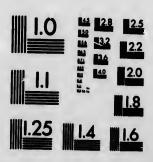
11.25 11.8 11.00 11.25 11.8 11.00

IMAGE EVALUATION TEST TARGET (MT-3)

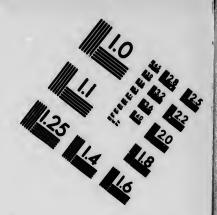


STATE OF THE SECOND SEC

Photographic Sciences Corporation

23 WEST MAIN STREET WEBSTER, N.Y. 14580 (716) 872-4503

GU STEEL STE



CIHM Microfiche Series (Monographs)

Collemicr (mon

Canadian Institute for Historical Microreproductions / Institut canadian

CIHM Microfiche Series (Monographs) ICMH
Collection de microfiches (monographies)

Canadian Institute for Historical Microreproductions / Institut canadian de microreproductions historiques

Technical and Bibliographic Notes / Notes techniques et bibliographiques

12X	16X	20 X	24X	28		32 x
	J					
14X	18X	e ci-dessous.	22 X	26 X	30 x	
tem is filmed at the reduc cument est filmé au taux (tion ratio checked b	elow/				
Commentaires supplémen	taires: 145-190,	190(1)-190(v	iii), 191-220,	220(1)-220(11), 2	221-252, [1]-xv	, [253]-306
Additional comments:/	Paginati	on is as foll	lows: [i]-vi, [1], [1]-100, 100 ₁ -	1004, 101-144	144144
				ique (périodiques) d	e la livraison	
-			Masth	ead/		
mais, lorsque cela était pe pas été filmées.	ossible, ces pages n'o	ont	Titre	de départ de la livrai	son	
lors d'une restauration ap				on of issue/		
Il se peut que certaines p						
been omitted from filmir				page of issue/ le titre de la livraisor		
Blank leaves added durin within the text. Whenever			Tiels	name of increase		
Riank leaves added duck-	a restauction		Le tit	re de l'en-tête provie	ent:	
distorsion le long de la m	arge intérieure		Title	on header taken from	m:/	
La reliure serrée peut cau	iser de l'ombre ou d	le la	Comp	rend un (des) index		
Tight binding may cause along interior margin/	shadows or distorti	on		des index(es)/		
				ation continue		
Bound with other materi Relié avec d'autres docui				nuous pagination/		
Planches et/ou illustration				ty of print varies/ té inégale de l'impre	esion	
Coloured plates and/or it	llustrations/					
Encre de couleur (i.e. au				parence		
Coloured ink (i.e. other	than blue or black)/		Show	rthrough/		
Cartes géographiques en	couleur		Pages	détachées		
Coloured maps/			Pages	detached/		
904191 (816 111			F#901	décolorées, tache té	es ou piquées	
Cover title missing/ Le titre de couverture m	anque		Pages	discoloured, staine	d or foxed/	
Court title mississ!						
Couverture restaurée et/	ou pelliculée			restaurées et/ou pe		
Covers restored and/or I	aminated/		Page:	restored and/or lan	ninated/	
Couverture endommagé			Page:	s endomnagées		
Covers damaged/			Page	s demaged/		
, course tare de coursur			L Page	s de couleur		
Coloured covers/ Couverture de couleur				ured pages/		
			ci-dessous.		iiiiage sont ingiqu	e s
ked below.	method of filming,	art .	reproduite	, ou qui peuvent ex thode normale de fi	liger une modifice	tion
e images in the reproduct ficantly change the usual			bibliograp	hique, qui peuvent r	modifier une imag	
be bibliographically uniq		any	exemplair	e qui sont peut-être	uniques du point	de vue
evailable for filming. Fe			lui a été p	ossible de se procure	neur exemplaire q er. Les détails de l	U'II
Institute has attempted to	o obtain the best or	iginal	L'Institut	a microfilmé le mei	lleur exemplaire o	ne'il

The copy filmed here has been reproduced thanks to the generosity of:

National Library of Canega

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the list page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche hall contain the symbol → (meaning "CON-TNUED"), or the symbol ▼ (meaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at ifferent reduction ratios. Those too large to be ntirely included in one exposure and filmed eginning in the upper left hand corner, left to ght and top to bottom, as many frames as equired. The following diagrams illustrate the sethod:

L'exemplaire filmé fut reproduit grâce à la générosité de:

Bibliothèque nationale du Canada

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la dernière page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la première page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernière page qui comporte une telle empreinte.

Un des symboles suivants apparaître sur la dernière image de chaque microfiche, selon le cas: le symbole → signifie "A SUIVRE", le symbole ▼ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seui cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite, et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

1	2	3

1	
2	
3	

1	2	3
4	5	6

/0

A TREATISE

ON

ELEMENTARY TRIGONOMETRY.

A TREATISE

ON

ELEMENTARY TRIGONOMETRY

BY THE

REV. J. B. LOCK, M.A.

FELLOW OF GONVILLE AND CAIUS COLLEGE, CAMBRIDGE FORMERLY MASTER AT RTON

STEREOTYPED EDITION

Toronto
THE COPP CLARK CO., LIMITED

London

MACMILLAN AND CO., LIMITED

NEW YORK: THE MACMILLAN COMPANY

1899

All rights reserved

QA531 L6 1899

41

Printed 1882.

New edition, 1884, new edition 1885, new edition, 1886, new edition 1887, new edition 1888, reprinted 1899, 1890, 1891, March and September 1892, 1893, 1895, 1897, 1899

FF

contain venient series. for primumero are not bridge

THE P

The difficult, the stud

few yea

The be varie

ETON,

In the indicated the Solu

FROM THE PREFACE TO THE FIRST EDITION.

THE present Work on ELEMENTARY TRIGONOMETRY contains that part of the subject which can conveniently be explained without the use of infinite series. It is intended either for class-teaching or for private study. Accordingly the Examples are numerous and for the most part easy. Those which are not original have been selected from the Cambridge and Army Examination Papers of the last few years.

The Miscellaneous Examples are somewhat more difficult, and should in most cases be postponed until the student reads the subject for the second time.

The order in which the chapters are read may be varied at the discretion of the Teacher.

J. B. L.

ETON, March, 1882.

In the SECOND EDITION a short course has been indicated for the use of Students who wish to read the Solution of Triangles as early as possible. Such

886, 1890, Students are advised to omit every article that is marked with an asterisk.

A double asterisk has been placed before those articles which should be omitted by all Students until they are reading the subject for the second time.

An Appendix containing a description of the Vernier, the Theodolite, the Sextant etc. has been added.

A Key by Mr CARR is now ready.

CHAP.

I.

Ш.

IV. V.

VI. VII.

VIII.

IX.

X. XI.

XII.

XIII.

XV. XVI.

XVII. XVIII.

XIX.

at is

those dents econd

f the been

CONTENTS

CHAP.		
I.	ON MEASUREMENT	PAGE
II.	ON INCOMMENSURABLE QUANTITIES .	1
III.	ON THE RELATION BETWEEN THE CIRCUMPERENCE OF	9
	A CIRCLE AND ITS DIAMETER	
IV.	On the Measurement of Angles .	14
V.	THE TRIGONOMETRICAL D.	23
VI.	THE TRIGONOMETRICAL RATIOS	44
VII.	ON THE TAXONO OF CERTAIN ANGLES	53
	ON THE TRIGONOMETRICAL RATIOS OF THE SAME	
VIII.	ANGLE	66
IX.	ON THE USE OF THE SIGNS + AND -	86
X.	ON THE USE OF + AND - IN TRIGONOMETRY	90
XI.	On Angles unlimited in Magnitude. I.	101
XII.	ON THE RATIOS OF TWO ANGLES	117
XIII.	THE THE ANGLES	133
XIV.	OMERITED IN MAGNITUDE. 11.	144
		161
XV.	ON THE USE OF MATHEMATICAL TARREST	177
AVI.	ON THE RELATIONS BETWEEN THE SIDES AND ANGLES	
	OF A TRIANGLE	191
XVII.	ON THE SOLUTION OF TRIANGLES	206
XVIII.	ON THE MEASUREMENT OF HEIGHTS AND DISTANCES	221
XIX.	ON TRIANGLES AND CIRCLES	230
XX.	ON THE AREA OF THE CIRCLE, THE CONSTRUCTION	200
	OF TRIGONOMETRICAL TABLES, ETC	241
	APPENDIX	241
	EXAMPLES FOR EXERCISE.	0.0
	Examination Papers	
	ANSWERS TO EXAMPLES	275 291
		231

1. crete que contain

We a have fou measured how man

2.

must ha standard measured number of standard

3. It and the u

Examp number is

Examp

therefore th

L. E. T

CHAPTER I.

ON MEASUREMENT.

It is usual to say that we have measured any concrete quantity, when we have found out how many times it contains some familiar quantity of the same kind.

We say for example, that we have measured a line, when we have found out how many feet it contains. We say that we have measured a field, when we have found out how many acres or how many square yards it contains.

- To know the measurement of any quantity then, we must have two things. First, we must have a unit, or standard of reference, of the same kind as the thing measured. Secondly, we must have the measure, or the number of times the thing measured contains the unit, or standard quantity.
- Hence, the measure of a quantity is the number, and the unit is the concrete quantity, by means of which it is measured.

Example 1. A line contains 261 feet. Here the measure or number is 261 and the unit a foot.

Example 2. What is the measure of 21 miles when a yard is the unit?

 $2\frac{1}{2}$ miles = $\frac{4}{3} \times 1760$ yards, $=4400 \text{ yards} = 4400 \times 1 \text{ yard,}$

therefore the measure is 4400 when a yard is the unit.

L. E. T.

Example 3. What is the unit when the measure of a field of 10 acres is 242?

10 acres =
$$242 \times \frac{10 \text{ acres}}{242}$$
,

... the unit is
$$\frac{10 \text{ acres}}{242} = 200 \text{ square yards.}$$

Example 4. If the unit be a yards, what is the measure of b miles?

$$b \text{ miles} = b \times 1760 \text{ yards},$$

$$\therefore b \text{ miles} = \frac{b \times 1760}{a} \times a \text{ yards},$$

 \therefore the measure required is $\frac{b \times 1760}{a}$.

EXAMPLES. I.

(1) What is the measure of 1 mile when a chain of 66 feet is the unit?

(2) What is the measure of an acre when a square whose side is 22 yards is the unit?

(3) What is the measure of a ton when a weight of 10 stone is the unit?

(4) The length of an Atlantic cable is 2300 miles and the length of the cable from England to France is 21 miles. Express the length of the first in terms of the second as unit.

(5) The measure of a certain field is 22 and the unit 1100 square yards: express the area of the field in acres.

(6) Find the measure of a miles when b yards is the unit.

(7) The measure of a certain distance is a when the unit is c feet. Express the distance in yards.

(8) A certain sum of money has for its measures 24, 240, 960 when three different coins are units respectively. If the first coin is half a sovereign, what are the others?

whi

quan

* 5. metic

and in

same (

the un

Exa

(ii)

(iii)

of a field of

measure of

of 66 feet is

quare whose

of 10 stone

iles and the les. Express

e unit 1100

the unit.

ures 24, 240, If the first * 4. The measure of a quantity is the number of times which that quantity contains the unit.

We may express the same thing in different ways,

- (i) The measure of a quantity is the ratio of that quantity to the unit.
- (ii) The measure of a quantity is the fraction that the quantity is of the unit.
- *5. This last statement is in the language of Arithmetic, and the word 'craction' is to include whole numbers, and improper fractions.
- *6. The following are therefore different forms of the same question:
- (i) What is the measure of 4 miles when 66 feet is the unit?
 - (ii) How many times does 4 miles contain 66 feet?
 - (iii) What is the ratio of 4 miles to 66 feet?
- (iv) What fraction of 66 feet is 4 miles?

 Example (i) What is the measure of a yards when b feet is the unit?

a yards=3a feet=
$$\frac{3a}{b} \times b$$
 feet,
 \therefore the measure is $\frac{3a}{b}$.

(ii) How many times does a yards contain b feet?

As in (i), a yards = $\frac{3a}{b} \times b$ feet.

Answer. $\frac{3a}{b}$ times.

(iii) What is the ratio of a yards to b feet?

As in (i),
$$a \text{ yards} = \frac{3a}{b} \times b$$
 feet,

$$\therefore \frac{a \text{ yards}}{b \text{ feet}} = \frac{3a}{b},$$

.. the required ratio is $\frac{3a}{b}$.

(iv) What fraction is a yards of b feet?

As in (iii),
$$\frac{a \text{ yards}}{b \text{ feet}} = \frac{3a}{b}$$
,

 \therefore the required fraction is $\frac{3a}{b}$.

* EXAMPLES. II.

(1) The ratio of the area of one field to that of another is 20:1, and the area of the first is half a square mile. Find the number of square yards in the second.

(2) The ratio of the heights of two persons is 9:8, and the height of the second is 5 ft. 4 in. What is the height of the first?

(3) The measure of a field with 3 acres for unit is 65. Find the ratio of the field to an acre.

(4) One field contains a second of $2\frac{1}{2}$ acres, $6\frac{3}{4}$ times.

What is the measure of the first field in terms of the second?

What is the ratio of the first field to the second?

Express the first as the fraction of the second.

(5) A certain weight is 3.125 of a ton. What is its measure in terms of 4 cwt.? How many times does it contain 4 cwt.? What is its ratio to 4 cwt.? What fraction is it of 4 cwt.?

(6) The ratio of a certain sum of money to 3 guineas is $\sqrt[4]{}$. Find its measure in terms of one pound. Find the unit when its measure is 22.

(7) What is the measure of a miles when b chains is the unit?

How many times do a miles contain c chains? What is the ratio of a miles to d chains? What fraction is a miles of k chains?

£ Ti Ti that

(8

squar is fou the m

Ex surface The

8.

Exa angled the hyp

Then x feet = and 4 fe

(8) What is the unit when the measure of £20 is \$20? £25 contains a certain sum \$500 times. What is that sum? The ratio of £30 to a certain sum is \$400. What is that sum? The fraction which £10 is of a certain sum is \$200. What is that sum?

7. It is explained in Arithmetic, in the application of square measure, that the measure of the area of a rectangle is found in terms of a square unit, by multiplying together the measures of the sides in terms of the corresponding linear unit.

Example. Find in square feet the measure of a square surface whose side is 12 feet.

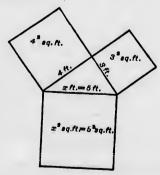
The area is 12×12 square feet = 144×1 square foot, \therefore the measure required is 144.

8. We shall apply this result to Euclid I. 47.

Example 1. The sides containing the right angle of a right-angled triangle are 3 ft. and 4 ft. respectively; find the length of

Let x be the number of feet in the hypotenuse.

Then by Euclid I. 47, the square described on the side of x feet—the sum of the squares described on the sides of 3 feet and 4 feet respectively,



nother is Find the

3, and the the first?

s. e second?

as is 4.

ins is the

.: x² square feet=9 square feet+16 square feet =25 square feet,

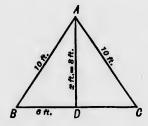
$$\therefore x^2 = 25,$$

$$\therefore x = 5.$$

Therefore the length of the hypotenuse is 5 feet.

Example 2. Find the length of the perpendicular drawn from the vertex to the base of an isosceles triangle whose equal sides are 10 feet each, and whose base is 12 feet.

Let ABC be the isosceles triangle such that AB is 10 feet, AC is 10 feet and BC is 12 feet.



Draw AD perpendicular to BC.

Then because the triangle ABC is isosceles AD will bisect the base BC in D; therefore BD is 6 feet.

Let AD contain x feet.

Then by Euclid I. 47, the square on AB=the sum of the squares on BD and AD.

..
$$10^2$$
 sq. ft. $= 6^2$ sq. ft. $+ x^2$ sq. ft.
.. $10^2 = 6^2 + x^2$,
.. $x^2 = 100 - 36$,
.. $x^2 = 64$,
.. $x = 8$.

Therefore the required length of AD is 8 feet.

one

feet.

and a

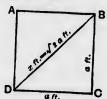
Th

(1) triangle

(2) and one

(3) 48 feet If the I from the

street 3 reach fr of the st Example 3. Find the length of the diameter of the square one of whose sides contains a feet.



Let ABCD be the square, so that AB is α feet, and AD is α feet.

Let the diameter BD be x feet.

Then the square on DB= the sum of the squares on DA and AB.

$$\therefore x^2 \text{ sq. ft.} = a^2 \text{ sq. ft.} + a^2 \text{ sq. ft.}$$

$$\therefore x^2 = a^2 + a^2,$$

$$\therefore x^2 = 2a^2,$$

$$\therefore x = \sqrt{2} \cdot a.$$

Therefore the required length of the diameter is $\sqrt{2}$. a feet.

EXAMPLES. III.

- (1) Find the length of the hypotenuse of a right-angled triangle whose sides are 6 feet and 8 feet respectively.
- (2) The hypotenuse of a right-angled triangle is 100 yards and one side is 60 yards: find the length of the other side.
- (3) One end of a rope 52 feet long is tied to the top of a pole 48 feet high and the other end is fastened to a peg in the ground. If the pole be vertical and the rope tight, find how far the peg is from the foot of the pole.
- (4) The houses in a certain street are 40 feet high and the street 30 feet wide: find the length of the ladder which will reach from the top of one of the houses to the opposite side of the street.

dar drawn hose equal

is 10 feet,

et

et.

will bisect

um of the

- (5) A wall 72 feet high is built at one edge of a moat 54 feet wide; how long must scaling ladders be to reach from the other edge of the moat to the top of the wall?
- (6) A field is a quarter of a mile long and three-sixteenths of a mile wide: how many cubic yards of gravel would be required to make a path 2 feet wide to join two opposite corners, the depth of the gravel being 2 inches?
- (7) The sides of a rectangular field are 4a feet and 3a feet respectively. Find the length of its diameter.
- (8) If the sides of an isosceles triangle be each 13a yards and the base 10a yards, what is the length of the perpendicular drawn from the vertex to the base?
- (9) Show that the perpendicular drawn from the right angle to the hypotenuse in an isosceles right-angled triangle, each of whose equal sides contains a feet, is $\frac{\sqrt{2}}{2}$. a ft.
- (10) If the hypotenuse of a right-angled isosceles triangle be a yards, what is the length of each side?
- (11) Show that the perpendicular drawn from an angular point to the opposite side of an equilateral triangle, each of whose sides contains α feet, is $\frac{\sqrt{3}}{2}$. α ft.
- (12) If in an equilateral triangle the length of the perpendicular drawn from an angular point to the opposite side be a feet, what is the length of the side of the triangle?
- (13) Find the ratio of the side of a square inscribed in a circle to the diameter of the circle.
- (14) Find the distance from the centre of a circle of radius 10 feet, of a chord whose length is 8 feet.
- (15) Find the length of a chord of a circle of radius a yards, which is distant b feet from the centre.
- (16) The three sides of a right-angled triangle, whose hypotenuse contains 5a feet, are in arithmetical progression: prove that the other two sides contain 4a feet and 3a feet respectively.

their that both

T

E

when fraction

For $\frac{\sqrt{}}{1}$ So $\sqrt{3}$

able n that a an arit

mensur

oat 54 feet the other

sixteenths would be se corners,

nd 3a feet

13a yards endicular

the right triangle,

s triangle

angular of whose

e perpene side be

ibed in a

of radius

s a yards,

ose hypon: prove pectively.

* CHAPTER II.

ON INCOMMENSURABLE QUANTITIES

9. Two numbers are said to be commensurable when their ratio can be expressed as an arithmetical fraction: that is, as a fraction whose numerator and denominator are both whole numbers.

Example. 4.93 and 813 are two commensurable numbers.

Their ratio is $4\frac{84}{90} \div 81\frac{3}{4} = \frac{444 \times 4}{90 \times 327}$.

10. Two numbers are said to be incommensurable when their ratio cannot be expressed as an arithmetical fraction.

Example. $\sqrt{2}$ and 1 are two incommensurable numbers. For $\frac{\sqrt{2}}{1}$ cannot be expressed exactly as an arithmetical quantity. So $\sqrt{3}$ and $\sqrt{2}$ are two incommensurable numbers.

11. One number alone is said to be an incommensurable number when it is incommensurable with unity. So that an incommensurable number cannot be expressed as an arithmetical fraction.

Example. $\sqrt{2}$ and $\sqrt{3}$, and all surd numbers, are incommensurable numbers.

12. Two quantities are said to be commensurable when their measures referred to a common unit are commensurable.

Example. A mile and a thousand yards are two commensurable quantities. Their measures with a yard for unit are 1760 and 1000; and these are commensurable numbers.

Two quantities are said to be incommensurable when their measures referred to a common unit are incommensurable.

Example. The side of a square and its diameter are two incommensurable quantities. For if the side of a square contain a feet, the diameter (see Example 3, p. 7) contains $\sqrt{2}$. a feet, and therefore the ratio of their measures is 1: 12. So that their measures are incommensurable.

- There is no practical difficulty in dealing with incommensurable quantities. We can always find for their measures arithmetical expressions sufficiently accurate for all practical purposes.
- 15. A little consideration will convince the student that no measurement can in practice be made with absolute accuracy.

For example: A skilful mechanic is probably satisfied if in measuring some material two or three feet in length the error in his measurement is less than the thirty-second part of an inch. (The thirty-second part of an inch is less than half the height of the smallest letter on this page.) That is to say, he is satisfied if he make no greater error than about a thousandth part of the whole length to be measured. He would record such a measurement thus.

2 ft. $3\frac{27}{32}$ inches,

which is 891 thirty-second parts of an inch.

the to th

is th

I

.: th

The e

·: th

17 examp is four is atta attaine

18.

to hav greater For in whole using us the being a by hyp commen-

nsurable

unit are

nsurable e incom-

are two contain feet, and hat their

ng with for their rate for

student absolute

satisfied a length y-second h is less s page.) or error t to be 16. We will suppose that the length thus measured is the side of a square, and that the workman wishes to know to the same degree of accuracy as his measurement, what is the length of the diameter of the square.

He can find it thus.

The diameter of a square = $\sqrt{2}$ × its side,

... the diameter of this square = $\sqrt{2} \times 891$ thirty-second parts of an inch.

Also
$$\sqrt{2} = 1.414$$
 nearly,
 $\therefore \sqrt{2} \times 891 = 1.414 \times 891$
= 1259.8.

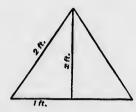
.: the required diameter = 1260 thirty-second parts of an inch, nearly.

The error being less than one thirty-second part of an inch.

- 17. The student will be able to see from the above example, that if the value of an incommensurable number is found to 4 figures, a very considerable degree of accuracy is attained. Also that a much greater degree of accuracy is attained for every additional figure.
- 18. It is no advantage in calculations such as the above to have the value of such quantities as $\sqrt{2}$ calculated to any greater degree of accuracy than the observed measurement. For instance, our calculation being correct as far as the whole numbers are concerned we should gain nothing by using 1.4142 instead of 1.414 for $\sqrt{2}$. This would give us the answer 1260.0 instead of 1259.8; the difference being a fifth of a the rescond part of an inch, a quantity by hypothesis too small to be of any importance.

Example 1. The side of an equilateral triangle contains 2 feet; find, correct to the ten-thousandth part of a foot, the length of the perpendicular drawn from an angular point to the opposite side.

Here (as in Example 2, p. 6), let the perpendicular contain x feet, then



$$x^2$$
 sq. ft. = 2^2 sq. ft. - 1^2 sq. ft.,
 $\therefore x^2 = 4 - 1 = 3$,
 $\therefore x = \sqrt{3}$,
= 1.7320 &c.

... the length of the perpendicular=1.7320 feet.

Example 2. Find the length, correct to the ten-thousandth part of a foot, of the side of the square described upon a diameter whose length is a feet.

Let x be the number of feet in each of the sides of the square.

Then

: the

(1) length (2)

square (3)

and 3 f

area is
(5)

of a square (6)

whose

10 feet. (8)

5 32 fee

along to

(10) court w that it i contains foot, the point to

contain

Then $x^3 \text{ sq. ft.} + x^3 \text{ sq. ft.} = a^2 \text{ sq. ft.}$ $\therefore x^3 + x^3 = a^3,$ $\therefore 2x^2 = a^2,$ $\therefore \sqrt{2} \cdot x = a,$ $\therefore x = \frac{a}{\sqrt{2}} = \frac{a\sqrt{2}}{2}$ $= \frac{a}{2} \times (1.4142) = a \times .7071...,$

: the length of the perpendicular = $a \times .7071...$ feet.

* EXAMPLES. IV.

- (1) Find, correct to the thousandth part of a foot, the length of the diameter of a square whose side is 7 feet.
- (2) Find, correct to a yard, the length of the diameter of a square whose side is one mile.
- (3) Find, correct to the hundredth part of an inch, the hypotenuse of a right-angled triangle whose sides are 3 ft. 61 in. and 3 ft. 4 in. respectively.
- (4) Find, to the nearest inch, the side of a square whose area is 1000 square yards.
- (5) Find, correct to the tenth part of a foot, the diameter of a square field whose area is ten acres.
- (6) Find, to the nearest inch, the side of a square field whose area is one acre.
- (7) Find the height of an equilateral triangle whose side is
- (8) Find the height of an equilateral triangle whose side is 5.32 feet.
- (9) The top of a table measures 24.6 inches and 41.3 inches along two adjacent sides. What should the diameter measure if the table is rectangular?
- (10) Find, to the nearest inch, the diameter of a lawn-tennis court whose length is 78 feet, and breadth 36 feet, supposing that it is properly marked out.

usandth n a dia-

square.

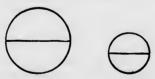
CHAPTER III.

ON THE RELATION BETWEEN THE CIRCUMFERENCE OF A CIRCLE AND ITS DIAMETER.

19. The circumference of a circle is a line, and therefore it has length.

We might imagine the circumference of a circle to consist of a flexible wire; if the circular wire were cut at one point and straightened, we should have a straight line of the same length as the circumference of the circle.

- 20. A polygon is a figure enclosed by any number of straight lines.
- 21. A regular polygon has all its sides equal and all its angles equal.
 - 22. The perimeter of a polygon is the sum of its sides.
- 23. If we have two circles in which the diameter of the first is greater than the diameter of the second, it is evident that the circumference of the first will be greater than the circumference of the second.



24. It seems, therefore, not unlikely that, if the diameter of the first circle be twice that of the second, the circumference of the first will be twice that of the second.

of the

ference numb

26 the c

W

the m

27. proved

28. we me stated

It pressio represe

So arithmo of the

Herexact ve

25. And also not unlikely that whatever be the ratio of the circumference of the first circle to its diameter, the same will be the ratio of the circumference of the second circle to its diameter.

This suggests that it is not unlikely that the circumference of a circle = k times its diameter, where k is some number which is the same for all circles.

We shall presently prove that this is the case.

26. But although we can prove that

the circumference of a circle its diameter = a fixed numerical quantity,

the method of calculating the value of this number is beyond the limits of an elementary treatise.

- 27. We shall therefore simply state here, what is proved in the Higher Trigonometry,
 - (i) that this numerical value is incommensurable,
 - (ii) that it is approximately 3.14159265 &c.
- 28. When we say that this number is incommensurable we mean (cf. Chapter II.) that its exact value cannot be stated as an arithmetical fraction.

It also happens that we have no short algebraical expression such as a surd, or combination of surds, which represents it exactly.

So that we have no numerical expression whatever, arithmetical nor algebraical, to represent exactly the ratio of the circumference of a circle to its diameter.

Hence the universal custom has arisen, of denoting its exact value by the letter π .

herefore

onsist of oint and o length

nber of

and all

sides. eter of

d, it is greater

he diaid, the ond. 29. Thus π stands always for the exact value of a certain incommensurable number, whose approximate value is 3.14159265, which number is the ratio of the circumference of any circle to its diameter.

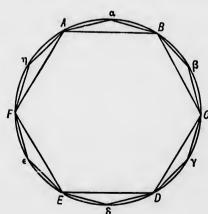
It cannot be too carefully impressed on the student's memory that π stands for this number 3.14159265...&c., and for nothing else; just as 180 stands for the number one hundred and eighty, and for nothing else.

*30. We proceed to prove that the ratio of the circumference of a circle to its diameter is the same for all circles.

The proof depends on the following important principle;

The length of the circumference of a circle is that to which the length of the perimeter of a regular inscribed polygon approaches, as the number of its sides is continually increased.

- *31. We take for granted that the straight line is the shortest line that can join two points.
- * 32. Let ABCDEF be any regular polygon inscribed in a circle.



ing A

is less

N

 β , γ , δ the twice

An the sid

is great But

the circ beca He

circumf

By get a tiference

It is polygon circumfe

The the length approach

L. E

of a cervalue is mference

student's .&c., and aber one

circles. rinciple; to which polygon

eireum-

ncreased. ne is the

cribed in

Then the side AB is shorter than any other line joining AB, so that the side AB is less than the arc AB;

therefore the perimeter of the polygon, viz.

$$AB + BC + CD + DE + EF + FA$$

is less than the sum of the arcs, that is, is less than the circumference of the circle.

Now let each of the arcs AB, BC, etc. be bisected in a, β , γ , δ , ϵ , η , and let the lines Aa, aB, $B\beta$, βC , etc. be joined; then the figure $AaB\beta C\gamma$ etc. is a regular polygon of twice as many sides as the first polygon.

And since the sides Aa + aB are together greater than the side AB,

it follows that the perimeter of the second polygon, viz.

 $Aa + aB + B\beta + \beta C + C\gamma + \gamma D + \text{etc.}$

is greater than the perimeter of the first.

But the perimeter of the second polygon is less than the circumference of the circle,

because each side is less than the corresponding arc.

Hence the perimeter of the second polygon is nearer the circumference, but is less than the circumference.

By bisecting the arcs of the second polygon we should get a third polygon, whose perimeter is nearer the circumference of the circle than the second.

It is clear that by continuing this process, we can get a polygon whose perimeter is as near as we please to the circumference of the circle. Hence,

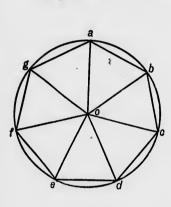
The length of the circumference of a circle is that to which the length of the perimeter of a regular inscribed polygon approaches, as the number of its sides is continually increased.

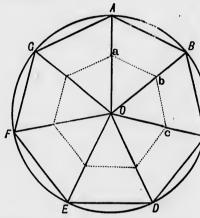
*33. Prop. The ratio of the circumference of a circle to its diameter is the same for all circles.

Let ABCDEF, abcdef be any two circles.

Let a regular polygon of any, the same number of sides be inscribed in each of them.

Join A, B, C, etc., a, b, c, etc. the angular points of the polygons to the centres O, o respectively.





Then AOB any one of the isosceles triangles in the first figure is equiangular with*, and therefore similar to, aob any one of the isosceles triangles in the second figure.

$$\therefore AB : OA = ab : oa, \qquad [Euc. vi. 4.]$$

and BC: OA = bc: ca

and so on.

.. AB + BC + CD + etc.: OA = ab + bc + cd + etc.: oa; or, the perimeter of the first polygon is to the radius of the

* For at O and at o, four right angles are each divided into the same number of equal angles, so that the vertical angles AOB, aob of the isosceles triangles AOB, aob are equal.

first radi

two

sides F

meter is ind first secon

radius circle

So quanti

etc., a

35.

He

So of their

Also for π w

Her

first circle as the perimeter of the second polygon is to the radius of its circle.

This is true whatever be the number of the sides of the two polygons.

And therefore it is true however great be the number of sides of the two polygons.

But the circumferences of the circles are what the perimeters of the polygons become, when the number of the sides is indefinitely increased. Therefore the circumference of the first circle is to its radius OA as the circumference of the second circle is to its radius oa.

Thus the ratio of the circumference of any circle to its radius is equal to the ratio of the circumference of any other circle to its radius.

So that the ratio circumference diameter diameter quantity for all circles. Q. E. D.

34. We said above (Art. 29) that this number is 3.14159 etc., and that it is denoted by π .

Hence the circumference of any circle of radius $r = (3.14159265 \text{ etc.}) \times \text{its diameter} = 2\pi r.$

35. We may notice that $\frac{22}{7} = 3.142857$.

So that $\frac{22}{7}$ and π differ by less than a thousandth part of their value.

Also $\frac{355}{113} = 3.1415929$ etc. So that $\frac{355}{113}$ may be used for π with sufficient accuracy for any practical purpose.

Hence $\frac{22}{7}$, 3:14159 and $\frac{355}{118}$ are each used for π according to the degree of accuracy required.

a circle to

r of sides

nts of the

n the first or to, aob ore.

c. vi. 4.]

ius of the

od into the OB, aob of

19

- 36. Of these 3·14159 is the most frequently used. The student should notice however that in *dividing* by π it will be more convenient to use $\frac{3.5}{1.15}$ than 3·14159.
 - 37. The following results are instructive.

The ratio of the perimeter of a regular polygon inscribed in a circle to the diameter of the circle, when the polygon has

ins

is u

ter.

whee.

(5

(6 make

(7)

(8)

(9)

bicycl

instru numbe

per sec

0 12 1 - 1	1 00
four sides, is 2/2	=2.8284
six sides, is 3	=3
eight sides, is $4\sqrt{(2-\sqrt{2})}$	=3.0614
ten sides, is $\frac{5}{2}(\sqrt{5}-1)$	=3.0901
twelve sides, is $3\sqrt{2}(\sqrt{3}-1)$	=3.1058
twenty sides, is $5\{\sqrt{(3+\sqrt{5})} - \sqrt{(5-\sqrt{5})}\}$	=3.1287
sixty sides, is $\frac{15}{2\sqrt{2}}\{(\sqrt{5}-1)(\sqrt{3}+1)$	
$-\sqrt{(10+2\sqrt{5})}(\sqrt{3}-1)$	1)}=3·140i

These numbers approach 3.14159 as the number of sides is increased, while the surd expression becomes more complicated.

The first of these results the student will be able to verify; the second is proved in Euclid IV. 15. The rest will be proved later on.

Example 1. The driving wheel of a locomotive engine is 5 ft. 6 in. high. What is its circumference?

Here we have a circle whose diameter is 51 feet;

: its circumference =
$$\pi \times 5.5$$
 feet,
= $(3.14159...) \times 5.5$ feet,
= $17.278...$ feet,

The circumference is 17 ft. 3 in. approximately.

Example 2. If a piece of wire 1 foot long be bent into the form of a circle, what will be the diameter of the circle?

Here the circumference=1 foot, that is $\pi \times \text{diameter}=1$ foot, used. The $y \pi$ it will

scribed in a on has

)614...)901...

287...

401...
of sides is
uplicated.

to verify; be proved

engine is

et,

t into the

 $\therefore \text{ diameter} = \frac{1 \text{ foot}}{\pi} = \frac{7}{22} \times 1 \text{ foot}$

 $= \frac{84}{22} \text{ inches}$ = 3.8 inches, nearly.

If a greater degree of accuracy be desired, we must use $\frac{3}{1}$ instead of $\frac{22}{7}$.

We then get, the diameter=3.7699 inches, =3.77 inches very nearly.

EXAMPLES. V.

In the answers of the first 12 of the following examples $\frac{22}{7}$ is used for π .

- (1) Find the circumference of a circle whose diameter is one yard.
 - (2) Find the circumference of a circle whose radius is 4 feet.
 - (3) Find the circumference of a 48 inch bicycle wheel.
- (4) The circumference of a circle is 10 feet; find its diameter.
- (5) What must be the diameter of a locomotive driving wheel, that it may make 220 revolutions per mile?
- (6) How many revolutions does a 36 inch bicycle wheel make per mile?
- (7) How many more revolutions per mile does a 50 inch bicycle wheel make than one of 52 inches?
- (8) A locomotive whose driving wheel is 5 feet high has an instrument to record the number of revolutions made. What number will the instrument record in running 100 miles?
- (9) If the instrument in Question 8 indicates 3 revolutions per second, how many miles per hour is the engine running?

- (10) What is the diameter of the driving wheel of a locomotive engine which makes 4 revolutions per second when the engine is going at the rate of 60 miles per hour?
- (11) The large hand of the Westminster clock is 11 feet long; how many yards per day does its extremity travel? How far does the extremity move in a minute?
- (12) The diameter of the whispering gallery in St Paul's is 108 feet; what is its circumference?
- (13) Find the number of inches of wire necessary to construct a figure consisting of a circle with a regular hexagon inscribed in it, one of whose sides is 3 feet.
- (14) How many inches of wire would be necessary in a figure similar to that in Question (13), if the circumference of the circle were ten feet?
- (15) Find how many inches of wire are necessary to make a figure consisting of a circle and a square inscribed in it, when each side of the square is 2 feet.
- (16) How many inches of wire are necessary for a figure similar to that in Question (15), when the circumference of the circle is 12 feet?
- (17) Find the length of string necessary to string the handle of a cricket bat; having given the diameter of the handle = $1\frac{1}{4}$ in., the length of the handle = 12 in., the diameter of the string = $\frac{1}{40}$ th of an inch.

angl

shou

not ar

the pramour ing free position

Exe position remark the cou the lin describe

Who

a locomowhen the

feet long; How far

t Paul's is

ry to conhexagon

sary in a

o make a it, when

a figure ce of the

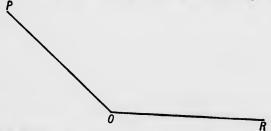
to handle $0 = 1\frac{1}{4}$ in., $\log = \frac{1}{40}$ th

CHAPTER IV.

On the Measurement of Angles.

38. In elementary Geometry (Euclid I.—VI.) the angles considered are each always less than two right angles.

For example, in speaking of the angle ROP in Euclid we should always mean the angle less than two right angles,



not an angle measured in the opposite direction greater than two right angles.

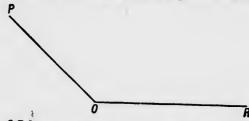
39. In Trigonometry, by the angle ROP is meant, not the present inclination of the two lines OR, OP but, the amount of turning which OP has gone through when, starting from the position OR, it has turned about O into the position OP.

Example. Suppose a race run round a circular course. The position of any one of the competitors would be known, if we remark that he has described a certain angle about the centre of the course. Thus, if the distance to be run is three times round, the line joining each competitor to the centre would have to describe an angle of 12 right angles.

When we remark that a competitor has described an angle of 63 right angles, we record not only his present position, but the

total distance he has gone. He would in such a case have gone a little more than one and a half times round the course.

40. Definition. The angle between two lines OR, OP is the amount of turning about the point O which one of



the lines OP has gone through in turning from the position OR into the position OP.

- 41. The angle ROP may be the geometrical representative of an unlimited number of Trigonometrical angles.
- (i) The angle ROP may represent the angle less than two right angles as in Euclid.

In this case OP has turned from the position OR into the position OP by turning about O in the direction contrary to that of the hands of a watch.

(ii) The angle ROP may represent the angle described by OP in turning from the position OR into the position OP in the same direction as the hands of a watch.

In the first case it is usual to say that the angle ROP is described in the positive direction, in the second that the angle is described in the negative direction.

(iii) The angle ROP may be the geometrical representation of any of the Trigonometrical angles formed by any number of complete revolutions in the positive or in the negative direction, added to either of the first two angles. (We shall return to this subject in Chapter IX.)

G angle ing p

> 1. 2.

· 3.

5. 6.

42

43. right

44. unit ar

nit ar (i

> (i (i

45. subdivid

It is

(i) (ii have gone e.

OR, OP

position

oresentales. ess than

OR into

escribed position

ROP is

reprened by or in st two IX.) EXAMPLES. VI.

Give a geometrical representation of each of the following angles, the starting line being drawn in each case from the turning point towards the right.

+ 3 right angles. + 5 right angles. + 4½ right angles. + 7½ right angles. - 1 right angle. 10¾ right angles.	 710½ right angles. 8. +4 right angles. 94 right angles. 10. 4n right angles. 11. (4n+2) right angles. 12(4n+1) right angles.
o. 10g right angles.	12. $-(4n+\frac{1}{2})$ right angler
	+5 right angles. +4½ right angles. +7½ right angles. -1 right angle.

- 42. There are two methods of measuring angles.
 - (i) The rectangular measure.
 - (ii) The circular measure.

RECTANGULAR MEASURE.

- 43. Angles are always measured in practice with the right angle (or part of the right angle) as unit.
- 44. The reasons why the right angle is chosen for a unit are:
 - (i) All right angles are equal to one another.
 - (ii) A right angle is practically easy to draw.
 - (iii) It is an angle whose size is very familiar.
- 45. The right angle is a large angle, and it is therefore subdivided for practical purposes.

It is usual to explain two methods of subdivision.

- (i) The sexagesimal method.
- (ii) The centesimal, or decimal, method *.

^{*} See Art. 55.

I. The Sexagesimal Method.

46. In this method the right angle is divided into 90 equal parts, each of which is called a degree; each degree is subdivided into 60 equal parts, each of which is called a minute; and each minute is again subdivided into 60 equal parts, each of which is called a second.

Instruments used for measuring angles are subdivided accordingly; and the size of an angle is known when, with such an instrument, it has been observed that the angle contains a certain number of degrees, and a certain number of minutes beyond the number of complete degrees, and a certain number of seconds beyond the number of complete minutes.

Thus an angle might be recorded as containing 79 degrees + 18 minutes + 36.4 seconds.

Degrees, minutes, and seconds are indicated respectively by the symbols $^{\circ}$, ', '', and the above angle would be written $79^{\circ} \cdot 18' \cdot 36 \cdot 4''$.

* II. The Centesimal or Decimal Method.

47. The other method of subdivision is the Centesimal or Decimal. Here each right angle is divided into 100 equal parts each of which is called a grade; each grade is subdivided into 100 equal parts, each of which is called a minute; and each minute is again subdivided into 100 equal parts, each of which is called a second.

Instruments of observation would be subdivided accordingly, and any observed angle would be recorded as containing so many grades + so many minutes + so many seconds.

the

of the

Thangle.

Th Als

Ex.

*49. and seconds by the pied by are occur

*50. grades, of a rigi

Exam minutes,

Therefore

Grades, minutes and seconds are indicated respectively by the symbols 5, ', ". So that an angle of 26 grades + 19 minutes + 34.2 seconds would be written

36" 19' 34.2".

*48. It will be observed that this method is simply that of the decimal system of notation.

The above angle for example = $\frac{36}{100} + \frac{19}{10000} + \frac{34}{10000} \cdot \frac{2}{10000}$ of a right

That is 3619342 of a right angle.

This is equal to 36.19342 of a grade.

Also to 3619.342 of a minute.

Also to 361934.2 of a second.

Example. Express 302* 2' 4.6" as the decimal of a right angle.

This angle =
$$\frac{302}{100} + \frac{2}{10000} + \frac{4.6}{1000000}$$
 of a right angle
= 3.0202046 of a right angle.

- *49. Hence, to express an angle given in grades, minutes and seconds as the decimal of a right angle, we have only to observe that the first and second decimal places are occupied by the grades, the third and fourth decimal places are occupied by the minutes, and the fifth and sixth decimal places are occupied by the seconds.
- *50. The same observation will enable us to express in grades, minutes, and seconds an angle given as the decimal of a right angle.

Example. Express 3:4650023 of a right angle in grades, minutes, and seconds.

3 right angles=300 grades.
46 of a right angle=46 grades.
00,50 of a right angle=50 minutes.
00,00,02,3 of a right angle=2·3 seconds.

Therefore the angle is 346° 50° 2.3".

n number ees, and a complete sining 79

ed into 90

degree is

s called a

60 equal

ubdivided

hen, with

the angle

spectively se written

tesimal or 00 equal le is subcalled a 100 equal

d accords containeconds.

* EXAMPLES.

Express as the decimal of a right angle,

(1) 63* 21' 18".

- (7) 324 4 5.2
- . (2) 1048 26 99.1".
- (8) 1 2' 3.4"

(3) 2" 18' 27".

- (9)69# 0' 7:1".
- (4) 3" 29" 48.94".
- (10) 1194 3 0.45".

 \cdot (5) 62' 41".

- (11) 1006* 18' 1"
- (6) 1000¢ 8' 12".
- (12) 28 26' 4.8".

Express in grades, minutes and seconds,

- (13) 367891 of a right angle.
- (19) 1.001 of a right angle.
- (14) 1.043021 of a right angle. (20) .0101001 of a right angle.
- (15) '012003 of a right angle.
- (21) 6.451 of a right angle.
- (16) '00102 of a right angle.
- (22) '023 of a right angle.
- (17) .0625 of a right angle.
- (23) '00011 of a right angle.
- (18) 3.02125 of a right angle.
- (24) 00001 of a right angle.

51. An angle given in degrees, minutes, and seconds may be expressed as the decimal of a right angle by the usual method.

Example. Express 390 4' 27" as the decimal of a right angle.

60) 27 seconds

60) 4.45 minutes

90 \39.07416666 etc. degrees

·43415740740 etc. right angles

·43415740 of a right angle.

5 be ex verse

Ea minut

The recurri Thi

that is \mathbf{or}

*53. decima

The

He seconds the ang

minute

Exa

This and this

*.54. be expr pressing 52. An angle given as the decimal of a right angle may be expressed in degrees, minutes, and seconds by the converse of the above.

Example. Express 43415740 of a right angle in degrees, minutes, and seconds.

·43415740740 etc. right angles
90
39·07416666600 degrees

The last two figures would be 66 if we were to write down the recurring part to more figures.

This gives 39.07416666666 etc. degrees

60 4·4499999960 minutes 4·449 minutes 4·45 minutes 60 27·00 seconds.

The result is 390 4' 27".

that is

or

*53. We have seen that an angle expressed as the decimal of a right angle can be at once expressed in grades, minutes, and seconds.

Hence an angle expressed in degrees, minutes, and seconds, can be expressed in grades, etc. by first reducing the angle to the decimal of a right angle.

Example. Express 390 4' 27" in grades, minutes, and seconds.

This angle is $\cdot 43415740$ of a right angle, by Art. 51 and this $= 43^{8}41^{\circ}57\cdot407^{\circ}$.

*.54. An angle given in grades, minutes, and seconds can be expressed in degrees, minutes, and seconds by first expressing the angle as the decimal of a right angle.

angle.

tht angle.

angle.

ngle.

angle.

seconds he usual

h**t ang**le.

ht angle.

Example. Express '43* 41' 57'407" in degrees, minutes, and seconds.

This angle is '43415740 of a right angle, which is 39° 4′ 27" from Art. 52.

* EXAMPLES. VIII.

Express each of the following angles (i) as the decimal of a right angle, (ii) in grades, minutes, and seconds;

- (1) 80 15' 27".
- (4) 160 14' 19".
- (2) 60 4' 30".
- (5) 1320 6'.
- (3) 970 5' 15".
- (6) 490

Express in degrees, minutes and seconds,

- (7) 18 37' 50".
- (10) 248 0' 25".
- (8) 8s 75.
- (11) 18g 1' 15".
- (9) 170g 45' 35".
- (12) 358

right angle was proposed by the French at the commencement of the present century; but, although it possesses many advantages over the established method, no one has been found willing to undertake the great expense that would have to be incurred in rearranging all tables and all books of reference, and all the records of observations, which would have to be transferred from the old system to the new, before the advantages of the decimal system could be felt. Thus the decimal system of angular measurement has never been used even in France, and in all probability never will be used in practical work.

great

let an

ROS i

prove to on the then these a

59. circle the cir 60.

Sin arc equ

and stands ites, and

90 4' 27"

nal of a

ding a nencessesses ie has that

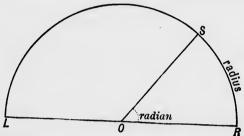
nd all which new,

felt. never r will

ON CIRCULAR MEASURE.

By the following construction we get an angle of great importance in Trigonometry.

On the circumference of a circle whose centre is O



let an arc RS be measured so that its length is equal to the radius of the circle, and let R and S be joined to the centre.

- We are about to prove (Art. 60) that this angle ROS is a fixed fraction of a right angle, so that all such angles are equal to one another.
- 58. We may state the same thing thus—We are about to prove that if we take any number of different circles, and measure on the circumference of each an arc equal in length to its radius, then the angles at the centres of these circles which stand on these arcs respectively, will be all of the same size.
- DEFINITION. The angle which at the centre of a circle stands on an arc equal in length to the radius of the circle is called a Radian.
 - To prove that all Radians are equal to one another. Since the Radian at the centre of a circle stands on an

are equal in length to the radius,

and an angle of two right angles at the centre of a circle stands on half the circumference,

and since angles at the centre of a circle are to one another as the arcs on which they stand (Euc. VI. 33),

therefore the radian is to an angle of two right angles as the radius is to half the circumference; that is, as the diameter is to the whole circumference; that is, in the constant ratio $1:\pi$.

Therefore the radian = $\frac{2 \text{ right angles}}{\pi}$

That is, the radian is a fixed fraction of a right angle. But all right angles are equal to one another. Therefore all radians are equal to one another. Q.E.D.

61. Thus the radian possesses the qualification most essential in a unit, viz. it is always the same.

The student will find, in the theoretical part of Trigonometry, that many expressions can be written more shortly when a radian is used for the unit of angle, than when any other unit is used.

- 62. Thus the reasons why a radian is used as a unit are:
 - (i) All radians are equal to one another.
 - (ii) Its use simplifies many formulæ in Theoretical Trigonometry.
- 63. The system of angular measurement in which a radian is the unit is called Circular Measure.

Therefore the circular measure of an angle is the number of radians which the angle contains.

64. A radian =
$$\frac{1}{\pi} \times 2$$
 right angles,
= $\frac{113}{866}$ of 130° nearly,
= $57.2957...$ degrees.

than than

retical is alm the Gr

St measu such a

letter s circula is expr

Sin radians

So

[No as A, B unit un so that A degree

66. some let

67. written ought to that 'the biguity i

L. E

to one 3),

ngles

ence;

ngle.

E.D. n most

Trigoshortly en any

it are :

retical

hich a

num-

The student should notice that a radian is a little less than an angle of an equilateral triangle.

65. Circular measure is, as we have said, used in *theoretical* investigations, in which the angle under consideration is almost always expressed by a *letter*. This is usually one of the *Greek* letters $a, \beta, \gamma, \dots, \phi, \theta, \psi, \dots$

Strictly speaking these letters represent numbers, i.e. measures; so that some unit of angle must be understood in such an expression as 'the angle θ .' (Art. 2.)

For this reason, when an angle is denoted by a *Greek* letter such as α , β , γ , etc., θ , ϕ , ψ , etc., it is understood that circular measure is the measure used, unless the contrary is expressly stated.

So that 'the angle θ ' means ' θ radians.'

Similarly 'the angle π ' means ' π radians' or '3·14159... radians,' that is two right angles.

[Note. It will also be convenient, in using such letters as A, B, C...S, T, etc. to represent angles, to agree that the unit understood with this kind of letter shall be a degree, so that when A stands for an angle, that angle contains A degrees.]

66. In numerical examples it will be necessary to use some letter (c suppose) to denote a radian.

Thus 2º denotes 'two radians.'

67. Strictly speaking then 'the angle θ ' should be written θ '. (Just as in speaking of 'the angle ninety,' we ought to say ninety degrees.) But if it is clearly understood that 'the angle θ ' means θ radians, there can be no ambiguity in the expression.

68. The student cannot too carefully notice, that unless an *angle* is obviously referred to, the letters θ , ϕ ,... a, β , ... stand for *mere numbers*.

Thus as we have said above (29) π stands for a number and a number only, viz. 3·14159....., but in the expression 'the angle π ' that is 'the angle 3·14159.....' there must be some unit understood. The unit understood here is a radian, and therefore 'the angle π ' stands for 3·14159......, that is two right angles.

Hence, when an angle is referred to, π is a very convenient abbreviation for two right angles.

1.

2.

* 3.

69. To express in degrees or grades an angle given in radians, we first express the angle in right angles, remembering that

2 right angles = π radians.

Example. How many degrees are there in the angle whose circular measure is 2?

This angle = 2 radians =
$$2 \times \frac{2 \text{ right angles}}{\pi} = \frac{4}{\pi} \text{ right angles},$$

= $\frac{4 \times 90^{\circ}}{\pi} = \frac{360^{\circ}}{\pi},$

 \therefore the angle contains $\frac{360}{\pi}$ degrees.

*70. If D, G and a be the number of degrees, grades and radians respectively in any angle, then

$$\frac{D}{180}=\frac{G}{200}=\frac{c}{\pi}.$$

For each fraction is the ratio of the angle to two right angles.

at unless . a, B, ..

number pression ere must ere is a 59......,

nvenient

given in remem-

le whose

angles,

, grades

vo right

Example. Find the number of degrees in two radians. Let D be the number, then

$$\frac{D}{180} = \frac{2}{\pi},$$

$$\therefore D = \frac{360}{\pi}.$$

EXAMPLES. IX.

- 1. Express the following angles in rectangular measure.
 - (1) π . (2) $\frac{3\pi}{4}$.

(6) $\frac{2^{c}}{2}$.

- (4) 3°. (5) 3·14159265° etc.

- (7) θ .
- (8) '00314159° etc.
- 2. Express the following angles in circular measure.
 - (1) 180%.
- (2) 3600.
- · (3) 60%.

- (4) $22\frac{10}{2}$.
- (5) 10.
- (6) 57·295° etc.

- (7) no.
- (8) $\frac{90^{\circ}}{7}$.
- .(9) A.
- Express the following angles in circular measure.
 - (1) 33^g 33' 33.3".
- (2) 50%.
- (3) 16.6%

(4) 1s.

- (5) r.
- (6) 10".

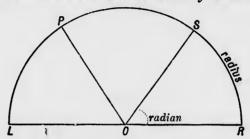
(7) ng.

- (8) $\frac{200^s}{\pi}$.
- (9) 1000s.

- Find the ratio of

- Find the ratio of
 (1) 45° to $\frac{3\pi}{4}$. (2) 60° to 60° . (3) 25° to 22° 30′. (4) 24° to 2° . (5) 1.75° to $\frac{100^{\circ}}{\pi}$. (6) 1° to 1° .

*71. To prove that the measure of an angle at the centre of a circle in radians (i.e. in Circular Measure) is the ratio of the arc on which it stands to the radius of the circle.



Since angles at the centre of a circle are to one another as the arcs on which they stand (Euc. VI. 33),

Therefore any angle ROP at the centre of a circle is to the radian as its arc RP is to the arc of the radian.

But the arc of the radian is equal to the radius,

Therefore
$$\frac{\text{any angle } ROP}{\text{the radian}}$$
 is equal to $\frac{\text{its arc } RP}{\text{the radius}}$.

And therefore any angle ROP is equal to $\frac{\text{its arc}}{\text{radius}} \times (\text{a radian})$.

That is, the measure a of an angle in radians is the ratio $\frac{\text{arc}}{\text{radius}}$; or, $a = \frac{\text{arc}}{\text{radius}}$.

Hence (cf. Art. 70)
$$\frac{D}{180} = \frac{G}{200} = \frac{a}{\pi} = \frac{\text{arc}}{\text{radius}} \times \frac{1}{\pi}$$
.

Example. Find the number of grades in the angle subtended by an arc 46 ft. 9 in. long, at the centre of a circle whose radius is 25 feet.

The angle stands on an arc of 46% ft. and the radian, at the centre of the same circle, stands on an arc of 25 feet.

∴ the angle =
$$\frac{46\frac{3}{2}}{25}$$
 radians, = $\frac{187}{100} \times \frac{2 \text{ right angles}}{\pi}$,
= $\frac{187}{100} \times \frac{200^{\circ}}{\pi}$,= 119° nearly.

(1) circle

(2) circle o

(3) tre of a

(4) centre (1 inch.

(5) at the c

> (6) 4 feet ra

(7) ten feet

(8) eye of a Sun if it

(9) radius at it turned

(10) mile radi has it tu e centre he ratio

another

circle is

he ratio

htended

e radius

n, at the

* EXAMPLES. X.

(In the answers $\frac{2}{3}$ is used for π .)

- (1) Find the number of radians in an angle at the centre of a circle of radius 25 feet, which stands on an arc of 371 feet.
- (2) Find the number of degrees in an angle at the centre of a circle of radius 10 feet, which stands on an arc of 5π feet.
- (3) Find the number of right angles in the angle at the centre of a circle of radius 3,2 inches, which stands on an arc of 2 feet.
- (4) Find the number of French minutes in the angle at the centre of a circle of radius 8 ft. 4 inches, which stands on an arc of 1 inch.
- (5) Find the length of the arc subtending an angle of $4\frac{1}{2}$ radians at the centre of a circle whose radius is 25 feet.
- (6) Find the length of an arc of eighty degrees on a circle of 4 4 feet radius.
- (7) Find the length of an arc of sixty grades on a circle of ten feet radius.
- (8) The angle subtended by the diameter of the Sun at the eye of an observer is 32'; find approximately the diameter of the Sun if its distance from the observer be 90,000,000 miles.
- (9) A railway train is travelling on a curve of half a mile radius at the rate of 20 miles an hour; through what angle has it turned in 10 seconds?
- (10) A railway train is travelling on a curve of two-thirds of a mile radius, at the rate of 60 miles an hour; through what angle 2 has it turned in a quarter of a minute?

urly.

- (11) Find approximately the number of English seconds contained in the angle which subtends an arc one mile in length at the centre of a circle whose radius is 4000 miles.
- (12) If the radius of a circle be 4000 miles, find the length of an arc which subtends an angle of 1" at the centre of the circle.
- (13) If in a circle whose radius is 12 ft. 6 in. an arc whose length is 6545 of a foot subtends an angle of 3 degrees, what is the ratio of the diameter of a circle to its circumference?
- (14) If an arc 1 309 feet long subtend an angle of 7½ degrees at the centre of a circle whose radius is 10 feet, find the ratio of the circumference of a circle to its diameter.
- (15) On a circle 80 feet in radius it was found that an angle of 22° 30′ at the centre was subtended by an arc 31 ft. 5 in. in length; hence calculate to four decimal places the numerical value of the ratio of the circum ference of a circle to its diameter.
- (16) If the diameter of the moon subtend an angle of 30', at the eye of an observer, and the diameter of the sun an angle of 32', and if the distance of the sun be 375 times the distance of the moon, find the ratio of the diameter of the sun to that of the moon.
- (17) Find the number of radians in (i.e. the circular measure of) 10" correct to 3 significant figures. (Use $\frac{355}{113}$ for π .)
- (18) Find the radius of a globe such that the distance measured upon its surface between two places in the same meridian, whose latitudes differ by 1° 10′, may be one inch.
- (19) Two circles touch the base of an isosceles triangle at its middle point, one having its centre at, and the other passing through the vertex. If the arc of the greater circle included within the triangle be equal to the arc of the lesser circle without the triangle, find the vertical angle of the triangle.
- (20) By the construction in Euc. I. 1, prove that the unit of circular measure is less than 60°

(2) 32' 36 distan

(22 circle

depen

Fir

* 72 system angle

Excand two

Let

The

ds conngth at

ngth of circle.

whose vhat is

legrees ratio of

angle in. in nerical meter.

30', at of 32', of the of the

easure

stance meri-

at its easing cluded rithout

mit of

(21) On the 31st December the Sun subtends an angle of 32' 36", and on 1st July an angle of 31' 32"; find the ratio of the distances of the Sun from the observer on those two days.

(22) Show that the measure of the angle at the centre of a circle of radius r, which stands on an arc a, is $\frac{k \cdot a}{r}$, where k depends solely on the unit of angle employed.

Find k when the unit is (i) a radian, (ii) a degree.

*72. Questions concerning angles expressed in different systems of measurement are easily solved by expressing each angle in right angles.

Example 1. The sum of the measure of an angle in degrees and twice its measure in radians is 23%, find its measure in degrees $(\pi = \frac{2}{7})$.

Let the angle contain x right angles.

Then the measure of the angle in degrees=90.r,

" " " " radiaus =
$$\frac{\pi}{2}x$$
.

$$\therefore 90x + 2 \cdot \frac{\pi}{2}x = 23\frac{2}{7}$$

$$\therefore 90x + \frac{22}{7}x = \frac{163}{7}$$

$$\therefore 652x = 163,$$

$$\therefore x=1.$$

The angle is 1 of a right angle, that is 2210, nearly.

Example 2. The three angles of a triangle are in arithmetical progression, and the measure of the least in grades is to that of the greatest in circular measure as $120:\pi$. Express each angle in degrees.

Let the angles contain x-y, x, x+y right angles respectively; they are then in A.P.

Their sum is 3x right angles; but since they are the angles of a triangle, their sum is 2 right angles;

$$\therefore 3x = 2,$$
$$\therefore x = \frac{2}{4}.$$

Again, the least angle contains $(x-y) \times 100$ grades, and the greatest angle contains $(x+y) \frac{\pi}{9}$ radians,

$$\therefore 100 (x-y) : \frac{\pi}{2} (x+y) = 120 : \pi.$$

$$\therefore 100 (x-y) = 60 (x+y),$$
or, $40x = 160y$,
or, $x = 4y$.
$$\therefore 4y = \frac{2}{3},$$
because $x = \frac{2}{3},$
or, $y = \frac{1}{6}$.
$$\therefore x - y = \frac{2}{3} - \frac{1}{6} = \frac{1}{2}, \quad x = \frac{2}{3}, \quad x + y = \frac{2}{3} + \frac{1}{6} = \frac{5}{6}.$$

Thus the angles contain $\frac{1}{2}$, $\frac{2}{3}$, and $\frac{5}{6}$ right angles respectively;

therefore the angles are 45°, 60°, 75°.

**EXAMPLES. XI.

(In the following examples the answers will be given in terms of π .)

- (1) The sum of the degrees and of the grades in a certain angle is 38; find its circular measure.
- (2) The difference of two angles is 20s, and their sum is 48°; find them.

meas the a

their the a

is 56

. (5

grassi

gressi of deg

gressi numb Find

gressi of rad grades

(10 grades (11

(12

numbe

radian

it will

metical that of h angle

ctively;

and the

respec-

terms

ertain

is 48°;

(3) One angle is double of a second, and the sum of their measures in degrees and in grades respectively is 140; express the angles in degrees.

(4) Two angles are in the ratio of 4:5, and the difference of their measures in grades and in degrees respectively is $2\frac{1}{2}$; find the angles in degrees.

. (5) The difference between two angles is $\frac{\pi}{9}$, and their sum is 56 degrees; find the angles.

(6) If the three angles of a triangle are in arithmetical progression, show that the mean angle is 60°.

(7) The three angles of a triangle are in arithmetical progression, and the number of grades in the least is to the number of degrees in the mean as 5:6. Find the angles in degrees.

(8) The three angles of a triangle are in arithmetical progression, and the number of grades in the greatest is to the number of degrees in the sum of the other two as 10:11. Find the angles in degrees.

(9) The three angles of a triangle are in arithmetical progression, and the number of grades in the least is to the number of radians in the greatest as $200:3\pi$. Express the angles in grades.

(10) If D be the number of degrees and G the number of grades in any angle, prove that $G - D = \frac{1}{2}D$.

(11) If M be the number of English minutes and m the number of French minutes in any angle, prove that

$$2M - m = \frac{4}{27}M$$
.

(12) If G, D and C be the number of grades, degrees and radians in any angle, prove that $G - D = \frac{20C}{\pi}$.

(13) If an angle be expressed in French minutes, show that it will be transferred to English minutes by multiplying by 54.

- (14) Divide 33° 6' into two parts so that the number of English seconds in one part may be equal to the number of French seconds in the other part.
 - (15) Find the ratio of 90 27' to 12" 50'.
- (16) Find the number of radians in an angle of n English minutes.
- (17) Express in each of the three systems of angular measurement the angles
 - (i) of a regular hexagon,
 - (ii) of a regular octagon,
 - (iii) of a regular quindecagon.
- (18) Show that the number of degrees in an angle of a regular decagon is to the number of grades in an angle of a regular pentagon in the ratio of 6:5.
- (19) Show that the number of grades in an angle of a regular pentagon is equal to the number of degrees in an angle of a regular hexagon.
- (20) Find in English minutes the difference between the angle of a regular polygon of 48 sides and two right angles.
- (21) If we take for unit the angle between a side of a regular quindecagon and the next side produced, find the measures (i) of a right angle, (ii) of a radian.
- (22) Find the unit when the sum of the measures of a degree and of a grade is 1.
- (23) What is the unit when the sum of the measures of 9° and of 5° is ${}_{20}^{3}$?
- (24) If the measure of b grades is a, find the measure of c degrees.
- (25) What is the unit when the sum of the measures of a grades and of b degrees is c?

numb radiar right

triang tively expres

when this m

grades find th

the less

Engench

glish

nea-

of a egu-

ular of a

the

of a the

gree

f 90

...

of

- (26) The number of grades in a certain angle exceeds the number of degrees in it by 10 of the number of degrees in a radian. If this angle be taken as unit, what is the measure of a right angle?
- (27) The three numbers which express the three angles of a triangle are all equal, and the units of angle in each are respectively a degree, a grade and the sum of a degree and a grade; express each of the angles in circular measure.
- (28) The three angles of a triangle have the same measure when expressed in degrees, grades and radians respectively; find this measure.
- (29) The measures of the angles of a triangle in degrees, grades and radians respectively are in the ratio of 1:10:100; find the number of radians in the smallest angle.
- (30) The interior angles of an irregular polygon are in A.P.; the least angle is 120°; and the common difference 5°: find the number of sides.

CHAPTER V.

THE TRIGONOMETRICAL RATIOS.

73. Let ROE be any angle (see the figure in Art. 83). In one of the lines containing the angle take any point P, and from P draw PM perpendicular to the other line OR.

Then, in the right-angled triangle OPM, formed from the angle ROE,

- (i) the side MP, which is opposite the angle under consideration, is called the **perpendicular**;
- (ii) the side OP, which is opposite the right angle, is called the hypotenuse;
- (iii) the third side OM, which is adjacent to the right angle and to the angle under consideration, is called the base.

From these three,—perpendicular, hypotenuse, base,—we can form three different sets containing two each.

The ratios or fractions formed from these sets, viz.

(i) perpendicular hypotenuse, (ii) base hypotenuse, (iii) perpendicular base,

and the ratios formed by inverting each of them, viz.

(iv) hypotenuse perpendicular, (v) hypotenuse base viii perpendicular,

will be found to be of great importance in treating of any angle *ROE*. Accordingly to each of these six ratios has been given a separate name (Art. 75).

(ii

74

(i)

uncha

(iii

F

Let Of OM an

the rat

apply to as in C

The following the exa

74. The student should observe carefully

In from

the

lera-

alled

ngle

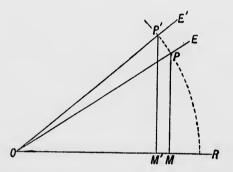
can

ıgle

n a

- (i) that each ratio, such as perpendicular hypotenuse, is a mere number;
- (ii) that, as we shall prove in Art. 83, these ratios remain unchanged as long as the angle remains unchanged;
- (iii) that if the angle be altered ever so slightly, there is a consequent alteration in the value of these ratios.

[For, let ROE, ROE' be two angles which are nearly equal;

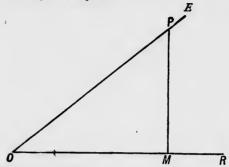


Let OP = OP'; then OM is not = OM', and therefore the ratios $\frac{OM}{OP}$ and $\frac{OM'}{OP'}$ are not equal; also MP is not = M'P' and therefore the ratios $\frac{MP}{OP}$ and $\frac{M'P'}{OP'}$ are not equal.]

(iv) that by giving names to these ratios we are enabled to apply the methods of Algebra to the Geometry of Euclid VI., just as in Chapter I. we applied the methods of Algebra to Euc. I. 47.

The student is recommended to pay careful attention to the following definitions. He should be able to write them out in the exact words in which they are printed.

75. DEFINITION. To define the three principal Trigonometrical Ratios of an angle.



Let ROE be an angle.

In OE one of the lines containing the angle take any point P, and from P draw PM perpendicular to the other line OR, or, if necessary, to RO produced.

Then, in the right-angled triangle *OPM*, the side *MP*, which is opposite the angle under consideration, is called the perpendicular.

The side OP, which is opposite the right angle, is called the hypotenuse.

The third side OM (which is adjacent to the right angle and to the angle under consideration) is called the base.

Then the ratio

(i) $\frac{MP}{OP} = \frac{\text{perpendicular}}{\text{hypotenuse}}$ is called the **sine** of the angle ROE.

(ii)
$$\frac{OM}{OP} = \frac{\text{base}}{\text{hypotenuse}}$$
 ,, cosine

(iii)
$$\frac{MP}{OM} = \frac{\text{perpendicular}}{\text{base}}$$
 , tangent

Note. The order of the letters, in MP, OM and OP, indicates direction and decides their algebraical signs. [Art. 132.]

abb

form which tive

mad

ratio They

8

igono-

76. If A stand for the angle ROE, these ratios are called sine A, cosine A and tangent A, and are usually abbreviated thus:

$$\sin A$$
, $\cos A$, $\tan A$.

- 77. There are three other Trigonometrical Ratios, formed by *inverting* the sine, cosine and tangent respectively, which are called the cosecant, secant, and cotangent respectively.
- 78. To define the three other Trigonometrical Ratios of any angle.

The same construction and figure as in Art. 75 being made, then the ratio

(iv)
$$\frac{OP}{MP} = \frac{\text{hypotenuse}}{\text{perpendicular}}$$
 is called the **cosecant** of the angle *ROE*.

$$(v) \quad \frac{OP}{OM} = \frac{\text{hypotenuse}}{\text{base}} \qquad \text{"secant"}$$

(vi)
$$\frac{OM}{MP} = \frac{\text{base}}{\text{perpendicular}}$$
 , cotangent ,,

79. Thus if A stand as before for the angle ROE, these ratios are called cosecant A, secant A, and cotangent A. They are abbreviated thus,

80. From the definition it is clear that

$$\operatorname{cosec} A = \frac{1}{\sin A},$$

$$\operatorname{sec} A = \frac{1}{\cos A}$$

$$\cot A = \frac{1}{\tan A}.$$

point line

MP, the

alled

ngle

OE.

cates

81. The above definitions apply to an angle of any magnitude. (We shall return to this subject in Chapter X.)

For the present the student may confine his attention to angles which are each less than a right angle.

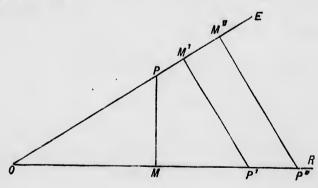
82. The powers of the Trigonometrical Ratios are expressed as follows:

$$(\sin A)^2$$
, i. e. $\left(\frac{\text{perpendicular}}{\text{hypotenuse}}\right)^2$, is written $\sin^2 A$,

$$(\cos A)^s$$
, i. e. $\left(\frac{\text{base}}{\text{hypotenuse}}\right)^s$, is written $\cos^s A$, and so on.

The student must notice that 'sin A' is a single symbol. It is the name of a number, or fraction, belonging to the angle A; and if it be at any time convenient, we may denote sin A by a single letter, such as s or x. Also $sin^2 A$ is an abbreviation for $(sin A)^2$, that is for $(sin A) \times (sin A)$. Such abbreviations are used because they are convenient.

83. The Trigonometrical Ratios are always the same for the same angle.



the lipoints

contai mon ;

> Th Th

Bu to the a

Thu the poin The

84.

85. numerica

same.

We these rat

Hence etc. have

Examp

L. E.

Take any angle ROE; let P be any point in OE one of the lines containing the angle, and let P', P'' be any two points in OR the other line containing the angle. Draw PM perpendicular to OR, and P'M', P''M'' perpendiculars to OE.

Then the three triangles OMP, OM'P', OM"P' each contain a right angle, and they have the angle at O common; therefore their third angles must be equal.

Thus the three triangles are equiangular.

any

r X.)

ntion

are

It is

and

oy a

n for used

for

Therefore the ratios $\frac{MP}{OP}$, $\frac{M'P'}{OP'}$, $\frac{M''P'}{OP''}$ are all equal. (Eu. VI. 4.)

But each of these ratios is perpendicular hypotenuse with reference to the angle at O; that is, they are each sin ROE.

Thus, sin ROE is the same whatever be the position of the point P on either of the lines containing the angle ROE.

Therefore sin ROE is always the same.

- 84. A similar proof holds good for each of the other ratios.
- 85. Also if two angles are equal, it is clear that the numerical values of their Trigonometrical Ratios will be the same.

We have already shown (Art. 74), that the values q' these ratios are different for different angles.

Hence for each particular value of A, sin A, cos A, tan A, etc. have definite numerical values.

Example. We shall prove (Art. 92) that $\sin 30^{0} = \frac{1}{2} = .5$, $\cos 30^{0} = \frac{\sqrt{3}}{2} = .8660...$, $\tan 30^{0} = \frac{1}{\sqrt{3}} = .577...$ L. E. T.

- 86. In the following examples the student should notice
 - (i) the angle referred to,
- (ii) that there is a right angle in the same triangle as the angle referred to,
- (iii) the *perpendicular*, which is opposite the angle referred to, and is perpendicular to one of the lines containing the angle,
 - (iv) the hypotenuse, which is opposite the right angle,
 - (v) the base, the third side of the triangle.

Example. In the second figure or the next page, in which BDA is a right angle, find $\sin DBA$ and $\cos DBA$.

In this case

- (i) DBA is the angle.
- (ii) BDA is a righ^{*} angle in the same triangle as the angle DBA.
- (iii) DA is the perpendicular, for it is opposite DBA and is perpendicular to BD.
- (iv) BA is the hypotenuse.
- (v) BD is the base.

Therefore $\sin DBA$, which is $\frac{\text{perpendicular}}{\text{hypotenuse}}$, $=\frac{DA}{BA}$,

 $\cos DBA$, which is $\frac{\text{base}}{\text{hypotenuse}}$, $=\frac{BD}{BA}$.

EXAMPLES. XII.

(1) Let ABC be any triangle and let AD be drawn perpendicular to BC. Write down the *perpendicular*, and the *base* when the following angles are referred to: (i) the angle ABD, (ii) the angle BAD, (iii) the angle ACD, (iv) the angle DAC.

(2) (i) sir

(v) tai

(ix) cos
(3)

angles; followir (iv) sin

right ang (iv) cos I tan DBA hould

gle as

angle atain-

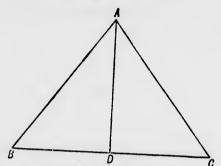
angle,

which

s the

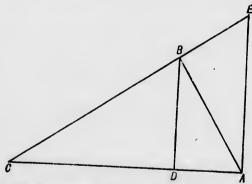
A and

rpenwhen i) the



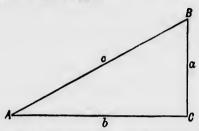
(2) Write down the following ratios in the above figure; (i) $\sin BAD$, (ii) $\cos ACD$, (iii) $\tan DAC$, (iv) $\sin ABD$, (v) $\tan BAD$, (vi) $\sin DAC$, (vii) $\cos DCA$, (viii) $\tan DCA$, (ix) $\cos ABD$, (x) $\sin ACD$.

(3) Let ACB be any angle and let ABC and BDC be right angles; (see next figure). Write down two values for each of the following ratios; (i) $\sin ACB$, (ii) $\cos ACB$, (iii) $\tan ACB$, (iv) $\sin BAC$, (v) $\cos BAC$, (vi) $\tan BAC$.



(4) In the accompanying figure BDC, CBA and EAC are right angles. Write down (i) $\sin DBA$, (ii) $\sin BEA$, (iii) $\sin CBD$, (iv) $\cos BAE$, (v) $\cos BAD$, (vi) $\cos CBD$, (vii) $\tan BCD$, (viii) $\tan DBA$, (ix) $\tan BEA$, (x) $\tan CBD$, (xi) $\sin DAB$, (xii) $\sin BAE$.

(5) Let ABC be a right-angled triangle such that AB=5 ft., BC=3 ft., then AC will be 4 ft.



Find the sine, cosine and tangent of the angles at A and B respectively.

In the above triangle if A stand for the angle at A and B for the angle at B, show that $\sin^2 A + \cos^2 A = 1$, and that $\sin^2 B + \cos^2 B = 1$.

(6) If ABC be any right-angled triangle with a right angle at C, and let A, B, and C stand for the angles at A, B and C respectively, and let a, b and c be the measures of the sides opposite the angles A, B and C respectively.

Show that $\sin A = \frac{a}{c}$, $\cos A = \frac{b}{c}$, $\tan A = \frac{a}{b}$

Show also that $\sin^2 A + \cos^2 A = 1$.

Show also that (i) $a=c \cdot \sin A$, (ii) $b=c \cdot \sin B$, (iii) $a=c \cdot \cos B$, (iv) $b=c \cdot \cos A$, (v) $\sin A=\cos B$, (vi) $\cos A=\sin B$, (vii) $\tan A=\cot B$.

- (7) The sides of a right-angled triangle are in the ratio 5:12:13. Find the sine, cosine and tangent of each acute angle of the triangle.
- (8) The sides of a right-angled triangle are in the ratio $1:2:\sqrt{3}$. Find the sine, cosine and tangent of each acute angle of the triangle.
- (9) Prove that if A be either of the angles of the above two triangles $\sin^2 A + \cos^2 A = 1$.

On

87 cal qui in nea

The between values

Th Mathe

a large publish does no emplify

Ratios 1 the pres

90. 45°.

If or the half Hence 4! =5 ft.,

CHAPTER VI.

ON THE TRIGONOMETRICAL RATIOS OF CERTAIN ANGLES.

87. The Trigonometrical Ratios of an angle are numerical quantities simply, as their name ratio implies. They are in nearly all cases incommensurable numbers.

Their practical value has been found for all angles between 0 and 90°, which differ by 1'; and a list of these values will be found in any volume of Mathematical Tables.

The student is recommended to get a copy of Chambers' Mathematical Tables for instruction and reference.

- 88. The finding the values of these Ratios has involved a large amount of labour; but, as the results have been published in Tables, the finding the Trigonometrical Ratios does not form any part of a student's work, except to exemplify the method employed.
- 89. The general method of finding Trigonometrical Ratios belongs to a more advanced part of the subject than the present, but there are certain angles whose Ratios can be found in a simple manner.
- 90. To find the sine, cosine and tangent of an angle of 45°.

If one angle of a right-angled triangle be 45°, that is, the half of a right angle, the third angle must also be 45°. Hence 45° is one angle of an isosceles right-angled triangle.

nd B

and that

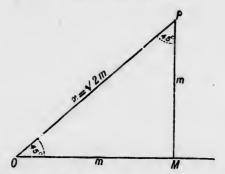
angle nd *C* oppo-

os B, an A

ratio cute

ratio ngle

two



Let POM be an isosceles triangle such that PMO is a right angle, and OM = MP. Then $POM = OPM = 45^{\circ}$.

Let the measures of OM and of MP each be m. Let the measure of OP be x.

Then
$$x^{i} = m^{i} + m^{i} = 2m^{i};$$
$$\therefore x = \sqrt{2}. m.$$

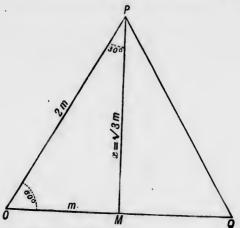
Hence,
$$\sin 45^{\circ} = \sin POM = \frac{MP}{OP} = \frac{m}{\sqrt{2 \cdot m}} = \frac{1}{\sqrt{2}}$$
,
 $\cos 45^{\circ} = \cos POM = \frac{OM}{OP} = \frac{m}{\sqrt{2 \cdot m}} = \frac{1}{\sqrt{2}}$,
 $\tan 45^{\circ} = \tan POM = \frac{MP}{OM} = \frac{m}{m} = \frac{1}{1} = 1$.

91. To find the sine, cosine and tangent of 60°.

In an equilateral triangle, each of the equal angles is 60°, because they are each one third of 180°. And if we draw a perpendicular from one of the angular points of the triangle to the opposite side, we get a right-angled triangle in which one angle is 60°.

Let OPQ be an equilateral triangle. Draw PM perpendicular to OQ. Then OQ is bisected in M.

Let the measure of OM be m; then that of OQ is 2m and therefore that of OP is 2m.



Let the measure of MP be a.

is a

Let

the

ngle

per-

2m

Then
$$x^2 = (2m)^2 - m^2 = 4m^2 - m^2 = 3m^2$$
, $x = \sqrt{3} \cdot m$,

Hence,
$$\sin 60^{\circ} = \sin POM = \frac{MP}{OP} = \frac{\sqrt{3 \cdot m}}{2m} = \frac{\sqrt{3}}{2}$$
,
 $\cos 60^{\circ} = \cos POM = \frac{OM}{OP} = \frac{m}{2m} = \frac{1}{2}$,
 $\tan 60^{\circ} = \tan POM = \frac{MP}{OM} = \frac{\sqrt{3 \cdot m}}{m} = \frac{\sqrt{3}}{1} = \sqrt{3}$.

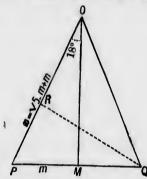
92. To find the sine, cosine and tangent of 30°.

With the same figure and construction as above, we have the angle $OPM = 30^{\circ}$, since it is a half of OPQ, i.e. of 60° .

