The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverturr `etaurée et/ou pelliculéeCover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couizur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculéesPages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachéesShowthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Compr nd un (des) index

Title on header taken from:/
Le titre de l'en-tête provient:

Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison

Additional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

Now Sories.

 TORONTO, APRIT, 1846.Vol. II. No. 4

THE SCIENCE OF AGRICULTURE.

A PRIZE ESSAY.

BY MR. ROBERT COOPER.
We take great pleasure in, publishing the very excellent Essay upon the Science of Agricul-ture,-the author of which received the Goud Medal awarded last autumn by the Home District Agricultural Society. As this is the ablest written paper upon Agriculture, of Canadian production, that has come under our notice, we conceive it due the Author, as well as the Agricultural Society through whose agency it has been brought before the pubiic, that it should be published without mutilation, in a single number of the Cultivator. Many who are not in the regular receipt of this magazine would probably be anxious to have an opportunity of reading the Essay in question, and to give all such the privilege of being in possession of a copy, we shall publish a larger edition than usual, and afford them upon the following scale : a single number, five pence; twenty numbers, five shillings; one hundred do., one pound. All remittances must come free of postage to the publishers, and it is earnestly requested that parties wishing to secure extra copies of this number of our journal will furnish their orders without delay.

It is bighly gratifying to see preductions ot
this kind emanating from the Canadian press especially when the author is practically as well as theoretically acquainted with his subject, as is the case in the present instance. This noble exainple should be followed up by every Agricultural Society in the province. A portion of the funds of each Society could not be more judiciously expended than in awarding prizes for well written Essays, or papers upon the various branches of farm labour;-and all such as are calculated to be useful should be published.
Such a course as this would assuredly tend to enlighten agriculturists upon important points which are at present enveloped in mystery, and would also give ample evidence that such associations, under proper management, are calculated to effect important changes for the better in the rural districts of the country.

We understand that the second-best Essay,the author of which received the Society's Silver Medal,-is highly creditable; and unless some other steps are taket' to have it published, all, or part of it will appeat'in some of the future num. bers of the present volume of the Cultivator.
It is truly desirable that the Cultivator should contain as much valuable information as possible that has a sole reference to Canadian agriculture ; and to encourage native talent, we shall make it a point to withhold from our columns no original article that is deserving a place in our widely circulated magazine.

Agricultural Ohemistry.

It must liave been lughly granifying to the Iliends of agricultural improvenent, to bave read Mr. J. W. Gilmouns communication, which apjeared in the March number of the Cultivator. It omens well for the future prosperity of Canada, to see farmers' sons place themselves uader the tu:tion of men of such distanguished attainments in agricultural science as Professor. Johnston. There are a number of aspiring and zealous young farmers from the United States now in Edinburgh, who daily attend the Laboratory of the Agricultural Chemistry Association, for the purpose of acquiring a knowledge of the science of their exalled profession ; some of whom appear considerably piqued at the idea of having so successful and talented a ri ul from Canada, as our correspondent, Mr. Gilmour.

We have not been made acquainted with any movement to improve the agriculture of this province that is half ≥ 0 well adapted to ultimately catablish a sound system of Education for the prot ductive classes, as that of placing talented young formers under the tutorship of euch materly munds as Prof. Jolinaton. It must be obvious to every one at all intereated in the agricultural prosperity of this country, that there is a necessaty for the farmers' sons to be made better acquainted with the causes and effects, which influence favorably or unfavorably, their several pracucal operations; and in our opinion, this object can best be attained through Agricultural Oolleges and Seminaries of Learning, where both the science and practice of agriculture form the essentual features of the pupils' educatiun. Suck' institutions will doubless be established in Canada, when the people become better acquainted with their intringic meris, and complete adaptation to expand the genus of the young aspiring farmer and arisan.

Docision of Chanater.

Every person has a charater of some sort or other, but eyery person is not possessed of that decision of character, or rather of 80 much decigifou of character as they ought to have. By this. we mean that prompt and epeedy modo which some have, of coming to a determination now to act, and then immediately commenoing the acfian accordingly. It vill be perceived that it does not follow, by ang means, that such persons plyays act right $;$ for many of the most mieked
and attrocious deeds recorded in history, exhibi: astonushing trats of decision of character, which. if exerted in a better cause, would probably have been as productire of good as they were of eril Nor is it necessary that the act should be one of great or nomentous importance worder to exbibit this trait, although in such acts it is the most conspicuous. In actions of enrall and trivial innportance it is not so plainly seen, or not 5 s, much is thought of $i t$, when exhibred, is the lack of it is, when persons stand dallying and ralking bour after hour whether it is best to do so and so or not, and then perhaps, fifter commencing it, tall back and begin again to parley and make inq̧uires and objections, and at the same breath gire reasons for and against the doing what was wanted or attempted to be done. Yuang pecple should cultivate a habit, when anything presen's itself that requires their action, of looking at both sides as rapidly, but as carefulty as porsible, and of immediately deciding upon a course, and of following it with energy. By doing thes, in cases of every day occurrences, it soon becomes habitual, and will then be exerted with comparature ease, when any great emergency happens. They should also in the course of their reading, note thnse instances of decision of character which present themsolves, whether good or evil, and thus aid their judgment in conducting their own morements in futurc. If his trait could be caltivated, it would make a vast difference in society, especially if guided by snund jodgment and the dictates of morality. Many of the evils whech society suffers, arise from the vacillating, andecided course of individuals, who are desarons of doing well, but are kept from it by a want of that promptness and energy in deciding to go forward.

In all branches of business, in all purnaits of life, whether in high or lowly sphere, decision of character is essential to success, and although it may sometimes be directed in the wrong chanael. and be productive of evil, yet the chances are in favor of ats exercise at all times and on all occasions. Endeavor then to be decided-to be prompt, active and energetic.

Ta are Oals in feeding Horses.-Bratse or crush your oats in a mill, or otherwise as convenieat, and your horse will become fatter on half his usual allowance of these oats than he bas before on double the quantity unprepared. If you cannot bruise the onts, pour hat water on them and let them soak for a few hours.

THE FROFESSION OF AGRL, ULIDRE AS A SOIENOE.

Agnenliure, if an imperfect syatem of tillage mar be sucalled, has nucesanrily been more or lres practiupd in all aqes and all countries; and sol.ng to land was ferti'e and the population spatered, the rodest art sufficed to obtain from the eroil, suffimemt for the support of the few who cilled it But ns unin became mors numerous onl more imelligent, they improved upon the common mpthods if culsivation, and readered more available this most important source, whenet the first wants of a people are supplied; anl without which communities could scarcely exist-certainly could not increase in numbers, wealh, or imporiance. Still these improvements were but improvements in the nrt of culrure ; the land was perhaps better tilled, and the inplementa of bushandry less rude of construct.om. But the utmost that was attained, was the taking better advantage of the land's natural furthit:. It remained for the genius of the present age to discover and apply to agnicuiture certan scientufic principles, so as to increase the naturat productuveness of the soil, and cause it to yield its fruts more plenteougly for the support of an incerased population. Art sufficed to teach man to ull and gather she produce of the soil. It required the nid of science to enable lum to do tins in such a manner that the same soll should yueid an increase year after year, and century afier century.

* Agricultare, in common with otherarts, may be practised without any knowledge of its theory, that is, estabhshed practices may be imitated; but in this case, it must ever remain stationary. The mere mutine practitioner cannot advance begond the lumits of his own particular experience; arid can neither derive mstruction from sach aecidents as are favourable to his object, nor guard against the recurrence of such as are mm favourable. Ife can have no resource for unforeseen events, but ordinary expedients; while the non of seience resorts to general princigles, rnfers rents to their true causcs, and adapts his meat res to mect every case."*

This doctrine is now by no means new. Many years ago it was expounded, and the posithons it containe, proven and admitted to be correct; while

[^0]dirctions were given, by tuliowing which the might be rendered practically useful. Bat like many other important and wholesomo trubls, these were for a long time litle regarded, and seldom appled. This may have been owing ta that averseness to innovation so general among agriculturists; and, perhaps, in some ineasure to the want of education among large portions of the rural papulation. The removal of these causes is now apparent. Fresh difcovertes have been made, and others brought more, prommently before the public; and agriculture now, ble other arts, owns the beneficent aid of science. The people of Britan lave become convanced. that unless their soil can be made to produce much more than it does at present, the consequence of the further increase of population, must be an increase of misery. And the people of Oanada, it is hoped, are generally impressed wath the incontestible fact, that the produce of therr soll is, and must contunue to be, their only tra! source and means of prosperity.

It was not until about the middle of the seventeenth century*, that agriculture began to be thought of as a science ; since which time many able men have wniten on the subject. Still, as in every other branch of learning, the more that is made known, the wider appears the fie!d of inquiry, and the greater the room for improve. ment. Many important discoveries have been made, but they convince us that there are more to make; and the vast advantages derivable from the improvements already become general, should induce us to attempt others; ns well as to adopt those already proven ta te adrantageous.

In this Province, the works of the great wnters on scientific agriculture, though of immense value to farmers, have not obtained a very grne ral circulation, nor have the principles and practice taught in them, been to any. percept the extent adopted; notwithstnnding the fact that most of them are as applicable to the climaie, soil, and circumstances of Canada, as to thos. of the many partz of Europe; where lhey are : r. usé.

* Rotation of crope, and the culbisation of clover aud tarnips as fodder, were first recoenmended by Dilythe, in a work frat publiehed ia. 1649,--Soe Jackpon.

The science of agriculture in Europe nas advanced but a few steps compared to what it must attain; here it has done much less. It has beer. supposed that the soll of Britain could be made to produce nearly double the quantity of produce now obtained from it. It this be anything near the truch, in speaking of pethaps the highest cultivated land in the world, how much more correctly might it be said of the soil of Canada, reclaimed for the most part from a state of wilderness, within the last quarter of a century.

That the progress of scientufic agriculture in Canada should be much advanced by the writer of these pages, he has no right to expect; but the effect will be good, and his labour amply repaid, if he does but aid in stimulating inquiry,--the materials for forming a good agricultural education are by no means scarse; it is the desire to obtain and profit by the information that appears to be lacking.

Ih is proposed to consider the subject under the following general heads. 1. The nature of soils. -2. The manner of treating them, rotation of cropa, \&e. 3. The nature and use of manures; and lastly, of grain crops, and their diseases.

The first knowledge necessary for the guidance of the agriculturist, is that by means of which he may discover the nature and capabilities of the soil upon which he intends 10 em ploy his eapital or labour, and from which he hopes to derive has support-this he must underatand before he can gain a proper idea of the method of making his pmperiv avalable.

Our first consideration will then be, of the kaiure of soils.

The soils consist of those substances which having been washed from the higiter rocky parts oi the eath, and modificd and increased. y the action of spontaneous vegetation and its decay, rest at varicus depihs upon the substrats.

The various descriptions, or parts oi soils, are, Lirst, elay, which in its pure state, is a compact saberance, retentive of water, and more impervious to the uir than any oilier kind of soil, consenuenty the most dificult to bring into cultuvation. Secondly, sand ${ }^{*}$ or gravel, which is of an apposite character to clay, being loose and ancokesive, and consequently allowing moisture to

* These kinds of soil are distinuuished by the monas aliceous (from th Latin, slex, a fint.) orady at gravelly; ana rrgillaceo'is of clayey, Fone the Lazin, argilla, white clar.)
pass chrough without producing much fertilizing effect; by itself, it is from this and other causes, comparatively barren, as clay is unproductive from opposite reasons; mingled logether, they form what is commonly called loam, (a term that may comprise nearly every cultivable soil,) their union bringug into action the virtues, while it corrects the defects of each. The thard element of the soil is lime, or calcareous earth. This substance as it exists originally in the suil, acts an useful part in assisting to blend the two just mentioned; according to the chemists it is also of service in fixing the carbonic acid wheh is generated by the decomposition of vegetable matter in the soil, or which floats in the aur; this valuable gas passes with the moisture into the roots, and becomes an important agent in the nourishment of plants. Lime, after having been esposed to the action of the fire, more easily absorbs moisture, and, as is well known, is of great value as a manure; being a powerful decomposer of animal and vegetable matter, and hus renderng them fit to promote vegetation. These three substances then, clay, cand and lime, logether with magnesia, which exists in smaller quantitics than the others, form the ingredients of all solls; and the fertilities of the soils, as well as their capability of producing various kinds of plants, depend upon and are influenced by the relatue proportions of such ingredients. By means of chemeal analyeis, the exact state of the soil, that is to say. the proporionate amount of its component parts, niny be ascertained. To those who may be inclined, and have it in their power to avail themselves of this highly useful means of forming a correct judgment as to the nature and best manner of treating their land, the numercus works on agricultural chemistry will be an efficient guide ; the experimentalist, however, must bear, in mind that in order to obtain anyihing like a correct idea of a field, ('o say nothing of a farm) he must take specimens of soil from many differ ent places, and form his conclusion from the var rous results. Unless he does so his experiments camot be depended upon, especially when the land has not bren in cultrvation during a numu b.r of years, in consequence of the varicus portons of the soil not having become sufficientls umblgamaicd. When, however, as in England. and in the more carly selled parts of this province. fields have become equalized ns it weres. and capable of cocaplete cilloge, chemical anals-
sla may be made use of to advantage ; and having by this means discovered the nature and properties of the soil, the ogriculturast may apply the appropriate remedies, and in his course of husbandry, be gulded by his knowledge of what his land is netually capable of producing.*

A move rendy method, and one of much more general use, by whel an opinion nay be formed as to the nature of a soll, is from the trees and vegetables whinch we sec it produce. The vege. tation will be the eflect, and indicate the quality of the surface soll in its natural state; while the lorest tumber, m its size and vigour of growth, is mdicative of sts streng'h, and in its species enables us to judge of the soil to a greater depth;still, neither of these are to be implacitly relied on; some plants may be the produce of seeds ac. cidentally occupying the land, while others labor under the disadyantage of seeking nourishmevt in a substance which has not been sulijected to the ferthizing influence of the air and rain. by being opened and disturbed; this is apparent from the well known fact, that a field after being ploughed and then allowed to remain without further tillage, will become cayered with herbage not only ot a different description from that which ti bre before it was disturbed, but also of a much more luxuriant growth. A similar kind of change 19 apparent in forest land if it be negiected after the timber is removed; the soil again produces trees, but of a different species from thosewhich formerly occuped it. The poplar, the einif, or raple, may be seen growng about the decaying mots of the pine or she oak. These effects are

* For practical in rormation as to the methads of analysug soils, the reader is referred io 工nudon's Encycloposila. The limits of an essay would not permut of entering into defall on this branch of agricultural science. The following frmatis, however, we interesting, and may be eschal:-
- There are few cases in which the labour of enalytical triats walt not be gmply repaid by the certainly with which they dunore the best methods of melioration; and this will particularly happen when the defert of composition is fonnd In the proportinn of the primitive earths In supplying orginic niatiter, a temporary food only, is provided for pluils, which is in all cases exhausted by a certan nuuber of crops; but when a and is rendered of the bear possiblat cunsulutian end texture. .we hereyard to t:s warthy paris, itn fertility may be consodered as perinemenily astodos bnhrd."--Sec. 2i36. And shis may be dunaby suplying such ingred ents As have bén proved

caused by the fact, that different portions and properties of the soil are broughs into action.The primitive wrads were the produce of the cand, the loam or clay which was nearest the gurlace, but after this has been mingled with the other portions, and those exposed to the action of the atmosphere, a new substance become fertilized, and produces a vegetation according to uts properues. Again, it is with trees as it is with plants : each description exhausts a certain portron, that is, principally requres for 18 growth one component part of the soil, while another hind of aree or plant draws more heavily from onother componett part; now, where the ame kird follows annually; it either, by decomposition, or by means of the falling leaves, returns 10 the earth the same material of which it continues to exhaust it, and still continues to flourish in the soil which itself is made to supply and renovate; tut this lind of tree or plant being once destray. ed, other portions of the soil which have long lain dormant, send forth their spontaneous vegetation, and a new race of trees or herbage takea the place of the old. In judging then of land before axcupying it, the natural growit, whether of trees or herbage, may be advantageously taken into consideration; but it is also important ta discover what description of son lies beneath the surface, and what may be accomplished by a pres. per mixture of the various rarts.

