IMAGE EVALUATION

Photographic Sciences Corporation

CIHM/ICMH Microfiche Series.

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

The Institute hes attempted to obtain the best original copy available for filming. Features of this : spy which moy be bibliographically unique, wnich may alter any of the images in the reproduction, or which may significently change the usual method of filming, are checked below.

\square

Coloured covers/

Couverture de couleur
Covers domaged/
Couverture endommagíe
Covers restored and/or laminated/
Couverture restaurte et/ou pelliculse
Cover title missing/
Le titre de couverture manque
Coloured maps/
Cartes góographiques on couleur
Coloured ink (i.b. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations on couleurBound with other material/
Relid avec d'autres docuinents
Tight binding may cause shadows or distortion along interior margin/
La reliure serrbe peut ceuser de l'ombre ou de la distortion le long de la marge intórioure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutbes lors d'une restauration apparaissent dans le texte, mais, lorsque cela útait posslble, ces pages n'ont pas óté filmées.

L'Institut a microfilmé lo moilleur exemplaire qu'll lui a dt'́ possible de se procurer. Les dótails de cot exemplaire qui sont pout-dtre uniques du point de vue bibliographique, qui peuvent modifier une image reprodulte, ou qui pouvent exiger une modification dans la múthode normale de filmage sont indiquds ci-dassous.

Coloured pages/
Pages de couleur
Pages damaged/
Pages endommages
Pages restored and/or laminated/
Pages restaurdes eV/ou pelliculces
Pages discoloured, stained or foxed/
Pages décolorbes, tachetbes ou piqueses
Pages detached/
Pages dótach6esShowthrough/
TransparenceQuality of print varies/
Qualité inégale de l'impressionIncludes supplernentary material/
Comprend du matériel supplómentaire
Only adition availabla/
Soule édition disponible

Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/ Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure. etc., ont ót'́ fillmdes ì nouveau de façon ed obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

The last recurded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbnl ∇ (meaning "END"). whichever applies.

Maps, plates, charts, etc., may be filined at different reduction ratlos. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:
The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original coples are filmed beginning on the first page with a printed or illustrated Impression, and ending on the last page with e printed or illustrated impression.

L'exemplaire filmd fut reproduit grâce al la générosit' de:

Izaak Walton Killam Memorial Library
Dalhousie Univarsity

Les images suivantes ont úté reproduites avec le plus grand soin, compte tenu de la condition et de le netteté de l'exemplaire filme, ot en conformite avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimbe sont filmés on commençant par le premier plat et en terminant soit par la dernidre page qui comporte une empreinte d'Impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés ein cimmençent par lo premidre page qui coniporte une empreinte d'impression ou d'illustration ot en terminant par la dernidre page qui ciomporte une telle empreinte.

Un des symboles suivants apparaîtra sur la dernidre image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planc hes, tableaux, etc., peuvent detre filmés à des taux de réduction différents. Lorsque le document est trop grand pour ©tre reproduit en un seul cliche, il est filme a partir de l'single supérieur gauche, de gauche à droite. et de haut en bas, on prenant le nombre d'images nécessaire. Les diagrammes suivants illustrení la md́thode.

CANADIAN MONTHLY

ANI) NATIONAL REVIELV.

Vol. 8.]
SEPTEMBER, 1875.

THE ICE PHENOMENA AND THE THES OF THE BAY OF FUNDY, Considervit in cumnetion wibth the construction of the Biaie lerte Canal.

BY HENRY Y. HIND, M.A., WISDSOR, N.S.

1. THE BilE VERTE CANAL.

The bafe Verte Canal is a contemplated work designed to comnect the waters of the Gulf of St. Lawrence, at Baie Verte, with those of the Bay of Fundy, at Cumberland Basin. It will cross an isthnus between these Athantic Ocean waters, fifteen miles and one quarter in breadth at the narrowest part ; the lowest summit on the isthmus being of a soft marshy mature, and elcvated only five feet above the level of a tidal wave which occurred in the Bay of Funds, on the 5 th Oct., 1869 ; and 9 feet above a tide observed on the $2 j^{\text {th }}$ Oct., isjo.* The tidal waters of the Gulf of St. I.awrence and the Bay of Fundy approach within σ_{4}^{3} miles under ordinary conditions, and at certain periods the water in Cumberland basin is eighteen and a balf feet above that in Baic Verte, but during chb tides the water in Baie Verte is nincteen and a half feet higher than that in Cumberland Basin.t

The boundary line between the Provinces

[^0]of Nowa Scotia and New Irmswick is twice intersceted by the route adopted for the proposed navigable channel of commanication.

The reports on the Baic Verte Canai by the Chief Engineer of Public Works (Mr. Page), and by the Assistant Chief Engineer, (Mr. G \because Faillairge), embrace valuable and interestin information respecting the physical geography of part of the Bay of Fundy, and particumaty of the isthmus separating its waters from those of Baic Verte in the Culf of St. Lawrence; but these reports are in the main devoted to the enginecring details and nowelties inseparahle from the undertaking, which, the Chief Bugineer states, is attended with unuseal diflicultics.

The opening of a communication between the waters of the lay of Fumdy and linie Verte has been discusical periodically since the year 1822, * but in none of the reports to

[^1]

 the popered la, ite Velle ('amal.
(buestions connertorl with the physital geosraply of the conntity thathed, amel
 logy, ohtrude themedes rombintmily in an examimation of the detaite of this seart project. It is as mowh at geologital ambl hydrographical as an engincering prohlem. It really involves at the sery ont eet of the enquiry the problems incident to the aetion, intluence, and history of the tictos in the Bay of Fundy : the formation of the isthmon across which the comal in tole huitt ; and, permaps greater than ait, it involues the most : areful examimations into the probable future behaviour of the tide with reapeet to the impediments, in the shape of jiers, which are proposed to be thrown in the way of their resistless and never ceasing energies. Many of the detaits imeluded in this notice of the Jaic Verte Camal have been writter for a work, now in an adranced state of preparation, entited "The Jominion of Canada," the pulblication of the furst part of which is delased for the purpose of introducing the results of recent hishly important surveys withia the limat: and near the borders of the lominion. lint as the official notire insiting contractors to tender for preliminary work on the camal hat atrearly been issued by the lepmanemt of I'ublic Works, I hase thought that a bicf sketch of the geological and hyduographeal features of the rucstion, chicely drawn fown themanuscript work before referred to. might embody sugsexstion, worthy cf omsideration, or direct enguiry towards certaln phenomena peruliar to the liog of fundy and smblarIy situated water areas, or tend to avert Jossible continerncien arising from tidal ice and merontrollable curvents whin misht im. pede the paogress of the stupenders work: now ahout to be begun.

I was ant eye-witnest of the effecte pros.