Hence,
$$\sin 30^{\circ} = \sin OPM = \frac{MO}{PO} = \frac{m}{2m} = \frac{1}{2}$$
,
 $\cos 30^{\circ} = \cos OPM = \frac{PM}{PO} = \frac{\sqrt{3} \cdot m}{2m} = \frac{\sqrt{3}}{2}$,
 $\tan 30^{\circ} = \tan OPM = \frac{MO}{PM} = \frac{m}{\sqrt{3} \cdot m} = \frac{1}{\sqrt{3}}$.

**93. To find the sine of 18.

In the 10th Prop. of Euclid IV. a triangle is described such that each of the angles at the base is double of the third angle. [See also Example (6) p. 140.]



Let POQ be such a triangle, and let the vertical angle POQ contain n degrees; then

$$n+2n+2n=180,$$

$$n = 36.$$

Draw OM perpendicular to PQ, bisecting the angle POQ. Then since $QOP = 36^{\circ}$, $MOP = 18^{\circ}$. Also PM = MQ.

Let the measure of MP be m, and the measure of OP be α . From OP cut off OR = PQ. Then by Euclid IV. 10 $PO \cdot PR = PQ^{\bullet}$.

$$\therefore x(x-2m)=(2m)^2,$$

$$\therefore x^2 - 2mx + m^2 = 4m^2 + m^2 = 5m^2,$$

$$\therefore x-m=\sqrt{5}, m,$$

$$\therefore x = \sqrt{5} \cdot m + m,$$

$$\therefore \sin 18^{0} = \sin MOP = \frac{MP}{OP} = \frac{m}{\sqrt{5 \cdot m + m}} = \frac{1}{\sqrt{5 + 1}} = \frac{\sqrt{5 - 1}}{4}.$$

TR.

94

the T

as the

OR, an on a ci

Th

MP is is sin I ROP s

and the

able nu

proache This

Aga
OP in 1

value to

This is e

Also

proaches This 94. To find the sine, cosine and tangent of 0°.

ibed

the

igle

OQ.

OP 10 By this is meant,—To find the values, if any, to which the Trigonometrical Ratios of a very small angle approach, as the angle is continually diminished.

Let ROP be a small angle. Draw PM perpendicular to OR, and let OP be always of the same length, so that P lies on a circle whose centre is O.

Then if the angle ROP be diminished, we can see that MP is diminished also, and that consequently $\frac{MP}{OP}$, which is $\sin ROP$, is diminished. And, by diminishing the angle ROP sufficiently, we can make MP as small as we please, and therefore we can make $\sin ROP$ smaller than any assignable number however small that number may be.

Thus we see that the value to which $\sin ROP$ approaches as the angle is diminished, is 0.

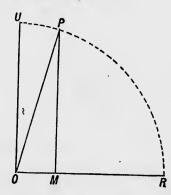
This is expressed by saying, $\sin 0^{\circ} = 0 \dots i$.

Again, as the angle ROP diminishes, OM approaches OP in length; and $\cos ROP$, which is $\frac{OM}{OP}$, approaches in value to $\frac{OP}{OP}$, i.e. to 1.

95. To find the sine, cosine and tangent of 90°.

By this is meant,—To find the values, if any, to which the Trigonometrical Ratios of an angle approach, as the angle approaches a right angle.

Let ROU be a right angle = 90°.



Draw ROP nearly a right angle; draw PM perpendicular to OR, and let OP be always of the same length, so that P lies on a circle whose centre is O.

Then, as the angle ROP approaches to ROU, we can see that MP approaches OP, while OM continually diminishes.

Hence when ROP approaches 90°, $\sin ROP$, which is $\frac{MP}{OP}$, approaches in value to $\frac{OP}{OP}$, that is to $\frac{1}{1}$, i.e. to 1.

Hence we say, that $\sin 90^{\circ} = 1$

Again, when ROP approaches 90°, $\cos ROP$, which is $\frac{OM}{OP}$, approaches in value to $\frac{O}{OP}$, that is to 0.

TR

appro

the sn fraction

He numbe

Th

96. Chapte

The angle, w

Also are resp cosines o Again, when ROP approaches 90°, $\tan ROP$ which is $\frac{MP}{OM}$ approaches in value to $\frac{OP}{\text{a quantity which approaches 0}}$.

hich ngle

en-

see es. !P P

is

But in any fraction whose numerator does not diminish, the smaller the denominator the greater is the value of that fraction; and if the denominator continually diminishes the value of the fraction continually increases.

Hence, tan ROP can be made larger than any assignable number by making the angle ROP approach 90° near enough.

This is what we mean when we say, that $\tan 90^{\circ}$ is infinity, or, $\tan 90^{\circ} = \infty$ iii.

96. The following table exhibits the results of this Chapter.

angle	00	180	300	450	600	900
sine	0	$\frac{\sqrt{5-1}}{4}$	$\frac{1}{\tilde{2}}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
cosine	1		$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	1 2	0
tangent	0		$\frac{1}{\sqrt{3}}$	1	√3	8

The student may notice that the sine increases with the angle, while the cosine diminishes as the angle increases.

Also that the squares of the sines of 0° , 30° , 45° , 60° and 90° are respectively 0, $\frac{1}{4}$, $\frac{2}{4}$, $\frac{3}{4}$ and $\frac{4}{4}$, and that the squares of the cosines of the same angles are $\frac{4}{4}$, $\frac{3}{4}$, $\frac{2}{4}$, $\frac{1}{4}$, and 0.

EXAMPLES. XIII.

If $A = 90^{\circ}$, $B = 60^{\circ}$, $C = 30^{\circ}$, $D = 45^{\circ}$, $E = 18^{\circ}$, prove the following :

- (1) 2. $\sin D \cdot \cos D = \sin A$. (2) 2. $\sin C \cdot \cos C = \sin B$.
- (3) $\cos^2 B \sin^2 B = 1 2 \sin^2 B$.
- (4) $\sin B \cdot \cos C + \sin C \cdot \cos B = \sin A$.
- (5) $\cos^2 D \sin^2 D = \cos A.$
- (6) $4 \cdot \sin^2 E + 2 \cdot \sin E = 1$.
- (7) $\sin^2 B + \cos^2 B = 1$.
- (8) $\cos^2 C + \sin^2 C = 1$.
- (9) $\cos^2 D + \sin^2 D = 1$.
- (10) $\sin B \cdot \cos C \sin C \cdot \cos B = \sin C$.
- (11) $2(\cos B \cdot \cos D + \sin B \cdot \sin D)^2 = 1 + \cos C$.
- (12) $2 (\sin D \cdot \cos C \sin C \cdot \cos D)^2 = 1 \cos C$.
- (13) $\sin 30^{\circ} = .5$.
- (14) $\sin 45^\circ = .7071...$
- (15) $\sin 60^\circ = .8660...$
- (16) $\tan 60^{\circ} = 1.7320508...$
- (17) tan 30° = 5773....
- (18) $\sin 18^{\circ} = 3090...$
- 97. The actual measurement of the *line* joining two points which are any considerable distance apart, is a very tedious and difficult operation, especially when great accuracy is required; while the accurate measurement of an angle can, with proper instruments, be made with comparative ease and quickness.
- 98. A Sextant is an instrument for measuring the angle between the two lines drawn from the observer's eye to each of two distant objects respectively.

A Theodolite is an instrument for measuring angles in a horizontal plane; also for measuring 'angles of elevation' and 'angles of depression.'

99. The angle made with the horizontal plane, by the line joining the observer's eye with a distant object, is called angles other line, t

[In Ordnar one of 10

the Tr cording ing lis constit find th any rec

Exa angle of Find th tower.

† In from a h (ii) its angle of depression, when the object is below the observer. +

100. Trigonometry enables us by measuring certain angles, to deduce, from one known distance, the lengths of other distances: or, by the measurement of a convenient line, to deduce by the measurement of angles the lengths of lines whose actual measurement is difficult or impossible.

ring:

B.

= 1.

ery

cu-

an

tra-

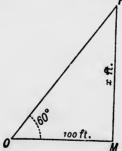
gle ach

na,

by ct. [In the Trigonometrical Survey of England, made by the Ordnance Department, the only distance actually measured was one of about seven miles on Salisbury Plain.]

101. For this purpose we require the numerical values of the Trigonometrical Ratios of the angles observed. Accordingly mathematical tables have been compiled, containing lists of the values of these Ratios. These Tables constitute a kind of numerical Dictionary, in which we can find the numerical value of the Trigonometrical Ratios of any required angle.

Example 1. At a point 100 feet from the foot of a tower the angle of elevation of the top of the tower is observed to be 60°. Find the height above the point of observation of the top of the tower.



† In measuring the angle of depression the telescope is turned from a horizontal position downwards. See Ex. (3) p. 63.

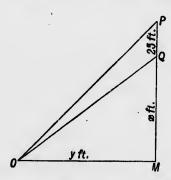
Let O be the point of observation; let P be the top of the tower; let a horizontal line through O meet the foot of the tower at the point M. Then OM = 100 feet, and the angle $MOP = 60^{\circ}$. Let MP contain x feet.

Then
$$\frac{MP}{OM} = \tan MOP = \tan 60^{\circ} = \sqrt{3}$$

 $\therefore \frac{x}{100} = \sqrt{3}$
 $\therefore x = 100 \cdot \sqrt{3} = 100 \times 1.7320 \text{ etc.}$
 $= 173.2.$

Therefore the required height is 173.2 feet.

Example 2. A'flagstaff, 25 feet high, stands on the top of a cliff, and from a point on the seashore the angles of elevation of the highest and lowest points of the flagstaff are observed to be 47° 12′ and 45° 13′ respectively. Find the height of the cliff.



Let O be the point of observation, PG the flagstaff.

Let a horizontal line through O meet the vertical line PQ produced in M.

Then
$$QP = 25$$
 feet, $MOP = 47^{\circ} 12'$, $MOQ = 45^{\circ} 13'$.
Let $MQ = x$ feet; let $OM = y$ feet.

Th

and

Hence,

In

Therefo

The

a colum observed

(2) a tower, to be 60°

of a point served to

pression of how far is

the wer 60°.

of be and

 $\frac{MP}{OM}$ = tan 47° 12′, $\therefore \frac{x+25}{y}$ = tan 47° 12′,

 $\frac{MQ}{OM} = \tan 45^{\circ} 13', \quad \therefore \quad \frac{x}{y} = \tan 45^{\circ} 13'.$

Hence, by division

 $\therefore \frac{x+25}{x} = \frac{\tan 47^0 \ 12'}{\tan 45^0 \ 13'}.$

In the Tables we find that

tan 47° 12'=1.0799018, and tan 45° 13'=1.0075918,

$$\therefore 1 + \frac{25}{x} = \frac{1.0799018}{1.0075918} = 1 + \frac{.0723100}{1.0075918},$$

$$\therefore \frac{x}{25} = \frac{1.0075918}{.0723100} = \frac{100759}{7231}.$$

$$\therefore x = \frac{2518975}{7231} = 348 \text{ nearly.}$$

Therefore the cliff is 348 feet high.

EXAMPLES. XIV.

The answers are given correct to three significant figures.

- (1) At a point 179 feet in a horizontal line from the foot of a column, the angle of elevation of the top of the column is observed to be 45°. What is the height of the column?
- (2) At a point 200 feet from, and on a level with the base of a tower, the angle of elevation of the top of the tower is observed to be 60°: what is the height of the tower?
- (3) From the top of a vertical cliff, the angle of depression of a point on the shore 150 feet from the base of the cliff, is observed to be 30°: find the height of the cliff.
- (4) From the top of a tower 117 feet high the angle of depression of the top of a house 37 feet high is observed to be 30°: how far is the top of the house from the tower?

- (5) A man 6 ft. high stands at a distance of 4 ft. 9 in. from a lamp-post, and it is observed that his shadow is 19 ft. long. Find the height of the lamp.
- (6) The shadow of a tower in the sunlight is observed to be 100 ft, long, and at the same time the shadow of a lamp-post 9 ft, high is observed to be 3 \sqrt{3} ft. long. Find the angle of elevation of the sun, and the height of the tower.
- (7) From a point P on the bank of a river, just opposite a post Q on the other bank, a man walks at right angles to PQ to a point R so that PR is 100 yards; he then observes the angle PRQ to be 32° 17': find the breadth of the river.

tan 32º 17'='6317667.

- (8) A flagstaff 25 feet high stands on the top of a house; from a point on the plain on which the house stands the angles of elevation of the top and bottom of the flagstaff are observed to be 60° and 45° respectively: find the height of the house above the point of observation.
- (9) From the top of a cliff 100 feet high, the angles of depression of two ships at sea are observed to be 45° and 30° respectively; if the line joining the ships points directly to the foot of the cliff, find the distance between the ships.
- (10) A tower 100 feet high stands on the top of a cliff; from a point on the sand at the foot of the cliff the angles of elevation of the top and bottom of the tower are observed to be 75° and 60° respectively; find the height of the cliff. (Tan $75^{\circ} = 2 + \sqrt{3}$).
- (11) A man walking along a straight road observes at one milestone a house in a direction making an angle 30° with the road, and that at the next milestone the angle is 60°: how far is the house from the road?
- (12) A man stands at a point A on the mank AB of a straight river and characters that the line joining a to a post C on the opposite bank makes with AB an angle of 30°. He then goes 400 yards along the bank to B and finds that BC makes with BA an angle of 60°; find the breadth of the river.

**(1: AB and ing at line, firewalked an ang

top an are obs

the alt be resp determ

south of former the ball

in a vertriangle tangent

(18)
length of lower ex in the sation to the before.

(19) quence o 60°? (Ea

L, E

**(13) A building on a square base ABCD has two of its sides, AB and CD, parallel to the bank of a river. An observer, standing at E on the other side of the river so that DAE is a straight line, finds that AB subtends at his eye an angle of 45° . Having walked a yards parallel to the bank, he finds that DE subtends an angle whose tangent is $\sqrt{2}$. Show that DB = a yards.

(14) From the top of a hill the angles of depression of the top and bottom of a flagstaff 25 feet high at the foot of the hill are observed to be 45° 13' and 47° 12' respectively; find the height of the hill.

 $\tan 45^{\circ} 13' = 1.0075918$, $\tan 47^{\circ} 12' = 1.0799018$.

(15) From each of two stations, East and West of each other, the altitude of a balloon is observed to be 45°, and its bearings to be respectively N.W. and N.E.: if the stations be 1 mile apart, determine the height of the balloon.

(16) The angle of elevation of a balloon from a station due south of it is 60°; and from another station due west of the former and distant a mile from it it is 45°. Find the height of the balloon.

(17) An isosceles triangle of wood is placed on the ground in a vertical position facing the sun. If 2a be the base of the triangle, b its height, and 30° the altitude of the sun, find the tangent of half the angle at the apex of the shadow.

(18) The length of the shadow of a vertical stick is to the length of the stick as $\sqrt{3}$: 1. If the stick be turned about its lower extremity in a vertical plane, so that the shadow is always in the same direction, find what will be the angle of its inclination to the horizon when the length of the shadow is the same as before.

(19) What distance in space is travelled in an hour in consequence of the earth's rotation, by a person situated in latitude 60°? (Earth's radius = 4000 miles.)

from

long.

to be

9 ft.

ation

ite a

'Q to ingle

use:

igles rved

oove

res-

ely;

:liff,

rom

tion

and

/3).

one

the

r is

ght the

008

BA

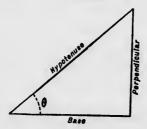
CHAPTER VII.

ON THE RELATIONS BETWEEN THE TRIGONOMETRICAL RATIOS OF THE SAME ANGLE.

THE following relations are evident from the definitions:

$$\csc \theta = \frac{1}{\sin \theta}, \quad \sec \theta = \frac{1}{\cos \theta}, \quad \cot \theta = \frac{1}{\tan \theta}.$$

103. To prove $\tan \theta = \frac{\sin \theta}{\cos \theta}$.



We have
$$\sin \theta = \frac{\text{perpendicular}}{\text{hypotenuse}}$$

and
$$\cos \theta = \frac{\text{base}}{\text{hypotenuse}};$$

$$\therefore \frac{\sin \theta}{\cos \theta} = \frac{\text{perpendicular}}{\text{base}} = \tan \theta.$$

104. We may prove similarly oot
$$\theta = \frac{\cos \theta}{\sin \theta}$$
.

Or thus,
$$\cot \theta = \frac{1}{\tan \theta} = \frac{\cos \theta}{\sin \theta}$$
.

tria

sque

TI

that

that is

that is

* 106

are each

*105. Euclid I. 47 gives us that in any right-angled triangle the square on the hypotenuse = the sum of the squares on the perpendicular and on the base,

(i) Divide each side of this identity by (hypotenuse)², and we get

$$\left(\frac{\text{hypotenuse}}{\text{hypotenuse}}\right)^{s} = \left(\frac{\text{perpendicular}}{\text{hypotenuse}}\right)^{s} + \left(\frac{\text{base}}{\text{hypotenuse}}\right)^{s},$$
that is,
$$1 = \sin^{s} \theta + \cos^{s} \theta.$$

(ii) Divide each side of the same identity by (base)⁸, and we get

$$\left(\frac{\text{hypotenuse}}{\text{base}}\right)^2 = \left(\frac{\text{perpendicular}}{\text{base}}\right)^2 + \left(\frac{\text{base}}{\text{base}}\right)^2$$

that is,

L

the

$$\sec^2\theta = \tan^2 + 1.$$

(iii) Divide each side of the same identity by (perpendicular), and we get

$$\left(\frac{\text{hypotenuse}}{\text{perpendicular}}\right)^{2} = \left(\frac{\text{perpendicular}}{\text{perpendicular}}\right)^{2} + \left(\frac{\text{base}}{\text{perpendicular}}\right)^{2},$$
that is,
$$\csc^{2}\theta = \cot^{2}\theta + 1.$$

* 106. Thus the three results

(i)
$$\cos^2 \theta + \sin^2 \theta = 1$$

(ii) $1 + \tan^2 \theta = \sec^2 \theta$

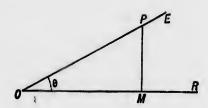
(iii) $1 + \cot^2 \theta = \csc^2 \theta$

are each a statement in Trigonometrical language of Euc. I. 47.

107. We give the above proof in a different form.

To prove that $\cos^{9}\theta + \sin^{9}\theta = 1$.

Let ROE be any angle ?



In OE take any point P, and draw PM perpendicular to OR. Then with respect to θ , MP is the perpendicular, OP is the hypotenuse, and OM is the base;

$$\therefore \sin^2 \theta = \frac{MP^2}{OP^2}, \quad \cos^2 \theta = \frac{OM^2}{OP^2}$$

We have to prove that $\sin^2 \theta + \cos^2 \theta = 1$.

Now

$$\cos^{2}\theta + \sin^{2}\theta = \frac{MP^{2}}{OP^{3}} + \frac{OM^{2}}{OP^{3}}$$
$$= \frac{MP^{2} + OM^{2}}{OP^{2}} = \frac{OP^{3}}{OP^{3}} = 1,$$

since by Euclid I. 4., $MP^2 + OM^2 = OP^2$,

Therefore $\cos^2\theta + \sin^2\theta = 1$.

Similarly we may prove that

$$1 + \tan^2 \theta = \sec^2 \theta,$$

and that

$$1 + \cot^2 \theta = \csc^2 \theta.$$

the

T

10

terms

Ex

Sin

we have

or that

and this

108. The following is a LIST OF FORMULÆ with which the student must make himself familiar:

$$\cos \theta = \frac{1}{\sin \theta},$$

$$\sec \theta = \frac{1}{\cos \theta},$$

$$\cot \theta = \frac{1}{\tan \theta},$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta},$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta},$$

$$\sin^2 \theta + \cos^2 \theta = 1,$$

$$\tan^2 \theta + 1 = \sec^2 \theta,$$

$$\cot^2 \theta + 1 = \csc^2 \theta.$$

109. In proving Trigonometrical identities it is often convenient to express the other Trigonometrical Ratios in terms of the sine and cosine.

Example. Prove that tan A + cot A = sec A. Cosec A.

Since
$$\tan A = \frac{\sin A}{\cos A}$$
, $\cot A = \frac{\cos A}{\sin A}$,
 $\sec A = \frac{1}{\cos A}$ and $\csc A = \frac{1}{\sin A}$,

we have to prove that

$$\frac{\sin A}{\cos A} + \frac{\cos A}{\sin A} = \frac{1}{\cos A} \cdot \frac{1}{\sin A},$$

or that

ular

llar.

$$\frac{\sin^2 A + \cos^2 A}{\cos A \cdot \sin A} = \frac{1}{\cos A \cdot \sin A}$$

and this is true, because $\sin^2 A + \cos^2 A = 1$.

110. Sometimes it is more convenient to express all the other Trigonometrical Ratios in terms of the sine only, or in terms of the cosine only.

Example (i). Prove that

 $\sin^4\theta + 2\sin^2\theta\cos^2\theta = 1 - \cos^4\theta.$

Here the right-hand expression does not contain $\sin \theta$; hence for $\sin^2 \theta$ in the left-hand expression we substitute $(1-\cos^2 \theta)$; thus

$$\sin^{4}\theta + 2\sin^{2}\theta\cos^{2}\theta = (\sin^{2}\theta)^{2} + 2(\sin^{2}\theta)\cos^{2}\theta$$

$$= (1 - \cos^{2}\theta)^{2} + 2(1 - \cos^{2}\theta)\cos^{2}\theta$$

$$= 1 - 2\cos^{2}\theta + \cos^{4}\theta + 2\cos^{2}\theta - 2\cos^{4}\theta$$

$$= 1 - \cos^{4}\theta. \quad Q.E.D.$$

Example (ii). Prove that

 $\sin^6\theta + \cos^6\theta = 1 - 3\cos^2\theta + 3\cos^4\theta.$

(1 • (1

(1

(2

_ (2

(2

(2:

(24

Here

$$\sin^{6}\theta + \cos^{6}\theta = (\sin^{2}\theta + \cos^{2}\theta) (\sin^{4}\theta - \sin^{2}\theta \cos^{2}\theta + \cos^{4}\theta)$$

$$= 1 \times (\sin^{4}\theta - \sin^{2}\theta \cos^{2}\theta + \cos^{4}\theta)$$

$$= (\sin^{2}\theta)^{2} - (\sin^{2}\theta) \cos^{2}\theta + \cos^{4}\theta$$

$$= (1 - \cos^{2}\theta)^{2} - (1 - \cos^{2}\theta) \cos^{2}\theta + \cos^{4}\theta$$

$$= 1 - 2\cos^{2}\theta + \cos^{4}\theta - \cos^{2}\theta + \cos^{4}\theta + \cos^{4}\theta$$

$$= 1 - 3\cos^{2}\theta + 3\cos^{4}\theta. \quad Q. E. D.$$

Note. $(1-\cos\theta)$ is called the versed sine of θ ; it is abbreviated thus versin θ .

ss all only,

nence (s²θ);

B

is

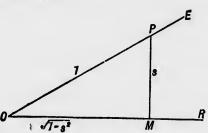
EXAMPLES. XV.

Prove the following statements.

- (1) $\cos A \cdot \tan A = \sin A$,
- (2) $\cot A \cdot \tan A = 1$.
- (3) $\cos A = \sin A \cdot \cot A$.
- (4) $\sec A \cdot \cot A = \csc A$.
- (5) cosec A. tan $A = \sec A$.
- (6) $(\tan A + \cot A) \sin A \cdot \cos A = 1$.
- (7) $(\tan A \cot A) \sin A \cdot \cos A = \sin^2 A \cos^2 A$.
- (8) $\cos^2 A \sin^2 A = 2\cos^2 A 1 = 1 2\sin^2 A$.
- (9) $(\sin A + \cos A)^2 = 1 + 2 \sin A \cdot \cos A$.
- (10) $(\sin A \cos A)^2 = 1 2 \sin A \cdot \cos A$.
- (11) $\cos^4 B \sin^4 B = 2\cos^2 B 1$.
- (12) $(\sin^2 B + \cos^2 B)^2 = 1$.
- (13) $(\sin^2 B \cos^2 B)^2 = 1 4\cos^2 B + 4\cos^4 B$.
- (14) $1 \tan^4 B = 2 \sec^2 B \sec^4 B$.
- (15) $(\sec B \tan B)(\sec B + \tan B) = 1$.
- (16) $(\csc \theta \cot \theta)(\csc \theta + \cot \theta) = 1$.
- (17) $\sin^3\theta + \cos^3\theta = (\sin\theta + \cos\theta) (1 \sin\theta\cos\theta)$.
- (18) $\cos^3 \theta \sin^3 \theta = (\cos \theta \sin \theta) (1 + \sin \theta \cos \theta)$.
 - (19) $\sin^6 \theta + \cos^6 \theta = 1 3\sin^2 \theta \cdot \cos^2 \theta$.
 - (20) $(\sin^6 \theta \cos^6 \theta) = (2 \sin^2 \theta 1) (1 \sin^2 \theta + \sin^4 \theta).$
- (21) $\frac{\tan A + \tan B}{\cot A + \cot B} = \tan A \cdot \tan B.$
 - (22) $\frac{\cot \alpha + \tan \beta}{\tan \alpha + \cot \beta} = \cot \alpha \cdot \tan \beta.$
- (23) $\frac{1-\sin A}{1+\sin A} = (\sec A \tan A)^2$.
- (24) $\frac{1 + \cos A}{1 \cos A} = (\csc A + \cot A)^2$.
- (25) $2 \operatorname{versin} \theta \operatorname{versin}^2 \theta = \sin^2 \theta$
- (26) versin θ (1 + cos θ) = sin² θ .

All the Trigonometrical Ratios of an angle can be expressed in terms of any one of them.

Example 1. To express all the trigonometrical ratios of an angle in terms of the sine



Let ROE be any angle A.

We can take P anywhere in the line OE; so that we can make one of the lines, OP, OM, or MP any length we please.

Let us take OP so that its measure is 1, and let s be the measure of MP; so that $\sin A$, which is $\frac{MP}{OP}$, $=\frac{s}{1}$; or, $s=\sin A$.

Let x be the measure of OM.

Then since
$$OM^2 = OP^2 - MP^2,$$

$$\therefore x^2 = 1 - s^2,$$

$$\therefore x = \sqrt{1 - s^2}$$

Hence
$$\cos A = \frac{OM}{OP} = \frac{1}{\sqrt{1-s^2}} = \frac{\sin A}{\sqrt{1-\sin^2 A}},$$

$$\tan A = \frac{MP}{OM} = \frac{s}{\sqrt{1-s^2}} = \frac{\sin A}{\sqrt{1-\sin^2 A}},$$

and so on.

NOTE. The solution of the equation $x^2=1-s^2$, gives $x = \pm \sqrt{1 - s^2}$

and therefore the ambiguity (±) must stand before each of the root symbols in the above. This ambiguity, as will be explained later on, is of great use when the magnitude of the angle is not limited. When we limit A to be less than a right angle we have no use for the negative sign.

TR

of an

In Tal

measur

The

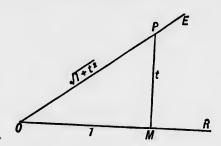
Her

and so

112 formula

Exan

Again and so on Example 2. To express all the other trigonometrical ratios of an angle in terms of the tangent.



In this case $\tan \theta = \frac{MP}{OM}$.

Take P so that the measure of OM is 1, and let t be the measure of MP; so that $\tan \theta$, which is $\frac{MP}{OM}$, $=\frac{t}{1}$; or, $t=\tan \theta$.

Then we can show that the measure of OP is $\sqrt{1+t^2}$.

Hence,
$$\sin \theta = \frac{MP}{OP} = \frac{t}{\sqrt{1+t^2}} = \frac{\tan \theta}{\sqrt{1+\tan^2 \theta}}.$$
$$\cos \theta = \frac{OM}{OP} = \frac{1}{\sqrt{1+t^2}} = \frac{1}{\sqrt{1+\tan^2 \theta}}.$$

and so on.

n be

f an

can

the

he

ot

ve

112. The same results may be obtained by the use of the formulæ on page 69.

Example
$$\cos^2 \theta + \sin^2 \theta = 1,$$

$$\therefore \cos^2 \theta = 1 - \sin^2 \theta,$$

$$\therefore \cos \theta = \sqrt{1 - \sin^2 \theta}.$$
Again
$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\sin \theta}{\sqrt{1 - \sin^2 \theta}},$$
and so on.

EXAMPLES. XVI.

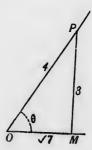
- (1) Express all the other Trigonometrical Ratios of A in terms of $\cos A$.
- (2) Express all the other Trigonometrical Ratios of A in terms of $\cot A$.
- (3) Express all the other Trigonometrical Ratios of A in terms of $\sec A$.
- (4) Express all the other Trigonometrical Ratios of A in terms of cosec A.
- (5) Use the formulæ of page 69 to express all the other Trigonometrical Ratios of A in terms of sin A.
- (6) Use the formulæ of page 69 to express all the other Trigonometrical Ratios of A in terms of the tan A.
- 113. Given one of the Trigonometrical Ratios of an angle less than a right angle, we can find all the others.

Since all the Trigonometrical Ratios of an angle can be expressed in terms of any one of them, it is clear that if the numerical value of any one of them be given, the numerical value of all the rest can be found.

Example. Given $\sin \theta = \frac{3}{4}$, find the other Trigonometrical Ratios of θ .

Let ROE be the angle θ .

Take P on OE so that the measure of OP is 4. Draw PM perpendicular to OR.



TR

T

of OF

Le

Theref

Hei

(1)

(2) (3)

(4)

(5)

(6)

(7) G

(8)

(9) Gi

(10) I

(11) If h and k.

TRIGONOMETRICAL RATIOS OF THE SAME ANGLE.

Then since $\sin \theta = \frac{3}{4} \left(\text{so that } \frac{MP}{OP} = \frac{3}{4} \right)$, and since the measure of OP is 4, therefore the measure of MP must be 3.

Let x be the measure of OM;

i in

lin

in

in

her

her

an

be he

cal

cal

M

$$OM^2 = OP^2 - MP^2$$

$$\therefore x^2 = 4^2 - 3^2 = 16 - 9 = 7.$$

$$x=\sqrt{7}$$
.

Therefore the measure of OM is $\sqrt{7}$.

Hence,
$$\cos \theta = \frac{OM}{OP} = \frac{\sqrt{7}}{4},$$

$$\tan \theta = \frac{MP}{OM} = \frac{3}{\sqrt{7}} = \frac{3\sqrt{7}}{7}.$$

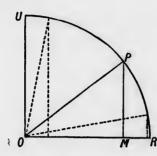
$$\cot \theta = \frac{\sqrt{7}}{3}.$$

EXAMPLES. XVII.

- Given that $\sin A = \frac{3}{6}$, find $\tan A$ and cosec A.
- Given that $\cos B = \frac{1}{3}$, find $\sin B$ and $\cot B$.
 - Given that $\tan A = \frac{4}{5}$, find $\sin A$ and $\sec A$.
 - Given that $\sec \theta = 4$, find $\cot \theta$ and $\sin \theta$.
- Given that $\tan \theta = \sqrt{3}$, find $\sin \theta$ and $\cos \theta$.
- Given that $\cot \theta = \frac{2}{\sqrt{5}}$, find $\sin \theta$ and $\sec \theta$.
- Given that $\sin \theta = \frac{b}{c}$, find $\tan \theta$.
- Given that $\tan \theta = \frac{a}{b}$, find $\sin \theta$ and $\cos \theta$.
- Given that $\cos \theta = \frac{1}{a}$, find $\sin \theta$ and $\cot \theta$.
- If $\sin \theta = a$, and $\tan \theta = b$, prove that $(1 a^2)(1 + b^2) = 1$.
- If $\cos \theta = h$, and $\tan \theta = k$, find the equation connecting h and k.

114. The following propositions are important.

PROP. I. To trace the changes in the magnitude of sin A as A increases from 0° to 90°.



Take a line OR, of any length; and describe the quadrant RPU of the circle whose centre is O and radius OR.

Draw the right angle ROU, cutting the circle in U.

Let OP make any angle ROP (=A) with OR; draw PM perpendicular to OR.

Then
$$\sin A = \frac{MP}{OP}$$
.

When the angle A is 0° , MP is zero, and when A is 90° , MP is equal to OP; and as A continuously increases from 0° to 90° , MP increases continuously from zero to OP; also OP is always equal to OR.

Therefore, when $A=0^{\circ}$, the fraction $\frac{MP}{OP}$ is equal to $\frac{0}{OP}$, that is 0; when $A=90^{\circ}$ the fraction $\frac{MP}{OP}$ is equal to $\frac{OP}{OP}$, that is 1; and as A continuously increases from 0° to 90° , the numerator of the fraction $\frac{MP}{OP}$ continuously increases from zero to OP, while the denominator is unchanged, and therefore the fraction $\frac{MP}{OP}$, which is $\sin A$, increases continuously from 0 to 1.

PR

Whequal to 900, Mi

OM is OM con

Hen

Who

0; when finity' (s 90°, the while the so that t

from 0 u

(1) 8

cos A con
(2) 7

from 0 to

(3) Tishes from (4) T

(4) T

TRIGONOMETRICAL RATIOS OF THE SAME ANGLE. 77

PROP. II. To trace the changes in the magnitude of tan A as A increases from 0° to 90°.

as

ant

er-

IP 100.

ys

hat

1;

of

ıile

 $\frac{P}{P}$,

With the same construction and figure as in the last article, we have

$$\tan A = \frac{MP}{OM}.$$

When the angle A is 0° , MP is zero; when A is 90° , MP is equal to OP; and as the angle continuously increases from 0° to 90° , MP increases continuously from zero to OP.

When the angle A is 0°, OM is equal to OP; when A is 90°, OM is zero; and as A continuously increases from 0° to 90°, OM continuously decreases from OP to zero.

Hence, when A is 0°, the fraction $\frac{MP}{OM}$ is equal to $\frac{0}{OM}$, that is 0; when A is 90°, the fraction $\frac{MP}{OM}$ is equal to $\frac{OP}{0}$, that is 'infinity' (see art. 95); and as A continuously increases from 0° to 90°, the numerator continuously increases from zero to OP, while the denominator continuously diminishes from OP to zero; so that the fraction $\frac{MP}{OM}$, which is tan A, continuously increases from 0 until it is greater than any assignable numerical quantity.

EXAMPLES. XVIII.

- (1) Show that as A continuously increases from 0° to 90° , $\cos A$ continuously diminishes from 1 to 0.
- (2) Trace the changes in the magnitude of $\sec \theta$ as θ increases from $0 \Leftrightarrow \frac{\pi}{3}$.
- (3) Trace the changes in the magnitude of $\sin A$ as A diminishes from 90° to 0°.
- (4) Trace the changes in the magnitude of $\cot \theta$ as θ increases from 0 to $\frac{\pi}{2}$.

115. Since the hypotenuse is the greatest side in a right-angled triangle, it is clear

- (i) that sin A, which is perpendicular hypotenuse, is never greater than unity,
- (ii) that cos A, which is base hypotenuse , is never greater than unity,
- (iii) that cosec A, which is hypotenuse perpendicular, is never numerically less than unity (we shall see later on that it may be negative),
- (iv) that $\sec A$, which is $\frac{\text{hypotenuse}}{\text{base}}$, is never numerically less than unity (it may be negative).

Hence such a question as 'Find an angle whose sine is $\frac{4}{3}$ ' has no solution, since there is no angle whose sine is greater than unity.

And such a question as 'Find an angle whose secant is 3' has no solution, because there is no angle whose secant is numerically less than unity.

116. If A be small, the perpendicular is smaller than the base; and $\tan A$, which is $\frac{\text{perpendicular}}{\text{base}}$, can be made as small as we please (see figure in Art. 114). Also if the angle A be nearly a right angle, the perpendicular is greater than the base; and $\tan A$, which is $\frac{\text{perpendicular}}{\text{base}}$, can be made as large as we please.

TRI

if a b

[T tan x quanti

Exc

Dra
is unity
O and r

In measure

Draw student si than unity parallel to

Join O.
Then H

For sin

Therefo

So that an angle whose tangent is a can always be found if a be positive; that is, there is always an angle A between 0° and 90° , such that tan A = a, if a be a positive number.

[The student will find as he proceeds that the equation tan x = a can always be solved if a be any arithmetical quantity].

Example 1. To draw an angle A whose sine is 3.

zht-

ver

ver

ver

see

ne-:).

ine ine

nt

an

28

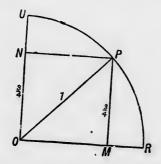
he

er

de

Draw any line OR, and take R such that the measure of OR is unity; describe the quadrant RPU of the circle whose centre is OR.

In OU which is perpendicular to OR, take ON so that the measure of ON is $\frac{3}{4}$.



Draw NP parallel to OR cutting the quadrant in P. (The student should observe that if the measure of ON were greater than unity, N would be outside the circle altogether, and the line parallel to OR would not cut the circle at all.)

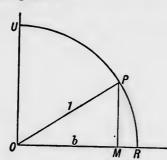
Join OP, and draw PM perpendicular to OR.

Then ROP is the angle required.

For
$$\sin \hat{R}OP = \frac{MP}{OP} = \frac{ON}{OP} = \frac{3}{4} \div 1 = \frac{3}{4}$$
.

Therefore an angle POR has been drawn whose sine is 3.

Example 2. To draw an angle whose cosine is b; where b is a proper fraction and positive.



Draw any line OR, and take OR so that its measure is unity. Describe the quadrant RPU of the circle whose centre is OR and radius OR.

Take M in OR so that the measure of OM is b. OM will be less than OR because b is a proper fraction.

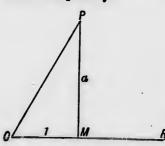
Draw MP perpendicular to OR cutting the quadrant in P. (The student will observe that if b were an *improper* fraction, M would be outside the circle altogether.)

Then the angle ROP is the angle required.

For
$$\cos ROP = \frac{OM}{OP} = \frac{b}{1} = b$$
.

Therefore an angle ROP has been described such that the $\cos ROP = b$.

Example 3. To draw an angle A such that $\tan A = a$, where a is any positive numerical quantity.



TRI

OM is

Dr measu angle

For

Th

11

of anotheright a

Exa Exa

Exa

118.
the cosin

[This proved la

If A

Draw

Then therefore

Now,

L. E.

Draw any line OR, and take M in it so that the measure of OM is unity.

Draw MP perpendicular to OM, and take P so that the measure of MP is a. Join OP. Then the angle ROP is the angle required.

For
$$\tan ROP = \frac{MP}{OM} = \frac{a}{1} = a$$
.

Thus an angle ROP has been drawn so that tan ROP = a.

117. Definition. One angle is called the complement of another, when the two angles added together make up a right angle.

Example 1. The complement of A is $(90^{\circ} - A)$.

Example 2. The complement of 190° is $(90^{\circ} - 190^{\circ}) = -100^{\circ}$. For $190^{\circ} + (90^{\circ} - 190^{\circ}) = 90^{\circ}$.

Example 3. The complement of $\frac{5\pi}{4}$ is $\left(\frac{\pi}{2} - \frac{5\pi}{4}\right) = -\frac{3\pi}{4}$.

118. To prove that the sine of an angle A is equal to the cosine of its complement $(90^{\circ} - A)$.

[This is true whatever be the magnitude of A, as will be proved later on.]

If A be less than 90°, let ROP be A (see last figure).

Draw PM perpendicular to OR.

Then since $PMO = 90^{\circ}$, therefore $POM + OPM = 90^{\circ}$ and therefore $OPM = (90^{\circ} - A)$.

Now,
$$\sin A = \frac{MP}{OP} = \cos OPM = \cos (90^{\circ} - A)$$
. Q.E.D.

y. 0

be

Р.

n,

he

re

EXAMPLES. XIX.

- (1) Draw an angle whose sine is 1.
- Draw an angle whose cosecant is 2.
- Draw an angle whose tangent is 2. (3)
- Can an angle be drawn whose tangent is 431? (4)
- Can an angle be drawn whose cosine is 4? (5)
- Can an angle be drawn whose secant is 5? (6)
- Find the complements of
 - (i) 30°. (ii) 190°. (iii) 90°. (iv) 350°. (v) -25° . (vi) -320° . (vii) $\frac{3\pi}{4}$. (viii) $-\frac{\pi}{6}$.
- (8) Prove that sin 700=cos 200.
- (9) Prove that cos 47° 16'=sin 42° 44'.
- (10) Prove that tan 790 = cot 110.
- (11) Prove that sec 360 = cosec 540.
- (12) If A be less than 90°, prove
 - (i) $\cos A = \sin (90^{\circ} A)$.
 - (ii) $\tan A = \cot (90^{\circ} A)$.
 - (iii) $\sec A = \csc (90^{\circ} A)$.
 - (iv) $\cot A = \tan (90^{\circ} A)$.

On the Solution of Trigonometrical Equations.

A TRIGONOMETRICAL equation is an equation in which there is a letter, such as θ , which stands for an angle of unknown magnitude.

The solution of the equation is the process of finding an angle which, if it be substituted for θ , satisfies the equation.

T

Ŀ

find a

N T

Th

 E_{i}

 $T_{\rm h}$

metric

Th

It will equation

or,

Whe But Thus

The whose si

But

There

Example 1. Solve $\cos \theta = \frac{1}{2}$.

This is a Trigonometrical equation. To solve it we must find some angle such that its cosine is $\frac{1}{2}$.

We know that $\cos 60^{\circ} = \frac{1}{2}$.

Therefore if 60° be put for the equation is satisfied.

 $\therefore \theta = 60^{\circ}$ is a solution of the equation.

Example 2. Solve $\sin \theta - \csc \theta + \frac{3}{2} = 0$.

The usual method of solution is to express all the Trigonometrical Ratios in terms of one of them.

Thus we put $\frac{1}{\sin \theta}$ for cosec θ , and we get

$$\sin\theta - \frac{1}{\sin\theta} + \frac{3}{2} = 0.$$

This is an equation in which θ , and therefore $\sin \theta$ is unknown. It will be convenient if we put x for $\sin \theta$, and then solve the equation for x as an ordinary algebraical equation. Thus we get

$$x - \frac{1}{x} + \frac{3}{2} = 0,$$

or,

$$x^2 + \frac{3x}{2} = 1$$
,

$$x^{2} + \frac{3x}{2} + \frac{9}{16} = 1 + \frac{9}{16} = \frac{25}{16}.$$

 $\therefore x + \frac{3}{4} = \pm \frac{5}{4}.$ x = -2, or $x = \frac{1}{9}$.

Whence

But x stands for $\sin \theta$.

Thus we get

$$\sin \theta = -2$$
, or $\sin \theta = \frac{1}{2}$.

The value -2 is inadmissible for $\sin \theta$, for there is no angle whose sine is numerically greater than 1 (Art. 115).

 $\therefore \sin \theta = \frac{1}{2}.$

But

in

le

ın

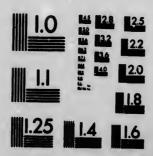
$$\sin 30^{\circ} = \frac{1}{2}$$
.

$$\therefore \sin \theta = \sin 30^{\circ}$$
.

Therefore one angle which satisfies this equation for θ is 30°.

WIO LIE LE LO LE L

IMAGE EVALUATION TEST TARGET (MT-3)



OTH STATE OF THE S

Photographic Sciences Corporation

23 WEST MAIN STREET WEESTER, N.Y. 14580 (716) 872-4503

OTHER RELEASED THE

Example 3. To solve the equation cosec $\theta - \cot^2 \theta + 1 = 0$.

We have

 $1 + \cot^2 \theta = \csc^2 \theta$.

[Art. 108]

 $\therefore \cot^2 \theta = \csc^2 \theta - 1.$

and we get

 $\csc\theta - \csc^2\theta + 2 = 0.$

Let x stand for cosec 0. Then

$$x-x^2+2=0.$$

$$\therefore x^2 - x = +2.$$

or

$$\therefore x^2 - x + \frac{1}{4} = + \frac{1}{4} + 2 = \frac{9}{4}.$$

Whence

$$x - \frac{1}{2} = \pm \frac{3}{2}$$
.
 $x = 2$, or $x = -1$.

$$\therefore$$
 cosec $\theta = 2$,

but

 \cdot : cosec θ = cosec 30°.

therefore 30° is one angle which satisfies the equation for θ .

EXAMPLES. XX.

Find one angle which satisfies each of the following equations.

 $\sin \theta = \frac{1}{\sqrt{9}}$.

 $(2) \quad 4 \sin \theta - \csc \theta.$

16 (3) 2 cos θ = sec θ.

 $\sqrt{6}(4)$ $4\sin\theta-3\csc\theta=0$.

 $(7) 3 \sin \theta - 2 \cos^2 \theta = 0$

 $(5) \quad 4\cos\theta - 3\sec\theta = 0. \quad \mathbf{3}(6) \quad 3\tan\theta = \cot\theta.$

• (8) $\sqrt{2}\sin\theta = \tan\theta$.

(9) $2\cos\theta = \sqrt{3}\cot\theta$.

 $\sqrt{0}(10)$ tan $\theta = 3 \cot \theta$.

(11) $\tan \theta + 3 \cot \theta = 4$.

 $\sqrt{12}$ tan $\theta + \cot \theta = 2$.

(13) $2\sin^2\theta + \sqrt{2}\cos\theta = 2$. (14) $4\sin^2\theta + 2\sin\theta = 1$.

(15) $3 \tan^2 \theta - 4 \sin^2 \theta = 1$. (16) $2 \sin^2 \theta + \sqrt{2} \sin \theta = 2$.

(17) $\cos^2 \theta - \sqrt{3} \cos \theta + \frac{3}{2} = 0$.

(18) $\cos^2 \theta + 2 \sin^2 \theta - \frac{1}{2} \sin \theta = 0$.

of a

and

valu alwa

sin2

108]

iona

* * MISCELLANEOUS EXAMPLES, XXI.

- (1) Prove that $3 \sin 60^{\circ} 4 \sin^3 60^{\circ} = 4 \cos^3 30^{\circ} 3 \cos 30^{\circ}$.
- (2) Prove that $\tan 30^{\circ} (1 + \cos 30^{\circ} + \cos 60^{\circ}) = \sin 30^{\circ} + \sin 60^{\circ}$.
- (3) If $2\cos^2\theta 7\cos\theta + 3 = 0$, show there is only one value of $\cos\theta$.
 - (4) Find $\cos \theta$ from the equation $8 \cos^2 \theta 8 \cos \theta + 1 = 0$.
- (5) Find $\sin \theta$ from the equation $8 \sin^2 \theta 10 \sin \theta + 3 = 0$, and prove that one value of θ is $\frac{\pi}{6}$.
 - (6) Find $\tan \theta$ from the equation $12 \tan^2 \theta 13 \tan \theta + 3 = 0$.
- (7) If $3\cos^2\theta + 2.\sqrt{3}.\cos\theta = 5\frac{1}{4}$, show that there is only one value of $\cos\theta$, and that one value of θ is $\frac{\pi}{2}$.
- (8) Prove that the value of $\sin^4\theta + \cos^4\theta + 2 \cdot \sin^2\theta \cdot \cos^2\theta$ is always the same.
 - (9) Simplify $\cos^4 A + 2 \cdot \sin^2 A \cdot \cos^2 A$.
- (10) Express $\sin^6 A + \cos^6 A$ in terms of $\sin^2 A$ and powers of $\sin^2 A$.
- > (11) Express 1 + tan⁴ θ in terms of $\cos \theta$ and its powers.
 - (12) Prove that $\frac{\cos A + \cos B}{\sin A \sin B} + \frac{\sin A + \sin B}{\cos A \cos B} = 0$
 - (13) Express (sec $A \tan A$)² in terms of sin A.
- (14) Trace the changes in the magnitude of cosec θ as θ increases from 0 to $\frac{\pi}{2}$.
- (15) Trace the changes in the magnitude of $\cot \theta$ as θ decreases from $\frac{\pi}{2}$ to 0.

(10) Solve
$$\sin(\theta+\phi)=\frac{\sqrt{3}}{2}, \cos(\theta-\phi)=\frac{\sqrt{3}}{2}$$
.

CHAPTER VIIL

On the Use of the Signs + and -.

120. The student is probably aware that, in the application of Algebra to Problems concerning distance, we sometimes find that the solution of an equation gives the measure of a distance with the sign — before it.

Example. Let M, N, O be places in a straight line; let the distance from M to N be 3 miles, and the distance from N to O, 3 miles.

M N O P

One man A starting from M, rides towards O at the rat 10 miles an hour, while another man B starting simultaneous from N, walks towards O at the rate of 4 miles an hour;

If Q be the point at which they meet, how far is Q beyond O?

Let P be any point beyond O, and let x be the number of miles in OP. We wish to find x, i.e. the measure of OP, so that P may coincide with Q, the point at which A overtakes B.

When A arrives at P, he has ridden 6+x miles. The time occupied at the rate of 10 miles an hour is $\frac{6+x}{10}$ hours.

When B arrives at P, he has walked 3+x miles. The time occupied at the rate of 4 miles an hour is $\frac{3+x}{4}$ hours.

equa

and

alter

it, m that prob

tion :

the 1

of mi

coinc

P

M

T) overt When P is the point at which they meet, these times are equal, so that

$$\frac{6+x}{10} = \frac{3+x}{4}$$
; whence $x = -1$.

Thus the required number of miles has the sign - before it; and we have failed to find a point beyond O at which A overtakes B.

121. Such a result can generally be interpreted by altering the statement of the problem, thus:

The line whose measure appears with the sign – before it, must be considered as drawn in the direction opposite to that in which it was drawn in the first statement of the problem.

Example. Taking the former example, let us alter the question as follows:

If Q be the point at which A overtakes B, how far is Q to the left of O?

Let P be any point to the left of O, and let x be the number of miles in OP.

We wish to find x (i.e. the measure of OP), so that P may coincide with Q, the point at which A overtakes B.

When A arrives at P, he has ridden 6-x miles.

When B arrives at P, he has walked 3-x miles.

Proceeding as before, we get

li-10-

re

he *0*,

7

of

at

$$\frac{6-x}{10} = \frac{3-x}{4}$$
; whence $x = +1$.

Therefore if P is to coincide with Q (the point at which A overtakes B), OP must be one mile to the left of O.

122. The consideration of such examples as the above has suggested, that the sign — may be made use of, in the application of Algebra to Geometry, to represent a direction exactly opposite to that represented by the sign +.

Accordingly the following Rule, or Convention, has been

made.

RULE. Any straight line AB being given, then lines drawn parallel to AB in one direction shall be positive; that is, shall be represented algebraically by their measures with the sign + before them:

lines drawn parallel to BA in the opposite direction shall be negative; that is, shall be represented algebraically by their measures with the sign – before them.

123. We may choose for the positive direction in each case that direction which is most convenient.

Example. Let LR be a straight line parallel to the printed lines in the page,

L- P P

and let lines drawn in the direction from L to R in the figure that is, from the left-hand towards the right, be considered positive. Then by the above rule, lines drawn in the direction from R to L, that is, from right to left, must be negative.

124. In naming a line by the letters at its extremities, we can indicate by the order of the letters, the direction in which the line is supposed to be drawn.

Example. Let O and P be two points in the line LR as in the figure, and let the measure of the distance between them be α .

Then OP, i.e. the line drawn from O to P, which is in the positive direction, is represented algebraically by +a.

While PO, i.e. the line drawn from P to O, which is in the negative direction, is represented algebraically by -a.

to alw

line

AB,

F

ב

(

is –

(i

In (1)

(3) (5)

(7)

* I

from A

125. Hence in using the two letters at its extremities to represent a line, the student will find it advantageous always to pay careful attention to the order of the letters.

Example. Let LR be a straight line parallel to the printed lines in the page.

Let A, B, C, D, E be points in LR, such that the measures of AB, BC, CD, DE, are 1, 2, 3, 4 respectively.

Find the algebraical representation of

(i) AC + CB

OVE

in

1+.

een

siea-

on lly

ch

ed

ed on

8,

n

n

n

(ii) AD + DC - BC.

Ö

(i) The algebraical representation of AC is +3, the algebraical representation of CB is -2. Hence that of AC+CB is +3-2; that is, +1*.

(ii) The algebraical representation of AD is +6, that of DC is -3, and that of BC is +2.

Therefore that of AD+DC-BC=6-3-2=+1.

This is equivalent to that of AB.

EXAMPLES. XXII.

In the above figure, find the algebraical representation of

- (1) AB + BC + CD.
- (2) AB+BC+CA.
- (3) BC + CD + DE + EC.
- (4) AD-CD.
- (5) AD+DB+BE.
- (6) BC-AC+AD-BD.
- (7) CD + DB + BE.
- (8) CD BD + BA + AC + CE.

^{*} By AC+CB (attention being paid to direction), we mean 'Go from A to C and from C to B.' The result is equivalent to starting from A and stopping at B, i.e. equivalent to AB.

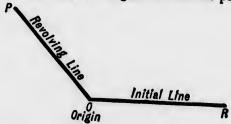
CHAPTER IX.

ON THE USE OF THE SIGNS + AND - IN TRIGONOMETRY.

126. In **Trigonometry** in order conveniently to treat of angles of any magnitude, we proceed as follows.

We take a fixed point O, called the origin; and a fixed straight line OR, called the initial line.

The angle of which we wish to treat is described by a line OP, called the **revolving line**. This line OP starts from the initial line OR, and turns about O through an angle ROP of any proposed magnitude into the position OP.



127. We have already said in Art. 41

- (i) that, when an angle ROP is described by OP turning about O in the direction contrary to that of the hands of a watch, the angle ROP is said to be positive; that is, is represented algebraically by its measure with the sign + before it.
- (ii) that, when an angle ROP is described by OP turning about O in the same direction as the hands of a watch, the angle is said to be negative; that is, is represented algebraically by its measure with the sign before it.

pos

the pan arthen

the p and angle

the a

of reg

Di has tu

(1) (5)

(9)

(12)

No right s

USE OF THE SIGNS + AND - IN TRIGONOMETRY. 91

Example. (1800 - A) indicates

RY.

reat

xed

y a

arts

an

P.

ng

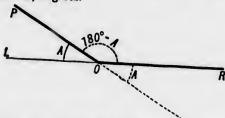
re-

it.

ng he

76-

(i) the angle described by OP turning about O from the position OR in the positive direction until it has described an angle of (180 - A) degrees.



Or, (ii) the angle described by OP turning about O, from the position OR, in the positive direction until it has described an angle of 180° (when it has turned into the position OL), and then turning back from OL in the negative direction through the angle -A into the position OP.

Or, (iii) the angle described by OP turning about O from the position OR, in the negative direction through the angle -A, and then turning back in the positive direction through the angle 180° , into the position OP.

The student should observe that in each of these three ways of regarding the angle $(180^{\circ} - A)$, the resulting angle ROP is the same.

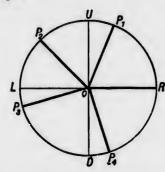
EXAMPLES. XXIII.

Draw a figure giving the position of the revolving line after it has turned through each of the following angles.

- (1) 270°. (2) 370°. (3) 425°. · (4) 590°.
- (5) -30°. (6) -330°. (7) -480°. (8) -750°.
- (9) $\frac{27\pi}{4}$. (10) $2n\pi + \frac{\pi}{6}$. (11) $(2n+1)\pi + \frac{\pi}{3}$.
- (12) $(2n+1)\pi \frac{\pi}{4}$. (13) $2n\pi \frac{\pi}{2}$. (14) $(2n+1)\pi \frac{\pi}{2}$.

Note. $n\pi$ always stands for a whole number of two right angles.

128. It is often convenient to keep the revolving line of the same length.



In this case the point P lies always on the circumference of a circle whose centre is O.

Let this circle cut the lines LOR, UOD in the points L, R, U, D respectively.

The circle RULD is thus divided at the points R, U, L, D into four Quadrants, of which

RU is called the first Quadrant.

UL is called the second Quadrant.

LD is called the third Quadrant.

DR is called the fourth Quadrant.

Hence, in the figure,

ROP, is an angle of the first Quadrant.

ROP.	,,	,,	second Quadrant.
ROP.	,,	,,	third Quadrant.
ROP,	••		fourth Quadrant

of it i trig

line

of info

an

in th

angl OR in the

whe

F

revol We ki

tains

for 49

angle by R nce

nts

D

129. When we are given the initial and the final line of an angle, we can at once decide the Quadrant of which it is. We cannot however decide the magnitude of the trigonometrical angle.

For we do not know how many complete revolutions the revolving line may have made.

In other words, when the geometrical representation of an angle (consisting of the positions of the initial line and of the final line) is given, we are not (without further information) given the *Trigonometrical* angle.

The Geometrical angle is here taken to be the amount of turning in the positive direction, which will transfer the revolving line from the initial to the final line.

130. Let A° be the magnitude of a given geometrical angle ROP; then, every **trigonometrical** angle having OR for its initial line and OP for its final line, is included in the expression

 $n \times 360^{\circ} + A^{\circ}$; or, $2n \times 180^{\circ} + A^{\circ}$, where n is some integer positive or negative.

For $n \times 360^{\circ}$ indicates a number of complete revolutions of the revolving line.

When we know the magnitude of the trigonometrical angle, then we know what integer n is.

Example. In the figure on p. 92 the geometrical angle ROP_2 contains 135°. This angle is the geometrical representation of the angles 495°, 855°, -225°, etc.,

for $495^{\circ} = 360^{\circ} + 185^{\circ}$; $855^{\circ} = 720^{\circ} + 185^{\circ}$; $-225^{\circ} = -360^{\circ} + 185^{\circ}$.

N.B. Let θ be the circular measure of a geometrical angle ROP; then, every trigonometrical angle represented by ROP, is included in the expression

 $n \times 2\pi + \theta$; or, $2n\pi + \theta$.

EXAMPLES. XXIV.

State in which Quadrant the revolving line will be after describing the following angles:

- (1) $\frac{120^{\circ}}{4}$. (2) $\frac{840^{\circ}}{3}$. (3) $\frac{490^{\circ}}{8}$. (4) -100° . (5) -380° . (6) -1000° . (7) $\frac{2\pi}{8}$. (8) $10\pi + \frac{\pi}{4}$.
- (9) $9\pi \frac{3\pi}{4}$. (10) $2n\pi \frac{\pi}{4}$. (11) $(2n+1)\pi + \frac{2\pi}{3}$. (12) $n\pi + \frac{\pi}{6}$.

Shew that the following angles are represented by the same diagram geometrically:

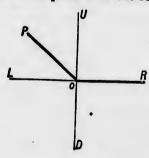
- (13) 365°, 725°, -355°, 1085°, -715°.
- (14) -65°, 295°, 655°, -425°.
- (15) 199°, 559°, 3799°, -521°, 7001°.
- (16) θ , $4\pi + \theta$, $-(2\pi \theta)$, $-4\pi + \theta$.
- (17) πa , $3\pi a$, $-\pi a$, $(2n+1)\pi a$.
- (18) $\pi + a$, $3\pi + a$, $-\pi + a$, $(2n+1)\pi + a$.

131. The principal directions of lines with which we are concerned in **Trigonometry** are as follows;

I. that parallel to OR, the initial line.

OR is usually drawn from O towards the right hand, parallel to the printed lines of the page.

- II. The direction at right angles to OR.
- III. The direction parallel to the revolving line OP.



tiv

aft abo and is fr the

the any nega

N

1

positi any chang

Trigonany rally PM neces OM

etc.,

1

Accordingly we make the following rules;

bing

me

We

to

I. For lines parallel to the initial line OR, the positive direction is from O to R; consequently the negative direction is from R to O.

II. OU is the position of the revolving line after it has described from OR a right angle about O in the positive direction of revolution; and for lines perpendicular to OR, the positive direction is from O to U; consequently for lines perpendicular to OR the negative direction is from to U to O.

III. Any line drawn parallel to the revolving line in the direction from O to P is to be positive, and consequently any line drawn in the direction from P to O is to be negative.

Note. The student must notice that the revolving line OP carries its positive direction round with it, so that the line 'OP' is always positive. The revolving line, as it turns about O, nowhere undergoes any sudden change of direction such as would be indicated by a change of sign.

132. We said, in Art. 81, that the definitions of the Trigonometrical Ratios (on pp. 46, 47), apply to angles of any magnitude. We have only to remark that it is generally convenient to take P on the revolving line; that PM is drawn perpendicular to the other line produced if necessary; and that the order of the letters in MP, OP, OM is an essential part of the definition.

The order of the letters P, M, O in the expressions $\frac{MP}{OP}$, etc., is therefore of great importance.

133. We proceed to show that the Trigonometrical Ratios of an angle vary in **Sign** according to the **Quadrant** in which the revolving line of the angle happens to be.

From the definition we have, with the usual letters,

$$\sin ROP = \frac{MP}{OP}, \cos ROP = \frac{OM}{OP}, \tan ROP = \frac{MP}{OM}.$$

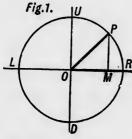
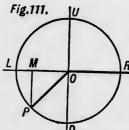
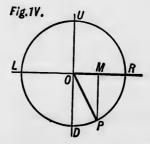


Fig.11. PUR





MI

MP

I. When OP is in the first Quadrant (Fig. I.).
 MP is positive because from M to P is upwards
 (Rule II. p. 95.)

OM is positive because from O to M is towards the right
(Rule 1.)

OP is positive (Rule III.)

rical rant

5.)

.)

1.)

Hence, if A be any angle of the first Quadrant,

sin A, which is $\frac{MP}{OP}$, is positive;

 $\cos A$, which is $\frac{OM}{OP}$, is positive;

tan A, which is $\frac{MP}{OM}$, is positive.

II. When OP is in the second Quadrant, (Fig. 11.).

MP is positive, because from M to P is upwards,

OM is negative, because from O to M is towards the left.

OP is positive.

Hence, if A be any angle of the second Quadrant,

sin A, which is $\frac{MP}{OP}$, is positive;

cos A, which is $\frac{OM}{OP}$, is negative;

tan A, which is $\frac{MP}{OM}$, is negative.

III. When OP is in the third Quadrant (Fig. III.)
MP is negative, OM is negative, OP is positive.
So that, if A be any angle of the third Quadrant, sin A is negative, cos A is negative, tan A is positive.

IV. When OP is in the fourth Quadrant (Fig. IV.) MP is negative, OM is positive, OP is positive.

So that, if A be any angle of the fourth Quadrant, sin A is negative, cos A is positive, tan A is negative.

L. E. T.

7

134. The table given below exhibits the results of the last article.

Quadrant	I.	II.	III.	IV.
Sine	+	+	-	-
Cosine	+	_	-	+
Tangent	+	-	+	-

The student should notice that in any particular Quadrant the three signs of sine, cosine, and tangent are unlike their signs in any other Quadrant.

EXAMPLES. XXV.

State the sign of the sine, cosine, and tangent of each of the following angles:

- (1) 60° . (2) 135° . (3) 265° . (4) 275° . (5) -10° . (6) -91° .
- (7) -193° . (8) -350° . (9) -1000° .
- (10) $2n \pi + \frac{\pi}{4}$. (11) $2n\pi + \frac{3\pi}{4}$. (12) $2n \pi \frac{\pi}{6}$.

135. The NUMERICAL VALUES through which the Trigonometrical Ratios of the angle *ROP* pass, as *OP* moves through the *first* Quadrant, are repeated as *OP* moves through each of the other Quadrants.

Thus as OP moves through the second Quadrant from U to L, Fig. 11, (OP) being always of the same length) MP and OM pass through the same succession of numerical values through

which they pass, as P moves through the first Quadrant in the opposite direction from U to R.

Example 1. Find the sine, cosine and tangent of 120°.

120° is an angle of the second Quadrant.

the

lrant

signs

the

igo-

ves

ves

7 to

OM

ugh

Let the angle ROP be 120° (Fig. II. p. 96.)

Then the angle $POL = 180^{\circ} - 120^{\circ} = 60^{\circ}$.

Hence, $\sin 120^{\circ} = \frac{MP}{OP} = \sin 60^{\circ}$ numerically, and in the second Quadrant the sine is positive.

Therefore
$$\sin 120^{\circ} = \frac{\sqrt{3}}{2}$$
.....(i).

Again, $\cos 120^{\circ} = \frac{OM}{OP} = \cos 60^{\circ}$, numerically, and in the second Quadrant the cosine is negative.

Therefore
$$\cos 120^{\circ} = -\frac{1}{2}$$
.....(ii).

Similarly,
$$\tan 120^{\circ} = -\sqrt{3}$$
.....(iii).

Example 2. Find the sine, cosine and tangent of 225°.

225° is an angle in the third Quadrant

Let the angle ROP be 225° (Fig. III.)

Here the angle $POL = 225^{\circ} - 180^{\circ} = 45^{\circ}$.

Therefore the Trigonometrical Ratios of 225° = those of 45° numerically; and in the third Quadrant the sine and cosine are each negative and the tangent is positive.

Hence,
$$\sin 225^{\circ} = -\frac{1}{\sqrt{2}}$$
; $\cos 225^{\circ} = -\frac{1}{\sqrt{2}}$; $\tan 225^{\circ} = 1$.

N.B. The cosecant, secant and cotangent of an angle A have the same sign as the sine, cosine, and tangent of A respectively.

EXAMPLES. XXVI.

Find the algebraical value of the sine, cosine and tangent of the following angles:

(1)	150°.	(2)	135°.	(3) -240° .	(4)	3300.
121	420	(0)	0000		` '	

(5)
$$-45^{\circ}$$
. (6) -300° . (7) 225° . (8) -135° . (9) 390° . (10) 750° . (11) -840° . (12) 1020° .

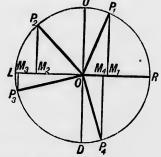
(13)
$$2n\pi + \frac{\pi}{4}$$
. (14) $(2n+1)\pi - \frac{\pi}{3}$. (15) $(2n-1)\pi + \frac{\pi}{6}$.

136. In Art. 133 we have shewn how the signs of the Trigonometrical Ratios change according to the Quadrant in which the angle is; we proceed to consider the changes in the numerical value of these ratios of the angle ROP as the revolving line OP makes a complete revolution.

Example i. To trace the changes in the sign and magnitude of $\sin \mathbf{A}$ as $\hat{\mathbf{A}}$ increases from 0° to 360° .

In the figure, let OP be of constant length, so that as ROP increases from 0° to 360° P traces out the circumference of a circle. Let PM be drawn perpendicular to R'OR, and let r stand for the length of OP; then r is unchanged in magnitude and is positive.

Now
$$\sin A = \frac{MP}{r}$$
, and



In the first Quadrant as A changes from 0° to 90°,

MP is positive and increases from 0 to r;

in a is positive and increases from 0 to 1.

In the second Quadrant as A changes from 90° to 180° , MP is positive and decreases from r to 0;

: sin A is positive and decreases from 1 to 0.

In the third Quadrant as A changes from 180° to 270°, MP is negative and increases from 0 to -r;

 \therefore sit A is negative and increases from 0 to -1. In the fourth Quadrant as A changes from 270° to 360°, MP is negative and decreases from -r to 0;

 \cdot sin A is negative and decreases from -1 to 0.

Example ii. To trace the changes in the sign and magnitude of tan A as A increases from 0° to 360°.

In the figure, let OP be of constant length; so that, as ROP increases from 0° to 360°, P traces out a circle. Let PM be drawn

perpendicular to R'OR. Now tan $A = \frac{MP}{OM}$, and

of

he

 ${f nt}$

89 88

of

P

ıd

is

In the first Quadrant as A changes from 0° to 90° , MP is positive and increases from 0 to OP, OM is positive and decreases from OP to OP.

tan A is positive and increases from $\frac{0}{OP}$, or 0 to $\frac{OP}{O}$, or ∞ .

In the second Quadrant as A changes from 90° to 180°, MP is positive and decreases from OP to 0, OP to 0, therefore OP is negative and increases from 0 to OP,

tan A is negative and changes + from $-\frac{\partial P}{\partial P}$, or $-\infty$ to $\frac{\partial}{\partial P}$, or 0.

In the third Quadrant as A changes from 180° to 270° , MP is negative and increases from 0 to OP, OM is negative and decreases from OP to OP

tan A is positive and increases from $\frac{0}{OP}$, or 0 to $\frac{OP}{O}$, or ∞ .

In the fourth Quadrant as A changes from 270° to 360°, MP is negative and decreases from -OP to 0, OM is positive and increases from 0 to OP,

tan A is negative and changes + from $-\frac{OP}{0}$, or $-\infty$ to $\frac{O}{OP}$, or 0.

NOTE. The same theory will be true of angles from 0° to 360° traced out by the revolving line after any number of complete revolutions.

Example. Trace the changes in sign and magnitude of $\sin A$ as the angle A increases from n times 360° to (n+1) times 360° .

† decreases numerically. It should be noticed that a negative quantity which decreases numerically, strictly speaking increases; so that $\tan A$ as A changes from 0° to 360° always increases, except when it jumps from ∞ to $-\infty$. Cot A

EXAMPLES. XXVII.

Trace the changes in sign and magnitude as A increases from 0° to 360° of

- (1) $\cos A$. (2) $\tan A$. (3) $\cot A$. (4) $\sec A$. (5) $\csc A$. (6) $1 \sin A$. (7) $\sin^2 A$. (9) $\sin A$.
- (5) cosec A. (6) $1-\sin A$. (7) $\sin^2 A$. (8) $\sin A \cdot \cos A$. (9) $\sin A + \cos A$. (10) $\tan A + \cot A$. (11) $\sin A \cos A$.

*It will be observed that the sign and magnitude of the Trigonometrical Ratios of an angle are always the same in the same Quadrant, and when an angle A, whatever its initial magnitude, has passed completely through each of the four quadrants and has thus made a complete revolution, each of its ratios has passed through every possible value; and as the angle continues to increase, this passing through the same set of every possible values, is repeated for each complete revolution; hence

f

tl

de

of

be

OT

Each of the Trigonometrical Ratios is an expression which depends upon A and is such that its values are repeated in exactly the same order as A passes through each successive 360°, or sin A is a periodic Function of A whose period is 360°.

In the figures given on p. 298 we exhibit $\sin A$, $\cos A$ and $\tan A$ graphically as periodic functions of θ whose period is 2π . The value of $\sin \theta$, etc. is the perpendicular distance of a point on the curve from the horizontal line. The distance of the foot of this perpendicular from the fixed point 0 giving the value of θ .

The student should notice that the curve of the cosine is the same curve as that of the sine; it is shifted a horizontal distance of $\frac{1}{2}\pi$ to the left. The curve of the cotangent is the curve of the tangent reversed. If the page is looked at in a looking-glass and the tangent curve shifted a horizontal distance of $\frac{1}{2}\pi$ to the right, we get the curve of the cotangent.

CHAPTER X **.

ON ANGLES UNLIMITED IN MAGNITUDE.

137. Just as the definitions of the Trigonometrical Ratios apply to angles of any magnitude whatever, so every general Formula involving these Ratios is true for angles of any magnitude whatever.

It is most important that the student should examine for himself into the truth of this statement.

138. The formulæ

m

4.

10

 \mathbf{n}

ts

$$\operatorname{cosec} A = \frac{1}{\sin A}, \quad \operatorname{sec} A = \frac{1}{\cos A}, \quad \cot A = \frac{1}{\tan A},$$

are really definitions; and since the definitions apply, therefore these formulæ are true, whatever be the magnitude of A.

The formulæ
$$\tan A = \frac{\sin A}{\cos A}$$
, $\cot A = \frac{\cos A}{\sin A}$,

are deduced immediately from the definitions, and therefore they are true whatever be the magnitude of A.

139. The formulæ
$$\sin^2 A + \cos^2 A = 1$$
,
 $1 + \tan^2 A = \sec^2 A$,
 $1 + \cot^2 A = \csc^2 A$,

are each a trigonometrical statement of Euc. 1. 47, and depend only on the fact that MP, OM, and OP are the sides of a right-angled triangle. That this is the case, whatever be the magnitude of the angle A, is evident from the figures on page 96.

^{* *} To be omitted on a first reading, except pp. 104, 105.

140. In Art. 118 we proved that the sine of an angle is equal to the cosine of its complement, provided the angle lies between 0° and 90°. We now give some examples of a method of proving the truth of this and other like formulæ, whatever be the magnitude of the angle concerned.

Example 1. To prove that the sine of an angle=the cosine of its complement.

That is, to prove $\sin A = \cos (90^{\circ} - A)$ and $\cos A = \sin (90^{\circ} - A)$.

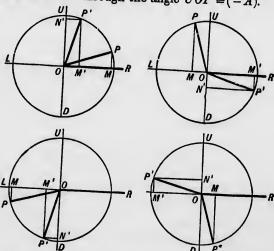
We take **two revolving lines** OP and OP. OP starting from OR is to describe the angle A; OP starting from OR is to describe $(90^{\circ}-A)$.

As usual, PM, P'M' are perpendiculars on OR and P'N' is a perpendicular on OU.

01

or

In describing $(90^{\circ}-A)$ we shall consider that OP' starting from OR, turns first through 90° into the position OU, and then turns back from OU through the angle UOP' = (-A).



So that ROP, the angle which OP describes from OR, is always equal to UOP, the angle which OP describes from OU in the opposite direction.

Hence, N'P', that is OM', is always equal to MP in magnitude.

Also it will be seen that when P is above LOR, P is to the right of UOD; when P is below LOR, P is to the left of UOD.

Hence, OM' and MP have always the same sign.

Therefore
$$\frac{MP}{OP} = \frac{OM'}{OP'}$$
 always,

ingle

ingle

of a

ulæ,

ne of

ting s to

is a

ting

hen

is in or, $\sin A = \cos (90^{\circ} - A)$, for all values of A.

Again, ON', that is M'P', is always equal to OM in magnitude.

And P' is above or below LOR according as P is to the right or to the left of UOD.

So that M'P' and OM have always the same sign.

Therefore
$$\frac{OM}{OP} = \frac{M'P'}{OP'}$$
 always,
or, $\cos A = \sin (90^{\circ} - A)$ for all values of A .

EXAMPLES. XXVIII.

Prove, drawing a separate figure for each example, that

(1)
$$\sin 30^{\circ} = \cos 60^{\circ}$$
. (2) $\sin 65^{\circ} = \cos 25^{\circ}$.

$$\sin 195^\circ = \cos (-105^\circ).$$
 (4) $\cos 275 = \sin (-185^\circ).$

(5)
$$\cos(-27^{\circ}) = \sin 117^{\circ}$$
. (6) $\cos 300^{\circ} = \sin(-210^{\circ})$.

If A, B, C be the angles of a triangle, so that $A + B + C = 180^{\circ}$, prove

(7)
$$\cos \frac{A}{2} = \sin \frac{B+C}{2}$$
. (8) $\cos \frac{B}{2} = \sin \frac{A+C}{2}$.

141. Def. Two angles are said to be the Supplements the one of the other when their sum is two right angles.

Thus $(180^{\circ} - A)$ is the supplement of A

If A, B, C be the angles of a triangle, $(A+B+C)=180^{\circ}$, so that (B+C) is the supplement of A.

- Example 2. To prove that the sine of an angle=the sine of its supplement; and that the cosine of an angle= - (the cosine of its supplement).

or,

is or

right

8

1

P

(3 (5

If

(1

(3

or,

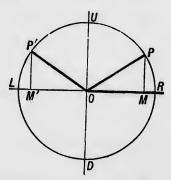
That is, to prove $\sin A = \sin (180^{\circ} - A)$

and

$$\cos A = -\cos(180^{\circ} - A)$$
.

We take two revolving lines OP and OP. OP starting from OR describes the angle A; OP starting from OR describes the angle $(180^{\circ} - A)$.

In describing $(180^{\circ} - A)$ we consider that OP starting from OR turns first through 180° into the position OL, and then back from OL through the angle LOP' = (-A).



So that ROP, the angle which OP describes from OR, is always equal to LOP, the angle which OP describes from OL in the opposite direction.

Hence, MP and M'P' are always equal in magnitude.

Also, P and P are always both above, or both below LOR.

So that MP and M'P' are always of the same sign.

Therefore
$$\frac{MP}{OP} = \frac{M'P'}{OP'}$$
 always,

or,

$$\sin A = \sin (180^{\circ} - A)$$
, for all values of A .

Again, OM and OM' are always equal in magnitude.

Also it will be seen that when P is on the right of UOD, P is on the left of UOD; when P is on the left of UOD, P is on right of UOD.

So that OM and OM' are always of opposite sign.

Therefore
$$\frac{OM}{OP} = -\frac{OM'}{OP'}$$
 always,

or,
$$\cos A = -\cos(180^{\circ} - A)$$
, for all values of A.

EXAMPLES. XXIX.

Prove, drawing a separate figure in each case, that

(1)
$$\sin 60^{\circ} = \sin 120^{\circ}$$
.

(2)
$$\sin 340^{\circ} = \sin (-160^{\circ})$$

(3)
$$\sin(-40^\circ) = \sin 220^\circ$$
.

(4)
$$\cos 320^{\circ} = -\cos(-140^{\circ})$$

$$(5) \quad \cos(-380^\circ) = -\cos 560^\circ.$$

(5)
$$\cos(-380^\circ) = -\cos 560^\circ$$
. (6) $\cos 195^\circ = -\cos(-15^\circ)$.

If A, B, C be the angles of a triangle, prove

(1)
$$\sin A = \sin (B+C)$$
.

(2)
$$\sin C = \sin (A + B)$$
.

(3)
$$\cos B = -\cos(A+C)$$

(4)
$$\cos A = -\cos (C+B)$$
.

in

ents

)°, 80

f its

ting

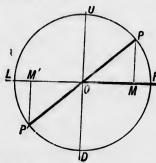
ibes

rom ack

- Example 3. To prove $\sin A = -\sin (180^{\circ} + A)$, and $\cos A = -\cos (180^{\circ} + A)$.

As before, we take two revolving lines OP and OP. OP starting from OR describes the angle A; OP starting from ORdescribes the angle $(180^{\circ} + A)$.

In describing $(180^{\circ} + A)$ we consider that OP starting from OR turns first through 1800 into the position OL, and then on from OL through the angle A.



So that ROP, the angle which OP describes from OR, is always equal to LOP, the angle which OP describes from OLin the same direction.

Hence, M'P' always = MP in magnitude.

Also it will be seen that when P is above LOR, P is below LOR; and vice versa*.

So that MP and M'P' are always of opposite sign

Heres,
$$\frac{MP}{OP} = -\frac{M'P'}{OP'}$$
 always,

or, ' $\sin A = -\sin (180^{\circ} + A)$, for all values of A.

Similarly, Oht always = OM' in magnitude.

And P is the left or to the right of UOD according as P is to the right or to the left of UOD.

* This will be more clear if the student observes that POP' is always a straight line.

or,

and

star desc

turn OU

> S alwa the s

> > E

H

is ab

S

or.

Hence,

$$\frac{OM}{OP} = -\frac{OM'}{OP}$$
 always,

or,

OP

m OR

from

en on

R, is OL

elow

A.

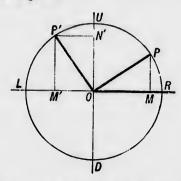
o is

 $\cos A = -\cos (180^{\circ} + A)$, for all values of A.

- Example 4. To prove $\sin A = -\cos(90^{\circ} + A)$, and $\cos A = \sin(90^{\circ} + A)$.

As before, we take two revolving lines OP and OP. OP starting from OR describes the angle A; OP starting from OR describes the angle $90^{\circ} + A$.

In describing $(90^{\circ} + A)$ we consider that OP starting from OR turns first through 90° into the position OU, and then on from OU through the angle A.



So that ROP, the angle which OP describes from OR, is always equal to UOP, the angle which OP describes from OU in the same direction.

Hence, N'P', that is OM', always = MP in magnitude.

Also, P' is to the left or to the right of UOD according as P is above or below LOR.

So that MP and OM' are always of opposite sign.

Hence,
$$\frac{MP}{OP} = -\frac{OM'}{OP'}$$
 always,

or,

 $\sin A = -\cos (90^0 + A)$, for all values of A.

Similarly, OM always = M'P' in magnitude.

And P' is above or below LOR according as P is to the right or to the left of UOD.

So that OM and M'P' are always of the same sign.

$$\frac{\partial M}{\partial P} = \frac{M'P'}{\partial P'}$$
 always,

or,

$$\cos A = \sin (90^{\circ} + A)$$
, for all values of A.

MISCELLANEOUS EXAMPLES.

Prove, drawing a separate figure in each case, that

(1)
$$\sin 60^\circ = -\sin 240^\circ$$
.

(2)
$$\sin 170^\circ = -\sin 350^\circ$$
.

(3)
$$\sin(-20^\circ) = -\sin 160^\circ$$
.

$$(4) \cos 380^{\circ} = -\cos 560^{\circ}.$$

(5)
$$\cos(-225) = -\cos(-225)$$

(5)
$$\cos(-225) = -\cos(-45^\circ)$$
. (6) $\cos 1005^\circ = -\cos 1185^\circ$.

(7)
$$\sin 60^\circ = -\cos 150^\circ$$
.

(8)
$$\cos 60^{\circ} = \sin 150^{\circ}$$
.

(9)
$$\sin 225 = -\cos 315^\circ$$
.