The next thing to be considered is, the bett way of turning the soil to good account; that is, the obtaining from it the areatest amount of produce at the least expense. He is the best agrin culturist whosucceeds beat in doing this, and will succeed in proportion as ho anderstands and applies to practice, scientifio principles. The proper course to pursae, will depend upon the nas ture of the soil to be worned, and in a greatmensure upon the climate under which is is situated. The climate m t only waries with a couniry or district, but is frequently very different on the ${ }^{\text {r }}$ ad, nining farms, and even in different parts of one. The slopes facing the south, will be fiagd muoh warmer, and on thent crops will come te maturily ard ripel, in a shorter apace of tima than on the levels or those whicl incline in tnother direation. The practical agriculurist knowe well hoir to place his omps ad as to take adyan.' thge of the varieties of surface and olipate on kin'

is that in which the alternations of heat and cold are most regular, and the changes from one to the other most gradual ; but judicious management may guard against even the disadvantages of climate. We seldom (in Canada, at all evente) cxperience much inconvenience frum excessive leat or dryness,-the complaint is generally of wet and cold. The cause of this in America is obvious, As long as a country is, for the most part shaded with trees, the dense foliage intercepts the rays of the sun in their passage to the earth, and comsequenti'y prevents them from communicating heat to the soil. Again, from the aumerous swamps and nevers, and immense mass of vegetation, fogs and vapours atize, preventing the earth from receiving that modicum of heat which it otherwise would. These fogs and nopours are caused by evaporation, which drives back the heat. When the forest is taken ofl, and the country drained, these causes no longerexist ; and the climate consequently undergoes a change, becoming more facourthle to agricultural pursuits. 'Prig has been the case long since in Britain; white in America, the change is beginning to take place. We know, that in what are called the "older parts of the country," the winters are satd to be less severe, and certainly are of shorter duration, than in the "newly-settled" districts. Still great inconvenience 13 often felt in the former, as well as the fatter, froin excess of monsture. This may be obriated by a proper system of dramung. This is a subteret to which the attention of men of ecience in Liurope is now very generally directed, and their dincoveries-and discussions have led to much insprovennent in the system of ggriculture, on the other side of the Atlantic, white inuch wase tand has beeatraught into cultuvation by tus means.
"Thorough draining", we hold to be the first uing uecessary to make a farm avallable to its full entent, whatever may be the contistency of the suil, fand in thas Province, as well as else-, where. Not on'y does this desenve the attention more to exhaust. The farmer, by this means, wa of the farmers on "old land," which has become, has been well said," adds to the available extent by constant tillazge, nearly assumpla:ed to that of of his possessions."
the o!d counury; but also of the "sefleer," who It is now necessary to speak of the treanment may, by diaining az much as the rough nature of she different kinds of soils. Draning, of whicd of kis farm will permit, quye to himstif ,he ure, sonpeching bas been satd, ss universally admittad ofkuget gropnd, from whein tho young grain is, to be whful and necessary to the proper masageireguenty ueatroyed by tho eating of water.
troyed atid prevented by the stagnation of w in and upon the land. To the numerous rlas of farmers who have their land undrained, and are great losers in consequence, from the wrong imprestion, that it does not require drainine, beng already dry enough, the following pas axyw, from perhaps the most useful work on agriculture that has issued from the presa, may be of service:-
"Land," says Mr. Stephens, "thnuyh it does not contain such an abundance of water as to obstruct arable culture, may neverthelese, by its inherent wetness, prevent or retard the lust. riant growh of aseful planes, as mach as dectdedis wet land. The truth is, that deficiency of crops on apparemly dry land, is freguently attributed to unskilful husbandry, when it really arises from the baleful influence of concealed stagnant water; and the want of skill io shown, not so much in the management of the amble colture of the land, as in the negleoting to remove the true cause of the defic ency of the crop, namely, the concealed stagoant water."*

The same writer gives it as his opinions that there is scarcely a farm "throughoun the k ng. dom," which would not be muph the better for thorough draming. If thas be true with regand to Briain, it is certainly so in Canada.

The fact is, that by deep-drnining, the agricultatet bringe into use an additional portion ofsini, and consequently enables his crops to absorb more nutrinemt. The water being onse drawn off, the anil will beas tillage to a greates depth,-it may be ploughed and trenched at deep as the level of the drain; by this mesns a fresh substance as turned up, and mungled with the surface soll which has become exhausted; but going below the surface again acquires the materials of vegetation. Tlie consequence becessarily is, that the land is rendered capable of pielding a greater number of crops wathout being exhausted, from the ample fact, that there is nuch sonsething bas been satd, is universally admituod
co be tisful and neceasary to the proper mans gement of ail desariptions of soil.

First, of Clay.-This regaires more labour to bring $t 0$ and keep in a state of cultivation, than the onter soils; nevertheless it is known to contam the materials of vegetation to a great extent, Int which can be of no service unless so pulveruzed as 10 admit of the passage through of air and moisture. Both practical experience and scipnufic experiments have shown that no soil, howrver rich, will send forth vegetation, unless subrected to the action of the clements. Clay, being compact, keeps all but the surface out of the reach of this fersilizing influence, and prevents the rooss of plante from penetrating through it; m order then to render it useful, the substance must be broken up and kept friable. To do this, it is neceseary to mingle wila the clay some substance of an opposite nature, as sand or gravel, -Where either of these exist as subsoil, deep ploughing at once suggests itself as the best means of melioration; by this the very nature of the soil is changed, and becomes a rich loam. \rightarrow When, however, there is no subsail of this description, the application of a pulverised substance, such as sind, dust or lime, will assist to separate the particles of clay, and cause them to contribute to 8 getation.

Sand forms a portion of nearly every soil; when its proportion is too large, some means are 'required to counterbalance the evil and render the land fertile. Sandy soils, which, according to Sir Humphrey Davy, are properly those which contain more than seven-elghths of sand, requirs \checkmark leas labor to work than those in which clay is the "predaminant material. But they require in a greater degree the ad of extraneous matter ta keep up the requisite mossure, temperature, and consequent fertulity; and as clay, in order ta take $f^{\text {advantage of ats virtue, requires the aid of ather }}$ sobstances to separate the partioles, so sand does to give it tenacity and firmness. In order to improve all kind of soils, a system in yery general use is that of "summer-fallowing;" a system yrrongly advocated by many and as earnestly deprecated by others. The real solution of the question seems to rest upon the fuct, that whether the method be beneficial ar atherwise, depends upon the nature of the soil tabe dealt with: and as many of the erroneous ideas upon this pubject are owing to a want of knowledge consceabing the different properties of the solls, and their manner of treatment, the qubject chaty be properly conoidered bere,

A heavy clay soil will undoubtedly be improred by fallowing, and it many cases perhaps it is the only means of bringing the land into working condition. This is douc, however, not 80 much by the working and exposure of the soil during the summer, as by the aption of the frost and moisture upon it during the winter, It is this that renders the soil frable and fit for tillage in the spring. The more modern system of substin tuting green crops for naked enmmer-fallows, ifit can be so managed as to do no serious injury to the land, is certainly more profitahle than the other method by which a year's use of the land 18 lost, The question then arises, wherther the system of fallow-cropping may be practiced without harm to the soil, or it would be more profitable to give the land a year's rest, that it may gather strengith for the next course? In order to satisfy ourselyes upon this point, it is necessary to consider the nature and effect of "naked-fal. lowing."
Two principal causes probably gave rise ta the system; in the first place, the searaify of manure by which the soil might be rearuited, and seconde. ly, it appeared the most effectual means of olearm sing the land of weeds, In this respect it is cettainly beneficial, and the soll will become fertilized in the course of the operation, eaçh successive growth of horbage being turned beneath the surface, and as it decomposes, furming an enriching manure. The great benefit however of fallowing consista in its effecting a complete pulverization and admixture of the varions parts of ties enil; and consequently adding 10 fte powers of prodac: tion. The ohief thing pecessary in fact for doing justipe to a soil and obtaining from it the grentest benefit with the least possible injury, is complea pulverization-it gives scope for the raats of the plants to. spread and gather nutriment, itincreases the sponge-like property of the supotance, and copsequently gives free passage to the air and moisture, while by the admisaion of the heat the temperature of the soil is improved and regulated, =-and the supply of foad for vegetation is increas? od by the exposure of the air and consiquent decomposition of the animal and yegetqble sphbsazam ces.
This pulvorising the soil, however, it mapt be remembered, only readers more availabie the soil itself and its capabilities of production, whieh Yrould otherwise have lain dormant; tt does "mp ladd to those pepablifief-ibis lis effertid by bus
ameans of manure, the virtue of which is most campletely taken advantage of the more the soil to mingled and pulverised. Anather means of glving new strength to the soil, is to bring inso use a portion of the carth from a greater depth than was formerly done, and from which no nourtshment has yet been drawn. This may, however bo done and her much obviated, by deep-draining,-this being more benefited than if it is ullowed to pemain idle, done and the atr and moisture finding thrir wav; white the roltivator hos all the adinage of an downwardsachemical change iseffected through- extra erep. which hins prohah'y din iese to exout the so:t to the depth of the drains, rendering hanst the soil than would a grow th of wid hertit more invourable to vegetation; nothing is then age or the heat of the sun * This nuturaly hada required but to turn up the soil and bring it into us to consider cropping in rotation use, which may be done without fallowing, -the The theory of rotation of cropa, though by no tillage in clay soils can scarcely be too deep; I means new, has become much better understood land therefore, which is well and deeply drained l within the last few years. The mainground on will be less likely to require following, than such | which it rests, is that alresdy hinted at, namely, as is not drained, and consequently only permita that each kind of crop princif al'y exhausts a peof the surface being ueed for the purposes of rege. I culiar port on of the vegutating proprrites of the tatagn.

Some writers lay much stress upon the good effects of fallowing in exposing the foil to the heat of the sun, as well as the general action of the atmosptere; others, again. inll us that the exposure to so much heat, causes the virtues of the soll and the rich juices of the manures to evaporate, and that therefore the obipet should he to keep the earthy substances as much as possibp! shaded. As usual, the trutin is to be gathered from both positions. That fertilization is aided by the free admission of the ammosphere is suff. ciently evident, but it has not been proven that; scorching heat is desirable for the purpose. On the contraty, it is injurious, inasmnch as it carries off much nutritious matter, by means of evaporation; it is this which furnishes one strong argument in favour of green, in preference to nated gummer-fallowing. Let us suppose that the land has been well ploughed in the autumn-until the the following summer at receives the benefit of the atmaspheric setion and is pulverised by the winter frosts, at the ame time that it has imbibed sufficient moisture ; still it would not be in the course of guod husbandey to take off a scourging crop of gran, nor wall nature allow the land to remain idle. If nothing be sown, weeds will ocrainly spring up, nor is the sumumer heat required to improve the with. l'he object must be to keep the land os nearly as possible in its, present state, until the tame arrives for manuring and ploaghiag, preparatory to sowing the fall or

Thus, il judicinusly manarer. I, the land maly be
next apring grain. Nuthug can do this so eftectually as a grein crap, - what it exthacts from the soil is neither so murh, nor of the same descripnon as the nutriment required for the grow a of the crop which is to follew, while by shading the ground, it causes it to retan is mostutio, and the proper emperature of the sinil is kept up. which it rests, is that already hinted at, namels, soil; and in the cource of rota ion, those portions which ware nearly eshmusted, are, from various causes, (zuch as mixture of the soils, decomposition of fresh matter, and the action of the atmo(sphere,) again prepared to yield the supply of Food to the crap for which they are intended.This system, with manuring at proper intervals, and sufficient draining, may nearly, if not qute Ido a way with the necessity fur naked fallowing, except for the purpoze of destroying very noxions and obdurate descriptions of herbage in stiff clag soils, and even in that case, much may be done by the application of lime

The first princirle then iv, hat all crops, at though they mose or less rahanst the soll, do not exhauit it equally or in the same monner; that is, they exhaust di irent portions of it ; and this is true of all solls Agrin, plants difer in the room they allow for the grow'h of weeds, and consequently one is sometimes useful to cleanse