[^2]

 of the impretemy of the dyke a they mow evinetoreatan the bommd of the : 1 tidal wate the "eyote" of our foreththers
when it excect its momal 11 avimum 1.11.i".
"The "ssum storm" rane lat four icet abose the hisike water wherved durins
 the s.mae elebrtion .lowe the dyke of (eumbealan! linin: but if we ate to ceatit the accounti of the stom on :he 3 th al Novemher, 175%, wheh referemice will le made sulneyuent!, the tidnl wase rose tell feet higher than the tope of the dyber near Furt Cumbertand on the batic Verie isthmes

To those who are not "dwellers hy the sea," and have not hat oppontwnities for formines mental picture of a great tital Watre sajeing "pman dyted eont and breating down the bumiers, the beamiful deatip. tion ly Jean Incelow, of the Itigh Jide on the Coast of limoolmohire, in 1571, may give an impros.
"For lóalone the tiver", bed.

An! upme the lindi, ranin: spent.

 Ur libe at dem in in is shromed.

And tarinel.imli, huthand promed,
Shome all hot tremblas: hombes amsine

Then all the mishty then were mat.
Sofare, sof fat, the liato drave
the heatt hat ham! ! time whent,
Before at shotlow, scethim:, :usc,
Sobled in the: Brame at mole feet
The fect hinl harily time w thee
Defore it bre : watmothe holece,
Amball the wated wat in the se.t."
= "Fyghe" bone tilal wave, in herail, estury, or river. There in no "bone" in the dotrota' of
 there i a bene or "cypre" on the sanly that and ita aseral etmate, and river, paticulaty the lear comd.al.

 ments of the perimel, but the then: prei:... notice is queteal in learmids Mardoch: History of Now Sutia, firm the Goms.

"The stom hratee down the lyker on the hay of fambly eweryhare, and the mamh lands now deserted, were overforna ant deterioreted. At Fort Fecketick, on St. John River, a conviderable pate of the Fort was washed away, and at Font Combertund, zoo cordi of ficwood was swept off by the tide in a body from the woodyard, althoush situated at least ten feet higher than the tops of the dylses."

For the sake of brevity I shall quote the conclusions of reliable anthorities on rert in points, leaving to the reader, if he is so dispased, the study of the aresuments adranced by the author to whom reference is made.

3. Some: of the fhriche thateres of the tsimmes.

In an chaborate report "On the Keclamation of Tide-lands, and its Relation to Navigation," hy Henry Mitchell, Chief in
 Survey (asGg), the following proposition is establiwhed. "The nearly horizontal su:faces of the marshe are at the forme of mean: hish atate! Mr. Baillairge states, in his report on the baic Verte Camal, that the sufface of the marshes and hoss on the isth. moss for more than seven miles inland is from one to three fect bato than the aberage range of mean spring tides; and it appears from the tables showing the range of the tides, that the surfaces of the marshes and bogs aremond Comberland Dasin are:

From one to three fee below the phane of average high water:
five to seven fext below the maximum range of high water:
" six to nine feet below the highest water observed during the survey: ten to thiriedn feet below the Sax by tidal wave.
Mr. Mitchell adopted as his plane of mean high water the mean of highest sprines and the lowest nenps. Taking the same

[^3]The difference beins only twelve hom-
dredths of a font, the two means may fecom- sidered identical.

It has been ofserved by In. Dawson* that the inner or low morshes, especially those near the upland and conserpently most remote from the seathoard, are lower than those which form as it were the beach ; and this is borne out by the observations of Mr. Baillairer. hut there is a point of in. terest in the altitude of the surface and loottom of the lakess at the head of the tidal rivers in the isthmus, such as the Missaquash and the La Planche, which deserves attention.

At the head of the I a Planche the surface of Kound lake: ! July, was found to be 94.06, or 4.ci at above ordinary low water spring-tide, or at the same elecation as the average maximum range of high water, being $43^{\text {r }}$ feet above the theoretical plane of the marshes. I ong lake was found, at the same date, to he $2 . j 9$ above the same plane. The areage botom of this lake is 1. 77 feet helow the plane of the marshes. The level of the lakes at the head of the Missayuash Kiver is about $1 \stackrel{1}{2}$ fectatove Kound lake. All of the e lakes lie near the centre or middle of the isthmus.

Mr. Stark. who was instructed by Mr. Keefer to conduct a survey for the Camal, states genemally that "from the summit towards the hay of Fundy, and at the head of the Amherst Marshes, the comery is immdated and dotted in all directions with small lakes, the water in which stands at a nearly unifurm elevation of g2.00 above the datum line" (f above low water spring-tides, or 2.23 feet above average mean range of high water), "or $2=$ feet above the Canal bottom and even with the suface of the marshes. In the great stom hnown as the Suxby tide, the water of the buy of Fundy rose to an elevation of 100.00 teet above dattum, and conseguently tlooded hoth these lakes and

[^4]winthe
s.ltmint
preses
lened pl
tell to
bed of
buriced.'
vation
ahove
deptho
feet, wi
ground
or 10 f
hundree
less 20
or two f
the Saxl
if this m
cording
Keport),
have an
Isthmus,
commun
occurred
of the m
ably red
strait at
ing dept
ing to $\ 1$
have bed
"moss,"
and $-\frac{h}{}$ h
from 10
Suxby
Soutia
Oither,
$1759 . "$
Now,
moss be
and com
Sax!y s
the side
to Baie
Nor
Stark's
its dee
tween
the con
mit to
and "t
marshy
most 1
(Mr. Pi:
dcheth,
on the
fect ab,
 summit to whiels referne is mule in the
 lebel plain, comvintine, "to a depith of fiom ten to twenty fect, of moss, bin! woon the beal of a lake whieh its formation hitel buricd." Mr. stath foumel the hisherst ele. vation of this muss at the summit if feet above datum, "and bakin's from this the depth of the moss already dexaled, on :o feet, will leave the elesation of the woliel ground only $z S$ fect abore the camal bottom or so fect above the matsh level." One hundred and ciehteen feet above datum. less zo feet of anoss, is of feet above datum, or two feet less than the height attained los the Saxby tidal. Is is clear, therefore, that if this moss were drained and burned, ac. cording to Mr. Keefer's suggestion (ibile Keport), another "Saxby Storm" would have an uninterrupted sweep across the Isthmus, and temporarily establish water communication. A storm like that which occurred in 1759 would make quick work: of the marshes and floating bogs, and probably reduce the isthmus to a permanent strait at high water, with continually inereas. ing depths in the chamel. In fact, according to Mr. Stark's Report, there appears to have been nothing but a bant of spongy " moss," a quarter of a mile in width, a mile-and-a half in lensth, and of a depely rarying from 10 to 20 feet, "ahich praientid thic Saxty tidal aidice from cumarting Noiar Siotia into an Ssland deriner the nioht of Oitutior, 1800 , amat the storm of Noicmber, 1750."

Now, if these marshes or masses of spongy moss be drained by the Canal, consolidated and compressed, what is to prevent anobler Saxhy stom from sending a tidal wase hy the side of the Canal from the liay of Fundy: to Baic Vorte?

