the perianth, declined. S. Brazil. B. M. 657. Var. striatifolium, Baker, has still broader lvs., with a white keel or stripe. B. M. 2113. B. R. 5:35:. G. C. III. 4:47\% - Handsome. Blooms normally in late summer. Offered in American catalogues.
8. stylòsum, Herb. (Amarỵllis Marauénsis. Ker Gawl). Brll, globular, 3 in. in diam., with a short neck and pale coverings : ivs. $t-6$, mostly appearing --ith lee fls., bright green, becoming earl "in. wide: scape 1-e ft., bearing $\therefore-5$ lig. $=d$ or tlesh-colored fls. 4 in. across: perianth tube $1 / 2 \mathrm{in}$. long; segments oblong-acute, less than 1 in . wide, awny pink or Hesh-red; stamens somewhat exserted, the style much so (whence the specific rame). Guiana and Braz. B.M. 9.2i8. B.R. 9:719.-Apparently not mun ${ }^{1}$ cult., but it has been a parent of hybrids.

DD. Tube of perianth rery short (or scarcely amy).

保 vittatum. ( $\times 1 / 3$. )
scape $10-20$ in scape $10-20$ in s., 2 ft . long and $11 / 2-2$ in. broad, green: segments $1-$., bearing $2-4$ red declined fls.: perianth in innermost one narrower, all bright red, a large whitist star in the throat : tube sometimes nearly or quite 1 in. long: stamens shorter than the perianth. Mex. to Peru and Braz. B.M. 453.-An fld garden plant, still much cult. There are double-fld forms: Amaryllis Alberti, Lem., I.H. 13:498, Baker considers to be one of rhese.
10. Lèopoldi, Dombr. Bulb globular. ${ }^{2}-3$ in. in diam., with short neck: lis. With the fis. or nearly sn, often 2 ft . iong: scape stout, $11 / 2-2 \mathrm{ft}$., nearly terete bearing about 2 large, very regular and parti-colored ths., measuring 6-7 in, across: perianth tube without anv corona or constriction at the throat; segments obovate, 2 in . broad, the lower haif dull crimson, the tips greenish white, the intermediate part bright red, with a forke; white mark at the base of each, and a green-white throat stamens declined, mostly exceering the perianth, the filaments whice; style exs rted. Yeru. (.C.C. 1870:733.-

Distinct, and one of the best. Apparently not in the Amer. trade, but it has been used in hybridizing.
11. procerum, Lem. (Amarýllis Ràyneri, Hook. f.). Bulb ovoid, with a neck $10-12 \mathrm{in}$. long, on the apex of which-as on a trunk-the drooping, curling, buff-edged Ivs. are borne (the lvs. 16-20 in. long): seape $12-18$ in. high, 2 -edged, green, bearing $2-3$ horizontal pale lilac fis. 4-5 in. across: segments oblanceolate, acute, not 1 in. broad; throat without a star; stamenz ?uch shorter than the perianth; stigma capitate. brazil. i.H. 11:408. F.S. $20: 2077-8$. B.M. 5883. Gn. $45: 959 .-$ One of the most distinct of the genus. In the Amer. trade. Sometimes called "Blue Amaryllis" and "Empress of Brazil." Plant out for late summer or fall bloom, in a warm, sunny place. Keep bulb dry until late spring.

## cc. Stigma markedly s-parted.

12. sùtilum, Herb. Bulb nearly globular, 2-3 in. in diam., stoloniferous, with short neck: lis. 6-8, elongat ing after flowering, bright green, 1 ft . lung and an inch or mo-z wide: scape as long as the lys., somewhat com-
 $3 / 4 \mathrm{i}^{r}$ gion : $\quad$ ith a mimute crown in the throat ; segme stamens s... ar . $n=$ the perianth, the filaments red. Braz. B.R :... I.' C. 1i:1449.- In cultivation chiefly known in $!$ ve ülgidum, Baker ( $\boldsymbol{H}$. fúlgitum, Herb.), whei. .... arts larger, deep erimson, the fl.-serments $3-5$ in. long. B.R. $3: 226$. B.M. 1943, as Amerrillis minialte; 245 as $H$. subbarbìtum. Var. crocatum, Baker, is as large as var. fulgidum, except in its His., which are smaller, with undulate segments, saf fron-colored. B. R. 1:38. Var. citrinum, Baker, has bright yellow tls. Var. acuminatum, Roem. (A. and $H$. ruiverulénta). Fis. pink and serments acute. B.R.

13. vittàtum, Herl). Fig. 1069. Bulb globular, 3 in. in diam.: lrs. 6-8, usually appearing after the fts., bright green, 2 ft . long: scape often 3 ft . high, bearing $3-\mathbf{t}$ horizontal or declined striped white-edged Hs. 4-5-in. across: tube about 1 in . ling, with an obseure c cown or crest at the throat; semments obovate-oblong and acnte,
" 1 in. or less broad, the under color whitish but overald with red stripes, the keel white: stamens shorter than the limb. Pern: but once thought to be S. African B.M. 129. G.C. III. 24:119.-The eommonest species type in Amer. gardens, now cult. in many forms. It seems to have entered freely into hybrids, and some of the forms now passing as $H$. cittatum are perhaps mongrels. The double red feathery stripes on each side of the more or less irregular-edged segments distinguish this species from its congeners.

14. Hippeastrum Johnsoni ( $X$, 1/4).
15. H. Johusoni, Bury. Fig. 1070. Fls. deep dull red, each segment with a white strip. , wn the keel. A very profuse bloomer, and with tands much abuse. It is the most popular single Amaryllid in this country, and is particularly prize ${ }^{-1}$ for window-gardens. It is the oldest hybrid, having be raised by one Johnson. an English watchmaker, wh , 1799, crossed $H$. I'e e with $H$. rittafum.
The thre follow $\boldsymbol{S}$ Hippeastrums are off ea in Dutch.

American lists: $\boldsymbol{H}$. advenum, Herb. Belongs to the narrow vd. section of the genus: lvs. linear, glaucous: Hs. 2-6, about $\mathbf{2} \mathrm{in}$. long, yellow or red, on slender bedicels, the segments ob-long-linear and acute; stigma 3-parted. Chile. B.M. 1125, B.R. 10:849. A form with pale yellow ths. is var. pallidus, Herb. L.B.C. 18:1760.- H. praténse, Baker. Also linear-lvd.: His. $\mathbf{2 - 4}$ bright searlet, the very short tube with small scales in the throat, the segments $\ddot{2} / 2$ in. long; stigma capitate. Chile throat, the segments , 2 in. long; stigma capitate. Chile 1 ft . long, with the tls.: scape 6 in , high, bearing 1 or 2 small bright red His.: stigma 3 -parted. Chile.
Latin-form trade names to be accounted for: atrosanguin eum, cardinàlis, cròcea, delì̀àtte, formòsa (hybrid), Gracine eum, cardinalis, cròcea, delicàtt, formòsa (hybrid), Gratine fúlgens, rübis (hybrid), rùbra striàta, Williamsii. L. H. B.

HIPPOPHAE (Greek, horse-killing; alluding to the berries, which are somewhat poisonous). Eleagnàcere. This includes the Sea Buckthorn, a hardy European and mid-Asian shrub valued for its clusters of bright orange-red berries about the size of a pea, which persist all fall and winter. It also has the silvery or gray foliage which makes several members of this family useful in fine landscape effects. This family has only 2 other genera, Elæagnus and Shepherdia (including the Buffalo Berry). Hippophaë and Elæagnus have alternate les. and 4 stamens, but the former has unisexual and mostly dieceious Hs., while the latter has hermaphrodite As. Shepherdia has opposite Ivs., 8 stamens and dioctious fls. Hippophaë has 2 species of shrubs or small trees: branches often spiny, corered with minute stellate hairs, as are all the young parts: fls. borne at the base of small lateral branches: staminate ones in eatkins, sessile in the axils of 2 deciduons bracts; filaments none; pistillate tls. pedicelled, solitary in the axils of lvs.; perianth top-shaped, in 2 divisions: ovary 1-eelled, 1-ovuled: style large. elub-shaped.
In order to secure a grood setting of berries, one or two staminate plants should be placed near every group of a dozen pistillate ones. When the shrubs are without berries the expert nurservman can distinguish the two sexes by the more upright growth of the staminate and the more twiggy growth of the pistillate plants. The redder the berries the better for ornamental purposes. The berries are somewhat poisonons, but are eaten by birds. Though essentially a seashore plant, it is easily cult. inland in eommon garden soil, and thrives even in barren, sandy lands. It inhabits cool moving sands and the alluvium of torrents. When grown abroad to hold shifting sands it makes a strageling, stunted bush $\xlongequal{2} \mathrm{ft}$. or more high. Ender favorable conditions it may be grown into a tree 20 ft . high. The suckers may become so numerous as to be troublesome. The numerous spines which terminate the branches and the interlaring stems suggest its use for hedges. It is propagated by layers, suekers, root-cuttings and seeds.
rhamnoldes, Linn. Sea Buchthorn. Swallow Thorn. Lrs. appearing before the Hs., grayish green above, silvery green below and scattered with reddish scales below: Hs. yedowish, borne in clusters of $2-3$ in May: fr. berry-like, ormage-vellow, acid. maturing in Sept. G.M. 37:391. Gin. 49:1050 (with a fine colored plate and thorough appreciation ly W. Goldring), and 54, p. 396.
H. salicifolia, D.Don, has larger lvs., less densely coated rith silvery scales. Nepal. Not cult.
A. P. Wrman:

HOBBLEBUSH. Viburnum lantanoilles.

## HOES. See Tonls.

HOFF'MÁNNIA (Geors Franz Hoffmann, 1760-1826, professor of botany at (iöttingen). Including Compylobotrys and Higginsia. Rubidecer. About 15 tropical American herbs or shrubs, with opposite or verticillate lvs. and small white, yellow or red Hs., enlt. for the very showy foliage. Corolla tubular, with 4 (rarely 5) oblong c. inear obtuse lobes; stamens 4 : ring-like disk about the 2-3-loculed ovary: style filiform, the stirma 2 -lobed. The Hoffmannias require warm temperature, although they may be plunged in the open in the summer. Well grown specimens are also adapted to the decoration of window-gardens and living rooms. Propagated by cuttings. Hotfmannias are very showy foliage plants.

## A. Fl.-clusters on long stalks.

discolor, Hemsl. (Campylobòtrys díscolor, Hook.). Fig. 1071. About 6 in high, but lopping over the side of the pot or pan and making a mat, slightly hairy, the branches purplish: Irs. short-petioled, oblong-obovate,

1071. Hoffmannia discolor ( $\times 1 / 3$ ). A loose-growing sprig.
entire, satins green above and rich light purple to green bentath: ths. small, red, in recurving racemes, on red peduncles. Mex. B.M. 4530.- Exeellent little plant.
refulgens, Hemsl. Much like the former. but twice or more as large, the les. sessile and almost sueculent, nar-row-oborate, with many parallel veins ruming from the midrib to the margin, the under surface pale red or wine color and the unper surface dull green, with iridescent shahtes of purple and hrown: ths. 1 in. across, pale red. Dex. B.N. $\overline{53} 46$ as Migyinsiu refulgens.-A most beautiful $[$, lant.

## AA. Fl.-clusters croceled in the axils.

Ghièsbreghtii, Hemsl. Half shrubly, $\xlongequal[-1]{ } \mathrm{ft}$. tall, nearly ghabrous: stem acutely t-angled :' Frs. usually 1 ft. or less long, ohlong-lanceolate-acuminate, entire, the short winged petiole somewhat decurrent, very strongly reined, purple-red boneath and dark velvety green above: fls. yellow, with a red spot in the center. Mex. B.M. 5:38:3 as Migginsin Ghirsbrechtii. I.H. 8:279. as a Campylobotres. - A form with hithdsomely mottled les. is var. variegita, Hort. (I.H. 30:498).
regális, Hemsl. Shrubber, strong-growing, glahrous, the branches obtusely 4 -ingled and somewhat fleshy: lis. large, round-orate and abruptly arominate entire, plicate with arched nerves, glabrons. purple-red beneath and dark rich green above: the yellow, sessile. Mex. B.M. 52son, as a Higeginsia.

Higginsia Ramati, Hort., is despribed is "a very heantiful new tropical plant, with dark bronzy leaves, streaked and narbled with white." Saul.
L. H. B.

HOHENBERGIA (personal name). Bromeliricet. Species commonly referred to Eichmea, but the latest monographer (Mez, DC. Monogr. Ihaner. 9) retains 17 species under this genus. The genns diffors from Fichmea in technieal floral characters, the petals being ligulate, Ils. always sessile and small, ete. H. Legrelliàna, Baker, is by Mez referred to Achmea (E). Lagretlidma, Moz and b Benthan \& Hooker to Portea. It has also been referred to Ortgiesia. It is a strong Bill-bergia-like plant, with $7-12$ strong, entire, hruwn-sealy $\underline{l}$ rs. and a simple dense spike of red tls . standing $4-7 \mathrm{ft}$. high: floral hracts serrate. Uruguay. For II. ferru gineth, see EEChmen. Wambonse.
L. H. $\ddagger$.

HOLBELLIA (Frederick Louis Holbell, once Supt. Bot. (Gard., Copenhagen). Berberidicee. This genus contains a fine shrubly climber, which is unfortunately inferior in hardiness to Akebia quinuta, the latter being one of the best of all hardy vines. Holbotlia resembles Akebia in having digitate lvs., edible, oblong, indehis cent bervies and an indefinite number of ovules. It differs in having 6 sepals and 6 minute petals, while Akebia has 3 sepals and no petals. Both genera have free stamens, while those of Stauntonia are monadelphous. Holboellia has only 1 species. Generie characters are: fls. purple or greenish, monocious; sepals 6 , petal-like; staminate fis. with rudimentary ovaries; pistillate tls. with 6 very small, sterile stamens.

Any one who was surprised with the "discovery" of the strange purple fls. of Akebia will be interested in the tls. of Holbollia. These are also purple or vary to greenish white, and the staminate tls., which appear later, are highly fragrant. The plant should be tried outdoors in the South where an evergreen quick-growing elimber is desired, as it makes annual shoots 10 to 12 ft . long. and the foliage is distinct and beautiful. For the cool greenhouse it is too rampant and produces too few ths.
latifolia, Wallieh. Leaflets commonly 3 or 5 . but very variable in form and number. Himalayas. B.k. 32:49. R.H. 1890:348. Gn. 8, p. it8, and 14, p. 369.
W. M.

HOLCUS (Greek, to drau out ; an old fable crediting this plant with the power of drawing thorns from the flesh). (rominere. About 8 species of annual or perennial tufted grasses from Europe and Africa. The only species eult. is a forage grass of poor quality but capable of growing well in dry soil. Its nearest allies of garden value are Avena and Deschampsia, from which it liffers as follows: spikelets falling off whole, and glumes with no or minute awns. Arena and Deschampsia hare the foral glumes decidedly awned and the empty glumes remain on the piant when the florets fall.
lanàtus, Linn. Meadow Soft Grass. Perennial, 2-3 ft. high: lvs. downy: panicle greenish or tinged purple. Eu. A variegated form is cult. abroad for ornament.
G. T. Hastings.

HOLLY. Consult Ilex.
HOLLY, SEA. I.yngirm.
HOLLYHOCK ( $A$ lthera rosea which see). Figs. 10:2-4. The Hollyhock is an old garden filvorite, full of sentiment and association with a distant past, and only the raviges of il dire disease have robbed it of the proud position it heldamong garden tlowers dur. ing the midlle of the present century. 1 plant of strong, vigorous growth, noble aspect, and of the most orinmental charaeter, it must not be besplected or imnored, for we can ill dispense with its stately beanty Before the ravages of disease there were in existence large collections of nam , 7 varieties,and the Huly l:ock was then one of

1072. The Hollyhock.
the most important of flowers. Within recent years, too, either from loss of virulence or through preventive measures, the disease having been somewhat controlled, collections of named varieties are again being formed, but, in the light of his own experience, the writer be-

iu73. Semi-double Hollyhock ( $\times 1 / 2$ ).
lieves that one can get the best and surest resulta by raising plants from seed of a good strain. This may be sown at any time during the early months of the vear. Sow iu pots or pans and place in a warmhouse to assist germination. Pot the plants singly as they derelop, and keep them growing freely but sturdily in a cool, airy temperature, removing them to the open air as summer adrances. If well grown, the plants should be in 6 -in. pots at this time. During the latter part of summer they may be planted out where they are to bloom. As Hollyhocks demand liberal treatment, their permanent spot should be well prepared by deep digging, at the same time working in a good quantity of rotted manure. Plant 3 ft . apart and firmly, and should the fall months be dry, give water frequently, as suffering from drought predisposes plants to attack of discase. The following spring the plants will grow vigorously, and the only attention needed is copious watering during dry spells. The flowers rill appear from July onwards. The Holly hock is a hardy perennial, and if it enjoys an immunity from disease, will spring up and Hower each year. Sheuld disease appear, however, root the plants ont and destroy by fire and make the next plantation on a new site some distance removed. Thorough spraying with fungicides may be expected to hold the disease in check, if applications are made early and to the under sides of the lis.; but if Bordearix mixture is used, the plants look very untidy. Perhaps it is better to use ammoniacal carbonate of copper. A diseased leaf is shewn in Fig. 880. If the stock keeps healthr and it is desired to increase speciallytine varieties, this can be done easily b: cuttinus formed from offishoots. These
 should be taken off and potted singly in small pots in sandy soil and kept close in a shaded coldframe.

A few fine named varieties olitainable in the trade at present are : Apollon, rose: Brennus, crimson; Ettie Beale, Hesh pink; Mrs. Barron, rose-pink, and very beautiful; Diaden!, rich yellow; Her Majesty, rose;

Enchantress, yeliow; Ochroleuca, light yellow; Queen, silver-rose; Venus, white; Psyche, livender. Figs. 245 and 246 , vol. 1, show good placing of Hollyhocks.
A. Herrington.

## HOLY GHOST PLANT. Peristeria elata.

HOMALANTHOS (applica,ion obscure). Éuphorbiaces. This genus includes a small Australian tree or tall shrub cult. in S. Calif. for its coppe-colored foliage. It is probably slightly cult, abroad under glass like E'uphorbia pulcherrima. The genus contains $\overline{5}-8$ species of Malayan aul Australasian trees or shrubs: Irs, alternate, stalked, wide, entire, feather-veined: racemes terminal: fls, apetalous: disk none; calyx of staminate fls. 2 . arted; stamens 6-50; calyx of pistillate Hs. 2-3-fid: ovary 2 -celled.

The genus has no near allies of garden value, and the fls. are insignificant, being borne in racemes which consist mostly of staminate ths., with a few pistillate tis. at the base.

Leschenaultiànus, A. Juss. ( $\boldsymbol{H}$. populifolius, R. Giat. Carimbikin populifolium, Reinw.;. Lés. broady oratetriangular or rhomboidal, glaucous, $2-4$ or even 6 in . long, with stalks of same length: racemes $1-4$ in. long. Ir.dia, Malaya, Australia. B.M. 2780.

HOMALOMENA (Greek, equal filaments). Arìcea. Also written Homalonema. This genus includes some tender foliage plants, variegated after the fashion of the well-known Dieffenbachias, and the rarer Aglaonema and Schismatoglottis. It is probable that the plants seldom produce flowers or cruit in cultivation. Thay are known to the trade as Curmeria, which is now regarded as a section of Homalomena in which the spathe has a distiact tube and the lis. are either glabrous or pilose, while in the scetion Euhomalomena the spathe has an indistinct tube, and the lys. are always glabrous.
The genus has about 15 species, natives of tropical Asia and America: robust herbs, with a thick rhizome: stem short or none: lvs. ovate- or triangular-rordate, or lanceolate, nerves reaching the margin, petiole mostly long and sheathing. Important generic characters are: stamens distinct: fr. included within the persistent spathe: ovules anatropous, adnate to the septa. For culture, see Dieffenbachia. Latest Monograph by Engler in DC. Mon. Phan. $2: 330(1879)$. The species described below belong to the subgenus Curmeria, with 3 other species, and all are Amerima; the other 10 species are Asian.

Pitcher and Manda advertised in 1895 Curmeria Leopoldii, a rare and costly piant, of which the writer finds no further information.

## A. Les. irreguỉarly blotched.

Wállisii, Regel (Curmèria Wállisie, Mast.). Lis. glabrous throughout, the base obtuse or acute, not notched ; petiole $11 / 2$ in. long ; blade 5 in. long, $2-21 / 2$ in. wide. Colombia. G.C. II. 7:108. B.M. 6571 (midrib outlined in light color). I.H. 25:303. 1R.H.1878, ; 93.The blotches are pale yellowish green, becoming fieenish gray. None of the pictures show a white-bordered leaf with golden blotches, as one dealer advercises.

AA. Lis. with midrib bordered with white.
picturàta, Regel (Curmèria picturàta, Linden \& Andrés. Lss. with petiole and milrib pilose: petiole 4 in . long: blade $10-12 \mathrm{in}$. long, 8 in. wide. Colombia. I.H. 20:121. - Blotched only near the midrib.
W. M.

HOMERIA (application uncertain). Iridicece. This includes a half-hardy buil. which can be set out in spring, and bears orange-colored As. in summer. It is allied to Sparaxis, requires the same culture, and the bulbs, which are dormant from Aug. to Nov., are procurable from Dutch denlers. A genus of 6 speries, all from the Cape of Good Hope. It helongs to the Moriea tribe, in which the tls. are stalked and more than one to a spatho, and the style branches placed opposite the stamens. It differs from Iris and Moraea in having style branches furnished with terminal stigmas not overtopping the anthers. Nearer allies of garden value are Tigridia, Herbertia and Ferraria, from all of which

Homeria differs in the 2 petaloid stigmatose crests at the ends of the style branches. Homeria has 6 nearly equal perianth segments, which at the base are united into a cup. Monogr. by J. G. Baker in Handbook of the Irideæ, 1892 , and Flora Capensis $6: 26(1896-i)$. The following characters successively delimit $\boldsymbol{H}$. collinu from the other 5 species: perianth segments not blotched in the middle: Hls. large: spathes $21 / 2-3$ in. long: lvs. not banded down the middle. W. E. Endicott writes that $\boldsymbol{H}$. collina does well when treated like Ixia, as described by him in this work.
collina, Vent. (Morieu collina, Thunb.). Corm tunicated, globose, $3 / 4-1$ in. long: the only long leaf is linear, rigid, $11 / 2-2 \mathrm{ft}$. long, overtopping the tis.: stem bearing $1-4$ clusters of ths.: perianth segments $11 / 4-11 / 2 \mathrm{in}$. long, typically bright red, as in B.M. 1033; G.C. HII. 4: 163. Var. aurantiaca has a slenderer habit and yellow-clawed, bright red segments, which are narrower and more acute than the trpe. B.M. 1612. Var. ochroleüca has the habit of the type and pale yellow His. B.M. 1103. It is probable that var. aurentidea is the only form in which the species is cultivated.

HOMOCELTIS, a name in the Amer. trade, is a mis. spelling of Homoioceltis. P. J. Berckmans writes that seeds of Homoceltis Juponicu were distributed some 20 years ago by lien. Wm. Browne, then a professor at the Georgia State University. These trees were injured in Georgia by the severe cold of February, 1899. Reasoner writes that it is a fine, deciduous tree, with the appearance of an elm or hackberry, and makes a dense top. It has not flowered in Florida.

Homoioceltis aspera, Blume, is Aphananthe aspera (which see), and this is the only Homoioceltis in Japan. Some, at least, of the stock known as $H$. Japonica (and sometimes called also Celtis Davillana) is Aphonanthe espere. In Aphananthe, the secondary veins are straight and end the teeth of the Ivs.; in Celtis, they are curved and form loops along the margin.

## HONESTY. Lunaria annua.

HONEY LOCUST. Gleditschia triacanthos. Honeysuckle, Loniceru. Honeywort, Cerinthe.

HOOKERA. A part of Brodica.
HOP. Sce Humulus.
HOP HORNBEAM, See Ostrya. Hop, Wild, Bryonia dioict.

HOPLOPEYTUM. Several Bromeliads have been described under this name, hat the species are now referred to Echmea. Halophytum of one trade catalogue is apparently an error for Hoplophytum.

HORDEUM (Latin, heavy ; because barley bread is heary and firm). Graminea. This genus includes the Barley (H. sutivom) and the Squirrel Tail Grass ( $H$. jubatiom), the latter a meadow weed obnoxious in the West, lut sometimes cult. for ornament in the East and abroad. Its head of long spreading awns is ornamental, but the spikelets separate too readily to make the grass particularly desirable. Hordeums are erect, annual or perennial grasses, spikelets in 3 's, sessile on opposite sides of the notched rachis, empty glumes narrow and long, forming an involucre around the spikelets. In these characiers it resembles Elyn us and Asprella, but it is separated from them by the fact that cach spikelet is but 1 -fld., while in the others the spikelets are 2-many th. See Bartey.
jubàtum, Linn. Squirrel-tail, Grass. Wild Barley. Erect, simple, usually smooth and glabrous. 10 in . to 2 ft . high: Irs. $1-\mathrm{i} \mathrm{in}$. Iong, only the central spikelet in each cluster perfect: airns of empty glames $1-\frac{21}{2}$ in. long, spreading. Indry soil, northern U. S. and Canada. B.B. 1:229. R.H. 1890, p. 488 (poor).
G. T. Hastings.

HOKEHOUND. See Marubium.
HORMINUM. See Salria.

HORNBEAM. Consult Curpinus.

## HORNED POPPY. Glaucium.

HORSE, in combination with other names of plants, usually signifies something large and coarse, not neces. sarily eaten by horses.

## HORSE BALM. Collinsonia.

HORSE BEAN, See Vicia Fuba.
HORSE CHESTNUT. See EEsculus
HORSE MINT. See Monardu.
HORSE-RADISH (Fig. 1075), the well-known condiment used so much with roast beef and orsters, is a member of the natural family Crucifere, to which belong cabbage, turnip, wallfower, stock, charlock, mustard, and many other vegetables, Howers and weeds. It comes to us from Great Britain, where it is thought to have been naturalized from some more eastern European country. It is often found growing wild in moist locations, such as the margins of streams, in cool woods and damp meadows, and, in some places, notably in the state of New York, is troublesome as a weed. For botanical description, see Cochlearia.
The root is perennial, fleshy, whitish externally, pure white within, conical at the top, cylindrical, and, unlike the tap-roots of parsnips, is abruptly branched below. When bruised, it emits a volatile oil of strong, pungent odor and hot, biting taste. If eaten hefore this oil evaporates, it "is highly stimulant, exciting the stomach when swallowed, and promoting the secretions, especially that of urine. Externally, it is rubefacient. Its chief use is as a condiment to promote appetite and invigorate digestion; but it is also occasionally employed in medicine." (U.S. Dispensatory.) As a table relish, the consumption of Horse-radish is increasing, and greater attention is being paid to its cultivation than formerly. Under the old methods, profitable returns were often obtained, but under the new, profits are generally highly satisfactory where enemies are not very troublesome. The season of fresh-grated Horse-radish runs almost parallel to that of oysters, with which the root is most frequently eaten in this country. Engrated roots are, however, kept in cold storage for summer use, since roots dig at that season have an unpleasant taste.

Horse-radish will do well upon almost any soil excent the lightest sard and the heaviest clay, but a deep loam of medium texture and moderate richness, well supplied with humus and moisture, will produce roots of the best quality and the largest size. In dry soils the roots wili be small, woody and deficient in pungencr: in wet, small, succulent, strong-tasting. Drainage is essential, and so is a fairly open subsoil. Hard subsoil induces excessive branching of the root. Applications of nitrogenous manures should be rather light, commercial fertilizers rich in potash being given the preference. Rolfs recommends a mixture containing 10 percent potash, 7 per cent phosphoric acid 4 per cent nitrogen, 600 pounds drilled in per acre. A heavier application broadcast and deeply plowed under, it is believed, would give better results, since the shaft of the root is less likely to become unduly branched when the food is below instead of above and around it, especially when the sets are placed hori-

1075. Good root of Horse-radish. zontally. A weeder should be used after the harrow periodically until the plants are an inch or so tall. Thorough preparation of the soil is essential.

Since Horse-radish rarely produces seeds, cuttings
are made from the roots, not less than one-fourth of an inch thick and $4-5$ in. loug (Fig. 1076). To facilitate planting the large-end up, the upper end is cut off square and the lower oblique. If set small-end up no growth may result. In horizontal planting this special cutting is unnecessary. Root - crowns are sometimes used, but since these develop a large number of roots too small for profitable grating, ther are employed only for increas. ing stock.
The land having been prepared, shallow furrows are laid off 30 in . apart and $2-5$ in. deep, according to the method of planting. Sets are planted horizontally, vertically, and at all intervening angles, the large ends being made to point in one direction to facilitate cultivation and digging. The angle is a mat ter of choice, good returns being obtained in each. The usual distance between sets is about 12 in . Cultiration is given after every rain, or once in 10 days, until the lis. shade the ground.

Double-cropping is contmon in Horse-radish growing, carly cabbage, turnip beets and other quick maturing plants being used. The sets are dibbled in $2-4$ weeks after the first crop, vertically, 18 in. asunder, between the rows of cabbage. Which are not less than 2 ft . apart. One management answers for both crops until the first is removed, when, afisr one cultivation,

1076. Root cuttings of Horse-radish ( $\times 1 / 3$ ). the Horse-radish usually takes full possession. Deep burying of the sots at the time the first crop is planted is also practiced, the objeet, as in the first case, being to prevent the appearance of the former until the latter is almost mature.

Horse-radish makes its best growth in the cool autumn, steadily improves after September and, not heing injured by frost if undug, is usually left until late before harvesting with plow or spade. Storage in pits is best, since the roots lose less of their crispness, pungenc! and good appearance than if stored in cellars. In trimining for storage, the lateral roots are saved and buried for next season's planting. Exposure to air, sun and frost robs the roots of their good qualities and injures their vitality.

The insect enemies of this plant are those that attack other members of the cabbare family, the harlequin bug being the most dreaded. Remedies are the same as for other pests of this group of plants. Only two diseases have been reported, and these are seldom troublesome.

In the neighborhood of cities, especially where oysters are cheap, this crop is generally protitable, the usual retail price being 10 cents per pint, freshly grated, but without vinegar. This quantity weighs a seant halfpound. The cost of growing per acre is about as follows: Cuttings ( $10,000(\infty) 2), \$_{2}=0 ;$ fertilizer ( $\left.1,000 \mathrm{lhs}.\right)$, $\$ 1 i .50$; cultivation ( 6 times), $\$ 6$; rent of land. $\$ 7$; plowing, wear of tools, ete., $\$ 3.50$; setting roots, at 30 cents per $1.000, \$ 3$; total, $\$ \overline{5} 5$. A marketable crop varies from 3.000 to 6,000 pounds, which may sometimes be sold as high as 5 cents per 1 b . for first-class root, and 2 $1 / 2$ cents for second grade. Usually, however, prices seldom rise above 4 cents and 2 cents for the two zrades. Under good enltivation, the proportion of No. 1 to No. 2 root is about 1 to 1 by weight. Lower prices may rule in well supplied markets, and higher in poorly furnished. and when sold in sinall lots to retail graters, even 7 cents may be obtained.
M. G. Kains.

HORSE-RADISH TREE. Moringa pterygosperma.
HORSE SUGAR, Symplocos tirctoria.
HORSETAIL. Equisetum.

## HORSEWEED. Collinsonia.

HORTICULTURE (hortus a garden, originalls an inclosure; cultura, to care for or to cultivate). Horticulture is the growing of flowers, fruits and vegetables, and of plants for ornament and fancy. lneident to the growing of the plants are all the questions of plant-breeding, variation of plants under domestication, and the bearings and applications of many biological and physicat sciences. l'rimarily it is an art, but it is intimately connected with science at every point. From agriculture it has no definite boundary. It is, in fact, a department of agriculture, as forestry is; for agriculture, in its largest meaning, is the business of raising products from the land. It is customary, however, to limit the word agriculture to the growing of grains, forage, bread-stuffs, textiles, and the like, and to the raising of animals. In this restricted application it is practically coordinate, in a classificatory sense, with forestry and Horticulture. Etymologically, agriculture is the tending of the ficlds (agri, field) or those parts which, in earlier times, lay beyond the fortified or protected inclosure, or at least more or less remote from the residence; Horticulture was concerned with the area within the inciosure. Equivalent to Horticulture in etymology is gardening (Anglo-Saxon gyrdan, to enelose, to which the verb to gird is allied). By custom, however, furden and gardening denote more restricted areas and operations than are implied in the term Horticulture. The word paradise is connected with the idea of an inclosure and a garden. Early gardening books of the Cyclopedia type are sometimes known as paradise. Parkinson's famous Paradisus, or account of "a garden of all sorts of pleasant flowers " was published in England in 1629 .

The only demarcation between Horticuiture and agriculture is the line of custom. Sweet potatoes are usually considered to de a horticultural crop in North America, particularly in the northern states, but round or Irish potatoes are usually classed as an agricultural crop. Nor is there a definite division between Horticulture and botany. The science of plants is botany; $\because$; some of the most significant problems relating to plants-their response to the needs of man-are ordinarily resigned by the botanist to the horticulturist. Horticulture is a composite of botanical and agricultural subjects.

But Horticulture is more than all this. It is a means of expressing the art-sense. Plant-forms and plantcolors are as expressive as the canras work of the painter. In some respects they are more expressire, since they are things themselves, with individuality and life, not the suggestions of things. The painter's work excels in its power to suggest, and in its condensed portrayal of expression. But the essentials of a good landscape painting often can be presented in an artificially-made landscape. This effort to pant what the artist paints is modern. It is strictly not He ticulture, although Horticulture is contributory to the results, as paint-making is contributory to painting. Landscape making is fundamentally a fine art. In this work it is treated under Liendscape Gardening.

Horticulture divides itself into four somew hat coordinate branches (Annals Hort. 1891, 125-130):

Pomology, or the growing of fruits;
Olericulture, or vegetable-gardening:
Floriculture, or the raising of ornamental plants for their individual uses or for their products;
Landscape Horticulture, or the growing of plants for
their use in the landscape (or in lanciscape gardening).
In the world at large, floriculture is the most important as measured by the number of people who are interested, and by the number of species of plants which are grown (see Floriculture). In North America, pomol0 ge is the most important in respect to commereial supremacy. North America is the great fruit-growing country of the world (see Pomology). Relatively speaking. regetable-gardening is undereloped in the New World. Landscape Horticulture and landscape gardening will appeal to a conscantly enlarging constituency with the growth of cultare and of leisure and the deepening of the home life.
Strictly speaking, there are few horticulturists. The details are too many to allow any one person to cover
the entire range. It is only those who look for principles who survey the whole fleld. Practitioners must conflne themselves to rather close bounds. Consider that no less than 25,000 species of plants are in cultivation, each having its own requirements. Consider the great number of species which are actually on sale in North America, as registered in this Cyclopedia. The most important species vary immensely, the named and recorded forms often running into the thousands; and each of these forms has particular merits and oiten particular requirements. Consider that the requirements are likely to be different in any two places, and that the plants are profoundly moditied by changes in conditions or in treatment. Consider the vagaries of markets, which are ruled by questions of fancy more than by questions of necessity. There is probably no art in which the separate details are so many as in Horticulture.

Of Horticulture there are two general types, -that which is associated immediately with the home life, and that which is undertaken primarily for the gaining of a livelihood. The former is amateur Horticulture. Those things are grown which appeal to the personal tastes: they are grown for oneself. The latter is commercial Horticulture. Those things are grown which the market demands: they are grown for others. In all countries, commercial Horticulture is a relatively late development. General agriculture is usually the pri mary means of earning a living from the soil. For the most part, Horticulture comes only with the demand for the luxuries and refinements of life : it does not deal with what we call the staples. It is not the purpose of this sketch to trace the general history of Horticulture. If one desires such outlines, he should consult the Bohn edition of Pliny's "Natural History;" Loudon's "Encyclopredia of Gardening;" G. W. Johnson's "History of English Gardening ;" Amherst's "History of Gardening in England;"Siereking's "Gardens, Ancient and "odlern;" Jäger's "Gartenkunst und Gärten, sons und jetzt;" Hüttig's "Geschichte des Gartenbaues;" the historical chapters of André's "L'Art des Jardins." For the histories of cultivated plants, see DeCandolle's "Origin of Cultivated Plants;" Hehn \& Stallybrass" Wanderings of Plants and Animals from their first Home;" Pickering's "Ch_onological History of Plants."
In North America there was little commercial Horticulture before the opening of the niueteenth century, There were excellent home gardens inore than a century ago, in which many exotic plants were growing; yet, in proportion to the whole population, these gardens were isolated. The status of any modern time is accurately reflected in its writings. It may be well, therefore, to bring in review the leading early horticultural writings of this country. Few studies have been made of our horticultural history. The best is the introductory sketch, by Kobert Manning, in the "History of the Massachusetts HortieיItmral Society," 1880. For its field, Slade's "Evolutio' "ticnlture in New England," 1895, is interesti ricult. ual frf frf
A
sic sit pre our of Vi March of his
which 1
The physicia wonders earliest s Monariles published completed ti English and us in the gent wrote of the 1 West Indies, an cal. His picture however: and it, the first picture ext sil narrower field, Boardman's "Ag. Thy or Maine" is critical and invalकु" of Maine" is critical and inval-
on "American Horticulture," by Al-
Depew's "One Hundred Years of ن.," 1895, presents the commercial Another fragment of the history is 'ter's "Sketch of the Evolution of 1898. Histories from sereral points 'l in the "Florists' Exchange" for 1 the writer has incorporated parts ution to that history in the sketch

1. :s on American plants were by curalists who desired to exploit the newly discovered hemisphere. The writing is reobably that of Nicolo roducts of the New World, which was 'e in parts, from 150.5 to 1571. The was translated into Italian, Latin, 1. Monarles is now remembered to arda, one of the mint tribes. He inal and poisonous plants of the "e pictures, some of them fantasti bobace is not preatly inaccurate, the distinction of being probably of the plant, if not of any Ameri-
can plant. This picture is here reproduced (Fig. 1077) exact size, to show the style of illustration of three hundred years ago. - reques Cornutus is generally supposed to have been the first writer on American plants. His work, "Canadensium Plantarum," appeared in 16:55, and it also had pictures. One of the earliest writers on the general products and conditions of the northern country was John Josselyn, who, in $16 \sigma^{\circ}$, published a book entitled "New England's Rarities discovered in Birds, Beasts, Fishes, Serpents, and Plants of that Country", and in 1674 a second volume, "An Account of Two Voyages to New England, made during the vears 16:38, 1663." The "Rarities" gives specitic accounts of many plants, together with pictures of a few of them, as, for example, the pitcher plant. He mentions the plants which had become naturalized from Europe. There is also a list "Of such Garden Herbs (amongst us) as do thrive there, and of such as do not." This list, the earliest record of the kind, is here transcribed :

Cablidge growes there exceeding well.
Lettice.
Sorrei.
Parsley.
Marygold
French Mallowes.
Chervel.
Burnet.
Winter Savory.
Summer Sarory
Time.
Carrats
Parsnips of a prodigions size.
Red Beetes.
Radishes.
Turnips.
Purslain.
Wheat.
Rye.
Barley, which commonly degenerates into Oats.
Oats.
Pease of all sorts, ant the best in the World; I never heard of, nor did see in eight Years time, one Worm eaten Pea.
Gartlen Beans.
Naked Oats. there called Silpne, an excellent grain used in. steed of Oat Meal, they dry it in an Oven, or in a Pan upont the fire, then beat it small in a Morter.

Spear Mint
Rew, will hardly grow.
Fetberfer prospereth exceedingly.
Sonthern Wood, is no Plant for this Country. Nor
Rosemary. Nor
Bayes.
White Satten groweth pretty well, so doth
Lavender Cotton. But
Lavender is not for the climate.
Penny Royal.
Smalledge.
Ground IIv, or Ale Hoof.
Gilly Flowers will continne two Years.
Fennel must be taken up, and kept in a warm Cellarall Winter.
Honsleek prospereth notaby:
Holly hocks.
Enula Campana, in teo Years time the Roots rot
Comferie, with white Flowers.
Coriander, and
Dill, and
Annis thrive exceedingly, but Annis Seed, as also the Seed of Temnel, seldom corie to maturity ; the Seed of Annis is com. monly eaten with a ty.
Clary never lasts but one Summer, the Roots rot with the Frost.
Sparapos thrives excecdingly, so does
Girden el, and
Sweet $\mathrm{Bl}_{1}$ ror Fglantine.
Bloodwort it sorrily, but
Patience. and
English Roses, very pleasantly.
Celandine, by the West Country men called Kenning Wort, grows but slowly.
Muschata, as well as in England
Dittander, or Pepper Wort, Hourishetli notably, and so doth Tansie.
Musk Mellons are better than our English, and
Cncumbers.
Pompions, there be of several kinds. some proper to the Conntry, they are dryer then our English Pompions, and bet. ter tasted; you may eat them green.

Tuckerman comments as follows on the above lists: "The earliest, almost the only account that we have of the gardens of our fathers, after they had settled themselves in their New Eng'and, and had tamed its rugged
coasts to obedience to English husbandry. What with their garden beans, and Indian beans, and pease ('as good as ever I eat in England,' says Higginson in 1629); their beets, parsnips, turnips, and carrots ('our turnips, parsnips, and carrots are hoth bigger and sweeter than is ordinary to be found in England,' says the same rererend writer); their cabbares and asparagus, -both thrising. we are told, exceedingly; their radishes and letnce; their sorrel, parsley, chervil, and marigold, for pot-herbs; and their sage, thyme. savory of both kinds, clary, anise, fennel. coriander, spearmint, and pennyroyil, for sweet herbs, - not to mention the Indian pompions and melons and squanter-squashes, 'and other odde fruits of the country, - the first-named of which had got to be so well approved among the settlers, when Josselya wrote in $16 \%^{\circ}$, that, what he calls 'the ancient NewEngland standing dish' (we may call it so now!) was male of them; and, finally, their pleasant, familiar flowers, lavender-cotton and hollylocks and satin ('we call this herbe, in Norfolke, sattin,' says Gerard; 'and, among our women, it is called honestie') and gillyffowers, which meant pinks as well, and dear English roses, and eglantine.-yes, possibly, hedges of eglantine, surely the gardens of New England. tifty years after the settlement of the country, were as well stocked as they were a hundred and fifty years after. Nor were the first planters long behindhand in fruit. Even at his first visit, in 1639, our author was treated with 'half a score of rery fair pippins,' from the Governor's Island in Boston Harbur; though there was then, he says, 'not one apple tree nor pear planted yet in no part of the countrey but upon that island.' But he has a much better account to give in 1671: 'The quinces, cherries, damsons, set the dames a work. Marmalad and preserved damsons is to be met with in every honse. Our fr- trees prosper abundantly,-apple trees, pear trees, quince trees, cherry trees, plum trees, barberry trees. I have observed, with admiration, that the kernels sown, or the succors planted, produce as fair and good fruit, without grafting, as the tree from whence they were taken. The countrey is replenished with fair and large orchards. It was aftirmed by one Mr. Woolcut (a magistrate in Connecticut Colony), at the Captain's messe (of which I was), aboard the ship I came home in, that he made five hundred hogsheads of syder out of his own orchard in one year.'-Voyages, p. 189-90. Onr barberry bushes, now so familiar inhabitants of the hedgerows of eastern New England, should seem from this to have come, with the eglantines. from the gardens of the first settlers. Barberries 'are planted in most of our English gardens,' says Gerard." Relies of Josselyn's time still persist in old apple trees in New England (Fig. $10-8$ ). The foregoing lists and remarks show that the eolonists early brought their famili... ${ }^{2}$ home plants to the new country: and there are many collateral evidences of the same character. There was long and arduous experimenting with plants and methods. Several things which were tried on a large scale failed so completely, either from uncongenial conditions or for economic reasoms, that they are now unknown to us as commereial crops; amongst these are indigo, silk and the wine grape. The histories of these things can be traced only as a refrain is cotemporary writing. Indian corn, tobacco and cotton early became the great staple crops.

The Indians cultivated corn, beans, pumpkins and other plants when America was discovered. They soon alopted some of the fruits which were introdnced by the colonists. William Penn and others found peaches anong the Indians. Orchards of peaches and apples were found in western New York by Sullivan's raid arainst the Six Nations in revolutionary times. Josselyn, Roger Williams. Wood and others speak of the corn and squashes of the Indians. The word squash is adspted from the Indian name, squontersquash, askulusquetsh, or isqoutersquash. C. C.Jores, in his "History of Georgia," in describing the explorations of De Soto, says that before reaching the Indiau town of Canasagua (whose location was in Gordon county. Georgia), DeSoto "was met by twenty men from the villace, each bearing a basket of mulberries. This fruit was here abnndant and well flavored. Plum and walnut trees were growing luxuriantly throughout the country, attaining a size and beanty, without planting or pruning,
which could not be surpassed in the irrigated and wellcultivated gardens of Spain." For critical notes on the plants cultivated by the American aborigines, see Gray and Trumbull, Amer. Journ. of Science, vol. 25 (April, May), vol. 26 (August).
"Fruit-growing among the Indians of Georgia and Alabama in the early history of these states," writes Berckmans, "is demonstrated by the large quantity of peaches which the Indian traders of the early colonial period found growing in the Creek, Cherokee and Choctaw villages. It is on record that Indians often male long trips to other tribes for exchanginer various articles

1077. Earliest picture of an American plant.

Monardes. 1571
of their maxing, and thus the seed from those peach trees was undoubtedly procured from the Florida Inclians. who, in turn, procured these from the trees planted by the Spanish explorers. The peculiar type of 'Indian peaches,' found throughout the south and recognized by the downy and striped fruit and purple bark on the young growth, was introduced from Spain and gradually disseminated by the lndians. Apple-growing was quice extensively carried on by the Cherokee Indians in the mountain regions of Georgia, Alabama and North Carolina. The trees being all seedlings, as grafting was likely unknown to the Red Man, vestiges of old apple trees originally planted by these denizens of the South are still occasionally found in upper Georgia. Fifty years ago a large collection of apples was introcuced into cultivation, and to-day many of the best southern winter apples owe their origin to the indians, who procured the first seeds from traders."
One of the earliest glimpses of plant-growing in the New World is an account in the Philosophical Transactions of the Royal Society, early in the eighteenth century, by Chief Justice Paul Dudley, of Roxbury, near Boston. In the Abridgement of the Transactions are the

## HORTICULTURE

following notes, amongst others, under the date 1724: "The piants of England, as well those of the fields and orchards as of the garden, that have been brought over into New England, suit very well with the soil, and grow to perfection. The apples are as good as those of England, and look fairer, as well as the pears: but they have not all of the sorts. The peaches rather excel

1078. Relic of colonial days-apple tree a' 250 years.
those of England, and there is no trouble or expence of walls for them; for the peach trees are all standards, and Mr. Dudley has had, in his own garden, i00 or 800 fine peaches of the rare-ripes, growing at a time on one tree. * * * The peach trees are large and fruiful, and commonly bear in 3 years from the stont. * * * The common cherries are not so good as the Kentish cherries of England; and they have ho duke:; or heartcherries, unless in two or three gardens." It was reported that people of "late years have run much upon orchards." The product of these ore'ards was chiefly cider. "Some of their apple trees will muire 6 . some have made 7 barrels of cider: but this is not common: and the apples wil? yield from $\overline{7}$ to 9 bushels for a barrel of cider: a gool apple tree will measure from 6 to 10 feet in girt." Dudley mentions a bloomless apple. and "the tree was no graft." In common with other new countries. New England astonished persons with the luxuriant growth of the plants. "An onion, set out for seed, will rise to 4 feet 9 inches in height. A parsnip will reach to 8 feet; red orrice [orach] will mount 9 feet; white orrice 8 . In the pastures he measured seed mullen 9 feet 2 inches in height, and one of the common thistles above 8 feet." Record is made of a prompkin vine which grew unattended in a pasture. It made a single stem which "ran along over several fences, and spread over a large piece of ground far and wide." "From this single vine were gathered 260 pumpkins; one with another as large as a half peck: enough in the whole, to fill a large tumbrel, besides a considerable number of small and unripe pumpkins." Indian corn was "the most prolific grain." Mr. Dudley did not accept the notion that the mixing of corn is due to the intermingling of the roots, but thought that it was brought about through the agency of the wind. He also noted that the hop and the running kidney bean twine in opposite directions on their support.
The colonial ornamental gardens were unlike our own in the relative poverty of plants. in the absence of the landsape arrangement. in the rarity of greenhouses, and the lack of smooth-shaven lawns (for the lawn mower
was not invented till this century). These gardens were of two general types: the unconrentional personal garden, without form but not void (Fig. 1079), in which things grew in delightful democracy; the conventional, box-bordered, geometrical garden, in which things grew in most respectful aristocracy. (llate XIV.) There were many interesting mid elaborate private gardens in the colonial days. One of the earliest and best was that of Governor Peter Sturvesant, of New Amsterdam (New York, near Third Avenue), known as the "Bonwerie," where 40 or 50 negro slaves, and also white servants, were kept at work. "The road to the city had been put in good condition, and shade trees were planted on each side where it crossed the Governor's property." The Bowery of these degenerate days has lost the Eilen-like features which distinguished its illustrions progenitor.

Excellent gardens were attached to the residences of wealthy persons by the middle of last century, and probably earlier, and they were said to have been encouraged by the example and precept of Washington. There are records of many large and meritorions collections of plants a century and more ago. William Hamilton's collection at Philadelphia was one of the best, and it contained a large collection of exotics. It flourished towards the close of last century, and was broken up in 1828. William dackson began "a highly interesting collection of plants at his residence in Londongrove," Pennsvorania, in 17万. Ahout 1sth: Jushoanal Nambel Pierce, East Marlborongin, D'a.," hegan to adom their premises by tasteful culture and planting." and by the establishnient of an arboretum of evergreens. The most famons botanic garden which North America has ever had was John Bartram's. established at Philadelphia in 1728. It contained a great collection of native plants, and some of the trees are now amongst the most valued landmarks of the city. Bartram was askilful farmer and gardener, and his sons. John and William, inherited his tastes and continued the garden. The elder Bartram was probably the first American to perform suceessfulexperiments in hrbridization. Bartram's honse (Fig. 1080), built br himself. is still one of the sights of the environs of Philadelphia, and the site of the garden, with many of the old trees standing, is now happily a publie park. Bartram's cousin, Humphry Marshall, established al tanic garden at West Bradford, in Chester county, Pa., in 1773. John Bartram's name is preserved to us in the moss Bartramia, and Marshall's in the genus Marshallia,

1079. An oid-time garden.
applied to small Composite of the eastern states. The Elgin botanic garden, near New York, was established in 1801 hy David Hosack, a man of great learning abd of the keenest sympathies with dural occupations. He
is now remembered in the interesting genus Hosackia, one of the Leguminosie. A botanic garden was estoblished at Charleston, S. C., ubout 1804, and one in Maryland abont the same time. The Botanic Garden at Cambridge, Mass., was bequn in 1805, an institution which, together with the Professorship of Natural History at Cambridge, was founded largely throngh the efforts of the Massachusetts Society for Promoting Ayriculture. The society subscribed $\$ 000$ for the purpose, and raised more by subscription.
Earli General Writings. - The progress of Horticulture may be traced in the books devoted to the thject. The earliest writins ud not separate Hortionlture from agriculture. The only work exclusively devoted to agricultural matters which appeared in America before the Revolution seems to have been the "Essays upon FieldHusbandry," begun in 1748 and completed in 1759, by Rev. Jared Eliot, of Killingworth, Comn., grandson of the famous apostle Eliot. (Sce Eliot.) "There are sundry books on husbandry wrote in Eugland," said Eliot, in his preface. "Having read all on that subject I could obtain: yet such is the difference of climate and Method of Management between them and us, arising from Causes that must make them always differ, so that those Books are not very Useful to us. Besiles this, the Terms of Art made use of are so unknown to us, that a great deal they Write is quite unintelligible to the generality of New-England Readers."
Just at the close of the Revolution. J. Hector St. John's "Letters from an American Farmer" appeared, although "the troubles that convulsed the American colonies had not broken out when * * * some of the * * * letters were written." For a periud of twenty-fice years following the close of the war the condition of our agriculture, and of ali American institutions, was minutely unfolded to the world through the writings of many travelers. English and French, who made inquisitive journers into the new country. Strickland, an English traveler, wrote in 1801 that "land in America affor?s little pleasure or profit, and appears in a progress of continually affording less. * * * Land in New York, formerly producing -0 bushels to the acre. now produces only 10. * * * Little profit can be found in the present mode of agriculture of this country, and I apprehend it to be a fact that it affords a bare subsistence. * * * Deeline has pervaled all the states." There is abundant evidence, includincs a painstaking inquiry made by Washington, to show that agriculture was at a low sta:e at the close of the century. It was in striking contrast to its status a hundred years later, notwithstanding the lugubrious writings of the present time.
There was early derelopment of the garden desire in the South as well as in the North. In South Carolina appeared the earliest American horticultural book of which we have ang record. This book is no longer extant, ard it is known to this generation chiedly or wholly from +", following page in R"msay's "History of South Carolina." 1809: "The planters of Carolina have derived so great protits from the eultivation of rice, indigo (see Indigo) and cotton that they huve always too much neglected the culture of gariens. The high price of their staple commodities in every period has tempted them to sacrifice convenience to crops of a marketable quality. There are numbers whose neglected gardens neither afford Howers to reale the senses, nor the regetables necessary to the comfort of their families, though they annually receire considerable sums in money for

1089. Bartram's house as it was in 1835. Built in 1730-31.

In the margin is the Petre pear, raised by Bartram from a seedliniz sent from England in 1760 by Lady Petre. The tree still bears.
their crops sent to market. To this there have been some illustrious exceptions of persons who cultivated gardens on a large scale, both for use and pleasure. The first that can be recollected is Mrs. Lamboll, who, before the middle of the eighteenth century, improved the southwest extremity of King street [Charleston], in a garden which was richly stored with flowers and other euriosities of nature, in addition to all the common regetables for family use. She was followed by Mrs. Logan and Mrs. He ton, who eultivated extensive gardens in Meeting, George and King streets, on lands now covered with houses. The former reduced the knowledge she had acquired by long experience and observation to a regular system, which was published after her death, with the title of 'The Gardener's Kalendar ;' and to this day regulates the practice of gardens in and near Charlestown." Ramsay records that Mrs. Martha Logan was the daughter of Robert Daniel, one of the last proprietary governors of South Carolina. "Mrs. Logan was a great Horist, and uncommonly fond of a garden. She was seventy years old when she wrote her treatise on gardening, and died in 1759, aged 77 years."

The opening of the nineteenth century may be taken as a convenient starting point for a narrative of the evolution of American Horticulture. At that time Horticulture began to attain some prominence as distinct from general agriculture, and the establishment of peace after the long and depleting war with England had turned the attention of the best citizens afresh to the occupation of the soil. The example of Washington, in returning to the farm after a long and honorable public career, no doubt exerted great intluence. His agricultural correspondence was large, and much of it was published at the opening of the century. His correspondence with Arthur Young and Sir John Sinclair will be found in volumes published in London in 1800 and 1801, in Alexandria in 1803 and in Washington in 1847. Details respecting the managenent of his plantations comprise vol. iv. of the Memoirs of the Long Island Historical Society, 1889.
It was not intil 1790, howerer, that an indigenous and distinctly agricultural treatise other than Eliot's appeared in America. At that time, the Rev. Samuel Deane, vice-president of Bowdoin College, published his "New England Farmer, or Georgical Dictionary," a cyclopedic work of the state of American agriculture. This passel to a second edition in 1797, and to a third in 1829. (See Deane.) Ia 1799 J. B. Bordley published in Philadelphia "Essays and Notes on Husbandry." Other

## HORTICLLTURE

early works need not be mentioned here. As early as 1785, Varlo's "New System of Husbandry" was printed In Philadelphia. It is in many ways a remarkable book, and it was written by a man who had had remarkable experiences. He was not an American, and the work first appeared in the old country; but Varlo had lived in this country, and was in sympathy with the American people. The book contained a "Farmer's and Kitehen Garden Calendar." In 179: there appeared anonymously, from Burlington, New Jersey, the third edition of Arthur Young's "Rural Eeonomy," which excellently displays that noted author's catholicity of view. He argues strongly for experiments and for the establishing of agricultural jourmats. This book first oppeared in London, in 1770.

At the opening of the century, Sir Humphry Dary had not illumined the science of agricultural chemistry, and men were even disputing as to what the food of plants is. The "burn-baking" or "devonshiring" of the land-burning the sod and seattering the ashes over the tield-was still recommended; and in 1799 James Anderson's "Essay on Quick-lime as a Cement and as a Manure," was given an American edition in Boston. It is easy to see from these facts that the fundamental conceptions of the science of agriculture were vague and crude a century ago. Near the close of the last century, Deane wrote that the alarming effect of the present low state of husbandry is, that we are necessitated to import much of our food and clothing, while we are incapable of making proportionable remittances in the produce of the soil, or in anything else."

The earliest book on a horticultural subject known to have been published in North Ameriea, excepting Mrs. Logan's, was an American edition of Marshall's "Introduction to the Knowledge and Practice of Gardening," Boston, 1799. The first indigenous horticultural book srpeared in 1804, "The American Gardener." by John Gardiner and Darid Hepburn. It was published at Washington. This book had an extensire sale. It was revised by "a citizen of Virginia." and republished in Georgetown, D. C., in 1818. A third edition appeared in 1826. (See Иерburn.) This book was followed in 1806 by Bernard M'Mahon's excellent and voluminous "American Gardener's Calendar," in Philalelphia. This work enjoyed much popularity, and the eleventh edition appeared as late as 1857 . For fifty years it remained the best American work on general gardening. M'Mahon remembered in the Mahonia barberies, was an important personage. He was largely responsible for the introduction into cultivation of the plants collected by Lewis and Clark. These early books were calendars, giving advice for the successive months. They were made on the plan then popular in England, a plan which has such noteworthy precedent as the excellent "Kalendarium Hortense "of John Evelyn, which first appeared in 1664, and went to nine regular editions. Other early books of this type were "An old gardener's 'Practical American Gardener,' "Baltimore, 1819 and 1822: Thorburn's "Gentleman's and Gardener's Kalendar," New York, the third edition of which appeared in 1821; Robert Squilb's "Gardener's Calendar for the States of North-Carolina, South-Carolina, and Georgia." Charleston, 1827.

The first indigenous book written on the topical plan, treating siabject by subject, was Coxe's fruit book. 1817; the second appears to have been Cobbett's "American Gardener," published at New York in 1819, in London in $18 \div 1$, and which passed throngh subsequent editions. This William Cobbett is the one who edited the feleralist paper in Philadelphia known as "Peter Porcupine's Gazette." and whose attack upon Dr. Rush's treatment of vellow fever brought against him a judgment for damages. and which decided him to return to England in 1800, whence he had eome, by way of France, in 1792. In London he again took up political writing, and in 1817 he retreated to America to escape political penalties, and resided upon a farm on Long laland until 1819. He kept a seed store in New York in 1818, and we find Grant Thorburn disputing with him in the "Erening Post" as to which sold the better rutabaga seed at one dollar a pound. Cobbett, it seems, clamed to have been the introducer of this regetable, also known as the Russia turnip, into this country: but Thorburn retorts that " in the year 1796 a large field of these turnips was
raised by Wm. Prout on that piece of ground now oreupied by the navy yurd, at the eity of Washington." He completed his life in England, becoming a voluminous author upon political and economical subjects. (See C'obbett.) It is interesting to note, in connection with this dispute about the turnips, that the kohlrahi was introduced about the same time, and Deane says of it in

1081. Two old-time flowers-Hollyhock and Crown Imperial.
1797, that "whether this plant, which has but newly found its way into our country, is hardy enough to bear the frost of our winters, I suppose is yet to be proved." It was recommended to be grown as a biennial, which accounts for Deane's fear that it might not pass the winters.

Fessenden's "New American Gardener," made upon the topical plan, appared in Boston in 18:8, and went to various editions; and from this time on, gardening books were frequent. Some of the leading early authors are Thomas Bridgeman, of New York: Robert Buist, of Philadelphia, and Joseph Breck, of Boston.

Flower-Books and Flohicultcre. - The first American book devoted wholly to flowers was probably Roland Green's "Treatise on the Cnltivation of Flowers," Boston, 18:8. Edward Savers puhlished the "-American Flower Garden Companion," in Boston, in 18:38. From 18.30 to 1860 there appeared many of those superficial and fashionable books, which deal with the language of flowers, and which assume that the proper way to popularize botany is by means of manufactured sentiment.

Green's book on tlowers deserves a paragraph, since it enables us to determine what were the leading ornamental plants in that early day (1828). The full title of the book is "A Treatise on the Cultivation of Ornamental Flowers: Comprising Remarks on the Requisite Soil, Sowing, Tramsplanting, and General Management: with Directions for the General Treatment of Bulbous Flower Roots, Greenhouse Plants, etc." It comprises only 60 pages. The introductory pages give general directions; then follow two annotated lists, one of annuals and biennials and the other of greenhouse plants. These lists are interesting, also, for what they do not contain. All the plants which they mention are here set down:

## ANNCAL AND BIENXIAL FLOWERS.

Athera frutes.
Almond, Double-flowering, Amaranthus shperbus, Amaranthus tricolor,
Animated rats
Aster, Crina,
Auricula,
Azalea nudifora,

## box

Brier, Sweet,
Canterbury Lell, Carnation.
Cassia Marylandica,
(:atalpa.
('herry, Double-flowering,
Chrysanthemum Indicnin
Clematis. Austrian (C. integrifolia),
Clethria,
Cohmbine,
Convolvulus
Corchorus Japoniens,
Crocns.
Cupid's Car or Monk's Hood (Aconitum).
Dahlia,

## AvVLAL AND BIENNIAL FLOWEHS-Continuet

Daisy
Dwarf Basil.
Egy E'lant.
Fupatorium, Blne.
Enphorbia Lathyris
Faling Beanty, or Morning lirlle (Nerbinsa).
Fir (Pinus balsuméa)
Foxglove,
Foxglove,
Fringe (ieranum (Pelargonitum),
Geraniam (iarlen Angelica,
Garten Angelica,
Glycine, Clnster-flowering,
Golden Cormopsis.
Golden Eormopsisting
olden Everlasting (Xeran thenum,
Honeysuckle
Honeysuck
Hyacinth,
Hyacinth,
Hydrangea
Impatiens Balsamina, Iris.
Lagerst rcemia Indica,
Lintel, Broad-leaved (Kalmin).
Laturimum,
Larkspur,
Lilac.
ily,
Lime Plant (Potoplyll cm peltatum),
Lychnatia (Ihlox).
Mezereon (Daphne Mezereum).
Mountain Ash,

Musk Geranlum,
Myrtle,
Nareissus.
Nasturtinm,
Passion Flower,
Pwony.
Pea, Sweet.
Peach, Double-Howering,
Pink,
Perennial Sunflower, doable,
Poly:unthns.
Pyrethrum Parthenium,
poppy
Purpie Hyaeinth Bean,
Roses.
Rones Aracia.
Rose colored Hibiscus.
Rullreckia.
Suarlet (acalia,
Scarlet Cacalia,
Scarlet Lyehnis (L. Chalce rarletica).
Siberian Crab,
Snow-hall Tree,
$\underset{\text { Snow-ball Tr }}{\substack{\text { Snowherry. }}}$
Snowberry,
Sulee-wool (Laumes Benzoin), Spiflerwort (Tradescantia), Splrsea.
Syringa, or Mock Orange. StrawberryTree (Ewonymus), Sweet Bay (Laurus nobilis): Sweet William, or Poetic Pink,
Tulip.
Venetian wumac, or Fringe Tree,
Violet, blue fragrant.

GREENHOUSE PLANTS.

Lilies of the valley,
Kanunculuses,
Anemones,
Single and Double Jonquils,
White Lilies,
Roses,
Tuberoses.
Persian Iris,

## Mignonette <br> Ferbena trifoliata, or Sweet Vervain, <br> Fuchisia coceinea, <br> Cobrea sciumlens, <br> Camellia Japonica, or Japa. nese Rose, <br> Myrtles.

These lists are much less ample than those of M'Iahon, over twenty years earlier, lut they may be supposed to inclute the popular and most easily grown things. They will be suggestive to those who wish to make"old-fashioned gardens." M'Mahon's list was evidently largely compiled from European sources. Green says that the first list (strangely called "annual and biennial flowers") contains "such plants, shrubs and trees as are of easy cultivation, generally hardy." The second list conprises "a few different sorts of greenhouse plants" "which are commonly grown in rooms."
The first American book to be devoted to a special flower was Sayers' book on the dahlia, Boston, 1839, which appeared only a year later than Paxton's well-known book in England. Savers' book also included the cactus. The next special flower book seems to have been Buists' "Rose Manual," Philadelphia, 1844. although a sentimental book on the "Queen of Flowers" had appeared in the same city in 1841. Buist's book went to at least four editions. It was followed by Prince's in 1846, and by S. B. Parson's "The Rose: Its History, Poetry, Culture and Classification," 1846. Parson's book went to a revised edition. Of later-late flower-books there are several of importance, but it is not the purpose of this history to trace more than the begimings of American floricultural writings.
In $18: 38$ appeared a book in French in New Orleans. 'This was Lelievre's "Nouveau Jardinier de 'a Lonisiane." It was a small book of 200 pages, with a calendar and brief directions for the growing of regetables, fruits and Howers. Singularly enough, a French book also appeared at the other extreme of the country. This was Provancher's "Le Verger-Canadien," published in Quebec in $18 \mathrm{I}_{2}$.
The writings clearly portray the tendencies of the floricultural interests, - from the formal-Hower ideals of the dahlia and camellia to the enormons development
of the cut-flower interest, and the growih within the last few years of the greater love of plants themselves. Palms and decorative plants are now almost necessities, where in years ago they would have been the luxury of luxuries. "There has been a radical change in the character of the flowers used for cut-Hower purposes," wrote Alfred Henderson in 189\%. "Fifty years ago, camellia flowers retailed freely for a dollar each, and during the bolidays Plailadelphia used to send thousands to New York torists, getting \$̄̈00 per 1,000 ; while roses went begging at one-tenth these flgures. Now, the rose is queen, and the pror camellia flads none so poor to do her reverence. * * * * Icontidently believe that the time is not far distant when we shall compete seriously with the foreign grower in the production of new varieties of roses." William Scott, of Buffalo, makes the following comments on temdencies in floricnlture: "About the year 1880, tulips and narcissuses began to be forced, and during the next 15 years immense quantities of these balls were imported annually from Hol. land. As the methorls of forcing were perfected the market became overstocked, and, although large quantities are still forced for the winter and spring months, they are not now in the same favor as formerly, and the rose, carnation, violet, lily-of-the-valley and mignonette are still the favorites. Orehids are not yet the flower for the million, but there is a yearly increasing demand for them, and at present the showy orchids, such as the Cattleyas and Lalias, are far short of the demand. As their cultivation is more generally umberstood, we look for a very steady increase in the number grown, and are contident that the supply will not soon exceed the demand. Within the past $\bar{f}$ or 6 years a marked increase is noticeable in the use of pilants to adorn the home, and the demand is for m expensive class of plants.-palms, dracenas, araucarias and ferns being among those mostly used. Now few homes with any pretension to luxury or even comfort are without a few fine plants scattered through the rooms, and many of our modern houses are provided with either a bay window or small conservatory for the accommodation of plants." See C'ut-Flouers and F'loricrlture.

Early Pomological Writings. - It is in the pomological writings that North America has mate the greatest contributions to horticultural literature. William lor-

1082. Example of the earliest illustrations of American fruite. Esopus Spitzenburg, figured by Coxe in 1817.
syth's excellent "Treatise on the Culture and Management of Fruit Trees" appeared in London in 1802, and it was widely read, "an impression of 1,500 copies (of the

1083. One of the old Downing test apple trees.
first edition), in 4to having been sold in a little more than eight months." An American edition, by William Cobbett, appeared in New York and Philadelphia in 1802, and in Albany in 180:3, and an epitome of it by "an American farmer," was published in Philadelphia in 1803. The first American pomological book was William Coxe's "View of the Cultivation of Fruit Trees," published in Philadelphia in 1817, a work known to students of horticultural literature for the uniform completeness and accurary of its descriptions. A feature of this excellent work are the many woodchis of varieties of fruits. Although not answering the requirements of the present day, they were considered to be very good for the time and for a new country. One of them is here reproduced (Fig. 1082) to show the style of workmanship. Coxe had 100 woodcuts of apples, 63 of pears, 15 of peaches, 17 of plums, 3 of apricots. 2 of nectarines. This makes 200 engrarings, which would be considered liberal illustration eren at the present day.
James Thacher's "American Orchardist" appeared in Boston in 1822, and the second edition at Plymouth in 1825. The first edition was also bound with William Cobbett's "Cottage Economy," and the double volume was issued in New York in 1824 as "American Orchardist and Cottage Economy." "The Pomological Manual," New York, 1831 (second edition 1832), is a compilation of descriptions of varieties, by Willian Robert Prince and Willian. Prince, son and father respeetively. Willian Kenrick's "New American Orchardist" was published in Boston in 1833. The eighth edition appeared in 1848. Like all early works, it devotes most of its space to varieties. Robert Manning, whose son of the same name is the secretary of the Massachusetts Horticultural Society, published his admirable "Book of Fruits," at Salem, in 1838, being aided by John M. Ives. Upon the death of Manning, Ives published a second edition in 1844 under the title of "The New England Fruit Book," and a third in 1847 as "The New England Eook of Fruits." Downing's "Fruits and Fruit Trees of America" appeared in 1845 in two forms, duodecimo and octavo, although both issues were printed from the same type. One issue of the octaro form contained colored plates. Thomas' "Fruit Culturist," which is known in subsequent editions ns "The American Fruit Culturist," appeared in 1846. Other pomological writings which appeared before 1850 are Sayers' "American Fruit Gardca Companion,". Boston, 1839 ; Hoffy's "Orchardist's Companion," Philadelphia, 1841; Bridgeman's "Fruit Cultivator's Manual," New York, 1845; Floy's American edition of George Lindlev's "Guide to the Orchard and Fruit

1084. The fruit hnuse of Charles Downing.
other. Some of the later books have more nearly caught the right point of view.

The earliest scparate grape book was published in Washingtor in 18:3, by the prephetic Adlum," A Memoir on the Cultivation of the Vine in America." This went to a second edition in 1828 (see Adlum and Plate II). Before this time (1806), S. W. Johnson had devoted much space to the grape in his "Rural Fconoms," published at New Brunswick, N. J., and he published the first pictures of grape training (Fig. 1085). Adlum's book was followed in 1826 by the "American Vine Dresser's Guide," by the unprophetic Dufour. This work also gave pictures of grape training, one of which is reproduced in Fig. 1086. The larger part of the grape literature appeared before the close of the Civil War, although the larger part of the development of the subject has taken place since that time.
General Remarks on Frutt-Growing.-Horticulture, in its commercial aspects, was nothing more than an incidental feature of farm management at the opening of the century. In fact, it is only in the present generation that the field cultivation of horticultural crops has come to assumie any general importance in the rural economy of the nation. And even now, horticultural operations which are projected as a fundamental conception of land occupation are confined to few parts of the country. It is still the original or first conception of the farmer's boy, when he proposes to occupy land of his own, that he raise grain and hay and stock, and add the fruits and other horticultuzal crops by piecemeal. It is only in particular parts of the country that the farmer starts out with Horticulture as a base, and with grain and stock and hay as accessories: and even in these places, the best horticulturists are still drawing their practices and the reasons for them from the operations of general mixed agriculture. There was practically only one general horticultural commodity, at least in the northern states. a hundred years ago, and that was the apple. Pears, peaches, cherries, quinces and some other fruits were common, but there was little thought of marketing them. Even the apple was generally an accidental crop. Little care was given the trees, and the varieties were few, and they were rarely selented with reference to particular uses, beyond their adaptability to cider and the home consumption.
Thacher, writing from Plymouth in 1821, says that "the most palpable neglect prevails in respect of proper proning, cleaning, and manuring round the roots of trees, and of perpetuating choice fruits, by engrafting from it on other stocks. Old orchards are, in general, in a state of rapid decay; and it is not cancommon to see valuable and thrifty trees exposed to the depredations of cattle and sheep, and their foliage annoged by caterpillars and other destructive insects. In fact, we know of no branch of agriculture so unaccountably and so culpably disregarded." Were it not for the date of Thacher's writing, we shuuld mistake this picture for one drawn at the present day.
If one may judge from the frequent and particular references to cider in the old acconuts, it does not see.n too much to say that this sprightly commodity was held in great. estimation by our ancestors than by ourselves. In fact, the cider barrel seems to have been the
chief and proper end of the app.. Of his thirty chapters on fruit-growing, Coxe (1817) devotes nine to cider, or 42 pages out of' 253 . John Taylor's single epistle devoted to horticulcural matters in the sixty and more letters of his "Arator" is upon "Orchards," but it is mostly a vehement plea for more cider. "Good cider," he says, "would be a national saving of wealth, by expelling foreign liquors; and of life, by expelling the use of ardent spirits." In Virginia, in Taylor's day, apples were "the only species of orchards, at a distance

1085. The earliest American picture of Grape training (1806).
from cities, capable of producing sufficient profit and comfort to become a considerable object to a farmer. Distilling from fruit is precarious, troublesome, tritling and out cit his province. But the apple will furnish some ivod for hogs, a luxury for his family in winter, and a healthy liquor for himself and his laborers all the year. Independent of any surplus of cider he may spare, it is an object of solid profit and easy acquisition." As early as 1647 , twenty butts of cider were made in Virginia by one person. Richard Bennet. Paul Dudley writes of a small town near Boston, containing about forty families, Thich made nearly 3,000 barrels of cider in the year 1721; and another New England town of 200 families, which supplied itself with "near ten Thousand Barrels." Bartram's Cider Mill, as it ex sts at the present day, is shown in Fig. 1087. It was not until well into the present century that people stem to have escaped the European notion that fruit is to be drunk.

There are evidences that there hav: been several marked alternations of fervor and neglect in the plant-
ing of apples since the first settlement of the country. Early in the last century there appears to have been a great abundance of the fruit; but in 1821 Thacher declared that "it is a remarkable fact that the first planters bequeathed to their posterity a greater number of orchards, in proportion to their population, than are now to be found in the old colony," and he attributes the decline in orcharding largely to the encroachment of the "poisonous liquor" of the later times. Under the inspiration of Thacher, Coxe, Kenrick, Prince, Manning, and the Downings, orchards were again planted, and we are just now in another period of decline in the East, following the decay of these plantations.

Apples were carried far into the frontiers by the Indions and probably also by the French missionaries, and the "Indian apple orchards" are still known in many localities even cast of the Mississippi (ste also, Appleseed, Johnmy). At the opening of the century, the Early Harrest, Newtown Pippin, Swaar, Spitzenberg, Rhode Island Greening, Yellow Belletleur, Roxbury Russet, and other familiar apples of American origin were widely disseminated and much esteemed. Apples had begun to be planted by settlers in Ohio before 1800 . In 1817, Coxe could recommend a list of "one hundred kinds of the most estimable apples cultivated in our country;" and in 1825 William Prince offered 116 varieties for sale-at $371 / 2$ cents per tree-of which 17 were set aside-after the fashion of the time-as particularly adapted to the making of cider. Of these 116 varieties, 61 were considered to be of American origin. In 1872, Downing's list of apples which had been fruited and described in America, had swelled to 1856 varieties, of which 1099 were of known American origin. Of this great incentory, probably not over a third were actually in cultivation at any one time, and very many of them are nov 'ost. Yet the apple is still our most important fruit, an 878 varieties were actually offered for sale by the nurserymen of North America in 1892.

There has been a most noticeable tendency towards the origination of varieties of apples in this country, and the consequent exclusion of varieties of European origin. As early as 1760 , cions of American varieties were sent to England. Before the Revolution, apples were exported. The origination of indigenous varieties was of course, an accidental one, and was a necessary result of the universal method of growing apple trees directly from seeds, and top-grafting them in case they should turn out profitless. A critical study of American Horticulture will show that all species of plants which have been widely cultirated in this country have gradually run into indigennas varieties, and the whole body of our domesticated flora has undergone a progressive evolu-

1086. Dufour's picture of Grape training (1826).

Patterned after che South-European fashion of employing mulberry treus for supports.
tion and adaptation without our knowing it. By far the greater number of the apples of the older apple-growing regions of the country are indigenous varieties, and the same process is now operating in the Northwest, where the American seedlings of the Russian stock are proving to be more valuable than the original importations.

1087. Bartram's cider mill, a relic of the last century.

It is said that the apples were placed in the circular groove in the rock and crushed by means of a weight rolling over them. The juice ran out the gutter at the farther side and was caught in a rock-hewn cistern.

Pears were amongst the earliest fruits introduced into the New World, and the French, particularly, disseminated them far and wide along the waterways, as witnessed by the patriarchal trees of the Detroit river and portions of the Mississippi system. John Bartram's Petre pear (Fig. 1080) is one of the patriarchs of the last century, although the tree is not large. The first book devoted exclusively to the pear was Field's, published in 1859. The Japanese type of pears had been brought into the country from two and perhaps three separate introductions, early in the fifties, but they had not gained sufficient prominence to attract Field's attention. From this oriental stock has come a race of promising hybrids with the common pear, represented chiefly by the Kieffer, Le Conte and Garber.

Peaches were early introduced into the New World by various colonists, and they thrived so well that they soon became spentaneous. Nuttall found them naturalized in the forests of Arkansas in 1819, and the species now grows with all the luxurious abandon of a native in waste and forest linds from Georgia and the Carolinas to the westward of the Mississippi. There is probably no country in the world in which peaches grow and bear so freely as in the United States. The old Spanish or Melocoton type is now the most popular race of peaches, giving rise to the Crawfords and their derivatives.

Of late years there has been a contraction of the original peach areas, and many good people have thought that the climate is growing uncongenial, but it is only the natural result of the civilization of the country and the change in methods of Horticulture. Peaches had never been an iudustry, but the orchards were planted here and there as very minor appendages to
the general farming. For generations insect pests were not common. There were no good markets, and the fruit sold as low as 25 cents a bushel from the wagon box. In fact, it was grown more for the home supply than with an idea of shipping it to market. Under such conditions, it did not matter if half the crop was wormy, or if many trees failed and died each year. Such facts often passed almost unnoticed. The trees bore well, to be sure; but the crop was not measured in baskets and accounted for in dollars and cents, and under such conditions only the most productive trees left their impress upon the memory. The soils had not undergone sich a long system of robbery then as now. When the old orchards wore out, there was mo particular incentive to plant more, for there was little money in them. Often the roung and energetic men had gone West, there to repeat the history perhaps, and the old people did not care to set orcharils. And upon this contracting area, all the borers and other pests which had been bred in the many old orchards now concentrated their energies, until ther have left scarcely enough trees in some localities upon which to perpetuate their kind. A new country or a new industry is generally free of serious attacks of those insects which follow the crop in older rommunities. But the foes come in unnoticed and for a time spread unmolested, when finally, perhaps almost suddenly, their number hecomes so great that they threaten destruction, and the farmer looks on in amazement.
The orange is another tree which has thrived so well in the new country that the spontaneous thickets of Florida, known to be descendants of early Spanish introductions, are confidently believed by residents to be indigenous to the soil.
The progress of the plam in America nearly equals that of the grape in historic interest. The small, sponthat of the grape in historic interest.
taneous plums, known as Hamsons, taneous plums, known as Damsons, Europe, were early abundant in New England. Plum culture has never thrived far south of Mason and Dixon's line or west of Lake Michigan, except, of course, upon the Pacitic coast and parts of the far southwestern country. There are climatic limitations which more or less restrict the area of plum growing, and the leaf-blight fungus, black-knot, and fruit-rot have added to the perplexities. In this great interior and southern area, varions native plums, offshoots of several indigenous species, hare now spread themselves, and they have already laid the foundation of a new type of plum culture. The first of these novel plums to receive a name was that which we now know as the Miner, and the seed from which it sprung was planted by William Dodd, an officer under General Jackson, in Knox county, Tennessee, in 1814. The second of these native plums to come into prominence, and the one which really marks the popularization of the fruit, is the Wild Goose. Some time before 1850, a man shot a wild goose near Columbia, Ten nessee, and where the carcass was thrown this plum, Adonis-like, sprung forth. It was introduced to the trade about 1850 , by the late J. S. Downer, of Fairview, Kentucky. Over 200 named varieties of these native plums are now described, and some of them are widely disseminated and deservedly popular. In the South and on the plains, these natives are a prominent horticultural group. The complexity of the cultivate- plum flora is low further increased by the introduction of the japanese or Chinese type, which tirst eame in by way of California in 1870. Finally, about 1880, the apricot plam, or Prumus Simonii, was introduced from China by way of France; and the American plum industry, with no less than ten specifie types to draw upon, and whieh represent the entire circuit of the northern hemisphere,
is now fairly launehed upon an experimental career whose promise lies with the coming century.

The grape of America is of two unlike types, -the natires, which comprise all commercial outdoor varieties in the interior and eastern states; and the rinifera or Old World kinds, which are grown in California. The native types have been developed within the century. The oldest commercial variety is the Catawba, which dates from 1802 . The cosmopolitan variety, the Concord, which first fruited in 1843. A full review of the history is made in "Evolution of our Native Fruits."

There was no conmercial strawberry culture in America, worthy of the name, until the introduction of the Hovey (Fig. 1088) late in the thirties. This and the Boston Pine were seedlings of C. M. Hovey's, Cambridge, Massachisetts. They first fruited in 18.36 and 183\%, and from them hare descended most of the garden strawberries of the present day. These were seedlings of the old Pine type of strawberry, which is a direet descendant of the wild strawberry of Chile. The Wilson, or Wilson's Albany, which originated with John Wilson, of Albany, New York, began to attract attention about 1856 or 1857 , and it marked the beginning of the modern epoch in American strawberry growing. In the middle West, strawberry growing was given a great impulse by Longworth and Warder.
Raspberries were grown in the last century, but they wre of the tender European species, of which the Antwerps were the common types. This type of raspberry is now almost wholly superseded by the offspring of our native red and black species, which first began to impress themselves upon cultivation about 1860 .
The blackberry, an indigenous American fruit, first commended itself to cultivation with the introduction of the New Rochelle or Lawton, towards the close of the

1088. The original picture of the Hovey Strawberry.

Magazine of Horticulture, August, 1840. Triginal size.
fifties. The first named rariety of blaekbery of which we have any record was the Dorchester, which was exhibited before the Massachusetts Horticultural Society in 1841 .
The dewherry, a peculiarly American fruit, first appeared in cultivation early in the serenties in southern Illinois ander the nanie of the Bartel, which is a large form of the common wild dewberry of that region. It

## HORTICULTURE

as first brought to the attention of the public in 1875 The following year the Lucretia, the most popular of dewberries, was introduced into Ohio from West Virginia, where it had been found wild some years before by a Union soldier.
The history of the gooseberry in America recalls that of the grape. It is a characteristic fruit of England and the low countries, and it was early introduced into America. But. like the European grapes, the gooseberries were attacked by a fungous sickness which rendered

1089. The original picture of the Houghton Gooseberry. From the Horticulturist for September, 136s. Original size.
their cultivation precarious. An improved form of the natire species must be introduced, and this was accomplished by Abel Houghton, of Massachusetts, who, from the seed of the wild berry, producell the rarietry which now bears his name. This rariety began to attract some attention a little previons to 1850 , although it was not planted freely until several years later (Fig. 1089). From seed of the Honghton sprung the Downing. still the most popular gooseberry in America, although Houghton is still much grown crom Philadelphia south: and our gooseberrs culture is. therefore, but two removes from nature. With the adrent of the Bordeaux mixture and its related specitics, howerer. the English cooseberries are again coming to the fore. Hybrids of the English and American trpes, as in the Trinmph or Columbia and the Chantanqua, may be expected to becone more popular for home use and special markets, but the Americans will probably remain in favor for general market purposes.

The cranberre, most unique of American horticultural products. was first cnltivated, or rescued from mere wild bogs. about 1810 . Its cultiration began to attract attention about 1840, although the difficulties connected with the growing of a new crop did uct begin to clear away
until about 1850. Cape Cod was the first cranberry-growing region, which was soon followed by New Jersey, and later by Wisconsin and other regions. The varieties now known are over a hundred, and the annual product from tame bogs in the United States is nearly 800,000 bushels.
The Nursery and Seed Business. - It is impossible to fix a date for the beginning of the nursery business in America. Trees were at first grown in small quantities as a mere adjunct to general farm operations. Governor John Endicott. of the Massachusetts Colony, was one of the best fruit growers of his time, and be grew many trees. In 1644, he wrote to John Winthrop as follows: "My children burnt mee at least 500 trees this Spring by setting the ground on fire neere them :" and in 1648 he traded 500 appie trees, 3 years old, for 250 acres of land. The first nursery in Maine is thought by Manning to have been that of Ephrain Goodale, at Orrington, established early in the present century. Other early nurserymen of Maine were the brothers Benjamin and Charles Vaughan, Englishmen, who settled at Hallowell in 1596. The first nursery in South Carolina was established by John Watson, formerly garlener to Henry Laurens, before the Revolution. In Massachusetts, there were several small nurserymen towards the close of last century, amongst others, John Kenrick, of Newtown. whose son William wrote the "New American Orchardist." published in 1833, and which passed through at least eight editions. The trees were generally top-grafted or budded, sometimes in the nursery and sometimes after removal to the orchard Deane writes in 1797, that "the fruit trees should be allowed to grow to the height of 5 or 6 feet before they are budded or grafted." Stocks were sometimes grafted at the crown, and eren root-grafting was known, although it is generally said that this operation originated with Thomas Andrew Knight, in 1811. It is probable, however, that the root-grafting of last century was only graiting at the surface of the ground. and that it had little similarity to the method now in rogue. One of the new trees a hundred years ago was the Lombardy poplar. John Kenrick had two acres deroted to it in 1797: and Deane writes, in 1797 , that "the Lombardy poplar begins to be planted in this country. To what size they will arrive. and how durable they will be in this country, time will discover." He does not mention it in the first edition, 1790. The tree is said to have been introduced into America by William Hamilton, of Philadelphia, in $\mathbf{1 7 8 4}$, although Mr. Meehan writes that he remembers trees fifty years ago that seemed to be a centery old. Manning quotes a bill of sale of nursery stock in 1799 , showing that the price of fruit trees was $331 / 3$ cents each. With relatively cheaper money and with much better trees, we now buy for one-third this price. Deane speaks of raising apple trees as follows: "The way to propagate them is ly sowing the pomace from cydermills, digging, or hoeing it into the earth in autumn. The young plants will be up in the following spring: and the next autumn, ther should be transplanted from the seed bed into the nursery, in rows from 2 to 3 feet apart and 1 foot in the rows. where the ground has been fitted to receive them." Nothing is said about grafting the trees in the nursery.

But the first independent nursery in the New Worid, in the sense in which we now understand the term, seems to have been that established by William Prince at Flushing, Long Island, and which was continued under four generations of the same family. The founder was William Prince. The second Prince was also William, the son, and author of the first professed American treatise upon Horticulture. 1828. The third generation was William Robert Prince. He was the author of "A Treatise on the Vine" (1830), "The Pomological Manual" (1831), and "Manual of Roses"(1846). In the first two he was aided by hi: father, the second William. This Villian Rober: Prince is the one who first distinguished the types of the prairie stramberry into the two species. Fracaria Illinnensis and $F$. Iovensis. From a large catalogue of William Prince second, published in 1825-and which contains, amonest other things, lists of 116 kinds of apples. 108 of pears, 54 of cherries, 50 of plums, 16 of apricoss, 74 of reaches and 2.5 of geraniums-the following account is taken of the founding of this interesting establisk.
ment: "The Limmæan Garden was commenced about the middle of the last century by William Prince, the father of the present proprietor, at a time when there were few or no establishments of the kind in this country. It originated from his rearing a few trees to ornament his own grounds; but finding, after the tirst efforts had been attended with success, that be could devote a portion of his lands more lueratively to their cultivation for sale than to other purposes. he commenced their culture more extelisively, and shortly after published a catalogue, which. at that early period, contained several hundred species and varieties, and hence arose the tirst extensive fruit collection in America." The elder Prince died in 1802, "at an advanced age."
Amonsst the nurseries which were prominent from $18: 0$ to 1830 were Bloodgood's. Wilson's, Parmentier's, and Hogg's, near New York; Buel and Wilson's, at Albany: Sinclair and Moore's, at Baltimore. David Thomas, a man of great character, and possessed of scientific attainments, was the earliest horticulturist of central or western New lork. His collection of fruits at Aurora, upon Cayuga Lake, was begun about 1830. His son. Johin J. Thomas, nurseryman and author of the "American Fruit Culturist," which first appeared in 1846 , died at a ripe old age in 1895. and in his removal the country lost one of its most expert, systematic and conscientious pomologists. The nursery tirm of Parsons \& Co., on Long Island. was founded in 1838 , and is continuing. It was instrumenial in distributing great quantities of fruit and ornamental stock at a formative time in Ameican Horticulture, and it was a pioneer in several commercial methods of propagation of the more difficult ornamental stock. It was the chief distributor of Japanese plants in the early days. Between 1840 and 1850 arose the beginnings of that marvelous network of nurseries, which, under the lead of Ellwanger \& Barry, T. C. Maxwell \& Brothers, W. © T. Smith, and others, has spread the name of western New York throughout North America. In 1857, Prosper J. Berckmans, who had then been a resident of the United States seven rears, remored to Georgia, and laid the foundation of what is now the best known nursery in the South.

The first American seed house David Landreth's, in Philadelphia, was established in 34 . The second was dohn Mackejohn's: 1792: third, William Leeson. 1794; fourtl. Bernard M'Mahon, 1800, all of Philalelphia. In 1802. Grant Thorburn's was established in New York. The tirst and last of these businesses still exist under the family names. M'Mahon did a large business in exporting seeds of native plants, and it was through his work that many American plants came into cultivation in Europe. His catalogue of seeds of American plants in 1804 , for the export trade, contained about 1,000 species of trees, herbs and shrubs. He also announced at

1090. Jne of the earliest: American green'houses. 1764.
that time that he had "also for sale an extensive variety of Asiatic, South Sea Islands, African and European seeds of the most curious snd rare kinds." "The prices shall be moderate, and due allowance will be made to those who buy to sell again." M'Mahon, through busi-

1091. Greenhouse front.

With glass lights and door of glass at the ent, to be ; feet high 3.5 in length by 12 in breadth. Brick foundation $\because$ feet high, half a foot of which to be underground.-Robert Squibb, Giardener's Calendar, Charleston, S. C. 1827.
once every two weeks between New York and Boston. In 1755, a through mail was established by Postmaster Franklin between Boston and Savannah, the letters being carried by post riders. each man covering 25 miles. Previous to that date. sixty dass would frequently pass without a mail from Virginia." Landreth estimates that there are now nearly two hundred seed firms in the United States publishing and distributing descriptive seed catalognes.

Gieenhocises. - The first glasshouse in North America Was probably that erected early in last century in Boston, by Andrew Faneuil, who died in 1737. This passed to his nephew, Peter Faneuil, who built Faneuil Hall. The greenhouse which is commonly considered to be the first one built in the country was erected in $1 / 64$ in New York, for James Beekman. A picture of this, from Taft's "Greenhouse Construction," is shown in Fig. 1090. Glasshouses were fully described in 1804 by Gardiner and Hepburn, and in 1806 by M'Mahon, but these authors do not state to what extent such structures existed in America. In Doctor Hosack's botanic garden, 1801, extensive glasshouses were erected. Compare Figs. 986. 957. Fig. 1091 shows one of the earliest American pic tures of a greenhouse. It is copied, full size, from Squibb's "Gardener's Calendar," Charleston, S. C., 1827. Fig. 1092 shows the first greenhouse in Chicago. as illustrated in "American Florist." Note the small panes, and the sash construction. This was built in $18: 35$ or 1836. With these pictures should be compared the modern greenhouses as shown in Fig. 1093; also in the pictures in the articles on Greanhouse.

These early houses were heated by flues or ferment ing substances. The use of steam in closed circuits began in England about 1820. Hot-water circulation seems to hare been a later invention, although it drove out steam heating. until the latter began to regain its supremacy in this country twenty or twenty-five years ago. The "New England Farmer" for Iume 1. 1831, contains a description of hot-water heating for hothouses, a matter which was then considered to be a great novelty.

Most of the early houses had very little. if anv, glass in the roof. and the sides wore high. It was once a fachion to build wise rooms over the house, so that the roof would not freeze. In the emodern" construction of the greerhouse of M'Mahon's day, 1800 . Le advised
that "one-third of the front side of the roof, for the whole length of the house, be formed of glass-work," and in order that the tall, perpendicular sides of the house should have as "much glass as possible," he said that "the piers between the sashes are commonly made of good timber, from 6 to 8 or 10 inches thick, according

1092. First greenhouse in Chicago (1835 or 1836).
to their height." "The width of the windows for the glass sashes may be 5 or 6 feet; * ** the bottom sashes must reach within a foot or 18 inches of the floor of the house and their top reach within 8 or 10 inches of the ceiling. The panes in the roof should be 6 inches by 4 , this size "being not only the strongest, but by much the cheapest, and they should lap over each other about half an inch." But the sides or "front lights must be made with large panes of glass." Many or most of the early plant-houses had removeable tops, male of sash. On the change from the old to the new ideas, Alfred Henderson writes as follows: "The first published adrocacy of the fixed-roof system was made by Mr. Peter B. Mead, in the 'New York Horticulturist,' in 1857. Before that, all greenhouse structures for commereial purposes were formed of portable sashes, and nearly all were constructed as 'lean-to's,' with high back walls, and none were connected. All were separate and detached, being placed at all angles, without plan or system. Then, too, the heating was nearly all done by horizontal smoke-flues, or manure fermenting, although there was a crude attempt at heating by hot water by some private individuals as early as 1833. The first use of heating by hot water on anything like a large scale, however, was in 1839, when Hitchings \& Co., of this city, heated a large conservatory for Mr. William Niblo, of New York; and yet for nearly twenty vears after this time heating by hot water was almost exclusively confined to greenhouses and graperies on private places, as few professional florists in those days could afford to indulge in such luxuries. All this is changed now. The use of steam, hot water under pressure, and the gravity system of hot-water heating are almost universally in operation, the hot-air flue haring been relegated to the past. The best evidence of progress is in the fact that the florist has not waited for the tradesman, but has brought about these improvements himself."
Much attention was early giren to the slope of the roof, in order that the greatest amount of sunlight might be obtained. Early in this century the curvilinear roof came into use, as the rarious angles which it presents to the sun were supposed to cateh the naximum number of the incident rays. The sides of the house remained bigh, for the most part, until near the middle of this century. All this shows that the early glasshouse was modeled after the dwelling or other buildings, and that it had not developed into a structure in which plants were grown for commercial purposes.
The modern commercial forcing-house, with direct roof. low sides, and heated by steam or hot water in closed circuits, is mostly a development of the last thirty years. Its forerunner was the propagating-pit of the nurseryman. If anything is lost in sunlight by adopting a simple roof, the loss is more than compensated by the lighter framework and larger glass. In the forcinghouse, all architectural ambition is sacrificed to the one desire to creatr a commercial garden in the frosty months.

Lettuce, cucumbers, tomatofs, carnations, violets, and various other plants are now grown as crops under glass roofs, whilst a generation ago they were generally rot forced at all for market or were grown mostly under frames. With the simplifying and cheapening of the
glasshouse, amateur flower and vegetable growing has acquired a new impetus, and the business of the retail florist has grown amazingly in the recent years.

Some idea of the increase of the demand for plants may be obtained from the sale of flower pots. A. H. Hews, of Cambridge, Massachusetts, whose ancestors began the manufacture of pots before $176 \overline{5}$, reports that for a period of twenty-two years, from 1788 to 1810 the accounts of the sales of pots "cover about as many pages as we now often use in one day; and the amount in dollars and cents does not compare with single sales of the year 1894." He also compared the sales for 1869 and 1894 and "found the increase as ten to one; or, in round numbers, $\mathbf{7 0 0 , 0 0 0}$ tlower pots in the former year and $7,000,000$ in the latter; and if the same factory can in 1920 , twenty-fice years later. produce and sell 70,000 , 000 , we shall verily be living in a land of tlowers."

One of the earliest greenhouse builders was Frederic A. Lord, who built his first houses, according to Taft in Buffalo in 1855, and who, in $18 i^{2}$, entered into part nership with W. A. Burnham, at lrvington, on the Hud son. In very recent years a new impetus has been giren to glasshouse building and work by the establishment of the agricultural experiment stations and the extension of horticultural teaching in the colleges.

Horticulttre in Califorsia. - California Horticulture is in the main patterned after the South-European types, and to this extent it originated from SpanishMexican sources. The Horticulture of California's high mountain valleys approximates move closely to that of colder regions, while the Horticulture of the Pacitic slope, north of California, becomes more and more dif ferent from the South-European types, but still has many characteristics of its own separating it sharply from that of the Atlantic slope. The first horticultural experiments in California were at the missions of the Peninsula (Baja or Lower California), where ge missions were founded between 1697 and 1797 . Here the Mission Fathers iatroduced the date palm; also oranges, lemons, limes, pineapples, bananas, olires, figs, pomegranates, peaches, quinces, plums, apples, pears and grapes They shipped to Monterey and the northern missions large quantities of dried figs, grapes, dates and peaches. The Upper California missions received seeds, cions, etc., from those of Lower California, as well as from Mexico. The first of these missions was established in 1769 at San Diego by the Franciscans, under the leader ship of Father Junipero Serra, whose name risitors to

1093. Interior of a modern commercial greenhouseCarnations.
the Caiifornia State Building at the World's Fair will recall in connection with the great date palm from the Mission 「alley of San Diego. This palm was raised from seed which Junipero Serra planted about 1770. Twenty-one missions were founded by the Franciscans the last one in 1823 , and at all but one or two of thea there were important collections of the fruits of south-
ern Europe-olires, figs, oranges, lemons, pomegranates, wine grapes, and also apples, pears and peaches. Early in this century the mission of San Gabriel had over 2.000 fruit trees, and others had more than a thousand. Fig. 1094 shows the yard of San Juan Capistrano Mission, as it existed in 1889. There are also some traces in California of the fruits of the few early Russian settlements. With the American occupation and the immigration from the East, came the eastern American types of fruits, and the state is now the seat of a wonderfully varied fruit culture, although the small fruits have not ret attained that prominence which they enjoy in older countries.

Details of the early Californian Horticulture are given for this occasion by Charles Howard Shinn. The first official horticultural reports from California appeared in the second part of the United States Patent Otice Report for 1831. In this report, Mr. A. Williams, of San Francisco. presented statisties from the Horner Ranch near the Mission San José, Alameda county, where 800 acres were planted in veretables and the crop of 1551 sold for upwards of $\$ 200,000$. The crop of potatoes, onions, beets, turnips and tomatoes was 134.200 bushels. The same report noted an onion weighing 21 pounds, and at the Fair of 1853 the committee on regetables reported a "white tlat turnip" weighing 33 pounds, a squash that weighed 121 pounds, and a tomato weighing $51 / 2$ pounds. Thus early California began to boast of the mammoth productions of her soil. The first official report printed in California appeared in a document issued by the Secretary of State for 1852. The capital then employed in "fruits and orchards" was given at $\$ 366,910$. The niarket-garden interests were surprisingly large; among single items were " 460,000 pumpkins, worth $\$ 46.000$ :" upwards of $5,000,000$ pounds of onions. "worth $\$ 186.000 ; " 30.000$ bushels of beans, "wurth $\$ i 2.000$." Santa Barbara county reported " 1,370 barrels of olives, worth $\$ 27.500 . "$ Horticultural statistics are continued in the reports of the state Surveyor General. In December, 185\%, the State Agricultural Society of California was organized, after a successful exhibition in San Francisco, where almonds, figs, olives, walnuts, and many other fruits, as well as vegetables and flowers, were shown. Fairs were held in 1854 and 1855 , but were not officially reported. The state began to publish the proceedings of the agricultural society in 1858, when its membership was 856 , and annual reports hare continued till the present time. The California Horticultural So ciety was organized April 5, 1881: in 1883, the State Board of Horticulture was established. Reports of these bodies and of the state fruit-growers' conventions have appeared annually or biennially since 1882. The State Viticultural Commission was organized in 1881, and its reports continued until 1894. Upwards of one hundred octavo volumes represent the official output of California since 1858 in lines of Horticulture, including, of course, the California Experiment Station reports.
Among the special California horticultural literature, are the following: "California Fraits," E. J. Wickson, first edition, 1889; second edition, 1891: third edition, 1900. So many changes and additions have oceurred in this book that all three editions will be found very useful in libraries. "California Vegetables," F. J. Wickson, 1897. The only book on this subject that has ret appeared (1900). "Gardening in California," W'm. S. Lyon, Los Angeles. 189\%. 'Tis is a small volume of 156
pages. "Olive Growing," Pohndorff, San Francisco, 1884. "Olive Culture," A. Flamant, San Francisco, $1887^{\circ}$ "The Olive," Arthur T. Marrin, San Francisco, 1888. "The Raisin Industry," Gustav Eisen, San Francisco, 1890. "The Wine Press and Cellar,"E. H. Rixford, San Francisco, 1883. "Grape Culture, a Handbook for California." T. Hart Hyatt, San Francisco, 1876. "Orange Culture in California," Thomas A. Garey, San Francisco, 1882. Contains appendix on grape culture, by L. J. Rose. "Orange Culture" W. A. Spalding, Los Angeles, Calif. "The California Farmer," established in January,

1094. One of the early California Missions, which were the early promoters of Horticulture on the western coast - San Juan Capistrano.

1854 , and maintaining a spasmodic existence for a number of years, printed the first pomological and horticultural reports of committees, etc. "The Rural Press" was established in 1871, in San Francisco, and still continues. "The Rural Californian," of Los Angeles, still in existence, was established in 187\%. "The California Fruit-Grower," commenced in 1888, and still survives (1900). "The California Florist" first issued in Santa Barbara, then in San Francisco, began in May. 1888, and stopped in April, 1889. "The California Cultivator," of Los Angeles, established in 1884, still published. "The Pacific Tree and Vine," of San José, established in 188*, still published.

California is now a horticultural wonderland; but its illimitable plantations are depressing to the man of small means and non-conmercial ambitions, or to those who would grow for the discriminating personal market. Difficult climates develop the highest type of the amateur.

Periodicals. - Whilst the periodicals of any subject are supposed to chronicle all the Heeting events of the days and years, and to embalm them for future generations, it is the most difficult thing to remember and record the journals themselves. Many horticultural jour nals have lived and died in this country without having attracted the attention of a single library or collector of books. They germinated in the rich soil of expectation, bloomed in the dowy morning of enthusiasm, and collapsed when the sun rose. It is probably no exaggera tion to say that 500 horticultural journals have been started in North America. There are about 40 in the flesh at the present moment. The "Massachusetts Agricultural Repository" was started in 1793 , and this was the first agricultural journal in the country, but it was as late as 1821 that a horticultural cepartment was added to it. The first journal to devote any important ex. nt of its space to horticultural matter. was the
"New England Farmer," which was established in Boston in 1822 , and which was one of the chief instruments in the organization of the Massachusetts Horticultural Society. 1ts first editor was Thomas G. Fessenden, author of the "New American Gardener," a book which appeared in 1898, and passed through at least six editions. The "Horticultural Register and Gardener's Magazine," established in Boston in 1835, and edited by Fessenden and Joseph Breck, and "Hovey's Magazine", were probably the first distinct Horticultural periodicals. The former, although a magazine of more than ordinary merit, did not persist iong. The latter was founded by C. M. Hovey and P. B. Hovey, Jr., and was called the "American Gardener's Magazine and Register of Useful Discoveries and Improvements in Horticultural and Rural Affairs," a journal which, in the third volume, became the "Magazine of Horticulture," and which enjoyed an uninterrupted existence until 1868, thus covering a third of a century of the most critical and interesting period in American Horticulture.

The next important journalistie venture was A. J. Downing's "Horticulturist," begun in 1846, and continued under many changes and vicissitudes for some thirty years, and still represented, in line of descent, by "American Gardening." It has been published in A1bany, Rochester, Philadelphia and New York. The first seven volumes were edited by A. J. Downing; the eighth and ninth by Patrick Barry; the tenth by Barry and J.J.Smith; the eleventh to fourteenth by J. J. Smith; fifteenth and sixteenth, by Peter B. Mead; seventeenth and eighteenth, by Mead and G. E. Woodward. Later it was continued by Henry T. Williams, in New York, until the close of 1875, when the "Horticulturist" was united with the "Gardeners' Monthly," of Philadelphia. This latter magazine started January 1, 1859, as a quarto, but became an octavo with its second volume. It continued until the close of 1887, when upon the death of its publisher, Charles Marot, it passed into the hands of "American Garden," New York. It had a long and useful career under the editorial management of one of the most accomplished and conscientious of Americau horticulturists, Thomas Meehan, whom all the younger generation has learned to love. The "American Garden," itself was a continuation of the "Ladies' Floral Cabinet." In November, 1891, "American Garden" absorbed "Popular Gardening," which was established at Buffalo in October, 1885, aud the com bined journals became known as "American Gardening." With the issue of September, 1893, the journal passed into the hands of the present owners, and the magazine type of American Horticulture ceased te exist. The "Philadelphia Florist" completed its first volume in 1852-3. The subsequent volumes (at least three) were known as the "Florist and Horticultural Journal." It was a rery creditable monthly magazine, with colored plates. An early journal in the new West was Hooper and Elliott's "Western Farmer and Gardener," Cincinnati, Sept., 1839-1845, with plates colored by hand.

The first pomological journal was probably Hoffy's "Orchardist's Companion," a quarterly, established in Philadelphia in 1841, and edited by Dr. Bincklé. It was a pretentious quarto, with colored plates, of which only one volume was issued. This was followed in 1860 by the "North American Pomologist" by Dr. Brincklé, an abler publication than the other. Other early horticultural periodicals were "Western Horticultural Review," Cincinnati, 1851 to 1853, edited by dohn A. Warder; "American Journal of Horticulture," later known as "Tilton's Journal of Horticulture" Boston, 1867 to 1871 ( 9 vols.), edited in its last three years by the younger Robert Manning; "Western Pomologist," Des Moines, Iowa, and Leavenworth, Kansas, 1870 to 1872 , by Mark Miller, Dr. J. Stayman, and others. The first attempt to establish a weekly, after the pattern of the great English journals, was "Garden and Forest," which appeared in New York in 1888, under the management of Professor Charles S. Sargent, of I'arrard University. Unfortunately, this fire journal came to an End with 1897. It stands as the hignest type of American horticultural journalism. Probably the first journal devoted to any particular fruit or plant was Husmann's "Grape Culturist," St. Louis, 1869 to $18 \overline{1} 1$.
On the Pacific coast, the earliest distinct horticultural
periodical was the "California Culturist," the first number of which appeared in January, 1859. This ran through four volumes, and it records the marvels of the first era of modern fruit-growing upon the Pacitic slope. The "California Horticulturist" was established in 1871, and ran through 10 yearly volumes, when, in 1880 , it was merged into the "Pacific Rural Press," which is still in active existence. The current periodical literature calls for no comment here, except to remark that po-mology-the one distinctive feature of American Horti-culture-has no journal devoted to its interests.
America has never been favored with horticultural annuals to the extent to which England and other councries have. The first attempt of the kind seems to have been W'oodward's "Reeord of Horticulture,' edited by A. S. Fuller, which appeared in 1866 and 1867. The next venture was the "American Horticulttural Annual," New York, for the years 1868, 1849 and 1870, under the general editorial care of Dr. George Thurber. The attempt was not made again until the present writer established "Annals of Horticulture," in 1889, and which was issued for five years, the last volume containing an account of the Horticulture of the Columbian Exposition.

Horticultural Societies. - The year 1785 saw the establishment of two agriculturnl societies, the Philadelphia Society for Promoting Agriculture, and the Agricultural Society of South Carolina. These were followed in 1792 by the organization of the Massachusetts Society for Promoting Agriculture. It was not until 1918, however, that the first horticultural organization came into existence, the New York Horticultural Suciety, now, unhappily, extinct. It expired about 1837 . The second, organized in 1827, was the Pennsylvania fiorticultural Society, which is still in vigorous existence. The third, according to Manning, was the Domestic Horticultural Society, organized at Geneva, New York, in 1828, and which was the forerunner of the Western New York Horticultural Society, the latter having continued for 40 years, and which now enjoys the most energetic and influential membership of any similar society in the Union. The next organization was the Albany Horticultural Society, established in 1829, but which expired long ago. In 1829, also, the Massachusetts Horticultural Society was organized, an association which, in the character of the nien who have been members of it and in the service which it has rendered to the advancement of rural taste, stands without a rival in the country. The American Pomological Society was organized in 1850, through a union of the North American Pomological Convention and the American Congress of FruitGrowers, both of which were established in 1848. The Congress of Fruit-Growers was a meeting held in New York on the 10th of October, 1848, at the call of the Massachusetts, Philadelphia, New Jersey and New Haven Horticultural Societies and the Board of Agriculture of the American Institute of the City of New York. The Pomological Convention held its first meeting on the 1 st of September in Buffalo. The American Pomological Society is undoubtedly the strongest organization of pomologists in the world. A.J. Downing wrote in 1852, that "within the last ten years the taste for horticultural pursuits has astonishingly increas $i$ in the United States. There are, at the present moment, at least twelre societies in different parts of the Union devoted to the improvement of gardening, and to the dissemination of information on the subject." At the present time there are orer 500 such societies, and the arerage attendance at the meetings cannot be less, in the aggregats, than 15,000 . From a careful estimate which I made i.. 1891, I concluded that the aggregate attendance for that year at the national, state, provincial and district societies "-robably exceeded 5,000 ." There are now at least ten national societies deroted to Horticulture or some branch of it. The most gratifying feature of this morement towards organization, however, is the establishment of great numbers of local societies, florists' clubs, and the like, which sustain the interest in horticultural pursuits and foster pride in the personal surroundings of the members. All this great body of societies is proof enough that there is a rapidly expanding and abiding love of Horticulture in America, and that it must increase with the increasing amelioration of the country.

Experiment Stations A N D Colleges. - Closely associated with the aims of the societies in the general extension of education, are the experiment stations and agricultural colleges. These institutions are the result of agitations in the agricultural societies. These agitations began orer one hundred years ago. Most of the experiment stations are founded upon the Federal law known as the Hateh Aet, which received the President's signature March 2, 188\%. There are now 55 experiment stations in the United States. There are a dozen scientific bureaus and divisions connected with the Department of Agriculture at Washington, three of which directly concern the horticulturist: Divisions of Pomology, Vegetable Pathology and Entomology, and to these might be added the Division of Gardens and Grounds. The work of all these stations and of the agricultural bureaus and divisions is condensed and epitomized in the "Experiment Station Record," a monthly publication of the Department of Agriculture.

The writings and teachings of the horticulturists in the colleges and experiment stations will, in time, bring our horticultural activities into proper relationships and perspective. These men will arrive in time at judicial conclusions on the disputed points. It is only those persons who have some taste and leisure for study and reflection who can do this. Persons who are intensely absorbed in one commercial pursuit usually exalt that pursuit out of all proportion to its relative importance.

Commerclal Transportation. - The rise of the great commercial movement in horticultural products may be said to have taken place since the civil war. The first important invention to usher in this era, aside from improvements in transportation, was that of canning perishable commodities. The method originated with a Frenchman in 1795, but it first became an assured and recognized success in this country. The inauguration of the process dates from 1825 , when President Monroe signed patents to Thomas Kensett and Ezra Daggett, to protect them in an improrement in the art of presersing. Kensett appears to hare canned various products somewhat extensively as early as 1819. At the present time. the United States outstrips other countries in the variety and extent of its canned goods. Over 20,000 factories in North America now employ towards a million hands, directly or indirectly. during the canning season. For a sketch of the development of the capning industry, see an article by Edward S. Judge in "One Hundred Years of American Commerce."

Drying fruit for market by fire heat began to attain some prominence about 1860 , but the advent of the Alden drier about 1870, and the Williams and others at about the same time, brought in the modern "evaporated" product, which is now an inseparable adjunct of the fruit trade. In the East, the most important region of evaporating establishments is western New York, particularly Wayne county, although California far excels other areas in the output of similar products.

The exportation of fruit has lately assumed large proportions. The first record known to the writer of the shipping of fruit across the ocean occurs in the correspondence of John Bartram, from which it appears that as early as 1773 apples were shipped to England in "great quantities." In $1821,68,643$ bushels of apples were exporced. The modern apple export trade is generally said to have begun with the shipment of five

1095. A modern commercial apple orchard, in clean tillage.
barrels from Boston to Glasgow in 1845 under the au spices of one Buchanan, a Scotchman. The first heavy exportations were made about 1880. In the season of 1880-81 the total shipment of apples from North America to Europe was $1,328,806$ barrels. The subsequent heary years of the earlier period were as follows: 1858-89, 1,407,409 barrels; 1891-92, 1,450,336 barrels; 1893-93, $1,203,538$ barrels; $1894-5,1,438,155$ barrels. California green fruits were first shipped to Europe in 1891, but the first public shipments were made the following year. Fresh grapes from the East were first shipped in 1892 from Chautanqua county, New York. Florida first shipped oranges to Europe in the fall of 1892, and California early in 1893. The eranberry was first put upon the European market in 1893. The first shipment of fresh peaches across the ocean from the East appears to have been made in 1893, when a consignment of Delaware peaches was made to Ambassador sayard at London, but the attempt was only partiaijy suceessful. The Canadians have recently made careful experiments with transatlantic shipments. The annnal value of fruit exports from the United States (including cider, vinegar canned and preserved fruits, nuts, and all green fruits) is about five million dollars' worth. The largest sin le item in this aggregate is fresh apples, comprising one and one-third million dollars' worth.

Unfortunately, there are no statistics of American Horticulture. Various horticultural inquiries were in cluded in the schedules of the Eleventh Census (1890); only a few bulletins of summaries were published. The American Cranberry Society makes a yearly summary of the output, by means of correspondence amongst its members. The apple exporters have records of the transatlantic apple trade. The Treasury Department publishes summary statistics of imports and exports. But beyond this, there is little statistical measure of our horticultural wealth, except figures which are gathered now and then for special areas from transportation companies. The Twelfth Census is giving attention to the matter.
A summary history of the fruit trade was written by John W. Nix for Depew's "One Hundred Years of American Commerce," 1895. "One hundred years ago the fruit merchant, as such, dia not exist in this country. Some of the larger importers occasionally received, among the other articles of an assorted Mediterranean cargo, a few half casks of dried prunes, currants, raisins, or grapes, but beyond the 3 even the luxurious did not aspire. It was some years before eren so sim-

## hosackia

ple a custom as selling native fruit brought to town in season by the neighboring farmer became at all general with the old New York grocers." The first bananas were imported into the United States in 1804, but "it was not until 1830 and later that the importation $0^{\circ}$ foreign fruit was considered seriously." "ln 1832 there arrived at New York by sailing ship the first cargo of oranges from Sicily. Lemons followed almost immediately, and the Mediterranean fruit trade iecame a recogrized interest from that time." The fruits came to be sold largely by auction. About 1865 the wholesale commission business had "come to be a generally recognized feature of the fruit trade, many of the Italian growers * * consigning their fruit directly to American firms." "About 1850, the third and last change in the methods governing the Italian fruit trade began with the establishment here of representatives of several of the large Italian houses." "Prior to the civil war and for several years afterward, the small fruits of New York, New Jersey, Long Island and Delaware were the only competitors of the foreign fruit. * * Such was the condition of affairs in 1867, when the first consignment of green fruit from California was shipped by express to New York."
L. O. Thayer, editor of "Cold Storage," New York, estimates that there are in the United States (in 1900) 920 cold stores, excluding 300 used exclusively for meat. Of this 920 he says that 700 are fitted for the storing of fruits, produce, eggs, butter, etc. The capacity of these 700 is something like $35,000,000$ cubic feet, or a yearly capacity of $980,000,000$ pounds. He also says that there are about $2 \mathfrak{2} 0,000$ refrigerator cars in use in this country; of this number about 50,000 are used for transportation of perishable products and the remainder for meats. Almost every cold store works to its fullest capacity at least nine months of the year. In Canada there are 40 cold stores, about 30 of them being fitted for butter, eggs and produce. Their capacity is about 200,000 cubic feet.

Conclusion.-The one most significant thing in American Horticulture is the fact that it is American. Ideals, methods, varieties, implements, are unique. Even the species of plants which we cultivate are often peculiar to ourselves. This is particularly true in the fruits, for the native wild species have given us our grapes, raspberries, blackberries, lewberries, mulnerries, cranberries, some gooseberrie-, many plums, some apples, and various minor fruits. In other esculerts, it has given us the pumpkins and squashes, Indian corn, beans and Jerusalem artichokes. Our native flora has enriched the flower gardens of our own country and of the world. An inquiry made in 1891 showed that 2,416 species of the United States and Canada had been introduced to cultivation. In that year, 1,929 of these species were actually in the trade, and 1,500 had been introduced into England. Even when the species are of Old World origin, the varieties are American in most of those types which have been long cultivated here. Very few Old World apples and peaches are popular in North America, and the number in pears, plums and other fruits is constantly decreasing. The American carnation is already of a different type from the European. One cf the strongly American features of our Horticulture is the great proportionate derelopment of the cut-flower industry; but the last few years hare seen a relative increase of pot-plant and decorative-plant demands. These divergenciss are likely to increase rather thau diminish. The tendencies which differentiate our Horticulture from that of the Old World will also differentiate the Horticulture of each geographical area of our own country, thereby giving each area the varieties and the methods which are best adapted to it.

The second most signiflcant thing in our Horticulture is its strong commercial trend. This is particularly true of fruit-growing and cut-flower-growing, which have developed on a large-area basis (Figs. 1093, 1095). The first horticultural interest in this country was the amateur or home-garden type. That type is not dead, and it will not die so long as hearts burn for the out of-doors and souls long for beauty and for the solace of nearness to nature. Amateur or personal Horticulture is increasing with great rapidity. It is a part of the ripening of the boine life and the acquiring of
leisure. Personal gardening is intellectual employment. The amateurs are the chief buyers of horticultural books. Iet, for all this, the prevailing note in American Horticulture is commercialism, and this note is the stronger the farther one goes from the Atlantic seaboard. Both types of Horticulture will increase. They are not incompatible, but complementary. Both are necessary to the greatest public weal. The commercial type will always be the aspiration of the comparative! few : it is coming more and more to be a profession. The personal or amateur type will be increasingly the hope of the many, for every person who has a home wants a garden.
Another important feature of our Horticulture is its living literature. Persons may care nothing for books; yet the literature of any suljeect is the measure of its ideals. Persons may say that the books are theoretical and beyond them; yet good books are always beyond, else tiney are not good. There is no use fot literature if it does not inspire and point to better things. We measure the aspirations of any time by its writings. Whether the fact be recognized or not, the literature of our Horticulture is an underlying force whicin slowly dominates the thoughts and ideals of men. A book is a powerful teacher. It states its propositions, and is silent; and in the silence its lessons sink into the fiber of the mind. More than 600 books have enriched American Horticulture. Many of them have been poor, but even these may have challenged controversy and have done good. The early books were largely empirical and dogmatic. Downing, for example, in 1845, says that tillage makes better orchards, and he cites cases; but he does not give reasons. He does not mention nitrogen, potash, soil moisture, chemical activities. He does not even mention plant-food in connection with tillage. The horizon has widened since then. Men do not take up things actively until they know the reasons. The poor farmer, not knowing reasons for anything, has no inspiration and goes fishing. Thirty years ago, Colonel Waring was the apostle of deep-plowing; yet one should plow neither deep nor shallow until he knows why. Our literature has been singularly devoid of principles and analysis. The great writer is he "ho catches the significant movements and ideas of his cime and portrays them to inspire his reader. Henderson first caugit the rising commercial spirit of our vegetable gardening; his "Gardening for Profit" is the greatest American vegetatle gardening book, eren if somewhat out of date as a book of practice. The book of principles is now needed by the vegetablegardener. American pomology has several strong names amongst its writers. Most of these writers have sacrificed fundamental things to varieties. The frist susiained effort to write on fruit-growing from the point of view of underlying principles was by Charles R. Baker, who in 1866 published his "Practical and Scientific Fruit Culture." But the time was apparently not yet ready for a book of this kind, and much of the discussion lacked vital connection with the orchard. The book was too suggestive of the study and the compiler. Coxe, Kenrick, Manning, Downing, Thomas, liarder, Barry, Fuller, are significant names in American pomological literature. In floriculture there have been many excellent treatises, but there is not a single great or comprehensive book. In recent years, the making of horticultural literature is passing more and more from the working horticulturist to the specially trained student and writer.

The great development of American Horticulture, as compared with European standards, has been in fruitgrowing and its accessory manufactures, and cut-flowers. Its landscape planting is also a strong feature, and is increasing rapidly. Its cemetery planting is probably the best in the world. In America, also, the Gevelopment of agricultural tools and appliances, and of spraying for insects and diseases, Lave reached their highest derelopment. Other characteristic features of our Horticulture are its youth, and the vigor with which its scope is enlarging.
L. H. B.

HOSACKIA (David Hosack, professor of botany and medicine in New York; author of Hortus Elginensis, 1811; died 18:5). Legumindse. Herbaceous plants, of which 3 species were once adrertised by collectors of north-
west American plants. The genus contains about 30 species, all American and almost wholly confined to the Paciffe slope. Herbs or rarely subshrubs: lis. pinnate, with 2 to many lfts.: stipules minute and gland-like, rarely searious or leafy: fls. yellow or reddish, in axillary umbels which are peduncled or not. The genus is closely related to Lotus, but the calyx teeth are shorter than the tube: keel obtuse: lvs. usually with numerous lfts. none of which are like stipules, while Lotus has calyx lobes usually longer than the tube, a rostrate keel and 5 or 4 lfts., of which 2 or 1 are stipule-like.
The $\boldsymbol{Z}$ species first mentioned belong to a section in which the pods are shortly acute, linear, many-seeded, straight, glabrous: fls. and fr. not refiexed : peduncles long. The third species belongs to a section in which the pods are long-attenuate upwards, incurred, pubescent: peduncles short or noue: fls. and fr. retlexed. Monogr. by Watson in Bot. Calif. 1:133.
crassifolia, Renth. Stout, $2-3 \mathrm{ft}$. high, nearly glabrous: lfts. $9-15$, thickish: stipules scarious, smal!: bract below the umbel : calyx teeth short : pod thick: Hs. greenish yellow or purplish. B.R. 23:197\%.
bicolor, Dougl. Glabrous: lfts. 5-9: stipules scarious, small: bract usually none or small: calyx teeth half as long as the tube: prod slender : fis. gellow, the wings often white. B.M. 2913.
decúmbens, Benth. Silky or moolly, with appressed hairs: stems ascending, 1 ft . or more long: stems herbaceous: lfts. 5-7: umbels less dense: stipules glandlike: pods pubescent.
W. M.

HOTBEDS. These are low glass structures that are generally heated by fermenting vegetable substances, such as stable manure, although fire heat is occasionally applied, steam, hot water and thes being used. Their usual place is some spot sloping to the south, where they are protected by buildings, evergreen screens or board fences, from the north and west winds (Fig. 1096). The fames are made either of plank or boards and may be portable, or built in place, the former being taken down and packed away except when needed. A tight board fence 6 feet high, as a wind-break, is desirable, as it will also serve as a support for the shutters, mats and sash when they are remored from the bed, and it will answer best for this purpose if it inclines a foot or so to the north.
When movable frames (Fig. 1097) are used they are generally constructed of 2 -inch plank, the side pieces

1096. Hotbed sheltered by a hedge. The straw mats have been rolled off.
being from 9 to 12 feet and the ends 6 fect in length, to receive either three or four ordinary sash, which are 3 by 6 feet. The north side of the frame is made 15 inches wide, while the south side is but 9 or 10 inches, thus giving a slope to the south, which will permit the water to run off and faror the passage of the sun's rays through the glass. The end pieces are 6 feet in lenf,ib,
but taper from 15 inches at one end to 9 or 10 at the other, so as to fit the side boards. The plank for portable Hotbed frames may be held in place by means of stakes, or iron rods or bolts may be fastened to the ends of the side pieces so that they can pass through the holes in the ends of the frame, which can then be fastened by keys or nuts. As supports for the sash and to hold the sides of the frame in place, cross-strips of

1097. Hotbed with movable frame.
board 3 inches wide are sunk into the upper edge every 3 feet, and another strip with a width equal to the thickness of the sash is fastened on edge to the center of its side. Frames of this size require a slightly deeper mass of heating material than would be necessary for larger frames, aid when they are to be used during the winter, it is well to excavate to the depth of $21 / 2$ feet, and for a space 2 feet longer and wider than the frame, and after the hole has been filled with heating material, the material should be well tramped down. The frame is put in place and manure is then banded about it.

For permanent frames, rough l-inch boards may be used, although 2 -inch plank will be found far more durable. Stout stakes should be driven into the ground about 4 feet apart, where the north line of the bed is to be located. These should projectabore the surface from 12 to 15 inches, and should be boarded up from a point just below the level of the ground, so that the stakes will be on the north side of the frame. A second row of stakes should then be driven at a distance from the first row equal to the length of the sash, which is usually 6 feet, although other lengths are sometimes used. The south wall of the frame should then be boarded up so that it will be 5 or 6 inches lower than the north wall, after which the end should be closed and cross-pieces should be fitted, the same as for the portable sash. To prevent frost from working into the frame, soil should be taken from the inside and banked against the boards outside, so that it will reach two-thirds of the way to the top of the frame, and when the bed is ready for use, 3 or 4 inches of horse manure should be spread over this. The frame should be placed about 3 feet from the fence, and if other rows are needed, there should be alleys about 7 feet wide between them.

Hotbed Sash.-The size that has been found most satisfactory for Hotbed sash is 3 by 6 feet, as wher larger than this they are not readily handled by one man. While pine and other native lumber mar be used; cypress is generally preferred, as it is much more durable and costs but little if any more than clear pine. The sides and upper ends of the sash are made from 3 by $11 / 2$-inch strips, grooved to receive the glass, while the lower end is about 1 by 5 inches. The center strips are 1 by $1 \frac{1}{2}$ inches. For glazing Hotbed sash, single strength 10 by 12 glass is commonly used, as three rows of this size will fill a sash 3 feet wide. While doublestrength glass will be less easily broken, the increased weight is an objection to its use. The sash should receire two coats of paint, and after the glass, which may be either lapped or butted, has been set, it should be given a third coat.
Mats and Shutters.-For covering the frames on cold nights during the winter and early spring months, straw riats are often used, although those made of burlap are generally preferred. The burlap may be either single or doubled, or it may be stuffed with straw, excelsior on other materials. Quilted mats filled with combination wool are very warm and quite durable. During the winter, wooden shutters are also desirable to नlace orer the mats, as they assist in holding the $3+i t$, and by keeping the mats dry, aid in preserving them.
Heating Material for Hotbeds.-To provide heat for the beds decomposing horse manure is generally used. While a large amount of straw is not desirable, the
presence of urine-soaked bedding with the manure to the extent of one-third its bulk is not objectionable, as it will lengthen the heating period of the manure. Unless straw is mixed with the manure, it will be well to add forest leaves to the amount of one-third to one-half the amount of the manure. The heating material should be forked over and placed in a pile 5 or 6 feet $w^{\text {: }}$ de, 3 or 4

1098. Hotbed in eruss-section.
feet high and of any desired length. If the manure and straw are dry, it will be well to moisten them with a fine spray. In case there is but a small amount of manure, it will be beet to use warm water, thoughin all cases the soaking of the manure should be aroided. Within four or five days the giving off of steam will indic: : at heating has commenced. The pile should then $\because$ ked over, working the outer portions into the center.
The amount of heating material that will be required for a Hotbed will vary with the crop, as well as with the location and season. For zero weather, there should be at least 18 inches of heating material after it has been well packed down, and 24 inches will be desirable in midwinter in the northern states, while 6 or 8 inches may answer where only a few degrees oi frost are expected. For 18 inches of manure, the excaration should be made to a depth of 28 inches below the level of the south side of the frame, and 31 inches below that of the north side. After the manure has warmed through for the second time it s'ould be placed in the excavation. spreading it evenly and packing it down with the fork. but leaving it for a few days before tramping it. Care should be taken to have the corners well filled, that an tren settling may be secured. After the manure has again warmed up, it should be thoroughly tramped.

The bed is then ready for the soil. which should be quite rich and contain a large amount of sand and humus, a compost of decomposed pasture sods with onethird their bulk of rotten mamure being excellent for the purpose. The thickness of the soil should vary from 5 to ${ }^{-1}$ inches, the greater depth being desirable for radishes and other root crops (Fig. 1098). When boxes of plants are to be placed in the beds the depth of soil need not be more than 3 inches. For a few days the bed will be quite warm, but when the temperature of the soil has dropped below $90^{\circ}$ the seeds may be sown or the plants set out.
In severe weather the mats and shutters should be placed on the bed at night and should be removed in the morning. When the sun is shining. or if the bed is very hot, it should be rentilated by raising (Fig. 1099) or slipping down (Fig. 1097) the sash, the amount depending upon the season and the condition of the bed. By the middle of the afternoon the sash should be closed and the covering should be replaced before night. When used in the winter time, the Hotbed should be either sunk in the ground or well
1099. Ventilating the Hotbed. banked up with soil or manure, so as to keep out the frost.

Pipe-heated Hotbeds.-Fire Hotheds are generally from 10 to 12 feet wide, with a span roof. A Hotbed of this size would require two lines of 6 -inch sewer pipe as flues (Fig. 1100), with furnaces in which wood can be burned at their lower ends. In order that a good draft
can be secured, it is advisable to have it upon a side-hill sloping to the south. When hot water is used for heating Hotbeds, a 2-or $21 / 2$-inch wrought-iron pipe is placed just beneath the ridge as a flow pipe, with one or two - -inch pipes upon each of the side walls, the number varying with the season and the crops to be grown (Fig. 110i). Steam may be used in the same way, but the pipes should be one or two sizes smaller.
In the northern states the use of Hotheds for growing crops during the winter months is not advisable, as better results can be secured in greenhonses, whieh will not be very much more expensive to build, and will be more durable besides much easier to handle, but in the spring Hotbeds are very useful for starting vegetable and bedding plants, as well as for growing lettuce, radishes and other vegetables. In the South fire Hotbeds answer very well for use in the winter for growing plants for the truci garden, as well as for foreing vegetables, but even there the simply constructed greenhouses are more satisfactory.

Collframes differ frơm Hotbeds only in lacking artificial heat, as they depend entirely upon the sum. The surface of the soil should be from 6 to 12 inches below the glass, and a large amount of plant-food should be provided. Coldframes are often used for wintering halfhardy plants, and for starting and growing plants in tl e spring, after danger from severe frost is over.

Management of Hotbeds. - if the weather is mild dur. ing the latter part of February, the manure can be procured and prepared for use so that the Hotbed may be started about the first of March. If properly constructed


## 1100. Fire Hotbed.

they will provide heat for two months, and can then bo used during May as a coldframe, thus making it possible to ta' off two creps in the spring. Although it is not often practiced, they may be used in the fall for growing a erop of lettuce or other regetables, which can be matured before the first of December.

If a greenhouse is not available for starting the plants, sceds of lettuce, radishes, cabbages and other of the hardier plants may be sown in the Hotbed in the spring as soon as it is ready, in rows 4 or 5 inches apart. When the first true leaf appears, the radishes should be thinned and the other plants transplanted to about 2 inches. Later on, the lettuce plants should be placed about 8 inches apart each way. If the weather is so cold that the bed should not be kept open, the seeds may be sown and the first transplanting may be in flats or boxes, which can then be placed in the beds. Aside from proper ventilation, covering and watering, the beds should be occasionally weeded and the soil stirred. About the first of April, tomatoes, cueumbers and similar plants may be started. As soon as one crop is taken off another should be placed in the beds, and by deepening the soil ther may be used during the early summer for growing cauliflower, tomatoes and cucumbers.
L. R. Taft.

## HOTEIA, See Astilbe.

## HOTTENTOT BREAD. Testudinaria elephantipes.

HOTTONIA (Peter Hotton, 1648-1709, professor at Levilen). Primulicear. Featherfoll. A genus of two species of aquatic plants, the only aquatic members of the primrose family. They are suitable for small aquaria. The European species is procurable from dealers in aquatics; the American one can be gathered in shallow, stagnant ponds from Massachusetts to western New York and south to Florida and Louisiana. The European plant, H. palugtris, Linn., is an herb with creeping rootstock, whorled, leafy branches entirely
submerged and alternate, pinnately dissected Irs., the divisions numerous and linear. From the center of the whor of branches a single leafless flower-stem rises out o: the water in summer, bearing a raceme with several whorls of 3-5 or 6 handsome, pale purple tls., ap-

1101. Hutbed (or forcing house) heated by hot water.
parently with 5 petals, but actually with a short corolla tube below the lobes. The plants root in the mud or tloat, and the $\mathrm{fl:s}$ are about three-fourths of an inch in diameter. Stamens $\overline{5}$, inserted on the tube of the corolla: capsule stobglobose, with $\overline{5}$ lateral ralves: seeds numerous. The American plant, H. inflàta, Ell., has spongy seems and clustered peduncies, which are partly above water, inflated, jointed, the lowest joint 2-4 in. long and sometimes 1 in . thick, the others $1-\%$ in number and successively shorter : fls. small, in whorls of 2-10 at the joints. B.B. $\mathbf{2}: 586$. Neither species is advertised. Like all aquarium piants, they are interesting, but they have no horticultural value otherwise. Both plants are called Featherfoil and Water-violet; the American also Water-feather and Water-yarrow.

HOULLETIA (after Houllet, French gardener). Orchidicece. About 8 species of epiphytic, pseudobulbous orchids from South America, allied to Stanhopea, and blooming in summer. Pseudobulbs conical, 1-leaved: lrs. lanceolate, plicate: sepals and petals $\cdot$ ally nearly equal : labellum continuous with the clavale, arcuate column: pollinia 2 , on a long caudicle.
odoratissima, Linden. Sepals and petals reddish brown : labellum white, with two erimson appendages midway of its length. Colombia. G.C. II. 24:77. Var. Antioquiénsis, André ( $H$. Antioquensis, Hort.), has labellum white, tinged yellow. I.H. 17:12.
Brocklehurstiàna, Lindl. Fls. $5-8$, about 3 :ia. across, brownish red, dotted with brown-purple; sepals ohlong, obtuse, the lateral ones slightly united at base; petals narrower, obovate; labellum yellow, thiekly dotted with brown-purple; from its lower half two linear appendages have their origin. Braz. B.M. 4072. P.M. 9:49. R.H. 1885:492.
picta, Linden \& Reichb. f. Fls. 6-10; sepals oblong, brownish, unspotted abore, tessellated with yellow below: petals similarly colored; labellum yellow, spotted or dotted with brown-purple or red-purphe, the end hastate: apex recurved, pale yellow reined with crimson. Colombia. B.M. 6305.
Wallisii, Linden \& Reichb. f. (II. chrysíntha, Lind. \& André). Fls. about " in. heross; sepals and petals gellow, blotched inside with brown-purple: labellum yellow, dotted with crimson. Colombia. (i.C.II. 18:437. I.H. 18:71.

Oakes Ames.
HOUND'S TONGUE. See Cynoglossum

## HOUSE LEEK. Sempericum tectorm.

HOUSE PLANTS (Figs. 1102-1104) are those plants which can be grown in the ordinary rooms of dwelling houses. They may be hardy or tender; but only such as are suitable for this purpose will be considered here.

In the living rooms of the modern well-built house, plants must contend against difficulties which did not exist in the less carefully equipped dwellings of fifty years ago or earlier. The present methods of heating and lighting, by gas or kerosene lamps, not electricity, produce a dry atmosphere which is inimical to vegetable growth. In houses lighted by electricity, and heated by any system which introduces fresh air in abundance. this matter is not so troublesome. Too much heat and dry air are harder for plants to endure than insufficient light, but it is also lack of light which makes it so difficult to grow flowering plants in houses. Dust and insects do harm, but these difficulties can be overcome.

For the abore reasons it is important to select House Plants which are adapted to resist a dry atmosphere, a high temperature and inadequate light. Such examples can be found among certain tropical plants with coriaceous leaves and small stomata, what the tlorists call foliage plants, e. g., rubber trees, palms, etc. These make the best foundation upon which any successful system of growing plants in houses can be built. Flowering plants can also be used, but they should be introduced from time to time, each in its proper season, when about to bloom or in bloom, and not considered a part of the permanent arrangement. After Howering they should be removed: their function is not rinlike the use of cutflowers, but ther last longer and are not much more expensice. while the $\begin{gathered}\text { largely increase the attraction of }\end{gathered}$ the window-garden.
The best rooms for plants are those which get the most sun, and the best positions are those nearest the windows, where there is not only more light but more fresh air. A large palm, fern or rubber will grow in an entry or poorly lighted corner, but the best place is that which is best lighted. Plants do well in a kitchen, the moisture from the cooking helping them materially: it is by no means a bat? hospital for unhealthy specimens.


## 1102. Pot-plants in the window.

Sometimes a plant-room, not a conserratory, can be set aside for this purpose explusively. If this is done in the basement, ard it is possible to get good light, satisFactory results are obtained. The floor can be made of
concrete and water used withont stint. In such a room plants can be grown and brought into the living rooms when in their best condition.

In rooms in which plants are kept, any device by which the atmospheric moisture can be increased is desirable: oilcloth on the floor, or a floor of porous tiles; a zine tray, in which the pots can be set and surrounded with moss; saucers under the pots, the pots being raised slightly to prevent the roots of the plants standing in the water which runs through. By these aids not only can plenty of water be given to the roots, but there will also be some opportunity to sprinkle the leaves, while the evaporation of surplus water will dampen the air. The Japanese porcelain pots are not only ornamental but useful; the glaze prevents undue evaporation from the sides, and the legs hold the pot well above the water which may collect in the saucer: they are in every way excellent. Wooden tuhs are serviceable for large plants or for any which are likely to be exposed to frost, either before or after bringing into the house. Plants should never be overpotted, but the larger the bulk of earth the easier it can be kept uniformly moist; from the wider surface, too, there is more evaporation. For these reasons it is sometimes a good plan to have window boxes in which several plants can be grown; or the boxes can be filled with moss in which the pots can be plunged. All pots, tubs or boxes for growing plants should have holes in the bottom through which water can pass freely.


Much trouble is likely to come from the use of unsuitable potting soil. Procure it from an experienced florist, or make it yourself of equal parts rotted sods, old leafmold, rell-decayed cow manure and clean, sharp sand: discard tea leaves, chip dirt, and the decomposed remains of dead stumps. The soil should always be moist when used, not too wet and never dry: it should be made firm, not hard, and a good space left between the surface and rim. Large pots should be drained with potsherds and moss. The best time for potting is just before the plant begins to grow; the next best is just before growth ceases, thus giving the plant opportunity to establish itself in its new quarters before it stops growing. It is not always easy to do this properly at home, and large and valuable plants should be sent to a
florist. Plants growing in the open air should be lifted and potted two weeks or more before bringing into the house, not only before frost but before the nights are cool. Keep them at first in a cool, shady place, gradually accustom them to the sunlight, and carefully avoid all drafts. Do not give too much water at the root: some wilting is unavoidable, and cannot be prevented by heary watering. Give one good application when they are first potted, and sprinkle the foliage and surroundings in the middle of the day. After they aro established, keep them out of doors, on the piazza or perch, until there is danger of frost, but try to bring them into the house before the furnace fires are lighted.
A period of rest is natural to all plants. Amateurs often make mistakes in trying to force plants to grow all winter in the house after a vigorous growth in the open ground all summer. Such plants should be rested, kept cool at first and water withheld, but never to such an extent as to shrivel the wood. No rules can be given for watering, the most important detail of plant-growing. Water must be given as it is required, a knowledge to be gained from experience only. This may be once a day or once a week, twice a day or once in two days. The smaller the pot and the more vigorous the growth, the oftener it will be required. In hot weather and in dry rooms more water is needed than in cool rooms and on damp, cloudy days. It should always be given in sufficient quantity to pass through the hole in the bottom of the pot: here it can remain an hour or more, and part of it will soak up, back into the pot, but the surplus should be taken away with a sponge, unless the pot has legs or it is a plant like calla, English ivy or some ferns, which are uninjured by an over-supply. Water given to the foliage of House Plants in the form of spray is always helpful.
Insects. dust and sometimes fungous pests are troublesome to House Plants, due largely to insufficient watering and lack of ventilation. The best remedy is frequent washings with warm water and a sponge for plants with large leares. All plants can be easily cleaned at the kitchen sink or in the bath trbb, or advantage can be taken of a mild day, and the work done in the yard with the hose. The forcible application of water will remore most insects, but if scale appears it must be taken off with a stiff brush. Whale-oil and tobacco soap are too rank for house use; fir-tree oil and Gishurst's compound are less obnoxious. They can be used when the plants are washed with sponge or brush. The florists' preventive against greenfly is impracticable: enough tobacco smoke to harm him would not be tolerated. The red spider can be driven off by spraying with an atomizer, if discovered in time. Some plants are not attacked by insects, but are injured by dust, e.g., the rubber-tree. Dusting when dry is better than nothing, but washing is best. If fungous diseases appear, the plants should be isolated, giving a chance to recover, or be thrown away.

Ventilation is an important factor in keeping House Plants in good condition. Open the windows on bright days: the fresh air is moist and therefore grateful, and will do no harm, even if the plants are near the glass, so long as the sun shines and discretion is exercised.

The night temperature need never exceed $50^{\circ} \mathrm{F}$., and a drop of $5^{\circ}$ or even $10^{\circ}$ is not likely to do any harm. Precauions must be taken to exclude frost; the blinds must be shut and the curtains pulled down on cold nights. A layer of newspapers between the plants and the windows is a protection in extremely bad weather, or a large kerosene lamp can be allowed to burn all night near the plants.

A list of suitable foliage plants for the house: Ficus elastica, the rubber plant; $\boldsymbol{F} \cdot \mathbf{r}$ religiosa, the peepul tree, and most of the other strong-growing evergreen species. Livistona Sinensis, Corypha aistralis. Chammeps Fortunei and Rhapis Japonica, all good fan-palms (the first is the best); Phanix reclinata, $P$. rupicola and $P$. Canariensis are the best date-palms. Seaforthia elegans, Howea Belmoreana, Kentia Forsteriana, Areca Baueri, A. rubra and Cocos Weddeliana are all good palms, but require more care than the fan and date-palms. Cycas revoluta, the sago-palm, Curculigo recurvata, Aspidistra lurida, Pandanus utilis, the serew pine, $P$. Teitchii, Phormium tenax (New Zealand flax), Cyperus alternifolia, Papyrus antiquorum, Cordyline (Dracena), Agave

Americana (the century plant), Pittosporum, Grevillea robusta, English is all do well in ordinary rooms. Daphne o ora, Laurestinus, Olea frugrans and orange tree are both flowering and foliage plants, but require a cooler room than any of the preceding varieties.
Good flowering plants are Azalea Indica and Camellia Japonica, both of which should be kept in a cool room when not in bloom. Calla and begonia both do well. Chrysanthemums, cyclamens, Chinese and English primroses, freesia, ixia, oxalis, fuchsia, mahernia, euphorbia, beliotrope, pelargonium and lily-of-the-valley can be brought into the rooms when in flower, and last as reasonable time in good condition. Hyacinths.tulips, narcissus and crocus, if potted in October, kept covered up out of doors until cold weather, stored in a cool cellar until the middle of January and then brought into warm rooms, will give flowers: a succession can be maintained by bringing them into warmth at intervals (see Bulbs).
B. M. Watson.

HOUSTONIA (Dr. Wm. Houston, of the early part of the eighteenth century). Rubidcece. About 20 North American small herbs or subshrubs, with pretty white, blue or purple fis., some of the species occasionally cult. in wild gardens and rockeries. Parts of the fls. in 4's, the corolla gamopetalous and funnel-form or salverform ; stamens and styles polymorphous; stigmas 2: capsule opening near the top: lvs. small, opposite. A moist, partly shaded place is to be recommended for most Houstonias, because their flowering season is thereby prolonged and the plants retain their foliage much longer than in a drier and sunny position. Collected plants are not difficult to establish. Prop. by division. The following perennial species are offered by American dealers.
A. Stamens or stigmas conspicuously exserted.
purpùrea, Linn. Tufted, 3-12 in. high, bearing offsets, glabrous or pubescent: radicallvs. ovate or oblong, short-stalked: fls. in late spring or summer, the corolla funnel-form, ught purple to white. Canada to Texas. Var. longifolia, Gray, $3-6$ in. high, thinner-lvd. and mostly glabrons: IVs. oblong-lanceolate to linear, 1/2-1 $1 / 2$ in. long. Var, tenuifolia, Gray, is slender and diffuse, 6-12 in. high, with almost filiform branches and peduncles: stem-lvs. linear. This species and its forms grow well in dry, open places.

AA. Stamens or stigmas little or not at all exserted.
cærùlea, Linn. Bluets. Innocence. Quaker Lady. Fig. 1105. Little tufted perennials, 3-6 in. high, the stems glabrous: radical lvs. spatulate to obovate, hairy, shortpetioled, the stem-lys. sinall: corolla salver form, the tube much exceeding the calyx lobes, varying from blue to white, with a yellow eye. B.M. 370. D. 233.-Charming little plant in grassy places in the northeastern states and southward in the Allegheny region. Excellent for rockwork and grassy borders. Early spring. In gardens, may be treated as annual or biennial.
serpyllifolia, Michx. Extensively creeping : radical Ivs. orbicular to ovate-spatulate and abruptly petioled: corolla rather larger than that of $H$. corulea, deep vio-let-blue (often white). Va., southward. Early spring.
J. B. Keller and L. H. B.

HCVENIA (after David Hoven, Senator of Amsterdam). Rhamnd̀сес. Ornamental shrub or small tree, with deciduous alternate, long-petioled lvs. greenish inconspicuous fls. in axillary peduncled cymes, and with small globular frs. on reddish, fleshy and edible peduncles. It grows into a small, round-headed tree, with handsome somewhat shining foliage, and thrives best in sandy loam, but is not hardy north. Prop. by seeds, also by root-cuttings and cuttings of ripened wood under glass. One species in Himal., China and Japan. Without stipules: calyx lobes, petals and stamens 5 , style 3-parted: fr. 3 -celled and 3 -seeded, indehiscent.

dúlcis, Thunb. (H. incequalis, DC.). To 30 ft.: lvs. cordate-ovate or orate, acuminate, serrate, almost glabrous, $4-6$ in. long: cymes many-fld. S.Z. 73-74. B.M. 2360. A.G. 12:80.

Alfred Rehder.
HOVEY, CHARLES MASON (Fig. 1106), horticultural journalist and nurseryman, was born in Cambridge, Mass., Oct. 26, 1810, and died there Sept. 2, 1887. He is best known as editor of the "Magazine of Horticulture," which had an uninterrupted existence from 1835 to 1868. It was founded as the "American Gardener's Magazine," by C. M. Hovey and his brother, Phineas Brown Hovey. In its third volume (1837) it changed its name, and continuously thereafter was known as the "Magazine of Horticulture," and was edited by Charles M. Hovey alone. It enjoyed the longest period of prosperity of any American horticultural journal. It is a record of the budding stage of New World horticulture. It was modelled after Loudon's "Gardener's Magazine," although its spirit was essentially American. Essays, records of current events, reviews of books, descriptions of varieties, were prominent features. It had very few illustrations. Mr. Hovey was author of the "Fruits of America," issued in parts from 1852 to 1856 , completing two volumes and making more than a begin ning on a third. Its purpose was to give "richly colored flgures and full descriptions of all the choicest rarieties cultirated in the United States." The volumes contain more than 100 colored plates. Handsomely printed and bound, these volumes are a fine type of the amateur's art-book of varieties.

Mr. Hovey was also nurseryman and seed merchant. Until 1840, his grounds at Cambridge are said to have comprised only an acre, but at that thme his premises were greatly enlarged. His epoch was a time of knowl-
edge of varieties. Straightway he began assiduously to collect varieties, until he exhibited pears, apples and camellias by the hundreds, and plums, grapes, chrysanthemums and many other things by the score. These things were shown before the Massachusetts Horticul-

1105. Bluets-Houstonia cærulea ( $\times 1 / 2$ ). (See Houstonia, p. 777.)
tural Society, which was the center of horticultural influence of the country. He raised many seedlings. Thuya Hoveyi is still prized as a garden conifer. His greatest contribution to horticultural varieties was the Hovey strawberry, which first fruited in 1836, and which is generally regarded as the starting-point of American conmercial strawberry-growing (see Fig. 1088). For many years this berry was the standard of market excellence. Mr. Hovey continued to grow it and cherish it until the end. The writer remembers with what enthusiasm he expatiated on its virtues but a very few years before his death. Mr. Hovey was long an active member, and for a time president, of the Massachusetts Horticultural Society. He was one of the active projectors of the building which gare the Society a new and more commodious home. The history of the society records that, when the project was in doubt, "the perseverance and determination of the president of the society and chairman of the building committee, Charles M. Hovey, triumphed ove: every hindrance, and carried the work on to success."

A portrait of Mr. Hover will be found in the first rolume of the "Fruits of America." Another occurs in "Gardeners' Monthly" for 1886 (frontispiece) and "American Garden," Nor., 1887; and a reduction of this appears in Fig. 1106.
L. H. $B$.

HOWEA (named for Lord Howe's Island, where these 2 species grow). Also written Houreia. Palmàcere. A genus of only 2 species, known to the trade as Kentias, and certainly ranking among the 6 most popular palms for house culture. They have the habit of Kentia, but their ths. differ widely. Howea belongs to a subtribe in which the fls. in each spadix are attached to the stem between the bases of opposite lvs., while Kentia belongs to another subtribe in which the fis. are attached at a lower point. Also Howea has symmetrical staminate fls. with rotund sepals, while in Kentia the staminate fls. are not symmetrical, the sepals being small and acute.

Howea's nearest cultivated - "v is Linospadix, from which it is distinguished by tue iollowing characters: staminate fls. with very numerous stamens, the anthers erect and fastened at the base: pistillate fls. with no staminodes : ovule erect. $H$. Belmoreuna is the more popular of the two species, and as a house plant may be readily told from $M$. Forsteriana by the nore nearly erect position of its leaf segments; those of $H$. For steriana are more pendent. Howeas are erect. spineless palms, with stout ringed caudex: lvs. terminal, nu merous, dense, equally pinnatisect: segments narrow, acuminate: spadices $2-3 \mathrm{ft}$. long, solitary or $3-5$ from 1 spathe, thick, eylindrical, 1 odding or pendulous: peduncle lonz, compressed at the base: spathe solitary, as long as the spadix, eylindrical, 2-keeled toward the apex, longitudinally split: bracts bordering the channels; bractlets scajy: fls. sunk in the deep furrows of the spadix, the staminate nearly an inch long: fr. $11 / 2 \mathrm{in}$. long, olive-shaped.
Belmoreàna, Becc. (Kéntia Belmoredna, F. Muell.). Curly Palm. Fig. 1107. Described and distinguished abuve. B.M. 7018. R.H. $1897: 256$ and p. 257; G.C. III. 8:75. I.H. 21:191. A.G. 13:141; 16.345. Mn. 9:25.-Var. variegata, Hort. Adr, 1895 by Pitcher \& Manda.
Forsteriàna, Becc. (Kéntia Forsteridna, F. Muell.). Flat or Thatch Ieaf Palm. G.C. III. 8:75 and 583. S.H. 2:53. A.G. 16:346. A.F. 4:565; 14:701.

Jared G. Smith and W. M.
The two species of this genus are beyond a doubt the most popular and also the most satisfactory palms in the trade for decorative work in general, and in consequence of the great and growing demand, are grown by tens of thousands in the large nurseries. There does not seem to be any record of either of these species haring borne fruit in cultivation in this country, and the trade, cherefore, depends on imported seeds, which are gathered in immense quantities on Lord Howe's I sland, usually shipped from thence to Sydney, N. S. W., and from the latter port to either London or New York. This long royage is a severe test of the vitality of such seeds, and frequently results in faulty germination, the average of germination seldom exceeding 50 per cent, and is often much less. Two lieavy shipments of Howea seeds are made each year, the first installment arriving in February or March, and the second in September or October. Many growers faror the autumn shipment of these seeds as giving the be st results. The seeds should be sown at once on their arrival, the practice followed by large growers being that of broadcasting the seeds on a side-bench in a $w a: m$ greenhouse on 2 to 3 inches of light soil, then co: ering them with 1 inch of the same compost, watering liberally and keeping up a bottom heat of about $80^{\circ}$. Under such treatment some of the seeds may germinate in two months, but others in the same lot may not start for eight or

1106. Charles M. Hovey.
nine months, from which it will be seen that the operation extends over a considerable period of time. The seedlings should be potted into small pots when the first leaf is expanded, kept moist and given a night temperature of $65^{\circ}$, the greenhouse in which they are
placed being moderately shaded. In three to four months the young plants should be ready for shifting into 3 -inch pots if properly cared for; from this time forward they do not require a higher night temperature than $60^{\circ}$. The Howeas are not very particular in regard to soil, a rich. light loam answering very well for them, but a very stiff soil may be improved by the addition of one-fourth part of peat, and in all cases a reasonable proportion of fertilizers may be used to advantage. Scale insects are the most troublesome the grower has to contend with, and should be removed as rapidly as possible, else the foliage will be permanently disflgured, Oi the two species referred to, $I$. Belmoreana is perhaps the greater favorite, being more compact in growth and extremely graceful in foliage, a pimnt of this species of a given age usually carrying a greater number of leares than one of $H$. Forsteriat of the same age, and the leaves having more leaflets than those of the latter species. The seeds of the twu species are very similar in appearance, though those of $H$. Belmoreana frequently arerage a larger size, and while those of the last named species require about three years to mature on the tree, the speds of $I$. Forsteriana ripen in about twelve months. For house culture by amateurs, see Palms.
W. H. Taplin.

HOYA (Thomas Hoy was once gardener to the Duke of Northumberland). Asclepiadicece. More than 50 tropical Asian and Australian climbing or trailing evergreen shrubs, bearing thick, opposite Ivs., and odd, often showy fls. in umbel-like clusters. Corolla rotate, 5 -lobed, thick and more or less waxy in appearance : crown of 5 thick and depressed fleshy appendages: pollen-masses , short, fixed by their base in pairs to the 5 plonn. of the stigma: follicles acuminate, smooth: ws twining, or climbing by means of roots.
Hoyas are summer-blooming plants, of comparatively easy culture. They need an intermediate or warm temperature. Let them rest or remain very slow in winter ( $50^{\circ}$ in a dryish place), but start them into growth towards spring. In the summer they are sometimes plunged in the border, but better results are to be expected, as a rule, by keeping them in pots in the conservatory. In their growing and blooming season, give plenty of sun and air. They propagate by cuttings of the top growth in spring, and also by layering. The latter method is particularly adaptable to $H$. carnosa and other species which climb by means of roots. A. P. Meredith adrises as follows: "For compost, use fibrous loam, lumpy (or coarse) in two parts, to one of leafmold, using charcoal pounded fine, brick dust, or lime rubble if procurable, instead of sand. They are often found doing well in loam and sand. When in growth use weak liquid manure."

## A. Plant distinctly climbing.

carnòsa, R. Br. (H. Motoskei, Teijsm.). Wax Plant. Twiner, and attaching itself to support by means of roots; ordinarily grown as a pot-or tub-plant, and reaching $5-8 \mathrm{ft}$. high, but growing twice and more this height when it has the opportunity: glabrous: lvs. succulent and shining, ovate-oblong, acute, short-stalked, entire: fis. white with pink center, fragrant, in axillary or interpetiolar umbels, the crown-segments very convex, and spreading into a horizontal star. Trop. Asia and Austral. B.M. 788, as Asclepias carnosa. A.G. 18:34. -The common species, and often seen in window-gardens. After the bloom is over (in summer) keep the plant in a cool place in order that it may remain half-dormant. In late winter or spring, start it into growth. Do not eut off the onur which remains after the fis. pass, for this spur sfls. again. The Wax Plant is easy to manage, and 1 .nproves with age. Often trained as a permanent cover for a glasshouse wall. In the South, it is nearly everblooming. There is a form (var. variegdta) with handsome variegated lis. L. 44.
globulosa, Hook. f. Hairy: lvs. elliptic-oblong or longoblong, acuminate, rounded at the base, the midrib very stout, the petiole an inch or less long: fls. pale straw or cream color, the star-like crown-segments white, with pink at the base, borne in dense, globular umbels: follicles a foot or more long. Sikkim. F.M. 1880:406. G.C.
11. 17:741. - A handsome species, requiring the general treatment given to $\boldsymbol{H}$. carnosa.
imperialis, Lindl. Lofty climber, with puberulent stems and foliage: lvs. elliptic or linear-oblong, obtuse but with a short point: fls. immense ( $2-3$ in. across), leathery, dull purple, somewhat pubescent near the white crown, the segments triangular-acute: umbels drooping on long peduncles: follicles 9 in. long. E. Indies.

1107. Howea Beimoreana.

One of the most popular of all palms.
B.M. 4397. F.S. 4:393-4. - A noble Hoya, requiring very rich soil and a rather high temperature. Although naturally a very tall climber, it can be made to fower in pots when 3 or 4 ft . high.

## AA. Plant trailing or nearly erect.

bélla, Hook. (H. Páxtoni, Hort.). Slender, bushy, 1-2 ft. high, pubescent: lrs. an inch long, orate-acute, very short-stalked, somewhat recurved: As. $3 / 4$ in. across, pure white, with rery short and half-acute lobes, the crown-segments boat-shaped and violet: umbels fewfld. and short-stalked. India. B. M. 4402. F. S. 4:399. J.H.III. 35:5. - Handsome little species; scarcely climbing.
L. H. B.

HUCRLEBERRY. See Vaccinium; also Gaylussacia.

HOLSEA (Dr. G. W. Hulse, of La., who collected in Calif.). Compositre. This includes one of many woolly herbs offered by Californian collectors. It grows a few inches high and bears fls. with $20-30$ yellow rays. Six species of herbs, perennial, biennial or annual, all Californian, glandular pubescent or woolly: lrs. pinnately lobed or toothed: fis. large, solitary, yellow or purple; involucral bracts free, narrow; style branches obtuse: pappus of 4 hyaline, lacerated, chaffy scales. Nonogr. by Gray in Bot. Calif. 1:385.
nàna, Gray. Stems depressed, leafy at summit: lus. pinnatifid or incised, petiole long-margiried: peduncle 1-2 in. long: involucral scales in 2 serit 3 : rays $20-30$.

HUMATA (Latin, of the earth ; referring to the creeping habit of the rhizomes). Polypodidecu. A genus of ferns related to Desallia and sometimes included with
that genus, with small, thick, deltoid Irs., with the indusiuin tough, suborbicular or reniform, attached by a broad base and free at the apex and sides. Some 20 species are known, mostly from the East Indies. For culture, see Davallia.
Tyermanni, Moore (Davallia Tyernanni, Baker). Bear's Foot Fern. Rootstock wide-creeping, densely covered with linear white scales; lvs. 4-6 in. long, deltoid, 3-4-pinnatifid; lower pinnw largest, the lowest pinnules cuneate-oblong or deltoid; sori at the base of the ultimate lobes less than a line broad. Central China. G.C. 1871:871.
L. M. Underwood.

## HOMBLE PLANT. Mimosa pudica.

Hర̀MEA (after Lady Hume). Compósita. This includes a half-hardy biennial Australian plant, growing 5 or 6 ft . high, cult. for the grass-like beruty of its large, loose, much-branched, drooping panicles. The genus has no near allies of garden value. It belongs to a group of 6 Australian genera which have no parpus. Humea bas nothing of the typical beauty of the common garden composites, since it has no rays. Its Hs. are exclusively tubular and hermaphrodite, $1-4$ in a small head. Other important generic characters are the narrow involucre with scarious or petaloid, non-radiating bracts. Three, at any rate, of the 4 other species are shrubs, with fls. in dense corymbs and involucral bracts rigid or petal-like, while in $\boldsymbol{H}$. elegans the bracts are thin and scarious.

Sow seed from July 1 to Sept. 1. Keep young plants during winter in very cool house in preference to frames, in northern latitudes, on account of losing so much foliage through damping. In spring, or when signs of growth are taking place, repot into larger pots, using a good, rich loam, which has had plenty of manure. They are gross feeders and growers, requiring plenty of water and good feeding. Good plants in $10-\mathrm{in}$. pots are very ornamental for conservatory or piazza work. The young plants need plenty of light and air, and should be kept nearly dry during the winter. In spring they should be started into growth gradually, and successirely repotted until an 8 -in. pot is needed. They should not be syringed except when growing rapidly in warm weather. In June the plants can be placed in a subtropical bed that is shielded from high winds, and staked. The foliage has a peculiar and agreeable scent.
élegans, Smith. Lower Ivs. ovate-lanceolate or oblong, acuminate, stem clasping or decurrent, 6-10 in. long, wrinkled: Hs. variously described as brownish red, pink, ruby-red and rose. H. álbida, Hort., is presumably a whitish fld. form of this species, and should therefore be called var. álbida. R.H. 1862, pp. 9-10 and 1895, p. $459 . \quad$ A. P. Meredith and W. M.

HUMULUS (old Latin name). Uricacew. Hop. Two or three twining vines, with rough, opposite, palmately lobed or divided lvs. and diœecious ths. in axillary clusters. Staminate fls. with 5 erect stamens and 5 -parted calyx, in little drooping, tassel-like racemes: pistillate Hs. with an entire calyx or perianth closely investing the ovary, which bears 2 long stigmas, the fls. in pairs under large overlapping bracts, the whole making a cone-like catkin which, when becoming very large, is a "bop."
A. Plant bearing hops,-the pistillate catkin greatly enlarging in fruit.
Lùpulus, Linn. Comson Hop. Native to Europe and North America, and long cult. for the hops, which are used in the brewing of beer: it is a perennial herb: shoots often grow $25-30 \mathrm{ft}$. long in the season: roughhairy: lss. ovate or orbicular-ovate in general outline, deeply 3 -lobed (sometimes 5 -7-lobeü), or the upper ones not lobed, margins strongly and uniformly dentate, petioles long: staminate fis. in panicles $2-6 \mathrm{in}$. long: hops (mature pistillate catkins) oblong or oroid, loose and papery, straw-yellow, of ten 2 in. or more long. glandular and odoriferous. - Native along rivers and in thickets in the northern states, and southward in the Alleghanies and Rockies. Much cultivated for Hops, and extensively run wild from cultivated plants. The Hop
makes an excellent arbor or screen plant. Recent European literature mentions a var. aureus, with yellow foliage. The Hop grows readily from cuttings of the shoots, which spring from the crown; also by seeds, but the latter do not reproduce the particular varieties or strains. As a fleld crop, the Hop is not a horticultural subject, and is not discussed here.
AA. Plant not bearing hops, -the pistillate catkin not greatly enlarging in fruit.
Japonicus, Sieb. \& Zuce. Annual (or at least treated as such): foliage very like the last, but usually more deeply cut and not less than 5-lnbed: catkins not glandular. Japan. G.C. Il. 24:716. - Int. to general cult. in 1886, and now one of the most popular of all climbing herbs. It is a very quick grower, plants $10-20 \mathrm{ft}$. long coming from seed sown in early May. It is very easy of cuitivation, and often seeds itself. Var. variegatu.s, Hort., is the most popular form. Gng. $1: 241$. A.F' 8:489. The foliage is variously streaked and sp'ashed with white. Seeds of this variety will give a large percentage of variegated forms, and the plants usuall show interesting variations. H.Japonicus is more popular as an ornamental vine than $H$. Lupulus, because it grows so quickly from seeds, and also because it has such interesting variegated forms; but $H$. Lupulus has a distinct charm in its great hanging Hops. L. H. B.

HUNNEMANNIA (John Hunneman, English friend of botany, d. 1839). Papurerìcece. This includes a fine yellow-fld. herb closely allied to the California Poppy (Eschscholzia)and of the same garden value. It is treated as a hardy annual. The genus has but 1 species, a native of Mexico, and agrees with Eschscholzia in haring much-cut foliage and spreading lobes of the stigma, but differs in having separate sepals instead of the peculiar hood-like calyx of Eschscholzia, which covers the young flower like a candle extinguisher. The only other genus in the Hunnemannia tribe is Dendromecon, a shrub with entire lvs., separate sepals and 2 erect, stigmatic lobes. For culture, see Annuals.
fumariæfòlia, Sweet. Lus. triternately divided: peduncles solitary, terminal : fls. 2 in. or more across; petals 4; stamens numerous. B.M. 3061.-Sold as Giant Yellow Tulip Poppy.
W. M.

In our trial grounds during 1898, this was one of the showiest and most satisfactory plants in over 400 trials. The seed was sown early in May, and by the middle of July the plants were covered with their large yellow flowers, and they were never out of flower until hard frost. The plants have a bushy habit and beautiful, feathery, glaucous foliage. The fowers have wary bor ders, and at times stand up like tulips.
W. F. Dreer.

HUSK TOMATO. Physalis.
HYACINTH. See Hyacinthus, below.
HYACINTH BEAN. See Dolichos.
HYACINTH, GRAPE. See Muscari.
HYACINTH, WATER. See Eichhornia.
HYACINTHUS (name from Greek mythology). Lilidece. Of Hyacinths there are something over 30 species, the great part South African. Others inhabit the Mediterranean region, and from this source come the common garden Hyacinths. From related genera, Hyacinthus is distinguished br the funnel-shaped or bellshaped flower, the throat not constricted, the lobes shorter than or at most not much exceeding the tube, the 6 stamens attached to the tube or throat and the filaments thread-like or dilated at the base. Bulbous plants with only radical lvs., and fls. in a raceme or spike. The common Hyacinth is H. orientalis, Linn. (Fig. 1108), with 4-8 thick green 1rs. 8-12 in. long, $1 / 2-11 / 2 \mathrm{in}$. Wide: scape $8-18 \mathrm{in}$. tall, stout, bearing an elongated and dense raceme: perianth about 1 in . long, the tube usually ventricose or swollen, the lobes ob-long-spatulate, as long as the tube, in many colors, often double in cult. B.M. 995 . F.S. $23: 2399-2400$-The Hya-
cinth is extensively grown in Holland for export to this and other countries, and consequently is commonly known as the Dutch Hyacinth. The Roman Hyacinth (Figs. 1109-10) is var. albulus, Baker ( II . eilbulus, Jord. II. Komduus, Hort., not Linn. ), is smaller and slenderer, Irs. narrower, very ereet, Hs. fewer, earlicr, white or blush, the tube cylindrical and scarcely ventricose, the segments narrower and usually proportionately shorter. Central Fratee, and perhaps in the Mediterranean region. Much used for early bloom. The Hyacinth has been cultivated for some centuries, and it shared some of the early popularity of the tulip in the Netherlands. H. orirntalis is wild in Syria. Asia Minor, Greece and Dalmatia. For a picture of a Hyacinth bulb, see Fig. 2s8, V ul. I.

Other species are sometime. seen in the garduns of the curious, particularly H. amethystinus, Liun., Spait France (B.M. 2425. Gn. 47, p. 147), and H. azurreus, Baker (B.M. 6822. G.C. III. 24:191, var. giganteus), Mediterranean region. The former is slender and graceful, with light blue fls. in short racemes, standing nearly or quite $1 / 2 \mathrm{ft}$. high: fls. small, nodding, bell-shaped, with short teeth-like segments. There is a white-fli. form. Good for rockeries. Hardy in tue middle states. The latter species is by some considered to be a form of $I$. ciliatus, Cyrill. Looks like a Grape Hyacinth (or Muscari): 4-8 in. tall, with strongly eanaliculate, glaucous lvs.: fls. blue, fragrant, in a dense spike 1 in . long, tubular, with small teeth. Distinguished from the genus Muscari by the perianth segnents being flaring instead of incurved. Hardy in middle states. H. fastigiatus, Bertol. (I. Pouzolzii, Gay) is a Corsican species, which is hardy in southern New England. It is a delicate species, with very narrow lvs., scape $3-5 \mathrm{in}$. high and shorter than the lvs.: fis. few, in a loose cluster, $1 / 4-1 / 3$ in. long and light blue (a white form), with oblong-lanceolaie segments longer than the tube. B.M. 6663. Hyacinthus Rominus, of Limmeus, is not the $H$. Romantes of horticuiturists (which is the Roman Hyaeinth, $\boldsymbol{H}$. orientalis, var. albulus). Linnæus' species is a blue-white, scilla-like plant (see B.M. 939). H. cándicaus is now referred to Galtonia. For gen eral cultural notes, see Bulbs.
L. H. B.

Cultere of the Hyacinth. -The perfection of the flower depends largely upon the strength of the roots, and as Hyacinths make all their root growth in the fall, the bulbs should be planted early,-say from the beginning to the middle of October. Any good garden soil suits, provided it is well irained. The ground should be carefully prepared by spading to a depth of 20 inches, so that the roots may pass straight through it to their full development of 12 or 16 inches. If the soil is nat urally stiff it may be light ened by the addition of some sand, and if the beds have been occupied by other plants during the summer, some pure old cow manure, well worked in, is recommended. Horse manure should not be used.
The bulbs should be
1108. Common or Dutch Hyacinth. planted 6 inches deep (to the bottom of the bulbs) and very uniformly, to in sure simultaneous flowering. The ground having been prepared as above, perhaps the best way is to remove 3 or 4 inches of the soil, level the bed carefully with the rake and set the bulbs in it 5 or 6 inches apart each way, pressing them in firmly, and then covering them
evenly with the soil that had been taken out. When winter sets in, the beds should be covered with 2 inches of dry litter or coarse manure. As soon as the shoots appear above ground in the spring, 1 inch of this cover ing should be removed and the balance when danger from late frosts is past. Unnamed Hyacinths in separate colors can be bought cheaply, and when grown in masses of solid color or in design beds, they make a very rich display.

Forcing in Pots.-For this purpose large, solid bulbs should be selected, and potte 1 singly in 5 -inch pots in a rich con ,ost of loam, leafmold and some sharp sand. A few pieces of broken pot being placed in the bottom for drainage, the pots should be filled lightly, and the bulbs pressed into the Ionse soil till only the apex remains above the surface. The pots are then buried to a depth of 8 or 10 inches in the open ground for seven or eight weeks, till the roots are developed fully and the sprout is about $11 / 2$ in. above the bulb. When taken inside thes should be kept in subdued light, at a temperature of abont $50^{\circ}$, until the sprout has assumed a vigorous green color. Florists who force large numbers for winter decorations, set them un der the greenhouse benches
for about two weeks, and
 then force them in a temperature of $70^{\circ}$. A greater heat than this attenuates the growth and weakens the color. Syringing with water twice a day is recommended. and as the flower-spike develops weak manure water is helpful. The slower Hyacinths are forced the finer and more lasting will be the bloom. Bulbs wanted in flower for Christmas shoull be potted in September, and for a succession later, at intervals as desired. Single Hyacinths are handsomer and force better than the double, although a few of the latter may be reconmended. The following are among the best adapted for forcing and most largely grown by American florists:

Single Blete:
Baron ran Thuyll. China-blue.
Charles Dickens. Dark porcelain
Czar Peter. Light blue
King of the Blues. Dark blue.
Leonidas. Clear blne
Queen of the Blues. Light blue.
Regulus. Porcelain-blue.
Dotble Blete:
Charles Dickens. Dark blue.
Van Speyk. Lilac-blue.
Single White
Alba superbissima. Pure white.
Baroness van Thuyll. Pure white.
Grandeur à Merveille. Blush-white.
La Grandesse. Pure white.
L'Innocence. Pure white.
Matame Vanderhoop. Pure white.
Mont Blane. Pure white.
Paix de l'Europe. Pure white.
Double White:
La Tour d'Aurergne. Pure white.
Prince of Waterloo. Pure white.
Single Red:
Charles Dickens. Pink.
Gertrude. Bright pink.
Gigantea. Bright rose
Moreno. Waxy pink.
Norma. Delicate waxy pink
Robert Steiger. Crimson.
Sultan Favorite. Salmon.


11:0. Roman Hyacinth.

Double Red:<br>Bouquet Tendre. Crimson. Noble par Merite. Deep rosa.<br>Single Lilac:<br>Haydn. Lilac-mauve.<br>\section*{Single Yellow:}<br>Ila. Pure yellow.<br>King of the Yellows. Deep yellow.<br>Double Yellow:<br>Goethe. Bright yellow.

Miniature Hyacinths, or "Dutch Romans," are smallsized bulbs of the ordinary Dutch Hyacinths. They are excellent for growing in groups in bowls. pans or flats, planted close together and treated just like the large Hyacinths when grown in pots.

Culture in Glasses.-Some of the single Hyacinths may be grown very satisfactorily in water. Special glasses for the purpose can be bought from the seedsmen. They should be filled with pure water and the bulb so placed that its base barely touches the water. They are stored in a dark, cold closet or cellar till the roots are dereloped, and then brought in to the light. An airy, sunny situation and a temperature of about $60^{\circ}$ regularly maintained will insure the best results. The glasses should be kept filled by adding water occasionally as required. The following varieties are especially suited for glasses:

Charles Dickens. Pink. Lord Macaulay. Deep rose. Mina. Pure white.
L'Innocence. Pure white.
Von Schiller. Dark red.
Grand Lilas. Light blue.
Charles Dickens. Blue. Baron ran Thuyli. Deep blne. Mr. Plimsoll. Fine blush. Obelisque. Yellow. Moreno. Deep rose. Sir. Wm. Mansfield. Mauve.

Roman Hyacinths. - Instead of one large truss from each bulb, the Roman Hyacinth produces three or four smaller but more graceful flower-spikes. The bulbs arrive in America in August, and by successive pottings they may be had in flower from November till May. They require the same forcing treatment as the larger Hyacinths, but three or four bulbs may be planted in a pot. The florists use wooden flats instead of pots, setting the bulbs close together, 40 or 50 in a that. By reason of its beanty and exquisite fragrance, its earliness and easy culture, the white Roman Hyacinth is the most popular of our winter-blooming plants. Several millions of these bulbs are grown annually by the florists of our large cities for winter cut-fowers.

The Propagation of Hyacinths. - With the exception of the Roman Hyacinths (which come from the south of France), the world's supply of Hyacinth bulbs is produced in Holland. The soil and climate of that country seem to be peculiarly suitable for bulb-growing, which has been one of the leading industries there for 200 years. The bulbs intended for next year's market are planted in October in carefully prepared, richly manured land, and protected over winter by a thick covering of reed or litter. The flowers are cat when in full hloom in the spring. By July the bulbs are fully ripened, and
are taken out of the ground by hand, dried, cleaned and assorted into three grades of quality, according to size. Early in August they are ready for shipping. Orergrown or unshapely bulbs are reserved for propagating. As soon as these are taken out of the ground, three deep cross cuts are made with a sharp knife in the bot'om of each bulb. They are then set out, bottom upwards, and covered with loose soil for two or three weeks, during which time the cuts open out and the wounds are healed. They are then taken up and kept spread out on tables in storehouses till October, when they are planted out. When lifted next June nothing of the parent bulb remains but dry skins, on the edges of which from 20 to 30 offsets are fastened. These bulblets are picked off by hand and planted out in the fall, just like large bulbs. This process of planting in fall and taking up in summer for a two months' rest is repeated for four or five years, till the bulbs hare attained to marketable size. Another method of propagating is to hollow out the bottom of the bulb smoothly to a point in the center. More offsets are obtained in this way, but they are smaller and take a year or two longer to reach maturity.
New varieties are obtained from seed, but such a degree of perfection in form and color has already been obtained that it is seldom a seedling is produced that proves superior to existing varieties of the same color. Some new varieties are obtained by encouraging any tendency to change of color or form which may be shown by the standard sorts. In this way the single blue Charles Dickens has been changed to single red and to double blue, and again, very recently, to double red, till we have four varieties named Charles Dickens. Last year's catalogue of a reliable Dutch grower contains 340 named Hyacinths. J. M. Thorburn \& Co.

HYBRIDS are the products of crossing between species. Of late, the word Hybrid has been used ty some writers to comprise all crosses, whether between species or varieties. The justification of this usage is the fact that there are no hard and fast lines between varieties and species, and therefore that hybridism in the old sense is incapable of exact delimitation. The opponents to this usage, howerer, contend that so long as it is customary to speak of species and varieties as different classificatory categories, it is equally allowable and useful to speak of Hybrids as between species and of crossbreeds as between varieties; moreover, historical custom farors this usage. Common-language terms rarely if ever express absolute or ideal truth: they grow up by custom. Whenever new ideas and discoveries render them inexact, it may be quite as well to inrent new terms as to gire new and technical meanings to old terms which are thoronghly established in literature. The word Hybrid has always been a specific term, and it were a pity now to make it a generic one, particularly since there is a well established generic term. The generic word, both substantive and verb, is cross. Specific kinds of crosses are Hybrids, between species; cross-breeds, between plants of the same species: half-hybrid, between a species and a variety of another species; bigener, between plants of different
genera. There ar technical terms to designate the various kinds and degrees of crossing.
It was formerly held that inability to make fertile Hybrids is proof that the furms are distinct species; and contrariwise, that plants which make fertile crosses are of one species. Hybridization has also been made a test of genera. Thase notions are now given up, for crossing und chaseircato. belong to two unlike categories of facts. spuei d genera are not entities in themselves, but are: re artiticial groups made by men for their convenience $w .9$ writing and speaking of living things. Crossing is is viological phenomenon.
Hybrids are unusial facts in nature; that is, they are rare compared with the whole number of plants On the other hand, cross-breeds are usual. Most flowers are so constructed as to faros cross-pollination. Cross-breeding is one of the prime means of inducing slight rariations and of invigorating a type. Upon the variations which arise from crossing ind other means natural selection operates in the prosuction of new forms. But it is significant that these new forms usually come about slowly and gradually. It is tio desire of the cultirator to produce new forms quickly and of pronounced distinctness. He therefore employs cross ing between unlike types, or species, hoping thereby to secure wider departures. In nature, the cross-breed is the beginning of a process of breeding: it starts off the variation. Man is often tempted to look upon the Hy brid as the end. If the products of a given cross are not to his liking, he throws them away and tries again. The most expert plant-breeders, however, now hybridize to get a"break," and thenceforth depend chiefly on selection to realize their clear-cut ideals, particularly in seedpropagated plants.

To man Hybrids are of no value unless they can be propagated. By seeds they usually vary immensely: it is difficult to "fix" them so that they will come true. By cuttings or layers or division, however, the character of the parent may be propagated with practical cer tainty: the original plant is divided, and the parts are put on the market. Nearly all conmercial Hybrids are of plants which are thus propagated by asexual parts: Kieffer pear, Hybrid grapes, Wilson blackberry, Wild Goose plum, cannas, roses, begonias, anthuriums, fuch sias, pelargoniums, rhododendrons. Since the Hybrid is variable when propagated by seeds, continued selection, or plant-breeding, must be employed to fix and establish a desirable type.

It is thus seen that hybridization rarely gives rise to dominant horticultural seed-races, but rather to an individual plant which may be disseminated by some divisional means of propagation. The seeds of Hybridsas of the modern cannas-may give rise to good varie ties, and they may not; but these new varieties are, in their turn, usually propagated by means of asexual parts if they are to be kept true.
Practically there is no certainty in hybridization Rarely can a man picture to himself an ideal variety and then by means of hybridization produce it. He hybridizes plants which possess some of the characteristics of the desired or ideal variety, and then takes his chances. True plant-breeding sets an ideal, and then reaches it by working along certain definite lines. It seeks first to secure a variation in the desired direction: this may be secured by means of crossing, change of soil, modification of food supply, and other changed conditions. It seeks, then, to preserve or augment the form by means of definite selection.

Fundamentally, there are no laws of hybridization. Every Hybrid is a lam unto itself. By the study of many examples of hybridization, one is able to construct an average of probabilities as to what will or what will not occur in a given case: but the given case may contradict all the probabilities without apparent cause. Hybridization is an empirical subject.
One can not tell what species will or will not hybridize except by trying. Hundreds of species have been tried, and for them the knowledge is more or less exact. Plants hybridize most ireely which are the subjects of much care and coddling: the orchids are the best examples. In these groups, Hybrids are chiefly fanciers plants, valuable often only because they are Hybrids or are rare and curious. One cannot tell beforehand
whether the products of any hybridization will be exact intermediates, or in what way or degree they will carry over or blend the parental characters. As a rule, the more closely akin the species, the more perfect will be the blending or amalgamation of the two. See Pollination.

The literature of hybridization is extensive but scattered. The standard text is Focke's "Die Pflanzen-Mischlinge," 1881. The possibilities of hybridization as a factor in plant-breeding are presented in many aspects in the "Hybrid Conference Report" of the Royal Horticultural Society, London, 1900. There are special books devoted to orchid Hybrids (see Orchids). In North America there has been little fundamental writing on the subject. See an excellent paper by Swingle and Webber, Ycar Book of the U.S. Dept. Agric. 1897; papers in American Gardening, 1899, pp. 397, 413, 431 ; Bailey's "PlantBreeding," 1895.
L. H. B

HYDRANGEA (Greek, hydor, water, and aggeion, vessel ; alluding to the cup-shaped fruit). Saxifragicece. Very ornamental deciduons shrubs, with opposite, simple, rarely lobed, petioled lrs. and small, white, bluish or pinkish fls. in corymbs or panicles, bearing usually marginal sterile fls., with enlarged showy sepals, or in some varieties all the fls. are sterile and enlarged: fr. a small, insignificant capsule. $H_{\text {. panicu- }}$ lata is the hardiest of all, but $\boldsymbol{H}$. arborescens, $\boldsymbol{H}$. radiata and $H$. Bretschneideri are also almost hardy North, while $H$. quercifolia and petiolaris require at least a very sleltered position and $H$. hortensis, velutina, involucrata and virens are still more tender, and can hardly be grown outdoors North except when well protected and sheltered. They grow best in a rich, porous and somewhat moist soil and thrive well in partly shaded positions, but flower more freely in full sun if they only have sufficient moisture. All Hydrangeas are well adapted for borders of shrubberies, and $H_{\text {. paniculata and hor- }}$ tensis, especially the varieties with sterile fls., are very showy as single specimens on the lawn. In warmer climates the latter is sometimes used for ornamental hedges (see G.C. 1II. 24:337 and 456); but it is not hardy in the North. These and also most of the other species should be pruned in fall or early spring, and the branches of the previons year cut back to 1-3 pairs of buds, according to the growth of the branches and the desired size of the panicles; if only slightly pruned the panicles will be many but small. Sometimes they are cut back every year almost to the ground and produce then enormous panicles, which, howerer, usually need artificial support and lack the gracefulness of less severely pruned plants. H. paniculata, var. grandiflora can be grown in a small standard tree; for this purpose vigorous roung plants should be selected and planted in rich soil, and cut down to the base. The strongest shoot of each plant will attain by fall the height of 4-6 ft., if freely manured and watered during the summer; in autumn, all the weaker branches are cut off, and in colder climates the plants should be lifted and stored in a frost-proof pit or cellar, since the wood is not usually sufficiently ripened to withstand severe frost. In the following year the top of the stem is allowed to branch. The weaker bisal shoots may be pegged down to make new plants. Strong-growing rarieties of $H$. hortensis may be treated in the same way if standard plants are desired.
H. hortensis, which cannot withstand much more than $10^{\circ}$ of frost, is in the North much grown as a potplant, especially the more showy varieties with large heads of sterile fis., and is extensively used for outdoor decoration during the summer. Late in fall, when the lrs. hare fallen after frost, the plants are mored to a frost-proof cellar and kept rather dry until spring, when they are repotted in new soil and the growth of last year cut back to 1 or 2 pairs of buds. As a suitable soil may be recommended a mixture of loam, leaf-mold and sand, with ground bone, dried cow manure or some other kind of manure added. During the summer a liberal supply of water should be giren, also occasionally applications of liquid manure, until the fls. have dereloped. They may also be planted in the open gronnd during the summer, lifted late in fall with a large ball of earth, stored over winter in a coldframe or pit and planted out
again in spring; this will not injure in any way the profusion of ths. In certain kinds of soil the pink Hortenslas show a tendency to turn blue, and perhaps this can be caused by adding iron flings or alum to the soil. H. hortensis is also a valuable plant for forcing, and is much grown for Faster, especially the var. Otaksa, on account of its dwarfer habit. Handsome pot-plants can be grown in one year from cuttings. In February
 or March cuttings are inserted in the propagating house with slight bottom heat, and planted in small pots as soon as they are rooted. During the summer they may be easily grown in pots and plunged outdoors in coal ashes or in any kind of porous soil, transplanted several times and freely watered and occasionally manured; or they may be planted out in rich soil, exposed to the full sun, where water should be liberally given and now and then an application of liquid manure. Last of September they should be repotted in 8 inch pots, kept shady some days until established, and afterwards exposed to the sun. After the first frosts they may be brought into a cool greenhouse. If intended to hare them in Hower for Easter, they should be transferred not later than the fore part of January into a warmer house, with a temperature gradually rising from $50^{\circ}$ to $60^{\circ}$; the plants should be freely watered, and about once a week an application of liquid manure given until the Hydrangea paniculata.
A. Erect or spreading shrubs: stamens 10 : petals ex. panding.

## B. Inflorescence pyramidal.

1. paniculata, Sieb. Shrub or small tree, to 30 ft ., with dense globose head: Ivs. elliptic or ovate, acumi. nate, serrate, sparingly pubescent above, more densely on the reins bencath, $\underset{-5}{5} \mathrm{in}$.: pauicle $6-12$ in. long: fls whitish, the sterile ones changing later to purplish; styles 3: capsule with the calyx about at the middle. Aug., Sept. Japan. S.Z. 61. - The following varieties are cult.: Var. floribunda, Regel. Panicles large, with more and larger sterile t1s. Uit. 16:530. Var. grandiflora, Sieb. (var. hortensis, Maxim.). Fig. 1112. Almost all fls. sterile; panicles very large and showy. F.S. 16:1665-66. Gn. 10:37 und 54, p. 376. R.H. 1873:50. Mn. 8:119. A.G. 18:313. Gng. 3:357 and 5:3. F.E.8:214. S.H. 1:174. Var. pracox, Rehd. Almost like the type, but flowering about 6 weeks earlier, in the middle of July. G.F. 10:363. The late flowering typical form is sometimes called var. tardiva, Hort. $\dot{H}$. paniculetu, var. grandiflora is the common Hydrangea of lawns. It is seen to best effect when planted close in front of heary shrubbery. Cut back rather heavily in early spring.
2. quercifdlia, Bartr. Shrub, with spreading branches to 6 ft .: young branches densely ferrugineously tomentose: lis. long-petioled, roundish or broadly ovate, pinnately lobed with serrate lobes, glabrous above at length, whitish tomentose beneath, 4-8 in. long: panicle 4-7 in. long: fls. pinkish white, the sterile ones turning purple. June. Ky. to Alab. and Fla. B.M. 975. Ging. $\because: 305$. Hardy at Philadelphia.

## BB. Infloresccnce corymbose, flat or globular.

c. Cyme without involucre at the base.

## D. Styles usually 2: capsule with the calyx at the apex.

3. arhoréscens, Linn. (H. urticifòlia, Hort.). Erect shrub, 4-10 ft.: Jrs. long-petioled, ovate, acute or acuminate, rounded or cordate at the base, serrate, green and glabrous on both sides or somewhat pubescent or glaucous beneath, $3-6$ in. long : cymes $2-5$ in. broad, with none or few sterile fls. June, July. N. J. to Iowa, south to Fla. and Mo. B.M. 13:437. - Var. cordàta, Torr. \& Gr., has the Irs. broadly ovate and cordate. - Var. stérilis, Torr. \& Gr. Almost all fls. sterile, known also as Hills of Snow.
4. radiàta, Walt. (H. nivea, Michx.). Similar to the former, but lvs. densely whitish tomentose beneath and cymes always with sterile fls. June, July. N. C. to Mo., south to Ga. B.B. 2:185. - Var. canéscens, Dipp. ( $\boldsymbol{H}$. canescens, Hort. H. cinerea, Small). Lrs. grayish tomentose beneath, sometimes pubescent abore. Tenn. to Ga.-Hardy about Philadelphia.
DD. Styles usually 3: capsule with the calyx near the middle.
5. vestita, Wall. ( $H$. heteromálla. Don. H. pubés. cens, Decne.). Shrub, to 10 ft .: petiole deeply groored and margined, red: lvs ovate, acuminate, densely setosely dentate, almost glabrous above, densely whitishtomentose beneath, $4-8$ in. long : cyme $5-8$ in. broad, with bracts; sepals of sterile fis. elliptic or oborate, acute or mucronulate: capsule with the calyx above the middle. June, July. Himal. F.S. 4:378-67. G.C. II. 20:617.
6. Brétschneideri, Dipp. (IT. vestita, var. pubéscens, Maxim. H. Pekinénsis, Hort.). Shrub, to 8 ft .: petioles not margined; lys. ovate or elliptic-ovate to oblongovate, acute or acuminate, serrate with short callous teeth, more or less pubescent beneath, 3-5 in. long; cymes similar to the former but smaller and denser, sepals roundish, obtuse: capsule with the calyx near the middle. July. N. China, Setshuen. G.F.3:17 and 6:396. - Var. glabréscens, Rehd. (H. serrata, Koehne, not DC.). Lrs. smaller, elliptic, more coarsely serrate and only sparingly pubescent.
7. hortensis, Smith ( $\boldsymbol{H}$. Horténsia, DC. H. opuloldes, C. Koch. H. Japónica, Sieb.). Shrub, to 8 ft., almost glabrous: lrs. orate or orate-elliptic, acuminate or acute, coarsely serrate, $5-8$ in. long: fis. in large crmes without bracts, white, bluish or pink, few or all of
them sterile. - The greenhouse Hydrangea. June, July, but blooming in winter under glass. A large number of varicties have been introduced from Japan and China, where this species has been extensively cultivated for many centuries, and where it is native. The following are some of the best known. They may be divided into 3 groups:
(1) Japonica group: cymes flat, with sterile and fertile flowers.
Var. acuminàta, A. Gray (II. acuminèta, Sieb. \& Zuce. H. Burgeri, Sieb. \& Zuce.). Les. ovate-lanceolate, acuminate, sparingly appressed-pubescent: sterile fls. with elliptic entire sepals, usually blue. S.Z. 56-57. Var. Azisai, Maxim. (II. Azisai, Sieb.). Less. ellipticovate, glabrous : sterile fis. with obovate sepals, longpedicelled, overtopping the fertile ones. S.Z. 51. Var. Belzoni, Maxim. (IT. Delzomii, Sieb. \& Zuce. II. Japonicı, var. curritlea, Hook. II. Jıponicu, var. carulescens, Regl.). Of dwarfer and stouter habit : Ivs. ovate or obovate, short-acuminate, glabrous, somewhat thick: sterile ths. whitish, pirkish or bluish, with rhombic, usually entire sepals. S.. . 55. B.M. 4253. Here belongs also rar. Impérutrice Eingenie with pink As. R.H. 1868:471. Var. Japónica, Maxim. (H. Jиронica, Sieb.). Lvs. ovate to elliptic, acuminate, glabrous: sepals broadly ovate, toothed, pink. S.Z.53. B.R. 30:61. R.H. 1874:90 (as H. ncuminata). Var. macrosépala, IRgl. Differs from the former only by its larger sepals. Git. 15:520. Var. Mariesi, Hort., seems also not much different, but has somewhat broader lvs., and the pink sterile tls. are very large, $3-31 / 2$ in. across. Gn. 54:1196. G.C. III. 23. suppl. j-28. Var. rosalba, Van Houtte ( $\Pi$. Lindleyi, Hort.). Lrs. orate or elliptic-ovate, acuminate, sparingly hairy: sepals dentate, ovate or broadly orate, white ar sink or whitechanging to pink. S.S. 16:164950. $\quad$ 1866:430. Gn. 46:990. Var. serràta, Rehd. (H. ser:ata, DU. H. Thinbergi, Sieb. \& Zucc. H. cyanea, 'foit.). Lrs. elliptic or orate, narrowed at both nnte, serrate, sparingly appressed-hairy, 11/2-3 in. long: crmes small. 3-4 ir. broad: Hs. pinkish or bluish: sepals roundish, obtuse or emarginate. S.Z.58. G.C. 1870:1699. (2) Mortensia group: cymes glodose, with almost all fls. sterile.
Var. nigra, Arb. Kew. (II. Mandshirica, Koehne. H. opuloides, var. cyanóclada, Dipp. H. nigra, Carr. H. ramulis coccineis and ram. pictis, Hort.). Branches dark purple or violet, often almost black: lvs. ovateelliptic, acute: cymes large, with purple peduncles: sepals pink or bluish, obovate. A.F. 5:360. Var. Hortensia, Maxim. Lrs. large, elliptic, glabrous: sepals broadly ovate, entire, usually pink. This is the form which first came into cultivation outside of Japan and China, and is said to have been introduced from China to England in 1790, by Joseph Banks. B.M. 438 . G.C. III. $24: 45$. Gn. 45, p. 12; 50, pp. 123, 256,367 ; 52 :2s1. Var. Otáksa, Maxim. ( $\boldsymbol{H}$. Otal:sa, Sieb. \& Zucc.). Fig. 1113. Drarfer, but of rigorous growth: lvs. obovate, short-

8. Hydrangea paniculata. var. grandiflora.
acuminate, rather thick, glabrous: sepals obovate, entire, pink or blue. S.Z. 52. F.S. 17:173-33. Gn. 50:1079. R.H. 1868:450. Mn. ̄, p. 105. A.G. 11:+15. A.F. 10:1015. F.E.9:52 and 401. Gng. 5:161. Var. plèna, ligl. Similar

9. Hydrangea hortensis, var. Otaksa.
to var. Hortensia, but sepals toothed. Var. Thomas Hogg, Hort. Lvs. elliptic or ovate, rather small: heads large, pure white. This variety is somewhat dwarfer than the common Hydrangea and is. besides Otaksa, the best as a pot-plant. It is also to be recommended for outdoor cultivation, as it is one of the hardiest.
(3) Stellata group: fls. with many narrow sepals.

Var. stellàta, Maxim. ( $\Pi$. stellàta, Sieb. \& Zucc.). Lrs. ovate or ovate-oblong, sparingly pubescent: crmes with larger sterile and smaller fertile fls., both with many narrowelliptie sepals. S.Z. 59. Var. fimbriata, Dipp. Cymes rather dense, with almost all the tis. sterile: sepals fimbriate, white, pink toward the base. G.C. III. 23, suppl. 5:28. Var. prolifera, Hort. (H. stellata, var. prolifera. Rgl.). The fertile fls. bearing 1 or few smaller ones in the center. Var. rubro-plena, Dipp. Cymes rather dense, with almost all fis. sterile, changing from pink or pale lilac to dark red.

There are also some varieties with rariegated Ivs., as var. variegata, Regel, a form of var. Belzoni, with the lvs. edged white (F.S. $7: 696$ ) ; var. tricolor, Hort., with the lvs. variegated with white and edged yellow; var. roseo-marginàta, Hort., with the Irs. spotted white and edged pink.

## cc. Cyme enclosed before expanding by 6-S

 large, deciduor, bracts.8. involucràta, Sieb. Low shrub. to 5 ft . Irs.oblong, acuminate, densely and sharply serrate, appressed, pubescent on both sides, rough to the touch, $4-8 \mathrm{in}$. long: bracts at the base of the cyme large, orbicular; smaller bracts none: fertile fls. blue or pinkish, sterile ones whitish: capsule with the calrx at the apex; styles usually 2. Aug. Jap. S.Z. 63. J.H. III. 32:103. II. Sapphire, introduced 1890 by Lovett, seems to belong here. Var. horténsis, Maxin. Fls. double, usually pink and often proliferous. S.Z. 64. F.S. 3:187.

AA. Climbing by ä̈rial rootlets: stamens $1 \overline{5}:$
petals cap-like, cohering, falling off as a whole.
9. petiolàris, Sieb. \& Zucc. (H. sciundens, Maxim., not DC. H. volubulis, Hort.). Climb-

## HYDROCOTYLE

ing to 80 ft . in Japan: lvs. long-petioled, broadly ovatecordate to elliptic, acute or acuminate, crenately serrate, almost glabrous, $2-4$ in. long: cymes rather loose, -810 in . across, with rather few sterile tts.; styles usually 2: capsule with the calyx at the apex. July. Japan, Sarehalin. B. M. 6788. S. Z. 54, 59, 2, 92. M. D. (i. 1897:236-37. S.H. 2:191-93.-A very variable species, figured and described by Sieb. \& Wurc. under three dif ferent names. In gardens it is often met with under the name of Schizophragma hylrangeoides, another Japanese climber of similar habit, which, however, is easily distinguished by its sinuately dentate lvs. and Its sterile ths, having only one large cordate s.f. 1 .
H. altissima, Wall. Allied to H. petiolaris, but less high climbing, ofter only a sprefiling shrub, to 15 ft .: lvs. ovatelanceolate: stamens 10. Himal.-H. éspera, Don. Shrub, to 20 ft ., similar to H . vestita: IVs. oblong-lanceolate, densely pu bescent beneath: sepals usually toothed: fr, with the calyx at the apex. Himal. Tender. -H, hirta, Sieb. de Zuce. Shruh, to 4 ft .: lvs. broad-elliptic, coarsely incised-serrate: cymes without sterile tis. Jap. S.Z. 62. Not very decorative.-H. robuista, Hook. f. \& Thoms. (H. cyanema, Nutt.). Spreading shrub, to 15 ft ., with large ovate lvs., pnbescent on both sides: sterile ls. with toothed sepals: capsnle with the calyx at the apex, Himal. B.M. 5038. Handsome in bloom, but tender.-H. virens, Sieb. Slenter shrub, to 6 ft .: Ivs, elliptic or lanceolate, coarsely serrate, $1-21 / 2 \mathrm{in}$.: eymes rather fow-fli.. sterile ths. with 3 or large, unequal sepals, white, Jap. S.Z. 60. A desirable shrub with gracefu. and lelicate fls. and with the les. often handsomely variegated along the veins, but tender.

Alfred Rehder.
HYDRASTIS (name of doubtful meaning). Ranunculdece. Two species of hardy herbaceous perenniais, one from Japan and one from N. Amer. Stem ecect, pubescent: lvs. palmately 5 - 7 -lobed, serrate: fls. greenish white, small, solitary; sepals 3, petal-like, falling early; petals none; stamens many; carpels 2 -ovuled, in fruit becoming aggregated berries. Requires moist situations in good, rich loam and leaf-mold. Prop. by division of the root, and by seed.
Canadensis, Linn. Oranlez Root. Golden-seal. Stem 4-10 in. long, from a thick, yellow rootstock: basal lvs. $5-8 \mathrm{in}$. broad; stem lvs. 2, lower one petioled, upper sessile and near the small flower: fr. in ovold head, the 8-12 fleshy carpels tipped with a short, curved beak. April. Eastern U. S., in rich woods. B.M. 3019 (in flower); 3232 (in fruit). - Used in gardens for the shows leaves and beautiful red fruit; root used in medicine.
K. C. Davis.

HYDRIASTELE (Greek, u'ater and column; the tall trunks growing near springs). Palmiced. A genus of one species, a tropical Anstralian palm advertised by perhaps only one American dealer as Kentia Wendlan diana. It is told, however, from the Kentias in foliage by the leaf-segments split at the apex instest of acumi nate and not split. More fundamentally, it differs in having the ovule on the side of the cell instead of at the bottom, as in Kentia. In this respect it agrees with the group of genera mentioned under Hedyscepe, but it differs from that group in having the fls. borne in 4 ranks instead of spirally. Hydriastele is a spineless palm with erect winged caudex: Irs. terminal, pinnatisect; segments alternate, linear, split at the apex; mid yeins covered below with caducous scales; margins thin; rachis laterally compressed, dorsally convex ; face of the petiole concave; sheath rather short: spadices with short, wide peduncles, branched from the base, the branches obtusely quadrate, long, slender, pendulous: spathes 2, complete, compressed, deciduous. the lower one ancipital: bracts and bractlets connate; fruit small ellipsoidal, smooth or ribbed. For culture, see Palms.
Wendlandiàna, H. Wendl. \& Drude (Kéntia Wendlamlid̀na, F. Muell.). A tall palm. Leaves many feet long; segments numerous, unequal, the longest $11 / 2 \mathrm{ft}$., the upper ones confluent at the base, all denticulate at the apex. Queensland.

Jared G. Smith.
This distinct and excellent palm has hitherto been rare, but now that the seeds are being produced in tropical nurseries it is fast becoming popular. The seeds are round, fairly hard, and resemble those of Archonto phoenix Alexandre. The characteristic lis. are pinnatifid, the segments being irregular and somewhat jagged at the apex, after the fashion of a Fish Tail palm or

Caryota. It stands the temperature of an ordinary living room better than many other palms. For rapil growth it needs more heat than Howea Belmoreana and Fors. teritme. In the greenhouse a temperature of 60 to $70^{\circ}$ is most congenial. A lower temperature will not hurt it, but gives a slower and more compact growth. It loves plenty of moisture, and frequent syringing is beneflcial. For potting soil, it likes rich loam, with plenty of sharp sand und good drainage. The seeds and seedlings should be treated more like the commerclal Areca, i.e., Chrysalidocarpus lutescens. It forms a single stem when only 3 ft . high, and grows to a height of 20 ft , or more in cult. It is at its best when 10 to 15 ft . higt. When well established and pot-bound it loves high feeding, as does Chrysalidocarpus lutescens. This palm has a bright future commercially.

## H. A. Siebrecht

HYDROCHARIS (Greek, greceful water plant). Hylrochariddceif. Frocibit. A genus of one species, an aquatic plant, grown in a few aquaria. It is found in ditches and ponds in Europe and temperate Asia. H. Mcrsus-rànæ, Linn., has floating stems resembling runners, and tufts of radical leaves, and submerged roots. Lrs. stalked, roundish, with a heart-shaped base, rather thick, about 2 in . across: peduncles of the staminate plant bearing $2-3$ fis. on long pedicels, which spring from a spathe of 2 thin bracts: petals 3 , white, stamens $3-12$ : spathe of the pistillate fis. sessile among the lvs.: styles 6, with 2-cleft stigmas. For American Frogbit, see Limnobium.
Hydrocharis dies in the fall, but winter buds (see similar buds of Eloden, Fig. 759) break off and sink when the old plants die. In spring, or in the greenhouse or aquarium under genial conditions, they start early into growth, the scales bursting and a young leaf developing and then the whole rises to the surface. It is a very interesting phat. Its fine, silky roots are beautiful and attractive in the aquarium, as well as the soft, tender leares and delicate flowers.

Wh. Tricker.

## HYDROCLEYS, See Limnocharis.

HYDROCOTYLE (Greek, water and beaker; the plants thrive in moist places, and the roundish lvs. have a cup-like depression in the middle). Umbelliferce. This inclutes a plant which, according to J. N. Rose, is consillerably used at Washington, D.C., for carpet bedding under the name of $H$. sibthorpioides, but, like many nther bedding plants its name seems not to appear in

1114. Hydrocotyle rotundifolia ( $\times 1 / 3$ ).
the leading retail catalogues, American or foreign. Fig. 1114 is the only accessible picture of the plant, except that in Hooker's Exotic Flora as $H$. nitidula. The plant has shining les. 1/4-1 in. across, and is perhaps perennial. It is prostrate and roots at the nodes. The genus contains about 70 widely scattered species, mostly inhabiting swamps, and has no near allies of garden value. The species vary widely in habit and otherwise.

Important generic characters are fr. strongly compressen: calyx teeth minute or ohsolete; petals concave, valvate or imbricate: unbels simple. For culture, see Bedding.
rotuncildlia, Roxh. ( $H$. sibthorpioldes, Lem. Sib thópia Europiea, Hort., not Linn.). Fig. 1114. Lws. orbicular, cordate, subentire or 7-9-lobed to the middle or lower, doubly crenate : umbel 6-8-1ld.: fr. 2-ribhed. Trop. Asia and Afr. Numerous synonyms are aceounted for by the variable length of the petiole.
IV. M.

HYDROPHYLLUM (Greek, water-leaf; application obscure). Mylrophylldec.n. About 7 species of American harly herbaceous plants, mostly North American and perennial, with pinnate or palmately cut folinge and cymose clusters of numerous small white, lilac, light blue, purplish or violet !ls. borne in early summer. Th se plants grow a foot or two high, and are desirable for shady situations where other plants do not succeed. They are obtainable from dealers in native planta and collectors. Floral parts in 5's: ovary 2-celled: styies 2. Important generic characters are: calyx appendaged or not: corolla bell-shapel, the tube within bearing if linear. longitudinal appendage of rosite each lobe, with in folded edges, forming a nectariferous groove.
A. Calyx appendaged with a reflexed lobe at each sinus.
appendiculatum, Michx. Biennial (all the others perennial), hirsute with long spreading hairs: root-liss. pinnately $5-7$-parted: stem-1vs. palmately 5 - 7 -angulated lobed: tls. violet or purple. B.B. 3:44.
AA. Calyx unt prominently appendaged (often minutely appendaged in $\boldsymbol{H}_{\text {. Canadense). }}$
B. Li's. palmately cut.

Canadense, Linn. Fls. mostly greenish white: sometimes purplish. B.R. 3:242. B.B. 3:44.

BB. Les. pinnately cut.
c. Peduncle shorter than the petioles.
capitàtum. Dougl. Tufted, about 9 in. high: lvs. softly hirsute or pubescent. This and the next are the only 2 far western species.
cc. Peduncle longer than the petioles.
D. Divisions of the leaf $\approx-15$.
occidentale, Gray. Pubescent, hirsute or sparingly hispil: fls, violet-purple, varying to white: 1 ft . or more. DD. Divisions of the leaf $3-5$.
Virginicum, Linn. Glabrous or nearly so: fls. white or violet-purple. B.B. 3:43.

HYDROT店NIA (Greek, u'ater and band; referring to a triangular glandular bar which secretes nectar). Iridicere. Four species of tender bulbs from Mexico and Peru, more curious than beautiful, allied to Tigridia, which see for culture. The following is procurable from Dutch bulb growers.
Van-Hoùttei, Baker. Stem 2-3 ft. long, bearing 2-3 fls.: lis. lanceolate, plaited, the lover 1 ft . long: spathes inflated, 2 in. long : perianth campanulate; outer segments oblong, over 1 in . long, greenish outside, inside dark brown, much veined, yellowish at tip; inner segments suborbicular, half as long, pale lilac, somewhat reined. F.S. $21: 2174$, as Tigridia Houttei.

HYMENAB (application obscure). Legumindsce. This includes a tree cult. in S. Calif. for its economic interest. According to Von Mueller, the timber is hard, extremely heary, close-grained, used for select wheelwork, treenails, beams, planks, and in various machinery. A fragrant, amber-like resin, known as West Indian copal, exudes from the sten. A tree of colossal size and remarkable longevity, found in the West Indies, Trop. Amer. and subtropical S. Amer. A genus of 8 species of tropical American trees: 1fts. 2, leathery, said to close at night: fls. white, in short, densely corymbose panicles; sepals 4 : petals 5 , sessile; stamens 10: stigma small: pod short, indehiscent, woody.

Courharil, Linn. Lfts, unequal-sided, obliquely obs-long-lanceolate: fls. pedicellate: pod few-seeded, flled with an edible mealy pulp with a homey-like taste.

HYMENOCALLIS (beautiful membrane, alluding to the webbed filaments). Including Ismene. Amaryllidicee. Spider Lils. Sea Darroull. Bulbous plants of about 30 species of the warm parts of the New World (one in Africa), cult. for the fragrant white (in 1 species yellow), umbellate fls. Perianth with a cylindrical tube, equal linear or lanceolate segments: stamens 6, the thaments free above but webbed and united into a cup below, the anthers narrow and versatile: ovary 3 loculed, with 2 ovules in each, bearing a long, slender style and capitate stigma: scape solid and compressed, arising from a tunicated bulb: lvs. oblong or strapshape. The genus is represented in the Oli World by Pancratium, which differs chiefly in having many ovules in each locule. For an account of the species, see Baker, Amaryllides, pp. 120-129 (1888).

Some of the species of Hymenocallis are winter boomers: these shonld be treated essentially like Crinums, being rested or kept slow in the summer. They require a warm temperature. Of such are $\boldsymbol{I}$. microstephanu, II. speciosa, II. C'eribien. Other species require an intermediate or conservatory temperature, and bloom in spring or summer, resting in winter. Of such are II. culahina, II. Harrisiam, II. Macleanu, $\mathrm{I}_{\text {. laceru, }}$ I. liftoralis. Some of these latter or intermediate-house species are hardy in the southern states, there blooming in spring, as II. lacera, II. Galvestonensis, and others. The species of Hymenocallis require no special treatment (see Bu:bs), except that the same bulbs may be tlowered year after year if they receive good care. Use turfy or peaty soil that will not become "sour" or soggy. Prop. by offsets from the bulbs.
calathina. 12
Caribeas. 7. declinatum, 7 . dalvestonensis, $x$. Guiarense, 1.

## 1NDEX.

Harrisiana, 6.
lacera, 9.
ittoralis, $f$
Macleana, 11. macrostephana, 10 .
rotata, 3.
Senegambica, 5.
speciosa, 3.
tubitlora,

## A. Filaments long and slender beyond the small cup.

## B. Li's. distinetly petioled.

1. tubifld Salisb. Bulb ovoid, abont 4 in . in diam., short-necked: leaf-blade about a foot long and one-third to one-half as broad at the mildle, the petiole 6-12 in. long: scape 1 ft . tall: fls. many in the umbel and sessile, the ralres or bracts broad and cuspidate: tube of perianth greenish, 6-8 in. long, the linear white retfexing segments 4 in. long: cup lin. long, not toothed, less than half or a third the length of the free part of the filament. Northeastern S. Amer. B.R. $4: 26 \overline{5}$, as Pin. cratium Guianense, Ker.
2. undulàta, Herb. Bulb ovoid, 3-4 in. in diam.: lvs. with an oblong blade 1 ft . long and half as wide, cross. reined: scape 2 ft . long, compressed: tls. about 10 , sessile, the tube $6-7$ in. long, and the segments $3-4 \mathrm{in}$. long and linear, white, with tinged red cup an inch long. Venezuela.
3. speciossa, Salish. Bulb globular, 3-4 in. in. diam.: Iss. 20 or less, large (often 2 ft . long), oblanceolate-oblong and scute, narrowed into a channelled petiole: scape mostly shorter than the foliage, glancous: fls. $10-15$, on very short pedicels, the bracts or spathevalves 3-4 in. long: tube of perianth greenish, 3-4in. long, the segments often twice longer (entire fl. often 9 in. long): $\operatorname{cup}$ about $1 \frac{1}{2} \mathrm{in}$. long, toothed, the free parts of the filaments little longer than the cup. W. Indies. B.M. 1453. Gn. 47, p. 294. F. 1883, p. $71 .-$ One of the best. The bulb improves with age if care is taken in growing and repotting. The lrs. are evergreen and handsome. Fls. very fragrant, retaining their scent even when dried. Blooms in winter. This and $\boldsymbol{H}$. macrostephana are the most showy species.
B. Lvs. not petioled, strap-shaped.

## C. Perianth tube mostly aboves in. long.

4. littoralis, Salisb. Bulb 3-4 in. in diam.: lvs. about $12,2-3 \mathrm{ft}$. long, $11 / 2 \mathrm{in}$. broad, acute: scape 2 -edged, 2 ft . or less trill: Hs. $4-8$ in a sessile umbel, the tube $6-7 \mathrm{in}$. long and green-tinged, the segments linear and recurved, 4 in. long, joined to the base of the cup: the cup funnelshape, broader and longer, toothed, the free part of the
filaments about $2-3$ in. long : style about equaling the stamens. Tropics. Gn. 53, p. 57.- Long known in cult., but less showy than othez species.
5. Senegambica, Kunth \& Bouché. Lvs. somewhat curred, acute, 2 ft . long, 2 in . broad at the widest place: scape about as long as the lvs.: fis. 6-8 in a sessile umbel, the tube 5-6 in. long, segments very narrow and 4 in. long : cup funnel-shaped, 1 in . long and somewhat broader, the free parts of the filaments 2 in . long. W. Africa.
6. Harrisiana, Herb. Bulb globular, small (less than 2 in. in diam.): lvs. only $3-6$, a foot long and 2 in. broad, much narrowed below: scape less than 1 ft . tall, slender, glaucous: fls. 2-3 in a sessile umbel, the tube slender and 3-4 in. long, the segments linear and 3 in , or less long: cup funnel-shaped, $3 / 4 \mathrm{in}$. long, plicate, small-toothed, the free filaments $11 / 2 \mathrm{in}$. long and often exceeding the style. Mex. B.M. 6562.-Flowers in early summer. Hardy South.
(c. Perianth tube mostly under i in. long.
7. Caribèa, Herb. (Pancràtium Caribĭ̀um, Linn. P. declindtum, Jacq.). Bulb globular, 3-4in. in diam.: lvs. thin, 12 or more, not 2 -ranked, shining, 2-3 ft. long, 2-3 in. broad at the widest place: scape sharp-angled, nearly or quite as long as the lvs.: umbel sessile, 6 -12-fld.: tube $2-3 \mathrm{in}$. long, the segments linear and somewhat exceeding it: cup 1 in . long, toothed, the free part of the filaments $11 / 2-2$ in. long. W. Indies. B.M. 826. L. B.C. 6:558.
8. Galvestonénsis, Baker. Scape 1-2 ft. long, rather shorter than the linear Irs.: umbel sessile, 4-6: perianth tube 2-3 in. long (sometimes shorter), mostly a little shorter than the linear segments: cup $1 \frac{1}{4} \mathrm{in}$. or less long, funnel-shape, the edge erect, tho free part of the filaments little more than $1 / 2 \mathrm{in}$. long. Texas.-Lately introduced to cultivation with the statement that it "may be planted out in gardens all over the North like a peony and prove hardy." Spring or early summer.
9. lácera, Salisb. (H. rotàta, Herb. Pancrùtium. .otatum, Ker). Bulb ovoid, 2 in. or less in diam, with a long neek and producing stolons or runners: lis. 6-8, linear, $11 / 2 \mathrm{ft}$. or less long, flat above but concave toward the base: scape 2-edged, glaucous, about as long as the lvs.: umbel sessile, with 2-6 fls.: tube green, $3-4$ in. long, exceeded by the linear, often recurred lobes: cup saucer-shaped or rotate, irregularly toothed, the free part of the filaments $11 / 2 \mathrm{in}$. long. N. Car. to Fla. B.M. 827. L.B.C. 1:19. - Variable, particularly in the dimensions of the fl. Spring or early summer.

10. Hymenocallis macrostephana ( $\times 1-5$ ).
11. macrostéphana, Baker. Fig. 1115. Closely allied to $H$. speciosa, and conjectured by Baker to be a hybrid of that species and $\boldsymbol{H}$. calathinu. Bulb with a long neck: lvs. 8-9, oblanceolate and bright green, 2-3 ft. long: As. $6-10$, large and striking because of the great cup (whence the specific name), which is 2 in . across and as much long, wavy-toothed: tube greenish, 3 in. long: segments
linear-laner late, a little longer than the tube. B.M. 6436. Gin. 18:211. - Blooms in Feb. and Mar. One of the best of the Spider Lilies, perhaps the best for warmhouse culture.

AA. Filanients short and incurved (usually less than 1 in. long) beyond the lerge cup. (Ismène.)
11. Macleàna, Nichols. (Ismène Macledna, Herb.). Bulb ovoid, 2 in. in diam.: lvs. a foot or more long and nearly 2 in. broad, narrowing towards the base: scape 2edged, about the length of the lvs.: fts. 2-8, with a straight tube 2 in. or less long, and linear, erect or somewhat spreading segments as long as the tube: cup corollalike, $11 / 2$ in. long and green-striped, fringed, the free filaments $1 / 2 \mathrm{in}$. long, strongly inflexed and angled or knced at the cup. Peru. B.M. 3675. - One of the plants known to the Peruvians as Amancas, the subject of festivals. This and the next are intermediate-house species, flowering in spring and summer.
12. calathina, Nichols. (Ismène calathina, Hert. Pıncràtium caluthinum, Ker). Bulb long-necked: Fss. 6-8, somewhat 2-ranked, strap-shaped, 2 ft . or less long: scape 2 -edged, $11 / 2$ to 2 't. tall, bearing $2-5 \mathrm{fls}$. in a sessile umbel: tube gree: 'n. long, much enlarging above: segments as long . - tube, $1 / 2 \mathrm{in}$. wide, lanceolate: cup corolla-like and gi n-striped, usually larger than in the last, with rounded fringed lobes: filaments free for $1 / 2$ in., incurved but not angled. Peru, Bolivia. B.M. 2685.

The following names may be expected in the trade: $\boldsymbol{H}$. adnàta, Herb. $=\mathrm{H}$. littoralis. $-\boldsymbol{H}$. Amáncers, Nichols., is one of the Ismene group, and the only species with yellow fls. B.M. 1224. B.R. 7:600. Gin. 48, p. 168.- H. amoe:a, Herb. $=\mathrm{H}$. ovata (below).-H. Andreàna, Nichols. An Ismene: f. only 1, the cup nearly or quite as long as the segments. R.H. 1884, p. 129, cup nearly or quite as long as the segments. R.H. 1884, p. 129 ,
$468 .-H$ crassifolia, Herb. (H. occidentalis, Britton \& Brown). 468.-H. crassifolia, Herb. (H. oceidentalis, Britton d Brown). Ga. to and linear segments nearly as long: cup much narrowed long and linear segments nearly as long: cup much narrowed ana, Kunth. Evergreen, with lvs. like Eucharis: fis. white, ana, Kunth. Evergreen, with lvs. like Eucharis : His. White,
fragrant, with greenish tubes, very slender and twice as long fragrant, with greenish tubes, very slender and twice as long
as the segments, the cup very short and toothed. Venezuela. G.C.III. $27: 89$.-H. oratta. Roem. Lvs. broad and petioled: fis. $6-10$, the tube abont 2 in . long, the linear segments little longer: cup 1 in. long. W. Indies. B.R.1:43. B.M. 1467.
L. H. B.

## HYMENODIUM. See Acrostichum.

## HYYENOLEPIS. See Acrostichum

HYMENOPHYLLUM (Greek, membrane-leaved). Hymenophyllacea. A large genus of filmy ferns allied to Trichomanes, but having a more or less deeply 2 -lipped or 2 -valved involucre. Some 80 species are found in the tropics of both hemispheres. One species appears in wells in England.

Hymenophyllum demissum is a difficult plant to grow. It needs a Wardian case in a coolhouse, and occasional sprinkling overhead. The members of this genus are propagated slowly by division.
A. Les. glabrous: rachis slightly winged aboc'e.
polyánthos, Swz. Les. 2-8 in. long, 1-3 in. wide, tripinnatifid: sori 2-12 to a pinna; involucre small. Tropics of both hemispheres.
demissum, Swz. Lrs. 4-12 in. long, 3-4 in. wide, 3-4pinnatifid; sori very numerous, 20-30 to a pinna; involucre with ovate entire valves. E. Indies to New Zealand.

## AA. Lis. pubescent or ciliate.

ciliàtum, Swz. Fig. 1116. Stalks ciliated and winged above : lvs. $2-6$ in. long, $1-2$ in. wide, tripinnatifid, the segments ciliated; involucre roundish, the valves divided half way down and ciliated. Tropies of both hemispheres.
ærugindsum, Carm. Fig. 1117. Stalks tomentose: lvs. $2-3 \mathrm{in}$. long, 1 in . or less wide, tripinnatifid, the pinnæ often imbricate, the surface and margins densely pubescent ; involucres small, with valves divided nearly to the base, dense! y ciliate. Tristan d'Acunis.
L. M. Underwood and Robert Shore.

HYMENOSPORUM (Greek, referring to the 2 -winged seeds which distinguish it irom Pittosporum). Pittospordcece. This includes an ornamental shrub, cult. only
in S. Calif. It has corymbs of tubular yellow tls. each 1 in . or more a ross. The genus has only one species, as evergreen Australian shrub, with the habit of Pittosporum and resembling that genus in having thick, leathery capsules and an indefinite number of seeds, but in Pittosporum the seeds are thicker, not so much flattened and not winged.
flavom, F. Muell. Lvs. usually alternate, sometimes opposite or subverticillate, becoming nearly 9 in. long obovate, leathery, entire: corolla with 5 obovate lobes, silky outside, marked with red at the throat; stamens 5. B.M. 4799.

HYMENOXYS Californica is Actinolepis coronaria

1116. Hymenophyllum ciliatum. ( $\times 1 / 2$.)

1117. Hymenophyllum aruginosum. Nat. size.

HYOPHORBE (Greek, focl for swine; referring to the fruits, probably). Palmacea. Three species of pinnate palms from Mauritius, 2 of which are cult. under glass North and outdoors South. Much of their distinctive beauty is in the color of the petiole and rachis, which in $\boldsymbol{H}$. Verschaffeltii is yellow, while in H. amaricautis the petiole is maroon and the rachis orange. The first species also has its leares handsomely veined with white.
These two species are highly ornamental palms, and are frequently found in trade collections. They would probably be grown in greator quantities were it not for the fact that they are not very rapid growers while in a young satc. They are naturally heat-loving plants, and flourish under similar treatment to that recommended for the palm commercially know as Areca lutescens, namely, a good loamy soil well enriched with stable manure and with a moderate addition of bone dust, flrm potting, an abundance of water, and a night temperature of $65^{\circ}$, while in conmon with palms in general when grown under glass, it is found necessary to shade from full sunshine during the period between March 1 and November 1.
Of the two species, $H$. Verschaffeltii is much the better, and is one that should be found in all collections, its stout and usually triangular stem and well furnished foliage giving it a distinction that readily attracts attention. Seeds of Hyophorbe should be sown in a light compost, pure peat giving good results for this purpose, the seed pots being placed in a bottom heat of $80^{\circ}$ and kept moist. The seedlings are delicate in their earlier stages, and should be kept in a warm place until thor-
oughly established; they also require careful watering, the roots of these small plants being quite tender.
Hyophorbe is allied to Chamædorea and Roscheria, which are cultivated. Hyophorbe is spineless and the leaf segments are acuminate, while Roscheria has spines and segments 2-cut at the apex. In Hyophorbe the fis. are moncecious in the same spadix and disposed in small, elongated heaps: in Chamædorea the fis. are diœcious or monœcious in different spadices and spirally disposed. Hyophorbe contains stout, spineless palms with ringed caudices, cylindrical, or swollen below the middle or interruptedly swollen : lvs. terminal, equally pinnatisect, the subopposite segments linear lanceolate, acuminate, plicate-nerved, with the thickened margins recurved at the base; petiole subcylindrical, the upper surface slightly furrowed, 3 -sided at the base; sheath large, swollen, entire: spadices with short peduncles, twice-branched, the branches slender, spreading ; spathes numerous, imbricated in 2 rows: fls. pale green or yellow: fr. small, pear-shaped or olive-shaped, straight or curved, gibbous or bigibbous at the base, orange or blue.
smaricaùlis, Mart. (Arèca speciosa, Hort.). Palm 60 ft . high, with a bottle-shaped caudex, 15-24 in. in diam. near the base, slightly diminishing upwards to the base of the leaf-sheaths and there abruptly constricted : petiole $12-18 \mathrm{in}$. long, somewhat trigonous, grooved on the face ; segments in $40-60$ pairs, 18 in . long, 2 in. broad, with the central and 1 lateral vein on each side prominent above, the veins clothed below with rather rigid, lanceolate, appressed scales. I.H. 13:462. - Mauritius.

Verschaffeltii, H. Wendl. (Arèca Verschaffétii, Hort.). Caudex $\mathbf{2 0}^{-1} \mathbf{- 3 0} \mathrm{ft}$. high, $6-12 \mathrm{in}$. in diam. at the base, bulging after a few feet, reaching $12-24$ in. in diam. in the middle, thence contracting upward: petiole 3 in . long, subterete, slightly grooved on the upper surface, with a yellow band extending from the upper part of the leaf-sheath along the face of the petiole to the base of the blade; segments in 30-50 pairs, $20-30$ in. long, 1 in . wide, only the central vein prominent, clothed on the under surface toward the base with short, linear scales. Mauritius. I.H. 13:462. G.C. 1870:418.
H. Commersoniàna, Índica and lutéscens are Chrysalidocarpus latescens, though H. Indica is given as a good species by Index Kewensis. Jared G. Smith and W. H. Taplin.

HYOSCYAMUS (Greek, hog's bean). Solandceæ. Henbane is a coarse, clammy, ill-smelling, annual or biennial wayside weed which is cultivated for medicinal purposes. An extract is commonly sold in drug stores. About 15 species of herbs, biennial or perennial, pilose or glabrous: Irs. wary-margined, coarsely toothed, or pinnatifid, rarely entire : corolla pallid, or lurid and netted-veined, funnel-shaped, with 5 unequal lobes: capsule circumscissile above the middle. The nearest ally of garden value is Datura. Henbane grows wild in Eu., W. Asia and Himalayas and is naturalized in Amer. It is found in sandy and waste places. Seeds can be obtained by the pound or less. For medicinal purposes, only the leaves of the second year's growth should be used.
niger, Linn. Annual or biennial, 1-2 $1 / 2 \mathrm{ft}$. high: lvs. 3-7 in. long, the upper ones stem-clasping, irregularly lobed or pinnatifid: fls. greenish yellow, with purple veins. June-Sept. B.B. 3:138.

HYPERICUM (old Greek name of obscure meaning used by Dioscorides). Hypericàcec. St. Johv's-Wort. A genus of about 200 species, consisting of herbs, un-der-shrubs and shrubs, and scattered over the whole world, but particularly abundant in S. Europe, W. Asia and $N$. Amer.; few species of any value in the garden. The leaves are opposite, oblong or lanceolate, exstipular, sessile or subsessile, entirc: subevergreen or deciduous, dotted with pellucid or opaque glands, rich in volatile oil. Flowers polypetalous, terminal, solitary or disposed in single or compound cymes, appearing July-Oct., but particularly in early August; sepals 4-5, more or less united at the base and unequal, petals commonly yellow, 4-5, oblique or contorted, hypogynous, alternate with the calyx; stamens numerous, free or connate, in

3-5 clusters, sometimes with interposed hypogynous glands: ovary free, 1-celled, with a central placenta or incompletely or completely 3-5-celled, sometimes longitudinally furrowed: fr. a berry or capsule, with numerous seeds borne upon the placenta or introflexed margins of the carpels: styles 3-5, free or united, persistent.
The Hypericums grow 6 in . to 5 ft . high, of erect to prostrate habit, most of them tender or of uncertain hardiness, requiring some winter protection. Many kinds from the southern United States and southern Europe, otherwise good, are unreliable from lack of hardiness. Several N. American species not yet in cultivation are ornamental and hardy. The few useful species furnish a brilliant color, blooming when most shrubs do not. All are of simple culture, succeeding in almost any garden soil, but generally preferring a light warm land; hence useful in sandy soils, flowering later and longer if partly shaded. They are prop. by seeds suckers, cuttings and stiong pieces of creeping-rooted kinds. The twigs are terete, 2 -angled or 4 -angled. The smaller species are useful as rock-plants, the larger as border plants, in the front of shrubberies or in unmixed masses. Their common name, St. John's-Wort, comes from the fact that the common people of some European nations used to gather the flowers of $H$. perforatum to decorate their dwellings on St. John's Day. The Hypericums are mostly short-lived, and need renewal every 6-7 years.

## INDEX.

adpressum, 9. Androsæmum, 8. Ascyron, 1. aureum, 20. axillare, 14. Buckleyi, 10 . alycinum, $\overline{5}$. Chinense, 23. cistifolium, 21 densiflormm, 13 elatum, 17. elegans, 11 .
fastigiatum, 9. floribundum, 18 . foliosum, 22. gladioides, 14. hircinum, 16. Hookerianum, 2. Japonicum, 12. Kalmianum, 6, 22 lobocarpum, 7 топодуиит, 23. Moserianum, 4. multiflorum, 19.

Nepalense, 3. nuditlorum, 21. oblongifolium, 2. patulum, 3. prolificum, 22. pyramidatum, 1. salicifolium, 23. sphærocarpon, 15. tricolor, 4. riflorum, 2. Cralum, 3. Virginicum, 24.

## A. Flowers yellow.

B. Styles $\overline{\mathrm{J}}$.
c. Plant herbaceous.

1. Áscyron, Linn. (H. pyramidutum, Dryand.). Upright perennial, $2-6 \mathrm{ft}$. high, with tetragonal stems: lvs. clasping, ovate-oblong or ovate-lanceolate, acuminate from the base, $2-5$ in. long : cymes terminal, $3-12$-fld. appearing in July: fls. 1-2 in. in diam.; sepals small, ovate-lanceolate; petals thin, narrowly obovate or oblanceolate, curiously shaped and twisted, persistent until withered; stamens in 5 clusters; styles somewhat spreading; stigmas capitate: capsule ovoid, $3 / 4 \mathrm{in}$. long. -A somewhat coarse and ungainly plant living on river banks, native to both North America and N. Asia. B.B. 2:429. - Toward fall apt to be unsightly through the lower lvs. dying and remaining.
cc. Plant shrubby or suffruticose.

## D. Stems terete.

2. Hookeriànum, Wight \& Arn. (H. oblongifòlium, Hook., not Choisy. H. triflorum, Blume). A suffruticose species, $21 / 2 \mathrm{ft}$. high, thin growing: Ivs. among the largest of the genus, 1-4 in. long, evergreen, orate or oblong, sessile, dark blue-green above, pale and glaucous below, minutely pellucid punctate : corymbs sereralfld., of large golden yellow fls. in profusion, 2-3 in. in diam.; sepals large, obovate; petals very large, frm, sub-rotund; stamens in $\bar{j}$ clusters; styles recurved, longer than the stamens: ovary broad-ovate, longitudinally furrowed. - Considered to be one of the best species because of its large fls. and hardiness. August. From the higher altitudes of the Himalayas. B.M.4949. Gn. 54, p. 490.-Easily prop. by cuttings.
3. pátulum, Thunb. (H. Uràlum, Don. H. Nepalénse, Hort.). An evergreen spreading under-shrub, $11 / 2-2 \mathrm{ft}$. high, with many smooth, purplish arching branches: Irs. ovate-lanceolate, acute, without dots: fls. many, solitary or in cymes, large, 2 in. in diam., of good substance; sepals suborbicular; styles recurved: capsule ovate, more or less longitudinally furrowed. Japan, China and the Himalayas. Not very hardy, but one of the
best where it succeeds. Gn. 54, p. 491. B.M. 2375, 5693. R.H. 1875:171. - Not so showy as some American species, but graceful and delicate, and one of the best for rock-gardens. Earliest to bloom.
4. Moserianum, André. Gold Flower. Hybrid raised by Moser, of France, from $H_{\text {. patulum and } H . ~ c a!y c i-~}^{\text {. }}$ num, generally resembling the latter but lacking its coarseness, and surpassing both parents in good qualities. A glabrous subshrub 2 ft . high, erect, with the tips of the branches pendulous: lvs. similar to those of H. calycirum, orate-obtuse-mucronulate, opaque, 2 in. long, dark green above, pale below: inflorescence with 1-3 tis. per stalk, which are golden yellow, 2 in. in diam. blooning for some time: calyx of foliaceous oblong sepals; corolla of broad rounded petals, their color heightened by the many tufted yellow stamens with reddish anthers: capsule top-shaped. July, Aug. R.H. 1889, p. 464. Gn. 54:1201. R.B. 16:97. G.C. 111. 10:353. - Not hardy in N. England, but successful further south. Not good individually, but good in masses, better adapted to the herbaceous border than the shrubbery. May be used as a pot-plant. Var. tricolor. Variegated form of white and green edged with red. Habit like H. patulum, but more horizontal, the lvs. smaller and narrower: fls. one-fourth the size of those of $\boldsymbol{H}$. Moseriantm but similar. Less hardy.

