IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation
 (716) 872.4533

CIHM/ICMH Microfiche Series.

> CIHM/ICMH Collection de microfiches.

The Institute has attempted to obrain the best original copy available for fiming. Features of this copy which may be bibllographically unique. which may alter any of the images in the reproduction, or which may significantly change the usual method of fllming, are checked below.

Couverture de couleur
Covers damaged/
Couverture endommagde
Covers restored and/or laminated,
Couverture restaurde et/ou pelliculde
Cover title missing/
Le titre de colverture manque
Coloured maps/
Cartes géogrephiques en couleur
Ccloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured pletes and/or illustretions/
Planches et/ou illustrations en couleur
Bound with other materiel/
Relid evec d'eutres documents
Tight binding may ceuse shadows or distortion along interior mergin/
La reliure serrde peut cauzer de l'ombre ou de le distorsion ie iong de ia merge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible. these have been omitted from fllming/
II se peut que certaines pages blanches ajoutess lors d'une restauration apparaissent dens le texte. meis, lorsque cela était posslble. ces pages n'ont pas été filmées.

L'Irstitut a microfilmé te meillour exemplaire qu'll lul a dete possible de se procurer. Les dérails de cet exemplalre qui sont peut-áre uniques du point de vue bibliographique. qui peuvent modifiar une image reproduite, ou qul peuvent exiger une modification dens la méthode normale de filmage sont indlaués ci-dossous.

Coloursd pages/
Peyes de couleur
Pages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées ei/ou pelliculdes
Pagas discoloured, stained or foxed/
Pages décolordes, tachetes ou piquésPages detached/
Pages d́tachées
Showthrough/
Trensparence
Quality of print varies/
Qualité indgale de l'impressionIncludes suppiementery meterial/
Comprend dú matériel supplémentaireOnly edixion availeble/
Seule édition disponiblePages wholly or partially obscured by errata slips, tissuos, etc., have been refilmed to ensure the best possible image/
Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure. etc., ont été fllmées à nouveau de fac̣on à obtenir la meilleure imege possible.

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de reduction indiqué ci-dessous.

The copy flimed here hes beer seproduced thanks to the generoslty of:

Llbrary of the Public Archlves of Canada

The Imeges appearing here are the best quallty possibla considering the condition and leglbility of the originel copy and In keeping with the filming contract specifications.

Original copies In printed paper covers are filmed beginning with the front cover and ending on the last page with e printed or iliustrated Impresslon, or the back cover when eppropriate. All other original coples are filmed beginning on the first page with a printed or Illustrated Impresslon, and ending on the last page with a printed or Illustrated Impression.

The last recorded frame on each mlcroflche shall contaln the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichever applles.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely Included In one sxposure are f! Imed beginning in the upper left hand corner, left to pight and top to bottom, as many frames as required. The following diagrams Illustrats the method:

L'exemplaire filmé fut reproduit grace ale générosité de:

La blbllothique des Archives publlques du Canada

Les Images sulventes ont ótó reprodultes avec lo plus grand soln, compte tenu de la condition ot de la netteté de l'exemplalre filmb, et en conformitt avec les conditions du contrat de flimage.

Les exemplalres originaux dont la couverture en pepler est Imprimbe sont filmós en commençant per ie premler plat ot en terminant solt par la dernid̈re page qui comporte une empreinte d'Impression ou d'llustration, solt par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés on commençant par la premlére page qui comporte une emprelnte d'Impression ou d'illustratlon et en terminant par la dernidre page qull comporte une telie empreinte.

Un des symboles sulvants apparaitra sur la dernidre Imege de chaque microfiche, selon le cas: Ie symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour étre reprodult on un seul cllché, ll est fllme à partir de l'angle supérleur geuche, de gauche à drolte, ot de hout en bas, en prenant le nombra d'Images nifessaire. Les diagramrnes sulvants illustrent la móthode.
pelure.

This Proof is sent to you for discussion only, and on the express understanding that it is not to be used for any other purpose whateoever. - (Sic Sict. 39 of the Constitution.)