Nor is the mossy plain, refered to in Mr. Starti's Rejort as having 20 fect of moss in its deepest pat, the only low smmmit be tween the lioss. Mr. Lhallabege found in the contemplated line of Camal the sum. mit to be hat five fect over the Sixhy tide, and "the sufface of this ridere is of a soft mashy mature, under which there is, for the most part, clay restin:s on red sandstone" (Mr. Pase). 'The report does not state the depth of the soft, marshy material repesings on the clay, bat as the summit is only five feet above the Sasby tidal wave, the chy
m.1. mot exted the altitulle of tice wi!?

 comderted on the summit of the water devl. my there mot le a still lower dejrecotun than thone disoovered? :

Mr. Nex. Monro, Г.l..ミ., comlucic! borings in the mosis phatn at the smmat: ahove described, ame fomb! the thichones of the mose to vary from oto 13 feet, but ledow this led of moses there wis ath acrumblathon of fallen timber. "The crast of the platia for a depth of about 5 fect is composed of roots and live moss ; below this depth the material appears to consist of rotten mon and decaged versetahe matter, restins upno the fallen timber of a buried fore t, probshly accumalated centuries argo, the whole rait. ing on clay and red samditone rock." The "buried forest" is probshly drift wood The evidence of rooted stumps would be requited to entitle it to the name of " buricd forest.'
4. THF SUL: RORH FORI TES.

The submersed foreste at the head of the Cumberland lianin, hawe been described by Dr. Dawson, with his usual cleamess ard detail, in his weil known work, "Acadiin Genong:." The valuable informaton there given and iblustroted, is stpylemented in the Departanemen reports of the sursey of the Baic Vente Canal, by glans and section, showing the position of the submerged foreste and their present depahs, which ka:ce nothing to be desired resperting their onsin ; it being incontestally shown that they reple sent two ledts of former upland fore its, bose submergé on the depeth of abomit 21 amd , 2 feet below the phame of the manshest

Now the trrst pucstion with whicincluac to graphe is this: lo these smbmersint
 sugerests, the evient of alome po Beet, or are they the results of demmettin, thonns the intluence of the tieles, and represent a late slide?
'IWO yeats ago I hal an opportunity of Wath hines the prostess of several phtelacs of grascerovered tuify soil, restin's on a samby substratum, and recently detathed from the

[^5]main lond, slowity fledises ober the smometh sulfore of tidll merl, be ir the monthof l: Kiver, live l-hnct, in the lis! of fundy.

 fifty feet in lene:th, and alenit twenty-fioe in breath. When last seen it wast alonat ten or twelve feet ledos: the surfuec of the: formerty sprucecosered lesel tract: from whirh it had been disensenced e\% mersse. Near to it lay smallor patches of the same turfy soil, but lower down the fently sloping beach. The description given by Mr. lathate ef of the turfy soil resting on sand which prebitls under the mar hes and loges of the lanie Verte isthmus, has forcibly susfrested to me the probability that these fonmations may he contemperaneous, and adds another proof to the opinion I have longentertained, that the submersed forests and peat bogs found beneath the sea, belonering to this period, are land slides, and represent a phenomenon which is of very wide spread occurrence on the whole Athantic coast, from the lisy of Fundy to llorida, helonging to an important geological chande geing on under our eyes.

It is due to Mr. I'. S. Hamiton, formenly Commissioner of Mines in Nora Seatin, to state that many years since he adrocated the view that the submerised forests of Comber. land bonin represented hand sti L心:*

The sheet of cross section accompanying Mr. Ho ll irgés report, shows in all details the repuinite comblitions for a land stide, in which the mowing mass might preserve its integrity thromehome. There is the erentle slopee seawards of the rock, asertained hy borings, the substatum of clay, ot perhaps tidal mul, reposine mon the roch, the peaty soil in whid the sulmeresed trees are still rootell, like the peaty substatum underying the bose and marebes; and then we have the ever varyiner change in absolute weighe of the sliding mase, by beings satmated anel drained twise a d.w by tid.al water, to destroy stahle equilihima, and indure sentle motion down the indined plane. . Lgan, the ratne of the landwate bamdery of the submered stomps and fallen nees is very nearly the Same as the pesent ange of the horders of marshes or cosist lime at the menth of the

[^6] Sctive puall li in.

 the math hacd, whirh still maint ain a worved surf ean! porent nealy vatio! rlifis of drift (lys and gracel, with the wnd t.alus, showing the presence ot one time of wooded uphad over what are now wille areas of the richert marsh. But on some portions of the Maccan and Hetert rivers, We can now see the low yhand clothed with forest growth, swept during hightides to the very hase of the clift. As Mr. Hamiton suggests, in the paper before referred to, these may be undermined, and in favourable position portions of then may slide bodily down. The jar produced by an earthquatic, of which we have had upwards of thity recorded instances since the country was settled, would be quite sufficient to begin the movement of the matted mass of roots oser a large and unbroken surface, especiaily if inclined on a sandy substratum towards the invading tidal waters.

But there is another cause for the initial movement which operates to a great extent in this climate in denuding sloping banks, namely, the effert of the thay in spring. The soil on the north side of slopes is ofien frosen to the depth of three or more feet. During early spring the ground thaws to the depth of two fect, a heary rain occurs and loosens the thawed mase, which slides ower the still frozen suthetratum.

Fhere exist, moneover, a grave geologioal objection to the theory which supposes thene stumps to represent a forest submerged by a subsidence of the area to an extent of abont forty fect, which appears to me to be fatal. Let us restore this submered forest to its original position by an imsuary reclevation of the land, what then hecomes of Cumberhand lasin? It musi rise with the forest, and if so, Cumberland !sain would become a narmow river channel, without we assume that the Mimatie Marshes, styled the flysim Fields, corer an ohd chamel by whith the waters of the llehert and Maren fomed their way to the sea, and even this supposition wouldnercssurily sociramseribe the area of subsidemee, that it must hate pertaken of the mature of a downthrow faut, of wheh there is ne evidence, and it must hase occomed at sucha remoteperiodas to pea
(1) the
.1/! 11
thewil|
(mich
fior thi would 1
strult tio
folen:
1110 dispured of Cutu
lar tor 1 1 rems sidence ern Nor minary Brman: and me think belons: which a
carrying present the fold
lachian
presemt
Ancrica
joined
be fomm
a:id sym
huse atro
line of t ?
we call
berland
this wid
are catre
at any 11
rivers. es
of Fund
on lecfur
by mean
The a
to three
water is
tide's ris consider place du in limiti fomerly restrial solidatio, the meal greater recoslin: taken du'

 would hate hén suthic ient for the tuith de. struction of all thaco of the submereat folcot.

1 need asoncely state that while being diapered to attribute the subnetsed borest of Cmmberlath listin to a land slide, smilar to the slike now artually tahine: blace, 1 recornise ageneral and wide phemblab. sidence and revation of time whole of lastern North Amenca, and hase in my preli. minary report on the (icology of New: Hrmowick, given numerons illathations and mensurement ; but 1 ann dipmod to think that these movenconts of the crust belons to an onter of geological inanges whichate progresing on a bat scale, and carrying down from remote epoch to the present hour, but with geolugiall stomanes, the folding of the erat an during the Aprat lachian period. If all the known pomts of present elewation and depresion in latem Amorica be correctly plotied un a map, amd joined by communts lines, I think they will be fomed to indicate a serics of anticlimal a and eynctimal folde, parallel to these which hwe alre:dy detemined the superfecial outline of the country: But I do not think that we can class the submersed furests of Cumberland biasin as among the evidenses of this wide-spead mosenent. I think thes are extremely local, recent, and may ocrur at any moment in some parts of the tidal rivers, estuarics, hays, and basins of the bay of Fundy, and that we have evidence buing on before our cyes of a similar sumacracose by meens of slides.

