MARCH, 1912

voz. XXV, No. 12

THE OTTAWA NATURALIST

Published by The 0^{\prime}.tawa Field-Naturalists' Club.

Editor:

ARTHUR GIBSON, Central Experturntal Parm, OTTAWA.

Associate Eoftors:

W. T. Macoun,
P. E. Raymond, Ph.D. Geology
Prof. John Macoun, M A. Otto Klotz, LL.D.
Conchology Meteorology.
W. H. Harrington, J. W. Gibson, M.A.

Entomology.

Nature Study.

Miss M. F. Fortie , Ornithology
L. M.LAMBE, F.G.S.,

Palconsology.
Prof. E. E. Prince, Zoology.

CONTENTS:
Final Report of the James Fletcher Memorial Committee. - - 173
Passenger Pigeon Investigation. - - - - - - 174
Drinking Water and Health. By Frank T. Shutt. 175
The Identity of the better known Midge Galls. By E. P. Felt. - 181
The Gray or Arkansas King Bird. By H. M. Speechly. - - 188
Notes-Conchological and otherwise. - - - - - 189
Portrait of the late Dr. James Fletcher. - - - - - 190
Index to the Ottawa Naturalist, Vol. XXV, 1911-12. - - - 191

The Rolla L. Cratn Co., Limited ISSUED MARCH 14, 1912.

EEO. E, PRESTOll \& SOIIS, merchant Tallors
 2:7-219 RIDEAU ST., OTTAWA

 WR MAKE EVERYTHING WE SELL. AND GUARANTEE EVERYTHING WE MAKE."THE BOOKSTORE'

Phone 732
${ }^{5} 57$ Bank St.

Any book you see advertised, if we have it not, we will order it for you promptly. We solicit book business.
"Merit" placen ALLEN \& COCHRANE THE RED CROSS DRUGGISTS at the head in the drug business of Ottawa-on merit they seely your trade. 4 STORES, OTTAWA, CAKADA

MENTION

THE OTTAWA NATURALIST

WHEN DEALING WITH OUR ADVERTISERS

Wholesale Manufacturers
Lumbermen's and Contractors' Supplies, Outfitting Survey Parties,
Exploration and Outing Parties of any kind, A. Specilty

For Quotatione Phone 3512

DRS. MARK G. AND GEORGE M. Mcelhinney
DENTISTS AND ORTHODONTISTS 109 Metcalfe St., OTTAWA

THE BARK OF OTTAWA

Established 1876

Capital (authorized)	$\$ 5,000,000$
Capital (paid up)	$3,500,000$
Rest and Undivised Profits	$\mathbf{4 , 0 1 7 , 9 3 8}$

10 OEFICES IN OTTAWA AND HULL SAVINGS BANK DEPARTMENT
A. ROSENTHAL \& SONS, LTD. JEWELLERS AND OPTICIAN

Goldsmith's Hall
Ottawa

THER.J. DEVLIN CO.

High Grade Hats Fine Furs
Fur Dopertment Phone 4828

76 Sparics St .
EVERY DOLLLAR
beyond what is actually needed in the safe conduct of the bisfiness is returned to YOU in DIVIDENDS by THE MUTUAL LIFE OF CANADA

Censult H. MOONEY \& SON Mgra. Ottawa, $\mathrm{O}_{\text {nt. }}$

GRIP LIMITED,
48-5s TEMPERAFCE ST + 10 ORNTO

Library Bureau of Canada

HEAD OFFICE-ISABELLA ST., OTTAWA, ONT BRANCHES -Toronto, Montreal and Winnipeg.

Inventors of the Card System, Vertical Filing and various Office Devices.

Special Insect Cases and Natural History Cabinets made to order.
C. W. LINDSAY, Limited 189 SPARKS ST., OTTAWA

Crown Lithographing Co., 189-190 WELLINGTON ST., OTTAWA

Society and Wedding Stationery, Calling Cards. At Home, Dinner Cards, etc.

The Kola L. Grain Co., Limited
Printers, Bookbinders and Loose Leaf Manufacturers

PHONE 6201
Murphy-Samble Limited Ottawa

DIRECT IMPORTERS OF
FANCY AND STAPLE GROCERIES, TROPICAL AND HOT HOUSE VEGETABLES AND FRUIT

SOLE BLENDERS AND DISTRIBUTORS OF THE FAMOUS
ORCHID BRAND SECRET BLEND TEA
ORCHID BRAND PLANTATION COFFEE ORCHID BRAND BACON

THE IMPERIAL LAUNDRY
 386-390 WELLINGTON ST., COR. BAY ST.

LAUNDERERS AND CLEANERS
DRY CLEANING A SPECIALTY
Telephone 2000 GIVE US A TRIAL ORDER

Dominion Express Money Orders

 FOREIGN DRAFTS Payable all over the World.Money transferre-
by Telegraph and Cable

Foreign Money Bought and Sold.

THE OTTAWA NATURALIST

VOL. XXV.

FINAL REPORT OF THE JAMES FLETCHER MEMORIAL COMMITTEE OF THE OTTAWA FIELDNaturalists' CLUB.

The Memorial Fountain, erected on the Central Experimental Farm, was unveiled on July 19th, 1910. Several hundreds of people were present at the ceremony, including some distinguished visitors from a distance. Official representatives of the Royal Society of Canada. the Entomological Society of Ontario and the Ottawa Field Naturalists' Club were present, and took a prominent part in the proceedings. The Fountain, including the medallion, is the work of Dr. R. Tait McKenzie, of the University of Pennsylvania, Philadelphia, U.S.A.

The Memorial portrait, which is the work of Mr. Franklyn Brownell, R.C.A., was unveiled at an evening meeting of the Ottawa Field-Naturalists' Club on January 9th, 1912. It is an exceedingly good likeness of the late Dr. Fletcher, and, as most satisfactory arrangements have been made with the Municipal Library Board and the Librarian of the Carnegie Library, the portrait will be hung in a prominent place in this latter building.

> Cash Statement.
> Receipts.

Total amount paid by subscribers $\$ 1,838.85$
Bank interest..............................
\$1,861.46
Expenditure.

Cost of Memorial Fountain
Cost of Portrait, including frame.
$\$ 1,500.00$
Miscellaneous expenses: printing, envelopes, receipt forms, postage, travelling, etc.

On behalf of the Committee,
Arthur Gibson, Secretary-Treasurer.
Ottawa, January 23rd, 1912.

PASSENGER PIGEON INVESTIGATION.

February 14, 1912.
List of Rewards with Conditions Governing Them.
One Thousand Dollars $(\$ 1,000)$ Reward.--For first information, exclusive and confidential, of the location of a nesting pair or colony of passenger pigeons, anywhere in North America; when properly confirmed and if found by confirming party with parent birds and eggs or young UNDISTURBED:

Colonel Anthony R. Kuser will pay a reward of . . . $\$ 300$
John E. Thayer will pay a reward of $\$ 700$
For first nesting discovered thereafter in the following States will be paid by
John Eurroughs, New York
$\$ 100$
A. B. F. Kinney, Massachusetts.... 100

Anonymous, Massachusetts, for 2 d find....................... 100
Allan B. Miller, for 1st nesting found in Worcester Co., Mass. 20
Edward Avis, Connecticut................................... 100
Harry S. Hathaway, Rhode Island. 100
Worthington Society, New Jersey.............................. 100
John Dryden Kuser, for 2d nesting found in New Jersey... 10
Henry W. Shoemaker, Penna. \$200 (adds \$25, if nest is protected).
W. B. Mershon, Michigan 100
R. W. Mathews, Minnesota 100
Ruthven Deane, Illinois. 50
John E. Thayer, Me., N. H., Vt., Ont., Wis., $\$ 100$ each 500John Lewis Childs, for first three nestings not entitled to anyof the above rewards, $\$ 200$ each600

The purpose of these offers is to secure an intelligent search of the American continent for breeding pigeons in the hope that, if found, the species may be saved from extermination.

