## IMAGE EVALUATION TEST TARGET (MT-3)





Photographic Sciences
Corporation


## CIHM Microfiche Series (Monographs)

> ICMH
> Collection de microfiches (monographies)


The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

$\square$
Coloured covers/
Couverture de couleur
Covers damaged/
Couverture endommagée
Covers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manqueColoured maps/
Caı tes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleurBound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intèrieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas ètė filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculéesPages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachées


Showthrough/
Transparence


Quality of print varies/
Qualité inégale de l'impressionContinuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/ Le titre de l'en-tête provient:

Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de depart de la livraison
$\square$ Masthead/
Génėrique (périodiques) de la livraison

Additional comments:/
Coınmentaires supplèmentaires:
This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.


The copy filmed here has been reproduced thanks to the generosity of:

## University of Guelph

The imeges appearing here are the best qualliy possible considaring the condition and legiblity of the original copy and in keeping with the fllming contract specifications.

Original coples in printed paper covers are filmod beginning with the front cover and ending on the last page with a printed of illustrated impres. sion, or the back cover when appropriate. All other original copies are flimed beginning on the first page with a printed or Illustrated impression, arid ending on the last page with oprinted of lllustrated Impression.

The last recorded frame on each microfiche shall contain the aymbol $\rightarrow$ (meaning "CON. TINUED"), or the symbal $\nabla$ (meaning "END"). whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large so be entirely inciuded in one exposure are fllmed beginning in the upper laft hand corner, left to right and top to bottom, as many frames as required. The foliowing diagrams illustrate the method:

L'exemplaire filmd fut reproduit grace da géndrositd de:

## University of Guolph

Les images sulvantes ont did reproduites avec te plus grand soin. compte tenu do lit condition et de ie nettert de l'exempiaire filme, ot en conformit' avec les conditions du tiontrat de filmage.

Les exemplaires origineux dont le couverture en papler eat imprimée sont filmés en commencent par le promier plat et en terminant scit par la dernidere page qui comporte une empreinte d'Imprassion ou d'illustration, solt par ie zecond plat, selon le ces. Tous les eutres exemplaires originaux sont filmbe en commençant par ie premidre page qul comporte une emprainte d'impression ou d'illustration et en terminant par le dernidre page qui comporte une telle emprolnte.

Un des symboles sulvents apparaite sur ia dernidre image de chaque microfiche. selon te cas: le symbole signifie "A SUIVRE". Io symboie $\nabla$ signifle "FIN".

Les cartes, plenches, tableaux, etc., peuvent dife flimes to des saux de réduction différents. Lorsque le document ect trop grand pour dite reprodult en un seul clicht. il est filmed pertir de l'engle supdrieur geuche. de gauche to droite. ot de haut en bas. on prenant le nombre. d'images ndecessaire. Les diagrammes suivents lliusirent la múthode.


| 1 | 2 | 3 |
| :---: | :---: | :---: |
| 4 | 5 | 6 |

## Series of National Sohool Books

## a TREATISE

ON

## MENSURATION 9

FOR TIIE L'SE OF SCIOOLS.
by tif: council of rublic instruc tion for uileer canada.

TORONTO:
PCDIISIIED EY BRLiWI:R, MrPIIALL \& Co., 46, King Simiet liast. 13ju.

## PREFACE TO SECOND EDITION.

To this Edition there is an Appendix printed in a separate form, for the use of teachers, containing the leading properties of the Conic Sections, and the Demonstratious of the Rules of Mensuration. These were in the First Edition, interspersed through the work, partly interwoven with the text, and partly in the shape of notes. It is hoped that the present arrangement will better suit the convenience of both teachers and pupils. Several other altcrations have been made, which, it is hoped, will be found to be improvements.

Teachers should direct their pupils to learn only such, portions of the work as may be necessary for their intended occupations : for most pupils, the first and secoud sections, and a few problems in the fourth and sixth will be quite sufficient.

## CONTENTS.

## SECTION I.

Practical Geometry

## SECTION <br> II

## Menhuration of Superficies-

Cross Multiplication
To find the area of a square . . . . 25
To find the area of a rectangle
27
to find the area of a rhomble . . . . 28
To find the area of a triangle : . . . 29
Hisving the three sides of a tringle, to find its area $\quad 29$
To find the area of an equilateral triangle
Given the area $\quad \therefore \quad 30$

| Given the area and altitude of a triangle, to find the base | $\begin{array}{ll}82 \\ \text { Given the area of a tringle }\end{array}$ |
| :--- | :--- | :--- |

Given any two sides of a right-angled trinangle, to find : 33
Given the bose and perpendicular of a right-angled tri-
angle, to find the perpendicular let fall on the hypo-
thenuse froun the right angle, \&ce.
To find the area of a trapezium
To find the area of a tren
To find the area of a tapezium inscribed in a circle $\quad: \quad 85$
To find the area of a trapezoid
To find the are or
87

- To find the aren of an irregular polygon 37
Given the diameter of a regulir poly'gon to find the circumfer $\quad \therefore 89$
To find the longth of an arcief of a cincle the circumference : 41
To find the area of a circle . . . . 42
Qiven the diameter of a oircle to find the side of a squaro
equal in area to the virole


## Mensuration of Superficies-(continued).

Given the circumference of a circle to find the side of a Pago
square cqual in area to the circle
Given the dinmeter, to find the side of an inscribed square ..... 45 ..... 45
Given the area of a circle, to find the side of square
Given the area of a circle, to find the side of square Given the area of a circle, to find the side of inscribed square.
45
45
Given the side of a square, to find the diameter of the cir- cumscribed circle
46
46
Given the side of a square, to find the circumference of the circumsoribed circle ..... 46
Given the side of a square, to find the diameter of a circle equal to the area of the square ..... 40
Given the side of a square, to find the circumference of a circle, whose area is equal to the square whose side is
given given
47
47
To find the aren of $a$ sector of $n$ circle
47
47
To find the area of a segment of a circle
48
48
To find the area of $n$ zone of a circle
51
51
To find the aren of $a$ circular ring ..... 53
To find the area of a part of a ring, or of the segment of $\dot{a}$ sector ..... 53
To find the the aren of a lune ..... 54
To mensure long irregular figures
55
55
Exercises in Mensuration of Superficies ..... 57
SECTION III.
Conic Sections-
The Ellipsis ..... 61
The Hyperbola ..... 68
78
SECTION" IV.
Mensuration'or Socidis:
Definitions
To find the solidity of a cube ..... 80 ..... 80
Of a parallelopipedon ..... 83 ..... 84
Of a prism
Of a prism
Of a cylinder ..... 85
To find the content of a eolid, forimel by $\dot{t}$ yitain painaig parallel to the axis of a cylindes ..... 87
de of a
ee of a side is
Siensuration of Solids-(contlinued).
To find the solidity of a pyramid ..... 87Of $n$ cone
Of the frustum of a pyramid ..... 88
Of the frustum of a cone ..... 89
Of $n$ wedge ..... 90
Of a prismoid ..... 91
Ot' a cylindroid ..... 92 ..... 92
Of a sphere ..... 93 ..... 93
Of the segment of $\Omega$ sphere ..... 94 ..... 94 ..... 95 ..... 95
Of the frustum of $n$ sphere
Of the frustum of $n$ sphere ..... 96 ..... 96
Of a circular spindle
Of a circular spindle ..... 98
Of the iniddle frustum of a circular spindle Of $t$ splieroid ..... 99
Of the midulle zone of a spheriod ..... 100 ..... 100
Of n parabolic coniod ..... 102
Of the frustum of $n$ parabolic conoid ..... 103
Of a parabolic spindle ..... 103
Of the middle frustum of a parabolic spindle ..... 104 ..... 104 ..... 105

Of a hyperbolic oonoid

Of a hyperbolic oonoid ..... 106 ..... 106
Of a frustum of a hyperbolic conoid
Of a frustum of an elliptical spindle ..... 107
Of a circular ring ..... 107 ..... 108
SECTION V.
The Five Regular Bodies-
To find the solid contents of the regular bodies ..... 111
To find their superficial contents ..... 115
SECTION VI.
Surface of Solids-
To find the surface of a prism
119
119
Of a pyramid
Of a pyramid
120
120
Of a cone
Of a cone
121.
121.
Of a frustum of a pyramid
Of a frustum of a pyramid
122
122
Of a frustum of a cone
123
123
Of $\mathfrak{n}$ wedge
Of $\mathfrak{n}$ wedge
124
124
Of the frustum of a wedge .....
124 .....
124 .....
125 .....
125
Of a segment or zodie of a gituro
Of a globe
Of a globe
126
126
of a ciroular cylinder ..... 126 ..... 127
SECTION VII.
Mengeration of Timber and of Artificers' Wori-
Description of the carpenter's rule
Use of the sliding rule
l'mber measure
180
180
Cu'penters' mad joiners' work ..... 182
Bricklayers work ..... 145
of walling
153
153
Of chluneys
16.4
16.4
Masons' work
Masons' work
106
106
PInsterer's' work
PInsterer's' work ..... 157
llumbers' work
158
158
Painters' work
Painters' work
160
160
Glaziers' work .....
162 .....
162 ..... 10:3
Vaulted and urched roofs
Vaulted and urched roofs165
SECTION VIII.
Specific Gravity-
A table of specific gravities ..... 172
To find the tonnage of ships ..... 176
Flouting bodies ..... 188188コ1
SECTION IX.
Weights and dimensions of balls and shells
Weights and dimensions of balls and shells Piling of balls and shells ..... 188
Determining distance by sounds ..... 193 ..... 197gECTION X
Gauging-
Of the gunging rale
Verie's sliding rule ..... 199
A table of multiplier
squares and circles ..... 201
The gunging or diagos
206
Ullaging ..... 2142203

## CONTENTS

## SECTION XI.

## Land Surveying-

Form of a ficld book ..... PageT'o mensure land with the chain only $\quad . \quad$. $\quad 238$
low survey it fielid by means of the theodolito ..... 2:38
To survey $n$ field with crooked hedges ..... 243
To survey niny piece of land from two ..... 245
To survey a large estate ..... 247
To survey a town or city ..... 248
'lo compute the content of any survey ..... 251
Miscellaneous Probyems255
A Table of the Areas of the Segments of a Circle
whose diameter is 1- 160

## MENSURATION.

## SECTION I.

## PRACTICAL GEOMETRY.

## DEFINITIONS.

1. Geometry teaches and demonstrates the properties of all kinds of magnitude or extension; as solids, surfaces, lines, and angles.
2. Geometry is divided into two parts, theoretical and practical. Theoretical Geometry treats of the various properties of extension abstractedly; and Practical Geometry applies these theoretical properties to the varions parposes of life. When length and breadth only are considered, the science which treats of them is called Plane Geometry; but when length, breadth, and thickness are considered, the science which treats of them is cahled Sofid Geometry:
3. A Solid is a figure, or a body, having three dimensions, viz., length breathr and trickness'; "as A.


4. A Superficies, or surface, has length and breadth ouly; as B.

The boundaries of a superficies are lines.
5. A Line is length without breadth, and is formed by the mo- $\qquad$ tion of a poiut; as C B.

The extremities of a line are points.
6. A Straight or Right Line is the shortest distance between two points, and lies evenly between these two points.
7. A Point is that which has no parts or magnitude; it is indivisible; it has no length, breadth or thickness. If it had length, it would then be a line; were it possessed of length and breadth, it would be a superficies; and had it length, breadth, and thickness, it would be a solid. Hence a point is void of length, breadth, and thickness, and only marks the position of their origin or termination in every instance, or of the direction of a line.
8. A Plane rectilineal Angle is the iuclination of two right lines, which meet in a point, but are not in the same direction; as S .

9. One angle is said to be less than another, when the lines which form that angle are nearer to each other than those which form the other, measuring at equal distances from the points in which the lines mect. Take $\mathrm{B} n \mathrm{~B} m, \mathrm{E} x$, and $E n$, equal to onen another; théu if $m \cdot n$ he greater than $x n$, the angle $A B C$ is greater than the angle FED. By conceiving the point A to move towards C , till $n 2 n$ becoutes equed to $x n$, the angles at $B$ and $E$ would then be equal; or by conceiving the point $F$ to recede from $D$, till $x n$ becomes equal to $m n$, then the augles at $B$ and Hi . would be equal.

## B

## B

## B

distance betwo points. gnitude ; it is kness. If it possessed of ; and had it olid. Hence ess, and ouly ion in every


Hence it appears that the nearer the extremtities of the lines forming an angle approach each other, while the point at which they meet remaius fixed, the less the angle; and the farther the extreme points recede from each other, the vertical point remaiuing fixed, as before, the greater the angle.
10. A Circle is a plane figure contained by one line called the circumference, which is every where equally distant from a point within it, called its centre, as o; and an ore of a circle is any part of its circumference;
as AB .

11. The magnitude of an angle does not consist in the length of the lines which form it: the angle CBG is less than the angle $A B E$, though the lines $C B, G B$ are longer than
$A B, E B$.

12. When an angle is expressed by three letters, as ABE, the middle letter always stands at the angular point, and the other two any where along the sides; thus the angle $A B E$ is formed by $A B$ and $B E$. The angle $A B G$ by $A B$ and GB. 13. In equal circles, angles have the same ratio to each other as the arcs on which they stand, (33. vr.) Hence also, in the same, or equal circles, the angles vary as the arcs on which they stand; and therefore the ares mily be assumed as proper measures of angles. Every angle then is measured by an are of a circle, described abont the angular point as a centre; thus the angle ABE is measured by the are AE; the angle $A B G$ by the arc AF.
14. The circumference of every circle is generally divided into 360 equal parts, called derrees; and every degree into 60 equal parts, called minutes; and each minute into 60 equal parts, called seconds. The angles are measured by the number of degrees coutained in the ares which subtenid them, thus, if the arc AE contain 40 degrees, or the ninth part of the circumference, the augle $\triangle \mathrm{BE}$ is said to measure 40 degrees.
15. When a straight line HO, standing on another AB, , makes the augle HOA equal to the angle HOB , each of these angles is called a right angle; and the line HO is said to be a perpendicular to AB . The measure of the angle HOA is 90 degrees,
 or the fourth part of 360 degrees. Hence a right angle is 90 degrees.
16. An acute angle is less than a right angle; as AOG, or GOH.
17. An obtuse angle is greater than a right angle; as GOB.
18. A plane Triangle is the space enclosed by three straight lines, and has three angles; as A.

19. A right angled Triangle, is that which has one of its angles right; as ABC. The side BC, opposite the right angle, is called the hypothenuse; the side AC is called the perpendicular; and the side $\mathbf{A B}$ is called the base.

20. An obtuse angled Triangle has one of its angles obtuse; as the triangle $\mathbf{\$ 3}$, which has the obtuse angle $A$.

21. An acute angled Triangle has all its three angles acute, as in figure A, annexed to Definition 18 .

th

28
22. An equilateral Triangle has its three sides equal, and also its three angles; as $\mathbf{C}$.

23. An isosceles Triangle is that which has two of its sides equal ; as $D$.'

24. A scalene Triangle is that which has all its sides unequal; as $\mathbf{E}$.

25. A quodrilateral figure is a space included by four staight lines. If its four angles be right, it is called a rectangular parallelogram.
26. A Parallelogram is a plane figure bounded by four straight lines, the epposite ones being parallel; that is, if produced ever so far, would never meet.
27. A Square is a four-sided figure, having all its sides equal, and all its angles right angles ; as H .

28. An Oblong, or rectangle, is a right-angled parallelogram, whose length exceeds its breadth ; as I.

30. A Rhombrid is a parallelogram having its opposite sides equal, but its angles are not right angles, and its length exceeds its breadth; as M .

31. A Trapezium is a figure ineluded by four straight lines, no two of which are parallel to each other; as N .

A line connecting any two of its opposite angles, is called a diagonal.
32. A Trapezoid is a four-sided figure having two of its opposite sides parallel ;

33. Multilateral Figures, or Polygons, are those which have more than four sides. They reeeive particular manes from the number of their sides. Thus, a Pentngon hus five
35. A Sector of a circle, in a patt of the circle comprehended muder two Radii, not forming one line, and the part of the circmuference between them. From this delinition it appears that a sector may be either greater or less than a semicircle; thus A OB is a sector, and is less than a semicircle; and the remaining part of the circle is a
 sector ulso, but is greater than a semicircle.
36. A Chord of an are is a straight line joining its extremities, and is less than the diameter; I' $\mathbf{S}$ is the chord of the are TIIS, or of the are TABS.
37. A Segment of a circle is that part of the circle containerl between the chord and the circumference, and inay be either grenter or less than a semicircle; thus T S HI I' and 'I' A B'S 'I are segments, the latter being greater than a semicircle and the former less.
33. Concentric Circles are those having the same centre and the space included between their circumferences is culled a ring; as F E.


## PROBLEM 1.

To bisect a given striight line A B; that is, to divide it into two equal parts.

From the centres $A$ and 13 , with any radius, greater than half the given line $A$ B, describe two ares intersecting each other at $O$ and $S$, then the liue joining OS will bisect A B.


## PROBLEM II.

Through a given point $x$ to draw a straight line C D parallel to a given straight line $\mathbf{\Lambda} \mathrm{B}$.
In A B take any point s and with the centre $s$ and radias $s x$ describe the are $o x$; with $x$ as a centre and the same radius $s x$, describe the
 are s $y$. Lay the extent on $x$ taken with the compasses from $s$ to $y$; through $x y$ draw CD , which will be parallel to AB . PROBLEM III.
To draw a straight line CD parallel to A B and at a given distance $\mathbf{F}$ from it.
In AB take any two points $x \quad f$; and from the two points' as 'centres with 'the extent $F$ taken with the compasses, describe two arcs, $s, r$; then draw a line $C D$
 touching these arcs at $r$ and , $\qquad$ distance from AB, and parallel to it will be at the given
PROBLEM IV.

To divide a straight tine AB into any number of equal parts.
Draw A K making any angle with AB; and through B draw B T parallel to AK; take any part AE and repeat it as often as there are parts to be in AB, and from the point $B$ on the line B T', take BI, IS. $S V$, and $V T$ equal to the parts taken on the line $A \quad K$; then join AT, EV;GS, HI, and $K B$, which will divide the line $A B$ into the



D parallel

nasses from lel to $\mathbf{A} \mathbf{B}$.
lat a given

D

## B

the given
qual parts. through B 1 repeat it

## I. $7 K$

 FB.
## PROBLEM V.

From a given point P in a straight line $\mathrm{A} \mathbf{B}$ to erect a perpendicular.

1. When the given point is in, or near the middle of the line.

On each side of the point $P$ take equal portions $\mathrm{P} x, P f$; and from the centres, $x, f$, with any radius greater than $\mathbf{P} x$, describe two ares, cutting each other at $D$; then the line joining D P will be perpendicular to A B.


## Or thus:

From the centre $P$, with any radius $\mathrm{P} n$ describe an arc $n x y$; set off the distance $P n$ from $n$ to $x$, and from $x$ to $y$; then from the points $x$ and $y$ with the same or any other radius, describe two arcs intersecting each other at $D$; then the line joining the points $D$ and $P$ will be perpendicular to A B.

2. When the point P is at the end of the line.

From any centre $q$ out of the line, and with the distance $q \mathrm{~B}$ as radius, describe a circle, cutting A B in $p$ draw $p q 0$; and the line joining the points $0, B$, will be perpendicular to A B.


## Or thus:

Set one leg of the compasses on B , and with any extent $13 p$ describe an are $\boldsymbol{p} \boldsymbol{x}$; set off the same extent from $p$ to $q$; join $i q$; froin $q$ as a centre, with the extent $p q$ as a radius, describe an are $r$; produce $p q$ to $r$, and the line joining $r \mathbf{B}$ will be perpendicular to A B.


## PROBLEM VI.

From a giren point $\mathbf{D}$ to let fall. a perpendicular upon a given line A B.

1. When the point is nearly nppositc the middle of the given line.

From the centre $D$, with any radius, describe an are $\therefore y$, cutting A B in $x$ and $y$, from $x$ and $y$ as centres, and with the same distance as madius, describe two ares catting each other at $S$; then the line joining $D$ und $S$ will be perpendicular io A B.

2. When the puint is nearly opposite the end of the given line, and when the given line cannot be conceniently prodnced.

Draw any line
D $x$, which bisect in o; from o as 11 centre with the radius o $x$ describe an ate eutting A $B$ in $y$; then the line joining $\mathrm{D} y$ will be perpendicular to A 13 .


## PROBLEM VII.

To draw a perpendicular from any angle of a triangle $\Lambda$ B C , to its opposile side.

Bisect either of the sides containing the angrle from which the perpendicular is to be drawn, as $B \mathrm{C}$ in the point $r$; then with the radius $r \mathrm{C}$, and from the centre $r$, describe an are conting A B, (or A $\mathbf{B}$ produced if necessary, as in the second figure, ) in the point P ; the line joining $\mathrm{C} P$ will be perpendicular to $\mathbf{A B}$, or to $\mathbf{A B}$ produced.


## PROBLEM VIII.



Upon a given right line to A B to describe an equilateral triangle.
From the centres $A$ and $B$, with the siven line $A B$ as radins, deseribe two ares cutting each other it C ; then the lines drawn from the point $\mathbf{C}$ to the points $\mathbf{A}$ mud $\mathbf{B}$ wiil form, with the given line $A B$, in equilateral triaugle, as A. B C.


## PROBLEM IX.

To make a triangle whose sides shall be equal to three given
righlt lines A B, A D, and $\mathbf{B} \mathrm{D}$.
From the centre $A$ with the extent $A \mathrm{D}$, deseribe an arc, and from the centre B with the radius $\mathrm{B} D$ describe another are cutting the former at $D$; then join I) A, I B, and the sides of the triangle $A B D$ will be respectively equal to the three given right


PROBLEM X.
Two sides A B and B C of a rightangled triangle being given, to find the hypolhenuse.
Place B C at right angles to A B ; draw A C, and it will be the
 hypothenuse required.
$\mathrm{B} \longrightarrow \mathrm{C}$

## PROBLEM XI.

The hypothenuse A B, and one side A C, of a right angled triangle being given, to find the other side.

## PROBLEM XII.

To bisect a given angle; that is, to divide it into two equal parts.
Let A C $B$ be the angle to be bisected.

From $C$ as a centre, with any radius $C x$, describe the are $x y$; from the points $x$ and $y$ as contres, with the same radius, describe two ares eutting each other at 0 ; join $O \quad C, A$ and it will bisect the angle $A$


## PROBLEM XIII.

At a given point A in a given right line A B to make áa ang equal to the given angle $\mathbf{C}$.

From the centre $\sigma$ with any radius $\mathbf{C} y$, describe an arc $x y$; and from the centre $A$, with the same radius describe another arc, on which take the distance $m n$ equal to $x y$; then a line drawn from A through $m$ will make the angle $m \hat{\mathbf{A}} n$ equal to the angle $x C y$.


## PROBLEM XIV.

To make an angle containing any proposed number of degrees. 1. When the required angle is less than a quadrant, as 40 degres.
Tuke in the compasses the extent of 60 degrees from the line of chords, marked cho. on the scale; and with this chord of 60 degrees as radius, and the centre A, describe ar arc $x y$; take from the line of chords 40 de grees, which set off from $n$ to $m$; from A draw a line through $m$; and the angle $m \mathrm{~A} n$ will contain 40 degrees.
2. When the required angle is greater than a quadrant, as 120 degrees.
From the centre 0 , with the chord of 60 degrees as radius, describe the semicircle $y x \quad n 13$; set off the chord of $90^{\circ}$ degrers, from $B$ to $n$, and the remanning
 30 degrees from $n$ to $x$; join $o x$; and the anyle 13 o $x$ will contain 120 degrees; or subtruct 120 from 180 degrees, and set off the remainder ( 60 degrees) taken from the line of chords from $y$ to $x$; then join

## PROBLEM XV.

An angle being given, to find, by a scale of chords, howe many degrees it contains.
From the vertex $A$ as centre, with the chord of 60 degrees as radius, descrite an are $x y$; take the extent $x y$ with the compasses, and setting one foot at the bergin-
 ning of the line of chords, the other leg will reach to the number of degrees which the ungle contains: but if the extent $x y$ should reach beyond the scale, find the number of degrees in $x y$, which deducted from 180, will leave the degrees in the angle Box. See figure to the second case of the last Prohlem.

## PROBLEM XVI.

Upon a given right line A B , to construct a squarc.
With the distance $A B$ as rarlius, and A as a centre, deseribe the are E D B; and with the distance $A \cdot B$ as radins, and $B$ as a centre, describe the ure A F C, entting the former in $x$; make $x \underset{\mathbf{E}}{\mathbf{E}}$ equal to $x$ B; join E B; make $x \mathrm{C}$ and $x \mathrm{D}$ each equal to
 A F or F $x$; then join $\mathrm{AD}, \mathrm{D}$ O, OB, and A D CD will be the required square.