## DD. Stems angled.

5. calycinam, Linn. Rose of Sharos. Aarox's Beard. A subshrub, 1 ft. or less high, with many procumbent or ascending stems occurring in thick tufts: lvs. ovate, evergreen, leathery, dark green, glaucous below, 2-4 in. long, filled with pellucid dots: fls. large, solitary, or 2-3 together, 3 in . in diameter; sepals large, oborate, spreading; stamens long and showy, in 5 clusters, with red anthers; styles shorter than the stamens, dirergent: capsule orate, 4 in. long. July-Sept. B.M.146. - A rapidly spreading plant, creeping by woody rootstalks completely corering the soil. Used as a ground cover abroad. Not very hardy in New England, the annual killing-back preventing its covering wide stretches, but not destroying its bloom each year, nor its usefulness in the herbaceous border, or in the margin of a shrubbery. May be protected, and its dark, persistent foliage preserved. Thrives in sun and moderate shade. From Greece and Asia Minor. Prop. by root and ripe wood cuttings.
6. Kalmiànum, Linn. A shrub, 2-3 ft. high, with rather contorted stems: lvs. oblong-linear, or oblanceolate, $1-21 / 2$ in. long, bluish, more or less glaucous below, crowded: fls. small, $1 / 2-1 \mathrm{in}$. in diameter, in 3 - severalflowered cynes; sepals foliaceous oblong; stamens distinct; styles united below to form a beak: capsule ovoid, longitudinally furrowed. G.F. 3:113. Mn. 6:141.-A rare species, confined to the rocks and sands of Niagara and the northern lakes, enduring considerible dryness. Easily adapted to the garden, succeeding in the shade. Not so showy in fl. as some other species, but good because of its bright, narrow lvs. and hardiness.
7. lobocarpum, Gattinger. Upright, hardy shrub, $11 / 2$ ft . high, in the South $\overline{5}-7 \mathrm{ft}$. lvs. oblong-lanceolate or linear-lanceolate, obtuse or barely acute, $11 / 2-2$ in. long: fls. profuse, small, in many-Howered nuked eymes; sepals linear-lanceolate; stamens numerous; styles connirent : capsule oblong, $\overline{5}$-angled, furrowed. Last of August. Tenn., where it frequents marshes. G.F. 10:453. -Straggling plant of inferior quality.

## BB. Styles \&.

## C. Fruit a terry: lus. ovate.

8. Androsæmum, Linn. (Androsìemum officinále, All. ). Sweet Amber. Common Tutsan. A dense undershrub with erect, quadrangular stems: lvs. orate, 4 in . long, subcordate, minutely dotted, dark green, whitish below: fls. solitary or in cymes of 3-9, large, light yellow; sepals ovate; stamens in 5 clusters, longer than the corolla; ovary subglobular or oval, incompletely 3-celled; styles divergent, persistent: fr. berry-like, blackish violet, the size of a pea. June-Sept. Lives in shady, wet places, W. Europe. - Not yet proved hardy at the North. Fls. not particularly attractive, but good in fruit and foliage. All parts very aromatic.

## cc. Fr. a capsule, 1-з-celled.

D. Plant low, 6-15 in. high.
9. adpréssum, Barton. (H. fastigidutum, Ell.). Practically a herbaceous perennial, erect from a creeping or decumbent base, growing in dense masses: lvs. oblong or lanceolate, $1-2 \mathrm{in}$. long, acute, thin: cymes few-sev-eral-flowered. July, August. Moist places, Nantucket, Mass., south. B.B. 2:+31. Spreads rapidly by underground stolons, suggesting occasional use as a ground cover. Not very hardy in New England.
10. Búckleii, M. A. Curtis. Later written Buckleri. Dense shrub, with slender, 4 -angled stems, forming neat, rounded tufts : lvs. bluish, broadly ovate oblong, $1 / 2-21 / 2$ in. long, rounded at the apex, gradually narrowed at the base, pale below, becoming scarlet in autumn: fls. solitary or in cymes of 3,1 in. in diam.; sepals ovate; petals striated and strap-shaped; styles connate: capsule oblong-ovoid, large. June, July. Found only in the highest mountains of the Carolinas and Ga. G.F.4:581. - Adapted to rockeries and margins of small shrubberies.
11. elegans, Steph. A low perennial, 1-11/2 ft. high. with erect, winged stem filled with black dots: Ivs. orate-lanceolate, rather clasping, bright green: fls. racemose, 1 in . in diam., appearing in late summer and autumn; sepals ovate, much shorter than the petals, the stamens somewhat longer: capsule ovoid, with 3 apices. - A scarcely hardy plant from Siberia.
12. Japonicum, Thunb. Decumbent, with ovate or oval 3 -nerved clasping lvs. $1 / 2 \mathrm{in}$. or less long, the stems 4 -angled, $2-15$ in. tall : As. $1 / 4 \mathrm{in}$. across, yellow, with petals equaling the linear-lanceolate sepals and bracts; styles one-third the length of the ovary. Japan to India.-Perennial ; but Hooker (Flora of India) says it is annual. Blooms in spring. Not hardy North.

## DD. Plant higher, 2-4 ft. <br> \section*{E. Leaves linear.}

13. densifldrum, Pursh ( $\boldsymbol{H}$. prolificum, var. densifldrum, A. Gray). \& shrub, closely related to $\boldsymbol{H}$. prolificum, but rarer: stems erect, stout, densely leafy, 4-6 ft. high: lvs. variable, broader and oblong like those of H. prolificum, or narrower and linear-lanceolate like those of $\boldsymbol{H}$. galioides, 1-2 in. long, mucronulate: fls. $1 / 2 \mathrm{in}$. in diameter, in broad, dense, many-fld. cymes; sepals narrow, not foliaceous; stamens distinct; styles connate: capsule completely 3 -celled, short and slender, longitudinally furrowed. July-Sept. Pine barrens, N. J., and south. Mn. 4:97. G.F. 3:527.-R.H. 1899, p. 517, 518 . Not well known, out appears to be hardy.
14. galioldes, Lam. (H. axillàre, Lam., not Michx.). Practically suffruticose, but sometimes occurs as a rouad, compact shrub: stems erect, 3 ft . high, slender: lvs. linear, mucronulate, dark green. crowded, 1-3 in. long: fls . in dense, many-fld. cymes $1 / 4-1 / 2 \mathrm{in}$. wide ; sepals linear, foliaceous, equal, shorter than the narrow petals; stamens distinct; styles at first connate, becoming fres: capsule conical, completely 3 -celled, acute, longitudinally furrowed. July-Sept. Natural to low, wet grounds, Delaware to Fla., but grows freely in rich garden soil. G.F. 10:433. G.C. III. 24:301.-Seems to be perfectly hardy. Easily raised from seeds. Not well known.
15. sphærocarpum, Michx. Erect perennial, $1-21 / 2 \mathrm{ft}$. high, 4-sided: lvs. linear or linear-oblong, obtuse, 1-2 in. long: cymes of many small fls. $1 / 2 \mathrm{in}$. in diameter, nearly leafless; sepals ovate, mucronate; petals 3 times longer; stamens numerous, distinct; styles united below : capsule globose, $1 / 4$ in. long. July. Frequents rocky banks of rivers, Ohio and Ky.; satisfactory in light, sandy soil.-Spreads rapidly by stoloniferous roots, covering the soil and preventing washing. Not very ornamental. Half-hardy North.

EE. Les. broadly lanceolate or ovate: sepals ovate.

## F. Stamens and styles longer than the petals:

 styles divergent.16. hircinum, Linn. Glabrous subshrub of round, compact habit, $2-3 \mathrm{ft}$. high, the branches winged toward the tips: Irs. ovate-lanceolate, acute, glandular, $1-2 \mathrm{in}$. long, deep green: fls. $11 / 2$ in.wide, solitary or 3 -clustered; sepals deciduous, one-third to one-fourth the length of
the lance-oblong petals, which are of a deeper yellow than in the other species; stamens very long; styles spreading, longer than the stamens: capsule ovoid, pointed. July-Aug. - Species characterized by the strong, goat-like odor of the lvs. (hence the nams). Of easy cultivation, but requiring a dry position and winter protection. Mediterranean region. Var. minus, Wats. Dwarfer, with smaller lvs. and fis.; as pretty and freeblooming as the type, and, in the rock-garden, preferable.
17. elatum, Dryand. Strong, tufted undershrub, recalling $H$. Androscemum, 3-4 ft. high, not quite hardy, sometimes credited to the United States, but really from the Canaries: lvs. oval, $11 / 2-3$ in. long, dark green, whitish below, acute: fls. numerous, 1 in. in diameter, in 3-7-flowered cymes; sepals ovate-oblong; stamens distinct; styles prolonged, distinct: capsule oblong, small. July.
18. floribúndum, Dryand. A subshrub, with round, glabrous stems: Irs. lanceolate-elliptic, light green, without dots, numerous, $1-1 \frac{1}{2} \mathrm{in}$. long: fls. in few- to manyflowered panicles, $11 / 2-2 \mathrm{in}$. in diameter, with dilated peduncles: sepals somewhat acute; stamens numerous, shorter than the petals, petals and stamens persistent; ovary oval; styles long, divergent, with capitate stigmas. - From the Canary and Madeira Islands. Not hardy North, but in cultivation in S. California. Grows very rapidly to the height of about 12 ft . Generally prop. from seeds, which are produced freely.
19. multiflorum, Hort., not HBK. A supposed hybrid between $H$. $A n d r o s a m u m$ and $H$. elatum, assuming an intermediate form, but more closely resembling $\boldsymbol{H}$. elatum. It also resembles $H$. hircinum, but is more shrubby and taller. Lrs. ovate-oblong, acute, somewhat clasping, $1-2 \mathrm{in}$. long: fls. in profusion, several in a cyme, 1 in. wide, lasting two weeks; sepals smail, ovate reflexed; styles spreading: capsule oblong. July. - Not very hardy.

20. Hypericum aureum ( $\times 1 / 3$ ).

FF. Stamens and styles shorter than the petals: styles comnivent.
20. aùreum, Bartram. Fig. 1118. Showy shrub 3 ft . bigh, more woody than most species, of stiff, dense habit, top often globular like a miniature tree, the branches 2 -edged, with thin, exfoliating red bark: lvs.

## HYPHENE

oblong, mucrunate, bluish, pale below, leathery: fls. solitary in the native state, in cymes of several in cultivation, $11 / 2-2$ in. in diam., bright yellow, heightened by the golden filaments at the center; bracts leaf-like, lasting two weeks; sepals leaf-like, ovate, shorter than the thick, broad petals, which persist until withered; stamens distinct, very numerous; styles connate: capsule ovate acuminate, red. July-Aug. Affects rocky situations when wild, generally shady, where moisture is longest retained, from Ga. and Teun., but perfectly hardy in Mass. G.F. 2:185. - Prop. by seeds and cuttings, young plants from seed blooming the second year.
21. nudifloram, Michx. (H. cistifolium, Coulter, not Lam.). Showy subshrub, 1-2 ft. high, with quadrangular winged branches: lvs ovate-lanceolate or oblong, subacuminate or obtuse, $2-3 \mathrm{in}$. long, thin, veiny, pale above and below, with minute reddish dots: cymes leafless, loosely flowered, of many small fls; sepals linear to oblong; styles united: capsule ovate-conical, $1 / 4 \mathrm{in}$. long. N. C. and S.-Ornamental and of easy cultivation.
29. prolfficum, Linn. (II. foliosum, Jacq. Myriáudra prolifica, Spach). A stout, dense shrub, 3 ft . high, with terete branches and exfoliating light brown bark, the twigs 2 -angled: lvs. oblong or oblanceolate obtuse, 1-3 in. long, glossy, dark green, pellucid, punctate: fls. in profusion, $1 \frac{1}{2}$ in. wide, in several- to many-flowered cymes; sepals lance-ovate; stamens numerous, distinct; styles united at the base: capsules large, oblong, $1 / 2 \mathrm{in}$. long. July-Sept. Found in sandy or rocky soil, New Jersey to Iowa and Georgia; one of the most commonly cultivated. G.F. 3:52-A strong, hardy shrub. Grows rapidly in ordinary garden soil, flowering regularly and profusely. Varies greatly in size.

BBB. Styles united throughout.
23. Chinénse, Linn. ( $\boldsymbol{\text { I. monogynum,Willd. H. salici- }}$ folium, Sieb. \& Zucc.). Shrubby, half evergreen: Ivs. narrow, elliptic and obtuse, 1-2 in. long: tis. large, yellow, with long stamens resembling "fine golden wire." Mar.-Sept. Orient. G.C. Ill. 1:705.-Said to be known only as a garden plant. Tender. Grown under glass is parts of the Old World.

## AA. Flowers pink.

24. Virginicum, Linn. (Elodèa campanuldta, Pursh. Elodèa Virgínica, Nutt.). Marsh St.-John's-Wort. Smooth perennial, $1-1 \frac{1}{2} \mathrm{ft}$. high, nearly simple: lvs. numerous, oblong or oval, cordate, clasping, rounded, $1-21 / 2$ in. long: tis. $1 / 2 \mathrm{in}$. in diam., pink-or flesh-colored, in small, close cymes; sepals equal; petals oblong; stamens at least 9 in 3 sets; styles distinct: capsule oblong. July, Aug. In swamps, Labrador to Louisiana. B.B. 2:436.-Useful plant for an artificial bog, and thrives well also in any fine, loamy soil in the shade or sun.
H.Egypticum, Linn. Dwarf shrub, with very small yellow lvs. and minute, solitary fis. in profusion. Not hardy. Mediterranean region. G.C.II. 14:503.-H. Baleàricum, Linn. Curious evergreen species, with small oblong lvs. $1 / 2 \mathrm{in}$. long, warty beevergreen species, with smand on the twigs: fis. f $f$ ir, large, solitary. Not very neath and on the twigs: fis. feir, large, solitary, Not very hardy. Mediterranean region.-H. Coris, Linn. Procumbent
shrub, with linear lvs. in whorls. flowering May-Sept. Not shrub, with linear lvs. in whorls, flowering May-Sept. Not hardy. Central and S. Europe- -H. dolabriforme. Yent. Procnmbent perennial, with ascending stems 6-20 in. high, with
small narrow l . s . and fis. 1 in . wide. Not very hardy. Ky. and small narrow 1 ss. and fis. 1 in . wide. Not very hardy. Ky. and
$\mathrm{S} .-H$. Elodes, Huds. Procumbent perennial, with round-ovate, S.- H. Elodes, Huds. Procumbent perennial, with round-ovate,
tomentose lvs. and few- Howered, pale yellow panicles. Suitable to boggy places. Europe.-H.empetrifolium. Willd. Neat, evergreen subshrub in patches, 6-12 in. high, with fine $1 \mathbf{v s}$. and fls. Not hardy.- II. fasciculàtum. Lam. Tall shrub, 3-6 ft., erect, with numerous small linear jvs. and small fis., and frequenting marshy places Sonth. Not tested North.-H. inodorum, Mill. Dense arching or pendulous shrub, $11 / 2 \mathrm{ft}$. high, with ob long lvs. and few fis.-H. nummulàrium, Linn. Perennial, from the Pyrenees, with ascending ste:n and orbicular lvs.H. Olÿmpicum, Linn. Evergreeu shrub, with lanceolate lvs. and fls. 1-2in.wide, with narrow petals. Gn. 30:590.- H. opàcum,'Torr, \& Gray. Southern shrub, 1-4 ft. high: lvs. small, pointed, numerons: fls. small. in many-flowered cymes: stems erect, slender. Half hardy North. G.F. $5: 305$ - $\boldsymbol{H}$. orientàle, Linn. Halfhardy, erect perennial, 6-12 in. high, with linear lus. Asia. $H$ perforitum, Linn. The common perennial species of the fields naturalized from Europe, with elliptical oblong or linearoblong Ivs. and numerous ts. in leafy, open cymes.- $H$. puiloblong ivs. and numerous tis. in leafy, open cymes.- 11. puichrum, Linn. Central Enropean speries, With cordate connate slightly pendulous shrub, $1 \%-2 \mathrm{ft}$. high, with large elliptical slightly pendulous shrub, $1 / \mathbf{z}^{-2} \mathrm{ft}$. high, with large eliptial
lvs. and fls. in clusters. Hardy. A. Phelps Wrman.

HYPHisNE (Greek, to entwine; referring to the fibers of the fruit). Palmàcere. About 11 species of fan-leaved palms from tropical Africa and Madagascar. The Borassus tribe of palms consists of Borassus, Lodoicea, Latania and Hyphæna. In the first two the staminate fls. in the pits of the spadix are numerous; in $t$ e last two they are solitary. In the first and fourth there are few stamens; in the second and third the stamens are numerous. Hyphrene consists of unarmed palms of moderate or tall stature : caudex robust, cylindrical ventricose or pear-shaped, simple or forkingly branched: lvs. terminal, orbicular, palmate-flabelliform, plicatemultifid; segments ensiform, acute or 2 -fic, margins induplicate with fibers interposed: rachis short: petiole strongly biconvex or a trifle flatter above, margins mi nutely spiny: ligule short, rotund; sheath short, open.

Hyphane crinita does not look at all like Latania. It has long, thick seed-leaves, and has withstood the cold at Oriedo, Fla., better than any other palm. It is extremely slow of growth, and cannot be desirable as a house plant. It is probably cult. more in northern conservatories than in the South.
crinita, Gærtn. (H. Natalénsis, Kunze). Young fronds 1 to $1 \frac{1}{2} \mathrm{ft}$. long, lanceolate, bi- or trifid at the apex, bright green, clothed on both sides with a white

bloom which soon vanishes, plicate, scabrous on the margins and nerves above; petiole sheathed for 1 or 2 in., deeply channeled above, rough on the margins: fruits obovate, $21 / 2 \mathrm{in}$. long, smooth. S. Africa. Cult. outdoors in S. Fla.

Jared G. Satth and E. N. Reasoner.

## HYPOCRITL PLANT. Euphorbia heterophylla.

HYPOLEPIS (Greek, a scale underneath). Polypo. didece. A genus of ferns with marginal sori, placed in the sinuses of the leaf, covered with the membranous leaf margin. Tropical ferns of both hemispheres rarely cultivated. Ten or more species are known.
rèpens, Presl. Stalks straw-colored, more or less prickly: lvs. $3-4 \mathrm{ft}$. long, quadripinnatifid; lower pinne 1-2 ft . long, $6-12 \mathrm{in}$. wide, ovate acuminate: sori $2-6$ to a segment. West Indies to Brazil.
Hypolepis repens is a rather coarse fern, of easy culture, with the general appearance of a Cyathea. Like all strong-growing ferns, it requires a large percentage of loam. It likes shade and moisture at all times, and is readily propagated by spores, which it produces in great quantity. It often sows itself, and requires a stove or intermediate temperature.
H. Californica. See Cheilanthes Californica.
L. M. Underwood.

HYPOXIS (old Greek name, of no application to these plants). Amarylliddcere. Star-Grass. About 50 species of little herbs of temperate and tropical regions, with linear leaves, hard rootstalks or corms, perianth adnate to the ovary, and anthers not versatile. They are scarcely known in cultivation, although the common species of the northern states, H. erecta, Linn. (H. hirsùta, Coville), Fig. 1119, is offered by dealers in native plants. The lvs. are radical, hairy, grass-like: fls. 1-6, small, star-like, bright yellow, on scapes 4-10 in. tall. Give a half-shady place in the rockery or border. Prop. by division. Blooms in spring. Not showy, but interesting. D. 143. G.W.F. 39. H. stellata, Linn. f., from S. Africa, is a pretty greenhouse bulb, blooming in Dec.: lvs. 4-12, glabrous, a foot or less long: peduncles sometimes forked, 1-4, bearing fls. white inside, and the outer segments green-striped on the back.
J. B. Keller and L. H. B.

HYSSOPUS (ancient name; but precisely what plant was the sacred Hyssop of the Jews is uncertain). Labidte. Hyssor. Hyssop is a familiar plant, cultivated for medicine and also for ornament in hardy borders. It is considered a genus of only one species, the numerous synonyms being referred mostly to $H$. officinalis or to the genus Lophanthus, 2 species of which are cult. Hyssopus has entire lvs.: Lophanthus has serrate lvs. Important generic characters of Hyssopus are the 15 -nerved calyx and divergent stamens: upper lip of corolla 2-lobed; lower 3-lobed: stamens 4, didynamous, 2 of which are exserted.
officinalis, Linn. Fig. 1120. Stems herbaceous from a woody base, slender, branched or not: lvs. linear to
oblong, sessile or nearly so, acute at both ends or the lower ones obtuse at the apex, $11 / 2-2$ in. long. B.M. 2299. B.B. 3:110. Var. alba, with white fls., is cult.

Hyssop is a hardy perennial shrub, growing 18 in. tall, which has been naturalized in the United States from southern Europe or Siberia. Lrs. narrow and entire: fls., which appear from June to September, blue, sometimes white or pink, borne in whorled spikes, which are more or less interrupted. The whole plant has a strong odor and pungent, bitter taste. The green parts are used in connection with wormwood and other plants in the manufacture of absinthe, occasionally as a pot herb, and as a flavoring for cold salad plants. The powdered, dried flowers are similarly employed in soups. The flower spikes are eut just as the blossoms begin to open, and are dried for use in domestic medicine as a stimulant and expectorant in the treat ment of asthma, coughs and other pulmonary troubles. Hyssop is not now so highly esteemed as formerly by the medical profession.

This plant is readily propagated by seed, cuttings and plant division. The seed, generally employed in cold climates, is sown in early spring, either in drills 15 to 18 inches apart where the plants are to remain, or broadcast in nursery beds for transplanting, 12 inckes asunder in
 officinalis ( $\times 1 / 2$ ). June or July. 1ropagation by cuttings and by division may be done in the autumn, but better in the spring, when the plants first start to grow. Greenwood cuttings may be star ${ }^{\circ}$ d in the shade in the early summer. They need to ' 3 mell watered. The soil should be a light, mellow, calcareous or sandy loam, with a warm aspect. Culture and harvesting are the same as for sage, mint and other herbs. The beds should be renewed every three or four years.
M. G. Kalns.

IANREA. A misprint for Jancæa. See Ramondia.
IBERIS (from Iberia, the ancient name of Spain, where the genus is abundant). Crucifere. A genus of about 30 species, native to southern Europe, western Asia and northern Africa, all low-growing annuals, biennials and subshrubs. Comparatively few species are cult. The annuals are the common Candytuft of gardens. The biennials are not cultirated. The subshrubs are flat, dwarf, compact, commonly evergreen plants, with dark green lvs., completely covered with broad, flat or elongated clusters of irregular cruciferous Hs . in spring.

The annuals are showy branching plants, $6-18$ in. high, much grown in masses in beds or for edging. Florists grow them also, especially the white varieties, for cut-flowers. They are of easy cultivation, and succeed in any rich garden soil, in a place exposed to light and air. They are propagated by seeds, which may be sown at any season, in the house or open ground, but particularly in the fall when the climate permits, or as early as possible in spring, in rows 6-8 in. apart where the plants are to grow, the plants being thinned later to 4 in. apart in the row. The finest display is attained from autumn-sown plants, which flower from May to Iuly. If seed is sown in autumn, the plants should be slightly protected from the sun during winter. Seeds sown early in the spring bloom from July to September. Continuous bloom may be obtained by sowing every two weeks. Good results are attained by sowing under glass and transplanting into open ground when the soil is warm. The name Candytuft was given because the fls. appear in tufts and because the first introduced species, $I$. umbellata, was brought from Candia.

The subshrubby species are adapted to the front of shrubberies, where they connect taller plants with the surrounding lawn. They may appear in separate clumps, in broad masses, or may mingle with other genera in the herbaceous border. They are suited to rockeries, and hang well over walls and ledges. They are to be treated much like herbaceous pereunials. They are plants of refinement, and are pleasing when close to the observer. They are useful and popular for cut-flowers, are easily forced into bloom in winter, and are aiapted to pot and pan culture. They are easily propagated. The perennial Iberis succeed best when let alone. Once planted and not disturbed, they soon form a dense foliage. They are the best spreading, dwarf plants with white flowers.
Iberis is a genus of glabrous or minutely downy plants. with terete stems and pungent, watery juice: lrs. alternate, without stipules, linear or obovate, entire or pinnatifid, often fleshy: fis. perfect, in terminal corymbs or racemes; sepals 4 , inferior, deciduous : petals 4 , hypogynous, white or purple, obovate, with short claws, very unequal, opposite each other in pairs, their spreading limbs forming an irregular cross, the two outer petals much larger and about equal in size: pods or silicles roundish or orate at the base, flattened at right angles to the narrow partition, notched at the top, in which stands the permanent style, the 2 valves boat-shaped, the keel or midrib expanding into a wing, the cells 1 -seeded. The characters of Iberis as distinguished from other Crucifere are taken almost wholly from the pods and seeds, the fls. being similar to most cruciferæ except that they are irregular.

> A. Phelps Wyman.

The common white-fld. annual Candytuft is $I$. amara. The common annual kinds with colored fls. are $I . r \mathrm{~m}$. bellata. The common perennial kind is I. sempervirens. The clusters of some kinds remain rather flat-topped when they run to seed, while the clusters of other kinds lengthen after flowering. This is expressed in technical language under a and AA in the key which follows:
A. Inflorescence racemose in fruit.
B. Aunuals: stems not woody at the base.
c. Lobes of the pod erect.
D. Less. toothed....... 1. amara

DD. Les. pectinute (i.e.,
divisious deeper.
narrower, and
further apart)... 2. pectinata
cc. Lobes of the pod spreading.
D. Li's.merely toothed 3. odorata

DD. Les. deeply cut
(pinnatifid) ..... 4. pinnsta
bв. Perennials: stems woody at the base.
c. While in flower race.
mose ............... 5. sempervirens
cc. While in flouer corymbose.
D. Margin of les. entire.
E. Form of lis. linear.
F. Apex of les. subacute....
FF. Apex of lis. obtuse...... long, narrou' at base............
7. Garrexiana

DD. Margin oi les. toothed torard
apex ............. inflores
в. Annuals: stems not
woody at the base.....
bB. Perennials: stems uoody at the base.
c. Lis. crenate..........10. Tenoreana
cc. Lis. entire or sub.
dentate.
D. Radicle descending: seed not margined: septum simple......11. Pruiti
DD. Radicle horizontal: seed somewhat margined: septum nearly double .................12. semperflorens INDEX.
affinis. $\mathfrak{n}$.
amara, 1.
corifolia, 6.
coronaria, 1. Dumnetti, 9. Garrexiana, 7.

Gibraltarica, 8. odorata, 3. pertinata. 2 pinnata. 4. Pruiti, 11
saxatilic, 6, 7. sempertiorens, 12. semperrirens, $1,5$. Tenoreana, 10. umbellata, 9 .

1. amàra, Linn. Common Annual C. Bitter C. Clown's Mustard. Lvs. lanceolate, toothed toward apex: Hs. white. Common in Eu. S.B.F.G. II. 359. The best form is var. coronaria, Voss (I. corondria, Hort., not D. Don). Rocket C. This has larger and fuller clusters and larger fis. The taller varieties, Em press, Spiral White and Giant Snowflake, grow 18 in. high, with solid pyramidal trusses 5-8 in. long. Dwarf forms are Tons Thumb and Little Prince. All are good bedder-, and Empress is fine for cutting. Seed may be sown at any time, but the best results with Empress are secured by sowing under glass and transplanting to the open, where plants will bloom in May and June.
2. pectinàta, Boiss. (I. affinis, Hort., not Jord.). Fls. white. Spain. Adrertised only as A. affinis.

## IDAHO

Likely to be confused with I. odorata, but the petals are 4 times as long as the calyx and the pods have short hairs, while in $I$. odorata the petals are $11 / 2$ times as long as the calyx and the pods glabrous.
3. odorata, Linn. Sweet-scented or Fragrant Canprtcfr. Les. linear: fis. white. Crete. S.B.F.G. 50. Frequently confused with I. pinnata. Better and more fragrant in poor soil.
4. pinnàta, Linn. Not adrertised in America, but often sold as $I$. adorata. Fls. White: inflorescence only slightly elongated in fruit. Spain, S. France, Italy.
5. sempérvirens, Linn. Evergreen C. Lrs. oblong, obtuse, narrowed at base, glabrous: fls. white. Crete. Gng. 2:145 (fine habit sketch). F.R. 1:75 (poor). Var. plèno, a double form, is cult., but is less desirable Var. ròsea and var. foliis variegàtis are sold abroad. Var. supérba or Perfection is said to be one of the best forms. This is the commonest, hardiest and most permanent of the perenuial kinds. When the rarer and tenderer kinds are winter-killed $I$. sempervirens is likely to spread out and surround the labels of other kinds.
1121. Iberis Gibraltarica ( $\times 1 / 2$ ). This probably explains why some of the most reliable dealers have sold this plant under other names, particularly 1. Gibraltarica.
6. saxátilis, Linn. Lrs. glabrous or ciliate: fls. white. S. Eu.

Var. corifolia, Sims (I. corifolia, Sweet). Lvs. glabrous: Hs. white. B. M. 1642, though this picture was doubtfully referred by Baker to I. Garrexiana.
7. Garrexiàna, All., not Scop. Lrs. glabrous: fls. white. Piedmont, Pyrenees. Referred by Index Kewensis to $I$. sempervirens. Intermediate between $I$.sem pervirens and $I$. saxatilis, having the habit of the latter.
8. Gibraltárica, Linn. Fig. 1121. Lrs. wedge-shaped, obtuse, subciliate: outer tis. pink, inner ones white. Gibraltar. B.M. 124. Gn. 10:308. R.H. 1870:330. Gn. 24, p. 549, same as R.H. 1885, p. 446. -This is considered by some as the most striking and showy of the perennial kinds. It grows higher and more erect, with larger clusters and larger fis., but is less hardy than the others. This is much sought after, and the stock in the nurseries is often not true to name. Var. hybrida is advertised.
9. umbellata, Linn. Lrs. lanceolate, acuminate lower ones serrate, upper ones entire: fls. in the wild typically purplish, rarely white: pods acutely 2 -lobed. Italy, Crete, Spain. B.M. 106. - This is the common annual Candytuft with colored tis., the colors being more numerous and better fixed than in any other species. American trade names are rars. carmínea, cárnea, lilacina and Dúnnetti (I. Dinnetti, Hort.), the last being dark purple. Vars. ròsea, purpùrea and álba are advertised abroad, also vars. nàna, pumila and hybrida. Tall and dwarf forms of all the colors are procurable.
10. Tenoreana, DC. Lower lrs. oborate, narrowed at base: upper Ivs. oblong-linear: fis. purplish or whitish: pods notched at apex. Naples. B.M. 2783. L.B.C. 18:1721. Aecording to Baker (G.C. 1868:711), this is the only perennial kind that is decidedly hairy. DeCandolle says the lvs. are puberulous.
11. Prùiti, Tineo. Lrs. glabrous, oborate-spatulate entire or subdentate : tis. White: pods merely notched at apex. Sicily. Not advertised here, but cult. abroad
12. semperilorens, Linn. Lrs. wedge-shaped or spatu late, obtuse, entire, glabrous: pods scarcely notched at apex. Sicily and perhaps Persia. The characters in the key under D and DD distinguish this from all the other species of Iberis. Once advertised by Pitcher \& Manda, together with var. pleno, a double variety. Var. foliis variegatis said to be cult, abroad.
I. cariacea, once advertised by Sanl, is presumably a tym graphical error. -1 . cordifolia is a frequent errorfor I. corifolia. -1. correafolia, Hort., is a common trade name abroad, which is usually spelled I. corrzefolia in American catalogues. There is no genus Corra, and Correa is an .ustralian plant of the Rutaces. Specimens should therefore be compared with I. sax atilis, var. corifolia. Mottet's description, however, would place this plant directly after Garrexiana in the key, being distin guished from Garrexiana by the Howers becoming purplish in stead of always remaining white. Mottet says that I corres folia Hort is a hybrid with spatulate, entire obtuse lrs Thi question could be quickly settled if seedsmen wonll heep drieu question coul the quickly pecim is not in Index keveris - , 1ca3. is not in Index Kew lil. llacina of careless trado catalogues is presumably a hac-nd. variety of 1 , umbellata. species, but a trade name of mixed dwarf varieties of some common annual kind, presumably 1. umbellata.
W. M.

## ICE PLANT is Mesembryanthemum crystallinum.

IDAHO, HORTICULTURE IN. Fig. 1122. The state of Idaho lies entirely west of the Rocky Mountain range whose summit line forms the northeastern boundary. All drainage and waterways of the state finally reach the Columbia river by many directions and extensions of numerous rivers and creeks, excepting for a small area in the extreme southeastern portion of the state, which Clrains to the Great Salt Lake, in Utah. Generally the state is very mountainous. but a considerable area of the southern portion constitutes the high table-lands lying on both sides of the Snake river. Most of the state lies above añ altitude of 2,000 feet. At and near Lewiston, in the valleys of the Snake and Clearwater rivers, the altitude drops sudden!y to 647 feet and upwards. The numerous mountai- chains and peaks which corer this vast Rocky Mountain slope, direct the streams

in endless ways to their outlets into the large rivers. Thus it can be understood that climatic intluences are extremely variable. Altitude does not altogether determine the character of the climate in the vallers. The prevailing eurrents of air in a giren loeality are often influenced and directed by the direction of the mountain ranges and the proximity of snow-clad peaks. Greater
extremes of temperature prevail in the southern portion of the state than in the northern. The summers are hotter in the south than in the north, and the rigors of winter are more severely experienced.

Irrigation for the successful cultivation of crops is necessary over most of the southern portion of the state, below the 45 th parallel of latitude. North of this there is generally an abundance of rainfall, the atmosphere is humid, and the soil is retentive of moisture. The native soils of Idaho are mostly of volcanic origin, interspersed with clay and sandy loam, and altogether quite fertile. Excepting in the narrow mountain valleys, and in the deep canyons of the Snake river, altitude largely determines the character of horticultural pursuits. According to the United States Weather Bureau records, some of the altitudes are these : Lewiston, 647 feet; Kootenai, 1,550; Payette, 2,150; Fort Sherman, 2,196; Moscow, 2,571; Boise, 2,880 ; American Falls, 4,341; Blackfoot, 4,503; Fort Lemhi, 4,700; Idaho Falls, 4,732; Paris, 5,946; Atlanta, 7,000. The known altitudes are named at points which are considered most advantageous for estimating variations for the whole state. Much of the south-central portion of Idaho contains vast lava beds, and hundreds of square miles are thus oceupied. Among them, however, lie fertile irrigated areas. The wild sage brush covering these extensive tablelands grows most luxuriantly, often attaining to a height of six feet and orer. Along the streams and bottomlands of southern Idaho are growths of willows and poplars, and in the mountain gulches a black haw and dwarf maple skirt the water courses. Very little shrubbery grows in the mountains. In the mountain regions abore an eleration of 4,500 feet, pine, spruce and fir abound. That portion of the state north of the 45th parallel contains fine forests of pine, fir, tamarack and cedar. The mountains, hills and valleys are also well covered with small deciduous trees and shrubbery, which for ages hare contributed towards the establishment of a soil rich in organic matter. The list of species of deciduous plants found native in this part of the state is so extensive that it would seem out of place to name them in this article. There are no wild fruits of economic importance growing in the state.

Horticultural operations are conducted within narrow limits abore an altitude of 4,500 feet. Up to 3,500 feet elevation, fruit-raising has shown great promise. The best adapted sections for raising apples lie within the counties of Latah, Nez Perce, Washington, Canyon, Ada, and more limited in portions of Elmore, Boise, Cassia, Owrhee, Lincoln and Kootenai. Apples can also be produced in other counties to a rery limited extent. Eren in Bear Lake county, at an elevation of 6,000 feet, some varieties are being raised successfully.

The horticultural inspectors of the various horticultural districts last rear made a careful computation of the fruit acreage in their respective territories, and reported as follows: Ada county, 5,581 acres: Bannock, 100 ; Bear Lake, 100 ; Bingham, 1,100; Blaine, 350 ; Boise, 141 ; Canyon, 5,360; Cassia, 507; Custer, 185 ; Elmore, 875 ; Fremont, 1,000; Idaho, 200; Kootenai, 1,500 ; Latah, 5,900 ; Lemhi, 200 ; Lincoln, 840 ; Nez Perce, 2,000; Oneida, 1,000; Owyhee, 216; Shoshone, 1,200; Washington, 2.450. These figures show for the whole state a total of 30.805 acres planted to fruit. The figures include orchards, vineyards, and small fruit plantings, and are considered rery reliable. Considerably the largest acreage is apples; then follow prunes, peaches, pears, cherries, nectarines and quinces in the order named. Small-fruit growing covers an important portion of the acreage given.

All kinds of forest trees suitable to northern climatic conditions can be grown with excellent success within the state.
F. A. Huntley.

IDĖSIA (Yobrants Ides, Dutch traveler in Cbina). Bixicece. A genus whose only species is a Japanese tree, hardy as far north as Philadelphia. It is a large. rapid-growing, deciduous tree, with large lrs. borne on reddish stalks and loose clusters of fragrant, greenish yellow fls. which are inconspicuous except for their prominent anthers, and numerous orange-colored berries about the size of a small cherry. Fls. diocious, the parts in 5's (or 3-6); sepals tomentose, imbricated, de-
ciduous; petals 0 ; stamens indefinite, inserted on small disk with villous flaments: ovary of pistillate fls. globose: berries with an indefinite number of seeds. Prop. by green wood and root cuttings.
polycárpa, Maxim. Height 40 to 50 ft.: lvs. drooping, 5-10 in. long, sometimes 8 in . broad, usually cordateacuminate, sometimes oblong or orbicular, deep green, margin distantly serrate, glaucous beneath, petiole 4-6 in. long: panicles shorter than the lvs., pendulous: staminate tls. $1 / 2$ in. across. Var. crispa has curled foli age. B.M. 6794. R.H. 1872, pp. 174, 175; 1878, p. 254 ; 1888 , pp. 463-465. F. 1874, pp. 64, 65.

Joseph Meehan and W. M.
ILEX (the ancient Latin name of Quercus Ilex). Including Prinos and Othera. Ilicinece (or Aquifolidecé). Holly. Ornamental evergreen or deciduous shrubs, with alternate, simple, sometimes spiny lrs., small, inconspicuous, whitish Hs. in axillary clusters or solitary, and black, red or sometimes yellow berries, remaining on the branches often until the following spring. Of the evergreen species, only $I_{\text {. glabra }}$ and $I_{\text {. rugosi }}$ are quite hardy North, and also I. opaca and I. crenata in somewhat sheltered positions. I. Aquifolium and $I$. cornuta are more tender but stand many degrees of frost if sheltered, while most of the others can only be grown South. Of the deciduous species, I. decidua, I. monticola, I. lavigata and verticillata are hardy North; also $I$. Sieboldi and some other Japanese species are hardy or nearly so. The Hollies, especially those with scarlet or red berries, are highly ornamental, and the berried branches of $I$. opaca and $I$. Aquifolium are in great demand for Christmas decoration. Also I. lavi gata and verticillata, the prettiest in fruit of the deciduous kinds, are sometimes sold for this purpose. The deciduous species are mostly shrubs, while many of the evergreen species grow into small or medium-sized trees, and $I$. opaca is the tallest of the broad-leared evergreens which are hardy North; the evergreens I. erenata, glabra, rugosa, always remain shrubby. Ilex opaca fills the old, deserted and very dry and sunny, barren fields of the South, and thrives on extremely poor soil, and has good color, too. This trait is worth noting. I. Aquifolium is a favorite evergreen in English gardens, and numerous rarieties are there in cultivation: it stands serere pruning well, and can be clipped and trained into almost every shape; it also makes fine hedges, but its slow growth is a disadvantage. As the chief value of the deciduous species is in the ornamental fruits and the Hollies are diœcious, care should be taken to select in planting a few staminate ones, but mostly pistillate plants, and to gire the latter the most prominent place. The light, close-grained and tough wood of some of the arborescent species is much valued for turners-work, engraring and cabinet-making. The liss. of some tropi cal species, as I. Paraguariensis and I. conocarpa, yield a kind of tea known as Y゙ezba de Maté, or Paraguay Tea, which is much used in S. America. The Hollies grow best in rich, well-drained soil, and the evergreen ones in partly shaded sitmations, but I. levigata, verticillata and also Sieboldi prefer moist places, and grow even in swamps. Most of the species grow slowly, and are not easily transplanted when older. The best time for moring the evergreen species is the early fall, when the roung wood has almost ripened, or in the spring just before the plants start into new growth. The leares should be stripped on I. opaca and I. Aquifolium, when transplanted, particularly if at all exposed-or at least nearly all. This is absolutely necessary to insure success. Wild Hollies may be handled this way with suc cess, particularly if cut back as well. Prop. by seeds, which do not germinate until the second year, and are therefore stratified and treated like those of the slowgrowing hawthorns. The young seedlings should be transplanted after the second year. The evergreen species may be increased by cuttings of ripened wood under glass, especially the shrubby ones; they are also sometimes grafted or budded on seedlings of I. Aquifolium or opaca. About $17 \overline{5}$ species in N. and S. America, tropical and temperate Asia and few in Africa, Australia and Europe. Lrs. petioled, with small, caducous stipules: fis. diocions, usually in rather few-fld. axillary cymes; calyx lobes, petals and stamens usually 4, sometimes
more; style very short: fr. a berry-like drupe, with usidally 4 bony 1 -seeded stones.
Index of names accounted for below, besides those in the supplementary list:
albo-marginata, 17. albo-picta. 18 angustifolia, 34 . Alteclarensis, 2. Aquifolium, 1.
argenteo-margi. nata, 17.
argenteo-medio. pieta. 18. argutidens, 46. a ureo-marginata, 20.
aureo-regina, 20.
aureo-maculata, 19.
aureo-picta latifo
lia, 21.
Cassine, 33 and 37. cornuta, 31.
cornuta, 38 .
crenata, 16.
Dahoon, 33.

INDEX.
decidua, ${ }^{40}$. dubius, 41. echinata, 3 ferox, 3. ferox argentea, 22 . ferox aurea, 23 Fortunei, 3 . fructa aurantiaco, 28.

## fructu lnteo, 27

 clabra, 39.Handsworthensis. hastata. 8. heterophylla, 12. heterophylla aureopicta, 24.
aevigata, 43.
latifolia, 4 and 36 .
latifolia marginata,
20.
laurifolia, 13.
marginata, 14
microphylla, 9.
mollis, 42.
monticola, 41.
myrtifolia, 10 and 35.

ораса, 32.
pendula, 29 .
platyphyllos, 5. princeps, 6. pyramidalis, 30. quercifolia, 32. Scotica, 15. Scotica aurea, 25. serrata, 45. serratifolia, 11. Sieboldii, $4 \overline{7}$. tortuosa, 16. verticillata, 44. vomitoria 3 \%. Wateriana, 9.

## A. Foliage evergreen.

B. Lis. with coarse, spiny teeth, rarely mostiy entire.
c. Fls. in axillary clusters on branches of previous year.

1. Aquifolium, Linn. Elropean Holly. Fig. 1123. Tree, to 40 ft ., with short, spreading branches, forming an oblong or pyramidal head, in cultivation of $\pm$ en shrubby, glabrous: lvs. short-petiond, usually orate or oblong-ovate, wared and with strong, spiny teeth, shining, $1 / 2-3$ in. long: fr. scarlet, globular, shining. May, June. Southern and middle Eu., western Asia, China. Ging. $4: 83$. - A very variable species. A full account of the numerous varieties cult. in England is given by T. Moore in G.C. II. 2, p. 433, $519,687,751,812$; 4, p. 6i87, 741; 5, p. 43, 365, 437, 624; 6, p. 232, 389, 616, where 153 rarieties are described and many of them figured. Some of the most important and most distinct are described below. Osmanthus Aquifolium, Sieb. \& Zucc., an oleaceous shrub, which may readily be known by its opposite leaves, is occasionally supplied by dealers as a variety of Ilex Aquifolium.
(a.) Foliage green.
(b.) Lers. spiny toothed.
(c.) Size of les. large, about 2-4 in. long.
2. Var. Alteclarensis, Hort. Lrs. oval, large, thin and rather plain, with numerous teeth. 3. Var. ferox, Loud. (I. echindta, Mill.). Lss. of medium size, with strong teeth and numerous small spines on the upper convex surface. A very distinct variety, known as Hedgehog Holly. N. 2:175. 4. Var. latifolia, Loud. Les. oval to $31 / 2 \mathrm{in}$. long, with rath $\in \mathrm{r}$ few, divaricate teeth. G.C.II. 2:433. 5. Var. platyphyllos, Hort. Lrs. broadly orate, to $31 / 2 \mathrm{in}$. long, with diraricate spines, thick, deep green. 6. Var. princeps, Moore. Lvs. broadly ovate, to $41 / 2 \mathrm{in}$. long, with strong, regular spines, dark green, with prominent reins below. G.C. II. 13:45.

## (cc.) Size of lis. small, 1-2 in. long.

7. Var. Handsworthénsis, Hort. Lrs orate-lanceolate, with numerous, moderately divaricate spines, projected toward the apex, glossy green. G. C. II. 2:519. 8. Var. hastàta, Hort. Lvs. orate-lanceolate, halbert-shaped: spines large, usually only $2-4$ on each side at the base, the upper half usually entire. G.C.11. 2:687. 9. Var. microphýlla, Hort. Lrs. orate-lanceolate, about 1 in. long, shining green, with small, equal plane spines. G.C.II. 2:i5l. A very small-leared form, but var. lineata is still smaller, and has the smallest lvs. of all. 10. Var. myrtifolia, Hort. Lrs. ovate-lanceolate, $1-1 \frac{1}{2}$ In. long, moderately spiny, rarely entire. G.C.II. 2:687. 11. Var. serratifolia, Loud. Lrs. orate-lanceolate, stiff, with numerous small spiny teeth. G.C.II. 2:687.
(blb.) Les. all or most of them without spines.
8. Var. heterophylla, Loud. Les. oral or ellipticorate, about $21 / 2$ in. long, sometimes twisted near the apex, entire or with few spiny teeth. G.C.II. 2:519.
9. Var. laurifolia, Loud. Lrs. ovate to elliptic-lanceolate, 2-3 in. long, usually quite entire. 14. Var. marginata, Loud. Lrs. broadly orate, sometimes twisted near the apex, with thickened entire margin. G.C.II. 2:813. 15. Var. Scótica, Hort. Lrs. oval-oborate, blunt and rounded at the apex, rarely pointed, $11 / 2-2 \mathrm{in}$. long, with thickened, wary entire margin. G. C. II, 2:813. 16. Var. tortudsa, Hort. (rar. crispa, Hort.). Lrs. oval and spirally twisted, with revolute margin, entire or with few spines, about 2 in . long: of dense habit. G.C. II. $2: 813$.

> (aa.) Foliage rariegated.
> (b.) Les. spiny-toothed.
17. Var. álbo-marginàta, Loul. (var. argenteo-margindta, Hort.). Lis. broadly ovate, to $2 \frac{1}{2}$ in. long, with numerous irregular spines, dark green, the disk mottled with grayish green, with rather narrow silvery margin. 18. Var. albo-picta, Loud. (var. argenteo-medio-picta, Hort.). Lrs. ovate, with divaricate spines, dark green, with a whitish center and a narrow, irregular, silvery margin. G.C. II. 4:687. 19. Var. aùreo-maculàta, Hort.

1123. Ilex aquifolium. ( $\times 1 / 3$.)

1124. Ilex opaca.
( $\times 1 \approx$.)

Lrs. oblong-oval, $21 / 2 \mathrm{in}$. long, with distant triangular, somewhat divaricate spines, with a large creamy white bloteh in the center, outer part of the margin dark green, inner part mottled pale gray. 20. Var. aùreo-regina, Hort. (var. aurea margindta and rar. latifolia marginàta, Hort.). Lvs. broadly ovate, to 3 in . long, with strongly divaricate spines, mottled with gray and green, with a broad, continuous golden yellow margin. G.C. II. ड:44. 21. Var. aüreo-picta latifolia, Hort. Lvs. orate or broadly ovate, 2 in . or more long, with a large, branching, deep yellow blotch in the middle, and with an irregular, deep glossy green margin. G.C. II. 5:624. 22. Var. ferox argentea, Loud. Like var. ferox, but the margin and the surface spines creamy white. G. C.II. 5:44. 23. Var. fèrox aurrea, Loud., is like the former, but with yellow spines and margin.

## (bb.) Les. spineless or mostly so.

24. Var. heterophylla aureo-picta, Hort. Lrs. ovate, flat, sometimes with few spines, about $21 / 2$ in. long, marked in the middle with a broad feathery blotch of bright yellow. G. C. 1I. 6:389. 25. Var. 8cótica aurea, Hort. Lrs. obovate, blunt, slightly wary, about $1 \frac{1}{2}$ in. long, dark, mottled green, with a broad golden margin: of dwarf habit. 26. Var. Wateriana, Hort. Lis. oblong or orate, with a few spines, or entire and plain and obtuse, about 2 in. long, mottled with gray and yellowish green and edged with a broad, irregular golden band. G.C. II. 6:233.
There are also some other rars., as, 27 , var. fructu luteo, with yellow, and 28, var. fructu aurantiaco, with orange berries; 29, rar. pendula, with pendulous branches and 30 , var. pyramidalis, with ascending branches, forming a narrow, oblong bead.
25. cornùta, Lindl. Shrubby, with short spreading branches, glabrous: lvs. oblong, with 3 strong spines at the dilated apex, and with 1-2 strong spines on each side of the truncate base, but rounded and spineless at the base on older plants, dark glossy green above, 2-4 in. long: fr. scarlet, clustered, short-pedicelled. June, July. N. China. P.F.G. 1, p. 43. G.C. 1850:311. F.S. $\mathbf{7}$, р. 216; 9:895. В.М. 5059 .
cc. Fls. in 1-fex-fld. axillary, peduncled cymes, on this year's grouth.
26. opàca, Ait. (I. quereifolia, Meerb.). Amirrican Holly. Fig. 1124. Tree,with spreading short branches,
sometimes to 50 ft ., forming a narrow, pyramidal head, glabrous: Ivs. oval or elliptic-lanceolate, with large remote spiny teeth, rarely entire, dull green above, yelluwish green beneath, $2-4 \mathrm{in}$. long: fr. dull scarlet, usually solitary, globose. June. Mass. to Fla., west to Mo. and Tex. Em. 385. S. S. 1:45. Gng. 4: 277,-Hardier than I. Aquifolium, but less handsome.

Bв. Li's. serrate, crenate or entire.
c. Fr. red: nutlet ribbed on the back. Tender.
33. Cassine, Linn. (I. Dahoòn, Walt.). Dahoon. Shrub or small tree, to 30 ft : Ivs. obovate to oblonglinear, acute or obtuse and mucronulate, entire or sharply serrate above the middle, usually pubescent beneath when young, 2-3 in, long: fr. globose, small, dull red, rarely yellow, on this year's growth. April, May. N. C. to Fla., west to La. S. S. 1: 46. 34. Var. angustifolia, Ait. Lvs. linear-oblong to linear, 2-3 in. long. 35 . Var. myrtifolia, Chapm. Lvs. linear-oblong, 1-2 in. long: fr. usually solitary. S.S. 1: $4 \overline{5}$.
36. latifolia, Thunb. Tree, sometimes to 60 ft ., glabrous: lvs. oval to oblong-lanceolate or obovate-oblong, serrate, glossy green above, 3-7 in. long: fr. red, larife, in almost sessille clusters. June. Japan. B.M. 5597. P.F.G. 3, p. 13. - One of the most beautiful Hollies.
37. vomitoria, Ait. (I. Cassine, Walt., not Linn.). Cassena. Yaupon. Shrub, rarely tree to 25 ft ., with spreading branches: lvs. oval or oblong, obtuse, crenate, glabrous, $1 / 2-1$, rarely to 2 in . long: fls. clustered on branches of the previous year: fr. scarlet, globose, small. April. Va. to Fla., west to Ark. and Tex. S.S. 1:48.

cc. Fr. black: nutlets smooth: pistillate fls. usually solitary, on this year's grouth.
38. crenàta, Thunb. (I. Fórtunei, Hort.). Muchbranched shrub, rarely small tree to 20 ft .: lvs . oval, ohovate or oblong-lanceolate, crenately serrate, glabrous, 1/2-11/2 in. long: Hls. 4-merous. May, June. Japan. Ging. 6:165.

## ILEX

39. glabra, Gray (Primos gliber, Linn.). Inkberry. Wintekberry. Much-branched upright shrub, to 8 ft .: Irs. obovate to oblanceolate, obtuse, with few obtuse teeth toward the apex, glabrous, $1-2 \mathrm{in}$. long : fls. $5-8$. merous. June. Mass, to Fla., west to Miss. L.B.C. 5:450.

Aa. Foliage deciduous: fr. rel. (Prinos.)
B. Frs. mostly and lus. partly fascicled on short spurs: nutlets ribbed on the back.
40. decidua, Walt. (Prinos deciduus, DC.). Shrub or small tree, to 30 ft ., with light gray spreadiug branches: Ivs. cuneate-oblong or obovate, usually obtuse, crenately serrate, dark green, and with impressed veins above, pale and pubescent beneath, $11 / 2-3 \mathrm{in}$. long: fr. globose, orange or orange-scarlet, $1 / 2 \mathrm{in}$. across. May. Va. to Fla., west to Texas. S.S. 1:49.
41. monticola, Gray (Prlnos (lubius, Don). Tree, to 40 ft ., with slender branches, forming a narrow pyramidal head or spreading shrub: lvs oval or oval-lanceolate, acute or acuminate, sharply serrate, pubescent only along the veins beneath. $2-6$ in. long: fr. red, globularovoid, $1 / 2$ in. across. May. N.Y. to S. C., west to Ala. S.S. 1:50. G.C. II. 14:689 (as I. decidua). 42. Var. mollis, Britton (I. móllis, Gray). Les. broadly ovate, soft-pubescent when young, glabrous above at length.

BB. F'rs. and les. not fascicled: frs.axillary: nutlets smooth.
43. lævigata, Gray (Prinos levigàtus, Pursh). Winterberky. Low shrub, of upright habit: les. lanceolate, acute, finely or crenately serrate, rather thick, glabrous or nearly so, $11 / 2-21 / 2$ in. long, turning clear yellow in fall: fls. 6-9-merous: fr. depressed-globose, bright orange-red, over $1 / 4 \mathrm{in}$. across. May, June. Maine to Pa. and Va. G.F. 4:221.
44. verticillata, Gray (Prinos verticillàtus, Linn.). Black Alder. Winterberry. Fig. 1125. Shrub, with spreading branches: lvs. obovate to oblanceolate or lanceolate, acuminate or acute, serrate or doubly serrate, usually pubescent beneath, $11 / 2-3$ in. long, turning black after frost: fls. $5-6$-merous : fr. bright red, rarely yellow, about $1 / 4$ in. across. June, July. Canada to Fla., west to Wis. and Mo. Em. 388. - Very variable in shape and texture of lvs. One of the best hardy shrubs, with ornamental frs., which remain on the branches until midwinter, and are not eaten by birds.
45. serràta, Thunb. Slender shrub, to 15 ft., similar to the former but smaller in every part: lvs. elliptic or ovate, acute or acuminate, finely serrate, pubescent or glabrous beneath, 1-2 in. long: ths. 4-6-merous: fr. bright red, small, one-sixth to one-fifth in. across. June. Japan. There are two forms of this species: both hare been introduced from Japan as $I$. Sieboldi, the first by Prof. Sargent, the second by Thomas Hogg. 46. Var. argùtidens, Rehder (I. argùtilens, Miq.). Lirs. glabrous beneath, short-petioled, teeth more remote and less fine: fls. usually 4 -merous. 47. Var. Sièboldi, Rehder (I. Sièboldi, Miq.). Lrs. somewhat larger, longer-petioled, more fincly serrate, pubescent beneath: fls. usually 5-merous.
I. ambifua, Chapm. Deciduous large shrab, allied to I. monticola. Lus. usually almost glabrous, remotely serrate, 1-2 in. long. N. C. to Fla., west to Ark. and Tex. -I. A melánchier, M. A. Curtis. Deciduons shrub, to $6 \mathrm{ft} . \mathrm{l}$ lis. oblong, subacute, serrate, pubescent, $1^{1 / 2-3} \mathrm{in}$. long: fr. dull red, large. Va. to La. G.F.2:41. Hardy.-I. Californica. Brandegee. Evergreen large shrub, to 12 ft ., glabrous: Ivs. elliptic to oblong-elliptic. obtnse, remotely and crenately serrulate. ${ }^{2-5}$ in. long: fr. black, small. Calif. G.F.7:415 (by error named I. triflora).-I. Canasmall. Calif. G.F. $7: 415$ ( by error named 1. trifiora).-1. Canariensis, Poir. Evergreen tree, to 20 ft., glabrous: irs. ovate to
ovate-oblong, obtuse, entire, $2-4$ in. long: fr. usnally solitary, ovate-oblong, obtuse, entire, -4 in. ong: fr. usnaly solitary, on this year's growth. Canar.-I. conocárpa, Reiss. Evergreen
shrub, to 6 ft .: lvs. oolong-lanceolate, acnminate, serrulate. shrub, to 6 ft .: lvs. oolong-lanceolate, acnminate, serrulate. glahrous, $3-5 \mathrm{in}$. long: fls. in short, dense spikes: fr. ovoidconic. Brazil. B.M. 7310-I. corincea. Chapm. (I. lucida. Torr. \& Gr.). Allied to I. glabra, but taller: lvs. broader and longer, to 3 in. acute or acuminate. N. C. to Fla., west to La.-I. dipyrena, Wall. Evergreen tree, to 40 ft.: lvs. elliptic to lanceolate, remotely spiny-serrate, sometimes entire, glabrous, $2-4$ in. long: fr. scarlet, globose, clustered. Himal.-I. dùbia, B.S.P.=I. monticola.-I. Gongónha, Mart. =Villaresia mucronata.-I. insignis, Hook. f. Evergreen small tree: lvs. elliptic-lanceolate, $6-\mathrm{E}$ in. long, spiny-toothed, often almost entire on older plants: fr.large, globose. Himal. G.C. II. 14:297.-I. integra, Thunb. Evergreen large shrub or tree, to 40 ft .: lvs. obovate,
obtusely pointed, entire, $3-4$ in. long: fr. large, rather longoduncled, red. Japan.-I. Ionuipes, Chapm. Dechluous shrub. wedied to I. decldua: lvs. elliptic-lanceolate, crenately serrate, allied to I. decidua: lvs. elliptic-lanceolate, erenately serrate, amost glabrous: fr. glotrse, slender-jeetijeelled. N. C. to Ga.. West to La. G. F. 3:35.-I. microcarpa, Lind, rotunda, Thunb.-I. Paraguariensis, St. Hil. (I. Paraguayensis, Aulh.). Maté. Paraguvay Tea. Shrub, to 15 ft. lvs, obovate, obtnse. ototusely serrate, $2-5$ in long, plabrous: fr, small, peduneled. Brazil.-I. Perado, Ait. (I. platyphyllos, Webb. \& Berth.). Evergreen pyramidal tree, to 20 ft ., glabrous: Ivs. broadly ovate or ohovate to oblong, entire, serrate on young plants, $2-5$ in long: fr. large, red, clustered, short-pedicelled, on last year's growth: Canar. 1..B.C.6::59. 13.M.4079.-I. rotínda, Thunb. (I. mierocarpa, Lindl.). Evergreen shrub or tree, to 40 ft .: lvs, oblong or elliptle, acute, pointerl, quite entire: fr. small, red, in peduncled clusters. Japan. P.F.G.1, p.43. G.C.1850:311. F.S.7. p. 2l6.-I. rugdsa, k. Schmidt. Evergreen low spreading shrub, sometimes prostrate, glabrons: lvs, oblong-linceolate to lanceolate, remotely crenate-serrate, rugose above, $3 / 4-2$ in. long: fr. usually solitary, scarlet. Japan, Sacehalin.-I. triflora, Brandegee. Evergreen tree, to 40 ft ., with spreading pubescent branches: lvs. elliptic-lanceolate, remotely serrate or almost entire, pubescent, $2-31 / 2$ in. long: tis. 5 -merous. Calif. G.F. $7: 416$ (by error named I. Californica).

Alfred Rehder.
ILLICIUK(Latin forallurement; probablyin reference to the agreeable odor). Magnolidece. A half dozen species in Japia, China India and eastern N. America. Small trees or shrubs, glabrous, with thick, short-petioled entire evergreen lvs.: fls. small, solitary or in 3 's in the axils of lvs. or bud-scales, nodding or inclined, yellow or purplish; sepals 3-6; petals many, imbricated in 3 or more rows or series; stamens j0-many, with thick flaments: carpels usually mayy, forming a ring of almost woody pods. The Illiciums are aromatic plants with perfect fls.
One of the Illiciums furnishes the Star or Chinese Anise, which is the small star shaped cluster of fruits. The odor and flavor strongly resemble Anise. It is much used in oriental countries in cookery, and is exported to some extent and is said to be used in flavoring certain French wines. This proluct comes from China. It has heen supposed to be the product of $I$. anisatum of Linneus, but that plant is a Japanese tree and it contains a poison. In the American trade are the names I. anisatum and 1. religiosum. It now transpires that these names belong to the same plant, and that the Star Anise is produced by another species. This other species, or the true Star Anise, was first accurately described and figured (as I. verum, Hook. f.) in B.M. 7005 (1888), where the confusion of two or three centuries is elucidated. There is probably only one East Asian lllicium in the trade in N. Amer., as follows:
anisàtum, Linn., not Gærtn. (I. religidsum, Sieb. \& Zucc.). Small tree: lrs. alternate, elliptic, short-petioled, somewhat acuminate: fls. mostly solitary, sessile or nearly so, yellowish, not fragrant, with many very narrow petals, and 20-30 stamens. Japan. B.M. 3965. Grown far S . There is a form with rariegated lvs.
Two native Illiciums growing in the Gulf conntry are: $I$ Floridànum, Eliis. Shrub. 6-10 ft.: lrs. oblong-lanceolate, $\frac{1}{}$ in. or more long: petals $20-30$. very narrow, dark crimson. B.M. 439. Gn. 36, p. 151. J.H. III. 30:365.-I. parviflòrum. Michx Les. ellintic or danceolate, mostly under 4 in . long: petals very small ( $1 / 4 \mathrm{in}$. long), $6-11$, yellowish.
L. H. B.

ILLINOIS, HORTICULTURE IN, Fig. 1126. The state of Illinois, lying in the heart of the Mississippi valley, the most fertile portion of the United States, and with its eastern boundary over io0 miles from the Atlantic coast, has a range north and south of a little over 350 miles, extending from $37^{\circ}$ to $42^{\circ} 30^{\prime}$ north latitude, and a breadth east and west of about 200 miles at its widest point. In spite of its great length, the difference in mean annual temperature between the extreme northern and southern parts of the state is only $10^{\circ} \mathrm{F}$. although the raicfall in the southern part is one-half greater than in the northern.
Soil conditions alone considered, lllinois stands, agriculturally, at the rery forefront. Third among the states of the Union (1890) in population, and first in railroad mileage, it is also first in total bulk of agricultural and horticultural products. There are no considerable tracts of worthless land in the state; and the statistics collected by the State Board of Agriculture show every one of the 102 counties of the state to be fruit-producing.

The statistics of the census of 1890 showed Illinois at that time to be easily third in rank among the horticultural states.

The horticultural interests of Illinois have been well looked after and carefully placed on a permanent basis by the legislature. In l8it an act was passed by that body establishing the Illinois State Horticultural Society (which was organized in 1835 ) as a public corporation

1126. Illinois.

Showing three horticultural divisions, following county lines.
of the state. The State Horticultural Society is divided into three subdivisions, the Northern, Central and Southern Illinois Horticultural Societies, each taking in about one-third of the state (see map). The State Horticnltural Society has been liberally supported by the legislature since its foundation, and is in a flourishing condition.
The most distinctive fruit section of Illinois is the southern third. This area contains something over 150,000 acres devoted to the growing of apples alone. Other deciduous fruits, notably peaches and pears, and small fruits, especially strawberries, are also grown in large quantities in this part of lllinois. During the season of 1898 over 800 car-loads of strawberries alone were shipped to outside markets from the fruit districts of southern Illinois. Increased shipping facilities and the coming into bearing of orchards alreaty some time planted are rapidly bringing southern Illinois into competition with Michigan in the production of peaches.
The southern fruit district, as indicated on the map, lies between $37^{\circ}$ and $39^{\circ} 30^{\prime}$ north latitude, the former being the latitude of Norfolk, Va., and the latter that of Baltimore, Ma. The climate of this district is best indicated by the fact that the isotherm $55^{\circ} \mathrm{F}$. passes through the northern part of the district. the same temperature line also passing through the peach and sweet potato districts of Delaware and southern New Jersey. The $50^{\circ}$ isotherm passes through Illinois about on the dividing line between the northern and central fruit dis-

ILLINOIS
tricts, thus showing the mean annual temperature of the northern district, -which is second to the southern in small-fruit production, and in 1898 produced more grapes than both the other districts put together, - to be practi. cally the same as that of the great grape and small fruit sections of ceutral New York. While speaking of temperature it should also be noted that the mean annual temperature of the famous Santa Clara valley and the Santa Cruz mountain wine grape district of Callfornia is $55^{\circ} \mathrm{F}$., or about that of Madison and Bond counties, lllinois.
In 1898 the total annual precipitation at Galena, in the extreme northwest corner of the state, was 30 inches; in Henderson county and from thence along a line a little north of east clear across the state, 40 inches: in a circle taking in Adams, Pike, Fulton, Tazewell, Menard and Morgan counties, and along a line entering the state in Monroe county, bending north almost as far as Springfleld, and thence southeast to Lawrence county, 50 inches; and in the 12 or 14 extreme southern counties of the state, 60 inches. The mean annual rainfall for 10 years up to and including 1898 at the Illinois Agricultural Experiment Station at Urbana, Champaign county, was nearly $33 \% / 3$ inches.

Products. - An idea of the extent of the horticultural interests of Illinois can be best gained by reference to the following tables, which give the approximate production of the various horticultural erops raised in the state for flve years, down to and including 1898:

| Year. | Nor. Div. | Cent. Div. | Sou. Div, | Total. |
| :---: | :---: | :---: | :---: | :---: |
| 1894 | 603,638 | 628, 508 | 467.813 | 1,731,089 |
| 1295 | 198, $\mathrm{x} \times \mathrm{8}$ | 450.918 | 410,839 | 1,069,643 |
| 1896 | 248,151 | 467,477 | 203,090 | 980,018 |
| 1497 | 449, 233 | 573,852 | 239,407 | 1,263,472 |
| 1808 | 715,582 | 433,54 | 201,807 | 1,352,943 |
| Strawberries-Annual Value of Crop. |  |  |  |  |
| 1894 | \$14,309 | \$4,037 | \$5,019 | 133.365 |
| 1895 | 5,536 | 1,985 | 3,45, | 10,909 |
| 1896 | 7,407 | 3,803 | 14,910 | 26,122 |
| 1897 | 14,383 | 3.864 | \%4,314 | $4{ }^{42,060}$ |
| 1898 | 17,840 | 3,929 | -4,080 | 45,849 |
| Watermelons-Annuel Value of Crop. |  |  |  |  |
| 1894 | \$24,021 | \$28.963 | \$2,128 | *55, 112 |
| 1895 | 20,2-211 | 18,116 | 11,710 | 50,0.57 |
| 1846 | -3,215 | 16,217 | 8,435 | 47.121 |
| 1897 | 21,497 | 16.431 | 8.276 | 46,209 |
| 1898 | 20.773 | 16,103 | 8,261 | 45,137 |

Other Fruits and Berues-Annual Value of Crop.

| 1894 | \$28,190 | \$36,930 | \$42,364 | \$107,48 |
| :---: | :---: | :---: | :---: | :---: |
| 1895 | 17,53\% | 30,915 | 114,560) | 163,007 |
| 1896 | 18,196 | 20: 586 | 80.733 | 121,515 |
| 1897 | -1,175 | 25,775 | 110,249 | 157,199 |
| 1898 | 95,807 | 26,452 | 84,186 | 136,445 |

Sweet Potatoes-Annual Crop in Bushels.

| 1894 | 7,901 | 85,321 | 235,704 | 328,926 |
| :--- | ---: | ---: | ---: | ---: |
| 1895 | 18,409 | 80,231 | $200,2=0$ | 298,860 |
| 1896 | 25,408 | 67,147 | 210,790 | 303,345 |
| 1897 | 10,003 | 49,596 | $13,7,703$ | 192,301 |
| 1898 | 12,633 | 67,327 | 280,156 | 360,116 |

The large falling off in the apple production of the state during the season of 1898 was dre to a scourge of the apple-scab fungus, which attacke 1 and devastated the apple orchards in all parts of the state. Pear-growing in southern lllinois has been more or less kept back by the prevalence of pear blight, which has destroyed many trees before coming into bearing. No comment on the other tables is necessary, as they tell their own story.

The nursery industry has been largely developed in lllinois. There are 447 commercial nurseries in the state, 203 in the northern division, 143 in the central, and 101 in the southern. The other branches of horticultural industry are also well developed in the state. Gardening for the Chicago market forms a large and important business in itself; while the growing of vegetables for shipment in certain sections of southern lllinois is assuming large proportions. Cobden, in Union county, is the largest shipping point for tomatoes in the United States, sending out some 300 car-loads of this single fruit during the season of 1898. Union county, exclusive of Cobilen, shipped to outside markets about 400 car-loads of tomatoes during the same season.

Chicago was, according to the census of 1890 , the second largest market in the United States for cut-flowers. The business has grown considerably since that time, although exact figures are not obtainable. The only notable examples of landscape horticulture or landscape gardening in the state are found in the Chicago city park sustem, which is the largest and in some respects the finest in the entire country.

With her situation, natural advantages, vast resources and present attainments along these lines, Illinois seems destined to take even higher rank horticulturally in the not far distant future than she has in the past; and with her increasing production and immense and growing railway facilities, to prove a formidable rival to the older fruit-producing regions of the Union.

The tables giving crop reports are compiled from figures given in the annual statistical reports of the Illinois State Board of Agriculture. Other figures (except where noted as being from census report) are from the Report of the Illinois State Farmers' Institute for 1898. The climatic and meteorological information is based on reports of the United States Weather Bureau and records of the Illinois Agricultural Experiment Station.
J. C. Blair.

IMANTOPHYLLUY. Included under Clivia.
IMMORTELLES. Consult Eierlasting Flowers.
IMPATIENS (from the Latin; having reference to the pods, which, when ripe, on slight pressure burst open, seattering the seed). Geramidca. (By some referred to Balsaminicere.) Tender, succulent herbs, with very fleshy stems and simple leaves usually alternate and the upper ones often in whorls: peduncles axillary, with 1-6 or more tls, of varions colors: sepals 3 (seldom 5), the posterior one taking on a spur-like shape; petals 5 or 3. in which ease 2 are grown together: fr. a pod, which, when ripe, bursts when pinched, scattering the seeds. About g20 species, mainly from tropical India and Africa. About $\mathbf{2 0} 0$ have found their w: Into cultivation for the most part as greenhouse plants, $I$. Balsitmina being the species best known as an outdoor annual. See Balsam. Propagation by cuttings and seed.

## A. Peluncles with single fls.

Háwkeri, W. Bull. A bushy, soft-wooded plant with well branched stems of a dull red color; lvs. opposite or in whorls of 3 , ovate, acuminate, serrate, dark green: peduncles axillary, long and slender: fls, rounded in outline, about 3 in . in diam., deep earmine, with a white eye. South Sea Islands. Int. about 1886. G.C. II. $25: 761$. I.H. $34: 9 .-$ A greenhouse plant, needing an intermediate temperature. Plants from early spring cuttings bloom all summer and into autumn.
platypétala, Lindl. (I. pulchérrima, Dalzell. I. latifoliu, Hort.). Stems stroug, succulent, branched and usually reddish purple: lrs. whorled, lanceolate or oval, serrate, hairy beneath: peduncles axillary, shorter than

the lvs.: fls. large, rose-colored : spur sickle-shaped, rather thin and petals transversely obcordate. Summer. Java. R.H. 1847:221. B.R. 32:68. - Needs a moderate to warm temp., and may be used as a house-plant or in
protected and warm situations outdoors. Prop. by cuttings, and during growth should be treated like Gloxinias. Var, Lucie or Lucy belongs here.

## AA. Peduncles with 1-2 fls.

Sultani, Hook. Fig. 1127. From 12-24 in. high, with stout stem and brunches, rather succulent and green:

1129. Impatiens Roylei ( $\times 1 / 3$ ).

Ivs. elliptical or lanceolate and narrowed into a petiole about 1 in . long; lower lvs. alternate, upper ones almost whorled: peduncles axillary, of a rich rose-red in the original form. Hybrids and sports have given shades from pink to almost purple, and a white variety also exists. Spur is very long and thin. Zanzibar. B.M. 664:3. Gn. 23, p. 331. V.7:325, 32 (6. S.H. 2:280. I.H. $30: 488 ; 42$, p. 140. R.H. 1884:12.-Inreased by seeds; also by cuttings, which root readily. With $I$. Hookeriann, the best in cult. A greenhouse plant; it a!so does well as a house plant, blooming almost continuously.

AAA. Peduncles with 2-4 ils.: plant 2-4 ft.
aùrea, Muhl. (I. pállida. Nutt.). Pale Touch-menot. Jewel-weed. Fig. 1128. With I. biflora the representatives of the family in the indigenous flora of the U. S. Larger than 1. biflora; otherwise similar to it, with pale yellow fls. sparingly dotted with brownish red; spur short, notched, and less than one-third the length of the posterior sepal. Moist, shady places. July-Sept. Quebec to Ore., Kans. and Ga. B.B.2:404. - Procurable from dealers in native plants.
bifldra, Walt. (I. filra, Nutt.). Spotted Tocci-meNot. Jewel-weed. With $I$. aurea representing the genus in the U.S. An annual with orange-eolored fls., mottled with reddish brown : spur strongly inflexed, about half as long as posterior sepal. Moist, shady places. July-October. Nora Scotia to Alaska, Ore., Mo. and Fla. B.B. 2:403. D. 155. - Has been offered by dealers in native plants.
Balsámina, Linn. (Balsámina horténsis, DC.). Garden Balsam. See Vol. I, p. 126.

## adAA. Peduncles with 3-6 or more fls.

Hookeriàna, Arn. (I. biglanduldsa, Moon. I. Sultíni álba. Hort.). A very succulent much-branched plant, growing to a height of $3 \mathrm{ft} .: 1 \mathrm{vs}$. long-petioled, oratelanceolate, toothed : peduncles axillary in the upper Ivs.: Hs. large, white, spotted with purple on the large lower petals; spur bent horn-shaped, and longer than the fls. Blooms in fall. Ceylon. B.M. 4704. - It is a perennip!, rcquires a moderate temp., and does not bloom untii weil developed. Prop. by cuttings. One of the best species in cult.
Roylei, Walp. (I. glanduligera, Royle). Fig. 1129. A rather coarse garden annual, with strong stem, succulent and much-branched: lower lvs. opposite; upper Irs. usually in 3's and whorled, all orate or ovate-lanceolate, naked, 4 in . long. sharply serrate; basal serrations and the petiole glandular: peduncles axillary, with 3 or more ths. and very numerous toward top of plant: fls. large, dark purple; spur very short. Aug., Sept. India. B.M.4020. B.R. 26:22. - Grown from seed, needing but little eare, and useful in groups.
G. N. Latman.

IMPHEE. See Sorghum.

## INDIANA

INCARVILLEA (after Incarville, the French Jesuit missionary to China). Bignouidicece. About 10 species of herbaceous perennials from central Asia, one of which, I. Delarayi, has achievell extraordinary notice since 1893. It is a harily plant with handsome pinnate foliage, each leaf being 1 ft . long. with as many as 15-20 dentate segments: scape $1-2 \mathrm{ft}$. high, bearing $2-10$ large trumpet-shaped, rosy purple Hs., each 2-3 in. long and as minch wide. These fls. are probably equal in decorative value to many of the Bignonias cherished in our greenhouses. In size and beauty they rank with those of Catalpa, Bignonia and Tecona, of the same family. This species is certainly the finest hardy herbaceous perennial in the Bignoria family. The tube is yellow inside and out, and the 2 upper lobes are smaller than the 3 lower ones. The genus is closely allied to Amphicome, and the flowers of both have the same general appearance, but in Incarvillea the calyx lobes are awlshaped, while in Amphicome the calyx is truncate or shortly dentate. Also the seeds of Incarvillea have an entire hyaline wia?. while in Amphicome the seeds have a wing that is cu: into long thin, strips or hairs. The two genera form a small but remarkable group, characterized by their capsules opening by the ventral suture only. William Watson derlares that Incarviileas are not annuals, as sta ed in the botanies.
The general experience seems to be that thase plants need rather mo.e winter protection than most hardy herbaceous perennials. A light, sandy loam, well enriched and deeply worked, suits them well, and they like a sheltered position in a rather warm, sunny place. Prop. by division or seed.
A. Segments toothed from base to apex.

Delavài, Bur. \& Franch. Fig. 1130. Lrs. few, radical; Ifts. $4-5$ in. long, not quite opposite: stamens in. cluded. B.M. 7462. Gn. 54:1198. R.H. 1893:544. J.H. 11I. 30:449. Gt. 43:1398. Mn. 3, p. 26. G.C. II1, 26:659. G.M. 38:306.

1130. Incarvillea Delavayi.

AA. Segments parted or dissected.
variábilis, Batalin. Subshrub: lvs. 2- or 3-pinnate; segments parted or dissected, their lobes entire or slightly lobed: fls. as many as 10 , pale rose. Gt. 47, p. 22.2. -Int. 1898 by Haage and Schmidt, who say that it makes a strong-growing, bushy plant covered with ths. each 1 in . or more across, from May to Oct.: also that seedlings bloom the first year.
aAa. Segments often entire or nearly so.
B. Form of segments lanceolate or marrower.

OIgæ, Regel (I. Koə̀mаипіі,W. Lanche). Subshrub, $2-3 \mathrm{ft}$. high: lrs. 2-4 in. long; segments linear-oblong
or lanceolate, narrower than in I. Delurayi, especially at the base, entire or with a few distant teeth towards the tip: fls. pale pink, veiny; tube $11 / 2 \mathrm{in}$. long; limb about 1 in . ucross, the 5 lobes nearly equal. B.M. 6593 (throat not yellow). G. C. II. 19:89. (in. 28, p. 653. The hardiest species.

BB. Form of segme.ts orate or broader.
grandiflora, Bur. \& Franch. Differs from I. Delavayi in its shorter IVs., more rounded lfts., short scapes bearing only 1 or 2 lis. as large as those of $I$. Delaveyi, but with narrower calyx lobes and longer corolla lobes, the color deep rose-red. Dried specimens show about 2 dozen scapes on a plant. China. Gn. 56:1230.-Int. about 1898. Imperfectly known, and may be a form of I. compacta. I.grandiflora, Poin.=Tecoma gramdiflora. 1. grandiflora, Spreng. = Eschynanthus grandiflora.

## J. B. Kellek and W. M.

INDIANA, HORTICULTURE IN, Fig. 1131. Indiana is essentially a fruit-growing staie. There is no part of its soil that cannot be made suitabie for the production of fruit of some kind. There are portions, however, that are better adapted to the growing of wheat and corn or grazing on account of the prairie character of the s sil, or the climatic conditions, which rendar tae cultivation of orehard fruits a precarious business. I y referring to the accompanying map, it will be seen . Lat the mean aniual isotherms for the year 1898, anc the same will hold approximately for a series of years, are decilledly irregular in the northern part of the state, while in the southern half they run more uniformly across the state. This is caused very largely by the umeliorating influence of Lake Michigan, which is felt very perceptibly along the northern counties which are protected fror, the severe northwest winds; but it is not felt in any af reciable degree as تe go down the western side of we state. And so it often happens that the temperature falls lower 75 miles south of Lake Michigan than it does in ine counties bordering on Michigan. This difference is often great enough to render peach growing in this section, as a commercial business, out of the question. From the northeastern portion of the state south to the Ohio river, and covering all that territory not already mentioner, the climate is not so severe, and fine crons of peaches are ofteu produced. The dotted line, shown on the map, starting near Michigan City and running in an irregular line, taking in most of the famous Fankakec marshes, thence in a southerly and westerly direction, finally striking the west line of the state a little north of Terra Haute, is intended to indicate, approximately, that portion of the state that is better adapted to the growing of general farm crops than fruit. This is not wholly due to climatic causes, but in a large degree to adrerse soil conditions. A large part of this region is flat prairie land ; much of it was once covered with marshes, but with morlern drainage facilities nearly all of this naturally fertile land has been improved unitl it has become one of the best farming sections in the state. Only occasional spots, bowever, are high enough for orchard purposes; but small-fruits and vegetalles grow with the greatest luxuriance, and largequantities of these are shipped to the Chicago market. A region in the Kankakee valley, including Starke and adjoining counties, is famous for its sugar beet productions. The soil here is of a sanas nature, emisently adapted to the culture of this vegetable; specimens have been analyzed which yielled 22 per cent of sugar, with a purity coefficient of 90 to 95 . While there are not many large commercial orchards found in the northern and northeastern portions of the state, the soil and climate are admirably adapted to the growing of all kinds of orchard fruits, with the exception of peac.es, which are grown only to a limited exten? Here we find a sandy or clay loam, with clay subson, which was originally covered with oak, maple, hickory, walnut and all kinds of bard woods found in this climate. The surface is more or less rolling, with numerous small lakes dotting the landscape, thus insuring both soil and atmospheric drainage. In the shallow waters of some of these lakes and marshes the cranberry finds congenial surroundings, and in the sandy districts of Pulaski. Fulton, Kosciusko and surrounding counties, the huckleberry $k$.

In eastern Indiana the plum and the cherry are grown more largely than the peach, while the central part of the state excels in pears. Small-fruits are abundant everywhere.


Southern Indiana has a mean annual temperature $8^{\circ}$ to $10^{\circ}$ warmer than that of the northern end. With other farorable conditions in the way of soil, protection from severe winds and perfect atmospheric drainage, owing to the fact that the country for the most part is hilly, the peach and other tender fruits are successfully grown. Here, on the banks of the Ohio river, was, until recently, one of the largest peach orchards in the middle West ; and even now orchards of from 40,000 to 50,000 trees may be seen on the "knobs" in Clark and Washington counties. Here, too, is the home of the "Big Red Apple" (Ben Davis) aud the Kieffer pear. The largest Kieffer pear crchard may be seen near the town of Salem, in Washington county. This orchard consists of 19,000 trees. The soil in southern Indiana is for the most part decidedly different from that found farther north. In a report of the United States Geological Survey made some years ago, mention is made of the "white clay lands," which cover a large portion of snuthern Indiana, Ohio and Illinois, where most of the finest fruit is grown. In Indiana the northern boundary of this peculiar formation, according to the description, begins near Terre Haute on the west, and passes more or less irregularly across the state, passing into Ohio near Brook ville, Franklin county. Thus the greater fiortion of the state south of this line is made up of this white clay deposit. In many places this clay becomes almost a brick-red, but the characteristics are, in general, the same, whatever the color. An apple orchard consisting of such varieties as Ben Davis, Rome Beauty, Winesap, Rall's Genet and Grimes' Golden, planted on these clays, is certain to reward the owner who gires it intelligent attention.
Here is also the bome of the papaw, Asimina triloba, and the native persimmon, Diospyrms Virginiana. Excellent rarieties of the latter are cultivated to some
extent for the largo markets, but the industry is as yet in its infancy. Both of these wild fruits offer a wide field for investigation. This section also includes tho famous melon districts, where both musk- and watermelons are grown to perfection. Hundreds of acres are grown annually and the products shipped to the larger cities of the North and West.

James Troop.
INDIAN BEAN. Catalpa. I. Cherry. Rhamuus Caroliniana. I. Corn. Zea Miays. See Corn. I. Cress. Tropacirm. I. Cucumber-Root. Medeola Virginica. I. Currant. Symphoricarpos vulgaris. I. Fig. Opmitie vulgaris. I. Hemp. A pocynum cтииаbinum. I. Mallow. Abutilon I. Physic. Gillenia. I. Pipe. Monotropa. I. Rice Zizania aquatica. I. Shot. C'unna.

INDIAN TERRITORY, HOKTICULTURAL POSSIBILITIES OF. Fig. 11:32. The horticulture of the Indian Territory is in a very primitive state. The land is owned in common. The individual has the right to life on and occupy a cel iain piece of land for an indefinite length of tin. $\therefore$ The $s$ ] ping facilities are poor. The local markets are very limited. The country is thin'y populated. There is an abundance of wild fruit. The people are not sufficiently educated in agricultural industries to be successful in fruit culture.
There are soils of all kinds in the Teritory. Most of the soil, however, is a sandy loam with a clay subsoil. Most of the land drained by the Arkansas and Canadian rivers is sandy. That drained by the Nosho and Verdigris is a black clay and limestone land with heary clay subsoil. All the grades between these can be found on the borders of these river watersbeds. In the extrrino southern part some of the land is very low and wet.
Most of the country is rolling, and in extreme northeastern and south central part the hills almost reach the dignity of mountains. The Boston mountains (a spur of the Ozarks) run along the northeast border. The Washtaw hills extend through the southern part from east to west. The Flint hills enter the northwest part of the Territory, and are enclosed by the Arkansas and Verdigris rivers. From this it will be seen that but little of the country is flat or low and swampy, and the best of exposures for fruit land may be had in all parts of the country. There are no lakes or large bodies of water in the Territory.

The flora is about the same as that of Arkansas, although more limited in the western part. Few collections have been made, and only the plants of commercial importance are well known. The forest belts of Arkansas and Missouri extena for some distance into

1132. Indian Territory.
the Territory. Most of the timber is only second grade, composed of oaks, pine and walnut.

Garden crops, where grown and cultivated, do well. Potatoes are grown to some extent for market in the Cherokee Nation, and give good returns. The early potatoes do best, but are very hard to keep over sum-
mer. Late potatoes yield well, but require more care in cultiration. Onions, beets, carrots, tomatoes and cabbage all produce good crops, but are not grown in commercial quantities. All of these vegetables promise to be money-makers in case of settlement of the country Melons are grown here and shipped to neighboring markets with fair profits
There are apple orchards in the Territory that have been in bearing for 15 years, and are still in fair condition. These orchards are usually near the Iudian agencies or Mission schools, and are cared for by white people. When Oklahoma was first opened for settlement there were several wagon loads of apples taken to Guthrie and Oklahoma city, from the Creek Nation. These apples were of as good quality and as fine in appearance as apples shipped from Missouri and Kansas, and sold for a higher price. There are still a few apples taken each year from the Creek and Chickasaw Nations to the border towns of Oklahoma and sold for a good price. The fruit is the same quality as that grown in sonthern Missonri and northern Arkansas.
Few peach orchards have been planted, and these are mostly of seedling trees. The light open winters fre quently cause the crop to be diminished or destroyed by the late spring frosts.
Plums seem to be perfectly at home here, and are almost a sure crop every year.

Grapes and berries are usually very free from disease, and bear heavily. The fruit is large, well developed and of a fine quality.
The soil and climate of Indian Territory are both very favorable to the production of fruit, and with permanent white settlement horticulture has a bright future within the borders of the Territory.
O. M. Morris.

INDIAN TOBACCO. Lobelia inflata. I. Turnip. Aris ama triphylla. I. Whest. Fagopyrum Tataricum.

INDIGO. See Indigofera. False Indigo. See Baptisia and Amorpha.

INDIGOFERA (indigo-bearing). Lequminòsa. In digo. Perhaps 250 herbs or shrubs in many parts of the world. Lis. odd-pinnate (rarely digitate): fls. usually small, in axillary racemes or spikes, in color rang ing from purple to rose and white; standard mostly roundish, often persisting for some time : keel with a spur on either side: pod various, usually with thin partitions between the seeds. Several species are native to the United States.

Indigo is mostly the product of I. tinctoria, of Asia, but it is also made from the West Indian species, $I$. Anil. Other species, even of other genera, also yield Indigo. These species were early introduced into the southern states for Indigo-making, and the product was once manufactured to a considerable extent. The plant was introduced into South Carolina in 1742 from the West Indies. When it was found that commercial Indigo could be made, the British Government offered a bounty. In 375 , the production was more than one million pounds of Indigo. The war for independence checked the industry, and thereafter the rising importance of the cotton crop, amongst other things, drove it to the wall. But as late as the middle of the present century, Indigo continued to be made in remote places. Plants still persist in some places as escapes from eul tivation. Indigofera finctoria is perennial, but is grown from seeds, which give from two to four cuttings of herbage the first year. The Indigo is not contained in the plant, but the dye is a product of manufacture from a glncoside indican which is contained in the herbage, and which is obtained as an extract. Indigo seed is offered by seedsmen.

In North America, several species of Indigofera are occasionally grown as ornamental subjects. In the North, they are mostly greeuhouse subjects. Propagated by seeds or cuttings, elicfly the latter.

AA. Raceme as long as or longer than the leaf.
décora, Lindl. Weak-growing or even half-climbing shrub, the branches slender and red-tinged: leaflets in 6-8 pairs, broad-lanceolate, usually drooping, sharppointed: racemes long, with showy rose-pink fls. about

INGA
1 in. long: standard oblong, nearly or quite obtuse, with a heart-like mark near the base : wings linear lanceolate or spatulate, ciliate. China. B.R. 32:29. B.M. 5063. G.M. $31: 591$. P.M. $16: 290$.-Regarded as a greenhouse plant and cult, in the open far South. Var. alba is said (G.F. 7, pp. 266, 376, fig. 61) to be a hardy herbaceous or half-shrubby plant at the Arnold Arboretum.
macrostachys, Vent. Shrubby, the stems terete and appressed-pubescent: leaflets $8-10$ puirs, oval-oblong obtuse but mucronate, pubescent: racemes longer than the lvs., many-fld.: Hs. rose. China

Caroliniàna, Walt. Tall and branching: leaflets 5-8 pairs, oblong or obovate: fls. small, many, yellowish brown and with short-acute calyx teeth: legume oblong, 2 -seeded, less than $1 / 2 \mathrm{in}$. long. Perennial, in the pine barrens from N. Carolina south.

AA. Raceme mostly shorter than the leaf.
austràlis, Willd. (I. angulàta, Lindl. I. sylvática, Sieb.). A very variable species, known by its glabrous aspect, short or nearly obsolete teeth of the calyx and the pod glabrous when young. Erect shrub: lfts. 9-17, varying from oblong to almost orbicular, $3 / 4 \mathrm{in}$. or less long, obtuse or retuse: fls. red and mostly showy, the racemes sometimes as long as the lrs.; standard truncate at the base, with a very short claw: pod nearly or quite straight, terete. Austral. B.R. 5:386. L.B.C. 2:149. B.M. 3000.-Extreme South.
tinctoria, Linn. Indigo. Fig. 1133. Shrub, 4-6 ft., with silcery branches: lfts. $7-15$, thin, rather large, obo-rate-oblong, pubescent beneath: fls. small, reddish yel-


Nearly natural size. The single pod is $I$. tinctoria $(\times 1 / 2)$.
low, in short racemes: pod nearly straight, somewhat knotty, 8-12-seeded. S. Asia. - Long cult. and widely distributed. Runs wild South. Indigo was known to the Egyptians.

Anil, Linn. West Indian Indigo. Fig. 1133. Much like the last, but fls. smaller, and pods curved and not knotty. W. Indies, but now runs wild in the southern states. B.M. 6506.
L. H.B.

INGA (a West Indian name). Leguminosce. This contains some tropical trees and shrubs, with acacia-like foliage and clusters of showy red stamens. Under this name 3 species are cult. in S . Calif., but 2 of them be-
long to Calliandra. Another allied genus is Pithecolobium. inga has pinnate foliage; the other two genera have bipinnate foliage. In Inga the pod is scarcely or slowly dehiscent: in Calliandra the ralves dehisce elastically from the apex to the base of the pod and are revolute; in Pithecolobium the valres are often twisted, but never rolled back and elastic.

## A. Leaflets hairy bcneath.

affinis, DC. (consult $I$. duilcis in the supplementary list). Lrs. simply pinnate; lfts. in 4 pairs, ovate, acuminate, pubescent above, somewhat shining and villous below, one side smaller than the other, 3 in. long, $11 / 2 \mathrm{in}$. wide; petioles, branches, peduncle:; and ths. velvety tomentose, a gland between each pair of les.: spikes solitary or in pairs: corollas villous. Trop. Amer. -This is probably the plant cult. in S. Fla. and S. Calif. as $I$. dulcis.

## AA. Leaflets not hairy

Feuillei, DC. Lvs. simply pinnate; lfts. in 3-4 pairs, oval-oblong, acute at both ends, glabrous: pods $1-2 \mathrm{ft}$ long, linear, flat, glabrous, white inside. Peru.-Int 1900 by Franceschi. The sweet, edible pulp of the pods is much prized by the Peruvians, who call it Pacay.
I. anómala, Kunth. Properly Calliandra grandiflora. Benth. Unarmed: lvs. bipinnate; pinnæ 15-17-paired; lfts. more than 20 -paired, linear, obtuse; petioles not glandular: branches, peduncles and tis. puberulous: ths. rosy: pod linear, acute, nar rowed at the base, glabrons, thickened at the margin. Trop Amer.-I. dulcis. The older plant of this name is Willdenow's, which comes from the Philippines, and is described under Pithe olobium. I dulcis, of Martius, comes from Brazil, and is I affinis described above. Franceschi's plant of I. dulcis makes a bushy tree, which he says comes from Central America, and has pods containing a white pnlp rich in sugar. This plant, he says grows only in frostless districts, while Inga anomala and pulcherrima $n$ il grow where the lemon thrives. $-I$. pulchér puicherraa Cerr. Properly Calliandra Tweediei Benth Les bipinnate: pinne 3-5-paired; lfts. as many as 25 -paired, paler and slightly hairy beneath: stipules ovato-scariose, brown hairy: slightly hairy beneath : stipules orato-scariose, brown hairy: nednncle being a head of about 20 his. Mex. B.M.418. P.
$11: 147$.

## INRBERRY. Ilex glabra.

INSECTICIDES. Substances used to kill insects, as commonly understood ; but, as defined in dictionaries, "one who or that which kills, or the act of killing an insect," constitutes an Insecticide. Hence there are many natural Insecticides, such as winds, rains, sudden changes of temperature, forest and prairie fires, insectivorous plants, some bacteria and fungi, several of the higher animals (including man), and many of the in vertebrates (including spiders and a host of parasitic aud predaceous insects). Oftentimes these Insecticides of nature materially aid man in his warfare against injurious insects, but usually it is necessary to resort to a spray or some other artificial Insecticide.
Insecticides may be classed into those which are caten with the food and kill by poisoning; powders, waskes and gases which kill by suffocation; and certain oils and soaps which kill when they come in contact with the body, and may also suffocate by closing the breathing holes. The poisons are effective against only the biting or chewing insects, and the sucking insects must be hit with a powder, an oil or soap; or both kinds of feeders may be suffocated with the gaseous Insecticides.
Arsenic is the chief ingredient in most poisonous Insecticides. Its solubility in water, causing it to burn the foliage severely, prevents its being used alone. But ly boiling one ponnd of it with two pounds of lime or four pounds of sal-soda in two gallons of water for half an hour, a very cheap, effective and reliable Insecticide results; use about $1 \frac{1}{2}$ quarts to 40 gallons of Bordeaux mixture or water.
Paris green is still the standard poisonons Insecticide, but its cost and adulteration have recently brought several substitutes, such as paragrene and green arsenoid, on the market. London purple is too soluble and variable to give uniform results; hence it is not as much used as formerly. These arsenicals are used at the rate of 1 pound in from 100 to 300 gallons of water or Bordeaux mixture on fruit trees, the most dilute on the peach. Arsenate of lead is now largely
used against such insects as the gypsy moth and the elm leaf-beetle; large quantities of it can be used on the foliage without injury, and it adheres better than Paris green, but is sometimes more expensive. Hellebore, the standard currant worm remedy, is especially valnable to use after fruits are more than half grown, when there would be danger from the use of the arsenical poisons.
Tobaceo in its various forms is one of the best Insecticides for sucking insects; it is particularly useful in greenhouses. Pyrethrum powder is the standard Insecticide for house-flies, and is often effectively used against other insects.
Kerosene is one of the most active and effective of Insecticides. It can rarely be used with safety undiluted, but as an emulsion with soap, it has been the standard remedy for sucking insects for many years. The formula is: half a pound of soap, I gallon hot water, and 2 gallons of kerosene; pour the kerosene into the hot soap solution and agitate violently for a few minutes. Recently, however, manufacturers have devised spray pumps which combine kerosene and water into a good effective emulsion. These kerowater pumps can be regulated to use certain percentages of kerosene, and they will doubtless largely do away with the making of the kerosene soap emmision. Whale-oil soap is now ex tensively and successfully used in killing scale insects and plant-lice. It and the kerowater spray are the most effective sprays now in use against the famous San José scale, the pear psylla, and other sucking insects. Crude petroleum has been successfully used in combat ting cattle lice and the horn-fly, and now promises to be an effective and safe substance to apply on dormant trees for the Ban José and other scales. In California, a resin wash and a lime, salt and sulfur wash are ex tensively used and found very effective against scale insects; in the East these washes are not so effective.

Two gases are extensively used in killing insects. The fumes of carbon bisulficle are certain death to in sects infesting stored grains, seeds or clothing. Place the infested material in a tight box; pour the liquid, at the rate of 1 pound to each 100 bushels, or 1 pound to each 1,000 cubic feet, into shallow dishes placed on top of the materials, and quickly close the box, leaving it for a day or so. The fumes are explosive; hence keep all lights away. This liquid has also been successfully used in treating melon and cucumber vines, under covers for plant-lice. The other gaseous Insecticide is hydrocyanic acid gas, the uses of which are discussed below under Scale Insects, page 812.

The arsenical poisons seem to be equally effective when applied in combination with the fungicide Bordeaux mixture, and most fruit-growers now spray with such a combination. Sometimes one of the Insecticides for killing sucking insects has been successfully mixed with the Bordeaux, but it is doubtful if they are as effective when thus applied. The poisons do not readily mix with the soaps or oils, and, as a rule, one cannot effectively hit sucking insects, biting insects, or the fungous diseases with a single application of some combination mixture.
M. V. Shingerland.

INSECTS. The animals which constitute the Insect world play an important part in most horticultural operations. The busy bee is an indispensable aid in the production of many fruits, but the equally busy jaws of canker-worms or other Insects oftentimes seriously interfere with man's plans for profitaole crops. Horticulturists should become more intimately acquainted with their little friends and foes in the Insect world. Not only from the economic standpoint is this knowledge necessary in the business of growing plants, but the striking peculiarities of form, coloring, structure. habits, and the wonderful transformations of Insects afford one of the most interesting fields in nature. The life-stories of many Insects, if told in detail. would rival in variety and interest many a famous fairy tale. The science that treats of Insects, or entomology, has now reached ihe stage where its derotees are no longer looked upon is "crazy bug-hunters" in most communities. A recent directory of the entomologists. or those interested in the study of Insect life, of the United States and Canada contains the names of over 1,200 persons.

What They Are.-An Insect is an animal which, in the adult stage, has its body divided into three distinet

1134. A beetle.

Showing the different parts. regions: the head, the thorax and the abdomen (Fig. 1134). The head bears one pair of antennæ, and there are always three pairs of legs and usually either one or two pairs of wings attached to the thorax. By these characteristics one can usually readily distinguish an adult Insect from any other animal. Among the near relatives of Insects in the animal world are the cray-fish, sow-bugs and crabs, but these are mostly aquatic animals, breathing by true gills; they have two pairs of antemme, and at least five pairs of legs. Centipedes, or "hundred-legged worms," and millipedes, or "thousand-legged worms," are also nearly related to Insects, but they have the thorax and abdomen forming a continuous region, with from 6 to 200 segments, earh bearing one or two pairs of legs; they have one pair of antennæ. The layman usually classes such animals as the spiders, mites and daddy-long-legs among the Insects, but they form a distinct class, as they have the head and thorax grown together, no antenne, and have four pairs of legs.

How They Are Constructed. - Insects are constructed on an entirely different plan from the higher animals. Their supporting skeleton is outside, it being si: ply the skin hardened more or less by a horny substance, known as chitin. This firm outer wall, or skeleton, supports and protects the muscles, blood-vessels, nerves, and other organs within. The mouth-parts, antenna and eyes of an Insect are attached to its head, and all are exceedingly useful organs, as will be shown later in discussing the feeling and the other sensations of an Insect. An Insect's wings and legs are alwars borne by the thorax. The wings are primarily organs of flight, but are used as musical organs by some of the grasshoppers and crickets. Female canker-worm moths, bedbugs, and some other Insects hare practically no wings, and the house-flies, mosquitoes, male bark lice, and similar Insects hare but one pair of wings. Insects use their legs primarily for walking, running or climbing ; some hare their front legs modified for catching other Insects for food; others hare hind legs fitted for jumping, while the honey-bee has little "poekets" on its hind legs for carrying pollen to feed its young.

Head of grasshopper Showing the great eye. A detail of a part of the surface of the compound eye is also shown.

The arrangement of the internal organs in Insects is somewhat peculiar. The alimentary or food canal in larya is a nearly straight tube, occupying the central portion of the body; in adult Insects it is usually much longer than the body and is more or less folded: from the mouth the food passesthrough a pharynx, an esophagus, some times a erop and a gizzard. a stom ach, and a small and large intestine. The nerrous system of an Insect is similar to that in the higher animals, but it extends along the renter instead of the back. There is a little brain in the upper part of the head, and two nerve cords extend from this around the food canal to another ganglion or nerre center in the lower part of the head; two nerre cords then extend longitudinally along
the venter and connect a series of nerve centers or ganglia, typically one for each segment of the body. From each of these ganglia or little brains nerves arise, which supply the adjacent organs and ramify throughout the body. In Insects, all parts of the body cavity that are not occupied by the internal organs are tilled with a rich, colorless or slightly greenish blood. There is no system of tubes, like our arteries and reins, in which the blood is confined and through which it flows There is a so-called "heart" above the food-canal, along the middle line of the back; it is a tube consisting of several chambers communicating with each other and with the body cavity by valrular openings. The blood is forced through this heart into the head, where it escapes into the body carity. It then Hows to all parts of the body, even out into the appendages, in regular streams which hare definite directions, but which are not confined in tubes. They, like the ocean currents, are definite streams with liquid shores. Insects do not breathe through the mouth, as many suppose, but

1136. Fossil dragon-fly, Petalua longialata ( $\times 1 \cdot 5$ ).
through a series of holes along the sides of the body. These openings, or spiracles, lead into a system of airtubes, called trachee. These trachew branch and finally ramify all through the Insect. Insects have no lungs, but the tracher sometimes connect with air-sacs or bladders in the body, which help to buoy up the Insect when tlying. Thus the relation between the circulation of the blood and respiration is not nearly so intimate in Insects as in man. In Insects the air is carried to all the tissues of the body in the trachea and the blood simply bathes these tissues. Just how the blood is purified and how the waste matter is disposed of in Insects are not yet clearly understood. Aquatic Insects breathe by either carrying down bubbles of air from the surface entangled under their wings, or they may be provided with organs known as tracheal gills; these are usually plate-like expansions of the body that are abundantly supplied with tracher, in which the air is brought practically in contact with the air in water, and may thus he purified. More than 4,000 different muscles hare been found in a single caterpillar. Notwithstanding their delicate appearance, these muscles are really very strong and their rapidity of action is wonderful; in certain gnats the
 Egg much enlarged; others $\times 1^{1 / 2}$.
muscles moveor ribrate the wings $\mathbf{1 5 , 0 0 0}$ times per second.
Their Sensations.- Insects can see, feel, hear, taste and smell, and they may also possess other senses, as a seuse of direction. Many Inseets have two kinds of eyes. On each side of the head the large compound eye is easily recognized (Fig. 1135) ; each compound eve is composed

## insects

of many small eyes, from 50 in some ants to many thousands in a butterfly or dragon-fly. Between these compound eyes, from one to four simple eyes are to be found

1138. Nymphs of the four-lined leaf-bug and adult of the tarnished plant-bug.
The smallest one is the nymph recently hatchen. The next is the nymph after the first moult. The imago is shown at the right. Hair lines at the right of nymphs, and small figure near imago indicate the natural size.
in many adult Insects. Caterpillars and other larsæ possess only simple eyes. It is thought that each facet of the compound eye sees a part of an object; thus the whole eye would form a mosaic picture on the Insect's brain. The simple eyes doubtless see as our eyes do, and seem to be best adapted for use in dark places and for near rision. Insects do not see the form of objects distinctly, but their eyes are doubtless superior to ours in distinguishing the smallest movements of all object. It is now supposed that no Insects can distinctly see objects at a greater distance than 6 feet. It must he a sixth sense, a sense of direction, which enables the bee to find its way for a mile or more back to its home. It sects are doubtless able to distinguish the

1139. Larva of a sphinx moth. color of objects, and some Insects seem to prefer certain colors. Blue is said to be the favorite color of the honey-bee, and violet that of ants: ants are also apparently sensitive to the ultraviolet rays of light, which man cannot perceive. It is generally supposed that the shape and high colors of Howers attract Insects: but recent experiments seem to show that Insects are guided to flowers by the sense of smell rather than by sight.
The hard outer skin of an Insect has no nerres distributed in it, hence it is not sensitive; but it is pierced with holes, in which grow hairs that are in connection with nerves at their base. It is by means of these sensory hairs that lusects feel, and are sensitive to touch on most parts of the body.

Doubtless Insects are not deaf, for we know that many of them make sounds, and it must naturally follow that they have ears to hear, for there is every reason to suppose that they make these sounds as lovesongs to attract the sexes, as a means of communication. or possibly to express their emotions. Some think that


114:. A maggot.
1140. Tent-caterpiltar,
bees and ants hear sounds too shrill for our ears. Insects have uo true voice, but produce various noises mechanically, either by rapid movements of their wings, which causes the humming of bees and flies, or by friction between roughened surfaces on the body or its appendages, thus producing the rasping sounds or shrill cries of some crickets and grasshoppers. The house-fly hums on $F$, thus vibrating its wings 335 times in a second, while the wing tone of the honey-bee is A. Usually the males are the musicians of the Insect world, but it is the female of the familiar mosquito which does the singing, and the "biting" also. The male mosquito doubtless hears the song of his mate by means of his antennæ, es the song causes the antennal hairs to vibrate rapidly. Organs which are structurally ear-like have been found in various parts

1142. A grub. Larva of a beetle. of the body of Insects. The common brown grasshoppers of the fielus have a large ear on each side of the first segment of the abdomen; one can easily distinguish with the naked eye the membrane or tympanum stretched over a carity. Many of the long-horned green grasshoppers, katydids and crickets have two similar ears on the tibia of each front leg. Some think that mosquitoes have the faculty of the perception of the direction of sound more highly developed than in any other class of auimals.

Insects undoubtedly possess the sense of taste. When morphine or strychnine was mixed with honey, ants perceived the fraud the moment they began to feed. The substitution of alum for sugar was soon detected by wasps. Bees and wasps seem to have a more delicate gustatory sense than flies. Taste organs have been found in many Insects, and are usually situated either in the mouth or on the organs immediately surrounding it.
Many experiments have shown that the antenna are the principal organs of smell in Insects. Blow-Hlies and cockroaches which have had their antenne removed are not attracted by their favorite food, and male Insects find their mates with difficulty when deprived of their antennæ.
The familiar world which surrounds as may be a totally different place to insects. To them it may be full of music which we cannot hear, of color which we cannot see, of sensations which we cannot perceive. Do Insects think or reason? Why not? Their actions are said to be the result of inherited habit or instinet. But some of them hare been seen to do things which require the exercise of instinctive powers so acute and so closely akin to reason that one can hardly escape the conclusion that some Insects are endowed with reasoning


Made in the roll of a leaf. The insect weaves a web about the leat-stalk and ties it to the parent stem, so that the leaf cannot fall.

Their Number, Size and Age.-Experts guess that there are from $2,000,000$ to $10,000,000$ different kinds of Insects in the world. Only about 400,000 of these have yet been described and named by man. Between 30,000 and 40,000 are now known in North America. Four-fifths of all the kinds of animals are Insects; some single families of Insects are said to contain more species than one can see stars in a clear sky at night; and

## INSECTS

there are as many butterflies as birds in North America The larger part of the land animals are Insects, and it is asserted that the larger proportion of the animal matter existing on the lands of the globe is probably locked up in the forms of Insects.

Insects vary in size from little beetles, of which it would take 100 , placed end to end, to measure an inch, up to tropical species 6 or 8 inches in length, or of equal bulk to a mouse.

Insects have a very long, but, as yet, very imperfect pedigree extending through the geological ages to Silurian times. Fossil remains of many different kinds of Insects hare been found in the rocks (Fig. 1136) ; even such delicate Insects as plantlice left their impress on the rocks ages ago. In the carboniferous or coal age, the Insect world was evi. dently quite different from that of to-day, for fossils of veritable Insect mammoths have been found; dragon-flies with a wing-expanse of from 2 to 3 feet then existed. Insect fossils found in the Tertiary rocks indicate that there were more kinds of Insects then than now.

Their Growth and Transformations. Fig. 1137.- Insects Cecropia moth.
Inside riew, showing
where the moth gets out. where the moth gets out begin life as an egg; in some cases the egg stage is passed within the body of the mother, which then gives birth to living young. The eggs of Insects exhibit a wonderful variety of forms, sizes, colors and characteristic markings. A single scale Insect may lay thousands of eggs, while some plant-lice produce only one. Remarkable instinct is often shown by the mother Insect in placing her eggs where her young will tind proper food.

From their birth the young of some of the lowest or most generalized Insects closely resemble their parents, and they undergo no striking change during their life; bence are said to have no metamorphosis.

In the case of grasshoppers, stink-bugs, dragon-flies, and many other Insects, the young at birth resemble their parents, but hare no wings. As they grow, wings gradually develop and often changes in markings occur, until the adult stage is reached. The growth, howerer, is gradual, and no striking or complete change occurs, and these Insects are said to undergo an incomplete metamorphosis. The young Insects in all stages are called nymphs (Fig. 1138); thus Insects with an incom-

1146. Pura of tomato worm.

1147. The cabbage butterily.
plete metamorphosis pass through three different forms during their life: an egg, the young or nymph stage, and the adult.

From the eggs of butterflies, moths, flies, beetles,
bees and some other Insects, there hatches a worm-like creature, much unlike the parent Insect. It is called a larva (Fig. 1139); the larve of buttertlies and moths are often called caterpillars (Fig. 1140); maggots are the larva of Hies (Fig. 1141); and the term grub is applied to the larve of beetles and bees (Fig. 1142). When these larvae get their full growth, some of them go into the ground, where they form an earthen cell, while others proceed to spin around themselves a silken home or cocoon (Figs. 1143, 1144, 1145). In these retreats the larve change to a quiescent or lifeless-appearing creature which has little resemblance to either the larra or the parent Insect. It is called a pupa (Fig. 1146). The pupe of butterflies are often called chrysalids. Flies change to pupa in the hardened skin of the maggot. Some pupa,like those of mosquitoes, are very active. Wonderful changes take place within the skin of the pupa. Nearly all

1148. Imago of a tent-caterpillar. the larval tissues break down and the Insect is practically made over, from a crawling larva to a beautiful, fying adult Insect. When the adult is fully formed, it breaks its pupal shroud and emerges to spend a comparatively brief existence as a winged creature. Such Insects are said to undergo a complete metamorphosis, and pass through four strikingly different stages during their life: the egg, the worm-like larra, the quiescent pupa, and the adult Insect. Such remarkable changes or transformations make the story of an Insect's life one of intense interest to one who reads it from nature's book. Various kinds of adult Insects, or imagoes, are shown in Figs. 1147-1152.

No tro kinds of Insects have the same life-story to tell. Some pass their whole life
 on a single host; some partake of only a certain kind of food, while others thrive on many kinds of plants; some are cannibals at times, and others, like the parasites, are boarders within their host, while many prey openly on their brethren in the Insect world. Usually the life of the adult Insect is brief, but ants have been kept for thirteen years, and the periodical 1149. A beetle. The adult of a borer larra. cicada has to spend seventeen before it is fitted to become a denizen of the air. The winter months may be passed in any of the different stages of the Insect's life. Two very closely allied Insects may have very different life habits.
Hou They Grou.-Many people believe that the small house-flies grow to be the large ones. While most Insects feed after they become adults, they get little or none of their growth during their adult life. Insects grow mostly while they are larre, or nymphs. The maggots from which the little house-flies develop doubtless do not have as luxuriant or favorable feeding grounds as do those of the larger flies. In 30 days some leaf-feeding caterpillars will increase in size 10.000 times; and a certain fleshfeeding maggot will in 24 hours consume two hundred times its own weight, which would be paralleled in the human race if a one-day-old baby ate 1,500 pounds the first day of its existence! The skin of Insects is so liard and inelastic that it cannot stretch to acconmodate

1150. One of the weevil beetles
With a long and strong proboscis. such rapid growth. But nature obviates this difficulty by teaching these creatures how to grow a new suit of clothes or a new skin underneath the old one, and then to shed or moult the lat-
ter. The old skin is shed in its entirety, even from all the appendages, and sometimes remains in such a natural position where the Insect left it as to easily deceive one into thinking that he is looking at the In-

1151. Ground beetle.

One of the commonest predaceous insects.
sect rather than at its cast-off clothes. Some Insects are so neat and economical that they devour their old suits or skins soon after moulting them. Larvæ, or nymphs, mav moult from two or three to ten or more times; the larve do not often change strikingly in appearance, but the nymphs gradually acquire the characters and structures of the adult.
How They Eat. - To the horticulturist, the mouth-parts of an Insect are its most important organs or appendages. The mouth-parts are built on two very different plans. Grazshoppers, beetles, caterpillars and grubs have two pairs of horny jaws, working from side to side, with which they bite or chew off pieces of their food, that then pass into the food-canal for digestion (Fig. 1153). The scale Insects (Fig. 1154). plant-lice, true bugs (Fig. 1155), mosquitoes and others have these jaws drawn out into thread-like organs, which are worked along a groove in a stiff beak or extended under lip. Such Insects can eat only liquid food, which they suck with their beak-like mouth-parts. The Insect places its beak on the surface of the plant, forces the thread-like jaws into the tissues, and then begins a sucking operation, which draws the juices of the plant up along the jaws and the groove in the beak into the food-canal of the Insect.
Thus a sucking Insect could not partake of particles of poison sprayed on the surface of a plant. Its mouth-

1152. Moths of the peach-tree borer. The lowest one is male.
parts are not built for such feeding, and as it is impracticable to poison the juice of the plant, one is forced to fight such Insects with a deadly gas, or each individual lnsect must be actually hit with some insecticide. A knowledge of these fundamental facts about the eating habits of Insects would have saved much time and money that have been wasted in trying to check the ravages of sucking Insects with Paris green and similar poisons.

Some Insects, like the bees and wasps, have mouthparts fitted both for sucking or lapping and for biting. Beneficial Insects. - The horticulturist has many staunch and true friends among the Insects. The honeybee, the many wild bees, and other Insects, as they visit the blossoms to get food for themselves, for their young, and honey for man, leare an insurance policy in the shape of tiny grains of pollen, which often insures a crop of fruit that otherwise might be extremely uncertain. The honey-bee is often accused of biting into ripe fruits, especially grapes. They have not yet been proved guilty, and careful, exhaustive experiments have shown that they will not do it under the most favorable circumstances. Wasps and other strong-jawed Insects are responsible for most of this injury, the bees simply sipping the juice from the wound.

Most of the pretty little beetles known to every child as "lady-bugs" eat nothing but injurious Insects; many other beetles are also predaceous. Man is also often deeply indebted to many of the two-winged Insects or true flies whose larra live as parasites inside the body of Insect pests or feed upon them predaceously. Were it not for the racenous larva of the "lady-bugs" and of the syrphus flies, plant-lice of all kinds would soon get beyond control. While man must secognize these little friends as valuable aids in his warfare against the hordes of Insect pests, it will rarely be safe to wait for the pests to be controlled by their enemies. Fig. 1156 shows a tomato worm bearing the cocoons of a parasite. Fig. 1151 shows one of the predaceous beetles destroying a cutworm.
Injurious Insects. - There 1153. Mouth-parts of a $\begin{aligned} & \text { Inscrious Insects. - There } \\ & \text { biting insect. } \\ & \text { are now about a thousand dif- } \\ & \text { ferent kinds of Insects that may }\end{aligned}$
be classed as injurions in the United States and Canada. 1153. Mouth-parts of a $\begin{aligned} & \text { Inscrious Insects. - There } \\ & \text { biting insect. } \\ & \text { are now about a thousand dif- } \\ & \text { ferent kinds of Insects that may }\end{aligned}$
be classed as injurions in the United States and Canada. be classed as injurious in the United States and Canada. Over 600 kinds were exhibited at the Columbian Exposition in 1893. All of these may not be injurious every year, as most Insect pests have periods of subsidence, when certain factors, possibly their enemies or perhaps climate conditions, hold them in check. The outlook for American horticulturists, so far as injurious Insects are concerned, is not encouraging. Nowhere else in the world are Insects being fought as intelligently, successfully and scientifically as in America, yet we never have exterminated, and it is very doubtful if we ever will, a single Insect pest. This means that American horticulturists will never have any fewer kinds of Insects to fight. On the contrary, there are many more Insect pests now than in our grandfather's early days, and new pests are appearing every year. This alarming state of affairs is largely due to two causes, for both of which man is responsible. Man is continually encroaching upon and thereby disturbing nature's primitive domain and the equilibrium which has there become established between animals and plants. In consequence, Insects like the Colorado potato beetle, the appletree or the peach-trce borers have been attracted from their original wild foodplants to man's cultivated crops. which often offer practically unlimited feeding grounds. Most of the new Insect pests, however, are now coming to America from foreign shores. American horticul.


Showing the mature winter scale; also the insect itself, with its thread-like feeding organs.

## INSECTS

turists are continually importing plants from the ends of the earth, and oftentimes the plants are accompanied by one or more of their Insect pests. Some comparatively recent introductions of this kind are the sinuate pearborer, the pear midge, the gypsy moth, the brown-tail

1155. Hemipterous insect.

Known to entomologists as a true bug.
moth, the horn-fly and the elm leaf-beetle; such standard pests as the Hessian fly, the cabbage butterty, the cur-rant-worm, the codling-moth (Fig. 1137) came in many years ago. Of the 73 Insects which rank as first-class nests, each of them almost annually causing a loss of hundreds of thousands of dollars, over one half have been introduced from foreign countries, mostly from Europe. It is a significant fact that usually these inported Insects become much more serious pests here than in their native home; this is doubtless largely due to the absence of their native enemies, to more favorable climatic conditions here, and to a less intense system of agriculture in this country. Most of our worst Insect pests of the fruits, of the garden crops, of the granary, of the household, of the greenhouse, and practically all of our most dangerous scale Insects, are of foreign origin. Man will continue to encroach on and disturb nature's primitive domain, and commercial operations will never cease, nor is there much hope of ever effectually quarantining our shores against these little foes; hence there seems to be no practicable way to stop this increase of the Insect enemies of the horticulturist. The one who is the best fifted by nature, and who best fits himself with a knowledge of these pests and how to fight them, will usually be the one to survive and reap the reward of protitable crops. No part of a plant, from its roots to the fruit it produces, escapes the tiny jaws or the sucking beaks of Insects.

Ront-feeding Insects.- Many of the small fruits and regetables are often seriously injured by Insects feeding on the roots. The grape-vine fidia (the grub of a small beetle) and the grape phylloxera plant-louse live on grape roots. Strawberries often succumb to the attacks of the grubs of sereral small beetles known as strawberry-root worms, and to the large white grubs of the May beetles. The roots of cabbages, radishes and

1156. Tomato worm attacked by parasitic insects.
other cruciferous plants are often deroured by hordes of hungry maggots.
These underground root-feeding Insects are difficult pests to control, like any other unseen foe. Sometimes they can be successfuliy reached by injecting a little carbon bisulfide into the soil around the base of the
plant. The cabbage maggots can be largely prevented by the use of tarred paper pads placed around the plants, or by pouring a carbolic acid emulsion at the base of the infested plants. The strawberry root-feeders are best controlled by frequent cultivation and a short rotation of crops.

Borers.-These are the larsa of several different kinds of Insects, which burrow into and feed upon the inner bark, the solid wood, or the interior pith of the larger roots, trunks, branches, and stems or stalks of many horticultural plauts. Nearly every kind of fruit trees is attacked by its special kind of borer, as are also many of the smaller rine and bush-fruits and garden crops. Borers are often the most destructive of Insect pests. The two apple-tree borers, the round-headed (Fig. 115i) and the Hat-headed species, and the peachtree borer (Fig. 1152) doubtless cause the death of as many apple and peach trees in America as all other enemies combined. The recently imported sinuate pear-borer seriously threatens the pear industry in infested localities. The fruit-bark bee-

1157. Burrows of an apple-tree borer.
The holes at $a$ show where the imago or beetle emerged.

1158. A beetle borer and its work. The larva bores in the soung wood of raspberry and blackberry canes, causing the swellings seen in the picture.
tles, or "shot-hole" borers, usually attack only unthrifty or sickly fruit trees, and a tree once infested by them is usually doomed. Two borers, one the grub of a beetle and the other the caterpillar of a moth, sonietimes tunnel down the stems of currants and gooseberries. Raspberries and blackberries (Fig. 1158) also suffer from two or three kinds of borers, one working in the root, one in the stem, and a maggot bores down and kills the new shoots. A caterpillar closely allied to the peachtree borer lives in squash vines, often ruining the crop. The potato-stalk weeril sometimes does much damage in potato fields.

Sometimes one can prevent borers from getting into a fruit tree with a paper bandage closely wrapped around the part liable to be attacked, or by the application of some "wash." Most of the washes recommended will prove ineffectnal or dangerous to use. Gas-tar has giren good results, but some report injury to peach trees from its use; hence one should first experiment with it on a few trees. No way has been found to keep borers out of the small fruits or garden crops; usually if infested canes, stems or plants are cut out and burned early in the fall or whenerer noticed, most of the borers will be killed. When borers once get into fruit trees, the "dig.
ging-out" process is usually the only resort, although ginge report that they readily kill the depredator by simply injecting a little carlon bisulthle into the entrance of his burrow and quickly closing it with putty
Bud and Leaf-feeding Insects.- The buds and leaves of horticultural crops often swarm with legions of biting and sucking Insects. A mere enumeration of the dif ferent kinds of these pests would weary the reader Some Insects, like the rose chafer, work on several dif ferent kinds of plants, while many others attack only one or two kinds. In apple orchards, the opening buds are seized upon by the hungry bud-moth and case-bearing caterpillars, by the newly-hatched canker-worms, and by tent-caterpillars, whose tents or "signboards" are fa miliar objects in many orchards. These pests continue their destructive work on the leaves. The pear slng often needs to be checked in its work of skeletonizing the leaves of the pear and cherry. The pear psylla, one of the jumping plant-lice, is a very serious menace to pear-growing in many localities; the fruit is either dwarfed or drops from badly infested trees, and sometimes so many little pumps sucking out its life finally cause the death of the tree. The little blue grape-vine flea-beetle often literally nips the prospective crop of fruit in the bud, or the rose-chafer may swarm orer the vines and eat the foliage or blossoms. Currant and gooseberry growers realize that eternal vigilance against the familiar green currant worms is the price of a crop of fruit.

The asparagus beetles would soon appropriate every asparagus shoot that appears in many localities. It is a continual struggle against Insect pests to get a paying crop of almost any vegetable. The several kinds of cabbage caterpillars would soon riddle the leares. The hungry striped cucumber beetles can
1159. Grasshopper. Mounted. cumber beetles can melon, squash, or cucumber rines to come op. Twe squash stink-bug, are equally as destructive as their biting relatives.
The bud-and leaf-feeding Insects are usually readily controlled by spraying some poison on their food, or by hitting them with some oil or soap spray. As the female moths of canker-worms are wingless, a wire trap or sticky bandage placed around the trunk of the tree in the late fall and early spring, to capture the moths as they crawl up the tree to lay their eggs, will greatly help to check these serious pests. The collection and burning of the conspicuous egg-rings of the tentcaterpillars at any time between August and the following April, will greatly reduce the vast numbers of tents or signboards of shiftlessness in apple orchards. Hand-picking or collecting is the most successful method of controlling the rose-chafer, harlequin cabbage bug, and the squash stink-bug in many cases. Prompt action, guided by a knowledge of the Insect's habits and lifehistory, and an intelligent use of materials and epparatus, are essentials in any successful effort to control these bud- and leaf-feeding pests of the horticulturist.

Fruit-eating Insects. - Wormy" apples, pears, quinces, plums, peaches, cherries, apricots, grapes, currants and nuts are often the rule rather than the exception. The codling-moth or apple-worm often ruins from one-third to one-half of the crop each year in many localities; it also infests pears seriously. The apple maggot tunnels its way through and through the flesh of a large percentage of the apples in the northern sections of the country. Most of the wormy plums, peaches, cherries and apricots are the work of the grub of that worst Insect enemy of the stone fruits-the plum curculio; the plum gouger, a similar Insect, whose grub works in the pit of plums, is equally destructive to this fruit in some states. "Knotty" quinces are largely the work of the adults of the quince curculio, while its grub often ruins the fruit with its disgusting worm-hole. There is also a grape curculio, that, with the aid of tie
caterpillar of a little moth, works haroc in grapes. Currants and gooseberries are often wormy from the work of two or three different kinds of maggots and caterpillars. A new pest has now included the delicious cherry in its menu; it is a fruit-fly, closely allied to the apple maggot; infested cherries may show no external signs of the presence of the maggot reveling in the

1160. A crane fly. Mounted.
juices within. Various small beetles, known as weevils, are responsible for most wormy nuts.

Most of the fruit-eating Insects are out of the reach of the ordinary insecticides. The codling-moth is a noted exception, however, for the peculiar habit that the little caterpillar has of usually entering the blossom end of the fruit and feeding therein for a few days, gives the man with a poison spray a very vulnerable point of attack. It is only necessary to spray a bit of poison into the open calyx cup within a few days after the petals fall, and let nature soon close the calices and keep the poison therein until the newly-hatched caterpinar includes it in its first menu. Often 75 per cent of the apples that would otherwise be ruined by the worms are saved by an application of Paris green at this critical time. The fact that the apple maggot never leaves the fruit until after it is picked or has fallen from the tree, gives one a chance materially to reduce its numbers by frequently gathering the windfalls and feeding them to stock or burying them deeply. As the plum curculio, in the adult stage, feeds on the leares and fruits, a poison spray, applied soon after blossoming time, is apparently sometimes effectire against it, particularly on cherries. Many extensive growers of the stonefruits, however, are satisfied that this pest can be best circumvented by jar ring the curculios onto sheets and killing them; the quince curculio is also best fought by the jarring method. Hand-picking of the infested fruits must be practiced when grapes, cur rants or gooseberries are attacked by fruit-eating Insects.

Plant-Lice.-Scarcely a plant es capes the little suction pump or beak 1161. A snapping of some kind of a plant-louse or aphis. beetle. Mounted. About 250 different kinds of plant-lice have been identified in the United States, and nearly every kind of fruit, flower, farm or garden crop has its special plant-louse enemr, which is often a serious factor in the production of a crop. These little creatures are so small, so variable, so hard to perceive, present so many different forms in the same spe cies, and have such raried and interesting life-stories to tell, that what we now know about them is but a mere beginning as compared to what is yet to be learned. It would take a large volume to include the interesting stories which might be told of the lives and of the relations with ants of some of the commonest of these plant-lice. No other group of Insects presents so many curious, raried, interesting, and wonderful problems of life as do the aphids.

In the aggregate, the damage done by plant-lice is very great. At times hundreds of acres of peas have been ruined by an aphid. Nursery stock often suffers severely, but bearing fruit trees are not often seriously injured by them. About 40 different kinds of aphides live in greenhouses, where a perpetual warfare has to be waged against the $u$. In 4 years we have reared nearly 100 generations of a common aphis in greenhouses,

$d$ and there were no in dications of any eggstage or of male forms during this time, so that they may thus breed indeflnitely in houses, their young being born alive and no males appearing.
The standard remedies for plant-lice are whale-oil soap, kerosene emulsion, kerowater, and tobacco in various ways (as a decoction, dry as a dust, or the "Roseleaf" or similar extracts), and these are successfully used to kill the aphides in all situations.
ScaleInsects.Since the recent advent of the San José scale into the eastern United States, scale Insects of all kinds have attracted world-wide attention. They are all small Insects, and derive their name from the fact that their tender bodies are protected by hard, scale-like coverings secreted by the Insects. Thus protected, they are difficult Insects to kill, and as they are easily trans. ported on nursery stock, buds or cions, and also multiply rapidly, the scale Insects are justly to be considered as among the most dangerous and destruc-
1162. A spreading board for drying soft-winged insects. tive of injurious Insects. A single female San José scale may rear a brood of from 100 to 600 young, and there may be four or five generations a year; and more than 2,000 eggs have been laid by a single Lecanium scale.

The scale Insects, the dreaded San José species included, can be successfully controlled by judicious, intelligent and timely work with sprays of whale-oil soap, kerowater, crude petroleum, or hydrocyanic acid gas, which should be used in the case of nursery stock.

Since 1889 fumigation with hydrocyanic acid gas has been extensively practiced in the citrous orchards of California, and now Florida and South African fruitgrowers are also using it in their orchards. Large gastight tents or boxes are placed over the trees and the gas then generated within. Much nursery stock is now treated with the gas in tight boxes or houses; this is required by law in Maryland and the province of Ontario, and it should be practiced in other regions. Recently greenhouses, railway coaches, rooms in private houses, and whole flouring mills have been effectively fumigated with this gas. It is generated with water, a good grade of commercial sulfuric acid, and potassium cyanide 98 to 99 per cent pure. The acid is poured into the water in an earthen jar or crock and the cyanide then dropped in. In fumigating trees, rooms or fouring mills, 1 ounce of the cyanide, $11 / 2$ fluidounces of sulfuric acid, and $21 / 4$ ounces of water are used for every 125 cubic feet of
space ; for nursery stock use the same amounts for each 100 cuble feet of space; in greenhouses the gas is used about one-half as strong, or even less for some kinds of plants. Nursery stock, trees and plants in greenhouses are usually subjected to the gas for from 30 to 60 minutes; mills are usually kept closed 12 to 24 hours. As potassium cyanide and hydrocyanic acld gas are among the most deadly poisons, fumigation should be under the direct supervision of competent persons.
Insects are preserved in collections by securing them in tight cases by means of a pin inserted through the thorax, or through the right wing if the subject is a beetle. Moths and buttertlies are pinned in position on a spreading-board until thoroughly dried. See Figs. 1159-1163. Every horticulturist should make a collection of injurious Insects.
Insect Literuture for Horticulturists. - Horticulturists should keep in close touch with the experiment stations and state entomologists of their own and of other states, and also with the Department of Agriculture at Washington; for it is from these sources that the best and latest advice regarding injurious Insects is now being disseminated free, either by personal correspondence or by means of bulletins. Among the books. one or more of which may well tind a place in a horticulturist's library are the following: Weed's "Insects and Insecticides," Sempers' "Injurious Insects and the Use of Insecticides," Lodeman's "The Spraving of Plants," Saunders' "Fruit Insects," and Smith's "Economic Entomology."
M. V. Slingerland.

INULA (ancient name). Compósitue. This genus includes some 'ardy herbaceous plants of the easiest culture and of rither coarse habit, with heads of yellow or orange, each -4 in . across, borne in summer. There is such a great abundance of autumn-flowering yellow composites in tie hardy border that only those Inulas that bloom in earir summer are particularly desirable. Elecampane, I. Helenium, is probably also cultivated for medicine. A peparation of the mucilaginous roots is common in drug stores. Inula flowers have as many as 40 linear rays. The plants like a sunny position in any garden soil, alld are prop. by division or seed.
Inula is a genus of about 56 species, found in Europe, Asia and Africa. herbs, usually perennial, glandular, hairy: lus. radical or alternate, entire or serrate: heads large, medium or small, solitary, corymbose, panicled or crowded at the crown: rays yellow, rarely white.

## A. Stems panicled or corymbose.

Helènium, Linn. Elecampane. Fig. 1164. Tall, thick-stemmed: lvs. unequally dentate-serrate : root 1vs. elliptic-oblong, narrowed into a petiole; stem-lvs. half-clasping, cordate-oblong: outer involucral parts leafy, orate. Wet, sandy and mountainous regions. Eu., N. Asia. Naturalized in Amer. D. 163. - For medicinal purposes, 2 -year-old roots should be dug in August. If older they are likely to be stringy and roody.

1163. A cross-section of spreading board in front of the cleat "d," in Fig. 1162.

## AA. Stems 1-fld., or with at most 2 or 3 heads.

## B. Outer involucral parts linear and numerous.

grandifldra, Willd. Height 2-3 ft.: 1vs. elliptic-oblong, serrulate, all sessile; upper ones subcordate; lower ones $2-4 \mathrm{in}$. long: glands numerous: heads 31/4-4 in. across. Himalayas, Caccasus. G.F. 6:406. Cult. but not adrertised. Earliest blooming Inula in cult. Bears orange-yellow fls. 5 in. across in June, and has bold but not coarse habit.
glanduldsa, Willd. Height 2-3 ft.: lower lvs. oblong. spatulate, long-attenuate at the base, the uppermost oblong with a subcordate-decurrent base, all entire or very obsoletely denticulate: glands remote. Caucasus. R. R. 4:334. B. M. 1907. Gin. 29, p. 234; 25, p. 101; $49: 1047$ and p. 7. J.H. III. 35:15.3. R.H. 1881, p. 419.

G.M. 33:541 and 38:477.-Keller says it has deep golden yellow, fringed, half-drooping rays. Rays are commonly said to be entire, but B.M. 1907 shows 2 minute teeth, and in B.R. 4:334 the fringes are more than a quarter of an inch long. This is said to be the only cult. species that does not seed freely. The Garden pictures an orange variety.

Hodkeri, C. B. Clarke. Height 1-2 ft.: lvs. 3-4 in. long, sessile or narrowed into very short petioles, ob-long-lanceolote, acute at the base, minutely toothed, glandular: heads $21 / 2-31 / 2 \mathrm{in}$. across; rays "pale yellow," according to Hooker. Himalayas. B.M. 6411 (rays pure yellow).-Fls. orange-yellow, according to J. W. Manning. J. B. Keller says it flowers in Aug. and Sept., and has bright yellow fringed rays. However, in B.M. 6411 the rays have only 3 minute teeth.
eB. Outer involucral parts lanceolate and leafy.
hirta, Linn. Lvs. netted-veined, lanceolate or orateoblong, the lowest narrowed at the base, the others rounded at the base and half-clasping. Eu.. N. Asia. - Keller says it grows 15-18 in. high and fls. July-Aug.
ensifolia, Linn. Lvs. with numerous somewhat parallel nerves, narrowly linear-lanceolate, involueral parts appressed, not spreading. Eu., N. Asia. G.M. 41:559.Keller says it grows 6-8 in. high and fls. July-Aug. Rockery plant; blooms first year from seed if sown early.

## W. M.

IOCHROMA (Greek, violet-coloved). Solandeerp. This genus includes 2 handsome flowering shrubs cult. outdoors in S. Calif. and under glass in Europe. They are tall-growing, and bear clusters of as many as 20 tubular, drooping fis., each $1-1 \frac{1}{2} \mathrm{in}$. long and less than $1 / 2 \mathrm{in}$.
across at the mouth, which seems to have 10 short lobes, but 5 of these are shorter, and are really appendages in the sinuses between the 5 typical lobes. lochroma is a genus of about 18 American species, mostly tropical and South American : trees or shrubs: lvs, entire, usually large: fls. violet, blue, white, yellowish or scarlet: berries globose or ovoid, pulpy.

> A. Fls. indigo-blue.
lanceolàta, Miers. Shrub, 4-5 ft. high (taller in Calif.), the young branches herbaceous and downy, with stellate hairs: lvs. alternate, oval or elliptic-lanceolate, acute, entire, tapering below into a long petiole: umbels supra-axillary and terminal. Equador. B.M. 4338 and E'S. 4:309 (as Chenesthes lanceolitu).

AA. Fls. scarlet or orunge-scarlet.
fuchsioides, Miers. Lvs. often clustered, obovate, very obtuse, tapering at the base into a short petiole. Peru. B.M. 4149 (as Lycium fuchsioides).

## IONIDIUM. For I. concolor, see Solea.

IONOPSIDIUM (Greek, violet-like). Crucifera. I. acaule is a pretty, tufted little plant, growing 2 or 3 inches high and bearing numerous small 4 -petaled, lilac fls. from spring to fall. It is a half-hardy perennial from Spain and N. Africa, but is treated as an annual. It is desirable for edgings in moist, shady places, and for rockeries. In rich garden soil the plants make numerous runners. The flis. are about $1 / 2 \mathrm{in}$. across, 1 on each stalk. They open white and turn lilac. The plant has been advertised as the Diamond Flower by seedsmen. This plant is referred ly Index Kewensis to Cochlearia, a genus whose limits are very uncertain.
acaùle, Reichb. (Cochledria acainlis, Desf.). Lrs. ovate-rotund, heart-shaped at the base; petioles proportionately very long: pods subrotund, notched. B.R. 32:51.
W. M.

IONOPSIS (Greek, violet-like). Orchiddcece. A small genus of epiphytic orchids, numbering about 10 species, many of which can probably be reduced to varieties of a few species. Most of the species are insignificant, only one or two being cuitivated. The tine specimen of $I$. paniculata figured in the Botanical Magazine has a panicle 10 in. long, $81 / 2$ in. Wide, with 5 branches, and about 80 fls ., each three-quarters of an inch across and chiefly white, with violet markings near the center and a dash of yellow. In its native country it is said to remain in attractive condition from Sept. to May. The fls. are produced so freely and over so long a period that it is sometimes necessary to destroy the flower spikes, which are out of all proportion to the number of lis. The plants succeed in the warmhouse under the same treatment as Burlingtonias or the more delicate Oncidiums.

Ionopsis consists of tropical herbs without pseudobulbs, having very short stems, with few, narrow, sheathing, coriaceous lvs.: sepals subequal, erect, spreading, the dorsal one free, the lateral ones united into a short spur behind; petals like the dorsal sepals; labellum united to the base of the column, middle lobe large, expanded, $2-3$ times as long as the sepals, 2-lobed; column short: pollinia 2: ffs. small, in simple racemes or much-branched panicles.
paniculàta, Lindl. Lvs. thick and channelled, linear lanceolate, keeled, 2-3 in a cluster and about 6 in. long: panicle much branched and spreading, loaded with innumerable fls. of a delicate texture: sepals and petals very short, sharp-pointed, the petals wider; labellum very large, pubescent at base, with a 2 -lobed rounded limb, which in some is almost entirely white, while in others it has a spot of purple or yellow on the disk. Winter. Brazil. B.M. 5541. F.S. 22:2333 A.F.6:631.Very variable.
utricularioldes, Lindl. Lrs. and general habit as in the last: sepals and petals bluntish; spur short; labellum almost twice as long as the petals; lobes sub-quadrate-rounded, white, streaked with red veins. Jamaica.
H. Hasselbring.

The best means of culture for the successful growing of these beautiful though delicate orchids is in shallow
pans, with plenty of small broken coal cinders for drainage, covered with the fine particles of fern root and chopped sphagnum gathered from the upland mealows. Plenty of heat and motsture during the growing season are essential. Rest them in winter at a temperature of $50^{\circ}$ to $55^{\circ} \mathrm{F}$.

Willam Mathews.
IOWA, HORTICULTURE IN. Fig. 1165. Iowa is nearly a rectangle, about 200 miles north and south between the parallels $40^{\circ} 36^{\prime}$ and $43^{\circ} 30^{\prime}$, and 300 miles east and west, bordered on the east by the Mississippi and on the west by the Missouri and the Big Sloux risers. Its extreme elevations are 444 feet in the southeast corner, and 1,694 at the highest point near the northwest coruer, the average elevation being about 800 feet ibove the sea. The surface is a gentle, undulating, grassy plain, well drained by numerous streams discharging into the rivers on its borders. All these streams are bordered more or less broadly with belts of native timber, often many miles in width along the larger ones. The divide between the streams falling eastwardly and those falling westwardly is a line running from a little east of the northwest corner southwardly to about the middle of the state at the Missouri line, draining threefourths of the state into the Mississippi and one-fourth west wardly. The entire surface, except a short and narrow belt along the Mississippi at the northeast corner, is found deeply covered with glacial drift, the depth varying from a few feet to $\mathbf{2 0 0}$ feet or more. In about half the state this drift is overlaid more or less deeply with the peculiar deposit called loess, this being mainly in the south, extending farther north on the west, as shown by the map.
There are no regions the size of lowa which contain fewer acres unfit for agriculture. Agriculture is as profitable in northern Iowa as in the southern part. Horticul-


To show horticultural regions.
ture, howerer, has had a greater decelopment in the southern and southwestern counties, the region of the fruit-bearing loess. It is not attempted to draw a hard and fast line below which fruit-growing is easy and above which it is difficult, but only to indicate, in a general way, that in the north and increasing with the distance, greater care must be used in selecting situations and varieties in culture and in protection.
If safe conclusions may be drawn from the native fruits and nuts found in Iowa, the state has great horticultural adaptabilities. The naiive nuts, the walnuts, black and white, the hickories and hazelnuts, are abnndant and of high quality, and the pecan is found along the Mississippi. The fruits, especially the currants, raspberries, apples and plums, will compare favorably with the natives found in Europe, and the plums greatly excel. It cannot be doubted that they will soon bedeveloped into varieties fit to satisfy the most exacting tastes. Many hybrids have been secured between the native and the cultivated apples descended from Europe, and this line of work, hitherto neglected, is believed to promise a race of apples entirely adapted to the inter-continental climatic conditions of the region
The apples of Europe, and their descendants, originating along the eastern seaboard, have not been found entirely successful orer the region of broader prairies, but haie succeeded best in the southern half of the
state, and especially on or near the timbered lands. Here, commercial orcharding has had fts greatest developmeat. This industry is so young that statisties have not been systematically gathered, but in the most favored localities apple crops to the value of $\$ 100$ a year per acre are not uncommon. Fruit, to the value of more than $\$ 350,000$, has been reported as the product of a single county in one year, this being mainly of winter apples, the surplus flinding markets in the Northwest, in the East, and in forelgn countries.

In isolated localities, comaterelal apple-growing has been fully as successful in the north, but has neces. sarily leen conflued to a few sorts, chiefly two, the Oldenburg and the Wealrhy. It has always been found that the long-keeping sorts of highest quality have been fastidious in choice of location in the south, and still more so northward, where early maturing sorts are more successful.
Pear-growing is everywhere difficult. Much time and money have been spent with eastern and foreign varieties without satisfaction. This fruit is profitably grown in a few localities only, and under management of exceptional skill. A race of prairie-horn seedlings must, apparently, be grown to insure success.

With plums, the reverse is true. A generation of men tried to acclimatize the plums of Europe, and lately the effort has been extended to the Japanese, but without satisfaction ; in fact, no others succeed in competition with the natives of the soil. These, and especially the Americana types, are so well adapted, so profusely productive of such handsome and good fruit, that eren as they came from the hand of nature, they have taken substantial possession of the nurseries and orchards of the state. Such flattering successes have followed the first attempts to grow them for market, that the industry is fast assuming large proportions. New and improved varieties of larger size and finer quality are offered every year, and a bright future for that fruit is assured.
Of cherries, only the sour sorts succeed, and little effort has been made to breed sweet varieties better adapted to prairie conditions. Commercial cherry-growing is successful in the southern half of the state, and is rapidly increasing.

Peaches have been grown in limited quantities in the southeast since the first settlement of the state. By seedling selection, the limit of success is gradually extending northward and now reaches to the middle of the state, but only for home use, as yet.

The quince and the apricot cannot be said to succeed in Iowa. The former is liable to root-kill.
The grape flourishes and ripens in profusion, especially in the south, whence it is shipped in large quantities.

The currant, the gooseberry, the raspberre, the blackberry and the strawberry flourish in every part of the state, requiring more favorable situations and greater care in the north. In some localities the native gooseberry has been cultivated in preference to the best eastern varieties, while European sorts have very limited success. The greatest difficulty the fruit-grower of Iowa has had, and still has to contend against, is that he has been compelled to choose between varieties all of which had originated far from his place of fruitage, and usually under conditions of soil and climate so different that the chances have been strongly against success here. It is only of late that those who have insisted that prairie regions should breed and select for themselves races of fruit from seeds planted and grown under their own peculiar conditions, have found a patient hearing. With intelligent effort along this line, the future is full of promise that the horticulture of Iowa may be brought to the high level now held by its agriculture.

An account of the introduction of the Russian fruits into Iowa and other parts of the North, will be found under Pomology.
C. L. Watrous.

IPECAC. The ront of Cephaëlis Ipecacuanha (now referred to Psychotria), a Brazilian plant not cultivated in N. America. For wild or American Ipecac, see Gillenia stipulacea.

IPOMĖA (according to Linn. from ips, bindweed, and homoios, like because of its resemblance to Convolvulus; but ips is a worm!. Including Batatas, Calonyc-
tion, Mina, Pharbitis and Qutomoclit. Convolvaldcec. Mornisa-Glory. Moonflower. Over 300 species of annual or perennial herbs, mostly twining, rarely trees ( (i, F. 7:364) or shrubs, widely distributed in tropical and temperate regions. They are remarknble for easy culture, quick growth and beautiful tlowers; hence the genus includes several of our most popular plants for covering verandas and screening unsightly objects.

The generic characters of 1 pomoa are not clearly defned. The list of rynonyms given above is a record of unsuccessful attempts to find constant characters by which this large and variable genus may be separated into smallerand more definite groups. It is distinguished from Convolvulus, its nearest ally, by having but 1 capitate or 2-3 globose stigmas, while Convolvulus has 2 linear or orate stigmas. Stem mostly slender, twining or climbing, sometimes prostrate, diffirse or erect; leaves alternate, entire, lobed or parted, often varying greatly on the same plant; flowers usually showy, borne singly or in cymes on axillary peduncles; corolla funnelform, salverform or bell-shaped (in one species bag-shaped), the limb sometimes entire, but usually 5 -angled or 5 -lobed, red, purple, blue, white or yellow, in various shades and mixtures; calyx without the bracts at the base, which appear in some species of Convolvulus, but the outer sepals are commonly larger. The flowers of most species open in early morning and last but a few hours ander bright sunlight, hence the popular name. A few open only at night-fall.
"The Japanese Morning-Glories," also called "Imperial" and "Emperor"Morning-Glories, were introduced to the American trade from Japan in 1895. They are probably selected strains of 1 . hederaceu, although some botanists consider them to be of hybrid origin, possibly I. hederacea $\times$ rubro-cermlea. Maximowicz referred then to $I$. hederacea, and this appears to be the more reasonable disposition. The culture of the "asagoa" in Japan amounted to a popular craze about 1830, the equivalent of $\$ 14$ to $\$ 18$ sometimes being paid for a single seed of the rare sorts. With political disturbances came a decline of interest, but more recently the popular fancy for Morning-Glories has again revived. The Japanese gardeners grow their plants almost entirely in pots, and by constant attention have made them vary into many curious oddities in flower and foliage. Several finely illustrated books on the Morning-Glory alone are publisked inJapan. See also "Century Magazine," $55: 281$ (1897). The Japanese Ipomœas are sold in this country mostly in strains, each package of seed giving flowers of many forms and colors. There are some inferior strains offered, and the flowers from these are often disappointing ; yet as a class the Japanese Morning-Glories are the most gorgeous and versatile of garden Ipomœas. If the seeds are notched they will generally bloom in 6 weeks from sowing.
Morning-Glories are among the least exacting of garden plants as regards soil and site. Most species love a strong soil and sunny site, with plenty of water; but they will make the best of much that is uncongenial. The seeds of the annual kinds may be sown directly out of doors, but are preferably started indoors, at least in the North. If the plants are allowed to become slightly pot-bound before being transplanted, they will come into bloom earlier. Germination may be hastened and also made more certain by filing a small notch in each seed, or by soaking the seeds in warm water about 2 hours. The "Moonflower" and the "Japanese Morning Glories" particularly are liable to germinate poorly unless these precautions are taken.
The perennial Ipomœas are grown from seeds in some cases, but mostly from cuttings of well ripened wood, layers, or division of the rootstocks. Some of the green house species, notably $I$. Horsfallice, rarely produce seed and are rooted from stem-cuttings with great difficulty. These are often propagated successfully by grafting well ripened shoots on pieces of their own roots, or the roots of $I$. panduruitu. I. termata roots from cuttings more readily, and I. Leari and I. Jalapa are easily propagated from cuttings.
The rapid growth and dense foliage of most garien Ipomceas make them especially valuable for covering arbors, verandas, walls, and for screening unsightly objects. I. purpurea, I. rubro-ccerulea, I. hederacea
and I. Quamoclit are the most popular annual species for thls purpose; and I. Lecuri, setosa and pundurata are among the best perennials. In the South, the peren mials may be carried through the winter outside by cutting off the stems and mulching the roots heavily in the full ; in the North the tubers should be taken up and wintered like Dahlias, keeping them perfectly dry in a cool greenhouse or frost-proof cellar. I. leptophylla is valuable for very dry solls. I. Bona-nox is worthy of a place in every garden.
The tender perenninls are seen to advantage when trained to pillars, trellises, or along the roof of a greenhouse. Their roots should be given plenty of room to forage and their tops to spread. I. Morsfallice and its closely related species, $I$. ternata, are very satisfactory for this purpose. After flowering the strong shoots should be cut back and the plant rested. Several species, particu:arly I. Leari, rubro-cormlea and hederacea, make excellent pot-plants if they are kept somewhat pot-bound to induce flowering. The roots of nearly all the perennial species are more or less purgative; particularly I. Purga, from which comes the Jalap of commerce, I. Jalapa and I. cathartica. I. Batatas is the comimon sweet potato.
The trade names of Ipomcas are endlessly mixed. Thus, $I$. Mexictna of the catalogues may be $I$. hederacea, I. digitata, I. Jalapa, I. Bona-nox, I. Leari or I. rubro-crerulea; but is rarely the true I. Mexicana of Gray. "Moonflower" is often applied indiscriminately

1166. Ipomoea Quamoclit ( $\times 1 / 2$ )
to several species of Ipomœa, but it should be restricted to I. Bona-nox and I. grandiflora. It is evident that most of the plants now sold as $I$. grandiflora are forms of $I$. Bona-nox; but a few of the smaller and inferior types are the true I. grandiflora of Lamarck. I. hybrida is a trade name for strains of $I$. purpurea and $I$. rubrocorviea. The "Tree Ipomœa" is $I$. fistulosa. The "Japanese" or "Imperial" Morning-Glories may be referred to $I$. hederacea. Other popular catalogue

## IPOMEA

names are : Double Morning-Glory is mostly I. purpu-
 or Perennial Moonflower is I. pandurata; Ipomœa Heavenly Blue is I. mbro-carulea.

## index.

angustifolia, 6.
Batatas, 25.
Bona-nox, 21.
Bona-nox,
Bonariensis, 15
Briggsii, 1:
chrysantha, 23. chryseides. 23.
coccinea, 7
Dickensoni, 3
digitata, 11 .
dissecta, 9.
Ferrandiana,
ficifolia, 15.
filicaulis, 6
filicaulis, 6.
fistulosa, 16.
Goodelli, 16
grandiflora, 22.
grandiflora, 21
hederacea, 4 .
hederifolia, 7.

Hookeri, 8.
Horsfallie, 12. Huberi, 3.
hybrida. 3, 8 insignis. 11 . imperialis, 4 . Jalapa, 20. kermesina, 3 Leari, 19. leptophylla, 1 limbata, 4. limbata, Lindheimeri. 10 Lindleyana, 10. obata, 1. maritima, 24.
Mexicana, 4, 5, 8, 10, 11, 20, 21. Michauxi, 20. Nil, 4. noctiflora, 21. noctiphyton, 21
palmata, 11.
pandurata, 18
paniculuta, 11
Perringiana, 15
Pes-capre, 24.
Purga, 26.
purga, 26. Qurpurea, ${ }^{\text {Qumboclit, }}$
Quamocit, ${ }^{\text {Qub }}$. 8. Sellovii, 15. Sellowi, 15 setosa, 1 simitata, 9 sinuata, 9. ternata, 13. Texana, 16. Thompse ンiana, 13. varia, 3. versicolor, 1 riolacea-striata, 3. Wolcottiana, 27.
A. Plant annual: roots not tuberous. B. Fls. numerous, in long scorpioid racemes; corolla a bag-shaped tube, contracted at the mouth

1. versicolor

вв. Fls. borne singly or few in loose cymes; corolla expanded into a limb.
c. Le\%. pinnutely divided into many thread-like seg. ments

## 2. Quamoclit

cc. Lis. entire or lobed, not divided.
D. Stem hairy.
E. Lis. broad-ovate, cordate, entire........ EE. Les. angulate or deeply 3-lobed .....
3. purpurea
4. hederacea 5. Mexicana

DD. Stem not hairy.
E. Li's. linear or lanceolute, sub-sessile ... 6. angustifolia
EE. Les. orrate-cortate to histate; petioled.
F. Fls. usually less than lin.across; scurlet or orange. 7. coccinea
FF. Flls. usutlly orer sim.across; red, blue or purple .. 8. rubro-cærulea
AA. Plant perennial, with large fleshy rootstocks.
B. Le's. pulmately divided into 3-7 segments.
c. Stem and petioles hairy .. 9. sinuata
cc. Stem and petioles not hairy.
D. Pealumcles longer than the petioles............11. digitata
DD. Peduncles equaling the petioles.
c. Fls. red: leaf seg. ments sessile,tapering to both ends, margin way.......12. Horsfalliæ
EE. Wls. white: leaf segments stalked, mot tapering to the ends, margin not veury..13. ternata
BB. Lis. entire, angulate or lobed, not divided.
c. Stem, les. and peduncles densely hairy.
D. Corolla sulverform, the
lobes pointed: leaf
lobes acuminate, sinuately toothed $\qquad$

## IPOMGEA

> DD. Corolla funnelform, the lobes obtuse: leaf lobes mequal, blunt, entire.15. Bonariensi
> C. Plant not hairy
> D. Stem erect or ascending,
> not trailing or climb ing.
> E. Les. cordate to subsagittate, long-peti oled, acuminuste, mubescent bemeath..16. fistulosa
> EE. Li's. linear, very short-petioled, acute, not pubes. cent beneath.......17. leptophylla
> DD. Stem trailing, climbing, or deining.
> E. Les. pale beneath.
> F. Fls. white, with
> purple throat...18. pandurata
> fF. Fls. lilac to durh purple............19. Leari
> EE. Li's. not pale beneath. F. Fls. opening at night.............. 2
> 20. Jalapa
> 21. Bona-nox
> 2.) grandiflora
> FF. Fls.opening in the
> morning.
> G. Coro!la yellow.23. chryseides
> GG. Corolla purple.
> H. Les. notched
> at the enl.24. Pes-capra
> hн. Lis. acute or
> acuminate.25. Batatas
> 26. Purga
> aAA. Plant perennial by a woody stem. 27. Wolcottiana

1. versícolor, Meissn. (Mna lobàta, Llar. et Lex.). A vigorous climber, $15-2 \mathrm{ft}$. high: lvs. with a cordate base, 3 -lobed, the middle lobe longest and uarrowed below: fls. $1 / 2-3 / 4$ in. wide, opening rich crimson, soon fading to pale yellow. July-Sept. Mex. Gn. 30, p. 436 , 437; 39: 99 . 1R.H. 1887, p. 19. G.C.II. 26:684, 685. P.M. 16:100. V. 10:34, 35. B.R. 28:24.-Distinguished from all other Ipomœas by its bag-shaped corolla and scorpioid inflorescence. It is a very free bloomer, and deservedly popular.
2. Quámoclit, Linn. (Químoclit rulgàris, Choisy). Cypress-vine. Indian Pink. Fig. 1166. Stem smooth, slender, twining to a height of $10-20 \mathrm{ft}$.: lrs. short-petioled or sessile: peduncles few-flic., commonly much longer than the petioles: corolla $1-1 \frac{1}{2} \mathrm{in}$. long, scarlet, the tube narrowly funnelform, inflated above; the limb nearly flat, 5 -lobed. July-Oct. Naturalized from tropical America, Va. to Fla., west to Kan. and Tex.; sparingly escaped from cultivation farther north. B.M. 244. Gn. 29:33. - Beautiful in Hower and foliage. Var. alba, Hort., has white fls.
3. purpùrea, Roth. (Convólvulus majus, Hort. Convólculus purpùreus, Lian.). Tall Morning-Glory. Fig. 1167. Stem trailing or twining for 4-10 ft., branching from the base : peduncles slender, $1-\overline{5}$-fld., often longer than the petioles: corolla1-2 in. long, light blue, purple, pink and diversely variegated. July-Sept. Trop. America. Escaped from gardens to waste places, Can. to Fla., west to Neb. and Tex.; widely distributed in most trop. regions. B.M. 113, 1005, 1682. Gn. 21, p. 295; 27, p. 473 . - One of the most popular of garden annuals. Some of its varieties resemble the entire-leared forms of $I$.hederacea, but may be distinguished by their longer and more slender peduncles, umbellate pedicels, and oblongacute sepals without the long tip usually found on 1 . hederacea. Seeds ripen freely on cultivated varieties and may be gathered for future sowings. Among tho host of garden forms are: alba, white; airo-cærulea, dark blue ; atrosanguinea, dark parple; azùrea, skyblue; carminàta, light crimson; Díckensoni (Phárbitis hispida, var. Dickensoni), azure-blue; Hùberi ( I. Hùberi, var. variegita, Hort.). Lưs. marked with silvery white, Hs. variously colored and margined wih white; kermesina (I. kermesinu), scarlet; ròsea, blush rose;

Vitria, a trade name for packages containing a mixture of many kinds; violacea-striata, violet-purple. There are several double forms of I. purpurea. Var. il. pl. has very large lvs.: fls. appearing much later than single varieties, semi- or much-doubled, bluish white streaked with light blue or pink. Int. 1892. Said to be very floriferous and a good pot-plant. G.F. 5:593. A.G. 14:246. Var. violàcea 11. pl., Hort., is entirely distinct from the preceding. Gt. 47, p. 133.
4. hederàcea, Jacq. (I. Nil, Roth. I. scàbra, Hort.). Stem twining or climbing, 2-8 ft.: lis. 2-5 in. long, ovate-cordate, the lobes ovate to orate-lanceolate, entire, or the lateral lobes repand or denticulate; the middle lobe narrowed at the base: peduncle $1-3$-fld., mostly shorter than the petiole: corolla funnelfom, the tube usually white, the limb light blue, purple or rose, and in various combinations of these colors; sepals hairy, lanceolate, with long and often recurved tips. July-Oct. - Widely naturalized from trop. America in fields and waste places, Pa. to Fla., west to Neb. and Mex. Perhaps native in the South. B.R.1:85; 4:276 (as I. cerulca). B.M. 188 (as Convolvulus Nil). Gn. 27, p.473. This species shows great variation in the form of its lvs., both on the same plant and on different plants. In some forms formerly known as $I$. Nil, the los. are nearly entire; in others they are very deeply lobed. Next to $I$. purpurea, this is now the most popular Morning-Glory in cultivation, and the introduction of the improved Japanese strains will extend its usefulness. Before the appearance $c^{e}$ these oriental varieties in occidental gardens, the species had already varied into many distinct horticultural varieties; as var. limbàta (I. limbdta, Hort.), with the corolla violet-purple, edged with white. B.M. 5 ie 0 (as Pharbitis Nil); Gn. 29, p.32. Var. marmorata cœísstina, large fls., marbled and striped with light blue; Jt. 44, p. 592. Var. marmorata rósea, fls. marbled with rose; Gt. 44, p.76. Var. Idliis marmoratis, lvs. marked with yellor, limb of corolla rose color. Var. grandiflòra, large bluc fls. Var. Ferrandiàna, similar to var. grandiflora. Aside from these strains, the follow-

1167. Morning-Glory. Ipomcea purpurea $(\times 1 / 2)$. No. 3.
ing named rarieties of Japanese Ipomœas are offered: Antigone, lvs. variegated: fis. blue, with pink throat. Aglaia, lvs. variegated: fls. crimson, with white throat. Aseria, tss. dull copper-red. Ceres, like Aglaia, but fls. edged with white. Euphrosyne, lvs. variegated: fls. pure white, with pink throat. Princess, fls. spotted with carmine. Gt 47, p. 133. A form with feliage dot-
ted with white is shown in I.H. 43, p. 75. The various strains give fis. which are diversely scalloped, ruffled, fringed, doubled, and show a wonderful range of coloring.
5. Mexicàna, Gray. Like I. hederacea, but young lrs. entire or slightly angulate, lecoming deeply 3 -lobed and

1168. Ipomcea coccinea ( $\times 1 / 2$ ). No. 7.
cordate, as in hederacea, the middle lobe broadest: peduncles as long or longer than petioles: corolla 1 in . wide, violet-purple, sometimes with crimson plaits.Possibly this should not be distinguished from $I$. hederacea. The plants in the trade as I. Mexicana are mostly I. hederacea, digitata and bona-nox. I. Mexicana vera, Hort.; I. Mexicana grandiflora alba, Hort., and I. Mexicana grandiflora hybrida, Hort., are I. Bonanox or I. grandiflora.
6. angustifolia, Jacq. (I. filicaùlis, Blume). Stem prostrate, trailing or rarely climbing, much-branched: lvs. 1-3 in. long, less than 1 in . wide, glabrous: peduncles exceeding the petioles, bearing 1-2 small, bellshaped fls., which are yellowish white with a purple eye. Aug., Sept. Widely distributed in tropical Asia, Africa and America. B.M. 5426. B.R. 4:317 (as I. denticuluta). -Sometimes grown in the warmhouse, but there is hardly enough foliage to set off the pretty darkeyed flowers.
7. coccinea, Linn. Star Ipomga. Fig. 1168. Stem freely twining for 10 ft .: lvs. slender-petioled, entire or angulate, acuminate : peduncle 2-6 in. Pong, few- to sereral-fld.: corolla $1 / 2-2 / 3$ in. wide, salverform: limb obscurely lobed, scarlet with a yellow throat. Aug.-Oct. Apparently naturalized from tropical America, on river banks in the middle and south Atlantic states; probably indigenous to northern Mex. and Ariz. B.M. 221.-Fls. are produced in abundance, but are disappointingly small. In var. lutea, Hort., the fls. are entirely orange, or with a tinge of scarlet.

Var. hederifolia, Gray (I. hederifolia, Linn. Inna sanguinea, Hort.). Fig. 1169. This Plains form of the species has angulate, 3 -lobed or even 3 -5-parted lvs., and ths. usually larger. B.R. 1:9. B.M. 1769. I.H. 41, p. 159.-It is superior to the type for ornamental purposes.
8. rubrc-cærùlea, Hook. (I. Hodkeri, Hort.). Stem tinged with purple, branched, $10-20 \mathrm{ft}$. high: lvs. membranaceous, much-reined, short-acuminate : peduncle fleshy, 3-4-fld.: fls. 3-4 in. wide, the tube white and limb red before expanding, at length purple or china-blue. Ang.-Oct. Mex. R.H. 1855:441 (as Pharbitis rubrocarulea). B.M. 3297. P.M. 3:99. Gn. 27:493.-One of the most beautiful of annual climbers. The fls. are often dashed, blotched and shaded with rose, or are entirely rose. It is likely to run to vine when out-of-doors unless the roots are confined in a box or pot to il ace early flowering. It makes an excellent pot-plant fo the greenhouse. Var. Hearenly Blue, from Calif., was said to be a cross between $I$. Leari and $I$. versicolor, but proves to be a blue form of $I$. rubro-ccerulea, which is especially valuable for cut-fls. Var. alba, Hort., bas pure white flowers.

## IPOMCEA

9. sinuàta, Ort. (I. dissécta, Pursh, not Willd. I. sinitatu, Hort.). Stem somewhat woody at base, covered with long yellowish hairs: lvs. smooth or nearly so, palmately 7 -parted, the divisions lanceolate or narrowly oblong, more or less sinuately cut and toothed: peduncles 1-2-fld., longer than the petioles: fls. 1-2 in. wide, bell-shaped, white with purple center; calyx as long as the corolla tube. June-Sept. Trop. Amer., and near the coast from Ga. to Tex. - In Tex. It expands only 2-3 hours at midday, and is there called the "Noon-flower." It may be treated as a coolhouse evergreen, and is worth growing for its delicate foliage alone. In the North the tubers must be wintered in a cellar.

10. Lindheimeri, Gray ( $r$. heterophyilla, Torr., not Orteg). Plant finely pubescent, hoary when goung: lys. deeply 5 -cleft or 5 -parted, all of the lobes or the 3 interior ones orate to ovate-lanecolate, with a much contracted base: peduncle 1-2-fld. : corolla long funnelform, about $31 / 2$ in. long, light blue. Rocky soils, W. Tex. to N.Mex. - Var. Lindleyàna, Hort. (I. Lindleyànn, Hort.), has smaller lvs., lighter colored fls., and is a more profuse bloomer. An improvement on the type, but more tender.
11. digitàta, Linn. (I. paniculita, R. Br. I. palmètu Hort., not Forsk.). Stem trailing or climbing, 20-40 ft. : 15s. $3-7$ in. wide, $5-7$-parted, the segments elliptic, sometimes spatulate, entire: fls. numerous, in a $2-$ branched cyme; corolla $11 / 2-3$ in. wide, broadly bellshaped, 5 -lobed, pinkish purple or pink : seeds with a dense tuft of dirty white wool springing from the apex. Jnly-Sept. Tropics of both hemispheres. R.H. 1853:381. B.R. 1:62 and 4:333 (as I. Platensis). B.M. 3685 (as I. Platensis). Gng. 2:311.-One of the best tuberous-rooted Ipomœas for the garden or warmhonse. In the North it may be used with fine effect if grown in a tub and trained to an adjacent pillar or trellis, the vine being cut off before frost and the tub stored. Further south the tubers may be planted directly in the open, and will give a profusion of bloom nearly all summer.
Var. insignis, Hort. (I. insignis, Ker.). Lrs. not palmately divided, nearly entire or lobed, the under surface sometimes purplish. B.M. 1790. B.R. 1:75.- There are few plants of var. insignis in cultivation.
12. Horsfálliæ, Hook. Fls. many, in a 2-branched yme; corolla bell-shaped, the limb of 5 broad, rounded ches, very showy. Cosmopolitan tropics. B.M. 3315. P.M. $3: 50$. F.S. $16: 1647$. K.W. I:29.-Perhaps the most popular Jpomea for winter-flowering in a warmhouse. If well treated it will climb $20-30 \mathrm{ft}$., and will bear hun-
dreds of fls. each day in carly winter. I. Horsfallice may also be grown out-of-doors, but it will not come into bloom till late fall unless the roots are cramped. Var. alba, Hort., is I. ternata; Lady Slade has pale rose fls.; var. Briggsii (I. Briggsii, Hort.), or Lady Briggs, is generally considered better than the type for most purposes. It is a freer grower and bloomer, the fls. are a rich magenta-crimson, and it roots from cuttings much more readily than I. Horsfallice. This variety makes a fine plant in a 10-in. pot. G.M. 37:49. Var. Thompsoni, or I. Thomsonièna, Hort., is I. ternata.
13. ternàta, Jacq. (I. Horsfíllíe, var. álba, Hort. I. Horsfállice, var. Thomsoniàna, Hort. I. Thomsoniàna, Mast.). Stem somewhat woody at base: lvs. usually 3parted, the segments elliptic or elliptic-oblong, fleshy, smooth: fls. trumpet-shaped, about 3 in. across. Otherwise like I. Horsfallice, of which it is often considered a variety. Probably from W. Indies. G.C. II. 20:817. F. 1884:118. Gn. 35, p. 440.-Not considered quite as effective for greenhouse culture as $I$. Horsfallif.
14. setdsa, Ker. Brazilian Morning-Glory. Plant very vigorous, branching, covered with stiff purplish hairs: lvs. 3-10 in. wide, cordate, angular or 3-lobed, the middle lobe abruptly contracted below into a narrow neck: peduncles many-fld., longer than the petioles: fls. 2-4 in. wide, salverform, rose-purple. Aug.-Oct. Braz. B.R. 4:335. - An excellent free-growing climber for covering arbors, and especially valuable for making a dense sereen because of its very leafy habit. In the latitude of New York seeds sown in the open will give flowering plants in late August. It may also be treated as a warmhouse deciduous twiner. Var. Northern Light is said to be a cross with $I$. Bona-nox. Plant unusually vigorous, often growing 40-50 ft.: Hs. lavewier-pink.
15. Bonariénsis, Hook. (1. ficifòlia, Lindl. I. Perringiàna, Dammer. I. Séllowii, Penny). Stem branching, tinged with purple and covered with short stellate hairs: lvs. deeply cordate, $3-5$-lobed, the middle lobe longest: peduncles several-fld., longer than the petioles: fls. $11 / 2-$ 2 in . wide, violet to lilac, the limb spreading into 5 crenate lobes. August-October. Trop. America and Atrica. B.M. 3665. B.R. 27:13. P.M. 9:25. Gt. 47:1446.-Here belongs I. Sellowii, Penny, and probably Hort., not I. Sellni, Mart., which is a distinct species.
16. fistuldsa, Mart. (I. Texìna, Coulter). Stem 4-10 ft. high, subshrubby, branching, smooth or minutely pubescent: lis. 4-6 in. long, thickish, entire or nearly so: peduncles $1-2 \mathrm{in}$. long, mostly shorter than the petioles, few-many-fld.: corolla about 3 in. long, bell-shaped, pink-purple Tuly-Sept. Brazil; noweseaped from gardens in $M$ and southern United States. It is known to the trade chiefly as var. Goodelli: (I. Goodélli, Hort.). This var. has lavender-pink fls., with a darker throat,
is apparently more floriferous and desirable than
type. It produces seed sparingly, but is easily rooted from cuttings. In the South it is hardy if the stem is cut down and the roots mulched: in the North, the roots must be brought indoors. Adrertised as the "Tree Iромœа."

1:. leptophylla, Torr. Besh Moon-Flower. Stem $2-5 \mathrm{ft}$. high, with many slender, recurving branches: Irs. 2-4 in. long, entire: peduncle stout, 1-4-fld., usually shorter than the lis.: corolla about 3 in. across. funnelform, rose-pink, deepening to purple in the throat. Aug.-Oct. Dry plains, Neb. and Wyo., south to Tex. and N. Mex. - This species is adapted for very dry places because of its enormous tuberous rootstocks, which often weigh 100 lbs . and extend into the subsoil for 4 ft . It sometimes thrives where no rain has fallen for one to three years. The plant is beautiful when in flower.
18. panduràta. Man-of-the-Earth. Wild Potatovine. Stem 2-12 ft. long: root very long and large ( $10-$ 20 lbs .) : lvs. 2-4 in. long, long-petioled, usually cordate and entire, occasionally angulate, fiddle-shape or hastately 3-lobed: peduncies 1-5-fld., commonly a little longer than the petioles : corolla $2-4 \mathrm{in}$. wide, broadly funnelform with pointed lobes, white with a dark purple throat. May-Sept. Dry soils, Can. to Fla., west to Mich. and Tex. A.G. $12: 63 \overline{7}$. R.H. 1893:574. B.M. $160 \%$ (as Comeolvulus camlicans), 1939, and Gn. 27, p. 373
(both as C. pauduratus). B.R. 7:588. - In sone places this species is a very troublesome weed, which is alnost impossible to exterminate because of its long tuberous roots. It can easily be kept within bounds in the garden with a little care, and makes a very desirable plant for covering an old dead stump or back fence. The chlef merit of $I$. pandurata as a garden plant is its hardiness; hence it is often sold as the "Hardy" or "Perennial Moontlower." If well mulched the roots will stand $26^{\circ}$ below zero. There is a double-fld. form.
19. Lèari, Paxt. Blue Dawn Flower. Stem a very rapid grower, often $30-40 \mathrm{ft}$. long, somewhat shrubby at the base: lvs. 3-6 in. long, cordate, acute, mostly entire or slightly 3 -lobed, rariable: fls. borne in clusters of 1230 , opening in succession ; corolla 4-5 in. broad, bellshaped, deep lilac, sometimes dark purple with five lighter plaits. Very beautiful. Aug.-Oct. Trupics of both hemispheres. P.M. 4:267. B.M. 3928 (as Pharbitis Leari). B.R. 27:56 (as Pharbitis Leari).-A magnificent species for the warmhouse, but not usually satisfactory outside, at least in the North. One plant is on record as producing 60,000 tis. at the rate of 300 a day. When grown in the open the fls. are likely to be an unattractive coppery purple.
20. Jalápa, Pursh (I. Michaìxi, Sweet). Stem 6-8 ft. high, branched, slightly rough, springing from an oblong root weighing +30 lbs . $\mathrm{lrs} .3-5 \mathrm{in}$. long, ovatecordate, membranaceous, reiny, repand or deeply lobed, pubescent beneath, variable: ils. 3-4 in. wide, the corolla bowl-shaped, witha narrow tube, rose, whiteorrose-purple. Aug.-Oct. Mex. L.B.C.6:518 (as Convolvulus Jalapa). B.M. 1572 (as Convolvulus Jalapa). B.R. 4:342; 8:621. - A very ornamental warmhouse climber and valuable for the garden if the tubers are started in the greenhouse before being set out; otherwise the plant seldom blooms much before frost. The "Jalap" of commerce does not come from this plant, but from I. Purga. The roots of I. Jalapa are but slightly purgative.
21. Bònz-ńax, Linn. Moonflower. Fig. 1170. Stem $10-20 \mathrm{ft}$. high: $\mathrm{lvs} .3-8 \mathrm{in}$. long, cordate to hastate, entire, angular or 3-lobed, acute, glabrous: peduncles 2-6 in. long, $1-i$-fld.. equaling the petioles: coroila $3-6$ in. long, $4-6$ in. wide, trumpet-shaped, pure white, sometimes with greenish plaits: His. fragrant, usually closing in the morning, sometimes remaining open till noon. Aug.-Sept. American and Asiatic tropics. B. M. 752. B. R. 11:889 (as I. latiflora). Gn. 21, p. 259; 27, p. $47 \overline{3}$. V. 10:359. Known in gardens chieffy as rar. grandiflora, Hort. (I. grandiflora, Roxb. and Hort., not Lam.), which does not differ materially from the type. Most of the large-fld. and very fragrant forms in cultivation may be referred here; the smaller forms are probably I. grandiflora, Lam. Var. grandiflora is also sold under the following names: $I$. Childsii, I. noctiphyton, I. noctiflora, I. Mexicantgrandiflora, $I$. Mexicana grandiflora alba, I. Mexicana grandiflora vera. These various trade names represent strains of varying excellence. A form with rariegated lvs. is offered. The Moonflower is most popular as a garden plant,but it also does well trained along the roof of a low house or against a pillar. It is
1170. Ipoincea Bona-nox ( $\times 1 / 4$ ). excellent for cut-flowers in the evening.
22. grandiflora, Lam. (Calonýction grandiflorum, Chois. I. Bona-nóx, Hort., not Linn.). Differs from I. Bona-nox in having the stem usually covered with short, sharp points: lis. smaller, entire: peduncle much shorter (usually l-2 in.) : fls. not over 3 in . wide; sepals elliptic, obtuse (in I. Bona-nox ovate, mucronate) : seeds shortly villose, with shaggy margins (iu I. Bona-nox
smooth). Cosmop. trop.-Some of the inferior strains passing as $I$. Bona-nox and its synonyms belong here.
23. chryseides, Ker. Stem slightly woody, much twining, smooth or brancies slightly hairy: Irs. 1-2 in. long, ovate-cordate to subhastate, acute, entire or toothed, 3angled, 3 -loved and repand: peduncles $1-\overline{-}$-fld., longer than the petioles: corolla $1 / 2-3 / 4 \mathrm{in}$. wide, funnel-shaped July-Oct. Trop. Asia and Africa. B.R. 4:270. - It cais be grown out-of-doors, but is tardy in blooming. Best treated as a wan :mhouse evergreen climber. I. chryseides is ag.rertised abroad. -. chrysántha, Hort., described in American caialognes as having ricb, glossy foliage and golden yellow ths., may belong here.
24. Pes-càpræ, Roth (I. muritima, R. Br.). Stem creeping, seldom twining, $20-60 \mathrm{ft}$.: roots oiten 12 ft . long and 2 in. thick: Irs. $1-4$ in. long, fleshy, roundish. often broader than long, with 2 glands at the base and prominently pinnate-veined: peduncles usually few-Hd. equaling the petioles: corolla nearly 2 in . long, bell shaped, margin scarcely lobed. Aug.-Oct. Trop. coasts of both hemispheres; drifting sands of coast, Ga. to Tex. B.R. 4:319.
25. Batàtas, Poir. (Batàtas édulis, Chois.). Sweet Poтato. Lrs. orate-cordate, usually angular or lobed, variable, petioled: peduncles equaling or exceeding the petioles, several fid.: corolla 1-2 in. wide. Origin unknown, unless it be from I. fustigiatu of tropical America.- Largely cultivated in many varieties for its edible tubers. See Sueet Potato.
26. Púrga, Hayne. Lrs. sagittate-cordate, smooth : peduncles generally 1 -fld., longer than the petioies: Als. rose-purple ; corolla long-tubular, with a tiat limb. Sept.-Oct. Trop. Amer. B.R. 33: 49 (as Exogonilem Purga). - The "Jalap" of commerce is an active purgative made by grinding to a powder dried slices of the tuberous roots of this species. It was principally collected near Xalapa, Mex., of which Jalap is a corruption.
27. Wolcottiàna, Rose. Tree, $\mathbf{2 5 - 3 0} \mathrm{ft}$. high, often 1 ft . through, with slender, slightly drooping branches: lvs. ovate to ovate-lanceolate, $3-5$ in. long, smooth: tis. numerous, in short racemes or corymbs ; corolla about $\underline{9} 1 / 2$ in. broad, white, broadly bell-shaped. Mex. G.F. 7: 365 . - Seeds do not germinate readily.
I. aùrea.Kellogg. Lrs.trifoliolate or quinate, the leaflets rhombic, entire, sub-repand: Hls. 2-4 in. across, funnelform. With a widely expanded limb, golden yellow. Cal. After No. 12 in key.
S. W. Fletcher.

IRESINE (Greek name for a harvest garland wound with wool: the flowers and seeds of these plants are woolly). Amarantacece. Achyranthes. From 20 to $2 \overline{5}$ species of herbs or subshrubs, in tropical and subtropical Amer. Lvs. stalked, opposite, the margins not toothed in the domestic species: His. very small, bracteate, in axillary or terminal panicles, perfect or imperfect (plants sometimes diœcious), the perianth of one series terete, 5 -parted, with ovate-oblong segments ; stamens 5 ; style short or none, the stigmas 2 or 3 : fr. a utriculus. Two or three species are in common cultivation as bedding plants, because of their highly colored lvs. and stems. The first of these to be introduced was described before the fls. were known and it was referred to Achyranthes ( $A$. Verschaffeltii), but in that genus the anthers are 2 -loculed, whereas in Iresine they are 1-loculed. To gardeners they are still known as Achyranthes.
Because of ease of propagation, ability to withstand sun and shearing, and the bright colors, the Iresines are amongst the most popular bedding plants. Few plants are easier to grow. Stock plants are kept orer winter in a cool temperature (as in a carnation house), and in February and March they are given more heat and moisture, and cut back, to get cutting wood. Cuttings rootquickly in any good cutting-bed. For mass bedding, plants are usually set 6-10 in. apart. They will not withstand frost.

Hérbstii, Hook. f. (Achyránthes Verschafféltii, Lem.). Lvs. broally ovate or orbicular, obtuse and notehed at the apex, purple-red, with prominent arched veins, or in the commoner variety green or green-red with yellow veins (var. aùreo-reticullta). S. Amer. B.M. 5499.This was described and figured in August, 1864, by Lemaire as Achyranthes(?) Ierschaffeltii (1.H. 11:409), and later by Van Houtte as Iresine Verschaffeltii (F.S.

15:1601). In July, 1864, however, Hooker had published it as Iresine Merbstii, in honor of Mr. Herbst, of the Kew Nursery, who introduced it from the River Platte. There are horticultural varieties with Latin names.
I. Wállisii, Ort., is a small plant, with numerous small roundish lvs., which are bronze-red or dark red above and dark blood-red beneath. Probably a form of I. Herbstii.

Lindeni, VanHoutte Achyrinthes acuminàta, Hort.). Fig. 1171. Lvs. ovate-acuminate or lanceovate, with less arching or curving veins, in the original form rich, deep klood-red, but in some garden forms with lightbanded reins. Equador. F.S. 17: 1737.More pyramidal in habit than the other species, and now more common. To this species evidently belong the garden
1171. Iresiae Lindeni ( $\times 1 / 3$ ). forms known as Emersoni, Collensii and formosa.
I. Biemnèlleri, Haage \& Schmidt, is probably a garden form of one of the above. It is a compact, dwarf grower, withstanding severe cutting: lvs. and twigs rose-carmine. L. H. B.
IRIARTEA (after Bernard Iriarte). Palmd̀cea. Tall spineless palms, with cylindrical or swollen stems supported on a pyramid of aërial roots: lvs. few, unequally pinnate; lfts. equilateral, cuneate, entire or erose, plicate; petiole channelled; sheath cylindrical: fls. small: fr. 1-2 in. long: stigmas eccentric or lateral in fr. This palm is separated from Ceroxylon by the cuncate leaflets. Species 10. Trop. S. Amer. I. Bungeròthii was adrertised in 1895 by Pitcher \& Manda as Triartea, which was presumably a typographical error for Iriartea. No description of this species is available.

Jared G. Smith.
IRIS (Greek, rainbow). Iriddcec. Plate XVI. Distinguished from the other members of the tribe except Hermodactylus and Moræa by the 2 -winged style branches, from Hermodactylus by the 3 -celled capsule, and from Moræa by the more or less connate perianth segments. Herbs with linear or ensiform, equitant leaves and a rhizomatous or bulbous rootstalk: stem simple or branched: flowers of 6 segments, the 3 outer reflexed, and the 3 inner usualiy smaller and erect, always narrowed to a clistinct claw, one to many in terminal heads, from spathes which are formed of the upper bract-like leaves; spathe stalked or sessile; style divided into 3 petal-like branches, which are lifid or cresied at the tip; stigmatic surfaco immediately below the crests : orary sessile or pedicelled, within the spathe. For a monograph of the genus, see Baker's Irideæ, 1888.

Alout 170 species of Iris are known to botanists. They are natices of the north temperate zone, inhabiting Asia, Europe and North America. with a few species in northern Africa. About 100 speci with innumerable garden varieties, are offered by dealers in America. Many of these, including the native species, are cultivated only to a slight extent, so that horticuitural interest centers chietly around a few groups given below :

1. German Irises. - The plants known to the trade, and widely advertised as Iris Germawica, German lris or Fleur-de-lis, are varieties and hybrids of several species, all of which are closely related to $I$. Germanica. It is a curious fact that $I$. Germanica itself has comparaticely few varieties, and forms but a small part of the group named after it. It rarely or never sceds in cultivation, eren when placed near closely related species. The principal parent species are I. Florentina,
squalens, sambucina, flavescens and variegata. Owing to their diversity of origin, the varieties have a great diversity of color, ranging from pure white (in I. Florentina and its derivatives) through all shades of mauve and blue to dark purple. From I. rariegata and $I$. flavescens the yellow-flowered varieties and those whose flowers are variegated with yellow were probably derived. The flowers of all the varie ties are large and handsome, often stately, exhibiting beautiful variegation and shades of color. They are borne on stout, erect, branched stalks much exceeding the clumps of spreading leaves. All are hardy, and form excellent border plants, flowering in May and June.
2. Jupanese Irises. - All the plants cultivated as Japanese Irises are referable to a single species, Iris levigata, more generally known as $I$. Kiempferi. The type of the species has been so much broken that its rarieties constitute a distinct horticultural group, containing perhaps as many or more named rarieties than the $I$. Germanica group itself. So far as known. no hybrids or other species enter into the make-up of this class. The plants form strong clumps, attaining a height of 2 to 3 feet, and bearing several flower stems The leares are slender, erect, growing almost parallel to each other. In the wild type the inner segments are erect and rather small. Under cultivation they have been much broadened and have acquired a spreading habit giring the flower a flat, expanded form characteristic of this group. In color they range from white through various shades of blue to deep purple, with the segments variegated with darker veins and streaks, or plain. All the varieties are hardy, and thrive best in cool, moist situations. They begin flowering in the latter part of June and contincis through July.
3. Dwarf Irises.-The dwarf Irises comprise several species related to I. pumila, vernx and cristata. They seldom grow over 9 inches high, but spread rapidly by their creeping rhizomes, soon forming large patches. This habit makes them useful border plants. I. arenaria lives well in dry, sandy situations. The flowers are variously colored blue, lilac, yellow, etc.
4. Oncocyclus Irises. - The interesting species of the subgenus Oncocyclus inhabit the dry mountain regions of Palestine, Persia and Armenia. They differ from other Irises in many striking characters. The plants grow from 6 to 12 inches high, the stem bearing a single flower, which in some species is of enormous size, compared with the size of the plant. The segments, of which the inner are larger than the outer, present a most singular combination of somber colors. The peculiar colors are often due to the interlacing of numerous very thin veins, usually blue or brown, on a white or straw-colored ground. The most common shades thus produced are beautiful sky-blue, light gray, and brown to almost black. In some, all the segments are colored nearly alike, but in most species the inner and outer segments are differently colored. In America this group is not widely cultirated, the most common representative being I. Susiana. Many recorded hybrids have been raised in Europe. For a monograph, see Foster, Gn. 43, pp. 130-135.
Bulbous Irises.-About 20 species of bulbous Irises are cultirated in America. They are rather dwarf, hardy and half-hardy bulbous plants, known chiefty for the brilliant colors and strong contrasts, and for their numerons flowers. The species most commonly found in gardens are I. Xiphium, better known as I. Mispanica, and I. riphoides or I. Anglica. The latter is probably the oldest Iris in cultivation. Sce Foster, G. C. II. 2:3, pp. 567 and 726.
H. Hasselbring.

The Irises are a widely distributed group of plants, occurring in almost all degrees of longitude of the north temperate zone. They are found in few forms above 40 degrees north latitude, and there seem to be no species south of the Atlas mountains of Africa, the botanists rating the nearly allied southern forms as Mormas. There is a somewhat general localization of some of the main forms of Irises, central to southern Europe being rich in the broad-leaved species, both tall and dwarf, these giving way in Asia to many narrow-leared forms, which forms are also abundant on our western coast, in fact east to Missouri. Spain and the Meditcranean


Plate XVI. Irises, mostly of the Germanica type.
regions of Africa are the home of bulbous forms. In southwestern Asia are found not only broad-leaved forms, but this region is also the home of a rich variety of dainty bulbous kinds and the curious Oncocyclus species.

As will be seen by their distribution, Irises are especially adapted by their hardiness to growth in our gardens, though some forms, as the African, the Indian, and the Oncocyclus species, need special treatment or protection. In the main the Irises, from a cultural point of view, are like others of nature's various families, mostly very good-not to say commonplace-with a few decidedly bad members. As there are nearly 170 species of Irises, with countless varieties, they are interesting to the amateur collector and grower both for their variety and their general beauty of flower.

The life of Iris flowers varies from three to six days. Ther are fragile, but if cut before the petals unroll may be forwarded to considerable distance without injury. This is the only way, in fact, by which the florist can market them. The botanists divide the Irises into two main groups, the bulbous kind and those with rhizomes, these groups being each dirided by the varying characters of the more or less raised line in the middle of the fall of the flower. This, of course, gives no clue to cultural necessities or to time of flowering, two important details in a garden.

Considering the bulbous Irises as a group, these are all hardy without protection in the latitude of New York city except I. Histrio, I. alata, I. juncea, I. Pulastina, I. Tingitana, I. Vartami.

In the order of their flowering, the reticulata group is the earliest, I. Bakeriona and others starting into Hower as soon as released by frost, usually in February or March. These are soon followed by the others of this group, the largest-flowered member being I. histrioides. A peaty, sandy soil seems to be most acceptable to this group, and no organic manure must be given them. A location, if possible, where they may be kept on the side of dryness in summer is desirable. The culture of these, like that of all exotic plants in our gardens, is, of course, tentative. If, on trial, they seem to be happy and increase from offsets or buds, they may remain in the borders indefinitely, but if during the second season they show no gain, the bulbs should be lifted and a trial made in another location. This group seeds freely, and the seed pods will be found just under the soil surface.

Closely following this group are the so-called Juno Irises, of which I. Persict is the most familiar, though not the best example. These Irises have somewhat large bulbs, with curious, persistent, fleshy roots, and seem to thrive best in somewhat stiff soil, in sheltered locations, where they will be well baked during the summer. They flower in March and April, the best forms being I. Rosenbachiana, I. orchioides, I. Sindjarensis, and I. Assyriaca. They are desirable plants in the most exclusire gardens. They seed freely, and also increass by offsets.

About the same time as above will flower the Iris tuberosa ("The Widow"), which is neither bulbous nor an Iris strictly, but has a weird beauty of its own, with its green and black flowers. This should bave a summer baking. (See Hermorlactylus.)

Planted out in the early fall, the so-called Spanish Irises make an early start and produce leares which are persistent during the winter and seldom injured here. In May and June they broaden out, and are then surmounted by very bright, distinct and charming flowers. Very satisfactory flowers, these, and of the easiest culture. They probably do best in spots inclining to moisture. The bulbs make offsets rapidly, and should often be divided and replanted. There are two forms and numerous flowers of this Iris. The boldest form is that known as the "Thunderbolt."

The "English" Irises, I. riphiniles, follow the "Spanish" in June and July. Their flowers are wider in all their parts, and in a limited range of colors, white and purple. "Mt. Blanc," pure white, is probably the most satisfactory of the groap. The foliage of the English Iris does not spear till early spring, and the "arieties flourish in a rather drier position than the "Spanish."

The African bulbous Irises, $I$, juncea, $I$. Vartuni, I. "lutt, are subjects for a coolhouse, though the former is rarely hardy here.
The rhizomatous Irises may be divided into a number of sections, but in a cultural way may be broadly considered in two sections: those with thick, surfacecreeping rhizomes, as the hybrid German, and those with more or less thin ones, as $I$. Sibirict and $I$. lievigata, which are subterranean. While the former section comprises plants which grow in various conditions, some with the roots submerged, yet in a general way they have mostly surface-creeping rhizomes. These are best transplanted soon after flowering, at which time they commence a new growth. It is customary for the nurserymen to supply these in the fall, which usually leads to the loss of a season, as they often fail to become established when planted late. The foliage of the Iris indicates a sun-loving family, and Irises should be planted in full exposure in rich, but not manured soil, well drained. The rhizomes should be planted flat and covered to half their diameter. If the rhizomes are in a growing condition, no further care will usually be necessary with the great majority of the species, but if the rhizomes are dormant and partly dried up, as they are frequently on receipt, care should be taken that they have not much moisture till they start into growth, otherwise they are likely to rot. Not every Iris will grow in every garden, but the failure to establish these plants is most often caused by too much exposure to excitement of light, warmth and moisture when the plant is not ready to convert its reserve into food. Valuable species should have the protection of a frame in such circumstances till it seems safe to plant them out. If carefully treated and not excited, apparently hopeless dried up rhizomes may often be sared. Most of these Irises in common cultivation increase rapidly, and should be divided and replanted every two or three rears; otherwise the rhizomes become matted and the abode of grass, etc. Among them will be found some of the showiest flowers of the family.
Usually in early May we have flowers of $I$. Chameiris and its variety $I$. Olbiensis, followed quickly by the dwarfer I. pumila and its white form I. Attica. Forms of I. lutescens, Lam., quickly follow, after which $I$. Germanica, I. Florentina and the host of "hybrid German" varieties come rapidly forward and give a great wealth of color. Every one is familiar with the great bearded purple I. Gernanica, perhaps the most generally cultirated Iris. There are larger-fld. forms of this: I. Amas and I. mucranthe. I. Germanica alba seems to be a variety of $I$. albicans. This and $I$. Florentina are the usual white-fld. forms seen at this time. Of bold, lighter purple kinds, I. pallida and its hybrids are then preëminent.
The German Irises of the garden are not varieties of 1. Germanica, but hybrids of various species, as I. pallida, I. r'triegata, I. sambucina, I. squalens, I. lurida $\times$ wild forms and $I$. neglecta, I. ameena, I. plicata and I. Swertii, which are known only in gardens. Naturally these vary much in stature, time of flowering, size and coloring of tls. They may be had in almost endless variety, but a typical collection may be made with comparatively few plants.
Among the best forms of the "hybrid German" Irises are: I. aphylla-Bridesmaid, Madame Chereau, Swertii; I. аmळna-Compte de St. Clair, Fairy Queen, Reticuluta alba, Victorine; I. neglecta-Cordelia, Wagner; I. pallida-Khedire, Mad. Pacquitte, Queen of May, Walmer; I. squalens-Amols, Jacquiniana, Harrison Weir, Mons. Cherion: I. rariegata-Beaconsfield, Darius. Hector, Honorable, Prince of Orange.
June is flowering time for many Iris species, many of which are uncommon, but of the more arailable forms one could scarcely neglect the native $I$. hexagona, the dark La Mance form of which is very distinct and amongst the handsomest of the family. A white form of this is not hardy here. I. filva, another native plant with copper-colored flowers, is also interesting. Irises with distinct forms of this season are I. Momnieri and I. crientalis (or I. ochroleuca), both of which have obliquely growing rhizomes and enjoy moisture.
For margins of water $I$. Pseudfcorus, with yellow fis. is invaluable, and our natires, I.versicolor and I. Caro-
linensis, seem as happy in the moisture as in the uplands. The Iris rhizomes which require deep planting are mostly smaller and thinner than those of surface creepers. The species with these roots are mostly strong-growing plants, rapidly increasing and requiring an abundance of moisture, though there are some notable exceptions to be mentioned later. Of the members of this group, I. Sibirica, in several purple and white forms, is a common garden plant. I. ensata is a common Asiatic Iris with small fls. borne among the narrow foliage, which is as ornamental as some of the large grasses.
The Japanese Irises, which usually end the general display of Irises, are a remarkable example of typebreaking, the occidental gardeners haring worked up from $I$. levigata a wonderful variety of colorings and variation in number of petals, though the colurs may be included in about half a dozen general types. There are few handsomer Howers than good forms of the white Japanese Iris. This Iris may be grown on the upland, but it does not do its best in such locations, for it is particularly susceptible to good treatment, and to produce large flowers both water and manure are essen tial. Mr. Peter Barr, the veteran fancier of good plants, lately wrote the undersigned from Japan, after consulting one of the oldest cultivators, that "this Iris is grown in the rice fields in winter and watered each month while at rest with human manure (cow manure would do); as soon as young growth appears no more manure is given and the ground is flooded. When growth has ended the water is withdrawn."
One of the most curious things in connection with the Japanese Iris is that though these plants have been in cultivation here since soon after the treaty ports were first opened, they seem to have excited little attention from gardeners until within a few years. Yet the tirst importations were as handsome as the later. In this connection it may be said that Japan has also I. gracilipes, a dark purple hardy form, and I. Joponica or Chi nensis, one of the beauties of the family but, like $I$. tectorum (the Roof Iris), anotteer crested kind, needing here greenhouse protection and well worth it. There is, however, a perfectly hardy crested Iris, the beautiful dwarf $I$. cristata of the upper southern states-a charming plant for a front border or rockery. Equally dwarf are our lake Irises I. lacustris and I. verma.
The west coast of the United States is fortunate in possessing some beautiful and distinct Irises, mostly of the wiry-rooted, thin-leared type. They have not yet been fully separated botanically, and they are most difficult things to establish in eastern or other gardens so that there are really very few in cultiration. Raising from seed seems the most practical way of establishing these species. They seem to be perfectly hardy here, for some of them have been tested and flowered, but they do not tarry long.
I. macrosiphon, I. Hartuegii, I. Douglasiana, I. bracteata, I. tenax, I. longipetala, I. tenuis and I. Purdyi is a list which will interest the searcher after interesting plants. Max Leichtlin, who has a genius for growing difficult things, has been successful in establishing I. bracteata, I. macrosiphon and I. Purdy ana. He says, "My experience is that they cannot be moved unless in full vegetation. We must grow them from seed, and not touch the seedlings until they have formed a solid rootstock. After this and movement to grow has begun, they can be safely handled and transplanted like other Irises."
There remain to be considered two allied groups, the Oncocyclus and Regelia. These are considered by amateurs the most interesting groups of the Iris family-interesting in the amateur's vocabulary meaning something rare and difficult. At the best, these plants give few flowers, but they compensate for this by their distinct and quaint beauty. The best known member of the family, $I$. Susiana, has been in cultivation several hundred years, but is by no means yet a common plant. It takes more kindly to cultivation than any of the other species, will usually flower in the border the first year after planting if the spring is not too rigorous; and gardens are not unknown where from some conditions of fortunate placing or soil, they continue to flourish. It cannot be said that there is any hard and fast formula
for growing these Irises. They vary among themselves as to their requirements, and need special and different treatment in different gardens and climates. These Irises are natives of Palestine, Asia Minor, the Caucasus, Central Asia and Persia regions, all of which are hot and

1172. Iris unguicularis

Type of smooth-petaled Iris ( $\times 1 / 3$ ). No. 13.
dry in summer, with a settled and sometimes severely cold winter and a genial spring. In some of the regions they are protected by a covering of snow in winter while dorraant, but Palestine and Persia have open winters, and their Irises make growth at this time. After cultivating most of the species for a number of seasons, the writer's experience does not lead him to dogmatize much on their cultiration or to approve of many special derices which have been put forward from time to time as the solution of the problem. The consensus of opinion among the growers who have bad the best success with these plants is about as follows, premising that we are dealing with plants which are perfectly hardy: We receive the rhizomes with the Dutch bulbs in the fall, at which time they are dormant and leatless. It is well to store them in a cool place and plant out in Norember in a bed of fairly light and well drained soil in a border fully exposed. They require no protection, but if the climate is one where frosts and thaw alternate, it is well to give the ground a covering while frozen to keep it firm. The Irises so planted will seldom spear here till genial weather arrires, and with plentiful supplies of moisture at the root will give flowers from strong buds. After flowering, or, more accurately, flowering time, one is forced to choose between two methods of treatment. If the garden is high, dry and hot, the best procedure is to cover the beds with a glass frame sufficiently large to protect them from moisture and allow the rhizomes to bake. This frame may be removed in the late fall. If the leares appear, as some of them are likely to do, they may be left unprotected until rery severe weather sets in, here usually in December. The protection should be something to protect the leares from the winter sun and frequent change of temperature. Here coal ashes hare proved satisfactory, though unsightly. Foliage does not seem to become as soft under them as under leares or mats. If the spring is genial, with weather
steadily becoming warm, the plants being uncorered as soon as the conditions will seem to warrant, should be in the best possible shape to reward one with their noble blooms. It is the lack of this genial spring in the latitude of New York which, however, leads often to cultural troubles. The leares, having been protected, are none too hard, and, with the constant alternate thawing and freezing, and the high winds, hot and cold, the plants need constant watching and application of needed covering till really genial weather. Otherwise the foliage is blighted and no flowers are prolluced.
In gardens which are low and never free from moisture, the best procedure is that followed in Holland, lifting the rhizomes in July and taking them nuder cover in dry earth, planting out again in the fall. In this case care should be used in lifting not to injure the numerons fleshy roots. The Palestine and Persian forms of these Irises are considered the most difficult to cultivate, from their habit of early growth.
lrises are not only increased by the division of the rhizomes or by offsets, but may be rapidly grown from seed, which they usually produce freely, though, in most cases, they require artificial fertilization. A large number of the common Irises of gardens are hybrids, and of late years a number of beautiful hybrids have been produced between some of the rarer Oncocyclus species, and between these also and common forms, as $I$. varieguta, etc. There are still opportunities to produce many new and untried crosses, and experiments in this line are recommended. The pollination of the Iris is simple. The anthers should be removed when the flower first opens, and preserved in paper or vials, properly marked. The pollen will retain its potency for a week or perhaps longer, and may be applied to the stigma of the flower selected (the anther of which has been removed promptly) with a camel's-hair brush. The stigma will be found near the apex of the petal-like style, and is ready for pollination when the upper edge drops down and exposes the upper surface. Many Iris seeds germinate with considerable irregnlarity, and failure to start promptly should not lead to discouragement or disearding of the pan in which the seeds are.
J. N. Gerard.
acuta, 12.
alata, 99.
Alberti, 36.
allicans, 54.
amerna, 59.
Anqlica, 8 .
Auglica, 80.
aphylla, $50,56,57$.
arenaria, 46.
A siatica, 55.
atrofusca, is. atropurpurea, 74. at roviolacea, 3 i, 65. aurea, 24.
szzerea, 37.
Bakeriana. 90.
Balkana, 40.
Benacensis, 52.
biflora, 41.
biglumis, 7.
Billiotti, 63. Bismarckiana, in.
Bloudovii, 47.
Buhemica, 50 Buhemica, 50 . Boissieri, 86. Caroliniana, 21 Caroliniana, 21
Cancasica, 100
Cengialti, 42.
Chameiris, 45.
Chinensis, 35.
cerrulea, 87, 102.
concolor, 68.
cristata. 32.
cuprea, 17.
суапеа, 87 .
Cypriana, 64.
Danfordie, 93.
Delavayi. 8.
Douglasiana, 16.
ensata, 7.
falcata, 50.
filifolia, 84 .
fimbriata, 35.
thavescens, 49.
flavissima, 47.
index.
Florentina, 54.
fretidissima, $\underset{\sim}{2}$.
Fosteriana, 96.
fragrans, $7,41$.
fulva, 17.
fumosa, 101.
furcata, 50.
Gatesii, 78.
Germanica, 60.
gigantea. 26 .
gracilis, 10. 37, 39.
graminea. 11.
Grant-Duffii, 4.
Guldenstoedtiana, 23.
gурsea, 60.
hematophylla, 12
halophylla, 30.
Hartwegii. 3.
Helence,
hexagona, 20
Hispanica, 81.
Hispamica,
Histrio 88
histrio, 88. histrioides, 87. honorabilis, 48 humilis, 1. Humparica, 50. hybrida, 59. Iberica, 76. Italica, 45. Jacquesiana, 60. Japonica. 35. juncea, 85. Junonia. 55 K(zmpferi, 28 Kochii, 53. Kolpakorskiana, 91.

Korolkowi. 68.
Krelagei, 87. levigata, 28 Leichtlini, 67. Leichtliniana, 68. lineata, 66. longipetala, 9.

Lortetii, 73.
lupina, 80 .
urida, 51, 70.
Lusitanica, 81.
lutescens. 44.
macrosiphon, 2.
mejor, ī, 87.
Marize, 71.
maricoides, 92.
Milesii, 34.
minor, 46 .
Missouriensis, 15.
Monnieri, $\mathbf{2 5}$
Nazarina, 79
neglecta. 58.
Nikitensis, 11.
notha, 30.
nudicaulis, 41.
ochroleuca, 26.
oculata, 102.
ocloiensis, 45.
orchioides, 102.
orientalis, 12, 26.
oxypetala, 7.
pabularia, 7.
Palæstina, 88.
pallida, 18, 55.
panormitana,
Paradosa, ${ }^{\text {Persica, }} 9$.
Persica, 97.
plicata, 56 .
prismatica, 10.18 Psendacorns, 18.
psendo-pumila, 38. pumila, 37. purpurea, 94. reticulata. 60, 87. Rosenbachiana, 95.
Ruthenica, 1.5. sambucina. 62. sanguinea. 12.
Sarii, 70, 79
scorpioides, 99.
setosa, 2e.

Sibirica, 12.
sicula. 55
Sindjarensis, 97. Sisyrinchium, 02. Sogdiana, 23. speciosa, 55. spectabilis, 81. spuria, 30 . squalens, 61. Statella, 44. stylosa, 13.
superba, 13.
Susiana, ī.
Suwarowi, 66. Swertii, $5 \overline{\%}$. tectoruin, 33. tenax, 6 .
Tingitana, 83.
Tolmieana, 15.
Trojana, 29.
unguicularis, 13.
vaga, 67
variegata, 12, 18, 48.
Vartanl, 89.
verna, 31.
versicolor, 19.
riolacea, 68.
virescens, 43 .
Virginica, 10.
xiphioides, 82 .
Xiphium, 81.

## Synopsis of Subgenera in Cultivation.

Series I. Rootstock a short, thick, or creeping rhizome.
Apogos, Outer segments of the perianth without a beard or erest............................ Species
Pardanthopsis. Outer segments of the perianth not distinctly bearded or crested, merely keeled; sometimes slightly hairy.................species
Evansia. Outer segments of the perianth distinctly crested on the claw and lower part of

Psecdevansia. Outer segments bearded or hairy: beard springing from a rudimentary crest......

Species
Pogoniris and Regelia. Outer segments bearded or hairy: hair restricted to a dense beard along the midrib.... . . . . . . . . . . . . . . . . . . . . . . . . Species 37-68
Oxcocrclus. Outer segments bearded or hairy: hairs diffused over the lower part of the blade and claw; inner segments larger than the outer.
. Species 69-80

## Series II. Rootstock bulbous.

Xiphion. Inner segments of the perianth large, ereet: stamens not adhering to the style branches ..................................... Species 81-91
Grxandiris. Inner segments large, erect: stamens adbering to the style branches....Species 92 Juno. Inner segments small and spreading or detlexed $\qquad$
subgencts apogon
A. Lis. linear, generally less than $1 / 2$ in. broad.
B. Sheath splitting up into fibers.
c. Values of the spathegreen.
D. Tube of the perianth
$11 / 2-2 \mathrm{in}$. long.
E. Spathe sessile...... 1. humilis

EE. Spathe stalked...... .. macrosiphon
DD. Tube of the perianth
short or obsolete.
E. Fls. yellou'..........
3. Hartwegii
4. Grant-Duffii

EE. Fls. some shade of
blue or white.
F. Stem lis. reduced.
G. Stem terete.
H. Rootstock
slender,
wide-creep-
ing.........
нн. Rootstock
$\boldsymbol{s h o r t}$,
creeping.
5. Ruthenica
(.6. tenax
i. ensata
8. Delavayi

GG. Stem com-
pressed...... 9. longipetala
FF. Stem lis. long,
gemerally over 1
ft. in length....10. prismatica
CC. I'alees of the spathe broun
and scarious............ 12. Sibirica
BB. Sheaths not splitting into
fibers.
C. Stem nearly obsolete .....13. unguicularis
cc. Stem present, clothed with
sheathing bracts........14. bracteata
CCC. Stem present. bearing 1-2
levtes .................... 15. Missouriensis 6. Douglasiana

AA. Liss. ensiform, generully much over $1 / 2$ in. broad.
B. Stem bearing several long lenies.
C. Fls. realuish brow'n....... 17. fulva Cc. $F$ 'ls. уеllou'................18. Pseudacorus CCC. F'lx. blue, purple, lilac, etc..or uhite.
D. Lǐx. somewhat glaucous. . . . . . . . . . . . . . . 19. versicolor DD. Le's. Gright green, mot gluucotes.

$$
\begin{gathered}
\text { E. I'ls. sessile .......20. hexagona } \\
\text { EE. f'ls. pelicelleil.....2l. Csroliniana }
\end{gathered}
$$ 2.). setosa

BB. Stem bearing -1 reduced lis.


1. hùmilis, M. Bieb. (r. Ruthénica, Ker., not Dryand.). Rhizome wide-creeping: lvs. to 12 in a tuft, glaucous, 6-12 in. long: Hs. bright lilac; outer sepals with a suborbicular blade and a long cuneate claw. Caucasus to Georgia and Hungary. Gn. 10, p. 379.
2. macrosiphon, Torr. Plants rather dwarf, 6-12 in. high : lvs. grass-like, green, 12 in . long, exceeding the Hs.: stem 3-6 in. long: pedicels very short: outer segments obovate-cuneate, undulate, pale vellow to cream, with a network of brownish erimson or bright lilac veins; inner segments rather small, colored like the outer. Free-flowering. Calif. and Ore. Gn. 52, p.126.Torrey says the Hs. are bright lilac and the lvs. less than 4 lines wide.
3. Hártwegii, Baker. Lvs. few (2), 6-12 in. long, finely veined: stem 6 in . long, with linear leaf low down: pedicel $1-1 \frac{1}{2}$ in. long: limb pale yellow: outer segments with an oblong blade, shorter than the claw. Calif. Rarely cult.
4. Grant-Dúffii, Baker. Lvs. about 1 ft . long: stem 6 in. high, with about 2 lvs., outer valves marked with fine black lines: outer segments with a yellow blade, much shorter than the claw; claw veined with lilac on a yellowish white ground. Palestine. Gt. 42, Supp. Pl.Not valuable commercially.
5. Rathénica, Dryand., not Ker. Lvs. 3-12 in. long, in crowded tufts: stem slender, 3-6 in. long, but often cbsolete: tube twice as long as the ovary: outer segments with an oblong blade rather shorter than the claw, lilac, violet-scented. Apr., May. China, Siberia and Cent. Asia. B.M. 1123 and 1393. Gn. 50, p. 187.
6. tènax, Dougl. Sheaths short: lis. 6-12 in. long: stem 6-12 in. long: pedicel long: outer segment broadly obovate, with an acute point : blade about as long as the claw, bright lilac, with purple veins and a variegated white and yellow spot on the throat: inner segments shorter, waved. Apr.. May. Dry soils, B. C. and Ore. Int. to Eng. 1826. B.M. 3343. B.R. 15:1218. Gn. 53:1175.-Hardy.
7. ensàta, Thunb. (I. biglùmis, Vahl. I. oxypítria, Bunge. I. frogroms, Lindl.). Sheaths large: lvs. 1-is ft. long: pedicel $2-4$ in., often longer than the spathe: limb loose. bright blue or lilac: outer segments oblanceolate, 2 in. long: blade shorter than the claw, veined with dark blue, yellowish on the throat: inner segments slender, erect, bright blue. Russia, Japan. Caucasus. B.M. 2528 and 2331. B.R. 26:1. Gt. 1011.-Hardy. Variable.

Var. pabulària, Naudin (I. pabuldria, Hort.). Said to be distinct. Larger, with lvs. purplish red near the base. Used as a forage plant. Does well in driest situations. Gt. 47:1452. - Described by Wittmack, Gt. 47, p. 369. The seeds should be sown in beds, and the
young plants set out the following spring, 10 in . apart each way, where they are to remain.
8. Delavài, Micheli. Lvs. 2- $21 / 2 \mathrm{ft}$. long, often nearly 1 in . broad: stem :3-5 ft. high, bifurate: spathe valves green: outer segments reflexed from the middle, oblong, obtuse or emarginate, brilliant violet, spotted with white on the lower half; claw yellow, veined with lilac; inner segments oblong-lanceolate, acute, erect, vlolet. Large plants, with the flower-stalks erect, high above the lis. Thibet. R.H. 1895, n. 399.
9. longipétala, Herb. Lvs. $1-11 / 2 \mathrm{ft}$. long : stem stout, solid, compressed, $11 / 2 \mathrm{ft}$. high: Hs. bright lilac; outer segments obovate, retlexing half way down; claw veined with violet on a white ground. Calit. B.M. 5298.
10. prismática, Pursh (I. Virginice, Muhl. I. gricilis, Bigel.). Plant tall, slender: lvs. mostly shorter than the stem, grass-like: stem l-2 ft., simple or forked, flexuous: spathes 1-2-fld.: pedicel long, exceeding the spathe: outer segments $11 / 2-2$ in. long; blade shorter than the claw, bright liae, yellow on the throat, marked with purple and darker veins; inner segments erect, bright lilac. May, June. Wet grounds, New Brunswick to Pa. and N. Car. B.M. 1504.
11. graminea, Linn. (I. Nikiténsis, Lange). Lvs. strongly ribbed, $1-1 \frac{1 / 2}{} \mathrm{ft}$. long: stem compressed, angled, slender, solid: pedicel $1-1 \frac{1}{2} \mathrm{in}$. long: limb bright lilac, copiously veined; outer segments with an orbicular blade $1 / 2$ in. broad and shorter than the broad claw; claw dull yellow, veined with purple; inner segments erect, nearly straight. May. Central and S. Eu. B.M. 681.- Long cult.; mentioned by Lobel, Clusius and Gerarde. Distinguished from $I$. Sibirica by its solid, angular stem.
12. Sibirica, Linn. (I. acùta, Willd.). Compact, tufted: Ivs. green, not rigid, 1-2 ft. long: stem slender, terete, fistulose, much overtopping the lvs., simple or forked, bearing several clusters of fls.: limb kright li-lac-blue; outer segments $11 / 2-2 \mathrm{in}$. long, with an orbicular blade gradually narrowed to a slender claw, veined with bright violet, whitish toward the elaw; inner segments shorter, erect. Central and S. Eu. and eastern Siberia. Int. in 1796 . B.M. 50. R.H. 1898, p. 23. - Common in cult. The plants form large, compact clumps, producing many long flowering stems from the center. Var. orientalis, Thunb. (I. sanguinea, Don. I. Sibiricu, var. sanguinea, Hort. I. hamatophyilla, Fisch. I. Sibivicu. var. hematophýlla, Hort.). Fls. larger, more fugitive; blade of the outer segments orbicular: young lvs. reddish. June. Produces a second crop later. Var. alba, Hort., with pure white ths. Var. variegàta, Hort., with variegated lvs. Var. acúta, Hort. Narrow-lvd.
13. unguiculàris, Poir. (I. stylòsa, Desf.). Fig. 1172. Les. about 6 in a tuft, finally $11 / 2-2 \mathrm{ft}$. long, bright green : tube $5-6 \mathrm{in}$. long, filiform, exserted from the spathe: limb bright lilac, rarely white: outer segments $21 / 2-3$ in. long, 1 in. broad, with a yellow keel, streaked with lilac on a white ground at the throat; inner segments oblong. Jan., Feb. Algeria. B.M. 5īis. Gin. $24: 398 ; 46: 979 ; 49$, p. 236; 50, p. 187. G.C. III. 25:85. - Not hardy, but useful for cutting in early winter. Fragrant. Var. alba, Hort. White form: spring. Var. superba, Hort. Bluish purple. Oct. and later.
14. bracteàta, S. Wats. Rudimentary lvs. brown, rery rigid; produced lus. 1 to few, much exceeding the stem, 1-2 ft . long. one side green, the other glaucous, edge revolute: stem 1 -headed, angled, $2-3 \mathrm{in}$. to 1 ft . long. sheathed with bracts $2-4$ in. long : tube short, funnelform : outer segments $2-3$ in.; blade orate, as long as the claw, pale yellow, veined with bluish purple: inner segments shorter, erect, yellow; style branches long. narrow. June. Discovered in 1884 by Thomas Howell, in Ore. (i.F. 1:43.-Int. 1888.
15. Missouriénsis, Nutt. (I. Tolmieùna, Herb.) Lrs. pale green, finely ribbed, $1-11 / 2 \mathrm{ft}$. long: stem $1-2 \mathrm{ft}$. long, usually exceeding the lvs., bearing a single large leaf low down: pedicel long: tube very short: limb bright lilac; outer segments obovate. 1 in . broad, yellow near the claw; inner segments oblong, straight, erect, Wet soil, S. Dak. and Mont. to Ariz. Gn. 50:1082.-Not common in cult. Flowers early.
16. Douglasiana, Herb. Rhizome stout, short, creep. ing: lrs. about 6 in a tuft, broalest in the middle, strongly ribbed, 1-2 ft . long: stem 1-2 ft . high, usually simple, with one long bract leaf: tube $1 / 2-5 / 4$ in. long: fls. 3-4 in. in diameter; outer segments objvate-spatulate, spreading and recurred, pale lilac, with a white disk and purple veins; inner segments shorter, erect, lanceolate, acnminate, pale lilac, not veined. Calif. B.M. 6083. Gin. 50:1086.
17. fúlva, Ker. (I. cüprea, Pursh). Lvs. thin, bright green, $11 / 2-2 \mathrm{ft}$. long, not exceeding the stem: stem 2-3 ft . high, forked low down ; lower stem-lrs. 1 ft . long: pedicel produced: tube greenish yellow, 1 in. long: limb loosely expanded, bright reddish brown or coppercolored, variegated with blue and green; outer segments obovate-cuneate, emarginate; inner segments smaller, spreading. Late June. In swamps, Ill. to Ga., La. and Tex. Introduced into England 1811 hy Lyon. B.M. 1496. Gn. 53:1175. Mn. 5:61.
18. Pseudácorus, Linn. Lvs. $11 / 2-3 \mathrm{ft}$. long, equaling the stem: stem stout, terete, $2-3 \mathrm{ft}$., bearing several long lvs. and several clusters of fls.: limb bright yellow; outer segments broadly obovate, 2-21/2 in. long, yellow, with a bright spot and radiating brown veins on the claw; inner segments scarcely longer than the claw of the outer, oblong. May, June. Europe, Syria and the Barbary states; naturalized in N. Y., Mass. and N. J.The plants form fine, large clumps, bearing numerous flowering stalks. Var. variegàta, Hort. Lvs. striped with creamy white. Var. pallida, Hort. Fls, pale sulfuryellow.
19. versícolor, Linn. Les. slightly glaucous, 11/2-2 ft. long: stem forked low down and often branched above, 2-3-headed: tube very short: limb violet-blue; outer segments spatulate, $2-3 \mathrm{in}$. long, variegated with yellow on the claw and reined with purple; inner segments oblanceolate, much smaller. British N. A. and northern U. S. Int. into Eng. 1732. B.M. 21. G.W.F. 5. D. 89.
20. hexágona, Walt. Lrs. 2-3 ft., long: stem usually simple, 3 ft . long, 2-3-headed, with several large lis., the upper ones exceeding the fis.: spathe valres sometimes leaf-like: tube 1 in . long, green, dilated upward: limb bright lilac; outer segments 3 in. long; blade obovate, with a bright yellow keel on the claw; claw downy; inner segments shorter, erect; style branches very concare, green, with a central lilac band. Ky. to Tex. and Fla. B. M. 6787.
21. Caroliniàna, S. Wats. Les. 2-3 ft. long, bright green: stem stout, sirap'e or branched: tube $1 / 2$ in. long: limb lilac, rariegated with purple and brown; outer segments broadly spatulate, $21 / 2-3 \mathrm{in}$. long, with narrow claws; inner segments narrower, nearly erect. Differs from I. versicolor by its green lvs. Discovered by W. A. Nanda in N. Car. G.F. 6:335.
22. setòsa, Pallas. Lrs. thin, green, 1-11/2 ft. long : stem deeply forked, much exceeding the lvs.: tube $1 / 4 \mathrm{in}$. long: limb bright lilac; outer segments $2-21 / 2$ in. long; blade 1 in. broad, suddenly narrowed at the claw, copiously veined; inner segments rery small, $1 / 2 \mathrm{in}$., cuneate, large-cuspidate; style branches large, crested. E. Siberia, Japan, and northwestern Amer. B.M. 2326. Gt. 322.
23. Gueldenstædtiàna, Lepech. Lrs. pale green, 1-1 $1 / 2$ ft . long: stem stout, terete, $11 / 2-2 \mathrm{ft}$. long, often bearing $1-2$ spicate clusters below the end one: limb pale rellow; outer segments with an orbicular blade $1 / 2-3 / 4$ in. broad, shorter than the claw, which has a bright yellow keel and faint lilac veins; inner segments shorter, erect. Asia. - Var. Sogdiàna, Baker. A variety with gray-lilac flowers.
24. aùrea, Lindl. Lrs. scarcely glaucous, $11 / 2-2 \mathrm{ft}$. long: stem $3-3 \frac{1}{2} \mathrm{ft}$. long, stout, terete, with $1-2$ sessile clusters below the end one: spathes $2-3$-fid.: pedicel long: limb bright yellow; outer segments with an oblong blade 1 in . broad, as long as the claw; inner segments less than $1 / 2$ in. broad. July. West Himalayas. B.R. 33:59. Gn. $31: 579 .-$ Int. by Dr. Royle. This species has brighter yellow fls. than the others of this group (18-21).
25. Monnièri, DC. Lrs. slightly glancous, 2-3 ft. long: stem stout, terete, $3-4 \mathrm{ft}$. long, with several sessile clus-
ters of fls.: limb $21 / 2-31 / 2 \mathrm{in}$. long, lemon-rellow, with. out veins; blade of outer segments orbicular, $1-11 / 2 \mathrm{in}$. long, equaling the claw; inner segments oblong-unguiculate, 1 in . broad. Rhodes and Crete. Discovered and int. by Sieber, 18:2. Not showy except in masses. This and $I$. orientulis are perhaps varieties of $I$. spuria.

1173. Habit sketch of Iris orientalis ( $\times 1-20$ ). No. 26 .
26. orientalis, Miller (I. ochroleùca, Linn. I. gigantèa, Carr.). Fig. 1173. Plants growing in strong clumps: Ivs. 2-3 ft. long, slightly glaucous: stem 3-4 ft., stout. terete, with $2-3$ spicate clusters of fis.: outer segments obovate, 1 in . broad, as long as the claw, yellow, paler or white toward the margin ; inner segments oblong, 1 in. broad. lemon-gellow to whitish. Asia Minor and Syria. B.M.61. Gn. 20:301; 38:779; 46, p. 362 and 50, p. 186. R.H. 1875, p. 357. - One of the largest of the Irises. Grows in almost any situation. White forms of this plant are in cultivation.
27. fætidissima, Linn. Gladwin. Lvs. $1-1 / \frac{1}{2} \mathrm{ft}$. long: stem compressed, $-\mathbf{2} \mathrm{ft}$. long, $2-3$-headed : tube $1 / 2 \mathrm{in}$. long: limb bright lilac; outer segments $11 / 2-2$ in. long, with a suborbicular blade equaling the claw; inner segments shorter, oblanceolate. Central and S. Eu., Eng., Afghanistan and Algeria. Gn. 47, p. 30.-This plant is rery distinct, and is easily recognized by the odor of the broken lvs. The capsules remain on the plants in winter, bursting open and displaying rows of orange-red berries. The fls. are rather inconspicuous. There is a whitish rariety with brown veins, and a variety with white-striped lvs.
28. lævigàta, Fisch. \& Mey. (I. Kémpferi, Sieb.). Japanese Ikis. Fig. 1174. Lis. thin, ensiform, 1-11/2 ft. long: stem much orertopping the lrs., obscurely angled, $1-3$-headed : pedicel $1 / 2-2$ in. long: tube short: limb blue, violet, etc., sometimes white, spreading, 3-5 in. across; outer segments broadly ovate-oblong, oltuse, with a yellow spot on the claw ; claw short, distinct; inner segments oblanceolate, erect, conniving or spreading: style branches with bifid, incurred lobes. E. Siberia and Japan. Int. by Von Siebold, and flowered at Ghent in 185\%. B.M. 6132. I.H. 5:157. F.S. $20: 2073-74$; 23:-431-36. Gt. 442. Gn. 9:21; 16:195: 21:341; 55.p. 105. R.H. 1890, p. 188. G.C. III. 13:165, 169; 14:501. A.G. $19: 596$. Gng. $1: 256 ; 5: 163 ; 6: 339 ; 7: 145$. J.H. III. 28:205. F.E. 10:77. F.M. 1874:137; 1880:403.
29. Trojàna, Kerner. Lrs. very acute, glaucescent: stem over 3 ft . high, much branched and overtopping the lvs.: pedicel none : ths. bright riolet-puiple; outer segments oborate: blade longer than the claw ; claw white, bordered with yellow and reined with brown-purple; inner segments elliptic, suddenly narrowed to a claw: style crests broad, denticulate. Troad, Asia Minor.
30. spùria, Linn. Lis. firm, linear, glaucescent, 1 ft . long: stem overtopping the lvs., bearing $1-3$ spicate heads: pedicel shorter than the spathe : tube $1 / 2-3 / 4$ in. long : limb bright lilac; onter segments with an orbicular, spreading blade $1 / 2$ in. broad and half as long as the claw; claws broad, concave, lilac, with a yellow
keel and purple reins; inner segments shorter, straight, oblanceolate: style crests small. Central and S. Europe. B.M. 58.

Var. notha, Bleb. (I. halophŷlla, Ker.). More robust: $1 \mathrm{rs}$.1 in . broad: spathes larger: stem 2-3 ft. high. Caucasus to Kashmir. Int. lisu by Peter Pallas. B.M. 875. -Hardy.

SUBGENU'S PARDANTHOPSIS.
31. Véns, Linn. Dwarf, 6 in. high: rhizome widecreeping: sheaths not splitting into Hbers: Ivs. linear, slightly glaucous, $3-8 \mathrm{in}$. long: stem scarcely any, 1 headed: thwe slender, $11 / 2 \mathrm{in}$. long: limb deep violet; outer segments $1 \frac{1}{2} \mathrm{in}$. long. obovate, narrowed into a slender cellow, slightly pubescent claw; inner segments erect, smaller, violet. Shade, Ohio, Ky., Va. and south. L.B.C. 19:1855.

## sUbgents evansia.

A. Stem very short
32. cristata

AA. Stem equaling or exceeding the liss.
B. Pedicels much shorter than the
spathe ................................. 33. tectorum
Bb. Pedicels as long as the spathe, and articulate at the apex...............34. Milesii
35. Japonica
32. cristàta, Ait. Plant dwarf: rhizome slender, creeping: lvs. ensiform, thin, $4-8 \mathrm{in}$. long, green: stem $1-3 \mathrm{in}$. high, flattened, 1 -headed, bearing $\mathbf{0}-3$ lvs.: tube slender, $11 / 2-2 \mathrm{in}$. long: limb blue; outer segments obovate, $1-1 \frac{1}{2} \mathrm{in}$. long, erested; inner segments shorter, naked. Apr., May. Mis. Ky., Va. and Carolinas. B.M. 412. Gn. 45, p. 127. L.B.C. $14: 1366$.
33. tectòrum, Maxim. Fig. 1175. Les. 1 ft .long, ensiform, strongly ribbed: stem $1 \frac{1}{2} \mathrm{ft}$., subterete; heads on long

1174. Japanese Iris $\left(X^{1 / 2}\right)$.

Iris larigata, better known \& I. Kampferi. No. 28.
peduncles: tube 1 in . long: limb bright lilac; outer segments $\mathbf{2}$ in. long, obovate: claw half as long as the blade, streaked with violet, with a wary edge aud a large, laciniate, white and lilac crest running up the claw and half up the blade: inner segments spreading, nearly as
large, piain lilac, short-clawed. Sent to Eu. in 1872 by Dr. Hance. Cult. in China and Japan. B.M. 6118. F.S. 22:228:. Gt. 716. Gn. 50:1056.
34. Milesii, Baker. Lis. $7-8$ on the stem, 2-3 $\mathbf{f t}$. Iones
and $2-3 \mathrm{in}$. broad : stem $2-3$ ft. high, branched, bearing 4-5 heads: fls. bright lilac, lasting only a day; outer segments oblong-cuneate, claret-purple, whitish in the center, spotted and veined with lilac, furnished with a deeply laciniated yellow crest ; inner segments oblong, spreading; style erests deeply toothed. Near I.tectorum, but inferior. Hima. layas. B.M. 6889.
35. Japónica, Thunb. (I. Chinensis, Curt. I fimbriata, Vent.). Fif. 1176. Lus. ensiform, $1-1 \frac{1}{2} \mathrm{ft}$. long: stem slender, as long as the Ivs., with a raceme of lilae fls.: tube $3 / 4$ in. long: outer segments $1-1 \frac{1}{2}$ in. long, with erimped margins, yellow on the claw, crested; inner segments smaller. Winter. Japan and China. B. M. $37 \%$ Gt. 511 . Gn. 28:503. J. H. III. 31 : 185. A. G. 12:704. F.R.2:149.An evergreen greenhouse plant.

1175. Iris tectorum ( $\times 1 / 4$ ). No. 33.

## sUbGENUS pseldevansia.

36. Alberti, Regel. Lrs. ensiform, glaucous, $11 / 2-2 \mathrm{ft}$. long: stem exceeding the lvs., bearing $5-6$ heads in a loose panicle; outer segments obovate cuneate, $\boldsymbol{y}$ in. long, bright lilac, with a rudimentary crest and a dense beard of white, yellow-tipped hairs, veined; inner segments as long and broader than the outer, with convolute claws, lilac. Discovered in Turkestan by Dr. Albert Kegel. Gt. 999. B.M. 7020.

## SUBGENERA POGONIMIS AND REGELIA.

A. Duarf: le's. generally less than $9 \mathrm{in} . l o n g$.
B. Pedicel obsolete, or very short.
C. Perianth tube 2 in. or more
in length....................37. pumila
cc. Perianth tube 1 in or 38. pseudo-pumila in lenyth.
D. Stem 6 in. or more in
length.
E. Fls. blue, purple, riolet, etc.
F. Spathe ralues green or nearly so.
G. Les. linear.....39. gracilis GG. Les. ensiform...40. Balkana
41. biflora
F. Spathe ralues en-
tirely scuriose...42. Cengialti
Ee. Fls. yellow ............
. virescens
44. Intescens

DD. Stem 2 in. or lessin leugth.
E. Fis. blue ..............41. biflora EE. F'ls. yellow............45. Chamæiris
Bb. Pedicel as long as the ovary.
c. Sheaths not splitting into
fibers ..
cC. Sheaths splittia Tull.
generally more than
1 ft.long
B. Stem 2-6-headed.
c. F'ls. yellow ................... 48. variegata
49. flavescens
CC. Fls. blue, violet, etc., or white.
D. Stem short, searcely over-
toppiny the lus.........50. aphylla
51. lurida
52. Benacensis
53. Kochii

DD. Stem tull, much overtopping the lis.


EE. Sputhe ralues green, or scarious only on the upper portion.
F. Spathe values
tinged wilh pur-
ple
le................ 58. neglecta 59. hybrida 60. Germanica

PF. Sputhe valces not
tinged with pur-
ple ...............61. squalens 62. sambucins 63. Biliottl 64. Cypriana

вв. Stem 1-headed.
c. Spathe valves entirely scar-
ious th the flowering time.65. atroviolacea
cc. Spathe ralves yreen.