- (10)
$$\cos(-60^\circ) = \sin 30^\circ$$
.

If A+B+C be the angles of a triangle, prove that

(11)
$$\sin A = -\sin(2A + B + C)$$
.

(12)
$$\sin A = -\cos \frac{3A + B + C}{2}$$
.

(13)
$$\cos B = \sin \frac{A + 3B + C}{2}$$

(14)
$$\cos C = -\cos (A + B + 2C)$$
.

(15)
$$\cos \frac{B-C}{2} = \sin \frac{A+2B}{2}$$
.

$$\int (16) \sin \frac{C-A}{2} = -\cos \frac{B+2C}{2}.$$

he right

850.

Prove the following statements for all values of A and of a.

(17)
$$\sin A = -\sin(-A)$$
. (18) $\cos A = \cos(-A)$.

(19)
$$\sin A = \cos (A - 90^{\circ})$$
. (20) $\cos A = -\sin (A - 90^{\circ})$.

(21)
$$\sin a = \cos \left(\frac{3\pi}{2} + a\right).$$

$$(22) \quad \cos a = -\sin\left(\frac{3\pi}{2} + a\right)$$

(23)
$$\sin a = -\cos\left(\frac{3\pi}{2} - a\right).$$

(24)
$$\cos a = -\sin\left(\frac{3\pi}{2} - a\right).$$

(25)
$$\sin\left(\frac{\pi}{2}-a\right) = \sin\left(\frac{\pi}{2}+a\right)$$
.

(26)
$$\cos(\pi+a) = \cos(\pi-a)$$
.

(27)
$$\tan (90^{\circ} - A) = \cot A$$
. (28) $\tan A = -\tan (-A)$.

(29)
$$\tan (90^0 + A) = -\cot (A)$$
. (30) $\tan a = -\tan (\pi - a)$.

(31)
$$\tan A = \tan (180^0 + A)$$
. (32) $\cot \left(\frac{\pi}{2} - a\right) = \tan a$.

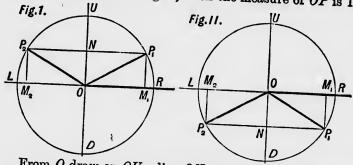
142. We have seen (Art. 135) that there are many angles of different magnitude which have the same sine.

If two such angles are in the same Quadrant they are represented geometrically by the same position of OP, so that they differ by some multiple of four right angles.

143. If we are given the value of the sine of an angle it is important to be able to find, Geometrically and Algebraically, all angles which have that value for their sine.

144. To find the complete Geometrical Solution of the equation $\sin \theta = \alpha$.

With the usual construction, let the radius of the circle RULD be the unit of length; then the measure of OP is 1.



From O draw on OU a line ON so that its measure is a. [ON will be drawn upwards (Fig. 1.) or downwards (Fig. 11.) from O according as a is positive or negative.]

Through N draw P_1P_2 parallel to LOR to cut the circle in P_1 and P_2 *. Join OP_1 , OP_2 . Draw P_1M_1 , P_2M_2 perpendicular to LOR. Then $M_1P_1 = ON = M_2P_2$,

and
$$\frac{\text{perp.}}{\text{hyp.}}$$
 for $OP_1 = \frac{M_1 P_1}{OP_1} = \frac{a}{1} = \frac{M_2 P_2}{OP_2} = \frac{\text{perp.}}{\text{hyp.}}$ for OP_2 .

Hence every angle whose initial line is OR, and whose final line is either OP_1 or OP_2 , is an angle whose sine is a.

And no other angle has its sine equal to a, for there is no other possible position for N.

145. To find an expression to include all angles having the given value a for sine.

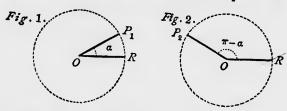
With the usual construction, let the measure of the radius of the circle RULD be 1; on OU take N so that the measure of ON is a; through N draw P_1NP_2 parallel to

le

^{*} If a were greater than unity, ON would be greater than OU, and the construction would fail.

ROL; join OP_1 , OP_2 . Then every angle whose initial line is OR and final line, either OP_1 , or OP_2 , and no other, is an angle whose sine is a.

Let ROP_1 contain α radians; then $ROP_3 = \pi - \alpha$.



Every angle whose initial line is OR and final line OP_1 is one of those included in the expression

$$2m\pi + \alpha$$
,

where m is some integer, positive or negative. [Art. 130.]

Every angle whose initial line is OR and final line OP, is one of those included in the expression

$$2r\pi + \pi - \alpha$$
, or $(2r + 1)\pi - \alpha$,

where r is some integer, positive or negative*. [Art. 130.] Both of these expressions are included in

$$n\pi + (-1)^n a_n$$

where n is some integer, positive or negative*. This is therefore the required expression.

Example. Find six angles between -4 right angles and +8 right angles which satisfy the equation $\sin A^0 = \sin 18^0$.

We have
$$\left[\theta = n\pi + (-1)^n \frac{\pi}{10}, \text{ or }\right] A^0 = n \times 180^0 + (-1)^n 18^0$$
.

Put for n the values -2, -1, 0, 1, 2, 3, 4 successively and we get the six angles

$$-360^{\circ}+18^{\circ}$$
, $-180^{\circ}-18^{\circ}$, 180° , $180^{\circ}-18^{\circ}$, $360^{\circ}+18^{\circ}$, $540^{\circ}-18^{\circ}$, i.e. -342° , -198° , 18° , 162° , 378° , 522° .

* For if n be even, let it be 2m, when $(-1)^{2m} = +1$; if n be odd, let it be 2r+1, when $(-1)^{2r+1} = -1$.

L. E. T.

of the

circle

is l.

is a.

ırds

rcle

per-

ose

a.

is 🗧

ng

he

 \mathbf{he}

to

nd

The student is recommended to draw a figure in the above example. Also to draw a figure in each example of this kind which he works for exercise.

EXAMPLES. XXXI.

(1) Find the four smallest angles which satisfy the equations

(i)
$$\sin A = \frac{1}{2}$$
. (ii) $\sin A = \frac{1}{\sqrt{2}}$. (iii) $\sin A = \frac{\sqrt{3}}{2}$. (iv) $\sin A = -\frac{1}{2}$.

(2) Find four angles between zero and +8 right angles which satisfy the equations

(i)
$$\sin A = \sin 20^{\circ}$$
. (ii) $\sin \theta = -\frac{1}{\sqrt{2}}$. (iii) $\sin \theta = -\sin \frac{\pi}{7}$.

(3) Find the complete algebraical solution of

(i) $\sin \theta = -\frac{1}{2}$. (ii) $2 \sin^2 \theta + 3 \sin \theta = 2$. (iii) $\sin^2 \theta = \cos^2 \theta$.

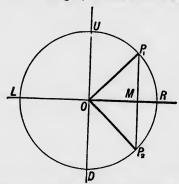
(4) Prove that 30°, 150°, -330°, 390°, -210° have all the same sine.

146. To find the complete Geometrical Solution of the equation $\cos \theta = \alpha$.

With the usual construction, let the radius of the circle RULD be the unit of length, so that the measure of OP is 1.

i

i



From O draw on OR a line OM such that its measure is a.

OM will be drawn towards the right or towards the left according as a is positive or negative.

above kind

ations

 $=-\frac{1}{2}$.

 $\sin\frac{\pi}{7}$.

cos² θ.

f the

ircle is 1.

sure

the

Through M draw P_1MP_2 perpendicular to OR to cut the circle in P_1 , P_2 . Join OP_1 , OP_2 . Then,

$$\frac{\text{base}}{\text{hyp.}} \text{ for } OP_1 = \frac{OM}{OP_1} = \frac{a}{1} = \frac{OM}{OP_2} = \frac{\text{base}}{\text{hyp.}} \text{ for } OP_2.$$

Hence every angle whose initial line is OR, and final line either OP_1 , or OP_2 , is an angle whose cosine is a.

And no other angle has its cosine = a; for there is no other possible position of M.

147. To find the complete Algebraical Solution of the equation $\cos \theta = \alpha$.

With the usual construction, let the radius of the circle RULD be 1; on OR_1 take M so that the measure of OM is a; through M draw P_1MP_2 parallel to UOD; join OP_1 , OP_2 . Then every angle whose initial line is OR and final line either OP_1 , or OP_2 , and no other, is an angle whose cosine is a.

Let ROP_1 contain α radians; then $ROP_2 = -\alpha$.

Every angle whose initial line is OR and final line OP_1 , is one of those included in the expression (m an integer)

$$2m\pi + a$$
. [Art. 130.]

Every angle whose initial line is OR and final line OP_s , is one of those included in the expression (r an integer)

$$2r\pi - a$$
. [Art. 130.]

Both of these expressions are included in

$$2n\pi + a$$
.

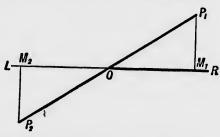
Thus the solution of the equation $\cos \theta = \cos a$ is

$$\theta = 2n\pi = \alpha$$
,

where n is an integer, positive or negative.

148. To find the complete Geometrical Solution of the equation $\tan \theta = \alpha$.

From O draw on the line OR two lines OM_1 , OM_2 , whose measures are + 1 and - 1 respectively.



And draw perpendicular to LOR from M_1 a line M_1P_1 whose measure is a, and from M_2 a line M_2P_2 whose measure is -a. Join OP_1 , OP_2 . Then

$$\frac{\text{perp.}}{\text{base}} \text{ for } OP_1 = \frac{M_1 P_1}{OM_1} = \frac{a}{1} = a,$$

and

$$\frac{\text{perp.}}{\text{base}} \text{ for } OP_s = \frac{M_s P_s}{OM_s} = \frac{-a}{-1} = a.$$

Hence every angle whose initial line is OR, and final line either OP_1 or OP_2 , is an angle whose tangent is a.

And no other angle has its tangent = a.

149. To find the complete Algebraical Solution of the equation $\tan \theta = \alpha$.

II

m

Let OR be the initial line; from O draw on OR two lines OM_1 , OM_2 whose measures are +1 and -1 respectively; from M_1 , M_2 draw perpendicular to LOR lines M_1P_1 , M_2P_2 whose measures are a and -a respectively; join OP_1 , OP_2 . Then every angle whose initial line is OR and final line either OP_1 , or OP_2 , and no other, is an angle whose tangent is a.

of the

, OM.,

 M_1P_1 easure

final

f the

two especlines join

and

Let $ROP_1 = \alpha$; then, $ROP_2 = \pi + \alpha$.

Every angle whose initial line is OR and final line OP_1 , is one of those included in the expression

$$2m\pi + a$$

[Art. 130.]

Every angle whose initial line is OR and final line OP_{g} , is one of those included in the expression

$$2r\pi + (\pi + \alpha)$$
; or, $(2r + 1)\pi + \alpha$. [Art. 130.]

Both of these expressions are included in

$$n\pi + \alpha^*$$
.

Thus the solution of the equation $\tan \theta = \tan a$ is $\theta = n\pi + a$.

EXAMPLES. XXXII.

- (1) Write down the complete Algebraical Solution of each of the following equations:
 - (i) $\cos \theta = \frac{1}{2}$. (ii) $\tan \theta = 1$.
- (iii) $\tan \theta = -1$.
- (iv) $\tan \theta = -\sqrt{3}$. (v) $\cos \theta = \cos \frac{4\pi}{5}$. (vi) $\tan \theta = \tan \frac{3\pi}{4}$.
- (2) Show that each of the following angles has the same cosine:
 -120°, 240°, 480°, -480°.
- (3) The angles 60° and -120° have one of the Trigonometrical Ratios the same for both; which of the ratios is it?
- (4) Can the following angles have any one of their Trigonometrical Ratios the same for all ?

- (5) Find four angles which satisfy each of the equations in (1).
- * For if n be even, this is the first formula; if n be odd it is the second.

150. We can now point out the use of the ambiguous sign \pm in the formula $\cos \theta = \pm \sqrt{1 - \sin^2 \theta}$.

If we know the numerical value of the sine of an angle θ , without knowing the magnitude of the angle, we cannot from the identity, $\cos^c \theta = 1 - \sin^s \theta$, completely determine $\cos \theta$, for we get $\cos \theta = \pm \sqrt{1 - \sin^s \theta}$.

This is a general formula, and we shall find that it represents an important Geometrical truth.

151. Given $\sin \theta = a$, we can say that θ is one of the angles represented by one or the other of the positions OP_1 , OP_2 of the revolving line in Fig. I. on page 110.

If we attempt to find the cosine of these angles we get two different values for the cosine; for $\frac{OM_1}{OP_1}$ and $\frac{OM_2}{OP_2}$ although equal in magnitude, are opposite in sign. Hence, if a be the least angle whose sine is equal to a, we have

$$\cos\theta = \pm\cos\alpha = \pm\sqrt{1-\sin^2\alpha}.$$

152. The same result may be obtained from the formula $\theta = n\pi + (-1)^n a$. For $\cos \{n\pi + (-1)^n a\}$ is of different sign according as n is even or odd.

EXAMPLES. XXXIII.

- (1) If θ be found from the equation $\cos \theta = a$, show geometrically that there are two values of $\sin \theta$ and of $\tan \theta$.
- (2) If θ be found from the equation $\tan \theta = \alpha$, show geometrically that there are two values of $\sin \theta$ and of $\cos \theta$.
- (3) If A be the *least* angle without regard to sign such that $\sin A = a$, show that $\cos A = +\sqrt{1-\sin^2 A}$.

f

(4) If A be the least positive angle such that $\cos A = a$, prove that $\sin A = +\sqrt{1-\cos^2 A}$.

uous

f an, we

de-

t it

the P_1 ,

get

 \overline{OP}_{s}

ula sign

geo-

zeo-

hat

ove

CHAPTER XI.

On the Trigonometrical Ratios of Two Angles.

153. We proceed to establish the following fundamental formulæ:

$$\sin (A + B) = \sin A \cdot \cos B + \cos A \cdot \sin B$$

$$\cos (A + B) = \cos A \cdot \cos B - \sin A \cdot \sin B$$

$$\sin (A - B) = \sin A \cdot \cos B - \cos A \cdot \sin B$$

$$\cos (A - B) = \cos A \cdot \cos B + \sin A \cdot \sin B$$
(i).

Here, A and B are angles; so that (A + B) and (A - B) are also angles.

Hence, $\sin (A + B)$ is the sine of an angle, and must not be confounded with $\sin A + \sin B$.

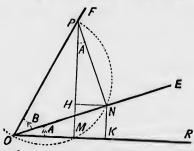
Sin (A + B) is a single fraction.

Sin $A + \sin B$ is the sum of two fractions.

154. The *proofs* given in the next two pages are perfectly general, as will be explained below (cf. Art. 169); but the *figures* are drawn for the simplest case in each.

The student should notice that the words of the two proofs are very nearly the same.

To prove that $\sin(A+B) = \sin A \cdot \cos B + \cos A \cdot \sin B$, and that $\cos(A+B) = \cos A \cdot \cos B - \sin A \cdot \sin B$.



Let ROE be the angle A, and EOF the angle B. Then in the figure, ROF is the angle (A+B).

In OF, the line which bounds the compound angle (A+B), take any point P, and from P draw PM, PN at right angles to OR and OE respectively. Draw NH, NK at right angles to MP and OR respectively. Then the angle

$$NPH = 90^{\circ} - HNP = HNO = ROE = A^*.$$

Now
$$\sin (A + B) = \sin ROF = \frac{MP}{OP} = \frac{MH + HP}{OP} = \frac{KN}{OP} + \frac{HP}{OP}$$

$$= \frac{KN \cdot ON}{ON \cdot OP} + \frac{HP \cdot NP}{NP \cdot OP} = \frac{KN}{ON} \cdot \frac{ON}{OP} + \frac{HP}{NP} \cdot \frac{NP}{OP}$$

$$= \sin ROE \cdot \cos EOF + \cos HPN \cdot \sin EOF$$

$$= \sin A \cdot \cos B + \cos A \cdot \sin B.$$

Also
$$\cos{(A+B)} = \cos{ROF} = \frac{OM}{OP} = \frac{OK - MK}{OP} = \frac{OK}{OP} - \frac{HN}{OP}$$

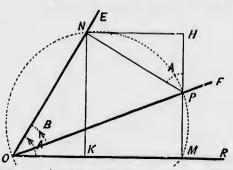
$$= \frac{OK \cdot ON}{ON \cdot OP} - \frac{HN \cdot NP}{NP \cdot OP} = \frac{OK}{ON} \cdot \frac{ON}{OP} - \frac{HN}{NP} \cdot \frac{NP}{OP}$$

$$= \cos{ROE} \cdot \cos{EOF} - \sin{HPN} \cdot \sin{EOF}$$

$$= \cos{A} \cdot \cos{B} - \sin{A} \cdot \sin{B}$$

• Or thus. A circle goes round *OMNP*, because the angles *OMP* and *ONP* are right angles; therefore *MPN* and *MON* are angles in the same segment; so that MPN = MON = 4.

To prove that $s_{A-A}(A-B) = \sin A \cdot \cos B - \cos A \cdot \sin B$, and that $\cos (A-B) = \cos A \cdot \cos B + \sin A \cdot \sin B$.



Let ROE be the angle A, and FOE the angle B. Then in the figure, ROF is the angle (A-B).

1 the

take

OR

MP

IP

les

In OF, the line which bounds the compound angle (A - B), take any point P, and from P draw PM, PN at right angles to OR and OE respectively. Draw NH, NK at right angles to MP and OR respectively. Then the angle

$$NPH=90^{\circ}-HNP=HNE=ROE=A*$$
.

Now,
$$\sin (A - B) = \sin ROF = \frac{MP}{OP} = \frac{MH - PH}{OP} = \frac{KN}{OP} - \frac{PH}{OP}$$

$$= \frac{KN \cdot ON}{ON \cdot OP} - \frac{PH \cdot PN}{PN \cdot OP} = \frac{KN}{ON} \cdot \frac{ON}{OP} - \frac{PH}{PN} \cdot \frac{PN}{OP}$$

$$= \sin ROE \cdot \cos FOE - \cos HPN \cdot \sin FOE$$

$$= \sin A \cdot \cos B - \cos A \cdot \sin B.$$

Also,
$$\cos(A - B) = \cos ROF = \frac{OM}{OP} = \frac{OK + KM}{OP} = \frac{OK}{OP} + \frac{NH}{OP}$$

$$= \frac{OK \cdot ON}{ON \cdot OP} + \frac{NH \cdot PN}{PN \cdot OP} = \frac{OK}{ON} \cdot \frac{ON}{OP} + \frac{NH}{PN} \cdot \frac{PN}{OP}$$

$$= \cos ROE \cdot \cos FOE + \sin HPN \cdot \sin FOE$$

$$= \cos A \cdot \cos B + \sin A \cdot \sin B.$$

* Or thus. A circle goes round OMPN, because the angles OMP and ONP are right angles; therefore MPN and MON together make up two right angles; so that HPN=MON=A.

Example. Find the value of
$$\sin 75^\circ$$
.
 $\sin 75^\circ = \sin (45^\circ + 30^\circ)$
 $= \sin 45^\circ$. $\cos 30^\circ + \cos 45^\circ$. $\sin 30^\circ$
 $= \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \cdot \frac{1}{2}$
 $= \frac{\sqrt{3} + 1}{2\sqrt{2}} = \frac{\sqrt{2}(\sqrt{3} + 1)}{4}$.

EXAMPLES. XXXIV.

- (1) Show that $\cos 75^\circ = \frac{\sqrt{3}-1}{2\sqrt{2}}$.
- (2) Show that $\sin 15^0 = \frac{\sqrt{3}-1}{2\sqrt{2}}$.
- (3) Show that $\cos 15^{\circ} = \frac{\sqrt{3} + 1}{2\sqrt{2}}$.
- (4) Show that $\tan 75^{\circ} = 2 + \sqrt{3}$.
- (5) If $\sin A = \frac{4}{5}$ and $\sin B = \frac{3}{5}$, find a value for $\sin (A + B)$ and for $\cos (A B)$.
- (6) If $\sin A = 6$ and $\sin B = \frac{6}{13}$, find a value for $\sin (A B)$ and for $\cos (A + B)$.
- (7) If $\sin A = \frac{1}{\sqrt{5}}$ and $\sin B = \frac{1}{\sqrt{10}}$, show that one value of (A+B) is 45°.
 - (8) Prove that sin 750 = 9659...
 - (9) Prove that sin 150= 2588...
 - (10) Prove that tan 150= 2679...
- 155. It is important that the student should become thoroughly familiar with the formulæ proved on the last two pages, and that he should be able to work examples involving their use.

EXAMPLES. XXXV.

Prove the following statements.

(1)
$$\sin (A + B) + \sin (A - B) = 2 \sin A \cdot \cos B$$
.

(2)
$$\sin (A+B) - \sin (A-B) = 2\cos A \cdot \sin B$$
.

(3)
$$\cos(A+B) + \cos(A-B) = 2\cos A \cdot \cos B$$
.

(4)
$$\cos(A-B) - \cos(A+B) = 2\sin A \cdot \sin B$$
.

(5)
$$\frac{\sin(A+B)+\sin(A-B)}{\cos(A+B)+\cos(A-B)}=\tan A.$$

(6)
$$\tan a + \tan \beta = \frac{\sin (a+\beta)}{\cos a \cdot \cos \beta}$$
.

(7)
$$\tan a - \tan \beta = \frac{\sin (a - \beta)}{\cos a \cdot \cos \beta}$$

(8)
$$\cot a + \tan \beta = \frac{\cos (a - \beta)}{\sin a \cdot \cos \beta}$$

(9)
$$\cot \alpha - \tan \beta = \frac{\cos (\alpha + \beta)}{\sin \alpha \cdot \cos \beta}$$
.

(10)
$$\tan a + \cot \beta = \frac{\cos (a - \beta)}{\cos a \cdot \sin \beta}$$
.

nd

B)

of

st

(11)
$$\frac{\tan\theta + \tan\phi}{\tan\theta - \tan\phi} = \frac{\sin(\theta + \phi)}{\sin(\theta - \phi)}.$$

(12)
$$\frac{\tan\theta \cdot \tan\phi + 1}{1 - \tan\theta \cdot \tan\phi} = \frac{\cos(\theta - \phi)}{\cos(\theta + \phi)}.$$

(13)
$$\frac{\tan \theta + \cot \phi}{\cot \phi - \tan \theta} = \cos (\theta - \phi) \cdot \sec (\theta + \phi).$$

(14)
$$\frac{\cot \theta + \cot \phi}{\cot \theta - \cot \phi} = -\frac{\sin (\theta + \phi)}{\sin (\theta - \phi)}.$$

(15)
$$\frac{\tan\theta \cdot \cot\phi + 1}{\tan\theta \cdot \cot\phi - 1} = \frac{\sin(\theta + \phi)}{\sin(\theta - \phi)}.$$

(16)
$$\frac{1+\cot\gamma\cdot\tan\delta}{\cot\gamma-\tan\delta}=\tan(\gamma+\delta).$$

(17)
$$\frac{1-\cot\gamma \cdot \tan\delta}{\cot\gamma + \tan\delta} = \tan(\gamma - \delta).$$

(18)
$$\frac{\tan \gamma \cdot \cot \delta - 1}{\tan \gamma + \cot \delta} = \tan (\gamma - \delta).$$

(19)
$$\frac{\tan \gamma \cdot \cot \delta + 1}{\cot \delta - \tan \gamma} = \tan (\gamma + \delta).$$

(20)
$$\frac{\cot \delta - \cot \gamma}{\cot \gamma \cdot \cot \delta + 1} = \tan (\gamma - \delta).$$

(21)
$$\tan^2 a - \tan^2 \beta = \frac{\sin(a+\beta) \cdot \sin(a-\beta)}{\cos^2 a \cdot \cos^2 \beta}.$$

(22)
$$\cot^2 a - \tan^2 \beta = \frac{\cos(a+\beta) \cdot \cos(a-\beta)}{\sin^2 a \cdot \cos^2 \beta}.$$

(23)
$$\frac{\tan^2 a - \tan^2 \beta}{1 - \tan^2 a \cdot \tan^2 \beta} = \tan (a + \beta) \cdot \tan (a - \beta).$$
(24)
$$\sin (a + \beta) \sin (a - \beta).$$

(24)
$$\sin(a+\beta) \cdot \sin(a-\beta) = \sin^2 a - \sin^2 \beta = \cos^2 \beta - \cos^2 a$$
.

(25)
$$\cos(a+\beta) \cdot \cos(a-\beta) = \cos^2 a - \sin^2 \beta = \cos^2 \beta - \sin^2 a$$
.

(26)
$$\sin (A - 45^{\circ}) = \frac{\sin A - \cos A}{\sqrt{2}}$$

(27)
$$\sqrt{2} \cdot \sin(A + 45^{\circ}) = \sin A + \cos A$$
.

(28)
$$\cos A - \sin A = \sqrt{2} \cdot \cos (A + 45^{\circ})$$
.

(29)
$$\cos(A+45^{\circ})+\sin(A-45^{\circ})=0.$$

(30)
$$\cos (A - 45^{\circ}) = \sin (A + 45^{\circ})$$
.

(31)
$$\sin(\theta + \phi) \cdot \cos\theta - \cos(\theta + \phi) \cdot \sin\theta = \sin\phi$$
.

(32)
$$\sin(\theta - \phi) \cdot \cos\phi + \cos(\theta - \phi) \cdot \sin\phi = \sin\theta$$
.

(33)
$$\cos(\theta + \phi) \cdot \cos\theta + \sin(\theta + \phi) \cdot \sin\theta = \cos\phi$$
.

(34)
$$\frac{\tan{(\theta-\phi)} + \tan{\phi}}{1 - \tan{(\theta-\phi)} \cdot \tan{\phi}} = \tan{\theta}.$$

(35)
$$\frac{\tan (\theta + \phi) - \tan \theta}{1 + \tan (\theta + \phi) \cdot \tan \theta} = \tan \phi.$$

(36)
$$2\sin\left(a+\frac{\pi}{4}\right)\cdot\cos\left(\beta-\frac{\pi}{4}\right)=\cos\left(a-\beta\right)+\sin\left(a+\beta\right).$$

(37)
$$2\sin\left(\frac{\pi}{4}-a\right)\cdot\cos\left(\frac{\pi}{4}+\beta\right)=\cos\left(a-\beta\right)-\sin\left(a+\beta\right)$$
.

(38)
$$\cos(a+\beta) + \sin(a-\beta) = 2\sin(\frac{\pi}{4} + a) \cdot \cos(\frac{\pi}{4} + \beta)$$
.

(39)
$$\cos(a+\beta) - \sin(a-\beta) = 2\sin(\frac{\pi}{4}-a) \cdot \cos(\frac{\pi}{4}-\beta)$$
.

- $\sin nA \cdot \cos A + \cos nA \cdot \sin A = \sin (n+1) A$.
- $\cos(n-1) A \cdot \cos A \sin(n-1) A \cdot \sin A = \cos nA.$
- (42) $\sin nA \cdot \cos (n-1)A \cos nA \cdot \sin (n-1)A = \sin A$.
- $\cos((n-1)A) \cdot \cos((n+1)A) \sin((n-1)A) \cdot \sin((n+1)A)$ $=\cos 2nA$.

156. The following formulæ are important:

tan
$$(A + B) = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}$$

tan $(A - B) = \frac{\tan A - \tan B}{1 + \tan A \cdot \tan B}$ (ii).
tan $(A - B)^0 = \frac{\tan A - 1}{1 - \tan A}$,
tan $(A - 45^0) = \frac{\tan A - 1}{1 + \tan A}$.

The proof of the first is given below. The student should prove the second in a similar manner. The third and fourth follow at once from the first two by putting 45° for B.

Example. To prove
$$\tan (A + B) = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}$$

(i) By using the results of Art. 154, we have

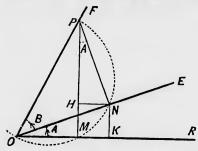
$$\tan (A+B) = \frac{\sin (A+B)}{\cos (A+B)} = \frac{\sin A \cdot \cos B + \cos A \cdot \sin B}{\cos A \cdot \cos B - \sin A \cdot \sin B}$$

Divide the numerator and the denominator of this fraction each by $\cos A \cdot \cos B$, and we get

$$\tan (A+B) = \frac{\frac{\sin A \cdot \cos B}{\cos A \cdot \cos B} + \frac{\cos A \cdot \sin B}{\cos A \cdot \cos B}}{\frac{\cos A \cdot \cos B}{\cos A \cdot \cos B}} - \frac{\sin A \cdot \sin B}{\cos A \cdot \cos B}$$

$$= \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}. \quad Q.E.D.$$

(ii) * * By Geometry. Make the construction of page 118;



Then $\tan (A+B) = \tan ROF = \frac{MP}{OM} = \frac{MH + HP}{OK - MK}$

$$= \frac{\frac{KN}{OK} + \frac{HR}{OK}}{\frac{OK}{OK} - \frac{HN}{OK}} = \frac{\frac{KN}{OK} + \frac{HP}{OK}}{1 - \frac{HN \cdot HP}{HP \cdot OK}} = \frac{\tan A + \frac{HP}{OK}}{1 - \tan A \cdot \frac{HP}{OK}}$$

Now the triangles NOK and NPH are similar,

$$\therefore \frac{HP}{OK} = \frac{NP}{ON} = \tan B,$$

$$\therefore \tan (A+B) = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}.$$
 Q.E.D.

EXAMPLES. XXXVI.

- (1) If $\tan A = \frac{1}{2}$ and $\tan B = \frac{1}{4}$, prove that $\tan (A + B) = \frac{2}{5}$, and $\tan (A B) = \frac{2}{5}$.
 - (2) If $\tan A = 1$ and $\tan B = \frac{1}{\sqrt{3}}$, prove that $\tan (A+B) = 2 + \sqrt{3}$.
 - (3) Prove that $\tan 15^{\circ} = 2 \sqrt{3}$.
- (4) If $\tan A = \{ \}$ and $\tan B = \frac{1}{11}$, prove that $\tan (A + B) = 1$. What is (A + B) in this case?

18 ;

(5) If $\tan A = m$ and $\tan B = \frac{1}{m}$, prove that $\tan (A + B) = \infty$. What is (A + B) in this case?

Prove the following statements:

(6)
$$\cot(A+B) = \frac{\cot A \cdot \cot B - 1}{\cot A + \cot B}$$
.

(7)
$$\cot(A-B) = \frac{\cot A \cdot \cot B + 1}{\cot B - \cot A}$$
.

(8)
$$\cot\left(\theta - \frac{\pi}{4}\right) = \frac{\cot\theta + 1}{1 - \cot\theta}$$
.

(9)
$$\frac{\cot \theta - 1}{\cot \theta + 1} = \cot \left(\theta + \frac{\pi}{4} \right).$$

(10)
$$\tan\left(\theta - \frac{\pi}{4}\right) + \cot\left(\theta + \frac{\pi}{4}\right) = 0.$$

(11)
$$\cot\left(\theta - \frac{\pi}{4}\right) + \tan\left(\theta + \frac{\pi}{4}\right) = 0.$$

(12) If
$$\tan a = \frac{m}{m+1}$$
 and $\tan \beta = \frac{1}{2m+1}$, prove that $\tan (a+\beta)=1$.

(13)
$$\frac{\tan (n+1)\phi - \tan n\phi}{1 + \tan (n+1)\phi \cdot \tan n\phi} = \tan \phi.$$

(14)
$$\frac{\tan{(n+1)}\phi + \tan{(1-n)}\phi}{1 - \tan{(n+1)}\phi \cdot \tan{(1-n)}\phi} = \tan{2\phi}.$$

(15) If $\tan a = m$ and $\tan \beta = n$, prove that

$$\cos(a+\beta) = \frac{1-mn}{\sqrt{(1+m^2)(1+n^2)}}$$

(16) If
$$\tan a = (a+1)$$
 and $\tan \beta = (a-1)$, then $2 \cot (a-\beta) = a^2$.

(17) If
$$a+\beta+\gamma=90^{\circ}$$
, then
$$\tan \gamma = \frac{1-\tan a \tan \beta}{\tan a + \tan \beta}$$

and

=1.

157. From pages 118 and 119 we have

$$\sin (A + B) = \sin A \cdot \cos B + \cos A \cdot \sin B$$

$$\sin (A - B) = \sin A \cdot \cos B - \cos A \cdot \sin B$$

$$\cos (A + B) = \cos A \cdot \cos B - \sin A \cdot \sin B$$

$$\cos (A - B) = \cos A \cdot \cos B + \sin A \cdot \sin B$$
... (i).

From these by addition and subtraction we get

$$\sin (A + B) + \sin (A - B) = 2 \sin A \cdot \cos B$$

$$\sin (A + B) - \sin (A - B) = 2 \cos A \cdot \sin B$$

$$\cos (A + B) + \cos (A - B) = 2 \cos A \cdot \cos B$$

$$\cos (A - B) - \cos (A + B) = 2 \sin A \cdot \sin B$$

Now put S for (A+B), and put T for (A-B)

Then
$$S+T=2A$$
, and $S-T=2B$,
so that $A=\frac{S+T}{2}$, and $B=\frac{S-T}{2}$.

Hence the above results may be written

$$\sin S + \sin T = 2 \sin \frac{S+T}{2} \cdot \cos \frac{S-T}{2}$$

$$\sin S - \sin T = 2 \cos \frac{S+T}{2} \cdot \sin \frac{S-T}{2}$$

$$\cos S + \cos T = 2 \cos \frac{S+T}{2} \cdot \cos \frac{S-T}{2}$$

$$*\cos T - \cos S = 2 \sin \frac{S+T}{2} \cdot \sin \frac{S-T}{2}$$

^{*} If A and B are each less than 90°, then S, which is their sum, is greater than T, their difference. Therefore if S be less than 90° , $\cos S$ is less than $\cos T$; so that $\cos T - \cos S$ is positive.

158. The formulæ (iii) are most important, and the student is recommended to get thoroughly familiar with them in words, thus:

- (1) The sum of the sines of two angles is equal to twice the sine of half their sum multiplied by the cosine of half their difference.
- (2) The sine of the greater of two angles minus the sine of the lesser is equal to twice the cosine of half their sum multiplied by the sine of half their difference.
- (3) The sum of the cosines of two angles is equal to twice the cosine of half their sum multiplied by the cosine of half their difference.
- (4) The cosine of the lesser of two angles minus the cosine of the greater is equal to twice the sine of half their sum multiplied by the sine of half their difference.
- 159. It will be convenient to refer to the formulæ (i) as the 'A,B' formulæ, and to the formulæ (iii) as the 'S,T' formulæ.
- 160. The 'S,T' formulæ can be proved directly from a figure.

We give the proof for the case in which S and T are each less than 90° .

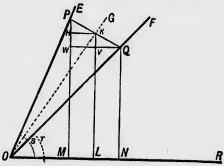
On first reading the subject however the student should omit the next two pages, and all other alternative proofs.

L. E. T.

BS

* *(1) To prove that

$$\sin S + \sin T = 2 \sin \frac{S+T}{2} \cdot \cos \frac{S-T}{2}$$



In the figure, let ROE be the angle S, ROF the angle T; then FOE is the angle S-T. Let OG bisect the angle EOF.

Then the angle
$$FOG = \frac{FOE}{2} = \frac{S-T}{2}$$
.

Also the angle
$$ROG = ROF + FOG = T + \frac{S-T}{2} = \frac{S+T}{2}$$
.

In OE take any point P, and from OF cut off OQ equal to OP. Join PQ, cutting OG in K. Then OG which bisects the vertical angle of the isosceles triangle POQ, bisects PQ at right angles. Draw PM, KL, QN at right angles to OR, and draw QVW and KH parallel to NLM.

Then by parallels, since PK=KQ, therefore PH=HW and WV=VQ. Hence,

$$\sin S + \sin T = \frac{MP}{OP} + \frac{NQ}{OQ} = \frac{MP + NQ}{OQ}$$

$$= \frac{(LK + HP) + (LK - WH)}{OQ} = \frac{2LK}{OQ}$$

$$= \frac{2LK \cdot OK}{OK \cdot OQ} = 2 \sin ROK \cdot \cos QOK$$

$$= 2 \sin \frac{S + T}{2} \cdot \cos \frac{S - T}{2} \cdot Q. \text{ E. D.}$$

$$\cos S + \cos T = 2\cos\frac{S+T}{2} \cdot \cos\frac{S-T}{2}.$$

With the same figure and construction, we have

cos
$$S + \cos T = \frac{OM}{OP} + \frac{ON}{OQ} = \frac{OM + ON}{OQ}$$
,

$$= \frac{(OL - ML) + (OL + LN)}{OQ} = \frac{2OL}{OQ}$$
,

$$= \frac{2OL \cdot OK}{OK \cdot OQ} = 2 \cos ROK \cdot \cos QOK$$
,

$$= 2 \cos \frac{S + T}{2} \cdot \cos \frac{S - T}{2}$$
. Q.E.D.

(3) To prove

tle T:

OP.

ertical ngles.

v and

$$\sin S - \sin T = 2\sin \frac{S - T}{2} \cdot \cos \frac{S + T}{2}.$$

In the above figure the angles VKQ, ROK are each the com-

plement of
$$LKO$$
 : $VKQ = ROK = \frac{S+T}{2}$. Hence

$$\sin S - \sin T = \frac{MP}{OP} - \frac{NQ}{OQ} = \frac{MP - NQ}{OQ},$$

$$= \frac{(LK + HP) - (LK - WH)}{OQ} = \frac{2VK}{OQ},$$

$$= \frac{2VK \cdot KQ}{KQ \cdot OQ} = 2\cos VKQ \cdot \sin QOK,$$

$$= 2\sin \frac{S - T}{2} \cdot \cos \frac{S + T}{2} \cdot Q.E.D.$$

(4) To prove

$$\cos T - \cos S = 2 \sin \frac{S+T}{2} \cdot \sin \frac{S-T}{2}.$$

With the same figure and construction, we have

cos
$$T - \cos S = \frac{ON}{OQ} - \frac{OM}{OP} = \frac{ON - OM}{OQ}$$
,

$$= \frac{(OL + LN) - (OL - ML)}{OQ} = \frac{2LN}{OQ}$$
.

$$= \frac{2VQ \cdot KQ}{KQ \cdot OQ} = 2 \sin VKQ \cdot \sin QOK$$
,

$$= 2 \sin \frac{S + T}{2} \cdot \sin \frac{S - T}{2}$$
. Q.E.D.

EXAMPLES. XXXVII.

Prove the following statements:

(1)
$$\sin 60^{\circ} + \sin 30^{\circ} = 2 \sin 45^{\circ} \cdot \cos 15^{\circ}$$
.

(2)
$$\sin 60^{\circ} + \sin 20^{\circ} = 2 \sin 40^{\circ} \cdot \cos 20^{\circ}$$
.

(3)
$$\sin 40^{\circ} - \sin 10^{\circ} = 2 \cos 25^{\circ}$$
. $\sin 15^{\circ}$.

(4)
$$\cos \frac{\pi}{3} + \cos \frac{\pi}{2} = 2 \cos \frac{5\pi}{12} \cdot \cos \frac{\pi}{12}$$

(5)
$$\cos \frac{\pi}{3} - \cos \frac{\pi}{2} = 2 \sin \frac{5\pi}{12} \cdot \sin \frac{\pi}{12}$$

(6)
$$\sin 3A + \sin 5A = 2 \sin 4A \cdot \cos A$$
.

(7)
$$\sin 7A - \sin 5A = 2 \cos 6A \cdot \sin A$$
.

(8)
$$\cos 5A + \cos^{3} 9A = 2 \cos 7A \cdot \cos 2A$$
.

(9)
$$\cos 5A - \cos 4A = -2\sin \frac{9A}{2} \cdot \sin \frac{A}{2}$$

(10)
$$\cos A - \cos 2A = 2\sin \frac{3A}{2} \cdot \sin \frac{A}{2}$$
.

(11)
$$\frac{\sin 2\theta + \sin \theta}{\cos \theta + \cos 2\theta} = \tan \frac{3\theta}{2}.$$

(12)
$$\frac{\sin 2\theta - \sin \theta}{\cos \theta - \cos 2\theta} = \cot \frac{3\theta}{2}.$$

(13)
$$\frac{\sin 3\theta + \sin 2\theta}{\cos 2\theta - \cos 3\theta} = \cot \frac{\theta}{2}.$$

(14)
$$\frac{\sin\theta + \sin\phi}{\cos\theta - \cos\phi} = \frac{\cos\theta + \cos\phi}{\sin\phi - \sin\theta}.$$

(15)
$$\cos (60^{\circ} + A) + \cos (60^{\circ} - A) = \cos A$$
.

(16)
$$\cos (45^0 + A) + \cos (45^0 - A) = \sqrt{2} \cdot \cos A$$
.

(17)
$$\sin(45^0 + A) - \sin(45^0 - A) = \sqrt{2} \cdot \sin A$$

(18)
$$\cos (30^{\circ} - A) - \cos (30^{\circ} + A) = \sin A$$
.

(19)
$$\frac{\sin\theta - \sin\phi}{\cos\phi - \cos\theta} = \cot\frac{\theta + \phi}{2}.$$

(20)
$$\frac{\sin \theta - \sin \phi}{\sin \theta + \sin \phi} = \cot \left(\frac{\theta + \phi}{2}\right) \cdot \tan \left(\frac{\theta - \phi}{2}\right).$$

161. It is important that the student should be thoroughly familiar with the second set of formulæ on p. 126.

Written as follows, they may be regarded as the inverse of the 'S, T' formulæ.

$$2 \sin A \cdot \cos B = \sin (A + B) + \sin (A - B),$$

$$2 \cos A \cdot \sin B = \sin (A + B) - \sin (A - B),$$

$$2 \cos A \cdot \cos B = \cos (A + B) + \cos (A - B),$$

$$2 \sin A \cdot \sin B = \cos (A - B) - \cos (A + B).$$
iv.

EXAMPLES. XXXVIII.

Express as the sum or as the difference of two trigonometrical ratios the ten following expressions:

- (1) $2\sin\theta \cdot \cos\phi$.
- (2) $2\cos a \cdot \cos \beta$.
- (3) $2\sin 2a \cdot \cos 3\beta$.
- (4) $2\cos(a+\beta)\cdot\cos(a-\beta)$.
- (5) $2\sin 3\theta \cdot \cos 5\theta$.
- (6) $2\cos\frac{3\theta}{2}\cdot\cos\frac{\theta}{2}$.
- (7) $\sin 4\theta \cdot \sin \theta$.
- (8) $\cos \frac{5\theta}{2} \cdot \sin \frac{3\theta}{2}$.
- (9) $2\cos 10^{\circ} \cdot \sin 50^{\circ}$.
- (10) cos 45°. sin 15°.
- (11) Simplify $2\cos 2\theta \cdot \cos \theta 2\sin 4\theta \cdot \sin \theta$.
- (12) Simplify $\sin \frac{5\theta}{2} \cdot \cos \frac{\theta}{2} \sin \frac{9\theta}{2} \cdot \cos \frac{3\theta}{2}$
- (13) Simplify $\sin 3\theta + \sin 2\theta + 2 \sin \frac{3\theta}{2} \cdot \cos \frac{\theta}{2}$.
- (14) Prove that $\sin \frac{11\theta}{4} \cdot \sin \frac{\theta}{4} + \sin \frac{7\theta}{4} \cdot \sin \frac{3\theta}{4} = \sin 2\theta \cdot \sin \theta$.

* * MISCELLANEOUS EXAMPLES. XXXIX

- (1) If $\tan a = \frac{1}{2}$ and $\tan \beta = \frac{1}{3}$, prove that $\tan (a + \beta) = 1$.
- (2) If $\tan \alpha = \frac{3}{4}$ and $\tan \beta = \frac{1}{7}$, prove that one of the values of $\alpha + \beta$ is $\frac{\pi}{4}$.
- (3) If $\tan a = \frac{m-1}{m}$ and $\tan \beta = \frac{1}{2m-1}$, shew that one value of $(a+\beta)$ is $\frac{\pi}{4}$.
 - (4) Simplify $\frac{\cos a \cos 5a}{\sin a + \sin 5a}$
 - (5) Simplify $\frac{\sin 5x \sin 3x}{\cos 5x + \cos 3x}$
 - (6) Prove that $\frac{\cos A + \cos 3A}{\cos 3A + \cos 5A} = \frac{\cos 2A}{\cos 4A}.$
 - (7) Simplify $\frac{\sin 3x \sin x}{\cos 3x + \cos x} + \frac{\sin 3x + \sin x}{\cos 3x \cos x}$
 - (8) Simplify $\frac{(\sin 4A \sin 2A)(\cos A \cos 3A)}{(\cos 4A + \cos 2A)(\sin A + \sin 3A)}$
 - (9) Prove that $2 \sin 2a \cdot \cos a + 2 \cos 4a \cdot \sin a = \sin 5a + \sin a$.
 - (10) Prove that $\cos 2a \cdot \cos a \sin 4a \cdot \sin a = \cos 3a \cdot \cos 2a$.
 - (11) $\tan 2A \cdot \tan 3A \cdot \tan 5A = \tan 5A \tan 3A \tan 2A$.
 - (12) Solve $4\sin(\theta+\phi) \cdot \cos(\theta-\phi) = 3$ $4\cos(\theta+\phi) \cdot \sin(\theta-\phi) = 1$
 - (13) Prove that
- $\frac{\sin A \cdot \sin 2A + \sin 2A \cdot \sin 5A + \sin 3A \cdot \sin 10A}{\cos A \cdot \sin 2A + \sin 2A \cdot \cos 5A \cos 3A \cdot \sin 10A} = -\tan 7A.$
- (14) $\tan \frac{A+B}{2} \tan \frac{A-B}{2} = \frac{2 \sin B}{\cos A + \cos B}$

CHAPTER XII.

ON THE TRIGONOMETRICAL RATIOS OF MULTIPLE ANGLES.

162. To express the Trigonometrical Ratios of the angle 2A in terms of those of the angle A.

Also, since
$$\cos (A + B) = \cos A \cdot \cos B - \sin A \cdot \sin B$$
;

$$\therefore \cos (A + A) = \cos A \cdot \cos A - \sin A \cdot \sin A$$
;

$$\therefore \cos 2A = \cos^2 A - \sin^2 A \cdot \dots (2).$$

But
$$1 = \cos^2 A + \sin^2 A;$$

$$\therefore 1 + \cos 2A = 2 \cos^2 A,$$
and
$$1 - \cos 2A = 2 \sin^2 A.$$

The last two results are usually written

Again,
$$\tan (A + B) = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B};$$

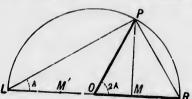
$$\therefore \tan (A + A) = \frac{\tan A + \tan A}{1 - \tan A \cdot \tan A};$$

$$\therefore \tan 2A = \frac{2 \tan A}{1 - \tan^2 A}.$$
 (5).

values

value

163.* * To prove the '2A' formulæ geometrically.



Let ROP be the angle 2A. With centre O and any radius describe the semicircle RPL. Draw PM perpendicular to OR.

Then the angle RPL in a semicircle is a right angle. The angle $ROP = OLP + OPL = 2 \ OLP$ [since OL = OP]. $\therefore OLP =$ a half of ROP = A. Also MPR and OLP are each the complement of MPL. $\therefore MPR = OLP = A$.

Hence

(1)
$$\sin 2A = \frac{MP}{OP} = \frac{2MP}{2OR} = \frac{2MP}{LR} = \frac{2MP \cdot PR}{PR \cdot LR}$$
$$= 2\cos MPR \cdot \sin PLR = 2\sin A \cdot \cos A.$$

$$\cos 2A = \frac{OM}{OP} = \frac{LM - LO}{OP} = \frac{2LM}{2OP} - \frac{LO}{OP}$$

$$= \frac{2LM \cdot L \cdot P}{LP \cdot L} - \frac{OP}{OP} = 2\cos MLP \cdot \cos PLR - 1$$

$$= 2\cos^2 A - 1.$$

Let
$$OM' = OM$$
.

Then 20M = M'M = LM - LM' = LM - MR. $\cos 2A = \frac{20M}{20P} = \frac{LM - MR}{LR} = \frac{LM}{LR} - \frac{MR}{LR},$ $= \frac{LM \cdot LP}{LP \cdot LR} - \frac{MR \cdot PR}{PR \cdot LR} = \cos^2 A - \sin^2 A.$

$$\tan 2A = \frac{2MP}{2OM} = \frac{2MP}{LM - MR},$$

$$= \frac{2MP}{LM} = \frac{2 \tan A}{1 - \frac{MR \cdot MP}{MP \cdot LM}} = \frac{2 \tan A}{1 - \tan^2 A}.$$

164. These five formulæ are very important,

$$\sin 2A = 2 \sin A \cdot \cos A \qquad (1),
\cos 2A = \cos^2 A - \sin^2 A
\cos 2A = 2 \cos^2 A - 1
\cos 2A = 1 - 2 \sin^2 A \qquad (3),
\tan 2A = \frac{2 \tan A}{1 - \tan^2 A} \qquad (5),$$

165. The following result is important,

$$\frac{\sin 2A}{1 + \cos 2A} = \frac{2\sin A \cdot \cos A}{2\cos^2 A} = \tan A.$$

166. The student must notice that A is any angle, and therefore these formulæ will be true whatever we put for A.

Example. Write
$$\frac{A}{2}$$
 instead of A , and we get
$$\sin A = 2 \sin \frac{A}{2} \cdot \cos \frac{A}{2} \dots (1),$$
$$\cos A = \cos^2 \frac{A}{2} - \sin^2 \frac{A}{2} \dots (2),$$

and so on.

adius OR.

The LP = uple-

1

EXAMPLES. XL.

Prove the following statements:

- (1) $2 \csc 2A = \sec A \cdot \csc A$.
- (2) $\frac{\csc^2 A}{\csc^2 A 2} = \sec 2A.$
- $(3) \quad \frac{2-\sec^2 A}{\sec^2 A} = \cos 2A.$
- (4) $\cos^2 A (1 \tan^2 A) = \cos 2A$
- (5) $\cot 2A = \frac{\cot^2 A 1}{2 \cot A}$

$$\cdot (\theta) \quad \frac{2 \tan B}{1 + \tan^2 B} = \sin 2B.$$

(7)
$$\tan B + \cot B = 2 \csc 2B$$
.

(8)
$$\frac{1-\tan^2 B}{1+\tan^2 B} = \cos 2B$$
.

(9)
$$\cot B - \tan B = 2 \cot 2B$$
.

(10)
$$\frac{\cot^2 B + 1}{\cot^2 B - 1} = \sec 2B$$
.

(11)
$$\left(\sin\frac{\theta}{2} + \cos\frac{\theta}{2}\right)^2 = 1 + \sin\theta.$$

(12)
$$\left(\sin\frac{\theta}{2} - \cos\frac{\theta}{2}\right)^2 = 1 - \sin\theta.$$

(13)
$$\cos^2\frac{\theta}{2}\left(1+\tan\frac{\theta}{2}\right)^2=1+\sin\theta.$$

(14)
$$\sin^2\frac{\theta}{2}\left(\cot\frac{\theta}{2}-1\right)^2=1-\sin\theta.$$

$$(15) \quad \left(\frac{\tan\frac{\theta}{2}+1}{\tan\frac{\theta}{2}-1}\right)^2 = \frac{1+\sin\theta}{1-\sin\theta}.$$

(16)
$$\frac{\sin\beta}{1+\cos\beta}=\tan\frac{\beta}{2}.$$

(17)
$$\frac{\sin\beta}{1-\cos\beta}=\cot\frac{\beta}{2}.$$

$$(18) \quad \frac{1-\cos\beta}{1+\cos\beta} = \tan^2\frac{\beta}{2}.$$

$$-(19) \quad \frac{1+\sec\beta}{\sec\beta} = 2\cos^2\frac{\beta}{2}.$$

(20)
$$\csc \beta - \cot \beta = \tan \frac{\beta}{2}$$
.

(21)
$$\frac{\cos 2x}{1 + \sin 2x} = \frac{1 - \tan x}{1 + \tan x}.$$

(22)
$$\frac{\cos x}{1 - \sin x} = \frac{1 + \tan \frac{x}{2}}{1 - \tan \frac{x}{2}}$$

$$(23) \quad \frac{\cos x}{1 + \sin x} = \frac{\cot \frac{x}{2} - 1}{\cot \frac{x}{2} + 1}$$

(24)
$$\frac{\cos x}{1 - \sin x} = \frac{\cot \frac{x}{2} + 1}{\cot \frac{x}{2} - 1}.$$

$$(25) \quad \frac{1+\sin x+\cos x}{1+\sin x-\cos x}=\cot \frac{x}{2}.$$

(26)
$$\frac{\cos^3 a + \sin^3 a}{\cos a + \sin a} = \frac{2 - \sin 2a}{2}.$$

(27)
$$\frac{\cos^3 a - \sin^3 a}{\cos a - \sin a} = \frac{2 + \sin 2a}{2}.$$

(28)
$$\cos^4 a - \sin^4 a = \cos 2a$$
.

(29)
$$\cos^6 a + \sin^6 a = \frac{1 + 3 \cos^2 2a}{4}$$
.

(30)
$$\cos^6 a - \sin^6 a = \frac{(3 + \cos^2 2a)\cos 2a}{4}$$

(31)
$$\frac{\sin 3\beta}{\sin \beta} - \frac{\cos 3\beta}{\cos \beta} = 2.$$

(32)
$$\frac{\cos 3\beta}{\sin \beta} + \frac{\sin 3\beta}{\cos \beta} = 2 \cot 2\beta.$$

(33)
$$\frac{\sin 4\beta}{\sin 2\beta} = 2\cos 2\beta.$$

(34)
$$\frac{\sin 5\beta}{\sin \beta} - \frac{\cos 5\beta}{\cos \beta} = 4\cos 2\beta.$$

(35)
$$\frac{\sin \frac{5\pi}{12}}{\sin \frac{\pi}{12}} - \frac{\cos \frac{5\pi}{12}}{\cos \frac{\pi}{12}} = 2\sqrt{3}.$$

(36)
$$\tan (45^0 + A) - \tan (45^0 - A) = 2 \tan 2A$$
.

(37)
$$\tan (45^{\circ} - A) + \cot (45^{\circ} - A) = 2 \sec 2A$$
.

(38)
$$\frac{\tan^2(45^0+A)-1}{\tan^2(45^0+A)+1} = \sin 2A.$$

(39)
$$\frac{\sec A + \tan A}{\sec A - \tan A} = \tan \left(45^0 + \frac{A}{2}\right) \cdot \cot \left(45^0 - \frac{A}{2}\right).$$

(40)
$$\frac{\cos(A+45^{\circ})}{\cos(A-45^{\circ})} = \sec 2A - \tan 2A$$
.

(41)
$$\tan B = \frac{\sin B + \sin 2B}{1 + \cos B + \cos 2B}.$$

(42)
$$\tan B = \frac{\sin 2B - \sin B}{1 - \cos B + \cos 2B}$$

167. The following two formulæ should be remembered:

$$\sin 3A = 3 \sin A - 4 \sin^3 A$$

 $\cos 3A = 4 \cos^3 A - 3 \cos A$ (vi).

NOTE. The similarity of these two results is apt to cause confusion. This may be avoided by observing that the second formula must be true when $A=0^{\circ}$; and then $\cos 3A=\cos 0^{\circ}=1$. In which case the formula gives $\cos 0^{\circ}=4\cos 0^{\circ}-3\cos 0^{\circ}$, or 1=4-3, which is true.

The first formula may be proved thus:

$$\sin 3A = \sin (2A + A) = \sin 2A \cdot \cos A + \cos 2A \cdot \sin A$$

= $(2 \sin A \cdot \cos A) \cos A + (1 - 2 \sin^2 A) \sin A$
= $2 \sin A \cdot \cos^2 A + \sin A - 2 \sin^3 A$
= $2 \sin A (1 - \sin^2 A) + \sin A - 2 \sin^3 A$
= $2 \sin A - 2 \sin^3 A + \sin A - 2 \sin^3 A$
= $3 \sin A - 4 \sin^3 A$.

The second formula may be proved in a similar manner.

TRIGONOMETRICAL RATIOS OF MULTIPLE ANGLES. 139

Example. Prove that
$$\tan 3A = \frac{3 \tan A - \tan^3 A}{1 - 3 \tan^2 A}$$
.
$$\tan 3A = \tan (2A + A) = \frac{\tan 2A + \tan A}{1 - \tan 2A \tan A}$$

$$= \frac{2 \tan A}{1 - \tan^2 A} + \tan A$$

$$= \frac{2 \tan A}{1 - \tan^2 A} \times \tan A$$

$$= \frac{2 \tan A + \tan A (1 - \tan^2 A)}{1 - \tan^2 A - 2 \tan^2 A}$$

$$= \frac{3 \tan A - \tan^3 A}{1 - 3 \tan^2 A}.$$

EXAMPLES. XLI.

Prove the following statements:

(1)
$$\frac{\sin 3A}{\sin A} = 2\cos 2A + 1$$
.

emem-

cause

second $0^0 = 1$.

00, or

vi).

(2)
$$\frac{\cos 3A}{\cos A} = 2\cos 2A - 1$$
.

(3)
$$\frac{3 \sin A - \sin 3A}{\cos 3A + 3 \cos A} = \tan^3 A$$
.

(4)
$$\cot 3A = \frac{\cot^3 A - 3 \cot A}{3 \cot^2 A - 1}$$
.

(5)
$$\frac{\sin 3A - \sin A}{\cos 3A + \cos A} = \tan A.$$

(6)
$$\frac{\sin 3A - \cos 3A}{\sin A + \cos A} = 2 \sin 2A - 1.$$

(7)
$$\frac{\sin 3A + \cos 3A}{\cos A - \sin A} = 2\sin 2A + 1.$$

(8)
$$\frac{1}{\tan 3A - \tan A} + \frac{1}{\cot A - \cot 3A} = \cot 2A.$$

(9)
$$\left(\frac{3 \sin A - \sin 3A}{3 \cos A + \cos 3A}\right)^3 = \left(\frac{\sec 2A - 1}{\sec 2A + 1}\right)^3$$
.

(10)
$$\frac{1-\cos 3A}{1-\cos A} = (1+2\cos A)^2.$$

* * M. SUELLANEOUS EXAMPLES. XLII.

Prove the following statements:

(1)
$$\frac{\sin A + \cos A}{\cos A - \sin A} = \tan 2A + \sec 2A.$$

(2)
$$\frac{\tan\frac{A}{2}+1}{1-\tan\frac{A}{2}}=\tan A+\sec A.$$

(3)
$$\sin{(n+1)}a \cdot \cos{(n-1)}a - \sin{2a} = \sin{(n-1)}a \cdot \cos{(n+1)}a$$
.

(4)
$$\frac{\sin a + \sin \beta}{\cos a + \cos \beta} = \tan \frac{a + \beta}{2}.$$

(5)
$$\frac{\cos 2a + \cos 12a}{\cos 6a + \cos 8a} + \frac{\cos 7a - \cos 3a}{\cos a - \cos 3a} + 2 \frac{\sin 4a}{\sin 2a} = 0.$$

(6) If
$$A = 18^{\circ}$$
, prove that $\sin 2A = \cos 3A$; hence prove that $\sin 18^{\circ} = \frac{\sqrt{5} - 1}{4}$.

(7)
$$\frac{\sin a + \sin \beta + \sin (a + \beta)}{\sin a + \sin \beta - \sin (a + \beta)} = \cot \frac{a}{2} \cdot \cot \frac{\beta}{2}.$$

(8)
$$\sin 2A \cdot \sin 2B = \sin^2(A+B) - \sin^2(A-B)$$
.

$$(9) \cos 4A = 8\cos^4 A - 8\cos^2 A + 1.$$

(10)
$$\tan 50^{\circ} + \cot 50^{\circ} = 2 \sec 10^{\circ}$$
.

(11)
$$\sin 3A = 4 \sin A \cdot \sin (60^{\circ} + A) \sin (60^{\circ} - A)$$
.

(12)
$$\left(\cot\frac{A}{2} - \tan\frac{A}{2}\right)^2 \left(\cot A - 2\cot 2A\right) = 4\cot A$$
.

(13)
$$\frac{\cos 3a - \sin \beta \cdot \sin 5a - \cos 7a}{\sin 3a + \sin \beta \cdot \cos 5a - \sin 7a} \text{ is independent of } \beta.$$

$$(14) \quad (\cos x + \cos y)^2 + (\sin x + \sin y)^2 = 4 \cos^2 \frac{x - y}{2}.$$

(15)
$$2\cos^2 A \cdot \cos^2 B + 2\sin^2 A \cdot \sin^2 B = 1 + \cos 2A \cdot \cos 2B$$
.

(16)
$$\cot \frac{\pi}{8} - \tan \frac{\pi}{8} = 2$$
.

•(17)
$$\tan 4\theta = \frac{4 \tan \theta (1 - \tan^2 \theta)}{1 - 6 \tan^2 \theta + \tan^4 \theta}$$

. (18)
$$2\cos\frac{\pi}{8} = \sqrt{2+\sqrt{2}}$$
.

(19)
$$2 \cos 11^0 15' = \sqrt{2 + \sqrt{2} + \sqrt{2}}$$

(20)
$$\frac{\sin A \cdot \sin 2A + \sin A \cdot \sin 4A + \sin 2A \cdot \sin 7A}{\sin A \cdot \cos 2A + \sin 2A \cdot \cos 5A + \sin A \cdot \cos 8A} = \tan 5A$$

(21)
$$\frac{\sin\theta + \sin(\theta + \phi) + \sin(\theta + 2\phi)}{\cos\theta + \cos(\theta + \phi) + \cos(\theta + 2\phi)} = \tan(\theta + \phi).$$

(22)
$$2\cos^8 A - 2\sin^8 A = \cos 2A (1 + \cos^2 2A)$$
.

(23)
$$(3 \sin A - 4 \sin^3 A)^2 + (4 \cos^3 A - 3 \cos A)^2 = 1$$
.

(24)
$$\frac{\sin 2a \cdot \cos a}{(1+\cos 2a)(1+\cos a)} = \tan \frac{a}{2}$$
.

(25)
$$2 \frac{\cot(n-2)a \cdot \cot na + 1}{\cot(n-2)a - \cot na} = \cot a - \tan a.$$

(26) If
$$\tan a = \frac{1}{4}$$
 and $\tan \beta = \frac{2}{11}$, prove $\tan (2a + \beta) = \frac{1}{2}$.

(27) Prove that
$$\tan \frac{A}{2}$$
 and $\cot \frac{A}{2}$ are the roots of the equation $x^2 - 2x$. $\csc A + 1 = 0$.

(28) If
$$\tan B = \frac{b}{a}$$
, prove that $\sqrt{\frac{a+b}{a-b}} + \sqrt{\frac{a-b}{a+b}} = \frac{2\cos B}{\sqrt{\cos 2B}}$.

*168. The following examples are symmetrical, and each involve more than two angles:

Example 1. Prove that

$$\sin (\alpha + \beta + \gamma) = \sin \alpha \cdot \cos \beta \cdot \cos \gamma + \sin \beta \cdot \cos \gamma \cdot \cos \alpha$$

 $+\sin\gamma \cdot \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta \cdot \sin\gamma$

$$\sin (\alpha + \beta + \gamma) = \sin (\alpha + \beta) \cdot \cos \gamma + \cos (\alpha + \beta) \sin \gamma$$

$$=\sin a \cdot \cos \beta \cdot \cos \gamma + \cos a \cdot \sin \beta \cdot \cos \gamma$$

 $+\cos a \cdot \cos \beta \cdot \sin \gamma - \sin a \cdot \sin \beta \cdot \sin \gamma$

$$=\sin a \cdot \cos \beta \cdot \cos \gamma + \sin \beta \cdot \cos \gamma \cdot \cos \alpha$$

 $+\sin\gamma \cdot \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta \cdot \sin\gamma$

Q.E.D.

n+1)a.

e that

D

Example 2. Prove that

$$\sin a + \sin \beta + \sin \gamma - \sin (a + \beta + \gamma)$$

$$=4 \cdot \sin \frac{\beta+\gamma}{2} \cdot \sin \frac{\gamma+a}{2} \cdot \sin \frac{a+\beta}{2}.$$

Now
$$\sin a - \sin (a + \beta + \gamma) = -2 \cos \frac{2a + \beta + \gamma}{2} \cdot \sin \frac{\beta + \gamma}{2}$$
.

And
$$\sin \beta + \sin \gamma = 2 \sin \frac{\beta + \gamma}{2} \cdot \cos \frac{\beta - \gamma}{2}$$
, [Art. 158]

$$\therefore \sin a + \sin \beta + \sin \gamma - \sin (a + \beta + \gamma)$$

$$= 2 \sin \frac{\beta + \gamma}{2} \cdot \cos \frac{\beta - \gamma}{2} - 2 \cos \frac{2a + \beta + \gamma}{2} \cdot \sin \frac{\beta + \gamma}{2}$$

$$= 2 \sin \frac{\beta + \gamma}{2} \left\{ \cos \frac{\beta - \gamma}{2} - \cos \frac{2a + \beta + \gamma}{2} \right\}$$

$$= 2 \sin \frac{\beta + \gamma}{2} \cdot 2 \sin \frac{\gamma + a}{2} \cdot \sin \frac{a + \beta}{2}$$

$$= 4 \sin \frac{\beta + \gamma}{2} \cdot \sin \frac{\gamma + a}{2} \cdot \sin \frac{a + \beta}{2} \cdot \text{Q.E.D.}$$
[Art. 158]

* EXAMPLES. XLLI.

Prove the following statements:

- (1) $\cos(a+\beta+\gamma) = \cos a \cdot \cos \beta \cdot \cos \gamma \cos a \cdot \sin \beta \cdot \sin \gamma$ $-\cos \beta \cdot \sin \gamma \cdot \sin a - \cos \gamma \cdot \sin a \cdot \sin \beta$.
- (2) $\sin (\alpha + \beta \gamma) = \sin \alpha \cdot \cos \beta \cdot \cos \gamma + \sin \beta \cdot \cos \gamma \cdot \cos \alpha \sin \gamma \cdot \cos \alpha \cdot \cos \beta + \sin \alpha \sin \beta \sin \gamma$
- (3) $\cos(a-\beta+\gamma) = \cos \alpha \cdot \cos \beta \cdot \cos \gamma + \cos \alpha \cdot \sin \beta \cdot \sin \gamma$ $-\cos \beta \cdot \sin \alpha \cdot \sin \gamma + \cos \gamma \cdot \sin \beta \cdot \sin \alpha$.
- (4) $\sin a + \sin \beta \sin \gamma \sin (a + \beta \gamma)$ = $4 \sin \frac{a - \gamma}{2} \cdot \sin \frac{\beta - \gamma}{2} \cdot \sin \frac{a + \beta}{2}$.
- (5) $\sin(a-\beta-\gamma) \sin a + \sin \beta + \sin \gamma$ = $4\sin\frac{a-\beta}{2} \cdot \sin\frac{a-\gamma}{2} \cdot \sin\frac{\beta+\gamma}{2}$.
- (6) $\sin 2a + \sin 2\beta + \sin 2\gamma \sin 2 (a + \beta + \gamma)$ = $4 \sin (\beta + \gamma) \cdot \sin (\gamma + a) \cdot \sin (a + \beta)$.

$$\frac{a+\beta}{2}$$
.

rt. 1587

rt. 158]

 $\sin \beta$.

sin a.

(7)
$$\sin (\beta - \gamma) + \sin (\gamma - \alpha) + \sin (\alpha - \beta)$$

 $+ 4 \sin \frac{(\beta - \gamma)}{2} \cdot \sin \frac{(\gamma - \alpha)}{2} \cdot \sin \frac{(\alpha - \beta)}{2} = 0.$

(8)
$$\sin (\beta + \gamma - a) + \sin (\gamma + a - \beta) + \sin (a + \beta - \gamma)$$

 $-\sin (a + \beta + \gamma) = 4 \sin a \cdot \sin \beta \cdot \sin \gamma$.

(9)
$$\sin (\alpha + \beta + \gamma) + \sin (\beta + \gamma - \alpha) + \sin (\gamma + \alpha - \beta)$$

 $-\sin (\alpha + \beta - \gamma) = 4\cos \alpha \cdot \cos \beta \cdot \sin \gamma$.

(10)
$$\cos x + \cos y + \cos z + \cos (x+y+z)$$

= $4\cos \frac{y+z}{2} \cdot \cos \frac{z+x}{2} \cdot \cos \frac{x+y}{2}$.

(11)
$$\cos 2x + \cos 2y + \cos 2z + \cos 2(x+y+z)$$

= $4\cos (y+z) \cdot \cos (z+x) \cdot \cos (x+y)$.

(12)
$$\cos(y+z-x) + \cos(z+x-y) + \cos(x+y-z) + \cos(x+y+z) = 4\cos x \cdot \cos y \cdot \cos z$$
.

(13)
$$\cos^2 x + \cos^2 y + \cos^2 z + \cos^2 (x+y+z)$$

= $2\{1 + \cos (y+z) \cdot \cos (z+x) \cdot \cos (x+y)\}$.

(14)
$$\sin^2 x + \sin^2 y + \sin^2 z + \sin^2 (x+y+z)$$

= $2\{1 - \cos(y+z) \cdot \cos(z+x) \cdot \cos(x+y)\}$.

(15)
$$\cos^2 x + \cos^2 y + \cos^2 z + \cos^2 (x+y-z)$$

= $2\{1 + \cos (x-z) \cdot \cos (y-z) \cdot \cos (x+y)\}$.

(16)
$$\cos a \cdot \sin (\beta - \gamma) + \cos \beta \cdot \sin (\gamma - a) + \cos \gamma \cdot \sin (\alpha - \beta) = 0.$$

(17)
$$\sin a \cdot \sin (\beta - \gamma) + \sin \beta \cdot \sin (\gamma - \alpha) + \sin \gamma \cdot \sin (\alpha - \beta) = 0.$$

8)
$$\cos(\alpha+\beta) \cdot \cos(\alpha-\beta) + \sin(\beta+\gamma) \sin(\beta-\gamma)$$

 $-\cos(\alpha+\gamma) \cdot \cos(\alpha-\gamma) = 0.$

(19)
$$\cos(\delta - a) \cdot \sin(\beta - \gamma) + \cos(\delta - \beta) \cdot \sin(\gamma - a) - \cos(\delta - \gamma) \cdot \sin(\beta - a) = 0.$$

(20)
$$8\cos\frac{\theta+\phi+\chi}{2} \cdot \cos\frac{\phi+\chi-\theta}{2} \cdot \cos\frac{\chi+\theta-\phi}{2} \cdot \cos\frac{\theta+\phi-\chi}{2}$$

= $\cos 2\theta + \cos 2\phi + \cos 2\chi + 4\cos\theta \cdot \cos\phi \cdot \cos\chi + 1$.

L. E. T.

CHAPTER XIII.**

On Angles Unlimited in Magnitude. II.

169. The words of the proofs (on pages 118, 119) of the 'A, B' formulæ apply to angles of any magnitude. The figures will be different for angles of different magnitude.

170. The figure for the 'A - B' formulæ on page 119 is the same for all cases in which A and B are each less than 90°.

The figure given below is for the proof of the 'A + B' formulæ, when, A and B being each less than 90°, their sum is greater than 90°.

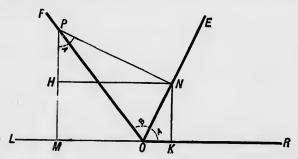
di ni

fre

01

008

posi



The words of the proof are precisely those of page 118. We may notice however that

$$\cos(A+B) = \frac{OM}{OP} \left[= \frac{-MO}{OP} \right] = \frac{-MK+OK}{OP} = \frac{OK}{OP} - \frac{MK}{OP},$$

and the rest follows as on page 118.

NOTE.

In this and the next page we consider two cases of the proof of page 119 when applied to angles greater than one right angle.

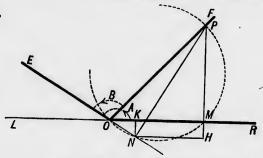
F16. 1.

119) of gnitude. it mag-

ige 119 ach less

A+B' eir sum

e 118.



$$\sin (A - B) = \frac{MP}{OP} = \frac{MH - PH}{OP} = \frac{KN}{ON} \cdot \frac{ON}{OP} - \frac{PH}{PN} \cdot \frac{PN}{OP}$$
$$= \sin A \cos B - \cos A \sin B.$$

Consider $\frac{KN}{ON}$; KN is in the negative direction; ON is in the negative direction, if we take OE as the positive direction. $\therefore \frac{KN}{ON}$ is a positive fraction, numerically equal to $\sin ROE$; and $\sin ROE$ is positive; $\therefore \frac{KN}{ON} = \sin A$.

Consider $\frac{ON}{OP}$; ON is negative; OP is positive; $\therefore \frac{ON}{OP}$ is a negative fraction, numerically equal to $\cos POE$, which is negative; $\therefore \frac{ON}{OP} = \cos B$.

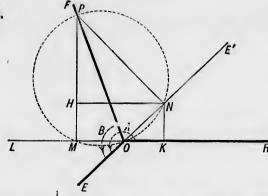
Consider $\frac{PH}{PN}$; PH is negative; PN is in the positive direction relative to OE as initial line and F to E as the positive direction of revolution [Rule II. Art. 131]; $\therefore \frac{PH}{PN}$ is a negative fraction, numerically equal to $\cos HPN$; or to $\cos KON$, or to $\cos A$; $\cos A$ is negative; $\therefore \frac{PH}{PN} = \cos A$.

Consider $\frac{PN}{OP}$; PN is positive; OP is positive; and $PN = \sin B$.

$$\cos(A-B) = \frac{OM}{OP} = \frac{OK + KM}{OP} = \frac{OK}{ON} \cdot \frac{ON}{OP} + \frac{NH}{PN} \cdot \frac{PN}{OP}.$$

Consider $\frac{OK}{ON}$; as before it is a negative fraction numerically equal to $\cos ROE$; ... it is equal to $\cos A$; $\frac{ON}{OP}$ is a negative fraction = $\cos B$; $\frac{NH}{PN}$ is a positive fr. = $\sin NPH$ = $\sin NOK$ = $\sin A$; $\frac{PN}{OP}$ is a positive fr. = $\sin B$.

Fig. 2.



$$\sin (A-B) = \frac{MP}{OP} = \frac{MH-PH}{OP} = \frac{KN}{ON} \cdot \frac{ON}{OP} - \frac{PH}{PN} \cdot \frac{PN}{OP}.$$

Consider $\frac{KN}{ON}$; KN is positive; ON is in the negative direction (OE being in the positive direction); $\therefore \frac{KN}{ON}$ is a negative fraction, numerically equal to $\sin ROE$ or $\sin A$ and $\sin A$ is negative; $\therefore \frac{KN}{ON} = \sin A$.

So, $\frac{ON}{OP}$ is a negative fraction numerically equal to $\cos B$, which is negative.

Consider $\frac{PH}{PN}$; PH is in the negative direction; PN is in the positive direction; for OE is the initial line and the positive direction of revolution is from F to E [Itule II. Art. 131]; $\therefore \frac{PH}{PN}$ is a negative fraction, numerically equal to $\sin B$, which is negative.

So, $\frac{PN}{OP}$ is a positive fraction numerically equal to sin B which is positive.

$$\cos(A - B) = \frac{OM}{OP} = \frac{OK + KM}{OP} = \frac{OK}{ON} \cdot \frac{ON}{OP} + \frac{NH}{PN} \cdot \frac{PN}{OP}$$

Consider $\frac{OK}{ON}$; OK is positive, and ON is negative; ... the fraction is negative and numerically equal to $\cos A$, which is negative.

So, $\frac{ON}{OP}$ is a negative fraction numerically equal to $\cos B$, which is negative.

Again, in $\frac{NH}{PN}$, NH is in the negative direction, and PN is positive; ... the fraction is negative and numerically equal to $\sin MPN$; or to $\sin NOR$; or to $\sin A$ which is negative.

So $\frac{PN}{OP}$ is a positive fraction = $\sin B$.

171. Thus we have proved that the 'A, B' formulæ are true provided A and B each lie between 0° and 90°.

The student can prove them for any other values by drawing the proper figure.

The 'A, B' formulæ are therefore true for any values whatever of the angles A and B.

172. By the aid of the 'A, B' formulæ we can prove the formulæ of Art. 140.

Example. Prove that $\sin (90^{\circ} + A) = \cos A$. $\sin (90^{\circ} + A) = \sin 90^{\circ} \cos A + \cos 90^{\circ} \sin A,$ $= 1 \times \cos A + 0 \times \sin A,$ $= \cos A. \quad Q. \quad E. \quad D.$

EXAMPLES. XLIV.

Draw the figures for the first four of the following examples.

- (1) For the (A+B) formulæ, when A is greater than 90° and (A+B) less than 180°.
- (2) For the (A-B) formulæ, when A and B each lie between 90° and 180°.
- (3) For the (A+B) formulæ, when A lies between 90° and 180°, and (A+B) lies between 180° and 270°.
- (4) For the (A-B) formulæ, when A lies between 180° and 270°, and (A-B) lies between 180° and A.

Deduce the six following formulæ from the 'A, B' formulæ.

- (5) $\cos(90^{\circ} + A) = -\sin A$.
- (6) $\sin (90^{\circ} A) = \cos A$.
- (7) $\cos (90^{\circ} A) = \sin A$.
- (8) $\sin(180^{\circ} A) = \sin A$.
- (9) $\cos(180^{\circ} A) = -\cos A$. (10) $\sin(180^{\circ} + A) = -\sin A$.
- (11) Assuming that the formula $\sin (A+B) = \sin A \cdot \cos B + \cos A \cdot \sin B$ is true for all values of A and B, deduce the rest of the 'A, B' formulæ by the aid of the results on p. 107.

E being in equal to

negative. tive direc-

is from F al to $\sin B$,

•

itive.

s negative

egative. ve; ... the

NOR; or

173. We may also conversely prove that the 'A, B' formulæ are true for angles of any magnitude by the aid of the result of page 107. (This is a very convenient method of proving the 'A, B' formulæ to be true for all values of the angles.)

For, assuming that the 'A, B' formulæ are true for certain values of the angles A and B, we can show that they are true if either of the angles A or B be increased by 90° .

Example.

$$\sin (90^{\circ} + A + B) = \cos (A + B)$$
 [p. 107.]
 $= \cos A \cdot \cos B - \sin A \cdot \sin B$,
 $= \sin (90^{\circ} + A) \cdot \cos B - \{-\cos (90^{\circ} + A)\} \sin B$,
 $= \sin (90^{\circ} + A) \cdot \cos B + \cos (90^{\circ} + A) \cdot \sin B$.

Or, writing A' for $90^{\circ} + A$, we have

$$\sin (A'+B) = \sin A' \cdot \cos B + \cos A' \cdot \sin B$$
.

We have proved (Art. 170) that the 'A, B' formulæ are true for all values of A and B between 0° and 90°. And therefore, by what we have said above, they are true for all values of A or B between 0° and 180°. And so on.

Therefore the 'A, B' formulæ are true for any values whatever of the angles A and B.

174. It follows that all formulæ deduced from the 'A, B' formulæ are true for angles of any magnitude whatever.

Thus the 'S, T' formulæ (page 126) are true for angles of any magnitude. Also the formulæ of the last Chapter for multiple angles, and all general formulæ in the Examples, are true for angles of any magnitude.

'A, B' e aid of method alues of

rue for w that used by

107.]

sin *B*,

And ue for

m the

values

angles hapter e Ex-

EXAMPLES. XLV.

- (1). Deduce the values of sin 180° and cos 180° from those of the sine and cosine of 90°.
- (2) The angle A is greater than 180° and less than 270° and $\tan A = \frac{1}{2}$: find $\sin 2A$ and $\sin 3A$.
- (3) The angle θ l'es in the fourth quadrant and $\cos \theta = \frac{1}{4}$, find $\sin 2\theta$ and $\sin 3\theta$. Find also $\cos 3\theta$, and hence determine in which quadrant 3θ lies.
- (4) Prove that the different values of θ which satisfy the equation $\cos p\theta + \cos q\theta = 0$, form two series in A. P. with common differences $\frac{2\pi}{p+q}$ and $\frac{2\pi}{p-q}$ respectively.

ON SUBMULTIPLE ANGLES.

175. We have now proved all the formulæ of the last two Chapters to be universally true.

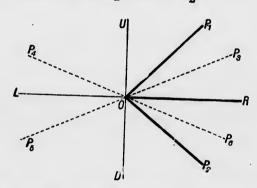
We may expect therefore that any result, which can be obtained from these formulæ by algebraical transformation, will have a complete geometrical interpretation. [See p. 116.]

176. Since,
$$\cos A = 1 - 2 \sin^2 \frac{A}{2}$$
, [Art. 166.]
and, $\cos A = 2 \cos^2 \frac{A}{2} - 1$;
we have, $\sin^2 \frac{A}{2} = \frac{1 - \cos A}{2}$,
and, $\cos^2 \frac{A}{2} = \frac{1 + \cos A}{2}$.