## Or thus:

Draw B C at right angles to $A B$, and equal to it ; then from the centres $A$ mad $C$, with the radius A B and C B, describe two arces cuttinge each other at I) ; join D A and D C, which will couplete the square.


## PROBLEM XVII.

To make a rectangular parallelogram of a given length and
Let A B be the length, and B C the hreadth.

Erect BC at right angles to A B; through C and A draw CD mid A D, paralicl to A B and BC.


## PROBLEM XVIII.

To find the centre of a giren circle.
Draw any two chords A C, C B; from the points $A, C, B$, as centres, with any radius greater than half the lines, describe four ares cutting in $r x$, and $y r$, draw $r x$ and $y v$, and prodnce them till they meet in 0 , which will be the ceutre.


## PROBLEM XIX.

Upon a given right line A B , to describe a rhombus having an angle equal to a given angle $\mathbf{A}$.

To find a mean proportional between two given reght lines
Place A B and B C in one straight line; bisect $A \quad C$ in 0 ; from $o$ as a centre, with $A \circ$ or $o \mathrm{C}$ as radius, describe a semicircle A S C; erect the perpendicular $B S$, and it will be a mean proportional between $A B$ and $B C$; that is $A B$ : $B S: B S: B C$.


Make the angle $C A B$ equal to the angle at $A$; make A C equal to $A$. $B$; then from $C$ and $B$ as centres, with the radius A 13 describe two arcs crossing each other at $D$; ioin D C and D B, which will complete the rhombus.

> PROBLEM XX.

$$
\mathrm{A} \mathrm{~B} \text { and } \mathrm{C} \mathrm{D} \text {. }
$$

## PROBLEM XXII.

To find a third proportional to two given right lines A B, A S.
Place $A B$ and $A S$ so as to make any angle at $\Lambda$; from the centre A, with the distance AS
 describe the arc $S \mathrm{D}$; thell draw $\mathrm{D} x$ parallel to B S , and $\mathrm{A} x$ will be the third proportional required; that is, $A B: A S:: A S: A x$.


## PROBLEM XXIII.

To find a fourth proportional to three given right lines,

$$
\mathrm{A} \mathrm{~B}, \mathrm{AC} \text {, and } \mathrm{A} \mathrm{D} \text {. }
$$

Place the rignt lines $A B$ and $A C$ so as to make any angle at $A$; on $A B$ set otf A $D$; join $B C$; and draw D S parallel to it; then AS will be the fourth proportional required, viz. A B : A $C:$ : AD : A .


B
urts, as shall


## Problem xxiv.

In a given circle to inscribe a square.
Draw any two diameters A C, D B at right angles to each other; then join their extremities, and the figure A BCD will be a square inscribed in the given circle.

If a line be drawn from the centre $o$ to the middle of $A \mathrm{~B}$, and produced to $f$; the liue joining $f$ B will be the side of an octagon inscribed in the


## PROBLEM XXV.

To make a regular polygon on a given right line, A B.
Divide 360 degrees by the numhur of sides contained in the polygon; dodnct the quotient from 180 degrees, and the remainder will be the mamber of degrees in each angle of the polygon. At the points A and B muke the angles o A B ando B A each "qual to half the angle of the polvgon; then from o as a centre,
 mad witho $A$ or o $B$ us radius, describe a circle, in which place A B contimally.*

Or thus:
Tuke the given line $A \mathrm{~B}$ from the scale of equal parts, and imultiply the number of equal parts in it by the number in the third column of the following table, answering to the givell number of sides; the produet will give the number of equal parts in the rallius $A 0$, or 0 B , wheh taken from the scale of equal parts in the compasses, will give the radius, with which descrite a circle, and place in it the line A B continually, $s$ shown in the first method. $\dagger$

[^0]$\dagger$ Seo Aypendix, Demonstration 2.
it line, A B.

circle, in which
of equal parts, by the number iswering to the the number of taken from the ive the radius, the line $A \quad B$

## PROBLEM XXVII.

To draw a straight line equal to any are of a circle A 1 .

Divide the chord A 13 into four equal parts; and set off one of these parts from 13 to 1 ); then join $\mathrm{D} \mathbf{C}$, and it will be equal to the length of balf the given are nearly.*

## Or thus:

From the extremity of the are A B, whose length is required to be found, draw A o m, passing through the centre; divide o $n$, into four equul parts, and set oll three of those parts from $n$ to $m$; draw $m \mathrm{~B}$, and produce it to meet A C drawn at right angles to A $m$; then will A C be nearly equel in length to the are A B. $\dagger$


## PROBLEM XXVIII.

To make a square equal in area to a given circle.
First divide the diameter A B into fourteen equal parts, and set off eleven of them from $\mathbf{A}$ to $S$; from $S$ erect the perpendicular S C and join $\Lambda C$, the square of which will be very nearly equal to the area of the given circle. $\ddagger$


[^1]$\dagger$ See Appendix, Demonstration 8. $\ddagger$ See Afvendix, Domonalration os $_{\text {s }}$

## PROBLEM XXIX.

## of $\boldsymbol{a}$ circle


circle.


## To construct a diagonal scale.

Draw an indefinite straight line; set off any distanca A E according to the intended length of the scale; repent $A \mathrm{E}$ any number of times, $\mathrm{E} G, G \mathrm{~B}$, se.; draw U D parallel to A Bat any convenient distance; then draw the perpendiculars 1 C , E F, G H, B I , \&e. Divide A E and A C each into ten equal parts; through 1, 2, 3, \&e. draw lines parallel to A $B$ and throngh $x y$, \&e. draw $x \mathbf{F}^{\prime} y /$, \&e. as in the annexed figure.

The principnl use of this scale is, to lay down any line from a given measure; or to measure any line and compare it with others.Whatever number C F represents, $F Z$ will be the tenth of it, and the subdivisions in the vertical direction F E will be each ourhundredth pazt. Thus, if C F be a mit, the small divisions in C F, viz. F Z, \&e, will be loths, and the divisions in the altitude will be the 100 th parts of a unit. If C F be ten, the small divisions $F$ Z, \&c. will be units, and those III the vertical line, tenths; if C Fr be a handred, the
 others will be tens and units.*

[^2]To take any number off the scale, ns suppose $23^{3 n}$, that is, $2 \cdot 38$; place one foot of the compasses nt D, and extend the other to the divesion marked 3 ; then move the compasses upward, keeping one foot on the line D) B, and the other on the line 3 s , till you arrive nt the eighth interval, marked 88, and the extent on the compmsses will be that required. This, however, may express $2 \cdot 38,23 \cdot 8$, or 288 , according to the magnitude of the nssumed unit.

Notr. If C F were divided into 12 egnal parff, earh division wonld be 1 luch,


## PROBLEM XXX.

To reduce a rectilinear figure to a similar one upon either a smaller or a larger scale.
Take any point P' ill the ligure A BCDE, and from this assumed point draw lines to all the aligles of the figure; upon one of which P A take $\boldsymbol{a}$ $P$ a agrecably to the proposed scale; then draw $\because b$ parallel to A $\mathrm{B}, b \mathrm{c}$ to BC C \& c . then shall the fig-
 ure $a b c d e$ be similar to the original one, and npon the cequired seale. Or measure all the sides and diagonals of the figure by a scale, and lay down the same mensures respectively from another scale, in the required proportion.

When the figure is complex, the reduction to a different scale is best accomplished by means of the Eidograph, an instrument invented by Professor Wallace, or by means of the improved Pentograph.
ose $23^{3 n} n^{n}$ that D, and extroud ove the comD) 13, and the ighth interval, s will be that $23 \cdot 8$, or 238 , it.
in would lie I inch. de fuet.
upon either a

nd upon the diagonals of me measures proportion. a a different idograph, an by means of

To divide a circle into any number of equul parts, having their perimeters equal also.
Divide the diameter A B into the required number of equal parts, at the points $C$, $\mathrm{D}, \mathrm{E}, \& \mathrm{c}$. ; the non one side describe the semicircles 1 . 2 , $3,4, \& c$. and on the other side of the diameter describe the semicircles $7,8,910$, \&c. on the diameters $B \mathbf{F}$, B E, B D, B C, \&c.; so shall the parts $1,11,2,10$,
 $3,9,4,8$, \&cc. be equal both in area and perimeter.Lieslie's Geometry.

## MENSURATION OF SUPERFICIES.

## -timi-7.9 <br> SECTION $\mathrm{H}_{2}$

The area of ahy plane figure is the space contained within its boundaries, and is estimated by the number of square miles, square yards, square feet, \&c. which it contains.

Long Measure:
12 Inches . . 1 Foot.
3 Feet . . . 1 Yard.
0 Feet - 1 Fathom. 164 Feet Eng. $5 \frac{1}{2}$ Yards 40 Perches 8 Furlongs . . 1 Milc.

## 11.

## Square Measure.

144 Inches . . 1 Foot.
9 Feet . . 1 Yard.
36 Feet . . 1 Fathom.
272 $\ddagger$ Feet Eng. $\}\left\{\begin{array}{l}1 \text { Pole or }\end{array}\right.$ 304 Yards $\}$ \{ Peroh.
1600 Perches . 1 Furlong.
64 Furlongs . 1 Mile.

In Ireland 21 feet make 1 pole or perch, and 7 yards therefore will make a pole or perch. There are other measures used, for which see Arithnetical Tables.

Land is generally measured by a Chain of 4 poles, or 22 yards; it consists of 100 links, each link being 22 of a yard. Sce Section XI. Surveying.

Duodecimals are calculations by feet, inches, and parts, which decrease by twelves: hence they take their name.

Multiplication of feet, inches, and parts, is sometimes called Cross Multiplication, from the factors being multiplied crosswise. It is used in finding the contents of work done by artificers, where the dimensions are taken in feet, inches, and parts.
suc inc

## Rule.

I. Write the multiplier onder the multiplicand it such a manner, that feet shall be under feet, inches under inches, \&c.
II. Multiply each term of the multiplicand by the number of feet in the multiplier, proceeding from right to left; carry 1 for every 12, in each product, and set down the remainder under the term multiplied.
III. Next multiply the terms of the multiplicand by the number under the denomination inches, in the multiplier; carry 1 for every 12, as before, but set down each remainder one place farther to the right than if multiplying by a number under the denomination feet.
IV. In like manner proceed with the number in the multiplier under the denomiration parts or lines, remembering to set down each remainder one place farther to the right than if multiplying by s number under the denomin. ation inches. And so on with numbers of inferior denominations.
V. Add the partial products thus placed, and their sum will be the whole product.
in cross multiplication it is usdal to bat
Feet multiplied by feet, give feet.
Feet by inches, give inches.
Feet by parts, give parts.
Inches by inches, give parts.
Inches by parts, give thirds.
Inches by thirds, give fourths.
Parts by parts, give fourths.
Parts by thirds, give fifths.
Parts by fourths, give sixths, \&c.*

[^3]1. Multiply 7 feet 9 inches by $\mathbf{3}$ feet 6 inches.

$$
\begin{aligned}
& \text { F. I. } \\
& \text { 7. } 9 \\
& \text { 3. } 6 \\
& 23 \text {. } 3 \\
& \text { 3. } 10 \text {. } 6 \\
& 27 \text {. } 1 \text {. } 6 \text { Ans. } \\
& \text { F. I. P. F. I. P. } \\
& \text { 2. Multiply } 240 \text {. } 10 \text {. } 8 \text { by } 9 \text {. } 4 \text {. } 6
\end{aligned}
$$

$$
\begin{array}{llllllll}
\text { F. } & \text { I. } & \text { P. } & \text { F. } & \text { I. } & \text { P. } & \text { F. } & \text { I. }
\end{array}
$$

3. Multiply 8.5. by 4. 7. Ans. 38 . 6. 11. ${ }^{\prime \prime \prime \prime}$
4. Multiply 9.8 . by 7. 6. - 72 . 6.
5. Multiply 7.6. by 5. 9. - 43. 1. 6.
6. Multiply 4.7. by 3.10. - 17. 6. 10.
7. Multiply 7.5.9 by 3. 5.3.-25.8.6.2.3.
8. Multiply 10.4 .5 by 7. 8.6.— 79.11. 0.6.6.
9. Multiply 75.7.0 by 9. 8.0.-730.7. 8.
10. Multiply 57.9 . 0 by 9. 5.0.— 543. 9. 9.
11. Multiply 75 . 9 . 0 by17. 7.0.-1331.11. 3.
12. Multiply 321 . 7 . 3 by 9 . 3.6-2988. 2. 10.4.6.
13. Multiply 4.7.8 by 9. 6. - 44. 0. 10.
14. Multiply 39.10 . 7 by 18. 8.4. - 745. 4. 10.2.4.

| 15. | Multiply 368 . 7 . 5 by 137 . 8 . 4 |
| :---: | :---: |
|  | 2576 |
|  | 1104 |
|  | 368 |
| $6^{\prime}=\frac{1}{2}$ | . 184 . 3 . 8 . 6 |
| $2^{\prime \prime}=\frac{1}{3}$ | . 61 . 5 . 2.10 |
| $4^{\prime \prime}{ }^{\prime \prime}=\frac{1}{8}$ | . 10 . 2.10 . 5 . 8 |
| $6^{\prime}=\frac{1}{2}$ | 68 . 6 |
| $1^{\prime \prime}=\frac{1}{f}$ | 11.5 |
| $4^{\prime \prime}=\frac{1}{3}$ | 3. 9 . 8 |
| $1^{\prime \prime}=\frac{1}{4}$ | 0 . 11.5 |
|  | Ans. 50756 . 7. 10 . 9.8 |
|  | PROBLEM I. |
|  | To find the area of a square. |

I. $P$.
6. 11. "'" $"$
6.

1. 6. 
1. 10 .
2. 6.2.3.
3. 0.6 .6
4. 8 .
5. 9. 
1. 3. 
1. 10.4.6.
0.10 .
2. 10.2.4.

Rule. Multiply the length of the side by itself, and the product will be the area.*

1. Let the side of the square A BCD be 6 : what is its area? Ans. $6 \times 6=36$, the area.
2. What is the area of a square whose side is 15 chains?

Ans. 225.
3. What is the area of a square whose side is 7 feet 9 inches? $\quad$ Ans. $60_{\mathrm{T}_{\frac{1}{6}}}$.

4. What is the area of a square whose side is 4769 links ? Ans. 22743361.

[^4]
## PROBLEM II.

To find the area of a rectangle.
Rule. Multiply the length of the rectangle by its breadth, and the product will be the area.*


1. Let the sides of the rectangle A. B C D be 12 and 9 , what is its area? Ans. $12 \times 9=108$, the area.
2. What is the superficial content of a plank, whose length is 5 feet 6 -inches, and breath 7 feet 8 inches?

Ans. 42 feet 2 inches.
3. What is the area of a field whose boundaries form a rectangle, its length being 176 links and breadth 154 links ? Ans. 27104 of an acre.
4. What is the superficial content of a floor, whose length is 40 feet $\mathbf{6}$ inches, and breadth 28 feet 9 inches? Ans. 1164 feet, 4 inches, 6 parts.

## MENSURATION Of sUpERTICIEs.

## PROBLEM III.

To find the area of a rhombus.
Rule. Multiply the length by the perpendicular breadth, and the
be 12 and 9 , the area.
lank, whose nes?
: 2 inches.
aries form a 154 links ? f an acre.
rhose length
3, 6 parts.
 product will be the area.*

1. What is the area of a rhombus, whose side is 16 feet, and perpendicular breadth 10 feet. Ans. $16 \times 10$ $=160$ feet the area.
2. What is the content of a field in the form of a rhombas, whose length is $7 \cdot 6$ chains, and perpendicular height $5 \cdot 7$ Ans. 43.32 chains.
3. What is the area of a rhombus, whose side is 7 feet 6 inches, and perpendicular height 3 feet 4 inches?

Ars. 25 feet.
4. What is the area of a rhombus whose length is 3 yards, and perpendicular height 2 feet 3 inches?

$$
\text { Ans. } 20 \text { feet } 3 \text { inchem. }
$$

## PROBLEM IV.

To find the area of a triangle.
Rour. Multiply the base by the perpendicular height, and divide the product by two for the area. $\dagger$

1. The base of a triangle is 76.5 feet, and perpendicular 92.2 feet ; what is its area ?

Ans. $76.5 \times 92.2 \div 2=3526.65$ square feet, the area.
2. The base of a triangle is 72.7 yards, and the perpendicular height of 36.5 yards?

$$
\text { Ans. } 1326.775 \text { yards. }
$$

3. The base of a triangular field is 1276 links; and perpendicular 976 links; how many acres in it?

Ans. 6 acres 86.3008 perches.
4. The base of a triaugle measures 15 feet 6 inches, and the perpendicular 12 feet 7 inches; what is its area?

Ans. 97 feet $6 \frac{1}{4}$ inches.

## PROBLEM V.

Having the three sides of any triangle given, to find its area.


Rule I. From half tile sum of the three sides subtract each side separately, then multiply the half sum and the three remainders together, and the square root of the last product will be the area of the triangle.*

Rule II. Divide the difference between the squares of two sides of the triangle by the third side; to half this third side add half the quotient, and deduct the square of this sum from the square of the greater side, the remainder will be the square of the perpendicnlar, the square root of which, multiplied by half the base, will give the area of the triangle. $\dagger$

[^5]the perpen. 75 yards. and perpen3 perches. inches, and ea? it inches.
nd its area.

es subtract m and the of the last Ider will be t of which, e triangle. $\dagger$

1. Given the side $A B=9 \cdot 2, B C 7 \cdot 5$, and $A C=5 \cdot 5$; required the area of the triangle?
$9 \cdot 2$
$7 \cdot 5$
$5 \cdot 5$
Sum $22 \cdot 2$
$\left.\frac{1}{2} \operatorname{Sum} 11 \cdot 1-9.2=1.9\right):$ then $\sqrt{ }(11.1 \times 1.9 \times 3.6 \times 5.6)$
$11 \cdot 1-7 \cdot 5=3.6\}=\sqrt{425 \cdot 1744}=20.619$ the area
$11 \cdot 1-5 \cdot 5=5 \cdot 6 \quad$ by Rule I.
Again, $9 \cdot 2^{2}-7 \cdot 5^{2}=84.61-56.25=28.39$; then 28.39 $\div 5 \cdot 5=5 \cdot 161818$, quotient.

Now $(5 \cdot 161818 \div 2)+(5 \cdot 5 \div 2)=2 \cdot 580909+2 \cdot 75=$ $53.309=$ half quot. plus half third side : then $84.64-$ $28 \cdot 41869481=56 \cdot 22150519$, and $\nu 56 \cdot 22150519=7 \cdot 498$ $=$ perpendicular; then $7.498 \times 2.75=20.619$ the area as before.
2. What is the area of a triangle whose sides are 50,40 , and 30 ?

Ans. 600.
3. The sides of a triangular field are 4900,5025 , and 2569 links; how many acres does it contain?

$$
\text { Ans. } 61 \text { acres, } 1 \text { rood, } 30.68 \text { perches. }
$$

4. What is the area of an isosceles triangle, whose base is 20, and each of its equal sides 15 ? Ans. $117 \cdot 803$.
5. How many acres are there in a triangle, whose three sides are 380, 420, and 765 yards?

$$
\text { Ans. } 9 \text { acres } 38 \text { poles. }
$$

6. How many square yards are in a triangle, whose three sides are 13,14 , and 15 feet ? Ans. $9 \frac{1}{3}$ square yards.
7. How many acres, \&c., in a triangle, whose three sides are $49,50 \cdot 25$, and $25 \cdot 69$ chains?

Ans. 61 acres, 1 rood, 39.68 perches.

## PROBLEM VI.

## To find the area of an equilateral triangte.

Rule. Square the side, and from this square deduct its of the square of the side, and the square root of the product will give the area.* Or multiply $\frac{A^{-} B^{2}}{4}$ by $\sqrt{ } 3$ for the area. $\dagger$

1. Each side of a tritugular field, $A$ B $C$, measures 4 perches, what is its aren?
$4^{2}=16$, then $16 \div 4=4$ and $16-4=12$ : then $12 \times 4=12 \times 4=48$, and $\sqrt{ } 48=6.928$, the area.
2. How many acres in a field of a triangular form, each of whose sides measures 70 perches?

Ans. 13 acres, 1 rood, 1 perch.
'3. The perimeter of an equilateral triangle is 27 yards, what is is area?

Ans. 35:074.
Nota. When the triengle is isosceles, the perpendicular is equal to the equare tront of tho difiotende bettion the squares of either of the equal'slden, end half the

## PROBLEM VII.

Given the area and allitude of a triangle to find the base.
Rule. Divide the area by the altitude or perpendicular, and double the quotient will give the base.

1. Given the area of a triangle $=$ 12 jards, and altitude $=4$; what is its base?

Ans. $12 \div 4=3$; then $3 \times 2=$ 6 yards, the base A B.

2. A surveyor having lost his field book, and requiring

[^6]the base of a triangalar field, whose content he knew from recollection was 14 aeres, aud altitude 7 yards, how much is the base ?

Ans. 19360 yards.

## PROBLEM VIII.

Given the area of a tria:agle and its base, to find its allitude.
Rule. Divide the area by the given base, and double the quotient will give the perpendicular.

The reason of this rule is manifest, from the last.

1. Given the area of a triangle $=12$, and its base $=6$; what is its perpendicular height?

$$
\begin{gathered}
\text { Ans. } 12 \div 6=2 \text {; then } 2 \times 2=4 \text { the altitude. } \\
\text { PROBLEM IX. }
\end{gathered}
$$

Given any two sides of a right angled triangle, to find the third side, and thence its area.

## Rule.

I. To the square of the perpendicular add the square of the base, and the square root of the sum will give the hypothenuse.
II. The square root of the difference of the squares of the hypothenuse, and either side will give the other.
IIII. On multipin the sum of the fypothenuse, and either side. of their difference; and the square rotot on the produch wh give the other:"

1. Given the base A C 3, the perpendicular C.B 4; required the hypothenuse $\mathbf{A} \mathbf{B}$ ?
$3^{2}+4^{2}=25 ;$ then $\sqrt{ } 25=5$, the hypothenase $A B$.
2. Given $A \quad B \cdot 5$, A $\mathbf{~} \mathbf{3}$; required CB?
$5^{2}-3^{2}=16 ;$ then $\sqrt{ } 16=4$, the side $\mathbf{B C}$; or, $(5+8) \times(5-3=$
 $8 \times 2=16$; then $\sqrt[y]{ } 164$, as before.
3. Given A B 5, B C 4; required A C ?
$5^{2}-4^{3}=9$, then $\sqrt{ } 9=3$, the side $\cdot A \quad C$; or $(5+4)$ $\times(5-4)=9 \times 1=9$; then $\sqrt{ } 9=8$, as before. And $3 \times 4 \div 2=6$ the area of the triangle.

[^7]4. The wall of a building on the brink of a river is 120 feet, and the breadth of the river is 70 yards; what is the length of the chord in feet that will reach from the top of the building across the river? Ans. $241 \cdot 86$ feet.
5. A ladder 60 feet long, will reach to a window 40 feet froon the flags on one side of a street, and by turning the ladder over to the other side of the street, it will reach a window 50 feet from the flags; required the breadth of the street ?

Ans. ${ }^{7} 7 \cdot 8875$ feet.
6. The roof of a house, the side walls of which are the same height, forms a right angle at the top, the length of one rafter being 10 feet, and its opposite one 14 feet; what is the breadth of the house?

Ans. $17 \cdot 204$.

## PROBLEM X.

Given the base and perpendicular of a right angled triangle, to find the perpendicular let fall on the hypothenuse from the right angle; and also the segments into which the hypothenuse is divided by this perpendicular.
Rule. Find the hypothenuse by Prob. IX. Then divide the square of the greater side by the hypothenuse, and the quotient will give the greater segment, which deducted from the entire will give the less. Having found the segments, multiply them together, and the square root of the product will give the perpendicular.*

1. Given A C 3 yards, and C B 4 yards; required the segments $\mathbf{B D} D \mathrm{D} A$, and the perpendicular $\mathbf{D} \mathrm{C}$.
$3^{2}+4^{2}=25:$ then $\sqrt{25}=5=\mathrm{AB}$.
$4^{9} \div 5=16 \div 5=3.2$, $=$ B D; then $5-3 \cdot 2=1 \cdot 8=\mathrm{AD}$.
Again, $3.2 \times 1 \cdot 8=5 \cdot 76$; then $\sqrt{ } 5 \cdot 76=2 \cdot 4=$ D C.
2. The roof of a house whose side walls are each 30 feet high, forms a right angle at the top; now if one of the rafters be 10 feet long, and its opposite yoke-fellow 12, required the breadth of the building, the length of the prop set upright to support the ridge of the roof, and the part of the floor at which it must be placed?
Ans. Breadth of the building 15.6204 feet, greater segment

[^8]9.2186 feet, lesser segment 6.4018 feet, and length of the prop 57.63 fept.