The depression of the marshes from one to three feet hehw the flame of mean high. water is just an mach an cridence of the ticies rising locally higher than fomerly, considering the chatige whid hase taken place dums: the last humetred and fify years in limiting the expanse over which they fomerly spreal theip watere, as it is of a ter restrial horal subsidene e, patly due to comsolidation, ahbobsh the depression below the mean level of hesh water is a little greater than shown by the olsemations reconding the thal tallee for there were met taken dhatus the night time.
 T111 I!

 thom formal! in C'umanalid lisim. Ihe mean hembth of the tille , in nellubl holyn
 ctease of the sectimal are openimo mon the hay, allowins: areate or heraty of wate to pase in with comtopombise batioble mo mentum.

Mr. Mitchellt compared the manherom the two shores of the namow i-thmas be
 foumed that the maralas on cither sile dif. fered but about one-tenth of a fone forn the Iocal cheation of mean high-water ; lut the marshes on the Cale Cod ling side are two and a half feet higher than these on the Buzzord's buy side, and this is the dioference in the mean heisht of high-water in either Bay: There byy, being within si mike , i once another, forims an open sem, animatat. miralle illurtatim, mot ofly of the thath of the permestion that the plase of the mand is that of mean hith-water, bat aton of the
 together, and similar! situatel with resul to the oce:lll.

It aho shows that a danse in the cont line, or the dicpening of the rhammel ints a bay, may moserem diminish the chewation of the tifes, and this aperam to hase been the ance in Cumberna! Iowin. Su in rence in the meanheishtinthe tidesinthin a ludal area womb be reatily produced by the ern sion and decemens of the dhanci betwera Boss P'ont and leek's Point, wher the strait is abome a mile and a half homed, with a depth of mands of sewenty feet ; but if this local inctase in the height of the tilles in Combertand basin hat taken phace by the greater infles of tidal wather thenosh the strait named, it ma-i have ocrmoul since the dylang of the mathes, and we may, therefore, antin ipur is. chatinued introne is
 of the area ower whin he thdowater romms throush the deprothit at beos lome speadi itself mans alson canbe an elebation in the hectht of the tide, and this limitins prowes has been going on since the settlement of the comity, by the dytint: of the matish lands.

[^7]

 to Mr．Itmitum，rowh，of form fite tw

 it is now hrintsul，a hont divan e hame th． town of＇Trurn．At the preant dey mis attemptiare malle to the atby ent of eraft abowe the clas of an open brat fanther wi the bey than Yuill＇s Intum，which in atrent six mile：below the bride es

The are：of dyked mathes in Nosit Scotia and New lirmanwick is ahout $1: 0,000$ acres，and to the extent of the area thus represented have the limitins effects of human asenes as get sume ded in comfin－ ing the tidel wates．As the grent florines mouth thrombh which they enter romatis the same，some increase in height of the tiles has taken place，and it will protathy te only locally folt．The differebe between the phane of high water and the level of the marshes olserved ly Ma，Maillaing is doe， in part，to matural subsidence and consoli． dation of the mosh mad，and in past to the increase in the height of the tiles in Com－ berland liasin，on aroont of the limitnes proces purmed by dybing the mesters and excluding the tidat waters from areas for－ meriy covered by them durins hish springs．

6．THE ICE PHENOMING OF THI B：AY OF

 fusiorThe apmeannce of an cetuary in the lay Fundy at any time in midnimer presents some singular and striking phememem，which my contilute to our knowledge of the manner in whis different agents have assisted in excamatine this cetramdinarybay， andare now engated in extendingitsdomains in some directions and reducing it in others．

Within an hour or so of flowed tide the estuary is seen to le full of masses of that－ ing ice，mud－stained and some times，hut not often，lowded with earth，stones，or pieces of marsh．The tile，Howing at a rate of four or fise miles an home，rushes past with its broad ice－laded cument meth the

Transachiols of the Now Sontion Institute， 1806637.

 for the fire than，ha，an wh the wille riber Satur tion he rat ronamintly wath，a a 1.

 should retarn to the sume point of vie： holf an home hater，and hat the ice stom rushing as impeturnaty as before in exucily the opponite direction．
huring the chl tile many of the horer harkig grand on the exal how，so that when the tide is out the extensive flats are covered with ice－block immornhe．It the perind between the ebh and the returt of the flom 1 is very cold，the stranded ine Wows frece to the samblatrs or maddate and are cosered by the returning tide，but only until the warn tidal water staceceds in thasins the froen sund or mud around the
 meant of its less sucitic gravity，to breat： away with a frozen layer of mud or sand attarherl to it．It reaches the surface of the bater with a boume，and is instantly swept awsy ly the incomins tide．The spectacle thes priserted by an extemsive sand－bafier a few hours of freceing weather，is most an－ trandinary：the whole surface of the flood or （b）becones suddenly alive with block of ice，springing y forn below，each carring away its burden of sund or mud frozen to its base．later in the season，towards the midnle of Mareh，this singular phenomenoa can lee seen the beat adjantage，and it is curious to witteh a block of，say，ten feet spltaic by five or sis in thickness，being Gradually covered be the tide untilit becomes lost to viow for an hour or more，during which time the water mave hisen three or four fect above it．＂When least expect－ al＂up the submersed mass springs；it has broken loose from the fromen botom，it seems to stager and panse for a few moments at the smfeec，and then joins the rest of the icy stremon the in monothous journey，until it is asain stranded on some other that or har during the changs tide．But this is only I a small pratt of the hiswory of these ice－blocks，

 s wifc am！tid mont form all roman it

b）the than the 4 mins tide lowsin，it

：n the sprins tick mat mot howe the
er to frece it from its icy lombla if the

artuilly lecemmes a miniture lere，con－
ling some thomands of cubice fect of ice
1 made，and still retaining a bmosancy
ich will omalde it after a the during high ing tides to breat away with a lome of oris，and carry it either oun to sea or w！ estuary，and if it shombl chathe to be anded again，it will probatily leave a por－ n of its burden，provided it has not Ited of duringe its voytge with the tide． t there can le no rloubt that some of the ached sand，mad，or shingle fismelted oft ring the journey of the hock or miminture rg ，and drope into the bed of the river or thary．In reality，these ice calies，when in tion，are perpethally strewing the bot－ n with tansportedmaterid！and bringins portion from nue place tw amother，during out five loours of the thond，and camsing rt of it back again，during fixe houss of b，to the limit；of the bactiond and for－ ad tid．al mage of earh particular ice－cales． It when they accumblate in an eldy，they come prowerful carriets and deproitors of tritus，and if artifical obstrations be in－ ducest so ats to fomm an cody in the wanal urse of the ice－sticam，the aremmabiation
ust necessimily be very rapid．
The extent of the matere of the iredinet：s d the difference in the tomeporthe power
 ore elosely into the phememena of tine lisy Funly ticles．
Before，however，procecdiner to elane at me of the kemling fratures of time tiole，it ay be well tr print ont anotiact per alimity
 sld winters．In the ．Wom and ith ent bry locks smactines in，le：口ce in simand wein it y constantarreseirn of mand and bee and bow tos sul an entent that they remain