> D. Les. thin, liueur .........66. Suwarowi DD. Les. ensiform ..........67. Leichtlini 68. Korolkowi
37. pùmila, Linn. (I. grìcilis, E. Berg.). Fig. 1177. Lvs. linear, $2-4 \mathrm{in}$. long: stem none or very short, 1 headed: spathe valves scariose at the tip: fls. fugitive, sellow, or bright or dark lilac: limb 2 in. long. A dwarf, hardy plant, spreading rapidly in borders. B.M. 9. L. B.C. 16:1574. - Var. alba, Hort., pure white. Var. atroviolàcea, Hort., velvet-purple. Var. azưrea, Hort., azureblue.
38. pseudo-pùmila, Tineo (I. Panormitàna,Tod.). Les. ensiform, glaucescent, $6-9 \mathrm{in}$. long, narrowed suddenly to an oblique tip, 1-headed, $6-8$ in. long, 1 -fd.: tube $2-21 / 2 \mathrm{in}$. long: spathe valves green: fls. varying from yellow to bright lilac; outer segments oblong unguiculate, $2-21 / 2 \mathrm{in}$. long; inner segments ratber broader. Mts., Sicily.
39. grácilis, Maxim. Tufted liss. grass-like, shorter than the stem: stem 1 ft . long, 1 -headed: fl . pale lilac; outer segments obovate-oblong, with a yellow beard; inner segments oblong-emarginate, with a short claw. Western China.
40. Balkàna, Janka. Rhizome stout: tufts crowded: lvs. ensiform, glaucescent, 3-4 in. long: stem $6-9$ in. long, 1-headed: spathes 1-2-fld.: fls. dark claret-lilac; outer segments nborate-cuneate, 2-3 in. long; beard dense, white, tipped with lilac; inner segments erect, oblong. Early May. Balkans.
41. biflòra, Linn. (I. frìgrans, Salisb. I. nudicaìlis, Hook.). Lres. 6-9 in. long: stem 2-10 in. long, compressed: fls. bright violet-purple; outer segments obo-vate-cuneate, $2-21 / 2$ in. long, with dark veins and a beard of long, yellow hairs. Portugal and N. Morocco. B.M. 5806 .
49. Cengiálti, Ambrosi. Resembles $I$. pollida, of which it is probably merely a dwarf variety: lise. 6 in. cong: stem about as long as the lvs.: fls. bright lilac; outer segments with a white beard. May, June. Lombardy and S. Tyrol. - Often spelled I. Ciengialti.
43. viréscens, DC. Lrs. 8-9 in. long: stem 9-12 in. long, bearing $2-3$ reduced lvs. : outer segments obovatecuneate, $2-21 / 2 \mathrm{in}$. long, 1 in . broad, greenish yellow, veined at the claw with purple; inner segments oborate, dull yellow. April. Valais.
44. Iutéscens, Lam. Lrs. 6-9 in. long: stem equaling the lvs.: fis. pale yellow ; outer segments oboratecuneate, $2-21 / 2 \mathrm{in}$. long, pale yellow, streaked with pale brown, undulate; inner segments broader, suddenly
narrowed to a claw, which is streaked with purple, crenulate. S. France. B.M. 2861.-Var, Statellæ, Tod. Spathe valves shorter, less pointed, and more scariose: segments broader. Sicily, B.M. 6894.
45. Chamseiris, Bertol. (I. Olbiénsis, Henon). Liss. $3-4 \mathrm{in}$. long. $1 / 2 \mathrm{in}$. broad : stem very short: tls. bright yellow; outer segments obovate-cuneate, tinged and veined with brown: inner segments obleng. May. Italy, France. - Var. Itálica, Parl. Fls. dark violet.
46. arenaria, Waldst. Les, few in a tuft, linear, 3-4 in. long: stem short: limb bright yellow: outer segments oblong cuneate, $11 / 4 \mathrm{in}$. long, $1 / 2 \mathrm{in}$. broad; inner segments smaller: very distinct. Kare in cult., but good for dry soils. - Harily. Var. minor, Hort. Smaller. B.R. $7: 549$.
47. Hlavisaima, Pallas. Lrs. thin, linear, 4-8 in. long: stem 1-6 in. long: limb bright yellow: outer segments $1-1 \frac{1}{2} \mathrm{in}$. long, $3 / 4 \mathrm{in}$. broad ; inner segments oblong, narrower. - Var. Bloudovii, Led. (I. Blouddivi, Hort. More robust, with broader livs., a larger stem and larger As. Siberia and Mongolia.

1176. Iris Japonica. A crested flower $\left({ }^{1 / 6}\right)$. No. 35.
48. variegata, Linn. Lrs. 1-1 $1 / 2 \mathrm{ft}$. long: stem equaling the lrs.: outer segments oblong-cuneate, claretbrown toward the tip, much reined with brown on a yellow ground; beard bright vellow; inner segments erect, oblong, bright yellow, veined. Austria, Turkey and S.

Russia. Long in cult. B.M. 16. Gn. 14:135; 521143 (var. aurea). Var. honorábilis, Hort. Yellow, shaded with brown.
49. £lavéscens, DC. Lvs. 13-15 in. long: stem 2-3 ft. high: Hs. bright lemon-yellow; outer segments obovatecuneate, $21 / 2 \mathrm{in}$. long; beard deep yellow; inner segments obovate, pale yellow. Bosnia to Caucasus and Armenia. B.R. 31 :35 (as I. imbricata).
50. aphylla, Linn. (I. furcàta, Bieb. I. Bohèmica F. W. Schinidt. I. IUngarica, Waldst. I. falcata, Tausch.). Lvs.glaucescent, 6-12 in. long: stem equaling the lys., sometimes forked low down, leafless: spathe valves greenish: fls. dark lilac; outer segments obovatecuneate, $2-2 \frac{1}{2} \mathrm{in}$. long; beard white; inner segments broader, obovate. E. Eu. B.M. 2361. B.R. 10:801. L.B.C. 20:1970. - Nos. 50 to 53 cannot be easily separated from each other by the material available. They are distinguished by slight diferences in the lvs., spathe valves, beard, and form of the segments, as described in the text.
51. lùrida, Ait. Les. 1 ft . long, slightly slaucous: stem not much orertopping the lis., 3-1-headed: spathe valves green, very ventrieose: outer segments obovatecuneate, reflexed from half-way down, dead purple at the top, veined with dull purple on a yellowish ground below; beard yellow; inner seqments broader, dull purple. Southeastern Eu. B.M. 986 .
52. Benacénsis, Kerner. Lvs. 1 ft . long: stem about as long as the lvs.. 3 -headed: spathe valves lanceolate, herbaceous, tinged with purple, scarious at the lip: outer segments obovate, dark violet, veined with brownviolet; beard yellowish white; inner segments oblong, clawed, bright violet. Limestone rocks, s. Tyrol.
53. Kòchii, Kerner. Lvs. $12-15 \mathrm{in}$. long, glaucescent : stem as long as the lis., 3-1-headed: spathe valves lanceolate, the outer herbaceous: outer segments obovate, dark violet; claw veined with brown; beard yellow; inner segments obovate, clawed, dark violet. Istria, near Trieste and Rovigno.

1177. Iris dumila ( $\times 1 / 3$ ). One of the best dwarf species.
54. Florentina, Linn. Rhizome fragrant when dried (orris-root): lvs. $1-1 / 1 / \mathrm{ft}$. long: stem exceeding the lvs. fls. White; outer segments $3 \frac{1}{2}$ in. long, tinged with lavender; claw yellowish reined with purple; inner segments as large, white. Cent. and S. Eu. B.M. 671. Gn. 16:190 and 5l, p. 295. - Flowers early, with I. Germanica. Hardy. Var. álbicans, Lange. Pure white. Spain to Cyprus. Var. álba, Hort. Pure white.
55. pállida, Lam. (I. Junònia, Schott \& Klotschy. I. A siática, Stapf. I. sícula, Tod.). Les. 11/2ft. long: stem much exseeding the $1 \mathrm{~s} ., 2-3 \mathrm{ft}$. high: fls. fras rant, vioiet, rarely white ; outer segments obovate-cuneate, $31 / 2$ in. long; inner segments orbicular. Differs from $I$. Germanica by its scented fls., which appear a mon^h
later. B.M. 685. Gn. 14:8.) ; 33:631; 50, p. 119. G.M. 38:441. - Var. speciosa, Hort. Tall, with large, light blue Howers.
56. plicàta, Lam. $\therefore$ aphýlla, var. plicàta, Ker.). Rhizome, stem andlvs. as in I. pallida: outer segments obovate, pure white in the center, conspicuously veined with lilac towards the margin and on the claw; inner segments very plicate, white tinged with lilac on the margin. B.M. 870. - Known only w cult. Probably derived from $I$. pallida.
57. Swértii, Lam. ( $I_{.}$aphýlla, var. Suértii, Ker.). Much d. rfer than $I$. F'lorentina and I. pallida. Stem 1-11/2 ft. long: spathe valves flushed with riolet: outer segments $2-91 / 2 \mathrm{in}$. long, obovate-cuneate, white, faintly veined and flushed with parple on the margin; inner segments as large, much crisped, pure white, except the purple keel and margin. Fls. May and June, long before I. pallida.-Fragrant. Known only in eult.

The following seven species ( $58-64$ ) are closely related, the distinetions between them being mainly those of degree. Some of them are known only in cultivation, and are no doubt derived forms; all are connected by numerous intermediate garden forms:
58. neglécta, Horn. Lvs. slightly glaucous, 12-15 in. long, ensiform, purple at the base: stem taller, $11 / 2-$ 2 ft. , many-fld.: spathe valres green below at the flowering time, much tinged with purple: outer segments obovate-cuneate, very obtuse, 2 in. long, violet-blue on the margin, whitish reined with blue in the center; beard yellow; inner segments erect or connivent. oblong, as large as the outer, pale lilac. June. B.M. $243 \overline{5}$. -Known only in cult.
59. hỳbrida, Retz. (I. amiena, DC.). Differs from $I$. neglecta by its longer spathe valves, and its pure white or faintly lilac-tinted outer segments and style branches. June. - Known only in eult.
60. Germánica, Linn. Fig. 1178. Lvs. 1-1 $1 / 2 \mathrm{ft}$. long: stem 2-3 ft.high : spathe valves tinged with purple: outer segments obovate-cuneate, 2-3 in. long; beard yellow; inner segments as large, obcrate, connivent. Central and S. Eu. Early May, June. B.M.670. B.R. 10:818. I.H. $40: 182$ (var. Gypsea, pure white). Gn. $48: 1033$ (dark purple var.). - Var. reticulàta subérba, Hort. Outer segments purple, veined; inner segments lavender.
61. squàlens, Linn. Lvs. glaucous, 1-11/2 ft. long: stem 2-3 ft. high : spathe valves subscarious: outer segments obovate-cuneate, upper part plain lilac-purple; claw yellow, reined with lilac; beard yellow; inuer segments as large, obovate, dull lilac and yellow. or brownish and yellow. Central Eu. to Caucasus. B.M. 787. - Many of the German Irises of cultivators belong to this form. Var. Jacquesiàna, Hort. Outer seginents dark red-riolet, yellow at base; inner segments tawny yellow. Late. One of the best.
62. sambncina, Liın. Differs from I. squalens by its less robust habit, narrower segments and elder-like odor. The outer segments are colored and veined with claret, not lilac, purple; inner segments emarginate. Late May. Central Eu. B.M. 187.- Tall and handsom-
63. Biliotti, Fost. Les. darker green, more distinctı: striated, and more rigid than in $I$. Germanica: stem several-headed, $21 / 2-3 \mathrm{ft}$. long: spathe valves ventricose: outer segments obovate cuneate, reddish purple, with many dark reins; beard white, tipped with yellow; inner segments orbicular unguiculate, 2 in . broad, bright blue-parple. Late June. Trebizond.-Very near I. Germanica.
64. Cypriàns, Foster \& Baker. Plants tall, the branching stem being 3 ft . high, bearing many tls. $6-7 \mathrm{in}$. in diameter: outer segments obovate cuneate, reddish lilac, with thin, darker veins; claw whitish, with greenish brown veins; inner segments oblong-unguiculate, lilac, spotted with reddish brown on the caw. June, July. Cyprus. - Very near I. pallida, from whieh it differs only by the longer navicular spathe valres, which are not entirely scariose at the flowering time, and the more oborate segments.
65. atroviolàcea, Lange. Lrs. ve: glaucous, 1 ft . long: stem equaing the lrs.: spathe entirely scariose : Hs. dark violet, very fragrant; outer segments obovate-
cuneate, 3 in. long; beard white, tipped with rellow; inner segments as long, 2 in . broad, orbicular. Late May.-Known orly in cult. Probably a hybrid between I. Chameiris and I. pallida.
66. Suwarowi, Regel (I. linedta, Foster). Lrs. thin, linear, 1 ft . long, pale green : stem 1 ft . high, bearing 2-3 reduced lvs. and a single head of fls.: onter segments oblong-cuneate, $1 / 2 \mathrm{in}$. broad, 2 in . long, elosely veined with oblique lines of claret-purple on a greenish yellow ground; beard blue; inner segments oblong, with a long claw, often faint!y bearded, veined and tinted on the margins with elaret-purple. B.M. 7029.
67. Leichtlini, Regel (I. ridga, Foster). Rhizome slender, wide-areeping: lvs. in tufts, not contiguous, ensiform, $1-1 \frac{1}{2} \mathrm{ft}$. long, scarcely glaucous: stem $11 / 2 \mathrm{ft}$. long, 1 -headed, bearing $2-3$ fls, and 2 reduced lus.: outer segments $2-21 / 2 \mathrm{in}$. long, oblong-cuneate, bright liiac, with a whitish beard; inner segments oblong, as broad as the outer, claw also bearded. Turkestan. Gn. 52:1136. - Var. cùga, Hort., has larger flowers.
68. Korolkowi, Regel. Rhizome short-ereeping: lys. glaucous, 1 ft . long: stem 1 ft . long: limb $21 / 2-3 \mathrm{in}$. long, milk-white, reined with red-brown in the type: outer segments oblong, 1 in . broad, with a brown beard and a brown patch in the throat; inner segments as large, erect. May. Turkestan. B. M. 7025. Gn. 2s:517. G.C. III. 4:37. - Very hardy. One of the earliest. Variously colored lilac, etc., in cult. Var. conncolor, Hort. Purplish lilac, reined darker. Var. Leichtliniàna, Hort. Creamy white, with brownish veins. Var. violàcea, Hort. Violet, with dark veins.

SLBGENCS ONCOCYCLCS.
A. Outer segments ligulate, much reeluced 69. paradoxa sa. Outer segments not much smuller then the inner.
B. Lis. pale green.
 71. Mariæ

BB. Lis. glaucous.
C. Lis. ensiform..................... Bismarckiana 73. Lortetii 74. atropurpurea
cc. Les. linear.
D. Stem rery short or none.. $\bar{i}(\mathrm{I}$. Iberica

DD. Stem oter 6 in . long.......7. Susiana
78. Gatesii 79. Nazarena 80. lupina
69. paradoxa, Ster. Plants dwarf: lvs. linear, 3-6 in. long: stem 2-6 in. high: fl. large; outer segments reduced to a mere claw, dark, covered with a dense pile; inner segments 2 in. long, orbicular, lilac to white. Mts., Georgia and N. Persia. B.M. 7081. Gn. 32:628; 46, p.173. Gt. 386. - A flower with singular combinations of color. Grows in dry situations, but requires shelter in winter. Long cult., but not common.
70. Sarii, Schott. Rhizome short, stout: lvs. about 6 in. long, finally 1 ft ., linear-complicate: stem $3-6 \mathrm{in}$. long, with 2 reduced lanceolate lvs.: pedicel very short: tube 1 in. long: fis. bright lilac, large as in $I$. Susiana: outer segments obovate-cuneate, $1 / \frac{1}{2}-2$ in. broad, reflexed from half way down; inner segments oblong, with a short claw. Very near I. Iberica, from which it differs chiefly by its bright lilac fls. Asia Minor. Var. lùrida, Boiss. Outer segments with many brown-black spots and lines on a pale brownish ground. B.M. 6960.
71. Mariæ, Barbey (I. Mélene, Barbey). Lrs. very falcate, $3-4$ in. long: stem $3-6$ in. long, with 2-4 short los.: limb pale lilac, with flne red-brown reins: outer segments orbicular, $21 / 2$ in. long, with a dark purple patch at the throat; inner segments larger, more rounded. Desert between Egypt and Palestine. Discovered 1880. Git. 42, p. 488; Supp. Pl. J.H. III. 2s:302. G.M. $37: 215$.
72. Bismarckiana, Hort. Damman. Habit of $I$. Susiana, and fls. as large: lvs. 8 in . long: stem 1 ft . high: outer segments orbicular, ash-gray, with darker veins
and a dark spot at the base; inner segments sky-blue, with blackish veins. Lebanon. G.M. $40: 250$.
73. Lortétii, Barbey. Lrs. less than 1 ft long: stem short: limb 4 in. long: outer segments obovate, 3 in . broad, whitish, finely veined and spotted with red-

1178. Iris Germanica ( $\times 1 / 3$ ).

Typical of many species in which the beard is confined to the midrib.
brown, with a dark spot at the throat: inner segments orbicular, connivent, pale gray, with red-brown veins. -Quite hardy N. B.M. 7251. Gn. 43:897; 48, p. 337. Gt. 42, p. 490. G.C. III. 12:153. G.M. $36: 386 ; 49: 250$.
7. atropurpùrea, Baker. Lrs. 6 in. long: stem 4-5 in.: outer segments oblong, 2 in. long, purplish black, without reins, with a yellow patch on the throat and a beard of yellow, black-tipped hairs; inner segments larger, of the same color, with discernable veins: style crests small. Easily distinguished by its rather small, uniformly colored flowers. Gt. 42, p. 489. Pl. Supp.
i5. Var. atrofusca, Baker (I. atrofisca, Baker). Lus. pale green, 1 ft . long: stem 1 ft . long, hidden by the sheathing innerlvs.: limb dark purple-brown; outer segments obovate, 3 in. long, with a dark spot on the
throat; inner segments larger and broader: style branches very convex; crests large. B.M. 7379. Gn. 48, p. 8; 50:1089 and p. 333.
76. Ibèrica, Hoffim. Dwarf, with a large flower: lvs. $3-6$ in. long, narrow, very falcate: stem 3-4 in. long: outer segments rounded-obovate, 2 in. broad, pale brown, closely veined and blotched with purpie-brown and with a shining dark patch on

1179. Type of Oncocyclus IrisIris Susiana ( $\times 1 / 3$ )
Type of diffusely bearded flower. the throat ; inner segments connivent, pure white, faintly veined with a few wine-red spots at base. Caucasus and mountains of Ar menia and Persia. B.M 5847. Gt. 386 and $i 23$. F.S. 19:1963. R.H. 1873 : 3 30. Gn. 10:49. I.H. 19 106. G.C. II. $11: 693$. F 1873:25. F. M. 1875: 168 - Hardy.
77. Susiàna, Linu. Mourning Iris. Fig. 1179. Lis. very glau cous, 6-9 in. long, nearly 1 in. broad : outer seg. ments obovate, 3 in. long, brownish purple, veined and spotted with blackbrown, with a brown beard; inuer segments brownish white, spotted with violet-brown and black. Asia Minor and Persia. B. M. 9:. F. S. 11:1087, 1088. R.H. 1859 p. 322, 323. Gn. 32, p. 193 and 39:800. The best known of this group. Said to have been in troduced from Constan tinople in 1753. Name from a city in Persia. Not entirely bardy North, but a good potplant. Var. màjor, Hort Bluish, tinted brown.
78. Gatesii, Foster Habit and foliage of $I$. Susiana: outer seg ments orbicular, 3 in. broad, crean - white, sometimes sky-blue, corered with a network of fine reins, giving them a light gray tint; inner segments larger, pale purple or yellow. Dry regions, Armenia. Gn. 43: 897, and 52, pp. 88 and 279. G.C. III. 8:17. A.G. 13:60.--The largest-fld. of its subgenus. Fls. about twice as large as in I. Susiana. Quite hardy.
79. Nazarèna, Hort. (I. Sìrii, var. Nizarèma, Fost.). Foliage and stem of $I$. Susiamu, and tis. as large: outer segments obovace, straw-colored, netted with red and brown veins and blotched with a patch rf black-crimson near the claw; beard dark purple, with a bare streak running down the claw; inner segments cream-white with thin blue veins. Palestine.-Foster described this plant without definitely determining its systematic position. It is related to $I$. Sarii and to $I$. Bismerckiena, and differs from the other members of this section by its long, creeping, stoloniferous rhizome. See Gn. 43, p. 133. I.H. 4", p. 78. Gt. 42, p. 487 and supp. pl.
80. lupina, Foster. Les. 1 ft . long: stem 6 in . high, with 2 lvs . and 1 fl .: outer segments obovate-cuneate, yellowish green, with red-brown veins and a velvety dark brown patch on the throat; claw with a yellowish beard; inner segments orbicular, with a short claw, colored like the outer; style crests large, toothed. Turkish Armenia, where it is called "Wolf's Ear," hence the specinic name. Gn. 43:897 and 54, p. 59.

## subgents xiphion.

A. Stem 1 ft. or more in length.
в. Tube obsolete.
C. Le's. subterete...............81. Xiphium
C.C. Lis. linear complicate....82. xiphioides

B8. Tuhe more or less developed.
C. Lis. linear complicate....83. Tingitana
Cc. Lis.slender, terete or sub-
terete.
D. Pedicel $11 / 2 \mathrm{in}$. long ...84. filifolia

DD. Pedicel short...........85. juncea
86. Boissieri

AA. Stem very short or none.
B. Lis. acutely quadrangular, very short at the flowering
time......................... 87 . reticulata
BB. Lis. acutely quadrangular, much overtopping the fl...88. Histrio
89. Vartani

BBi. Eis. tereteor linear subterete.
c. Bulb tunics composed of
parallel fibers.
90. Bakeriana
cc. Bulb tunics reticulated...91. Kolpakowskiana
81. Xiphium, Linn. (I. Hispánica, Hort. I. spectaililis, Spach). Spanish Iris. Fig. 1180. Lvs. about 1 ft . long: stem 1-2 ft. high : pedicel long: tube obsolete: outer segments $2-21 / 2 \mathrm{in}$. long, violet-purple, rellow in the center; inner segments as long, but narrower. Late June. Spain and N. Afr. B.M. 686. Gn. 20:308 and 30, p. 385. - Long cult. and well known. Harly in N. J. in protected situations. Var. Lusitánica, Ker. (I. Lusitínica, Hort.). Fls. yellow. B.M. 679.

1180. Iris Xiphium $(\times 1 / 4)$. Type of bulbous Iris.
82. xiphioldes, Ehrh. (I. Ánglica, Hort.). Exglish Iris. Lus. about 1 ft : stem 1-2 ft.: Hs. dark violetpurple in the typical form: outer segments orbicular, rellow in the center; inner segments shorter, oblong. French and Spanish Prrenees. B.M. 68テ̈. Gn. 30, p. 384; 31:586.
83. Tingitàna, Boiss. \& Reut. Stem stout, 1-2. headed, about 2 ft . of the stout, falea. hidden by the sheathing bases stem the $\quad .$, of which there are $6-7$ on the outer seoments 3 in 1 ft . long: fls. $2-3$ in a cluster; on. with an obovate, reftex blade, pale lilae, yellow in the center, and with a bright yellow keel down the claw; inner segments shorter, oblanceolate, ereet, incurved. Tangiers. B.M. 675. Gn. $36: 720$. G.M. $40: 377$.
84. filifolia, Boiss., not Bunge (Xiphion filifòlium, Klait.). Slender and leafy, about 2 ft . high, bearing 1-2 bright violet-purple fls. $2-21 / 2 \mathrm{in}$. in diameter: lvs. about twice as long as the stem, weak, flexuous, convolute: outer segments with a narrow claw expanding suddenly into a reflexed, suborbicular lamina, bright yellow down the center; inner segments erect, obovate-lanceolate, erose, notched. S. Spain. B.M. 5928.-Int. 1869. Hardy.
85. júncea, Desf. (Xíphion júnceum, Klatt.). Stem slender, erect, rigid, $9-18 \mathrm{in}$. high, bearing 1 (rarely 2) golden yellow flowers, 2-3 in. in diam.: lrs, rigid, the lower 1 ft . long: outer segments with an orbicular blade shorter than the cuneate claw, recurved and reined with brown; inner segments erect, oblanceolate, May, June. Algeria, Tunis, etc. B.M. 5890. Gn. $54: 1200$.
86. Boissièri, Henriq. Lrs. 1 ft . long: stem about a foot long, bearing few, reduced lanceolate lvs. and a single flower: outer segments $11 / 2 \mathrm{in}$. long; blade obovate, reflexed, as long as the cuneate claw, bright lilac, with a yellow keel running down the claw, slightly bec.ided; inner segments as long as the outer, erect, obovate, clawed, bright lilac. June. S. Portugal. B.M. 7097.
87. reticulàta, M. Bieb. Lrs. 2 in a tuft, short, erect, elongating to $1 / 2 \mathrm{ft}$. : stem very short: fls. bright purple, very fragrant; outer segments 2 in. long, yellow at the claw, with a low yellow crest; inner segments narrower. Mid-April. Asia Minor and Persia. B.M. 5577. F. S. 5 , pp. $507-9$. R. H. 1890, p. 133. L. B. C. 19:1829. Gt. 779. Gn. 20: 295; 54, p. $4 \overline{1}$. G.C. II. $11: 501 ; 21: 217$. F. 1860:161. Var. histrioldes, Foster (I. histrioides, Hort.). Outer segments much mottled with white and lilac on the claw and broad, orbicular blade. Asia Minor, Persia, and the Caucas. Gn. 42:880. J. H. III. 34:111. -Early-flowering, and fine for pots. Var. Krelagei, Regel. Fls. red-purple, varying greatly in shade; claw conspicuously reined. -The common wild form of the Cancasus. Nearly odorless. Var. cœrùlea, Hort. Azureblue. Var. cyanea, Hort. Blue. Var. major, Hort. Like the type, but larger.
88. Histrio, Reichb. f. (Xíphion Histrio, Hook. f.). Plants tufted, slender and flaceid: lvs. deeply grooved on each face, 1 ft . long: stem half as high, very slender, 1 -fld.: fls. 3 in. in diameter; tube $3-4$ in. long, blue above; outer segments obovate-spatulate, spreading. deep blue, with a yellow line in the center bordered with white and spotted and shaded with blue; inner seginents erect, oblanceolate, blue. Related to I. reticulata, differing only in its paler, odorless fls., which are produced several weeks earlier. Feh. Mts. of Palestine. B. M. 6033. Gn. 9, p. 29, and 33:653. G. C. II1. 12: 129 ; 21:105.
89. Vártani, Foster. Liss. usually 2, 8-9 in. long, slender finally longer: stem very short, hidden: tube $21 / 2$ in. long: outer segmeuts with a narrow claw, suddenly enlarged into an ovate-lanceolate blade; pale, slaty lilac, with darker veins and a crisp yellow crest down the claw; inner segments erect, almost linear-lanceolate, pale lilae. Dec. Palestine, near Nazareth. B.M. 6942.Not scented.
90. Bakeriàna, Foster. Lvs. 3-4, 6-9 in. long. finally a foot or more after flowering: fls. single, on a short peduncle, fragrant; outer seginents with a long. obovateelliptical claw, and a small, ovate, reflexed blade, intense violet, creamy in the center, with a yellow streak down the claw; inner segments shorter, erect, oblanceolate, lilac ; style crests large. Feb., Mar. Armenia. B.M. 7084. Gin. 37:753. G.C. III. 7:293, and 21:103. J.H. IlI. 34 :177. G.M. 40:118.
91. Kolpakowskiàna, Regel (Xiphion Kolpakowskidinum, Baker). Lvs. 5-6, wrapped round by a sheath at the base, very short at the flowering time, but growing
longer: scape very short, 1-fld.: outer segments with a long, erect claw and an ovate, acute blade, deep violetpurple with a yellow keel down the claw; inner segments oblanceolate, erect, pale lilac. Mts., Turkestan. Very near 1. rcticulata, fls. at the same time, and is sweet-scented. B.M. 6489. Gn. 17, p. 75, and 33:653.

## SUBGENUS GYNANDRIRIS.

92. Sisyrinchium, Linn. (Xiphion Sisyrinchium, Baker. Morea Sisyrínchium, Ker. I. maricoides, Regel). Stem 6-12 in. high, stout or flexuous, 1-3headed: lvs. 2 , slender, as long as the stem: fls. fugitive, lilac-purple, with a yellow, oblong spot on the outer segments, which are oblong spatulate; inner segments narrow-lanceolate, erect, pale: style crests large, lancedeltoid. Widely spread through S. Eu., Afr. and Asia. Easily killed by frost. B.M. 1407 (not good), and 6096. In I. maricoides, Regel, the filaments are said to be distinet from each other and from the style.

## SUbgende juno.

A. Les. hollow, tetragonous, produced after the flowers.....
AA. Les. linear complicate, short
AAA. Les. lanceolate, very short at the flowering time.........
aAAA. Lis. lanceolate, falcate at base; 3-9 in. long.
B. Stem 1-2-headed: inner. segments pendulous. c. Li's. with a distinct white margin........ 96. Fosteriana
97. all bright green... Sindjarensi CC. Lis. all bright green... ments spreading......... 98. Palæstina 99. alata

BBB. Stem B-6-headed: lis. :-G or 9 ir . long.
c. Les. with a hormy border...................... 100. Caucasica cc. Les. without a hormy border. ..................101. fumosa
102. orchioides
93. Dánfordiæ, Boiss. Fl. stems 2-4 in. high: lrs. finally a foot long: fls. bright yellow, $1 \frac{1}{2} \mathrm{in}$. in diameter; outer segments with an orbicular blade spotted with brown; claw cuneate ; inner segments reduced to minute, spreading, subulate teeth: style crests large. Spring. Cicilian Taurus. B.M. 7140.-Fragrant.
94. Pérsica, Linn. Bulb ovoid: lvs. 4-5, $\mathbf{Q}^{-3}$ in. long: stem short, 1 headed: tube $2-3$ in. long: limb pale lilac: outer segments with an orbicular blade with a dark purple blotch, an orange keel, and purple lines and spots; elaw auriculate; inner segments small. Should be lifted in summer. Asia Minor and Persia. B.M. 1. Gn. 11, p. 207 ; $14: 156 ; 33: 653 ; 54$, p. $103 \& 470$. F.S. $10: 1045$. G.C. III. 7:5̄̃7. Var. purpurea, Hort. A bright purple variety. Fine. Krelage.
95. Rosenbachiàna, Regel. Lu゙s. 4-5, finally 6-8 in long: stem short, 1-3-headel - outer segments obovatecuneate; blade reflexed, white at the tip, deep purple in the middle and creamy below, with a yellow keel and dark lilac veins; inner segments spreading or reflexed, oborate, pale lilac. The color of the ths. is very variable. Mts., Turkestan. B.M. 7135. J.H. III. 28:189. G.C. III.亿:57̄. G.M. 34:171.
96. Fosteriàna, Aitch. Les. 4-f in. long: stem short: outer segments yellow, streaked with black, obovatecuneate; claw not auriculate; inner segments shorter, obovate, bright purple. March. Afghan and Russian boundary. B.M. 7215.-Very different from the allied species $I$. orchioides, $I$. Sindjarensis, etc., on account of the difference in color of the sepals and petals.
97. Sindjarénsis, Boiss. \& Haussk. Les. about 8, crowded, 1 in . hroad: stem short: ds. slaty lilac; outer segments with an obovate, reflexed blade narrowed to a claw, with darker lilac lines and a small yellow crest; inner segments oblong, clawed. Feb. Deserts of Mesopotamia. Plants half a foot high. B.M. 7145. G.C. III. 7:365. J.H. III. $28: 2: 27$.
98. Palæstina, Boiss. Lrs. 3-6 in. long: stem very short: fls, pale yellow, tinged with lilac; outer segments oblong, upper $1 / 4$ reflexed; claw auriculate; inner segments minute, narrowly lanceolate. Fls. in winter. Mts. of Palestine. Very near I. Cuucasica, but distinguished by its longer acuminate spathes and the color of the fls.
99. alàta, Poir. (I. scorpioldes, Desf.). Lvs. about 6, plane, 6-9 in. long: stem very short: outer seginents $3-4$ in. long, oborate-cuneate, bright lilac, variegated with white, and haring a yellow keel down the claw; inner segments oborate-unguiculate, spreading from the base of the outer: style crest large, laciniately toothed. Winter-flowering. Plants very dwarf. Spain to Sicily and Algeria. B.R.22:1876. Gn. 10, p. 579 and 54, p. 102. G.M. 35:614.
100. Caucásica, Hoffim. Lrs. about 6: stem short: fls. pale or bright yellow; outer segments with an ovate blade and a very broad rhomboidal claw, with small au-

1181. Iris orchioides ( $\times 1 / 4$ ). A good species for pots.
ricles and a toothed or ciliated crest; inner segments oblanceolate. Dwarfer habit than I. orchioides. Caucasus to Asia Minor, etc.
101. fumosa, Boiss. \& Haussk. Lrs. about 10 : stem 6 in . long: outer segments spatulate-oblanceolate, recurved above the middle, claw with a yellow crest; inner segments minute, spatulate, toothed. The fls. are greenish yellow, shaded with smoky gray. Dry fields, Syria.
102. orchioldes, Carr. Fig. 1181. Lrs. about 6: stem 12-15 in. long, with distinct internodes: spathes 1-fld.,2in. long: Hs. yellow; onter segments with an obovate blade, and a purple blotch on each side of the crest of t' e claw; inner segments oblanceolate, less than an inch long, and generally sharply deflexed, with a long filiform claw. Spring. Var. oculata, Maxim. Blade of the outer seg.
ments more spotted. Var. cærùlea, Hort. Fls. bright lilac, with a yellow blotch on the blade of the outer segments. Mts., Turkestan. B.M. 7111. Gn. 53, p. 482. R.H. 1880, p. 337.

Of the following names, which are found in catalogues, no complete description is available: 1. Assyriaca. Bluish white. -I. augustina. Deep yellow, marked with maroon. Gard. form of I.variegata.-I. Battandieri. White. Algeria. Bulbous.-I. Bosinaca. Yellow. Rhizomatous.-I. brachysiphon. Pale blue. Bosniaca. rellow. Rhizomatous.- 1 . brachysiphon. Pale blue. Rhizomatous. - I. Brittanicus. Pale pink, with the outer seg-
ments veined with purple. Gard. form of I. squalens. -1. ments veined with purple. Gard. orm of squalens. -1 . Candiana. Outer segments redulish purple; inner segments ight
lavender. Germanica.-I. Coreána. Like I. Sibirica, early and a lavender. Germanica.-I. Coreuna. Like I. Sibirica, early and a free bloomer.-I. edina. Light purple and violet. Var. of I, neglecta.-I. Eggeri. Blackish brown. Oncocyclus.-I. Fisheri. Apogon.- I. flà va. Pale yellow. Germanica.-I. Gladstoniana.
Hybrid of I. atropurpurea. Pale black, with yellow markings.I. grácilis, Lichten. Morea tenuis. See also index given above. I. ignititia, probably Ignacite, a form of I. neglecta. Lilac, with the outer segment shaded purple.-I. ligularis. Purple. Germanica. - I. mónspur, Foster $=$ I. Monnieri $\times$ I. spurea.-I. nigricans. Lvs. short ensiform: ffs. dull black to deep black. Distinet from I. atropurpurea by its uniform dark color and dwarf foliage. Oncocyclus.-I. páncren, probably pancrace.var. of I. variegata. Buff and purple. -I. pàvar. $=\mathrm{I}$. paradoxa $\times \mathrm{I}$. variegata.-I. Robinsoniona, F. Mnell.=Morea Robinsoniana.I. Rìdini, Hort., Herb. Fls. black-brown and claret. Said to bo stronger and more free-flowering than the other Oncocyclus Irises.-1. SikRiménsis. Lilac. Khizomatous.-1. stenophýlla. This plant was discovered in the Cilician Taurus in $1890-6$. Haussknecht named it stenophylla without describing it. J. $\mathbf{i}$. Baker gives a short description in G.C. III. 27:170. Near I. Persica. Les. $5-6$, linear, tufted, channelled down the face, short and stiffly erect at the flowering time: fls. springing from the ground, the long tube lightly wrapped round by the lanceolate spathe valves; outer seginents 2 in. long; blade reflexed, blackish blue towards the tip, with many black spots on a pale ground below it ; inner segments small, horizontal : style ground below it; inner segments sman, horizontal: style 57:203.-1. tuberòsa, Linn. $=$ Hermodactylus tuberosus.-I. Vog. eliàna. Similar to I. Persica and I. Rosenbachiana, but earlierflowering. Fls. variable in color, silver-gray predominating, with violet, rose or lilac markings. Var. granditora. Largeflowering.
The following numbers are not mentioned in catalogues of American dealers. They are procurable through foreign growers. and are advertised in Dutch-American catalogues: $1,4,5$. $8,29,34,38,39.40 .42,51.52,53,56,58.59,62,63,64,66,67, ~ 72.80$. $83,84,85,86,88,89,90,91,92,93,95,96,97,98,99,100,101,102$.
H. Hasselbring.

IRIS-R00T, or ORRIS-R00T. Iris Florentina.
IRONBARK. Eucalyptus.
IRONWEED. Weed.
IRONW00D, in America, Ostrya lirginica.
IRRIGATION. Irrigation in its broadest sense includes all problems of collecting, storing, delivering, and applying water to the land through the construction of dams, reservoirs, canals and laterals, and the application of power when necessary to deliver the water; while in a restricted horticultural sense it is a method of cultivation, having for its object to increase and regulate the water supply in the soil.
In this latter sense Irrigation is a necessary practice in the arid regions, and is advisable in the humid regions in proportion to the intensity of the cultivation and the value of the crop grown. Thus in Florida, with an average of 60 to 70 inches of annual rainfall-usually well distributed-Irrigation has been largely introduced in the past few years for horticultural crops and eren for tobacco, as an insurance against loss or damage by the occasional droughts. The first cost of a small Irrigation plant in Florida, for 20 acres or over, is said to be approximately $\$ 100$ to $\$ 150$ per acre; the interest on which, and the necessary repairs, would amount to from $\$ 5$ to $\$ 10$ per acre per annum. This is a small expenditure to insure a crop against loss or injury where the value per acre is so great as in many horticultural lines. Irrigation is needed not only to prevent the actual death of the plants, but to promote a uniform, rapid, and continuous growth, which is necessary for the development of the finest texture or flavor of the commercial crop.

King has shown that the value of a crop saved in Wisconsin, such as the strawberry, in a season when the crops generally are injured by drought, may pay all the expenses of the original cost of the Irrigation plant.

In the semi-arid regions west of the 100 th meridian, with a rainfall of from 20 to 30 inches, crops are liable to be entire failures three or four years out of fise; while with an Irrigation plant there should not be a failure one year in five. In the arid regions with less than 15 or 20 inches of rain, Irrigation is a necessity on most soils. Here the work has been highly organized and systematized, so that the cost of water delivered at the field amounts from $\$ 2$ to $\$ \mathbf{5}$ per acre per unnum. Under skilful management the most abundant yields are secured. The most careful management is required in the application of water to prevent serious injury to the land and to avoid actual injury to the crop in rendering the plants tender and liable to disease, and in maintaining the quality and flavor, both of which are liable to depreciate unless good judgment is displayed in supplying water.
Sources of Water Supply. - The principal sources of water supply are streams, surface wells, artesian wells, and the storage of storin waters. For small irrigated tracts near cities the city water supply may often be used to advantage. In other localities the nature of the conditions will determine the most economical source from which to obtain the water. Perpetually flowing streams, if situated in such a way that water can be carried to the land by gravity, bave the advantage of cheapuess of construction and maintenance. On the other hand, if the stream supplies others in the community, there is liable to be trouble and expense in establishing and maintaining water-right claims and in securing water when needed for the crop. Questions arising out of the water rights on streams and rivers in the western states, with the various state laws, the multiplicity of court decisions on the most intricate legal questions-both in different states and different counties along the line of the stream-the absence in most states of adequate police or judicial powers vested in the Irrigation commissioner, have led to the most perplexing and berrildering state of affairs, and have involved the states and individuals in enormocs costs for law suits, resulting in many cases in the apportionment of many times the volume of the stream to the settlers along its bank.
The large planter must seek some perennial and abundant supply of water, as is furnished by streams, but it is safe to say that all streams of any size in the western part of the United States are already appropriated to their fullest extent, although the water so appropriated is not all in present use. Smaller planters are much more independent with some of the other sources of supply mentioned above. Wells from 10 to 20 feet deep, with pumps operated by windmills, or wells of a ,Hasimum depth of 50 feet operated by many forms of gasoline, hot air or portable engines, attached to direct acting pumps or centrifugal pamps, form in general a very satisfactory means of irrigating small areas.
Over limited areas artesian wells have been very successfully used. If they ara flowing wells delivering a considerable stream, they tan be used over small areas without storage reservoirs, or over much larger areas with reserroirs. They should be capped in all cases, where possible, so that the flow can be stopped when not actually needed.
In many places it is possible, at a comparatirely small expense, to construct a dam to collect the storm waters. The magnitude and expense of such work will depend entirely on the configuration of the surface, the area of the watershed, the volume of the water to be handled as well as the nature of the soil, and the material out of which the dam is to be constructed.
Methods of Raising Wuter. - Various methods are used for raising water from streams, wells, or storage reservoirs which may lie below the general level of the land to be irrigated. Hydraulic rams are sometimes used for small areas, but these arc not economical when a small volume of water is at hana, as only about oneseventh of the water can be collected. Open buckets carried on an endless belt, operated by either windmills, steam power or even horse-power, are used with success and offer the advantage of cheap construction. The ordinary cylinder or plunger puinps are usually employed when the water has little or no sediment, and are operated by windmills or by steam or other form
of engine. When the water carries considerable sediment such pumps are liable to wear away rapidly, and the centrifugal pump is the most economical form to use. The relative tirst cost of equipment for pumping with windmills or with gasoline or hot air engines of approximately equal horse-power is about the same. The windmill, however, is dependent upon a mean velocity of wind of about eight miles per hour, while the engine may be operated at any time, and is thus more reliable when either form of motive power is taxed to nearly the extreme limit. There are many kinds of windmills on the market, und many forms of home-made construction are in use.

Storing and Conducting Water.-Storage reservoirs for streams and for storm waters vary in size and in cost as well as in mode of construction, according to the character of the land, size of area, volume of water, nature of the material of construction, and demand for the water. The construction of such reservoirs sometimes involves engineering problems of the most difficult kind, demanding the expenditure of immense sums of money.

In the use of windmills it is necessary to hare small distributing ponds or tanks, as the direct flow from the pump is usually so small and varies so much with the velocity of the wind that it cannot be dependr: on to water any considerable area. Where it is stored it can be turned out onto the land in large volumes, so that it spreads over the surface and waters the whole area uniformly. For an ordinary windmill the ponds are from 50 to 100 feet square. They can be stocked with fish and thus be a source of some revenue and variety in the family supplies. Unless the pond is situated on a slight elevation, the earth for the embankment must be taken from the outside. The banks are usually made with a slope of $1 \frac{1}{2}$ to 1 foot. For a bank 5 feet high and 2 feet across the top, the side would be about $71 / 2$ feet and the base about 17 feet wide. If the ground is at all pervious to water, the bottom of the pond should be protected from undue seepage and loss of water by puddling. This should be done with clay, if this is obtainable. This puddling is often done by driving horses or cattle in the pond while the surface is wet. A pond of the size indicated above, operated by a windmill where the mean wind velocity is about 8 miles per hour, will irrigate from 3 to 5 acres of land in the semi-arid regions. Such a pond could be counted upon to irrigate from 5 to 10 acres where, as in the East, only one or two irrigations would be required =aring the season. The size of the reservoirs and the area they will irrigate, when supplied by steam or other kind of engine, will depend upon the available water supply and upon the size of pump and porrer used.

Ditches and Fhmes.-The water is usually carried from the stream or storage reservoir by gravity in open ditches. This involves loss by evaporation from the surface and by seepage through the soil. When the water supply is limited and its value is consequently great, terra-cotta pipes, iron pipes, cement or wooden pipes may be used. When the surface of the country is uneven and rarines hare to be crossed, flumes are used to carry the water on an even grade across the depression. These flumes may be iron pipes, open wooden troughs, or wooden pipes held together with substantial hoops. If the depression is not too great the ditch may be built up on an earth embankment. When the water has to pass through a gravelly soil, or when for other reasons the soil is rery pervious, special precautions should be taken to prevent seepage by using pipes, cementing the sides of the open ditch, or puddling the ditch with clay or similar material.

Application of Water. - The water is usually applied to the ground by flooding orer the whole surface. For this purpose the surface must be perfectly level and the ground carefully prepared, so that the water will flow uniformly and quickly over the entire area and be of uniform depth throughout. Where crops are cultirated in rows or on beds the water is allowed to flow down in the troughs between the rows, and there must be a sufficient head of water to reach the end of the rows in a reasonably short time, so that the whole width of the field will be properly watered.

Where the surface of the ground is so uneven that surface flooding cannot be used, basins are formed by
throwing up slight ridges, with a plow or other implement, and the water turned into thase basins in succession and allowed to accumulate to a sufficient extent. This method is particularly applicable to fruit trees, although it is occasionally used in other crops. In very sandy soils the water is occasionally carried through the field in wooden troughs, which admit of sufficient seepage to water the land. This prevents the undue seepage which might occur in such soils if the water was flowed over the surface. Another method is to distribute the water through the field in iron pipes, with openings at frequent intervals, in which nozzles can be attached to deliver a fine spray over a small area. With four or five such nozzles an attendant can water a considerable area of ground in the course of a dey. Such an irrigating outfit in Florida was supplied with a power equivalent to about one horse-power per acre. The mains and laterals were of 1 -iuch or $11 / 2$-inch iron pipes laid near the surface of the ground, the laterals about 100 feet apart, with bydrants every 50 feet. Tanks were originally used, but it was found desirable to pump directly into the mains to insure a sufficient pressure.

Care should be exercised in applying water to the land. Where water is plentiful there is a common practice of using such an excess as to injure the fiavor of fruit. increase the liability of disease, and eventually injure ihe land by the accumulation of seepage waters and of alkali. As a rule, there has been rery much more damage from orer-irrigation than from the use of too little water. The first two or three years a soil usually requires a considerable amount of water, but after becoming well moistened to a considerable depth it should require comparatively little water thereafter to maintain its fertility. As it is not easy to apply just the proper amount, the excess should be provided for. If there is any reason to fear lack of drainage, the land should be thoroughly underdrained before Irrigation is started, or at any subsequent time when the need of it becomes apparent.
Irrigation always should be supplemented by the most thorough cultivation. After going to the expense of watering the soil in this wa. . it is poor economy to allow the water to escape by evaporation or otherwise; therefore every precaution should be used in thorough, subsequent cultivation and in the exclusion of weeds, to conserve the moisture so applied. The intelligent horticulturist will find that in the use of this expensive method of maintaining a proper water supply in the soil, it is incumbent upon him, even more than if the method were not used, to gire careful attention to all the ordinary methods of preparation and cultivation in order to maintain the advantages he has established by the Irrigation plant.

Milton Whitney.
Sub-irrigation in the Greenhouse. - The term subirrigation is used to describe a method of supplying water to the roots of plants by means of some form of conduit placed below the surface of the soil. In greenhouse operations, the essential features of the plan are a level, water-tight bench-bottom, and tile or pipes to serve as conduits for the water. The tile. or pipes, are laid directly on the bench bottom, and over these the soil is spread, usually to the depth of about 6 inches. When water is introduced in sufficient quantities through the tile or pipes, it passes out at the joints or perforations into the soil.
When applied to greenhouse operations, the term subwatering has been proposed by Goff and Cranetield for the reason that Irrigation is used to denote watering on a large scale out-of-loors. It may he said, however, that the words watering and Irrigation do not indicate the scale of operations with any degree of accuracy, hence it seems as well to use an old word as to coin one. especially when the familiar word expresses the meaning intended.
Experiments in watering plants by this method were begun in the winter of 1890 and 1891, at the Ohio Experiment Station. The suggestion came from the result obtained in an effort to check the lettuce rot. Water was introduced to the soil in boxes by means of a pipe, in a similar manner to the method often emploved in watering hills of melons and cucumbers. When the plants were watered in this manner, the lettuce showed
so much more vigor than that watered in the ordinary way that operations were begun at once on a larger scale: first in a bed on the ground haring a clay bottom, then on a water-tight bench, made of lumber, and finally, on tile benches, covered with cement.

In all of the earlier experiments the water was introduced through pipes, or drain-tile, laid about 2 feet apart on the bottom of the benches. Goff and Cranefield hare used brick instead of tile, placing them near enough together to touch. They were set on edge in a galvanizediron pan, made for the purpose. J. C. Arthur elipped off the comers of the bricks, so as to facilitate the flow of water. The Ohio Station has modified this plan by using common drain-tile, laid so as to touch, thas covering the entire bench bottom, instead of a line of tile every 2 feet, as at first
Benches made of lumber have proved unsatisfactory because of the swelling and warping of the boards. Solid beds on the ground have not been successful, except where an impervious clay bottom existed. Galra nized-iron adds greatly to the cost of construction, and lasts only a short time. The only suitable bench for greenhouse sub-irrigation is one made of materials which are not acted upon by water
A well-made tile- and cement-bench seems to be the only form of construction that will meet the requirements. Such a bench does not cost so much as to preclude its use, and will last as long as any other part of the greenhouse. In describing such a bench, it will not be necessary to enter into details, except such as relate to the method of watering under discussion. The bench must be water-tight, or nearly so, and this condition is ecured by spreading a layer of cement, an inch or mor in thickness, over the tile bottom. It is not a matter of any moment whether flat tile or common drain-tile are used, except in the quantity of cement required. The cement must be spread with care, so as to secure a perfectly that, level bottom, otherwise the water will not flow uniformly in all directions. The sides of the benches are made of cement also, but need be only 2 or 3 inches high, or of sufficient height to merely retain the water. Boards or slate are placed outside the cement wall to retain the soil. The tile-bottom mav rest on iron or wood cross-pieces. Wood has been in use for this purpose at the Ohio Station for seven years and shows no signs of decay, because it is out of reach of the water.
Nine years' experience shows that a perfectly constructed bench bottom, with the tile laid 2 feet apart, will serve satisfactorily in distributing the water to all parts of the bed, provided the tile are straight, so as not to impede the flow of water. The tile are laid in the

1182. Sub-irrigation with two runs of tile.
same manner as tile-drains, and lengthwise or crosswise the bed, as preferred. Better results are usually secured if they are laid crosswise than lengthwise, as it is difficult to secure an even flow through long lines of tile. A little cement or mortar is used at each joint merely to hold the tile in place when the soil is put in the bench, but not enough to impede the flow of water from the
joints. The first tile where the water is introduced is laid at an angle, one end resting on the edge of the bench side. This leaves a wide opening at the first joint, which is closed with cement. A better plan is to use a curved sewer-pipe for the inlet, but this is not always available. The picture (Fig. 1182) shows how the tile is laid on the bench bottom, being a view of a side bench in a carnation house.

Following Goff's suggestion in the use of brick, tiles

1183. Sub-irrigation with two tiers of tile.
have been used orer the entire bench bottom with good results, and it seems probable that this will be found to be the best form of construction, as it appears more certainly to insure an even distribution of water. The method of construstion is the same as above described, for the two plans differ only in the number of tiles employed to distribute the water. When the bench bottom is covered with tile, placed near enough together so that the soil will not fall between, it will be readily seen that water introduced at any point will flow to all parts of the bed in and around the tile. It needs simply to be brought up to such a level that it will reach the soil, when capillary attraction will complete the distribution. Fig. ins? shows a bench in a tomato house constructed after this plan. AA are the inlets; $B$ the irrigating tile, from which the soil has been removed; C is the tile bench bottom, covered with cement. The sam: size of tile, viz., $\mathbf{2} 1 / 2$ - or 3 -inch, is used both above and below. $D$ is the cement side, which has been broken away to show the method of construction. The outer board has been removed also.

The cost of construction need not be discnssed here, except to state that the only items extra. more than are required in any well-constructed greenhouse, are the cement bottom and the tile in which the water is dis. tributed.

A plan has been devised for applying water to small plants in flats which may properly be mentioned under this head. The flats are shallow boxes with slatted bottoms. When the plants require water, the flats are placed in a shallow vat of water and allowed to remain until the surface of the soil appears to be damp, or even wet.

A watering in this manner is far more efficient than by the ordinary method. Taken in connection with subirrigation in the benches, a crop of lettuce can be brought to marketable size nearly two weeks earlier than when surface watering is practiced. Anything like a full discussion of results of experiments in watering plants in the greenhouse by sub-irrigation would be too columinous for an article in this connection. A brief review of the results obtained at some of the stations, together with a short discussion of some general principles, will serve the purpose intended. The increase in weight of lettuce from sub-irrigated plats over those watered in the ordinary manner has been reported by Rane, of West Virginia, as 25 per cent and by Goff and Cranefield as 26 per cent. At the Ohio Station the range bas been from 25 to 100 per cent. In the latter case the result was obtained by commencing with the plants as soon as taken from the seed-bed, and carrying
the two lots through to the termination of the experiment, one by watering altogether on the surface of the soil, the other by sub-irrigation. Each of the experimenters speaks of a gair in earliness of several days by sub-irrigation. Rane secured similar results with long-rooted radishes by this method of watering, bui not with the turnip-rooted sorts, while Munson, of Maine, doubled the crop by watering below. Better results have usually been secured at the Ohio Station with the turnip-rooted than with the long varieties, but in all cases there has been a gain in favor of sub-irrigation, varying from 50 to 100 per cent. Rane found that snb-irrigation increased the yield of tomatoes, but the gain was not large. Essentially the same results have been secured in Ohio. The tomato crop has not been greatly influenced by the manner in which the water was applied, and the same is true of beets, while subirrigated cucumbers and parsley have shown a decided gain over surface-watered. Carnations, roses, chrysanthemums, sweet peas, violets and smilax have been under experiment by the two methods of watering. and while no such marked results have been secured as with lettuce and radishes, the sub-irrigated plots have shown superiority over those watered in the ordinary manner, in nearly all cases. With carnations the improvement has been mainly in length and stiffness of stem.
Aside from the increase of crop secured by sub-irrigation, there are other considerations which may be urged in its favor, and these are embodied in the following general propositions:
(1) Watering by sub-irrigation in the greenhouse saces labor. 'the amount of labor saved depends mostly on the completeness of the arrangements for watering, but there is a saving in the number of applications as well. It is possible to reduce the time emploved in watering a house, or series of houses, to onefifth the time usually required.
(2) Watering by sub-irrigation assures an abundant and nuiform supply of water to all parts of the bed. Perfect construction of the benches is assumed in this case, but with such construction watering becomes almost automatic, the only care necessary being to look after such portions of the beds as may, by position, be subject to nousual conditions of air or sunlight.
(3) Where sub-irrigation is practiced in the greenhouse, the surface of the soil does not become compacted, but retains its original loose, friable condition. It is true that where frequent syringing is practiced the surface of the soil becomes more or less hardened, but not to the extent that oceurs in surface-watering. and the condition is easily remedied, whermes in the other case it is not. It follows that a heavier soil may be used for sub-irrigation than with surface-watering.
Still other considerations might be urged in faror of this method of watering, but many of them would apply to special cases only. Regarding the effect of the method upon insects and diseases, but little can be said. Lettuce rot is less prevalent upon sub-irrigated plots than upon those which are surface-watered, but in extreme cases plants succumb to the disease, whichever method of watering is practiced. Munson found that radishes suffered more from the attacks of millipedes upon sub-irrigated plots than upon plots watered in the usual manner. Nematodes work upon the roots of roses, whicherer way the plants are watered. The manner of watering has no apparent effect upon the red spider. Eren in houses watered wholly by sub-irrigation this pest is no worse than in houses in which the water is applied to the surface of the soil. It may be said, however, that nearly all classes of plants are more easily kept in a healthy growing condition, and are thus better able to resist enemies of all sorts, when sub-irrigated than when supplied with water in the ordinary way.
This method of applying water to plants in greenhouse benches has now been sufficiently tested to determine its value. All that now remains is to devise ways and means to utilize what is known concerning it. The adaptation to suit particular cases must be made by individuals, but this will be far easier in the future than in the past, because better methods of construction prevail than formerly. The success of sub-irrigation in the greenhouse is now simply a question of mechanics.
W. J. Green.

## ISOLOMA

ISATIS (meaningobscure). Cruciferce. This includes the Dyer's Woad, I. tinctorif, formerly cult. for a blue dye, but no longer advertised. Cæsar relates that the
with them to the base of the column, somewhat sigmoid below the middle: column erect, long, without wings: pollinia 4. About $\overline{5}$ species in Braz., Mex., and W. Ind.
linearis, R. Br. Slender, $1-1 \frac{1}{2} \mathrm{ft}$. high, leafy: lvs. distichous, linear, striate, obtuse, emarginate, $1 \frac{1}{2}$ in. long: fls. purple, borne in a short, terminal spike. March. Growing on rocks and trees in thick woods. Jamaica, Trinidad, Brazil, etc. B.R. 9:745. L.B.C. 14:1341.

## H. Hasselbring.

ISOLEPIS. See Scirpus.
ISOLOMA (equal borler). Gesneràcer. Includes Tyulau. Sixty or more tropical American plants, very closely allied to Gesneria and Achimenes. From Gesneria distinguished by absence of well-formed tubers and characters of capsule and anthers, and the $\overline{5}$ lobes of the disk equal; from Achimenes in the more tubular flowers and lobed disk. The culture is the same as for Achimenes and Gesneria. Seeds of the newerhybrids germinatequickls, and plants bloom the same year. It is probable that the pure species are not in the trade. Like Achimenes, Gesneria and Gloxinia, they have been much hybridized and varied. It is probable that they are hybridized with Achimenes and Gesneria. Tydæa is a garden genus. It is not known how the current forms have originated. Some of the recent ones have fringed fls. (Gn. $55: 1223$ ).

Tydæa (Achimènes picta, Benth. Tydieu picta, Dcne.). Fig. 1184. One to 2 ft., hairy: lvs. cordate-ovate, coarsely serrate, spotted and reticulated with pale green or silvery green, with a broad light zone down the center: fls. single, on long, axillary stems, nodding, the orifice oblique and lobes obtuse, the upper longitudinal half of the fl. red, the lower half yellow and redspotted. Colombia. B.M. 4126 (adapted in Fig. 1184). B.R. 31:42. F.S. 1:17-18.-On this species Decaisne founded the genus Tydæa in 1848. This species has been called Isoloma pictum, but this name was taken by Planchon in 1850 to '51 for the Gesneria picta of Hook., which is a very different plant. See F.S. 6:586. B.M. 4431. This latter plant, the first Isoloma pictum, is apparently not in commerce.
amábile, Mottet (Tydca amábilis, Planch. \& Lind.). Erect, hairy. Ivs. ovate, more or less tapering to the

1185. Isoloma Jaliscanum ( $\times 1 / 2$ ).
petiole, bluntly serrate, purplish on the reins: fls. hairy, pendent, dark rose dotted with purple, paler inside. Colombia. B.M. 4999. R.H. 1859, p. 25. F.S. 10:1070.

Ceciliz, Nichols. (Tydea Cecilice, André). Much like I. amabile, but lvs. marked with violet and silvery zones or blotches: Hs. 2 or 3 from each axil, the fls. pale rose outside and striped in the throat, and the limb pur-ple-spotted. Colombia. 1.H. 23:260.
ocellàtum, Benth. \& Hook. (Achimènes ocellèta, Hook.). Short-hairy on the stem: lvs. ovate-acuminate, serrate, green: fis. small, on peduncles shorter than the lis.. the tube and short, rounded lobes red, the seg. ments marked with whitish and black spots. Panama. B. M. 4359.

Jaliscànum, Wats. Fig. 1185. Herbaceous or some what woody at the base, $1 \mathrm{ft} .$, pubescent: lvs. opposite, oblong-lanceolate to ovate-lanceolate to ovate, shortacuminate, short-stalked, serrate: fls. 2-4 on an axillary peduncle, the corolla an inch long, tubular and shortlobed,'pubescent. scarlet. Mex. - A worthy plant, not yet in the trade, but has been cult.
L. H. B.

ISONANDRA (Greek, equal anthers). Sapoticea. Isonandra Gutta is a large-leaved E. Indian tree, which furnishes the best commercial gutta-percha. The name has appeared in one southern catalogue, but the plants were found to be not true to name. This plant should be called Dichopsis Gutta. In Dichopsis the foral parts are in 6 's, stamens 12, and the seeds have no albumen, while in Isonandra the floral parts are in 4's, the stamens 8, and the seeds albuminous. See Rubber Plants.

Gútta, Hook. Properly Dichópsis Guitta, Benth. \& Hook. Gutta-percha Tree. Lvs. leathery, elliptic, abruptly pointed Malaya. R.H. 1898, p. 441.

ISOTOMA (Greek, equally cut; referring to the corolla, and true only by contrast with Lobelia). Companuldcece. This includes a plant treated as a half-hardy annual, which grows about a foot high, has curiously cut foliage, and odd fls. with a slender bent tube 1 in . or more long, and 5 slender spreading lobes, each $1 / 2 \mathrm{in}$. long. Among allied genera of garden value, Centropogon and Siphocampylus have the stamens fastened at the base of the tube, while in Isotoma they are at the top or above the middle. (Centropogon has an indehiscent berry: Siphocampylus a capsule 2 -valred at the top like Isotoma.) Downingia has a tube of stamens free from the corolla.
axillaris, Lindl. Perennial, flowering the first year so as to appear annual, but forming at length a hard rootstock, erect, with few spreading branches: lvs. linear, irregularly pinnatifid, 2-3 in. long, lobes linear : pedicels axillary, 2-6 in. long: fls. large, bluish purple, pale outside. Australia. B.M. 2702 (as Lobelia senecioides) and 5073 (as Isotoma senecioides, var. subpinnatifida). - Not in cult.
petræa, F. Muell. Identical with the above, except that the lvs. are ovate-oblong or elliptical. Australia. The plant in the trade is said to hare cream-colored fls., and is sold as a "Lemon Verbena," a name which properly belongs to Lantana.

## ITALIAN MAY. Spirea hypericifolia.

ITEA (Greek name of the willow; because it has wil-low-like lrs., and grows near the water). Saxifragercece. A genus of trees and shrubs, numbering about 5 species, inhabiting eastern N. Amer. and eastern Asia, whose one representative in cultivation is $I$. Virginica, a low, upright, somewhat coarse shrub, best known by its long, upright racemes of small white fls. appearing about July 1, in Massachusetts, and its brilliant autumn coloring. In nature it inhabits low, wet places. In cultivation it seems to adapt itself to almost any soil. It is not perfectly hardy, but grows rapidly and seems enduring of both sun and shade. In ornamental use it is planted in masses or mixed with other shrubs of similar character in the shrubby border or at the edge of woods. Its somewhat coarse character does not favor its approach to more refined objects. In autumn it becomes a brilliant red. It is prop. from seed, by cuttings and by division of roots, which spread slowly and form clumps of stems. It may be collected from the wild.

Virginica, Linn. Virginian Willow. Fig. 1186. A shrub, 11/2-6 ft . high, usually not more than $2-3 \mathrm{ft}$. high, of upright, somewhat slender habit: Ivs. deciduous, alternate, oblong, pointed, minutely serrate, smooth green above, pale and slightly pubescent below, petioled, without stipules, 1-3 in. long: ths. regular, 3 lines long, fragrant, white, in solitary, erect, hairy, simple, dense, terminal racemes $2-i \mathrm{in}$. long, given a greenish white effect by the stamens and pistils, not particularly showy, appearing late June and July; calyx 5 -cleft, persistent, nearly free from the base of the ovary; corolla of 5 lan-

cf olate, nearly erect petals and longer than the 5 stainens : capsule slender, longitudinally 2 -furrowed, 2 celled, many-seeded, splitting through the simple style and partition. Pa. and N. J. to Fla. and La. B.M. 2409.

## A. Phelps Wrman.

IVA (named after Ajuga Ira, from its similar smell). Compósitoe. This includes I. frutescens, Linn., the Marsh Elder or High-water shrub, a native hardy perennial of no garden value, which is, nevertheless, on record as having been cult. It grows 3 -12 ft . high in salt marshes and on muddy seashores, has serrate lvs. and fls. as inconspicuous as those of a ragweed. See B.B. 3:292 and Gray's Manual.

IVEsIA. All referred to Potentilla.
IVY. The common or English Ivy is Hedera. Boston $\mathbf{I}$. $=$ Ampelopsis tricuspidatu. German $\mathbf{I}=$ Climbing Senecio and Herniaria glabra. Ground $\mathbf{I}$. Nepeti Glechoma. Kenilworth 1. = Linaria Cymbalaria. Poison I. $=\boldsymbol{R h} \boldsymbol{*} s, \boldsymbol{R}$. Toricodendron. Some authors think that two species of Rhus are confused, $\boldsymbol{R}$. radicans being the common Poison Ivy of the North, and R. Toxicodeulron being a shrub of the South.
IXIA (Greek, birll lime; said to refer to the juice). Iriddcece. Ixias are delightful tender bulbs originally from the Cape of Good Hope, with attractive grass-like foliage and spikes of Howers borne in early spring. exhibiting an exceptionally wide range of colors. They grow about $1 \frac{1}{2} \mathrm{ft}$. high on the average, with an unbranched stem, a spike 3-8 in. long, containing 6-12 ths. each $11 / 2-2 \mathrm{in}$. or more across. The fls . have a very slender tube usually about $1 / 2 \mathrm{in}$. long, and 6 segments. The following colors are all well marked in Ixia: white, yellow in at least 3 shades, orange, lilac, rose, pink, crimson, light and dark purple, ruby red, pale blue, and eveu green. Perhaps the only important colors lacking are sky-blue and red in the bright shades of scarlet and vermilion. The flowers may be concolorous (all of one color) or these same shades may be combined with an eye. Most of our cultivated forms seem to have an eye of brown, purple or almost black, but there have been kinds with a white, blue or green eye. Occasionally there is a ring of brown color abore the purple. Add to this that the backs of the segments may be more or less suffused with various colors(usually, however, that of the eye) and theinteresting possibilities of Ixias in color combinations can be imagined. Sooner or later all good gardeners yield to the fascination
1187. Ixia flower in their drooping stage.
( $\times 1 / 2$.) oi bulbous plants, and whoever has not yet succeeded in growing lxias has something to live for.
Ixias number their cultivated varieties by the hundreds. Next to Crocuses and Freesias they have no rivals in point of popularity among spring-blooming bulbs of the important Iris fambulbs of the important iris famsion of such splendid summer blooming bulbs as Iris, Gladiolus and Monthretia. Cul turally they belong to the same class with Babiana and Sparaxis, which are also desirable and distinct in general appearance and coloring, but are outstripped by Ixias in popularity and in number of varieties. Botanically, these three genera belong to the Ixia tribe, in which the tls. are spicate, not fugitive and never more than one to a spathe. The stamens of Ixia are equilateral: those of Babiana and Sparaxis unilateral. lxias hare about 6 erect grass like lvs. arranged in 2 ranks; Babiana has plaited, hairy lis.

Bulb catalogues give no hint whaterer as to the parentage of the numerous named rarieties. Not one of them mentions $I$. miculata nor $I$. columellaris, which were the two all-important parent stocks. Of the 23 species recognized by Baker in Flora Capensis, vol. 6,1896 , only 1. viridiflora appears as a trade name, but I. speciosa and paniculata are advertised under their synonyms craterioides and longiflora. I. crocata is Tritoaia crocata, and I. hybrida of the trade is not the hybrida of the botanists, but means notaing more than mixed varieties.

Before speaking of the dominant types, it is convenient to mention some very distinct species which are still cultivated in a condition not essentially different, botanically, from the wild types. I. paniculata is in stantly distinguished from all other Ixias in cult. by its very long tube, which is often 3 in . long. It is also the last to bloom. I. viridiflora is unique in the genus for its green flowers, and it is one of the few green-flowered plants that are attractlve. Whether this species has hybridized with the other dark-eyed species is conjectural. At any rate, the prototype is a popular plant to-day.

Of 86 named varieties received from 3 leading dealers in America, England and Holland, and supposed to be a representative collection, all but a bare dozen seem to be the offspring of $I$. maculuta and $I$. columellaris. Both of these species have a purple or purple-black eye, sometimes brown, and the white and yellow colors of the segments are derived from miculata, while the lilac and purple shades of the segments are derived from columellaris. Baker makes no distinction between these two prototypes except that of color. The common opinion is that Ixias hybridize freely, both at the Cape and in cultiration, and it is usually said that they are now so thoroughly mixed by hybridization and selection that it is impossible to refer any of the named horticultural varieties to their proper species. Nevertheless, from a study of the specimens mentioned above and the colored plates cited below, the writer ventures the opinion that the vast majority of cultivated Ixias are eyed forms, which, with the exception of viridiflora, can be readily referred either to maculata or to columellaris, and that all such forms could be reproduced without hybridization if the original types were reintroduced from the Cape and subjected to au equal period of selec tion.

The real mystery in Ixia is why the self-colored forms are so little cultivated. There are at least 7 species with self-colored ths. which should be obtained directly from the Cape, if necessary, for they would all make decided additions to the lxias that are in common culti ration. These are: polystachya, pure white; flexuosa, white, reined rose, with fine red and purple varieties uristuta, a superior pink; lutea, orange; putens, bright red; specinsa, ruby-red, and odorata, yellow. Of the eyed forms ovale, a bright red flower, should be added, as this color seems to be lacking among the varieties that are commonly cultivated; also monadelphe in its variety with pale blue segments.
One of the most desirable of all these little-known types is I. speciosa, which is shown in the Botanical Magazine, with a delightful ruby-red color, untouched with any suggestion of purple, lilac or al'ied shades. This form would seem to promise to the hybridizer the possibility of several distinct shades of red that now seem to be practically unknown in cultirated lxias. A synonym of I. speciosu is I. craterioides, which is a common trade name, but it is doubtful if the ruby-red form is in general cultiration. At any rate, it has not been sufficiently exploited. The dearth of good colored plates of modern cultirated Ixias is ont of all proportion to their commercial and artistic value. The writer has no record of any good one since that published in 1884 in "The Garden."
Ixia flowers are charming in every stage of develop. ment. At first the flowers are erect and cup-shaped. They close at night and remain closed on dark days. As they grow older they open wider and become more star-shaped. The reader mar judge by Fig. 1187 of the beauty of the flowers in their drooping stage. The plants remain in flower for three weeks, though the faded flowers at the bottom of the spike should be taken off toward the end of the period. As cut-flowers, they are presentable for a week or two.
W. M.

Culture of Ixias Out-of-doors. - The writer has always liked Ixias, but has considered that it is too much trouble to grow them under glass. They are rastly more satisfactory when grown outside. The planting of the bulbs should be delayed until the last moment, because lxias are more inclined than most things to make an autumnal growth. They should be planted 3 inches deep, as late as November 30 . In planting bulbs it is always
well to sprinkle a handful of sand on the spot where the bulbs are to lie. This helps the drainage, especially on heary lands, and prevents rotting. The bulbs should then be covered with about 3 inches of leares, hay, or hetter still, pine needles. In the latitude of Boston, bulb beds can be uncovered during the first week of April. However, there will still be sharp frosts to nip the tender shoots that have started beneath the winter covering. Consequently a little hay or other covering material should be left near by, where it can be easily gotten when a chilly evening threatens. In ten days the young sprouts will becone sufficiently hardened to withstand any subsequent cold. Even such hardy things as Alliums, when first uncovered, can hardly withstand any frost at all. It is, however, a mistake to wait two weeks longer and then permanently uncover the bulb beds, for by that time the early-starting things are likely to be so lank and long that they never attain ideal sturdiness. It is better to uncover too early than too late. The secret of success with Ixias outdoors is largely in hardening the plants in early spring and in never allowing them to grow too fast under cover, where they become yellow and sickly. During the winter shutters can be placed over the bulb beds to shed the rain; but the bulbs do as well without this protection, though they may be later in starting. Of course, Ixia bullos cannot stand any freezing, and they must, therefore, be planted in unfrozen soil. After Howering, let the bulbs remain in the soil until the end of July: then take them up, and store them, not in dry earth, but in boxes without any packing. Let them remain in a dry place until they are wanted for November planting. In the southern part of England Ixias can be planted 6 inches deep in hardy borters as late as Decem ber, and Krelage, perhaps thinking of still warmer regions, considers Ixias as summer-blooming bulbs, and advises planting from October to December. In the writer's experience, the flowers from the old bulbs are not at all inferior in succeeding years: indeed, the contrary has been the case, and the bulbs he raises are vastly superior to the ones he buys. Amateurs are commonly advised to throw away the offsets because fresh bulbs are cheap. Yet the under signed finds that many of the offsets bloom the first year and nearly all of them the second.
It is commonly thought that if Cape bulbs are ever raised commercially in America, California or the coastal plain of the southern states would be the fittest regions for the industry. The writer knows of Ixias being raised commercially near Boston with every prospect of success. It is strange that Tritonias, Sparaxis and Babianas cannot be grown in the same way, though it is some consolation that they can be so easily grown in pots. To the under signed Ixias are the most pleasing of all bulbs. He has thonsands in bloom in the month of Jnne, and thinks they make a braver show even
1188. Ixia paniculata ( $\times 1 / 3$ ).

Culture of Inias in Greenhouses. - Ixia bulbs can be planted any time from September 15 to October 30 , the sooner the better. In general, tender bulbs of small size tend to lose vitality when kept a long time in the dry air of warehouses. Ixia bulbs should be planted an inch deep, 5 or 6 in a $5-\mathrm{in}$. pot, or 8 to 10 in a $6-\mathrm{in}$. pot. They

Ilke a compound of sandy soll and leaf-mold. It is supposed that three-fourths of the failures with Ixias are due to hasty forcing. The pots should be stored under a bench or in a rather dark cellar, at a temperature of $45^{\circ}$. The object is to hold back the tops while the roots are growing, in order to get stocky, well colored, slowly started shoots. They need no water until growth has started. Then water carefully until the flowers come, as the young plants are liable to rot at the surface of the ground. While flowering water freely. After fowering, some gardeners give the plants no water. Others keep the soil moist until the leaves turn yellow, and then gradually withhold water. As to temperature, the plants may be brought into a cool greenhouse $\left(50^{\circ}\right.$ ) when well started, and towards the end of January may be given $5^{\circ}$ more heat if flowers are desised as early as the middle of March. Ixias have to be staked and tied. The old bulbs, from which the offsets have been removed, may be used again. Ixia bulbs, which are really fibrouscoated corms about $1 / 2$ in. thick, keep as well as Freesias. Seedlings flower the third year.
W. M.

Culture of Ixias in Cold. frames. - Choose for the frame an open place, sheltered from north and west winds. In its
 ( $\times 1 / 3$.) construction give especial care to providing good drainage, to close-fitting and snug banking, so that frost, mice and moles can be keptout. A sandy soil, without manures, is safest and best for Ixias. If fertilizers are used they must be placed several inches below the bulbs, never in contact with them. As in outdoor culture, the bulbs must be planted late and in soil well dried by placing the sashes over the frame some time beforehand. Plant about 3 inches deep, as far apart, and treat afterwards much as in greenhouse culture. Take off the sashes in early May to show the mass of rich, odd flowers which, ordinarily, will open about that time and last for several weeks. If the frame is to have other tenants through the summer, the Ixias may be taken up after their tops are dead and stored in dry sand till planting time comes around again. Otherwise, merely cease watering as the tops of the Ixias die down, and put on the sashes again, tilting them so that they will give air and shed rain.
L. Greenlee.

## INDEX.

aristata, 3 columellaris, 10 craterioides, 8 . tlexuosa, 5. longiflora, 2
lutea. 6. maculata, 9. monadelyha, 13. odorata. 1. ovata, 11.
paniculata, 2. patens, 7.
polystach,ia, 4. speciosa, 8. viriditlora, 12.
A. Tube of perianth dilater below the limb into a distinct funnel.

1. odoràta, Ker. Fls. pure yellow. B.M. 1173.

> AA. Tube of perianih not dilated.
B. Length of tube $21 / 2-3$ in.
2. paniculàta, Delaroche (I. longiflora, Berg.). Fig. 1185. Segments white, often tinged retl: throat same color or black. B.M. 256 and 1502 .

BB. Length of tube 1 im .
3. aristàta, Ker. Fls. whitish, according to Baker, but a fine pink in B.M. 589.

## 1XORA

BBB. Length of tube $1 / 2-3 / 4 \mathrm{in}$. C. Segments $1 / 2 \mathrm{in}$. long or less. D. Color white.
4. polystachya, Linn. No eye. B.M. 6:3.

DD. Color shates of red or liluc.
5. Ilexudsa, Linn. No eye. B.M. 64.
Cc. Segments more than $1 / 2 \mathrm{in}$. long.
D. Fls. self-colored.
E. Color yellow or orange
6. Idtea, Baker. Fls. "uniformly deep bright yellow," according to Baker, but orange in B.M. 846 .

## EE. Color red.

F. Segments $1 / 2-3 / 4$ in. long.
7. patens, Ait. Fls. pale red, according to Baker, but deep rosy red in B. M. 52 . .

$$
\text { FF. Segments } 3 / 4-1 \mathrm{in} \text {. long. }
$$

8. specidsa, Andr. (I. craterioides, Ker.). Fls. dark crimson, according to Baker, but rich ruby-red in B.M.j94.

DD. Fls. with an eye of broun, purple or bluck.
E. Color of segments white to yellow.
9. maculata, Linn. Fig. 1189. Fls. typically yellow, according to Baker. B.M. 539 (orange). The following natural varieties show the range of color. Var. ochroleuca, Ker. Segments sulfur-yellow; eye brown. B.M. 1265. Var. nigro-álbida, Klatt. Segments white; eye black. Var. ornata, Baker. Fls. flushed bright red or purple outside.
ex. Color of segments lilac to purple.
10. columellàris, Ker. Typically with bright, maurepurple segments and blue throat. B.M. 630.

EEE. Color of segments bright red.
11. ovàta, Klatt. Andrews Bot. Rep., plate 23.
eeex. Color of segments green.
12. viridifldra, Lam. Typically with pale green segments and black throat. B.M. 549. L.B.C. 16:1548. F.S. 2:124. Var. cana, Eckl. Segments pale blue; throat black. B.M. 789 (as I. maculata amethystima). Var. càesia, Ker. Segments pale lilac; eye greenish. B.R.7:530.
eeeee. Color of segments pale blue.
13. monadelpha, Delaroche. Only species in the genus that does not have free anthers. B.M. 607 ; 1378.-Segments typically lilac, but there are forms with elaretred, blue or pale yellow segments, combined with eyes and markings of various colors.
W. M.

IXIOLIRION (Greek, an Ixia-like lily). A marylliddcece. A genus of 2 species of hardy bulbs from western Asia, with umbels of 5-9 deep blue or violet, 6 -lobed fls. each 2 in . across, borne in spring. Perianth regular, without any tube above the ovary; segments oblauceolate; stamens shorter than the segments, attached to their claws. The nearest cultivated allies are Alstremeria and Bomarea, which have no distinct rootstock, while Ixiolirion has a bulbous rootstock. Monogr. by Baker, Amaryllideæ, 1888.
montànum, Herb. (I. Pállasii, Fisch. \& Mey.). Bulb ovoid, 1 in. thick, with a neck $2-3$ in. below the basal tuft of lvs.: stem about 1 ft . long: lvs. about 4 , persistent, and a few smaller ones above: fis. on long unequal pedicels and often 1 or 2 fls. below; perianth bright lilac according to Baker. Syria to Siberia. B.R. 30:66. F.S. 22:2070. R.H. 1880:310. J.H. Ilî. $31: 583$.
Var. Tatáricum, Herb. (I. Tatáricum, Hort.). Stema more slender: lis. awl-shaped: fls. all in a terminal umbel, sinaller than the type. Altai Mts. G.C. II. 19:7:7. Regel calls the collective species $I$. Tataricum, and describes 5 species of it.

IXORA (a Malabar deity). Rubidece. Many species ( 100 or more) of shrubs or small trees with opposite or verticillate lvs. and terminal or axillary corymbs of very showy fis., inhabiting the tropical parts of Asia, Africa, America, Australia and Pacific islands. The species are very difficult to distinguish. The fls. are white, rose or scarlet, on bracteate pedicels; corolla very long- and
slender-tubed, the throat sometimes barbed, the limb 4. or 5 -lobed and wide-spreading: stamens 4 or 5 , inserted on the throat, the flaments short or nc e: ovary on a fleshy disk, 2-loculed, the style fliform and exserted, 2 branched: ovules solitary.
L. H. B.

Ixoras, which are handsome dwarf flowering shrubs, belong to the tropics. The species, as well as their hy: brids, all bear beautiful trusses of flowers of various shades, from a creamy white to a rich crimson. They require a stove temperature during most of the time, although, after having finished their growth in the early autumn, they could be placed for a time into a lower or greenhouse temperature, in which they would more fully ripen their young growth and set and develop their flower buds. After this, when again placed in the warmhouse, the plants will keep flowering until spring. Sandy leafmold, with plenty of drainage, is best to cultivate them in. They like plenty of heat and moisture, and care should be taken not to overpot them. The foliage should be syringed often, as otherwise the mealy bug and other insects will infest them. 'they do best in a sunny spot in a greenhouse temperature, but should not fall below $60^{\circ}$ while growing. They propagate freely from cuttings of half-ripe wood, and they produce their best flowers when the pots are flled with roots; then a little feeding with liquid manure will bring out the size and color of the flowers to perfecticn.
H. A. Siebrecht.

Many of the Latin names of Ixoras are of horticultural forms. Of this class, the following are in the Amer. trade: Chélsoni, fls. brilliant salmon-orange. Colei, fls. pure white: cross of I. coccinea and I. stricta, var. alba. Conspicua, fls. yellow, becoming orange. Dixidua, fls. deep orange. Fruseri, fis. scarlet in the tube, and brilliant salmon above. Ornita, salmon-orange. Princeps, fls. whitish, becoming orange; said to have come from Jara. Regina, fis. shaded violet-salmon. Sauguinea, fls. crimson, shaded with violet. Spléntida, crimsonorange. I.H. 29:463. Wéstii, fls. pale rose, becoming brilliant; hybrid (Gn. 42:886. G.M. $36: 35$ ). Williamsii, fls. reddish salmon. Other horticultural forms are: Armeniaca, yellow; Décora, yellow; Illeistris, orange; Insignis, rose; Pilyrimi, orange-scarlet; Profusa, rose; Speciòsa, yellow; Śpléndens, orange; Venùsta, orange.
A. Fls. usually in shades of red (sometimes varying to rose).
stricta, Roxbg. (I. coccinea, Hort. I. blínda, Ker. I. crocita, Lindl.). Apparently the common species, known in greenhouses as I. coccinea: glabrous shrub, with sessile or subsessile lvs. Which are obovate or obovate oblong, and very slender-tubed fls. in dense corymbs, the corolla lobes short and rounded. Moluceas and China. B.M. 169 (as I. coccinea). B.R. 10:782.-Runs into nearly pure white forms. I. striata of the importers of Japanese plants is probably a misprint for stricta. There are said to be yellowish fld. forms. Prince of Orange is said to be a form of this species.
coccinea, Linn. (I. grandiflora, Br. I. Bandhúca, Roxbg.). Much like the last, but Irs.oblong and corolla lobes acute. E. Indies. B. F. 2:154; 6:513.
macrothyrsa, Tejsm. \& Binn. (I. Lúffii, Moore). Very large, glabrous: Ivs. a foot long, linear-oblong to oblong-lanceolate: cluster very large, 8 in. across, bearing very many deep red tinged crimson fls., with lanceolate obtuse lobes about $1 / 2 \mathrm{in}$. long. E. Indies. B. M. 6853.-Probably the finest of the genus.

AA. Fls. in shades of ycllow or orange.
Javánica, DC. Glabrous shrub with lrs. 5-i in. long, ovate-oblong, acute or acuminate : corymb terminal, with forking coral-red branches: fls. deep orange-red, the lobes rounded. Jara. B.M. 4586.
congésta, Roxb. (I. Griffithii, Hook.). Erergreen tree in its native haunts, glabrons, except the eymes: lrs. very large ( $6-12 \mathrm{in}$. long), stalked, elliptic or ellipticoblong, acute or acuminate: cymes sessile or nearly so: fls. orange-yellow, changing to reddish, the segments rounded. Indies. B.M. 4325.
aAA. Flouers white.
parviflora, Vahl. Evergreen tree, with subsessile oblong or elliptic-obtuse lvs. 3-6 in. long: cymes sessile: fls. white, the tube only $\frac{1}{3} \mathrm{in}$. leng. India. L. H. B.

JACARANDA (Brazilian name). Bignonidcere. J. ovalifolia perhaps ranks among the 100 best flowering trees or shrubs for subtropical regions. The follage is as finely cut as a fern, symmetrical and elegant. The leares are decussate, distant, each one with 16 or more pairs of pinne, each pinua haring 14-24 pairs of leatlets. The piant bears loose, pyramidal panicles, 8 in . high, of $40-90$ blue fls ., each 2 in . long and $11 / 2 \mathrm{in}$. Wide, which have a long, bent, swelling tube and the 2 lobes of one lip smaller than the 3 other lobes. From S. Fla. It is one of the best of foliage plants for the S., valuable alike for florists' decorations, conservatory, subtropical bedding in the North, or for lawn specimens in Florida, where, if cut back by frost, it rapidly recovers its beauty. It reaches a height of 20 ft . or more. It is commonly planted in parts of S. Calif., and attains a height of 50 ft. and more. This species is also cuit. in Europe under glass. Jacaranda is a genus of about 30 tropical American species, mostiy Brazilian: trees, with lvs. opposite, 2. pinnate, rarely 1-pinnate: lfts. usually numerous, entire or dentate: fis. showy blue or violet. panicied; corolla lobes rotund; perfect stamens 4, didynamous; staminode about as long as the stamens, club-shaped at the apex and often bearded at the top.
ovalifolia, R. Br. (J. mimoscefolia, D. Don). Les. distant, spreading, oblong, villous: fls. more or less horizontal. S. Amer. B.R.8:631. B.M. 2327. R.H. 1897:132.
E. N. Reasoner and W M.

## JACK BEAN. Refer to Canavalia.

JACK FROIT. Artocarpus integrifolia.
JACK-IN-A-BOX. Hernandia.

## JACK-IN-THE-PULPIT. See Arisama.

JACOBEA. All included in Nenecio.
JACOBINIA (probably a personal name). Acanthdcere. A polymorphous genus of 30 or 40 tropical American herbs or shrubs, including the genera Libonia, Sericographis and Cyrtanthera. Plants cultivated for their narrow-tubular red, orange or yellow fls. : liss. opposite and entire: calyx deeply 5 -parted, with linear or awl-shaped segments; corolla more or less 2-lipped, one lip 2-1 obed and the other 3-lobed; stamens 2; staminodia represented by two hairy elevations on the corolla tube; pistil ripening into an oblong or ovate capsule, the style filiform, the orary surrounded by a disk.
Jacobinias, in common with other Acanthads, are much confused as to species. A closely allied genus is Justicia, which, among other characters, is distinguished by having spurs or appendages at the base of the anther lobes, whereas Jacobinia has no such appendages. Other allied genera are Aphelandra, Dianthera, Adhatoda, Thyrsacanthus, Eranthemun, Barleria, Dædalacanthus.

Jacobinias are mostly subshrubs in their natire places, but they are usually treated as herbs under cultivation. They are showy greenhouse or conservatory subjects. When well grown they are attractire plants, but they soon become weedy under neglect. They propagate very readily from cuttings, after the manner of fuchsias, and the most satisfactory plants are usually those which are allowed to bloom but once. Most of them thrive well under conditions suited to begonias.
A. Fls. in a more or less dense terminal panicle or thyrse: corolla long, more or less curved. stamens fixed to the middle or near the top of corolla tube. (Subgenus Cyrtanthera.)
magnifica, Benth. \& Hook. (Cyrtanthèra magnifica, Nees. Justicia magnífica, Pohl). Strong forking herb or subshrub, blooming when 1 or 2 ft . high, but becou-
ing several feet high if allowed to grow: stems 4-angled: lvs. opposite, lanceolate to orate-lanceolate to oral-oblong, narrow or broad at base, attenuate to apex, wavy-margined, veiny, downy, sometimes a foot long: Hs. rose-purpic, ascending, arched at the top and the lower lip recurving, borne in dense terminal spike-like thyrses. Brazil. G.F. 5:317. Var. carnea (Justiciu cirmen, Hook.) has flesh-colored fls. B.M. 3383. B.R. 17:1397. - A handsome old plant, of comparatively easy culture in a conservatory temperature. Cuttings made in Feb. or March should bloom eariy the following winter. Young plants are usually most satisfactory, the oll ones being kept over only for cutting stock. Give rich soil, and plenty of water in the growing season.
Pohliana, Benth. \& Hook. (Cyrtanthera Pohliima, Nees). Nuch like J. mugnificu, but more robust and leafy: ivs. orate-acuminate and rounded or nearly or quite cordate at the base, more glabrous, often purpletinged: fls. bright crimson: bracts short-acute, or in one form obtuse. Brazil. - Voss considers J. magnifica, var. carnea to be synonymous with J. Pohliana.
Var. velùtina, Hort. (J. velùtine and Justicia velittina, Hort. Cyrluntherre Pohliìna, var velutinu, Nees). Dwarf: bracts obtuse : Ivs. villous-pubescent on both surfaces: fls. 2 in . long, rose-color. Brazil. Gng. 7:212. A.F 14:998. - A worthy plant of comparatirely recent introduction in this country. It is an excellent pot subject and has been considerabiy adrertised recently as the "New Dwarf Justicia velutina." A profuse and continuous bloomer. Cultural remarks under $J$. magnifica also apply to this.

AA. Fls. in a dense terminal spike: corolla long and curred: stamens fixed to the base of the tube. (Subgenus Polystachys.)
coccinea, Hiern. (Jusficia coccinea, Aubl.). Erect herb or subshrub, usually grown from cuttings each year and treated as a pot subject: 2-5 ft. high: branches terete: lvs. elliptic or ovate-lanceolate, entire, glabrous

1190. Jacobinia Penrhosiensis ( $\times 1 / 2$ ).
or nearly so : fls. crimson, in a dense terminal spike, pubescent, the long upper lip more or less arched and the lower one reflexed. Brazil. B.M. 4:32.-Blooms in summer. Said to be known sometimes as Aphelandra cristuta.

AAA．Fls．scaltered or in loose more or less leafy pani－ cles：of medium length，siraight or nearly so not deeply cleft．（Subgenus Libonia．）
pauciflora，Benth．\＆Hook．（Sericógraphis pauciflora， Nees．Libòuia floribuinda，C．Koch）．A conımon con－ servatory plant，subshrubby，but usually treated as a pot－plant，with terete，short－jointed，close pubescent branches：lvs．elliptic or elliptic cblong，short and rather small，entire，very short－stalked：tis． 1 in．long， tubular，drooping or nearly horizontal，scarlet with yellow at the end，the lips short．Brazil．－A most florif－ erous plant，almost as ensy to grow as a fuchsia，and to be handled in essentially the same way．

Penrhosiénsis（Libònia Peurhosiénsis，Carr．）．Fig． 1190．Much like the last，but lvs．more pointed and ths． larger and more showy．R．H．1876：50．Gng．2：131．－It is a most excellent plant，and is taking the place of $J$ ． pauciflora．It is hybrid of $\boldsymbol{J}$ ．pauciflora and $\boldsymbol{J}$ ．Ghies－ 3rechtiana．Another and very similar hylbrid of the same parcntage is Sericobònia ígnea，Lindl．\＆André．I．H． 22：198．J．Peurhosiensis is a winter blooner，a little earlier than J．putiflora．Cuttings struck in spring make full blooming subjects by fall and early winter． This and $J_{\text {．paciflora }}$ are common conservatory plants．

Ghiesbreghtiàna，Benth．\＆Hook．（Cyrtauthèra Ghiesbreghtiana，Decne．SericogruphisGhiesbreghtiont， Nees．Justicia Gheisbreghtiimu，Lem．Aphetíndra Ghiesbreghtiùna，Hort．）．Lrs．narrower（lance－ovate） and longer，acuminate ：fis．in a termiaal，very loose panicle，tubular，scarlet，appearing at the same season as those of J．Perrhosiensis．Mex．F．i．4：339．－Introd． by Ghiesbreght；but when the plent was transferred to the genus Jacobinia the name was misspelled Ghies－ brechtiana．
J．Lindeni．Nichols．（Justicia Lindeni，Honll．），is a Mexican subshruh，with lance－ovate lvs．，and a fascicled heal of orange－ yellow tls．Does not appear to be in the Amer．trade．R．H． 1850：250． L．H．B．
JACOB＇S LADDER．Polemonium coruleum．

## JACOB＇S STAFF．Fouquieria splendens．

JACQUEMONTIA（after Victor Jacquemont，a French naturalist；died 1832）．Concoleulacee．About 50 spe－ cies of tropical and subtropical twining herbs，allied to Ipomea and Convolvulus，to which they are inferior cor garden culture．They are distinguished from Ipomoa by having two stigmas instead of one；and from Con－ volvulus by having the stigmas ovate or oblong instead of linear－filiform to subulate．$I$ ．violacea makes an at－ tractive greenhouse climber for summer and autumn flowering，but is not as desirable for this purpose as several species of Ipomœa．It is apt to become leggy after a few years．Fropagated readily by seeds or cut－ tings．For other botanical characters and cultural di－ rections，see Ipomoc．
violàcea，Choisy（Conéolvulus pentúnthus．Jacq．）． Stem perennial，somewhat shrubby at base，twining 6－8 ft ．，pubescent or nearly glabrous：lis．cordate to ovate－ lanceolate，acuminate：pedvucles slender，bearing 5－12 fls．in a loose cymose cluster ：corolla about $1 \frac{1}{4} \mathrm{in}$ ．Wide， short－funnelform，sharply 5 －angled，rich violet－blue． Jine－Sept．Trop．Ame ${ }^{-}$，and as farncrth as Fla．B．M． 2151．B．4：197．P．M．6：219．In var．cajéscens，Hort． （ $J$ ．cane scens，Benth．），the whole plant is covered with short，brownish down．B．R． $33: 27$.
tamnifòlia，Griseb．Plant annual，usually low and erect，at length twining if support is near，covered with tawny gellow hairs：lvs．cordate，ovate，long－petioled： peduncles bearing many ths．in dense，involucrate clus－ ters：Hs．less than $1 / 2 \mathrm{in}$ ．long，violet．Cult．and waste ground，S．C．to Ark．，and southwarc．

S．W．Fletcher．
JACQUINIA（Nicholas Joseph de Jacquin，1こごー1817， distinguished botanical painter and writer，who painted many West Indian plants from nature）．Myrsindcece． About 20 species of tropicel American trees and shrubs， one of which is called Bracelet Wood in the West Indies， because the brown and yellow shing seeds are made into bracelets．It is a low tree，whevergreen lrs．some－
what like box but obovate，and racemes of small，white， honey－scented fls．which in the North under glass would be borne in winter．It seems to be cult．only in S．Fla． and S．Calif．outdoors．Generic characters are lis． rigid，margined，entire：fls．Thite or orauge，borne in racemes，umbels or singly ；corolla 5－fid，wheel－to sal ver－shaped，crowned at the throat and between the lobes with 5 roundish appendages（staminodia）：berry leathery，several－seeded．In the allied genus Theo－ phrasta the corolla is cylidrical，shortly 5 －lobed，the ap－ pendages are fastened at the base of the corolla instead of the throat，and the berry is many－seeded．
armillàris，Linn．Lvs．cuneate－spatulate or oborate， blunt，revolute at the margin，usually whorled， 4 in． long， $11 / 2 \mathrm{in}$ ．wide：berry $1 / 4 \mathrm{in}$ ．thick．W．Indies．

## JAMBOLAN．Eugenia J̄ambolanu．

## JAMBOS．See E＇ugenia Jambos．

JAMESIA（after its discoverer，Dr．Edwin James， 179i－1861，botanical explorer of the Rocky Mountains）． Syn．，E＇duínia．Saxifragdeew．Low，hardy shrub of up－ right habit，with deciduous，opposite，petioled，serrate lvs．，and white fis．in terminal，short panicles．Hand－ some shrut for borders of shrub＇series or rocky slopes in sunny situations，thriving in any well drained garden soil，best in a peaty and sandy one．Prop．by seeds or by cuttings of ripened wood．One species in the Rocky Mountains from Utah to New Mex．Lvs．without stip－ ules：calyx lobes and petals 5：stamens 10 ：styles usu ally 3：fr．a 3－celled，many－seeded，dehiscent capsule．

Americàna，Torr．\＆Gr．Shrub，to $4 \mathrm{ft} .:$ lvs．Broadly ovate to oblong－ovate，acute，serrate，dentate，pubescent or almost dlabrous above，whitish tomentose beneath， $1 / 2-2 \mathrm{in}$ ．long：fls．about $1 / 2$ in．across，white，sometimes pinkish outside．June．B．M．6142．J．H．III．32：37． Gn．32，p．522，and 33，p．606．Alfred Rehder．

## JAMESTOWN WEED is Datura Stramonium．

## JAMROSADE．See E＇ugenia Jambos．

## JARRAH．E＇ucalyptus marginata．

JASIONE（ancient name of no application to this plant）．Campanuidece．This includes the Shepherd＇s Scabious，a hardy herbaceous perennial plant of com－ pact habit，about a foot high，and bearing globose heads 2 inches in diameter，co ᄀposed of very many light blue flowers．It is of e sy＂＇ture in any garden soil，grows either in full swaght vartial shade，and is equally adapted for bre erig．．ns，or the rockery．The common annua scabious belongs to the teasel family， and bas 4 stamens．while the Shepherd＇s Scabious has 5 stamens．Jasione has about 12 species，mostly Euro－ pean，and is casily distinguished from its allies by the fls，veing borne in a head with an involucre，the corolla cut into 5 awl－shaped strips，and the anthers somewhat united at their bases．They differ widely in duration and habit．Prop．by division and sced．
perénnis，La n．Shepherd＇s Scabious．Sheep Scab：ocs．Sheep＇s－bit．Stem erect，sparingly if at all branched ：root－lvs．obovate，in the non－floriferous plants forming a tufted rosette；stenl－les．oblong－linear， entire：peduncles long，leafless：bracts ovate，serrate－ dentate．July，Aug．B．R．6：505．B．M． 2198.

## J．B．Keller and W．M．

JASMINUM（Arubic name）．Oleùcere．Jasmine． Jessamine．Climbing or erect shrubs，of more than 100 species in warm regions of the Old World．Fls．fra－ grant；corolla yellow or white isoretimes reddish out－ side），salver－shaped，the 4－9 lobes convolute in the bund， mach exceeding the calyx；stamens 2，included in the corolla tube：orary 2 －loculed，with a single erect ovule in each locule，becoming in fr．a twin berry：lis．pin－ nate，but sometimes reduced to 1 lft ．（petiole jointed）． Jasmines are of diverse horticultural groups．Some of them are hardy in the middle and southern states， whereas others are winter－flowering warmhouse plants． Most of them are known as coolhonse or teraperate house shrubs，of half－climbing habit．They are all of
sasy culture. They propagate readily by cuttings of nearly matuie wood and by layers. Often the fls. are very fragrant. The species are usually called Jasmines, and the word Jessamine is commonly restricted to $J$. officinale, which is the Jessamine of poetry. Some of them (particularly J. grandiflorum) are grown for perfume-making. The Cape Jessamine is Gardenia. Yellow or Carolina Jessamine is Gelsemium.

## INDEX.

affine, 7.
amastomosa Azoricam, 9. flavum. 10. gracillimum, 4 granditlorum, 8 hirsutum, 3
humile, 10.

## A. Les. reduced to one lft.: fls. uhite.

B. Culyx pubescent or hairy.

1. Sámbac, Soland. Arabian Jasmine. Climbing, the angular branchlets pubescent: lvs. opposite or ternate (the ternate-lvd. specimens giving rise to the name trifoliatum), firm in texture, shining, nearly or quite glabroue th- notiole short and abruptly curved upwards, elliptic vact e d-ovate, either prominently acute or conipl veined: c. nent, hirsute $o^{-}$© corolla tube "' $1, \ldots$; lobes oblong or orbicular. India.-Muck , ? ing purple as they aie. s.R. 1:1. A full double but-ton-fld. group is in cult., one form of which is the Grand Duke of Tuscany (or Grand Duke). The donble form is shown in B.M. 1785 . This double form sometimes passes as J. trifoliatum. J. Sambac is a perpetual bloomer, particularly in frostless countries, where it can stand in the open.
2. undulàtum, Ker. Climbing, with hairy branches. slender: lvs. opposite, short-petioled, rather smaii (about 2 in. long), ovate-lanceolate and acuminate, somewhat pubescent beneath, somewhat undulate: fls. 6-10, in terminal cymes, white, long-tubed; calyx teeth short; corolla tube $3 / 4 \mathrm{in}$. long, and slender; lobes half or less as long, acute. India. B.R. 6:436.-Lis. sometimes ter$n_{i}+\infty$. Little known in cult. in this country.
pubéscens, Willd. (J. hirsùtum, Willd. J. multiflorum, Andr.). Climbing, rusty-hairy: Ivs. very shortpetioled, rather thick, ovate-acute: calyx teeth usually $2 / 3 \mathrm{in}$. long (nearly or quite twice as long as in $J$. undulatum), with spreading yellow hairs: tls. white, much like those of $\boldsymbol{J}$. $\boldsymbol{\text { niulatum, the lobes broad, often half- }}$ double. India. B.M. 1991. B.R.1:15.-Will stand some frost.
3. gracillimum, Hook. f. Climbing or scrambling, soft pubescent or hairy: lvs. very short-petioled, ovate-lanceolate, acuminate, the base co-date or truncate, bright green above and pubescent beneath, $1 / \frac{1}{2} \mathrm{in}$. or less long: ths. white, in very large, dense hanging heads, an inch or more across, fragr. : calyx tecth long and awl-like, half $\mathrm{F}^{-}$ag as the sle der corolla tube; cocolla lobes many (usually about?), acute. N. Borneo. G.C. II. 15:9. B.M. 6.509. - Long, lithe branches spring from near the ground and bear heary clusters at their ends. Handsome winter bloomer. Nearly hardy in eastern N. Car.

## BB. C゙alyx glabrous.

5. trinerve, Vahl. Tall-climbing, with terete glabrous branches: lvs. short-stalked, ample, ovate-oblong and acuminate, strongly 3 -nerved from the base: fls. white, in small clusters; calyx teeth narrow but much shorter than the long corolla tube; corolla lobes only half as long as the tube, acute. India. B.R. 11:918. - Perhaps caly a form of $J$. anastomosans, Wall.
6. simplicifòlium, Forst. (J. liecilum, lanks). Climber, or sometimes a tree in its native place, glarous or pubescent: lvs. mostly short-stalked, shining, var! ing from oblong-eliiptic to - ${ }^{\prime \prime}$ e-lanceolate to cor-date-ovate, achte or obtuse, asually sess than 3 in. long: fls. white, iu terminal forking, many-Hd. clusters; calyx teeth short and st गetimes scarcely any; corolla tube
$1 / 3-1 / 2$ in. long, the acute lobes somewhat shorter. Austral. B.M. 980. B.R. 8:606 (as J.gracile, Andr.). Summer bloomer.

## AA. Les. of 3 or more lfts. <br> B. Flouers uhite.

7. officinàle, Linn. (J. poéticum, Hort.). Jessamne. Long, slender grower requiring support, but scarcely self-climbing, glabrous or very nearly so: lvs. opposite, odd-pinnate, the lateral lfts. 2-3 pairs and rhomboid-ob-long-acute, the terminal one longer: fls. 2-10 in terminal more or less leafy clusters; calyx teeth linear, $1 / 4-\frac{2}{3} \mathrm{in}$. long, or sumetimes as long as the rather short corolla tube; corolla lobes oblong, more or less involute on the margins. Persia, India. B.M. 31. R.H. 1878, p. 428. - Long cultivated. The glossy foliage and fragrant white summer-blooming fls. render the plant very attractive in the S., where it is hardy. With protection it will stand as far N. as Phila. Var. affine, Nichols. ( $J$. affine, Hort.), is a form with larger tls. R.H. 18i8, p. 428.
8. grandiflòrum, Linn. Catalonian, Italian, Royal or SpaNish Jasmine. Nearly erect-growing, the branches drooping and angular, glabrous or very nearly so: lvs. opposite, the rachis flattened or winged, the lfts. $2-3$ pairs, elliptic or round-elliptic, mostly ending in a very small point or cusp: calyx teeth $1 / 4 \mathrm{in}$. long or rarely half as long as the corolla tube; corolla star-shaped, larger than in J. officinale. India. B.R. 2:91.- Probably the best white-flowered species. Summer and fall, or nearly perpetual in warm countries. Much grown in Eu. for perfumery. Stands $10^{\circ}-12^{\circ}$ of frost.
9. Azòricnm, Linn. Climbing, glabrous or nearly so, the branches terete: lvs. evergreen, opposite, the lfts. 3, ovate-acuminate, the 2 side ones often smaller: calyx teeth very small; oblong corolla lobes about as long as the tube. Canary Isl. B.M. 1889. - A good white-Hd. temperate-house species blooming in summer and winter.


## BB. Flowers yellow.

10. hùmile, Linn. ( $J$. verolùfum, Sims. J. flà:'um, Sieb. J. triumphons, Hort.). Italian Yellow JasMise. Fig. 1191. A diffuse shrub, in the open ground in the $S$. reaching 20 ft . and requiring support, but in glasshouses usually grown as a pot bush: branches glabrous, angled: lvs. alternate, odd-pinnate (rarely reduced to 1 lft.$)$, the lateral lfts. 1-3 pairs, all lfts. thickish and acuminate, and more or less revolute on the edges, varying from oblong to oblong-lanceolate to oblong-rotund: Hs.bright yellow, in open clusters; calyx teethvery short: corolla tube $3 / 4-1 \mathrm{in}$. long, usually considerably exceeding the mostly obtuse and retlexing lobes. Trop. Asia. B.M. 1731. B.R. 3:178:5:350. L.B.C. $10: 966 .-$ The commonest Jasmine in American glasshouses, usu$n^{\prime \prime}$ known as $J$. revolutum. It is hardy in the open as ar north as Maryland. Les. thick and evergreen. Needs a cool house if grown under glass. Summer and fall bloomer. J. Reèvesii, Hort., may belong to this species.
11. odoratissimum, Linn. Much like the last, but more erect and less leafy when in flower: lys. alternate, the le"nts 3 or 5 , shining, oval or broad-oval and obtuse: hls. yellow, in a terminai cluster; calyx teeth very short; corolla lobes oblong-obtuse, mostly shorter than the tube.

Summer. Madeira. B.M. 285. - It is an erect, glabrous shrub with straight, stiff, terete or faintly angular brauches.
12. nudiflòrum, Lindl. (J. Sieboldiinum, Blume). Twiggy, nearly erect shrub with 4 -angled glabrous stiff branchlets: lvs. opposite, small, with 3 little ovate ciliate lfts., the entire foliage falling in autumn or when the growth is completed: fls. solitary, in early spring (or winter), from long, scaly buds, subtended by several or many small leaf-like bracts, yellow; calyx lobes leafy and spreading or retlexed, shorter than the corolla tube; corolla segments obovate, often wavy. China. B.R. 32:48. B.M. 4649. R.H. 1852:201. G.C. III. 11:181.-A most interesting plant, reminding one of Forsythia when in bloom. Hardy south of Washington, and blooming nearly all winter. With protection, it will stand as far north as Hudson river valley, and bloom very early in spring. In northern glasshouses, used mostly as a late winter and early spring bloomer. Strong-growing specimens need support.
J. angulàre. Vahl. Fls. very long-tubed, white: lvs. opposite, ternate. S. Afr. $\mathbf{B}$ M. 6865.-J. calcàreum, Muell. (J. Novæ Zelandicnm. Bosse), is a spring- and summer-blooming Australian species with white Hs. and simple, opposite, thick, 3- or 5 -nerved lvs.-J. didymum, Forst. Climber: \#s. small, white, in narrow axillary eymes which exceed the lvs.: lvs. opposite, ternate: lfts. often retuse. Austral. B.M. 6349.-J. friticars, Linn. Bushy: branches angular: lvs. alternate, small, ternate, the lfts. obovate: fls. yellow. Mediterranean region. B.M. 401. -J. polyinthum, Franch., a recent Chinese species in the way of J. grandiflorum, may be expected to apoear in cult. Fls. white inside, reddish ontside, long-tubed: lirs. opposite, with about $\overline{5}$ long-acuminate ifts. R.H. 1891, p. 270.-J. pubigerum, Don. Much like J. humile, but tis. smaller and plant villous. India. L. H. B.

JATROPHA (Greek, referring to .ts medicinal use). Euphorbidcear. This includes the French Physic Nut, J. Curcas, which is grown commercially in the Cape Verde Islands for the seeds, which yield a purgative oil resembling castor oil. It is also grown for ornament in S. Fla. and S. Calif. Abont 68 species of tropical herbs or tall shrubs: lys. alternate, petiolate, usually palmately lobed: fls. at the tips of branches in forking cymose panicles, monœcious; calyx 5-parted; corolla twisted; stamens 10 or fewer: column surrounded by 5 glands: capsule 2-3-seeded.
multifida, Linn. Shrubby, 5-10 ft. high: lrs. longpetioled, $7-9$-parted, glabrous, not glandular; segments pinnatifid; stipules many-parted, the divisions bristly: cymes umbel-like: petals distinct, 3 times as long as the calyx; stamens 8-10. Tropics; naturalized in Jamaica and common there. - Cult. at Santa Barbara, by Franceschi, who says its curiously divided leaves and scarlet flowers are very ornamental, and adds that it is called "Coral Bush."
Cúrcas, Linn. French Physic Nut. Suloshrub, 6-12 ft . high: lvs. subcordate-roundish, angular or obsoletely $3-5$-lobed, glabrous; stipules deciduous: corolla 5parted, villous inside, twice as iong as the calyx; stamens 10-15. Tropics.-A weed at St. Vincent. Reasoner says it grows 20 ft . bigh.
gossypifolia, Linn. Subshrub, a few feet high: lvs. long-petioled, 5 -parted, with prominent gland-tipped hairs on the margin, petioles and many-parted stipules, those on the petioles branched: petals distinct, dark purple; stamens $8-10$. Tropics. L.B.C. 2:117. B.R. 9:746. - Long cultivated for ornament. Has been recently advocated as a specific for leprosy.
$J$. stimulisa, Michx., the Spurge Nettle, is a common weed in the South.
I. B. S. Norton.

JEFFERSONIA (after Thomas Jefferson, third president of the U.S.). Berberidacece. A genus of 2 specieone of which is a native hardy herbaceous perennias plant, growing about 8 in . high, with characteristic foliage and a naked scape, bearing a solitary white (sometimes reddish) flower in May. Distinguished from the group of cultivated allies mentioned under Epimedium by the following characters: lvs. 2-parted: sepals 4; petals 8,larger than the sepals, and flat; stamens 8: ovules in an indefinite number of series along the venter. The capsule is half-circumscissile near the top, making, with the scape, an object resembling a pipe. Mn. 5, p. 266.
binàta, Bart. (J. diphýlla, Pers.). Fig. 1192. Becoming 16-18 in. high in fruit: lvs. glaucous beneath, $3-6$ in. long, $2-4$ in.wide: fls. about 1 in. across. Woods, E. Ya. to Va. and Tenn. B.B. 2:92.

JERUSALEM ARTICHOKE. See $A$ r. tichoke, Jerusalem. J. Cherry, Solanum Pseudo-capsicum, J. Cross. Lychnis Chalcedonict. J. Oak. Chenopodium Botrys. J. Sage. Phlomis fruticosa. J. Thorn. Parkinsonia aculeata.
 JESSAMINE is Jasminum offici-
nule. Cape Jessamine is Gardenia jusminoides. Malayan Jessamine is Rhyncospermum jasminoides.

JEWEL WEED. Impatiens aurea and biflora.

JIMPSON or JIMSON WEED. Consult Datura.

JOB'S TEARS, Coix.
JOE-PYE WEED. Euputorinm ригригет.
1192. Jeffersonia binata.
Nat. size.

JOHNNY EPPLESEED. See Appleseed, Johnny. JOHNSON GRASS. Andropogon Halepensis.
JONQUIL. See Narcissus.
JOVE'S FRUIT. Benzoin melissifolium.
JUB庆A (after Juba, king of Numidia). Palmàcere. This includes the Wine Palm of Chile, J. spectabilis, which in this country is cult. outdoors in S. Calif. and in the North under glass. "It is one of the hardiest palms," says Franceschi. "and can endure drought and many degrees of cold. If liberally treated, it makes a large tree in a few years." A full-sized trunk yields about 90 gallons of sugary sap, which is boiled by the Chileans and called paim honey. There is some danger of the species being exterminated in Chile. The fruits look like diminutive cocoanuts, and are called Coquitos, or by the trade "Monkey's Cocoanuts." In Enrope, it is cult. under glass, and also used for subtropical bediling.
Jubea spectrbilis is a handsome and satisfactory palm for the cool palm house, where it would be treated in common with . ch plants as Chamarops humilis, the Sabals and Euterpe montena, which may be grown well in a night temperature of $50^{\circ}$, providing the plants are properly established. In general appearance, $J$ spectabilis reminds one of some kinds of Phornix, and, like them, does not show the true character of its foliage in a very sma!l state, the seedling Jubra producing several simple lys. before developing foliage of the pinnate type. In Jubra, however, the lower pinna do not revert to spines, as is usually the case with Phonix, and the pinne are also arranged irregularly on the midrib, thus giving the fronds a feathery effect. The culture of Jnbæa is by no means difficult, propagation being effected by means of imported seeds, which usually give a fair percentage of germination, providing they are started in a warmhouse and kept moist. The seedlings should be potted as soon as the second leaf appears, and kept in a warmhouse until they are large enough for a 4 -inch pot, and from this time forward cooler treatment will give the best results, always remembering the fact that while many palms (and Jubaea among the number), will bear much neglect, yet the best results are only to be had by giving plenty of nourishment.

Jubra has 2 species of tall, unarmed S. American palms: caudex thick, corered with the bases of the
sheaths: lvs. terminal, pinvatisect; segments spreading, linear-lanceolate, rigid; margins recurred; rachis laterally compressed, conrex on the back, acute beneath; sheath short, open. Allied genera in cult. are Attalea, Cocos, Maximiliana and Scheelea, which are distinguished chiefly by the staminate fls. In Jubæa the petals are lanceolate: stamens numerous, included, the anther cells connate: fr. 1-seeded. In Attalea the petals are lanceolate: stamens $10-24$, included, anther cells connate: fr. 2-6-seeded. For distinctions from other genera zonsult, also, Cocos, Maximiliana and Scherlea.
spectábilis, HBK. Height $40-60 \mathrm{ft} .:$ lvs. 6-12 ft. long. G.C. II. 18:401; IIl. 18:516. Gn.5, p. 413. V.8:340. -The southernmost American palm.

## JUDAS TREE. Cercis.

JUGLANS (ancient Latin name from Jovis glans, nut of Jupiter). Juglandùcer. Walnut. Butternut. Ornamental and fruit-bearing trees, rarely shrubs, with deciduous, alternate, odd-pinnate lrs., and with inconspicuous greenish fls., appearing with the lvs., the staminate in pendulous slender catkins, the pistillate in few- to many-fld. racemes: the fr. a large drupe, containing an edible nut. Most of the species are hardy, and are rery valuable park trees, with a massive, straight trunk, and a light and airy broad top, the best being probably $J . n i g r a$, one of the noblest trees of the American forest. J. regia, $J$. Californica and the Mexi-

1193. Leaf of Juglans nigra ( $\times$ 治) .
can species are tender in the North. Though meny fungi and insects prey on the Walnut, none of them do very serious damage, the worst being, perhaps, the hick-ory-borer. The wood of the Walnut, which is easily worked and susceptible of receiving a beantiful polish, is much used for cabinet-making and the interior finish of houses, especially that of $J$ nigra and regia, which is heary, strong pad durable, and of dark brown color, while that of $J$. cinerea and Sieboldiana is light and soft. The husks of the nuts are sometimes used for dyeing yellow, and the bark for tanning leather. The busk of
$J$. cinerea has some medicinal properties. The nuts of all species are edible, and are an article of commercial importance, especially those of the European Walnut, which are the best. This species is extensively grown

1194. Pistillate fiowers of Juglans cinerea. Natural size.
in the warmer parts of Europe, in California and in the eas ${ }^{+}$from Penusylrania to Georgia. The nuts of the nat ve species are also sold on the market, but mostly gathered in the woods, though a number of improved varieties are incultivation. J. Sieloldiana and $J$ cordiformis, with nuts superior to those of the native species, will probably become valuable nut trees where $J$. regia is too tender; the nuts of both are much ralued in Japan. The Walnut grows best in moderately moist, rich soil, but $J$. cinerea is more moisture-loring and $J$. regia prefers well-drained hillsides. They are not easily transpianted when older, and therefore the nuts are often planted where the trees are to stand, but they may be safely transplanted when 2 or 3 years old, or even later when they have been transplanted in the nursery. Prop. by seeds, which should be stratified and not allowed to become dry. A light, sandy soil is to be preferred, as the young plants produce more fibrous roots, while in stiff soil they are liable to make a long taproot. The young seedlings are transplanted when about 2 rears old; sometimes the taproot is cut by a long knife. Varieties are often grafted on potted stock in the greenhouse in early spring or are budded in summer, either shield- or fute-budding being employed; even top-grafting of old trees is sometimes practiced. About 10 species in N. Amer., soutat to Mex. and from S.E.Europe to E. Asia. Trees, rarely large shrubs: the stout brancnes with laminate pith: les.without stipules, of aromatic fragrance when bruised: staminate Hs. with a $2-5$-lobed perianth and fo-30 stamens, in siender catkins; pistillate fls. in fewto many-fld. racemes: ovary inferior, 1-celled, with 4 calrx lobes and included in a 3 -lobed incolucre: fr. a large drupe with a thick, indehiscent husk; nut 2- or 4celled at the base, indehiscent or separating at last into 2 valres. For culture and further information, se? U.S. Dept. of Agric., Nut Culture in the U. S., quoted helow as U.S. C. C see, also, Walnut.

1195. Jurlans Mandschurica. Natural size.
A. Fr.glabrous or finely mubescent: nut 4-celled at the base.

## B. Lfts. $5-13$, almost entire.

règia, Linn. Persian or English Walnet. Roundheaded tree, to $70 \mathrm{ft} .: \mathrm{lvs}$ oblong or oblong-ovate, acute

195. Juglans Sieboldiana ( $\times 1-5$ ).
or acuminate, almost glabrous, bright green, 2-5iu. long: fr. almost globular, green; nut usually oval, reticulate and rather swooth, rather thin-shelled. S. E. Europe, Himal., China. U.S. N. C., pl. 6. Many vars. are cultivated as fruit trees, for which see Walult. Of the ornamental vars. the most distinct and decorative is var. laciniàta, Lourl. (var. filicifòlia, Hort., var. asplenifòlia, Hort.), with narrow, pinnately cut lfts.; very effective as a single specimen on the lawn; remains usually shrubby. Var. monophylla, Hort., has the lvs. simple or 3-foliolate. Var. péndula,Hort., has pendulous branches. Var. præpartùriens, Hort., is a shrubhy var., producing rather small, thin-shelled nuts on very young plants. Var. Bartheriàna, Hort. (rar. elongàta, Hort.). Nut elongated, narrow-oblong. R.H.1859, p. 147; 1861, p.427. Gn. 50:478.

1197. Juglans Sieboldiana fruits.

With and without the husk. Natural size.

## BB. Lfts. 13-25, serrate

Californica, Wats. Round-headed tree, occasionally to 60 ft ., with puberulous branchlets: lfts. ovate-oblong to oblong-lanceolate, acute or acuminate, almost glabrons or puberulous when young, $2-4 \mathrm{in}$. long: stamens $30-40$ : orary almost glabrous or puberulous: fr. globose, $3 / 4-1 \frac{1}{2}$ in. across; nut ohscurely sulcate, rather thin-shelled. Calif. S. S. 7:337. Gn. 49, p. 278.-A graceful, ornamental tree, also used as stock for grafting in Calif. The nut is of good quality but rather small.
rupéstris, Engelm. Shrub or small tree, rarely to 50 ft.: brauchlets pubescent when young: lfts. ovate-lanceolate to lanceolate, acuminate, puberulous or pubescent when young, 2-5 in. long: stamens about 20 : ovary pubescent or tomentose: fr. globular, rarely ovoid, often pointed, usually pubescent, $1 / 2-11 / 2 \mathrm{in}$. across; nut deeply sulcate, with longitudinal grooves, thick-shelled, with small kernel. CoIo. to Tex. and northern Mex. S.S. 7:335. - The typical form has narrower, more glabrous lvs. and smaller frs., while var. major, Torr., the western form, is of more vigorgus growth, has broader, more coarsely serrate and more pubescent lis. and larger less thick-walled nuts. S.S. 7:336. l'robably J. longirostris, Carr. (R. H. 18i8, p. 53), belongs here.
nigra, Linn. Black Walnut. Fig. 1193. Lofty tree, to 150 ft . with rough brown bark and pubescent branchlets: lfts. oblonglanceolate, acuminate, appressedserrate, glabrous and somewhat shining above at length, pubescent beneath, $3-5$ in. long: fr. asually $1-3$ on a short stalk, $11 / 2-3$ in across, with papillose surface; nut thiek-shelled, globular or somewhat depressed, deeply furrowed. Mass. to Fla., west to Minn. and Tex. S. S. 7: 333-334. Em. 211. f.C. II. 11:373; 26:617. U.S.N.C. 7, pp. 1-3. Gn. 27, pp. 269, 270.
AA. Fr. couted with viscid hairs: mut 2-celled at the base: lfts. with stellate and glandular. pubescence beneath, serrate.
cinèrea, Linn. Butternut. White Walncto. Fig. 1194. Large tree, occasionally to $100 \mathrm{ft} .$, with gray bark : lfts. 11-19, oblong. lanceolate, acuminate, appressedserrate, usually pubescent on both sides, more densely below, 3-5 in. long: fr. in short racemes, $2-5$, oblong, pointed, $3-5 \mathrm{in}$. long; nut ob long, with 4 more and 4 less promiinent irregular ribs and many broken sharp ridges between. New Brunswick to Ga., west to Dak. and Ark. S. S. 7:331-332. Em. 207. U.S.N.C. 7, p. 4.


Mandshùrica, Maxim. Fig. 1195. Brond-headed tree, to 60 ft . lfts oblong, acute, obtusoly serrate, at length almost glarous above, pubescent beneath, rarely almost glabrous at length, $3-8 \mathrm{in}$. long: fr. in short racemes, globularovate to oblong; rut similar to that of the former, but less sharply ridged. Mandshuria, Amurland. G.C. IlI. 4:384. R.H. 1861, p. 429 (as J. regia octogoma). Gn. 50, p. 4 i8 (1-error as J. regia corlata). U.S.N.C. 7, p. 5.

Sieboldiàna, Maxim. (J. ailantifòlia, Carr.). Figs. 119\%-8. Broad-headed tree, to 30 ft : lfts . 11-17, o val to oval-oblong, short-acuminate, densely serrate, glabrous above, pubescent beneath, $3-6 \mathrm{in}$. long: frs. in long racemes, sometimes twenty, globose to orate-oblong; nut more or less globese, with thick, wing-like sutures and pointed apex, the surface rather smooth, slighty rugose and pitted, 1-1 $1 / 2 \mathrm{in}$. long, rather thick-chelled. Japan. Gn. 47, p.442. A.G. 11:701; 12:179. R.H. 1878, pp. 414-415. U.S.N.C. T. N. T.
cordiformis, Maxim. Fig. 1199. In habit and foliage very near to the preceding, but Irs. less pubescent, and nut very different, heart-shaped, much Hattened, sharply 2 -edged and with a shallow longitudinal groore in the middle of the flat sides, smooth and rather thin-shelled. Japan. U.S.N.C. 7, p. 6.

1199. Juglans co:diformis. Natural size.
intermèdia, Carr. (J. nigra $\times$ règia). Hybrid of garden origin of which two forms have been described. Var. pyriformis, Carr., with a fr. more resembling that of J. regia. R.H. 1863, p. 30. Var. Vilmoriniana, Carr., with a fr. more like that of $J$. nigrt. G.F. 4:52-53. Probably also J. regiu gibbosa, Carr., with a large, thickshelled, deeply rugose nut, belongs here. R.H. 1861, p. 428. Gn. 50, p. 478. Another not uncommon hybrid is J. quadrangulàta, Carr. (J. cinerea $\times$ regia. J. alata, Hort.), of which large trees are known as well in this country as in Europe. G.F. 7:435. R.H. 1870, p. 494. Hrbrids between $J$. Califormica and $J$. regia and between $J$. Califormica and $J_{\text {. }}$ nigra have been raised by Luther Burbank, and a bybrid of $J$. cinerea and nigra has been reported from Germany as J. cinerea-nigra, Wender.

Alfred Rehder.

## JUJUBE. Zizyphus Jujuba.

JONCUS (classical name, "to join"). Juncedcec. Reshes. Grass-like plants growing in wet or rarely in dry places, and sending up from the routstock numerous cylindrical, strict, commonly unbranched stems, which bear a terminal cyme of greenish Howers: lis. grass-like, terete or flat: perianth of 6 rigid, chaffy puts: stamens short, either 3 or 6: capsule 3 -celled or ram $;$ 1-celled, many-seeded. Rushes differ from the true grasses and sedges in having a true perianth and a many-seeded pod. The genus includes a host of species distributed throughout the temperate regions, but only the following are in the American trade, and are used forplanting in bogs and around aquatic gardens. Rushes are sold by deaters in native and aquatic plants. The kind used in making mats in Japan is procurable from dealers in Japanese plants.
effùsus, Linn. (J. commìmis, Hort.). Common Rush. Fig. 1200. Stem soft, 1-4 ft. high, not leaf-bearing: cyme diffus:, J-2 in. long, appearing lateral: sepals acute, equaling the short, retuse and pointless greenish brown capsule: stamens 3: seeds small, not tailed. North temperate zone. Used also for weaving into mats, etc. Var. congéstus. Hort. Cyme dense and capitate. Var. vittàtus, Buch. (J. effùsus, var. aureo-stridtus, Hort. J. conglomeràtus variegatus, Hort.). Foliage striped with yellow. Var spiralis, Hort. A curious form with stems spirally twisted like a corkscrew.
conglomeràtus, Linn. Very similar to the abore: cymes congested and capitate, appearing lateral: capsule obovoid, obtuse or retuse, apiculate. North temp. regions. Differs mainly in the apicalate capsule. Prot ably much of the trade material named this to be referred to congested furms of $J$. effusus.
J. zebrinus, Hort. $=$ Scirpus Tabernæmontanus. var. zebrinus.
K. M. Wregand.

## JUNEBERKY. Amelanchier.

JUNIPERUS (ancient Latin name). Conifere. Junifer. Ornamental evergreen trees and shrubs with opposite or whorled, needle-shaped or scale-like lvs. often on the same tree, and with inconspicuous small fls.: fr.
a berry-like small cone, usually globose. Many of the species are hardy North, as J. Virginiana, communis, rigida, Sabina, Chinensis, Pseudo-sabina, spherica, Darurica, recuria var. squamata; others are halfhardy, as J. Oxycedrus, mucrocurpa, recurva, excelsa, occidentalis, while some, as J. procera, Bermudiana, thurifera and the Mexican species, can only be grown South. All are valuable ornamental plants, and the erect-growing species, mostly of pyramidal or columnar habit, are decorative as single specimens on the lawn or if planted in groups. Some varieties form a very narrow column, and are valuable for formal gardens; the columnar form of $J$. Virginiana is a good substitute in the North for the classical cypress. The low Junipers, as $J$. communis var. nana, Sabina, and recurva var. squamata, are well adapted for covering rocky slopes or sandy banks. The close-grained, fragrant wood is much used for the interior finish of houses and in the manufacture of small articles, also for posts, since it is very durable in the soil; that of J. Virginiana and Bermudiana is in great demand for pencil-making. The fruits and also the young branchlets of some species contain an aromatic oil used in medicine. The fruit of J. drupacea is edible. The Junipers thrive best in sandy and loamy, moderately moist soil, but grow well even in rather dry, rocky and gravelly ground. They prefer sunny, open situations. They are well adapted for hedges and for planting as shelter or wind-breaks; also for seaside planting. Prop. by seeds, which ger-

1200. Common Rush, Juncus effusus.

The flower-eluster, $a$, is natural size. The single flower, $b$, is enlarged
minate usually the second and sometimes the third year, or by cuttings of nearly ripened wood in fall under glass, either outdoors or in the greenhouse. As a rule, those with needle-shaped lvs. root murh easier
than those with scale-like lvs., and the latter are therefore mostly increased by side-grafting during the winter in the greenhouse on young potted plants of the typical form or an allied species. The shrubby species, especially $J$. Sabina, are also prop, by layers.
About 35 species distributed throughout the extratropical regions of the northern hemisphere, in America south to Mexico and W. India. Trees or shrubs with the branchlets spreading in all directions: lis. either all needle-shaped and in 3 's, or needle-shaped and scalelike, and usually opposite, often found on the same plant, the needle-shaped lvs. prevailing on younger plants and vigorous branches, the scale-like ones on older plants: fls. diœcious, rarely monœcious; staminate yellow, consisting of numerous anthers united into an orod or oblong catkin; pistillate greenish, minutely globular, with several bracts; each or some bearing 1 or: ovules; the bracts become fleshy and unite into a berrylike cone, usually wholly enclosing the $1-6$, rarely 12 , seeds. The fr. ripens either the first gear, as in $J$. Virginiana, or the second, as in J. Subina and most species, or in the third, as in $J$. communis.
Juniperus is closely allied to Cupressus, and sometimes hard to distinguish withont fr.; but young plants with needle-shaped lvs. can be almost always told apart, since Juniperus has whitish lines or mawns on the upper surface of the lvs., while the similar juvenile forms of allied genera have the whitish marks beneath. Most species are very variable, as well in habit as in the shape of the lrs., which residers the determination of an unknown form, at least without fr., a rather difficult task.
alpina, 5.
Barbadensis, 14
Bermudiana, 14, 16. Californica, 8
Canadensis.
Chinensis, 1 ?
communis, 5 .
drupacea, 1
excelsa, 10 .
Fortunei, 13.
Hibernica, 5.
hemisphærica, 5.
Japonica, 12.
macrocarpa, 2.

## 1NDEX.

nana. 5.
Veaboriensis, 2. oblonga, 5 . occidentalis, 9 Oxycedrus, 3. phenicea. ${ }^{7}$. procera. 11. procumbens, $12,17$. prostrata, 17 recurva, 6. repanda. 6 repens, 17 Reeresi. 12 rigida, 4.

Sabina, 17.
sabinoides, 17 and suppl. Schottii, 14.
Shephardi, 13 Simensis, 13. sphericio. 13
Suecica, $\overline{5}$.
squamata, 6 tamariscifcıa, 17. tripartita, 14. venusta. 10. Virginica, 14. Wankegan, 17.
A. Foliage aheays neenle-shaped and in 3 's, rigid, jointed at the bast: fls. axillary, dioccious: win-ter-buds with scule-like lis. (see also No.6).
B. Fr. large, 3/4-1 in. across, with the seeds comuate into a usucully s-celled bony stone. (Caryocedrus.)

1. drupacea, Labill. Pyramidal tree with narrow head, to 45 ft .: lvs. lanceolate, spiny-pointed, $1 / 2-3 / 4 \mathrm{in}$. long and $1 / 3-1 / 6 \mathrm{in}$. broad (the broadest of all species), with 2 white lines above: fr. bluish black, edible. S. E. En., W. Asia. G.C. 1854:455; LII. 19:519. R.H. 1854, p. 165.

вв. Fr. smaller: seeds not connate, usually 3.
C. Lis, with 2 white lines above.
2. mar- $\rightarrow$ Sibth. (J. Yeaboriénsis, Gord.). Shrub or sma` 12 ft ., of dense pyramidal habit: liss.
cror, cror
1

1
ter
$4{ }^{4}$
30 ft
pend
narron
about
Gracefu
nis, var.
5. comn
procumber
tree becom
concare an
pointed, $1 / 3-5$ anceo anceolate, spiny-pointed, spreading to $1 / 2 \mathrm{in}$. across, dark brown, glaucons. ion.
sinn. Bushy shrub or small tree, to slender branches: lvs. linear, spiny g, $1 / 2-3 / 4$ in.: fr. globose, $1 / 4-1 / 3$ in. uing, not or slightly glaucous. Medi i. with one white line abore.
$\therefore$ \& Zucc. Small, pyramidal tree, to 3:- shrub with the slender branches d.remities: Ivs. in closely set whorls, stiff, yellowish green, $1 / 2-1 \mathrm{in}$. long: fr. cross, dark violet. Japan. S.Z. 125.v shrub, som? what similar to $J$. commu $\tau$, but the lis. more crowded and stiffer.
Linn. Common Juniper, Shrub, with aading or erect branches, sometimes fit.: lvs. linear or linear-lanceolate, h a broad white band above, spinyloag: fr. almost sessiie, dark blue,
glaucous, $1 / 4-1 / 3$ in. across. Widely distributed through the colder regions and mountains of the northern hemi. sphere in many different forms. Some of the most important varieties are the following: Var. aureo-variegata, Hort. Upright form, with the tips of the branchlets golden yellow. Var. Canadénsis, Loud. (J. Camadensis, Loud. J. na • Cancelensis, Carr.). Similar to var. nana, but higher and more erect and the lvs, somewhat longer and narrower. Var. Canadensis aürea, Hort. Like the former, but tips of branchlets golden yellow. Var. hemisphærica, Parl. (J. hemisphericu. Presl). A low, dense, rounded bush, rarely more than 3 ft . high: les. straight and stiff, short. Mountains of southern Eu. and N. Afr. Var. Hibérnica, Gord. (var. stricta, Carr.). Fig. 535, Vol. I. Narrow, columnar folm,

1201. Juniperus communis, var, nana.
with upright branches, deep green, tips of brancl.lets erect. Var. nàna, Loud. (J. nàna, Willd. J. alpina, S. F. Gray. é. Sibirica, Burgsal.). Fig. 1201. Lowspreading or procumbent shrub, seldom over 2 ft . high: lvs. oblong-linear, abruptly peinted, usually incurred, densely clothing the branches, with a broad silvery white line above, $1 / 4-1 / 2 \mathrm{in}$. long. Arctic and mountainous regions. Var. oblonga, Loud. (J. oblonga, Bieb.). Upright shrub, with slender, diverging and recurving branches: lvs, thin, long-attenuate, horizontally spreading, bright green. Transcaucasia. Var. oblongo-péndula, Carr. (var. refléxa, Parl.). Similar to the preceding, but more decidedly pendulous. A very graceful form. Var. pendula, Carr. Shrub, with spreading, recurving branches and pendulous branchlets. Var. Suecica, Lo'ıd. (var. fastigiàta, Hort.). Narrow, columnar form, growing sometimes into a tree to 40 ft . high, with rather long, spreading lvs., the branchlets with drooping tips: of lighter and more bluish color than the similar var. Hibernica. Var. vulgàris, Loud. Bushy shrub or small tree, with usually upright or sometimes spreading branches: lvs. lineal, straight and spreading. This is the common European form, sometimes hard to distinguish from the American upright form, var. erécta, Pursh, which, however, has not the columnar habit so common with the European variety, and nas the lis. more silvery white abore, of lighter green and mostly slightly curved.
AA. Folinge zisually of two kinds of lis. (Fig. 1203) and opposite, decurrent: fls. terminal: no distinct winter-buds.
B. Lis. in §'s, lanceolate, short, loosely appressed: fr. oblong.
6. recúrva, Hamilt. (J. repínda, Hort.). Shrub or small tree, to 30 ft . . with spreading and usually recurving branches: branchlets rather thick: los. linearlanceolate, pointed, grayish or glaucous green with a whitish band above : fr. about $1 / 3 \mathrm{in}$. long, 1 -seeded. Himalayas. G.C. II. 19:468. Gn. 36, p. 215. Var. densa, Carr. Dwarf, with short, crowded branchlets: lvs. curved, rrayish green. Var. squamata, Parl. (J. squamita, F ailt.). Prostrate, with long, trailing branches and nul: rons short branchlets: lrs. straight, slightly spreading, glaucous or bluish green. Much hardier than the type.
BB. Lus. mostly opposite, scale-like or of two kinds, usually with a glund on the buck: fr. mostly globular.
c. Fr. erect or nodding: mostly trees.
D. Color of fr. reddish brou'n, with rather dry, fibrous flesh: las. minutely denticulate.
7. phœnicea, Linn. Shrab or sinall tree, to 20 ft ., with orate-pyramidal heat and upright brauches:
branchlets slender: lvs. acicular and spreading or scalelike, imbricate, rhombic, obtuse, opposite, often bluish green: fr. $1 / 3-1 / 2$ in. across, shining, with $3-6$ secds. S. Eu., N. Afr
8. Californica, Carr. Fig. 1202. Pyramidal tree, to 40 ft., or shrub with many erect branches: branchlets rather stout: lvs. usually in 3's, imbricate, rhombic, obtuse, thick, yellowish green, with conspicuous gland, only on vigorous branches acicular: fr. $1 / 4-1 / 3 \mathrm{in}$. long, with bluish bloom and with 1-2 large seeds. Calif. S.S. 10:517. R.H. 1854, p. 353.

DD. Color of ir. bluish black or blue, with juicy, resinous flesh.
E. Imbricate les. usually in s's, minutely denticulate.
9. occidentàlis, Hook. Tree, to 40 feet, rarely to 60 ft., with spreading bianches forming a broad, low head, or shrub with several upright stems: branchlets stout and thick, imbricate, ovate, acute, grayish green, rarely acicular : fr. subglobose or ovoid, $1 / 4-1 / 3 \mathrm{in}$. long, with $2-3$ seeds. Washington to Calif. S.S. $10: 521$.
ee. Imbricate les. opposite, entire or nearly so. F. Seeds of fr. 2-6.
G. Shape of imbricate les. acute: branchlets slender.
10. excelsa, Bieb. Tree, to 60 feet, with pyramidal head and upright or spreading branches: lvs. ovate, spreading, in 3's, on the lower branches, but mostly opposite, rhombic, bluish green: fr. bluish black, bloomy, globular, about $1 / 3 \mathrm{in}$. across, with $3-6$ seeds. Greece, W. Asia to Himal. Gt. 46, p. 209. Var. stricta, Hort. Of upright, columnar habit, with very glaucous foliage. Var. venùsta, Hort., seems hardly different from the former.
11. pròcera, Hochst. Tree, to 100 or 150 ft ., similar to the preceding : lvs. in 3's, or opposite, lanceolate and

1202. Juniperus Californica ( $\times 1 / 3$ ).
spreading or loosely appressed and orate-lanceolate : fr. slobose, small, about $1 / 4 \mathrm{in}$. across, $2-3$-seeded. Mts. of E. Afr. - Probably the tallest spr ies of the genus.

GG. Shape of imbricate lus. obtuse.
12. Chinénsis, Linn. Tree, to 60 ft , or shrub, sometimes procumbent: branches rather slender: liss. opposite or whorled, linear, pointed and spreading, with a white band above or scale-like, appressed, rhombic, obtuse: fr. globular. brownish violet, bloomy, one-fifth to
$1 / 3$ in. across, with 2 or 3 seeds. Himal., China, Japan. S.Z. 126, 127. - Very variable in habit: the staminate plant usually forms a much-branched, upright. pyramidal bush, often almost columnar, while the pistillate has slender, spreading branches. They are therefore often distinguished as var. máscula and var fémina (var. Reèvesi, Hort.). The first one is the most desirable as an ornamental plant. Var. argénteo-variegàta, Hort. Dwarf, dense form, with dimorph lvs.: tips of branchlets mostly white. Var. aùrea, Hort. (var. miscula aùrea, Hort.). Upright form, with the young branchlets golden yellow, th: color becoming more brilliant in the full sun. Var. pendula, Hort. With spreading branches, pendulous at the extremities. Var. pyramidalis, Carr. Narrow, pyramidal form, with bluish green, mostly needle-shaped foliage. Var. procúmbens, Endl. (J. procúmbens, Sieb. J. Japónica, Carr.). Dense, low shrub with spreading, sometimes procumbent branches and mostly acicular lvs. in whorls, with two white lines above, longer and stouter than in the type. S.Z. 127, fig. 3. Var. procúmbens aùrea, Hort. Branches robust and long, decumbent, with rather few branchlets, young growth golden yellow at first, changing to light green. Var. procúmbens albo-variegàta, Hort. Rather dense, bluish green form, variegated with white. Var. procúmbens aùreo-variegàta, Hort. Dwarf, dense form, variegated with golden yellow.
13. sphærica, Lindl. ( $\quad$ r. Fórtunei, Van Houtte). Similar to the former. Densely branched shrub or tree, to 30 ft ., with upright branches: branchlets short, rather thick, quadrangular: lvs. acicular and whorled, but less rigid than those of the former, or scale-like, rhombic-oblong, somewhat spreading: fr. globular, about $1 / 3$ in. across, not bloomy, $\dot{3}$-seeded. N. China. P.F.G. 1, p. 59. Var. glaùca, Gord. (J. Shéshardi, Hort.). Dense form, with usually needle-shaped glaucous foliage.

FF. Seeds of fr. 1-2, small, 1/6-1/3in. across.
14. Virginiàna, Linn. Red Cedar. Savin. Fig. 1203. Tree, to 100 ft ., with conical head and spreading or upright branches: lvs. acicular, spiny-pointed, spreading or scale-like, rhombic, acute or subacute, imbricate, very small: fr. brownish violet, bloomy, globular or ovoid. Canada to Fla., east of the Rocky Mts. S.S. 10:524. G.F. 8:65; 10:145.-A very variable species. Some of the most important varieties are the following: Var. albo-variegàta, Hort. Branchlets variegated with white. Var. aureo-variegata, Hort. With golden yellow variegation. Var. Barbadénsis, Gord. (var. grícilis, Sarg. Var. Bedfordidna, Veitch. J. Bermudiàna, Hort., not Linn.). Tree, with slender, spreading branches, pendulous at the extremities: lvs. bright green, spiny-pointed, mostly needle-shaped on the cult. plants. Gulf states, Jamaica, Rarbadoes. Tender. Var. dumosa, Carr. Dense shrub, forming a rounded pyramid, with mostly needle-shaped, bright green lvs. Var. elegantissima, Hort. Tips of young branchlets golden yellow. Var. glaủca, Carr. Vigorous-growing form, with glaucous foliage. Var. péndula, Carr. With spreading limbs and slender, pendulous branches: lvs. usually scale-like. Var. pyramidalis, Carr. Dense, columnar form, with the foliage glaucous (var. p!ramiddlis glaùca) or bright green (var. pyramidalis viridis). Var. réptans, Beissn. Low shrub, with horizontally spreading, procumbent branches and slender, curving branchlets: bright green. M.D.G. 1896:296. Probably the same as var. horizontalis, Arb. Kev. Var. Sch6tti, Hort. A dwarfish, dense, pyramidal form, with bright green and rather light foliage. Var. tripartita, Hort. A dwarf, spreading form, densely branched, with acicular, glaucous lvs. -The dwarf forms are of ten very similar to $J$. Sabina and hard to distinguish without frs. except by the strong, disagrecable odor of the bruised branchlets of the latter.
15. scopuldrum, Sarg. Closely allied to the preceding, but considered by the author as a distinct species, chiefly distinguished by the somewhat larcer fr., ripening not until the second sear; by its habit, forming a broad head with stout, spreading branches and often dividing into several stems near the base, and by its shredding bark. The branchlets are somewhat shorter and stouter, and the foliage usually glaucous or yellow-

## JUSTICIA

ish green. Brit. Columb. to Calif. in the Rocky Mts. G.F. 10:423.
16. Bermudiàns, Linn. Tree, to 40 ft ., in habit much like $J$. Virginiana, but branches much stouter and foliage pale bluish green: branchlets thickly set, quadrangular, stout and short: lvs. mostly imtricate, thick or acicular, spiny-pointed, rigid, erect-spreading: staminate catkins larger: fr. usually 2 -seeded and depressedglobular. Bermuda and cult. in other W. Indian Islands. G.C. 1I. 19: 657. G.F. 4:295.
cc. Fr. pendulous, on curved peduncles, smull: shrubs, usually spreading or procumbent.
17. Sabins, Linn. Spreading or procumbent shrub, rarely with erect stem, to 10 ft .: branchlets rather slender, of a very strong, disagreeable odor when bruised: lvs. needle-shaped, acute and slightly spreading or imbricate, oblong-rhombic, acute or subacute, usually dark green: fr. one-fifth to $1 / 4 \mathrm{in}$. thick, globular, $1-3$-seeded. Mts. of middle and southern Eu., W. Asia, Siber., N. Amer. - Very variable. The most remarkable vars. are the following: Var. fastigiata, Hort. Erect shrub of columnar habit, with dark green, mostly imbricate lvs. Var. humilis,

1203. The two kinds of red cedar leaves. Natural size

The right hand specimen shows the foliage of red cedar on young shoots; the other shows the two kinds.

Endl. Procumbent, with ascending thickish hranchlets: lvs. usually imbricate, scale-like, often bluish green. Var. prostràta, Loud. (var. procúmbens, Pursh. J. prostrata, Pers. J. rèpens, Nutt. J. procumbens, Nichols.). Procumbent, rarely ascending, with usually trailing, long branches, furnishe $\dot{G}$ with numerous short branchlets: lvs acicular, spiny-pointed or imbricate, acute, bluish or glaucous green : fr. globular, blue and bloomy. Nora Scotia to Brit. Columb., south to N. Y. and Wyo. Sometimes called Waukegan Juniper. Var. tamariscifolia, Ait. (J. sabinoides, Griseb.). Procumbent or ascending, rarely erect: lvs. usually all needle-shaped and often in 3's, slightly incurred, dark and bright green, with a white line above. Mountains of S. Eu. Var. variegàta, Hort. Branchlets variegated with creamy white: lvs. mostly imbricate.
J. Davìrica, Pall. Allied to J. Sabina. Procumbent, with slender, spreading or drooping branchlets: fr. 1-4-seeded, small. Siberia.-J. foetidissima, Willd. Allied to J. excelsa. To 12 ft high: branchlets thicker: lvs, with spreading apex, mucronate, usually eglandular: fr. larger, 1-o-seeded. Greece, W. Asia.-J. flaccida. Schlecht. Graceful tree, to 30 ft . with spreading branches and slender, remote, pendulous branchlets: Ivs. acute, with spreading tips: fr. globular, $5-10$-seeded. Tex. Mex. S.S. 10:519.-J. litoralis, Max. (J. conferta, Parl.). Allied to J. rigida, but prostrate, with long, trailing branches: fr. larger. Japan. $-J$. macrópoda, Boiss. Allied to J. excelsa. Shrub or small tree, to 30 ft .. sometimes procumbent: ivs. closely appressed: fr. nodding, globnlar. 4 -seeded. Persia to Himal.- D. Mericima, Schiede. Pyramidal tree: branchlets numerons, short and rather stont: lis, acute, loosely appressed: fr. 2-4-seeded. Mex.-J. monospérma, Sarg. (J. occidentalis, fr. 2-4-seeded. Mex.-J. monosperma, ilirg. (o. occitentalis, var. monosperma, Engelm.). Closely allied to J. oceidentanis. fr. smaller and usually 1-seeded. Rocky Mits., from Col. to New

Mex. S.S. 10:522.-J, pàchyphloea, Torr. Tree, to 60 ft ., allied to J. occidentalis, with broad, pyramidal or round-topped head: lvz. usually opposite, glandular, bluish green: fr. dark reddish brown, bloomy, with usually 4 'seeds. Has a checkered bark like a black-jack oak. Col. to Tex and New Mex. S.S 10:520.-J. Pseudo-sabina, Fisch. \& Mey. Allied to J. Sabina. Ereet shrub, with thick, deuse and short branchlets: lvs. usually dimorph; fr. ovate, blackish, glossy, 1 -seeded. Siber $-J$. sabinoides, Endl $=\mathrm{J}$. thurifera. -J. sabinoides, Nees $=\mathrm{J}$ tetragona. - J. Sánderi, Hort., recently introduced from Japan is a juvenile form of a Chamzesparis, probably C. obtusa. It is a dense shrub with needle-shaped bluish green lvs.- $J$ tetrágona, Schlecht. Allied to J. oceidentalis. Small tree, to $\geq 0 \mathrm{ft}$., rarely to 40 ft ., with round-topped or pyramidal head and slender, quadrangular branchlets: lvs. obtuse, usually eglandular: fr. subglobose, mostly 1 -seeded. Tex. to Mex. S.S 10:533.-J. thurifera, Linn. Shrub or tree, to 40 ft., with roundtopped head and spreading branches: branchlets slender: fr globular, 2-3-seeded. Spain, Algeria.-J. Utahénsis, Lemm. (J. Californica, var. Utahensis, Engelm.). Bushy tree, rarely more than 20 ft ., with broad, open head: branchlets slender: lvs. than 20 ft . With broad, open head: branchlets slender: lvs.
obtuse, light vellowish green: fr . usually 1 -seeded. Col. to obtuse, light sellowish green : ir. usualy
Calif., west to Utah. S.S. $10: 518$.
Alfred Rehder.

## JUPITER'S BEARD. Centranthus ruber and Anthyllis Barba-Jovis.

## JUSSIEA. See Jussieua.

JUSSIEUA (the Jussieu family contained fire botanists, of whom the most distinguished was Antoine Laurent de Jussieu, 1748-1836, who laid the foundations of a modern natural system of the -egetable kingdom). Also written Jussica. Onagràcere. About 30 species of tropical plants, largely bog and aquatic berbs and shrubs, one of which is cult. in America. It grows $2-3 \mathrm{ft}$. high, and produces numerous axillary ths. of a bright yellow, somewhat like an evening primrose. It is little cult., but desirable for planting at the edge of a pond of tender aquatics or for tub culture. Jussieua is allied to Ludwigia, and distinguished by the following characters: petals 4-6, not clawed, entire or 2-lobed: stamens 8-12: orary 4-celled. Jussieuas have alternate lrs., which are mostly membranous and entire, rarely leathery and serrate: fls. yellow or white, solitary, short or lougpedicelled.
longifolia, DC. Erect, glabrous: stem 3-angled. lrs. sessile, lanceolate-linear, acuminate at bow. ends, glandular beneath at the margins: pedicels 1 -fld., longer than the ovary, and bearing 2 bractlets at the apex: petals 4, obovate, scarcely notched at the apex: stamens 8 . Brazil. W. M.

The plant in the trade as $J$. longifolia is a summerflowering aquatic herb, and differs somewhat from the description given above. The stems of young seedlings are 4 -winged, and a specimen before the writer of a plant of the prerious season is ' $J$-winged. The main root of these old plants may be tuter-like, 3 in. long, $1 / 2 \mathrm{in}$. thick, or $8-10$ in. long and more slender. Also the lower lis., at least, are opposite. J. longifolia is best treated as a tender annual.

The seed may be sown in fall or spring in shallow water, using seed-pans or pots, as with other flower seeds. Cover the seed, which is very fine, with finely sifted soil, place the pot or seed-pan in water, but do not submerge until the second day, when the seed will be thoroughly soaked and will not float on the surface of the water. When the plants attain a few leaves they should be potted, singly, into thumb-pots, and later into 3 -in. pots, and from these planted into their summer quartors. It is not absolutely necessary to keep these plants always submerged in water after potting. The plants will do well on a bench, which should be covered with sand or ashes and the plants kept well watered.

Wm. Tricker.
JUSTICIA (James Justice, a Scotch gardener and author of 18 th century). A canthicece. A large and poly: morphous genus (perbaps 100 species) in the warm parts of the Old and New World. They are mostly herbs of various habits, with opposite entire lis., and are cult. under glass for the showy fascicles or heads of its Most of the garden plants which are known as Justicias
are Jacobinias. Consult Jacobinia, for example, for Justicia magnifica, J. carmea, J. Pohliana, J. velutina, J. coccined, J. Ghiesbreghtiana and,J. Lindeni. Justicin Adhatola is Adhatoda Vasica. Others may belong to Thyrsacanthus and Dædalacanthus. Thedusticia variegata of catalogues is probably not the $J$. variegata of Aublet and the botanists, but is vers likely a variegatedleaved form of some Jacobinia. From Jacobinia the species are distinguished by the spurred or appendaged anthers. The corolla is red, purple or white, tubular, deeply 2-parted or lipped: stamens 2: seeds normally 4, in an ovate or oblong capsule: fls. in bracted heads or fascicles.

The remarks on the culture of Jacobinias will apply here. Plants are secured readily from cuttings made in late winter or spring, and these should bloom the coming fall or winter. After blooming, discard the plants,
except such as are to be kept for furnishing cuttings. Unless well headed back, old plants become loose and weedy, and they take up too much room.

It is not known that any true Justicias are in the Amer. trade. J. flava is probably not the J.flava of the botanists, but perhaps a Jacobinia or some other acanthad. "It is covered for months with large, featherlike clusters of pure yellow flowers, remaining perfect for a very long time, and enhanced by dark green, shiny foliage "
L. H. B.

JUTE is a fiber plant, of easy culture in warm climates. It has been successfully grown in the Gulf states, but, according to the Department of Agriculture, the want of a suitable machine for separatiug the fiber is the great obstacle which prevents the growth of the Jutefiber industrv in America. See Corchorus.

KADSURA (Japanese name). Magnolidece. About 7 species, tropical Asian woody climbers, of one of which Charles S. Sarsent writes (G.F. 6:75): "The flowers are not at all showy, but it is a plant of extraordinary beauty in the autumn when the clusters of scarlet fruit are ripe, their brilliancy being heightened by contrast with the dark green, lustrous, persistent leares. *** It might well be grown wherever the climate is sufficiently mild, as in the autumn no plant is more beautifu'." Kadsuras have leathery or rarely membranous foliage: fis. axillary, solitary, whitish or rosy, unisexual ; sepals and petals $9-15$. gradually changing from the outermost and smallest to the innermost and petaloid : staminate fls. with an indefinite number of stamens, which are separate or coalesced into a globe: carpels indefinite in number, 2-3-ovuled: mature berries in globular heads.
Japonica, Linn. Small, procumbent, warty shrub: Irs. oral or oblong-oval, thick, serrate: peduncles 1 -fld., solitary. Japan, as far as $35^{\circ}$ north latitude. - The type is advertised by Japanese dealers; also a variety with foliage blotched with white, and another var. with foliage margined white.

K EMPFERIA (Engelbert Kæmpfer, 1631-1716, trav- $^{\text {1 }}$ eled in the Orient, and wrote on Japan. He is also commemorated by Iris $\boldsymbol{K}^{\prime}(E m p f e r i)$. Scitaminacę. About 18 species of tropical African and Asian plants with tuberous or fleshy roots, of ten stemless, and bearing the peculiar fls. of this order in which the showy parts, as in the Canna, are the staminodes. For culture, see $H e d y$ chium and Zinjiber.

## A. Foliage margined with white.

Gilberti, Hort. Fleshy-rooted: lvs. oblong-lanceolate, deep green, bordered white, wary at the margin : fls. purple and white. East Indies. G.C. II. 17:713. R.B. 21:169. S.H. 2:131.-Int. by W. Bull, 1882. Reasoner Bros. cultivate this outdoors in S. Fla., and say, "The fls. are borne on ornamental crimson heads rising from the ground on separate stalks, and resembling in outline small pineapple fruits. These heads retain their beauty all summer."

AA. Foliage not margined with white.
B. Lis. tinged purple beneath.
rotúnda, Linn. Stemless, tuberous: lvs. not produced until after the fis., oblong, erect, petioled : corolla segments long-linear: staminodes oblong, acute, whitt, $11 / 2-2 \mathrm{in}$. long: lip lilac or reddish, deeply cut into 2 suborbicular lobes: anther-crest deeply 2 -fid : petiole short, channelled: blade 12 in. long, $3-4$ in. wide, usually variegated with darker and lighter green above and tinged purple beneath: spikes 4-6-fld., produced in Mar. and Apr. India. B. M. 920 and 6054 . - Adv. 1895 by Pitcher \& Manda, who said the fls. were fragrant.

BB. Lis. not tinged purple beneath.
Kírii, Schumann (Cienkóveska Kirkii, Hook.). Leaf-stem 3-4 in. long: liss. about 4, crowded at the apex of the stem, oblong, acute, $8-9 \mathrm{in}$. long, $21 / 2-3 \mathrm{in}$. wide at the middle: flowering stems short, slender, 1 -fld.: corolla lobes oblong-lanceolate, 1 in. long: staminodes more than twice as long as the corolla lobes, pale rose-purple: lip rounded at the apex, slightly notched, 2 in. broad, with a yellow mark at the throat. Trop. Afr. B.M. 5994. I.H. 30:495.-Once adr. by John Saul.
W. M.

KAFFIR CORN. See Sorghum.
KAGENECKIA (after an Austrian minister to Spain). $\boldsymbol{R o s i c} c ⿻$. Six species of tender evergreen trees from Chile and Peru, one of which is cult, at Santa Barbara. The fis. are white, 5 -petaled, about $3 / 4 \mathrm{in}$. across, and unisexual. The male fls. are borne in racemes or corymbs; the females are solitary; all are terminal:

1vs. leathery, serrate, short-stalked: stamens $16-20$, inserted on the month of the calyx. in 1 series: carpels 5 , free: ovales numerous, in 2 series.
oblonga, Ruiz \& Par. Les. oblong, acuminate at both ends, the serrations obtuse and rather callous. Chile. -Int. 1900 by Franceschi.

## KAKI. See Persimmon and Diospyros.

KALANCHOË (Chinese name). Crassulacere. Sometimes spelled C'atunchoë. About 50 species of succulent erect shrubs, chietly of tropical Africa, but also inhabit. ing tropical Asia, S. Africa and Brazil. Lis.opposite, sessile or stalked, varying from entire to crenate and pinnatifid: Hs. yehiow, purple or scarlet, in many-fd. terminal cymes, rather large and often showy; calyx 4 parted, the narrow lobes shorter than the corolla tube, usually falling early; corolla 4 -parted and usually spreading; stamens 8: carpels 4. A few species are prized by amateurs. The tls. are lasting in bouquets. The foliage is ornamental and interesting. Culture of Crassula, which see also for a conspectus of the garden crassulaceous genera. The four following species are novelties. K. pinnita, Pers. (Mn. 2:56), is Bryophyllum calycinum (which see).

## A. Flouers scarlet or orange.

coccinea, Welw. Somewhat hairy above, 2-4 ft. tall: lowerlvs.ovate-obtuse, coarsely crenate-dentate, stalked; upper lvs. linear-lanceolate-obtuse, sessile: Hs. scarlet or orange, on short pedicels, in broad, forking panicles which have stalks about 1 ft . long; calyx pubescent, the segments lanceolate-acute ; corolla tube $1 / 2$ in. long, the limb $1 / 2$ in. across, and the segments de'toid-orate. Trop. Africa.
flánmea, Stapf. A foot to 18 in . high, glabrous, litthe branching: lrs. ovate-oblong, obtuse, narrowed into a short petiole (blade about 2 in. long and $11 / 4-1 \frac{1}{2} \mathrm{in}$. wide), fleshy, obscurely crenate-dentate or almost entire: fls, yellow and orange-scarlet, $1 / 2$ in. across; calyx parted to the base, the segments linear-lanceolate and somewhat acnte; corolla tube 4 -angled, less than $1 / 2 \mathrm{in}$. long, yellowish; lobes orate-acrite, orange-red. Trop. Afr. B.M. $\mathbf{7 5 9 5}$. G.C. III. 26:47.-First fully described in Kew Bulletin, Aug.-Sept., 1897, p. 266, out it was named ond partially described in G.C. July 10, 1897, as $\boldsymbol{K}^{\text {. }}$ flamea, which is evidently an orthographical error. The plant is one of the leading novelties of 1900. Thrires in a comparatively cool greenhouse.

## AA. Flosers pink.

cárnea, Mast. Stems simple, 2 ft. or less, glabrous: Irs. oval or oborate, obtuse, crenate-dentate, narrowed into a short petiole, the upper ones nearly linear and sessile: fls. light rose or pink, rery fragrant, nearly $1 / 2$ in. across; calyx parted to the base, the segments lin-ear-pointed; corolla tube swollen at base, and 2-3 times longer than calys: corolla lobes broad-oval, acute. S. Afr. G.C. III. 1:211. G.F. 3:53. - Good winter bloomer, prop. by seeds or cuttings. Seeds sorn in spring give blooming plants for the following Christmas.
aAA. Fls. white or white-yellou, very long.
marmoràta, Baker (K. grandiflòra, Rich., not Wight). Stem stout and branching: Ivs. large ( $6-8$ in. long), oborate, narrowed to a shom broad petiole, crenate, blotched with purple: fls. long and tubular ( 3 in. or more long), creamy white or yellowish, the lobes orateacuminate. Abyssinia. B.M. 7333. I.H. 43, p. 45.-Interesting pot-plant, with large trusses of erect fls.
L. H. B.

KALI or BORECOLE (Brassica oleracea, rar. acephala, Fi, $, .295,296$ ) is thought by some to be the original type of tie cabbagc. Members of this section of the cabbage tribe do not form heads, but have rariously
colored, often finely cut, leares with fleshy leaf-stems, which form part of the edible portion. These leaf-stems are tough in the early autumn, but become crisp and palatable with the accession of autumn frosts. The plant is exceedingly hardy; in the southern states it winters without injury and in the Atlantic states may be carried through with slight winter protection. For autumn nse the seeds are sown in early spring under glass or in coldframes and treated exactly as cabbage. In the South the seed may be sown in August or September, and the plants are ready for use the following spring. In the colder regions they may be carried through the winter in coldframes. Leading types: (1) Dwarf Scotch Curled; (2) Tall (ireen Curled; (3) Variegated; (4) Purple. There are many intermediate forms. The finely cut varieties of Scotch Kule are now frequently used for bedding purposes. Their hardiness gives them special features of usefulness in the autumn.
Kale is adapted to a wide range of country. One of the leading Kale centers is Norfolk, Va., where it is grown during fall and winter for the early northern market. Sce also Brussica and Cabbage.

John Craig.
The Dwarf Scotch Kale makes a most excellent plant for spring greens. It is hardy enough to stand the winters of western New York without protection nninjured, and to make a new growth of tender sprouts very early in spring. These sprouts are serviceable for greens, salads, etc. For this purpose we sow seed early in June, either in a seed-bed and transplant the seedlings, just as we do cabbages, or directly in the hill. thinning to one plant in a hill. In a general way, the plant is handled like late cabbage. T. Greiner.

Kale at Norfolk (Fig. 1204). - Truckers about Norfolk, Va., grow both the Scotch and the Blue Kale, more of the former than of the latter. The amount of Kale shipped from Norfolk one year with another will average somewhere between 175,000 s.nd 200,000 barrels. The number of barrels shipped in a single season has reached as high as a quarter-million.
The soil most desirable is a clay loam,-just sucb land as is best adapted to the growth of cabbages. The seed is sorn with a hand drill in August, and shipments therefrom begin in October following, and continue off and on throughout the winter, until the crop is entirely shipped,-say until April 1 to 15 following. As soon as the frosts in the vicinity of New York and Philadelphia have been sufficiently heary in the fall to kill all outdoor vegetables, Norfolk Kale is in fairly good demand and brings from 75 cts. to $\$ 2$ per barrel in northern markets. The yield per acre ranges from 200 barrels up to 400. Instances have been known in which more than 600 barrels of the Mammoth Kale have been raised from an acre of ground. It is a cheap crop to raise, requiring not more than half as much fertilizer as the spinach crop.

The soil is prepared, generally, in the following manner: It is thoroughly plowed, say about August 1, and harrowed level and smooth, and as the lands are very loose the Kale bed, although it may comprise 100 acres, is as mellow and as friable as the best of garden lands anywhere. A little later in the month the soil is thrown up with a single plow into small beds or ridges. Sometimes a single row will be sown by itself on a little ridge. Sometimes a ridge will be wider, and two rows will be
grown thereon. Sometimes four or fire rows are thus sown; but as the soil must be relieved of the winter's rains, the beds are generally narrow, with little furrows between them to draw off any surplus water which may fall during the winter months, as we have from 2 to 6 inches of rain per month throughont the year. After the plants are well uptheyare tilled between the rowswith cultivator or small plow, and hands are sent through the fleld with small hand hoes to thin ont the crop, leaving healthy plants at about 6 inches apart. In the warm and sunny days of September, October and November the plant makes a heavy growth, covering the earth rntirely in nany instances. Then the trucker, if the demand for Kale be good. cmin thin out and sell the surplus plants, leaviog the remainder to reach a greater degree of development; or he can cut clean as he goes, and put the same land into radish or winter peas later in the winter.

1204. A Norfolk Kale field at the Christmas harvest time.

There is money in the Kale crop at 75 cts. per barrel. During the past season the price ias ranged from 50 cts. to $\$ 2$ per barrel, and has paid very well indeed. Within 15 miles of Norfolk, something over 1,000 acres is devoted to Kale each year. It is considered one of the cheapest crops to grow, yielding a moderate percentage of profit. If the soil is in good or fair condition, very little fertilizer or manure is required for the Kale crop. Its cultivation is simple and inexpensive. It is cut when ready for market and packed in barrels, using canvas for one of the barrel heads, at a cost of 5 cts. per barrel for cutting.
A. Jeffers.

KALE, SEA. Crambe maritima; but treated under Sea-hale.

KALMIA (after Peter Kalm, Swedish botanist, traveled 1748-51 in N. America). Ericicev. Americas LadRel. Beautifulornamental evergreen shrubs. rarely deciduous, with entire opposite or alternate lvs. and purple, pink or almost white showy tis. in terminal corymbs or in axillary umbels, rarely solitary: fr. capsular. Most of the species are hardy North. particularly the most ornamental member of the genus, $K$. latifoliu, which next to Rhododendron is the most beautift:l flowering hardy evergreen. Massed in groups or as single specimen on the lawn, it is one of the most decorative plants when covered with its abundant pink flowers. Eren small plants produce flowers. The foliage is very
decoratire, contrasting well with the red and yellowish branches. The species is also easily forced and makes a very handsome pot-plant. The other species are pritty border plants for evergreen shrubberies. The 'mias thrive well in a sandy, peaty or loamy soil, dislike clay and limestone. They grow almost as well in swamps as in drier locations and prefer partly shaded situations, but thrive also well in sunny places, provided there be sufficient moisture. They require generally almost the same treatment as the hardy Rhododendron, bet are less particular about soil and position. Transplanting, if carefully done either early in fall or in spring, is not difficult; a mulching the first season after planting will be of muck advantage to keep the roots from drying in summer aud from frost in winter. Prop. usually by seeds sown in sandy, peaty soil in pans or boxes in early spring and kept in a cool frame or greenhouse. The seedlinge should be pricked off as soon as they can be handled, and after they are again established gradually hardened off and the following year transplanted in frames or beds outdcors. Vars. of $K$. letifolia are usually increased by side-grafting on seedli:ggs in the greenhouse or by layers, since it grows less readily from cuttings, while the other species may be prop. by cuttings of half-ripened wood under glass. Six species in N. Amer. and Cuba, allied to Rhododendron: fls. in terminal or lateral corymbs or umbels, rarely solitary ; calyx 5 -parted; corclla saucer-shaped or broadly companulate, 5 -lobed; stanens 10 , with slender flaments, the anthers held back in little ponches of the corolla, springing up suddenly and discharging the pollen if touched: ovary 5 -celled, superior; capsule

globular, parting into 5 ralves, with numerous minute sceds. The Ivs. of the Kalmias are said to be poiscnous to animals, especially those of $\tilde{K}$. angustifolia. The flower of Kalmia is one of those proposed as a national flower emblem, especially on account of the exquisite symmetrical beauty of the single flower. It i a purely American genus, but unfortunately it is popularly known only in the eastern states.

## KANSAS

## A. Fls. in umbets or conymbs.

B. Lis. evergreen.
c. Branchlets terete: lus. pale green beneath.
latifolia, Linn. Mountain or American Laurel. Calico Busf. Fig. 1205. Shrub, $4-10 \mathrm{ft}$. high, rarely tree to 30 ft ., with dense, round-topped head: lvs. petioled, alternate or irregularly whorled, oblong or elliptic-lanceolate, acute at both ends, dark green above, yellowish green below, 3-4 in. long : fls. in large, terminal compound corymbs on viscid peduncles; corolla rose-colored to white, with purple markings within, about $3 / 4 \mathrm{in}$. across. May, June. New Brunswick to Fla., west to Ohio and Tennessee. B.M. 175. Em. 443. S.S. 5:236-237. A.F. 13:32. Gng. 3:1; 7:289. G... 22:343; 27, p. 549 \& 33, p 607. - Var. álba, Hort. Fls. almost white. Var. monstruòsa, Mouillef. (var. polypéta la, Arb. Kew.). Corolla dirided into 5 narrow petals. G. F. 3:453. Var, myrtiiolia, Rand (var. ndna or minor, Hort.). Lrs. small, $1-2$ in. long, deep green, of slow growth, forming a low, dense bush. Var. rìbra, C. Koch (var. Pavárti, André). Fls. deep pink. R.H. 1888:540.
angustifòlia, Linn. Sheep-Laurel. Lambiill. Wicky. Shrub, to 3 ft . : Ifs. usually in pairs or 3 's, fetioled, usually oblong, obtuse, light green above, pale beneath, $1-21 / 2 \mathrm{in}$. long: corymb lateral, many-fld., compound or simple: fis. $1 / 3-1 / 2 \mathrm{in}$. across, purple or crimson. June, July. From Newfoundland and Hudson bay to Ga. B.M. 331. Em. 445. - There are vars. with light purple fls., var. ròsea, Hort. : with crimson fls., var. rù bra, Hort.; with ovate or oval lvs., var. ovàta, Pursh, and of dwarf habit, var. nàna, Hort.
CC. Branchlets 2-edged: lus. glaucous-white beneath, all opposite or in 3 's.
polifolia, Wangh. (K. glaìca, Ait.). Low, straggling shrub, to 2 ft .: lvs. almost sessile, oval to linear-oblong, obtuse, revolute at the margins, $1 / 2-11 / 2 \mathrm{in}$. long: fis. in simple terminal umbels, slender-pedicelled, $1 / 2-3 / 4 \mathrm{in}$. across, rose-colored or purplish. May, June. Newfound land to Pa. and in the Rocky Mts. from Sitka to Calif. B.M. 177. L.B.C. 16:1508. Em. 441. G.W.F.A. 18.Var. microphylla is the alpine form of the Rocky Mts. growing only a few inches high and with very small lvs., $1 / 2$ in. or less long. Var. rosmarinifolia has narrow, oblong-linear, strongly revolute lvs.

## вв. Lus. deciduous, alternate.

cuneàta, Michs. Erect shrub, with slender, straggling stems, to 3 ft .: lvs. petioled, cuneate, obovate-oblong acute or obtuse, pubescent beneath when young, 3/4-11/2 in. long: fls. slender-pedicelled, in few-fd. lateral umbels, creamy white with a red band within, $1 / 2-3 / 4$ in. across. June. N. C. and S. C. G.F. 8:435.

As. Fls. solitary, axillary : plant hirsute.
hirsùta, Walt. Low shrub, with many erect or ascending stems, to 1 ft .: lvs. almost sessile, oblong to lanceo late, $1 / 4-1 / 2$ in. long: tis. slender-pedicelled, $1 / 2 \mathrm{in}$. across, rose-purple; sepals oblong-lanceolate, hirsute, longer than the capsule. June. S.Va. to Fla. B.M. 138. L.B.C. 11:1058.

Alfred Rehder.

## KALOPANAX. See Acanthopanax.

FANSAS, HORTICULTURE IN. Fig. 1206. In 1854, T'ien Congress passed a law opening this territory for setilement, it was considered as part of the great American desert, and it was almost iniversally thought to be fit only for grazing purposes. As to fruit-growing, such a possibility was not considered. This impression did much to retard tree-planting. Another great drawback was the fact that every settler planting fruit trees must have the favorite rarieties of his iormer home grown. This resulted in the planting of cver 2,000 kinds of apples alone. Few of these could be mana tc succeed, and, in time. so many failed that the impressiou was deepened that Kanses could not grow fruit. But amid these losses occasionaliy a man would succeed with some va ' +9 , and his success was heralded orer the state $u \quad \%$, ventually the worthless kind: were weeded out and the road to success was perceired. Erentually t sple could plant trees with some as
surance that they would gather fruit therefrom. Since then, rapid progress in tree-planting has been made.

Apple trees do not bear heavy crops every year, but there has not been a total failure any year since the trees commenced bearing, some forty years ago. Peaches bear in some parts of the state every year, the south having few failures. Pears succeed throughout the state, although some rarieties blight in some localities.

1206. Climatological regions of Kansas.

Plums and cherries are successful throughout the state, if the curculio is destroyed. Grapes bear heavy crops nearly every year. Strawberries yield good crops. Raspberries and blackberries also do well.
Market-gardening is profitably carried on around Kansas City, Lenrenworth, Atchison, Lawrence, Topeka, Ft. Scott, Wichita, and many other towns. Sweet potatoes are at home here and are grown in large quantities. They are on the market from early in September to March and sometimes in May. Irish potatoes are not a sure crop on the uplands, but immense quantities are grown on the bottom-lands. Hundreds of car-loads are grown and shipped from the Kansas river bottom, between Topeka and Kansas City, every year.

The uplands are rolling prairies, with a deep, alluvial soil, with enough clay and sand intermixed to make it an ideal soil for fruit-growing. The subsoil is red clay, with some sand. This is underlaid with limestone from one to forty feet below the surface. This limestone is full of seams or cracks which afford a good subdrainage, so that little of the land needs artificial drainage. These lands, as above described, embrace a very large percentage of the entire state. The bottom-lands are wide, ranging from one to ten miles in width. These bottom-lands are composed largely of sand, with enough humus intermixed to make them rery productive. They support some of the finest orchards.

Kansas City is the lowest point in the state, and is about 750 feet above the sea level. It gradually gets higher west, until it is over 4,000 feet on the western border. The rainfall is of the usual amount on the eastern border, but gradually decreases as the western bounuary is approached.

Fred Wellhouse.
Kansas is, to the eye, practically level. There are no mountains within its boundaries, yet the eastern third is rolling. Some parts are rough, while the west is practically level, yet the state runs steadily up-hill from its eastern border, which is 750 feet above sea level, to the western limit, which is 4,500 feet $\boldsymbol{\rho}$ bove sea level. This naturally gives a varying climate. It is like climbing a mountain 3,750 feet high, and passing through the varying atmospheric changes as one goes upward, from a moist, easy-growing climate to a clear, windy, dry elevation 3,750 feet higher.

In the eastern third of the state (1, Fig. 1206) the apple and pear are at home, and when well grown are excellent. New varieties originating in the state or in the west are taking the place of eastern and imported varietics. Orchards and garcens are scattered ali over the eastern half, and are very successful. The commercial horticulturist finds his early market in Nebraska, Colorado and Iowa; his later market in tie cities and towns of Kansas, and a still leter market in Texas, when the heat of summer has paralyzed Texan products. Oklahoma and the Indian Territory have for years been good markets for the sewthern part of Kansas. Many orchardists in the middle :est sell every
apple, good, bad or indifferent, for cash to wagoners who come from the south and west annually in large numbers to carry away the orchard products. Toward the west, cherries, plums and peaches seem more at hor 1 . The two former are very prolific, and a success in the central part (2). Peach pits are planted in rows throughout the west for wind-breaks, and such trees bear considerable fruit, some of it very fine. Along the Arkansas river, where the roots of trees penetrate to water, all fruits do finely, and on irrigated lands back from the bottom-lands, horticulture prospers in all departments. The bluffs along the Missouri river, in the northeastern part of the state, seem peculiarly adapted to the apple, and it is grown there in immense quantities. Here are some of the greatest apple orchards of the world. The total number of apple trees in the state is $11,005,607$; pears, 398,975 ; peaches, $5,734,337$; plums, 919,$52 ;$; cherries, $1,666,456$. The acreage of vineyards is 6,543 ; of nurseries, 2,803 ; blackberries, 3,25̄3 ; raspberries, 1,504; strawberries, 1,864 (1900).
Strawberries do well anywhere in the state. Some prominent varieties originated here. Raspberries are of easy culture. The "Kansas" originated in Lawrence, and has become the mainstay among blackcaps over a wide range. Blackberries are indigenous, and cultivated varieties mainly do well, though some of them rust badly. Raisin grapes are grown in the south by winter covering. Prunes and figs will also grow there. Vegetables of all kinds do well and are of fine quality, the tomato being especially at home. Early potatoes of the Kaw valley are widely known, and milions of bushels are exported yearly. Fertilizers are little used, and the stable manure of the cities is largely dumped on the commons. Only gardeners seem to value it. Melons are of easy growth, and of the finest quality. Sugar-beets have been tried at various points, but on analysis do not often come up to the required standard of saccharine qualities. Indian corn is the great staple, and all the sugar and popping varieties come to the finest maturity in quality. The lack of water in western Kansas (3) is the greatest drawisack to agriculture there.

William H. Barnes.
KARATAS (Brazilian name). Bromelidecer. Bentham \& Hooker refer about 10 West Indian and Brazilian bromeliads to this genus, but Mez, the latest monographer (DC. Monogr. Phaner. 9), refers the species to other genera. Baker retains it. As understood by Bentham \& Hooker, Karatas differs from Bromelia chiefly in its dense, capitate flower-clusters, which are sessile in the axils of the upper leaves. The species are cult. the same as Bromelia, Billbergia, and the like. They are little known in this country. Apparently the only common one is K. spectábilis, Ant. (Niduld rium spectábile, Moore. Regèlia spectábilis, Linden. Aregèlia spectábilis, Mez). It is a stemless, tufted perennial, with broadly strap-shaped, spine-edged lvs., which are green above, gray-banded beneath and red-tipped at the end: fls. numerous, sunk amongst the lrs., the corolla with bluish lobes. Braz. B.M. 6024. L. H. B.

KARRI. Eucalyptus diversicolor.

KAULFU̇SSIA (G.F.Kaulfuss, professor of natural history at Halle). Compósitce. A small, branchy, hardy annual, 6-12 in. high, with blue or red aster-like fls., on long stems: plant pubescent or hispid: lvs. oblongspatulate or oblong-lanceolate, entire or remotely denticulate : heads many-fld., radiate, the ray fls. pistillate,
 the disk-fls. perfect: akene 1207. Charieis heterophylla. Natural size. oborate and compressed, those of the disk with plumose pappus: involucre scales in two rows. K. amelloides, Nees (Figs. 1207-8), is an excellert annual, oi easy culture in any garden soil. Var. atroviolaces, Hort., has dark violet fls. Var. kermesinc, Hort., has violet-red fls. Sow seeds where
the plants are to grow; or they may be started indoors and the plants transplanted to the open. The geuus Kaulfussia was founded by Nees in 18\%. In 1817, how-

1208. Charieis heterophylla, commonly known as Kaulfussia amelloides.
ever, the plant ras described by Cassini as Charieis heterophylla, and this name should stand. S. Africa.
L. H. B.

## EENILWORTH I'Y. Linaria Cymbalaria.

KENNEDYA (Kennedy, of the nursery firm of Kennedy \& Lee, important English nurserymen of the latter part of last century). Leguminosae. Australian woody trailers or twiners of about a dozen species, making excellent plants for the intermediate house or conservatory. Fls. red to almost black, pea-like: lrs. mostly pinnately 3 -foliolate: standard orbicular or obovate, narrowed to a claw, and bearing inute auricles; wings falcate, joined to the keel; stamens diadelphous, - 9 and 1: pod linear, flattened or cylindrical, 2 valved, with pithy divisions between the seeds. Kennedyas are easily grown from cuttings of nearly ripe wood: also from seeds. They are mostly spring and summer bloomers, and should rest in winter. Give plenty of water during summer. They should be given support: they grow from $3-10$ feet high, making stiff, woon stems. They may be trimmed back freely when at rest. The taller kinds, like $K$. rubicunda and $K$. coccinea, are excellent for rafters. Well-rooted plants may be planted permanently in the greenhouse border.

## A. Fls. nearly black.

nigricans, Lindl. Twining, robust, somewhat pubescent: lfts. (sometimes reduced to 1) broad-ovate or rhomboid, entire, obtuse or emarginate: fls. slender, 1 in . or more long, in short one-sided axillary racemes, deep riolet-purple or almost black: pod flattened. B.R. 20:1715. B.M. $3652 .-$ K. cerulea, Hort., with blue fis., is perhaps this species.

## AA. Fls. red or scarlet. <br> B. Standard narrow-obovate.

rubicúnds, Vent. Pubescent: lfts. 3-1 in. long, ovate to orbicular or ovate-lanceolate, entire: fls. dull red, drooping in racemes, usually not exceeding the lis.; standard narrow-obovate, reflexed; wings narrow and erect: pod flat or nearly so. L.B.C. 10:954. B.M. 268 (as Glycine rubicunda). B.R. 13:1101 (as Amphodus ovatus).

BB. Standard broad-otate or orbicular.
prostràta, R. Br. Prostate or twining, pibescent: lfts. broad-obovate or orbicular, less than 1 in . long, often wary: stipules leafy, cordate: fls. 2-4 on each peduncle (which usually exceeds the lvs.), scarlet, $3 / 4$ in. long; standard obovate; keel incurved and obtuse; wings narrow and short: pod nearly cylindrical, pubescent. B.M. 270 ias Glycine coccinéa).

Var. màjor, DC. (K. Marryatte, Lindl. K. Marryattidma, Hort.). Larger and more hairy: lfts. larger, stronsly undulate: stipules smmetimes 1 in. across: fls. large, deep scarlet. B.R. 21:1790. Gn. 28:501. A.F. 3:547. - A very handsome winter-flowering twiner.
coccinea, Vent. Denselv pubescent: lfts. 3 or 5 , orate or oblong, very obtuse cften 3 -lobed: stipules very
small: fls. $1 / 2 \mathrm{in}$. long, scarlet, in long-peduncled clusters of $15-20$; standard orbicular; keel very obtuse: pod flattened. B.M. 266t. L.B.C. 12:1126. - Known under several names, as $K$. inophýlla, Lindl., B.R. 17:1421; K. dilatàta, Cunn., B.R. 18: 1526; Zichya tricolor, Lindl., B.R. $95: 52$; Z. villòsa, Lindl., B.R. $28: 68$, and others. Handsome slender triner or trailer. L. H. B.

KENBICK, WILLIAM, was born in 1795, and was the oldest son of John Kenrick, one of the pioneer American nurserymen. His father commenced his nursery in the year 1790 on Nonantum Hill, near the line of the towns of Newton and Brighton, Mass., and on the very ground where the apostle Eliot began his labors for the Indians, under Waban, their chief. The raising of peach seedlings was the commencement of Mr. Kenrick's work. He soon acquired the art of budding, and thus offered named varioties for sale. In the year 1823 his son William became a partner in the nursery, and we find the first advertisement of the stock in the October number of the "New England Farmer" of that year. It named 30 varieties of finest budded peaches 5 to 8 feet high at $331 / 3$ cents each; 10 varieties of European grapes; 4 American: Isabella, Catawba, Bland and Scuppernong; currants, horse-chestnut, catalpa, mountain ash, lilacs, roses and a few other ornamental trees. It was stated that the trees would be packed with clay and mats. The son, William, appears to have assumed early control, having planted in 1825 two acres in currants alone. In 1824 they made 1,700 gallons of currant wine, increasing the amount to 3,000 gallons in 1825 and to 3,600 in 1826 . Mr. Kenrick was an enthusiast in whatever he did, his extensive cultivation and introduction of the Lombardy poplar being an illustration of his sanguine temperainent. A still more marked instance was his culture of the Morus multicaulis about the year 1835, and his advocacy of silk culture. For a time he found this to be a more profit able venture to himself than to his patrons. But it should be said that, however sanguine and confident were his opinions, tiey were honestly held and with no intent to mislead. In the year 1835 Mr. Kenrick published "The American Silk Growers' Guide," a small treatise on mulberry culture. In 1833 appeared the "New American Orchardist." This is a larger work, and is a full description of the fruits of that date. The author acknowledges his large indebtedness to other cultivators, especially to Mr. Robert Manning. of Salem, who published his "Book of Fruits" in 1838. Mr. Kenrick died in February, 1872.

Wm. C. Strong.
KENTIA (after William Kent, horticulturist, companion of Reinwardt in journers through the Indian archipelago). Palmdcere. Spineless palms with pinnatelvs., sharp-pointed or 2-toothed, linear-lanceolate lfts., midnerves scaly beneath, and rachis angled abore; petiole channeled above, rounded on the back. It differs from Areca in the sharply 4 -angled branchlets of the spadices; and from Hedyscepe and Kentiopsis in having only 6 stamens. Species at most 6 or 7, from the Moluccas to northern Anstralia. The type is $K$. procera. Blume, from New Guinea, which is not cult. It is probable that none of the Kentias known to the American trade belong properly in this genus.
K. austràlis. Hort., from Lord Howe's Island, is probably one of the four following palms which, according to Maiden in Proc. Linn. Soc. N. S. W. 1898, are the only palms on that island: Cl wstigma Moorennum, Howea Belmoreana and Forsteriana, an. Hedyscepe Canterburyana. K. australis was int. 1873 and advertised 1893 by John Saul. - K. Belmorrana, C. Noreana. - K. Maveri. Seem. $=$ Rhopalostylis Baneri.Belmoreana. $\mathbf{F}$. Mavell. $=$ Howea Belmoreana $-\boldsymbol{K}$. Bróvnii Hort. Dedicated to D. S. Brown, of St. Louis, Mo. Resembles K. Macarthuri. Les. pinnate, arching: lfts. truncate and preK. Macarthuri. Less. pinnate, arching: Ifts. truncate and pre-
morse. Very graceful. A. $\mathbf{~ f . ~ 1 5 : 2 6 6 ~ a n d ~} 20: 223$. This is. perhaps, morse. Very graceful. A.G. $15: 266$ and $20: 223$. This is, perhaps,
Nenga or Hydriastele.-K. Oanterburyàna, F. Mnell. $=$ HedyNenga or Hydriastele. $-\boldsymbol{K}$. Canterburyana, F. Mnell. $=$ Hedy
scepe Canterburyana. $-\boldsymbol{K}$. divaricata, Planch. $=$ Kentiopsis scepe Canterburyana. - K. divaricata, Planch, Kentiopsis
divaricata. - . Dumonidna. Hore. Adr. 1805 by Pitcher \& divaricata.- $\boldsymbol{K}$. Dumoniana, Horr. Adr. 1805 by Pitcher \& Manda. F.R. 1:379.-K. éleganus, Brongn. \& Gris. $=$ Cyphophoe nix elegans. - K. exorrhiza, H. Wendl= Exorrhiza Wendlandi ana- - . Forsterianna, F Muell. = Horrea Forsteriana. - K. frue téscens, Hort. Cult. by Siebrecht \& Son.-K. fulcita, Brong. Cyphophoenix fulcita.- $\boldsymbol{K}$. grácilis, Hort. = Microkentia grac-ilis.-K. Kirsteniana, Hort. Lvs, very slender. dark green, arching, ascending, widely pinnated; lfts. brcadly cuneate, shapel like a shark's fin, the truncate apex curiously erose. ragged, the upper margin extending into siong, sharp tip; peti-
oles covered with light grayish brown pubescence. New Ireland. A.G. 20:223 (1899). G.C. III. 24:391. This is probably a Nenga.-K. Lindeni, Hort =Kentiopsis macrocarpa.K. Lüciani, Lind. =Kentiopsis macrocarpa.-K. Macarthuri, Hort. An elegant palm, with smooth, suberect lvs.; lifts. semipendulous, alternate, $4-8 \mathrm{in}$. long, $1 / 4-1 \mathrm{in}$. wide, the midvein prominent above, obiiquely truncate and ragged or premorse Stems smooth, suckering quite freely. New Guinea. Int. 1878 Veitch \& Sons. F. 1879, p. 115. Perhaps a Nenga. - K. Moore ana, F. Muell.=Clinostigma Mooreanum.-K. Morei. Hort Dreer. Possibly same as K. Mooreana.-K. rubricaùlis, Hort Lrs. pinnate, ovate, with red petioles. Adv. 1895 by Pitcher \& Manda.-K. rupicola. Hort. Adv. 1895 by Pitcher \& Manda. $K$. Sanderiana, Hort. Very slender in habit, very hard foliage, spreading: lfts. very narrow, arranged on an arching rachis similar to Cocos Weddelliana. A graceful plant for jardinieres or conservatories. A. $G$. $20: 2,33^{-K}$. Sápida, Mart $=$ Rhopalo or conservatories. A.G. 20:2 1895 by Pitcher \& Mands - $K$. Vatchii Hort probably $=$ Adv scepe Canterburyana.-K. Wendlandiàna, F. Muell. $=$ Hydriastele Wendlandiana. Jared G. Smith.

KENTIOPSIS (Greek: like Kentia). Palmdecre. Spineless palms: lvs. equally pinnate; pinna subopposite, very coriaceous, narrow, sword-shaped, narrowed to the obtuse or toothed apex, with strong mid-nerve, prominent veins and thickened margins. Species 2. New Caledonia.
Kentiopsis belongs to a large group of genera mentioned under Hedyscepe (p. 718), which differ from Kentia in having the ovule fastened on the side of the locule, and more or less pendulous, instead of fastened at the base and erect, as in Kentia. Kentiopsis is distinguished from Hydriastele by having its tis. arranged spirally instead of in 4 ranks. From numerous other cultirated allies it is distinguished by the following characters: stamens numerous, 20-25: leaf-segments narrowed, obtuse or dentate: sepals of the staminate fis. triangular-orbicular, broadly overlapping.
macrocárpa, Brongn. (Kéntia Líndeni, Hort. Linden. Kéntia Lüciana, Linden). Rachis flat above, convex below. The form known as Kéntia Luciani has bright green Ivs., tinged with brown on the under surface, the young petiole yellowish, later becoming brown. I.H. $29: 451$ and 24:276. F. 1884, p. 71. S.H. 2:117. -The species is distinguished by the reddish tinge of the young leaves.
K. divaricàta, Brongn. (Kentia divaricata, Planch.), is re ferred by Drude in Engler \& Prantl, to Drymophloeus. It may be distinguished from the preceding by the alternate pinno and triangular rachis, keeled above. 1.H. 28:409. This ha been confused in the trade with Kentia gracilis, which is referred by Index Kewensis ferred by Index Kewensis I.H. 23:245. Advertised 1895 by Pitcher \& Manda - $K$ by Pitcher \& Manda. - A. oliceeformis, Brongn., is haracterized Not cultiangled.

KENTUCKY HORTICULTURE. Fig. I209. The state of Kentucky, while its interests have not been distinctively developed in the direction of horticulture, is, nevertheless, in its rarious parts, admirably adapted to nearly all the fruits and regetables of the temperate zone. Its marily that pertaining to general agriculture and stock-raising, ratherthan horticulture.
Before the civil war the people of wealth and culture, particularly over large areas through the central portion of the state, dwelt very lergely in the country rather than in the towns, which at that time were nearly all small and comparatively unimportant. There are many evidences still remaining, in stately country homes surrounded by magnificent old trees and oldfashioned eardens, to bear witness to the high appreciation of the people of that period for the amenities of
rural life. At that time commercial horticulture in the state was almost unknown; but with the steady advance in fruit-growing throughout the country, and with increasing facilities for rapid transportation for perishable products, there have been developed in recent years several well-defined fruit-and vegetable-growing areas, in which these industries have assumed large proportions.
The most important of these districts are two which lie respectively to the northeast and south of Louisville, and the boundaries of which, to some extent, overlap. The first of these is comprised largely of the counties of Trimble and Oldham. Trimble county is especially noted for its extensive peach orchards, which are situated upon the elevated lands adjacent to the Ohio river, much of the fruit being shipped by water to Louisville, Cincinnati, and other river towns. Oldham county has a large acreage of grapes. The first vineyards were established in the decade of $1850-60$, of the Catawba and Isabella varieties. On account of the rot, the culture of these varieties was not very successful, but early in the next decade the Ives was introduced, and owing to its productiveness and shipping qualities, it has since been grown almost exclusively. The growth of the industry was quite steady until about 1890 , when one or two seasons of large crops, accompanied by high prices, led to a very iarge increase in the acreage. During the past few years the business has been somewhat depressed, on account of the competition of earlier grapes from Georgia and other southern states.
To the south and southrest of Louisville lies the fruit district, known as Muldraugh Hill, a low, mountainous elevation, extending, in Kentucky, in a southeasterly direction from the Ohio river in Meade county, through Hardin, Larue, Green, and portions of adjacent counties. In this hill country fruit-growing is most largely developed on its southern slope, peaches and apples holding the first place in importance, while pears, plums and the small fruits are also extensively grown. This locality seems peculiarly adapted to the apple and peach, orchards of the latter having produced, according to good authorities, nineteen paying crops in twenty-three years, with comparative freedom from disease, and attaining, when permitted, a great age and size. The fruit from this district is shipped to various points in the Mississippi ralley, but especially to such northern cities as Indianapolis and Chicago, where it holds high rank.

Between and connecting the two fruit districts men-

1209. Kentucky. Shaded areas designate pomological districts.
tioned is the county of Jefferson, containing the largest city in the state-Louisville. In this county fruitgrowing and markot-gardening are very extensively developed, particularly for the local market, and here also are found the most extensive forists' establishments in the state, as well as many forcing-houses, devoted to groming winter vegetables, chiefly lettuce.
Throughout much of the fruit districts mentioned, as in many other parts of the state, the favorable results
secured in fruit-production are possible largely on account of the immunity from late spring frosts, due to elevated locations and to the deeply eroded river channels, which aiford abundant cold air drainage.

In the extreme south western corner of the state (near K in Fig. 1209), in the counties of Carlisle, Hickman and Fulton, a combination of farorable conditions has led to an extensire development of the trucking and small fruit interests. Chief among these conditions are a fertile soil, a warm spring temperature, and direct and rapid transportation, both by water and rail, to northern cities. Many hundreds of acres of strawberries are grown, and the production of beans, spinach, melons and other garden crops is of nearly equal importance.

In the vicinity of Cincinnati, Ohio, the fruit and rege-table-growing interests are quite extensive, although the conditions for market-gardening bare led to a greater development of that business upon the northern than upon the Kentucky side of the Ohio river.

About two-fifths of the eastern portion of Kentucky, comprising the mountainous part of the state, is still sparsely settled, its agriculture is confined to a few staple crops produced, in many cases, by primitive methods, and true horticulture is comparatively unknown over a great part of this rast area, although, as shown in isolated localities, nearly all our fruits and regetables can be grown with perfect success. Within the borders of this mountain region, in the southeastern part of the state, are several prosperous German and Swiss colonies, nearly every member of which, with characteristic industry and thrift, bas possessed himself, on some part of his farm, of a vineyard and orchard, and so produces an ample supply of the best fruits. Here and there in other localities, enterprising individuals have demonstrated the easy possibility of producing orehard and garden products without stint; but the arerage farmer of the mountain region, as too often elsewhere, is apparently content to let his table remain bare of the best fruits and regetables, as his home surroundings are so often bare of trees and flowers.

The public parks of the state are confined almost exclusively to those of the city of Louisville, which was itself without any lark system until recent years. After the passage of an act providing for their establishment, a board of park commissioners was elected in 1890, since which time the development of the park system has been rigorously prosecuted. At the present time there has been secured for this purpose a splendid public possession of orer 1,100 acres, composed of Iroquois park, 589 acres; Cherokee park, 304 acres; Shawnee park, 167 acres; and the southern parkway, 48 acres, together with a number of small city squares. These parks are being improved under the direction of the most skilful landscape architects, and promise soon to bring the city of wouisville to an equality in this respect with other great cities of the country.

Of other public grounds in which the work of the landscape horticulturist is manifest, the two cemeteries, Care Hill, of Louisville, and that of Lexington are perhaps the most notable examples in the state. The former comprises an area of about 300 acres. and is situated upon a beautiful tract of land, elerated 100 feet abore the Ohio river. It contains several beautiful lakes, and is especially rich in its collections of aquatics.

The cemetery at Lexington contains over 100 acres, and was established in 1849. It is exceptionally fortunate in having been under the same superintendent during its entire history of almost fifty rears, and in having the landscape method of treatment followel from the first. Among many interesting horticultural features, the most notable to-day are the magnificent old bur oaks and white elms, many of which are 4 or 5 feet in diameter.

Clarence W. Mathews.
KENTUCKY BLUE GRASS. Poa pratensis.
KENTUCKY COFFEE TREE. Gymnocladus Canadensis.

KERNERA. Crucirére. Under this name amateurs cultivate a rock plant growins about 4 in . high, which blooms profusely all summer, its Hs. being small, white,
and borne in elongated umbels. It should probably be known as Cochlearia saxatilis. Four genera, representing 4 orders, have been named after Johann Simon von Kerner, 1755-1830, Prof. of Botany at Stuttgart. Bentham and Hooker regard the cruciferous Kernera as a subgenus of Cochlearia, in which the stamens are longer and bowed at the apes: pods turgid; valves very conrex: cotyledons accumbent or incumbent.
The following species is a compact, branching, neat habited plant thriving in any light soil that is moderately rich. It requires a sunny but not too dry situation. Prop. by cuttings, division or seed.
K. saxátilis, Reichb. Properly Cochlearia saxatilis, Linn. Root-lvs. oblong. dentate, pilose: stem-lvs. linear-obloug: petals 4, obovate, $2-3$ times as long as tha calyx: seeds numerous, not margined. Eu.
J. B. Keller and W. M.

KERRIA (after William Kerr, a gardener who intro. duced this and many other plants from China; not J. Bellenden Ker or M. Kerr, as often stated). Rosacece. A monotypic genus, one of the first shrubs brought from Japan; best known by its weak, slender green branches, slender irregularly toothed lis. and large yellow ils. It grows 4-8 ft. high and as broad as high, with numerous short-branched, spreading stems, attractive in winterfrom its light green branches, in early June when its blossoms appear in greatest abundance; in Norember, when the lvs. are of a clear yellow, and is not unattractive throughout the whole year. It is a refined plant and deserves free use in ornamental planting, either in simple masses or at the front of a shrubby group or border. It is not thoroughly hardy in all situations in the northern states, the tips of its branches often winter-killing, which causes it to demand a well-drained and partially sheltered position. It grows in any good garden sois. Although enduring sunlight, it is best in partial shade, since the intensity of full sunlight partially bleaches the fls. It is prop. by cuttings, layers and root divisions.
Japonica, DC (Corchorus Japonicus, Thunb.) Globe Flower. Japanese Rose. Fig. 1210. Les. simple, alternate, orate-lanceclate, acuminate, largely unequally serrate, 1-2 in. long, clear green abore, pale below, thin, slightly pubescent: fls. abundant, solitary, terminal, peduncled, 1-2 in. in diameter, appearing in June and

:210. Kerria Japonica.
Showing single and double flowers ( $\times 1 / 3$ ).
more or less throughout the year; calyx persistent, 5 lobed; petais 5, large, yellow, orate; stamens numerous: carpels $5-8$, globose, distinct. A.G. 18:425. F.E. 9:593. R.H. 1869, p. 293. S.B.F.G. II. 337. Gn. 21, p. $275 .-$ Var. flore pleno, double, more vigorous and more frequent in culture than the single. B.M. 1296. Var. grandiflora, a vigorous form with large fls. Var. aüreoVittatis (ramilis rariegatis nureis), a dwarf form, the branches striped with yellow and green. Var. argenteovariegàta, 2-3 ft. high, with small green lrs. edged with Winte.
A. Phelps Wrman.

KIDNEY BEAN. Common name in England for the common beans in distinction from the Lima bean, the former being Phaseolus vilgaris, the latter P. lunatus.

KIDNEY VETCH. See Anthyllis.
KINGNUT. Carya sulcata.
KIN-KAN. See Kumquat.
KINNIKINNICR. Dry bark of Cornus Amomum, smoked by western Indians.

KITCHEN GARDEN. See Vegetable Gardening, Gardens, and Horticulture.

KLEIFIA. Of the 3 genera of Composita of this name, 2 are referred to Porophyllum and Jaumea, but the trade names will be accounted for under Senecic.

KNAPWEED. See Centaurea.

## KNIGHT'S STAR. Hippeastram equestre.

KNIPHOFIA (Johann Hieronymus Kniphof, 17041765, professor at Erfurt). Lilidcece. This genusincludes the Red-hot Poker Plant (Fig. 1211), which is unique in its appearance and one of the most striking plants in common cultiration. No one who has ever seen its pyramidal spike of blazing red fls. borne in autumn is likely to forget when and where he "discovered" this plant. It is herbaceous and nearly hardy N., has sword-shaped lvs. $2-3 \mathrm{ft}$. long, and several scapes 4 or 5 ft . high surmounted by a spike 4-8 in. long composed of perhaps 100 tubular, drooping fis., each 1 in . or more long, and fiery, untamed red. A sky-rocket is not more startling. By far the commonest species is $\boldsymbol{K}$. aloides, which has perhaps a dozen varieties with Latin names and twice as many with personal names. All the other species have much the same general effect, and are of interest chiefly to collectors and fauciers. Poker Plants are hardy south of Philadelphia when well covered in winter, but in the North it is generally safer to dig up the plants in November, place them in boses with dry earth, and store them in a cellar in winter. In spring place them in a warm, sheltered, well-drained spot, preferably with a background of shrubbery to set off the Howers.

The genus is confined to Africa and Madagascar, and all but tro of the species numbered below are from south Africa. The plants seem to be still better known to the trade as species of Tritoma, but the following account omits most of such synonyms. Bentham and Hooker placed Kniphofia between Funkia and Notosceptrum. The latter genus is not in cultivation, and Funkia has blue or white fls., which colors are not found in Kniphofia. Poker Plants have fis. of red, orange or yellow. Blandfordia has similar colors and agrees in having pendulous tubular ths. with short lobes, and also long, narrow lrs., but the stamens are fixed at the mid. dle of the tube, and the capsule has septicidal dehiscence, while in Kniphofia the stamens are fixed under the pistil and the capsule has loculicidal dehiscence.

Kniphofias are often classed by dealers as bulbous plants, though they hare only a short rhizome and nu merous, clustered, thickish root-fibers. Baker speaks of the "raceme" of a Kniphofia, but the pedicels are so short that the inflorescence is here spoken of as a "spike,"particularly as a spike signifies to the popular mind a denser inflorescence than a raceme. Most of the species have been very recently monographed by Baker in Flora Capensis, vol. 6 and Flora of Trop. Äfr. vol. 7. When the height of the plants is given below, it refers to the height of the scape.

Index of names exclusive of those in the supplementary lists (varieties and synonyms in italic):

| aloides, 1. | corollina, 5. | Nelsoni, 4. |
| :--- | :--- | :--- |
| Burchelli, 3. | glaucescens, 1. | nobilis, 1. |
| carnosa, 1. | grandiflora, 1. | pacifloza, 8. |
| caulescens, 6. | grandis, 1. | Rooperi,, |
| comosa, 10. | Leichlinii, 9. | Saunderii, 1. |
| coronianum, 5. | Macowanii. 5. | Tuckii, 7. |

Burchelli, 3
carnosa, 1 caulescens, 6. согоміаии.
laucescens.
grandiflora, 1.
grandis. 1.
Leichtlinii, 9
Mace wanii. 5
nobilis, 1. pancifloza. 8 Rooperi, 2 Tuckii, 7.
A. Length of perianth 1 in. or more. B. Stemless or nearly so.
c. Form of les, sword-shapedacuminate.
D. Color of les. dull green.
E. Width of les. $3 / 4-1$ in...... 1. aloides

EE. Width of lvs. $11 / 2$ in....... 2. Rooperi
DD. Color of les. bright green.... 3. Burchelli
cc. Form of lis. linear.
D. Width of les. one-sixteenth to one-twelfth of an inch......
DD. Width of les. one-eighth to one-sixth of an inch......

Nelsoni

BB. Stem 6-1zin. long...................
B. Form of perianth subcylindrical. . 7. Tuckii

BB. Form of perianth funnel-shaped.
c. Width of les. one-eighth to one-
sixth of an inch.
8. panciflora
cc. Width of les. $1 / 2$ in.
D. Stamens $11 / 2$ times as long as
the perianth ................ perianth
10. comosa

1. aloldes, Moench (K. Uvària, Hook. Tritoma Uedria. Ker.). Red-hot Poker Plant. Poker Plant. Torch Lily. Flame Flower. Fig. 1211. Lus. slightly

2. Kniphofia aloides.

Separate flower natural size.
glaucous, 2-3 ft. long, scabrous on the margin, acutely keeled, with 30-40 close vertical veins: raceme dense, often 6 in . long, $21 / 2-3 \mathrm{in}$. thick: upper fls. bright red, lower ones yellow; perianth cylindrical; stamens sometimes barely exserted. F.S. 13:1393. B.M. 4816:758. The following varieties with Latin names are in the trade and usually advertised as apparent species under Kuiphofis or Tritoma. They may be all more or less distinct horticulturally. Aneverblooming kind is advertised in 1900 and said to flower from June to Dec. Var. carnoss is figured in Gn. 19:286 with the fls. opening from the top instead of the bottom, and with red filaments and yellow anthers. Leichtlin intrcduced it about 1881 and said it grew $11 / 2-2 \mathrm{ft}$. high, the apricot-red of the fls. toned down by a glaucous bloom. Var. floribúnda is early-fowering, says Van Tubergen. Var. glaùca is less innown than the next. Var. glaucésrens is figured in Gn. 36:727 with a epike 9 in . long, of "vermilion-scarlet fls. changing to a more orenge color. One of the freest bloomers. Int. $1859 . "$ Foliage somewhat glaucous. Var. grandiflora, one of the earliest improrements on the type. John Saul said it grows 2-3ft. high. Var. grándis. "The largest-flowered of all; fls. red and yellow, 5 :-." Woc lson. Referred by Kew authorities oo var, maxima. Var. nobilis is said by Carrière, R.H. 1885:259, to have

## KCELERIA

shorter and stricter liss. than Saundersii, the spikes more ovoid, the tls. uniformly red and less dettexed. Lvs. not glaucous. Gn. 55, p. 167. Var. Saundersii, in R. H. 1882:504, is shown with "red-orange fls." in an elliptical spike and said to grow 6 ft . and more high. Woolson finds it grows $4-6 \mathrm{ft}$. high in rich soil, with cylindrical spikes $18-24 \mathrm{in}$. long and fls. often $1 / 2 \mathrm{in}$. across. Var. serotina is a late-fld. form.

Baker's treatment of the varieties is as follows:
Var. máxima, Baker ( $K$. and T. grandiflòra, Hort. $T$. Saîndersii, Carr.). More robust:lvs. $4-5 \mathrm{ft}$. long, 1 in . wide: raceme and tls. longer: stamens more decidedly exserted. B.M. 6503 (fls. yellow, more or less tinged red). R.H. 1882:504 (colored like the type).
Var. nóbilis, Baker (T. nóbilis, Guill.). Still more robust: scape including raceme sometimes $6-7 \mathrm{ft}$. long: tls. $11 / 2$ in. long. R.H. $1885: 252$.

Var. serotina, Hort. A late-flowering form with slender perianth $11 / 4 \mathrm{in}$. long and distinctly exserted stamens. Baker also mentions varieties carnosa and glaucescens without discrimination. Other varieties with Latin names are mentioned in Gn. 36: 727.
2. Rodperi, Lem. Lrs. 4 ft . long, scabrous on the margin, glaucous. Later-fld. than No. 1: fls. paler. B. M. 6116.
3. Búrchelli, Kunth. Les. $2-3$ ft. long, $1 / 2-3 / 4$ in. Wide, smooth on the margin: spike 6-12 in. long: fls. bright sellow, much tinged with red when young. "A much dwarfer plant than No. 1 and for many purposes equally desirable. Height $1 \frac{1}{2} \mathrm{ft}$. Fls. tinged green." J. B. Keller.
4. Nélsoni, Mast. Lrs. $11 / 2-2 \mathrm{ft}$. long, with a thick midrib and recurred serrulate edges. G.C. III. 11:561. Gn. 50, p. 400; $55: 1213$ (brick-red, no trace of yellow).
5. Macówanii, Baker. Lrs. With a thickened scabrous margin, many upper fls. bright dark red. B.M. 6167. R.H. 1879:390. - "A rery neat dwarf species with orangescarlet fls. in early autumn, 1-2 ft." Woolson. K. corallina, Hort., R.B. 19:25 (1893), a hybrid between this species and $K$. Uuaria, was raised by Deleuil, of Marseilles. Woolso 1 says it grows 18-24 in. high and bears eroid spikes of coral red tis. all summer and fall. He says it is good sor cutting. $K$. corolinianum of one of our nursery catidogues is presumably an error for $K$. corollina. K. vèdia Maçuanii, Hort. "A hrbrid between $K$. aloide s grandiflora and $K$. Macowanii. This is an earlier booming sort than either of its parents, as dwarf as Macowanii and ruch earlier and more brilliant. Thoroughly tested." Woolson.
6. cauléscens, Baker. Lrs. sword-shaped-acuminate, broadly channelled, not acutely keeled on the back, 4-5 ft . long, 5-6 in. wide, margin serrulate: spike orer 1 ft . long, 3 in. thick: lower fls. yellow, upper ones red. $G$. C. III. 6:564. R.H. 1887:132. - This differs from all described above in having stamens much exserted. Gn. $41: 861$ is perhaps the most artistic of all colored plates of Kniphofias.
7. Túckii, Baker. Lsrs. ensiform (linear in Nos. 8-10), $1-11 / 2 \mathrm{ft}$. long, $3 / 4 \mathrm{in}$. wide, margin serrate: spike very dense, $5-6$ in. long: fls. yellow, tinged bright red when young. One of the hardiest.
8. panciflora, Baker. Lrs. 1-11/2 ft. long, margin smooth: raceme lax (dense in Nos. 9-10), 2-3 in. long: fls. pale yellow; stamens shortly exserted, as in No. 7 . G.C. III. 12:65 shows it with only 25 fls. and the loosest raceme of any species here described.
9. Leichtlinii, Baker. Fls. bright yellow; perianth more narrowly funnei-shaped than in No. 10, becoming $3 / 4$ in. long: scape speckled with red, sometimes bearing a bract $4-5 \mathrm{in}$. long. This and No. 10 are from tropical Africa; the rest from South Africa. B.M. 6716. R.H. 1884, p. 557. Var. distàchye, Baker, has a forked scape and smal! accessory lateral raceme.
10. comjsa, Hochst. Fis. bright yellow, dilate 1 suddenly at the middle, $1 / 2 \mathrm{in}$. long; filaments red; anthers yellow. B.M. 6569. - This has relatirely longer stomens than any other species and is perhaps more conspicuous by reason of its mass of stamens than the outline of the spike. One of the tenderest.
Supplementary list of imperfectly known Latin names rep-
resenting kinds now adsertised in America: $K$. hybrida, Hort. is a trade name used to include varieties with personal names of miscellaneous or unknown parentage.- $\boldsymbol{K}$. mutálile. Hort "Height $5-6 \mathrm{ft}$." Woolson.- K. Pfitzerii, Hort. John Saul, 1s9 said "rose-scarlet without a trace of yellow." Dreer, 1900, says it is a great improvement of K . aloldes, var. grandiflora, the scapes more numerous, often $41 / 2 \mathrm{ft}$. high: spikes over 1 . in long: f1s. rich orange-searlet, shading io salmon-rose at the edge.-K. speciosa, Hort. Van Tubergen.-K. Woodii, Hort., is advertised by Franceschi, who says it comes from Natal, and has lemon-yellow ils. Not in Flora Capensis.
Twenty five varieties with personal names are advertised by Van Tubergen and Krelage. How much variation in habit and season of bloom does not appear. The color-range is about as follows: dark brick red, earmine-red, coral red, scarlet-orange. orange, bronzy yellow, deep sellow, pure yellow and primrose or straw-colored. The tilaments may be red or yellow, the anthers apparently sometimes differently colored from the filaments. Some hybrids are recorded, and some form of K . aloides is usually concerned. W. M.

KOCHIA (after W. D. J. Koch, 1771-1849, professor of botany at Erlangen; wrote a flora of Germany and Switz. erland). Chenopodiàcer. This includes a plant treated as a hardy annual which is called the Mock Cypress or Summer Cypress. J. Wilkinson Elliott says, "lt grows 2-21/2 ft. high, resembling a small, closely sheared evergreen, the foliage being light green until September, when the whole plant is a solid mass of crimson. The fls. are minute but countless. The plant dies within two weeks after blooming. It germinates very quickls, even in the warm spells of late winter." Elliott called it the Mexican Fire Plant, because the seeds were procured in Mexico. However, the genus has no species native to the western hemisphere. It is probably this same plant which is adrertised by Bridgeman as Belvidere Kochia. There is no genus called Belvidere. The French popular name for this plant is Belvedere, and it is a native of Europe and northern Asia. Bridgeman, however, says the fls. are yellow, and gives the height as 3 ft . while Voss (Vilmorin's Blumengärtnerei) says it is 3-5 ft. high or more. Voss advises a clay soil and sunny position, and since it likes a salty soil recommends that about an ounce and a half of saltpetre be sprinkled over each square yard of soil. This plant is used abroad as a "foliage plant," because of the vivid color of the whole plant from July to September.

The seed may be sown indoors in April, and the plants set out in May, or the seeds may be sown in the open ground about May 1. The plants should stand about 2 ft. apart.
Kochia is a polymorphorus genus of about 30 species of herbs which are often woody at the base: lvs. often minute and narrow, alternate, more or less silky, rarely glabrous: fls. small or minute, sessile, solitary or clustered in the axils of the lrs.; calyx enlarging into a flask-shaped body, which incloses the fruit; perianth orbicular; lobes 5 , incurved and bearing horizontal wings on the back or on the tube which are membranous or scarious, distinct or confluent; stamens 5; filaments short or long and compressed; stigmas 2, rarely 3.
scopària, Schrad. Mock Crpress. Summer Cypress. Erect, much-branched, deusely pyramidal: branches striate, slender, and close to the main stem: lis. linear-lanceolate, ciliate, 2-3 in. long, 2-4 lines wide: fls. inconspicuous, green: perianth in fruit provided with very short, triangular, pointed appendages.

KGELERIA (Georg Ludwig Kœeler, professor of natural history at Mainz, pubished in 1802 a description of the grasses of Germany and France). Graminere. This includes a tufted, perennial grass sometimes offered by collectors of native plants. Wilfred Brotherton suggests its cultivation for ornament in dry, silvery sand. It is a very rariable plant, growing $1-21 / 2 \mathrm{ft}$. high, erect and unbranched, and has shining spikes. The genus contains about 15 widely scattered species, and its nearest cultivated allies are Eatonia and Molinia, which are discriminated elsewhere. Important generic characters are the spicate panicles, which are cylindrical or somewhat interrupted: flowering glumes more or less hyalinescarious, blunt, or tipped with a mucro or rarely a short awn.
cristàta, Pers. Stems rigid, pubescent just below the panicle: sheaths often shorter than the internodes,
smooth, scal
or hirsute: Ivs. 1-12 in. long, flat or involute: sphbelets 2-5-fld. July-Sept. Widely distributed in N. Amer. in sandy and praire soil. B.B. 1:194.
W. M.

KGEREUTERIA (Joseph G. Kolreuter. 1733-1806, professor of natural history at Karlsruhe). Sapinddece. An arborescent genus of about 3 species occurring in China and Japan, one of which is $K$. paniculatt, n me-dium-sized, irregular, round-headed tree, $2 \overline{-}-30 \mathrm{ft}$. high, with large, compound, irregularly toothed lvs., yellow fls. in July and large, bladdery fruits in panicles in autumn. It is hardy in Mass., although single limbs are occasionally killed back in winter. It also endures dry weather and hot winds in the West. It is of easy culture, but requires a fairly rich soil. As an ornament it may be used as a single specimen, though not a particularly refined tree, or it may be mixed with other genera in the wooly border. It is prop. by seeds, which it ripens early and freely, by layers in autumn, by cuttings of the young branches in spring, and by root-cuttings.
paniculàta, Laxm. (Sapindus Chinénsis, Murr.). Varnish Tres. Les. deciduous, alternate, 12 in. long, unequally pinnate, without stipules; lfts. ovate, largely and irregularly dentate, glabrous, in 4-7 pairs, opposite and alternate: fls. yellow, $1 / 2 \mathrm{in}$. long, in large, upright, terminal, many-fld. panicles; sepals 5 ; petals $3-4$, hypogynous, irregular, each claw with a scale-like appendage, the disk enlarging before each petal; stamens $5-8$ : ovary oblong, pubescent, becoming a 3 -lobed, 3-celled bladdery, inflated, triangular poil, 11/2-2 in. long, usually red, becoming brown, borne in large, erect panicles. G.C. III. 2:561. Gng. 2:353 and 8:219. Gn. 32, p. 378.
K. bipinnàta, Franch. A vigorous tree. 60 ft . high, sith Goubly pinnate lvs. over 2 ft . long, growing in W. China. K.H. 1888, p. 393 . Gn. 34, p. 305 .-K. Japénica. Sieb. A more branched form with deeply cut lrs. and smaller fruit, but not specifically distinet from K. paniculata. A. Phelps Wrman.

## KENIGA. See Alyssum.

KOHLRABI (Brassica oleracea, var. caulo-rapa). Fig. 1212. This plant exhibits a remarkable variation from the normal form of the specific type, as represented by the cabbage. A prominent writer on vegetables, referring to the botany of the plant, says: "It comes between the cabbage and turnip." Had this reference been made to the edible portion it would be literally true. In the turnip the edible part is the swollen root; in the cabbage it is the fleshy and tightly curled leares, while in the Kohlrabi it is the globular enlargement midway between root and top. This plant is mainly grown for cattle food. It is but little known in America. In France and Germany its usefulness is generally recognized. In Italy the partially developed stems are used as substitutes for cauliflower and cabbage. It is not likely that as a cattle food it will grow in popularity in this country, as rape is better adapted for sheep-grazing purposes, and turnips can be grown with equal ease and kept through winter with greater satisfaction. Its treatment in the garden is essentially that of early cabbage. The plants are very hardy. For very early crop it is desirable to start them in a hotbed. If properly hardened off, they may be set out as soon as the frost is out of the ground. Plant and cultivate like early cabbages. The seed of main fleld crop may be sown directly in the hill. The rows should be $21 / 2 \mathrm{ft}$. apart, and the hills 2 ft . apart in the row. Several seeds are planted in each hill, and ell plants pulled out but one, after danger of desiruction by flea-beetle is over. Many growers in the western states follow this plan in growing late cabbages, as well as kale and brussels sprouts. The seed may be planted, according to locality, from May 10 to June 20. When the plants are grown in the seed bed the treatment is essentially the same as that described under Cabbage. In northern regions, only the early varieties should be grown on account of the slowness of the plant in maturing. No special effort seems to have been made to develop many distinct varieties of Kohlrabi. The two leading types are the Purple and the White Vienna, which mature sufficiently for table use in $21 / 2-3$ months from time of sowing seed; the common white requires 3-4 months to reach edible size, and much longer to at tain maturity. Where corn is largely grown as a cattle
food, the culture of Kohlrabi is not likely to extend. Vilmorin describes Artichoke-leared and Neapolitan. Other varieties are Erfurt, Goliath, Green, Imperial, Late Purple, Purple Vienna, Short-leaved Vienna, White Forcing, and White Vienna. Persons who like turnips will also like Kohlrabi. The almost universal error in using it is to allow the tubers to get too large. When they are partially grown they are soft and palatable. Cabbage worm and clubroot are the most important enemies. Consult, also, Brassica and Cabbage.

John Craig.
Kohlrabi may be grown, bunched and put on the market in exactly the same manner as early table beets are handled. In our eastern cities, where the mopulation consists to large extent of people of German extraction, Kohlrabi for table use is in good demand, or such a demand is easily culti-

1212. Kohlrabi rated. We find it an easy crop to grow, and invariably profitable, simply because few gardeners make a specialty of it. As early in spring as the ground can be brought inio best shape, sow seed in rows with the drill, the rows to be about 18 inches apart, and afterwards thin the plants to stand 4 to 6 inches apart in the rows. Begin pulling and bunching when the bulbs have attained a size of 2 to 3 inches in diameter. Make succes ional sowings to keep up a continuous supply of the tender bulbs. They grow tongh when nearing full development and maturity. Plants often winter well on their summer stems, and seed may be grown from them.
T. Greiner.

KOLA. See Cola.
KONJAK. See Conophallus Konjak.
KRAU̇SSIA (C. F. F. Krauss, of Stuttgart, collected plants at the Cape, and wrote on South Sea corals). Rubidecere $K$. lanceolata is a shrub cultivated in southern Florida, bearing small white fls. in axillary, many-fld. cymes $1 / 2 \mathrm{ll}$. or more long. $K$. coriacea of the trade will be found under Tricalysia, an allied genus, in which the fls. do not hare a densely bearded throat, as in Kraussia, but are quite glabrous. Kraussia has 3 species of shrubs from the Cape of Good Hope: lrs. opposite, short-stalked, entire, leathery, elliptical or lanceolate: stipules short, persistent, grown together into a small cup: corolla broadly funnel-shaped; lobes 5: orary 2-celled: berry pea-shaped, 1-3-seeded. E. N. Reasoner writes that the Kraussias have been frozen so many times in Florida that he has never seen them in fower.
lanceolàta, Sond. Branches yellowish, 4-groored: Irs. lanceolate, acuminate, $3-31 / 4$ in. long, $8-10$ lines wide: filaments exserted, nearly as long as the anthers : stigma 2 -cut, one-third as long as the style.

KRIGIA (David Krig or Krieg, an early collector in Maryland and Delaware). Compósitce. Five species of hardy herbaceons plants, annual and perennial, yel-low-fld. and sometimes called "Dwarf Dandelions." They differ from the common dandelion in having a pappus composed of both chaff and bristles, instead of bristles alone. They are natives of the Atlantic states. Three perennial species are cult. by dealers in native plants. These hare heads about 1 in. across and $15-20$

## KYDIA

pappus bristles. Unlike the common dandelion, these plants do not become weedy.

## A. Stem a leafless scape, bearing 1 head.

## B. Has tubers.

Dandelion, Nutt. Height 6-18 in.: lvs. lanceolate or almost linear, varying from minutely toothed to pinnatifid. Apr.-June. Moist ground, Md. to Fla. and Tex. -The only kind that has tubers.

## вв. Has no tubers.

montàna, Nutt. (K. Dandelion, var. montana, Chapman). Height 9-12 in.: lvs. oblong to linear, varying from entire to pinnatifid: head smaller than in $K$. Dandelion. Crevices of rocks, Alleghenies, N. and S. Car. and Ga. - Harlan P. Kelsey writes that this is an admirable rock plant, thriving in any soil or situation, and blooming profusely from March to June or July. Prop. by seed or division.
AA. Stem 1-3-lvd., branched above, bearing 2-6 heads.
amplexicaullis, Nutt. (Cinthia Virginica, Willd.). Height liv-24 in.: lvs. oblong or oval, obtuse, entire or repand and denticulate, or the root-lvs. somewhat lyrate; stem-lvs. partly clasping. May-Oct. Moist banks, N. Y. to Ga., west to Colo.

KRYNITZKIA (Prof. J. Krynitzki, of Cracow). Borraginàcea. Chiefly North American herbs, annuals and some perennials, with small fls, nearly always white. Two species have been listed in eastern catalogues, and are procurable from western collectors. The following descriptions give some idea of what the plants are like, and for specific distinctions from numerous allies the student is referred to Gray's "Synoptical Flora."
glomeràta, Gray. Biennial, coarse, grayish pricklyhirsute, l-3 ft. high: lvs. spatulate or linear-spatulate: fls, white, thyrsoid-glomerate. Plains, along eastern base of Rocky Mountains.
barbigera, Gray (Eritrichium barbigerum, Gray) Hispid and hirsute, $9-12 \mathrm{in}$. high: lvs. linear: fls.white in solitary or panicled, elongating spikes. S. Calif.

## KUDZU VINE. Pueraria Thunbergiana.

KUMQUAT CE RINKAN, of the Japanese, is a dwarf member of the citrous tribe (Citrus Juponica), seldem growing more than 6 or 8 ft . high on the
most rigorous stock, and when worked on a dwarf stock making but a goodsized bush; but no matter what its size may be, it freely produces very pretty golden yellow fruit. which is very palatable either in a fresh state or preserved. The plant may be budded or grafted on any citrus stock-orange,
lemon, lime, etc.-but is most com-
1213. The oblong Kumquat ( $\times 3 / 4$ ). Kumquat ( $\times / 4$ ). Kumquat $(X / 4)$ ing but a bush. eminently adapted for
growing in restricted places, both in-and outdoors. As a

pot-plant for the house it is a grm, making a very handsome evergreen bush and blooming freely through the spring or early summer, then setting its interesting fruit. The flowers are much like the orange, white and scented, but smaller. The soil best adapted to the Kumquat is a light loam or sand; it thrives in any soil suited to the orange or lemon.
There are two well-defined varieties of this species, the oblong and round fruited; the oblong fruit (Fig. 1213 ) is about $11 / 4$ inches long by 1 in diameter, and all the fruits of this variety are almost of an exact size, not

1214. Round Kumquat ( $\times 1 / 3$ ).
so much variance being noticed among them as in hens' eggs. On the contrary, the round fruits (Fig. 1214) are produced with great difference in size, varying from $1 / 4$ to a full inch in diameter. There is also some difference in flavor and thickness of skin between the varieties, the oblong being more esteemed. For an account, with illustrations of the two types of Kumquat, see A. G. $21: 345$ (1900). The fruit, when eaten out of hand, is entirely consumed, excepting the few small seeds; almost everyone tasting it seems to relish the combined flavor of skin, pulp and juice. Its chief use, howerer, is in making marmalade or preserves. The fruit is used whole in heary syrup, and makes a delicious dainty. It is also candied and used in fine confectionary
E. N. Rfasoner.

KYDIA (Col. Robert Kyd, founder of the Calcutta Botanic Garden, died 1794). Malricece. Three species of oriental trees, one of which is cult. in S. Fla. and S. Calif. K. calycina has white or pink fls. somewhat like those of Hibiscus, and borne in long panicles. This genus belongs to a subtribe characterized by having 2 or more orules. Kydia has 4-6 bractlets; Abutilon none; Sphæralcea 3. Kydia has fls. polygamous; petals 5 ; staminal tube divided about the middle into 5 dirisions, each bearing 3 anthers, which are imperfect in the pistillate fls.
calycina, Roxb. Tree, attaining $25 \mathrm{ft} .: 1 \mathrm{ss}$. $4-5 \mathrm{in}$. long, 3 in. wide, rounded, cordate, palmately $\bar{T}$ nerved, more or less lobed, millobe longest, close felted be neath: petiole 1-2 in. long: inflorescence much-branched, many-fld.

LABELING. Figs. 1215-1218. The characters demanded in a good plant label are legibility, convenience, durability and a reasonable cheapness. The purposes for which labels are needed by the horticulturist may be grouped as follows: (1) For pots, boxes, frames and benches; (2) for stock in storage or transit; (3) f(cr rows, plots or beds in garden, nursery, orchard, otc.; (4) for individual trees, shrubs and plants.

Of the materials that may be used for labels, wood holds the first place, and the soft, easily worked nature of white pine makes this the favorite, though other more durable woods, such as cedar, cypress, spruce and mulberry, arz used to some extent. Machine-made, ready painted wooden labels of convenient shapes and sizes, from 4 to 12 inches in length, (see 1, Fig. 1215) are carried. $I$ all stocks of gardeners' supplies, and are in common use in all work with plants in pots, boxes, benches, etc., and to some extent in out-of-door gardening; but these slivuld not be trusted when the label is expected to endure for a considerable time. In the storage of grafts and cuttings in pits or cellars, two of these labels should be written and slipped together under the tie, the outer one for immediate reference and the under and protected one for security when the other becomes defaced.
Notched or perforated labels (2, 3, Fig. 1215), With or without wires, are also prepared for nurserymen's use, those strung with soft copper wire being the best. These are used in the shipping of nearly all trees and shrubs, and here great annoyance would be saved if all names were written disinctly and with a heavy impression. If such labels are used on stoc' after planting, the grower should use great care that stems and branches are not choked by the wire. The printing of any desired names may be procured on order, effecting a great saring of time and a gain in distinctness.

For marking rows, plots, etc., stakes should be used large enongh to readily attract attention and not be broken over or moved in cultiration. A rery serviceable stake for nurseries, trial grounds and gardens is made by cutting 2 inch pine or cyress plank $21 / 2$ inches wide and 2 feet long, pointing and giving two good coats of paint. Inscriptions may be stenciled on these as suggested in 4. Fig. 1215, written with a heary pencil, or better, when names, dates and list or plot numbers are wanted, written on a square of sheet zinc and fastened to the face of the stake rith small nails. (No. 5.) An annual coat of paint obliterates old lettering and preserves the wood.
A common wooden label for borders, groups or specimen plants is shown by No. 6 and a variation by No. 7. The stakes should be of some durat $\pm$ wood, and the whole well painted. A paint of pure lampblack and oil is the most indestructible that we have, and letters of this will stand out like type after the lead paint and the very wood surface have weathered away from rhem. An effectire contrast is obtained by painting the face of the label black and doing the lettering in white.

For more permanent labels in a variety of forms, sheet zinc has proved superior to all other materials. It may be stamped with steel letter dies or written upon with a common lead pencil, but more commonly a chemical ink is used. The common formula for this in horticultural books is substantially that prepared by the French chemist. Brainnot, in 1837, and is as follows: Take two parts by weight of rerdigris (acetate of copper), two of sal ammoniac (ammonium chloride), one part of iampblack and thirty parts of soft water.

The chemicals should be incorporated with a little of the water, and the balance added. Keep in a glass bottle tightly corked and shake frequently while using, as the lampblack tends to separate. The zinc, cut in the desired forms, should be prepared by scouring slightly with emery dust or fine sand paper. The ink mey be applied with a quill or coarse steel pen, but a fresh one will be needed with each batch of labels. Inks of an aqueous solution of chloride of copper or of chloride of mercury are also recommended for writing on zinc, which should first be cleaned with a weak solution of muriatic acid. Bichloride of platinum is one of the blackest inks for zinc. A slightly oxidized zinc surface may be written upon with a soft lead pencil, and while the inscription will not be very distinct at first will grow more so with age, and will endure for years.

A wired zinc label. as shown in 8, Fig. 1215, if exposed to the wind will sometimes cut out the eye completely, unless care is taken to twist the wire up tightly. Strips of zinc five-eighths of an inch wide and 7 inches long ( 9 , Fig. 1215), coiled loosely around a branch, as in No. 10, are the most serviceable form of tree label, but even these should be noticed every year, that they do not become fastened into the fork of a rapidly-growing tree.