* In th's province the most usual summer fallou crop is peas; beens which are much grown in Eng. land in the same mamer, can not be culivated to sin god adiantage he e, and require much labcus in tillage Pntatces or turnips will do well if the land is not to be sown until the following spring. In soils partaking largely of sar.d, it is irequendy necessary to ferego lice advantuge of the summet ernp. and rbrain a sort if duver wo picugh in,a course adopted to gerd auvaniage in some sandy districts of this provice. If this, however, be nct donc, the crop co peas will certanly do lesa harm. to an oyerdry sand than leavipg it exposed to a sums, mer's beat.
the Jand from the effects of a former. In another reepect, rota'iun of crops :s useful in destroying finsects, thowe which feed on one plant not being able to exist on another, and they therefore disappear for want of nourishment for the larwe.The principle first mentioned, however, is the most impartant, and if this be true, namely, that rach kind of crop requires chiefly for ite support a particular potton of the soil, and another a different purtion, then the soll will grow to the best advantage, and be least injured by that kind of crop for which st contains, in the greatest quantities, the proper nutriment ; sull this portion of the soil will become exhausted, and it $1 s$ found necessary to have recourse to a crop whach will be fed by other ingredients. And as a necessary, conseguence the same crop should not be repeated antil the soil has had ame to be. come in a manner reformed by the addition of decomposed aninal or vegetable matter, so as to renew the subatance whence the crop to be repeated was supported.*

Keeping up the rotation will of course not be sufficient to prevent exhausuon of the soil; 1t j^{2} must be assisted by fresh material,-and thisleads to the consideration of manures.
It is well known that animal and vegetable substances subjected to the process of decay, form food for the growih of plants; in other words, the process of vegetation goes to consume the animal and vegetable matter existing in the soll. The best soils by repeated cropping become to $n 1$ degres exhausted of this nutritious substance, and require renovating. Some soils will bear cropping for mony years without being sensibly impoverished; but by allowing them to remain toolong without the assistance of artificinl fertilizing, they brcome so reduced as to require a great lengrh of time to bring them again into a fit state for culture: If the soil were originally ever so fertile, that course of husbandry must

* To discover what cach crop actually requires, 30 as to render the land again capable of bearing it, by adding the substance, has as yet proved beyond the power of the learned. Even Johnston says, "if we knew exactly what to add to cach crup" Experinnee, bowever, amply supports the the rry. Fur a ditiailed account of the approved rotations on $\mathrm{c}^{\prime}{ }^{1} \mathrm{y}$, imam, and sand, the reader is referred to "Jackson's Agriculture." It will be at once seen hovg far they are applicable to the climaste, soil, and price of labour in this province In the main it is submitted they might be beaeficially adopted.
certainly be the bes:, by means of which it it kept so. It is too late to begin good farming af ter the land has become completely impoverished.
Manures may be divided into two classes: first, animal and vegetable matler, nuch as farmyard dung, which is composed of both these; and fossil or mineral manures, which serve rather to decompose some substances, and modify the effects of others, than to contribute of themselven to the supply of vegetable matter and suppost of vegetation.
Eefore vegetable and animal matter can be rendered serviceable as manure, it is necessary that putrefaction should take place. To acconphish thas, the substance must be suffieiently exposed to recerve the action of the arr, but not so as to allow too great a quantity of the mosidute to evaporate, is should therefore be placed some little depth below the surface of the soll, for if left for a lengih of time unburied, it ioses greatly by evaporation without enriching the soll. The nost hungry soil is capavis of being enniched by the maxture with th of the putrefying substances and by the gases which these substances emit in the process of decay. The covering of earth promotes decay and absorbs these gases, causing them to contribute to vegetation, while, if exposed to the air and heat, the enriching juices of the manure are vaasted, and only that part of the soil benefitted on wheh the heap rests. Manure (we are now speaking more particularly of farmyard manure) should be ploughed in as soon after it is laid on the fied as possible, for while exposed it is constantly losung its value.
Salt, in its varıous forms, is an useful manure, possessing qualities tivorable to vegctable as well as to ammal hife; it renders the so.l more fertile, and cleanses it as well as the seed grain from noxious mfirmities; and by ils action on the roots of plants it causes them more readiily to absorb the nutriment from the soll. The fertility of land near the sea coast is known to be much enhanced by the vapour of the sea, hence one cause of the fertility of the soil of Great Britann, and a strong argument in favor of manuring in inland situations sach as this Province ; for not having the benefit of the salt rapor, the wass may in some measure be zupplied by the portions of saline matter contained in the farm-yard pasnure.
Of earths the mast important assistant to the sall is lime, principally from its power of decompojing
animal and regetable matter, but also because it assists in the formation of the plant. When meal which has been burnt is mixed with any moist burous vegatable matter, there is a strons action beticien the 'wo substances, and they form : kind of compost, and matter before comparatively inert is thus rendered nutritive. The operation of mild liane or chalk is difierent, this only serving to improve the texture of the soll and prevent mstead of promote the raptd decemposition cr matter; it in fact gocs to form one of the earthy angredients of Uhe soil. Qurck hme should thercfore be appued where there is hard vegetable matter requing to lee brought nato wise by munglang wath the other portuons of the soil,-mas for mstance, a hard sod wheh it is intended to plough under,-mind lime, it is evident, should be applied where the is not I the case; but where the proportion of calcareous; manter in the soil 13 too great, and requires the। correction of a trable substance. And of the \mid soil be e.hausted, mixing with the lime a portion of eartit different from that to be improved, has been found highly beneficial. "Compounds of all hunds are valuable, for the different parts so act upon one another that the chemeal properues of the whole mass are changed, as to render a an efficent manure. And to an obdurate or cxhausted clay soll, no better compound can be appled than a mexture of lame and sllicious: earth."*

Before conciuding our remarhs upon the subject of manures, it may now ve out of place to: sllade to a discuous lately made which promeses to be of tast set..ce in the science and pracuce; of agisuiturc. This is, the making electricity an agent in assisting the growth of planis. The medtud tuade known to the pubuc trom the work। of the great Liebig, though it promses success, caunut as yet be sufficiently understoud. It, as appears probable from the resalt of experments made in Eurape, it can be appiie ito advantage, :he benefit hat must accrue to farmers, both in Lurope and Amenca, is beyond calculation. And it is no snall argument in its favour, that the principle, which the great chemist has discovered how to apply, has been before urged by wen learned in agricultaral science. The following, thongh perhaps familiar to most readers on the subject, will bear quoting in the present state of inquiry on this important and interesting question :-" Electrical changes a.e constantly
*Sia J. Şiaciair, as quuce by Jacksua.
taking place in nature, on the surface of the eatth and in the atmosphere; but as yet the effects of this power on vegetation have not been correctly estimuted. It has been shown by experiments made by means of the volcame battery. that compound bodies in general are capable of being decomposed by electrical powers.
"A profitable apphication of electraciy," Dr. Darwin obstives, "to promote the growth on plants, is not yet discovered; it is nevertheless probable, that in dry seasons the erection of namerous metaluc ponts on the surface of the ground, but a few feet high, maght in the night time contribute to precipitate the dew, by facilitating the passage of electricity from the anr minu the earth; and that an erection of such points higher in the air, by means of worres wrapped round tall rods, like anglang rods, or elevated on buidings, might frequently preeipatate showersa from the higher parts of the atmosphere. Such points crected in gardens might promute a quicher vegetation of the plants in thear vicimuy, by supplying them more abundantly wath the electric ether.-(Phytologia, xiif, 4.) \dagger
The electricity, it was comended, lessened "that superabundant mosture which is gearly increasing from the increased evaporaung surface, produced by the vegetation of mproved culture, from pastures and plantations,"-or in Canada, from the great catem of furest.

IIaving spohen of the method ot managing the so.1, so as at the best manner to produce crops, it may be useiti to say someduing of the diseasts wendental to sume crups notwhetanding the case with which they are cultuvated. One of the inost permicious of these, as every tarmer knows, 15 "the rust," whach affects wheat Heavy nists and ran, when the pidat has atmaned saen a lenght as to shade the ground and consequently retain the moistare, are genemal'y consilered the promeprai caases oi dus disetee. In his probince, it is fequenuly uccasioned by cold and frosty nights, succeeded by hot days; any cause is indeed sufficient which keeps the roots of the plant cold for too long a time. In Briann, it has been found, that on hughly manured lands

* Showers of electricity, which it plainly appears, has long been considered fertilizing in i:s effects. The idea has evidently been long afloat among men of science. To Dr. Liebeg is due the credit of makang it avaitabie.
† Loudon's Agr... seat. 232i-2329.
where the straw grows too strong, the crop is nore liable to rust, the straw being more sofi and parus, and conseguently easily affected by changes in the atmosphere. This may account for the fact that here, upon new lands, rust is most presalent; and when affected, those parts are frund to have saffeied most where the soil is richest, and the straw stands closest together. Nohng. to preveat thas is more ajvisable than bu cust the suois as much as possible, and sow fari's, su as to arvad the aumann rams, frosis, and misis.
S.u4t as a d.stabc affecung wheab, of a more seawus hatare swht, and exceedingiy difficult to piterem. I.alcedsuate manatan that atsumpuss.bie to recion with any degree of certainty upon producing a crop free from smut, whatever means may have been taken to prevent n. The cause of so many fallures has been, that the scmedy was auteapled whout the disease being properly conderstood, nor have the causes of 14 beala as yet, mate satosfuctorily ascertaned. The; tiss. probabit suppusmon, and one which agrees wad the hnown fesat of varoous experiments is, hat suth: ougazies from the growth of fungus ta the plam. The fungi, it is supposed, grow from the parucies of smut whech are attached to the eeed, and bearg absorbed by the roots, ate carued up in the plant, and so cause the disease. This is an accordance with the fact, that smatty wheat whil produce a diseased crop, although n is wcis hivuina diat a seed of smat will not germantie by ased, the iact appears to be, that 14 requites the aod ut the piant, which, affording u nuunsumath, matures it in the ear of smut, ins:ead of suand gram, which the heallity seed "ruvid ollernase have produced.

It luis be the suiutuon of the quesuon, and the suahtest palucie of smut being, with the assis-
tance of the wheat plant, sufficient for reproduetion, it is evident the cleaner the seed is made, the less liable is it to produce smut. To cleanse the seed thoroughly is nearly impossible from the small particles which lodge in the soff furry substance at the end of the grain; hence the use of lime in preparing seed wheat, os it burns of the portions of the husk where the dust 18 lodged. From this, the reasonable conclusion is,' that all the varivus means in use for presenting smut, succeed mure or less as the seed is more or less cleaned-the land being in a hea'thy state for its recepuon.* The approved undes of cirneng the seed are wellhnown, but the princip' s'oped appears tu le that on which their success depends.
There are many other disences to which grain crops are subject, but the tre onnken of, are the most pernicious that annoy the Conadian farmer.

- Did our limits permit, a grod deal might now be said of that most satisfactory pmrtion of a farmer's labours-the harvisting Whe will only remarh of grain That it is now gonprally acknowledged rhat wheat is better in qualiy, and produces more and be'ter flour when harvessed early, than if allowed to become completely ripe. The fact is, that when the grain is fally formed and has attained a certain degree of firmness, instead of teceiving further nourishment from the soil, it loses both in weight and quality This it does afier the straw has become dead and yelion at the luwer farts Experiments made by scienific men, have sat this question at rest. + and eariy harvesting seems on'; prevented from beconing general, brouuse it renders the grain less easy to thrash, but, on the other hand, much less is wasted in the carrying; and in these days of thuhshing machines, the argoment can be oflitule avail.
* I. tiar aud has borne a crop affected whin smut, it is necessary, either by turning the surfice well under, or burning, to get the remains of diseased grain out of the way, or it will have the same effect as if sown with the grain.
t The tume of cuting affects the weight of produce, as well as the relative proporions of flour, L:an and gtaten. Thus, from three equal patches of the same field of wheat, sut respectively 20 days befure the crop was npe, 10 days before upeness, and when fully ripe, the produce was in grain-

20 days before,	10 days before,	Fully ripe,
166 lbs.	220 lbs.	209 lbs.

In Flour, sf., zohen cut
20 dass before it was ripe
10 days before it was ripe

- 79.1

In tie $\overline{G r a i n}$, per cent.

Flour. Sharps (or Shorts). Bran.

	74.7	7.2
-79.1	17.5	
-79.5	13.2	
-72.2	11.0	16.0

Fully ripe,
209 lbs.
In zhe Flour, per cent. Water, Gluten. 15.7 . 9.3

- $15.5 \quad \because 9.9$

15.5
15.9

- Joinston, part 4, on the produce of the soils.

Thus, there was more foqr pnd lemobran, mpre gluten, ar substance, and leas xater in the grobn. cal ten days defore tae crop was compieteig ripe, it being suffcieatly matated, and aot cever-ijpe.