All above rewards are offered solely and only for information of location of undisturbed nestings. We do not desire possession of any birds, alive or dead, but are working solely to save the free, wild pigeon.

To insure intelligence and good faith informants of nestings are advised to enclose or agree to forfeit at least $\$ 5$ in case they have failed to identify the birds correctly. This is only fair, since the amount may cover but a small part of the costs occasioned by a false report. The money will be immediately returned, if the birds are found to be passenger pigeons (Ectopistes migratorius). In the case of nesting pigeons, there can be no excuse for sending in false reports. Disregard all nests on
the ground. The wild pigeon always nests in trees, generally 10 feet or more from the ground.

Priority of claim will be decided by time of receipt at post or telegraph office. Rewards will be equally divided, if two or more letters or messages bear record of same date and hour. All nestings within one mile of one another will be counted as one colony.

Please report all pigeons seen, giving exactly date, hour, number in flock, direction of flight. Unless absolutely certain that you know the Band-tailed, Viosca and Red-billed pigeons, do not report that you have seen the passenger pigeon in the Rocky Mts. or Pacific Coast region, from British Columbia to Mexico.

As soon as a pigeon nesting is surely identified write the undersigned, who will arrange for confirming party and for payment of the reward. All rewards not claimed by Oct. 31, 1912 , will be withdrawn.

Signed, C. F. HODGE,
Clark University, Worcester, Mass.

DRINKING WATER AND HEALTH.

By Frank T. Shutt, M.A., F.R.S.C. ${ }^{\text {D D Dominion Chemist. }}$

(Continued from page 171).

Waters as used by towns or for isolated households, as on the farm, may be classified as follows:- Rain water; Upland surface waters; Ground waters or those of shallow wells; and Deep-seated waters, as obtained by drilling or boring and among which many springs may be placed.

Rain water. This can be caught and used as such. As a drinking supply little need be said of this source. In Canada, where in most districts, other and larger sources of supply are readily available, rain water is seldom used save for washing and laundering purposes, for which by reason of its extreme softness it is eminently suitable, Its quality or purity will depend on the condition of the atmosphere through which it falls; if in town we may expect it to contain soot and gases from which it would be comparatively free if falling in rural parts. Again, dirty roofs and eave troughs, storage tanks in which organic débris accumulate, all contribute towards making this supply foul and unfit for consumption-so that even a fairly pure rain water that has been stored is difficult to find. However, if fresh and clean, it is not at all unwholesome, though
not very palatable. If stored in vats or tanks these should be of cement and frequently examined and cleaned. The water for use should be passed through an efficient filter and boiling would be an additional safeguard, though the presence of disease germs would not naturally be expected.

Upland Surface Waters. These constitute the waters of our lakes and streams and are formed by the run-off from the lands, though to some extent, of course, these sources are fed by springs. By far the larger number of supplies of Canadian cities and towns are drawn from lakes and rivers and hence the importance of immediate and efficient legislation that will protect these natural bodies of water from sewage and other pollution. The fact should be emphasized that these natural waters are, almost without exception, eminently suited without any preliminary treatment for drinking and domestic use. But as our population increases and especially as cities and towns build up on the margins of lakes and the banks of streams, the necessity of adequate filtration becomes apparent. It will therefore be the part of wisdom from this on, not only to protect these waters from pollution a effectively as possible, but, also for those communities drawing upon them for their supply to establish filtration plants. Experience in other countries has shown that despite the most vigilant protective measures such waters may at any time, through accident or otherwise, receive excretal waste and become a source of danger, a menace to good health. It is now generally recognized by the highest authorities that filtration is imperative - a sine qua non if the supply is at all seasons to be relied on as free from injurious bacterial life.

The nature of the country and the composition of the rocks of the catchment area will largely determine the character of these waters. Thus a limestone district gives rise to a hard water, a Laurentian area, with gneiss, granite and similar rocks, result in a comparatively soft water. Again the colour of these waters is largely determined by the presence or absence of swamps in the country from which they draw their supply. A colored water, that is, one brown or yellowish-brown, through the presence of dissolved peaty matter, though offending the aesthetic sense (for we all prefer a colorless water), may be perfectly wholesome and especially so when such is from a large body of quickly flowing water, as for instance the Ottawa river. There are very few cases of illness or indisposition on record -if indeed any that can be definitely traced to the consumption of these peaty waters from large, actively flowing waters, provided of course such have proven to be free from excretal pollution. These so-called peaty waters and from sources such as I have described, have shown themselves almost universally
to be perfectly satisfactory for city supplies, not only from their extreme softness (which means a considerable saving in soap and labor to the community) but from the hygienic standpoint. These waters keep well, for their dissolved peaty matter does not readily undergo further decay, is in fact remarkably stable. It is true that temporary indisposition frequently follows the use of these waters when one has been accustomed to a hard, colourless water, but it is equally true that the reverse happens. Any change in the character of the water consumed may bring about a slight derangement, for the system bec ames habituated to a certain water and some persons are very susceptible, for a time, to any difference in its character. The case, however, with coloured waters from low-lying swampy, shallow lakes and ponds is very different. Such bodies of waier being more or less stagnant, pr duce an abundance of vegetable growth largely algal, which under favourable weather conditions may rapidly decompose, giving rise to offensive and nauseating producis. If, as frequent ly happens in summer these decay products accumulate, in other words get ahead of growth that can utilize them, the water becomes foul and unfit for consumption. The result of drinking such water usually shows itself in an attack of diarrhoea or nausea. From these considerations it would be obvious that colour is not in itself a quality or factor that can be used alone in deciding upon the suitability of a supply. Leaving out of consideration sewage pollution, we may have on the one hand a comparatively colourless water but one in which algae and other low forms of life are present in large numbers and in which chemical analysis proves the presence of easily decomposable organic matter, and on the other hand a highly coloured peaty water from a large and quickly flowing river, and the former will be distinctly the inferior water, one that must be efficiently filtered and purified before it can be regarded as a wholesome, potable supply.

Ground Water. This is the rain and melted snow absorbed and retained by the soil and subsoil. It is the source that sur lies the shallow, domestic well so commonly used on the farm homestead and in the village. When the surroundings are perfectly satisfactory from the sanitary standpoint, these wells are frequently a source of excellent water, but, when, as is usually the case, convenience to the house or farm buildings is alone considered in the location of the well, the water is seldom of first class quality and more often must be adjudged as quite unfit for consumption. On the larger number of farms we find these wells, usually between 10 and 25 feet in depth, sunk in the barnyard or under the stable or other outbuildings, or not very far from the privy (a most crude and unsanitary affair
as a rule), or near the back door, out of which the household slops may be thrown and near which the garbage heap with all sorts of refuse may be found. It is quite true that most soils, and more particularly those that are porous and well aerated (gravels and sands), possess filtering and purifying properties in a marked degree, but the soil surrounding wells located as we have described must in time become saturated with organic filth of a most objectionable character, and is then no longer able to purify but rather serves to more seriousiy contaminate the water passing through it to the well, which under such conditions may be said to act as a cess pit.