## PROBLEM XI. To find the area of a trapezium.

Rule. Divide the trapezium into two triangles, by joining two of its opposite angles; find the area of each triangle, and the sum of both areas will give the area of the trapezium.
Or,

Draw two perpendiculars from the opposite angles to the diagonal; then multiply the sum of these perpendiculars by the diagonal, and half the product will give the area.*

1. In the trapezium A BCD, the diagonal AC is 100 yards, the perpendicular DE 35, and BF 30; what is its area?

DE $=35$
BF $=\mathbf{3 0}$
65
100
2) 6500


3250 the area.
2. What is the area of a field, whose south side is 2740 links, east side 3575 links, north side 3755 links, west side 4105 links, and the diagonal from south-west to north-east 4835 links?
3. In the trapezium $A$ Ans. 123 acres $11 \cdot 8633$ perches. C B 14, and A B 12; also the diagonal A D is $15, \mathrm{DCD13}$, area?
4. In the trapezium A B C D, Ans. 172.5247. yards, D C 265 yards, and A D, there are given A B 220 yards, and A C -0 cor a C 378 yards; also A F 100 yards, and A C 70 yards; what is its area?

Ans. $85342 \cdot 2885$ yards $=17$ acres, 2 roods, 21 perches.
5. In the trapezium A BCD, there are given A B 220 yards, D C 265 yards, B F 195.959 yards, D E 255.5875 yards; also F E 208 yards; required the area of the trapezium? Ans. $85342 \cdot 2885$ yards.

[^9]6. Suppose in the trapezium A B C D, on account of obstacles, I can only measure A B, D C, B F, D E, and F D, which are respectively 22 yards, 26 yards, 10 yards, 25 yards, and 32 yards, required the area?

Ans: 840.55 square yards.

## PROBLEM. XII.

To find the area- of a trapozium. inscribed in a circle; or of any one whose opposite. angles are together equal to two right angles.
Rulx. Add the four sides together, and take half the sum; the will from this half sum deduct each side separately; and the square root of the product of the four remainders will give the area of the trapezium.*

1. What is the aren of a four-sided field, whose opposite ongles are together equal to two right angles, the length of the four sides being as follows, viz., A B 12.5, A D 17, D C 17.5 , and B.C 8 yards?


| 27.5 | 27.5 | 27.5 | 27.5 |
| :---: | :--- | :---: | :---: |
| 12.5 | 17 | 17.5 | 8 |

$15 \times 10.5 \times 10 \times 19.5=30712.50$; then $30712 \cdot 50=175 \cdot 25$, the area in yards.
2. There is a trapezium whose opposite angles are together equal to two right angles; the sides are as follows, viz, A B 25, A D 34, D.C 35 and B C 16; required its area?

$$
\text { Ans, } 700.99
$$

[^10]count of ob E, and F D, ds, 25 yards, lare yards. circle; or of qual to two

14lf the som; ly ; and the ers will give ose opposite e length of D 17, D C


0 ; then $\sqrt{ }$ ure together 3, viz., A B ea ?
. $700 \cdot 99$.
hengoration or sopgratieng.
87

## PRORLEM XIII.

## To find the area of a trapezoid.

Role. Mnltiply half the som of the two parallel sides by, the perpendicular distance between them, and the product will give the area.*

1. Let $A B C D$ be a trapezoid, the side $A \quad B=$ $40, \mathrm{D} C=25, \mathrm{C} P=18$; required tha ares?


$$
65 \div 2=325 \times 18=585 \text { area }
$$

2. What is the area of a trapezoid, whose parallel sides are 750 and 1225 links, and the perpendicular height 1540 links? Ans; 15 acres $33 \cdot 2$ perches.
3. What is the area of a trapezoid, whose parallel sides are 4 feet 6 inches, and 8 fect 3 inches; and the perpendicular beight 5 feet 8 inches? Ans. 36 feet $1 \frac{1}{2}$ inches.
4. What is the area of a trapozoid whose parallel sides are 1476 and 2073 yirds, and perpendicular height 976 yards ? Aus. 220 acres, 3 roods,' 25 perches, 7 yards Irish.

## PROBLEM XIV.

To find the area of anirregular polygon.
Role. Divide the figure into triangles and trapeziums, and find the area of each separately, by Problem IV. or XI. Add these areas together, and the sum will be the area of the polygon. $\dagger$

1. What is the area of the irregnlar polygon ABCDEFGA the following lines being given?
[^11]|  |
| :---: |
| $\begin{aligned} & \mathbf{O}=9 \\ & \mathbf{B}=29 \end{aligned}$ |
|  |
| G |
| F |
|  |
|  |
| E $\boldsymbol{z}$ |


$A 0=9$
$0 n=11$
$\frac{2) 20 \text { sum }}{10 \text { half }}$
20 diag. G B

> 290 area of ABCGA.
> $\mathbf{C} y=13$
> $\mathbf{E} \boldsymbol{z}=7.4$
> 2) $20 \cdot 4$ sum
$357 \cdot 0$ area of F CDEF.
F $x=14 \cdot 5$
$\frac{1}{2} G C=14 \cdot 2$
$205 \cdot 9$ area of G F C.
290 = area of A BCGA
357 = area of FCDEF
$205 \cdot 9=$ area of GF C

Ans. $852 \cdot 9=$ area of A BCDEFGA.
2. Ya a five-sided ficld G CD DF G there is $G C=28$ perches, $\mathrm{F} x=14$ perches, $\mathrm{C} y=13$ perches, $z \mathrm{E}=7$ perches, and $\mathrm{F}^{\prime} \mathrm{D}=36$ perches; required its area?

Ans. 3 acres, 1 rood, 26 perches.
3. In the annexed figure, there are given in perches.

A $X=15$
$\mathrm{XR}=8$
RTM $=14$
TD $=6$
Kequired the area?
$\begin{array}{ll}\mathbf{A} P=17 & F R=10 \\ P S=14 & E T=12\end{array}$
S $\mathrm{D}=12$
$\mathrm{O} \mathrm{X}=5$
B $\mathbf{P}=20$
$C S=14$
Ans. 4 acres, 3 roods, $19 \frac{1}{2}$ perches.


PIROBLEM XV.

## To find the area of a regular polygon.

Rule I. Add all the sides together and multiply half the sum by the perpendicular drawn from the centre of the polygon to the middle of one of the sides, and the product will give the area. This perpendicular is the radius of the inscribed circle.

Rule II. Multiply the square of the side of the polygon table, under the word area, and the product will give the area of the polygon.

Rule III. Multiply the sidd of the polygon by the number standing opposite to ite name in the column of the following
table, headed " Radius of inscribed Circle," and the prodact will be the perpendicular from the centre of the polygon to the middle of oue of its sides; then multiply half the sum of the sides by this perpendicular, and the product will give the area.*

## TABLE II.

When the side of the polygon is 1 .

| $\begin{aligned} & \text { No of } \\ & \text { sides } \end{aligned}$ | Radius of in. scribed Circle. | Area of Polygon. |  |
| :---: | :---: | :---: | :---: |
| 3 | 0.2886751 | $0 \cdot 4330127=$ | ${ }^{3} \tan .30 t^{\circ}=\sqrt{ } 3$ |
| 4 | 0.5000000 | $1 \cdot 1000000=$ | ${ }^{4} \tan .45^{\circ}=1 \times 1$ |
| 5 | 0.6881910 | $1 \cdot 7204774=$ | ${ }_{4}^{5} \tan .54^{\circ}=\frac{5}{4} \sqrt{ }\left(1+\frac{2}{5} \sqrt{5}\right)$ |
| 6 | $0 \cdot 86602$ ¢ 4 | $2 \cdot 5980762=$ | ${ }_{4} \tan .60^{\circ}=\frac{8}{4} \sqrt{ } 3$ |
| 7 | 1.0382617 | $3 \cdot 6339124=$ | $\frac{7}{4}$ tan. $64^{\circ}{ }^{\frac{3}{7}}$ |
| 8 | $1 \cdot 2071068$ | $4 \cdot 8281271=$ | $\frac{8}{\frac{1}{2}} \tan .677^{\frac{1}{2}}=2 \times(1+\sqrt{ } 2)$ |
| 9 | $1 \cdot 3737387$ | $6 \cdot 1818242=$ | ${ }^{\frac{2}{4} \tan .70^{\circ}}$ |
| 10 | $1 \cdot 5388418$ | $7 \cdot 6042088=$ | ${ }^{10}$ tan. $72^{\circ}=\frac{5}{2} \sqrt{ }(5+2 \sqrt{5})$ |
| 11 | $1 \cdot 7028437$ | $9 \cdot 3656404=$ | $\frac{11}{4}$ tan. $73^{\circ} \frac{7^{\frac{7}{2}}}{}$ |
| 12 | 1.8660254 | $11 \cdot 1961524=$ | $\frac{172}{4} \tan .75^{\circ}=3 \times(2+\sqrt{ } 3)$ |

Nors. The radius of the circumscribed circle, when the side of the polygon is 1, may be seen in Table 1.
The expressions in the fourth column may be seen in Trigonomelry, to which the pupilis reforrod for a full investigation of them. The tangents of the angle OaC in the heptagon, nonagon, and undecagon, are estremely difficult to be found without a table of tangents.

1. The side of a peutagon is 20 yards, and the perpendicular from the centre to the middle of one of the sides is $13 \cdot 76382$; required the area?

By RoLe I. $20 \times 5 \times 13 \cdot 76382 \div 2=1376.382 \div 2=$ 688-191. Ans.

By Role II. $20 \times 20 \times 1.7204^{17} 7=688 \cdot 19$, the area as before.
2. The side of a hexagon is 14 , and the perpendicular from the centre $12 \cdot 1243556$; required the area? Avs. $509 \cdot 2229352$.
3. The side of an octagon is $5 \cdot 7$, required its area ?

Ans. 156.875596479.
4. The side of a heptagon is 19.38 yards, what is its area ? 5. The side of an Aus. 1364•84.
. 10 feet, what is its area?
6. The side of a nonagon is 50 inches, what is its area?

Ans. 15454:5605.
7. The side of an undecagon is 20 , what is its area ?

Ans. 3746-25616.
8. The side of a dodecagon is 40 yards, what is its area? Ans. $17913 \cdot 84384$.

## PROBLEM XVI.

Given the diameter of a circle, to find the circumference; or the circumference to find the diameter, and thence the area.

Rule.* Say as 7 : $22::$ the given dameter : circumference.

Or, as $113: 355::$ the diameter : the circumference.

Or, as $1: 3 ; 416::$ the diameter : the circumference.
II. Say as $22: 7::$ the given circumference : the diameter.

Or, as 355 : $113:$ : the circumfe-
 reuse : the diameter.
COr, as $3 \cdot 1416: 1::$ the circumference : the diameter.

1. The diameter of a circle is 15 , what is its circumferance?

$$
\begin{aligned}
& 7: 22:: 15: 22 \times 15 \div 7=330 \div 7=47 \cdot 142857 \text {. } \\
& \text { Or, } 113: 355:: 15: 355 \times 15 \div 113=5325 \div 113 \\
& =47 \cdot 124 \text {. } \\
& \text { Or, } 1: 3 \cdot 14 \times 6:: 15: 3 \cdot 1416 \times 15=47 \cdot 124 \text {. } \\
& \text { 2. The circumference of a circle is } 80 \text {, what is its dia- } \\
& \text { meter? } \\
& 22: 7:: 80: 7 \times 80 \div 22=25 \cdot 45 . \\
& 355: 113:: 80: 113 \times 80 \div 355=25 \cdot 4647 \text {. } \\
& 3 \cdot 146: 1:: 80: 80 \div 3 \cdot 1416=25 \cdot 4647 \text {. }
\end{aligned}
$$

[^12]3. What is the circumference of a circle whose diameter is 10 ? Ans. $31 \cdot 4285$.
4. What is the diameter of a circle whose circumference is 50 ?

Ans. 15.909.
5. The diameter of the earth is 7958 miles, what is its circumference? Ans. $25000 \cdot 8523$ miles.
6. The circumference of the earth being $25000 \cdot 8528$ miles, what is its diameter? Ans. 7958 miles.

## PROBLEM XVII.

## To find the length of an arc of a circle.

Rule. I. Multiply the radius of the circle by the number of degrees in the given arc, and that product by 01745329 , and the last product will be the length of the arc.*

Role II. From eight times the chord of half the arc, subtract the chord of the whole arc, one-third of the remainder will give the length of the arc, nearly. $\dagger$

1. If the arc A B contain 30 degrees, the radius being 2 feet, what is the length of the arc ?
$30 \times 9=270$, and $270 \times .01745329=4 \cdot 7124$. Ans.

to
2. If the chord $A D$ of half the arc ADB be 20 feet, and the chord A B of the whole arc 38 ; what is the length of the arc ? $20 \times 8-38=122$; then $122 \div 3=46 \frac{2}{3}$ feet. Ans.
[^13]
## MENSURATION OF stuperficies.

3. The chord of an arc is 6 feet, and the chord of half the arc is $3 \frac{1}{2}$; required the length of the whole are?
4. The chord of the whole arc is 40 , and the versed sine* $7 \frac{1}{3}$. or height of the segment 15 ; what is the length of the arc?
5. The chord A B of the whole are is Ans. $53 \frac{1}{3}$. chord $A D$ of half the arc $30 \cdot 25$; re arc is $48 \cdot 74$, and the are?

$$
\text { 6. A } B=30, D P=8 \text {; required the length of the arc ? }
$$

## PROBLEM XVIII.

$$
\text { Ans. } 35 \frac{1}{3} \text {. }
$$

## To find the area of a circle.

Rule I. Multiply half the circumference by half the diameter, for the area. $\dagger$
Rut. II. Multiply the square of the diameter by ${ }^{-7854,}$, for the area. $\ddagger$

Rule III. Multiply the square of the circumference by -07958.§ to the area. 8 . 8 to 7 , so is the square of the circumference Rule V.
the area.

1. To find the area of a circle whose diameter is 100 and circumference $314 \cdot 16$. 100 and

| By Rule I. | By Rule II. |  |
| :---: | :---: | :---: |
| 31416 | -7854. | By Rule III. |
| 100 | $100^{2}=10000$ | ${ }^{98696.5}$ sq. cir. . 07958 |
| 4)31416 | Area 785 | - |
|  |  | 7854. Area. |

[^14]By Rule. IV. $1000^{2}=10000$ 11
2) 110000
7) 55000

Area 7857

By Rule V. 98696.5 sq . cir. 7
8) $690875 \cdot 5$
11) $86359 \cdot 4$
7850.85
2. What is the area of a circle whose diameter is 7 ? Ans. $38 \frac{1}{2}$ nearly.
3. How many square yards are in a circle whose diameter is $1 t$ yard? Ans. 1-069.
4. The surveying wheel turns twice in the length of $16 \frac{1}{2}$ feet; in going round a circular bowling green it turns exactly 200 times; how many acres, roods, and perches in it? Ans. 4 acres, 3 roods, $35 \cdot 8$ perches.
5. The circumference of a fish pond is 56 chains, what is its area?

Ans. $239 \cdot 56288$.
6. What is the area of a quadrant, the radius being 100 ?

Ans. 7854.
7. Required the length of a chord fastened to a stake at one end, and to a cow's horns at the other, so as to allow her to feed on an acre of grass and no more? Ans. $39, \frac{1}{4}$ yards.
8. The circumference of a circle is 91 , what is its area ? Ans. $659 \cdot 00198$.
9. The diameter of a circle is 15 perches, what is its area?

Ans. $176 \cdot 715$.
10. What is the area of the semicircle of which 20 is the radius?

Ans.628.32.

## PROBLEM XIX.

Given the diameter of a circle to find the side of a square equal in area to the circle.
Rule. Multiply the diameter by 8862269 , and the product will be the side of a square equal in area to the circle.*

[^15]1. If the diameter of a circle be 100 , what is the side of a square eqnal in area to the circle? Ans. $88 \cdot 62269$.
2. The diameter of a circular fish-pond is 200 feet, what is the side of a square fish-poud equal in area to the circular one? Ans. 177 -24538.

## PROBLEM XX.

Given the circumference of a circle to find the side of $a$ square equal in area to the circle.
Rule. Multiply the circumference by -282 948, and the product will be the side of the square.*

1. The circumference of a circle is 100 , what is the side of a square equal in area to the circle? Ans. 28.2948.
2. The circumference of 4 rond fish-poind is 200 yards, what is the side of a squar pond equal in area to the round one?

## PROBLEM XXI.

## Given the diameter, to find the side of the inscribed square.

Rule. Multiply the diameter by $\cdot 7071068$, and the product will give the side of the inscribed square. $\dagger$

1. The diameter of a circle is 100 , what is the side of the inseribed square? Ans. 70.71068.
2. The diameter of a circle is 200 , what is the side of the inscribed square? Ans. $141 \cdot 42136$.


## PROBLEM XXII.

 square.Rule. Multiply the area by 6366197, and extract the square root of the product, which will give the side of the

[^16] and the proand the pro-
to the circle.* is its area ? $659 \cdot 00198$. , what is its s. $176 \cdot \uparrow 15$. bich 20 is the Ans.628.32.
a square equal inscribed square. $\ddagger$

1. The area of a circle is 100 , what is the side of the inscribed square?
2. The area of a circle is 200 , what is the side of the inscribed square ?
$200 \times 6366197=127 \cdot 3239400 ;$ then $\sqrt{ } \sqrt{ } 127 \cdot 3239400$ $=11 \cdot 2837$. Ans.

## PROBLEM XXIII.

Given the side of a square, to find the diameter of the circumscribed circle.
Rlle. Multiply the side of the square by 1.4142136 , and the product will give the diameter of the circumscribed circle.*

1. If the side of $a$ square be 10 , what is the diameter of the circumscribed circle? Ans. $14 \cdot 142136$.
2. If the side of a square be 20 , find the diameter of the circumscribed circle?

Ans. 28.284272.

## PROBLEM XXIV.

Given the side of a square to find the circumference of the circumscribed circle.
Rule. Multiply the side of the square by $4 \cdot 4428934$, and the product will be the circumscribed circle. $\dagger$

1. If the side of a square be 100 , what is the circumference of the circumscribed circle? Ans. $444 \cdot 28934$.
2. If the side of the square be 30 , what is the circumference of the circumscribed circle? Ans. $133 \cdot 286802$.

## PROBLEM XXV.

Criven the side of a square, to find the diameter of a circle equal in area to the square.
Rule. Multiply the side of the square by $1 \cdot 1283791$, and the product will be the diameter of a circle equal in area to the square whose side is given. $\ddagger$

[^17]1. If the side of a square be 100 , what is the diameter of the circle whose area is equal to the square whose side is 100?
2. What is the diameter of a circle equal in area to a square whose side is 200? Ans. 225.67582.

## PROBLEM XXVI.

Giten the side of a square, to find the circumference of a circle whose area is equal to the square whose side is given.
Rule. Multiply the side of the square by 3.5449076 , and the product will give the circumference of a circle equal in area to the given square.*

1. What is the circumference of a circle, whose area may be equal to a square whose side is 100 ?
2. Find the circumference of square whose side is 300 ? Ans. $1063 \cdot 47228$.

## PROBLEM XXVII.

## To find the area of a sector of a circle.

Rule. Multiply half the length of the arc by the radius of the circle, and the product is the arca of the sector. $\dagger$

Rule II. As 360 is to the degrees in the arc of the sector, so is the area of the whole circle to the area of the sector. $\ddagger$

1. Let ACBO be a sector less than a semicircle whose radius $A O$ is 20 feet, and chord AB 30 feet; what is the area?

First, $\sqrt{ }\left(\mathrm{A} \mathrm{O}^{2}-\mathrm{A} \mathrm{D}^{2}\right)=\sqrt{ } 400$ $-225)=13 \cdot 228=0 \mathrm{D}$; then 0 C -$\mathrm{OD}=20-13.228=6.772=\mathrm{CD}$.

Again, $\sqrt{ }\left(\mathrm{A} \mathrm{D}^{2}+\mathrm{CD}^{2}\right)=\sqrt{ }$ $225+45 \cdot 859984)=16 \cdot 4578=\mathrm{N}$ $C$, the chord of half the arc.


[^18]Hence, by problem XVII. the arc A B is $\mathbf{3 3 . 8 8 7 4}$; then $\frac{33.8874}{2} \times 20=338.874$, the area required.
2. Let AEFBOA be a sector greater than a semicircle, whirse radius A $\mathbf{O}$ is 20 , the chord $\mathrm{E}^{-1}$ 38, and chord B F of half E F B 23; required the area?

$$
\begin{array}{r}
23 \\
\frac{8}{8} \\
\frac{184}{184} \\
38
\end{array}=\text { chord B F }
$$


3) 146

$$
48 \cdot 6668 c .=\operatorname{arc} \operatorname{BF} \mathbf{E}
$$

$973 \frac{1}{2}$ area.
3. What is the area of a sector whose arc contains 18 degrees, the diameter being 3 feet?

$$
\begin{aligned}
& \text { Then } 360: 18: 7 \cdot 0686: \text { the area of the sector ; } \\
& \text { Or, } 20: 1: 7 \cdot 0686: 35343 \text {. Ans. }
\end{aligned}
$$

4. What is the area of a sector whose arc contains 147 degrees 29 minutes, and radius 25 ? Ans. 804.3986.
5. What is the area of a sector whose arc contains 18 degrees, the radius being 3 feet? Ans. 1-41372.

## PROBLEM XXVIII.

To find the area of the segment of a curcle.
Rule I. Find the area of the sector having the same are with the segment, by the last problem; find also the ares
of the triangle, formed by the chord of the segment and the two radii of the sector. Then add these two areas together, when the segment is greater than the semicircle, but find their difference when it is less than a semicircle, the result will evidently be the answer.

1. What is the area of the segment A C 3.1 A , its chord A $B$ being 24, and radius $A$ E or E C 20?
 $20-16=4=C D ; \sqrt{ }\left(A D^{2}+\right.$ $\left.D C^{2}\right)=\sqrt{ }(144+16)=12.64911$
$=A C$; then $\frac{(A C \times 8,-24}{8}=$
$25 \cdot 7309=\operatorname{arc} A C B$,
And $12.8654=$ half are

$$
20=\text { radius }
$$

$$
12=\mathrm{AD}
$$

$257 \cdot 308=$ area of sector EBCA.

$$
16=\overline{\mathrm{D} A}
$$

192. = area of $\triangle A B E A .192$ = area of $\triangle \mathrm{ABE}$

$$
65 \cdot 308=\text { area of segment } A \text { B CA. }
$$

2 Let A GFBA be a segment greater than a semicirce there are given the chord A B 20.5, F D 17.17. A F $20, \mathrm{FG} 11.5$ and AE, $11 \cdot 64$, required the area of the segment?
$\frac{(F G \times 8)-A \text { F }}{3}=\frac{(11.5 \times 8)-20}{3}=24$ the length of the arc A GF (Problem XVII.); then $24 \times 11.64=$ $279 \cdot 36$, area of sector A E B F GA (Problem XXVII). Again, FD-E F $=17.17-11.64=6.53=\mathbf{E D}$; then $\frac{\mathrm{AB}<\mathbf{E D}}{2}=\frac{20.5 \times 5.553}{2}=56.6825$ the area of the triangle A B E, which being added to the area of the sector before found will give the area of the segment, viz. $279 \cdot 36$ $+56.6825=336.0425$ the area of the segment $A$ GF B A,

Rule 1I. To two-thirds of the product of the chord and versed sine of the segment, add the cube of the versed sine divided by twice, the chord, and the sum will give the area of the segment, nearly.

When the segment is greater than the semicircle, find the area of the remaining segment, and deduct it from the area of the whole circle, the remainder will give tie area of the segment.*
3. What is the area of the segment A C B, less than a semicircle, its chord being 18.9, and height or versed sine D C 24 ?
$\mathrm{AB} \times \mathrm{DC}=18.9 \times 2.4=45.36$, and $\frac{2}{3} \mathrm{~A} B \times \mathrm{DC}$ $=\frac{2}{3} \times 45.36=30.24$; then $\frac{2.4^{3}}{2 \times 18.9}=36571$; hence $30 \cdot 24+\cdot 36571=30 \cdot 60571$ the area.

Nots. If two ohords of a circle cut one another, the rectangle contained by the segments of one of them is equal to the rectangle contained by the segmenta of the other. This is the 35 th Proposition of Book 1ll. of Euclid.
4. Required the area of the segment A G F B whose height F D is 20 , and chord A B 20?
$\frac{A B}{2}=\frac{20}{2}=10=A D$, and $A^{2}=100 ;$ but $A D^{2}=F D$

$$
\times \mathrm{DC} \therefore \mathrm{CD}=\frac{\mathrm{AD}^{2}}{\mathrm{FD}}=\frac{100}{20}=5
$$

The area of the segment A C B is, by the last case, 69.7916 ; and the area of the whole circle, by Problem XVIII. is 490.875 ; then $490 \cdot 875-69 \cdot 7916=421 \cdot 0834$ $=$ area of the segment AGFB.
5. What is the area of the segment A G F B, greater than a semicircle, whose chord A B is 12 , and versed sine 18 ? Ans. 297.81034.