For borders or beds of herbaceous perennials, bulbs, and the like, the label shown in No. 11 is excellent and inexpensive. A piece of galvanized wire Nos. 6-8 in size, is cut $11 / 2$ to 2 feet long, bent to shape and the written zinc tablet closed in. For a more conspicuous label, the zine nay be given a coat of white lead, tk $\sim^{n}$ one of black enamel paint, and the letters be traced in white. In some European botanical gardens a zinc tablet stamped with sunken letters brought into relief by paint are used for similar purposes. A zinc label, with two wire legs to

1215. Various types of labels.

## LABCRNUM

prevent it from turning around, is shown in Fig 1216. It can be made for about $\& 2$ per hundred, with the face $31 / 4 \times 1 \frac{1}{2}$ inchs.
There are many designs of expensive cast or enameled metal or porcelain labels, that have found little use in this country. A label of stamped zine of English manufacture (shown in 16, Fig. 1215) is one of the best garden labels. For Labeling specimen tree trunks, a sheet of zinc or copper with a little water-ledge bent at the,$+ p$, painted, enameled black and lettı red in white, is about the best thins we have. It should be secured with copper tacks, and given occasional attention. (See No. 15.) The white bronze tree tablets with letters cast in relief hare so far failed to secure general introduction. A series of thin sheet-copper labels, to be written on with a stylus against a soft, yielding surface, as a piece of leather. are shown in Nos. 12, 13, 14. These have proved too frail for exposed out-of-door use, but are very good for conservatory plants, orchards, etc., though the inscription needs rather close examination. In making copper labels, the

1216. A metal gar. den label.
temper should be taken out and the metal folded on the edges. A neat latiel for conservatory use is made of white sheet-cellulold with a mat surface, as pencil marks show very plainly on It.
Bailey describes (in "Princlples of Fruit-growing") the tree labels shown in Fig. 1217. "1, 2, German labels, made of glazed earthenware, with the name colored blie and sunken. Strong copper wire, coiled, to allow of the growth of the limb, holde the label to the tree. 3, Cornell label, made of wood. 4, double woodeu label, consisting of two commor wooden labels fastened together. The name is written on the outside of the double label, as in any other label, but it is also written on the inside to insure permanence. When the outside writing is worn off, the label is opened and the inside is still bright. The label is fastened to the tree by a tack or small nail, as shown in the cut at the right. The label is seen opened in the cut at the left. 5,6 , zinc labels, used at the New York State Experiment Station, Genera. The wire is driven into the tree, and the name is written or printed on the zinc with black

1217. Tree labels of many patterns.
paint. 7 , common handmade wooden tag, taken from an old tree in the test orchard of the late Charles Downing, Newburgh, N. Y. 8, thin copper label, with the name indented into the metal by the use of a hard-pointed instrument. Some metal labels are liable to tear out at the hole when exposed to winds. 9, common painted pine label used by nurserymen, and costing (without the copper wire) about 35 cents per thousand for the common size, which is $31 / 2$ inches long. 10, Lodeman's label, used somewhat at Cornell, consisting of a tag of sheet lead securely fastened to a coiled brass wire. The wire is secured to the body of the tree by a staple or screw-eye, and it is expected that the wire will become imbedded in the trunk as the tree grows. No. 11, common zinc label or tally." A good vineyard label is shown in Fig. 1218, described by Bailey as follows: "The figure is Paddock's vineyard label (designed by W. Paddock. State Experiment Station, Genera, N.Y.). The label is a strip of heary zinc secured to a stiff galvanized wire. This wire or shank is provided with a hook at the lower end and a half-hitch near its middle, so that it can be securely adjusted to the wires of the trellis, hold ing the label well above the foliage."
S. C. Mason.

LABLAB BEAN. See Dolichos.
LABRADOR TEA. See Ledum.
LABURNUM (ancient Latin name). Legiemindse. Including Podocytisus. Golden Chain. Ornamentel shrubs or small trees, with alternate trifolioliate petioled lis., and yellow papilionaceous, showy fls. in many-fld., usually pendulous racemes, $L$. alpinum is hardiest, L.vul guris is almost hardy in Mass., while L. Curamanicum is tender. They are adapted for planting on rocky slopes or in borders of shrubberies, when they should be allowed enough space to show to the best advantage their graceful, drooping racemes of golden fls., which contrast with the dark green foliage. They are hardly ever attacked by insects or fungi. The Irs. fall late in autumn without changing color. They thrive in any kind of well-drained soil, including limestone, and grow as well in
partly shaded positions as in sunny ones. Prop. by seeds, sown usually in spring, and also by layers; the vars. are mostly grafted or buided on seedlings of one of the species. Three species in S. Europe and W. Asia, often included under Cytisus. Lvs. exstipulate; fls. slender-pedicelled, in terminal slmple racemes, mostly pendulous; calyx 2-lipped, with obtuse, short lips; corolla papilionaceous, with the petals all distinct: ovary stalked: fr. a linear pod with several seeds, compressed, tardily dehiscent; seed without appendage at the base. All parts of the plants are poisonous, especially the young fruits. The hard, tough and closegrained wood is susceptible of a very fine polish, and is manufactured into various small articles. Consult Cytisus, Genista and Petteria for names not found in this genus.
vulgàre, Griseb. (L. anagyroides, Medic. Cýtisus Labuirnum, Linu.). Golden Chain. Bean Tree. Fig. 1219. Large shrub or small tree, to 20 ft ., with erect or spreading branches: branchlets appressed-pubescent, grayish green: lvs. long-petioled; lfts. elliptic or ellip-tic-ovate, usually obtuse and mucronulate, glaucousgreen and appressed-silky pubescent beneath when young, $1-13 / 4 \mathrm{in}$. long: racemes silky-pubescent, 4-8 in. long: fls. about $3 / 4$ in. long: pod appressed-pubescent, with thick peel, about 2 in. long; seeds black. May, June. S. Europe. Gn. 25, p. 518 ; 34, p. 30, and 51, p. 302.-There are many garden forms, as var. aùreum, Hort., with yellow foliage, F.S. $21: 2942-43$; var. bullàtum, C. Koch (var. incolutum, Hort.), with curled

1219. Golden Chain, Laburnum vulgare ( $\times 1 / 3$ ).
lfts.; var. Carlièri, C. Koch, with very small and narrow lits. and long and slender racemes; var. péndulum, C. Koch, with penduluus branches, Gn. 25, p. 522 ; var. quercifolium, C. Koch, with sinuately lobed lfts., Gn. 25 , p. $5: 0$ and 34, p. 30 ; var. sessilifolium, C. Koch, with crowded, sessile lvs.
alpinum, Griseb. (C'ytisus alpinus, Mill.). Scotch Laburnum. Shrub or tree, to 30 ft ., similar to the former: branchlets glabrous or hirsute when young: lfts. usually elliptic, acute, pale green and glabrous beneath or sparingly hirsute, ciliate, $1-1 \frac{3}{4} \mathrm{in}$. long: racemes long and slender, glabrous or sparingly hirsute: tis. smaller: pod thin, with the upper suture winged, glabrous; seed brown. June. Mts., S. Europe. B.M. 176 (as Cytisus Laburnum). Gn.25, p. 519 and 34, p. 30. This species flowers about two weeks later than the former, and has much longer and more slender racemes; it also is of more upright and stiffer growth and bardier.

Wátereri, Dipp. (I. Párksii, Hort. C. alpinus $\times$ rıl. garis, Wittst.). Hybrid of garden origin, but found also wild. LFs. beneath and racemes sparingly pubes. cent: racemes long and slender: pod with narrow wing, sparingly appressed-pubescent. - As hardy as L. atpinum and sometimes considered to be a variety of that species.

Adami, Kirchn. (C. Adami, Poit. C. Labuirnum pur puríscens, Loud. L. vulgàre $\times$ Cytisus purpùreus). Probably graft-hybrid, originated at Vitry, near Paris about 1826. Habit and foliage usually almust like $L$. eulgare, but fls. dull purplish. rarely yellow; sometimes bearing a few branches with the tls. and lvs. of Cytisus purpurens. A rery interesting form, but of less ornamental value. B.R. 23:1965. B.H. 21:16-18. - Much discussed by Darwin and others as an example of grafthybridism.
L. Caramánicum, Benth. \& Hook. (Podocytisus Caramanicus. Boiss.). Erect shrub, to 4 ft ., much resembling in foliage and habit the Cytisus sessilifolius, with long and slender ter minal upright racemes. July-Sept. Asia Minor. R.H. $1 \times 61$ p. 410.-L. fràgrans, Griseb., L. ramentàceum, ©. Koch, and A. Wéldeni, Lavall. = Petteria ramentacea.

Alfred Rehder.
LABYBINTHS or mazes are still kept up in some Old World Erirdens as relics of the past. They were popular in tiee sixteenth and seventeenth centuries. Fig. 120 is the plan of an English Jabyrinth of two centuries ago. It would be vandalism to destroy so fine an example of a style of gardening no longer fashionable, but folly to copy it in a modern garden. Mazes are made of clipped evergreens of various kinds.

LACENA (one of the names of Helen, which Lindley states may be applied to this plant on account of its beauty, a compliment which the plant does not at all merit; but he adds it may also be derived from Lakis, a cleft, alluding to the divisions of the lip, but this derivation is impossible). Orchildcece. A little-known genus containing only 2 species inhabiting Central Amer. Pseudobulbs rather long, ovoid, smooth at first: lvs. large, elliptic-pointed and contracted into a petiole, plicate venose: raceme pendent from the base of the pseu dobulbs, loose, bearing up to 10 medium-sized fls.: sepals and petala nearly equal, elliptical, half-spreading; labellum equaling the petals, articulated to the base of the columin, clawed, with the lateral lobes incurved, terminal larger, spreading and narrowed at the base to a broad claw: column rather long, winged, hooded at the top; pollinia 2 on a simple stipe.

The plants should be grown in baskets or on blocks of wood like Stanhopeas: if potted the racemes are likely to bury themselves in the soil. At the end of October water should be almost entirely withheld for a few weeks. The flower-stalks appear in spring.
bicolor, Lindl. Racemes drooping, about 18 in . long, bearing 9 or 10 ts . The fis, are greenish yellow, corered externally with short hairs; petals with 3 purple streaks; labellum hairy, spotted with purple. Discovered about 1843 in Guatemala, at an elevation of $7,000 \mathrm{ft}$. B.R. $30: 5$ n. - Var. glabràta, Lem. Fls. everywhere nearly glabrous creamy white. Not in the American trade. I.H. 1:33.
spectábilis, Reichb. f. Fls. about in. in diam., whit ish, suffused with pink and speckled with purple; sepals concare orbicular; petals smaller connivent. B. M. 6516. - Far more handsome than the former, but not adrertised in America.

Heinrich Hasselbring.

1220. The maze on St. Catherine's Hill, Winchester, England. From a plan made in 1710. (See Labyrinths, p. 865.)

English amateurs. L. Nel. soni, the first and one of the best hybrids, was rasied, not in a greenhouse, but in a home window, by the Rev. John Nelson. Four fine hybrids, raised by T. H. Marsh, are shown in Gn. 46:981, where their parentage is given. L.Nelsoni has played an important part in the production of these hybrids, Ruby, Cawston Gem, Little Beauty and Topaz, all of which are in the trade.
W. M.

It is well to make one job of it, planting Freesies and Lachenalias together. Six are planted in a 6 -inch pot, in good rich loam. They probably do as well without leaf soil, if the drainage be good. They are stored in a well protected coldframe until late in November, but might be kept longer, as a pinch of frost will not hurt them. After they are brought into the greenhouse, and make good growth, plenty of water may be given, and, occasionally, liquid manure. A night temperature of $50^{\circ}$ $F$. will be found about right, but they scarcely bear forcing until the flowering scapes show. If forced before the buds show, the flowers are often malformed. With good management they remaim in bloom from six to eight weeks.

Afigrblooming, the plants should be set on a shelf in

LACHENALIA (Werner de Lachenal, 1736-1800, professor of botany at Basel). Lilidcer. Cape Cowslips. Lachenulias (Fig. 1221) are Cape bulbs that are easily flowered in a cool greenhouse in early spring or even in winter. They have a remarkable range of color, and wilu good management may be kept in an attractive condition for two months or more. There are species with bell-shaped flowers, and some in which the flowers are all more or less erect, but the favorite types are the long, eylindrical, pendulous flowers with the brilliant red and yellow colors. Of the 42 species, about 9 are cult., the most popular being L. Iricolor, particularly its var. Nelsoni and some of the recent forms with personal names. $L . p e n d u l a$ is perhaps second in popularity, the rest being known chiefiy to bulb fanciers. Lachenalias are very distinct in coloring and general appearance. They usually have 2 leares (sometimes 5 in cult.), rarely 1 , and the bulbs are globose, tunicated, and about $1 / 2-1$ in. thick. An exceptionally strong bulb, under the most favorable conditions sends up 3 or 4 erect flower-stalks 9 in. high, with as many as 40 flowers, each $1-1 / 2$ in. long. Under careless treatment the leaves and flower-stalks are weaker, and bear perhaps 6-12 flowers. Lachenalias are fine subjects for hanging baskets.

This genus is alsointeresting when studying the evc!ution of the perianth. In our common lilies the 6 seg ments are all the same size ard all colored like petals. Lach:nalia has only 1 species in which the segments are practicaily equal. The others vary wonderfully, but usually the inner segments are longer, and sometimes the onter segments are small and more or less greenish, thereby suggesting the division of perianth into calyx and corolla. The genus is monogiaphed in English by Baker in the sixth volume of Flcra Capensis, which contains all the Cape bulbs and should be in the hands of every bulb specialist.

It should encourage the amateur to know that the recent improvement of Lachenalias is largely due to two
a light position and watered as carefully as before the blooming season, less water being =-ven as signs of maturity appear; viz., discolored leaves and withered flow-er-stems. When thoroughly ripened, they are stored in the pots they have grown in and kept quite dry until the month of August. They must be repotted then. If by chance drip should strike the soil, the plants may be found starting into growth. The bulbs nultiply rapidly, more than doubling in a season. Fully one-third of the extra bulbs will be serviceable, and still more would make bloom of less decorative value. There are many more-bulblets-which can be sown on the borders of carnation or violet benches, a large number making good-sized bulbs in one season. Seeds of Lachenalias germinate readily in a few weeks, and with good treatment many seedlings will bloom before going to rest. In the opinion of the writer, L. Nelsomi is still the most satisfactory kind to grow.
t. D. Hatfield.

## index.

aurea, 6.
Aureliana, 4
Cammi, 6 .
glaucina, 3.
luteola, 6.
Nelsoni, 6.
Nelsoni, 6.

## A. Base of perianth oblique

 orchioides, pandula. pustulata, 7. quadricolor, 6.reflexa, 1.
rubida, 5 .
tricolor, 6.
unifolia, 9.
violacea, 7 .
A. Base of perianth oblique ...........
B. Form of perianth more or less cylindrical.
c. Fls, all erect or at most spread-
ing.
D. Length of perianth 4 lines.... 2. orchioides

DD. Length of perianth 6-9 lines.. 3. glaucina
Cc. Fls. drooping or pendulous, at least the lower ones.
D. Innersegments scarcely longer
than the outer.............. 4.

## DD. Inner segments 2-3 lines

 longer than the outer....... 5. rubida DDD. Inner segments 3-4 lines longer than the outer....... 6. tricolorBB. Form of periurth bell-shipeal.
c. Les. pustulate. i. e.. co:ered with
blister-like elevations.
D. Inflorescence spicate.........
7. pustulata

DD. Inflovescence racemose........ 8. pallids
cc. Le's. not pustulate. 9. unifolia

1. refléza, Thunb. Lrs. clasping the base of the stem for 1-2 in.: spike usually few-fld.: tis. all erect or spreading, yellowish.
2. orchioldes, Ait. Lvs. strap-shaped, often spotted, 1 in . wide, elasping the base of the stem: fls. white. yellow, red or blue. B. M. 854 and 1269 . L. B. C. 11:1076 (as L. mutubilis). "The most striking color forms," says Baker, "are atroviolacea, hyacinth blue; virenti-flàva, greenish yeliww, and mutábilis, inner segments dull yellow, tipped red-brown."
3. glaucina, Jacq. Lrs. as in No. 2: fls. long. white' red, yellow or tinged blue. B.M. 3352 (wonderfully varied in color). B.R.16:1350 and 23:1945.
4. pendula, Ait. Bulb globose, about 1 in. thick: peduncle 6-12 in. long, more robust than in Nos. 5 and 6: raceme few- or many-Hd., $\boldsymbol{z - 6} \mathrm{in}$. long, all except the upper fls. more or less nodding: outer se gments yellow, passing upwards into red. not spotted; incer bright redpurple at the tip. B.M. 590 . Gn. 18:241; 23, p. 142; 33, p. 249, and 45, p.355. F. $1871: 265$. V. 8:172. Var. Aureliana has outer segnients red, barely tipped yellow; inner ones tipped green. R.H. 1890:396. G.C. Iİl. 23:195.
5. rùbida, Jacq. Bulb about $1 / 2$ in. thick : peduncle $6-9$ in. long: lvs. spotted: raceme 6 - 20 -fld.: outer seg ments bright red, tipped green; inner ones yellow below the tip.
6. tricolor, Thunb. Lvs. often spotted: lower fls. nod ding ; outer segments yellow, tipped green ; inner pu plish red at the tip. L.B.C. 8:767. B.M. 8\%. F. 1871: 265. Gn. 1):241 and 47, p. 163. Var. quatricolor (L. quadricotor, Jacq.), perianth with a red base aid greenish yellow middle: outer segments tipped green; inner ones tipped red-purple. L.B.C. 8:746. Var. luteola (L.

7. Lachenalia Nelsoni ( $\times 1 / 4$ ).
lutèola, Jaca.), perianth lemon-sellow, tingel green towards the tip. L.B.C. 8:734. F.S. 18:1873. B.M. 1704 and 1020. Var. luteola maculata ( $C$. luteola maculata, Hort.), differs from the preceding in having spotted foliage. Var. Nelsoni (L. Nélsoni, Hort.). Fig. 1221. Perianth bright yellow, both series of segments faintly
tinged green. Gn. 49. p. 470. Gng. 5: 962. J. H. Ill. 30:931. Var. aùrea, Hook. (L. aüret, Lindl.), perianth bright orange-yellow. F. 1871: 265. B.M. 5992. "The varieties are connected by intermediate stages. Several hybrids between $L$. pendula and the varieties of $L$. tricolor are in cult., the finest of which is $L$. Cammi, Hort., which combines the bright yellow Hs. of L. aurea, with the kabit of L. pendula."
8. pustulàta, Jacq. Lrs. lanceolate : fis. white or faintly tinged red. B.M. $81 \overline{7}$. Perhaps synonymous with No. 8. Var. violacea is cult.
9. pallida, Ait. Lvs. strap-shaped : fls. white; outer segments tipped green. B.M. 1372.
10. unifdia, Jacq. Differs from all deseribed above in having only one leaf, which is linear to awl-shaped, and has a band of brown at the base: Als. white, or more or less tinged with red or blue. B.M. 766 .
L. viridis, Thnnb., is Dipeadi flamentosnm, which is distinguished from the species of Lachenalia by having $3-6$ lvs. which are linear: raceme very lax: fls. bright green. Cape. In Dipcadi the outer segments usually have a tail, which is lacking in Lachenalia; and the seeds of Dipeadi are strongly compressed, while in Lachenalia they are obovoid or globose. D. viride is distinguished from all other species in its genus by the onter segments being falcate, 9-12 lines long, distinctly longer than the inner ones, which are connivent: lvs. linear, not crisped, 3-6 lines broad.
W. M.

LACTİCA (from the old Latin name lac: referring to the milky juice). Compósite. Letruce. A well-known genus of hardy annual or perennial herbs, mostly native of the northern hemisphere. More than 200 specific names have been given to the genus, probably half of whic. are synonyms with but only 8 or 9 known in cult., and these are doubless forms of but 2 or 3 species. Plants 2-4 or more feet high, with alternate, variously shaped lvs. and smali-panicled heads of yellov, white or blue fls. Only 1 species is to be found in the American trade, though wild plants of other species are often gathered for medicinal purposes or used as a salad. All of the species possess narcotic and sedative properties, the sedative known as lactucarium or lettuce-opium, being obtained principally from the European species, 1. virosa. Lettuce has been known and used as a salad from a very remote period. It is said to have served at the tables of Persian kings 400 B.C. See Leltuce.
sativa, Linn. Lettcce. An annual plant, not known in the wild state but generally supposed to have originated from L. Scariola, Linti., in Asia. There are many garden varieties assuming an endless variety of forms but which may be divided into $\&$ quite distinct types.

Var capitàta, Hort. (L. capitata, DC.). Common Cabbage Lettuce. Lrs. entire or sparingly dentate, broad, rounded, yellowish or brownish green, more or less wrink and in some garden varieties much curled, spreading, 6-14 in., usually quite compact.

Var. intybàcea, Hort. (L. intybdcea, Jacq. L. quercina, Linn.). Cut-leaved Lettcee. Les. 6-10-in. long, deeply and irregularly cut on the edges, loosely spreading.

Var. Romàna, Hırt. Cos Lettuce. One to 2 ft . high: lrs. entire or spiringly dentate, much longer than broad, quite erect, forming a cylindrical or conicalshaped plaisc.
Var. angustàna, Hort. (L. angustàna, Hort.). Lrs. 1-2 in. wide, 6-12 in. long, entire, slightly spreading in habit.
L. Canadénsis, Linn. Biennial, 4-9 ft. high: lrs. entire or nearly so. Wild plants often gathered for salad. - L. perénnis, Linn. Root perennial, 2-3 ft . high: lvs. $8-10 \mathrm{in}$. long, deeply cut: fls large, purple. Native of Eu.-L. Ncariola, Linu. Pmickly Lettuce. Annual or biennial, sometimes 6 ft . high: lvs. 1-2 in. wide, $t^{-6} \mathrm{in}$. long: fls. yellow, inconspicuous. Int. from Old World, and now a widely distributed weed.
H. C. Imish.

LADRONES. The Ladrone or Mariana Islands (Fig. $12 \underline{2} 2)$ lie about 1,200 miles east of the Philippines. The seventeen islands contain about 400 square miles. Guam is the southernmost of the islands, and is about as large as all the rest together. It is 600 miles from tlig
northernmost of the group. The Ladrones lie in an almost straight line north and south. They were captured from Spain in July, 1898, and Gnam was retained by the United States chiefly as a coaling station.

The Ladrones were discovered in 1521 by Magellan in the first voyage round the world. They were the first islands in the Pacific to come into continuous contact with European civilization. The aboriginal race, the Chamorros, is extinct, and was replaced chiefly by Tagals from the Philippines. These have deteriorated.

The chief settlement is Agana, on the island of Guam, which contains a majority of the population of the whole group. The Spaniards had but one mail a year between the Ladrones and the Philippines.

The Ladrones are well wooded, but the original flora has almost vanished. None of the Pacific islands possesses any metal, or any native mammal, save a kind of bat.

The Ladrones are said to have a more agreeable climate than is common within the tropics. There is moisture at all times, but a so-caiced "dry season" lasts
showy fls. borne singly or in 2. to many-fld. racemes which arise from the top of 1-2-lvd. pseudobulbs. The plants greatly resemble Cattleyas, and differ only by the presence of 8 perfect pollen masses instead of 4, as in Cattleya. Lvs. oblong, coriaceous or fleshy, not plicate pseudobulbs terminating the annual growth, ovate, clavate, fusiform or stem-like, long or short, consisting of 1 to several thickened internodes, or of slender and quill-like form with merely a smail bulbons swelling at base, sheathed with scales and bearing 1 or 2 liss at the summit: sepals subequal, free, spreading; petal wider and sometimes longer, spreading; all usually plane: labellum free from the base of the column, more or less distinctly 3 -lobed, the lateral lobes short, erect, folding over the column; middle lobe long, expanded, lanceolate-ovate, etc.: column concare in front, and thus narrowly 2 -winged on the edges: pollinia 8,4 in each locule: scape terminal, long or short, bracted.
The genus contains about 30 species, dispersed in the maritime provinces of Mexico and Guatemala and in S. Brazil. No species is common to the two widely separated regions. A single species, L. monophyilu, in habits the mountains of Ja maica. In their native homes the plants are often found clinging to bare rocks and trees, where they are exposed to the full force of the tropi cal sun, and, in the wet season, to daily drenching rains. Some of the species grow at great altitudes. Thus, L. autumnalis, var. furfuracea, is always found in alpine regions at elerations of 7,500 $8,500 \mathrm{ft}$. For a list of culti rated kinds, see R. A. Rolfe G.C. III. 7: 107, 256, 333, 355 ; and 8: 241,652 .
Lælia may be conveniently divided into groups, as follows:

Group I (species 1-10).Pseudobulbs rounded, pyri form or ovate. The plants of this section are medium sized, with the pseudlobulbs terminating each year's growth sessile at interrals on the rhizome, and sheathed at least at first with bract leaves. The scape, except in L. grandiflora, is long and slender, erect, nodding or sub-horizontal, and bears at its end 1 or 2 fls . (L. anceps), or a raceme of $2-7 \mathrm{fls}$. (L. albida). L. grandiflora, placed here on account of its thict-ened pseudobulbs, bears greater resemblance to the members of the next group.

Group II (species 11-13).-Pseudobulbs short-cylindrical, stem-like, or swollen jointed, i. e., consisting of several internodes and sheathed with bracts. These plants are of dwarf habit, bearing 1-2 very large fls. on short scapes, so that the top of the flower scarcely exceeds the lvs., which are oblong, about 6 in. long, and leathery.
Group III (species 14-23).-Pseudobulbs long-oblong, fusiform or clavate, tapering below to a sheathed and jointed stalk. This group contains the largest and most showy Lælias. The pseudobulbous stems are tall and tufted, a foot or more in length, forming robust, compact, almost bushy plants. The flowering stems of $L$. superbiens are said to attain a height of 12 ft . The racemes bear 3-7 large, handsome flowers.

Group IV (species 24-26). Pseudobulbs slender, reedlike and tufted, clothed with scales and often somewhat swollen at base. This group includes a few species which are very distinct on account of their bright scarlet or orange-colored fls. and slender, reed-like pseudobulbs. L. monophylla is perhaps the smallest of all Lælias, being scarcely over 6 in . high, with pseudobulbs about as thick as a crow-quill. One variety of L. cinnabarina has purple fls.

index.
actminata, 10. alba, 2, 4, 9, 11, 23. albida, 3 .
A inesiana, 9. anceps, 9 .
Ashvorthiana, 9. 22. atropurpu:rea, 22. atrorubens, 4 . Arnoidiana, 5 Arnoidiana, 5. autumnalis, 4.
Barkeria
Boothiana, 20.
Boothiana, 20.
caulescens, 1.
caulescens, 1.
Cauzelartia, 21. cinnabarina crispa, 21. Crawshayana, 7. Dawsoni, 9.
Dayana, 12
delicata, 9.
Digbyana, 14.
Eyermanniana, 6. flava, 1.

Firstermannii,
Fournieri, 4.
furfuracea, 4
glauca, 15.
Gouldiana. 8
grandiflora, $\mathbf{2}, 9$
grandis, 18.
harpophylla, 25. Hilliane, 9. holochila, 9. Jongheana, 11. Lawrenciana, 26 Lawrenciana,
Leeana, $9,13$. Lindleyana $=\mathrm{C}$ a t . Lindeyana $=\mathrm{C}$ at
tleya Lindleyana. lobata, 20. majalis, 2.
majus, 2,3. Mandaiana, 22. marginata, 12. monophylla, 24. morada, 9. Nelisii, 22. peduncularis, 10 Pinelii, 12.

Percivaliana, 9
Perrinit, 23 . prastans, 12 protexta, $2 \stackrel{2}{2}$ pumila, 12. purpurata, 20. Kivieri, 20. rosea, $\mathbf{3}, 9$. rubescens, 10 Russelliana, 22 Susselliana, 9. Sanderiana, Scottiana. on Schroderiana, 9 Stella. 9. suelld, 9. superbiens. 1 sulphurea, 3. tenebrosa, 18. venusta, 4. Veitchiana, 9. virens, 16. Wadldoniensis, 9 Williamsi, 9. xanthina, 17.

The following names must be songht ander Laeliocattleya: L. amanda, Dominiana, Dormaniana, elegans, euspatha, Exoni ensis, Nyleptha, prasiata, Schilleriana, Turneri.

GROUP 1.
A. Pseudobulbs not compressed or edged.
B. F'ls. bright yellow ............... 1. ilava

вв. F'ls. rose, pirple or white.

> C. Scupe scurcely equaling the
> les.: dwerf plants, with
> very large fls................
> 2. grandiflora
cc. Scape slender, much exceed-
ing the les.
D. F'ls. smull, white or pale yellow.................... 3. albida DD. Fls. large, rose-purple; rarely ukite.
E. Lip 2-keeled ............ 4. antumnalis

EE. Lip 3-keeled. F. Les. oblong 5. Arnoldiana

FF. Les. lance-linear or oblong-linear......
6. Eyermacniana
7. Crawshayana 8. Gouldiana

AA. Pseudobulbs compressed and edged.
B. Lip with a broad, elevated line down the center: ovary viscose. 9. anceps
BB. Lip with 3 keels: ovary not vis-
cose
10. rubescens

1. flàva, Lindl. (L. cauléscens, Lindl.). Lvs. 3-5 in. long, oblong-lanceolate, acute, very thick and stiff : scape 1 ft ., erect, bearing $4-8$ bright yellow fls. $2-21 / 2 \mathrm{in}$. in diameter: sepals and petals spreading, oblong-lanceolate, obtuse or subacute; labellum not longer than the petals; middle lobe recurved, crisped and undulate, having 4 elevated ridges running down the center; lateral lobes obtuse. Autumn. Braz. B.R. 28:62.
2. grandifldra, Lindl. (L. majalis, Lindl.). Lvs. solitary, oblong, coriaceous, 6-7 in. long: fis. solitary, rarely 2 , on a short peduncle, scarcely equaling the lrs., $5-8$ in. across, showy, rose-lilac; sepals lanceolate, plane; petals oblong, acute, shorter and much broader than the sepals; middle lobe of the labellum large, expanded, emarginate, center white, shading to lilac at the margin, spotted with dark lilac; side lobes small, white inside, streaked with lilac. May, June. Mex. B.M. 5667 . B.R. $30: 30$. P.M. 12:1. G.U. II. 19:628.-A magnificent orchid. Var. alba, Reichb. f. White. A.G.19:109; 20:371. Var. majus is advertised.
3. albida, Batem. Lvs. lance-linear, acute: scape twice as long as the lvs.: Hs. 2 in. across, pure, transparent white except a yellow streak down the lip and a few crimson dots at its base, sweet-scented; sepals lanceolate, spreading ; petals similar but broader, all very acute; labellum 3 -lobed; side lobes small, erect; midule lobe large, round-ovate, reflexed. All autumn and winter. Oaxaca, Mex. B.M. 3957. B.R. 25:54. Gn. 35:695. - The first white-flowered species discovered.

Var. sulphurea, Reichb. f. Larger: fls. sulfur-yellow, with a rose-colored border on the middle lobe, and rose spots on the inner surface of the side lubes. Var. bella, Hort., ex-Willians, not Reichb. f. Fls. larger than the type; sepals and petals creamy white, faintly bordered with lilac; lip white, the middle lobe broadly bordered vith deep rose and having three yellow ridges down the center. Var. rodsea, Hort. Fls. rose-colored. Var. màjus is advertised.
4. autumnalis, Lindl. Lvs. oblong-linear, obtuse, coriaceous, 5 in . long: scape $11 / 2-2 \mathrm{ft}$. long, $5-6-\mathrm{Hd}$., with sheathing scales: fls. showy, fragrant; sepals lanceolateacuminate; petals oblong-lanceolate, undulate; lateral lobes of the labellum large, erect, rotunt-truncate, whitish; middle lobe obovate, obtuse, apiculate, recurved, deep purrle; disk with two narrow yellow lamellæ. In color and genera! appearance much like Lanceps, but the serments lack the sreen ribs. Autunn. Mex. B.M. 3817. B.R.25:27. I.H.1:17. P.M.6:121. G.C. 1372:1009. -Grows on bare rocks and stunted trees in most exposed situations, often at great altitudes. Less raluable than $L$. anceps. Var. furfuràcea, Rolfe (L. furfuricea, Lindl.). This seems to be a dwarf alpine form, with the ovary more scurfy and the petals unusually broad. It is always found at great elevations, occurring frequently at $7,500-8,500 \mathrm{ft}$. Intermediate forms exist. B. M. 3810. B. R. $25: 26$. Var. atrórubens, Backhouse. Pseudobulbs short: fls. large, deep rose or magenta, darker toward the ends of the segments and the labellum; base of the labellum and lateral lobes white. Gn. 17:2थ9. Var. venùsta, Hort. Goldring. In habit resembles var, atrorubens: stalk 2-3 ft.: fls. large, rosy maure. Gn. 25:438. Var. Fournièri, Ed. André. Fls. about 6-7 in. across; sepals revolute at the summit, purple-red; petal rhomboid, of the same color, all paler toward the base abellum white, with the middle lobe colored like ${ }^{4}$ ) seqments. Larger than var. atrorubens. R.H.

0:548. Var. alba, Hort. Fls, pure white.
5. Arnoldiàna, Manda. Pseudobulbs 4-6 in. long, pyriform, deeply furcate, 2 lvd.: lvs. 5-7 in. long, leathery, lanceolate, thick and dark green: scape 1-4 ft. long, 3-11-fld.: sepals oblong-lanceolate, pointed; petals broader, ovate, all somewhat refiexed, rose-colored; middle lobe of the labellum reflexed, deep rose-purple, paler towards the center; throat with 2 yellow keels, spotted purple; lateral lobes straight, pale rose or white. A species closely related to $L$. autumnalis, from which it differs in having bulbs growing erect and rigid lvs. and in the absence of the fetid odor of L. autumnalis (W. A. Manda). Mex. A.F.5:303. - Var. Förstermannii, Hort. Identical with the type, but has pure white fls., with a tinge of delicate pink on the ends of the segments (W. A. Manda).
6. Eyermanniana, Reichb. f. Natural hybrid. Pseudobulbs like those of L. grandiflora: lvs. oblong, acute, very leathery, 6 in . long and 2 in . broad: racemes bearing 3-4 fls. up to 4 in . across (as large as those of $L$. Gouldiana, but smaller than L. autumnalis), rose-purple (white suffused with bright rosy crimson); sepals lance-oblong, acute; petals broadly oblong or almost rotund, obtuse: side lobes of the labellum oblong; middle lobe rounded, wavy, white bordered with rose and having 3 yellow keels on the disk fading to whitish on the blade, L. antumnalis $\times$ L. grandiflora, Reichb. $L$. autumnalis $\times$ L. albida, Rolfe. G.C. III. 4:109.
7. Crawshayàna, Reichb. f. Natural hybrid. Pseudobulbs and lvs, as in $L$. albida: scape few-(2)-fld., long as in L. anceps, but thinner and with shorter, narrower sheaths: sepals and petals narrower than in L. anceps, of a fine amethyst color; labellum open near the column; side lobes obtuse angled, antrorse, rich purple at the tips; middle lobe cuneate, abruptly blunt, lower half rich purple; throat yellow, veined with purple, 3 -keeled. According to Reichb., a hybrid between L. anceps (?) and autumnalis(?) or albida and anceps. J.H. III. 30:67 (as L. anceps, var. Crawshayana). The plant there figured is probably the species in question, although, according to the figure and the accompanying description, the sepals and petals are wider than those of $L$. anceps.
8. Gouldiana, Reichb. f. Pseudobulbs ovate, 2-lvd.: lvs. oblong-linear: scape slender, 1-2 ft. long, bearing as many as 6 deep rose-purple fls. resembling those
of $L$. anceps: sepals lance-oblong, pointed; petals broeder, ovate, acute; middle lobe of the labellum large, deeply colored, throat white and reined; side lobes white. Dec. to Jan. Mex. G.C. III. 7:169.-A usefal species, large plants often bearing $5-10$ racemes. Perhaps only a var. of $L$. auiumualis.
9. ánceps, Lindl. Fig. 1923. Pseudobulbs scattered on the rhizome, orate: lys. $5-9$ in. long, oblong-lanceolate: scape from the ${ }^{\circ} \mathrm{p}$ of the pseudobulhs, $11 / 2-2 \mathrm{ft}$. long, clothed with keeted scales and bearing 1-2 very showy, purplish rose-colored fis.: sepals lanceolateacuminate; petals ovate-acuminate, all with a greenish line on the back; labellum inside of the lateral lobes yellow, with red marks; middle lobe oblong, acute, deep purple, white on the disk. With a thickened yellow keel terminating in 3 ridges. Mex. B.M. 3804. B.R. $21: 1751$. G.C. II. 24: 405; III. 15: 172. P.M. 4:73. - One of the most beautiful Lælias, possessing many fine varieties. Var. Barkeriàna, Lindl. Sepals and petals subequal; middle lobe of the labellum rather narrow, acute. B.R.
 Dáwsoni, J. Anders. Scape $2-3 \mathrm{ft}$ long, 2-3-fld.: fls. white ; interior of the labellum marked with radiating purple lines, with the usual yellow ridge. Juquila, Mex. Gn. 25:446. G. C. III. 1:424. S.H. 2. p. 175. F. M. 1871:530. Var. álba, Reirhb. f. Sepals and petals as in var. Dausoni: As. pure white, with the disk of the lip pale yellow. Dec.,Jan. G. C. III. 1:485: III. 15:172. Var. Hilliàna, Reichb. f. Sepals and petals white; front lobe ofthe labellum bilobedemarginate. I.H. $33: 584$. Pale violet, with a yellow disk. Gn. $55: 446$ (Hilli). G. C. III, 1:425 (Hillii). Var. Williamsi, Hort. Sander. Sepals and petals pure white, of good form, narrower than in var. Stella; labellum white, large, with the disk and throat yellow, marked with crim-son-purple. G.C. III. 1:349. Gn. 25:446 (as Williamsiana). Var. Leeàna, Reichb.f. Fls.white, smaller than in $L$. anceps; petals very narrow and very acute; side lobes of the labellum blunt: middle lobe small, triangular, wary, with a thick, well-developed keel; throat yellowish, veinel with reddish-purple. Var. Schroderiàna, Reichb. f. Fis. unusually large; sepals, petals and middle lobe of the labellum pure white; side lobes and throat streaked with broad lines of purplish crimson. A strong grower. Gn. 44:928. G.M. 33:813. Var. Sanderiana, Reichb. f. Fls. white ; disk of lip crimson. G. C. III. 1: 281 and 25:136. Gn. 44:928. C. M. 37: 88. Var. Veitchiàna, Reichb. f. Sepals and petals white: disk of the labellum yellow, veined with brown: lateral lobes and anterior part of the middle lobe veined with purple.

Gn. 25:446 (Jeitchi). Var. Stélla, Reichb. f. Fls. pure white; labellum with sellow throat, marked with light crimson lines. G.C. III. 1:280 and 8:500. Var. Amesiàna. O'Brien. Sepals and petals broad, feather-veined with mauve; labellum white; middle lobe crimson-purple. G.C. III. 23:59. Var. Ashworthiàna, J. O'Brien. Sepals pure white, lance-oblong; petals broadly orate, also white; front lobe of the labellum broad, expanded, white, with a few blue dots and yellow keels on the throat ; side lobes with lines of slaty blue. G.C.III. 15:103. J.H. III. $28: 125$. Var. Waddoniensis. Fls. pure white; side lobes of the lip marked with purple lines. disk yellowish. G.C. III. 23: 125. G.M. 41:115. Var. Percivaliàna, Rcichb. f. Fls. small, but freely produced: sepals and petais white, tinged with bluish pink; lateral lobes of the labellum deep purplo at the tips and spotted; throat yellow, with purplish crimson lines; middle lobe creamy yellow at the base; apex purplish. Gn. 25:446. Var. delicàta, Hort. ex Williams. Labellum white, suffused with mauve; throat orangeyellow: sepals and petals rose, mauve or lilac. Var. ròsea, Reichb. f. A variety having bright rose-colored ths., with the margins of the labellum darker rose. Gn. 25:446. Var. grandiflora, Williems. A robust form resembling the type. G.C. III. 3:105. Var. holochila, Rolfe. Sepals and petals nearly alike, pale lilac; lip petaloid, elliptical-lanceolate, light purple, yellow and white at the base. G.F.4:173. Var. Scottiàna, Warn. and Will. Sepals and petals mauve; labellum deep purple, with a yellow throat. Var. morada. This is a name under which importations of large, highly colored forms of L. anceps were sold by the Liverpool Hort. Co., Eng., as var. grandiflora.
10. rubéscens, Lindl. (L. acumind̀ta, Lindl. L. peduncularis, Lindl.). Pseudobulbs orate to subrotund, clustered, sometimes rugose, 1-Ivd.: lvs. oblong to lance-oblong, emarginate, $4-5$ in. long: scape slender, jointed, sheathed with brown scales at the jonts, 1 ft . long, with 2-8 graceful, fragrant fis.: sepals spreading, linear-oblong, acute; petals slightly longer and twice as wide, undulate: labellum as long as the petal; middle lobe of the same form but more undulate and with a stain of yellow on the disk, purplish red on the inner surface. A slender, graceful plant with small, whitish, lilac-tinted or rose-colored fis. B.M. 4905 and 4009. B. R. 26:41: 27:24; 31:69. F.S. $1: 9$; 7: 742 . P. M. 10:49.-Flowers much smaller than $\boldsymbol{L}$. auceps.

GROLP II.
A. Pseudobulbs ovate, evidently thickened.
B. Lip uith about 7 undulate keels..11. Jongheana B8. Lip without or with plane keels.. ?. grandiflora AA. Pseudobulbs oblong, more stem-like.
B. Fls. greenish yellow................15. glauca

BB. Fls. bright colored or white.
c. Labellum firm, fleshy; lateral lobes convolute over the columm...............................................
cc. Lateral lobes of the lip resting on the middle lobe.............13. Leeana
11. Jongheàna, Reichb. f. Rhizome with remarkably thick root-fibers: pseudobulbs orate-oblong, 1-Ivd.: lvs. broadly oblong, $3-5 \mathrm{in}$. long, very thick and dark green: scape stout, shorter than the leaf, 1-2-fid.: fls. 4 in. in diameter, bright amethyst color; sepals linearlanceolate, acute; petals broadly oolong-obtuse: labellum conrolute; lateral lobes very shallow: middle lobe emarginate, white and crisp, with about 7 golden yellow undulate ridges in the throat. Braz. B.M. 0038. R.H. 1873:290. G.C. 1872:425.-A dwarf species with remarkable leathery lrs. Said to equal L. grandifloru and Cottleyu Mossiu. Rare in cultivation.
12. pùmila, Reichb. f. (Cattlèya pùmila. Hook. C. marginata, Paxt. Lalia prestans, Lindl. \& Reichb. f. L. Dayùna, Reichb. f. L. Pinélii, Hort.). Pseulobulbs small, stem-like. with one oblong to linear-oblong leaf $5-6 \mathrm{in}$. long: peduncle shorter than the lvs., each bearing a single, large. drooping, rose-purple fl.: sepals oblong, acute; petals orate-oblong, broader, undulate; labellum very involute: lateral lobes subquadrate, middle lobe short, emarginate, waved and crisped;
throat yellow, apex rich purple. A pretty dwarf species from Bıaz. B. M. 3656 and 5498. P. M. 10:26̄̄. F. M. 1877:249. B.R. 30:5. F. 1850:89 (Cattleya spectabilis). G.C. II. 23:597. - Many variations of this plant have been described as distinet species, although botanically but one species. Some of them are well-marked horticultural varieties. Var. prèstans, Veitch (L. prostans, Lindl. \& Reichb. f.). A large-fld., highly-colored variety, with the sepals and petals much broad : thar in the type; labellum rich purple, very rigid and fleshy, lines almost obsolete. B.M. i498. Gn. 5.3, p. 550 . Var. marginàta, Hort. (as Cittleya marginata, Paxt.). Fls. large; sepals and petals rose-crimson; 'abellum with a white border, crisp. Braz. P. M. 10: $£ 65$. I. H. 6: 193 (as Cattleya pumila. Var. major, Lem.). F.S. 18:1900. G.C. III. 22:262. A.G. 11: 158. V $\therefore$ Dayana, Dean (L. Dayana, Reichb. f.). Sepals and petals rose-purple; labellurn with a deep purple margin. Earlier than the trpe. 13raz. R.H. 1890, p. 490. F.M. 1877:249. Var. alba, Hort. Fls. like var. pripstans, but pure white with the base of the lip yellow. G.C. MI. 21:11. J.H. III. $34: 27$.
13. Lteàna, Reichb. f. Hybrid: pseudobulbs cylindrical, somewhat swollen, l-lvd.: Irs. cuneate-oblong, very coriaceous: sepals and petals spreading, ligulate, acute, somewhat undulate, rose color; lateral lobes of the labellum semi-orate, acute, the tips resting on the middle lamella, white, tips purple; middle lobe broad, obcordate. Sept. "Natural hybrid of L. marginata and " Hansen.-As this plant has 4 pollinia, it is probably nearer Cattleya. It was imperfectly described by Reichb. as a doubtful bybrid.

GROUP III.
A. Fls. greenish yellow.
B. Labellum deeply fringed on the margin .............
Bв. Labellw not nity 14. Digbyana D. Evidemty 3-lobed 15. glauca DD. Obsolet
s. all yellow 16. virers

AA. Fls. ull yellow............................. 17. zanthina
AAA. Fls. withonly the sepals and potals
tar"uy yellow; labellum some other color
18. grandis

AAAA. Fls. puple, rose or white.
B. Labellum with several promi-
nent toothed crests........
BB. Labellum clestitute of crests.
c. Petals and labellum waved
and crisped.
D. Fls. uniformly purple....20. Boothiana
DD. Fls. white and purple.
e. Lip ovate-acuminute ...21. crispa
ee. Lip rounded.
2.2. purpurata
c.. Sepals and labellum plane.
or nearly so
. Perrinii
14. Digbyàna, Benth. (Brassávola Digbyìna, Lindl.). Pseudobulbs elongrate, stem-like, 1-1vd.: lvs. elliptical, thick, fleshy, plane, slightly keeled : peduncle with a solitary, very large, fragrant flower 3-5 in. across: sepals and petals similar, oblong. spreading. pale purplish green; petals slightly broader; labellum very large-cordate, entirely surrounding the column, white or creamcolored, with the margin cut into a broad laciniate fringe, which makes the flower sery striking. July, Aug. Honduras. B.M. 4474. B.R. $32: 53$. F.S. 3:237. G.C. III. 18:153.-A slow-growing orchid.
15. glaùca, Benth. (Brassálola glaùca, Lindl.). Stem short, creeping: pseudobulbs short, oblong, stem-like, compressed and sheathed with scales, bearing a single oblong glaucous, very thick and leathery leaf: fls. usually single, on a staik shorter than the leaf, fragrant; sepals and petals spreading, oblong-lanceolate, obtuse, greenish yellow; labellum with a short claw surrounding the column, then expanding into a large 3 -lobed limb, gellowish white, streaked with red in the throat. Mex. and Guat. B.M. 4033. B.R. 26:44. G.C. III. 7:357.
16. virens, Lindl. Plants about 6 in. high: fls. 1 in. across; sepals subereet, ovate; petals lanceolate, subequal; labellum obsoletely 3 -lobed, cucullate: apex orate, crisp. with obscure raised lines toward the base. The fls. are pale yellowish green of no beauty. Brazil.
17. xanthina, Lindl. Lvs. oblong, onger than the fusiform pseudobulb: raceme $3-5-\mathrm{Hd}$.: Hs. 3 in. ucross, buff-yellow except the lip, which is white in front streaked with crimson-purple; sepals and petals subequal, oblong-obtuse, uudulate, leathery and convex; labellum nearly quadrate when spread out, without raised veins. Brazil. Int. 1858. B.M. 5144. F.S. 23:2418. A second-rate species.
18. grándis, Lindl. \& Paxt. Pseudobulbs stem-like, 1-lvd., 1 ft . high: lvs. rigid, oblong-lanceolate: scape erect, bearing $2-\overline{3}$ Hs. 4 in. across: sepals and petals lanceolate, the latter a little broader, slightly curled or twisted; labellum white; front lobe large, bell-shaped, crenate-toothed, veined with purple. Spring. Brazil. B.M. 5553. F.S. 7, p. 238 and 23:9473. - A curious species with the sepals and potals colerci tawny yellow, contrasting strongly with the ntitish purple-reined lip. Var. teneorossa, God. Lebeui. Sopals and etals citronyellow, less undulute; labellum trumpet-shaned, purple, with a broad border of white with many purple veins. G.C. II1. 14:291. G.M. 36:531.
19. superbiens, Lind1. Pseudobulbs 1 ft . or more in length, oblong, with one or two coriaceous oblong lis. equaling the pseudobulbs in length: scape drooping, 5-6 ft. long, bearing a globose eluster of $10-20 \mathrm{fls}$. each about 6 in . in dian.: sepals and petals nearly equal, spreading, oblong-lanceolate, obtuse, lilac-purple. paler below; labellum as long as the segments; middle lobe broad obcordate, waved and crisp; disk with several prominent toothed crests, yellow, deep crimson-purple on the margins: side lobes yellow with purple margins and stripes. Guatemala. B.M. 4090. F.S.11:1178-i9. P.M. 11:97. R.H. 1886:324. - A rery large plant.
20. Boothiàna, Reichb.f. (L. lobata. Veitch. Cattlèya lobitta, Lindl.). A strongrgrowing plant: pseudobulbs elarate, furrowed, 1-lvd.: Ivs. lanceolate-oblong, about as long as the scape: scape $8-10 \mathrm{in}$. long. from the axil of the leaf, $2-5-\mathrm{Hll} .: \mathrm{Hs}$. about j in. across, unitormly violet-purple with rich crimson veins on the lip; sepals lanceolate, with reflexed margins; petals broad, oblong, undulate, crisp; labellum cucullate, the middle lobe reHexed, all beautifully waved and crisped. Much like $L$. crispa in habit. Apr., May. S. Brazil. R.H.1874:331 (L. Rivieri,Carr.). G.C.1848:403 and III. 10:577. F.S.20, p. 13?. A.G.13:608. - This plant is not free-Howering, hence it is little cult., although a beautiful and distinct species.
21. crispa, Reichb. f. (Cíttleya críspa, Lindl.). Pseudobulbs clustered, elongate-clavate, 1-lvd.: Irs. large, 1 ft. long, oblong-lanceolate. emarginate: scape with $\overline{5}-\mathbf{6}$ large, handsome, fragrant ths.: sepals linear-oblanceolate or spatulate, acute, margins revolute; petals much broader, with the margins beautifully wared and erisped; labellum standing forward, recurred at the apex; side lobes rounded, white, yellow at base, streaked with red; middle lobe long, ovate-acuminate, deep purple inside, reined, all remarkably wared and crisped. Summer. On lofty trees, fully exposed. Brazil. B.M. 3910. B.R. 14:1172. Gn. 48, p. 504. J.H. III. 33:197. P.M. 5:5.A fine white-fld. species resembling a Cattleya in habit. Var. Cauwelartiæ, L. Linden. Sepals and petals tinged with greenish yellow; base of labellum yellow. I.H. 38:121.
22. parpuràta, Lindl. \& Past. Fig. 1224. Pseudobulbs long-elliptical, 6-8 in. high: lres. solitary, oblong, leathery, dark green, 1 ft . or more in length: scape erect, $3-7$-fld, : fls. very large, 6-8 in. across; sepals linearoblong, spreading, white, suffused with light rose; petals much broader, orate, undulate crisp, base attenuate, colored like the sepals; labellum very large, bell-shaped; middle lobe rounded, undulate-crisp, rich purple with darker veins, throat vellow. A robust plant. whose large fis., borne on strong, erect stalks, make it one of the grandest Lælias in cultivation. Spring. Brazil. I.H. 1, p. 54, and 3:83. F.S. 11:1138-39. Gn. 54, p. 17 and 56 , p. 46 (rar. Mrs. Measures). G. C.II. $14: 45$ and $20: 533$. A. F. 6:23. - Var. atropurpùrea, Williams. Sepals and petals deep rose; labellum large, expanded, purple-magenta; throat vellow, reined with purple. Brazil. Var. Ashworthiana, J. Anders. Petals wider than in the type, 2 in. wide, purplish rose, with darker stripes. A highly colored form. G. C. IlI. 20:39. Var. NAlisii, Hort., Verschaff. Sepals and petals subsessile,
the former rose-colored outside; midlobe of the labellum ovate, acute. Much like the type in color. I.H. 15:569. Var. Russelliana, Williams (L. Russellidua, Hort.). Fis. large; sepals somewhat narrow, white, suffused with lilac; petals broader, deeper lilac; labellum large, roselilac; throat yellow, marked with rose. Autumn. Var. Schrederi, Reichb. f. Sepals and petals white; labellum White, with a tinge of rose in the center; tube pale yellow, with fine, dark purple lines. I.H. 38:139. Var. Mandaiana, Hort. Pseudobulbs thinner and narrower

1224. Laelia purpurata ( $\times 1 / 6$ ).
than in the type: fls. as large as those of the type, pure white, with a faint tinge of pink on the labellum. Var. preetéxa, Reichb. f. No description of this plant is available.
23. Pérrinii, Lindl. (Cáttleya Pérrinii, Lindl.). Pseudobulbs elongate: lvs. solitary, oblong, coriaceous, 8 in. long, equaling the stem: fls. showy, $2-3$ on a short stalk; sepals oblong-linear, obtuse; petals a little broader, all rose-purple, darker at the tips; middle lobe of labellum cucullate, expanded, oblong, obtuse, undulate, with an inflated fistular cavity at the base, destitute of ridges, color deep crimson; lateral lobes erect, acute, pale. Oct.-Dec. Brazil. B.M. 3711. B.R. 24:2. P.M. 13:5. G.M. $37: 717 . \quad$ A.F. 13:1196. - Fls. rather pale. Var. álba, O'Brien. Fls. white, with the labellum tinged with yellow. There are several pale labellum tinged with

## GROCP IV.

A. Lis. solitary.
B. Scape 1-fld............................24. monophylla

BB. Scape several-fld.....................25. harpophylla AA. Le's. usually 2...........................26. cinnabarina
24. monophylla, N. E. Brown. Rhizome a matted mass sending up tufts of leaf- and flower-stems: flowering stems 6-10 in. long, as thick as a crow-quill, rigid and erect, bearing a single linear-oblong, obtuse leaf $2-3 \mathrm{in}$. long, and several sheathing bracts: fls. $1-2$ in. across,
vivid orange-scarlet; sepals and petals similar, spreading, oblong, subacute; labellum very small, lateral lobes embracing the column, terminal mir. ute papillose on the disk. Mts. of Jamaica, growing on trees at elevations of $3,000-5,000 \mathrm{ft}$. B.M. 6683 .
25. harpophylla, Reichb. f. Hybrid much like L. cinmubarina. Pseudobulbs slender, about 10 in . long, each bearing a single lance-linear leaf: raceme short, suberect, bearing $\overline{5}-10$ brilliant scarlet-orange fls.: sepals and petals oblong-lanceolate, acute: middle lobe linear, acuminate, crisp, with a whitish spot. Aluxuriant free flowering species. Feb., March. Brazil. Gn. 24:400. F.M. 18:9:372. - irobably a hybrid between $L$. cinna Tarina and a Brassavola(?) Reiehb. f.
26. cinnabarina, Ratem. Pseudobulbs elongate, cylindrical, but broadest at the base, sheathed with scates, reariv? 1-2 linear-oblong, reflexed, acute, coriaceous 1ws.: : ceme terminal erect, $10-20 \mathrm{in}$. long, with $4-5$ medium-sized reddish orange fis.: sepals and petals linear-oblong, obtuse, spreading; labellum convolute, reflexed: lateral lobes acute, middle lobe large. oval, crisp. Brazil. B.M. 4302. P.M. 7:193.-A summerflowering species whose peculiar color and graceful habit render it very ornamental. Var. crispilabia, Veitch (L. crispilabia, A. Rich. L. Larrencidna, Hort.). Fls. amethyst-purple; labellum darker, finely crisp and undulate: :aceme 12-14in. long, bearing -5 fls. A pretty, free-flowering variety.

Lielia Latòna, Hort. Veitch. Sepals and petals light orangeyellow: labellum whitish at base, the rest purple bordered with orange-yellow: middle lobe much undulated. A garden hybrid between L. cinnabarina and $L$. purpurata. Not advertised in America. A. Pericat, Philadelphia. writes as follows of this plant: "Lelia Latona, raised by Veitch, is a beautiful hybrid Laelia of a distinct and unusual color from L. purpurata $\times$ L. cinnabarina.'the latter being the seed parent. The sepals and petals are of light orange-yellow; lip whitish at the base, the remainder red-purple bordered with orange-yellow, the margin of the apical spreading; lobe is much undulated."

Heinrich Hasselbring.
Lælias may be divided into three cultural groups: (1) those which have clarate pseudobulbs and which bear a nearer affinity to Cattleya than the others; (2) those with long, rounded, slender stems, and (3) those with pseudobulbs more or less pyriform in shape.

Those of the first group should be placed amongst the warmer-growing Cattleyas. Examples are L. purpurata, L. grundis, L. Digbyana, L. glauca and L. Boothianu. Those of the second, or slender-bulbed group, succeed in a much cooler and shadier spot, and need more moisture, both in the atmosphere and at the roots. Examples are L. pumile, L. harpophylla and L. monophylla. Of the group with pear-shaped bulbs, L. anceps, with its numerous varieties, is perhaps the best known.

Others are L. autumnalis, L. majalis and L. albida. To these may be added such species as $L$. cinnubarina, $L$. flava, and some few others of similar habit. These require at all times a sunny, airy position, with abundance of overhead watering during their period of growth, and after flowering a severe resting period, the one great object being to keep them inactive for as long time as possible. L. autumnulis and $L$. majalis require somewhat different treatment, since they flower from an incompleted bulb, and should, therefore. receive attention until the bulbs are solid, when the drier condition must be observed.

The best method for cultivation of specimens of the first group is to pot them in the ordinary flower-pot, but for very large specimens a basket is preferred as a more ready means of carrying off the water and affording better and sweeter conditions for the roots. The potting material should be composed of about two-thirds good peat or fern root and the remainder fresh sphagnum moss. The cultivator should use good judgment as to when to water the plants. No hard and fast rules can be laid down in regard to this. More can be accomplished by watchfulness than ever can be written.

The slender-bulbed species require about equal parts of peat and moss. Such species as $L$. pumila do best in rather small pans and may be suspended from the roof. All these thin-bulbed species enjoy shade rather than direct sunlight. More moisture is essential both atmospherically and at the roots, and at no season should
it be withheld for very long periods. Watch carefully for any symptom of suifering from lack of water.
The Mcxican Lrelias do best with a smaller quantity of moss and peat, and thrive best when put up in baskets or cribs. They enjoy a great amount of direct sunshine, and should have during the time of active growth an almost unlimited supply of water, which is best supplied to them after the sur begins to lose its powr. A+ this time it comes as a welcome, refreshing bat'i. good syringing in the early morning is net dedi 1 . the plant through the day. With such treament pl. .. t of strong flowers must result. L. cinnabarinu, L. flava and allied kinds enjoy the above treatment equally well. Many beautiful hybrids have been raised in gardens, and the needs of each from a cultural view will be best obtained by roting to which section or group they belong, and giving the treatment recommended for such.

A re:bly guod selection of Lelias for the adornment of the orchid house is herewith appended: L. anceps and its varieties, alba, Dawsonii, Hilliana, Sanderiana, stella, rosea, Veitchii, Williamsii, Schroderiana and Amesiana, all of which have pure white sepals and petals and various colored labellums; Scottiana and grandiflora, distinguished for size; and a wonderful peloriate form known as Reblingianum. L. albida, autumnalis, cinnabarina, flava, pumila, Dayama, prestans, Dormaniana, grandis, Lindleyana, majalis, tenebrosa, monophylla, harpophylla, Perrinii, purpurata, super. biens, xanthina. In some species almost endless variety occurs, notably so with $L$. purpurata, Perrinii and albida, and pure white varieties are known in many of the rarer species.

Henry T. Clinkaberry.
LELIOCATTLEYA. A name proposed by R. A. Rolfe to designate the bigeneric hybrids of Lælia and of Cattleya, which readily hybridize. The species of the two genera have 8 and 4 pollen masses respectively, while the hybrids are irregular in this respect. Many of the plants are natural hybrids, and many others hare been produced by artificial crossing. For a list of Læliocattleyas, see Rolfe in G.C. IIl. 6:78, 155. In the following account $L=L æ l i a ; L c=L æ l i o c a t t l e y a ;$ $\mathrm{C}=$ Cattleya.
H. T. Clinkaberry writes that the cultivation of Læliocattleyas is the same as for Lælia and Cattleya. It is therefore important to know the parentage in each case, from which one may know whether warm or coolhouse treatment is needed. He adds that many Læliocattleyas are of such a vigorous constitution that they are neariy always in growth.
index.
alba, 13.
amanda. 2.
Andreana, 7
Brysiana, 1.
Callistoglossa, 5.
Corbeillensis, 3
Dominiana. 6
Dominyana, 6.

Dormaniana. 16. Duvaliana, 10. elegans. 1. eximia inve
eximia inversa
Exoniensis, $1 \overline{13}$.
Exoniensis, 17. 15.
Nylephtha, 1.
Martineti, 12.
prasiata, 1.
prasiata, 1
radiata, 9 .
Sallieri, 8.
Schilleriana, 13.
Stelzneriano- Har.
dyana, 4.
Turneri, 1
velutino-elegans, 14.
A. Fls. light or bright
rose ............... 1. elegans
2. amanda
3. Corbeillensis
4. Stelzneriano-Hardyana
5. callistoglossa

AA. F'ls. rose-purple,
maure, violet, etc.. 6. Dominiana
7. Andreana
8. Sallieri
9. radiata
10. Duvaliana
11. eximia inversa
12. Martineti

AAA. Fls, white or whitish,
or yellou............ 3. Schilleriana
14. velutino-elegans
15. intermedio-flava
hata. Fls, olive-brown .... 16. Dormaniana aAAAA. Fls.tinted light blue.1\%. Exoniensis

1. elegans, Rolfe (Lìlia élegans, Reichb. f. Cáttleya élegans, Morren). Pseudobulios terete, stem-like, 15-90 in. high: lrs. solitary, linear-oblong, coriaceous, 10-12
in. long: scape short, stout. 3 -i-fld.: fls. 5 in . in diam., light or bright rose, fragrant; sepals oblong, acute, often somewhat twisted or with revolute edges; petals much wider, lanceolate, margin somewhat undulate; labellum with the lateral lobes elongate-obtuse, whitish with purple apices, convolute over the column; middle lobe broalened in front, subreniform, margin undulate, crisp, entirely a very deep purple, without raised lines or callosities. May-Sept. Brazil. B. M. 4700. I. H. 4:134 (as L. Brysiana) ; 11:402.-A showy, tall-growing species.

Var. Nyléptha, O'Brien. Fls. large; sepals tinted with yellow and rose, lightly spotted with purple toward the tips; petals broader, more suffused with purple; lip bright purple in front, paler at the side lubes. G.C. III. 3:176.

Var. Türnezi, Warn. F's. large, richly colored; sepals and petals bri $\xi^{\circ} h_{c}$ amethyst-purple, with deeper veins; lip with a large purple blotch on the middle lobe; sile lobes white, tip. ed with rose. Gn. 47, p. 319; 49:1067 and p. 385. -One of the tinest of the genus.

Var. prasiata, Reichu.f. Sepals and petals rose, tinged with green: labellum white at the base and side lobes, middle lobe crimson-purple. - Var. superbum is advertised.
2. amanda, Rolfe (Lielia amánda, Reichb. f.). Natural hybrid between $C$. intermedia and perhaps Lelia crispa. Pseudobulbs thin, fusiform, $\bar{j}-7$ in. long, 1-2Ird.: lrs. shorter than the pseudobulbs, cuneate-oblong, acute: tls. in pairs, from a small, narrow spathe; sepals oblong-ligulate, acute, light rose, with a grayish hue outside, wary; petals similar but broader, with darker tinted nerres on the inside; lateral lobes of the labellum enveloping the column, rich dark purple; middle lobe transversely oblong, short, emarginate, wary, separated from the others by an exceedingly short isthmus, veined with rich purple. Brazil. I.H. $38: 135$.
3. Corbeillénsis, Maron. Garden hybrid of C. Loddigesii and L. pumila, var. marginata. Pseudobulbs 5-6 in. long, fusiform: Ivs. about 6 in . long: fl.-stalk $2-3 \mathrm{in}$. long, bearing $1-2$ shows fls, about 5 in . across: sepals and petals bright rose, the latter reined with deeper purple lines; throat of the labellun veined with yellow on a white ground; blade intense purple, bilobed and undulate.
4. Stelzneriàno-E.ardyàna, Maron. A garden hybrid of Le. elegans, var. Stelzneriana and Cattleya Hardyana. Plants rigorous: pseudobulbs $\overline{7}-8$ in. long: lvs. 10 in . long by $21 / 2 \mathrm{in}$. Wide: sepals pale clear rose, deeper on the edges; petals undulate, rose on the margins, fading almost to white at the center; labellum purple-magenta, undulate lacerate on the margin, with a broad purple line in the center of the blade and 2 large white spots in the throat.
5. callistoglossa, Rolfe (Lìlia callistoglóssa, Reichb. f.). Garden hybrid of L. purpurata and Cattleya labiata, var. Warsceteiczii. Pseudobulbs as in L. purpurata: lvs. 12 in. long: petals broad, oblong, acute; sepals narrower, all pure rose; middle lobe of the labellum broad, retuse, dark purple, with sellow on the disk; side lobes small obtuse-angled.
6. Dominiàna, Rolfe (Lielia Dominyàna, Reichb. f.). Garden hybrid. Plants haring the general habit of Cattleya Mossice: pseudobulbs fusiform. rather short, 1-Ivd.: Ivs. linear-oblong: raceme bearing few large, handsome fls.: sepals narrowly oblong, acute, light purple, with dark reticulations; petals broadly cuneateoblong, wary, light purple: labellum cucullate, with the middle lobe large, spreading, all wavy and crisp, deep blackish purple. F. M. 1878:325. Raised for Veitch by Mr. Dominy from a cross between Cattleya Dowiana and some Lælis, according to Reichenbach, Laelia (Lafliocattleya) elegans. Mr. R. A. Rolfe suggests the more probable parentage of Cattleya Douiana and Lelia lobata. The first plant flowered in August, 1878.
7. Andreans, Maron. A garden hybrid between $e^{\prime}$. bicolor and Leliocattleya elegans. Psendobulbs 8-12 in. long, stem-like : lvs. oblong, 6 in. long: fls. 6-6 in. across, rose-violet; sepals and petals spreading, narrowly oblong, with the margins recurred, those of the

## LAGERSTRCEMIA

petals undulate; labellum contracted in the middle, with a subquadrate toothed and undulate middle lobe, violet-purple. R.H. 1896:328.
8. Sallièri, Maron. Garden hybrid between Lalia pırpurata, var. W'illiamsi, and Loddigesii. Pseudobulbs 1-2-lvd., about 10 in. high: lvs. 8 in. loug, 3 in. wide: fls. several on a stalk, which is shorter than the lvs., 5-6 in. across; sepals and petals mauve, with deeper lines; labellum tubular, colored like the segments, and expanding into a carmine blade, pale at the tip.
9. radiàta, Maron. Garden hybrid of Latia purpurata and C. nobilior. Pseudobulbs almost round, bearing 1-2 coriaceous lvs. 7 in. long by $21 / 2 \mathrm{in}$. wide: fl.-stalks about $\bar{i}-8 \mathrm{in}$. long, bearing several large, showy, violetred fls.; labellum deep red, with purple reins and a whitish throat.
10. Davaliàna, Hort. Hybrid between L. purpurata and C. Luddemaniana. Sepals and petais half-spreading, light maure; labellum broad, dark maroon-crimson on the lobes and in the throat, which is traversed by darker lines. - According to Arnold \& Co., handsome flower of striking appearance.
11. eximia invérsa, Hort. Hybrid between $L$. purpurata and $C$. Warneri, the inverse cross of Lc. eximia. Sepals and petals deep rose-purple; labellum bright magenta-crimson. - Said by Arnold \& Co. to be one of the finest hybrids yet raised between these genera, resembling $C$. Warneri.
12. Martinéti, Maron. Garden hybrid between Cattleya Mossice and Leथlit grandis, var. tenebrosa. Fls. resembling those of the Cattleya labiata group; sepals and petals rose-violet; labellum red to mauve, pale at the margins, and netted with numerous deep red veins.
13. Schilleriàna, Rolfe (Lielia Schilleriana, Reichb. f.). Les. 8 in. long: fl.-stems 20 in. long: sepals and petals white, elongate-lanceolate; labellum veined with purple on the throat; disk purplish yellow, middle lobe spotted erimson-purple. A natural hybrid between $C$. intermedia and Lc. elegans. Brazil. Var. álba, Hort. Petals and sepals pure white; middle lobe of the labellum rich carmine-magenta, presenting an agreeable contrast. June, July. I.H. $31: 526$. Gn. $17: 218$.
14. velùtino-élegans, J. O’Brien. Garden hybrid of C. relutina and Le. elegans. Resembles in habit a stont form of Cattleya velutina: fls. fragrant, 3-4 on an upright stem; sepals and petals creamy white, tinged with nankeen-yellow and veined with rose; labellum bluish white at base, side lobes folded over the column; middle lobe broad, toothed and crisp on the margin, rich crimson-purple, veined with white and having an orange blotch at the base.
15. intermèdio-flava, Maron. Garden hybrid of $C$. intermedia and L. flava. Of medium habit: sepals and petals clear yellow; labellum with a bright rose-purple blotch in front.
16. Dormaniàna, Rolfe (Tielia Dormanianna, Reichb. f.). Natural hybrid of C. bicolor and L. pumila. Pseudobulbs terete, thin, slender, about 1 ft . long, 1-2-lrd.: lss. oblong-ligulate, acute: peduncle 2-5-fld.: petals and sepals narrow oblong-ligulate, olive-brown, marbled outside with wine-red spots; labellum light purplish white, with darker veins: middle lube transversely obcordate, mauve-purple. Brazil.
17 Exoniénsis, Rolfe (Cáttreya Exoniénsis, Reichb. f.). Garden hybrid probably between $C$. Zabiatı and L. crispa. Sepals ligulate acuminate ; petals oblongcuneate, plicate, all tinted light blue; labellum undulate, crisp, deep orange at base with whitish side lobes; middle lobe rich purple, with darker veins.
L. Aclándice (L. purpurata and C. Aclandia), is also advertised.
H. Hasselbring.

LAGENARIA (Latin. lagena, a bottle). Cucurbitacea. Gourd. Calabash. L. vulgaris, Ser., is the only species, now grown or spontaneous in all warm countries, originally from tropical Africa and Asia. It is exceedingly variable in its fruit, and has received mauy speciesnames as L. microcarpa, R.H. 1855:61; L. clavate; L. pyrotheca, R.B. 23, p.198; L. virginalis,white-fruited,
G. C. III. 11:85; var. longissima, Gt. 48:159). The smooth, hard shells of the fruits are used for drinking cups, water jugs, and many domestic utensils. From the pear-shaped shell of a small-fruited form the l'araguayans drink their famous maté, or llex tea. The commonent forms are shown in the engraring (Fig. 12:5). The long curved forms are often called snake gourds in this country (not to be confounded with snake cucumber, which is a Cucumis). These are sometimes several feet long. The form with a constricted middle is the buttle gourd. See Gourd.

Lagenaria is a tender annual, which should receive the culture of squashes. The season in the northern states and Ontario is often too short for the full maturity of the fruits, purticularly if seeds have been brought from the South. Give a quick warm soil and sunny exposure. In the North, seeds may be started inside in pots, or on inverted sods, after the manner of cucumbers. The Lagenarias are rampant growers, often running $30-10$ feet, and covering the ground or a fence with a dense mass of large, roundish, soft leaves. The plant has a musky odor and a sticky feeling.

Plant monocious: fls. solitary, white, funnelform, very soft in texture, withering in the sun: staminate fls. on very long, slender stalks (usually exceeding the leaf): pistillate fis. mostly short-stalked, with 3 -lobed stigmas and hairy orary: tendrils forked, long and slender: stem striate-grooved, soft-hairy: lvs. large, soft-pubescent, cordate-ovate or reniform-orate, sometimes angled, the

1225. Various forms of gourds, Lagenaria vulgaris.
edges obscurely apiculate-sinuate, on prominent or long petioles. To this species belong the gourds known in this country as Hercules' Club, Sugar Trough, Dipper, Snake, Calabash, Bottle, Miniature Bottle, Depressa. In some countries, the young fruit is eaten as we eat summer squash. Monogr. by Cogniaux, DC Monogr. Phaner. 3:417.
L. H. B.

LAGERSTRȮMIA (Magnus N. Lagerstrœem, 16961559, a Swede and friend of Linnæus). Lythricece. The Crape Myrtle, Lagerstramia Indica, is to the South what the lilac and snowball are to the North-an inhabitant of nearly every home yard. It is a strong-growing shrub, reaching a height of $10-25 \mathrm{ft}$., deciduous-leaved, producing an abundance of soft-fringed flowers in spring and summer. The normal form has pink flowers, but varieties with blush, white and purple fis. are not uncommon. It is hardy as far north as Baltimore, but north of that latitude it needs protection; even with protection it can not be grown north of the Long Island region.

Lagerstromia is a South Asian genus of nearly 20 species of shrubs and trees. The Irs. are opposite or the uppermost alternate, mostly ovate, entire: fls. in axillary and terminal panicles, the pedicels bracted; calyx with a funnel-shaped tube and $6-9$ lobes; petals mostly 6 , crinkled or fringed, with a long, slender elaw (Fig. 1206); stamens many, long, some of them upwardcurred: ovary 3-6-celled. with a long, bent style and capitate stigma: fr. a capsule; seeds winged at the top.

Indica, Linn. Crape Mrrtle. Fig. 1296. Glabrous brown-barked shrub, with rather small ( 2 in . long) elliptic or oblong sessile mostly acute lvs.: panicle open, sometimes minutely pubescent: calyx not ribbed, glabrous or nearly so. Widely cult. in India, but probably native to China. B.M. 405. R.H. 1857, p. 627; 1874:130. Ging. $1: 151 ; 5: 281$. A.F. 9:85. G.M. 36:449.-Common everywhere in the South, particularly in the pink, blush
and white forms. It can be prop, readily by euttings of the ripe wood. In the N., the plants may be lifted in the fall and kept in a cellar. In spring they may be planted out, or flowered under glass. The Crape Myrtle

1226. Crape Myrtle, Lagerstroemia Indica. Natural size.
blooms continuously for 2 or 3 months, beginning in June in the Gulf states. The bark is smooth, as if polished. Several named vars.

Flos-Reginæ, Retz. Tree, 50-60 ft., with elliptic or long-lanceolate obtuse lvs. $4-8 \mathrm{in}$. long: panicle large: fls. $2-3 \mathrm{in}$. across, varying from rose to purple from morning to evening, the calyx grooved, the petals erosewary: capsule 1 in . or more long. India. G.C. III. 15:77.-A noble plant in tropical India; also int. in S. Calif. In the Old World sometimes grown under glass.

## L. H. B.

LAGUNARIA (named for its resemblance to Lagunrea, which is now considered a section of Hibiscus and commemorates a Spanish botanist, Andrés de Laguna, 1494 or 1499-1560, physician to Pope Julius III.). Malydeere. One species, an Australian tree cult. outloors i Calif. and indoors in Europe. It has large, pale rn is. like Hibiscus, $21 / 2$ in. across, with 5 spreading lobes a colunn of stamens and a 5 -lobed shield-shaped stigma. It differs from Hibiscus in having no bractlets or only 3, while Hibiscus usually has 5 or more. Lis. entire, scurfy-tomentose: fls. axillary; calyx 5-toothed: ovary 5 -celled.
Pàtersonii, G. Don. About 12 ft . high, spotted brown on trunk and branches: lvs. ovate, entire, $2-3$ in. long, dark green above, ashy gray beneath: peduncle $11 / 2$ in. long: corolla lobes ovate, covered with minute hairy scales inside, villous outside. B.M. 769 as (Lugunara Patersonia.)

LAGU̇RUS (Greek, lagos, a hare; ource, a tail). Gramíner. Hare's-tall Grass. Contains a single species, native of the Mediterranean region, and cultivated for ornament, the small white heads being used for dry bouquets. Spikelets 1-fld., aggregated in a close panicle, forming an ovoid head; scarious empty glumes persistent and clothed with fine woolly hairs. Flowering glume with a dorsal awn. A hardy annual. Seeds sown in fall and plants set out in spring.
ovàtus, Linn. Culms about 1 ft . high, in bunches: 1 rs . and sheaths downy. R.H. 1890, p. 488. V. 3:217 and 247.

## A. S. Hitchсоск.

LAMARCKIA (J. B. Lamarck, 1744-1829, distinguished French naturalist, and author of the Lamarckian philosophy of organic evolution). Gramínere. Contains a single species, native from Mediterranean region to Afghanistan, and introduced in California. An ornamental annual grass, eften cultirated under the name of Chrysurus cynosuroides and C. aureus. Spikelets of two sorts, fertile 1-fld.. long-awned, surrounded by the long sterile spikelets of many obtuse glumes, arranged in a one-sided crowded panicle Seeds may be sown in the spring, or better in the fall and plants set out in the spring.
aưrea, Mœnch. Culms 6-12in. high. R.H. 1890, p. 546.

## A. S. Hitchсоск.

## LAMBKILL. Kalmia angustifolia.

LAMB'S LETTUCE. Consult Corn Sulat. L. Quarter, Chenopodium, particularlyC.album. Used as a pot-herb.

LAMIUM (Greek for throet, referring to the shape of the corolla). Labidte. Deai, Netrle. About 40 annual and perennial herbs of the Old World, of which siveral run wild in this country as weeds and others are cult. as hardy borler plants. Botanically, they are distinguisbed by a e-lipped corolla, of which the tube is somewhat longer than the calyx, the upper lip ascending and concave, and the lower one 3 -lobed: stamens 4, in 2 pairs, ascending under the upper lip: As. in axillary or terminal whorls, often rather showy: lus. opposite, mostly crenate-dentate and petiolate: calyx awl-toothed. Not to be confounded with Nepeta.
Lamiums are diffuse mostly pubescent or hairy herbs, commonly decumbent at the base and often almost trailing. They are of the easlest culture in any open soil. Useful for rockwork. The cult. kinds are perennial, and are commonly propagated by division.
maculàtum, Linn. (L. ílbum and L. purpùreum, Hort., not Linn. L. verriegitum, Hort.). Stragging or halftrailing herb, the tips ascending, slightly hairy: Ivs. long-petioled (except the uppermost), cordate-ovate, blunt, round-toothed: fls. 1 in . long, ascending in the clusters, the upper lip strongly arched or hooded, the tube 2-3 times longer than the calyx, hairy within. Eu. - lowers usually purple-red, but sometimes varying to white (when it is known as L. album, but the L. album of botanists is a different plant, having pointed and sharp-toothedlvs.). The Ivs. are usually whitish blotehed along the midrib (var. variegitum), and in this form it is common about old gardens, trailing in the waste places. The plant is also run wild. L. purpureum of the botanists is annual.
eriocéphalum, Benth. Stem much branched, glabrous: lower lis. long-stalked, puberulent, small, orbicular, somewhat incise-crenate: floral lvs. larger, deeply toothed, sessile or nearly so: calyx villons; corolla 3-4 times longer than the calyx, straight, purple. Taurus. Said by some to be annual.

Galebbdolon, Crantz, of Europe, with yellow fls. and sometimes with yellowish foliage is cult. in the Old World, but it has not appeared in the Amer. trade.

LAMPROCOCCUS. See Echmea.
LANDRETH, DAVID, founder of the oldest seedhouse in America, was born in 1752 at Haggerston, Northumberland county, England. He came to America late in the eighteenth century, making Philadelphia his home, and establishing there, in 1784, a nursery and seed business. Its location, on what was then known as High street, is now covered by the building 1210 and 1212 Market street. The raising of trees and production of seeds were conducted on land near by, particularly on a tract at Twelfth and Filbert streets. This locality proving too contracted for the purpose, the nursery and seed grounds were removed in 1789 to the "Neck." then considered far out of town, the place chosen being not far distant from the site of the present arsenal.

The subject of the present sketch, the younger David Landrett (Plate X), was born in Philadelphia in 1802. When of suitable age he entered actively into his father's business, which had considerably extended in Philadelphia, while a branch house had been opened in Charles ton, S.C. The young man's early duty was that of manager of this Charleston branch. Of the Charleston business, it will suffice here to say that it continued till the era of the civil war, when it came to a sudden end by the act of the Confederate States District Court, which confiscated the real estate and merchandise alike, on April 22, 1862.

The younger David Landreth, in 1828, succeeded his father as proprietor of the well-established and thriving business in Philadelphia, a business which was to remain highly prosperous for half a century afterwards under his fostering care. His time, however, was not wholly occupied with the details of business, but was turned at an early age towards the literature of husbandry and to enterprises of public interest. Among the latter may be mentioned the Philadelphia Horticultural Society, of which. in 1827. he was one of the founders and a vice-president, and in 1828 was elected corresponding secretary, which office he held for seven
years. At a subsequent date he was made president of the Philadelphia Society for the Promotion of Agriculture, and viec-president of the United States Agricultural Soclety, and becume an active member of many other organizations.

His literary labors included the publication of the "Illustrated Floral Magazine," started in 1832, and an alvanced work for that period. At a later date he wrote much upon husbandry, his graceful style us a writer and hin technical knowledge of the subiect making his views of much value in the progress of the industry. He edited an Ameriean edition of George W. Johnson's "A Dictionary of Modern Gardening," a volume of 6:3.) pages, published at Philadelphia in 1847.

In $181^{7}$ the Landreth nursery was removed to Lloomsdale, where Mr. Landreth established what is believed to be the most complete seed-farm in the United States, and where he plant… an urboretum whieh perhaps stands unequaled in this c....... in the development of itstrees. He was an early breeder of the Channel Island cattle, then styled Alderneys, and was among the earliest manufacturers of mowing and reaping machinery. In 1873-73 he experimented in steam-plowing with a Scotch engine, and in the following vear with an American engine. Subsequently, steam-digying and steam-chopping were experimented with at Bloomsdale, and many inprovements produced in the machine shop of that model farm.

David Landreth lived until 1880 in the enjorment and care of the business which had been so much developed in his hands, and which had reached almost its hundredth year. The firm is now one of the thirty centenary firms in the United States. During a long life lie had served his country in connection with agricnlture, a pursuit which he dignified by the wide respect he had gained as an old-school country gentleman, and his reputation as an able and learned agriculturist. In early life he had lived amid the plantations of the Landreth nursery, one of the show places of Philadeiphia-the site now marked by the Landreth School-and his virtues and character were those of one brought up in intimate contact with nature.

Burnet Landreth.
LANDSCAPE GARDENING. "Gardening may be divided into three species-kitchen gardening - parterre-gardening-and landskip, or picturesque gardening: which latter is the subject intended in the following pages-It consists in pleasing the imagination by scenes of grandeur, beanty, or variety. Convenience merely has no share here; any farther than as it pleases the imagination." These are the opening lines of "Unconnected Thoughts on Gardening," by the poet William

Shenstone, 1i6t. Thesg sentences gave the world the term Landscape Gardening, to embody the growing de. sire to make grounds like nature. Milton, Aldison, Pope, and the Dutch painters, expressed the awakening to the charms of the external world and hastened the day of freedom and naturalness. These and others had protested, directly or indirectly, against the artificlalisms of living, as Bacon, also, in the following sentence, had protested: "As for the making of Knots or Figures, with divers Colored Earths, they be hut toys, you may see as good sights many times ir Tarts.
I do not like Images cut out in Juniper, or other gar den-stuff ; they are for Children."

One does not know what Shenstone's protest meant until he knows the style of go: a ning which had been and still was in vogut. Garden. were fantastic constructions, eiaborate with designs and formalithes, cramped with geometrical details. A Roman garden (Fig, 12e7) was well enough in its place, but there are other conditions and other ideals. Only rarely can such gardens as these find the proper setting. If effective, they must be dominated or supported by architecture. In the freer atnosphere of the country, they are evidently artificial: they are conceits. The reader will catch the feeling of the formal gardens of a later time by looking at Fig. 1298, which is a reduction from one of Batty Langley's designs in his "New Principles of Gardening," $17{ }^{2} 2$. Langley seems to have been the extremest of geometrician:. In fact, Part 1 of his book on gardening treats "Of Geometry." Yet his plates suited the taste of the time. The particular plan which is shown in Fig. 1298 he deseribes as follows: "The House opens to the North upon the Park A, to the East upon the Court B, to the South upon the Parterre of Grass and Water $C$; and Lastly to the West upon the circuar Bason D, from which leads a pleasant Avenue ZX. The Mount F. is raised with the Earth that came out of the Canal EE, and its slope $\mathbf{H}$ is planted with Hedges of different Ever-Greens, that rising behind one another of different Colours, have a very good Effect, beirg view'd from M. I, I, are contracted Walks leading up the Nount." The ideas of the time are further reflected in Fig. 1209, which is a reproduction, on a smaller scale, of one of Langley's pictures of artificial ruins. It is one of his "views of the Ruins of Buildings, after the old Roman manner, to terminate such Walks that end in disagreeable Objects; which Ruins may either be painted upon Canvas, or actually built in that manner with Brick, and cover'd with Plaistering in Imitation of Stone."
The awakening love of nature and of the spontaneous life, as expressed in writings and paintings, soon found expression also in gardens. In rerse, Pope gare rules

1227. Gardens of the Pope, on the Quirinal. Rome. From Falda's "Li Giardini di Roma."

1228. One of Langley's "Designs for gardens that lye irregularly to the Grand House." 1728.
for the laying out of a spontaneons garden. The accompanying plan of Shenstone's garden, the Leasowes (Fig. 1230), and the picture of a glimpse therein (Fig. 1231), show how far his conceptions were removed from those of Langley, howsoever much they may fall short of the ideals of the present day. A full description has been left us of the Leasowes. Here is a glimpse: "Passing through u small gate at the bottom of the fine swelling lawn that surrounds tine house, you enter upon a winding path, with a piece of water on your right. The path and water, over-shadowed with trees that grow upon the slopes of this narrow dingle, render the scene at once cool, gloomy, solemn, and sequestered; and forms so striking a contraste to the lively scene you have just left, that you seem all on a sudden landed in a subterraneous kind of region. Winding forward down the valley, you pass beside a small root-house, where on a tablet are these lines:

> 'Here in cool grot, and mossy cell, We rurat fays and faeries divell; Tho rarely seen by mortal eye, When the pale moon, ascending high, Darts thro yon limes her quivering beams, We frisk it near these crystal streams.' "

The garden-art of the old time was largely a corollary of architecture. se garden-art of the present time, particularly amongst English-speaking peoples, exists for its own sake. Yet, one cannot say that the old-time garden-art is unlovely, or that it contradicts the canons of good taste. The two helong to different categories of esthetic feeling, and the mere fact that both of them use plant-subjects does not make them comparable. Garden-art, like painting or music or literature, develops along racial or national lines. The Latins and their descendants have liked the fornal and conventional gardens; and since these gardens express the personal and national emotions, they need no apology, notwithstanding the fact they are condemned by many landscape gardeners.

A different type of endeavor is that which attempts to interpret nature in the making of landscapes. The ideal landscape garden, like the ideal landscape painting, expresses or emphasizes some single thonght or feeling. Its expression may be gay, bold, retired, quiet, florid; but if it is natural, its expression will conform to the place and the purpose, and the expressions are not matters of rule. It should be a picture, not a collection of
interesting objects. Mere planting and grading do not make a landscape garden: in fact, they often spoil it. It is not enough to plant : the plants must be in the right place. A yard or a lawn with bushes or flowerlieds scattered over it may be interesting as a mere garden, but it is not a landscape garden. The Italian gardens were hardly landscape gardens. A real landscape garden has open breadth, space, atmosphere. It usually has an open center with mass-planted sides, and vistas to the offscape. Incidentally, it may be ornamented; yet many persons even confound ornamental gardening with Landscape Gardening : it would be as proper to confound house-painting with architecture. Figs, 1227 and 1232 show the contrasts of a mere garden and a landscape garden. Compare Plates XIV and XV.

It will be seen from the above that the term Landscape Gardening precisely expresses the art of making a garden or tame area which shall be a landscape or picture. Yet, amongst the profession, the term landscape architecture is preferred. This term borrows the dignity of architecture, and is useful in a professional way. The writer much prefers the term Landscape Gardening; but it is apparent that the term landscape architecture is growing in favor with the profession, and there is little use in debating over a mere term. Properly speaking, the terms Landscape Gardening and landscape architecture are not synonymous, although in practice they are so used. It is not every place which is adapted to the making of a landscape pieture. Formal gardens are often more to be desired than natural ones. They may conform to the principles of art, but it is the art of formal gardens, not of natural gardens. Too often have formal gardens been judged from the viewpoint of the natural or landscapo garden, and hence confusion has arisen. There is now a slow but wholesome reaction against the too exchavive use of the true landscape garden. In practice, however, one cannot separate the two, so that one practitioner is, or should be, both landscape gardener and landscape architect. So it comes that the term landscape architecture stands for the whole art of laying out grounds. The term is therefore broader than its etymology would suggest: the word "architect" should be taken in its general sense of contriver or planner, rather than in its specific one of bwilder. It is the nature-like landscape garden, rather than the formalesque garden, which the writer has in mind in the adrice which is given in this article. The

## LANDSCAPE GARDENING

character of the for nalesque garden is dominated so completely by the nature of the architecture and the site, that condensed generad remarks are of little purpose.
Landscape Gardening has undergone many fluctuations of taste within the century. Such changes are to

1229. An improvised ruin. 1728.
be expected : 1- as the human race makes progress. The constantly easing wealth of plants modifies the spirit of the work. It is no longer worth while to follow any school or cult. Every style Las its use and place. In small city or suburiban places, a formal or formalesque treatment of the ground plan may be desirable. In larger and freer places, the spirit of the fields may be given fuller expression The fundamental thing to consider is the fact that there must be a general theory or plan before there is any grading and planting, - these latter things are only means to an end. Yet many persons who would be called landscape gardeners conceive that to plant a place is the whole of the problem. The working out of the details of the plan is to Landscape Gardening what building is to architecture, or what pen-work and grammar are to literature. It is the industrial or constructional part of the work. It is what has been called Landscape Horticulture (Bailey "Garden and Forest," $1: 58$ ). It has to do with all the details of kinds of plants, the care of them, the making of lawns, and similar problems. The American writings on Landscape Gardening are mostly writings on landscape horticulture and kinds of plants. Of indigenous American beres, only two (Downing and Waugh) can be said to give a dominant share of their space to the principles of Landscane Gardening as a fine-art conception.
The first Amerscan practicing landscape gardener of note was André Parmentier, who came to this country from Belgimm about $18: 4$ and established a nursery on ground which is now in the heart of Brooklyn. He was a man of great taste and skill. and Andrew J. Downing considered his "labors and example as having effected, directly, far more for Landscape Gardening in America than those of any other individual whatever." He laid ont many places, eren as far away as the southern states on the south and Montreal on the north. The first American book on Landscape Gardening sprung full-fledged and complete from the pen of A. J. Downing in 1841, without haring undergone the tedious evolution of preliminary and imperfect editions which characterize so many horticultural and kindred writings. It
was immediately popnlar, and it has probably exerted a greater influence on American horticulture than any other single volume. It remains to this day without a superior and almost without a competitor. Downing was also the second prominent practicing landscape gardener, although his untimely death left the country with no completed works of his genius. His best known pieces are the grounds of the Smithsonian Institution and Lafayette Square, Washington, but it is doubtful if the subsequent treatment which the former demesne has received is such as would have pleased the designer. A. J. Downing's pomological work was continued by his painstaking lorother Charles: but the artistic work dropped at his death, and Henry Winthrop Sargent, who edited the sixth edition of the "Landscape Gardening," in 1859, declared that "there has been no one since Mr. Downing's death who has exactly filled the niche he occupied in the public estimation." The third genius of American Landscape Gardening, and the one who has carried the art to its highest points of excellence, is Frederick Law Olmsted, who as a young man was inspired by Downing, and who became a landscape gardener when he was placed in charge of the inprovements of Central Park, New York city, abor* 1856. For more than twenty-five years, Mr. Olmisted hi given his talents wholly to this delifhtful art, and, nore than any other American, has moulded and crystallized public taste respecting the appreciation of Landscape Gardening. A leading spirit in the construction of this great park was Calvert Vaux, who, with Olmsted, was joint author of the original plan. Vaux was also associated with A.J. Downing. He died in 1895 . He was an excellent artist. The initiation of Central Park as a pleasure ground inaugurated the modern park systems of the country, and created what the Earl of Meath has recently designated the "reritable rage for park making" which has "seized the American public." See the article on Parks, Vol. III.

Within recent years, the number of practitioners of Landscape Gardening has greatly increased. The art is becoming established in popular estimation. Tastes may change, but the changes will affect only the minor applications of Landseape Gardening. The desire for artistic treatment of grounds is ineradicable. Three national societies are conservators of the Landscape

1230. Plan of the Leasowes, the seat of Shenstone.

The residence is near the center.
Gardening and rural art of the country : American Park and Out-Door Art Association: Anierican Society of Landscape Architects ; Association of American Cemetery Superintendents.
The one point in which America excels other countries
in landscape art is in the rural and garden cemetery. The first distinct movement towards a rural cemetery was made in 18.5 by Jacob Bigelow, of Boston, whose work was soon taken up by the Massachusetts Horticultural Societ As a result of the agitation by this admirable organization, Mt. Auburn Cemetery, at Cambridge, was established and incorporated in 1831. The consummation of this enterprise gave to the world a cemetery which should be distinct from cnurch-yards, removed from the city, and softened by the gracious touch of rature; and thereby, also, the young Massachusetts Horticultural Society set an example to all similar organizations and achieved for itself enduring fame. The work of Repton and Loudon had not then enlivened and broadened the conceptions of Landscape Gardening, and Mt. Anburn, whilst an excellent work of its kind, is not a lanciscape garden cemetery. The mos ${ }^{-}$art of garden cemetery making-in which, as in the ark, the continuous expanse of greensward is the fu, amental conception of the fabric-originated with Adolph Strauch, who, in 1854 , became superintendent of Spring Grove cemetery, Cincinnati. Strauch was a Prussian, born in 1822, and died in 1883. His work at Spring Grove cemetery has justly given him lasting fame, and his book describing the place must be consulted by any one who traces the evolution of the garden cemetery. The Board of Directors of the cemetery said, at the time of his death, that "he had filled the measure of his ambition by the consent of his profession. Which ranked him as the equal of Repton and Pückler-Muskau as a master of art in landscape creation, which had been finally proved by him to be possible to be successfully applied in adorning and making attractive the last resting places of humanity." At the present time, about a hundred burial places in various parts of North America can be said to be landscape-garden cemeteries. See the article on Landscape Cemeteries, following.

The successful practice of Landscape Gardening depends, first, on an artistic temperament and an inherent love of nature; second, on an intimate knowledge of plants; and third, on familiarity with rarious arts and handicrafts, as the making of roads, grading, draining, enriching the land, and the like. Landscape Gardening must be sharply distinguished from gardening: the former is the making of pictures with plants; the latter is the growing of plants without reference to the picture. In one, the interest centers in art: in the other it centers in plants. Since Landscape Gardening is primarily a matter of taste, it is impossible that it be

1231. Glimpse in Shenstone's Leasowes.
dominated by rules. However, a few general precepts and suggestions may be useful, and these are given in the following paragraph (see Figs. 1232-1238).
The motive of a true landscape garden, as already explained, is to make a picture. The picture should have a landscape or nature-like effect. The place shouki be one thing: it should emphasize some thought or feeling. It should have one central or emphatic object. Avoid scattered effects. Bunch or mass the planting. Dis-
tinguish sharply between the fundamentals and the incidentals, - those things which are to give the character or tone to the place, and those which are embellishments or ornaments. Keepone or more spaces open. Plant the sides or boundaries with masses. Use single or individual plants only to emphasize or to heighten an effect, not to


Suggestion from Englischer Garten, Munich.
give it characer: they are incidentals. Ornament shonld be an incident. Foliage is a fundamental. Greensward is the canvas on which the picture is spread. Plants are more useful for the positions they occupy than for their kinds. Walks and drives are no part of a landscape picture : they are a necessity, but they may be made to conform to the spirit of the picture. The place for walks and clives is where they are needed : otherwise they have no use or purpose. It is the part of a good landscape gardener to make his grounds conform to the buildings: it should equally be the part of an architect to make his buildings conform to the landscape. Make views to desirable objects in the outlying landscape or the offscape. Obstruct the views to undesirable parts. Aim for a good prospect from every window in a residence, including the kitchen. Shear the trees and bushes when hedges, curiosities, and formal gardens are wanted: !et them assume their natural forms when a iandscape garden is wanted (Figs. 1237, 1238). Place no tree or plant until you are sure that it will mean something.

The best results in the planning of any place are to ke expected when one employs a competent landscape gardener. Aroid the man who places great stress on flower beds and "designs." Yet one can do mueh by himself, and be the happier for the effort. Books will help. Some of the current American books on Landscape Gardening and related topics are the following : Downing's "Landscape Gardening;" Kemp's "How to Lay Ont a Garden;"Parson's "Landscape Gardening" and "How to Plan the Home Grounds:"Long's "Ornamental Gardening for Americans;" Waugh's "Landscape Gardening;" Maynard's "Landscape Gardening as Applied to Home Decoration;" Davis' "Ornamental Shrubs;" Van Kensselaer's "Art Out of Doors:" Bailey's "Garden-Making." See Borders, Herbs, Launs, Parks, Shrubs.

## L. H. B

Luadscape Cemeteries (Plate XVII). - The cemeteries of the present day have come into existence from a desire to hare burials made at a distance from centers of populatic'l, and among beantiful surronndings. They are often called "rural cemeteries." The first one in the United States to merit this name was Mt. Auburn, near Boston, Mass., founded in 18:31. Since then the idea of having burial places park-like in their character has been spreading until they contain to-day some of the most beautiful landscapes developed by the hand of man. The wish to have in the centetery all the beanty of trees. shrubs, lawns and flowers has gradually led to the abolition of fences, coping and other lot enclosures, and a reduction in the number of monuments and the size of headstones. There are many who now believe
that the last resting place should be surrounded by the quietness and beauty of these features of nature's handiwork without distracting stonework or artificial objects. There are others who say that "the cemetery should be a cemetery," meaning by this expression that it should resemble somewhat closely the old churchyard or grareyard, with its multitude of crowded stones, inscribed with the names and good qualities of all buried within its walls.
All agree that the cemetery should be so situated and maintained as to menace in no way the healthfulness of surrounding neighborhoods. The ideal location is one where the ground is somewhat undulating and thoroughly drained by having a porous subsoil, while the surface soil is sufficiently rich and deep to support a good growth of vegetation. In some instances, as at Forest Hills, Boston, Mass., and at Woodlawn, New York, it has been necessary to blast and remove rock and then fill in the space with earth. In other cases, the natural soil has been so poor that it has been necessary to cover it with rich earth hauled from a long distance. In still other cases, it has been found necessary to select a clay soil because there was no other, or to make ground by excarating lakes, using the material excarated to raise the surrounding land, or to bury above ground in structures erected for the pui pose, as at New Orleans.
When a site is chosen, it is usually subdivided into sections and lots, which must be made accessible by the construction of drives and walks. The drive should pass within 150 or 200 feet of every place available for buriai. The width of the drive should vary according to the size of the cemetery and the probable amount of driving. If the area is rery small, say not over four or five acres, it may be unnecessary to have any drive. In a little larger area. a grass drive 8 feet wide might suffice; in one still larger, a driveway 16 feet; and, finally, a cemetery designed to accommodate large populations should have good macadamized roadways 24 or 32 feet in width. Walks should generally be left in grass which forms part of a continuous lawn, such being better in appearance and more easily maintained than those made of gravel. The location of the drives will determine the shape and size of the sections. The plans should be made after a careful study of the ground in question, the drives being placed so that they will have easy grades, command good views, and be as few as possible without being more than 300 or 400 feet apart. When the ground is irregular in shape, or has steep slopes, or

1234. A flank planting, leaving the center free.
metrical curve. They should nearly always be curred to produce the most pleasing result, a curved driveway being interesting because : (1) when the margins are properly planted certain portions of the ground are always hidden; (2) they insure raried effects of light and shade; (3) they make the arerage distance from the cemetery entrance to the lots shorter than if one follows straight lines and turns right angles.

An open tract, to begin with, is in many ways preferable to one that is thickly wooded, but groups of trees or single specimens that have broadened out in a natural way would be rery valuable, since they would help to take away the naked, forbidding appearance of land newly planted with young trees. On a vacant area, it is usually advisable to plant some large trees for the sake of immediate effect. These can be grouped about the entrance, a fork in the drives, the top of a hill, the margin of a lake, or other distinguishing position. The objection to a piece of land covered with thick woods is that the necessary thinning to get sufficient open space will leave tall, spindling trees, unused to exposure. These, while not very attractive in themselves, are verylikely to die and are liable to be blown down. If there are thick woods in the land chosen, the trees selected to remain should be those that are healthiest and hare the lowest branches. Some of the trees removed might be cut off at the ground, when the sprouts springing from the stump will form beautiful bush-like specimens.
The necessary buildings will rary with the size of the cemetery, but they should always be modest in appearance and suitably embellished with shrubbery and vines. The office would naturally be placed near the entrance to aroid unnecessary walking, but it should not be placed immediately on the highway or public street. The large arch frequently built over the gateway is usually too pretentionc in appearance and not in keeping with the character of the grounds. A natural archway of living trees would be better. The chapel, if any, should be built well within the grounds to give it greater seclusion and quietness.

Whether there should be greenhouses or not cannot be discussed here on account of the limits of this article. It may simply be said that with the greater variety of flowering trees and shrubs which we have to choose from, is well as the thousands of hardy, Howering, herbaceous plants, most beautiful effects can be produced without the expense, the continual labor and the bare beds more than half the year, which would follow the construction of greenhouses. Usually the selection for planting of material found growing in the adjacent country will help to produce satisfactory results with little expenditure of money and time. To prevent intrusion, a fence along the boundary of the cemetery is necessary, but this can be a simple inexpensive wire fence, serving in places as a support for vines, and in places being hidden by a belt of trees and shrubbery. No one would now make the semetery dreary by confining the planting to spruces
a meeting of the Association of Americar Cemetery Superintendents, held at Boston. in 1890, the following rules were recommended by a unanimous vote of those in attendance :
Rule 1: (This should be a general rule, stating the authority and conditions on which lots are sold and the restrictions on transfers. The rule, of course, would have to be raried according to conditions existing in each cemetery.)
Rule 2: The Trustees desire to leave the improvements of lots, as far as possible, to the taste of the orners; but, in justice to all, they reserve the right, given them by law, to exclufde or remove from any lot any headstone, monument or other structure, tree, plant or other object whatever which may conflict with the regulations, or which they shall consider injurious to the gencral appearance of the grounds; but no trees

1235. A structural foliage mass, with rugged sky line and irregular ground plan, and embellished with flowers on the margin.
and weeping willows. On the contrary, every effort is made to secure bright, cheerful effects by the selection of all kinds of flowering, happy-looking plants. The modern cenetery becomes in fact a sort of arboretum. It includes some evergreens which are most suitably grouped along the boundary belt, and which should contain all kinds of hardy pines, as well as the more stiff and formal spruces. The planting of Norway spruces has in many places been overdone. The development of attractive landscapes in cemeteries is of so much importance that Mr. Stranch, who was the greatest cemetery designer that we have had, used to call the present method "the landscape lawn plan."
A good landscape in the cemetery is usually the result of years of growth. It must first be carefully designed, and then receive care and attention from some one familiar and in sympathy with the scheme adopted. To insure such attention, and to protect the interest of all Iot-owners, as well as to maintain the dignity and character of a city of the dead, rules have been adopted by all leading cemeteries. These rules are the result of study and experience on the part of many men. At
growing within any lot shall be removed or trimmed without the consent of the Trustees.

Rule 3: Lot-owners may have planting or other work done on their lots at their expense, upon application to the Superintendent. No workmen other than emplovees of the cemetery will be admitted to the cemetery except for the purpose of setting stone-work.

Rule 4: No iron-or wire-work, and no seats or vases will be allowed on lots, excepting by permission of the Trustees, and when any article made of iron begins to rust, the same shall be removed from the cemetery.

Rule 5: The Trustees desire to encourage the planting of trees and shrubbery, but, in order to protect the rights of all and to secure the best general results, they require that such planting shall be done only in accordance with the directions of the Superintendent of the cemetery.

Rule 6 : No coping, nor any kind of enclosure, will be permitted. The boundaries of lots will be marked by corner-stones, which will be set by the cemetery, at the expense of the lot-owner, with the centers upon the lines bounding the lot. Corner-stones must not project above the ground and must not be altered nor removed.

## LANDSCAPE GARDENING

Rule 7: No lots shall be filled abore the established grade.
Rule 8: All interments in lots shall be restricted to the members of the family or relations of the lot-owner.
Rule 9: No disinterment will be allowed without the

Rule 19: The Trustees shall have the right to make exceptions from the foregoing rules in favor of designs which they consider exceptionally artistic and ornamental, and such exceptions shall not be construed as a rescission of any rule

Rule 20 : It shall be the duty and right of the Trustees from time to time to lay ont and alter such avenues ani $\mathrm{\pi a} \mathrm{ks}$, and to make such rules and regulations for the government of the grounds as they may deem requisite and proper and calculated to secure and promote the gen eral object of the cemetery.

Rule 21: The Superintendent is directed to enforce the above regulations, and to exclude from the cemetery any person wilfully violating the same.

Cemeteries should be established upon a basis to enable those in authority to take uni form care of the grounds for all time. The prices charged for lots should be high enough to enable a fund to be set aside that will yield an annual income sufficient to pay all necessary general expenses. In laying out a new cemetery, those in charge should seek the best adrice available. Such advice should be based on a thorough knowledge of Landscape Gardening and the special needs of burial grounds. Much information can be obtained by visiting Spring Grove, at Cincinnati, Ohio, generally recognized as the pioneer of park-like cemeteries, and perhaps the best example in the world. Oakwoods Cemetery, at Troy, N. Y.; Swan Point Cemetery, at Providence, R. I., and Forest Hills, at Boston, Mass., are some of the prominent examples of the system now in vogue. Graceland Cemetery, at Chicago, Ill., although much smaller in area than those already mentioned, contains some good landscape effects. There are many other cemeteries in the vicinity of the large cities of the United States which can be commended on account of the good taste displayed in them. There are others, like Mt. Auburn of Boston, Greenwood of Brooklyn and Laurel Hill of Philadelphia, which, while containing many beantiful trees and expensive monuments, include also many fences, railings, copings and hedges that serve as examples of what to avoid rather than to imitate.

Our leading cemeteries should keep pace with the best thought of the times, with the best theories of religion, science and economics. They should be, as the name implies, sleeping places-places of rest and freedom from intrusion. It seems natural that people should
permission of the Trustees, of the lot-owner, and of the next of kin of the deceased.
Rule 10 : Monnds over graves should be kept low, not exceeding four inches in height; and stone or other enclosures around graves will not be allowed.

Rule 11 : Foundations for all monuments, headstones, etc., shall be built by the cemetery at the expense of the lot-owner, and fifteen days' notice must be given for the building of foundations. The cost of the same must be paid in advance.

Rule 12 : Every foundation must be at least as wide and as long as the base stone resting upon it, and must not project above the surface of the ground. All foundations must extend as low as the bottom of the grave.
Rule 13: Only one monument will be permitted on a family burial lot.
Rule 14: (This should be a rule limiting the height of headstones, and the lower this limit is made the better. Even with the lawn is considered best.)

Rule 15 : All stone-and marble-works, monuments and headstones must be accepted by the Superintendent as being in conformity with the foregoing rules before being taken into the cemetery.
Rule 16: No monument, headstone or coping, and no portion of any vault above ground, shall be constructed of other material than cut stone or real bronze. No artificial material will be permitted.

Rule 17: The Trustees wish. as far as possible, to discourage the building of vaults, believing, with the best landscape gardeners of the day, that they are generally injurions to the appearance of the grounds, and, unless constructed with great care, are apt to leak and are liable to rapid decay. and in the conrse of time to become unsightly ruins. Therefore, no vaults will be permitted to be built unless the designs for the same are exceptionally good, and the construction is solid and thorongh. The designs must be submitted to the Trustees, and will not be approved unless the struc. ture would, in their judgment, be an architectural ornament to the cemetery.
Rule 18: Material for stone or marble work will not be allowed to remain in the cemetery longer than shall be strictly necessary, and refuse or other unused material must be removed as soon as the work is completed. In case of neglect such remoral will be made by the cemetery at the expense of the lot-owner and contractor, who shall be severally responsible. No material of any kind will be received at the cemetery after 12 o'clock m. on Saturdays.

1237. An artistic group-planting alongside a walk.
select for such a place the rery best production of land-scape-art, a place where spreading lawns give a cheerful warmth and sunlight; where pleasing vistas show distant clouds or the setting sun; where branching trees give grateful shade, furnish pleasing objects to look at, and places for the birds to come each year and sing

LANDSCAPE GARDENING
again their welcome songs; where blossoming shrubs delight the eye, perfume the air, and make attractive resting places. Such places may seem to exist more for the living than for the dead, but the living are the ones that need them. If it seems natural to select a most beautiful park, a real picture, we might say, for a sleeping place, it seems strange to put into this picture obelisk after obelisk, stone posts and slabs of all shapes

Lantanas have been long in cultivation, and it is difficult to refer the garden forms to botanical species. The species themselves are confusing. Most of the garden kinds are of the L. Camara type. There are several Camara-like species which probably have hybridized to prodnce these forms; but Voss, the latest garden monograpier, regards these species as only forms of $L$. Camare (preferring, however, to use the name $L$. aculeata). Accepting L. C'amara in Voss's sense, the garden Lantanas may be said to be derived from that species; and this view is adopted below. Monogr. by J. C. Schauer, DC. Prodr. xi. 594-609.

## L. H. B.

The Lantana has been improved in its usefulness as a bedding plant of late years, largely through the efforts of French hybridizers. The older varieties were mostly rather tall and lanky, later in coming into bloom, and dropped their flowers badly after rain storms, but were showy in warm and dry weather. The new rarteties are dwarf, spreading and bushy in habit, eat!r and free-flowering, and the heads or umbels of bloom average much larger, with forets in proportion; nor do they drop off from the plants as the old varieties did in bad weather. These newer kinds are not as well known as they should be. They are very desirable for any situation where sun-loving bedding plants are used, in groups or borders, window-boxes, baskets and vases. The Lantana is not particular as to soil, and flourishes provided the exposure is sunny and the soil well supplied with moisture, at least until a fair growth has been made. When well established it does not seem to mind drought, and continue bright and attractive in the hottest weather. It should not be transplanted out in the open before danger of frost is over. If the old plants are wanted for propagation, eut them back and transfer to pots early in September, and when they start into new growth the soft wood will furnish cuttings that root easily. Keep young stock in a warm position through the winter months, and repot in April.
Save the old plants, after Jack Frost has nipped their freshness late in the fall, prune severely back, remove them indoors, giving them a temperature anywhere above $40^{\circ}$, and with a little attention and fresh soil, every plant will be a perfect specimen, covered with bloom in May. Gardeners train them into fine standards, as prim and shapely as need be. Among the French varieties the most representative are Argus, orange with yellow center; Tethys, canary yellow; A. Clarean, silvery rose with yellow center. These are very dwarf spreading growers, about 8 in . high. Amiel is semidwarf, orange-red with yellow center, bright and showy; Protée belongs to the same class, rose color, yellowshaded center; Delicatissima is a trailing or creeping sort, with slender stems, small leaves and dainty flowers of pink and lavender: La Pluie d Or, golden yellow, is a standard variety among the older kinds.

Grove P. Rawson.

## A. Plant often spiny: fruit juicy.

Camàra, Linn. (L. aculedta,Linn.). Fig. 1239. Small shrub, 1-4 ft. high, hairy, sometimes with short, hooked prickles: lvs. rather thick, rugose, scabrous above but pubescent beneath, orate or cordate-ovate, mostly shortacuminate, crenate-dentate, the petioles short: clusters of fls. on stron : axillarr auncles which may or may not exceed the : s. * $\quad$ dense, nearly flat-topped head, usually opes: or pink but changing to orange or scarlet, or pink but changing to
$r$.rrow and not conspicuous. Trop. Amer, es ' $\in 1$ - $\therefore \ldots$ h to Texas and S. Ga. B.M. 96. L.B.C. 12:1171 (as 1 . scabrida, Ait.). - In the wild, the plant may grow 10 't. high, and it is usually prickly (hence the rame $L$. aculeata of Linnæus). The cultivated plant is less prickly or even unarmed. The plant has a strong smell, but the ease with which it can be made to produce an almost continuous supply of bloom renders it a popular greenhouse and bedding subject. Color of tls. varies on different plants. Of late years the Lantanas hare been neglected by florists, but improved varieties are now bringing it into favor again.

Var. nivea ( $L$. nirea. Vent.). Fls. white, the outer ones becoming bluish: heads rounder. B.M. 1946.

LANTANA
Var. mutábilis (L. nivea, var. mutábilis, Hook.). Remarkable for the change of color in the nearly globular heads: in little more than a day the fls. may change from white through yellowish, lilac, rose and blue. The outer ths. open white and run through yellowish, rose and lilac; the inner ones open yellowish. B.M. 3110. R.H. 1852:461.


Var. mista (L. mista, Linn. Not spelled mixta by Linnæus, although it is so spelled by later authors). Outer fls. opening yellowish and becoming saffron and brick-red; inner fls. yellow, changing to orange.

Var. cròcea (L. cròcea, Jacq.). Fls. opening sulfuryellow and changing to saffron. R.H. 1852:461.

Var. sanguinea (L. sanguinea, Medic.). Fls, opening saffron-yellow, changing to bright red.
purpurea, Hornem. Erect : branches 4-angled and somewhat hairy, with few recurved spines: lvs. ovate, narrowed into a petiole, acuminate, serrate-crenate, rugose: fls. purple, very pretty, in hemispherical-umbellate heads, the bracts short and lance-subulate. S. Amer. -Int. by Franceschi, 1900. A form of L. Camara?

## AA. Plant never spiny: fruit thin-fleshed, usually not

 juicy.trifolia, Linn. (L. ánnua, Linn.). Half-shrubby, hairy: lvs. orate-lanceolate or elliptic-oblong, pointed, crenate-dentate, in 3's or 4's: heads becoming ovoid or oblong, the involucre not conspicuous: fls. rose-lilac varying to white, with yellow throat: fr. rather pulpy, showing well amongst the bracts. Trop. Amer. B.in. 1449. - The name $L$. cinnua seems to have been applied to young plants, on the impression that they were annuals. The picture of $L$. annua in B.M. 1022 is quite as likely to be a form of $L$. Camara. Little known in cult.
Sellowiàna, Link and Otto (L. delicatíssima, Hort.?). Weeping or Trailing Lantana. Twiggy, slender plant with lopping or trailing pubescent branches: Irs. small, ovate, tapering below, close-toothed: fls. small, in longstalked small heads, rosy lilac, the outer bracts or scales of the involucre broad-ovate and hairy and half or less as long as the slender pubescent corolla tube. S. Amer. B.M. 2981. B. 3:115. R.H. 1852:461?-A very profuse bloomer in both winter and summer. and most desirable for pot or basket culture. Should be better known. Verbena-like. The plant seems to be an escape in Fla.
involucràta, Linn. Low, much-branched bush, with obscurely 4 -angled gray branches, and blunt, ovate. small. crenate-dentate lvs.: fls. small, nearly or quite equalled by the orate involucre bracts. Trop. Amer., reaching N. to S. Fla. and S. Tex.-Said to he occasionally cult. indoors for the light lilac or white tls.
L. H. B

## LAPAGERIA

LAPAGERIA (the Empress Josephine, wée Tascher de La Pagerie). Liliticere. Chilean Bellflower. A single species of noble, half-hardy evergreen climber, allied to the smilaxes. Lis. alternate, lance-ovate or cor-date-lanceolate, $3-5$-nerved, acuminate: fls. large and showy, bell-shaped, hanging singly from the upper axils or somewhat racemose at the end of the vine, about 3 in. long; stamens 6, borne on the torus or slightly at tached to the base of the inner segments, shorter than the perianth: ovary sessile and 1-lociled, with 3 parietal placentæ, ripening into a 3 -angled, oblong, fleshy, indehiscent, berry-like beaked fruit, and bearing nearly globular seeds imbedded in the pulp. L. rossea, Ruiz d Pavon, is the only species. Fig. 1240. It has rose-colored or rose-crimson tis., with lighter spots. Chile. B.M. 447. F.S. 5:491; 20:2059-60. R.H. 1850:101. Gt. 46:1445; 47, p. 101. G.C. Ill. 20:657 (fruits); 25:45. Gn. 34, p. 321; 48, p. 475; 49:1056; 55. p. 57. Gng. 5:356. Mn. T:191. Var, albiflora, Hook. (var. ilbu, Hort.), has white or whitish Hs. B.M. 4892. R.H. 1852:441. F.S. 20:2059-60. Gn. 41, p. 53; 49:1056 and p. 175; 54, p. 277. A.G. 13:745 (poor). Gng. 2.187; 5:356. A double-fld. form of the white variety is shown in G.C. II. 17:77. The species is variable in vigor, foriferousness, size, color and substance of bloom, and there are a number of named horticultural subvarieties. Lapagerias are tall-twining plants, suitable for rafters or walls in coolhouses, or for culture in the open in the milder parts or the country. They are usually propagated from layers, but stronger plants usually are obtained from seeds, although varieties may not come true. The first live plants were introduced into England in 1847. Lapagerias should be seen more frequently in Ancerica. Franceschi says that in California the plant prefers shady places "where the atmosphere will never become too dry."
Lapageria rosea and Philesia buxifolia have been hybridized by Veitch, producing a plant known as Philageria Veitchii, Mast. (G.C. 1872:358). Philesia afforded the pollen. It is not in the American trade, but is a most interesting plant hybrid. For an anatomical study of it, bearing on problems of bybridity, see J. M. Macfarlane, Trans. Roy. Soc. Edinburgh, 3ī, pt. 1, p. 207 (1892).
L. H. B.

It is by no means an easy task to grow Lapagerias. They do best planted out into a cool greenhouse, where only the morning sun strikes them. If the border or bed in the greenhouse is on a naturally sandy or gravelly subsoil, so that the natural drainage is perfect, it is an ideal place for these plants. They like a deep bed of sand or gravel underneath their roots, where abundance

1240. Lapageria rosea ( $\times 1 / 2$ ).
of rater can be applied during the spring and summer months and where the drainage is perfect. Light peaty loam is best. and after plants are fully established they like plenty of liquid fertilizing. The soil, in all cases,
must be open and sandy. They should be trained against a wall, facing either the east or north. Abundant syringing, temperature not to exceed $50^{\circ}$ to $60^{\circ}$ at night, and even as low as $45^{\circ}$ at night in winter, plenty of air, - these are requisites. In winter they require but little water except spraying when the temperature warrants it. Where no such sandy strata or subsoil exists it must be provided, but care must be taken that they are not crowded into an obscure corner where the soil will not dry out, as otherwise it will sour and the plants not do well. The roots mist not be put too deep, as the plant is a shallow rooter. If no sand-bed can be had it is best to have the young plants in shallow pans, and, breaking the bottom, set them into such a prepared bed, sinking the pans until the roots go out into the prepared bed. In their native homes Lapagerias grow where plenty of water falls during their growing season and where they are semi-dormant the rest of the year. They flower from the well-ripened and matured wood of a strong growth. Propagation is effected by by means of layers or from seeds. H. A. Siebrecht.

## LAPEIROU̇SIA. Preferably spelled Lapeyrousia.

LAPEYROU̇SIA (Jean François Galoup de Lapeyrouse, distinguished French naval officer, born 1741). Iriddcere. About 32 species of African bullos, something like Freesias, but with blue or red fls., which are produced in summer instead of spring. They can be grown outdoors in the North with some winter covering, and are said to be quite hardy south of Washington, D. C., if planted deep. By American dealers they are still listed under the name of Anomatheca, which Baker has reduced to one of the 3 subgenera of Lapeyrousia, characterized by having several lvs. forming a 2 -ranked basal rosette, accompanied by a long, branched stem. Lapeyrousia is further distinguished from Freesia by having a more slender perianth-tube, with the stamens inserted at the throat instead of below; also by the ovules being more regularly superposed instead of crowded together. The species of Lapeyrousia have an egg-shaped or globose corm about $1 / 2 \mathrm{in}$. thick, and matted with tunics: Ivs. linear or sword-shaped: inflorescence various, often a loose, 1-sided, more or less zigzag spike, as in Freesia: fis. variously colored, l-? iii. across; perianth tube long or short; segments spreading, 3 larger than the other 3 . Monographed by Bater in his "Hand book of the Iridea," and also in the Afrivan foras.
These plants wili probably never have anything like the degree of popularity enjoyed by Freesias, because of their later season of hloom and lack of fragrance. Probably the most popular kind is L. cruenta, which grows $6-10 \mathrm{in}$. high, blooming in summer and fall. In a sheltered and in light, porous soil it generally succeeds in the North without any protection, but the bulbs are safer in very severe winters under a covering of litter or straw. The bulbs increase rapidly, and should be divided every few years before they become too crowded.
A. Color of fls. chiefly blue or violet.
corymbolsa, Ker. (Anomathèca corymbòsa, Hort. A. Blanc). This lelongs to the subgenus Orieda, having usually 1-2 basal lvs., while the next 3 species belong to the subgenus Anomatheca, having more numerous Ivs. L. corymbosu has 1 basal leaf which is spreading, swordshaped, 4-6 in. long: inflorescence a dense flat-topped cluster of as many as $1 \overline{5} \mathrm{fls}$. each about 1 in . across, with practically regular segments, blue, with a starshaped white figure near the throat, outlined in black after the fashion of Quedlinburg Phlox. B.M.595. J.H. LII. 32:379.

AA. Color of fls. rerl, uith 3 darker spots at the base of the 3 smaller segments. B. Size of $\mathrm{fls}$.2 in . across.
grandiflora, Baker. (A.grandiflora, Baker). Lss. 1 ft . or more long: fls. bright red: stamens as long as the segments; the 3 style branches each 2-cut. B.M. 6924 . -A newer species than cruenta, and perhaps destined to greater favor. Corm globose (ovoid in the others here described).

## BB. Size of fls. 1 in . across.

C. Segments bright carmine.
cruénta, Benth. (A. cruénte, Lindl.). Lvs. $1 / 2-1 \mathrm{ft}$. long: stamens less than half as long as the segments: the 3 style branches uncut. B.R. $16: 1369$. L.B.C. 19:1857. P.M. 1:103. J.H. III. 31:397.

## cc. Segments pale red or rosy.

júncea, Pourr. (A. júncea, Ker.). Lrs. strap-shaped, (linear in the 2 preceding species), 6-8 in. long: stamens half as long as the segments. - Less known in cult. than the others.
J. B. Keller and W. M.

## LAPPA. See Arctium.

## LARCH. See Larix.

LARDIZABALA (after the Spanish naturalist Lardizabal y Uribe). Berberillicee. Six species of S . American shrubly climbers, mostly Chilean, one of which is cult. outdoors in S. Calif. and the warmer parts of Europe. It is something like the well known hardy vine Akebia quinetu, having similar, odd-looking, dark-colored fls., but the leaflets are in 3's instead of 5's. The leaves may be once, twice or thrice ternate, and they are dark green, glossy, and here and there have 1 or almost spiny teeth.

There are 4 genera of the Barberry family containing shrubby climbers that are cult. Of these Akebia is the best. Akebia and Holbollia have free stamens: Lardizabala and Stauntonia have monadelphous stamens. In all of these the showy parts are the 6 sepals, the 6 petals being much smaller in Lardizabala and absent in Stanntonia. Lardizabala is further distinguished from Stauntonia by having once- to thrice-ternate foliage and oblong berries, while Stauntonia has digitate foliage with 3-7 leaflets.
biternàta, Ruiz \& Pav. Lrs. generally once ternate, particularly in the flowering branches: lfts. rather leathery, evergreen, ovate, dark green above, paler and net-ted-reined beneath: staminate fls. in a dense drooping spike, containing as many as 15 fls. each about 1 in. across, with ovate dark purplish chocolate colored sepals and small lanceolate white petals. Chile. B.M. 4501. Gn. 28, p. 489.-Grows about 12 ft . high against walls in warmer parts of England. The fruit is said to be sold in the Chilean markets and cordage is made of the fiber.
W. M.

LARIX (ancient Latin name). Coniferce. Larch. Tamarack. Ornamental deciduous coniferous trees of pyramidal habit, with the lvs. linear and clustered except on young shoots, where they are spirally arranged, and with the pistillate ths. often very conspicuous by their bright purple color: cones erect, klobose to oblong, rarely more than 2 in . long. They are all haridy North except the Himalayan L. Griffithi, and are often planted as park trees, chiefly for the light green foliage and the regular conical, or in some rars. pendulous, habit. The most beautiful is probably $L$. leptolepis, with the foliage turning bright yellow in fall, while the others assume only a pale yellow color. They are also very valuable forest trees, especially for the northern and mountainous regions; no forest tree goes farther north than the Larch, reaching in N. America $67^{\circ}$ and in Siberia $\mathbf{2}^{\circ}$ of latitude The wood is hard, heary and very durable, and much used for construction, that of L. occidentalis being considered the best of all American conifers. From the European Larch turpentine is obtained. The bark contains tannin, and an extract is used for tanning leather. The Larch grows in almost any kind of soil, including clay and limestone. and prefers a somewhat moist, but well-drained soil and an open situation; the American Larch grows well even in swamps. Unfortunately several insects and fungi prey on the Larch, and sometimes do considerable damage, especially the leaf-eating larve of some moths. Prop. nsually by seeds sown in spring, and the young seedlings shaded; vars. are grafted on seedlings, mostly on those of L. decidue (Europuct), either outdoors by whipor cleft-grafting or in the greenhouse by veneer-grafting; they may also be increased by cuttings of nearly ripened wood under glass or by layers, but this method is rarely

## LASIANDRA

practiced. Nine species in the colder regions of the northern hemisphere. Staminate Hs. small, globose to oblong, solitary, consisting of numerous short-stalked, spirally arranged anthers; pistillate fls. larger, consisting of several or numerous scales, with 2 naked orules at the base, each scale borne in the axil of a much longer bract; cone with woody, 2-seeded scales, persistent on the axis; seeds with large, thin wings, ripening the first year.

Alfred Rehder.
The European Larch is an upright, conical grower, and one of our best lawn trees. In the spring, when it is covered with its new growth of soft, feathery, light green foliage, it is a very striking and beantiful object. As it begins growth at a low temperature, it is the first of our trees to be covered with new foliage. Again in the autumn it is very beautiful, as its needles turn a golden color before falling, for this tree, unlike most of the conifers, is deciduous after the first year. In the middle West and along the coast in Massachusetts, it is planted for timber, shelter belts and wind-breaks. Unlike its American relative, L. Americana, or Tantarack, this tree grows on high ground and does well on a great variety of soils. It does not do well on low, submerged ground, the home of L. Americana. The Larch is known in Europe as one of the most durable woods. It does not ignite easily, neither does it splinter, and the wood was in great demand for these reasons for battleships before the ironclads displaced the wooden ships.

The Larch stands transplanting well, but this must be done very early in the spring, before new growth begins. The seed is sown in beds of finely prepared soil, about the middle of May, and either raked in or corered very lightly by hand, not to exceed one-eighth of an inch. It is usually sown in beds 4 feet wide. As soon as it germinates it is shaded with lath frames, raised about 10 inches abore the bed. The first year it makes a growth of from 2 to 4 inches, and holds its foliage the first winter. A slight covering of hay or straw
ould be lightly shaken over the seedlings as soon as
ter sets in, to prevent the seedlings being thrown out by continual freezing and thawing. The frames are put on again to hold the snow. During the following summer the frames should be removed entirely. At two years old they will be from 6 to 20 inches in height, and can then be moved to nursery rows or planted out permanently in the forest. The seeds should be sown thicker than other conifer seed, as seldom over 60 per cent germinate. Sonnetimes they make very little upward growth the first and second years after transplanting, seemingly putting all their strength into the side shoots in order to spread out and shade the ground over their roots, a custom followed by all the conifers on hot, sandy soil. This being finally accomplished, they will make a rapid upward growth.

Thos. H. Docglas.

## A. Bracts longer than the scales: scales numerous,

 stiff, spreading or recurved after maturity.occidentàlis, Nutt. Tall tree, to 150 ft ., with darkcolored bark, becoming bright cinnamon-red on older trunks, and with short, horizontal branches, forming a narrow pyramidal head: branchlets pubescent when young: lvs. rigid, sharply pointed, triangular, keeled beneath, $1-13 / 4 \mathrm{in}$. long, pale green: cone oblong, $1-1 \frac{1}{2} \mathrm{in}$. long: scales orbicular, alnost entire, tomentose heneath. Brit. Col. to Mont, and Ore. S.S. 12:594. G.F. 9:497. Gt. 20:685, figs,8-10. G.C. II. 25:652. B.H. 29:8, tigs. 3-5.

AA. Bracts shorter than scales.
B. Lis. with 2 white lines beneath: scales numerous, reflexed at the apex.
leptólepis, Murr. (L. Kémpferi,Sarg., not Gord.) Tree, to 80 ft., with horizontal branches, forming a prramidal head: lranchlet yellowish or reddish brown, glabrous and glossy; spurs short and globular: lvs. rather broad, obtuse, soft, $1 / 2-1 \frac{1}{2}$ in., light or bluish green: cones ovate-oblong, $1 / 2-1 \frac{1}{2}$ in. long, with emarginate, roundish orate scales. Jap. G.C. II. 19:88. Gt.

20:685, fig. 5. B.H. 22:8, fig. 2. - The handsomest of the Larches as a lawn tree. Var. minor, Murr. (var. Murraydna, Maxim. L. Japónica, Murr., not Carr.). Dwarfer form with smaller cones. Gt. $20: 685$, tig. 2. B. H. 2: :9, ig. 4.

BB. Lis. without white lines, very nurrou: scales erect-spreading, straight or slightly incurved at the apex.
decídua, Mill. (L. Europø̈a, DC.). Evropean Larch. Fig. 1241. Tree, to 100 ft ., with pyramidal, later often irregular, head: bark dark grayish brown: branchlets slender, glabrous, yellowish: lves. compressed, triangular, soft and obtuse, bright green, $3 / 4-11 / 4 \mathrm{in}$. long: pistillate fls. purplish; cones $3 / 4-1 \frac{1}{2}$ in. long, with many al. most orbicular scales, usually finely tomentose on the back. N. and M. Eu. Git. $20: 684$, fig. 3. B.H. 22:7, fig. 1. Var. pénduls, Loud. With pendulous branches;

1241. Larix decidua ( $\times 1 / 2$ ).

Commonly known as $L$. Europaea.
sometimes confounded with the American Larch. Gt. 20:684, fig. 11. B.H. 22:8, fig. 1. Gn. 35̄, p. 245 and 39. p. 84.

Americàna, Michx. (L. microcírpa, Desf. L. péndula, Salisb. L. laricina, Koch). Tamarack. Hackmatack. Tree, to 60 ft ., with horizontal branches, forming a narrow pyramidal head, sometimes broad and open on older trees; bark reddish brown: branchlets slender, glabrous, often bloomy: lvs. like those of the former, but of light bluish green: cones small, oval or almost globular, $1 / 2-3 / 4 \mathrm{in}$. long; scales few to 20 , almost orbicular and entire, glabrous. Canada, south to Pa., west to Ill. and Manitoba. S.S. 12:593. Em. 106. Gt. $20: 684$, fig. 7-8. В.H. 22:10, fig. 2-3.
L. Dahìrica, Turcz. Similar to L. Americana. Tree, to 70 ft., sometimes procuinbent: cone usually with more than 20 scales, more spreading at maturity. Amurland, Sachalin. Git. 20:684, figs. 9-10. B.H. 22:9, figs. 5-6.-L. Chinénsi8. Beissn. Tree, with glabrous branchlets: Ivs. with 2 white lines beneath: cones similar to those of L. occidentalis. China.-L. Griffithi, Hook. f. \& Thoms. Pyramidal tree, to 60 ft ., with spreading and pendulous branche 3 : lvs. soft, obtuse: cones $2-3$ in. long, oblong. with exserted and reflexed bracts. Himal. F.S. 12:126i-68. R.H. 1868, p. 371 . Gt. 20:685, flgs. 1-4. B.H. 22:10, figs. 4-6. G.C. II. 25:719; 26:465. - L. Kempferi, Gord. $=$ Pseudolarix Krempferi- $L$. Kempferi, Sarg, $=$ L. leptolepis. $-L$. Kolarix Krempferi- - L. Kımpferi, Sarg. $=$ Le leptolepis. $-L$. L. leptolepis, to 60 ft .: young branchlets deep bluish red, puL. leptolepis, to 70 ft : young branchlets deep bluish red, puberulous: lvs. rigid: bracts as long or somewhat shorter than
scales. N. Jap.-L. Lyalli, Parl. AMied to L. occidentalis, but scales. N. Jap.-L. Lyalli, Parl. ANied to L. occidentalis, but young cones deep purple, the scales with fringed margin. Brit. Col. to Wash. S.S. 12:595. G.C. II. 25:633; III. 23:357. Gt. $20: 685$, figs. 11-13. B.H. 22:9. figs. 1-3.-L. Nibirica. Ledeb. (L. Europar Sibirica and var. Rossica, Regel): Allied to L. decidua. Pyramidal tree, to 90 ft ., with ascending branches: lvs. longer: pistillate ths. usually green, sometimes brown: cones larger,with fewer but larger seales. Siberia. Gt.20:684, figs. 1-2. B.H. 22:7, figs. 2-3.

Alfred Rehder.
LARKSPUR. Species of Delphinium.
LASIAGROSTIS. See Stipa.
LASIANDRA. Sce Tibouchina.

LASTHENIA (name of a woman who was a pupil of Plato). Compósitce. Low, slender annuals with numerous inch-wide yellow flowers in early summer.
glabràta, Lindl. (L. Califórmica, Lindl. Homologyne glabrata, Bartl.). The plant cult. under this name is likely to be Baeria gracilis, which see. Height 1 ft. : lvs. much longer than in B. gracilis, strongly keeled, not hairy, or rarely pubescent: involucre enlarged below the flower. Calif. B.M. 3730. B.R. $21: 1780$ \& 1823.

LASTREA (C. J. L. Delastre, Austrian botanist). A name commonly used in England for species of Dryopteris. Also spelled Lastrace. On the basis of priority it has no claim to recognition, as it was established by Bory, in 18.4 , while we have Nephrodium, 1803; Aspidium, 1801; Tectaria, 1800; Polystichum, 1799. and Dryopteris, $176: 3$.
The following additional species of Dryopteris (Vol. $1, \mathrm{p} .508$ ) are in the American trade under the name Lastrea (the combinations are for Dryopteris, not Lastrea):

## Louest pinnue reduced to auricles: texture thin.

sá cta, Kuntze. Lus. 6-9 in. long, 1-2 in. wide on shor slender stems; lower pinne very much reduced; under surface glandular. West lndies.
palústris, Kuntze. Lvs. $2-3 \mathrm{ft}$. long, 8-12 in. wide, on long straw-colored stems; lower pinnareduced, the upper $3 / 4 \mathrm{in}$. Wide. cut down to the rachis into linear-oblong lobes. Brazil.
montàna, Kuntze. Lvs. 11⁄2-2 ft. long, 6-8 in. wide; lower pinnæe greatly reduced to mere auricles; upper pinnre 1 in. wide, cut into close blunt lobes. Eu., western N. America. A variety cristàto-grácile is also cult.

## AA. Louer pinnce scarcely reduced: texture firm.

rígida, Kuntze. Stipes stout, densely scaly: lvs. $1-1 \frac{1}{2} \mathrm{ft}$. long, $4-6 \mathrm{in}$. wide, oblong-Ianceolate, the lower pinne not reduced: segments with mucronate teeth. Eu. Var. argùta in Calif.
lépida, Moore. Lvs. $1 \frac{1}{2} \mathrm{ft}$. long, $6-7 \mathrm{in}$. Wide, ovate, bipinnatifid or bipinnate, the lower 4 or 5 pairs slightly smaller: indusia hairy. Of greenhouse origin, native country unknown.
Other species cultivated under the name Lastrea, as $L$. aristata and L. Richardsi, belong to the genus Polystichum, which see.
L. M. Underwood.

LATANIA (East Indian name). Palmàcex. Three species of fan palms from the Mascarene Islands. $L$. Borbonica is one of the dozen commonest trade names among palms, but the seeds offered under this name are said to be almost invariably those of Livistona Chinensis. Latania Borbonica of the botanists is properly Latania Commersonii, which has 3-seeded fruits, while those of Livistona Chinensis are 1 -seeded. Latanias are tall, spineless palms, with solitary robust annular trunks: lrs. anıple, terminal, long-petioled, suborbicnlar, palmately flabelliform, plicately multifid; segments smooth or spiny on the margins; rachis short: petiole 3 -sided, concave above; ligule conchoidal; sheath short; spadices many feet long, compressed at the base and branches. sheathed with incomplete sheaths: staminatefld. branches cylindrical, digitately arranged at the ends of the branches, very densely clothed with imbricated bracts: pistillate portion somewhat twisted. few-fld., sheathed with very broad dentate bracts: staminate fls. half-exserted beyond the bracts, the perianth smooth and shining: pistillate fls. larger: drupe globose, obovoid or pear-shaped, yellow. Allied genera are discriminated under Hyphierie.

> A. Lis. glaucous.

Loddigesii, Mart. (L. glaucophyilla, Hort.). Lrs. 3-5 ft. long, very glaucous, primary veins slightly tomentose beneath, tinged with red, especially in young plants; segments 2 ft . long, less than 3 in . wide, unequally acuminate, the edges spiny in young plants; petioles $3-41 / 2 \mathrm{ft}$. (or more) long, tomentose, entire in the mature, spiny in the young plant: drupe pear-shaped, 3 -angled, $21 / 2 \mathrm{in}$. long, $13 / 4$ in. thick. Mauritius.

## AA. Lis. not glaucous.

B. Petiole densely tomentose, with an orange margin.

Verschaffeltii, Lemaire (L. aürea, Duncan). Lvs. pale green, $41 / 2-5 \mathrm{ft}$. long, the segmeuts $21 / 2 \mathrm{ft}$. long, above 2 in. Wide, acuminate, the entire margins and veins slightly tomentose beneath; petioles $5-8 \mathrm{ft}$., densely tomentose, with entire orange margins, spiny in young plants: drupe slightly 3 -angled, 2 in. long, $1 \frac{1}{2}$ in. wide. Isl. Rodriguez. 1.H. 6: 29 .

BB. Peliole red, slightly tomentose.
Commersonii, Gmel. (L. rìbra, Jacq. L. Bórbonica, Lam., not Hort. ). Les. $5-51 / 2 \mathrm{ft}$. long, dark green above, paler beneath; segments lanceolate, acuminate, 2 ft . long, $31 / 4-3 \%$ in. wide, their margins entire, spiny in young plants, veins and margins tinged with red; petiole $\hat{i}-6$ ît., siightīy tonminose, ine margins smovih, spiny in young plants : drupe globose, $1 \frac{1}{2}-13 / 4 \mathrm{in}$. in diam. Mauritius. Not A.F. 4:567 and 7:127; A.G. 13:141; 15:389 and 19:557; V.9:199, all of which are Livistona Chinensis.

Jared G. Smith.
Latanias are essentially warmhouse palms and require moderate shading through the greater portion of the year, and also an abundance of water. A well-drained and rather light compost is most suitable for them, and if the soil at the time of repotting is of the same temperature as the house in which the plants are grown, there will be less risk of a check to the delicate rootlets. $L$. Commersonii is a particularly striking palm, the leaf-stems being quite long, smooth, and colored bright crimson, as are also the ribs of its fan-like leaves, this coloring being especially bright on the young foliage. L. Loddigesii is the strongest grower of the genus, the leafstalks reaching a length of about 8 ft ., usually chocolate-colored and quite glaucous, the leares thick and leathery and their ribs reddish while young, though never developing such bright tints as those of the preceding species. L. Verschaffe:tii is also very attractive, thongh possibly a little more delicate than the other two, its leafstalks being long and rather slender, and orange-yellow in color, the ribs of the leaflets also yellow and the leaves themselves of a light shade of green.
$L$. erecta and $L$. variegata are trade names, the former being advertised by Saul, 1893; the latter by Pitcher $\&$ Manda, 1895. Any specimens in cult. will probably be found to be varieties of some of the above.
W. H. Taplin.

LATHYRUS (name used by Theophrastus for some leguminous plant). Leguminossce. A genus of about 100 species, occurring in the northern hemisphere and in South America, consisting of annual and perennial, climbing and upright herbs with pinnate lvs., half-sagittate stipules and showy, papilionaceous flowers.
The genus is best known by the Sweet Pea. Most other forms are perennial, although some of these are cultivated as annuals. All are free-growing plants, so independent in their ways that they require a place to grow by themselves, apart from other plants of like habit or size. Hence they are to be grown alone, on trellises or against walls, or allowed to form a wild tangle among strong shrubs. The chief value of the annuals is for cut-flowers, though their part in the garden is not to be ignored. As a temporary screen in summer for shutting out unsightly objects, they are valuable, or for quickly covering trellises or rough places otherwise unsightly.
The perennials are of comparatively easy cultivation, succeeding in any garden soil. The annuals are more exacting in their requirements, demanding a moderately rich garden soil, abundant moisture, coolness and depth for their roots, and open sunlight. All are grown from seed, sown very early in the open to secure the required coolness for the roots. The perennials are propagated, in addition, by division, special varieties being increased by euttings in the fall, after the Howering season, or in spring, from old plants stored in the greenhouse. The roots of perennials are long and fleshy, and, when once established, continue for years without attention.

Orobus niger and rernus are common garden names, but Bentham \& Hooker make Orobus a subgenus of

## LATHYRUS

Lathyrus, characterized in part by the lack of tendrils. (See, also, Orobis.) Lathyrus has Ivs. equally pinnate, ending in a tendril or in a point; lfts. 2 or several; stip. ules leafy, large ind prominent, half-sagittate: fls. solitary or racemose, on long axillary peduncles; calyx ob-lique-campanulate, 5 -parted, the upper teeth often shorter; eurolla dark blue, violet, rose, white or yellow, or a union of these, the standard large, broadly obovate or roundish, notched, with a short claw, the wings fal-cate-obovate or oblong, the keel shorter than the wings, incurved, obtuse; stamens dia-

A. Habit climbing: les. tendril-bearing. (Lathymes.) B. Annuals: leaflets one pair.

1. odordtus. Linn. Street Pea. Stem rough-hairy, winged: lfts, oral or oblong, mucronulate; stipules lanceolate peduncle ${ }^{-1}-1$-fld., mnch longer than the lvs.: fls. in shades of blue, red, yellow and white, fragrant, the shield large and showy, expanded, sometimes "hooded:"pod 1-2 in. Summer. Sicily. B.M.60. - For culture and varieties, see Sucet Pea.
2. Tingitànus, Linn. Tangier Scarlet Pea. Fig. 1242. Sts. spreading, winged, glabrous, 3 ft . long: lfts. linear-ianceolate, obtuse, mucromulate: stipules lanceolate: peduncle $\mathbf{2}$-fld., longer than the lis.: fls. 1 in. long,
dark red-purple; shield large, purple, wings and keel bright red: pod 4-5 in. long. June, July. W. Medi terranean region. B.M. 100.-An earlier anmunl thm the Sweet Pea, and because of its vigor should be kept away from it or it will run it out.

BB. Perennials.

## C. Lis, with 1 pair of leaflets.

## D. Stipules narrow.

3. grandiflorus, Sibth. and Sm. Everlasting Pea. Two-flowered Pea. Stem winged, 4-6 ft. long: lfts. large, ovate, obtuse, mucronulate, undulate ; tendrils branched, short; stipules small: peduncles 2-3-fld., longer than the lvs.: shield large, obcordate, notched, broad, rose-purple, wings dark purple: pod linear, 3 in . June, July. S. Eu. B.M. 1938. - Larger vine than L. lutifolins, but weaker and less rampant. FIs. as large as those of the Sweet Pea. Free-flowering, succeeding in any soil, not requiring much light. Adapted to banks, along walk-margins in woods, among strong shrubs, and as a covering for rocks.
4. sylvestris, Linn. Flat Pea. Stem straggling or climbing, $3-5 \mathrm{ft}$. long, stout, winged, glabrous, with creeping rootstock: Ifts. linear-lanceolate, thick, with wingel leafstalk: peduncle $3-6$-fld., equaling the lis.: fls. $1 / \frac{1}{2}$ in long; standard rose, with green spot on its back; wings purple at summit; keel greenish: pod lanceolate, $2-3 \mathrm{in}$. long. All summer. All Europe, in thickets and rocky places. - Inferior ornamentally to other perennials, but valuable as a forage plant for cattle and for plowing under in a green state as a fertilizer. Grows well on poor, unimproved sandy soil, and is unaffected by frosts and droughts. For garien culture, it may be sown in a seed-bed and transplanted when of ,uitable size. Its seeds in the wild state are said to be to some degree unhealthful, but in the cultivated form this quality has been bred out.
5. rotundifolius, Willd. Persian Everlasting Pea. Low-growing, winged species : lfts. ovate; stipules toothed: peduncles many-fld., longer than the lis.: fis. large, rose-pink. June. Rus sia and the East. B.M. 65\%2.-A species of easy culture. requiring a cool, shady and sheltered position. Adapted to stony banks.
6. undulàtus, Boiss. (L. Síbthorpi, Baker). Stems twining, broadly winged : lfts. oblong: peduncle 5-6-fld.: fls. a maure-red. S.B.F.G.333. - A form intermediate between $L$. latifolius and $L$. votundifolius. A somewhat tender species, said to be 6 weeks earlier than any other.

DD. Stipules broad.
7. latifolius, Linn. Eterlasting Pea. Perennial Pea. Fig. 1243. Stem winged, $4-8 \mathrm{ft}$. : 1 fts . orate-elliptic or ovate-lanceolate, somewhat glaucous, mucronate, $2-3$ in. long; tendril branching: peduncle many-fld., longer than the lvs.: fis. rose, large : pod flat, $4-5$ in. long. Aug. Woods of Europe. - This is the common Perennial Pea, and one of the hardiest and most easily cultivated species, thriving almost anywhere, even amoug flags and boulders. A rampant grower, it is a good trellis plant, and is adapted as a cover to wild, rough places, where it scrambles orer bushes and stones. It succeeds in shade and grows rapidly, but, like all species of Lathyrus, it is impatient of removal, owing to the size and length of ts roots. Has no place in the border. Its varieties are not clearly defined. Var. albus, Hort., the white form, is adapted to the same uses as the type, and is, besides, valuable to florists wanting white flowers in midsummer. Var. spléndens, Hort., dark purple and red, is said to be the best form of the type, but does not come true from seed. There is a striped form. also. Other trade names are rars, albiflorus und grandiflorus.
8. Magellánicus, Lam. Lord Ansos's Blue. Stem $3-\overline{5} \mathrm{ft}$. long, smooth, angled, somewhat branched: lfts. orate or oblong-linear; tendrils branched: stipules cor-date-sagittate, broad: peduncles long, 3 - 4 -fld.: fls. dark purple-blue. June, July. Straits of Magellan. S.B.F.G. II. 344.-A strong-growing, woody, almost evergreen
species covered with a bluish bloom. Since it is a maritime plant, salt is said to assist its growth. It is sometimes regarded as an annual. Var. álbus, Hort., "Lokd Ansos's White," is the white form.

## cc. Le's. with more than 1 pair of leaflets.

9. palústris, Linn. Marsh Pea. Wing-stemmed Wild Pea. Stem slender, 1-3 ft. long, glabrons or somewhat pubescent, often winged, rather erect: lfts. 2-4 pairs, oblong-lanceolate, acute, 1-2 in. long: tendrils branched; sti les small, lanceolate: peduncles $2-8$-fll., scarcely longer than the lvs.: As. purplish, $1 / 2 \mathrm{in}$. long: pod 2 in . long. Summer. Northern N. America and N. Europe, in moist places. - A good bog plant. Var. myrtifolius, Gray (L. myrtiotliks, Muhl.). Myrtle leaved Marshpea. Has smaller, obtuse lvs., broader and larger stipules, the fls. pate purple. July. Aug. Banks of rivers, northern North America to N. C.
10. maritimus, Bigel. Sea or Seaside Pea. Beach Pea. Stem stout, $1-2 \mathrm{ft}$. long, angled, decumbent: Ifts. 3-6 pairs, ovate-oblong, thick, glaucous, nearly blue. 1-2 in. long; stipules leaf-like, broadly ovate and cor-date-hastate: peduncles $6-10$-fld., a little shorter than the lvs.: fls. purple; wings and keel paler. $3 / 4 \mathrm{in}$. long: pod $11 / 2 \mathrm{in}$. long, hairy. May-Ang. Gravelly seacoasts throughout northern hemisphere.-A spreading plant with creeping rootstock and of rapid growth, very tenacious of life. A good plant in rock gardens and in gravelly soil.
11. venòsus, Muhi. Showy Wild Pea. Stem stout, $2-3 \mathrm{ft}$. long, finely pubescent, strongly 4 -angled: lfts. 4-6 pairs, oblong ovate, obtuse, often pubescent below, 2 in. long; stipules narrow, short: peduncle crowded, 8 -16-fld., rather shorter than the 1rs.: fls. purple, 6-8 lines long: pod smooth. June. July. Shady places and along streams, Canada to Ga. S.B.F.G. Il. 37 .
12. splendens, Kellogg. Pride of California. Stem subshrubby, slender, more or less soft-pubescent: lfts. $4-6$, ovate-oblong to linear, $1 / 2-1 \mathrm{in}$. long, acute; stipules narrow: peduncle 6-12-fld.: tls. pale rose or violet, large. Dry hills of coast ranges, Calif. Gn. 52:1133.-A greenhouse plant 1 ft . long or more, becoming $8-10 \mathrm{ft}$. at home, where it dies down during the summer. Elsewhere it adapts itself to climate but is not hardy in N. United States. Sometimes confused with a variety of $L$. latifolius.


AA. Habit not climbing: les. not tendril-bearing. (Orobus.)
B. Fls. yellou.
13. montànus, Bernh. (Órobus lùteus, Linn. L. luteus, Baker). Stem simple, angled, smooth: lfts. $5-8$ pairs, large, elliptic-lanceolate, pointed, glaucous below: peduncles many-fld., a little shorter than the lvs.: fis. large, orange-yellow. June, July. Forests of the Alps.
S.B.F.G. II. 115. - A shade enduring species with fls. in erect, spike-like clusters and adapted to borders and rockeries.

## BB. F'ls. not yellor'.

14. polymorphus, Nutt. Praikie Vetculing. Stem rather stout, usuatly low, glabrous or thely pubescent, erect, a little woody at the base: Ifts. $3-6$ pairs, seattered, narrowly oblong, acute, thick, 1-2 in. long; stipules narrowly aenminate: peduncle $2-6$-fld., a little longer than the lvs.: fls. purple, large. March-July. Grassy, alluvial plains, Colo. to New Mex. and Ariz.
15. niger, Bernh. (Órobus niger, Linn.). Black Pea. Black Bitter Vetch. Stem erect or ascending. branched, angled, $1-2 \mathrm{ft}$. long: Ifts. 6-8 pairs, elliptical or ovate, $1 / 2-1 \mathrm{in}$. long, light green, turning black when drying; stipules narrow, small: peduncles 6-8-fld., longer than the lis.: fls. purple, small. June, July. Mountainous and rocky districts, Middle Europe. B.M. 2061.-Slender species, with short rootstock, succeeding in the shade.
16. vérnus, Bernh. (Órobus vérnus, Linn.). Sprivg Bitter Vetcif. Stem simple, somewhat pubescent, 1-2 ft. long: lfts. 2-3 puirs, ovate-acuminate, light green; stipules entire: peduncles $\bar{j}-7$-fld., shorter than the lvs.: Als. blue-violet; keel shaded with green, nodding. May, June. Hills and woods, S. and central Europe. B.M. 521. - The most popular Orobus; a compact, tufted plant, growing quickly in sun or a little shade; best in deep, sandy loam, in a sheltered position; hardy. Var. albus, a white form, is rare.
L. galegiformis and L. Helréticus are names in the American trade, but cannot be placed botanically.-L. tuberòsus. Linn. has been imported by an American amateur. It differs from all deseribed atove by having tubers. It is a native of the northern parts of the Old World, and bears red flowers, whlch are generally fewer and smaller than those of L. syivestris.
A. Phelps Wiman.

LAOREL. Properly Laurus nobilis, but other broadleaved evergreens have taken the name. In America, the Kalmias are known as Laurels. The Cherry Laurel is Prumus Lauro-certsus, and in America P. Carolinianu. Portugal-Laurel, is P. Lusitenict. Ground Laurel is Epigæa.

LAURESTINUS. Popular name of Viburnum Tinus. LAUROCERASUS. Consult Prumus.

LAURUS nobilis (Laurus is the ancient name) is the Sweet Bay tree of the florists, the most universal of all evergreen tub-plants. It is native to the Mediterranean region, sometimes attaining a height of 40 to 60 ft ., but rarely assuming a true tree-like form. As a cultivated subject, it is grown as a small standard tree, with a close-sheared top. The plant endures abuse and neglect, the head can be trimmed to almost any shape, and the growth may be kept within small limits year after year. F.R. 1:669 (Fig. 1244). It is, therefore, the most popular of plants for decoration of open-air or exposed restaurants, esplanades, architectural appurtenances, and the like. Although much used in Anierica, it is still more popular in Europe. Of the European dealers one may order plants with heads trained to pyramids, cones, globes, and the like, and with bodies long or short. The plant will endure considerable frost. It is grown in the open in England: "The Sweet Bay bush in the farmer's or cottage garden comes with its story from the streams of Grecee, where it seeks moisture in a thirsty land along with the wild Olive and the Arbutus. And this Sweet Bay is the Laurel of the poets, of the first and greatest of all poet and artist nations of the earth-the Laurel sacred to Apollo, and used in many ways in his worship, as we may see on coins, and in many other things that remain to us of the great peoples of the past" (Gn. 47, pp. 301, 307). Althongh so universally used, there are few important horticultural varieties,-the variegated-leaved and crisped-leaved forms being the best known. Prop. by cuttings, and sometimes by seeds.

Laurus gives name to the family Lauricea, which includes Cinnamomum. Camphora, Persen, Sassafras, Benzoin, and other genera. Many species have been re-
ferred to Laurus, but with the exception of two, these species are now placed in other genera. These two true Lauruses are L. nobilis, Linn. (the subject of this sketch), and I. Cumariensis, Webb \& Berth., of the Canary Islands. The ths. are dlacelons or perfect, small and inconspicuous, in swaii, axillary umbels; perianth with a short tube and a 4 -parted limb; stamens $8-12$ or more, and staminodia often present: ovary sunk in the receptacle, the style short: fr. a small berry.
The Sweet Bay (L. nobilis) has stiff, dull green, entire, alternate 1 Fs . lanceolate or lance-oblong in shape: yellowish fls. in early spring: succulent, purple, cherry-

like fruits. The lvs. are sometimes used in cookery and the making of confections, because of their pleasant aromatic Havor. The wreaths with which the heroes of antiquity were crowned were made of Laurel leares.

Laurus Benzoin of trade catalogues is Benzoin odoriferum. L. Sassafras is the Sassafras tree. L. Camphora is the Camphor tree (see Camphora and Cinnaмотит).
L. H. B.

It is estimated that sereral hundred thousand Bay Trees are sold every year in Europe and America. They are mostly imported from Belgium and Holland, where they are cult. as follows: Cuttings $3-4$ inches long from well-ripened wood are put in sharp sand, either under bell glasses or in glass cases. Bottom heat is not essential. After the cuttings have rooted, they are potted in small pots, in fairly rich sandy loam, with good drainage, and can then be put in a hotbed, with some gentle bottom heat, where they will at once make a good strong growth. After this they are, as a rule, planted in nursery rows, in rich sandy soil, with perfect drainage. They will make a strong shoot 3 to 5 feet in length in one season. These shoots are tied up to stakes. At the end of the growing season and long before the cold weather sets in, these young plants, together with their stakes, are taken up and put into their winter quarters, which, as a rule, is a well-lighted and ventilated shed-an ordinary barn-like shed, sometimes built several feet into the ground and provided with sky-lights and ventilators. These plants are set in close rows and watered once or twice a week, according to the weather. Little or no fire heat is used in these sheds unless the weather gets extremely cold. The temperature is kept just above freezing. In the spring they are taken out and either potted and plunged in nursery rows, or planted out, as before. Plenty of water, rich peaty soil and the congenial moist atmosphere near the seacoast induces them to make a fast and luxuriant growth. Thus they are cultivated continually until the plants have been trained into the desired form, and as soon as ther have attained enough of this form to show their character, which usually is from 5 to 6 years after propagation, they are planted in properly proportioned hardwood tubs and are then ready for the market, or to
be further cultivated, perhaps for a good many years, until they grow into large specimens. The trees are cut back and trimmed into shope once a year, after the new growth is well matured.

The peaty muck soil in which they are grown abroad is very deceptive to Americans, and many fine trees have been ruined by not understanding its nature. Its dark color always makes it look moist. Sometimes when the soil looks moist enough the trees are really dying from drought.

In retubbing trees there is danger of using for filling material a soil that is too heary. The water then runs into the new soil, leaving the old soildry. If the trouble is not detected soon the trees may be spoiled. The only thing to do in such cases is to comb out the old ball and cut back to live roots. The tree can then be planted in the open to gain a new set of roots, after which the top can be cut back to live wood. The tree may thus be eventually brought into a good shape again.

As a rule, Bay Trees are not good house plants. They do not like the dry heat of a dwelling. They can, however, stand considerable heat if they have plenty of fresh air and plenty of water. In spring and early summer, when they are making and finishing their growth, they can stand any quantity of liquid manure or of strong manure mulching, for they are great feeders. Many people erroneously suppose that this tree affords the bay rum of commerce. The cured leaves of the Sweet Bay are used in putting up packages of rice, and impart a rich and agreeable aroma. H. A. Siebrecht.

LAVANDULA (Latin, lavo, to wash; referring to the use of Lavender in the bath). Labidte. This genus in. cludes the Lavender ( I. vera), an ancient garden favorite because of its pleasant odor. The genus contains about 20 species, scattered from the Mediterranean region to India; perennial herbs, subshrubs or shrubs: lvs. commonly crowded at the base, pinnatifid or dissected : whorls 2-10-fld., crowded into long-peduncled cylindrical spikes, which are unbranched or branched from the base: nis. blue or violet; calyx tubular, 13-15striated, 5 -toothed ; corolla lobes nearly equal, or the posterior lip ?-cut, the anterior 3-cut; stamens 4, didynamous. declined, included in the tube; style shortly 2-cut at the apex. In the North, winter protection should be provided for Larender. The plant grows naturally in dry and hilly wastes. J. B. Keller advises a light, open soil.
A. Spike loose: upper floral les. fertile, shorter than the calyx.
B. Liss. not densely woolly.
vèra, DC. Lavender. Subshrub, 1-3 ft. high : Irs. oblong-linear or lanceolate, entire; younger ones often clustered in the axils, white-tomentose, revolute at the margins; older ones greener, $1-1 \frac{1}{2} \mathrm{in}$. long: spikes interrupted: whorls $6-10$-fld. Summer.
Splca, Car. Dwarfer than the true Larender, whiter, the Ivs. more crowded at the base of the branches, spike denser and shorter. The floral lrs. are lanceolate or linear (rhomboid-ovate acuminate in L.vera), and the bracts are linear-awl-shaped, shorter than the calyx, while in L. vera the bracts are almost absent.

## BB. In's. densely woolly.

lanàta, Boiss. Differs also from the preceding in haring much longer and less crowded spikes. Woolson says it grows 1-2 ft. high and needs winter protection at Passaic, N. J.
aA. Spike dense : upper floral lis.sterile, comose.

## B. Le's.entire.

Stæ̈chas, Linn. Shrub, 2-3 ft. high : lvs. tomentose, about $1 / 2 \mathrm{in}$. long : spikes short-peduncled, densely comose : fls. dark purple. Cult. only in S. Calif.

BB, Li's. obtusely pinnate-dentate.
dentata, Linn. Lrs. pubescent : spikes long-peduncled: Hs. deep purple. Mediterranean region. B.M. 400. -Int. 1900 by Franceschi.
W. M.

Larender (L. vera, DC.), a labiate shrub, 2-3, sometimes 6 ft . tall, with green or glaucous 1 rs , and flowers in cylindrical, terminal spikes, of a blue tint
named from them, is a native of Persia, the Canaries, and the Mediterranean region, covering vast tracts of dry land in Spain, Italy and southern France, cultivated largely in the last-named country and in the counties of Surrey and Hertfordshire, England.
In the eastern United States it is grown in but few gardens, but in California, where climatic and soil conditions seem favorable, it is more commonly planted, though not upon a commercial scale. The ilry soil of that state and the light limestone soil of the Black Belt of Alabama and adjacent states seem to be most inviting to this industry.
The generic name is derived from the ancient use of its flowers and leaves in bath perfumery. The flowers long retain their strong, fragrant olor after drying, and upon distillation yield a lemon-yellow, very fluid oil of aromatic, bitterish, burning taste. Though this is officinally credited with stimulant and tonic properties, it is seldom administered in the pure state. Its chief uses are in the manufacture of perfumery, aromatic vinegar and lavender water, an alcoholic solution of the oil and other odorous substances. For these purposes, English oil has long commanded the highest price, but recently the French product has been claimed superior. Though all parts of the plant are aromatic, and both leaves and flower-stems are used in oil manufacture, oil obtained in the first half hour of distillation from flowers alone is much superior to the later distillate and also to the oil obtained from a mixture of flowers and stems. These grades, and also the highly valued product of very dry seasons, are always sold separately.

Lavender is best propagated by cuttings of one senson's growth taken with a heel of older wood, in late autumn or early spring. When set 3-4 in. asunder in rather moist soil and shaded, they strike more readily and produce more symmetrical plants than older wood. Seed does not propagate desired varieties, and division is not advised, since plants so obtained are more susceptible to disease than those made from young-wood cuttings. After danger of frost, the 1 -year-old plants are set 4 ft . asunder in rows 6 ft . apart, running north and south. Closer planting and the hedge-methot yield a smaller quantity of bloom. Dry, light, calcareous, even stony soils upon sites where sun and air are unimpeded by trees, etc., favor this plant. Upon such fewer are injured by frost, and the oil is of superior quality. In moist soil so much water enters the plant as to enfeeble it, and upon rich lands yield and quality both suffer. Light fertilizing with stable manure or ashes turned under in autumn, and spring harrowing, are advised. During the first year in the field the plants should be clipped to prevent flowering and to encourage stockiness. Vigorous plants so treated may grow to a height and a diameter of 5 ft ., and when $2-4$ years old produce secondary bloom spikes after the general harvest, which usually occurs in early August. Plantations should be destroyed when 4-6 years old and the land rested with other crops before setting to Lavender again. Cutting in clear weather, in early blossom, before the dew is off and at once distilling give best results; but no delay should oceur. Cutting in wet weather, in the heat of the day, holding blossoms long before distilling and exposing them to the sun after cutting result in serious losses. One pound of flowers yields from $1 / 2-1$ drachm of oil, and an acre from $10-25$ pounds. The annual output of the stills of Grasse, France, is from 80,000 to 100,000 kilogrammes.
"Oil of spike," obtained from a broad-leaved, much whiter and smaller species (L. Spica), is less fragrant than true Lavender oil, being analogous to oil of turpentine, with which it is often adulterated. It suggests the odor of rancid cocoanut oil. Officinally, it is credited with carminative and stimulant properties, and has been found useful in nervous languor and headache. It is used by artists in the manufacture of varnishes, by porcelain painters, and to a small extent in perfumery, mainly as an adulterant. From 20.000 to 25,000 kilogrammes are annually produced at Grasse.
M. G. Kains.

LAVATERA (two Larater brothers, physicians and naturalists at Zurich, friends of Tournefort). Maledcere. About 18 species of widely scattered herbs, shrubs and
trees, tomentose or hairy: Ivs. angled or lobed: fls. sometimes ${ }^{\prime}-4 \mathrm{in}$. across, variously colored, rarely yellow, solitary in the axils or borne in terminal racemes; column of stamens divided at the summit into an indetlnite number of flaments; petals $\overline{5}$.

The genus has 5 near allies of garden value, which are all distinguishable by their bractlets. In Lavatera and Althea they are grown together at the base; in Malva and Callirhoee they are free all the way, sometimes absent in Callirhoe; Sidalcea has none at all. Lavatera is further distinguished from Althea by having : $3-6$ bractlets (Althaa having 6-9), and the axis of the fruit surpassing the carpels, which is not the case in Althrea. These plants are of the easiest culture, the flrst species being the commonest, and all prop. by seeds. There seem to be no double forms. They are far less popular than Hollyhocks.

## A. Anииal, herbaceous.

trimestris, Linn. Height 3-6 ft. : Ivs. nearly glabrous, upper ones angled: fls. rosy, 4 in . across: receptacle or axis of the fr. expanded at the apex into a disk, inclosing the ovary. Mediterranean region. Var. alba has white fls. Gn. 24, p. 89; 51, p. 212 and 53:1154. B.M. 109.

AA. Biennial or perennial, shrubby or tree-like.

## B. Foliage variegated.

arborea, Linn. Biennial, woody at the base, with annual flowering branches, forming a shrub $3-5 \mathrm{ft}$. high or less: lys. 5-9-lobed, softly downy on both sides, rarely nearly glabrous: tls. pale purple-red, about 2 in. across: receptacle small, marked with little pits, not exserted. Cult. only in the form of var. variegata, which has mottled lvs. Gn. 23, p. 114. V.8:99.

## BB. Foliage not variegated.

## c. Fls. 1-4 in the axils, pedicelled.

assurgentiflora, Kellogg. Presumably perennial, shrubby, $6-15 \mathrm{ft}$. high: Ivs. glabrous or sparingly stel-late-pubescent, $5-7$-lobed, $3-6$ in. wide: fls. purple; petals $1-1 / 1 / 2$ in. long, with long, narrow, glabrous claws, and a pair of dense, hairy tufts at the base: axis of the fr. low-conical, about as long as the carpels. Anacapa Island. Cult. only in S. Calif.-Franceschi says it makes a large, round-headed shrub, with large red fis., and is one of the best plants to stand saline winds.

> cc. Fls. solitary, sessile.

Olbia, Linn. Perennial, shrubby, about 6 ft . high: hairs of the stem pilose, somewhat clustered, distant: Ivs. softly tomentose, lower ones 5 -lobed, upper 3-lobed, highest oblong, scarcely divided: fls. reddish purple. S. Eu. - Not advertised in America, but commonly cult. in England, where it occasionally sows itself. W. M.

## LAVENDER. See Latandula.

LAVENDER COTTON is Stentoline Chamecyparissus.
LAVIA, of one nursery catalogue, is a typographical error for Layia.

LAWN. For most people the word Lawn bears a rague meaning, compounded of their recollection of grass-covered spaces dotted over with trees and shrubs, and of broad areas covered simply with closely-mown turf. Both are correct impressions: but the more important feature is that a Lawn shall be an open area of grass space (Figs. 1245, 1246). Many exceptions or additions to this definition may, howerer, be admitted. A great white oak, for instance, rugged and picturesque against the evening sky, needs only to be seen to furnish an ample excuse for its retention on any Lawn. But this would be a happy chance, not affe eting the principles which should govern the construction of a Lawn on an open area.

It may readily appear that the Lawn will. as originally designed, prove too sunny or too strongly wind-swept over its extended expanse; but the remedy for this will be found to lie not so much in planting single trees or detached groups of trees over the uncovered area, as in extending limbs, points, promontories and peninsulas of trees, or trees and shrubs, directly out from the main

1245. An open area of ${ }^{2}$ ass space.
body of bordering plantations whieh will us,ually frame the Lawn and the different pictures that will appear in any properly unified scheme of landscapo gardening. The art of the designer will display itself in determining the relative sizes of the Lawns and these enclosing or framing plantations. A careful eye must, ot course, be given to the individuality of the Lawn itself, which should never be allowed to merge into the neighboring plantations. A like principle applies to all kinds of art -it is fundamental and vital in its character. The reader may fancy that its application would tend to limit the beauty of landscape gardening by eliminating certain features of natural beanty, such as trees, shrubs and beds of flowers, but, if he will look at an open Lawn with discerning and sympathetic eyes, he will find that the "moving cloud-shadows, waving grass, rich patches of dark and light green, studded with the starry radiance of the humble flora of the grass, and the hundred incidents of blazing or subdued color and form that appear on the surface of an open meadow," need no added beauty of tree or shrub to perfect their nearly unapproachable loveliness. So important does the writer consider the essential and peculiar beauty of the Lawn as distinguished from that of any other part of the home domain, that he always feels inclined to term it the true focus of the picture, the central point of interest in any landscape gardening design.

This being the case, it behooves us always to litarally leave no stone unturned or elod of earth untilled and unfertilized in order to obtain a satisfactory open Lawn. Did the reader ever really see such an one? Let him answer frankly to himself whether he has or has not seen a Lawn which showed no traces of twitch grass and other early weeds in July, nor any summer grass and later weeds in August and September, -above all, a Lawn which would stand a protracted drought without artificial watering. Very likely he will think it is impossible to make such a Lawn under the conditions of soil and elimate which each and all of us are likely to believe specially characteristic of the spot of ground on which we live. Perhaps, on the other hand, he will declare that he has seen such a Lawn in some remote place, but if we question him, ten chances to one we shall find that his observation of this exceptional Lawn is limited-that he has not wintered and summered near it, or seen it during its periods of "storm and stress." The writer knows one place where such a Lawn can be seen, and he refers to it, not because it is properly a Lawn, for it lacks the requisite framing plantations; but it is perfect in the first essential of a good Lawn-it is a piece of perfect Lawn grass. A brief description will show how this standard of excellence was reached. The Lawn consists of small patches of grass turf on a private farm in Manchester, Conn. Each patch was worked and turned over with various ingeniously contrived hoes, forks and rakes until the last lurking weed was removed that could be found by dint of skill and untiring patience. The soil was that of an old garden, and naturally good. It was tilled in the most thorongh manner and not fertilized at all, for fear new weeds be introduced. Then, in this mellow and receptive medium, were set euttings or joints of the hardiest and most luxuriant varieties of grasses

## LAWN

which had been discovered by months and even years of keen and intelligent search in the old mealows of both the Old and the New World from Austria to Aus. tralia. The result is ait elastic firmness, an endurance, depth and richness of the turf which suggests to the tread the deep pile of some Eastern carpet woven in $\mathfrak{a}$ hand-loom.

But all can not attain this standard on their Lawns. For those who do not look higher than the ordinary standard-and even this is none too often lesired, or even understood, by the general public-the following directions for Lawn making may be given:

1. The Lawn should be carefully graded, either convex, level or concave, in such comparativelv long, suave and graceful lines as will accord with the peculiar conformation of the ground (Fig. 1247).
2. Plow, harrow or spade, and fork the soil of the Lawn to a depth of two feet, if possible, and keep removing the stones and hurning the gathered rubbish for several weeks, or as long as you can persuade yourself in do it, or pay any one else to do it, with the full assurance that no matter how muck you do, you will not be likely to destroy all the weeds and win the very best possible results.
3. Enrich the soil by a covering of still richer mold. Next to this in efficiency are bone dust, superphosphate of lime, nitrate of soda, and nitrogenola manures like ground flesh and bone mixed in proportions suited to the special soil, which may vary materially in a distance of a few hundred yards. The usual proportions are one ton to the acre of ordinary artificial fertilizers, such as superphosphate of lime and bone dust, or 15 to 25 of well-rotted stable manure. If artificial fertilizers are not available, then take cow manure, sheep manure, or last of all, because it is the most productive of weeds, ordinary stable manure. These natural manures are, after all, the best, save for their weed-bearing qualities. They will need composting with several times their bulk of good soil and evenly spreading and harrowing u: raking in throughout the surface of the Lawn.
4. For turfing, the cleanest grass seed that can be obtained at any price will be found the best in the end.

5. Ground plan of a nature-like ga en.

To show relative importance of lawn and planting.
The bulk of this seed should be Kentucky blue-grass or June-grass (Poa pratensis) mixed with red-top or herd'sgrass (Agrostis alba, var. vulgaris), or Agrostis canina, the Rhode Island bent-grass. The adrantage of using sereral kinds of grass is that the first-comers hold possession of the ground against incursions of weeds until the stronger but slower-growing Kentucky blue-grass
gets complete root-hold, when, in the struggle for life, the earlier growths of grass, being weaker, go to the wall and are crowded out of existence. How fine this blue-grass may become under favorable conditions it will be needless to point out to those who have seen the grass meadows of Kentucky.
5. On a quiet day the seed should be sown erenly over the Lawn surface-a task which can be well done only by much skill and experience. The ground will then need careful raking with a fine-toothed iron rake,
or Capriola), a plant of trailing and stoloniferous habit. Although it is known throughout the southern states under the name of Bermuda, it is, however, a native grass of Bengal and other sections of India, and found, also, in Corea. In Bengal it is known as "Doob grass," :nd there highly prized for its vigorous grewth of a sue, dark hue, and thriving where scarcsly any other kind will. This grass has lecome widely disseminated throughout the South, where it has received both the harshest possible reputation as a nuisance when allowed to take a foothold in cultivated fields and gar dens, as well as unstinte? praise from those who have learned its great raiae as a pasture, hay or Lawn grass.

When required for Lawns, the roots should be cut in short lengths, - passing them through a hay eutter is the most expeditions. Let the ground be well and deeply plowed or dug, well manured, and after sowing the pieces of grass roots they must be either raked or harrowed in, then the surface made perfectly level by rolling; or, where the area is limited, the roots may be planted 6 inches apart. Plant at any time during February or Mareh, or in the fall if preferred. If during the spring the soil should become very dry, an occasional watering, where this is practicalle, should be attended to until the grass is well established. Neither excessive heat or cold will kill the roots if left undisturbed, but plowing up during warm weather will soon rid the ground of the roots if this is desired. As the new growth attains a few inches in height, use the Lawn mower every week or ten days during moist weather, but even during dry weather tiof grass must be kept occasionally clipped to prevent flowering. If the growth is not vigorous, apply a top-dressing of bone meal. In the fall a eoat of well-rotted stable manure should be given; this may be raked off early in the spring, previously running a sharp-toothed harrow over the Lawn, and finally rolling it well. In this way a permanent and good Lawn may be seeured with rery little additional expeuse. Any soil, unless naturally very wet, will suit Bermuda grass.

Paspalum distichum, or "Joint grass," is native of the southern states, and usually found in moist or low grounds. It can be utilized in soils which are too wet to suit the Bermuda, but at best makes an indifferent Lawn, as it is of low-creeping and not sufficiently dense habit.

Rottbollia rugosa, known on the coast belt and Florida as "Goose grass" (St. Augustine grass), is an erest-growing perennial plant, with flat or channelled leaves. It is found in pine-barren swamps and ponds from Florida to North Carolina, and being well adapted to the sandy soils of the cosst, even those which are commonly termed salt-water lands, it is therefore valuable for such localities. As for the Bermuda, the soil should be well fertilized and prepared. The rootlets are planted in rows a few inches apart. As the growth begins, repeated clippings are required. While it makes a coarse sod, still its bright green color and adaptability to soils where few other grasses of low growth are possible, makes it a valuable plant for Lawns.

Many Lawns are injured by allowing other grasses to take a foothold. Sporobolus Imlicus, or "Smut grass." was originally introtuced from the West Indies. It soon forms large tufts, with tall, wiry stems, whose panicles are usually covered with a black fungous growth. Aristida purpurascens, or "Broom Sedge," will soon deface a Lawn if left undisturbed. Both should be eradicated as soon as they appear.
P. J. Berckmans.

LAWSONIA (after Dr. Lawson, who published in 1709, at London. an account of his botanical journey in Carolina). Ly(hrdece. This genus includes a tropical slirnb, cult. in Europe under glass for ormament and outdoors in the tropics throughont the world. Its fragrant white tls. prodace the henna or alhenna of the Arabs (Cyprus of the ancients), which is used in Egypt and elsewhere by women to color their naiis. and by men to dye their heards. In America it scems to be cult. only in S. Calif. and S. Fla.

Lawsonia is a genus with perhaps only one species, a
glabrous shrub, with branches spiny or not. Important generic characters are: calyx 4-parted: petals 4: stamens 8: capsule globose, 4 -celled, rupturing irregularly.
álba, Lam. Henna Plant. Lus. opposite, oval-lanceolate, entire, short-stalked : fls. panicled. Native to India, the Urient, N. Afr. Naturalized in West Indies.

LAYERING. Figs. 1248-1253. Lavering is the process by whic' a part of a plant stem is made to produce roots while still attached to and nourished by the parent plant, so that it may be able to maintain an independent growth. The tendency, under favorable conditions, to produce roots from the car bium zone of some part of the stem is manifested by many plants, especially in the tropies. It may be noticed in the species of Ficus cultivated in the greenhouse, in Epigra and Rhus Toxicodendron in the woods, in tomato vines in the garden, in grape canes lying on the ground, and frequently in young apple trees when the trunk becomes covered with earth to an unusual depth. With most such plants, rooting by detached parts is easily accomplished, and this being more convenient, layering is generally practiced only with those plants which do not root readily from cuttings.
The mode of root-production is essentially the same in either case. The right conditions as to moisture, temperature, food supply, etc., seem to stimulate the formation of one or more growing points in the cambium zone. The multiplying cells force their way through the bark, and if favorable soil contact is secured, supporting roots are soon developed. The same results may come, sometimes more readily, from or near a callus formed in the effort to heal a cut surface. It is when the food supply is defieient or the cell action is so slow that the detached part would perish before supporting roots could be established, that rooting while the parts are still attached to and nourished by the parent plant need be employed.
The different methods of Layering are simply matters of detail adapted to the varying natures of the plants to be dealt with. Usually branches are selected of rather young wood, which can easily be brought under the soil and which, when rooted, can be removed without damage to the old plant. The most farorable season is generally the spring or time of most rapid cell growth.

1248. A layer notched at the botom.

The methods of Layering may be represented in the following diagram:

| METHOLS OF LATERING |  |
| :---: | :---: |
| Trees and Shrtbs | Booved branchBark ruptured. Bark ringed. Tongue cut. Tip layerel. |
|  |  |
|  |  |
|  |  |
|  |  |
|  | Mound- or stool-layer. |
|  | Potted or aëriad layer. |
| Vinesand | Simple layer. |
|  | Trench layer. |

As shown in Fig. 1248. a suitable branch is bent to the ground and held in place by a forked pin, so that a por-

## LAYERING

tion of it is corered with 2 or 3 inches of rich earth, the end being bent to an upright position and fastened to a stake. The bend and consequent rupture of the bark may be all that is needed to obstruct the morement of food-material and cause the development of roots at this


## 1249. A layer ringed or girdled at the bottom.

point. If not, a tongue mar be cut not deeper than onethird of the thickness of the branch from below upwards and near a bud or node. In Fig. 1249 a layered branch is shown with a ring of bark removed, a good practice with thick, hard-barked species.

For many low-branched shrubs, mound-or stool-layers are prepared (Fig. 1250), as follows: In the spring, heal the bush hack to a series of stubs, which will produce a large nun rof vigorous young shoots. Bymidsummer, in some eaves, or the following spring, a mound of earth is thrown around the old stool and the base of the new shoots, and from these latter abundant rooting is secured, so that by the following autumn or spring they may be separated and set in nursery rows.

When a branch cannot be brought to the ground, sometimes the earth is brought to the branch by clasping the halves of a broken or specially made pot around a tongued or girdled branch and filling in earth and sphagnum moss to retain the moisture; or the moss may be held in place by a cone of strong paper (Fig. 1251). It may be necessary to support the pot with a light stand of stakes. Where a moist atmosphere is retained, as in a conservatory, merely a ball of sphagnum bound around the branch with twine will serve an equally good purpose with less trouble. This kind of propagation is known as air-layering, Chinese layering or circumposition.

In the case of rines, a cane may be laid horizontally in a shallow trench, covering a few inehes to induce rooting, and leaving a node or two exposed for growth, and so on to the end, as shown by Fig. 1959. After young shoots are well started from the
 uncorered buds, the
1250. Mound- or Stool-Layering. earth may be filled in to the level of the dotted line.

In Fig. JO53 is shown what is often called the serpentine layer, in which the cane is bent, portions being covered and the intervals left above the ground. It is said that by this means the tendency of the sap to flow to the extremity and there make the strongest growth, is overcome, and even rooting secured the whole length of the canc. This method is often used with quick-growing vines like clematis and wistaria, from which it is possible to secure a succession of layers from the anmual growth during spring and early summer.

All of the toregoing operations will be found more readily successful in the more moist situations; more successful in the nearly saturated atmosphere of the southern states, for instance, than in the comparatively dry conditions of the prairie states. S. C. Mason.

LAYIA (Thomas Lay, naturalist in the Beechey voyage). Compósite. About $1: 3$ species of California annuals, with yellow or white fls. in spring or early summer. Les. chiefly alternate, all entire or some, particalarly the lower, with about 2 pairs of linear side lobes above the middle of the leaf. For general culture they are probably inferior to Mudia eleguns, which has a similar habit and is distinguished by the blood-colored spot at the base of the rays. The fls. in Layia are about $1-1 / 2$ in. across, and the rays are distinctly 3 -toothed. The species described below are diffuse, much-branched and about a foot high. It is prohable that for best results they should be started early indoors, and transplanted outdoors in May. Easy to grow.
A. Rays entirely white.
glanduldsa, Hook. Hispid, sometimes glandular: lvs. $1-11 / 2$ in. long, - lines broad, linear, the upper ones all entire: rays $8-{ }^{-} \quad$ B.M. 6856. - Not cult., but desirable.

AA. Ruys yellow, sometimes tipped white B. Plants hairy.
elegans, Torr. \& Gray. All the upper lvs. entire: rays 10-12, yellow, rarely white-tipped: pappus white or whit-

1251. Air-Layering.
ish, its copious villous hairs much shorter than the awnshaped bristles, which are long plumose below the middle. This and the next hare a few small, scattered, stalked glands which are wanting from the last two. Gn. 31, p. 465.-Procurable from western collectors. Perhaps the best of the genus.
platyglossa, Gray. Some of the upper lvs. pinnatifid: rays light yellow, commonly whitetipped : pappus of stout, awn-like bristles which are upwardly scabrous. B.M. 3719.-Cult. in Eu.

BB. Plants not heiry or at most minutely pubescent.
Calliglossa, Gray. Akenes rillous-pubescent or partly slabrate: pappus of $10-18$ very unequal and rigid awl-shaped awns. B. R. 20: 1850 (erroneously as Orymor chrysunthemoides).
chrysanthemoides, Gray (Oryùra chrysanthemoines, DC.). Akenes wholly glabrous, hroader: pappus none. Not B.R. 22:1850, whieh is the above. According to Thorburn this is a hardy anmual trailer with white As., blooming in summer and autumn.

LEAD PLANT is A morpha canescens.
LEADWORT. Plumbago.

LEATHER FLOWER. Clematis Viorma. L. Jacket. Euculyptus punctate. L. Leaf. Chamedaphne. L. Wood. Direa palustris; also Cyrilla.

1252. A horizontal multiple layer.

LEBIDIEROPSIS (Greek; resembling Lebidiera, it genus now included in Cleistanthis). Euphorbidee(p. This genus includes a small tree with very hard wood, and of unknown value, introduced from a botanical garden of northern India by Reasoner Bros., Oneco, Fla. Lebidieropsis was reduced by Bentham and Hooker to the rank of a subgenus of Cleistanthus, but in the Flora of British India Hooker says that Lebidieropsis sthould probably be restored, the seeds being glohose, while in Cleistanthus ther are always oblong. The seeds also differ in structure. Generic characters of Cleistanthus are: trees or shrubs; 1vs. alternate, 2 -ranked, entire: ils. smill or minute, in axillary clusters and spikes, moncecious; calyx 5 -eleft or 4 - 6 -cleft; petals as many, minute; stamens 5; filaments united in a column in the center of the disk: ovary 3 -celled.
orbiculàris, Muell., Arg. Lrs. 11/2-4 in. long, $11 / 2-3$ in. wide, leathery, broadly obovate or elliptic, tip rounded or retuse, glancous beneath, nerves $5-8$ pairs: fls. silky, 3-6 in a cluster: petals theshy, narrow: seeds $\underset{\text { lines }}{ }$ thick, chestmut-brown, with seanty albumen. Hooker does not recognize the 3 varieties distinguished by Mueller on the shape and hairiness of the lis.
LIDOM (ledon, ancient Greek name of Cistus). Ericicece. Labraion Tea. Ornamental low evergreen shrubs with alternate, entire, short-petioled lvs., slightly fragrant when bruised, and with handsome white fls. in terminal umbels, appearing in early summer. They are all hardy North, and well adapted for borders of evergreen shrubberies or for planting in swampy situations. They thrive as well in sunny as in partly shaded situations, and prefer a moist, sandy and peaty soil. Transplanting is easy. if the plants are moved with a sufficient ball of earth. Prop. by seeds sown in spring in sandy

1253. Serpentine Layering.
peat and treated like those of Azalea and Rhododendron, the young plants growing but slowly; increased also by layers and division. Three species in the arctic and cold regions of the northern hemispliere, all found
in N. America. Allied to Rhododendron, but corolla polypetalous. Fls. rather small, $1 / 3-1 / 2 \mathrm{in}$. across, longpedicelied, in terminal, umbel-like racemes; calyx lobes and petals 5 , spreading; stamens $\mathbf{5}^{-10}$ : capsule nodding. 5 -celled, separating from the base into 5 vaives, with many minute seeds. The lvs. contain a volatile oil, with narcotic properties; the lvs. of $L$. latifolium are said to have been used during the war of independence as a substitute for tea, hence the name "Labrador Tea."
palústre, Linn. Wild Rosemary. One to 2 ft . high: lvs. linear or linear-oblong, revolute at the margin, dark green and somewhat rugose above, densely ferrugineoustomentose beneath like the young branches, $1 / 2-1 \frac{1}{2}$ in. long: stamens 10: capsule ovate. May, June. N. hemisphere, in N. America from Newfoundland to Alaska. L.B.C. 6:560. Var. dilatàtum, Gray. Lvs. broader: capsule more oblong. N.W. coast of N. Amer., Japan. Var. decumbens, Ait. With procumbent stems and shorter usually oval lvs.
latifolium, Ait. (L. Groenlíndicum, Oeder). One to 3 ft ., similar to the former, but les. broader, oblong or linear-oblong, 1-2 in. long, tomentum beneath often whitish at first: stamens $\overline{5}-7$ : capsule oblong. May, June. Canada to Brit. Col., south to Pa. and Wis. L. B. C. 6:534 and 11:1049 (as L. canadense). J. H. III. 31:20 (as L. palustre). Gn. 34, p. 31.
L. buxifolium. Berg. $=$ Letophyllum buxifolium.-L. glandulòsum, Nutt. Shrub, to 6 ft, : lvs. oblong or oval, glabrous. glancons and glandular beneath: stamens 10. July, Aug. B.C. to Calif. B.M. 7610 .

Alfred Rehder.
LEEA (James Lee, Scotch nurseryman, 1715-1795). Leedcec. About 20 species of tropical, oriental small trees or shrubs, some of which are cult. as young plants in warm conservatories for their colored foliage and stately habit. Lvs. alternate, 1-3 times pinnate; lfts. entire or serrate; tendrils none: fls. small or large, red, yellow or green, in cymes; calyx 5 -toothed; petals 5 , connate at the base and with the tube of stamens: ovary 3-6-celled; cells l-ovuled: fr. a berry. By Bentham and Hooker this genus was placed in the order Ampelideæ. which others call Vitacea. Vitis differs in haring the climbing habit, ovary 2 -celled; cells 2 -ovuled. The first species mentioned seems to be valued particularly for its $\mathrm{fls}$. : the others are foliage plants which are presumably distinct horticulturally, but 2 of them may not bo good botanical species, and cannot be distinguished without a knowledge of the flowers.

Leeas are tropical house plants. L. amabilis has beautiful, silvery, vine-like foliage. It makes a handsome plant for pillar-posts, and does exceedingly well planted out; but it should be given a season of rest during winter time by a partial drying out, when it will loose most, if not all, its foliage. This practice should be followed in any case. It may also be grown as a trained specimen in pots. Peaty soil is often recommended, but good light loam, with plenty of drainage. does equally well.

## A. Foliage green.

coccinea, Planch. Les. 3-pinnate; lfts. 5 on each main division of the leaf, oblong-lanceolate, dentate, margin recurved: fls. 60 or more in a trichotomous, flat-topped cluster about 3 in . across, scarlet in bud, the 5 spreading lobes of the corolla pink above; stamens yellow, exserted, each A. about $1 / 2 \mathrm{in}$. across. Burma. B.M. 5299. - It begins to Hower when only a foot high, but the main stalk of the clusters is only an inch or so long. Adv. by John Saul, 1893.

## AA. Foliage colored or variegated.

## B. Lus. marked bright red; veins white.

Micholítzii, Hort. Introduced by Sander \& Co., 1899, from Guinea, but not distinguished in their description from L. amabilis, var. splendens, which is probably still cult. in Eu.
amábilis, Hort. Veitch. Lvs, pinnate; lfts. 5 or 7, lanceolate, acuminate, serrate, upper surface velvety, deep bronzy green, with a broad white stripe; veins white at the bases : young lvs. pale pinkish brown. G.C. II. 1-:493. Gn.'21, p. 352. Var. spléndens, Lind., is marked with bright red and has a red stem. I.H. 31:518.

BB. Le's. flushed bronze ; veins rosy.
sambucina, Willd. (L. Ræhrsidna, Hort. Sander). Lvs. pinnate; lfts. $61 / 2 \mathrm{in}$. long, $21 / 2 \mathrm{in}$. wide, oblong, cordate at the base, acuminate, coarsely crenate. India, Malaya, Philippines, trop. Australia. A very variable species. The above synonymy is the judgment of M. T. Masters in G.C. 1II. $23: 245$. F.E. 10:554. A.F. 13:1284. Ging. 6:278.
T. D. Hatfield and W. M.

LEEK (Allium Porrum), a flat-lea: nd, bulbous, hardy biennial, is probably a native of the Mediterranean region, where, particularly in Egypt, it has been used for culinary and medicinal purposes since prehistoric time. All parts of the plant possess an offensive, pungent odor and acrid taste due to an essential oil characteristic of its close relative, the onion. In medicine, the bulb, like the onion, is used as a renal stimulant. The blanched stems and leaves are much employed in continental cookery as a flavoring for soups, stews, etc., boiled and served like asparagus, and in the raw state. Except in the larger cities and among our foreign population, the Leek is little used in America. The seed should be sown in a well-prepared. light, deep, rich, moist loam in a nursery bed or coldframe. The site should be open, the subsoil dry. When six or eight weeks old, or about $\overline{5}$ inches tall, the young plants should be set 9 inches asunder, in drills 3 to 6 inches deep and 18 inches apart. Shortening both roots and stems is often advised. As the plants grow, the soil should be drawn loosely round the stems and lower leaves to insure blanching. When blanched Leeks are not desired, the plants may be cultivated like onions;

1254. A papilionaceous flower-Sweet Pea.

Showing the banner, standard or vexillum at $s$; the wings at $w$; the keel at $k$.
indeed, except for earthing up, the cultural methods employed for these two crops are identical. Leeks are marketed in bunches like young onions and, for winter use, are stored like celery. As a second crop to follow early cabbage, spinach, etc., they are in general favor with market-gardeners. In soups and stews the rank odor disappears, leaving a mild and agreeable flavor.
M. G. Kains.

Leek, though of the onion family, and also a biennial, is differently treated and used. The object in its cultivation is to develop the leaves in such a manner that they become numerons; the flower-stem does not appear before the second year, hence the necessity of growing it to full size the first year.
Sow the seed in March in a seed-bed (with slight bottom heat), in drills 2 or 3 inches apart; when large enough, thin out to stand 1 inch apart in the row, as they may attain the thickness of a fair-sized straw. In May or early June the seedlings are transplanted in the open ground; they are then cut half-way down and should also be set deep, so they will begin blanching when they attain a fair size. The soil best suited is a rich, moist, light loam; prior to the transplanting it should be well prepared with well-rotted stable manure, if possible. The plants are generally set in drills 12 to 15 inches apart, and 6 to 9 inches apart in the drills. They should be well cultivated, and when growing freely should be earthed up slightly with the hand cultivator or hand-hoe. Some of the successful gardeners still cultivate them on the celery-trenching system; by this means they can be watered more thoroughly and
will attain a much larger size; also can be conveniently left in the trench with slight protection, and taken therefrom for winter use. Care must be taken not to cover too early, as they decay easily, beginning at the end of

1255. Essential organs of a Sweet Pea flower. Calyx at C; tenth stamen at A; stigma at E.
the foliage; this destroys their appearance. The hardier kinds are used for this purpose and will blanch yellow down to the so-called stem, which is white to the root. Leeks planted out in May are ready for use in September; the sowings can be made earlier and later to crit the time of maturing, and can be sown in August and September in coldframes and wintered over with slight protection, then transplanted to the open ground in April. The varieties best known to American gardeners are London Flag, Large Musselburgh or Scotch Flag, Giant Carentan, and Large Rouen.
J. Otto Thilow.

LEGUMES. The popular name giren to a rast and important family of plants, of which pea, bean, clover, vetch, etc., are common representatives. The order is generally known as the pulse family, or Leguminoste. It contains nearly 450 genera, comprising over 7,000 species, and in economic importance ranks second only to the grasses (Graminea). The species of this family are distri-

buted over the entire earth. By far the greater number are herbs and half-shrubby plants, but in the warmer regions of the earth they attain the dimensions of for-
est trees. Numerous species are widely cultivated as agricultural crops. Among these, beans and peas are important food-plants, while clover, vetches, peas, melilot, alfalfa, lucerne, cow-peas, etc., are valuable forage crops, cover-crops, and green manures. Many of the exotic species are of commercial importance. The arboreal forms furnish structural timber and cabinet woods. Many also furnish dye-stuffs, rubber, balsams, oils, ete., and some are cultivated for ornamental purposes.
In respect to the character of the flowers, the family is divided into three subfamilies. In the large subdivision to which the ornamental species of Mimosa and Acacia belong, the flowers are small and regular and often clustered in spherical or oblong heads. The stamens are free or united into a tube and much exerted. In the second subfamily the flowers are usually irregular, with the upper petal folded inside of the others in the bud. The coffee-tree, honey locust, and the large genus Cassia belong in this subdivision. Most of the native species of

1257. An indehiscent leguminous pod-Daubentonia.

Legumes, and all those cultivated as farm crops, belong to the vast subfamily Papilionacea. In these the flower is of the papilionaceous type, or peatype(Fig. 1254). The upper larger petal, called the banner, $s$, is exterior and folded over the others in the bud. The two lateral ones, situated below the banner, are the wings, $u, u$, while the lower pair, which are sometimes united, form the keel, $k$. The keel encloses the stamens and pistil, the latter being often bent at right angles to the ovary, or coiled. The stamens are either free or they form a tubular sheath surrounding the ovary. Often the apper one alone is free, leaving a slit along the upper side of the sheath (Fig. 1255). These howers are often dependent on insects for pollination, a fact which is of great importance in raising clover seed.

The fruit of the Leguminosæ is a pod or Legume, as in the bean (Fig. 1256). As a rule, the pods are oneloculed, and have the seeds arranged in rows. In some tribes they become several-celled by partitions which arise between the seeds. These pods become constricted at the partitions, and at maturity separate into short joints (see Fig. 694, Vol. 1). The valres of the pods are generally papery or leathery, and open at maturity, of ten by a sudden snapping of the valves, which scatters the seeds. In other tribes, however, the pods are indehiscent, or do not split at maturity (Fig. 1257).
The roots of Legumes have numerous small tubercles scattered throughout the root-systems. Fig. 1258. These are caused by and infested with minute organisms, to which the name bacteroids has been applied. The bacteroids arc always present, and probably multiply to some extent in soils where Legumes have been grown. They are very minute bodies, which are either rod-like in form or branched in the form of a $Y$ or a $T$. The infection of the plants has been observed to take place through the root-hairs. Within the plant the bacteroids assume a new and peculiar form. They grow out into a branched and flexuous thread, which is enlarged and nodulose at places. At the point of infection the rootcells are stimulated to growth, producing the nodules characteristic of Legumes. The threads permeate the entire tubercle. The old threads finally disorganize, and it is believed that their protein substances are absorbed by the host.

It has been shown, first in 1886 by experiments conducted by Hellriegel and Wilfarth and later by numerous other investigators, that when Legumes are grown in sterilized sand, which contains no trace of nitrogen, they soon die of nitrogen-hunger, and no tubercles are formed on their roots. If, however, a very small quantity of soil extract or of bacteroids, grown from roottubercles, is added to the sand, the plants as sume new vigor and grow to maturity. Tubercles are formed on the roots, and the plants are found to contain more nitrogen than was present in the seed. By such experiments it is shown that Legumes can acquire free nitrogen through the agency of the bacteroics. The physiological process by which this is done is still obscure.

Some species of Legumes can be innoculated by bacteroids from other species, but others seem to be dependent upon their own specific organism. The organisms are spread in the soil only by mechanical agencies, such as working the soil, moring water, wind, etc. If the soil is rich in nitrogen, leguminous plants can develop, like all others, without the aid of tubercles.

Recently pure cultures of bacteroids have been offered in the market as Nitragin, to be used for the purpose of innoculating soils deficient in micro-organisms. Although several experimenters claim success with this substance, its practical application to agriculture remains yet to be demonstrated. The substance sold as Alinit, and said to enable grasses to acquire free nitrogen, is merely a pure culture of a very common bacterium present in all decaying matter.

## Heinrich Hasselbring.

LEIOPHYLLUM (from leios, smooth and phyllon; referring to the smooth foliage). Syn., Dendrium, Ammyrsine. Ericticea. Sand Myrtle. Evergreen hardy densely branched shrub, sometimes procumbent, with small, glabrons, opposite or alternate crowded Irs. and white or light pink small fls. in terminal many-ffd. umbels, appearing profusely late in spring. It resembles in appearance somewhat the Dwarf Box, and is well adapted for borders of evergreen shrubberies and also for rockeries. It thrives best in a peaty or very sandy, loamy soil and as well in a sunny as in a partly shaded position. Prop. by seeds sown in yans and placed in a cool frame or by layers put down in fall. One species in E. N. Amer. from N. J. to Fla. Allied to Ledum. Lrs. entire: fls. in terminal, umbelliform corymbs; sepals and petals 5 ; stamens 10 : fr. a $2-5$-celled dehiscent many-seeded capsule.
buxifolium, Ell. (Lèdum buxifolium, Berg.). Dense, leafy bush, to 3 ft . high: lvs. shortpetioled, thick, oval or obovate, about $1 / 2 \mathrm{in}$. long: fis. white, pinkish ontside, about onefifth in. across. on slender pedicels; petals elliptic. almost trice as long as sepals. AprilJune. Pine barrens and mountains, N. J. to Fla. B.M. (6752. Gin. 42, p. 559 . G.W.F.A. 49. B.R. 7:531 (as Ammyrsine). L.B.C. 1:5) (as Ledum). Var. prostràtum, Gray. Form ing dense depressed tufts: lrs. usually oral, and deep green. High mountains of Carolina.

Alfred Rehder.
LEMNA (Greek, limne; a large pool of standing water). Lemnace(e. Duckweed. Ducksmeat. Duckweeds are common upon stagnant pools, often covering the water with a blanket of green. They are easily gatherel for schoolroom and home aquaria, and may be procured from specialists in aquatics and native plants. Ducks and carp eat these plants greedily. One of the common Duckweeds is shown 6 times its natural size in Fig. 1259. Duckweeds are small floating plants, without any distinct stems, a whole
plant commonly consisting of one leaf and one unbranched root which has no vascular tissue. These lis are called fronds by the botanist largely because lis. do not ordinarily emit roots. The plants grow separately, or cohere by their edges in 2's or 3's, and multiply by similar fronds, which grow out of the edges of the old ones something like buds. The Howers are minute and appear on the edge of the frond. They consist of a pistil and generally 2 stamens which are inclosed in a sheath, which the botanists have determined is a spathe by reason of the place where it is borne and by homology with related plants. L. minor is said to flower more frequently than any other northern species. Details of its fiower are shown in Fig. 1260, where there seem to be 4 anthers, but there are only 2, each bearing 2 locules. Some botanists consider the 2 stamens as 2 Ht . and the pistil a third flower. Duckweeds are perennial plants. In the autumn they fall to the bottom of the ditch or pond, but rise again in the spring, and increase in size. The allied genus Wolftia contains the smallest flowering plants in the vegetable kingdom. There are about 11 species of Duckweeds, widely scattered. L. poly. rhiza is commonly known in American botanies as Spirodela polyrhiza, but Spirodela is considered by Bentham and Hooker a subgenus of Lemna. The common Duckweed occasionally infests the small lily ponds (artificial ones), where it is a pest. The simple remedy is to flush the pond and see that common goldfish or carp are in sufficient numbers to clear off the remainder.
A. Veins 7-11: roots several.
polyrhiza, Linn. (Spirodèla polyrhiza, Schleid.). Also spelled polyrrhiza. Fronds broadly orate or orbicular, attaining 3 or 4 lines diam, B.B. 1:365.

## AA. Veins 1-5 : root solitary.

B. Fronds oblong, 6 lines long, 8 lines wile.
trisúlca, Linn. Fronds much thinner than in the next, narrow and minutely toothed at one end, thicker and taslk-like at the other, usually with 2 young ones growing from opposite sides near the base. B.B. $1: 366$. V. 3:200.

BB. Fronds broadly orate or orbicular, 2 lines long.
minor, Linn. Figs. 1259-60. Fronds usually cohering in 3's or 4's, rather thick. not minutely toothed. B.B. 1:366. V. 3:200.

Wm. Tricker and W. M.
LEMON culture in Florida was assuming an important share of horticultural work previous to the cold winter of 1894-5, but since then attention has been more largely given to hardier fruits. The growing of Lemon trees is beginning again in lower Florida, in sections free from killing frosts, and although soil conditions are rather unfavorable to the cultiration of citrous trees, owing to the rocky or poor character of the ground, there is evidence of interest and some practical results from the experimental plantations. There remained after the killing freezes some isolated orchards of Lemons in southern Florida, which have since entirely recovered and have borne full crops of fruit for two or three years.
The pecuniary reward to a careful Lemon grower is large, prorided he has suitable soil and a situation removed from killing frosts, and, although profits from other citrous fruits may be temporarily larger, Lemons are constantly in demand, and the reward is correspondingly certain. Orchards are usually set with budded trees, about 20 by 25 feet apart. The young trees after setting are advantageously mulched with grass or other
litter, which holds moisture for the unestablished roots, and gradually rots, affording humus. The stocks used are sour orange and rough Lemon principally, but other stock may be used, and the Lemon may also be raised from cuttings in the same manner that citrons are grown. The remarks as to the use of Citrus trifoliata as a stoek for limes will apply also in this case (see Lime),

The cultivation is the same as for orange trees: shallow plowing early in spring, followed by thorough harrowing once or twice each month until the summer rainy season has well setin. After this time the grass which naturally springs up is allowed to grow at will until autumn, when it is mowed for convenience in picking fruit and getting about the orehard. Many growers perceire adrantage in raising soil-enriching plants in the orehard and so, instead of allowing native grasses to grow, sow seeds of varions forage plants, as beggar-weed (see Desmodium), cow-peas, velvet beans, etc., part of which growth is harvested for hay, the rest left to add fertility to the soil, and is later plowed under. In

1259. Duckweeds.

Lemna minor.
late autumn most growers apply fertilizer, usually composed of sulfate of potash, sulfate of ammonia and bone-black, which is broadcasted at the rate of 800 to 1,500 pounds per acre. This fertilizer is not wasted by the action of the sun, and is either left on the surface to be washed in by rain or is mised in the soil by harrow or turning-plow. Fertilizing is also done in the early summer, and occasionally a third application is made before ripening of the fruit, but the rule is, two applications per year of about the same amount each.
E. N. Reasoner.

1260. Floral details of Lemna minor. $a a$, stamens; $b$, pistil.

Lemon in California. - Though Lemons have been grown in California for half a century, it is only during the last decade that the culture has risen to considerable commercial importance. This fact is shown by the latest statistical data, which indicates about a quarter of a million bearing trees and about a million non-bearing trees as comprising the aggregate of Lemon planting in this state. The early product consisted of seedlings which were of excessive size, with juice of 'ow acid content and rind of marked bitterness. The resest attention of Lemon-growers was given about twenty years ago, and for some time afterwards, to the testing of the best seedlings and the varieties brought from the Mediterranean region, to secure acceptable size, thinness of rind and freedom from bitterness, with high percentage of citric acid in the juice. The result was that a few such varieties were found and they were demonstrated to be equal in these eharacteristics to the imported fruit from Sicily. Then, for the first time, California growers were able to compete with the imported fruit, and the planting of Lemons began upon a large scale. The loeal markets were first supplied, orerland shipments were undertaken, and the fruit was found to be
acceptable east of the Rocky mountains and the undertaking to displace the Mediterranean fruit at all points in the United States began. This effort was greatly advanced by the protective tariff, which counterbalaneed the adrantages which foreign producers had previously enjoyed in cheaper labor and in less cost of transportation. Shipments of about 1,200 car-loads of Lemons a year to the eastern markets show the success which California growers have attained in competition with the imported fruit.

Local adaptations of climatic and soil conditions to the growth of the Lemon have required long and close study and experimentation. The Lemon is less hardy than the orange, and will suffer seriously with degrees of frost which the orange will endure. Almost frostless situations are, therefore, most promising. The Lemon will reach perfection in a region where the summer heat may be slightly less than required to develop satisfactory sweetness in the orange. These desiderata of very light frost and somewhat lower summer temperature are found to coincide in places most open to ocean influences in southern California. Roughly speaking then, the Lemon region is on or near the coast and the orange region in interior valleys. Differentiation in planting these two fruits has proceeded along these lines quite largely, though it is still true that in certain places most excellent Lemons are grown at interior points and most excellent oranges near the coast. The orange has proved to be, however, rather more easily grown and prepared for market than the Lemon, and on the whole, more profitable, perhaps; so that these facts are to be properly included when an effort is made to account for the disposition of those owning Lemon orchards in the interior to work them over to the orange.

A light warm loam is best suited to the growth of the Lemon, while the orange root seems to be adapted to a range of heavier soils. This was of more moment when the practice was to grow the Lemon on its own roots, either from cuttings or by budding on seedling Lemon stock. But the production of a Lemon tree of less riotous growth and fruit of less average size and, withal, a healthier and more satisfactory tree, was found to be attained by using the orange seedling as a stock for the Lemon tree, and this is the universal practice at the present time. Propagation is by the ordinary process of budding on a seedling root two or three years old. Distances of planting in the orchard differ somewhat according to the judgment of growers, but about 100 trees to the acre is the average.

Pruning the Lemon has been a vexed problem with the growers for years. The tree is naturally of rangy growth, running out long leaders which afterwards assume a pendent form and are tossed about in the wind, to the detriment of both tree and fruit, which is apt to come at the ends of the long, pliant shoots. Thus an unpruned Lemon orchard becomes almost impenetrable for necessary orchard work. This is in marked eontrast to the growth of the orange, which is more compaet and symmetrical, and needs but slight regulation after a good form is secured in the young tree. Regular shortening-in of the branches of the Lemon is therefore necessary, followed by thinning of the new shoots, so that the tree shall not make too many bearing twigs and become too dense in the center. In that way the fruit can be kept within easy reach, and the branches stiff and stroner to carry it.

Ample irrigation and frequent cultivation to prevent evaporation afterwards are essential to thrift and bearing of the Lemon in California. Neglected trees lose their leaves and prematurely ripen fruit lacking in juice.
Scores of varieties have enjored flecting popularity in California and now not more than six are largely grown; Viz., Villa Franea, Lisbon, Eureka, Genoa, Messina and Bonnie Brae. Of these, the first three constitute prohably four-fifths of the erop.

The preparation of the Lemon for marketing has been a matter of discussion and experiment for years. The bulk of the crop ripens in the winter: the time to sell Lemons is in the summer. The Lemon ripened on the tree has very poor keeping quality. Both for meeting the market demand and to secure a fruit which will endure shipping, Lemons noed storage for a considerable
time. Proper storage, or curing, as it is generally called, results in thinning and toughening the rind so that it has a pliable character, a silky finish and is not easily bruised in handling. Very costly curing houses have sometimes been found defective in not readily disposing of the products of evaporation from the fresh fruit. At present, simpler constructions, consisting in thoroughly rentilated inner apartments for the fruit, with outer walls and double roof to protect the interior against wide temperature changes in the outer air, are giving very satisfactory results. The fruit needs freedom from extremes of temperature, abundant ventilation and yet no intrusion of wind or air currents and the absence of light. When these are secured, the fruit ripens slowly, assumes a beautiful, characteristic color and is then good for long keeping or distant shipment. It is essential to secure uniform size, and this is done by picking without regard to ripeness as soon as a fruit reaches a certain size. The result is that the fruit is picked before any sign of coloring appears. The standard is $21 / 4$ inches in diameter, as measured with an iron ring which the picker carries. The diameter decreases one-eighth of an inch during curing. Late-ripening fruit, for quick sale, may be allowed to get a little larger, but no fruit should be above $25 / 8$ inches in diameter. All fruit must be cut and not plucked from the trees, and until the final packing for shipment, should be handled in shallow trays or boxes, piled with air spaces between them so that the air may circulate and remove the exhalations.
E. J. Wiceson.

## LEMON VERBENA is Lippia.

## LEMON VINE is Pereskia.

LEMONIA. See Rucenia.
LENS (ancient Latin name of the Lentil). Leguminòse. This genus includes the Lentil, Lens esculenta, one of the oldest and still one of the most important food-plants for man, especially in the warmer parts of the Old World and the Orient. It is a much-branched tufted annual 1-11/2 feet high. The leaves have numerous leatiets and end in a tendril. The flowers are small white or pale blue, axillary and borne in pairs. The pols are short and broad, very flat, and contain 2 flat seeds which are rounded in outline and convex on both sides. The lens of the astronomer and physicist was named because it was shaped like one of these seeds Some varieties have gray seeds, others red. Esau sold his birthright to Jacob for a mess of red pottage made of Lentils. Lentils are used chiefly for soups and stews. They are a coarser and cheaper food than fresh peas and beans, and about as palatable as split peas. Lentils rank amongst the most nutritious of all vege tables, as they contain about 26 per cent caseine, 35 per cent of starch and only 14 per cent of water. Lentils are also of the easiest culture, but the seeds are often destroyed by a weeril. The seed is generally sown in drills in March. The heaviest crops are produced on ratherdry, sandy soils. The plants need no special care between seedtime and harvest. The seeds keep better in the pods than after being threshed out. Some of the varieties are the Puy Green, Small Winter and Small March. The genus Lens is placed by Bentham \& Hooker between the vetch and sweet pea, (Vicia and Lathyrus). In Lens and Vicia the wings of the flower adhere to the keel, while in Lathyrus they are free or only slightly adherent. Lens has 2 ovules; Vicia usually many.

## LENTIL. See Lens.

LEONOTIS (Greek, lion's ear, which the flowers are supposed to resemble). Labiatue. Lion's Ear. Lion's TalL. This includes a tender shrub. with scarlet orange, gaping fls., cult. outloors in S. Fla. and S Calif. As a bedding plant it is little grown north of Washington. D. C., and it is far outelassed in popularity by the Scarlet Sage, which gives an equally vivid mass of red in the northern antumn. The Lion's Ear differs from the Scarlet Sage in having conspicuously hairy, almost plush-like ts. These are $\because \mathrm{in}$. long, as many as 18 in a whorl, and 3 or 4 whorls open successively on
each branch. The Hls. are oddly gaping, the upper lip very long and nneut, the lower very short and 3 -cut. In the North, cuttings should be started in early spring, the young plants transplanted to the open in May and thereafter frequently pinched to make a symmetrical instead of a straggling bush, and if the plants do not Hower before frost, they can be cut back, lifted and brought into a cool greenhouse to Hower in November or December. A southern enthusiast says that they are as easy to cultivate as a geranium.

Franceschi writes that the plant seldom seeds in $S$. California, and must be propagated from cuttings. which, if taken from hardened wood, do not root as readily as many other labiates. The plants are much improved by cutting back every year or so.
Leonotis has about a dozen species, chietly south African. Herbs or shrubs: Irs. dentate, the floral ones alike or narrower and more sessile: fls. scarlet or yellow; calyx tubular, 10 -nerved, obliquely $8-10$-toothed; stamens 4, didynamous.
Leonùrus, R. Br. Shrubby, 3-6 ft. high: 1rs. 2 in long, oblong-lanceolate, obtuse, coarsely serrate, narrowed at the base, slightly tomentose beneath: floral ones like the rest; corollas more than thrice as long as the calyx. S. Afr. B.M. 478 (as Ihlomis Leonurus). R.H. 1857, p. 548 . Gn. 53, p. 460. G.C. II. $19: 186$.
W. M.

LEONTICE (Greek, lion's foot; referring to the shape of the leaf). Berberidacea. Lion's Leaf. About 7 species of hardy herbaceous perennials, chietly Asian, of low growth and distinct appearance. Three kinds are advertised by the Dutch bulb growers, but perhaps one of them belongs to Bongardia. Leontice is distinguished from the highly interesting and rare group mentioned under Epimedium by having 6-9 sepals (which are the showy parts), and 6 petals reduced to small nectaries. Like Bongardia, it has 6 stamens and a bladdery capsule. These plants have a turnip-shaped corm about 2 in. thick, and bear yellow fls. in early spring. Bongardia has only one species, which is described in the supplementary list of the present article.
A. Lers. tuice ternately cut.

Leontopétalum, Linn. Lfts. ovate or obovate, rarely subcordate: panicle large, dense, leafy. Italy and the Orient.-Root used in the Holyland against epilepsy.

## AA. Lis. digitately cut.

B. Raceme dense, conical.

Alberti, Regel. Stems several, stout, each giving off 2 subradical lis. which are undersloped at flowering time: lvs. finally on stalks 4-5 in. long, digitately 5-parted; lfts. pale green, glaucous, elliptic; nerves prominent and parallel beneath: scape 6-8 in. high, robust: raceme as many as 18 -fld.: fls. nearly 1 in. across, ochre-yellow, streaked reddish brown on back: petals shorter than the stamens. Turkestan. B. M. 6900. Gt. 1881:105 ${ }^{7}$.

вв. Raceme loose, oblong.
Altàica, Pall. According to Index Kewensis, this is a synonym of Bongardia Raurolfii, but the following description, taken from the plant figured as L. Altaica, in B. M. 3245, is very distinct from that figured as Bongardia Rausolfii in B. M. 6244. Lrs. not from the root, digitately cut, only one leaf on each flower-stem, the leaf having 3 primary divisions, each of which is petioled and has $\overline{5}$ lfts., $\mathfrak{2}$ of which are smaller than the rest; lfts. elliptical : inflorescence a raceme. bearing large, more or less roundish leafy bracts: $\mathrm{H} / \mathrm{s}$. mostly erect, having 6 showy, oblong, not overlapping, entire parts supposed to be sepals, the petals small, yellow, erect, shorter than the anthers.
Bongárdia Rainolfii, C. A. Mey. Lxs. all from the root, pinnate; lfts. 3-8 pairs, or some of the lfts. in whorls of 3-4, wedge-shaped, 3 -tid, with a conspicuous triangular crimson mark at the hase of each: inflorescence a panicle, bearing minute, linear bracts: fls. drooping, having 6 shows, wedgeshaped, crenate parts. 3 of which should possibly be considered petals, and the other 3 inner sepals, since there are 3 small. greenish lobes outside which are like an ordinary calys, and should, perhaps, be called the outer calyx. B.M. 624.4. F.C.3:98. B. 1:50.
W. M.

LEONTOPODIUM (Greek, lion's foot). Compósite. The Edelweiss is perhaps the one flower most sought by tourists in the Alps. It is an emblem of purity, and the name means "noble white." It is a low plant, 4-12 in. high, densely covered with a whitish wool, the attractive

1261. Edelweiss-Leontopodium alpinum ( $\times 1 / 4$ ).
portion being the flat, star-like cluster of woolly floral leares surronnding the true fls., which are small, inconspicuous and yellow. The general impression seems to be that Edelweiss cannot be cult. in America. In 1900 , howerer, it is being extensively advertised as a potplant, and it has long been cult. in rock gardens. J. B. Keller writes, "It can be grown to perfection in elevated position of the rockery, in rather light soil and with full exposure to sun. It also succeeds in an ordinary hardy border where the plants can be kept moderately dry in winter." Dreer advises that the seed be sown early in spring in shallow pans of sandy soil and leafmold and kept cool and moist. E.J. Canning sows seeds of Edelweiss in 4 -in. pots in the greenhouse in Feb., pricking off as soon as large enough to bandle, and finally transferring them to the rock garden, where they flower well the second year; but after that they are inclined to die out.
To establish a colony of Edelweiss an English writer (Gn. 52, p. 146) advises that a few stray seedlings be firmly planted in a narrow chink of rock so placed that a deep fissure of gritty or sandy loam may be assured for the roots to ramble in. Plants in pots may be grown and flowered when the collar is tightly wedged between some pieces of stone or old mortar. The plant is best propagated by seeds, as division is not always successful.
Leontopodium has about 6 widely scattered species of perennial herbs, all tufted and woolly, with ascending or erect stems which are unbr anched except at the rery top: stem-Ivs. alternate, entire: heads small, crowded into dense cymes surrounded by a sort of leafy involucre. Edelweiss is still catalogued as a Gnaphalium, but in that genus the style is ?-cut, while in Leontopodium it is uncut. Leontopodium is more nearly aliied to our common weed, the "Pearly Everlasting" (Anaphulis murgaritucea), which lacks the dense cluster of starlike foral leaves, but in the opinion of the writer has as much beauty as the Edelweiss.
alpinum, Cass. (Gnaphìlium Leontopòdium. Linn.). Fig. 1261. Lrs. lanceolate, floral ones oblong: f1.-heads 7-9 in a cluster: involucral scales woolly at base, blackish at apex. B.M. 1958. Gn. 29, p. 529 and 52, p. 146.

## LEOPARD'S BANE. Doronicum.

## LEOPARD FLOWER is Belemeanda.

LEPACHY8 (Greek, a thick scale; probably referring to the thickened upper part of the bracts of the receptacle). Compósite. This includes a fine prairie willtower. L. columnaris, for which, unfortunately, there is no common name. It grows $2-3 \mathrm{ft}$. high, has elegantly cut foliage, and bears fls. something like a Brown-eyed Susan, but the disk is finally cylindrical and more than an inch high, with 6 or 7 oval, reflexed rays hanging from the base. In a fine specimen these rays are $1 \frac{1}{2} \mathrm{in}$. long and nearly 1 in . broad. There are

5 inches or more of naked wiry stem between foliage and Hower. Typically, the rays are yellow, but perhaps the most attractive form is var. pulcherrima, which has a large brown or brown-purple area toward the base of each ray. Like the majority of our native western fls. that are cult. in the eastern states, the plants hare reached our gardens from European cultivators. Meehan says it is perfectly hardy in our northern borders, but the English do not regard it as entirely safe without some winter protection. Moreorer, it is one of the easiest herbaceous perennials to raise from seed, flowering the first year, and it is chietly treated in the Old World as an annual bedding plant, the seeds being known to the trade as Obeliscarit pulcherrima. For bedding, the seeds are sown in early spring in a hotbed, the seedlings pricked off into boxes, hardened off, and tinally transplanted to the open, only slight care being necessary to obtain compact bushes about 2 ft . high. Under such circumstances the plants flower from June to September, and the season may be prolonged by a sowing in the open. This plant deserves trial in our northern borders, where seed can probably be thin!y sown in the open, where the plants are to stand, with a fair chance of autumnal bloom the same year. The fls. last well in water and should be cut with long stems to get the benefit of the delicately-cut foliage.

Lepachys contains 4 species of herbs, all American, 3 perennial. Lvs. alternate, pinnately divided or parted: disks at first gravish, their corollas yellowish, becoming tawny: chaffy bracts commonly marked with an inter marginal purple line or spot, containing volatile oil or resin. Monographed in Gray's "Synoptical Flora." For generic distinctions, see Rudbeckia.
A. Rays oval, scarcely as long as the disk at its longest.
columnàris, Torr. \& Gray. Fig. 1262. Branching from the base, $1-2 \mathrm{ft}$. high in the wild, often 3 ft . in cult.: stem-lrs. with $\mathbf{5}-9$ dirisions, which are oblong to

1262. Lepachys columnaris ( $\times 1-5$ ).
linear in outline and sometimes $2-3$-cleft: fls. solitary, terminating the branches; rays yellow; style-tips short, obtuse. Prairies. B.M. 1601. Mn. 1:65. G.W.F.A.8.

Var. pulchérrima, Torr. \& Gray (Obelisciria pulchérima, DC.), differs only in having the rays partly
or wholly brown-purple. The plants in the trade are mostly margined with yellow or have about half of each color. Gn. 51:1104. R.H. 1854:421. Var. totus-purpureus, Hort. D. M. Andrews, is "a rariety with dark orange-brown rays, almost black."
AA. Rajs oblong-lanceolate, very much longer than the disk.
pinnata, Torr. \& Gray. Slender, 3-5 ft. high: lvs. with $3-7$ ifts., which are lanceolate, sparsely serrate, sometimes lobed, the uppermost run together: rays yellow, often 2 in . or more long. Western N. Y. to Ia., south to La. B.M. 2310.
J. H. COWEN.

LEPIDIUM (from Greek for little scale: alluding to the small Hat pods). Crucifere. Cress. Peppergrass. Perhaps 100 species of small herbs (sometimes undershrubs) in many parts of the world, with very small white fls. There are about 20 native species, mostly western, and several introduced weedy species. The foliage and pods have an aromatie-peppery flavor. The foliage of sonse species is used as sulad, and the pods are sometimes fed to tame birds (whence the name "Canary grass"). There are no species of much ornamental ralue.
sativum, Linn. Garden Cress. Annual, 1-2 ft., glaucons whell in Hower and fruit, glabrous: As. small and inconspicuous, in an elongating raceme: pods nearly circular, bifid at the apex, winged: Irs. exceedingly rarions, but usually the radical ones pinnately divided and subdivided, the central cauline ones $2-3$-cleft nearly to the base and the segments entire or toothed, the uppermost simple and entire. W. Asia, but widely disseminated as a cult. plant, and sparingly run wild in the northern part of the U. S. and Canada. - Under cultivation the foliage varies immensely. The curled sorts have lvs. as finely cut as curled parsley. On Australian Cress, which is a golden-lvd. form, there are sometimes on the same plant broad-spatulate. ragged-edged Ivs., cut Irs., and simple linear Irs. For culture, see Cress.
Other Lepilliums are sometimes eaten, but are not in the trade and are of little importance. Orte of these is the common $L$. Virginicum, Linn.. wild in the U.S., and known as Pepper-grass. Others are the Chilean $L$. Chitense, Kunze, and the Oceanic $L$. piscidium, Forst.f.
L. H. B.

LEPTACTINA (Greek, graceful rays; referring to the star-like aspect of the flower). Also written Leptactinia. Rubidcece This includes a shrub from western tropical Africa which should rank among the finest tall hothonse shrubs in eultivation that have large white fowers. The fls. have a slender tube, 4 in . long, and 5 narrow spreading lobes, each $51 / 2 \mathrm{in}$. long and recurved for onethird of their length. As many as 4 Hs . are borne at the top of each branch, in the axils of the highest pair of ivs. The plant might be compared to a giant-fowered, loose-clustered Ixora. It is not yet advertised in America, but seems worthy of a trial in some of our best conservatories.
The genus contains 6 species, all tropical African shrubs, important generic characters being the large calyx lobes, very long corolla tube, $\bar{j}$ inchuded stamens, style branches free or connate, large, lax stipules, and clustered inflorescence.
Mannii, Hook. Branching shrub, 6 ft . high: lrs. $51 / 2$ in. long, $21 / 2 \mathrm{in}$. wide and larger in proportion, osal, wary-margined, obtuse, with globose green hodies betreen the iusertions of the lrs., which are stipules: calrx tube 3 lines long, lobes 1 in. or more long, leafy; corolla silky within, lobes lanceolate; stamens 5, included: style hairy abore, 2-branched. B.M. 7367.

## LEPTOSIPHON. Now referred to Gilia.

LEPTOSPERMUM (Greek, slender seed). Myrtàcece. This genus includes some Australian shrubs, which are cult. outdoors in S. Calif., and under glass in the North only by a few persons who are expert in the culture of heaths and other hardwood Cape and Australian plants. They have great numbers of small white, yellowish or pinkish fls. about $1 / 2 \mathrm{in}$. across, with 5 petals, which are roundish and clawed. Franceschi reports that they

## LEPTOSYNE

stand drought well in California. The genus has abont 20 species, chietly Australian, and has not been monographed since 1866, in vol. 3 of Flora Australiensis. Shrubs or small trees: lvs. small, rigid, entire, alternate, nerveless or 1-3-nerved: fls. white, sessile, solitary ur $2-3$ at the ends of short branchlets or in the axils of the lrs.: fls. usually white; stamens numerous. The young shoots are often silky.

Leptospermum bullatum (see L. scopurium below) is an exceptionally good pot-plant for those who can grow heaths. It is better than $L$. levigatum. Cuttings taken from well-ripened wood in the fall or from young growth in summer root freely under the treatment given Erica. For a potting, use two parts leaf-mold and one of sand. Plunge the pots outside during the summer in the full sunlight. The plants make a strageling growth, unless trimmed into shape. By fall they will be covered with buds, but it is impossible to foree them into bloom for Christmas. Keep the plants in a cool house with Ericas or Azaleas until the latter part of February or March, and then give them a little more heat, say $55^{\circ}$ to $60^{\circ}$. The plants will soon be a mass of white flowers. L. bultatum does not grow rapidly, but, like Epacris, as it grows older it makes fine specimens. It has tough foli age, stands much hard usage, and when in bloom attract. plant-buyers. It deserves greater popularity.

## A. Ovary usually $10-c e l l e d$.

Iævigatum, F. Muell. Tall shrub, attaining 20-30 ft., glabrous and somewhat glaucous: lis. varying from obovate oblong to oblong-cuneate or narrow-oblong, obtuse, mostly 6-9 lines long, but sometimes 12 or more, 3-nerved: calyx glabrous: capsule slightly protruding above the calyx tube. B.M. 1304 (as Fabricia levigata). G.C. II. 25:816; III. 9:45.

## AA. Otary usually s-celled. <br> B. Calyx tube glabrous.

C. Les, flat or with recurved margins, obtuse or scarcely pointed (except in the large variety).
flavescens, Smith. Lrs. varying from narrow-oblong or linear-lanceolate to broadly oblong or even obovate, usually less than 6 lines long, attaining 9 lines in the largest forms. Var. commùne, Benth and Muell. Les. narrow, 6-9 lines long: fls. middle-sized. B. M. 2695. Var. obovatum, F. Muell. Les. broadly oborate to obo-vate-oblong, under 6 lines long. Cult. in Europe under glass. Var. grandiflorum, Benth. \& Muell. Les. rather larger: fls. larger than in any other variety. L.B.C. 6:514.
Cc. Les. flat or concave, sharp-pointed, narrow or small.
scopàrium, Forst. Attaining $10-12 \mathrm{ft}$.: lvs. ovate to linear-lanceolate or linear, mostly under 6 lines long. Ot'rerwise, almost exactly as in Harescens. B.M. 3419 L. jumiperinum, a narrow-leaved form, is considered synonymous by the botanists, but is kept distinet in the trade, as also is L. bulldum, Hort., which is perhaps the only Leptospermum cult. in the North. J.H.III. 30:435. L. scopariem, var. grandiflorum, Hort., Gn. 51: 1120 , is one of the most desirable forms. It is said to be of relatively easy culture, xith compact habit. the branches spreading in all directions.-Excellent plants for the amateur, but very slow-growing.

BB. Calyx tube more or less densely clothed with silky or woolly hairs.
lanigerum, Smith. Lrs. varying from obovate-oblong to elliptic or narrow-oblong, normally 6 lines long. A form with les. narrower, $6-12$ lines long, and large fis., is pictured in B. M. 1810. L. B. C. 8:701. I. H. 32:570. G. C. II. 12:427. Gn. 19:266, and 27, p. 145.-Extremely variable. Long cult. abroad, but not adr. in America.
H. D. Darlington and W. M.

LEPTOSYNE (Greek, slenderness). Compósita. This includes some yellow-fll. composites, with muchdirided foliage like Cosmos. They are 7 species of herbs and subshrubs, all from California except $L$. Arizonica. They are the representatives of Coreopsis on the western side of the continent, but have mostly pistillate rays and always a ring on the tube of the disk-
fls. In the North these plants are mostly treated as half-hardy annuals. None of them has anything like the popularity of either Cosmos or Calkiopsis elegans. The commonest species is $L$. maritima, but $L$. Stillmani promises to outrank it, though it is not yet advertised in America. I. Stillmani is said to bear fls. $11 / 2 \mathrm{in}$. across, for 5 or 6 weeks. Its seed germinates quickly and can be sown outdoors. Sandy soil and a sunny position is advised. It is said to bloom in four to flve weeks after sow ing. L. maritima should be started indoors, transplanted in May, and can be brought into flower by July. Two distinct plants are passing in the trade as 1. . muritima, one of which is $L$. calliopsidea, and is considered aninferior plant by some. The seeds of the two plants are easily distinguished. Genus monographed 1886, in Gray's "Synoptical Flora."

## A. Rays olovate.

## B. Seeds having long, soft, villous hairs.

calliopsidea, Gray (Agarista calliopsidea, DC. Coreopsis calliopsiden, Bol.). This is the plant figured in R.H. 1873:330, erroneously as L. maritimu. Annual. 1-2 ft. high: fls. 3 in . across; rays fewer, shorter and broader than in $L$. maritima, $11 / 4$ in. long, $3 / 4-1$ in. wide.

BB. Seels having short, rigid bristles.
Doùglasii, DC. Annual, 0-12 in. high: lvs. 1-3-times parted: ring of the disk-Hs. distinctly bearded. Int. by Orcutt, 1591.

BBB. Seeds not hairy.
Stillmanni, Gray. Stouter than L. Douglasii: ring of the disk-fls. beardless. Gn. 52, p. 461. G.C. II1. 22:333. R.B. 23, p. 275. Gt. 46, p. 612. S.H. 2:44. Int. 1898, by Benary.

## AA. Rays oblong.

B. Stems low, from a thick base.
maritima, Gray. Perennial: lrs. 2-pinnate: fls. $31 / 2 \mathrm{in}$. across, borne at the ends of branches on peduncles 9-12 in. long; rays $16-20,11 / 2 \mathrm{in}$. long; disk 1 in . across: seeds not hairy. B.M. 6241. Gu. $49: 1061$. Not R.H. 1873:330, which is really $L$. calliopsiden.-Makes a good bog plant.

вв. Stems 2-8 ft. high, 1-5 in. thick.
gigantea, Kellogg. Differs in being leafy at the top only, the others being leafy at the base: ivs. $2-3$-pinnate: fls. smaller than in L. maritima, borne on short corymbose peduncles; disk $1 / 2 \mathrm{in}$. aeross: seeds not hairy. Cult. in S. Calif. Gt.44, p. 592. - Franceschi says the tis. are sweet-scented.
W.M.

LEPTOTENIA dissécta and multifida were alvertised in 1881 by Edward Gillett, of Southwick, Mass., for Californian collectors, but it is doubtful if any plants of these species are cult. in gardens. They are presumably inferior in height and hardiness to Ferula. For descriptions, see Conlter and Rose's Revision of North American Umbelliferæ, 1888.