Or,
$$\sin \frac{A}{2} = \pm \sqrt{\frac{1 - \cos A}{2}}$$
$$\cos \frac{A}{2} = \pm \sqrt{\frac{1 + \cos A}{2}}$$

Thus, given the value of $\cos A$ (nothing else being known about the angle A), we get two values for $\sin \frac{A}{2}$, one positive and one negative, and two like values for $\cos \frac{A}{2}$.

177. To prove geometrically that, given the value of $\cos A$ (nothing else being known about the angle A), there are two values each of $\sin \frac{A}{2}$ and of $\cos \frac{A}{2}$.



Let α be the least positive angle which has the given cosine, and let ROP_1 and P_2OR in the figure each = α . Then A is one of the angles described by the revolving line OP when, starting from OR, OP stops either in the position OP or in the position OP_2 ; i.e. any one of the angles

 $2n\pi + \alpha$.

[Art. 147.]

The angle described is (some multiple of four right angles $\pm a$); a half of this is (some multiple of two right angles $\pm \frac{1}{2}a$); so that a half of the angle whose cosine is equal to that of a, may be any one of the angles indicated by OR and the four dotted lines OP_a and OP_b , or OP_4 and OP_b in the figure.

And it will be seen that

$$\sin ROP_{s} = \sin ROP_{s} = -\sin ROP_{s} = -\sin ROP_{s}.$$

Also,
$$\cos ROP_s = -\cos ROP_4 = -\cos ROP_5 = \cos ROP_6$$
.

From these it is clear that there are two values of $\sin\frac{A}{2}$, equal in magnitude and opposite in sign. Also, that there are two like values for $\cos\frac{A}{2}$.

EXAMPLES. XLVI.

(1) When A lies between -1800 and 1800, prove that

$$\cos\frac{A}{2} = +\sqrt{\frac{1+\cos A}{2}}.$$

(2) When A lies between 1800 and 5400, prove that

$$\cos\frac{A}{2} = -\sqrt{\frac{1+\cos A}{2}}.$$

- (3) Find $\sin \frac{A}{2}$ in terms of $\cos A$, when A lies between 180° and 360°.
- (4) Prove that when A lies between $(4n+1)\pi$ and $(4n+3)\pi$, n being a positive integer, $\cos \frac{A}{2} = -\sqrt{\frac{1+\cos A}{2}}$.
- (5) Find $\sin \frac{A}{2}$ in terms of $\cos A$, when A lies between $4n\pi$ and $(4n+2)\pi$, where n is a positive integer.

٠

alue of

known

ne posi-

given h = a.olving n theangles

147.]

178. Since,
$$2 \sin \frac{A}{2} \cdot \cos \frac{A}{2} = \sin A$$
, [Art. 166.] and, $\sin^{9} \frac{A}{2} + \cos^{9} \frac{A}{2} = 1$,

we obtain by addition and subtraction

$$\sin^2 \frac{A}{2} + \cos^2 \frac{A}{2} + 2 \sin \frac{A}{2} \cdot \cos \frac{A}{2} = 1 + \sin A,$$

$$\sin^2 \frac{A}{2} + \cos^2 \frac{A}{2} - 2 \sin \frac{A}{2} \cdot \cos \frac{A}{2} = 1 - \sin A.$$

Therefore
$$\left(\sin\frac{A}{2} + \cos\frac{A}{2}\right)^2 = 1 + \sin A$$
, and $\left(\sin\frac{A}{2} - \cos\frac{A}{2}\right)^2 = 1 - \sin A$.

Whence,
$$\sin \frac{A}{2} + \cos \frac{A}{2} = \pm \sqrt{1 + \sin A}$$
(i),
$$\sin \frac{A}{2} - \cos \frac{A}{2} = \pm \sqrt{1 - \sin A}$$
(ii).

Adding we get,
$$2 \sin \frac{A}{2} = \pm \sqrt{1 + \sin A} \pm \sqrt{1 - \sin A}$$
 (iii),

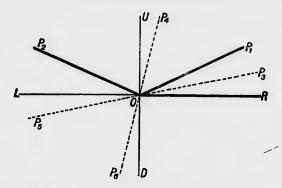
Subtracting we get,
$$2\cos\frac{A}{2} = \pm\sqrt{1+\sin A} \mp \sqrt{1-\sin A}$$
 (iv).

Thus if we are given the value of $\sin A$, (nothing else being known about the angle A), we have four values for $\sin \frac{A}{2}$ and four values for $\cos \frac{A}{2}$.

179. To prove Geometrically that, given the value of $\sin A$ (nothing else being known about the angle A), there are four values for $\sin \frac{A}{2}$, and four values for $\cos \frac{A}{2}$.

Let α be the least positive angle which has the given sine, and let ROP_1 , P_2OL in the figure each = α .

t. 166.]



Then A is one of the angles described by the revolving line OP, when, starting from OR, OP stops either in the position OP_1 or in the position OP_2 .

The angle described is either (an even multiple of two right angles +a) or (an odd multiple of two right angles -a); a half of this is either (an even multiple of one right angle $+\frac{1}{2}a$) or (an odd multiple of one right angle $-\frac{1}{2}a$); so that a half of the angle whose sine is equal to that of a may be any one of the angles indicated by OR and the dotted lines OP_3 and OP_5 , or OP_4 and OP_6 in the figure.

In the figure, $ROP_8 = P_4OU = LOP_5 = P_6OD$.

And $\sin \frac{A}{2}$ may have any one of the values $\sin ROP_s$, $\sin ROP_s$, $\sin ROP_s$, $\sin ROP_s$. These values are all different, and are those given by the solution (iii).

Hence, there are four values for $\sin \frac{A}{2}$, of the nature indicated by the solution (iii); also four values for $\cos \frac{A}{2}$ (iv).

...(i),

...(ii).

(iii),

(iv).

g else es for

ue of there

given

180. If we know the magnitude of A, we can decide which sign to take in the formulæ

$$\sin\frac{A}{2} + \cos\frac{A}{2} = \pm\sqrt{1 + \sin A}....(i),$$

$$\sin\frac{A}{2} - \cos\frac{A}{2} = \pm\sqrt{1 - \sin A}....(ii).$$

Example. When
$$\frac{A}{2}$$
 lies between -45° and $+45^{\circ}$, $\cos \frac{A}{2}$ is greater than $\sin \frac{A}{2}$ and is positive.

So that
$$\left(\sin\frac{A}{2} + \cos\frac{A}{2}\right)$$
 is positive, and $= +\sqrt{1 + \sin A}$,

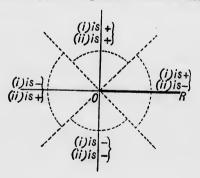
and
$$\left(\sin\frac{A}{2} - \cos\frac{A}{2}\right)$$
 is negative, and $= -\sqrt{1 - \sin A}$.

When
$$\frac{A}{2}$$
 lies between +45° and +135°,

$$\sin \frac{A}{2}$$
 is greater than $\cos \frac{A}{2}$, and is positive.

So that
$$\left(\sin\frac{A}{2} + \cos\frac{A}{2}\right)$$
 and $\left(\sin\frac{A}{2} - \cos\frac{A}{2}\right)$ are both positive. And so on.

The following diagram completes the above results.



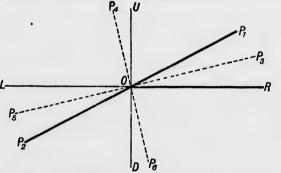
decide

sitive.

181. Since
$$\tan A = \frac{2 \tan \frac{A}{2}}{1 - \tan^3 \frac{A}{2}}$$
, $\therefore \tan^3 \frac{A}{2} + \frac{2 \tan \frac{A}{2}}{\tan A} - 1 = 0$, whence $\tan \frac{A}{2} = \frac{-1 \pm \sqrt{1 + \tan^3 A}}{\tan A}$.

Thus, given $\tan A$ we find two unequal values for $\tan \frac{A}{2}$ one positive and one negative.

182. The student will be able by the aid of the following figure to verify this result geometrically.



183. We may remark that in this figure P_3OP_5 and P_4OP_6 are straight lines at right angles to each other. So that $\tan P_3OR = -\cot P_4OR$; or, $\tan P_3OR$. $\tan P_4OR = -1$.

Hence, one value of $\tan \frac{A}{2}$ is the reciprocal of the other, and of opposite sign. So that there is always one positive value of $\tan \frac{A}{2}$, and one negative; one numerically greater than unity and the other numerically less than unity.

Example. If A = 1900, prove that $\tan\frac{A}{2} = \frac{-1 - \sqrt{1 + \tan^2 A}}{\tan A}.$

Now $\tan A = \tan 190^\circ$, which is positive; $\tan \frac{A}{2} = \tan 95^\circ$, which is negative. Also $\tan \frac{A}{2} = \frac{-1 \pm \sqrt{1 + \tan^2 A}}{\tan A}$; the negative value of which is $\frac{-1-\sqrt{1+\tan^2 A}}{\tan A}$.

EXAMPLES. XLVII.

(1) State the signs of $\left(\sin\frac{A}{2} + \cos\frac{A}{2}\right)$ and $\left(\sin\frac{A}{2} - \cos\frac{A}{2}\right)$ when $\frac{A}{2}$ has the following values:

(ii) 191°, (iii) 290°, (iv) 345°, (vi) -275°, (vii) -470°, (viii) 1000°.

(2) Prove that the formulæ which give the values of $\sin \frac{A}{2}$ and of $\cos \frac{A}{2}$ in terms of $\sin A$, are unaltered when A has the values

(i) 92°, 268°, 900°, $4n\pi + \frac{3}{4}\pi$, or $(4n+2)\pi - \frac{3}{4}\pi$.

(ii) 88°, -88°, 770°, -770°, or $4n\pi \pm \frac{\pi}{8}$.

(3) Find the values of (i) $\sin 9^{\circ}$, (ii) $\cos 9^{\circ}$, (iii) $\sin 81^{\circ}$, (iv) $\cos 189^{\circ}$, (v) $\tan 202\frac{1}{2}^{\circ}$, (vi) $\tan 97\frac{1}{2}^{\circ}$.

(4) If $A = 200^{\circ}$, prove that

(i)
$$2 \sin \frac{A}{2} = +\sqrt{1 + \sin A} + \sqrt{1 - \sin A}$$
.

(ii) $\tan \frac{A}{2} = \frac{-(1 + \sqrt{1 + \tan^2 A})}{\tan A}$. If A lie between 270° and 360°, prove that

(i)
$$2\sin\frac{A}{2} = \sqrt{1 - \sin A} - \sqrt{1 + \sin A}$$
.

(ii) $\tan \frac{A}{2} = -\cot A + \csc A$.

(6) If A lie between 450° and 630° prove that $2\sin\frac{A}{2} = -\sqrt{1+\sin A} - \sqrt{1-\sin A}.$ (7) Find the limits between which $\frac{A}{2}$ must lie when

$$2\sin\frac{A}{2} = \sqrt{1+\sin A} - \sqrt{1-\sin A},$$

(8) Given that A lies between 450° and 630°, prove that

$$2\cos\frac{A}{2} = -\sqrt{1+\sin A} + \sqrt{1-\sin A}.$$

(9) If A lie between $n \times 360^{\circ} - 90^{\circ}$ and $n \times 360^{\circ} + 90^{\circ}$ where n is a positive integer, prove that

$$\tan\frac{A}{2} = \frac{-1 + \sqrt{1 + \tan^2 A}}{\tan A};$$

and that when A lies between $n \times 360^{\circ} + 90^{\circ}$ and $n \times 360^{\circ} + 270^{\circ}$, then $\tan \frac{A}{2} = \frac{-1 - \sqrt{1 + \tan^2 A}}{\tan A}.$

- (10) Prove geometrically that if we are given the value of $\sin A$, there are three different values for $\sin \frac{A}{3}$, and $\sin A$ different values for $\cos \frac{A}{3}$.
- (11) Prove geometrically that, if we are given the value of $\cos A$, there are three different values for $\cos \frac{A}{3}$, and $\sin A$ different values for $\sin \frac{A}{3}$.
- (12) Prove that if we are given the value of tan A there are three different values for $\tan \frac{A}{3}$.
- (13) Given the value of $\tan A$, prove that there are four values each for $\sin \frac{A}{2}$ and $\cos \frac{A}{2}$.
- (14) Given the value of $\sin A$, prove that there are two values for $\tan \frac{A}{2}$

5°, which

 $-\cos\frac{A}{2}$

1000%. $n\frac{A}{2}$ and

values

sin 81º,

184. It is important if possible, in solving Trigonometrical equations, to avoid squaring both sides of the equation.

Example. Solve $\cos \theta = k \sin \theta$.

If we square both sides of the equation we get $\cos^2 \theta = k^2 \sin^2 \theta = k^2 (1 - \cos^2 \theta)$.

$$\therefore \cos^2 \theta = \frac{k^2}{1 + k^2}, \text{ or } \cos \theta = \pm \frac{k}{\sqrt{1 + k^2}}.$$

Now if a be the least angle such that $\cos \theta = \frac{k}{\sqrt{1+k^2}}$,

then the above gives us $\theta = n\pi \pm a$ (i).

But the equation may be written $\cot \theta = k$,

whence $\theta = n\pi + a$ (ii).

- (ii) is the complete solution of the proposed equation, while (i) is in fact the solution of both $\cos \theta = k \sin \theta$ and also of $\cos \theta = -k \sin \theta$. So that by squaring both sides of the equation we obtain solutions which do not belong to the given equation.
- 185. We can often avoid squaring by the use of a Subsidiary Angle.

Example. Solve $a \cos \theta + b \sin \theta = 1$.

That is $a\left(\cos\theta + \frac{b}{a}\sin\theta\right) = 1.$

Find in the tables the angle whose tangent is $\frac{b}{a}$; let it be a.

Then $\frac{b}{a}$ = tan a; and the equation becomes

$$a(\cos\theta+\tan a.\sin\theta)=1$$
,

an

sin

or
$$a\left(\frac{\cos\theta\cdot\cos a+\sin\theta\cdot\sin a}{\cos a}\right)=1,$$

or
$$\cos(\theta - a) = \frac{\cos a}{a}$$
.

Crigonoof the

...(i).

..(ii).

, while

also of uation

tion.

of a

be a.

Find from the Tables the value of $\cos a$. Next find from the Tables the magnitude of the angle β whose $\cos a = \frac{\cos a}{a}$, and we get $\cos (\theta - a) = \cos \beta$;

 $\therefore \theta - a = 2i m \pm \beta,$

or

 $\theta = a + 2n\pi + \beta$.

186. Def. When an angle a is introduced to facilitate calculation it is called a Subsidiary Angle.

EXAMPLES. XLVIII.

Solve the following equations.

- (1) $2\sin\theta + 2\cos\theta = \sqrt{2}$.
- (2) $\sin \theta + \sqrt{3} \cdot \cos \theta = 1$.
- (3) $\sqrt{2} \sin \theta + \sqrt{2} \cos \theta = \sqrt{3}$.
- (4) $\sin \theta \cos \theta = 1$.
- (5) $\sin \theta + \cos \theta = 1$. (6)
 - (6) $\sqrt{3}\sin\theta \cos\theta \sqrt{2} = 0$.
- (7) $2\sin x + 5\cos x = 2$. $[2.5 = \tan 68^{\circ} 12']$
- (8) $3\cos x 8\sin x = 3$. $[2.6 = \tan 69^{\circ} 26' 30'']$
- (9) $4\sin x 15\cos x = 4$. [3.75 = $\tan 75^{\circ} 4'$]
- (10) $\cos(a+x) = \sin(a+x) + \sqrt{2}\cos\beta$.

*On the Loverse Notation.

187. The equation $\sin \theta = a$ means that θ is an angle whose sine i. a.

 $\theta = \sin^{-1} a$ is a convenient way of writing the same equation.

Thus $\sin^{-1}\alpha$ (is an angle, and) is an abbreviation for an angle whose sine is α .

Example 1. Show that 30° is one value of $\sin^{-1} \frac{1}{2}$.

We know that $\sin 30^0 = \frac{1}{2}$. Therefore 30^0 is an angle whose sine is $\frac{1}{2}$, or, $30^0 = \sin^{-1} \frac{1}{2}$.

L. E. T.

Example 2. Prove that 450 is one value of tan-1 1 + tan-1 1. By definition, $\tan^{-1}\frac{1}{2}$ is an angle whose tangent is $\frac{1}{2}$;

let a be one value of $\tan^{-1}\frac{1}{2}$; so that $\tan a = \frac{1}{2}$,

and let β be one value of $\tan^{-1}\frac{1}{3}$; so that $\tan \beta = \frac{1}{3}$.

Now,
$$\tan (\tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{3}) = \tan (\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \cdot \tan \beta}$$

= $\frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{2} \times \frac{1}{3}} = 1$,

and, $\tan 45^{\circ} = 1$.

 $\tan (\tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{3}) = \tan 45^{\circ}$

... one value of $(\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3})$ is 45°.

Prove that $(\tan^{-1} a + \tan^{-1} b) = \tan^{-1} \frac{a+b}{1-ab}$.

Let

 $a = \tan^{-1} a$ and let $\beta = \tan^{-1} b$;

so that and

 $\tan^{-1}a + \tan^{-1}b = \alpha + \beta,$ $\tan (\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} = \frac{a + b}{1 - ab},$

 $\therefore a+\beta = \tan^{-1}\frac{a+b}{1-ab}; \text{ and } \therefore (\tan^{-1}a + \tan^{-1}b) = \tan^{-1}\frac{a+b}{1-ab}.$

*EXAMPLES. XLIX.

Prove that the following statements are true when we take for sin-1 a, etc. their least positive value.

(1) $\sin^{-1}\frac{3}{5} = \cos^{-1}\frac{4}{5} = \tan^{-1}\frac{3}{4}$.

(2) $\sin^{-1}\frac{1}{2} = \cos^{-1}\frac{1}{2}\sqrt{3} = \cot^{-1}\sqrt{3}$.

 $\sin^{-1} \alpha = \cos^{-1} \sqrt{1 - \alpha^2} = \tan^{-1} \frac{\alpha}{\sqrt{1 - \alpha^2}}$

(4) If $a = \sin^{-1} \frac{3}{5}$ and $\beta = \cos^{-1} \frac{3}{5}$, then $a + \beta = \frac{1}{2}\pi$.

If $A = \sin^{-1}\alpha$ and $B = \cos^{-1} \alpha$, then $A + B = 90^{\circ}$.

 $\tan^{-1}\frac{5}{7} + \tan^{-1}\frac{1}{6} = \frac{\pi}{4}$. (7 $\tan^{-1}\frac{1}{11} + 2\tan^{-1}\frac{1}{7} = \tan^{-1}\frac{1}{2}$.

p

r

fi:

tv

 $\tan^{-1} m_1 + \tan^{-1} m_2 = \tan^{-1} \frac{m_1 + m_2}{1 - m_1 m_2}$

 $\checkmark (9) \quad \sin(2\sin^{-1}\alpha) = 2\alpha\sqrt{1-\alpha^2} \cdot (10) \cdot 2\cos^{-1}\alpha = \cos^{-1}(2\alpha^2 - 1).$

(11) $\cos^{-1}\frac{1}{2} + 2\sin^{-1}\frac{1}{2} = 120^{\circ}$. (12) $2\sin^{-1}\frac{4}{5} - \sin^{-1}\frac{2}{5}\frac{4}{5} = 2\cos^{-1}\frac{2}{3}\frac{4}{5}$.

(13) $2 \tan^{-1}(\cos 2a) = \tan^{-1}\left(\frac{\cot^2 a - \tan^2 a}{2}\right)$.

an -1 1.

 $\frac{n\beta}{an\beta}$

 $\frac{a+b}{-ab}$

we take

an-1 1/2.

 (a^2-1) . $\cos^{-1}\frac{24}{25}$.

(14) $\tan^{-1} x + \tan^{-1} y + \tan^{-1} \frac{1 - x - y - xy}{1 + x + y - xy} = \frac{\pi}{4}$

(15) $4 \tan^{-1} \frac{1}{5} - \tan^{-1} \frac{1}{239} = \frac{1}{4}\pi$.

(16) $\sin^{-1}\frac{4}{5} + \sin^{-1}\frac{8}{17} + \sin^{-1}\frac{13}{85} = \frac{1}{2}\pi$.

(17) $\tan^{-1}\sqrt{5} (2-\sqrt{3}) - \cot^{-1}\sqrt{5} (2+\sqrt{3}) = \cot^{-1}\sqrt{5}$.

(18) If $\sin^{-1}m + \sin^{-1}n = \frac{1}{2}\pi$,

prove that $m\sqrt{1-n^2} + n\sqrt{1-m^2} = 1.$

188. The student must notice carefully that such a statement as $\sin^{-1}\frac{1}{2} = \cos^{-1}\frac{1}{2}\sqrt{3}$ is not an identity.

For $\sin^{-1}\frac{1}{2}$ is one of the values of $n\pi + (-1)^n 30^\circ$, * and $\cos^{-1}\frac{1}{2}\sqrt{3}$ is one of the values of $2n\pi \pm 30^\circ$.

Thus $150^\circ = \sin^{-1}\frac{1}{2}$, but 150° is not $= \cos^{-1}\frac{1}{2}\sqrt{3}$.

**MISCELLANEOUS EXAMPLES, L.

(1) Prove that $\tan^{-1}\frac{1}{1+a} + \tan^{-1}\frac{1}{1-a} + \tan^{-1}\frac{2}{a^2} = n\pi$.

(2) Prove that $\tan^{-1} \frac{a-1}{a} + \tan^{-1} \frac{1}{2a-1} = n\pi + \frac{\pi}{4}$.

(3) Prove that $\sin^{-1} x - \sin^{-1} y = \cos^{-1} \{xy \pm \sqrt{1 - x^2 - y^2 + x^2 y^2}\}.$

(4) If $\tan^{-1}\frac{x+1}{x+2} + \tan^{-1}\frac{x-1}{x-2} = \frac{\pi}{4}$, show that $x^2 = \frac{1}{2}$.

(5) Prove that $\tan^{-1} a + \cot^{-1} a = (2n+1) \frac{\pi}{9}$.

(6) If $\tan^{-1}a + \tan^{-1}\beta + \tan^{-1}\gamma = \pi$, prove that $a + \beta + \gamma = a\beta\gamma$.

(7) Solve the equation $\tan^{-1} \frac{1}{x-1} - \tan^{-1} \frac{1}{x+1} = \frac{\pi}{12}$.

* We may illustrate this by considering the case of a man running round and round a circuiar course; if we are given the sine of the angle which a line joining his position to the centre makes with some fixed line through the centre, we are given that his position is one of two points on the circumference (but we are not told how many times he has been round); if we are also given the cosine of the angle, we know which of those two points is the position referred to.

(8) Solve the equation

$$\tan^{-1}(x+1) - \tan^{-1}(x-1) = \cot^{-1}(x^3-1)$$
.

- (9) Solve the equation $\sin^{-1} \frac{2x}{1+x^2} + \tan^{-1} \frac{2x}{1-x^2} = \pi$.
- (10) Prove that

$$\tan^{-1}\frac{a-\sqrt{a^2-4}}{2\sqrt{a+1}} + \tan^{-1}\frac{1}{\sqrt{a+1}} + \tan^{-1}\frac{a+\sqrt{a^2-4}}{2\sqrt{a+1}} = n\pi + \frac{\pi}{2}.$$

(11) If a be positive and less than unity, and if a be the least value of $\sin^{-1} a$, then

$$\sin^{-1} a + \cos^{-1} a = n\pi + (-1)^n a \pm \left(\frac{\pi}{2} - a\right).$$

(12) Prove that tan A and sin 2A have always the same sign.

Solve the six following equations.

- (13) $\cos A + \cos 3A + \cos 5A = 0$.
- (14) $\sin 5\theta + \sin 3\theta + \sin \theta = 3 4 \sin^2 \theta$.
- (15) $2\sin^2 3A + \sin^2 6A = 2$.
- (16) $a(\cos 2x-1)+2b(\cos x+1)=0$.
- (17) $\sin(m+n)\theta + \sin 2m\theta + \sin(m-n)\theta = 0$.
- (18) $\frac{\sin \{\pi x (x+y)\} + \sin \{\pi y (x+y)\} = 0,}{\sin \pi x^2 + \sin \pi y^2 = 0.}$
- (19) Trace the changes in the sign and magnitude of the following expressions, as θ changes from 0 to π .
 - (i) $2\sin\theta \cdot \cos\theta$.
- (ii) $\cos^2 \theta \sin^2 \theta$.
- (iii) $\sin 3\theta$.
- (iv) cot 2A.
- (v) $\sin(\theta+a)$.
- (vi) $\cos(2\theta a)$.

(20) Explain why the equations

$$\theta = n\pi + (-1)^n a$$
 and $\frac{\pi}{2} - \theta = 2n\pi \pm \left(\frac{\pi}{2} - a\right)$

have exactly the same series of solutions.

(21) Explain why exactly the same series of angles are given by the two equations $\theta + \frac{\pi}{4} = n\pi + (-1)^n \frac{\pi}{6}$, and $\theta - \frac{\pi}{4} = 2n\pi \pm \frac{\pi}{3}$.

CHAPTER XIV.

ON LOGARITHMS.

189. In Algebra it is explained

- that the multiplication of different powers of the same quantity is effected by adding the indices of those powers;
- (ii) that division is effected by subtracting the indices;
- (iii) that involution and evolution are respectively effected by the multiplication and division of the indices.

Example 2. If $347 = 10^{2.5403295} *$ and $461 = 10^{2.9037009}$, prove that $347 \times 461 = 10^{5.2040304}$.

Q. E. D.

We have $347 \times 461 = 10^{2\cdot 5403295} \times 10^{2\cdot 0637009}$ = $10^{2\cdot 5403295 + 2\cdot 0037009}$ = $10^{5\cdot 2040304}$

* The number 347 lies between 100 and 1000, i.e. between 10² and 10³. Hence, if there is a power of 10 which is equal to 347, its index must be greater than 2 and less than 3, i.e. equal to 2+a fraction.

 $\frac{\pi}{2}$.

be the

e same

of the

given π

EXAMPLES. LI.

- (1) If $m=a^h$, $n=a^k$, express in terms of a, h and k,
- (i) $m^2 \times n^3$. (ii) $m^4 \div n^5$. (iii) $\sqrt[8]{m^4 \times n^5}$. (iv) $\sqrt[6]{m^5 \times n^5}$.
- (2) If $453=10^{2\cdot6600982}$ and $650=10^{2\cdot8129134}$, find the indices of the powers of 10 which are equal to
- (i) 453×650 . (ii) $(453)^4$. (iii) $650^3 \times 453^2$. (iv) $\sqrt[3]{453}$.
- (v) $\sqrt{453} \times \sqrt[6]{650}$. (vi) $\sqrt[6]{453} \times (650)^3$. (vii) $\sqrt{453 \times 650}$.
 - (3) Express in powers of 2 the numbers, 8, 32, $\frac{1}{2}$, $\frac{1}{16}$, 125, 128.
 - (4) Express in powers of 3 the numbers, 9, 81, $\frac{1}{3}$, $\frac{1}{27}$, $\frac{1}{1}$, $\frac{1}{31}$.
- 190. Suppose that some convenient number (such as 10) having been chosen, we are given a list of the indices of the powers of that number, which are equivalent to every whole number from 1 up to 100000

Such a list could be used to shorten Arithmetical calculations.

Example 1. Multiply 3759 by 4781 and divide the result by 2690

Looking in our *list* we should find $3759 = 10^{3\cdot5750723}$, $4781 = 10^{3\cdot5795187}$, $2690 = 10^{3\cdot1297523}$.

Therefore $3759 \times 4781 \div 2690 = 10^{3.5750723} \times 10^{3.0795187} \div 10^{3.4297523} = 10^{3.5760723 + 3.0795187 - 3.4297523} = 10^{3.5760723 + 3.0795187 - 3.4297523} = 10^{3.5760723 + 3.0795187}$

The list will give us that $10^{3.8248387} = 6680.9$.

Therefore the answer correct to five significant figures is 6680.9.

Example 2. Simplify $3^6 \times 2^{10} \div \sqrt[3]{17601}$.

The list gives $2 = 10^{-3010300}$, $3 = 10^{-4771213}$ and $17601 = 10^{4-2455373}$

Thus $3^6 \times 2^{10} \div \sqrt[3]{17601} = (10^{4771213})^6 \times (10^{3010300})^{10} \div (10^{4\cdot2455378})^{\frac{1}{11}}$ = $10^{2\cdot8627278} \times 10^{3\cdot0103000} \div 10^{1\cdot4151791}$ = $10^{2\cdot8627278+3\cdot0103000-1\cdot4151791}$ = $10^{4\cdot4578487}$.

And from our list we find 104'4578487 = 28697, nearly.

EXAMPLES. LII.

Given that $2=10^{3010300}$, $3=10^{4771213}$ and $7=10^{8450980}$, find the indices of the powers of 10 equivalent to the quantities in the first 6 examples.

- (1) 2^2 , 3^2 , 2^3 , 2×3 , 2^4 , 7^2 .
- (2) 14, 16, 18, 24, 27, 42.
- (3) 10, 5, 15, 25, 30, 35.
- (4) 36, 40, 48, 50, 200, 1000.
- (5) $3^{10} \times 7^{10} \div 2^{20}$, $2^{12} \times 3^{20} \div 7^{11}$.
- (6) $\sqrt[3]{21} \times \sqrt[4]{18}$, $\sqrt[3]{49} \times 4^5 \times \sqrt[3]{3^4} \times 2^{10}$.
- (7) Find approximately the numerical value of $\sqrt[4]{42}$ having given that $10^{1023249} = 1.4532$ nearly.
- (8) Find approximately the numerical value of $\sqrt[3]{(42)^4} \times \sqrt[3]{(42)^3}$ having given that $10^{3\cdot38177} = 2408\cdot6$.
- (9) Find the value (i) of $\sqrt[3]{6} \times \sqrt[4]{7} \times \sqrt[5]{9}$, (ii) of $\sqrt[10]{2} \times 3^{-\frac{5}{4}} \times 7^{\frac{7}{11}}$ having given that $10^{-6015007} = 4.5868$ and $10^{--0285004} = 93646$.
- (10) Find the value of $(67\cdot21)^{\frac{3}{5}} \times (49\cdot62)^{\frac{1}{5}} \times (3\cdot971)^{-\frac{7}{5}}$ having given that $67\cdot21=10^{1\cdot8274339}$, $49\cdot62=10^{1\cdot6956508}$, $3\cdot971=10\cdot5988999$ and $10\cdot5971310=3\cdot9549$.
- (11) Find the area of a square field whose side is $640 \cdot 12$ feet; having given that $640 \cdot 12 = 10^{28002014}$ and that $10^{5 \cdot 0125228} = 40975 \cdot 3$.
- (12) Find the edge of a solid cube which contains 42601 cubic inches; having given $42601 = 10^{4\cdot6294198}$ and $10^{1\cdot6431399} = 34\cdot925$.
- (13) Find the edge of a solid cube which contains 34.701 cubic inches; having given that $34.701 = 10^{1.5403420}$, and $10^{.5134478} = 3.2617$.
- (14) Find the volume of the cube the length of one of whose edges is 47.931 yards; having given that $47.931 = 10^{1.0806165}$ and that $10^{5.0418495} = 110115$.

 $n^5 \times n^3$. dices of

 $\sqrt[3]{453}$.

 3×650 .

25, 128.

·i, 🚹.

as 10) ices of

every

al cal-

ult by

4781

3.4297523

680.9,

6373

- 191. The powers of any other number than 10 might be used in the manner explained above, but 10 is the most convenient number, as will presently appear.
- 192. This method, in which the *indices* of the powers of a certain fixed number (such as 10) are made use of, is called the *Method of Logarithms*.

Indices thus used are called logarithms.

The fixed number whose powers are used is called the base. Hence we have the following definition:

DEF. The logarithm of a number to a given base, is the index of that power of the base, which is equal to the given number.

Thus, if l be the logarithm of the number n to the base a, then $a^{l}=n$.

193. The notation used is $\log_a n = l$.

Here, $\log_a n$ is an abbreviation for the words 'the logarithm of the number n to the base a.' And this means, as we have explained above, 'the index of that power of a which is equal to the number n.'

fi

Example 1. What is the logarithm of $a^{\frac{3}{2}}$ to the base a?

That is, what is the index of the power of a which is $a^{\frac{3}{2}}$?

The index is $\frac{3}{2}$; therefore $\frac{3}{2}$ is the required logarithm, or $\log_a a^{\frac{3}{2}} = \frac{3}{8}$.

Example 2. What is the logarithm of 32 to the base 2?

That is, what is the index of the power of 2 which is equal to 32?

Now $32=2^5$. : the required index is 5; or $\log_2 32=5$

0 might he most

wers of e of, is

led the

base, is to the

base a,

logains, as

t } \$ } rithm,

? equal

5.

The use of Logarithms is based upon the following propositions:—

I. The logarithm of the product of two numbers is equal to the logarithm of one of the numbers + the logarithm of the other.

For, let $\log_a m = x$ and $\log_a n = y$, then, $\log_a (m \times n) = \log_a (a^x \times a^y) = \log_a (a^{x+y}) = x + y$ $= \log_a m + \log_a n$.

II. The logarithm of the quotient of two numbers is the logarithm of the dividend – the logarithm of the divisor.

For,
$$\log_a \left(\frac{m}{n}\right) = \log_a \left(\frac{a^x}{a^y}\right) = \log_a \left(a^{x-y}\right) = x - y$$
 [as above]
= $\log_a m - \log_a n$.

III. The logarithm of a number raised to a power k is k times the logarithm of the number.

For,
$$\log_a(m^k) = \log_a\{(a^x)^k\} = \log_a(a^{kx}) = kx$$
$$= k \text{ times } \log_a m.$$

Examples. Given

 $\log_{10} 2 = 3010300$, $\log_{10} 3 = 4771213$, $\log_{10} 7 = 8450980$ find the values of the following:

(i)
$$\log_{10} 6 = \log_{10} (2 \times 3) = \log_{10} 2 + \log_{10} 3$$

= $\cdot 3010300 + \cdot 4771213$
= $\cdot 7781513$. [by I.]

(ii)
$$\log_{10} \frac{7}{3} = \log_{10} 7 - \log_{10} 3 = .8450980 - .4771213$$
 [by II.] = .3679767.

(iii)
$$\log_{10} 3^5 = 5 \text{ times } \log_{10} 3 = 5 \times .4771213$$
 [by III.]

(iv)
$$\log_{10} \sqrt[3]{\frac{3 \times 4}{7}} = \log_{10} \left(\frac{3 \times 4}{7}\right)^{\frac{1}{3}} = \frac{1}{3} \text{ of } \log_{10} \frac{3 \times 4}{7}$$
 [by III.]
= $\frac{1}{3}$ of $\{\log 3 + \log 4 - \log 7\}$ [by I. and II.]
= $\frac{1}{3}$ of $\{4771213 + \text{twice } :30103 - :8450980\}$
= $\frac{1}{3}$ of $:2340833 = :0780278$.

(v)
$$\log_{10} 5 = \log_{10} \frac{10}{3} = \log_{10} 10 - \log_{10} 2 = 1 - 3010300$$

= '6989700.

EXAMPLES. LIII.

- (1) Find the logarithms to the base a of a^3 , $a^{\frac{1}{3}}$, $\sqrt[4]{a}$, $\sqrt[3]{a^2}$, $\frac{1}{a^{\frac{5}{3}}}$.
- (2) Find the logarithms to the base 2 of 8, 64, $\frac{1}{2}$, ·125, ·015625, $\sqrt[4]{64}$.
 - (3) Find the logarithms to the base 3 of 9, 81, $\frac{1}{3}$, $\frac{1}{27}$, $\frac{1}{1}$, $\frac{1}{81}$.
 - (4) Find the logarithms to base 4 of 8, $\sqrt[3]{16}$, $\sqrt[3]{\cdot 5}$, $\sqrt[3]{\cdot 015625}$.
 - (5) Find the value of $\log_2 8$, $\log_2 5$, $\log_3 243$, $\log_5 (04)$, $\log_{10} 1000$, $\log_{10} 001$.
 - (6) Find the value of $\log_a a^{\frac{4}{3}}$, $\log_b \sqrt[3]{b^2}$, $\log_8 2$, $\log_{27} 3$, $\log_{100} 10$. Given that

 $\log_{10} 2 = 3010300$, $\log_{10} 3 = 4771213$ and $\log_{10} 7 = 8450980$, find the values of

- (7) $\log_{10} 6$, $\log_{10} 42$, $\log_{10} 16$. (8) $\log_{10} 49$, $\log_{10} 36$, $\log_{10} 63$.
- (9) $\log_{10} 200$, $\log_{10} 600$, $\log_{10} 70$. (10) $\log_{10} 5$, $\log_{10} 3 \cdot 3$, $\log_{10} 50$.
- (11) $\log_{10} 35$, $\log_{10} 150$, $\log_{10} \cdot 2$. (12) $\log_{10} 3 \cdot 5$, $\log_{10} 7 \cdot 29$, $\log_{10} \cdot 081$.
- (13) Given $\log_{10} 2$, $\log_{10} 3$, $\log_{10} 7$, find the value (i) of $\sqrt[3]{6} \times \sqrt[4]{7} \times \sqrt[5]{9}$, (ii) of $\sqrt[5]{2} \times 3^{-\frac{5}{4}} \times 7^{\frac{7}{17}}$. [·6615067= $\log_{10} 4$ ·5868; -·0285094= $\log_{10} \cdot 93646$].
- (14) Prove that (i) $\log \{\sqrt[3]{2} \times \sqrt[4]{7} \div \sqrt[5]{9}\} = \frac{1}{3} \log 2 + \frac{1}{4} \log 7 \frac{2}{6} \log 3,$ (ii) $\log \{\sqrt[9]{2} \times 3^{-\frac{5}{4}} \times 7^{\frac{7}{11}}\} = \frac{1}{10} \log 2 - \frac{5}{4} \log 3 + \frac{7}{11} \log 7.$
- (15) If $\log_{10} \alpha = 2.6560982$ and $\log_{10} b = 2.8129134$, show that
 - (i) $\log_{10} ab = 5.4690116$,
- (ii) $\log_{10} \alpha^4 = 10.6243928$,
- (iii) $\log_{10} a^2 b^3 = 13.7509366$,
- (iv) $\log_{10} \sqrt[8]{a} = .8853661$.
- (v) $\log_{10}(a^3b)^{\frac{1}{6}} = 1.7968680$,
- (vi) $\log_{10} a^{\frac{1}{5}} b^3 = 8.9699598$

t

ri

al

10

(16) Show (i) that $\log_{10} \sqrt[3]{21} \times \sqrt[4]{18} = .7545579$, (ii) that $\log_{10} \sqrt[3]{(.49 \times 4^5)} \times \sqrt[3]{(3^4 \times 2^{10})} = 2.989843$.

$\sqrt[3]{a^2}$, $\frac{1}{a^{\frac{5}{2}}}$.

½, ·125,

 $\frac{1}{81}$.

10 001.

0980,

log₁₀63. log₁₀50.

)g₁₀·081.

(i) of

93646].

 $\frac{2}{6}\log 3,$ $\log 7.$

v that 43928, 1661.

399598.

COMMON LOGARITHMS.

194. That System of Logarithms whose base is 10, is called the Common System of Logarithms.

In speaking of logarithms hereafter, common logarithms are referred to unless the contrary is expressly stated.

195. We shall assume that a power of ten can be found which is practically equivalent to any number.

196. The indices of these powers of 10, i.e. the Common Logarithms, are in general incommensurable numbers.

Their value for every whole number, from 1 to 100000, has been calculated to 7 significant figures. Thus any calculation made with the aid of logarithms is as exact as the most carefully observed measurement (cf. Arts. 17, 216).

197. Now, the greater the index of any power of 10, the greater will be the numerical value of that power; and the less the index, the less will be the numerical value of the power.

Hence, if one number be less than another, the logarithm of the first will be less than the logarithm of the second.

But the student should notice that logarithms (or indices) are not proportional to the corresponding numbers.

Example. 1000 is less than 10000; and the logarithm to base 10 of the first is 3 and of the second is 4

But 1000, 10000, 3, 4 are not in proportion.

198. We know from Algebra that

and so on.

Hence, the logarithm of 1 is 0.

The (common) logarithm of any number greater than 1 is positive.

The logarithm of any positive number less than 1 is negative.

199. We observe also

that the logarithm of any number between 1 and 10 is a positive decimal fraction;

b

fo

of

of

that the logarithm of any number between 10 and 100, i.e. between 10¹ and 10², is of the form 1 + a decimal fraction;

that the logarithm of any number between 1000 and 10000, i.e. between 10⁸ and 10⁴, is of the form 3 + a decimal fraction;

and so on.

200. We observe also

that the logarithm of any number between 1 and ·1, i.e. between 10° and 10⁻¹, can be written in the form -1 + a decimal fraction;

that the logarithm of any number between ·1 and ·01, i.e. between 10⁻¹ and 10⁻², can be written in the form – 2 + a decimal fraction; and so on.

Example 1. How many digits are there in the integral part of the number whose logarithm is 3.67192?

We know that $3 = \log 1000$ and $4 = \log 10000$;

.: 3.67192=log of some number between 1000 and 10000; that is, the integral part of the number has 4 digits.

Example 2. Given that $\log 3 = 4771213$, find the number of the digits in the integral part of 3^{20} .

Here, $\log (3^{20}) = 20$ times $\log 3 = 9.542426$; hence, $\log (3^{20})$ lies between 9 and 10; therefore, as in Example 1, the number lies between 10^9 and 10^{10} ; that is, its integral part has 10 digits.

Example 3. Supposing that the decimal part of the logarithm is to be kept positive, find the integral part of the logarithm of 0001234.

This number is greater than '0001 i.e. than 10⁻⁴ and less than '001, i.e. than 10⁻³.

Therefore its logarithm lies between -3 and -4, and therefore it is -4+a fraction; the integral part is therefore -4.

EXAMPLES. LIV.

Note. The decimal part of a logarithm is to be kept positive.

- (1) Write down the integral part of the common logarithms of 17601, 361·1, 4·01, 723000, 29.
- (2) Write down the integral part of the common logarithms of 04, 0000612, 7963, 001201. (See Note above.)
- (3) Write down the integral part of the common logarithms of 7963, 1, 2.61, 79.6341, 1.0006, .00000079.
- (4) How many digits are there in the integral part of the numbers whose common logarithms are respectively

3.461, .3020300, 5.4712301, 2.6710100?

han 1 is

)-8

an l is

n l and

reen 10 of the

n 1000 of the

veen 1 can be action; een ·1

an be

(5) Give the position of the first significant figure in the numbers whose logarithms are

-2 + .4612310, -1 + .2793400, -6 + .1763241.

- (6) Give the position of the first significant figure in the numbers whose common logarithms are 4.2990713, 3040595, 2.5860244, -3+1760913, -1+3180633, 4980347.
- (7) Given $\log_{10} 2 = 30103$, find the number of digits in the integral part of 8^{10} , 2^{12} , 16^{20} , 2^{120} .

n

p

n

ol

pa

gr fig

tiv

on

po

ma

am abl

3.6

- (8) Given that $\log 7 = .8450980$, find the number of digits in the integral part of 7^{10} , 49^6 , $343^{\frac{100}{3}}$, $(\frac{1}{7})^{20}$, $(4.9)^{12}$, $(3.43)^{10}$.
 - (9) Find the position of the first significant figure in ¹⁰/₂, (½)¹⁰, (½)²⁰, (½)²⁰, (·02)⁴, (·49)⁶.
- (10) Find the position of the first significant figure in the numerical value of

207, (.02)7, (.007)8, (3.43)10, (.0343)8, (.0343)10.

201. PROP. To prove that if two numbers expressed in the decimal notation have the same digits (so that they differ only in the position of the decimal point), their logarithms to the base 10 will differ only by an integer.

The decimal point in a number is moved by multiplying or dividing the number by some *integral* power of 10.

Let the numbers be m and n; then $m = n \times 10^k$, where k is a whole number positive or negative; and

$$\log m = \log (n \times 10^k) = \log n + \log 10^k$$
$$= \log n + k.$$

Example 1. Let the numbers be 1.2345 and 1234.5.

Then, $1234.5 = 1.2345 \times 10^3$, therefore $\log (1234.5) = \log (1.234.5) + 3$.

in the

in the 040595,

in the

igits in

in the

ressed t they loga-

lying

vhere

Example 2. Given log 1.7692 = 24776, find

- (i) log 17692, (ii) log ·0017692, (iii) 176·92.
- Here, $\log 17692 = \log \{(1.7692) \times 10^4\} = \log (1.7692) + 4$ = $\cdot 24776 + 4 = 4.24776$.

$$\begin{split} \log \cdot 0017692 = & \log \left\{ (1.7692) \times 10^{-3} \right\} = -3 + \cdot 24776. \\ & \log 176.92 = & \log \left\{ (1.7692) \times 10^{2} \right\} = 2.24776. \end{split}$$

- 202. It is convenient to keep the decimal part of common logarithms always positive, because then the decimal part of the logarithms of any numbers expressed by the same digits will be always the same.
- 203. The decimal part of a logarithm is called the mantissa.
 - 204. The integral part is called the characteristic.
- 205. The characteristic of a logarithm can be always obtained by the following rule, which is evident from page 167.
- RULE. The characteristic of the logarithm of a number greater than unity is one less than the number of integral figures in that number.

The characteristic of a number less than unity is negative, and (when the number is expressed as a decimal,) is one more than the number of cyphers between the decimal point and the first significant figure to the right of the decimal point.

206. When the characteristic is negative, as for example in the logarithm $-3 + \cdot 1760913$, the logarithm is abbreviated thus, $\overline{3}\cdot 1760913$.

Example 1. The characteristics of 36741, 36.741, .0036741, 3.6741 and .36741 are respectively 4, 1, -3, 0, and -1.

Example 2. Given that the mantissa of the logarithm of 36741 is 5651510, we can at once write down the logarithm of any number whose digits are 36741.

Thus $\log 3674100 = 6.5651510$, $\log 36741 = 4.5651510$, $\log 367.41 = 2.5651510$, $\log 367.41 = \overline{1}.5651510$, $\log .36741 = \overline{4}.5651510$, $\log .00036741 = \overline{4}.5651510$,

and so on.

207. In any set of tables of common logarithms the student will find the mantissa only corresponding to any set of digits.

It would obviously be superfluous to give the characteristic.

208. It is most important to remember to keep the mantissa always positive.

Example. Find the fifth root of 00065061.

Here $\log_{10} .00065061 = \overline{4}.8133207$,

it

or.

in

or,

and $\overline{1.3626641} = \log .23050$,

.. the fifth root of '00065061 = '23050 nearly.

EXAMPLES. LV.

- (1) Write down the logarithms of 776.43, 7.7643, 00077643 and 776430. (The table gives opposite the numbers 77643, the figures 8901023.)
- (2) Given that $\log_{10} 59082 = 4.7714552$, write down the logarithms of 5908200, 5.9082, .00059082, 590.82 and 5908.2.

rithm of

rithm of

ms the iny set

charac-

ep the

77643 3, the

the

Find the fourth root of 0059082, having given that $\log 5.9082 = .7714552$; $4.4428638 = \log_{10} 27724$.

(4) Find the product of 00059082 and 027724, having given that 21431 = log 16380 (cf. Question 3).

(5) Find the 10th root of 077643 (uestion 1), having given that .8890102=log 7.7448.

(6) Find the product of (27724)2 and 077643. (See Questions 1 and 3; .7758288 = log 59680.)

* * 209. To transform a system of logarithms having a given base, to another system with a different base.

If we are given a list of logarithms calculated to a given base, we can deduce from it a list of logarithms calculated to any other base.

Let a be the given base; let b be any other base.

Let m be any number. Then the logarithm of m to the base a is in the given list. Let this logarithm be l. $m = a^l$

We wish to find the logarithm of m to the base b. it be x.

Then $m=b^x$. But $m=a^t$;

$$\therefore a^i = b^x; \text{ or, } b = a^{\frac{i}{x}};$$

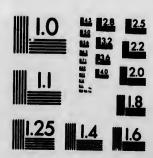
 $\frac{l}{a}$ is the logarithm of b to the base a. or,

Now the logarithm of b to the base a is given. in the list of logarithms to the base a.

Thus,
$$\frac{l}{x} = \log_a b$$
; or, $x = \frac{l}{\log_a b}$;

$$\log_b m = \frac{\log_a m}{\log_a b}.$$

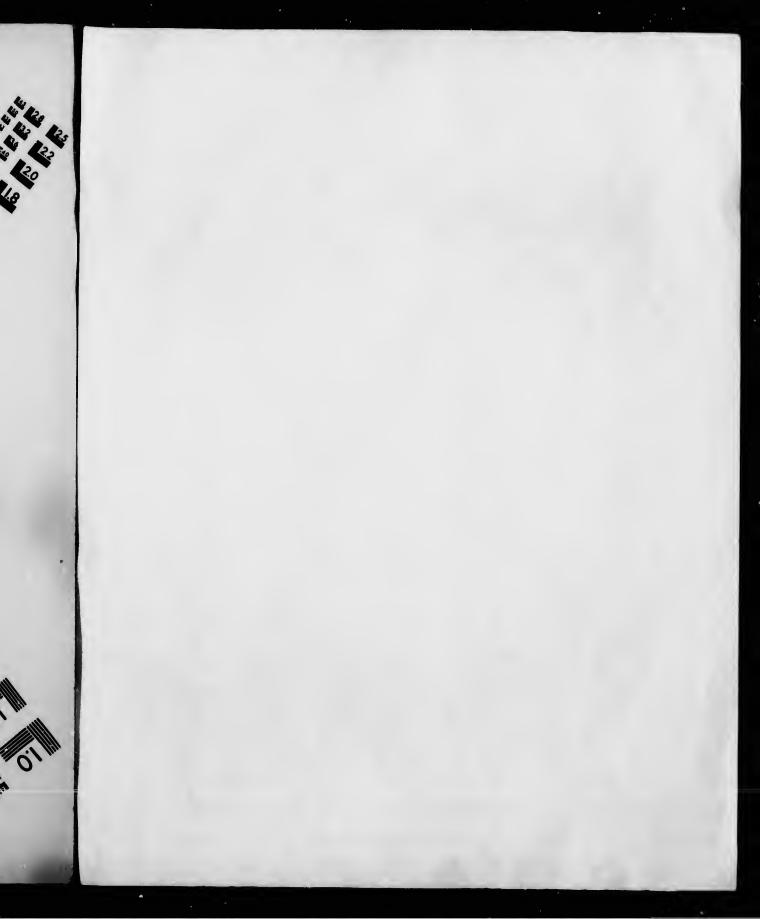
IMAGE EVALUATION TEST TARGET (MT-3)



SEN STATE OF THE SENT OF THE S

Photographic Sciences Corporation

23 WEST MAIN STREET WEBSTER, N.Y. 14580 (716) 872-4503 SIL SIL CELLER OIL



Hence, to calculate the logarithms of a series of numbers to a new base b, we have only to divide each of the logarithms of the numbers to any given base a, by a certain divisor, viz. $\log_a b$.

If then a list of logarithms to some base e can be made, we can deduce from it a list of common logarithms, by multiplying each logarithm in the given list by $\frac{1}{\log_2 10}$.

Example. Show how to transform logarithms, having 5 for base to logarithms having 125 for base.

Suppose
$$m=5^l$$
, so that $l=\log_5 m$.

Now
$$125=5^3$$
, so that $3=\log_5 125$,

and
$$m=5^{3\frac{l}{3}}=125^{\frac{l}{3}}$$
, so that $\frac{l}{3}=\log_{125}m$.

Thus the logarithm of any number to base 5, divided by 3 (i.e. by log₅ 125), is the logarithm of the same number to the base 125.

**210. The student will find that the logarithms of numbers cannot be calculated to the base 10 directly.

They are first calculated to the base 2.7182818, etc., which is the sum of the series

$$1 + \frac{1}{1} + \frac{1}{1 \cdot 2} + \frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{1 \cdot 2 \cdot 3 \cdot 4} + \text{etc. ad inf.}$$

h

lo

This number is called e.

And the constant divisor in this case is log. 10,

and
$$\frac{1}{\log_e 10} = \frac{1}{2.30258509} = 43429448$$
, etc.

When this constant divisor is transformed into a multiplier, this constant multiplier is called a modulus.

Example. Given that $\log_{10} 12 = 1.0791812$, shew how to transform common logarithms to logarithms having 12 for base.

$$10 = 1210791812 = 1202662, etc.$$

numbers garithms divisor,

be made, thms, by

10. ing 5 for

ded by 3 er to the

numbers

which is

ultiplier.

how to base.

EXAMPLES. LVI.

Show how to transform

- Logarithms with base 2 to logarithms with base 8.
- Logarithms with base 9 to logarithms with base 3. (2)
- Common logarithms to logarithms with base 2. (3)
- Logarithms with base 3 to common logs. (4)
- Common logs to logarithms with base 3. (5)
- (6) Given $\log_{10} 2 = 3010300$, find $\log_2 10$. (7)
- Given $\log_{10} 7 = .8450980$, find $\log_7 10$.
- (8) Given $\log_{10} 2 = 3010300$, find $\log_{10} 10$ and $\log_{10} 10$.

* * MISCELLANEOUS EXAMPLES. LVII.

- (1) Find $\log_2 8$, $\log_5 1$, $\log_8 2$, $\log_7 1$, $\log_{32} 128$.
- (2) Show that the logarithms of all except eight of the numbers from 1 to 30 inclusive, can be calculated in terms of log 2, log 3 and log 7.
- (3) Show that the logarithms of the numbers 1 to 10 inclusive may be found in terms of the logarithms of 8, 14, 21.

(4) The mantissa of the log of 85762 is 9332949. Find the log of \$\ \docume{.0085762}

Find how many figures there are in (85762)11, when it is multiplied out.

- (5) Find the product of 47.609, 476.09, .47609, .000047609, having given that log 4.7609 = .6776891 and .7107564 = log 5.1375.
- (6) What are the characteristics of the logarithm of 3742 to the bases 3, 6, 10 and 12 respectively.
- (7) Having given that $\log 2 = 3010300$, $\log 3 = 4771213$ and $\log 7 = 8450980$, solve the following equations:
 - (i) $2^x \times 3^{4x} = 7^2$,
- (ii) $3^{2x} = 128 \times 7^{4-x}$
- (iii) $12^z = 49$.
- (iv) 28 = 214-3z
- (8) Given log₁₀ 7, find log₇ 490.
- Given log₁₀ 3, find log₂ 270.
- (10) Given log₁₀ 2, find log₅ 10.

- (11) Given $\log_8 9 = a$, $\log_2 5 = b$, $\log_8 7 = c$; find the logs to base 10 of numbers 1 to 7 inclusive.
- (12) How many positive integers are there whose logarithms to base 2 have 5 for a characteristic?
- (13) If a be an integer, how many positive integers are there whose logs to base a have 10 for their characteristic?
 - (14) Given log 2 and log 7, find the eleventh root of (39.2)². log 1.9485=.289688.
 - (15) Prove that $7 \log \frac{15}{15} + 6 \log \frac{8}{3} + 5 \log \frac{2}{5} + \log \frac{32}{25} = \log 3$.
 - (16) Prove that $2 \log a + 2 \log a^2 + 2 \log a^3 \dots + 2 \log a^n = n (n+1) \log a$.
 - (17) Prove that $\log_a b \cdot \log_b a = 1$; and that $\log_a b \cdot \log_b a \cdot \log_b a = 1$.
 - (18) Prove that log_r=log_b. log_c. log_d...log_r.
- √ (19) Given that the integral part of (3.456)¹⁰⁰⁰⁰ contains
 53856 digits, find log 345.6 correct to five places of decimals.
- (20) Given that the integral part of (3.981)10000 contains sixty thousand digits, find log 39810 correct five places of decimals.
- (21) If the number of births in a year be $\frac{1}{48}$ of the population at the beginning of the year, and the number of deaths $\frac{1}{60}$, find in what time the population will be doubled.

Given log 2, log 3, and that log 241 = 2.3820170.

(22) Prove that

$$\log s + \log (s-a) - \log b - \log c = 2 \log \sqrt{\frac{s(s-a)}{bc}}$$

n

(23) Prove that $\log (a^2 + x^2) + \log (a + x) + \log (a - x) = \log (a^4 - x^4)$.

(24) Prove that $\log \sin 4A = \log 4 + \log \sin A + \log \cos A + \log \cos 2A$.

e logs to

ogarithms

are there

of (39·2)2.

log 3.

 $\log_a a = 1$.

contains

nals.

contains places of

he popu-

he popuof deaths

4.

CHAPTER XV.

ON THE USE OF MATHEMATICAL TABLES.

- 213. The Logarithms referred to in this chapter, and in future throughout the book, are Common Logarithms.
- 214. Books of Mathematical Tables usually give an explanation of their own contents, but there are some points common to all such Tables which we proceed to explain.
- 215. The student will be supposed to have access to a book containing the following:
- (i) A list of the logarithms of all whole numbers from 1 to 99999, calculated to seven significant figures;
- (ii) A list of the numerical values, calculated to seven significant figures, of the Trigonometrical Ratios of all angles, between 0° and 90°, which differ by 1';
- (iii) · A list of the logarithms of these Ratios calculated to seven significant figures.

These will be found in Chambers' Mathematical Tables.

At the end of this Chapter we give the logarithms to five figures of all numbers from 100 to 999. This Table will be found useful in questions involving certain kinds of numerical calculations.

216. We have said that logarithms are in general incommensurable numbers. Their values can therefore only be given approximately.

If the value of any number is given to seven significant figures, then the error (i.e. the difference between the given value and the exact value of the number) is less than a millionth part of the number.

Example. 3.141592 is the value of π correct to seven significant figures. The *error* is less than .000001; for π is less than 3.141593, and greater than 3.141592.

The ratio of 000001 to 3·141592 is equal to 1:3141592. The ratio of 000001 to π is less than this; i.e. much less than the ratio of one to one million.

217. An actual measurement of any kind must be made with the greatest care, with the most accurate instruments, by the most skilful observers, if it is to attain to anything like the accuracy represented by 'seven significant figures.'

Therefore the value of any quantity given correct to 'seven significant figures' is exact for all practical purposes.

218. We are given in the Tables the logarithms of all numbers from 1 to 99999; that is, of any number having five significant figures.

A Table consisting of the logarithms of all numbers from 1 to 9999999 (i.e. of any number having seven significant figures) would be a hundred times as large.

nu

log

219. There is however a rule by which, if we are given a complete list of the logarithms of numbers having five significant figures, we can find the logarithms of numbers having six or seven significant figures.

general fore only

gnificant he *given* than a

a signifiess than

2. The than the

instrutain to nificant

rect to irposes.

s of all having

imbers seven

given we sigumbers Example. Suppose we require the logarithm of 4:804213.

From the Tables we find

log 4·8042=·6816211, i.e. 4·8
log 4·8043=·6816301.

i.e. 4.8042=10.6816211..., 4.8043=10.6816301...

The number 4.804213 lies between the two numbers 4.8042, 4.8043 whose logarithms are found in the Tables, so that the required logarithm must lie between the two given logarithms.

Therefore we suppose that

 $\log 4.804213 = .6816211 + d$, i.e. 4.804213 = 10.6816211...+d.

220. The RULE is as follows. The differences between three numbers are proportional to the corresponding differences between the logarithms of those numbers, provided that the differences between the numbers are small compared with the numbers.

Example. Given log 48042=4.6816211 log 48043=4.6816301,

find log 48042·13.

We may state the question thus. Given log 48042=4.6816211

 $\log (48042+1) = 4.6816211 + .0000090,$

find log (48042+·13).

Let $\log (48042 + 13) = 4.6816211 + d$.

Thus corresponding to the differences 1 and 13 in the numbers we have the differences 0000090 and d in the logarithms.

But these differences are in proportion,

$$\therefore d = \frac{13}{1} \text{ times } \cdot 000009$$

 $=\frac{13}{100}$ of $\cdot 000009 = \cdot 00000117...;$

 $\therefore \log 48042 \cdot 13 = 4.6816211 + .00000117$

=4.68162227 = 4.6816223 (to seven figures).

221. We shall refer to the above rule as the Rule of Proportional Differences.

It is often called also 'The Principle of Proportional Parts.'

222. In Art. 197 we said that numbers are not proportional to their Logarithms. Hence the differences of numbers and the corresponding differences of their logarithms cannot be exactly in proportion. The rule is however true for all practical purposes. The proof of the rule belongs to a higher part of the subject than the present.

223. In the above example we said that 6.68162227 = 6.6816223;

and for this reason. We are retaining only seven significant figures in the decimal part of the logarithm.

If we put 6.6816222 for 6.68162227 the 'error' is greater than .000000007.

If we put 6.6816223 for 6.68162227 the 'error' is less than 00000003.

Thus the second error is less than the first.

In such a case, I must be added to the last digit which is retained, when the first digit which is neglected is 5 or greater than 5.

224. We give two more specimen examples.

Example 1. Find the logarithm of 004804213.

We first find as before, by the rule of proportional differences, that log 4.804213 = .6816223

 $\therefore \log .004804213 = \bar{3}.6816223.$

Rule of

ortional

propornumbers

cannot for all

s to a

nificant

ror' is

ror' is

hich is 5 or

rences,

Example 2. Find the number whose logarithm is 2.5354291. In the Table we find that

·5354207=log 3·4310(i), ·5354334=log 3·4311(ii).

Let $5354291 = \log (3.4310 + d)$ (iii).

Here we have three logarithms and three numbers.

Subtracting 5354334 5354291 5354207 5354207 0000127 0000084

and

The corresponding differences are '0001 and d.

Hence, $d = \frac{.000084}{.0000127}$ of .0001= $\frac{.84}{.27}$ of .0001= .000661.

Therefore from (iii) $\cdot 5354291 = \log (3\cdot 4310 + \cdot 000066...)$ = $\log 3\cdot 431066$.

Hence, 2.5354291 = log 343.1066, or, the required number is 343.1066.

EXAMPLES. LVIII.

- (1) Find log 7.65432, having given that log 7.6543 = .8839055, log 7.6544 = .8839112.
- (2) Find log 564·123, having given that log 5·6412=·7513715, log 5·6413=·7513792.
- (3) Find log 0008736416, having given that log 8.7364= 9413325, log 8.7365= 9413375.

- (4) Find log 6437125, having given that log 6.4371 = .8086903, log 6.4372 = .8086970.
- (5) Find log 3.72456, having given that log 37245=4.5710680, log 37246=4.5710796.
- (6) Find the number whose logarithm is .5686760, having given that .5686710 = log 3.7040, .5686827 = log 3.7041.
- (8) Find the number whose logarithm is 6.3966938, having given that 3966874 = log 2.4928, 3967049 = log 2.4929.
- (9) Find the number whose logarithm is $\bar{4}$ ·6431150, having given that '6431071=log 4·3965, '6431170=log 4·3966.
- (10) Find the number whose logarithm is .7550480, having given that 3.7550436=log 56891, 2.7550512=log 568.92.
- 225. The same Rule of Proportional Differences is used in the case of angles and their Trigonometrical Ratios; and therefore also in the case of angles and the logarithms of their Ratios.

Thus the (small) differences between three angles are assumed to be proportional to the corresponding differences between the sines of those three angles; also, proportional to the corresponding differences between the logarithms of the sines of those angles.

226. Sines and cosines are always less than unity, as also are the tangents of all angles between 0° and 45°.

The logarithms of these Ratios must therefore have negative characteristics.

To avoid the inconvenience of having to print these negative characteristics, the whole number 10 is added to each logarithm of the Trigonometrical Ratios, before it is set down in the Table.

The numbers thus recorded are called the tabular logarithms of the sine, cosine, etc., of an angle.

They are indicated by the letter 'L.'

Thus L sin 31° 15′, stands for the tabular logarithm of $\sin 31^{\circ}$ 15′, and is equal to $(\log (\sin 31^{\circ} 15') + 10)$.

The words logarithmic sire are used as abbreviation for tabular logarithm of the sine.

Thus in the Tables we find

 $L \sin 31^{\circ} 15' = 9.7149776.$

Therefore $\log (\sin 31^{\circ} 15') = 9.7149776 - 10 = \tilde{1}.7149776$.

Example 1. Find sin 31° 6' 25".

The Tables give $\sin 3i^{\circ} 6' = 5165333$ (i),

sin 31° 7′ = ·5167824(ii).

Let $\sin 31^{\circ} 6' 25'' = :5165333 + d$ (iii).

5167824) The other difference is d, and the corresponding differences in the angles are 60" and 25":

 $d = \frac{25}{60} \text{ of } 0002491$ = 0001038...

Hence, from (iii) $\sin 31^{\circ}6'25'' = \cdot5165333 + \cdot0001038 = \cdot5166371$.

having

having

having

having

having

s used atios; loga-

s are rences

ms of

Example 2. Find the angle whose logarithmic cosine is 9.7858083.

The Table gives $9.7657611 = L \cos 52^{\circ} 22'$(i),

 $9.7859249 = L \cos 52^{\circ} 21'$ (ii).

The cosine diminishes as the angle increases. Hence corresponding to an increase in the angle there is a diminution of the cosine.

Hence, let $9.7858083 = L \cos (52^{\circ} 22' - D)$ (iii).

Subtracting the first tabular logarithm from the second the difference is 0001638.

Subtracting the first tabular logarithm from the third, the difference is .0000472.

Subtracting the first angle from the second, the difference is -60".

Subtracting the first angle from the third, the difference is -D.

By the Rule these four differences are in proportion.

Therefore

 $D = \frac{472}{1638}$ of 60''= 17.3''.

Hence

 $9.7858083 = L \cos (52^{\circ} 22' - 17'')$ = $L \cos 52^{\circ} 21' 43''$

EXAMPLES. LIX.

h

- (1) Find sin 42° 21' 30"
- having given that $\sin 42^{\circ} 21' = .6736577$ $\sin 42^{\circ} 22' = .6738727$
- (2) Find cos 47° 38′ 30″

having given that $\cos 47^{\circ} 38' = \cdot 6738727$ $\cos 47^{\circ} 39' = \cdot 6736577$.

(3) Find cos 21° 27′ 45″

having given that $\cos 21^{\circ} \, 27' = \cdot 9307370$ $\cos 21^{\circ} \, 28' = \cdot 9306306$. cosine is

.....(i),

.....(ii). nce correion of the

....(iii).

scond the

hird, the

erence is

erence is

- (4) Find the angle whose sine is .6666666 having given that .6665325 = sin 41° 48'
 - '6667493 -sin 41° 49'.
- (5) Find the angle whose cosine is 33333333
 having given that 3332584 = cos 70° 32′
 3335326 = cos 70° 31′.
- (6) Find the angle whose cosine is 25 having given that 2498167 = cos 75° 32′ 2500984 = cos 75° 31′.
- (7) Find $L \sin 45^{\circ} 16' 30''$ having given that $L \sin 45^{\circ} 16' = 9.8514969$ $L \sin 45^{\circ} 17' = 9.8516220$
- (8) Find L tan 27° 13′ 45″

 having given that L tan 27° 13′ = 9.7112148

 L tan 27° 14′ = 9.7115254.
- (9) Find L cot 36° 18′ 20″

 having given that L cot 36° 18′=10·1339650

 L cot 36° 19′=10·1337003.
- (10) Find the angle whose Logarithmic tangent is 9.8464028, having given that $9.8463018 = L \tan 35^{\circ} 4'$ $9.8465705 = L \tan 35^{\circ} 5'$
- (11) Find the angle whose Logarithmic cosine is 9.9448230, having given that $9.9447862 = L \cos 28^{\circ} 17'$ $9.9448541 = L \cos 28^{\circ} 16'$.
- (12) Find the angle whose Logarithmic cosecant is 10.4274623, having given that $10.4273638 = L \operatorname{cosec} 21^{\circ} 57'$ $10.4276774 = L \operatorname{cosec} 21^{\circ} 56'$.

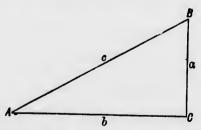
227. Problems in which each of the lines involved contains an exact number of feet, and each angle an exact number of degrees, do not occur in practical work.

As from time to time the skill of observers and of instrument-makers has increased, so also has the number of significant figures by which observations have been recorded.

Thus the want was felt of some method by which the labour involved in the multiplication and division of long numerical quantities could be avoided. At the end of the Seventeenth Century a celebrated Scotch mathematician, John Napier, Baron of Merchiston, proposed his method of 'Logarithms'; i.e. the method of representing numbers by indices; 'which, by reducing to a few days the labour of 'many months, doubles, as it were, the life of an Astronomer, 'besides freeing him from the errors and disgust inseparable 'from long calculations.' Laplace.

228. We shall now give a few examples of the practical use of logarithms.

Example 1. The sides containing the right angle C in a right angled triangle ABC contain 3456.4 ft. and 4543.5 feet respectively; find the angles of the triangle, and the length of the hypotenuse.



Let a, b, c be the lengths of the sides of the triangle opposite the angles A, B, C respectively.

e an exact

and of innumber of recorded. which the n of long nd of the ematician, nethod of mbers by

practical

labour of

ronomer.

separable

in a right t respech of the

opposite

Then, a=3456.4 feet, b=4543.5 feet,

$$\tan A = \frac{a}{b}.$$

Therefore

$$\log \tan A = \log \frac{a}{b} = \log a - \log b$$

$$=\log 3456.4 - \log 4543.5.$$

In the Tables we find

$$\log 3456.4 = 3.5386240$$

 $\log 4543.5 = 3.6573905.$

$$\begin{array}{l}
\bullet \cdot \log \tan A = 3.5386240 - 3.6573905 \\
\bullet 1.8812335.
\end{array}$$

$$\therefore$$
 L tan $A = 9.8812335$.

In the Table we find

Whence by the rule of Proportional Differences

$$9.8812335 = L \tan 37^{\circ} 15' 42''$$

Therefore and

$$B = 90^{\circ} - A = 52^{\circ} 44' 18''$$

$$B = 90^{\circ} - A = 52^{\circ} 44' 18''$$

To find c, we may take the square root of a^2+b^2 , or we may find it by the aid of logarithms thus:

$$\frac{c}{a} = \csc A = \csc 37^{\circ} 15' 42'',$$

••
$$\log c = \log a + \log \operatorname{cosec} 37^{\circ} 15' 42''$$

$$= \log a + L \operatorname{cosec} 37^{\circ} 15' 42'' - 10$$

= 3.5386240 + 10.2179174 - 10

$$=3.7565414$$

= $\log 5708.8$,

Thus we have found the angles and the third side of the triangle.

229. There are some formulæ which are seldom used in practical work, because they are not adapted to logarithmic calculation. They are those in which powers of quantities are connected by the signs + or -.

Example. In the above example we might have found the length of the hypotenuse by means of the formula

$$c^2 = a^2 + b^2$$

But we should have had to go through the process of calculating by multiplication the values of a^2 and b^2 .

For this reason, a formula which consists entirely of factors is always preferred to one which consists of terms, when any of those terms contain any power of the quantities involved.

If in the above example, the lengths of the hypotenuse c and of one side a were given, then the formula

$$b^2 = c^2 - a^2 = (c - a)(c + a)$$

will give the length of b. For

$$\log b^2 = \log \{(c-a) \ (c+a)\},\$$

or,

$$2\log b = \log (c-a) + \log (c+a).$$

And the values of (c+a) and (c-a) are easily written down from the given values of c and a.

EXAMPLES. LX.

In the following questions A, B, C are the angles of a right angled triangle of which C is a right angle, and a, b, c are the lengths of the sides opposite those angles respectively.

(1) Given that $\alpha = 1046.7$ yards, c = 1856.2 yards, $C = 90^{\circ}$, find Λ .

 $\log 1046.7 = 3.0198222$, $\log 1856.2 = 3.2686248$, $L \sin 34^0 19' = 9.7510991$, $L \sin 34^0 20' = 9.7512842$

4.

m used in quarithmic quantities

found the

of calcu-

tirely of of terms, uantities

tenuse c

en down

a right are the

 $C = 90^{\circ}$

- (2) Given that $\alpha = 843.2$ feet, $C = 90^{\circ}$, and $A = 34^{\circ}15'$; find c. $\log 843.2 = 2.9259306$, $L \csc 34^{\circ}15' = 10.2496421$, $\log 1.4982 = .17557$.
- (3) Given that a=4845 yards, b=4742 yards, and C=90, find A.

 $\log 4845 = 3.6852938$, $\log 4742 = 3.6759615$, $L \tan 45^{\circ} 36' = 10.0090965$, $L \tan 45^{\circ} 37' = 10.0093492$.

(4) Given that c=8762 feet, C=90, and $A=37^{\circ}10'$, find a and b.

 $\log 8762 = 3.9426032$, $L \sin 37^{\circ} 10' = 9.7811344$, $L \cos 37^{\circ} 10' = 9.9013938$, $\log 5.2934 = .72373$, $\log 6.9823 = .843997$.

- (5) Given that $b=1694\cdot 2$ chains, $C=90^\circ$, and $A=18^\circ 47'$, find a. log $1694\cdot 2=3\cdot 2289647$, $L \cot 18^\circ 47'=10\cdot 4683893$, log $5\cdot 7620=76057$.
- (6) Given that a=1072 chains, c=4849 chains, and $C=90^\circ$, find b. $\log 5921=3.7723951$, $\log 3777=3.5771470$, $\log 4.729=.67477$.
 - (7) Given that b=841 feet, c=3762 feet, and $C=90^{\circ}$, find a. $\log 4603=3.6630410$, $\log 2921=3.4655316$, $\log 3.6668=.56428$.
- (8) Given that a=7694.5 chains, b=8471 chains, $C=90^{\circ}$, find A and c.

 $\log 7694 \cdot 5 = 3 \cdot 8861804, \ \log 8471 = 3 \cdot 9279347, \\ L \tan 42^{0} 15' = 9 \cdot 95824, \ L \csc 42^{0} 15' = 10 \cdot 1723937, \\ \log 1 \cdot 1444 = 05857.$

230. In the following examples the student must find the necessary logarithms from the Tables.

L. E. T.

* MISCELLANEOUS EXAMPLES. LXI.

- (1) A balloon is at a height of 2500 feet above a plain and its angle of elevation at a point in the plain is 40°35′. How far is the balloon from the point of observation?
- (2) A tower standing on a horizontal plain subtends an angle of 37° 19′ 30″ at a point in the plain distant 369.5 feet from the foot of the tower. Find the height of the tower.
- (3) The shadow of a tower on a horizontal plain in the sunlight is observed to be 176.23 feet and the elevation of the sun at that moment is 33° 12′. Find the height of the tower.
- (4) From the top of a tower 163.5 feet high by the side of a river the angle of depression of a post on the opposite bank of the river is 29°47′18″. Find the distance of the post from the foot of the tower.
 - (5) Given $a=673\cdot12$, $b=415\cdot89$ chains, $C=90^{\circ}$, find A and B.
 - (6) Given $a=576\cdot12$, $c=873\cdot14$ chains, $C=90^{\circ}$, find b and A.
- (7) From the top of a light-house 112.5 feet high, the angles of depression of two ships, when the line joining the ships points to the foot of the light-house, are 270 18' and 200 36' respectively. Find the distance between the ships.
- (8) From the top of a cliff the angles of depression of the top and bottom of a light-house 97.25 feet high are observed to be 23° 17′ and 24° 19′ respectively. How much higher is the cliff than the light-house?
- (9) Find the distance in space travelled in an hour, in consequence of the earth's rotation, by St Paul's cathedral. (Latitude of London=510 25', earth's diameter=7914 miles.)
- (10) The angle of elevation of a balloon from a station due south of it is 47° 18′ 30″, and from another station due west of the former and distant 671·38 feet from it the elevation is 41° 14′. Find the height of the balloon.

On the four following pages are given a Table of the mantissæ of the logarithms of all numbers from 100 to 1000 correct to 5 significant figures.

By the aid of the principle of proportional parts this Table can be used to work correctly to 4 significant figures.

It is only in observations or measurements, made with the most elaborate care and under special circumstances, that a greater degree of accuracy is attained than that indicated by 4 significant figures [see Lock's Arithmetic, chapter VIII.]; hence the Table here given will be found sufficient for most numerical calculations in which Arithmetic only is

Example i. Find to three significant figures the length of the diagonal of a cube whose side contains 147 inches.

Let x be the number of inches in the diagonal,

then

plain and

How far

ends an

39.5 feet

the sun-

e sun at

side of a bank of rom the

and B.

and A.

angles

points

ctively.

of the

bserved

r is the

in con-(Lati-

on due

west of

410 14'.

$$x^2 = 3 \times (14.7)^2$$

$$x = \sqrt{3} \times 14.7;$$

$$\log x = \frac{1}{2} \log 3 + \log 14.7$$

$$=\frac{1}{2}(.47712)+1.16732$$
 [from the Table]

Hence the diagonal is 25.45... inches.

Example ii. Find the value of (43.72)\$.

Therefore (43.72) = 8.156...