 fmally tmalles oner on its side and lacomon
 （20th Jamaty， 1895 ），the s．mm？th th the
 of mad－ire，daty inn teanime in dimemanom athe weisht，owing to the peolonsed coll！ Weather of the past month．＇The thond the Lrings from the lower pate of the entoly it mass of ice－calies which completely cosus the hrowl upper part ofthe costuas；sthandal horks，frocon th the mod and saml hinhs， butat wh after the thle has rixen at fers fect over them，and the forece of the conm than hits the eates，swifly difther ower it amm thin

 eriner many spane miles of sufface The Ne：ly fullen smow has andmbed the sulamenf
 white，which remonstis stratacty with that marl－at．anerl silles．＇$?$

 excabating mathy of the band c－tharics Which form the outlet of lisers thwins in： the wher portim of the bay of fondy，for

 flat in the la， 15

The imple aim pormed wh the minully thi－spertale is hot a pleationt ons．In ahn weather，or durint the pleble in of of winds in whe quatier，thenesme，so often ice

 ter day it shifly ditts with the tome tide
 c： owins to the cicmal fons of the lion of lome
teder, homather d ait d, rempeains the next day s!ed! inrlowel! in sar, with the same eared rilh, atul se on for dys and
 infression softencd by the ruflertion that the greater portion of the pasimg hos hate been engested in truedlino wer pacisels the same rolte in dull mifomity throwhont the winturs night, and will continue to do so, until a change in the discrion of the wind drives them out to sea, but only to take up another " line of march" in another direction.

It will be observed from the formoing description, that the action of ice in the tidal rivers of the liny of Fundy is of a totally different character from the new ice in such rivers as the St. Lawrence, beyond the reach of the tide. There, all the transporting tfiects are directed down stream, as is so graphically deacribed by Sir Willian Logan, in his paper on "the Winter Phenomena of the St. lawrence." Ice in the lay of Fundy rivers and csimaties, and even on its coasts, has a tenfold greater excasating and transporting power than in rivers where no tide exists, in continably repeating the operation, and makige the same bock of ice carry material to and fro, for m, ths together, and up strean as well as down. ticnee the reason why the ceturies of insignificant stram. are of such gisantic dimensions on the upyer part of the Bay of Fundy shores, and perhaps we may find an explanation of the origin of many great walleys now occupied ly small rivers, in which tidal curnents prevaled during a colder cpoch, and during aperiod of sommergence. It may serve also to explain the origin of drift containing fragments orisimating from strata far ciowa the strean where such deposits occur, and which are not found in sith up strean.

It is curious to watch the action of ise accumblating on the whates and betwen whares in stuch harhours as Windsor, and others on the const, where the tide rises thirly feet or more.

The ice grows with great rapidity on the sides exposed to the tide. Duing probonged seasons of very cold weather, it acyuires a great thickness, some times of ten to twenty feet. Hetween the whanes the ice will meet, and actually fill up the intervening basin or slip, foming a solith mass twenty feet thick. When sping comes with its
 hathour frece, the minis c:
wharf or pier swat? : \because a a lis sping ticle, burime.
anay. Not so, howe
two whares forming a fi: : : : . ., i. m
 the outside ; it is mo: a.... ho.:! on loih sides, hut also at the brom, for the sweco of the tide can underaine it but slonly. I have asked the opinima of peroons well ar. quainted with this serions olstruction to navigation during the carly spring, and have been told that the ice sometimes remains a month longer betwen wharses than outside of either. The "slip" formed by the piers at the Bay of Fund: cntrance to the Baie Verte Canal, will lie 250 fect broad and y 100 feet long. Is it not worth while to consider how long the mass of tidal ice which would be formed in it (prhaps havins an average of thirty feet in thickness, 250 Reet in breadth, and 1000 foet in length,) would require to thaw to the extent necessary to permit of its removal. How long would it remain after mavigation was open? The tide undermines the extexior ice on the outside walls of the slin, and it is constanty lifed a little at the dood, until it becomes too feebly attached to resist the strain, and breaking, goes off in masse. It resembles a glacier "calving.'

Sometimes. hand slides occui in the estuaries, and during their past history vast numbers must have taken phace on a large scale. The tides soon assort the materials, carrying off mud and sand, and leaving a cordon of boulders or masses of rock. Jee cakes during winter get jumed between these masses of rock, and growing with cach tide they gradually increase and arcumiulate to such an extent that, when a high spring tide occurs, the whole mass starts. and if near the flood floats up stream for a mile or more : the repetition of this mey cary them further up stream, or away tonards the se: with the ehb; but it is clear that, as with small fragments, we have the means of transporting masese of wock against the stream, and fir begond the ir position when in sith, and in a contrary direction to that of the supposed proviling drift.

$$
A n " / s i j_{1} m!, "
$$

As already stated, the upper pat of ceture ress in the lieyofondy he omes bhad witt:
ice lion
flowd tid
sur is
for milu
ice fich
water, d
after the
interna!,
quentiy
that it r
that the
incipen
perature
below
piulons
the int
them to
been c
upper
is threa
but sev
dyked
the eb
sheet o
retiring
the tid
sink fr
the col
neaps,
subsid
usuat
in the
take 1
connes
the et
tide r
way,
trigeth
weigh
Ih
anc cc
partic
Juin
the
tuget
fised
leati
of $t h$
area
comply
the
belo
eyc
Ithi:
ice Whesed durins atd at the chase of the flose tike. The entury of the dromat Wimot. sor is so chotied with exoty thod thle that for mites mothing but a rutsh and stationmy icefold is seen for half an home before hish Water, durins the stand, and for half an hour afer the begimine of the chb. During this inturmal, let us subvere, as is bot menfequently the case in this cisthemble climate, that it rains. It maty appear st: mos t (say that the immmetable bocks frecece torethe:, inciependently of refertion* for the temperature of the ice just bencatin the surface is below the frecaing point, except after a probonged thaw, and the rain trictiles through the interstices between the blocks, and himds them together in one solid shect. I have been credibly informed that even in the upper portion of the Avon, whete the estuary is three thousand fect broad in the chanmel, but several miles broad including the bow dyked lands, instances have oceured when the ebh tide is incumbetent to carry the shect of ice with it; it then sinks with the retiring waters, and rests on the botom of the tide way. Fut as the central part has to sink from thirty to forty fect according to the condition of the tilles, whetherspmes or neaps, it is broken into lare thoes bey the subsidence. The tlood carres, it away in the usual manmer, hut whete the are bariations in the breadth of the chanmel a jan may take place in a namow part, and the ice becomes piled. The hloctis coming down with the ebb arcmmulate at the jam, and as the tide recedes lower and lowe., the whole tideway becomes filled up, and the mass freczes together forming a solid ice jam of immense weight and extent.