## LEPTȮTES. See Tetramicra.

LESPEDEZA (D. Lespedez was a Spanish governor of Florida, who aided the botanist Michaux). Leguminòste. Bush Clover. Between 30 and 40 perennial herbs and shrubs in N. Amer., Asia and Australia. with small (often inconspicuous), pea-shaped fls. in racemes or heads: lys. pinnately 3 -foliolate or rarely 1 -foliolate, the lfts. entire and wanting stipels: calyx lobes nearly equal, sometimes subulate; anthers usually 9 and 1: pod short and 1 -seeded (and in this differing from Desmodium, which has jointed pods). In some of the Lespedezas there are two kinds of fls.,-petal-bearing and mostly sterile, apetalous and mostly fertile. There are a number of native Lespedezas, some of which are offered by dealers in native plants, but they are not very showy and are most in place in native borders and in amateur collections. Two or three of the oriental species are now becoming popular. L. striata is the Japan Clover of the Sonth, and is a valuable forage and green-manure plant. L. bicolor is a low shrub, with small violetpurple fls., hardy in New England. but little known in cult. The most important ornamental members of the
genus thus far introduced are L. Sieboldi and L. Japonica, which are hardy herbs sending up many strong, wiry shoots each year, and blooming profusely in September and October. Their late bloom is very desirable. All Lespedezas are of the casiest culture wherever hardy. Usually increased by division of the clamps. L. Sieboldi is readily propagated by greenwood cuttings under glass. Monogr. by Maximowicz in Act. Hort. Petrop. ii. (1873).
A. Occidental or native Lespedezus: of upright or erect habit, mot showy: stipules and flower-bracts minute, subulute.
These species are not in general commerce, but are offered by dealers in native plants. They thrive in dight, dry soils. Because of the grayish or brownish color of the foliage, they are sometimes useful in landscapegardening work. Hardy, and of easiest culture. Perennial.
B. Fls. whitish or yellowish, all complete.
hirta, EII. Frect, 2-4 ft. tall, silky-pubescent: petioles shorter than the lvs.: lfts. nearly orbicular: fls. in oblong or cylindrical heads which are on peduncles which usually exceed the lvs. Dry soils, New England to Fla. and W. Mn. 6:181.
capitàta, Michx. Much like the last, but lfts. narrowoblong or oval, and the fl.-heads dense and short-peduncled. Range of the above.
BB. F'ls. purple or violet, or some of them apetalous.
c. Peduncles slender.
violàcea, Pers. Two to $3 \cdot \mathrm{ft}$., only slightly pubescent: lfts. oval or elliptic: fls. small, in a loose cluster which is on a stalk usually longer than the lvs. Kange of above.

Núttallii, Darl. Two to 3 ft ., hairvpubescent: lfts. oval, oblong or nearly orbicular: fl.-clusters dense or even capitate, the stalk mostly exceeding the lrs. Range of above.
cc. Peduncles nearly or quite uranting.
Stùvei, Nutt. Mostly unbranched, 2-4 ft., velvety-pubescent: petioles very short : lfts. oblong to nearly orbicular: fis. in nearly sessile, axillary clusters or heads. New. York, south and west.
frutéscens, Britt. ( $L$. Stùcei, var. intermèdia, Wats.). Less pubescent or almost glabrous: petioles mostly longer : lfts. oval to ellintic: clusters very shortstalked. New Eng., south rand west.
As. Oriental Lespedeza, groum for foruge in the South: of truiling habit: stipules rud fi.-bracts conspicuous.
striàta, Hook. \& Arn. Japan Clover. Hooproop. Annual. somewhat pubescent. decumbent or erect, slender: lvs. small and very numerous, the lfts. oblong or obovate, and the petioles rery short: fls. small, pink or purple, in axillary elusters. China and Japan. - Said to have been introduced accidentally into S. Car. in 1849 , but probably in the country much before that time. It is now extensively naturalized sonth of the Ohio river, growing on nearl ${ }_{j}$ all kinds of land. On light lands it makes dense mats,

## LETTUCE

but on heary lands grows 18-24 in. high. It is a goon pasture-and hay-plant, and is useful for plowing under as a green manure. It thrives on land which is indifferently prepared. For hay, seed is sown early in spring, at the rate of $1 / 2$ bushel per acre. It often yields 2 tons of hay to the acre. For pasturage in the South, it is sometimes sown with oats in the fall.
AAA. Oriental Lespedezas, grown as ornamental plants for the fls.: erect: stipules and fl.-bructs small: perennials.
bicolor, Turcz. Fig. 1263. Shrub, with slender branches, becoming $6-10 \mathrm{ft}$. tall, slemder and graceful, glabrous: lvs, on thin wiry stalks, mostly longer than the glabrous blades; Ifts. oval to round-obovate, rounded at the apex, the terminal one $1-2$ in. long: fls, small, purple, in simple or compound racemes, which surpass the Irs.: pod $1 / 4 \mathrm{in}$. long, somewhat pubescent. Jnpan. - Hardy as far north as Boston, blooming in July and seeding freely. A good slender shrub for adding va riety to the border. A white-fld. variety is advertised.
Sièboldi, Miq. (Desmòdium penduliflorum, Oudenı. L. racemosa, Dipp. L. formdsa, Koehne). Fig. 1264. Herb, throwing up strong, wiry shoots each year from the crown: stems angled, reddish or brown, hairy (at least above): lvs. dull above and light-colored and hairy beneath, the petiole usually somewhat shorter than the blade; lfts. elliptic-oblongpointed: fls. twice larger than in the last ( nearly $1 / 2$ in. long), rose-purple, arooping in very numerous long racemes, which at the top of the plant are panicled: pod nearly or quite $1 / 2 \mathrm{in}$. long, pubescent. Japan. G.F. $5: 115$. Gng. $1: 23$. R.H. 1873:210. J.H. 1II. 30:15. G. C. II. 20: 749. F.S. 18: 1888. B.M. 6602 and Mn. 7, p. 69 (as L. bicolor).-Blooms in September, and hardy in central New England. A very desirable late-blooming plant, making a large specimen with age. Does not often seed in the Nortb.
Japónica (Desmodium Japónicum, Hort., not Miq.). Very like the last, but blooms a week or two later, has very numerous pure white fis., much lighter colored herbage, usually nearly glabrous lvs. and stems, the lfts. broader and less pointed.-Hardy as ( $\times 1 / 6$.) the last, and seems to seed more freely in the North. Perhaps a botanical variety of $L$. Sieboldi, but distinct for horticultural purposes.

Other Japanese and Chinese Lespedezas may beexpected to appear in the trade. See Franchet, R.H. 1890, pp. 225-227, for an acceunt of W. China ornamental species, with picture of $L$ Delavayi.
L. H. B.

LETTSOMIA is a genus of the Convolvulus family. About 26 species of tropical oriental climbers. An unknown species was advertised from S. Florida in 1889 and is still procurable. Reasoner and others think well of it.

LETTUCE (see Lactuca) is the most popular of salad vegetables. Plate XVIII. It is a quick-growing annual, delighting in cool atmosphere and open, loose soil. As an outdoor crop, it thrives best in spring. Special care is needed to grow it in the hot summers of America, although heat-resisting varicties have been developed. Of late years, the forcing of Lettuce under glass has come to be a large industry. The most serions trouble in forcing Lettuce is the rot, due to a species of botrytis. The leaves become soft and fall, leaving only the core of the plant erect (Fig. 1265). This trouble may be prevented by growing in loose soil, by keeping the surface of the
soll and of the plant as dry as possible, and by avoiding a too warm and too moist atmosphere. Sub-irrigation (see Irrigation) is to be advised for Lettuce forcing. Of varieties, there are two general types, - the cabbage or heading sorts (Fig. 1266), and the loose sorts (Fig.

1265. Lettuce plant collapsed with the rot.
1267). The latter are more used because more easily grown, but the former are considered to be the finer.
In 1885, Goff reduced the kinds of Lettuce to 87 varieties (4th Rep. N. Y. Exp. Sta.), throwing them into three general groups: (1) leares roundish or but slightly oblong, spreading rather than upright; (2) leaves oblong, tending to grow upright ; (3) leaves pinnately lobed. These categories were divided into subtribes on minor leaf-characters. In 1889 (Annals Hort.) 119 names of Lettuces were catalogued by North American seedsmen. Lettuce has been in cultivation for over 2,000 years.
L. H. B.

Lettuce Ott-of-Doors. - While Lettuce seems never more enjoyable than when it comes from the greenhouse during the colder parts of the year, yet it is acceptable for salad purposes and is in good demand the entire year. In open ground, at the North, we may hare it in all its perfection from June until snow flies again in the fall. Usually it is much less of a knack, however, to have it in the earlier part of the season and up to August. than in the torrid weather of August and early fall. For early market we start the plants in the greenhouse during February, and prick them out in flats or sunken thumb-pots filled with rich, fibrous loam, and after thoroughly hardening them by exposure for a week or more in a coldframe, we take the plants up, with a chunk of soil, and plant them out in very rich, wellprepared loam outdoors, just as soon as the weather will permit. Tennisball and its various strains and selections, Boston Market, etc., are good for this purpose. The rows may be made a foot apart, and the plants set 6 or 8 inches apart in the rows. We want neat solid heads, even if not as large or heary as some of the heads we can easily produce later on from summer rarieties, and we wish to get them as early in the season as possible in order to be able to put them on the market when prices are still high. Light applications of nitrate of soda, either broadcast over the patch at the time of setting the plants, or along the rows very soon after, seldom fail to assist in hastening early growth and to increase the size of the heads. This is a trick of

1266. Heading Lettuce.
the trade" well worth practicing. The free use of the wheel-hoe keeps the soil loose and the crop free from weeds. and also hastens it to early market condition.

At the time of setting the first plants in open ground. we also sow a patch with the garden drill, using seed

sparingly and corering it lightly, sar one-half inch deep, although in good soil the seed will come up readily even if placed an inch or so below the level of the surface. The varieties catalogued by seedsmen as suitable for summer culture are almost endless, and most of them are good enough. Among the standard sorts we have the Hanson, Deacon, Simpson, Salamander, Stubborn Seeder, several Butter Lettuces, etc. Because of our hot, dry seasons, the Cos Lettuces are less popular in this country than in Europe. The heads should be tied up and blanched, for the best results. The plants of drill-sown Lettuces should be thinned early. For home use we leave them at first only a few inches apart, so that they have just room enough to form little heads. Every other plant may then be taken out and usrd for the home table. These little heads are delicious. Tbe remaining heads are left to attain full size and are then used for the table or for market. If grown for market only, the plants are thinned to stand not less than 5 or 6 inches apart from the start. In due time every other plant can be taken up for market, while the ones remaiaing have a chance to grow to largest size afterward. From farly spring until along in August we sow dew rows of these summer Lettuces every two weeks or so, and thus try to provide a continnous supply of good heads. The demand may drop off for a few days, or even weeks, but it is sure to revive. If we can

1267. Curling, or Grand Rapids Lettuce.
manage to have good Lettuce late in the fall it will seldom go begging for customers.

Sometimes we may wish to raise seed of a sort that suits our purposes. All we have to do is to leave some of the plants in the rows, until the larger part of the seeds on a plant have matured. The plant is then cut off near the ground and exposed on a sheet to sun and air to dry. The seeds aro then to be thrashed out and cleaned.
T. Greiner.

Lettuce for the Village Garden and City Yard. The value of Lettuce for the table depends largely upon its being fresh. A very small area may be made to produce an abundant supply for an ordinary-sized family. The plant is quite healthy and hardy, when young enduring a considerable frost without injury. It has few insect enemies and the requisites for its successful culture are few and easily understood. On this account it can be grown with greater satisfaction and protit on a village lot, or even in a city back yard, than can most of our garden vegetables. To produce it of the best quality under these conditions, as carly in the spring as the ground is at all dry and the grass hegins to start, a bit of ground should be well dressed with fine manure, putting on from one-half a bushel to one bushel to the square yard, and then well spading up, working in the manure and making the bed as fine and smooth as possible. Make a mark about one inch deep, drop in the seed at the
rate of from 25 to 50 seeds to the foot, and cover with from one-fourth to one-half an inch of fine soil pressed down with the hoe or hand. From two feet to two yards of such row for each member of the family should furnish an abundance for the time that the product of a single planting is usable, and if more than one row is planted they should be about two feet apart. In from 15 to $\because 0$ days the young plants should be thinned out learing 8 to 10 to the foot, and at the same time a second row, to give a succession, should be planted. About 20 days later the first row should be re-thinned, leaving plants from 6 ; to 12 inches apart according to the size of the variety, and a third row planted. A fourth planting may be made, but Lettuce planted as late as the time of the ripening of strawberries is not likely to do rery well unless protected from the sun and heat. A supply of fine fall Lettuce may be secured if, in August or early September, we re-manure and spade the ground which was occupied by the first crop, and make a trench some 6 or 8 inches cleep and fill this with water. When this has soaked away, refill, and repeat this from one to six times, according to the dryness, of the soil. Fill this trench with fine, moist, not wet soil, in which make a mark and sow the seed as in the spring. Cover the row with a foot-wide board, and about three dars later put some bricks under so as to hold the board about two inches abore the soil. As soon as the plants are well up turn the bricks so as to hold the board about four inches up, and take it off altogether about five oclock in the afteruoon, leaving it off until eight or nine in the morning. On cloudy days give more exposure, as the plants develop until the shade is entirely dispensed with. Some of the finest Lettuce the writer has ever seen was grown in a city yard by this method. W. W. Tracy.

Lettuce Forcing. - This vegetable is one of the principal money crops of the market-gardener in winter. It is grown in hotbeds and hothouses. The old way is to raise it in hotbeds, but since the experiments of grow ing in houses have been so successful it is grown mostly in them.
For the first early crop to be grown in beds or houses, the seed is sown in the seedhouse about August $\underline{2}^{0}$, in the latitude of Boston. By this means, the Lettuce will be brought into market the latter part of October or the first of November, after the frost has spoiled the out loor crop; and thus it often brings very good prices. The sowing is made in a bed in the house prepared for the purpose with sterilized soil, so that there will be no fear of a rusty root or mildew on the plants. The soil should be 10 inches deep, well moistened and beat up very fine, with no nanure or fertilizer. For every ounce of seed, prepare a space 6 feet square, raking off the bed as smooth as possible. Sow the seed and then sprinkle the bed with water. Then sift on one-fourth of an inch of either sterilized or clean subsoil, preferably the lat ter. In about four days the plantlets will appear. Three weeks from sowing, the plants will be ready for trans planting. This should be done at the proper time, that is, before the plants become too large. Prepare the soil the same as for the seed-bed. If 3 inches of the sterilized soil, or some new soil that no Lettuce has been grown in, can be bad, it will be sufficient. Transplant the Lettuce 4 inches apart in sufficient quantity to set out the prepared space. In three or four weeks these plants will be large enough to again transplant into the bed or house intended for them. Sterilizing is done in a box 5 x 4 feet and 3 feet deep, with several punctured steam pipes in the bottom. The soil should heated to $200^{\circ}$.

In preparing the bed for the last transplanting, the soil should be well wet before working and then let stand until the water has all drained off, which will be in about twenty-four hours. Now put in stable manure, worked fine with the first lieat out of it. which is sccured by piling and overhauling twice a week for two or three weeks before using. Apply this prepared manure about 3 inches deep and dig into the soil to a depth of 10 to 15 inches. Rake off and mark with the marker 8 inches apart. If the soil is new no sterilization is needed, but if old would prefer about 2 inches of the top sterilized. This is done to prevent the mildew and disease that of ten comes from old, worn-out soil.
If the bed is properly prepared it will need no water-
ing. If the plants are large, ther may need to be sprinkled immediately after setting the last time. No more water is required until they begin to mature. Many think that the crop requires constant watering, but that is wrong, because the roots will not go lown if the top is kept constantly wet, and a better crop will be obtained if not watered until it begins to mature or to head.
The kind of Lettuce intended in the above remarks is the head varicty, called in many sections the Boston Lettace. This crop should be realy to begin to pull in six or seven weeks from time of last transplanting. According to the previous statements, it has taken thirteen weeks from seed to produce a crop. This is starting in September or October. Earlier than this the time will be one or two weeks less. It is customary to pull over the bed once and take out the best ones, and then give the remainder a good wetting. In about one week those left will be fit to pull clean. After the first transplauting to 4 inches, it is the surest way to smoke the house three nights in succession, once the second week and once the third week. This is done to keep the plants free from distase or from the green-fly or louse. If it is desired to follow with a second crop of Lettuce on the same bed, the plants must be ready for the second erop when the first is taken off, and thus lose no time of the house.
In hotbeds much the same course is pursued as in the house: sometimes one will succeed better than the other. For midwinter the houses are the better, and for late spring the beds.
The best way of heating the beds is by the use of hot stable manure placed in the bottom of the bed, and about 8 inches of loam on top. Ten inches of manure, hot, will hold for two crops of Lettuce. The tirst erop will need a little special fertilizer. The second crop will require about 3 inches of stable manure prepared as for the houses. The beds are prepared in the fail and covered with coarse manuse or hay until wanted. The beds, after setting, are covered with stray mats or shutters at night when the temperature is below freezing, and ventilated by day when it is ?!ove $60^{\circ}$.
The heat is supplied to the houces by steam and the tenperadure controlled b: rentilation. The proper temper. athie for the growing erop is $40^{\circ}$ at night and $70^{\circ}$ by day.

Fo. continuous erors through the season, sow every week enough seed $t$, give the plants required. One ounce should produce $\overline{5}$, 00 plants. This sowing is continued until February I, winich is the time to sow the sed for the crop to be set out in the fichd. These plants are grown in hotheds and hardened off before they are set out; $t^{1}$ as is, the are transplanted from seed-led to 4 inches apart in hotbeds, and are then taken up and transplanted to the field. This is a very different variety of Lettnce. It will not head in the houses, while the variety grown in the houses will not grow in the field.

A great improvement has been made in the varieties of Lettuce. The varisty grown twenty years ago called White Seed Temisball was a very fine Lettuce and would pack 6 dozen to the barrel-box or 10 dozen to the ba. ele , but tios improved variety of to-day will fill 3 drzen to the barrel-box and 5 to 6 dozen to the barrel. "he new variety is calied the New Hothouse Lettuce, and will grow in beds just as well as in the house.
Experiments made with the electric light have been rery successful. It not only hastens the time of growing, but also improves the size and quality of the head. The writer estimates that the light increases the size and quality 10 per cent and hastens the time of growth 55 per cent. This is by the use of are lights orer the houses by night. This conld not be practiced on hotbeds, becanse they are covired by night. Between the first of November and the first of March the days are very short and the nights very long. so that the electric light increases the length of the day, and when applied it has the same effect as the longer days of spring have upon the growth of crops.

The Leituce, when prepared for market, is pulled, then washed, and for the $I$ iton market is put in. boxes of 3 dozen each and sold at wholesale by the box. The smaller heads are paeked 4 dozen in each box and are usually sold per box for about one-half the 3-dozen size. When packing for other markets, as New York. Philadelphia. Washington or Chicago. it is packed in cases that will hold a barrel. These cases have a partition in
the center, so that the Lettuce when packed will not all fall to one end should the cases be roughly handled. The expeuse of sending a case from Boston to New York is 25 cts., to Philadelphia 50 ets., and to Chicago 75 cts.

Tle crop from the South has affected our sales very much in the midwinter, but the climate seems to have changed in that locality so that it is in our favor, for of late years they have cold weather there two or three times each season, thus giving us the market. Our Lettuce is far superior to theirs and of a different variety. They have named theirs the Big Boston. It will be seen that the name of Boston is very popular in the Lettuce market. This inferior Lettuce coming from the South is packed in laskets.

There is a disease of Lettuce called by some a "burn," but this is a misnomer. It is a disease coming more from a diseased root or a cold soil, because it derelops most when there is but very little sun, and least when there is most sun; and if the plant is examined there will ine found a diseased root. Here the benefit of the new or sterilized soil is very apparent. The use of sterilized soil is of much more benefit than the electric light, because if the plant is diseased no light will cure it and no crop can be successful with diseased plants. Preparing the soil by wetting thoroughly before transplanting is one of the great secrets in successful growing of Lettuce, and heating the water to a high temperature is also very beneticial. It lessens disease.

The price at which Lettuce can be grown at a profit is a question very difficult to answer, but by the figures made by some of the members of the Boston MarketGardeners' Association it was lecided that for midwinter crop the Lettuce must be sold at 50 cts. per dozen to return any profit to the grower.
W. W. Rawson.

LEUCADENDRON (Greek, white tree). Proteicec. This genus includes the celebrated Silver Tree of the Cape of Good Hope (see Fig. 1268), which has a striking and unique habit. Its lvs. are densely covered with white silky hairs. This tree grows wild only on Table Mountain. In the first quarter of the century it was considered of great importance for firewood. It is said to grow poorly away from the Cape, except in S. Calif. where it generally does well ontioors. It is alc rarely eult. in the Eatubs, heing protecter? caol greenhouse durins winter and placed on the lawn in summer. The SilVer Tree attains 30 ft . at the Cape. The trees are practically male and female, the ths. being diorejous by abortion. The fensale tree is cult., being prop. by seeds imported from the Cape. The

1268. Silver tree, Leucadendron argenteum. young seedlings are very difficult to raise. There is no monograph of this gemus since Meisner's in DC.1'rod. Vol. 14, 15\%6, but the genus will be reviewed in a forthcoming volume of Flora Capensis.
argénteum, R.Br. Fig. 1268 . Branches densely leafy: lrs. sessile, $3-6 \mathrm{in}$. Iong, $1 / 2-1$ in. wide, callous and blackish at the apex. lanceolate, acute, silvery white and silky: involucres spreading. longer than the globular head of fls.: nut ventricose, turgid, wingless, the whole st;le and calyx persisting with it, oborate. B.R. 12:979. V゙.5:282, 283.

LEUCANA (probably from Greck. loukos, white: referring to the fls.). Lequminosor. This includes a tree known in S. Fla. as the White Popinac, a rapid grower, with acacia-like foliage and whitish fls. It is also cult. in S. Calif. The genus has about 9 species, found in

Mexico, Guatemala, Peru, and Pacific islands, but $L$. glance is found in the tropics of both worlds. It grows wild in the West Indies and in western Texas. The trees and shrubs of this genus have the habit of Acacia, but belong to the Mimosa tribe, which is characterized by stamens 10 or less. Generic characters are: calyx 5 -dentate: stamens 10 , not glandular: pod broadly linear, stalked, flat-compressed, ehartaceous, 2-valved: seeds compressed. Acuciu trichodes is L. trichodes, Beuth., but it is not in the trade.
glaùca, Benth. (Acàcia froudòsa, Willd. A. glà̀ca, Moench). Spineless: branches and petioles powdery: pinnæ 4-8-paired; lfts. 10-20-paired, oblong linear, glaucous below: pod $\overline{5}-6 \mathrm{in}$. long.

LEUCHTENBERGIA (after Prince Letuchtenberg). Cactacere. Agave Cactus. Stems in age forming a trunk 2 in . or more in diam., by the shedding of the lower tubercles: tubercles triangular-acuminate, spreading, 2-4 in.

lons. $1 / 2-3 / 4 \mathrm{in}$. Wid̨e, with twisted papery spines: Hs. funneiform, widely expanded, borne near the apex of young tuhercles: fr. Gray, ovate-clliptical, 1 in. long, covered with scales and crowned by the persistent flower: seeds dark brown, minutely tuberculate. Only 1 species, closely related to Echinocactus, but of remarkably different form. The plant is readily grown in the manner of Echinocactus and Mamillaria.
príncipis, Hook. \& Fisch. Fig. 1969. Radial spines $6-8$, the central one usually solitarr, longer, sometimes 8 in. long: Hs. yellow. B. M. 4393 . A.G. $11: 464$.

## Kathafine Brandegee.

LEUCOCRINOM (Greek, white lily). Lilimcerr. SAND Lily of Colorado. A hardy bulbous plant growing a few inches high, with narrow foliage and clusters of pure white, fragrant As. borne just above the ground in early spring. The Als. are funnel-shaped, having a slender tube $2-4$ in. long, the greater portion of which is below the surface of the soil, and 6 lobes, each $3 / 4-1 \frac{1}{2}$ in. long. They are borne in elusters of 4-many Hs.. and maintain a succession for several weeks. They should be desirable
for edging walks tad bulb beds. They have a deep-seated rhizome and fleshy roots. The bulbs are procurable from Colorado and California, either as collected or nur-sery-grown stock. The genus has only one species. It belongs to an anomalous gremp, characterized by almost total lack of stem and Hs, solitary or clustered among the radical lvs. From the oth $f$ r nembers of this group it is distinguished by the lvs. not 2 -ranked, and an indefinite number of ovoles in each locule. Perianth segments narrowly lanceolate, persisteni: stamens 6: style persistent, slightly 3 -lobed
montànuza, Nutt. Sand ialy of Celoratiu. Lus. 8-12 or more, ilat, rather thick, 4-8 in. long, l-3 lines wile: pedicels $1 / 2-11 / 2 \mathrm{in}$. long.
J. H. Cowen.

LEUCOJUM (name explained below). Also written Leucoium. Amaryllidicer. SNowflake. The Snowflakes are hardy bulbous plants growing a foot or less high and bearing dainty, nodding, 6-parted fls.. which are white, tipped with green, yellow, or a tinge of red. They are less popular than Snowdrops (Galanthus), to which they are closely related, and have larger Hs., with all the segments of equal size. There are 8 species, natives of Europe and the Mediterranean region, 4 of which arecult. Perianth-tube none; segments ovate or oblong. Baker, Handbook of the Amaryllideæ, 1888. The name Leucojum was given by Linnaus, but he did not explain the application. The old Greek name, Leucoion, was given by Theophrastus to a plant now supposed to be a erucifer, like some stock or wallfower. Leucoion is from leukos, shining, white, and ion, violet. Snowflakes appear about the same time as white violets, and sometimes hare a delicate odor, resembling that of the violet, but the form of the ths. is very different. For culture, see Bulbs.

## A. Blooming in Mfurh.

vérnum, Linn. Spring Scowflake. Bulb globose, s/4-1 in. in diameter: l's. strap-shaped, finally 6-9 in. long, $4-6$ lines wide: seape $1 / 2-1 \mathrm{ff}$. long, usually 1 - fld.: perianth segments white, tipped green: seeds with a pale, membranous coat and conspicuous strophiole. Central Eu., France to Bosnia and Tyrol. B.M. 46. G.C. 11. 11: 399: $91: 341:$ 23:341. P.G. 5: 47. Gn. 25, p. 335. and 29, p. 607. V. 8:69. Yar. Carpáthicum, Herb., has perianth segments tipped yellow. B. M. 1993 . J. H. III. 32: 169. G.M. 39: 105. A choice form, usually bearing 2-4 fis.

AA. Blooming in April and May.
æstivum, Linn. SuMMEr Snowflake. Bulb oroid, 1-11/2 in. in diameter: les. strap-shaped, $1-1 / \frac{\mathrm{ft}}{\mathrm{f}}$. long: scape 1 ft . long, $4-8$-fld.: perianth segments white, tipped green: seeds with a black, hard-shelled coat and no strophiole. Blooms end of April and beginning of May. Central and S. Eı. Mn.9:45. P.G.1:7. V. 3:342 and 8:70.
pulchellum, Salisb., differs from $L$. resticum by its smaller fis. and capsule, narrower lis. and ths. afortnight earlier. Sardinia and Balearic Isles.

AAA. Blooming in autumn.
autumnale, Linn. (icis outummalis. Salisb.). Autumn Swowflake. Bulb globose, $1 / 2 \mathrm{in}$. in diameter: lvs. thread-like, usually produced after the fis.: scape very slender, $3-9$ in. long, 1-3-fld.: perianth segments white, tinged with red: stamens half as long as segments. Portugal and Moroceo to Ionian Islands. B.M. 960.Not satisfactory everywhere.
rosseum, Martin. Bulb globose, 1/4-1/2 in. in diam.: peduncle shorter and usually 1 -fid.: perianth segments $1 / 3 \mathrm{in}$. long, rose-red, oblanceolate: stamens $1 / 6 \mathrm{in}$. long. Corsica.-Usually difficult to grow, and little known horticulturally.
J. N. Gerard and W. M.

LEUCOPHYLLUM (Greek, white leaf). Scrophultritcea. This includes a rare shrub from southern Texas, the leaves of which are covered beneath with silvery white wool. It has showy riolet-purple, bell-shaped tls. an inch across. borne in spring. In cultivation it Howered for the first time in 1890, at Augusta, Ga., with P. J. Berckmans. It is now cult. in S. Fla., and deserves cultivation everywhere in the South. According to C. S. Sargent, "There is no shrub of the desert portions of
the valley of the lower Rio Grande more generally distributed, and certainly there is not one of them which more delights the traveler in the early spring months, when the large. violet-purple flowers of this plant heighten the effect of its brilliant silvery foliage." (G.F. 3: 488 .)

Leucophyllum has only 2 species. Lrs. all alternate, ovate or obovate : calyx 5 -cut ; corolla tube broad and short; lobes 5, rounded; stamens 4, didynamous, in cluded, fixed at the base of the corolla: ovary 2-celled; ovules numerous: capsule 2 -valred: seeds oblong.
Texànum, Benth. Loose-growing, straggling shrub 4 or 5 ft . high in the wild, $8-10 \mathrm{ft}$. high in cult. Lers. 1/2-1 in. long, obovate: fls. axillary, slightly hairy within. G.F. 3: 489 .

LEUCOSTEGIA (Greek, white roof; alluding to the indusia). Polypodidcece. A small genus of Indian ferns allied to Davallia, with a small, narrow, thin indusiun attached by its base, with the apex and sides free. The leares are mostly tri-quadripinnate. For cult., see Dacullia.
párvula, Wallich. Rootstocks wide-creeping, scaly: lvs. nearly sessile, deltoid, less than 1 in . long, half as wide, usually tripinnate. Singapore and Borneo.
L. M. Underwood.

LEUCOTHOË (Greek mythological name; daughter of Nereus). Ericicere. Including Agarista. Ornanental low evergreen shrubs, with alternate, short-petioled, usually serrate lys. and with white, rarely pink or scarlet, usually nodding ths.. in terminal or axillary racemes, appearing mostly in spring. The S . American species, which are very rare in cultivation, though they surpass the other in beauty of the fls., are hardy only South, whi'e the other species can be grown as far north as Mass. and western N. Y., the evergreen ones in sheltered positions or with slight protection during the winter. They are very handsome for borders of shrubberies or as undergrowth in open woods. They thrive best in somewhat moist, peaty or sandy soil, and prefer shaded or partly shaded situations, but also grow in full sun if the soil is not too dry. Prop. usually by seeds sown in peaty, sandy soil in pans or boxes in spring. and treated like those of Azalea or Rhododendron; also by layers or division; the evergreen species grow from cuttings under glass in late summer, but root rather slowly. About 35 species in N. and S. America, Madag., Himal. and Japan, formerly often united with Andromeda. Les. evergreen or deciduous: ths. in axillary or terminal racemes; calyx 5 -parted, imbricate ; corolla ovate or cylindrical; stamens 10: anthers obtuse or 2 -pointed at the apex: capsule separating into 5 valves; seeds minute, irregular. Most of the allied genera differ by the valrate calyx, and Chamzedaphne by the valves of the capsule separating into " layers, the inner one 10 -valved
A. Les. ciergreen: rucemes axillary, sometimes clustered, shorter than the lis.

## B. Racemes dewse, sessile, many-fld.: pith of

 branches solid.axillàris, Don (Audrómeda axilldris, Lam.). Shrmh, to 5 ft ., with spreading and usually recurving branches, puberulous when young: Irs. with short pubescent petioles, oval to oblong-lanceolate, shortly acuminate, serrulate toward the apex, glossy above, pale and sparsely pubescent beneath when young, $2-4$ in. long: racemes 1-2 in. long: sepals broadiy ovate; corolla white, usually greenish in bud, $1 / 4 \mathrm{in}$. long. April, May. Va. to Fla. and Ala. - Var. longifolia, Pursh. Lvs. linear-lanceolate. B.M. $235 \%$.

Càtesbæi, Gray. To 6 ft ., similar to the former, with glabrous, slender aud more arehing lranches: Ivs. longer-petioled, ovate-lanceolate to lanceolate, ciliately appressed-serrate, glossy above, usually light green beneath, glabrous, $3-7$ in. long: racemes larger: sepals narrower; corolla over $1 / 4 \mathrm{in}$. long, white, usually reddish in bud. April, May. Va. to Ga. B.M. 1955. L.B.C. $14: 1320$. -This species is handsomer than the former, and also somewhat hardier: Ivs. and H.-buds assume a beantiful purple hue, late in fall which is retained through the winter.

BB. Racemes peduncled, with rather few, slender. pedicelled fls.: pith laminate.
acuminàta, Don (L. populifolia, Dipp. Andrómeda acuminita, Ait.). Shrub, to 12 ft. , with spreading branches: lvs. short-petioled, orate-lanceolate, acuminate, entire or obscurelv serrulate, glabrous, $2-4 \mathrm{in}$. long: pedicels as long as corolla: calyx very short ; corolla cylindrical, over $1 / 3 i n$. long. June. S. C. to Fla.
AA. Lis. deciduous: racemes mostly terminal, secund, longer than the lvs. (Subgerus Lubotrys.)
racemosa, Gray (Andrómeda racemòsa, Linn. L. spicata, Don. Lydnia racemдsa, Don). Shrub, to 10 ft ., with mostly erect branches: lvs. oblong to ovate, acute, serrulate, pubescent beneath, at least on the veins, $1-3 \mathrm{in}$. long: racemes erect, $2-4$ in. long: corolla cylindrical, $1 / 3$ in. long. April-June. Mass. to Fla. and La. Em. 423.
recúrva, Gray. Similar to the last, but lower and more spreading: lvs. elliptic-ovate to elliptic-laneeolate, acuminate : racemes spreading and recurred: capsule depressed and strongly lobed. April-June. Va. to Ala. G.F.9:225. - It grows in drier situations, but otherwise it is not superior to the former; the foliage of both assumes a splendid scarlet color in fall.
L. Dàvisice, Torr. Evergreen shrub, to 5 ft .: lvs. oblong, obtuse, crenately serrulate: racemes slender, many-Hd.. clustered in terminal panicles. May, June. Calif. B.M. 6247.- L. Grayàna, Maxim. Half-evergreen: lis. large, broadly oval, ap-pressed-pilose : racemes terminal, slender: fis. rather small June. Japan. - L. nerifólia DC. (Agarista neriifolia, Don). Evergreen, glabrous shrub, with ovate-oblong, acuminate lis. and bright scarlet tis. in erect, slender racemes at the end of the branches. Brazil. 13. M. 4593. - L. púlchra, DC. (Agarista pulchra, Don). Evergreen shrub, 2 ft . or more high, glabrous: vs. ovate, mucronate, about 1 in . long: tls. white, in spreading, peduncled, slender racemes, much longer than thelvs. Cararas. B.M. 4314 .- L. populifolia, Dipp. $=$ L. acuminata, in main list.

Alfred Rehder.
Leucothö̈ Catesberi is one of our most ornamental and popular hardy broad-leaved shrubby evergreens. It is used for massing in connection with Rhododendrons, Kalmias, etc., serving as a base for these taller varieties. The shiny dark green leaves are borne with regularity on a recurved stem often $2-3 \mathrm{ft}$. long, and sometimes coloring brilliant bronze and claret shades in autumn when exposed to the direct rays of the sun. Leucothoë sprays are largely used by florists in making up designs and in connection with Galax leaves, usually, however, in the more informal pieces. They were introduced to the trade about 1890. The fragrant flowers are in the leaf axils, borne along the stem in early spring, and are usually conspicuous, considering the fact that the leaves are persistent. It is this graceful evergreen spray effect, with the good color and dense habit, that makes Leucothoë so desirable as a plant for massing, and also the fact, perhaps, that it is fairly easy to transplant. Seeds are produced freely, and can be sown in sphagnum moss and sand under glass, as Rhododendrons and Azaleas are grown, pricked off in tlats and planted outdoors in early spring, when the plants are a few inches high. Leucotboë is also propagated by division, underground runners and cuttings, the latter beints plunged in sand on the bench and given moderate bottora heat. It is usually collected, however, in its native habitat, in suall plants, transplanted to nursery rows and grown for several seasons. Harlan P. Kelsey.

## LEVI ?WOOD. Ostrya Virginica.

LEVISTICUM (a modification of a name given by Dioscorides to some umbelliferous plant). Umbellifer(e. Lovage is a plant grown for its aromatic seeds, which are used in confectionary. The leaf-stalks were formerly blanched and eaten like celery. It is a tall, hardy perennial herb, with large, $2-3$ times divided radical lvs. The plant may be propagated by seed sown as soon as ripe, tut when plants are already established root-division is less troublesone and risky. Division may be made in the autumn, but better in the spring. The divided plants and the seedlings, when 2 or 3 in. tall, should be set in checks 3 ft . apart in deep, rich soil. When well estahlished the plants remain profitable for many years, demanding but little attention. The genus
has only one species, and is distinguished by having the bracts of its involucel grown together.
officinale, Koeh. Lovage. Tall: lvs. dark green, shining; segments wedged shaped at the base, cut toward the apex: fls. yellow: seeds ?-ribbed, hollow and boat-shaped on one side, convex on the other. S. Eu.

LEWISIA (after Meriwether Lewis, of the famcus Lewis and Clark expedition across the continent to the Pacitle in 1804). Portulacacee. The Bittor-Root, L. redivira, is an odd and interesting plant. It has a thick-branched root: lvs. like a Portulaca, fleshy and linear, and handsome fls. borne 3 or 4 in. above ground. The tls. are 1-2 in. across, rosy, varying to white, red or purplish, with 8-14 petals. The plant has been thoronghly tested in the East, and is desirable for rockeries, needing perfect drainage, a sunny position and careful watering while in flower. One of those perennials that should be planted in groups for best effect, and also as a precaution to prevent loss by oversight in careless weeding during flowerless period.
The starchy root is dug by the Indians in spring, and eaten. The bark is ordinarily very bitter, but at flowering time it is said to slip off easily, and the root chen boiled has little of the bitter taste. The roots from which the plant was deseribed showed signs of life after being in the herbarium for several years. Pursh planted them, and they grew for a year. This event suggested the name redivica. The fine fls, figured in B.M. $\overline{\mathrm{j}} 395$ came from a root which had been immersed in boiling water in order to make an herbarium specimen. The root is called spatulum or spatlum by the Indians. The Lewis and Clark expedition was planned in the house of Bernard M'Mahon, an early Anerican horticulturist. (See M'Mahou). A full account of this plant is given by Pailleux and Bois in Le Potager d'un Curieux; also in R.H. 1892, p. 298. Generic characters are: sepals $5-8$, persistent; stamens numerous: style 6-8-parted: capsule circumscissile. The genus has 2 species.
rediviva, Pursh. Fls. June-Aug. Wash. and Calif. to Nev. B.M. 5395. R.H.1892, p. 998 . V. 2:306. Mn. 2, p. 85.
J. Woodward Mannivg and W. M.

LIATRIS (a name of unknown derivation). Compósit, Blazing Star. Button Snakeroot. A genus of hardy perennials, confined to eastern and southern N. America. Fifteen or more species have been recognized, all of which are best adapted to the wild-Hower border. The most showy are L. elegans and L. pycnostachya. All produce their flowers in wand-like spikes or racemes, the petaloid coloring of the involucral bracts often adding to the effect of the usually bright rose-red or purple Howers. Their flowers are produced in late summer and autumn. They multiply by offsets from their corm-like base, or may be grown from seed, which should be sown in autumin. They will grow and produce flowers in poorer soil than most garden plants, but thrive best in good, rich garden soil, and require no special care. When grouped in masses they give best results.

## AA. Bracts of involucre obluse.

B. Heads hemispherical, $1 / 2-1 \mathrm{in}$. broad, 15-45-flowered, and peduncled.
scariossa, Willd. Stem stout, 1-5 ft. bigh: lower lvs. spatulate or oblong-lanceolate, $4-6$ in. long, $1 / 2 \mathrm{in}$. wide; upper narrowly lanceolate: heads large, numerous, in a relatively loose spike; involucral bracts often tinged with purple: fls purple: pappus bristles minutely barbellate. Throughout the U. S. and Can., east of the Rocky Mts. B.M. 1709. B.R. 7:590 and 20:1654. G. C. III. 14:593. D. ${ }^{2} 1$. P.M. $5: 27$ (as I. bovealis). - Next to L. elrgans and pycwostachya, perhaps the most desirable species for ornamental purposes.

> Bв. Heads oblong, 3-4 lines broad, 5-15-flowered.
> c. Bracts not punctate. D. Heads sessile.

spicàta, Willd. Stem stout, rather tall, 2-5 ft., and very leafy: lvs. all linear, the lower larger and broader than the upper, which are gradually reduced to the linear-subulate bracts of the spike: heads 8-13-fld., $1 / 2 \mathrm{in}$. long, closely sessile, and forming a dense spike
from 6-12 in. long; involucral bracts rounded obtuse, with usually purplish margins. In the Atlantic and Gulf states, from Mass. to La. B.M. 1411.

Var. montana, Gray (L. pumila, Lodd.). Fig. 1270. Lower, $10-20 \mathrm{in}$. high: liss. broader, the lower ones $1 / 2-3 / 4$ in. broad, and obtuse at apex: spike proportionately short and heads larger. Va. and N. Car., in the mountains. L.B.C. 2:147,

DD. Heads distinctly pedicelled.
E. Le's. oblong-lanceolate, relatively short.
grácilis, Pursh (L. pauciflosculd̀sa, Nutt. L. lanceolita, Bertol). Stem slender, 1-3 ft. high: lower lvs. oblong-lanceolate, upon distinct petioles, upner reduced to small linear bracts: heads in a loose raceme, $3-5-\mathrm{fl}$. ; bracts of the involucre few ant rather loose. Georgia, Ala. and Fla.
E. Les. attenuate-linear, the radical S-12 in. long.
tenuifolia, Nutt. (L. lexrigita, Nutt.). Stem slender, $2-4 \mathrm{ft}$. high: lvs. without distinction of blade and petiole, only a line or two wide: heads in a strict raceme, a foot or more long, about $\overline{\mathrm{j}}$-fld.: pappus strongly barbellate. N. Car. to Fla.
cc. Bracts punctate: heads peduncled.
graminifdlia, Pursh. Stem comparatively slender, $2-3 \mathrm{ft}$. high: lvs. ciliate toward the base, with scattered hispid hairs: spike less dense, often becoming racemose: head $1 / 2$ in. long; bracts of involucre punctate, rounded at the apex. Atlantic states, Va. to Fla.
AA. Bracts of involucre acute or mucronate.
B. Heads 15-60-fld., cylindrical or turbinate.
c. Bracts with lancenlate, spreading, rigid tips.
squarròsa, Willd. Stem stout, 6-20 in. high: lvs. linear and rigid, the lower elongated and grass-like: spike variable in length, bearing few to many heads, the larger heads 1 in. long; involueral bracts lanceo-

1270. Llatris spicata, var. montana ( $\times 1 / 2$ ). late, rigid, and usually bearing pointed tips, squarrose. Eastern U. S., as far west as Neb. and Tex. B.R. 11: 948 is var. intermedia of this species.
cc. Bracts with closely appressed, mucroncte tips.
cylindràcea, Michx. Stem 1 ft . high: lvs. and spike as in last species: heads few, $16-20-\mathrm{fld}$; bracts of involucre abruptly mucronate. Upper Can. to Minn. and Mo.
BB. Heads 3-6-fld., oblong or narrovily campanulate. c. Inner bracts much louger than the fls.
elegans, Willd. Stem 2-3 ft.: lvs. linear. the upper soon reflexed: spike dense and wand-like, 3 - 20 in. long: heads $1 / 2 \mathrm{in}$. long; inner involucral bracts prolonged into spreading, petaloid appendages, which surpass the flowers and pappus. Va., to Fla. and Tex. B.R. $4: 267$.
cc. Inner bracts not longer than the fls.
D. Puppus bristles very plumose: bracts appressed.
punctata, Hook. Stem stout, $10-30 \mathrm{in}$. high: lrs. and involucral bracts punctate and rigid: spike long and
wand-like, dense and leafy: hearls 4-6-fld., $3 / 4$ in. long; bracts of involucre oblong, rather abruptly cuspidate, ciliate on its margins: pappus plumose. Saskatchewan and Minn. to Tex. and Mex.

## DD. Pappus bristles merely barbellate.

E. Involucral bracts sprealing.
pycnostàchya, Michx. Stem stout, 3-5 ft. high: lrs. crowded throughout, the lower lanceolate, the upper narrowly linear: spike densely flowered, 5-18 in. long: heads about $1 / 2 \mathrm{in}$. loug, all sessile; involucre with squarrose tips acute, purplish: pappus copious, minutely barbellate. Ill. and Ia., to Ark. and Tex. R.H. 1883:324. Gn. 55:1217. - One of the choicest and boldest species.

## EE. Involucral bracts appressed.

Chápmanii, Torr. \& Gray. Stem a foot or two high, strict and rigid: lis. short, the lower oblong-linear, the upper small and awl-shaped: spike densely flowered, often 1 ft . long: heads about 3 - thd.: Hs. large for the size of the head: pappus grayish, the bristles minutely barbellate, about $1 / 2$ in. long. Fla. W.W. Rowlee.

LIBERTIA (Marie A. Libert, a Belgian moman, wao wrote on liverworts, about 1820 ). Iridicere. This includes some tender bulbous white-fld. plants procurable from Dutch dealers, but for northern gardens inferior to our common hardy Blue-eyed Mary (Tradescantia Virginica). The Hs. appear to be 3-petaled, the showy parts being the inner segments of the perianth. The fls. are about 1 in . across, and numerous in large clumps of certain species. Khizome short: Irs. linear, equitant: perianth without any tube above the ovary; segments obovate, the 3 outer usually shorter, firmer and less showy than the inner, more or less green or brown; stamens inserted at the base of the segments; filaments free or connate toward the base: ovules many, superposed: capsule small, leathery, loculicidally 3 -valved: seeds 3 -cornered.

The genus has 8 species, found in Australia, New Zealind, Tasmania and Chile. All are white-fld, except $L$. cerulescens, which is blue. Botanically it is nearest to Diplarrhena, but in the latter the inner segments are shorter than the outer ones and connicent. Libertia belongs in the same subtribe with our blue-eyed grass (Sisyrinchium), but in the latter case all the perianth segments are about equal in size. Baker, Handbook of the Irider, 1892.
A. Clusters lax: pedicels longer than the bracts. B. Lr's. $3-6$ in. long, entirely green.
pulchélla, Spreng. Les. not rigid: stem $1 / 2-1 \mathrm{ft}$. long: inflorescence of 1 or few clusters. which are $2-3$-fld. S. Australia, Tasmania, New Zealand.
bв. Lis. 1 ft. or more long, with a broad pale midrib.
ixioldes, Spreng. Stem 1-2 ft. long: inflorescence an ample panicle with numerous peduncled, $0-6$-fld. umbels. New Zealand.
AA. Clusters dense: pedicels shorter than the bracts.
formósa, Grah. Less. rigid, $1-1 \frac{1}{2} \mathrm{ft}$. long: stem $2-3 \mathrm{ft}$. long: inflorescence of many sessile umbels. Chile. B.M. 3294. B.R. 19:1630. Gn. 45, p. 192 (fine habit sketch) and $40, \mathrm{p}, 441$
W. M.

LIBOCEDRUS (libas, drop, tear, and Cedrus; ailuding to the resinous character of the trees). Coniferce. Syn., Heyderia. Incesse Cedar. Ornamental, tall evergreen trees of pyramidal habit, with frond-like arranged, mostly flattened branchlets, small, scale-like, opposite lvs., and rather small, ovate or oblong cones. None of the species is quite hardy North, but $L$. decurrens thrives in the vicinity of the city of New York, and eren in sheltered places in F. Mass. It is a valuable park tree, forming a symmetrical, narrow pyramid, with bright green foliage. It is also an important timber tree, the wood being light, soft, close and straight-grained, is very durable in the soil, and is used for fencing, for shingles, for the interior finish of houses, and also for ship and boat building. The other species are hardy only South, and, though very ornamental trees, they are hardly cultivated in this country: they are all important timber trees in their native countries. The Incense

Cedars thrive best in a wel'-drained soil, and prefer open situations; they are liable to lose their lower branches rather early. Prop. by seeds sown in spring; also by cuttings under glass in late summer or fall, which root rather slowly; sometimes grafted on Thuya and Chamecyparis. Eight species in W., N. and S. America, Australia and S.W. China. Allied to Thuya. Branchlets Hattened, rarely quadrangular, frond-like in arrangment: lvs.scale-like, with decurrent base, with or without glands: fls. moncecious or dicecious, terminal, similar to those of Thuya: cones oblong to ovate, with 4 , rarely 6 , woody scales, the lower pair sterile, small and short, the second one much larger and fertile, each scale bearing two long-winged seeds, the third pair, if present, connate into a woody septum.
decúrrens, Torr. (Thìya Craigiàna, Murr. T.gigantèa, Carr., not Nutt.). White Cedar. Tree, to 100 ft. , with erect or spreading, short branches, forming a rather narrow, feathery head; bark bright cinnamon-red: branchlets much flattened, bright green on both sides: lvs. oblong-ovate, adnate, with long decurrent base, free at the apex and acuminate, glandular on the back: cones oblong, $3 / 4-1 \mathrm{in}$. long, light reddish brown; scales mucronate below the apex, a third connate pair separating the 2 fertile ones. Oreg. to Calif. and W. Nev. S.S. 10: 534. F.S. 9, p. 199. Gn. 29, pp. 266, 267. - In cult. the young trees are conspicuous by their bright and deep green foliage, while the trees in their native localities are mostly of a light yellowish green. Var. compácta, Hort. Dwarf compact form of globose habit. Var. glaùca, Hort. With glaucous foliage.
L. Chilénsis, Endl. Tree, to 60 ft .. With compact. pyramidal head; branchlets much compressed: lvs. glancous green, small, erect-spreading, obtuse, with a silvery line beneath: cones ovate oblong, $1 / 2$ in. long. Chile. P.F.G.1, p. 47. G.C. 1850, p.439. R.H. 1867. p. 410 . Gn. 30, p. $552 .-$ L. Doniàna. Endl. (L. plumosa, Sarg.). Tree, to 100 ft ., with dense pyramidal head: similar to the former, but liss. larger, more closely set and more spreading, without any silvery line beneath: scales of the cone with a large, curved spine on the back. New Zealand. N. 2:261. This species is the most tender of this genns.-L. tetrágona, Endl. (L. cupressoides, Sarg.). Tree, to 100 ft ., with compact, pyramidal head. sometimes shrubby: branchlets almost tetragonal: lvs. ovate or ovate-lanceolate, with slightly spreading and acute apex: cones orate: scales with a large, curved spine on the back. Chile to Patag. G.C. 1850, p. 439 . Gn. 30, p. 552.

Alfred Rehder.

## LIBONIA floribunda and Penrhosiensis. See Jacobinia.

LICUALA (Molucea name). Palmicere. Low, shrubby fan palms: stems solitary or in groups: lobes of the lus. long, wedge-shaped, plicate, truncate and variously lobed or split, deeply and irregularly divided; rachis very short; ligule short: sheaths fibrous: fls. large. Species 36 or more, from trop. Asia to trop. Australia. Allied genera in cult. are Brahea, Serenoa. Erythea, Pritehardia, Livistona, Trachycarpus, Rhapis. From these Licuala is distinguished by the carpels of the orary 3 -angled, slightly coherent; style single, filiform: albumen equable: embryo dorsal.
A. Les. with lobes more or less grown together: lobes rery broad.
B. LIarginal teeth very large, the upper edges bent under.
Rúmphii, Blume. Petiole spiny below: segments $12-15$, the inner ones 2 ft . long and 1 ft . wide at the apex, the lateral ones 16 in . long and 4 in . wide, oblique: marginal teeth broadly ovate, obtuse, shortly bifil. Celebes. Cult. in S. Fla.

## BB. Marginal teeth with upper edges not bent under.

grándis, H.Wendl. (Pritchárdiagrándis, Bull). Erect palm, the stems clothed abore with dead sheaths: lys. very many, erect-spreading; petiole 3 ft ., slender, glabrons, with stont, short, straight or curved spines along the margins below the middle; blade orbicular or semiorbicular, very closely plicate, wedge-shaped or truncate at the base, concave. the margins with many short lobes which are ohtusely 2 -fid: lignle thick, short, acute, hroadly orate. New Britain. I.H. $28: 412$ and 41, p.82. G.C. II. 1:415. B.M. 6704. A.F. 7:1145. F.E. 7:982. S.H. 1:344.

AA. Le's. digitately dicided: lobes narrou. B. Lobes less than 12.

Jeanéncegi, Sander. A dwarf, rapidly growing palm: Ivs. deep shining green; lobes blunt, 5 to 8. New Guinea. (in. 55, p. 71 . F.E. 11:291. G.M. 41:341.

## BB. Lobes 12 or more.

C. Petioles without spines in the upper part.
elegans, Blume. Stems thick as a man's body, 4 ft . high, prominently scarred: petioles $3-4 \frac{1}{2} \mathrm{ft}$. long, the margins with brown hooked spines to just above the middle; lvs. orhicular; lobes very graceful. the linearlanceolate lateral ones gradually decreasing to 11 in ., obliquely truncate, with acnte teeth, the middle lobes 16 in. long, truncate, with broader obliquely ovate obtuse teeth, lobes with only 2 or 3 folds. Sumatra.

1271. Licuala peltata.
cc. Petioles spiny throughout. D. Lis. ascending.
peltàta, Roxb. Fig. 1271. Les. 3-5 ft. diam., orbicular ; iobes very variable in length and widti, manytoothed at the apex, the teeth $1 / 2-2$ in.; petiole stone, $3-4$ ft . long. The lohes of the lvs. droop very gracefully. G.C. 1872:16:7̄. India.-Adr. 1895, by Pitcher \& Manda. Fig. 1271 is redrawn from Martius.

## DD. Les. horizontally spreading.

spinòsa, Wurmb. (L. hórrila, Blume). Lvs. 3 ft . or more in diam., orbicular-reniform; inner lobes $18-29$ in. long, $41 / 2-\overline{5}$ in. wide at the apex, $10-11$-toothed; outer lobes 15 in . long, $11 / 2-2 \mathrm{in}$. wille, 4-6-toothed; teeth rather large, triangular-ovate, bifid; petioles obtusely 3 -angled, $4-\overline{5} \mathrm{ft}$. long, with brownish hooked spines. Java, Moluceas.

## Jared G. Smith.

Licualas are rery handsome warmhouse palms of moderate growth, several species of which hare beed grown to some extent commercially. They delight in a tropical temperature and abundant moisture, and should also be shaded from strong sunshine in order to produce foliage of the deep, rich shade of green that is common to this genus.

The most attractive species is $L$. grandis, which has been until recent years a costly species owing to its comparative rarity in cultivation. It is probably within ten years that the first consignment of seeds of this species was received in America.

The large fan-shaped leaves of the Licualas are somewhat tender and easily injured, which makes them of less value for house decoration, but as exhibition plants
there are few palms more striking than L. grandis, and L. elegans. L. spinosa and L. peltuta are also well worth cultivation, though objection is sometimes found to the strong hooked spurs with which their leafstalks are armied.
W. H. Taplin.

## LIGULARIA. All referred to Senecio.

LIGUSTICUM (Latin, referring to the ancient province of Liguria, where a plunt was gathered which was something like this and used in mediçine.) Cimbellifere. This includes a native hardy herbaceous plant suitable for naturalizing with aquatics and bog plants. It has a bold habit, grows $9-6 \mathrm{ft}$. high and has ternately decompound foliage. Offered by dealers in native phants. The genus has abont 20 species scattered in the northern hemisphere. They have large aromatic roots, mostly no involucre, involncels of narrow bractlets and white ths. in large, many-rayed umbels. Consult our manuals or Coulter and Rose's "Revision of North American Lmbellifere," 1888.
actæifolium, Michs. Stem stout, hranched above: lvs. 3-1-ternate; lfts. $2-5$ in. long, coarsely serrate, broadly oblong: umbel 10 -20-rayed: fruiting rays $1-\%$ in. long. July, Aug. Rich ground. S. I'a. to Gulf of Mex. B.B.2:ప19.-Int. by H. P. Kelsey. W. M.

LIGUSTRUM (ancient Latin name). Olracerp. Ineluding Visidizia. Privet. Prim. Ornamental shrubsor trees with deciduons or evergreen opposite. entire lvs., white or whitish, mostly fragrant fls. in terminal panicles, and decorative, usually black berries, often remaining on the branches through the whole winter. Some decidnons species.as $L$. culyure, Ibota, ciliatum and $A$ murense, are hardy North, while others, like L. ocalifolimm, Smense and Quihoui, can not be considered quite hardy north of Long Island. The evergreen species are only half-hardy or tender, bit $L$. Juponicum may be grown as far north as Philatelphia. They are all very valuable for shrubberies, with their clean, dark green foliage, which is rarely attacked by insects nnd keeps its green color mostly unchanged until late in fall, though I. cilirtum sheds the lvs. rather early and $L$. Ibotu and sometimes L. ovalifolium assume a pretty purplish hue; in milal winters some of the deciduous species hold part of their foliage until almost spring. L. vulyere, ovalifolinm and others stand dust and smoke well and are raluable for planting in cities. L. oralifoliom is one of the best shrubs for seaside planting, growing well in the very spray of the salt water (known as California Pricet). Some are handsome in bloom, especially L. Siwense, Ibota, Japonicum, lucidum and most of the other evergreen species; all are conspicuous in autumn and winter from the black berries, or in some vars. of $I$. vulgare, whitish, greenish or yellowish. L. rulgare, oralifolium and also $L$. Amurense are well adapted for ornamental hedges. The Privets grow in almost any kind of soil, and even in rather iry situations and under the shade and drip of trees. Prop. by seeds sown in fall or stratified, sometimes not germinating until the second year; usually increased by cuttings of hardwood or byy greenwood cuttings in summer under glass; vars. are sometimes grafted on $L$. vulgare or $L$. ozalifolium. About $3 \bar{s}$ species, chietly in E. Asia and Himalayas, distributed south to Australia, one in Europe and N. Africa: from allied genera distinguished by the terminal inflorescence and from Syringa by the berry-like fr. Levs. short-petioled, estipulate: Hs. perfect, small; calyx campanulate. obscurely 4-toothed; corolla funnel-shaped. with mostly rather short tube and with 4 spreading lobes; stamens 2: fr. a 1-3-seeded berry-like drupe.

Alfred Reidder.
California Privet for Hedges. - First method.Cuttings $8-14$ inches of 1 -year wood are made in fall or winter, preferably the former, as they are occasionally damaged by the winter, even as far south as Alabama. These are tied in bundles and buried during winter. In the spring they are stuck in rows $2-6$ inches by $2-31 / 2$ feet, and kept cultivated. They are sold at 1 year, when $1-21 / 2$ feet high, or at 2 years, when $2-4$ feet high. If not sold at 2 years the plants are sometimes cut back to 3 inches to sprout again. They are lug liy spade or treedigger. These closely grown plants will make a hedge,
as shown in Fig. 12i2, especially if dug with spade and given short roots. If 3 -year plants, not cut back, are used, the base is open, as the old wood at the lower part of the plant has hal its side branches weakened or killed by crowding and they do not readily branch out. Plants

1272. Common method of making Privet hedge. (Scale $1 / 2 \mathrm{in}$. to ft .)
grown by this method are frequently planted in a double row.

Scond method. - Cuttings of 5-6 inches of stout, 1-year wood, are madt in November. The cuttings are made short so that the roots will not be cut off by the treedigger. The laves are stripped off, and the cuttings tied in small bundles. as large bundles mold. These are buried. tops up. over winter. In the spring, hefore growth starts, they are planted in rich, mellow land 4 inches apart, with rows 8 inches apart. To plant, a back furrow is plowed in the center of the block, the top raked off, a line stretched and pegged down. The conttings can then be inserted nearly full length. The trampling of the row settles the soil enough to expose the top buds. With a one-horse plow the bottom of the furrow is loosened where the planters have packed the soil, and new furrows are made around the strip planted. The euttings are tilled during summer with a wheel-hoe or hanl-plow. To make wille plants, the tips of the shoots are pinched when they are about 3 inches long. This is repeated at intervals of about three weeks during the summer. Nitrate of soda may be used to hasten growth. This method produces a plant as shown in Fig. 1273.

The plants may be dug in the fall and heeled-in, to prevent possible winter-killing. They are then sorted into grades and planted in the spring $1 / \frac{1}{2}-2$ feet apart in rows $3-1$ feet apart against the lamd side of a deep furrow, and a little soil kicked orer the roots. The filling is completed with a one-horse plow. Before filling, tine momure may be spread near the plants.

The plants should be straightened up and trampled firm. When finished, they should have the lower branches covered and the lower end of the cutting not below the level of the tree-tivger. The pinching-back process may be continued, or the tips may be cut with a sickle during the early part of the season, especially on plants of the smaller grade. To get more roots on the branches the plants may be billed-up. They are cultivated with a me-horse cultivator or a two-horse riding eultivator. It two years these will make plants $21 / 2-3 \%$ feet high and $12 / 2-2$ feet wide at the base.
Dig with a tree-dig-

1273. California Privet from short cuttings, transplanted deep. (Scale $1 / 2 \mathrm{in}$. to ft .) ger that operates on one or both sides. The plants may be set l:15 inches apart. 4-6 inches deeper than before, and produce a hedge as shown in Fig. 12復. A smaller number of plants is required than when plants grown by the first method are used.
As there are numerous vigorous buds near the ground. the growth is very dense at the base. After planting, the tops may be cut off to an even height.

Various forms of hedge are used, as shown in Fig.
127. No. a is used on Long Island; b is used at New. port. At Newport, by repeated clipping, the leaves become very small and the growth dense, resembling a wall. Nos. dand e frequently result from using narrow plants and allowing them to grow at the top.

Thirel method. - At Biltmore Nursery, North Carolina, the Privet euttings are run through a stalk cutter and the pieces sown in a furrow.

Heniry Hicks.

## 1NDEX.

Alivoni, 7.
Amureuse, 4.
angustifolium. 1.
aureo-marginatum 5. 7.

Californicum. 5.
buxifolium. 10
Chinense, 11
ciliatum, 9. coriaceum, 8 . excelsum, Forturei, i1 Fortumet, 11. glabriem. 6. glaucum, 10 . Italicum, 10 .

Japonicum, 5, 6, i. Quikoni, 12. Кеllerinmem, 6. Regelianmm, 3 . hellermemui, 6. longifolium, 1 and supp. list. macrophÿlum magnolicefolium. Massalongianum, 1 meadia, 2. meditm. myrtifolium, 1 . Nepalense, 9 . obtusifolium. 3. ovalifolium. $\overline{\mathrm{j}}$. orahfolimm, is.
robustum. -, rosmarinifolium, 1. semperrirens, 10 Sieboldi, 6 .
Sinense. 7. 11 spicatиm, 1,6. -. 9 Stamboni, 11 allul supp. list. syringeflortum, 6. tricolor, 5, variegatum, 5,10 villosum, 11 . vulgare, 10 . A. Corolla with the tube? or

## limb.

B. Lis. linear-lanceolate or linear, everyreen.

1. Massalongiànum, Vis. ( L. longifolium, angustifòlium, myrtifòlinm, rosmarinifollum and spicittım, Hort.). Erect shruh, to 3 ft ., with warty and pilose branchlets: lus. tapering at both ends, glabrons, $1 \frac{1}{2}-3$ in. long: panicles much hranched, many-Hd. with rather small pedicelled $\mathrm{H} s . .91 / 2-31 / 2 \mathrm{in}$. long. July. Aug. Himal. G.C. 1I. 16:149.-Graceful half-hardy shrub.


12i4. The Privet hedge at final transplanting.
(Scale $1 / 2 \mathrm{in}$. to ft .)
BB. Les. oblong to oirate or oval.
c. Voung branchlets and inflorescence pubescent: les. deciduous.
2. ciliàtum, Blume ( $L$. Ibòtu, Sieb. \& Zuce. L. Ibòt, var. ciliatum, Dipp. L. midium, Hort., not Franch. d Sav.). Shrub, to 6 ft. , with erect and spreading branches: lvs. rhombic-orate or ovate-lanceolate, acute at both ends, appressed pubescent near the margin and finely ciliate and pubescont on the milrib beneath, 1-2 in. long: panicles small, erect, about lin. long: fls. almost sessile; calys glabrous: fr. shining. Junc. Japan. This is one of the least lecorative species: it has been introduced under the erroneons demomination of $L$. medium, which is sometimes misspelled $L$. meadia.
3. Ibòta, Sieb. (L. oltusifulium, Sieh. \& Zuce.). Fig. 127. Shrul, to 10 ft . with spreading and curring branches: los. elliptic to oblong-obovate, acute or obtuse. usually only pubespent on the midrib beneath. 1-2 in. long: panicles modding, small, $1-1 \frac{1}{2} \mathrm{in}$. lone. numerons along the bramehes on short branchlets: fls. short-pedicelled: calyx pubescent: fr. with slight bloom. June. July. Japan, China. G.F. 6:425. M.I.G. $1899: 01 \mathrm{Z}$. -Gracefil shruh, harly North. Var. Regelianum, Rehder (L. Liegelimmm, Hort.). Low, dense shruh with almost horizontally spreading branches and oblong or obovate, usually more pubescent lvs.

4．Amurénse，Carr．（L．Ithotu，var．Amurénsis，Hort．）． Shrub，to 15 ft ．，with upright branches：lus．oval or ob－ long，usually obtuse，somewhat glossy above．glabrous except the midrib beneath． $1-\frac{1}{2}$ in．long：panicles erect． often rather many－fld．，1－91／2 in．long：ths，short－pedi－ celled；calyx glabrons or slightly pubescent near the base．June．July．Japan，China．R．H．Istil．p．350．－ Similar in habit to the following and nlmost half－ever－ grcen．
cc．Joung parts glabrons：lis．half－evergreen．
5．ovalifolium，Hassk．（ L．C＇elifirmioum．Hort．L． Japénicum，Hort．，not Thunb．，and probabls L．meilitem， Fratheh．d Sav．）．CALIFORNAA Privet．Sinrub of upright hahit．tu $15 \mathrm{ft} .$, quite glabrous：Iss．cuncate at the base，elliptic－ovate or elliptic－ oblong．aente，dark green and glossy above，yellowish green be－ neath， $11 / 2-21 / 2$ in．long：panicles erect，many－Hid．，rather compact． to 3 in．long：fls，almost sessile． July．Japan．－A very handsone e shrub，but of somewhat stifl habit： well adapted and much used for hedges（see Min．6，p．9）．Var． aureo－marginàtum，Hort．Lars． edred rellow．Var．variegàtum． Hort．（var．robistum rariegitum．Hort．）．Lxs．varie sated with yellow．Var．tricolor，Hort．Lus．variegated with yellowish and white，pinkish when young（Mn．2， p．4：）．
As．Corolla with the tube as long as the limb or shorter．
B．Joung grouths glubrous：lrs．evergreen．
6．Japónicum，Thunl）．（L．glitmom，Hort．L．Kelleri－ armm．Vis．L．Kéllermanti，Sièboldi，spicitum and syringeflorum；Hort．）．Bushỵ shrub．to 10 ft ：Jes． roundish－ovate to ovate－oblong，acute or obtusish，with reddish margin and midrib，veins beneath not distinetly marked，$-3-3 \frac{1}{2}$ in．long：panicles broad，rather loose，to 412 in．long；tube usually somewhat longer than calys． Juls．Ang．Japan．－Very handsome evergreen shrib． hat in coller climates often losing the les．in fall：often confounded with the following，and also with the former．
T．lùcidum，Ait．（L．Japónicum macrophịllum，I． me！gualiofòlium．L．Sinénse lutifolitm obrístum and L．spicitum．Hort．）．Large shrub or tree，to 20 ft ．．with somewhat spreading branches，similar to the former： Ifs．larger，ovate to ovate－lanceolate，acute or acumi－ nate，distinctly veined beneath． $3-5$ in．long：panicles less loose，with almost sessile Hs．：tube about as long as calyx．July，Aug，Japan，China．B．M．©5t5：©9！ （as L．Vepalense glabrum）．G．C．II．10：703．－Larger leaved than the former，lut more tender．It yields the white wax，an exudation of the branches，cansed by an insect，Coceus Pe－lah；therefore eult．in China．Var． Alivòni，Arl，Kew．（ L．J九pónirum，var．Alitòni，André）． Lvs．ovate－lanceolate，to 8 in ．long．acuminate，some－ times with yellowish variegation when young．Var． aureo－marginàtum，Hort．（ L．excelsum auireum，Hort．）． Lrs．margined yellow．Var．tricolor，Arl）．Kew．（L．Ja－ nónicum tricolor，Hort．）．Lvs．with yellowish variega－ tion，pink when young．


1275．Conventional forms of California Privet hedges．
8．coriàceum，Carr．（L．lìcillım，var．coriìcellm， Decne．）．Dwarf，dense shrub，with short，rigid branches， to 6 ft. ，very leafy：liss．orhicular or orbicular－ovate． convex，dark green and shining above， $1 \frac{1}{2}-21 / 2 \mathrm{in}$ ．long： panicle compact， $2-4$ in．long，with sessile ths．July． Cult．in Japan，not known wild．13．M． 7 －19．R．H． 18 4．4． P．418；1888，p．440．F．1876，p． 65.

BB．Joung brunchlets and iniborescence pubescent or pubernlous．
c．Lis．evergreen，z－i in．long．
9．Nepalénse，Wall．（L．spicitum．Don）．Evergreen shrub or tree，with pubescent branchlets：les．oblonge or oblong－ovate，acuminate．pubescent hensath，シー－in． lobif：panieles rather large and broad，interspersed with petioled bracts．July，Aug．Himal．
CC．Lis．decidnous or helf－ereryreen，l－2̌a in．long．
10．vulgàre，Limn．Comson Phivet or Phis．Shrub， to $1 . \mathrm{ft}$ ：branchlets and panicles pulerulons：Irs． oblong－ovate to lanceolate obtuse or acole， glabrons：panicle rather dense，pyramidal， $11 / 2-21 / 2 \mathrm{in}$ ．Jong：stamens shorter than the limb．June，July．Ein．，N．Afr．，W．Asia． Naturalized in some places，chitfly in the East．B．B．2：604．－Many garden forms．Var buxi－ folium，Nichols．f，ve． ovate or oblonsoorate．


Var．glaùcum albo－marginàtum，Hort．Lv̌s．Muish green，with narrow white marsin．Var．Italicum， Kirchn．（L．Itillicum，Mill．L．sempérpirens，Pieri．）． Les．linear－lanceolate，almost evergreen．Viar．péndulum， Hort．，with pendulous branches．There are also vars． with fruits of different colors，as var．chlorocarpum， Loul．，with greenish，var．leucocarpum，Loud．，with whitish，and var．xanthocarpum，Loud．，with yellowish fruits．Of the variegated forms，var．aureum，Hort．， with yellow foliage，and var．variegatum，Hort．，with the lis．blotehed yellow，are the most important．

11．Sinense，Lour．（L．Forthuri，Hort．）．Shrub．to 8 ft．，with slender spreading branches：branchlets pubes－ cent：Ivs．oval to ovate－lanceolate，pubescent along the midrib beneath，at least when young：panicles pules－ bent，loose，to 4 in．long，with distinctly pedicelled tis． China．Corea．Two forms ean be distinguished．Var． villosum，Rehder（L．rillosum．Mar）．Las．oval to ovate－lanceolate，obtuse or acute，pubescent bencath， especially along the midrib：panicle somewhat narrow． G．C．1s．is．p．fiel．Var．Staùntoni，Rehder（L．Stuìntomi， 1）C．）．Less high and more spreading：lis．oval to ovate， obtuse or emarginate，sparingly pubescent on the mid－ ril）beneath．panicle broader and more loose．G．C．Il． 10：365．G．F．3：213．
12．Quihoui，Carr．Shrub，to 6 ft ．，with spreading branches：branchlets and panicles tinely puhescent： lis．elliptic－oblong or narrow－oblong，obtinse，glabrous， somewhat coriaceous，l－t in．long：fls．almost sessile，in small clusters．forming at the ends of the branches long， mostly panicled spikes．June－Aug．China．G．C．II． 18，p． 27.
L．brachystàchyum．Dene．Closely allied to L．Quihoni，but of upright habit，with larger liss and shorter，more compat panicles．－L．compuctum，Dook．f．\＆Thomıs（L．lancifolinm，
 quite glabrous：lvs．lanceolate，to 6 in．：panicle large，compart：
 Hort．，not DC．）Snrub，to 6 ft．，allied to $L$ ．vulgare：ws，elliptice
 －3－3 in．：panieles rather large．Origin uncertain－－I．Fokimense． Hort＝Syringa Pekinensis．－L．strangulophýllm．Hems． Evergreen shruh or small tree，almost glabrous：Ivs．orlicular or obovate $1^{1 / 2}-1$ in．：panicle rather loose．China．－Is．Wälheri， Derne．Alifed to L．Nepalense：Ivs ovate to lanceolate，gla－ lirous，to $: 3 \mathrm{in}$ ．：panicle large，to 6 in ．Ceylon，Deilgherries． G．C．III．24：2s＊．G．M． $41: 683$ ．

Alfien Rehter．

LILIUM (ancient Latin name). Lilitcere. Lils. The Lilies have always been looked upon as amongst the noblest of garden plants. Their conspicuons flowers, striking colors, and their stately forms appeal strongly to the eye and to the imagination as well. They are among those good "old-fashioned" plants which frequently and justly come newly into vogue. Lilies are less understood and less discriminatingly appreciated than almost any othec plants of prominence. The Tiger Lily is a favorite and old-fashioned tlower, to be found in many of the mose homely and unpretending gardens. Now and then one finds a good group of the Madonna Lily, very rarely a cluster of the beautiful little Coral Lily, and sometimes the landscape gardeners furnish free-handed clients with masses of the Gold-banded Lily iu the shrubbery borders. The Easter Lily is largely foreed by the florists, as are also certain varieties of the Speciosum group. But aside from these, no Lilies can at present be classed as real favorites of the American public, while dozens of magnificent kinds are practically unknown.

In the opinion of the writer, the three best Lilies for everybody to grow are $I$. iigrinum, rar. splendens: $L$. specinsum. var. rubrum; and $L$. tenuifolium. To these the following species may be alded as well worthy of general culture, at least in the eastern states (the order given is approximately that of the writer's preference): L. elegures (many varieties, all good), auratum, concolor and its var. purtheneion (the Coridion Lily), Brounii, Henryi, Chuicedonicum, testuceum, cundidum, maculatım, puberulum, Juponicum var. roseum, longiflorum, pomnonium. The connoisseur should not be without $L$. Maximowiczii. Canadense, Parryi, Nepalense, monadelpleum. pardalinum, superbum, Wushingtoniauum, Grayi, Wallichiunum, Philadelphicum, Culumbianum, Neilyherrense. All these will succeed fairly well, and many of them are of the easiest possible culture.

Lilies are ornamentally useful principally for their flowers. Their foliage is seldom of a character to assist in any seheme of garden decoration. Certain species bear tlowers in such quantity and of such pronounced colors that they make very effective masses. Such strokes of color can best be worked into the garden picture at carefully chosen points in the borders, especially where the rich sunlight of eariy morning or late afternoon takes its rest. For fine mass effects of this kind the divers varieties of $L$. eleguns, particularly var. fulgens. are excellent. L. tigrinum, var. splentens and L. tenuifolium are also striking; while other sorts which mass well, but are of more modest colors, are L. spuciosum. "urutum, Chulcedonicum, concolor, and Brounii. Lilies of many sorts are highly agreeable when scattered-not massed-somewhat freely through shrubbery borders, or with large hardy perennials. Almost any Lily is satisfactory when so placed, but the varieties minst not be nixed, and there should be enough plants to avoid a feeling of thinness and isolation.

Lilies are native to the north temperate zone. The majority of our best garden Lilies, such as L.tigrinum, auratum. speciosum, and the fine new Henryi, come from western Asia, whereas none of the American species is especially successful in our garlens. Throughout Japan, eastern and southern China and Burna, and the adjacent islands, are found dozens of the most gergeous species.

The genus Lilium is the type of the order Liliacere, a family crowded with plants of garden value. The family has over 2,000 well-known species, and of the 187 genera probably half are in cultivation. There are many monographs of the genus Lilium in rare and costly works and in various languages. The latest and most sumptuous one is "A Monograph of the Genus Lilium," by Elwes. published in 1880. with magnificent colored plates. It is referred to below by the abbreviation El. Unfortunately, there is no recent book on Lilies in the English language which combines the horticultural and botanical points of view. The latest botanical review of the whole genus will be found in the "Botanical Gazette" 27:235 (1899), to which the student is referred for fuller deseriptions than those given below.
F. A. Wavgh.

Cultcre. - In the growing of a large collection of Lilies in the open air, the best results can be obtained only
with a variety of soils and conditions. Heavy soils are not suited to many of the Lily tribe. A few species, like L. superbum, Cunadense and tigrinum, may do well in heary soil, but a light soll with sand and gravel intermixed, one from which any excess of moisture runs off is much better for a large collection. Drainage is of great importance. The slope of a hill, if not too steep. affords a chance for varied degrees of drainage; the

upper portions are suited to such as prefer the driest ground, as L. Philedelphicum, concolor and Washingtonianum, while at the bottom, if the drainage be good. L. aurutum, testaceum. caudidum and others would thrive. No general rule for the eulture could be given for all. A slate ridge seems to be well suited to some Lilies. L. concolor, Philadelphicum. Gruyi, the varieties of elegans, Washingtonianum, puberulum, Columbianum, Maximouiczii and others seem to like such soils. and with deep planting will stand more drought than in lighter soils.
Lilies like some shelter from severe winds as well as midday sun. They do finely among Rhododendrons. The point is not so much to shade the stems and foliage as to keep the groumd over the bulbs cool and moist. An open frame is an admirable place for planting Lilies, with 3-4 in. of peat or leaf-mold over the bed, which keeps them cool. Peat is very beneficial also when mixed with the soil about the roots.
The scales of Lily bulbs shrink by exposure to air and in this way the bulb is weakened. Bulbs with shrunken or flably outside scales are less valuable than with firm and plump ones. They may be kept in damp soil, boxed tightly for some time, but many of the store bulbs have lost much of their vitality by the time they reach the purchaser. It is not rare for such bulbs to fail to grow until the second season. L. monadelphum. maculutum and Brownii frequently do not appear abore ground until the second season, if their seales have been dried to any considerable degree.
Among the kinds which seem to do well in any ordinary light soils, and which, as a rule, may be grown with least $\epsilon$ ffort, are $L$. uurutum, Chalcedonicum, candiclum, elegons and its common varieties, testuceum. maculatum, Henryi,tigrinum, Martagon, Maximowiczii lougiflorum, monudelphum, and the varieties of speciosum. L. superbum and Camadense are also easily grown and do well with considerable shade. L. Philip pense, Cutesbui and Neilgherrense are not suited to out door culture in the North. L. Nepalense and sulphureum may be grown in Vermont with fairly good results, but should not be allowed to freeze during winter. All Lilies are better if their bulbs are not frozen. Most of them will stand some frost at a good depth, but frost seems to weaken them and Lily diseases attack the weaker plants first.
The Lily blight or disease, which seems to affect Lilies in much the same way that the potato rust does the potato, is more damaging to sone species than to others. Those from the Pacific coast seem to be more subject to
this disease than the Japan species. The disease is common in our wild Lilies and is sometimes fonnd on them in their natural habitat. In cultivation the disease often ruins flowers, foliage and the stalks of $L$. Cuntense without seeming to affeet the bulbs. It is common on $\boldsymbol{I}$. cundidum, and we now seldom tind bulbs entirely free from it. The Bordeaux mixture has been found beneficial in fighting the Lily disease, but the best results are attained by using it as a preventive, applying it to the foliage before any blight appears.

In planting new bulbs, it is well to use ground that has not had Lilies for some sears. All stalks and foliuge affected by blight should be removed and burned, and blighted bulbs and scales, especially such as are worthless from decay, should be burned, as these may help to propagate the disease.

As a rule, Lilies like a rich soil, but it seems to be the general opinion of all who have had experience in growing them that manures (particularly fresh manures) should not be allowed to come in contact with the bulbs. Many alvocate the application of all manures as a mulch, letting the rains carry down their fertilizing ingredients. When the enrichment is not allowed to come in contact with the bulbs, but is placed within the reach of the extended roots from the bulb, well composted manures seem not injurious. Lilies, as a rule, do better when set at considerable depth. They scem to resist drought better, and the bulbs are no doubt kept cooler in hot weather. Most Lilies throw out many roots along their stems between the top of the bulb, and the surface of the soil, and deep setting is rather necessary to this root-growth. Deep spaling shonld go with deep setting, and it is not too much to say that the ground should be spaded twice as deep as the bulhs are placed. Sphagnum moss has been fonnd beneficial to some species. Among such are $L$. duratum and candidum. Two or three inches of the fresh moss may be placed under the bulbs. It has been used with success under others, and is espeeially good for L. testaceum.

Lilies are propagated from seed, from seales and from offsets. With one or two exceptions, the production of hulbs from seed is a very tedious process. Several species seldom, if ever, produce seed in this country. Among these may be mentioned $L$. camdidum. specinsum. testacenm, macrilatum, Brownii, tigrimum, Chalcedonicнm, and some varieties of elogans. Some species, sueh as $L$. aurufum, seldom germinate until the secont summer after planting. L. temifoli"m is, however, an exception to most speeies, for not only does the seed germinate the first year, but it is not rare for some of the bulbs to bloom the second summer.

In growing Lilies from scales. it is a good plan to remove outside scates from strong bulbs when quite ripe or in early spring, and plant these scales where they will be kept moist and warm. They generally change into bulblets the first season and make a fairly good growth by the second autumn. If well eared for they are large enough to sell by autumn of the third season. Lilium ligrinum, butbiferum and sulphuremm have bulblets in the axils of their leaves. which. if gatherod as soon as mature, may be planted. and with good care usually boom the third or fourth year. In many other kinds offsets form along the stems beneath the surface and down to the bult, which, when planted out, make good bulbs in about 3 years.

Lilium longiflorum, Maximoriczii. especially the red variety, and most of the varieties of elegoms. have a large number of offsets along their stems under the surface of tho ground. The number is larger in seasons when plenty of rain comes during thoir growth than in dry seasons. L. cundidum is set with best results as soon as the foliage begins to turn in August: and it is at this same season that its scales should be planted for propagation. When good. healthy seales of this species are planted out early, they usually chance the same autumn into bulbs, and most of them will send up leares before winter.

## F. H. Horsford

Lalies in Canada. - Some of the species generally recommended for garilen eulture as harily do mot stanil at Ottawa. Those that have failed are $L$. condidum (of late years from disease). Krumeri, corlifolium: specinsum, Kratzeri, Cumadense. Harrisii. atrotum. and rars. pictum, platyphyllum, hyemule, Wittei. Those
that have held their own, but have not increased, are L. Maximouiczii, pomponium, I', renaicum, eleguns semi-pleno and elegans incompurabile. Those that have increased and been perfectly hardy are $L$. *longiflorum, Brounii, *croceum, *Butmanniк, *W"allacei, muculatum, "Duhuricum, elegans and vars. *cilrinum and others, L. *tigrinum, tigrinum, var. Fortumei and flore-pleno, L. speciosum vars. album, , roseum, vulum and Melpomene, L. *Martagon, *superbum, "purdalimum, *lestacerm, "pomponium. Those starred (*) aro the most satisfactory. It would be well to warn growers that in the average garien $\boldsymbol{L}$. uurutum, in all its varieties, will not last more than 2 or 3 years without renew ing. Some of the more expensive varieties flower only once.

An important characteristic of Lilies is perfume. ${ }^{\text {a }}$ point in which they differ very much. It is very stront in L. canlidum, longiflorum and the anvotums, and the atmosphere is full of the delieious ofor on a quiet evening. It is fainter in L. testuceum, and rank in L. crocenm and related species, and a positive stench in L. pomponinm-almost unendurable in the garden and unbearable in the house. Benutiful as $L$. pomponium is in color and habit, the olor outweighs these good points, and makes it undesirable and not to be recommended.
R. B. Whyte.

The Easter Lily. - In North America a tall and large-flowered form of Lilium longiflorum, and one that can be realily forced in a relatively high temperature. has come to be known as the Easter Lily. This variety was introdueed from Bermuda. About 1875, a Philadelphia woman, in returuing from Bermuda, brought with her two Lilies in bloom and presented them to a local florist. The bulbs were increased to one hundred in tho next three or four years, when the plants were scen by W. K. Harris, an enterprising Philatelphia forist. The earliness of blooming and proliticacy of the bulbs were striking features, and led to their purchase by Mr. Harris. In 1582, the Lily was introduced under the name Lilium Harrisii. It hat been exhibited previously in New York and Philadelphia, where its early tlowering brought it into prominent notice. White the Lily was being increasel prior to its introduction, other florists who had seen it were gathering bulbs in Bermoda and

1278. Lilium Japonicum ( $\times 1 / 3$ ).
endearoring to secure a stock. In 1852, it was also introdueed by a Philadelphia thorist under a long Latin name, and later by a New York florist as the Bermuda Easter Lily. Practically all of the names except Lilium Hurrisii have been discarded. To botanists it is known as $L$. longiflorum, rar. eximinm. The distinguishing trait of $L$. Harrisii-and this gives it its emphatic commercial value-is its power to stand a high temperature, allowing it to be forcell into bloom

## LILIUM

throughout the winter. A second favorable feature is the prodnction of an unusually large number of flowers from each bulb, and a thirn, the lurge size of the flow. ers. It is practically impossible to ohtain miform und good stock of the true variety from Bermula at the prevent time.

The propagation and general management are not unlike that given other bulbs of its class. It is multi-

1279. Lilium Philadelphicum ( $\times 1 / 3$ ).
plied by offsets, in which the variety is prolific, a bulb sometimes producing as many as fifty. When first introluced, the stock was increased from the hulb scales. and from enttings of the stem before the plant had bloomed.

The Easter Lily is not difficult to grow under glass, if one has strong and healthy bulls. The perplexity in its culture, of which one sometimes hears so much, is due to the fact that boom is usually wanted at definite seasons, as New Years, Easter. Decoration Day. Now, the time at which any bulbous plant will blow depends to an important extent on the age, size, freshness and derree of maturity of a given bulb. Each bulb is to a great degree a law into itself. This explains why it is so diflicult to secure uniform hoom at a definite time. The dates of potting and shifting which give satisfactory rosults one season may give unsatisfactory results the following seasom. What the garlener does, therefore, is to start his bulbs early. and then retard or force them by varying the temperature, as the crop and occasion miy demand. He grows them in pots, so that he mas shift them from house to house.

In common with all hardy or spring-homing bulbs. Easter Lily bulhs should he kept cool until roots have formed, when they may be brought into heat for Howering. Secure the limbs as early as possible. Place your order in early summer. You will do well if they are received in early September. Keep them moist: if the become dry and shrivelled, much of their vigor is lost. There are three leading commercial srades, measured by the average circumference in inches of the bulbs. the $\overline{5}-7$ 's, $\overline{7}-9$ 's, $9-11^{\circ}$ s. The $\bar{i}-9$ is usually the most ser-
riceable and economical grade for the commercial florist. It is best to put them finto small pots (usually 4 in .) to form roots, and to transfer them, when growth has begun, to the pots in which they ure to bloom. Handing themat first in small pots saves lator, ceonomizes room, and maygive stockierplants. By growing them in pots, the plants may be shifted from cool to warm parts of the house, thereby insuring greater uniformity of senson: and all diseased plants are readily detected and easily discarled.

In September or October, then, the bullis are firmly potted. If the soil is rather heary, set the bulb on it cushion of sand (sce Fig. 290, p. 192). The top of the bulb should be about level with the surface of the soil. The best earth is one which is light und rather tibrous. devoid of clay. A gond potting soil (see Potting) will answer. The $\bar{j}-7$ min $i-9$ sizes may be put in 4 - or $4 \frac{1}{2}$ finch pots, and the $9-11$ in 5 -inch. I'lnnge them in a frame in the open, covering with sifted coal ashes or excelsior: or put them in a cool cellar. Here they may remain (in New York) until the loth or lith of December. Protect them from very severe weather and from beating rains. By early Deecmber they should have male good balls of roots. and a little top growth. Bring them in, and shift into 6 -inch or $\bar{i}$-inch pots. one bulb in each. For lecoration, 3 to 5 small bulbs may be put in 8 . 10 , 30 -inch pots, choosing bulbs of equal strengit in order that the bloom may be simultaneous. None of them will need transferring again. For early results for eut-flosers, it is customary to put the $\tilde{j}-\mathrm{i}$ bulhs at first into 5 -inch pots and to put them at once on the benches, keeping them rather cool for a time. Flowers may then be secured for the holidays.
Keep them cool. A carnation temperature suits them well until they begin to boom, when a higher temperature is desirable. Start with a night temperature of $45^{\circ}$ to $50^{\circ}$, increasing to $60^{\circ}$. If the flowers hegin to upen too soon. remove to a cooler house which is partially shaded, where they maty be retarded as much as two weeks. If they are too litt. give more heat. The electric light run at night will hasten the bloom perceptibly. Rarely can more than 80 or 90 per cent of a crop be made to bloom simultaneonsly, Following are the dates of a crop which was forced for Easter (at Cor nell) :

October 9. Bulbs received and potted, and plunged in frames.
December 11. Brought into house.
December 1". Shifted to permanent pots, and plunged
in a bed in a house having night temperature of $50^{\circ}$.
February $\overline{3}$. First buis seen; some of the pots trans-
ferred to a warmhouse (temperature for tomatoes).
March 20. Plants in bloom in warmhonse.
April 15. Easter. Plants in full bloom in coolhouse.
Give Easter Lilies plenty of light. Keep down the aphis by fumigating with nicotine vapor once a week. If the bugs get a start, give them a little very weak tobaceo water. Stake the plants when about 2 feet high. A goon plant from a $\bar{i}-9$ bulb should have 3 to $\bar{i}$ towers open at once, and 1-3 buds. After flowering, the bulbs are practically worthless. They may be planted in the border and may give a few Howers that season: and if well protected they may give some satisfaction for sereral seasons. If the buibs are to be planted in the horder, ripen them up in the pots by gradually withholding water. In rare casee they have been forced again the second winter. hut the attempt is not to be alvised except for experiment.
All the above remarks are intended for the true Easter or Harrisii Lily. Lately L. lowfiflorum itself has come into use for greenhonse work. It is usnally more uniform, of lower growth, and a neater plant. It does not force so well, however, and is usually difficult to get for an early Easter. It should be in prime for Decoration Day. Some of these Langithorums come from Bermuda and others from Japan. The Bermudagrown Lilies are less reliable than formerly. It is probable that Cuban ${ }^{n}$ d the southern parts of the U.S. will grow the stock in time.
L. H. B.

The genus Lilium is distinguished by having flowers with the perianth of $f$ distinct segments, deciduous, clawed, the claws usually distinctly grooved; stamens
6. equal, slightly adhering to the ovary below; anthers attached near the middle, dehiscent along the edges: style clavate, more or less curved: ovary sessile or nearly so, 3 -celled, with many horizontal ovules. Succulent herbaceous plants, with scaly bulhs and leafy, upright stems: les. seattered or whorled: fls. showy, solitary, umbellate or racemose.

Subgenus I. Felimios. Perianth funnel-shaped, with ohlanceolate segments, which are recurved only at the tip: Ivs. linear or lanceslate, sessile or nearly so.

Sulgenus II. Isobikion. Fls, usually single or umbellate; perianth erect, spreading; segments recurved only in the extended flower, but not revolute; stamens diverging from the straight style.

Sulgenus III. Aкснцино. Perianth broadly funnelfurm at the base: segments flnally bromlly spreading or twisted, revolute, usually prominently papillose within; stamens diverging from eurved style.
Suhgenus IV. Maktafos. Fls. strongly nodding, with perianth segments very revolute; stamens diverging: style curved.

Subgenus V. Psecdomartagon, Inflorescence usually paniculate, with Hs. temding to be ereet or only slightly nodaing; perianth funnelform; segments slightly recurved at the tip, or flnally recurved from the middle. American species.

Subgenus VI. Cambocrincim. Lus. stalked, cordateovate: perianth funnel-shaped, usually more or less irregular; segments oblanecolate, recurved only at the apex.

INDEX.
alhnm, 22. 29.
Alextandre, 6. alutacenm, $1 \%$. angustifolimm, $\underline{28}$. A rmeniacum, $1 \%$ ntrosanguineum. 17.
aurantiacum, 15, 17. anratum, 21 . autumnale, 27.
Satmannice, 17.
hisolor, $1 i$.
Bloomerianum, 24.
brownii, $\overline{7}$.
halbiferum, 15.
Californicum, 24. 28.

Canadense, 36, 37. candidum, 8 .
Carclinianum, 27.
Catesbrei. 18
Chalcedonicum, 33.
citrinum, 17 .
Colchesteri, 6, 7.
Colchesteri, 6, Columbiautum, 23. conmbolor, 1 . cordifolium. 38 coridion, 14. coridion,
croceum,
16. Dahuricum, 13, Dalhansoni, 2.5. Dalmaticum. 25 Dacuricum, 13. elegans, 17. excelsum, 31. eximinm, 5 . formosum, 17.

Fortune: 19.
fulgens, 17 . giganteum, 39. giganteum,
Ciravi, 35.

hrayi, 35 . hamatorror | Marrisii, |
| :--- |
| Mansmi, |
| 0 | Hansmi, ${ }^{2}$ Heldreichi, 3. Henryi, 20. Humboldtii, 24. Isabellinum, 31 . Japonieum. 6. Kretzeri, ※2. Krameri, 6. lancifolium. 29. Ledebouri. 9. Leichtlini, 30 . lencanthenum. 7. Lishmanni. 19. Lin Kin, ${ }^{5}$. longiflorum, : maculatum, 8, 26 . Maculatum; Martagon, 13 . Maximowiczii. 30. Melpomene, 29. monadelphum, 99 montamum, 13. Neilgherrense, Nepalense, 9. nch roleucum. 3. pardalinnm, "8. P'arryi, 11. partheneion 14. parriflorm, $2:$ parvum. 36. Philadelphicum Philippense, 1.

plenescens, 19. |8 pleno-monst rosum pomponinm, 32 pracox. 22. Psendo-tigrinuem, 30.
puberulum, 24. pukchellum, 14. purpureun:, $1 \%$. Pyrenaicnm, 32. roseum, 6. rubellum, 10. rubescens. 1:. nubrum, 22. 39. sanguineum, 1\%. Sayi, 23.
Sinicum. 14. speriosum, 8, 29. spieatum, 8 splendens, 19. striatum. 8 . sulphureum, 3 . superbum. 27 . Szocitziantm, 29 . Takesima. 5. tenuifolium. 34. tentarenm, 31 . Thnubergiannua, 17. Thmibergiann umbellatum, 17. Walkeri, 36.
Wallitcei. 17. Wallichianum, 2. Warei, 28.
Washingtonianum, Wilsoni, \%. [12, 28 Wittei, 21.
st'bgents i, Ectirion.
A. Tube scarcely wilened from buse to midille.
B. Le:s. lineur. 1 -nerved. c. Meight 2 ft. or less..... 1. Philippense
cc. Height 3 ft. or oler. D. Fls. white; unthers
yellow ............. DD. Fls. purplish or yet brou'n ............. 3. sulphureum
BB. Lis. lanceslate, 3-nervel or more.
c. With creeping suliteranean stem ............
cc. Stem usually erect from the bulb.
4. Neilgherrense
5. longiflorum

AA. Tube willening grulutlly from base to neck.
B. Lies. nurrow-lanceolate, 1-nerved, not whorled. C. Fls. white or pink.....6. Japonicum cc. F'ls. purplish, esper ciully outsille......... T. Brownii
Bn. Le's. broad linceolate, $3-7$ nerved, not whorled.

> c. Fis. in spike, usueally white ...................
8. candidum
cc. F'ls. feir or solitary, yel-
lowish or purplish...9. Nepalense
ccc. Fls. Pew orsecerth, pink.10, rubellum BBB. Lis. in whorls.
C. Fls. clear lemon-yellow.11. Parryi
cc. Fls. whitish or pinkish
or spotted..............12. Washingtonianum

1. Philippénse, Baker. Bulb perennial, oroid: stem $11 / 2-2 \mathrm{ft}$. high, slender, erect: 1vs. $30-40$, seattered: ths. solitary, horizontal, white, tinged with green toward the hase outside, $\mathbf{j}-6 \mathrm{in}$. long, trumpet-shaped. Philippine Islands. El. 3. Gin, $50: 1097$ (fine). B.M. 6250 (good). 1.H. 41: 16.- Little known in cult., but a pronising species.
2. Wallichiànum, Schult. f. Bulb large, long: stem 4-¢ ft. high, stiff: lvs. $50-60$, scattered, sessile, : rerved: fls, usually solitary, sometimes 2-3, borizontal or nearly so, white, slighty tinged with green, fragrant. Central Himalayas. El. 4. B. M. 45tl. (in. 10:44.Somewhat difficult to grow, and on that account not popular; but a nohle species well worth the pains of the amateur. Suitable for growing in shrubbery borders.
3. sulphùreum, Baker. Bulblarge, globose: stem erect. 4-8 fr. high: lvs. numerous, scattered. linear: fls. usually $2-3$, pendent on long peduncles, fragrant, sulfuryellow, tinged with red outside, $4-7$ in. long. Burma. 13. M. 7257. Gn. 54, p. 259 (as L. ochroleucum). R. H. 1895:541. - This is new to the tracie, but promises to be a favorite with the amateurs.
4. Neilgherrénse, Wight. Fig. 1277. Bulb globose: stem 1-2 ft. high, creeping at the base: lvs. $30-40$, crowded, 3-5-nerved: Hs. 1-3, ascending, white, fragrant, $5-6$ in. long. India. EI. 6. F.S. $2 \geq: 2266-67$. Gn. $27: 488$. B.M. 6inis. F.M. 1876:237.-A beautiful Lily, too little known in America. Difficult of cultivation.

5. Lilium elegans $(\times 1 / 4)$. No. 17.
6. longiflòrum, Thunb. Bulb globose: stem l-3 ft. high, ereet : Irs. $20-40$, scattered: Hs. of ten solitary, sometimes ${ }^{2}-3$ or more, nearly borizontal, fragrant, waxy white. Temperate regions of Japan, China and Formosa.

EI. 7. A.F. 11:1311; 12:1104. B.R. 7:560. L.B.C. 10:985. A.G. 19:709. Gn. 48, p. 386. -One of the bestknown Lilies in cult. It has been used extensively for forcing, but for this purpose it is now generally superseded by the following variety:

Var. eximium, Nichol. (L. eximinm, Court. L. Hár risii, Carr.). Bermeda or Easter Lily. Usually bears more and larger flowers than L. longifiortm, on more

1281. Lilium tigrinum. ( $\times 1 \cdot \overline{5}$.) No. $1!$.

Vars.Takésima, Wilsoni and Liu Kiu are offered. 'They are not sufficiently different from the type for ordinary cultivation.
6. Japónicum, Thunb. Fis. 1298. Bulb globose: stem 1-3 ft. high: les. 19-30, scattered, lanceolate, $\bar{j}-7$-nervel: Hs. often solitary sometimes -2 , white on the inside, more or less tinged with pink or purple on the outside, fragrant, :B-5 in. lons. Japan. El. 14. B. M. 1591. L.B.C. $\overline{1}: 4: 88 .-A$ fine. graceful species, much grown in gardens. There are several varieties. of which (excep:ing rostum helow) Alexándræ and Cólchesteri are the best. G.C.III. 14: 243 .

Var. ròseum, Hort. (L. Krizmevi, Hort.). More slender and graceful than $L$. Juponiru.t, with beantiful pale
 F.s. 20:?061. - One of the most attractive llowers in the genus.

7: Brownii. Poit. (L. Japonicum.var. Brournii of many writers). Differs from L. J"ponicum in having a more robust, vigorous habit, with leafy stalk and large ths., which are white insidp and deep rich vinous purple out-
 47. P. 97 . F.S. $21: 2248.2193$ (as L.Juponicum Colchestriil. (ing. t:193. - A favorite in gardens, and deserving of general colture. Sbecially recommended to beginners. Var. leucánthemum is offered. Gn. 47:1000.
8. cóndidum, Limn. Maponva lify. Bulb ovoid, large: stem-lvs. scattered, sessile, acute, bract-like abov : stem 2-4 in. high, erect, stiff : Hls. 6-25 in a raceme, $3^{1 \times-5}$ in. long and wide. pure white. fragrant. Sonthern En. El.9. Gng. 6:369. G.C.111. 21:161. Gn. $45 . \mathrm{p}, 281$ : $53 . \mathrm{p} .188$; 56, p. 255.-One of the most orna-
mental species, and an old favorite, though considerablsubject to disease. The following varieties are offere fi. pl., macnlàtum, pleno-monstrosum, speciosum, spicàtum, striatum.
9. Nepalénse, D. Don. Stem 1-2 ft. high, stiff : lis. scattered, lanceolate or linear, 5-7-nerved: Hs. few or solitary, nodding, slightly fragrant, yellowish white, more or less tinged with purple, often with small scattered dots inside. Himalayas. El. 5. A.f. $13: 249$ (poor). Gn. 35:684. B.M. 7043. IR.B. 2: :3.-A n , nificent Lily, suitable for the collector.
10. rubellum, Baker. Bulb globose: stem slender, bearing about 20 obscure'y petioled bright green Ivs., which are 5 -7-nerved: fls. pink, unspotted, about 3 in. long and broad. Japan. Gn. 54:1197. G.C. I11. 23:321 and 335. G.M. $41: 477$. A.G. 20:31. - Recently introduced to English and American gardens. and very favorably received. Promising. Said to force well.
11. Párryi, Wats. Bulb small, with jointed scales: lvs. linear-oblanceolate, usually seattered: Hs. horizontal. pale yellow, about 4 in . long, with spreading, recurved tips. San Beruardino county, Calif. El, 12. Gn. 18:2Gt (not typical) ; 49, p. 410. B.M. 6650. I.H. 33:595. G.C. III. 18: 209 (habit not correctly shown). - Not uncommon in cult., and probably the tinest yellow Lily of easy growth.
12. Washingtoniànum, Kelloge. Bulb oblique, somewhat rhizomatous: stem 2-5 ft. high: lvs. in several whorls of $\boldsymbol{z}$-12 each, or sometimes a few scattered: hs. few, or sometimes as many as 20 , on ascending pedicels, white, tinged with pink or red and dotted with purple, fragrant. Calif. E.l. 10. Gn. 20:310; 27, p. 344. J.H. III. 33:113.-One of the best Californian species for eastern gardens.

Var. purpùreum, Mast. (L.rubéscens, Wats.). Smaller and more slender, with smaller, more pinkish fls. and perianth segments less acute.


E1. 11. F.S. 19:1975. .Gin. 20:310.-A strikiug variety which should perhaps ine regarded as a separate species.
subgents if. isolikion.
A. Les. more or less u'lorled........13. Philadelphicum

AA. Lrs. not uhorled
13. Style shiurter then afury......14. concolor

13B. Style lowiter than orary.
c. Fl. pripillose insiflo.
D. Stem frequently bulbif
erous ................... 15. bulbiferum

LILIUM
nD. Stem not bulbiferous...16. croceum cc. F'l. smooth inside, or nearly so.
D. Le's. Iroad lanceolite, crowded ...............17. elegans dD. Le's. linear, scuttered .. 18. Catesbæi
13. Philadélphicum, Linn. Fig. 1279. Bulb annuai, rhizomatous, small, with few thiek, brittle seales: stem 1-3 ft. hish, slender: Ifs. 10-40, thin, glabrons, more or less whorled: Hs. 1-4, terminal or umbellate, bright red, marked with scattered darker spots toward the center. From Canada to N. C. and west to the Rocky Mts. Ei. 17. B.R. 7:594. L.B.C. 10:976. B.M. 872 (as I'ennsylvanicum) and 599. G.W. F. A. 6. - L. mouttomem, Nelson, seems to be a western form, with broader lvs. L. Mresseyi is a southern form, with narrower perianth segments. This is the most characteristic and widely distributed of our native Lilies. A charming wild Hower. In fact, it is so acceptable simply as a wild Hower that it has seldom been cultivated, though it takes readily to the sarden. It is a very variable species. Some, at least, of the $L$. Incmicum, or $L$. Dihuricum, in the nursery trale belongs with L. Philudelphicum.
14. cóncolor, Salisb. Bulb perennial, ovoid, small: stem slender, 1 ft . or more high: Irs. 20)-30, scattered, lanceolate, obscurely i-nerved: tls. 1-3. ereet, 1-: in. lons, spreading, brisht searlet, unspotted. China. El. 18. B.M. 116.5. - One of the best for garden cult.; thrifty and easy to grow. Of graceful, upright hahit and goof for cutting.

Var. Sinicum, Fook. Taller, with larger bull: fis. more numerous; perianth segments a little wider, bright scarlet with back spots. Southern Siberia. B. M. 6005. L.B.C. 17:1628 (as $L$. Buschianum).

Var. pulchellum, Baker. A slender yetlow-fld. var., perhaps belonging with the next.

1286. Lilium Martagon ( $\times 1 / 4$ ).

No. 95.
in. long, bright orange, conspicuously lamellar-papillose inside. Switzerland, France, northern Italy. Much cult., especially in Eu. El. 2:. L.B.C. 8:784 (poor). Closely related to L. bulbiferum, with which it is often confused. It seems to be confounded with L. elegans, also, at times. It is distinguished from the former by having stems devoid of bulbels, and from the latter by having the flower more distinctly papillose inside.

i285. Lilium puberulum $(\times 1 / 3)$. No. 24.
17. Elegans,Thunb. (L. umbellatum. Hort., not Pursh. L. Itahiricem. part. L. Thumbrovirmum, Schul and many other syonvoms). Fig. I Bulb peremial, overid: stem $1-2 \mathrm{ft}$. high. stiff, erect, slighty cobwebby, or sometimes nearly ghbrous: Ivs. 2030, scattered or crowded, 5 - - -nerved : fls. 1-̄̄, spreading usually self-colored in some brilliant shade of yellow, orange or red. dapab, Sundry varieties are illnstrated as follows: EL. 19 and 20 (in. ti, p. 41\%. F. 1868:121.

 tiecum). I. H. 12:159 (as L. formosum).-Prohahly the most useful hardy species fur gemernl garten use. Vory variable, with many striking varictics. Following are the best:
Var. tulgens, Baker (L. Biitmommior. Wallace. L. fiil. gens. Morren. L. sumuincum, Hort.). A time orange or salmon-red var., with perianth segments rather nar rower than the typ. One of the finest hilies for colormassing. Thrifty and eloan in the gavien. Var. atrosanguineum, Bak. d Dyer. Very leap dark red. 1.H. It:.00:3? (as L. hemutocromm). Var. alutaceum, Bak. \& Dyer (var. Armeniucum, var. fitrinum,4tr.). Nore or
 Vellow at the center and reddish outwarls. Var. plènus, Wiagh. More or lose domble. F. 1eন̃. b. xis. Var. Wallacei, Waugh (L. Ẅ̈llervi). Small, |warf, usmally 1. thl.. paie red: segments rather acoute. Thereare dozens of other horticultural rarieties, amoner which the best are Alice Wilson, Best Red, Ineomparnhle, Van Houtte. These varieties are rather more distinct than in most species of Lilies.
18. Cátesbæi, Walt. Bullulike that of $L$. Philudelphichem: stem l-2 ft. high, slenher, (reet: lvis. 20)-bo. scattered. lanceolate: the. ushally solitary, erect. bright orange red, spotted : segments laneoolate. with loneattemate tips. N. Car. to Fla.anl woct to Ky. El. 25. B.M. 259 (good). L.B.C. $9: 80$. R.H. $1868: 431$ (poor).-

A pretty plant, but not successful in cu!t., at least not in the northern states.

## SLBGENES III. ARCHLIRION. <br> bgents III. archlirion.


19. tigrinum, Andr. Tiger Lily. Fig. 1281. Bulb perennial, globose: stem $2-5 \mathrm{ft}$. high, somewhat whitish cobwebby: lis. scattered, rich green, 5-7-nerved, the upper ones shortor and bearing bulbels in their axils: fls. $3-10$, or sometimes more, in a wide raceme, nodding, bright red, thickly spotted with, arge purplish spots; perianth segments tristed, revolute Japanand China.

1287. Lilium maculatum ( $\times 1 \cdot 5$ ). No. 26.
pearance, it stands midway between $L$. tigrinum and $\boldsymbol{L}$. speciosum. Its free and easy unconventionality of habit will endear it to the heart of the artist flowerlover. In this respect, it surpasses even $L$. speciosiom.
21. auràtum, Lindl. Gold-banied Lily. Japan Lily. Fig. les3. Julh perennial, globose: stem $2-4 \mathrm{ft}$ high: l's. $20-30$, scattered, 5 -nerved : fls. in a short raceme, with bracteolate perlicels, srreading; segments n:uch reflexed and somewhat twisted, white, more or less marked with bands of yellow aad spots of purple, stronely papillose. Jupan. In sundry varieties illustrated as follows: Gin. 15:183; 16:212; 39, p. 455: 50, p. 148. R.B. $91: 25$. F.M. $1871: 514$. R.H. 1875:10; 1867:371. E1. 15. B.M. 53:8. A.(x. 20:525. A.F. $7: 43$. Ging. 2:167: 4:53. G.C. III. 25:303.-Several garden varieties have been described with botanical names. though none seems to be equal to the distinction. Trade varieties are: imperiale, macrínthum, pictum, platyphýllum, rựro-vittàtum, rübrum, speciơsum, virginàle, virginàle albǔ:, Wittei. The Gold-banded Lily is a farorite in American gardens, where it is used in large quantities. It appears to best advantage massed and seatteced amongst moderately tall-growing shrubs. It is of comparatively easy culture, but

E1. 38. B.MI 1237. F. 18\%3:13.-A thoroughly oldfashioned and remarkably useful plant. It lives and thrives from year to year in the open border, where it should be planted in masses.

Var. spléudéns, Léicht. A fine variety of more robust habit. With longer-fowering spikes. Gn. 27:480 and p. 15!. F.S. 19:1931 (towdark colored). This is to nighly recommended. In most gardens it should be substituted for the ordinary Tiger Lily.
Var. plenéscens, Wauch. An odd double rar. R.H. 1873:10 (good). F. 1851:2.7. F.S. 19:1995. Other vars. are Fórtunei and Lishmanni.
20. Hénryi, Baker. Fig. 1282. Bulb globose: stem 2-6 ft . high: lus. lancealate below, more ovate above: infiorescence a lax corymb, of $4-8$ ths., bracteate at the hase: fl. dark reddish yellow, marked with a few irregularly scattered brown spots. Ichane, western China. Gin. 40:8.30 (fine) : $5 \overline{5}, \mathrm{p} .233$ (fine). G.C.IIl. 8:380. 13.M. JIT (too light-colored).-Recently introduced to cult., and unquestionably one of the best Lilies known for general garden culture. The price of the bulbs still keeps many persons from planting it, and many others from massing it in large quantities, as it should be used for the best effect. Still it propagates so freely and proves so hardy that it will undonhted'y soon become cheaper, and find its way into common ise. In habit and general ap-
does not live and thrive indefinitely, as $L$. speciosum, Menryi and tigrinum do.
22. speciosum, Thunb. (L. lancifilium, Hort.). Fis. 1284. Bulb perennial, globose: stem $2-4 \mathrm{ft}$. high, stiff: lis. 12-20. scattered, very short-petiolate, oblong-lanceolate, $5-\overline{\text {-nerved }}$ : H s. 3-10, racemose on divaricate, bracteate pedicels, white, more or less suffused with pink and dotted with red, strongly papillose toward the center; perianth semments much revolute. El. 13. B.M. 3785. Gin. 2.5:425: 33. p. 289: 4.5:947 and p. 90 (fine); 45. p. 91 ; 47. p. 19. R.H. 1843:492. B.R. $93: 2000$. This is probably the best species of all for general cult. It is thrifty and hardy, especially var. rubrum. The habit of the plant and flower is delightfully free and informal. The white and the red varieties are both grown extensively by the florists. and cut for sale. It has been extensively importerl from Japan. There are numerous trade names eurrent, most of which do not stand for important varieties. The ones of greatest concern are Mel-pomene aml Krætzeri. The Lily known as "Opal" is a form of this species.
Var. rùbrum, Hort.. is a fine, extra strong growing sort, with darker pinkish red Hs., and is the best for garden culture. Gn. $36: 726$.
Var. album, Hort. (L. macor, Hort. ), is white or nearly so and less thrifty. P.M. 8:12-.

## SUBGENCS IV. MARTAGON.

A. Folitge mostly whorled.
B. Li's. in small whorls of less
than 8 m perlly scattered...23. Columbianum
B8. Lis. nearly all in large whorls of 8 or more.
c. Bulb larye, horizontally
elonguted...................4. puberulum
CC. Bulb xmall, globose.

D, F'ls. purplish or whitish. .o. Martagon
in. F's. yellou, spottetl.....26. maculatum
DDD. Fls. mostly reeldish or
thork arunge.
E. Color reddish or yellowish, dull blackspotted................ uith distinct roume durk spots............28. pardalinum
AA. Foliage not whorled.
в. Form of lis. lanceolate; nerres mamy .............................
вв. Form of les. linetr; nerves olle or fell.
c. Les. crouded.
D. Perianth segments rather broud.
E. Fls. red or yellou'....30. Maximowiczii ex. Fls.creamy uhite.....31. testaceum do. Perionth segments nerroue.
E. F'ls. whitish outside...32. pomponium ex. F'ls. red outside .......33. Chalcedonicum cc. Le's. seattered 34.
23. Columbiànum, Hort. (L. Sùyi, Nutt. L. parviflorum, Holz.). Bulb perennial, ovoid, small: stem 11⁄2 $\mathbf{2}$ ft. high, slender: lvs. few, mostly in whorls of 4 or 5 , the upper ones frequently scattered, oblanceolate, acute: ths. - - 3 or more, umbellate, on slender nod ding pedicels: perianth $11 / 2-2$ in. long. bright orange, thickly spotted with small purplish dots; segments lanceolate, reflexed. Ore., Wash. El.31. F.M. 1874:136, as L. pariflorum (not characteristic).-Not uncommon in garden collections, where it succeeds as well as any of the Pacific const species. It is so slender of stem, sparse of foliage and small of Hower, as grown in eastern gardens, that it does not give any mass effect. It looks best mixed in the border with hardy perennials.
24. pubérulum, Duchr. (L. Califórnicum, Hort., not Donb. L.Húmboldtii, Roez.\& Leicht. L. Bloomeriàm"m, Kell. . Fig. 12si, Bulb large, thick: stem :3-5 ft. high: les. in 4-6 large whorls of 10-15 hrs. each: fls. 6-10 or more, in a large panicle, on nodlling. divaricate pedicels, bright orange-red, thickly marked with dark spots; serments strongly reflexed. Calif. El. :32. F.S. 19:1973. Gin. 20:314 and p. 568. - A noble, dignifed. commanding plant, and one which ought to be cult. oftener. Rather formal in appearance.
2-. Mártagon, Linn. ( L. Dalmáticum, Vis.). Turk's CAP LiLy. Fir. 1si. Bulb perennial, ovoid: stem $21 / 2-5 \mathrm{ft}$. high: Frs. in $2-1$ whorls of $6-9$ each. sometimes a few scattered, sessile, with $\overline{-}-11$ nerves: H s. : $: 20$, in a long. loose, bracteate raceme, nodding, fragrant, varying in color from purple to dirty white, spotted or unspotted: semments lanceolate, strongly revolute. El. 33. (in. 23:371: :38, p. 39:3: 44:927 (as 1. Delhansoni). B.M. 872 and 16:3. F.M. 1874:136. F.S. 20:2127 (as Martagon Inalmaticum). - Much cult. in Emrope. less in America. It has many horticultural varicties. hut the only one in our eatalogues is album. The plant is vig. orous, upright and thrifty, with good foliage, but the fls. are small, dull-colored und not showy, as compared with our more popular kinds.
26. maculàtum, Thunb). (L. Mánsoni, Leicht.). Fig. 125. Bulb perennial, plobose, compact: stem $3-1 \mathrm{ft}$. high: lus. oblanceolate. acute, frepuently in a single whorl of 8-12, or some seatteral. sometimes several whorls: fls. $4-12$, in a loose racemo, on erect, spreading pedicels. bright orange, conspicuously spotted with purple on th.e lower half. Japan. El. 34. B.M. 612f; (guod). Gn. 29, p. 287. R.II. 1883, p. 296.-One of the thriftiest
and hardiest species known. It is a trifle high-priced for general planting, but is worthy a place in every garden. It is one of the most formal and dignitied of Lilies.
27. supérbum, Linn. American Turk's Cap Lily. Fig. 12ss. Bulb large, globose: stem $3-6 \mathrm{ft}$, tall, erect: lvs.often in whorls, sometimes more or less scattered, 3-i-nerved: fls. 6-1\%, or even more, paniculate, bright redidish orange, conspicuously spotted; perianth segments lanceolate, acute. Canada to Georgia and west to the Mississippi river. El. 26. B.M. 936 (rood). L. B.C. $4: 36.5$ (as $L$. athtumale). Gn. 30, p. 8 (fine); 30:5in (fine); 38:781. Mn.8:1 (fine).-Frequently cult. Useful in borders
Var. Caroliniànum, Chapm. (L. Caroliniomum, Michx.). Smaller, more slender, with fewer fls. and broader lve. A southern variety, in dry woods, Va. to Fla., and west to La.
28. pardalinum, Kellogg (L. Califórnicum, Domb.). Fig. 1289. Bulb short, rhizomatous: stem 2-3 ft. high: lvs. mostly near the middle of the stem, in :3-4 whorls of 9 -12 lis. etach, with a few scattered: fls. 3-10, loose corymbose, on long. nodding pedicels, bright red with orange toward the center, strikingly marked with large purplish brown spots; perianth segments strongly revoJute, somewhat papillose. Calif. EI. 88 and 29. F.M. 18:2:33 (as L. W'ushingtonidutm). Gn. $20: 312$ and p. 5.6. -A magnificent garden flower, not commonly grown, though adapted to general cult. Var. angustifolium, Kellogg. has narrow, scattered les. Var. Warei, Hort., has yellow ths. Gn. $29: 5+7$.
29. monadélphum, Biel. (L. Szocitziithum. Fisch. \& Lall. L. C'olehicum. Hort.). Bulb perennial, ovoid: stem $-\mathbf{- 5} \mathrm{ft}$ high: lrs. $30-\mathrm{m} 0$, seattered, linear-lanceolate or oblanceolate, many-nerved: Hs. 2-13. sometimes $20-30$, in a raceme, nolding, bracteate, fragrant, yellow, with a few small spots, and inged at the base and tip with

1290. Lilium pomponium $(\times 1 / 3)$. No. 32.
purple. Persia. El. 36 and 37. B.M. 140.3. Gin. $9: 9$ (as
 specjes, but not much grown in this country. Vir. Lédebouri, Baker. Dwarfur than the species, with narrowor linear Irs. Cameasus.
30. Maximowiczii, Regel ( $L$. Leichtlini, Hook. $L$. Pseudo-tigrinum, Carr.). Bulb globose: stem 2-3 ft. high, slender, decumbent at base: lvs. $30-40$, scattered, linear, 3 -nerved: fls. few, in a loose corymb, on spreading pedicels, bright lemon-yellow, light orange or red, thickly dotted with dark purple and tinged with purple on the outside; segments strongly revolute. Japan. El. 39 and 40. B.M. 5673 . I.H. 15:540. R.H. 1867:410. F.S. 17:1736, yellow variety. Gn. $21: 331$, yellow variety; 42 p . 193 (not typical). - A fine garden plant having much the ame habit and cultural qualities as $L$. tigrinum, but

1291. Lilium parvum. Nat. size. No. 36.
1292. Lilium Canadense An old tlower. ( $\times 1 / 3$.)
grant, creamy yellow, with sometimes a few minute reddish dots. El. 44. B.R. 29:11 (tGo highly colored). P.M. $10: 221 .-$ Not known in the wild state, and generally said to be a hybrid between L. cundidum and Chalcedonicum. If this is a true hybrid it is the onls one known in cult. A fine, stately plant, with unusually attractive flowers.
:3. pompònium, Linn. (L. rùbrum, Lam.). Fig. 1290. Bulb ovoid, with several laneeolate scales: stem 2-3 ft . high, thick, stiff: lvs. 100 er more, scattered, narrowlinear: Hs. ㅇ-15. racemose, nodling, often bracteolate, cinnabar-red, thickly spotted and papillose within, fragrant. N. Italy and S. France. G.C. III. 8:51. Gn. $20: 307$ (fine). El. 45. - Adapted to the hardy border, where it shows well in masses or scattered. An excellent Lily for garden planting, especially the yellow var. aureum, Hort.

Var. Pyrenàicum, Baker (L. Pyrenùicum, Gouan). A more robust plant, with widerlvs. distinctly 3 -nersed: fis. larger, yellow. Pyrenees. EI. 46.
33. Chalcedónicum, Linn. Bıilh ovoid: stem 3-4 ft. high, stiff: lvs. 100 or more, crowded, 3-5-nerved, with the edges and veins below distinctly papillose: as. few in a raceme, nodding, bright red, inspotted. or cometimes with minute dots, rarely yellow. Greece. El. 43. F.S. 21:?160. B.M. 30.-An excellent garden plant, and
destined to become more popular in America. Here belongs L. Meldreichi.
34. tenuifolinm, Fisch. Siberian Coral Lily. Bulb small, globose: stem 1-2 ft. high, slender: lvs. 20-50, scattered, very narrow-linear, with revolute margins: fls. 1-20, racemose, nodding, rich scarlet, self-colored; segments much revolute. Siberia. El. 42. B.M. 3140 . I..B.C. 4:358, as L. pumilum (poor).-A deserving favorite. Very easily prop. either from seeds or bud scales. Fine for massing. Especially suitable for beginners.

SUBGENUS V . PSECDOMARTAGON.
A. Perianth narrow: segments only
sliyhtly spreading at the tip.
B. Fls. dull reddish brown.............. Grayi
BB. Fls. bright reddish brou'n.............parvum
B. Fls. bright redalish brou'n .........
B. Perianth spreading: segments rotate
spreading or slightly recurved.....37. Canadense
35. Gràyi, Wats. Lrs. lanceolate, in whorls of 4-8: fis. few or solitary, $11 / 2-2 \mathrm{in}$. long, dull reddish brown or orange, covered inside with purplish spots. Va. and N. Car. G.F. 1:19. B.M. 7234.-Becoming somewhat common in gardens. Closely allied to $L$. Comodense, hut thoronghly distinct as a garden plant. Not showy, but attractive to the amateur. Of easy cult.
36. párvum, Kellogg (L. Canadénse, var. Wiálkeri. L. Conadense, var. peireum). Fig. 1291. Bulb of $L$. Conadense: stem 1-2 ft. high: les. partly whorled, or the upper ones scattered: fls. few or many, upright or nearly so, bright reddish orange. thickly dotted. Sierra Nevala, Calit. El. 30. B.M. 6146. F.S. 21:2192. J.H. III. 31:113 (poor).-A pretty and interesting species, but not sufficiently showy in cult. to suit the average gardener. Var. flore pleno is otfered.
37. Canadénse, Linn. Fig. 1292. Bulb annual, rhizomatous: stem l-4 ft. high, slender, erect: lis. oblanceolate, acute, $\overline{-i}$-nerverl, usually mostly in whorls: fls. 1 to several. usually somewhat umbellate, $2-3$ in. long, in various shades of yellow, orange and red, with numerons dark spots. Eastern N. A., from New Brunswiek to Ga. and west to the Mississippi river. EI. 27 . Gin. $-39: 543$ (good) : 34. p. 182. B.M. 858 (poor).-A good species for garden use. Escellent for masaing or for seattering in horders of shrubbery or of hardy perennials. Variable. Var. rùbrum has red fis. Var. flàvum (or luterm) has yellow Hs. B.M. 800.

## subgence vi. Cardiocrintm.

A. Lnuer lis. tinged with red...........38. cordifolium AA. Lower lis. clear green
39. giganteum
38. cordifolium, Thunb. Bulb perennial, globose: stem : $\mathrm{B}-\mathrm{ft}$. high : lis. at the base cordate, long-petiolate, tinged with red; stem-Irs. curdate-ovate, short-petiolate: fls. 3-10 in a short raceme : perianth narrow, funnelform, $3-5$ in. long, white, with large, violet-hrown patches on the lower half of the onter segments. Japan. EI. 1. G.C. III. 8:41. B.M. $6: 33^{7}$. - Sometimes found in collections, but difficult of cult., particularly in this country.
39. gigantèum, Wallich. Bulb globose: stem f-10 ft. high : radical lvs. green ; :tem lvs. $12-20$. seattered, ovate, acute, deeply cordate at base, reticulate veined, petiolate: ths. $12-20$ in a raceme, slightly nodring. white. tinged with purple inside and green outside, frigrant, 4-5 in. long. Himalayas. EI. 2. G.F.6:36. B. M. 467.3. F. 1874. p. 79 (poor). R. H. 18til. p. 310 . I. H. 1. p. 11. G.C. III. 8:47 (good) ; 16:7at. Gn. \&, p. 504 (c.p.): 34. p. 269 (good); 52, p. 266 ; 54, p. 186 (doultful). -Found only in large collections. Very difficult of cult.
L. acenàceum, Fisch. One- 2 ft . high: lvs. few, scattered or somewhat whorled: Hls. few, nodding, small, revolute, bright remlish yellow, with a few tine dots. (in. $\because+4$, p. 8. . Japan, Kamrhatka and vicinity.-L. Jiakerianum, Con, \& Hems. An Indian species not yet in enht. Belongs in subgenus Isolirion.L. Bolduderi, Watsnn. Bulhovate: slem 6 in , to 3 ft . high: ths. $1-2$, red, alark-spotted. alont 1 in . long. Calif. Rare. A fine emriosity for the collector, hut not a gardeners plant. - L. callisum, Sieb. © Zuce. Bulh small, peremial: stem 1-3 ft .: Ivs. $30-40$, seatteren, linear, $3-5$-uerved; ths. $2-12$ in a narrow raceme. on
short nodding pedicels, bright scarlet. Japan and Loo-Choo islands.-L. Carniólicuin, Bernh. Bulb ovoid: stem $2-3 \mathrm{ft}$. . Ivs. $30-40$, scattered, many-nerved. with ciliate margins: fis. racemose, nodding, " in. long, orange or red. Europe. Rare in cult. E.1. 45.-LL. Claptonénse, Hort. =L. primulinum.-L. Davidi. Duch. Known only in herbarium.-L. Dela vayi, Franchet. A Chinese species recently discovered, and not yet offered for sale. Fls. wine red, somewhat the form of L. longitlorum. - L Firgesi, Franchet. Small, long, yellow tls. Subgenus Marta gon. Recently from China, and not yet in the trade. $-L$. formo. sum, Franchet. A species recently discovered in China, resembling L. bulbiferum and elegans, but having white ths. Not introduced. - L. Laukongénse, Franchet. Newly discovered in Yun-nan, China. Not introduced. Subgenus Martngon.-L, Loui, Baker. A new Burmose species, having $2-3$ white Hs. somewhat resembling L. candidum. Not yet introduced. B.M. -, Gi: Gn. 45:953. G.C. III. 14:121.-L. maritimum, Kellogg. Bulb small, conical: stem low: lvs. usually scattered, narrow often obtuse: fls. solitary or few horizontal, 1-2 in. long, deep relioh orence spotted Calif - L medeoloides Grus. Stem reldish orange, spotted. Cam. med meotar lender, 1 . cattered: fis. .-3, with short, erect pedicels, funnel-shaped hright orange-red whe known in cult.-L. mirabit, Franch in species of the nhgenns Cardiocrinmm recently found in Su-Tchuen, China Not introduced.-L. myriophýllum, Franchet. Recently dis corered in China. Said to be a "magnificent species, recaling L. Wallichianum " Not yet in the trade,-L. nitidum, Hort Bulb oblong, subrhizomatocs, with crowded appressed lanceo late scales: stem 18-24 in. high: lvs. lanceolate, scattered and in whorls: Als. 10-:0, bright yellow with many red-brown dots Not in American gardens. - L. occidentùle, Purdy. Bulb rhizonatous: stems 2-4 ft.: lrs. scattering below, but in whorls at the middle of the stem, lanceolate, acute: fls. few to $1 \%$, orange red, with crimson tips and black spots. Calif,-L. ochraceum Franchet. Chinese, recently discovered, not introduced. $-L$ orypétalum, Baker. One-11/2 ft. tall: lvs. 20-30, scattered, lanceo ate-linear: fl. wide funnel-shaped, or nearly rotate, purplish inged with green beneath. somewhat dotted inside. Western Himalayas. Not in cult. El. 5.-L. papilliferum, Franchet. A reently named species from Yun-nan, China. Not in the trade 1:ls. dirty red. Belongs with L. speciosum, etc.-L. polyphyil l.in, D. Don. Thret -4 fit. high: lvs. $40-60$, scattered: fls. $4-10$, in loose raceme, on modeling pedicels, yellow. with purplish pots. Hinalayas. I.H. 3: 565.-L. primulinum, Baker. A pots. Himadyas. I.H. se:o6o.-L. primutmum, Baker. A new species from Burma. With pale yellow fis., somewhat re enbling L. Nepalense. B.M. ,x2.-L. Purdyi, Waugh. Bulb ike L. Colnmbianum: stemz-oft. high: lrs. lanceolate, mostly in whorls: fls. few to 10 , horizontal, orange-red, thickly dotted rugrant. Washington and British Columbia. - I. Sutchucuse Franchet. A new lily of the tenuifolium style, with 1-4 reddish range flowers spotted with black. Recently discovered in Su Tehuen, China: not introlnced. B.M. 7715.-L. Tuliense Franchet. A recently discovered species of the subgenus Mar tgon. Fls. White or whitish. China. Not in commerce.- $L$ Ilunanénse, Franchet. A white-fld. species, somewhat resemb ling $\mathrm{l}_{\text {. J Japonicum recently discovered in China. Not yet in the }}$ trate.
F. A. Wacgh.

## LILAC. See Syringa.

LILY, in the narromes: sense, is restricted to the genus Lilium, but the popular names given below also include plants outside the family Liliacea. Many of them belong to the Amaryllis family. African Blue L., Agapanthus umbellatus. African Corn L., Iriu. Amazon L., E' charis Amazonica. Araerican Turk's Cap L., Liliu,n superbum. Atamasco L., Zephyranthes Atamasco. Barbadoes L., Hipreastrum equestre. Belladonna L., Amaryllis Belladonna. Bengal L., Crimem longifolium. Bermuda L., Lilium Marrisii. Black L., Fritillaria Comtshutcensis. Blackberry L., Belemélnda Chinensis. Bourbon L., Liliuin candidum. Brisbane L., E'urycles sylvestris. Calla L., Richardia Ethiopich. Cape L., Crimum Capense. Yheckered L., Fritillaria Meleagris. Climbing L., Gloriosa and Littonia. Common White L., Lilium candidum. Day L., the blue and white ones are Funkias; the yellow and orange ones Hemerocallis. Easter L., Lilium Marrisii. Fairy L., Zephyranthes rosea. Fayal L., Ornithogalum Arubicum. Gol den-banded L., Lilium auratum. Golden-raged L., Lilium auratum. Guernsey L., Nerine Sarniensis. Jacobean L., Sprekelia formosissima. Kaffir L., Schizo. siylis coccinea. Mariposa L., Calochortus. Martagon L., Lilium Martagon. Orange L., Lilium croceum. Peruvian Swamp L., Zephyranthes condida. Plantain L., Fiunkit. Pond L., Nuphar advena. Sacred L. of China, Narcissus Tazetta, var. orientalis. Spider L. St. Bernard's L., Anthericum Liliago. St. Bruno's L., Para disen Liliastrum. St. James' L., Sprekelia formosis sima. St. Joseph's L., Lilium candidum. Tiger L.,

Lilikm tigrinum. Turban L., Lilium pomponium. Turk's Cap L.. Lilium Martagon. Water L., Nymphuea. White L., Lilium candidum.

LILY-0F-THE-INCES. Alstromeria Pelegrina. See, also, Hymenocallis (Ismene).

## LILY-0F-THE-PALACE. Hippeastrum aulicum.

## LILY-OF-THE-VALLEY. Convallaria majalis.

LIMATODES (probably from the Greek for meadou. referring to the habitat of the plants). Orchidicere. Similar to Calanthe, but the spurred labellum is not adnate to the column but closely wrapped around it. In Phajus, and in Calanthe also, the les. are not articulated to the stem and therefore wither on the plant instead of falling.

After resting season of Limatodes is over, say from February to May, shake off the old potting material. If plants are large, divide them and pot them moderately tight. For the American climate, chop finely some good, turfy loam well mixed with old rotten cow manure and a little leaf mold and sharp sand and place in a shaded house, temperature $70^{\circ}$ to $90^{\circ}$. Do not water till roots are well out, and sparingly till leaves are well started. After that and during flower-sheath growth, they will enjoy profuse waterings and spraying - water with weak liquid at intervals of 10 days or so, and every plant will be a marvel of beauty.
ròsea, Lindl. (Calinthe ròsea, Benth.). Pseudobulbs 4-8 in. long, pyriform or fusiform, grooved: lvs. $8-18$ in. long, elliptic-lanceolate, acuminate, plicate: scape from the base of the pseudobulb, $12-18 \mathrm{in}$. long, slender, bearing a many-fll. villons raceme: Hs. large, rosy, $1 \frac{1}{2} \mathrm{in}$. across ; sepals ovate-lanceolate : petals oblong, acute; lip $11 / 2 \mathrm{in}$. long, with a large obovate-oblong midlote; base yellow. cdged with scarlet. Jan. Burma. B.M. 5312. - A hybrid of this species and Calanthe vestita, Lindi., is common in cultivation :nder the name Calanthe Veitchii, Lindl., which see. John Sanl said L. rosert bore fls. as large as those of Colanthe Veitchii, and more brilliant in color.

Heinrich Hasselbring and War. Mathews.
LIME. The use of Lime in agriculture anterates the Christian era. In modern times it has been an indispensable adjunct to potassic, phosphatic and nitrogenous manures in restoring and maintaining the fertility of immense areas of soil derived from sandstone, iranite, mica schist and certain shales and slate. Without its use the wonderful transformation of Limousin in France, the sandy regions of Germany, and particularly the reclamation of the sour peat (Hoch-moor) soils of northern Germany would have been difficult or impossible. Eren limestone soils sometimes become so lacking in Lime near the surface that they stand in great need of its application.
The necessity of Lime as a direct fool for the higher orders of plants has been indisputably demonstrated. Its physiological role is of the greatest significance. It serres also as an indirect food by transforming or setting free other soil ingredients which plants require. (1) It aids in transforming the nitrogen of organic matter and ammonium salts into nitric acid, whieh, in combination with potash, soda, Lime and magnesia, furnishes most plants the najor portion of their nitrogen. (2) lt appears probable that liming favors symbiosis and the consequent assimilation of atmospheric nitrogen in the case of clovers, alfalfa and certain other legumes, whilo it may have an opposite effect upon others, among which may be mentioned serradella and lupines. (3) Lime attacks certain more or less inert combinations of potash at ${ }^{2}$ of phosphoric acid which exist in soils, thereby rendering their manurial constituents more readily assimilable.

Noxious iron compound- in soils are so acted upon by Lime as to overcome their poisonous tendency. The presence of carbonate of lime in soils prevents the formation of sour humus and consequent injury to a large class of agricultural plants. Liming makes clays more friable and sandy soils more compact, thus im-
proving the texture of each. By the flocculation of the fine particles of the former, water drains off more readily, and the danger of serions washing is thus diminished. Soluble phosphates are less liable to be lost or changed into unassimilable forms in soils containing Lime. Large quantities of Lime should not be emplored upon sandy soils in a single application. The repeated use of highly magnesian Lime is fraught with danger, though, applied oceasionally in the place of ordinary Lime, it may prove beneficial. The use of Lime, whether in wool ashes or from other sources, increases the tendency to alkalinity of the soil, and hence makes it more favorable to the development of potato scab, provided the fungus which causes the discase is already in the soil, or is introduced into it upon the "seed" tubers. The disease which develops upon turnips and certain other plants, known as "club foot" or "club, root," is lessened to a marked degree by the use of Lime upon the soil.

Lime is usually applied to land at rates ranging from half a ton to two and one-half tons wer acre, and at intervals of from four to six years. It should be thoroughly worked into the surface soil after plowing. Cpon samy soils it is applied with the greatest safety after coniposting with organie matter.
The value of Lime in preparing composts has long been known. Mixed in layers with loam, weeds, muck, coarse stable manure and other vegetable or aninal matter, it forms in a few months, if kept moist. an excellent material for the use of gardeners. If worked over a few times at intervals, the operation is materially hastened. The introduction of a little common salt or of muriate of potash facilitates the process by virtue of the formation of carbonates of soda or of potish. In order to prevent loss of ammonia, compost heaps are usually kept covered with moist earth with which gypsum or land plaster may of ten be advantageously mixed.
The influence of Lime on plant-growth is often astounding. Lettuce, spinach, beets, onions, muskmelons, asparagus, clovers, timothy, Kentucky blue grass and poppies are almost failures upon very acid soil until liming is practiced. Watermelons, lupines, serradella, cramberries, rhododendrons, azaleas, the Norway spruce and other plants might be cited that are known to be injured or ruined by considerable applications of Lime. Their natural home is upon a sour soil. The Early Richmond cherry, though helped somewhat by liming, succeeds upon very acid soil, while the Black Tartarian fails under similar circumstances. The Delaware grape is more in need of Lime than the Concord. Blackeap raspberries do not seem to be helped by liming, even upon very acid soil, though the Cuthbert, a red raspberry, responds to the treatment in a marked manner. The quince is more in need of Lime upon acid soils than the pear, apple or peach. The American linden and Anserican elm are thankfal for Lime upon acid soils, while the white !ireh shows utter indifference to it. The success of the beech upon the limestone soils of Europe indicates its natural home. Chestnint trees are said not to thrive well on limestone soils. Gooseberries and currants are moderately helped by liming on very acid soils. Stramberries exhibit this characteristic ouly in a slight degree.

Rhode Island owes its reputation as the home of Rhode Island bent to the fact that this grass ean persist upon soil where many other grasses fail, amd hence it has won in the struggle for existence. Had the soil heen well supplied with Lime it is not probable that such would have been the case. Upon very acil soils, there is little fear that the poppy would ever become a pernicious weed, as is the case in many of the wheat fields of Europe. Such soils are, however, the natural home of common sorrel. The conditions favorable to the poppy are also favorable to wheat. Barley fails upon very sour soils. Oats succeed except upon extremely acid soil, though even soils of that character produce good crops of rye and lndian corn.

He who will use Lime intelligently must stmiy carefully the peculiarities of his soil, and of the plants that are to be grown.
H. J. Wheeler.

LIME (FRUIT; of literature is mostly Citrus Limette of Risso. or Sweet Lime. whichis now regarded as a form of C. Medica. The Sour or West Indian Lime (dis-
cussed belor) is a much sourer fruit and is Citrus Me. dien, var. acidu ( see p. 305, Vol. 1), Fig. 1:39.

The Sour Lime is a useful member of the orange tribe, valuable for its acid truits, which are prized above lemons in tropical conntries for making cooling drinks and for cookery. Limes are also largely used in the mamufacture of citric acid. The tree is low, much branched and very thorny, thriving on poorer, rockier soil, and in closer proximity to salt water than other members of the citrous tribe. In orchard planting the trees are set about $15 x 9$ feet apart, and cultivation given them the same as for lemon and orange trees.

The variety most commonly grown is a small-fruited, very prolific sort, ordinarily grown from seed and called "West Indian." The fruits of this sort are shipped from

1293. Sour Lime-Citrus Medica, var. acida ( $\times 1 / 3$ ). ,
lower Florida and the West Indies to Atlantic coast cities in quantity during summer and autumm. There are several good varieties beside the common "West Indian," all of which are propagated by budding or grafting on strong stocks of various kinds. but especially upon rough lemon and sour orange. Among the hest known and valuable may be named Taliti, which has large, smooth fruits almost the size of lemons and Sour Ranspur, the "Mandarin Lime," in shape and character of fruit much like the China Mandarin, but with intensely acid juice. There are a number of sorts from India being experimented with in Florida. but which are not as yet well tested. The Lime, in almost all varieties, is more tender as regards cold than even the lemon, not being able to withstand sharp frosts without damage. The Sour Ramgpur (from India) is an exception, and has proved to be almost as harly as the sweet orange tree. and has fruited freely in the upper orange belt of Florida. Doultless by budding or grafting Limes on the Citrus trifolinft as a stock, the trees wili be able to stand more severe frosts than when worked on more tender roots.
E. N. Reasoner.

The Lime is but little grown in California. In early days it was freely planted, largely in hedge form around oringe groves. Its susceptibility to injuries from low temperatures, which did not harm the orange and lemon, caused its abandonment in our chief citrous fruit regions, and no effort was made to restore the acreage in frostless localities, hecause the supply from Mexican regions keeps local prices so low as to offer no protit to California growers. At present the Lime has no commercial standing is a California fruit, though several varieties are grown in a few places for home use.
E. J. Wickson.

LIMNANTHEMUM（Greek，marsh flower）．Including Villirsia．Gentiaudcere．Floating Heakt．About 20 species of aquatic plants，widely scattered in tropical and temperate regions．They have 5 －petaled white or yellow fls．，borne in spring and summer．Floating or creeping：Ivs．ovate or orbiculate，heart－shaped at the hase，rarely peltate，with a closed sinus，entire or slightly wavy：peduncles with 1,2 or many tls．：corolla wheel－shaped，deeply $\bar{j}$－cut；lobes fringed or not；sta－ mens 5，fixed at the base of the corolla．Distinguished from Menyanthes by having the capsule 4 －valved in－ stead of irregularly 2 －valved．Four hardy kinds are procurable from dealers in aquatics and native plants．

Limmanthemums are most useful ornamental aquatic plants，and are represented in cultivation by but four species．L．lacunosum－Floating Heart－is the hardi－ est of American species；its mottled，variegated leaves， about 2 in．broad，are very attractive，regardless of its dainty，white，miniature fowers．It is best grown un－ der natural conditions，in pools and still water，and in water about 2 ft ．deep．It may also be grown in tubs， as a surface covering，with a few tall plants in the center．L．trachyspermum，commonly known as the Fairy Water－Lily，is a much stronger grower；lvs．deep treen，and，when grown in natural ponds，attain large proportions， $4-6 \mathrm{in}$ ．broad，and bears innumerable flowers， more like flakes of snow．It is also valuable for tulicul－ ture，similar to the preceding variety．L．Indicum， commonly called Water Snowtlake，is umdoubtedly the most interesting and attractive of any，and deserving of most general cultivation．The leaves are of a light green color，heart－shaped，and it produces flowers in greater abundance，which are much larger and covered com－ pletely whth hirsute glands．These，like the other varie－ ties，are produced in clusters on the petioles，near the surface，and，although they are of but one day＇s clura－ tion，they are produced in such quantities that there is never any lack of these delicate flowers all through the season．In tub culture，this variety（or species）will soon crowd itself over the edge of an ordinary tub，and， although the leares no longer Hoat on the surface，it does not affect the growth or the proliferousness of its flowering．When grown in tuhs，the latter should be filled two－thirds with moderately rich，loamy soil， covered with sand，and filled and kept tilled with water． All three species，when strong enough to produce flower－ ing leaves or petioles，produce new shoots，as each clus－ ter of flowers apparently terminates with a bud and produces leaves；these．when strong，produce flower buds and leaf buds again，and thus soon reproduce themselves．L．trachyspermum produces a cluster of Heshy roots，with a bud from single leaves in fall，which are plentiful in Florida in the season．These are excel－ lent for distribution，and can be sent safely a great dis－ tance．The petioles are very brittle and tasily snap off， but the floating leaf soon emits roots at the broken end as well as where the flower buds are located；thus it is very free and proliferous．These are very desirable aquatic plants．

The fourth species，$L$ ．（or lillarsia）mymphoides，is a rampant，weedy plant，although its mottled foliage is beautiful and the fower is much larger than these of the above plants．Its habit of growth is also dif－ ferent：it produces runners，and rambles over an im－ mense space；it also produces seed in great quantity， which，when ripe，Hoats on the surface for a short time， thrin sinks to the bottom；it is best confineal to the limits of a tub，where it grows freely and produces its large yellow Howers in profusion．It is hard to erulicate when once established，as it is perfectly hardy．

## A．Color of fls．yellow．

B．F＇ls．accompanied by clusters of tubers．
lacunosum，Griseb．Stems sometimes 10 ft ．long：lvs purplish beneath，1－2 in．long：Hs．： 6 f lines across； segmonts ovate，acute ：seeds smooth．July，Ang． Ponds，Nova Scotia to Fla，and La．，west to Minn． B．B．2：62：．
bв．Fls．not accompanied by clusters of tubers．
nympholdes，Hoffing．and Link．（Also written $L$ ． nympluroiles．）LA゙s．2－4 in．broat ：ths． 1 in．across or more；segments obeordate，short－fringed．May゙－July．

Eu．．Asia；naturalized in District of Columbia．B．B． 2：623．（in．24，p．535．－Simulates Limnocharis Hum boldtii in habit．

## AA．Color of fls．white．

## в．Seeds rough．

trachyspérmum，Gray．Stouter and larger than $L$ ． lacunosum：lis．cordate orbicalar，thick，entire or re pand，＂－6 in．long，spongy：tubers thick：ths．6－10 lines broad．Apr．－July．N．J to Fla．and Tex．B．B．2：623． －＂Fairy Water Lily＂is a nursery catalogue name．

## Bb．Seeds smooth．

Indicum，Thw．Water Scowflake．Fls．white，yel－ low towards the base within；segments fimbriated， densely papillose，without a longitudinal fold down the middle．Tropics．Not B．M．658，which is a yellow－H凡． species．

Wm．Thicker and W．M．
LIMNANTHES（Greek．marsh flower）．Geraniùceq． Two or 3 species of American ammals growing near the water．Low，diffuse，rather fleshy：los．pinnate：Hs． white，yellow or rosy，solitary on axillary peduncles， 1 in．across：fls．regular，the parts in 5＇s；sepals valvate in the bud；glands alternating with the petals；stamens 10：carpels distinct，at first Heshy，at length hard and wrinkled，indehiscent，separating from the short axis： ovule solitary．
Douglasi，R．Br．Ľs．pinnate；lfts．sharply lobed or parted；lobes linear：petals oblong－spatulate，notched at apex，more or less yellow，white toward the tip：fr． smooth or slightly corrugated．Calif．B．M．35yt．B．R． 20：1673．

LIMNOBIUM（living in pools，from the Greek）．In－ cluding Triamea．Hydrocharidìcet．Three or four American aquatic herbs，one of which is in the Amer． trade．Stemless plants，spreading by means of runners， the large leaves floating．Monvecious，the fls．arising from spathes borne on the rootstock，the pistillate single from a spathe and the staminate -4 from a spathe，all with 6 white segments or petals，the inner ones being very narrow；stamens in a column，hearing anthers at unequal heigits：wary with several（6－9） locules and as many stigmas，ripening into a many－ seeded berry．

Bósci，Rich．（1．Spóngia，Steud．）．American Frog＇s－ bit（the European Frog＇s－bit is Hydrocharis）．A neat floating plant，with purplish，hanging，hairy roots and long－stemmed，cordate or ovate lis．1－2 in．long and purplish beneath．Lake Ontario，south and west．Good for the aquariuni．
Limnobium Bósci，while it is hardy southward，does not appear to be so in New Jersey．Its mottled foliage and silky rootlets are very attractive and make it valu－ able in the aquarium，but when grown out－of－doors in summer in tubs or pools，it is very vigorous and soon becomes crowded；the leaves，instead of Hoating，then appear in an erect state，the spongy condition of float－ ing leaves having disappeared，the plant having no need of such．It is really a floating plant，propagated by di－ vision of runners，and shonh not be placed in shallow water，where it can readily root into the soil．

Triamea Bogotense is mentioned as synonymous with L．Bosci，but it is more sturdy in habit，of a lighter color－especially in winter－does not make such long runners．and forms more compact and attractive ro． settes of leaves．

Wm．Tricker and L．H．B．
LIMNOCHARIS（from Greek for swamp－loving）． Alismacere．Four species according to the latest mon－ ographer（Micheli in DC．Monogr．Phaner．3）in tropical America．Perennial aquatic herbs，stoloniferous．with ovate，petiolate，Hoating or emersed lus．，and perfect， with 3 outer and 3 inner parts，fertile stamens about $\mathbf{2 0}$ ， and several or many ovaries．Excellent minor aquaties for greenhonse culture or for planting out in warm summer ponds．
Húmboldtii，Rich．（L．Cómmersoni．Spreng．$L$ ． numphóirles，Micheli．Mydrórleys Cómmersomi，Rich．）． Water Popry．Fig．1294．Stem prostrate and rooting： lvs．broad－cordate－oval，thick．mostly floating：tls．and
lvs, arising from bracted nodes, both long-stalked: fls. $2-21 / 2$ in. across, with 3 obovate-rounded light yellow petals: carpels 5-7, not united. S. Amer. B.M. 5248. B.R. 19:1640.-A handsome plant with the yellow Hs. (lasting

1294. Limnocharis Humboldtii ( $\times^{1 / 4}$ ).

1 day) standing well above the water. In habit, remarkablylike Limnuthemum uymphoides. Grows well in an aguarium or in shallow water. Continuous bloomer.
emarginàta, Humb. \& Bonpl. (L. Plumièri, Rich. L. flatu, Bach.). Stouter: lvs. long-cordate-orate, docklike, standing out of the water: Hs. on long-winged stalks, the yellow petals much contracted below: carpels $15-20$, scarcely cohering. S. Amer. B.M. $2525 .-$ Less frequent than the last.
The culture of Limuochoris Humboldtio is of the simplest. When grown in tubs, fill the latter two-thirds full of moderately rich soil, covering with sand and fill up with water. Two or three plants planted in the center will, in a short time, furnish the tub with its bright glossy green lvs. and numbers of its bright cheery yellow tis., which continue late in the seavon. In natural ponds. planted on the edge the plants grow very rapidly, and spreal over a large surface of water. In artificial ponds. plant in tubs or boxes and place in shallow water or stand the tub or box on some stand, allowing 6-9 inches depth of water.

1295. Linaria Cymbalaria, or Kenilworth Ivy. ( $\times 1 / 2$.)
Limnocharis emarginata, or L. Plumieri, is entirely distinct from the preceding. The light green oblong, blunt Ivs. are very characteristic and ornamental; petiole

## LINARIA

triangular, 1-2 in. high: the fls., produced on a scape, are pale yellow bordered white. Seed is produced very freely, and as the seed matures the scapes fall to the water, the seed ripens and sinks to the bottom, and where grown out-of-doors, grows freely the following season. The flower-scape, as soon as it rests on the water, throws up a shoot, which prodnces another plant in a short time, which again produces flowers, seeds and shoots. and so on. The plant may be grown in pots or tubs or planted out in shallow water in early summer.

## Wm. Tricher and L. H. B.

LINARIA (Linum, the flax. which the lvs. of some species resemble). Scrophulariacec. Low herbs. sometimes subshrubs, of $130-150$ species, widely distributed in extra-tropical regions. several species cult. for the oddly-irregular fls. and others for the festooning foliage. Les. alternate, or sometimes subverticillate, in the erect-growing species mostly narrow and entire: Hs solitary in the axils, or in terminal racemes, yellow, white, blue or purple ; corolla persomate or grinniug. 2-lipped, usially 1 -spurred at the base fin rare or socalled Peloria states 5 -spurred) ; stamens 4, ascending in 2 pairs, slender: style 1: fr, a dry capsule, opening by slits or pores near the summit.
Occasionally the fls. of the common toad flax (Linaria evelgeris) are regular. When Linnams discovered this form, he took the plant to be of another kind and made for it the genus Peloria. This word Peloria is now used generically for the regular state of any normally irregu-

lar flower. Such monstrosities occur now and then, particularly in the Scrophulariaceæ.
In America, Linarias are little known as garden plants, although they are worthy greater attention. They are of two general classes, - the hardy perennials and the annuals. The perennials are prop. by seeds and by division, usually the latter. All the species are of easiest culture in anyordinary soil and exposure, and are largely able to shift for themselves when once established. The annuals may be started indoors; or in warm situations they may be sown where the plants are to stand.
A. Plant Ir iling: lis. palmately reined and lobed - subgenus Cymbularia).

Cymbriine. Mill. Kenilitorth Iry. Mother-ofThousa: : = fig. 1295. Perennial tender glabrous herb, but sowin:g itself freely from seeds, long-trailing and rooting at the joints: lis. cordate-orbicular or reniform, 5-i-rounded-lobed, on slender stalks longer than the blades: Hs. solitary in the axils, on slender stems, small but pretty, lilac-blue with a yellowish throat: capsule globular, splitting from the top. Eu. - It sometimes has white Hls . There is also a variegated-lvi. variety. The Kenilworth lvy is one of the most familiar of trailers on greenhonse bottoms and in odd corners; also as a trailing basket plant in greenhouses and dwelling houses. It is of the easiest culture, particularly in a moist and partially shaded place. Prop. by division of the long stems, or by seeds. It will not stand frost, but the plant will spring up year after year from seed, becoming essentially annual. It has become established in the open in many parts of the East. Continuous bloomer. A good basket plant for poorly lighted places.

## AA. Plant erect or nearly so: liss. long.

B. Flowers yellow.
vulgàris, Mill. Toad-Flax. Butter-and-EgGs. Fig. 1296. Vigorons perennial, spreading freely by underground stems and in time forming large and persistent patches: stems strict, nearly or quite simple, slightly glaucous, l-3 ft. high: Irs. many, scattered, linear, somewhat narrowed below: fls. in a terminal spicate raceme, erect-spreading, with hanging nectary spur, sulfur-yellow, but orange on the bearded palate. En. A.(i. 13: 469. - Extensively naturalized, and commonly regarded as a bad weed; but it infests ehietly waste places, and although difficult to eradicate it does not spread very rapidly. Now and then it appears as an ornamental plant. It is more interesting to the general plant-lover than to the gardener. A double-fld. form is figured in G.C. III. 18: 5 54. The P'eloria forms may have 5 spurs, or no spurs at all (R.H. 1851: 433).

Macedonica, Griseb. Rohust perennial, 2-3 ft. high, branching: Ivs, narrow-ovate or the upper ones lanceolate, somewhat cordate at the base, nearly or quite sessile, entire: fls. bright yellow, with deeper color on the palate, in long wand-like terminal racemes. Macedonia. Gn. 45:948. J.H.III. 30:469.-A showy plant, hardy, bearing its snapdragon-like ths. most of the season. Perhaps a wide-leared form of L. Dalmatica, Mill.

## BB. Flowers blue or purple. <br> > c. Perennial barder plants. <br> <br> C. Perennial barder plants

 <br> <br> C. Perennial barder plants}alpina, Mill. Compact-tufted plants, 6 in. or less high, with weak and spreading Hower stems: lvs. linear or lanceolate, mostly in 4's: Hs. in short racemes or heads, blue with an orange-colored palate. the straight or slightly eurved. sharp spur as long as the corolla. Alps. F.S. $20: 2128$. G.C. II. 14:105. -A pretty little alpine, blooming in July and Aug.
triornithóphora, Willd. Glaucous, - -3 ft . tall: Irs. orate-lanceolate, in 3's or 4's: fls. about 3 in a whorl (hence the name, bearing three birds), rather large, slender-stalked, violet-and purple-striped, with orange palate, about 1 in . long, the spur inthated above and exceeding the lobes. Spain, Portugal. F.S. 29: 2297.-A handsome and interesting plant, rarely seen in American gardens.
cc. Annual plants of the flower gariten (See R.H. 1896, pp. 371-374).
bipartita, Willd. A foot high, erect, branching, with scattered or verticillate linear lrs.: Hs. large, in a long racemose spike, riolet-purple, with the palate orange-colored above and whitish towards the base, the spur curved, about as long as the corolla, standing oblique or horizontal; upper lip parted. Portugal, N. Afr.-Old-time annual, but it has never been popular in N. Amer. Var. álba, Hort.. has yellowish white fls. Var. spléndida, Hort., has handsome deep purple Hls. There is also a var. striàta, Hort.

Maroccàna, Hook.f. Fiy. 1297. Spike much shorter and denser: fis. bright violet or rose, with a whitish palate, the spur long, pointed, as long as the pediceland sometimes hanging nearly parallel with the axis of the spike: lvs, many, linear, scattered or whorled, hairy. Norocco. B. М. ड983.
reticulata, Desf. Fls. pubescent, purple, reticulated with purple, the palate yellow or copper-yellow, the spur pointed and shorter than the corolla and pointing downward: spike short: |rs. linear, scattered or verticillate. Portugal. - An old garden plant, but little known in America. Runs into two or three forms.
L. aparinoides. Dietr. See L. heterophylla.-L. Broussomnéttii, Char. (L. multipunctata, Hoffmg.). Low amnual, with yellow, black-spotted fls., orange on the palate, and lanceolate or
linear lvs.: 5-8 in. high, mostly upright. Spain.-L. Cumadensis, Dum., is a weedly native plant, of no value to the garden. It is anmual or hiemial. st rict, 1-0 ft., with very small blue ths. -L. Dalmutica, Mill., is s yellow-flil. perennial: see L. Macedoniea, in the main list.-L, hepaticiefiolia. Stemd. A good alpine, making a very low mat: fls. purple: Ivs. cordate or reniform, lobed. Corsica. Sardinia.-I. heterophýlla, Dest. (L. aparinoides, Dietr.). Annual, erect, with scattered linear lvs.: Hs . rinoides, Dietr.) Annual, erect, with seatered linear (rs.: Hs roceo. B.M. G041.-L. multipuluctita, Hoffmg. $=$ L. Brousson roceo. B.M. $6041 .-L$. multipulatata, Hoffing. L. Brousson-
nettii.-L. purpurea, Mill. Erect perennial, with long racemes nettii.-L. purpurea, Mill. Erect perennial, with long rareme of purple-bearded fis. and linear whorled lvs. Eu. Of little
valne.-L. suxátilis, Hoffing. \& Link. Rockwork werennial. valne. - L. Raxátilis, Hoffing. A Link. Rockwork perennial,
trailing, with thickish lanceolate lvs., and yellow fls. in short trailing, with thickish lanceolate lvs., and yellow Hs. in sho
clusters Spain.
L. H. B.


LINDELOFIA (Friedrich von Lindelof, of Darmstadt, a patron of botany). Borragincicece. Two species of hardy herbaceons perennials from the Himalayas, one of which is cult. It grows $1-11 / 2 \mathrm{ft}$. high, and in June and July bears racemes of drooping, oddcolored ths. about three-fourths of an inch long, with a pale blue tube and 5 deep rose or purplish lobes. The racemes are about 6 in. long, and have $8-12 \mathrm{fls}$. The plant is likely to be winter-killed unless given a sheltered place, good drainage and winter covering. It is not fastidious as to soil. Easily prop. by division. It seeds freely and flowers the seeond year from seed.

Like Solenanthus, this genus has the habit and nutlets of Cynoglossum, but the stamens of Cynoglossum are included, while those of the other two genera are exserted. Solenanthus differs from Lindelofia in having a more tubular flower, the lohes being relatively shorter and erect or slightly spreading.
spectábilis, Lehm. Pilose : lvs. oblongacuminate, the upper ones heart-shaped or clasping at the base: racemes iractless. $B$. R. 26:50 (Cynoglossum longiflorkm). J.H. 11I. 31 :235. J. B. Keller and W. M.
LINDEN. Tilia.

## LINDERA. See Benjoin.

LINDS座A, or Lindsaya, is a genus of about 50 species of tropical ferns, none of which are advertised in America. Schneider, in his Book of Choice Ferns, says they usually die soon after importation, even if apparently in good condition on arrival. In their native habitat, he says, these ferns usually ereep about in poor, stony soil, which is frequently drenched and washed away by rain. They need a high temperature and humid atmosphere. Lately some success has been attained by placing Lindsaas in pots nearly filled with crocks, in which they are firmly held by 2 or 3 pieces of turfy loam, and by imitating in other ways the natural conditions described above.

LINN \&̀A (named after Linnæus, at his own request; it was his favorite flower). Cuprifoliecear. Hardy evergreen trailing subshrub with opposite, small lrs. and light pink, campanulate, nodding fis. in pairs on slender upright stalks. A graceful, dainty plant for rockeries, preferring a shaded position and porous, peaty soil. Prop. usually by division or cuttings of soft or half-ripened wood under glass. Only one species in the colder regions of the northern hemisphere. Ca!yx $\overline{5}$-parted: corolla campanulate, 5 -lohed: stamens 4: ovary 3-celled: fr. lry, indehiscent, l-seeded. Hy some botanists Abelia is united with this genus.
boreàlis, Linn. Twis Flower. Fig. 1298. Stems slender, slightly puhesecnt: Ivs. short-petioled, roundish or obovate, with few crenate teeth. $1 / 4-3 / 4$ in. long: fls. pedicelled in $2=$ s at the top of slender, upright pedun-
cles; corolla rose-colored or white, about $1 / 2$ in. long, fragrant. June-Aug. In N.. Amer. south to Md., and Calif. in the Mts. B.B. 3:235. Gn. 24, p. $17 \%$.

Alfred Rehder.

1298. Linnea borealis ( $\times 1 / 4$ ).

LINOSPADIX (Greek, linear spadix). Palmdcece. L. Petrickiamt is a pinnate-leaved palm from New Guinea, int. 1899 by Sander \& ('o., who say: "The slender. alternate pinne are slightly arched. The base is netted with brown fiber, small, hair-like glumes of the same color being apparent on the younger fronds and leafstalks. The young fronds are colored similarly to those of Arect Ilsemanni, and when developing have the luster and brilliancy of new copper."

Linospadix contains about 4 species of dwarf, unarmed palms, all from New Guinea, varying considerably in foliage. The genus is allied to Bacularia, but Bacularia has premorse leaf segments and erect anthers fastened at the base, while Linospadix has acuminate leaf segments and versatile anthers fastened on the back. Linospadix is distinguished from Howea (which see) by the stamens 6-9: pistillate ths. with 6-9 staminodes: ovule parietal.

Petrickiana, Sander. Pinnæ once cut from the apex to a third or fourth the length of the pinna; laterally cut about six-sevenths of the way from the tips of the segments to the rachis: premature basal lis. cut once from the apex to half their length, the 2 lobes uncut. G.C. III. 24:299. - This is a handsome pinnate-leaved palm of compact growth and well furnished with foliage, at least while in a young state. In its juvenile condition, the leares of L. Petrickiana are simply bifid, the pinnate form gradually appearing as the plant attains age. Cultural conditions suited to the needs of Calamus and Dæmonorops will be most likely to succeed with Linospadix, and include a temperature of $70^{\circ}$, plenty of water, and some shade throughout the year.

## W. H. Taplin and W. M.

LINOSYRIS (Linum and Osyris, which genera it resembles). Compósite. One species, L. vulgàris, Cass., of Europe. is a good hardy perennial, growing $11 / 2-2 \mathrm{ft}$. high, and bearing numerous small pale yellow heads: stems strict (from a hard root). striate, finely pubescent, bearing many alternate, small, linear, entire Ivs. It is an excellent late summer and fall bloomer, thriving well in any good garden or border. Prop. by division.

The genus Lynosyris is now referred to Aster by many botanists, the abore species then becoming $A$ ster Linosyris, Bernh. It is also known as Chrysocoma vulgaris, Gueld. Horticulturally, it is distinct, with its yellow heads and peculiar habit. From Aster it differs technically in the absence of rays and in yellow fls. L. H. B.

LINUM (elassical name). Lindece. Flax. Temper-ate-region plants of both hemispheres, of 80 or 90 suecies, herbs or sometimes subshrubs. They are erectgrowing plants, with narrow alternate (rarely opposite)
and mostly entire lvs., and showy 5 -petaled fls. which open in the sunshine. Stamens 5 and alteruate with the petals, usually united at the base: ovary $1,3-5$-loculed, bearing as many styles as locules, and ripening into a dry capsule which may or may not be dehiscent. The Hs, are borne in terminal racemes or cymes, and, although each Hower may be short-lived, the continuity of bloom makes the plant showy. There are two horticultural sections, - the annuals and perennials. All are of easy culture in an open and warm place, fully exposed to the sun. Seeds of the annuals may be sown where the plants are to bloom or they may be started under glass. The perennials often bloom the first year from seed, and seeds are often used to propagate them; but the plants may be divided. There are several native Linums, some of which are small-fld., weedy plants.
A. Plant annual: fls. red or blue.

## B. Bloom red.

grandiflorum, Desf. Flowering Flax. Figs. 1299, 1300. Erect, branchy, 1-2 ft., glabrous: lvs. many, alternate, broadly lanceolate to oblong, sessile or nearly so: Hs. terminating very slender pedicels which are 1-3 in. long, the obovate petals wide-spreading (fl. $1-1 \frac{1}{2} \mathrm{in}$. across, and something like a single-fld. pink) and much exceeding the pointed scarious-edged sepals. N. Afr. B.M. 4956. R.H, 1848:401. - Very serviceable garden annual, and popular for its glossy bright fls. The color varies in the shades of red. Var. rùbrum has bright red fls. Var. kermesinum is crimson. L. coccineum, Hort., is a scarlet-fld. form. In a warm, sunny place, the Flowering Flax makes a very satisfactory plant. It is not adapted to cutting, since the fls. are not durable. Will not stand frost.

BB. Bloom blue.
usitatissimum, Linn. Flax. Much cult. for linseed and for fiber, and running wild along railroads and in fields : $2-3 \mathrm{ft}$. high, very slender-branched, glabrous: lvs. small, linear or lanceolate, acute, alternate: ths. about $1 / 2 \mathrm{in}$. across, light blue, soon withering: podlarge, mostly exceeding the scarious-edged sepals, nearly or quite indehiscent. L. hùmile, Mill., also cult. and some-

1299. Linum grandiflorum. Natural size.
times run wild, is lower and has a dehiscent capsule; it is probably only a form of the above.-Flax has been cult. from time immemorial, and it is unknown in an originally wild state. Some authorities consider it to be a moditied form of $L$. perenne.

AA. Plant perennial: Nls. yellow or blue (white vars.). B. Bloom yellow (L. trigynum, which may be sorght here, will be found under the genus Reinuardtia)
fidrum, Linn. Erect from a somewhat woody base, glabrous, 1-2 ft.: Ivs. lanceolate or linear, alternate: Hs golden yellow, in a much branching cyme, the showy petals much exceeding the glandular-ciliate sepals. Eu. B.M. 312. - A good lialf-hardy perennial, but not popularly known in this country.

## вв. Bloom blue (or white).

perenne, Linn. Fig. 1301. Erect-growing and branchy, glabrous, 1-2 ft. tall: lvs. linear and acute, alternate: fis. rather small, azure blue (there is a white-fld. form), on the ends of slender pedicels, the styles and stamens of different lengths (Als. heterogonous) in different ths.: capsules ovoid. dehiscent, on inclined pedicels. Eu. Worthy hardy perennial, summer-blooming, often flowering the first year from seed.
Léwisii, Pursh (L. peréune, var. Lévisii, Eaton \& Wright). The West American representative of the above, and scarcely distinguishable from it except that the fls, are not heterogonous, pedicels more erect in fruit, calyx nerves not evident. Fls. $11 / 2$ in. across, clear skyblue, very pretty. B.R. 14:1163 (as L. Sibiricum, var. Leuisii).

Austriacum, Linn. (L. perínne, var. Austriacum, Voss). Lvs. linear, punctate: Hs. rather small, violetred or light blue: fruiting pedicels horizontal or reHexed. Austria. - Hardy North, growing 1-2 ft. high and blooming all summer.
Narbonnense, Linn. One to 2 ft . high, forming a spreading clump, glabrous and slightly glaucous, and very hanlsome for rockwork: lvs. linear-lanceolate, pointed, alternate: fls. $11 / 2 \mathrm{in}$. across, on slenter pedicels in loose panicles, azure blue, with white eye and white stamens. Eu. Gn. 52, p. 401.-Blooms in late spring and early summer.
L. H. B.

LION'S EAR. Leonotis. L. Foot. Leontice; also Prenenthes serpenturia. L. Tail. Leonotis Leonerus.

LIPARIS (Greek. fat, shining). Orchidacew. A large genus, containing orer 100 species, distributed over the warm and temperate regions of the entire earth. The plants grow erect, with stems in some species 1 ft . high, bearing 1 or several lvs. and a terminal raceme of small, rarely medium-sized H.s. Herbs, terrestrial or epiphytic: stems sometimes thickened at the base into a small pseudobulb, sheathed by scales: lis. few, broad, contracted into sheathing petioles: Hs. Whitish, greenish yellow or purplish; sepals and petais nearly equal, linear, spreading; column long; lip nearly plane, often with two tubercles above the base.
$L$. liliifolia should be planted in well-drained soil: a shady bank is preferable. L. Lxeselii delights in a wet situation, just at the edge of the water.

1300. Linum grandiflorum.
liliifolia, Rich. Twayblade. Plants 4-10 in. high: lvs. oval or orate, 5 in . long: raceme with many purplish fls.: labellum large, wedge-obovate. Succeeds in welldrained soil on shady banks: woods and thickets, eastern N. Amer. B.B. 1:476. A.G. 12:15\%: and 13:517. - Procurable from Dutch bulb dealers and dealers in native plants.

Laesélii, Rich. Plants 2-8 in. high: lvs. elliptic-lanceolate, 2-6 in. long: raceme with few greenish Hs.: lip obovate pointed. In wet thickets, N. Aner. and Eu. B. B. 1:477. G.C. 11. 21:144.
L. atropurpùrea, Lindl. Plants 1 ft . or more high: $1 \mathrm{vs} .2-4$, nearly round, acuminate plicate, near together at the upper part of the stem: raceme many-fll.: fls, chocolate-purple; lip oblong, obtuse, repurved. June. Ceylon. B.M.5529.-The most ornamental of the genus.

Edward Gillett and Heinrich Hasselbring.

1301. Linum perenne ( $\times 1 / 2$ ).

LIPPIA (August Lippi. French traveler, 1678-1704). Syn., A loysia. Verbendcer. The Lemon Verbena is an old-fashioned favorite, with delightfully tragrant foliage, a sprig of which was often included in mixed bouquets. It is a low-growing, tender shrub, with long, narrow, pointed, entire lvs., which are usually borne in 3's. In summer, it bears minnte tls. in a delicate, pyramidal panicle, composed of many-Howered spikes, which appear in groups of three at decreasing intervals along the main axis. The Lemon Verbena comes from South America, and in the North is deciduous. In northern garlens it needs a winter overcoat of straw. In S . Calif. it attains a large size out-of-cloors. Full cultural directions are given at the end of this article.

The genus Lippia is botanically nearer Lantana than Verbena, though the common forms of all threesenera are very unlike horticulturally. Some species of Lippia have their spikes crowded into dense heads, like Lantana. The drupe in Lippia is dry, but in Lantana it is often juicy. About 90 species, chiefly American, a few African. Shrubs, subshrubs or rarely herbs, hairy or not: Irs. opposite or in 3's, rarely alternate, entire, toothed or lobed, flat or wrinkled: calyx small, 2-t-cut; corolla with a cylindrical tube, and 4 lobes.

Under the name of L. repens, Franceschi introduced into $S$. California in 1900 an interesting perennial plant designed as a substitute for lawn grass in the South. It makes a remarkably dense mat, and bears numerous tiny flowers an inch or so above the ground. The tls. are borne in a dense, bud-like head, covered with many tightly overlapping bracts. The fls. appear in rings. beginning at the base of the little head. Franceschi writes of this plant that it thrives in any
soil no matter how foor, rapidly covers the grount, smothers wecds, stands trampling, requires much less water than grass, needs no mowing, can be easily taken ont if desirable, and is used in southern Europe for temnis grounds. Voss pictures this plant with an erect and tufted habit, and refers it, together with L. conescens, to L. nodiflora. These two names were kept distinct by Sehauer in De Candolle's Prodromus, and specimens of Franceschi's plant come nearer to $\boldsymbol{L}$. conescens than to L. nodiflora. Nehaner's distinctions are given below, but there is doubt as to the chief point of differ ence; viz., whether any of the plants are annual. They all take root at the joints.

## AA. Plant annual

nodiflora, Rich. Stems herbaceous: calyx 2-parted, slightly 2-keeled, keels puberulons; the whole corolla a little more than one-twelfth of an inch long. Banks and sandy shores in the torrid zone and warmer parts of the temperate zone.

## A. Plant perennial.

canéscens, Kunth. Stem somewhat woody at the base : calyx 2-toothed, e-keeled, the keels slightly villous; corolla conspicuously larger than in related species, rosy. with a yellow throat. S. America, in Iry, grassy places.
citriodòra, Kunth (Aloýsia citriorlòra, Orteg.). Lemon Verbena. Lus. in whorls of 3 or 4, laneeolate, short stalked, glabrous, densely covered beneath with glandular dots: spikes whorled and axillary or collected in terminal panicles, which may be 3 in. long and wide. B. M. $36 \sigma^{\prime}$ (l'erbena triphylli). Gn. $56: 146{ }^{\circ} 0$. G. C. II 11:301.
A florist should always have a few Lemon Verbenas. Save a dozen plants in spring, shift them on as required and in the summer plunge the pots outside. At the approach of frost bring them into the greenhouse, stand them under the lightest and coolest bench, and give them water enough merely to keep the wood from shriveling. In early February shake the plants out of the pots, shorten the unripened and weak wood, repot in fresh soil, using 4 -inch pots, and start the plants into fresh growth in a temperature of $55^{\circ}$. In a few weeks they will be covered with new growths suitable for cuttings. Cuttings root readily in about 3 weeks. The sand of the cutting-bench should be a little warmer than the air. Water the sand twice a day, and keep it well soaked. Never allow the cuttings to wilt from sunshine or dryness. Transfer the cuttings when rooted to -inch pots. and in April shift to 3 -inch pots, plunging them in a mild hotbed. where by the middle of May, with one pinching, they will have become fine, bushy plants. They need frequent syringing to prevent attacks of red spider.

Wm. Scott and W. M.
LIQUIDAMBAR (a compound of the Latin liquidus, fluid, and the Arabic ambar, amber, the name given by the Spaniards in America from the fragrant sap which exudes from the tree). Hamamelidicere. A genus of about 4 species, the one commonly known being the Sweet Gum or Liquidambar of the middle and southern states, a most interesting tree from its symmetrical head, star-shaped maple-like lustrous lvs., brilliant autumnal color, deep furrowed bark and corky winged branches. Its branches are short in proportion, and slender, giving it, when young, a narrow, pyramidal head, which becomes, when old, a narrow, oblong crown. Its foliage in autumn usually assumes a deep crimson. Its corky branches, not a wholly constant character, add to its picturesqueness and lend to its interest in winter. In the sonthern states. where it frequents river bottoms and is one of the most common trees, it reaches the height of 80 ft . or more. Farther north, where it is found on the borders of swamps and is rarer, it reaches the maximum of $60-70 \mathrm{ft}$. On drier and hirgher ground, it remains a small tree. In cultivation it is of moderate growth, thriving both in low, damp places and on higher grounds, reaching a height of $30-40 \mathrm{ft}$. Beantiful at every stare, its habit adapts it to both informal and formal planting, in the latter respect particularly to street and park planting, under which conditions it succeeds well. One of the nost valuable
trees in cultivation in the middle and southern states; its lack of harliness farther north forbids its use there. It is free from insects and diseases, and is said to withstand salt air. Its resin resembles the liquid storax of the Orient. It is propagated by seeds, which should be stratified as soon as ripe, many of them lying dormant until the second year. It requires close pruning when transplanted.
styraciflua, Limn. Sweet Gus. Bilsted. Starleaved or Red (icom. Ahligator Thee. A native tree, $80-140 \mathrm{ft}$. high: lvs. simple, alternate, generally rounded in outline, deeply and palmately 5 -i-lobed, serrate, aromatic, deciduous, glabrous below except a pubescence in the axils of the veins; lobes triangular-ovate, acute; petioles $6-7$ in. long, slender: fls. apetatous, moncecious, in globular heads, the staminate heads greenish, $1 / 4 \mathrm{in}$. in diameter, in terminal racemes, the pistillate heads solitary, long-peduncled, at length drooping, $1-1 \frac{1}{2} \mathrm{in}$. in diameter, hanging all winter: staminate fls. have no calyx, but numerous stamens intermixed with small scales; pistillate fls. cohere as to their ovaries, forming globular heads which harden in the fruit, having seales for sepals, 4 rudimentary anthers and 2 -celled ovaries, $1-2$-seeded: capsules 2 -beaked at the summit, forming together a dense spinose head. March-May. Conn. and southern N. Y. to Fla., Ill., Mo. and Mex. G.F. $2: 23 \overline{5}$. P.G. 3:111. G.C. II. 14:633. Mn. 4:117. Gn.24, pp. 166;, 167 and 38, p. 208.
L. orientàlis, Mill. (Ls. imberbis, Ait.). A tree of Asla Minor. Very similar to L. styracithas and differing in that the lis. are smooth in the axils of the veins. A. Phelps Wyman

## LIQUORICE. See Glycyrrhiza.

LIRIODENDRON (lirion, lily, and dendron, tree; referring to the shape of the Howers). Mergnolidece. Tulip Tree. Whitewood. Yellow loplak. Hardy ornamental, deciduous tree of pyramidal habit, with alternate, long-petioled, rather large lvs. of unusual shape, and large tulip-like greenish yellow ths. appearing in spring. A very beautiful tree for park-planting and for avenues, with handsome, clean foliage of rather light bluish green appearance, rarely attacked by insects or fungi, assuming in fall a brilliant yellow color; the ths., though of not very showy color, are conspicuous by their size and shape. The Tulip Tree is also an important forest tree, and the soft, fine-grained, light yellow wood is much used in earpentry for furniture, boat building and the manufacture of small articles; it does not split easily but is readily worked and bent to any required shape. The inner bark is said to have medical propertics. The Tulip Tree grows best in deep, rich and somewhat moist soil. Transplanting is not easy; it is best done in spring. just before the tree starts into new growth. Prop. by seeds sown in fall or stratified and sown in spring; varieties are usually grafted or budded on seedling stock, rarely prop. by layers. The seeds are sometimes hollow, especially those grown along the eastern limit of the species. One species in N. America from R.I. and Vt. to Wis., south to Fla. and Miss.; also oceurring in China. Lis. with conspicuous deciduous stipules cohering when young and inclosing the next leaf: Hs. terminal, solitary, with 3 spreading sepals and 6 erect, broadly ovate petals: stamens numerous, with long and linear anthers; pistils numerous, forming a narrow column, developing into a light brown cone. at maturity the carpels, each consisting of a long, narrow wing with a $1-2$-seeded nutlet at the base, separate from the slender spindle. The Liriodendron is one of the noblest trees of the American forest.
Tulipifera, Linn. Fig. 1302. Tall tree, to 150, rarely to 190 ft ., with a trunk to 10 ft . in diam., often destitute of branches for a considerable height, glabrous: lis. about as broad as lone, with 2 lobes at the truncate and notched apex and 2-t lobes at the base. bluish green above. pale or claucous beneath, $5-6$ in. long: Hs. greenish yellow, marked orange within at the base, $11 / 2-2 \mathrm{in}$. long. May. June. S.S. 1:13. Em. 2:605. B.M.275. Gng 7:259. A.G. 1892:485. Mn. 2. p.4: 6, p. 145. Gn. 34, p. 42. V. $20: 86$ - Var. pyramidale, Lav. (var. fustigiêtum, Hort.). With upright branches, forming a narrow pyramid. Var. integrifolium, Kir.rin. Lis. rounded at the
hase without lobes. Var, obtusilobum, Pursh. Les, with 1 Ily one rounded lobe on ench side of the base. There are also several vars. with variegated lvs., of which var. aureo-margindtum, Hort. (var. penuché, Hort.), withlus. edged yellow, is one of the best. F.S. $19: 2025 ; 20: 2081$.


Russelliànus, Hook. (Properly E'ustoma R'usseliimum. G. Don). Glaucous: stern simple, or with a few opposite branches: lvs. opposite, connate, ovate or ovate-oblong, i-i-nerved: tls. panicled, as large as a tulip; lobes obovate, spreading; stigma of 2 very large, gruen, velvety, spreading plates: pod oblong; seeds minute, pale brown. B. M. 3fie6, G. C. III, 4:340, K.H. 1863: 51 and 1881, p. 189. W. M.

This fine plant is difficult to grow in America. In the Old World it is usually treated as a cool greenhonse subject, being sown in early spring for summer and autumn bloom. The writer has not grown it for thirty years, but in view of the renewed interest in this plant, his experience may be useful. The seed should he sown carefully, and at every stage of the plant's growth over-watering should be guarded ngainst. The seedlings are very likely to damp-off. When they are ready for trans-planting from the seed-beds, use small pots. When larger plants are needed, place them in a light, airy place and give generous bottom heat. For soil, use good loam, sand and well-rotted manure.
F. L. Harris.

LISSOCHILUS (Greek, smooth lip). Orchialdeer. This genus contains about 30 species dispersed in tropical and S. Africa. Some of them are very handsome, but they seem to be little cultivated in America, only a single species being advertised here. The plants are terrestial herbs, distinguished from their near allies by the dissimilarity of the sepals and petals, the latter being much larger and wider and usually of a different color. The lvs. are plicate and prominently veined, long and narrow: stems very short, leafy, tinally thickened into pseudobulhs: raceme simple: scape long, stout, sheathed but leatless, growing beside the pseudobulb: labellum spurred or saccate, joined to the base of the column. The plants may be gromin in a compost of fibrous loam, leaf-mold and sand. During the growing season they require plenty of water, but during three months of winter they should be allowed to rest and be kept dry.
Krébsii, A. R... Lvs. in tufts on the young stems, elliptic-lanceolate, o-10 in. long: scape $2-3 \mathrm{ft}$. high: raceme $12-18$ in. long, with $20-30 \mathrm{Hs}$. : sepals linear-oblong, bent back. green, with dull purple blotehes; petals much larger, golden yellow; lip yellow, pendulous, saccate between the small, rounded lateral lobes; middle lobe orbicular, notched in front. Flowers from May to Oct., the Hs. remaining a long time. Natal. B.M. 5861. - Adv. 1895 by Pitcher \& Manda.
L. gigantius, Welw. \& Reichb.f. A gigantic orehid whose les. are said to grow to a length of 8 ft., with tlower spikes twice as high: sepals linear, curled backward; petals oblong-quadrate, $11 / 2 \mathrm{in}$. across, pinkish rose: labellum 3 in. long, with a long spur: middle lobe trowel-shaped, purple, striped with tarker lines. Congo. G.C.III. 3:617. S.H. $2: 35.3$. I.H. 35:53.- L. Hoirsfullii, Batem. A robust plant, with plicate lvs. 2-3 ft. long and $5-6 \mathrm{in}$. broad, sharp-pointed: Hower staik twice the length of the lvs., with many large tts. 3 in . in diameter: sepals reflexed, rich purple-brown on the upperside: wetals murh larger, almost square, white, suffused with rose. B.M. 5486 . Handsomer than the first. - L. ròseus, Lindl. Les. broad and stiff: stem 3-4 ft. high: sepals brown; pe:als and labellum fine rose-colored. B.R. 30:12. Also a showy plant. - L. speciosus, R. Br. Pseutobulbs nearly underground: lus. dark green, ensiform: scape O- -ft . high, with fragrant fl . 2 in. across: sepals small, green, reflexed; petals large, yellow; liy mostly yelow, apparenty on the upper side, due to the inversion of the ths. June, July. Cape. B.R. $7: 573$ (erroneously numbered $50{ }^{\circ}$ ). P.M.B. 4: :-5. Heinrich Hasselbring.
LISTERA (after Martin Lister, 16:38(?)-1712). Orchidìcer. Small, slender, erect herhs, with fibrous or sometimes fleshy roots, bearing a pair of opposite green lvs. near the middle, and 1 or 2 scales near the base of the stem: Hs. small, spurless, in a terminal raceme; sepals and petals similar, spreading or reflexed; labellum rather longer, narrow, entire or 2 -Iobed. About 10 species, natives of the north temperate zone.
convallarioides, Torr. Stem 4-10 in. high, with smooth, romnd-oral. obtuse, cuspidate lis.: raceme $2-3 \mathrm{in}$. long, bearing $3-12$ greenish yellow His. June-Aug. In woods, Nova Scotia to Alaska and Calif.; south to N. C. in the Mts. B.B. 1: 473 .

## LITHREA

cordàta. Very slender, 3-10 in. high : lvs. cordateovate, mueronate: raceme $1-2 \mathrm{in}$. long, with 4-20 minute purplish fls. June-Aug. In moist woods, Nova Seotia to Alaska and Ore., south to N.J.; Eu. B.B. 1: 473.

Heinhich Hasselbring.
LITHOSPERMUM (Greak, rock seed; the seeds like little stones). Borragindred. This includes a few lowgrowing hardy herbaceous peremials of minor importance. The best known is $\boldsymbol{L}$.

1303. Puccoon,-

Lithospermum canescens ( $\times 2 / 3$ ).
B. Mabit A. Color of fls. blue or merplish.
B. Mabit trailing: tube of corolla deusely hairy, theice as long as the calyx.
prostratum, Lois. Gentian Blye Gromwell. Subshruh: lvs. lanceolate-linear, margin somewhat revolute: tube of corolla pubeseent ontside, densely villous at apex. S. Eu. This is presumably the plant in the trade, since i. mostrutum. Buckl.. is a white-fld. annual properly called L. Matumorense. However, L. prostratum, Lois., is referred by Intex Kewensis to $/$. fruti$\cos u m$, which see. Gn. 4ī, 1. 135. J.H. III. 32:47̄5.

BB. Habit erect: tube of corolla not hairy.
fruticosum, Linn. Distinguished as above by DeCondolle, and apparently more of a slabh, with the leaf margins decidedly revolute. S. Eu. - Not cult.

## As. Color of fls. pule yellou, yellow or orange.

13. Size of fls. small: tube about as long as the calyx: roots not red.
e. Inflorescence sparse: throut of corolla crested with "ppendages.
officinàle, Linn. Gromwell. Much branched, n-3 ft. high : lvs. lanceolate or ovate-lanceolate, 2 in. or less long: fls. dull white. Along N. E. roadsides, but naturalized from Eu.
ce. Inflorescence dense: throat of corolla nearly deroid of "ppenduges.
pildsum, Nutt. Mostly unbranched, 1 ft . high: lvs. linear and linear-lanceolate, $\underline{O}+\mathrm{in}$. leng: Hs. dull greenish yellow, crowded in a leafy thyrse. Western N. Amer.
B13. Size of fls. large, shoury: tube of corollu much longer than the calys: roots red, long amd deep.
c. Floral leares reduced to bracts no longer than the calys.
multiflòrum, Tor:. Height 1-2 ft.: les. linear: Hs. light yellow, spicate. Rocky Mts. to W. Tex.
cc. Floral leares much longer than the calyx.
D. Tube of corolla $1 / 2-2$ times as lony as the calyx: crests of throat little if at all projecting or arching.
E. Fls. nearly without pedicels: glundulur ring at the base nuked.
canéscens, Lehm. Puccoon, of the Indians. Red Root. Indian Paint. Fig. 1303. Heighi -1:2 : or more: fls. orange. Plains and open woe: in $s$ is soil, upper Canada to Ala., west to Ariz. M. 4389.
ex. Fls. mostly pedicelled: glanduiar ving at base uithin bearing 10 tery hirsute lobes or :eeth.
hirtum, Lehm. Height $1-2 \mathrm{ft} .: \mathrm{fls}$. bright orange. Pine barrens, Mich. to Fla. ana Colo.
DD. Tube of corolla ?-4 times as long as the ralyx crests of the throut conspicuous and arching.
angustifólium, Michx. Fig. 1304. Height 9-12 in. or more: lvs. al: linear: Hs. of "sorts, the earlier and conspicuous kind bright yellow, with corolla tube 1 in . or so long, later ones and those of the more diffusely branchis. plants with inconspicnons pale corolla, withont crests in the throat and probably eleistogenons. Apparently all grades between carly large fls. and late small ones. Prairies. D. M. Andrews says it has pale cream fls. Var. longiflorum (L. longifloruin. Hort., D. M. Andrews) is sail to grow 1 ft . high. with larger, pale lemon fls. and comes true from seed. (irows wild in Colo.
W. M.

## LIT: EA. See Agare

LITHREA (Chilean name). Anacarilidcea. A genus of small South American trees related to Rhus. and by Bentham and Hooker included in that genus. The plant cult. by some under this name seems not to be true to name, as it is a tree with umdivided lis., while the true plant is as hrub with $1-3$ pairs of lfts. and odd pinnate. D. C. Mon. Phan. vol. 4.

Aroëirinha, March. (I. molleoides, Engl.). Shru's, 9-12 ft. high: lvs of 5 lanceolate lfts., the rachis and
petiole narrow-winged; lfts. 2-3 in. iong, glabrous, with small panicles of greenish yellow ths, and almost white drupes 1-2 lines in diam. Brazil.

## J. B. S. Norton.

LITTONIA (Dr. Samuel Litton, professor of botany in Royal Dublin Soeicty). Lilidece. Littonia and Gloriosa are called Climbing Lilies. They are tender, tuberous plants, with glossy, lanceolate lvs. which eurl at the tips into tendrils, enabling the plants to reach $6-8 \mathrm{ft}$. The fls . are 6 -parted, but in Littonia the segments are not reflexed like a Cyclamen, as in Gloriosa. Fls. nodding, bell-shaped, orange, 1 in. or more across; segments oblong, acum!nate, $1 / 4$ in. Iong: eapsule long, 3 -celled; seeds scarlet, about the size of a sweet pea, round, arranged in 2 serics. The odd-shaped tubers are about $1 \frac{1}{2}$ in. acrossand may be planted outdoors in May. There are 4 species, 1 from Arabia, 1 from S. Africa and 2 from tropical Africa.
modésta, Hook. Lower les. in 3 's, apper ones alternate: perianth segments provided with a small oblong nectary, partially closed by a ciliated scale on each side: style 3-cut. S. Africa. B.M. 47 2? . Var. Keitii, Hort., is an improved form, with larger and wore abundant Hs.
John E

LIVE-FOREVER. Sedum: $\ell \cdots \cdots$ other Nas.s.

## LIVERLEAF. Hepatice.

LIVERWORT. A genera! name for a gru: . . stogamia (Howerless plants), somewhat allied to mosses and known as Hepatice. Conocephahus and Marchantia have been offered by dealers in native plants as suitable for rockwork and bog gardeas. Lunularia is a common weed in greenhouses.

## LIVING ROCK. Consult Aaholonium.

LIVISTONA (Patrick Murray, Baron of Livistone). Pilmatcer. About 14 species of fan palms from tropical eastern Asia, Malaya and Australia. Trunks usually tall, stout, ringed below, clothed above with dead leafsheaths: lvs. spreading, orbicular, plicate, split to the middle or below; the segments bifid. infolded, naked or fibrous along the marginc rachis short; ligul small, cordate sree: petiole long, stox: flat or rounded above, convex below, often spiny along the margins; sheaths margined with reticulate fibers : spadices long, at first ascending, pendent in fruit, longpeduncled, loosely branched, the branches slender: spathes many, long, tubular, compressed, sheathing the peduncle, thick, coriaceous, bitid or 2-lipped, e-keeled or ancipital: no bracts or bractlets: ths. greenish: fr. smooth and shining, oblong-globose or ellipsoidal, black, blue, ycllow or brown.

From the seven allied genera mentioned under Lieuala, Livistona is distinguished by the following eharacters: ths. hermaphrodite: carpels of The ovary globose, distinet or slightly cohering: styles short, distinct or cohering: albumen not twisted, broadly scooped out on the ventral side: branches of the spadices not bracted or the lower ones bracted.

## A. Les.glaucous beneath.

Jenkinsiàie, Griff. Lvs. 5-6 ft. broad, reniform, flabellate, $70-80$-fid, glancous beneath, the divisions very narrow, straight, shortly and obtusely 2 toothed. Assam.

## AA. Lis. not laucous benerath.

B. Petioles without spines.

Woddfordii, Ridley. Petioles slender, without thorns, only $1 / 4 \mathrm{in}$. thick: Ivs. orhicular, quite thin "ft. long, 18 in. wide, spit into very narrow acuminal lobes, the lower ones free almost to the base, the inn anes split
only one-fourth of the way down: spadices very slender, the short slender branches protruding from the months of tubular brown sheaths: drupe globose, $3 / 8 \mathrm{in}$. in diam., bright red. Polynesia. First described in G.C. III. $93: 1 \% 7$. - Nearly related to $L$. custralis, but more graceful, with smallex Howers and fruit.

> BB. Petioles spiny below the middle.
> c. Length of spines $1 / 4 \mathrm{in}$. or less.
olivæformis, Mart. (Corypha Gebinga, Hort., in part). Stems median: lvs. glabrous; petiole somewhat 3angled; spines retrorse, 1-3 lines long: segments 12-15 in. long. deeply bilonec, the lobes very long, acuminate, linear, pendent, with or without very short tilaments: fr. olive-shaped, solitary, or twin and connate to the middle. Brazil.
Cc. Length of spines 1 in. or more. D. Shape of lis. reniform.

Chinénsis, R. Br. (Letìmia Borbónica, Hort., not Lam.). Stem 6 ft . high, more than 1 ft . thick. gray, with approximate rings: lvs. many; petiole equaling the blade, covered to about the middle with retrorse brown spines, 1 in . or more long; hade reniform, $4-6 \mathrm{ft}$. in diam.; segments linear-lanceolate, long-pendulous, deeply forked, filiferous, the lower 1-2 ft . long, 1-2 in. wide, the middle 3 ft . long, the lobes acuminate, 4-8 in. long. China.

## DD. Shape of les. orbicular.

rotundifolia, Mart. (Chamierops Birod, Sieb. C. Byr$\cdot \cdot h \grave{o}$, Hort.). Stem $40-50 \mathrm{ft}$. high, $1-1 \frac{1}{2} \mathrm{ft}$. in diam., erect or subtlexuous, brownish black, obscurely ringed; petiole 6 ft ., with recurved spines $1 \frac{1}{2} \mathrm{in}$. long at the base; blade $3-5 \mathrm{ft}$. in diam., suborbicular, at length somewhat peltate through reversion of the lowest lobes: segments $60-90$, connate for one-third their length, bifid to the middle, the lobes long acuminate. Java. R.B. 21:110. F.R. 1:301. S.H.2:28.
bBB. Petioles spiny from base to apex.
E. Segments of the lus. free one-third of the way down.
altíssima, Zoll. Lvs, bright shining green, $1^{1 / 2}-2 \mathrm{ft}$. long; segments free one-third of the way down, bifid at the apex; petiole -6 ft., upper part green, brown toward the base, inclosed in a reddish brown network of woody

1305. Livistona humilis.
fibers, armed on the mark as with stout black recuried spines. Jara.

EE. Segments free nearly to the base.
F. Position of segments rigid, not drooping.
austràlis, Mart. (Corỳpha atistrdlis, R. Rr.). Stems $40-80 \mathrm{ft}$. hirh: lvs. in a dense crown, orbicular $3-4 \mathrm{ft}$. in diam. divided to or helow the middle into 40-50 narrow, picate, acminate segments, either entire or 2 -cleft at the apex. $\quad$ atralia. B.M. $62 \%$. Gn. 26, p. 337 , V. $9: 328$.

## fF. Position of segments drooping.

 G. Number of segments 10-12.Hoogendorpii, Hort. Stem tall, cylindrical, with triangular leaf-scars: petiole rounded on the back, $3-5 \mathrm{ft}$. long, red-brown at the base, olive-green above: spines stout, recurved. $1 \frac{1}{2}-21 / 2$ in. apart, $3 / 4-21 / 2$ in. long: leaf suborbicular, $41 / 2-6 \mathrm{ft}$. in diam.; segments plicate, cunenate, pendulous at the apex and $\overline{5}-\overline{7}$-lobed, the lobes acute. Java. I.H. $21: 174$. F.R. 1: 427. Gn. 25 , p. 392.

## GG. Number of segments more than 12 .

hùmilis, R.Br. (L. Mariep, F. Muell.). Fig. 1305. Stems $4-16 \mathrm{ft}$. high : lvs. at length orbicular-cordate, 3 ft . in diam., deeply divided: segments narrow, plicate, acuminate, the filaments between the lobes altogether wanting or very minute or 1 in . long: petiole much flattened, with acute fdges hordered with small priekles intermixed with larger ones, often $1 / 2 \mathrm{in}$. long. N. Australia. - Fig. 1305 is redrawn from Martius.
subglobòsa, Mart. A medium-sized palm: lvs. glabrous, the rays $10-12$ in. long, 2 -parted nearly to the base, the lobes linear. very acuminate, pendulous: fr. subglobose. Jara. - Known in Java as "Sedangan."

Jared G. Smith.
This is the most extensively grown genus of fanleaved palms in commercial hortieulture of the present day, its commonest representative being the well-known "Chinese Fan Palm," L. Chinensis, which is also known to the trade, and improperly, as Lalamit Borbonica. In general, the members of this genus are by no means difficult to grow, though it is well to make some distinctions in culture between such strong-growing and comparatively hardy palms as L. Chinensis and L.australis, and the more tender species from Java and northern Australia, among which L. humilis, L. oliveformis and L. rotundifolia are prominent.

For those of the first section a strong loamy soil well enriched with thoroughly decayed stable manure, good drainage, an abundance of water and a night temperature of $60^{\circ}$ will provide satisfactory conditions for sturdy growth.

The more tropical species, of which $L$. rotumifolin is a good example, make better progress in a somewhat lighter soil and a higher temperature, $65^{\circ}$ to $70^{\circ}$ being more congenial to them than the cool treatment accorded their stronger relatives. More shade is also required for the warmhouse species, in order to retain the rich green color that a healthy Livistona should present.

Red spider and white seale are two of the most troublesome insects to the grower of Livistonas. the first being controlled to a great extent by thorough syringing, while the latter may be eradicated by the careful use of varions insecticites, thongh avoiding the frequent application of extract of tobacco, the continued use of the latter substance often resulting in injury to the foliage of Livistonas.
$I$. australis is a more stubby-growing plant than $L$. Chinensis, the fan-like leaves are stiffer and less graceful, and the footstalks are more thoroughly armed with stout spines while the leaves are also smaller in proportion to the plant than those of $I$. Chinensis. L. Mongendorpii and $L$. olicof formis are somewhat alike in young plants, but the first has many more and coarser spines on the footstalks, and the stalks of L. Hoogendorpii are generally longer, the leaves of both heing much divided. L. roturdifolit and $L$. altissima are much alike in a small state, and the writer is inclined to think that the seeds of the latter are sometimes substituted for those of $I$. rofumelifolin. The leaves of $I$. rotundifolia are flatter and more even in outline. those of $L$. altissima being somewhat undulated, as though they were crowded on the stalk. In fact, small plants of L. rotumlifolia are usually more symmetrical, and also have longer foot stalks.
W. H. Taplin.

LLOYDIA (after Edward Lloyd, who found the plant in Wales). Liliicã. About 4 species of bulbous plants. of which I. ulpina was said by Baker to have the widest distribution oi any pant in the lily family. Dirarf flants, with hard, grassy les. and stall, whitish, lonelasting ths.: perianth 6 -parted: segments withering and
persistent ; stamens 6, hypogynous, shorter than the perianth: capsule obovoid; seeds flattish.
alpina, Salisb. (L. serótina. Sweet). Distinguished from the other species by having an oblique, somewhat rhizomatous rootstock and glands on the claws of the perianth segments. Radical lvs. 2-4, linear, convolute: stem usually 1-fld., 3-9 in. long: lvs. 3-1, small, linear: fls. whitish, yellowish purple at its base. Mts. of Wales to Sicily, Himalayas, Colorado.-Adv. 1889 by. F. H. Horsford.

LOASA (South American name). Loasàcece. These plants are too much like nettles to deserie cultivation, though their Hs. are odd and interesting. The pain from their pricks lasts several daves. Each of the $\overline{0}$ hooded petals contains a bunch of stamens. They are treated as half-hardy anmrals. (See Anmukls.) A genus of about 50 tropical Ancrican herbs, erect or twining: lvs. alternate or opposite, entire, lobed or decompound: capsule $3-5$-valved from the apex, rarely twisted: ovary 1-celled; orules numerous. The allied genus Blumenbachia differs in having capsules which are longitudinally $5-10$-valved and most frequently spirally twisted.


## 1306. Loasa tricolor ( $\times$ 3/4).

A. Sepals us lony as petels.
trícolor, Lindl. Fig. 1306. Annual, -ft . high: Irs. opposite, bipinnatifid, very prickly: sepals as long as the petals; petals yellow: crown red: filaments white. Chile. B.R. 8:667.

## AA. Sepals shorter than petals. <br> B. $\Gamma$ 'als yellow.

hispida, Linn. Aunual, $1 / 1 / \mathrm{ft}$. high: les. alternate, 5in. lons, $3 \frac{1}{2}$ in. wide, pinnatitid: segments lobed: sepals much shorter than the petals: petals yellow, over 1 in . long. June-Ang. Pern. B.if. 3057. G.C. Ill. 22:291. Gn. 25, p. 451. - Cult. in pots abroad.

## BB. Petals white.

vulcánica, André ( I. Wállisii, Hort.). Erect. bushy anmual, 2-3 ft. high: lvs. 3-6 in. broad. 3-parted; seg. ments serrate, each with a long stalklet, the lateral ones often divided into 3 lfts.: sepals shorter than the petals; petals white; eve of th. of 2 concentric red
bands, with 5 yellow spots outside. New Grenada. B.M. 6410. I.H. 25:302. R.H. 1894, p. 233.

## bв. Petals brick-red.

laterítia, Gill. Without stinging hairs: stem scarcely any: lvs. opposite, long-petioled, pinnatisect; segments rotundate, erenately lobed: peduncles twin, 1-fld., terminal, about as long as the leaf: calyx lobes oval, longer than the corolla tube, half snorter than the corolla. Chile. The abore description is from the original one. A much confused plant (see addenda of Ind. Kew under Loasa and Blumenbachia; also equivocal passages in Engler \& Prantl Pfl. Fam. 3:6a:118, 119, Lieferung 100). The stinging vine $10-20 \mathrm{ft}$. high pictured in B.M. 3032 as I. lateritia, is a Blumenbachia, of the section Raphisanthe. L. aurantiacu. Hort., is usually given as a synonym of $L$. lateritia in botanies, wut is kept separate in the trade.

LOBELIA (Matthias ron Lobol, or L'Obel, 1538-1616, a Flemish botanist and author. Latinized Lobelills). Lobeliacere (by some combined with the Campanuldacer). More than 200 herbs (or sometimes subshrubs in the tropies) of wide distribution in temperate and tropical regions, comprising many species with ve ${ }^{\text {g }}$ showy flowers. Corolla gamopetalous and tulbular, split down one side; lobes 5 , the 3 on the lower side fas the fl. stands) somewhat united and forming a lip, the other 2 ( 1 on either side of the cleft or split) erect or turned back; ealyx short-tubular or globular, joined to the ovary, short-toothed; stamens 5, unite? into a tube around the single style, the tube often protruding from the cleft into the corolla: fr. a 2 -valved capsule. The flowers are blue, red or yellowish, on 1-fld. pedicels, which are arranged in a terminal raceme. Lus. alternate, mostly narrow.

There are two horticultural groups of Lobelias, - the annuals and the perennials. The annuals are low, normally blue-fld. species suitable for bedding and edgings. They are of the easiest culture either from seeds or cuttings. Ser L. Erimus (No. 1). The perennials are again of two types. - the hardy and the half-hardy or tender. The hardy kinds are natives, of which $L$. cardinulis and $L$. syphiliticu are the leading representatives. These inhabit bogs and low places, and the best results under cult. are to be expected in moist and cool spots. The half-hardy sorts are chielly derivatives of the Mexican $L$. fulgens, a plant which is deservedly ponular in the Old World, but which has not attained great favor here. These species may be hedded ont in the northern states. They are carried over winter in pots or in a cellar. They usually give go d results the first year from seed, if started early; or seeds may be sown in the fall and the plants carried over in a frame. The hardiness of the hybrid perennial Lobelias in this country is yet to be dictermined. It is probable that forms of $L$. fulgens will stand outdoors in the middle states if given winter protection. In the latitude of Washington they are hardy in winter but are scarcely able to withstand the summers.

## 1xDEx.

alha, 1 c, 6 . atrosthguinea, 9 bicolor, 1 .
cartinalis, $\overline{\text { C. }}$ Caranillesii. 13. compacta, 1 a. erecta, 1 a. Erinus. 1.
Feuillei, it.
formosa, 9.
fulgens, 9 .
Gerardi. 11
glandulosu, 6.

Goldelse. 1 b.
Gollen Queen, 1 h. gracilis. 1, ${ }^{2}$.
grandithor:a, 1 e. heterophylla, 1, 3, t. hybrida. 10. Kalmii, 5. Kermesina. 1 c. laxiflora. 13. Lindleyana, 1 • lagdunensis, 11. marmorata, 1 e. Venseniana, 9

Paxtoniana 1 c. perenmis. 10. pumilatir 1 a. Queen Victoria. 9. ramosa. 4. Rivoirei, 12 speciosa. 1 c. splentens, 8. syphilitica, 6. temnior, 4. tricolor, 1 c Tupa, 14.
A. Plant anmull (or sotreated). low and diffuse. growiny.
B. Beards or hairy tufts on only the two lower anthers.

1. Erinus, Linn. (L. heterophilla, Hort,, sometimes, not Labill. L. grácili.s, Hort.. not Andr. L. bícolor, Sims). Figs. $130-8$. Diffuse and half-trailing annual or perennial, much used for edgings. Glabrous or slightly hairy below, 6-12 in. high: lrs. variahle, the lower ones obtuse and obovate or spatulate and crenate-toothed, the upper ones oblanceolate or oblong (becoming linear
and acute near the top of the stem, and mostly sharp ${ }^{-}$ angle-toothed: fls. $1 / 2-3 / 4 \mathrm{in}$. across, on slender pedicels, light blue with a lighter center; the calyx lobes awllike, spreading, as long as the corolla tube; 3 lower lobes of corolla large and spreading. S. Afr. B. M. 514, 901. - One of the commonest of all annual edging plants, particularly for early season effects. In our hot climate, it often ceases blooming in midsummer, but with good soil, plenty of water, and occasionsal cutting back, it will bloom till frost. Seeds sown in January and February will give blooming plants by April and May. For His. alone, rather than for edgings, the seeds may be started later, or eren sown in the open ground. For definite results in edgings, howerer, it is usually better to start from cuttings. In the fall, lift the best plants and grow them in pots through the winter as stocks from which to secure cuttings. Cuttings taken in late January or February should give blooming plants by May.

2. Lobelia Erinus. Natural size. Seedlings vary, and one cannot rely on them for specific effects in design work, although they may be best for the amateur who desires only ths. Some strains of seeds, however, come very true. Lobelit Erimus is also a good pot-p'ant for the winter couservatory.
Lobelia Erinus is exceedingly variable. The forms fall into three groups:
(a) lariation in habit: Var. compácta or erécta, dense-growing forms suitable for low, close edgings: subvarieties are blue, white, ete. The most popular bedding forms belong to this strain. The name evecta is often used for the taller strains. Var. gracilis, with slender growth and suitable for vases or baskets: blue. Var pumila. Very dwarf.
(b) Tariation in color of foliage: Golden Queen and Goldelse, with yellowish foliage. Also forms with bronzy foliage, but not constant.
(c) Vaviation in color und size of fls.: Var. álba, white. Var. flòre plèno, double. R.HI. 1875:Tl. Far. grandiflòra. Varions large-fld. forms. Var. Kermesina. Crimson. Var. Lindleyàna. Rose-color, with white eye. Var. marmoràta. Fls, marbled. Var. Paxtoniàna. Light blue with white eve: growth straggling. Var. Rojal Purple. Purple-blue. Var. speciosa. Large-fld., light azure blue, with white eye. Var. tricolor. Fls. blue or pink, with white eve and carmine spots.
BB. Beards or hairs on all the anthers. The three following species are probally not in the Amer. trade, although they are known as cult. plants. The names sometimes occur, but the phants which they represent are probably forms of $L$. Eirimus. But the descriptions will enabie the student to distinguish whether the species occur.
3. grácilis, Andr. A foot or less high, slender, decumbent at the base. glabrous: lower lis. orate and deeply cut, the upper ones narrower and pinuatitid (beroming

4. Lobelia Erinus.

One of the most popular edging plants.
linear and entire at the top of the stem): fls, $1 / 2-3 / 4 \mathrm{in}$. aeross. blue with a whitish eve, the niddle lower lobe strongly obovate, the 2 upper lobes small and curved and usually hairy: f.eeluster long and open, more or less 1-sided: seed angled, not winged. Austral. B.M. 741.
3. heterophylla, Labill. Much like the last, but fls. larger, (the middie lobe nearly 1 in . long) and the lower leares parted into linear lobes: seed winged. Austral. B.R. $23: 2014$. P.M. 9:101.
4. ténuior, R. Br. (L. ramòsa, Benth.). Erect or ascending, $12-18$ in., pubescent: lower lvs. small, mostly ternately divided, the upper lvs. linear and mostly entire: ths. rather large bright bhe borne far apart on very slender pedicels, the middle lobe much the largest and oborate: seed smooth and shining. compressed. Austral. B.M. 3784 (as L. hetevophyllu). B. 2:93. R.H. 1856:2s1. G.C. II. 15:105.
AA. Plant perennial (rarely bienuial), usually trell or strict-growing.
B. Corolla very unequally bilabiate or 2-lipped, the lower lip 3 -lobed and deflexed, the upper lip very smull.
c. Species: fls. blue (sometimes varying to white).
5. Kálmii, Linn. A slender perennial (sometimes biennial ?). (i-18 in. high, glabrous, branched: lvs. nar-row-spatulate to linear at the top of the stem, remotely denticulate: fls. small ( $1 / 3 \mathrm{in}$. long). very light blue, in a long, lonse raceme, on filiform pedicels. On wet banks and slopes and margins of bogs, in N. states: propagatins by offsets. B.M. 2038. -Sold by dealers in nativ plants. Useful for bog planting.
6. syphilitica, Linn. Strong. weedy herb, 2-3 ft., glabrous or nearly so, mostly simple: lvs. thin, oblongoval to lanceolate, attenuate to the apex hut the point mostly blunt, small-dentate or crenate-denticulate, narrowed into a very short petiole: fls. about 1 in . long in a long, wand-like, racemose spike, blue or purplish, the tube about $1 / 2 \mathrm{in}$. long ; calyx hairy and enlarging in fruit, the lance-acuminate lobes conspicuons, and bearing auricles in the sinuses. Moist places, E. states. B.R. 7:537; 32:6 (as $L$. glumdulosa). Mn. 7:61.Var. álba, Hort. . has nearly white fls. Interesting plant for bog gardens and moist borders. In dry soils it will grow, but with less vigor.
ce. Species: flouers in shudes of red (or yellow or very rarely white).
7. cardinalis, Linn. Cardinal Flower. Indian Pink. Fig. 1309. Straightgrowing, glabrous or very nearly so, $2-4 \mathrm{ft}$. tall, usually unbranched : lvs. narrow, varying from oblong-ovate to lanceolate, tapering both ways, the petiole very short or none, margin irregularly serrate: Hs. bright intense cardinal (rarely varying to white), the tule 1 in . long, the 3 lower lobes very narrow, the ths borue in a long racemose spike in which the bracts are mostly very narrow and the upper ones little exceeding the pedicels; calys hemisphericnl, the tube much shorter than the long-linear lobes: seeds distinctly taberculate. Wet places, as in swales. eastern N. Amer. B.M. 320. G.W. F. 41. - One of the most showy of all native flowers, and worthy of eult. in any moist border. It has been long in cultivation, but has probably given no important horticultural forms.
8. spléndens, Willd. Like $L$. cardinalis, but more slender, the lvs. narrower and glandular denticulate,
mostly sessile: seeds little tuberculate. Wet places, Tex., W. and S. - Once adr. by Saul.
9. fülgens, Willd. (L. formisa, Hort. L. cardinàlis, Hort., in part). Very like the last, but ths. larger, deeper red and more showy, the 3 lobes of the lowerlip broader: plant mostly pubescent (at least the foliage), and variously tinged or spotted with brown or bionze: bracts more leafy. Mex. B.M. 4002 (as L. splendens, var. atroscemuineu). - Long in cult. and a most desirable plant. Not hardy without protection in the N. It has given rise to many horticultural forms, some of which (as "Queen Victoria") are commonly referred to L.curdinalis. The trade name $L$. cardinalis atrosunguinea probably belongs to this species. The recent $L$. curdinulis Nanseniana a purple carmine sort, is probably $L$. fulgens. In Europe, this Lobelia is one of the popular bedding plants, but it has never gained popularity in Amer. In this country it is uscally grown in pots and treated as a conservatory subject.
ccc. Species-hybrids or derivatives: fls. mostly in shudes of red, pink or purple.
10. hybría, Hort. The hybrid Lobelias are mostly of French origin, and they are little known in the Amer. trade, although they are occasionally imported by amateurs. It is doubtful if they will endure the winters of the northern states, although they make excellent pot subjects for blooming in the summer border. They may also be planted in the open and lifted on 1310. Lobelia Rivoirei. the approach of winter: or new stock
 can be raised from divisions of the old plants, or from offsets, or from seeds. Many of these hybrids are most showy, and they should be better known in Amer. It is probable that they are derived chiefly from $L$. finlgens, although they are said to come largely from $L$. curdinalis, but $L$. fulgens and $L$. cardinalis are confused amongst gardeners. L. syphilitica has also, apparently, entered into some of these hybrid derivatives, particularly those with blue or purple colors. These hybrids are sometimes known collec tively as $L$. hybrida and L. peremmis hybridu. Two re cent forms deserve separate mention:
11. Gerárdi, Hort. Habit of L.fulgens or L.cardinatis: lvs. lanceolate or lance-oblong, glabrous, denticulate: Hs. in a heavy terminal spike or raceme, rich violet, $11 / 2 \mathrm{in}$. or more long. Obtained by Chabanne and Goujon of the Botanic Garden of Lyons, and introduced to the trade in 1895 by Rivoire Père et Fils, Lyons. The hispid calyx suggests L. syphiliticu. R.B. 22, p. 112. 1.H. 42, p. 968 - It varies into rose-color (var. Lugdunensis) and into coral-red, riolet-purple, and the like. The pistillate parent was a form of L. syphilitica and the staminate parent was the "Queen Victoria" form of L. fulgeus. The plant was named for M. Gérard, director of the botanical collection at Lyons.
12. Rivòirei, Hort. (Fig. 1310), comprises síill more recent types, with very large rose or pink ths. Gn. 56:1238, which plate represents several derivative Lobelias. G.C. 11I. 24:233.
1B. Corolla somewhat equally 2-lipped, the lower lip only notched, the upper o:" ${ }_{\sim}^{2} \cdot p$ urted.
13. laxiflòra, HBK. (L. Cevanillesii, Mart. Syphocimp!llus bicolor, Don). Tall, branching herb or subshrub, with thinly hairy stems: lvs. lanceolate or o-atelanceolate, ncuminate, sharp-denticulate: tis. nodding, on long, axillary pedicels, $11 / 2 \mathrm{in}$. long, cylindrical, the stamens projecting from the side, red and yellow, puhescent. Mex. B.M. 3600. (i.C. IIl. $1: \mathbf{0} 8 \mathbf{5} .-$ An old plant requiring cool greenhonse culture, or thriving in the open in pots. It may also be planted out like $L$. fulgens.
bвв. Corolla with all the lobes united by the tips into one lip.
14. Tùpa, Linn. (Tüpa montìna, Hort. L. Ferillei, Don). Very strong herb or subshrub (4-7 ft. tall), erect and mostly simple: lvs. oblong-oval, mostly acuminate, rugose, tomentose, denticulate: fls. in a long, terminal raceme, blood-red, 2 in. long, the hooded lip eurving downwards and the column of stamens ascending; calyx lobes short. Chile. B.M. 2550. R.H. 1898, p. 189.-Cool greenhouse; hardy in southern states with protection.
L. amõna, Michx. Much like L. syphilitica, but the calyx plain and not hispid. N.C., south. - L. átceps. Thunb. Perennial, bue-thd., with somewhat fleshy lvs, and 2 -winged stem. S. Afr. B.M. 2 iz , as L. decumbens, and 2519, is L. rhizophytia.A. coronopifotia. Linn. Somewhat shrubby, with pinnatitid, hairy lvs. and handsome blue tls. (sometimes 1 in . lor. $\cdot$ ), of hairy lvs. and handsome blue tis. (sometimes 1 in. Ior ${ }^{*}$ ), on
 ivs. radical and submerged, and smatl pale bine fts. on a seape. Usefnl amongst aquatic plants. Native.-L. hortersis, DC., is a Useful amongst aquatic plants, Native.-L. horténsis, DC. is a hybrid form of L. amgena, Irobably not in cult. now.-L. in-
flata, Jinn. INmas Tobaceo. Annual. of N. Amer., with flata, Jinn. Isimas Tobacjo. Annmal. of N. Amer, with ovate, pubescent, denticulate 1 s. , erect habit, and smalloblue or whitish fls.: herbage very acrid: plant formerly a domestic remedy.-L. subuidu, Benth. Annual from Mex., with radical lyrate lvs. and small pale blue tls. on long pedicels. G.C.III. 2:304.
L. H. B.

## LOBLOLLY BAY. Gordonia Lasianthus.

LOCHERIA (probably personal name). Comprises a few species, which are now referred to Achimenes. In the trade are $\underline{\geq}$ species, $L$. heterophylla, Oerst., or L. ignéscen., Klotzsch (see Achimenes heterophylla, p. 18), and L. hirsitta, Fiegel (see Achimenes hirsuta, DC., p. 18, suppl. list).

## LOCO WEED. See Astragalus.

LOCUST. Common Locust is Robinia Pseudacacia. Honey L. =Gleditschia trucanthos. Swamp or Water $\mathbf{L} .=\boldsymbol{G}$. aquatica.

LODEMAN, ERNEST GUSTAVUS (Plate X ), horticultural investigator and writer, was born in Nenfehatel, Switzerland, May 3, 1867, and died Dec. 2, 1896, when connected with Cornell University, Ithaca, N. Y. His parents came to America when he was two years old, his father becoming, in 1870, professor of modern languages in the State Normal chool of Miehigan. The son entered the Agricultural Codege of Michigan, where he graduated in 1889. It was in this institution that the writer made his acquaintance. Modest and lacking in self-assertion, he needed encouragement and stimulus to make a strong investigator and teacher. In a real estate venture in Florida, before his entering the Agricultural College, he became interested in agricultural problems and resolved to devote his life to them. In 1890 he undertook work as pricate assistant to the writer; and from this he became assistant and instructor in Cornell University. In the extension work amongst New York farmers he had charge of the investigations on grapes and strawberries. He was the originator of the spray-calendar idea. In 1896 he published "The Spraying of Plants," which is yet the fullest presentation of the subject. This was prepared after a most thorough traversing of the subject, both as author and experimenter, including a visit to Europe for the purpose of tracing the French history of the subject. He was an accomplished scholar. speaking German and French with tluency and possessing a working knowledge of other languages. His; early death deprived American horticulture of a promising leader.
L. H. B.

LODOICEA. The Iouble cocoanut or coco de mer, as L. Sechellaru:n (properly L. Callipige, Conm.) has been termed, is one of the piants among palms, its straight and smooth trunk frequently reaching a height of 100 feet, and it is also a centenarian before its full growth is attained. The seeds of Lodoicea are probably the largest known, the individual nuts heing said to weigh sometimes 40 pounds, though the largest seen by the writer weighed about 15 los., and bore some resemblance to a malformed cocoanut. The formation of such
gigantic seeds requires a considerable period of time, and from the time of flowering to the full maturity of the seeds is said to cover a period of nearly ten years. The germination of such seeds is not un easy process, requiring much room and strong heat, the radicle being correspondingly large and running down for 3 ft . or more before the top growth begins. These first steps in the life of Lodoicea derelop some very tender processes. Young plants of this palm require a strong and moist heat; and a eonsiderible amount of root room, in combination with a light lut rich compost, is best adapted to their needs. Seeds sometimes require 3 years to germinate. They are not adrertised for sale at present, but have been sold as euriosities now and then in America. Their germination is a great event, but the plants are never grown to any considerable height, as they require too much eare and room. See G.C. 11. 26:181; III. $4: 732$; 8:417. F.S. 5: $\overline{5} 23$.
W. H. Taplin.

LGESELIA (John L®sel, an early Prussian botanist), Polemouiticere. Very close to Gilia, and often confounded with it. As tinally outlined by Gray (Suppl. Syn. Fl.), it is contined to Mexico and ineludes perhaps a dozen species. It somewhat resembles the Ipomopsis seetion of Gilia in habit. "Fls. involucrate or involucellate: both bracts and calys wholly or partly scarious; corolla funnelform, either regular or one or two sinuses deeper; seeds winged or margined, the surface beeoming mueilaginous when wetted. Suffruticose, rarely annual, with spimulose-toothed lvs."
I. coccinea, Don, is a handsome coolhouse plant with brilliant rose-red tuhular-trumpet-shaped ths.an inch long in terminal fascicles or compound bracted racemes, with stamens and 3 -lobed stigma exserted: lys. small and stithsh, oval or cuncate-oval, sharply and often spinulose dentate, grayish green: plant strict, pubescent, woody, perennial. Winter bloomer. It does not appear in Amer. trade lists. L. tenuifolia, Gray, and L. effùsa, Gray, of S. Calif., are phlox-like plants offered by Ot cutt, in 1891. The former, Gray subseques tly referred to Gilia temuifolia, Gray, and the latter to Gilia Diennii, Kellogg.
L. H. B.

LOGANBERRY. The Loganberry is a valuable hybrid produeed at Santa Cruz, California, in 1881, by Judge J. H. Logan, from a seed of the Aughinbaugh blackberry, accidentally fertilized from an adjacent raspberry, supposed to be the old Red Antwerp. The Anghinbaugh is a pistillate variety of Rulus. vitifolius, the extremely variable wild blackberry of California, and was a chance seedling found beneath the oaks of Alameda, about 1860. It is a strong-growing, dark green vine of the dewberry type, but with fruit of the true wild blackberry Havor. The Loganberry fruit has many characteristics of both parenis. It is a rich, chark red color when ripe, and sometimes is an inch and a quarter in length. The plant has been widely disseminated throughout the United States and Europe since 1893, when the California Experiment Station, after five years' testing, first distributed stock. G.F. $\bar{i}:+66$.

The Loganberry is propagated from stolons developed in the autumn at the end of the canes, or from singleeye hardwood euttings. Seedlings are especially unreliable. Plants should be trained upon a wall or trellis, keeping the berries from the ground. Two adjacent vines at Berkeley, California, cover 12 square yards and yielded four gallons of fruit in 1899. If careful winter protection is given, the plants can de grown in many parts of New England and the middle states, according to Bulletin 45 of the Rhode Island Experiment Station and Bulletin 147 of the New York (Geneva) Station.

The vaine of the Loganberry for the home garden wherever it is sufficiently hardy is generally recognized, but its value as a standard market crop has yet to be determined. It proves difficult to transport to the Los Angeles and San Francisco markets except when grown within a short distance, and dealers prefer the standard berries. When it can be gathered near the time of greatest perfection and delivered directly to the consumer, it becomes a very popular fruit.

Chas. H. Shinn.
The Logranherry in the East. - In the East the Loganberry has not met the expectations at first entertained for
it. It is reported tender in nearls all localities. requiring the best of winter protection, and even then often being injured. Thorough covering with earth in late autumn is the most satisfactory method of doing this and is absolutely essential. The berries are large, but the plants, at best, are only moderately productive. In quality the fruit ranks low, though apparently improved by cooking. Few persons like the Havor of the fresh fruit. It now seems unlikely that the Loganberry will ever become prominent in the East.

Fred IV. Card.
LOISELEURIA (after J. C. A. Loiseleur-Deslongchamps, phesician and botanist in Paris, 1744-1849). Syn.. Chameledon, Chamecistus. E'ricucere. Procumbent hardy evergreen shrub with very small, mostly op posite, closely set, entire Irs., and with small, usually rose-eolored fls. in terminal, few-fld. umbels. Well adapted for rockeries, forming depressed tufts, but not easy to grow and rarely cult. It grows best in a sunny or partly shaded position in a porous, peaty and sandy soil, which is well drained and has a constant but moderate supply of moisture. Prop. by seeds treated like those of Azaleaor by euttings of half-ripened wood under glass. Only one species in the subaretic regions and high mits. of the northern hemisphere, formerly included under Azalea. but more closely allied to Kalmia: corolla broadly campanulate, $\overline{5}$-cleft; stamens 5 : capsule 2-3celled.
procúmbens, Desv. ( Azèlea procímbens, Linn.). Only a few inches high, quite glabrous: lvs. petioled, oval to narrow oblong, revolute at the margin, about $1 / 4 \mathrm{in}$. long: Hs. 1-5 on rather short pedicels, pink or whitish, about one-fifth in. aeross. July, Aug. L.B.C. 8:762.

Alfred Rehider.
LOLIUM (the ancient Latin name). Grominere. Dar vel. Pre-Grass. Includes about 6 species of the Old World grasses, 2 of which are introduced in the eastern states and 2 are familiar fodder grasses of the same region. Perennial Rye-grass was probably the first pasture grass to be cultivated in Great Britain, and is grown there get to a considerable extent, where it is said to occupy the same relative position of importance that Timothy does here. A weedy species, $L$. temutentum, is supposed to be the "tares" of Scripture. It is the Darnel, althourh that name is sometimes, but perhap. erroneously. applied to other species. Spikelets sev eral-fld., sessile, and placed edgewise on opposite sides of a zigzar axis. forming a narrow spike. Our 2 cult. species are short-lived perennials or the second scarcely more than an annual. not to be recommended for permanent pasture or lawn, but are frequently em ploved for hay or ann"al pasture. They are successfnl only in the moist regions of the pastern states. Seed sown in autumn or early spring, 25 to 30 pounds to the acre.
perénne, Linn. Perenvial Rye-grass. One to 3 ft . hireh. with tlat, shining lis. and a slenter spike, 4-10 in. long: spikelets $8-16$-fld., awnless or onlv short awned.

Itálicum, A. Br. Italiay Rye-g
many as a variety of the precerli,
haviug longer awns to the flow

LOMARIA (Greek, Loma
A genus of rather coarse fer caudex, allied to Blechnum parallel with the midrib, and tire space between the midrib leaf. Les. of 2 sorts. Some 35 sp from 'he southern hemisphere.

Lomaria gitba is one of the 1. metrical ferns in cultivation. It nable varieties. The terminal cyeas beautiful and graceful. In iheir y make good plants for table decorat. center pieces, but after they begin . trunk-like base, they make fine decor: mens. Var. intermedia is somewhat gibba and of more erect habit. Var. cre in the pinna being more or less erested
nsidered by chietly in енсоск.
ypodicicece. ith a short in lines, ly the enin of the wn, largely DERWOOD.
: . d s sym, several ral. owns are most nte Lomarias eincipally as a stem or ouse speci?r than $L$ iffers only wrinkled.

It does not grow quite as fast or as strong as either $L$ gibbu or var. intermedia. There are several other rarieties of less commereial value.
Propagation is entirely from spores, which are produced freely on the second or third course of fronds. These spores must be treated much like other fern spores. They should be sown or laid upon , 'ry ine peaty soil or tine leaf-inold with a good portion of very tine silver sand, in shallow pans, boxes or Hats, and kept in a warm and close atmosphere, well shaded from the sun. A temperature of $75^{\circ}$ to $80^{\circ}$ is best suited to them. The pans or boxes should be covered with a pane of glass, and this must be remored at intervals in order to keep the germinating spores from damping-off. After the young plants are large enough to be handled with the assistance of a small stick, they may be pricked off and transferred into fresh soil of the same quality, with perhaps a little loam mixed in and again placed in a congenial, warm, moist place in the propagating-or warmhouse, and again covered with glass. Give air and ventilation to keep them from being attacked by fungus. After producing the first two upright fronds, they may be put into thumb-pots. The soil now should be one-half lom and one-half peatr or leaf-mold soil, with plenty of sharp sand. Ample drainage must be afforded, and the plants kept in a temperature of not less than $60^{\circ}$ to $65^{\circ}$.

The Lomarias, above all other ferns, must never bo allowed to get thoroughly dry. They love abundance of water. Under proper treatment, they will soon make fine specimens. When the plants are of good size, they may be grown into miniature tree ferns, and as they make quantities of roots and soon get pot-hound, they can be reduced and root-pruned and put back into smaller pots. With gentle bottom heat, they soon mate a new set of roots and new crowns or tops. When thoroughly estahlished in this shape, wey make tine decorative plants. Lomarias should never be exposed to the full sun.

Henry A. Siebrecht.

## A. Plant" the adistinct candex or trunk.

## B. Le's. 6-12 in. long.

ciliàta, Moore. Catidex 6 in. high, $11 / 2$ in. thick: stipes blackish: lis. 8-12 in. long, the upper pinnce with a ronnded auricle at the lower side of the base; fertile les. narrow-linear. New Caledonia.
lanceolàta, Spreng. Caudex elongate, densely clothed with dark brown scales: lis. $6-12$ in. long, e-4 in. wide, with close, slightly falcate piane; texture leathery; fertile pinna linear spreading. Australia and Polynesia.

BrB. Li's. $11 / 2-3$ ft. loug.
c. Lower pinne connected at base.
discolor, Willd. Caudex ascending: stipes black, glossy, with dense scales at base: lis. $112-3 \mathrm{ft}$. long, 4-6 in. wide, with pinne narrowed suddenly toward the point: fertile pinnæ narrower and shorter. Australia and New Zealand.
gibba, Lahill. Candex 2-3 ft. high: stipes short, with black scales: lvs. $2-3 \mathrm{ft}$. long, $\mathrm{f}_{\mathrm{i}} \mathrm{in}$. wide: fertile pinno narrower, 4-6 in. long. - Var. platýptera, is advertised. L. intermedia, Hort., may be derived from this species. New Caledonia.
cc. Louer pinnce marroued at base and distinct.

Boryàna, Willd. Caudex stout, erect, 1-2 ft. hish, woody, densely scaly: lis. $11 / 2-2 \mathrm{ft}$. long, $\mathbf{i}-8 \mathrm{in}$. wide, narrowed and sometimes auricled as ase; fertile pinuro narrow-linear, elose. West Indies ; Patagonia, Mauritins and S. Africa. - Prohably incluaes 2 or 3 species, among them L. zamiœfolit, Hort.

AA. Plant with a stout, short, creeping rhizome.
Spicant, Dess. Sterile lvs. lanceolate, 6-9 in. long, $1-1 \frac{1}{2}$ in. wide, $\mathbf{r}$ radually narrowed below; fertile lvs. 1 ft . long, with longer stalks ( $6-9 \mathrm{in}$.) and narrowly linear pinna. Eu., western N. Amer. - The large Californian form with les. $2-3 \mathrm{ft}$. long is possibly a distinet species. The European plant was early called Stiuthiopteris spicant by Seopoli, by which name it is now cited
as the earliest generic name. Hardy; needs deepest shade.
Nippónica, Kunze. Lvs. 15-20 in. long, abruptly pointed at the apex, the lower divisions gradually reduced and strikingly surcurrent; texture thick; fertile lvs. with pinne $1 / 2$ in. apart. narrow-linear, scarcely forming a wing to the rachis: indusia forming pod like structures, tongh, persistent. Sometimes referred to the last species. Japan.
L. M. Underwood.

LOMARIOPSIS. Consult Acrostichum sarbifolium.
LOMATOPHYLLUM is a genus of the lily family with $3-5$ species in the Mascarene Islands. They have the habit and perianth of Aloe, but differ in the redmargined leaves and fr. a berry. They are fleshy subshrubs with hermaphrodite Hs. and introrse anthers as in Sanseviera, but differ in having declined hypogynous stamens and several ovnles in a cell, whereas Sanseviera has erect stamens inserted on the throat of the tube and solitary ovules. Not cult.