Camadian Soristy of ©ivil exnginers.

ESTABLISIIEI) 1887.

TRANSACTIONS.

N.B.--The Soclety, as a boly, does uot hold liself resporathle for the facts and opinions stated in any of its puhlications.

FRAZIL ICE.

ON ITS NATURE, AND THE PREVENTION OE ITS ACTION in Calising Fuogds.

By Geo. W. Henshaw, M.(I.s.U.E.

The subject of this praper is one destinet, 1 believe, to become of increasing interest to EA_{c}, necrs in Northern comotrien expreially to those engaged in works hable to be afficeted by ice, whether throngh direct attack or through fioods cansed by the arrest of its movements. My object is to define the trme nature of frasil, and to suggest a method of dealing with it, so as to prevent its more than suspected agency in producing floots.

Whether the vast masses of eomminuted ice, whieh in places are found to underlie the surface ice, are cmiposed of true subacheously tormed ice, or are made up largeiy of drifted smow, and the broken seates of surface ice carried down by the eurvent, is yet to be positively determined ; still, from the evidence which exists of chomons cuantities of spongy looking ice seen rising from the luttom, it is rasomable to eonclude that whatever may be the proportion of these substanes true frazil is, really, their prineipal constituent.

Now, for an emgineer to meet a dififulty with intelligenee and suceess, it is almont essential to understand the actnat character of the encmy against whieh he is to contend. To speculate outhis bring us somewhat out of the sphere of the practical enginerr and into that of physical seience; but we are oftern cmmelled to this course when seientific men ueglect the subject, or leave ns in the dark.

That so little of the nature of frazil is known among enyinecrs is not surprising, when we find that the haziest untions, if any, regarding it prevail anong our highest romentic anthoities.
At a meeting of the B.A.A.S., held in Montreal on the 1st September, 1884, in presentiug a paper on the subject, the wrixer was contronted with a specimen prepared by Sir William Dawson, showing his idea of the formation of frazil ice. It was a piece of lead pertorated or cut into decp flakes on its upper surface, by the action of a current of acid passing over it.
As explained by the President (Sir William Thompson), frazil was supposed, similarly, to be the product of currents of water passing over and disintegratiug solid anchor iec, exposing, as he expressed it, its 'bones," just as rock is worn into irregatar forms by the removal of its softer parts. Now, it is lifficult for me to eonceive how anyone, pract!cally familiar with the appearance of frazil, conld attribute its minute, needle like fragments to a waterworn origin, or believe that a smbstance so developed could be produced in large quantities. We do indeed, in the spring, sec iee disintegrated to its boues, and falling to pisces, but that is only when it is exposed to sun and air, and when the formation of frazil is already a thing of the nast. This experience convinced me that science had as yet no information to give; and that up to the present the best authorities regarded frazil ucrely as a curious formation, of rare and limited occurrenee.

I thiuk many of us are hasty in assuming that all is known about the philosophy of ice formation. Tyndall, when he overthrew the theory of Rumford, did not, I think, exhanst the suly.ect. We know that water can be brought above its boiling point withont cbullition, and we know that it can be brought below its freezing point without congealing. We know that superheating reguires pressure, but how much do we know of the conditions accompanying supercooling?

I belicve that ice never forms in water without an independent nucleus; that when it appears frec on the surface the nucleii are supplied
by minute particles of rapor, which, lecoming frozen in their ascent fall back mun the water, form perlaps, the very stars seen in a bloek of iec when melted throngh in lens by the sun's rays.

That frazil, like anchur iere, forms muler wuter meems munestionable. Mr. Fraak (ithert, engine er, contrantor for derpming the clamel through
 of it. coveriag the buttom in dhas mases of a sponyy apprarace, throngh which his pole swipt with searedy preeptible impedinent. Ho alve observed it unn a wire rope extembed lumath the water, between his ressels, theking like lomeches of iron tilinge lifted up, ly a magnet. In this case la mutieed the curions fine that garts of the rope were bare and othere coverel with the growth, which sermed to mequative the idea that the colld had been conducted through the repe. Under the eiremustances it is phain that the exposure of the ends of the rope had little or unthing to do with the formation of the ice.
The condusinu 1 lave conn to is, that frazil ien is formed in currents eold ennuph not ouly to preserve its erystals but to indace their formation.