Ihare not seen this phenombon ; but 1 ann convinced that in certain seasons and at particular places it sometimes takes place. Juring the present umbsally sevore winter, the ereat ice shect formal by the: fiecoing together of the ice-hlows has rematined fosed for many diys, in some of the esturaics leateng into Comwallis lisisin; and a promem of the evtury of the Aron, contanines an area of about twenty spume miles, has lecen completely horkerl ip, from shore to shome, the ice extublans in one resered shect frman below the villate of llantsport, as fir ats the eye could read h, ul the town of Windsor. Itrises and fall; with the the and it is caty to
sechow a hatic: mathe fommed to the ne tibe if it hatat the power to forn it : \because
 matshe: or thats, and hest the fommaton st a new river chamel, at the chb. It is mo:
 of this phemomemom durate the lone hister: of an cetmaty, and it will attond an cosy w. flmation of the chasing of river chames, and the erosion of will wlleys now ocen picd hy insigntiomt streams. Wurine the subsidence and elevatiof of continchis, as manmence area monit have been suljerted th these tidal icephemomena chans plat agos, amd it is apprent that both in erowion amd transurtation, tidal ice has exerriacda bat power in mombling the valleys subject to its intluence.
Comminging of Ditris and Jrift by lie Bilotis.
In the liasin of Minas there are three great esturics, one at the mouth of the lyo: another at the month of the Cornwalliskiver and a third at the month of the shabenacadie, at the hearel of Colsempir! Bry.

At the frst named, sirinstides rine if fo i at Cormsalios River, a litte Less ; and at tice mouth of the Shabemaradie, they m? attain $6 j(1) 70$ fect. The ticke mathes thromsh the channel leading into the lissin of Winas at a speed of from seren to eight knots an hour on the south sinc.* At its marmenest part thi channel is aluent fonr miles honad, but fro:n 30 th 57 fathoms deej. The tides divide after enturing Mimas Sisinn into two [ats, one flowis's into Cobeymi! loy, the other into Windzor liay. The Windior lay tide asall divilus, one cursent flowing up the Avon citury, the other up the Comwallis Wiver estary. At chl tide, hocks of ine loaded with sand, Erabel, and shinsle, are canied down the dom into Wiardan lise, an! if the wind surves during the stand, they may drift either into the mane of the (omswallis of Shomemarme foocl tile; amb, as the case my be, are camied into one of those estumice. The reverse of this inter-
 1. nlic River ice blocks may dift into the Anom on Cornmallis livers. Conserpently debnis from 'lramic 'Inapand lower Cablaniferons rocks become comminelerl, and materials from different rock sjstems may

- Sailine: Jitcu:ions.
thes find their way to proitions the revemen of the sulfinsed direction of ire dhife ; and this exphation may aphly tof wilerateas under dificrent conditions of sea kevel, dimate, and wastal configuration. !" orle to arrive at an aphonsmate cotimnte of the quantity of tidd mad daily transproter up and down the estmaries, I selected prortions of two average hlocks of ice ome having heen frozen to the boteon and subserpenty liberated, the other, tidal ice, which did no: show any signs of having zrommed. loth were seamed with light chocolate colnured lines of the mud, and more resemblect dirty rock-salt in appeanace than ise.

Block No. 1 , or the block which had grounded, cont.ined a propartion of 7 ounces of tidal mud in one culsic fout.

Block No. a, contained about 3 ounces of tidal med in the cubie foot.

The average of the two bering five ounces of mud to the culice foot of ire.

Assuming the ice-hocks, when agearegated at the flood tide in an estlary, to cover the surface approximately mensered late in Jamany of this ycar, in the Aron, at follows :
Preadh............. 3,000 feet, or ahout láa mili, lensth.. jo,oro feet, or albun 10 milics, Thichnco, awerage. + feel,
the total quantity of tidal mud carrict. be this iec-field amomed to 93,750 tons. .i strong south wind would how the mase with the eblotide into Windsor lay, and into the tidal current leading into Cornwallis River estuary, where much of it would be deposited.
7. The swise of the thus of the bay OF FUNM:
Standiag on the bold mural clifts facing Chignecto (Chamel, leading to Comberland Basin, where Sir William Logan marke his celcerated section of the carbeniferons rocks of Nova Scotia, the olserver may look upon the boad capanse at his feet, any time Aering Januaty, Fobmary, and Marrl, and in some gears to the midele of Apmit, and watch the ice floes drifting with the tick. If there be a prominent mark, such as sometimes ofours late in April nancly, a ton venturos. showner campht in the ise, he may gaz upon the mank driftuge with the flood and ch, forwarls and backards for weeks together, in a huse swing up and down an indincel plane, and within a rance varginge form twenty to thity mike.

 with a tile v!it: ra, in si: lo, five 5 almoc the mean 1 uel of th and, in sic low- 1. re, fills i. aly th.
 Guns bwer dewi the by to Noul, 1 aldertig the bow cotimate of the homie'? chatis, we may in six hours withess the tile rive twenthe fut ahove, and simt in the following six homs twenty-four feci lelow, the menn lued of the sea. In Cumberims Dasin, whe one terminus of the Haie Verte Canal is 1 roposed ti) the situated, the mean range of high watur, that of the plane of the marshes, carrics it nineteen fect above the mean level of the sea, and it. swing sinks it cightean fect below.

Theoretically, the rise above the men:a level of the sea and the fall below it should be the same ; the difference observed in Mr. Baillairgés table are, however, slight, ant! would no dowt le less if the mean level of the sea, to which they are referred, were aecurately ascerimed by observations contimed for a lonecr period. It is aloo to be noticed that the tidal record extends o:? to day tides, no observations having. heen taken to asceramin the altitude of night tides. As there is a difference between the d., and night tides, the might tidestheing the highest in the Bay of Funly, an addition of a constant get to be ascertained will have to be made to all the figures showing the range of the tides.

We may now see without difticulty how it is that ice, vesels, and indeed any foating object, moving with the tide from four to eight mikes an hour, may drift backwats and forwaids for a space of twenty or thirts: miles, or until the ehl meets the incoming flond, and this for weeks and months together, not only in estuaries and the tidat portions of rivers, but on the open bays themselves. This drifting is a swing too and fro, with mideintersals of rest at the "stand" or each turn of the tide, and it is continued up and down an inclined plane four times. every day, thenghout the winer, thronghout the year. in a word, throughout time. A floating block of iece or a vessel desemels

[^8]ith :h.
a, : H il her, ati e incum climal 11 tont on ic inc line ine 1_{1}^{1} asill $=$

R1I. 111
powt
It now
e tide :
conves.
locks dur
lat th:
icks or lo
ley aredr
ne mu!
ie tider; a
f the floc
arrents di
it the liay
c obsers
break
urrents p
ig in sim
reatest ic
reatest sc
Mr. Bai
ourly ritt
f fall, in
rm an o
ent durin
In all c
xceeded
re tide.
From
lat the on
nd thirt
f fall
lowin
inute
In othe
ad thrice
rod till
stance.
e vel.
ould in
wer of
e ebl.
r that
nownt
imern:
nger tin
ith the chh, prose the man leve of the

 re iacomin: flo ha what canion it up the cland Mane wo the phe whene it had tont on it mathtnons joumey. bown of inclinal for si hours, and up the ininc 1 flom for sin hown, and som without asill.