Further, we frequently find these wells become the watery grave for rats, mice, frogs and other small animals, the decomposing bodies of which render the water foul and unfit for use. Imperfect protection of the mouth of the well may allow the entrance of surface wash. Rotten crib work is another source of contamination. Other causes of pollution could be enumerated but enough has been said to justify the conclusion that the ordinary farm well is at the best a poor supply and should be abandoned for a safer, purer source. The examination in the laboratories of the Experimental Farms of hundred of samples of such well waters have shown that few of these wells furnish a supply that can be considered wholesome, by far the larger number must be condemned as totally unfit for use. Considering the location of most farm wells, it is not a matter of surprise that but a very small proportion of them yield water of sufficient purity to be classed as satisfactory. Many of these waters are colourless, bright, sparkling, clear and cool, but these qualities are no criterion and it is by no means uncommon to find waters possessing all these commendable properties and at the same time reeking with filth. Of course, if a well water becomes turbid after a rain, there is reason to reject it, for in this turbidity we have a sign that the soil is no longer able to do its work as a filter and purifier.

A precaution of very considerable value, towards protecting the well water from organic filth, is to line the well to a depth of say 10 or 12 feet to a thickness of say 6 inches with concrete or puddled clay. This lining should project some 6 to 12 inches above the mouth of the well. This prevents the direct inflow of wash and of water from the surface soil, in which the larger amount of putrescible organic matte: is found and ensures a certain amount of filtration through clean layers of soil.

Another safeguard is to keep an area of say 50 yards radius round the well free from manure and all deposition of filth, (it should preferably be in sod), and this plan we would heartily recommend to those who are contemplating sinking a well for
household use or for watering stock. If the ground surrounding the well is an undisturbed area and free from all excretal waste, it will perform its function as a natural filter and the water may be very good. Especially is this the case if the soil is sand or gravel, for such will not only remove suspended matter and germ life, but will also foster the destruction by oxidation of the organic matter held in solution. A clay subsoil is far inferior to sand in its purifying effect.*

Deep Seated Waters. These are waters that have percolated through the soil and permeable rock strata until arrested by an impervious stratum. They may appear on the surface as springs, but are more commonly obtained by deep wells, driven or bored, possibly thr h several overlying impervious strata to the water bearing $1.2 k$. If there are no fissures in these overlying strata and there is no opportunity for water to flow downwards between piping and the sides of the boring, a good water will in all probability, be obtained. While it cannot be taken for granted that a bored well will necessarily yield a good drinking water, it is the source of supply to be generally recommended for the isolated households. Examination has shown that they are capable of furnishing in the larger number of instances, and when proper precaution has been taken to exclude surface water, a supply of high organic purity and very low bacterial content. In certain districts we find these deep seated waters characterized by an excess of saline matter, rendering them unsuitable for domestic use; but when such is not the case the deep well undoubtedly constitutes a safer and better source of supply than the shallow, ground water well. With a pump actuated by a windmill, small gasoline or hot air engine, tanks can te fitled in the farm buildings for the watering of the stock and in the farm house to supply the bath room and kitchen. Such an arrangement would mean much, not only in the matter of convenience and the saving of labor, but in the still more important matter of securing a supply that would lead to better thrift in the stock and better health in the family.

Before bringing this address to a close, I must answer though it may be briefly, one or two questions that have been handed me for reply.

1. Is a hard water injurious to health? The human system has a remarkable adaptability and though certain authorities have considered that a hard water is inducive to the formation of catculi there is very little evidence to support the statement.
[^0]Cities having even a very hard water supply do not show the prevalence of any disease that can be attributed to the water and we may conclude that the lime compounds present do not work any injury to health. As already remarked sudden changes from one character of water to another, whether hard to soft or soft to hard, may cause disturbance in the system, but such will only be temporary. The system requires lime to build up its skeleton and for its other tissues and it may take it from the water as well as from the food; there is nothing to prove that the lime taken in the water is not as readily assimilable as that in the food stuffs we consume. Consensus of opinion points to a moderately hard spring water, in which all possibility of contamination is out of the question, as probably the best suppiy, but such unfortunately is very hard to find.
2. Is distilled water wholesome? The only argument that can be urged against its use for drinking is that it does not contain the necessary mineral elements for the building up of the tissues and for the replacement of the daily outgo of these elements. The answer is that in the ordinary, normal diet there is such an abundance of the mineral salts that the absence of them in the drinking water need cause no alarm. There is much to be said in favor of distilled water, as it should be free from all forms of organic matter and disease germs.
3. What means can the householder take towards making a suspicious water harmiess? Undoubtediy the best plan is to hoil the water for from 5 to 15 minutes. This is the most efficient safcguard that can be proposed for the individual. Household filters, though removing suspended matter, are seldom to be depended upon to deprive the water of germ life and at the best require constant attention and cleansing to be kept even fairly efficient. The addition of hypochlorite of lime, now largely used in the purification of city supplies is not readily applicable in the house and cannot be regarded as equal to boiling for the destruction of germs. The boiled water may be rendered palatable and the "flat" taste removed, by being allowed to cool in the open air.

And now in conclusion, I must emphasize two points. The first is the insidious character of polluted water. The danger that lurks in water polluted with excretal products is not always apparent. This fact must not be lost sight of. There may be no outbreak of typhoid fever, but it may be generally undermining the heatth. In far too many cases the well goes unsuspected until the victim is stricken down. The moral is, ascertain the purity of the supply.

And the second point is that there is abundance almost everywhere of pure water. There is no better watered country
in the world than Canada. We can unhesitatingly affirm that the normal waters of our lakes, st reams and springs, our ground waters and our deep seated sources, are of the purest. It becomes our duty as communities and individuals, to preserve and protect them from pollution and to see to it that the water we drink is as irreproachable in quality as that with which Nature has supplied us.

THE IDENTITY OF THE BETTER KNOWN MIDGE GALLS.

By E. P. Felt, Albany, N.Y.

(Continued from page 167).
TRIBE OLIGOTROPHIARIAE.
The third vein in this group is well separated from the anterior margin of the wing; the antennal segments are short, cylindric, usually stemmed in the male, and the claws are simple or at least rudimentary. This latter character serves to differentiate the species from the preceding tribe The food habits, like those of the Dasyneuriariae are somewhat general, though there is a much greater preponderance of bud galls.

Phytophaga Rond.

The antennal segments in this genus range from 12 to over 20. the flagellate ones being stemmed in the male and usually sessile in the female. The palpi are quadriarticulate. This genus is distinguished from the following by the third vein uniting with costa at the apex of the wing. Synonym: Mayetiola Kieff.
P. ulmi Beutm. The larvae live among the small, immature terminal leaves or inhabit leaf buds. Previously referred to Cecidomyia and Mayetiola.
P. violicola Coq. The pale yellowish larvae live in curled violet leaves. Previously referred to Diplosis, Contarinia and Mayctioia.
P. destructor Say. The yellowish larvae injure the stems of wheat and other grains under the leaf sheath. Widely known as the Hessian fly. Previously referred to Cecidonyia and Mayetiola.
Γ. rigidac O.S. Gall an apical or subapical enlargement on willow stems, fusiform in shape, about an inch long and tipped with a rather characteristic slender, curved beak. Previously referred to Cecidomyia and Rhabdophaga.

Oligotrophus Latr.
Antennal segments 13 to 20, the flagellate ones stemmed in the male, sessile in the female; palpi presumably triarticulate.
O. betulae Winn. The larva occurs in inflated seeds of white birch. An introduced species, previously referred to Cecidomyia.