190 (ii)

TABLE OF THE LOGARITHMS OF ALL NUMBERS FROM 100 TO 1000

No.	Log.	No.	Log.	No.	Log.	No.	Log.	No.	Log.
100	00000	143	15534	186	26951	229	35983	272	43457
101	00432	144	15836	187	27184	230	36172	273	43616
102	00860	145	16137	188	27416	231	36361	274	43775
103	01284	146	16435	189	27646	232	36549	275	43933
104	01703	147	16732	190	27875	233	36736	276	44091
105	02119	148	17026	191	28103	234	36922	277	44248
106	02531	149	17319	192	28330	235	37107	278	44404
107	02938	150	17609	193	28556	236	37291	279	44560
108	03342	151	17898	194	28780	237	37475	280	44716
109	03743	152	18184	195	29003	238	37658	281	44870
110	04139	153	18469	196	29226	239	37840	282	45025
III	04532	154	18752	197	29447	240	38021	283	45179
112	04922	155	19033	198	29667	241	38202	284	45332
113	05308	156	19312	199	29885	242	38382	285	45484
114	05690	157	19590	200	30103	243	38561	286	45637
115	06070 06446	158	19866	201	30320	244	38739	287	45788
117	06819	159 160	20140	202	30535	245	38917	288	45939
118	07188	161	20412	203	30750	246	39094	289	46090
		162	20683	204	30963	247	39270	290	46240
119	07555	163	20951	205	31175	248	39445	291	46389
121	07918 08279	164	21219	206	31387	249	39620	292	46538
122	08636	165	21484	207	31597	250	39795	293	46687
123	08991	166	21748	208	31806	251	39967	294	46835
124	09342	167	22011	209	32015	252	40140	295	46982
125	09691	168	22272	310	32222	253	40312	296	47129
126	10037	169	22789	211	32428	254	40483	297	47276
127	10380	170	23045	213	32634 32838	255	40654	298	47422
128	10721	171	23300	214		256	40824	299	47567
129	11059	172	23553	215	33041 33244	²⁵⁷ 258	40993	300	47712
130	11394	173	23805	216	33446	259	41102	301	47857
131	11727	174	24055	217	33646	260	41330	302	10084
132	12057	175	24304	218	33846	261	41664		48144
133	12385	176	24551	219	34044	202	41830	304 305	48430
134	12710	177	24797	220	34242	263	41996	306	48572
135	13033	178	25042	221	34439	264	42160	307	48714
136	13354	179	25285	222	34635	265	42325	308	48855
137	13672	180	25527	223	34830	266	42488	309	48996
138	13988	181	25768	224	35025	267	42651	310	49136
139	14301	182	26007	225	35218	268	42813	311	49276
140	14613	183	26245	226	35411	260	42975	312	49415
141	14921	184	26482	227	35602	270	43136	313	49554
142	15229	185	26717	228	35793	271	43297	314	49693
								<u>- </u>	.7.70

.LL
Log.
43457 43616 43775 43933 44091 44248 44404 44560 44716 44870 45025 45179 45332 45484 45637 45788 46090 46240 46389 46687 46687 46687 47129 4729 4729 47422 47567 47712 47857 48144 48144 48145 48146 4814

_					UG.	ARIT	tt N	18.				190	(iii	
N		Log. No.		7.	No.	Log.		No	No. Log		No	Lo	Log.	
31		31 30	51 5575	51	407	609	0	453	6561	-	100			
31	1 177				108	6106	6	454	6570	SE .	499 500			
31	À 1 V			-	100	6117	2	455	6580	10	501			
31			4 5611		10	6127	8	456			502	1 11		
32					11	6138	4	457	6599		503			
32					12	6147	٥	458	6608		504			
32					13	6159	5	459	6618	i	505			
32					14	6170	٥	460	6627	6	506	7041		
32		5 37			15	6180	5	461	66370	0	507	7050		
32		37			16	6190	9	462	6646	٠l	508	7058		
320	5132				<u> </u>	62014		463	66558	3	509	7067	2	
327			10.0		18	62118		464	66652	2	510	7075	7	
328	5158				19	62221		465	66741		511	7084		
329					20	62325		466	00830		512	7092		
330						62428	ľ	467	66932		513	7101		
331				42		62531	1	468	67025		514	71006	5	
332	52114		57749		3	62634	4	469	67117		515	71181	ıl	
333	52244	379			-	62737	14	470	67210		516	71265	5 l	
334	52375	380			2	62839		171	67302	5	17	71349		
335	52504	381		42	7	62941		72	67394	5	18	71433	1	
336	52634	382		42	á	63043 63144		73	67486	5	19	71517		
337	52763	383	58320	42		63246		74	67578	5	20	71600		
338	52892	384	58433	43	91	63347		75	67669	5	21	71684		
339	53020	385	58546	43		63448		76	67761		22	71767		
340	53148	386	58659	43		53548		77	67852		23	71850		
341	53275	387	58771	43		53649		78	67943		24	71933		
342	53403	388	58883	43	4 6	3749		79 80	68034		25	72016	1	
343	53529	389	58995	43		3849			68124		26	72099		
344	53655	390	59106	43		3949	1	82	68215		27	72181		
345	53782	391	59218	43		4048		83	68305		28	72263	1	
346	53908	392	59329	438		4147		84	68395			72346		
347	54033	393	59439	439	ا ا	4246	48	85	68485	53		72428		
348	54158	394	59550	440	6	4345			68 ₅₇₄ 6866 ₄	53		72509		
349	54283	395	5966o	441	1 6	4444	48	87	68753	53		72591		
150	5440.	96	59770	442		4542	48	iál i	68842	53		72673	ı	
351	54531	397	59879	443		4640	48	30 7	58931	53		72754		
352	54654	398	59988	444	6	4738	49		59020	53	5	72835	L	
353	54777	399	60097	445	6	4836	49		9108	53		72916	1	
354	54900	400	60206	446	6	4933	49		9108	53	o I	72997		
355	55023	401	60314	447	6	5031	49	3 6	9285	53	- 1 -	3078		
356	55145	402	60423	448	6	5128	49	4 6	9373	53		3159		
57	55267	403	60530	449	6	5225	49	5 6	93/3 9461	54	. i 2	3239		
58	55388	404	60638	450	6	5321	49	6 6	9548	54	- 1 .	3320		
59	55509	405	60746	451		418	49	7 6	9636	54		3400		
60	55630	406	60853	452		514	498	8 6	9723	543	7	3480		
		<u>_</u>			_				71-3	544	1	3560		

No	o. Log.	No	Log.	No	Log.	No	Log.	No	Log.	•
54	> -		1		80414	683	83442	729	86273	-
54			77232	638	80482	684	83506	736	86332	i
54						685	83569		86392	
54				640	80618	686	83632	732		
54					80586		83696	733	86510	ĺ
55			1		80754	688	83750	734	86570	
55			77597	643	80821	689	83822	735	86629	ĺ
55				644	80889	600	83885	736		ı
55.					80956	601	83048			ı
55		600		646	81023	692	84011	738		ı
55			77887	647	81000	693	84073	739		I
550	74507	602	1,,,	648	81158	694	84136	740	86923	I
557		603		649	81224	695	84198	741	86982	ı
558		604	78104	650	81291	696	84261	742	87040	ı
559		605	78176	651	81358	697	84323	743	87099	ı
560		606	78247	652	81425	698	84385	744	87157	ı
561		607	78319	653	81491	699	84448	745	87216	ł
561	74974	608	78390	654	81558	700	84510	746	87274	ı
563	75051	609	78462	655	8162.	701	84572	747	87332	ĺ
564	75128	610	78533	656	81690	702	84634	748	87390	ĺ
565		611	78604	657	81757	703	84696	749	87448	ĺ
566		613	78675	658	81823	704	84757	750	87506	ĺ
567	75358	613	78746	659	81889	705	84819	751	87564	
568		614	78817	666	81954	706	84880	752	87622	
569		615	78888	661	82020	707	84942	753	8768o	
570		616	78958	662	82086	708	85003	754		
57 I	75664	617	79029	663	82151	700	85065	755	87737 87795	
572	75740	618	79099	664	82217	710	85126	756	87852	
573	75815	619	79169	665	82282	711	85187	757	87910	
574	75891	620	79239	666	82347	712	85248	758	87967	
575	75967	621	79309	667	82413	713	85309	759	88024	
576	76042	622	79379	668	82478	714	85370	760	88081	
577	76118	623	79449	669	82543	715	85431	761	88138	
578	76192	624	79518	670	82607	716	85491	762	88196	
579	76268	625	79588	671	82672	717	85552	763	88252	
580	76343	626	79657	672	82737	718	85612	764	88309	
581	76418	627	79727	673	82802	719	85673	765	88366	
582	76492	628	79796	674	82866	720	85733	766	88423	
583	76567	629	79865	675	82930	721	85794	767	88480	
584	76641	630	79934	676	82995	722	85854	768	88.06	
585	76716	631	80003	677	33059	723	85914	769	88536	
586	76790	632	80072	678	83123	724	85974	770	88593 88649	
587	76864	633	801.40	679	83189	725	86034	771	88705	
588		634	80200	680	83251	726	86091		00705	
	76938	V34 !	00209							
589	77012	635		186			86152	772	88762	
589 590		635	80277		83315 83378	727 728	86153 86213	773	88818 88874	

No	Log.	No	. Log	No	. Log	No		7	
77	88930	-		_			Log	. N	o. Log.
77	88986	820	3-2-		2		9590	4 95	5 98000
77		82:	7.49		7313		9595		6 98046
778	89008	82	9148		1 70		9599		
779	89154	82			320		3 9604	7 95	
780		82	9159	870	100				9 98182
781	89265	826	91698	871	1000				98227
781	80321		91751		77-4			96	
783	89376	828	91803	87	9405				98318
784	80432	829	91855	87.					
785	89487	830	91908	875	94151			96.	
786	89542	831	91960	876		-	1 2 01 2	96	
787	89597	832	92012						98498
788	80653	833	92065	878				967	
789		834	92117	879	1 2 .0 . 2				98588
790		835	92160	880	94399		96567		
791	89818	836	92221	881	94498		96614		
792	89873	837	92273	882	94547	-	96661		
793	89927	838	92324	883	94596		96708		
794	89982	830	92376	884	94645		96754 96801		
795	90037	840	92428	885	94694	930	96848	974	
796	90091	841	92480	886	94743	931	96895	975	98900
797	90146	842	92531	887	94792	932	96941	976	98945
798	90200	843	92583	888	94841	933	96988	977 978	98990
799	90255	844	92634	889	94890	934	97935	979	99034
108	90309	845	92686	890	94949	935	97081	980	99078
802	90363	846	92737	891	94988	936	97128	981	99167
803	90417	847	92788	892	95036	937	97174	982	99211
804	90472	848	92840	803	95085	938	97220	983	99255
805	90526	849	92891	894	95134	939	97267	984	99300
806	90580	850	92942	895	95182	940	97313	985	99344
807	90687	851	92993	896	95231	941	97359	986	99388
808	90741	852	93044	897	95279	942	97405	987	99432
800	90795	853	93095	898	95328	943	97451	988	99476
810	90849	854	93146	899	95376	944	97497	989	99520
311	90902	855 856	93197	900	95424	945	97543	990	99564
312	90956	857	93247	901	95472	946	97589	991	99607
313	91009	858	93298	902	95521	947	97635	992	99651
314	91062	859	93349	903	95569	948	97681	993	99695
315	91116	860	93399	904	95617	949	97727	994	99739
3161	91169	861	93450 93500	905	95665	950	97772	995	99782
17	01222	862	93551	907	95713	951	97818	996	99826
18	91275	863	93601	908	95761	952	97864	997	99870
	91328	864	93651	909	958 0 9 958 5 6		97909	998	99913
		1	75-5"	الاحو	y5050	954	97955	999	99957
	i	- 1	~			- 1	i	i	

EXAMPLES. LXI. a.

Prove that the following statements are correct to four significant figures:

(1)
$$\sqrt[3]{451} = 7.669$$
.

(2)
$$\sqrt[8]{802} = 3.809$$
.

(3)
$$(273)^{\frac{1}{2}} \times (234)^{\frac{1}{2}} = 47.32$$
.

(4)
$$(451)^{\frac{2}{3}} \times (231)^{\frac{4}{3}} = 55460.$$

0

th

ye

He

log

tha

4 pe

cent

3 per

$$(5) \quad \left(\frac{192.5}{84}\right)^8 = 12.03.$$

(6)
$$\frac{(34.79)^{\frac{3}{4}}}{(41.25)^{\frac{3}{4}}} = 04023.$$

(7)
$$\frac{(24.76)^{\frac{2}{3}}}{(.0045)^{\frac{1}{3}}} = 8287.$$

(8)
$$\frac{7.89}{.0345} \times (89130)^{\frac{1}{7}} = 1165.$$

(9)
$$\frac{\frac{3}{2}\sqrt{(5\cdot2)}}{5\sqrt{(11\cdot31)}}\times(\frac{3}{7})^{-\frac{1}{2}}=3107.$$

(10)
$$\sqrt[6]{\left\{\frac{2\sqrt{(34)}}{3\sqrt{(791)}}\right\}} = .6731.$$

(11)
$$\frac{\sqrt[4]{3}}{\sqrt[5]{3}} = 1.096$$
.

(12)
$$\left(\frac{21^3 \times 45^5}{2^7 \times 3^9}\right)^{\frac{1}{2}} = 823.6.$$

Solve the equations correct to 4 figures:

(13)
$$10^x = 421 [x = 2.624]$$
.

(14)
$$(\frac{21}{20})^x = 3 [x = 22.51].$$

(15)
$$(\frac{203}{200})^{2x} = 2 [x = 23.28].$$

(16)
$$(\frac{26}{28})^x = 3 [x = 28.01]$$

(17)
$$\log 37^{x+8} = 3.412 [x = -.8243].$$

(18)
$$x=10\sqrt[3]{(31\cdot2)}[x=31\cdot48]$$
.

Example i. Find the amount at Compound Interest on £1 for 8 years at 5 per cent.

To find the amount for 1 year we multiply by $\frac{105}{100}$, i.e. by $\frac{21}{20}$.

The amount for 2 years will be $\pounds_{20}^{21} \times \tfrac{21}{20}$ and the amount for 8 years = $(\tfrac{21}{20})^8$.

Let x be the required amount in pounds, then

$$x = (\frac{2}{20})^8$$
,
 $\therefore \log x = 8 (\log 21 - \log 20)$
 $= 8 (1.32222 - 1.30103) = 8 (.02119)$

Hence, to find the amount at Compound Interest for 8 years at 5 per cent. we multiply the Principal expressed in pounds by 1.477+...

= 16952 = log 1.477...

Example ii. In how many years will the Principal be doubled at 5 per cent. Compound Interest?

Let x be the number of years, then

hence

 $(\frac{21}{20})^x$ is the amount at the end of x years,

or
$$x(\log 21 - \log 20) = \log 2$$
, $\therefore x = \frac{.30103}{.02119} = \frac{30103}{2119} = 14.2$.

Example iii. Find the present value of an annuity of £100 a year payable yearly for 10 years, the first payment to be at the end of a year, Conpound Interest being reckoned at 4 per cent.

The principal which will amount to £1 at the end of n years at 4 per cent. Comp. Int. is [See Lock's Arithmetic, p. 193, Ex. iv.]

Hence the required present value is

£100
$$\{r+r^2+r^3+...+r^{10}\}$$
, where $r=\frac{102}{102}$
=£100 $\frac{1-r^{11}}{1-r}$ -£100=£100 $\{1-(\frac{100}{104})^{11}\} \times 26$ -£100.

$$\log \left(\frac{100}{100}\right)^{11} = 11 \left(\log 100 - \log 104\right) = (2 - 2.01703) \times 11$$

$$= (\overline{1.98297}) \times 11 = \overline{1.81267}$$

$$= \log .6496...$$

.. the required present value = £100 \times 3503... \times 26 - £100, that is £810 about.

EXAMPLES. LXI. b.

- (1) Find the Compound Interest on £100 for 10 years at 4 per cent. [Result, £48.]
- (2) Find the Compound Interest on £1 for 8 years at 5 per cent.

 [Result, 9s. 64d.]
- (3) In how many years will a sum of money be doubled at [Result, 23:4.]

ır signi-

55460.

= 1165.

·6731.

3.6.

,,

on £1 §, i.e.

nount

years ds by

- (4) In how many years will a sum of money be doubled at 4 per cent. Compound Interest? [Result, 17:7.]
- (5) Find the present value of £100 to be paid 8 years hence reckoning Compound Interest at 4 per cent. [Result, £73-07.]
- (6) If the number of births in a town are 25 per 1000 and the deaths 20 per 1000 annually, in how many years will the population be doubled?

 [After 140 years.]
- (7) On the birth of an infant £1000 is invested at Compound Interest in the Funds (3 per cent. payable half-yearly); calculate what it will be worth when the child is 21 years old.

[Result, £1869.]

(8) In what time will a sum of money treble i'self at 3 per cent. Compound Interest payable half-yearly?

[Result, 36.9 years.]

(9) A sum of 1 shilling lent on condition of 1 penny interest being paid monthly, accumulates at Compound Interest at the same rate for 12 years; what will be then the amount?

[Result, about £5066.]

th

tiv

hav

nur

neg

- (10) A man puts by 2d. at the end of the second week of the year, 4d. at the end of the fourth week, 8d. at the end of the sixth week; what sum would be put by for the last fortnight in the year?

 [About 67,100,000 pence.]
- (11) A train starting from rest has at the end of 1 second velocity 001 ft. per sec. and at the end of each second its velocity is greater by one-third than at the end of the preceding second; find the velocity in miles per hour at the end of 25 seconds.

 [678 miles per hour.]
- (12) The volume of a sphere is $\frac{4}{3}\pi \times \text{(cube of the radius)}$; and the diameter of the sphere which contains a cubic yard.

 [Result, 1.24 yards.]
- (12) Find the present value at 4 per cent. per annum Compound Interest of a Fellowship of £250 a year for six years, payable half-yearly, the first payment being due in six months.

[Result, £1322.]

oubled at ult, 17.7.] ars hence

£73.07.]

1000 and

will the

at Com-

£1869.]

at 3 per

9 years.]
interest
at the

£5066.]
ek of the d of the night in 0 pence.]

1 second

cond its

receding

d of 25 or hour.]

radius); ard.

yards.

m Com-

years,

£1322.]

onths.

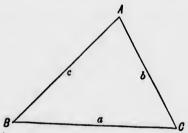
rs old.

CHAPTER XVI.

ON THE RELATIONS BETWEEN THE SIDES AND ANGLES
OF A TRIANGLE.

231. The three sides and the three angles of any triangle, are called its six parts.

By the letters A, B, C we shall indicate geometrically, the three angular points of the triangle ABC; algebraically, the three angles at those angular points respectively.



By the letters a, b, c we shall indicate the measures of the sides BC, CA, AB opposite the angles A, B, C respectively.

- 232. I. We know that, $A + B + C = 180^{\circ}$. [Euc. I. 32.]
- 233. Also if A be an angle of a triangle, then A may have any value between 0° and 180°. Hence,
 - (i) sin A must be positive (and less than 1),
- (ii) cos A may be positive or negative (but must be numerically less than 1),
- (iii) tan A may have any value whatever, positive or negative.

234. Also, if we are given the value of

- (i) sin A, there are two angles, each less than 180°, which have the given positive value for their sine.
- (ii) cos A, or (iii) tan A, then there is only one value of A, which value can be found from the Tables.

235.
$$\frac{A}{2} + \frac{B}{2} + \frac{C}{2} = 90^{\circ}$$
. Therefore $\frac{A}{2}$ is less than 90°,

and its Trigonometrical Ratios are all positive. Also, $\frac{A}{2}$ is known, when the value of any one of its Ratios is given. Similar remarks of course apply to the angles B and C.

Example 1. To prove $\sin (A+B) = \sin C$. $A+B+C=180^{\circ}$: $A+B=180^{\circ}-C$, and : $\sin (A+B) = \sin (180^{\circ}-C) = \sin C$. [p. 104.]

Example 2. To prove $\sin \frac{A+B}{2} = \cos \frac{C}{2}$,

Now $\frac{A+B+C}{2} = 90^{\circ}$. $\therefore \frac{A+B}{2} = 90^{\circ} - \frac{C}{2}$,

and : $\sin \frac{A+B}{2} = \sin \left(90^{\circ} - \frac{C}{2}\right) = \cos \frac{C}{2}$. [Art. 118.]

Example 3. To prove

 $\sin A + \sin B + \sin C = 4\cos\frac{A}{2} \cdot \cos\frac{B}{2} \cdot \cos\frac{C}{2}$

Now $\sin A + \sin B = 2 \sin \frac{A+B}{2} \cdot \cos \frac{A-B}{2}$. [Art. 157.]

 $=2\cos\frac{C}{2}\cdot\cos\frac{A-B}{2}$. [Art. 118.]

and $\sin C = 2 \sin \frac{C}{2} \cdot \cos \frac{C}{2}$. [Art. 166.]

 $=2\cos\frac{A+B}{2}\cdot\cos\frac{C}{2}$. [Art. 118.]

han 180°.

one value

than 90°.

lso, $\frac{A}{2}$ is

is given. d C.

[p. 104.]

Art. 118.]

Art. 157.]

Art. 118.]

rt. 166.]

rt. 118.7

$$\therefore \sin A + \sin B + \sin C = 2 \cos \frac{C}{2} \cdot \cos \frac{A - B}{2} + 2 \cos \frac{C}{2} \cdot \cos \frac{A + B}{2},$$

$$= 2 \cos \frac{C}{2} \left(\cos \frac{A - B}{2} + \cos \frac{A + B}{2} \right).$$

$$= 2 \cos \frac{C}{2} \left(2 \cos \frac{A}{2} \cdot \cos \frac{B}{2} \right). \quad [Art. 157.]$$

$$= 4 \cos \frac{A}{2} \cdot \cos \frac{B}{2} \cdot \cos \frac{C}{2}. \quad Q.E.D.$$

EXAMPLES. LXII.

Find A from each of the six following equations, A being an angle of a triangle.

$$(1) \quad \cos A = \frac{1}{2}.$$

(2)
$$\cos A = -\frac{1}{2}$$
. (3) $\sin A = \frac{1}{2}$.

$$(3) \sin A = \frac{1}{4}.$$

$$(4) \quad \tan A = -1.$$

$$5) \quad \sin A = \frac{1}{\sqrt{2}}$$

(4)
$$\tan A = -1$$
. (5) $\sin A = \frac{1}{\sqrt{2}}$ (6) $\tan A = -\sqrt{3}$.

Prove the following statements, A, B, C being the angles of a triangle.

(7)
$$\sin(A+B+C)=0$$
.

(8)
$$\cos(A+B+C)=-1$$
.

$$(9) \quad \sin\frac{A+B+C}{2}=1.$$

$$\sin \frac{A+B+C}{2} = 1.$$
 (10) $\cos \frac{A+B+C}{2} = 0.$

(11)
$$\tan(A+B) = -\tan C$$
. (12) $\cot \frac{B+C}{2} = \tan \frac{A}{2}$.

(12)
$$\cot \frac{B+C}{2} = \tan \frac{A}{2}$$

$$(13) \quad \cos{(A+B)} = -\cos{C}.$$

(14)
$$\cos(A+B-C) = -\cos 2C$$
.

(15)
$$\tan A - \cot B = \cos C \cdot \sec A \cdot \csc B$$
.

(16)
$$\frac{\sin A - \sin B}{\sin A + \sin B} = \tan \frac{C}{2} \cdot \tan \frac{A - B}{2}$$

(17)
$$\frac{\sin 3B - \sin 3C}{\cos 3C - \cos 3B} = \tan \frac{3A}{2}.$$

• (18)
$$\sin A + \sin B - \sin C = 4 \sin \frac{A}{2} \cdot \sin \frac{B}{2} \cdot \cos \frac{C}{2}$$

*(19)
$$\sin A - \sin B + \sin C = 4 \sin \frac{A}{2} \cdot \cos \frac{B}{2} \cdot \sin \frac{C}{2}$$

(20)
$$\sin \frac{A}{2} \cdot \cos \frac{A}{2} + \sin \frac{B}{2} \cdot \cos \frac{B}{2} + \sin \frac{C}{2} \cdot \cos \frac{C}{2}$$

= $2 \cos \frac{A}{2} \cdot \cos \frac{B}{2} \cdot \cos \frac{C}{2}$

(21)
$$\cos A + \cos B + \cos C - 1 = 4 \sin \frac{A}{2} \cdot \sin \frac{B}{2} \cdot \sin \frac{C}{2}$$

(22)
$$\cos^2\frac{A}{2} + \cos^2\frac{B}{2} - \cos^2\frac{C}{2} = 2\cos\frac{A}{2} \cdot \cos\frac{B}{2} \cdot \sin\frac{C}{2}$$

(23)
$$\sin^2\frac{A}{2} - \sin^2\frac{B}{2} + \sin^2\frac{C}{2} = 1 - 2\cos\frac{A}{2} \cdot \sin\frac{B}{2} \cdot \cos\frac{C}{2}$$

(24)
$$\sin \frac{B+C-A}{2} + \sin \frac{C+A-B}{2} + \sin \frac{A+B-C}{2} - 1$$

= $4 \sin \frac{A}{2} \cdot \sin \frac{B}{2} \cdot \sin \frac{C}{2}$.

(25)
$$\sin 2A + \sin 2B + \sin 2C = 4 \sin A \cdot \sin B \cdot \sin C$$

(26)
$$\sin A \cdot \cos A - \sin B \cdot \cos B + \sin C \cdot \cos C$$

= $2\cos A \cdot \sin B \cdot \cos C$

(27)
$$\sin (B+C-A) - \sin (C+A-B) + \sin (A+B-C)$$

= $4\cos A \cdot \sin B \cdot \cos C$

(28)
$$\cos 2A + \cos 2B + \cos 2C = -1 - 4\cos A \cdot \cos B \cdot \cos C$$

(29)
$$\sin^2 A - \sin^2 B + \sin^2 C = 2 \sin A \cdot \cos B \cdot \sin C$$

(30)
$$\cos (B+C-A) + \cos (C+A-B) - \cos (A+B-C) + 1$$

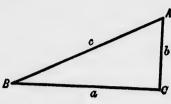
= $4 \sin A \cdot \sin B \cdot \cos C$

(31)
$$\sin \frac{A}{2} \cdot \cos \frac{B}{2} \cdot \cos \frac{C}{2} + \sin \frac{B}{2} \cdot \cos \frac{C}{2} \cdot \cos \frac{A}{2} + \sin \frac{C}{2} \cdot \cos \frac{A}{2} \cdot \cos \frac{B}{2} = \sin \frac{A}{2} \cdot \sin \frac{B}{2} \cdot \sin \frac{C}{2} + 1.$$

(32)
$$\tan A + \tan B + \tan C = \tan A \cdot \tan B \cdot \tan C$$

(33)
$$\tan \frac{B}{2} \cdot \tan \frac{C}{2} + \tan \frac{C}{2} \cdot \tan \frac{A}{2} + \tan \frac{A}{2} \cdot \tan \frac{B}{2} = 1$$

If ABC be a right-angled triangle having $C = 90^{\circ}$, then $(A + B) = 90^{\circ}$.



Hence,
$$\sin A = \sin (90^{\circ} - B) = \cos B$$
.

Also,
$$\sin A = \frac{a}{c} = \cos B$$
,

and so on. (See page 52.)

os $\frac{C}{9}$.

cos C.

COS C.

os C.

cos C.

 $\frac{C}{2}$ + 1.

EXAMPLES. LXIII.

In a right-angled triangle ABC, in which C is a right angle, prove the following statements.

(1)
$$\tan A = \cot B$$
.

(2)
$$\tan B = \cot A + \cos C$$
.

(3)
$$\sin 2A = \sin 2B$$
.

(4)
$$\cos 2A + \cos 2B = 0$$
.

$$(5) \quad \sin 2A = \frac{2ab}{c^2}.$$

(6)
$$\csc 2B = \frac{a}{2b} + \frac{b}{2a}$$
.

(7)
$$\cos 2A = \frac{b^2 - a^2}{c^2}$$
.

(8)
$$\cos 2B = \frac{\sin^2 A - \sin^2 B}{\sin^2 A + \sin^2 B}$$
.

(9)
$$\sin^2 \frac{B}{2} = \frac{c-a}{2c}$$
. (10) $\cos^2 \frac{A}{2} = \frac{c+b}{2c}$.

(10)
$$\cos^2\frac{A}{2} = \frac{c+b}{2c}$$

(11)
$$\left(\cos\frac{A}{2} + \sin\frac{A}{2}\right)^2 = \frac{a+c}{c}.$$
 (12)
$$\frac{a-b}{a+b} = \tan\frac{A-B}{2}.$$

$$(12) \quad \frac{a-b}{a+b} = \tan \frac{A-B}{2}$$

(13)
$$\sin(A-B) + \cos 2A = 0$$
. (14) $\sin(A-B) + \sin(2A+C) = 0$.

(15)
$$(\sin A - \sin B)^2 + (\cos A + \cos B)^2 = 2$$
.

(16)
$$\sqrt{\frac{a+b}{a-b}} + \sqrt{\frac{a-b}{a+b}} = \frac{2\sin A}{\sqrt{\cos 2B}}.$$

237. II. To prove $a = b \cos C + c \cos B$.

From A, any one of the angular points, draw AD perpendicular to BC, or to BC produced if necessary.

There will be three cases. Fig. i. when both B and C are acute angles; Fig. ii. when one of them (B) is obtuse; Fig. iii. when one of them (B) is a right angle. Then,

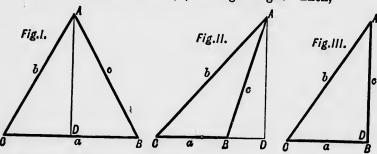


Fig. i.
$$\frac{CD}{CA} = \cos ACD$$
; or, $CD = b \cos C$, and $\frac{DB}{AB} = \cos ABD$; or, $DB = c \cos B$, $\therefore a = CD + DB = b \cos C + c \cos B$.

Fig. ii.
$$\frac{CD}{CA} = \cos ACD$$
; or, $CD = b \cos C$, $\frac{BD}{AB} = \cos ABD$; or, $BD = c \cos (180^{\circ} - B)$,

$$\therefore a = CD - BD = b \cos C - c \cos (180^{\circ} - B)$$
$$= b \cos C + c \cos B.$$

Fig. iii.
$$a = CB = b \cos C$$

 $= b \cos C + c \cos B$. [For, $\cos B = \cos 90^{\circ} = 0$.]
Similarly it may be proved that,
 $b = c \cos A + a \cos C$; $c = a \cos B + b \cos A$.

factor triang AD per-

B and Cs obtuse; ien,

0.7

III. To prove that in any triangle, the sides are proportional to the sines of the opposite angles; or, To prove that $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$.

From A, any one of the angular points, draw AD perpendicular to BC, or to BC produced if necessary.

Fig. i. Here,
$$\frac{AD}{AC} = \sin C$$
, and $\frac{AD}{AB} = \sin B$;
 $\therefore AD = b \sin C \uparrow$, and $AD = c \sin B$;
 $\therefore b \sin C = c \sin B$;
or, $\frac{b}{\sin B} = \frac{c}{\sin C}$.

Fig ii. Here,
$$\frac{AD}{AC} = \sin C$$
, and $\frac{AD}{AB} = \sin ABD$

$$= \sin (180^{\circ} - B)$$

$$= \sin R$$

$$\begin{array}{ccc} & = \sin B; \\ & \Rightarrow b \sin C +, & \text{and } AD = c \sin B; \\ & \Rightarrow b \sin C = c \sin B; \\ & \text{or, } \frac{b}{\sin B} = \frac{c}{\sin C}. \end{array}$$

Fig. iii. Here,
$$\frac{AD}{AC} = \sin C$$
, and $\frac{AD}{AB} = 1$ = $\sin 90^{\circ}$

$$\therefore AD = b \sin C \uparrow, \qquad \text{and } AD = c \sin B;$$

$$\therefore \frac{b}{\sin B} = \frac{c}{\sin C}.$$

Similarly, it may be proved, that

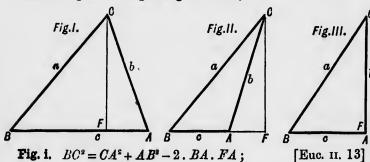
$$\frac{a}{\sin A} = \frac{b}{\sin B}; \quad \therefore \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}.$$

+ NOTE. The student should notice that $\sin C$ is a numerical factor, which changes the length of the hypotenuse of a right-angled triangle (of which C is an angle) into the perpendicular. L. E. T.

239. IV. To prove that $a^2 = b^2 + c^2 - 2bc \cos A$.

Take one of the angles A. Then of the other two, one must be acute. Let B be an acute angle. From C draw CF perpendicular to BA, or to BA produced if necessary.

There will be three figures according as A is less, greater than, or equal to a right angle. Then,



or,
$$a^2 = b^2 + c^2 - 2c \cdot FA$$

 $= b^2 + c^2 - 2cb \cos A$. [For $FA = b \cdot \cos A$.]

Fig. ii.
$$BC^3 = CA^2 + AB^2 + 2 \cdot BA \cdot AF$$
; [Euc. II. 12]
or, $a^2 = b^2 + c^2 + 2cb \cos FAC$
 $= b^2 + c^2 - 2bc \cos A$. [For $FAC = 180^\circ - A$.]

Fig. iii.
$$BC^2 = CA^2 + AB^2$$
; [Euc. 1. 47]
or, $a^2 = b^2 + c^2 - 2bc \cos A$. [For $\cos A = \cos 90^\circ = 0$.]

Similarly it may be proved that

$$b^{2} = c^{2} + a^{2} - 2ca \cos B,$$

$$c^{2} = a^{2} + b^{2} - 2ab \cos C.$$

240. V. Hence,

and that

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$
, $\cos B = \frac{c^2 + a^2 - b^2}{2ca}$, $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$.

two, one draw CF

, greater

a F

5. cos A.]

c. 11. 13]

c. 11. 12]

80° – A.]

uc. 1. 47]

 $90^{\circ}=0.]$

 $\frac{+b^2-c^2}{2ab}.$

241. Let s stand for half the sum of a, b, c, so that (a+b+c)=2s.

Then, (b+c-a) = (b+c+a-2a) = (2s-2a) = 2(s-a), and (c+a-b) = (c+a+b-2b) = (2s-2b) = 2(s-b), and (a+b-c) = (a+b+c-2c) = (2s-2c) = 2(s-c).

242. VI. To prove that $\sin \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}$, and that $\cos \frac{A}{2} = \sqrt{\frac{s(s-a)}{bc}}$,

when s stands for half the sum of the sides a, b, c. Now, since $\cos A = b^2 + c^2 - a^2$

Now, since $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$, and $2\sin^2 \frac{A}{2} = 1 - \cos A$;

$$\therefore 2 \sin^2 \frac{A}{2} = 1 - \cos A = 1 - \frac{b^2 + c^2 - a^2}{2bc} [Arts. 240, 166]$$

$$= \frac{2bc - (b^2 + c^2 - a^2)}{2bc} = \frac{a^2 - (b^2 - 2bc + c^2)}{2bc}$$

$$= \frac{a^2 - (b - c)^2}{2bc} = \frac{\{a - (b - c)\}\{a + (b - c)\}}{2bc}.$$

 $\therefore \sin^2 \frac{A}{2} = \frac{(a+c-b)(a+b-c)}{4bc}.$

$$\therefore \sin \frac{A}{2} = \sqrt{\frac{(2s-2b)(2s-2c)}{4bc}} = \sqrt{\frac{(s-b)(s-c)}{bc}}.$$

Again, since $\cos A = 2 \cos^2 \frac{A}{2} - 1$; [Art. 166] $\therefore 2 \cos^2 \frac{A}{2} = 1 + \cos A = 1 + \frac{b^2 + c^2 - a^2}{2b}.$

$$\frac{1}{2} = 1 + \cos A = 1 + \frac{b + c^2 - a^2}{2bc}.$$

$$\therefore \cos^2 \frac{A}{2} = \frac{(b+c)^2 - a^2}{4bc} = \frac{(b+c+a)(b+c-a)}{4bc}.$$

$$\therefore \cos \frac{A}{2} = \sqrt{\frac{2s \cdot (2s - 2a)}{4bc}} = \sqrt{\frac{s \cdot (s - a)}{bc}}.$$

Similarly it may be proved that

$$\sin\frac{B}{2} = \sqrt{\frac{(s-c)(s-a)}{ca}}, \cos\frac{B}{2} = \sqrt{\frac{s(s-b)}{ca}},$$

and that

$$\sin \frac{C}{2} = \sqrt{\frac{(s-a)(s-b)}{ab}}, \cos \frac{C}{2} = \sqrt{\frac{s(s-c)}{ab}}.$$

NOTE. In taking the square root the positive sign only is admissible before the \checkmark , because the half of an angle of a triangle is less than 90°.

243. VII. Since
$$\sin \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}$$
,

and

$$\cos\frac{A}{2} = \sqrt{\frac{s(s-a)}{bc}},$$

therefore,

$$\tan\frac{A}{2} = \frac{\sin\frac{A}{2}}{\cos\frac{A}{2}} = \frac{\sqrt{(s-b)(s-c)}}{\sqrt{s(s-a)}}.$$

244. VIII. Again,

since, $\sin A = 2 \sin \frac{A}{2} \cdot \cos \frac{A}{2}$;

[Art. 166]

an

of t

Her

inde prob

b=c

from

$$\therefore \sin A = 2\sqrt{\frac{(s-b)(s-c)}{bc}} \cdot \sqrt{\frac{s(s-a)}{bc}}$$
$$= \frac{2}{bc}\sqrt{s(s-a)(s-b)(s-c)}.$$

The letter S usually stands for $\sqrt{s(s-a)(s-b)(s-c)}$; so that the above may be written $\frac{\sin A}{a} = \frac{2S}{abc}$.

Similarly,
$$\frac{\sin B}{h} = \frac{2S}{abc} = \frac{\sin C}{c}$$
.

It should be noticed that this result gives an independent proof of III.; for

$$\frac{2S}{abc} = \frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}.$$

245. IX. To prove that
$$\frac{b-c}{b+c} \cdot \cot \frac{A}{2} = \tan \frac{B-C}{2}$$
.

Since
$$\frac{b}{\sin B} = \frac{c}{\sin C}$$
, let each of these fractions = d.

Then
$$b = d \sin B$$
, and $c = d \sin C$.

ssible before

Art. 166]

(s-c);

f III.; for

$$\therefore \frac{b-c}{b+c} = \frac{d \sin B - d \sin C}{d \sin B + d \sin C} = \frac{\sin B - \sin C}{\sin B + \sin C}$$

$$= \frac{2 \sin \frac{B-C}{2} \cdot \cos \frac{B+C}{2}}{2 \sin \frac{B+C}{2} \cdot \cos \frac{B-C}{2}} = \frac{\tan \frac{B-C}{2}}{\tan \frac{B+C}{2}}$$

$$= \frac{\tan \frac{B-C}{2}}{\cot \frac{A}{2}} \cdot \left[\text{Since } \tan \frac{B+C}{2} = \tan \left(90^{\circ} - \frac{A}{2} \right) \cdot \right]$$

$$\frac{b-c}{b+c} \cdot \cot \frac{A}{2} = \frac{\tan \frac{B-C}{2}}{\cot \frac{A}{2}} \cdot \cot \frac{A}{2} = \tan \frac{B-C}{2}. \quad \text{Q.E.D.}$$

Similarly,
$$\frac{c-a}{c+a} \cdot \cot \frac{B}{2} = \tan \frac{C-A}{2}$$
,

and
$$\frac{a-b}{a+b} \cdot \cot \frac{C}{2} = \tan \frac{A-B}{2}$$
.

246. Mote. In the next chapter we shall prove, that given three of the parts of a triangle (one of which must be a side), we can find the remaining three parts by means of the formulæ of this chapter. Hence, these formulæ cannot be equivalent to more than three independent equations. It is an instructive, but somewhat difficult problem to take three of these formulæ $(e.g.\ A+B+C=180^\circ, b=c\cos A+a\cos C,\ c=b\cos A+a\cos B)$ and deduce all the others from them.

247. The following examples are important.

Example 1. Suppose we are given that $a=b \cos C + c \cos B$, $b=c \cos A + a \cos C$.

$$c = c \cos A + a \cos C,$$

$$c = a \cos B + b \cos A.$$

Then, taking a times the first +b times the second -c times the third, we get

 $a^{2}+b^{2}-c^{2}=(ab\cos C+ac\cos B)+(bc\cos A+ba\cos C)$ $-(ca\cos B+cb\cos A),$

Example 2. Suppose we are given that $A + B + C = 180^{\circ}$,

and that

$$\frac{\dot{a}}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} [=d],$$

then

$$\begin{split} \frac{b^2 + c^2 - \alpha^2}{2bc} &= \frac{d^2 \sin^2 B + d^2 \sin^2 C - d^2 \sin^2 A}{2d^2 \sin B \sin C}, \\ &= \frac{\sin^2 B + \sin^2 C - \sin^2 A}{2 \sin B \sin C} = \frac{2 \cos A \cdot \sin B \cdot \sin C}{2 \sin B \cdot \sin C} \\ &= \underbrace{[\text{Ex. 29, p. 194, since } (A + B + C) = 180^{\circ}.]}_{= \cos A}. \end{split}$$

248. The formula

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = d$$

is very frequently of use in solving examples.

Example. Prove that

 $a\cos A + b\cos B + c\cos C = 2a\sin B\sin C$.

Since $a=d\sin A$, $b=d\sin B$, $c=d\sin C$, the above may be written

 $d\sin A \cdot \cos A + d\sin B \cdot \cos B + d\sin C \cdot \cos C$

 $=2d\sin A \cdot \sin B \cdot \sin C$

or $\sin 2A + \sin 2B + \sin 2C = 4 \sin A \cdot \sin B \cdot \sin C$, which is Example (25) on page 194.

249. The student is advised to make himself thoroughly familiar with the following formulæ:

$$a = b \cos C + c \cos B \dots \qquad (ii),$$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \left[= d \right] = \frac{abc}{2S} \dots \qquad (iii),$$

$$\cos A = \frac{b^{2} + c^{2} - a^{2}}{2bc} \dots \qquad (v).$$

$$\sin \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}$$

$$\cos \frac{A}{2} = \sqrt{\frac{s(s-a)}{bc}} \qquad (viii),$$

$$\sin A = \frac{2}{bc} \sqrt{s(s-a)(s-b)(s-c)} = \frac{2S}{bc} \dots \qquad (viii),$$

$$\tan \frac{B-C}{2} = \frac{b-c}{b+c} \cdot \cot \frac{A}{2} \dots \qquad (ix).$$

EXAMPLES. LXIV.

In any triangle ABC prove the following statements:

$$(1) \quad \frac{\sin A + 2\sin B}{a + 2b} = \frac{\sin C}{c}.$$

(2)
$$\frac{\sin^2 A - m \cdot \sin^2 B}{\alpha^2 - m \cdot b^2} = \frac{\sin^2 C}{c^2}.$$

(3)
$$a \cos A + b \cos B - c \cos C = 2c \cos A \cdot \cos B$$
.

(4)
$$(a+b)\sin\frac{C}{2} = c\cos\frac{A-B}{2}.$$

(5)
$$(b-c)\cos\frac{A}{2} = a\sin\frac{B-C}{2}$$
.

(6)
$$\frac{\cos A}{\sin B \cdot \sin C} + \frac{\cos B}{\sin C \cdot \sin A} + \frac{\cos C}{\sin A \cdot \sin B} = 2.$$

c times

 $b\cos A),$

80°,

sin *C* 1 *C*

sin *C*,

(7)
$$a \sin(B-C) + b \sin(C-A) + c \sin(A-B) = 0$$
.

(8)
$$\frac{a-b}{c} = \frac{\cos B - \cos A}{1 + \cos C}.$$

(9)
$$\frac{b+c}{a} = \frac{\cos B + \cos C}{1 - \cos A}$$

(10)
$$\sqrt{bc\sin B \cdot \sin C} = \frac{b^2 \sin C + c^2 \sin B}{b+c}.$$

(11)
$$a+b+c=(b+c)\cos A + (c+a)\cos B + (a+b)\cos C$$
.

(12)
$$b+c-a=(b+c)\cos A - (c-a)\cos B + (a-b)\cos C$$
.

(13)
$$\tan A = \frac{a \sin C}{b - a \cos C}.$$

(14)
$$a(b^2+c^2)\cos A + b(c^2+a^2)\cos B + c(a^2+b^2)\cos C = 3abc$$
.

(15)
$$a\cos(A+B+C)-b\cos(B+A)-c\cos(A+C)=0$$
.

(16)
$$\frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c} = \frac{a^2 + b^2 + c^2}{2abc}.$$

(17)
$$\frac{\tan B}{\tan C} = \frac{a^2 + b^2 - c^2}{a^2 - b^2 + c^2}.$$
 (18)
$$b\cos^2\frac{C}{2} + c\cos^2\frac{B}{2} = s.$$

(19)
$$\tan \frac{B}{2} \cdot \tan \frac{C}{2} = \frac{b+c-a}{b+c+a}$$
.

(20)
$$\tan \frac{A}{2}(b+c-a) = \tan \frac{B}{2}(c+a-b)$$
.

(21)
$$c^2 = (a+b)^2 \sin^2 \frac{C}{2} + (a-b)^2 \cos^2 \frac{C}{2}$$

** MISCELLANEOUS EXAMPLES. LXV.

(1) If p is the length of the perpendicular from A on BC,

$$\sin A = \frac{ap}{hc}$$
.

(2) If $2 \cos B \cdot \sin C = \sin A$, then B = C.

(3) If
$$A = 3B$$
, then $\sin B = \frac{1}{2} \sqrt{\frac{3b-a}{b}}$.

(4) If
$$\sqrt{bc} \sin B \cdot \sin C = \frac{b^2 \sin B + c^2 \sin C}{b+c}$$
, then $B = C$.

(5)
$$a \cos \frac{B}{2} \cdot \cos \frac{C}{2} \cdot \csc \frac{A}{2} = b \cos \frac{C}{2} \cdot \cos \frac{A}{2} \cdot \csc \frac{B}{2}$$

$$= c \cos \frac{A}{2} \cdot \cos \frac{B}{2} \cdot \csc \frac{C}{2} = s.$$

- (6) Given $\cos A = \frac{3}{5}$ and $\cos B = \frac{12}{13}$, prove that $\cos C = -\frac{16}{5}$.
- (7) If $\sin^2 B + \sin^2 C = \sin^2 A$, then $A = 90^\circ$.

=3abc.

BC.

- (8) If $\sin 2B + \sin 2C = \sin 2A$, then either $B = 90^{\circ}$ or $C = 90^{\circ}$.
 - (9) If A:B:C=1:2:5, then $1+4\cos A.\cos B.\cos C=0$, and a^2 , b^2 , c^2 are in A.P.

(10)
$$a \sin \frac{A}{2} \cdot \sin \frac{B-C}{2} + b \sin \frac{B}{2} \cdot \sin \frac{C-A}{2} + c \sin \frac{C}{2} \cdot \sin \frac{A-B}{2} = 0.$$

- (11) If D is the middle point of BC, prove that $4AD^2=2b^2+2c^2-a^2$.
- (12) Given that a=2b, and that A=3B, prove that $C=60^{\circ}$.
- (13) $abc (a \cos A + b \cos B + c \cos C) = 8S^2$.
- (14) If $b \cos^2 \frac{C}{2} + c \cos^2 \frac{B}{2} = \frac{3a}{2}$, then b, a, c are in A.P.
- (15) If D, E, F are the middle points of the sides BC, CA, AB, then

$$4(AD^2 + BE^2 + CF^2) = 3(a^2 + b^2 + c^2).$$

- (16) If D is the middle point of BC, $\cot ADB = \frac{b^2 c^2}{4S}$.
- (17) If d, e, f are the perpendiculars from A, B, C on the opposite sides of the triangle, then

 $a \sin A + b \sin B + c \sin C = 2 (d \cos A + e \cos B + f \cos C).$

[Some of the Examples in the Appendix might be worked by the student at this stage.]

CHAPTER XVII.

On the Solution of Triangles.

- 250. The problem known as the Solution of Triangles may be stated thus: When a sufficient number of the parts of a triangle are given, to find the magnitude of each of the other parts.
- 251. When three parts of a Triangle (one of which must be a side) are given, the other parts can in general be determined.

There are four cases.

I. Given three sides. [Compare Euc. I. 8.]

II. Given one side and two angles. [Euc. I. 26.]

III. Given two sides and the angle between them.

[Euc. I. 4.]

f

le

lo

fii

L

wh

IV. Given two sides and the angle opposite one of them.

[Compare Euc. VI. 7.]

Case I.

252. Given three sides, a, b, c. [Euc. I. 8; VI. 5.]

We find two of the angles from the formulæ

$$\tan\frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$$

$$\tan\frac{B}{2} = \sqrt{\frac{(s-c)(s-a)}{s(s-b)}}.$$

The third angle C = 180 - A - B.

In practical work we proceed as follows:

$$\log \tan \frac{A}{2} = \log \sqrt{\frac{(s-b)(s-c)}{s(s-a)}};$$

or,

$$L \tan \frac{A}{2} - 10 = \frac{1}{2} \{ \log (s - b) + \log (s - c) - \log s - \log (s - a) \}.$$

Similarly,

$$L \tan \frac{B}{2} - 10 = \frac{1}{2} \left\{ \log (s - c) + \log (s - a) - \log s - \log (s - b) \right\}.$$

254. Either of the formulæ
$$\sin \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}$$
,

$$\cos \frac{A}{2} = \sqrt{\frac{s(s-a)}{bc}}$$
 may also be used as above.

The $\sin \frac{A}{2}$ and the $\cos \frac{A}{2}$ formulæ are either of them as convenient as the $\tan \frac{A}{2}$ formula, when one of the angles only is to be found. If all the angles are to be found the tangent formula is convenient, because we can find the L tangents of two half angles from the same four logs, viz. $\log s$, $\log (s - a)$, $\log (s-b)$, $\log (s-c)$. To find the L sines of two half angles we require the six logarithms, viz. $\log (s-a)$, $\log (s-b)$,

Example. Given a=275.35, b=189.28, c=301.47 chains, find A and B.

Here,
$$s=383.05$$
, $s-a=107.70$, $s-b=193.77$, $s-c=81.58$. Then

$$L \tan \frac{A}{2} = 10 + \frac{1}{2} \{ \log 193.77 + \log 81.58 - \log 383.05 - \log 107.70 \}$$

$$= 10 + \frac{1}{2} \{ 2.2872865 + 1.9115837 - 2.5832555 - 2.0322157 \}$$

$$= 9.7916995$$
 [from the tables], whence $\frac{A}{2} = 31^{\circ} 45' 28.5''$; $\therefore A = 63^{\circ} 30' 57''$.

 $\log (s-c)$, $\log a$, $\log b$, $\log c$.

!riangles parts of h of the

f which neral be

ic. I. 8.] . I. 26.]

c. I. 4.] one of

VI. 7.]

VI. 5.]

Also

$$L \tan \frac{B}{2} = 10 + \frac{1}{2} \{ \log 81.58 + \log 107.70 - \log 383.05 - \log 193.77 \}$$

$$= 9.5366287 = L \tan 18^{\circ} 59' 9.8'';$$

$$\therefore B = 37^{\circ} 58' 20''; C = 180^{\circ} - A - B = 78^{\circ} 30' 43''.$$

255. This Case may also be solved by the formula

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}.$$

But this formula is not adapted for logarithmic calculation, and therefore is seldom used in practice.

It may sometimes be used with advantage, when the given lengths of a, b, c each contain less than three digits.

Example. Find the greatest angle of the triangle whose sides are 13, 14, 15.

Let $\alpha=15$, b=14, c=13. Then the greatest angle is A.

Now,
$$\cos A = \frac{14^2 + 13^2 - 15^2}{2 \times 14 \times 13} = \frac{140}{2 \times 14 \times 13} = \frac{5}{13} = 384615.$$

= $\cos 67^{\circ} 23'$, nearly.

[By the Table of natural cosines.]
∴ the greatest angle=67°23′.

ar

EXAMPLES. LXVI.

(1) If $a = 352 \cdot 25$, $b = 513 \cdot 27$, $c = 482 \cdot 68$ yards, find the angle A, having given

$$\log 674 \cdot 10 = 2 \cdot 8287243$$
, $\log 321 \cdot 85 = 2 \cdot 5076535$, $\log 160 \cdot 83 = 2 \cdot 2063671$, $\log 191 \cdot 42 = 2 \cdot 2819873$, $L \tan 20^{\circ} 38' = 9 \cdot 5758104$, $L \tan 20^{\circ} 39' = 9 \cdot 5761934$.

g 193·77}

aula

culation,

hen the digits.

le whose

A.

sines.]

ngle A,

(2) Find the two largest angles of the triangle whose sides are 484, 376, 522 chains, having given that

 $\log 6.91 = .8394780$, $\log 3.15 = .4983106$, $\log 2.07 = .3159703$, $\log 1.69 = .2278867$,

L tan 36°46′6″=9.8734581, L tan 31°23′9″=9.7853745.

(3) If $\alpha = 5238$, b = 5662, c = 9384 yards, find the angles A

and B, having given c=9384 yards, find the angles A $\log 1.0142 = 0.061236$ $\log 4.004$

 $\begin{array}{lll} \log 1 \cdot 0142 = \cdot 0061236, & \log 4 \cdot 904 = \cdot 6905505, \\ \log & 4 \cdot 48 = \cdot 6512780, & \log & 7 \cdot 58 = \cdot 8796692, \\ L \tan 14^{\circ} 38' = 9 \cdot 4168099, & L \tan 15^{\circ} 57' = 9 \cdot 4560641, \\ L \tan 14^{\circ} 39' = 9 \cdot 4173265, & L \tan 15^{\circ} 58' = 9 \cdot 4565420. \end{array}$

(4) If a = 4090, b = 3850, c = 3811 yards, find A, having given $\log 5.8755 = .7690448$, $\log 3.85 = .5854607$, $\log 1.7855 = .2517599$, $\log 3.811 = .5810389$, $L \cos 32^{\circ} 15' = 9.9272306$, $L \cos 32^{\circ} 16' = 9.9271509$.

(5) Find the greatest angle in a triangle whose sides are 7 feet, 8 feet, and 9 feet, having given

 $\log 3 = 4771213$, $L \cos 36^{\circ} 42' = 9.9040529$, $\log 1.4 = 146128$, diff. for 60'' = .0000942.

- (6) Find the smallest angle of the triangle whose sides are 8 feet, 10 feet, and 12 feet, having given that $\log 2 = 30103$, $L \sin 20^{\circ} 42' = 9.5483585$, diff. for 60'' = .0003342.
 - (7) If a:b:c=4:5:6, find C, having given $\log 2 = 3010300$, $\log 3 = 4771213$, $L \cos 41^{\circ} 25' = 9.8750142$, diff. for 60'' = .0001115.
- (8) The sides of a triangle are 2, $\sqrt{6}$, and $1+\sqrt{3}$, find the angles.
- (9) The sides of a triangle are 2, $\sqrt{2}$ and $\sqrt{3}-1$, find the angles.

Case II.

256. Given one side and two angles, as a, B, C.

[Euc. I. 26; VI. 4.]

First, $A = 180^{\circ} - B - C$; which determines A.

Next, $\frac{b}{\sin B} = \frac{a}{\sin A}$, or, $b = \frac{a \cdot \sin B}{\sin A}$;

and, $\frac{c}{\sin C} = \frac{a}{\sin A}$, or, $c = \frac{a \cdot \sin C}{\sin A}$.

These determine b and c.

257. In practical work we proceed as follows:

Since $b = \frac{a \cdot \sin B}{\sin A}$,

 $\therefore \log b = \log \frac{a \cdot \sin B}{\sin A}$

 $\therefore \log b = \log \alpha + \log (\sin B) + 10 - (10 + \log \sin A).$ or, $\log b = \log \alpha + L \sin B - L \sin A.$

Similarly, $\log c = \log a + L \sin C - L \sin A$.

Example. Given that c=1764.3 feet, C=180.27, and B=660.39, find b.

From the Tables we find log 1764:3=3:2465724.

 $L\sin 18^{\circ}27' = 9.5003421$, $L\sin 66^{\circ}39' = 9.9628904$;

 $\therefore \log b = 3.2465724 + 9.9628904 - 9.5003421$

 $=3.7091207 = \log 5118.2$;

∴ b = 5118.2 feet.

EXAMPLES, LXVII.

(1) If $A = 53^{\circ} 24'$, $B = 66^{\circ} 27'$, c = 338.65 yards, find C and a, having given that

 $L \sin 53^{\circ} 24' = 9.9046168$, $\log 3.3865 = .5297511$, $L \sin 60^{\circ} 9' = 9.9381851$, $\log 3.1346 = .4961821$, $\log 3.1347 = .4961960$.

(2) If $A=48^{\circ}$, $B=54^{\circ}$, and c=38 inches, find a and b, having given that

 $\log 38 = 1.5797836, \log 2.88704 = .4604527,$ $\log 3.14295 = .4973368, \qquad L \sin 54^{\circ} = 9.9079576,$ $L \sin 78^{\circ} = 9.9904044, \qquad L \sin 48^{\circ} = 9.8710735.$

(3) Find c, having given that a=1000 yards, $A=50^{\circ}$, $C=66^{\circ}$, and that

 $L \sin 50^{\circ} = 9.8842540$, $L \sin 66^{\circ} = 9.9607302$, $\log 1.19255 = .0764762$.

(4) Find b, having given that $B=32^{\circ}15'$, $C=21^{\circ}47'20''$, a=34 feet.

 $\log 3.4 = .531479$, $L \sin 32^{\circ} 15' = 9.727228$, $\log 2.241 = .350442$, $L \sin 54^{\circ} 2' = 9.908141$, $\log 2.242 = .350636$, $L \sin 54^{\circ} 3' = 9.908233$.

(5) Find a, b, C, having given $A=72^{\circ}4'$, $B=41^{\circ}56'18''$, c=24 feet.

 $\log 2.4$ = .3802112, $L \sin 72^{0}4'$ = 9.9783702, $\log 1.755$ = .2442771, $L \sin 41^{0}56'10''$ = 9.8249725, $\log 1.756$ = .2445245, $L \sin 41^{0}56'20''$ = 9.8249959, $\log 2.4995$ = .3978531, $L \sin 65^{0}59'$ = 9.9606739, $\log 2.4996$ = .3978705, $L \sin 66^{0}$ = 9.9607302.

 $\sin A$).

7. VI. 4.]

7', and

Case III.

258. Given two sides and the included angle, as b, c, A. [Euc. I. 4; VI. 6.]

First, $B + C = 180^{\circ} - A$. Thus (B + C) is determined.

Next,
$$\tan \frac{B-C}{2} = \frac{b-c}{b+c} \cot \frac{A}{2}$$
.

Thus (B-C) is determined.

And B and C can be found when the values of (B+C) and (B-C) are known.

Lastly,
$$\frac{a}{\sin A} = \frac{b}{\sin B}$$
, or $a = \frac{b \cdot \sin A}{\sin B}$.

Whence a is determined.

259. In practical work we proceed as follows;

Since
$$\tan \frac{B-C}{2} = \frac{b-c}{b+c} \cot \frac{A}{2}$$
,

$$\therefore \log \left(\tan \frac{B-C}{2}\right) + 10$$

$$= \log (b-c) - \log (b+c) + \log \left(\cot \frac{A}{2}\right) + 10,$$

or,

sim

by (20

that

or,
$$L \tan \frac{B-C}{2} = \log (b-c) - \log (b+c) + L \cot \frac{A}{2}$$
.

Also, since
$$a = \frac{b \cdot \sin A}{\sin B}$$
,

: $\log a = \log b + L \sin A - L \sin B$, as in Case II.

Example. Given b=456.12 chains, c=296.86 chains, and $A = 74^{\circ}20'$, find the other angles.

Here, b-c=159.26, b+c=752.98.

From the Table we find,

 $\log 159.26 = 2.2021067$, and $\log 752.98 = 2.8767834$,

$$L \tan \frac{B-C}{2} = 2.2021067 - 2.8767834 + 10.1202593$$

$$\therefore B - C = 31^{\circ}10' \ 36''$$
, and $B + C = 180^{\circ} - 74^{\circ} \ 20'$.

Thus
$$B+C=105^{\circ}40'$$
;

$$\therefore 2B = 136^{\circ} 50' 36''; 2C = 74^{\circ} 29' 24'',$$

or,

 $B = 68^{\circ} 25' 18''$; or, $C = 37^{\circ} 14' 42''$. The formula $a^2 = b^2 + c^2 - 2bc \cos A$ may be used in simple cases; or it may be adapted to logarithmic calculation by the use of a subsidiary angle. [Cf. Example LXXVI. (20), p. 272.]

Example. If b=35 feet, c=21 feet, and $A=50^{\circ}$, find a, given that $\cos 50^{\circ} = .643$.

Here $a^2 = 35^2 + 21^2 - 2 \times 35 \times 21 \times \cos 50^0$;

$$\therefore \frac{a^2}{7^2} = 5^2 + 3^2 - 2 \times 5 \times 3 \times \cos 50^0,$$

$$=25+9-30\times \cdot 643$$
, $=14.71$.

$$\therefore \frac{\alpha}{7} = 3.82 \text{ nearly}; \text{ or, } \alpha = 26.74 = \text{about } 26\frac{3}{4} \text{ feet.}$$

EXAMPLES. LXVIII.

(1) Find B and C, having given that $A=40^{\circ}$, b=131, c=72. $\log 5.9 = .7708520, L \cot 20^{\circ}$ =10.4389341, $\log 2.03 = 3074960$, $L \tan 38^{\circ} 36' = 9.9021604$.

 $L \tan 38^{\circ} 37' = 9.9024195$.

L. E. T.

15

s b, c, A. VI. 6.]

ined.

(B+C)

+ 10,

I.

- (2) Find A and B, having given that $\alpha = 35$ feet, b = 21 feet, $C = 50^{\circ}$. $\log 2 = \cdot 301030$, $L \tan 28^{\circ} 11' = 9 \cdot 729020$, $L \tan 65^{\circ} = 10 \cdot 331327$, $L \tan 28^{\circ} 12' = 9 \cdot 729323$.
- (3) If b=19 chains, c=20 chains, $A=60^{\circ}$, find B and C, having given that $\log 3.9 = .591065$, $L \tan 2^{\circ} 32' = 8.645853$, $L \cot 30^{\circ} = 10.238561$, $L \tan 2^{\circ} 33' = 8.648704$.
- (4) Given that $a=376\cdot375$ chains, $b=251\cdot765$ chains, and $C=78^{\circ}26'$, find A and B. $L \cot 39^{\circ}13'=10\cdot0882755$, $\log 1\cdot2461=\cdot0955529$, $L \tan 13^{\circ}39'=9\cdot3853370$, $\log 6\cdot2814=\cdot7980565$, $L \tan 13^{\circ}40'=9\cdot3858876$.
 - (5) If $\alpha = 135$, b = 105, $C = 60^{\circ}$, find A, having given that $\log 2 = 3010300$, $L \tan 12^{\circ} 12' = 9 \cdot 3348711$, $\log 3 = 4771213$, $L \tan 12^{\circ} 13' = 9 \cdot 3354823$.
 - (6) If a=21 chains, b=20 chains, $C=60^{\circ}$, find c.
 - (7) Find c in the triangle of example (5).
- (8) In a triangle the ratio of two sides is 5:3 and the included angle is $70^{\circ}30'$. Find the other angles.

is

les

C:

is]

cas tion

tria

or g

 $\log 2 = 3010300$, $L \cot 35^{\circ} 15' = 10.1507464$, $L \tan 19^{\circ} 28' 50'' = 9.5486864$.

Case IV.

261. Given two sides and the angle opposite one of them, as b, c, B. [Omitted in Euc. I; Euc. VI. 7.]

First, since
$$\frac{c}{\sin C} = \frac{b}{\sin B}$$
; $\therefore \sin C = \frac{c \sin B}{b}$.

C must be found from this equation.

21 feet,

and C,

3704.

ins, and

hat

the in-

one of VI. 7.] When C is known, $A = 180^{\circ} - B - C$,

and, $a = \frac{b \sin A}{\sin B}.$

Which solves the triangle.

262. We remark however that the angle C, found from the **trigonometrical** equation $\sin C = a$ given quantity, where C is an angle of a triangle, has **two** values, one less than 90°, and one greater than 90°. [Art. 234.]

The question arises, Are both these values admissible?

This may be decided as follows:

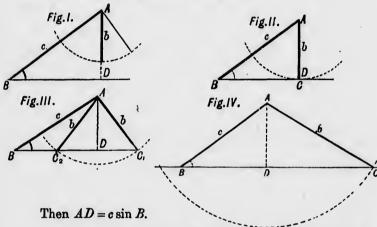
If B is not less than 90°, C must be less than 90° ; and the smaller value for C only is admissible.

If B is less than 90° we proceed thus.

- 1. If b is less than $c \sin B$, then $\sin C$, which $= \frac{c \sin B}{b}$, is greater than 1. This is impossible. Therefore if b is less than $c \sin B$, there is no solution whatever.
- 2. If b is equal to $c \sin B$, then $\sin C = 1$, and therefore $C = 90^{\circ}$; and there is only one value of C, viz. 90° .
- 3. If b is greater than $c \sin B$, and less than c, then B is less than C, and C may be obtuse or acute. In this case C may have either of the values found from the equation $\sin C = \frac{c \sin B}{b}$. Hence there are two solutions, and the triangle is said to be **ambiguous**.
- 4. If b is equal to or greater than c, then B is equal to or greater than C, so that C must be an acute angle; and the smaller value for C only is admissible.

263. The same results may be obtained geometrically.

Construction. Draw AB = c; make the angle ABD = the given angle B; with centre A and radius = b describe a circle; draw AD perpendicular to BD.



- 1. If b is less than $c \sin B$, i.e. less than AD, the circle will not cut BD at all, and the construction fails. (Fig. i.)
- 2. If b is equal to AD, the circle will touch the line BD in the point D, and the required triangle is the right-angled triangle ABD. (Fig. ii.)
- 3. If b is greater than AD and less than AB, i.e. than c, the circle will cut the line BD in two points C_1 , C_2 each on the same side of B. And we get two triangles ABC_1 , ABC_2 each satisfying the given condition. (Fig. iii.)
- 4. If b is equal to c, the circle cuts BD in B and in one other point C; if b is greater than c the circle cuts BD in two points, but on *opposite* sides of B. In either case there is only **one** triangle satisfying the given condition. (Fig. iv.)

the

of ·

ometri-

3D =the scribe a

he circle

(Fig. i.)

the line

is the

i.e. than C_{\bullet} each

s ABC,

and in cuts BD

ase there

Fig. iv.)

264. We may also obtain the same results algebraically, from the formula

$$b^2 = c^2 + a^2 - 2c a \cos B.$$

In this b, c, B are given, a is unknown. Write x for a and we get the quadratic equation

$$x^2 - 2c \cos B \cdot x = b^2 - c^2$$

Whence,
$$x^2 - 2c \cos B$$
. $x + c^2 \cos^2 B = b^2 - c^2 + c^2 \cos^2 B$
= $b^2 - c^2 \sin^2 B$;

$$\therefore x = c \cos B \pm \sqrt{b^2 - c^2 \sin^2 B}.$$

Let a_1 , a_2 be the two values of x thus obtained, then

$$a_1 = c \cos B + \sqrt{b^2 - c^2 \sin^2 B}$$

 $a_2 = c \cos B - \sqrt{b^2 - c^2 \sin^2 B}$

Which of these two solutions is admissible, may be decided as follows;

- 1. If b is less than $c \sin B$, then $(b^2 c^2 \sin^2 B)$ is negative, so that a_1 , a_2 are impossible quantities.
- 2. If b is equal to $c \sin B$, then $(b^2 c^3 \sin^2 B) = 0$, and $a_1 = a_2$; thus the *two* solutions become one.
- 3. If b is greater than $c \sin B$, then the two values a_1 , a_2 are different and positive unless

i.e. unless
$$b^2 - c^2 \sin^2 B$$
 is $> c \cos B$,
i.e. unless $b^2 - c^2 \sin^2 B$ $> c^2 \cos^2 B$,
i.e. unless b^2 $> c^2$.

4. If b is equal to c, then $a_2 = 0$; if b is greater than c, then a_2 is negative and is therefore inadmissible. In either of these cases a_1 is the only available solution.

265. We give two examples. In the first there are two solutions, in the second there is only one.

Example 1. Find A and C, having given that b=379.41 chains, c=483.74 chains, and B=340.11'.

$$L \sin C = \log a + L \sin B - \log b$$

$$= 2.6846120 + 9.7496148 - 2.5791088$$

$$= 9.8551180 = L \sin 45^{\circ} 45';$$

$$C = 45^{\circ} 45'$$
, or, $180^{\circ} - 45^{\circ} 45' = 134^{\circ} 15'$.

Since b is less than c, each of these values is admissible.

When
$$C = 45^{\circ} 45'$$
, then $A = 100^{\circ} 4'$.

When
$$C=134^{\circ}15'$$
, then $A=11^{\circ}34'$.

Example 2. Find A and C, when b=483.74 chains, c=379.41 chains, and B=34.011.

$$L \sin C = \log c + L \sin B - \log b$$

$$= 2.5791088 + 9.7496148 - 2.6846120$$

$$= 9.6441116 = L \sin 26^{\circ} 9';$$

$$\therefore C = 26^{\circ} 9', \text{ or, } 180^{\circ} - 26^{\circ} 9' = 153^{\circ} 51'.$$

Since b is greater than c, C must be less than 90° , and the larger value for C is inadmissible.

fo

as th th

[It is also clear that $(153^{\circ}51' + 34^{\circ}11')$ is >180°]. $C = 26^{\circ}9'$, $A = 119^{\circ}40'$.

EXAMPLES. LXIX.

(1) If $B=40^{\circ}$, $b=140 \cdot 5$ feet, $a=170 \cdot 6$ feet, find A and C. $\log 1 \cdot 405 = \cdot 1476763$, $L \sin 40^{\circ} = 9 \cdot 8080675$, $\log 1 \cdot 706 = \cdot 2319790$, $L \sin 51^{\circ} 18' = 9 \cdot 8923342$, $L \sin 51^{\circ} 19' = 9 \cdot 8924354$.

iere are

=379.41

le.

=379.41

and the

nd C.

(2) Find B and C, having given that $A = 50^{\circ}$, b = 119 chains, a = 97 chains, and that

 $\log 1.19 = .075547$, $L \sin 50^{\circ} = 9.884254$, $\log 9.7 = .986772$, $L \sin 70^{\circ} = 9.972986$, $L \sin 70^{\circ} 1' = 9.973032$.

(3) Find B, C, and c, having given that $A=50^{\circ}$, b=97, a=119 (see example (2)).

log 1.553 = .191169, $L \sin 38^{\circ} 38' 24'' = 9.795479$, $L \sin 88^{\circ} 38' 24'' = 9.999876$.

(4) Find A, having given that a=24, c=25, $C=65^{\circ}59'$, and that

log 2.5 = .3979400, $L \sin 65^{\circ} 59' = 9.9606739$, log 2.4 = .3802112, $L \sin 61^{\circ} 16' = 9.9429335$, $L \sin 61^{\circ} 17' = 9.9430028$.

(5) If a=25, c=24, and $C=65^{\circ}59'$, find A, B and the greater value of b.

 $\begin{aligned} \log 1.755 &= .2442771, \ L \sin 72^{\circ} 4' = 9.9783702, \\ \log 1.756 &= .2445245, \ L \sin 72^{\circ} 5' = 9.9784111, \\ L \sin 41^{\circ} 56' 10'' &= 9.8249725, \\ L \sin 41^{\circ} 56' 26'' &= 9.8249959; \end{aligned}$

for other logs see example (4).

- (6) Supposing the data for the solution of a triangle to be as in the three following cases (a), (β) , (γ) , point out whether the solution will be ambiguous or not, and find the third side in the obtuse-angled triangle in the ambiguous case:
 - (a) $A=30^{\circ}$, $\alpha=125$ feet, c=250 feet,
 - (β) $A=30^{\circ}$, a=200 feet, c=250 feet,
 - (γ) $A=30^{\circ}$, a=200 feet, c=125 feet.

 $\log 2 = 3010300$, $L \sin 38^{\circ} 41' = 9.7958800$, $\log 6.0389 = 7809578$, $L \sin 8^{\circ} 41' = 9.1789001$, $\log 6.0390 = 7809650$.

266. It saves a little trouble in practice when using the formula $a = \frac{b \sin A}{\sin B}$, to write it thus; $a = b \sin A$. cosec B.

For then, $\log a = \log b + L \sin A + L \csc B - 20$.

Thus the subtraction of a logarithm is avoided.

*267. In the following Examples the student must find the necessary logarithms etc. from the Tables. th

for wl

in

ang

the

ang

angl

find

angl

angle

* MISCELLANEOUS EXAMPLES. LXX.

- (1) Find A when a=374.5, b=576.2, c=759.3 feet.
- (2) Find B when a=4001, b=9760, c=7942 yards.
- (3) Find C when a=8761.2, b=7643, c=4693.8 chains.
- (4) Find B when $A = 86^{\circ}$ 19', b = 4930, c = 5471 chains.
- (5) Find C when $B=32^{\circ}$ 58', c=1873.5, a=764.2 chains.
- (6) Find c when $C=108^{\circ} 27'$, a=36541, b=89170 feet.
- (7) Find c when $B=74^{\circ}$ 10', $C=62^{\circ}$ 45', b=3720 yards.
- (8) Find b when $B=100^{\circ} 19'$, $C=44^{\circ} 59'$, $\alpha=1000$ chains.
- (9) Find a when $B=123^{\circ}$ 7' 20", $C=15^{\circ}$ 9', c=9964 yards.

Find the other two angles in the six following triangles.

- (10) $C=100^{\circ} 37'$, b=1450, c=6374 chains.
- (11) $C=52^{\circ}$ 10', b=643, c=872 chains.
- (12) $A = 76^{\circ} 2' 30''$, b = 1000, a = 2000 chains.
- (13) $C=54^{\circ}$ 23', b=873.4, c=752.8 feet.
- (14) $C=18^{\circ} 21'$, b=674.5, c=269.7 chains.
- (15) $A = 29^{\circ} 11' 43'', b = 7934, a = 4379$ feet.
- (16) The difference between the angles at the base of a triangle is 17°48′, and the sides subtending those angles are 105.25 feet and 76.75 feet; find the third angle.
 - (17) If b: c=4:5, a=1000 yards and $A=37^{\circ}19'$, find b.

The student will find some Examples of Solution of Triangles without the aid of logarithms, in an Appendix.

on using $\cos B$.

ust find

nains. ains. chains. feet. ards.

chains. 64 yards. es.

ase of a igles are

ind **b.** Triangles

*MISCELLANEOUS EXAMPLES. LXX b.

In the following Examples Logarithms are not required; they are not practical Examples, but some of them require for their solution considerable neatness and ingenuity; for which reason they are often set in examinations.

PART I.

(1) Simplify the formulæ

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}, \qquad \cos \frac{1}{2}A = \sqrt{\left\{\frac{s(s-a)}{bc}\right\}}$$

in the case of an equilateral triangle.

- (2) The sides of a triangle are as $2:\sqrt{6}:1+\sqrt{3}$, find the angles.
- (3) The sides of a triangle are as 4, $2\sqrt{2}$, $2(\sqrt{3}-1)$, find the angles.
 - (4) Given $C=120^{\circ}$, $c=\sqrt{19}$, $\alpha=2$, find b.
 - (5) Given $A = 60^{\circ}$, $b = 4\sqrt{7}$, $c = 6\sqrt{7}$, find a.
 - (6) Given $A = 45^{\circ}$, $B = 60^{\circ}$ and a = 2, find c.
- (7) The sides of a triangle are as 7:8:13, find the greatest angle.
- (8) The sides of a triangle are 1, 2, $\sqrt{7}$, find the greatest angle.
- (9) The sides of a triangle are as $a:b:\sqrt{(a^2+ab+b^2)}$, find the greatest angle.
- (10) When a:b:c as 3:4:5, find the greatest and least angles; given $\cos 36^{\circ} 52' = 8$.
- (11) If a=5 miles, b=6 miles, c=10 miles, find the greatest angle. [cos 49° 33′ = 65.]

- (12) If a=4, b=5, c=8, find C; given that $\cos 54^{\circ} 54' = 575$.
- (13) The two sides a and b are $\sqrt{3}+1$ and 2 respectively; $C=30^{\circ}$; solve the triangle.
- (14) Given $C=18^{\circ}$, $\alpha=\sqrt{5}+1$, $c=\sqrt{5}-1$, find the other angles.
- (15) If b=3, $C=120^{\circ}$, $c=\sqrt{13}$, find a and the sines of the other angles.
 - (16) Given $A=105^{\circ}$, $B=45^{\circ}$, $c=\sqrt{2}$, solve the triangle.
 - (17) Given $B=75^{\circ}$, $C=30^{\circ}$, $c=\sqrt{8}$, solve the triangle.
 - (18) Given $B=45^{\circ}$, $c=\sqrt{75}$, $b=\sqrt{50}$, solve the triangle.
- (19) Given $B=80^{\circ}$, c=150, $b=50\sqrt{3}$, show that of the two triangles which satisfy the data one will be isosceles and the other right-angled. Find the third side in the greatest of these triangles.
 - (20) Is the solution ambiguous when $B=30^{\circ}$, c=150, b=75?
- (21) If the angles adjacent to the base of a triangle are $22\frac{1}{2}^{0}$ and $112\frac{1}{2}^{0}$, show that the perpendicular altitude will be half the base.
 - (22) If a=2, $b=4-2\sqrt{3}$, $c=\sqrt{6}(\sqrt{3}-1)$, solve the triangle.
 - (23) If $A = 9^{\circ}$, $B = 45^{\circ}$, $b = \sqrt{6}$, find c.
 - (24) Given $B=15^{\circ}$, $b=\sqrt{3}-1$, $c=\sqrt{3}+1$, solve the triangle.
- (25) Given $\sin B = 25$, a=5, b=2.5, find A. Draw a figure to explain the result.
 - (26) Given $C=15^{\circ}$, c=4, $\alpha=4+\sqrt{48}$, solve the triangle.
- (27) Two sides of a triangle are $3\sqrt{6}$ yards and $3(\sqrt{3}+1)$ yards, and the included angle 45° , solve the triangle.
 - (28) If $C=30^\circ$, b=100, c=45, is the triangle ambiguous?
 - (29) Prove that if $A=45^{\circ}$ and $B=60^{\circ}$ then $2c=a(1+\sqrt{3})$.
- (30) The cosines of two of the angles of a triangle are \(\frac{1}{2} \), find the ratio of the sides.

wi in

dir not As

we are we

pra

we poin

coun

pectively;

54' = '575.

es of the

ngle.

le. ngle.

f the two

and the

0, b = 75?

e are 22½° half the

triangle.

triangle. , a figure

ngle.

 $3(\sqrt{3}+1)$

uous? ! +√3).

gle are

CHAPTER XVIII.

ON THE MEASUREMENT OF HEIGHTS AND DISTANCES.

268. We have said (Art. 97) that the measurement, with scientific accuracy, of a line of any considerable length involves a long and difficult process.

On the other hand, sometimes it is required to find the direction of a line that it may point to an object which is not visible from the point from which the line is drawn. As for example when a tunnel has to be constructed.

By the aid of the Solution of Triangles

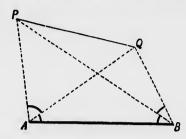
we can find the length of the distance between points which are inaccessible;

we can calculate the magnitude of angles which cannot be practically observed;

we can find the relative heights of distant and inaccessible points.

The method on which the Trigonometrical Survey of a country is conducted affords the following illustration.

269. To find the distance between two distant objects.



Two convenient positions A and B, on a level plain as far apart as possible, having been selected, the distance between A and B is measured with the greatest possible care. This line AB is called the base line. (In the survey of England, the base line is on Salisbury plain, and is about 36,578 feet long).

Next, the two distant objects, P and Q (church spires, for instance) visible from A and B, are chosen.

The angles PAB, PBA are observed. Then by Case II. Chapter xVII, the lengths of the lines PA, PB are calculated.

Again, the angles QAB, QBA are observed; and by Case II. the lengths of QA and QB are calculated.

Thus the lengths of PA and QA are found.

The angle PAQ is observed; and then by Case III. the length of PQ is calculated.

270. Thus the distance between two points P and Q has been found. The points P and Q are not necessarily accessible; the only condition being that P and Q must be visible from both A and B.

Frin an B

poi pla

be

the

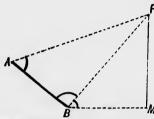
mile ang dist

(A a

The

271. In practice, the points P and Q will generally be accessible, and then the line PQ, whose length has been calculated, may be used as a new base to find other distances.

272. To find the height of a distant object above the point of observation.



Let B be the point of observation; P the distant object. From B measure a base line BA of any convenient length, in any convenient direction; observe the angles PAB, PBA, and by Case II. calculate the length of BP. Next observe at B the 'angle of elevation' of P; that is, the angle which the line BP makes with the horizontal line BM, M being the point in which the vertical line through P cuts the horizontal plane through B.

Then PM, which is the vertical height of P above B can be calculated, for $PM = BP \cdot \sin MBP$.

Example 1. The distance between a church spire A and a milestone B is known to be 1764:3 feet; C is a distant spire. The angle CAB is 94° 54'. and the angle CBA is 66° 39'. Find the distance of C from A.

ABC is a triangle and we know one side c and two angles (A and B), and therefore it can be solved by Case II.

The angle $ACB = 180^{\circ} - 94^{\circ} 54' - 66^{\circ} 39'$

 $=18^{\circ} 27'$.

Therefore the triangle is the same as that solved on page 210. Therefore $AC=5118\cdot 2$ feet.

l plain as distance possible he survey

biects.

h spires,

is about

Case II. are cal-

l by Case

III. the

P and Q ecessarily must be

Example 2. If the spire C in the last Example stands on a hill, and the angle of elevation of its highest point is observed at A to be 40 19'; find how much higher C is than A.

ro

re

an

th

tiv

the

top

be At

a sl

tane

that

Je 4

seen

the s

Fron

line.

secon

apart

The required height x=AC. sin 4° 19' [Art. 268], and AC is 5118.2 feet,

 $\therefore \log x = \log (AC \cdot \sin 4^0 \cdot 19')$ $= \log 5118 \cdot 2 + L \sin 4^0 \cdot 19' - 10$ = 3.7091173 + 8.8766150 - 10 $= 2.5857323 = \log 385.24.$

Ther fore

x=385 ft. 3 in. nearly.

EXAMPLES LXXI.

(Exercises xIV. and LXI. consist of casy examples on this subject).

- (1) Two straight roads inclined to one another at an angle of 60°, lead from a town A to two villages B and C; B on one road distant 30 miles from A, at C on the other road distant 15 miles from C. Ans. 25.98 m.
- (2) Two ships leave harbour together, one sailing N.E. at the rate of 7½ miles an hour and the other sailing North at the rate of 10 miles an hour. Prove that the distance between the ships after an hour and a half is 10.6 miles.
- (3) A and B are two consecutive milestones on a straight road and C is a distant spire. The angles ABC and BAC are observed to be 120° and 45° respectively. Show that the distance of the spire from A is 3.346 miles.
- (4) If the spire C in the last question stands on a hill, and its angle of elevation at A is 15° , show that it is 866 of a mile higher than A.
- (5) If in Question (3) there is another spire D such that the angles DBA and DAB are 45° and 90° respectively and the angle DAC is 45°; prove that the distance from C to D is $2\frac{3}{4}$ miles very nearly.

nds on a served at

nd AC is

s on this

t an angle B on one ad distant a 25.98 m. g N.E. at rth at the

a straight
BAC are
t the dis-

tween the

a hill, and of a mile

h that the the angle s 27 miles (6) A and B are two consecutive milestones on a straight road, and C is the chimney of a house visible from both A and B. The angles CAB and CBA are observed to be 36° 18' and 120° 27' respectively. Show that C is 2639.5 yards from B,

 $\log 1760 = 3.2455127$ $L \sin 36^{\circ} 18' = 9.7723314$ $L \csc 23^{\circ} 15' = 10.4036846$.

(7) A and B are two points on opposite sides of a mountain, and C is a place visible from both A and B. It is ascertained that C is distant 1794 feet and 3140 feet from A and B respectively and the angle ACB is 58° 17'. Show that the angle which the line pointing from A to B makes with AC is 86° 55' 49",

(8) A and B are two hill-tops 34920 feet apart, and C is the top of a distant hill. The angles CAB and CBA are observed to be 61° 53′ and 76° 49′ respectively. Prove that the distance from A to C is 51515 feet,

 $\begin{array}{ll} \log 34920 = 4.5430742 & L \sin 76^{\circ} 49' = 9.9884008 \\ \log 51515 = 4.71193 & L \csc 41^{\circ} 18' = 10.1804552. \end{array}$

(9) From two stations A and B on shore, 3742 yards apart, a ship C is observed at sea. The angles BAC, ABC are simultaneously observed to be 72° 34′ and 81° 41′ respectively. Prove that the distance from A to the ship is 8522.7 yards,

 $\begin{array}{ll} \log 3742 = 3.5731038 & L \sin 81^{0} 41' = 9.9954087 \\ \log 8522.7 = 3.9305774 & L \csc 25^{0} 45' = 10.3620649. \end{array}$

- (10) The distance between two mountain peaks is known to be 4970 yards, and the angle of elevation of one of them when seen from the other is 9^{0} 14'. How much higher is the first than the second? Sin 9^{0} 14' = 1604555. Ans. 797.5 yards.
- (11) Two straight railways intersect at an angle of 60°. From their point of intersection two trains start, one on each line, one at the rate of 40 miles an hour. Find the rate of the second train that at the end of an hour they may be 35 miles apart. Ans. Either 25 or 15 miles an hour. (Art. 264.)