It now remains to comider the effect of et tile upen the diffrem kimed of matericonveral from phate wher by the ice locks during the w winter work. It is clear nat the shingh, stomes, and fragments of acks or bouders will generuly remain where beyare dropucl for one seasun at least. The ne mul and sand will be distributed by e tides arcording to the tamponting bower f the flow and ch小: and these great tidal arrento difier very materially in their action t the liny of Fundy; they operate, it must e observed, cssentially as curremts, and unt s breakets on an open sea-coast. Of iwo urrents possessing eypal volume and flowig in similar channels, that which has the reatest colocity will necessarily possess the reatest scoming intun
Mr. Baillairse observations buchuded the ourly rate of bise of the tide, and the rate fall, in feet, by which we are emabled to rm an opmion of the rapidity of the curent durine flond and (b) tides.
In all cases the duration of the fall or ebl sceeded the duration of the rise or floed of re tide.
From Mr. Baillarge's tables it appears lat the mean duration of rise was five hours and thits twe minutes, the mean duration f fall six hours and thity-fise minuter, sowing a difference of one hour and there inutes.
In other words the chb tide was one home ad three minutes longer in folling than the rod tide in rising thraph the same vertical stance. Prom this apparent difierene en e velenity of the: thood ame chl tides we ould infer the the trom-preting and eronive wer of tice flow was grater than that of e eble tide. hut it will be shown hateafr that the cha carries loy far the largest nown of wate arining from the damase of meren:s rivels, and consempently reguires nger time to pass any fixed point.

Dint the: i, uthemmen or simeula in
 olserbatims. Which show oinclf mat only in
 the chband thoed, hat opectinly in the dis. tibution of then wern itie, thmosh the different hours and hath hours of the thondand (b).

In his table it is shown that white duing the the of the ticle, the flus, during spmings, is extemely incotuln, durinz; char, it is comperationd an eren and trompuit tho..

 30 feet 11 inches rushed in durins: the tinst three hours, and durins the secomd and third hours of the flow the waters rome:? fect 10 inches. Wemy form some conserption of the titanic formes excentisel by a flond tide rushins in with surh "Pyste" li"e violence as to rise that hesisht in surh a short space of time. Aceorlins wo the limited number of observations maleat the peaiod of chanse or new mom in Combertand Basin, the following were the chationts at tained during the second am? that hown an
 bci, 1s;0.

	Tile dume
Date.	and thind hote of flod
IS50.	in feet.
	20 fect 9 in: 1.
Septemixa $=70.4$	22 "
" joth.	19 " 11
Ostuner 2 jth .	22 "10 ${ }^{2}$
" 2Sih.	20 " 6

If observations had been made durins the night, when the tides are higher in the Buy of Fundy than during the dy-time, and continued so as to embrace the vornal eypuines, there can be no doubt that the remoly womb show a greater rise during the second amd thind hours of the flomed, and consempently: fieter and more uncontwilable cunchts, than those imbleated les the mhat of water in the table given. It is a math down an in dined plane, ursed by a tibll wase The ehin ohe ying the law of eravity des emes, on to speali, juint as moth hedow the lewe of the sea ats the forsel is forcedabose it by the tidal ware.

Standing on the dybes of comberbum Busin, the obsemer, at the dore of the chb, may be said to low mon the botton of the ocean hat bare twisy foul fect blow the mana level of the sen, by the hatiwand swims of the ebl) moncutum, (1ryins; it as muth
below the: me:m level of the six 1 :15 the mon and sum's attrution, a winel he the contis. uration of the hand, clemated the waters of the flomed tide abowe it.

What eroling and tanspontins power tidatioe most have had in all commeries ant climates, whete confrumation of the lam? thus elewated the tiles, and winter cold c.uncel the furmation of tinh-ice:

It is no: improbalite thent many of the fiords which distinguish the coast line of countrics lyins, north of the foth parallel have beed moulded or enlarsed by tidalice, indenerbently of glacial action : and s:ast surfues must have been exposed to the action, as already stated, during periods of gradual samemerence and emerence in the Forthernand Southem temperatezones It is to the terrific rush of the dood tiele orer its bed that the excessively turbid character of the tidal waters in the upher part of the lay of tundy is due. The "Eygre" grinds the shingle into minute particles, sorts the debris into mud and sand; much of the nut! is carried suspended, even to the top of the flood, and the sand is distributed in the form of bars which are remodelled by the ebb.

As a general prineiple Mr. Mitchelt states that "a greater proportion of the scour of channels is executed by the ebh than by the flood, hecause the former is cont centratioe, while the latter is dis.ersiate" He illustrates his argument by showing that the tide-wave tracels more rapidly in deep than in shallow water; so that in the middle of the bay the water is more elewated on the rise and less cevated on the fall than along the shore ; the rise is thercfore attended by a curent pressings shoreward, white the full induces a ruming in tomard a central axis. The consequence is, that althous the inflowing and ol:flowing volumes may bo equal, in a suphesed case, the ebb, cioncontratid, is more rapial, and therefore phays the greater part in exabating a central chan-nel-way to the sea.

The proposition is no doul staned in all cases where the ehb a fored have nearly the same duration, and paricularly when the chb is of shorter demation than the flowel, as is not unferguently the case on the open Athatic Const. The floon cuncme presing shomewats durner the rise, is of

tion office, fortithe wimper and in :.. ing the great lentil in Cumbertond b: and in many other hamberco d water ar: The somums of the thond and ebh thlo there may the phow in the follo:ing tant-ner:-

The tlondtinle, enturing the pain wat great rupidity, carriusalons with it at an! sand, and th: wer of the constamd.
which it hirows of shorewards, and dient butes the heavier particles on the slopme beach on cithor side. During the stand the mod and sund are deposited. The ebb, as sisted by the water, of all the rivers flowing into the area under ruview, carries back a portion of the fine mud and sand towards the centre of the chamel, where the current is strongest, and then convess a part bask to the decper partions of Cobequid Bay: The restltant of these antagonistic operations is seen in the accumulation of mud on the marshes and of sand on the bars; but the amount of mud and sand thus deposited is, in the argregate, less than that which is convered by the ebbetide towards Coberguid Ray, otherwise the brsim would long ore this have been silted up. The ebb has to conbey the dramage of a large extent of coumtry, the accumulated waters of the Maccan, the Hebert, the Napan, and many other" streams of less dimensions; hence, though the duration of the eblis longer than that of the flood, we miy not infer that its current is less potent, for it has a much larger body of water to discharge. Mr. Page states that the curremt of the outgoing tide is strongo than when it is rising ;and it is by observing the direction and shape of the bars and thes that we are enabled to arrive at the condusion that the ehbexcrises the greatest sooming effect in the basin. The direction of a current is shown by the shape of a bur, either in mid-strean, or with one extremity jomed to the land. The bars in Cumberland basin point scawards;--that is, their broad base is landwards, their marrow extremity seawares. The great expanse of sand, fomins Minudic (Quicksmels, turns its noth westera point seawards; hence, it appears that the resultant of the two curtents, hood and (h) is in furour of the chlo.