But why should it prow haxuriantly on one spot, and yet refinse, as we have seed, to grow upon a closely adjacent spot of a charater precisely similar?

Well, that is a culextion yet to be settled; but with your indulgence I will try to ofter me exphatation.
All whe have observed the action of tine dritting snow, when driven by the wind over a plane surfice, such as a root or a railway platform, will have notieel that it does not swepl alone in clouls, or rolling volunes, but in longr rifts or streaky with bare spaces between. With every lull of the wind these streak rest for a monent, to he swept away by a succerding blast into new coubbinations of a similar form, according to the rarimions, in fores and direction, of the wind.

Nuw it is evident that these rifts are prodnced by the smali inequalities of the surface of the phane. 'That the bare places are where the wind in least obstructed; and that the showy streaks are the eddies where its forec is partially obstrated. Sow if this is aduitted, we are brought to the important conclusion, that if the obstructions on the phane remain unalered. and the direction, volume, and forec of the wind continue unchanged, the streaks of show with the spaces between will always neculy prociely the same position upon the plane.

If we now apply these observations to the flow it' a river, we shall find a close epproximatom to sheh supposed conditions. For takiug the case of a strean with a rocky bed, we have the more or less permanent obstructions on the brittom; while. whlike the air, the volume, speed, and direction of the water are but little affieted by smperfieial influcnees.

The bottom of sus a river presents a confused succession of irregular obstructions, around, over and betweeu which th water rushes in every direction possible at onee, and at every varicty of speed. Nlomy it* main chumel, greater fredem gives the river eurrent its highest veloeity, so raising its volume at the stilnow reaches that backward currents or eddics are formed at its edgew

Looking s.t the tronbled tumblel surface such a river sometimes presents, one is tempted to belicye it a hopelessly involved chaos of eemplieated motion; but chere is no chaos there. Every movement is made under as strict a law as governs the piston of an enginc. Esery bulge or swirl that we notice at some partienlar spot comes from the self-same sunken rock or cramy, and cach wonld repeat itself precisely. were it not for molecular variations. which we will out here take aceount of further than to note that they modify, in a minor way, the results of which I am about to speak.

Bearing these faets in mind let us take a horizontal or plano seetion of the river.

Here we have in the enrrents so intersected, instead of the long streaks seen in our suow drift, an irregular network with meshes of every size and threads of ' very thicknese. The threade represent the eurrents, and the meshes the eomparatively still spaces cuetosed. If we wish to represent the moleenlar effects alluded to, they may be shown as a sort of fringe of eddies along the sides of the threads.

As in the ease supposed the general plan and position of the network is permanent. and as we know that water is a bad eonductor of heat, it is plain that a sudden cooling of the , water up stream would canse the threads of the network to became colder than the nelosed meshes; while the reverse would be the case on the water above beooming warmer, so that objects placed, the one in mesh and the other in the thread, would be affeeted differently as to temperature.
their ascent n in a block
nestionable. mel through preat beds appraruce, diment. He ar, between a magnet. e were bare ive the iden Under the 1e rope had

1 in currents ndnce their
refuse, as aracter pre-
ndulgenee I
vhen driven y platform, , or rolling en. With swept away a, according
inequalities e the wind es where its are brought nt the plame of the wind retween will er, we shatl For taking leses permathe volume, ; superficial of irregular thes in every Alouy it ${ }^{*}$ hest velocity, currents or
r sometimes ed chaos of movement 1 is ne. Every nes from the elf precisely, t here take or way, the
dano section
long streaks of every size currents, and we wish to wh as a sort the network ctor of heat, would cause sed meshes; ve becoming other in the