Such are some of the leading principles necessary to be understood in order to follow the "profession of agriculture as a science" It is not pretended that they have any claim to notelty; on the contrary, most of them have in some shape or other been laid before the public many years since; but it is submuted that not all, even of what are usually called "good farmers," know and acknowledge their existence. Still, fewer place sufficient rehiance upon them, or attempt to gain such a knowledge of the theory of their business, as to render thpir practice more perfect. Men who follow other prefessions and trades, take pans to acquire a theoretical as well as practucal knowledge of them, and attain eminence or opulence in proportion as they do so. Why should not the farmer dolikewise? Buthe, in too many instances, althuugh his is a science which in an eminent degree requires a knowledge of sornd pronciples and the application of them to partucula cases, contents himself with following the custome of his forefathers, without caring to understand their merits, or wherein they may be night ar wrong he takes pains to inform humself of the politecs and news of the day, but apparently deems it unnecessary to study books upon a science which he professes to live. Men ise in importance and usefulness, and acquire reputation, by excelting in the calling they have chosen for themselves, and this can only be done by careful study and pains to improve in the knowledge and dutues of that calling, whatever it may be. This may appear a mere truism, but it would be well were 4 more gencrally borne in mind.
In the countries of Europe the imperative necessiny for an improved system of Agricuiture has given rise to much inquiry on the subject; much able writing and the adoption of many mprovements. Perhaps the necessity here, is not quite so plainly nigent ; but nevertneless, we may turn the knowledge there promulgated and acted upon to good account. The resources of Canada depend upon, in fact consist of, the amount of produce raised wibin her firlds,-there can be no question here between manufacturing and farming interests, for they are merged in one. It requires no still in the mach agnated science of the "wealth of nations" to enable a reasonable person to become convinced of this fact. The fields of Canada are her real treasuries, so which overy farmer contributes in proportion as he cul-
importance that improvement in scien ific agciculture should occupy the consderation of the commanily,-and be urged upon and practised by the agriculturists. A very commoll cry is, that all these scientific mprovements may be very well in "the Old Country",-you can make nothing of chem here. Plan reason leads to the contrary conclusion. We possess a clemate nearly similar to, and scarcely less favourable (if we except winter-ploughing being prevented, than that of Britain, and a soll, comprising atl the varieties, and capable of producing mest of the plants tbat can be grown there. Certanly then, rules which afply there shouid not be discarded here; for the experiments which have succeeded on the other side of the Atlanuc, have produced results which may be taken advantage of on this. It is true, hat the high price of labour prevents the Canadian farmer from avaing hamself of all the improvements that have been adopted in Europe, but he may derve much benefit from adopting some of them, andalways actug on similar prinaples. The difference so only in details, and this d flerence will dally decrease with the manufacure of amproved agricultural implements. Nor in these remarks would I except the "lnes-woobs" farmers, who are too apt to thmk that they at all events can have nothing to do with science or amprovement in the mode of culture: bun it is of no less amportance to them than to the farmers of the older districts, that their land should be made to do its best for them, especially when we cons.der the labor and expense of substituting a wheat field tor a few acres of gigantic forest timber. It is true, that the land cannot be brought at once into a regular and properly arahle state, for it must take scme time to mingle the suils and vegetable matter in a proper manner; but such a course may surely be adopted as to produce this etfect in less ume than is usually done. It is said not, on account of the stumps; but the fact is, that these are prevented from rotung by the toots being kept from the free action of the air and moisture-being protected by a close sod which covers them. The labor of keeping this sod off, will be amply repaid, both by an mereased quantity of produce and the more rapid decay of the roots. Draining too (which.on new farms is often quite pracucable) will cause the hollows to bear grain as well as the dreer spats,-canse the subsoil and vegetable matier, by the influence of the sir. to brecme fir for vegrectitur., and above
all, ptevent the whetat from being " winterkillete's
as is frequently the case in the hollow places, from excess of moisture. By these means the new farm is increased in fertility, and improved every year rather than exhausted. It is too much the castom to continue cropping the new soil, or rather the thin'coating of vegetable mould which forms the surface. After the first year, this rapidly ioses its virtue, being exposed to heat to which it was btfore unaccustomed, and not renovated by the fresh material which the woods had annually supplied to it , or any substitute therefor. Sull, the farmer goes on taking crop atier crop, (fre-1 quently grain afier grain, from this exhausted substance ; sometimes, but not alvays, giving it an apolugy for a plougbing. The anevitable consequence is a failure of the crop; and the farmer comes to some such sage conclusiun as that "his land will not ansuer for wheat," or "the climate is decidedly against it." The fault is in netther the land or the climate, but in treaing an unformed soil with a course of croppmg more severe and exhauting than is generally attempted on well tilled lands, regularly manured. The land should have rest under pasturage, or be ulled for green ereps as soo. as possible, no oppontamty of draining being lost, and when it can be ploughed to any depth, the dificrent kuds of sonts may be mingled, and the same course of rotation and manuring adoped when practicable, as is generally recommended and adopted on land of a simalar descripion in Europe and the more improved parts of Anmerica. The difference between a farm so managed and one on which the crops are merely attempted to be scrathed from the surface soil, will soon be apparent. If the soil has become, as is frequently the case (from inabilty or neglect to plough it, cavered with a tough sod, lame may be of material service in promoting decomposition, and enabling the farmer to change what appeared to forbid cultivation, into a fertilizing manure.
The great morement towards improvement in agriculture by means of science, has commenced, and is making rapid strides in the other coantries, -why should not a similar spirit preval in this? The necessiry information is whthin the reach of most people ; none can reasmably co:aplain of the high price of such books as may be excecdingly useful in this branch of learniag. The necessary thing is to be convinced, that arriculure being as important and useful and dificult an art as otherz, can, liko others, be much inproved-andedranced by the
aid of science. Long accustomed to act by rule and measure, and set a high value on his practical experience, the farmer of the old school declines the assistance of science and " book-learning." Many learned and able and hard-working practical farmers have thought and acled otherwise; theirs is the example worthy of being fcllowed. The practical experience of the farmer can scarcely be too highly estimated. It is by no means to be understocd that another kind of learning should take the place of experience in practice; butsomething furn ther may be learnt by which the knowledge acquired by practice can be improved, and the experience turned to better account. Practice truly is the grand thing; but let it be remembercd that good and sound practice is the proper application of science, and the making its rules bear upon particular facts and circumstances.*
In this age, when improvements in every other branch of industry are astonishing the world, wherefore need the primitive, the most innocent and most important pursuit of all be in the back ground 3 And if inother countries it is pushing forward and drawing to its aid the ingenious, the learned and industrious, we may ressonably expeet that in Canada, which should be eminently an agricultural country, important pregress and improvement will take place in scientific, and consequently practical and useful agriculture.

* The general reader will perhaps observe that this idea is not original; but the authority on which it rests is the very bost, and it is clearly founded on sound reason.

Grafting Currants.-The Gardner's Chronicle recommends, for the pretty appearance presented, as well as for the improved flavor, to graft currants of different colors, as the red, black and white, varioasly intermixed, on stocks trimmed up to a single stem three or four feet high. The tops may be headed down to a dense compact head, or trained as espaliars in the horizontal, or fan method, the two latter modes of training, by the free exposure 10 sun end air, much improves the qualuy of the froit. The importance of trimming the bushes up to a singie stem 10 improve the fruit and facilitate clean culture, instead o: suffering iwo hundred and finty suckers to shoot up all atcund into a dense brash heap, is very obvious to thase who have tried both.

To take Stains out of Makogany.-Spirits of salts, 6 parts; salt of lemons, 1 part. Mix, then drop a litule on the staing, and rub theistantil they disappear.

In the February number of the Canada Agzicullural Sournal, its editor, Mr. Wm. Evans, has taken some exceptions to the statements made in the Cultivator, under this department, and has placed much imporiance upon the fact that "immense forturfes" have been made in the business of bringing forest-land into culuvation in Western Canada. Space will not admut of a lengety discussion upon points of this natare, or else we should talse up Mr. Evans' objections to our article item by item, and show, in a most forcible manner, that what is stated in relation to the primciple of bringing forest-land into cultivation, was even greater, when c.ecuted in a proper manner, than we represented it to be."As we understan! the term-imnense fortunes, -we cannot see how it is possible, under the most favorable circumstances, that the very best wheat soil could give sufficient to make fortunes by clearing the forest and sowing wheat." 'It, list. We could point Mr. Evans to one hundMir Evans cannot solve this problem, there are, red farmers in the Home Distret, who emigrated hundreds in Western Canada who have praci- from England in 1832 and 1834 withsmall frmically done it, and thousands who will yet do at, lies and without $\boldsymbol{£ 5}$ worth of property, excepting provided that they are blessed with as favorable clothing, who are now worth from $£ 1.908$ to seasions and markets as has ween the case for the $£ 1500$, and many that brought from $£ 500$ to last twelve years. Thi term, unmense fortunes| $\mathbf{x 1 0 0 0}$ with them are no w worth $\mathbf{S j 0 0 0}$, and the might nt have been properly quautied by us, but whole of thas morease of property has been m de what we meant was, that an indusirious, frugalin agricultural operations and the rise of land. A young man, with a small capual, maght com-l But it may be said that assertion is not proof: mence a backwoulsmans hife wath a tar pros- \boldsymbol{f} we shall therefore advance the proof, and for the pict of accumalang property to the vaiuc of two present let the matter rest. A Mr. Davidson of . 1 three thwasand poutids a the course of 25 or, the township of Maraposa, Colborne District, 30 years; and one wath a large capnal, a corres- \ddagger about 12 years since, commenced a clearing upponding increased amount. There are hundredsjon a bush farm, and at that time was worth but uf farmers in Westera Canada who are worth latie property. He now owns 800 acres of estom $£ 12$ to $£ 15,000$, wiso commenced on bash cellent land, 600 of whech are cieared. The profarbis without a fanting in thent pockets tonty, fits of the potash, and the first crop of wheat has years ago. What has been done in the earty|an every instance more than paid for the tand, seli.ement of thas country is m process of beang|choppmg, clearmg, and all otherexpenses includdo:e at thousands of anstances that might be en-|ed. Only two years ago he purchased 200 acres umerated; and to show Mr. Evans, as well asjof bush-land, and gare out 160 acres of it to be r.t other scepucs, upon matters of ths kund, that chopped, cleared, and fenced, by contract-The we were not treating our readers with a profu-| whole of which was sown with Siberian spring sil a of unmeaning words, or that the statements, wheat last spring. The product from this operwe made were sascepuble of beng questioned, ation was taken to market and sold the past winwe ghall point out a few instances in which Bri- ter, and yielded a stm which paid for the land, tish emigrants have commenced, and are in the las well of all other expenses, and left a handsome course of acquiring independent fortunes in bring- sam in the coffers to cansy out similar other enung forest land into cultivation. We shall not terprises. AIr. Davidson is sa well satsfied with

most anxious in purchase a tract of 1000 acres of forest land for a similar purpose.

2d A Mr White, of the neighborhood ol Beaverton, Lake Simeoc, some years since settled in the wilderness, chopped, and cleared, and sowed ren acres of land with wheat, from which he had $j 00$ bushels of supenor wheat, which brought in the Whitby market $£ 125$. While on this point we might mention another case, which would cerve to show the extreme productiveness of the son of Western Canala. Mir. Gabriel Lount, upon the streng'h of the Government Bounty which was said would be awarded for the growth of Ca madian hemp, plepared two acrel of land in the best possible manner, and manured it at the rate of 30 tons of barn-yard manure to the acre, and after the hemp crop was harvested the land was - ploughed over and sown with winter wheat, which gave the extraordinary yield of sixty-five búshels of marketable wheat per acre.

3】 To prove that it is not necessary that a man should be a slave and a niggard to get along prosparously in clearing up land, we would menrion the case of Mr. John Gildroy of the township of Reach. Mr. G. bought his farm and paid for it, and instead of engaging in the business of rhopping and logging humbelf, rented a farm in the neightortiond, which, whit a late lired la. bour, he wanazed profiably, he had from 15 to 20 acres of new land cieared and cropped with A winter wheat yeally, the labor of whith was ail executed by comsect, and by hayong the ground i'horoughly cleat, and he seed sown a season, the frrst crop has in an average of seasons more than paid all expenses, and he has now a large farni cleared and fenced, whthout having cost him a single farthug in reality.
Thess cises w.ll at least serve to prove, that we did nut ovet-rate the profis of brangng new lands into cultivation. If crecumstances! evould admat, we could point to scores of German and Quaker farmers who liave, acquired sery large propertues by agricultural pursuits;-1 but eufficient has been edeanced to satusfy any nqquirer after truth, that an skullul farmer may safely invest his capital in the cultiwation of the, soil.

Wedding Cake -Flour and batter, each, 3 pounds; sugar and raisins, each 3 pousds; eggs, $\mathfrak{2}$ dozen: currants, 6 poonds; citron, 1 poond; brandy, 1 pound ; cinnamon, nutmegs, mace, each 1 outice; cloves, $\frac{1}{2}$ quace. Bake citoroughly.

Deep Plowing-" Few individuals are aware of the extension of roots in pulverzed soil. Von Thaer mentions findag roots of samfoun from 10 to 15 feet deep in the ground. There are now in the National Gallery, corn soots taken from one side of a hill of com Jatd bare by the fresher, and presented by the Hon. J. S. Skinner, to the National Gallery. The corn was planted on the 20th of May, and roots gathered the 1.tith of July, 1842. In sixty days, some of the large roots extended more than four feet, covered with Interal branches. I have caused the roots to be measured; the aggregato lengit of rooss in the hill is, by Mr. Skinner's esumate, over 8000 ieet. The specimen alluded to, is open for examination. The fact is here mentioned to show the importance of deep plowing, to enable the plant to find nourishment so nuch below the surtace as may avoid the effect of drought, give support to the stalk, and not expose the roots to be cat off by needed cultivation. Soil 15 made by exposure of earth to the atmosphere ; and whoever wishes to make permanent improvements will not fail to plow deep!"-Ellsworth.

Effects of Crossing on the Constitution:-

 Those classes of the haman race whitw preserve their blood free from mixsulee with straugers, while they have less varisty in external appearance, and perhaps less variety to the seope of mental capacity, than those who cross and secross at pleasure, have mpre endurance in acion, frmer attachments to purposes, and less desuitory' ampetuosity. This is a physical truch. The explanation of it is dificult ; but it may be stlustrated and comprehended in sume degree by thece who study the animal fabric, and who are acquainted with the laws of anmal econong. In brute animals-horses, sheep, and catle-ithe mixture of different races is observed to change the qualities, to improve the beausy, and to enlarge the size; it dimmushes the hardness and the security of the paysical health. In man, the mixture of different races improves beauty, augments the volume of the bodily organs, and even perhaps expands the sphere of intellect. It diminishes the power of enduring toil, and renders the habit more susceptible to the causes of dierase. -Jackison's Economy of Animals.To predent Dopredations by Hawks - One or more guinea-hens in a fock of fowls it is zud will effectaalty prevent molestation from hawhe

PUMPS WORKING BY WATER WHEELS.

The above cut presents a sectional view of a mall building covering a water wheel. To the shaft of the wheel a crank is attached by a shackle bar to the piston rod of the pump. The shaft on the opposite side of the wheel carries a grindstone; above, to the right, is a churn; at the left in a box for cleansing clothes, to which is attached a steam apparatus.-This cat represents the works of Winthrop Phelps, Esq., of Chatham, Columbia County, New York, put up in 1839 a description of which as given by Mr. Phelps. in the "Cultivator," vol. vi. No. 11, as follows"

For the benefit of those farmers and others 1 house, within 20 feet of my kutchen dour; from situated as I have been, without the conveniences this reservoir a pipe leads to the kitchen, and of good water near my premises, I would state discharges into the sink by a cock. From the that in November 1839, I engaged Mr. D. L reservoir I convey water on to the shelves in my Farnam, of 247 Water street, New York, to put milk room, they having a raised edge so that at up an apparatus that should enable me to have pleasnre 1 hove water running one anch deep on water at my house, barn, \&c. I had a spring of each shelf, to keep the milk cool in warm weaexcellent water 400 feet from the kitchen, that ther Likewise from the reservoir I have a half discharged 30 teet Jower than thy bouse. Thad, inmb pipe laid to my barn gards, 15 rods farther, in the meadow above the house, several small and a pipe running to the hog pen, keeping a springs that discharged together a small but con- constant supply. Attached to the water wheel stant stream during the year. The plan was to is a grindstone, and mechinery to do our churnuse the water of the latter to force up the water ing, which we have used through the setson. from the spring to those places where I wanted 1 The apparatus marked A is the plan intended
for pounding clothes.-With the addition of a steamer it would save much labor to the women, and the same steamer might be used to steam has, potatues, corn, \&c., for catte and hogs. My water woihs cuintimed to woik weil ail iast win. ter, wathout in the least beang affected by the frost. The quantity of water thrown up is about six gallons per minute, and has required since put in operatoon, buta few moments' attentuon once, ton rod, and oiling. To thote situated as, to water similar to myself, I would say that the cost of the water works is a small consideration compared to the advantages. I shall be happy to give any information that may be wanted, un show my works to any disposed to call and examine them.