Rule III. Divide the height of the segment by the diameter of the circle, to three places of decimals. Find the quotient in the column Height of the Table at the end of the practical part of this treatise, and take out the corresponding Area Seg., which multiply the square of the diameter, and the product will be the area of the segment required.*

C B, less than a or versed sine
ectangle contained by ained by the segments suclid.

F B whose height
but $\mathrm{A}^{2}=\mathrm{FD}$
y the last case, cle, by Problem $916=421 \cdot 0834$
? B, greater than rsed sine 18 ? ns. 297.81034 .

[^19]
## $16 \cdot 35$ area.

7. What is the area of a segment, whose diameter is 52 , and versed sine 2 ?
$\frac{\sigma^{2}}{5_{2}^{2}}=038_{\mathrm{r}_{3}^{2}}$ which is the tabular versed sine. Then to $\cdot 038$ answers 009763 , and the difference between this area and the next is $\cdot 000385$, which multiplied by $\mathrm{r}^{\frac{6}{3}}$ gives $\cdot 000177$ which added to $\cdot 009763$ gives $\cdot 009940$, which is the area corresponding to the versed sine $038 \frac{6}{13}$. Then $52^{2} \times \cdot 009940$ $=26.87776$ is the area required.

## PROBLEM XXIX.

To find the area of a zone, or the space included by two parallel chords and the arcs contained between them.
Rule. Join the extremities of the parallel chords towards the same parts, and these connecting lines will cut off two

[^20]equal segments, the areas of which added to the area of the trapezoid then formed will give the area of the zone.

1. Suppose the greater chord AB=30, the less C D 20, and the perpendicular distance $\mathrm{D} x=25$, required the area of the zone ABDC.
$\frac{1}{2}(\mathrm{AB}-\mathrm{CD})=x \mathrm{~B}=\frac{1}{2}$
$(30-20)=5:$ then $/\left(x \mathrm{I}^{2}\right.$ $\left.+x \mathrm{~B}^{2}\right)=\mathrm{DB}=\sqrt{ }\left(25^{2}+\right.$ $\left.5^{2}\right)=25 \cdot 49$. A B $-\mathrm{B} x$ $=A x=30-5=25$, and
 $(\mathrm{A} x \times \mathrm{B} x) \div \mathrm{D} x=\mathrm{F} x=$ $(25 \times 5) \div 25=5 . \quad \mathrm{D} x+\mathrm{F} x=\mathrm{DF}=25+5=30$; $\frac{1}{2} \sqrt{ }\left(\mathrm{CDD}^{2}+\mathrm{DF}^{2}\right)=\frac{1}{2} \mathbf{C F}=\mathbf{G} z=\frac{1}{2} \sqrt{ }\left(20^{2}+30^{2}\right)=$ 18.027, the radius of the circle ; ( $\mathrm{DB} \times \mathrm{A} x) \div 2 \mathrm{D} x=\mathrm{G} y^{*}$ $=(25.49 \times 25) \div(2 \times 25)=12 \cdot 745 ; \mathbf{G} z$ - $\mathbf{G} y=z y=$ $18.027-12.745=5 \cdot 282$, the height of the segment $\mathbf{A} z \mathbf{C}$. $36 \cdot 05) 5.28(\cdot 146$, the tabular area segment answering to which is $\cdot 071033$, then $071033 \times(36 \cdot 05)^{2}=92 \cdot 315=$ the area of the segment $\mathrm{A} \boldsymbol{z}$.
$\frac{1}{2}(\mathrm{AB}+\mathrm{CD}) \times \mathrm{D} x=\frac{1}{2}(30+20) \times 25=625$ the area of the trapezoid A BDC: then $625+92.315 \times 2$ $=809 \cdot 63=$ the area of the zone.
2. Let the chord A B be 48, the chord C D 30, the chord A C 15.8114; what is the area of the zone A B D C ?

Ans. The diameter C F $=50$, height of the segment A $z \mathrm{C}=1 \cdot 2829$, area by the table of segments $=13.595$. Area of the zone A B D C $=534 \cdot 19$.
3. Let $A B=20, C D=15$, and their distance $=17 \frac{1}{1}$; required the area?

Ans. 395•4369.
4. Let $A B=96, C D=60$, and their distance $=26$; required the area?

Ans. 2136.7527.

[^21]he area of the zone.

$25+5=30 ;$ $\left(20^{2}+30^{2}\right)=$ $\div 2 \mathrm{D} x=\mathrm{G} y^{*}$ $-\mathrm{G} y=z y=$ egment Az $\mathbf{C}$. answering to $92 \cdot 315=$ the
$25=625$ the $+92.315 \times 2$

30 the chord B D C ?
the segment $\mathrm{nts}=13.595$.
stance $=17 \frac{1}{2}$; s. $395 \cdot 4369$.
listance $=26$; 2136•7527.

## PROBLEM XXX.

To find the area of a circular ring, or of the space included between two concentric circles.

Rule. Multiply the sum of the two diameters by their difference, and the prodnct arising by ' 7854 for the area of

1. The diameter A B is $\mathbf{3 0}$, and CD 20 ; what is the area of the ring $\mathbf{X X}$ ?
30
20
$\overline{50}$ sum
10 difference

500
$\cdot 7854$


## $392 \cdot 7000$ area of ring XX.

2. What is the area of the circular ring, when the diamAns. 549•78.
3. What is the area of a circular ring, when the diameters are 50 and 45? Ans, 373.065.

## PROBLEM XXXI.

To find the area of a part of a ring, or of the segment of
Rule. Multiply half the sum of the bounding arcs by their distance asunder, and the product will give the rea. $\dagger$

[^22]1. Let A B be 50 , and $a b 30$, and the distance a $\mathbf{A 1 0}$; what is the area of the space abla

$$
\text { Ans. } \frac{50+30}{2} \times 10=400 .
$$

2. Let A B=60,a $b=40$, and $a$ A $=2$; required the area of the space $a b \mathrm{BA}$ ? Ans. 100.
3. Let A B=25, $a b=15$, and $a \mathrm{~A}$ $=6$; required the area of the segment of the sector?


## PROBLEM XXXII.

To find the area of a lune, or the space included between the intersecting arcs of two eccentric circles.
Rule. Find the areas of both segments which form the lune, and deduct the less from the greater; the remainder will evidently be the area required.

1. Let the chord $A \mathrm{~B}=$ $40, \mathrm{E}=12$, and $\mathrm{E} \mathrm{D}=4$; what is the area of the lune ADBCA?
By note page 50 , (A $\mathrm{E}^{2}$ $\div \mathbf{E C} \mathbf{C}+\mathbf{E} \mathbf{C}=$ diameter
 of the circle of which $A C B$ is an arc; and ( $A E^{2} \div E D$ ) $+\mathrm{ED}=$ the diameter of the cirele of which $\mathrm{A} D \mathrm{D}$ is an arc ; hence $\left(20^{2} \div 12\right)+=45 \cdot 3$; and $\left(20^{2} \div 4\right)+4$ $=104$ are the two diameters.

$$
12 \div 45 \cdot 3=264 . \quad 4 \div 104=\cdot 038
$$

The Area Seg. answering to $\cdot 264$ is $\cdot 165780$, and $(45 \cdot 3)^{2} \times 165780=340 \cdot 1954802=$ area of the segment
A E B A?

It equal and $t$ the a)

Or, numb by the

1. and th

## ictes.

## e <br> 

included between the c circles.
ats which form the ter; the remainder

nd (A E $\left.{ }^{2} \div \mathbf{E} D\right)$ hich A.D B is all $\left(20^{2} \div 4\right)+4$
$104=\cdot 038$.
is $\cdot 165780$, and ea of the segment
is $\cdot 009763$, and
$(104)^{2} \times \cdot 009563=105596508=$ rea of the segment AEBD A; then $340 \cdot 1954802-105 \cdot 596608=234 \cdot 5988722$ $=$ the area of the lune.
2. Let the chord A B be 40 , and the heights of the segments E C and E D 15 and 2 ; required the area of the Ans. $895 \cdot 5$

## PROBLEM XXXIII.

IG MEASLURE LONG IRREGULAR FIGURES.

When irregular figures, not reducible to any known figure, present themselves, their contents are best found by the method of equi-distant ordinates.

Ruie. Take the breadths in several places, at equal distances and divide the sum of the first and last of them by 2 for the arithmetical mean between those two. Add together this mean and all the other breadths, omitting the first and last, and divide their sum by the number of parts so added, the quotient will give the mean breadth of the whole, which being multiplied by the given length will give the area of the figure, very nearly.

It is not necessary sometimes to take the breadths at equal distances, but to compute each trapezoid separately, and the sum of all the separate areas thus found will give the area of the entire, nearly.

Or, add all the breadths together and divide by the number of them for a mean breadth, which being multiplied by the length, as before, will give the area, nearly.

1. Let the ordinate $A D$ be $9 \cdot 2, b f t, c g 9, d h 10, \mathrm{~B} C 8.8$ and the length $\triangle$ B 30 ; required the area?

8) 18

9 mean breadth of first and last. $76 f$ 9 cg
10 d A
4) 35 cam
8.75 mean breadth of all. 30
$262 \cdot 50$ area of the whole figure.
2. The length of an irregular figure is 99 yards, and its breadths, in five equi-distant places, are $4.8,5 \cdot 2,4 \cdot 1,73$, and $7 \cdot 2$; what is its area? Ans. $215 \cdot 475$ square yards.
3. The length of an irregular figure is 50 yards, and its breadths, at seven equi-distant places, are $5 \cdot 5,62,7.3,6$, $7.5,7$, and 8.8 ; what is its area? Ans. 342.05 square yards.
4. The length of an irregalar figure being $37 \cdot 6$, and the breadths, at nine equi-distant places, $0,4.4,6.5,7 \cdot 6,5 \cdot 4,8$, $5.2,6.5,6 \cdot 1$; what is the area? Ans. 218.315 .

## 57

## EXERCISES.

39 yards, and its
$4 \cdot 8,5 \cdot 2,4 \cdot 1,7 \cdot 3$,
39 yards, and its
$4 \cdot 8 ; 5 \cdot 2,4 \cdot 1,7 \cdot 3$, 75 square yards. s $50^{\circ}$ yards, and its
$35 \cdot 6,62,7 \cdot 3,6$,
2.05 square yards. s $50^{\circ}$ yards, and its
$35 \cdot 6,62,7 \cdot 3,6$,
2.05 square yards. s 50 yards, and its
$55^{\circ} 5,6 \times 2,7 \cdot 3,6$,
$2 \cdot 05$ square yards.
ing $37 \cdot 6$, and the
$4,6 \cdot 5,7 \cdot 6,5 \cdot 4,8$,
Ans. $218 \cdot 315$.
ing $37 \cdot 6$, and the
$4,6 \cdot 5,7 \cdot 6,5 \cdot 4,8$,
Ans. $218 \cdot 315$.
ing $37 \cdot 6$, and the
$4,6 \cdot 5,7 \cdot 6,5 \cdot 4,8$,
Ans. $218 \cdot 315$.

## ciss.


ust.
9. What must be the altitude of a triangle equal in area to the last, whose base is 12 feet?

Ans. 6 feet.
10. The height of a precipice standing close by the side of a river is 103 feet, and a line of 320 feet will reach from the top of it to the opposite bank; required the breadth of the river?

Ans. 302.97 feet.
11. A ladder $12 \frac{1}{2}$ feet in length stands upright against a wall, how far must the bottom of it be pulled out from the wall so as to lower the top 6 inches? Ans. $3 \frac{1}{2}$ feet.
12. A person wishing to messure the distance from a point A, at one side of a canal, to an object $O$, at the other, and having no instrument but a book, placed a corner of it on the point $A$, and directed an edge of it, as in the figure, in a straight line with the object 0 , and drew the straight lines $A B, A C$; he then placed the book so that a coruer of it rested on the point $B$, at the distance of eight times its length from the point $A$, and directed an edge of it, as before, to the object 0 , and drew the straight line B C which met A C at the cistance of three times the length of the book from $A$; how many times the length of the book is the object $O$ from the points $A$ and B?


Ans. $21 \frac{1}{3}$ and $22 \cdot 78$ times.
13. What is the area of a trapezium whose diagonal is 70.5 feet, and the two perpendiculars 26.5 and 30.2 feet? Ans. 1998.675 square feet.
14. What is the area of a trapezium whose diagonal is 108 feet 6 inches, and the perpendiculars 56 feet 3 inches, and 60 feet 9 inches? Ans. 6347 feet 36 inches.
15. What is the area of a trapezoid whose two parallel sides are 75 and 122 links, and the perpendicuiar distance 154 links? Ans. 13629 square links.
16. A field in the form of a trapezoid, whose parallel sides are 6340 and 4380 jards, and the perpendicular distance between them 121 yards, lets for £207 14s. per annum; what is that per acre?
17. Two opposite angles of a four sided field are together equal to two right angles, aud the sides are 24, 26, 28, and 30 yards; what is its area? Ans. 723.99 square yards, nearly.
18. Required the area of a figure similar to that annexed to the first question under Problem XIV., whose dimensions are double of those there given?

$$
\text { Ans. } 3411 \cdot 6 .
$$

19. What is the side of an equilateral triangle equai in area to a square, whose side is 10 feet?

$$
\text { Ans. } 15 \cdot 196 \text { feet, nearly. }
$$

20. Required the area of a regular nonagon, one of whose sides is 8 feet, and the perpendicular from the centre $=$ Ans. $395 \cdot 64$ square feet.
21. Required the area of a regular decagon, one of whose sides is 20.5 yards? Ans. 3233.491125 square yards.
22. A wheel of a car turns round 4400 times in a distance of 10 miles; what is its diameter?

Ans. 3.819708 feet.
23. If the diameter of a circle be 9 feet, what is the length of the circumference?
hose diagonal is and $30 \cdot 2$ feet? 75 square feet.
24. Required the length of an arc of $60^{\circ}$; the radins of the circle being 14 feet? Ans. 14.660772 feet.
25. The chord of an are is 30 feet and the height is 8 feet, what is the length of the arc? Ans. $35 \frac{1}{3}$ feet, nearly.
26. The diameter of a circle is 200 , what is the area of the quadrant? Ans. 7854.
27. The dia seters of two enncentric circles are 15 and 10 , what is the area of the ring formed by those circles?
A.
28. The circumference of a circle is 628.32 yards, what is the radius of a concentric circle of half the area? Ans. $141 \cdot 42$.
29. What is the side of a squaie equal in area to the circle whose diameter is 3 ?

Ans. $2 \cdot 6586807$.
30. The two parallel chords of a zone are 16 and 12 and their perpendicular distance is 2 , what the area of the zone?

$$
\text { A s. } 28 \cdot 376 .
$$

31. The length of a chord is 15 , and the heights of two segments of circles on the same side of it are 7 and 4 ; what is the area of the lune formed by those segments?
Ans. 38, nearly.
32. The base and perpendicular of a right-angled triangle are each 1 , what is the area of a circle having the hypothenuse for its diameter.
$A n s .1 \cdot 5708$.
33. If the area of a circle be 100 , what is the area of the inscribed square?

Ans. 63.66 .
8.JPRRFICIES.
of $60^{\circ}$; the radins of s. $14 \cdot 660772$ feet.
and the height is 8 ns. $35 \frac{1}{3}$ feet, nearly.

What is the area of Ans. 7854.
circles are 15 and those ciroles?
A. . 8 . 175.
8.32 yards, what is he area?

Ans. 141•42.
in area to the circle Ans. $2 \cdot 6586807$.
are 16 and 12 and the area of the A . $28 \cdot 376$.
he heights of two are 7 and 4 ; what ments?
4ns. 38, nearly.
ht-angled triangle g the hypothenuse Ans. 1.5708.
is the area of the Ans. $63 \cdot 66$.

## CONICSECTIONS.

## SECTION III.

## OF THE ELLIPSIS.*

## PROBLEM I.

The transverse and conjugate diameters of an ellipsis being given, to find the area.

Rule. Multiply the transverse and conjugate diameters thgether, and the prodact arising by 7854 , and the result will be the area. $\dagger$

1. Let the transverse axis be 35 , and the conjugate axis 25 ; required the area ?

$$
35 \times 25 \times 7854=687 \cdot 225 \mathrm{Ans}
$$

2. The longer diameter of an ellipse is 70 , and the shorter 50; what is the area? Ans. $2748 \cdot 9$.
3. What is the area of an ellipse whose longer axis is 80 , and shorter axis is 60 ? Ans. 3769.92.
4. What is the area of an ellipse, whose diameters are Ans. 1767•15.

## PROBLEM II.

## To find the area of an elliptical ring.

Rove. Find the area of each ellipse separately, and their difference will be the area of the ring.

[^23]Or, Frcm the product of the two diameters of the greater ellipse deduct the product of the two diameters of the less and multiply the remainder by 7854 for the area of the ring.*

1. The transverse diameter A B is 70, and the conjugate C D 50; and the transterse diameter $\mathbf{D}$ F of another ellipse

having the same centre O, is 35 , and the conjugate $G H$ is 25; required the ares of the elliptical space between their circumferences ?
$70 \times 50 \times \cdot \cdot 7854=2748 \cdot 9$; and $35 \times 25 \times \cdot 7854$ $=687 \cdot 225$; then $2748 \cdot 9-687 \cdot 225=2061 \cdot 675=$ area
of the elliptical ring.

$$
\begin{aligned}
& 70 \times 50=3500 \\
& 35 \times 25=875
\end{aligned}
$$

$$
2625 \times 7854=2061 \cdot 675=\text { area }
$$

2. The transverse and conjugate diameters of an ellipse are 60 and 40 , and of another 30 and 10 ; required the area of the space between their circumferances? Ans. $1649 \cdot 34$.
3. A gentleman has an elliptical flower garden, whose greater diameter is 30 , and less 24 feet; and has ordered a gravel walk to be made round it of 5 feet 6 inches in width; required the area of the walk? Ans. 371-4942 feet.

## PROBLEM III.

Given the height of an elliptical segment, whose base is parallel to either of the axes of the ellipse, and the two axes of the ellipse, to find the area.
Rule. Divide the height of the segment by that diameter of which it is a part, to three places of decimals, find the

## MENSURATION.

quotiont in the column Height of the Table referred to in page 51, and take out the correspondent Area Seg. Multiply the Area Seg. thus found and both the axes of the ellipsis together, and the result will give the area required.*

1. Required the area of an elliptical segment $R \mathbb{Q}$

whose height A P is 20 ; the tranverse axis $\mathrm{A} B$ being 70 , and the coujugate axis C D 50 ?
$20 \div 70=-285 \frac{5}{7}=$ the tabular versed sine, the corresponding segment answering to which is 185166 ; then $\cdot 185166 \times 70 \times 50=648 \cdot 081$, the area.
2. What is the area of an elliptical segment cut off by a chord parallel to the shorter axis, the height of the segment being 10 , and the two diameters 35 and 25 ?

$$
\text { Ans. } 162 \cdot 0202 .
$$

3. What is the area of an elliptical segment cat off by a chord parallel to the longer axis, the height of the segment being 10, and the two diameters 40 and 30 ?

Ans. $275 \cdot 0064$.
4. What is the area of an elliptical segment cut off by $a^{-}$ hord parallel to the shorter diameter, the beight being 10 , d the two diameters 70 and 50 ?

$$
\text { Ans. } 240.884 .
$$

[^24]
## PROBLEM IV.

## To find the circumference of an ellipse, by having the two diamelers giver.

Role. Multiply the sum of the two diameters by 1.5708 , and the product will give the circumference nearly; that is, putting $t$ for the transverse, $c$ for the conjugate, and $p$ for 3.1416; the circumference will be $(\varepsilon+c,) \times \frac{1}{2} p$.*

1. Let the transverse axis be 24 , and the conjugate 18 ; required the area?
$(24+18) \times 1.5708=42 \times 1.5708=65.9736$ is the circumference, nearly.
2. Required the circumferenca of an ellipse whose transverse axis is 30 , and conjugate 20 ? Ans. 78.54.
3. Required the circumference of an ellipse whose diameters are 60 and 40? Ans. 157.08.
4. What is the circumferense of an ellipse whose diameters are 6 and 4 ?

Ans. 15•708.
5. What is the circumference of an ellipse whose diaAns. $7 \cdot 854$.

## PROBLEM V.

## To find the length of any arc of an ellipse.

Rule. Find the length of the circular arc $x y$, intercepted by $0 \mathrm{C}, \mathrm{OB}$, and whose radius is half the sum of $0 \mathrm{C}, \mathrm{OB}$ : and it will be equal to the elliptical are B C , nearly. $\dagger$

Note. The nuarer the axes of the allipse approach towards equality, the more axact the resnlt of the uperation by this Rute; and the lass the elliptical erc, the
naser its exact length will approach tha arc $x y$.

[^25]by having the two
ianseters by 1.5708 , nce nearly; that is, injugate, and $p$ for $\times \frac{1}{2} p$.*
the conjugate 18 ;
$=65 \cdot 9736$ is the
llipse whose transAns. 78.54.
ellipse whose diaAns. 157.08.
Alipse whose diaAus. 15•708.
llipse whose diaAns. 7•854.
n ellipse.
arc $x y$, interhalf the sum of ptical are B C,
ds equality, the more the elliptical erc, the

1. Let the axis A D be $24, \mathrm{CK} 18$, and 0 T 3 ; required the leugth of the are BC?

Here we have $T D=9$, and $A T=15$; then from the property of the ellipsis, we have $\mathrm{A}^{2}: \mathrm{O}^{2} \mathrm{O}^{2}:: \mathrm{A} \mathrm{I} \times$


TD : TB $\mathrm{B}^{2}=\frac{9^{2} \times 9 \times 15}{12 \times 12}=\frac{9 \times 9 \times 15}{16}$, and $0 \mathrm{~B}=$ $\sqrt{ }\left(\mathrm{OT}^{2} \curlywedge \mathrm{~TB}^{2}\right)=\sqrt{ }\left(9+\frac{9 \times 9 \times 15}{16}\right)=9.21616$, the radius of the circle of which $G B$ is an arc; but $O C$ is the radius of the circle of which $C V$ is an arc; therefore the radics of the circle of which $x y$ is an arc, is $\frac{1}{2} O C+\frac{1}{2} O B$ $=9 \cdot 10808$. But by Trigonometry,* H B $\div \mathrm{OB}=3 \div$ $9 \cdot 21616=325515$, is the sine of the angle $C O B$, or are $x y$, to the radius 1 , answering to 18.9968 degrees. Therefore, by Problem XVII. Rule 1, the length of the arc $x y$ is $01745 \times 18.9968 \times 9 \cdot 10808=3.0192$, which is also equal to the length of the elliptical arc $C B$, nearly.
2. Given $A D 30, C K 20$, and $O T 5$; required the length of the arc BC? Ans. $5 \cdot 03917786255$.
3. Given A D 40, C D 30, and OT 5; required the Ans. $5 \cdot 033880786$.

[^26] length of the arc B C?

## PROBLEM VI.

Given the diameter and abscissas, to find the ordinate.
Rule. Say, as the transverse is to the conjugate, so is the square root of the rectangle of the two abscissas, to the ordinate.*

1. In the ellipse A CDK, the transverse diameter A D is 100 , the conjugate diameter C K 80 , and the abscissa D 'T 10 ; required the length of the ordinate $T \mathrm{~B}$ ? $100: 80:: \sqrt{ }(90 \times 10): T B=24$. (See the last figure.)
2. Let the transverse axis be 35 , the conjugate 25 , and the abscissa 7 ; required the ordinate? Ans. 10.
3. Given the two diameters 70 and 60 , and the abscissa 10; required the ordinate? Ars. 20.9956.

## PROBLEM VII.

Given the transverse axis, conjugate and ordinate, to find
the abscissas.
Rule. As the conjugate is to the transverse diameter, so is the square root of the difference of the squares of the ordinate and semi-conjugate, to the distance between the ordinate and centre. Then this distance being added to, and subtracted from, the semi-liameter, will give the two abscissas. $\dagger$

1. Let the diameters be 35 and 25 , and the ordinate 10 ; required the abscissas?

Give

By the Rule $\frac{35}{2}+\frac{35}{25} N\left(\left[\frac{25}{2}\right]^{2}-10^{2}\right)=\frac{35+21}{2}=28$ and 7 the two abscissas.
2. Let the diameters be 120 and 40 , $d$ th ordinate 16; required the abscissas? Avs. 96 and 24.

[^27]
## PROBLEM VIII.

Given the conjugate axis, ordinate, and abscissas, to find the transverse axis.