LONAS (possibly a recombination of some of the letters of Santolina). Compósitce. This includes an unimportant, hardy, yellow-Howered "everlasting" known to the trade as the African Daisy or Athanusia amma, The heads are about three eighths of an inch across, and con posed entirely of disk fts. There are 14 or more heads in the largest corymb, which may be 2 in. across. This plant was removed from Athanasia largely because it is an annual herb, while the Athanasias are shrubs or subshrubs. A more fundamental reason for giving this plant a separate genus is that it has a cup-shaped pappus, while in Athanasia the pappus is absent or consists of small, rather bristly chatf or else of hyaline airs.
Enodòra, Gærtn. (Athenisia cinnue, Linn.). African Dasy. Fleshy, branching. 1 ft . high: lvs. alternate, pinnatifid, the dirisions linear, entire. remote: corymbs dense: seeds 5 -ribbed, not hairy. -icoterranean region. B.M. 2976 . J.H. III. $31: 281$.

## LONDON PURPLE. See Insecticides.

LONGWORTH, NICHOLAS (1783-1263) has been called the "father of American grape culture." Plate X. He was born in Newark, N. J. He early went to Cincinnati, then in the young and growing West, and engaged in banking and other business. He early became interested in agricultural affairs, and particularly in the grape. From John Adlum he received the Catawba, and became the means of making grape-growing a commercial suceess in the Ohio valley. He was a leader in the company of horticultural experts and writers which made Cincimati famous in the middle of the century. Longworth was one of the first to perceive that many strawberries are infertile with themselves, and to suggest the planting of pollinizers, although the imperfect nature of the strawberry blossom had been known long before his time. He also introduced the Ohio Everbearing raspberry, the tirst improved varicty of $R u b u s$ occidentalis. Longworth was a pioneer of horticulture in the expandiag West, and, more than that, he was a guiding spirit in horticultural affairs of national importance. In 1846 he published a pamphlet on "The Cultivation of the Grape, and Mannfacture of Wine. Also, Character and Habits of the Strawherry Plant." He also contributed a chapter on the strawberry to Buchanan's "Culture of the Grape." For further notices, see Hovey"s "Magazine of Hort." 29 : 160 . "Evolution of Our Native Fruits," and our article on Horticulture. The portrait in Plate X shows Mr. Longworth at it years of age.
L. H. B. ${ }^{\text {T }}$

LONICERA (after Adam Lonicer or Lonitzer, a (ierman physician and naturalist. 1528-1536). Including Caprifolium, Xylósteum, Viutòr and Chamacérasus. Cuprifuliòcere. Honeysuckif. Ornamental deciduous, rarely evergreen, shrubs of upright or climbiug habit, with opposite, entire lvs. and tubular, mostly 2 -lipped fls, of white, yellow, pink. scarlet or purple color, often fragrant, appearing in axillary pairs or in terminal
spikes or clusters; the red, yellow, blue or black berries are in many species very decorative. The Upright or Bush Honeysuckles are very valuable for shrubberies, and the low procumbent species, like L. spinosa and rupicola, are well suited for rockeries. Most of the cultivated species are hardy North, but L. Standishi, fragrantissima, nummulerifolit, Ledebouri, quinquelocularis, Webbiena, rupicole, and other Himalayan species are less hardy and need sheltered positions or protection North. Some of the handsomest in bloom are the well-known $L$. Tuttrica, floribunda, spinost, Matackii, Morrour, Ledebmuri; for the sweet-scented early H1s., $L$. Stendishi and fragrantissimu are to be recommended. Honeysuckles with very decorative fruits are L. Morrowi, Tatarica, !racilipes, alpigera, chrysantha. Loniceras thrive in almost any good garden soil, and prefer mostly sunny position, but LL. ciliata, nigra, Ledebouri, hispide and Xylosterm grow as well or better in partly shaded situations. Pruning may be done during winter except in the early-flowering species,

1311. Fly Honeysuckle, Lonicera ciliata.
( $\times 2$ \%)
like L. Standishi, fragrantissima, grarilipes and hispida. The Climbing Honeysuckles ara well adapted for covering walls, arbors and other trelliswork; they hare mostly handsome and often sweet-scented Hs., but are somewhat deficient in foliage, with the exception of $L$. Japonice, and apt to become leatless and unsightly at the base, and therefore may be mixed with other climbers, like Ampelopsis, Akebia, Clematis. They perhaps show their beauty to the best adrantage when allowed to ramble over shrubs and small trees. Those of the Caprifolinm group are mostly hardy North, with the exception of the southern Euronean species and L. Wispidula, while of the Nintoa group L. Japonica is hardy North, at least in a sheltered position; this species makes also a very handsonie ground coser, and, like $L$. Periclymenum, grows well in shade, but the others prefte sunny positions. Prop. by seeds sown in fall or stratified and by cuttings of ripened wood; also by green-wood cuttings under glass in summer, but $L$. Cuprifolium. sempervirent and allied species grow less readily in this way. $L$. spinost is sometimes grafted high on stems of $L$. Tetaricn, thus forming a small weeping tree. About liC species thronglout the north-

## LONICERA

ern hemisphere, more than 60 of which, besides many hybrids, are in cultivation. Lvs. sometimes sinuately lobed, in a few species with distinct stipules, mostly deciduous: fls. in axillary peduncled pairs or in sessile whorls at the end of the branches; calyx 5 -toothed; corolla with short or slender, often gibbous tube, 2lipped or almost equally 5 -lobed; stamens 5: ovary inferior, usually $2-3$-celled: berry few- to many-seeded.

## INDEX.

alba, 17, 26
Alberti. 1.
alpigena, 1ㄹ..
angmistifolia, 17 . auren-reticulata, 19 Belgica, 23. brachypoda, 13 brachypoda,
Browni, 30. Californica, :4 Californica, 34
Canalensis, 8.
Caprifolium, 25, 26.
Cancasica, 13.
Chinensis, 19. ciliata, 8 . ciliosa, 35. czerulea, 6. lioica, 33 . Donglasi, 32. Etrusca, 23,25 Hava, 28, 30. flaca nora, 36. flarescens. 3. Hexuosa. 19. Horibunda, 18.
F'raseri, 28.
fragrantissima, 11. fuchsioides, 36. gigantea. $\mathbf{2} 3$ glanca, 33. glaucescens. 3:.
graciliflora, 6. gracilipes, ${ }^{7}$ grandiflora, 17. grata, 26. Halleana, 19. Heckrotti, 24 . Hildebrandiana, hirsuta, 34 . hirsuta, $3+$
hispida, 5. hisppida, 5. hispidula, 32
implexa, 27. implexa, 27.
intermedia, 4. involuerata, 3. Italica. 25. Japonica, 19. Karelini, 6. latifolia, $1 \%$. Ledebouri, 4. longithora, 20. Magnerillea, 36 media, 33. minor, 36. Morrowi, 15 Niaytarilli, 11. oblongifolia, 9 . occidentalis 35. orientalis, 1? pallida, 26 .
parvifolia, 17 and suppl. parviflora, 33. parfoliata, Periclymenum, 22. Phylomela. 7. Phylometa. priccox, 26 . prapcox, 26.
pubescens, 31 pielcherrima, 17.
putcherrima, 17.
quercifolia, 2e.
reticulata eurea, 19. rubella, 25. rubiflora, 17. rupicola, 2.
Ruprechtiana, 16.
semperflorens, 22, 36.
serotina, 22.
Sibirica, 17.
Sinensis, 10.
speciosa, 17, 36
spinosa, 1.
splendens, 17.
Standishi, 10.
Sullivanti, 29.
Tatarica, 17.
racillans, 34 . villosa, 6 .
Xylosteum, 14.

## A. Mabit upright: fls. in pairs, rarely solitary.

 B. Fls. with almost regular 5-lobed limb.C. Corolla not gibbous at the base: low shrubs, with slender, recuving or prostrute brumehes and small lvs.

1. spindsa, Jacq. (L. Albertii, Regel). Shrub, to 2 ft ., with sleuder branches; rigid and spiny in high alpine regions, glabrous: lvs. linear or linear-lanceolate, sometimes with 2-4 teeth at the base, glaucous or bluish green, $1 / 2-1 \frac{1}{4} \mathrm{in}$. long: fis. on slender, erect peduncles, rusy pink, fratgrant, with slender tube; stamens exserteci. May, June. Turkestan, Himal. Git. 30:1065. 13. М. 7394.
2. rupicola, Hook. f. \& Thoms Low and almost prostrate: lrs. often in 3's, oblong to oblong-ovate, glabrous or tomentose beneath, about $1 / 2 \mathrm{in}$. lung: Hs. short-peduncled, light pink, with short tube; stamens and style included. June, July. China, Hinal.
cc. Corolla more or less gibbous: erect shrubs: lis. larger.

## D. Bracts at the base of fls. large, ovate or cordate.

 E. Color of fls. yellou or scarlet.3. involucràta, Banks (L. flacéscens, Dipp.). Shrub, to $3 \ldots$, with upright branches, glabrous or somewhat puhescent: lvs. elliptic-ovate to oblong-lanceolate, bright green, thin, slightly pubescent beneath when young, $2-5$ in. long: fts, crect, long-peduncled; corolla Yellowish or slightly tinged red, viscid, pubescent, with short crect lobes, about $1 / 2 \mathrm{in}$. long: berries black, shining, almost enclosed by the enlarged purple bractlets. May-July. Ontario to Alaska, south to Utah and Calif. B.R. 14:1179. B.B. 3:242.
4. Ledeboùri, Eschsch.(Lintermèlia, Kellogg). Similar to the former, but more vigorous, hranches sometimes sarmentose, to 15 ft . long: 1 vs . of firmer texture, dark green above, pubescent beneath: fls. more salvershaped, with rounded, sprealing lobes, scarlet-red outside, $3 / 4$ in. long ; stamens shorter than lobes. MayJuly. Calif. (5t. 2:64. R.H. 1843:373.-Much handsomer than the 1 rmer, but more tender.

## LONICERA

EE. Color of fls. uhite.
5. hispids, Pall. Shrub, with spreading branches, bristly-hispid: winter-buds large, I-valved: lis. obovate to oblong, ciliate and hirsute, at least when young, sometimes glaucous beneath, $11 / 2-21 / 2$ in. long: fis. not. ding, white, salver-shaped, hisid, $1-11 / 2 \mathrm{in}$. long: bractlets none: fr. oblong, bright red. April, May. Altai. Himalayas.-Distinct and handsome with its rather large white flowers.

## DD. Bracts small and narrou.

6. cærulea, Linn. Much-branched erect or spreading shrub, to 3 ft. . with glabrons or pubescent branchlets: lvs. often stipulate oval or obovate to oblong-lanceolate, pubescent or almost glabrons, pale or glaucous green, 1-2 in. long: fls. short-peduncled, yellowish or greenish white, $1 / 3-1 / 2 \mathrm{in}$. long: fr. blue, bloomy; berries connate only at the base, but wholly covered by the connate bractlets and hence seemingly connate. April, May. N. En., N. Asia and in N. America south to Tenn., Wis. and Calif. B.M. 1965. - Var. villosa, Torr. \& Gr. Branchlets and lvs. vlllous pubescent. Var. graciliflora, Dipp. (L. Karelmi, Hort., not Bge.). With upright rather slender, bright red branches, slightly pubescent: ths. with slender tube.
7. gracilipes, Miq. (L. Phylomèla, Hort.). Shrub, to 6 ft ., almost glabrous: lvs. roundish-ovate to oblongovate, ciliate, bright green often with reddish margin, 1-2 $1 / 2$ in. long: peduncles slender, nodding, usually 1 -fld.: corolla pink, rarely white, $2 / 3 \mathrm{in}$. long: fr. rather large, pendulous, bright red. April, May. Japan. G.F. $10: 265$. -A graceful species; one of the earliest to bloom, and very handsome in June with its pendulous scarlet Hs.
8. cilàta, Muhlenb. (L. Canadénsis, Marsh.). Fig. 1311. Shrub, to 5 ft .: lvs. ovate or oval, rounded or cordate at the base, ciliate, pubescent beneath when young, $1 \frac{1}{2}-3$ in. long: ths. slender-perluncled, always in pairs, yellowish, sometimes slightly tinged red, $2 / 3 \mathrm{in}$. long: fr. light red. April, May. Canada to Pa. and Mich. B.B. 3:241.

> вв. Fls. 2-lipped.
c. Oraries and frs. connate or partly comnatc, only occusionally separate: fls. ruther small.*
D. Bractlets none: fls. white or yellouish.
9. oblongifolia, Hook. Shrub, to 5 ft .: lvs. almost sessile, oral-oblong, obtuse, pubescent beneath, $1-2 \frac{1}{2}$ in. long: As. slender-peduncled; corolla hairy outside, yellowish white, sometimes tinged purplish: berries dark red. May, June. Quebec to Manitoha, south to Pa. and Mich. B.B. 3:240.

1312. Lonicera Xylosteum ( $\times 2 / 3$ ).
10. Stándishi, Carr. (L. Sinénsis, Hort. L. fragrantissima, Lindl.). Half-evergreen shrub, with spreading branches, to 6 ft .: branchlets with reflexed bristly hairs: lvs. coriaceous, oblong-orate to ovate-lanceolate, acuminate, ciliate, bristly hairy on both sides or glabrous above, 3-4 in. long: ths. on rather short curved peduncles, white or slightly blushed, very fragrant, $1 / 4-1 / 2 \mathrm{in}$. long: fr. scarlet. Marci, Apr. China. B.M. 5\%09. G.C. 1II. $5: 245$. R.H. 1873. p. 148.

## LONICERA

LONICERA
11. Iragrantissima, Carr. (L., or Cuprifolium, Niaguarilli, Hort.). Similar to the former, but with long and slender recurving and almost glabrous branches: lvs. broadly ovate or obovate, acute, almost glabrous, but bristly on the midrib beneath and ciliate, $1-21 / 2 \mathrm{in}$. long: corolla glabrous outside. March-May. G.C. III. 5:245. K.H. 1873, p. 169. - Less hardy than the former. Both have handsome half-evergreen foliage and very early, sweet-scented, though not very showy flowers.

DD. Bractlets present, small, glamblulur: fls. dull riolet or brownish red.
12. alpigèna,Linn. Shrub, to $8 \mathrm{ft} .$, with stout branches: Ivs. oblong-obovate or oblong, short acuminate, glossy and dark green above, light green and often pubescent beneath, $2-4$ in. long: fls. long-peduncled, with short usually yellowish green tube and brownish red limb: fr. bright scarlet, shining. April, May. Mts. of M. Eu. and W. Asia. - Very handsome in fruit.

1313. Lonicera Tatarica ( $\times 2 / 3$ ).
13. orientàlis, Lam. (L. Caucrisica, Bieb.). Shrub, to 10 ft ., almost glabrous: lvs. elliptic or ovate to ob-long-ovate, rarely oblong-lanceolate, dark green above, pale or glaucescent beneath, 2-4 in. long: Hs. short-pedancled. vale violet or pinkish: fr. black, wholly connate. \. June. W. Asia to Kamschatka. Gt. 11:359. -Fls. and frs. not very conspicuous.

## cc. Oraries and frs. separate.

D. Fls. white or yellowish white, changing to yellow: branches pubescent.
14. Xylossteum, Linn. Fig. 1312. Shrub, to $10 \mathrm{ft} .:$ lvs. broadly oval to obovate, acute, dull green, pubescent above, usually glabrous at length, $1-3 \mathrm{in}$. long: fis. peduncled, yellowish white, often slightly tinged red, hairy outside: bractlets pubescent, about half as high as ovary: berries dark red. May, June. Eu., W. and N. Asia, sometimes escaped from cultiration. B.B. $3: 241$.
15. Morrowi, Gray. Shrub, to 6 ft. with wide spreading branches: lvs. oval or oblong-orate, dark green above, grayish tomentose beneath, 1-2 in. long: fls. peduncled, pure white at first, pubescent outside, upper lip divided nearly to the base, with spreading lobes: bractlets pubescent, about as long as ovary: fr. bloodred. May, June. Japan. A.F. $11: 1267$. Gng. $5: 329 .-$ Very decorative, with its bright red fruit i:om August until late in fall. There is also a var. with yellow fruit.
16. Ruprechtiàna, Regel. Shrub. to $12 \mathrm{ft} .:$ lvs. ovatelanceolate to lanceolate, acuminate, usually dark green above, grayish pubescent beneath, e-4 in. long: fts. on rather long peduncles, pure white at first, glabrous outside: bractlets only glandular-ciliate, small, about onethird of the ovary: fr. red or sometimes $r$ ilow. May, June. Manshuria. Gt. 19:645.-This speves and the proceding are likely to hybridize with the following: these hybrids are very common, and may be recognized by the glabrescent foliage and the tinge of pink in the tls. The true $L$. Ruprechtiona is mueh rarer than its hybrids.

DD. Fls. pink or red, sometimes white, but not chenging to yellow.
17. Tatárica, Linn. Fig. 1313. Shrub, to 10 ft ., almost glabrous: lvs. cordate or rounded at the base, ovate to ovate-lanceolate, ciliate, sometimes slightly pubescent beneath when young, $1-2 \frac{1}{2} \mathrm{in}$. long: fls. slender-peduncled, pink, erimson or white, the upper lip deeply divided, spreading: bractlets small, glabrous: fr. red, rarely yellow. May, June. S. E. Russia to Siberia. B.R. 1:31. R.1H. 1868:392. Gt. 18:627. - Variable in size and shade of tls. Var. alba, Regel (var. alba grandiflora, Hort.). Fls. white, large. Var. angustifolia, Kirchn. (L. angustitte, Wender.). Lvs. narrow-lanceolate: tls. bright pink. Var. latifolia, Loud. (var. greudiflora and var. grendiflore rùbra, Hort.; var. speciosu, var. pulcherrima, Hort.). Large-leaved form, with large pink ths., the lohes bordered lighter pink. R.H. 1844:109. A form of this with deeper pink fls. is var. speciosa, Carr. (var. spléndens, Regel). R. H. 1868:392. Gt. 18:627. Var. parvifolia, Jäger (var. grícilis, Carr.: L. parvifolia, Hayne, not Ellgew.). Les. smaller, obtuse: Hs. pure white, small, with broal and short lobes: fr. orange-red. Var. rubifldra, DC. (L. Sibivica, Hort.). Fls. deep pink.
18. floribúnda, Boiss. \& Buhse. Shrub, to 8 ft .; fincly tomentose: lvs. roundish ovate to oval, obtuse, pubescont on both sides, hluish or grayish green, $1 / 2-11 / 2 \mathrm{in}$.
: As. slender-peduncled, light pink, upper lip divided (not beyond the middle), with ovate erect lobes: bractlets small, pubescent: fr. red. June. Transcauc., Persia. Gt. 4:, p. 103. Figs. 4-6. - Very free-Howering shrub, with distinct, bluish green foliage.

## AA. Mabit climbing, rarely almost shrubby.

B. F'ls. in pairs, 2-lipped, sometimes crowded at the end of brauches; tube slender. (Vintoa.)
19. Japonica, Thunb. Fig. 1314. Climbing, to 15 ft . high: branchlets usually pubescent when young: lvs. half-evergreen, roundish ovate to oblong, pubescent beneath or almost glabrous, $11 / 2-3 \mathrm{in}$. long: fts. short-pedicelled, white, changing to yellow, often purplish outside, very fragrant, glandular-pubescent outside. 11/2-2 in. long: fr. black, separate. June-Aug. China, Japan; naturalized in some places from N. Y. to N.C. B. B. 3:240.-Var. aùreo-reticulàta, Arb. Kew. (L. reticulita aierea, Hort. L. brachypode reticulata, Hort.). A form of var. flermosa, with the smaller and shorter lvs. handsomely netted yellow. B.H. 21:59. Var. flexudsa, Arb. Kew. (L. flexuòsa, Thunb. L. bruchypoda, DC.). Less high climbing: lvs. orate or oblong, obtusiza, mostly only pubescent on the veins beneath: peduncles usually as long as petioles or shorter: corolla $1-11 / 2$ in. long, with the limb shorter than tube: bractlets broad, as long as ovary. Var. Chinénsis, Bak. (L. Chinénsis, Wats.). Lvs.orate, acute, ciliate and pubescent only at the veins beneath, often with purplish hue beneath: peduncles usually longer than petioles: corolla $11 / 2-2$ in. long, tube about as long as limb: bractlets narrow, about half as long as ovary. B.R. 9:712. B.M. 3316. L.B.C. 11:1037. Var. Halliàna, Arb. Kew. (L. flexudsa


Commonly known in this country as L. Halliana.
Hallic a, Dipp. Caprifolium Halliànum, Hort.). Of vigorous growth: lvs. usually pubescent on both sides when young, ohlong-ovate, acute, to $21 / 2 \mathrm{in}$. long: As. short-peduncled; tube as long as limb: bractlets broad, half as long as ovary. Flowering in fall, otherwise hardly different from the type. A.G. 12:663. Gng. $3: 293$.
20. longiflora, DC. C'limbing shrub, glabrous: lves. oblong-lanceolate, shining above, pale beneath, $2-91 / 2 \mathrm{in}$. long: ths. in short-peduncled pairs, sometimes erowded towards the end of branches: corollat white, changing to yellow, fragrant, : 4 in . long, with very slender tube: bracts small, subulate: fr.white. S. China. B. R. 15:1232 (as Caprifolium longiflora).-Tender. Int. 1900, by Franceschi.
21. Hildebrandiana, Coll. \& Hemsi. Climbing shrub, glabrous: lvs. broadly ovate or elliptic-ovate, abrupty pointed, $4-6$ in. long: fls. on stout perluncles; corolla j- $\bar{z}$ in. long, glabrous outside, yellow at tirst, changing to orange-red, with long and slender tube. Summer. Epper Burma. G. C. 111. 24:ㅇ19. B. M. 767i.-This has the largest flowers of any species, but is not hardy North.

BB. F7s. sessile, in usually 6-fld. whorls at the end of the branchlets, forming terminal spikes or cluslers: upper lis. mostly connate, usually climbing. (Caprifolium.)
c. Coroll distinctly :-lipped.

1. Tube of corolla slemler, 1 in. or more long, glalirous inside except No. 2 : : corolla never bright yellow.

## E. Whorls of fls. forming a peduncled head or spike:

 bractlets large.22. Periclymenum, Linn. (Cuprifolium Periclymenum, Roem. \& Schult.). Woodmse. Fig. 1315. Climbing several ft. high: lvs. all distinct, ovate to oblongovate, acute, $1^{1}-3$ in. long. dark green above pale or glatcous beneath and sometimes sparingly pubescent: ths. in a pedmmeled dense head, very fragrant, yellowish white, usually carmine or purple outside and glandular pubescent, $1 \frac{1}{2}-2$ in. lons. June-Sept. Eu., N. Afr.. W. Asia. - Var. Belgica, Ait. Of more vigorous growth, sometimes shrubby: ths. bright red outside; blooming all summer. Probahly var. sempérflorens, Hort., tigured inGn. $45: 306$, is not very different. Var. quercifolia, Ait. Las. sinuatcly lobed; a curious but less desirable form. Var. serotina, Ait. Similar to var. Belgıen, but tlowering in fall.
23. Etrúsca, Santi. Climbing: lys. broadlyoral to ohovate, usually obtuse, the upper ones connate into an oral obtuse disk, rarely distinct, $1-3 \mathrm{in}$. long, glabrous or pubescent: th.-heads dense peduncled. often i: 3 's: corolla yellowish white, usually tinged red. fragrant, $11 / 2-2$ in, long, with very slender tube. May-July. Distributed through the whole Mediterranean region in many different forms. - Var. gigantèa, Hort. Of vigor. ous growth, with large pubescent leares.
24. Heckrotti, Hort. Not much climbing: lvs. elliptie or oblong-elliptic, acute, almost sessile, the upper pairs connate, glancous bereath. glabrous, about 2 in . long: fls. in peduncled spikes with few somewhat remote whorls, purple outside and sparingly glandular, $112-2$ in. long: bractlets about half as long as ovars. Origin unknown. prohably garden hybrid of L. E'trusea and an American speeies.
ex. Whorls of fls. all, or at least the lourer ones. in the axils of comate li's.
25. Itálica, Schmidt (L. E’trìsca, Hort. L. Caprifolium, Auth.). Climbing: lvs. broadly oval to oblong obovate, the upper connate, glabrous. -4 in. long; the upper whorls without connate lvs. at the base. somewhat crowded: fls. yellowish, usually purple outside andglabrous, fragrant, to 2 in . long: bractlets about half as long as orary, smaller on the upper fls. June-Aug. Probably hybrid of L. Etousea and L. Caprifolium, mueh cultivated, mostly under the name of the latter. Gn. 45, p. 307 (as L. Etrusef and L. Caprifolium); 54, p. 26. F.S. 11:1120 (as L. Caprifolium major). Var. rubélla, Tausch. Fls. dark purple outside.
26. Caprifolium, Linn. (Ceprifolithm herténse, Lam. C. perfoliùtum, Rochl.). Fig. 1316. Climbing: lrs.
oval to oblong, the upper connate into a roundish eup, almost glabrons, $2-4$ in. long: whorls usually 2 or 3 , each in the axils of connate les.: ths. yellowish white, mostly purplishoutside mad often slightly hairy, to 2 in. long, fragrant: bractlets very small or none. May, June. M. En. to W. Asia. N. 2:296. B. B. $3: 237$ - Some times escaped from eultivation and deseribed under the name L. grata, Ait., as an American species. Var. álba, Ait. (L. pilliela, Hort. L. precox. Hort.). Fls. white, uppearing early. R.H. 1856:141.
27. impléxa, Ait. Much branched but less ligh climibing. evergreen: los. oval to oblong-hanceolute, sessile. the upper connate into an elliptie, acute or mutronate disk, glaucous, glabrous, $1-2 \mathrm{in}$. long: ths. in several whorls, each in the axils of comnate lise., seentless, yellowish white; tule slightly hairy within; limb rather short: stamens little exserted. May, dune. S. Eu., N. Afr. B.M. 640.

DD. Tube of corolla gibbous or more or less ventricose, less thun 1 in . long, pubescent within, bnt almost glabrous within and slender in No. 9.

## E. Bracllets small or none.

F. Disk of connate les. mostly roundish, often emarginate at the ends.
26. flàva, Sims (Cuprifòlium F'risevi, Pursh). Climbing to 10 ft . 1 ss . broadly oval to elliptic, the upper connate, bright green above, glancons beneath, glabrons, $1 \frac{1}{2}-3$ in.: tls. in a peduncled head, bright or ortagevellow, fragrant. $1-1 \frac{1}{4} \mathrm{in}$. long; tube slender, longer than limb. April, May. N.C. to Ky., (ia. and Alat B.M. 1318. L.B.C. 4:33S. G.F. 3:190. Gn. 45, p. $30 \%^{\circ}$ -This species is rare in eultivation and mostly the fol lowing is cult. under this name.
29. Súllivanti, Gray ( $L$. flitre, Auth., not Sims). Fig. 131\%. Climbing about $4-5 \mathrm{ft} .$, very platucous: lve oval or obovate, the upper connate into a large disk, becoming thickish and very glancors above, often tinely pubescent bencath, $9-4 \mathrm{in}$. long: fls. in short stalked or almost sessile spikes; corolla pale yellow, often marked purplish outside, about 1 in. lons; tube gibbous, only little longer than limb. Nity, June. Ontario to Manitobs, south to Tennesser. R.H. 1856:021 (as L.flava). (i.F. B:191.-Very hand some in fall with the abundant scarlet berries.
30. Brówni, Carr (L.sempereirens Browni, Hort.). Probably hybrid of L. semperibens with L.Sullieanti or glatucat lus. oval to oblong, glaucous beneath, the upper connate, glabrous: fls. in peduncled hearls, orange-searlet, scent-
less; tube gibbous at the base, longer than

## .Lonicera

( $\times 1 / 3$.)
limb. Of garden origin. F. S. 11: 1133.-Var. Plantierénsis, Hort. (L. Plantierén. sis, Andrét. Fls. larger, more orange-colored and less deeply 2 -lipped. I. H. 18:86.
FF. Disk of comnate lis. more or less elliptic, pointed or mucronate at both ends. See also No. 30.
31. hirsùta, Eat. (Caprifolium pubéscens, Goldie). High climbing, with usually hirsute branchlets: lvs. petioled, broadly oval or ovate, obtuse, the upper connate and abruptly pointed, dark green above pubescent on both sides when voung. e-4 in. long: fls. in short, mostly peduneled spikes. scentless, bright or orangeyellow, pubescent without, about 1 in . long, with the
tube gibbous at the base: ovary and bractlets usually glandular. June, July. V't. to Manitoba, south to Pa. and Ohio. B.M. 3103. Gn. 45, p. 307.

1316. Lonicera Caprifolium ( $\times 1 / 2$ ).
32. Doúglasi, Hook. (L.glancéscens, Rydb. L.glañca, var. Doúglesi, A. (iray, partly). Climbing: branchlets glabrons: lrs. short-petioled or almost sessile, the upper connate, oval to obovate, ghabrous above, pubescent beneath, $11 / 2-3$ in. long: Hs. in short, almost sessile spikes; corolla yellow, mostly reddish ontside and hairy, $3 / 4-1 \mathrm{in}$. long: tube gibhous. longer than the limb: ovary and bractlets glabrous. May. June. Ontario to the Saskatehewan, south to Pa. and Neb. B.B. 3:E:38.Rare in cultivation, but sometimes a hybrid of $L$. hirsuthe and Sulliventi is foumd under this name in gardens. It is tigured in G.F. $9: 345$.
33. didica, Linn. (L. glañca. Hill. J. mèlia, Murr. L. parifiora, Lam.). Usually shrubby, with slender, sarmentose branches, rarely climbing, glabrons: lis. short-petioled or almost sessile, the upper connate, oval to oblong, obtuse, with usmally undulate and transparent margin, very glancous beneath, $11 / 2-3$ in. long: Als. in sessile or short-stalked spikes, greenish or whitish yellow, often tinged purplish, glabrons outside, $1 / 2-3 / 4$ in. long, the tube giblous. about as long as limb. May, June. Quebee to Manitoba, south to Ohio and N. C. B.R. 2:13s.

## EE. Bractlets as high as orary or slightly shorter, roundish.

34. hispidula, Dougl. Bushy shrub with sarmentose branches, rarely twining, usibally hirsute: lvs. oval to ovate. rounded or cordate at the base, often with foliaceous stipules, the upper comate or sometimes elistinct, usually smah, rarely to "! in . Jong, ciliate and pubescent, rarely glabrous. fls. in slender-peduncled and often panicled spikes, pink or yellowish, glabrous or hirsute. $1 / 3-\frac{1}{2} \mathrm{in}$. long, with short gibbous tube. June, July. Brit. Columb. to Calif. B.K. 2 1:1761.-Var Californica, Greene (var. vícillans, A. Gray). Of more vigorons growth, with large lis. to 3 in . long: corolla glandular-pubescent outside. Calif.
ec. Corolla with almost regulur or slightly -lipped limb: limb severul times shorter then tuke.
35. ciliosa, Poir. (L. occintentilis, Hook.). Low sar mentose shrub: lrs. petioled, ovate or oval, glateous
beneath, glabrous but ciliate, the upper connate, 2-4 in. long: Hs. in short-peduncled heads of one or few whorls; corolla slighty e-lipped, with ventricose-gibbous tube, yellow to orange-searlet, sometimes hirsute ontside, 1/4-13/4 in. long. June, July. Brit. Col. to Calif. and Ariz.
36. sempérvirens, Linn. (Cuprifolium sempérirens, Michx.). Trumpet Honeysuckle. Fig. 1318. High climbing, glabrous; evergreen southward: lvs. oval to ohlong, glaucous beneath, the upper connate, $9-3 \mathrm{in}$. long: tls. in peduncled interrupted spikes; corolla with almost equal limb; tube slightly ventricose, glabrous, $11 / 2-2 \mathrm{in}$. long, scarlet or orange-scarlet, rarely yellow. May-sept. Conn. to Fla., west to Neb, and Tex. B.M. 781. R.H. 1856:361. Gn. 45, p. 307. - Var. flàva, Regel (L. flìve nòv, Hort.). Fls. yellow. (it. "::38. Var. fuchsioldes, Hort. ( L. fuchsioiles, Hort., not of Hemsl. which is a Chinese species of the Nintoa group and not yet introduced). Similar to var. minor, but tube more expanded above, bright searlet. Var. minor, Ait. Levs. oblong or narrow ohlong: ths. more sleuder, orange-red or orange-scarlet. Very free-flowering, but more tender. 13.M. 155. B.R. $7: 556$. Gin. 34:300. Var. speciosa, Carr. Differs from the type by more brilliant scarlet fls. F.S. 11:1128. Sometimes cult. as L. Muguevillea, a name also applied to $L$. dioica, and a darker red form of LL Caprifolism.
L. angustifòlia. Wall. Erect shrub, 1010 ft . Irs. lanceolate: Hs. long pednncled, white, fragrant, with regular 5-lohed limb. Himal. F.S. 4 , pp. $40 \overline{0} .40 \mathrm{~s}$ b. Tenter - L. arbòra, Boiss. Erect shrub or small tree 1030 ft . 1 ls . roundish ovate, pubeseent: As, short-peduncled, o-lipped, pinkish, small. Spain.- L. bélla, Kabel (L. Morrowi $\times$ Tatarica). Intermediate ber ween the two: ths. white to pink. Garide origin.-L. biflora, Desf. $=$ L. canes-cens.-L. cunéscens, schousb. Climbing, grayish tomentose: lvs. ovate, small: fls in pairs, white, "-lipped, with slender, long tube, fragrant. Spain, N. Afr.-L.chrysintha, Turcz. Allied to L. Xylosteum, higher: los. larger, acuminate: Ats. larger, changing to bright yellow. N. E. Asia. Gt. 12:404. Handsome hardy shrub, with rather light green foliage and bright coral-red ber-ries.-L. confüsu, LiC. Allied to L. eanescens, but ths, and lvs.

37. Lonicera Sullivanti ( $\times 2 / 3$ ).
somewhat larger and ovary glah,rons. Japan, China. B.R. 1:70 (as L. Japonica). (in. 45, p. 307 . Has been often confounded with L. Japonica, but is easily distinguished by the small subu-

:318. Lonicera sempervirens ( $\times 1 / 2$ ).
late bracts. - L. conjugiàlis, Kellogg. Erect shrub: Ivs. oval or ovate, pubescent : fls. slender-peduncled, small, 2-lipped, dark purple. Washington to Calif.-L. depréssa, Royle. Low shrub, purple. Washington to calif- - Lidepressa, Rove. pink, with short tube and regular limb, small. Himal. Var. pink, with short tube and regular limb, smail. Himal. Var. L. diversifolia, Wall. $=$ L. quinquelocularis. - L. gibbiflora, L. divergifòlia, Wall. $=$ L. quinquelocularis. - L. gibbiflora,
Maxim. $=$ L. chrysantha. - L. gibbiflera, Dipp. Probably hyMaxim. $=$ L. chrysantha. - L. gibbiflora, Dipp. Probably hy-
brid of $L$. Ruprechtiana and chrysantha ; . notha is also brid of L. Ruprechtiana and chrysantha; L. notha is also sometirues met with under this name.- L. Ibérica, Bieb. Erect
shrub, to 8 ft .: lvs. roundish ovate, pubescent: Als. short-pedunshrub, to 8 ft : lvs. roundish ovate, pubescent: fls. short-pedun-
cled, 2 -lipped, small, yellowish: berries bright red. N. Persia, cled, 2.lipped, small, yellowish: berries bright red. N. Persia,
Caucasus. $\mathbf{L}$. Kamschática, Hoyt. $=$ L. Kesseiringi.- L. KésselCaucasus. - L. Kamschática, Ho:t. $=$ L. Kesselringi- - L. Késsel-
ringi, Regel. Closely allied to L. orientalis: lvs, elliptic-lanceoringi, Regel. Closely allied to L. orientalis: lvs, elliptic-lanceo-
late: fls. with narrow, not gibbous tube. Kamschatka. Gt. 40 , late: fls. with narrow, not gibbous tube. Kamschatka. Gt. ${ }^{40}$ p. 124.- L. Korolkdwi, Stapf. Closely allied to L. foribunda, but pilaments much longer and hairy and upper lip more deeply di-
vided. Persia. G.F. $7: 35$. Hardy and free-flowering.-L. Madichi, vided. Persia. G.F. 7:35. Hardy and free-flowering. - L. Maacki, Maxim. Shrub, to 10 ft .: lvs. oblong.ovate: ffs. short-peduncled, white, fragrant, 2-lipped, about 1 in. long. June, July. N. China,
Amurland. Gt. 33:1162. Handsome hardy shrub, flowering Amurland. Gt. 33:1162. Handsome ha Maximùuiczi, Maxim. Shrub, to 6 er Bush Honeys-elliptic : fls. peduncled, purplish violet, 2-lipped, rather small. N. E. Asic. Gt. 17: $97 .-L$. mi. crántha, Regel $=$ L. Hteribunda. - L. micrántha, Dipp. Hybrid of L. Tatarica and Xyisteum: oí no decorative value. Garden origin. - Is. microphylla, Willd. Erect shrub, to 3 ft . : lvs. oval, about $1 / 2 \mathrm{in}$. long: fls. slender-peduncled, 2 -lipped, yellowish white, sraall: berries connate, orange-red. Altai to Himal. white, sraall: berries connate, orange-red. Altai to Himal.-long-ovate, dark green above: fls. white. Gardenorigin. Gt. 42 , long-ovate, dark green above: fls. White. Garden origin. Gt. 42 , p. 101, Figs. $4-6$ - - I. Muscariensis, Rehder (L. Morrowi $\times$ Ru prechtiana). Similar to L. Morrowi, but of more upright and vigorous hahit. Garden origin. Gt. 42, p. 101, Figs. 1-3. - L. Myrtillus, Hook. f. \& Thoms. $=$ L. depressa vars. - L. nervosa. Maxim. Shrub, to 10 ft , with slender dark purple branchlets: lvs. ovate, with purple veins: fis. smail, pink long-peduncled, 2-lipped: fr. black. China. Hardy, gracefill shrub- - I. nlgra, Linn. Shrab, to 5 ft .: lvs. elliptic to elliptic-lan olate: fls. slender-peduncled, pink, sinall: fr. black. Mts. of M. En.- L. nüia, Zabel (L. Rupiechtiana …Tatarica). Intermediate between the two: As. white to pink. Garden origin. - L. nummu. larifolia, ¿aub. \&Spach. Similar to L. Horibunda, but fls, shortpeduncled or almost sessile. W. Asia to A?ghs: - L. obováta, Royle. Similartr L. microphylla: liss. very sn ... bovate: fls. small, with almost regular limb, yellowish lit Himal. L. parvifolia, Edgew = L. depressa.- L. prap, Zabel (L. alpigena $\times$ Ledebouri). An interasting hybrid, a.......orm more
garden origin. - L. Pyrenàica, Linn. Erect shrub, almost gla brous: lvs. cuneate-oblong: fis, slender-peduncled, tubular-cam panulate, reguiarly 5 -lobed, white, $3 / 4 \mathrm{in}$. long. 1yren. Mts. panulate, reguariy $\boldsymbol{L}$. quinquelocularis, Hardw. Shrub, to 10 ft ., with slender, L. quinquelocularis, Hardw. Shrub, to 10 ft , with slender, spreading branches, similar to L. Xylosteum: fls. almost sessile,
larger, yellowish: berries white. Himal. B.R. 30:33 (as L. larger, yellowish: berries white. Himal. B.R. ${ }^{\text {diversifolia). } \boldsymbol{L} \text {. Regeliána, Dipp. Probably hybrid of L. chrys- }}$ diversifolia)-L. Regeliana, Dipp. Probably hybrid of L. chrysant has and Xylosteum, - Lerientalis.-L. Segreziensis, Lav. Closely allied to ©. XylosL. orientalis.- L. Segreziensis, Lav. Closely allied to $\perp$. Xylos
teum: lvs. more pubescent, dark bluish green: fls. short-pedunteum: livs. more pubescent, dark bluish green: fls. short-pedunand L. Xylosteum. - L. spléndida, Boiss. Allied to L. implexa and Etrusca: glabrous, glaucous : fis. in a many-fld., sessile head, yellowish white, tinged purple. Spain. F.S. 11:1130.L. Tangùtica, Maxim. Slender shrub, with small, obovate or ;blong lvs.: fls. slender-peduncled, small, with 5-lobed limb pale pink. China. Gt. 40, p. 581.- L. tomentélla, Hook. f. \& Thom. Erect shrab, to $12 \mathrm{ft} .:$ lrs. small, ovate to oblong, pn bescent : fis. short-peduncled, nodding, small, regular, white Himal. B.M. 6486 . Tender. $-L$. translucens, Hort. $=$ L. quin quelocularis. - L. Webbiàna, Wall. Allied to L. alpigena. Lvs arger, acuminate, pubescent: Hs. paler: ovaries separate. S.E Eu. to Himal. - L. Zábeli, Rehder. Allied to L. floribunda, but quite glabrons and lrs. somewhat larger. Probably hybrid of L. thoribunda and Tatarica. Gt. 42, p. 103, Figs. 1-3. Very free flowering and handsome

Alfred Rehder.

## LOCSESTRIFE. See Lysimachia and Lythrum.

LOPEZIA (after the Spaniard Lopez, who wrote on the natural history of the New World). Onagracea About 21 species of herbs from Mexico and Central America. Erect, branching, glabrous or pubescent: lis. alternate or the lower opposite, dentate: fls. usually small, in leafy racemes or subcorymbose at the ends of branches, slender-pedicelled; calyx limb 4-parted, inequal, deciduous, linear-lobed; petals 4, sìort- or longclawed, inequal, the posterior ones narrower, the claws glandular at the apex; stamens 2, attached to the pistil, one anther-bearing, the other petal-like: ovary 4-celled: capsule globose, leathery: seeds obovoid, with a leathery, granulated coat.
albiflora, Schlecht. Fig. 1319. Suffruticose, diffuse, 2 ft . high: young branches somewhat villous: lvs. cuneate at the base, ovate-lanceolate, irregularly serrate or remotely dentate, largest $11 / 2$ in. long: pedicels horizontally spreading, slender: petals white, often tinged sligitly pinkish at base, larger ones obliquely spatulate, obtuse and mostly notched, smaller ones linear, obtuse, as long as sepals. Mex. - Cult. at Harvard Botanic Garden, where the plant differs from the original description by the lve. being usually ovate or perhaps oblongovate, and the smaller petals longer than the sepals. It seems to flower through the winter.

1319. Lopezia albiflora ( $\times 1 / 2$ ).
coronàta, And. Annual: Ivs. scat.ered or in whorls, glossy, glabrous: two upper petals linear, bright lilac; two side ones larger; lamina roundish obovate, light lilac, with dark red mark at base. Mex. S.B.F.G. I. 2:108.-Cult. in S. Calif.

LOPHANTHUS (Greek, crested flower; application not evident; Labiatce. Of this genus we cultivate 2 species of hardy herbaceous perennials, which are rather tall and coarse and bear spikes of more or less purplish fls. in sunmer. The genus contains 7 species, all from America or N. E. Asia. Les. serrate, veiny, pritioled, lower usually subcordate and upper ovate: fls. small, in dense sessile whorls crowded into terminal spikes, which may be interrupted below; stamens exserted; anthers separated or distant, not approximate in pairs, their cells parallel or nearly so. Of minor value.
anisàtus, Benth. Giant Hrssop. Height 2-3 ft.: lvs. orate, anise-scented when crushed, white beneath: fls. blue; calyx teeth tinged purple or violet. July, Aug. Prairies, Wis. to Rockies. B.R. 15:1282. - This species grows $3-5 \mathrm{ft}$. high, on dry hills, and has pale purple flowers.
scrophulariæfolius, Benth. Height 4-6 ft.: 1: s. not anise-scented, not white beneath: fls. dull purplish; calyx teeth whitish. Borders of thickets, N. Y. to Wis. and N. C. - This plant grows 2 ft . high and has laven-der-blue flowers in June.

## LOPHOSPERMDM. See Maurandia.

## LORDS AND LADIES. Arum maculatum.

## LOQUAT. See Eriobotrya Japonica.

LOTUS meant several things to the ancients: (1) the Greek Lotus, a leguminous plant on which horses fed. This was probably what we call to-day Lotus corniculatus, the common Bird's-foot Trefoil of temperate regions. (2) the Cyrenean Lotus, an African shrub, the fruit of which was eaten by certain North African tribes who were called Lotus eaters. The fruit was said to be honey-sweet, the size of an olive and in taste like a date. This was probably Zizyphus Lotus, a prickly shrub whose fruit is, however, considered inferior to that of the common jujube, Zizyphus sativa. Other conjectures have been: Celtis australis, a tree which has a small, sweet berry; Nitraria tridentata, a thorny desert shrub whose succulent fruit has a stimulating quality, and Rhammus Lotus, another North African plant. European Lotus is a name for Diospyros Lotos, a kind of date plum which is cult. in S. Eu., but the fruit is hardly edible. (3) The Egyptian Lotus or Sacred Lily of the Nile. This is Nymphea Lotus, which, like the Hindu Lotus, has rose-colored as well as white flowers. American cultivators at the present time almost universally consider that the true Egyptian Lotus is Nelumbium specinsum, now called Nelumbo, but Nelumbium speciosum is not a native of Egypt. (4) The Hindu and Chinese Lotus, also called the Sacred or Pythagorean Bean. This is Nelumbo Indica, better known as Nelumbium speciosum. The name Lotus was doubtless used for other water lilies, particularly the blue-flowered Nymphoa carulea. These plants are described in this work. See Nelumbo and Nymphaca.

Lotus of the botanists is a genus of $50-100$ species, found in temperate regions: herbs or subshrubs, glabrous, silky or hirsute: lvs. with 3 lfts. crowded at the apex of the petiole and commonly 2 joined to the stem and resembling stipules: fis. pea-shaped, yellow, red, rosy or white, often in axillary, few-fld. umbels, rarely solitary; calyx lobes longer than the tube; keel beaked: pod oblong or linear. Leguminosæ.
A. Li's. thread-like: fls, odd, not pea-shaped.

Bertholètii, Missf. (L. peliorhýncus, Hook. L.pelyorensis, Hort.). Small, much-branched, slender bush, with a silvery hue: lfts. Whorled, 8-9 lines long: Hs. $11 / 2 \mathrm{in}$. long, in loose clusters of about 20 toward the end of the branches, short-pedicelled, scarlet or crimson fading to orange; standard recarved like a horn; keel acuminats, longer than the wings. Cape Verde, Canaries. B. M. 6733. R.H. 1895:308. - Peliorhyncus means bruised or dismblored nose. Called "Coral Fem" in cataloguos. Grown chiefly in hanging beskets. Prop. by division or cutting

## AA. Lis. not thread-like: flo pea-shaped.

## B. Fls. yellou.

corniculàtis, Linn. Bied's-foot Treforl. Babies' Slippers. Perennial, prostrate or ascending, a few in. to 2 ft . high, glabrous or hairy: lfts. obovate or ovate, $1 / 2 \mathrm{in}$. long, the 2 stipular ones broader and very oblique fls. yellow, often tinged bright red, $5-10$ in an umbel; calyx lobes about as long as the tube. Temp. regions and Australia. Var. flore-plèno has showy double ths. A hardy trailer for covering dry banks and rockwork, blooming all summer and autumn. Also grown for forage.

BB. Fls. pink or white.
austràlis, Andr. Perennial, diffuse, sometimes subshrubby, glabrous or pubescent: lfts. narrower than in L. corniculatus, and the stipular ones less dissimilar, but varying from obovate and under $1 / 2 \mathrm{in}$. long, to linear and $1-11 / 2 \mathrm{in}$. long: Hs. usually pink, but varying from white to purple-red. Australia. B.M. 1365. L.B.C. 11:1063 and B. 5:211 (as L. albidus). -Int. 1900 by Frauceschi.

## BBB. Fls. dark purple or dark red.

c. Lfts. linear-lanceolate.

Jacobæus, Linn. Perennial, subshrubby: fls. about 3 in a flat-topped cluster, dark purple, almost black. Cape Verde. B.M. 79.-Treated as a tender annual bedding plant.

## CC. Lfts. obovate to elliptic.

Tetragonolobus, Linn. Winget Dea. Annual trailer: fls. solitary or twin, nurnlish ca lal-red. Mediterranean region. B.M. 151 . - Tetragunulubus was once considered a separate genus, largely because of the 4 leafy wings of the pod. Grown chiefly for food, the pods being eaten when young and the seeds, when roasted, substituted for coffee. Seeds sown in drills in April. Plants require no care except water during drought.
L. Balambénsis, a pink-fld. Abyssinian plant, was int. to American trade by Franceschi, who says it was originally sent out by Dammann \& Co., Naples, Italy, and is not worth cult.out by Dammann \& Co., Naples, Italy, and is not worth cult.chi writes that it has yellow fls. and is desirable for rockeries chi writes that it has yellow fls. and is desirable for rockeries and hanging baskets: that it is not far from L. corniculatus, but has a different habit; and that it was offered many years
ago by Wildpret of Orotana and later by Albert Scheubel of ago by Wildpret of Orotana and later by Albert Scheubel
Hamburg.
W. M.

MOUISIANA (Fig. 1320) is situated at the extreme lower limit of the great Mississippi system, bordering on the Gulf of Mexico. These bodies of water have an important bearing upon the climate, and make it possible to grow some of the subtropical fruits. The prevailing wind is from the south, somewhat cool and alwars laden with moisture, and the southern portion of the state, being only about 30 feet above the sea level, receives the heaviest rainfall, 70 inches, while the northern portion, being more elevated and further from the gulf, has an annual rainfall f 45 to 50 inches. This is, as a rule, well distributed throughout the state, the seasons of greatest drought being early spring and early autumn. The highest recorded summer temperatures run from $98^{\circ}$ along the Gulf coast, to $102^{\circ}$ in the northern part of the state. while the average winter temperature is $56^{\circ}$. Occasionally a northwestern blizzard reaches down into the state, causing a heary fall in temperature, accompanied with sleet, and once in a great while, snow. There was a temperature of $9^{\circ}$ in 1895 , and 13 inches of snow. A minimum of $15^{\circ}$ below zero was subsequently recorded in northern Louisiana. These occasional blizzards have forced the culture of tropical fruits down to the section immediately bordering on the Gulf. As the soil has such an important bearing on the character of the fruit, a rough classification of the different kinds is here given.
First: The Sandy Hills and Uplands.-These occupy the noithwestern portion of the state, along with a section in the exstern part, south of the state of Mississippi. The lands are characterized by sandy soils, with pine and oak forests, and produce the be it apples, stonefruits and berries.

Second: The Bluff Lands.-These rcupy a broken strip, running paraliel with the Missis: ippi, from 30 to

50 miles from its western bank, and disappear near the Gulf in what are known as "islands," such as "Avery's Island" and "Jefferson's Isinnd." There is also another section of these lands on the east bank of the river immediately south of the Mississippi state line. These lands are characterized by a yellow clay loam, very fertile, and by forests of magnolia, gums, oaks, etc. They produce some of the stone-fruits well, and an abundance of pears, berries and figs.

Third: The Prairie Lands.-These occupy a portion in the central southwestern part of the state, are treeless, low and are also known as rice lands. The soil is

poor but improves with cultivation, and gradusilly the planting of figs, pes.rs, peaches, plums and grapes has been extended.
Fourth: The Allurial Lands.-These make up all the other portions of the state not mentioned, including the river bottoms. The soil is generally dark, ranging from black to light red, very fertile and abounding in an abundant growth of timber. They produce the heavy yields of cotton and corn in the northern portion, and the sugar cane, oranges, lemons, persimmons, figs and bananas, as well as other tropical fruits, in the southern part.
The leading varieties of vegetables are grown in every section of the state, and the home garden furnishes an abundant supply during all seasons of the year, under proper management. Those vegetables most popularly grown for home consumption are as follows: Asparagus (on the saudy soils only). artichoke (both Globe and Jerusalem), bean, beet, ca bage, carrot, collard, corn, cress, cucumber, cashaw (pumpkin), endive, eggplant, kohlrais:, leek, lettuce, melon, mustard, okra, onion, parsley, pea, pepper. Irish potato (two crops), sweet potato, radish, spinach, tomato. turnip and ritabaga. Occasionally there is found the vegetable pear (Sechium edule), martynia, hrussels spront, celery, chervil, garlic, kale, salsify, parsnip, caulifower and field pumpkin. The majority of these vegetables may be sown several times during the year. Celery and canlifower, horever, are sown early in August in order to nutare by the Christmastide.
The commercial truck sections are found in various sections of the state. Along the Illinois Central railroul a direct line to Chicago from New Orleans, which runs throngh the warm sandy pine lands, the most extensive truck farms are to be seer. The vegetables grown are radishes, beans, cantaloupes, cucumbers and tomatoes. The town of Roseland alone, in 1898, shipped 50,000
bushels of radishes. Hundreds of car-loads of these regetables rere sent to the Chicago, Cleveland and St. Louis markets during the months of March, April and May. This section also produces enormous quantities of early strawberries, as hundreds of acres are planted each year, and shipments are sent by car-load lots from the stations on this line in Tangipahoa parish. The plants are set in August and September of each year, and, as a rule, are kept but one season. Abundance of pine straw is used for mulch, and when an early spring frost threatens, this mulch is also used to cover the plants as well, oftentimes protecting them so that the first and most valuable fruits escape and mature, thus insuring the most profitable picking. The varieties grown are: Cloud, Michel Early, Miller, Bubach, Gandy, Seltzer and Creole Beauty. The Japan plums are also grown in this section extensively, the most desirable varieties being the Abundance and Burbank. A few peaches and Japan persimmons are grown, but not so as to become a commercial product.
Another great truck section is found in the immediate vicinity of New Orleans, and along the river towards the Gulf on the New Orleans, Fort Jackson and Grand Isle railroad. New Orleans is supplied mainly from this source, and at the same time enormous amounts are sent North. The truck grown for the latter purpose consists of cabbages, onions, tomatoes, beans, peas, eggplants and cantaloupes. Cucumbers are also grown, both in the hotbed and in the open, oftentimes bringing high returns when sent North, the winter prices ranging from 30 cents to $\$ 2.50$ per dozen.

The lower portion of this section contains also the great orange groves of the state. They are located all along the river, and it is only when a belated blizzard visits this section that a crop failure is experienced. Some of these orchards contain more than 100 acres. The stocks now used are almost entirely the common sour and Citrus trifoliata. Occasionally the sweet seedlings and lemons are used, but not to any extent. The first two mentioned are the hardiest stocks known, and mature their wood, making a more desirable tree. The varieties grown are: Satsuma, Boone Early, Sweet Seville, Parson Brown, Brazilian, Baldwin No. 1, Creole, Honiosassa, Washington Navel, DuRoi Blood, Hart Tardiff, Rivers Unknown and Schoenberger. Besides these, large quantities of mandarins, tangerines and Kumquat oranges of various varieties are grown. The various scale insects, so serious when no care is given, are, as a rule, kept in complete control by the careful use of insecticides, and the laws governing the importation of infected trees are rigidly enforced. As oranges in Louisiana are grown on such different soil from the orange sections of other states, one or two points must always be kept in view. Beds should be raised before the trees are set, and the crown roots of the young tree should be just at the surface of the ground. These requirements are necessary on the alluvial lands of the lower Mississippi. The Satsuma. Kewochai and Dai Dai are Japanese varieties, and when worked upon Citrus trifoliata stock will stand much more cold than the sweeter oranges. The Satsuma thus worked is the most desirable and will stand a temperature of $13^{\circ} \mathrm{F}$. without injury. The orange industry is increasing annually, the crop for $189 \bar{\delta}$ being upwards of 300,000 boxes.

Another track section is found along the Iron Mountain railroad nort' of Alexandria; it is linited to only a few crops, wheh as melons, tomatoes and Irish potatoes. Along the Vicksburg, Shre resport and Pacific railroad large quantities of Irish potatoes are frown, while along the Kansas City, Pittsburg and Gulf railroad and the Mississippi Valley railroad, only limited quantities of truck have been sent out. From reliable statistics it is found that the annual output of Louisiana approxirates 40,000 tons o. fruit and 60,000 tons of vegetables. The varieties of these vegetables grown for the Northern markets are as fullows: The Acme and Beauty
tomatoes, the Chartier radish. the New Orleans Market eggplant, the Peerless and Triumph Irish potatoes, the New Orleans Market and White Spine cucumbers, the New Orleans Market cantaloupe, the Drumheads, Flat Dutch, Succession, All-Seasons and Nonesuch cabbages, the Italian and Bermuda type of onions, the First and Best and Alaska peas, the Early Mohawk and Valentine beans. In the northern part of the state large quantities of Irish potatoes are grown, and oftentimes the second crop is very profitable. The first crop is planted in January or February and harvested in May and June. The seed for the second crop is prepared for planting by special treatment, consisting of gradualiy exposing the tubers to the light and moisture, which matures them and excites the eyes into growth. As soon as this is accomplished they are ready for planting, which is usually during August. They are harvested in November.
Upwards of $3,500,000$ bushels of sweet potatoes are grown annually, the varieties best known being Pumpkin, Creole, California, Bermuda, Red and Yellow Nansemond, Harman, Providence, Yellow Jersey, Southern Queen and Vineless. The last variety is one of the most desirable of the newer sweet potatoes.
The culture of fruit, other than oranges and strawberries, has been neglected in great measure. Apples do fairly well in the northern part of the state, the desirable varieties being Smith, Horse, Red June, Magnum, Early Harvest, Cullasago, Shannon, Shockley and Red Astrachan. Grapes are grown but sparingly, as the long, warm, moist season offers the best conditions under which the grape diseases develop, and the frequent rains hinder the use of fungicides; however, in the northern and southwestern portions of the state the following varieties have been found desirable: Champion, Diamond, Eaton, Niagara, Concord, Delaware, Brighton, Sweet Mountain, Herbemont and Jacques. Only the Chinese type of pears is at all grown, as it offers more resistance to the blight than the others. The desirable varieties are Le Conte, Kieffer, Smith, Garber, Dai Dai, Golden Russet and Mme. Von Siebold. The European varieties of plums do not succeed, but many of the American and Japanese sorts do well. The desirable varieties are Burbank, Abundance, Satsuma, Kelsey, Chabot, Wild Goose, Robinson and a few others. The fig is grown universally in all sections of the state, the best varieties being Celeste, Brunswick, White Ischia, Magnolia, Angelique, Lemon, Mission and Reine Blanche. The Japan persimmons are being set extensively, using chiefly the Hyakume, Kurokume, Nero Zami, Hachiya, Tsuru and Among. These fruits are large, showy, and will stand transportation well. The Elberta, Sneed, Peen-to (in the south) and Chinese Cling peaches prevail.
The other fruits, grown in a limited way, are quinces, goumi, blackberries, dewberries, a very few raspberries, pomegranates, bananas, jujubes and pawpaws. There are a few other tropical fruits that are grown only for specimens.
Louisiana abounds in beautiful flowering shrubs and wild flowers. The planting of all kinds of ornamentals is very extensive, roses bloom throughont the season, and the camellia finds a congenial home throughout the southern part of the state. In and around New Orleans the finest ornamental plantings will be found, St. Charles avenue, the principal residence street, being especially beautiful, with its palms, roses, camellias and ornamentel vines. This is not confined to the wealthier classes, for nearly all these ornamentals grow readily from cuttings with little care, and even the ponest people oftentimes hare the choicest Howers and roses around their doorstep.
F. H. Burnette.

## LOUSEWORT. Pedicularis.

## LOVAGE. Levisticum.

LOVE APPLE. First popular name of the Tomato, now dying out in America. Love-in-a-mist. = Vigella. Love-lies-bleeding. Amarantus caudatus.

LOXOSCAPHE (Greek, an oblique boat). Polyporidcea. A smail genus of southern hemisphere ferns, related to Davallia. Indusium forming a compressed,
suborbicular or cup-shaped sac, open only at ihe top: lvs.with linear segments. For culture, consult Darallia.
thecifera, Moore (Davallia concinna, Schrad.j. Stipes 3-4 in. long: lus. 6-9 in. long, bipinnate; divisions $\mathbf{2}^{-3}$ lines long, $1 / 2$ line wide. S. Amer. and Africa.
fœniculàcea, Moore (Daraillia foniculìcea, Hook.). Stipes 6-8 in. long: lvs. 9-18 in. long, quadripinnate; divisions less than $1 / 2$ line wide. Fiji Islands.
L. M. Underwood.

## LUCERNE. See Alfalfa and Medicago.

LUCULIA (probably adapted from a native name). Rubidcea. A genus of 2 species of tender shrubs from the Himalayas, bearing in winter terminal corymbs sometimes a foot across, composed of $20-40$ pink or white, fragrant, salver-shaped fis. with 5 rounded lobes, each fl. being $11 / 2-2$ in. across. A plant of L. gratissima is on record which attained $61 / 2 \mathrm{ft}$., bearing 24 bunches of Hs. each 2 ft . in circumference, beside 30 smaller bunches. Calyx tube top-shaped; lobes unequal, deciduous; stamens 5, inserted on the tube of the corolla; filaments very short: disk anuular: ovary 2-celled: style 2-branched.
L. gratissima is one of the most beautiful winterflowering shrubs for house decoration, and deserves to become more popular with florists for Christmas sales. The wood ripened after flowering furnishes the best cuttings. Newly rooted plants require a night temp. of $60^{\circ}$ at first, but the temp. should be gradually reduced and the plants hardened off before they are planted outdoors for the summer. Young plants should never be allowed to get dry from the time of first potting until they are taken outdoors. For potting a light soil is desirabie. When the pots are well filled with roots, apply liquid manure two or three times a week until the buds appear. During the summer the plants should be syringed daily, as they are subject to red spider. The plants should be lifted, potted and brouglit indoors the last week of Aug. If left out later they do not set flower buds as well. As soon as the buds appear the plants should be moved to a warmer house, with a night temp. of $55^{\circ}$. After flowering the plants should be trimmed somewhat, giren less water, kept in a night temp. of $45^{\circ}$ and syringed daily. They start slowly, but make hardy growths for planting out.
gratissima, Sweet. In the wild a tree attaining 16 ft .: lvs. opposite, ovate-oblong, acuminate, acute at the base, $4-6$ in. long : panicle decussately branched: fls. pink or rose, forming a gorgeous rounded mass; corolla lobes imbricated in the bud; stamens inserted in the tube, slightly exserted. S.B.F.G. 145. B.M. 3946. G.C. III. 21:81. R.H. 1843:385 and 1890:180. Gn. 35, p. 58; 41, p. 469; 55, pp. 42, 107. A.F. 7:443 and 10:679.
L. Finceàna, Hook. Les. oval: fls. in a compound cyme, the lobes pure white above changing to a cream, with a rosy tinge, outside rosy and the tube red. Distingasied by the presence of 5 pairs of tubercles at the base of each sinus. B.3. 4132 Gn. 35, p. 59 and 41. p. 469.-L. speciossa. Hort., is not in Index Kewensis. H. A. Siebrecht writes that it is in every way like L.
gratissima, except that the fls. are much larger and of a deeper gratissima, except that the fls. are much larger and of a deeper
color. He says it is a stronger grower and just as fragrant.

Geo. McWilliam and W. M.
LUCÚMA (Perurian name). Sapotàcere. About 50 species of trees and shrubs, largely S. American, two of which are tropical fruit trees. L. Rivicoa produces the Egg Fruit, or Ti-es, which is about the size and shape of a hen's egg, and tastes like the yolk of an egg sweetened r-ith sugar. is cult. in S. Fla. and S. Calif. it makes a large evergreen bush or small tree. It is related to the Sapodillo, but the floral parts of the latter are in 6's instead of 5 's. L. mummosa produces the Marmalade Plum (Fig. 1321), which has a rough and rusty skin and russet-colorec edil mulp. This fine fruit grows wild in the West Indies and the Pkilippices.
mammosa, Grertn. Marmalade Plus:. Fig. 1321. Les. obovate-oblong or spatulate, chartaceous, $6-8$ in. long, 2-3 in. wide, mucronate: calyx segments $9-10$, inner ones larger and notehed: orary 5-celled: fr. usually 1 -seeded by abortion. S. America, West Indies, Philippines.

Rivicda, Gærtn. Lrs. elliptic-obovate, obtuse, membranous, $4-8$ in. long, $11 / 2-3$ in. wide: calyx 5 -parted: ovary 5-celled: seed ovoid-globose. Brazil, French Gui-ana.-Var. angustifdia, Mart., is the Eget Fruit or Ti-es of the W. Indies. It has elliptic-lanceolate lvs., acute at both ends. Fig. 132\%. Cult. in S. Fla. and S. Calif.
W. M.

1321. Lucuma mammosa ( $\times 1 / 6$ ).

Lucuma mammosa, the "Mammee Sapota" of Jamaica, is the fruit of a tree found wild also in Cuba and the northeastern part of S. America. The tree is ornamental, about 30 feet high, of a pyramidal shape. It is oceasionally seen where it was originally planted in pastures near dwelling houses, but except for the droppings from cattle and horses, it receives no other cultivation. It requires a good deep soil snd an annual rainfall of about 70 inches. The flowers are cream-colored, about $1 / 2$ inch long, springing directly from the bark. The fruit is about 6 inches long, with usually only 1 seed. It has a russet-colored rougb skin. The flesh is of a dark yellowish red color, soft and sweet; it has been compared to a very ripe pear, but is more luscious. Marmalade is made from the fruit, whence the name of "Marmalade Plum."

Wm. Fancett.
LUDWFGIA (C. G. Ludwig, botanist and botanical author at Leipzig, 1709-1773). Onagràcect. About 25 species of aquatic or $s \wedge$ mi-aquatic small herbs, widely distributed in temperate and warm climates. Fls. small and inconspicuous in the axils of the leaves, the parts usually in 4's. Lus. mostly small and mostly entire or very nearly so, usually not distinctly petioled. The stems are often creeping, sometimes floating. The op-posite-lvd. species are by some referred to the genus Isnardia. The Ludwigias have little standing as horticultural subjects. They are sometimes useful in bog gardens, and one is advertised for aquaria. Three species are in the Amer. trade.

## A. Leares opposite.

palústris, Ell. (Isnárdia palústris, Linn.). Witer Purslane. Trailing in muddy places or foating or shallow water, rooting at the joints: ive. oval or ovalob-
long, narrowed into a short petiole: fls. very small, usually reddish. - Widely distributed in this country; offered as a bog plant.
Mùlertii, Mulertt. Lvs. lance-obleng, usually narrowed into short petioles, entire: fls. yellow: fr. oblong, truncate on top, $3 / 8 \mathrm{in}$. long. - Int. from $S$. Amer. ly Hugo Mulertt, then of Cincinnati, and described in "Isis" (published in Germany) in 1880 or 1881, and also in the "Aquarium," Vol. III. p. 43, 64. It is now widely distributed amongst growers of aquarium plants. It seems not to have been studied by systematic botanists. It is prized for its graceful habit and becanse it is evergreen. Grows well from cuttings and from seeds.

## AA. Leares alternate.

alternifòlia, Linn. Seed-box, or Rattle-box. An erect shrub, -3 ft . or more tall, in appearance not unlike an Epilobium: 1rs. lanceolate or oblong-lanceolate, narrowed below, entire or sometimes with mere suggestions of teeth: fls. large for the genus ( $1 / 2 \mathrm{in}$. across), with yellow caducous petals: capsules large, square in cross-section. Bogs in eastern states.-lnteresting, but not showy.
L. H. B.

LUEHEA (F. Karl van der Lïke, Austrian botanist interested in the Cape of Good Hope). Tiliàcer. About 16 species of trees and tall shrubs from the warmer parts of America with usually toothed lvs. and handsome white or rosy fls. borne in a terminal panicle, or sometimes in the axils; sepals and petals 5 ; stamens numerous, the outer ones often without anthers: ovary 5 celled: capsule rather woody, loculicidally semi-5-ralved. An undetermined spocies is advertised in Santa Barbara, 1900, from Paraguar. Francesch writes that the inner bark is used generally in Paraguay instead of string. Luehea is also spelled Luhea, and the genus of this name of the Verbenacere is a South African genus referred to Stilbe.
LUFFA (Luff is the Arabic name). Cucurbitacea. Rag Gourd. Dishcloth Gourd. Vegetable Sponge. Six species (according to Cogniaux, Vol. 3. DC. Monogr. Phaner.) of annual tendril-climbing herbs, inhabiting the tropies of the Old and New Worlds. Fls. moncecious, the staminate ones in a long-stalked raceme or cluster, the pistillate ones solitary and shorter-peduncled; calyx bell-shape or top-shape, strongly 5 -lobed; corolla of 5 soft yellow or whitish petals, sometimes ragged-edged; stamens usually 3, borne in the calyx tube: fr. a long, gourd-like pepo, becoming dry when ripe and the fibrous interior sponge-like. Known south as "California Okra."
Of laie years, the Luffas have come into prominence in American gardens, being an importation from the tropics and China and Japan. In other countries, the fruit is eaten when young, being cooked like squash or served in soups and stews. The young fruit is sometimes sliced and dried. (See Georgeson, A.G. Sept., 1892, and Bailey, Bull. 67, Cornell Exp. Sta.) In this country, Luffas are grown mostly for curiosity and ornament. The fibrous interior of the dried fruit, when bleached and prepared, is used as a sponge for the bath and for scrubbing (whence "Vegetable Sponge"). The culture is the same as for cucumbers and melons. They are tender plants, ruuning 10 to 15 ft . The Luffas are widely dispersed in the tropics as cultivated plants. The genus divides itself into 2 groups, -those species (L. Egyptincu and $L$. acutangula) with fruits not spiny or tuberculate, and those with spiny fruits. Only the following species are known to be in cult. in this country:

Egyptiaca, Mill. (L. cylíndrica, Roem. L. Petòla, Ser. L. Veitchii, Naud. L. fetida, Hort. [at least in part], not Cav. L. Fabiàna, Japónica, Mexicàna [?] and noctiflòra dilba, Hort.). Naga ito-uri ot Japanese. SuaKwA of Chinese. The commonest Disheloth Gourd. stems slender-running, furrowed, rughened: Irs. roundish in outline, mostly 15 -iobed, cuarsely toothed, very scabrous above and beneath: starinate fls. 2-3 in. across. wilting in the sun: ovary cylindrical or clavate, pubescent, destitute of distinct ridges, ripening into a slender, cylindrical. curved fruit 1-2 ft. long. Probably natire to the Old World, but widely distributed in tha tropics. A.G. 13:5\%6.


#### Abstract

acutángula, Roxbg. (L. fietide, Car.). Sing-kwa of Chinese. Fig. 1323. Lvs. rounded, scarcely lobed, very coarsely toothed: ovary 10 -ribbed, ripening into a strongly ribbed fruit. Tropics. Gt.48, p. 136. L.H.B.


because the seeds can be seen through the pods. Prop. by seeds; or the second species rarely by division. The species sometimes escape from gardens.
ánua, Linn. (L. biénnis, Mœneh). Fig. 1324. Loose-

LUISIA (after Don Lnis de Torres, of whose personality little is known). Orchidacere. Curious epiphytic herbs, with simple or branched erect stems. bearing alternate, elongated, fleshy-terete lvs.: fls. sessile, on short lateral spikes; sepals and petioles sub-similar, connivent or halfspreading; labellum adnate to the column. somewhat concave, with small lateral lobes and a large, spreading, entire or bifid middle lobe; column short; pollinia 2, on a broad, short pedicel. About 10 species. These plants are rarely cult. They grow well in any warm or intermediate house.
tères, Blume. Spike few-fld.: lateral sepals narrower than dorsal, which is similar to the petals: labellum bi-auriculate, oblongsulcate, apex bitid.
L. tères, Lindl. $=$ Sarcanthus teretifolius.

Heinkich Hasselbring.
LUNARIA (Luna, Latin for moon; name referring to the silvery white partition of the large pods). Cruciferce. Monwort. Honesty. Two herbs of Europe and W. Asia, both cult. in old gardens. Lvs. rather large, simple, broad or more or less cordate: fls. purple, in terminal racemes or panicles, racher large and showy: fr. stalked in the calyx, becoming a very large, flat, diskshaped silicle, witl decidno'is valves and a thin, persistent septum: seeds winged, $\mathbf{- 4} \mathbf{- 4}$ in each compartment. The plants are easy of cultivation under any ordinary garden conditions. They are interesting for their showy fls., but are grown mostly for their great flat pods, which are used in winter bouquets. They are called "Honesty"

1322. Lucuma Rivicoa, var. angustifolia ( $\times 2 / 3$ ).
hairy plant, $11 / 2-21 / 2$ ft. tall, branching as it matures: lvs. somewhat cordate or halberd-cordate, coarsely and irregularly toothed, stalked: fls. numerous, pink-purple, fragrant, in late spring or early summer: pods about 2 in . long and somewhat narrower, very flat, rounded at the ends, tipped with the persistent style. Europe. R. H. 1857, p. 30. - Frequent in old-fashioned gardens. There is a recent form with handsomely variegated lvs.; also a white-flowered form. Annual and biennial.
rediviva, Linn. Differs from the last in being perennial, the fls. smaller and lighter colored (often grayish purple), and the pod elliptic or lance-elliptic, and tapering to either end. Europe.-Less common and less valuable than the other.
L. H. B.

LUNGWORT. Mertensia.
LUPINUS (from the Latin lupus, a wolf; because a crop of Lupines was supposed to destroy fertility). Leguminòsce. Lupine. A group of about 80 species mostly confined to western N. America, a few growing in eastern N. America and in the Mediterranean region. Most are annuals or herbaceous perennials, one species in cult. being shrubby. All are showy plants with conspicuous fowers in terminal racemes. those of the species in cult. being mostly verticillate. The flowers are blue, white or yellow, or a union of these, papilionaceous and free-blooming. All are of easy cult. in any garden soil, except that they are said not to succeed in soil containing lime. They are adapted to borders in masses, and to all places in which low-growing showy herbs would be found. Some make good bedding plants, others cut-flowers. They are propagated by seed, the perennials also by division. They do not bear transplanting when once established, hence it is recommended to sow seed where the plants are finally desired. A few species are of value economically for soiling or plowing under. Leares usually digitate, with 5-15 entire leaflets: flowers with calyx deeply bilabiate, 5-toothed, unequal; corolla with simple erect, broadly orate standard, having strongly reflexed sides; wirgs anited at the apex and enclosing the keel; stamens
united into a closed tube : pod 2-valved, flattened, enclosing several large seeds. A very variable genus in the garden.
There are numerous garden hybrids of unknown parentage. Some of these names will be found in the supplementary list. Voss groups these under the name of L. hybridus, Hort., or Florists' Lupines. They have variegated flowers.
In addition to those described below the following native species have been advertised, mostly by Gillett, in 1881, for western collections. Probably they are not in cult. They are mostly described in Bot. Calif.: $L$. albicaulis, Chamissonis, densiflorus, lepidus, leucophyllus, ornatus and villosus.

INDEX.
affinis, 13.
albo-coccineus, 20. albiflorus, 6.
albus, $14,15,20$ arboreus, 1 . arboreus, 1. argenteus,
Cicolor, 6.
ruckshanksii, 18.
diffusus, 2.
foliis roseis, 14. grandiflorus, 6. Hartwegii, $1 \%$. hirsutus, 14 luteus, 1, 10 mieranthus, 12. mutabilis, 1 nanus, 20. Nootkatensis, 7 . parvitlorus, 4.
perennis, 3.
pilosus, 11.
Plattensis, 8. polyphyllus, 6. pusillus, 16 ruber, 14. Snow Queen, 1. subcarnosus, 19 sulphureus, 8.
A. Perennials.
B. Plants shrubby...................... . . . arboreus

вв. Plauts herbaceous.
C. Lis. with 1 lpaflet............... 2. diffusus
CC. Lis. uith several lfts.. digitate.
D. Foliage not conspicuously
hairy above.
E. No. of lfts. 5-3.
F.Lfts. shorter than petiales.
G. Pod $1 / 2 \mathrm{in}$. long... 3. perennis GG. Porl $3 / 4$ in. lony... 4. parviflorus FF. Lfts. as long as petioles.
5. argenteus

EE. Vo of lfts io.........
6. polyphyllus DD. Foliage conspicuously hairy
or silky abore.
E. Fls. parti-colored striped ................ ee. Fls. light blue, with a dark spot on the stam. dard.................... 8. Plattensis
AA. Anmuals.
B. F'ls. yellow.
c. No. of lfts. 13-15 ................. 9. sulphureus cc. No. of lfts. $\mathbf{7}-10$. . . . . . . . . . . . . . 10. luteus

вв. Fls. blue, white or red, lut selfcolored.
C. Arrangement of fls. in whorls
D. No. of lfts. 2-11 ...............11. pilosus

DD. No. of lfts. 5-7.
E. Plant villous............ 12. micranthus
ex. Plant merely puberulent.13. affinis
cc. Arrangement of fls. scattered.
D. Lfts. hairy on both sides ...14. hirsutus

DD. Lfts. not hairy abore.
E. Color of fls. white........15. albus

EE. Color of fls. blue.........16. pusillus
BBB. Fls. of 2 or more colors.
c. Foliage hairy on both sides ...17. Hartwegii
cc. Foliage not conspicuonsly
hairy above.
D. Height about 5 ft.

DD. Height 1 ft. or less.
E. Arrangement offls.alter
nate.......................
EE. Arrangement of fls
whorled .................20. nanus

1. arborens, Sams. Tree Lupine. Lfts. 7-11, lanceo-late-linear, acuie, silvery downy below, entire: fis. somewhat verticillate, in tall, loose zacemes, sulfur-yellow, fragrant : pods pubescent. 11/2-3 in. long. July-Sept. Common in Calif. B.M. 682. Gn. 30, p. 289 and 47:1017. -Shrub, 4-10 ft. high, somewhat pubescent, not hardy at the north. Var. Snow Queen or Queen of the Snow is pu:e white. Var. lùteus has been advertised.
2. diffùsus, Nutt. Deer Cabbage. Stem decumbent and many-hranched, $1-2 \mathrm{ft}$., somewhat woody at the base, densely silky: Irs. large, oval or oblong-ovate, obtuse, mucronate, cn long, soft-silky petioles: fls. more or less alternate, on a very long ( $6-12 \mathrm{in}$.) spike, light blue, the standard with a greenish sellow center: pods oblong. flattish, very woolly. April. Sandy barrens, N. Car. to Fla.-Hardiness North not determined.

3. Lunaria annua ( $\times 1 / 3$ ). (See p. 949.)
4. perénnis, Linu. Sun-Dial. Common Wild Lupine. Stem erect, 1-2 ft. high, rather stout, minutely pubescent: lrs. long-petioled, soft-downy; Ifts. $7-9$, obovateoblong to lanceolate, obtuse, glabrous above, soft-downy below: fls. in large, loose terminal spikes or racemes, alternate, blue, varying to white. June, July. Canada to Fla. B.M. 202. Mn.6:101. B.B. 2:269.-Desirable species, growing in the poorest soil, preferring sandy land. Grows from subterranean rootstocks.
5. parviflòrus, Nutt. Fig. 1395. Fls. light blue, smaller than in L. perennis. Columbia river to Yosemite and Wahsatch.-Fig. 1325 is from a photograph by D. M. Andrews.
6. argénteus, Pursh. Fls. blue or cream-colored. West ern N. Amer. B.B. $2: 269$.
7. polyphýllus, Lindl. (L.grandifldrus, Lindl.). Stout, erect species, forming tufts $2-\overline{5} \mathrm{ft}$. high: lvs. distant, mostly radical, long-petioled; lfts. lanceolate, glabrate abore, silky hairy below, 2-6 in. long: Hs, on long stalks, alternate, pedicelled, deep blue: pod $1-1 \frac{1}{2}$ in. long, narrow. June-Sept. Washington to Calif. S. B.F.G. II. 356. Gn. 45, p. 459 and $55: 215 .-A$ common garden species of merit, succeeding in any good soil. Var. albiflorus, Hort. (var. álbus), is white, bold and showy. Var. bicolor, Hort., is variegated blue and white.
8. Nootkatensis, Don. Stem hairy, decumbent, with long, spreading hairs, 2-3 ft. high: lfts. 5-9, narrowly oborate-oblong, smooth above, hairy below, mucronate; stipules lanceolate, nearly as long as the lfts.: fls. in dense racemes, blue, variegated with red and yellow, with large veins, variable. May-July. Nootka Sound. B.M. 1311 and 2136. - Coarse, stocky species, said to be unsuitable for small gardens, but of merit.
9. Platténsis, S. Wats, June, July. Neb., Wyo., Dak. B.B. 2: 269.
10. sulphùreus, Dougl. Stem very erect, white silky: lfts. narrowly lanceolate, densely hairy on both sides, shorter than the petiole: fls. in tall, dense racemes, sul-fur-yellow: pods woolly, 1 in. long. July, Aug. Mts. of Oregon. R.H. 1890, p. 252. -Strong species branching above, bare below.
11. lùteas, Linn. Yellow Lupine. Fig. 1326. Stein erect, nearly simple, hairy, 2 ft . high: lfts. lanceolate, acute, hairy: fis. on pubescent stalks longer than the
lvs., verticillate, sellow, fragrant : pod oblong, flat. June, July. S. Eu. B.M. 140.-Succeeds in the poorest soll. Useful for cut-flowers, for the border, for fodder or for plowing under to improve sandy soils. As a fodder, it may be fed green or as hay.
12. pildsus, Linn. Stem hairy, 2-4 ft. high: lfts, ob-long-lanceolate, hairy: fls. verticillate, pedicelled, rose, the middle of the standard red. S. Eu.
13. micránthus, Dougl. Stem slender, 3-12 in. high, hairy: lfts. linear, $1 / 4-1$ in. long: fls. in short, dense racemes, somewhat verticillate, very small, violet, staudard and wings narrow: pod linear. Gravelly places, Ore. to Calif. - A slender plant of branching habit.
14. affinis, Agardh. Stem rather stout, 8-10 in., pubescence rery short: Ifts. broadly wedge-obovate, obtuse, long, more or less smooth above; stipules one-half the length of Ivs.; petioles twice longer than the lfts.: tls. on a long stalk, deep blue: pod linear. Early spring. Calif. - A free, hardy species, often growing very rank.
15. hirsùtus, Linn. Blue Lupine. Stem hairy, 2-3 ft . high, branching toward the top: lfts. $\mathbf{7 - 9}$, oblong or oblong-oval, hairy, long-petioled: fls. somewhat verticillate or scattered, large, mostly purple, sometimes variegated with blue or violet: pod large, very hairy. July, Aug. S. Eu. - Used ornamentally and as an economic plant for the same purposes as $L$. Iuteus. It is valuable for fodder and for plowing under. Var. albus, Hort., has white fls. Var. rùber, Hort., and var. folliis roseis are advertised.
16. albus, Linn. White Lupine. Erect stem, 11/2 ft. high: lfts. obovate-oblong, $5-7$, hairy below, $1 / 2-2$ in. long: fis. alternate stalked, on erect stems, quite large, white: pods large. Summer. Asia and S. Eu.-A good fodder plant said to be of greater thrift than $L$. luteus, and remaining green longer. Succeeds well on the poorest soil and is valuable for plowing under. Seeds are sown April-July, the plants plowed under when in flower.
17. pusillus, Pursh. Lfts. about 7, mainly oblong, acute: fls. blue or purple. Prairies. B.B. 2:2 20.
18. Hártwegii, Lindl. Stem erect, 2-3 ft. high, somewhat branching: lfts. $7-9$, oblong, obtuse, very hairy: fls. in many-fld. elongated racemes, blue; standard whitish, then reddish. June-Sept. Mexico. B.R. 25:31.Var. albus is also sold. Possibly a perennial but cult. as an annual.

19. Lupinus parviflorus.
20. mutábilis, Sweet. Stem erect, branched, somewhat woodr, 5 ft . tall: lfts. $7-9$, lanceolate, obtuse, hairy below and somewhat glaucous: fls. large, somewhat verticillate, fragrant; standard white mixed with blue, becoming blue with a large yellow mark in the center; wings and keel white. June-Aug. Mts. of S. America. S.B.F.G. 130. B.M. 2682. - Attractive species, erect and branching but half-hards.

Var. Cruckshanksii, Hook. (L. Cruckshanksii, A. Gray). Fls. large, fragrant, white, the standard gellowrose, becoming violet. B.M. 3056 .
19. subcarndsus, Hook. Stem $8-10 \mathrm{in}$. high, ascending, silky pubescent: lfts. 5-7, obovate-lanceolate obtuse,

1326. Lupinus luteus.
somewhat fleshy, smooth above, silky below and on margins: fls. in pyramidal racemes, alternate; standard orbicular, deep blue with a white spot in the center divided by a longitudinal fold: pod linear-oblong, silky. Spring. Texas. B.M. 3467. - Spreading species of merit.
20. aànus, Dougl. Stem slender, $1 / 2-1 \mathrm{ft}$., often branching from the base, hairs: lfts. $5-7$, linear to oblanceolate pointed, pubescent both sides, stalks l-3 times longer: fis. in elongated, loose racemes, verticillate on slender stalks, large, white, pointed with clear blue, edged with deeper blue; wings bluish, hiding whitebrownish keel: pod hairy. June,July. Calif. S.B.F.G. II. 257. B. R. 20:1705.-This species and its varieties are very floriferous, giving a fine effect in masses and in the border. Var. albus, Hort., white, tinged with lilac. Var. albo-coccineus, Hort. A very compact variety, the lower half of the spike rosy red, the upper white; forms compact tufts and is called a superior variety.
L. angustifoluto, Linn., with blue fls., is much grown in Eu. as a fodder plant and for plowing under: annual. Native to as a fodder plant and for
The following are garden hybrids of unknown origin. They mostly have variegated fls. and are common in cult.: L. atroriolàceus. Perennial, 2 ft . high. Fls. dark violet, striped with white and yellow.-L. coeléstinus. Annual, 2 ft . high. Fls. light blue. - L. Dúnnetti. Fls. lilac-purple, gold and white. According to Voss, this is the sane as the kinds known to the trade as superbus, insignis (Vilmorin, not Dippe), tricolor elegaus, and superbus Dunnetti. There is also a donble form. - $L$. hybridus. Probably mixed kinds.-L. puléscens, Benth. Perennial or subshrubby, the pubescence short spreading hardly silky in the new parts: lfts. $7-9$, oblong-lanceolate, acute, shorter than the petiole, pnbescent on both sides: fls. loosely arranged almost in whorls: pedicels shorter than the calyx: pod hirsute, $4-6$-seeded. The above is from the original description. Eentham neglects to state the color of the fls., but an allied species has blue fls. Mottet must be in error in calling this an annual. Mex., Central Amer., Colombia.-L.tricolor. See L. Dunnetti.

## A. Phelps Wrman

LYCASTE (fanciful name). Orchidàcete. This genus contains about 30 species. all natives of S . Amer., Mexico and the West Indies. The flowers are freely produced and remain in good condition on the plant for several weeks. They are normally borne singly on erect or suberect bracted scapes, but sometimes twin-flowered stalks occur. Pseudobulbs ovate or oblong-ovate, bearing 1several plicate leares at the summit, and sheathing leares from the base: sepals sub-similar, spreading, the lateral pair united with the base of the column and forming a spur-like chin or mentum; petals smaller, projecting forward, with the iips often recurred; labellum 3-lobed, the lateral lobes erect, middle lobe ascending or recurved, with a fleshy, tongue-like callus on the disk: pollinia 4. In Lycaste the scape arises from the very young leafy axis, which does not develop until several months later. The scape, therefore, appears from the base of the bulb. Among the species, L. Skinneri is a farorite orchid with growers. The species of Lycasie

## LYCASTE

are very distinct from each other and do not fall readily into natural groups. This was probably the canse of Keichenbach's complaint that "it is nearly as satisfac. tory to study this group as it is to brush hedgehogs." The arrangement in the key is purely artificial, and does not indicate close relationship among the species grouped together.

Heinrich Hasselbring.
The genus Lycaste is closely allied to Maxillaria and has a similar geographical range, being found from Mexico and the West Indies to Peru and southeastern Brazil. Notwithstanding this wide distribution, however, they readily subject themselves to one general mode of treatment, and may be grown in a bright, cool portion of the Cattleya $0:$ warm end of the Odontoglossum department, where they should receive plenty of indirect solar light, moisture and sufficient ventilation to ensure an active ntmosphere.
During winter. the night temperature should range from $50^{\circ}$ to $55^{\circ}$ Fahr., and that of the day $60^{\circ}$ to $65^{\circ}$, or a few degrees higher, with sun heat ard ventilation. In summer, the air should be as cool as possible, and contain plents \& moisture.
When Lycestes are growing they need a good supply of water at the roots, and should never be allowed to remain dry for a long time, even when at rest. Light syringing overhead is beneficial at all times in bright weather when air can be admitted. The deciduous species, however, must be carefully watered when at rest, for it must be remembered that in casting their foliage they lose most of their actire radiating surface, thus reducing evaporation to a minimum.
For special treatment, they may be divided into three groups, L. aromatiea, L. costata and L. Marrisone forming good types. The $L$. aromatica section embraces besides the type $L$. candida, $L$. cruenta, $L$. Deppii, $L$. lasioglossum, L. macrobulbon and kindred sorts, all more or less deciduons. These gruw best in pots in a mixture of equal parts chopped peat fiber and sphagnum moss, with a small quantity of leaf-mold added. About one-third of the pot space should be devoted to drainage of broken charcoal or potsherds, and the compost must be carefully and rather firmly pressed in about the roots, leaving the base of the pseudubulbs on a level with or a little below the rim of the pot. The best time for transplanting is just after the plants start into new growth, at which time give a more abundant supply of water.
The L. costata group includes, besides the type, such species as L. lanipes, L. locusta and L. Skinmeri, which, excepting the last. are but semi-deciduous, large-growing species. They succeed best under pot culture, and shonld be grown in a compest of about equal parts chopped sod, from which some of the fine soil has been removed, and decomposed leaves, adding a little chopped live sphagnum to keep the soil porous and to retain moisture. The compost should become nearly dry occasionally to prevent it from becoming sour.
The $L$. Harrisome section is small; the type and $L$. tetragona are good examples; all are sempervirent and grow best under hasket culture in porons material consisting of chopped peat-fiber and live sphagnum, well mixed and interspersed with noduies of charcoal. The compost should be pressed in moderately firm about the roots to keep the plant steady, and newly imported pieces should be held in place by copper or brass wire crossed between the psendobulbs.
Lycaste stock is usually supplied by new importations, but plants may be increased by cutting throngh the rhizome between the pseudobulbs, two at least being left to each piece.

## Robert M. Grey.

alba, 10, 14, 16. albo-sanguinea, 10 . aromatica, 13, 14. Barringtonio. 8. Bifrenaria, 16, 17. candida. 7, 10 . Colax jugosus, 1. citrina, 16. costata, 8. cruenta, 13.
delicatissima, 10.

## Deppii, 15.

Maxillaria, 9, 10,12, 13. 15. 16.
eburnea, 16. gigantea, 3. grandiflora, 10. Harrisoniee, 16. inodora, 17. jugosa, 1. lasioglossa, 2. Lawrenceana, 7. locusta, 6. macrobulbon, 9 .

Measuresiana, 11. plana, 11. panctatissima, 15. purpurata, 10. rosea, 10. rubra, 7 . Schilleriana, 4. Skinneri, 10. superba, 10. tetragona, 12.
L. cristata = Paphinia cristata. - L. Harrisiana is probably an error for L. Harrisonize.

> A. Scape originating in the axil of a leaf above the new leafy axis: lubellmm with transierse furrous. (Colar.). 1. jugosa
> AA. Scope Griginating in the axil of " leaf below the young leafy axis: lebellum usually with longitudimul crests or callosities.
> B. Pollinia sealed on a common stipe.
> C. Scape erect or suberect, normally 1-fld. (Lycaste.)
> n. Milllle lobe of the labellum semi-oblong, rounded, etc., usually obtuse or truncate. E. Pilose, with long hairs.. 2. Iasioglossa Ee. Simooth or pubescent.
> F. Sepals oblong-lancen-
> late, spreading....
> 3. gigantea 4. Schilleriana 5. lanipes 6. locusta 7. candids 8. costata 9. macrobulbon
> FF. Sepals oblong-orate, spreading or halfspreading...........10. Skinneri
> 11. plana
> 12. tetragona
> 13. cruenta
> DD. Middle lobe of the labellim sputulute ...................
> DDD. Middle lobe orate-acumi-
> nute ......................... . 15. Deppii
> cc. Scape pendulous, normally several-fld. See Paphinia.
> BB. Pollinit seated on 2 distinct
> stipes. (Bifrenaria.)..........16. Harrisoniæ
> 17. inodora

1. jugòsa, Nichols. (Còlax jugòsus., Lindl.). Pseudobulbs 2-3 in. long, with lanceolate-acuminate irs. $6-9$ in. in length, springing both from the apex and base: scape clothed with large bracts, and bearing -3 tls., which are subglobose when fully expauded: sepals broadly oblong, obtuse, cream-colored to waxy white; petals ovate-oblong, obtuse, marked with black-purple, transverse bands; labellum smaller, velvety and covered with fleshy ridges: side lobes longitudinally streaked, and middle lobe streaked and splashed with dark purple. Jan.-May. Brazil. B. M. 5661 . Gn. 16, p. $7 t$ and 49, p. 294.-Fls. persistent for many weeks.
2. lasioglossa, Reichb. f. Pseudobulbs 3 in. long, ovoid, compressed: 1 rs. 8-12 in. long, elliptic-lanceolate: scape 1 -fid.: fls. 5 in. across; sepals spreading, narrowly oblong, dull brown or greenish brown; petals one-third as long, erect, concare, obtuse, golden yellow; labellum as long as the petals, also golden yellow: lateral lobes short, obtuse; middle lobe oblong, corered with long, soft hairs; callus ovate, notched. Autumn and winter. Guatemala. B.M. 6251.-Very odd but not showy.
3. gigantèa, Lindl. Pseudolulbs often 6 in . high, bearing 2-3 oblong-lanceolate 1 rs . $11 / 2-2 \mathrm{ft}$. long: scape 1 -fll., somewhat shorter than the lis.: sepals orate to lanceolate, 3 in . long, rather olive-green; petals somewhat smaller, lanceolate, spreading, of the same color ; labellimm oblong-lanceolate: side lobes acute; middle lobe ovate, acuminate, serrate, rich maroon bordered with a narrow orange margin: crest fleshy, emarginate. The fl.-stems are said to attain a height of 2 ft ., with a single large flower. In most of the specimens in cult. the lip is abruptly rounded off. June-Ang.; Nor., Dec. Widely dispersed in Cent. Amer. B.M. 5616. B.R.31:34.
4. Schilleriàna, Reichb. f. Plant resembling L. Skinneri in habit: pseudobulbs 2-lvd.: lvs. elongate-lanceolate, up to 2 ft . long: scape 1 -fld., suberect, 8 in . iong: sepals large, spreading, oblong-lanceolate, 4 in . long, brown: petals erect, with recurved tips, small, $11 / 2 \mathrm{in}$. long, white, speckled with brown on the back; labellum as long as the petals, white, speckled and tinged with rose: side lobes small; middle lobe ovate-quadrate,
crenulate; callus tongue-shaped, concave. Often the parts of the flower are more or less spotted and hairy in places. July, Aug. Colombia. Gt. 1321.
5. lánipes, Lindl. Pseudobulbs large: lvs. lanceolate, $12-18$ in. long: fis. solitary, as many as 15 on a plant, creamy white; sepals and petals oblong-lanceolate; labellum smooth: lateral lobes orate-obtuse; middle lobe oblong, obtuse, serrate, with a concave, ribbed callus. Oct. Ecuador.-Lindley says the fls. are pale green, $21 / 2 \mathrm{in}$. long before they expand, without a trace of any other color.
6. locústa, Reichb. f. Pseudobulbs pyriform: lys. oblong-ligulate, acute: fls. smaller than those of $I$. Deppii, all green except the white column; the odd sepal oblong, obtuse; the lateral ones linear-oblong, acute; petals bent down inside of the lateral sepal; labellum $w^{*}$ th acute side lobes and a semi-oblong, tleshy, conrex middle lobe, all green; on the disk are 2 narrow keels, confluent behind into a fleshy emarginate callus. Peru.
7. cándida, Lindl. Pseudobulbs ovoid, much compressed: lvs. oblong-acuminate: fls. about 2 in. across; sepals spreading, reftexed and acute at the apices, oblong, slightly woolly at base, yellowish green, sometimes dotted with light rose; petals whitish, revolute, obtuse; labellum white, with a few rose-colored spots: disk plate obtuse emarpinate at the apex; column hairy on the inner surface. Costa Rica.-Var. Lawrenceana, Hort. Sepals and peta's tinted with rose, otherwise the fls. are like those of the type. Var. rùbra has been offered.
8. costàta. Pseudobulbs oblong, compressed, 3-5 in. long: Ivs. 2-3 at the apex, 6-10 in. long, broadly oblong-lanceolate, acuminate: scape erect, as long as the pseudobulb: Hs. large, nearly white or creamy yeliow; dorsal sepals oblonglanceolate, the lateral sepal similar but falcate, united with the column to form a blunt spur; petals smaller, somewhat undulate; lateral lobes of the labellum small, erect; middle lobe ovate - rotund, toothed. Peru. B.M. 5706 (as L. Barringtonia, var. grandifloru).
9. macrobúlbon, Lindl. Pseudobulbs very large, ovate, compressed, with several large, oblong, acute lvs.: scapes usually 2 from each pseudobulb, much shorter than the lis : Als. large, yellow; sepals ovate-oblong, spreading; petals shorter, somewhat concare, with recurved tips: labellum oblong, as long as the petals, spotted on the disk with brown. Colombia. B. M. 4298 (as Maxilluria macro. bulbon).
10. Skinneri, Lindl. Pseudobulbs oblong-orate, $3-5$ in. high, 1-2-lvd.: lvs. oblong-lanceolate, 9-12 in. long: scapes $5-6 \mathrm{in}$. long, each bearing a single waxy flower 5-6 in. in diam.: sepals ovate-oblong, white tinged with rose; petals half as long, broadly ovate, pointing forward with acute, reflexed tips, striated and tinged with dark rose : lateral lobes of the labellum erect truncate; middle lobe oblong-orate, recurred, with a fleshy tongue-shaped callus on the disk, dark crimson-purple. The most useful of the genus. Spring. Guatemala. B.M. 4455. P.M. 11:1 (Maxillaria Skinneri). Gn. $25: 440 ; 30$, p. 374; 37:397. F. $1861: 65$ (var.). A.F. 4:519. J.H. III. 34:367. A.G. 14:433. - The follow. ing rarleties are advertised:

Var. albs, Hort. A large-fld. white variety with a tinge of yellow at the base of the labellum and a yellow, tongue-shaped appendage in its throat. I.H. 27:405.

Gn. 25:440. F.M. 18i2:35. G.C. Ill. 7:424. A.F. 6:631 Var. albo-sanguinea. No description. Var. cándida Hort. White. Var. delicatissima, Hort. Fls. large, rose white: labellum white blotched with rose. Feb. Var. grandiflora. No description. Var. purpuràta, Hort. Sepals and petals rose-white; labellum crimson-purple. Var. rosea, Hort. A beautiful varicty with deep rose fls. and a white labellum spotted with crimson. Var. \&u. pérba. Sepals and petals white; labellum crimson.
11. plàne, Lindl. A robust plant, with large ribbed pseudobulbs and ample-pointed oval liss.: tls. 3-4 in. across; sepals oblong, plane, rich medder-red inside; petals smaller, with recurved tips, white, tipped with crimson; labellum smaller, white spotted with crimson; side lobes crenulate; middle lobe rounded, obtuse, serrate, crested. Winter. Bolivia. B.R. $29: 35$. - Var. Measuresiana, Williams. Sepals reddish brown, tipped with green : petals and labellum white spotted with bright rose, except on the margins of the petals. Autumn.
12. tetrágona, Lindl. Pseudobulbs ovate, tetragonal: lvs. solitary, orate-lanceolate: scape $1-4$-fld.: fls. greenish streaked with crimson; sepals and petals oblongorate, rather obtuse, half-spreading, the 2 lower forming a blunt, projecting angle at base; labellum smaller, white and purple or green and purple, with a shovelshaped appendage on the disk. Fls. not beautiful, but very fragrant, remaining fresh for two months. June. Brazil. B.M. 3146 and B.R.17:1428 (both as Maxillaria tetragona).
13. cruenta, Lindl. Pseudobulbs compressed: Irs. many, oblong, membranaceous: scape bearing 1 yellow flower (rarely 2), much larger than those of L. aromictica:

1327. Lycaste aromatica ( $\times 1.5$ ).

1328. Lycaste Harrisonix, var. eburnea ( $\times 1 / 2$ ).
sepals orate, obtuse; petals similar, erect and smaller; labellum half as long as the sepals; lateral lobes rounded; middle lobe rounded-truncate, crisp on the margin, pubescent; crest small, Heshy. Like L. aromatica, but the lvs. much broader, fls. larger, and the labellum of different shape and somewhat spotted with purple. Mar., Apr. Guatemala. B.R.28:13(Muxillaria cricenta). Gn. 44:933 (Lycaste (tromatica).
14. aromática, Lindl. Fig. 1327. Pseudobulbs ovate, compressed : lvs. many, sheathing, oblong-lanceolate: scape erect, 1 -fld., shorter than the lrs.: fls. yellow, $21 / 2$ in. across; sepals and petals ovate-oblong, acute; the latter smaller and pointing forward; latera! lobes of the lavellum with narrow, projecting blades: middle lobe spatulate, dentate, recurved, and haring a large truncate plate as a crest. Winter and spring. Mexico. B.R. 22:1871. - Floriferous.
15. Déppii, Lindl. Pseudobulbs orate, clustered: les. $3-4$, broadly elliptic-lanceolate, $11 / 2-2 \mathrm{ft}$. long: scape erect, bearing 1 or 2 tis. 4 in. in diameter: sepals oblong-lanceolate, dingy green, spotted with chocolatepurple; petals smaller and cuculate, white; labellum bright yellow, with a few purple spots; lateral lobes small, rounded; middle lobe ovate-acuminate, recurred, waved, with a yellow callus. Vigorous and free-flowering. Aug. to May and June. B.M. 3395. L.B.C. 17:1612 (both as Maxillaria Deppii). P.M.2:268 (Maxillaria Deppei). -Named after Deppe. but originally spelled Deppii. Var. punctatíssima, Hort. Fls. much spotted with dark purple. Guatemala.
16. Hantisòniæ, G. Don. Some authors prefer to call this Bifrendria Harrisonice, Reichb.f. Pseudobulbs 3-4 in. high, 4 -angled: lrs. solitary, lanceolate: scape erect, 1-2-fld.: fls. 2-3 in., cream-colored; sepals spreading, oval, the 2 lower forming a kind of open spur at thelr united bases; petals oral, spreading; lateral lobes of lip rounded, crenate: middle lobe rounded-emarginate, crenate; all beautiful purple; inside tawns, with purple lines, and an orange callus. Spring. The fls. last a
long time. Brazil. B.R.11:897. B.M. 2927. P.M. 2:196 (all as Maxillaria Harrisonue). Var. alba, Kränzlin. Sepals white, tinged with pink; petals pure white; labellum yellow, with purple veins; front of middle lobe white, with rose veins. Aromatic. Fls. last about three weeks. Gt. 38:1312. G.C. II:25:437. Var. ebúrnea, Hort. Fig. 1328. Sepals and petals white; labellum white, richly streaked with carmine; throat yellow. April, May. Brazil. A.G. 12:407. Var. citrina, Hort. (L. citrina, Lindl.). Fls. large, fleshy; sepals and petals lemonsellow; lip white, stained with lilac. Brazil.
17. inodòra, Lindl. (Bifrendria inodora, Lindl.). Pseudobulbs usually orate-oblong, 4 -angled, 3 in . high: lws, solitary, short-stalked, oblong-lanceolate, 1 ft . long and 4 in . wide: scape half as long as the pseudobulb, bearing 1-2 large, spreading, brownish green fls. with red hairy lips: sepals roundish oblong, tinged with red, the lateral ones ending in a spur-like projection at base; petals orate-acuminate, all recurved at the tip: middle lobe of the labellum roundish oblong, undulate, having an elevated process at the center. Resembles $L$. tetrag. ona, but its fls. are not fragrant. Spring.
Since these descriptions were put in type, we learn that Lager \& Hurrell have in stock Lycaste fulteéscens, Hook. Following is a description from the "Orchid Grower's Manual" (see also B.M. 4193): "Psendobulls large broadly ovate, somewhat mem brareous plicate lanceolate leaves two or more from their top, and handsome, tawny yellow Howers, on slender radical scapes The flowers have lanceolate sepals $21 / 2 \mathrm{in}$. long, the lateral ones falcate, connate at the base into a blunt spur; the petals are similar, but slightly sraller; and the orange-colored lip is oblong, 3 -lobed, with an emarginate appendage on the disk, and an ovate-obtuse front lobe, beautifully fringed at the margin with wavy hairs. Colombia."

Heinrich Hasselbring.
LYCHNIS (from the Greek word for lamp, in allusion to the flame-colored fls. of some species). Caryophytlicece. As commonly understood, Lychnis includes 30 to 40 sinall herbs of the temperate parts of the northern hemisphere. The technical generic characters are so rariable and unimportant, howerer, as to allow the genus to be thrown into Silene or to be broken up into 7 or 8 distinct genera (for the latter, see Williams, Journ. Bot. 31:167), according to the point of view of the particular author. They are annuals, biennials or perennials, of easiest culture in ordinary garden soil. They are plantswhich like the sun. They are mostly erectgrowing, and the leares are opposite and entire. The capsuie usually has but one locule or compartment, and the seeds are borne on a central or axile placenta(Fig. 1329). The styles are usually 5 or rarely 4, in this differing from Silene (in which the styles are 3), and the calyx teeth are commonly 5. In some species, the styles are 3 and the capsule is more than 1-loculed at base, but in these cases the habit of the plant and minor technical
 Corn-cockle ( $\times 11 / 2$ ). Showing axile placenta. characters enable one to refer them to Lychnis rather than to Silene. The stamens are 10; and the petals 5 and usually with a 2-cleft scale or a pair of teeth at the base of the blade. In the following synopsis of the garden kinds, little attempt is made to follow technical botanical divisions.

Some of the species of Lychnis are amongst the best known of old-fashioned flowers, as the Mullein Pink, Maltese Cross and Ragged Robin. These are essentially flower-garden subjects. Others, as L. nlpina, are better known as border or rockwork plants. All species are easily grown from seeds, the biennials and perennials blooming the second year. The perennials are often propagated by division.

## index.

Agrostemma, 1, 5, elegans. 10. 6, 7. alha, 9.
alp:na, 4.
Chalcedonica, 2.
Coeli-rosa, $\overline{5}$.
Coronaria, 5. coronatia, 12 . dioica, 8 . diurna, 8.
fimbriata, $\overline{7}$ Flos-cuculi, 11. Flos-Jovis, 6. Githago, 1. grandiflora. 12. Haageana, 13. oculata, $\overline{\text { B }}$. plenissima, 11.
semperflorens, 11.
Senno, 14.
Sieboldii, 12. Silene, 7 .
speciosa, 12. splendens, 10. Suecica, 4. tomentosa, 5. respertina. 9. Viscaria, $i, 10$.
A. Calyx lobes long and leafy: petals not crowned.

1. Githago, Scop. (Agrostémma Githàgo, Linn.). CORN-COCkle. Figs. 1329-30; also 825. An annual weed in wheat-fields, and difficult to eradicate because the seeds are not readily screened from the wheat in the thresher or fanning-mill: plant strict, 2-3 ft. tall, whitehairy: lvs. nearly linear: fls. long-peduncled, red-purple and shows, the oborate
 entire petal limbs exceeded by the narrow calyx lobes-these lobes falling when the fruit is ripe. Eu.-Rarely cult. in old gardens.
AA. Calyr lolies not prolonged and lectfy: petalsusually crouned.
B. Fls. 1 in. or less across, in dense,terminal cymes or um. bellate heads. (Forms of No. 12 may be sought here.)
2. Chalcedónica, Linn. Maltese Cross. Jerusalem Cross. Scarlet Lightwing. Fig. 1331. Perennial 2-3 ft. tall, usually loose-hairy, the stems simple or nearly so: Irs. oblong or cor1330. Flower of the Corn-cuckle date-lanceolate, clasping (Lychnis Githago) in bud. Natural size. (upper ones often narrow and tapering), shortpointed, hairy: Hs. 1 in. long, with narrow upward-enlarging ribbed calyx and sprea ling, obcordate-notched limb. June. B.M. 257. - Probably vapanese, but long in cult., and one of the best of all old-fashioned flowers. The tls. are usually brick-red to scarlet, but there are varieties with rosecolored, flesh-colored and white blossoms; also with double fls. The arrangement of the petal-limbs suggests the Maltese cross, hence one of the common names. Rarely persists for a time as a weed.
3. fülgens, Fischer (not Hort.). An erect-stemmed perennial, hairy: lvs. orate to orate-oblong, roughish, tapering below but scarcely petioled: Hs. few, in a rather dense terminal cluster, bright scarlet, each petal diviled into tro bread lobes, on the outer side of which are two other and very narrow lobes, the ends of the main lobes slightly toothed; calyx oblong or ovate, 10 -ribbed, with erect teeth. Siberia, China, Japan. B.M. 2104. B.R. 6:478. - Perhaps not in cultivation in this conntry. The plant that passes under this name is probalbly a form of L. coronata. From L. Chalcedonica it is distinguished by lower stature, much latger fis., and the well-marked side teeth or lubes on the petals.
4. alpina, Linn. Glabrons, tufted, a ft. or less tall: Irs. mostly at the base, thickish, dizear or oblong: fis. pink, with 2-lobed petais (segments linear), and short,
broad calyx with red teeth. N. Asia., Eu., and Amer. B.M.394. L.B.C. 9:881 (as L. Suecica).-An attractive alpine.
BB. Fls. mostly larger, Lorne singly or in loosp clusters, or at least the clusters not all terminal.

## c. Plant white-Hoolly

 throughout.5. Coronària, Desr. (Agrostémma Coronaria, Linn. Corondria tomentosa, A. Br.). Mellein Pink. Dusty Miller. Rose Camplon. Fig. 1332. Biennial or perennial, $1-21 / 2 \mathrm{ft}$. tall, forking towards the top: lvs. oblong, oblongoval or oblong-spatulate, the lower onez obtuse or nearly so, tapering to a more or less clasping base: fls. large (11/2 in. across), circular in outline, crimson or rose-crimson, borne singly on the ends cí the branches; petals with appendages at the throat; calyx with filiform teeth. Eu. and Asia. B. M. 24. - A common plant of old gardens, and sometimes escaped. The glowing fls. and white foliage make it a conspicuous plant. A hybrid of this and L. Flos-Jovis is figured in G.C. III. 2, p. 101.
6. Flos-Jòvis, Desv. Perennial, $12-18$ in., makiug a clump: lvs. in a rosette, also cauline, oval-lanceolate, more or less clasping: fls. small ( $1 / 2 \mathrm{in}$. or less across), bright red or rose, in a rather dense, umbel-like cluster. Eu. B.M. 398 (as Agrostemma Flos-Jovis).-Hardy perennial, rarely seen in old gardens.
cc. Plant not uhite-rcoolly, greer.
D. Petals z-notched or s-cleft. (Forms of No. 12 may be sought here.)
E. Annuals.
7. Cáli-ròsa, Desr. Rose of Heaven. Fig. 1333. A very floriferons annual, 12-18 in., glabrous: lvs. linear, long-acuminate and very sharp-pointed: ths. on slender

8. Lychnis Coronaria.
stems, about an inch across, the petals only slightly notched, rose-red, with a linear bifid scale at the throat; calyx club-shaped. Mediterranean region. B.M. 295 (as

## LYCIUM

Agrostemma Celi-rosa).-A popular garden annual, lov ing the sun. There is a rohite-fld. form; also var. fimbriata, Hort., with toothed petals. The species is known also as Silene Coli-rosa. For an account of the leading garden forms, see Rehder, M.D.G. 1897, p. 346.

Var. oculàta (L. oculàta,

1333. Lychnis Cxeli-rosa Natural size. Backh. Viscaria oculata, Lindl.), is a handsome form with purple-eyed HIs. B.R 29:53. B.M. 4075.

EE. Biennials and perennials.
$\varepsilon$ dioica,Linn.(L.di.irna, Sibth.). Red or Morning Campion. Coarse, hairy and usually somewhat viscid, 12 ft . tall, forking above: lus. ovate-lanceolate or oblong, the cauline ones broad based or clasping: tls. normally red (varying to pink and white), in loose, elongating or $f_{t} \ldots$ ing clusters (or at firstsi . $n$ the ends of the branchc - pening in the morning, not fragrant, more or less diocious; calyx oblong, reddish, not exceed ing $1 / 2$ in. in length: fr. or capsule large and globose, wide-mouthed, the teeth recurved. Eu. and Asia. Frequent i: cid gardens, and also run wild in waste grounds in the eastern states. There are double fld. forms.
9. alba, Mill. (L. vesper tima, Sibth.). White or Evening Campion. Very like the last, and perhaps not specifically distinct, but more viscid : lvs. longer : fls. usually white and fragrant and openins at erening; calyx longer and green capsule ovate to conical, with teeth erect or spread ing, not recursed. May, June. Eu.-In old gardens and also escaped. There is a double-fld. form. This and the last are easily grown perennials or biennials.
10. Viscària, Liun. Ger man Catchfly. Interesting hardy perennial, 6-20 in. high, glabrous, but with riscid patches beneath the fl.-clusters: lrs. long-linear the lower ones tapering towards the base: fls. not large, red, in opposite short stalked clusters, which forn an interrupted glomerate panicle; calyx $3 / 4$ in. long, reddish, usually somewhat swollen above the middle, with short teeth. Eu., N. Asia. G.C. III. 20:122.-SGmetimes seen in old gardens, and a useful plant with a tufted habit; a most profuse bloomer in sunny places. There are forms with deep red and white Hs.: also double-fld. Var. splendens, Hort., has rose-pink fls. Var. élegans, Hort., lıas scar let and white-striped fis.

DD. Petals 4-lobed or parted.
11. Flos-cùculi, Linn. Ragged Robin. Cuckoc Flower (whence the Latin name). Perennial, slender, 1-2 ft. tall, slightly roughened, and glandular above: root-lvs. oblanceolate; stem-lys. lance-linear to linear and rather small: fis, in a loose, cymose-paniculate cluster, red or pink, the petals cut into 4 linear seg ments; calyx short-oblong, 10 -ribbed. Ein., N. Asia. -

Common in old gerdens and also naturalized in parts of the eastern coustry. The double form (red or white) is prized for its close-packed, fimbriate fis. An old-time and deserving favorite, blooming profusely and for most of the season. Hardy.
Var. plenissima, Hort. (L. plenissima semperflörens, Hort.), is an excellent very double form, blooming from spring till fall, and also forcing well.
ddd. Petals several-toothed or fimbriate, but not lobed.
12. coronàta, Thunb. (L. grandiflòra, Jacq.). Perennial, or often biennial under cultivation, erect, glabrous: lvs. oval-elliptic and acute, the cauline ones sessile or nearly so: His. very large (nearly or quite 2 in . across), the wide-spreading petals sharply several-toothed or somewhat laciniate, brick-red or cinnabar, scattered or in an open panicle. China, Japan. B.M. 223 . L.B.C. 15:1433. F.S. 10:979. - half-hardy or tender perennial, growing $1-1 / \frac{1}{2} \mathrm{ft}$. high, riostly a spring and summer bloomer. Of this handsome plant there are various forms, and to at least some of them, the name $L$. fulgens is frequently applied.
Var. speciòsa (L. speciòsa, Carr. L. fîigens, var. speciosa, Voss). Usually not so tall, very bushy: lvs. narrower and sharper: tis. very large and redder (usually scarlet), the petals less toothed and indistinctly 2 notched. R.H. 1870-1:530.

Var. Sièboldii (L. Sièboldii, Van Houtte. L. fúlgens, var. Sièboldii, Hort.). Fls. large and pure white, with lacerate and obscurely 2 -notched petals.
13. Haageàna, Lem. Hybrid of $L$. fulgens and $L$. coronata, and a good intermediate, the fls. being large, with 2 -notched petals and 2 short side teeth o: lobes and dentate ends to the large lobes. It is a hardy or half-hardy perennial, 12 in . or less high, in summer producing large clusters of orange-red, scarlet oz crimson fls., which are nearly 2 in. across. Very desirable. I.H.6:195. F.S. 22:232.
14. Sénno, Sieb. \& Zucc. Erect-growing, villous perennial, with sessile, orate or lance-ovate lvs. and 1-3 large fls. at the ends of the branches, deep carmine (or in some forms with striped Hs.), the petals deeply cut into several divisions which are again toothed at the ends. Japan. - Little known in this country.
L. H. B.

LYCIUM (Greek, Lykion, a name given to a Rhamnus from Lycia, transferred by Linnæus to this genus). Solandcec. Matrimony Vine. Box Thoms. Ornamental deciduous or evergreen shrubs, with usually spiny aud

1334. Old-time garden Tomato, Lycopersicum esculentum. (See p. 958.)
often slender and sar.nentose stems and with alternate or fascicled, short-petioled, entire lvs.; the whitish violet or purple fis, are funnelform and appeas in axillary clusters or :iolitary, and are followed by usually very decorative berries of scarlet or red, rarely yellow or black. Most of the species are tender, but L. halimifolium, $L$. Chinense, and also L.Turcomanicum and L. Ruthenicum are hardy North. The two first named are especially attractive in fall, wien the long and slender branches are loaded with scarlet or bright red frs., which contrast well with the green foliage. The leaves remain fresh and unchanged in color until they drop, after severe frost. The species are well adapted for covering walls, fences, arbors and other trellis work, but are, perhaps, most beautiful when the branches are pendent from rocks or from the top of walls. They are also used sometimes for hedges, and ror warmer regions especially $L$. Afrum may be recommended. It is much used in 5 Africa for this purpose under the name of Caffir Tnorn. The Box Thorns grow in almost any soil that is not too moist. They should not be planted near flower beds or similar places, where the suckers are apt to become troublesome. Prop. readily by hardwood cuttings or suckers; also by layers and seeds. About 70 species distributed through the temperate and subtropical regions of both hemispheres. Lrs. mostly rather small, often fleshy: fls. axillary, soli^zry or clustered; calyx campanulate, 3 -5-toothed; coronla funnelform, with usually 5 -lobed limb; stamens mostly 5 : fr. a berry, with few to many seads.
A. Les. rather large: corolla 5-lobed, dull purplish.
halimisolium, Mill. (L. vulgire, Dun. L. flcíccidum, Koch). Shrub, with long and slender spiny oc unarmed branches, recurving or sarmentose, g!abrous: lvs. cuneate, narrow, oblong-lanceolate, acute or obtuse, grayish green, $11 / 2-2 \mathrm{in}$. long: fls. $1-4$, long-pedicelled; corolla $1 / 2 \mathrm{in}$. across, limb about as long as tube; filaments hirsute at the base: fr. oval, orange-red or sometimes yellow, to $1 / 2$ in. iong. May-Sept. China to S. E.Eu. Gn.31, p. 324 and 34, p. 63. B.B. 3:138. - This species and also the following are often confounded with L. Europeum and I. Barbarum, which are chiefly distinguished by the filaments being glabrous at the base, by the longer tube and by the narrower and smaller lis. They are not

1335. Upright Tomato, Lycopersicum esculentum, var. valldum.
hardy North and are rare in cultivation, while L. halimifolum and the following are hardy
Chinense, Mill. Similar to the former, of more vigorous growth: branches to 12 ft . long: lvs. ovate to lanceolate, uright green, $1 \frac{1}{2}-3$ in.: fls. somewhat larger: fr. scarlet or bright orange-red, ovate to oblong, sometimes almost 1 in. long. June-Sept. China. G.F.4:102.-The larger fruited form is sometimes distinguished as var. megistocérpum, Hort. (var. macrocárpum, Hort).
AA. Les. small, 3/4 in. long or shorter.
Chilense, Bert Shrub, with slender, often procumbent and mostly spineless branches: lvs. cuneate at base, oblong, glandular - pubescent on both sides, grayish green, $1 / 3-3 / 4$ in. long: Hs. usually solitary; pedicels longer than the 5 -lobed, whitish pubescent calyx; corolla about $1 / 3$ in. long, pubescent and yellowish outside, limb 5-lobed, purplish within, about as long as tube: fr. orangered. July-Oct. Chile. -The grayish color and glandular pubescence gives the foliage a frosted appearance. Int. 1900 hy Franceschi, Santa Barbara, Calif.

1336. Leaves of Tomatoes.

1, Lycopersicum esculentum, var. grandifolium.
2, var. vulgare; 3 , cross of the two

Richii, Gray. Shrub, with slender spiny branches: lvs. short-petioled, cuneate, oborate, obtuse, glabrous or minutely puberulous when young, about $1 / 2 \mathrm{in}$. long: Hs. usually 2-3; calyx as long as pedicels, with elongated teeth; corolla $1 / 2$ in. long, tube longer than 4 -lobed limb: fr. globular, bright red, $1 / 4 \mathrm{in}$. across. May-Sept. S.Calif.
Limidum, Thunb. Erect, spiny, much-branched shrub, to $3 \mathrm{ft} .$, glabrous: lvs. sessile, spatulate, glabrous, about $1 / 4 \mathrm{in}$. long: fls. short-pelicelled, small, whitish, with rather slender tube and 3-4-lobed limb. S. Afr. As I hare seen no specimens of the plant in trade under this name, I am not sure whether it is the true $L$. horridum of Thunberg described above, or perhaps $L$. Afrum, which is much used in S. Africa for hedges; the latter is easily distinguished by its large purple fis.
L. Áfrum, Linn. Upright, rigid, spiny: lvs. linear-spatulate small: As. solitary, tubular, with short limb, purple, 1 in . long. N. and S.Afr. B.R. 5:354. S.B.F.G. II. 4:5.2.-L. Bärbarum Linn. Spiny or unarmed slender shrub. Similar to L. halimi folium: fls. 3-6; tube inside and filaments at base glabrous, tube longer than limb. N. Afr.- L. Europanom. Linn. (L. Mediter raneum, Dun.). Spiny shrab, with spreading branches: lvs. spatulate, thickish: Hls. short-pedicelled, with the slender tube much longer than limb. Mediter. region.-L.fuchsioides, HBK $=$ Iochroma fuchsioides.-I. ovìtum, Dun. (L. rhombifolium Dipp.). Allied to L. Chinense. Lus. rhombic-ovate: fr. oblong large, with concave apex.-L. pallidum, Miers. Spiny spreading shrub, to 3 ft .: lvs. spatulate, glacous, $1-2 \mathrm{in}$. long: fis. pedi ciled, pale greenish purple, funnelform, almost 1 in . long: fr globular, bright red. Ariz, and Utah to Mexico. G.F. 1:341 Has proved hardy in the Arnold A rboretum - L Ruthénicum Murr. Upright spiny shrub: lvs linear, small, thick: fls, small with ratherlong tnbe: fr globnlar black - L Turcoménicum Turez. Slender spiny shrub, allied to 1 halimifolium: lvs. and tis. smaller tube more slender and longer: fr globular Turke stan, $\mathbf{N}$. China - $L$. subglobosum, Dnn. Allied to $L$. halimi folium, dwarfer. more erect, less spiny: Ivs. smaller: fr. subglobose, simall. S. Europe. Alfred Rehder.

LYCOPERSICUM (wolf pefeit; rrobably an allusion to its inferiority as compared with the peach). Solandeec. Tomato. Perhaps nearly a dozen herbs of the western side of $S$. America, two of which are in common cultira-

## LYCOPODIUM


(in red and yellow), which are often 2-loculed: plant less large and dense-foliaged, the lys. smaller, grayer: growth more erect. - Probably a rery close approach to the wild plant. Fruits used for pickles and conserves.

Var. pyriforme, Hort. (L. pyriforme, Dunal) Pear and Plem Tomato. Differs from the last only in having pear-shaped or oblong fruits. Probably occurs wild in very nearly the form seen in old gardens.

Var. válidum, Baíys. Upright Tomato. Fig. 1335. A remarkable cultural form, of low, stiff, erect growth, and small, condensed, curled lss. Originated as a chance seedling in France about 50 years ago. Looks like a potato plant.

Var.grandifdlium, Bailey. Large-leaf Tomato. Lrs. very large, plane, the lfts. few (about 2 pairs) and large, with margins entire or very nearly so, and secondary lfts. usually none.-Of seedling origin about 30 yea 's ago. The Mi'sado and Potato Leaf are the leading varieties at present. In very young piants, the leaves are usually entire. This race has prodaced crosses of commercial value with viar. vulgare. In Fig. 1336, No. 2 is a leaf of var. vulgare, No. 1 is var. grandifolirm, and No. 3 is a leaf of a hand-made cross between the two.
pimpinellifolium, Dunal (L. racemigerum and racemifórme, Lange. Solínum racemiflòrum,Vilm., not Dunal). Currant Tomato. Fig. 1337. Plant weaker, very diffuse and twiggy, scarcely pubescent: lus. with small, ovate, nearly entire Ifts., and very small secondary lfts.: racemes elongating, distichous, bearing $10-40$ small, currant-like, red berries. S. Amer.-Grown as a curiosity and for ornament. The plant makes an excellent summer cover for brush or rubbish piles. The fruits are edible, but are too small for domestic use. However, it has been introduced as a garden regetable under the name of German Raisin Tomato. It hybridizes with L. esculentum (see Fig. 1338).

The other species of Lycopersicum are unknown in cult. Some of them are very like aboriginal forms of L. esculentum, and it is doubtful whether they are sufficiently distinct to be worth keeping as species. Pic tures of other Lycopersicums will be found in Essay 4, "Survival of the Cnlike."
L. H. B.

LYCOPODIUM (Greek, wolf-foot). Lycopodiècer. Cleb-moss. Ground-ple:e. RunNing-pine. A genus of fern allies, with erect or trailing stems, narow lvs., arranged in 4 to many ranks, and bearing spores in sporangia, located either in the axils of ordinary les. (Fig. 1339) or in the axils of modified lvs. clustered in spikes (Fig. 1340). About 100 species are known. Commonly used for holiday decorations. The spores of some species form the officinal Lycopodium powder The plants which florists grow as Lycopodiums are Selaginellas (which see).

> A. Les. many-ranked.
B. Sporangia in the axils of umaltered les.

Selàgo, Linn. Stems erect, 3-9 in. long, dicbotomously branched : Irs. ascending, hollow at base, glossy green, not reflexed. Northern hemisphere, usually in high altitudes.
lucidulum, Michx., is more common in lowlands, and has lrs. wide in the middle and erose.
squarrosum, Forst. Stems pendulous, 1-2 ft. long, 2-3 times dichotomously branched: lvs. firm, dark green, spreading, $1 / 2-3 / 4$ in. long: sporangia in the axils of reduced lvs., forming a spike. East Indies.

BB. Sporangit aggregated in terminal spikes. c. Stems pendulous: lvs. acute.

Phlegmària, Linn. Stems $1 / 2-2 \mathrm{ft}$. long, dichotomously forked: lvs. $1 / 2-3 / 4 \mathrm{in}$. long, ovate: spikes copious, lax, 3-6 in. or more long. Tropics of Old World.
cc. Stems erect, tree-form.
cérnuum, Linn. Stems erect, reaching 3-4 ft., copiously branched: lvs, crowded, linear: spikes sessile, $1 / 4-3 / 4 \mathrm{n}$. long, curved downward. Tropics of both hemisphere occasionally in our gulf states.
obscùrum, Linn. (L. lendroídeum, Michs. L. Japónicum, Thunb.). Stems 6-12 in. high, much-branched: ivs. loose, erect: spikes erect, $1 / 2-1$ : $:$. long. Temperate N. Amer. to Japan. - The comin n Ground Pine.

1338. Lycopersicum esculentum beneath; L. pimpinellifolium at top: hybrid between.
ccc. Stems (main ones) wide-trailing, with erect branches.
annotinum, Linn. Stems trailing, often several feet long, with numerous ascending branches $6-8 \mathrm{in}$. high, which bear sessile, solitary spikes. Arctic and north temperate zones of both hemispheres.
clavàtum, Liun. Main stem trailing to the length of several feet, usually much branched: spikes $1-4$ on an elongated peduncle. Arctic and north temperate regions of both hemispheres. - The common Club-Moss.

AA. Le's. 4-ranked, on fan-like branches.
complanàtum, Linn. Fig. 1340. Stems trailing on the surface of the ground: branches spreading out in a horizontal plane: lvs. of the under side of stems reduced to slender, spreading, cuspidate apices: first and second forks of peduncles approximate. Northern hemisphere. - L. Chamarcyparissus, R. Br., is an allied species, with stems growing underground.

## L. M. Underwood.

LYCORIS (named after a nereid in Greek mythology). A marylliddcea. A genus of 5 species of remarkable bulbs from China and Japan, with large, 6 -parted flowers. Four species are in cultivation, two of which are hardy in New England. Two bloom in summer and two in early autumn. Two have red fis., one has lilac or purple fls., one gellow or orange. Three have the perianth segments more or less recurved and fluted or crisped at the margin. In all cases the fis. appear without foliage, being borne on a scape 1-3 ft. long, in um-
bels of 4-12 fls. each 3-4 in. across. The white flaments and yellow anthers are conspicuous features. The leaves make their growth, die down, and after along rest the bulbs send up fiower-stalks alone. These plants are highly esteemed in China and Japan, and bulbs are constantly being sent to the western world, but with us they seem to be wayward and uncertain, particularly as to the time of blooming. Ly:oris aurea reverses the custom of nature. It rests in the wet season and thowers in the dry season. How the bulbs can remain dormant during the early. Chinese summer, with the thermometer at $85^{\circ}$ in the shade and a yearly rainfall of 100 inches, is a mystery. Botanically this genus is placed next to Hippeastrum, an American genus, in which the sceds are numerous in a locule, and usually flat, while ir iycoris they are few in a locule and turgid. Horticultur 1 . 1 Lycoris is most nearly comparable to Nerine, but the seeds of the former are black and of the latter gresu. Baker, Handbook of the Amaryllideæ, 1888.

## A. Blooming in July a:cel Augas:.

в. Fls. dull red.
sanguinea, Maxim. Bulb ovoid, $i$ in in diam.; neck 1-2 in. long: lvs. linear: stamens shorter than the perianth segmerts. Japan. - The only species with segments neither wavy nor reflexed. Baker says the Hs. are bright red. The Yokohoma Nursery Co. is probably mistaken in giving the blooming period as May and June. They also adrertise var. alba. J. N. Gerard says the lvs. of this and the next appear in March; also that the As. of $L$. sanguinea are dull brownish red.

## BB. Fls. rosy .ilnc.

squamigera, Maxim. (Amary̆llis Híllii, Hort., at least in part). Fig. 1341. Bulb glohose: lvs. produced in spring, $9-12$ lines wide: fls. rosy lilac, banded yellow. Japan. B.M. 7547. G.C. III. 21:137. G.F. 3:177.-The only fragrant kind. Var. purpùrea, Hort., introduced abont 1898. This species is hardy in New England.

## AA. Blooming from <br> Sept.-Not.

B. Fls. orenge-colored.
aùrea, Herb. (Nerine aïrea, Bury). Golden Spider Lily. Bulb2in. in diam.: lrs. swordshaped, 6-9 lines wide, glaucous, produced in

1339. Lycopodium lucidulum.
Common in cool woods. Sporangia in the axils of foli. age leaves.

1340. Lycopodium complanatum.
Denizen of dry banks. Sporangia in spikes.

May. China. E.M. 409 and B.R. 8:611 (as Amaryllis aнrea). G.C.III. $17: 263$ and $18: 545$. (in. $47: 997$.- Baker says it blooms in Ang. and has bright yellow fls., but all the colored plates show orange-colored fls.

## LYONIA

## BB. Fls. bright red.

radiàts, Herb. (Neriue Japónica, Miq.). Bulb globose, $1 \frac{1}{2}$ in. diam.; neck short: lvs. produced in win. ter, linear: stamens much longer than the perianth segments. China and Japan. B.R. 7:596 (as Amaryllis radiata). A.G. 13:211. - The perianth segments are more recurved than in any other species. The tube is very short, while in all the other kiuds here described it is $1 / 2$ in. long.
W. M.

Lycoris arrea has been cultivated for many years in American gardens, though it is not a common plant. Lately. "ith large importations of $L$. radiata, the interest the genus haswidened. These species have the ha. omer flowers, and are preferably cultivated under glass, though the bulbs are probably hardy in warm, protected borders; at least they hare more than once

1341. Lycoris squamigera ( $\times 1 / 2$ ).
been frozen in pots at Elizabeth, N. J., without apparent harm. In its habitat in China, L. aurea rests in the wet season, and the most success in culture has been found in growing it in a warmhouse, taking care to cultivate the foliage and rest the bulbs in warmth and moist earth. The same general directions may be followed for $L$. radiata. As with all bulbs, a vigorous growth of foliage is essential to the future appearance of flowers. L. squamigera and $L$. sanguinea are perfectly hardy; their leares appear in March, mature and disappear. The flowers come in the nature of a surprise in July and August. The former species has a columnar scape $2-3 \mathrm{ft}$. tall and a cluster of large, ama-ryllis-like flowers, of a bright rosy purple, rather attractive in the back row of a garden, but not of first rank. L. sanguinea has a scape $11 / 2-2 \mathrm{ft}$., with small orangered flowers, dull and curious rather than striking. The $t$ wo former species have the beauty of the Nerines, but the two latter have none of this resemblance.
J. N. Gerard.

LYGODIUM (Greek, twining). Schizwdcew. Climbing Ferns. A genus of twining ferns, with the sporangia borne singly under overlapping scales on the under surface of reduced portions of the leaf. Some 30 species are known from all parts of the world. For cult., see Ferns.

## A. Sterile pinnules palmate. (Native species.)

palmàtum, Sw. Hartford Fern. Lus. 2 ft . or more high, twining, bearing pairs of cordate-palmate pinnules 11/2-2 in. long, on short petioles; fertile pinnules 3-4pinnatifid, with the ultimate divisions linear. Mass. to Fla. and Tenn. - Requires light, moist soil and partial shade.
aA. Sterile pinmules pimmate. (Exotic glasshouse species.)
scándens, Sw. Pinnules $4-8$ in. long, $2-4 \mathrm{in}$. broad, with a terminal segment and 4 or 5 on each side, which are simple and usually orate. India and China.-Most of the American material cultivated under this name belongs to the next species.

Japónicum, Sw. Pinnules 4-8 in. long, nearly as wide, deltoid, with a pinnatifid terminal segment and 2 or 3 lateral ones on each side, all unequal and the lowest long-stalked and pinnate in the lower part. Japan and the East Indies. - The common species in cultivation.
L. M. Underwood.

LYON, THEODATUS TIMC TमY (Plate X), pomolo fist, was born in Lima, N. Y., e nuary 13, 1813, and died in South Haren, Mich., February 6, 1900. He was the son of a farmer. His school going was very limited. In $18: 3$, his parents went to the territory of Michigan, where he was employed in many pioneer pursuits, as farming, lumber-making, post-boy, tanner, merchant. He became more and more interested in farming, and in 1844 started a nursery on the farm at Plymouth, Micin. He collected varieties from the local orchards, and found their names much confused. His interest was challenged, and gradually he became absorbed in a study of pomology, which in that day meant mostly knowledge of varieties. Articles on the varieties of Michigan apples in the "Michigan Farmer" attracted the attention of Charles Downing, and a correspondence and exchange of rarieties resultec. His name appears in the list of correspondents in the revised editions of Downing's "Fruits and Fruit Trees." For some sears, Mr. Lyon was president of a railway company. In 1874, he moved to the "fruit belt" of southwestern Michigan, where he became president of the Michigan Lake Shore Nursery Association, and where he lived until his death. The nursery association was not successful financially. In 1888 , Mr. Lyon wrote a full ( 412 pp .) and careful "History of Michigan Horticulture," which was published in the seventeenth report of the State Horticultural Society, a society of which he was president from 1876 to 1891, and honorary president until his death. In 1889, he took charge of the South Haven sub-station of the Michigan Experiment Station; and here, with his fruits and trees, he lived quietly and happily to the last.

Mr. Lyon was one of the last of the older generation of pomologists. Like his colleagues, he was an expert on varieties. He was one of that sacred company which placer accuracy and cautiousness before every consideration of ambition or personal gain. His frieuds knew that lie had not the temper of a commercial man. At one time it was said of him that he was the most critical and accurate of American pomologists. The fruit lists of the Michigan Horticultural Societs, his labors in revision of nomenclature for the American Pomological Society, and his various bulletins of the Michigan Experiment Station, show his keen judgment of varieties. Personally, he was retired, modest, cautious in speech, generous, simple in habit and manner.
L. H. B.

LYONIA (after John Lyon, who introduced many American plants into England, died be ore 1818 in Asheville, N. C.). Syn., Xolisma. Ericòcea. Ornamental evergreen or deciduous shrubs, wich alternate shortpetioled Irs., and small white fis. in clusters, usually forming terminal racemes or panicles. Only the deciduous L. ligustrina is hardy North, but is less desirable than other hardy species of allied genera. It prefers moist, peaty soil, while the evergreen tender $L$. fermginea thrires best in a sandy, well-drained soil. Cult. and prop. like Leucothoë and Pieris. A bout 10 species in E. N. Amer., W. Indies and Mexico. Allied to Pieris and often included under Andromeda. Calyx lobes 4-5, valvate; corolla globular or urceolate, pubescent; stamens 8-10: capsules 4-5-valved, with ribs at the sutures; seeds numerous.
ligustrina, Muhl. (Andrómeda paniculàta, Ait L. paniculdta, Nutt.). Deciduous, much-branched shrub, to 10 ft .: lvs. obovate to oblong-lanceolate, entire or obscurely serrate, pubescent beneath, 1-2 in. long: fls. in leafless racemes, forming terminal panicles; co ro'la globose, whitish, one-sixth in. long. May-July. Cauada to Fla., west to Tenn. and Ark. B.B. $2: 570$.
ferruginea, Nutt. (Andrómeda ferruginea, Walt.). Erergreen shrub or small tree: Irs. cuneate, obovate to oblong, with revolute margin, scurfy when unfolding, especially below, 1-2 in. long: fis. nodding, globular white, in clusters in the axils of the upper lrs. Feb., March. S. C. to Fla. S.S. 5:234. L.B.C. 5:430. - Handsome evergreen shrub, but rarely cult., hardy only South. Var. arborescens, Michx. (Andrómeda rigida, Pursh). Of rigorous growth, more rigid and with crowded lys., growing into a small tree. Var. iruticoss, Michx. (A. rhomboidalis, Nour. Duh.). Shrubby: Ivs. sparser, conspicuously reticulated. alfred Rehder.

LYONOTHAMNUS (Lyon's shemb: named for W. S. Lyon, who sent specimens to Asa Gray from Santa Catalina Island, California). Saxifrugàcere. A monotypic gevens confined to the islands of the Santa Barbara channel, and represented by two forms, $-L$. florioundus as described by Gray, and L. usplenifolius as described by Greene. These forms differ only in the structure of the lrs., as the species is dimorphic. Locally the tree is known as ironwond. It is rather plentiful in Santa Cruz Island, attaining 40 and 50 ft . in height. It is less frequent and more dwarfed in other islands of the group.

Fis. hermaphrodite; calyx 1-3-bracteoled; tube hemispherical; lobes 5 ; disk lanate; petals 5 , orbiculafe, imbricate in the bud; stamens $\mathbf{1 0}$, inserted with the petals on the margin of the disk: carpels ", free: ovules 4: stigma subcapitate.
floribúndus, Gray. Lvs. opposite, lanceolate, petiolate, subentire, oleander-shaped: Hs. whita, very numerous in a large, flattish, terminal cyme. - Highly praised for ontdoor culture and for pots. The clusters are 4-5 in. across. The form asplenifolius has pinnate lrs. with pinnæ cut to the rib.
F. Fraveeschi.

LYSICHITUM (Greek, a loose or free cloak; probably referring to the spathe). Also written Lysichiton. Aràcer. A genus of one species, a plant resembling the skunk cabbage, offered in 1892 by Oregon dealers. Nearly stemless swamp herb with large lvs. from a thick, horizontal rootstock; spathe sheathing at base, with a broad colored lamina or none, at first enveloping the cylindrical spadix, which becomes long-exserted upon a stout peduncle: fls. perfect, crowding and covering the spadix; perianth 4 -lobed: stamens 4: ovary 2-celled, 2-ovuled: ovules horizontin, orthotropous.

Camtschatcénse, Schott. Liss. $\quad 21 / 2 \mathrm{ft}$. long, 3-10 in. wide, oblong-lanceolate. Ma. 'uue. E. Siberia, Japan, Ore., Calif.

LYSILOMA is a small leguminous genus allied to Acacia, but not in cultiration. They are tender trees and shrubs, with flowers in heads or in cylindrical spikes. The pods are straight and flat, and the ralves open away from the persistent sutures. Some of these plants are often called Acacias. Thus A. Acapulcensis $=L$. Acapulcensis, Benth.; A. divaricata =L. Schiedeana, Benth.; A. latisiliqua $=\boldsymbol{L}$. latisiliqua, Benth .

LYSIMACHIA (probably after King Lysimachus). Primulaceir. Loose-strife. Found in temperate and subtropical regions of all parts of the world. Erect or creeping leafy herbs, with opposite or whorled, entire, usually black-punctate lvs., spicate, racemose or soli tary fis., a rotate, 5 -parted corolla with an equal number of slightly monadelphous stamens opposite the lobes, a 1-loculed capsule, and many seeds on a central placenta. Only a few in cultivation, and these all perennials. They differ from related genera in the absence of staminodia between the stamens, which are usually slightly united.

## A. Flowers yellow.

B. Stem creeping: lus. round-ovate, obtuse.
nummulària, Linn. Monef-wort. Creeping Charlie. Creeping Jenny. Glabrous, forming large patches: Ivs opposite, rarely cordate, petiolate, $1 / 2-1 \mathrm{in}$. long: fls. 8-12 lines broad; sepals cordate or lanceolate, acute, half as long as the 5 oval, sparingly dark-dotted corolla lobes; filaments glandular. June-Aug. Europe; also naturalized extensively in the eastern U.S. R.H. 1891, p. 303. B.B. 2:589. - Very useful for rustic vases and baskets, also for carpeting ground in shady places. Var. aurrea, Hort. Les. all or in part bright yellow.

BB. Stem erect: les. lanceolate, acute.

## c. Plant glabrous or nearly so: fls. 3-6 lines broad.

stricta, Soland. Simple or branched glabrous, 8 in. to 2 ft . high; lvs. opposite, lance-linear, acute at both ends, glaucous beneath, scarcely veiny, $1-3$ in long: fls. 3-5 lines broad, very numerous, in a distinct, elongated, terminal raceme; pedicels 3-9 lines long, slender; corolla lobes elliptical, streaked with purple; filaments
glandular. Common on moist ground in the eastern U.S. B.M. 104 (as L. bulbiferu). D. 141. B.B. 2:588. Often bears bulblets in the leaf-axils after flowering.
quadrifolia, Linn. Usually simple, sometimes slightly pubescent, $1-3 \mathrm{ft}$. high: ivs. verticillate, in 3's-4's, rarely some opposite. danceolate, oblong or ovate, acute, $1-4$ in. long, green beneath, veiny: fls, axillary, 3-6 lines broad, on very slender pedicels, which are $1 / 2-11 / 2$ in. long: calyx and corol'a as in the last. Dry soil, eastern U.S. D.139. B.B.2:588.
cc. Plant densely pubescent: fls. 9-12 lines broad.
vulgáris, Linn. Common Yellow Loosestrife. Tall and erect. $2-3 \mathrm{ft}$. high, and stont; branched abore, downy, especially on the stem: Irs.verticillate, in 3 's -4 's, ovate

1342. Lythrum Salicaria ( $\times 1 / 3$ ). (See p. 962.)
lanceolate or lance-oval, acute at both ends, nearly sessile: fis. in the upper axils, or densely paniculate at the summit; calyx often red-margined; corolla large, the lobes broad, glabrous. Europe, Asia. R. H. 1891, p. 303.-Quite showy when grown in clumps.
punctàta, Lijnn. (L. verticillìta, Bieb.). Tall and stout: lvs. verticillate, in 4's, lanceolate, ovate or cor-date-ovate, acute, subsessile: corolla lobes oval, denticulate, glandular-ciliate, acute; stainens united. Very similar to L. vulgaris, but differs in the calyx lobes not red-margined: Hs. in axillary, equidistant whorls, not paniculate, and corolla glandular. Eu. W. Asia. B.M. $2 \because 95$ (as L. verticillaris)

AA. Flowers white.
clethroides, Duby. Tall and stout, 3 ft . high or less, sparingly pubescent, racely glabrous: lvs. opposite, large, 3-6 in. long, and sessile, broadly lanceolate, attenuate at each end, radical spat:date: Hs. $1 / 2 \mathrm{in}$. in diam., in a very long, slender, terminal l-sided spike; pedicels short, bracts subulate; corolla lobes orate-lanceolate, obtuse; stamens not monadelphous. Japan. Mn. 8, p. 141. - Fine for cut-flowers, also for border.
L. barýstachys, Bunge ( I. brachystachys. Carr.). Lvs. lanceolate: Hs. white. dense. China. R.H. 1881-90.-L. ciliata, Linn $=$ Steironema ciliatum.-L. Ephémerum, Linn. Les. linear: Hs. white, dark eye. Eu. R.H. 1891, p. 303. B.M. 2346.-L. hÿbrida Michx. = Steironema lanceolatum. - I. lanceolàta, Walt. Steironema lanceolatum.- L. Leschenaúltiii. Duby. Lvs. lanceolate: Hs. carmine. India. R.H. 1891, p. 303.-L. nìtans, Nees Lvs. lanceolate: fls. dark purple. Cape of Good Hope. B.M. 4941. - L. paridifórmis, Franch. Lss. oval: Hs. yellow, axillary or in head. China. B.M. $\mathbf{i 2 2 6}$.-L. polyantha, Fernald. Similar to L. quadrifolia, but fls. in a distinct terminal raceme. East ern U. S.-L. prodicta. Fernald. Similar to L. stricta, but lower lvs. often verticillate and raceme very leafy. bracts passing into the foliage-lvs. Eastern U.S.-L. thyrsiflora, Linn. $=$ Naumburgia thyrsiflora.
K. M. Wiegand.

LYTHRUM (Greek, blood; possibly from the styptic properties of some species, or the color of the fls.). Lythràcece. About 12 widely scattered species of herbs or subshrubs, of which 3 are cult. in hardy borders. Branches 4-angled: lrs. opposite or alternate, rarely whorled, linear-oblong or lanceolate, entire: fls. rosy purple or white, in the upper axils usually solitary,
lower down more or less whorled; calyx tube cylindrical $8-12$-ribbed; petals 4-6, obovate; stamens as mauy or twice as many: capsule 2-celled, with an indefinite number of seeds

Lythrums grow about $2-3 \mathrm{ft}$. high in the wild, but improve wonderfully in cultivation, often attaining $t-5 \mathrm{ft}$. and flowering freely. Some of them are called willowherbs or soldiers in England from their strong, erect habit and willow-like leaves. They are of easy culture in any moist soil, and are usually planted amid shrubbery, where they hold their own. They are denizens of low grounds, swanips and meadows. Thev flower in summer and are prop. by division. A nameless species from Japan has been considerably aivertised of late, but the specimen in the writer's hands is d. alalum.
A. Stamens twice as many as the petals.
B. Fls. in an interrupted, leafy spike.

Salicària, Linn. Spiked or Purple Loosestrife. Fig. 1342. Height 2-3 ft. : IVs. opposite or sometimes i: whorls of three, lanceolate, $2-3$ in. long: fls. purple; stamens barely if at all exserted. North temp. regions. Australia. B. B. 2:473.- Best of the genus. Vars. supérbum and ròseum, Hort., have rose-colored fls. Var. roseum supérbum, Hort., may be the same as the preceding varieties. It is large-fld., rose-colored, more robust ( $4-6 \mathrm{ft}$.), and somewhat later in blooming. It is an excellent form. It is generally sold as $L$. roseum superbum (not as a rar. of L. Salicaria).

BB. Fls. solitary in the upper axils, racemose.
virgàtum, Linn. Lower lvs. opposite, rounded at the base: calyx not bracted. Eu., N. Asia.

AA. Stamens not more numerous than the petals.
alàtum, Pursh. Lvs. mostly alternate, obtuse: stamens exserted. N. Am. B.B. 2:47․
F. W. Barclay and W. M.

MAACKIA. See Cladrastis.
MABA (natire name). E'bend̀cere. A genus of about 60 species of trees and shrubs found in the warmer regions of the world. They mostly have hard, ebonylike wood. Closely allied to Diospyros, the floral parts mostly i.2 3's instead of 4's or $5^{\prime} \mathrm{s}$. The lvs. are usually smaller than in Diospyros. Lrs. alternate: fls. axillary, solitar* or in short cymes, usually diœecious; corclla bell-shsped or tubular.

Natalénsis, Haw. Much-branched si.zub, with flexuous kranches: lrs. 3/4-1 in. loug, 6-7 lines wide, orate, oblong or elliptical, obtuse, dark green above, paler beneath, glabrons, netted-veined beneuth: female fls. solitary; calyx cup-shaped, glabrous, entire; abortive stamens 6-7: ovary glabrous. Natal; offered in S. Fla. Presumably the plant in cult. is the female.

MACADAMIA (after John Macadam, M.D., secretary Philosophical Institute, Victoria, N. S. W.). Protedcece. Two or 3 species of Australian trees or tall shrubs, one of which produces the Australian nat, which has a flavor like a filbert or almond, and is cult. in S. Calif. In favorable localities it bears in 7 years. The genus has no near allies of horticultural value. Lis. whorled: fls. small, pedicalled in pairs, racemose, hermaphrodite; perianth not recurred; stamens affixed a little below the blades: disk ringed, 4 -lobed or 4 -parted.
ternifolia, F. Muell. Australian Nut. Tree, attaining 60 ft .: foliage dense: lvs. sessile, in whorls of 3 or 4, oblong or lanceolate, serrate, with fine prickly teeth, glabrous and shining, a few inches to 1 ft . long: racemes often as long as the lrs.: fr. with a 2 -valved, leathery covering; nut often over 1 in. thick. Australia. G.C. 1870:1181.

## MACHERIUM Tipu. See Tipuana speciosa. <br> MACKAYA. See $A s^{\prime \prime}$ stasia.

MACLEANIA (after John Maclean, British merchant at Lima, Peru; patron of botany). Fiucciueàcece. About a dozen species of shrubs found in the mountains from Mexico to Peru. They are unknown to the American trade, but, judging from the pictures in the Botanical Magazine, should make fine hothouse subjects for our largest and finest conservatories. They have clusters of brick-red or crimson, tubular fls. each an inch or more long. A branch of $M$. speciosissima, which is probably the showiest kind, bears about 60 to 75 such H1s. The young foliage appears to hare a handsome reddish tiuge. The corollas are strongly 5 -angled, and the 5 tips are short, triangular, erect or spreading and more or less yellow. Lrs. evergreen, alternate, short-stalked, entire: stamens 10, much shorter than the corolla. Macleanias are probably of difficult culture. Try M. speciosissima in a large pot on a shelf near the glass, so that its branches may hang gracefully. M. pulchra has the same habit and color of fls., but is perhaps less desirable. M. punctata is perhaps the most desirable of those with erect branches and stiff habit. Try this in a warmhouse border, with good drainage and shallow soil, as some of these Macleanias hare thick, fleshy roots and the fibrous roots are said to keep near the surface.

## MACLURA, or OSAGE ORANGE. See Toxylon.

M'MAHON, BERNARD (about 175 to September 16, 1816), horticulturist, was born in Ireland and came to America, for political reasons, in 1796. He settled in Philadelphia, where he engaged in the seed and nursery business. He early began the collection and exportation of seeds of American plants. In 1804 he published a catalogue of such seeds, comprising about 1,000 species. He was the means of making many of our natice plants known in Europe. He enjosed the friendship of Jeffer-
son and other distinguished men, and his seed store became a meeting place of botanists and horticulturisus. He was interested in all branches of horticulture. It is thought that the Lewis \& Clark expedition was planned at his house. At all events, M'Mahon and Landreth were instrumental in distributing the seeds which those explorers collected (see p. 767 ). In 1806, he gave to America its first great horticultural book, "American Gardener's Calendar" (see p. 760), which was long a sta.iciard cyclopedic work. The editor of the eleventh dit ion of this book (1857) makes the following reminisefnce of :"Mahon:
"Bernard M'Mahon was no common man. He sought the American shores from political motives, as is understood, but what these were has not been determined; most probably it was necessary to fly from the persecution of government. He found American gardening in its infancy, and immediately set himself vigorously to work to introduce a love of flowers and fruit. The writer well remembers his store, his garden and greenhouses. The latter were situated near the Germantown turnpike, between Philadelphia and Nicetown, whence emanated the rarer flowers and novelties, such as could be collected in the early part of the present century, and where were performed, to the astonishment of the amateurs of that day, successful fea ${ }^{+} s$ of horticulture that were but too rarely imitated. His store was on Second street, below Market, on the east side. Many must still be alive who recollect its bulk window, ornamented with tulip-glasses, a large pumpkin, and a basket or two of bulbous roots; behind the counter officiated Mrs. M'Mahon, with some considerable Irish accent, but a most amiable and excellent disposition, and withal, an able saleswoman. Mr. M'Mahon was also much in the store, putting up seeds for transmission to all parts of this country and Europe, writing his book, or attending to his correspondence, and in one corner was a shelf containing a few botanical or gardening books, for which there was then a very small demand; another contained the few garden implements, such as knives and trimming scissors; a barrel of peas and a bag of seedling potatoes, an onion receptacle, a few chairs, and the room partly lined with drawers containing seeds, constituted the apparent stock in trade of what was one of the greatest seed stores then known in the Union, and where was transacted a considerable business for that day. Such a store would naturaliy attract the botanist as well as the gardener, and it was

1343. Madia elegans. (See p. 964.)
the frequent lonnge of both classes, who ever found in the proprietors ready listeners, as well as conversers; in the latter particular they were rather remarkable, and here you would see Nuttall, Baldwin, Darlington, and other scientific men, who sought information or were ready to impart it."
M'Mahon's name was given to west-coast evergreen barberries by Nuttall in 1818, and these shrubs are still known as Mahonias to horticulturists, although united with Berberis by botanists.
L. H. B.

MACODSS (from makos, length; on account of the long labellum). Orchidicece. Contains but 2 or 3 species of the habit of Anœetochilus, which see for culture. Sepals and narrower petals spreading: labellum rentricose, with 2 small lateral lobes and 2 calli inside, turned to one side: column short, twisted in the opposite direction, with 2 narrow, erect appendages. Terrestrial herbs, with few variegated petioled Ivs. at the base, and small fls. borne in a long raceme.
Pétola, Lindl. (Anæetnchilus Veitchiduus, Hort.). Fls. grecnish, inconspicuous: lvs. ovate, 2-3 in. long, reticulated wit'? golden vellow veins. Java. โ.B. $21: 61$.

> Heinrich Hasselbring.

MACBOCHORDIUM strictum, Beer, once advertised by Pitcher \& Manda. is referred by Mez to Echmer. lromelicfolia, Baker. jes p. 2. Vol. I. It is Bromelia melanantha, Ker-C. Fl, B. K. 9:766. The suecies is characterized by white-scurfy lvs., sic ple dense, woolly spikes overtopping the foliage: fls. with yellowish green calys and small exserted purple-black petals. S. Amer.

MACROSCEPIS (Greek, macros, long; skepo, to cc.er). Asclepiadicece. A genus of about' 8 species of tall, tropical American climbers, of which M. elliptica, Hort. Sander, was int. in 1899. Sander \& Co. describe it as "a new climbing stove-plant, with elliptic, light green leaves, which, together with the stems, are densely covered with soft, felt-like, yellow-brown hairs. The tls. are in clusters, each flower about 1 in . in diam., resembling in shape those of Hoya carnosa, and borne in similar bunches; they are of a soft, relvety, rich brown color. Every part of the plant, when bruised or pressed, is strongly odorous."
Generic characters are: lvs. opposite, large, cordate: crmes crowded: fls. white; calyx about 5 -parted; corolla tube thick; limb spreading: scales of the crown 5 , inflexed under the throat of the fleshy corolla.

MACROTOMIA. Consult Arnebia.
MACROZAMIA (Greek, long Zamia). Cycaddece. About 5-7 Australian cycarls, which, like most of the members of this order, make noble foliage plants for private conservatories. They have the trunk and lvs. of Cycas, except that the pinnæ have no midrib but are more or less distinctly striate, especially on the under side, with several parallel equal veins. the whole leaf occasionally twisted in some species, but not coustantly $s o$ in any one.
The genus is inore nearly allied to Dioon and Encephalartos, from which it is distinguished by the following characters: lvs. pinnate: scales of the female cones peltate, the shield thickened, ascending, usually produced into an erect, acuminate blade. Botanically the group is very imperfectly understood. The writer has followed Bentham's account in Flora Australiensis 6:250 (1873).
Macrozamias are representative rather than useful subjects, and not frequently seen. They combine poorly in any scheme of plant and flower decoration; but as single specimens, they always attract attention, and in a grouping of similar subjects, or with aloes, agave and yuccas they make an effective combination. Their culture is easy. Sandy soil, with charcoal to keep the soil 8 weet, ordinary greenhouse temperature, plenty of water during the growing season, which corresponds to our summer, and rest in winter, are the essentials.

At present M. spiralis is the only name in American trale catalogues, but the otker kinds were offered in 1893 and 1895 by John Saul, and Pitcher \& Manda.
A. Pinnce very narmur, often nearly terete: cones small, rarely abore 4 in.: fr. very woolly.
Paulo-Guiliélmi, Hill \& Muell. (M. plumosa, A. Mohr.). Trunk short: lrs. 1-3 ft. long. R.H. 1877, p. 254.

AA. Pinne flat, inserted on the margins of the rachis, contracted at the base: cones 4-10 in., glabrous.
B. Ruchis of lus. usually raised longitudinally between the pinne: cone scales much flattened.
spiràlis, Miq. Trunk short: lvs. 2-4 ft. long: insertion of the pinnfe mostly longitudinal: points of the scales usually short. G.C.III. 13:74.-M. cylindrica, C. Moore,
is a distinct species according to Index Kewensis, bit Bentham considered it a doubtful variety of M.spiralis, being smaller, with the narrow foliage nearly of $\boldsymbol{M}$. Peulo-Guilielmi, but with a glabrous trunk and more terete rachis.

Bu. Rachis of les. very flat between the pinne aml often broad: cone scales very thick.
Miquélii, DC. Cult. abroad. John Saul adrertised M. Mucqui, presumably a typographical error either for M. Miquelii or else M. Macletyi, Miq., which $=$ M. spirilis.
AAA. Pinne inserted by their broad base along the center of the upper surface of the rachis, scurcely, separated sy a very narrow line: cone: large, pubescent, the scale points broad and often recurved.
Perofiskyàna, Miq. (M. Perouskiana, F. Muell.). Largest and most distinct : trunk 18-20 ft. high : lvs. t-12 ft. long.
T. D. Hatfield and W. M.

## MADDER. The root of Rubia tinctorum.

## MADEIRA VINE is Boussingautlia.

PADIA ${ }^{\prime}$ Madi, the Chilean name of the common spe$\mathrm{e}^{\text {ecs, Compósitex. Nine species of yellow-Hd. herbs }}$ confined to the western part of the American continent. Their Hs. are remarkable for closing in the sunshine, and opening in the morning or evening. They are all called Tarweeds from their glandular, viscid, heavilyscented foliage, the common Tarweed of Calif. being var. congesta of M. sativa, which is a useful annual plant for sheep pastures in dry, warm soil. M. elegans is an ornamental annual which every one should try. It has a graceful open habit (see Fig. 1343) and distinct fls. (Fig. 1344), which become more numerous as the summer adrances. The nearest genus of garden value is Layia, from which Madia is distinguished by the following characters: inrolucre deeply sulcate, bracts strongly involving the akenes of the rays: akenes of the disk fertile or sterile.

## A. Rays showy.

B. Plant annual: les chiefly alteruate: pappus none.
elegans, D. Don. Figs. 1343-4. Height 1-2 ft. lvs. linear or lanceolate, mostly entire : rays acutely 3 -lobed, yellow throughout

1344. Madia elegans.

Natural size. or with a brown spot at the base. Ore. to Ner. B. M. 3548. B. R. 17:1458.Needs a shady place.

вв. Plant perennial: lus. mostly opposite: pappus present in disk fls.
Núttallii, Gray. Height 1-2 ft.: lvs. linear-lanceolate, sometimes dentate. Woods, B.C. to Monterey, Calif. -Adv. I881 by E. Gillett. Procurable from Californian collectors.

## AA. Rays inconspicuous, about 2 lines long.

sativa, Molina. Height 1-3 ft.: lvs. from broadly lanceolate to linear: rays $5-12$. Ore., Calif., Chile. W. M.

MAGNOLIA (after Pierre Magnol, professor of medicine and director of the botanic garden at Montpellier, 1638-1715). Magnolidcere. Highly ornamental and popular deciduons or evergreen trees or shrubs, with alternate large, entire leares and larize white, pink or purple, rarely yellowish flowers, often fragrant; the
cone-shaped fruits are often pink or scarlet and rery decorative. Most of the deciluous species are fairly hardy, at least in shei.ered positions, as far north as northern N. Y. aud Mass., and M. acumimatn, Kobus and stellata even farther north, while M. Campibelli is the most tender. Of the evergreen species, M. grandiflora, one of the most beautiful native trees, is precariously hardy north to Pliladelphia. The Asiatic deciduous specics are aniou? the onst showy and striking of the early-floweing $t$ and shrubs; the earliest is the shrubby M.stellutu, soming in mild climates in March, and after this M. Fula, comes in bloom, closely followed by M. Soulangeana ad afterthis M. obovata. The handsomest of the decidnous species is probally $M$. hypolenca, with the very lirge leares silvery white below and with showy, sweet-scented flo vers; also the American M. macrophylla and tripetala are conspicuous by their veay large foliage. The Magnolias are usually planted as single specimens on the lawn, and there are, perhaps, no plants more striking against a background of dark gre n conifers. Some species, as M.grandifora in the South and M. acuminate farther north, are fine avenue trees. The Magnolias thrive best in somewhat rich, moderately moist and porons soil, preferring sandy or peaty loam, but some kinds which usually grow naturally on the borders of swamps, as M. glauci, thrive as well in moist and swampy situations. Transplanting is difficult and is most successiully performed just when the new growth is starting. Prop. by seeds sown immediately or stratified, and by layers of last year's growth put down in spring and tongued or notched. Layers are usually severed and transplanted the following spring, but as many of them die after transplanting, it is a safer way to take them off early in July, when the new growth has ripened, plant them in pots and keep in a close frame until they are established. Varieties and rarer kinds are ctten veneer- or side-grafted in early spring or summer on potted stock in the greenhouse or frame; as a stock $M$. tripetala is perhaps the best, on account of its better fibrous rocts, which render transplanting safer, but $M$. acuminuta is also a good stock Sometimes increased by greenwood cuttings taken with a heel and handled under glass.

About 20 species in N. America, south to Mexico, Himalayas and E. Asia. Trees and shrubs, with rather stout branches marked with conspicuous leaf-scars; stipules usually adnate to the petiole and inclosing the young successive leaf: fls. terminal, solitary, the buds inclosed in a stipular spathe; sepals 3, often petaloid; petals $6-15$; stamens and carpels numerous, the latter connate into a spindle, deveioping into a cone-like somewhat fleshy or leathery fr., with dehiscent, 1-2-seeded carpels; the large, usually scarlet seeds often suspendod for a time from the fr. by thin threads. The wood is close-grained, usually light and satiny, but not durable; that of M. hypoienca is much used in Japan for laquered ware: the bark and fr. of some species have been used medicinelly as a tonic and stimulant.

Alfred Rehder.
Among the finest Magnolias cultivated in the South are the two natire evergreen species $M$. grandiflora and M. glauca, and the exotics M. pumila and fuscata, the last being now referred to Michelia. Magmolia grandiflora is a noble tree. It is a natire of the middle and southern sections of Georgia, South Carolina, Alabama, Louisiana and the upper districts of Florida, and is recognized as one of the grandest of all broad-leared erergreen trees. In its native habitat it attains a height of from 75 to 100 feet, with very large, oval or lanceolate coriaceous leares. The latter vary, howerer, from very broad to rather narrow, some with a rusty under surface, others quite smonth. The flowers vary also in size, the largest frequently measuring $10-12 \mathrm{in}$. in diameter when fully expanded; others do not attain more than half that size. They appear early in May. in some sections during the latter part of April, and continue until the end of Jnne. Some trees produce a few flowers during August, and even as late as Octo-
ber, but these are exceptions. Each flower lasts from $2-4$ days, when the petals fall and the cone-like fruit appears. This gradually increases in size until september, when the bright cornl-red seeds are detached nud hang on long tilaments. The seed sliould be gathered when fully ripe, put in dry sand until February in the S., then in moist sand for a week or 10 days, when the resinous cuticle can be removed by washing.
not sufficiently appreciated as an ornamental one in landscape gardening.
Magnolia pumila, or Talauma pumila, is a very dwarf Chinese species, seldom growing more than 4 or 5 ft high: lvs. smooth, elliptical, sharp-pointed, coriaceous: fls. 1-11/2 in. in diameter, white or slightly tinged green, with 6-9 fleshy petals, which drop soon after the fls. expand. The fragrance is intense at night, and resembles a ripe pineapple. It thrives best in a rich, partially shaded soil, but a frost of $10^{\circ}$ below the freezing point will injure it. It is therefore best to grow it as a conservatory plant. Prop. by ripened wood cuttings in bottom heat. As this plant is in bloom during nearly the whole year, and its delicate fragrance is unsurpassed, it is strange that it is so little known.
P. J. Berchmans.

## INDEX.

acuminata, $13,14$. angustifolia, 18.
auriculata, 11.
Alexandrina, 5.
Camplelli, $\because$.
conspicua. 3.
cordata, 14 .
discolor, 6 .
Exoniensis, 18 fatida, 18.
Fraseri. 11. Galissoniensis, 18. glauea, $15,16$. glamea, 15,
gracilis, 6 . granditiora, 18
grandis, 5.
Halleana, 1.
hypoleuca, 9. Kobus, 4. lanceolata, 18. Lennei, $\overline{5}$. ongifolia, 16 macrophylla, 12. major, 15. Norbertiana, 5. nigra, 5. olpovata, 5, 6. parvitiora, 78 arrvitora, 7,8 pumila, ${ }^{\text {purpurea, } 6 .}$
pyramidata, 11.
rosea, 1.
salicifolia, 18.
Soulangeana, 5.
speciosa, 5.
stellata, 1.
Talauma, 17.
Thompsoniana, 15
Thurberi, 4.
tripetala, 10.
Cmbrella, 10. Virginiana, 16. Watsoni, 8. Yulan, 3 .
A. Blossoms appearing before the les.

## B. Petals 9-18.

1. stellàta, Maxim. (M. Malleàna, Hort.). Shrub or small tree, with spreading branches: lvs. elliptic or obovate to oblong-obovate, obtusely pointed, pubescent

2. Magnolia Soulangeana, var. speciosa ( $\times 1 / 3$ ).
beneath when young, 2-5 in. iong: fls. white, shortstalked, numerous, about 3 in across, sweet-scented; petals narrow-oblong, 9-18, spreading and afterwards reflexed: fr. with only few carpels ripening. March, April. Japan. B.M. 6370. R.H. 1878:270. Gn. 13:132. G.F. 9:195. G.C. III. $7: 617$ and $17: 521$. Gng. 2:57. A.F. 6:305. F.E.9:611. G.M. 38:489. F.M. 1878:309.-Quite hardy and very free-flowering; it begins to flower when
hardly 2 ft . high. Var. rosea, Hort., has the fis. blushed outside.
3. Cámpbelli, Hook. f. \& Thoms. Tree, to 80 ft : 1 Fs . elliptic-oblong or ovate, abruptly acuminate, glancous beneath and silky pubescent when young, $5-12 \mathrm{in}$. long: fls. cup-shaped, $6-10$ in. across, white inside and pink, shaded with crimson, outside; petals oborate, 9-15: fr. greenish brown, 6-8 in. long. May. Himalayas. B. M.6493. F.S. 12:1282-85. Gin. 48:1028; 53, pp. 167, 305. G.C. III.23:89. - Beautiful tree, hardy only South.

## bв. Petals 6-9.

c. Flls. pure white.
3. Yùlan, Desf. (M. conspícua, Salisb.). Fig. 1345. Tree, to 50 ft ., with spreading branches: lis. obovate or obovate-oblong, shortly pointed, pubescent beneath when young, $4-i \operatorname{in}$. long: ths. large, campanulate, sweetscented, about 6 in . across; petals and sepals almost alike, 9, concave, fleshy, 3-4 in. long: fr. brownish, 3-4 in. long, slender. April, May. Japan, China. B.M. 1621. L.B.C. 12:1187. G.C.III.9:5991. Gn.21, p.311; 23, p. 138; 24, p. 511; 31, p. 505; 34: 667: 45, p. 365: 46, p. 145; 51, p.4it. G. M. 31: 289; 36:386.-One of the most showy species.
4. Kobus, Thunb. (M. Thiirberi, Hort.). Tree, to 80 ft., with narrow pyramidal head: branches short and slender: lvs. broadly oborate, abruptly pointed, tapering toward the base, pubescent below at first, $31 / 2-6 \mathrm{in}$. long: fls. 4-5 in. across; sepals very small and narrow; petals 6 , spreading, thin, $2-21 / 2$ in. long: fr. slender, dark brown, 4-5 in. long. April, May. Japan. G.F. 6:66. - One of the hardiest species but less showy; seems Lot to Hower very profusely.
cc. Fls. purplish or carmine outside.
5. Soulangeàna, Soul. (M. obovita $\times$ Ỳ゙lan). Intermediate between the parents. Popular large shrub or small tree: lvs. ohovate to oborate-oblong: Hs. large, campanulate, white, more or less purplish outside, often fragrant; sepals usually colored, sometimes almost as long, sometimes hardly half as long as petals, rarely small and greenish. May. A. G. 15:283. B. R. 14:1164. Gt. 5:166 and 168. S.B.F.G. I.3:260. Var. Lennéi, Hort. More shrubby: fls. large, deep crimson outside, late. F. 1864:95. V. $5: 196$. Var. nigra, Hort. Fls. dark purple outside. There are many other named vars., like var. Alexandrina, grándis, Norbertiàna, speciosa (Fig. 1346), differing but little in color and flowering time, var. Alexandrina being one of the earliest, var. Norbertiana one of the latest in bloom. These hybrids are among the most popular Magnolias on account of their early, bright-colored fls.; they are showier and hardier than the following species.
6. obovàta, Thunb. (M. discolor, Vent. M. purpùrea, Curt.). Usually large shrub, with stout branches: lvs. obovate or oral-oborate, acute or acuminate, pubescent beneath at first, $4-7 \mathrm{in}$. long: Hs. large, campanul..te, white inside, purple outside, scentless; petals broad, obtuse, somewhat tleshy, about $31 / 2$ in. long; sepals small, ovate-lanceolate, greenish yellow: fr. brownish, orate-oblong. May, June. China, Japan. B. M. 390. Gn. 29. p. 485; 24, p. 511: 46, p. 49. F.E. $9: 611$. Var. grácilis, Dipp. (M. grécilis, Salisb.).-Smaller shrub, with slender branches, narrower lvs. and smaller fls., dark purple outside.

AA. Blossoms appearing after the lus.
B. Foliuge deciduous. c. Fls. white.
D. Buds and branchlets glabrous or appressed pubes. cent: carpels glabrous.
E. Lis. 4-7 in. long, scattered along the bramches.
7. parviflora, Sieb. \& Zucc. Small tree: branchlets and buds appressed pubescent: lvs. elliptic to oborateoblong, obtusely pointed, glaucescent beneath and pubescent at first, 4-6 in. long: fis. long-pedicelled, cupshaped, white, with large pink sepals, 3-4 in. across, fragrant; petals usually 6 ; stamens crimson; carpels few. June. Japan. B.M. 7411. Gn. 54, p. 17.. Gng. 1:8; 3:3. G.M. 38:66.
8. Watsoni, Hook. Closely allied to the former: almost glabrous, except lvs. beueath when young: lvs. obovate to oblong, 4-7 in. long: fls. short-stalked, $\bar{j}-6 \mathrm{in}$. across, with 6-9 petals; carpels many. June. Japan. B.M. 7157. G.C. 1II. 16:189 and 17:517. Gt. 48:1459. Ging. 1:8. Gn. $\mathbf{9}$ :417 (as M. parviflora) probably belongs here. G.M. $34: 305$. - Very handsome in bloom; the beauty of the large, sweet-scented flower is much heightened by the crim on center, formed by the brightcolored stamens.
E. Le's. S-20 in. long, mostly clustered at the end of the branches: buds and branches glabrous.
9. hypoleùca, Sieb. \& Zucc. Tree, to 100 ft . high, with broad, pyramidal head: lvs. obovate to oborate-oblong, obtusely pointed, glaucous and appressed pubescent beneath, 8-14 in. long: fls. 6-7 in. across, cup-shaped, fragrant, with 6-9 petals; stamens with scarlet flaments: fr. oblong-cylindric, scarlet, to 8 in. long. May, June. Japan. G.F. $1: 305$. Gng. 1:8. Mn. 3, p. 73.- One of the most beautiful of the deciduous species, the under side of the lvs. being almost silvery white; about as hardy as M. mucrophylla.
10. tripétala, Linn. (M. $\boldsymbol{U}_{\cdots} \cdots$ bélla, Lam.). Umbrella Tree. Tree, to 40 ft ., with spreading branches, forming an open head: lvs. tapering toward the base, oblongobovate, acute, pale and pubescent beneath when young, 12-24 in. long: ths. 8-10 in. across, of a disagreeable odor; petals $6-9$, oblong-obovate, $4-5$ in. long; sepals recurred, light green: fr. rose-colored, orate-oblong, $21 / 2-4 \mathrm{in}$. long. May. Pa. to Ala., west to Ark. and Miss. S.S. $1: 9$ and 10. Gn. 22, p. 27; 24, p. 509 ; 33, p. 539.
11. Fràseri, Walt. (M. auriculàta, Lam. M. pyramidita, Pursh). Tree, to 40 ft ., with wide-spreading branches, quite glabrous: lvs. obovate, cordate-auriculate at the base, acute, glaucescent beneath, $8-20$ in. long: fls. 6-9 : across, sweet-scented; petals 6-9, ob-long-obovatr $\bar{j} \mathrm{in}$. long: fr. oblong, bright rose-red, 3-5 in. long. Va. to Fla., west to Miss. S.S. $1: 11$ and 12. B.M. 1.06 B.R. 5:407. L.B.C. 11:1092. Gn. 22:27; 24, ヶ. $511 ; 44$, р. 935 .

DD. Buds asd branches grayish tomestose: carpels woolly.
12. macrophylla, Michx. Large-leaved Cucumber Tree. Tree, to 50 ft ., with spreading branches: lvs. ob-long-oborate, blunt, subcordate-auriculate at the base, glaucescent and Hnely pubescent beneath, 1-3 ft.long: Hs. cup-shaped, fragrant, $10-12$ in. across; petals 6 , ob-long-obovate, thick, purplish at the base, $6-7$ in. long: fr. broadly ovate, rose-colored, to 3 in. long. May, June. Ky. to Fla., west to Ark. and La. S.S. 1:7 and 8. B.M. 2981. G.F. 8:165. Gn. 22, p. 28; 24, p. 509; 33, p. 539.
Cc. Fls. yellow or greenish: petals $6,2-3112 \mathrm{in}$. long.
13. acuminàta, Linn. Cucumber Tree. Tall, pyramidal tree, to 90 ft : lrs. oval to oblong, shortly acuminate, rounded or acute at the base, soft pubescent and light green beneath, $6-9 \mathrm{in}$. long: fls. greenish yellow or glaucous green, about $2-3 \frac{1}{2}$ in. high, with upright petals: fr. cylindric, pink, 3-4 in. long. May, June. N. Y. to Ga., west to tll. and Ark. S.S. 1:4 and 5. B.M. 2427. L.B.C. $5: 418$. Gn. 24, p. 509.
14. cordàta, Micnx. (M. acuminàta, var. cordàta, Sarg.). Similar to the former, but smaller: lrs. more pubescent, oval to ovate, acute, rounded or sometimes slightly cordate at the base: fls. smaller, canary yellow. Ga. and Ala. S.S. 1:6. B.M. 2427. L.B.C.5:474. Gn. 22, p. 27 ; 24, p. 509.
Bв. Foliage coriaceous, persistent, but deciduous North in Nos. 15 and 16.
c. Li's. glabrous or silky-pubescent beneath: usually shrubby.
15. Thompsoniàna, Hort. (M. glaùca, var. major, Sims. M. glaùcu, var. Thompsoniène, Loud.). Probable hybrid of M. glauca and tripetala. Shrub or small tree: branches and buds glabrous: lvs. oval to oblong, acute, glaucescent beneath and pubescent when young, $5-9$ in. long: fls. white, fragrant, $5-6$ in. across; sepals shorter than the petals, yellowish. June, July. G.F. 1:269. B.M. 2164. Gn. 24, p. 511.-Of garden origin.
16. glaùca, Linn. (M. Virginidna, Morong). Sweet, Swamp or White Hay. Beaver Tree. Fig. 1347. Attractive shrub or sriall tree, evergreen South: Ivs. oval to oblong-lanceolate, glaucous beneath and silky-pubescent at flrst, $3-6 \mathrm{in}$. long: fis. white, globose, fragrant, - -3 in . across; sepals nearly as large as petals, spreading; petals $9-12$, roundish obovate: fr. pink, 1-2 in. long. May, June. Mass. to Fla. near the coast, in the South extendlng west to Texas. S.S. 1:3. Em. 2:603. L.B.C. $3: 215 . \quad$ R.H. 1894 , p. 347. G.F. $10: 403$. Ging.

1347. Magnolia glauca ( $\times 1 / 3$ ).

4:342. - A rery desirable shrub, with handsome, glossy foliage and sweet-scented, creamy white tls. Var. longifolia, Loud., has lanceolate lvs. and continues blooming during a longer time than the type.
17. pùmila, Andr. (Talaìma pùmila, Blume). Shrub, to 12 ft .: lvs. elliptic-oblong, acuminate, glabrous, glaucescent beneath, $3-6 \mathrm{in}$. long: Hs. axillary, nodding on short-curved pedicels, globose-ovate, white, fragrant, about $11 / 4$ in. across; petals 6. China. B.M.977.-Cult. South.
cc. Lis. ferrugineous, pubescent beneath: tree.
18. grandiflòra, Linn. (M. fetida, Sarg.). Bull Bar. Tall evergreen tree, to 80 ft ., of pyramidal habit: branchlets and buds rusty-pubescent: lvs. thick and firm, oblong to obovate, glossy above, ferrugineous-pubescent beneath, sometimes glabrous at length, $5-8 \mathrm{iu}$. long: fls. White, fragrant. T-8 in. across; sepals large, petaloid; petals $6-12$, oborate; stameus purple: fr. oval
or ovate, rusty brown and pubescent, $3-4 \mathrm{in}$. long. MayAug. N.C. to Tex. S.S. 1:1 and 3.-Var. angustifolia, Loud. (var. saluifòlit, Hort.). Lvs. lanceolate, wavy. Var. lanceolata, Ait. (var. E'xoniénsis, Loud.). Lvs. oblong-lanceolate or oblong-elliptic, less rusty beneath. 13.M. 195\%. L.B.C. 9:814. There are many other named varietles, of which var. Galissoniensis, Hort., has proved the hardiest in Europe. For other pictures, see Gn.22, p. 28; 24, pp. 509,511; 33, p. $5: 38$
M. compressa, Maxim. =Michelia compressa.-M. fuscata, Audr. - Michelia fuscata.-M. salicifolia, Maxim. Small, de cilluons iree: livs. elliptic to ovate-lanceolate, glatucous beneath 4-7 in. long: fls. unknown. Japan. G.F, 6:67.

## Alfeed Rehes.

MAHERNIA (anagram of Mermannia). Sterculidece. More than 30 herbs and subshrubs of S. Africa, mostly with incised lvs. and drooping, bell-shaped fts. Calyx campanulate, 5 cleft; petals 5, with hollow claws, twisted in the bud ; stamens 5, opposite the petals, the fila. ments prominently enlarged or dilated at about the middle (and thus differing from Hermennia, which has no sudden enlargement in the filments), the anthers long: orary 5 -loculed, ripening into a coriaceous capsule with many seeds. Monogr. in Harvey and Sonder's Flora Capensis. By some the genus is united with Hermannia. A few of the Mahernias are cult. as potplants for the profusion of their bell-like tls. and the sweet odo:.
verticillàta, Linn. (M. odorìta, Hort, not of botanists, which is Hermaumia Preslitena). Honey Bell. Fig. 1348. Very common plant in conservatories, and sometimes seen in window-gardens (see House Plants): half woody, rery diffuse and straggly, not making a central leader, the terete crooked stems scabrous: lvs. small, much cut into linear dirisions, with deep cut stipules: fis. $3 / 4 \mathrm{in}$. or less long, nodding, usually about 2 together, from axillary shoots, sweet, fragrant, boney-yellow. - Free bloamer In winter and spring. Of easy cult. Frop. by cuttings. Mahernia certicillata is a very pretty twiggy bush for the cool greenhouse. The branches are long and flexible, so that specimens may be trained into any form. It may also be used for hanging baskets. It is of easy culture in pots, but lifts badiy.
glabrata, Car. Lrs. dentate or dentate-pinnatifid (not so finely cut as in the last), corered with stellate down: trailing. - lt is doubtful if the plant cult. under this name is the $M$. glabrata of botanists.
L. H. B.

MAHOE, MOUNTAIN. See Hibiscus elatus.
MAHOGANY. See Suietenia. Mountain Mahogany. See Cercocurpus.

MAHONIA. Included with Berberis.
MAIDENHAIR FERN is Adiantum.
MAIDENHAIR TREE. See Ginkgo.
MAIANTHEMUM (Greek, May flower). Liliàcea. M. Convallária, Weber, is a pretty little native wild Hower growing $3-5$ inches high, with 1-3 heart-shaped shining lvs., and a raceme about 1 in . long of small white tls., with 4 -parted perianth and 4 stamens. It grows in moist woods, and is fully described in our manuals. It has been offered by dealers in natire plants under its synonyms. M. bifolium, Canadense and Smilacinu bifolir. B. B. 1:431. B. M. 510. It is sometimes called False Lily-of-the-Valley or TwoLeared Solomon's Seal. Foliage dies in midsummer. Useful for early effects.

## MAINE

MaINE, HoRTICULTURE IN. Fig. 1349. Maine, the most northeasterly of the United States, lies between latitudes $46^{\circ} 6^{\prime}$ and $47^{\circ} 27^{\prime}$ north and longitudes $66^{\circ} 56^{\prime}$ and $71^{\circ} 26^{\prime}$ west. The name was used by early explorers to designate the malnland as distinct from the numerous islands along the coast. Although its extreme breadth from east to west is but 2.0 miles, its coast line is so broken as to extend for 2,486 miles along the Atlantic. The total area of the state is 33,000 square miles, of which 3.145 is water surface. The surface of the state is disposed in two great slopes, separated by a broad plain from 1,000 to 2,000 feet above the sea (see the map). This plain, the castern end of the Appalachian range, contains numerous hills and mountains, the highest of which is Mt. Katahdin, with an altitude of 5,385 feet.
The slopes are much broken by hills and lakes, and rast areas are still covered by the primeval forest. There is thus provided a wide diversity of soil and climatic conditions in different parts of the state, which affords opportunity for a considerable range in agricultural productions. Under these conditions, even from the earliest settlement of the state, agriculture has received a fair share of attention. There were in 1892, 65,000 farms, containing $6,500,000$ acres, representing a cash value of $\$ 102,500,000$, and an estimated value of farm products of $\$ 2.2,000,000$.

The forests, located mainly in the middie belt, form one of Maine's principal sources of wealth. In the northern part these consist chiefly of pine, spruce, hemlock and arborvits. Farther south, in addition to the conifers, red oak, beech, birch, maple, ash and elm abound. Butternut and hickory are found, but are not abundant. The productions for which the state is especially noted, aside from lumber, are hay, potatoes, sweet corn and fruit. Of the first, from $1,500,000$ to $2,000,000$ tons are cut each year.
Potatoes form the staple crop in Aroostook countythe "Garden of Maine"-though many thousand bushels are grown in the south in counties. The annual crop is

1349. Maine. To illustrate its horticulture.
not far from $10,000,000$ bushels. The greater portion of the potatues grown in Aroostook county is conrerted into starch. The annual product of the starch factories is from $12,000,000$ to $15,000,000$ pounds. The average yield is about 120 bushels per acre, but as many as 500 and even 700 busuels have been obtained.

The productlon of sweet corn for canning has become an important industry in the southwestern and central parts of the state. The total pack in 1890 was about $12,000,000$ cans, representing 3,000 acres. In 1892, 18,000,000 cans were packed, while in 1897 the output was about the same.

The rocky hillsides of southwestern Maine are especially suited for producing apples of superior color, flavor and keeping qualities. F'ears and plums are also grown to a considerable extent. The value of the orchard products is about $\$ 1,500,000$ annually. Desirabie sites for orchards range in value from $\$ 5$ to $\$ 50$ per acre, according to the location and distance fromshipping points.
Small fruits thrive over the greater part of the state, and find a ready market at the numerous summer resorts for which Maine is noted.
The canning of blueberries is an important industry in some parts of the state. In Washingt on county about 120,000 acres, otherwise worthless, are known as the "blueberry barrens." The annual output of the canning factories is valued at $\$ 75,000$ to $\$ 100,000$, and 1,500 or 2,000 bushels are shipped while fresh. In other parts of the state there are many thousand acres that may be utilized in the same way. Some of the more important blueberry regions are indicated by the shaded areas on the map.

In providing for education along agricultural lines, Maine has not been behind other states. While Arthur Young and others were striving to improve the agriculture of Great Britain, leading citizens of the then District of Maine united in forming one of the first agricultural sorieties in America. As noted by Boardman: "ribe light stations first established in this country for the improvement and the diffusion of agricultural literature were at Philadelphia, Pa., in 1785 : Charleston, S. C., in $178{ }^{-1}$; Hallowell, Maine, $1787 . "$

The first agricultural and industrial college in North America, the Gardiner Lyceum, was established at Gardiner, Me., in 1821, when a yearly grant of $\$ 1,000$ was made hy the state. The purpose of the school was "to give mechanics and farmers such a scientific education as would enable them to become skilled in their professions." This institution, under the patronage of the Vaughans and the Gardiners, flourished until 1835, when state aid was withdrawn. It was continued for two years at the expense of Mr. Gardiner, and then closed. In connection with the Lyceum, a farm was utilized for experiments in agriculture, and "to give the future agriculturist the knowledge of those principles of science upon which his future success depends, and an opportunity to see them reduced to practice."

In 1865 the State College of Agriculture and the Mechanic Arts was established under the provisions of the "Morrill Act." This, in 1897, became the University of Maine, with a well-equipped agricultural department. The Maine Agricultural Experiment Station, established under the provisions of the "Hatch Act" in 1887, forms a department of the university. In addition to the work of the university, important educational work is carried on in the form of farmers' institutes by the State Board of Agriculture, consisting of one nember from each county, with permanent headquarters at the capital. There are also two state agricultural societies, one state pomological society, and nearly 50 county and town agricultural societies which receive aid from the state.

MAIZE. See Corn and Zea.
W. M. Munsen

MAKART DECORATIONS and bouquets are dried grasses and everlastings, whether dyed or not. The celebrated painter, Hans Makart, once decorated his salon with dried palm leares, pampas grass and the like, to the delight of the Emperor of Austria, who visited the artist's studio: hence the name. See Everlastings and G.C. III. 6:714.

MALAY APPLE. Eugenia Jambos.

MALCOLMIA. See Malcomia.
MALCOMIA (Wm. Malcolm, English horticulturist of the eighteenth century). Also written Malcolnia, but it was originally spelled Malcomin. Crucifere. A genus of about 20 species, one of which is called the Virgininn stock, though it is a mative of the Mediterranean region. It is a charming hardy annual of the easiest culture, growing about a fout high, with a more branching and open liabit than the common stock (Matthiola), and 4petaled fls. each about $3 / 4 \mathrm{in}$. across. Red, white and crimson-fld. kinds are offered in America, while wose and lilac tls. appear in the mixtures. There seem to be no double forms. It is an excellent plant for the front of a border, as it may be easily had in bloom from spring to fall by means of successional sowings. Seeds are lest sown in the fall, as they give earlier bloom. Seeds may be sown thinly. See Annuals.


Malcomia is a genus of brauching herbs: branches often prostrate: Ifs. alternate, entire or pinnatifid: fls. in a loose raceme; petals long and linear or long-clawed: pods rather terete, long orawl-shaped: seeds in 1 series or in 2 series at the base of the cells.
marítima, R. Br. Virginian Stock. Mahon Stock. Figs. 1350, 1351. Stem erect, branching: lvs. elliptic, obtuse, entire, narrowed at the base, pubescence appressed, 2-4-parted : pedicels rather shorter than the calyx: pods pubescent, long-acuminate at the apex. B.M. 166 (as C'heiranthus maritimus, showing red fls., changing to purple before fading).
W. M.

MALLOTUS (Greek, woolly). Euphorbiàcecr. Trees or shrubs, with broad opposite ivs., with small diæcious fls. in syikes or panicles: petals and disk absent; calyx 3 -5-lobed ; stamens numerous; styles 3, almost free, recurved; capsule spherical, splitting into 3 parts. About 80 species in the Old World tropics.

Japonicus, Müll. Arg. A small tree, with large, ovate, palmately nerved, nearly glabrous, sub-trilobed, longpetioled Irs.: spikes branched terminal: fis. $2-3$ lines wide; stamens 60-70, yellow; stigmas slightiy feathery: capsules pubescent. $1 / 2$ in. in diam. Japan and. China. R.H. 1894, p. 103.-Cult. at Santa Barbara.
J. B. S. Norton.

MALLOW, Malia rotundifolia.
MALLOW, FALSE. Malcastrum.
MALOPE (name used by Pliny for some kind of mallow). Maldècer. A zenus of 10 species of annuals from the Mediterranean region, one of which is cult. under the name of $M$. graudiflora. It grows $1-3 \mathrm{ft}$. high, and bears red or white, 5 -petaled $\mathrm{fs} .21 / 2-3$ in. across, in summer and fall. The genus is allied to Althea, which it resembles in having solitary ascending orules, but has the carpels crowded into a sort of head without order, while in Althrea the carpels are in a single whorl. Also, Malope has 3 bractlets, while Althæa has 6-9. Herbs
glabrous or pilose: Ins. entire or 3-cut : fls, usually violet or rosy; bractlets large, cordate; calyx 5 -cut; column of stamens divicied at the top into filaments. Culture easy. See Anumils.
trifida, Cav. Lrs. 3-nerved, 3-cut, dentate, glabrous; lobes acuminate : peduncles axillary, 1 -fll. Spain, N. Africa. - Var. grandiflòra, Paxt. (M. graudiflòrt, F. G. Dietr.), is said to be much superior to the type, with ths. $21 / 2-3$ in. across, deep rosy red, veined inside darker. Gn. 21, p. 145. P.M. 1:177. M. gremeliflora alba is also cult.

1351. Virginian Stock-Malcomia maritima. Natural size. (See p. 969.)
MALPIGHIA (Marcello Malpighi, 1628-1693, distinguished anatomist at Boulogne, who wrote on the anatomy of plants). Malpighidece. Abont 20 species of small trees or shrubs, mostly natives of tropical America, one of which is the Barbadoes Cherry, M. $\boldsymbol{g}^{\prime}$ ' a. The fruit is about the size and shape of a small northern cherry, but inferior in quality. It has an acid taste. It is borne on a shrub, which grows about 6 ft . high and has handsome crimson fls. of a distinct appearance. The fl. is about $3 / 4 \mathrm{in}$. across, and the 5 petals have a claw about as long as the fringed blade. This shrub is a native of the West Indies and is cult. in all the Islands as well as S . Amer. It is also offered in S. Fla.

Malpighias have opposite, short-stalked lvs., glabrous or tomentose, entire or sping-toothed: fls. axillary, elustered or corymbose, rarely solitary, red, rose or white; calyx 5-parted, 6-10-glandular; stamens 10 : orary 3 celled: styles 3, distinct: drupe 3 -stoned, the stones with or without $3-5$ crests or wings on the back.
glàbra, Linn. Barbanoes Cherry. Les. ovate, glabrous, entire, usually pointed, having a few biscuspidate hairs which disappear early: umbels $3-5$-fld. : calyx 6-8 glandular: stones obtusely 4-angled. B.M. 813.
W. M.

## MALUS. See Pyrus.

MALVA (old Latin name from Greek malache; refer ring to the emollient lvs.). Malvicece. About 16 species of lierbs, widely scattered, 4 of which are cult. in America and have escaped from old gardens, while one, M. rotuu difolia (Fig. 1352), the common Mallow, is a familiar weed. These plants are of the easiest culture, and bloon all summer and fall, having pink, rose or purple ths. sometimes 2 in. across. Malra is distinguished from numerous allied genera by the carpels in a single whorl: ovules solitary, ascending: bractlets 3, distinct: carpels not beaked or appendaged within. Malvas are hirsute or nearly glahrous: lvs. angled, lobed or dissected: fts. solitary, in the axils or clustered, sessile or peduncled; petals 5 , notched at the apex. In the first 2 species the pedicels are solitary in tue upper axils; in the next 3 they are numerous and clustered.
A. Fls. large and shouy, $1 \frac{112}{2}-2$ in. across.

B, F'ruit downy, not urinkled.
moschàta, Linn. Müsk Mallow. Perennial, 1-2 ft
 parted, the lobes being . $\quad$ : fls rose or white; caly with long, simple hairs. Et. sult. and escaped. R.H. 1851: 381 .

BB. Fruit glabrous, minutely urinkled or veiny
Alcea, Linn. Perennial, 2-4 ft. high: stem-lvs. parted almost to the base into $3-\bar{j}$ divisions, which are again 3-5-cut, the lobes broad: Hs. deep rose; calyx densely stellate-pubescent. Eu.; cult. and escaped. B.M. 2297 (pink, veined deeper). - Var. fastigiata, Koch (M Morénii, Pollini). Lvs. less incised; upper stem-lys. 3 -fid; intermediate ones 5 -fid; lobes oblong, unequally dentate. В. M. 2793.

BBB. Fruit mominently urinkled-veiny.
sylvéstris, Linn. Biennial or perennial, $\mathbf{2 - 3} \mathrm{ft}$. high, rough-hairy, branching: lvs. rather sharply 5-i-lobed: fls. purple-rose. Eu., temp. Asia, waysides N. Amer. A.G. 13:471.-Not advertised. See M.zebrina in supplementary list. Var. Mauritiàna (M. Muritième, Linn.) has long been cult. in cottage gardens abroad as the Tree Mallow. It is taller, smoother and has more obtuse lobes.

AA. Fls.small, inconspicuous, uhitish.
B. Lis. curled or puckered at the margin.
crispa, Linn. Curled Mallow. Unbranched annual, 4-6 ft. high, leafy from base to top: les.rouncled $\overline{5}-\overline{7}$-lobed or angled: fls clustered, almost sessile Eu.; sparingly escaped from old gardens. Gn. 2 , p. 315. Vilmorin's "Vegetable (iarden,"p. 319. - No longer adver tised, but procurable abroad and still cult. in America. No part of the plant is eaten, but the elegantly crisped leares are sometimes used for garnishing dishes. Gen erally self-sows in gardens.

BB. Les. mot curled at the margins.
rotundifdlia, Linn. Fig. 1352. Common Mallow Stems trailing from a strong, deep root: lvs. rounded kidney-shaped, crenate; leaf-staiss very long: peduncles rather slender.-Common bien-

1352. inairu $=$ : tundifolia ( $\times 1 / 3$ ). A common weed, known as "Cheeses." nial or perennial weed, not cult. The flat wrinkled fruits are known to children as "cheeses." Also locally called "Shirt-button plant."
I. miniata is a much confused name. In the Thorburn cataonue the plant in the Americantrade is said to be the same as Sphernleea Munroana, probably on the anthority of E.S. Carjur 11.549 . miniats is also advertised by German enlers and is referred by Vilmorin's Hlumengiartnerei to Sphanealers and is refer by ralcea miniata. Index Kewensis, however, refers II. miniata to pharalcea cisplatina. This ridile win, pernaps, be solved ander Sphaeralcea. which see. - II. multifiaa alba, Hort., is probably a white-ild. form of one of the specles above menioned, with foliage many times divided.- M. zebrina, Hort., is eferred by Index Kewensis to M. sylvestris; by Vilmorin's Blunengärtnerei to M. Mauritiana. In Bridgeman's catalogue H. zebrina is described as a hardy annual, called "Striped Mallow,"growing "ft. high, with white and purple fls. W. M.

MALVASTRUM (name nade from Malva). Malricear. Sixty or more herhs and subshrubs in America and S . Africa, of which 2 or 3 are plants of minor importance in gardens. From Malva and its allies it differs in having short or capitate stigmas on the style-branches rather than longitudinal stigmas, also in having a solitary ovule in each carpel. From Malvaviscus it differs in having a dry rather than a baccate fruit, and in other characters. The garden species are perennials of easy culture, blooming in the hot weather of summer.
coccineum, Gray. A tufted canescent plant, $5-10 \mathrm{in}$. or less high, with running rootstocks: lvs. not more than 1 in . across, pedately 3 -5-parted or divided, the narrow divisions again cut or cleft: tls. brick-red or coppery, in a short terminal raceme: carpels round-kidney-shaped, inclosed in the incurving calys lobes. Western Amer. B. M. 1673 (as Cristaria coccinea).-There ;- a var. grandiflorum in the trade, with "large deep scarlet fls."
campanulàtum, Nichols. Two ft. or less high, hairy: lvs. pedately 3 -5- lobed. the lobes deeply cut and toothed clasping: fls rose-purple, an inch across. Chile. P.M 9:173, and R.H. 1843:325 (as Malea campaneleta).
spléndidum, Kel!. Shrub, becoming iz ft. or more, prav-tomentose: Irs. cordate-ovate, j -lobed: fls. resy pink, fragrant. Calif.
L. H. B.

MALVAVISCUS (Greek, sticky mallouc). Malvicer. About 25 species of tender shrubs from the warmer parts of America, one of which, M. arboreus, is known to the trade as Achania Mralveriscus. It is a fine old greenhouse shrub with erect scarlet fis., which resemble an Abutilon and never open widely. Abutilon, however, has no involucre, while Malvaviscus has an involucre of 10-12 lractlets. L•s. entire dentate, angled or lolied: fls. red, usually peduncled; petals erect and connivent or spreading in the upper half; column of stamens truncate below the apcx or 5-toothed: carpels theshy outside, connate into a berry, later separating.
arboreus, Cav. (Achmia Malvaviscus, Sw.). Fig. 1353. Tall shrub: lvs. alter nate, mostly 3 -lobed, acumi $\begin{aligned}(\times 1 / 3 .) & \text { nate, mostly heart-shaped, at the }\end{aligned}$ S.Amer. B.M.230.. - Cult. outdoors in S.Fla.and S.Calif

Mfalvatiscus arboreus is one of the most satisfactory house plants that can be grown. It is not subject to insects of any kind, will stand a low temperature in win ter, and blooms both winter and summer. When pot grown, the plant is usually about 2 ft . high, but out doors it makes a strong, branching growth, attaining 3-5 ft. The bright scarlet fls. remain a long time in perfect condition. The fls. open slightly at we top or not at all This circumstance gave rise to the old name Achania which means not opening. The plant needs a good light soil and thrives in a compost of fibrous peat and loam. Prop. by cuttings. The cultirators need not fear the appearance of white grains on the surface of the lvs., as they are a normal, waxy secretion of the plant.

James Vick.
mamillaria. See Mammillaria.
MAMMEA (from a South American name). Gutlif erie. Six species of tropical trees, one of which, M Americana, produces the fruits known as the Mammee

Apple or St. Domingo Apricot. These are 3-6 in. in diameter, round, russet-colored or brown, with a yellow juicy pulp, and 1-4 large, rough seeds. The skin and seeds are bitter and resinous. The fruits are eaten raw without flavoring, or with wine and sugar, or sugar and cream. They are also preserved. The taste for them does not have to be acquired. The tree is cult. in S Fla. and S. Calif., and a few fruits are brought from the West Indies to the U. S. The nearest ally of horticul tural value is the Mangosteen, belonging to the genus Garcinia, characterized by having 4 sepals, while Mammea has a calyx which is closed before anthesis, and afterwards is valvately 2 -parted. Mammeas have rigid, leathery lvs., often dotted with pellucid glands: peduncles axillary, l-fld., solitary or clustered: fls olygamous; petals 4-6; stamens numerous; stigma peltate or broadly lobed: ovary $2-4$-celled.
Americana, Linn. Mammee Apple. St. Domingo Apricot. Fig. 1354. Tree, $40-60 \mathrm{ft}$. high: lvs obovateoblong, rounded at tip, 4-8 in. long: peduncles few or solitary: petals white, fragrant; anthers oblong, laterally dehiscent. B.M. 7562 .
W. M.

Ifamea Americana is native from the West Indies to Brazil. The wood is durable and well alapted for building purposes, posts and piles. It stands damp. It is beautifully grained and is used for fancy work. The gum is applied to extract chigoes; dissolved in limejuice it destroys maggots in sores at a single dressing. An infusion of the bark is astringent and is useful to strengthen the recent cicatrices of sores. A liqueur has been obtained by distillation from the flowers infused in spirits of wine, known in the Island of Martinique by the uame of "Creme des Creoles." The fruit is the size of a very large orange. It has a sweetish, somewhat aromatic taste and a peculiar odor. Not much use is made of it. Seeds germinate freely, and young plants are easily raised
IV. Harris

## MAMMEE APPLE. See Mammea.

MAMMILLARIA (Latin, mammila; referring to the nipple-like tubercles on these plants). Often but not originally spelled Mamillaria. Stems simple, branching or in clasters from the root, conmonly hemispherical or short-cylindrical, but often depressed or sometimes much elongated; the surface entirely broken up into tuhercles (mamillæ): fls, usually short-funnelform, with naked or nearly naked tube and ovary, borne in the more or less woolly axils between the tubercles, or at the inner extremity of a narrow groove on their upper surface: fr. globose to linear-clavate, nearly always smooth and berry-like. The first subgenus is rather indefinitely separated from the tuberculate Echinocacti by the smooth fruit, and by the character of the groove, which in Mammillaria is hardly more than an impressed line, while in Echinocactus it is shorter and so broad as to be obviously a continuation of the spiniferous areola.
The cultivation of Mammillaria differs in no respect from Echinocactus, which see.

## Review of Subgenera.

Subgenus I. Corvphantha (flowering in vertex). Tubercles, at least the flowering ones, narrowly grooved on the upper side, from apex nearly to base, except in M. mecromeris. Fls. showy. large for the genus. Fruit green or greenish, except in M. tuberculosa and M. Missouriensis. Seeds brown, lightly reticulated and thinshelled, with ventral or subventral hilum, except in daxyacantha and Missouriensis. Species Subgenus II. Dohicothele. Tubercles cylindric conical, long, hoose and of soft texture. Fls. large, yellow, from the axils of the upper tubereles
Subgenus III. Cochranfa. Stems elongated,form ing large chmps: fls. in a crown near the apex, $11 / 2-2 \mathrm{in}$. long, narrowly tubular-funnel form. somewhat curved sud bilahiate, with widely spreading sepaloid scales, the whole flower uniformly waxy red; stamens and style exceeding the petnls: fr. red: one or more centruls hooked, exeept sometimes in M. Halei. All from Lower California and adjacent islands.

Species 26-29

1354. Mammea Americana-Mammee Apple, or St. Domingo Apricot ( $\times 1 / 3$ ). (See page 971.)

Sobgenus IV. Ecmamillaria. Fls. usually small, produced from the axils of grooveless tubercles, and nearly always remote from the vertex: fr usually clavate and red, nearly always destitute of scales................................. Species 30-7

SUBGENUS I. CORIPHANTHA.
 yellow or yellouish, one or found in the groove.
. Fls. remote from the rertex. c. Glands one or two conspicaxils. stems long, in age making large clumps: spines rather slender: radials $1 / 3-1 / 2$ in. long, centrals $1 / 2-3 / 4 \mathrm{in}$. long.. eter: radial spines laterbuse
5. Scheerii . robustispina
daimonoceras
10. scolymoides

## MAMMILLARIA

cc. Centrals none $\qquad$ 11. radians 12. pectinata 13. impexicoma
ccc. Stems cespitose from the grooves of the tubercles, often tlensely so: groore without glands but often spinose for most of its length: rulial spines fewer and weaker: central solitary or ucanting
14. sulcata
15. Nickelsæ
16. Missouriensis

AA. Blossoms purple or purplish: spines usually gray or glossy, the centrals aml tips black or broun: orary und fruit often scale-beuring.
B. Ratial spines $1000^{\circ}$ more, often very mumerous, covering the whote plant: centrals at maturity rarely less than 4.
c. Glands small in a chain in some of the grooces: spines long but weak, not obscuring the body .......
cc. Glands none in axil or groove so fur as kwou'n..18. conoidea
19. vivipara
20. radiosa
21. dasyacantha
22. tuberculosa
bs. Radiul spines less than 10: central solitary or wanting: tubercles large and broad..23. cornuta 94. elephantidens

SUBGENUS II. DOLICOTHELE.
25. longimamma
stbgents ill. COChemiea.

26. Roseana<br>27. setispina<br>28. Pondii<br>29. Halei

subgenct iv.
A. Juice watery: tubercles rarely angular.
B. Spines (hooked) none: fls. yellowish or whitish, with rosy streaked petals.
c. Stems proportionately slender: tubercles shortovate: rallial spines rigil, spreading, recurved so that the points hardly project.............. 30 . elongata Leona
cc. Stems low, usually broader then high. Nobristles in the axils, except in $M$. candida and M. plumosa.
D. Radial spines fer, not hiding the budy.....................32. decipiens 33. fragilis
dD. Radial spines ииmerous, suouy white, covering and hiding the whole plant...........34. lasiacan'ha
35. plumose
36. senilis
37. barbata
38. vetula
38. candida

## MAMMILLARIA

MAMMILLARIA

вв. Spines one or more hooked and centrul,except in M. pusilla and M. dioict insularis.
C. Bristles one or more foumd in the axils between the tubercles..................
 1. Bocasana 2. Wildii tetrancista dioica 5. armillata
cc. Bristles none in the arils, except perhaps in M.Carretii
46. Wrightii
47. Goodrichii
48. Grahami
49. Venusta
50. Mainæ
51. Carretii

AA. Juice milky none in the tubercles, but formd or to be suspected in the bodly. No hooked spines. Redial spines less than 15; centrals usually 1.
в. F'ls. yellow
.52. eriacantha
BB. Fls. blood-red
53. sphacelata

ввв. Fls. carmine.
.jt. spinosissima
5.5. rhodantha 56. dolichocentra

57 . discolor 58. Lesaunieri 59. Haageana 60. elegans
aAA. Juice milky exuding from coonds in any pert of the plant: stems not elongated: tubercles usually angular: no hooked spines, except in M.umcinuta. Section Lactescentes. B. Fls.red or purple or carmine, -said to be yellow in Parkinsonii.
c. Spines terete: radials white, setaceous, mumer. ous, interwoven and corering the plant: stems at length cylindricalor clarate: axils woolly.........61. bicolor
62. Parkinsonii
63. formosa
cc. Spines few, stouter, often angular, some of the centrals rery long aml more or less ilexuous: tubercles rather large, angled: axils woolly $\qquad$ 64. augularis 6.). centricirrha
66. mutabilis 67. Heessana

BB. Fls. whitish, yellowish or flesh-color.
c. Radial spines 9-22, seldom less than 12: tubercles slender, scarcely angled.68. simplex 69. Brandegei 70. Heyderi
cc. Radial spines rarely as many as 9: body mostly depressed
iI. meiacantha
i.) carnea i3. uncinata 74. Troharti 75. sempervivi 76. Caput-Medusæ 77. micromeris

## indes.

acanthophlegma, 60. aulacothele. 2.
Alversoni, 20
ancistracantha, 1
angularis, 64 .
applauata
apietina, 65,
Arizonica, 20
armillata, 45.
aureiceps. 5. - $^{-}$ autumnalis, 66. harbata, 37 . bicolor, 61. Bocasana. 41. horealis, 20 Brandegei, 69

Brownii, 6.
calcaruta, 14.
candida. 39 . Caput-Medusæ, 76. carnea. 72. carnea. ${ }^{72}$. centricirrha, 65 chlorantha, 20.
cirrhifera, 66. conoidea, 18. cornifera, 7. cornuta, 23 . crassispina, 55. daimonoceras. 8 dasyacantha, $: 1$. decipiens, $33^{\prime}$. deflexispina, 65 densa, 30. denudata, 34. deserti, 90 .
dioica, 44.
discolor. 5 .
dolichocentra, 56. echinaria, 30 . echinata, echinata, ${ }^{\text {ech }}$ Echinus, ? elegans, 60 . elephantidens, 24 elongat:a, 30. erecta, 3
eriacantha, 52
fissurata: $\operatorname{See}$ An halonium. formosa, 63. Firsteri, 65. fragilis, 33. fulvispina, 55. fuscata, 55 Gabbii, 69. Galeottii, 50, 56 globosa, 2. Goodrichii, 44, 47.
Grahami, 48. Greggii, $\%$. Guilleminiana, 32. Haageana, 59. Halei, 29.
Heeseana, 67. hemispherica, 80. Heyderi, 70.

| Hirschtiana, 20. | recurvata, 4. |
| :---: | :---: |
| impexicoma, 13. | recurvispina, 4. |
| insularis, 44. | rhodantha, $5 \mathbf{5}$. |
| Klugei, 60. | robustior. 16. |
| Krameri, 65. | robustispina, 6. |
| lasiacantla, 34. | Roseana, 26. |
| Lehmanni, 3. | Kıngei, 34. |
| Leona, 31. | sanguinea, 54. |
| Lesaunieri, 58. | Scheerii, 5. |
| longimamma, 05. | Schmidtii, 65. |
| macromeris, $1 \%$. | scolymoides, 10. |
| macrothele, ${ }^{\text {a }}$. | sempervivi, $\overline{\text { s. }}$ |
| Maine, 50. | seuilis, 36. |
| meiacantha, 71. | setispina. 27. |
| micromeris, 77. | similis, 16. |
| minima, 30. | simplex, 68. |
| Missouriensis, 16. | splateelata. 53. |
| multiceps, 40. | sphterica. 05. |
| mutabilis, 66. | spherotricha, 39. |
| Neo-Mexicana, 20. | spinosissima, jt. |
| Nickelste, 15. | stella-aurata, 30. |
| nivea. 61. | stellaris, 40. |
| Nogalensis, 4. | stellatus, 40. |
| Nuttallii, 16. | strobiliformis, 18,20 |
| Odieriana, 55. | subangularis, 6 t. |
| Palmeri, 44. | suleata, 14. |
| Parkinsonii. 62. | tenuis, 30. |
| pectinata. $1:$ | tetracantha, 56. 65. |
| Petersonii, 6\%. | tetrancistra, 43. |
| Pfeifferi, 55. | Texana, 40. |
| phellosperma, 43. | Trohartii, it. |
| plumosa, 35. | tubereulosa, 29. |
| Pondii, 28. | uberitormis, 95. |
| Potosina, 60. | uncinata, 73. |
| prismatica: See An- | venusta, 49. |
| halonium. | vetula, 38. |
| pusilla, 40. | vivipara, 19. |
| pramidalis, 55. | Wildiana, 42. |
| radians, 11. | Wildii, 42. |
| radiosa, 30. | Wissmammi, 16. |
| Radliana, 26. | Wrightii, 46. |
| raphidacautha, 1. |  |

1. raphidacántha, Lem. Stems becoming 1 ft . or more long, $\sum-3$ in. in diam.. often clavate: tubercles erectspreading, somewhat flattened, often with 1 or 2 glands in the groove: spines yellow in the young state, soon gray; radiais 6-10; central 1, longer and stouter, straight or hooked in the same plant: fls. about 1 in. broad. San Luis Potosi, Mex. - The more constantly hooked form is M. ancistracanthu, Lem.
2. macrothèle, Mart. (M. aulacothèle, Lem. M. Léhmanni, Otto), Stems stout, attaining nearly 2 ft . in height by 4 in . in diam.: tubercles lons, conical, at first upright, in age becoming eren deflexed: spines all yellow; radials $6-8$, spreading; centrals $1-2$, longer and stouter: fls. $11 / 2-2 \mathrm{in}$. broad. Central Mex.
3. erécta, Lem. Branching from base and from decumbent stems, attaining 12 in. or more in height by 3 in. in diam., bright green: tubercles conical, short, upright: spines all yellow; radials 8-13: centrals 4 or less: fls. 2-2 $1 / 2$ in. in diam. Cent. Mex. -In the groove close to the spines is often found, especially in the flowering area, a conspicuous honey gland.
4. recurvàta, Engelm. (M. recurvispina, Engelm. M. Nogalénsis, Runge). Stems depressed-globose and often deeply concare, $6-8 \mathrm{in}$. in diam., forming large masses $1-3 \mathrm{ft}$. in diam.: tubercles short, with usually a large gland in the groove near the apex: spines yellow or whitish, stiff, recurved-pectinate, interwoven and covering the whole plant; radials 18.20 ; central 1 , rarely 2 , recurved: fls. about 1 in . long, brownish ontside. Near Nogales, Arizona, and southward in Sonora.
5. Scheèrii, Mühlpf. Stems orate-globose, 3-6 in. in diam., usually simple: tubercles large and distant, deeply grooved, with 1-5 glamds in the groove: spines stout, rigid, sometimes reddish; radials 6-16; centrals $1-5$, stouter and longer, 1 very stout and porrect : Hs. 2 in . long: seeds large for the genus. S. W. Texas and southward in Mexico.
6. robustispina, Engelm. (M. Brór"ii, Toumey). Much like the preceding, but tubercles teretish, no glands in the groove or sometimes a single one at apex: spiues very stout; radials $10-15$; central 1 , longer, straight, curred or even hooked, rarely an additional straight upper one: fls. ? in. long, with very slender tube: seeds large. Babuquibari mountains south of Tueson, Ariz.

7 cornifera, DC. Tubercles orate, thick, rather crowded: radial spines $15-17$, ashy white, 6 lines long; central 1 , longer and stouter, erect, somewhat curved. Mexico.
8. daimonocèras, Lem. Vertex impressed, very woolly: tubercles erect-conical: spines grayish; radials 20 or more, the upper accessory ones fascicled; centrals usually 3 , stronger, the 2 upper divaricate and somewhat recurved, the lower horizontal or recurved. Mexico.
9. Echinus, Engelm. Differs from the above in the less depressed shape and rather more numerous spines. Southern Tex. to Mex.
10. scolymoides, Scheidw. At length somewhat cespitose: tubercles conical, bent inwards and imbricated: radial spines 14-20, whitish or horn-colored; centrals $1-4$, longer and darker, the upper mingled with the apper radials, the lower stouter and bent downwards: fis. 2 in . in diam. Mex., south of the Rio Grande.
11. ràdians, DC. Stems simple: axils naked: tubercles oval, large: spines white, rigid, subtomentose. Mex.
12. pectinàta, Engelm. Stem simple: tubercles quadrangular at base, conical above; areolæ round-oblong: spines 16-24, yellowish, laterally compressed at base, stiff, pectinate, somewhat recurved: fls. $21 / 2 \mathrm{in}$. in diam.; petals broadest above, obtusish. Pecos river and Leon Springs, Tex.
13. impexicòma, Lem. Vertex deeply impressed, densely woolly: tubercles somewhat angulate; areola round: spines $18-20$, gray, rigid, covering the whole plant; very rarely a single porrect central. Mex.
14. sulcàta, Engelm. (M. calcaràta, Engelm.). Densely cespitose from the upper part of the groove: tubercles $7-9$ lines long, ovate-oblong, with dilated base, somewhat inabricate, spreading in age: spines gray, rigid, subulate; radials $12-15$, the upper $3-5$, fascicled; central 1 , recurved, wanting in younger plants: fis. $21 / 2$ in. in expansion, the tube red within; sepals not fringed. Tex., from the Brazos to the Nueces river.
15. Nickelsæ, Brandg. (M. Nickelsii, Hort.). Very near the preceding, but radial spines more numerous, 14-18, the fascicled upper ones much longer than the lower, and no central. Mex., south of Laredo, Tex.
16. Missouriénsis, Sweet (M. Víttallii, Engelm.). Nearly simple, 1-2 in. in diam.: tubercles cylindric conical, loose and spreading, slightly grooved: spines white, weak, puberulent, not hiding the body; radials 12-17, spreading; central one longer and stouter, often wanting; fls, about 1 in . long, yellow to fawn-color, with reddish streak; sepals fimbriate; petals acute or acu minate: berry red, the shape and size of a small pea; seeds black and pitted. Mont. to Kans. and E. Colo.

Var. similis, Engelm. Cespitose, in clumps often a foot broad: spines fewer: fl. and fr. larger. Kansas river to Texas.

Var. robústior, Engelm. (M. Wissmannii, Hildm.). Almost simple: tubercles longer and looser: spines smooth, rather short and stout; radials $10-12$; central 1: Hs. even larger than in M. similis. Tex.
17. macromèris, Engelm. Fig. 1355. Low, usually soon proliferous, dark green: tubercles large and long, loose and spreading, but often incurved; groove rather short; radials $10-1 \overline{7}$, weak, slender and spreading; centrals at maturity usually 4 , somewhat stouter and much longer, sometimes more than 2 in. long: fls. purple, often 3 in . in expansion; petals erose, mucronate: fr. with several scales on the ovary. Along the Rio Grande from New Mexico to Texas. See, also, Fig. $746 a$.
18. conoidea, DC. (M. strobiliformis, Engelm.). Ovate-conical, with densely woolly vertex : tubercles short, usually densely appressed-imbricate in 8-10 spiral, rib-like rows: radial spines $10-16$. straight and stout; centrals 3-5, stouter, blackish, the upper ones erect-spreading, the lower stouter, horizontal or deflexed: fis. about 1 in . in expansion, deep purple, paler outside: fr. short. buried and hidden in the axillary wool. N. E. Mex.
19. vivipara, Haw. Fig. 1356. Low and depressed globose, usually cespitose, forming large masses: tu bercles terete and loose: radial spines $12-20$, slender but
stiff; centrals usually 4 , but sometimes as many as 8 , brownish, the upper erect-spreading, the lower stouter and deflexed: Hs. bright purple, $1-1 \frac{1}{2}$ in. in expansion; stigmas mucronate. From southern Br. Am., through the uppe: Missouri region to E. Colo.
20. radiosa, Engelm. Ovate or cylindrical, sometimes proliferous: tubercles terete: radial spines $20-30$, white, w th dusky apex, very unequal; centrals 4 or 5 , stouter and longer, tawny, upper ones longer, lowest shorter and horizontal: fis. $1 / 2-2$ in. in expansion; stigmas obtuse. Southern Tex. and northern Mex.
Var. Neo-Mexicàna,Engelm. (M. Hirschtidna, Haage, Jun.). Lower, more or less proliferous from the lower grooves: radial spines $20-40$, white; centrals $3-12$, white below, blackish above.
Var. borealis, Engelm. Orate or subglobose : radial spines $12-20$; centrals $3-6$, purple-spotted. Very near M. vivipara.

Var. Arizonica, Engelm. Globose or ovate, large: tubercles long-cylindrical: radial spines $15-20$, whitish; centrals 3-6, deep brown above: fls. large, rose-colored. N. Arizona.

Var. desérti, Engelm. Jow, simple, with slender nearly eylindric tubercles: radial spines $15-20$; centrals 8-10, reddish tipped : tls. straw-colored, with purplish tips. Ivanpah, Calif.
Var. chlorántha, Engelm. Cylindrical, sometimes as much as 9 in . high : radial spines $20-25$, almost in 2 series, gray; centrals $6-9$, stouter, $1 / 2-1 \mathrm{in}$. long, reddish only at ip: fls. greenish yellow. S. Utah.
Var. Álversoni, Conlter. "Foxtall Cactus." Robust and branching, sometimes 10 in . long, glaucous: tubercles short and broad, somewhat angled, forming more or less distinct ribs: radial spines numerous; centrals 8-14, stout, spreading, blackish half-way down: fls. pink. S. E. Calif.
21. desyacántha, Engelm. Simple, subglobose : tubercles terete, loose : radial spines $25-35$, hair-like white, with brownish apex; centrals $7-13$, bristle-like, pale below, brown above, longer, the most interior one horizontal, sometimes wanting: seeds black. with nearly basal hilum. Tex.

1355. Mammillaria macromeris ( $\times 1 / 2$ ). No. 17 .
22. tuberculàsa, Engelm. (M. strobilifórmis, Scheer). Ovate or cylindric, rather slender, somewhat dry of texture, the spines falling from the older tubercles, leaving them as dry, corky protuberances: tubercles short-ovate from a broad base; axils densely woolly: radial spines 20-30, slender, rigid, white; centrals $5-9$, stouter, pur-
plish above, the upper longer, erect, the lowest horizontal or deflexed: Hs. 1 in . in diam., pale purple: fr. $3 / 4 \mathrm{in}$. long, red, with a conical cap formed of the withered remains of the flower: seeds brown. Tex.
23. cornùta, Hildm. Depressed-globose or hemispherical, small, grayish green: tubereles large, Hattened and imbricated; areole round: radial spines $\bar{\jmath}-\bar{i}$, stout, short, compressed, radiant, grayish, the upper longer; central 1 , stouter, as long as the radials: As. rose-red. "In age the spines fall off and the plant, covered with imbricated, scale-like tubercles, reminds one of a pineapple." Mexico.

1355. Mammillaria vivipara ( $\times 1 / 2$ ). No. 19.
24. elephśntidens, Lem. Rather large, glancous green: tubercles very large and thick, becoming horizontal or deflexed and somewhat bilobed: spines 6-8. all radial, stont, yellowish or gray, appressed to the plant and somewhat recurved: fls, rose-color, 3 in . in expansion. Mexico.
25. longimamma, DC. Cespitose, bright green, forming large, low clumps: tubercles sometimes more than 2 inches long: spines straight, pubescent; radials i-10; central 1: fls. 2 in. or more in expansion. Mexico.

Var. uberifórmis, Schum. Tubercles darker green: radial spines seldom more than 4 ; centrals none.
Var. globòsa, Schum. Tubercles dark green, very long: radial spines as many as 12 ; centrals $2-3$.
Var. sphǽrica, Engelm. Tubercles about 1 in. long. radial spines $19-14$; central 1 . Tex.
29. Roseàna, Brandg. (M. Rutlìma, Quehl.). Upright branches $1-1 \frac{1}{2} \mathrm{ft}$. long, $11 / 2-3 \mathrm{in}$. in diam.: tubercles rather remote, Hattened and appressed, later spreading: radial spines 8; central 1, brownish, strongly hooked, 1-2 in. long, twice as long as the radials: fr. bright red, flat on the broad top and much shorter than the tubereles.
27. setispina, Engelm. Upright brancies 2 long, $2-4$ in. in diam., forming dense clumps: th rather crowded, ovate, short: spines white $\mathrm{w}^{*}$ a tips; radials $10-12$; centrals $1-4$, stouter, the ower one strongly hooked. often twisted, 11/2-2 in. long. 2 or 3 times as long as the radials: fr. red, much exceeding the tubereles.
23. Pondii, Greene. Upright branches $10-15$ in. long. $11 / 2-2$ in. in diam., making much smaller clumps than the two preceding: tubercles short, ovate, not erowded; axils setose: spines in three series, onter $15-25$, short, white: inner $5-8$, brown, longer; central row 3 , brown, usually $\underline{2}$ of them strongly hooked, 1 in . or more in length, much exceeding the other spines: fr. oval or obovate. dull purplish red, $3 / 4 \mathrm{in}$. long.
29. Halei, Brandg. Upright branches 11/2-2 ft. high, 2-3 in. in diam.: tubereles rather crowded, short-conical from a broad base: spines sub-3-serrate, outer 15-25; centrals 6-9, darker, the lower one much stouter, an inch or more long, usually straight but sometimes hooked, twice as long as the other spines: fr. obovate, red.
30. elongàta, DC. (M. lénsa. Link \& Otto). Erect, $6-7$ in. long, $1-1 \frac{1}{2}$ in. thick: radial spines $16-18$, yellow; centrals none: Hs. white or yellowish. Central Mex.

Var. echinàta, Schum. (M. echinìta and M.echinaria, DC.). Radials as many as 20 , yeliow; centrals $\because-3$, brown.-A stout form.
Var. ténuis, Schum. (M. témis, DC. M. minima, Salm.) Radial spines ubout 20, pale vellow; centrals none-The most slender form, only $1 / 2 \mathrm{in}$. thich.

Var. stélla-auràta, Schum. Stems somewhat thicker: spines golden yellow; l central usually present.
31. Leòna, Pos. Stems stouter, glancons, upper axils woolly: radial spines about 30 , radiant, slemder. white; centrals $6-12$, much stouter; the upper ones longest. ivory white at base, dove-color or bluish above. Nuevo Leon, Mex.
32. decipiens, Scheidw. (M. Guilleminiàna, Lem.). Irregularly cespitose, somewhat clavate, often rosy: tnbercles cylindrical; axils sparingly bristly: radial spines $7-12$, whitish; centrals 1-2, brown, longer; all slender. Mex.
33. fragilis, Salm. Stems low, usually as broad or broader than high, extremely proliferous, the offsets so lightly attached that they soon fall by their own weight: rallial spines $10-14$, white; centrals none or 1 , rarely 2 , w'inte, with dusky tip. Mex.
34. lasiacantha, Engelm. Low, usually globose or depressed-globose: tubereles slender, axils naked: radial spines as many as $40-80$, feathery; centrals none. Tex.
Var. denudàta, Engelm. (M. Ringci, Hort.). Larger, both plant and tubercles: spines naked. Cact.
35. plumosa, Web. Densely cespitose, at length forming masses 6 - 10 in . in diameter: axils long-hairy: radical spines about 40, feathered to the tip; centrals noue. This and the preceding are like feathery balls. M. plumost is sold usually under the name of M. lasincrentho, to which it appears to be rather closely related. North Mex.
36. senilis, Salm. "Proliferons at lase: axils not setose: tubercles crowded: spines all white: exterior very numerous, erect-spreading, hair-like, tlexuons; centrals $4-6$, a little stronger, the upper and lower hooked." Chihuahua, Mex.
37. barbàta, Cngelm. Globose-depressed: axils not setose: exterior spines very numerous, pilose; interior stronger, yellowish, 10-15: eentral solitary, stont-hooked, yellowish, not much longer than the others: Hs. small, not remote from the center: sepals fimbriate: erry "green." Near Chihuahua, Mex.
38. vétula, Mart. Subglobose or becoming subeylindrical: axils not setose: radial spines bristle-like, at farst 2.-30, obliquely spreading, later twice as many and horizontal; centrals $1-3$, yellowish brown, searcely stouter or longer. Mex.
39. cándida, Scheidw. (M. spharoitricha. Lem.). At length cespitose, globose, becoming longer: vertex debressed: axils setose: radial spines bristle-like, more *tan 50, horizontal and interworen; inner spines 8,10 ,
or more, a little stouter and upright: Hs. Hesh-eolor or pinkish.
40. pusilla, DC. (Cáctus stellatus, Willd. M. stellaris, Haw.). Low, globular, proliferous, making large masses: tubercles cylindrical, small and loosely spreading; axils with long. hair-like. tortmous bristles: radial spines $12-20$, very soft and thexnous; centrals +6 , yellowish. a little rigid, pubescent: Hs. yellowish white. W. Indies.

Var. múlticeps, Salm. Larger: tubercles upright, crowded: radial spines ummerous; centrals $6-8$, slender, pubescent, reddish yellow. Mex.

Var. Texàna, Engelm. Larger than the last: spines In 3 series; outer capillary, crisped, $30-50$; interior 10-12, a little more riyid, pubescent, white; centrals 5-s. longer, stouter, pubescent, yellow at tip. Tex. and adjacent Mex. Cact.
41. Bocasàna, Pos. Depressed-globose, or a little lengthened, at length densely cespitose: axillary bristles as long or longer than the tubercles: radial spines $25-30$, white, stiff at the base, ending in a Hexuous thread; centrals $\geq-3$, slender, porrect, short, all yellow with brown tips, the hooked one brown nearly to the base, pubescent. Mex.
42. Wildii, Dietr. (M. Wildiana, Otto). Cespitose, forming hemispherical clumps: radial spines $8-10$, very slender, white, spreading; centrals usually $3-4$, a little stouter and longer. honey-yellow, brown at base, pubescent, 1 -hooked. Mex.
43. tetrancistra, Engelm.(M. phellospérma, Engelm.). Ovate or ovate-cylindrical, rather large, simple or sparingly branched from the base: young axils sparingly setose: radial spines $30-60$, in two series; exterior bristle-like, white; interior stouter and longer, dusky-tipped or purplish; centrals 1-4, longer, brown or blackish, sometimes all hooked, the upper ones sometimes straight: seed partly immersed in a brown corky cup. S. Calif. to Utah. Cact.
44. didica, Brandg. (M. Gobdrichii, of California). Simple or eespitose from the base, ovate to cylindrical, 3-8 in. high: tubercles somewhat angular and leathery: radial spines 11-22, white, with brown or purple tip; ceutrals $1-4$, longer and darker, the upper turned up among the radials, the lower porrect and strongly hooked: Hs, often unisexual, yellowish white with rosy streak. Calif. and Lower Calif.

Var. insulàris, Brandg. (M. Pálmeri, Coult., not of Jac.). Stems densely cespitose, shorter: axils densely woolly: spines much whiter, usually all straight. Sain Benito Island.
45. armillàta, Brandg. Taller, often 1 ft . in height. branching at base and along the stem: tubercles crowded: radial spines $9-15$; centrals $1-4$, nearly twice as long: fls. small, yellowish, scarcely spreading. Lower Calif. - The plant is marked by darker circular bands.
46. Wrighti: Engelm. Globose or depressed, topshaped below: radial spines $8-12$. white, pubescent ; centrals 1-3, reddish black, scarcely longer than radials, all hooked; tls. about 1 in . long, purple. New Mexico.
47. Goddrichii, Scheer. Erect, cylindrical, branching at base; axils naked : radial spines about 10 , white; centrals 4, white below, brown above, the 3 npper erectspreading, the lower longer. Cedros Island and Lower Califforia.
48. Gràhami, Engelm. Globose or orate, somewhat cespitose: radial syes $15-30$, white, of ten dusky at tip, the upper ones shorter; centrals usually 4 , usually blackish from a paler base, the 3 upper turned up annong the radials, and, when pale, hardly to be distinguished from them; lower porrect: Hs. rose-colored, 1 in. in expansion: fr. nearly 1 in . long. From Texas to S . California and adjacent Mexico.
49. venüsta, Brandg. Globose or hemispherical. small, often cespitose: tubercles very thick and blunt. coneave at the end, usually extremely glancous: radial spines $9-15$, stout, from pure white to white below and brownish above: central commonly 1 , sometimes $\mathbf{2}$ or 3 , the lower little longer and darker than the radials: Hs. rosecolor, $11 / 2 \mathrm{in}$. in expansion: fr. scarcely juicy, nearly 1 in. long, circumscissile near the base. So. Lower California.
50. Mainæ, Brandg. Hemispherical to orate, usually simple: tubercles somewhat incurved, glancons, the lower part and the axils often bright rose-red: radial spines $10-15$. vellowish becoming gray, the upper shorter: centrals $1-3$, the upper shorter and smaller, turned upward, one of them sometimes hooked. lower central stout, strongly hooked, somewhat twisted. yellowish below, blaek ut tip: fls. Hesh-color: fr. shorter than the tubercles. Vicinity of Nogales, Arizona.-Sent out as M. Galeottii.