Wivtunor Puspps.
Chatham Centre,
Columbia Co., N. Y., Sept. 23. a month, to lighten the packing around the pis- -Far. and Mech.

HORSE POWER TO RAISE WATER.

The abuve represents one of Mr. Farnam s/the upper shaf, because the speed of the batmeihuds of ravoing waicr. The panyluct hompance wheet un the shaft, as represented, would Which we make the exuact, and which is put-, not be sufficient unless it was very large. The lished at the uffice of the Farmer and Mectianic, , arcie for a horse to travel in, to work a powand sold at 3 :I cenis, ss beaubifully execuied and er to advantage, ought to be 35 feet diameter, numerously embellished.

Here is a pian of one now in use for rasing, water 13: fret, to which is auached a pump, as, described (page 16; under the head of hift pumps, for drawang water from weils 80 to 180 feet deep.

Another plan of a horse power is here given, which may be pref-rable in many stuations. The drawaig, however, is incorrect in one parhcular, the balance wheel, which is represeated outiside of the trame, ought to be between the posits, and the rud to connect the pump with the paachine ought to be attached to the crank on

Nemmariet Agricultural Olub.
Question for discu ston.- What breed of horis best adapted to the wants of the country?
P. Pearson.--Some of the entire horses that have been mported in to this country within the past few years to cross upon our mares, are too Leary, and others are as much too light, for the general wants of the country. A horse possess. ing raker a light bone with good action, is preferable to the very heavy bored draught horse. It is common to hear stated that the horses in dis section of country are not so good now as ! they were 15 or 20 years since. This, to a certain extent may be true, but it should be remembered that at that period the country was new, and oxen were employed to do heavy work upon the farm, and the horses were farored so much diat they could not otherwise but look well. At the period alluded t_{0}, six barrels of flour, or 25 tushels of wheat were considered a heary load for a span of horses, upon the best winter roads. But now the case is altered; oxen are entitely cut of use, and horses, and even brood-maresare made to perform a greater amount of labour and hardship than the constitution of those amimals ste capable of endurng; hence the degenerary so much spoken of. The Ulood-horses in EngJand and the Soulliem states are large and well proportioned, and tif some of the large and best apecimens were unported into this province and crassed upon our large mores, they would get a race of animals that would bring a high price in the market, and would in every point of view be adapted to the wants of the country.

Eli Irwom.-The subject under discussion is one of vast importance to the country. Not many yrats since this section of the Home District was noted from one ead of Canada to the other for its valuable race of horses; and by the introduction of the small race of English blood-horses from England, to cross upon our large Pennsylvania mares, the whole race is considerably sun! dosin and retuced in value. It is an acknowledged fact, by every one at all sequainted with the subject, that the present hatf-bred horses ownrad in the district will notendure the service that We remnant of the old-fashioned race is capable of enduring. He had noticed that almost every blood horse at the age of seven or eight years wons nore or less blemished; and he felt confidenat that the caube may safely be attributed to the suapijpess of theas bone and the bigh meial
for spirits which distinguishes them from all arter brects of horses. There is now a great demand for roadsters. A cross of the largest sized French or Lower Canadianhorses, upon our best mares, would produce a breed that would be adopted fur all useful purposes. The Lover Canadian hoses are great travellers, and will cost less to keep th good condition, and are more ready than any other race known in this country. Ile had considered much upon this subject, and every additional information that he obtained only strengthened the conviction that a change in the polity of breeding or improving our race of horses, was necessary to ensure success. He once attended the rac v in Virginia, and saw thorough bred horses upon the course, that stood as high is sixteen hands. In that country the blood-horsea are large when compared with the pigmy race found in Canada; and notwathstanding thett size, the farmers of that siate are not so unwise as to put their mares to a blond-horse to breed horses for arricultural purpose..
B. Pearson.-The bone of the blocd-horee is supposed to be much stronger than 11 at of any other race of horses. They combine artion with strength, and are capable of taking a leavy load over the gruand, and are adapted for the carriane, sadlie, or plough; and a horse possessing so many eacellent quatmes, besides the high valua which they bring in the market undoubredly deserves auenion at the hands of the stock. bretder. He concurred in the opinion exprosoed ${ }^{5}$ by wher members of the club, that only the lasgest descripuon ot blood-horses should be encuuraged in the country.

Juseph Willson was of opinion that the character uf the horses in this neighborhood had been seriousiy mured by impudicious breeding. The best and largest maed Luwer Canadiun horees, if crossed apon our mares, would get a stock that would be fardy in the extreme, and for all practucal purposes, could not be excelled. He had traveiled inuch through the country for the purpuse of purchasing horses, and had met with an enure horse that was got by a thorough-bred Canadian horse and a Peunsylvania mare, and in his opinion a better animal could not be found for the road or for general agricultural purposes. Hurses of a rery large size, as well as those of a small size, are objecto nable for the farm, but thege two objections could be cancelled if proper attentinn were paid in breed.ng lrom the lower Canadian horses.

Alfred Stephens.-All that had been said in Eivor of the Lower Canadian French horses is strictly correct. A farmer requires a breed of horses that is capable of ploughirg, and at the ame ume adapted to the roads, anfi in fact, suitable for all purposes. In this country lony jourpeyings are often made with horses, both under die saddle and in harness; and no breed of horses can perform these varous degrees of servitude, apon the same provender and attention, as well as the thorough or even half-bred Canadians.
J.Gamble was of opinion that the race ofblood horses that had been imported into this country had done great damage to the stock of hores. IIe agreed wath the speakers that preceded him, in opinion, that the Lower Canadian horses crossed upon the large Pennsylvania mares, would pro. duce a most valuable description of stock. The ! expense of keeping horses is a heavy item to a farmer who has a large stock; and it is a fact that few will question, that no breed of horses will perform the same amount of lobour upon a given amount of provender, as will the French Gamadians.
Luward Randall.-The Enciush draught horse has proved atself to be capable of getiang a most superiur sloch of horses for all worh, when cross- ${ }^{-}$ ed upun the mares owned in this district. The Light Englagh drafi or carriage hurse, such as are of the class known by Cleveland Bays and others possessug a dash of biood, are good roadsters, and will bung a higher value in the market, for pleasure or in the cariage, tian any other description of horses. It is no more trouble, and cossa but a trifle more to raise a good horse than a bad one. A well-proportioned five years old hures pussesulig govd action, is worth in the Toronto tarket $£ \mathbf{3 0}$, and the common stock owned ly the farmers in general is not worth more than half that sum per bead, which sthows preny clearly, that the question is one, that is not sufficiently well understood by the rack breeder. He was opposed to blood horses, or at least to such as have been introduced into wis part of the province; the larger the horse the better, if he only possess a good constitutoan and action, and is well proportioned.
G. Playter was of opinion that many mem. bers of the club were not correct in atributing the degeneracy of our stock of horses to the tratrodaction solely of the blood-horse. Keeping antife borses has been it profiable busi-:
ness with a few: and when this fact bgicame known, every farmer who had a colt that bappened to be a little better than the genetality of those in the neighborhood, was silly envugh to keep him up for mares. In fact, this fatoo notion has becoine so general, that almost every farmer has an entire horse, and hence the dogeneracy so nuch adverted to. There is littlo or no encouragement given to a well-bred horse, and so long as this is the case, it is not to be supposed that the stock of horses will improve in character or value. He did not set a high value upon Canadian French horses. With proper encouragement, a description of blood horse might be imported into this District, that would improve the stock to a greater degree than any o:her possibly could.
For want of space we are obliged to defint publisting speeches made by P. Pearson, Eseq, ML. P. Empey, Esq., W. IL Liod, and the Secretary.

O!d Bread the Best.-It has been found that baked bread on the first day produces'from seven-cy-vite to seveniy riac per clat. of nutritive naticr, whie that five days old yeeds from eigh:yune to enghig-two per cent. New bread loses the five per cent. of us weight by evaporation in cwoing. Astue from the advantages of stale bread in its burnuve mauter, it is more wholesume, mule tasity dugested. has more taste and is sweeter; while nell bread lies heavily in the stomach and is of difficult digestion. With these. advantages it is strange that most people reject stale bread or prefer the new. It has been found that, on feeding the poor, very stale bread mised. whin soup is far more satisfyng than any other they can obtan. Thus the laboring classes consume one-eiglath more bread than would be necessary of stale bread were used, or a family that consumed six pounds of bread per day would expend, at the present price, some ren dollars mori a year by eating new, than by eating stale bread. with till the other disadvantages we bave mentioned.

Botted Gunger Beer.-Take the boutlen and. nearly fill them with lear water, then add white sugar, 2 drachars, bicarbonate of soda, 35 grains; , neture or essence of ginger, 2 drachims; suls. phuric acid, 10 or 12 drops. Three to six drogs of essence of lemon will improve this artucle. The acid roust be adued last, and the bqules im: medietely corked end wited.:

On tho Mochanto Powors.

Canted (with abridgements) from Lardner's Fop. utar Lecturcs on Science and Art. Dy the express jpermission of the Publishers-Messrs. Greely and 1 Eirath, N. 1.
A Machine is an astument by which force or motion miy be haasmutted and modified as to us quantity and direcion.

In the application of a machune there are three hings to be cuaswered. 1. The torce or tesistance which is reguired to be sustaned, opposed I or overcome. 2. The force which is used to sustain, support ot urercome that resstance. 3. The machine itself, by whech the effect of this latier force is transmitted to the former. Of whatever nature be the force or the resistance which is to he sustained or overcome, it is technically called the weight, since, whatever it be, a weight of equivalent effect may always be found. The force which is employed to sustan or overcome i , is technically called the pozocr.

When a machine is used dynamically a very small power may elevate a very great weight; but, in so doing, whatever be the machine used, the total espenditure of power in rasing the weight through any height, is never less than that which would be expended if the power were immediately applied to the werght without the intervention of any machine. This circumsiance arises from a universal property of machines, by which the velocity of the weight is always les than that of the power, in exacily the same proportion as the power itself is less than the weight; so that, when a cestum powers apphed to elevate a weight, the rate at which the elevation is effected is alvays slow in the same proportion as the weight is great.

The most simple species of machines are those which are commonly denominated the machine powers. These have been differently enumerated by different writers. If, however, the object be to arrange in distinct classes, and in the smallest possible number of them, those machunes which are alike in proncipie, the mechanic powers may be reduced to three:-

1. The fever.

2. The cord. ,
3. The inclined plane.

Fo one or otber of these classes all simple machlas whaterermay be reduced, and all complex
machines may be resolved into ample elementu which come under them.
'l'he first class includes every machune which is composed of a solid body revolving on a fixed oxis, although the name lever has been commonly confined to cases where the machume affects cerrain piricular forms. The punet and weight are always supposed to be apphed in direcioons at right angles to the axis. If hates be drawn from the axis perpendicular to the drectuons of poswer and weight, equabrium wath subsss, pro. vided the power, mulifited ty the perpendicular distanere of its direction fiom the axts. This as a principle 10 which we shall have oucasion to reter in explaining the various machines of idus class.

If the moment of the power be greater than that of the weight, the effect of the power will prevail over that of the weight, and elevate it; but if, on the olher hand, the moment of the power be less than that of the weight, the power will be insufficient to support the wergtu, and will allow it to fall.

The second class of simple machines includes all those cases in which force is transmitted by means of flexible threads, ropes, or chans. The principle by which the effects of these machines are estimated is, that the tension throughout the whole length of the same cord, provided it be perfectly flexible, and free from the effects of friction, must be the satue. Thus, it a force acting at one and be balanced by a force aving at the other end, however the cord may be bent, or whatever course it may be compelled to take, by any causes which may affect it between its ends, these forces must be equal, provided the cord bo free to move over any obstacle which may defecs it.

Within this class of machmes are ancluded all the varsous forms of pulleys.

The third class of simple machines includes a il those cases in which the werght or sesistance is supported or moved on a hardsurface inclined to the vertical dircction.

The effects of such machines are estimated by resolving the whole of the body into two elements by the parallelogram of forces. One of thess elements is perpendscular to the surface, and sup. ported by its resistance; the other is parallel to the surface, and supported by the power. The proportion, therefore, of the power to the weight will always depend on the obliquity of the zprfacs to the direction of the weight.

Under this class of machnescomp the inclined phane, commonly socalled, the wedge, the serew, and various others.

THE IEYER.

An inflexible, straight bar, turning on an axis, is commonly called a lever. The arms of the lever are those parts of the bar which extends on each side of the axis.

The axis is called the fulcrum or prop.
Levers are commonly divided anto three kinds, according o the relative postions of the power, the weight and the fuicrum.

In a lever of the first kond, as in fig. 1, the futcrum is betwien lie power and the weight.

Fig. 1.

In a liver of the second kind, as in fig. 2, the weight is between the fulcrum and power. Fig. 2.

In a lever of the third kind, as in fig. 3, the power is between the fulcrum and weight.

Fig. 3.

In all these cases the power will sustain the Weight in equilibrium, provided its moment be edual to that of the weight. But the moment of power is, in this case, equal to the product obmaned by multiplying the power by its distance from the fulcrum, and that of the weight, by mul*tiplying the weight by its distance from the tulcrum. Thus, if the number of ounces in P, being multuplied by the number of inches in P F , be equal to the number of ounces in W, multiplied by the number of inches in W F , equillionum will be established. It is evident from this, that as the distance of the power from the fulcrum increases in comparison to the distance of the reughe from the fulcram, in the same degree ex:-
ect will tho proportion of the poperr to the weight diminish. In other words, the proportion of the power to the weight will be always tho same as that of their distances from the fulcrum taken in a rave:se order.
In cases whete a small power 15 sequired to sustain or elevate a great weight, it whll therefore be necessary either to remove the povire to th great distance from the fulcrum, or to bring the weight near it.
Namerous examples of levers of the first kind may be given. A crowbat, applied to elevate a stone or other weight, is an mstance. The fulcrum is another btone placed near that which is to be raised, and the power is the hand placed at the other end of the bar.