Rule. Find the square root of the difference of the squares of the semi-conjugate axis and the ordinate, which add to, or subtract from, the semi-conjugate, according as the less abscissa or greater is given.

Then say, as the square of the ordinate is to the rectangle of the conjugate, and the abscissa, so is the sum or difference foun ? above to the transverse required.*

1. Let the ordinate be 10 , and the less abscissa 7 ; what is the diameter, allowing the conjugate to be 25 ?
$\mathcal{N}\left(\left[\frac{25}{2}\right]^{2}-10^{*}\right)=7 \cdot 5$; then $7 \cdot 5+12 \cdot 5=20$; then $10^{2}: 25 \times 7:: 20: 35$ the transverse required.
2. Let the ordinate be 10 , the greater abscissa 28, and the conjugate 25 ; required the transverse diameter ? $A n s .35$.

## PROBLEM 1 .

Given the cransverse axis, ordinate, and abscissa, to find the conjugate.
Rule. The square root of the product of the two abscissas is to the ordinate, as the transverse axis is to the conjugate. $\dagger$

1. Let the transverse axis be 35 , the ordinate 10 , and the abscissas 28 and 7 ; required the conjugate?

25, the conjagate. $: \frac{\sqrt{(28 \times 7)}}{14}=$
d tt ordinate s. 96 and 24.
2. Let the transverse diameter be 120 , the ordinate 16 , and the abscissas 24 and 96 ; required the coujugate ? Ans. 40.

## OF THE PARABOLA.

## PROBLEM X.

Given the base and height of a parabola to find its area.

> Nork. Any double ordinate, A B, to the axis of a parabola may be called its base, and the abwcissa OD, to that ordinate its height.

Rule. Multiply the base by the beight, and $\frac{2}{3}$ of the product will be the area.*


1. Required the area of a parabola, whose height is 6 and
ase 12 ? base 12?

$$
6 \times 12 \times \frac{2}{3}=48 \text { the area. }
$$

2. What is the area of a parabola, whose base is 24 , and Ans. 64.
3. What is the area of a parabola, whose base is 12, and Ans. 16.
[^28]
## PROBLEM XI.

To find the aren of the zone of a parabola, or the space between two parallel double ordinates.
Role I. When the two double ordinater, their distance, and the altitude of the whole parabola are given; find the area of the whole parabola, and find also the area of the upper segment, their difference will be the area of the zone.
II. When the two double ordinates and their distance are given; to the sum of the squares of the two double ordinates, add their product, divide the sum by the sum of the two double ordinates, multiply the quotient by $\frac{7}{3}$ of the altitude of the zone, and the product will be the area of the zone.* 1. Given A B 20, S T 12, and D $x 8$; what is the area of the zone A S T B, the altitude D 0 being 12.5 ?
$(20 \times 12.5) \times \frac{2}{3}=166 \frac{2}{3}=$ area of the parubola A B O, and $(125-8) \times 12=54$, and $54 \times \frac{2}{3}=36$; bence $166 \frac{3}{3}$ $-36=130 \frac{2}{3}$ the area.
III. When the altitude of the whole parabola is not given.
2. Suppose the double ordinate $A \quad B=10$, the double ordinate $\mathrm{S}^{\prime} \mathrm{T}=6$, and their distance $\mathrm{D} x=4$; what is the area of the zone A S 'TB?

$$
\frac{10^{2}+6^{2}+10 \times 6}{10+6}=124 ; \text { then } 12 t \times 4 \times 3=33 \frac{3}{3},
$$ the area as before.

3. Let the double ordiuate $\mathrm{A} B=30, \mathrm{C} P=25$, and their distance $D G=6$; required the area of the zone A B PC? Ans. $165{ }_{\mathrm{T}}{ }^{3}$.

## PROBLEM XII.

## To find the length of the curce, or arc of a parabola, out off

 by a double ordinate to the axis.
## Role.

I. Divide the double ordinate by the parameter; and cali the quotient $q$.

[^29]II. Add 1 to the square of the quotient $q$, and call the square root of the sum $s$.
III. To the product of $q$ and $s$, add the hyperbolic logarithm of their sum, then the last sum inultiplied by half the parameter, will give the length of the whole curve on both sides of the axis.

Putting $c$ for the curve, $q$ for the quotient of the double ordinate divided by the parameter, $s$ for $\sqrt{ }\left(1+q^{2}\right)$ and $a$ for half the parameter; then

$$
c=a \times\{q s+\text { hyp. log. of }(q+s .)\}^{*}
$$

$\begin{aligned} & \text { Nore. The common logaritam of any aumber multiplled by } 2: 802005083 \\ & \text { the hyperbolic logarithm of the same number. }\end{aligned}$

1. What is the length of the curve of a parabola, cut off abscissa being 2 ?
$x=2$ and $y=6 ;$ then $a=y \frac{y^{2}}{2 x}=38=9$, and $I=\frac{y}{a}=\frac{f}{b}=\frac{f}{3}$, also $s=\sqrt{ }\left(1+q^{2}\right)=\sqrt{ }\left(1+\frac{a}{b}\right)$ $=\sqrt{1 \cdot 201850}\left({ }^{3}=\frac{1}{3} \sqrt{ }\left(13=1 \cdot 2018504=s\right.\right.$. Then $\frac{2}{3}+$ $1 \cdot 2018504=1 \cdot 868517$, whose common logarithm is $\cdot 271497$, which being multiplied by $2 \cdot 302585093$, produces 6251449 for its hyperbolic logarithm; and also $z_{3}+$ $1 \cdot 2018504=8012336$; the sum of these two is $1 \cdot 4203785$, therefore $9 \times 1.4263785=12.8374065$, is the length of the curve required.

Rule II. Put $y$ equal to the ordinate, and $q$ equal the quotient arising from the division of the double ordinate by the parameter, or from the division of double the abscissa by the ordinate; then the length of the double curve will be expressed by the infinite series.
$2 y \times\left(1+\frac{q^{2}}{2.3}-\frac{q^{4}}{2.4 .5}+\frac{3 q^{6}}{2.4 .6 .7}\right.$,

[^30]ent $q$, and call the
the hyperbolic logaltiplied by half the hole curve on both
ier:t of the double $\sqrt{ }\left(1+q^{2}\right)$ and $a$

+ s.) \}*
Hed by 2.802005008 gives
parabola, cut off length is 12 , the
$\frac{y^{2}}{2 x}=3^{3}=9$
$=\sqrt{ }\left(1+\frac{4}{6}\right)$
$=s$. Then $\frac{2}{3}+$ on logarithm is 302585093, pron ; and also $\frac{2}{3}+$ wo is 1.4203785 , the length of the
and $q$ equal the able ordinate by ble the abscissa ble ourve will be

> MENSURATION.

Norn. This series will converge no longer than till $q=1$. For when $q$ is
greater than 1 , the series will diverge.
Let the last example be resumed, in which the abscissa is 2 , and the ordinate 6 .

Hence, $2 \times 2 \div 6=\frac{3}{3}=q$; then employing $\frac{2}{3}$ instead of $q$ in the last series, we get
$12 \times\left(1+\frac{\left(\frac{2}{3}\right)^{2}}{2.3}-\frac{\left(\frac{2}{3}\right)^{2}}{2.4 .5}+3 \times \frac{\left(\frac{2}{3}\right)^{8}}{2.4 .6 .7}\right)=12.837$ the length of the curve as before.

Rule III. To the square of the ordinate, add $\frac{4}{3}$ of the square of the abscissa, and the square root of the sum will be the length of the single carve, the double of which will be the length of the double curve, nearly.*
Nore. The two frst rules are not recommended in practice,--The practical
nolication of this application of this is muci simpler, and is therefore to be employed in preforence
to either.

Retaining the same example, in which $x=2$, and $y=6$, we shall get $v=\sqrt{ }\left(y^{2}+\frac{4}{3} \cdot x^{2}\right)=\sqrt{ }\left(36+\frac{16}{3}\right)=6 \cdot 1291$,
and $\mathrm{C}=12 \cdot 8582$,

2 Requird the nearly. scissa is 3 and the length of the parabolic curve, whose abAns. 17-435.

## PROBLEM XIII.

Given any two abscissas and the ordinate to one of them, to find the corresponding ordinate to the second abscissa.
Rule. Say, as the abscissa, whose ordinate is given, is to the square of the given ordinate, so is the other given abscissa to the square of its corresponding ordinate. $\dagger$

1. If the abscissa $x 0=10$, and the ordinate $x \mathrm{~S}=8$,

$$
\begin{aligned}
& \text { what is the ordinate } A D=10 \text {, and the ordinate } x \mathrm{~S}=8 \text {, whose abscissa } \mathrm{D} 0 \text { is } 20 \text { ? } \\
& x 0: x \mathrm{~S}^{2}:: \mathrm{D} O: A \mathrm{D}^{2} \text {, riz. } 10: 64:: 20: 128 \text {, the } \\
& \text { square root of which is } 11 \cdot 313, \& \mathrm{c} .=A \mathrm{D} .
\end{aligned}
$$

[^31]2. If 6 be the ordinate corresponding to the abscissa 9 , required the ordinate corresponding to the abscissa 16 ?

Ans. 8.

## PROBLEM XIV.

Given two ordinates and the abscissa corresponding to one of them, to find the abscissa corresponding to the other.

Rule. Say, as the square of the ordinate whose abscissa is given, is to the given abscisse, so is the square of the other ordinate to its correspouding abscissa.*

1. Given $S x=6, x 0=9$, and $A D=8$; required the abscissa $O D$ ? $\quad 36: 9:: 64: 16=0 \mathrm{D}$.
2. Given $S x=8, x 0=10$, and $A D=9$; required Ans. $12 \cdot 656$.

## PROBLEM XV.

Given two ordinates perpendicular to the axis and their distance, to find the corresponding abscissas.

Rule. Say, as the difference of the squares of the ordinates is to their distance, so is the square of either of them to the corresponding abscissa. $\dagger$

1. Given $S x=6, A D=8$, and $x D=7$; required the abscissas?

$$
\begin{aligned}
&(64-36): 7:: 64 \\
& 28: 7:: 64: 16=0 \mathrm{D}, \text { and } \\
& 28: 7:: 36: 9=0 x .
\end{aligned}
$$

2. Given $S x=3, A D=4$, and $x D=2$; required Ans. 44 and 24.
[^32]MEANSURATION.

## OF THE HYPERBOLA.

onding to one of - the other.
whose abscissa square of the
$=8$; required $: 16=0 \mathrm{D}$.
$=9$; required Ans. $12 \cdot 656$.
and their disssas.
es of the ordieither of them

7; required the

## nd

$=2$; required $4 \frac{4}{7}$ and 24.

## PROBLEM XVI.

Given the transverse and conjugate diameters, and any abscissa, to find the corresponding ordinate.

Rule. As the transverse is to the conjugate, so is the mean proportional between the abscissas to the ordinate.*

1. If the transverse be 24 , the conjugate 21 , and the less abscissa A D 8; required the ordinate?

Noti. The less abscissa added to the transverse gives the grepter.

$24: 21:: \sqrt{ }(32 \times 8): \frac{21 \sqrt{ }(32 \times 8)}{24}=14$ the
dinate.
2. If the transverse axis of an hyperbola be 120, the less abscissa 40 , the conjugate 72 ; required the ordinate? Ans. 48.
3. The transverse aris being 60 , the conjugate 36 , and the less abscissa 20 ; what is the ordinate? Ans. 24.

[^33]
## gQNic sections.

## PROBLEM XVII.

Given the transcerse, conjugate, and ordinate, to find the abscissa.

Rule. To the square of half the conjugate, add the square of the ordinate, and extract the square root of the sum. Then say,
As the conjugate is to the transverse, so is that square root to half the sum of the abscissas.

Then to this half sum, add half the transverse, for the greater abscissa; and from the half sum take half the transverse for the less abscissa.*

1. If the transverse be 24 , and the conjugate 21 ; required the abscissas to the ordinate 14?

| $10 \cdot 5$ |
| :--- |
| $\frac{10 \cdot 5}{110 \cdot 25}$ |
| 196 |$=\frac{1}{2}$ conjugate $14=$ ordinate.

306.25 the square root of which is 17.5 ; then 21 : $24:: 17 \cdot 5: 20=$ half sum, $23+12=32$ the greater abscissa, and $20-12=8$ the less abseissa.
2. The transverse is 120 , the ordinate 48 , and the conjugate 72; required the abscissas? Ans. 40 and 160 .

## PROBLEM VIII.

Given the conjugate, ordinate, and abscissas, to find the transverse.

Rule. To or from the square root of the sum of the squares of the ordinate and semi-conjugate, add or subtract the semiconjugate, according as the less or greater abscissa is used;

## Give

Ru is to abscis
2. the le

[^34] then, as the square of the ordinate is to the product of the abscissa and conjugate, so is the sum or difference, above found, to the transverse.*

1. Let the conjugate be 21 , the less abscissa 8, and its ordinate 24 ; required the transverse?
jugate, add the are root of the 0 is that square nsverse, for the half the transjugate 21; re-
$7 \cdot 5$; then 21 : 32 the greater
and the con40 and 160.
to find the
of the squares ract the semicissa is used;

$$
21 \times 8 \times \sqrt{ }\left(14^{2}+\frac{21^{2}}{4}\right)+10 \frac{1}{2}
$$

$14^{2}$
$\left.=3 \times \sqrt{ }\left(3^{2}+4^{2}\right)+3\right)=3 \times(5+3)=24$ the transverse.
2. The conjugate axis is 72 , the less abscissa 40 , the ordinate 48; required the transverse? Ans. 120.
3. The conjugate is 36 , the less abscissa 20 , and its ordinate 24 ; required the transverse? - Ans. 60 .

## PROBLEM XIX.

Given the abscissa, ordinate, and transverse diameter, to find the conjugate.
Rule. As the mean proportional between the abscissas is to the ordinate, so is the transverse to its conjugate. $\dagger$

1. What is the conjugate to the transverse 24 , the less abscissa being 8 , and its ordinate 14 ?

$$
\frac{24 \times 14}{\sqrt{ }(32 \times 8)}=21 \text { the conjugate. }
$$

2. The transverse diameter is 60 , the ordinate 24 , and the less abscissa 20; what is the conjugate? Ans. 36.

## PROBLEM XX.

Given any two abscissas, $X, x$, and their ordinates, $Y, y$, to find the transverse to which they belong.
Rule. Multiply each abscissa by the square of the ordinate belonging to the other; multiply also the square of each abscissa by the square of the other's ordinate: then

[^35]divide the difference of the latter products by the difference of the former; and the quotient will be the transverse diameter to which the ordinates belong.*

1 If two absciassas be 1 and 8 , and their corresponding ordinates $4 \frac{3}{8}$ and 14, required the transverse to which they
belong?
Here $\frac{8^{2} \times 4 \frac{3}{8} \times 4 \frac{3}{8}-1^{2} \times 14^{2}}{1 \times 14^{2}-8 \times 4 \frac{3}{8} \times 4^{\frac{3}{8}}}=\frac{35 \times 35-14 \times 14}{14 \times 14-35 \times \frac{14}{8}}$ $=\frac{5 \times 5-2 \times 2}{2 \times 2-5 \times \frac{5}{6}}=\frac{21 \times 8}{7}=24$, the transverse.

## PROBLEM XXI.

To find the area of a space A N O B, bourided on one side by the curve of a hyperbola, by means of equi-distant ordinates.

Let A $N$ be divided into any given number of equal parts, A C, CE, EG, \&c., and let perpendicular ordinates A B, CD, EF, \&c., be erected, and let these ordinates be terminated by any hyperbolic curve BD F, \&c.; and let $A=$ $A B+N O, B=C D+G H+L M, \& c$., and $C=E F$ $+\mathrm{IK}, \& \mathrm{c}$. ; then the common distance $A \mathrm{C}$, of the ordinates, being multiplied by the sum arising from the addition of $\mathrm{A}, 4 \mathrm{~B}$, and 2 C , and one-third of the product taken will

be the area, very nearly. That is $\frac{A+4 B+2 C}{3} \times D=$ the area pntting $\mathbf{D}=\mathrm{AC} . \dagger$

[^36]by the difference de transverse dia-
ir corresponding se to which they
$$
\frac{35-14 \times 14}{14-35 \times \frac{14}{48}}
$$ isverse.
nded on one side of equi-distant
r of equal parts, ordinates A B, rdinates be ter; and let $\mathbf{A}=$ c., and $C=E F$ C, of the ordim the addition oduct taken will
$+2 \mathrm{C} \times \mathrm{D}=$

1. Given the lengths of 9 equi-distant ordinatés, viz., 14, $15,16,17,18,20,22,23,25$ feet, and the common distance 2 feet; required the area? Ans. $300 \frac{2}{3}$ feet.
2. Given the lengths of 3 equi-distant ordinates, viz., AB $=5, C D=7$, and $E F=8$, also the length of the base $A E 10$; what is the area of the figure $A B F E$ ?

Ans. $68 \frac{1}{3}$ féet.
3. If the length of the asymptote of a hyperbola be 1 , and there be 11 equi-distant ordinates between it and the curve, the common distance of the ordinates will then be it, and from the nature of the curve their lengths will be $\frac{f o}{8}, \mathrm{ff}$,
 curved figure?

This formula will answer for finding the area of all curves by using the sections perpendicular to the axis. Thie greater the number of ordinates employed, the more accurate the result; but in real practice three or five are in most cases sufficient.

## PROBLEM XXII.

To find the length of any arc of an hyperbola beginning at the vertex.
rule.
I. To 19 times the square of the transverse, add 21 times the square of the conjugate; also to 9 times the square of the transverse add, as before, 21 times the square of the conjugate, and multiply each of these sums by the abscissa.
II. To each of these two products, thus found, add 15 times the product of the transverse and the square of the conjugate.
III. Then, the less of these results is to the greater, so is the ordinate to the length of the carve, neantif. ${ }^{\text {F }}$

[^37]1. In the hyperbola $B A C$, the transverse diameter is 80 , the conjugate 60 , the ordinate BD 10 , and the abscissa A D 2 ; required the length of the are BAC? (Fig. p. 73.) Here $2\left(19 \times 80^{2}+21 \times 60^{2}\right)=2(121600+75600)=$ 394400

And $2\left(9 \times 80^{2}+21 \times 60^{2}\right)=2(57600+75600)=$
Whence $15 \times 80 \times 60^{2}+394400=4320000+$
$4400=4714400$.
And $15 \times 80 \times 60^{2}+266400=4320000+266400=$

Hence A B C $=10.279 \times 2=20.558$.
2. In the hyperbola $\mathbf{B A} \mathbf{C}$, the transverse diameter is 80 , the conjugate 60, the ordinate B D 10, and the abscissa A D $2 \cdot 1637$; required the length of the arc $A B$ ?

Ans. $10 \cdot 3005$.

## PROBLEM XXIII.

Given the transverse axis of a hyperbola, the conjugate, and the abscissa, to find the area.

## RULE.

I. To the product of the transverse and abscissa, add $\frac{5}{7}$ of the square of the abscissa, and maltiply the square root of the sum by 21.
II. Add 4 times the square root of the product of the trassrerse and abscissa, to the preceding product, and divide the sum by 75 .
III. Divide $\frac{4}{2}$ times tite product of the conjugate and ab-
se diameter is 80 , and the abscissa C ? (Fig. p. 73.) $600+75600)=$
$00+75600)=$
$=4320000+$
$00+266400=$
$\frac{000}{100}=10.279$
diameter is 80 , he abscissa $\mathbf{A}$ D
lns. $10 \cdot 3005$.
jiugate, and the
rissa, add $\frac{5}{7}$ of square root of
roduct of the ct, and divide
scissa by the transverse ; this quotient, multiplied by the former quotient, will give the area of the hyperbola, nearly.*

1. In the hyperbola B A C, (see figare, page 73,) the transverse axis is 30 , the conjugate 18 , and the abscissa A D is 10 ; what is the area?

Here $21 . \sqrt{ }\left(30 \times 10+\frac{5}{7} \times 10^{2}\right)=21 \sqrt{ }(300+$ $71 \cdot 42857)=21 \sqrt{ }(371 \cdot 42857)=21 \times 19272=$ 404•712;
And $\frac{4 \sqrt{ }(30 \times 10)+404 \cdot 712}{69.282+404.712}=\frac{4 \times 17.3205+404.712}{75}$ $=\frac{69 \cdot 282+404 \cdot 712}{75}=\frac{473994}{75}=6.3199$.
Whence $\frac{18 \times 10+4}{30} \times 5.3199=24+6.3199=$ 151.6776, the area required.
2. What is the area of an hyperbola whose abscissa is 25 , the transverse and conjugate being 50 and 30 ?

Ans. 805•0909.
3. The transverse axis is 100 , the conjugate 60 , and $a b-$ scissa 50 ; required the area? Ans. $322 \cdot 3633584$.

[^38]
## ugate and ab.

## MENSURATION OF SOLIDS.



## DEFINATIONS.

1. A solid is that which has length, breath, and thick-
2. The solid content miny body is the nuraber of cubic inches, feet, yards, 8 ce ,
3. A cube is a solid, having six equal sides at right angles to one another.

4. A prism is a solid whose ends are plane figures which are parallel, equal, and similar. Its sides are parallelograms.


It is called a triangular prism, when its ends are triangles; a square prism, when its ends are squares; a pentagonal prism, when its ends are pentagons; and so on.
5. A parallelopipedon is a solid having six rectangular sides, every opposite pair of which are equal and parallel.

9.
be cor of a remai
10. ends. 11. is call
12.
its ver of a ri tude it hypoth
13.
prism
the sol
14 . top by
6. A cylinder is a round solid, having circular ends, and may be conceived to be described by the revolution of a rectangle about one
 of its sides, which remains fixed.
7. A pyramid is a solid, having a plane figure for its base; and whose sides are triangles meeting in a point, called the vertex.

Pyramids have their names from their bases, like prisms.

When the base is a triangle, the solid is called a triangular pyramid; when the base
 is a square, it is called a square pyramid; and so on.
8. A is á round pyramid, having a circle for its base.

10. The axis of a solid is a line joining the middle of both ends.
11. When the axis is perpendicular to the base, the solid is called a right prism or pyramid, otherwise it is oblique.
12. The height or altitude of a solid, is a line drawn from its vertex, perpendicular to its base, and is equal to the axis of a right prism or pyramid; but in an oblique one the altitude is the perpendicular of a right-angled triangle, whose bypothenase is the axis.
13. When the base is a regular figure it is called a regular prism or pyramid; but when the base is an irregular figure, the solid on it is called irregalar.
14. The fegment of any solid, is a part cat off from the top by plane parallel to its base.


> IMAGE EVALUATION TEST TARGET (MT-3)


Photographic
Sciences

15. A frustum is the part remaining at the bottom, after the segment is cut off.
16. A zone of a sphere is a part intercepted between two planes, which are parallel to each other.
17. A circular spindle is a solid generated by the revolution of a segment of a circle about its chord, which remains fixed.

18. A wedge is a solid, having a rectangular base, and two of its opposite sides meeting in an edge.

19. A prismoid is a solid, having for its two ends two right-angled parallelograms, parallel to each other, and its upright sides are four trapezoids.
20. A sepheroid is a solid, generated
 by the rotation of a semi-ellipsis about one of its axis, which remains fixed.

When the ellipsis revolves round the transverse axis, the figure is called a prolate, or oblong spheroid; but when
 the ellipsis revolves round the short axis an oblate sphsroid.
21. An elliptical spindle is a solid, generated by the rotation of a segment of an ellipsis about its chord.

22. A parabolic conoid, or paraboloid, is a solid generated by the rotation of a semi-parabola about its axis.
23. An ungula or hoof, is a part cut off a solid by a plane oblique to the base.

## PROBLEM I.

To find the solidity of a cube.
Rule. Multiply the side of a cabe by itself, and that product again by the side, for the solidity required.*

1. If the side of a cabe be 4 inches, required its solidity?


Here, $4 \times 4=16$, the number of cabes of 1 inch deep is the square E F. G D, and as the entire solid consists of four such dimensions, its content is $16 \times 4=64$ cubic inches.
2. What is the solidity of a cubical piece of marble each side being 5 feet 7 inches? Ans. 174 feet, nearly.
3. A cellar is to be dng, whose length, breadth, and depth, are each 12 feet 3 inches; required the number of solid feet in it? Ans. 1838 feet 3 inches, nearly.

[^39]
## MIFNSURATION OF SOLIDS,

## PROBLEM II.

## To find the solidity of a parallelopipedon.

Rule. Moltiply contipually the leagth, breadth, and depth together for the solidity.*


1. What is the solidity of a parallelopipedon A BCD E F G, the length of A B being 10 feet, the breadth A G 4 feet, and thickness A D 5 feet?
$A B \times A G \times A D=10 \times 4 \times 5=200$ feet.
2. A piece of timber is 26 feet long, 10 inches broad, and 8 inches deep; required its solid content ? 's. 144 feet. 3. A piece of timber is 10 inches squaris cit the ends, and 40 feet long; required its content? Ans. $27 \frac{7}{8}$ feet.
3. A piece of timber 15 inches square at each end, and 18 feet long, is to be measured; required its content; and how far from the end must it be cut across, so that the piece cut off may contain 1 solid foot ?