Rhopalomyia Rubs.
Antennal segments 12 to over 20, the flagellate ones stem med in the male, usually subsessile in the female; palpi uni- or biarticulate. Members of this genus display a marked preference for flower or bud galls, a large proportion of the species occurring upon solidago.
R. hirtipes O.S. The orange larvae occur in somewhat nut-like apical galls on stunted solidago shoots, or more commonly as smooth, brownish, subterranean swellings evidently developing from root stock buds and varying in size from $\frac{1}{4}$ to $1 \frac{1}{3}$ inches in diameter. Described as Cecidomyia.
R. solidagin is Loew. A large apical rosette gall on solidago. Described as Cecidomyia.
R. racemicola O.S. Gall a greenish or reddish, subglobular, bud-like enlargement about . 1 of an inch in diameter on solidago. Described as Cecidomyia.
R. anthophila O.S. Gall nearly cylindric, green, densely pubescent, about $\frac{1}{8}$ of an inch long on solidago. Described as Cecidomyia.
R. antennariae Whlr. Gall a corm-shaped apical bud deformity about $\frac{1}{8}$ of an inch in diameter on Antennaria. Described as Cecidomyia.
R. tridentatae Rubs. Produces an apical bud gall on Artemisia tridentata.
R. alticola Ckll. Gall a subglobular, grayish, woolly enlargement; diameter ! to $\frac{1}{2}$ inch, on Artemisia. Described as Cecitomyia.
R. gutierresiae Ck11. Gall a pale green, fusiform or suboval swelling in the flower heads of Guticrresia. Length $\frac{1}{3}$ inch. diameter $\frac{1}{8}$ inch.
R. bigeloviae Ckil. Reared from a hollow stem gail on Bigeloaia. Described as Cecidomyia.
R. chrysopsidis Lw. The gall is apical, light brown, irregular, woolly, about $\frac{3}{4}$ of an inch in diameter and occurs on Chrysopsis mariana. Described as Cecidomyia.

TRIBE ASPHONDYLIARIAE.

This tribe comprises mostly large, heavy-bodied insects easily recognized by the long, cylindric, sessile antennal segments
and the simple claws. The species breed largely in flower buds or fruits.

Asphondylia H. Lw.
Antennal segments 14 , flagellate sessile, cy lindric, the distal ones in the female reduced; palpi uni- to triarticulate; terminal clasp segment of the male genitalia bidentate; ovipositor of the female with the distal portion aciculate.
A. globulus O.S. Stem gall, globular or spherical ; diameter $\frac{1}{2}$ to 2 inches; on Heliunthus.
A. betheli Ckll. The larvae occur in the swollen fruit of Opuntia.
A. monacha O.S. Prodnces a small apical rosette gall on Solidago lanceolata. It may also occur in an oval chamber between two adhering developing leaves, and has been reared from dwarfed aster heads. Synonyms: A. recondita O.S.. A. solidaginis Beutm. and A. patens Beutm.
A. antennariae Whir. Gall a corm-shaped bud gall $\frac{1}{3}$ to $\frac{1}{2}$ an inch in diameter on Antennaria. Deseribed as Asynapta.
A. autumnalis Beutm. A globular, irregularly rounded bud gall on Helenium. Length to 1) inches, diameter about $\frac{1}{2}$ inch.
A. atriplicis Ckll. An irregular twig gall on Atr iplex. Length $\frac{1}{2}$ inch, diameter $\frac{1}{4}$ inch. Described as Cecidomyia.
A. conspicua O.S. Gall an irregular, subglobular enlargement some 2 inches in diameter, of the flower head of Rudbeckia.

Schizomyla Kieff.

Antennal segments 14 , sessile or subsessile, the flagellate ones in the male with remarkably stout, elevated circumfili; palpi quadriarticulate; the basal clasp segment of the male lobed distally, the terminal clasp segment irregular. Antennal segments of the female much as in Asphondylia, the apical portion of the ovipositor aciculate.
S coryloides Walsh \& Riley. Gall a roundish mass $1 \frac{1}{4}$ to $2 \frac{1}{2}$ inches in diameter of from 10 to 50 opaque. woolly-pubescent, fusiform or sometimes flattish-oval. green galls, each from $\frac{1}{2}$ to $\frac{3}{3}$ of an inch long: on grape. Described as Cecidomyin eqitiscoryloides.
S. pomum Walsh \& Riley. Gall depressed, subspherical or flattened. The young gall is green, succulent, credited with possessing a pleasant subacid flavor and covered with a fine pubescence. The fully developed gall has 8 or 9 longitudinal ribs somewhat like those of a muskmelon and within a number of longitudinal cells arranged in two tiers: on grape. Described as Cecidomvia vilis-pomum.

Cincticornia Pelt
Antennal segments 14 . sessile, the flagellate ones of the male with numerous low, regular circumfili, those of the female with two to six transverse anastomosing circumfili; palpi quadriarticulate: terminal clasp segment of the male genitalia transversely and evenly serrate. Ovipositor stout tapering to subacute minute lobes. This genus appears to be confined very largely, if not exclusively to oak leaf galls.
C. pilulae Walsh. Gall reddish brown. coarsely reticulate. thick-walled, irregularly subglobose, about $\frac{1}{8}$ of an inch in diameter, depressed or fused to form lobulated masses on oak leaves. Described as Cecidomyia quercus-pilulac.
C. symmetrica O.S. is possibly identical with the above. It belongs, with very little question, to this genus. Described as Cecidomyia.

TRIBE ITONIDINARIAE.
The more characteristic members of this tribe are easilydistinguished by the usually long, thickly haired antennae having 14, rarely 12 segments, the flagellate segments in the male usually binodose, and with two or three circumfili, the latter generally with greatly produced loops; palpi uni- to quadriarticulate claws simple or toothed. This very large tribe includes many diverse forms.

Group Bifllit

This subtribe is easily distinguished by the presence of but two circumfili on the flagellate antennal segments of the male: the nodes are equal or nearly so.

Contarinia Rond

The third vein unites with the interrupted costa at the apex of the wing : the palpi are quadriarticulate; the lobes of the dorsal plate taper strongly and are subacute; the ovipositor is long and filiform.
C. iolnsoni Sling. The small, yellowish larvae occur in deformed grape blossoms. Described as Cecidomyia.
C. rirsintantace Felt. The yellowish larvae occur in deformed. bladder-like fruit of the chokechorry. Described as Cecidomyia.
C. Humieis Loew. The reddish larvae infest the seeds of Rumer. In introduced European species.
C. sorghicola Coq. The yellowish larvae occur in the seeds of Sorghum and related plants. Described as Diplosis.
C. pyriowa Riley. The yellowish larvae occur in young pears Described as Diplecis.
C. setigera lintn. Reared from small, irregular, subovate, downy galls on muskmelon. Described as Diplosis.

Thecodiplosis Kieff.
Separated from Contarinia by costa not being interrupted at its union with the third vein and by the long, broadly lobed dorsal and ventral plates in connection with the stout, usually very long ovipositor.
T. ananassi Riley. Reared from a brown gall with a length about $\frac{3}{}$ of an inch on Cypress t wigs. Described as Cecidomyia cupressi-anamassi.
T. liriodendri O.S. A circular blister on tulip leaves. It has a dark brown center surrounded by a light brown, irregular area; diameter | inch. Referred to Cecidomyia and Diplosis.

Group Trifil.

This subtribe is easily recognized by the presence of three usually well developed circumfili on the flagellate antennal segments of the male. The nodes are generally unequal and in some extreme forms the distal enlargement is almost divided.

Voungomy1a Felt.