A handspike is a similat example.
Scissors, shears, nippers, pincets, and other similar instruments, are composed of two levers of the first kind; the fulcrum being the joint ot pivot, and the weight the resistance of the substance to be cut or seized; the power being the fingers applied at the other end of the levers.

The brake of a pump is a lever oi the first hind; the pump-rods and piston being the weight to bo raised.

Examples of levers of the second kind, though not so frequent as those just mentioned, are not uncommon.

An oar is a lever of the second kind; the reaction of the water against the blade is the fulcrum; the boat is the weight, and the hand of the boatman the power.

The rudder of a ship or boat is an example of this hind of lever, and explautued in a sumior way.

A wheelbarrow is a lever of the second kind; the fulcrum being the point at which.the wheel presses on the ground, and the weight being that of the barrow and its loads, collected at their centre of gravity.

The same observation may be applied to all two-wheel-carriages, which are partly sustained by the animal which draws them.

In a lever of the thitd kind, the weigh being. more distant from the fulerum than the power, must be proportionably less than it. In this instrument, therefore, the power acts upon the weight io a mechonical disadvantage, inasmuch as a greater power is necessary to sopport or move the weight than would be required if the power were immediately applied to the wa:gles without the intervention of a marhine. नix;
seath however, hen, 'ter show that the advantage which is lost in furre is gained in denpach, and dant to propmetion as the weigh is less than the
 anotion he greger than that of the power.

Hence a liven of the third kind is only used an ocoes whore therepriten of e:cat 1 , Werana cunederatinn eyhmbinate to those of rapudits and despatch
The mone corthing esabigie of levers of the thrd kind is fmod in the ammal economy. The linibs of anima's are ge actaliy levcis of thus description The socket of the bune is the falcrum ; a string muscle attached to the bone near the socket is the power, and the weight of the limb, ragether with whatever rebstance is opposed to its motion, is the weight. A sigght contractoon of the miscle in this case gives a cunsiderable motion to the linib. thes effect is particutarly conspicuous in the uution of the arms and legs in the human body, a very ancunsudera $=$ contraction of the muscles at the shoulders and hips giving the sweep to he limbs from which the body derives so mi . hactivity.
The treddie of the turming-lathe 18 a lever of the thard kind. Tue honge which attaches it to the flor is the fulcrum, the foot applied to it near the linge is the powcr, and the crank upon the axis of the fif-wheel, with which its extremity is connoeted, is the weight.

Tongs are levers of his kind, as also the shears used in shearing sheep. In these cascs, the power is the hand placed immediately below the fulcrum, or peint where the two levers are connected.

When the power is said to support the weight by means of a lever, or any other machine, it is only meant that the power keeps the machine in equililuium, and thereby enables it to sustain the weight. It is necessasy to attend to this distinction, to 10 more the difficulty which may arise from the paradox of a small power sustaining a-great weight.

In-lever a of the first kind, the fulcrum F , fig. 1. or aris, sustains the united forces of the power and woight
In a lever of the second kind, if the power be zepposed to act upon a wheel, n, fig 2 , the fulcrum Frustaias a pressure equal te the difference between the posper' and weight, and the axis of the wheel R kustains a pressure equal to twice the power; so that trice the pressure on F and R are equitralcot to the united forces of the powiter and welght.

In a lever of the thurd kand, similar obsetrationsis are appucabic. The wheel R, fig. 3, sustamais pressure equaliotwice the power, and the fulcrupp I sustuins a pres-ure equal to the dufference boitween the power and weight.

Thesc facts may be cxpermentally estaulathad ly attacling a string to the lever immedatcly ores the fulcrum, and suspending the lever by thas string from the arm of a balance. The counterpoising "hight, when the fulcrum is remurcd, wih, in the if st c.s., be equal to the sum of the weigh. and poucr, and in the last two cases cqual to chectr difference.

Sketch of the Corth Laws.
A shart summory if the histery of the Corn Laws cannt fuil at this moment to prove interesting The first act for regulating the rates of duty, was 13/h Geo III., c 18 Previous to the passing of that oct, the statutes or orders in Conncil on the subject were rather dictated by circumstances, such as prosperous and deficient harvests, than any intelligible and settled principles Usually, a greater quantity of corn was grown than was required for our own consumption When there was a scarcity the expertation of all kinds of grain was prohibited, and even bounties offered for importations from abroad. Wien, on the other hand, there was a glut in the country, bounties were offered for its exportation. From an early period, certainly as carly as the reign of Henry VI., the principle of protection to home-grown corn, has been anvariably mauntaned by our legislature. In the reign of James I., the importation of foreign wheat was prohibited when the price in the English market was below 328. per quarter; and in the rejgn of Charles 11., when the commerce of England became mor extended, it seems a complete sliding scale was established, the duty on foreign wheat being 16s., when the price here was 53 s per quatter or under ; 8 s ., when between 53 s . and 803 .; and when above the last price all imports to be allowed free. The same line of policy may be traced pervading the whole of the succeeding changes in the lairz until 1773, when they assumed a more constant and regular shape. By the act of 13 Geo. IIL., the daty was 24s. 3d., when wheat was undes 50s. per quarter, and when the price was at of above 5 tis. the ducy was 6 d . These rates seemed to have been fixed with a view of keeping aths price of wheat as nearly as possible at 50 s. pet

monty in dhose days, wuaid prubabiy le abuat backbiting. -The meanest of ail buing anithats squai to CJs. he quarter ais the present wme. ${ }^{\text {ss }}$ that specícs known by the name of backberen Shulity aftes the cumancementol he iast great, Set it down fur a fact that whenctur you sce oma war the pivot was raised, and when the price was you see a covard. One who dares not lock you to Leive C3s. pet yuarter, the ducy on furetgh wheat tice face and calmly tell you that ho has aygst was Jos. 3d., falling to $i \frac{2}{2}$. when the price agannst you, or that you have in has opimon dsne realied CCs. These dulies were advanced suon ham wrong. An honest, generous man, will go ∞ aftrwards, and in 1815, Mr. Rubinsonsucceeded, you and commune with gou quictly and calnhts
 portatuan of fureagn wheat untia he price in our, jury from you. But one of your jealuus and narmaikers had been, fur thee cunsechite mondis, row minded persons, will neicr go to the right perdove 80s. per quarter. Another law was passed mon to unburthen himself of any trouble of the kind. on iS22, prohibung the importation of foreign, Every other person in christendoxi must bear the wheat when the prices were at or under 70s. per, story, with all its variations, but the very ene most quater, admatung at when between 70 s. and 80 s. ${ }^{1}$ intercsted. Hence nine-tenths of the mischicf, the
 at a ducy of $\cdot{ }^{-}$., and when above \&is. at a duty ${ }^{\text {neighborhood. This talking abuut instead of } t \text { the }}$ of 1s. This law, however, never came into effect, person in question. For our part we the a fowo $2 s$ it was provided dhat its operation should be biter better than a backititer. There is somre delayed until wheat rose above 80 s. per quarter, chance to "fend af" if you are abused.
which did not occur before another alteration took place. Early an 1827, Mr. Cannarg brougit forward a serites of resolutions for the purpose of animal manure annually applied to tho forming them into a corn law. He proposed a crops in England, at current prices, diding scale, nearly smmiar to the one afterwards surpasses in value the whole amount of carred by the Wellington cabinet, and which its foreign commerce.
remained in force until Sir Robert Peel's bill in 1842, which now regulates the admission of forelga corn.-English Paper.

Surface Drainage.-The water resulting from the spring thaws, serves, in its course, to point out to the farmer the rise and fall of his land, and consequently the most natural course for laying drains. If, then, your land has not already been put under a thorough system of drainage, From human lips that blessed werd-forgire; it were well to act upon the present sum-Forgiveness-'tis the attributes of Godgestion, by running a deep furrow, with The sound whec openeth heaven : renews agato the plough, in the directions thus shown, On earth lost Eden's faded btoom, and nings to affurd the readiest passage for surface, Hope's hatcyon, hatoo'er the waste of hife. water. Should time permit, the furrows Thrice happy he whose heart has been so scheofed may be deepened with the spade, they In the merk lessons of humanity; will then prove efficient as open drains, That he can great utterance; $1 t$ amparic . and when the d ier season of the summer, Celestral grandeur to the human soul, months is at hand, may be deepened and converted into any one of the various, convered drains as may seem best, cheap-; est, or most feasible, in your own judg. meut. A little work each season, if well ${ }^{\text {sious, }}$, or hander them from breakng out and jirected, will soon put your own farm ${ }^{\text {barrying lum mo acuon, for what he can dobe }}$ under thorough drainage.

Beautiful Thought.-There is semething touchingly beautiful in words when rightly put togetrer. They leave an impression that can never be effaced. We have read again and again, till it is familiar to us as the face of a friend, the folloving splendid thought, and every time we see it, 'tis fresh and beautiful as ever. The author we know not, but he deserves to be immortalized for his mosecan alcne :-
"How beautiful falls

And maketh hum an angel."
Let not any one say he cannot guvern hls pascarrying lam mono achon, for what he can do bet the presence of God if he will.-Locke,

Veterfnaxy 3 enaxtment.

Swollod Legs.

At the requpst of a friend, whosays he can tesdify to its correctnessfrom hisown experience, we insert the following from Clater's "Diseases of Horses," by Skinner. The difficulty alluded to is a very common one in this country:

This is a very frequent and most troublesome complaint The cause is often excerdingly difficult to be detected, and when discovered, is often 80 complicated, and the disease becomes so inveterate, that the practitioner has little prospect of completely eradicating it.

The fore legs occasionally take on a disposition to enlarge; but it is afener, and running to a greater extent, found in the hinder ones. A horse is sometimes left in perfect health at night, and is found, on the next morning, with one or both hind logs enormously enlarged. The skin is tense and glistening, it is hot and exceedingly tender; the horse cannot bear to have at inuched; he catches up his leg suddenly, the limb moves as if the lower part of at had no joint; and, in the corrvisive effort to get it out of reach, the anmal not unfrequently loses his balance, and falls, or threatens to fall, cu the exammer.

This complaint, which is hnown by the name of roced in many narts of the country, is evidently sudden and very intense inflammation of the absorbents of the leg. A considerable degree of general fever often speedily follows; the pulse quickens; the mouth is hot, and the horse is entirely off his feed. Young horsss are peculiarly subject to this, especially if, after being taken from grass, they are too highly fed, and suffered 10 stand idle in the stable. Sometumes in older horses, as well as in the younger ones, it is :he sudden shifting of inflammation from some ocher part, as the lungs or the antesunes.

This apparently formidable species of swelled, leg readily yields 10 proper medical treatment. The leg should be fiequently fomented with warm whter; from font to six quarts of blood should be taken away, and a good dose of physic administered, which should be followed by a durenc medicine. The swelling, however, hoving 'subsided, and the enderness having gone off, the legs should be well rabbed, and then lightly bandaged ; genlle everrise should be used and aliemsive medicine adininistered ; for the over-distended vessels must necessarily be weakened, and tho disease 18 apt to return.

If an old horse, or a young one that has been over-worked, is suffered to stand a day or two ln the stable, his legs often fill, but without pain os heat The lege of some horses stgularly sweli every night. This is connected with debilits, either geapral or of the part. The case must be considered very attentively before any measures are adnpted The horse may be too highly kept, but his legs are suffering from occasiunal overwork then mild physic, mild durelics, regular exercise, hand-rubbing, and bandages around the leg, will be the proper means to be adopted; decreasing a little the quantity of food, and giving maskes and green meat, if the season will allow it. The habitual use of the bandage is an excel. lent lbing in these cases, and bas often gradually strengthened the vessels of tire part, and rendered the leg as fine as ever.
Frequentily an enlargement of the leg is connected w th general deblity. The hurse has been cruelly over-worked-or he is recovering from serious illness-or he has been hall starved, and he is generally weak, and these weaker and mjured parts yieid. A very mid duse of phys: will sometimes be indicated even here, and especrally if tiare is any fouiness about the horse. A daily mash should be given, a fau allowance of corn, green meat if it can be procured; gente and regular exercise should be uved, and small doses of cantharides, varying fium three to five or six grains, and a few tome duarelic balls.Every thing should be done to increase the strength of the system generally, and the vesses of the exiremities will soon regain their proper tone.
The course of treatment will be particulaly proper if the legs swell at the spring and fall ot the year. The horse is then sheddang lus coat, a procesuyhich is always attended wath soms debility. The tonac diurctic balls will here bs exceedingly useful.

In every case, however, of swelled legs, a greas deal more depends upon management than oa medicine; and there is nothing so likely to by injurinus as the frequent use of dareties, of whech many grooms are so fond. They are fruufal sources of debility (the worst inuse of sweited legs) they first weaken the urnary organs, and loss aftione in the system generaidy too suon sar. cecds."

If it be possible as muck as lieth in you lise peaceably with all men.

The Oimadian Agricultaral Roador.

We have dately been presented with a copy of thas worh, and have carefuliy examined ats varted contens, with a vew of commg at a correct estuaste of "s. vaice for the ase of Common sinous th the surai districts, and withoul favor or rewad, are phtpared to prununace at a must
 wadaut delay, be amodaced ato every School District tit the Province.
The Agricultural Reader contans 300 pages, and $1 s$ printed with new type upon good paper, and the workmanstup reflecke much credit upon ats pubhigher, Mr. John Simpson, of the Niagara Chronacle Ofice. The complers of the work are unknown to us; but one thung appears certain, that from the judicious manner in which it is arranged, and the mass of pracucal intormanop; embodied in us columns, they are inumately ac-i quanted with the wants of the country on this parucalar. There is scarcely a pomt upon prac-1 tical agriculture but what is ably discussed and clearly itlustrated in thas book: and in our judgment it is only the first ot a series of class books. of this description, wheh, if widely introduced and read by the junior farmere, will add lustre to ; the agraculturat prosperity of this risug province. 1 The day, we trust, is not fai distant, when int-1 braries will be formed in each School Distruct in! Canada, for the especial bencfit of the young; and by encouraging the sale and meroduction of such works as the Canadian Agricultural Recta-1 er, in our Common Schools, a taste for useful. reading will thas be created. Every promoter of of agricultural umprovement should lose no time in ordering a copy, and by doing sa, it will be found that all we bave satd in its favor is sinely correct.