(12) A and B are two positions on opposite sides of a mountain; C is a point visible from A and B; AC and BC are 10 miles and 8 miles respectively, and the angle BCA is 60°. Prove that the distance between A and B is 9.165 miles.

n

r

or

H

al ob

un

be

55

of :

fro

due

stat

the

from extre the

(13) In the last question, if the angle of elevation of C at A is 8°, and at B is 2° 48′ 24″: show that the height of B above A is one mile very nearly.

 $\sin 8^{\circ} = 1391731 \sin 2^{\circ} 48' 24'' = 0489664.$

(14) Show that the angles which a tunnel going through the mountain from A to B, in Questions (12) and (13), would make (i) with the horizon, (ii) with the line joining A and C, are respectively 6° 16' and 49° 6' 24''.

 $\sin 6^{\circ} 16' = 1091$; $\tan 10^{\circ} 53' 36'' = 192450$.

(15) A and B are consecutive milestones on a straight road; C is the top of a distant mountain. At A the angle CAB is observed to be 38° 19'; at B the angle CBA is observed to be 132° 42', and the angle of elevation of C at B is 10° 15'. Show that the top of the mountain is 1243° 5 yards higher than B.

 $L \sin 38^{\circ} 19' = 9.7923968$ $\log 1760 = 3.2455127$ $L \csc 9^{\circ} 59' = 10.8064659$ $\log 1243.5 = 3.09465$ $L \sin 10^{\circ} 15' = 9.2502822$.

(16) A base line AB, 1000 feet long is measured along the straight bank of a river; C is an object on the opposite bank; the angles BAC, and CBA are observed to be 65° 37′ and 53° 4′ respectively. Prove that the perpendicular breadth of the river at C is 829.87 feet; having given

 $L \sin 65^{\circ} 37' = 9.9594248$, $L \sin 53^{\circ} 4' = 9.9027289$ $L \csc 61^{\circ} 19' = 10.0568589$, $\log 8.2987 = .91901$.

ides of a * MISCELLANEOUS EXAMPLES. nd BC are 'A is 60°.

of Cat A

3 above A

rough the

uld make

nd C, are

ight road;

e CAB is

ved to be

5'. Show

along the

ite bank;

and 530 4'

the river

289

n B.

127

5

- (1) A man walking along a straight road at the rate of three miles an hour sees, in front of him at an elevation of 60°, a balloon which is travelling horizontally in the same direction at the rate of six miles an hour; ten minutes after he observes that the elevation is 30°. Prove that the height of the balloon above the road is 440 \square 3 yards.
- (2) A person standing at a point A, due south of a tower built on a horizontal plain, observes the altitude of the tower to be 60°. He then walks to a point B due west from A and observes the altitude to be 45° , and then at the point C in AB produced he observes the altitude to be 30°. Prove that AB=BC.
- (3) The angle of elevation of a balloon, which is ascending uniformly and vertically, when it is one mile high is observed to be 35° 20'; 20 minutes later the elevation is observed to be How fast is the balloon moving?

 $3 (\sin 20^{\circ} 20')$ (sec $55^{\circ} 40'$) (cosec $35^{\circ} 20'$) miles per hour.

(4) The angular elevation of a tower at a place A due south of it is 30° ; and at a place B due west of A, and at a distance afrom it, the elevation is 18°; show that the height of the tower is

$$\frac{a}{\sqrt{2}\overline{(1+\sqrt{5})}}$$
.

- (5) The angular elevation of the tcp of a steeple at a place due south of it is 45°, and at another place due west of the former station and distant α feet from it the elevation is 15°; show that the height of the steeple is $\frac{\alpha}{2}(3^{\frac{1}{4}}-3^{-\frac{1}{4}})$ feet.
- (6) A tower stands at the foot of an inclined plane whose inclination to the horizon is 90; a line is measured up the incline from the foot of the tower of 100 feet in length. At the upper extremity of this line the tower subtends an angle of 54°. Find the height of the tower. Ans. 114.4 ft.

- (7) The aititude of a certain rock is observed to be 47°, and after walking 1000 feet towards the rock, up a slope inclined at an angle of 32° to the horizon, the observer finds that the altitude is 77°. Prove that the vertical height of the rock above the first point of observation is 1034 ft. Sin 47° = ·73135.
- (8) At the top of a chimney 150 feet high standing at one corner of a triangular and, the angle subtended by the adjacent sides of the yard are 30° and 45° respectively; while that subtended by the opposite side is 30°. Show that the lengths of the sides are 150 ft. 86°6 ft. and 106 ft. respectively.
- (9) A flag staff h feet high stands on the top of a tower. From a point in the plain on which the tower stands the angles of elevation of the top and bottom of the flagstaff are observed to be a and β respectively. Prove that the height of the tower is $\frac{h \tan \beta}{\tan a \tan \beta}$ feet, i.e. $\frac{h \sin \beta \cdot \cos a}{\sin (a \beta)}$ feet.
- (10) From the top of a cliff h feet high the angles of depression of two ships at sea in a line with the foot of the cliff are a and β respectively. Show that the distance between the ships is h (cot β -cot a) fret.
- (11) The angular elevation of a tower at a place due south of it is a, and at another place due west of the first and distant d from it, the elevation is β . Prove that the height of the tower is

$$\frac{d}{\sqrt{\cot^2 \beta - \cot^2 a}}$$
, i.e. $\frac{d \sin a \cdot \sin \beta}{\sqrt{\sin (a - \beta) \cdot \sin (a + \beta)}}$.

(12) A man stands on the top of the wall of height h, and observes the angular elevation (a) of the top of a telegraph post; he then descends from the wall, and finds that the angular elevation is now β ; prove that the height of the post exceeds the height of the man by $h \frac{\sin \beta \cdot \cos a}{\sin (\beta - a)}$.

(w)

2h (

(a)

be

obsethat heigh

the paper

h fee tends the t that

greate the pl then a Prove

Prove

47°, and clined at a altitude the first

ng at one adjacent that sub-

f a tower. the angles observed the tower

cles of dene cliff are the ships

ne south of I distant *d* ne tower is

ight h, and oh post; he ir elevation he height of (13) Find the height of a cloud by observing (i) its elevation (a) and (ii) the depression (β) of its reflexion in a lake h feet below the point of observation. Ans. Height above the lake $h \sin(a+\beta) \csc(\beta-a)$ feet.

(14) If the angular elevation of the summits of two spires (which appear in a straight line) is a, and the angular depressions of their reflexions in a lake, h feet below the point of observation, are β and γ , then the horizontal distance between the spires is $2h\cos^2 a \sin(\beta - \gamma)$. $\csc(\beta - a)$. $\csc(\gamma - a)$ feet.

(15) A statue AB on the top of a pillar BC situated on level ground is found to subtend the greatest angle (a) at the eye of an observer E when he is distant c feet from the pillar. Prove that the height of the statue is $(2 c \tan a)$ feet; and if b be the height of the observer's eye from the ground find the height of the pillar. (See Note in the Answers.)

(16) A man walking along a straight road observes that the greatest angle which two objects subtend at his eye is a. From the place where this happens he walks a yards; the objects then appear in a straight line making a right angle with the road. Prove that the distance between the objects is $(2 a \tan a)$ yards.

(17) A man standing on a horizontal plain at a distance h feet from a tower, observes that a flagstaff on the tower subtends an angle a at his eye, and that on walking 2 k feet towards the tower the flagstaff subtends again the same angle. Prove that the height of the flagstaff is 2 (h-k) tan a feet.

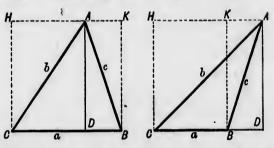
(18) A man walking along a straight road observes that the greatest angle which two objects subtend at his eye is a; from the place where this happens he walks a yards, and the objects then appear in a straight line making an angle β with the road. Prove that the distance between the objects is $\frac{2a \sin a \cdot \sin \beta}{\cos a + \cos \beta}$ yds.

CHAPTER XIX.

ON TRIANGLES AND CIRCLES.

273. To find the Area of a Triangle.

The area of the triangle ABC is denoted by Δ .



Through A draw HK parallel to BC, and through ABC draw lines AD, BK, CH perpendicular to BC.

The area of the triangle ABC is half that of the rectangular parallelogram BCHK [Euc. 1. 41].

Therefore
$$\Delta = \frac{BC \cdot CH}{2} = \frac{BC \cdot DA}{2}$$

$$= \frac{a \cdot b \sin C}{2} \cdot \dots (i).$$
But
$$\sin C = \frac{2}{ab} \cdot \sqrt{s(s-a)(s-b)(s-c)};$$

 $\therefore \Delta = \sqrt{s(s-a)(s-b)(s-c)} = S.....(ii).$

Let

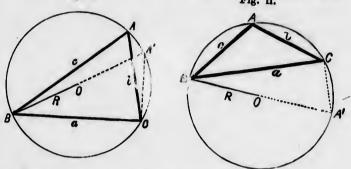
are also

or,

27

He

The diamet 274. To find the Radius of the Circumscribing Circle. Fig. 1. Fig. 11.



Let a circle AA'CB be described about the triangle ABC. Let R stand for its radius. Let O be its centre. Join BO, and produce it to cut the circumference in A'. Join A'C.

Then, Fig. 1. the angles BAC, BA'C in the same segment are equal; Fig. 11. the angles BAC, BA'C are supplementary; also the angle BCA' in a semicircle is a right angle.

Therefore
$$\frac{CB}{A'B} = \sin CA'B = \sin CAB = \sin A$$
,

or, $\frac{a}{2R} = \sin A;$ $\therefore 2R = \frac{a}{\sin A}.$

ough ABC

the rectan-Euc. 1. 41].

...(ii).

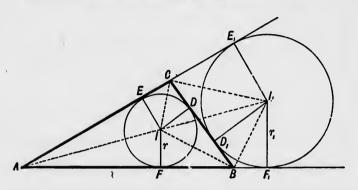
275. Similarly, it may be proved that

$$2R = \frac{b}{\sin B}$$
; and that $2R = \frac{c}{\sin C}$.

Hence, $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$.

Thus d, the value of each of these fractions, is the diameter of the circumscribing circle.

276. To find the radius of the Inscribed Circle.



Let D, E, F be the points in which the circle inscribed in the triangle ABC touches the sides. Let I be the centre of the circle; let r be its radius. Then ID = IE = IF = r.

The area of the triangle ABC

= area of IBC + area of ICA + area of IAB.

And the area of the triangle $IBC = \frac{1}{2}ID \cdot BC = \frac{1}{2}r \cdot a$,

∴ area of
$$ABC = \frac{1}{2}ID$$
. $BC + \frac{1}{2}IE$. $CA + \frac{1}{2}IF$. $AB = \frac{1}{2}ra + \frac{1}{2}rb + \frac{1}{2}rc$;

or,
$$\Delta = \frac{1}{2}r(a+b+c) = \frac{1}{2}r \cdot 2s = rs.$$
$$\therefore r = \frac{\Delta}{s} = \frac{S}{s}.$$

277. A circle which touches one of the sides of a triangle and the other two sides produced is called an **Escribed Circle** of the triangle.

or

escr

IA, I_1A , ively

278. To find the radius of an Escribed Circle.

Let an escribed circle touch the side BC and the sides AC, AB produced in the points D_1 , E_1 , F_1 respectively. Let I_1 be its centre, r_1 its radius. Then

$$I_1D_1 = I_1E_1 = I_1F_1 = r_1$$

The area of the tringle ABC

= area of
$$ABI_1C$$
 - area of I_1BC ,

= area of
$$I_1CA$$
 + area of I_1AB - area of I_1BC ,

or
$$\Delta = \frac{1}{2}I_{1}E_{1} \cdot CA + \frac{1}{2}I_{1}F_{1} \cdot AB - \frac{1}{2}I_{1}D_{1} \cdot BC$$

$$= \frac{1}{2}r_{1}b + \frac{1}{2}r_{1}c - \frac{1}{2}r_{1}a$$

$$= \frac{1}{2}r_{1} (b + c - a) = \frac{1}{2}r_{1} (2s - 2a)$$

$$= r_{1} (s - c).$$

$$\therefore r_1 = \frac{\Delta}{s-\alpha} = \frac{S}{s-\alpha}.$$

279. Similarly if r_s and r_s be the radii of the other two escribed circles of the triangle ABC, then

$$r_s = \frac{S}{s-b}$$
; $r_s = \frac{S}{s-c}$.

* 280. The following results are often useful.

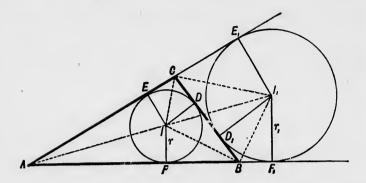
With the construction of the last two articles; the lines IA, IB, IC bisect the angles A, B, C respectively; the lines I_1A , I_1B , I_1C bisect the angles BAC, CBF_1 , BCE_1 respectively; so that AII_1 is a straight line.

inscribed he centre IF = r.

 $\frac{1}{2}r \cdot a$

AB

ides of a called an



(i) Two tangents drawn from an external point to touch a circle are equal; therefore

$$AE = AF$$
; $BD = BF$; $CE = CD$;
 $AE_1 = AF_1$; $BD_1 = BF_1$; $CE_1 = CD_1$.

(ii)
$$2AE_1 = AE_1 + AF_1 = (AC + CD_1) + (AB + BD_1)$$

= $AC + CB + BA = a + b + c = 2s$.

(iii)
$$2AE = AE + AF = (AC - CD) + (AB - BD)$$

= $AC + AB - BC = b + c - a = 2 (s - a)$.

Similarly,
$$BF = BD = (s - b)$$
; $CD = CE = (s - c)$.

(iv)
$$BD_1 = BF_1 = AF_1 - AB = (s - c)$$
.

Similarly,
$$CE_1 = CD_1 = (s-b)$$
.

(v) Hence,
$$BD_1 = CD$$
, and $CD_1 = BD$.

(vi)
$$FF_1 = AF_1 - AF = s - (s - a) = a$$
.

Similarly,
$$EE_{i} = a$$
.

or,

(vii)
$$II_1 = AI_1 - AI = AF_1 \sec \frac{A}{2} - AF \sec \frac{A}{2} = FF_1 \sec \frac{A}{2}$$

$$\therefore II_1 = \frac{a}{\cos \frac{A}{2}}.$$

(viii)
$$IF = AF \tan \frac{A}{2}$$
; or, $r = (s-a) \tan \frac{A}{2}$, $I_1F_1 = AF_1 \tan \frac{A}{2}$; or, $r_1 = s \tan \frac{A}{2}$.

(ix)
$$AF = IF \cot \frac{A}{2}$$
, and $BF = IF \cot \frac{B}{2}$;
 $\therefore c = AF + BF = r \left(\cot \frac{A}{2} + \cot \frac{B}{2}\right)$;
 $\therefore r = \frac{c}{\cot \frac{A}{2} + \cot \frac{B}{2}} = \frac{c \sin \frac{A}{2} \cdot \sin \frac{B}{2}}{\sin \frac{A+B}{2}} = \frac{c \sin \frac{A}{2} \cdot \sin \frac{B}{2}}{\cos \frac{C}{2}}$.

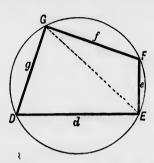
(x)
$$F_1BC = 180^{\circ} - B$$
, $\therefore I_1BC = 90^{\circ} - \frac{B}{2}$. Hence,
$$r_1 \left\{ \cot \left(90^{\circ} - \frac{B}{2} \right) + \cot \left(90^{\circ} - \frac{C}{2} \right) \right\} = a ;$$

$$r_1 = \frac{a \cos \frac{B}{2} \cdot \cos \frac{C}{2}}{\cos \frac{A}{2}} .$$

or,

(xi)
$$r_1 = AF_1 \tan \frac{A}{2}$$
, and $r = AF \tan \frac{A}{2}$; therefore
$$r_1 - r = FF_1 \tan \frac{A}{2} = a \tan \frac{A}{2}$$

* 281. To find an expression for the area of a quadrilateral inscribed in a circle, in terms of the sides.



Let DEFG be the quadrilateral; and let d, e, f, g represent the sides.

The angle $F = 180^{\circ} - D$.

[Euc. III. 22.]

The area of $GDE = \frac{1}{2}dg \sin D$.

[Art. 273.]

The area of $EFG = \frac{1}{2}ef\sin F = \frac{1}{2}ef\sin (180^{\circ} - D)$ = $\frac{1}{2}ef\sin D$.

Thus the area of the quadrilateral is

$$\frac{1}{2}(dg + ef) \sin D$$
.

We must find an expression for $\sin D$ in terms of the sides.

From the triangle EGD we have

$$EG^0 = d^2 + g^2 - 2dg \cos D.$$
 (Art. 239.)

From the triangle EGF we have

$$EG^{2} = e^{2} + f^{2} - 2ef \cos F$$

= $e^{2} + f^{2} + 2ef \cos D$; [For $F = 180^{\circ} - D$]

:.
$$d^2 + g^2 - 2dg \cos D = e^2 + f^2 + 2ef \cos D$$
;

,

_

or

whi

quadri

$$\therefore 2 (dg + ef) \cos D = d^{3} + g^{2} - e^{2} - f^{2};$$

$$\therefore 1 - \cos^{2} D = 1 - \frac{(d^{2} + g^{2} - e^{2} - f^{2})^{2}}{4 (dg + ef)^{2}};$$

$$\therefore \sin^{2} D = \frac{4 (dg + ef)^{2} - (d^{2} + g^{2} - e^{2} - f^{2})^{2}}{4 (dg + ef)^{2}}.$$

The numerator of this expression is equal to

$$\{(2dg + 2ef) + (d^{2} + g^{2} - e^{2} - f^{2})\} \{(2dg + 2ef) - (d^{2} + g^{2} - e^{2} - f^{2})\}$$

$$= \{(d + g)^{2} - (e - f)^{2}\} \times \{(e + f)^{3} - (d - g)^{2}\}$$

$$= \{(d + g) + (e - f)\} \{(d + g) - (e - f)\}$$

$$\times \{(e + f) + (d - g)\} \{(e + f) - (d - g)\}$$

$$= (d + g + e - f) (d + g - e + f) (e + f + d - g) (e + f + g - d).$$
Let 2s stand for $(d + e + f + g)$.

Then the above expression may be written

$$(2s-2f)(2s-2e)(2s-2g)(2s-2d).$$

Therefore
$$\sin^s D = \frac{4(s-d)(s-e)(s-f)(s-g)}{(dg+ef)^s}$$
.

or
$$\sin D = \frac{2\sqrt{(s-d)(s-e)(s-f)(s-g)}}{dg+ef}.$$

Hence the area of the quadrilateral DEFG which is $\frac{1}{2}(dg + ef) \sin D = \sqrt{(s-d)(s-e)(s-f)(s-g)}$.

g repre-

ш. 22.]

rt. 273.]

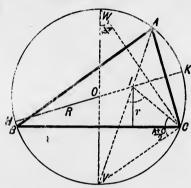
s of the

rt. **23**9.]

 $80^{\circ}-D$

* 282. To prove that if I and O are the centres of the inscribed and circumscribed circles of a triangle, then

$$OI^2 = R^2 - 2Rr.$$



Let OI produced cut the circumscribing circle in H and K. Join IA, IC; produce IA to cut the circle ABC again in V. Draw the diameter VOW and join CW. Then the angle $VIC = IAC + ICA = \frac{1}{2}A + \frac{1}{2}C = \frac{1}{2}(A + C)$. The angle

(i

de

the

$$ICV = ICB + BCV = ICB + BAV = \frac{1}{2}C + \frac{1}{2}A = \frac{1}{2}(A + C).$$

Therefore the angle VCI = VIC, and VI = VC.

Now
$$OK^2 - OI^2 = HI$$
. IK [Euc. II. 5]
= VI . $IA = VC$. IA . [Euc. III. 35.]

But $VC = VW \cdot \sin CWV = 2R \cdot \sin CAV = 2R \cdot \sin \frac{A}{2}$,

and
$$IA = \frac{r}{\sin \frac{A}{2}}$$
. [See Figure on page 234.]

Hence
$$\partial K^2 - \partial I^2 = 2R \sin \frac{A}{2} \times \frac{1}{\sin \frac{A}{D}}$$

or
$$R^2 - OI^2 = 2Rr$$
.

of the

EXAMPLES. LXXIII.

- (1) Find the area of the triangle ABC when
 - (i) a=4, b=10 feet, $C=30^{\circ}$.
 - (ii) b=5, c=20 inches, $A=60^{\circ}$.
 - (iii) $c=66\frac{2}{3}$, a=15 yards, $B=17^{\circ}$ 14' [sin 17° 14'= 29626].
 - (iv) a=13, b=14, c=15 chains.
 - (v) $\alpha=10$, the perpendicular from A on BC=20 feet.
 - (vi) u=625, b=505, c=904 yards.
- (2) Find the Radii of the Inscribed and each of the Escribed Circles of the triangle ABC when a=13, b=14, c=15 feet.
- (3) Show that the triangles in which (i) $\alpha=2$, $A=60^{\circ}$; (ii) $b=\frac{2}{3}.\sqrt{3}$, $B=30^{\circ}$ can be inscribed in the same circle.
 - (4) Prove that $R = \frac{abc}{4S}$; find R in the triangle of (2).
- (5) Prove that if a series of triangles of equal perimeter are described about the same circle, they are equal in area.
 - (6) If $A = 60^{\circ}$, $\alpha = \sqrt{3}$, $b = \sqrt{2}$, prove that the area $= \frac{1}{4}(3 + \sqrt{3})$.
- (7) Prove that each of the following expressions represents the area of the triangle ABC:
 - (i) $\frac{abc}{4R}$.
- (ii) $2R^2 \sin A \cdot \sin B \cdot \sin C$.
- (iii) rs.
- (iv) $Rr(\sin A + \sin B + \sin C)$.
- (v) $\frac{1}{2}a^2 \sin B \cdot \sin C \cdot \csc A$. (vi) $ra \csc \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}$.
- (vii) $(rr_1r_2r_3)^{\frac{1}{2}}$. (viii) $\frac{1}{2}(a^2-b^2)\sin A \cdot \sin B \cdot \csc(A-B)$.

H and again en the angle

+ C).

: 11. 5] 11. 35.]

 $\frac{A}{2}$,

234.]

Prove the following statements:

- (8) If a, b, c are in A. P., then ac = 6rR.
- (9) The area of the greatest triangle, two of whose sides are 50 and 60 feet, is 1500 sq. feet.
- (10) If the altitude of an isosceles triangle is equal to the base, R is five-eighths of the base.
 - (11) $R(\sin A + \sin B + \sin C) = s$.
 - (12) $bc = 4R^2(\cos A + \cos B \cdot \cos C)$.
 - (13) If C is a right angle, 2r+2R=a+b.
 - $(14) \quad r_2r_3 + r_3r_1 + r_1r_2 = s^2.$
 - (15) $\frac{1}{bc} + \frac{1}{ca} + \frac{1}{ab} = \frac{1}{2rR}$.
 - (16) $r_1 \cot \frac{A}{2} = r_2 \cot \frac{B}{2} = r_3 \cot \frac{C}{2} = r \cot \frac{A}{2} \cdot \cot \frac{B}{2} \cdot \cot \frac{C}{2}$
 - (17) $r_1 + r_2 = c \cot \frac{C}{2}$.
 - (18) $\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} = \frac{1}{r}$.
 - (19) $\frac{r_1-r}{a} + \frac{r_2-r}{b} = \frac{o}{r_0}$. (20) $r_1+r_2+r_3-r=4R$.
 - (21) a.b.c.r = 4R(s-a)(s-b)(s-c).
- (22) The distances of the centres of the escribed circles of the triangle ABC from that of the inscribed circle are

$$4R\sin\frac{A}{2}$$
, $4R\sin\frac{B}{2}$, $4R\sin\frac{C}{2}$.

- (23) If A is a right angle, $r_2 + r_3 = a$.
- (24) In an equilateral triangle $3R = 6r = 2r_1$.
- (25) $\frac{r_1}{bc} + \frac{r_2}{ca} + \frac{r_3}{ab} = \frac{1}{r} \frac{1}{2R}$.

a re

F *HK* equal

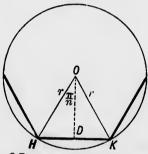
the p

the ar

* CHAPTER XX.

On the Area of the Circle, the Construction of Trigonometrical Tables, &c.

283. Let r be the radius of the circle described about a regular polygon of n sides. Let O be the centre; HK one of the sides.



From O draw OD perpendicular to HK, bisecting both HK and the angle HOK. Then, since the polygon has n equal sides, n times the angle HOK make up four right angles

$$\therefore HOK = \frac{2\pi}{n}, \text{ and } \therefore DOK = \frac{\pi}{n}. \text{ Hence,}$$

the perimeter of the polygon, which is n times HK,

$$=2n \cdot DH = 2n \cdot OH \sin DOH$$

$$=2nr\,\sin\,\frac{\pi}{n};$$

the area of the polygon, which is n times the area of HOK,

$$= nOD \cdot HD = nr \cos \frac{\pi}{n} \cdot r \sin \frac{\pi}{n}$$

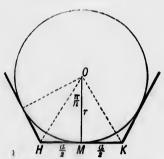
$$= nr^2 \sin \frac{\pi}{n} \cdot \cos \frac{\pi}{n}$$
.

of the

es are

to the

284. Let r be the radius of the circle inscribed in a regular polygon of n sides. Let O be the centre, HK one of the sides.



From O draw OM perpendicular to HK, bisecting both HK and the angle HOK. Then since the polygon has n equal sides, n times the angle HOK make up four right angles,

$$\therefore HOK = \frac{2\pi}{n} \text{ and } \therefore MOH = \frac{\pi}{n}.$$
 Hence

the perimeter of the polygon which is n times HK,

$$=2n.MH=2n.OM \tan MOH$$

$$=2nr\tan\frac{\pi}{n}$$
.

The area of the polygon, which is n times the area of HOK,

$$= n.OM.J. T = n.OM.OM tan MOH$$

$$= nr^{s} \tan \frac{\pi}{n}$$

= the radius × half the perimeter.

285. Let a circle of radius r have a regular polygon of n sides circumscribed about it, and also a regular polygon of the same number (n) of sides inscribed in it.

bet

the

(by

Art

mag

gon and f

ribed in a , IIK one

cting both ygon has four right

of HOK.

r polygon r polygon

The perimeter of the circumscribing polygon is $2nr \tan \frac{\pi}{n}$. The perimeter of the inscribed polygon is $2nr\sin\frac{\pi}{n}$. The ratio of these perimeters is $1 : \cos \frac{\pi}{n} \dots (1)$. The area of the circumscribed polygon is $nr^s \tan \frac{\pi}{n}$. The area of the inscribed polygon is $nr^{s} \sin \frac{\pi}{n} \cos \frac{\pi}{n}$.

The ratio of these areas is $1 : \cos^2 \frac{\pi}{n}$(ii). We must assume the two following axioms:

The circumference of the circle lies in magnitude between the perimeter of a circumscribed and that of an inscribed polygon.

The area of the circle lies in magnitude between the area of a circumscribed and that of an inscribed polygon.

Now, when n is increased, $\frac{\pi}{n}$ is diminished, and therefore (by Art. 94) $\cos \frac{\pi}{n}$ approaches 1.

Hence, as the number of the sides of the two polygons in Art. 285 is increased, their perimeters approach to equality.

And since the circumference of the circle always lies in magnitude between them, each of these perimeters must approach the circumference of the circle.

Therefore, the circumference of a circle is that, to which the perimeter of a regular inscribed (or circumscribed) polygon approaches as the number of its sides is increased, and from which it can be made to differ by less than any assignable quantity however small. (Cf. Art. 32.)

287. In like manner it follows, from (ii) Art. 285, that the area of the circle is the 'limit' of the area of a regular inscribed (or circumscribed) polygon when the number of the sides is indefinitely increased.

Now, twice the area of a polygon circumscribed about a circle is equal to (the radius × the perimeter). [Art. 284]

This is true however great be the number of the sides. It is therefore true when the number of the sides is indefinitely increased.

Therefore it is true for the circle itself. Hence, twice the area of a circle = the radius × the circumference.

SC

pe rig

abo per

side sun

that

is th

a 80

cylin (1

ness (

of the

Or, the area of a circle = $\frac{1}{2}r(2\pi r)$ [Art. 34] = πr^2 .

EXAMPLES. LXXIV.

- (1) Prove the surd expressions of Art. 37 for the ratios of the perimeters of certain regular polygons to the diameters of their circumscribing circles.
- (2) Prove that the area of a regular polygon of twelve sides described about a circle whose radius is 1 foot is 3.215 sq. ft.
- (3) Prove that the area of a square described about a circle is § of the dodecagon inscribed in the same circle.
- (4) Find the perimeter of a regular polygon of 100 sides (i) when described about a circle of 1 foot diameter, (ii) when inscribed in the same circle. Ans. (i) 3·14263, (ii) 3·14108 ft.
- (5) An equilateral triangle and a regular hexagon have the same perimeter: show that the areas of their inscribed circles are as 4:9.

285, that regular er of the

ed about art. 284] the sides. les is in-

ference. Art. 34]

ios of the

elve sides q. ft. ıt a circle

100 sides (ii) when .08 ft.

have the

(6) Prove that the area of a regular polygon of n sides, each of whose sides is a, is $\frac{na^2}{4} \cdot \cot \frac{180^0}{n}$.

(7) If the areas of a regular pentagon and decagon are equal, the ratio of their sides is $\sqrt[4]{20}$: 1.

(8) If α be a side of a regular polygon and R and r the radii of the inscribed and described circles respectively, then $2R = \alpha \csc \frac{\pi}{n}$ and $2r = \alpha \cot \frac{\pi}{n}$.

(9) If R and r be the radii of the inscribed and circumscribed circles of a regular polygon of n sides, each = a,

$$R+r=\frac{\alpha}{2}\cot\frac{\pi}{2n}.$$

(10) The triangle formed from one side each of a regular pentagon, hexagon and decagon inscribed in the same circle, is right-angled.

(11) Prove that the area of an irregular polygon described about a circle is equal to the product of the radius and half the perimeter of the polygon.

(12) The area of an irregular polygon of an even number of sides circumscribed about a circle is equal to the radius x the sum of every alternate side.

(13) The diameter of the dome of St Paul's is 108 feet; prove that it covers an area of 1018 sq. yds.

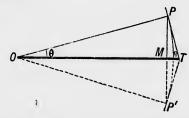
(14) The radius of the circle whose area is one acre is 391 yds.

(15) A length of 300 yards of paper, the thickness of which is the hundred and fiftieth part of an inch, is rolled up into a solid cylinder. Find approximately the diameter of the cylinder. Ans. 9.575 in.

(16) The diameter of a roll of carpet is 2 feet and the thickness of the carpet is the eighth of an inch. What is the length of the carpet? Ans. 301.6 ft.

ON THE CONSTRUCTION OF TRIGONOMETRICAL TABLES.

288. To prove that, if θ be the circular measure of an angle less than a right angle, $\sin \theta$, θ , $\tan \theta$ are in ascending order of magnitude.



Let ROP be an angle (θ) less than a right angle. Make the angle ROP' on the other side of OR equal to ROP. With centre O and any radius OR describe the arc P'RP. Draw PT, P'T to touch the circle at P and P'. PT and P'T will meet on OR. The line PP' is bisected by OR at right angles at M.

ho

sii

the

Then, since the circumference of a circle lies between the perimeter of the inscribed and circumscribed polygons, it follows that the arc P'RP lies in magnitude between P'MP and P'T + TP. In other words, P'MP, the arc P'RP, and P'T + TP are in ascending order of magnitude.

Therefore also their halves MP, RP, TP are in ascending order of magnitude.

And so also are
$$\frac{MP}{OP}$$
, $\frac{RP}{OP}$, $\frac{TP}{OP}$.

That is, $\sin \theta$, θ , $\tan \theta$ are in ascending order of magnitude, where $\theta \left[= \frac{\text{arc}}{\text{radius}} \right]$ is the circular measure of the angle referred to.

289. Hence, 1, $\frac{\theta}{\sin \theta}$, $\frac{1}{\cos \theta}$ are in ascending order of magnitude.

290. To prove that the 'limit' of $\frac{\theta}{\sin \theta}$, when $\theta = 0$, is 1; θ being the circular measure of the angle referred to.

The value of $\frac{\theta}{\sin \theta}$ lies between 1 and $\frac{1}{\cos \theta}$. As θ is diminished, $\cos \theta$ approaches 1; and the smaller θ becomes, the more nearly does $\frac{1}{\cos \theta}$ approach 1. [Art. 94]

Therefore, by diminishing θ sufficiently, we can make $\frac{\theta}{\sin \theta}$ differ from 1 by less than any assignable quantity however small.

This is what is meant when it is said that 'the limit of $\frac{\theta}{\sin \theta}$, when $\theta = 0$, is 1.'

291. The student must notice carefully that θ here is the number of radians in the angle referred to.*

Example. Prove that the limit of $\frac{n}{\sin n^0}$, when n=0, is $\frac{180}{\pi}$.

Let θ radians = n^0 , then

$$\frac{\theta}{\pi} = \frac{n}{180}$$
, $\therefore n = \frac{180\theta}{\pi}$, $\therefore \frac{n}{\sin n^0} = \frac{180}{\pi} \cdot \frac{\theta}{\sin \theta}$

When n is diminished, θ is diminished also, and the limit of $\frac{\theta}{\sin \theta}$, when $\theta = 0$, is 1. Therefore the limit of $\frac{n}{\sin n^0}$ (which $=\frac{180}{\pi} \cdot \frac{\theta}{\sin \theta}$), when n = 0, is $\frac{180}{\pi}$.

* It is on this account that a radian is used as a unit of angle (Art. 62).

to ROP.

The reconstruction PT and

ov OR at

ABLES.

ure of an ascending

tween the ygons, it en P'MP'RP, and

scending

of magnie of the 292. To prove that if θ be the circular measure of a positive angle less than a right angle, $\sin \theta$ lies between θ and $\theta - \frac{1}{4}\theta^2$.

It has been proved that $\sin \theta$ is less than θ (i).

And that θ is less than $\tan \theta$.

Therefore $\frac{\theta}{2}$ is less than $\tan \frac{\theta}{2}$; or, $\frac{\theta}{2} \cos \frac{\theta}{2}$ is less than $\sin \frac{\theta}{2}$.

Now, $\sin \theta = 2 \sin \frac{\theta}{2} \cdot \cos \frac{\theta}{2}$; [Art. 166]

 $\therefore \sin \theta$ is greater than $2\left(\frac{\theta}{2}\cos\frac{\theta}{2}\right)\cos\frac{\theta}{2}$,

i.e. greater than $\theta \cos^2 \frac{\theta}{2}$, i.e. greater than $\theta - \theta \sin^2 \frac{\theta}{2}$.

But $\left(\frac{\theta}{2}\right)^s$ is greater than $\sin^s \frac{\theta}{2}$.

Still greater therefore is $\sin \theta$ than $\theta - \frac{1}{4}\theta^{8}$(ii).

Hence, $\sin \theta$ is less than θ , and greater than $\theta - \frac{\theta^3}{4}$.

293. To find sin 10".

In the above, θ is the circular measure of the angle.

The circular measure of 10", correct to three significant figures, is '0000484.... [Examples X. (17).]

Let $\theta = .0000484...$

Then,

$$\theta - \frac{1}{4}\theta^3 = \theta - \frac{1}{4}(.0000484...)^3 = \theta - .000000000000028...$$

Hence, θ and $(\theta - \frac{1}{4}\theta^3)$ are decimal fractions which agree in their first twelve figures at least.

tl

of

gr

let int

kn

fou

calc

cula easi

COS 4

And since sin 10" lies between these fractions, therefore the first twelve decimal places of sin 10" are the same as those of the circular measure of 10".

Hence, if the value of π be given to a sufficient number of decimal places, we can calculate the circular measure of 10", and therefore also sin 10", to 12 decimal places.

294. To show how to construct a Table giving the Trigonometrical Ratios of angles which form an arithmetical progression having 10" for the common difference.

In the identity

re of a

 θ and

. (i).

 $a\sin\frac{\sigma}{\sigma}$.

t. 1667

(ii).

ificant

8....

$$\sin (n+1) \alpha + \sin (n-1) \alpha = 2 \sin n\alpha \cdot \cos \alpha,$$

let a = 10", and suppose a table of the sines of all angles at intervals of 10" to have been calculated up to n. 10".

Then, $\sin (n-1) a$, $\sin na$ and $\cos a \left[= \sqrt{1-\sin^2 10''} \right]$ are known.

Therefore by the above formula $\sin (n+1) \alpha$ can be found.

Hence, since we know sin 10", the sine of 20" can be found; and then the value of sin 30"; and so on.

295. When the sines of angles up to 45° have been calculated, the rest may be found from the formula,

$$\sin (45^{\circ} + A) - \sin (45^{\circ} - A) = \sqrt{2} \cdot \sin A$$
.

Also, when the sines of angles up to 60° have been calculated, the remainder up to 90° can be found still more easily from the formula, $\sin (60^{\circ} + A) - \sin (60^{\circ} - A) = \sin A$.

The other ratios may be found from the following:

$$\cos A = \sin (90^{\circ} - A), \quad \tan A = \frac{\sin A}{\cos A}, \quad \cot A = \tan (90^{\circ} - A),$$

$$\csc A = \frac{1}{\sin A}, \quad \sec A = \csc (90^{\circ} - A).$$

296. Since $3^{\circ} = 18^{\circ} - 15^{\circ}$, the sines of angles differing by 3° , or by any multiple of 3° , can be found independently. (See p. 120.) These values may be used to *test* the accuracy of the Tables calculated as above.

297. The following formulæ may be also used to test the accuracy of the Tables,

$$\sin (36^{\circ} + A) - \sin (36^{\circ} - A) - \sin (72^{\circ} + A) + \sin (72^{\circ} - A) = \sin A,$$

$$\cos (36^{\circ} + A) + \cos (36^{\circ} - A) - \cos (72^{\circ} + A) - \cos (72^{\circ} - A) = \cos A.$$

They are called formulæ of verification.

ON THE LIMIT OF THE VISIBLE HORIZON.

298. The surface of the sea is very nearly that of a sphere whose radius is 3957 miles.

The height of the highest mountains on the globe is less than 6 miles. Thus a point must be considered to be at a very considerable height above the surface of the sea if its height is a thousandth part of the earth's radius.

299. In the figure, let O be the centre of the earth, PRP' part of the surface of the sea, T a point of observation, TR its vertical height.

Draw TP, TP tangents to the earth's surface. Then PMP' is parallel to the 'horizontal plane' at R.

The angle TPM is called the dip of the horizon at T. It is the angle of depression of the most distant point on the horizon seen from T. It must obviously be a very small angle, since TR is so small compared with RO.

th

tho

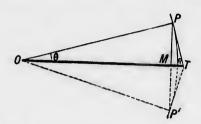
par

the of 2

vation the h

E

L



300. If RO be produced to cut the circle again in L, then $TP^{s} = TR \cdot TL$ [Euc. III. 36]

$$=TR(RL+TR)=2TR.RO+TR^{2}.$$

But TR will in general be much less than a thousandth part of RO, and therefore TR^s will be much less than a thousandth part of 2TR. RO.

Hence, the formula $TP^s = 2TR \cdot RO$, i.e. $TP^s =$ twice the earth's radius \times vertical height, will give the value of TP correct to at least three significant figures.

Example. Three times the height in feet of the place of observation above the sea is equal to twice the square of the distance of the horizon in miles.

Here, $TP^2 = RL \times 7914$ miles.

Let f be the number of feet in RL, then the number of miles in RL is $\frac{f}{5280}$; let x be the number of miles in TP, then

$$x^{2} = \frac{f}{5280} \times 7914 = \frac{3f}{2}$$
 nearly. Q.E.D.

at of a

ering by ndently. accuracy

to test

 $= \sin A$.

 $=\cos A$.

is less be at sea if

earth, vation,

Then

at T.
pint on
a very

EXAMPLES, LXXV.

- (1) Show that the limit of $\frac{n}{2}R^2\sin\frac{2\pi}{n}$ (i.e. the area of a polygon of n sides inscribed in a circle of radius R), when $n=\infty$ is πR^2 .
 - (2) Prove that the limit of $nr^2 \tan \frac{\pi}{n}$, when $n = \infty$, is πr^2 .
- (3) Given that $\pi = 3.141592653589793...$ prove that the circular measure of 10" is .00004848136811...
- (4) Prove that $2 \sin (72^0 + A) 2 \sin (72^0 A) = (\sqrt{5} 1) \sin A$, and that $2 \sin (36^0 + A) 2 \sin (36^0 A) = (\sqrt{5} + 1) \sin A$.
- (5) If a mast of a ship be 150 feet high, show that the greatest distance seen from its top is 15 miles nearly.
- (6) Prove that if the dip of the horizon at the top of a mountain is $1^0 26'$ [= $\tan^{-1} \cdot 025$], the mountain is about 6530 feet high.

NOTE. The definitions given in Arts. 75, 78 of the Trigonometrical Ratios are now used exclusively.

The NAMES tangent, secant, sine, were given originally to quantities defined as follows.

Let ROP be any angle. With centre O and any radius describe the arc RP. Draw PM perpendicular to OR and PT perpendicular to OP. (See Figure on previous page.)

Then PR is called an arc, PT is the tangent of the arc PR, OT is the secant of the arc PR, MP is the sine of the arc PR.

The name sine is derived from the word sinus. For, in the figure, PMP' is the string of the "bow" (arcus), and the string of a bow when in use is pulled to the archer's breast.

The co-tangent, co-secant and co-sine are respectively the tangent, secant and sine of the complement of the arc or of the angle.

The sine, tangent, etc. of the angle are the same as the measures of the sine, tangent, etc. of the arc, when the radius of the circle is the unit of length.

Тн

core

eith

mete in to ordr

are l

must

temper of learners of learners

following themselv when he

At

APPENDIX.

THE VERNIER, THE LEVEL, THE THEODOLITE, THE SEXTANT,
THE MARINER'S COMPASS.

301. The practical Surveyor† has to measure distances and angles, and has also to make plans or pictures, recording the result of his measurements.

For the measurement of distances the surveyor uses either rods, or chains, or tapes.

Rods used in measurement are made of wood, or of metal or sometimes (when extreme accuracy is required, as in the case of the measurement of the base line of the ordnance survey on Salisbury Plain) of glass.

All these instruments, when exposed to changes of temperature, are liable to change of length; hence for great accuracy, a surveyor must know the exact length of his measuring rod at all ordinary temperatures; and when making a measurement, must note the temperature of his rod at the instant of observation. The change of length caused by change of temperature is greater in a rod of metal than in a rod of wood. Hence wood is a very suitable material for measuring rods under ordinary circumstances. A tape made of cotton or hemp if used for measurement must be carefully protected from moisture by varnish or otherwise; as such tapes sensibly shrink when allowed to become damp; also, if of any considerable length, they stretch sensibly under tension.

A tape of 66 feet can be easily stretched an inch or so.

, is π*r*².

of a poly-

 $n = \infty$ is

t the cir.

-1) $\sin A$; +1) $\sin A$.

that the

top of a 6530 feet

nometrical

quantities

ıs describe pendicular

PR, OT is

the figure, of a bow

e tangent,

e *measures* e circle is

[†] It must not be supposed that any verbal or pictorial description, such as the following, can in any way take the place of a practical explanation of the instruments themselves. A study of these figures may perhaps tell the student what to look for when he actually has the instrument in his hands.

THE VERNIER.

- 302. A vernier is a simple instrument for increasing the accuracy of the measurement of a small distance by one significant figure.
- 303. Description of a Vernier. Suppose we have a rule (i.e. a measuring rod) of brass, graduated † to tenths of an inch.

The vernier is a little slip of brass which slides along the rule.

coin

any

the l

For t

the v

inch.

follo

gaine

the e

two s

of an

exercis

used.

No

of a

S

This slip of brass is a little more than l_{10}^{1} inches long, and a portion of its length l_{10}^{1} inches in length is divided into *ten* equal parts, by fine scratches on the surface of the metal.

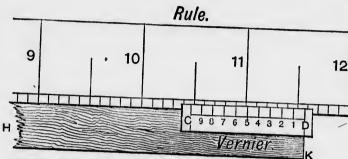
Thus the distance between each scratch and the next is $\frac{11}{100}$ of an inch or $(\frac{1}{10} + \frac{1}{100})$ of an inch; i. e. this distance exceeds the distance between two scratches on the rule, by an hundredth part of an inch.

304. To read the Vernier. This will be best explained by an example.

Suppose the length to be measured is ascertained to be 3 ft. 11.5 inches and a little over.

This can be ascertained by the use of the rule (or measuring rod). Now let the rule be so placed that one end exactly coincides with one extremity of the length to be measured; then the other extremity K of the length to be measured will be between the scratches on the rule indicating 3 ft. 11.5 in. and 3 ft. 11.6 in. Now slide the CD vernier on the rule till its extremity D coincides with the extremity K of the length to be measured.

t i.e. having fine scratches upon it, each the tenth part of an inch from the next one.



It will be observed that one of the scratches on the vernier coincides with one of the scratches on the rule more nearly than any other.

Suppose this to be the scratch marked 6 on the vernier. Then the length to be measured is

3 ft. 11.56 inches nearly.

For the length exceeds 3 ft. 11.5 inches by just as much as 6 spaces on the vernier exceed 6 tenths of an inch, that is by 6 hundredths of an inch.

305. A vernier may be used to read the graduations of a circular arc; in which case it is made curved so as to follow the line of the arc.

306. The student should notice that the advantage gained by the use of the vernier depends on the fact that the eye is able to judge with considerable accuracy when two scratches are cr are not, coincident.

Note. Some instrument makers make their verniers $(1-\frac{1}{10})$ of an inch, and divide it into ten equal parts. We leave it as an exercise to the student to discover how such a vernier would be used.

ncreasing se by one

have a tenths of

les along

hes long, s divided ce of the

e next is distance rule, by

xplained

3 ft. 11.5

ring rod).

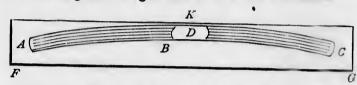
s with one
tremity K

n the rule
vernier on
K of the

e next one.

THE LEVEL

307. A level is an instrument used for ascertaining whether a given straight line is or is not horizontal.



The essential part of it consists of a glass tube ABC, in the form of the arc of a circle, which is closed at both ends and is nearly full of spirit.

The tube, being not quite full of spirit, will have a bubble D in it.

This bubble, when the tube is at rest, will only rest at the highest point of the tube.

The tube is fixed in a case of wood or metal which is so made that when the base of it FG is horizontal the highest point K of the tube is visible, and the bubble can be seen at rest in it at the highest point of the arc of the tube.

This highest point is carefully marked on the tube.

To ascertain whether any given line is horizontal it is only necessary to put the base FG of the case of the 'level' in the position of that line and watch the position which the bubble takes up when the tube is kept at rest in that position.

If the bubble rests at the position marked on the tube the line is horizontal and not otherwise.

308. The student can easily purchase for himself an ordinary carpenter's level and can make experiments with it.

hor by

vatio
L
to th

T MON

3 scrib S

other about L

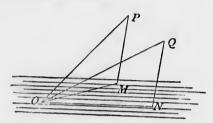
Thindica subdiv and th

vernie rim.

L

THE THEODOLITE.

309. A Theodolite is an instrument for measuring the horizonial angle subtended at the position of observation by two distant visible objects.



Let P, Q be two visible distant objects seen from a place of observation O.

Let PM, QN perpendiculars be let fall from P and Q respectively to the horizontal plane passing through O.

Then the horizontal angle subtended at O by P and Q is the angle MON [See Examples LXXVI. (16)].

[The angle subtended at O by P and Q is the angle POQ.]

310. The essential part of a Theodolite may be described as follows.

Suppose two circular brass plates to be laid one on the other so that they are concentric and both are free to turn about an axis through their centre.

Let the rim of the lower plate be graduated.

That is, on the rim will be marked 360 lines at equal distances indicating degrees subtended at the centre. Each degree will be subdivided into minutes etc. according to the size of the circle and the degree of accuracy to which the instrument is to be read.

Let the rim of the upper plate have inscribed on it a vernier suitable for reading the graduations of the other rim.

) c

ertaining

ontal.

ooth ends

ABC, in

ly rest at

hich is so

n be seen tube.

ube.

ntal it is he 'level' on which st in that

the tube

mself an eriments

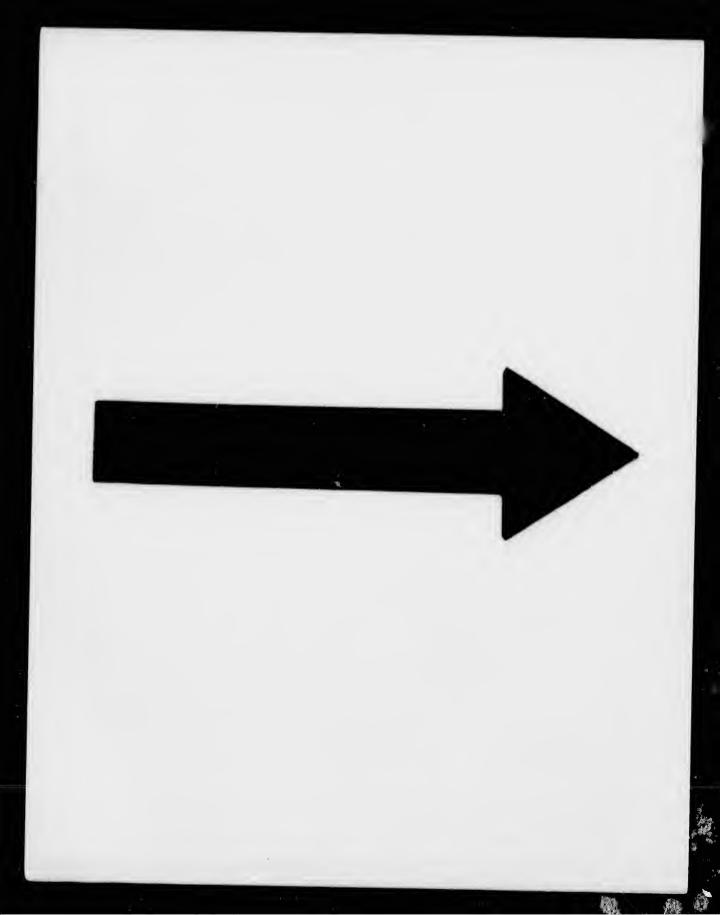


IMAGE EVALUATION TEST TARGET (MT-3)

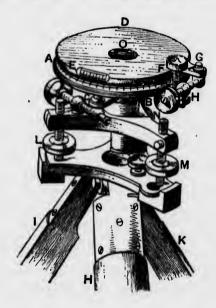
Photographic Sciences Corporation

23 WEST MAIN STREET WEBSTER, N.Y. 14580 (716) 872-4503 STI GENTLE COMMINENT OF THE PROPERTY OF THE PR

Now suppose the *lower* plate can be fixed in a horizontal position and that a telescope or other means of pointing at a distant object is mounted centrally on the upper plate.

Then by first turning the upper plate till the telescope points to one distant object and reading the vernier; and again by turning the upper plate till the telescope points to another distant object and again reading the vernier, we shall obtain from the difference of these readings, the horizontal angle between the two distant objects.

311. The following figure is a picture of a part of a theodolite, shewing the arrangements usually made for fixing the lower plate in a horizontal position.



at L

are 1

head plate

T. which

groun plates turnin

Th turned

The screw.

Who be turn which is angle.

Whonly be slightly, screw

L.

a horieans of on the

elescope er; and oints to nier, we gs, the

rt of a ade for EFD is the upper plate on which is engraved a vernier at E.

AB is a portion of the rim of the lower plate.

IHK are the upper parts of a tripod stand whose feet are placed on the ground.

LM are two of the three screws which connect the head of the tripod stand with the axis round which the plates can turn.

These screws are fastened to the tripod head by a clip which is indicated near M.

When the tripod stand has been firmly placed on the ground so that the tripod head is fairly horizontal the plates can be made accurately horizontal by judicious turning of the three screws L, M, N.

The screw at C allows the lower plate to be slightly turned with reference to the axis and tripod head.

The arrangement FGH is a 'clamp' and a 'tangent screw.'

When the screw head F is loosened, the upper plate can be turned quite freely round its centre; so that the telescope which is mounted on it, can be turned freely through any angle.

When the screw F is tightened, the upper plate can only be turned with reference to the lower plate very slightly, by turning the screw head at B which is a tangent screw

312. On the following page is a picture of a complete 'Transit' Theodolite.

The upper plate is here shewn carrying a telescope TT which is fixed to an axle of which one end R is seen.

This axle is kept fixed parallel to the plate by the two pairs of upright legs which are firmly screwed to the upper plate.

The graduated circle XYZ is fixed to the axis of the telescope and turns with it.

The verniers b and c are fixed to the upright legs.

a is a small magnifying glass for reading the verniers.

d is a level fixed to the telescope and parallel to its axis.

At f, e are the clamp and tangent screw which respectively fixes the graduated circle XYZ and slowly turns it.

g is the end of a level fixed parallel to the plane of the upper plate.

On the top of the upper plate itself is seen a mariner's compass.

313. Suppose now that we are about to use the theodolite.

We arrange the tripod; we loosen the clamp F; we turn the screws L, M, N so that the plate ABC is horizontal; testing this by turning the upper plate into various positions and observing the level g in each position.

The instrument is now ready to make an observation.

314. To make an observation.

Suppose in the fig. on page v the observer is at O.

omplete

ope TT

the two

s of the

zs.

rniers.

its axis.

rns it.

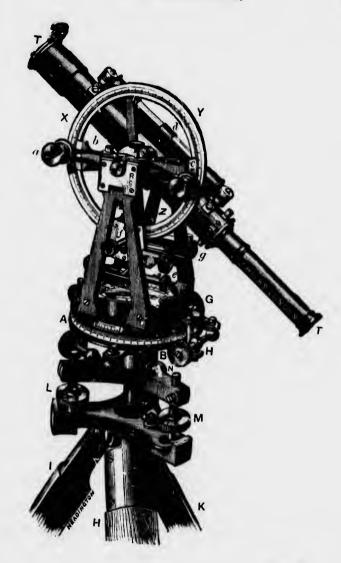
nariner's

use the

F; we ABC is ate into position.

vation.

0.



He turns the upper plate of the theodolite and moves the telescope until he can see P through it.

He then clamps both circles EFD and XYZ.

And by means of the tangent screws brings the point P exactly into the centre of the field of view.

He then reads both verniers.

He then unclamps both circles.

And repeats the operation for the point Q.

The difference between the reading of the horizontal vernier gives the horizontal angle MON.

By unclamping the vertical circle and reading the vernier when the level d shews that the telescope is horizontal he can obtain each of the angles of elevation POM, QON (from his reading of the vernier of the vertical circle when it pointed first to P and then to Q.)

THE SEXTANT.

- 315. There are three experimental facts connected with Optics which the student must understand who wishes to understand the principle of the sextant.
- I. When a telescope is pointed at a plane mirror (or looking-glass) the eye sees exactly what it would if the telescope were placed on the other side of the mirror as in the following diagram.



the sup

of s

C'D

pland DO, teleso mirro

and betwee direct

I

of a t

the te

The first case only one

d moves

point P

orizontal

ing the is horion *POM*, cal circle

ted with wishes

irror (or l if the ror as in Let the plane of the mirror be perpendicular to that of the paper. Let ADB be the line in which the mirror is supposed to cut the plane of the paper.

Let EF be a section of the telescope and CD the line of sight.

Make the angle C'DB equal to CDB.

And draw E'F' a dotted section of a telescope round C'D so that C'D = CD.

Then an eye placed at C and looking directly at the plane mirror in the direction CO' would see in the direction DO, exactly what an eye placed at C', the eyepiece of a telescope whose line of sight is C'D, would see if the mirror were removed.

It follows that the angle BDC between the mirror and the axis of the telescope is half ODO', the angle between the direction of the axis of the telescope and the direction from D of the object O.

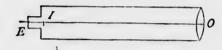
II. When the half of the object glass (or large glass) of a telescope is covered over, then an eye looking through

the telescope will see exactly what it saw before except that the image will be half as bright.

The effect is very similar to the effect of looking at a picture in the first case by the light of two candles and in the second by the light of only one candle.

the eye looks at an *image* (which is a small picture formed by the rays of light coming from the object looked at, inside the tube of the telescope) of the distant object at which the telescope is pointed.

The eyepiece or small glass of a telescope forms in fact a microscope with which the eye sees this image magnified.

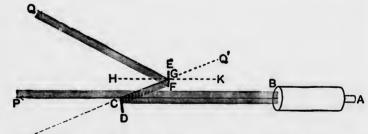


Thus in the figure, O is the object-glass, E is the eyepiece or microscope; I is the position of the image.

I is called the focus of the object-glass.

316. To describe the arrangement of a Hadley's Sextant.

Let the axis AB of a telescope be directed to the edge C of a plane mirror perpendicular to the plane of the paper whose section is CD.



A arranged so that light coming from a distant object Q

fall CD axis

the

ACI

dire

keep

CD of the

V

the a teleso half t

(P) or the

For Dra

in any the ang turning relative falls on EF and on being reflected by the mirror falls on CD and on being again reflected is in the direction of the axis of the telescope AB.

Then an eye looking through the telescope would see the images of two distant objects P and Q.

These two images would be superposed.

One image that of a distant object P in the direction ACD the light from which is direct.

The other image is that of a distant object Q in the direction GQ the light from which is reflected.

The mirror EF is arranged so that it can turn about G keeping always perpendicular to the plane of the paper and the angle through which it turns can be observed.

When the mirror EF is turned so as to be parallel to CD the reflected image and the direct image would be that of the same very distant object.

The angle through which the mirror EF is turned, from the above position, until the image of Q is visible in the telescope is half the angle between CP and GQ; that is, half the angle subtended by P and Q at the observer's eye.

 $[P \ {
m and} \ Q \ {
m are} \ {
m always} \ {
m very} \ {
m distant} \ {
m objects} \ {
m such} \ {
m as} \ {
m the} \ {
m horizon} \ {
m at} \ {
m sea}$ or the sun or a star.]

For, produce GC to A'B'; then the angle PCB' is fixed.

Draw GK perpendicular to EF; the angle turned through by EF in any movement, is equal to the angle turned through by GK; and the angle QGC is always double of KGQ; therefore the amount of turning of GQ relative to GC (which is fixed) is double that of GK relative to GB; that is is double of the amount of turning of EF.

yepiece

elescope

formed

ked at.

pject at

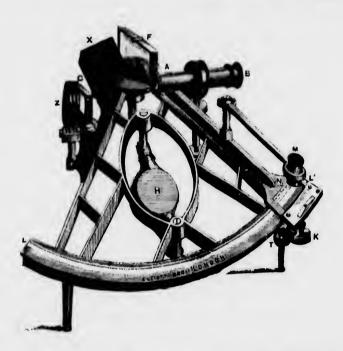
in fact gnified.

extant.
edge C
paper

_

mirror

317. The following is a picture of a Hadley's Sextant.



AB is the telescope; C is the fixed mirror; F is the mirror which can be turned about an axis perpendicular to the plane of ABCF.

FN is an arm by which the mirror F is turned.

LL' is a graduated arc and N is a vernier for reading its graduations with the aid of the microscope M; K and T are the usual clamp and tangent screw; H is a handle for holding the instrument.

the suc bro

line

the obje a steel it in when the t

for a

and to sidera a ship tweer circum rtant.

At Z are three blackened glasses to interpose between the light and the telescope when looking at a bright object such as the sun; each glass is on a hinge so that it can be brought into the line of sight or turned back at pleasure.

At X are blackened glasses which can be placed in the line of the reflected light or turned out of it at pleasure.

318. Thus, the sextant is an instrument for observing the angle subtended at the observer's eye by two distant objects. Its peculiar advantage is that it does not require a steady platform as the Theodolite does. The observer holds it in his hands, and the observation consists in his noting when he has so moved the mirror [EF] that the images of the two distant objects, whose angle he wishes to take, are superposed in the field of the telescope.

This he can do even if he cannot get the images to rest for any length of time in the field of view.

Accordingly the angle subtended by the edge of the sun and the horizon can with a sextant be observed with considerable accuracy by an observer standing on the deck of a ship in motion. Also, at night, the angular distance between the moon and a star can be observed under like circumstances.

mirror to the

eading and T dle for

319. Below we give a figure of a Mariner's Compass.

It consists of an ordinary magnetic compass with a card attached to the needle, this card is so arranged that when the needle is pointing along the magnetic meridian the pointer on the card is pointing due North.

The Points of the Compass are figured on the card. They are N. = North.

N. by E. = North by East.

N.N.E. = North North East.

N.E. by N. = North East by North.

N.E. = North East.

N.E. by E. = North East by East.

E.N.E. = East North East.

E. by N. = East by North.

E. = East. And so on.

The angle subtended at the centre of the card by two consecutive points is $=\frac{1}{8}$ of $90^{\circ} = 111^{\circ}$.

augle

for ve 8. Fi

feet an

cosine. 8.

30º and

10.

11. 900.

If si

EXAMPLES FOR EXERCISE. LXXVIa.

Define the terms sine, cotangent; and prove that if A be any angle, sin²A + cos²A = 1.
 If tan A = 2, find sin A and cos A.

2. Trace the changes in the sign and magnitude of $\cos \theta - \sec \theta$ for values of θ between 0 and π .

3. Prove geometrically that $\cos (180^{\circ} - A) = -\cos A$. Find A if $2 \sin A = \tan A$.

4. Prove

(1)
$$\sin (A+B) \cdot \sin (A-B) = \sin^2 A - \sin^2 B$$
;

(2)
$$\frac{\sin A + \sin B}{\sin A - \sin B} = \frac{\tan \frac{1}{2}(A+B)}{\tan \frac{1}{2}(A-B)}$$

5. Prove that

$$\cos^2 A - \cos A \cos (60^0 + A) + \sin^2 (30^0 - A) = \frac{3}{4}$$

6. Find the greatest side of the triangle of which one side is 2183 feet and the adjacent angles are 78° 14′ and 71° 24′.

 $\begin{array}{ll} \log 2183 = 3.8390537, \\ L\sin 78^{\circ} 14' = 9.9907766, \\ L\sin 30^{\circ} 22' = 9.7037486. \end{array} \qquad \begin{array}{ll} \log 42274 = 4.6260733, \\ \log 42275 = 4.6260836. \end{array}$

7. Express the other trigonometrical ratios in terms of the cosine.

8. Prove $\sin (180 + A) = -\sin A;$ $\tan (90 + A) = -\cot A.$

9. Write down the sines of all the angles which are multiples of 30° and less than 360°.

10. Prove $\tan^2 A = \frac{1 - \cos 2A}{1 + \cos 2A}$.

11. If $\tan A + \sec A = 2$, prove that $\sin A = \frac{2}{3}$, when A is less than 90°.

If $\sin A = \frac{1}{2}$, prove that $\tan A + \sec A = 3$, when A is less than 90°.

v two

a card

when

n the

card.

12. The length of the greatest side of a triangle is 1035.43 feet, and the three angles are 44°, 66°, and 70°. Solve the triangle, having given

 $L \sin 44^{\circ} = 9.8417713,$ $L \sin 70^{\circ} = 9.9729858,$ $\log 765432 = 5.8839067,$ $L \sin 66^{\circ} = 9.9607302,$ $\log 1035.43 = 3.0151212,$ $\log 10066 = 4.0028656.$

- 13. Express the other trigonometrical ratios in terms of the cotangent.
 - 14. Prove that $\cos (180^{\circ} A) = -\cos A$; $\csc (180^{\circ} + A) = -\csc A$.
- 15. Write down the tangents of all the angles which are multiples of 30° and less than 360° .
- 16. If $\tan A + \sec A = 3$, prove that $\sin A = 4$ when A is less than 90°.

If $\sin A = \frac{a}{5}$, prove that $\tan A + \sec A = 2$, when A is less than 90°.

- 17. Find the sines of the three angles of the triangle whose sides are 193, 194, and 195 feet.
 - 18. Investigate the following formulæ:
 - (1) $\cos \frac{3A}{2} = (2 \cos A 1) \cos \frac{1}{2}A$;
 - (2) $\cos \theta \cos (\theta + \delta) = \sin \theta \sin \delta (1 + \cot \theta \tan \frac{1}{2} \delta)$.
 - 19. Define the secant of an angle.

Prove the formula $\frac{1}{\sec^2 A} + \frac{1}{\csc^2 A} = 1$.

If $\sin A = \frac{1}{3}$, find sec A.

- 20. Trace the changes in sign and magnitude of $\frac{\sin \theta + \cos \theta}{\sin \theta \cos \theta}$, as θ changes from π to 2π .
- 21. Find a formula to include all angles that have the same cotangent as the angle a. Solve the equation $\tan \theta = \cot \theta$.
- 22. Prove the formula to express the cosine of the sum of two angles in terms of the sines and cosines of those angles.

 Express cos 5a in terms of cos a.

23

signs :

above equal strings

25. right a Fin is ·1.

is §. 27.

26.

•

28.

29.

as θ cha go remainir

31. express i

32.

33. 1 34. 7

as & chan

deet,

of the

nulti-

than

sides

same

two

23. Prove the formula

 $2\sin\frac{1}{2}A = \pm\sqrt{(1+\sin A)} \pm \sqrt{(1-\sin A)}$.

Account for the double signs in this formula, and examine which signs must be taken if A be an angle between 540° and 630°.

- 24. A ring 10 inches in diameter is suspended from a point 1 foot above its centre by six equal strings attached to its circumference at equal intervals; find the cosine of the angle between two consecutive strings.
- 25. Define 1º. Assuming that 4º is the circular measure of two right angles, express the angle 4º in circular measure.

Find the number of degrees in the angle whose circular measure is 1.

- 26. Find the trigonometrical ratios of the angle whose cosine is $\frac{3}{6}$.
 - 27. Prove that
 - (1) $\cos (180^{\circ} + A) = \cos (180^{\circ} A)$; (2) $\tan (90^{\circ} + A) = \cot (180^{\circ} - A)$.
 - $(2) \quad \tan (90^{\circ} + A) = \cot (180^{\circ} A).$
 - 28. Prove $\sin x (2\cos x 1) = 2\sin \frac{x}{2}\cos \frac{3x}{2}$.
 - 29. Trace the changes in sign and magnitude of $2 \sin \theta \sin 2\theta$

as θ changes from 0 to 2π .

If the angle opposite the side a be 60°, and if b, c be the remaining sides of the triangle, prove that

 $2\sin\theta + \sin 2\theta$

$$(a+b+c)(b+c-a)=3bc$$
.

- 31. Assuming 22 to be the circular measure of two right angles, express in degrees the angle whose circular measure is θ . Find the number of degrees in an angle whose circular measure is $\frac{1}{2}$.
 - 32. Prove that $\tan^{-1} x \tan^{-1} y = \tan^{-1} \frac{x y}{1 + xy}$.
 - 33. Prove $\sin x (2\cos x + 1) = 2\cos \frac{x}{2}\sin \frac{3x}{2}$.
 - 34. Trace the changes in sign and magnitude of

$$\frac{\sin\theta + 2\sin\frac{1}{2}\theta}{\sin\theta - 2\sin\frac{1}{2}\theta}$$

as \$\theta\$ changes from 0 to 2\pi.

35. If $(\sin A + \sin B + \sin C)(\sin A + \sin B - \sin C) = 3 \sin A \sin B$, and $A + B + C = 180^{\circ}$, prove that $C = 60^{\circ}$.

36. Given $A = 18^{\circ}$, $B = 144^{\circ}$, and b = 1, solve the triangle.

37. Give the trigonometrical definition of an angle.

What angle does the minute-hand of a clock describe between twelve o'clock and 20 minutes to four?

38. Express the cosine and the tangent of an angle in terms of the sine.

The angle A is greater than 90° but less than 180°, and $\sin A = \frac{1}{8}$. Find $\cos A$.

- 39. Find an expression for all the values of θ for which $\cos \theta + \cos 2\theta = 0$.
- 40. If in a triangle $a\cos A = b\cos B$, the triangle will be either isosceles or right-angled.
- 41. The sides are 1 foot and $\sqrt{3}$ feet respectively, and the angle opposite to the shorter side is 30° ; solve the triangle.
- 42. The sides of a triangle are 2, 3, 4. Find the greatest angle, having given

 $\begin{array}{c} \log 2 = .3010300,\\ \log 3 = .4771213,\\ L \tan 52^{\circ} .15' = 10.1111004,\\ L \tan 52^{\circ} .14' = 10.1108395. \end{array}$

43. Distinguish between Euclid's definition of an angle and the trigonometrical definition.

What angle does the minute-hand of a clock describe between halfpast four and a quarter-past six?

44. Express the sine and the cosine of an angle in terms of the tangent.

The angle A is greater than 180° but less than 270°, and tan $A = \frac{1}{2}$. Find sin A.

45. Prove (i) $\sin 2A = \frac{2 \cot A}{1 + \cot^2 A}$.

(ii) Show that if $A+B+C=90^{\circ}$, $\sin 2A + \sin 2B + \sin 2C = 4 \cos A \cos B \cos C$.

- 46. Find an expression for all the values of θ for which $\sin \theta + \sin 2\theta = 0$.
- 47. If in a triangle $b \cos A = a \cos B$, show that the triangle is isosceles.

48. opposi

measur If

If t regular numbe

50.

51.

52. (1)

53. the ang 54.

find

55. If th regular number

> 56. 57.

58. (1)

59. 6 feet.

60.

find

sin B.

tween

ms of

 $A = \frac{1}{4}$.

either

the

ngle,

i the

half-

the

 $= \frac{1}{6}$.

48. The sides are 1 foot and $\sqrt{2}$ feet respectively, and the angle opposite to the shorter side is 30°; solve the triangle.

49. Express in degrees, minutes, etc. (1) the angle whose circular measure is $\frac{1}{10}\pi$; (2) the angle whose circular measure is 5. If the angle subtended at the centre of a circle by the side of a

regular heptagon be the unit of angular measurement, by what number is an angle of 450 represented?

50. Prove that

 $(\sin 30^{\circ} + \cos 30^{\circ}) (\sin 120^{\circ} + \cos 120^{\circ}) = \sin 30^{\circ}.$

51. Prove the formulæ:

- (1) $\cos^2(\alpha+\beta) \sin^2\alpha = \cos\beta\cos(2\alpha+\beta)$;
- (2) $1 + \cot a \cot \frac{1}{2}a = \csc a \cot \frac{1}{2}a$.

52. Solve the equations:

- (1) $5 \tan^2 x \sec^2 x = 11$; (2) $\sin 5\theta - \sin 3\theta = \sqrt{2} \cdot \cos 4\theta$.
- 53. Two sides of a triangle are 10 feet and 15 feet in length, and the angle between them is 30°. What is its area?
 - 54. Given that

 $\sin 40^{\circ} 29' = 0.6492268$, $\sin 40^{\circ} 30' = 0.6494480$, sin-1 (0.6493000).

find

- Express in circular measure (1) 10', (2) & of a right angle. If the angle subtended at the centre of a circle by the side of a regular pentagon be the unit of angular measurement, by what number is a right angle represented?
 - 56. If $\sec \alpha = 7$, find $\tan \alpha$ and $\csc \alpha$.
 - 57. Prove the formulæ:
 - (1) $\cos^2(\alpha \beta) \sin^2(\alpha + \beta) = \cos 2\alpha \cos 2\beta$;
 - (2) $1 + \tan \alpha \tan \frac{1}{2} \alpha = \sec \alpha$.
 - 58. Solve the equations:
 - (1) $5 \tan^2 x + \sec^2 x = 7$; (2) $\cos 5\theta + \cos 3\theta = \sqrt{2} \cdot \cos 4\theta$.
- The lengths of the sides of a triangle are 3 feet, 5 feet, and 6 feet. What is its area?
- 60. Given that $\sin 38^{\circ} 25' = 0.6213757$, $\sin 38^{\circ} 26' = 0.6216036$, find sin-1 (0.6215000).

- 61. Which is greater, 76° or the angle whose circular measure is 1.2?
 - 62. Determine geometrically $\cos 30^{\circ}$ and $\cos 45^{\circ}$. If $\sin A$ be the arithmetic mean between $\sin B$ and $\cos B$, then $\cos 2A = \cos^2 (B + 45^{\circ})$.
 - 63. Establish the following relations:
 - (1) $\tan^2 A \sin^2 A = \tan^2 A \sin^2 A;$
 - (2) $\cot A \cot 2A = \csc 2A$;
 - (3) $\frac{\sin{(x+8y)} + \sin{(8x+y)}}{\sin{2x} + \sin{2y}} = 2\cos{(x+y)}.$
 - 64. Show that for certain values of the angles $2 \sin \frac{1}{2} A = \sqrt{1 + \sin A} \sqrt{1 \sin A}$.

Is the formula true when $A=240^{\circ}$? If not, how must it be modified?

65. Prove that $\sin (A+B) = \sin A \cos B + \cos A \sin B$, and deduce the expression for $\cos (A+B)$.

Show that

 $\sin A \cos (B+C) - \sin B \cos (A+C) = \sin (A-B) \cos C$.

- 66. One side of a triangular lawn is 102 feet long, its inclinations to the other sides being 70° 30′, 78° 10′ respectively. Determine the other sides and the area. $L\sin 70^\circ 30' = 9.974$, $\log 102 = 2.009$, $L\sin 78^\circ 10' = 9.990$, $\log 185 = 2.267$, $L\sin 31^\circ 20' = 9.716$, $\log 192 = 2.283$, $\log 2 = 301$, $\log 9234 = 3.965$.
- 67. Which is greater, 126° or the angle whose circular measure is $2 \cdot 3$?
 - 68. Establish the following relations:
 - (1) $\cot^2 A \cos^2 A = \cot^2 A \cos^2 A$;
 - (2) $\tan A + \cot 2A = \csc 2A$;
 - (3) $\frac{\cos{(x-3y)}-\cos{(3x-y)}}{\sin{2x}+\sin{2y}}=2\sin{(x-y)}.$
 - 69. Show that for certain values of the angles

$$2\cos\frac{1}{2}A = \sqrt{1+\sin A} + \sqrt{1-\sin A}$$
.

Is the formula true when $A=300^{\circ}$? If not, how must it be modified?

- 70. Prove that $\sin 30^{\circ} + \sin 120^{\circ} = \sqrt{2} \cos 15^{\circ}$.
- 71. Establish the identities:
 - (1) $1 + \cos A + \sin A = \sqrt{2(1 + \cos A)(1 + \sin A)}$;
 - (2) $\csc 2 A = \frac{\csc^2 A}{2\sqrt{\csc^2 A 1}};$

72. length, other a

(

73. arithme express

74. include a Prove

and by n

75.

Verify 76.

are includ Solve

78. T √2 feet rethat there angles, and

79. If arithmetics express in

Prove to deduce the

L. E.

80. De

asure

it be

duce

tions

e the

 $L \sin$

.283,

re is

t be

(8)
$$\sin \frac{2\pi}{7} + \sin \frac{4\pi}{7} - \sin \frac{6\pi}{7} = 4 \sin \frac{\pi}{7} \sin \frac{3\pi}{7} \sin \frac{5\pi}{7}$$
.

72. The sides of a triangular lawn are 102, 185, and 192 feet in length, the smalles; angle being approximately 31° 20'. Find its other angles and its area.

 $\log 102 = 2.009$ Lsin 31° 20'=9.716. $\log 185 = 2.267$ $L \sin 70^{\circ} 30' = 9.974$ $\log 192 = 2.283$, $L \sin 78^{\circ}10' = 9.990$ $\log 2 = .301$, $\log 9234 = 3.965$.

73. If the circumference of a circle be divided into five parts in arithmetical progression, the greatest part being six times the least, express in radians the angle each subtends at the centre.

74. Define the sine of an angle, wording your definition so as to include angles of any magnitude.

Prove that $\sin\left(90^0+A\right)=\cos A,$ $\cos\left(90^{\circ} + A\right) = -\sin A,$ and by means of these deduce the formulæ

 $\sin (180^{\circ} + A) = -\sin A$, $\cos (180^{\circ} + A) = -\cos A$.

75. Prove the formulæ:

(1) $\cot^2 A = \csc^2 A - 1$; $\cot^4 A + \cot^2 A = \csc^4 A - \csc^2 A.$

Verify (2) when $A = 30^{\circ}$.

76. Show that all angles satisfying the equation

 $\cos \theta = \cos \alpha$

are included in the formula $\theta = 2n\pi \pm a$.

Solve completely the equation $2\cos^3\theta + \sin^2\theta - 1 = 0$.

77. If sin B be the geometric mean between $\sin A$ and $\cos A$, then $\cos 2B = 2 \cos^2 (A + 45^0)$.

78. The lengths of two of the sides of a triangle are 1 foot and $\sqrt{2}$ feet respectively, the angle opposite the shorter side is 30° . Prove that there are two triangles which satisfy these conditions; find their angles, and show that their areas are in the ratio $\sqrt{3}+1:\sqrt{3}-1$.

79. If the circumference of a circle be divided into six parts in arithmetical progression, the greatest being six times the least, express in radians the angle each subtends at the centre.

80. Define the tangent of an angle, wording your definition so as to include angles of any magnitude.

Prove that $\tan (90^{\circ} + A) = -\cot A$, and by means of this formula deduce the formula $\tan (180^{\circ} + A) = \tan A$.

L. E. T.

81. Show that all angles satisfying the equation $\tan \theta = \tan \alpha$

are included in the formula $\theta = n\pi + a$.

Solve completely the equation $\sec^3 \theta - 2 \tan^2 \theta = 2$.

82. Prove that $\cos (A+B) = \cos A \cos B - \sin A \sin B$, and deduce the expression for $\sin (A+B)$.

Show that

$$\cos A \cos (B+C) - \cos B \cos (A+C) = \sin (A-B) \sin C.$$

83. Establish the identities:

(1)
$$1 + \cos A - \sin A = \sqrt{2(1 + \cos A)(1 - \sin A)};$$

(2)
$$\sec 2A = \frac{\sec^2 A}{2 - \sec^2 A}$$
;

(3)
$$\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7} + 4 \cos \frac{\pi}{7} \cos \frac{3\pi}{7} \cos \frac{5\pi}{7} + 1 = 0.$$

84. Two adjacent sides of a parallelogram 5 in. and 3 in. long respectively, include an angle of 60° . Find the lengths of the two diagonals and the area of the figure.

85. Investigate the following formulæ:

(1)
$$\sin \frac{3A}{2} = (1 + 2\cos A)\sin \frac{1}{2}A$$
;

(2)
$$\sin (\theta + \delta) - \sin \theta = \cos \theta \sin \delta (1 - \tan \theta \tan \frac{1}{2} \delta)$$
.

86. Prove that

(1) $\sin 10^{\circ} + \sin 50^{\circ} = \sin 70^{\circ}$;

(2)
$$\sqrt{3 + \tan 40^{\circ} + \tan 80^{\circ}} = \sqrt{3} \tan 40^{\circ} \tan 80^{\circ}$$
;

(3) if $A+B+C=180^{\circ}$,

$$\frac{\sin A - \sin B \cos C}{\cos B} = \frac{\sin B - \sin A \cos C}{\cos A}.$$

87. Find the value of $\sin 18^{\circ}$, and deduce that $4 \sin 18^{\circ} \cos 36^{\circ} = 1$.

88. The length of one side of a triangle is 1006.62 feet and the adjacent angles are 44° and 70°. Solve the triangle, having given

$$L \sin 44^{\circ} = 9.8417713,$$
 $L \sin 70^{\circ} = 9.9729858,$ $L \sin 66^{\circ} = 9.9607302,$ $\log 1006.62 = 3.0028656,$ $\log 7654321 = 6.8839067,$ $\log 103543 = 5.0151212.$

which

90 Fi

91, coseca

W₁ 92.

(1 (2) 93.

94.

95. inverial If an what is 96. If co

97. secant. Write

98.

99. mine the

100.

101.

89. Find the length of the arc of a circle whose radius is 8 feet which subtends at the centre an angle of 50°, having given $\pi = 3.1416$.