Now for the formation of frazil.
The river is cooled down mearly to congehtion ; there is, we kuw, a ecry small margin to gu umin frewiug puint. The thermemer gers down to zero or below. The river in its efliute to purt with its remainiug heat steams, but its eurrent is tun rapid to freze aver; and so a supercoated enurent is borne down throngh the network.
The result is obvions, ohjerets flut present suitulde meteii in the threads are corered with a growth of frazil, while similar oljgeets in the meshes remain lare. Similarly, on a sulden chaure to a warmer temperature the mases of frazil are tha well frem the ir frail anchornge, rise, and are earrived down lys the strean. A plowemem netiend by many obecreers. This theory nlso explains why frazil diwes mot form ont sandy or fine gravelly lottoms; for wherever there is any shifting of the obstruetions on the botom there will abow lwe changes in the threals and meskes preventing that continume contact with the end enrent whel is nceessary to the firmutinn of frazi, or so misime thread and mesh as to bring the whole ulkwe the reprired temperature. I claim for this theory if not abmalute demmstration, at lrast the merit of aceounting for all known faetw in comeretion with the nature and aetion of frazil.

Frazil, an we know, apmars in the firmonf it mass of fruil particles, with very little colnesise power. It in phain then that in smull qumutities, or with mything like a free pasage, it wombld pus away harmessly seaward. It conld nut undrer suel circmintances beome sufficintly dense to stop even its own pasume. "xappt in ehlies, welle spaces, or " culs de sae."

Uufortmately in the St. Sawrence there are tuo many of ail these. Every shoal or latture affords such anylmus, iuto which the frazil gradually pnoks. Frigments of ice are thrnst into the masw aflording new crumies for aceumulation, until the flow of the stream is contined to the deeper or more direet chamels. In their turn these elamels will be most choked at their bends, eprecially whete shalk or low lying ishands exist on the outer side of the curve of the enrrent mad receive its centrifiyal impact.
Now when we consider that the volune of a river like the st. Lawrenee is not greater in winter than in summer lout rather leos, and that at certain $p_{\text {uints }}$ there are flowels one year. and nome the mext, we naturally conclude that the flowds are eansed by unere than uswal dwatruction below, and not by inereased volnur. The tronle is, ilurefere, heal and may be removed withut injurimaly atieeting other parts of the river.
I revert ouce more to the nature of frazil. in order to clearly point out the difference between it and surfier formod ice when in motion and floatiug down stream.
Surface ine may be ceen in process of i mmation on the afen elannel, shooting out their lanes from floating nuckii, or, more frefuently, projeeting itewlf from the shore iec uuder the lee of salient points. It forms thin sheets thromsh which the oars of passine boata erash like brittle glase. All along the open chamel fragments are broken off by the action of wind and wave, and thoat down mutil stopped by some obstacke. In eold weather these are either cemented together on their way or cutiekly consolidated when thry arrive at a barrier, and thus, as a rule, is formed the surfiee erust over the opeu chamel. Where the water is still or the current slugrish the openiur chases smoothly by the extension of the iee from cither sile.
A clamuel elosed by packing is always more or less rough, and it would be quite possible, by eritical examinatien, to determine the relative foree of the carrent at different places, at the time of its takiag, from the degree of rouglness in which it was left.
There is no evidence to show that floating iee in earried beneath the fixed iee to any great extent, except in a strong eurrent. Even then the tendency to rise in parking seems ne:arly to balanee the downward movement. LIuge hummeks are formed in such plaees, and the obstruction cansed by them is due chiefly to brokeu sheets caught vertically, or at an angle with the surfiec.
The charaeter and action of frazil is totally different. Rising in masses from the buttom, its bueymey is so sunll that it floats to a considerable distance below the surface; while so little is its colesion that when the mass beenmes coupseted enongh to elevate its upper face above the water, it falls apart and spreads over the surface. It often attaches itself to floating ire or forms a melens for a new sheet of ice; aud should severo cold sufficiently consolidate the whole, the surface ice would be swept beneath the barrier iee, in the thain of the frazil to which it was attacled.