A Lacker tog:ve Tin the Appearazice of Brass. - Melt, in separate vessejs, two ounces of gum, lac and eight ounces of amber, max them well together, and add half a pound of drying luseed oul. Digest in a pint vial a hatle saffron in halfi, a plat of oll of turpentine, stran thas hivor, and add to it some gum trogacanh and amouso, fine iy powered.' Mix this last compuynu wah the former, and shake them well. It is by this varnish that leather is made to appear as if gilded, aftor it has bern covered with silvor leaf.

Suspension Carriage Wheel.-Mr. Michal Munson, of Tómkinsville, N. Y., has invented'a now wheel of rather novel construction, consissing of a metallie rim altached nad screwed to a hub in the centre by a serles of aron wres, each having a screw at both euds, the thread turming in opposte direcuons, by means of which they are screwed mothe bub and ram by the same movement. The wheel can be eastly consiructed, ts cheap, and from its peculiar consractoon, promises to be durable. The Scientific Mechanic promises that a wheel of this description, with tron wires one fourth of an anch in dameter, will sustain a weight of $15,000 \mathrm{lbs}$. appled to the axle. (?) Mr. M. intends to secure his improvement by letters patent.-N. Y. Farmer.

Celebrated French Polish.-To one pint of spints of wine add 12 ounce of shell-lac, foance of gum copal, and \ddagger ounce of gum arabie; allithe gums to bo bruised. Keep the vessel into which these are put well corked, and let it remain in a warm place for two or three days; then pour off the clear part into another botle. Apply the polish to the end of a rubber, made by rolling up a piece of firm muslin very firmly, fastened to a stick or shewer, and corered with a firm cotion cloth, pefectly free from liat or dust, and just mostened with a very small quanuty of cold.. drawn linseed oil ; use the rubber braskig, witha moderate pressure in a circular direcuon, over a space of about a square foot at a time, and replen-. ish both as the wood dries. Go over the whole surface in this manner, and give three or four coats according to the grain of the wood. The operation must be performed in a place of nodea. rate warmih. Gradealy clear off the oil from the surface with the polish, and sometmes turn. the ragy, otherwise the brightness will uot be ptra fect.
This polish imparts a superio: brilhancy and. clearness, is not easily scratched, and is not affectel by any moderate degrec of heat. Itia not injured by soap. and therefore can readily be cleaned by washing with soap and water.-Mechanses Note Louk.
To Slain Ntusical Insiruments.-Crimsin-: Boil one pound of ground Brazil-wood in thrab: quates of wacer for an hour.; strain it, and add half an vunco of cocluneal; bollar asain for balf, an hour gently, and it will be fit for use.

Purple - Boil a pound of chip logwood in three fuaris of watct for an hoory than budd fout mapoen

SJenier's Water-proof Cloth,--Indian rubber; \quad A Receipt for a Wife. wrontine to dissolve. With β brush apply it to f Ao much of beauty as preserves affectionthe cloth once or twice, and afterwards apply a. As much of cheerfulness as spums dejectionstmilar solution mixed with luharge or sugar of , Of modest diffidence, as claims protection ; lead, or other drying material, then sprankle mool-floss upon the varnish, preas, dry, and apply a brush to lay the nop.

Water-prsof Trarnish for Boots, Shoes, \&s.Linseed oil, 8 parts; boiled oil, 10 parts; suet, 8 perts; beeswas, 8 parts. Mix with deat and apply hot.

Disobedience to Parents.-A gouag mau was lately sentenced to the South Carolina penitentiary for four years. When he was about to be sestenced, he stated publicly that his downword coorse began in disobedience to his parents; that ho thought he knew as much of the world as his father did, and needed not \$Wis aid or advice; but nhat as soon as he turned his back upon his homel then temptations came around him like a drove of hyenas, and hurried him on to ruin. There is no place so safe and hoppy an a good home.

Activity.-_ss I have lived," said Dr. Adam Olarke, "t to know that the great secret of human bappiness is this:-Nerer suffer your energies to stagnate. The old adage of 'too many irons in the firc,' convess an abominable lie. You cannot bare too many-poker, tongs, and all:-hecp them agoing."

Ooe glance at a room is enough to convince te whether it be under the care of an orderly persoun. I hove frequently known the huchen oi a berrant more arderly than the draxing-room of ther mistress; and the dormitory of an oid woman in the aims. house kept far more cleanly and me- 1 thendical than the bed-chamber of a young lady.

Habits af riean!iness are beyond palue, in per-1 cog, in dress, in work, in books, in furnuture, and in all thinge.

Lmainess.-Lazinesa grows on people ; it begens in eobwebs, and ends in ircn chains. The more buriosss a man has, the more bs is able to accomptisit; for be lcaras to economine bis time.-Hale.

Aypreval Ink, for Tombstoxes, ETar3le, \&cppok, 11 parts; lampblack, 1 part: surpentine sufighery. Hix, with heat.

A docile mind, bubservient to correction.
Yet stored with spnse, with reason, and pefloc. tion;
And every passion held in due subjection; Just faults enough to keep her from perfection;
Find this, my friend, and then make your celeo. tion.

Cherry Trees.-These trees, trom thetr teand tiful fignre, and from the majesuc size they aoquite, become at once desirable both for thetr frui: and as shade trees, and are also (when under proper cultivation) the prude of the farmer; bas when neglected they are apt to " run out" and decay, leaving by no means a pleasant sight in either proprietor or passer by. As a general thing, the cherry fruit is borne upon sputs proceeding from wood two or three years old, therefore the principle of pruning the apple tree. Of its main and collateral branches, it is to be nomarked that being stiffer than those of the appla they are not so liable to bear down upon each $\$$ riders, in consequence of which the pruning of these (cherry) trees is mostly reduced to zemoo. ing ingrowing branches, and old bearng triges and spurs. After once pulting the tree in good order, the minutia of removing old twigs and spurs to keep us a supply of new bearing wood Is almost all that is required. When the tree ceases to throw out a due proportion of ench woad annually it moy he considercd that ats lite is fres drawing in on cinse, and yet at ilus stage judicionas proning ond culture will awnken a do a dew state of life There are some vaneues of the rherry whirh bear fruit upan the extremitiea of
lact years shonts, and some ujon the tower endo of the like shorif-thase propesiy belong to the next class, to be noticed anothes time, and their prining will be governed by tho dizection then given.

Water-proof Glue -1. Ghe, 1 part; sktar mes milk. 8 parta Melt and evaporate in a we-ter-bath to the consistence of strong glue,
2. Gium 12 parts, water sufficient to diseotye. Then add yeJow resin, 3 paris, and whes melted ndd iurpevine 4 paris Mix thoropaly tagos ther.

Plam Trees.-The plam fruit is borne upon spurs, cansequently this tree is to be pruned in the som: manner as directed for the apple. Plum trees are hable to become guumy, and also to be truubled with biack gum. She former proceeds frum the cffects of a liyng worm, which in the course of time changes to an insect. The latter is a black, cancerous wart, and which sprcads rapidly. Worms, similar to those before mentioned, ane sometines found in the black gum; yet their presence therein is purely accidental, and bence such cases are comp'ications of the two evils. Remove all limbs infested with black gum, unless it sivuld spoil the shape of your tree. In such case, cut the gum ont, back to the quick and sound bark, but it must be thoroughly done, for, if you leave a particle of spongy or spectled bark, you might as well leare all. The wound is ns worse than that occasioned by removing a limb. It will heal readily, if cut far cnough back. In rezard to the norm, cut him out with a good narrow-bladed knife, (our orn pen-sharpener laurhs-well, well, it has disicdged many a one,) cut back to the quick, as above mentioncd. It will frequently happen that the anount of dead bark to be remoredis great, butt still better remored than remining. The worms will inhabit the tree, in line, from top to botom, and are apt to girdle it at the root; yet the kmife, geverned by patience and persereramee, will effectually remove the diffeculty: Seore, or alit the bark, up and down, as this trce is rery liable to become hide-bound. The latter dificulty ariscs from a neglect of both the soil and tree.

Benefic of Duestng the Earth.-A correspon-devt of the Mulugun Farmer whates.-A few years satice, it nas tmpuyed to make a garden. The sum was a gravent tuath. Among the beds urade, was an umon bed, about st ieet by 20. The carth fir thes bed was caretuny sipadea up to the ! dudit ou 1 h , anhes, and wah a garden rake, made very mellow. The next day the seed was sown in drills, crosswise the bed, the drills being about erren inches apart. Inmediacely afier sowing ate seed, one hall of the bed was stamped down as hard as the weight of a lad of 15 years of age, by prestagg once or twice in a place, wouid make In The ather half was left light. Shorly after the onobs vere up, they were weeded and careoilyabiased, so as to stand about three inches equtust ia the dalle all over the bed. The soil Whing ikeir trowit, "was pof pored anf porr
than was incident to the pulling up of the weeds. With regard to the result, suffice it to sny that the onions whieh grew on the part of the bed which was stauped, came up first, grew more theiftly, and were more than double the sjze and quamity than those on the other half-beng to fact, as good a yleld as I ever saw:"

Manures.-We are too close upon the period tor action to lose much ume in disquistions respecting the various methods of treating the anjmal and vegetable matter accumulated upon the farm, and intended for manures. Those who are in favor of long manure, have but to haul it ho the fields, whale others, no donbt, who favor the short muck doctrines, will suffer the products of the barn-yard to remain until fall. It would be our pleasure to advise amedium course between these practices, That is, we would not ferments, but decay, or crumble manure, which is rendily done by means of a little alkalive and carti. One bushel of fancly and freshly tlaked lime, ten bushels of common earth, and thirty of baro yard manure, intimately mixed, dampened, and well trodden will soon heat, and crumble into in fine mealy mould. In the eardy spriag, the manure is sufficiently damp, and therefore will not require wetting. There is no need of mean surement-a good practical hand wall readity judge the quadtities of lime, earth and manama If well formed, the heap will be ready in trom two to three weeks' time. The same thing can te done by means of ashes, using two bushetr thercof in place of the one of lime. The beap mast be damp and trodden down, or the asbes will not act. And again take the proportion of ten bashe's of earth, and birty of aunare, max them thorough'y together, and they audergo the same change, and will, no doabt, be teady ta season for planting corn or potaties. Butif poo try it, do not pretend to form the heaps by tayers; it will only prove to be lost time.

To protect Shers from the Gad Fiy.-In Angust and Septenther this fly lays its egess in thenostrils of shepe, where they are hatched, and tbe vorms' cravel into the hesd, and trequently thay eat through to the bram. In thes say many* shrep are destroyed. As a protection, smitel their noses with tar Lay some tas in a trough. or on a board, and eirev tine salt on it: de sheep will twirh the spertion. The tit wid protect shem, and whet they eat will shame , their. beqkh.

Buttor NAading.

"The annexed article (says the Providence Transcript, from which we copy, is from one of oar most experienced and intellectual agriculturists. Of his successful practice we can attest, as we never saw fincr butter, not even in Plifadelphia, than we have eaten at his hospitable mansion."
Milk Apartments, Sc.-The milk cellar should be deep, well ventulated, and dry: the bottom covered with stone flagging. Bracks will absorb milk, and other liquids that may fall upon them; and will soon coniract maldew, the smell of i which, like the odor of cheese, vegetable, fish, or foul air of any kind, will be imparted to the cream and butter. Over this cellar should stand the dairy room, with shelves to set milk upon in ! cool weather; the cellar is to be used durng the ex- : tremes of hat and cold. The temperatare of the 1 milk apartment, if possible, should never be above 65° nor below 45°. Set kettles should not stand in the dairy-room ; neither should cheesemaking, nor deansing milk-vessels be done there but in a convenient room near by.

Cream may be kept good much innger, if it be kept in a white aak vessel, with a tight cover, and a faucet or tap near the bottom, to draw of the milk when it settles, before the customary daily stirring. The quality of the butter is much improved by this management. If the mill: be not drawn off, and it be churned with the cream, the butter will be longer in coming, and it will show epecks of sour coid, taste like cheese, and will soon brcome rancid: Butter will come quickily at all seasons of the year, if the cream be of a temperature of from $60^{\circ} 1070^{c}$; to this and, use hot water in winter, and ice in summer; but never ada either to the cream, in or out of the clurn.

Sall.-Pure salt chrystalizcs into perfect cabes. All other forms of chrystalization found in com. , mon salt, arise from imparities; those of a needle thape in Livernool hing, orblown salt, indicate the prestnce of lime, magnes.a, \&cc. One grent cause of the failure in making good butter, may be tmaced to the use of impure salt, Rock alt, and the large, lumps of Tark's Jsiond, washed, drieds:and fimely pulwerised, are preferable 10 all athey kinds, being highly preservative, and har- : dening the butter, sn that it will be sopner ready:
 \% $\%$ or blown salt, the Salina esli, in athall bsge , eotbed by the'butier. -
from N. York, and the fine part of every kind of imported salt, contain a great portion of mparity. Less than ons ounce of pure sali, 18 sufficient for a pound of butter; (many pat in but half an ounce ;) in all cases leave out sugar and caltpetre.
In the manufacture of cheese, a preference is sometimes given to Laverpool bag or blown salt. This contains satts of lime ond magnesin, which attract motsture from the air, and have the desirable effect of softening the cheese; and the pungent bitter taste which they impart to it, is an improvement, in the estimation of some.