Flagellate antennal segments of the male trinodose, the distal enlargement being distinctly divided and sometimes by an appreciable stem, palpi quadriarticulate; wings large, rather hairy, the third vein uniting with costa well beyond the apex of the wing, legs long, claws stout, unidentate, the pulvilli about half as long as the claws. The terminal clasp segment of the male is unusually long; the ovipositor of the female is short, the lobes large and orbicular.
Y. umbellicola O.S. The yellowish larvac occur in enlarged blossoms of elder. Described as Cecidomyia.

Aphidoletes Kieff.
This genus is easily recognized by the greatly produced setae and circumfili on the dorsal surface of the flagellate antennal segments in the male. It is readily separated from the allied Bremia by the well developed middle circumfilum. Anterior claws undentate.
A. cuctomeris Lintn. Reared presumably from plantlice on cucumber. Described as Diplosis.

Clinodiplosis Kieff.

Antennal segments 14, binodose. Palpi quadriarticulate. The terminal clasp segment is not abnormally produced or subfusiform. The ventral plate is produced, emarginate, the dorsal
plate deeply cleft and triangularly emarginate. The ovipositor is short. Anterior claws unidentate.
C. rosizora Coq. The larvae lie just under the sepals of rose buds, usually singly, though sometimes in clusters of five or six. Described as Diplosis.
C. caulicola Coq. The larvae are rather abundant in the basal portion of the stems of Iceland poppies. Described as Diplosis.

Caryomyia Felt.

Allied to Hormomyia but differing by the thorax not being greatly produced over the head and by the presence of but 14 antennal segments. The males may have the flagellate antennal segments binodose or cylindric and subsessile and invariably with three low, stout circumfili. The antennal segments of the female are cylindric and with two circumfili ; palpi tri- or quadriarticulate; wings rather broad, the third vein joining costa at or near the wing apex; claws simple, the pulvilli well developed. The ovipositor of the female is short, triangular and with minute lobes apically. This genus appears to be confined to hickory leaf galls.
C. caryae O.S. Gall globose, thin-walled, yellowish green or brown; diameter .1 inch, on hickory leaf. Referred to Diplosis, Cecidomyia and Hormomyia.
C. holotricha O.S. Gall small, globular, fuzzy, rust red; diameter .1 to 1-5 inch, on hickory: Referred to Cecidomyia and Hormomyia.
C. sanguinolenta O.S. Gall conical, with a distinct nipple, greenish and variably tinged with purplish or blood red, on hickory leaves. Described as Cecidomyia.
C. tubicola O.S. Gall a green or blackish, hollow tube about 1-5 of an inch long, growing at right angles from a socket in hickory leaves. Referred to Cecidomyia and Hormomyia.
C. persicoides Beutm. Gall irregular, monothalamous, hairy, $\frac{1}{4}$ inch in diameter and usually clustered on the midrit, of a hickory leaf. Described as Cecidomyia.

Most of the other hickory leaf galls described are probably made by a species of Caryomyia, though other midges have been reared from these deformities.

Hormomyia H. Lw.

Typical members of this genus may be most easily recognized by the mesonotum being greatly produced over the head. The antennal segments vary in number from 14 to over 20, the flagellate ones in the male binodose and with short circumfili; palpi uni- to tri- or quadriarticulate. The large forms probably live on sedges.
H. verruca Walsh. Gall a characteristic subconic enlargement arising in clusters from the midrib or some of the principal veins of willow leaves. It is about .1 of an inch in diameter. greenish yellow, monothalamous, subglobular and tapering to a truncate, frequently lipped, free extremity. Not a typical Hormomyia. Described as Cecidomyia.

Lestodiplosis Kieff.

Usually yellowish, frail species with spotted wings, most easily recognized by the triangular lobe at the internal basal angle of the basal clasp segment of the male.
L. grassator Fyles. The pale orange larvae prey upon Phylloxera. Described as Diplosis.

Parallelodiplosis Rubs.

Mostly pale yellowish or orange species, distinguished by the long, narrowly rounded ventral plate of the male genitalia.
P. caryae Felt. Reared from several hickory leaf galls and probably an inquiline with various species of Caryomyia. Previously referred to Cecidomyia and Clinodiplosis.

Obolodiplosis Felt.
A large form remarkable for the greatly expanded orbicular dorsal plate of the male.
O. robiniae Hald. The larvae occur in marginal leaf rolls of Robinia. Described as Cecidomyia; also as O. orbiculata.

Itonida Meign.
Antennal segments 14 , those of the male binodose, the nodes unequal ; circumfili three. Palpi quadriarticulate. The third vein unites with the margin well beyond the apex of the wing. The pulvilli are longer than the simple claws, while the dorsal and ventral plates of the male genitalia are deeply bilobed. Ovipositor rather long, the lobes narrowly oval.
I. tritici Kirby. The orange larvae develop in the heads of wheat and some other grains. Widely known as the wheat midge. Previously referred to Cecidomyia and Diplosis.

1. verbenae Beutm. The larvae oceur in terminal rolled leaves of white or nettle-leafed Vervain. Described as Cecidomyia.
I. catalpae Comst. The yellowish larvae attack the pods and frequently deform the young shoots of Catalpa. Previously referred to Diplosis and Cecidomyia.
I. tecomiae Felt. The pale yellowish larvae roll the leaves of the trumpet vine. Previously referred to Bremia and Cecidomyia.
2. resinicola O.S. The pale orange larvae occur in pitch exudations on hard pine. Previously referred to Diplosis and Cecidomyz.
I. resinicoloides Wlms. The larvae occur in resinous exudations on the Monterey pine. Described as Cecidomyia.
3. foliora Rssl. \& Hkr. Gall the folded edge of oak leaves similar to that described for Cecidomyia crubescens by Osten Sacken. Described as Cecidomyia.

Cectidomyia.

This term is employed here in a general sense to include galls which can not be satisfactorily referred to any well defined genus, and also adults with inadequate descriptions.
C. caryae O.S. Probably an inquiline in the typical Caryomyia caryue O.S. gall on hickory. This species is not identical with our Cliniodiplosis caryac or Mycodiplosis holotricha, both probably inquilines in Caryomyia galls.

THE GRAY OR ARKANSAS KING BIRD, TYRANNUS VERTICALIS.

During a residence of now more than ten years in Pilot Mound, I do not remember seeing Tyrannus verticalis until May 21 ct , 1909, when I was visiting a patient just north of Crystal City. On the wire fence by the roadside sat a graybacked bid whose tail was nearly black but whose belly and especially the lower belly was sulphur yellow, fading to a lighter shade breastwards. Again. on May 21st, 1910, and May 22nd, 1911, I have noted the first appearance of this bird. In 1910 , however, a pair nested in Pilot Mound, while in 1911, not only did two pairs nest on the roadside trees in town, but I saw specimens in Crystal City and Clearwater. Prof. W. W. Cooke of the U.S.A. Biological Dept., to whom I send annual records of the spring migration of birds, tells me that S.W. Manitoba constitutes the far N.E. limit of the range of T. verticalis. It is a very charming bird, built on graceful lines and less truculent than the aggressive T. tyrannus, which will bully the robins and humming birds. While we were playing tennis in August at the close of the nesting season, both old and young tirds wheeled about the space between our stop-netting and the public school roof. The Boy Scouts will protect these and our other birds from nest thieves.

> H. M. Speechly,
> Pilot Mound, Man.