Ans. The solidity is $28 \cdot 125$ feet; and $7 \cdot 68$ in length will make one foot.
5. What length of a piece of square timber will make one solid foot, being 2 feet 9 inches deep, and I foot 7 inches broad?

Ans. $2 \cdot 756$ inches in length will make one solid foot.

[^40]
## PROBLEM III.

## To. Find the solidity of a prism.

Role. Multiply the area of the base by the perpendicular leight, and the product will be the solidity.*

1. What is the solidity of a prism A B C FIE, whose

base $C \mathrm{~A}$ is a pentagon, each side of which being 8.75 , and
height 15 feet?
When the side of a pentagon is 1 , its area is $1 \cdot 720477$ (Table II.); therefore $1.720477 \times 3.75^{2}=24.1942=$ the area of the base in square feet; hence $24 \cdot 1942 \times 15=$ 362.913 solid feet, the content.
2. What is the solidity of a square prism, whose length is $5 \frac{1}{2}$ feet, and each side of its base $1 \frac{1}{3}$ foot.

Ans. 97 solid feet.
3. What is the solldity of a prism, whose base is an equilateral triangle, each side being 4 feet, and height 10 feet? Ans. $69 \cdot 282$ feet.
4. What quantity of water will a prismatic vessel contain, its base being a square, each side of which is 3 feet, and beight 7 feet ? Ans. 63 feet.

[^41]
## PROBLEM IV.

## To find the solidity of a cylinder.

Rule. Multiply the area of the base by its height, and the product will be the solid content.*


1. What is the capacity of a right cylinder ABGC, whose height, and the circumference of its base, are each 20 feet?

First $\frac{20}{3 \cdot 1416}=$ the diameter, half of which multiplied by half the circumference will give the area of the base (Prob. XVIII. Sec. II.), that is, $10 \times \frac{10}{3 \cdot 1416}=\frac{25}{\cdot 7854}=$ the area of the end; then $\frac{25}{7854} \times 20=636.61828$, the content.
2. What, is the content of the oblique cylinder A BFE, the circnmference of whose base is 20 feet, and altitude A C 20 feet?
As before, the area of the base is $\frac{25}{7854}$; then $\frac{25}{7854}$ $\times 20=636.61828$, the solid content, as before.
3. The length of a cylindrical piece of timber is 18 feet, and its circumference 96 inches; how many solid feet in it?

Aus. 91.676 feet.
4. Three cubic feet are to be cut off a rolling-stone 44 inches in circumference; what distance from the end mast the section be made? Ans. $33 \cdot 64$ inches.

[^42]
## PROBLEM V.

To find the content of a solid formed by a plane passing parallel to the axis of a cylinder.
Rule. Find by Prob. XXVIII., Sec. II., the area of the base, which, multiplied by the height, will give the solidity.*

1. In the cylinder A B G C, whose diameter is 3 , and height 20 feet; let a plane $L \mathbf{N}$ pass parallel to the axis, and 1 foot from it; what is the solidity of each of the two prisms into which the cylinder is divided ?-(See the last figure.)
$\overline{\mathrm{S} \mathrm{C}}=\left(\frac{8}{2}-1\right) \div 3=\frac{1}{3}=\frac{1}{6}=\cdot 166 \frac{2}{3}$ the tabular versed sine, to which, in the Table of Circular Segments, corresponds the area . 08604117
which taken from . . . . . . 78539816 leaves the other segment -69935699
Then $3^{2}=9$ which $\times \cdot \dot{08604117}=7 \cdot 7437053=$ seg D CN.

Also $9 \times 69935699=6.23421201=\mathrm{seg}$. DGN.
Hence $20 \times 7.7437053=15.4874=$ the slice L KAC $\mathrm{ND} ;$ and $20 \times 6.29421699=125.88434=$ the slice LKBGND.
2. Suppose the right cylinder, whose length is 20 feet, and diameter 50 feet, is cut by a plane parallel to, and at the distance of, $21 \cdot 75$ feet from Its axis; required the solidity of the smaller slice ? . Ans. $1082 \cdot 95$ feet.

## PROBLEM VI.

## To find the solidity of a pyramid.

Rous. Multiply the area of the base by the one-third of the helght, and the product will be the solidity. $\dagger$

[^43]1. What is the solidity of a square pyramid, each side of its base being 4 feet, and height 12 feet?
$4 \times 4=16$ the area of the base:
Then $16 \times \frac{12}{3}=64$ feet, the solidity.
2. Each side of the base of a triangular pyramid is 3 , and height 30 ; required its solidity?

Ans. $38 \cdot 97117$.
3. The spire of a church is an octagonal pyramid, each side at the base being 5 feet 10 inches, and its perpendicular height 45 feet; 'also each side of the cavity, or hollow part, at the base is 4 feet 11 inches, and its perpendicular height 41 feet; it is required to know how many solid yards of stone the spire contains.

Ans. $32 \cdot 19738$ jards.
4. The height of a hexagonal pyramid is 45 feet, each side of the hexagon of the base being 10 ; required its solidity? Ans. $8897 \cdot 1143$.

## PROBLEM VII.

## To find the solidity of a cone.

Rute. Multiply the area of the base by one-third of the height, and the product will be the solidity?*

1. The diameter of the base of a cone is 10 feet, and its perpendicular height 42 feet; what is its solidity?
${ }_{099.56}^{10^{2}}=100 \times \cdot 7854=78.54$; then $78.54 \times{ }^{3}=$
2. The diameter of the base of a cone is 12 feet, and its perpendicular height 100 ; required its solidity?

Ans. $3769 \cdot 92$ feet.
3. The spire of a church, of a conical form, measures 37.6992 feet round its base; what is its solidity, its perpendicular height being 100 feet?
4. How many cubic yards in an upright cone, the circum. ference of the base being 70 feet, and the slant height 30 ? Ans. $134 \cdot 09$.

[^44]5. How many cubic feet in an oblique cone, the greatest slant height being 20 feet, the least 16 , and the diameter of the base 8 feet? Ans. $254 \cdot 656588$ feet.

## PROBLEM VIII.

To find the solidity of the frustum of a pyramid.
Rule. Add the areas of two ends and the mean proportional between them together; then multiply the sum by onethird of the'perpendicular height, and the product will give the solidity.*


1. In a square pyramid, let $\mathrm{A} O=7, P \mathrm{D}=5$, and the height $0 Q_{0}=6$; the solidity of the frustum is required.
$7 \times 7=49=$ the area of the base.
$5 \times 5=25=$ the area of the section S D.
$7 \times 5=35=$ the mean proportional between 49 and 25.
Therefore,,$\frac{49+35+25}{3} \times 6=218=$ the content of the frustum.
2. What is the content of a pentagonal frustum, whose height is 5 feet, each side of the base 1 foot 6 inches, and each side of the less end 6 inches.

Ans. 9.31925 cubic feet.
3. What is the content of a hexagonal frustum, whose height is 6 feet, and the side of the greater end 18 inches, and of the less 12 inches ? - Ans. $24 \cdot 681724$.
4. How many cubic feet in a squared piece of timber, the areas of the two ends being 504 and 372 inches, and its length $31 \frac{1}{2}$ feet? Ans. $95 \cdot 447$ feet.

[^45]5. What is the solidity of a squared piece of timber, its length being 18 feet, each side of the greater base 18 inches, and each side of the small end 12 inches ?

Ans. 28.5.

## PROBLEM IX.

## To find the solidity of the frustum of a cone.

Role. Add the two ends, and the mean proportional between them together, then multiply one-third of the sum by the perpendicular height, and the product will be the content.*

1. How many solid feet in a tapering round piece of timber, whose length is 26 feet, and the diameter of the ends 22 and 18 inches respectively?

Here $22^{2} \times \cdot 7854=380 \cdot 134$ inches, the area of the greater end, and
$18^{2} \times \cdot 7854=254 \cdot 47$ inches $=$ the area of the less end, $(380 \cdot 134 \times 254 \cdot 47) \frac{1}{2}=311 \cdot 018=$ the mean proportional between the areas of the ends; then by the rule $\frac{254 \cdot 47+380 \cdot 134+311 \cdot 018}{3} \times 26 \times 12=98345$ cabic inches $=56.9$ cubic feet, the answer.
2. How many cubic feet in a round piece of timber, the diameter of the greater end being 18 inches, and that of the less 9 inches, and length $14 \cdot 25$ feet? Ans. 14.68943 feet.
3. What is the solid content of the frastum of a cone, whose height is 1 foot 8 inches, and the diameters of the ends 2 feet 4 inches, and 1 foot 8 inches?
tipl
wed
pro

Ans. 5•284.

[^46]
## PROBLEM X.

## To find the solidity of a wedge.

Role I. Add the three parallel edges together, and multiply one-third of the sum by the area of that section of the wedge which is perpendicular to these three edges, and the product will give the content.*


Nore. When the quadrangular sldes are parallelograme, the wedge is a trian. gular prism, having for ite base the triangle $\mathbf{B} O \mathrm{C}_{\text {; }}$ when the quadrengles are rectangalar, $A$ O 18 the height of the prism, and the oree of the irlengle BOC multiplied by A $O$ will give its content; when the triangle B O C is isosceles and perpendicular to the plane A C, the wedge is of the common kind; $C G$ is ite edge, and A R B O its back.

Rule II. To twice the length of the base, add the length of the edge, multiply the sum by the breadth of the base, and the product by the height of the wedge, and one-sixth of the last product will be the solidity, that is, $(2 L+l) \times$ $f_{d} b l$, by putting $\mathrm{L}=\mathrm{RB}$, the ength off the base $l=$ $G C$, the length of the edge, $b=A R$, the breadth of the base, $h=$ the perpendicular height of the wedge. $\dagger$

1. Let A $O=4, \mathrm{G} C=3, \mathrm{R} B 2 \frac{1}{2}$, the perpendicular $D T=12$, and $p$ the perpendicular distance of $B \mathrm{R}$ from the plane of the face $\mathbf{A C}=3 \frac{1}{2}$ feet; required the solid content?

$$
\frac{4+3+2 \frac{1}{2}}{3} \times 12 \times \frac{3 \frac{1}{2}}{2}=66 \frac{1}{2} \text { cubic feet. }
$$

[^47]2. The perpendicular height from the point $T$ to the middle of the back A B is $24 \cdot 8$, the length of the edge C G 110 inches, the base IR B 70 inches, and its breadth A R 90 inches; required the solidity?

Ans. 31000 cubic inches.
3. How many cubic inches in a wedge whose altitude is 14 inches, its edge 21 inches, the length of its base 32 inches, and its breadth $4 \frac{1}{2}$ inches?

Ans. 892.5 cubic inches.

## PROBLEM XI.

To find the solidity of a prismoid, which is the frustum of a wellge.
Rule. By either of the foregoing rales, find the solidity of two wedges whose bases are the two ends of the frustum, and height the distance between them, and the sum of both will be the solidity of the prismoid or frustum.*

1. In the prismoid A B PQ, there is given $R B=18$, $A O=27, P D=21, S Q=24, B O=12, D Q=4$, and $B I=30$; what is its solidity?

$\frac{18+27+21}{3} \times \frac{30 \times 12}{2}=3960=$ the content of the greater wedge, and $\frac{24+27+21}{3} \times \frac{30 \times 4}{2}=1440$, the content of the other; then $3960+1440=5400$, the con-

## long

the
II
tiply
heig

[^48]int $\mathbf{T}$ to the midthe edge C G 110 oreadth A R 30

O cubic inches.
ose altitude is 14 $s$ base 32 inches, cubic inches.
is the frustum
ind the solidity of the frustum, de sum of both ı.*
en $R B=18$,
12, D Q = 4,
2. What is the solidity of a piece of wood in the form of a prismoid, whose ends are rectangles, the length and breadth of one being 1 foot 2 inches and 1 foot respectively, and the corresponding sides of the other 6 and 4 inches respectively; the perpendicular height beiug $30 \frac{1}{2}$ feet?

Ans. 18.074 cubic feet.
Notr. The following rule will answer for any priamoid, of whatever Agure each end may be.

Rule. If the bases be disajmilar rectanglea, take two corresponding dimensions and multiply wach by the sum of doubile the other dimenslon of the same end, aod. the dimenalun of the other end correngonding to this last dimention; then mul. tiply the sum of the products by the height, end ouesixith of the last product will be the sulidaty."

## PROBLEM XII.

To find the solidity of a cylindroid; or the frustum of an elliptical cone.

## RULE.

I. 'i'o the longer diameter of the greater end, add half the longer diameter of the less end, and multiply the sum by the shorter diameter of the greater end.
II. To the longer diameter of the less end, add half the longer diameter of the greater end, and maltiply the sum by the shorter diameter of the less end.
III. Add the two preceding products together, and maltiply the sum by 2618 (one-third of 7854 ) and then by the height; the last product will be the solidity. $\dagger$

1. Let $A B C D$ be a cylindroid, the base of which is an ellipsia, whose two diameters are 40 and 20 inches, the

[^49]top a circle, whose diameter is 30 inches; what is its solidity, allowing the height to be 10 feet?

\[

$$
\begin{aligned}
& \left(\mathrm{AB}+\frac{1}{2} \mathbf{C D}\right) \times \mathbf{G H}=(40+15) \times 20=1100 \\
& \left(\mathbf{C D}+\frac{1}{6} \mathbf{A B} \times \mathrm{P}=(20)\right.
\end{aligned}
$$
\]

Then $(2600 \times 2618 \times 10) \quad$ sum $=2600$ 144, gives $47 \cdot 27$ feet, the answer. 8 , which, divided by
2. The transverse diameter of the greater base of a cylindroid is 13 , and conjugate 8 ; the transverse diameter of the less base 10 , and conjugate $5 \cdot 2$; what is the solidity of the cylindroid, its height being 12 ? $A n s .721 \cdot 93968$.
3. The transverse diameter at the top of the cylindroid is 12 inches, and conjugate 7 ; the longer diameter at the bottom is 14 inohes, and shorter 12, and its beight 10 feet; required its solidity ? $A n s$ : $6 \cdot 78$ feet.

## PROBLEM XIII.

## To fond the solidity of a sphere.

Rule I. Multiply the cuibe of the diameter by -5236, and the product will be the content.

Role II. Multiply the diameter by the circumference of the sphere, and the product maltiplied by one-sixth part of the diameter will be the solidity.*

Ag miles, on acc
2. inches
3. circam
4. $]$ feet?

Rư duct $t$ der by the las

Rul segmen sam by will be

[^50]at is its solidity,
$\times 20=1100$
$30=1500$
sum $=2600$ h , divided by
ase of a cylinameter of the olidity of the $721 \cdot 93968$.
he cylindroid meter at the eight 10 feet; 6.78 feet.
$5 \cdot 5236$, and
amference of sixth part of

1. Suppose the earth to be a perfect sphere, and its diameter 79573 miles, how many solid miles does it contain?

7957 $\times 3.1416=$ the circum. ference of the earth (Prob. XVI., Sec. II.); then
 $7957 \frac{3}{4} \times 3.1416 \times 79573=198943750=$ the surface of the sphere; then
$198943750 \times 7957 \frac{3}{4} \times t=263857437760$ miles the solidity by Rule II.

Again, $5236 \times d^{3}=\cdot 5236 \times\left(795 冫_{\ddots}\right)^{3}=263858149120$ miles, the solidity by Rule I., which gives the result too great on account of taking 5236 a little too great.
2. What is the solidity of a sphere, whose diameter is 24 inches? Ans. $7238 \cdot 2464$ cabic inches.
3. What is the solid content of the earth, allowing its circumference to be 25000 miles ?

Ans. 263858149120 miles.
4. Required the solidity of a globe whose diameter is $\mathbf{3 0}$ feet?

Ans. 14137.2.

## PROBLEM XIV.

## To find the solidity of the segment of a sphers.

Role I. From three times the diameter of the sphere deduct twice the height of the segment; multiply the remainder by the square of the height, and that product by 5236 ; the last product will be solidity.*

Rule II. To three times the square of the radins of the segment's base add the square of its height; multiply this sum by the height, and the product by 5236 ; the last result will be the solidity.

1. What is the solidity of each of the frigid zones, thie diameter of the earth being $7957 \frac{3}{4}$ miles and half the broadth, or arc of the maridian intercepted between the polar circle and the pole $23 \frac{1}{2}$ degrees; that is, $\Delta \mathrm{D}=23 \frac{1}{2}$ degrees, supposing AB to represent the polar circle.


By Rule I.
As 1 ( $=$ tabular radius): 39787 ( $=$ radius of the earth) :: 08.29399 ( $=$ tahular versed sine of $23 \frac{1}{2}$ degrees) : $330 \cdot 0074946$, the versed sine, or height of the segment.

Then $5236 h^{2}=(3 d-2 h)=-5236 \times 330.0074946^{2}$ $\times 23213 \cdot 2350108=1323679710$, the solid coutent.
By Rule II.

As 1 : 3978皆: : 3987491 ( $=$ the tabular sine of $23 \frac{1}{2}$ degrees) : $1586: 57282526$, the radius of the base.

Then $5236 h \times\left(3 r^{2}+h^{2}\right)=5236 \times 330.0074946$ $\times 7660544 \cdot 936=1323680299 \cdot 69$, the solidity.
2. Let A B D O be the segment of the sphere, whose solidity is required. The diameter $A \quad B$ of the base is 16 inches, and the beight OD 4 inches.

Ans. $435 \cdot 6352$ cubic inches.
3. Required the solidity of the segment of a sphere, whose diameter is 20 feet, and the height of the segment 5 feet?

$$
\text { Ans. } 654 \cdot 5 \text { feet. }
$$

## PROBLEM XV.

To find the solidity of the frustum or zone of a sphere.
Ruje.
I. To the sum of the squares of the radii of the two ends, add $\frac{1}{3}$ of the square of their distance, or of the height
II. the d leigh the la

Or duct multi the la: 1. $]$ frustu of wh diame the he
(2 25
$\times 25$ solidit
2. being and t $2062 \cdot 2$ $\times 206$ $=558$
3. R $23 \frac{1}{2} \mathrm{de}$ T957
(795 - $7854=$
4. K whose height
5. diamet 10 feet of the zone; this sum miltiplied by the height of the
II. For the middle zone of a sphere. To the square of the diameter of the end add two-thirds of the square of the height; multiply this sum by the height, and then by •7854, the last result will be the solidity.

Or, From the square of the diameter of the sphere, dpduct one-third of the square of the leight of the middle zontr; multiply the remainder by the height, and then by • 7504 , the last result will be the solidity.*

1. Required the solidity of the frustum of a sphere, the diameter of whose greater end is 4 feet, the diameter of the less end 3 feet, and the height $2 \frac{1}{2}$ feet?
$\left(2^{4}+1 \cdot 5^{2}+\frac{1}{3} \times 2 \cdot 5^{2}\right) \times 1 \cdot 5708$ $\times 2 \cdot 5=8 \frac{1}{3} \times 3.927=32725$, the solidity of the frustum.

2. What is the solidity of the temperate zone, its breadth being 43 degress, the radius of the top being 1586.57282526 , and the radius of the base $3648 \cdot 86750538$, and height
$2062 \cdot 2655$ ?
$\left(3648.86750538^{2}+1586.57282526^{2}+\frac{1}{3} \times 2062 \cdot 2655^{2}\right)$ $\times 2062 \cdot 2655 \times 1 \cdot 5708=17249136 \times 2062 \cdot 2955 \times 1.5708$ $=55877778668$, the solidity of each temperate zone.
3. Required the solidity of the torrid zone, which extends $23 \frac{1}{2}$ degrees on each side of the equator, the diameter being $7957 \frac{3}{4}$ miles, and the height $3173 \cdot 14565052$ ?
$\left(7957.75^{2}-\frac{1}{3} \times 3173 \cdot 14565052^{2}\right) \times 3173.14565052 \times$ $\cdot 7854=149455^{3} 081137$, the answer.
4. What is the solidity of the middle zone of a sphere, whose top and bottom diameters are each 3 inches, and height 4 inches? Ans. $61 \cdot 7848$.
5. What is the solid content of a zone, whose greater diameter is 20 feet, less diameter 15 feet, and the height Ans. 189.58.

[^51]6. How many solid feet in a zone, whose greater diameter is 12 feet, and less diameter 10 ; the height being 2 ?

Ans. $195 \cdot 8264$.

## PROBLEM XVI.

## To find the solidity of a circular spindle.

Rule. Find the distance of the chord of the generating circular segment from the centre of the circle, and also the area of the segment.

Then, from one-third of the cabe of half the length of the spindle or half chord of the segment, sabtract the product of the central distance, and half the area of the segment; the remainder multiplied by 12.5664 , will give the solidity.*

1. Let the axis $\mathbf{A} \mathbf{C}$ of a circular spindle be 40 inches, and its greater diameter B L 30 inches; what is its solidity?
$20^{2} \div 15=26 \frac{2}{3}$, then $26 \frac{2}{3}+15=41 \frac{2}{3}$, the diameter of the circle. Again, $\frac{41 \frac{2}{3}-30}{2-2}=5 \frac{5}{6}$, the central distance.

Now $15 \div 41 \frac{2}{3}=36$, the area segment corresponding to which is 254550 , which
 multiplied by the square of $41 \frac{2}{3}$, produces 441.92708 the area of the generating segment $\mathbb{A}$ B C, the half of which is $220 \cdot 96354$.

Lastly, $\left(20^{3} \div 3\right)-\left(5 \frac{5}{8} \times 220 \cdot 96354\right)=1377 \cdot 71268$, and this multiplied by $12 \cdot 5664$ produces $17312 \cdot 88862$ cubic inches, the solidity required.

[^52]greater diameter being 2 ?
Ans. $195 \cdot 8264$.

## spindle.

If the generating cle, and also the
the length of the ract the product of the segment; ve the solidity.*

441.92708 the balf of which is
$377 \cdot 71268$, and 62 cubic inches,
2. The axis of a circular spindle is 48 , and the middle diameter 36 ; required the solidity of the spindle ?

Ans. 29916.67.14.

## PROBLEM XVII.

To find the solidity of the middle frustum of a circular spindle.
rule.
I. Find the distance of the centre of the middle frustum from the centre of the circle.
II. Find the area of a segment of a circle, the chord of which is equal to the length of the frustum, and height half the difference between its greatest and least diameters; to which add the rectangle of the length of the frustum and half its least diameter; the result will be the generating
III. From the square of the radius subtract the square of the central distance, the square root of the remainder will give half the length of the spindle.
IV. From the square of half the length of the spindle take one-third of the square of half the length of the middle frustum, and multiply the remainder by the said half length.
V. Multiply the central distance by the generating surface, and subtract this product from the preceding; the remainder, maltiply by 6.2832 , will give the solidity.*

1. Required the solidity of the middle frustum of a circnlar spindle, the length D E being 40, the greater diameter Q F 32, and the least diameter P S 24 ?
First $20^{2} \div 4=100$, and $100+4=104$, the diameter of the circle.
Agrain, $62-16=36$, the central distance. Also, $\frac{1}{2}$ ( 32 $-24)=4$, and $4 \div 104={ }^{\circ} 038_{13}^{\circ}$, the area segment cor-

[^53]responding to which is 009940 , which, multiplied by the square of 104, produces 107.51104 , the area of $P L Q$; and $40 \times 12=480$ the area of the rectangle PDEL.

Hence $107 \cdot 51104+480=587.51104$, the area of the generating surface PDLE.

Next $\sqrt{ }\left(52^{2}-36^{2}\right)=\sqrt{ }(1408)=8 \sqrt{ }(22)=$ B 0 half the length of the spindle;

$$
\text { And }\left(1408-\frac{400}{3} \times 20=25493 \frac{1}{2}\right.
$$

Then $36+587.51104=21150.39744$, and
$\left(25493 \frac{1}{f}-21150.39744\right) \times 6.2832=27287.5347$, the required solidity.
2. What is the solidity of the middle frustum PSRL of a circular spindle, whose middle diameter $F Q$ is 36 , the diameter $P S$ of the end 16 , and its length $D E 40$ ?

Ans. $29257 \cdot 2904$.

## PROBLEM XVIII.

## To find the solidity of a spheroid.

Rule. Multiply the square of the revolving axis by the fixed axis, and this product again by 6236 for the solidity.*

1. What is the solidity of a prolate spheroid whose longer axis A B is 55 inches, and shorter axis CD 33 ?

Here $33^{2} \times 55 \times 5236=31361 \cdot 022$ cabic inches, the answer.