## MAMMILLARIA

51. Cárretti, Schum. Simple, depressed-globose, rather small: radial spines spreading-recurved and interworen, rather long. yellowish: central 1, slender, chestnut brown, paler below: fl. whitish, with rosy streak in petals; sepals long-acuminate. Mex. - The only specimen seen has bristles in the axils.
52. eriacántha, Link and Otto. Cylindrical, elongated, $1 / 2 \mathrm{ft}$. and more in height ("reaching 20 inches") by $2-21 / 2$ in. in diam.: tubercles crowded, acutely conical: spines all pubescent ; radials $20-24$, pale yellow, bristle-like; centrals 2, stronger, nearly twice as long as the radials, golden yellow, one directed, the other downwards: Hs. yellow, small: fr. yellow. Mex.
53. sphacelàta. Stems cespitose, cylindrical, 6 in. or more long, 1 in . in diam.: tubercles short, eonical from a broader, rhombic base: spines ivory white with blackish tips: radials $12-18$, horizontal-spreading: centrals 3-4, upright: Hs. small, the petals acute. Mex. - The proper position of this and of the preceding species is still quite uncertain
54. spinosissima, Lem. Stems cylindrical, reaching 1 ft . in height and $9 \frac{1}{2}$ in. in diam.: tubercles short, orate-conic, somewhat tetragonal: radial spines $20-2.5$, setiform, white, spreading: centrals $12-15$, brownish red, stronger and twice the length of the radials. Mex.

Var. sanguinea, Hge. Stem somewhat clavate. rather shorter and stouter: radial spines $18-20$, spreading. white : centrals 8 , only a little longer, but thicker and bulbous at base, white with brownish base and dark brown tip, the young ones dark blood-red. Mex.
55. rhodántha, Link and Otto (M. Odieritma, Lem M. fulcispina, Haw.). Stem long-eylindric or clavate, reaching more than 1 ft . in height, usually -parted: axils bristly: radial spines $16-20$, white, bristle-like horizontal-spreading ; centrals 4-6. rigid, white or yellowish, the upper black at tip. Mex.

Var. pyramidàlis, Schum. Central spines dark brown, the young ones ruby red.

Yar. Pfelfferi, Schum. (M. aureiceps, Lem.). Radial spines $\because 5$ or nore, yellow; centrals $6-\overline{6}$, recurved spread ing, golden brown.

Var. crassispina, Schum. Radial spines 24-27, whitish: centrals 6-7, larger and stouter, more curvel, darker.

Var. fuscàta, Schum. Axils naked; tubercles 4 -angu. lar at base: radial spines $25-28$, radiant, brisht yellowish brown: centrals 6 , stout, strongly curved, the upper very long.
56. dolichocéntra, Lem. (M. tetracintha, Hook.). Subglobose (but said to reach a yard in height): tubercles somewhat 4 -angled : areole elliptic or rhombic: radia spines none; centrals 4, slender, rigid, the upper curved upward, $1-1 \frac{1}{2}$ in. long, the three lower half as long, al grayish brown. Mex.

Var. Galeb́ttii, Fürst. Radial bristles 8-14, very short, soon falling; centrals 4 , seldom 1 or 2 more, spreading, yellowish, with points, the upper and lower longest Mex.
57. discolor, Haw. Globose or orate, glancous: outer spines $16-20$, white, radiant; interior 6 , rigid. recurved, white below, black above, upper and lowermost very long. Mex.
58. Lesaunièri, Schum. Hemispherical or very short cylindrical (habit of M. Meyderi): spines brownish, short; radials 11-13; central upright, stronger.
59. Haageàna, Pfr. Cespitose: heads small, at lenuth cylindrical, slemer: tubercles small, erowied: axils woolly: radial spines about 20 . pure white, only about $11 / 2$ lines long: centrals 2 , black, slender, elongated, upper 3 , lower 4 lines long. Mex.
60. élegans, DC. (M. acanthophléqma, Lehm. M. Po tosiua. Hort. M. Kligii, Ehrh.). Simple, then prolif erous uml densely eespitose, depressed-globose, later lengthemol: tubercles crowded, very small: radial spines more than 20 , bristle-like, abont 3 lines long, pure white, interwoven and covering the whole plant: central spines 2 (1-3), with brown tips, the one directed upward, the other downward, abont twice as long as radials, in the axils abundant long white wool. Mex.
61. blcolor, Lehm. Simple or proliferous: tubercles small, crow led, orate-pyramidal : radial spines $16-20$; centrals 2 , less than 1 in. long, stouter, erect, black. tipped. Mex.

Var. aivea, Schum. Oborate proliferous tubercles conical: radial spines capillary: centrals 4 , white, with dusky apex, upper one incurved, 1 in . long.
62. Párkinsonii, Ehrh. At length dichotomonsly divided: tubercles slenderly pyramidal: axils woolly and bristly: radial spines 20 or more, slender; centrals 2. 3, 4. rarely 5 , brown-tipped, the upper ones 3 - 4 lines long, the lower $1 \frac{1}{2} \mathrm{in}$. turned downward. Mex.
63. formosa, Scheidw. Nearly simple: tubercles 4 -angled: radial spines 18 - 5.9 , rather rigid; centrals 6 , a little longer, stiffer, thickened at base, reddish or brownish tipped.
6t. angularis, Link \& Otto (M. subanguldris. DC.). Densely cespitose: axils of the young tubercles setose as well as woolly: radial spines $3-\overline{1}$, the upper ones often very short, the lower one sometimes 3 in . long, occasionally a very long central present. Mex.
65. centricirrha, Lem. (M. ariptina and deflexispina, Lem. M. F'orsteri and $K$ rioneri, Mihhlpf. M. Schmidtii. Scke. M. tetrincíntha, Hort.). Copiously proliferous: tubercles pyramidal, 4-angular: spines irregular, mostly 4-6 radials and 1 central, sometimes ouly 1 , sometimes 2 centrals with 1-2 very short radials or none; radials very stout, straight or curved. awl-shaped, reaching 34 in.; central stouter, sometimes nearly 2 in . long; young spines yellow. Mex.
66. mutábilis, Scheidw. (M. autumnùlis, Dietr. M. cịhifert, Mart.). At length sparingly cespetose, de-pressed-globose or short-eylindrie: tubercles pyramidal, 4 -angled: axils with stout bristles in the wool: radial spines 1-6, very small: centrals $1-4$, angled. Hexuous, much longer, particularly the upper one, which reaches $\because \mathrm{in}$. Mex.
67. Heeseàna, McDow. (M. Pìtersonii, Hildm.). Simple, glaucous or ashy green: tubercles pramidal, 4 -angled: radial spines $10-14$, the three upper pure white and very short, the remainder longer and brownishtipped; centrals 4 , the upper ones erect and forming an elevated covering for the top of the plant, the lower one the longest, 2 in. long and projecting. Mex. - Varies in color of spines.
63. simplex, Haw. Globose or short-crlindric: radial spines $10-1 \%$, the middle ones longest : centrals $4-\mathrm{i}$, somewhat longer, reddish to black: Hower brownish green without, yellowish or whitish green within: fr. red, $2 / 3$ in. long, clavate ; seed "black." Cuba.
69. Brándegei, Coult. (M. Gubbri, Coult.). Depressedglobose to short-cylindric or clavate: tubercles slender: radial spines $9-16$; centrats $1-4$, sometimes shorter than the radials, and stout, sometimes longer and slender, white to brown: Hs. relldish brown withont, brownish green within: fr. clavate, white, tinged lilac. Central Iower Calif.
70. Heỳderi, Muhlpf. (M. Texínsis, Lab.). Tubercles slender: spines short: radials $16-18$. short, slender. white; central l, darker, shorter than the lower radials. brown: fls, yellowish, with pale rosy streak in the petals. Arizona to Texas.

Var. applanata, Engelm. Body much depressed, summit flat or concare: radial spines 15-2.2. Texas.

Var. hemisphǽrica, Engelm. Top rounded, radial spines 9 -12. N. E. Mex.
il. meiacántha, Engelm. Fig. 1357. Usually simple: tubercles rather large, sharply angled and 4 -sided, pyramidal: radial spines $\overline{5}-9$, mostly 6 , white or yellowish: central 1, rarely a second, shorter and darker than the radials: fls. whitish, with reddish streak. Tex.
i2. carnea, Zucc. Body dark green: tubercles rather large, pyranidal, $t$-angled : ralial usually none, ravely $1-2$; centrals commonly 4 ,in upright cross, stiff, grayish, with darker tip, in young growth dark brown or reddish: tls, reddish flesh-color. Mex.
73. uncinàta, Zuce. Depressed-globose to subclarate: tubercles pyramidal, not strongly angled: radial spines

4-6, short, gray, dark-tipped; centrals l, rarely more, longer and stronger, strongly hooked, dark. Mex.
it. Trohártii, Schum. Globose or depressed, small: tubercles very small. conical, searcely angled: radial spines $\bar{\sigma}$, white with dark brown tips, the lower longest: central 1 , dark brown, stiff. Mex.
i5. sempérvivi, DC. Globose, blackish green, axils woolly: tubercles short, angled: radtal spines 3- $\overline{\text {, sery }}$ short, only found on young tubercles: centrals only about 2 lines long, stout. conical, reddish, later gray: tls. dull white with reddish streak. Mes.
76. Caput-Medùsæ, Otto. Depressed-globose. dull. glancous green, small: tubereles slender, angled at hase: spines 3-6, very short, subulate, straisht, redilish when young, later gray. pubescent: Hs. whitish, redstreaked. Mexico. Monog. ('act. fig. 95.

1357. Mammillaria meiacantha $(\times 1 / 2)$, No. il.
77. micromèris, Engelm. Cylindrical-clavate, $1-6$ in. high, covered by white spines: tubercles only $1 / 2$ line long: spines on the bodr very short. many serial. sueressively shorter toward the center. not pungent ; in the thowering area the upper tuft of spines having a clavate deciduons tip: fls. pinkish white, borne at the summit in a dense tuft of wool and spines, directly behind the apex of the tubercle: fr. red, smooth. Texas.

Var. Gréggii, Engelm. Larger in all its parts. This plant is not a Mammillaria, and has been recently named Eichinocuctus micromeris. Web.

Mammillarias, in common with other Carti. run into many forms. Some of these forms may be vatuable to the hortientturist, and yet not sufficienty distinet to warrant the giving of definite botanical names. The following names, not acroumbed for in the above review, are offered in the catalogues of American dealers: M. Mrandi.-M. brumea.-M. cirrhifera Imgispina (see No. 6ii).-M. Donati.-M. filipendula.-M. fuscnta leona (see Nos. 5..31).-M. Lassomeri=M. Lessanieri (!).- M. metonacantha is an nncertain garden name.-M. montana. - M. Nicholsemi=M. Nickelse (?).-M. Rehsumiana.-M. recurcens. -M. rigidispina.

Kathamine Brandegee.

## MANDARIN ORANGE, See Citrus nobilis.

MandeviLLa (Henry John Manderille, English minister at Buenos Ayres). Apocyudcece. About fispecies of tall climbers from tropical America with large, funnel-shaped. $\overline{5}$-lobed Hs, which are yellow, white or rarely tinged violet. M. smerolens haz fragrant white ths. and is cult. outdours in S. Calif. Seeds are also procurable in the East. The plant elosely resembles Diphadenia, which see for culture.
Generic characters: lvs. opposite: racemes simple, often 1 -seeded, loose, dense or reduced ts 2 or 3 Hs.: calyx \%-parted, with several glands inside at the base or © scales; corolla tube cylindrical or ovoid: lobes 5 . broad, twisted to the left: stamens tixed at the apex of the tube. included; disk of 5 lohes or scales: ovary of 2 distinct carpels: stigma thick.
suavèolens, Lindl. Sometimes called Chilean Jasmine becanse of its rlimbing habit and large white fragrant Hs. Liss. cordate, stalked, glabrons above, glancous heneath; stipules pectinate: ratcemes with about 9 Hs .
each 2 in. across. Argentine Rep. B.R. 26:7. B. M. 3797 . (in. 29, p. 537. G.C. III. 2:817. P.M. $16: 289$. R.H 1845:167. - Characterized by a pale, Heshy pectinate riug between the base of the calys and corolla.
W. M.

MANDRAGORA (name used by Hipprocates; referring to its growing near stables in the market places). Solandcer. A genus of 3 species, one of which is supposed to be the Mandrake mentioned in (ienesis, chap. 30. In America the name Mandrake is applied to the Mayapple, Podophyllum peltatum. but the Mandrake of his-

355. Mandrake.

From an old herbal (see Mandragora).
tory was a plant with a large spindle-shaped root which was supposed sometimes to become forked and resemble the human form. In this condition it was used as an aphrodisiac. The plant was also called Love-apple, and many superstitions about it still survire. The old herbals abound in fanciful pictures of the Mandrake, one of which is reproduced in Fig. 1358. M. officimernm is sold in America and may be cult. in the hardy border for its folk-lore interest. M. autummalis is supposed by some to be the true Mandrake. Both are natives of the Mediterranean region. M. coulescens is found in the Himalayas

Mandragoras are nearly stemless, perennial herbs with thick roots and large, stalked, wavy-margined lrs., the later ones being usually narrower and entire, and rather large fls. varying from whitish through bluish violet and purplish shades. The fls. are bell-shaped, about $\overline{5}$-cut, netted-reined and borne in clusters among the tufted lvs. Calyx deeply 5-cut; sinus of the corolla induplicate between the lobes.
officinàrum, Linn. (M. officindlis, Mill.). Mandrake. Les. orate, the first obtuse, the rest acuminate: calyx teeth lanceolate, as long as the oblong berry. Woolson says it needs a shady place. R.H. 1897, p. 131. W. M.

MANDRAKE in America means the May'Apple (Podophyllum) but the Mandrake of history is Mandragora.

MANETTIA (Xavier Manetti, of the botanic garden at Florence, born 1723). Rubidcer. This includes the common Manettia Vine, M. bicolor, which has scarlet,
tubular tls. an inch or more long. with 5 spreading sellow tips. It is a twining plant, and is often trained to pillars and trellises both indoors and out, as it blooms more or less the year round. It can also be trained into a bushy form. By Index Kewensis M. bicolor is referred M. luten-rubro, although the former is the older name. William Watson writes of M. bicolor (Gn. 56, p.6): "It has been in cultivation about fifty years, but until re cently it was practically lost, and its place and name taken by a much inferior species, the correct name of which is $M$. Iuteo-rubra. I beliere we are indebted to Mr. Godseff for the recovery of the true plant, he having fonnd it in cultivation in the United States a few cears ago." Apparently the chief recorded difference he tween these two species is that the calyx-lobes of M. bi color are lanceolate or narrower, while those of $M$. luteorubra are orate.
The Manettia Vine is a rather old-fashioned plant, and generally easy of culture. It is fairly satisfactory as a cool conservatory rine, but is an easy prey to red spider and mealy hug. The Hs. are short-lived, and not the best for cutting. Some gardeners would rather have Cupheas or Jucolonia Perrhosiensis. Manettias are prop. be cuttings of young growth inserted in sand with bottom heat. For summer use the vines should have a sheltered but sunny position.

Manettia is a genus of about 30 species of twining herbs and sleuder subshrubs from tropical and subtropical America. Glabrous or villous: les. usually longacuminate: the small or rather large, axillary, solitary or in short corymbs or panicles, white, blue or red; calyx. lobes 4, rarely $\overline{\text { a }}$, short or long, narrow or broad: corolla tube short or long. terete or angled, straight or curved. glabrons or pilose within; stamens 4. "Matsed gialou or Manettia" is adrertised in Amer., but no Matsea appears in botanical treatises.

## A. Fls. red. tipped yellow.

B. Calyx-lobes lanceolate, narou.
bicolor, Paxt. Fig. 1359. Lrs. lanceolate acute, slightly glaucons: calyx of 4 or 8 reflexed lohes. Mits. near Rio Janiero. P. M. Vol. x. 27 (in. $56: 1009$ F.S.2:69. R.B.21:49. Git. $4^{-}$, p. 214.-Munettia bicolor is easy to grow, but it is short-lived and consequently must be renewed often. Welltrained specimens are very pretty

## BB. Calyx-lobes orate-

 acumimote, leafy.lùteo-rùbra, Benth. Pubescent: lres, ovate or oblong, acute, narrowed at the base. tomentose beneath: pedicels solitary : calys not toothed in the sinuses: corollatomentose ontside, equally tubular. straight. Brazil. - The above is a full translation of the original description.

> AA. Fls. red.
cordifòlia, Mart. (M.corlita. Hort.). Lrs. ovate, cordate at base, finely pubescent on both sides: pe- 1359. Manettia bicolor ( $\times^{1 / 3}$ ). duncles axillary. 1-fld. Brazil. B.R. 22:1866. B.M. 3202. - Cult. outdoors in Fla. and Calif., and makes a fiue subject for planting out in the North.
W. M.

## MANFREDA, See Agave.

MANGEL-WURZEL. A race of beets with verylarge roots, grown for fodder. Often called Beta rulgaris, rar. macrorhizu.
MANGIFERA (Latin, mango-bearing: Mango being the Hindoo name of the fruit). A nacardidcere. A genus of $\because \bar{i}$ species of tropical Asian trees, of which M. Indica,
the Mango, is cult. everywhere in the tropics. The fruit (Fig. 1360) is large ( $4-\overline{5} \mathrm{in}$. long) and kidner-shaped, the skin being smooth, rather soft, pale green, vellow or half-red, and resinous. Inside is a large seed nearly as long as the fruit. The shell of the seed is rough and fibrous; the kernel is shaped like a bean and is sometimes roasted and eaten like chestnuts. In a poor variety of Mango the pulp is so full of fiber that the fruit is sucked rather than eaten, and beginners say it tastes like a ball of cotton soaked in turpentine and molasses. This is particularly true of the common or turpentine variety, but the improved kinds are not unpleasantly fibrous. There are said to be 130 or more varieties cult. in India, where the Mango is most esteemed. All parts of the Mango tree have a sweet, resinous fragrance which suggests turpentine.

In the tropics the Mango is a staple article of food during the hot months. The ripe fruits are eaten raw, either plain or sliced with wine, sugar and nutmeg. The unripe fruits are made into jellic 3 , preserves. tarts and pickles. Starch and glucose are also made from Mangroes. A wine is made by alding rinegar to the juice of Mangoes. Various donestic animals are also fond of the fruit. As to qualits, the Mango is rankiol by some next to the tinest pineapples and the mangosteen.

The Mango is extensively cultirated in the West Indies, and slightly in S. Fla, and S. Calif. A sketch of its history in Florida is found in Bulletin 1, Div. of Pomology, U. S. Dept. of Agric., from which the following facts are taken: No fruit stood hisher in the fopular esteem in parts of south Florida than the Manco at the time when the disastrous freeze of January. 1so6, killed to the ground every or almost every tree north of Fort Myers. In 1884, 12. 0,000 fruits were shipped from Jamaica to the United States, and bronght \$900. In their eighth year from seed two Florida trees bore 19.000 fruits. Some of these fruits weighed a pound. In all cases where the trees were well cared for they produced from 4,000 to 9,000 Mangoes each when once well in bearing. Mangoes were shipped to Chicago and brought 60 cents a dozen. The fruit ripens Jume-Sept. The only varieties advertised in America in 1899 were the Common or Turpeutine, Cole, Black, Long, No. 11, Apricot and Apple. The following have been advertised in the past: Alphonse, Banchore, Devambria, Green Mexican, Melachoton, Pirie. Yam. The Mango can be fruited under glass in the North. It requires a winter tomperature of $60^{\circ}$.
The Mango tree is evergreen, grows $30-40 \mathrm{ft}$. high and makes a round, dence top (see Fig. 1361). The ths. are small and produced in terminal pyramidal panicles. A greenhouse specimen in England is said to have borne 108 panicles, each containing $\geqslant .100$ Hs... or a total of a quarter of a million ths. The Mango is presumably a native of the East Indies.
Mangoes in Jamuica. The Mango was first known in the New World in Brazil. whence it was bronght to Barbadoes in the midale of the eighteenth century. In 1782 a French vessel on its way to Haiti was captured by one of Rodney's squadron and brought as a prize to Jamaica; the collection of economic plants on hoard was deposited in the Botanic Garden. Many of the plants were new to the island, and amongst these was the Mango. It is said that the book containing the local names of the fruits was thrown overboard. The plants were numbered, and
1360. Mangifera Indica.

1361. Mangifera Indica.

In Jamaica it has become thoroughly naturalized and one of the commonest trees. In wet districts it is liable to cease fruiting after a few gears, probably on account of its vigorous growth. It is recommended to treat it as one would other fruit trees in temperate climates in similar circumstances. Propagation is effected either by sowing the seed of good varieties or grafting from a good variety on strong seedlings. The fruit on trees grown from seed is not true to the parent in every case. but the percentage is so large that this has been the usual method employed. The kind of grafting emploved is that known as grafting by approach or inarching. Any kind of soil suits it.

WM. Fawcett.
Mangoes in Florida. - The Mango deserves to be planted on well-protected land all over south Florida. The best soil is high, well-drained, sandy land suitable for oranges, but the Mango thrives also on black-jack, scruls and spruce-pine lands, where most other trees are a failure. Any good fertilizer will mase the Mango grow, but for fruit use plenty of ashes or sulfate of potash beside the usual manure. In case of a hard freeze cut the trunk back at once to somnd, live wood. The Mango tree is rery handsome. The goung growths are wine-colored.
E. N゙. Reasoner.

Mangifera is a genus of 27 species accorting to the latest monographer. Engler in DC. Mon. Phan. 4:195 (1883). They are all tropical Asian trees, their nearest ally of horticultural value being the Casher, which is fully described under Anacardium. Lrs. alternate, stalked. leathery, entire: Hs. polygamodiocious; calyx $4-5$-parted: petals $4-$ - overlapping, the midale nerve usually thickened: fertile stamens 1, or 4-5: style filiform.
Indica, Linn: Maxgo. Figs.1360-1. Las. thickish, 6-10 in. long, with about 15 pairs of lateral nerves: panicle longer than the lvs., densely covered with short. yellowish hairs: disk tumid (not minute), 4-5-lobed, wider
than the ovary; petals inserted at the base of the disk, 5, rarely 4, with 1-5 velns, which are prominent on the upper side but scarcely so at the apex; fertile stamens $1-2$, inserted at the base of the disk. B. M. 4010.
W. M.

1362. The beginning of germi nation in the Mangrove.

MaNGO. Consult Mungifera.

## MANGOSTEEN, Gar. ciniu Mangostuna.

MANGROVE (probably an altered Malayan name) is a name applied to species of Khizophora (Greek, rootbearing). The Rhizophoras are perhaps 5 or 6 in number and are widely distrilinted on tropical shores. The genus gives name to the family Khizophoracel. which Bentham \& Hooker the Combretucer and Myr. teceu. The common Man. grove, $R$. Mangle, Linn., is one of the commonest plants on tue swampy shores of tropical and subtropical seas. It is not in cultivation. bnt its strange methofs of propagation make it one of the most interesting of plants. The following account is reprinted from Bailey's "Lessons with Plants:"
The Mangrove grows on the low shores of tropical lands. It extends as far north as the twenty-ninth parallel in Florida, and occurs at the mouth of the Mississippi and on the coast of Texas. It is a spreading bush, reaching a height of 15 to 25 feet upon the shores, but becoming a tall tree in various places. It is an important agent in the extension of land into the sea. The means by which this result is accomplished are two. The fruit is small and capsule-like, but does not fall from the tree at maturity. A fruit is shown natural size in Fig. 1362 . The seed is germinating. sending its caulicle out through the apes of the fruit. In Fig. 1363 the germination is further progressed. In Fig. 1364. germination is nearly completed. The seed has endosperm. The cotyledons do not unfold in germination, but a woody tube grows from them and projects from the fruit to the point $u$. Inside this tube is the plumule. The hypocotyl continues to elongate. beconing thick and heary at its lower end. When 6 inches or a foot long, it breaks away from the joint $a$, carrying the liberated plumule with it. and strikes roct-end down in the mud. Roots push out from the lower end, and the epicotyl rapidly elongates and rears itself above the water. A piece of a Mangrove branch is


The hypocotyl enlarging. shown natural size in Fig. 1365. An aërial root is pushing through the thick hark. The root makes a strong curce when it strikes off the branch. and then grows directly downward towaris the water. The branch from which it springs may be only a few inches above the water, or it may be 10 feet: but the root pushes on until it inserts itself in the mud, and there makes a root system of its own. These long, lithe. descending roots (Fig. 1366), swaving in the wind, are characteristic features of the Mangrove swamp. Usually the hanging roots are unbranched, but now and then the tip breaks up into short brauchs (Fig. 1367) before it reaches the water. These long roots remain attached at the upper end, and become truaks. The Mangrove plantation, therefore, becomes an interroren mass, and thus marches on into the tidal rivers and the ocean, catching the flotsam and jetsam of the sea; and thereby it builds land and extends the
shores. In the quiet recesses of the Mangrove swamp aquatic and amphibious life finds refuge. The shell-fish cling to the trunks and at low tide they are exposed, thus giving rise to the stories of the early explorers that oysters grow on trees. All this will recall the accounts of the banyen tree, and there are wild fig trees (the banyan is a tig) in florida and southward which behare in a similar way. It seems strange that roots should strike out into the air, but the reader may have obserred the "brace roots" near the ground on Indian corn; and many plants, as the ivy and trumpet-creeper, climb by means of roots

1365.

Aërial root of Mangrove.

MANIHOT (native Brazilian name). Euphorliàcec. About 50 species of perennial herbs or shrubs, with milky juice, occurring in tropical Americ:., mostly in Brazil. Nearly almays smooth and blue-green colored: lvs. altemate, entire or palmately lobed or divided: fls. large for the order. racemose or paniculate, terminal or axillary, monceceous; calys imbricate in the bud, campanulate or radiate, often petal-like, j-lobed; petals none: stamens few. in 2 whotis in the angles of the disk: capsules 3 -celled, 3 -seeded. Not much grown in greenhouses, except in forms of M.palmata. The economic species may do well in the tropical parts of the United States, where they are being introduced. According to Nicholson, they are best grown in peat loam. and sand, and propagated by cuttings of young, rather
fine shoots, rooted under a bell-glass in sandy peat, with bottom heat. The first species is grown in Florida, and all are procurable from southern California. The culti. ration of Cassara is now attracting much atteution in Florida.

Glaziovij, Mull. Arg. Ceara Rtrber Tree. Les. long-petioled, peltate, deeply :3-5-palmately parted, or the upper entire; divisions entire, broad, ovate-lanceolate: fls. paniculate: bract small. Brazil; extensirely grown in Ceylon and India. - Its juice gives the Ceara rubber.

1366.

The descending root.
utilissima, Pohl. Cassata, or Manioc Plant. Bitter Ciassava. Figs. 1368-69. Roots theshy, celindrical, sometimes weighing as much as 30 pounds, and 3 ft . long, very poisonous: stems knotty, about 3 ft . high: Irs. long.petioled, not peltate, deeply 3 -i-lobed; lobes lanceolate, entire: bracts small, entire: calyx glabrous outside, puberulent within, yellowish, $\overline{5}$-parted: filaments glabrous; anthers short: capsule and ovary dis. tinctly wing-angled. July. Brazil. B.M. 30-1.-Cultivated extensirely in the tropics, where the Cussava made from the roots is a staple food. Tapioca is made from the root-starch by drying it in pellets on heated plates. The poisonous juice is pressed out in preparation or rendered harmless by heating.
palmàta, rar. Aipi, Mîll. Arg. (M. Aipi, Pohl). Sweet Cassafa. Closely related to the last, but the root more red.

1367. Multiple tips of a Mangrove root-branch.
dish colored and non-poisonous: anthers elongated: capsule only angular abore, not winged. Brazil. - Used as the last, but not so extensively.
J. B. S. Norton.

The cultiration of Cassara is of the simplest description in the West Indies. A piece of the stem. 2 or 3 feet long, is planted in somewhat sandr ground and left to its fate, with occasional hoeing of weeds. In suitable soils in the driest parts of Jamaica, it produces enormous crops with little or no attention.
Ceara Rubber has not been cultirated in the West Indies to any extent, but it is like Cassara in its capa-
bility of growing in dry, sandy soil. It would probably yield more rubber if grown in districts where irrigation is possible.

Wm. Fawcett.
MANITOBA. See Canada.
MANNA. See Alhagi.
MANNING, ROBERT (July 18, 1784, to Oct. 10, 1842), was one of the most thorough and accurate of American lescriptive pomologists. In 18.3 he established his "Pomological Garden" at Salem. Mass., for the purpose

1368. Flowers and fruit of Manihot utilissima. Enlarged.
of collecting and proving rarieties of fruits. At the time of his death this garden contained more varieties of fruits than had ever been collected in America. Pears were his specialty, but he had all the fruits which would thrise in his climate. These fruits numbered nearly 2.000 varieties, of which about one-half were pears. These varieties were gathered from all parts of this country, and also from Europe. The new pears of Van Mons, the Flemish scientist and propounder of a theory of plant rariation (see "Survival of the Unlike," Essay V), were introduced largely by him. He also receired raluable acquisitions from Robert Thompson, of the fruit department of the London Horticultural Society. In 1838. Manning zublished at Salem his "Book of Fruits, being a descriptive catalogue of the most raluable rarieties of the pear, apple. peach, plum and cherry for New-Encland culture." It also contained bush-fruits, grape and hardy trees and shrubs. It was published as "First Series for $1838 . "$ which indicates that its anthor intended to issue other parts. All the descriptions were dramu from the fruits themselves. The book was well illustrated. In this work he was assisted by John M. Ires: and Ires made a second edition of the work in 1844 under the title "Book of Fruits," and a third in 1847 as "Nem-England Book of Fruits." At this dar it is difficult to appreciate the work of a man like Manning. In those days, varieties were all-important. The scientific management of orchards had not yet arisen. Varieties were confused. Manving and his compeers opened the way for correct nomenclature and systematic pomology, and established the idea of testing varieties. His decisions on nomenclature were accepted as final. He was one of the founders of the Massachusetts Horticultural Society. For a reference to the position of Manning's work in our bistory, see the article Morticulture: also Tilton's Journ. Hort. 7 . pp. 157-8. His son, of the same name, is secretary of the Massachusetts Horticultural Society.
L. H. B.

MAN-OF-THE-EARTH. Ipomaa pandurata.
MANURE (from old French manurrer, to cultirate by hand: Latin manks, band, and opera, works). In the broadest sense, Manure is any substance applied to the soil for the purpose of increasing productivity. The excrements of animals, mixed or unmixed with straw or
other absorbents, are usually spoken of as barn Manures. Commercial Manures or "fertilizers" are usually coucentrated forms of nitrogen, potash and phosphoric acid, mixed or unmixed (see Fertilizers); green Manures are living plants plowed under to furnish humns and increase productivity; amendments are substauces, such as lime, which may increase the growth and healthfulness of plants by improving the physical conditoin of the soil and by setting free unarallable plant-food. In general farming, Darn Manures are usually applied in the raw or unrotted state; in horticul. ture, rotted or partially rotted. Horse

nures when spread over the mass from time to time In small quantities. The quantity and value of Manure made by domestic animals is not realized by those who allow it to be scattered over large, open barnyards or allow it to remain for considerable periods under the eaves of the barn. Extended experiments at the Cornell Experiment Station showed that the following amounts of excrements were producel daily for each 1,000 pounds of live weight of animal:


Animals fed on a highly nitrogenous or narrow ration (as 1:4), as were the pigs in the abore investigations. consume large quanttities of water and produce a large amount of Manure, the weight of which often exceeds the amount of food consumed; Thile those fed on a carbonaceous oi wide ration (as $1: 9$ ) consume somparatively little water and produce less weight of manure.

Some conditions affecting the production of Manure and its valne may be stated as follows: If tho plant-food ralue of Manure is computed at the price that is paid for the same constituents in fertilizers, it is found that the value of Manure produced by ani mals is equal to 30 to 50 per cent of the cost of their food. Young animals produce poorer Manure than mature ones. The excrements of animals which give a product, as milk or young, are poorer than those from non-productire animals. The more abundant the ration the less complete the digestion and the greater the value of the Manure produced. Concentrated and nitrogenous foods result in richer and more valuable excrements than unconcentrated or carbonaceous fools. Liberal salting and excessively succulent foods diminish the value of Manures. The amount

Manure is used for hotbeds, while cow Manure, mixed with soil, is best for forming a moist, rich, potting earth. Dung, the solid roidings of animals, after weath. ering for a time, is also a valuable addition to potting earth. Florists often keep a number of dairy cattle that an abundant supply of bovine Manure, which is so valuable in Horiculture, may be at hand. Commercial Manures are used in small quantities, either direct or in solution. Nitrogen stimulates the vegetative system and tends to produce rapid growth and dark foliage. Phosphoric acid. a noug other effects, has that of producing well-developed plump seeds and fruits; potash may aumment these effects, as well as increase and intensify the color of the bloom.

Barn Manures are more highly prized than formerly. Waste of their valuable constituents is now largely avoicled either by applying them to the land day by day, as they are produced, or by more rational methods of caring for them until they are partly rotted or opportunity is afforded for most suitable application to the land. Covered yards or pits are now sometimes used for temporarily storing Manures, where they can have water added if too dry and if likely to "firefang;" or absorbents, such as straw, dry muck, gypoum and the like, may be used if they are too watery. When bedding is abundant. the animals may take their exercise in the covered yard, as they will solidify the Manure by tramping it, thereby diminishing loss by too rapid fermentation. Salt and gypsum both conserve plant-food in ma-
1369. Manihot

The plant whose roots produce tapioca. (See p. 981.) and kind of bedding affeet not only the quantity but the value per ton. Animals kept in cold quarters dirink little water, digest their food closely and produce a Manure relatively small in amount and poor in quality.

Rich Manures are relatively more valuable per unit of contained fertility than poor ones. Plants are most benefitted when they receive extra nourishment in the early stages of their growth. Coarse, low-grade Manures should be weathered or rotted to improve their arailability, even though some loss may occur. A unit of plant-food in high-grade fertilizers or well-preserved, rotted Manures is worth more than in low grades. The valuable constituents in farm Manures are not soquickly a vailable as they are in high-grade fertilizers, but they have an additional value, since they furnish humas, lighten the soil and increase its power to hold moisture, while assisting in liberating the mineral constituents of the soil. The value of Manurr as set down below is determined by incestigations dy ring the winter months, and the nitrogen, phosphoric acid and potash are computed at 15,6 and $41 / 2$ cents per pound, respectively. The indirect beneficial effects of Manure are considered an equal offset for the slightly less availability of their plant-food constituents as compared with fertilizers:

Kind of Manure
Falue per ton.


Limited amounts of bedding were used in the tests from which the foregoing tigures were made.

| Kind of animal. |  |  | V'atue per year. |
| :---: | :---: | :---: | :---: |
| Fowls (1 | (1) | . | \$31 10 |
| Sheep |  |  | 25 0 |
| Cinlves | ". | $\because$ | 34 |
| Pigs | " | ${ }^{\prime}$ | (6) a |
| Cows | " | $\because$ | 年等 |

Usually these animals are kept in the stables but half of the year, and inevitably some loss will occur, therefore it will be safe to estimate the recovered value per year at one-third to one-fourth of the above.

Heretofore the waste of the valuable constituents of Manures in the United Stutes has been very great. Until recently, large, open barnyards have been the rule. In the northern and central parts of the United States the r.infall exceeds 30 inches per annum. Many barnyards contain from a quarter to half an acre. One inch of rainfall equils 113 tons of water peracre. If this be multip:ied by thirty, a fairly accurate estimate is secured of the water which largely passes throngh or orer the Ma. nure and carries off its most soluble and hence most valuable constituents. The loss of value in Manures exposed at Ithaca, in loose heaps of from two to ten tons, during six months, was as follows:


Even in horticulture, where a more liberal use of Manure than in general farming is almissable, too much reliance is often placed on Manures and too little on tillage. Manures may furnish plant-food, improve the physical condition of the soil, conserve and increase heat and moisture. Ten to twenty times as much food as the plants can utilize is sometimes applied. Growth and development are more largely determined by the amount of moisture than by the amount of plant-food. Five tons of preserved barn Manure contain of nitrogen, phosphoric acid and potash, 60,30 and 45 pounds, respectirely. Twenty-fire bushels of wheat, with straw, contain 45 lbs of nitrogen, 18 lbs . of phosphoric acid, and 27 lhs . of potash. Most soils contain large amounts of unavailable or difficultly avnilable plantfood. Manures should be used largeiy to feed plants between the time the nutrients in the seed have been exbausted and that when the plants have secured a firm hold on the soil by manifold rootlets. Except where otherwise most suitable and conrenient, barn Manures should be spread thinly in the autumin or early winter on the surface where plants are growing, thus initating nature's methods of maintaining and increasing productivity. I. P. Roberts.

MAPANIA (aboriginal name). Cypericerf. Perbaps 6 or 8 described species in tropical countries, comprising strong perennial herbs, with broad and stronglis. arising from the crown, and large fl. -clusters on mostly leafless scapes: the small, perfect fls. contain usually 6 bypogynous scales, usually 3 stumens, and 3 filiform stigmas: nutlet sessile, 3 angled. The only species in the Amer. trade is M. pandanæfolia, Sunder. Its nativity is not given, and it is possible that it does not belong to this genus (see Gt. 46, p. $5 \cdots 2$ ). The plant is represented as pandanus-like, $3-4$ ft. high, with long, narrow. graceful, stiffish lvs. G.C. III. $21: 349$. Gt. 46, p. 523. In Enropean garden literature, M. lùcida, N. E. Brown, and M. hùmilis, Vill. (from Malaya), are also described. Index Kewensis regards these species as one, M. humilis being the older name. It is an erect-growing plant with oblong strong-ribbed lvs., which are produced into long petioles and taper into long tail-like points. I.H. 32:557. It is also known as Pamlanophyllumi Hendlanli, Hort.
L. H. B.

MAPLE. See Acer. Flowering M. $=$ dutilon.
MARANTA (B. Maranta. Venetian botanist. died 1754). Scitaminicecr. Abont 10 or 12 tropical American herbs, very closely allied to Calathea, but distinguished amongst
other things by having 2 of the 3 locules in the fruit empty. Most of the plants cultivated as Marantas are Culatheas; and the true Marantus are trented the same as those plants. These plants are often named before the flowers are known, and some of the following plants may belong to the genus Calathea.
A. Lecrres !reen, pubescent bemeath.
arundinàcea, Linn Figs. 1370-71. Branched, 2-5 ft. high, tuherons: lvs. ovateoblong and pointed: fls. white in an open cluster, the upper lip roundish. Trop. Amer. B. M. 2307. - One of the sonrces of arrow-ront (see $A$ rrou-ront), the plant heing often called Bermula Arrow-Root. The starch is obrained from the roots. It thrives along the Gulf const. although little cultivated. There is a form with leaves van iegated green and yellow. AA. Lellices green, marked with strong, parallel lightcolored bers estending from midrib tornats margin or with a whitish central stripe.
spléndida, Lem. Glabrons: Ivs. 2 ft . or less long, large, oblong-lanceolate, with hase subcorlate or somewhat cuncate, short-acuminate at apex, above shining dark green and marked with pale green transverse bars, heneath violet-red. Brazil. I.H.13:4it-8.-By some regarded as Calathea ( $C$. splemdilu. Regel). Resembles Culathen Veitchiuna. but more robust.


$$
\text { 1370. Maranta arundiracea }(\times 1 / 4) \text {. }
$$

AAA. Leelves blotelied or luended with darki colors (snmetimes contrusted with siliery colors).
undulàta. Lind. \& André (properly Calathín unfulìta, Regel). Six to 8 in . high, compact: lvs. ovate-oblong, the blade about 4 in . long, subcordate and unequal at

## Marrubium

base, rery short-pointed, the surface undulate, beneath purplish, abore deep shining green, with a whitish feathery stripe through the center. Peru. I.H. 19:98.
leuconeùra, E. Morr. (M. Kerchoveàna, E. Morr. M. Kerchövei,Hort. Caluthèt Kerchovediu, Hort.). Dwarf, 6-8 in.: lvs. cordate-oblong, usually obtuse or very short-acuminate, grayish green with oblong purple spots on either side of the midrib. Brazil. I.H. 26:353,


Massangeana. E.Morr (Calathèa Massangeina, Hort. ). Larger in all its parts than the last : Ivs. elliptic-orate to obovate, rounded or truncate at base, the anex abruptly shcrt-pointed light purplish beneath, the upper part marked with three colors, -olive green towards the mar gin, broad central band of silvery gray, blotches of purple or maroon be tween the two. Brazil. F. S. $22: 2364-5$ (as $M$ leuconenra, var. Mas sangeama). J.H. III. 30 : 499 (as var. florentina)
bícolor, Ker-Gawl. A foot high: lvs. roundish ovate, rounded or sub cordate at the base, mor or less wary on the margin, abruptly short pointed, lisht purple be low, pale glacnous green abore, with a relatively light colored central band and very dark green or brown green blotches midway hetween the rib and the margins. Brazil. B.R. 10:786. L.B.C. 10:921.

The following names are foum in American trade-lists: If Baraquirii = Calathea Baraquini?-M. Goreniàna.- M. ico nifert, Hort. (a form of Calathea Dakoyana?), has les, about 6 in . long, obliquely oval, yellowish green, with oblong, deep green spots or bars. Brazil. - M. Lubersi. Foliage reticulatei with yellow.-M. musaica, Hort. Lws. 6-8 in. long, obliquely cortate, shining green, marked with many transverse veins Brazil.-M. Porteima. See Stromanthe.-II. Sagorima, Hort Dwarf: Irs. oblong, pale green. with oblong-ohlique, deep green hars on each side of the midrib. S. America.-M. sanguínea. See Stromanthe.
See Calathea for the following names: albo-lineata, argyrea Bachemiana, Chimboracensis, eximia, fasciata, Fascinator illustris. Lageriana, Legrelliana. Lietzii, Lindeni, Makoyana. medin-picta, micans, nitens, ornata, princeps, pu/chella, regalis rosen-lineata. rosea-pictc. smaragdina, tubispatha. Vanden herkei. Veitchiana, virginalis, Wagneri, Warscewiczii, Wioti, zebrina

## L. H. B.

MARATTIA (name from J. F. Maratti, an Italian botanist of the seventeenth century). Marattidecr. A genus of large, coarse-leared fern-like plants with the sporangia borne in large, boat-shaped conceptacles on the under surface of the leaf. The species are stronggrowing and ornamental, some of them reaching con side:able size.
fraxinea, Smith (M. élegons, Endl.). Les. bipinnate, (6-1.) ft. long, on stalks often 1 in . or more thick; pinmules 4-6 in. long, $1 / 2-1 \frac{1}{2} \mathrm{in}$. Wide, of a leathery texture and naked surfaces: receptacles submarginal. West Africa to Malaysia and New Zealand.
L. M. C'nderwood.

MARCGRAVIA is a genus of Ternströmiaceæ, but M. parudoru $=$ Monstera acuminata.

MARCHANTIA(Nicholas Marchant, French botanist) Merchentidece. A common iiverwor:, spreading its leaf-like forking thallus on moist earth. M. polymorpha, Linn., has been offered by dealers in native plants, the sods of it being sold for colonizing in rock gardens. It often grows on damp sills and walls in greenhouses. The flat thallus is often $4-5 \mathrm{in}$. long and 1 in. or more wide, from which rise peduncles 1 in . high, bearing the antheridial disk or shield and the star-like carpocephalum on similar stalks 1-3 in. high.

MARGOERIME or PARIS DAISY is Chrysanthemum frutescens. Blue Marguerite is Felicia amellodes. Reine M., of the French, is China Aster.

MARGYEICABPUS (Greek, pearly fruit; referring to the white herries). Rosicer. Fise species of South American subshrub , of whic!. M. setosns is a heathlike plant cult. in rockeries for its numerons small white berries, which are seen to best advantage against dark background. The nearest geuns of garden value is Acæna, which has fls. in heads, while those of Margyricarpus are solitary and axillary. Branching shrubs with inconspicuous fls. which are sessile and ilave no petals. Lre. alternate, crowded, overlapping: calyx tube persistent; lobes 4-5: ovules solitary, hanging from the top of the cell.
setosus, Ruiz \& Par. Low-grow ig. Peru, Chile. Int. by Franceschi. Hardy in England. Sometimes called Pearl Fruit

MARICA (meaning doubiful; the author of the genus did not explain). Iriddcere. Dleven species of tropical Americau plants allied to Iris, but with shorter-lived Howers and convolute inner segments. Three species are procurable from Dutch dealer . The fls. are 2-4 in. across, the oucer segments lerg', white or blue, the inner ones smiller, with complicat dand beautiful coloring. They are planted in the $f .11$, and are hardy with winter covering. The genus is nearest to Cypelia, but the style crests are petal-like, while in Cypella they are spur-like or flattened. Kootstock a short rhizome: lis. sword-shaped, 2-ranked: fls. blue, yellow or white. Baker, Irideæ, 1892.
A. Outer segments pure whit
grácilis, Ferb. Les. $1-1 / 2 \mathrm{ft}$. long, $1 / 2-1$ in. broad: fls. 2 in. across. B.M. 3 I 13 .
AA. Outer segments white, marked at the base with brown and yellow.
Northiàna, Ker. Lus. $1 / 2-2$ in. broad: fls. $3-4$ in. across. B.MI. 654. I.H. 42:40 (var. splendens).

## asa. Onter segments blue.

cærùlea, Ker. Lrs. 1-1 $1 / 2 \mathrm{in}$. broad: fts. 3-4 in. across. B. ©i. ifilㄹ (as Cypellu curuleu). B.R.9:713. Gn. 25, p. 313. K.W. 1:40.
M. Califirnica. See Sisyrinchium.

MARIGOLD. The oldest kind is the Pot Marigold, the dried As. of which are used to season soups. It is also cult. for ornament. See Calandula officimalis. The French Marigold is Tagetes putuln: the African, $T$. erecta. The African Marigolds are mostly pure lemonor orange-colored; the French ones have these colors and brown also. and are often striped. For Cape Marigold, see Dimorphothoci. Fo: Fig Marigold, see Mesembryanthemum, Marsh Marigold is Cultha palustris.

MARINE IVY. Cissus incisa.
MARIPOSA LILY. See Culochortus.
MARIPOSA TULIP. Cilochortus.
MARJORAM, SWEET. Oriaamum.
MARKERY, MSRCURY. See Chenopodium.
MA ?OW, |VEGETABLE. See Pumpkin.
MARRCBIOM (old Latin name of obscure meaning). Labiata. A genus of about 40 Cla World species, including the common Horehound, a hardy, peremial, bitter-aromatic herb, growing $1-3 \mathrm{ft}$. high, with whitish. hairy, crenate lvs., and axillary whorls of small whitish fls. It is a native of Europe, Asia and northern Africn, now found as an escape from gardens in waste places of nearly every country i the world. Horehound is
used in large quantities for confections and medicines for coughs and colds.
Marrubium comprises similar perennials branched from the base, with wrinkled and cremate or cut lis. and many-fld. axillary whorls of small white or purplish fls.: calyx tubuiar, $\overline{5}$-10-nerved and with $\overline{5}$ or 10 awlshaped teeth.
vulgàre, Linn. Common Horemo'nd. Height 1-3 ft.: stems asceuding: lrs. ovate, stalked: calys with 10 recirred teeth, the alternate ones shorter: fls. white. Simmmer. B.B. 3:84.
Horehound (or Hoarhound) in America has beeome a common weed in New England, Indatha and upon the I'acific coast, especially south of Sau Francisco. From the last region is obtained Horehound honey, a product considered useful in the treatment of coughs andi colds. The leaves and tops have a bitter. penetrating taste and a strong, not unpleasant olor, which is somewhat dissipated by drying. In addition to its well-known uses in pulmonary troubles, it is credited with tonic; laxative and, in Jomestic medicine, deobstruent properties. The plant prefers airy, warm, rather rich, light soil. It may be readily propagated by division of the clumps or by seed sown in the spring where the plants are to remain. The drills should be 2 fect apart and the plants 1 foot asunder. With clean cultivation and moderate annual manuring two abundant cuttings should be obtained each year. Since the market is fully supplied by the wild plants and since, when one established, it wil grow almost spontaneously, the cultivation of Horehound is not recommended except to supply prisate needs.
11. G. Kains and M. B. Coclston.

MARSDENIA (William Marsden, 1754-18:36, wrote a history of Simatra). Asclepiadicere. About $\overline{0} 0$ species of tropical and subtropical shrubs, mostly twiners, of which about haif a dozen species are cult. in Europe under glass. M. Roylei, a fiber and dye plant from the East Indies, was introduced by Reasoner in 1889, but is now lost. The genus is allied to Stephanotis, which has large white Hs., while those of Marsdenia are usually purplish, lurid, greenish or pallid. Less. opposite: cymes umbel-shaped, simple or branched, terminal or axillary: calyx 5-parted: corolla bell-, urn- or salvershaped; lobes narrow or broad, overlapping to the right: crown of $\overline{5}$ scales: seeds comose.

Roylei, Wight. Les. 3-6 in. long, 2-t in. wide, ovate cordate, acuminate, pubescent or tomentose beneath: petioles $11 / 2-2$ in. long: crmes $1-1 \frac{1}{2}$ in, across: $f / s, 3-1$ lines in diam.; corolla sumewhat bell-shaped: lobes large, fleshy; stigma not estended beyond the anthers: seeds $1 / 2 \mathrm{in}$. long.
L. H. B.

MARSHÁLLIA (Humphrey Marshall, wrote Arbustum Americanum, 1785, the first American work on our trees and shrubs; also foumded one of the first American botanic gardens). Compósiter. About 9 species of perennial North American herbs, of which only one species, M. cespitosa, seems to have been offered. Marshallias are tufted plants, growing about a foot high, with entire lrs, and scapes bearing solitary rarless heads about $1 \frac{1}{2} \mathrm{in}$. across. Somewhat like the common Scablons. These are rose-purple or white, with blue anthers, and appear in spring or summer. For fuller description, see our manuals.
cæspitosa, Nutt. Tufted, glabrons: lvs. spatulatelinear; upper ones linear: bracts of the involncre linear: disk-Als, pale rose or white: seeds inversely pramidal, villons on the angles. Limestone soil, Ark. to Tex. B.M. 3704. B. B. $3: 443$.

## MARSH MALEOW. Althet officimetis.

MARSILEA (Gioranni Marsigli, Italian botanist of last part of the eighteenth century. or Aloys Ferd., Graf con Marsigli, (6.58-1730). Morsiledcerp. Aquatic flower less plants(about 40 species), with lrs. like 4 -leaved clover or oxalis, one species of which. M. qumlrifnliu, Linn., is sold and is also run wild in the eastern states. It is a creeping plant, rooting in the mud on the margins of ponds and making an attractive cover. The petioles grow 3-5 in. tall, or taller in the water, and bear at the
apex 4 bright green okeuneate or triaugular leaflets. The sporocarps or fruits are nearly sessile at the base of the petioles. Prop. easily by pieces of the runners, and is likely to become a weed. The young leatlets close at night. Eurcpe and Asia. Mn. 6, p. 107.

MARTINEZIA (Rev. Dr. Baltasar Jacobo Martinez Companon, archbishop of Santa Fé,who sent many early collections of plants from Peruj. Palmacece. Ornamental palms. With spiny ringed trunks: lvs. pinnate, the segments broad, wedse-shaped, alternate or grouped, the apex truncute and ragged: petioles and rachis spiny. is are also the spadices and spathes of the inflorescence fls. rather small: fr. globose, 1 -celled, orange, scarlet or rose-pink. Species 7. Trop. Amer.

Jared G. Smith
Martinezias are beautifnl jalms, and make fairly good house plants. They must have a stove temperature. They do not require agreat amount of soil. Light sandy loair, with plenty of sharp sand, is best. They need abuudant moisture. They sometimes flower in cultiration, but the 4 kinds given below are Jistinct by their foliage and spines. Like all armed palsas, they are slow to germinate, but ifter the tirst or second year they grow finirly fast. he commonest and best kind is If. curyotiefolid, which has fewer spines than the other snecies aud, unlike many other palms, shows its true les. at a very early stage. It resembles the fishtail palms (Caryota), but the lis. are a lighter green and generally larger. M. erosu makes a better specimen at $\overline{0}-6 \mathrm{ft}$. than when small. It is much more jagged at the tips of the lvs. Being very spiny all over, it is less desirable. I. Lindemiom is more like the first. The spines are longer but not very mumerous. M. Granatensis is of coarser habit and slower growth, and desirable only for large collections.
H. A. Siebrechr.
A. Lis. divided into segments.
B. Segments in groups.
C. Apex of segments 3 -lobed.
caryotæfolia, HBK. Stems at leugth 30 to 50 ft . high: ivs. few, $3-6 \mathrm{ft}$. long. light green; lfts. in groups, $6-12$ in. long, 4-6 in. Wide at the apex: stem, petioles, rachis and nerses below, densely clothed with long black spines. Colombia. G.C. 18ia:181. B.M. 6854. F.R.2:49.
Cc. Apex of segments with a print projecting from the upper murgio.
Lindeniàna, H. Wendl. Stems 9-15 ft. high: pinna in opposite groups of 4 to 6 . the groups widely separated. long-wedge-shaped, $10-14$ in. long, 8-10 times as long as broad. With a short, projecting point at the upper margin, the nerves ciliste-spiny toward the end: petiole densely corered with grayish brown hairs, with many rather large black spines $1-2 /$ in. Iong: rachis is also spiny above and below midnerve of each segment a trithe shorter than the lower margin and spiny beneath, like the rachis and iateral nerses: lvs. dark green above, lighter beneath; terminal segment broadest: fr. rose-red. Mountains of Colombia, at an altitude of $6,000 \mathrm{ft}$.

BB. Segments in $0-4$ priors.
eròsa, Linden. Lers. with 2-3 pairs of narrow lfts. at hase and a pair of broader ones at the apex, a!l oblique at the apex, bearing long, brown, needle-shaped spines on the veins and midrib: rachis cylindrical or obtusely angled, mealy, clothed with spines like those on the lis. West Indies. G.C. 1872:1297.
A.A. Liss. bifill at the oper.

Granaténsis, Hort. (M. Gremortemsis, Hort.). Les. ronndish oblong or roundish orate, entire at the base, bifid at the apex, evenly toothed along the edges: petioles and rachis with dark brown, needle-shaped, spreading or reflexed spines, ${ }^{1}-1 \mathrm{in}$. long. Colombia.

Jared G. Smith.
MERTYNIA (John Martyn, 1699-1768, professor of botany at Cambrilge, botanical author and editor of the largest edition of Miller's "Gardeners' Dictionary"). Perlulicere About 10 species of coarse annuals from the warmer parts of America, a few of which are cult. for pickles or for ornament. Thev have large showy fls. numblike those of Catalpa in form, the 2
upper lobes being smaller than the 3 lower. The fls. are 2 in. or more across, chiefly lilac, purple or yellow but spotted and marked about the throat with other colors. They are heavily scented and interesting, but, like all other parts of the plant, they are clammy. The plants grow $11 / 2 \mathrm{ft}$. or more high, and should be started in a hotbed in early spring in the North and transplanted to the open. In the middle and sonthern states seed may be sown in the open 3 ft . apart each way where the plants are to remain. The capsules are taken when small and tender and pickled like cucumbers. They have a very distinct appearance by reason of the long. curred horn which splits from the top as the capsule hardens.
The snall family to which Martyni belongs is allied to the Bignonia famils, and the fls. are much alike, but the habit and fruit are different. Martynias are either annuals or perennials, with large tuber-shaped roots, prostrate or suberect and clammy: lvs. opposite or al ternate, long-stalked. cordate, coarsely wary-margined or toothed, or palmately lobed: fls. 5-8 in a short, terminal raceme: capsules with 2 short or long horns.
The first three species described below belong to the subgenus Proboscidea, which has 4 perfect stamens and long-horned capsules. They vary considerably in the

1372. Martynia proboscidea ( $\times 1 / 3$ ).

## A. Fls. lilac or dull white.

proboscidea, Glox. (M. Louisidna. Mill.). Unicorn Plant. Proboscis Flower. Fig. 1372. Lrs. roundish, often oblique, entirely obscurely wary-lobed, 4-12 in. wide: fls. also vary to light gellow. Banks of Mississippi; nat. near old gardens. B.M. 1056. V. 3:151.The picture (Fig. 1372) shows fruits one-third the size at full maturity. The right-hand specimen shows the woody part, after all the soft parts hare been macerated.

## AA. Fls. purple.

fràgrans, Lindl. (M. formosa, Vilm.). Less stout than M. proboscidea: lvs. roundish to oblong-cordate, somewhat lobed and wavy-toothed, $3-\overline{5}$ in. broad. Mex. B.M. 4292. B.R. $27: 6$. R.H. $1843: 248$.

## AAA. Fls. yellou.

lùtea, Lindl. Lrs. cordate-orbiculate, subdentate, glandular-pubescent. Brazil. B.R. 11:934.

## AAAA. Fls, white.

Craniolària, Glox. Properly Cranioldria dinuta, Linn., a genus distinguished by having a very long and slender corolla tube, while in Martynia the corolla tube is swelled out at a very short distance from the base. Lrs. palmately lobed; margins dentate: corolla tube about 6 in. long. Colombia.-Some of the plants sold under this name are M. proboscidea; others are M. fragrans.
W. M.

MARVEL OF PERU. Mirabilis Jalapa.

MARY, BLUE-EYED. Trudescantia Virginica.
MARYLAND, HORTICULTURE IN. Fig. 1373. All of this state lying south of Baltimore possesses notable horticultural possibilities. The lands are quite variable in composition, and are very sensitive and responsive to judicious and rational treatment. In the production of early fruits and vegetables, the natural adaptability of soil, the mild and equable temperature resulting from the influence of the expansive waters of the Chesapeake bay, which cuts the state in two, as well as from geographical location and convenient access to all the principal eastern city markets, are the conditions which combine in a presentation of rare inducements that are not fully appreciated by the rural citizenship of the locality. Fully three-fifths of the farms in Maryland, by circumstances as above briefly indicated, are specially adapted to horticultural pursuits. The eight counties forming a tier, extending from east to west along the northern boundary of the state, do not eujoy so wide a range in horticultural favor as the central and southern counties. The wonderful development of the fruit and regetable packing or canning industry in the state is to a very noticeable derree encouraging, and accomplishing a diversification for the promotion and betterment of horticulture. In the city of Baltimore the "packing" business has assumed huge proportions, but independent of this, the business has in the aggregate, throughout the several counties, reached a large volume, which is annually increasing. Caroline county, centrally located on the Eastern Shore, annually operates more than a score of such houses. Strawberries, blackberries, peaches, pears, peas, tomatoes and sweet corn constitute the principal articles canned. No fancy prices for either fruits or vegetables are obtained in the local markets thus created, but a great good to horticulture growing out of these operations is that they are inducing many hard-worked and poorly paid tillers of the soil to climb out of the old ruts, giving them a practical education or training that enables them to grow and prepare products for the city markets in keeping with modern demands. Thousands of acres in this state are now devoted to peas, tomatoes and sweet corn for the packing houses. Summarized, this means more manure - better methods-better land.
For many years the peach maintained undisputed supremacy in the fruit interests, of Maryland. Enthusiasm extended the acreage beyond the capacity for proper care and culture, thus inviting the encroachment of disease and insect enemies to an extent that has served to circumscribe the misdirected ambition for large orchards, and has robbed peach-growing of much of its fascination. In the ageregate, the orchard acreage is still immense; but old orchards are going out to a much greater extent than new ones are being planted. In the northern tier of connties, interest in apple-growing is increasing. Cherries, too, in many locations in this part of the state are successtully grown. Pears are more generally grown and satisfactory throughout the state than cherries. Kent and Queen Anne counties, of the Eastern Shore, excel in the production of pears, both in quantity and quality. Plums of the native and Japanese species receive considerable attention, and in many instances prove more remunerative than other fruits. Small fruits of all kinds are grown in great abundance. The large fruit interests of the state create and maintain a large local demand for nursery stock, which is shared by the forty nurseries in various parts of the commonwealth. Several of these establishments make the propagation of peach trees a specialty. growing them by the hundreds of thousands, and disposing of them in a wholesale way to their fellow-nurserymen in localities less favored for propagating these trees. In a few of the Western Shore counties tobacco still figures to some extent in soil products; on the Eastern Shore tobacco has been superseded largely by sweet potatoes, to the decided benefit of both land and landlord.
The division of the state by the Chesapeake bay keeps the Eastern Shore out of touch in more ways than one with the rest of the state. The experiment station is located on the Western Shore, where the borticultural
interests are on lines more or less distinct from those on the Eastern Shore. Greater harmony obtains between the conditions of the Eastern Shore and of Delaware; hence it naturally follows that horticultural relations between the Eastern Shore of Maryland and the state of Delaware arecloser and more intimate in many respects than those between the two "shores" of Maryland, and doubtless will remain so unless counteracted by the establishment of an active and well-equipped sub-station on the Eastern Shore. The entire peninsula, comprising Delaware's three, Maryland's nine and Virginia's two counties, should properly constitute one state, as nature seems to have intended. If these fourteen peninsula counties were banded together by the ties of statehood, and thus governed solely by their own citizens, it could not do otherwise than promote and accelerate the progress in horticultural advancement, and make it by concentrated art and practice what it is by nature, America's Eden. It is capable of supporting a population ten times as large as at present inhabits it, with an overflow sufficient to feed five times as many more in the large near-by cities with choice fruits and vegetables, easily grown in endless variety.
Marylaud's metropolis, with its rapidly improving facilities for distributing to other cities and towns, affords much encouragement and gives impetus to all horticultural operations. Baltimore market is the main dependence of the Western Shore and western Maryland fruit-growers and truckers; while a large share of the horticultural products of the Eastern Shore, owing to convenient accessibility, are consigned to New York, Philadelphia and Vilmington. The General Assembly or Legislature of Maryland has never, until quite recently, done anything to promote or protect, by appromriation or otherwise, the great horticultural interests of the state, while it has expended hundreds of thousands of dollars to exploit and protect the oyster and fish industries. The value of the small-fruit crop reaches into millions of dollars annually. Add to this the peaches, pears, apples, plums, cherries, etc. - then couple to all the vast volume of veretable production throughout the state-grasp all this, and crowd it into the two wordshorticultural interests, and here are the data in the form of unmanufactured material, and the nearest approach to synthetical statistics that is available. That horticulture takes rank with the greatest industries of the state is obvious to any unclouded comprehension. The soil of fifteen of the twenty-three counties comprising the commonwealth, reveals unmistakable evidence that nature, in loving pride. planned a brilliant horticultural destiny for them, holding out conspicuously, among numerons other incentives, a climate promotive of health, pleasure and prosperity. Violent extremes of heat and cold, so troublesome, annoying, and even disastrous in many other sections, are rarely if ever experienced here. Industrial evolution is steadily giving trend toward higher development of horticulture in the state.
J. W. Kerr.

MASDEVALLIA (Joseph Masderall, a Spanish physician and botanist). Orchiddcece, tribe Épidéndrec. Masdevallias are inhabitants of the American tropics. There are more than 150 species, and various hybrids and garden forms. They are not showy orchids, but are odd and often grotesque. The petals are small and usually hidden in the calyx-tube, but the 3 calyx lobes are greatly developed and give character to the flower. Often these lobes end in slendrr tails several inches long. Lip of the corolla short, articulate with the base of tide

1373. Maryland. The strong line sets of the horticultural regions to the south.
winged or wingless column, in some species sensitive. Pollinia 2, without caulicles. The Masdevallias hare no pseudobulbs; the leaves are variable in size, oblong to linear, thick, sheathing at the base; the peduncles bear from 1-5 or more flowers. The species of the $M$. coccinea group are relatively simple in form, but are usually prized
for their brilliant coloring. Those of the M. Chimera group are remarkable for their fantastic shapes. Of late years many new kinds have been introduced, and the genus is somewhat confused as to the specific limits of the various forms. Masdevallias are polymorphous, and herbarium specimens do not show specific characters well. See "The Genus Masdevallia," by Florence II. Woolward (1896).
L. H. B.

Masdevallias are found growing at high elevations, ranging from 6,000 to 12,000 feet above sea level, in northwesteru South America and Central America, with a few sparingly distributed elsewhere over tropical America. These regions are generally subjected to two rainy seasons annually, of ten with very short intermissions. The atmosphere, though somewhat rarified, is very humid, the temperature in the shade seldom rising above $65^{\circ} \mathrm{F}$., and often dropping to $40^{\circ}$ in some districts. Heary fogs are frequent, especially in the forepart of the day, and during the greater portion of the year the under-vegetation is in a saturated condition; the high wiuds prevalent in these districts, however, counteract to a great extent any evil influence which might otherwise arise from it.
The he at of our summer makes it quite impossible to imitate wholly the above conditions, but with a proper house, such as is afforded Odontoglossums of the crispum section, very satisfactory results may be obtained and the many species will be found of comparatively easy culture. A low, well-rentilated, half-span house of northern exposure, with an upright stone or brick wall on the south silie, is best adapted to them. The house should be provided with canvas roll-shading, supported on a framework elerated 15 or 18 inches above the glass in order that the cool air may pass frcely bencath it. This will help to guard against solar heat during summer. Houses built partly below ground are not to be recommended, as the atmosphere soon becomes stagnant and inactive, causing the leares to fall prematurely. Where it is convenient, solid beds are preferable; benches, however, will answer the purpose very well, and when used should be covered about 2 inches deep with sifted ashes, sand or gravel; the benches and doors should be hosed down once or twice daily to afFrd all the cool moisture possible.

In winter the temperature should range between $50^{\circ}$ and $55^{\circ} \mathrm{F}$. at night and about $60^{\circ}$ during the day or $5^{\circ}$ more on mild days, with weak solar heat and ventilation. Artificial heat must be dispensed with as early in spring as possible, and during summer the temperature kept as low as the weather will permit, ventilating freely,
especially at night, when a light syringing overhead will also prove beneficial. Midday syringing in hot weather is often injurions and should be done with cantion if at all. More benefit will result from hosing down the shelres and paths at intervals of three or four hours, as it will help to reduce the temperature.

Masdevallias need a great leal of water at the roots at all seasons, and the soil should never be allowed to dry out, as they have no fleshy pseudobulbs to protect them against extreme changes. Light syringing overhead diaring winter and spring in flie weather will assist in checking thrip and red spider. and a wea's solution of tobacco may be added with good effect.

The best season for repotting and basketing the plants is during November and December, and the best general compost is a mixture of cleau peat ther and sphagnum moss chopped rather fine and well mixed, some sections requiring in addition a portion of chopped sod. About one-third of the space should be devoted to clean drainage consisting of either broken charcoal or potsherds.
II. coriacea, elephanticeps, Peristeria, Reichenbachi" 1 a, and kindred species, grow best in small pots, and should have one-third chopped sod added to their potting compost. M. macrura, Schlimii, Torarensis, amabilis, coccinea, Veitchiuna, triangularis, polysticta, muscosa, and the numerous other allied species, yrow equally well in either pots or baskets, but should the latter be used it would be well to add asmall portion of chopped sod to the compost to make it more firm and less porons; the sod has a cooling effect on the roots. M. bellu. Corderi, Chestertoni, Chimura. IIouttedm, and their allies nearly all hare pendulous flower-scapes, and should be suspended from the roof in baskets in a compos of equal parts chopped peat-fiber and live sphagnum, with a little leaf-mold alded. The flower-scapes often penetrate through the compost; for this reason little or no drainage should be used, as it may retard their progress.

To increase the stock the plants must be divided during the early winter; this will give them a chance to reestablish themsplres before the following summer. They must not be broken up into too small pieces, as it has it tendency to weaken them. Cult. by R. M. Grey.

## Review of the Sections.

Section I. Scape 1-fld.: calyx-tube rather narrow, tubular or somewhat funnel-shaped: labellum plane....................................... Species
Section II. Seape 1-fll.: calys-tube broad, gibbous or hasin-like: labellum plane......Species
Section III. Scape several-fld.: labellum plane and narrow . ................................ Species
Section IV. Scape mostly 1-fd., pendent or suberect: labellum saccate, or at least much broadened: tails very lons....................... Species
Section V. Scapes 1 -flil. This section differs from all the others by the subterete lvs., and in having the tails inserted below the apex of each lateral sepal . ....................................species
index.
abbreviata, 26.
munabilis, 4.
atrosanguinea, 7 .
Armeniaca, 7.
Backhousiana, 38
Barleana, 6.
bella, 43.
Boddærti, 9.
caloptera, 29.
calura, $1 \%$
Carderi, 40.
Chestertoni. 41.
Chimara, 38.42.
civilis, 11.
coccinea, $\mathbf{i}$.
crerulescens. 7.
Crossii. 33.
conchiflora. 7.
coriacea, 10.
eorniculata. 13.
Davisii. 5 .
Darisisoni. 7
elephanticeps. 24.
Ephippium. 32 .
Estradae, 19.
grandiffora. 1, 2, 7 Gravesite, ${ }^{\text {i }}$ Harryana. 7 hieroglyphica, 20. Houtteana, 39 ignea, 2. inflata. 13. infracta, 37. ionocharis. 15. leontoglossa, 9. Lindeni, 7. lineata, 4. macrura, 14. maculata, 36. Massangeana. 2. melanopus. 28. militaris, , Monreama, -4. muscosa, ${ }^{2}$, nidifica. 16. nycterina. 4? pachysepala, -2t. pachysepata, - ${ }^{\text {pach }}$ pachyura, 30 Peristeria, 12.

Matyglossa. 8 polysticta, $27,28$. psittacina, 39 racenosa, 33 ramiosa, 4. Reicheubachiana, 35.

Rozziii, 38 rosea. 3 . riffolutea. 11. Schlimii, 34. Shutleworthii. 18. striata, 4. superba, o. Tovarensis, 31. triangularis, 1. triaristella, 45. trochilus, 32. Veitchiana, 1 Wageneriana, 23. Wallisii, 33. Wintiam, 38. xanthocorys, 18. xanthina, 20 .

## SECTION 1

A. Calyx-lobes glamhlular with minute pepillae

1. Veitchiana

As. Calyx-lobes not gluminlur.
B. Tuil of the dorsad tobe hanging for ward.
2. militaris
3. rosea

Bb. Tail of the dorisal lobe erect and
struight.
4. amabilis
5. Davisii
6. Barlæana

ввв. Thail of the dorsel lobe reflosed and
flexuous
7. coccinea

1. Veitchiàna, Reichb. f. Tufted: lvs. 4-6 in. long, narrow: pedumele erect and slender, 1 ft . or more, with 2 or more bracts (the upper one remote from the flower): calyx with bell-shaped tube, the expanding lobes 3 in . across, orange-red, with purple shades, glandular-hairy, abruptly contracted into short, narrow tails; petals white, hidden. Peru. B. M. $\overline{7} 39$. - Var. grandiflora, Hort., has a dense hairy covering on the dorsal lobe of calyx; and also on the outer part of the lateral lobes, the inner part orange-scarlet.
2. militàris, Reichb. f. \& Narscz. (M. ignoa, Reichb. f.). Nuch like the last, but differs in having elliptic or elliptic-oborate lvs., which are long-petioled, and in the lateral calyx lobes being only prominently pointed, not tailed, the dorsal lobe very narrow and hanging forward between the other two: color orange and scarlet; petals white, exceeding the column. Spring. Colombia. B. M. 5962. I. H. 26:333. - Var. Massangeàna, Hort. Laternl lobes longer: fls. larger. Var. Boddærti, Hort. Calyx yellow; lower lobes shaded with red on the upper surface. 1.H. $26: 357$. Var. grandiflora, Hort. Fls. rounded; lateral sepals brilliant vermilion, hordered with crimson and suffused with purple. Var. supérba, Hort., is advertised.
3. ròsea, Lindl. Lvs. oblong-spoon-shaped, keeled: pedmele drooping and slender, bearing a single H .: calyx tube 1 in . long, red and violet; calyx-lobes roselilac, with red tails; petals yellow, the lip hairy at the apex. Ecuador. G.C.III. 16:657. July, Aug.-A pretty and free-Howering species
4. amábilis, Reichb. f. \& Warsce. Les. 4-5 in. long, ohlong-or spatulate-lanceclate, about half the length of the erect, usually 1 -fd. peduncles: fls. varying from purplish crimson to yellow; lobes ovate-triangular, the lateral ones with short tails and the dorsal ones with a long and ascending tail; petals narrow, yellowish, longer than the column. Peru. Sept.-Dec.-Var. lineata, Linden \& André (var. stridta, Hort.), has yellowish tls., tinged and striped with red. I.H. 22:196.
5. Dàvisii, Reichb. f. Densely cespitose: Irs. oblonglanceolate, $6-8 \mathrm{in}$. long, petioled, blunt at the apex: peduncle erect, about 10 in. long: calyx large, brilliant yellow, obscurely veined with deeper yellow; dorsal lobe triangular-ovate prolonged in atail; lateral lobes oblongovate, Inrger, united to below the middle, terminating in short tails; petals longer than the column, nearly hidden in the calyx-tube, pale yellow, the labellum yellow, shaded and spotted with red, with 2 obscure keels. Peru. B M.6190.
6. Barlæàna, Reichb. f. Ivs. spatulate, acute: peduncle slender, nearly 1 ft . long: fis. scarlet; calyx-tube curved; dorsal sepals short-triangular, produced into a long tail; lateral sepals larger, semi-ovate; petals ligulate, white. Pern.-Reichb. states that the lateral sepals run internally one in anothor; they are counate in a straight line.
7. coccinea, Linden (M. Límleni, André). Fig. 1374. Lvs, spatulate, obtuse or retuse, 6-10 in. long: peduncle 1 ft or anore long: calyx crimson-magenta; dorsal lobe with a small, triangular base, prolonged into a longtail: lateral lobes oblong-ovate, scarcely prolonged; petals white, longer than the column. May. Colombia. B M. 5990. I.H. 17:42. F.M. 1872:28. - Var. conchiflora, Veitch. Fls. large; lateral lobes of labellum rotund, concave. Var. Harryàna, (M. Harryd:ua, Reichb. f.). Lateral lobes of calys oral, falcate, the tips usually crossing or turned toward each other. May. F.S.

21:2950. Var. Arineniaca, Hort. Fls. apricot-yellow, reined with red; throat of the tube yellow. Colombia. Var. atrosanguinea, Hort. Fls. large, with the lateral sepals crimson potted with magenta, points falcate, turned toward each other. Colombia. Var. cceruléscens, Hort. Lateral sepals broadly semi-orate, apiculate, erimson-magenta spotted with bluish purple. Colombia. Var. Gràvesie, Hort. Fls. white. Var. grandiflora. Fls. large, rose-purple. Columbia. Var. Dénisoni, Hort. Butl's Blood. Fls. erimson-purple.

SECTION II.
A. Habit of scape drooping or deflexel.
b. Scape about as long as the lis. 8. platyglossa BB. Scape shorter than the les.... 9. Leontoglossa AA. Habit of scapes erect or suberect.
B. Scape shorter than the lrs.
c. Lis. linear to linear-oblong.10. coriacea
11. civilis
12. Peristeria
cc. Lis.oblong to lance-oblong.. 13. corniculata
14. macrura
15. ionocharis
16. nidifica
17. calura

BB. Scape longer than the les.

> c. Fls mather small, with a broad, basin-like tube: plants duetrf ...............18. Shuttleworthii 19. Estradæ
20. xanthina
21. triangularis
29. hieroglyphica 23. Wageneriana
cc. Fls. larger, with a broad, deep, gibbous tube ........24. elephanticeps
8. platyglossa, Reichb. f. Densely tufted: lvs. spatu-late-lanceolate, narrowed into petioles, $3-4$ in. long, as long as or longer than the drooping bracted 1-2-fld. peduncles: fl. small ( 1 in . long), pale yellow, nearly globnlar, the lobes pointed but not tailed, the dorsal one upcurved: orary red; petals linear, as long as the column. Colombia (?) B.M. 7185.
9. leontoglossa, Reichb. f. Tufted: lvs. oblanceolate, short-petioled, spotted beneath with red: peduncle de: flexed, mostly shorter than the odd fis.: calyx narrow, the lobes gradually narrowed into fleshy tails or long points, semi-transparent, all of them greenish yellow outside and more or less hairy, crimson-spotted within, the dorsal lobe not greatly unlike the others but often somewhat ascending; petals white with crimson lines. Colombia. B.M. T245. - The specific name ("liontongued ") refers to the bearded lip.
10. coriàcea, Lindl. Lrs. linear-lanceolate, usually somewhat surpassing the erect, 1-fld., spotted peduncles, which are about 6 in . high: fis. fleshy, the ealyx-lobes nearly equal and wide-spreading, triangular at hase but gradually narrowed into long points or short tails; lobes greenish yellow and dotted erimson inside; petals white and crimson. Colombia. G.C. IlI. $21: 95 .-$ Les. 6-8 in. long, with purplish dotted petioles.
11. cívilis, Reiehb. f. (M. rufo-lutea, Lindl.). Les. fleshy, linear, keeled, $5-6 \mathrm{in}$. long: peduncle less than 2 in . long, erect or nearly so: fl. solitary, rather large for the size of the plant, the deep calyx-tube purple at the base and yellow at the top, the long-pointerl, flattened lobes yellow: petals small, white, the labellum dotted purple. Peru. B.M. $5+76$.
12. Peristèria, Reichb. f. Tufted: lrs. oblanceolate, sometimes retuse at the apex, $4-6$ in. long, twice longer than the rather stout, erect, 1 -fll. peduncles: fls. with 3 long, wide-spreading tails, which span 4-i) in.. the tube somewhat gibbous beneath; back of the fl. greenish yellow; tails honey-yellow; throat and base of lohes spotted with crimson; petals linear-oblong, white. Colombia. B.M. 6159, F.S. $22: 2346$. - Named from its resemblance to the dove orchid, Peristeria.
13. corniculàta, Reichb. f. Stems short and tufted: l.s. spatulate, very short-pointed, mostly exceeding the 1-fld. peduncles: fls. with yellow, inflated calyx-tube,
which is spotted with brown and ribbed, bearing long, very slender brown tails; petals yellow. Colombia. Var. inflata, Veitch. Paler in color, and with smaller spots; lobes broader and golden yellow. Colombia. B.M. 746 .

1374. Masdevallia coccinea ( $\times 1 / 3$ ).
14. macrùra. Reichb. f. Stems short and tufted, each bearing a solitary lf. and fl.: lrs. broadly spatulate or broad-oblanceolate, very obtuse or even retuse: peduncles 8-10 in. high, erect: fls. with 3 long tails, which $\operatorname{span} 8 \mathrm{in}$. from top to bottom; calyx-tube red-purple on the outside; lobes triangular-orate in the basal portion, dull red and purple-spotted within, the cylindrical tails yellow, the lateral ones 7 -ribbed; petals yellow, spotted brown. Colonbia. B.M. 7164.
15. ionócharis, Reichb. f. Lrs. ovate-lanceolate, exceeding the erect peduncle: H. whitish, purple-spotted at base, the lobes triangular-ovate, with yellow tails; petals cream-white. Peru.
16. nidifica, Reichb. f. Lus. oval or oblong, about the length of or longer than the peduncle: fl. white, reined and dotted with erimson passing into yellow on the lobes, the lobes hairv and with long, slender tails, which are yellow in the lateral lobes and crinson in the dorsal lobe; petals white, with crimson lines. Eeuador.
17. calùra, Reichb. f. Les. mostly shorter than the peduncles, othong-lanceolate: fl. glossy erimson, with slender, flat tails; dorsal lobe somewhat triangular at base, the lateral ones round-ovate; petals erimson, with white on tip and margins. Aug. Costa Rica.-A freeHowering species.
18. Shúttleworthii, Reichb. f. A small species, with ?rs. only 2 in. long, on distinct petioles of equal length:
peduncles several, 1-fld., somefimes overtopping the lvs.: fls. large ( 1 in . across and the tails $9-3$ times as long), mauve, dotted with crimson; tails all yellow in the upper half, very slender, the upper one sometimes bent or hooked at the top; petals white. Colombia. [3.M. 637. I.H. 28:435. Var. xanthocorys, Reichb. f., has smaller fls. of pale yellow, dotted with brown or rose.
19. Estràdæ, Reichb. f. Very densely tufted: lvs. and petioles 3 in . long, the blade broad, spoon-shaped, and often retuse at the apex: peduncle usually somewhat exceeding the lis., erect, 1 -fll.: Hower of marked col-ors-the upper concave lobe yellow at base and violetpurple above, the lateral lobes violet-purple at base and white or straw-colored above: tails filiform, yellow; petals white, very small. Colombia. B.M.6171.
20. xanthina, Reichb.f. Like the last, except that the flower is yellow, with a purplish spot on the lateral lobe's. Var. pallida, Hort., has Hs. almost white. Colombia.
21. trianguláris, Lindl. Lvs. oblanceolate: peduncle erect, about 4 in. tall: fls. yellow, marked or spotted with purple, the tails dark crimson; lobes similar, tri-angular-ovate; petals white, the lip spotted with pink or purple and hairy. V'enezuela.
29. hieroglyphica, Reichb. f. Lrs. oval or oblong: peduncle short (about 3 in . long) : Hower with tube yellowish at bottom, becoming whitish, marked with crimson; lobes triangular-ovate, all with long tails, the tail of the dorsal lobe hanging forward and marked with Iurple at its base; petals yellow. June. Colombia.
23. Wageneriàna, Linden. Very small. neat and attractive, tufted, 2-3 in. high: lvs. spoon-shaped: peduncles equaling or exceeding the lis., nearly erect: Hs. yellow and crimson-dotted. with slender yellow tails, the upper one inclined backwards: lobes broad. cordate or ovate; petals yellow, odd in shape, the lip rhomboid and toothed. Venezuela. B.M. 4921 .
24. elephánticeps, Reichb. f. An odd species: lvs. broad-spatulate, obtuse: peduncles 1 ft . long, erect: Hower single, party-colored-the dorsal or upper lobe light yellow, the lateral ones ribbed and crimson: calyxtube gibbous at the base helow, all of them gradually produced into stout vellow tails (one of them often crimson), arranged soas to suggest the tusks and raised trunk of an elephant (whence the specific name). Colombia. F.S. 10:99\%. Var. pachysépala, Reichb. f. (M. Mooredm, Reichb.f.), has the dorsal lobe 3 -nerved with crimson and the tube spotted.

## SECTION 11.

A. Lis. coteven with round pupille: scupe heiry ...........25. muscosa
AA. Le's. smooth.
B. F'ls. small, in many-flel. recemes. rengles of the odery crenmlate or the petals toothed .........................2f. abbreviata polysticta
melanopus
caloptera -9. caloptera 30. pachyura

Bв. Fls. larger, nften expanding in succession: ruceme ser-eval-fldl.: angles of the ovary and petals entire.
c. Color of fls. white .......31. Tovarensis
cc. Color of fls. yellow. rlotted and shaded with brown or red.
D. Laterul sepuls miteal. forming a boet-shopeel сир ......................32. Ephippium
DD. Lateral sepals nearly plane, ut least not strongly cucullete.
E. Tuits of the lateral sepals very short or ионе...........33. racemosa EE. Tuils of the luteral sepals long.

## MASDEVALLIA

# F. Le's. broud, obo-rute-elliptic ....34. Schlimii <br> FF. Le's.oblong-lunceolate or oblanceolate. <br> G. C'ulyx-tube fum- <br> nel-shaped, <br> nurroweel a <br> the brise......35. Reichenbachiana <br> Gg. Calyx-tube <br> broader or <br> gilbous at the <br> base..........36. maculata 37. infracta 

25. muscòsa, Reichb. f. Lvs. oval-oblong, papillose: peduncle hairy, 3 times exceeding the lvs., with 1 or more yellow ths.: lobes triangular, with reffexed tails; petals narrow and yellow with a brown line in the center, the lip bearing a raised yellow disk and moving up. ward with a jerk when this disk is touched. St. Do-mingo.-Fls. $1 / 2$ in. across.
26. abbreviàta, Reichb. f. Lvs. oblong-lanceolate: peduncle many-fld, about 6 in . long: $H$. white and freely dotted with red, the tails all deep yellow, the lobes serrate on the edges; petals white, longer than the column, serrate. Peru.
27. polysticta, Reichb. f. Densely tufted: lvs. narrowspatulate, obtuse and often retuse: pedumele exceeding the lvs., about 8 or 9 in . tall and many-fld.: fls. pale lilac, spotted with purple, the margins of the sepals ciliate but not serrate, the tails very slender and spreading (fl. 2-21/2 in. across) and yellowish: petals spatulate and serrate. Peru. B.M. 6:\%68. I.H.22:199. R.H. $1880: 250$.
28. melanòpus, Reichb. f. Much like M. polystictu: tls. smaller, white specked with purple, the dorsal sepal keeled, the lobes not ciliate or serrate on the edges and very suddenly contracted into slender yellowish or darkcolored tails; petals linear-oblong, toothed below the apex. Peru. B.M. 6058 (as M. polysticta).
29. caloptera, Reichb. f. Lvs.oblong-ovate: peduncle short ( 5 or 6 in. ), many-fld.: H. white with crimson streaks, the tails all slender and orange: dorsal lobe ketled and somewhat hooded; the lateral ones ovate-oblong; petals white, crimson-keeled, serrate. Peru.
30. pachyùra, Reichh.f. Lrs. oval-oblong: peduncle erect, slender: calyx with triangular, short-tailtd lobes, yellow, with transverse bars and spots of reddish crimson; dorsal sepal triangular, with a thick tail equaling the sepal in lengtl; petals pale yellow. Eciador. G.C. 1II. 20: 255.
31. Tovarénsis, Reichb. f. Les. rather small, oblongspatulate: peduncle 5 or 6 in . long. sometimes exceeding the lvs., e-edged, several-fld.: fls. clear white and fragrant, the tails yellowish at the ends; dorsal lobe $11 / 2 \mathrm{in}$. long, very narrow and produced into a reflexed tail: lateral lobes oval, gradually produced into tails shorter than that of the dorsal dobe; petals white. Dec., Jan. Colombia. B.M. $5 \overline{05} 05$. I.H. $26: 363$. Gn. 48:384. G.C. 1865:914; 1871:1421.-One of the best of the genus.
32. Ephíppium, Reichb. f. (M. trochilis, Linden \& And.). Lrs. broad, oblong, $5-7$ ir. long: peduncle erect, about a foot long, sharply $3-\frac{1}{2}$-angled, stout: calyx with the dorsal lobe cucullate, yellow, dotted with brown, $1 / 2 \mathrm{in}$. in diam.; lateral lobes united, forming a deep boat-shaped, chestnut-brown cup, with several ridges which are greenish outside; all the lobes passinto vellowish tails about 4 in . long; petals white. Colom bia. B.M. 6208. I.H. 21:180.-According to Index Kewensis, M. trochilus and M. Ephippiem are distinet species. The former is described as having terete stems.
33. racemdsa, Lindl. (M. Cróssii, Hort.). Stems creeping: lvs. oblong-orate, much shorter than the sev-eral-fld. racemose peduncles: fls. membranaceous, orange with red lines, erect, 1 in. across, tails very short or none: lateral lobes ovate, blunt-pointed, curving outward so as to form a 2-lobed limb, the dorsal lobe $1 / 2 \mathrm{in}$. long and pointed. Peru. - Not a popular species. Requires a coolhouse.
34. Schlímii, Linden. Tufted: lvs. elliptic-oborate, petioled, a ft. or less long, half shorter than the severalfowered peduncles: fls. dull yellow, mottled with bright brown, the tails yellow, about $11 / 4 \mathrm{in}$. across without the tails; tails 2-3 times longer than the body of the calyxlobes, very slender; petals pale yellow, linear-ohlong, equaling the column. Venezuela. B.M.6740. G.C.II. 19:532.
35. Reichenbachiana, Endres. Densely cespitose: Irs. oblanceolate, shorter than the several-fld. peduncles: flower dark red on the outside, vellowish, with red veins on the inside, all the lobes with turned-back tails, the lobes triangular. Costa Rica.
36. maculàta, Klotzsch \& Karst. Les. narrow-oblanceolate, nearly or quite equaling the erect several-fld peduncle (which is $8-10 \mathrm{in}$. tall) : ths. yellow-tubed, suffused or dotted with red, all the lobes produced into orange-yellow or greenish tails 2 in . long; lateral lobes crimson, with gellow on the margin, the tails drooping; petals yellowish. Venezuela. F.S. $21: 2150$.
37. infracta, Lindl. Cespitose: lvs. oblong-lanceolate to narrow-lanceolate: peduncle about 6 in . long, severalfld.: calyx pink-purple; dorsal sepals cucullate, lateral sepals entirely united, forming a wide, gaping tube, with cucullate sides and apex, passing into slender, yellowish tails; petals whitish, dotted with pink-purple. Brazil. F.S. 23:2389.

## SECTION 1 V .

38. Chimæ̀ra, Reichb. f. Fig. 1375. Tufted: lrs. ob-lanceolate-obtuse, 1 ft . long and $1 \frac{1}{2} \mathrm{in}$. wikle: peduncle wiry, erect, lateral or pendent, several-fld., mostly sborter than the lvs.: fls. opening in succession; calyxlobes ovate, yellowish, much spotted with deep crimsonpurple, tapering into slenter tails from 3-11 in. long. purple-brown; petals white, marked with crimson; labellum saccate, white, yellow or pinkish, very variable. Colombia. R.H. 1881:130. G. C. II. 3:41.- One of the most fantastic of orchids, and the type of a most inter esting group.
Var. Rœ́zlii, Hort. (M. Rézlii, Reichb. f.). No long hairs on the calyx-lobes, the lobes rery dark-colored, with short warts: labellum pink, not vollow. Color the darkest of the section. Often regardert as a good species. Sub-var. rübra. Spots on calyx lobe brown-crimson.
Var. Wállisii, Hort. (M. Wállisii, Reichb. f.). Calyxlobes with hispid pubescence, yellowish, spotted with brown-purple; labellum white, yellow within.
Var. Winniàna, Hort. (M. Winniàna, Reichb. f.). Calyx-lobes elongated, densely black-spotted. In part distinguished from var. Razlii by its longer tails.

Var. Backhousiàna, Hort. (M. Backhousidna, Reichb. f.). Lss. narrower than in the type: fls. large; calyxlobes more round, paler, not so thickly spotted ; tails short; labellum nearly white. Perhaps a distinct species.
39. Houtteàna, Reichb. f. (M. psittacina, Reichb. f.). Densely cespitose: lvs. linear to lance-linear, much exceeding the drooping or deflexed 1-fld. peduncles (which are $4-5 \mathrm{in}$. long) : fls. creamy yellow, spotted with crimson, the long hanging tails brownish red; calyx-lobes semi-ovate to triangular, somewhat hairy (as are also the tips of the tails) : petals white or pinkish. Colombia. F.S. $20: 2106$.
40. Cárderi, Reichb. f. Cespitose, with strong ascending foliage and hanging spotted 1 -fld. peduncles: lrs. oblanceolate. $3-5 \mathrm{in}$. long: peduncles green-bracted, 3 in . long: Hs. bell-shape, $3 / 4$ in. across exclusive of the tails, white, with parple and yellow bars at the base ; tails very slender and spreading, 1 in. long, yellow; petals small, white, linear-oblong and obtuse. Colombia. B.M. 7125. - A graceful and pretty species.
41. Chéstertoni, Reichb. f. Tufted: lrs. oblong or ob-long-spatulate, 5 in . long and nearly or quite 1 in . wide, somewhat longer than the pendent, much-bracted, 1 -flil. peduncles: fl. $21 / 2 \mathrm{in}$. across, greenish yellow, spotted and streaked with purple, and bearing 3 spreading, greenish, more or less hooked. flattened tails 1 in. long: petals yellow, very small. Colombia. B.M. 697- Oidd and distinct.
42. nycterina, Reichb. f. Often confused with $M$. Chimara, but a smaller and less showy plant: tufted:
lvs. oblanceolate, somewhat fleshy, channelled, 6 in. long, not narrowed into a petiole: peduncle $1-\mathrm{fld} ., 3 \mathrm{in}$. long, drooping: fl.triangular, $2 \times 3$ in., with tails 3 in. long, hairy inside, brown-yellow and purple-spotted; petals yellow, with red spots, pouch-like, serrate. Colombia. 1.H. 20:117-18 (as M. Chimerct).-Odd.
43. bélla, Reichb. f. Lis. oblong-lanceolate, channelled, about 8 or 9 in . long, narrowing to the base: peduncle $1-\mathrm{fl}$.., drooping or horizontal, $1 / 2 \mathrm{ft}$. long, slender: fls. large and spider-like, triangular in outline, 3 in . across, with stiflish tails 4 in. long, of which the dorsal is recurved and the others standing forward and usually crossed, the fl. pale yellow, spotted with purplish or brown ; petals white or yellowish. Colombia. Oct.-Dec.One of the best of the Chimæras.
1375.

Masdevallia Chimara.
( $\times 1 / 2$.)
44. radiosa, Reichb. f Lrs. oblong or lanceolate : perluncle $2-3$-fld.. drooping or deflexed: fls. yellow, dotted and splashed with purple, the prominent tails all purple: petals yellow, pur-ple-spotted, but the lip whitish. Colombia.

## section v.

45. triaristélla, Reichb. f. Les. about 2 in. long, in very crowded tufts: peduncles longer than the lis., very slender, erect, wiry: dorsal lobe of calyx orate, hooded. tail yellow; laterallobes coloring throughout their length, linear, united, at length diverging into short yellow tails; petals yellow, with a red midline. Summer. Costa Rica.-One of the smallest of orchids
The following have been offerel in America, but most of them are imperfectly known. M. cheiró-phora.-M.Chélsoni=(M. amabilis $\times$ Veitchiana). M. gibberòsa=Scaphosepalum.-M. Hendersoni.M. punctàta $=$ Scaphosepalım.-M. trificita.

Heinrich Hasselbring and L. H. B.
MASSACHUSETTS HORTICULTURE. Fig. 1376. The horticultural interests of Massachusetts are fully equal to those of agriculture proper, when we consider the production of fruits, vegetables, flowers, and the labor and expense applied to the growth of ornamental trees, sbrubs and plants and their use in decorating the homes of her people, among whom there ale probably more comfortable, well-kept and beautiful homes than can be found in any similar area in the worlia. The people of this state probably consume more of the luxuries of life than any other people on the same area, and among the so-called luxuries may be classed fruits, fancy vegetables and flowers.
The soil of Massachusetts is generally considered unproductive and poorly adapted to horticultural pursuits, and this is true in so far as it refers to large areas of exceptionally fertile land, of which that in the Connecticut ralley is the only section of more than a few acres in extent. Everywhere about the state, however, there are small areas of land suited to the growth of almost every crop succeeding in similar latitudes. By business enterprise, persistent $\epsilon f f o r t$ and skill, profitable horticultural crops can be grown. The local products largely supply the markets in their season. Apples are also exported.

The amount of fruit produced within the limits of the state is not nearly up to the home consumption, except cranberries and possibly the apple in some seasons. Eren


## 1376. Massachusetts. <br> Showing some of the leading horticultural areas.

in seasons of an unusual crop in the state, large quantities of apples from other states are shipped into our markets, because iu many cases they are of superior size and beauty. Pears are shipped into our markets from the southern states and California, and as the market for this fruit is limited, prices often rule very low. Eastern Massachusetts is admirably adapted to pear-growing.
Peach trees can be grown up to about ten to fifteen years of age when given the proper attention, but the fruit buds are frequently killed in the winter, and not more than one cropmay 'e produced in three rears. However, eren under these conditions, when the trees are planted on rather light land and well cared for, one crop in three years is often more profitable than most other fruit or vegetable crops. The fruit on trees properly cared for is large, of the finest color and quality, and the fresh, ripe condition in which the grower can put it into the local markets makes it quickly salable at the highest prices.

Plums are not grown to a great extent, the larger markets being supplied chiefly by New York and California. Few orchards remain productive longer than ten or twelve years, on account of the black-knot, leaf-blight and brown-rot. Within the past four or five years Japanese plums hare been largely planted, but hare borne little fruit up to this time, so that their status in the market is not fully established.
The cherry, owing to the attack of the black aphis, the plum curculio and brown-rot, is very little grown as an orchard fruit. A few vigorous and productive trees may be seen here and there by the roadside, about old homesteads or on the lawn, where they live longer and attain greater size than when grown under a high state of cultivation in the garden or orchard, because of the fact that when grown too rapidly the trunks crack on the south side and the trees soon die. Our markets are largely supplied with cherries from California, New York and other states.
Small fruits are more grown and more nearly supply local markets than do the large fruits. The supply of very early fruit comes from the southern states of the country, but home-grown fruit is so much superior in quality that it sells at reasonable prices, notwithstanding prices may have been very much reduced by an oversupply of the southern product. Of the smaller fruits, grapes are profitable mostly when grown on rather light land and at high elevations with a southern exposure. The chief obstacles to success are early frosts in the fall and late frosts in the spring. Currants are grown to a considerable extent, almost every garden containing more or less currant bushes for home supply, while many large plantations may be found near every large town or city. The conditions of success are a rather moist, rich soil, with the bushes trained into a very compact form and pruned so that the fruit will be horne on rood that is not over three or four years old. Gooseberries are little grown, although the demand is rather on the increase. The more hardy kinds can be as easily grown as the currant, while the European
ing the winter, our local growers have reached a good degree of success. In almost every part of the state may be found forcing-houses for the growth of lettuce, tomatoes, cucumbers, rhubarb, asparagus, etc., and notwithstanding the cost of such structures and the fuel to keep up the necessary heat, the increase in the uumber of forcing-houses within the past two years is a certain indication that the business is profitable.

It is perhaps in the growth of cut-Howers and house and decorative plants that this state excels in horticulture. As a rule, the largest establishments of this kind are located near the large cities, though in some cases they may be found in some of the more rural towns. The horticulturists of Massachusetts do not understand their advantages in having the best markets in the world at their doors, and a great rariety of soils suitable for the growth of many of the raried crops. By persistent effort and superior skill they could supply these markets largely, and thus retain within the state much of the wealth that now goes outside to pay for the produce that could be raised at home.
S. T. Maynard.

In commercial horticulture, Massachusetts is not the equal of some other states, although its market-gardening and floricultural interests are large, but its influence on the horticulture of the country is more important than acres and tonnage. The best hortisulture is that which develops under difficulties, because it derelops the man. The lore of the country and attachment to its own soil are strong in Massachusetts. Individuality has full course. It is a land of home-loving people. It has developed the amateur horticulturist to perfection, the person who grows the plant and dresses the soil for the very love of it. There are many large collections of choice plants, and great numbers of artistic, compact and tidy garden-homes. There is keen appreciation of the merit of well-grown things. The influence of the Massachusetts Horticultural Society has been incalcuable. Since 1829 it has had its stated discussions, held its periodical shows, collected its library and records. It is a center of education and culture. The establishment of Mt. Auburn cemetery in 1831 was the beginning of the morement in this country for cemeteries in the open as distinguished from the churchyard.
L. H. B.

MASSANGEA comprises one species (M. musaica, Morr. ), which is now referred to Guzmania, G. musaica, Mez. It is not known to be in the Amer. trade, although it is cult. in the Old World. It is from Colombia. It is stemless, with 20 or less broad-strap-shaped, entire-edged lvs., which are marked transversely with purple, and a head of small fls. (corolla shorter than calyx) which are covered by very showy red bracts. B.M. 6675. I.H. 24:268. - Known also as a Tillandsia, Billbergia, Caraguata and Vriesea.
MAST. English name for beechnuts; American for any woods-nuts eaten by swine.

MATRICARIA (mater, mother, from its use in diseases). Compósita. From Chrysanthemum it differs mostly in the akenes, which are 3-5-ribbed on the interior
face and ribless on the back; also in haring a higher or more conical receptacle, and bracts in few rather than many series. Matricarias are annual or perennial weedy herbs, often heavily scented, about 25 species in many parts of the world. The foliage is much cut or divided into thread-like dirisions.

The Matricarias are border plants in cultivation. and others are introduced weeds. They are commonly confounded with species of Chrysanthemum and fererfew. The M. eximia plena of the trade is a form of Chrysumthemum Parthenium (var. Inbulosum). It is a good hardy annual, with white, double heads, growing " $\mathbf{f t}$. tall. Matricarias demand the care given to annual Chrysanthemums. The two following are annuals or biennials.
inodòra, Linn. (Chrysánthemum inodòrum, Linn. Pyrèthrum inodòmem, Siuith). Nearly or quite glabrous, branchy diffuse annual, 1-2 ft. tall, from Europe and Asia. Lvos. many, sessile, 2-3-pinnately divided or dissected: heads $11 / 2 \mathrm{in}$. across, terminating the branches, with many acute white rays: akenes inversely pyra midal, with 3 conspicuous ribs. Not uncommon in fields eastward. Var. plenissima, Hort. (var. ligulòsa, var. muiltiplex, M. grandiflora, Hort not Fenzl.), is a common garden plant with very double, clear white, large heads. It is floriferous, and the fls. are fine for cutting. G.C. II. 12:753. - It often persists and blooms the second year. Foliage little or not at all scented.
parthenoides, Desf. (M. Capénsis, Hort., not Linn. Anthemis parthenoides, Bernh. Chrysánthemum parthenoldes, Voss). Annual, or biennial under cultivation, 2 ft . or less high, soft-hairy when young, but becoming smooth, bushy in growth: lvs. petiolate, twice divided, the ultimate segments orate and often 3-lobed: fl. heads loosely corymbose, in the garden forms usually double, white.-A handsome plant, probably of Old World origin, useful for pots, and blooming till frost.

Other introduced species from Eu. are M. Chamomilla, Linn., a glabrons, m .ch-branched annual, with finely dissected lys., $10-20$ truncate white rays, and an oblong, nearly terete akene with 3-5 laint ribs; and M. discoidea, DC. (M. matricarioides, Porter), a very leafy and glabrous annual with no rays and a lightly nerred oblong akene.
L. H. B.

## MATRIMONY VINE. See Lycium.

## MATSEA. Consult Manettia.

MATTEUCCIA (from C. Matteucci, an Italian physicist). Polypoliacer. A small genus of north temperate ferns, with leaves of two sorts, the sterile growing in crowns from erect rootstocks, and the fertile growing from the interior of the crown. Our species is known as the Ostrich Fern and is one of the most easily cultivated, as well as one of the handsomest of our native species. It multiplies rapidly by offsets sent out from the rootstock. Commonly known as an Onoclea or Struthiopteris.
Struthiopteris, Todaro (Struthiópteris Germínica, Willd. Onoclül Struthiópteris, Hofím.). Ostrich Fens. Lis. (sterile) $2-6 \mathrm{ft}$. long, with the lowest pinnæg gradually reduced; fertile los. $10-15 \mathrm{in}$. long, pinnate, with the margins of the pinna closely inrolled and covering the sori. Eu. and northeastern N. Amer. - Wildenow regarded the American species distinct, but by most botanists it is considered as identical with the European species.
L. M. Undermood.

MATTHİOLA (Peter Andrew Matthioli, 1500-1575. Italian physician and mriter on plants). Sometimes spelled Mathiola. Crucíferp. Stock. Gilliflower, when used at the present day, means Matthiola or sometimes Cheiranthus; formerly it designated Dionthus Curyophyllus. From Cheiranthus, the wallfower, this genus differs in its winged seeds, which are as broad as the partition, the stigma lobes erect or connivent and often thickened on the outside, the silique not 4 -sided (terete or compressed). Of Matthiolas there are probably 30 species, widely distributed in the Old World and Australia. They are herbs or subshrubs, tomentose, with oblong or linear-entire or sinuate lrs., and large, mostly purple fls. in terminal racenses or suikes.

The true Stocks (Fig. 137i) are of this genus. The

Virginian Stocks are diffuse small-flowered annuals of the genus Malcomia (which see). Stocks are of two general types, - the autumn-blooming, Queen or Brompton Stocks, and the summer-blooming, Ten Weeks or Intermediate Stocks. By some persons these classes are made to represent two.species-M. incana and $M$. anиua respectively. It is probable, however, that they are garden forms of one polymorphous type. Even if distinct originally, it is not possible now to distinguish them by definite botanical characters. Stocks are amongst the most common of all garden flowers. The two types oover the entire blooming season, particularly if the earlier ones are started indoors. Most of the garden forms are double, although some of the single types are desirable for the definiteness and simplicity of their outlines. The colors are most various, running from white throngh rose, crimson, purple and particolored. The fls. are fragrant. For culture, see Stock

1377. Ten Weeks' Stock-Matthiola incana, var, annua ( $\times$ ²/2 $)$.
incàna, R.Br. Common Autumnal or Brompton Stock. Biennial or perennial, becoming woody at base, but usually treated as an annual: erect-branching, closely tomentose-pubescent, the stems stiff and cylindrical: lis. alternate, tapering into a petiole, long-ollong or oblanceolate, entire, obtuse: Hs. with saccate lateral sepals and large petals with long claws and wide-spreading limb, borne on elongating stalks in an open, terminal, erect raceme: siliques becoming 3-4 in. long, erect. Mediterranean region; also lsle of Wight. - II. glabrata, DC., is a glabrous form.

Var. ánnua, Voss (M. ámuи, Sweet). Ten-Veers, or Intermediate Stocks. Fig. 137\%. Annual, less woody, blooming earlier.-A slining-Ivd. variety is known.
bicormis, DC. Half-shrubly, stragaling annual or biennial: fls. smaller than those of M. inctur, purplish or lilac, fragrant by night, closing by day: pod terete, long, e-horned: lvs. pinna-itd, or the uppermost entire. Greece, Asia Minor.
M. sinuata, var. Oyénsis, Rony \& Fouc., is figured in B.M. 7703 (1900), where it is said that "the name Oyensis has been corrupted ingardens to Ohiensis and Chinensis." The plant is from the lle d'Yeu (Insula Oya, whence the name) on the coast of France. It is an annual or biennial, with sinuate-toothed lus. hairy, and with large white fragrant fls. Not known to be in cult. in this country.
L. H. B.

MAURANDIA (after Maurandy, professor of botany at Cartagena, Spain). Also written Maurumlya. Scroph. ularidece. About 5 species of Mexican climbers, with usually halberd-shaped lrs. and showy, irregular trum pet-shaped ils., white, rose, purple and blue, the throat usually white or light-colored. The fls. are somewhat 2 lipped. The commonest species is M. Barclaiana, which is procurible in a greater range of colors than the others. Manrandias are desirable vines for winterflowering in cool greenhouses, but since they bloom the first year from seed, they are almost wholly grown for summer bloom outdoors and treated like tender annuals. They have a slender habit and grow about 10 ft . in a season. In the fall the vines may be taken up and removed into the house if desired.
Botanically, this genus is nearest to the snapdragon, though the throat of the flower is not closed. The plant known to the trade chiefly as Mamandia antirrhiniflora is now referred to Antirrhinum. (See Antirrhinum, where this plant is figured.) It is a climber and requires the culture of Maurandia. Maurandias climb by the twisting of the leaf-and flower-stalks. They are glabrous or pubescent: lvs. alternate, or the lower ones opposite, halberd-shaped, angular-lobed or coarsely toothed: calyx 5-parted; segments narrow or broad: corolla tube scarcely bulged at the base; posterior lip 2 -eut; anterior lip variously parted: stamens 4 -didynamous.

1378. Maurandia scandens ( $\times 1 / 4$ ).
A. Seeds tubercled, wingless: calyx segments narrow: les. hastate, not serrate. (Subgenus E'umaurandia.)
B. Calyx distinctly glandular-pilose: segments longattenutte.
Barclaiàna, Lindl. Usually, but not originally, written Barclayuma. B.R. 13:1108. L.B.C. 14:1381. V.5:353. -The following trade names advertised like speciesnames are presumably all color-varieties of this species: M. alba, albiflora. Émeryıиa rosea, purpurea grandiflora, writus. The last is a trade nanse for mixed varieties.

## MAXILLARIA

BB. Citlyx glabrous, whorter.
sempérflorens, Ort. Fls. lavender-colored; throat white. B.M. 460.-Cult. in S. Calif.

AA. Seeds with a lecerated or irregular wing: calye segments leafy and broad: les. triangular-ocute. serrute. (Sitbyenus Lophospermum.)
B. Corolla lobes obtuse or even notehed.
erubéscens, Gray. Les. somewhat triangular in outline, serrate: Hs. 3 in. long, rosy pink. B.M. 303 T, 3038. B.R. 16:1381. G.C. 11. $20: 501 .-C u l t$. in S. Calif.

## BB. Corolla lobes acute.

scándens, Gray (Lophospérmum scaulens, D. Don). Fig. 1378. Perhaps only a botanical variety of the preceding. B.M. 3650.-A hybrid with the preceding is shown in B. 5:24.
W. M.

MAURITIA (after Prince Moritz, of Nassau,1567-1665, patron of Piso and Maregraf; by his aid a Natural History of Brazil was published). Palmàcer. Very graceful fan palms, almost spineless: stems very slender, obscurely ringed: lvs. pinnately flabelliform, semi-circular, orbicular or wedge-shaped, the lobes lanceolate, acuminate; rachis long or short; petiole cylindrical: ovary perfectly 3 -celled. There are 6 or 7 tropical American species.
flexud̀sa, Linn.f. Moriche Palm. Stems without stolons: lvs. 20-30, erect-spreading, 9-16 ft. long: blade $21 / 2-4 \mathrm{ft}$. long, yellowish beneath; lobes $2 / 3-1 \frac{1}{2}$ in. Wide; petiole stout, rigid, semi-cylindrical, equaling the blade: fr nearly 2 in . long, depressed-globose; seed $1 \frac{1}{3} \mathrm{in}$. long. Trop. Brazil. - Offered in 1889 by Reasoner Bros. In the Amazon delta this palm grows to 150 ft . or more in height, with a trunk often 30 in . in diam. at base. "The fruit is spherical, the size of a small apple, and covercel with rather small, smooth, brown, reticulated scales. beneath which is a thin coating of pulp. A spadix loaded with fruit is of immense weight, of ten more than two men could carry between them." (- ) Wallace, "Palms ofthe Amazon." Jared G. Smith.

MAXILLARIA (Latin, maxilla, jaw; referring to the mentum). Orchidicea. Mostly pseudobulbous, epiphytic orchids, resembling Lycaste in general appearance. The genus contains over 100 species, dispersed at rarious altitudes in Mexico, Brazil and the West Indies. About 15 species are offered by dealers in America. Many of these have small flowers and are of value ouly in collections. They are, howerer, easily grown, and biossom profusely. Among those given below, the large, white-flowered M. graulitlori and M. venusta, and the white and purple M. Studeriama are probably the best species. Rhizomes short or long, creeping or erect, and clothed with distichous lis.: psendobullus clustered or scattered on the rhizome, 1-2-livd. or densely distichophyllous at the apex of the rhizome: lvs. leathery or subtleshy, plicate or plane and keeled, distichous: sepals subequal, free from each other but united with the foot of the column and forming a projecting mentum; petals similar or smaller: labellum 3lobed, movably artisulated to the foot of the column: lateral lobes erect; middle lobe with longitudinal callosities. The scape arises apparently from the base of the pseudobulb, on the very young leafy axis, but lower down than the corresponding new growth. Pollinia 4, seated on a broad, scale-like stipe. The distichous arrangement of the lvs. distinguishes this genus from Lycaste. For M. Harrisonice and tetragona, see Lycaste.

Heinkich Hasselbring.
Maxillarias are of easy culture, and can be grown under various methods of treatment with fair success. The best compost consists of clean peat fiber taken from the several species of Osmunda, and live sphagnum, both chopped rather fine and well mixed together. After the receptacle is half filled with clean drainage and the plant properly placed, the compost should be piessed firmly in around the roots, interspersing it with nodules of charcoal. In their native habitats, many of the finerooted species growon rocks and treeswith verylittle compost attached. The base of the pseudobulbs or rhizome should rest on a convex surface raised a little above the
rim of the pot when finished. Maxillarias delight in a cool, moist, shaded location at all seasons where the winter temperature will not exceed $55^{\circ} \mathbf{F}$. by night and not over $60^{\circ}$ or $65^{\circ}$ by day. During summer they must be grown as cool as possible with ventilation at all seasons when almissible, especially in wet, heavy weather. Water should be giren in abuudance while the plants are growing and not too spariagly when at rest, as the plants are subject to spot if kept too dry. Weak liquid cow manure is beneficial occasionally during root action.
Maxillaria has two recognized horticultural groups or sections; viz., caulescent and stemless. The caulescent section embraces M. tenuifolia, M. variabilis and kindred species, having scandent rhizomes and often obscure flowers. These should all be grown under pot culture and afforded supports to climb on, such as small cylinders or rafts of open woodwork with a little compost worked in the openings, or Osmunda rhizomes supported obliquely in the pots to which the plants can attach themselves as they grow upward, and thus be supplied with moisture for the young roots. To the stemless section belong those with clustered pseudobulbs, as M. fuscutu, M.grauliflora, M. luteo-libu, M. pictu, M. Sanderiumu and M. vemustu. Some of these bave very shows Howers. Nearly all do best under pot-culture. M. Sunderiana and others are exceptions, however, and grow best under basket culture, not too much compost and an airy position. Demand for Maxillarias not being great, the market usually relies on new importations, but stock may also be increased by division between the pseudobulbs as the plants start new action.

Robert M. Grey.


1. venùsta, Linden \& Reichb. f. Pseudobulbs oblong, compressed, $2 \cdot l v d .:$ lvs. oblong-lanceolate, ncuminate, plane, 1 ft . long: scapes 6 in . long, bearing a single glistening white fl. 6 in. across: sepals and petals longlanceolate, acuminate, spreading; the lateral sepals wider, labellum much smaller: middle lobe triangular recurved, obtuse, yellow; lateral lobes very obtuse, bordered with red; disk with a rounded, hairy callus. Winter and spring. Colombia. B.M. 5296. G.C. III. 12:367 (abnornal).-A large-fld., showy species.
2. grandiflòra, Liudl. Fig. 1379. Pseudobulbs clustered, oval: lvs erect, plane, keeled, ovate-oblong, 1 ft . long: scapes erect, 3-6 in. long, bearing solitary, large white fls. 3-4 in. across; sepals broadly ovate to oblong; petals ovate acute, suberect, with recurved tips; labellum saccate, white, much-striped with purple on the sides; middle lobe tongue-like, white, hordered with
yellow. Aug. Peru and Colombia. I.H. 17:14.-A very showy and beautiful plant.
3. Léhmanni, Reichb. f. Fl.-stalks nearly 1 ft . in length, bearing white fls. nearly as large as those of Lycaste Skinneri: side lobes of the labellum light ochre outside and light reddish brown with chestnut veins inside; middle lobe triangular, wavy, sulfur color. Ecuador.-Resembles M. grundifloru, but distinguished by the character of the lip.

4. Maxillaria grandiflora ( $\times$ nearly 1/2).
5. Sanderiàna, Reichb. f. Pseudobulbs orbicular to broadly oblong, $1-1 \frac{1}{2} \mathrm{in}$. long: lis. few, $6-10 \mathrm{in}$. long, oblanceolate, plane, keeled: scapes -3 in. long: tls. 4 in. across, pure white, with the bases of the segments purplish red, broken upwards into blotches; dorsal sepals oblong-obtuse, concare; lateral sepals triangular-ovate, forming a broad mentum at base; lateral lobes of the labellum almost obsolete, middle lobe rounded, crisp, bright yellow, throat dark purple, with a club-shaped callus. Ecuador. B.M. 7518. R.H. 1894:526. J.H. III. 26:405. - The finest known species.
6. Lindeniæ, Hort. (M. Lindeniàna, Rich \& Gal.?). Plants resembling M. Sancleriana, but the fls. larger and more open: sepals triangular-lanceolate, spreading, 3 in . long, pure white; petals shorter and wider, erect, white; labellum fleshy, oborate, somewhat crisp, recurved, pale yellow, with $\overline{5}-6$ red lines on the lateral lobes. S.H. 1:219.
7. pícta. Hcok. (M. fuscìta, Klotzsch). Pseudobulbs $11 / 2$ in. high, ovate, furrowed, bearing 1-2 plane, strapshaped lrs. 1 ft . long: scape $\overline{5}-6 \mathrm{in}$. high: Hs. nodding; sepals and petals oblong-linear, acute, incurved, deep orange spotted with purple within, white with deep purple spots outside; labellum oblong, whitish, spotted; side lobes small, rounded; midlobe recurved, apicnlate. Winter. Brazil, Colombia. B.M. 3154. B.R. 21:1802.Handsome.
8. ruféscens, Lindl. (M. fuscìta, Réchb.f.). Pseudobulbs ovate, subtetragonal, 1-lvd.: lis. lanceolate,
acuminate: scape short, with 1 small f.: sepals and petals oblong obtuse, yellow-tinged and spotted with reddlsh orange; side lobes of labellum small, sharp; middle lobe elongate, sub-quadrate, emarginate; all yellow, spotted with crimson. Trinidad. B.R.29:1848.Not valuable.
9. elegantula, Rolfe. The bases of the segments are white, the outer halves pale yellow, marked with chocolate color. Nov, G.C. Ill.22:420. - From the illustration, the sepals are ovate-lanceolate, wavy and recurred, the lower pair broader; petals smaller, pointing forward, concare, wary, with reflexed tips: lvs. lanceolate-acute.
10. lùteo-álba, Lindl. Pseudobulbs long-orate, 1-1rd., 21/2 in. high: lvs. broad, obtuse, narrowed at the base, 1 ft . long: scapes 6 in . long: sepals 3 in . long, $1 / 3 \mathrm{in}$. wide, tawny yellow fading to white at the base, brown on the back, the lower pair drooping; petals erect, pointing forward, one-half as long, white to brown and yellow above; side lobes of the labellum yellow with purple streaks; midule lobe recur ed, hairy, yellow, with white margins. Colombia.-A robust species, which soon fills large-sized pans, making rery ornamental plants.
11. striàta, Rolfe. Scapes $6-8$ in. long, bearing solitary fls. 4-5 in. across the sepals: dorsal sepals ovateoblong; lateral sepals ovate-attenuate, forming a broad mentum at the base, often twisted and recurved; petals narrower, wary; both sepals and petals are yellow, striped with red-brown; lobes of the labellum crenate wary, white with purple reins, the lateral ones recurred. Aug. Peru. G.C. III. 20:631. G.M. $41:$ T05.

12. Maxillaria Houtteana ( $X$ about $1 / 3$ ).
13. Hontteàna, Reichb. f. Fig. 1380. Rhizome erect or ascending, clothed with brown sheaths: pseudobulbs 2-21/2 in. long, linear-oblong, compressed: lrs, solitary, 6 in. long, linear, obtuse, keeled: scape $11 / 2-2$ in. long:

As. nearly 2 in . across; sepals ovate-lanceolate, dirty yellow outside, red-purple within, with a yellow margin and spotted below; petals smaller, colored llke the sepals; labellun without lateral lobes, oblong-obtuse, sellow with red-brown spots, and an ill-deffued callus on the base. April. Guatemala and Venezuela. B.M. 75.33. - Fls. last about a month in the coolhouse.
12. variábilis, Batem. (M. angustifolia, Hook.). P'seudohulbs oval, compressed: lvs. solitary, plane, linear oblong, obtuse or emarginate: As. solitary, small, deep purple; sepals linear-oblong, acute, the lateral ones produced at the base; petals subsimilar; labellum oblong, retuse, fleshy, membranous at the base: disk with a small callus. Midwinter. Mex. B.M. 3614 (as M. IIenchmanmi).- A small plant, of interest only to collectors.
13. tenuifdia, Lindl. Rhlzomes erect, bearing ovatecompressed pseudobulbs at irregular intervals: Irs. linear-lancenlate, acute, recurved, grass-like, plane: fis smail, spotted and shaded with purple and yellow; sepals orate-lanceolate, margins revolnte, reflexed; petals oraie, acute, erect; labellum oblong, retlexed. with an entice. oblong callus. Spring. Mex. B.R. 25:8.-Not valuable
M. dichroma, Rolfe. Allied to M. venusta, but the petals are suffusel on the lower half with light pinkish purple, the lip being marginel witl the same color; sepals white. Grows freely in a coollouse, the fls, lasting for a long time.

Heinricit Hasselbring.
MAXIMILIANA (after Maximilian Joseph, first king of Bavaria, $1706-1825$, not Prince Maximilian Alexander Pbilipp, as said by some). Palmicear. Tail. pinnateleaved palms, spineless, with ringed trunks: lvs. with linear pinne in groups, the midveins and transverse nerres prominent; rachis bifacial, strongly compressed; petiole plano-convex. This genus is dis. tinguished from Attalea as follots: petals of the male fls. minute, much shorter than the 6 exserted stamens: fr. 1-seeded; pinna in groups instead of equidistant. From Cocos and Scheelia it differs in the above floral characters and in the plano-consex instead of concaroconvex petioles. Fr. yellow or brown, ovoid, with fibrous or fleshy perice rp and bony endocarp, the latter 3 -pored at the base, acuminate at the apex. Species 3, St. Kitts, Trinidarl and S. Am. For culture, see Pllms.

## A. Pinne verticillate.

Maripa, Drude (Attalen Maripa, Mart.). Stem thick, very tall: Ivs. 15 ft . long; segments ensiform acute, divaricate, the lower 3 ft . long, 2 in. wide, gradually diminishing upwards. Brazil.

## AA. Pinme in opposite clusters.

règia, Mart. (Attalǐ九 amygdalina). Fig. 1381. Stem $15-20 \mathrm{ft}$. high, $12-16$ in. thick at the base, 3 times as thick above because of the persistent petiole bases: lis. 15 ft . long: segments more slender, papery, disposed in opposite clusters, the upper as broad as the lower. Brazil. G.C. III, 1 :232.

Jared G. Smith.
MAY in English poetry refers to the flowers of the hawthorn, Cratagus Oryacantha.

MAY APPLE. Podophyllum. See also Pissiflor
MAYBERRY, JAPANESE GOLDEN. Name proposed by Luther Burbank for Rubus palmatus.

MAYFLOWER of English literature is the same as the hawthorn, Cratergus Oryucantho; of New England is Epiget repens; of the more western states, Hepatica.

MAY-WEED. Aniliemis Cotulu.
MAYTENUS (from a Chilean nane). Celastricer. A genus of about 50 species of trees and shrubs mostly from South America, some from tropical America. Botanically they are near our common bittersweet, Celastrus scandens. Aside fron habit, Maytenus differs from Celastrus in haring the ovary confluent with the disk instead of free, and the cells are mostly l-ovaled instead
of 2 -ovuled. Maytenus conshts of evergreen, unarmed plants: Iss. alternate, often 2 ranked, stalked, leathery, serrate: fly. small, white, gellow or reddish, axillary, solitary, clustered or cymose; calyx 5-cut; petals and

MEDEOLA (uamed after the sorceress Medea, for its supposed great medicinal virtues). Lilidecif. Isman Cucember Root, from the taste of the edible root. This native perennial herb has $\varepsilon$ whorls of Ivs. and bears 8 mall and not very show fls . It is offered by some dealers in native plants. Medeola is nearest to Trillium. The fls. are umbellate, the perianth segments all alike, colored and deciduous.

Virginiana, Linn. Fig. 1383. Stem slender 1-3 ft. high, clothed with tlocculent deciduous wool: lower whorl of Ivs. 5-9, obovate-lanceolate, pointed, netted-veiny, lightly parallel-ribbed, sessile; upper whorl of 3-5, smaller, orntelves. at top subtending a sessile umbel of small, recurved Hs. June. Boggy soil, New England to Minn., Ind. and southward. B.M. 1316. D. 129.
M. asparagoldes, Lina. $=$ - sparagus medeololiles.

MEDICAGO (name originally from the country Media). Leguminòste. Forty to 50 herbs (rarely shrubs) in Europe, Asim and Africa, with small pinnately 3 -foliolate lvs. and denticulate Ifts., and mostly small, purple or sellow ths. in heads or short racemes: stanens 9 and 1, diadelphous: fr. a small spiral or curved, rough or pubescent indehiscent 1 - to few-seeded pod: f . with an obovate or ohlong standard and obtuse mostly short keel. Three or 4 species have become weeds in the East. A few are somewhat cult. for ornament. The one important species, from an agricultural point of view, is Alfalfa. One species (and perhaps more) is cult. for the odd pods, which are sometimes used by Old World gardeners as surprises or jokes, and are oceasionally grown in this country as olditie. Some of the Medicagoes simulate clovers in appearance, but the twisted or spiral puis distinguish them.

> A. Flowers purple.
sativa, Linn. Alfalfa. Lecerse. Fig. 138t. Pereunial, glabrous, growing erect $1-3 \mathrm{ft}$ and making a


Showing the dehiscing fruit.
long tap-root: Ifts. small, linear, oblong to orate-oblong, prominently toothed towards the top: stipules awl-like, conspicuous, entire: fls. in short, axillary racemes:

## MEDINILLA

pods slightly pubescent, with two or three spirals. Eu. -Now widely cult., particularly in dry regions, as a hay and pasture, being to the West what red clover is to the Northeast. See Alfalfa. A hardier and droughtresisting race (known as var. Turkestanica, Hort.) was introduced from central Asia in 1898 by N. E. Hansen,

1383. Medeola Virginiana, the Indian Cucumber Root. ( $\times 1 / 2$.) (See p. 997.)
under the auspices of the U. S. Dept. Agric. (see Hansen, Amer. Agric. Feb. 24, 1900; Circular 25, Division of Agrostology, U. S. Dept. Agric.).

## AA. Fls. yellow.

B. Plant annual and herbaceous.
lupulina, Linn. Black or Hop Medick. Nonesuch. Diffuse, the branches often rooting and becoming $2-3$ ft. long, deep-rooted, and difficult to pull up: plant gla-
brous or slightly pubescent : lfts. oval to orbicular, toothed: stipules broad and toothed: fls. small, light yellow, in pedunculate heads: fr. nearly glabrous, spiral, becoming black. Eu.-Extensively naturalized. Has the appearance of a clover. The yellow clovers with which it is likely to be confounded have larger heads, which soon become dry and papery, and the stipules are entire. It is sometimes used as a forage or hay plant. Of no ornamental value.
prostràta,Jacq. Stem prostrate: Ifts. linear, dentate at the apex: stipules linear-subuIate: pod glabrous, spirally contorted, 2 seeded, black. S. Eu. - Advertised as an ornamental plant. M.elegans, a name for a low, yellow-fld. species, is also in the trade; it may be any one of 4 or 5 species.

1384. Medicago sativa-Alfalfa. ( $\times 1 / 2$.)
scutellata, Mill. Svails. Erect or spreading, softpubescent: ]fts. broally obovate or the upper ones broadly oblong, prominently toothed: stipules falcate, toothed at the base: fls. small, solitary or nearly so: pod large and prominently reticulated, $1 / 2 \mathrm{in}$. $\varepsilon$ cross, like a snail shell. Eu.-Grown for the odd snail-like pods, which are used as surprises. See the article Cutexpillars.

BB. Plant peremial and woody.
arbòrea, Linn. Tree Alfalfa. Moon Trefoll. Two to 8 ft . tall, with hard black wood: lfts. oval to obovate, light green, toothed at the top: stipules linear-acute, entire: fls, orange-yellow, in rather loose, axillary, peduncled clusters: pod spiral, --3-seeded. S. Eu. L.B.C. 14:1379. - Offered as an ornamental plant in S. Calif.
L. H. B.

MEDICK. See Medicago.
MEDINILLA (after José de Medinilla y Pineda. governor of the Ladrones). Melastomacere. A genus of 98 species of tropical plants, mostly from the East Indies and Pacific islands. M. magrifica is one of the most gorgeous tropical plants in cultivation, and one of the most desirable for amateurs who have hothouses. It is a native of the Philippines. It has handsome broad, shining, leathery foliage and coral-red, 5 -petaled fls., each about 1 in . across, which are borne in pendulous pyramidal panieles sometimes a foot long, and bearing $100-150 \mathrm{fts}$. The axis and branches of the panicle are pinkish, and the same color tinges the large, showy bracts, which are sometimes 4 in . long. Hooker says: "Its most beantiful state is. perhaps, before the full perfection of the ths., when the large imbricated bracts begin to separate and allow the buils to be partially seen. As the expansion of the hossoms advances, the upper bracts fall off, but the lower ones remain and become reffexed." This truly magnificent plant flowers copiously when only 2 or 3 ft . high, and a large wellkept specimen in flower is a sight that is never to be forgotten. The numerous long, bent, purple anthers, with their yellow filaments, form an additional feature of interest.
Medinilla is distinguished from allied genera (none of which has garden value) chiefly by the curions appendages of the stamens. The stamens are 8,10 or 12 , the anterior connective, 2 -lobed or 2 -spurred, the posterior one usually setose or 1-2-lobed or 1 -spurred. Medinillas are branching shrubs, erect or cimbing: les. mostly opposite or whorled, entire, fleshy: fls. white or rose, with or without lracts, in panicles or cymes. Cogniaux in DC. Mon. Phan. $7: 572-602$ (1891). The 2
species described below are glabrous, with opposite, sessile lvs. and long, terminal, pendulous, bracted panicles, with floral parts in 5 's.

## A. Fls. coral-real or rosy pink.

magnifica, Lindl. Figs. 1385-6. Lws. with 9-13 nerves, which run from various points along the midrib to the margin or apex, ovate or ovate-oblong: bracts 1-4 in. long. Philippines. B.M. 4533. F.S. 6:572 and $9: 968$ (splendid). Gn. 51, p. 394. G.C. II. 2:421. R.H. 1857, pp. 319, 343, and 1896, pp. 102, 103. A.F. 7:1047. - Other interesting features are the whorled branches, each one 4 -ridged or winged, and the dense ring of short, fleshy processes at the joints between the lvs. It car be propagated by seeds or cuttings of young wood in heat.

## AA. Fls. white.

Cúrtisii, Hook. Lrs. with 2 nerves beside the midrib which run from the base to the apex of the leaf: bracts about 3 lines long. Sumatra. B.M. 6730. G.C. II. 20:621. -John Saul says it blooms in autumn. W. M.

Medinilla magnifica is a fine stove plant, even when not in flower. It remains in bloom from April to July. The writer has kept a tree-shaped specimen for

1385. Medinilla magnifica. A young specimen.
it from that genus "by its thick perennial roots, its large, turgid, immarginate seeds and its thick, fleshy cotyledons which remain under ground in germination. The fruit in some species appears to be wholly indehiscent." There are five species described in the Botany of California. One of these, M. Californica, Torr. (Echinocystis fabacea, Naud.), is sometimes grown in fine collections and botanic gardens. It is a tendrilclimber, reaching 20 to 30 ft . in its native humnts: lvs. deeply $5-\bar{i}$-lobed: fls. monœecious: fr. densely spinose, globose or ovoid, 2 in . long: seed obovoid, nearly 1 in . long and half or more as broad, margined by a narrow groove or dark line. S. Calif. Odd in germination (see Gray, Amer. Journ. Sci. 1876).

## MEGASEA. See Saxifraga.

MELALEU̇CA (Greek, melas, black, and leukos, white; from the black trunk and white branches of one of the species). Myrtacea. This genus comprises about 100
more than twenty years, during which time it has never failed to bloom annually. In alternate seasons the fls. have been more abundant, showing that the plant needs a rest. After flowering, the specimen may be placed outdoors in a partly shaded position, where high winds cannot danage the foliage. In September, it should be placed in a conservatory with a night temperature of $55^{\circ}$. When growing vigorously it likes plenty of weak liquid cow manure and guano alternately. It must be constantly watched for mealy bug, as it is almost impossible to dislodge this pest after the racemes have begun to form.

- F. L. Harris.

MEDLAR. Sce Mespilus. The Loquat is sometimes erroneously called Medlar. For Japanese Medlar, see Photinia.

## MEDUSA'S HEAD. Euphorbia Caput-Medusa.

MEGARRHIZA (Greek for big root). Cucurbiticen. By Bentham © Hooker, and also by Cognianx (DC. Monogr. Phaner. 3) this genus is referred to Echinocystis, but Watson (Bot. Calif. 1, p. 241) distinguishes
species of Australian trees and shrubs, many of which are considered useful for fixing coast sands and holding muddy shores. The trees live in salty ground and water, much as mangroves do, and some are grown in swamps as a corrective of fever conditions. They transplant easily and have close-grained, hard, durable timber. Lis. alternate, rarely opposite, entire, lanceolate or linear, flat or subterete, with $1-3$ or many nerves: bracts deciduous: fls. in heads or spikes, each sessile in the axil of a floral leaf, their parts in 5 's; calys tube subglobose; lobes imbricate or open; petals spreading, deeduous; stamens indefinite in number, more or less united at their bases into 5 hundles opposite the petals; zuthers versatile, the cells parallel and bursting longitudinally: ovary inferior or half inferior, enclosed in the lyx tube, usually with many owules in each cell. Sc eral species are cultivated in S. Calif. Sometimes called Bottle-hrush trees, from their resemblance to the allied Callistemons. Flora Australiensis, 3:123.
A. Lis. mostly ultervate.

Leucadéndron, Linn. (M. Cujapùti, Roxb.). The Cajaput Thee. The most widely distributed of all the
species, with many changeable and uncertain variations, found throughout tropical Asia, especially the Indian Archipelago. The plants range in size from shrubs to trees 80 ft . high, the large trees having slender, pendulous branches, the small trees and shrubs rigid, erect branches: lvs. often vertical, elliptical or lanceolate, straight, oblique or falcate, acuminate, acute or obtuse, when broad $2-4 \mathrm{in}$. long, when narrow 6-8 in. long, nar rowed into a petiole, thin or rigid: fl.-spikes more or less interrupted, solitary or 2 or 3 together, from less than 2 to more than 6 in. long: fls. numerous, white, elongated; stamens greenish yellow, whitish, pink or purple, glabrous, $5-9$ in each bundle, less than $1 / 2 \mathrm{in}$. long; claws sometimes very short, sometimes exceeding the petals, each with $5-8$ filaments at the end. The lis. field the well-known green aromatic cajaput oil used in medicine. The bark is pale buff, in many thin, easily separated layers; it is very durable, lasting longer than timber, and is said to be almost impervious to water; it is valuable for packing fruísi and is used for roofs and for boats. The tree withstands winds, drought and slight frosts and grows where the Eucalpytus fails. Yon Müller recommends it for planting where yellow fever occurs. Sometimes called the Paper Bark or Swamp Tea tree. G.M. 40:79S.

AA. Le's mostly in uhorls of $3-5$.
micromèra. Schau. Lrs. closely appressed, ovate, scale-like, but thick, peltately attached, rarely above $1 / 2$ line long: fis. sulfur-yellow, the males small, in globular, terminal heads, the axils soon growing out into a leafy shoot: fruiting heads dense, globular, the calices open.

## AAA. Lis. mostly opposite.

B. Margins of lis. recurved.
hyeericifòlia, Smith. Lrs. opposite, lanceolate or oblong, rather thin, with recurved margins and prominent midrib $3 / 4-11 / 2$ in. long: fls. large, rich red, in cylindrical or oblong dense spikes; stamens over $1 / 2$ in. long; staminal claws long. L. B. C. 2:199.-This species belongs to a series in which tae stamens are over $1 / 2 \mathrm{in}$. long, while in the other 3 series the stamens never exceed $\frac{1}{2} \mathrm{in}$.

BB. Martin of les. not recurved.
decussàta, R. Br. Tall shruh, sometimes 20 ft . high: us. mostly oppositf, often decussate on the smaller branches, oblong-lanceolate or linear, 3-6 lines long, rigid: fls. rather small, pink; when in oblong or almost globular lateral heads or spikes are usually barren, and fertile when in oblong or cylindrical interrupted spikes forming the base of leafy branches; stamens not oliore 3 lines long, very shortly united in bundles of

1 yx lobes more or less scarious and deciduous or off when in fruit, attached by the broad base, mol $1^{\circ}$ less immersed when in fruit in the thickened rachis. B.M. 2:28. L.B.C. 13:1208.
if. B. Coulston
MELANTHIUM (Greek, black flower: from the darker color which the persistent perianth assumes on fading). Lilidece. Leafy perennial herbs $2-5 \mathrm{ft}$. high, with thick rootstocks: lvs. linear to oblanceolate or oral: fls. greenish. white or cream-colored, borne in a large, open terminal panicle. The genus is nearest to Veratrum, but the sepals of the latter are not clawed as they are in Melanthium. Perianth segments usually oblong or oblanceolate, with or without glands at the top of the claw. Of 0 species, 2 are African. 1 Siberian and 3 North American, only 1 of the latter being in the trade.
Virginicum, Linn. Bu'scir Flower. Stem rather slender, leafy: $1:: s$. linear, 1 ft . or less long: panicles 6 - 18 in. long: fls. $6-10$ lines across; donble gland at top of claw. July. Marshy woodlands and meadows from New England to Fla. and Minn. to Tex. B.M. 985 (Helonias Virginica). -Int. by H. P. Kelsey 1891. A showy and striking padt.
M. junceum is alvertised by Krelage, of Haarlem, but its botanical position is to be determined,

MELASPH to the bulblets on the stem). Irialacece. A genus of one species from the Cape of Good Hope, a small, rare bul bous plant procurable from Dutch bulb-growers. It be-
longs to the Ixia tribe, in which the flowers are spicate, not fugitive, and never more than 1 to a spathe. It resembles Ixia in having a regular perianth and simple style branches, but belongs to a different group of genera in which the stamens are one-sided and arched. Baker places it between Crocosma and Tritonia, differ. ing from them in having a small perianth without any tube and very acuminate segments. Baker, Irideæ, 189:, and Flora Capensis, vol. 6. For culture, see Bulbs and Ixia.
graminea, Ker. Corm globose, $1 / 2 \mathrm{in}$. in diam.: stem very slender, 1 ft . or more long: lvs. about 6 in a 2 ranked, basal rosette, linear, $1 / 2-1 \mathrm{ft}$. long: spikes fewfld., panicled: fls. yellowish green, veined with purplish black, $1 / 2-3 / 4$ in. across. Spring. B.M. 61 ..

1387. Umbrel:a-tree -Melis Azedarach, var. umbraculiformis.

MELASTOMA (Greek for black and mouth; alluding to the color left in the mouth when the berries of some species are eaten). This genus, which gives name to the great family Melastomacere, with 2,000 species, is little known in cult. It is not the most important genus of the family, either horticulturally or in number of species. Cogniaux, the latest monographer (DC. Monogr. Phaner. 7), admits 37 species. The larger part of melastomaceous plants are of tropical America, but the true Melastomas are natives to tropical Asia, Australia and Oceanica. They are shrubs or rarely small trees: Irs. opposite, pu ate, oblong or lanceolate, thick and entire, strongly nerved lengthwise, often handsomely colored: Als. solitary or fascicled on the ends of the branches, purple or rose (rarely white), large and showy; calyx mostly $\overline{5}$-lohed; petals usually 5 and often unequal, ciliate on the back; stamens 10 as a rule, very strongly unequal. part of them being short and small: fr. a leathery or fleshy berry, breaking irregularly, 5-7-loculed and containing many small spiral seeds. For culture, see Medinilla. Nearly all tropical melastomaceous plants require a high temperature, partial shade and considerable moisture. Prop. by cuttings of firm wood. Advertized in S. Calif.
A. Lis. strongly $\overline{5}$-nerred.
decémfidum, Roxbg. (M. sanguineum, D. Don. M. Malabithricum. Sims, not Linn.). Three to 4 ft : branches subterete and hirsnte: lvs. lanceolate or lance-oblong, long-acuninate, the nerves (or at least some of them) and the petioles often red: fls. 1-3, large, nearly or quite 2 in. across, the petals rose-colored and retuse. Jara to China. B.M. 599 and 2941 .

## As. Les. strongly $\boldsymbol{\gamma}$-nerved.

cándidum, D. Don (M. Malubithricm, B.R. 8:6is, net Linn.). Branches 4 -angled, the younger ones pubescent, as also the petioles: lis. ovate-acute, setulose above, villose beneath: fls. 3-7 in a cyme, rose-colored (sometimes white ?), ahout the size of those of M. decemfilum; calys-lobes shorter than the tube. China.

Malabathricum, Linn. Differs from the last in having the calyx-lobes about equal to the tube, or sometimes even longer: livs. ohlong or ovate-oblong, acute or shortacuminate, sparsely setulose, above and henearh: fls. corymbose, purple, much smaller than in the last two.
E. India to Austral. - Probably the M. Malabathricum of horticulturists is one of the above species. Not known to be in the Amer, trade.
L. H. B.

MELIA (ancient Greek name). Melidece. Trees, from 30 to 40 feet high: lvs. deciduous, doubly pinnate as a rule, the lfts. acuminate, glabrous: fis. in graceful panicles; sepals $3-\overline{5}$; petals 5 or 6 ; stamens monadelphous, $10-12$, of two different lengths: ovary with several locules, topped with a single style: fr. a small, indehiscent drupe. Species 2 or 3 , of Asia and Australia.

## A. Lis. more than once-pinuate.

Azedarach, Linn. This is the typical species as introduced in the southern states early in the last century. It is a native of India and Persia, hence its various local names, as Pride of India, Indian Lilac, Chinaberry tree, etc. It has become naturalized throughout the South, the seeds germinating freely. It grows with great rapidity, and forms one of the most desiralle shade trees, both from the bright green tint of the foliage, which is retained until late in the autumn, and also from the fragrance of the numerous, lilac-colored flowers, which are produced during April. These are succeeded by an abundant crop of berries, of a yellowish. trauslucent color, which are readily eaten by cattle and birds. The wood, although coarse, is very durable. The tree can withstand a low temperature, but a cold of zero will injure it. Several forms have been found, a white-flowering and one with finely-cut leaves, with the segments of the lfts. cut in narrow divisions. These forms are not constant, the seedlings frequently reverting to the typical species. In all forms of M. Azedarach, the lrs. are 2 - or 3 -pinnate, the ultimate lfts. ovate or lanceolate, and varying from serrate to very nearly entire. B.M. 1066.

Var. umbraculiformis, Hort. Texas Umbrella Tree. Fig. 1387. The first tree that came to notice was found

1388. Melicocca bijuga (sprays $\times 1 / 4$ ).
near the battle-ficld of San Jacinto, Texas, but with no recorl of its introduction there. If the flowers are not cross-pollinated with the common sort, the percentage of seedlings which reproduce the exact umbrella shape
seldom varies; hence it is supposed by some to be a distinct species. The lfts. are less broad than in $M$. Azedarach, and the branches erect, and, in a manner, radiating from the trunk, the drooping foliage giving the tree the appearance of a gigantic unbrella. Mn. 8, p. 73.

AA. Leaves once-pinnate.
Azadiráchta, Linn. (M. Japónica, Hassk.). Large tree, sometimes 50 ft .: lvs. bread, with $9-15$ lancescuminate, oblicur, more or less serrate lits.: fls. white, fragiant: foliage crow iet? near the ends of the bri?nches. India. - Not hardy in the Middle Sonth.
Mf. florilvinda. Carr. (R. II. 1872:470) is probably a corm of M. Azedarach. It is more precocions and very tioriferous.M. sempérvirens. Sw. From, Jamaica. A low-growing tree with leaves deeply incised. Fiowers in axillary panicles, small, light lilac, fragrant, in eonstant succession. A greenhouse species. Probably only a form of M. Azedarach. B.K. 8:643.
P. J. Berckmans and L. H. B.

MELIANTHUS (mel, honey, and anthos, flower). Stopindàcet. About 6 species of evergreen shrubs, natives of South Africa. Can be grown out-of-doors in S. Calif. Foliage has a disagreeable odor when bruised: lys. alternate, stipulate, odd-pinnate; lits. unequalsided, toothed: fls. in axillary and terminal racemes, secreting honey plentifully; calyx laterally compressed, with or without a sac-like protuiverance at the base, and a nectar-bearing gland within; petals 5 , the anterior one abortive; stamens 4, didynamous. M. Himalayanus is M.major, which has been introduced into S. Asia.

## A. Calyx gibbous ut base.

màjox, Linn. Stem flexuous, glabrous, sometimes 10 ft . or more in height, with a widely creeping root: lys. gray, a foot or more long, the upper ones smaller; stipules grown together into oue large, intra-axillary piece, attached to the lower part of the petiole; Ifts. 9-11, 3-4 in. long, 2 in . Wide: racemes densely-fld., 1 ft . or more in length: bracts orate, acuminate: Hs. red-brown, 1 in . long: capsule papery, 4 -lobed at the apex, $1-11 / 4 \mathrm{in}$. long: seeds 2 in each cell, black and shining. Cape. B.R. 1:45. R.H. 1867, p. 131.

AA. Calyx not conspicuously gibbous at base.
minor, Linu. Lvs. 5-6 in. long; stipules 2, subulate, lateral, free; lfts. $11 / 2-2 \mathrm{in}$. long, 6 -10 lines wide: racemes 6 -12 in. long, subterminal: fis. dull red: capsule obtuse at each end, scarcely 4 -lobed, 8 lines long. Cape. Not B.M.301, which is M. comosus.
M. B. Collston.

MELICOCCA (Greek, honey berry: referring to the taste of the fruit). Sapindäces. Two or 3 species of tropical fruit trees, natives of Guiana and Trinidad. The Spanish Lime, M. bijuga, is cult. in S. Fla. and S. Calif. Its fruits are about the size and shape of plums, green or yellow, and have a pleasant, grape-like flavor. The large seeds are sometimes roasted like chestnuts. The tree grows slowly, attaining $20-60 \mathrm{ft}$., and bears freely. It can be frnited in the North under glass. Generic characters: lrs. abruptly pinnate: racemes divided: calyx 4parted; segments imbricated: petals 4 ; stamens 8; disk complete: stigma peltate, subsessile: orary 2-celled: berry 1-2-seeded.
bijuga, Linn. Spanishi Lime or Ginep. Fig. 1388. Lfts. in 2 pairs, elliptical or ellip-tie-lanceolate, entire, glabrous: fls.whitish, in terminal racemes. Naturalized in the West Indies. Bears several degrees of frost. The foliage is distinct, tine compound lvs. with winged petioles resembling those of Stpindus saponaria, the West Indian Soap-berry.

MELILOTUS (Greek for honey lotus). Leguminoste. Sweet Clover. Perhaps a dozen species of annual or biennial tall-growing, sweet-smelling herbs, widely distributed in temperate and subtropical regions. Liss. pinnately 3foliolate, the lfts. toothed and mostly narrow: fls. small, white or yellow, in slender, long-stalked, axillary racemes; calyx teeth short and nearly equal; standard
oblong or oblong-obovate; keel obtuse: fr. a small. few-seeded, not twisted, but more or less reticulated flattish pod. Two species, M. officinàlis, Lam. (yellowfld.), and M. álba, Desv. (white-fld.), have become weeds along roadsides and in waste places.

The latter. M. alba, is the commoner. It is an erect herb, often higher than a man, flowering abundaztly in spring and early summer. It is biennial. It is said to prefer soils rich in lime, and it thrives on poor and dry soils. Uuder the name of Bokhara clover and sweet clover, it is grown somewhat as a forage plant. Cattle come to like it for grazing, particularly if turned onto it early in the season, before other herbage is attractive. lt may also be cut for hay, particularly the second year. About 10 lbs . of seed is required per acre. It is an excellent bee plant.
L. H. B.

MELISSA (Greek, bee; because the bees are fond of Balm). Labidte. About 8 species of hardy perennial herbs from Europe and western Asia. M. officinalis is Balm (which see), a sweet herb, with white or pale yellow fls. A variegated form is cult. for ornament. It has silvery white markings. M. Patarina, Benth. $=$ Calamintha Patavina, Hort. This has light purple fis., and may be told from C. grandiflora and officinalis by the calyx being bulged or gibbous at the base. Melissas have dentate lvs.: whorls few-fld., lax, axillary, secund: fls. white or yellowish; corolla tube recurred-ascending below the middle.

MELOCACTUS (melou-cactus, referring to the shape of the plant-body). Cactacerf. Stems globose or ovoid, with vertical ribs, crowned at maturity with a "cepha-lium"-a prolongation of the axis densely corered with smal! tubercles, imbedded in wool and bearing in their axils small flowers and berries. The plant has the appearance of an Echinopsis surmounted by a Mimmillaria.

1389. Melocactus communis ( $\times 1.5$ ).
commùnis, Link \& Otto. Fis. 1389. Ribs 10-20, aeute: areole nearly 1 in . apart: rallial spines $8-11$, straight or curved, subulate: centrals 1-4: cephalium at first low, hemispherical, becoming erlindrical in time, reaching a height of 8 in ; the dense wool of the cephalinm is pierced by many red or brown bristles: fls. red, slender: fr. $2 / 3$ in. long, crowned by the persistent remains of the flower. red. West Indian islands. Called there "Turk's Head." B.M. 3090.

Katharine Brandegee.

## MENISCIUM

MELON. See Muskmelon and Watermelon; also Citrullus and Cucumis. M. Papaw. See Carict Papaya. M. Shrub. See Solanum muricatum. Chinese Preserving Melon is Benincasa.

MELOTHRIA (probably a name for a bryony-like plant; melon is Greek for apple, which may refer to the shape of the fruit). Cucurbitacere. About 54 species of slender herbaceous vines, climbing or trailing, annual or perennial, with small yellow or white fls., found in the warmer parts of the world. Three kinds are known to the trade as M. scabra, Mukia sctebrella and Pilogyne suatis, the last being perhaps the best. These threo are slender, but rapid-growing, half-hardy, annual climbers, which may be grown indoors in winter, but preferably ontdoors in summer for covering unsightly objects. They are presumably more attractive in fruit than in Hower.
The latest monographer, Cogniaux in DC. Mon. Phan. Vol. 3, 1881, makes three sections of the genus. M. seabra belongs to the first, M. punctata to the second and M. Maderaspatana to the third. M. punctata has sensitive tendrils.
Section I. Eumelothria. Fls. usually monœcious, males mostly racemose ; anthers subsessile: fr. mostly with long and slender peduncles: seeds usually not margined.
Section II. Solena. Fls. mostly diœcious, males corrmbose; anthers borne on rather long filaments, the connective not produced : fr. mostly short-peduncled: seeds mostly margined.
Section III. Muria. Fis monœcious, males clustered; anthers subsessile, the connective apiculate: fr. subsessile: seeds margined, usually pitted.
scàbra, Naud. Lvs. rigid, ent're or acutely 5 -lobed; tendrils unbranched: anthers roundish, with a wide connective, the cells straight, not plicate: fr. oroid or ovoidoblong, obtuse, 3 -celled, rather large ( 1 in . long, $1 / 2 \mathrm{in}$. thick), with broad parallel stripes of white and green. Mexico.
punctàta, Cogn. (Pilógyne suc̀uis, Schrad.). Lrs. membranous, cordate, angled or slightly 3 -5-lobed, white-spotted above, pilose, short-hairy or seabrous below, margin remotely denticulate: fr. brown, lightly pitted, about 3 lines thick: seeds small, about 2 lines long, strongly compressed. S. Africa.- Int. 1890 by Henderson \& Co. as the Oak-leaved Climber. Melothria punctata is a beautiful climbing herbaceous perennial, better known as Pilogyne suacis, and sometimes called Zehmeria suavis. Eren when protected, it is too tender to stand the northern winters. It blooms in clusters; tls. small, white and star-shape, with a strong musk fragrance: lvs. green, small and glossy. Being a very rapid grower, it is desirable for covering verandas or for house culture. It will do well in any part of a living room where it has light. It will grow as much as 16 feet high in one summer by having a liberal supply of water every day and liquid manure once a week. After growing outdoors it can be cut down to 6 inches, potted and taken into the house for the winter. In the spring it can be cut back, again planted out and it will do well. The roots can almost be called tuberous, and can be kept dormant during the winter, the same as Dahlias, buried in sand in a cool, dry place, free from frost. Rapidly increased by cuttings.
Maderaspátana, Cogn. (Mùkia scabrélla, Arn.). Lvs. scabrous or short-hairy beneath: fr. small, globose : seeds pitted. Trop. Asia and Afr. - "Fruits reddish when ripe." J. M. Thorburn \& Co. James Vick and W. M.

MENSSCIUM (Greek, a crescent; referring to the shape of the sori). Polypodiacece. A small genus of about 10 tropical species, with simple or pinnate lrs. and the main reins united by successive transverse arches, on which the naked sori are borne.
reticulàtum, Swz. Stalks $1-3 \mathrm{ft}$. long, stout: $1 \mathrm{rs} .2-4 \mathrm{ft}$. long, 1 ft . or more wide, pinnate; pimme $1-4$ in. wide, with an acuminate apex, naked or slightly pubescent; main veins $1-1 \frac{1}{2}$ lines apart, with 8-12 transverse arches. Mexico and W. Indies to Brazil. L. M. Undfrwood.

MENISPERMUM (Greek, moonseed). Mewispermd ced. Moonsebd. As conceived by the early botanists, Menispermum contained many species whieh are now referred to Cocculus, Abuta, Cissampelos, Tinospora, Anamirta and other genera. The genus is now considered to be bitypic, one species ocenrring in N. America and the other in Siberia, China and Japan. Moonseeds are twining woody vines, with alternate long-petioled lvs., which

1350. Leaf of Menispermum Canadense ( $\times 1 / 2$ ).
are peltate near the margin, and axillary or super-axillary panicles or cymes of small diœecious Hs.: fr. a compressed berry-like drupe, containing a flattened crescentshaped or curred stone (whence the name Moonseed) : stamens $9-24$, with 4 -loculed anthers in the staminate fls., 6 and sterite in the pistillate fls.; pistils $9-4$, with broad stigmas; sepals $\mathbf{4}-8$, in 2 series: petals $6-8$, shorter than the sepals. Both the Moonseeds are neat and interesting vines, and are hardy in the northern states and Ontario. Propagated readily by sceds; or plants of M. Canadense may be dug from the wild. Cuttings of ripened wood may also be used.

Canadénse, Linn. Common Moonseed. Fig. 1390. Stems sleuder and terete, floceulent-pubescent when young, but becoming glabrous, twining 10 ft . or more high: lrs. round-ovate to ovate-cordate, sometimes entire, but usually angulate-lobed, the long petiole attached just inside the margin: fls. greenish white, in loose, straggling panicles, the sepals and petals usually 6 , the stamens in the terminal Hs. 17-20 and in the lateral ones 11 or 12: : fr. bluish black, $1 /$ in. in diam., resembling small grapes. Rieh soils in thickets and lowlands, Quebec to Manitoba and south to Ga. B.M. 1910.

Daùricum, DC. In habit much like the above: lvs. smaller. deeper green, cordate and angular: Hs. in eymes, yellowish, the terminal ones with 6 sepals, 9 or 10 petals and about 20 stamens, the lateral ones with 4 sepals, 6 petals and about 12 stamens. Eastern Asia, - Variable. Rarely planted in this country.
L. H. B

MENTHA (from the Greek name of the nymph Minthe). Labidte. The term Mint, often applied to various species of the Labiate, is most frequently used to designate plants of the genus Mentha. This genus is characterized by its square stems and opposite simple leaves, in common with others of the order, and especially by its aromatic fragrance, its small purple, pink or white Howers, with regular calyx, slightly irregular corolla and four anther-bearing stamens, crowded in axillary whorls and the whorls often in terminal spikes.

Some of the species hybridize freely, producing innumerable intergrading forms which make the limitation of certain species difficult. Many forms have been

1391. A Mint Still.
with steam. A "Mint still" (Fig. 1391) usually consists of two retorts (used alternately), wooden or galvanized iron tubs about 7 ft . deep and 6 ft . in diam. at the top, each with a perforated false bottom and a tight-fitting, removable cover. a condenser of nearly 200 ft . of block
tin pipe immersed in tanks of cold water, or more frequently arranged in perpendicular tiers over which cold water runs, a boiler to furnish steam and a receiver or tin can with compartments in which the oil separates by gravity. The yield of oil varies from 10 to 60 pounds per acre, averaging about 25 pounds for Black Mint, the variety now generally grown. Three kinds of peppermint are recognized : (1) American Mint, "State Mint" of New York (M. piperita), long cultivated in this country and occasionally naturalized ; (2) Black Nint, or Black Mitcham (M. piperita, var. vulgaris), a more productive variety introduced from England about 1889, and (3) White Mint, or White Mitcham (M. piperita, rar. officinalis), less productive and too tender for profitable cultivation, but yielding a very superior grade of oil. Peppermint oil is used in confectionery, very extensively in medicines, and for the production of menthol, or more properly pipmenthol. Pipmenthol differs in physical properties from menthol derived from Japanese Mint.
Japanese Mint, M.areensis, var. piperascens, is cult. in northern Japan, chictly on the island of Hondo ; not known in the wild state. It has been introduced experimentally in cult. in England and the United States, but has not been cult. commercially in these countries. Its oil is inferior in quality to that of Mentha piperita, but it contains a higher percentage of crystallizable menthol, of which it was the original source and for the production of which it is largely used. It is propagated by rootstocks carefully iransplanted and cultivated by hand-labor. Two crops, rarely three, are obtained in a season, and by abundant fertilizing and intensive culture large yields are obtained. It is usually continued three years from one planting, and then a rotation of other crops follow for from three to six years. Three horticultural rarieties are recognized, beirg distinguished chiefly by form of leaf and color of stem. The rariety known as "Akakuki." with reddish purple stem and broad, obtuse leaves, is regarded as best.

Spearmint is cultivated on peppermint farms for the production of oil. The plants are propagated and cultivated similar to peppermint and distilled in the same stills. The oil. for which there is a smaller demand than for peppermint oil, is used chiefly in medicine and to some extent as a flavoring ingredient in drinks. Spearnint is cultivated in the vicinity of many large cities to supply saloons, where freshly cut sprigs of the plant are used in making the seductive and intoxicating drink known as "Mint julep." The plant is more widely known as an ingredient in "Mint sallee." the familiar accompaniment of springs lamb and green peas. To supply this demand it is often cultivated in the kitchen-garden. It is easily propagated by the perennial root-stocks, and persists year after year with little eare, thriving in nearly all kinds of soil, providing it does not become too dre.

The Pennyroyal of the Old Worid is Mentha Pulegium.
A. Whorls of fls. in terminal spikes or some in the upper axils.
B. Spikes thick: lus. petioled.
C. Lis. lanceolate, acute.
piperita, Linn. Peppenmint. Perennial, by runners and rootstocks: stems erect or ascending, 1-3 ft. high, branched, glabrous: Irs. lanceolate, acute, sharply serrate, $1-3$ in. long, glabrous or pubescent on the reins beneath, punctate, with minute oil globules: Hs. in thick, terminal spikes, $1-3$ in. long in fruit, the central spike finally exceeded by the lateral ones: calys glabrous below, its sharp teeth usually eiliate; corolla purple, rarely white, glabrous. Introduced in cultivation from England and oceasionally naturalized in moist ground in various parts of the country. Known as "American Mint " or "State Mint", in Jew York.

Var. officinalis, Sole. White Mint. Slender, 1-2 ft. high: lrs. 1-2 in. long: stems and foliage light-colored. Not known in wild state; long cult. in Eng. and spar. ingly introduced into cult. in America.
Var. valgàris, Sole. Black Mint. Rather stout, 2-3 ft. high: lvs. $2-3 \frac{1}{2}$ in. long: stems usually purple and foliage dark-colored. Native in England. Cult. in recent years in England, Saxony and America.

## CC. Liss ovate or subcordate.

citràta, Ehrh. Berganot Mint. Perennial, by leafy stolons, glabrous throughout: stem decumbent, l-2 ft. long, branched: lvs. thin, broadly ovate and ob. tuse or the uppermost lanceolate and acute: Hs. in the uppermost axils and in short, dense, terminal spikes; calyx glabrous, with subulate teeth; corolla glabrous. Sparingly naturalized from Europe, in New York, New Jersey, Florida and Ohio. -The fragrant, lemon-scented oil is distilled for use in making perfumes.

BB. Spikes slender, interrupted: les. sessile or nearly so.

## c. Plant glabrous: lis. lanceolate.

spicàta, Linn. (M. viridis, Linn.). Siearmint. Fig. 1392. Perennial, by leafy stolons: stem erect, with ascending branches $1-2 \mathrm{ft}$. high: lvs. lanceolate, sharply serrate, $21 / 2 \mathrm{in}$. or less in length: whorls of Hs . in narrow, interrupted spikes $2-4$ in. long, the central spike exceeding the lateral ones; calyx teeth hirsute or glabrate. Widely naturalized about old gardens throughout the older settled portions of the United States; native in Europe and Asia.
cc. Plant pubescent: lis. elliptic or orate-oblong.
rotundifolia, Huds. Round-leaved Mint. Perennial, by leafy stolons, pubescent throughout, somewhat viscid: stems slender, erect or ascending, simple or branched, 20-30 in. high : Irs. subcordate at base, mostly obtuse, crenate-serrate. 1-2 in. long and about two-thirds as wide, reticulated beneath: fls . in dense or interrupted spikes $2-4 \mathrm{in}$. long; ealyx pubescent; corolla puberulent. Naturalized in moist waste places from Maine to New Mexico.-Sometimes used as a substitute for peppermint or spearmint.

AA. Whorls of fls. all axillary. B. Plants usually decumbent: fls. nearly sessile.
Canadénsis, Linn. American Wild Mint. Perennial, by runners and rootstocks: stem usually pubescent, with spreading hairs, erect or ascening. simple or branched, $6-30 \mathrm{in}$. high: Ir 3 ovate-oblong or lanceolate, glabrous or nearly so, $2-3 \mathrm{in}$. long, slender-petioled, the petioles often exceeding the nearly sessile whorls of light purple ths.: calyx pubescent. In wet soil or in water at the margins of streams, New Brunswick to British Columbia and southward to Virginia and New Mexico. It is a common plant.-Often ealled peppermint, for which it is frequently mistaken and for which it is sometimes used as a substitute. It is variable in habit and also in the character of its oil.

## BB. Plants somewhat rigidly erect: fls. distinctly pedicelled.

arvénsis, rar. piperáscens, Malinraud. Japanese Mint. Perennial, by running rootstocks, puberulent or finely pubescent throughout: stems erect, with numerous branches, $2-3 \mathrm{ft}$. high: lvs. lanceolate and acute to broadly oblong and obtuse, narrowed at the hase, $11 / 2-31 / 2 \mathrm{in}$. long, sharply serrate, with low teeth: fls. in rather loose, axillary whorls. in distinctly pedicellate wimbels. usually shorter than the slender petioles; calyx pubescent, its subulate teeth about half as long as the tube; corolla puberulent.

Lyster H. Dewey.

MENTZELIA (Mentzel, an early German botanist). Loasdcece. About 50 species of erect, sometimes woody herbs, $1-5 \mathrm{ft}$. high, many natives of North America. Lrs. alternate, mostly coarsely toothed or pinnatifld: Hs. solitary or in cymes, white, yellowish, yellow or red: petals 5 or 10 , regularly spreading, convolute in the bul, deciduous; stamens indefinite, rarely few, inserted with the petals on the throat of the calyx: seeds flat. They thrive in sumy, moist or dry situations sheltered from strong winds. M. Lindleyi, from Calif. . is common in eastern gardens, where it is known as Burlonia aureu; the other species are offered by western dealers, but are not generally in cult. They flower in summer. Although $M$. Lindleyi has long been a rather common plant in cultivation, it is little known in the wild, being probably a native of central Calif. The seeds should be sown where the plants are to remain, as they do not bear transplanting.
A. Color of fls. yellou.
в. Fls. opening in bright sunshine.

## C. Petals 1 in. lomg

Lindleyi, Torr. \& Gray (Bartònia aùrea, Lindl.). Fig. 1393. Annual: stem 1-3 ft. high, branched and straggling: lis. 2-3 in. long: ths. about $91 / 2 \mathrm{in}$. across, bright yellow, very fragrant in the evening, bracted; petals 5 , broadly obovate, nearly as broad as long, rounded at the apex except an abrupt short point. Probably central Calif. B.M. 3649. B.R. 22:1831.

## cc. Petals 2-21/2 in. long.

lævicaùlis, Torr. \& Gray. Biennial: stem 2-3 ft. high: lis. $2-8$ in. long: tls. yellow, $21 / 2-3 \mathrm{in}$. across, bractless: petals lanceolate, acuminate. Neb. to Calif. B.B. $2: 459$.

## вв, Fls. opening towards night.

nùda, Torr. \& Gray. Biennial: stem somewhat slender, $1-5 \mathrm{ft}$. high: lvs. $1-3 \mathrm{in}$. long: tis. creamy white, $1 \frac{1}{2}-21 / 2$ in. aeross, usually bractless; petals 10. Dakota to Kans., Colo. and Tex. B.M. 5483 (as Bartonia nuda). B.B.․: $4 \check{8} 8$.

AA. Color of fls. pure white.
ornàta, Torr. \& Gray. Annual: stem 2 ft . and more: lvs. $0^{-6}$ in. lone: ths. 5 in. across, opening towards night. fragrant, usually braeted; petals 10; stamens $200-300$. Dakota and Mont. to Tex. R.H. 1878:430. B.M. 1487 (as Bartonia decapetala'. B.B. $2: 459$.
M. B. Coulston and W. M.

MENYANTHES (Greek, men, a month, and anthos, fluwer; perhaps because it flowers for about a month). Gentiyntrea. Buckbean. A gemus of 2 species of small peremnial bog plants with ereeping rootstocks and small, 5 -lobed white or purplish tis. borne in late spring. They are procurable from dealers in native plants. The genus is one of the few aquatic groups in the gentian family. It is allied to Limnanthemum, but the Hs. of the latter are not bearded or crested on the face as they are in Menvanthes. Lers. all alternate, stalked: corolla somewhat funnel- or bell-shaped; stamens inserted on the tube of the corolla; hypogynous glauds $\overline{5}$ : style long.
trifoliàta, Linn. Buckbean. About 0-18 in. high: lfts. 3, oval or oblong-oborate, 1-1 $1 / 2 \mathrm{in}$. long: raceme about 12 -fll. Bogs, north temperate regions. B.B.2:62.. V. 2:198 and 3:208. - The lvs. are said to be used in Germany as a substitute for hops in beer-making. A very interesting bog plant.

## MERCORY. Chenopodium Boms-Henricus.

MERENDERA (from quita merieulas, Spanish name of Colchium uutumunte; some of these plants formerly considered to belong to Colchicum). Liliicea. About 10 species of bulbous plants, mostly natives of the Mediterranean region and Asia Minor. They belong to the same tribe with Colchicum and Bulbocodium, but Colehicum has a real corolla tube. while the other two genera have 6 very long-clawed segments which are merely con-
nivent, forming a loose tube at first and afterwards separating. In Merendera there are 3 styles which are distinct from the base, while in Bulbocodium the style is 3 -cut only at the apex. Merenderas are low, stemless plants with tunicated corms: lvs. linear, appearing with the fls.: fls. 1-3. appearing in spring or fall, mostly llaccolored. The genus is divided by Baker (Jour. Linn.


## 1393. Mentzelia Lindleyi ( $\times^{1 / 3}$ ).

Soc. 17: 438.1880 ) into two groups, based on the anthers. The 2 speries described below belong to the group with small, ohlong, versatile anthers, which are fastened at the middle rather than the base. They are hardy spring. blooming plants with about 3 lis., and fls. $1-1 \frac{1}{2}$ in. across. These rare plants are procurable from Dutch bulb-growers. They are pretty, small-fld., early-blooming, hardy, fragile plants which persist well under good garden cultivation.
A. Blade of petals oblanceolate, obtuse.

Caucasica, Bieb. The 3 outer corolla segments appenlaged on each side at the junction of hade and claw; new corms sessile. Caucasis, Persia. B.M. 3690.

As. Blade of petals ?unceolate, acute.
sobolifera, Fisch. \& Mey. Segments not appendaged: a very small new corm produced at the apex of a shoot. Asia Minor, Persia.
II. Ruthénica is advertised by Van Tubergen.

## J. N. Gebard and IV. M

MERTENSIA (after Mertens, a German botanist). Bowngindere. Ahout 15 species of perenmial herbs, natives of the north temperate zone, the most popular of which is M. pulmonurioides better known as $M$. Virginicu, Virginia Cowslip, Blue Bells, and Virginia Lungwort. This grows 1-2 ft. high and bears more or less drooping elusters of blue-belled ths. in March to May (see Fig. 1394). The fls. are about 1 in. long, and 20 or more in a terminal group. Thev have a purple tube and bue bell of distinet shape, the lobes of the corolla being less pronounced than in the other species. Mertensias are allied to Pulmonaria, but the ths. have no hracts, as in Pulmonaria. They are botanically nearer Myosotis, whieh contains the forget-me-nots. Mertensias are glabrous or pilose: lvs. alternate, often having pellucid dots: racemes terminal or the cymes loose, few-fld., 1-sided, sometimes panicled: fls. blue or purplish, rarely white ; calyx $\overline{5}$-cut or $\overline{5}$-parted; lobes 5 ; stamens fastened at the midille of the tube or higher.

The common Mertensia is one of the plants that should remain undisturbed for years, and hence is suited to the rockery. Its leaves die down soon after flowering time. The plant should have a sheltercd position, full sunshine and rich, loamy soil. M. Sibirica is considered by some even more desirable. The fls. are later, light blue, and not as distinctive in form. The foliage of M. Sibirica lasts through the summer. Mertensias may be prop. by seed if sown as soon as ripe, but with uneertainty by division. Although of secondary importance, Mertensias add variety to the border and are nearly always attractive to plantlovers.
A. Fls. trumpet. shaped, the open portion not prominently 5 lobed; filaments much longer than the anthers.
pulmonarioides,
1394. Virginian Cowslip or Blue Bells -Mertensia pulmonarioides ( $\times 1 / 3$ ). Roth. (M. Virgímica, DC.). Virginias Cowship. BLUE Bells. Fig. 1394. Very smooth and glabrous: lvs. obovate or oblong, or the lowest large, rounded and longstalked; veins conspicurns: Hs. generally more nording than shown in Fig. 1395. Spring. N. Y. to S. C. and Tenn., usually inhabiting low or moist grounds. B.M. 160 (as Pulmonaria). B.B.3:60. Gn. 23, p. 463, and 32, p. 173. V.3:181; 7:244; 11:180, and 12:140. Mn 4:33.

## AA. Fls. with the upper portion more bell-shaped and prominent spreading lobes: filaments shorter than the anthers or only a little longer.

B. Tube of corolla 2 or 3 times as long as the bell.
oblongifolia, G. Don. About 9 in. high, smooth: lvs. mostly oblong or spatulate-lanceolate; veins inconspicuous: calyx lobes acute. Western N. Amer.-Not easy to cultivate.

BB . Tube of corolla not turice as long as the bell.
c. Calyx-lobes obtuse, oblong.

Sibirica, G. Don. This and the next grow 1-5 ft. high and have broad, veiny lis., the upper ones very acute or acuminate. M. Sibirica is pale, smooth and somewhat glaucous: stem-lys. oblong- or lanceolate-orate. E. Siberia, Rockies and Sierras. Gn. 18:259.-Offered by some American dealers.

## cc. Calyx-lobes acute, lanceolate or linear.

paniculàta, G. Don. Greener than M. Sibirica, roughish and more or less pubescent: stem-lvs. orate to ob-long-lanceolate. Lake Superior and north, E. Asia. B.B. 3:60. B.M. 2680 and B.R. 2:146 (as Pulmonarit paniculata).
M. umbrátilis, Greenm., from Oregon, a recently described species, is offered by Horsford. Allied to M. Sibirica, but has larger corolla and longer lanceolate-acute calyx-lobes.
G. C. Woolson and W. M.

MESCAL BUTTON is Echinocactus Williamsii.
MESEMBRYANTHEMUM (Greek, midday flower; the flowers usually open in sunshine and close in shadow). Ficóider, or Mesembryacer. Fig Marigold. The trpe genus of a family of something more than 20 genera and about 500 species, widely distributed in dry tropical and subtropical regions. Of the other genera known to horticulturists, only Tetragonia and Sesurium are prominent, and even these are relatively unimportant. Mesembryanthemum itself includes some 300 species, nearly all of which are South African, according to Sonder "abounding throughout the arid plains and sands of the
whole country to the south of the Orange river and west of the Creat Fish river." Four species are described by Bentham in Flora Australiensis. Two (M. crystallinum and qquilaterole) are native in California. Others oceur in New Zealand, Canaries, Arabia and the Mediterranean region. They are suceulent plants, mostly herbs, but some are shrubs. They are allied botanically to the cactaceous series, although lacking the spines of those plants and bearing true leaves. Horticulturally, they are fanciers' plants, and are classed with "sucenlents." Very few are in the general trade, although a number are advertised in California and others are in botanic gardens. Usually the flowers open only in bright sunlight, but there are a few evening-blooming species. As with most suceulents, the species are not well understood botanically, owing largely to the difficulty in making herbarium specimens. Many of them are of odd and grotesque form. One species, M. crystallinum, is a common honse plant, being known as Ice Plant, but it is one of the least showy in flower. It is grown for the thick glistening foliage. It propagates readily by seed or division. The hest available account of the Mesembryanthemums is Sonder's elaboration of the S. African can species (293 numbers) in Flora Capensis, Vol. Il (1861-2)
L. H. B.

In Mesembryanthemum the leares are mostly opposite, entire or the margin somewhat spiny, fleshy and often subeylindrical or triangular in cross-outline; Howers perfect and regular, axillary and solitary or somewhat corymbose ; calyx gamosepalous, usually with 5 unequal lobes and the tube adnate to the ovary; petals very many, in one or more rows, usually linear, white, yellow or rose-color ; stamens very numerous : ovary most commonly b-loculed: fruit or capsule opening radially at the summit, hrgroscopic: seeds very numerous. small. "The capsules are tightly closed in dry weather and open naturally after a rain," writes Sonder. "If thrown in water until it becomes thoronghly soaked and then remored, an old capsule will open ont its capil. lary valves, radiating from a center like a star; and will close them again when dry. This experiment may be repeated several times without destroying their renarkable hygrometric property." The following species are S. African unless otherwise noted. Mostly perennials.

Mesembryanthemum, or Fig Marigold; is a large gems, and the majority of the species are natives of the Cape of Good Hope. They are found in their native habitats growing most luxuriantly on dry, barren, rocky places and on dry, sandy plains. They are succulent plants with thick, fleshy leaves, and are therefore able to stand the severe dronght they have to put up with in those arid places. Knowing that these plants delight in dry, arid situations, this gives the key to their cultivation. When grown in pots, care should be taken that the pots are well drained. A light, sandy loam, mixed with brick rubbish broken small, makes a good compost for them. In summer they can be placed out-of-doors in a slightly elevated and sunny position, where they will produce an abundance of their showy blossoms. On the approach of cold weather in the fall they may be placed in a cool greenhouse with a dry atmosphere and plenty of air. Very little water is needed during the dull months of winter. Some of the species make good window plants. M. co difolium, var. variegatum is largely grown for edgings for beds. M. pomeridiamom and $\dot{I}$. tricolmom are good showy annuals. Propagation is effected either by cuttings or by seeds. Cuttings should be dried in the sun for two or three days before they are inserted in sand.

Robert Cameron.
nvDEX.
acinaciforme, 10 . acutangulum, 22 . aquilaterile, 12. albinatum, 3 . angusturn, 4. anrantiacum, 14 . aureum, 15. barbatum, 31. blandum, 18. cordifolium, -7 crystallinum, :3. cultratum, 6.
densum, 33. depressum, 7 edule, 13. elegans, 28. felinum, 2. floribundum, 30 . geminatum, 2. glabrum, 26. inclaudens, 17 linguxforme, 5 . mutabile, 16. muricatum, 20
pomeridianum, 25 pustulatum, 8. rubrocinctuu, 11. spectabile, 19. stellatum, 32. stipulaceum, 23. subcompressum, 29 . tigrinum, 1. tricolor, 9. tricolorum, 9. variegatum, 2 -

Mesembryanthemum
A. Epapllosa: Plant uot bearing glitiering papille or projections (species 1-23).
B. Plant stemless or nearly 80 .
c: Lis. 4-6, semi-terete at the base, thickening and triquetrous at the apex.

1. tigrinum, Haw. Tiger's Jaw. Stemless or essentially so: Ivs. cordate-ovate, 2 i... or less long, glaucous green and marbled with white, the upturning edges wit' long, soft, ciliated teeth, the keel entire: fls. nearly sessile, large, yellow. B.R. $3: 260$.
2. felinum, Haw. Fig. 1395. Lvs. triquetrous, rhom-boid-lanceolate, 2 in . or less long, but narrower than in the last, somewhat glaucous, faintly dotted with white, the edges with 8 eiliate teeth; keel entire: tls. nearly sessile, yellow.
CC. Les. 4-C. triquetrous, thirkened from the base to the middle, but topering to the apex.
3. albinàtum, Haw. Stemless: lvs. eurred-triquetrous upwards, with a recurved mucro or spine at the apex, bearing elevated whitish dots: Hs. sessile, yellow.
ccc. Lis. half-cylindrical, of various sizes or forms on the same plant, in altermate pairs.
4. angústum, Haw. Nearly or quite stemless, small: lus. 2-ranked, linear, tongue-shaped, long, keeled at the apex, somewhat unequal, one of them straight-acute and the other hooked: Hls. nearly sessile, yellow.
cccc. Lis. tongue-shaped, with one margin thicker than the other, of tuo or more forms, 2-ranked. D. Peduncle less than 1 in . long.
5. linguæforme, Haw. Lvs. unequally tongue-shaped, detfexed and somewhat falcate, becoming depressed when old, flattish above obliquely attenuate: fis. yellow. Index Kewensis makes the M. Vingurforme of Haworth synonymous with M. oltiqutm. Willd., and uses Linnæus' M. linguiforme as a tenable name.

$$
\text { DD. Peduncle } 1 \text { in. or more long. }
$$

6. cultràtum, Salm-Dyck. Lrs. 2-ranked, thick, tongue-shaped and curved like a pruning-knife, blunt at the apex: fls. yellow, on a somewhat 3 -angled peduncle.
7. depréssum, Haw. Prostrate: lvs. narrow, tongueshaped, recurved-depressed, acute: fls. yellow, with petals somewhat recurved.
8. pustulatum, Haw. Lxs. 2-ranked. narrow, tongueshaped, long and ascending, blunt, bearing pustules near the base: Hs. yellow.

B8. Plant with an evident evect or prostrate stem.
c. Foliage lis. distinct or essentially so (not truly perfoliate nor comule).

## D. Stem or caudex prostrate.

E. Peduncle uith 2 bructs.
9. tricolòrum, Haw. (M. tricolor, Hort.). Stem 1 ft . long: lvs. cylindrical, acute, green, 2-3 in. long, minutely punctate: tis. yellow, blood-colored inside, the petals acute, the anthers brown. Gin. 24, p. 89.-There is a white-fld form.
10. acinaciforme, Linn. Stem articulate, $2-3 \mathrm{ft}$. long, the young growth compressed: 1 rs. opposite, $2-3$ in. long, simitar-shaped (curved and thicker on one edge), the keel dilated: Hs. purple, about 4 in. across, "the largest in the genus," the stigmas 14 : fr. size of a gooseberry, and eaten by Hottentots. - Handsome.
11. rubrocinctum, Haw., is probably a form of the last, differing in having a red line on the keels of the lvs. B.R. 20:1732.
12. æquilaterale, Haw. Differs from M. acinuciforme chiefly in thimer lvs. and smaller tis.: Hs.. fragrant, 11/2 in. across. Native to Australia, Tasmania, Chile and S. Calif.

## EE. Peduncle without bracts.

13. édule, Linn. Stem angular: lvs. opposite, 3-4 in. long, triquetrous, curved, the keel serrate: ths. large. yellow or purple, the stamens 8 : fr. edible, being one of the Hottentot Figs. Grows well on the sea cliffs in S. England. making long, hanging matses (Gn. 55, p. 235, with picture).

MESEMBRYANTHEMUM
1007
DD. Stem, or at least the branches, erect or prominently asceneling.
E. Fls, yellou, orange or copper-color.
14. aurantiacum, Haw. Stem becoming 1 ft . or more high, mueh branched, sometimes decumbent at base, the branches somewhat compressed: lvs. 1 in . or less long, smooth and glaucous, bluntly triquetrous: fls. orange, with petals $3 / 4 \mathrm{in}$. long and in about 3 series.
15. aùreum, Linn. Larger: lvs. $1 / 2-2$ in. long, eylindrically triquetrous, smooth and glacous, mucronate: fls. golden, $\underline{-2}$ in. across, the petals in many series. B.M. 262. - In this and the last, the lower lis. are often nearly connate at the base.
ee. Fls. rose-color or purplish.
F. Petals of two unlike kimis, -subulate and liwearlanceolate.
16. mutábile, Haw. With straw-color or reddish tortuous, erect hranches: Ivs. about $1 / 2 \mathrm{in}$. Iong, com-pressed-triquetrous, incurved, the keel entire, apex acute: fls. mostly solitary on an upwardly thickened pe. duncle, rose-color, the inner short petals pale yellow.

1395. Mesembryanthemum felinum ( $\times 1 / 3$ ).
17. inclaùdens, Haw. Distinguished from the last by scimitar-shaped los. and broater petals: Ivs. crowded, green. compressed-triquetrous and seimitar-shaped (thicker on one edge).
ff. Pelals of one kind.

1S. blándum, Haw. Two ft.. with numerous branches: lis. distant, 2 in. or less long. eompressed-triquetrons, hut with equal sides, narrow, minutely dotted, acutish: fis. 2 in. across, pale rose, the petals toothed. B.R. 7:582. L.B.C. 6:599.
19. spectábile, Haw. Stem prostrate, but branches ascending : lis. $2-3$ in. long, crowded, glancons, incurved and spreading, triquetrous, attenuate and mucronate: fls purplish: petals 1 in. long, the inner somewhat shorter. B.M. 396 .
20. muricàtum, Har. Stem suberect: plant bluish: lvs. less than $1 / 2 \mathrm{in}$. long, somewhat incurved, deltoid and toothed, very glaucous: Hs. small and fragrant, the petals aeute.

> cc. Foliage les. truiy connate or perfoliale. D. Les. triquetrous.
21. geminàtum, Haw. Dwarf: stem subshrubby, the branches procumbent: lvs. erect, glaucous white, the eartilaginous margins entire: ths. white (?).
22. acutángulum, Har. Stem shrubby, with rigid and erect branches: Irs. sheathing. $1 / 2 \mathrm{in}$. long and about as long as the internodes, glancons green, triquetrous, compressed near the apex, somewhat incurved: fls. white, small, in a panicle.
DD. Lis. elongated, subulate or somerhat cylindrierl.
23. stipuláceum, Linn. Dwarf, with ereet, decussate branches: lis. $11 / 2-2$ in. long. very slender, crowded, spreading and recurved, very glaucous: fls, in the dxils, mostly solitary, purylish.
aA. Papulosa: Mant usually hearing glittering papillur. vesicles or projections on stems and lis..hence the popular name Ice Plant (species 24-33).
B. Root annual or biennial (cult. as annuals).
C. Fls. white or rose-color, sessile or nearly so.
24. crystallinum, Linn. Ice Plant. Fig. 1396. A common plant in window-gardens and hanging baskets, and readily grown from seeds (which are offered by seedsmen), procumbent: lis. flat, fleshy, ovate or longspatulate, usually clasping, undulate, cosered with glistening dots or elevations: fls. small, whitish or va-


1396, Common lee•plant-Mesembryanthemum crystallinum. ( $\times 1 / 4$.)
rying to light rose-color. S. Afr., Greece, Canary Islands, S. Calif.-Grown for its glistening foliage. Fls. open in the sun,

> cc. Fls. yellow, long-peduncled.
25. pomeridiànum, Linn. Stem simple or forking, the branches ascending, hairy on branches, peduncles and calices: Ivs. lance-spatulate or spatulate, narrowed into a petiole, ciliate: 2 of the calyx loles longer than the petals; petals linear-lanceolate.
26. glabrum, Ait. Glabrous : Ivs. lance-spatulate, petiolate and dilated at base: Hs. straw-colored, darker at the eye; lobes of the calyx linear and unequal.
BB. Root perennial and the stem lecoming sometrhat uoody.

## c. Lis. flat, petiolate.

27. cordifolium, Linn. Stems $1-2 \mathrm{ft}$. diffuse, minutely papillose: lvs. opposite, 1 in . or less long and nearly as wide, cordate-ovate, somewhat papillose: fls. solitary, peduncled, purple, the petals short and linear. A var. variegatum is in cult., and is a good half-hardy trailing plant.
cc. Lis. compressed-triquetrous, not petiolate.

2S. elegans, Jacq. Shrubby, 6-12 in. or more tall, branchy, whitish or red: lvs. crowded, $1 / 2 \mathrm{in}$. long and very narrow, very glaucous, scabrous: ths. numerous, mostly panicled, pale red (or whitish), the petals $1 / 2 \mathrm{in}$. long.

## ccc. Lis. terete or nearly so. <br> D. Branches hispid or bristly.

29. subcompressum, Haw. Erect, 2 ft.: lrs. not crowded, $3 / 4 \mathrm{in}$. or less long, narrow, very blunt. greenish canescent, flattened-terete: fis, solitary, purplish; calyx lobes unequal.
30. floribúndum, Haw. Tortuous in growth, the branches not over 6 in . long, more or less decumbent: lvs. less than 1 in . long, very narrow, terete, curved, ohtuse, a little thicker towards the apex: fls. small, axillary, rose-color, the $\overline{5}$ styles exserted, the petals twice longer than the calyx.

## DD. Branches not hispid.

31. barbatum, Linn. A foot or more tall, diffuse and decumbent: lis. not crowded, $1 / 2 \mathrm{in}$. long. spreading, green and pellucid, semi-cylindrical, with 5 or 6 hairs at the end: fls. solitary, reddish, the petals entire and 2-3 times longer than the calyx.
32. stellatum, Mill. Threc or 4 in . high, fleshy and tufted: lvs. crowded, $1 / 3 \mathrm{in}$. long, glaucous, semi-cylindrical, seabrous, with many hairs at the apex: peduncles hairy: fls. reddish violet, the calyx campanulate, $1 / 4 \mathrm{in}$. long.
33. dénsum, Haw. Much like the last: lvs. longer, flattish above and convex beneath, ciliate also at the base: calyx longer: tls. reddish violet. R.H. 1869, p. 356.
Accessible pictures of Mesembryanthemums which are not mentoned in American lists, are as follows: M. Bolüsii, Hook, f. B. M. 66ith.-M. Brövnii, Hook, f. B. M. 6985.-M criuiflörum, Linn. R. H. 18.3., p. 122 (as M. cunelfolium) - $M$ ficifórme, Haw. G. C. 1I. 25:373.-M. minutum, Haw. R. M. 1369, p. $356-$ M. puginmifforme, Linn. R. H. 1857, p. 188.-M. riseuin, Willd. (in. 52. p. 439.-M. testiculútum, Jaeq. R. II. 1s69, p. 35 (as M. octophyllum).
L. H. B.

MESOSPINIDIUM (Greck compound; meaning obscure). Orchidacere. The plants cultivated as Mesospinidium are referred by some to the genus Cochlioda. They have the habit of a slender Odontoglossum, with sheathing lvs. at the base of the pseudobulbs. Fls. in racemes or panicles; sepals and petals sub-similar, expanded; labellum with 2 longitudinal ridges, adnate to the column, with rounded lateral lobes and a narrow middle lobe: colamn long or short: pollinia 2, seated on a rhomboid pedicel. These plants are evergreen coolhouse orchids, and thrive well in baskets of peat and moss with plenty of water. Cochlioda has about 5 species, of which the following is often cultivated:
sanguineum, Reichb. f. Pseudobulbs oval, 2-1vd., mottled: lvs. ligulate, sharp-pointed, shorter than the many-fld. drooping panicle: fls, numerous, small, virid rose; the lower sepals are partially united, ohlong; petals cuneate-ovate. Peruvian Andes. B.M. 5627.
M. vulcánicum. Reichb. f., is described as Cochlioda vuleanica (p.34), its proper name. Heinrich Hasselbring.

MESPILUS (Greek, substantive name). Rosicear. Mespil. Medlar. From Pyrus, with which this genus is united by British authors, Mespilus differs in bearing the flowers singly on leafy growths of the season (the fruits, like the quince, having no true detachable peduncles as pears and apples do), and in having the top of the ovaries not covered by the over-growing receptacle. There is but one species of true Mespilus, but some authors (e. g., Focke, in Engler \& Prantl's "Die Natürlichen Ptianzenfamilien") include some of the Cratagus species in the genus.

The common Medlar is Méspilus Germánica, Linn., native to Central Europe. To a considerable extent in parts of Europe it is grown for its acid fruits, but in this country it is very little known. It is perfectly hardy in central New York, and its cultivation requires no special treat ment or skill. It makes a twiggy, tough-woorled bush or small tree, 10 to 15 feet high, bearing large white blossoms late in May or early in June, after the leaves are full size. The foliage is soft and luxuriant; leaves lance-oblong or long-oblong, pubescent, simple,

1397. serrate. The fruit (Fig.

Medlar-Mespilus Germanica. Natural size. 1397) remains hard and austere until mellowed by frosts. With the freezing and the incipient decay, the fruit becomes brown and soft. It is usually picked after it is touched by frost and lad away on shelves or in drawers in a cool, dry room; the ripening process which follows is known as bletting. When finally soft ened, it is agreeable for eating from the hand, particularly for those who enjoy fruit-aeids. It also makes good preserves.

Medlars are easily raised from seeds, although seeds (like those of Cratagus) may not germinate the first year. (On these stocks the naraed varieties may be grafted or budded. Nedlars may also be worked on pear, thorn (Crataegus) or quince. The Duteh or Hol landish and the Nottingham are the leading varieties. The fruit of the former is often $21 / 2$ inches in diameter. The latter is much smaller, but is better in quality. There is also a seedless variety.
M. grandiflira, Smith (M. Smithii, DC.) is Cratagns grandiflora (see p. 397). Gin. 22, p. 163 and 34, p. 66 . L. H. B.

MESQUIT of Mexico is Prosopis juliflort (Leguminoser). A picture of a Mesquit forest is shown in $G$. $F$. 1:116.

METROSIDEROS (Greek, heart of iron; this and other genera of the Myrtle family are called ironwoots). Myrtacea. About 18 species of trees and shrubs, rurely climbers, mostly natives of the Pacitic islands from New Zealand to Hawaii. They belong to the class of Australasian shrubs whose chief beanty lies in their long red anthers. They are somewhat grown for a fancy Easter trade by florists, largely from imported stock. In Metrosideros the flowers are borne in dense 2- or 3-forked cymes, while in Callistemon they are borne in spikes. Leaves mostly opposite: petals 5, spreading; stamens 1 inch or more long, much longer than the petals. The species described below are coolhouse simubs, and are rarely grown outdors in the South.
Apparently the c mmonest of the Bottle Brushes in the trade is Callistemon lancoolutus, which is passing among florists as Metrosideros floribunda and M. robusta. In Fig. 320 (page 218) the plant is shown with apparently terminal intlorescence, but the branch is really terminated by some leaf buds, which develop later, as in Fig. 1398. The handsome plant figured in William Scott's "Florists' Manual," and to which he refers in the following paragraph as Metrosideros robusta, seems to be none other than Callistemon lunceolutus (see supplementary list).
W. M.

The plant known to the trade as Metrosideros robusta has been grown for many years as a cool greenhouse plant, but it is only withiin a dozen years that Europeans have been sending American forists the compact little busces that now arrive with our Azaleas. The city florist can perhaps dispose of one of these Bottle Brushes for every ten plants of Azulea Imlica. Plants in 6 -inch pots, well flowered, fised with a red ribbon and placed in a modern basket certainly look novel and attractive. The Belicians grow the young plants in peat, as they do most han wooded plants, but they do very well in good turfy loam with a fourth of leaf-mold. Cuttings of the young growth may be struck in oarly spring and planted out in good soil by the end of May, but it is cheaper to import stock. When the plants arrive soak the ball of roots, pot firmly and place them in a house of about $45^{\circ}$. Freshly imported plants cannot be forced in much heat, like Azaleas, or they will shed their flowers. Wateh them carefully, give them more heat gradually and they will bloom for Easter.
Plants unsold the first spring will be much more satisfactory the second year. By the end of April eut them back to within 1 or 9 inches of the old growth, put them in a good heat and keep them sy ringed. They will natake a bushy growth, with a good riamber of shoots. Early in June plunge them in a sunny spot outdoors, with the rim of the pot well covered, and he careful that they do not suffer for water in hot weather. In July, or earlier, mulch the pots with an inch of half-decomposed cow manure. Before frost remove the plants to a temp. of $45^{\circ}$, or warmer if bloom is desired before Easter.

William Scott.

## A. Flowers red.

robústa, A. Cunn. Lrs opposite, elliptic-orate, obtuse, veiny, with an extra nerve near each margin and parallel, glabrous: inflorescence a 3 -forked cyme: fls. red; ealys top-shaped. New Zeal. B. M. 4471 (erroneously as M. flovida).

AA. Flovers yellorish.
flórida. Sm . L心夊s. opposite, obovate-oblong, veiny, glabrous: inflorescence a thyrse: fls. yellowish; calyx top-
shaped, minutely silky. New Zeal. Not B.M. 4til, which is M, robustif. -The typical form is not advertised, but only var. variegata.
M. floribund is not alvertised in America, but stock imported hy an lhaca forist under this name from Belghm is Callistemon lanceolatus (Fig. 1398). M. tloribunda, Smith, is

1398. Metrosideros floribunda of the trade, but Callistemon lanceolatus of the botanists.
thought to have whitefls. Levs. opposite, petiolate, ovate-lanceolate: fls. in an umbel-like, decussately branched panicle. Anstralia.-M. sempérflorens, Lodd. =Callistemon lanceolatus.


MEXICAN TEA. Consult Chenopodium.

## MEYENIA. See Thunbergia.

MEZEREUM. See Daphue Mezereum.
MICHAUUXIA (André Michaux, 1i40-1802, French botanist, who lived for ten years in Anmerica and wrote much on American plants). Cempentlacece. About 4 species of rather coarse-habited hiennial herbs from the Orient, of which M. campanuloides is best known. It grows 4-5 ft. high, has irregularly toothed, bristly-hairy foliage and large, curions drooping Hs., white, tinged with purfle, wheel-shaped at first, later reflexed. The Hower is parted nearly to the base into $8-10$ oblong segments, $1 \frac{1}{2}-2 \mathrm{in}$. long. This plant is a striking subject for the back of a hardy border. It is easily prop. by seeds (which should be fresh), and likes a well-enriched soil of a light nature. An American dealer offers a climber with bell-shaperh Hs. under the name of M. campumulatu bat these plants are erect herbs.
Michauxia belongs, with Campanula and other genera of garden importance, to a group characterized by having the capsule closed at the top and opening laterally by little holes between the ribs or by small solitary valves. Michanxia is distinguished from the other generit of this group by the 8-10-parted corolla with narrow, spreading, finally reffexed lobes and an 8-10-celled ovary. Michauxias are erect plants, hispid or glabrous: lis. irregularly toothed or lebed, the stem-lvs. few: fls. terminal or strung along the branches, the top ones opening tirst, peduncled or nearly sessile, white or pale rose.
campanuloides, L'Hér. Les. lanceolate in ontline: npper ones sessile, acute, almost clasping: calyx with retlexed appendages shortur than the lubes; stamens 8. Asia Minor. B.M. 219.
J. B. Keller and W. M.

HCHELIA (P. A. Micheli. 1679-1737, Italian botanist). Magnolitcere. Twelve to 17 species of temperate and tropical trees, mostly natives of mis. of india, 2 of which are cult. in our southern states for their handsome mag. nolia like foliage and red or pale yellow, fragrant fls. Fls. mostly axillary, solitary; sepals and petals similar, 9-15 or more, in 3 or more series; stamens as in Magnolia; carpels in a loose spike; stigma decurvent: ovules 2 or more: fr. a long, loose or crowded spike of leathery carpels, which split down the back: seeds like Magnolia.

## A. Fls. pale yellou.

Champaca, Linn. A tall tree native of the Himalayas: Ivs. ovate-lanceolate, tapering to a long point. $8-10 \mathrm{in}$. long, $21 / 2-+$ in. broad, shining above. pale and glabrous or puberulous benenth; petiole $1 \frac{1}{2} \mathrm{in}$. long: Hl .2 in. across; sepals oblong, acute; petals linear: fr. 3-4 in. long.

## AA. Flowers red

fuschta, Blume. Lvs. elliptic-lanceolate: none of the sepals or petals linear. China. B.M. 1008 (Maynolia fisecuta).
M. B. Coclston.

Michelin fuscrta is one of the most popular garden shrubs in the southern states. It is known as the Brownflowered or Banana shrub; also Magnolids fuscata. It is shrubby in habit, attains a height of 10 to 15 ft . and is perfectly hardy in the midile and lower South. The shining young twigs and petioles are covered with brown tomentum. The fls. are $1-1 \frac{1}{2} \mathrm{in}$. across, brownish yellow, edged with light carmine, exhaling a strong banana fragrance. The flowering period extends from the end of April until June. Prop. by seeds as stated for Magnolia grumbliflom, but as seed is somewhat scarce, the better method is from ripened wood cuttines, under g'ass and with bottom heat. The cuttings should have lor2 Irs. left, and be eut before very cold weather. It is a very desirable conservatory shrub in northern sections.

## P. J. Berckmans.

MICHIGAN HORTICULTURE. Fig. 1399. The location of the lower peninsula of Michiman is a most fortunate one for the pursuit of horticulture. Flanked on either side by a great body of water, the climnte is modified materially both summer and winter. thus affecting the kind and quality of products that can be successfully grown. Peaches are regularly ripened on a parallel that forms the northern boundary of Vermont; eren figs have been ripened in the open air in the southwestern corner of the state. This modification of elimate affects not only temperature, but hamidity: and on the side of prevailing winds during the heated season there is greater immunity from drought as a result of the moisture-laten atmosphere.

Michigan is corered with drift, and the soil in the western portion is, in considerable measure, open and porous in character, but having as a constituent properties admirably suited to the growth of trees. The kind of timber growing naturally upon the soil of western Michigan has deceived many people with regard to the character of the soil. Elsewhere heary timber has usually grown on clay loam, but some of our light, sandy soils were covered originally by a heary growth of heech, maple and basswood. This peculiar adaptation of western Michigan to the growth of timber trees has been a strong factor in favor of orcharding, and some of the finest orchards are upon the lighter lands.

There was a wide range of wild ints indigenous to Michigan. and the early seeds of apples and pears brought by the French missionaries prodnced trees of wonderful vigor and fruitfulness. Many of these trees are still standing in the vicinity of the old missionary stations. For a good many years after the early settlements in the state, fruit and garden products were raised simply as an accompaniment of the farm home or the town garden. Market horticulture has followed the rapid growth of cities and the development of modern methods of transportation.

The apple-growing region envers the southern part, extending northward and cor ang what is known as the "Thumb" (south of Saginaw bay), reaching as far north on the Huron shore as the Straits of Mackinac, and on the western, with a somewhat wider belt, to and including the Grand Traverse region. This same area
is well adapted to the growth of the pear, cherry, and most of the small fruits. Peach-growing for profit is followed in a rather narrow belt along the west shore of Miehigan, technically lenominated the "peach belt," and upon reliefs of ground over a much wider area, extend ing even twenty to forty miles toward the interior from Lake Michigan; the northern terminus of this belt is (irand Traverse bay. At tie date of this writing (1900) the most promising apple region lies in the middle-western part of the lower peninsiala. The aggregate acreage devoted to apple-growing in the 39 apple counties is 202,587 ; and the acreage of peaches in the 10 counties in which this fruit is grown commercially is 39,051 .

In the evolution of commercial horticulture in Michigan, specialties have been developed and we find the peach a leading product wherever it can be successfully grown. To illustrate the rapid increase of peach-growing in the state, it is enough to say that the average number of trees planted in the state annually, between 1890 and 1900 , was 700,000 . The shipments from the western part of the state are uniformly large, and the aggregates are often. in productive years, enormous. The color of the fruit is not as high as we find it in southern latitudes, but the quality is superior. From the lake ports a large proportion of the peach crop is shipped to Milwankee and Chicago for distribution, but from the interior places of shipment, peaches are distributed in every direction by rail. The development of the small fruit interest for market has been in the region of large cities and lake ports. From the cities at the mouth of the St. Joseph river, in the height of the small fruit season, it is not rare to have the shipments ageregate 20.000 bushels a day. The grape industry is widely seattered over the southern half of the lower peninsula. The country bordering on Lake Erie, from the character of the soil, has produced the finest quality of fruit. In recent years a great impetus has been given to this industry in the vicinity of Lawton. Van Buren county from which point hundreds of carloads are shipped annually. Plums are grown over a large portion of the southern peninsulac. and to some extent, in the northern peninsula, but the fruit reaches its greatest perfection in Oceana aud Mason counties.
The wide range of horticultural products grown in this state, and the wonderful development of certain specialties, in localities suited to them, have been due to the admirable method of disseminating exact and valuable information upon horticultural subjects in every corner of the state. This has been accomplished by organization. The state horticultural society, with its numerous branches: the organizations devoted to commereial horticulture: granges, farmers' clubs and institutes, touching in their work, according to locality, the various brameles of horticulture, have all been valuab? means for disseminating information. The Fruit Catalogue of the Michigan Horticultural Society has been a text-book for every planter; this, in recent years, has been supplemented by ammirable bulletins from the horticultural branch of the state experiment station; and the men who have entered horticulture as a profession. becoming leaders. have been singularly public-spirited and well equipped. Michigan fruit-growers have never been guilty of neglecting to exhibit their products in attractive ways at county, state, national, and even international expositions. thus creating a demand for in formation which could be readily supplied in the form of bulletins, reports, circulars, etc., by their progressive organizations.
Certain crops that were in early days considered to be simply garden products have developed to such an extent that now they are nield crops; this is notably true of celery, chicory, mint, potatoes, cabbages, tomatoes. cucumbers and melons. The quick and satisfactory communication from the lake ports with the large cities of Illinois and Wisconsin has stimulated the culture of the muskmelon and tomato to such an extent that they are not now reckoned as garden crops. Kalamazoo celery is shipped over a large area of the civilized world. The soil seems admirably adapted tu the production of a high grade of product. and the method of growing and handling has reached far toward perfection. It is true, also, that other points in the state are developing as celery centers, and giving their names to the exported
product; this applies to Grand Haven Muskegon, Tecumseh, Ypsilanti and lonia.

The lettuce industry, eonducted unler glass, has reached an extraordinary development in the vicinity of Grand Rapids, a variety having originated there ad mirably snited to the purpose, and at this writing half a million feet of glass are devoted to this crop. Recently, the plaster cases at Grand Rapids have been found to be suited to the growth of mushrooms. and this is a growing horticultural industry. The glass structures devoted to lettuce are used for the growth of cucumbers, to supplement the letuce crop. thas rendering it possible to utilize the glass for nine or ten months in the year. Parsley has also become a remunerative crop under glass. and the shipments to the large northern cities are rupidly increasing.

The tlower trade is contined al most entirely to glass structures. and depends upon the wholesale market to take care of the output. Chicago seems to absorb everything of this kind in the western part of the state, while Detroit draws its supplies from the southeast portion. The carnation is the leading flower for export. and the soil of certain localities in western Michigan seems especially adapted to securing perfeetion in the flowers. Roses and violets in aggregate shipments follow the carnation clocely.

The upper peninsula, as yet, is somewhat of an unknown quantity in horticulture, and still there are indications that in some localities the hardier fruits may be grown with the greatest success; from the market point of view, the small fruits, coming into the large centers late in the season, bring a remunerative price and extend the season. It is predicted by thoughtiful horticulturists that because of the rapidity of development and marvelous growth in the short nortoern season, the upper peninsula will evolve a remarkably remunerative horticulture, peculiar to itself. The selection of varieties of the more perishable fruits, like berries and peaches. is modified largely by the fact that it is desirable to avoid competition with the flood of fruits from the South, so that the later ripening varieties are generally most popular with the market growers.
One of the important factors in fruit-growing along the shore of Lake Michigan is the tremendoas volume of resort business. The whole shore, from St. Josfph to Mackinac, is dotted with resorts, and this population demands plenty of fruit of good quality, making the home market of no mean proportions. Nature designed Michigan for horticultural pursuits, and the progress of population has hrought the right spirit into the eulture of orchard and gariden products. Everything indicates a most promising future for Miehigan horticulture.

Charles W. Garfield.
The soil and climate of Michigan are well adapted to the production of high-grade seeds of many of our garden vegetables, and large areas are devoted to their cultivation. In 1899 a single firm of seedsmen had contracts with over 1.400 Michisan farmers for growing garden seeds of various kinds, and in 1900 contracts have been let to grow within the state at least 15,000 acres of garden varieties of peas, 10,000 acres of garden beans, 2,000 acres of sweet corn, 1,000 of encumbers, 1,000 of melons, 000 of tomatoes, and smaller areas of onions, radishes, cabbage. etc., these crops being grown for seed alone. The seedsman contracts with farmers who are good cultivators and have good farms and build ings, to plant a certain area with choice selected send fur-

1399. Michigan, showing horticultural areas.
nished by the seedsman, who also does nll necessary expert work in the roguing and cleaning of the crop and agrees to pay a specitied price for all the seed produced. The seeds produced hitherto have proved of such exceptionally good quality that most American seedsmen are coming to depend largely upon this state for their supply of many sorts, and there is a steadily growing demand for Michigan seed for export. W. W. Tracy.

MICONIA (D. Micon. Spanish botanist). Melastomiccur. Cognians, the latest monographer (DC. Monogr. phaner. 7) admits 518 species to this genus, inclueing the plants known to the trade as Cyanophyllums. The most popular of these greenhouse plants, Cyanophyllum magnificum, is placed amongst the species which are imperfectly known and is not deseribed in the monograph. It was first illustrated and described as long ago as 1859. Miconia is a tropical American genus of trees and shrubs, with large and showy opposite or verticillate, strongly veined lis. Petals $4-8$, rounded at the apex, spreading or reflexed. Stamens variable in number and shape, but usually 8-16, the anthers polymorphous. Fr. a dry or leathery berry, 2-5-loculed, and few- or many-seeded. Fls. relatively small, usually corymbose or paniculate, white, rose, purple or yellow.

The Miconias of gardeners are conservatory or warmhouse subjects, grown for their large and striking foliare. They belong to the old gemas Cyanophyllum, in which the anthers are subulate and incursed and with a single pore. the ths. large and the calyx oblong or campanulate and truncate or dentate. They propagate by cuttings of the firm wood over bottom heat. The plants should be sereened from the direct glare of the sun, and be given abundance of water. Use a fibrous soil. Culture similar to that of Medinilla.

Since the plants are known to gardeners mostly for their foliage, it is probable that some of the trade species are referred to wrong genera. Flowers are not always known when the plants are named. Some of the names have no standing in botanical literature.
magnifica, Triana (Cyanophy!lum magnificum, (iroml.). Fig. 1400. Reaching several feet in height as grown under glass (probab!y a tree in its native place),
robust: Ivs. very large (becoming 2-21/ ft. long), broadovate and wary-edged, arched, rugose, upper surface lustrons green, lower surface red, the very prominent veins white or light-colored: Hs. small, panicled. Mex. R.H. 1855, p. 359.-Discovered by Ghiesbrecht and first shown by Linden in 1857. One of the best and most striking of all conservatory foliage subjects. Voss (Blumengärtnerei) revives for this species the genus Tamonea and calls it $T$. mugnificu, Voss. M. velưtina, Lind. \& Rod. (I.H. $41: 21$ ), of Brazil, is perhaps a form of this species. Its lys. are not arched and the colors are more bronzy.
spectśnda, Rod. (Cyanophýllum spectindum, Niehols.). Les. oval, $1 \frac{1}{2} \mathrm{ft}$. or less long, $6-\overline{7}$ ir. broad in the middle, the upper surface dark lustrous green, the under side greenish red, the midrib prominent and gray. Brazil.


Known to the trade as Cyanophyllum magnificum.
Assámica (Cyamophỵllum Assámicum. Hort.) ras once offered by Sanl. Said to be "a very beautiful foliage plant, with :- - mone foliage." Probably a smaller type of M. spectanall, but very pretty when the lvs. are expanding. Said by Nicholson and Mottet to be much inferior to the above.
L. H. B.

MICROKENTIA (Greek, mimute Keatia). Palmurce. Here may belong the plant known to the trade as Kentia grucilis. Microkentia is a genus of 6 species of palms from New Caledonia. They are unarmed, with slender, bamboo-like, ringed trunks. The leaf segments are long-sword-shaped and distinct, or the upper ones grown together into a broad s-cut blade. The fruits in this genus are amongst the smallest in the palm family. The Hs. also are minute. The true Kentias, of whieh porhaps none is cultivated, have larger fls. and fruits, the former white, the lattor vermilion. The anthers are fixed at the base in Kentia, but dorsifixed and versatile in Microkentia. Mierokentia is nearer Clinostigma and Cyphosperma, but in these the leaf segments arc irregulady bitten off at the apex. Kentiug gacilis. Brong. \& Gris. $=$ Microkentia Irucilis, Benth. \& Hook. It is possible that the Kentia gracilis of tise trade is $\boldsymbol{K}$ eniopsis divaricata (which see).

MICROLEPIA (Greek, a small scare: alluding to th. 3 indusium). Polypodiacé. A genus of graeeful greenhouse ferns, allied to Davallia, but haring the shallow, half-cup-shaped, membranous indusium attached to the
sides as weil as the base; the stalks are also continuous with the rootstock, and not joined to them, as in the true Iavallias. Twenty or more species are known. For cultivation, see Davallia.

## A. Les. once-pinnate.

mar, alis, Baker (M. scùbra. Hort.). Les. rising from a creeping routstock, $18-24 \mathrm{in}$. long, $9-15 \mathrm{in}$. wide, with linear pinne, which are cut about half way to the rachis into bluntish, oblong lobes. Ceylon to China.

## B. Le's. tri-qualripinnatifid.

platyphylla, Don. Lss. 3-4 ft. long. on stout stalks from a stont, scaly rootstock. tripinnatifid; ultimate divisions broad, blintish, toothed, oblong, deltojd; sori 2-12 to a segment, one in each woth. India to Japan.
hirta, Kaulf. Lrs. 3-6 ft. long, on stout stalks, triquadripinnatifid; ultimate divisions oblong, broadly toothed; rachises hairy or pubescent: sori $2-20$ to a segment, 1 or more together at the base of the teeth. India and Polynesia. Var. cristata is also offered by the trade. F. 1878, p. 59. Gn.31, p. 428. F. R. 1:769.-M. cristata, Hort., presumably belongs here.
M. hispida, Hort. $=$ ?
L. M. UNDERWOOD.

MICROMERIA (mikros, small, meris, a part: smallHowered). Labiatu. This genus comprises about 60 species of herbs and subshrubs, generally distributed in tropical and temperate regions, especially in the Mediterranean countries. Lvs. usually small, entire or toothed: whorls axillary or in terminal spikes: fis. small; calyx 13 -nerved, 5 -toothed or 2 -lipped. corolla 2 -lipped, npper lip erect, flattish, entire or notched, lower spreading, 5-lobed; stamens 4.

## A. Fls. 1-i in th: axils.

Doùglasii, Benth. Yerba Bcena. Perennial: stems long, slender, trailing and ereeping. with sweet-scented round or oval lrs.. 1 in. or less across: fis. purplish, mostly solitary in the axils, on long, 2 -hracted pedicels. Woodlands, from Vancouver's Is. to S. Calif. Sandy suil.-Offered by E. Gillett, 1881.

> As. Fls. numerous in the axils.
rupéstris, Benth. A dense, low-growing perennial plant, woody at the base, with prostrate stems, which turn up at the extremities. giving a heath-like effect when in bloom. Lvs. have the odor and taste of pennyroyal: Hs. abundant. small, white, with lavender spots on the inner side of corolla lobes, borne for several inches along the stems. Prop. from cuttings and seeds. J. N. Gerard writes that it blooms from July until heary frosts, and proves very satisfactory for rockery and informal border. Not advertised in American catalogues, but is in cult. by amateurs. S. Eu. M. B. Coulston.

MICROSTYLIS (Greek, small styie). Orchidurest. About a dozen species of this genus are in cultivation a the Old World. No species have found their way into the American trade. They are herbs of terrestrial habit, cult. for their richly colored lrs. The species in cult. are all from tropical countries, and require a close, damp house or, better, a Wardian case or bell-jar, within which the air may be kept moist enough for their requirements. The lrs. are more or less broadly ovate, rather succulent, with sheathing bases. They are mostly beautifully colored. The fts. are borne in terminal racemes, like those of Goodyera.

Heinkich Hasselbring.
The Myerostylis are deciduous chids. They grow well in the warm end of the cattleya department, or better still treated like thunias or calanthes, - a rather warm, moist atmosphere. When growing in spring, reducing the same toward late summer as they begin to lose their foliage, and eventually re ing them quite dry in a temperature of about $60^{\circ} \stackrel{\mathrm{F}}{\mathrm{F}}$. during winter. They will probably suffer in a Wardian case or bell-glass. They certainly will after growth is completed, if not at all times.
R. M. Grey.

MIGNONETTE (Fig. 1401) is a universal farorite. Though there are many fragrant flowers of easy cultivation that exceed the Mignonette in besuty, it is prob-
able that no other flower is so generally grown for fragrance. No home garden is complete without some Mignonette. It needs a cool soil, only moderately rich, shade part of the day, and careful attention to cutting the flower-stalks before the seeds are ripe. It grows 1-2 ft. high, and is treated as a half-hardy annual. If a sowing be made in late April, followed by a second sowing in early July, the season may be extended until severe frosts. Those who wish to have home-grown Mignonette in the window during winter may sow seeds in pots late in summer. Few flowers will prove as disappointing if the treatment it needs is omitted.

Years ago Mignonette was one of the few fashionable flowers, Every florist grew a little. With the rise of florists' roses, carnations, violets and chrysanthemums the Mignonette lost some of its relative importance, but within recent years a new era has opened for it. It is now a highly specialized crop, being little grown by general florists, but grown on a large scale by a few specialists.
For the botanical status of Mignonette, see Reseda.
C. E. Huns.

Wholesaliz Celtivation of Mignonefte. - Owing to improved methods of cultivation practiced in recent years, Mignonette has become a staple in the cosmopolitan markets. A few years ago growers contented themselves with little attention to the plant, letting it take care of itself after planting the seed in a row along the side of rose beds or benches. Now, however, certain growers having made its cutting and seed a specialty, the result has been the production of improved strains finding such favor that the old, careless methods are abandoned. As yet, well-grown plants in pots are not offered to the public, but the indications are that before long they will take their place as favorite Christmas and Easter plants, for which they are well fitted, since they are useful house plants in their keeping and odoriferous qualities.
Mignonettes in beds or benches for winter-flowering will succeed in almost any soil, but the best is a good. turfy loam, taken from an old pasture plowed as early as possible in spring after the grass begins to grow nicely. In the preparation of this soil, the pasture should be plowed about 4 inches deep and the earth heaped up immediately after plowing. When heaping. a layer of soil should first be made, then a laver of manure, and so on until the heap is completed, the top rounded off a little so as to throw off the surplus water of heary rains. One load of good cow manure to six of soil would be about the right proportion.
If the plant is grown in beds, eight inches of soil will be sufficient, and the beds should rise slightly from the sides to allow for settling. The rough parts should be raked off, and a board lait on the soil and tramped upon until the soil is firmed evenly. Rake it gatain to roughen the surface, mark out rows lengthwise a foot apart, with cross rows at the same distance. Sow the seeds in the corners of the square thus made, cover very lightly, and when the sowing is completed, give a light watering with a fine rose watering-pot to settle the soil around the seeds. After the plants are up and growing and have made their second leaves, thin out to one plant, learing the strongest one. Care should be taken at this time not to over-water, as it is preferable to leave the soil rather dry than wet. As soon as the plants are large enough, stake them all and tie them loosely to prevent them from falling out.
If the seed is sown in July for a November crop, the ventilators must be kept open day and night so as to admit all the air possible, in order to keep the plants stocky and short-jointed. Temporary shading in the middle of the day when the sun is hot is very necessary.
After the plants begin to show the flower heads, all the side shoots should be removed from around the heads down to the stem. Leave three or four of the strong bottom side shoots to come on for a second crop, and so on as the crop matures. Always have another crop coming on to take the place of the one that was cut. By keeping the plants neatly staked and tied there should be a continuous crop from November to May. When the plants have reached a good size, watering is of the ntmost importance and should be done in the mornings and only on bright days, so that the
foliage may be dry before night; for if the water lies on the foliage for twenty-four hours the leaves will become spotted and a fungous growth started, to the ruin of the plant. A night temperature of $45^{\circ}$, with a ri e of $10^{\circ}$ or $15^{\circ}$ in the day, suits the plant very well. Mignonette will succeed in almost any kind of a glass structure, but, of course, the better the house the finer the product.
The cultivation of Mignonettes in pots requires much attention, involving careful watering, staking and training of the plants into the shape remiled. All this takes time, but good specimen plants in pots of 8 inches, with $15-20$ heads of flowers to a plant, will repay the grower for all the attention bestowed. The best method for this kind of growing is to fill up 2 -inch pots with tinely sitted soil from the compost heap described before, then add one-third leaf-soil run through a sieve, with a little sand to make it porous, and then, pressing the soil firm, make a little hole with the finger in the center of the pot, drop in 2 or 3 seeds, nover lightly and water with a fine rose to settle the soii around the seed. After the plants are up thin out to one plant to a pot, leaving the strongest one. Keep all the plants as near the glass as possible to prevent them from becoming drawn. Be careful not to let the plants get dry at this time. If they receive a check at this or any time for want of water they get hard and will never make good plants afterwards.


## 1401. Mignonette-Allen's Defiance.

When the plants have filled the pots with roots shift to 4 -inch pots, using a little rougher soil. Never allow the plants to become pot-bound. Up to this time they will not require stakes if kept near the glass with plenty of ventilation and are carefully watered. When the roung roots begin to show through the soil at the sides of the pot shift to 8 -inch pots, using good rough soil. Drainage must be provided at the bottom of the pots-broken bricks will answer the purpose. Cover this drainage

## MILKWORT

material with a little rough stuff from the potting bench and pot the plants firmly, leaving the space of an inch at the top of the pot for water. Watering should be done sparingly until the plants fill the pots with roots. By this time the plants should be 4 inches tall, and the center shoot should now be pinched out to induce enough of the side shoots to form the foundation of the plants. The center shoot will produce 2 or 3 side shoots helow where it was pinched, and with 6 or 7 bottom side shoots will form the basis of the plant. Rub off any other side shoots as they appear. After the plants have grown to a height of 6 or 7 inches they must be staked and tied; a stake in the center for the center shoot and one for the side shoots will be sufficient. After the plants have attained a height of 10 or 12 inches, and before the flower heads begin to show, pinch the center out of all the shoots with the finger and thumb at the same time so as to induce the plant to flower all at one time, for if pinched two or three weeks apart the flower heads will come irregularly and the phants will not look so well. As soon as the flower heads hegin to show the plants should have a little weak liquid manure twice a week and as they develop and the roots get crowded in the pots they will require more feeding. Put about a bushel of sheep manure in a bag and drop it in a barrel of water for two or three days before using. This makes a very good liquid food for the plants; also chicken manure treated the same way but used in lesser quantity-about a half a bushel to 50 gallons of water wili be about right. If the plants have been carefully watered and attention paid to staking and training, the grower will be amply rewarded with nier, specimen plants having from 12 to 20 flower spikes to a plant.

Seed-saving. - Plants wanted for seed should be care fully selected. Only the very best plants with clean, heaithy foliage and large bracts or flower heads, with the florets set close together, are the ideal plants for seed. If the plants are growing in a house or near other plants that are not so good they should be covered with mosquito netting to prerent the bees from cross-fertilizing them. After the heads have set, say from $20-25$ pods, the center should be pinched out, for if allowed to grow and set more the seed will be of an inferior quality. When the seed begins to turn brown in the seed-pods the pods should be picked off and laid in an airy room for a day or two on paper, so that none may be lost. After the pods are dry, so that the seed will rubout clean, the seed should be cleaned, put in a package and placed in tin boxes to keep from mice, as these pests are rery fond of it.

Robert McMillen.

## MIGNONETTE VINE. See Boussingaultia.

MIKANIA (Prof. J. G. Mikan, of Prague, or his son and successor. J. C. Mikan, who collected in Brazil). Compósitor. This includes M. scandeus, the Climbing Hempweed, a common native weed, but a pretty one. It has distinct foliage, the lvs. being somewhat heartshaped or halberd-shaped, and long-acuminate. The fls. are very small, .amerous, pinkish, and borne in dense clusters 1-2 in. acress. These clusters, os in all the species, are composed of many small heads, cach containing 4 ths., surrounded by an involucre of 4 bracts. The genus contains about 60 species, mostly found in the warmer parts of America. Shrubs or herhs, the latter twining, rarely erect: lvs opposite, usually stalked: heads spicate, racemose, corymbose or panieled: As. mostly white or yellowish. Nearest to Eupatorium, but the later has an indefinite number of involucral bracts instead of 4 , and contains erect plants.
scandens, Willd. Chmbing Hempweed. Described תhove. Moist ground, New Eng. to Fla, and Tex. G.W.F. 34. - Very rarely offered by dealers in native plants.

Sanderi, Hort. Hothonse climbers, with rariegated foliage. Int. 1899 by Sander \& Co., who say the lvs. are richly embellished with dark velvet-purple patches; reins of mature lrs. white. The lrs. are about 6 in . long, 5 in. wide, boldly toothed.
M. violàcea. offered by Pitcher \& Manda in 1805, is little known.

MILDEW. This name is given to a group of fungous diseases which attack leares, shoots, flowers and fruits. The true or powdery Mildews (Erysiphea) appear as a thin, white, powdery coating on the surface of the plants. The disease is usually accompanied by distortion and dwarfing, and often death of the affected parts. In some cases, howerer, as in the maple Mildew, the affected areas of the leaves retain their chlorophyl and remain green in the autumn long after the rest of the leaf is dead and yellow. The mycelium is always superticial, forming spots or more or less extended areas on the affected organs. The injury is done by numerous haustoria, which penetrate the cells of the host and absorb nutriment for the mycelium, and also serve as organs of attachment. During the summer Mildews are propesated hy 1 -celled spores, many of which are cut off in succession from erect, simple branches all over the diseased surface. Otner spores, by means of which the fungus passes through the winter, are produced in sacs inclosed within hollow spherical receptacles, called perithecia. These appear as minute black or dark brown specks over the diseased area. They are produced in the autumn, and remain on the fallen leaves: but the spores within them do not ripen until the following spring, when ther are liberated by the decay of the perithecia.
In the United States, considerab, ie injury is caused by the following species: The rose Mildew, Spherothect pamosa, on roses under glass; Erysiphe gramimis on wheat and other grasses; the vine Mildew, Uncimula spirulis, producing the powdery Mildew of grapes; Podosphere Oxyctenthe on apples and pears; and Spherothect Catagnei, the hop Mildew. The most snccessful mode of coi ${ }^{1 \times}$ atting the Nildews is by dusting with sulfur or spraying with Bordeallx mixture. Either of these fungricides kills the mycelium and spores of the fungus.

The downy Mildews or false Mildews belong to the Peronosporea, a group of fungi widely separated from the true Mildews. The myceliam is parasitic within the tissues of the host, cilv the fruiting branches appear ing at the surface (see Fig. 879). The fruiting branches have a characteristic form and method of ramification for each genus of the group. The spores, when they lodge on new host-plants, either produce an infecting thread directly,or, in most cases. the contents of the spore is discharged in the form of swarm-spores, which swim about for a time and finally come to rest and produce the infecting mycelium. Resting spores are produced sexually in this group within the tissues of the host.
This family contains about ten genera, of which the following are most commonly known: Phytophthora infestans. the potato blight: Phesmopara riticola, the downy Mildew of grapes; Bremid Latctuct, often causing great damage to lettuce in forcing-houses: Pythium $D e$ beryourm, causing damping-off of seedling cucumbers and rarious other seedling plants; and Cystopus catdilus. the common white rust of crucifers. Modes of combatting these diseases are set forth for each specific case in the experiment station literature of the various states. See, also, Diseases.

Heinrich Hasselbring.

## MILFOIL, See Achillea.

MILIUM (ancient Latin name of Millet, which, however, belongs to a different genus). Gremíue. Millet Grass. Contains $\bar{j}-1 ;$ species distributed through temperate Europe and Asia, one of which is also found in Nortis America, and is occasionally cult. for ormament. Spikelets 1 -fll., in diffuse panicles. Empty glumes awnless, the flowering glume coriaceous, as in l'anicum. Farmer's Bulletin, No. 101, issmed by the [V. S. Dept. of Agric. is devoted to Millets (but not to Milium).
effussum, Linn. A smooth perennial, 3-6 ft. higin: Irs. broad and thin: panicle 6-9 in. long.

MILK PEA. Gulactia.
MILK VETCH, Astragalus.
MILKWEED. Asclepias in general; A. Cornuti in particular.

MILKWORT. Polyyula.

MiLLA (J. Milla was head gardener at the Court of Madrid). Lilidicea. Bentham \& Hooker restrict the genus Milla (as Caranilles, its author, intended) to one species, M. biflora. From Brodiæa the genus differs in the fact that the pedicels are not jointed and the perianth segments are always 3 -nerved. Milla and Brodiæa are native to the northern half of the western hemisphere. In South America is the genus Triteleia, which is by some referred to Milla, by others to Brodiaa, and by still others kept distinct. There is one Triteleia ! $T$. uniflora) in common cultivation. In his monograph (Journ. Linn. Soc. 11, p. 3i8), Baker refers the Triteleias to Milla, and this disposition is followed by Index Kewensis, but in a later account (G.C. III. 20, p. 459) he refers them to Brodiæa. Watson (Proc. Amer. Acad. Arts. \& Sci. 9, p. 240) restricts Milla to one species. The North American plants which have been referred to Triteleia are perhaps best treated is Brodizas, and they are so considered in the account of that genus in Vol. I of this work. The South American Triteleias are described under that genus in Vol. IV.
Milla has a salverform perianth, with 3 -nerved segments which are separate nearly to the base, 6 nearly ses iile stamens in one row, sessile, oblong-obovate capsule. M. biflòra. Cav., has a scape 6-18 in. high from a small coated bulb, bearing 1-5 (usually 2 ) star-like, waxy white, fragrant fls. 2-21/2 in. across, with oblong-lanceolate segments: lvs. rough, nearly terete. S. Ariz. and New Mex. to central Mex. 13.R. 18:1555. F.S. 14:1459. Gn. 24, p. 155.

Milla liflora is one of the best of the small bulths. It known as Mexican Star, Mexican Star of Bethlehem, Frost Flower, and Floating Star. The fls. are of a charming waxy consistence, and are borne on long stenis. They are excellent for cutting, and last several dass. Planted in the bor der early in spring, they soon throw up their fls. and lvs. They should be allowed to remain until September or October, when they may be taken up and stored for the winter. Our gardeners know Milla mostly as a pot bulb for flowering under glass late in winter or early in spring. It blooms readily in the conditions given to Freesias. Several bulbs should be placed in a pot, although several stalks will spring from one bulb.
L. H. B.

MILLER, DUSTY. See Lychnis Coronaria.
MILLETS are important agricultural grasses. The true Millet or Broomcorn Millet of Europe is Panicum milaceum. The common Millets of the United States, the Foxtail Millets, are forms of Setaria Italica. African Millet, also called Black, Chinese, I- dian. and improperly Pearl Millet, is Sorghum vulgare. The name African Millet is sometimes applied to Eleusine Corrciun. Barnyard or Japanese Millet is Pinicum Crusgalli. Pearl Millet is Pennisetum typhoideum.
A. S. Hitchcock.

MILLETTIA (named in honor of Dr. Millett, of Canton, China). Leguminòse. About 40 species of Old World tropical trees and large shrubs, usually elimbers; rliffers from the Japanese and North American genus Wistaria only in the hard, usually flat and thick pod not opening so readily. Lrs. large, odd-pinnate; lfts. opposite, stipellate: fls. show, in axillary racemes often fascicled, simple or paniculate and terminal, white, purple or reddish.

## A. Fls. purple.

Caffra, Meissn. Irow-wood. A South African tree, $20-30 \mathrm{ft}$. high, with very hard, close-grained, brown wood and dark, rough, rugulose bark. Lus. on channeled petioles $6-8 \mathrm{in}$. long; Ifts. lanceolate-oblong, acute, in $5-6$ pairs, $2-21 / 2 \mathrm{in}$. long, 1 in . apart; slenter stipules 2-3 lines long: panicle 6-8 in. long: fr. leathery, velvety, used as a medicine by the Kaffirs. Int. by Reasoner Bros., 1891.

AA. Fls. white.
Japónica, Gray. A Japanese woody climber. Lss. light $\begin{gathered}\text { reen, old-pinnate; Ifts. narrowly ovate, 4-i pairs. }\end{gathered}$ $11 / 2 \mathrm{in}$. long, 1 in . apart: racemes simple, nodding, $\overline{\mathrm{j}}$-8 in. long. Probably not hardy in the North. Procurable of dealers in Japanese plants. S.Z. 1:43 (Wistaria Japonica).

MILTONIA (named for Lord Fitzwilliam, Viscount Milton, a patron of horticulture). Orchidàcere. This group contains some of the most beautiful orehids in cultivation. The pseudobulbs are closely clustered and sheathed with long, graceful, dark green lvs., forming plants over 1 ft . in diameter, bearing numerous large fis. They are herbs with short pseudobulbs, bearing I-2 lvs. at the summit and few or manv sheathing lvs.


## 1402. Miltonia vexillaria

at the base: the inflorescence arises from the base of the psendobulbs, and consists of a single-fld. peduncle or of a loose raceme of long-pedicelled ths.: sepals subequal, spreading, free or the lateral ones slightly united; petals similar or a little wider: labellum not distinetly clawed. large, expanded, not 3 -lobed, but often bitid at the apex: both the segments and the labellum are $f x$ panded, forming a flat flower: eolumn short. This genus contains hearly 20 species, mostly from Brazil. They are closely related to Odontoglossum and Oncidium, but may he distinguished by the characters given above. M. Razai, M. vesillarin, and some ciosely related kinds wre until recently known in gardens as Odontoglossums. In the gromp containing the "true" Miltonias, the psendobulbs are separated from each other on the rhizome, and bear l-g yeltowish qreen lvs.at the summit and few sheathing liss of the same color at the base. The Als. of nearly all Miltonias remain on the plants in a fresh condition for a month or more.

Heinrich Hasselbiring.
The Colombian species of Miltonia, among which are M. vexillorive and M. Bozlii, frow best in a compost of well-chopped, turfy fern root and very coarse river sand or pulverized coal elinkers. Do not overpot. Finish with sphagnum, which should be kept growing. These species should have a temperature of $58^{\circ}$ to $70^{\circ}$. They do not like a close atmosphere, but a good and constant cireulation of air. Fumigate slightly once a week or scatter strong tohaceo dust on the wet, hot pipes frequently to control thrips. After growth is finished, these orchids should be carefully rested in a temperature of $55^{\circ}$ to $60^{\circ}$, but at no time shonld they become very dry.