General Remarks.-The cream should not rise more than 36 hours; it should be sweet when taken off, and sweet when churned; yet there is a degree of maturity to be acquired by keeping
The kegs, for packing butter, should be made of white oak, bilging in the form of casks, for the more perfect exclusion of air, and convenience of tra:isportation. If the butter is not to be sent to a warm climate, or a foreign market, let the bilging kegs have moveable covers, to accommodate inspection; they should be soaked in strong brine, made also of pure salt, in order that jusuce may be done to the purchasers in tare, and to save the butter from being spoiled for one or two wehes deep all around, from its coatact wath dry woos. In case the wood is anything but white oak, there is dayger of its giving an uapleasant taste to the whole. For the conventence of familes, the size should vary from twemy. five to fifty pounds. A keg of butuer is exposed to the air for a long time ${ }_{n}$ while on broach in a small family, and the bottom, in consequence, becomes rancid.
The consumer wil cleerfully pay an exta price for one hundred pounds of butter, packed int four kegs instead of one. No salt should be put on the sides, boltom, or between the layers. If the kegs are made with covers, put a cloth over the tnp, and caver that with pure fine salt. Keep, a cloilh wet wath strong brine over the buttea. while the keg is filling, to exclude the air. The practice of washing butcer is mut approved of in Europr: it destroys its fragrince and sweetnetm by dissolving the sugar of inilk, which it is said is always present in good butter. It is practced in Holland, when the article is designed fors. expartation to India: lima the operation is uses. ally performed with cold strong limpid brine mad 'of pure salt, and pure wathr , water that has lime

To exclude the air more effectually during the process of putting down, let a littie melted sweei butter be run into the cavity, where the bottom, head and staves come together, then after each layer is completed, let the dairy-tyoman pass her anger round so as to press the butter hard and close against the side.

Dye Water - I have for several years manufactured the tollowing eye water, which has been applied to sore and weak eyes of most every degreiption with unrivalied success. The application of the eye-water has restored those who were confined to dark rooms, and removed films from the eye; the medicine is simple and perfectly safe.
Lobelia or Indian tobaceo, steeped in rum,forms the eye-water above referred to. Apply from 1 drop 10.8 or 10 to the eye, or wetung the hids affer closing the eyes, whll be all that is necessary for weak eyes, morning and evening.
S. W. Jewett.

Weybridge, Vt.-Bost. Cult.
Prevention of Evil Habits,-Those who are in the power of evil habits must conquer them as They can; and conquered they must be, or neither wradom nor happiness can be attained; but those Who are not yet subject to their influence; nay,年 timely caution, preserve their freedom; they may effectually resolve to escape the tyrant, whom Wey will very vaınly resolve to conquer.

Jomnsox.
Tallow and Train-Oil, as a Salve for Sheep. -In the Highland and Agriculturai Suciety's Transactions fur 1844, pages 271.273, an article - mpeared, recommending the use of tallow and tram-ail, in equal parts, as a salve forsheep; and, In reference to that article, a genteman in Arcyleshre, skilled in the management of sheep, trites as iollows, under date the 9th July last: The salve I used for $m y$ sheep last autumn (viz. 'me half tallow to an equal proportion of train' fil, has in every respect, answered the descrip tion given of it in the Spciety's Tap̧̣actipns; had one of $m y$ tenents whom, with sornd persuacon. 1 got to smear thirty of his flock with that boixture, admits that they are in better cundition phan any of the others; that, the wool will weigh ta heavy as that do e with tar and butter; ond
 The expense last year was a Brtle.gteater than
tar and butcer, as I paid 1s. 6d. a pint for fil, hind Gd. a pound for tallow; but this year I shall get oil for 1 s . a pint, and if a quantity is required, a lower price.-Edmburgh Jour. of Agriculture.

Warm Feet.-Many of the colds people are said to catch commence at the fect. To keep theso extremities constantly warm, therefore, is to effect an insurance against the almest interminable list of disorders which spring out cf a "slight cold." Firstly, never be tightly sh d. Beots or shoes, when they fit closely, press against the sole, or the foot, and prevent the free circulaticn of the blood. When, on the contrary, they do not embrace the foot too tightly, the blood geta fair play, and the spaces left between the leather and the stocking are filled with a comfortable supply of warm air. The second rule is-never sit in dampehces. It in often imagined that, unless they be pesitively wet, it" is not necessary to change them while the feet are at rest. This is a fallacy; when the least dampness is absorbed into the sole, it is attracted further to the foot itself by its own heat, and thu perspiration is dangerously checked. Any peroon may prose this by trying the experiment of neglect ing the rule, and his feet rill bec-me cold and damp after a few minutes, althcugh, en taking off the shoe and examining it, it will appear quite dry.

All the rats and other vermin caught on the farm of the Rev. A Huxtable, at Sutten Waldran, are thrown into sulphuric acid, by which they are soon converted into manure as raluable as bone dust.

Mahogany Stain for Woad.-I. Linseed oit, 2 pounds; alkanet, 3 ounces, Heat them together and macerate for six hcurs, then add resin, 2 ounces; bees' wax 2 ounces. B"Iod cill,may be advantageously used instesad cr the linseed oil.
2. Brazil wod (grcund); water sufficient; add a litule alum and potasi. . Boil.
3. Logwoods 1 part; water, 8 parts. Maten decoction and upi'y it; to the wadi, whendryn give it twa or threw cats of he fellening rarnigh ? Dragon'toblod, i part; surnts cI wipes 20 paria. Mix.

Mahogan's Varnish.-Dark gum animic, parts; dark c1, 103 paris; Hihhare, I part; sugar. offerd, 1 prit B 1 until stringy, thien tdd, whand coslea'a litte, spirits of turpentithe, 175-path

Spring Wheat

There are many sections where spring wheats are the only variety that can be oultivated to advantage. In all places where snow accumulates to a great depth, the success of winter wheat is rendered uncertain, owing to the liability ofits being winter-killed. In such cases, the farmer resorts to spring wheat as the best substitute at command, and in many cases it gives a return, which, for both quantity and quality, leaves no cause tor dissatisfaction. Spring wheat is said to contain a much larger proportion of gluten than winter wheat, and it has hence been inferred that bread made from the former is more nutritious. According to the analysis of Sir H. Davy :

Gluten. Starch.

100 parts of the best Sicillian wheat contained	21	75
100 parts of spring wheatiof 1804	21	701
100 parts of gocd Eng. wheat, of 1803,	15	77

Preparation of the soil, quantity of seed, ant tige of sowing.-Spring wheat is usually cultivated on land that has been occupied the preceding year by some hoed crop-corn, potatoes, \&c. Where there is no danger of the attack of the ay, which works in the head, (the Ceci. domyin tritici, it is best to sow the crop as carly as the state of the ground will admit, or as soon as it is fairly free from frost. One wnod plowing is sufficientin fact we have known excellent crops produced by working the ground thoroughly with a cultivator harrow, the feet or teeth of which penctrate the soil and pulverize it to the depth of several inches. Manure is not usually applied for this crop. Long or unfermented manure tends to rust the straw. The seed is usually sown on the furrow, and weall harrowed iv. The quantity sown, per acre, is generally two bushels.

Varicties.-The kinds held in the greatest estimation in this country are the Black Sea, Italian, and the Tea mhoat. Of these the Black Sea is the most hardy. This valuable variety was físt brought into notice in this country by Payson Willams, Esq., of Fitchburg, Ma*ify some tweaty-ave yeartsinces, gnd
it has now become widely disseminated. It is said to have been originally brough from the shores of the Black Ser, 111 Asin. The impressinn prevailed a few yeara since that the lind introduced by Ma Williame had declined in puductiveness and the Socirty fir thas a arou though it advisable to make a new supurtation. Ater one or two failures, we believe they succeeded in obtaining a himd in sume respects superior to that first introluced. It should be remarked, hiliever, hat to some scctions, and under roul management, the Black Sea wheat has consider. ably improved by cultivation in this country. We have often known up. wards of 30 bushels grown per acre, aud in a few instances we have well authen. ticated statements of 50 bushels per acre having been produced.-11/. Cult.
Errata--Page 105, second column, 14th the from the botton, for infirmitzes, read ampuritize八

FRESE GARDEN SEEDS

 FOR 1846.From the Socicty of Shatiers, New Letro. non, N. Y .
THE Subscriber respeetfully informs his cur tomers and others, that he is appointed Acexz in Canada, by the abore Soxiety, for the sale od their GARDEN SEEDS and Heir Thomsomia Herbs, Routs, anil Cxtiacts, a supy y of whch has becn recenty received.
The quality of all productions coming from iss very respectable commualty is generally well known and may be relted upon as Letug atways of the finest and best quality.
The following are sone of the scecls now on hand: Bects, Carrot3, Radishcs, Peas, Onioms Beans, Turnips, Cabbase, Cutrons, Parsley, Parsnips and Letluce, of the varions kinds.
For sale Wholesale and Retail, by

> S. F. URQUHART,

Temperance Buildings, Yonse Street, Ťtomm. April, 1846.

FOR SALE.

TIIE MARQUIS, a thorough-bred Durma BULLL, got ly an imported Bull, bred by Mr. Grey, of Northumberland, out or an imported. Cow, bred by the Marquis of Excter. The pedt grees will be furnished. Mr. Grey and the Mor-, quis ef Exeter can be rcferred io.
To save trouble, the lowest price is $\mathbf{x} \mathbf{\$ 0}$.
Apply to Mr. BOYD, Richmond Hill, Xouge Es April, 1846.

PLOUGHS, FARMING IMPLEMENTS, \&c.

TIHE Subscriber in addition to his business of WAGGON MAKER, makes all kinds of FARMING IMPLEMENTS, such as

SCOTCH PLOUGHS, HARROWS, REVOLUING HORSE RAKES, \&C.

He vould most respectfully state that he obtained the Second Premium for his, WOODEN SCOTCH PLOUGH, (of which the above is a correct Drawing, and also the First Premium os his REVOLVING HORSE RAKE, at de Spring Show of the Flome District Agricultural Society for the year 1845. of All Orders accompaniod with the Cash, or a reference in the City, wh be promptly attended to.

TORONTO

NURSERTY AND SEED GARDEN,

on the kingston road,

One and a lulf Miles from the Market-placc. GEORGE LESLIE \& Co., Proprictors.

THIS Establist sent is situated as above, and wos fommerly carried on by GEO. LESLIE. The tract of tand, wenty acres in cxient, is admerably adapted to the purpuse. Lusurds of ten aeres are a reddy planted whih Trucs, Shrubs, \&ec. and arrans in misa are b ing made what a new to render this the mist exteroik and uscifal estatlishment of th hind git atcempled in the provance. They hare on hand, and offer fur sale, a superior, collection of Pruat ame Orumenetal Trees, Fivwering Shrubs and Plants, Giecn-house Plants, Butbous Fluwer Rants, Dulhzas, £c.
The collection of Fruit Trees comprises the most vataable and estcened varietess adupted to our datitude, either grown here or in tha well known Mount Hope Nursirecs of Ruchester, N. X., with which this estab ishment is connected.
The collertion of Orn mental Trees, Shrubs, Rosos, Merbacrous, Plan's, Ke. is quite extensive, and is offered at m d ${ }^{\prime} r_{4}{ }^{\prime} /$ pres s. P'abic Grounds andotier places requiring large quantities ef Trees and Shruls, will be laid out and planted by contract at lew prices.
To persons dit a distance ve woud recemmend to procure th ir Fruit, Trees in the Fall, more particularly wher the sill is dry and wam: Octaber and Novemb r, innaditaly after the cold weather ha3 arrested verelation, is esteemed the best season of all for transplanting Trees. When Trees are transplanted in lutum, the earth becomes censolidated at their rosts, and they are ready to vegewate with the first udvaneement of spring

All articles sent from th. Nursery are carefully pacted, ior whith a small clurge, coverng expenges, will be madu. Putagcs will be addressed and forward d agreeably to the advice of persons ordering thr r, ond in ail caseo at their rask.

A harge suphly of Fresh and Genume Garden Field and F anur Seeds connstant y onhand at their Seed Store and Nursery Deput on Yonge street, betreen King Street atd the Whart. such.Sechs as can be grown to greater perfection here than in i fiurope, are rased in the Nursery Grounds, and sold wholesaie, at low prices.

Orders by mail past-paid from any part of the eountry, if acempmied by a remittance or a satisSactory referenec in the City of Toronto, will reccive prompt attention.

Priced Catalogues will be furnished gratis to all post-paid applications.

GEORGE LESLIE \& Co.
Toronto, Sept. 1815

FOR SALE the thorough Bred Durham Bull BRITMIN, also three TCPS, Leicester Breed, the property ofthic Honid J. H. Duns.

Apply to Mr. Miller on the Farm, Lake Road, near:Toronto,

EASTWOOD \& Co.
Paper Manufacturers, Stationers, Scliool Book Publishers, fo.

YUNGE STREET, TOHONTO,

nid

HAVE consiamiy un hatad an a a orment- of all the Pupalar and standard SCHOOL BOOKS in ust thructitout the Prownce, tegether with BLANL BuUhs of esery desernpuon, WRATING Paple ol all hads, Frinting PAPER Uf any size requited, WRAPPING
 ERY, \&c.
In adduion to the above they heep at their Estatlishment in Hammiton, a fuli and varted asscrtment of FANCY STATIONERY.
Every description of RLLING and BINDING done to crder.
RIGS bought and taken in exchange.
IL. Cuuntry Merelants taking in RaGiS, as well as oth r s, wil fisd it to ther mercst to give us a call, as we can and will sell or exchange upon as libcral teims as any Estubishment in Camada. Sept. 184J.

Tlie British American Cultivator

(FOR 1846, NEW SERILS)
Is publathed on the First Day of esery Month, at Turome, by EAsTWUOD 太 \therefore :u., 10 whom all orders musi be addressed.
$\left.\begin{array}{l}\text { W. G. LDMUNDSON, } \\ \text { EAS'TWOOD \& Co. }\end{array}\right\}$ Prom \quad etors.
W. G EDMUNDSON, Edtor.

Each number of the Calt,oator contans 32 pagrs, and is subject to oure hafinumy posange, when dirested to any Iust Ohice in Brash America.
-A'certisements wollbe anscrted jur One Dollar if not exreeding Tuctice li,es, and ou the sums i rorortion, if excepiing that number.
Trims-Olue Dular per yeat, Four copies for Three, E, iht for Five; Twerve for Seven; and Twenty for Ten Dollacs.
All payments to be made invaradely in adeance amd jree oj pastage.

15: Editurs of Provincial uewspapers well $0^{\text {dinge }}$ ithe Proprietors, by givang this adveruse. ment a few mertions.
Toronto, Jan, 1845.
J. CLELAND,

BOOK AND JOB PRINTER, KING STREET, TORONTO,
Adjounuig Mr Brevoer's Book Store, leading 'iv! the Post Ofice.
13 Every description of Plain and Ornameanal Pnnting neatly executed: on moderate terned

[^0]: - Youdnn.