NOTES - CONCHOLOGICAL AND OTHERWISE.
In the January Nautilus, Dr. Sterki describes a new species of mussel, under the name Musculium declive. A number of the specimens upon which the species is based were obtained in the County of Renfrew; the others were found in Michigan. The Ren rew shells were discovered in September, 1911, in a lake abr ut a mile west of Brudenell, known locally as Lake Gorman It is a beautiful sheet of water set among the Opeongo Hills winch though depleted of the pine still preserves on all sides of the lake the aspect of the primeval forest. About ten years ago when charged inter alia with the administration of the Fish and Game Department of Ontario, I arranged for the seining at Long Point, Lake Erie, of large numbers of adult small-mouthed black bass, and the distribution of them in suitable localities barren or depleted - throughout the province. At the request of my old friend, the Rev. F. J. French, of Brudenell, I sent him about fifty fish to stock Lake Gorman, which contained no game fish. Many died en route between the railway at Killaloe and the lake. Probably not more than twenty were living when placed in its water. The few, however, found their new home so congenial that they increased and multiplied to such an extent that the lake now fairly swarms with this gamiest of inland fishes. I have in common with my good friend a regard for these bass which is almost paternal; yet when an opportunity presented itself last September of accepting his oft repeated invitation to revisit Brudenell, neither he nor I allowed our interest in the bass to interfere at least for a time - with our more primitive instincts. The sport was glorious. Every fish was a fighter, leaping repeatedly from his element into ours. It would have been sinful to catch more than we had use for, and we refrained from any excess. It then occurred to me that the lake might yield other specimens than Micropterous dolomion. I looked for and found shells in abundance. The only large mussel was Unio complanatus. A fine Physa, probably \dot{P}. sayii Tappan, spotted the rocks near the boathouse, and with it was a remarkably beautiful, pearly form of Planorbis bicarinatus. On the sandy beach at the northern end of the lake occurred a large, and, I think, undescribed, Spharium. It differed widely from the other large Spharia,-S.sulcatum and S.crassum. Many were collected and cleaned. They were regarded as particularly precious, and were put away with that excessive care which, like ambition, sometimes "o'erleaps itself and falls on t'other side." They have not yet been found.

The surprise of the day-for me-was the finding of another
undescribed shell-an exquisite, brightly-colored, little Musculium, mainly occurring in the outlet of the lake. Specimens were not numerous and in sifting through the hand-dredge the coarse gravel in which they seemed least rare not a few were broken. A nice set, however, was procured in the time I could avail myself of without trespassing unduly upon the patience of my waiting host, who pityingly regarded me with the compassion due to a naturalist excercising his hobby in the presence of a sane onlooker. I fear I should never have regained my friend's good opinion had I not later that evening made just the right lead to his double of a no trumps declaration, and thus enabled him, from love, to make game and rubber.

A characteristic lot of the little mussels was sent to Dr. Sterki. He recognized it as a new species which he had described in MS from specimens obtained in Michigan. His description has now been published, but it is of interest only to the few who, leaving the broad and well-trodden ways so many follow in nature study, venture almost alone into the sequestered fields which are so full of freshness and permanent delight.

I may add, as of interest to the ornithologists of the Club, that a large heronry exists in a grove of tall hemlocks at the south end of Lake Gorman. None of the birds. Ardea herodias, were seen on the occasion mentioned.
F. R. L.

PORTRAIT OF THE LATE DR. JAMES FLETCHER.

On the afternoon of 28th February, in the presence of several members of the Memorial Committee, the portrait of the late Dr. James . letcher, painted by Mr. Franklyn Brownell, R.C.A.. and unveiled at a recent meeting of the Ottawa FieldNaturalists' Club by the Hon. Sydney Fisher, was hung in the Carnegie Library. The portrait, which is an excellent likeness, has been much admired by friends of the late Dr. Fletcher. It is a graceful tribute to the memory of one who was greatly beloved in this city and one who with much enthusiasm did most valuable pioneer work in encouraging a love for the study of Nature among our citizens.

OTTAWA NATURALIST, VOL. XXV, 1911-12.

PAGE
58, 79
Accipiter cooperi

$$
57,78,121
$$ 57, 78, 121

Actitis macularia 57
Aletia argillacea 129
Algae, of Bruce County 94
Anabaena torulosa. 05
Anemone Cairnesiana. 146
Antennarias, some Canadian -IV 41
Antennaria angustata 41
isolepis. 41
nitens 42
Antrostomus vociferous. 58
A phidoletes cucumeris 185
Archaeology, Canadian. Sta- tus and Development of . . 15Archibutco lagopus sancti-johannis.80
Irctotherium yukonense, from the Pleistocene of Vukon. 21
Ircyria cinerca 163
incarnata 163

- nutans 16.3
.. punicia. 16.3
Asio wilsonianus. 58
Asphondylia antennaria 183
atriplicis. 183
autumnalis. 183
.. $\begin{aligned} & \text { autum } \\ & \text {.. betheli }\end{aligned}$ 183
" conspicua 183
.. globulus 183
monacha 183
Astcromyia agrost is 166
ast rifoliac..... 166
carbonifer: 166
Bark Beetles. 142
Birds, changes in the status of certain, in vicinity of Montreal 57
Bird Notes 88
Bird Notes, some Newfound- land. 89
Bird Records. 104
PAGE
Birds, Spring Migration of, atFisherman's Island, 1or-onto, 1910............... 2T, 43
Bittern, American 31, 90
Least. 31
Blackbird. Red-winged. 45
Bluebird 48
Bobolink 45
Book Notices 37, 70, 102, 140, 155
Botany, Canadian Accessions
to- 1 145
Botanical Branch Mcetings.16, 32Brown. W. J., articles by...39. 88 ,89,121
Buffle-head 30
Butco borcalis 80
lineatus 79
Bubo virginianus 58
Buzzard, Turkey 88
Calothrix parictina. 96
Cardinalis cardinalis 121
Cardinal, The, at Ottawa 121
Carter, J. J., Secretary, Re- port of Council by.
Caryomyia caryac. 186
holotricha 186
.. persicuides. 186 186
tubicola 186
Cathird. 47
Catalogue of the Insects of Canada, preparation of... 83
Cecidomyia caryae 188
Ceratiomyxa mucida 160
Chatophora incrassata 98
clegans. 98
Characium ambigutm 97
naegelii 97
Chactosphaeridium globosum. 98
Chat, Yellow-breasted 152
Chickatice. 63, 94
Chlanydom ras communis... 97 97globosa.