The Ca ughnawnga indiana, who in winter daily tranapart the uails to and from Lachine, statu that frazil or aiusin ice rumn oniy in the early part of the winter; and that wien it ceanes to come lown, they know that the channef is closed at the uprer end of the lake. If thim in wo, it -hows cither thut the fiazil lirmed below the caneade rapides remains flame to the botom as anchor iee, or, whet is more likely, that being arreated by the frierion of the owrlying ice, it is thrust aside und jummed inetween the ice and the lottom, over the battures or moals. At any rato, it gres lin prove, than withont an open channel, frazil is not carrical down to my great extent from lake S_{t}.-Lonis. As a factor in Montreal llmate, burethere, we ned menk it no lurther up than the loot of the Lachine rapids.
By keeping the rianmel neen firm inese rapids sown the the for of Montreal [shanf it wond seem that the fromil would be carried past withont serions lonlyment ; but as thre alymes ns yet no means of effecting this uhyere, mir natural resomrse mose be to sis prepure the bottom of the river mas to five as fien " pasmage to the frazil iee us we possibly can.
An will readily be intorred, I ann womely of the pinion that the disastrous spring funde firm which the City of Moutreal has suffered, wre cansel primarily by the moking of the river loring winter, by whel the wrea of the waterway is an reduren as to be nuable to carry away the increased volume promined by the melting of thes snow. Of' cours his is ageravated by the down flow of ine from the laken ab. :e.
This latter difbenty it has bost propusel to prevert hy placeng ice brenkers, or rather ide arresting piers in lake St. Lonis, intended to keep it back motil the barrier betow has broken away.

Curionsly enough, this contaivance, thugh one of the ofdest known, has of hate ben received by some with so much euthosiasm, that disputes have urisel as th who han the lumen of lirst suggesting it ; not amonge engineers, however. It has be on asel in varions be netincial way, eliatly in securing an ice hriblee at some danespons mint. The latest cass: of the kint, known to me, wather the purpose of making a road noon which to hant stome ant orhor material for the repair of the Carillon dam; " jurt oft which had beod modemined and carriet away the previnus year. 'Thr athenpt, which was entireiy sucerssful, was made anter the dimetion of Mr . Stork, sumerintenting engineer of the Ottuwa River Camals.

No duabt such "phan aplied to Lake St. Lonis would ameliorate spring flonds at llantreal if wr were sure that it would entinil no other consednemes. Bat there romains a serions freation ; whether in so doing, the ice womld now pack on heavily atowe, as to Hool the upper country, and the water whtain so ereat a hoad av 10 carry piers and everything else before it, and bring a wose disaster upon the eity.

Froun the foregoug comsideritions it secms reasonable to eonclude that the direction of any offective op rations for the prevention of floods, should be in the following lines:
1st. Sirnightening the ehanels; or where this cemot be done enlarging theu at their bends, by enting away the inn. \mathbf{r} sides.
2nd. Clearing away boulders and other clevations, on the shoals ontside the bends, wherever the thrust of the strean iends to earry iee and frazil into wedge phaces and culs de sacs, Giviug the botom a downward irade of the strean to give free egress to iee entering from above.

3rd. Removing over the whole area of the part of the river afferted, all boulders, ledges and wher projections of the bottom. Thorough eutting all sab chamels, so as to give them a free diselarge at the outlet; and benching such shatlow slopers along the sheals as in combination with the surliae iee afloret the natural traps in which the frazil is caught.

Since writing the above a recommendation of the (iovernment Com. uission on Floods has been partially put into effeet, namely, an attempt to keep open the river chamel betwen Three Rivers and Sorel, by means of versels fitted to break up the iee.

White very doubthul of its snesess as a means of preveuting floods at Montreal, I nevertheless beartily endorse the experiment. In such a diffient quextion the exprerience gained in an elfort of this kiud uust greatly help ou a solution, and may had to other discoveries of benefit to the eountry, which otherwise would remain unknown.

Moutreal, 14th Dec., 1886.