90. Prove that $\sin A = -\sin (A - 180^{\circ})$. Find the sines of 30° and 2010°.

91. Investigate an expression for all angles which have a given cosecant.

Write down the general value of $\csc^{-1}(-\sqrt{2})$.

92. Prove that

(1) $\cos^2 A + \cos^2 B - 2 \cos A \cos B \cos (A + B) = \sin^2 (A + B);$

 $\cos^2 A + \sin^2 A \cos 2B = \cos^2 B + \sin^2 B \cos 2A.$

93. Prove that in any triangle

 $a^2 \cos 2B + b^2 \cos 2A = a^2 + b^2 - 4ab \sin A \sin B$.

94. If a=123, $B=29^{\circ}17'$, $C=135^{\circ}$, find c, having given $\log 123 = 2.0899051$ $\log 2 = 3010300$. $\log 3211 = 3.5066403$ diff. for 1 = 1352. $L \sin 15^{\circ}43' = 9.4327777$

95. Define the unit of circular measure, and prove that it is an invariable angle.

If an arc of 12 feet subtend at the centre of a circle an angle of 50°, what is the radius of the circle, π being equal to 3.1416?

96. Express the cosine and cotangent in terms of the cosecant. If $\cot A + \csc A = 5$, find $\cos A$.

97. Investigate an expression for all angles which have a given

Write down the general value of $\sec^{-1}(-2)$.

98. Prove that

(1) $\sin^2 A + \sin^2 B + 2 \sin A \sin B \cos (A + B) = \sin^2 (A + B)$;

 $\sin^2 A - \cos^2 A \cos 2B = \sin^2 B - \cos^2 B \cos 2A$. 99. Prove that $2\cos_A A = \pm \sqrt{1 + \sin A} \pm \sqrt{1 - \sin A}$, and determine the proper signs of the roots when $A = 2400^{\circ}$.

100. Prove that in any triangle

$$\frac{\cos 2A}{a^2} - \frac{\cos 2B}{b^2} = \frac{1}{a^2} - \frac{1}{b^2}.$$

101. Prove (i) $2\cot 2A = \cot A - \tan A,$

(ii) $\sin^{-1} \frac{3}{5} - \sin^{-1} \frac{5}{13} = \sin^{-1} \frac{16}{65}$,

(iii) $\cot (A + 15^{\circ}) - \tan (A - 15^{\circ}) = \frac{1}{2 \sin 2A + 1}$

19 - 2

nd the en

educe

. long

e two

102. Solve the equations

 $\cos(2x+3y)=\frac{1}{2}$, $\cos(8x+2y)=\frac{1}{2}\sqrt{3}$.

103. Trace the changes in the sign and magnitude of $\sin (\pi \sin x)$ as x increases from 0 to 2π .

104. Solve the equation

$$\tan^{-1}x + \tan^{-1}(1-x) = 2 \tan^{-1}\sqrt{x-x^2}$$

105. A ship sailing due north observes two lighthouses bearing respectively N.E. and N.N.E.; after sailing 20 miles the lighthouses are seen to be in a line due east; find the distance between the lighthouses in miles accurately to four places of decimals; having given,

 $\log 2 = 3010300$, $L \tan 22^{\circ}30' = 9.6172243$, $\log 11.715 = 1.0687423$, and $\log 11.716 = 1.0687794$.

106. Prove (i) $\tan \frac{\theta}{2} = \sqrt{\left(\frac{1-\cos \theta}{1+\cos \theta}\right)}$,

(ii) $\frac{\tan 5\theta + \tan 3\theta}{\tan 5\theta - \tan 3\theta} = 4 \cos 2\theta \cos 4\theta,$

(iii) $\sin^{-1}\frac{s}{s} + \sin^{-1}\frac{s}{17} = \sin^{-1}\frac{77}{88}$.

107. Solve the equation $2\sin^2\theta - (1+\sqrt{3})\sin 2\theta + 2\sqrt{3}\cos^2\theta = 0$.

108. Show that in any triangle

(i) $a \sin (B-C) + b \sin (C-A) + c \sin (A-B) = 0$, (ii) $c (\cos A + \cos B) = 2 (a+b) \sin^2 \frac{1}{2} C$.

109. Prove that if D, E, F are the feet of the perpendiculars from A, B, C upon the opposite sides of the triangle ABC the diameters of the circumscribing circles of the triangles AEF, BDF, CDE are $a \cot A$, $b \cot B$, $c \cot C$ respectively.

110. A man who is walking on a horizontal plane towards a tower observes that at a certain point the elevation of the top of the tower is 10° and after going 50 yds. nearer to the tower the elevation is 15° ; find the height of the tower in yards to 4 places of decimals, having given $L \sin 15^{\circ} = 9.4129962$, $L \cos 5^{\circ} = 9.9983442$,

log 25.783 = 1.4113334, log 25.784 = 1.4113503.

111. Prove that when $\sin A$ is a geometric mean between $\sin B$ and $\cos B$, then $\cos 2A = 2\sin(45^{\circ} - B)\cos(45^{\circ} + B)$.

112. Prove (i) $\sin A (\cos 2A + \cos 4A + \cos 6A) = \sin 3A \cos 4A$.

(ii) $2\sin^{-1}\frac{1}{2} = \cos^{-1}\frac{1}{2}$.

113. In any quadrilateral ABCD prove that $AB\cos A - BC\cos (A+B) + CD\cos D = AD.$

hen

then

which angle from L sin

11 tively

11

118

yards; 119 distan

inclined plane to a furth β ; show

121. 122.

 $(6n \pm 1)$ (123.

lies betw

and

 $\sin x$)

aring ouses lightven,

 $\theta = 0.$

culars
C the
BDF,
tower
tower

s 15°;

sin B

s 4A.

114. Prove that in any triangle

 $\tan 2A + \tan 2B + \tan 2C = \tan 2A \tan 2B \tan 2C$,

hence show that if xyz are numbers such that

then
$$x(1-y^2)(1-z^2)+y(1-z^2)(1-x^2)+z(1-x^2)(1-y^2)=4xyz$$
.

115. From each of two ships a mile apart the angle is observed which is subtended by the other ship and a beacon on shore, these angles are 52° 25' 15'' and 75° 9' 30''; find the distances of the beacon from each of the ships, having given $L \sin 75^{\circ}$ 9' $30'' = 9 \cdot 9852635$, $L \sin 52^{\circ}$ 25' $15'' = 9 \cdot 8990055$, $\log 1 \cdot 2197 = \cdot 0862530$,

 $\log 1.2198 = .0862886$.

116. The cosines of two angles of a triangle are \(\frac{2}{3} \) and \(\frac{12}{3} \) respectively; find all the trigonometrical ratios of the third angle.

117. Prove (i)
$$\frac{\sin A + 2\sin 3A + \sin 5A}{\cos A - 2\cos 3A + \cos 5A} = \frac{4\sin A - 3\csc A}{4\cos A - 3\sec A}$$
(ii)
$$\cot^{-1}\frac{1}{8} = \cot^{-1}3 + \cot^{-1}\frac{3}{4}$$

118. The lengths of the side of a triangle are 242, 1212 and 1450 yards; show that the area is 6 acres.

119. Prove that $ad_1^2 + bd_2^2 + cd_3^2 = abc$, where d_1 , d_2 , d_3 are the distances of the centre of the inscribed circle from A, B, C.

120. A man observes that when he has walked c feet up an inclined plane, the angular depression of an object in the horizontal plane through the foot of the slope is a; and that when he has walked a further distance c feet the angular depression of the same object is β ; show that the inclination of the slope to the horizon is

$$\cot^{-1}(2\cot\beta-\cot\alpha)$$
.

121. Prove $\tan^{-1}(\frac{1}{2}\tan 2A) + \tan^{-1}(\cot A) + \tan^{-1}(\cot^3 A) = 0$.

122. The general solution of $\tan (45 - \frac{1}{2}x) + \cot (45^{\circ} - \frac{1}{2}x) = 4$ is

123. Prove that $\sqrt{(1+\sin A)} = 1 + 2\sin \frac{1}{4}A\sqrt{(1-\sin \frac{1}{2}A)}$, when A lies between -90° and 180° .

124. If
$$a \sin A + b \sin B + c \sin C = 0$$
, and $a \cos A + b \cos B + c = C = 0$, then $a:b:c=\sin(B-C):\sin(C-A):\sin(A-B)$.

125. A man ascends a mountain by a direct course, the inclination of his path to the horizon being at first a and afterwards changing suddenly to β , which continues to the summit; the mountain being a feet high and the angle of elevation of the summit from the starting point being γ , show that the length of the ascent is

$$a\frac{\cos\left\{\frac{1}{2}(\alpha+\beta)-\gamma\right\}}{\sin\gamma\cos\frac{1}{2}(\beta-\alpha)}.$$

- 126. $\csc A \csc 2A + \csc 2A \csc 3A = \csc A (\cot A \cot 3A)$.
- 127. Solve the equation

 $\cos 3\theta + \cos 5\theta + \sqrt{2} (\cos \theta + \sin \theta) \cos \theta = 0.$

128. In any triangle

 $4 \sin A \sin B \sin^2 \frac{1}{4}C = (\sin B + \sin C - \sin A) (\sin C + \sin A - \sin B).$

129. Find (without tables) to 3 places of decimals the numbers of which 1.5, .3 and 1.3 are the common logarithms.

130. Two chords diverging from the same point on the circumference of a circle are to each other as the sines of the angles they respectively make with the tangent at that point.

131. Prove that there are eleven, and only cleven, pairs of regular polygons which are such that the number of degrees in an angle of one of them = the number of grades in an angle of the other; and that there are only four pairs when the number is an integer.

- 132. $\cos 11A + 3 \cos 9A + 3 \cos 7A + \cos 5A$ = $16 \cos^3 A \cos (4A + \frac{1}{2}\pi) \cos (4A - \frac{1}{2}\pi)$.
- 133. If $\sin^{-1} x + \sin^{-1} \frac{1}{2} x = \frac{1}{4} \pi$, then $x = \sqrt{\left\{\frac{2}{17} (5 2\sqrt{2})\right\}}$.

134. Transform $\sqrt{(2 \sec A)} = \frac{1}{5} \sqrt[3]{(\cos^2 B \csc C)}$ into an equation between tabular logarithms.

185. The distances of A one of the angular points of a regular octagon ABCDEFGH from the sides BC, CD, DE respectively are as $1:1+\sqrt{2}:2+\sqrt{2}$.

- 136. $\sin (2\alpha + \beta + \gamma) \sin (\beta \gamma) + \sin (\alpha + 2\beta + \gamma) \sin (\gamma \alpha) + \sin (\alpha + \beta + 2\gamma) \sin (\alpha \beta) = 0.$
- 137. If $\log \frac{1885}{1} = a$ and $\log 2 = \beta$, then $\log 4100 = a + 12\beta$.
- 138. $\sin 81^{\circ} \sin 39^{\circ} \sin 21^{\circ} + \sin 99^{\circ} = \sin 90^{\circ}$.
- 139. Solve $\sin (n+1)\theta + \sin (n-1)\theta = \sin 2\theta$.

the a

14

14

148 cos 2*A*

find

when when the tra

146. then

147. then

148. then

> 149. 150.

151. express

152.

153. 154.

 $\begin{array}{c}
 155. \\
 a^2b^2c^2 - 4. \end{array}$

lina. angntain n the

the angle $DAC = DBC = \alpha$; the angle $CAB = \beta$; the angle $CBE = \gamma$; prove that

$$BE = AB \frac{\sin \beta \sin (\alpha + \beta)}{\sin (\gamma - \beta) \sin (\alpha + \beta + \gamma)}.$$

140. ABCD is a quadrilateral and AB, DC produced meet in E;

 $\cos 2A + \sin 2B = 2 \sin \{ \frac{1}{4}\pi - (A - B) \} \cos \{ \frac{1}{4}\pi - (A + B) \}$ $\cos 2A - \sin 2B = 2 \sin \{ \frac{1}{4}\pi - (A+B) \} \cos \{ \frac{1}{4}\pi - (A-B) \}.$

142.

(i) $\cos 55^{\circ} + \cos 65^{\circ} + \cos 175^{\circ} = 0$.

(ii) $\sin^2 24^0 - \sin^2 6^0 = \frac{1}{4} (\sqrt{5} - 1)$.

143. If $A+B+C+D=180^{\circ}$, then

 $\cos 2A - \cos 2B + \cos 2C - \cos 2D = 4 \sin (B + C) \cos (C + A) \sin (A + B)$.

144. Given $\log 35 = a$, $\log 325 = b$, $\log 245 = c$, find log 5, log 7 and log 13.

A train is going due East at the rate of 24 miles an hour; when will it be 18 miles distant from a town which is on the N.E. of the train at a distance of 24 miles?

146. If $4 \sin A \tan (A - B) + 3 \sec A = 4 \sin^2 A \sec A$, then $\tan A \tan B = 3$.

147. If $\tan (\pi \cot \theta) = \cot (\pi \tan \theta)$ then $4 \tan \theta = 2n + 1 \pm \sqrt{(4n^2 + 4n - 15)}$.

148. If $x = \cos 2a + \cos a$, $y = \sin 2a + \sin a$, then $2x = (x^2 + y^2)^2 - 3(x^2 + y^2).$

149. In any triangle $2R \sin C = b \cos A + \sqrt{(a^2 - b^2 \sin^2 A)}$.

150. In a triangle right-angled at C

$$\tan^{-1}\frac{a}{b+c} + \tan^{-1}\frac{b}{a+c} = \frac{\pi}{4}$$
.

151. One angle of a quadrilateral is 60°, another 50°, another 2π; express all four angles in degrees.

If $\sin^{-1} m + \sin^{-1} n = \frac{1}{2}\pi$, prove that $\sin^{-1} m = \cos^{-1} n$.

If $\cos \alpha = \frac{\cos \beta - \epsilon}{1 - \epsilon \cos \beta}$, then $\tan \frac{1}{2}\alpha = \sqrt{\left(\frac{1 + \epsilon}{1 - \epsilon}\right) \tan \frac{1}{2}\beta}$.

 $(\cos \theta + \sin \theta) (\cos 2\theta + \sin 2\theta) = \cos \theta + \cos (3\theta - \frac{1}{2}\pi).$

155. In any triangle $a^2b^2c^2 - 4b^2S^2$; $a^2b^2c^2\cos A - 4bcS^2$ and $a^2b^2c^2-4c^2S^2$ are in G. P.

t3A).

B). ers of

cumthey

gular zle of that

- ±π). ation

gular ure as

= 0.

156. Simplify $\cos^2(A+B) + \cos^2(A-B) - \cos 2A \cos 2B$.

157. With two units differing by 10° the measure of an angle is as 3 is to 4; find the units.

158. $\cos 7^{\circ} 30' = \frac{1}{4} (-1 + \sqrt{2} + \sqrt{3}) \sqrt{(2 + \sqrt{2})}$.

159. In any triangle

$$\frac{\sin\frac{1}{2}A + \cos\frac{1}{2}B - \sin\frac{1}{2}C}{\sin\frac{1}{2}A + \cos\frac{1}{2}C - \sin\frac{1}{2}B} = \frac{1 + \tan\frac{1}{2}B}{1 + \tan\frac{1}{2}C}.$$

160. In any triangle a^2 , b^2-c^2 , $b^2+c^2-2bc\cos{(B-C)}$, are in o. P.

161. Solve $\cos 3\theta + \sin 3\theta = \cos \theta + \sin \theta$.

162. If $x=3\cos\phi+\cos 3\phi$, $y=3\sin\phi-\sin 3\phi$, then

 $x^{\frac{3}{4}} + y^{\frac{3}{4}} = 4^{\frac{3}{4}}$.

163. $\cos^2 18^0 \sin^2 86^0 - \cos 36^0 \sin 18^0 = \frac{1}{18}$.

164. Given that $\cos \theta = -\frac{1}{2}$ is one solution of the equation $\cos \theta + \cos 3\theta = \frac{1}{2}$, find the others.

165. If the diagonal BD of a quadrilateral inscribed in a circle passes through the centre its area = (s-a)(s-d)=(s-b)(s-c).

166. If $\tan (A+B) = 3 \tan A$,

then $\sin (2A+2B) + \sin 2A = 2\sin 2B.$

167. $\sin 18^{\circ} + \cos 18^{\circ} = \sqrt{2} \cos 27^{\circ}$.

168. Solve $\tan 3\theta + \tan 2\theta + \tan \theta = 0$.

169. If $A+B+C=90^{\circ}$, then $\cos^{3} 2A + \cos^{3} 2B + \cos^{3} 2C$ = $3 \sin A \sin B \sin C - \sin 3A \sin 3B \sin 3C + 1$.

170. In any triangle $bc \cos^2 \frac{1}{2}A + ca \cos^2 \frac{1}{2}B + ab \cos^2 \frac{1}{2}C = (s)^2$.

171. Prove that $7\theta = \pi$ satisfies the equation $8\cos\theta\cos2\theta\cos3\theta = 1$.

172. If $A+B+C=90^{\circ}$, then $\cos A \cos B \cos C$ cannot be greater than $\frac{1}{2}$.

175. $\sin^{-1}\frac{1}{4}\sqrt{5} + \cot^{-1}8 = \frac{1}{4}\pi$.

174. As any triangle $\frac{\partial A}{\partial A} + \sin 3B + \sin 3C + 4 \cos \frac{2}{3}A \cos \frac{2}{3}B \cos \frac{2}{3}C = 0.$

175. If the circle circumscribing an isosceles triangle is equal to the escribed circle touching one of the equal sides the triangle is right angled.

17

17

sum cogeth

180 a certa

that th

sin (a -162.

181.

of the sa 184.

185. circle fro

186. tan (θ+ 6

188.

189.

of sides; w

176. If $\sin x + \sin^2 x = 1$, then $\cos^2 x + \cos^4 x = 1$.

177. sin 10° sin 50° sin 70° = 1.

178. Simplify
$$\tan^{-1}\left(\frac{x\cos\theta}{1-x\sin\theta}\right)-\cot^{-1}\left(\frac{\cos\theta}{x-\sin\theta}\right)$$
.

A, B, C, D are the angles of a quadrilateral; prove that the sum of the products of the sines of \(\frac{1}{2}A, \(\frac{1}{2}B, \(\frac{1}{2}C, \(\frac{1}{2}D \) taken two together is equal to the sum of the products of their cosines taken

180. At each end of a horizontal line of length 2a the altitude of a certain tower is a and at the middle point of the line it is β ; show that the vertical height of the tower above the horizontal plane is

a sin a sin
$$\beta \sqrt{(\cos (\beta + \alpha) \csc (\beta - \alpha))}$$
.

181. Prove that

 $\sin(\alpha-\beta)\cos 2\beta + \cos(\alpha-\beta)\sin 2\beta = \sin(\beta-\alpha)\cos 2\alpha + \cos(\beta-\alpha)\sin 2\alpha$.

182. Find the values of $\sin 2\theta \cos \frac{1}{4}\theta$ and $\tan \theta$ when $\theta = \sin^{-1} \frac{\theta}{15}$.

183. Prove geometrically that $\sin 2\theta$ and $2\sin\theta\cos\theta$ are always of the same sign.

184. If D is the middle point of the side BC, then $4AD^2 = b^2 + c^2 + 2bc \cos A$.

185. If l, m, n are the distances of the centre of the inscribed circle from ABC, then

$$\frac{lmn}{r} = \frac{2abc}{a+b+c}.$$

186. If $a \sin \theta = b \sin \phi$, $c = a \cos \theta + b \cos \phi$, then $\tan (\theta + \phi) (c^2 - a^2 - b^2) = \sqrt{(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}.$

187. If $\sin^{-1} \alpha + \sin^{-1} \beta + \sin^{-1} \gamma = \pi$, then

188.
$$\frac{a\sqrt{(1-\alpha^2)} + \beta\sqrt{(1-\beta^2)} + \gamma\sqrt{(1-\gamma^2)} = 2\alpha\beta\gamma}{\sin{(\alpha-\beta)}\sin{(\alpha-\gamma)} + \frac{\sin{(\theta-\gamma)}\sin{(\theta-\alpha)}}{\sin{(\beta-\gamma)}\sin{(\beta-\alpha)}}\sin{(\beta-\alpha)}}$$

$$+\frac{\sin (\theta - \alpha) \sin (\beta - \gamma) \sin (\beta)}{\sin (\gamma - \alpha) \sin (\gamma - \beta)} = 1.$$

189. If A + B + C = 90, then

 $\sin^2 A + \sin^2 B + \sin^2 C$ cannot be less than $\frac{3}{4}$.

The perimeter of a regular circumscribing polygon of a circle is double that of the inscribed polygon having the same number

Q Q. P.

gle is

ation

circle

reater

ual to gle is 191. Eliminate θ from the equations $m \sin 2\theta = n \sin \theta$, $p \cos 2\theta = q \cos \theta$.

192. Reduce $1-\cos^2\theta-\cos^2\phi-\cos^2\psi+2\cos\theta\cos\phi\cos\psi$ to the product of four cosines.

193.
$$\tan 5A = \frac{5 \tan A - 10 \tan^3 A + \tan^5 A}{1 - 10 \tan^2 A + 5 \tan^4 A}.$$

194. Prove (i) $4 \sin 18^{\circ} \cos 36^{\circ} = 1$.

(ii)
$$\cos 36^{\circ} - \sin 18^{\circ} = \frac{1}{3}$$
.

195. $r = s \tan \frac{1}{2}A \tan \frac{1}{2}B \tan \frac{1}{2}C$.

196. Solve the equation

$$\cos \theta - \sin \theta = \cos \alpha - \sin \alpha$$
.

197. Prove that when

$$\cos(x+2A) + \cos(x+2B) + \cos(x+2C) + \cos(x+2D) = 4\cos(A+B)\cos(A+C)\cos(A+D),$$

then $\sin(x+2A) + \sin(x+2B) + \sin(x+2C) + \sin(x+2D)$ = $4\sin(A+B)\sin(A+C)\sin(A+D)$, where A, B, C, D are the angles of a quadrilateral and x is not zero.

198. Express in four factors $\sin^2 A + \sin^2 B + \sin^2 C - 2 \sin A \sin B \sin C - 1$.

199. In any triangle $2R \{\cos^2 \frac{1}{2}A + \cos^2 \frac{1}{2}B + \cos^2 \frac{1}{2}C\} = 4R + r.$

200. The diagonals of a four-sided figure are h and k, and the area is C; show that the area of its circumscribing square is

$$\frac{h^2k^2 - 4C^2}{h^2 + k^2 - 4C}.$$

 (a^2+b^2)

(2)

(l-h)(3)

the co

(4) √[2+

 $\begin{array}{c}
 (5) \\
 e^{2s} - e^{-s} \\
 \hline
 e^{2s} + e^{-s}
 \end{array}$

the nu of thes $\frac{180\pi}{180-\pi}$

(6)

(7)

(8) the cen Prove th the circle

(9)

(10) for logar to the

* * MISCELLANEOUS EXAMPLES. LXXVI.

- (1) If $2\cos\theta \cos 2\theta = a$ and $2\sin\theta \sin 2\theta = b$, prove that $(a^2 + b^2 3)^2 = 12 8a$.
- (2) If $h\cos\theta + k\sin\theta = 1$ and $l\cos\theta + m\sin\theta = 1$, prove that $(l-h)^2 + (m-k)^2 = (lh-mk)^2$.
- (3) The diagonals of a rhombus are 2a and 2b, prove that the cosines of its angles are $\pm \frac{a^2 b^2}{a^2 + b^2}$.
- (4) One of the values of

$$\sqrt{[2+\sqrt{(2+\sqrt{(2+...+\sqrt{2+2\cos A})})}]}$$
 is $2\cos\frac{A}{2^n}$.

- (5) If $8x = \log_e 3$, prove that the angle whose tangent is $e^{2s} e^{-2s}$ is 15°.
- (6) If the number of degrees (A) in an angle is the same as the number of radians in another angle, and if the tangents of these angles are equal, prove that A is some multiple of $\frac{180\pi}{180-\pi}$.
 - (7) If a, β, γ are in A.P., then $\sin a + \sin \gamma = 2 \sin \beta \cdot \cos (\beta a)$.
- (8) Two parallel chords of a circle, lying on the same side of the centre, subtend respectively 72° and 144° at the centre. Prove that the distance between the chords is half the radius of the circle.
 - (9) Prove that $4 \sin(\theta a) \cdot \sin(m\theta a) \cdot \cos(\theta m\theta)$ = $1 + \cos(2\theta - 2m\theta) - \cos(2\theta - 2a) - \cos(2m\theta - 2a)$.
- (10) Express $x^4 + y^4 + z^4 2y^2z^2 2z^2x^2 2x^2y^2$ in a form fitted for logarithmic calculation.

A+D),

A + D), t zero.

and the

(11) Solve the equations

(i)
$$\sin 3\theta + \sqrt{3}\cos 3\theta = 1$$
. (ii) $\sin m\theta = \cos n\theta$.

(iii)
$$\frac{\cos(\beta+x)}{\cos(\alpha-x)} = \frac{m\sin\beta}{n\sin\alpha}$$
. (iv) $\tan m\theta = \cot n\theta$.

(v)
$$\tan \theta + \tan 2\theta + \tan 3\theta = 0$$
.

(vi)
$$\cos 8\theta - \cos 5\theta + \cos 3\theta = 1$$
.

(vii)
$$\cos \theta \cdot \cos 3\theta = \cos 5\theta \cdot \cos 7\theta$$
.

(12) In any triangle
$$\tan \frac{A-B}{2} = \tan \left(\phi - \frac{\pi}{4}\right) \cot \frac{C}{2}$$
, where $\phi = \tan^{-1}\frac{a}{b}$.

(13) Prove that

$$b^2+c^2-2bc\cos(60^0+A)=c^2+a^2-2ca\cos(60^0+B)$$
.

Hence prove that if equilateral triangles are described on the sides of the triangle ABC, the centres of circles inscribed in them will be the angular points of an equilateral triangle.

- (14) A round tower stands on an island in a lake. A, B are two points on the land such that AB is a feet and points directly to the middle of the tower. At A and B the base of the tower subtends the angles 2a and 2β respectively. Prove that the diameter of the tower is $2\frac{a \sin a \cdot \sin \beta}{\sin \beta \sin a}$.
- (15) At P the top of a tower of height h, the angles of depression of two objects on the herizontal plane on which the tower stands are $\frac{1}{4}\pi a$ and $\frac{1}{4}\pi + a$. Prove that the angle APB=2a, and that $AB=2h\tan 2a$.
- (16) On the side of a hill there are two places B, C inaccessible to each other, but known to be at the same distance (a) from a certain station A also on the hill. At the lower place C the *horizontal* angle θ between A and B is observed as well as the altitudes λ , μ of A and B. Prove that the distance between

B and C is
$$2\alpha \left\{ \cos (\lambda - \mu) \cos^2 \frac{\theta}{2} - \cos (\lambda + \mu) \sin^2 \frac{\theta}{2} \right\}$$
.

two v

circle

equal.

(18 circles, pendic

(19) A, B, C

'pedal t

(

(i

The $I_1I_2I_3$ in (

(17) In the ambiguous case, given B, c, b, if a_1 , a_2 are the two values of a, prove the following statements:

(i)
$$a_1 + a_2 = 2c \cos B$$
.

(ii)
$$a_1 a_2 = c^2 - b^2$$
.

(iii)
$$a_1^2 - 2a_1a_2 \cos 2B + a_2^2 = 4b^2 \cos^2 B$$
.

- (iv) The distance between the centres of the circumscribing circles of the two triangles is $\frac{a_1 a_2}{2 \sin B}$.
- ($\overline{\mathbf{v}}$) The circumscribing circles of the two triangles are equal.
 - (vi) If $B=45^{\circ}$, the angle between the two positions of l is $\cos^{-1}\frac{2a_{1}a_{2}}{a_{1}^{2}+a_{2}^{2}}.$
- (18) Prove that if I_1 , I_2 , I_3 are the centres of the escribed circles, then I_2AI_3 is a straight line, and I_1A , I_2B , I_3C are perpendicular to I_2I_3 , I_3I_1 , I_1I_2 respectively. Prove also that

(i)
$$I_2I_3 = a \csc \frac{A}{2}$$
. (ii) The angle $I_2I_1I_3 = \frac{\pi}{2} - \frac{A}{2}$.

(iii) The area of
$$I_1 I_2 I_3 = \frac{s\alpha}{\sin A} = \frac{\frac{1}{2}S}{\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}}$$

- (iv) The radius of the circle circumscribing $I_1I_2I_3=2R$.
- (19) If D, E, F are the feet of the perpendiculars from A, B, C on the opposite sides, the triangle DEF is called the 'pedal triangle' of the triangle ABC^* ; prove that

(i)
$$EF = a \cos A$$
. (ii) The angle $EDF = \pi - 2A$.

(iii)
$$\frac{1}{r} = \frac{1}{AD} + \frac{1}{BE} + \frac{1}{CF}$$
 (iv) $\frac{AD^2}{BE \cdot CF} = \frac{bc}{a^2}$

- (v) The radius of the circle circumscribing $AEF = R \cos A$.
- (vi) The radius of the circle circumscribing $DEF = \frac{1}{2}R$.

where

on the u them

B are irectly tower at the

of dech the angle

vinacnce (a) place C vell as

^{*} The student should notice that ABC is the pedal triangle of $I_1I_2I_3$ in Question (18).

(20) Prove that in any triangle ABC

$$a^{2} = (b-c)^{2} \left\{ 1 + \frac{4bc}{(b-c)^{2}} \sin^{2} \frac{A}{2} \right\}.$$

Hence prove that if $\tan \theta = \frac{2\sqrt{bc}}{b-c} \sin \frac{A}{2}$, then $a = (b-c) \sec \theta$.

(21) Prove that in any triangle ABC

$$a = (b+c)\cos \beta$$
, where $\sin \beta = \frac{2\sqrt{bc}}{b+c}\cos \frac{A}{2}$.

Use this method, or that of Example (20), to find a by the aid of the Tables, when b=347, c=293, $A=39^{\circ}$ 42'. [See Art. 260.]

(22) Prove that in any triangle

$$\log a = \log (b-c) + L \cos \frac{A}{2} - L \cos \phi ; \text{ where } \phi = \tan^{-1} \frac{b+c}{b-c} \tan \frac{A}{2}.$$

(23) If D, E, F are the middle points of BC, CA, AB, then $\sin BAD = \frac{b \sin A}{\sqrt{b^2 + 2bc \cos A + c^2}}.$ [See Ex (11) (15) page 205.]

(24) If
$$x=II_1$$
, $y=II_2$, $z=II_3$, $d=2R$, prove that $xyz+d(x^2+y^2+z^2)=4d^3$.

(25) The circle escribed to the side BC of the triangle ABC will be the inscribed circle of the triangle whose sides are

$$\frac{sa}{s-a}$$
, $\frac{sb}{s-a}$, $\frac{sc}{s-a}$.

(26) If a point Q be taken within ABC such that the angles BQC, CQA, AQB are each 120°, prove that

$$OA = \frac{1}{2} \cdot \frac{4\sqrt{2}\Delta + \sqrt{6}(b^2 + c^2 - a^2)}{\{12\sqrt{3}\Delta + 3(a^2 + b^2 + c^2)\}^{\frac{1}{2}}}.$$

(27) If $\sin A$ and $\cos A$ are both given, prove that in general n different values and no more can be assigned to $\sin \frac{A}{n}$.

subt its l perp

betw

that

(3

sides:

(iii)

_

in a circos (a - a)

 $a\cos\theta$

(34)

prove the

(28) If from a point on a circular arc (of radius r) which subtends an angle a at the centre, perpendiculars are drawn to its bounding radii, then the distance between the feet of the perpendiculars is $r \sin a$.

(20) If two circles, radii a and b, touch externally, the angle between their common tangents = $2 \tan^{-1} \frac{1}{2} \left(\sqrt{\frac{\bar{a}}{\bar{b}}} - \sqrt{\frac{\bar{b}}{\bar{a}}} \right)$.

(30) If the inscribed circle touches the sides in *DEF*, prove that $EF: FD: DE = \cos \frac{A}{2} : \cos \frac{B}{2} : \cos \frac{C}{2}$.

(31) If the bisectors of the angles A, B, C meet the opposite sides in D, E, F then (i) $AD = \frac{2bc}{b+c}\cos\frac{A}{2}$. (ii) $CD = \frac{a\sin B}{\sin B + \sin C}$.

(iii) The area of DEF

he aid . 260.]

, then

205.7

ABC

ngles

neral

$$=S\frac{2abc}{(b+c)(c+a)(a+b)}=S\cdot\frac{2\sin\frac{A}{2}\cdot\sin\frac{B}{2}\cdot\sin\frac{C}{2}}{\cos\frac{B-C}{2}\cdot\cos\frac{C-A}{2}\cdot\cos\frac{A-B}{2}}.$$

(32) If a, β, γ, δ are the angles of a quadrilateral inscribed in a circle, then

$$\cos(a+\beta)\cdot\cos(\beta+\gamma)\cdot\cos(\gamma+\delta)\cdot\cos(\delta+a)=(1-\cos^2a-\cos^2\beta)^2.$$

(33) If θ_1 and θ_2 be two values of θ found from the equation $a\cos\theta + b\sin\theta = c$, then

$$\frac{1}{a} \cdot \cos \frac{\theta_1 + \theta_2}{2} = \frac{1}{b} \cdot \sin \frac{\theta_1 + \theta_2}{2} = \frac{1}{c} \cdot \cos \frac{\theta_1 - \theta_2}{2}.$$

(34) If $a=b\cos x + c\cos \phi$ $b=c\cos \theta + a\cos \chi$ $c=a\cos \phi + b\cos \theta$

prove that $\cos 2\theta + \cos 2\phi + \cos 2\chi + 4\cos \theta$. $\cos \phi$. $\cos \chi + 1 = 0$, hence [see Ex. (20), p. 143], prove that

$$(\theta \pm \phi \pm \chi) = (2n+1)\pi.$$

(35) A circle is drawn touching the inscribed circle and the sides AB, AC (not produced) of the triangle ABC. Another circle is drawn touching the circle and the same side. Prove

that the radius of the n^{th} circle thus drawn is $r\left(\frac{1-\sin\frac{A}{2}}{1+\sin\frac{A}{2}}\right)^n$ and

that the sum of the radii of all the circles, when $n = \infty$, is

$$\frac{r}{2}\left(\operatorname{cosec}\frac{A}{2}-1\right).$$

(36) If AO, BO, CO pass through the centre of the circumscribing circle and meet the opposite sides on DEF, then

$$\frac{1}{AD} + \frac{1}{BE} + \frac{1}{CF} = \frac{2}{R}$$
.

- (37) If h and k be the lengths of the diagonals of a quadrilateral and θ the angle between them, prove that the area of the quadrilateral is $\frac{1}{2}hk\sin\theta$.
- (38) If $\frac{x}{\sin X} = \frac{y}{\sin Y} = \frac{z}{\sin Z}$ and $X + Y + Z = 180^{\circ}$, prove that $x = y \cos Z + z \cos Y$.
- (39) Two regular polygons of n and 2n sides are described such that the circle inscribed in the first circumscribes the second; also the radius of the circle inscribed in the second is to that of the circle circumscribing the first as $3+\sqrt{3}$ is to $4\sqrt{2}$. Prove that n=6.
- (40) Prove by the aid of a figure like that of Art. 282 that $I_1O^2=R^2+2Rr_1$.
 - (41) If yz + zx + xy = 1, prove by Trigonometry that

$$\frac{x}{1-x^2} + \frac{y}{1-y^2} + \frac{z}{1-z^2} = \frac{4xyz}{(1-x^2)(1-y^2)(1-z^2)}.$$
[See Ex. (33), (32), p. 194.]

I. (i

(ii

.

that

2. Two

Prov

and the

1. Do the sine a

† The which are Mathemat:

(ii) Elementar Elementar questions were set in

L. E.

EXAMINATION PAPERS.

+I. PREVIOUS EXAMINATION.

December, 1886.

PAPER I.

- I. Define the secant and cotangent of an angle, and prove that $\sec \theta \csc \theta = \tan \theta + \cot \theta,$
 - (ii) $\cot^2 \theta \frac{\sec \theta 1}{1 + \sin \theta} + \sec^2 \theta \frac{\sin \theta 1}{1 + \sec \theta} = 0.$

PAPER II.

1. From the definitions of the Trigonometrical Functions, prove that

 $\sin^2 A = 1 - \cos^2 A$ and $\sin A \tan A = \sec A - \cos A$. Prove that $\frac{1}{8}(\cos^6 A + \sin^6 A) - \frac{1}{4}(\cos^2 A - \sin^2 A)^2 = \frac{1}{12}.$

2. Investigate the values of tan 450 and sin 60°.

Two adjacent sides of a parallelogram are of lengths 15 and 24, and the angle between them is 60°; find the lengths of both

II. PREVIOUS EXAMINATION, CAMBRIDGE.

June, 1887.

PAPER I.

1. Define the sine and tangent of an angle, and shew how to find the sine and tangent whose cosine (m) is given.

If $\sin A = \tan B$, prove $\cos^2 A \cos^2 B = (\cos B + \sin B) (\cos B - \sin B).$

† The Additional Subjects in the Cambridge Previous Examination, which are required of Candidates for any Tripos, are now (1887) either

The Mathematical subjects are (i) The Trigonometry of one Angle, (ii) Elementary Dynamics [see Lock's Dynamics for Beginners], (iii) Elementary Statics. The Trigonometry is set in the first one or two questions in each of the two papers. The questions quoted above were set in December, 1886, and in June, 1887.

20

and

ıd the other Prove

rcum-

uadriof the

e that

e dercum-

ribedfirst

2 that

194.

2. Trace the changes in the tangent of an angle as the angle changes from 180° to 270°.

If $\sin \theta = -\frac{2}{3}$, find $\tan \theta$; and explain by means of a figure the reason why there are two answers to the question.

PAPER II.

1. Explain the mode of measuring angles in degrees, minutes and seconds.

Find the number of seconds of angle through which the earth revolves about its axis in a second of time.

2. Find the value of sec 60°, and of sec 45°.

Solve the equation

 $2 \operatorname{cosec} A = 2 \sin A + \cot A$.

III. CAMBRIDGE LOCAL EXAMINATIONS.

Dec. 1886.

JUNIOR CANDIDATES.

1. Prove that the angle subtended at the centre of a circle by an arc equal to the radius is the same for all circles.

Express the angle as a fraction of a right angle.

2. Define the sine, cosine and tangent of an angle. Prove that these trigonometrical ratios are always the same for the same angle.

Find these ratios for an angle of 45°.

8. Prove that

$$\cos(A+B) = \cos A \cos B - \sin A \sin B.$$

Prove that the sum of the cosines of two angles is equal to twice the cosine of half their sum multiplied by the cosine of half their difference.

4. Prove the following relations:

(i)
$$\tan (A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$
.

(ii)
$$(1 + \sin A + \cos A)^2 = 2(1 + \sin A)(1 + \cos A)$$
.

(iii)
$$\frac{\sin 3A + \sin 5A}{\cos 3A - \cos 5A} = \cot A.$$

5. Prove that the logarithm of the product of two numbers is equal to the sum of the logarithms of the numbers.

Having given $\log 2 = 3010300$, $\log 7 = 8450980$, find the logarithms of $(1.75)^{\frac{1}{3}}$, $(24.5)^{-\frac{1}{3}}$.

are k

F

plane from the condition θ be the two

Wha
In a
and the
each of t

1.

2. P

and deter

3. Ol

(2)

(3)

(4)

angle e the

nutes

earth

y an

that

gle.

twice

their

rs is

hme

6. Prove that in any triangle ABC $a = b \cos C + c \cos B$.

(ii) $2bc \cos A = b^2 + c^2 - a^2$.

Shew how to solve a triangle when one side and two angles are known.

Find the side b in the triangle ABC from the following data:

a=156.22, $B=57^{\circ}25'$, $C=63^{\circ}42'$, $\log 15.622 = 1.1937366$, $L \sin 57^{\circ}25' = 9.9256261$, $\log 15.37552 = 1.1868297$, $L \sin 58°53' = 9.9325330$.

The angles of elevation of the top of a tower on a horizontal plane observed at two points distant a feet and b feet respectively from the base and in the same straight line with it are found to be complementary. Show that the height of the tower is \sqrt{ab} feet. If θ be the angle subtended at the top of the tower by the line joining

$$\sin\theta = \frac{a - b}{a + b}$$

IV. OXFORD LOCAL EXAMINATIONS.

July, 1887.

JUNIOR CANDIDATES.

1. What is #?

What is 'the angle whose circular measure is π '?

In a triangle ABC the angle A is x degrees, the angle B x grades, and the circular measure of C is $\frac{\pi x}{Q}$; find the number of degrees in each of the angles.

2. Prove that

$$2\sin\frac{A}{2} = \pm\sqrt{1+\sin A} \pm\sqrt{1-\sin A},$$
which are the

and determine which are the correct signs when 270°>A>180°.

3. Obtain the following formulæ:

 $\cos(A+B) = \cos A \cos B - \sin A \sin B;$

(2) $\tan A + \tan B = \sin (A + B) \sec A \sec B$;

 $\frac{\sin(p+q)-2\sin p+\sin(p-q)}{\cos(p+q)-2\cos p+\cos(p-q)}=\tan p;$

 $\sin 2\theta \sin 2\phi = \sin^2(\theta + \phi) - \sin^2(\theta - \phi).$

4. Given $\log 2 = .3010300$.

 $\log 3 = .4771213$, $\log 24668 = 4.3921339$, $\log 11 = 1.0413927$, $\log 24669 = 4.8921515$;

find the logarithm of 30.25 and calculate the value of

$$\{165 \times (30)^9 \times \sqrt[8]{24}\} + (121)^7$$

5. In a triangle ABC, a, b, c are the sides, s is the semi-perimeter, Δ the area, R, r the radii of the circumscribed and inscribed circles: prove that

(1)
$$\tan \frac{B-C}{2} = \frac{b-c}{b+c} \cot \frac{A}{2};$$

(2)
$$\sin\frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}};$$

- (3) $2R = a \operatorname{cosec} A = b \operatorname{cosec} B = c \operatorname{cosec} C$:
- (4) $2\Delta = ca \sin B$.
- 6. In a plane triangle the sides a, b and the angle A are known; shew that in general two values of c can be found, and that the difference of these values is

$$2\sqrt{a^2-b^2\sin^2 A}.$$

- 7. A ladder placed at an angle of 75° just reaches the sill of a window 27 feet above the ground on one side of a street. On turning the ladder over without moving its foot, it is found that, when it rests against a wall on the other side of the street, it is at an angle of 15°. Find the breadth of the street.
 - 8. If $B=36^{\circ}46'$, b=311.8785, c=521.05, find C. $[L\sin B=9.7771060$, $\log 31187=4.4939736$, $\log 521.05=2.7168794$, $\log 31188=4.4939875$.]

V. CAMBRIDGE LOCAL EXAMINATIONS.

December, 1886.

SENIOR STUDENTS.

1. Explain the method of measuring angles in circular measure, and find the circular measure of the angle of a regular pentagon.

Prove that

$$\frac{\tan^{8}A}{1+\tan^{2}A} + \frac{\cot^{8}A}{1+\cot^{2}A} = \frac{1-2\sin^{2}A\cos^{2}A}{\sin A\cos A}.$$

2. Establish the identities:

(1)
$$\tan^4 A = \frac{3-4\cos 2A + \cos 4A}{3+4\cos 2A + \cos 4A}$$
.

(2)
$$\sin A - \sin B = 2 \sin \frac{A-B}{2} \cos \frac{A+B}{2}$$
.

(sin

forr

4.

where respec

opposi

Fine creased.

right a

*6.

Shew

1. Prosine of

Find a

If $A+B+C=180^{\circ}$, C w that

(
$$\sin B - \sin C$$
) $\cot \frac{A}{2} + (\sin C - \sin A) \cot \frac{B}{2} + (\sin A - \sin B) \cot \frac{C}{2} = 0$.
3. Find an expression C

3. Find an expression for all the angles which have a given sine.

(1) $\cos \theta + \tan \theta = \sec \theta$.

(2) $\sin \theta - 2 \sin 2\theta \cos \theta + \cos 3\theta = \cos 2\theta$.

4. Prove that in any triangle if a, b, c be the sides opposite to the angles A, B, C

$$(1) \quad \frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} \,,$$

(2)
$$\cos A + \cos B + \cos C = 1 + \frac{r}{R}$$
,

where r and R are the radii of the inscribed and circumscribed circles

If the line joining A to the centre of the inscribed circle meets the opposite side in D, prove that

$$\tan ADB = \frac{b+c}{b-c} \tan \frac{A}{2}.$$

*5. If θ is the circular measure of a positive angle less than a right angle, show that $\sin \theta$ lies between θ and $\theta - \frac{\theta^3}{6}$.

Find the limiting value of $\left(\frac{n}{\theta}\sin\frac{\theta}{n}\right)^n$ when n is indefinitely increased.

*6. Prove that, if θ lie between $\frac{\pi}{4}$ and $-\frac{\pi}{4}$,

$$\theta = \tan \theta - \frac{1}{3} \tan^3 \theta + \frac{1}{3} \tan^5 \theta - \dots$$

Shew that

$$\log (a + b\sqrt{-1}) = \frac{1}{2} \log (a^2 + b^2) + \sqrt{-1} \tan^{-1} \frac{b}{a}.$$

* See Higher Trigonometry.

VI. OXFORD LOCAL EXAMINATIONS.

July, 1887.

SENIOR CANDIDATES.

1. Prove geometrically that the sine of 90°+4 is equal to the cosine of A for all values of A.

Find all the values of B, less than 180°, for which $\sin 5B = \frac{1}{2}\sqrt{2}$.

rcles:

neter.

own: differ-

l of a rning rests f 150.

asure,

- 2. (1) Prove that $2 \sin A = \pm \sqrt{1 + \sin 2A} \pm \sqrt{1 \sin 2A}$; and determine the signs of the roots when 2A is greater than 180° and less than 270° .
 - (2) Verify the identities:

(a) $\sin 4A = 4 \cos A (\sin A - 2 \sin^3 A)$;

- (3) $(\tan 4A + \tan 2A)(1 \tan^3 3A \tan^2 A) = 2 \tan 3A \sec^2 A$.
- 3. Prove the following properties of a triangle ABC, of which the sides ore a, b, c, and the semi-perimeter is s:
 - (1) area = $\sqrt{s(s-a)(s-b)(s-c)}$;

(2) $\frac{bc\cos A + ca\cos B + ab\cos C}{bc + ca + ab}$

 $= \frac{a \sin A + b \sin B + c \sin C}{(b+c) \sin A + (c+a) \sin B + (a+b) \sin C}.$

4. ABC is an isosceles triangle, having the vertical angle $A=56^{\circ}30'$; on AB as base an isosceles triangle DAB is described, having its vertical angle $D=38^{\circ}40'$: the perpendicular from A upon $BC=22^{\circ}75$ inches: find the length of the perpendicular from D upon AB to four places of decimals.

 $L \cot 19^{\circ}20' = 10.4548807;$ $L \cos 28^{\circ}15' = 9.9449220;$ $\log 11875 = 4.0553514;$ $\log 36754 = 4.5653046,$ diff. for 1 = 119.

5. (1) If in a triangle the radius of the circumscribed circle is double of the radius of the inscribed circle, the triangle is equilateral.

(2) Compare the areas of two equilateral and equiangular polygons, each of n sides, one inscribed in and the other circumscribed about the same circle.

VII. WOOLWICH.

mber, 1886.

[N.B.—Great importance will be attached to accuracy.]

1. Explain what is meant by the circular measure of an angle, and shew that the circular measure of an acute angle is intermediate in value between the sine and the tangent of the angle.

The perimeter of a certain sector of a circle is equal to the length of the arc of a semicircle having the same radius. Express the angle of the sector in degrees, minutes, and seconds.

2. Prove that the secant of any angle will be either greater than +1 or less than -1.

Shew that $\sec A = \pm \sqrt{1 + \tan^2 A}$, and explain the appearance of the double sign.

3. Express $\sin (A - B)$ and $\cos (A - B)$ in terms of the sines and cosines of A and B.

Find the values of sin 15°, sin 105°, cos 165°, and tan 195°.

or S

abo

striz

chara Froot

three Pr

tables
10.
when
a dista
A mile
and N

windm

circle of If

Find measure

find in to

si

; and id less

ch the

n C angle ribed. upon

upon

circle equi-

ngular rcum-

angle, ediate ength

than nce of

s and

angle

4. Obtain a formula including all angles which have a given tangent.

If $\tan A + \tan 2A = \tan 3A$, prove that A must be a multiple of 60° or 900.

5. A ring, 10 inches in diameter, is suspended from a point 1 foot above its centre by six equal strings attached to its circumference at equal intervals. Find the cosine of the angle between two consecutive

6. Prove that

 $\sin 2A = \frac{2 \tan A}{1 + \tan^2 A}.$

 $\cos^2 A - \cos A \cos (60^\circ + A) + \sin^2 (30 - A) = \frac{3}{4}.$

7. State and prove the rule for finding, by inspection, the characteristic of the logarithm of a fraction.

Find from the tables supplied an approximate value of the seventh root of .000026751.

8. Express the cosine of any angle of a triangle in terms of the three sides. Prove that

 $\sin (B-C) : \sin (B+C) :: b^2-c^2 : a^2$.

9. The sides of a triangle are 17, 20, and 27. Find from the tables supplied all the angles.

10. A man travelling due west along a straight road observes that when he is due south of a certain windmill the straight line drawn to a distant church makes an angle of 30° with the direction of the road. A mile further on the bearings of the windmill and tower are N.E. and N.W. respectively. Find the distances of the tower from the windmill, and from the nearest point of the road.

11. Find the area of a regular polygon of n sides inscribed in zcircle of given radius.

If a regular pentagon and a regular decagon have the same perimeter, prove that their areas are as $2:\sqrt{5}$.

SANDHURST FURTHER.

December, 1885.

1. Define the two common units of angular measure.

Find the circular measure of 42° , and find the angle whose circular measure is 4.

2. Assuming that

 $\sin (A+B) = \sin A \cos B + \cos A \sin B$ $\cos(A+B) = \cos A \cos B - \sin A \sin B$

find in terms of the ratios of A, the values of

 $\sin 2A$, $\cos 2A$, $\tan 2A$, $\sin \frac{1}{2}A$, $\cos \frac{1}{2}A$ and $\tan \frac{1}{2}A$.

Prove that

$$1 - \tan^2 A \tan^2 B = \frac{\cos^2 B - \sin^2 A}{\cos^2 A \cos^2 B};$$

and from the equation $2 \tan^2 \theta = \sec^2 \theta$ find a general expression for θ .

4. Prove that in any triangle

$$\cos A + \cos B = \frac{2(a+b)}{c} \sin^2 \frac{1}{2}C.$$

A lighthouse appears to a man in a boat 300 yards from its foot, to subtend an angle of 6020'27.7"; find in feet the height of the lightheuse, having given

 $L \tan 6^{\circ}20' = 9.0452836$, difference for 1 = .0011507; $\log 3 = .4771213$.

5. Prove that in any triangle

$$\tan 2A + \tan 2B + \tan 2C = \tan 2A \tan 2B \tan 2C$$
.

Hence shew that if x, y, z are three numbers such that x+y+z=xyz

then
$$x(1-y^2)(1-z^2)+y(1-z^2)(1-x^2)+z(1-x^2)(1-y)=4xyz$$
.

IX. SANDHURST FURTHER.

June, 1886.

1. Express the value of the tangent, secant, and cosecant in terms of the sine of the angle, and also in terms of the cosine of twice the angle.

Find the values of the tangent, secant, and cosecant of 22° 30'.

$$(\sin 2A)^2 = 2\cos^2 A (1 - \cos 2A),$$

 $\tan 6A = \frac{\cos 5A - \cos 7A}{\sin 7A - \sin 5A};$

and if

$$\frac{a}{b} = \frac{\cos A}{\cos B} \,,$$

prove that

$$a \tan A + b \tan B = (a+b) \tan \frac{1}{2} (A+B).$$

$$(b+c-a) \tan \frac{1}{2}A = (c+a-b) \tan \frac{1}{2}B = (a+b-c) \tan \frac{1}{2}C$$

$$= \left\{ \frac{(b+c-a)(c+a-b)(a+b-c)}{a+b+c} \right\}^{\frac{1}{2}}.$$

If R, r, r, r, are the radii respectively of the circumscribed and three escribed circles of a triangle, shew that

$$Rr_{\bullet}(s-a) = Rr_{\bullet}(s-b) = Rr_{\bullet}(s-c) = \frac{1}{4}abc_{\bullet}$$

where S is the semi-perimeter of the triangle.

ang

Fin whe

380

X.

C=4

degre figur

that ' 3.

Sl

and th 30, 60

5. Giv log101.

6.

and sh angle.

being a.

8. being g that if statemen the dupl

4. Find the area of a triangle in terms of (i) two sides and the angle between them. (ii) two angles and the side between them.

5. Define the characteristic and the mantissa of a logarithm. Find the logarithm of 5 when the base is 3, and the logarithm of 1

 $\log_{10} 8 = .4771213$, $\log_{10} 2 = .3010300$.

6. Two sides of a triangle are 9 and 7, and the included angle is 38° 56' 32.8"; find the base and remaining sides $L \tan 19^{\circ}29' = 9.5487471$, $L \tan 19^{\circ}28' = 9.5483452$.

X. COLLEGE OF PRECEPTORS, PUPILS' EXAMINATION.

July, 1886. 1. In a quadrilateral ABCD, the angle $\underline{A} = 30^{\circ}$, B = 60 grades, $C=\frac{2}{3}\pi$; find the number of degrees in D. Find what number of degrees must be taken from the angle D and added to A so that the

2. If $\sec A = m$, what will $\cot A$ be? Shew from your result that when A=0 or 180° the cotangent will be infinite in both cases.

3. Prove $\sin (A+B) = \sin A \cos B + \cos A \sin B$. Shew that if

 $A + B + C = 180^{\circ}$ $\sin A + \sin B + \sin C = 4\cos \frac{1}{2}A\cos \frac{1}{2}B\cos \frac{1}{2}C;$ and that this is true numerically if A, B, C the angle of a triangle be 30, 60, 90 degrees respectively.

4. Solve $\cot^2 A + \tan^2 A = \frac{1}{2}$; giving the general value of A.

5. If $\log_a 243 = 5$, find a.

Given $\log_{10} 30 = 1.4771213$, $\log_{10} 20 = 1.3010300$, find $\log_{10} 72$ and log10 1.44.

6. In any triangle, prove the formula

$$\tan\frac{A}{2} = \pm \sqrt{\left\{\frac{(s-b)(s-c)}{s(s-a)}\right\}},$$

and shew from it that if a=5, b=3, c=4, then A will be a right angle. Can you give any explanation of the double sign?

7. Find the area of a regular polygon of n sides, each side being a.

8. Two angles of a triangle A and B, and their included side Cbeing given, find an expression for the area; shew from the result that if A and B each remain constant while the side C varies, Euclid's statement is true; 'that the areas of similar rectilineal figures vary in the duplicate ratio of their homologous sides.'

s foot,

ression

of the 1213.

ant in ine of 0'.

d and

9. Standing at a certain point, I observe the elevation of a house to be 15° 15′, and that the sill of one of its windows, known to be 20 feet above the ground, subtends an angle of 20° at the same point; shew that the height of the house is nearly 22 yards;

are

of t

side.

XII.

used ?

angle the cir

the de

Fin

3.

Sol

Find

5. I

T

 $\log_{10} 200 = 2.3010300$, $L \tan 50^{\circ} 15' = 10.0800379$, $L \tan 20^{\circ} = 9.5610659$, $\log_{10} 6.606 = 0.8200020$.

XI. OXFORD AND CAMBRIDGE SCHOOL EXAMINATIONS, 1884.

1. Define a degree, and the unit of circular measure; and find the ratio of the first to the second.

In a triangle ABC, the circular measure of one angle (A) is a, and the number of degrees in another is B. If the ratio of the number of degrees in the third angle (C) to the circular measure of B be B: a, prove that A, B, C are in continued proportion.

2. Define the secant of an angle, and trace its changes in sign and magnitude as the angle increases from 90° to 270°.

Simplify

$$\left\{\frac{1}{\cos\theta + \tan^2\theta\sin\theta} - \frac{1}{\cos\theta\cot^2\theta + \sin\theta}\right\} \times \frac{\sec\theta\csc\theta - 1}{\csc\theta - \sec\theta}\right\}.$$

3. Prove that if two angles have the same tangent, their difference is a multiple of two right angles.

Solve the equation

$$\sec \theta (\sec^2 \theta + 2) (\csc \theta - \sin \theta) = 4.$$

4. Prove geometrically that when A + B is less than 90°, $\cos(A + B) = \cos A \cos B - \sin A \sin B$.

Prove that

$$\sin^{-1}\frac{1}{3} + \sin^{-1}\frac{1}{3\sqrt{11}} + \sin^{-1}\frac{3}{\sqrt{11}} = \frac{\pi}{2}$$

- 5. A hill is inclined at a angle 36° to the horizon. An observer walks 100 yards away from the foot of the hill, and then finds that the elevation of a point halfway up the hill is 18°. Find the height of the hill; and find the ratio of an error in measuring the distance walked to the consequent error in the height of the hill.
 - 6. In any triangle prove that

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} = \frac{1}{2R},$$

where R is the radius of the circle described round ABC.

Find b, c, R in the triangle for which $B=45^{\circ}$, $C=60^{\circ}$, $a=\sqrt{2}$.

house to be point;

IONS,

and

A) is tio of rcular l pro-

es in

their

erver finds Find uring ht of

7. Find the area of a regular polygon of n sides; and deduce the area of a circle.

8. Find the cosines of the half angles of a triangle in terms of the sides.

If the bisectors of the angles A, B, C of a triangle meet the sides in D, E, F respectively, prove that

$$\frac{(s-b) DF^2}{(c+a)^2} - \frac{(s-c) DE^2}{(a+b)^2} = (c-b) \left\{ \frac{abc}{(b+c)(c+a)(a+b)} \right\}^2.$$

Questions 9, 10 in Higher Trigonometry.

XII. OXFORD AND CAMBRIDGE SCHOOL EXAMINATIONS,

What is the unit of circular measure? Why is this unit used?

The angles of a triangle are in A.P.; prove that the mean angle is 60%. If the number of right angles in the greatest is equal to the circular measure of the least, express the angles in degrees

$$\left(\pi = \frac{22}{7}\right)$$
.

2. Define the tangent of an angle less than 90°, and extend the definition to angles unlimited in magnitude.

Find tan 30°, tan 120°, tan 240°.

3. Find the general solution of the equation $\sin \theta = \sin \alpha$. Solve the equations:

 $2\cos^2\theta + \sqrt{2}\sin\theta = 2$. (i)

(ii) $(1 + \tan \theta) (1 - \sin 2\theta) = 1 - \tan \theta$.

4. Prove geometrically:

 $\sin (A - B) = \sin A \cos B - \cos A \sin B.$

(ii)
$$\frac{\cos(A+B)}{\sin(A-B)} = \frac{1-\tan A \tan B}{\tan A - \tan B}.$$

Find the relation between α , β and γ , in order that $\cot a \cot \beta \cot \gamma - \cot \alpha - \cot \beta - \cot \gamma$ should vanish.

5. Prove the following statements:

(i)
$$\frac{1 + \sin 2x + \cos 2x}{1 + \sin 2x - \cos 2x} = \cot x.$$

(ii)
$$3\cos^2\alpha = 4\cos^6\frac{\alpha}{2} + 4\sin^6\frac{\alpha}{2} - 1$$
.

(iii) $\cos 3a \cos 2a + \sin 4a \sin a = \cos a \cos 2a$.

6. Prove that in any triangle

$$\cos\left(\frac{A}{2}\right) = \sqrt{\left(\frac{s(s-a)}{bc}\right)}.$$

Having given that

a=12270 ft., b=11550 ft., c=11433 ft.,

 $\log 1.76265 = .2461661$, $\log 5.3565 = .7288811$,

 $\log 1.155 = .0625820$, $\log 1.1433 = .0581602$,

 $L \cos 32^{\circ} 15' = 9.9272306$ diff. for 1' = .0000797;

find the angle A.

7. Find an expression for the radius of one of the described circles of a triangle in terms of the sides.

Prove that

$$\frac{bc}{r_1} + \frac{ca}{r_2} + \frac{ab}{r_3} = 2R \left\{ \frac{b}{a} + \frac{c}{a} + \frac{c}{b} + \frac{a}{b} + \frac{a}{c} + \frac{b}{c} - 3 \right\}.$$

8. Prove that if θ be the circular measure of an angle, the limiting value of $\frac{\sin \theta}{\theta}$ as θ is diminished is unity.

What is the limiting value of $\frac{\sin n'}{n}$ when n is diminished?

Questions 9, 10, 11 in Higher Trigonometry.

XIII. TRINITY COLLEGE. June 6, 1885. 9-12.

1. Define the sine and tangent of an angle.

The base BC of a triangle ABC is trisected in Q and R. Prove that

 $\sin BAR \sin CAQ = 4 \sin BAQ \sin CAR$.

2. Give a geometrical proof that

(i) $\cos(\theta + \phi) = \cos\theta\cos\phi - \sin\theta\sin\phi$,

(ii) $\cos \phi - \cos \theta = 2 \sin \frac{1}{2} (\theta + \phi) \sin \frac{1}{2} (\theta - \phi)$, where θ and ϕ are each less than a right angle.

Show that if

$$\cos(\theta+\phi) = \frac{\sin^2\theta\cos\phi - \cos^2\theta\sin\phi}{\cos\theta\tan\alpha} = \frac{\sin^2\phi\cos\theta - \cos^2\phi\sin\theta}{\cos\phi\tan\beta}$$

then will

$$\cos (\alpha + \beta) = \frac{\sin^2 \alpha \cos \beta - \cos^2 \alpha \sin \beta}{\cos \alpha \tan \theta} = \frac{\sin^2 \beta \cos \alpha - \cos^2 \beta \sin \alpha}{\cos \beta \tan \phi}$$

i

provi

dedu

In ABC CD.

5.

other triang: She between

6. one sid
Circ
where
to the
circles

7. inscribe

Two the circu

8. 8

Elimi

Ques

3. Find by mathematical induction the value of $\tan (\theta_1 + \theta_2 + ... + \theta_n)$ in terms of $\tan \theta_1$, $\tan \theta_2$,....

Show that in a triangle ABC

 $\tan \frac{3}{4}A + \tan \frac{3}{4}B + \tan \frac{3}{4}C = \cot \frac{3}{4}A + \cot \frac{3}{4}B + \cot \frac{3}{4}C$ $\tan \frac{3}{4}A \tan \frac{3}{4}B = \cot \frac{3}{4}C.$

4. From the results

provided

cribed

, the

d R.

a cosec A = b cosec B = c cosec A, and $A + B + C = \pi$, deduce the formulæ

- $a^2 = b^2 + c^2 2bc \cos A$; (i)
- (ii) $a=b\cos C+c\cos B$.

In the base BC (produced if necessary) of an isosceles triangle ABC a point D is taken such that the sum of AD and AB is n times CD. Show that their difference is 1/nth of BD.

The base of a triangle is equal to its altitude, and the two other sides are known. Determine the remaining parts of the triangle by formulæ adapted to logarithms.

Show that if r be the ratio of the two given sides, r must lie between

$$\frac{1}{2}(\sqrt{5}-1)$$
 and $\frac{1}{2}(\sqrt{5}+1)$.

6. Find the radius of the circle inscribed in a triangle in terms of one side and two angles.

Circles are inscribed in the triangles $D_1E_1F_1$, $D_2E_2F_2$, $D_3E_3F_3$, where D_1 , E_1 , F_1 are the points of contact of the circles escribed to the side BC, &c. Show that if r_1 , r_2 , r_3 be the radii of these

$$\frac{1}{r_1}: \frac{1}{r_2}: \frac{1}{r_3} = 1 - \tan \frac{1}{4}A: 1 - \tan \frac{1}{4}B: 1 - \tan \frac{1}{4}C.$$

7. Prove that the ratio of the radii r and R of the circles inscribed and circumscribed about a triangle ABC is

 $4\sin \frac{1}{2}A\sin \frac{1}{2}B\sin \frac{1}{2}C:1.$ Two circles of radii ρ_1 and ρ_2 are drawn through the centre of the circumscribing circle to touch the sides AB and AC. Show that

$$\frac{1}{\rho_1} + \frac{1}{\rho_2} - \frac{r}{\rho_1 \rho_2} = \frac{r + 2R}{R^2}.$$

8. Show that

$$\tan^{-1} x - \tan^{-1} y = \tan^{-1} \frac{1}{y} - \tan^{-1} \frac{1}{x}$$

Eliminate a between

$$a \cot (\theta - \alpha) = b \cot (\phi - \alpha) = c \cot (\psi - \alpha)$$

Questions 9, 10, 11, 12 in Higher Trigonometry.

XIV. JESUS, CHRIST'S, EMMANUEL AND SIDNEY SUSSEX COLLEGES. June 9, 1885. 1—4.

1. Define the sine and tangent of an angle.

A pyramid has for base a square of side a; its vertex lies on a line through the middle point of the base, perpendicular to it, and at a distance h from it; prove that the angle a between two lateral faces is given by

$$\sin a = \frac{2h\sqrt{2a^2 + 4h^2}}{a^2 + 4h^2}.$$

2. Prove geometrically that

(i)
$$\cos B - \cos A = 2 \sin \frac{A+B}{2} \sin \frac{A-B}{2}$$
.

(ii)
$$\tan (A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$
.

If α , β , γ are in Arithmetical Progression, prove that

$$2 \left\{ \frac{\tan (\alpha + \beta)}{\tan (\beta + \gamma)} - \frac{\tan (\alpha - \beta)}{\tan (\beta - \gamma)} \right\}^{-1} + 1 = \frac{\sin 4\beta}{\sin (\alpha - \gamma)}.$$

3. Investigate the value of cosine 72°.

Solve the equation

 $32 \sin^5 x + 16 \cos^4 x + 12 \sin 2x \cos x + 20 \sin^2 x - 22 \sin x = 15$.

4. Find the value of $\tan 22\frac{1}{2}$.

Trace the changes in $\frac{\tan 3\alpha}{\tan^3 \alpha}$ from 0 to $\frac{\pi}{2}$, showing that $17+12\sqrt{2}$ is a minimum, and $17-12\sqrt{2}$ is a maximum value.

5. Prove that

$$\sin^3 \alpha \sin (\beta - \gamma) + \sin^3 \beta \sin (\gamma - \alpha) + \sin^3 \gamma \sin (\alpha - \beta) + \sin (\alpha - \beta) \sin (\beta - \gamma) \sin (\gamma - \alpha) \sin (\alpha + \beta + \gamma) = 0.$$

Also, if α , β , γ be the angles of any triangle, prove that $\cos 4\alpha (\cos 2\beta - \cos 2\gamma) + \cos 4\beta (\cos 2\gamma - \cos 2\alpha) + \cos 4\gamma (\cos 2\alpha - \cos 2\beta)$ = $16 \sin (\beta - \gamma) \sin (\gamma - \alpha) \sin (\alpha - \beta) \sin \alpha \sin \beta \sin \gamma$.

6. Prove, with the usual notation, that the area of a triangle is equal to

$$\sqrt{s(s-a)(s-b)(s-c)}$$
.

Show that the sum of the areas of the two equilateral triangles, each of which has its vertices at three given distances from a fixed point, is equal to the sum of the equilateral triangles on these distances, and the difference of the aforesaid areas is three times the area of the triangle whose sides are the given distances.

7. and s

where

8.
one ver
a dist
secms
the his
tower
distance

9. and cir are rad

If the taken in the corr

10. With as radiu quadrila an area

Quest

XV.

vii. P (i)

(ii)

(iii) viii. Ţ

Ιf

7. If Δ be the area of any quadrilateral whose semiperimeter is s, and sides a, b, c, d, prove

$$\Delta^2 = (s-a)(s-b)(s-c)(s-d) - abcd \cos^2 \frac{\alpha + \gamma}{2},$$

where α , γ are opposite angles of the figure.

SSEX

es on to it,

n two

 $12\sqrt{2}$

() = 0.

os 28)

 $\sin \gamma$.

angle

igles, om a

s on three 8. Two persons are stationed on two different floors of a house, one vertically above the other, and observe the sun sinking behind a distant tower. From the higher station the sun's lower limb seems to graze the top of the tower. From the lower station the higher limb seems to graze it. Determine the height of the tower in terms of its horizontal distance from the stations, the distance between the stations, and the angular diameter of the sun.

9. Prove that the distance between the centres of the inscribed and circumscribed circles of a triangle is $\sqrt{R^2-2Rr}$, where r, R are radii of these circles.

If the sum of the pairs of radii of the escribed circles of a triangle taken in order round the triangle be denoted by s_1 , s_2 , s_3 , and the corresponding differences by d_1 , d_2 , d_3 , prove that

$$d_1d_2d_3 + d_1s_2s_3 + d_2s_3s_1 + d_3s_1s_2 = 0.$$

10. Find an expression for the area of a segment of a circle.

With each corner of a square of side a as centre, and a side as radius, a circle is described, show that the area of the curvilinear quadrilateral formed by the intersection of these four circles has an area

$$a^2\left(1-\sqrt{3}+\frac{\pi}{3}\right)$$
.

Questions 11, 12, 13 in Higher Trigonometry.

XV. MATHEMATICAL TRIPOS. PART I. May 21st, 1885.

Questions 1-6 Algebra.

vii. Prove the following formulæ geometrically,

(i)
$$\sin A + \sin B = 2 \sin \frac{1}{2} (A+B) \cos \frac{1}{2} (A-B)$$
,

(ii)
$$\frac{\pi}{4} = \tan^{-1}\left(\frac{m}{n}\right) - \tan^{-1}\frac{m-n}{m+n}$$
,

(iii) $\sin^2\alpha + \sin^2\beta = \sin^2(\alpha + \beta) - 2\sin\alpha\sin\beta\cos(\alpha + \beta)$.

viii. If $\cot^{-1} x - \cot^{-1} (x+2) = 15^{\circ}$, find x.

If
$$\tan\left(\frac{\pi}{4} + \frac{\psi}{2}\right) = \tan^5\left(\frac{\pi}{4} + \frac{\psi}{2}\right),$$

prove that

$$\sin\psi = 5\sin\phi \frac{\left(1+\alpha^2\sin^2\phi\right)\left(1+\beta^2\sin^2\phi\right)}{\left(1+\frac{1}{\alpha^2}\sin^2\phi\right)\left(1+\frac{1}{\beta^2}\sin^2\phi\right)}\,,$$

and find a and β .

ix. If $A + B + C = \pi$, prove the formulæ,

(i)
$$\frac{\tan A}{\tan B \tan C} + \frac{\tan B}{\tan C \tan A} + \frac{\tan C}{\tan A \tan B}$$
$$= \tan A + \tan B + \tan C - 2 (\cot A + \cot B + \cot C),$$

(ii)
$$\sin \frac{1}{2}A + \sin \frac{1}{2}B + \sin \frac{1}{2}C - 1$$

= $4 \sin \frac{1}{4} (\pi - A) \sin \frac{1}{4} (\pi - B) \sin \frac{1}{4} (\pi - C)$,

and if $A+B+C=n\pi$,

(iii)
$$\sin 2A + \sin 2B + \sin 2C = \pm 4 \sin A \sin B \sin C$$
,

(iv)
$$\cos 2A + \cos 2B + \cos 2C + 1 = \mp 4 \cos A \cos B \cos C$$
, and determine when the upper sign is to be used.

x. Express the area of a triangle in terms of the sides.

Show how to construct the right-angled triangle of minimum area which has its vertices on three parallel lines; and if a, b are the distances of the middle line from the other two, show that the hypotenuse makes with the parallel lines an angle

(1

(8)

(18)

(1)

(4)

(7)

(10)

(1)

(5)

(9) (18)

(16)

(1) · (2) 1

$$\cot^{-1}\frac{a-b}{a+b}.$$

If the given angle of the triangle instead of being a right angle is equal to α , find the angle which the side opposite to it makes with the parallel lines when the area is a minimum,

xi. Show how to solve a triangle when two sides and the included angle are given.

If two sides of a triangle are 71 and 25 feet and the contained angle 69° 32′ calculate the remaining angles and side, and show that if a small error has been made in the measurement of the smaller side it will affect the calculated value of the third side very slightly.

xii. Find the radii of the inscribed and escribed circles of a triangle; and if these are r, r_1 , r_2 , r_3 and that of the circumscribed circle is R, prove that $r_1 + r_2 + r_3 - r = 4R$.

If D, E, F are the centres of the escribed circles and O that of the inscribed circle, prove that

$$\frac{EF^2}{r_2r_3} + \frac{FD^2}{r_3r_1} + \frac{DE^2}{r_1r_2} = \frac{OD^2}{rr_1} + \frac{OE^2}{rr_2} + \frac{OF^2}{rr_3} = 8\frac{R}{r}.$$

ANSWERS TO THE EXAMPLES.

I. Page 2. (1) 80. (2) 10. (3) 16. (4) $109\frac{11}{21}$. (5) 5 acres. (6) $\frac{1760a}{}$ (8) A shilling and a three-penny piece. II. Pages 4, 5. (1) 77440. (2) 6 ft. (3) 195. (4) 63, 31, 27. (6) 99, 9 shillings. $\frac{80a}{b}$, $\frac{80a}{c}$, $\frac{80a}{d}$, $\frac{80a}{k}$. (8) 21 shillings. III. Pages 7, 8. (1) 10 ft. (2) 80 yds. (3) 20 ft. (4) 50 ft. (5) 90 ft. (6) $20\frac{19}{27}$ nearly. (7) 5a feet. (10) $\frac{\sqrt{2}}{2}a$ yards. (12) $\frac{2\sqrt{8}}{8}a$ feet. (8) 12a yards. (18) 1: $\sqrt{2}$. (14) $\sqrt{84}$ ft. (15) $2\sqrt{9a^2-b^2}$ ft. IV. Page 13. (1) 9.899 ft. (2) 2489 yds. (3) 58°36 in. (5) 933°4 ft. (6) 2504 in. (8) 4°607 ft. (9) 48 in. (4) 1138 in. (7) 8.66 ft. (10) 85 ft. 11 in. V. Pages 21, 22. (1) 3} yds. (2) $25\frac{1}{7}$ ft. (3) $150\frac{9}{7}$ in. (4) $3\frac{9}{11}$ ft. (6) 560. (7) $15\frac{1}{2}$ nearly. (8) 33600. (5) 7 tf. (9) 821. (10) 7 ft. (11) 5531, 13.8 in. (13) 443 in. (12) 3393 ft. (14) 235 in. (15) 203 in. (17) 1886 in. (16) 274 in.