2. What is the solidity of an oblate spheroid, whose longer axis is 100 feet, and shorter axis 6 ?

Ans. 31416 cubic feet.
3. What is the solidity of a prolate spheroid, whose axes Ans. 41888.
4. What is the solidity of an oblate spheroid, whose axes Ans. 2094-4.

[^54]
## PROBLEM XIX.

To find the solidity of the segment of a spheroid, the base of the segment being parallel to the recolving uxis of the spheroid.

## Case 1.

Rule. From three times the fixed axis, deduct twice the height of the segment, multiply the remainder by the square of the height, and that product by 5236 .

Then say, as the square of the fixed axis is to the square of the revolving axis, so is the product found above to the solidity of the spheroidal segment.*

1. What is the content of the segment of a prolate spheroid, the height 0 C being 5 , the fixed axis 50 , and the revolving axis 30 ?-See last figure.
$50 \times 3-5 \times 2=150-10=140 ;$ then $140 \times 5^{2}=3500$, and $3500 \times 5236=1832 \cdot 6$; then $25: 9:: 1832 \cdot 6: 659 \cdot 736$, the answer.

## CASE II.

When the base is elliplical, or perpendicular to the revolving axis.

- Rule. From three times the revolving axis, take double the height; multiply that diffierence by the square of the height, and the product again by 5236 .

Then as the revolving axis to the fixed axis, so is the last product to the content. $\dagger$
2. What is the content of the segment of a spheroid, whose fixed axis is 50 , revolving axis 30 , and height 6 ?
$30 \times 3-2 \times 6=90-12=78 ;$ Then $78 \times 6^{2}=2808$; and $2808 \times \cdot 5236$ $=1470 \cdot 2688$ :
Then $30: 50: 1470 \cdot 2688: 2450 \times 448$, the answer.


[^55]3. In a prolate spheroid, the transverse or fixed axis is 100, the conjugate or revolving axis is 60 , and the height of the segment, whose base is parallel to the revolving axis is 10 ; required the solidity.?

Ans. 5277.888.
4. If the axis of a prolate spheroid be 10 and 6 , required
$\mathbf{R}_{1}$ -392 be th
1.
conoi
diame
10
$10=$
2.
conoi meter
3. altituc
4. $]$ height

To
RoL of the the las

[^56]
## PROBLEM XXI.

To find the solidity of a parabolic conoid.
Rule. Multiply the square of the diameter of its base by -3927 , and that product by the height; the last product will be the solidity.*

1. What is the solidity of the parabolic conoid, whose height is 10 feet, and the diameter of its base 10 feet?
$10^{2} \times \cdot 3927=39 \cdot 27$; then $39 \cdot 27 \times$ $10=392 \cdot 7$, the solidity required.
2. What is the solidity of a parabolic conoid, whose height is 30 , and the diameter of its base 40 ?

$$
\text { Ans. } 18849 \cdot 6 .
$$


3. What is the content of the parabolic conoid, whose altitude is 40 , and the diameter of its base 12 ?

Ans. 2261-952.
4. Required the solidity of a parabolic conoid, whose height is 30 , and the diameter of its base 8 ? Ans. 753.984.

## PROBLEM XXII.

## To find the solidity of the frustum of a parabolic conoid.

Role. Multiply the sum of the squares of the diameters of the two ends by the height, and that product by 3927 ; the last product will be the solidity. $\dagger$

[^57]1. The greater diameter of the frustum is 10 , and the less ciameter 5 ; what is the solidity, the leugth being 12 ?

$$
\begin{array}{r}
10^{4}=100 \\
5^{2}=25
\end{array}
$$


125. Then $125 \times 12=1500$, and $1500 \times 3927=589.05$, the solidity.
2. The greater dinmeter of the frustum of a parabolic conoid is 20 , the less 10 , and the height 12 ; what is the solidity?
3. The greater diameter of the frustum of a parabolic conoid is 30 , the less 10 , and the height 50 ; required the solidity ? Ans. 19635.
4. The greater diameter of the frastum of a parabolic conoid is 15 , the less 12 , and the height 8 ; required the
solidity? solidity? Ans. 1159-8408.

## PROBLEM XXIII.

## To find the solidity of a parabolic spindle.

Rule. Multiply the square of the middle diameter by -7854 , and that product by the leugth; then $\mathrm{I}^{\prime} \frac{1}{}$ of this product will be the solidity.*

1. The middle diameter C D, of a parabolic spindle is 10 feet, and the length A B is 40 ; required its solidity?


$$
\begin{aligned}
& 10^{2} \times 7854 \times 40=3141 \cdot 6 \text { Peet. } \\
& \text { Then } \frac{i^{3}}{I^{3}} \times 3141 \cdot 6=1675.52 \text { feet, the answer. }
\end{aligned}
$$

[^58]2. The middle diameter $C D$, of a parabolic sripudie is 12 feet, and the length $A B$ is 30 ; requited the soidiny $\}$

Ans. $180{ }^{5} 5616$.
3. The middle diameter of parabolic spindle is $\mathbf{3}$ feet, and the length 9 feet; requica ats solidity?

Ans. 33.92928.
4. The middle diameter of a parabolic spindle is 6 feet and the length 10 ; required its solidity?

Ans. $150 \cdot 7968$.
5. The middle diameter of a parabolic spindle is 30 feet and the length 50 ; required its solidity?

Ans. $18849 \cdot 6$.

## PROBLEM XXIV.

To find the solidity of the middle frustum of a parabolic spindle.

Rule. To double the square of the middle diameter, add the square of the diameter of the end; and from the sum subtract $\mathrm{T}^{\prime}$, of the square of the difference between these diameters; the remainder multiplied by the length, and that product by $\cdot 2618$, will be the solidity.*

1. In a parabolic spindle, the middle diameter of the middle frustum is 16 , the least diameter 12 , and the length 20 ; required the solidity of the frustum?


Here $2 \times 16^{2}+12^{2}-\frac{4}{1^{0}} \times 4^{2}=512+144-6.4=$ $649 \cdot 6$; hence $649 \cdot 6-20 \times \cdot 2618=3401 \cdot 3056$, the solidity

[^59]2. The bung diameter of a cask is 80 inches, the head diameter 20 inches, and the length 40 inches; required its content in ale gallons, allowing 282 cubic inches to be equal to one gallon? Ans. $80 \cdot 211$ gallons.
3. The bung diameter of a cask is 40 inches, the head diameter 30 inches, and the length 60 ; bow many wine gallons does it contain, 231 cubic inches being equal to one gallon?

Aus. 270.08 gallons.

## PROBLEM XXV.

To find the solidity of a hyperbolic conoid.
Rule. To doable the height of the solid add three times the transverse axis, multiply the sum by the square of the radius of the base, and that product by the height, and this last product by 5236 ; the result divided by the sum of the height and


Here $(2 \times 50+3 \times 100) \times \frac{(103.928048)^{2}}{2}=400 \times 2700=$ 1080000 ; and $\frac{1080000 \times 50 \times 5236}{150}=188496$, cies solidity.

1. Required the solidity of a hyper-
e conoid, whose height $V$ is 50 ,
ansverse axis $\mathbf{B} \mathbf{~ E ~} 103.923048$, and the
2. Required the solidity of a hyper-
bolic conoid, whose height $V$ is 50 ,
the diameter $A$ B 103.923048 , and the
transverse axis $V E 100$ ?
3. Required the solidity of a hyper-
bolic conoid, whose height $V$ is 50 ,
the diameter $A$ B $103 \cdot 923048$, and the
transverse axis $V E 100$ ? transverse axis $V$ E 100?

## To

Rut add th ters; - 1309

1. I frustun bolic ter A midd!e and the

Here (5841 85496, transverse azis, will give the solidity.*
2. What is the content of an hyperboloid, whose altitude is 10 , the radius of its base 12 , and the transverse 30 ?

Ans. 2073-451151369.

[^60]
## PROBLEM XXVI.

27) find the solidity of the frustum of a hyperboloid, or hyperbolic conoid.

Rule. To four times the square of the middle diameter, add the sum of the squares of the greatest and least diameters; multiply the result by the altitude, and that product by - 1309 for the solidity.*

1. Required the solidity of the frostum A CEHDB of a hyperbolic conoid, whose greatest diameter A B is 96 , least diameter E H 54, middle diameter C D 76•4264352, and the altitude $m n 25$ ?
Here $4 C D^{2}+A^{2}+\mathrm{EH}^{2}=$ $(5841 \times 4)+9216+2916=$ 35496, and $35496 \times 25 \times 1309=$ 116160.68 the answer.

2. What is the solidity of a hyperboloidal cask, its bung diameter being 32 inches, its head diameter 24 , and the diameter in the middle between the bung and head $\frac{7}{8} \sqrt{ } 310$, and its length 40 inches?

Ans. $24998 \cdot 69994216$ inches.

## PROBLEM XXVII.

To find the solidity of a frustum of an alliptical spindle, or any other solid formed by the revolution of a conic section about an axis.

Buls. Acd together the squares of the greatest and least diameters, and the square of double the diameter in the

[^61]middle between the two; multiply the sum by the length, and the last product by $\cdot 1309$ for the solidity.*

1. What is the content of the middle frustum CDIH of eny spindle, the length $O P$ being 40 , the greatest, or middle

cumfer 2 inche
2. T inuer d
3. $\pi$ is 2 inc
diameter EF 32, the least, or diameter at either end CD 24, and the diameter G K $30 \cdot 157568$ ?

Here $32^{2}+(2 \times 30.157568)^{2}+24^{2}=5237.89 \mathrm{sum} ;$

$$
\text { Then } 5237.89 \times 40=209515 \cdot 6 \text {, and }
$$

$$
209515 \cdot 6 \times 1309=27425 \cdot 7 \text { the answer. }
$$

2. What is the content of the segment of any spindle, the length being 20 , the greatest diameter 10 , the leasst diameter at either end 5 , and the diameter in the middle between these 8 ? Ans. 997-458.

## PROBLEM XXVIII.

## To find the solidity of a circular ring.

Rule. To the thickness of the ring add the inner diameter; multiply the sum by the square of the thickness, and the product by 2.4674 , for the solidity. $\dagger$

1. The thickness of a cylindrical ring is 2 inches, and the diameter C D 5 inches; required its solidity? $(2+5) \times 4=28 ;$ then $28 \times$ $2 \cdot 4674=69 \cdot 0872$ cubic inches, the answer.
2. Required the solidity of an iron ring whose axis forms the cir-


[^62]the length,
CDIH of st, or middle end C D 24,
7.89 sum; d wer.
spindle, the diameter at en these 8 ? $997 \cdot 458$.
cumference of a circle; the diameter of a section of the ring 2 inches, and the inner diameter, from side to side, 18 inches? Ans. 197.3925 cubic inches.
3. The thickness of a cylindrical ring is 7 inches, and the inuer diameter 20 inches; required its solidity?

Ans. 3264•3702.
4. What is the solidity of a circular ring, whose thickness is 2 inches, and its diameter 12 inches?

Ans. $138 \cdot 1744$ cubic inches.

# THE FIVE REGULAR BODIES. 

4. 

- SECTION $V$.
defintions.
A regular body is a solid contained onder a certain number of similar and equal plane figures.

Only five regular bodies can possibly be formed. Because it is proved in Solid Geometry that only three kinds of equilateral and equi-angular plane figures joined together can make a solid angle.

1. The tetraedron, or equi-lateral pyramid, is a solid having four triangalar faces.*

2. The hexaedron, or cube, is a solid having six square faces.


Row square Rut body b of the

1. I tetraed dity?
Here $\sqrt{2}=$
2. $T$ 12; wh

[^63]4. The dodecaedron has twelve pentagonal faces.

5. The icosaedron has twenty triangalar faces.


PROBLEM I.

## To find the solidity of a tetraedron.

Rule I. Multiply $\frac{1}{12}$ of the cube of the lineal side by the square root of 2 , and the product will be the solidity.

Rule II. Multiply the cube of the length of a side of the body by the tabular solidity, and the product will be the solidity of the body.* This rule is general for all the regular bodies.

1. If the side of each face of a tetraedron be 1 ; required its solidity?

Here $\frac{1}{1_{2}} \times 1^{3} \times \sqrt{2}=\frac{1}{12} \times$ $\sqrt{ } 2=-11785113$, the solidity.
2. The side of a tetraedron is 12; what is its solidity ?

$$
\text { Aus. } 203 \cdot 6467 .
$$



[^64]
## PROBLEM II.

To find the solidity of a hexaedron, or a cube.
Rule. Cube the side for its solidity.*

1. If the linear side of a hexaedron be 3 , what is its content? Ans. $3 \times 3 \times 3=27$.

## PROBLEM III.

To And the solidity of an octaedron.
Rule. Multiply the cube of the side by the square root of 2 , and $\frac{1}{3}$ of the product will be the content. $\dagger$

1. What is the solidity of an octaedron, when the linear side is 1 ?


## PROBLEM IV.

To find the solidity of a dodecaedron.
Rule. To 21 times the square root of 5 add 47, and divide the sum by 40 ; multiply the root of the quotient by 5 times the cube of the lineal side, and the product will be the solidity. $\ddagger$

[^65]Ro half $f$ of the sc


1. If the lineal side of the dodecaedron be 1 , what is its solidity ?

Here $A=1$, consequently $5 A^{2} \sqrt{ } \frac{47 \times 21}{40}=$ $7 \cdot 66311896$, the content.
2. The side of a regular dodecaedron is 12 inches; how many cuhic inches does it contain?

$$
\text { Ans. } 13241 \cdot 8694592 .
$$

## PROBLEM V.

To find the solidity of an icosaedron.
Role. To 7 add three times the squere root of 5 , take half the sum, maltiply the square root of this half sum by $f$ of the cube of the lineal side, zand the procinct will be the solidity.*

[^66]

1. What is the solidity of an icosaedron, whose lineal side is 1 ?

Let the side be denoted by $\mathbf{A}$. Then $\mathbf{A}=1$, and consequently

$$
\frac{5}{8} A^{3} \sqrt{ } \frac{7+3 \sqrt{5}}{2}=\frac{5}{8} \sqrt{7+3 \sqrt{ } 5} 22.18169499
$$ the content.

2. What is the solidity of an icossedron, whose lineal side is 12 feet? Ans. $3769 \cdot 9689$ feet.

Nota. The following tahle may te collected from the examples given fu the foregoing rules each of which has been demonstrated under iti particular head. It has elfo been demonstrated that the cube of the lineal side of eny reyular solid multipiied by the tahular number corresponding to the figare, will give its con. tent. It is particularly recommended to the pupif to employ the general rule given in Probless I. whenever the content of any of the five regular bodien !a required.

## TABLE III.

Showing the solidity of the five regular bodies, the length of $a$ side in each being 1.

| No. of <br> sides. | Names. | solldity. |  |
| ---: | :--- | ---: | ---: |
|  |  |  |  |
| 4 | Tetraedron | .. | .1178511 |
| 6 | Hexaedron | $\ldots$ | 1.000000 |
| 8 | Octaedron | .. | .471000 |
| 20 | Icosaedron | .. | 2.1816950 |
| 12 | Dodecaedron | .. | 7.6631189 |

## PROBLEM VI.

## To find the surface* of a tetraedron.

Role I. Multiply the square of the linear side by the square root of 3 , and the product will be the whole surface. $\dagger$

Rule II. Multiply the square of the length of a side of the body, by the tubular area corresponding to the figare, and the product will be the surface of the body. This is a general rule for finding the surfaces of the regular bodies.

1. If the side of a tetraedron be 1 , what is its surface ?

Here, $1^{9} \times \sqrt{ } 3=\sqrt{ } 3=1 \cdot 7320508=$ the whole surface.
2. The side of the tetruedron is 12 ; what is its surface !

Ans. $249 \cdot 4153152$.

## PROBLEM VII.

To find the surface of a kexaedron, or cube.
Rule. Square the side and multiply it by 6 , and the product will be the surface. $\ddagger$

1. If the side be 1 , what is the surface of a hezaedron? $1^{2} \times 6=6$ the whole surface.
2. If the side be 4 , what is the surface of a hexaedron? Ans. 96.
[^67]
## PROBLEM VIII.

To find the surface of an octnedron.
Rule. Multiply the square of the side by the square root of 3 , and double the product will be the surface.*

1. If the side of an octaedron be 1 , what is its surface?
$2 \times 1^{2} \sqrt{ } 3=2 \sqrt{ } 3=3 \cdot 4641016=$ the whole surface.
2. If the side of an octaedron be 12 , what is its superficies? Ans. $498 \cdot 8306304$.
3. If the side of an octaedron be 4 , what is its surface? Ans. $55 \cdot 4256256$.

## PROBLEM IX.

To find the superficies of a dodecaedron.
Rule. To 1 add $\frac{2}{5}$ of the root of 5 ; multiply the root of the sum by 15 times the square of the lineal side, and the product will be the surface. $\dagger$

1. If the lineal side be 1 , what is the surface of a regular dodecaedron?

Here $1^{2} \times 15 \sqrt{ }\left(1+\frac{2}{3} \sqrt{5}\right)=15 \sqrt{ }\left(1+\frac{2}{8} \sqrt{ } 5\right)=$ 20.645728807 , the surface.
2. What is the surface of a dodecaedron, whose lineal side is 2 ?

Ans. 82-58292.

[^68]
## PROBLEM X.

## To find the superficies of an icosaedron.

Rule Multiply five times the square of the lineal side by the square root of 3 , and the product will be the surface.*

1. The side of an icosaedron is 1 , what is its surface?

$$
5 \times 1^{2} \times \sqrt{ } 3=5 \sqrt{ } 3=8.66025403
$$

2. What is the surface of an icosaedron whose side is 2 ? Ans. 34-641.
3. What is the surface of an icosaedron whose side is 3 ? Ans. 77-9423.

Note. In finding the superficial content o. the regular bodies, it is particularly recummended to employ the general rule given in Problem $V i$, in practice in prelesence to any other. The particular rules given for each solid aro introduced merely to find the tabular numbers by which he pupil is to work.

From the examplen given in the preceding rules, in which the lineal alde of eich regular solid is 1 , the following tabular numbers may be collected.

TABLE IV.
Showing the surfaces of the five regular bodics, when the linear side is 1 .

| Number <br> of sides. | Names. | Surface. |  |
| :---: | :--- | ---: | ---: |
|  |  |  |  |
| 4 | Tetraedron | . | $1 \cdot 7320508$ |
| 6 | Hexaedron | . | 6.0000000 |
| 8 | Octaedron | . | 3.4641016 |
| 12 | Dodecaedron | . | 20.6457288 |
| 20 | Icosaedron | . | 8.6602540 |

[^69]
# SURFACES OF SOLIDS. 

## PROBLEM I.

To find the surface of a prism.
Role. Maltiply the perimeter of the end of the solid by its length, to the product add the area of the two ends, and the sum will be the surface.*


[^70]1. If the side II I of the pentagon be 25 feet, and height ID 10, what is its surface?

$$
25 \times 5=125, \text { the perimeter }
$$

Then $125 \times 10=1250=$ the upright surface; $25^{2} \times 1.720477=1075 \cdot 298125=$ the area of one end; And $1075 \cdot 298125 \times 2=2150 \cdot 596250==$ the area of both ends.

Then $2150 \cdot 5196250+1250=3400.59625=$ the entire surface;
2. If the side of a cubical piece of timber be 3 feet 6 inches, what is the apright surface and whole superficial content?

Ans. $\left\{\begin{array}{l}43 \text { feet upright surface. } \\ 73 \text { feet } 6 \text { in }\end{array}\right.$
3. If a stone in the form of a parallelopipedon be 12 feet 9 inches long, 2 feet 3 inches deep, and 4 feet 8 inches broad, what is the upright surface and whole superficial content?

Ans. $\left\{\begin{array}{l}176 \text { feet } 4 \text { in. } 6 \text { sec. upright surface. } \\ 197 \text { feet } 4 \text { in. } 6 \text { sec. }\end{array}\right.$
197 feet 4 in .6 sec. whole sup. content.

## PRGBLEM II.

## To fived the surface of a pyramid.

Role. Multiply the slant height by half the circumference of the base, and the product will be the sarface of the sides, to which add the area of the base for the whole surface.*

Note. The slant height of a pyramid. is the perpendleular distance from the vertex to the middle of one of the sides, and the perpendicular hoight is a atralght Une drawn from the vertex to the middle of the bace.

[^71]

1. The slant height of a triangular pyramid is 10 feet, and each side of the base is 1 ; what is its surface?

$$
\begin{aligned}
\text { Half circumference } & = \\
\text { Slant height } & = \\
& =10 \\
\text { Upright surface } & =15 \\
\text { Area of the buse } & =433013 \\
& \\
\text { The entire surface } & =15 \cdot 433013
\end{aligned}
$$

2. The perpendicular height of a heptagonal pyramid is $13 \cdot 5$ feet, and cach side of the base 15 inches; required its surface. Ans. 650128 feet.

## PROBLEM III.

## To find the surface of a cone.

Rule. Multiply the slant height by half the circumference of the base, and the product, with the area of the base, will be the whole surface.*


[^72]1. What is the surface of $a$ cone whose side is. 20 , and the circumference of its base 9 ?

Here $20 \times \frac{9}{2}=90=$ the convex surface. $9^{2} \times{ }^{2} 07958=6.44598=$ the area of the base. Then $90+6 \cdot 44598=96.44508=$ the whole surface.
2. The perpendicular height of a cone is 10.5 feet, and the clrcumference of its base is 9 feet: what is its superficies?

Ans. $51 \cdot 1336$ feet.

## PROBLEM IV.

To find the superficies of the frustum of a right, regular pyramid.
Roic. Add the perimeters of the two ends together, and multiply half the sum by the slant height, the product will be the upright surface; to which add the areas of both euds, and the sum will be the whole surface.*

1. What is the superficies of the frustum of a square pyramid, each side of the greater base $A \mathrm{~B}$ being 10 inches, and each side of the less base C D 4 inches, and slant height 20 inches? Here $10 \times 4=40$ the perimeter of the greater And $4 \times 4=16$ the perimeter of the less end.


Sum 56, the half of which is 28.
Then $28 \times 20=560=$ the upright surface. $10 \times 10=100=$ the area of the greater base. $4 \times 4=16=$ the area of the less end.
Hence $560+100+16=676=$ the whole surface.
2. What is the superficies of the frustum of an octagonal pyramid, eash side of the grater base being 9 inches, each side of the less base is 5 inches, and the height 10.5 feet ? Ans. 52.59 feet.

[^73]
## PROBLEM V.

To find the superficies of the frustum of a cove.
Rule. Add the perimeters of both ends together, and multiply half the sum by the slant height, to which add the areas of both ends, for the whole superficies.*


1. If the diameters of the two ends $C^{\circ} D$ and $A B$ are 7 and 3, and the slant height D B 9 , what is the whole surface of the frustum ABCD ?

$$
\frac{7+3}{2} \times 3.1416 \times 9=141.372, \text { the convex surface. }
$$

$7 \times 7 \times \cdot 7854=38.4846$, the area of the base C D.
$3 \times 3 \times \cdot 7854=7 \cdot 0686$, the area of the end $\mathbf{A B}$.
Then $141.372+45.5532=186.9252=$ the whole surface of the frustum.
2. What is the superficies of the frustom of a cone, whose greater diameter is 18 inches, and less diamoter 9 inches, aud the slant height $171 \cdot 0592$ inches?

$$
\text { Ans. } 7572.981 .
$$

[^74]
## PROBLEM VI.

## To find the superficies of a wedge.

Role. Find the area of the back, which is a right-angled parallelogram; find the areas of both ends, which are triangles; and also of both sides, which are trapezoids; all these areas added together will evidently be the whole surface.*

1. The back of a wedge is 10 inches long, and 2 inches brond, each of its laces is 10 inches from the edge to the back; required its whole surface?
$10 \times 2=20=$ the area of the back. $10 \times 10 \times 2=200$ the areas of both $\checkmark\left(A E^{2}-\right.$ Exaces. $\sqrt{=}(100-1)=D$ $9.949 \times 2=19=\mathrm{A} x$; then
$=19.898=$ areas of both ends.


Hence $200+20+19 \cdot 889=239 \cdot 898=$ the whole surface of the wedge.
2. The back of a wedge is 20 inches long, and 2 inches broad; each of its faces is 10 inches from the back to the edge; what is its whole surface? Ans. 459.898 .

## PROBLEM VII.

To find the area of the frustum of a wedge
Rule. Find the areas of the back and top sections; of the two faces; and of the two ends; the sums of all the separate results will evidently be the whole surface.

[^75]1. The length and breadth of the back are 10 and 2 inches, the length and breadth of the upper section are 10 and 1 inches, the length of the edge from the back to the upper section is 10 inches; required the whole surface?
$10 \times 2=20=$ the area of the back. $10 \times 1=10=$ the area of the upper section.

$10 \times 10 \times 2=200=$ the areas of both faces. $\frac{2-1}{2}=\frac{1}{2}=\cdot 5$, and $\sqrt{ }(100-25)=9 \cdot 98=\mathrm{B} y$.