All the Brazilian kinds enjoy plenty of diffuse. but not direct, sunlight. They need much water while growing. After growth is complete, gradually withhold water supply. The brazilian kinds grow best in shallow perforated pans, with plenty of drainage, and potted in fern root mised with coarse leaf-mold and sharp sand.

## militonia

M. verillaria, as grown by the respected William Gray, of Albany, was well worth a long journey to see. He had specimens in 12 -ineh pans in perfect health and condition, which were a lovely sight. When asked for the secret of his notable success, Mr. Gray pointed overhead to the ventilators (outside temperature $20^{\circ}$ ), which were open just enough at top and bottom to allow a gentle circulation of air. Mr. Gray added that he kept up plenty of atmospheric moisture and was very careful about overhead waterings on close, warm days. Wm. Mathews.
Though the genus Miltonia is closely allied to Odontoglossum hotanically, the cultural requirements are in many eases very different. Species Nos. 1, 2, 3, 4 and 10 do well under the same general conditions of culture recommended for Olontoglossum crispum (which see), but $5^{\circ}$ more heat during the winter months should be given them.
M. spectabilis and M. flavescens should be grown in baskets or pans suspended from the roof in a compost of clean, chopped peat fiber and live sphagnum, liberally interspersed with pieces of charcoal, to which the roots freely attach themselves. Ther ean, if desired, also be grown on orchid rafts with a little compost between. They require stovehouse temperature, a moist atmosphere and acopious supply of water both at the roots and overhead when growing.
M. candida, M. cunecita and allied speeies thrive best in liberally drained pots or pans in a compost of rough, chopped peat and sphagnum, interspersed with pieces of broken charcoal.

A warm, moist, shady loeation, such as is afforded in the Cattleya or Cypripedium department, where the temperature can be maintained at $60^{\circ}$ to $65^{\circ}$ by night and about $70^{\circ}$ by day during winter, suits Miltonias best. The compost should never be allowed to become dry during the growing season, and should never remain dry long even when at rest during winter. Orerhead syringing is necessary at all seasons to keep down thrip, to which this group is subject. Weak liquid cow manure applied occasionally during the period of growth is beneficial. Cutting the rhizome between the pseudobulbs, partly through, at the beginning of the growing season will retard the sap and often induce the latent eyes to grow, after which time the picces may be removed and potted up separately. By this means the stock is increased.
R. M. Grey.
alba. 1.
bicolor, 5.
candida, 8.
Clowesii, 7.
cuneata. 9 . Endresii, 3 Havescens. 12. gigantea. 2.

## index.

grandifiora, $2,12$.
luxurians, 4.
Moreliana, 5.
Oacidium, 10, 11.
Phalænopsis, 4. picta. 2.
pmrpurea. 6.
Regnelli, 6.

Roezlii. 1.
rosea,
Russelliana, 11. spectabilis, 5 . vexillaria, ${ }^{2}$. Warscewiczii, 10. Weltoni. 10.
A. Pseudobulbs crowded. with nemerous durk or gruy-green sheuthing les. at the base.
в. Labellum sugittate at the base.

1. Rœzlii
2. vexillaria

BB. Labellum not sagittate, comstricted in the middle, i. e., * broally panduriform e, l. e.,
. Endresii
4. Phalænopsis

AA. Pseulobulbs situated at intervals on the rhizome, with few yoliouiste !reen les.
B. Segments of perianth broad, ocute to oblong.
c. Perianth umiformly coloreat
white, rose or muple.
5. spectabilis
6. Regnelli
cc. Perianth variaguterl. yellow and brourn or brouen and treen.
D. Lubellum fiddle-shaped. Dis. Luliellim broally obotate.
7. Clowesii 8. candida 9. cuneata DDD. Labellum oblong 10 11. Russelliana

вв. Seqments of perianth linenrlanceolate
12. flavescens

1. Rézlii, Nichols. (Odontoglóssum Rúzlii,Reiehb.f.). Pseudobulbs narrowly orate, 1-2 in. long: lvs. numerous, slender, $8-12$ in. long, narrowly linear-lanceolate: scapes about half as long as the lvs., bearing 2-3 large fls.: fls. flat, $3-31 / 2$ in. across, pure white, with a purple band at the base of the petals and a vellow stain, more or less marked with reddish brown, at the base of the labellum; sepals and petals ovate-oblong, acute; labellum large, broadly obcordate, with a tooth in the sinus. and a spur-like horn projecting backwards on each side of the column. Closely allied to $M$. vexillaria, from which it differs in color and by the more slender, nerved lys. Flowers twice a year in winter and spring. Colombia. B.M. 6085. I.H. 23:228. IR.H. 1875:450. Gn. 4, p. 251; 10:31; 26:457. - Var. álba, Hort. Fls. large, lacking the purple band on the petals. Gn. 26:457. F.M. 1875:164. A.F. 13:145\%. Gng. 6:3:7.
2. vexillària, Nichols. (Odontoglóssum rexillòrium, Reichb. f.). Fig. 1402. Pseudobulus $11 / 2-2$ in. long: Irs. G-1: in. long, narrowly elliptic-lanceolate: scapes sometimes 6 from a single pseudobulb, slender, and longer than the lvs., $3-4$-fld: fls. the largest of the genus, flat, about 4 in. long; sepals and petals ovate-oblong or obovate, pale or dark rose, sometimes with white margins; labellum large, rounded, deeply emarginate, narrowed to a sagittate claw, deep rose, whitish at the base, streaked with yellow and red. The fls. are extremely variable in shape and color. Spring and early sumner. Western slope of the Andes, Colombia. B. M. 603:. I.H. 20:113. F.S. 20:2058. R.H. 1876:390. Gn. 9, p. 571 ; 10, p. 108; 17: 234; 35, p. 268; 45, p. 536 . G.C.II. $26: 145$; III. 18:743; III. 19:75̄; 27: May Suppl. J.H. III. 31 :301. G.F. 8:195. G. M. 39:386. V. $̄: 138$. A.F. 13:121. - One of the most popular of all orchids. There are several varieties of this plant. Vars. gigantèa, grandiflòra, pícta, ròsea, have been advertised under Odontoglossum.
3. Endresii, Nichols. (Odontoglóssum Warscewiczii, Reichb. f.). Pseudobulbs small, tufted: lvs. numerous, distichous, elliptic-lanceolate, about I ft. long: scape a long as the lys., inclined or drooping, $6-8$-fld.: fls. 2-2 $1 / 2$ in. in diameter, flat, white, with a yellow crest on the labellum and a rose-colored blotch at the base of each segment; sepals broadly ovate; petals elliptic; labellum very broadly fildle-shaped and $\ddot{2}$-lobed. Feb. Costi Rica. B.M.6163.
4. Phalænópsis, Nichols. (Oitontoglóssum Phatonóf) sis, Lind. \& Reichb.f.). Pseudobulbs ovate, with grass like lvs. 8-10 in. long at the base and apex: stalks 1-3fld., shorter than the lvs.: fls. large, flat, white, with the labellum variegated and streaked with crimson; sepals 1 in . long, oblong, pointed; petals broader and rounded; labellum large, broadened and 2 -lobed in front, constricted near the middle and expanded above into 9 rounded lobes. The pseudobuibs are clustered, forming clumps 1 ft . or more across, with numerous ths. mingled with the long. grass-like lvs. Spring and summer. Colombia. 1. H. 3:109. Gn. 18, p. 447; 26. p. 232; 35, p. 269; 36, p.315. G.C.11. 25:364. I.H. 28:417 (var. luxurians, more vivid)
5. spectábilis, Lindl. Rhizome creeping, with tho psendobulbs placed about 1 in . apart, with 2 lvs. at the apex and few sheathing lvs. at the base: lvs. linearoblong, $4-12 \mathrm{in}$. long: scapes erect, sheathed, 6-8 in. long. bearing a single fl. about 4 in. in diameter: sepals and petals rblong, obtuse, slightly wared, white or creamcolored; labellum - 2 in. long, very broad in front, pendent, somewhat undulate, rose-purple, with darker reins. The tirst Miltonia introduced into cultivation. It blossoms in autumn, large plants learing from $20-50$ fls., all opening at once and lasting about a month. Brazil. B.M. 4004. B.R. 23:1992. I.H. 6:216; 12:446 (var. cereola): 14:524 (var. rosea); 15:573 (var. virginalis). P. M. $\overline{1}: 9 \overline{7} . ~ K . ~ W . ~ 1: t 5 ~(M a c r o c h i l u s ~ F r y a n u s) . ~ R . ~ B . ~$ 1889: 2.). (i.M. $38: 642$. A.F. 6:631. Var. bícolor, Hort. Fls. white, with a violet spot on the labellum. Large-fld. and vigorous. Aug. V'ar. Moreliàna, Hort. (M. More lidme, Hort.). This variety is very distinct in color. Sepals and petals deep purple: labellum of the same color, reined and shaded with rose. In havit the plant is like the type in every detail. B.M. 4425 (as var. pur-pureo-violucere, Hook.). F.S. I0: 1008. I. H. 2: Tl. Gn.
$31: 593$ (habit poor). F.M. 1874:143. G.al. 40:37. F. 185\%. 1. 123 (outline). A.F. 6:633.
6. Régnelli, Reichb. f. Like M. camdill in habit and foliage: los. 1 in. broad: scapes erect, bearing several large fls. over 2 in . in diam.: sepals and petals spreading, recurved at the apex, oblong, acute, white; labellum subpandurate, oltuse or emarginate, rose-purple, with deeper reins and 3 yellow keels at the base. Sept. Brazil. 13.M. 5436. - Var. purpùrea, Pynmert. Sepals and petals tinted with rose, with white margins; labellum crimson, with a white crest. R.B. 17:253.
7. Clowesii, Lindl. Pseudobulbs ovate-oblong, leafy at the base and bearing 2 narrow ensiform lys. at the apex: scape erect, 1 ft . long, many-fld.: ths. 3 in. across, orange-yellow, mottled with brown, the lip white with a violet base; sepals and petals spreading, lanceolate, acuminate; labellum fiddle-shaped, with a cordate base and a broadly rotund, acute terminal portion. Resembles M. candida. Sept., Oct. Brazil. B. M. 4109. P. M. 9:241.
8. cíndida, Lindl. Pseudobulbs ovate-oblong, 2-1rd., with few lvs. at base: lvs. oblong-linear, 1 ft . long, $11 / 2$ in. broad: raceme erect, 1 ft . long, 6 - 8 -fld.: sepals and petals spreading, oblong, acute, somewhat wavy, bright yellow, with large red-brown blotches; labellum large, broadly obovate, eonrolute, crenate and wary on the margin, white. changing to yellow, with a faint purple blotch. A strange suecies producing $\bar{\sigma}-6$ racemes, each with 6-10 fls. about $21 / 2$ in. across. Autumn. Brazil. B.M. 3793 (var. flatescens). P.M.6:241. Gn. 20, p. 463.
9. cuneàta, Lindl. Pseudobulbs ovate, clustered, 4 in. long, sheathed with lvs. at the base and 2 -lvd. at the apex: lvs. dark green, strap-shaped, 1 ft . long: seape erect, $5-8$-fld. as long as the les.: Hls. : $1-4$ in. across; sepals and petals lanceolate, spreading, mostly chocolate brown, greenish yellow at the tips, and few spots of the same color; labellum obovate-rotund, slightly wary, creamy white, with 2 parallel ridges on the crest. A robust. free-flowering plant of the habit of M. ctulide. Feb. Brazil. B.R. $31: 8$. I.H. $\bar{i}: 937$.
10. Warscewiczii, Reichb. f. (Ofontoglossum W'iltoni, Hort. Oncilium fuscatum, Reichb. f. Oncílium Wéltoui, Hort.). Pseudobulbs $3-5$ in. long, much flattened: lvs. linearoblong, obtuse, $5-6$ in. long: fls. 2 in . long from the tips of the lip to that of the upper sepal, nnmerous, borne in a branched nodding pani cle; sepals and petals cuneate-oborate, warcd and crisped, pale reddish brown.with whitish tips; labellum oblong. fan-shaped, bifid, white, with a large rose-purple disk on the center of which is a large, brownish yellow blotch. Mareh. Peru. B.M. 5843 . F' S. 18:1831.
11. Russelliàna, Lindl. (Oucídium Russelliènum, Lindi.). Pseudobulbs ovate, ribbed. פ-lvd.: lvs. narrowly lanceolate: flower stems lark purple, few-fld.: sepais and petals wrate-oblong. somewhat undulate, brownish purple with green margins; labellum oblongcuneate, retuse, apiculate, violet, the crests or lamella on the disk margined with white. Fls. rather small and dull in color. Dec. Brazil. B.R. 2::1830. P.M. $7: 21 \overline{7}$.
12. flavéscens, Lindl. Pseudobulbs narrow: les. linear-ensiform: raceme mary-fld.. the stalk sheathed with bracts: fls. stellate, yellon, with the labellum somewhat spotted with purple: sepals and petals linear-lanceolate, acuminate; labellum pandurate, undulate-acuminate. June. Brazil. B.R. 19:16iō. (Cyrtochilum flates-cens).-Var. grandiflora, Recel. Fls. larger, white at first, becoming whitish yellow; labellum obtuse. Git. 39:13ㄹ.
M. bicolor and var. candida are advertised.-M. Bleuàna, Hort. (Miltonopsis Bleui, Bleu.). Garden hybrid between M vexillaria and M. Roezlii. Intermediate between the parents: fls. large. 4 in. across, white, with the bases of the segments tinged with rose-purple; labellum large, bilobed, veined with pink. The sepals and petals are well developed, making a full,

clusters: pod of 3 or 4 parts, spiny. Argentina. - Int. by Franceschi. Small tree.

8b. Primary pinnce 2 pairs.
Guayaquilénsis, Steud. (Acìcia Guayaquilénsis, Desf.). Pinne 4. with 3-5 pairs of ovate-obtuse glaucous lfts., of which the lower ones are smaller: opposite stipular spines at the base of the leaf. Eeuador.
bbb. Primary pinnce 5 pairs.
Ceratònia, Linn. (Acàcia Cevatòmia, Willd.). Pinna about z pairs; lfts. obovate: pods glabrous, somewhat articulate and spiny. Small, spiny tree from W. Indies. вввв. Primary pinue 6- 8 pairs.
acanthocárpa, Poir. (Acicia acanthoceirpa, Willd. A. brechyaceinthe, Humb. \& Bonpl.). Pinne 12-14, with $6-1 \bar{j}$ pairs of oblong-pubescent lfts.: stipular spines 2: fls. in heads on twin axillary peduncles: pol falcate, spiny. Mex. - Bush or small tree.

Dénhardti, Tenore. Ornamental shrub: branehes glabrous or minutely hairy, striate, usually bent at each thorn: lrs. hairy, the pinnee 12-14, the ultimate lfts. small ( $1 / 8 \mathrm{in}$. long) and erowded and falcate-oblongacute: Hs. in club-shaped, axillary elusters: thorns 1-3 in. long. S. Amer. - C'ult. in S. Calif. Int. by Franceschi.
L. H. B.

MIMOLOS (Latin, a little mimic, from the grinning fls.). Scrophulariàcea. This genus includes the Monkey Flower, M. luteus, and the Musk Plant, M. moschutus. Montey Flowers are something like snapdragons, though they do not have a closed throat. They are $\mathbf{2}$-lipped fls., with 2 upper and 3 lower lobes, which are all rounded and usually irregularly splashed and dotted with brown on a yellow ground. Though perennial, they are commonly treated as annuals and are considerably used for pot culture in winter, as well as for summer bloom outdoors. The Musk Plant is grown for its scented foliage and pale yellow fis. It is sometimes used in hanging baskets, but the foliage is so sticky that it gathers a great deal of dust.

Mimulus is a genus of about 40 species, mostly Amerieam: herbs, deemmbent or erect, glabrous or pilose and clammy, rarely shrubby: Irs. opposite, entire or toothed: Als. axillary, solitary or becoming racemose by the reduction of the upper Irs.; calyx 5 -angled, with 5 short or long teeth; corolla tube cylindrical, sometimes swelled at the throat; stamens 4, didynamous: capsule oblong or linear, loculicidally dehiseent.

The kinds described below are all perennial at least by underground parts, and most of them are natives of wet and shady places in northwestern America. Latest monograph by A. Gray in Syn. Flo. N. Amer., Vol. II, part 1, pp. 273, 442. They mostly grow $2-4 \mathrm{ft}$. high and bloom all summer. Mimulus Cilifornicu is advertised. 1)iplacus is generally referred to Mimulus. W. M.

The sight of Monkey Flowers always carries the writer back to boyhood days. A certain window on his way to school was brightened every spring by a fine display of Monkey Flowers and Musk. Though these two species were thus happily associated, it is doubtful whether the owner knew of their kinship. There is nothing difficult in the culture of Mimulus. Some of the tinest plants have been self-sown on a rubbish heap. Alhundance of water is essential. The seed hs great vitality, and will germinate for many years in the place where once seeds have fallen. They are not hardy.
M. luteus, with its varieties and hybrids, particularly var. maculosus, is the best known. There are double and hose-in-hose varieties, but the single forms are the handsomest. It often self-sows in moist gardens. M. curdimelis, a handsome Californian perennial, is occasionally hardy, but does best treated as an annual. M.glutinosu is a pretty shrubby species, with coppery ths.. once a common greenhouse plant, but rare enough now to be almost a norelty.
T. D. Hatfield.
alatus, 10.
alpinus. 1. aurantiacus, 6. cardinalis. 5 . Clevelandi, $\overline{\mathrm{T}}$. capreus, 2 . capretis, 1. glutinosus, 6.

## INDEX.

hybridus, 1. Lewisii, 4. luteus, $1,2$. maculosus, 1. moschistus, 3. mosehiatus, 3.
parvitorus, 8. quinquerulnerus, 1. quinquevul
ringens, 9.
rivularis, 1.
Rozlii, 1.
tigridioides, 1.
tigrinus, 1.
variegatus, 1
Variegatus, 1.
Youngeana, 1.

> A. Culor of fls. yellow, brown or brick-red.
> 13. Plants herbaceous.
> c. Foliage not sticky or clammy..
> 1. luteus
> 2. cupreus
> cC. Foliase sticky and clammy.
> D. Stamens not thrust out of the corolla.
> E. Les. pinnately reined.... 3. moschatus EE. Lis. parallel-reined DD. Stamens thrmst out of the
> corolle ...............................................
> вв. Plants shrubby, at least at the buse.
> C. Lis. linear, minutely toothed or entire.
> 6. glutinosus cc. Lis. lanceolate, serrate.
> D. Fls. yellow........................... Clevelandi DD. F'ls. brick-red................. 8. parviflorus As. Color of fls. violet, purple or lilac. B. Lis. stalkless: pedicels longerthan
> fls.................................
> 9. ringers

BB. Lis. stalked
the calyx. . 10. alatus

1. lùteus, Linn. Monkey Flower. Fig. 1404. Glabrous, the larger forms $2-4 \mathrm{ft}$. high: lvs. parallel-veined,
sharply toothed, upper ones smaller: corolla 1-2 in. long. Alaska to Chile. B. M. 1501. - Monkey Flowers nearly always have yellow throats with brown dots. The lobes are sometimes clear yellow. In var. rivulàris, Lindl., only one lobe has a large brown patch. B.R. 12:1030. L.B.C. 16:1575. In var. Youngeàna, Hook., every lobe has such a pateh. B.M. 3363. B.R.20:1674. In the common strains these patches are more or less

2. Forms of Mimulus luteus $(\times 1 / 3)$.
broken up and the fls. irregularly mottled and dotted. F. 1863:73 (as M. muculosus). V. 10: 289 (as M. hybridus). A very distinct set of colors is represented by var. variegatus, Hook., the throat chiefly white, but with 2 yellow longitudinal lines dotted with brown on the middle sobe of the lower lip: all the lobes bright erim-son-purple, with a violet reverse. B.R. $21: 1796$. B.M. 3336. L.B.C. 19:1872. Modified as described under var. Youngeana. R.H. 1851: 261. F. 1850:137. The pictures cited above bear yarions legends which are not here repeated. The varietal names given above do not appear in the trade, the leading current names being duplex (hose-in-hose). gloriosus, hybridus, hybridus tigriuus, hybridus tigrinus grandiflorus, quinquerulnerus maximus, tigridioides and tigrinus. Some of these names are advertised as varieties, but all of them usually appear as if they were species. For M. hybridus cupreus, Hort., see M. сupreus.

Var. alpinus, Gray (M. Rézlii. Hort.). About 2-12 in. high, leafy to the top: stem $1-4-\mathrm{Hl} .:$ corolla $3 / 4-11 / 4 \mathrm{in}$. long.
2. cùpreus, Regc: (M. lìteus, var. cïprea, Hook.). A Chilean species, differing from M. buteus in its tufted habit and the tls. yellow at first, finally becoming coppercolored, and the lobes possibly rounder and more nearly equal, the throat yellow, spotted brown. B. M. 54i8. Gn. 24, p. 177. R.H. 1883, p. 284.
3. moschàtus, Dougl. Musk Plant. Perennial, by creeping stems $1-3 \mathrm{ft}$. long: fls. pale yellow, lightly dotted and splashed with brown. B.C. to Calif. and Utah. B.R. 13:1118. -This and M. Buteus have a broad throat. The fis. are normally about $3 / 4 \mathrm{in}$. across, but in F.M. $1877: 248$ (var. Harrisonii) they are $11 / 2 \mathrm{in}$. across. Hardy, evergreen trailer for damp. shady spots. Fine for planting under cool greenhouse benches.
4. Lewisii, Pursh. A more slender plant than the next, greener, and merely pubescent: Ivs. minutely toothed: Hs. rose-red or paler, the lobes all spreading. Shady, moist ground, B. C. to Calif. and Utah. B.M. 3353 and B.R. 19:1591 (both as M. roseus).
5. cardinalis, Dougl. Villous: ivs. sharply toothed: fls. red and yellow, the upper lobes much grown together and reflexed, the whole limb remarkably oblique. Water-courses, Ore. and Calif. to Ariz. S.B.F.G. II. 358. B.M. 3560. R.H. 1857, p. 13̄̄. Mn. 8:161. F. 1843:193. - Hardy in Mass., with slight winter covering. Blooms first year from seed.
6. glntindsus, Wendl. Two to 6 ft . high, nearly glabrous but sticky: fis. orange or salmon to pale buff, rather obscurely 2 -lipped, the lobes toothed or notched. Rocky banks; common from San Franciseo south. B.M. 354 (M. aurantiacus). A.G. 12:737. A.F. 12:1107.
7. Clèvelandi, T.S. Brandegee. Subshrubby, glandular pubescent: fis. golden yellow. G.F. 8:135.-Cult. only in S. Calif., where it is native. Not advertised.
8. parviflorus (Diplacus parviflorus, E. L. Greene). Rigidly shrubby, but flowering at from 3 in. to 2 ft . Glabrous and glutinous: lvs. narrowly ovate, coarsely serrate: carolla 1 in . long, nearly tubular: lobes quadrate, very little spreading. Santa Cruz lsland, Calif.
9. ringens, Linn. Stem square: calyx teeth long and awl-shaped: fls. violet. Wet places, Canada to Iowa and Tex. B.M. 283. D. 251.
10. alàtus, Soland. Stem somewhat winged or angled: calyx teeth short and broad. Wet places, western New Eng. to Ill., south to Tex. L.B.C. 5:410. W. M.

MIMUSOPS (Greek, ape-like, but application not obvious). Supoticece. Tropical trees, with milky juice, of both hemispheres, of about 30 species. Lrs. thick and shining, simple and entire, alternate: Hs. perfect. gamopetalous, the corolla of 6 or more lobes, but bearing twice as many appendages in the sinuses, the calyx of 6 or 8 sepals in two rows; stamens usually $6-8$, inserted on the base of the corolla; staminodia present: fr. a globose, 1-6-seeded berry, sometimes edible. The Mimusops are fine evergreen trees, good for ornament in frostless countries, and yielding perfumery, rubber and other products. The fis. aresmall, white, and usually borne in axillary fascicles. Some of the species become more than 100 ft . high, ind several of them vield hard and durable timber. A iew species have been somewhat advertised in S. Calif. and S. Fla., but their culture in this country is of small account. The Sapodillo is a closely allied tree.
A. Staminodia (or interior appendages) --toothed at the apex.
globosa, Gærtn. A largu tree, vielding Balata rubber: lvs. obovate or oblong, $2-6 \mathrm{in}$. long, retuse or apieulate, gravish: calyx of 6 parts, eanescent; corolla segments as long as the appendages in the simuses: fr. often 2 in. in dianı., globose. West Indies and Venezuela.

AA. Staminodia entire or only subserrate.
Sièberi, A. DC. Becoming 30 ft . tall: lvs. elliptic to obovate, retuse, green, 2-4 in. long. slenderpetioled: corolla segments 6 . oblong and exceeding the narrow appendages; fertile stamens 6 ; staminodia short-triangular, nearly entire: fr. nearly 1 in. in diam., brownish or yellowish, said to be edible. Key West to Trinidad.

Eléngi, Linn. Tall tree (becoming 50 ft .): Irs. elliptic and short-acuminate ( $3-31 / 2 \mathrm{in}$. long), rhomboid at the base, petiole $3 / 4 \mathrm{in}$. long: corolla lobes about 6 , narrow-lanceolate; fertile stamens 8 ; staminodia pilose, acute, entire or nearly so: fr. 1 in. or less, ovoid, 1 - or 2 -seeded, yellow, edible. E. Ind.
dispar, N. E. Brown. Smaller tree than M. Elengi: lvs. small, cuneate-oblanceolate, obtuse, rusty-tomentose when roung, but become glabrousgreen, the petiole $1 / 3$ in. or less long, and the blade $3 / 4-2$ in. long: fls. 12-16, in umbels on the tips of the branches: sepals $6-8$, in two series: petals $18-24$, in three series, linear-lanceolate, yellow: stamens 6-8: staminodia lanceolate-acuminate, chaunelled: fr. size of an olire, yellow. Natal. - Int. by Franceschi.
L. H. B.

MINA lobata is Ipomæa versicolor.
M. sanguinea is 1. coccineu, var. hederifolia.

MINNESOTA, HORTICULTURAL STATUS OF. Fig. 1405. Minnesots has an area of 84,287 square miles. The surface is geatly undulating, except in the extrine northwestern portion, where, in the Red River valley, are iarge, fertile, level prairies. Its roughest agricultural land is found in the tastern portion, along the Mississippi river, and in many places the blutfs reach a height of 400 feet above the valley. About one-half the state, embracing the northeastern and eastern parts, was originally heavily timbered, and much timber still remains in the northeastern portion, while many scattered groves of timber will be found elsewhere, especially along the rivers.

There are many lakes, the number of which has been estimated at $\mathbf{1 0 , 0 0 0}$. They are especially numerous in the central and northern portions, where they greatly modify the climate of lands in their vicinity. There are great variations of climate between the extreme northern half, where the summers are very short, and the sonthern half. where killing frosts seldom oceur before the 1 st of (October. The winters are generally pleasant, but occasionally severe, and $40^{\circ}$ below zero is sometimes experienced.
The soil is generally rich and well adapted to a variety of crops. but it is very variable, and there are some very extended areas in the northern part where there is much sandy land that should never be used for agriculture. The undulating surface, variety of good soil and vegetation, and abundance of lakes, afford many very picturesque and beautiful locations for successful horticulture.
Rainfall cerd Its Distribution. - The annual precipitation averages about 25 inches, and is well distributed during the growing season. The snowfall is light, and what falls remains usually during the winter. The spring is generally open early, ant the transition from

1405. Minnesota.

Horticultural areas, shown by degrees of shading
winter to spring is very rapid. The soil at St . Paul and southward can generally be worked by April 15, and frequently earlier. The summers and autumns are bright and sumy, and vegetation grows with great rapidity.

Currants, gooseberries, raspberries, blackberries, strawberries, juneberries, Americana plums, and the frost or river-bank grape are native fruits that are found wild in abundance in farorable locations throughont the state. Most of the well-known cultivated sorts of the
five species first named do well under cultivation, and large quantities are raised for home consumption and are protitably marketed. The Concord, Worden, Dela ware, and grapes of similar character, are easily raised in the many good locations along the lake shores and the river bluffs, and this is an important industry notwithstanding the fact that they have to be covered in winter, which adds somewhat to the expense of culture. However, on account of the peculiar adaptability of the Delaware grape to some of our soils and to the elimate, it is raised with profit in competition with the growers of the eastern states, though the Concord is not high enongh in price by one cent a pound to permit of this to any great extent.
Apples are raised on a commercial scale in southern and eastern Minnesota, the high, rolling land in the southeastern portion being especially well adapted to their cultivation. The varieties of the eastern and central states generally prove a failure here. The Dnchess of Oldenburg is the standard of hardiness in apples, and can be grown successfully in good locations as far north as St. l'aul, and in a small way 100 miles further north. The Talman Sweet is raised to some extent, but is liable to suffer in severe winters. The Minnesota seedling apple known as the Wealthy is generally the most profitable kind grown. (See Gideon, p. 642.) Much interest centers around the introduction of varieties of apples of unusual hardiness, and a few of the Russian sorts are proving very satisfactory. The hardiest rariety of this origin so far found is the Hibernal, which represents a class of sonr autumn apples that will thrive on suitable soil in almost any portion of the state. The Charlamoff is another very harly early autum apple of the same class. Such hvorid crabs as the Transcendent Martha, Gideon No. 6 and Minnesota may be successfully grown in suitable locations and soil over most of the state.
The Americana class of plums is found growing wild all over the state, and the fruit is gathered in large quantities. The cultivated sorts of this class are easily grown everywhere. Wild plums can generally be obtained in abundance in autumn at about $\$ 1.50$ per bushel. There is no variety of any other class of plums that is appreciably cultivated, although in very favorable locations a few of the Japan and domestic sorts are generally grown.
Cherries may be successfully grown on a large scale in extreme southeastern Minnesota, and there are some commercial orchards; there but generally throughout the state the fruit buds are so injured in winter that the trees are unproductive, although they may make a very satisfactory tree growth.

Pears generaily blight to death early, and there is no variety that is generally cultivated. Several of the Russian pears are as hardy as the Duchess apple, but they have died, so far as tried, from blight before becoming very productive. Apricots are not sufficiently hardy.

The most common injury to trees is known as sunscald of the trunks, which often inn as severe loss. It is easily acoided by shading the i. ?iss. Blight seriously injures some varieties oî thes. Winter protection of various kinds is importa 1 a 1 carefully attended to by our best horticulturists.

Vegetables of all the kinds grown in the northern states are very easily raised. and the display of these produets in the large markets is verv excellent. Cabbage, cauliflower, celery. peas, lettuce, potatoes, beans, corn, cucumbers, tomatoes, squash. watermelons, muskmelons and eggplant are to be had in abundance, and the markets are often gluted with them. Native musk melons and tomatoes oce ionally retail at 10 to 15 cts . per bushel. The canning of vegetables is becoming an important industry at several points. The climate seems to be especially favorable to vegetables, and there is much less trouble from diseases than in many more humid seetions.
The demand for ornamental horticulture is considerable and rapidly increasing, giving investment to perhaps $\$ 200,000$ in the greenhouse business, and athls no small sum to the receipts of the several large and the many small nurseries in the state. The love for horticulture is also shown by the immense sums spent by the cities and small towns for public parks. St. Paul and

Minneapolis together have upwards of 3,000 acres in their publie parks, which are well cared for, very beautiful, and visited by at least two million persons each year.
'The Minnesota State Horticultural Soeiety is a rery strong and popular organization, having a membership list of about 800, each of whom pay an annual membership fee of $\$ 1$. It publishes, at the expense of the state, a monthly fournal and an annual report. It also receives aid from the state to the amount of $\$ 1,500$ annually. It has recently offered $\$ 1.000$ for a seedling winter apple especially adapted to Minnesota conditions. Great interest is taken in the raising of seedling apples, and at some of the state fair meetings more than 300 separate varieties of Minnesota origin have been shown.
The state experiment station is located near St. Panl and pays consilerable attention to horticulture. It has

1406. Four-O’Clock-Mirabilis Jalapa.

Nearly natural size.
four sub-experiment stations, located in various parts of the state. One of these is located at Owatonna, and is devoted almost exclusively to the raising of seedling apples. The Agricultural Department of the unirersity had over five hundred in attendance in the school year of 1899-1900. Four hundred of these attended the agricultural high school, where, in addition to the other agricultural studies, much attention is paid to horticulture and forestry.

Sameel B. Green.

## MINT. See Mentha.

MINT GERANIUM. Chrysanthemum Balsamita, var. tanacetoiles.

MIRÁBILIS (Admirabilis, meaning wonderful, strange; shortenet by Linneus to Mirabilis). Nyctaginit ceer. About 10 species of the warmer parts of America,

4 of which are eultivated for their pretty or showy As The fls. have no corolla, but the calyx is colored and tubular and exactly like a corolla in appearance. The fls. are surrounded by a leafy involucre, and sometimes (as in $M$. Jelapa) only one flower is borne in an involuere simulating a corolla in a 5 -cleft calys. The stamens are 5 or 6 , as long as the perianth, their filaments united at the basc. Style 1, with a capitate stigma. Fruit hardened, capsule-like and indehiscent. They are perennial herbs, although grown as annuals from seeds, with lvs. petioled and opposite, and Hs. solitary or paniculate and nearly or quite sessile in the involucres.
A. Intolucre containing onl!g one flower: plant glabrous or cery vearly so.
Jalápa, Linn. Four-O’Clock. Marvel of Perc. Fig. 1406. Erect-bushy, quick-growing herb, germinating readily from the large, conical-oblong fruits, 2-3 ft. high, bearing profusely in late summer and full longtubed funnelform fls. in white and shades of red and yellow, and striped, opening in cloudy weather or late in the afternoon (whence the common name Four$\mathrm{O}^{\circ}$ Clock ), and closing in the morning. Les. ovate-lanceolate, short-petioled, acmminate, entire: fls. in elusters amongst the lvs.; stamens not exserted. Tropical Amer. B M. 3il.-Cultivated from early times, and always a favorite. In tropics it has tuberous roots, and these were once supposed to be the source of Jalap, whence the name Jalupa. There are dwarf and compact varieties; also forms with variegated foliage. The Four-O'Clock is an "old-fashioned flower." It is treated as a tender annual. Thrives in any garden soil. A useful plant for growing in a hedge (plants 1 ft . apart) at the rear of the flower-garden. It sometimes comes up in the spring from self-sown seeds. Even as far north as New York, it often produces tuherous roots large enough to be lifted and stored like dahlias.
AA. Intolucre containing 1-3 fls.: plant viscid-pubescent.
Califórnica, Gray. Plant 1-3 ft. tall, yellowish green, the many stems ascending from a somewhat woody base: lvs. thick or almost Heshy, ovate-oblong to round-ovate, short-stalked: involucres 5 -cleft, short-peduncled, containing $1-3$ rose-purple fls. a half-inch long, with stamens sometimes protruded. S. Calif. to Útah and S.Little known in eultivation.
aAA. Involucre containing 3 or more long-tubed fls.
multiflora, Gray. Stout and tall ( -3 ft.$)$, muchbranched, somewhat pubescent or sometimes glabrous: lvs. rather thin, gray-green, lance-ovate to broad-ovate, more or less cordate, short-stalked, acute or acuminate: involucre $1 / 2 \mathrm{in}$. long, stalked: Hs. 6, with a tube often 2 in . long, rose to purple, the style and the 5 stamens protruded. - Var. pubéscens, Wats. (M. Frobelii,Greene), is very pubescent throughout. The M. multiflora of B.M. 6266 is probably this variety. The species ranges from Colo. to S . Calif. and S . Little known in cult.
longiflòra, Linn. Plant 2-3 ft., glandular-pubescent above: Ivs. cordate and usually acuminate, short-stalked, pubescent: fls. pubescent, with a very narrow tube $\overline{5}-6$ in. long, and a small, flaring white, rose or violet limb, very fragrant at evening. Mexico.-An old garden plant, but less frequent than M. Julupa. Easily grown from seeds. It has been hybridized with M. Jalapu.
L. H. B.

MISCANTHUS (Greek, miskos, a stem, and anthos, a flower). Gramínea. Eulalia. Comprises about 6 species in southern and eastern Asia, several of which are cultivated for ornament. Tall peremnial grasses with ample terminal fan-shaped panicles, allied to the sugar cane and Erianthus. Includes the Eulalias of the trade but not Eulalia, Kunth, which is referred to Pollinia, Trin., by Hackel. Spikelets 1-fid., in pairs at the joints of the rachis, one nearly sessile, the other pedicellate, usually awned. Glumes 4. A cluster of silky hairs arises from the base of the spikelets. which gives the panicle its beautiful feathery appearance. Increased by seed or division of roots.
Although many progressive nurserymen now advertise these favorite grasses as Miscanthus, the name

Euhalia will probably remain in the English language as a thoroughly naturalized word, like Geranium and Chrysanthemum. Eulalias probably rank among the first half

1407. Miscanthus Sinensis.

Which, under the name of Eulalia, is one of the most popular of ornamental grasses.
dozen most popular grasses cultivated for ornament. They are remarkably hardy and are universal farorites for bedding. One of the commonest and best designs for a bed of ornamental grasses employs Arumio Donax as a tall center piece, surrounded by Eulalias.
sacchárifer, Benth. (sometimes written sacchariflimus). Distinguished by its nearly or quite awnless spikelets. China. Gt. 186: 35 5 . - Procurable of dealers in Japanese plants.
Nepalénsis, Hack. Himalaya Fairy Grass. Spikelets one-fourth as long as the brown involueral hairs. Lrs. smooth on the margin. Oecasionally cultivated. Himalayas.

Sinénsis, Anders. (Eulatia Jupómicu, Trin.). Figs. 1407,1408 . Spikelets about equaling the white or subviolet involucral hairs. Culm +-9 ft.: lvs. $\mathbf{2}-3 \mathrm{ft}$, margins scabrons: panicle $6-12$ in., formed late in the season. Established plants form clumps as much as 18 ft . in circumference. The forms in cultivation are mostly the following varieties: Var. variegàtus, with leaves striped; zebrinus, leaves banded. These two varieties are not quite so hardy as the type, and are usually propagated by division, as the seeds are not so sure to come true. Ging. 4:375: 6:107. B.M. 7304 . Var. gracillimus (Enlitia gracillima umivittèta, E.Jupónica gracillima, etc.). Leaves much narrower than the trpe. Gn. 50, p. 108. Gng. 5:273. R.B. 21, p. 179.
A. S. Hitchcock.

## MISSISSIPPI, HORTICUL-


1408. Variegation in Miscanthus Sinensis.
At the left, rariegatus : middle, zebrimus; right, gracillimus.

TURE IN. Fig. 1409. Mississippi extends ibout 325 miles from north to south and 175 miles from east to west. The surface is mostly undulating, with few abrupt hills, and the highest part of the state, the northeastern section, is less than 1,000 feet above the sea level. It has an annual rainfall of about

45 inches in the northern part, the amount increasing to about 60 inches in the extreme south. The winter temperature is rarely as low as zero in any portion of the state, while the extreme summer heat rarely reaches $100^{\circ}$ in the northern part: while near the Gulf coast $95^{\circ}$ is the usual limit. The first frosts usually occur in November, and spring frosts are rare after the middle of March. The soil is extremely variable. The western portion of the state, known as the Yazoo Delta, has one of the richest alluvial soils in the world, and one well suited

for the growing of vegetables. The north-central part of the state consists largely of yellow clay hills, not very fertile and liable to serious injuty from erosion, but with very fertile valleys between them, while the northeastern section has a strong lime soil which is very productive. Nearly all of the southern half of the state has a sandy loam soil underlaid with clay at a depth of a few inches. making those lands amoner the most desirable for the cultivation of either fruits or vegetables.
Although both fruits and veretables are grown for export in all parts of the state, there are three districts in which horticultural work is specially prominent. These are (Fig. 1409):

1. The northeastern district, eovering the territory along the Mobile and Ohio railroad from Boonerille south to West Point.
2. The central district, covering the territory along the Illinois Central railroad from Durant south to Brookhaven.
3. The Gulf coast district, covering the territory along the Louisville and Nashville railroad from Bay St. Louis east to Orange Grove.
Peaches are grown more extensively than any other fruit, and are shipped to northern markets from nearly or quite every county in the state. The long growing season enables the trees to come into bearing rapidly. and a small crop of fruit is usually gathered the second year from planting, while the trees often continue fruitful from 15 to 20 years. Although th" trees themselves are never injured by cold, the fruit crop is occasionally cut short by spring frosts following warm winter weather, which sometimes brings the trees into bloom before the end of January. The early fruit is ready for market
about the last of May, and shipments continue from that tinue until August, or later. Elberta, Mountain Rose, Georgia Belle, Lilly Miller and Chinese Cling are among the more popular varieties.

Pears grow well in all parts of the state, and, until about 1895 , were planted more widely than any other fruit trees, but since that time the blight has been so widespread and so severe that very few new orchards have been planted. Fully ninetenths of the trees are either Le Conte or Kieffer, the latter being the more resistant to blight.

Apple trees make a fair growth and bear well for some years, but become less vigorous with age. and are shorter lived than in more northern latitudes. Nearly all varieties ripen during the summer and fall, and very few even of the "long keepers," can be preserved through the winter. The fruit always commands a high price in the local markets, which makes the trees profitable, even though they last but a few years. Considerable fruit, mostly Early Harvest and Red June, is shipped from the northeastern district, but no other part of the state produces enough for a home supply.

Plum trees are of uncertain value. The Wild Gooso and the Japanese varicties are the more common sorts, and while some trees and some orchards may grow well and bear heavily for many years, the majority suceumb) after producing two or three crops. Cherries are rarely successful. Figs are grown quite commonly for home use in the central part of the state, and in the Gulf coast district are an important market crop. The fig does not succeed under orchard conditions, but a few trees grown near the lionse lo well, and many of the older trees produce 1.000 pounds or more of fruit annually, and this finds a ready market at the canning factories. The Celeste is the common variety, and the demand for the fruit at 4 cents per pound is far in exces of the supply. Oranges are grown along the fiulf coast. but even there the winters are occasionally so cold as to make them unprofitahle

Among the small fruits strawberries are the most important, being grown by thousands of acres. They are grown more extensively in the central district than elsewhere, though there is a considerable acreage in tho mortheastern district also. In the Gulf coast district the plants grow well and bear abundantly, but the fruit grown there is usually softer and less desirable for shipping than that grown in drier localities. Bubach, Crescent, Gandy, Wartield and Michel ase the favorite varieties. Shipments begin about the first of April, and the bulk of the crop is gathered during the next six weeks, though ocrasional shipments are made during every month of the year.

Grapes grow and beac as well as it is possible for them to do in any part of the country. The long season for growth develops very strong vines which are never in jured by the cold of winter, and the latest ripening sorts have ample time for maturing. The early varieties ripen about June 20 in the Gulf eoast district, and about July 10 in the northeastern district, and nearly all the crop is gathered by August 1. This early ripening of the fruit enables the grower to secure high prices for his early shipments, but a coop which matures in the heat of midsummer cannot be kept profitably, even in cold storage, but must be maketed at once, regardless of price. Champion, Ives, Delaware, Niagara, Perkins and Herbemont are among the more popular varieties. Tho Scuppernong (Vitis rotundifolia) is a valuable native species which is grown in all parts of the state for home use and for the manufacture of wine, but is not a shipping variety.

Blackberries and dewberries grow spontaneously in all parts of the state and have proved quite profitable in cultivation, the Lucretia, Dallas and other hybrids being the favorite varieties. Neither currants nor gooseberries do well in any part of the state, as they make a new growth and come into bloom soon after the fall rainbegin, and soon become so weakened as to be worthless. Raspberries do well when planted on soils containing sufficient moisture, but are seldom grown for market excepting in the northeastern district. Turner is the facorite variety, and the blackcaps are rarely seen.

The growing of early vegetables for northern market is followed nore extensively and is more generally prof-
itable than is the growing of fruits. Field plantings of radishes, peas and other hardy sorts begin in January. Shipments begin by the first of March and continue until the melon crop is harvested in July. The first crop of Irish potatoes, mostly Early Ohio and Triumph, is ready for market in May, and in August a second crop is often planted which matures in November, when it finds a ready home market, or is left in the ground until early spring, when it is placed on the northern markets as "new potatoes just received from Bermuda," and brings a high price. This second crop, however, is uncertain, as it is difficult to secure a prompt growth if seed from the early crop is used, and it is often impossible to secure northern seed so late in the season. Sweet potatoes are grown in all parts of the state, and are shipped from July until Mareh. Asparagus is a profitable early crop which is grown quite largely in the central district, and seems wholly free from rust or other diseases. Rhubarb is unable to endure the heat of the long summer, and the roots soon decay. Beans, beets, cabbages, peas, radishes and turnips are all grown so largely as to be shipped in car-load lots from a number of towns in the northeastern and central districts. The crop grown more widely than any other is the tomato, which is grown in all parts of the state, and which is shipped by the car-load to all parts of the country from Boston to St. Paul. Omaha and Denver. Many single growers ship by car-lots, and in June from 10 to 20 ears are shipped daily from Crystal Springs, with nearly as many from Madison Station and Booneville, besides smaller shipments from many other points.
From the central district, shipments are made about as follows:

Beans, May 10 to June 10.
Beets, April 20 to June 15.
Cabbage, May 1 to June 5.
Carrots, April 20 to June 10 .
Melons (Gem), June 20 to July 20.
Peaches, June 1 to August 1.
Peas, March 25 to April 25.
Potatoes, Irish, May 10 to June 15. Radishes, March 1 to April 15. Squash, Summer, May 15 to June 15. Strawberries, April 1 to May 10. Turnips, March 20 to May 1亏̈. Tomatoes, May $2 \overline{5}$ to July 4. Watermelons, July 1 to Áugust 1.

There are a number of canneries in the state, the most successful being those at Booneville and Biloxi, but ordinarily growers find it more profitable to ship products to northern markets than to sell at prices which canners ean afford.
No statistics are available on which definite statements of the total shipments from the state can be based. Crystal Springs, in the central district, probably ships more than any other single point. Tho shipments of fruits and vegetables from that place amounted to 638 cars in 1898, while in the very unfarorable season of 1899 the number fell to about 400. Partial reports from other points indicate that shipments, in car-lots, amount to not less than $\overline{5}, 000$ cars annually, in addition to nearly as much more which is shipped in small lots. The northeastern and central districts ship principally to northern markets, while the Gulf coast district finds its markets in Mobile, New Orleans, and on the many foreign vessels loading in Ship Island harbor. Nearly the entire business has been developed in the last 15 years, and each succeeding year shows a marked increase in its volume. New localities are being opened, the work is becoming better organized, and, with the increase of the business the markets are becoming more steady, prices more uniform, and the profits more satisfactory than in the early days. The business has by no means reached its full development, and will not do so for years to come.
S. M. Tracy.

MISSOURI HORTICULTURE. Fig. 1410. Its central position gives Missouri a medium climate, favorable to the growth of a variety of horticultural products. The native flora embraces both northern and southern plants.

1410. Missouri.

The diagonal shading in the southern half designates the Ozark uplift. The double-line shading along the Mississippi and Missouri rivers shows the loess formation. The short-line cross-shading designates the parts where fruit-growing is much developed.

Jan., 1.89; Feb., 2.57; March. 2.97; April, 4.52; May. 5.87 ; June, 4.56; July, 4.85; Aug., 2.81; Sept., 3.60; Oct., 1.40; Nor., 2.87; Dec., 2.02.
While these figures show that the rainfull is ample, and well distributed throughout the year, the records also show that the percentage of sumy days in this immediate section is high. During August, September and October especially, when most of our fruit is maturing, the arerage amount of bright sunlight is considerably higher than that of the majority of our orchard states. No doubt the intense sunlight and proximity to the airy prairies are important factors in producing the rich color and high flavor of Missouri fruit, and may also account, in part, at least, for its comparative freedom from many of the fungous diseases which are known to thrive best in a moist, clondy atmosphere.

The topography and soil of the state are both favorable to fruit-growing. The undulating areas, intersected by the Mississippi and Missouri rivers and their tributaries, are amply provided with both soil and atmos-
pheric drainage. The soil varies from the light, deep flinty soil of the Ozarks, and the Irift of the "loess" formation (sce Iowa), to the rich soil of the prairie openings and still heavier soils of the river bottoms, and the swamp lands to the southeast, affording choice for dif. ferent purposes. The immense crops of corn and garden vegetables, sometimes grown in young orchards, and the clover and cow peas, grown to prevent washing of the soil in stecp hillside orchards, prove (perhaps too frequently), that even the so-called "fruit lands" are capable of yielding a great variety of products. In

1411. Ben Davis ( $\times 1 / 3$ ). One of the "big red apples" of the Ozarks.
fact, one great reason why Missouri has not earlier taken front rank as a fruit state is because natural conditions for general agriculture are too favorable. It requires too great an effort to exclude the encroaching blue grass and live stock from orchard areas where thrifty young trees fruit themselves to death in the unequal struggle for existence and the reprodnetion of their kind.

The last report of the Missouri State Horticultural Society (1897) contains Secretary Goodman's estimate of the quantity and value of fruit produced in the state that year, as follows: Apples-north Missouri, 2,500,000 barrels; central Missouri, 3,500,000; south Missouri, $3,000,000$; total value of apples, $\$ 12,000,000$. Peaches -north Missouri, 500,000 bushels; central Missouri, $1,000,000$; south Missouri, $2,000,000$; total ralue of peaches, $\$ 3,500,000$. Total value of berries, $\$ 2,500,000$. Total value of pears, eherries, plums and grapes, $\$ 1.500,000$. These, with nuts and miscellaneous fruits, reach a total value of $\$ 20,000,000$ for the Missouri fruit crop for 1897 . This report is based upon figures oltained from the varions railroads and shippers, and mag be relied upon as being approximately correct. Considering the fact that a few years ago Nissouri could hardly lay claim to being a great fruit-producing state, the above figures indicate very rapid growth of the industry in recent years. In 1898 more young trees were planted than in any previous year, showing an accelerating tendency toward this line of business. A number of orehards in the state comprise over one thousand acres each. The size and number of these large orchards is annually being increased.

It will be seen that the apple is the leading fruit, exceeding in value all other kinds combined. Careful study shows that other things being equal, the best prices prevail in those parts of the state where the most apples are grown, and where, consequently, there is the sharpest competition among buyers. The peach ranks second in importance, and the berries thirl. The city of Sarcoxie shipped 239 car-loads of strawberries in 1897 ,
and now 1,500 acres of strawberries are growing in its immediate vicinity. Liberal is one of the largest blackberry centers. Hermann and several points in the Ozarks manufacture large quantities of grape wine.

Aside from the work of the Agricultural College and Experiment Station in the promulgation of horticultural work, the Missouri Botanical Gurden nt St. Lonis, being of international influence and importance, cannot fail, with its splendid equipment and able management, to lend an especially strengthening influence to the horticulture of the state in which it is located. The Missouri State Horticultural Society, with nearly one hunAred local societies as anxiliaries, under the competent leadership of its oflicers and organized effort of its members, is doing much toward the development of horticulture.

While horticulture is already one of the leading interests of Missouri, the possibilities of the state in that direction have not yet even been approached. Only a small portion of the soil naturally well adapted to fruit culture has ever been cultivated, and there are many phases of horticulture that have not been developed. In recent years, however, steps in advance are rapidly being taken. The best growers no longer cling to ancient traditions and obsolete practices, but are evolving methorls adapted to the new conditions of the West. Capitalists of extensive business training are invest. ing in orchards, and their business ability, combined with the skill of the practical grower, is resulting in better marketing and general management of the industry. New varieties, better adapted to local conditions, are being originated. Our native fruits and nuts are receiving attention, and improved varieties of these are already the result. The working up of surplus and inferior fruit by canning, evaporating, cider and winemaking and distilling is increasing the value of the fruit product, and the canning of tomatoes, peas and other garden vegetables is quite extensively carried on in some sectivas. In fact, the horticulture of the state is in a rapidly growing condition, and bids fair to reach very important proportions.
J. C. Whitten.

MISTLETOE of the Old World is Viscum album; of America, Phoradendron flavescens.

MITCHELLA (Dr. John Mitchell, of Virginia, one of the first American botanists; correspondent of Linnaus). Rubiacea. This includes the Partridge-berry, one of the prettiest and hardiest of native perennial trailers. It has small, shining, evergreen, roundish Ivs., sometimes marked with white lines, and bright scarlet berries, often borne in pairs, which remain all winter and make a charming effect when peeping through the snow. This plant can be easily collected, and is also procurable from many dealers in hardy piants. It thrives under evergreen trees, forming dense mats. The fls., which are borne in spring, are small, white, with pinkish throats, and are fragrant. The berries are edible, but nearly tasteless. Fls. twin, the ovaries united into one; calyx 4-toothed; corolla funnel-shaped, 4-lobed; lobes spreading, densely bearded inside, valvate in the bud: fr. a 2 -eyed berry.

1412. Partridge-berry-Mitchella repens ( $\times^{1 / 4}$ ).
rèpens, Linn. Partridge-berry. Squaw-berry. Fig. 1412. Lvs. opposite, round-ovate, petioled, with minute stipules: fls. in pairs, on the apex of a peduncle. Nora Scotia to Minn., south to Fla. and Tex. G.W. F. 42. D. 81. Mn. 3:49. L. B. C. 10:979.-Attractive in halfshaded spots in the wild garden and rockeries. Propagated by division of roots.
M. ovàta, DC., from Ecuador, is the only other species. It has solitary, sessile fls., and ovate, acutish lvs. Not cult.
M. B. Coulston.

MITELLA (diminutive of mitra, a cal ; applied to the form of the young pod). Saxifragdcen. Mithewort. Bishop's-cap. Six or 7 species of low slender perennials, with somewhat creeping rootstoc is and racemes of small and greenish or white fls. Cl' sely related to Tiarella, but the petals of the latter are ntire, while in Mitella they are beautifully pinnatiffl. Lvs. ronnd, lieart-shaped, alternate, except in one s secies, on rootstoek or run rers, with slender petioles: those on floweringstems pposite, if anycalyx shor, 5-lobed, the lobes ralvate in the iud, spreading: petals 5 , inserted on throat of ealyx, very slender; stamens 10 or 5, very short: fr. soon widely dehiseent. Natives of $N$. Amer., 2 species in E. Asia. - Offered by some dealers in native plants.
A. Scapes usually leafless.

> B. Fls. numerous.
trifida, Graham. Lvs. round-reniform or cordate, crenately toothed and sometimes incised or lobed, 1-3 in. across: scape $9-10$ in. long: fis.somewhat seattered on one side of spike; petals 3-5-parted, small; stamens 5 opposite the calyx lobes. N. Calif. to Brit. Col. and Rocky Mis.

BB. Fls. few (about 5).
nừda, Linn. Fig. 1413. Lers. rounded or kid-ney-shaped, deeply and doubly crenate: raceme t-6 in. long. Does well in moist shady situations. May-July. Westrard to Brit. Col. A. G. 13:518.

AA. Scapes bearing leaves. B. Lrs. on scape alternate.
cauléscens, Nutt. Raceme loose: stamens alternate with the pinnatifid petals. Brit. Col. to Ore.
BB. Les. on scape opposite. diphylla, Linn. Lvs. acutely heart-shaped, somewhat $; 3-5$-lobed, toothed: raceme 6-8 in. long. May. Eastern U. S. V. 12:189.-
1413. Mitella nuda. Nearly natural size. A good plant for the rockery. M. B. Coulston.

MITREWORT. Mitella. False Mitrewort is Tiarella.
MITRIOSTIGMA (Greek, mitre-shaped stigma; from the conspicuous stigma, which is club-shaped, the 9 -cut summit suggesting a cap). Rubiacere. This includes the charming evergreen tender shrub known to the trade as Gardenia citriodora. It makes a low or mediumsized bush of eompact and branching habit and bears a great profusion of fls. which resemble those of the orange in odor, size, color and general appearance. The fls, are white, salver-shaped, 5 -lobed, tipped with pink in the bud, and borne in dense axillary clusters. This delightful plant is a favorite in the South, together with the Cape Jessamine, but is little known in northern conservatories. The genus contains 2 specles. For distinctions from Gardenia and Randia, see Gardenia.
axillàre, Hochst. (Gardènia citriodòra, Hook.). Les. opposite, petiolate, elliptic-lanceolate, subacuminate,
glabrous; stipules awl-shaped from a broad base: calyx not ribbed, lobes lanceolate, acuminate, equal: corolla tube twlee as long as the calyx, lobes obovate, obtuse. S. Afr. B.M. 4987. R.H. 1859, p. 175 ; $1886: 348$ (exeellent!). F.S. 12:125゙t.
W. M.

M'MAHON. See p. 963.
MOCCASIN FLOWER. North Ameriean name for species of Cypripedium.

## MOCK ORANGE. See Philadelphus.

MOHRIA (from Danlel Mohr, a German botanist; died 1808). Schizepicer. A gemms of South African ferns. having the habit of Cheilanthes, but the sporangia of the Sehizatacea. A single species, M. cuffrorum, is rare in cultivation in America.
L. M. Underwood.

MOLE PLANT. Euphorbile Luthyris (see Fig. 800, p. 564).

MOLINIA (J. Molina, a writer upon Chilean plants). Graminece. A genus of perenuial grasses allied to Eragrostis, containing a single species. Native of central Europe and temperate Asia, and sparingly introduced in the United States. Panicle contracted: spikelets 2-4fld., more or less purplish: glumes somewhat unequal: H.-glume 3-nerved, rounded on back, pointed but awnless.
cærulea, Moench (A ira ceriulect. Linn.). Cnlms tufted, 1-3 ft . high: lvs. rather rigid, slender pointed. The usual form in enlt. is var. variegata, with striped lis., used for bedding.
A. S. Hitchcock.

## MOLUCCA BALM. Moluccella letris.

MOLUCCELLA (diminutive made from Molncea). A!so written Mollucella. Labiuto. This includes the Shell Flower, a quaint old aunual plant, that self-sows

1414. Moluccella lævis ( $\times 1 / 3$ ).
in old-fashioned gardens, but is now rarely advertised for sale. Its ehief feature is its great cup-shaped calyx an inch long, which is much larger than the inconspicuous corolla (See Fig. 1414.) Later four white seeds or
nutlets appear in the cup or shell-like calyx, and add to the interest. The corollas are gaping, the upper lip forming a sort of hood, which nay be notched or not, the lower lip 3 -cut, the side lobes being oblong and somewhat erect, the middle one larger, inversely heartshaped and deeply notched. Of 25 described names only 2 now remain in this genus as good species. Bentham \& Hooker place this genus near Lamirm. Other genera of garden value in which the upper lip of the corolla is concave or vaulted and often villous within are Stachys, Leonuris and Phlomis. From these Moluccella is easily distinguished by its calyx. These plants are hardy annuals, flowering in midsummer. The Hs. are white, tipped pink, scarcely, if at all, thrust out of the calyx, and borne in whorls of $6-10$.

## A. Calyx not prickly.

ľ̀vis, Linn. Shell Flower. Molvcca Balm. Fig. 1414. Height $2-3 \mathrm{ft}$. : lvs roundish, with coarse round teeth: calyx obscurely $\overline{5}$-angled. W. Asia. B.M. 1852 -Fls. odorous.

AA. Calyx beset with long prickles.
spindsa, Linn. Height 6-8 ft.: Irs, orate, deeply and sharply cut: calyx with 1 long spine above and 7 others below. S. Eu., Syria. B.R. 15:1944 (as Chasmonia in-cisa).-Annual or biennial, with orownish red square stems, bristling calyx and gaping corolla. Said to have been cult. in Eng. since 1596.
W. M.

MOMORDICA (mordeo, to bite, since the seeds appear to have been bitten). Cucurbitacea. There are 25 species of Monordica, chietly African, according to Cogniaux (DC. Monogr. Phaner. 3). They are annual or perennial tendril-climbing herbs of tropical countries, some of which are cult. for ornament and also for the edible fruits. The fis. are monœcious or diœecious, the staminate solitary or panicled, the pistillate solitary. Corolla and calyx similar in sterile and fertile fls.: corolla segments $\overline{5}$, often extending nearly to the base, making a rotate or broadly campanulate flower; stamens usually 3 , the short filaments free, one of the anthers 1 -loculed and the others 2-loculed: style single and loag, with 3 stigmas: fr. oblong or nearly spherical, small, often rough, usually many-seeded, sometimes splitting into 3 valves, but usually indehiscent: seeds usually flattened, often oddly marked or sculptured. Tendrils sim-ple-in this distinguished from Luffa. Momordicas are known to American gardens as ornamental vines, but the fruits of $\boldsymbol{M}$. Charantia are eaten by the American Chinese. They are tender annuals. They thrive where cucumbers and gourds will. M. E'laterium of the catalogues is Ecballium, which see.

## A. Bract about miduay on the peduncle, entire: all

 peduncles bracted.Charántia, Linn. Balsam Pear. Running 10 ft . or more, the stem slightly pubescent and furrowed: lvs. roundish, dull green, pubescent beneath (at least on theribs), $5-7$ lobes with rounded simuses, the lobes sharptoothed and notched: fls. yellow. 1 in . across, both the sterile and fertile solitary: fr. yellowish, oblong, pointed, furrowed lengthwise and tuberculate, 6 or 7 in . long, at maturity splitting into 3 divisions and disclosing the bright scarlet arils of the white or brown carved seeds. Trop. Asia and Africa, and naturalized in W. Indies. B. M. 2455. А. G. $13: 525 . \quad$ R. H. 1869, pp. 630-1. - The Chinese about the American cities grow this plant under the name of La-kwa, for the edible pulpy arils surrounding the sceds, and also for the edible fruit itself (which is prepared, usually by ooiling, before it is ripe). The rind is sometimes dried and used in medicinal preparations (see Bailey, Bull. 67, Cornell Exp. Sta., with illustr.). The odd seeds cause it to be called the "Art Pumpkin" by some.
AA. Bract of sterile peduncle near the top, tonthed: peduncle of fert le flower bracted at base or not at all.
Balsámina, Liny. Balsam Apple. Slenderer and more graceful, bright green throughout, glabrous, the foliage smaller and neater. Irs. cordate-orbiculor in ontline, 3 in. or less across, 3 -5-lobed, with roundod sinuses. the lobez and the few notches or teeth acute:
fis. solitary, nearly or quite 1 in. across, yellow, often with blackish center: fr. orange, 2-3 in. iong, ovoid and more or less narrowed each way, smooth or tuberculate: seeds compressed, nearly smooth. Widely distributed in Africa and Asia, and naturalized in the W. Indies. G.C. 1848:271. R.H. 18.37, p. 182. - A neat vine, growing 4-6 ft.
AAA. Bract near the lop of the sterile peduncle, entire.
involucràta, E. Meyer. Much like M. Balsamina, but testh of lvs. blunt, with a short mucro, fls. largec, bract much larger: fis. white or cream-white, often dotted with black: fr. sulfur-yellow, chanzing to scarlet, bursting, 2 in. long. S. Afr. R.H. 1865:350 (as M. Bulsamina, var. leucauthe). B.M. 6932. - A very slender and graceful climber. with the peduncle bract against the calyx, like an involucre. Int. to Amer. trade about 1890.
M. Cochinchinénsis, Spreng. (M. mixta, Roxbg.), is a large species with 3 -Lobed lys., pale yellow, purple-eyed fls., 4 in. across, and an ohlong, bright red fr. $4-7 \mathrm{in}$. long. Farther In dia. B.M. 5145. F.S. 14:1478. G.C. III. 16:531. G.M. $37: 777$.
L. H. B

MONARDA (after Nicolas Monardes, a Spaniard, who published in 1571 a book containing the earliest picture of an American plant. See Fig. 1077). Labiatue. Hop Mint. This includes the Oswego Tea (M. did, at), one of the most brilliant of our native wild fiowe, being surpassed in the intensity of its red only by the cardinal flower. It is a rather coarse herb, with large heads of gaping, wide-mouthed fls., which have none of the refinement of our cardinal Hower. For mass effects,

1415. Monarda didyma ( $\times 1 / 3$ ).
however, these plants are very striking. They grow wild along the banks of streams, lighting up the dark corners of the woods. This suggests their proper place in landscape gardening. They should be grosin in masses, in wild spots against a dark background. However, they can, if desired, be grown in an ordinar sunny border without more moisture than usual. As a bedding plant they would be infrrior to Salcia coccinea, the thowers being shorter-lived. The white-and rose-colored varieties are less desirable. M. fistulosa is the same type of plant, and is procurable in colors ranging from white, flesh color and lilac, through rose and crimson to deep purple, but not scarlet. This species is very variable in height. The lighter colored vazieties are usually less robust

Monardas . re easy of culture, thriving in any good soil. They spread quickly, and therefore need frequent separation, which operation is best done in the spring, as plants disturbed in the fall will often winter-kill.

Monarda is a genus of 9 species of aromatic American herbs: Ivs, usually dentate: fls. often borne in dense heads, surr und. d by an involucre of colored bracts; calyx tubuar, io-nerved, with 5 nearly equal teeth; co-
rolla narrow or dilated at the throat, 2-lipped, middle lobe of the lower lip larger than the lateral ; perfect stamens 2. There are 2 sections of the genus, the species here described belonging to Emmonarda, in which the heads are generally solitary and terminal, the stamens and style conspicuously thrust out, and the root perennial. The following grow $11 / 2-21 / 2 \mathrm{ft}$. high. Une of the conmon Horse-Mints is M. penctata (A.G. 14:15), but it is not in the trade.
A. Calyx slightly hairy at the thru..
didyma, Linn. (.M. K'almiuma, Pursh). Oswego Tea. Bee-Balm. Fragrant Balm. Fig. 1415. Stem acutely 4-angled: ivs. thin, ovate-lanceolate, acuminate. B.M. 145 (erroneously as M. fistulosa, var.), and 546. Vars. alba and rosea, Hort., are offered, but the latter should be compared with the next species. In 1893 John Saul advertised M. K'almiana as if horticulturally distinet, calling it the finest of Monardas.-Suited to moister positions than the others.

AA. Calyx densely bearded at the throat.
B. Le's. petioled.
fi,pule: . Jimn. Wild Bergavot. Sometimes called B, -sery catalogues, but the Bergamot of the Us. Forle : Aentha odorata. Stem mostly obtusely angled. $\cdots$. firs r: its. purple. July, later than $M$. didyr. Ver ra, Gray. Fls. crimson or rosy red. Var. mea. ar. purpùrea, Hort.). Fls. deep pur ple. S.B.F.G. 98 L.B.C. 14:1396 (as M. purpurea). Var. mollis, Benth. (M. móllis, Linn.). Fls. Hesh-color to lilac. B.M. 2958 (as M. menthefolia). - Will grow in dry positions.

3B. Li's. nearly sessile, at least below.
Bradburiàna, Beck. Fls. light purple, spotted darker on the middle lobe of the lower lip, which is much larger than the lateral ones. June. Ill. to Tenn. and Kans. B.M. 3310 (erroneously as M.fistulosa).-A dryish position suits it best.
F. W. Barclay and W. M.

MONARDELLA (diminutive of Monarda, having its aspect, inflorescence and calyx). Labiùte. Annual or perennial sweet-smelling herbs, natives of California. Lus. entire or obscurely toothed: fls. white, rose-color or purple, compacted in terminal heads with an involucre : calyx tubular, narrow or long, 10-13-nerved, 5 twothed; the teeth short, straight and nearly equal; the throat naked within; stamens 4, exserted. The following have been advertised, and can be secured through western collectors.
A. Fls. large, comparaticely few, loosely glomerate.
macrántha, Gray. Perennial, tufted, about 9 in. high: bracts of the $10-20$-fld. head sometimes whitish or purplish tinged: corolla about $1 / \frac{1}{2}$ in. long, glabrous, orangered, its tube fully twice the length of the calyx; the lobes lanceolate.

Var. nàna, gy (M. nàna, Gray). Pubescent: bracts whitish or rose color: fls. smaller: corolla not twice the length of calyx, white or tinged with rose-color, the sleuder tube pubescent.

AA. Fls.smaller, more numerous, densely capitate. B. Plents perenmial.
c. Jeins of lrs. numerous und prominent.
villòsa, Benth. Bracts orate, leafy, pinnately veined. cc. Veins of lis. not prominent.
odoratissima, Benth. Bracts thin, membranons, whitish or pinkish, inclined to parallel renation.

## BB. Plants annual.

lanceolata, Gray. Lvs. lanceolate or oblong, I-2 in. long, tapering below into slender petioles, the margins even and entire: bracts leafy, ovate or oblong, mostly acute, abundantly vein d between the ribs or primary veins by cross veivlets.
M. B. Coclstov

## MONET.LA. A section of Cyrtanthus.

38 (Greek, single delir? ${ }^{4}$; from the pretty solitary er). Ericicpe. Ons a werei Prrola. A genus. ne species, a low pen $\quad-\quad$ ul herb: stem de-
cumbent: lrs. roundish, clustered at base: fls. single. drooping, from top of slender scape $3-6$ in. long, white or rose-colored, 6 lines across; petals 5 , widely-spreading, orbicular; filaments awl-shaped, naked; anthers as in Pyrola, but conspicuonsly 2-horned. M. grandiflora, S. F. Gray (M. uniflòra, A. Gray), grows in moist woodlands from Labrador to Alaska, in midile states and westward along the mountains. It has been offered by one dealer in native plants.

MONEYWORT, or Creeping Charlie, is Lysimachia Vummularia

MONKEY FLOWER. See Mimulus luteus.
MONKEY PUZZLE. Araucaria imbricata.

## MONKSHOOD. Aconitum.

MONOGRAMMA (Greek, a single line; alluding to the elongated linear sorus). Polypodiaicea. A tropical genus of several small species of grass-like ferns, rarely seen in cultivation.
L. M. Underwood.

MONOLENA (Greek words referring to the single spur-like appendage on the anterior side of the antherconnective). Melastomdices. About 4 species of stemless herbs from Colombia, one of which is a small hothouse foliage plant, cult. like Bertolonia, and known to the trade as Bertolonia primuleflort. It has metaliic green lvs. 4-6 in. long, with $3-5$ parallel reins, the under surface of the lis. a showy rosy purple. All the species have a characteristic rootstock, composed of clusters of short, thick rhizomes, prominently scarred by the falling of the lvs., and the fls. are numerons, and resemble a primrose. They are about 1 in . across, 5 petaled, pink, and borne on fleshy scapes. See Bertolonia.
primulæflora, Hook. f. (Bertolònia primuløflora, Hort.). Glabrous: lves. leathery, broadly elliptical: calyx lobes broadly orate-rounded. B.M. 5818. F.S. 18, p. 162. G.C. 1870:309, tigs. 53, 54.

## MONOPANAX. Referred to Oreopanax.

MONSTERA (Latin, a monster). Arìcecr. Monstera deliciosa is indeed a delicions monster in more senses than one. It is a faiorite greenhouse climber, with huge perforated leaves, whose general appearance is sure to be remembered after the first look. (See Figs. 1416, 1417). As the plant climbs, the stems emit long, aërial roots, many of which never reach the ground, but suggest the fingers of some fabulous monster. This grotesque,


14i6. Leaf of Monstera deliciosa.
Grown under glass in the North.
dragon-like aspect is very pronounced in a notable specimen in Philadelphia which has climbed into an upper gallery of the highest house in Horticultural Hall, Fairmount Park. Finally, this unique plant hears an edible fruit, which has a taste between a pineapple and a
banana. The fruit grows about 6-8 in. long, and looks like a long pine cone, the rind being composed of hexagonal plates, as shown in Fig. 1417. The Monstera is a satisfactory greenhouse subject, even in a young stage, and being a great curiosity, exeites much comment from visitors. It is generally kept in a hothouse, but succeeds in a coolhouse also. It is commonly allowed to grow in a spreading rather than elimbing fashion; a noble

specimen of this kind enltivated in Pittsburg is figured by Wm. Falconer in A.F. 7:253.
As a conserratory plant it does best when planted out in a bed of rich soil, where it can be kept within bounds by judicious pruning. It is not particular as to soil, as it fills the pots in which it is planted with thick, succulent roots in a very short time. It is one of the best plants for enduring the varying conditions of temperature in a dwelling house, as nothing short of a freeze seems to hurt it. Propagated by division of the stem, with part of the leaf attached while rooting.
In the American tropics Monstera deliciosa requires a very warm, moist climate for the proluction of fruit. Although it naturally grows by attaching itself to trees and ereeping up, it appears to be more fruitful if compelled to grow on the ground without climbing. The fruit is green in color until it ripens, when there is just a tinge of yellow, and the outer rind comes off in hits at a toneh.

Monstera acuminata is the correct name of the astonishing plant known to the trade as Marcgravia paradora. The adult lus. are something like those of $M$. deliciosr, being now and then perforated, but generally pinnately cut. The young lvs. are utterly different, being much smaller, entire and heart-shaped. This is one of the most striking cases of dimorphism celebrated in horticultural annals, though that of Ficus repens is more familiar, and similar ones occur in Philodendron. In its young stage $\boldsymbol{M}$. acuminata is a very bandsome hothouse climber, with thick, roundish, waxy lrs., which
grow in two ranks and orerlap one another. When the plant was introduced by Bull, it was shown growing on a board apparently in parasitic fashion, and emitting aërial roots. It seemed most like a Marcgravia, but when it flowered and fruited the first name was found to be one of the wildest possible guesses. Marcgravia is a dicotyledon and Monstera a monocotyledon, and the two genera are as far apart as is a Camellia from a Jark-in-the-pulpit. The Monstera-like Ivs. are likely to be developed when the plant reaches 15 ft . In the young stage the plant is generatly allowed to clamber over a dead log or tree-fern trunk, in the manner of Philodendron, which see for culture. Nonstera is a genus of $1: 3$ tropical American climbers, with lis. more or less densely 2 -ranked. Engler in DC. Mon. Phan. Vol. $\because$. (1879).
deliciòsa, Liebm. Ceriman. Figs. 1416, 1417. Young 1vs. 1-2 ft. long, leathery, pimately cut, perforated. A.F. 7:253. G.M1. 41:329. Gn. 21, p. 39 (poor).
acuminàta, C. Koch (M. ténuis, C. Koch. Marcgrdvie paradóxa, Bull). Shisgle Plant. Young lys. a few in. long, waxy, entire. Gn. 29 , p. 290 (both kinds of lvs.). G.C. H. 8:13.

Wim. Fawcett, G. W. Oliver and W. M.
MONTANA, HORTICULTURE OF. Fig. 1418. Montana, from all standpoints, is nothing if not unique. The third largest state in the Union (Texas and California being first and second respectively), there is added to the natural capacity for great local variation found in a state covering 145,310 square miles, the additional feature of its being traversed by the main range of the Rockies. The eastern portion of the state is plains country, with a mean average altitude of 2,000 feet above sea level.

Along the southern boundary, perhaps 125 miles west of the state line, are the Wolf mountains, west of these the Rosebud and the Pryor mountains, toward the northern boundary and 175 miles west of the state line are the Little Rockies, west of these the Bear Paws, while dotted or $r$ the eastern central portion of the state are the Moccasins, the Big and Little Snowies, the Belts, the Highwoods and the Crazies. These, with the exception of the Belts, are isolated from other mountains, or detached spurs from the main range, and abound in the exceptional adrantages which arise from good soil, favorable exposure and convenient means for irrigation.

About the center of the southern state line the main range of the Rockies is encountered. This range traverses the state from this point in a northwesterly direction, and after entering this range and proceeding westward one is never out of sight of mountains until reaching the western contines of the state.

The summits of the main range vary from 7,500 to 10,000 feet abr ${ }^{-}$a sea level, and present mighty barriers to the winter storms which sweep madly over the country to the east and south of Montana, often bringing intensely cold weather in their wake. Then, too, the climate of the state is sensibly affected by chinooks, those much misunderstood currents of warm air which rob winter of all its terrors in regions visited by them. The botanist and horticulturist have much to learn, as yet, concerning the effect of altitude upon plant growth. In a general way, it is supposed that 9,000 feet is the socalled limit of timher, though, as a matter of fact, it often happens that above this point the crowns of the mountains are composed of living rock devoid of soil and other needed adjuncts to tree growth. Illustrations of the unwillingness of plant growth to be circumscribed by alt:tutinal lines are found in the city of Denver, which lies 5,000 feet above sea level. There many trees have been successfully transplanted from their intural havitat at sea ic rel along the shores of Puget Sound to a point nearly a mile aloft, and into a climate as naturany dissimilar as conld well be found. In Cheyenne, Wyo., there is a luxuriant development of the black locust at an eleration of 6,100 feet. This is a tree that needs to be most carefully handled to avoid winter-killing in Minnesota, 5,500 feet nearer to sea level. Another point in instance is found in the sugar beet chart of the Department of Agriculture. This is designed to show the belt of country in the Cnited States best adapted to
beet-culture. This starts on the Atlantic in the latitude of New York city, extends nearly due westward to the western line of Wisconsin, and no drunkard ever pursued a more erratic course than it in making its way from the Greai Lakes to the Pacific at the head of the Gulf of California.

Horticulturally speaking, Montana covers the entire scale of the limits of fruit production in the United States, except the citrous and other subtropical fruits. In no other state of the Union is there more need of the scientific experimenter, not so much to determine the species adapted to Montana as to wisely select the varieties of species that will give best results. There is one safe rule to observe in western fruit-tree planting, aroid alkali soil. After an actire experience of 15 years of tree-growing in Minnesota and the Dakotas, the writer is convinced that more failures in orcharding resulted there from planting in alkali soil than from any other cause. It is easy, however, to determine such conditions; very much easier under irrigation, as the application of water brings the salts to the surface, where they are easily noted, as they rapidly crystallize when exposed to the air. Within the valleys and canons leading out from the mountains it is rare that alkali is found on suitable orchard locations.

Montana owes much of its phenomenal suecess it fruit culture to natural conditions; most important of these is the abundant supply of water, easily available for irrigation. Irrigation in oreharding places the tree or plant under complete control. In the growing season, water can be supplied to supplement any existing lack of moisture; and by withholding this artificial aid in the latter part of the season, perfect ripening of the wood is accomplished and the tree placed in the best physical condition to endure sudden climatic changes. Again, it is customary to itood the orchard late in the season, after the foliage has fallen, with the result that root killing is absolutely unknown in Montana. So free is the state from disasters of this nature that budded trees are succeeding remarkably well wherever they have been set in close proximity to the mountains. Another decided advantage is in the physical formation of the state; the make-up of the mountains is not, as many suppose, a shaping up of every range and peak to a sharp rocky apex, but in all ranges there are vast expanses of open phateaus extending back onto lower outlying spurs. Heading in the mountains, usually near the summits, are deep cañons leading down and out to the open plains conntry at the foot of the ranges. There is a constant movement of air from the upper to the lower plateans throtigh these canons occasioned by the superheating of the air of the lower levels during the middle of the day. The heat, in rising, causes a partial racuum, and the cooler air of the upper levels flows down to occupy this. This is especially true in the earlier night honrs. So common is this as to give the name "cañon breuzes" to these currents. which are plainly to he felt miles away from every extensive cañon's mouth far out on the open plains. This constant current of air, pasaing over the surface of the earth. wards off frosts and gives fruit immunity from this great cause of loss to those growing fruit outside of mountain listricts.

Early orcharding was attended with almost prohibitive conditions. In 1864, trees were set in Missouri valley by John G. Pickering, who is still living and planting. Some of the trees originally set are alive ansl bearing. Trees then came in by way of Utah on pack
horses, and were sold for from $\$ 2.50$ to $\$ 5$ each. The next plantings were made near the present site of Stevensville, in the Bitter Root valley, by Bass Bros. Their apple crop for 1898 was estimated at 10.000 boxes. The Bitter Root valley is in the southwestern part of Montana, and is about 100 miles in leagth, with an average width of perhaps 10 miles. This ralley has been the scene of the greatest aetivity in orcharding to date. It has an altitude of about 3,200 feet, and as it lies to the westward of the main range of the Rockies, $i$ : possesses marked advantages over the country to the eastward. It also has a soil exactly adapted to apples, pears, cherries, plums, grapes and small fruits. The soil is of decomposed granite, with an almost total absence of alkali. To the casual observer it appears to be light, stony, gravelly and comparatively worthless, but quite the reverse is the case. The main difliculty is to restrain undue growth of tree and superaburdant fruitage. It is a soil that loes not bake after irrigation, hence water can be freely used, and in a way stored, as evaporation does not occur from capi!lary attraction, as is always the ease when there is too grent $\&$ preponderance of clay in the texture of the soil. It is within bounds to state that upon soils carrying a heary percentage of clay, fully one-half of the benefits arising from irrigation are lost from the inability of the farmer to multivate immediately after irrigation. Bitter Root orchards range from 100 trees set for home use to 500 -acre blocks for commereial purposes. The main difficulty there experienced is in the selection of the best varieties for gereral planting.
The pomologist can find in this one valley every variety

14:8. Montana.
The shaded parts show horticultural areas.

of apple that is now growing in the combined nurseries of New York state. The only bars there 1 nd to the snccessful cultivation of all standard and sm... fruits is the brevity of the growing season and the coolnsss of summer nights: owing to altitude the air is rare and dees not reiain heat after sundown, as is the case in the lower-lying and more humil sections of the United States. The clearness of the atmosphere and attendant brillancy of the sun gives to fruit such coloring as is never noted, excepi in similar altitudes; and while extended experiments have not been conducted along these lines, it is believed that the proper use of water in irrigation does not necessarily imply that the fruit thus grown carries an wadse percentage of moisture when compared with fruits grown without irrigation.

In the phenomenally dry season of 1891. Early Rose potatoes grown in Wiseonsin were analyzed, is also were Montma Early Rose grown under irrigation, and the moisture content of the Wisconsin polatoes was considerably higher than that of the Montana potatoes.

What has been done in the valley of the Bitter Root
is being attempted in Flathead valles. a large northwestern valley, with the best results. The range of varieties is fully as wide as that of the Bitter Root, and as the altitude is about 400 feet less it is to be expected that fully as good results will eventually be attained.

Some dificulty is experienced from frosts in the Flathead country, but as the heavy growth of deciduous and conifer tiaber, which covers the majority of the bench lands in this region, is eut off, no doubt the increased circulation of air will prevent serious loss to fruit from frost. Among other valleys achieving marked success in fruit and vegetable culture, are those of the Gallatin, Yellowstone, Upper and Lower Missouri, Clark's Fork of the Yellowstone, the Judith, Milk, Marias, Teton, Madison and Jefferson. In these valleys the better apples, cherries and plums are readily grown, and it is safe to say there are not 160 acres of farm lands in the state where, if the planter will avoid alkali soil and set trees with reference to the possibility of irrigating them, the Transcerdant and Hyslop crabs, and the hardier of the standard apples, together with the sinall fruits, cannot be successfully grown.
S. M. Emery.

MONTBRETIA. See Tritonia.
MONTEREY CYPRESS. Cupressus macrocarpa.
MONTIA (Guiseppe Monti, professor of botany at Cologne in the first half of the eighteenth century). Portulacicec. About 18 species of American herbs. including the Winter Purslane, a salad or pot-herb known to the European trade as Claytomia perfoliata. This odd plant is perhaps cult. in America by a few fanciers of rarer kinds of vegetables. In hot countries it may be more desirable. It is an annual plant forming a compact tuft about $9-12 \mathrm{in}$. high. The lvs. are all from the root, tender, thiek, fleshy, with a slender petiole about 2 in . long, and a blade about $1 / 2$ in. long, which varies from lanceolate to rotund. The most remarkable feature is a sort of cup an inch or more in diameter, from which arise the racemes of small white tls. One of these cups crowns each of the stems, which are numerous. slender, leafless, and about twice as long as the lis. The name "perfoliata" is suggested ly the resemblance of the cup to a perfoliate leaf. In M. perfoliata the cup is usually 2 -lobed, and the species runs into M. parriflow, which rarely has the enp transformed into two almost disjoined lvs. The Winter Purslane is now a weed in many parts of the world. The seed may be sown all through spring and summer where the plants are to stand.

Montia cannot be distinguished from Claytonia by any one character, but the cultirated plants of both genera have been sufficiently discriminated here and under Claytonia. The latest monograph is by B. L. Robinson in Syn. Flo. N. Amer., Vol. I, part 1, fase. II (1897).
A. Stems without true les.
13. Pedicels short, seldom exceeding the fruiting calyr.
perfoliàta, Howell (Ciugtomien perfoliàtu, Don). Wixter Purslane. Rather coarse, green, often reddening with age. Banks of streams, Calif. to Ariz. and Mex., north to Brit. Col.; common near Pacific coast. It grows wild in Cuba but is not native there, as often stated. В.M. 1336. R.H. 1897 , p. 159.
sis. Pellicels in fruit $2-f$ lines long, much longer than the culyx.
parviflòra, Howell (Clitytònia parviflora, Dongl.). More slender, green or slightly glaucous. Calif. to Brit. Col., east to daho and Utah.

AA. Stems with numerous small alternate lis.
parvifolia, Greene (C'leytonia parrifolia, Moc.). Fls. rose-color to white. Plant has bulblet-like offsets. Moist roeks, Brit. Col. to Roekies in Mont. and Alaska. This and the preceding one have been advertised, but have little if any ornamental value.
W. M.

MOON DAISY. Name used in Englazd for Chrysanthemum Leucethemum.

MOONFLOWER in America always means Ipomaa Bone-Nox and related species; in England it rarely, if ever, means this, but Chrysanthemum Leucanthpmum our common white weed or ox-eye daisy. Moonflower
in England also means occasionally Anemone nemorosa and Stellaria Holosteu.

MOONSEED, Menispermum Canadense.
MOONWORT. Bolrychium; also Lemeria.
MOOSEW00D. Dirca palustris and $A$ cer Pennsylvanicum.

MOREA (probably named after Robert Mere, botanist, Shrewsbury, Eng.). Moraas are charming bulbous plants much like lrises, but unfortunately they are not so hardy as the common Irises and the individual fls. last only a day or so. Morea is a genus of about 60 species, 45 of which are $S$. African, while the rest are chietly from tropical Africa. Morea is the African representative of Iris. No one character will separate the two genera. Mormas have no perianth tube, while Irises usually have one. The filaments are usually monadelphous in Morea and free in Iris. Irises grow either from rhizomes or bulbs, while Moreas mostly grow from corms, except the subgenus Dietes, which grows from a rhizone. Most of the showiest Moræas belong to the subgenus known as Morrea proper. Species $7-13$, described below, belong to this group. There is another subgenus which differs from it in having the ovary extended into a long beak which looks like a perianth tube, but none of this group is cult. The Moreas proper are about as tender as other Cape bulbs. The amateur may find some suggestions as to their culture under Bulbs, Iris and Ixit.
By far the largest and most remarkable plant of the genus is Mowea Robinsoniana. This grows $6-8 \mathrm{ft}$. hirh and has the habit of the New Zealand flax, Phormiun tenux. A splendid specimen mentioned in B.M. 2212 bore 457 flowers between June 20 and Oct. 1. The indi vidual ths. are 4 in . across, fragrant and last only a day. At Kew this noble plant has been successfully grown in the south end of a house. The stately plant pietured in G.F. 10:255 grew in a Californian garden and was said to be 16 years old from seed. The finest picture, however, is that in G.F. 4:355

INDEX.
bieolor, 3
Dietes, 10
edulis, 9.
fimbriata, 8.
glancopis, 5.
iridioides, 2.
juncea, 11.
longifolia, 9. lutea, 4. papilionacea, 7 Pavonia, 4. polyanthos, 1:3.

Robinsoniaua. 1.
spathacea, 10.
tricuspis. 4,6. tristis, $1 ?$ villosa, 4.
A. Rootstock a short creeping rhizome.
(Siulgenus Dietes).
B. Color of fls. chieily white.
c. Meight of plants $6-8$ ft........ 1. Robinsoniana
CC. Meight of plants $1-2$ ft....... .. iridioides

13B. Coior of fls. chiefly yellow..... 3. bicolor
AA. Rootstock a tumicated corm.
B. Inner segments inconspicuous. (Subgemus Viensscuria).
c. Color of fls. chiefly orange-

cc. Color of fls. chiefly white.

1. Spots blue.................... 5. glaucopis
DI. Spots broun................... 6. tricuspis

Bв. Inmer segments conspicuous.
c. Height of stems $1-3$ in.
D. Les. hairy ull over ....... T. papilionacea
D). Ins.huiry only at the edges. 8. fimbriata
cc. Ileight of stems more theen 3 in.

1. Stem.s provided with 1 long
wiry leaf, just belou the
inflovescence............. 9. edulis
Db. Stems not so provided.
E. Fls. usullly 1 or 2 on
n stem..................10. spathaces
EE. F'ls. loosely corymbose.
fls. small.
F. Sputhes $1 / 9-3 / 4$ in.
long............11. juncea
FF. Spathe: $11 / 2$ in
lngy ................. tristis
2. polyanthos
3. Robinsoniàna, Hook. (İris Robinsoniima, F. Muell.). Weding Iris. Outer segments spotted red and yellow near base. B.M. 7212. G.F. 4:35̄̄; 10:25n. J.H. III. 32:569. G.M. 34:569. G.C. 1872:393; 1II 9:457.
4. iridioldes, Linn. Stem 1-2 ft. long, with many short, sheathing, lanceolate bracts: lvs. in fan-shaped basal rosettes: fis. over 3 in . across, white. marked yellow on claws of outer segments; style crests marked with blue. B.M. 693. L.B.C. 19:1861 (Iris crassifolia).
5. bicolor, Steud. Habit of M. iridioilles: fis. 2 in. across, yellow, with beautiful brown spots on the outer segments; style crests yellow. B.R. 17:1404. L.B.C. 19:1886. P.M. 9:29 (all as Iris bicolor).
6. Pavònia, Ker. (Irvis Purònia, Linn. f.). Outer segments without a distinct claw, orange-red, with a blue-black or greenish black spot at the glabrous base. B.M. 1247-Var. villossa, Baker. Lis. pilose: outer segments bright purple, with a blue-black spot on the hairy claw. B.M. $\overline{\mathrm{I}} 1$ ( Iris villosa). Var. lùtea. Baker. Les. glabrous: fls. yellow, unspotted. B.M. Tia (Morea tricuspis, var. lutefl). In M. Puconia and glatuco$p$ is the inner segments have a large central cusp and 2 lateral lobes, while in M. tricuspis the inner segments have 3 large cusps.
7. glaucopis, Drap. Outer segments white, with a blue spot. B.M. 168 (erroneously as Iris Paronia).In this species the outer segments have a short, distinct claw, while M. Pavonit has none.
8. tricuspis, Ker. Outer segments whitish or lilac, with a purplish spot. B.M. 696.
9. papilionàcea, Ker. Fls. red or lilac, yellow on the claw; style crests erect. B.M. 750 .
10. fimbriàta, Klatt. Fls. lilac. R.H. $1867: 271$.
11. édulis, Ker. Fls. lilac, spotted vellow. B.M. 613. - Var. odora has white Hs. Var. longifolia has yellow fls. B.M. 1238.
12. spathàcea, Ker. Fls. yellow. B.M. 6174 (Dietes Huttoni).
13. júncea, Linn. Fls. lilac, in 2-3 clusters.
14. tristis, Ker. Les. 2-3, produced near the base, 1-2 ft. lohy: elusters of fls. 4-6;: Hs. dull lilac, ochre or salmon-colored, with a yellow spot. B.M. 572 ( Iris tristis).
15. polyánthos, Thunb. Les. about 3, one from near the base of the stem. the others from the lower forks, $1 / 2-1 \mathrm{ft}$. long: clusters of Hs. $\overline{\mathrm{j}}-2 \mathrm{u}: \mathrm{Hs}$. lilac.
M. Macleaii, alvertised 1809 by Van Tubergen, is said to belong to the subgenus Dietes.-M.Sisyrinchium=1ris Sisyrinchium. W. M.

## MOREL. See Mushroom.

MORINA (Louis Morin, a French botanist, 1636-1715). Dipsacen. Seven or 8 species of perennial herbs in western and central Asia, from 3 in . to 4 ft . high. Les. opposite or whorled, narrowly ohlong or linear, spinous-toothed: As. whorled; whorls in spikes, surrounded by wide-based floral les.; bracteoles among the fls. few, spiny.
longifollia, Wallich. A handsome plant 9 ft . high, with thistle-like foliage: Irs. 6 in . long. 1 in . across: ths. showy. deepening from white in the bud to pink and finally crimson, crowded in dense whorls near the top of stem. Hardy. Cult. in light, sandy soil, with partial shade. Prop. by seed and by division in early autumn. Useful in the rockery and border, and with other foliage plants. June-Aag. Himalayas. B.M. 4092. B.R. 26:36. R.H. 1857:514. - Whorl-flower is a catalogue name.

MORINDA (Latin, morus. mulherry, and Indice, Indian). IPubiecer. This includes the Indiau Mulberry, M. citri-
folia, a tropical fruit tree cult. in S. Fla. and S. Calif. (see Fig. 1419). It has heads of small white fis., followed by globose or ovoid, berry-like fruits about 1 in. long. The genus contains about 40 species of shrubs, trees and climbers in tropical Asia, Australia and the Pacific islands, and 3 or 4 tropical American species. L's. opposite, rarely in 3's: fis. white, in axillary or terminal, simple, panicled or umbellate heads; corolla tube short or long; lobes 4-7, coriaceous, ralvate in the bud.
citrifolia, Linn. Indian Mtlberry. Fig. 1419. A smail tree, with shining, broad or narrow, ovalles. on very short petioles: stipules large, broadly oblong or semi-lunar; H.-head on solitary pelluncles 1 in . long usually in the axil of every other pair of Ivs.: calyx limb truncate: corolla $\overline{5}-\bar{i}$ loberl, tube about $1 / 2 \mathrm{in}$. long: fruits yellowish, fleshy, in a globose or ovoid head about 1 in . in diam. G.C. 11. 11:333.

Var. bracteàta, Hook. Stipules more acute: calyx limb often with a lance- or trowel-shaperl, white, leafy lobe, sometimes 3 in . long. Offered in S. Calif. and Fla.

## M. B. Cotlston.

MORINGA (altered from the native Malabar name). Moringdecte. Only three species comprise the family Moringacea, all members of the genus Moringa. They are small, spineless tree., with alternate, deciduons, pinnate lys., axillary panicles of rather large, white or red fls., and long, pod-like fruits. They are native of $\mathbf{N}$. Africa and the tropical parts of Asia. The position of the family Moringacea is difficult to determine. Bentham \& Hooker ally it with Anacardiaceæ. Engler and Prantl place it between Resedacee and Sarraceniacem. Grisebach joins it to the Capparidacea. Others ally it

1419. Morinda citrifolia branch with leaves, flowers and fruit ( $\times$ 游). Also vertical section of fruit (fruit sometimes larger) and enlarged flower below.
with the Leguminosx, which it resembles in externa appearance. Fls. perfect, j-merous; calyx cup-shaped, 5 -eleft, the lobes reflexing; petals $\overline{5}$, one of them erect and larger; fertile stamens $\overline{5}$, alternating with 5 or 7

423. Moringa oleifera About natural size.
1421.

Moringa oleifera-
the Horse-radish Tree. ( $\times 1 / 3$.
staminodia, the anthers attached on the back, and 1-loculed: fr. a long. 4-9-angled, 1-loculed pod with 3 valves, the seeds immersed in the spongy contents of the valves.
oleifera, Lam. (M. pterzgospérma, Gærtn.). Horseradish Thee. Figs. 14:0, 14:I. simall tree (reaching 2.5 ft ), with soft wood and corky bark, the young parts pubescent : lvs. mostly 3 -pinnate, 1-2 ft. long, all parts st ' ' Hs. Whitish, atalked, fragrant. 1 in. across: pod ft. long. 9 -ribbed, bearing 3 -angled, winged lia, but now spontancous in parts of the $W$. ce Horse-radish Tree is so named from the ste of the root, which is sometimes eaten. : f: is also edible. The seeds (called ben1 an oil, which is more or less nsed in the arts. s sometimes colt. in the extreme sonthern
L. H. B.
(

IES (Greek, a arotesque crature). Orchiais genms is remarkable for the interesting s flowers. which suggested the name given to - ${ }^{2} y$ Lindleg. The ponts are rather large, a pering psendobulbs sheathed by the dry the fallen lvs.: Ivs. long, plated, deeiduon in umn: raceme from the base of the psendobulbs many show ${ }^{\text {ils.: sepals and petals subequal, }}$ arrow; labellum firmly united with the column, Hute margins, rarely concave, turned to one imn without appendages, twisted in the oppotion from the labellum. Distinguished from - related genus Catasetum by its perfect fls. ess collumn.

Mormorles are commonly found in poor condition among the collections, which is the result of neglect rather than difficulty of cultivation. They should be grown in small baskets suspended from the roof, in a compost of equal parts of clean chopped peat-fiber, sphagnum and sod, interspersed by nodules of charcoal, and the whole press. " in firmly around the roots. The roots like to work anong the charcoal, and this also serves the purpose of dividing the compost, thereby allowing it to dry out more readily. Mormodes do not require an abundance of water at any time, and the compost should frequently be allowed to dry out during the growing season. When at rest, an ocsasional application will suffice to keep the soil moist and the pseudobulbs from shriveling. Rebasketing should take place at the commencement of new growth in spring. They all require warmhouse temperature; the Cattleya or Cypripedium department affords them a proper location regarding temperature and moisture.

Cult. by Robert M. Grey.
Colossus, Reiehb. f. Pseudobulbs 6-12 in. long, elothed with brown sheaths: lvs. elliptic-ovate, $10-15$ in. long, plaited: raceme inclined, 2 ft . long, with the stalk: fls . $\overline{5}-6$ in. across; sepals and petals narrow-lanceolate, spreading or reflexed, with recurved margins, pink below, changing to yellow toward the uppor portion; labellum orate, iong-acuminate, very revolute, yellow, somewhat sprinkled with pink lots. March. Cent. Amer. B.SI. 5840.-A plant of striking appearance.
pardina, Batem. Pseudobulbs $4-7 \mathrm{in}$. high, stem-like, sheathed by the bases of the lanceolate, striate lvs., which are 4 times as long: raceme nodding, many-fld., shorter than the lrs.: Hs. yellow, spotted with reddish purple, fragrant, crowded on the upper end of the stalk; sepals and petals ovate, pointed. convergent; labellum nearly like the segments but with 2 lateral acute lobes. July, Ang. Mex. B.M. 3900. F.C. 3:113.-A curious and rather rare plant. Var. unicolor, Hooker (Masmodes citrina, Hort.). Fls, of one color, all yellow. B.M. 38:9. 1.H. 1:25. G.C. III. 14:181. Var. aurantiaca, Rolfe. Sepals and petals golden yellow; labellum yellow. I.H. 39:144.
Buccinàtor, Lindl. Plants 1-2 ft. high: lvs. lanceolate, membranous, striate: Hs. pale green, with an ivorywhite lip; sepals linear-oblong, the lateral ones reflexed; petals ereet; labellum subrotund-cuneate, with the sides rolled back, giving it the appearance of a trumpet. April. Mex. B.M. 445 (.M. lentiginosa). -This plant is extremely variable in colur, ranging from nearly white to chocolate-hrown, the various forms being either spotted or plain. Its forms have been described under at least $i$ distinct specifie names.
luxàta, Lindl. Pseudobulbs $4-6$ in. long: sheathing les. 1-2 ft. long, narrowlanceolate, plaited: raceme much shorter: fls. 2 in. in diam., rather Heshy and globular, lemon-yellow, with a dark brown streak down the labellum: sepals ovate-lanceolate: petals oblonig. concave: labellum hemispherical, concare, obsoletely 3lobed. July. Mex. B. R. 29:33. R.H. 1889:132. - Very t. rant. The fls. are ren. kably distorted. Var. eburnea, Hort. Fls. creamy white. This is a very effective plant, superior to the type. G.C. II. 18:145. I.H.

1422. Staminate catkin of Russian Mulberry. Natural size.

1423. Pistillate catkin of Russian Mulberry. Naturalsize. :34:35.

Heinrich Hasselbring.

## MORNING-GLORY. Iрошап ригригеа.

MORRENIA (Professor Charles Morren, Belg:ain lootanist). Asclepiaducere. One or two pubescent twinins shrubs of S. Amer., allied to Cynanehum, but ditforing in its conrex 9 -lobed stigma (flat or concave in

Crnanchum) and the tubular corona, whieh is longer than the pistils, villose on the inside, and conniving over the pistils. The lvs. are opposite and hastate. M. odorata, Lindl., is offered by Franceschi, S. Conlif. It has white fragrant fls. in dense cymes in the axils. Described by Lindley as long ago as 1838 , but appears never to have been brought into caltivation. Franceschi says it is "a noble vine; foliage very distinct." Argentine and Paraguay.


MORUS (the ancient La*in name). Urticicece or Moviceq. Mulberry. About 100 species of Mulberry have been described, but the latest monographer (Burean, DC. Prodr. 17:237 [1873]) reduces them to 5. Some of the names are now referred to otier genera. Many of the names represent cultural forms of $M$. albr. Mulberries are grown as food for silkworms and for the edible fruits. The silkworm Mulberry of history is M. albe, and the fruit-bearing Mulberry of history is $M$. nigru. Yet, strangely enough, the leading fruit-bearing varieties of North America are derived from M. alba (see Bailey, Bull. 41, Corbell Exp. Sta., and "Evolution of Our Native Fruits"). The native M. rubra has also given varieties which are grown for their fruits. The silkworm Muberry of the Chinese is M. multicaulis, by some considered to be a form of $M$. albu. This was introduced into North America early in the century, and for a time there was the wildest speculation in the selling and planting of the Mulberry tree, and in the rearing of silkworms. These efforts have now largely passed away in North America. M. multicfulis gave rise to one variety which was prized for its fruits, the Downing. This variety is now little known, but the name has been popularly but erroneonsly transferved to a good variety of M. albe (the New American).

The Mulberries are trees of the temperate regions of the Old and New World. The genus Morus usually has monocious flowers, both sexes being in small hanging axillary catkins, the males soon falling (Figs. 1420-23). The calyx is 4 -parted: stamens 4 , the filaments partially inclosed in the ealyx-lobes (Fig. 1424). In the pistillate flower there is one orary with 3 stigmas, and the 4 ealyxlobes are adherent to the ovary (Fig. 1425). The pistillate fiowers become fleshy and cohere into a long multiple fruit which suggests a blackherry in external appearance (Fig. 14:6).
In North America the Mulberry is known chietly as a fruit-bearing tree, although it is never planted extensively and the fruit is scarecly known in the market. Two or three trees about the home grounds are sufficient to supply a family. The fruits are sweet and soft. To many people they are too sweet. Becanse of their sweet ness they are of little valne for culinary uses. They usually drop when ripe. They are harvested by being shaken on sheets or straw. Birds are exceedingly fond of them. In the East and North, varicties of M. alba are chiefly grown, as the New American (Downing of most present nurser-
1426. Fruit of Morus alba. Natural size.
thin gravels and rocky slopes. For fruit-bearing purposes, trees may be planted from 20 to 40 feet apart.

The Russian Mulberries are offshoots of M. alba. Their particular merits are great hardiness to withstand cold, drought and neglect. They are useful for low wind-breaks and also for sheared hedges. They have becone popular on the plains. They are readily propagated by seeds, and the resulting plants are variable. Now and then a large-fruited form appears and it may be named and propagated, but for the most part the Russian Mulberry has little merit for its fruits unless one desires to feed the birds.

Varieties of Mulberries are now mostly worked on seedlings of the IRussian. One of the most successful grafts is S. D.Willare's method, shown in Fig. 1427. The grafting is performed in spring when the bark will slip, using cions which have been kept perfectly dormant or on ice. $a$ is the cion, the lower part being eut thin so that it will enter readily between the bark and wood of the stock. $b$ is the stock, with an incision made through the bark essentially as for shield-hudding. $c$ shows the graft bound with raffia. d shows the completed operation, the work being eovered with grafting wax. Morns multiceulis grows from cuttings in the South. These cuttings, with the buds removed to prevent sprouting, are often grafted before they are planted with a long cion of the desired variety (see Fig. 941). The cutting acts as a nurse, and the eion takes root of itself if set deep enough.
There are many Mulberries with ornamental forms. Of these, the most popular in America at present is 'Ceas' Weeping, a chance seedling of the Russian Mul-

1427. A method of grafing the Mulberry
$a$, the cion; $b$, matrix to receive cion: $c$, the graft tied; $d$, the graft wixed
berry tribe. When grafted several feet high on straight Russian stock, it makes one of the best of small weeping lawn trees (Fig. 1428). It originated on the grounds of John C. Teas, Carthage, Mo., abou* 1883. Varions cut-leaved forms, mostly of M. nlow, are seen in fine collections, of which the form known as M. nerrose (Fig. 1429) is one of the best. The foliage of Mulber ries is interesting because so variable. Even on the same tree there may be leaves of several forms, while different trees of the same speries may show strong individual traits. The most striking rariations are in the lobing of the leaves.
A. Lis. mostly bright and glabrous above, and usually glossy.
B. Style vary short or practically none.
ába, Linn. White Mllaberry. Figs. 1430, 1432 B. Lus. light green, rather smail, smooth or very nearly so above and often shining, the veins prominent beneath and whitish, variously lobed or divided, the basal lobes unequal, the teeth large and for the most part rounded or nearly obtuse, the branches gray or grayish yellow: fr. variable, usually narrow, 1-2 in. long, white or violet, very sweet. China.-Morus alba has heen cultivated from the earliest times, chiety for feeding the silk worm. It is a frequent tree along roadsides and in the old vards in the castern states, where the trunk sometimes attains a diameter of two feet. This half-wild forn usvally has rather small rounded shining leaves with very large rounded teeth, and bears little whitish c: violet fruits, which are very sweet. Sometimes the

## MORUS

fruits are an inch long, but they are oftener only half that length, and one sometimes finds trees on which the fruits are barely a quarter of an inch in length. Now and then a tree bears fruit nearly or quite black. Birds, poiltry and hogs are fond of these Mulberries. The trees are usually very thick-topped and bushy growers, but occasionally one is seen which, when young, has branches as straight and trim as a Northern Spy apple. These half-wild trees are seedlings, and this accounts for their variability.
Var.Tatárica, Loudon (.M. Taturica, Limn.). Ressian Mclberki. Figs. 1420-25, 14:31. A haray type of Morus alba which was introduced into our western

## 1428. Teas' Weeping Mulberry.

 states during $1875-75$ by the Russian Memmonites. It dif fers little from the type of Morms allu in botanical characters. As commonly seen, it is a low-growing very bushy-topped, small tree with small and much-lobed lrs. The fruit is usually very small and insipid, and varies from creany white to violet, deep red and almost black.Var. nervòsa, Hort. Fig. 1429. Lrs. contracted and jagged, and very strongly marked witis many white veins. It bears fruit a half-inch long. Among the horticultural curiosities this tree should find a place, although it is not grown by our nurserymen. Its orna mental value is considerable, especially when striking effects are desired. Rare in America. A large specimen stands in the grounds of the Department of Agriculture at Washington. The history of the Nervosa Mulberry is obscure. Delile described it in a French periodical as long ago as 1826 , and it is described in monographic works. It is of horticnitural origin.

The following names, which one may find in horticultural literature, are referable to M. albu: cedroma(?).colombússa, Constantinopolitìna, globòsa, intermèdia, Itílica, lacinidta (of some), lùcida, membramùcea, macrophy̆lla, Morétti, Romàna, ròsea, urticafòlia.

BB. Style evident or even prominent.
Japónica, Audib. (M. álba, var. stylòsa. Bureau). Lrs. usually large, dull, rather thin. long-pointed, the rounded teeth very large and deep, or the margin even almost jagged, the leaves upon the young growth usually deep'y lobed. China, Korea, Tapan. - This species has been introlaced lately. It is tender in the North when young. The fruit is described as sbort-oblong and red.

:429. The Nervosa MulberryMorus alba, var. nervosa. not in the North.
lutifolia, Poir., which Burean refers here, is probably M. Indica, Linn.). Fig. 1432 A. A strong-growing small tree or giant shrub, with dull, roughish and very large, long-pointed lvs., which are seldom or never prominently lobed, and which are often convex above, bearing black, sweet fr.; style evident. China, where it is the chief silkworm Mulberry.-Once much grown in this country, but not now well known, particularly

nigra, Linn. Black Mulberry. Lrs. dark, dull green, rather large, tapering into a prominent point, commonly very rough above, usually not lobed, the base equal or very nearly so on both sides, the teeth rather small and close, the branches brown: fr. large, comparatively thick and fleshy, mostly dark-colored. The black Mulberry is a native of Asia, probably of Persia and adjacenc regions. - This is the species which is cultivated in the Old World for its fruit. In America it is very little grown. It is not hardy, except in protected places, in New England and New York. The Black Persian Mulberry of the South and of California is probably of this species.
rùbra, Linn. Native Red Mclberry. Fig. $14: 33$. Lrs. usually large, very various, those on the young shoots deeply lobed with very oblique and rounded sinsues, in the base of which there are no teeth, the upper surface rough and the lower one soft or variously pubescent, the teeth medium or comparatively small and either rounded or bluntish: fr. deep red, or w.ren fully ripe almost black, variable in size, often very good, nearly always having an agreeable slight acidity. Mass. to Fla., Kans.

AA. Lis. dull green, mostly rough or pulescent. B. Full-grown les. move then 4 in. long.
multicaùlis, Perr. (Mr.illn, var. muticaìlis, Loudon. M. alba, var. latifòlia, Bureau. M. Sinénsis, Hort. M.
and Tex., mostly in rich soils and bottom lands. S.S. $T: 320$. - This native Mulberry has been tried for the feeding of silkworms, but with indifferent success. At least three of the named fruit-bearing Mulberries belong to it, and a yellow-leaved Iulberry, which is
somewhat grown for ornament, also appears to be of this species. The curious lobing of the lve. on the young growth is shown in the upper spray of Fig. 1423. The nearest approach to this lobing is in the Japanese (Morus Japonica), and this affords another of those interesting parallelisms which exist between the Japanese and eastern American tloras. The red Mul-

1431. Russian Mulberry-Morus alba, var. Tatarica ( $\times^{2 / 4}$ ).
berry is the largest tree of the genus. In the South it often attains a height of 70 ft . and a diam. of 3 or 4 ft . The timber is used for posts and light woodwork.

Var. tomentòsa, Bureau. (M. tomentòsa, Raf.). Lrs. very soft-pubescent and whitish beneath, often glossy wht rough above. Tex.-A large-fruited form of this was introduced in 1889 by T. V. Manson as the Lampasas Mulberry.
bB. Full-groun. les. usually \&in. or less long.
celtidifolia. HBK. (M. Mexicima. Benth. M. microphilla, Buckl.). Much smaller tree than M. rubra. rarely more than 25 ft . tall, and with smaller and smoother ivs. and smaller, sourer black fr., which ripens earlier and is not so good. Lrs. corlate-ovate, more or less lobed, mucronate-serrate, nearly smooth on both sides: fr. shortovate or sometimes nearly globular. Tex. and Ariz. to Ecuador. S.S. 7:321.-Occasionally planted for its fruits.
L. H. B.

MOSQUITO PLANT. See $C y n$ anchum.

MOSS. A general name for many humble green plants of the cryptogamia (flowerless plants), mostly with distinct stems and foliage leaves. In North America there
 are about 1,200 species, diotributed in namerous families and four orders. They have solitary, mostly stalked spore-cases or capsules arising from the apex of a leafy stem (Fig. 1434). The capsule is covered with a thin cap
or calyptra (c) which is shed at maturity. The capsule opens by means of a lid or operculum (o), and the orifice is usually guarded by one or two rows of teeth or a peristome. None of the Mosses are horticultural plints, although Sphagnum Moss is much used as a packing material and for holding moisture about pots, and as a medium in which to sow delicate seeds. It is colleeted from bogs. Club Mosses are not true Mosses, but lyeopodiums (which see). The "Moss" on fruit and other trees is mostly lichen. The Florida or Spanish Moss is a flowering plant (see Tillandsia). L.H.B

## MOSS PINK. Phlox subulata

 MOTHER OF THOUSANDS. Linaria Cymbalaria; also Hen-and-chickens daisy (Bellis) and Suxifraga sarmentosa.
1432.

Leaf of Morus alba at B of M. multicaulis at A.

MOULDS. The term Mould is generally applied to any small fungous growth which appears on decaying organic matter, such as fruits, both fresh and preserved, vegetables, ete. The Moulds are very simple fungi producing immense numbers of spores, a fact which accounts for their presence everywhere, in the air, in dust, and on all exposed bodies. As a rule these fungi are not directly injurious to plants; they are normally saprophytes and perform a great service in disorganizing organie matter which would otherwise accumulate on the earth. A few of the species may become parasitic. Thus, species of Botrytis often attack lettuce in forcing-houses which are too close and damp. Carnation buds and violet plants are also frequently injured by Botrytis. The mouldlike growths occurring on boards in damp cellars or in greenhouse benches are sterile mycelia of higher fungi. These do not attack plants, but sometimes, as in the case of violets, grow over and smother the plants. (See also Diseases, Fungi.

Heinrich Hasselbring.
MOUNTAIN ASH. Pyrus Aucuparia. M. Cherry. Prunus angustifolia. M. Ebony. Bauhinia. M. Holly. Nemoparthes rascicularis. M. Laurel. Kalmia, par-

ticularly K. latifoiia. M. Mahoe. Hibiscus elatus. M. Mahogany. Cercocarpus. M. Mint. Pycnanthemum. M. Rose. Antigonon.

MOURNING BRIDE. See Scabiosa.
MOVING PLANT. Desmodium gyrans.

## MULCHING

MUCONA (Brazilian name). Leguminòsa. Between 20 and 30 mostly twining plants, widely distributed in the tropies, one of which is somewhat cultivated as a forage plant. The genus is allied to Glycine, which includes the Soy Bean. The lvs. are
large and 3 -foliolate: fls. long or oblong, large, usually dark purple (sometimes yellowish) but turning black when dried, the corolla much longer than the narrow-lobed calyx; the keel long, boat-shaped and usually twice or thrice longer than the obtuse standard and also longer than the wings: stamens diadelphous ( 9 and 1) the anthers not uniform in kind: pod asually hairy, bristly or pubescent, containing globalar pea-like seeds. The Mucunas are either annuals or perennials. The fls. are borne in axillary clusters, and the pods are usuallylong and beset with stinging hairs.
prùriens, DC. (Dòlichos prìriens, Linn. D. multiflòrus, Hort. ). Cow1tch. Cowage. Fig. 1435. Annual twiner, the branchlets somewhat appressed-hairy and the lvs. more or less silky-hairy beneath: petioles usually longer than the lrs.: Ifts. ovate or the lateral ones rhombicovate, ohtuse but apiculate: fls. several to many, dull purple, $11 / 2-2$ in. long, in more or less drooping racemes: pods f-shaped (the ends curved in opposite directions), $2-4$ in. long, ribbed, densely brown-or gray-bristly. - Tall-twining vine, comimon in the tropics of both hemispheres. The hairs or bristles on
dged by the touch and they are very
1434. A true moss-

Polytrichum commune
Sat. size. (See p. 1035.)
 the pods are dislodged by the touch and they are very hairs also constitute a remedy for intestinal worms, it being supposed that they kill the worms by irritating or stinging them. It is a variable species.

Var. ùtilis (M. ùtilis, Wall.). Velvet Bean. Banana Bean. A cultivated form, differing in the mostly shorter pods, which are only velvety (not bristly-hispid). Widely grown in the tropics. - Of late it has attracted attention in the Gulf states as a forage and gree:r-manure crop, but its use is still in the experimental stage in most places. Cattle have been fed successfully on the meal made of the beans ground in the pod, but people have been made sick by eating the green cooked beans, and chickens have been killed by both raw and cooked beans. Because of its vigorous growth, the Velvet Bean promises well as a soil renovator, as the eow-pea does, although it can not be be grown so far north as that plant. It is a good ornamental plant, growing $10-20 \mathrm{ft}$. high when supplied with support. The handsome globular beans ( $3 / 8-1 / 2 \mathrm{in}$. diam.) have markings which suggest the castor bean.
capitàta, Sweet. Cult. in India and Japan (A. G. 13:-28) as a household vegetable (as a shell bean), but doubtfully distinet from the above: fls. usually fewer on erect or ascending peduncles: pod mostly larger and Hatter, less bairy and becoming nearly or quite glabrous at maturity; bean larger, somewhat flattened.-Not yet reported in this country.
nívea, DC. Also cult. in India, and perhaps a cultural race of M. pruriens: fls. white: pod large. black, becoming glabrous.
L. H. B.

MUEHLENBECKIA (after Dr. Muchlenbeck, a Swiss physician). Polygonicece. A rather small genus of climbing or erect, usually slightly shrubby plants, all inhabitants of the south temperate zone: lvs. alternate, with sheathing stipules at the base: fls. unisexual, small, fascicled in the leaf-axils; perianth with 5 nearly equal lobes; stamens 8 : ovary 1 -celled, 1 -ovuled: styles 3: akene obtuse or acute, 3 -angled, crustaceons, about equaling the sueculent perianth. All greenhouse plants, very various in appearance.
compléa, Meissn. A twining or trooping, somewhat shrubby plant: stem slender and much-branched, glatbrous except when very young: Ivs. very small, 3 : 5 lines long, light green, about equaling the petiole, mostly fiddle-shaped, rarely hastate; sheaths small, tubular, deciduous: fls. 1-6, in somewhat racemose, pubescent elusters, green and inconspicuous: fr. with a succulent, transparent, whitish, persistent perianth. Nes Zealand. - A graceful greenhouse basket plant, but may also be made to twine. Fruit clusters glistening, showy. Is sometimes called Polygonum by florists.
platyclados, Meissn. (Coccóloba plufycle la, F.Muell.). A very interesting erect, shrubby plant, with broad, flat, ribbon-like, glossy, delicately striate branches, replacing the lvs., which are seanty or eutirely wanting: lvs. membranous, oblong-lanceolate, sometimes hastate: bracts and stipules very short: fls. White, in few-fld. clusters: akenes included in the fleshy perianth, which at maturity is bright red or at length deep purple a:d quite showy. Solomon Isls. B.M. 538.- Frequently grown in greenhouses because of the odd flat stems and showy fruit.
M. adpréssa, Meissn. Large, diffuse, bushy plant, with small pink ths. in paniculate spikes: lvs. up to 2 in. long. broally al, long, often cordate, glabrous. Australia. B.M. 3145 (as Poly gonum). Cult. in Europe.
K. M. Weigand.

MUEHLENBERGIA (Dr. H. Mïhlenberg, who wrote a work upon American grasses in 1817). Graminea. About 60 species, mostly American. Spikelets 1-HId. The following is offered by one dealer in native plants.
glomeràta, Trin. An erect perennial, with rather short appressed lrs.: panicle contracted and spike-like: empty glumes nearly equal, 1 -nerved, extending into short awns: fl.-glume longer than empty glumes, except the awns. Wet ground, nearly throughout northern U.S.
A. S. Hitchcock.

## MUGWORT. Artemisia vulgaris.

MUILLA (an inversion of Allium). Liliàcere. A'genus of one species, an unimportant plant advertised by one specialist in Pacifie coast bulbs. It has a slender scape 3-12 in. high, bearing early in the year an umbel of $5-15$ greenish white fls., each about $1 / 2 \mathrm{in}$. across. The genus is close to Allium, but instead of a true bulb it has a fibrous-coated corm, and also lacks the onionlike odor. Generic characters are: perianth subrotate, persistent, of 6 nearly equal, slightly united segments: filaments slightly thicker at the base: ovules $8-10$ in a cell: style club-shaped, persistent and at leugth splitting.
maritima, Wats. Lvs. several. not sheathing at base, scabrous, as long as the scape. Calif., Nev.

## MUKIA. See Melothria.

MULBERRY. Discussed under Morus. French M. Callicarpa Americana. Indian M. Morinda. Paper M. Broussonetia. The wild Rubus odoratus is improperly called Mulberry in some parts of the country.

MULCHING has four general objects: (1) to conserve moisture in the soil by preventing or hindering evaporation; (2) to protect plants from winter injury; (3) to keep the surface of the soil loose and friable; (4) to add plant-food to the soil.

The moisture which is available to agricultural plants is held in the soil by means of capillary attraction. The soil may be conceived to be full of irregular capillary tubes which have a general vertical direction. The upper ends of these tubes or spaces are in contact with the atmosphere, and they are constantly giving off moisture into the air. If the upper ends of these tubes are covered, as with a board or a muleh, the evaporation into the atmosphere is relatively slight. If they a:e covered with a mulch of ashes or sawdust, a similar result may be attained. This dry earth-mulch may be made on the spot by tilling the upper two or three inches of soil. The philosophy of summer tillage is to prepare and to maintain this muleh of soil, thereby interposing a relatively non-capillary stratum between the mcist
soil and the air. This earth-mulch may itself be dustdry, but it protects the soil bencath. There is more or less evaporation into the interstices of the earth-mulch itself, and some of the moisture ascends through the mulch and eseapes into the atmosphere; but it has been found by long experience and by experiments that the earth-mulch greatly lessens evaporation. The frequent stirring of the surface soil in summer is said to make the land moist; as a matter of fact, it keeps it moist. When it is impracticable to keep a surface mulch by means of tillage with horse tools or a rake, it is sometimes advisable to use straw or manure. Mulching newly set trees is often desirable when it is not possible to till the land or not practicable to water them. The ideal mulch to conserve moisture, however, is the loose soil, since the stirring of the soil not only afforls the mulch but also sets at work various chemical and bio. logical forces which make the plant-food more available.

All herbaceous plants and most shrubs are benefitted by a mulch in the fall, no matter how hardy they may be in the given locality. Nature's mulch is the debris of fallen leaves, grass and other litter. The autumn leaves which blow into the borders and the elumps of shrubbery, afford the very best winter mulch; and yet ic is a common practice to scrupulously collect and burn these leaves in the fall, and then if the plants are mulched to apply manure. This is doubtful wisdom. The herbaceous border will be benefitted by a loose, open mulch, 6 to 10 inches deep. If the mulch is of such character as to become very hard and dense, and to hold too much water, it may he injurious. Leaf-mohd, loose muck or peat, autumn leares mixed with some litter which will prevent them from packing too hard, manure which is not too strong in nitrogen and potash, fine straw, sawdust, shavings, pi: needles, evergreen boughs-these are some of the materials which way be

used as a mulch to good alvantage. If the mulch has thoroughly decayed by spring, it may be left on the land and it will make a flne loany covering which will be much like the vegetable mold found in the woods. Too often the passion for cleanness sacrifices the welfare of the border. Persons will collect and hurn every stray autumn leaf, but will not notice many kinds of dir which are really objectionable.
The mulch keeps the surface of the soil loose and mellow because it protects it from the beating of heavy rains and the weight of snow. The vegetable fiber which works into the surface also prevents the particles of heary clay soils from running together or puddling. Soils which are covered with a muleh do not bake.

Whenever the mulch contains soluble plant-food, the soil receives the leachings and is enriched. Stable manure is an ideal mulch for enriching the soil, but if the manure is fresh and strong, it is likely to injure the crowns of some plants.
L. H. B.

MULLEIN. See Verbascum. Mullein Pink. Laychnis Coronteria.

MURRAYA (J. A. Murray, 1740-1791, professor in Göttingen). Rutacer. Irees or shrubs without thorns: lvs. pinnate; lfts. ovate, rhomboid or elliptical-laneeolate, cuneate or oblique at base: tis. comparatively large, solitary and axillary, or in terminal corymbs or axillary cymes; sepals 5 , ovate or lanceolate, united only the base or in the lower third; petals 5 , linear-lanceolate, free, imbricate; stamens 10 , free, inserted on an elongated disk, the alternate shorter: ovary ovate, "-5-celled, narrowed into a long and finally deciluous style; stigma capitate; ovules solitary or 2 , superimposed or collateral in each cell: fr. a small elliptical or round berry. Four species in Indo-Malay region.
exótica, Linn. Orange Jessamine. A very variable evergreen shrub or small tree: young branches pubescent: lvs. glabrous, 3-8-foliolate ; lits. oblique, short petioled, about 1 in . long, obovate or elliptical, entire, shining above: fls. campanulate, $1 / 2 \mathrm{in}$. in diam., pure white, very fragrant: ovary 2-celled: fr. a small berry, elliptical, reddish, glandular-dotted, 1-2-secded. India, China, Australia and the Pacific islands. - A tender tropical shrub, with dense foliage and of upright-bushy habit. Cultirated to some extent on lawns in southern Fla. and S. Calif., and in hothorses. A tine ornamental pot-plant, blooming when small. Murrayu esoticu "needs ample pot room and a liberal supply of plant-food. An annual appication of bone-meal when repotting in February intensifies the color of the foliage, increases the size of the flowers, and causes it to bloom more frequently. When properly treated, the first crop of flowers usually appears here [ (ieorgia] during May, another during July, and this is succeeded at intervals of from four to six weeks until fall. For winter, give it the temperature of a cool greenhouse. but during summer it thrives hest whea given full sunshine outdoors." $P$.J. Berckmans, A.F. 11:1367 (pieture).

Kœ́nigii, Spreng. Lrs.'10-20-foliolate, pubes cent or rarely glabrons. Along the foot of the Himalayas in Indin. - A small, strong-smelling tree. The bark, leaves and roots of this species are used in India as a tonic.
elongàta, DC. Lrs. 4-6-foliolate, glabrous; lfts. 4-5 in. long, much longer and more lanceolate than any form of $M$. exotica: bark on slender branches pale yellow. Burma.
paniculàta, Jack. SATINwood or Cos. metic Bark Tree. Arboreous: corymbs few-fld. or fls. solitary. - The wood of this species is considerably used because of its strength and endurance and light vellow color. The bark is used as a cosmetic. By some considered to be a form of $M$. exotica.
H. J. Webber.

MUSA (named after Musa, the physician of Augustus). Sitamindeer. BA nana. Plantain Tref. Large herbaceous or slightly shrubby plants with immense undivided leaves, forming a very conspicuous fea-
ture in the tropical forests of the Old World, where alone it is native. Characterized by the elliptical pin-nately-parallel-veined lrs. with the sheathing petioies forming a false stem-like structure: fls. unisexual, in clusters, each cluster subtended by a large, colored bract, and all arranged in a dense terminal panicle borne on a stalk rising through the center of the false stem; perianth of 6 parts, 5 of which are united in 1 piece, designated below for convenience as calyx, and 1 free, here termed the petal ; perfect stamens 5 : ovary inferior, 3 -celled, many-seeded: fr. large, more or less elongated, indehiscent, pulpy or dry. Plants of great importance in the tropies, where the fruit is used for food. Bananas are imported into the U. S. in great quantities from Cuba and Central America, and are also grown in the Gulf states (see Banana). Several species are grown extensively in the Norin solely for decorative purposes. Latest monograph of the genus by Baker, Annals of Botany 7:205 (1893).

## K. M. Wiegand.

The principal species grown for its fiber is Musa textilis. Its cultivation is confined almost entirely to the Philippine Islands, where it is grown in immense dense groves. The product of this fiber Banana is known in comnerce as Manila hemp. This species is a very tallgrowing one, reaching a height of 20 or more fcet. It produces an inedible fruit filled with seeds, from which it is : tadily propagated. It is little known in this country.

As decorative plants in landscape gardening few subjects equal the chcicer species of Bananas. The immense leaves arcaing ont gracefully from the top of the "stalk," which is in reality a bundle of long leaf-stems so closely united as to form, for practical purposes, a real stem, give an effect of tropical luxuriance. As they are of really easy growth, their cultivation in temperate climates is on the increase. The smalier species, some of them with mottled or variegated foliage, are most useful for bedding purposes on a small scale.

Young plants may be obtained from nursery or florist firms in the syring or early summer and kept growing in pots in the conservatory or house until settled warm weather permits open-air planting. They should then be given consideratle space in a well-enriched bed, having a situation sheltered from the prevailing winds and where water can be applied during dry weather. The Banana is impatient of shade, doing its best in strong sunshine. Heavy winds tear the large leaves, and hence a sheltered location is best for preserving the beauty of the foliage. By autumm the plant will be large, and if desired to carry it on to fruiting, it should be carefully lifted irto good soil in a large tub for growth under glass during winter. By the following summer it should be of sufficient age and size to bloom and fruit in the open ground. The plants may be stcred in a light, frost-proof cellar during the winter, but by this means the foliage will be lost and the plant suffer a severe check. Wben it is desired merely to have their foliage for ornamental purposes, and fruiting the plant is not specially desired, the heary tuberous roots may be deprived of tops and stored in dry sand through the winter. In the spring these will throw up shoots, if given heat and moisture in the greenhouse or hotbed.
E. N. Reasoner.

## index.

Basjoo. 3.
Cavendishii, 1.
Champa. 4.
Chinensis.
coccinea, 8 .
coccinea,
Ensete, 5.
Japonica, 3.

## Martini, 2.

 orientum, 4. palustris, 4. paradisiaca, 4. rosacea, 10 . rubra, 4. sanguinea, 9. sangumea, 9seminifera, 6.
Sinensis, 1.
Sumatrana, 7.
Troglodytarum, 4. Cranoscopos, 4. vittata, 4 . zebrina, 6 .
A. Fruit edille, seedless (except rarely
Nos. 3 and 4): peta! orate, entirc.

Nos. 3 and 4): peta! orate, entire. B. Les. $2-3$ ft. long: plant dwarf, 4-G ft. high: fr. G-angled: fls. 1 ir . long.

1. Cavendichi

BB. Le's. 5-9 ft. long: plant taller, 8-3) fl.: fr. ©-5-angled: fls. 11/2-2 in. long.
c. Foliage very glaucous beveath,
firm: fls. vose-red........... 2. kas: ni
cc. Foliage green on both sides (except one var. of No. 4), thin: fls. yellowish white, except in two forms of No.4. D. Fls. 2 in. long; bracts oblong, brnwnish: petal equaling the calyx: male fls. persistent.
3. Basjoo

DD. Fls. $11 / 2$ in. long; petal haif the length of calyx: bructs lanceolate: male fls. deciduous..
4. sapientrm

AA. Fr. not edible: pulp scanty or none.
B. Plant tall ( $30-40 \mathrm{ft}$.), not stoloniferous: netal s-toothell: falsestem bottle-shaped: fr. very seedy.
5. Ensete

BB. Plant low (2-8 ft.), stoloni'erous. petal linear (ovate in No. 6), entire: false stem cylindrical.
c. Fls. about 12 to a bract; petal
vis.only about $\xi-1$ to a bract; petal linear.
D. Lis. large, 5-6 ft: long: fr.
vith stipe $1 / 2-1$ in. long..
D. Le's. large, 5-6 fi: long: fr
6. seminifera
cc. Fls. only about 3-4 to a bract;
7. Sumatrana

DD. Les. smaller, 2-4 ft. long:
fr. nearly sessile.
E. Bracts bright red.
8. coccinea
9. sanguinea
ex. Bracts pale blue or red-
dish lilac...............10. rosacea

1. Cávendishii, Lamb. (M. Sinénsis, Sagot. M. Chinénsis, Sweet). Chinese Dwarf Banana. Dwarf Jamaica. Stoloniferous: whole plant 4-7 ft. high: false stem cylindrical, $3-4$ in. in diam.: Irs. conspicuously spreading, oblong, 2-3 ft. by 1 ft .; petioles short and stout; blade when young spotted and blotched with red, in age rather glaucous: panicle drooping: bracts orate, dark reddish browa: male fls. persistent; calyx yellowish white; petal one-half as long: panicle very large, the fruits $200-250$, small, $4-5$ in. by $11 / 2$ in. or more, yellow, slightly curved, broad, obtuse, narro: ed to the sessile base; skin thick, flesh delicate and f:agrant. Southern China. Int. from Mauritius in 1829. Gn. 32, p. 243; 40, p. 263; 44, p. 496; 50. p. 161. G. C. III. 22:167.-Stands more cold than most Bananas, and its dwarf growth readily allows of protection. Good for plancing in the North ; good, also, for shipping. Growa extensively along the coast of the southern state ar:? iu the West Indies.
2. Mártini, Hort. Similar in habit ic .M. sapientum: ivs. oblong, long-petioled, quite tiii . and not easily broken by 'he wind; veins and stem commonly reddish: fruit rather small, yellowish. Int. from the Canary Isls. R.B. 18, p. 107.-A foliage plant good for exposed places.
3. Basjod, Sieb. \& Zucc. (M. Japónica, Hort.). Japanese Banana. Stoloniferous: whole plant $12-18 \mathrm{ft}$. high: false stem cylindrical, $6-8 \mathrm{in}$. in diam.: lvs. oblong, thin, $6-9 \mathrm{ft}$. by $11 / 2-2 \mathrm{ft}$.; petiole about 1 ft . long: peduncle 1 ft . long: panicle denise, nodding: bracts dull brown: petal nearly equaling the calyx: fr. $30-60$, oblong, pointed, 3 in . long, gradually narrowed to a sessile base, usually containing a few seeds. Liu-Kiu archipelago, cult. in Japan. B.M. 7182. R.B. 22, F. 152. R.H. 1896, p. 203. Gn. 55, p. 3.-Decorative; valuable because of its resistance to cold; may be planted at the North.
4. sapiéntum, Línn. Common Banana. Figs. 187, 188. Stoloniferous: plant $\mathbf{2 0 - 3 C} \mathbf{f t}$.high; false stem cylindrical, $4-6 \mathrm{in}$. in diam.: lvs. oblong, thin, bright green, $4-7 \mathrm{ft}$. by $11 / 2-2 \mathrm{ft}$.; petiole slender, $1-11 / 2 \mathrm{ft}$. long: panicls oiten $4-5 \mathrm{ft}$. long: bracts ovate-lanceolate: fls. $11 / 2 \mathrm{in}$. long: fr . in the typical form, $3-4 \mathrm{in}$. by $11 / 2-2 \mathrm{in}$., forming 3-4 bundles of about 12 each, rounded above, narrowed to a sessile thase, bright yellow; flesh rood, seedless. Native in India and E. Indian Isis. - Widely cult. throughont the tropics for the excellent fruit and also more rarely for the fiber, which is inferior to thet of $M$. textilis. Most of the commercial Bananas are obtained from the numerous varieties of this species. The Ori-
noco, Horse or Hog Banana, is probably very near the typical form of this species. It is very hardy, and much grown in Gulf states: fr. 6-7 in. long, not good unless ripened on the plant. The Fig Banana resembles var. Champa, but small fruit purplish: dark lvs. and stem often blotched with black. Not hardy.
Var. Troglodytàrum, Hort. (M. Troglodytàrum, Linn M. Uranoscòpos, Rumph, not Seem.). Rather dwarf: lvs. narrow-oblong: bracts greenish: panicle in fr erect: fr. small, 2-3 in. long, nearly globular, reddish yellow or orange, rarely with a few seeds; flesh yellow, sweet and mawkish. India and Pacific Isls., rarely cult. in U. S.
Var. Dácca, Hort. (M. Dícca, Horan. M. pulústris, Hort.?). Dacca Banasa. Rather dwarf: stem glaucous: lvs. pale green, glaucous beneath; petioles with red margins: fr. yellow, 4 in. long by 2 in. wide, its tip and base bright green; flavor good; skin thick. - Tender, not good for cool climates.
Var. Chámpa, Hort. (M. Chámpa, Hort. M. oriéntum, Hort.). Hart's Choice. Lady Finger, or Geenen Early Banana. Chumpa. Stem and midrib or leaf tinged with red: fr. pale straw-yellow, about 6 ins. long; skin very soft and thin: flesh luscious and delicate in flavor, ripens quickly. Hardv in cool climates. Best of all for growing in Florida. Much grown in W. Indies.
Var. paradislaca, Hort. (M. paradisiaca, Linn.). Plantain Banana. Cooring Banana. Adam's Fig. Male fls. more persistent: fr. 40-80 on a panicle, very large, $7-14 \mathrm{in}$ long, cylindrical, yellow, acutish; pulp firm and less saccharine, not very good unless cooked: lvs. $\overline{-}-7 \mathrm{ft}$. and petiole 2 ft . long. India. R.H. 1888, p. 69. L.B.C. 7:684. - Cult. everywhere in tropics, especially in Cuba. Most commercial Bananas are of this variety. The Martinique Banana is probably merely a form with slightly smailer fruits ( $\bar{i}-8 \mathrm{in}$. long). Immense quantities grown in W. Indies and Cent. Amer. Fine for shipping.
Var. rùbra, Hort. (M. rùbra, Firming). Baracoa Banana. Red Jamaica Banana. Red Spanish Banana. Stem, petiole, tis. and midrib of leaf dull red: fr. large, i-9 in. long at first, dark red, ripening to a yellowish red, of rery good quality. - This is the red Banana of commerce, formerly imported in large quantities from the $W$. Indies. Plant very large and stout, with erect lrs., and is one of the finest for decorative purposes, although not very hardy. The Golden Banana is intermediate between this and var. Champa: fr. golden yellow or red dish, 8-9 in. long, blunt.
Var. vitiàta, Hook. Rather iwarf in habit: lvs. and the long fruits copiously striped with white and often also rose; spathes bright red inside. B.M. 5402. - Very decorative.
5. Ensète, Gmel. Abyssinian Banana. Fig. 1436. One of the largest species, very luxuriant: lrs. oblong, acutish, bright green, up to 20 ft . by 3 ft. ; petiole short and broad; peduncle short; panicle nearly globose: bracts ovate, dark claret-brown : fls. whitish, $11 / 2-2$ in. long, 2-ranked, 20 or less in each rank; calyx strap shaped; apex 3 -lobed ; petal short, central cusp longlinear: fr. coriaceous, dry, 2-3 in. long: seeds 1-4, black, glossy, nearly 1 in . broad. Abyssinia. G.C. II, 15: 435;
 R.H. 1888, p. 32. V. 5:53. F.E. $11: 470 .-$ Most commonly cult. of all decorative Bananas, and probably the finest; also most hardy of all cult. forms, growing freely during the summer. Seeds germinate easily in hotbed.

6, seninffora, Lour. The trpical form is not in the trade. Var. zebrina, Hurt. ( $\dot{\text { II }}$. zebrima, Hort.). Very similar to M. serizntust in vegetative characters, but much smaller: axis of the panicle velvety: fr. small, oblong, full of seeds and not edible, yellowish cr greenish in color: lrs. usually purple below and copiously blotched or striped with black or dark purple above. A very fine ornamental varitty.
7. Sumatràna, Becc. Fuise stem 3 ft . high: lvs. oblong, $5-6$ by $11 / 2 \mathrm{ft}$., glaucous, blotched with claret-brown; petiole slender: peduncle hairy: pandele drooping, 1-11/2 ft. long: male fls. deciduous: bracts short anó rounded: female clusters few, distant: calyx 1 in . long: fr. cylin-
drical, curved, $2-3 \mathrm{in}$. by $1 / 2 \mathrm{in}$., narr red suddenly to a slender stipe. Sumatra. 1.H. 27:37.. - Used for decorative purposes.
8. coccinea, André. Falze stem slender, 4-5 ft. by 2-3 in.: Ivs. small, oblong, 2-3 ft. by $6-9$ in.; petiole long and slender: panicle dense, ercet, 6 in. long: female clusters few: bracts lance-oblong, bright red, tipped with yellow: calyx yellow, 1 in . or more long: seeds very small oblong, rarely produced in cult. S. China. B. M. 1559 L.B.C. 5:475. - Very showy.
9. sanguinea, Hook. f. False stem slender, $4-\overline{\mathrm{ft}} \mathrm{ft}$ high: lvs. oblong, $2-3 \mathrm{ft}$. long, thin, bright green; petiole slender, 1 ft . long: panicle at first erect, tizally drooping: femaled clusters 2-6, each 2-3-fld.: male clusters few, dense: bracts lanceolate, somewhat persistent: bright red: calyx bright yellow, $11 / 2$ in. long: fr. ob-long-trigonous, 2 in. long, rather pulpy, pale green variegated with red: seeds angled, small, black, tubercled. Assam. B.M. 5975.-Decorative and showy.
10. rosadcea, Jacq. False stem 3-5 ft. high, 3-4 in. in diam.: lvs. narrow, linear-oblong, firm, 3 ft . long, 9 in . wide, purplish beneath; petiole long and slender panicle drooping or erect, about 1 ft . long: bracts ovatelanceolate; rosy purple: male clusters more numerous than the female, deciduous: calyx yellow, 1 in. long: fr. oblong, obscurely 4-5-angled, yellowish green, 2-3 in. long; pulp rery scanty and scarcely edible: seeds 2 lines in diam., black,tubercled, rare in cult. India. B.R. 9:706. L.B.C. 7:615.-Int. into California.

M. Fehi, Vieill. (M. Seemanii, F. Muell.). Similar to M. sapientum. Lrs. larger and firmer: fr. $5-6$ in. long, straight, yellow. edible, seedy. Cult. in Europe. G.C.III. 8: 182.- M. rivbra, edible, seedy. Cult. in Europe. G. C.III. 8: 182.- Mil ribra;
Hort., differs from M. coccinea in its short petal (one-half length of calyx). Cult. in Europe. B.M. 7451.-M. superba, Roxb. Similar to M. Ensete: trunk often $\mathbf{7}-8 \mathrm{ft}$. in circumference at base: panicle drooping, one-third length of stem : calyx ence at base: panicle drooping, one-third length of stem: calyx
of 3 looselv cohering parts. Cult. in Europe. B.M. 3849,3850 . of 3 loosely cohering parts. Cult. in Europe. B.M. 3849,3850. R.H. 1877, $\rho .277$; 1888, p. 33. F. 1873, p. 273.-M. téxtilis, Neé. Manila Hemp. Stem cylindrical, 20 ft . or more high: lrs . glaucous beneath, oblong, firm: petal long: fr. on drooping axis, green, 2-3 in. long, narrowed to a short, stout pedicel, not edible, filled with seeds. Most impurtant of cordage plants. Immense quantities exported from the Philippines. Int. by Div. of Pomology, U. S. Dept. of Agric., in 1889, but no longer advertised.
K. M. Wiegand.

MUSCABI (Latin name referring to the musky odos of Al. moschatum; Lilideere. Grafe Hyacinthes are charming, hardy, spring-blowming bulbs (see Zig. 1439). They are something like a hyacinth, but the custers are smaller, and the individual tis. are smaller and of different shape. The fls. are more or less urn-shaped, constricted at the mouth and have 6 smal! teeth instead of
prominent perianth-segments, as in the true hyacinth. The common Grape Hyacinth, which every garden lover knows, is called M. botryoides, which means "like a bunch of grapes." Everybody who has any ground for gardening should have some bulbs of this common kind, both blue-flowered and white. All the other kinds described below are fanciers' plants, interesting chiefly to skilled amateurs. Among them the most remarkable is the Feathered Hyzcinth (M. comosum, var. monstrosum), which is a mass of lilac shreds (see Fig. 1438). Any species of Muscari is likely to hare some sterile fls. at the top of the cluster which are often of a different color, but in the Feathered Hyacinth there is no suggestion left of the urn-shaped flower, sterile and fertile ths. all being cut into fine strips. This attractire plant has lately been sold for fancy prices by a few progressive florists.

All Grape Hyacinths are very much alike and are very interesting, botanically, horticulturally and from the artistic point of view. There are perhaps 40 species in Europe,western Asia and northern Africa. The group needs botanical revision badly. The chiefly literary sources are Baker in Jour. Linn. Soc. vol. 11 (18i1), and in G.C. II. 9:798 (1878); also Boissier's Flora Orientalis. The width of the Ivs. is an important character, and Baker's measurements seem to refer to herbarium specimens. Live plants should be wider. (A line is a twelfth of an inch.)
W. M.

Grape Hyacinths are neat little early flowering bulbous plants, good-sized colonies of which gire dainty effects in the border from February to May. There are numerous species of these, flowering at different times. They are mostly dark purple in color, either self-colored or tipl" with white. There are also a rew white and yellow forms, and sereral species with true blue flowers, the rarest color among flowers, though this would never be discorered in catalogues. M. Szovitsianum, one of the true blue forms, is quite the prettiest of the gerus. The plant known to the trade as M. lingulatum re I iacinthus azureus has the true blue of M. Szovitsianum, and is fully a month earlier. The usual forms grown in gardens are mostly blue (purple) and white forms of Mi. botryoides. M. conicum is very dark. The Dutch catalogues offer numerous kinds to suit purses in all stages of decrepitude. Muscari offer no difficulties in cultivation. A medium soil perhaps suits them best, but they are usually thrifty growers, and persistent in the garden if fol:age is allowed to ripen. They mostly make offsets frealy, and produce abundant sead.
J. N. Gerard.
index.
album, 4. atrocieruleum, 15 Aucheri, 6. botryoides, 4. carneum, 4, 12. coeruleum, 4. comosum, 2. 15. commutatum, 15. compatatum, 17 . compactum, conicum, ${ }^{8}$. dipcade, 1.

Subgenus I. Moscharia. Perianth urn-shaped, but with a relatively long-tubular base; segme' ts minute, even for the genus, round: $h$, spread ing and thickened on the back.......
Subgenus II. Leopoldia. Cerianit obovoid-urn-shaped, grooved akove $3-4$ lines long; segments triangular, reflexed, not thickened on the baclt: raceme loose, and longer than in sise next. Particularly characterized by the conspicuous bearded appearance of the sterile fls.

Grecum, 3. grandiflorum, 4, 12. Heldreichii, 5. latifolinm, 13. Lelierrei, 4. leucophceum. 4 lingulatum, 6 macrocarpum, 1 major. 1. major. dis. micranthum, 9 minor, 1.
moschatum, 1.
monstrosum, 2,15. neglectum, 14. pallens, 11 . pallidum, 4. paradoxum. 7. plumosum, 2.15. pelyanthum. 16. racemosum, 10 racemosum, 12 Szovitsianum, 10

Subgenus III. Botryanthus. Peri anth more or less urn-shaped. grooved or not above, 1-2 or rarely 3 lines long; segments triangular, usually reflexed: raceme dense, $1-2$ in. long. Sterile fls. inconspicuously bearded or hardly at all.

## MUSCARI

A. Fertile fls. a little longer than broud, i. e., oboioid-globose.
$\qquad$B. Lis. S-4: fls. 12-90............. 4. botryoides
BB. Lis.ввв. Lis. 2-3: fls. 6-10................ 6. lingulatum

AA. Fertile fls. $11 / 2$ times as long as broad, i. e., obovoid-oblong. B. Color of fls. black-blue.

BB. Colov lively dark lilac or blue.
c. Lis. S-t lines broad ....... 8. conicum
CC. Liss. 1-2 lines broad. D. Fls. violet, fragrant..... 9. micranthum
DD. Fls. Ulue, faintly odorous 10. Szovitsianum

ввв. Color nearly white............11. pablens
AAA. Fertile fls. turice as lony as
broad. i.e., oboroid-cylindrical.
B. Lise. almost cylindrical (sub-
terete)
12. racemosum

BB. Lis. oblanceolute.............. . 13. latifolium
BBB. Liss. lorate, i.e.. strap-shaped.14. neglectum
15. commutatum
16. polyanthum
17. compactum

1. moschàtum, Willd. (M. suavèoiens, Fisch.). MÜsk Hyacinth. Lvis. $5-6,1 \mathrm{ft}$. long, $1 / 2-3 / 4 \mathrm{in}$. wide: raceme loose, 1-3 in. long: Hs. 20-50, blue. Asia Minor. B.M. 734. Gn. 26, p. 137. - Has the odor of musk. Vars. màjor and mino: are ad rtised. M. dipcade major and minor have appeared in the catalogue of J. M. Thorkurn $\&$ Co. since 1878 , but these names are not in Index Kewensis. Thorburn \& Co. write that this is the Nutmeg or Musk Hyacinth, Muscari moschatum, and that M. llipeade still appears in Dutch catalogues.

Var. flàvum, Lam. (M. fldevm, Van Tubergen. M. macrocirpum, Sweet). Fls. yellowish (Van Tubergen says clear yellow). B.M. 1565.
2. comòsum, Mill. Fig. 1437. Les. 3-4, 1-1 $1 / 2 \mathrm{ft}$. long, $1 / 2-1 \mathrm{in}$. wide: raceme loose, $6-12$ in. long $40-100$-fld.: lower fls. fertile, olise, tipped brown, borne on long harizontal pedicels: upper fls. sterile, blue or violet, borue on long up-curred pedicels, making a corymbose cluster. Meáiterranean region, Orient.
B M. 133 (as Hyacinthus co-mosus).-An interesting form, but rare in cult., being great ly surpassed in popularity by

Var. monstròsum, Hort Feathered Hyacinth. Fig. 1438. All the fis. sterile, and cut up into fine shreds. Gng. 7:290. A.F. 14:1286. Gn. 26, p. 137. - A charming and novel plant. Also called Fair-haired or Tasseled Hyacinth, and Shredded Lilac. Sold also as M. monstrosum, M. plumosum, M. plumosum monstrosum, etc. For other trade synonyms, see under M. commutatum.
3. Græcum, Heldr. Differs from M. comosum in having its sterile fls. in a short, dense, conical spike, the pedicels of which are very short. Greece.

1437. Muscarỉ comosum (Adapted from Botanical Magazine.)
4. botryoldes, Mill. Common Grape Hyacinth. Fig. MoN Grape Hyacinth. Fig.
1439. Lrs. linear-lorate, $3-4$ lines wide: scape $6-9$ in. long: fls. pale blue, odorless. Eu., Orient. B.M. 157 (as Hyacinthus botryoides). A. F. 13:1197. Gn. 26:4̈̈3. R.B. 20:3.-The following varieties are offered: album, carnerm, corvleum, lenco phaum, Lelievrei, majus, pallidum and pallidum grandiflorum. These range from white through fleshcoi.sr to sky-blue.
5. Heldreichii, Boiss. Lrs. linear-fliform, subterete, 11/ :ines wide: scape 4-6 in. long: fls. amethyst.colored, with conspicuous white teeth. Greece. Gn. $26: 453$.
6. lingulàtum, Baker (M. Aùcheri, var. linguld̀tum, Boiss.). Lrs. 3 lines wide: raceme ovate. Asia Minor.According to Index Kewensis this is a good species, but

1438. Muscari comosum, var. monstrosum.
(Adapted from Gardening.)
J. A. Gerard says the pant sold under this name is the satue as Hyacinthus aziereus.
7. paradoxum, C. Korh. Lrs. 3, $1 / 2-3 / 4 \mathrm{in}$. wide. Armenia.
8. cónicum, Baker. Les. about 6, narrower: fls.violetblue. Hahitat unknown. Gn. 51:1106 (?). - Van Tubergen says fis. black-blue.
9. micrantham, Baker. Fls. bright violet. Habitat unknown.
10. Szovitsià num, Baker. Fls. bright blue, considerably larger ( $1:$ in. acioss, but only $1-12$ in. across in M. micranthum). Persia, Caucasus. B.M. $685 \overline{5}$.
11. pallens, Fisch. Lis. numerous, filiform: scape 3-5 in. long: raceme 12-20-fld.: Hs. white or nearly so. Caucasus, Iberia.
12. racemdsum, Mill. Eus. 5-6, 5-6 in. long, 1-11/2 lines thick: fls. odorous, dark blue. Mediterranean, Cancasus. G.M. 122 (as Hyacinthus racemosus). - Vars. carneum and grandiflorum precox are offered.
13. latifolium, J. Kirk. Lvs. always solitary, 3/4-1 in. wide : sterile fis. 6-10, much paler than the others. Phrygia.
14. negléctum, Gusc. Lrs. numerous, 9-12 in. long, $11 / 2-2$ lines thick: ths. odorous, dark biue. Mediterrancan region. Gn. $6: 453$. - This differs from $M$.commutatzim and M. polyanthum in having the segments of the perianth triangular and reflexed. M. neglectu:n multiflorum and $M$. neglectum Atlanticum are trade names. See supplementary list under M. Atlanticum.
15. commutitum, Guss. [ass. 5-6,5-6 in. long, $11 / 2-2$ lines wide: fls. odorless, dark blue: segments very short, not recurved. Sicily. - Krelage asjertises vars atro-
carrlerm, comosum, plumosum, plumosum monstrosиm, and plumosum cioluceum. It is apparent that he regardis M. comosum and its forms as varieties of $\mathbf{M}$. commutatum.
16. polyánthum, Boiss. Lvs. - -3 lines wide. Differs from. V. neglectum and commutatum in having longer pedicels and the capsule a half smaller, not more than 2 lines wide.
17. compáctum, Baker. Described only as Botryanthus compactus in an obscure work, which states that the fls. are nearly black, with whitish teeth which are semiorbicular, obtuse, spreading-recurved. Baker places M. compuctum next to $M$. commututum, in spite of the fact that the original description says the fis. are obovate. Baker adds that this M. compactum is the M. neglectum of some authors in part. The plant in the trade as $M$. compactum may be a variety of some common species, since Van Tubergen says the ths. are pale blue.
M. Argiei, little known botanically, is said to be extra good. In the trade, M. Atlanticum is given as a synonym. Baker said he could not distinguish II. Atlanticum from II. neglectum. M. Atlanticum. Consult the preceding entry, M. Argai. - M. azüreum, Hort., is said by Van Tubergen on be the same as Hyacinthus azureus, which in turn is referred to H . ciliatus by Index Kewensis. Gn. 36:i13. Van Tubergen also advertises var. amphibolis (M. Freynianum).-M. Motelùyi is offered by Van Tubergen.
W. M.

MUSENIUM (a name for fennel, another plant of this family). Umbelliferu. Three species of resinous perennial herbs in middle and western North America, stemless or branching, decumbent or ascending, 2-12 in. high. Lis. pinnately decompound: tls. yellow or white, in compound umbels: fr. ovate or ovate-oblong; ribs 5, filiform, slightly prominent, with 2 or 3 oil tubes in the intervals. Coulter and Rose, Revision of North American Umbelliferx, 1888.
trachyspérmum, Nutt. (M. divaricàtım, var. Hoǹkeri, Torr. \& Gray). Decumbent : Ivs., except the radical, opposite, bipinuatifid: fls. yellow: fr. scabrous. Spring. Saskatchewan to the Upper Missouri, the Platte, and S. W. Montana. - Procurable from dealers in western native plants.

MUSHROOM. While the word Mushroom is now often used as a general term for a large number of the higher fungi, chiefly those belonging to the Agericini, it is by some limited to the common edible species in cultivation and which also grows spontaneously in

1439. Muscari botryoides ( $\times 1 / 3$ ).
lawns, pastures, etc. By others the word is employed for all edible species, while toadstool is employed to designate poisonous species; such persoris usualiy make an incorrect application of these terms to many of the plants. The word is probabiy derived from ths

French worl "mousseron," and is sometimes pronounced "mushroons," or "musheroons" by English-speaking people in America. Mushroom and toadstool are sometimes used as synonymous terms, especially in speaking of the group as a whole. It is difficult, therefore, to give either a satisfactory definition of the word Mushroom, or satisfactorily to limit the range of forms for which the name may be used. In a horticultural sense

1440. The gardener's Mushroom, Agaricus campestris ( $\times 1.5$ ).
color, and as the plant ages become purple-brown or blackish in color, due to the immense number of spores borne on the surface. One can gain a good idea of the number of spores borne on a single plant by cutting a cap from a Mushroom, just at maturity, and placing it, gills downward, on a piece of white paper for a few hours. The spores fall from the gills and pile up in ridges, giring an exact print of the spaces between the gills.
The parts of the plants enumerated above are easily seen. Other important structural characters are seen with the aid of the microscope. A thin section across the gille when seen with the microscope shows the structure as seen in Fig. 1442. The middle part of the gill is the trama. On either side of the trama is the subhymenium, composed of branches from the trama and forming short cells. The cells of the subhymenium in turn give rise to the basidia (basidimm), clubshaped bodies, which form a palisade layer of cells over the entire surface of the gill. 'This palisade layer of the basidia forms the fruit ing surface, or hymenium.
At the end of each basidinm are either 2 or 4 slender, pointed processes, the sterigmata (sing. sterigma). These bear each a single spore, the basidiospore. The usual number of sterigmata on the basidium in the Agaricini is 4; but in Agaricus campestris the number seems to rary from 2 to 4 . In plants grown in a Mushroom house, 2 have been found, while plants from the field show 4. Whether the number 2 for cultivated forms is constant, or $\&$ for the field forms, has not
it is applied to Aguricus campestris (Fig. 1440) in cultivation, and since that is the plant with which we are first interested here, we may proceed at once to a description of its form, structure, development, etc., and follow with briefer descriptions and comparisons of a few of the many species belonging to this large group.

Form and Structure of Agaricus campestris.-The form of the common Mushroom is more or less um-brella-shaped, and is well represented in Fig. 1441. The prominent parts of the plant are the stem, with its ring ( 1 ); and the cap, with the gills on the under side. The cap, or pileus, as it is technically called, is the upper expanded part, and varies from 2 to 4 or 5 inches in diameter. It is usually white in color, but forms occur both in the field and in cultivation in which the upper surface is more or less brownish, especially as the plants become old. The surface is usually smooth, though it often presents a silky texture from the numerous minute fungous threads or mycelium, the structural element of the entire plant. While the surface is smooth in a majority of specimens, many forms are more or less scaly, due to the fracture of the surface and separation of the numerous small areas, especially in the specimens with brownish caps. The "tlesh" or "meat" of the cap is white. The stem, or stipe, is usually cylindrical, $1-3 \mathrm{in}$. long by $1 / 2-3 / 4 \mathrm{in}$. in diameter, whitish in color and nearly or quite solid. The "ring," or annulus, forms a collar joined around the stem near the top. It is very delicate, easily rubbed off, and sometimes not present because the veil from which it is formed is torn in fragments as the cap opens out. The gills, or lamella, on the under side of the cap are of great importance in showing relationship, and also probably in reproduction in the case of plants propagated under natural conditions, since they form the fruiting surface of the Mushroom. The gills are in the form of narrow, thin plates, shaped somewhat like a knife-blade, attached by one edge to the under side of the cap and radiating from a point near the stem out to the margin of the cap. The longest gills extend for this distance and mark off triangular areas which aie filled with successirely shorter gills, all reaching the margin of the cap, so that the entire under surface $n$ ? the cap is well covered with them. The surface of tha gills is the fruiting surface of the plant, and this economy in the arrangement of the gills provides for a rery large fruiting area. The color of the gills ahen the plart is rezy young is white. They soon, nowever, become pink in
been determined.
Development of Agariens campestris. - The spores of the Mushroom in the field probably often germinate and produce new mycelium or "spawn," though this is not necessary for the continuance of the playt from one year to another, since the spawn can live theoug the winter in the soil, and the following year then preads. In ordinary Mushroom culture, however, the spores probably play little part in the propagation of the plant, since this is accomplished by the growth and propagation of spawn. If the soil where plants are growing is carefuly dug away there will be seen slender and irregular whitish cords coursing through it, and some of them attached to the base of the stem. These whitish cords are what the horticulturist calls "spawn." They are cords of mycelium, and are composed of numerous very slender and lelirate whitish threads. This is the vegetative portion of the Mushroom. If the soil at the base of a tuft of


144:. Cultivated Mushroom, Agaricus campestris. ( $\times 1 / 3$.)

Foung plants in a Mushroom bed be washed array, a large number of these cords will be exposed. This is the part of the plant which grows and spreals through the soil, absorbing solutions of the organic matter in the soil for food.
Button Stage. - After an abundance of the mycelium, oi spawn, is formed there appear here and there on the
cords small rounded bodies formed by the upward growth of the threads of mycelium. These increase in size and grow toward the surface of the ground. Each one is the young stage, or button, of the Mushroom. As it enlarges, the upper end appears as a round body on a short stalk, thus eutlining in the embryonic stage the different parts of the mature plant. The gills are forming on the under side of the cap. They are at this time covered. They appear on the under side of the minute constriction at the junction of the cap and stem. At this stage they are covered by a loose growth of mycelium extending from the upper part of the stem to the margin of the cap. This forms the veil. The gills are formed by mycelium growing downward on the under side of the cap in radiating rows, thus forming the lamellæ. The plant now continues to enlarge and the cap expands. Just about maturity the veil ceases to grow and the expanding cap thus stretches it until finally the reil is ruptured, usually next the margin of the cap, and then it hangs as a collar or ring on the stem (seen at $a$, Fig. 1441).
Position of Agaricus campestris in Classification. One of the large subdivisions of the higher fungi is made up of the Mushrooms, toadsrools, puff-balls, etc. All of these are characterized by a nore or less welldeveloped fruiting surface, or hymenium. The structural element of the hymenium is the basidium, and in the large number of the species the form of the basidium does not vary to any great extent from that of the common Mushroom. The basidium, then, is the characteristic fruit structure of this large subdivision of the fungi. For this reason, the plants included in this subdivision are termed the Basidiomycetes. The Basidiomycetes, taken in the sense of the earlier students of the fungi, were divided into two orders, according to the condition of the fruiting surface at the maturity of the plant, namely the Hymenomycetes and the Gusteromycetes. In the former, the fruiting surface is either exposed from the beginning, or if covered at first, is at last exposed before the maturity of the spores, just as the hymenium of Agaricus campestris, at first covered by the veil, is exposed before the maturity of the spores by the rupture of the reil. The Mushrooms, toadstools, etc., belong, therefore, to the Hymenomycetes. In the Gasteromycetes, on the other hand, the spores are matured before the hymenium is exposed, as in the puffball, earth-star, etc., which oper after the spores are ripe.

Families of the Hymenomycetes. - The usage of the earlier botanists in the arrangement of families will be followed here, since there is not an opportunity to properly set forth the principles of classification adopted by some recent systematic works. The arrangement depends on the character of the fruiting surface or hymenium.
A. Fruiting surface uneven; i.e., in the form of plates, tubes or spinous processes.

1. Agaricacem, fruiting surface in the form of plates or gills.
2. Polyporaceæ, fruiting surface in the form of pores or tubes.
3. Hydnaceæ, fruiting surface in the form of spinous or tubercular processes
AA. Fruiting surface even; i. e., not as in A, except in the case of plants of a gelatinous texture.
4. Clarariacea, plants more or less erect, standing out from the substratum, and corered on all sides by the hymenium.
5. Thelephoracea, plants either erect or diffused over the surface of the substratum, one side only (in the case of crect plants usually the under side) covered with the hymenium.
6. Tremelliner, plants of a gelatinous texture, various in form.
Agaricacea.-The common Mushroom, Agaricus campestris, belongs to this family. The family Agaricaceæ is made up of what are now popularly termed agarics. Very many of the species were once placed in the genus Agaricus. The geuns became so large that it was subdivited into a large number of suhgenera many of which have recently been raised to the rank of genera. In thus subdiriding the old genus Agaricus into a number of genera there has been a lack of uni-
formity on the part of systematists in the choice of a generic name for the common Mushr,om. Saccardo retained the genus Agaricus for the cormon Mushroom and its near allies, although discarding the subgenus Psalliota. Some have employed the genus Agaricus, some Psalliota, others Pratella, and still others propose to restore the antiquated genus Fungus, and call our plant Fungus campestris. This is not the place for a

7. Section of a gill of Agaricus campestris, enlarged.

Tr., trama; sh., hymenium ; b., basidium; st., sterigma; 8p., spore.
discussion of the merits of any of these names, but it seems better in the present insiance, at least, to use the generic name Agaricus with the limits of Psalliota Fries.
Other Species of the Genms Agaricus.-There are a number of other species of the genus, as thus limited, which, because of their size and esculent qualities, are worthy of mention.
Agaricus arvensis, the Horse Musinroom, grows in grassy fields and pastures during the autumn. It is a larger plant than the common Mushroom, has a thicker cap, longer stem, and the veil is double, the lowtr or outer portion splitting radially into a star-shaped fashion and remaining attached to the inner portion. Agaricus silvicolus, the wood-inhabiting Mushroom, grows in woods. The whole plant is whitish, but tinged more or less with rellow, the cap is smooth, and the long stem has an abrupt and broad bulb. The veil is thin, membranaceous, but in some specimens shows a tendency to be double, as in Agaricus arreusis. Agaricus liodmani grows along the streets of cities in the hard ground between the sideralk and curbing, and similar places. It is entirely white, the cap thick and firm, the stem short, and with a short, thick, double annulus. Agaricus fäbaceus (A. subrufescens, Peck) has a light reddish brown cap, a long stem somewhat enlarged below, and a ring which has soft scales on the under side formed, much as in A. silvicolus, from the cracking or splitting of the outer layer. The plant has the taste and odor of almonds. It grows in greenhouses. It sometimes grows in compost heaps. It often forms large clusters of many individuals. It has been successfully cultivated. Agaricus silvaticus grows in woods during late spring and summer. It is a large plant, usually about the size of the Horse Mushroom, but thinner, and with mumerous minute dark scales on the surface of the cap, which form a solid patch of dark color at the center. In age. the cap is more or less flat, and it has heen called the flat-cap Mushroom (A. placomyces). The stem is long, enlarged below, and the ring is double, exactly as in the Horse Mushroom. Agaricus comtulus, a small species, rather rare, but with a wide distribution, is regarded with suspicion by some.

Coprines. - In the genus Coprinus, 3 of the edible species are quite common. The spores are black and the gills and micie or iess of the cap dissolve at maturity into a black tluid.

## MUSHROOM

Sopriaus comatus, the Shaggy-mane Mushroom, or Horse-Tail, occurs in richly manured lawns or parks in early spring or late autumn. It is white in color, with a cylindrical cap 3-4 in. long and 1-2 in. in diameter. The cap is very shaggy, the scales often being black in color, while the gills are at first salmon color. The ring on the stem is free and morable. It is one of the best of the edible Mushrooms.

Cop rinus atramentarius, the Ink cap, grows in similar places. The cap is oval, from 1-3 in. long and nearly as wide. It is nearly smooth, and grayish in color. The ring is fixed and not at all prominent; best seen just as the ma-gin of the cap is parting from the stem.

Coprinus micaceus, the glistening Coprinus, grows about ol 1 stumps and from old roots or other buried and rotten wiod. It is smaller than the two species enumerated abo:e, and tan in color, the cap when fresh being covered with thin, loose, flaky scales which glisten in the sunlioht like mica particles, but they are easily rubbed of or washed off by rains.
Lepiota.-Of the white-spored agarics the genus Lepiota, w.th an annulus on the stem and the gills usually free from the

1443. The deadly Amanita. Amanita phalloides. stem, contains several edible species. Lepiota procera, the Parasol Mushroom, grows in pastures, lawns, and sometimes in gardens. Lepiota uaucina, the smooth Lepiota, grows in similar places and is entirely white.
Amanita.- The genus Amanita is closely related to Lepiota, and contains, besides several edible species, a number of poisonous ones, a few of which are the most deadly of all the Mushrooms. Amanita possesses the characters of Lepiota, with the additional character of a volva, or prominent universal veil, forming an outer layer of greater or lesser thickness and composition, which is ruptured as the cap expands and the stem elongates. In Lepiota the universal reil is not prominent, and it is further closely united with the surface of the cap. The rolva in Amanita is often left as a prominent cup-like structure at the base of the stem (see Fig. 1443), and becanse it is present in some of the poisonous species is known popularly as the "poison cup," "death cup," etc. It is present, however, in some of the edible species.

Amanita phalloides, the deadly Amanita (Fig. 1443), is one of the most fatal species. It is 4 to 6 in . high, and the cap is 2 to 4 in . in diameter. The cap is dark gray or umber, or whitish with a yellowish tinge, or quite yellow, or in some forms, especially European ones, the cap is green. In other cases the whole plant may be entirely white. The volva in ty pical forms splits at the apex as the young plant is expanding. and is left ats a cup with prominent jobes, as shown in Fig.1443. In other cases the volva is ruptured irregularly, so that portions of the universal reil are left on the surface of tine cap. In still other cases the rolva splits in a circumscissile fashion, thet is, circularly or transversely wbout the middle, the lower half remaining attached to the surface of the buib at the base of the stem, while the unper half remains loosely attached to the upper
surface of the cap, and is torn apart into scales as the cap expanc 3 . In these forms the volra forms a narrow rim or margin on the outer angle of the bulb, so that the latter appears saucer-shaped. The cap is rather slimy when moist. These great variations in this very poisonous species should make the novice very cautions regarding the species of Amanita, or indeed any species of Mushroom with. Which he is not quite familiar. This species of Amanita usually occurs in woods or groves or in the margins of woods, while the Agaricus campestris or the Lepiota naucina occur usually in open grassy places. But these differences of habitat cannot be relied on altogether, for the deadly Amanita, especially the white form, has been found in lawns far from woods, and in such cases might be mistaken for the smooth Lepiota, since this is white in color. The deadly Amanita is usually deeply seated in the ground, so that the stem might be broken in gathering it when the volva would be left in the ground, and it might easily be mistaken for some species of Lepiota

Amanita verna, the Destroying Angel, is by some regarded as only a white variety of A.phalloides. The entire plant is white, the volra splits at the apex, and thus a prominent free limb of about three lobes remains at the base of the stem. The free limb remains more or less closely applied to the stem. The annulus is broad and entire, and hangs down as a broad collar from the upper part of the stem.

Amanita virosa is very near A. verva. It is distinguished only by the torn reil, portions of which remain clinging to the margin of the cap, and by the scaly character of the stem, characters which show every gradation into A. verna. Both are deadly poisonous.

Amanita muscaria, the Fly Agaric, is also a poisonous species, though not so dangerous as those named aivove, since the poisonous effect can be counteracted if treatment is promptly employed. The volfor splits ansversely into several concentric, interrupted rings which persist as scaly rings on the upper part of the bulb on the base of the stem, and as scattered scales on the surface of the cap. The cap is yellowish or orange-yellow, sometimes red in color, and in age sonetimes fades out so that white forms appear. The gills are usually white, as are also the ring and the stem. Amanita frostiana is a closely related species with the same color on the cap, but with yellowish gills and veil, though variations in the color are shown in different plants when the cap only may be yellow. The scales are usually yellow, but may also be white.

Of the edible species may be mentioned Amanita Cesarea, the "Royal Agaric"or "Casar's Agaric." The cap is bright orange or yellow, with prominent striæ or furrows on the margin. The gills are orange, though the spores are white. The veil and stem are often yellow, especially in the larger specimens. The volva splits at the apex and is left at the base of the stem as a cup with a prominent free limb, which usually fits closely to the stem. The rolra is white, and rarely are portions of it left on the surface of the cap. It is a very beantiful species, occurring during late summer and autumn in woods, and is more common in the southern states than north.

Amenita rubescens, another edible species, has a volva which is more or less friable, that is, it crumbles more or less into loose particles which easily wash off from the cap as well as from the base of the stem. The entire plant has a dull reddish tinge, and when bruised or cut quickly changes to a deeper reddish color due to a reddish juice in the plant. Small forms of the species do not show the color so well.

Amanita solitaria, the Solitary Amanita, is one of the largest species of the genus. It is almost pure white, the surface of the cap often being grayish, and sometimes with tints of brown in the scales, especially in old plants. It grows in rather open woods or by roadsides in woeds. The rolra is entirely broken up into mealy particles which easily rub off, or there are conic scales, especiall, toward the center of the cap. The reil is very delicate and easily torn into shreds, which disappear soon. The stem has a large bulb, which tapers into a long, root-like process in the soil. The plant is said by some to be edible. Amanita strobiliformis is a closely related species, if it is net identical with it, and is said
by some to be poisonous, so that caution should be eraployed in eating plants of this form unless one is certain of the species and of its edible qualities. A. strobiliformis is rarely found in this country, and judging from the characters of certain plants ttributed to it, there is a strong suspicion that it is only a form of $\boldsymbol{A}$. solitaria with large scales.
Other native Mushrooms of economic importance may be mentioned:
Armillaria mellea, the Honey-colored Agaric, occurs in late summer and during the autumn about old stumps, and from roots. The plants are clustered, the cap is more or less covered with pointed blackish erect scales, the gills are attached to the stem, and an annulus is present. The plant is also a parasite, especially on the roots of coniferous trees, in some instances killing the trees. It develops under the bark long black cords of mycelium. The plant is edible.

Pleurotus contains several edible species: the oyster agaric, $P$. ostreatus; the elm Pleurotus, P. ulmarius; and the sapid Pleurotus, $P$. supidus, all growing on tree trunks, stumps, ete., especially abundant in the autumn.

Tricholoma personatum, "blewits," is regarded as an excellent edible species. It grows on the ground in woods. When young, the entire plant is of a pale lilac or violet color, the color fading out in age. The spores are of a light ochre color.

Cantherellus cibarius is the well-known chanterelle. It is yellowish in color. grows in woods on the ground, is somewhat irregular top-shaped, and the gills are mere folds, which run irregularly from the stem to the margin of the cap, aud are much branched. It is one of the best edible species.

Marasmius oreades, the well-known Fairy Ring, or champignon, grows in lawns and pastures. It is white, with a cream-colored cap. It often grows in the form of rings on the ground, though not always.

The genus Lactarius contains a large number of species. The plants are more or less fleshy and are characterized by the presence of a milky juice contained in a system of tubes throughout the plant. This juice exudes in drops when the plant is bruised or cut. In the larger number of species the juice is white in color, in some it changes on exposure to the air to various shades of yellow, while in others the milk is orange, blue, etc., from the first. Lactarius deliciosus is one of the best of the edible species, as its name indicates. The milk is orange in color. The plant is dull orange in color and marked on the cap with concentric zones of darker color. In age bruises of the plant become more or less tinged with green. Lactarins volemus is dull orange in color, the color being uniform, the flesh quite firm, ard the milk white, sweet and very abundant, quickly exuding in large drops or running from cut or eracked portions. Lactarius corrugis is closely related but darker in color, sometimes dark brown, the gills also being dark ochre-brown in color. Both species are excellent, and grow in the woods during summer and antumn. Lactarius piperatus is entirely white, with close and narrow white gills, and abundant milk which is very hot or peppery to the taste. It is said to be edible, but should not be confused with certain species having peppery milk, which are reputed to be poisonous. Lactarius resimus is another white species with white and very hot milk, which is suspected. Lactarius Indigo is of an indigoblue color, with faint zones of a darker color on the cap, and with a dark indigo-blue juice.
The genus Russula is closely related to Lactarius, but lacks the milky juice. In this genus occur many of the brilliant-colored agarics. The entire plant is more or less brittle and easily breaks, the gills of many species crumbling easily when rubbed. Russula lepida, with reddish cap and stem, white gills with the red color from the cap extending a short distance on the ends of the gills, taste mild, is an edible species. Another edible species, Russula atutucea, has a reddish or purple cap, but the gills and spores are ochraceous in color. The taste is mild. Russula emitica is a poisonous species. The cap is rose-color or red, the cuticle easily peels off from the cap, the margin of the cap is deeply furrowed and warty along the ridges, the stem is white or reddish and the taste of the plant is peppery.
Of the tube-bearing Fungi (Polyporacea) the genus

Boletus contains a number of edible as well as poisonous species. In shape the plants are like the Mushroom, but they have a porous surface instead of gills on the under side of the cap. Boletus edulis has a yellowish or dull brownish cap, pores white and closed at first, but yellowish or greenish yellow in age. Boletus felleus (poisonous) is of about the same size and resembles the edible species closely, but the tube surface is pink or flesh-color, and the taste is bitter. In the genus Polyporus most of the species grow on wood, trees, stumps, logs, branches, roots, etc. The sulfur polyporus, $P$. sulphureus, forms clusters of sulfur-yellow bracket-like caps, on various broad-leaved trees or stumps. Polyporus frondosus grows from roots at the base of dead oak stumps, forming large irregularly branched leafy masses with gray caps and whitish stems and pore surface. Both of these are edible.
In the spine-bearing Fungi ( $\boldsymbol{H}$ yluacece) the under surface of the cap presents numerous spine-like processes. Hyduum repandum, in shape like a Mushroom, with the cap more or less irregulaz, and of a buff or cream color, is an excellent edible species. The Coral Hydnum, the Bear's Head, the Medusa's Head, and Hyduum erinaceum, all growing on trees, all white in color, and branched, or forming large masses from which long spines dangle, are all edible.
The Club Fungi (Cla variacece) are all said to be edible. The Horn of Plenty, Cruterellus cornucopioides, funnelshaped, and smoky in color, with a smooth under surface, belongs to the Thelephoracea, and is edible.
Among the Puff-balls (Lycoperduceue) all the species when young and white inside are edible, that is, they are not poisonous. Some are better to the taste than others. The two best ones are the Giant Puff-ball, Lycoperdon giganterm and the Lycoperdon cyathiforme. Both of these grow in lawns or fields, the former grows sometimes to a large size, several feet in diameter; while the latter is 4 to 6 inches in diameter.

Besides the Mushrooms proper which belong to the Basidiomycetas, certain of the large Ascomycetes are edible and are usually included in treatises on Mushrooms. In the Ascocomycetes the spores are borne on the inside of a club-shaped body called the ascus, and this is the chief point of difference in them from the Basidiomyetes. To the Ascomycetes belong the following. The Morels grow on the ground in damp places. They have a stout stem and a rounded or more or less elongated cap which is deeply and coarsely

1444. Morel-Morchella esculenta ( $\times 1 / 3$ ).
pitted. Morchella esculenta, represented in Fig. 1444, shows well the general character of the genus. in Helvella, containing several edible species, the cap is in the form of several (usually two) irregula: flaps, sometimes free below from the stem, sometimes united with it. Lastly, the Truffles might be mentioned. They are su ${ }^{\text {h+erranean }}$ Fungi rounded or globose in form, frm,
and contain the spores inside of the rounded mass withiu sacs. Few have been found in this country, becanse they have not been diligently searched for.

Geo. F. Atkinson.
Mushroom Culture. There is no science of Mushroom culture. That is to say, one does not know why he fails. This is equivalent to saying that he does not know why he succeeds. By practice and experimenting one hits upon or develops a methol, and if he persists he may become very skilful, but it is next to impossible for him to impart his knowledge. If he writes an article, he describes his method in detail and deprecates other methods; but the learner will be as likely to succeed by some other method, and neither man will know why. There are few people, if any, who succeed uniformly with Mushrooms. Beds made the same day and of the same material, planted from the same spawn, and similarly cared for, may give very different results. One bed may fail outright, and another may produce a good crop. Persons who make uniform commercial success of Mushroom-growing accomplish it by having many beds or by proceeding on a rather large base: it is infrequent that all the becis fail. The biological problems concerned in the propagation, growth and appropriation of food of the Mushroom must be understood before one can lay down principles for the culture of Mushrooms.

Decaying regetalle matter, a uniform and rather low temperature, a uniform supply of moisture,-these are the general requisites for Mushroom-growing. The decaying matcer is supplied by horse manure. The manure is allowed to heat and is turned several times before it is placed in the bed. The heating itself is probably of no adrantage except as it contributes to the decay of the material: heat can be supplied by other means if necessarr. The broken and decaying manure is placed a few inches or a foot deep in beds. When the temperature is reduced to $90^{\circ}$ or less the sparn is planted. As soon as the bed has cooled sufficiently, it is covered with earth or litter to regulate the temperature and moisture.
The cultivated Mushroom is native in temperate climates. In the United States and Canada it grows naturally in fields and pastures. But it is grown indoors: this is because the conditions can be better controlled under cover, particularly the temperature. Now and then some one makes a success of growing Mushrooms out of doors, but this practice does not promise much for most parts of America. In parts of Europe, growing in the open is more successful. Cellars or pits are farorite places in which to grow Mushrooms. The conditions are uniform. Cares are farorite places in which to grow Mushrooms, because of the slight fluctuations of temperature and moisture. Cellars and cares are dark: thereby has arisen a belief that darkness is essential to the growing of Mushrooms, but this is an

1455. A clump of young Mushrooms ( $\times 1 / 3$ ).
error. They often grow well in an unscreened greenhouse. Pastures are not dark. Srımn may be planted in a lawn, and Mushrooms will sometime; come; but it is seldom that the couditions are right for a crop.

Musbrooms are in edible condition at any time from their first appearing above the ground to the time when the rim of the cap begins to turn up and the flesh to lose its softness. See Figs. 1440, 1441. For pichling, "buttons" are usually preferred; these are the young

Mushrooms (Fig. 1445) taken before the cap has expanded.

Mushrooms are propagated by spores and spawn, usually the latter. Spawn is the mycelium. It may be dried, and will resume growth when congenial conditions are given. It will keep for a number of years in a cool, dry place. Dryness is essential. This spawn may be secured from any place in which Mushrooms are growing. The soil or manure containing the mycelium

1446. Mushroom spawn.

English sparn, or "bricks," on the left; French or
"flake" spawn on the right.
is broken into large lumps or flakes, and is planted in the desired place; the mycelium spreads through the bed and in time bears the fruiting stage or Mus.? room. Formerly the spawn was gathered as needed, but since about 1830 it has been made or produced as a commercial product. For this purpose the spawn is grown is some prepared material, which may be dried and transported. The making of spawn is a business of itself. The English make and use the spawn mostly in brick-like masses of earth and manure (Fig. 1446). The French use also a spawn borne in a loose litter-like material (Fig. 1446), although not all of the French spawn is made in France. The English or brick spawn comprises nine-tenths of the spawn used in Americs. The brick is made of a mixture in about equal parts of horse manure, cow manure and loam. These are wet and mixed until the material has the consistency of mortar. The material is then spread on a floor and is allowed to dry until it can be cut into pieces, or "bricks." While the bricks are still moist, a hole the size of a walnut is made in the brick and fresh sparn is inserted. The bricks are then placed under cover or in a mild hotbed, where they are giren such conditions as will cause the mycelium to penetrate them thoroughls. When the mycelium has ramified thronghout the mass, and the surface has a cloudy look, the brick is dried and stored. This brick may be likened to a yeast cake.

Expert Mushroom-growers believe that spawn which is made orer and over again from the mycelium tends to isecome weak and to produce small crops of thinfleshed Mushrooms. They beliese that the spawn now and then should be inocnlated afresh from the spores. Spawn made directly from the spores is known as "rirgin spawn." if is made by incorporating the abundant spores of ripe Mushrooms with the material of which spawn is made. It is probable that many of the large, thick Mushrooms which come up in odd places in the greenhouse arise from spores.

Mushrooms have been known as edible products from very early times. Pliny mentions them, but his writings are mostly warnings not to eat them becanse they are poisonous. He places them "among those regetable productions which are eaten with risk." The following are some of his remarks respecting the Mishroom:
"The generative principle of the Mushroom is in the slime and the fermenting juices of the damp earth, or of the roots of most of the glandiferous trees. It appears at first in the shape of a sort of riscous foam. and then assumes a nore substantial but membranous form, after which, as already stated, the young Mushroom appears. In general, these plants are of a pernicious nature, and the use of them should be altogether rejected; for if by chance they should happen to grow near a hobnail, a piece of rusty iron, or a bit of rotten cloth, they will immediately imbibe all these foreign emanations and flarours, and transform them into poison. Who, in fact, is able to distinguish them, except those mbo dwell
in the country, or the persons that are in the habit of gathering them? There are other circumstances, too, which render them noxious; if they grow near the hole of a serpent, for instance, or, if they should happen to have been breathed upon brone when just beginning to open; being all the more disposed to imbibe the venom from their natural aftinity to poisonous substances. It will therefore be as well to be on our guard during the season at which the serpents have not as yet retired to their holes for the winter. The best sign to know this by is a multitude of herbs, of trees, and of shrubs, which remain green from the time that these reptiles leave their holes till their return; indeed, the ash alone will be quite sufficient for the purpose, the leaves of it never coming out after the serpents have made their appearance, or beginning to fall before ther have retired to their holes. The entire existence of the Mushrom, from its birth to its death, is never more than seven days."
Two hund ed years and more ago Mushrooms were cultivated. The following directions, given by Philip Miller in 1754, are rery like methods which are sometimes adrised to dar, with the exception of the method of securing the spawn:
"In order to cultivate them. if you have no Beds in your own, or neighboring Gardens, which produce them, you should look abroad in rich Pastures, during the Months of August and September, until you find them (that being the Season when they are produced); then you should cper the Ground about the Roots of the Mushrooms, where you will tind the Earth, rery often, full of small white Knobs, which are the Off-sets, or young Mushrooms: these should be carefully gathered, preserving them in Lumps with the Earth about them: but as this Spawn cannot be found in the Pasture, except at the Season when the Mushruoms are neturs!!y produced, you may probably find some in old Dunghils, especially where there has been much Litter amougst it, and the Wet hath not penetrated it to rot it: as likewise, by searching old Hot-beds, it may be often found: for this Spawn hath the Appearance of a white Mould. shooting out in long Strings, by which it may be easily known, where-ever it is met with; or this may be procured by mixing some long Dang from the Stable, which has not been thrown on an Heap to ferment: which being mixed with strong Earth, and put under Cover to prevent Wet getting to it, the more the Air is excluded from it, the sooner the Spawn will appear: but this must not be laid so elose together, as to heat; for that will destroy the Spawn: in about two Months after, the Spawn will appear, especially if the Heap is closely covered with old Thatch, or such Litter as hath lain long abroad, so as not to ferment: then the Beds may be prepared to receive the Spawn: these Beds should be made of Dung, in which there is good Store of Litter; but this should not be thrown on an Heap to ferment: that Dung which hath lain spread abroad for a Month or longer is best: these Beds should be made on dry Ground, and the Dung laid upon the Surface: the Width of these Beds at Bottom should be about two Feet and an half, the Length in proportion to the Quantity of Mushrooms desired: then lay the Dung about a Foot thick, covering it about four Inches with strong Earth: upon this lay more Dung, about ten Inches thick: then another Layer of Earth; still drawing in the Sides of the Bed, so as to form it like the Ridge of an House; wilich mar be done by three Layers of Dung, and as many of Earth. When the Bed is finished, it should be corered with Litter, or old Thatch, to keer out Wet, as also to prevent its drying: in this situation it may remain eight or ten Days; by which time the Bed will be in a proper Temperature of Warmth to receive the Spawn; for there should be only a moderate Warmth in it. great Heat destroying the Spawn, as will also Wet; therefore when the Spawn is found. it should always be kept dry until it is used; for the drier it is, the better it will take in the Bed: for I had a Parcel of this Spawn, which had lain near the Oven of a Stove upward of four Months, and was become so dry, as that 1 despaired of its Success: but I never hare yet seen anr which produced so soon, nor in so great Quantity, as this.
"The bed being in a proper Temperature for the Spawn, the Corering of Litter should be taken off, and the Sides of the Bed smoothed; then a Corering of
light rich Earth, about an Inch thick, should be laid all over the Bed; but this should not be wet: upon this the Spawn should be thrust, laying the Lumps two or three inches asunder: then gently cover this with the same light Earth, above half an inch thick; and put the Covering of Litter over the Bed, laving it so thick as to keep out Wet, and prevent the Bed from drying: when these Beds are made in the Spring or Autumn, as the Weather is in those Seasons temperate, so the Spawn will then take much sooner, and the Mushroms will appear perbaps in a Month after making: but those Beds which ure made in summer, when the Season is hot, or in Winter, when the Weather is cold, are much longer before they produce.
"The great Skill in managing of these Beds is, that of keepiny them in a proper Temperature of Moisture, never stifering them to receive too much Wet: during the Summer-season, the Beds may be uncovered to receive gentle Showers of Rain at proper times; and in long dry Seasons the Beds should be now-and-then gently watered; but by no means suffer much Wet to come to them: during the Winter-season they must be kept as dry as possible: and so closely corered. as to keep out Cold: in frosty or very cold Weather, if some warm Litter, shaken out of a Dung-heap, is laid on. it will promote the Growth of the Mushrooms: but this must not be laid next the Bed; but a Corering of dry Litter between the Bed and this warm Litter: and as often as the Litter is found to decar, it should be renewed with fresh: and as the Cold increases, the Covering should be laid so much thicker. If these Things are observed, there may be plenty of Mushrooms obtained all the Year: and these produced in Beds are much better for the Table than any of those which are gathered in the Fields."

Probably the first book in English to be devoted exclusirely to the Mushroom was written in 1679 by John Abercrombie, London, and published under the title of "The Garden Mushroom: lis Nature and Cultivation. A Treatise, exhbiting Full and plain Directions, for producing this desirable Plant in Perfection and Plenty, according to the true successful Practice of the London Gardeners." Aside from the manner of securing the spawn, the alrice giren by Abercrombie would apply very well at the present day. He say's that the sjawn may be obtained from the dung of horse stables, from hotbeds, composts, cucumber and melon beds, old Mushroom beds, livery stable vards. horse mill-tracks, old dung-heaps where"some straggling Mushrooms are seen to rise naturally in the autumn," in kitchen-gardens in which Mushrooms have been seen, and in old pastures and meadows. The best season to find the spawn is in the autumn and the early part of winter. The frequent occurrence of Mushrooms in the covered mili-tracks, where horses worked on tram-cars and on power machinery, led to the use of the thoroughly tramped manure as spawn. This spawn gare very excellent results, probably because it was partially veeded from the spores of the Mushrooms which ripened there and were tramped into it. It is probable that this mill-track spawn gave rise to the idea of the Mushroom brick, which is now the chief means-at least, in England and America-of growing Mushrooms. The name "mill-track" is still used as a trade name for Mushroom spawn, although very little, if any, of it really cones from mill-tracks.
In America there is only one book devoted wholly to the growing of Mushrooms. This is by William Falconer and known as "Mushrooms: How to Grow Them" (1891). The Department of Agriculture and one or two experiment stations have issued bulletins on the subject.
L. H. B.

For Mushrooms, a suppy of fresh horse manure should be procured, if possible each morning, that from grain-fed carriage horses being the most desirable. The strawy portion we discard. The manure is thrown in a heap on the floor of an open shed, and is turned over each morning for a few days. Before the heat of the manure has subsided sufficientiy to permit the bed being made. mix about one-third as much loam screened through a $3 / 4$-inch sieve as there is of manure. We have had better success with loam mixed with the manure than when it was not ased. The rank heat haring escaped from the heap. it can at once be made
into a bed, a depth of from 9 to 12 inches being about right. The manure is placed in layers and pounded as hard as possible with a wooden mallet or brick; it can be well trodden where treading is possible. We spawn when the temperature of the bed has subsided to $90^{\circ}$. It is a little ansafe to spawn at a higher temperature, and if left until the heat drops below $80^{\circ}$, Mushrooms will be much more tardy in appearing and of poorer quality. English Milltrack spawn usually gives the best resilts. The spawn is broken into pieces as large as a wa aut and inserted 2 or 3 inches deep, some 4 or 5 in . ar $r$ each way, pressing the surface firm after the inst tion. Ten days later 2 inches of good loam is spread orer the surface and pounded in hard. The beds are then covered with meadow hay or straw, and, given proper atmospheric conditions, should require no further attention until after Mushrooms have appeared, which may be in four weeks or not until four months later. The time when the first buttons will appear is very uncertain. It does not do to be of a highly strung nervous temperament in Mushroom culture. We have spawned beds and despaired of success, when we have been gratified by getting a first-class crop thirteen to sixteen weeks after spawning.

A dry atmosphere is inimical to the well-being of Mushrooms, and success is uncertain where such conditions exist. It is generally conceded that watering the beds often does more harm than good, but it must be remembered that the fact of the bed becoming dry only retards the production of the crop, and does not lessen the chance of Mushrooms appearing once the bed has become sufficiently moist. If the beds are made rery compact there is less probability of them drying out and less likelihood of their injury by any sudden excess of either drought or moisture. When water has to be given we prefer to use it of a temperature of $85^{\circ}$ to $90^{\circ}$ and to water only the dry portions of the bed, which are wetted as erenly as possible.

When the first crop is exhausted and the bed has become somewhat dry, we use warm water and add a little nitrate of soda to it, covering the surface with hay after watering. This usually induces a good second crop to come.

We start to collect manure for the beds early in September, and continue to do so until early November. Usually the beds are made uuder the benches of some of the houses, where a temperature of $55^{\circ}$ to $60^{\circ}$ can be maintained, but any cellars or cares where such a temperature can be kept up are even better than greenhouses for Mushroom culture. The beds are always kept as dark as possible. Cockroaches, wood-lice and other pests must be poisoned or trapped, else they soon ruin a crop.
W. N. Craig.

Mushroom-growing is interesting work, and it is the uncertainty that is the cause of it. Most Musinroemgrowers are in doubt when spawning their beds as to whether Mushrooms will appear, or the work be a failure. The writer has had excellent success with Mushroom culture and remarkable failures. Failyres in a Mushroom crop are not easy to explain. The fault may be in making up the bed, or it may be in the spawn. A few years ago a bed was spawned with three lots of spawn; two beds were a success, while the other was a complete failure,-a proof that the bed is not always the cause of failure. Mushrooms may be grown successfully under the greenhouse benches, providing the drip can be kept off the Deds; also in cellars; but the preference is for a Mushroom house built for that purpose. The house of which the writer has charge is built into a bank in such a position as to require rery little fire heat to keep up the temperature. Of course air-spaces must be provided in the walls, according to the size of the house.
Two methods of making the beds may be described: (1) Collect fresh horse manure until there is enough to make a bed. The manure should be kept wuere it can be protected freta rains, an open shed preferred. Turn the manure every other morning for a week, or until danger of burning is over. In making the beds, from 9 in . to a foot of manure is used. Beds should be thoroughly firmed, putting in a layer of manure, then firming, then another layer, until the desired depth is secared. Assuming that the bed goes up after making
to $100^{\circ}$ or $110^{\circ}$, then gradually drops, it is safe to spawn at $90^{\circ}$. Spawn should be inserted in the manure say 2 or 3 in . deep, and about 5 in . apart. In a week or ten days after spawning, cover with 2 in . of good loam. Good loam from the pasture, soil from the garden, and also old rose soil have been used with good results. It is customary to niix a little soil through the manure before making the bed. After the soil is on the bed and firmed down, a covering of straw will be benefleial, as it prevents the beds from drying out. Should they dry out, water must be applied, which should be at a temperature of $75^{\circ}$ or $80^{\circ}$. Mushrooms should be gathered from six to eight weeks after making the bed. Keep the house at a temperature of $55^{\circ}$ to $60^{\circ}$. (2) The second method, which seems to be the better, is for every load of fresh horse manure to add a load of old thoroughly rotted manure, or a load of old Mushroom manure. The aim is to get enough old manure to prerent the other from burning. The two are mixed, and the following day the bed is made. This method does away with a great amount of labor turning the manure: the bed also has a tendency to hold the moisture a greater length of time. The details of making the bed are the same as in the other methorl. This is a simple way to make the beds, but the results will follow with as much certainty as with any other method.

William Terner.
The writer's first trial with Mushrooms was made in a soap box under a bed, and the Mushrooms did well That was 45 years ago. The next year he went into the business on a larger scale, growing them in the cellar, and a good crop was the result. He received $\$ 1.50$ a pound, or $\$ 220$ for the lot. A cellar under the parlor was devoted to the crop, and $\$ 350$ worth was sold. Then a place was built under the ground with good ventilation, but it was not a success. The drip was too much. A cellar under the carriage house, which had no drip, made a good place, leading to the belief that a place with a Mushroom house under a building is the best place in which to grow them. They need a dry place. If we hare a dry summer and light rains in September, or heary dews, we will pick plenty of Mushrooms in the fall ouidoors. In growing Mushrooms, we must imitate nature. The money that is wasted for spawn alone in ore year would make a fortune for some persons. People get wild to grow Mushrooms. Some secure a crop, but others get nothing. The young man must try a little at a time. He should learn from the experiences of different men A man can make money in this business, and he can lose it. The writer has had failure and success, but he now grows two tons every year.

Mushroom spawn runs best in anything that is dry It is difficult to find out what moisture is wanted, and to get the material in the right state. The writer prefers to secure his manure on the cars fresh from the stable. Turn it over eight or nine times, once every day, so it will not burn, and put in dirt. To twenty tons add flve cart-loads of earth. This earth is secured from sod from the hedges around the farm, taken the first of June and piled up to rot, so it will be read, for mixing in the manure. When the manure is in the right state, put it in beds 8 inches deep. The beds (made in houses) are made up like bunks on a ship and are 100 feet long, 4 feet wide and 3 feet between the beds to allow a man to go throngh with a wheelbarrow. One house is 20 feet wide. It contains 13 beds 100 feet long. It is heated by hot water and the temperature is kept at $60^{\circ}$. There are three large houses, and all of them with greenhouses on top, where lettuce, cauliflower, parsley, rhubarb and radishes are grown with the same heat that grows the Mushrooms. English spawn is used. It should be fresh and new. The spawn is placed 6 inches apart in the beds, in pieces the size of a black walnut. When the heat goes down to $90^{\circ}$ the spawn is put in, and in six weeks the Mushrooms are ready for picking. The beds last from three to four months. The Mushrooms are packed in boxes and shipped to New York.
S. W. Wortman.

The Trade in Mushrooms. - The trade in Mushrooms has grown from a supply of 30 to 50 pounds a day to the enormous quantity of one-half to three-quarters of a ton. In fact, the trade has increased in proportion with


[^2]the price, according to demand and supply. The best season for the consumption ol Mushrooms is the late fall and winter months, as they keep in the cool, dry weather for several days, and small dealers have no trouble with them spoiling on their hands. The price during these months varies according to supply and demand. In the summer months a few will do well, but they 3poil so readily in the heat that dealers do not care to handle any stock; therefore, if there were a large supply from June until October they would surely go to waste. The growers generally take advantage of this and renew their beds in summer, and prepare for the coming season. One great mistake is that the small grower is too anxious to reach the consumer. He wants to sare the little which the middleman or distributer gets, and he gives thein to the retailer, to restaurants, or to others, and these persons often take advantage of him. He is sometimes compelled to take from 25 to 50 per cent less than market price, and he injures the market as well. All classes now buy Mushrooms. If the supply is scarce and price high, they go only to the better class of hotels and restaurants; but as the price gradually decreases the consumption increases and the poorer grade of hotels and restaurants and families consume them. The consumption of canned and dried Mushrooms is not increasing es rapidly as that of the freshgrown, and we are led to oelieve that in the near future our home-grown Mushrooms will be canned and dried as the foreign are; in fact, some of the canners are now making ketchup of the seconds and poorer grades. We believe that the consumption can be doubled and possibly trebled at a good F rofit if sold at half the present prices. We expect to hear be ore long of some house that will make a specialty of Mushrooms and sell nothing else.

Archdeacon \& Co.
MUSK. The common Musk Plant of the gardens is Mimulus moschatus, an American plant. The wild Musk Plant of Europe, however, is Erodium moschatum.
tender, soft and light green when put in the field will nearly always suffer, even though the weather is not cold thereafter. In hotbeds the plants are nearer the glass, and the sash may be stripped entirely on all fair days, thereby allowing the plants to become gradually inured to field conditions. Melons transplant with difficulty; therefore they are always grown on pieces of inverted sods or in some temporary receptacle. Some growers employ pint and quart berry-baskets, such as are used for raspberries and strawberries. Others use a basket-splint which is about $31 / 2 \mathrm{in}$. Wide and 14 in . long, and which is cut in a basket machine at such distances that when the splint is bent it will make a fourcornered receptacle like a berry-box without top or bottom. The ends of this splint are held together by a single small tack. These forms may be packed together tightly in the hotbed and filled with earth and two or three seeds planted in each. When the plants have acquired two or three rough leaves, they are ready to be placed in the field. The forms can be taken from the hotbed by running a spade or shingle underneath them. With the fingers, the box is pulled apart and the cubical mass of earth is dropped into the hole made for it, and the plant receives no check. There is so much loss from the depredations of the striped beetle and the fleabeetle that one must provide several times more plants than the area requires. The hills of melons are usually from 4 to 6 ft . apart either way, and two or three plants are sufficient for a hill; it is adrisable, however, to place at least. half a dozen plants in each hill if the insects are troublesome. It is an excellent plan to plant squashes in the field before the melons are transplanted and to gather tne insects from them for a week or two. Spraying the plants with Bordeaur mixture will repel the insects to some extent. Dusting with tobacco dust or snuff will also prove more or less efficient. Land plaster in which there is a little kerosene or turpentine is also repellent. The insects are killed by Paris green, but becanse of the hairy nature of the melon leaf it is

MUSK HYACINTH, or Grape Hyacinth = Muscari moschatum.

MUSK MALLOW=Hisiscus moschatus. The Musk seed of commerce is also Hi biscus moschatus. Marsh M. is Althere officinalis.

MUSKMELONS(Plate XIX) are now a very important commercial product in North America, and the cultivation and use of them are increasing rapidly. The hot, bright climate suits them well. Muskmelons thrive best in a light and quick warm soil. Since they are very susceptible to frost and are a long-season plant, it is important that they secure a foothold rery quickly when put in the field; and this they are not able to do on lands which are not well prepared or which are naturally hard and clayey. If Muskmelons must be grown on such land it is adrisable to make the hills. This is done by digging out a half-bushel or bushel of earth and replacing it with well-mixed loam and short manure. The plants are then able to secure a quick hold on the soil and to become thoroughly established before the dry weather of July and August.
In the southern states, the seeds of melons are usually planted in the field where the erop is to mature. In the northern states, however, the plants are started in forcing-houses or hotbeds, As a rule, hotbeds are more satisfactory than forcing-houses, since the plants can be hardened off better. In forcing-houses, the plants are likely to be too hot, even though there is no pipe heat, and they tend to become very soft. Plants which are


42:- A nutmeg Melon-the St. Laud.
almost impossible to cover the foliage completely with the poison.
There are two general types of commercial Muskmelons in North America-the furrowed and hard-rinded kinds, which are known as cantaloupes, and the netted and softer-rinded types, known as nutmeg or netted melons (Fig. 1447). In the southern states the word cantaloupe is used generically for all melons, but this use of the term is erroneous (see Cucumis, page 408, Bailey, A. G. 14: 206; Waugh, G. F. 8: 183). The varlous strains of netted melons are the ones mostly grown in the North for the home garden and for early market. The cantaloupes are mostly longer-season varicties.

## MUSKMELON

Two important strains of the netted melon type which hare come into great prominence in recent years are the Osage, developed in southwestern Michigan, and the Rocky Ford, developed in Colorado. Another important strain of the same class is the Montreal Market, which has developed in Canada. These three melons are grown ou a very large scale for the market, and there are middlemen who now make a specialty of the melon crop in its season.
Some of the forms of the Muskmelon species are very unlike the ordinary Muskmelons. Some of them are scarcely edible in their raw state, but are used for

1448. The Orange or Chito Melon-Cucumis Melo. var. Chito. quality for its class.
d' Hiver à chair verte) of the French. It is variable in shape and size, but is commonly pyriform and clear yellowish green, with a green inodorous flesh of fair
"There are a number of good varieties in the second, or loose-seeded class. The one which we have liked best is the French Winter Climbing Nutmeg (Melon Brode rert grimpant). It has a sweet and grod green flesh. The seeds are very small. The fruit is small, ribbed and very dark green with yellow furrows. It keeps well until December. Another good melon is the White Antibes of the French (Melon Brodé d' Antibes blane d' Hiver à chair verte). It is an egg-shaped melon of geod size, briglt green until full maturity, and hard shelled. It is a very long keeper. The Redfieshed Maltese melon excels other melons of this class in outality, the flesh being aromatic and rich, but is not so good a keeper as the green-fleshed sorts.
"In general, these winter melons are worth growing for home use. The quality is not so good as that of the summer melons, but this defect is over balanced by their longkeeping qualities. Amongst prominent varieties are the Winter Climbing Nutmeg, the White Antibes and perhaps the Winter Pineapple. These melons are also useful for the making of conserres."
For other melon types and for a sketch of the botany of them, see the article in Vol. I on Cucumis. L. H. B.
The Muskmelon, a fruit of much commercial ralue, is
pickles and conserves. Of these are the so-called Snake Cucumber (Plate XIX) and the Orange or Chito melon (Fig. 1448). The latter has ${ }^{\circ}$ been much advertised in recent years as a preserving or mango melon (for making " mangoes" or mixed pickles). It is a small-leared slender vine as compared with the common Muskmelon, and it bears an abundance of yellow or orange fruits the size of a hen's egg or lemon. It requires no special culture. The Snake Cucumber is grown mostly as a curiosity in this country, but it may be used for pickles and preserves.

Another type of Muskmelon is the winter melon. These are described as follows in an Experiment Station publication (Bailey, Bull. 95, Cornell Exp. Sta.):
"There is an interesting class of melons, little known in this country, which gives fruits of long-keeping qualities. These are known as the winter or scentless melons. They are mostly of an oblong shape, with green or grayish hard rinds and commonly a white or green flesh, which often lacks almost entirely the characteristic aroma of the Muskmelon. The leares are generally longer and greener than those of the common melons. The fruits are picked just before frost, when they appear to be as inedible as squashes, and are stored in a fruit-ruom to ripen. The true winter melons require a long season. We hare planted them upon good soil on the tirst day of June, and they hare barely come to maturity before frost. There is little difficulty in keeping some of the varieties until Christmas, if they do not get too ripe in the field, if the fruits are not allowed to become frost-bitten, and if the room is cool and rather dry.
"There are two general types amongst the winter melons which we have grown. One type has a solid interior, like a cucumber, and the seeds are imbedded firmly in the structure of the fruit. The other class has a soft interior and the loose seeds of ordinary melons. To the first class belongs the Winter Pineapple, a rariety which seems to me to be indistinguishable from the Green-fleshed Maltese melon (Melon de Malte
grown in different localities under raried methods. Where they are grown in largest quantities, as in the South, the simplest methods are employed. There the seed is dropped in hills of well-ent iched soil, three to fire to each hill, and corered with about 2 in . of soil; when there is danger of chilly weather after planting, they are covered with litter or straw until the soil and temperature become warm. Among private gardeners throughout the country, and where climate and soil will admit, melon-growing is followed with a great deal of care and trouhle, mainly because the area which they require to produce a fair percentage of good fruit caunot be allotted them, and consequently close care and best cultivation are required. The first thing is to provide a frame or pit, in which, after a slight hotbed has been made, and upon which the soil to the thickness of about 2 in . has been placed, the sash will be only 12 in . from the soil. Then place pieces of evenly cut sod 2 in. thick by 4 in . square, with the grass side down, on the soil, laying them close together, the edges touching, and with a sharp-pointed trowel dig out the center of each piece of sod, barely penetrating through, and fill up the space dug out with good soil, somewhat sandy. In each of these places drop two seeds, either of Musk- or Watermelon; keep slightly moist and also well protected during night and cool days and when there is no sunshine. After they start special care must be exercised to keep them growing, but not too fast, as the roots will penetrate the sod, and the plants will wilt when transferred to the open ground. The matter of ventilating and other care is easily given, and they can be transferred at will when the weather permits, as they will bear the transplanting without being injured. The transferring must be done by taking out each piece of sod with a trowel and setting in the open ground where wanted, making the hills of Watermelons 6 ft . 3part each way and the Muskmelons 3 ft . In the rows and 6 ft . between the rows.
Another excellent operation employed by gardeners for the quick growing and full development of the finest
fruit is the placing of well-rotted manure at the bottom of each hill. It is necessa "that this be thoroughly rotted, as the paramount id, $s \mathrm{~s}$ to feed the roots with moisture and nutriment which this will supply. The best plan of preparing for this manuring is to dig holes a full spade deep, then flll up to within 4 in . of the surface with the manure, then cover with 3 in . of soil. This can be done several days prior to putting out the melons. The object of this expensive treatment is to furnish the roots with food and moisture through the heated season and induce a free growth, which will overcome scalding and siso attacks of enemies.

The above methods will apply to both Musk- and Watermelons. The soil best suited to nelon-growing is a sandy loam. When the soil is of a clayey nature and heary, a free usc of sand is beneficial. Muskmelonforcing i* followed successfully on some of the large and fully equipped private places. For this only a limited number of varieties are used-principally the orange-fleshed sorts with prominent netting on the exterior. Growing by tlis method is treated under the head of Fo:cing.
Muskmelons are a staple article among the people of Persia, Italy and also the Egyptians. The thin-skinned Persian types are yet grown, and noted for being very sweet and of fine flavor, and are better grown on very light soil. The ccunties in southern New Jersey alons the coast supply the large markets of eastern cities with the famous Cassaba, or Persian, the seed of this variety having been originally procured from Smyrna; the inland growers adhere to such varieties as the famous Jenny Lind, Hackensac;, Green Citron, Netted and Miller Cream. The varieties introduced in recent years of the orange-fleshed sorts are the Emerald Gem, Osage, Triumph and Paul Rose, and the green-fleshed Rocky Ford. These are an acquisition, and find ready sale when properly gromn, being of medium size and quite solid: they endure trausportation well. The famous Montreal Market variety, so much used in Boston, commands a very high price. It is one of the best for transportation and for keeping qualities; of yellowish gold color and fine flavor. It can be found in all eastern Canadian markets.
Muskmelon-growing is conducted on a large scale in the southern states, but only for their local markets. The valley of the Mississippi is particularly adapted for this industry. New Jersey supplies one-half of the Muskmelon crop; the seashore trade is the most extensive khown, and as this market is so accessible to the grower, many farmers have their entire farms taken up for this purpose. . They also have a method, not practiced elsewhere, which is a good one for extending the picking season over a long period. Their first planting is $31 / 2 \times 5$ feet, and two to four weeks later they plant again between the hills, thus prolonging picking season in the same patch, and giving a full stand of plants in the field with minimum labor. The varieties grown by the largest planters are the Jenny Lind, Golden Jenny, Netted Gem and Green Citron, and only in very recent years have they added such varieties as the Emerald Gem and Triumph.
J. Оtto Thilow.

MUSTARD, species of Brassica (which see), chiefly B. ulba, nigra, juncea and Japonica. There are two types of Mustard-growing, -for the leares, which are used as a vegetable; for the seeds, which yield oil and are used as a condiment. Table Mustard (the flour) is the product mostly of Brassica nigra, although seeds of B. alba and B. juncea are also used for making it. The Mustards often become prolific weeds, but since they are annual, they are easily kept in check by means of geod farming (see Weeds).

As a culinary vegetable, Mustard is used for "greens" (which see). For this purpose, the large soft basal leares are desired. These leaves grow best in early spring, although they do fairly well in the fall. If sown late in the season, the plant makes few bottom leaves and run quickly to seed. Perhaps the best of the Mustards for greens in this country is Brassica Japonica (Fig. $\mathbf{2 6 6}, \mathrm{V}$ ol. I.), a species which has long been grown in this country, but which has no other well-known name than "Mustard." This often seeds itself and comes up the following spring. Some of the large-leaved forms of Chinese Mustard (Brassica juncea) are excellent, and

3hould be better known. One of the oriental species (B. napiformis) makes an edible turnip-like root (Fig. 263, Vol. I.). Mustard needs a rich quick soil for the producing of the best foliage. Sow the seeds in drills 1 ft . or more apart, and tbin to 6 in . in the row.

LUSTARD, CLOWN'S. Iberis amara.
MYALL. See Acacia.
MYENIA of the trade is a misspelling of Meyenia. See Thunbergia.
MYOPORUM (Greek worls raferris $z$ to the translucent resinous dots in the les.). Myoper ràcere. About 20 species of shrubs, ranging from Austrelia and New Zealand to China and Japan. One of them wes once a favorite heath-like plant in France. Twe cthers are quickgrowing shrubs, with a profusiou of small, white, $\overline{5}$ lobed fls., and ornamental berries. Tiese two are desirable for planting near the seacoast in S. Calif.
In 1883 it was stated in the Garden that for 20 years many thousand slants of M. parvifolium had been sold annually in the flower markets if Paris. One grower always had a stock of 30,000 plants. The plants were grown in small pots for room and window decoration in spring. An eye-witness said, "It is most beautiful as seen with its pale green branches drooping gracefully around the pot sides, and more especially so when the shoots are w.eath-d with swoet, snow-white blossoms." This species is practical' $/$ unknown in England and America. Full details of the French method of culture are given in Gn. 24, p. 409. The American gardener may get some general suggestions from the experience recorded under Ep ecris and Erica.
Myoporums are erect and tall, or diffuse, glabrous or glutinous: lvs. alternat 3 , rarely opposite, entire or toothed: fis. axillary, usually clustered, small or medium sized, usually white; calyx 5 -cut or 5 -parted, somewhat bell-shaped or funnel-shaped, the tube very skort or long: lobes usually 5 . The genus is divided into 5 sec -

1449. Myoporum latum ( $\times 1 / 3$ ).
tions based on the shape of the fis., the number of the corolla-lobes and stamens, which vary from 4-6, and the number of cells in the orary, which vary from 2-10. Usually the calyx segments are small and narrow, but in one section they are large and leafy.

## A. Lis. lanceolate.

læ̀tum, Forst. f. (M. perforàtum, Hort.). Fig. 1449. Lvs. 2-4 in. long, lanceolate or obovate-lanceolate, acute or obtuse, finely serrate above the middle, bright green, shining: fls. white, 4-9 lines wide, with rounded lobes, which are hairy inside. New Zealand.

## As. Lis. linear.

parvifolium, R. Br. (M. Cilbum, Hort.). Procumbent shrub: stems 2 ft . long or nore: 1 rs. $3 / 4-1 \mathrm{in}$. long, linear or linear-spatulate, thick, sparingly dentate toward the apex: fls. with rather acute lobes which are woolly within. Austral. B.M. 1693. L.B.C. 9:837. Gn. 24, p. 361. V. 7:20.-Not ad ertised in America.
M. verrucisum, Poir., is offered. Franceschi writes that it is a quick-growing shrub, and among the best plants to grow near the sea. He says it has pretty white Hs. and purple berries.

## W. M.

MY0S0TIDIUM (Greek, like a forget-me-not). Boracece. A genus of only one species, known as the $G$ Forget-me-not. It comes from the Chatham Islands, off New Zealand, and is neither hardy nor suited to general greenhouse culture, but it should be tried by some of our expert southern amateurs. The individual fls. are about $3 / 4 \mathrm{in}$. across, and as many as $30-60$ in a chaster. A plant growin outdoors in Cornwall, England, had about 20 such clusters. The fis. are 5 lobed and not a pure blue, being whitish toward the margins. They are borne on a stout, succulent stem $11 / 2 \mathrm{ft}$. high. The root-1vs. are very large and numerous, heart-shaped, and with stalks 9 in. long.

This choice plant first flowered in Europe in 1858, but the whole stock died, apparently without flowering again. About 1883, fresh seeds were imported, and in a few farored localities in England the plant succeeded. In 1890 it was offered in America. Writers in "The Garden" give the following hints as to culture: The plants rcquire plenty of air and should be well syringed in warm weather and shaded from the midday sun in summer. They should be kept absolutely free from insects, particularly aphids. The fine specimen grown in the Cornish garden (Gn. 50, p. 150) was placed under a high wall with a southern aspect, and sea sand piled about the roots.
As a genus, Myosotidium is close to Myosotis, but Bentham \& Hooker consider its flowers nearest to Cynoglossum and its fruits nearest to Rindera.
nóbile, Hook. Giant Forget-me-not. Root-Irs. glabrous, glossy, succulent, parallel-reined, obtuse or retuse; petioles thick, groored above. B.M. 5137. Gn. $30: 575$ and 50, p. 150. G.C. II. 25:681; III. 21:293. G.M. $31: 219$. J.H. III. $32: 327$.

MYOSOTIS (Greek, signifying mouse-ear, from the leaves). Borraginàcece. Forget-me-not. Scorpion Grass. A large genus of low, perennial or annual, more or less hairy, branching, diffuse or erect herbs, inhabiting both the north and south temperate zones, but the cultivated forms coming mainly from Europe. Lrs. alternate, entire: fls. small, in l-sided, bractless, at first recurved, terminal racemes; calyx small, 5 -cleft; corolla salverform, $\overline{5}$-lobed, the throat crested; stamens 5 , included: ovary of 4 almost separate lobes, in fruit forming 4 smooth nutlets attached to the receptacle by their bases. The following are all hardy at the North and are grown in America mainly for out-of-door planting. The fis. are normally blue, often purple when young and turning blue with age. White-fld. forms (var. alba) of all the species may occur. J. B. Keller writes that Forget-me-nots prefer moist, half-shady places, but that an open, sunny border will do if it is not excessively dry. The perennials are easily propagated by division or cuttings.

## A. Hairs of the calyx all straight, appressed: pereminials.

B. Lobes of the calyx much shorter than the tube.
palustris, Lam. Tree Forget-me-not. Stems from slender, stolon-like rootstocks, slender, decumbent, and rooting below, appressed, pubescent or nearly glabrous, 6-18 in. long: lvs. oblong-lanceolate or oblanceolate, nearly sessile: raceme loosely-fld.: pedicels in fruit much longer than the calyx, spreading; lobes of the calyx deltoid, acutish: corolla bright blue, with a yellow eye, limb flat, 3-4 lines broad: nutlets angled and keeled on the inner side. May, June. Europe, Asia. G.C. III. 22:307. An. 52, p. 461.-Requires damp, shady ground. Escaped from cult. in the eastern states. Var. semper-
florens, Hort., is a dwarf i:-m, 8 in . high, flowering all summer.

BB. Lobes of the calyx as long as or longer than the tube.
láza, Lehm. Similar to the preceding species, and also rooting at the lower nodes, pubescence all appressed and scanty or wanting: racemes even more lossely-fld.: calyx lobes much lunger, ovate-lanceolate, acute; corolla linib smaller and concare, about 2 lines broad, paler blue; throat yellow: nutlets equally convex both sides. May, June. North Europe, Asia, Amer. - Grows best in muddy places.

Azorica, H. C. Wats. Decumbent at the base and diffusely branched, 1 ft . high, densely setose-hispid, with reflexed hairs: lvs. oblong, obtuse or retuse, appressed hairy above, his sute with reflexed hairs below: racemes sub-secund, dense: calyx almost 5 -parted; teeth linear. spreading, clothed with erect, appressed hairs: pedicel about equaling the calyx: corolia larger than in the last, $3-3^{1 / 2}$ lines broad, deeper inc!igo-blue; throat with a whitish eye. Azores. B.M. 412:. V. 6:75.-Suitable for planting in damp, shady soil. Var. cceléstina, Hort., is a form with light blue fls.

AA. Hairs of the calyx, or at least some of them, hooked, spreading.
в. Corolla small, about 1 line broad: limb concave: calyx hairs all hooked.
arvensis, Lam. Annual or biennial, erect, branched, 7-20 in. high, hirsute-pubescent: lvs, oblong or oblanceolate, sessile, obtuse or acutish: raceme loosely-fld.: pedicels in fruit much longer than the calyx: calyx deeply $\overline{5}$-parted; lobes equal, linear, acutish; corolla blue or white, $1-1 \frac{1}{2}$ lines broad: nutlet convex $o^{\prime}$ tside, keeled inside. June-Aug. Eu., Asia.-Will grow well in dry ground.

BB. Corolla :arger, 3-4 lines broad: limb flat: calyx with only the lower hairs hooked.
sylvática, Hoffm. Perennial, hirsute-pubescent, and either green or cinereous, erect, 1-2 ft. high, branched above: lvs. oblong-linear or oblanceolate, nearly sessile, acutish: pedicels usually much exceeding the calyx: calyx deeply cleft, hirsute, the hairs, except a few at the base, erect and straight: racemes long and loose: co rolla blue, $3-4$ lines broad, with a yellow eye: nuilets more or less margined and carinate ventrally, sessile. Spring. Dry soil, Eu., N. Asia.-C mmon in cultiration.

Var. alpéstris, Koch (M. alpés'ris, F. W. Schmidt). Differs from the type only in i's dwarf habit, 3-8 in. high, more dense raceme, with shorter, thicker, ascend-ing-pedicels, rarely longer than the calyx: nutlets larger. Summer. Ea. G.C. III. 17:650.-Flowers said to be fragrant in the evening. Var. stricta, Hort. All the branches erect and strict: appearance peculiar. G.T. 45, p. 609. Var. aùrea, Hort. Foliage golden yellow.
dissitiflora, Baker. Biennial : very similar in habit to M. sylvatica, but lower, 6-8 in. high, whole plant clothed with erect-spreading or appressed short hairs: lvs. large, spatulate-oblong, acute, bright green: fruiting racemes more elongated: pedicels ascending or incurved, 2-3 times longer than the calyx: hooked hairs almost absent: calyx segments lanceolate, much longer than the tube; corolla $4-5$ lines in diam. The most important difference is in the nutlets, which are distinctly stipitate. Spring. Switzerland. R.H. 1896, p. 278. Var. elegantissima, Hort. Lvs. white-edged. The name M. elegantissima has also been applied to forms of $M$. valustris and sylvatica.
K. M. Wiegand.

MYRICA (ancient name of no application). Myricacece. This includes a Japanese fruit tree which bears black or red fruits something like a blackberry. It was introduced to cult. in Calif. in 1889 under the name of M. rubra and fully described in the "Pacific Rural Press," from which the following account is chiefly derived. The tree attains 40-50 ft. The foliage is magnolia-like, evergreen and leathery. The fruit ripens in July. It is almost globular, being about 1 in . long and $3 / 4 \mathrm{in}$. broad. It is densely corered with small elerations, and contains a single seed-stone of light weight. There are 2 varieties
of the fruit, the light rose-colored one being finer flavored than the dark red. The berries are vinous and sweet and used in all ways like our blackberries. The tree is supposed to be able to stand $15^{\circ}$ abore zero.

Mrrica is a genus of about 35 species of trees and she .bs, often aromatic: Ivs.alternate, entire,or variously

1450. Myrica Nagi in flower ( $\times 1 / 3$ ).

Natural size of the edible fruits is about an inch.
cut: male fls. borne in short catkins on the new growth; stamens 2-16, usually 4-6; female fls. mostly solitary: drupe globose or ovoid.

Nagi, Thunb. (M. rìbra, Sieb. \& Zucc.). Fig. 1450. Bush or tree: Irs. $3-5$ in. long, oblong-lanceolate, tapering at the base, entire or serrate: male catkins axillary, solitary, cylindrical, $1 / 2-11 / 2 \mathrm{in}$. long; stamens $6-10$; female catkins shorter than the male, few-fld. Tropical and subtropical Asia. B.M. 5727.
M. asplenifolia. See Comptonia.
W. M.

MYRIOCEPHALUS (Greek, ten-thousand-headed). Compósitie. M. Stuartii is an odd sort of everlasting flower, known to the trade as Polycalymma Stuartii, being offered in only one of the largest American catalogues of annual fls. It is a half-hardy plant, growing about $11 / 2 \mathrm{ft}$. high and bearing yellow and white heads. Myriocephalus is a genns $f$ about 8 annual or perennial herbs, all Australian, often hoary, especially when young: lvs. alternate, entire: clusters or compound heads terminal, usually globose or hemispherical: heads exceedingly numerous and sessile on a broad, very flat receptacle, surrounded by a general involucre of numerous narrow bracts in many rows, each usually with a scarious tip or radiating appendage. In M. Stuartii these appendages are 1-2 lines long, broad, white and very conspicuous. Flora Australiensis 3: 557 (1866).

Stùartii, Benth. (Polycalýmma Stùartii, F. Muell. \& Sond.). Pubescent or woolly, not much branched: Irs. linear or lanceolate, $1-2 \mathrm{in}$. long: clusters hemispherical, 1 in . or more across: partial heads 5 - 8 -fld. : seeds woolly; pappus of numerous ciliate bristles.

MYRIOPHYLLUM (Greek, ten-thousand-leaved). Halagordcea. The Parrot's Feather is a favorite aquatic plant, with delicate feathery foliage, composed of numerous whorls of finely cut lrs. The one which is
often seen in vases and fountains in public parks has the uncomfortable name of Myriophyllum proserpinacoides. It is a half-hardy plant from Chile, with weak stems which grow out of the water about 6 inches. It can be planted in a water-tight hanging basket, and if water can be kept standing on the surface, the plant will hang gracefully over the edges. The other species here described are hardy plants, which are common in our eastern ponds. Any. one of them can be gathered for the aquarium, and the two following are procurable from dealers in aquatics and aquarium supplies.

Myriophyllum is a genus of about 15 species of aquatic herbs, found from the frigid zones to the tropics. Lvs. whorled, somewhat scattered or alternate, the emersed ones entire, dentate or pectinate, the submerged ones pisnately cut into thread-like segments: fls. small.
a. Les. all alike.
proserpina coldes, Gill. Fig. 1451. Lvs. in whorls of 4 ard 5. -10 lines long: segments $20-25$. Chile. Apparently established in Hopkins' pond, Haddonfield, IV. J., haring escaped from cult. B.B. 2:505. - Differs from the 2 following in being diœcious. The female plant is the one in cult. Likely to become weeds.
AA. Lis. above the surface of the water different from those belou.
B. Lis. whorled in $3^{\prime} s$ and $4^{\prime} s$.
verticillàtum, Linn. Floral lvs. longer than the fis., pectinate: stamens 8: petals deciduous: carpels even. Native of Europe, but common in our ponds.

## BB. Les. u'horled in 4's and 5's.

heterophyllam, Michx. Floral lvs. ovate, lanceolate, sharply serrate: stamens 4: petals rather persistent: carpels 1-2-ridged and roughened on the back. Lakes and rivers. Ont. to Fla. and Minn.

Wm. Tricker and W. M.
MYRISTICA (Greek, alluding to the aromatic qualities of the plants). Myristicaceac. Nutmeg. Myristicas are of many species (perhaps 80), but most of the Nutmegs of commerce are the product of $M$. fragrans, $H$ outt. (M. moschàta, Thunb.; M. officinalis, Linn. f.; M. aromática, Lam.), shown in Figs. 1452-3. This tree is cultivated and naturalized in the $W$. Indies. The genus Myristica is the only one in the family. It is essentially an Asian genus, although species occur in America and Africa, and one in Australia. The Myristicas are diaecious trees with alternate, entire, pinnate-reined lvs., and small fls. in axillary clusters. The perianth is 2-4(usually 3-) lobed, in a single series: anthers 3 or more, connate: ovary single, 1 -loculed, ripening into a fleshy fruit. The Nutmeg of commerce is the seed. This is surrounded by a ruminated aril, which furnishes the

1451. Myriophyllum proserpinacoides ( $\times 1 / 4$ ).
mace of commerce. The fruit of M. fragrans is short-pear-shaped, $11 / 2-2$ in. long, hanging, reddish or yellowish, somewhat fleshy, splitting at maturity into 2 valves and disclosing the brilliant scarlet laciniated aril or mace. Inside the aril is the hard nut or shell, and inside the shell is the Nutmeg. The details of the mace
and Nutmeg are shown in Fig. 1453. For a full illustrated and historical account of the Nutmeg, see B.M 2756-7 (1827)
L. H. B.

The Nutmeg tree requires a position in well-sheltered, hot, moist valleys in the tropics from sea-level up to 400 or 500 feet; it will grow and produce fruit in Ja-

1452. Myristica fragrans-the Nutmeg ( $\times 1 / 4$ ).

The upper sprays are from the staminate tree.
maica up to 2,000 feet, but the fruit is not so abundant nor the nut so large as at lower elevations. The soil must be a deep, rich loam, well drained. The seedlings have a tap-root which is very easily injured in transplanting. The method usually adopted for growing them is to sow the seeds in bamboo pots, one in each. When they are ready for planting in their permanent places, the bamboo is slit, and the soil, with the plant, gently put into the prepared hole. It is only when they first flower that it is possible to tell the sex of the tree. Nothing is known of the conditions which determine the sex. In Grenada, the usual proportion of male trees to female is said to be as 3 to 1 , though sometimes 40 or 50 trees close together will all be either male or female. As the trees generally flower when they are 6 or 7 years o!d. there is great waste in the growth of male trees. In the Botanic Gardens in Jamaica, it has been found po: ible to graft the Nutmeg, so that a loss of this kind should not occur again; the plan is, take young seedlings and graft, by approach, the thinnest twigs of a female tree.

Wm. Fawcett.
MYRRHIS (from the Greek word for perfume). Umbelliferce. Mrrrh. Sweet Cicely. One perennial herb native to Europe, and an immigrant to other countries, sometimes grown in gardens for its pleasing scent and anciently used as a flaroring in salads. In America Myrrhis is represented by Osmorhiza, which is known as Sweet Cicely. Tro or three of the American plants have been naned under Myrrhis, but Coulter and Rose (Revision N. Amer. Umbelliferæ, 1888) contrast the two genera and refer these species to Osmorhiza. Technical characters distinguish the two genera.

The Myrrh of the Arabs is the gum of Balsamodendron

## MYRTUS

Myrrha, a burseraceous tree which is now referred (Engler in DC. Monogr. Phaner. 4) to Commiphora.
odorata, Scop. Myrrf. Soft-hairy or pubescent, erect, 2-3 ft.: lvs. thin and soft, 2-3-pinnate, with narrowtoothed or pinnatifid segments: fls. small, whitish, in a compound umbel which is devoid of a general involucre: fr. $1 / 2 \mathrm{in}$. long, longitudinally ribbed. Eu.- Herbage sweet-scented. Rarely seen in this country. L. H. B.

MYRSINE (an old Greek name for the Myrtle, of no application; the Myrtle is Myrtus communis). Mursin acere. About 80 widely scattered species of shrubs or trees, of Thich $\mathbf{M}$. floribunda has been offered in Fla., but is probably no longer cult. Glabrous or tomentose: Ivs. leathery, mostly entire: fls. small, sessile or peduncled, in axillary clusters, polygamo-diœecious; floral parts in 4-5's: fr. a pea-shaped drupe, dry or fleshy, -stoned: seed globose.
floribúnds, R. Br. (M. Rapinera, Roem. \& Schult. A. Floriddna, A. DC.). Glabrous: lvs. 3-4 in. long, leathery, oborate, rounded or notched at top, revolute at margin, rusty and dotted beneath, devoid of pellucid dots: clusters of fis. peduncled : corolla imbricated S. Fla. to Uruguay.

## MYRSIPHYLLUM. Consult Asparagus.

MYRTLE. Myrtus communis. Crape M. Lager strœemia. Running M. Vinca minor and others. Sand M. Leiophyllum.

MYRTUS (Myrtos, the ancient Greek name). Myrticede. Myrtle. Mostly shrubs: lvs. opposite, entire, penni-veined, usually aromatic: fls. white or rose tinged, axillary, 1 to many, the central on short, lateral or long pedicels; calyx tube turbinate, 5 - 'rarely 4-) lobed, usually persistent; petals 5 (rarely 4); stamens numerous, in several rows, free: ovule $2-3$-celled: fr. a berry, adnate to, or included in the calyx-tube. A genus of perhaps 100 species, mostly subtropical natives of S. America and Australia.
Myrtles are grown in pots for greenhouse, window or room decorations, or, in Calif. and the South, as outdoor ornamental shrubs. They are easily cultivated and readily propagated fron: firm or partially ripened cuttings. Ther like an abundance of water in summer, and should never be allowed to get quite dry at the roots.
commùnis, Linn. The classic Myrtle. A handsome shrub, $3-10 \mathrm{ft}$. high, both Hs. and lvs. strongly scented: lvs. small in the variety usually cultivated: peduncles solitary, 1-fld., about the length of the lis., bearing 2 linear bractlets below the fis.: berry black. July. S. Eu. - Several varieties are cult., which differ chiefly in the shape and size of the los.; there is also a variegated form. Makes a good hedge in S. Fla. Everblooming in S. Calif.
Lùma, Berneoud (Eugènia apiculata, DC. E. Luma). Luma. Shrub, 3 ft . or higher: peduncles 3- to 5 branched: fis. larger than those of M. communis. S. Chile; hardy in 5. Calif. and probably northward.
Ugni, Molina (Eugènia Úgni). UgNi or Chilean Gcava. As usually seen under cult., this is a shrub 4 ft . high, but in its native habitat it is said to become a tree 100 ft . high: pedicels 1 -fid.: berry purple, glossy, edible, with a pleasant odor and taste. Wood very hard and heavy, much used in Chile for press-screws, wheelspokes and select implements. Chile; hardy in S. Calif. B.M. 4626. R.H. 1879, p. 409.
M. toment $\begin{aligned} & \text { sa, } \\ & \text {, Soland. }=\text { Rhodomyrtus tomentosa }\end{aligned}$
J. Burtt Davy.


[^0]:    
    

[^1]:    Alyssum,
    Antennaria.
    Asclepias tuberosa,
    Carlina,
    Cheiranthus alpinus,

[^2]:    