PAGE	
Chlorococcum hamicola...... 97	Didymium squamulosum..... 161
Chroococcus turgidus....... 95	Draparnaldia acuta.
Cincticornia pilulac......... 184	glom
symmatrica. . . . 184	Diachea leweopoda. 162
Cladophora callicoma........ 98	Duck. Black....... 30, 38
Clinodiplosis canlicola...... 186	.. Long-tail
rosivora 186	Scatt
Coelosphatrium butzing	Lesser S
iаиит.... .	Wood...
Coclastrum proboscidettm.... 98	
Coleoptera collected in Nor-	Eastham. J. W... article by ... 157
Comatricha stemonitis. 162	Eifrig, G., note by.......... 10
Conchological Notes. . . 19, 67, 189	Engraver Beetles........... 141
Cones on Evergreen Trees.	Entomology, Popular.....si, 141
Absence of.... 20	Entomological Eoc of Ontario 137
Conjerva bombucina... 96	Enteridiam splendens 162
Contarinia j hnsoni........ 184	Empidonax trailli abnortms.. 58
pyrivara. 184	Excursions.69, 86
rumicis.. 184	
stigera......... 185	Farley, F. L. . note by...... . 88
sorghicola. 184	Fauna Ottawaensis; Geomet-
virginianie... . . 184	roidea
Coot, American. 31	Felt. E. P.. article by..... Ss, 181
Cotton Moth in Ontario. abundance of 129	Feniseca tarquinius........... 100 Festuca accidentalis in On-
Council. Report of........ 7	tario.... 123
Cowbird... 45	Fish Culture in Canada 156
Craterium leucocephalum..... 161 .. minuftom.... 161	Fletcher Memorial Committee Final report of
Creeper. Brown. 48	Fleteher, James, Portrait of
Craddle. Norman, articles by 73,	late Dr.................. 39.190
$122,125,147$	Flicker... 45
Crossbill, American 92	Northern... 91
Crow.... 45.91	Plyeatcher, Alder. 39, 91
Cryptoglaux acadica......... 80	L.east 45
Curlew, Hudsonian....... . . 43	Fuligo ovata. 161
Cyanocitta cristata. 59	Fungi, parasitic, nature of. and their influence upon
Dasyncura sleditschiac. 167	the host plant......... 130
leguminicola 167	
lystmachiae. 167	Gallinule, Florida 31
preudacaciac. . . . 167	Geometroidea of Ottawa dis-
rhots.. 167	trict. 105
rhodophaga. 167	Gibson. Arthur, articles by . . S1,
serrulatae.. 167	105,129
semenitora....... 167	Gleocapsa rupestris.... 95
Irifolii... 167	Goiden-eye, American 30, 90
vaccinii. 167	Goose, Cavada. 31, 9\%
Dendrotca vircns....61, 6104	Goshawk. American... 91
magnolia.......... 51	Grackle, Bronzed...... 46
Dictydium cancellatum. 162	Grele. Horned.. 28
Diderma crustaccum... 162	Holboell's... 28
cffurstm... 161	Red-billed. 28
recticulatrm. 161	Greenman, J. M., article by.. 114
spumariotdes...... 162	Greene, E. L., articles by . .41, 145

Hewitt, C. G.. articles by... 6.3. 8.3
Hormomyia verraca.......... 187
Hydrodictyon reticulatum..... 98
Hylocichla guttala pallasi.... 6.3
Insect Life and its practical
importance, teaching of... 6.3
Insects of Canada, preparation of catalogue of the ... 8.3
Itonida catalpac............... 187
foliora................. 188
.. resinicola............ 188
.. resinicoloides......... 188
.. tecomiat 187
.. tritici. 187
.. verbenae.............. 187
Jay, Blue20, 50, 104
Canada.................. 13
Labrador. 01
Iunco hyemalis.............. 60
Ju reo Slate-colored.... 46, 60, 92
White-winged... 122
Killdeer....................... 44
Kinghird.. 45, 91
page
Kingbird, Gray or Arkansas. 188
Kingfisher. Belted. 14. 91
Kinglet, Golden-brown. 48
Ruby-crowned. 48.94
Klugh. A. B., articles by . 94, 123Knot.31
Lambe, L. M., article by. 21
Landscape Gardening. Lec-ture on138
Lark.Hoyt's Horned, in Man- itoba. 122
.. Prairie Ho-ned 45.59
Lasioptera clavula 164
cphcdricola. 165
cphedrae 165
jarinosa 165
linderac. 165
nodulosa. 165
solidaginis 155
tumifica 165
vernoniac. 164
witis 164
Latchford, F.. notes lev 20, 67, 189
Lectures. 15, 155, 172
Lecture Programme 124
Lepidoptera: Geometroidea of Ottawa. 105
Lestodiplosis grassator. 187
Loon. 28. 89
Lycogala cpidendrum. 162
Macnamara,C., articles by 118,153
Macoun. J. M., note by 121
Mammals caught in trap. 13
Margitana margaritifera. 19
Martin, Purple 46.60
Merganser. Hooded. 30
American. 29.90
Red-breasted 30
Meadowlark. 46,59
McNeill. A., summary of lec- ture by 172
Melanidion borcale. 146
Mcrismoprdium glaucum 95
Microcystis marginata 95
Midge Galls. Identity of the better known. 164,181
Migrations, some Raptorial. in Southern Ontario 7
Mougeotia genuflexa. 96
scalaris. 97
viridis. 07
Moore, W. H. article by. 13
Moth. Luma 81
Munno, J. A., article by. . . . 27, 43
Myxomycetes of Ottawa Dis- trict. 157
Natural History Notes from Calgary 73
Nannus hyemalis. 62
Vephrocytimem agardhianum. 97
Neolasioptera cornicola. 165
ramuscula 165
.. sambuci. 165 165
Nighthawk
Nighthawk
Nodularia paludosa. 45.91 45.91
Nuthatch, Red-breasted 95 95
White-breasted 62
Nycticorax nevins. 58
Obituary: Miss R. B. Mc- Questen 40
Dr. R. W. Ells 72
Obolodiplosis robiniae 187
Ocdogonium capilliforme 98
Oligotrophus betulae 182
Ophiocytium cochleare. 96
gracilipes. 96
parvulum. 96
Oporornis philadelphia 62
Oriole, Baltimore. 46
Ornithology, Popular and
Practical. 125,147
Orchids, Native, notes on 118
Osprey, American 91
Home Life of 140
Oscillatoria formosa 95
subtilissima 95
tenuis. 95
Olocoris alpestris homti. 122
praticola 59
Otus asio.
58
58
O.F.N.C. List of Members of Ovenbird 47
Owl, Acadian 80
.. Great-horned 58
.. Long-eared. 58
.. Screech
58
58
. Short-eared 45
. Snowy 45
Pandorina morum. 97
Parallelodiplosis carvae 187
Passenger Pigeon Investig: tion
174
174
Pcdiastrum boryanam 98
tetras.
tetras. 98 98
Penthestes alricapillus. 62
Petrel. leach 90
Pewee, Wood. PAGE
Phoebe 45 45
Physarum nefroideum. 161
sintuosum. 161
Phytopat hology. 37
Phytophaga destructor 181
rigidac. 181
violicola. 181
ulmi. 181
Piranga erythromelas 60
Pintail 30
Planorbis corpulentus 19
Plover, Black-billed. 44
Belted-Piping 44
Semipalmated 44
Plas modiophora brassicac 159
Plants catrsing skin irritations 11.
Pleurococcus vularis 98
Progne subis 60
Ptarmigan, Welch 91
Rail, Sora. 31
Virginia. 31
Rain and Snow, fertilizing value of 99
Raymond, Percy E.. sum- mary of lecture by 15
Raven, Northern 91
Redhead 30
Redpoll. 92
Redstart, American 47
Reticularia lycoperdon 162
Robin 48, 94
Rhabdophaga brassicoides. 167
batatas. 166
.. cornuta. 167
-. modula
-. modula 166 166
-. rhodoides 167