VII. Page 28.

(1) ·632118 of a right angle. (3) ·021827 of a right angle. (2) 1·0426991 ,, (4) ·03294894 ,,

L. E. T.

n area

re the

at the

angle makes

cluded

tained

show of the side

of a

cribed

that

(5) $\cdot 006242$ of a right angle. (9) $\cdot 6900071$ of a right angle. (6) $10\cdot 000812$,, (10) $1\cdot 19080045$,, (11) $10\cdot 061601$,, (12) $\cdot 0226048$,, (13) $\cdot 36 \times 78^\circ 91^\circ$. (14) $\cdot 104 \times 30^\circ 21^\circ$. (15) $\cdot 16 \times 20^\circ$. (16) $\cdot 10^\circ 20^\circ$. (17) $\cdot 6 \times 25^\circ$. (18) $\cdot 302 \times 12^\circ 50^\circ$. (19) $\cdot 100 \times 10^\circ$. (20) $\cdot 16 \times 10^\circ$. (21) $\cdot 645 \times 10^\circ$. (22) $\cdot 26 \times 30^\circ$. (23) $\cdot 1^\circ \cdot 10^\circ$. (24) $\cdot 10^\circ$. VIII. Page 30. (1) $\cdot 09175$ of a right angle $\cdot 96 \times 17^\circ$. (24) $\cdot 10^\circ$. (27) $\cdot 0675$, $\cdot 68 \times 75^\circ$. (3) $\cdot 1\cdot 07875$, $\cdot 1078 \times 87^\circ$. (4) $\cdot 180429012845679$ $\cdot 186 \times 429^\circ$, etc. (5) $\cdot 1\cdot 467^\circ$, $\cdot 1466 \times 77^\circ$. (7) $\cdot 16 \times 14^\circ$. (7) $\cdot 16 \times 14^\circ$. (8) $\cdot 70^\circ 52^\circ$. (9) $\cdot 1530^\circ 24^\prime 29\cdot 34^\prime$. (10) $\cdot 210^\circ 36^\circ 8\cdot 1^\circ$. (11) $\cdot 160^\circ 12^\circ 37\cdot 26^\circ$. (12) $\cdot 310^\circ 30^\circ$. IX. Page 35. 1. (1) 2 right angles or $\cdot 1800^\circ$. (2) $\cdot \frac{3}{8}$ of a right angle. (3) $\cdot \frac{2}{\pi}$ right angles. (4) $\cdot \frac{6}{\pi}$ right angles. (5) 2 right angles. (6) $\cdot \frac{4}{\pi^2}$ right angles. (7) $\cdot \frac{20}{\pi}$ right angles. (8) $\cdot 002$ of a right angle. (9) 20 right angles. (8) $\cdot 002$ of a right angle. (9) 20 right angles. (8) $\cdot 002$ of a right angle. (9) 20 right angles. (8) $\cdot 002$ of a right angle. (9) $\cdot 200000^\circ$. (8) $\cdot 10^\circ$. (9) $\cdot \frac{4\pi}{180}$. (10) $\cdot \frac{\pi}{180}$. (11) $\cdot \frac{\pi}{6}$. (22) $\cdot \frac{\pi}{4}$. (33) $\cdot \frac{\pi}{3}$. (44) $\cdot \frac{\pi}{8}$. (55) $\cdot \frac{\pi}{180}$. (6) $\cdot 10^\circ$. (77) $\cdot \frac{n\pi}{180}$. (8) $\cdot \frac{\pi}{12}$. (9) $\cdot \frac{5\pi}{180}$. (10) $\cdot \frac{\pi}{180}$. (11) $\cdot \frac{\pi}{180}$. (12) $\cdot \frac{\pi}{180}$. (13) $\cdot \frac{\pi}{180}$. (14) $\cdot \frac{\pi}{180}$. (15) $\cdot \frac{\pi}{180}$. (16) $\cdot \frac{\pi}{180}$. (17) $\cdot \frac{\pi}{180}$. (18) $\cdot \frac{\pi}{180}$. (19) $\cdot \frac{\pi}{180}$.							
(7) $\cdot 3204062$,, (11) $\cdot 10\cdot 061601$,, (12) $\cdot 0026048$,, (18) $\cdot 36\cdot 78\cdot 91^{\circ}$. (14) $\cdot 104\cdot 30^{\circ} 21^{\circ}$. (15) $\cdot 1\cdot 20^{\circ}$. (17) $\cdot 6\cdot 25^{\circ}$. (18) $\cdot 302\cdot 12^{\circ} 50^{\circ}$. (19) $\cdot 100\cdot 10^{\circ}$. (20) $\cdot 1\cdot 1^{\circ} \cdot 1^{\circ}$. (21) $\cdot 645\cdot 10^{\circ}$. (22) $\cdot 2\cdot 30^{\circ}$. (23) $\cdot 1^{\circ} \cdot 10^{\circ}$. (24) $\cdot 10^{\circ}$. (24) $\cdot 10^{\circ}$. (27) $\cdot 0675$,, $= 6\cdot 75^{\circ}$. (3) $\cdot 1\cdot 07875$,, $= 107\cdot 87\cdot 50^{\circ}$. (4) $\cdot 180429\dot{0}1234567\dot{9}$ $= 18\cdot 4^{\circ} \cdot 29^{\circ}$, etc. (5) $\cdot 1\cdot 46\dot{7}$,, $= 146\cdot 77\cdot 7\cdot 7\cdot 7\cdot$ (6) $\cdot 5\dot{4}$,, $= 54\cdot 44\cdot 44\cdot 4\cdot 4\cdot$ (7) $\cdot 1\cdot 14^{\circ} \cdot 15^{\circ}$. (8) $\cdot 7\cdot 52^{\circ} \cdot 30^{\circ}$. (9) $\cdot 153^{\circ} \cdot 24^{\circ} \cdot 29\cdot 34^{\circ}$. (10) $\cdot 21^{\circ} \cdot 36^{\circ} \cdot 8\cdot 1^{\circ}$. (11) $\cdot 16^{\circ} \cdot 12^{\circ} \cdot 37\cdot 26^{\circ}$. (12) $\cdot 31^{\circ} \cdot 30^{\circ}$. IX. Page 35. 1. (1) 2 right angles or $\cdot 180^{\circ}$. (2) $\cdot \frac{3}{2}$ of a right angle. (3) $\cdot \frac{2}{\pi}$ right angles. (6) $\cdot \frac{4}{\pi^{\circ}}$ right angles. (7) $\cdot \frac{2\theta}{\pi}$ right angles. (8) $\cdot 002$ of a right angle. (9) 20 right angles. (8) $\cdot 002$ of a right angle. (9) 20 right angles. (1) $\cdot \frac{\pi}{180}$. (2) $\cdot \frac{\pi}{3}$. (3) $\cdot \frac{\pi}{3}$. (4) $\cdot \frac{\pi}{8}$. (5) $\cdot \frac{\pi}{180}$. (6) $\cdot 1\cdot$. (7) $\cdot \frac{n}{180}\pi$. (8) $\cdot \frac{1}{2}^{\circ}$. (9) $\cdot \frac{4\pi}{180}$. (5) $\cdot \frac{\pi}{6}$. (6) $\cdot \frac{\pi}{200000}$. (7) $\cdot \frac{n\pi}{200}$. (8) $\cdot 1\cdot$. (9) $\cdot 5\pi$.	(5)	.006241 of a rig	ht angle.	(9)	6900071	f a rig	ht angle.
(7) $\cdot 3204062$,, (11) $\cdot 10\cdot 061601$,, (12) $\cdot 0026048$,, (18) $\cdot 36\cdot 78\cdot 91^{\circ}$. (14) $\cdot 104\cdot 30^{\circ} 21^{\circ}$. (15) $\cdot 1\cdot 20^{\circ}$. (17) $\cdot 6\cdot 25^{\circ}$. (18) $\cdot 302\cdot 12^{\circ} 50^{\circ}$. (19) $\cdot 100\cdot 10^{\circ}$. (20) $\cdot 1\cdot 1^{\circ} \cdot 1^{\circ}$. (21) $\cdot 645\cdot 10^{\circ}$. (22) $\cdot 2\cdot 30^{\circ}$. (23) $\cdot 1^{\circ} \cdot 10^{\circ}$. (24) $\cdot 10^{\circ}$. (24) $\cdot 10^{\circ}$. (27) $\cdot 0675$,, $= 6\cdot 75^{\circ}$. (3) $\cdot 1\cdot 07875$,, $= 107\cdot 87\cdot 50^{\circ}$. (4) $\cdot 180429\dot{0}1234567\dot{9}$ $= 18\cdot 4^{\circ} \cdot 29^{\circ}$, etc. (5) $\cdot 1\cdot 46\dot{7}$,, $= 146\cdot 77\cdot 7\cdot 7\cdot 7\cdot$ (6) $\cdot 5\dot{4}$,, $= 54\cdot 44\cdot 44\cdot 4\cdot 4\cdot$ (7) $\cdot 1\cdot 14^{\circ} \cdot 15^{\circ}$. (8) $\cdot 7\cdot 52^{\circ} \cdot 30^{\circ}$. (9) $\cdot 153^{\circ} \cdot 24^{\circ} \cdot 29\cdot 34^{\circ}$. (10) $\cdot 21^{\circ} \cdot 36^{\circ} \cdot 8\cdot 1^{\circ}$. (11) $\cdot 16^{\circ} \cdot 12^{\circ} \cdot 37\cdot 26^{\circ}$. (12) $\cdot 31^{\circ} \cdot 30^{\circ}$. IX. Page 35. 1. (1) 2 right angles or $\cdot 180^{\circ}$. (2) $\cdot \frac{3}{2}$ of a right angle. (3) $\cdot \frac{2}{\pi}$ right angles. (6) $\cdot \frac{4}{\pi^{\circ}}$ right angles. (7) $\cdot \frac{2\theta}{\pi}$ right angles. (8) $\cdot 002$ of a right angle. (9) 20 right angles. (8) $\cdot 002$ of a right angle. (9) 20 right angles. (1) $\cdot \frac{\pi}{180}$. (2) $\cdot \frac{\pi}{3}$. (3) $\cdot \frac{\pi}{3}$. (4) $\cdot \frac{\pi}{8}$. (5) $\cdot \frac{\pi}{180}$. (6) $\cdot 1\cdot$. (7) $\cdot \frac{n}{180}\pi$. (8) $\cdot \frac{1}{2}^{\circ}$. (9) $\cdot \frac{4\pi}{180}$. (5) $\cdot \frac{\pi}{6}$. (6) $\cdot \frac{\pi}{200000}$. (7) $\cdot \frac{n\pi}{200}$. (8) $\cdot 1\cdot$. (9) $\cdot 5\pi$.	(6)	10.000812	,,	(10)	1.1903004	5 ,,	
(18) $36s 78 91^{\circ}$. (14) $104s 30' 21^{\circ}$. (15) $1s 20' 3'$. (16) $10' 20''$. (17) $6s' 25'$. (18) $302s 12' 50''$. (19) $100s 10'$. (20) $1s 1' \cdot 1''$. (21) $645s 10'$. (22) $2s 30'$. (23) $1' 10''$. (24) $10''$. VIII. Page 30. (1) $\cdot 09175$ of a right angle $= 9s 17' 50''$. (2) $\cdot 0675$, $= 6s 75'$. (3) $1 \cdot 07875$, $= 107s 87' 50''$. (4) $\cdot 180429012345679$ $= 18s' 4' 29''$, etc. (5) $1 \cdot 467$, $= 146s' 77' 77 \cdot 7''$. (6) $\cdot 54$, $= 54s' 44' 44 \cdot 4''$. (7) $1'' 14' 15''$. (8) $7'' 52' 30''$. (9) $153'' 24' 29 \cdot 34''$. (10) $21'' 36'' 8 \cdot 1''$. (11) $16'' 12'' 37 \cdot 26''$. (12) $31'' 30'$. IX. Page 35. 1. (1) 2 right angles or $180''$. (2) $\frac{s}{2}$ of a right angle. (3) $\frac{2}{\pi}$ right angles. (4) $\frac{6}{\pi}$ right angles. (5) 2 right angles. (6) $\frac{4}{\pi^2}$ right angles. (7) $\frac{2\theta}{\pi}$ right angles. (8) $\cdot 002$ of a right angle. (9) 20 right angles. (9) 20 right angles. (1) $\frac{\pi}{8}$. (2) $\frac{\pi}{4}$. (3) $\frac{\pi}{3}$. (4) $\frac{\pi}{8}$. (5) $\frac{\pi}{180}$. (6) $1''$. (7) $\frac{n}{180}\pi$. (8) $\frac{1}{2}''$. (9) $\frac{4\pi}{180}$. (5) $\frac{\pi}{6}$. (6) $\frac{\pi}{4}$. (7) $\frac{n\pi}{180}\pi$. (8) $\frac{1}{2}''$. (9) $\frac{5\pi}{180}$. (5) $\frac{\pi}{20000}$. (6) $\frac{\pi}{200000}$. (7) $\frac{n\pi}{200}$. (8) $1''$. (9) 5π .	(7)	·3204052		(11)	10.061601	, ,,	
VIII. Page 30. (1) '09175 of a right angle = 9* 17' 50''. (2) '0675 , = 6* 75'. (3) 1'07875 , = 107* 87' 50''. (4) '180429012845679 = 18* 4' 29'', etc. (5) 1'467 , = 146* 77' 77'7''. (6) '54	(8)	·0102034	11	(12)	·0226048	,,	
VIII. Page 30. (1) '09175 of a right angle = 9* 17' 50''. (2) '0675 , = 6* 75'. (3) 1'07875 , = 107* 87' 50''. (4) '180429012845679 = 18* 4' 29'', etc. (5) 1'467 , = 146* 77' 77'7''. (6) '54	(18)	36s 78° 91".	(14) 104	s 30° 21".	(16	1 2	0, 8,,
VIII. Page 30. (1) '09175 of a right angle = 9* 17' 50''. (2) '0675 , = 6* 75'. (3) 1'07875 , = 107* 87' 50''. (4) '180429012845679 = 18* 4' 29'', etc. (5) 1'467 , = 146* 77' 77'7''. (6) '54	(16)	10 20.	(17) 6 25.	(18	302 12	50'.	
VIII. Page 30. (1) ·09175 of a right angle = 9* 17 50°. (2) ·0675	(19)	100€ 10.	(20) 14 1'	1".	(21) 645	10'.	
(1) $\cdot 09175$ of a right angle $= 98\ 17'$ 50". (2) $\cdot 0675$, $= 68\ 75'$. (3) $1 \cdot 07875$, $= 1078\ 87'$ 50". (4) $\cdot 180429\dot{0}1284567\dot{9}$ $= 188\ 4'\ 29"$, etc. (5) $1 \cdot 46\dot{7}$, $= 1468\ 77'\ 77'\dot{7}'$. (6) $\cdot 5\dot{4}$, $= 548\ 44'\ 44'\dot{4}'$. (7) $1^0\ 14'\ 15''$. (8) $7^0\ 52'\ 30''$. (9) $153^0\ 24'\ 29\cdot 34''$. (10) $21^0\ 36'\ 8\cdot 1''$. (11) $16^0\ 12'\ 37\cdot 26''$. (12) $31^0\ 30'$. IX. Page 35. 1. (1) 2 right angles or 180^0 . (2) $\frac{3}{2}$ of a right angle. (3) $\frac{2}{\pi}$ right angles. (4) $\frac{6}{\pi}$ right angles. (5) 2 right angles. (6) $\frac{4}{\pi^2}$ right angles. (7) $\frac{2\theta}{\pi}$ right angles. (8) $\cdot 002$ of a right angle. (9) 20 right angles. (1) π . (2) 2π . (3) $\frac{\pi}{3}$. (4) $\frac{\pi}{8}$. (5) $\frac{\pi}{180}$. (6) 1° . (7) $\frac{n}{180}\pi$. (8) $\frac{1}{2}^\circ$. (9) $\frac{4\pi}{180}$. (5) $\frac{\pi}{180}$. (6) 1° . (7) $\frac{n}{180}\pi$. (8) $\frac{1}{2}^\circ$. (9) $\frac{4\pi}{180}$. (5) $\frac{\pi}{180}$. (6) $\frac{\pi}{4}$. (7) $\frac{n}{180}\pi$. (8) $\frac{1}{2}^\circ$. (9) $\frac{5\pi}{180}$.	(22)	25 30.	(23) 1' 10".		(24) 10".		
(9) $\cdot 0675$,, $= 6\pi 75^{\circ}$. (3) $1 \cdot 07875$,, $= 107\pi 87^{\circ} 50^{\circ}$. (4) $\cdot 180429\dot{0}1234567\dot{9}$ $= 18\pi 4^{\circ} 29^{\circ}$, etc. (5) $1 \cdot 46\dot{7}$, $= 146\pi 77^{\circ} 77^{\circ}\dot{7}^{\circ}$. (6) $\cdot 5\dot{4}$,, $= 54\pi 44^{\circ} 44^{\circ}\dot{4}^{\circ}$. (7) $1^{\circ} 14^{\circ} 15^{\circ}$. (8) $7^{\circ} 52^{\circ} 30^{\circ}$. (9) $153^{\circ} 24^{\circ} 29 \cdot 34^{\circ}$. (10) $21^{\circ} 36^{\circ} 8 \cdot 1^{\circ}$. (11) $16^{\circ} 12^{\circ} 37 \cdot 26^{\circ}$. (12) $31^{\circ} 30^{\circ}$. IX. Page 35. 1. (1) 2 right angles or 180° . (2) $\frac{\pi}{2}$ of a right angle. (3) $\frac{2}{\pi}$ right angles. (4) $\frac{6}{\pi}$ right angles. (5) 2 right angles. (6) $\frac{4}{\pi^{2}}$ right angles. (7) $\frac{2\theta}{\pi}$ right angles. (8) $\cdot 002$ of a right angle. (9) 20 right angles. 2. (1) π . (2) 2π . (3) $\frac{\pi}{3}$. (4) $\frac{\pi}{8}$. (5) $\frac{\pi}{180}$. (6) 1° . (7) $\frac{n}{180}\pi$. (8) $\frac{1}{2}^{\circ}$. (9) $\frac{4\pi}{180}$. 3. (1) $\frac{\pi}{6}$. (2) $\frac{\pi}{4}$. (3) $\frac{\pi}{12}$. (4) $\frac{\pi}{200}$. (5) $\frac{\pi}{20000}$. (6) $\frac{\pi}{200000}$. (7) $\frac{n\pi}{200}$. (8) 1° . (9) 5π .							
(3) $1 \cdot 07875$, $= 1078 \cdot 87 \cdot 50^{\circ}$. (4) $\cdot 180429012845679$ $= 188 \cdot 4^{\circ} \cdot 29^{\circ}$, etc. (5) $1 \cdot 467$, $= 1468 \cdot 77 \cdot 77 \cdot 7^{\circ}$. (6) $\cdot 54$, $= 548 \cdot 44^{\circ} \cdot 44^{\circ}$. (7) $1^{\circ} 14^{\circ} 15^{\circ}$. (8) $7^{\circ} 52^{\circ} 30^{\circ}$. (9) $153^{\circ} 24^{\circ} 29 \cdot 34^{\circ}$. (10) $21^{\circ} 36^{\circ} 8 \cdot 1^{\circ}$. (11) $16^{\circ} 12^{\circ} 37 \cdot 26^{\circ}$. (12) $31^{\circ} 30^{\circ}$. IX. Page 35. 1. (1) 2 right angles or 180° . (2) $\frac{3}{2}$ of a right angle. (3) $\frac{2}{\pi}$ right angles. (4) $\frac{6}{\pi}$ right angles. (5) 2 right angles. (6) $\frac{4}{\pi^{2}}$ right angles. (7) $\frac{2\theta}{\pi}$ right angles. (8) $\cdot 002$ of a right angle. (9) 20 right angles. 2. (1) π . (2) 2π . (3) $\frac{\pi}{3}$. (4) $\frac{\pi}{8}$. (5) $\frac{\pi}{180}$. (6) 1° . (7) $\frac{n}{180}\pi$. (8) $\frac{1}{2}^{\circ}$. (9) $\frac{4\pi}{180}$. 3. (1) $\frac{\pi}{6}$. (2) $\frac{\pi}{4}$. (3) $\frac{\pi}{12}$. (4) $\frac{\pi}{200}$. (5) $\frac{\pi}{20000}$. (6) $\frac{\pi}{200000}$. (7) $\frac{n\pi}{200}$. (8) 1° . (9) 5π .	(1)						
(4) $\cdot 180429012845679$ = $18^{\pm}4^{\circ}29^{\circ}$, etc. = $146^{\pm}77^{\circ}77^{\circ}7^{\circ}$. (6) $\cdot 5\frac{1}{4}$, = $54^{\pm}44^{\circ}4^{\circ}4^{\circ}$. (7) $1^{\circ}14^{\circ}15^{\circ}$. (8) $7^{\circ}52^{\circ}30^{\circ}$. (9) $153^{\circ}24^{\prime}29^{\circ}34^{\circ}$. (10) $21^{\circ}36^{\circ}8^{\circ}1^{\circ}$. (11) $16^{\circ}12^{\circ}37^{\circ}26^{\circ}$. (12) $31^{\circ}30^{\circ}$. IX. Page 35. 1. (1) 2 right angles or 180° . (2) $\frac{3}{2}$ of a right angle. (3) $\frac{2}{\pi}$ right angles. (4) $\frac{6}{\pi}$ right angles. (5) 2 right angles. (6) $\frac{4}{\pi^{2}}$ right angles. (7) $\frac{2\theta}{\pi}$ right angles. (8) $\cdot 002$ of a right angle. (9) 20 right angles. 2. (1) π . (2) 2π . (3) $\frac{\pi}{3}$. (4) $\frac{\pi}{8}$. (5) $\frac{\pi}{180}$. (6) 1° . (7) $\frac{n}{180}\pi$. (8) $\frac{1}{2}^{\circ}$. (9) $\frac{4\pi}{180}$. 3. (1) $\frac{\pi}{6}$. (2) $\frac{\pi}{4}$. (3) $\frac{\pi}{12}$. (4) $\frac{\pi}{200}$. (5) $\frac{\pi}{20000}$. (6) $\frac{\pi}{200000}$. (7) $\frac{n\pi}{200}$. (8) 1° . (9) 5π .	(3)	:0675	=6s	75`.			
(4) $\cdot 180429012845679$ = $18^{\circ} 4 \cdot 29^{\circ}$, etc. (5) $1 \cdot 467$, = $146^{\circ} 77 \cdot 77 \cdot 7^{\circ}$. (6) $\cdot 54$, = $54^{\circ} 44^{\circ} 44^{\circ}$. (7) $1^{\circ} 14^{\circ} 15^{\circ}$. (8) $7^{\circ} 52^{\circ} 30^{\circ}$. (9) $153^{\circ} 24^{\circ} 29 \cdot 34^{\circ}$. (10) $21^{\circ} 36^{\circ} 8 \cdot 1^{\circ}$. (11) $16^{\circ} 12^{\circ} 37 \cdot 26^{\circ}$. (12) $31^{\circ} 30^{\circ}$. IX. Page 35. 1. (1) 2 right angles or 180° . (2) $\frac{3}{2}$ of a right angle. (3) $\frac{2}{\pi}$ right angles. (4) $\frac{6}{\pi}$ right angles. (5) 2 right angles. (6) $\frac{4}{\pi^{2}}$ right angles. (7) $\frac{2\theta}{\pi}$ right angles. (8) $\cdot 002$ of a right angle. (9) 20 right angles. 2. (1) π . (2) 2π . (3) $\frac{\pi}{3}$. (4) $\frac{\pi}{8}$. (5) $\frac{\pi}{180}$. (6) 1° . (7) $\frac{n}{180}\pi$. (8) $\frac{1}{2}^{\circ}$. (9) $\frac{4\pi}{180}$. 3. (1) $\frac{\pi}{6}$. (2) $\frac{\pi}{4}$. (3) $\frac{\pi}{12}$. (4) $\frac{\pi}{200}$. (5) $\frac{\pi}{20000}$. (6) $\frac{\pi}{200000}$. (7) $\frac{n\pi}{200}$. (8) 1° . (9) 5π .	(3)	1.07875 .	=107	87' 50'.			
(7) $1^{\circ} 14' 15''$. (8) $7^{\circ} 52' 30''$. (9) $153^{\circ} 24' 29 \cdot 34''$. (10) $21^{\circ} 36' 8 \cdot 1''$. (11) $16^{\circ} 12' 37 \cdot 26''$. (12) $31^{\circ} 30'$. IX. Page 35. 1. (1) 2 right angles or 180° . (2) $\frac{3}{2}$ of a right angle. (3) $\frac{2}{\pi}$ right angles. (4) $\frac{6}{\pi}$ right angles. (5) 2 right angles. (6) $\frac{4}{\pi^2}$ right angles. (7) $\frac{2\theta}{\pi}$ right angles. (8) $\cdot 002$ of a right angle. (9) 20 right angles. 2. (1) π . (2) 2π . (3) $\frac{\pi}{3}$. (4) $\frac{\pi}{8}$. (5) $\frac{\pi}{180}$. (6) 1° . (7) $\frac{n}{180}\pi$. (8) $\frac{1}{2}^{\circ}$. (9) $\frac{4\pi}{180}$. (1) $\frac{\pi}{6}$. (2) $\frac{\pi}{4}$. (3) $\frac{\pi}{12}$. (4) $\frac{\pi}{200}$. (5) $\frac{\pi}{20000}$. (6) $\frac{\pi}{200000}$. (7) $\frac{n\pi}{200}$. (8) 1° . (9) 5π .	(4)	1804290123456	79 = 18s	4' 29", et	ic.		
(7) $1^{\circ} 14' 15''$. (8) $7^{\circ} 52' 30''$. (9) $153^{\circ} 24' 29 \cdot 34''$. (10) $21^{\circ} 36' 8 \cdot 1''$. (11) $16^{\circ} 12' 37 \cdot 26''$. (12) $31^{\circ} 30'$. IX. Page 35. 1. (1) 2 right angles or 180° . (2) $\frac{3}{2}$ of a right angle. (3) $\frac{2}{\pi}$ right angles. (4) $\frac{6}{\pi}$ right angles. (5) 2 right angles. (6) $\frac{4}{\pi^2}$ right angles. (7) $\frac{2\theta}{\pi}$ right angles. (8) $\cdot 002$ of a right angle. (9) 20 right angles. 2. (1) π . (2) 2π . (3) $\frac{\pi}{3}$. (4) $\frac{\pi}{8}$. (5) $\frac{\pi}{180}$. (6) 1° . (7) $\frac{n}{180}\pi$. (8) $\frac{1}{2}^{\circ}$. (9) $\frac{4\pi}{180}$. (1) $\frac{\pi}{6}$. (2) $\frac{\pi}{4}$. (3) $\frac{\pi}{12}$. (4) $\frac{\pi}{200}$. (5) $\frac{\pi}{20000}$. (6) $\frac{\pi}{200000}$. (7) $\frac{n\pi}{200}$. (8) 1° . (9) 5π .	(5)	1.467	=146	× 77 77.7			
(7) $1^{\circ} 14' 15''$. (8) $7^{\circ} 52' 30''$. (9) $153^{\circ} 24' 29 \cdot 34''$. (10) $21^{\circ} 36' 8 \cdot 1''$. (11) $16^{\circ} 12' 37 \cdot 26''$. (12) $31^{\circ} 30'$. IX. Page 35. 1. (1) 2 right angles or 180° . (2) $\frac{3}{2}$ of a right angle. (3) $\frac{2}{\pi}$ right angles. (4) $\frac{6}{\pi}$ right angles. (5) 2 right angles. (6) $\frac{4}{\pi^2}$ right angles. (7) $\frac{2\theta}{\pi}$ right angles. (8) $\cdot 002$ of a right angle. (9) 20 right angles. 2. (1) π . (2) 2π . (3) $\frac{\pi}{3}$. (4) $\frac{\pi}{8}$. (5) $\frac{\pi}{180}$. (6) 1° . (7) $\frac{n}{180}\pi$. (8) $\frac{1}{2}^{\circ}$. (9) $\frac{4\pi}{180}$. (1) $\frac{\pi}{6}$. (2) $\frac{\pi}{4}$. (3) $\frac{\pi}{12}$. (4) $\frac{\pi}{200}$. (5) $\frac{\pi}{20000}$. (6) $\frac{\pi}{200000}$. (7) $\frac{n\pi}{200}$. (8) 1° . (9) 5π .	(6)	.54	$=54^{g}$	44' 44-4"	•		
(10) 21° 36′ 8·1″. (11) 16° 12′ 37·26″. (12) 31° 30′. IX. Page 35. 1. (1) 2 right angles or 180°. (2) $\frac{3}{2}$ of a right angle. (3) $\frac{2}{\pi}$ right angles. (4) $\frac{6}{\pi}$ right angles. (5) 2 right angles. (6) $\frac{4}{\pi^2}$ right angles. (7) $\frac{2\theta}{\pi}$ right angles. (8) ·002 of a right angle. (9) 20 right angles. 2. (1) π . (2) 2π . (3) $\frac{\pi}{3}$. (4) $\frac{\pi}{8}$. (5) $\frac{\pi}{180}$. (6) 1°. (7) $\frac{n}{180}\pi$. (8) $\frac{1}{2}$ °. (9) $\frac{4\pi}{180}$. (3) $\frac{\pi}{12}$. (4) $\frac{\pi}{200}$. (5) $\frac{\pi}{20000}$. (6) $\frac{\pi}{200000}$. (7) $\frac{n\pi}{200}$. (8) 1°. (9) 5π .	(7)	1º 14' 15".	(8) 7º 52'	30".	(9) 15	Bº 24'	29.34".
1. (1) 2 right angles or 180° . (2) $\frac{3}{2}$ of a right angle. (3) $\frac{2}{\pi}$ right angles. (4) $\frac{6}{\pi}$ right angles. (5) 2 right angles. (6) $\frac{4}{\pi^2}$ right angles. (7) $\frac{2\theta}{\pi}$ right angles. (8) 002 of a right angle. (9) 20 right angles. (2) 2π . (3) $\frac{\pi}{3}$. (4) $\frac{\pi}{8}$. (5) $\frac{\pi}{180}$. (6) 1°. (7) $\frac{n}{180}\pi$. (8) $\frac{1}{2}$ °. (9) $\frac{4\pi}{180}$. (1) $\frac{\pi}{6}$. (2) $\frac{\pi}{4}$. (3) $\frac{\pi}{12}$. (4) $\frac{\pi}{200}$. (5) $\frac{\pi}{20000}$. (6) $\frac{\pi}{200000}$. (7) $\frac{n\pi}{200}$. (8) 1°. (9) 5π .	(10)	210 36' 8.1".	(11) 16	° 12′ 37·2	6".	(12)	31º 30'.
1. (1) 2 right angles or 180°. (2) $\frac{3}{4}$ of a right angle. (3) $\frac{2}{\pi}$ right angles. (4) $\frac{6}{\pi}$ right angles. (5) 2 right angles. (6) $\frac{4}{\pi^2}$ right angles. (7) $\frac{2\theta}{\pi}$ right angles. (8) ·002 of a right angle. (9) 20 right angles. (2) 2π . (3) $\frac{\pi}{3}$. (4) $\frac{\pi}{8}$. (5) $\frac{\pi}{180}$. (6) 1°. (7) $\frac{n}{180}\pi$. (8) $\frac{1}{2}$ °. (9) $\frac{4\pi}{180}$. (1) $\frac{\pi}{6}$. (2) $\frac{\pi}{4}$. (3) $\frac{\pi}{12}$. (4) $\frac{\pi}{200}$. (5) $\frac{\pi}{20000}$. (6) $\frac{\pi}{200000}$. (7) $\frac{n\pi}{200}$. (8) 1°. (9) 5π .			777 -				
(3) $\frac{2}{\pi}$ right angles. (4) $\frac{6}{\pi}$ right angles. (5) 2 right angles. (6) $\frac{4}{\pi^2}$ right angles. (7) $\frac{2\theta}{\pi}$ right angles. (8) '002 of a right angle. (9) 20 right angles. 2. (1) π . (2) 2π . (3) $\frac{\pi}{3}$. (4) $\frac{\pi}{8}$. (5) $\frac{\pi}{180}$. (6) 1°. (7) $\frac{n}{180}\pi$. (8) $\frac{1}{2}$ °. (9) $\frac{4\pi}{180}$. 3. (1) $\frac{\pi}{6}$. (2) $\frac{\pi}{4}$. (3) $\frac{\pi}{12}$. (4) $\frac{\pi}{200}$. (5) $\frac{\pi}{20000}$. (6) $\frac{\pi}{200000}$. (7) $\frac{n\pi}{200}$. (8) 1°. (9) 5π .							
(5) 2 right angles. (6) $\frac{4}{\pi^2}$ right angles. (7) $\frac{2\theta}{\pi}$ right angles. (8) 002 of a right angle. (9) 20 right angles. 2. (1) π . (2) 2π . (3) $\frac{\pi}{3}$. (4) $\frac{\pi}{8}$. (5) $\frac{\pi}{180}$. (6) 1°. (7) $\frac{n}{180}\pi$. (8) $\frac{1}{2}$ °. (9) $\frac{4\pi}{180}$. 3. (1) $\frac{\pi}{6}$. (2) $\frac{\pi}{4}$. (3) $\frac{\pi}{12}$. (4) $\frac{\pi}{200}$. (5) $\frac{\pi}{20000}$. (6) $\frac{\pi}{200000}$. (7) $\frac{n\pi}{200}$. (8) 1°. (9) 5π .		_		_		right a	ingle.
(7) $\frac{2\theta}{\pi}$ right angles. (8) '002 of a right angle. (9) 20 right angles. 2. (1) π . (2) 2π . (3) $\frac{\pi}{3}$. (4) $\frac{\pi}{8}$. (5) $\frac{\pi}{180}$. (6) 1°. (7) $\frac{n}{180}\pi$. (8) $\frac{1}{2}$ °. (9) $\frac{4\pi}{180}$. 3. (1) $\frac{\pi}{6}$. (2) $\frac{\pi}{4}$. (3) $\frac{\pi}{12}$. (4) $\frac{\pi}{200}$. (5) $\frac{\pi}{20000}$. (6) $\frac{\pi}{200000}$. (7) $\frac{n\pi}{200}$. (8) 1°. (9) 5π .	(8)	$\frac{2}{\pi}$ right angles.	(4)	$\frac{6}{\pi}$ right	angles.		
(9) 20 right angles. 2. (1) π . (2) 2π . (3) $\frac{\pi}{3}$. (4) $\frac{\pi}{8}$. (5) $\frac{\pi}{180}$. (6) 1°. (7) $\frac{n}{180}\pi$. (8) $\frac{1}{2}$ °. (9) $\frac{4\pi}{180}$. 3. (1) $\frac{\pi}{6}$. (2) $\frac{\pi}{4}$. (3) $\frac{\pi}{12}$. (4) $\frac{\pi}{200}$. (5) $\frac{\pi}{20000}$. (6) $\frac{\pi}{200000}$. (7) $\frac{n\pi}{200}$. (8) 1°. (9) 5π .	(5)	2 right angles.	(6)	$\frac{4}{\pi^2}$ right	angles.		
(9) 20 right angles. 2. (1) π . (2) 2π . (3) $\frac{\pi}{3}$. (4) $\frac{\pi}{8}$. (5) $\frac{\pi}{180}$. (6) 1°. (7) $\frac{n}{180}\pi$. (8) $\frac{1}{2}$ °. (9) $\frac{4\pi}{180}$. 3. (1) $\frac{\pi}{6}$. (2) $\frac{\pi}{4}$. (3) $\frac{\pi}{12}$. (4) $\frac{\pi}{200}$. (5) $\frac{\pi}{20000}$. (6) $\frac{\pi}{200000}$. (7) $\frac{n\pi}{200}$. (8) 1°. (9) 5π .	(7)	20 might angles	(0)	.000 05	a wiaht as	alo.	
2. (1) π . (2) 2π . (3) $\frac{\pi}{3}$. (4) $\frac{\pi}{8}$. (5) $\frac{\pi}{180}$. (6) 1° . (7) $\frac{n}{180}\pi$. (8) $\frac{1}{2}^{\circ}$. (9) $\frac{A\pi}{180}$. 3. (1) $\frac{\pi}{6}$. (2) $\frac{\pi}{4}$. (3) $\frac{\pi}{12}$. (4) $\frac{\pi}{200}$. (5) $\frac{\pi}{20000}$. (6) $\frac{\pi}{200000}$. (7) $\frac{n\pi}{200}$. (8) 1° . (9) 5π .	(1)	# right angles	. (6)	002 01	# LIRITE #1	iRie.	
(5) $\frac{\pi}{180}$. (6) 1°. (7) $\frac{n}{180}\pi$. (8) $\frac{1}{2}$ °. (9) $\frac{4\pi}{180}$. 3. (1) $\frac{\pi}{6}$. (2) $\frac{\pi}{4}$. (3) $\frac{\pi}{12}$. (4) $\frac{\pi}{200}$. (5) $\frac{\pi}{20000}$. (6) $\frac{\pi}{200000}$. (7) $\frac{n\pi}{200}$. (8) 1°. (9) 5π .	(9)	20 right angles	•				
3. (1) $\frac{\pi}{6}$. (2) $\frac{\pi}{4}$. (3) $\frac{\pi}{12}$. (4) $\frac{\pi}{200}$. (5) $\frac{\pi}{20000}$. (6) $\frac{\pi}{200000}$. (7) $\frac{n\pi}{200}$. (8) 1°. (9) 5π .	2.	(1) π. (2)	2π.	$(3) \frac{\pi}{3} \ .$	(4)	$\frac{\pi}{8}$.	
(5) $\frac{\pi}{20000}$. (6) $\frac{\pi}{200000}$. (7) $\frac{n\pi}{200}$. (8) 1°. (9) 5π .	(5)	$\frac{\pi}{180}$. (6) 1	°. (7) $\frac{7}{18}$	1 30 π.	(8) ½°.	(9)	$\frac{A\pi}{180}$.
(5) $\frac{\pi}{20000}$. (6) $\frac{\pi}{200000}$. (7) $\frac{n\pi}{200}$. (8) 1°. (9) 5π .	3.	$(1) \ \frac{\pi}{6}.$	$2) \frac{\pi}{4} \ .$	(3) $\frac{\pi}{19}$	•	(4) 2	00 '
	Sec.	7	π	117			
	(5)	20000 • (6)	200000	(7) $\frac{10}{200}$. (8)	1°.	(9) 5π.

(28

(1) (2)

(vi)

(3)

(iv)

angle.

34". 30%

le.

X. Pages 37-39.

(2) 90. (3) 45.

(4) 700. (5) 1121 ft. (6) 531 ft. (7) 94 ft.

(8) 838000 miles. (9) $\frac{1}{2}$ radian = 6_{1} degrees. (10) 21 $\frac{1}{2}$ degrees. (11) 51 $\frac{1}{2}$ ". (12) about 34 yds. (16) 400:1. (17) 0000484.... (18) 49 $\frac{1}{1}$ in.

 $\frac{\pi}{2}$ i.e. a right angle. (21) 473:489.

(22) (i) k=1, (ii) $k=\frac{180}{2}$.

XI. Pages 40-43.

(1) $\frac{\pi}{10}$. (2) 35°, 15°. (3) 90°, 45°. (4) 18°, $22\frac{1}{2}$ °.

(5) 38°, 1.8°. (7) 45°, 60°, 75°. (8) 39°, 60°, 81°. (9) 33°3°, 66°6°, 100°. (14) 25°, 8° 6°. (15) 31°

(16) $\frac{n\pi}{10800}$. (17) (i) 120°, 133·3°s, $\frac{2\pi}{3}$, (ii) 135°, 150°s, $\frac{3\pi}{4}$,

(iii) 156° , 173.3° , $\frac{13\pi}{15}$. (20) 450'. (21) (i) $3\frac{3}{2}$, (ii) $\frac{15}{2\pi}$.

(22) $\frac{18^{\circ}}{18^{\circ}}$. (23) a right angle. (24) $\frac{10ac}{9b}$.

(25) $\frac{9a+10b}{10c}$ degrees. (26) $\frac{5\pi}{9}$. (27) $\frac{5\pi}{19}$, $\frac{9\pi}{38}$, $\frac{\pi}{2}$. 1800π

(28) $\frac{1800\pi}{19\pi + 1800}$. (29) $\frac{\pi^2}{10\pi + 18000}$. (30) 9 or 16.

XII. Pages 50-52.

(1) (i) DA, BD. (ii) DB, AD. (iii) DA, CD. (iv) DC, AD.

(2) (i) $\frac{DB}{AB}$. (ii) $\frac{D\mathcal{O}}{GA}$. (iii) $\frac{CD}{AD}$. (iv) $\frac{DA}{BA}$. (v) $\frac{DB}{AD}$.

(vi) $\frac{DC}{AC}$. (vii) $\frac{CD}{CA}$. (viii) $\frac{DA}{CD}$. (ix) $\frac{BD}{RA}$. (x) $\frac{DA}{CA}$.

(3) (i) $\frac{DB}{CR}$, $\frac{BA}{CA}$. (ii) $\frac{CD}{CR}$, $\frac{CB}{CA}$. (iii) $\frac{DB}{CD}$, $\frac{BA}{CR}$.

(iv) $\frac{DB}{\overline{AB}}$, $\frac{BC}{\overline{AC}}$. (v) $\frac{AD}{\overline{AB}}$, $\frac{AB}{\overline{AC}}$. (vi) $\frac{DB}{\overline{AD}}$, $\frac{BC}{\overline{AB}}$.

(4) (i)
$$\frac{DA}{BA}$$
. (ii) $\frac{BA}{EA}$ or $\frac{AC}{EC}$. (iii) $\frac{DC}{BC}$. (iv) $\frac{AB}{AE}$.

(v)
$$\frac{AD}{AB}$$
 or $\frac{AB}{AC}$. (vi) $\frac{BD}{BC}$. (vii) $\frac{DB}{CD}$, or $\frac{BA}{CB}$, or $\frac{AB}{CA}$.

(viii)
$$\frac{DA}{BD}$$
. (ix) $\frac{BA}{EB}$ or $\frac{AC}{EA}$. (x) $\frac{DC}{BD}$. (xi) $\frac{DB}{AB}$ or $\frac{BC}{AC}$.

(xii) $\frac{BE}{AE}$.

(5) $\sin A = \frac{3}{5}$, $\cos A = \frac{4}{5}$, $\tan A = \frac{3}{4}$; $\sin B = \frac{4}{5}$, $\cos B = \frac{3}{5}$, $\tan B = \frac{4}{3}$.

(7) Of the smaller angle, the sine = \(\frac{1}{5}\), cosine = \(\frac{1}{5}\), tangent = \(\frac{1}{5}\).

Of the larger angle, the sine = \(\frac{1}{5}\), cosine = \(\frac{1}{5}\), tangent = \(\frac{1}{5}\).

(8) Of the smaller angle, the sine $=\frac{1}{2}$, cosine $=\frac{\sqrt{3}}{2}$, tangent $=\frac{1}{\sqrt{3}}$.

Of the larger angle, the sine $=\frac{\sqrt{3}}{2}$, cosine $=\frac{1}{2}$, tangent $=\sqrt{3}$.

XIV. Pages 63-65.

- (1) 179 ft. (2) 346 ft. (3) 86·6 ft. (4) 138·5 ft.
- (5) 7½ ft. (6) 60°, 173 ft. (7) 63·17 yds. (8) 34·15 ft.
- (9) 73.2 ft. (10) 86.6 ft. (11) .866 miles = 1524 yds.
- (12) 173·2 yds. (14) 373 ft. (15) 3733 ft.
- (16) $\frac{\sqrt{6}}{2}$ miles = 6465 ft. (17) $\frac{\sqrt{3} \cdot a}{3b}$. (18) 30°.
- (19) about 523.6 miles.

XVI. Page 74.

(1)
$$\sin A = \sqrt{1 - \cos^2 A}$$
, $\tan A = \frac{\sqrt{1 - \cos^2 A}}{\cos A}$, $\cot A = \frac{\cos A}{\sqrt{1 - \cos^2 A}}$, $\sec A = \frac{1}{\cos A}$, $\csc A = \frac{1}{\sqrt{1 - \cos^2 A}}$.

(2)
$$\sin A = \frac{1}{\sqrt{1 + \cot^2 A}}$$
, $\cos A = \frac{\cot A}{\sqrt{1 + \cot^2 A}}$, $\tan A = \frac{1}{\cot A}$, $\sec A = \frac{\sqrt{1 + \cot^2 A}}{\cot A}$, $\csc A = \sqrt{1 + \cot^2 A}$.

(3)
$$\sin A = \frac{\sqrt{\sec^2 A - 1}}{\sec A}$$
, $\cos A = \frac{1}{\sec A}$, $\tan A = \sqrt{\sec^2 A - 1}$, $\cot A = \frac{1}{\sqrt{\sec^2 A - 1}}$, $\csc A = \frac{\sec A}{\sqrt{\sec^2 A - 1}}$.

(4)

(5)

(6)

(1

(7)

(9)

(2) (3) (4)

(4)

(7) (vi)

(1)

(5)

(4)
$$\sin A = \frac{1}{\csc A}$$
, $\cos A = \frac{\sqrt{\csc^2 A - 1}}{\csc A}$, $\tan A = \frac{1}{\sqrt{\csc^2 A - 1}}$, $\cot A = \sqrt{\csc^2 A - 1}$, $\sec A = \frac{\csc A}{\sqrt{\csc^2 A - 1}}$.

(5)
$$\cos A = \sqrt{1 - \sin^2 A}$$
, $\tan A = \frac{\sin A}{\sqrt{1 - \sin^2 A}}$, $\cot A = \frac{\sqrt{1 - \sin^2 A}}{\sin A}$
 $\sec A = \frac{1}{\sqrt{1 - \sin^2 A}}$, $\csc A = \frac{1}{\sin A}$.

(6)
$$\sin A = \frac{\tan A}{\sqrt{1 + \tan^2 A}}$$
, $\cos A = \frac{1}{\sqrt{1 + \tan^2 A}}$, $\cot A = \frac{1}{\tan A}$, $\sec A = \sqrt{1 + \tan^2 A}$, $\csc A = \frac{\sqrt{1 + \tan^2 A}}{\tan A}$.

XVII. Page 75.

(1)
$$\frac{3}{4}$$
, $\frac{3}{3}$. (2) $\frac{2\sqrt{2}}{3}$, $\frac{1}{2\sqrt{2}}$. (3) $\frac{4}{5}$, $\frac{4}{5}$.

(4)
$$\frac{1}{\sqrt{15}}$$
, $\frac{\sqrt{15}}{4}$. (5) $\frac{\sqrt{3}}{2}$, $\frac{1}{2}$. (6) $\frac{\sqrt{5}}{3}$, $\frac{3}{2}$.

(7)
$$\frac{b}{\sqrt{a^2-b^2}}$$
. (8) $\frac{a}{\sqrt{a^2+b^2}}$, $\frac{b}{\sqrt{a^2+b^2}}$.

(9)
$$\frac{\sqrt{a^2-1}}{a}$$
, $\frac{1}{\sqrt{a^2-1}}$. (11) $h^2(1+k^2)=1$.

XVIII. Page 77.

(2) $\sec \theta$ increases continuously from 1 to ∞ .

(3) sin A diminishes continuously from 1 to 0.

(4) $\cot \theta$ diminishes continuously from ∞ to 0.

XIX. Page 82.

(4) Yes. (5) No. (6) Yes.

(7) (i) 60° . (ii) -100° . (iii) 0° . (iv) -260° . (v) 115° .

(vi) 410°. (vii) $-\frac{\pi}{4}$. (viii) $\frac{2\pi}{3}$.

B=1.

3·5 ft. 15 ft.

i yds.

XX. Page 84.

XXI. Page 85.

(3) the value 3 is inadmissible. (4)
$$\frac{2 \pm \sqrt{2}}{4}$$

(5)
$$\frac{3}{4}$$
, or $\frac{1}{2}$. (6) $\frac{3}{4}$, or $\frac{1}{3}$.

(7) the value
$$-\frac{7\sqrt{3}}{6}$$
 is inadmissible. (9) $1 - \sin^4 \theta$.

(10)
$$1-3\sin^2\theta+3\sin^4\theta$$
. (11) $\frac{1-2\cos^2\theta+2\cos^4\theta}{\cos^4\theta}$

$$(13) \quad \frac{1-\sin A}{1+\sin A}.$$

(14) cosec
$$\theta$$
 decreases continuously from ∞ to 1.

(15)
$$\cot \theta$$
 increases continuously from 0 to ∞ .

(16)
$$\theta = \frac{\pi}{4}, \quad \phi = \frac{\pi}{12}.$$

XXII. Page 89.

XXIV. Page 94.

(9) The first.

(12) The first, if
$$n$$
 be even, the third, if n be odd.

XXV. Page 98.

$$(10) +, +, +, \qquad (11) +, -, -. \qquad (12) -, +, -.$$

XXVI. Page 100.

(1)
$$+\frac{1}{2}$$
, $-\frac{\sqrt{3}}{2}$, $-\frac{1}{\sqrt{3}}$. (2) $+\frac{1}{\sqrt{2}}$, $-\frac{1}{\sqrt{2}}$, -1.

(3)
$$+\frac{\sqrt{3}}{2}$$
, $-\frac{1}{2}$, $-\sqrt{3}$. (4) $-\frac{1}{2}$, $+\frac{\sqrt{3}}{2}$, $-\frac{1}{\sqrt{3}}$.

E mere plete T cease

ti Ci

table

co 1 si

(8) si (9) sin

The tude of of the d angle; 45°. 45°.

ıd.

(6)
$$-\frac{1}{\sqrt{2}}$$
, $+\frac{1}{\sqrt{2}}$, -1. (6) $+\frac{\sqrt{3}}{2}$, $+\frac{1}{2}$, $+\sqrt{3}$. (7) $-\frac{1}{\sqrt{2}}$, $-\frac{1}{\sqrt{2}}$, +1. (8) $-\frac{1}{\sqrt{2}}$, $-\frac{1}{\sqrt{2}}$, +1.

$$(9) + \frac{1}{2}, + \frac{\sqrt{3}}{2}, + \frac{1}{\sqrt{3}}.$$

$$(10) + \frac{1}{2}, + \frac{\sqrt{3}}{2}, + \frac{1}{\sqrt{3}}.$$

$$(11) -\frac{\sqrt{3}}{2}, -\frac{1}{2}, +\sqrt{3}.$$

$$(12) -\frac{\sqrt{3}}{2}, + \frac{1}{2}, -\sqrt{3}.$$

(13)
$$+\frac{1}{\sqrt{2}}$$
, $+\frac{1}{\sqrt{2}}$, $+1$. (14) $-\frac{\sqrt{3}}{2}$, $-\frac{1}{2}$, $-\sqrt{3}$.

(15)
$$-\frac{1}{2}$$
, $-\frac{\sqrt{3}}{2}$, $+\frac{1}{\sqrt{3}}$.

XXVII. Page 100.

Each of these expressions changes continuously as the angle A increases from 0° to 360°, and their values are repeated at each complete revolution of the revolving line.

Their values are given below when they are zero and when they cease to increase and begin to decrease, and vice versa. The first table gives also the sign of each between the values.

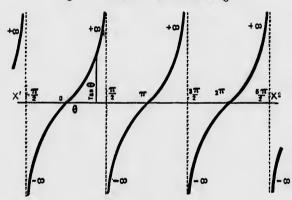
(1) cos A (2) tan A (3) cot A (4) sec A (5) cosec A (6) 1 - sin A (7) sin ² A	00 +1 0 0 +1 0 +1 0	+ + + + + +	90° 0	- - - + + +	180° -1 0	++++++	270° 0 0 0 0 0 1 2 +1	+ + + +
(8) $\sin A \cdot \cos A$	00	450	900	1350	1800	2250	2700	3150
(8) $\sin A \cdot \cos A$ (9) $\sin A + \cos A$ (10) $\tan A + \cot A$ (11) $\sin A - \cos A$	0 +1 ∞ -1	$\begin{array}{c} +\frac{1}{4} \\ +\sqrt{2} \\ +2 \\ 0 \end{array}$	0 +1 ∞ +1	$ \begin{array}{c c} -\frac{1}{2} \\ 0 \\ -2 \\ +\sqrt{2} \end{array} $	0 -1 ∞ +1	$^{+\frac{1}{4}}_{-\sqrt{2}}_{+2}$	0 -1 ∞ -1	$ \begin{array}{c} -\frac{1}{2} \\ 0 \\ -2 \\ -\sqrt{2} \end{array} $

The following figures exhibit the changes in the sign and magnitude of $\sin \theta$ (fig. i.), $\cos \theta$ (fig. ii.), and $\tan \theta$ (fig. iii.). The measure of the distance from 0 along the line 0X = the circular measure of the angle; the vertical distance from 0X measures the Ratio.

Fig. i. The Curve of the Sine.

Fig. ii. The Curve of the Cosine.

Fig. iii. The Curve of the Tangent.



XXXI. Page 112.

- (1) (i) 30°, 150°, -210°, -330°. (ii) 45°, 135°, -225°, -315°. (iii) 60°, 120°, -240°, -300°. (iv) -30°, -150°, 210°, 330°.
- (2) (i) 20°, 160°, 380°, 520°. (ii) $\frac{5\pi}{4}$, $\frac{7\pi}{4}$, $\frac{13\pi}{4}$, $\frac{15\pi}{4}$.
 - (iii) $\frac{8\pi}{7}$, $\frac{13\pi}{7}$, $\frac{22\pi}{7}$, $\frac{27\pi}{7}$.
- (3) (i) $\theta = n\pi + (-1)^n \left(-\frac{\pi}{6}\right)$. (ii) $\theta = n\pi + (-1)^n \frac{\pi}{6}$. (iii) $n\pi \pm \frac{\pi}{4}$.

XXXII. Page 115.

- (1) (i) $\theta = 2n\pi \pm \frac{1}{2}\pi$. (ii) $\theta = n\pi + \frac{1}{2}\pi$. (iii) $\theta = n\pi \frac{1}{4}\pi$.
- (iv) $\theta = n\pi \frac{1}{3}\pi$. (v) $\theta = 2n\pi \pm \frac{4}{5}\pi$. (vi) $\theta = n\pi + \frac{3}{4}\pi$.
- (8) The tangent. (4) No.
- (5) (i) 60° , -60° , 300° , -300° . (ii) 45° , 225° , 405° , -135° . (iii) -45° , -225° , 135° , 315° . (iv) -60° , -240° , 120° , 300° .
- (v) 144° , -144° , 216° , -216° . (vi) 135° , -45° , -225° , 315°

XXXIV. Page 120.

(5) 1, $\frac{24}{25}$. (6) 16, 88

XXXVIII. Page 131.

- (1) $\sin (\theta + \phi) + \sin (\theta \phi)$. (2) $\cos(\alpha-\beta)+\cos(\alpha+\beta)$.
- (3) $\sin(2\alpha+3\beta)+\sin(2\alpha-3\beta)$. (4) $\cos 2\alpha + \cos 2\beta$.
- (5) sin 30 sin 2θ. (6) $\cos \theta + \cos 2\theta$. (7) $\frac{1}{2}(\cos 3\theta - \cos 5\theta)$.
- (8) 1 (sin 4θ sin θ). (9) $\sin 60^{\circ} + \sin 40^{\circ}$.
- (10) 1 (siz 600 sin 300). (11) $2\cos 3\theta\cos 2\theta$. (12) $-\cos 4\theta \sin 2\theta$.

XXXIX. Page 132.

(13) $4\cos^2\frac{\theta}{2}\sin 2\theta$.

- (4) tan 2a. (5) tan x. (7) $-2 \cot 2x$. (8) tan2 A.
- (12) $\sin 2\theta = 1$, $\theta = 45^{\circ}$; $\sin 2\phi = \frac{1}{2}$, $\phi = 15^{\circ}$.

XLV. Page 147.

(2) $\sin 2A = \frac{4}{5}$, $\sin 3A = -\frac{1}{2}\frac{1}{5}\sqrt{5}$.

150 330°. (3) $\sin 2\theta = -\frac{1}{8}\sqrt{15}$, $\sin 3\theta = \frac{3}{16}\sqrt{15}$, $\cos 3\theta = -\frac{1}{16}$; in the second.

XLVI. Page 149.

(3)
$$\sin \frac{A}{2} = +\sqrt{\frac{1-\cos A}{2}}$$
. (5) $\sin \frac{A}{2} = +\sqrt{\frac{1-\cos A}{2}}$.

XLVII. Page 154.

- (1) (i) +, -. (ii) -, +. (iii) -, -. (iv) +, -. (v) +, -.
- (vi) +, +. (vii) -, -. (viii) -, -.

(8) $\sin 9^0 = \frac{1}{4} \{ \sqrt{(3+\sqrt{5})} - \sqrt{(5-\sqrt{5})} \}, \cos 9^0 = \frac{1}{4} \{ \sqrt{(3+\sqrt{5})} + \sqrt{(5-\sqrt{5})} \}, \cos 9^0 = \frac{1}{4} \{ \sqrt{(3+\sqrt{5})} + \sqrt{(5-\sqrt{5})} \}, \cos 9^0 = \frac{1}{4} \{ \sqrt{(3+\sqrt{5})} + \sqrt{(5-\sqrt{5})} \}, \cos 9^0 = \frac{1}{4} \{ \sqrt{(3+\sqrt{5})} + \sqrt{(5-\sqrt{5})} \}, \cos 9^0 = \frac{1}{4} \{ \sqrt{(3+\sqrt{5})} + \sqrt{(5-\sqrt{5})} \}, \cos 9^0 = \frac{1}{4} \{ \sqrt{(3+\sqrt{5})} + \sqrt{(5-\sqrt{5})} \}, \cos 9^0 = \frac{1}{4} \{ \sqrt{(3+\sqrt{5})} + \sqrt{(5-\sqrt{5})} \}, \cos 9^0 = \frac{1}{4} \{ \sqrt{(3+\sqrt{5})} + \sqrt{(5-\sqrt{5})} \}, \cos 9^0 = \frac{1}{4} \{ \sqrt{(3+\sqrt{5})} + \sqrt{(5-\sqrt{5})} \}, \cos 9^0 = \frac{1}{4} \{ \sqrt{(3+\sqrt{5})} + \sqrt{(5-\sqrt{5})} \}, \cos 9^0 = \frac{1}{4} \{ \sqrt{(3+\sqrt{5})} + \sqrt{(5-\sqrt{5})} \}, \cos 9^0 = \frac{1}{4} \{ \sqrt{(3+\sqrt{5})} + \sqrt{(5-\sqrt{5})} \}, \cos 9^0 = \frac{1}{4} \{ \sqrt{(3+\sqrt{5})} + \sqrt{(5-\sqrt{5})} \}, \cos 9^0 = \frac{1}{4} \{ \sqrt{(3+\sqrt{5})} + \sqrt{(5-\sqrt{5})} \}, \cos 9^0 = \frac{1}{4} \{ \sqrt{(3+\sqrt{5})} + \sqrt{(5-\sqrt{5})} \}, \cos 9^0 = \frac{1}{4} \{ \sqrt{(3+\sqrt{5})} + \sqrt{(5-\sqrt{5})} \}, \cos 9^0 = \frac{1}{4} \{ \sqrt{(3+\sqrt{5})} + \sqrt{(5-\sqrt{5})} \}, \cos 9^0 = \frac{1}{4} \{ \sqrt{(3+\sqrt{5})} + \sqrt{(5-\sqrt{5})} \}, \cos 9^0 = \frac{1}{4} \{ \sqrt{(3+\sqrt{5})} + \sqrt{(5-\sqrt{5})} \}, \cos 9^0 = \frac{1}{4} \{ \sqrt{(3+\sqrt{5})} + \sqrt{(5-\sqrt{5})} \}, \cos 9^0 = \frac{1}{4} \{ \sqrt{(3+\sqrt{5})} + \sqrt{(5-\sqrt{5})} \}, \cos 9^0 = \frac{1}{4} \{ \sqrt{(3+\sqrt{5})} + \sqrt{(5-\sqrt{5})} \}, \cos 9^0 = \frac{1}{4} \{ \sqrt{(3+\sqrt{5})} + \sqrt{(5-\sqrt{5})} \}, \cos 9^0 = \frac{1}{4} \{ \sqrt{(3+\sqrt{5})} + \sqrt{(5-\sqrt{5})} \}, \cos 9^0 = \frac{1}{4} \{ \sqrt{(3+\sqrt{5})} + \sqrt{(5-\sqrt{5})} \}, \cos 9^0 = \frac{1}{4} \{ \sqrt{(3+\sqrt{5})} + \sqrt{(5-\sqrt{5})} \}, \cos 9^0 = \frac{1}{4} \{ \sqrt{(3+\sqrt{5})} + \sqrt{(5-\sqrt{5})} \}, \cos 9^0 = \frac{1}{4} \{ \sqrt{(3+\sqrt{5})} + \sqrt{(5-\sqrt{5})} \}, \cos 9^0 = \frac{1}{4} \{ \sqrt{(3+\sqrt{5})} + \sqrt{(5-\sqrt{5})} \}, \cos 9^0 = \frac{1}{4} \{ \sqrt{(3+\sqrt{5})} + \sqrt{(5-\sqrt{5})} \}, \cos 9^0 = \frac{1}{4} \{ \sqrt{(3+\sqrt{5})} + \sqrt{(5-\sqrt{5})} \}, \cos 9^0 = \frac{1}{4} \{ \sqrt{(3+\sqrt{5})} + \sqrt{(5-\sqrt{5})} \}, \cos 9^0 = \frac{1}{4} \{ \sqrt{(3+\sqrt{5})} + \sqrt{(5-\sqrt{5})} \}, \cos 9^0 = \frac{1}{4} \{ \sqrt{(3+\sqrt{5})} + \sqrt{(5-\sqrt{5})} \}, \cos 9^0 = \frac{1}{4} \{ \sqrt{(3+\sqrt{5})} + \sqrt{(5-\sqrt{5})} \}, \cos 9^0 = \frac{1}{4} \{ \sqrt{(3+\sqrt{5})} + \sqrt{(5-\sqrt{5})} \}, \cos 9^0 = \frac{1}{4} \{ \sqrt{(3+\sqrt{5})} + \sqrt{(5-\sqrt{5})} \}, \cos 9^0 = \frac{1}{4} \{ \sqrt{(3+\sqrt{5})} + \sqrt{(5-\sqrt{5})} \}, \cos 9^0 = \frac{1}{4} \{ \sqrt{(3+\sqrt{5})} + \sqrt{(5-\sqrt{5})} \}, \cos 9^0 = \frac{1}{4} \{ \sqrt{(3+\sqrt{5})} + \sqrt{(5-\sqrt{5})} \}, \cos 9^0 = \frac{1}{4} \{ \sqrt{(3+\sqrt{5})} + \sqrt{(5-\sqrt{5})} \}, \cos 9^0 = \frac{1}{4} \{ \sqrt{(3+\sqrt{5})} + \sqrt{(5-\sqrt{5})} \}, \cos 9^0 = \frac{1}{4} \{ \sqrt$ $\sin 81^{0} = \cos 9^{0}$, $\cos 189^{0} = -\cos 9^{0}$, $\tan 202\frac{1}{2}^{0} = \sqrt{2-1}$, $\tan 97\frac{1}{2}^{0} = -(\sqrt{3} + \sqrt{2})(\sqrt{2} + 1).$

(7) Between $(2n \times 180^{\circ} - 45^{\circ})$ and $(2n \times 180^{\circ} + 45^{\circ})$.

XLVIII. Page 157.

(1)
$$\theta = -\frac{\pi}{4} + n\pi + (-1)^n \frac{\pi}{6}$$
. (2) $\theta = -\frac{\pi}{3} + n\pi + (-1)^n \frac{\pi}{6}$.

(3)
$$\theta = -\frac{\pi}{4} + n\pi + (-1)^n \frac{\pi}{3}$$
. (4) $\theta = +\frac{\pi}{4} + n\pi + (-1)^n \frac{\pi}{4}$.

(5)
$$\theta = +\frac{\pi}{4} + 2n\pi \pm \frac{\pi}{4}$$
. (6) $\theta = \frac{\pi}{6} + n\pi + (-1)^n \frac{\pi}{4}$.

(7)
$$x = -68^{\circ}12' + n \times 180^{\circ} + (-1)^{n}(21^{\circ}48')$$
.

(8)
$$x = -69^{\circ}26'30'' + 2n \times 180^{\circ} \pm (69^{\circ}26'30'')$$
.

(9)
$$x = 75^{\circ} 4' + n \times 180^{\circ} + (-1)^{n} (14^{\circ} 56')$$
.

(10)
$$x=-\alpha-\frac{\pi}{4}+2n\pi\pm\beta.$$

L. Pages 159, 160.

(7)
$$\pm (\sqrt{3} + 1)$$
. (8) $\pm \sqrt{2}$. (9) ± 1 .

(13)
$$\frac{1}{6}(2n+1)\pi$$
; or, $\frac{1}{6}(3n\pm 1)\pi$. (14) $n\pi \pm \frac{\pi}{3}$; or $\frac{1}{6}(2n+1)\pi$.

(15)
$$\frac{1}{6}(2n+1)\pi$$
; or $\frac{n\pi}{3}+(-1)^n\frac{\pi}{12}$.

(16)
$$(2n+1)\pi$$
; or, $\cos^{-1}\frac{a-b}{a}$. (17) $\frac{n\pi}{m}$; or $\frac{2r+1}{m\pm n} \cdot \pi$.

(18) Both equations are satisfied if $(x^2 - y^2) =$ an odd integer; or, if $(x+y)^2 = 2n$, and $(x-y)^2 = 4m - 2n$, m and n being integers.

(19) (i) $2 \sin \theta \cdot \cos \theta = \sin 2\theta$, and therefore it goes through the same changes as $\sin \theta$, while θ changes from 0 to 2π . (ii) $\cos^2 \theta - \sin^2 \theta = \cos 2\theta$. (iii) $\sin 3\theta$ goes through the same changes as $\sin \theta$, while θ goes from 0 to 3π . (iv) $\cot 2A$; compare with $\cot A$. (v) $\sin (\theta + a)$ goes through the same changes while θ goes from 0 to π , as $\sin \theta$ goes through while θ goes from a to $\pi + a$. (vi) $\cos (2\theta - a)$ goes through the same changes while θ goes from 0 to π , as $\cos 2\theta$ goes through as θ changes from $-\frac{a}{2}$ to $\pi -\frac{a}{2}$. (See Ans. to XXVII.)

(20) They are the solutions of the equations $\sin \theta = \sin \alpha$, and $\cos \left(\frac{\pi}{2} - \theta\right) = \cos \left(\frac{\pi}{2} - \alpha\right)$; and we know that $\cos \left(\frac{\pi}{2} - \theta\right) = \sin \theta$.

(21) They are the solutions of the equations
$$\sin\left(\theta + \frac{\pi}{4}\right) = \sin\frac{\pi}{6}$$
, and $\cos\left(\theta - \frac{\pi}{4}\right) = \cos\frac{\pi}{3}$; also $\cos\left(\theta - \frac{\pi}{4}\right) = \sin\left(\theta + \frac{\pi}{4}\right)$, $\sin\frac{\pi}{6} = \cos\frac{\pi}{3}$.

dec.

LI. Page 162.

- (ii) a44-5k (1) (i) a^{2h+8k} , (iii) $a^{\frac{4n}{3} + \frac{5k}{3}}$ (iv) a = + ==
- (i) 5·4690116. (5) (ii) 10.6243928. (iii) 13.7509386.
- (iv) ·8853661. (v) 1.7968680. (vi) 8.9699598. (vii) 2.7345058.
- (3) 23, 25, 2-1, 2-4, 2-3, 27. (4) 3², 3⁴, 3⁻¹, 3⁻³, 3⁻², 3⁻⁴.

LII. Page 163.

- (1) .60206, .9542426, .90309, .7781513, 1.20412, 1.690196.
- (2) 1.146128, 1.20412, 1.2552726, 1.3802113, 1.4313639, 1.6232493.
- (3) 1, 69897, 1.1760913, 1.39794, 1.4771213, 1.5440680.
- (4) 1.5563026, 1.60206, 1.6812413, 1.69897, 2.30103, 3.
- (5) 7.201593, 3.858708. (6) .7545579, 2.989843.
- (7) 1.4532. (8) 2408.6. (9) (i) 4.5868. (ii) .93646.
- (10) 3.9549. .(11) 40975.3 sq. ft. (12) 34.925 in. (13) 3.2617 in. (14) 110115 cub. yds.

LIII. Page 16

- $3, \frac{10}{3}, \frac{1}{4}, \frac{2}{4}, -\frac{5}{4}$ (1) (2) 3, 6, -1, -3, -6, 2
- $(3) \quad 2, \ 4, \ -1, \ -3, \ -2, \ -4.$ $(4) \quad \tfrac{3}{2}, \tfrac{2}{3}, \, -\tfrac{1}{4}, \, -1.$
- (5) 3, -1, 5, -2, 3, -3. (6) $\frac{4}{3}$, $\frac{2}{3}$, $\frac{1}{3}$, $\frac{1}{3}$.
- (7) .7781513, 1.6232493, 1.20412,
- (8) 1.6901960, 1.5563026, 1.7993406,
- (9) 2·30103, 2·7781513, 1·845098.
- (10) ·69897, 5228787, 1·69897.

or,

the

12 B

ıθ,

A.

π,

- a) 20

)

nd

 $\bar{6}$

- (11) 1.544068, 2.1760913, -1+.30103.
- (12) $\cdot 5440680$, $\cdot 8627278$, $-2 + \cdot 9084852$,

LIV. Pages 168, 169.

- (1) 4, 2, 0, 5, 1. (2) -2, -5, -1, -3.
- (3) 3, -1, 0, 1, 0, -7. (4) 4, 1, 6, 3.
- (5) the second decimal place, the first dec. pl., the sixth dec. pl.
- (6) ten thousands, units, hundreds, third dec. pl., first dec. pl., units.
- (7) 10, 4, 25, 31. (8) 9, 11, 85, 4, 9, 6.
- (9) units, fourth dec. pl., thousands, seventh dec. pl., second dec. pl.
- (10) tenth integral pl., twelfth dec. pl., fifth dec. pl., units, twelfth dec. pl., first dec. pl.

LV. Pages 171, 172.

- (1) 2.8901023, .8901023, 4.8301023, 5.8901023.
- (2) 6·7714552, ·7714552, 4·7714552, 2·7714552, 3·7714552.
- (3) ·27724... (4) ·00001638... (5) ·77448... (6) ·005968...

LVI. Page 174.

- (1) Divide each log by 3. (2) Multiply each log by 2.
- (3) Divide each log by .30103.
- (4) Multiply each log by .4771213.
- (5) Divide each log by .4771213. (6) 3.32190...
- (7) 1.183... (8) 1.10730... .66438...

LVII. Pages 175, 176.

- (1) 3, 0, $\frac{1}{3}$, 0, $\frac{7}{6}$. (4) $\overline{1}$ 8121177, 55.
- (5) ·51375. (6) 7, 4, 8, 3.
- (7) (i) $x = \frac{2 \log 7}{\log 2 + 4 \log 3}$. (ii) $x = \frac{7 \log 3 + 4 \log 7}{2 \log 3 + \log 7}$
 - (iii) $x = \frac{2 \log 7}{2 \log 2 + \log 3}$ (iv) $x = \frac{4 (\log 3 + \log 7)}{8 \log 2 + 3 (\log 3 + \log 7)}$
- (8) $2 + \frac{1}{\log_{10} 7}$. (9) $\frac{3}{2} + \frac{1}{2 \log_{10} 3}$. (10) $\frac{1}{1 \log_{10} 2}$.
- (11) 0, $\frac{1}{b+1}$, $\frac{3a}{2b+2}$, $\frac{2}{b+1}$, $\frac{b}{b+1}$, $\frac{3a+2}{2b+2}$. $\frac{bc}{b+1}$.
- (12) 63-31=32. (13) $(a^{11}-a^{10})$ integers. (14) 1.9485 nearly.
- (19) 2.53855. (20) 4.59999. (21) 167 years.

LVIII. Pages 181, 182.

- (1) $\cdot 8839066$. (2) $2\cdot 7513738$. (3) $\overline{4}\cdot 9413333$.
- (4) 6·8086920. (5) ·5710750. (6) 3·70404.
- (7) 45740·26. (8) 2492837. (9) ·000439658. (10) 5·689158.

(

(2

(8

(5

LIX. Pages 184, 185.

- (1) '6737652. (2) '6737652 (3) '9306572. (4) 419 48' 87" (5) 709 31' 42.6" (3) '750 315 42.6"
- (4) 41° 48′ 37″. (5) 70° 31′ 43° 6″. (6) 75° 31′ 21″.
- (7) 9·8515594. (8) 9·7114477. (9) 10·1338768. (10) 35° 4′ 23″. (11) 28° 16′ 27·5″. (12) 21° 56′ 41″

LX. Pages 188, 189.

- (1) 340 19' 31.8". (2) 1498·2 ft. (3) 450 36' 56".
- (4) 5293.4 ft., 6982.3 ft. (5) 576 · 2 chains.
- (6) 4729 chains. (7) 3666.8 feet. (8) 42º 15', 11444 chains.

LXI. Page 190.

- (1) 3842·9 ft. (2) 281·74 ft. (3) 115·3 ft. (4) 285·6 ft.
- (5) 58° 17′ 24″, 31° 42′ 36″. (6) 656·1 chains, 41° 17′ 12″.
- (7) 81 ft. (8) 1942 ft. (9) 646.7 miles. (10) 1000 ft.

LXVI. Pages 208, 209.

- (1) 410 16' 55.7". (2) 780 82' 12", 620 46' 18".
- (3) 290 17' 16", 310 55' 31". (4) 640 31' 58"...
- (5) 73°, 23′ 54·4″. (6) 41°24′34·6″. (7) 820 49' 9".
- (8) 75°, 60°, 45°. (9) 135°, 30°, 15°.

LXVII. Page 211.

- (1) 313.46 yds. (2) 28.87 inches, 31.43 inches.
- (3) 1192·55 yds. (4) 22.415 ft.
- (5) 24.995 = 25 ft. nearly, 17.559 ft., 65° 59' 42".

LXVIII. Pages 213, 214.

- (1) 108° 36′ 80″, 31° 23′ 30″. (2) 93011'49", 36048'11'.
- (3) 57" 27' 25.4", 620 32' 34.6". (4) 64° 26′ 47″, 37°, 7′ 13″,
- (5) 720 12' 59". (6) 20.5 chains. (7) 122.7.
- (8) 74° 13′ 50″, 35° 16′ 10″.

ly,

i8.

LXIX. Pages 218, 219.

- (1) $A = 0.1^{\circ}18'21''$, $C = 88^{\circ}41'39''$; or $A = 128^{\circ}41'39''$, $C = 11^{\circ}18'21''$.
- (2) $B = 70^{\circ} 0' 56''$, $C = 59^{\circ} 59' 4''$; or, $B = 109^{\circ} 59' 4''$, $C = 20^{\circ} 0' 56''$.
- (8) $B = 38^{\circ} 38' 24''$, $C = 91^{\circ} 21' 36''$, $c = 155 \cdot 3$. (4) $61^{\circ} 16' 10''$.
- (5) $A = 72^{\circ} 4' 48''$, $B = 41^{\circ} 56' 12''$; or, $A = 107^{\circ} 55' 12''$, $B = 6^{\circ}5'48'', b = 17.56.$ (6) β is ambiguous; 60.3893 ft.

LXX. Page 220.

The angles are given correct to the nearest second.

- (1) 28° 35′ 39″. (2) 104° 44′ 39″. (3) 82° 20′ 48″.
- (4) 43° 40'. (5) 128° 23' 13". (6) 106531 ft.
- (7) 3437·6 yds. (8) 1728·2 chains. (9) 25376 yards.
- (10) $A = 66^{\circ}27'48'', B = 12^{\circ}55'12''$. (11) $A = 92^{\circ}12'53'', B = 35^{\circ}37'7''$.
- (12) $B = 29^{\circ}1'40''$, $C = 74^{\circ}55'50''$. (13) $B = 70^{\circ}35'24''$; or, $109^{\circ}24'36''$.
- (14) $B = 51^{\circ}56'17''$; or, 128°3'43". (15) $B = 62^{\circ}6'10''$; or, 117°53'50".
- (16) Very nearly 90°. (17) 1319.6 yds.

LXX b. P. 220 (i), (ii).

- (1) $\cos A = \frac{1}{2}$, $\cos \frac{1}{2}A = \frac{1}{2}\sqrt{3}$. (2) 45°, 60°, 75°.
- (3) 135° , 30° , 15° . (4) 3. (5) 14. (6) $1 + \sqrt{3}$. (7) 120° .
- (8) 120°. (9) 120°. (10) 90°, 36° 52′. (11) 130° 27′.
- (12) $125^{\circ}6'$. (13) $C=\sqrt{2}$, $B=45^{\circ}$, $A=105^{\circ}$.
- (14) $A = 54^{\circ}$ or 126°, $B = 108^{\circ}$ or 36°. (15) a = 1.
- (16) $C=30^{\circ}$, $a=\sqrt{3}+1$, b=2. (17) $A=75^{\circ}$, $a=b=2\sqrt{3}+1$.
- (18) $C = 60^{\circ} \text{ or } 120^{\circ}$. (19) $100\sqrt{3}$. (20) No.
- (22) $A = 105^{\circ}$, $C = 60^{\circ}$, $B = 15^{\circ}$. (23) $\frac{1}{2}\sqrt{3}(\sqrt{5} + 1)$.
- (24) $A = 90^{\circ}$ or 60° , $C = 75^{\circ}$ or 105° , $a = 2\sqrt{2}$ or $\sqrt{6}$. (25) 30°
- or 150°. (26) $A = 45^{\circ}$ or 135°, $B = 30^{\circ}$ or 120°, $b = 2\sqrt{2}(1 + \sqrt{3})$
- or $2\sqrt{6}(1+\sqrt{3})$. (27) 60°, 75°, 6 yds. (28) It is impossible. (30) $15:8\sqrt{3}:4\sqrt{3}+9$.

LXXII. Page 229.

(15) To find the point E in an unlimited straight line CE at which a finite straight line AB subtends the greatest angle, a circle must be described passing through A and B, and touching the line CE in the point E. In (15) the centre of the circle lies vertically above E, and in the horizontal line through the middle point of AB.

LXXIII. Page 239.

- (1) (i) 10 sq. ft. (ii) 43.3 sq. in. (iii) 148.13 sq. yds. (iv) 84 sq. chains = 8.4 acres. (v) 100 sq. ft. (vi) 151872 sq. yds.
- (2) 4, 10½, 12, 14 ft. (4) 8½ ft.

(94) 321.0793.

(97) $2n\pi \pm \frac{2}{3}\pi$.

LXXVI a. Pages 253-268.

8. 7".

36".

50".

200. 27'.

350.

= 1.

+1.

No.

1).

300

 $\sqrt{3}$

ble.

at

rcle

CE

E

18.

(95) 13.751 ft.

```
(1) \sin A = \frac{1}{4}, \cos A = \frac{1}{4}.
                                                   (3) A = n \times 180^{\circ}; or, 360^{\circ} \pm 60^{\circ}.
      (6) 4227·47 feet.
      (9) 80°, 60°, 90°, 120°, etc. have for sine \frac{1}{2}, \sqrt{\frac{2}{3}}, 1, \sqrt{\frac{2}{3}}, \frac{1}{2}, 0, -\frac{1}{2},
  \sqrt{\frac{3}{4}}-1, -\sqrt{\frac{3}{4}}, -\frac{1}{4} respectively.
      (12) The other sides are 765.4321 ft.; 1006.6 ft.
     (15) 30°, 60°, 90°, etc. have for \tan \frac{1}{3}\sqrt{3}, \sqrt{3}, \infty, -\sqrt{3}, -\frac{1}{3}\sqrt{3}, 0,
\frac{1}{8}\sqrt{3}, \infty, -\sqrt{3}, -\frac{1}{8}\sqrt{3} respectively.
             168 168
                                32592
     (17)
             193' 195' 193×195'
                                                       (19) \sec A = \frac{3}{4}\sqrt{2},
     (21) \theta = \frac{1}{4}(2n+1)\pi.
                                     (22) \cos 5a = 16 \cos^5 a - 20 \cos^3 a + 5 \cos a.
    (23) Both signs negative.
                                                     (24) 318
    (25) A radians; 5.72956°.
    (26) sine, $; tan, $; cot, $; cosec, $; sec, $.
    (36) C=18^{\circ}, a=c=\frac{2}{\sqrt{(10+2\sqrt{5})}}.
    (37) - 1320^{\circ}
                              (38) -\frac{2}{3}\sqrt{2}.
                                                         (39) (2n+1)\pi; or, 2n\pi \pm \frac{1}{3}\pi.
   (41) 1 foot, 120°, 30°; or 2 feet, 60°, 90°.
                                                                         (42) 1040 28' 39".
   (43) - 630^{\circ}
                               (44) - \frac{1}{4} \sqrt{5}.
                                                            (46) n\pi; and 2n\pi \pm 3\pi.
   (48) \frac{1}{2} \{ \sqrt{6} \pm \sqrt{2} \} and 15°, 135°; or, 105°, 45°.
   (49) 90; 2860.28'.41.16"; 7.
  (52) (i) n\pi \pm \frac{1}{8}\pi. (ii) \frac{1}{2}n\pi \pm \frac{1}{8}\pi, or n\pi + (-1)^n \frac{1}{4}\pi.
  (53) 371 sq. ft.
                                      (54) 400.29'.19.85".
  (55) \frac{1}{1080}\pi; \frac{1}{10}\pi; \frac{4}{4}.
                                           (56) \tan \alpha = 4\sqrt{3}, \csc \alpha = \frac{1}{12}\sqrt{3}.
  (58) (i) n\pi \pm \frac{1}{4}\pi. (ii) \frac{1}{2}n\pi \pm \frac{1}{8}\pi; or, 2n\pi \pm \frac{1}{4}\pi.
  (59) 2 14 sq. ft.
                                     (60) 38° . 25' . 32·725".
 (61) 1.2 radians = 76.39416s.
 (64) The proper formula is +\sqrt{(1+\sin A)}+\sqrt{(1-\sin A)}.
 (66) 192 ft., 185 ft. and 9234 sq. ft.
 (67) 2·3 radians=131·779926°.
 (69). The proper formula is -\sqrt{(1+\sin A)} - \sqrt{(1-\sin A)}.
(72) 78° 10′, 70° 30′, 9234 sq. ft.
(73) \frac{4}{86}\pi; \frac{9}{36}\pi; \frac{14}{86}\pi; \frac{16}{16}\pi; \frac{24}{36}\pi.
(76) (2n \pm \frac{1}{2}) \pi, or (2n \pm \frac{1}{8}) \pi.
                                                    (78) 135°, 15°; or 45°, 105°.
(79) \frac{2}{21}\pi; \frac{4}{21}\pi; \frac{4}{21}\pi; \frac{4}{21}\pi; \frac{1}{21}\pi; \frac{1}{21}\pi.
                                                                      (81) (2n \pm \frac{1}{2}) \pi.
(84) 7 ft.; \sqrt{19} ft.; \frac{15}{2} \sqrt{3} sq. ft.
(88) 1035·43 ft.; 765·4321 ft.; 66°.
                                                              (89) 6.981 feet.
(90) \frac{1}{2}; -\frac{1}{2}.
                              (91) n\pi + (-1)^n \frac{5}{4} \pi.
```

(96) 12.

(99)
$$2\cos\frac{1}{2}A = +\sqrt{(1+\sin A)} - \sqrt{(1-\sin A)}$$
.

(102)
$$x = \frac{2}{5}r\pi \pm \frac{1}{15}\pi \pm \frac{1}{15}\pi$$
, $y = \frac{2}{5}r\pi \pm \frac{1}{5}\pi \pm \frac{1}{15}\pi$.

(104)
$$x = \frac{1}{2}$$
. (105) 11-7157 miles. (107) $n\pi + \frac{1}{3}\pi$; or, $n\pi + \frac{1}{4}\pi$.

(116)
$$\sin = \frac{65}{65}$$
, $\cos = -\frac{16}{65}$, $\tan = -\frac{63}{16}$.

(127)
$$4\theta \pm \theta = 2n\pi \pm \frac{3}{4}\pi$$
; or, $\frac{1}{2}(2n+1)\pi$.

(134)
$$5 + \frac{1}{2} \log 2 + \frac{1}{2} L \sec A = 1 - \log 2 + \frac{2}{3} L \cos B + \frac{1}{3} L \csc C$$

(139)
$$m\pi$$
; or, $n\theta = r\pi + (-1)^r (\frac{1}{2}\pi - \theta)$.

(144)
$$\log 5 = 2a - c$$
, $\log 7 = c - a$, $\log 13 = b - 4a + 2c$.

(145) In
$$\frac{1}{4}(2\sqrt{2}\pm 1)$$
 hours. (151) 60°, 45°, 135°, 120°.

(161)
$$\theta = n\pi \text{ or } 2\theta = n\pi + \frac{1}{4}\pi.$$
 (164) $\cos \theta = \frac{1}{4}(1 \pm \sqrt{5}).$

(168)
$$\sin 2\theta = 0$$
 or $\cos 2\theta = \frac{1}{3}$ or $-\frac{1}{2}$. (178) θ .

(182)
$$\frac{600}{13^2\sqrt{26}}$$
 and $\frac{5}{12}$. (191) $m^2 + p^2 = n^2 + q^2$.

(192)
$$-4\cos\frac{B+C-A}{2}\cos\frac{C+A-B}{2}\cos\frac{A+B-C}{2}\cos\frac{A+B+C}{2}$$
.

(196)
$$\frac{1}{4}\pi - \theta = n\pi + (-1)^n (\frac{1}{4}\pi - \alpha).$$

(198)
$$-4\cos\frac{90^{\circ} - B - C + A}{2}\cos\frac{90^{\circ} - C - A + B}{2}\cos\frac{90^{\circ} - C - A + B}{2}\cos\frac{A + B + C - 90^{\circ}}{2}.$$

LXXVI b. Pages 269-275.

(10)
$$-(x+y+z)(y+z-x)(z+x-y)(x+y-z)$$
.

(11) (i)
$$\frac{1}{18} \{6n\pi - 2\pi + (\cdot \cdot 1)^n\pi\}$$
. (ii) $\frac{4r\pi + \pi}{2(m \pm n)}$.

(iii)
$$x = \frac{\alpha - \beta}{2} + \cot^{-1} \left\{ \tan \frac{\alpha + \beta}{2} \cdot \frac{m \sin \beta + n \sin \alpha}{n \sin \alpha - m \sin \beta} \right\}$$

(iv)
$$\frac{2r\pi + \pi}{2(m+n)}$$
. (v) $\sin 2\theta (3\cos 2\theta - 1) (2\cos 2\theta + 1) = 0$.

(vi)
$$\sin 4\theta \cdot \cos \frac{5\theta}{2} \cdot \sin \frac{3\theta}{2} = 0$$
. (vii) $\sin 8\theta \cdot \sin 4\theta = 0$.

(21) 223.17.

ιπ + ‡π. le.

ec.

1200.

5).

 $\frac{B+C}{2}$.

<u>- 90°</u> .

+1) = 0.

 $n 4\theta = 0.$

88.