In the shape of the coint where the mashes have bea deposited, we rerognise the srmberfer of the floodede The showe line there formed is a smooth and sustamed

[^9]outline, alons which the thonet tile throws the ice, and compls it to hes the shome in its ermit romal the Bisum. Any ohsturtion, mateal of artificish, weuld hase te bear the
 (ofice londed with mal ; and in the gr a deposit, deraibed by Mr. Raillargé, We moy reognise the intlatnce of the mansporting power of ice. A literal corkon is thas formed, which protects the lionke, just as a condon is produced by the breaking wate of the sea when a headland is wom dowa. If we knew the mineral character of the boulders, shingle, and gratel lying near the mouth of the Missaumash, the La Phache, and Comberland Creck: we could tell whether they originated by the wear of a former headland, such as Cumberland Ridge, or St. Lawrence Ridge, or whether they are constantly brought by ice, from headlands lying seawards with the foodtide, and thrown off towards the margin of the marshes, where they now act as a protecting shidd. It is probable, under all circumstances, that if these boulders were removed the banks would be undermined. Hence the nature of this littoral cordon thecomes a subject of interesting enpuiry with regard to an anchorage eround at the month of the Baic Verte Canal. In many of the Bay of Fundy hartours, ressels lomeling of discharging rest on soft mud when the tide is out. But if boulders are liable to le deposited in the mud, this would bee at bery dangerous expedient.
9. THE \&FFEC'Y OF OLSTRUCTIONS IN TH1: FORM OF PIEKSIN IHL THIF-WAY.

The present relative position of the marshes, bars, channel, and coast line is the resultatit of ages of action on the part of the flood and elh tides, and it becomes an interesting sulject of enduiry to determine the extent of the readjusturent which would probably be produced by chansing the direction of the fieree curents which sweep throngh Cumberland Basin, by the construrtion of piers at the entrance of the propord Baic V'ele Camal.

Sclecting the best locality for the terminus of the camal, where all are bad, Mr. Baillaige sumests a pier, 1,500 feet long, at Au lac Point. According to Mr. Pare, the slope of the bontom of the Basin at this point is as follows:-

In the that jon fuet llo slopefrom the
sinflice of the mats! in. IS.7\% f..

$$
\text { Tot.el soje in } 1, \text { son fect. } 35.77
$$

Thie constuction of a pier $\mathbf{t} 500$ foct hong on this slogn, will be abront eguivalem to a pier 1,000 feet long and $17 . S S$ feet deen in the tide way. The sectional area of the whole tile-way, or chamel, from Au Lac Point to the dykes of the Minudie mushes on the opposite side of Cumberland Boasin is, according to the Armiralty chart, aboutas follows, but actual measurement may considerably molify there estimates:

The obstruction to the tide-way would is erpuatent to reducins its present available sectional area actuss the lasin. fos effer wouk be folt chichy in the civersion of the cument and their increased behocity. The same gumaty of water must conce up to the pier, hat the tideray lowing diminished, a potion of the flowd, which hugs the Au Lace shore, would go up the Tintamme river, and probably orchlow the dyle amd flood the present marshes thromhomt Cumberland Basin. The current past the end of the pier wond le vastly increascol, and if we regard the rising flood as a river, with the pier as a wing dime the fliest upon the ele gation and reloci-y of the water wobld he in most resperts similar. The qumatity of water pasims u, the Naman and Heterat rivers wond be lessemed, and some effet produced unon the samd hars, and alownon the navisation of the se tivers.

Mr. I'age deactiles the existing curtents at du Lat lount, from which we may infer the extent of the eddies which would be produced by a pier 1500 fect lon ${ }_{2}^{2}$, and tom a conception of the natue of the deposits which would gather by means of the transporting, power of the ice-thocks in winter, ats already desaibed.

 substratum of this har, or exall it of the

 coverel with semb darime sman-
There can be litele dount the an chay of considerahle manitale wond be fors of during flowel tike, on the erse sifle of the pier farther form the foest, ant at chl the on the wert side furtherthen the cha. Here, bars, or father arcumulations of sond, weold be produced ley tie doliris meled aft the bottom of the ifethoth. bint these incer sant carricts bring gravelam! shingh besides mud, whish, when droned in the celdy, would be soted, but mot carricd aw.es, as they would lie under the protecting sheler of the piers. But they woma gradnally in. vade the entrance to the cant, and the ace cumulation would take phace uninterroptedy during thre or four asper months, when tio dredging operations comble the canced on, with a rapicity only to he apmerinted by thase who have wathet the chet proda col by the muldee of the bay of fondy.
It has been shown that the conetraction of a pied 1500 fect long at Ablac Point. where the tide way is as milus hasit, womed exercise a very materal imblume unem the bars and matrace, and upon the welority and direction of the currents: and it may with propricty be asked, what effer womb a puet 2500 fet lone, as sugsenten liy Mr. Kicter, proture in a tide-way, where the sectional area is only one-half of that ondoite the mouth of the Alular?
It womblectainly deluse the Comberand mardes, awe po away the Minutice marthe, and probally soom combet the piar into an

- 11


```
awnl
```

```
10. (10:1 % %%)
```

 bover lux min lic:n on an is.
 proped at the math of the bice Vete Camal in Cumberm: busin. the con. struction womld inoblic the rimo of the dylecs by several fect all ram the be an, an a correpondins in reane th their stren, eh. The winter ifuts womld fll the slip formed hy the piets with a solid and uniform mest of tida matice, which wond protme :he opening of mavisution for wene wecks. The cthics produced, wall raphly pomete tios formation of bars or depasto on the outste of each pier, which wodh tadnally insu? and utimately hock the eatrancewa gener or lons dertee and draluins oper thans would he very difient. The remedy ios time objections is apprently simple, it the
 of mashation can be sere.t. The menti of the can mat be flu-h wh the shate line, and coneruted at a point where solid rats form: the shore. This, I beliewe, exist sume shom dintate south of the mouth of Tintanare river. The mouth of the camal nor he clued durng the wimer, tw preat it will lo of then and mud-ice withen it, or the winter, like the open slipe at durang farts on the uper pat of the bay of luent
These are the deductions tuwhich a stwi.) of the ise-phememen of the loy of Fundy necessurily lads, and which cannet be owertooked in preparing for the constaction of such an important mational work as the baic Verte canal.

DALHOUSIE UNIVERSITY

[^0]: * Keport of the Chief Engincer of Fublic Wurh.
 + lhis.

[^1]: * Iak: "Sympis of Kepont on the Jaic Voute Canal, publided by the topanment of public

 5. Juln J'ace, Ch. Bn., F' W., N(N) : 6. G. F.

[^2]:

 1873: 12. j. Fasce, Ch. In., J. W., IS_{73}.

[^3]: * Murdoch's History of Nora Scotia, Vol. II., p. 376 .

[^4]: - Acalian Ciculusy.

[^5]: to Bice Vent Camal Repont.
 f "It only remain; to believe that a sub, ithene ha, taben phace wer a com ilemble ate ant an a

[^6]: * "On almane
 Intitule of Noturel science Vol. II. I'an II. 15 9.4

[^7]: N. S. Coser survey

[^8]: * $\because \therefore$ Mı, 1 B. Hamilum's paper, herne se fencil to (or the Tille in the hiny of fomly)

[^9]: - Vnited stater Cont sumey, detus.