- salicis 166
.. strobiluides. 167
triticoides. 166
Rhaphidinm falcatum 97
falcatum aciculare 97
Rhopalomyia alticola 182
antcnariac 182
anthophila. 182
bigeloviae 182
chrysopsidis 182
kutierreziae 182
tirlipes. 182
racemicola 182
solidapinis 182
tridentatae 182
Sanders, G. E., note by 104
Sanderling. 43 43
PAGESandpiper, Least.31, 90Red-backed...... 43
Semipalmated 4.3
Spotted. $43,57,91$
Saunders, 1W. E., article by 152
Seiurus noveboracensis 62
Senecio balsamita. 116
balsamita var. thomp. sonticnsis 116
-. burkci 114
.. canns var. acracus. 118
.. farriae 115
. manitobonsis 117
-. multnomensis 115
willingiz 117
Senctios. Some Canadian 114
Scomedesmurs bijuga 97
oblagutus. 97
quadricauda 97
quadricauda (ab) Indans 07
Schzzomyza coryloides 183
ротит 183
Scoter, white-winged 31
Sovtonema crispum. 06
mirabule. 96
mwehrous 96
Shoveller 30
Shrike, Migrant 47
Northern 47
Shutt, Prank T., articles by 99. 168,175
Sitta carotinemsis 62
Slime moulds of Ottawa Dis- trict. 157
Smith. Harlan 1., abstract of paper by 151
Snowflake 46. 125
Snow, fertilizing value of 99
Snipe, Wilson's 90
Sorastrum spimutostm 98
Sparrow, Fox 46, 92
Chipping. 46.92
Savannah 46,92
Swamp 46, 92
Song 46
Vesper 46
White-crowned 46. 92
White-throated. 46, 92
Speechly, H. M., note by 188
Spiders, Gossamer 153
Spirngyra catenaeformis 96
insignis. 96
arthespira. 96
varians 96
taberi 96PAGE
Spumaria alba 161
Squirrel, Grey 13
Stemontitis fencstrata 162
.. herbatica. 162
.. maxima 162
.. splendens 162
smithii 162
Stigeoclonium lubricum 98
Sturnella magna 59
Stigonema mamillosum. 96
Swaine, J. M., article by 141
Swift, Chimney 45
Swallow, Cliff 46
Barn 47
" Bank 47,93
Tree. 47.93
Tananger, Scarlet 46.60
Taverner, P. A., article by. 77
Teal, Blue-winged 30
Tern, Black 30 29
Caspian. 29
Common 29. 90
Terrill. L. Mcl., articles by 20. 57
Tetraspora lubrica. 97
Tetracdron minimum 97
Thecodiplosis ananassi. 185 185
thent
thent Thrasher, Brown 48, 62
Thrush, Hermit. 48, 63. 94
Water. 62, 93
. Wilson's 48,94
Wood 48
Tolypothrix lanata 96
Towhee 46
Toxostoma rujum 62
Treasurer's Statement 14
Trees. New England, in win- ter. 155
Tretepohlia aurca 98
Trichza fallax. 163
inconspicua 163
.. persimmlis 163
- scabra. 163
varia 163
Tropea luna 81
Tubifera forruginosa 162
stipitata. 162
Turnstone, Ruddy. 44
Ulothrix acqualis. 98
zonata 98
Ursus middendorffi. 26
Vatcheria geminata racemosa 98
sessilis. 98
Volvox aurius................. PAGE 97 97
Wanderer, The 100
Warbler, Bay-breasted 47.93
Blackburnian 47
Black-throated
green. . 47, 61, 93, 104
. Black and White. 47.93
.. Black-poll 93
- Canadian 47, 62, 94
.. Chestnut-sided. . 47,93
-. Magnolia. . . . 47, 61, 93
.. Mourning. 39.02
* Myrtle. 47, 93
.. Palm 47
. Wilson' 94
. Yellow 47,93
Yellow throat vor- them 47, 93Yellow Palm.
93
Water and Health, Drinking 168
Water Powers of Canada 190
Waugh, F. A.. summary of lecture by. 138

James Hope \& Sons smatumem smumem Sparks St. Ottawa

J.G.BUTTERWORTH\&CO.

ALL-RAIL SCRANTON COAL HAS NO BQUAL
86 SPARKS STREET, OTTAWA
THE C. C. RAY CO. Ltd. ${ }_{\substack{\text { begst } \\ \text { OUALITy }}}$ COAL 58 SPARKS ST. $*$ Phone 46 r

Tie TORONTO GENERAL TRUSTS CORPORATION.

Successful administration of ESTATES ranging in value from $\$ \$ 00$ to $\$ 5,000,000$ each, is the best guarantee that you may confidently name as your BXECUTOR and TRUSTEE this Corporation

JAMES DAVEY, Manager Ottama Brance:
Cor. SPARKS and ELGIN STS.

THIS SPACE FOR SALE

American Entomological Co,

Dealerse m
Insects and Entomological Supplies

The only makers of the genume Schmitt Insect Boxes. Manufacturers of Cabinets and Cases for Insect Cciliections, and of the
§American Entomological Company Insect Pins

Supply List No. 8 and Thet of Entomoloplenil Publinationa for male just oat. Write for it. Insect Last Ko. 6 stillin furce
GEORGE FRANCK, Manager 55 Stuyvesant Av., BROOKLYN, K,Y
GET YOUR FRIENDS TO JOIN
THE
OTTAWA FIELD-NATURALISTS'
CLUB

The World's Visible
 Best Typewriter Writer

 PHONES, 6267 and 6868E. R. McNEILL, Agent 200 QUEEN ST., OTTAWA

HENRY J. SIMS \& Co.
Furriers and Hatters
110-112 SPARKS ST. - OTTAWA.

The Ottawa Jield-Maturaliste' Club.

Datron:

HIS ROYAL HIGHNESS, THE DUKE OF CONNAUGHT
govbrnor-genbral of canada.

Council 1911=1912

Dresident:

Mr. Alex. McNeill.
Vice $=$ Dresioents :
Mr. L. H. Newman, B.S.A.

Secretary:
Dr. E. H. Blackader
(360 Laurier Ave. W.)

Editor:

Mr. Arthur Gibson.
(Experimental Farm)
Mr. T. E. Clarke, B.A.
Mr. J. W. Gibson, M.A.
Mr. R. B. Whyte.
Mr. Arnott M. Patterson, B.A.

Mr. Arthur Gibson.
Treasurer:
Mr. W. T. Macoun.
(Experimental Farm)
Librarian :
Mr. A. E. Attwood, M.A
(Osgoode St. School)
Mr. W. J. Wilson, Ph.B.
Miss M. McKay Scott.
Miss A. L. Matthews.
Miss M. F. Fortier

Dast Dresident :
Mr. Andrew Halkett.
Standing Committees of Council:
Publications: L. H. Newman, A. Gibson, A. E. Attwood, Dr. E. H. Blackader, W. T. Macoun,, Miss McKay Scott.
Excursions: Dr. E. H. Blackader. W. J. Wilson, J. W. Gibson, W. T. Macoun, Miss A. L. Matthews, Miss M. F. Fortier.
Lectures: J. W. Gibson, R. B. Whyte. T. E. Clarke, L. H. Newman, A. M. Patterson, Miss Fortier.

Teaders at Excurstons:

Archaology: T. W. E. Sowter, I. Ballantyne.
Botany: W. T. Macoun, John Macoun, D. A. Campbell, L. H. Newman, T. E. Clarke, H. T. Gussow. Dr. M. O. Malte.

Conchology: A. Halkett, S. E. O'Brien, C. H. Young.
Entomology: A. Gibson, W. H. Harrington, C. H. Young, Dr. C. G.
Geology: W. J. Wilson, H. M. Ami, Dr P. E. Raymond, T. W. E. Sowter W. A. Johnston.

Meteorology: A. McNeill, Dr. Otto Klotz., D. A. Campbell.
Ornithology: H. U. Morris, A. G. Kingston, Miss M. F. Fortier, Miss M
Zoology: A. Halkett, E. E. Prince, E E. Lemieux, E. LeSueur.
Auoitors:
J. Ballantyne, E. C. Wight.

Membership Fee to O.F.N.C., with "Ottawa Naturalist" $\$ 1.00$ per annuim.

[^0]: - Analyses of well waters from farm homesteads are made free of charge by the Chemical Division, Eyperimental Farm, Ottawa, provided the sumples are coflected and shippred in aecordance with instructions that are sent on application.