Then $(2+1) \times 9.98=29.94=$ areas of both ends. Hence $20+10+200+29 \cdot 94=259 \cdot 94$ inches, the answer.
2. The length and breadth of the back are 10 and 4 , the length and breadth of the upper section are 5 and 2 , and the length of each of the faces is 20 ; required the whole superfices?

Ans. 470.78.

## PROBLEM VIII.

To find the surface of a globe or sphere.
Rule. Multiply the diameter of the sphere by its circum. ference, and the product will be its convex surface.*

1. What is the surface of a globe, whose diameter is 24 inches?

$$
\begin{aligned}
24 \times 3 \cdot 1416 & =75.3984, \text { the circumference : } \\
75 \cdot 3984 \times 24 & =1809.5616 \text { inches, the answer. }
\end{aligned}
$$

2. What is the surface of the earth, its diameter being :95ist, and the circumference 25000 miles? Ans. 198943750 square miles.

## PROBLEM IX.

To find the conrex surface of any segment, or zone of $a$ sphere.
Rule. Multiply the circumference of the whole sphere by the height of the segment, or zone, and the product will be the convex surface.*

1. If the diameter of the earth be 7970 miles, the height of the frigid zone will be 252.361283 miles, what is its surface?

Here $7970 \times 3.1416=$ the circumference; then $\begin{aligned} & 7970 \\ & \text { miles. }\end{aligned} \times 3.1416 \times 252.361283=6318761 \cdot 107182216$
2. If the diameter of the earth be 7970 miles, the height of the temperate zone will be 2143.6235535 miles; what is its surface? Ans. 53673229.812734532 miles.
3. If the diameter of the earth be 7970 miles, the height of the torrid zone will be $3178 \cdot 030327$ miles; what is its surface? Ans. 79573277•600166504 miles.
Nork. By adding the surfaces of hoth frigid zonnes and buth temparate znnes
to the surface of the torrid zone, the sumi 19956725944 , is the surfuce of the
earthin square miles.
4. The diameter of a sphere is 3 , the height of the segment 1 ; what is its convex surface? Ans. $9 \cdot 4248$.
5. The circumference of a splere is 33 , the height of the segment is 4 ; what is its convex surface? Ans. 132.

## PROBLEM X.

## To find the surface of a cylinder.

Rule. Multiply the circumference by the length, and the product will be the convex surfuce; to which add the area of the two ends, and the sum will be the surface of the entire solid. $\dagger$

[^76]1. What is the entire surface of a cylinder, whose length is 10 feet, and its diameter 5 feet?

### 3.1416

15.7080 , then $15.708 \times 10=157.08$ the convex surface.

$$
5 \times 5 \times \cdot 7854=\text { the area of the basc; then }
$$

$2 \times 5 \times 5 \times \cdot 7854=50 \times 7854=39 \cdot 2700$ the area of both bases; then $157 \cdot 08+30 \cdot 27=196 \cdot 35$, the answer.
2. Required the supericial content of a cylinder, whose diameter is 21.5 inches, and height 16 feet. Ans. $95 \cdot 1 \mathrm{ft}$.
3. What is the surface of a cylinder whose diameter is $20 \cdot 75$ inches, and its length 55 inches? Ans. 29.595 ft .

## PROBLEM XI.

To find the superficies of a circular cylinder.
Rule. Add the inmer diameter to the thickness of the ring, multiply the sum by the thickness, and that product by $9 \cdot 8696$ for the superfices.*

1. The thickness A $C$ of a cylindrical ring is 2 inches, the inner diameter CD 5 inches; required its superficial content.

Here $(2+5) \times 2=14$; theu $14 \times 9.8696=138.1744$ square inches.

[^77]08 the convex
se; then 2700 the area iwer.
ylinder, whose Ans. $95 \cdot 1 \mathrm{ft}$.
se diameter is s. $29 \cdot 595 \mathrm{ft}$.
linder.
ickness of the iat product by

5 is 3 inches, its superficial
$6=138.1744$

## PROBLEM XII.

To find the surface of a parallelopipedon.
Rele. Find the area of the sides and ends, and their sum will be the surface.

1. What is the surface of a parallelopipedon, whose length is 10 feet, breadth 4, and depth 2 ? Ans. 136 feet.
$10 \times 4=40=$ the area of one face.
$10 \times 4=40=$ the area of its opposite face.
$10 \times 2=20=$ the area of one face.
$10 \times 2=20=$ the area of its opposite face.
$4 \times 2=8=$ the area of one end.
$4 \times 2=8=$ the area of its opposite end.
$136=$ the surface of the whole solid.
2. The length of a parallelopipedon is $\ddot{b}$, breadth 4 , and depth 3; what is its surface? Ans. 94.

## SECTION VII.

## DESCRIPTION OF THE CARPENTER'S RULE.

This instrument is sometimes called the sliding rule, and is used in measuring timber and artificer's works. By it dimensions are taken and contents computed.

It consists of two equal pieces of boxwood, each one foot long, counected by a folding joint.

One fuce of the rule is divided into inches and half quarters, or eigliths. On the same side or face are several plane scales, divided by diagonal lines into twelfths; these are chirfly used in planning dimensions which are taken in feet and inches. The edge of the rule is divided decimally; that is, each foot is divided into ten equal parts, and each of those again iuto 10 equal parts. By means of this last scale, dimensions are tuken in feet, tenths, and hundredths; and then multiplied as cominon decimal numbers.

I: one of these equal picces there is a slider, on which are marked the two letters $\mathrm{B}, \mathrm{C}$; on the same face are murked the letters A, D. The same numbers serve for both these two middle lines, the one being above the numbers, and the other below.

Turee of these lines, viz., A, B, C, are called double lines, as they proceed from 1 to 10 twice over. These three lines are exnctly alike both in division and numbers, and are numbered from the left hand towards the right, $1,2,3,4,5$, $6,7,8,9$ to 1 , which stands in the middle; the numbers then go on, $2,3,4,5,6,7,8,9$ to 10 , which stands at the righthand end of the rule.

These four lines are logarithmic ones; the lower line D, is a single one, proceeding from 4 to 40 , and is called the girt line, from its use in finding the content of timber.

Upon it are also marked W G at $17 \cdot 15$, A $G$ at 18.95 ,
and $1 G$ at 18.8 . These are the wine, ale, and imperial guage points.

On this face is a table of the value of a load, or 50 culbic feet, of timber, at all prices from 6 pence to 2 shillings per foot

To ascertain the values of the figures on the rule, which have no determinate value of their own, hut depend upon the vulue set on the unit at the left hand of that part of the rule marked $1,2,3, \& c$.; if the first unit be called 1 , the 1 in the middle will be 10, the other figures that follow will be $20,30,40, \& \mathrm{c}$., and the 10 at the right-hand end will be 100 . If the left-hand muit be called 10 , the 1 in the middle will be 100 , and the following figmres will be 200 , $300,400,500, \& c$.; and the 10 at the right hand end will be 1000 . If the 1 at the left-hand end be called 100 , the middle 1 will, be 1000 , and the following figures will be 2000 , 3000,4000 , \&c., and the 10 at the right hund will be 10,000 . From this it appears that the values of all the figures depend upon the value set on the first unit.
The use of the double line $A, B$, is to find a fourth proportional, and also to tind the areas of plane figures.
The use of the several liues described here is best learned in practice.
If the rule be unfolded, and the slider moved out of the grove, the back part of it will be seen divided like the edge of the rule, all measuring 3 feet in leugth.
Some rules have other scales and tables delineated upon them; such as a table of board measure, one of timber measure, another for showing whit length for any breath will make a square foot. There is also a line showing what length for any thickness will make a solid foot.

## THE USE OF THE SLIDING RULE.

## PROBLEM I.

## To multiply numbers together.

Set 1 on $B$ to the multiplier on $A$; then against the multiplicand on B, stands the product on $\mathbf{A}$.

1. Multiply 12 and 18 together.

Set 1 on $B$ to 12 on $A$; then against 18 on $B$ stands the product 216 on A .
2. Multiply 36 by 22.

Set 1 on $B$, to 36 on $A$; then as 22 on $B$ goes beyond the rale, look for 2.2 on $B$, and against it on $A$ stands $79 \cdot 2$; but as the real multiplier was divided by 10 , the product $79 \cdot 2$ must be multiplied by 10 , which is effected by taking away the decimal point, leaving the product 792.

## PROBLEM II.

 To divide one number by another.Set the divisor on $A$, to 1 on $B$; then against the dividend on $A$, stands the quotient on $B$.

1. Divide 11 into 330 .

Set the divisor 11 on $A$, to 1 on $B$; then against the dividend 330 on $\mathbf{A}$, stands the quotient 30 on $\mathbf{B}$.
2. Divide 7680 by 24.

Set 24 on $A$, to 1 on $B$; then because 7680 goes beyond the rule ou A, look for 768 (the tenth of 7680 ) on A, and against it stands 32 on $B$; but as the tenth of the dividend was taken that the number should fall within the compass of the scale $A$, the quotient 32 must be multiplied by 10 , which gives 320 for the answer.

Set I
D 1, the then the then the will obs square ol

1. Wh

Procee against 2

Set 10 every num נ. Whe
Proceed 529 stands

## To find

Set the 25 on C, st
The reas $9: 15:: 1$ 1. What

Set one the other mean propo

## PROBLEM III.

## To square any number.

Set 1 upor $C$, to 10 apon $D$; then if you call the 10 upon D 1, the 1 on the $\mathbf{C}$ will be 10; if you call the 10 on $\mathrm{D}, 10$, then the 1 on C will be 100 ; if you call the 10 on $\mathrm{D}, 100$, then the 1 on C will be 1000 ; this being understood, you will observe that against every number on $D$, stauds its square on C .

1. What are the squares of $25,30,12$, and 20 ?

Proceeding according to the above directions, 625 stands against 25, 900 against 30,144 against 12,400 against 20.

## PROBLEM IV.

## To extract the square root of a number.

Set 1 or 100 , \&c., on C, to 1 or $10, \& c$. , on D ; then against every number found on C , stands its root on D .

1. What are the square roots of 529 and 1600 ?

Proceeding according to the above directions, opposite 529 stands 23 ; opposite 1.600 stands 40 , and so on.

## PROBLEM V.

To find a mean proportional between two numbers as $\theta$ and 25.

Set the number 9 on $C$, to the same 9 on $D$; then against 25 on C , stands 15 on D , the required mean proportional.
The reason of this may be seen from the proportion, viz., $9: 15:: 15: 25$.

1. What is the mean proportional between 29 and 430 ?

Set one number 29 on $C$, to the same on $D$; then against the other number 430 on $C$, stands 112 on $D$, which is the mean proportional, nearly.

## PROBLEM VI.

To find a third proportional to two numbers, as 21 and 32.
Set the first number 21 , on $B$, to the the second, 32 , on $A$; then agailust the second, 32 , on B , stauds $48 \cdot 8$ on A , which is the required third proportional.

## PROBLEM. VII.

## To find a fourth proportional to three given numbers.

Set the first term on $B$, to the second on $A$; then against the third terin on $B$, stands the fourth on $A$.

If either of the middie numbers fall beyond the line, take one-tenth part of that number, and increase the fourth number found, ten times.

1. Find a fourth proportional to 12,28 , and 114.

Set the first term, 12, on B, to the second term, 28, on A; then against the third term 114 on B , stauds 266 on A , which is the answer.

## TIMBER MEASURE.

## PROBLEM I.

To find the superficial content of a board or plank.
Relf. Multiply the length by the breadth, and the product will be the area.

Norf. When the plank is brnader at ane ond than at the other, wed poth ends together, and take bald the sum for a mean breadth.

Set the len in feet.

1. It broad,

As 12
2. WI inches, a
3. W 9 inches,
4. Wh is 2 feet, length be
5. Ho one end being 6
6. Hov feet, and

To fine Rcle.

## by the carpenter's role.

2s 21 and 32.
ond, 32, on $A$; 3 on A, which
numbers.
then against
the line, take e fourth num.
114.
term, 28, on ds 266 on A ,
plank.
the product
; add both ends

Set 12 on $B$, to the breadth in inches on $A$; then against the length in feet, on B, will be found the superfices oll A in feet.

1. If a board be 12 feet 6 inches long, and 2 feet 3 inches broad, how niany feet are contained in it?

| 12.6 | 12.5 |
| :---: | :---: |
| 2.3 | 2.25 |
| 25.0 | 625 |
| 3.1.6 | 250 |
| 28.1.6 Ans. | 250 |
|  | 28.125 |

by the carpenter's rule.
As 12 on B : 27 on $A:: 12.5$ on $B: 28 \cdot 125$ on $A$.
2. What is the value of a board whose length is 8 feet 6 inches, and breadth 1 foot 3 incenes, at $5 d$. per foot?

$$
\text { Ans. 4s. } 5 d .
$$

3. What is the value of a board whose length is 12 feet 9 inches, and breadth 1 foot 3 inches, at $5 d$. per foot?

$$
A n s .6 s .7 \frac{1}{2} d .
$$

4. What is the value of a plank whose breadth at one end is 2 feet, and at the other end 4 feet, at $6 d$. per foot, the length being 12 feet? Ans. $18 s$ s.
5. How many square feet in a board, whose breadth at one end is 15 iuches, and at the other 17 inches the length being 6 feet?
6. How many square feet in a plank, whose length is 20 feet, and mean breadth 3 feet 3 inches? Ans. 65.

## PROBLEM II.

To find the solid content of squared or four-sided timber.
Rcle. Tuke balf the sum of the breadth and depth in the
middle (that is, the quarter girt), square this half sum, and multiply it by the length for the solid content.*

## by the canpenter's rule.

As 12 on $\mathrm{D}:$ length on $\mathrm{C}:$ : quarter girt on $\mathrm{D}:$ the solid content on C .

1. If a piece of squared timber be 3 feet 9 inches broad, 2 feet 7 inches deep, and 20 feet long; how many solid feet are contained therein?
3.9
2.7

$$
\text { 2) } 6.4
$$

3. 2 quarter girt.
3.2
9.6
6.4
4. 0. 4 square of the quarter girt.

20 length of the piece.
200 . 6. 8 solid content.

## by the carpenter's rule.

As 12 on D : 20 on C :: 38 on D : $\mathbf{2 0 0 \frac { 1 } { 2 }}$ on C.
2. A squared piece of timber is fifteen inches broad, 15 inches deep, and 18 feet long; how many feet does it contain?

Ans. $28 \frac{1}{1}$ feet, which is the accurate content, as the breadth and depth are equal.
3. What is the solid content of a piece of timber wheu breadth is 16 inches, depth 12 inches, and length 12 feet?

Ans. 16 feet.

[^78]Rul. depth in solidity.
4. 'Th the brea 1 font 3 1 foot 3

When the $p$ parts and smi
*This rule tapierb consader erroneous. Th he is about to D

Rule II. Multiply the breadth in the middle by the depth in the middle, and that product by the length, for the solitity. ${ }^{*}$
4. 'The length of a piece of timber is 18 feet 6 inches, the brcadths at the greater and less end 1 foot 6 inches, and 1 font 3 inches, and the thickuess at the greater and less end 1 foot 3 inches, and 1 foot; what is the solid content? 1.5
$1 \cdot 25$
2) $2 \cdot 75$
$1 \cdot 25$
1
2)2•25
1.375 mean breadth.
1.125 nean depth.

1-125 mean depth.
1.375 mean breadth.
1.546875
$18 \cdot 5$ length.

### 28.6171875 ad content.

by the slading rele.
B A I


As $18 \frac{1}{2}: 12:: 14.9: 28^{\circ} 6$ the content.
Note. When the piece to be measured tapers regnlarly from one end to the other either take the mean breadth and depth in the middle, or take from the dimension at buth ends, and half their sum for the mean dimension. This, however, though ve. "pasy in practice, is but a very imperfect approximation.
When the piece to be measured does not taper regularly, but is thick in some parts and small in others, in this case tace several dimensions; add them

[^79]1 C.
s broad, 15 does it con-
the breadth
nber whese 12 feet? 16 feet.
being correct, Ind the tiriter

## all tingether, and divide their sum by the number of dimensions so taken, and use the quotient as the mean dimension.

The
swers measuı
$\left[\begin{array}{c}0 \\ \frac{12}{1} \\ \hline\end{array}\right.$

If th is 12 fe against 2 feet 5 Whe the rule breadth rule fro on the the leng inches, $y$ if the bl little abc

1. If a
a square
2. If a 4 square
3. If make 7 sc

When proceed a Rule. narrow en tities, viz., the ends, extract th the produ remainder euds.*

The Carpenter's rule is furnished with a scale which answers the purpose of this rule. It is called a table of board measure, and is in the following form :

| 0 | 1 | 0 | 1 | 0 | 0 | 5 | 0 | $8 \frac{1}{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12 | 1 | 6 | 1 | 4 | 3 | 6 | 2 | 2 |
| 1 | 2 | 1 | 3 | 1 | 4 | 5 | 1 | 6 |

If the breadth be 1 inch, the length standing against it is 12 feet; if the breadth be 2 inches, the length standing 2 feet 5 it is 6 feet; if the breadtli be 5 inches, the length is

When the breadth goes beyond the limits of the table on the rule, it must be shut, and then you are to look for the breadth in the line of board measure, which runs along the rule from the table of board measure, and over against it on the opposite side, in the scale of inches, will be found the length required. For example, if the breadth be 9 inches, you will find the length against it to be 16 inches; if the breadth be 11 inches, the length will be found to be a little above 13 inches.

1. If a board be 6 inches broad, what length of it will make a square foot?
2. If a board be 8 inches broad, what Ans. 2 feet. 4 square feet?
3. If a board be 16 inches broad ans. 6 feet. make 7 square feet? When the board is broader Ans. $5 \frac{1}{4}$ feet. proceed according to the following : Rule. To the square of the prof narrow end, add twice the cone product of the length, and tities, viz., the length the dontinual product of these quanthe ends, and the area difference between the breadths of extract the square root of the part required to be cot off ; the product of the lhe sum; from the result deduct remainder by the diffgth and narrow end, and divide the ends.*

If it were required to cut off 60 square inches from the smaller end of a board, A D being 3 inches, C E 6 inches,
und A 20 inclies.


Here $\mathrm{A} x=\frac{1}{2 \mathrm{BC}}\left(\sqrt{ }\left\{(\mathrm{B} \times \mathrm{AD})^{2}+4 \mathrm{BC} \times \mathrm{AB}\right.\right.$ $\times 60\}-\mathrm{AB} \times \mathrm{AD})=\frac{1}{3}\left(\sqrt{ }\left\{(20 \times 3)^{2}+6 \times 20 \times 60\right\}\right.$
$-20 \times 3=14.64$, the length required.

## PROIBLEM IV.

To find how much in length will make a solid foot, or any other required quantity, of squared timber, of equal dimensions from end to end.

Rele. Divide 1728, the solid inches in a foot or the solidity to be cut off, by the area of the end in inches, and the quotient will be the end in inches.

1. If a piece of timber be 10 inches square, how much in length will make a solid foot?
$10 \times 10=100$ the arca to the end; then $1728 \div 100$ $=17 \cdot 28$ Ans.

## As

2. If a piece of timber be 20 inches broad, and 10 inches deep, how much of it will make a solid foot?
3. If a piece of timber be 9 inches broad, $8 \frac{18}{8}$ ind 6 inches. deep, how much of it will make 3 solid feet. Ans. 8 ft .

On some carpenters' rules, there is a table to answer the purpose of the last rule; it is called a Table of Timber, and

| 0 | 0 | 0 | 0 | 0 | 0 | 11 | 3 | 9 | Inches. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 44 | 36 | 16 | 0 | 5 | 0 | 9 | 5 | 4 | 2 |
| 1 | 2 | 1 | Feet. |  |  |  |  |  |  |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 1 |  |

## PROBLEM $V$.

To find the solidity of round or unsquared timber.
Rule I. Gird the piece of timber to be measured round

BC $\times \mathbf{A B}$
$\times 20 \times 60\}$
foot, or any equal dime-
foot or the inches, and
lOw much in
$728 \div 100$
d 10 inches
. 5 inches.
id 6 inches ns. 8 ft .
the iniddle wit: bring, take one-fourth part of the girt and square it, and rile ply this square by the length for the solidity.

## BY THE SLIDING RULE.

As the length on $\mathrm{C}: 12$ or 10 on $\mathrm{D}::$ quarter girt, in 12ths or 10 the on D : content on C.

Nor. When the tree is very irregular, divide it into several lengths and find the solidity of each part separately; or add all the girts together, and divide the

1. Let the length of a piece of round timber be 9 feet 6 inches, and its mean quarter girt 42 inches; what is its content?

| 3.5 quarter girt. | 3.6 quarter girt. |
| :--- | :---: |
| 3.5 | 3.6 |
| 12.25 | 10.6 |
| 9.5 length. | 1.9 |
| 116375 content. | 12.3 |
|  | 9.6 length. |

$$
110.3
$$

$$
6.1 .6
$$

116.4 . 6 content.
by the siding rele.

$$
\begin{gathered}
\text { As } 9.5 \text { on C }: 10 \text { on D :: } 35 \text { on D : } 116 \frac{1}{3} \text { on } C \text {; } \\
\text { Or } 9 \cdot 5: 12:: 42116 \frac{1}{3} .
\end{gathered}
$$

Rule II. Multiply the area corresponding to the quarter girt in inches, by the length of the piece in feet, and the produ t will be the solidity.

Nots. It may sometimes happen that the quarter girt exceeds the limits of the table; in this case, take half of it, and four times the content thus found will give
the required content.

## A TABLE FOR MEASURING TLMBER.

| Quarter Girt. | Area. | Quarter Girt. | Area. | Quarter | Area. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Inches. | Feet. | Inches. | Feet. | Inches. |  |
| ') | $\cdot 250$ | 12 | $1 \cdot 000$ | 18 | $2 \cdot 250$ |
| 64 | -272 | 124 | $1 \cdot 042$ | 18! | $2 \cdot 376$ |
| $6 \frac{1}{2}$ | -294 | 12. | 1.085 | 19 | $2 \cdot 606$ |
| 63 | -317 | 123 | 1.129 | $19 \frac{1}{2}$ | $2 \cdot 640$ |
| 7 | -340 | 13 | $1 \cdot 174$ | 20 | $2 \cdot 777$ |
| 74 | -364 | 134 | $1 \cdot 219$ | $20 \frac{1}{2}$ | $2 \cdot 917$ |
| $7 \frac{1}{2}$ | -390 | $13 \frac{1}{2}$ | $1 \cdot 265$ | 21 | $3 \cdot 062$ |
| 78 | $\cdot 417$ | 137 | $1 \cdot 313$ | 212 | $3 \cdot 209$ |
| 8 | -444 | 14 | 1.361 | 22 | 3-362 |
| 84 | - 472 | 144 | 1.410 | $22 \frac{1}{2}$ | $3 \cdot 516$ |
| 8. | $\cdot 501$ | $14 \frac{1}{2}$ | $1 \cdot 460$ | 23 | $3 \cdot 673$ |
| 84 | -531 | 148 | 1.511 | $23 \frac{1}{2}$ | $3 \cdot 835$ |
|  | -562 | 15 | $1 \cdot 562$ | 2.4 | 4.000 |
| 94 | -591 | 154 | $1 \cdot 615$ | $24 \frac{1}{2}$ | 4.168 |
| $9 \frac{1}{2}$ | -626 | $15 \frac{1}{2}$ | 1.668 | 25 | $4 \cdot 340$ |
| 92 | -659 | 151 | 1.722 | $25 \frac{1}{2}$ | $4 \cdot 516$ |
| 10 | -694 | 16 | 1.777 | 28 | 4.69t |
| 104 | - 730 | 16\$ | 1.833 | $26 \frac{1}{2}$ | $4 \cdot 876$ |
| $10 \frac{1}{2}$ | -766 | 162 | 1.890 | $27{ }^{2}$ | $5 \cdot 062$ |
| 104 | -803 | 16 | 1.948 | $27 \frac{1}{2}$ | $5 \cdot 252$ |
| 11 | - 840 | 17 | $2 \cdot 006$ | 28 | $5 \cdot 444$ |
| 11\% | -878 | 17 1 | $2 \cdot 066$ | $28 \frac{1}{2}$ | $5 \cdot 640$ |
| $11 \%$ | -918 | $17 \frac{1}{5}$ | $2 \cdot 126$ | 29 | $5 \cdot 840$ |
| 11. | -959 | 17\% | $2 \cdot 187$ | 298 | $6 \cdot 044$ |

2. quart

To girt 1 ing co plied I contel
3. girt 1
4. long, i
5. girt be
6. H girt bei
7. R faet, an
8. W 6 inche:
9. R is 25 fe
10. length i
11. V quarter

When Jength, $t$ the true practised lished.
tent oug the cont the prop
2. If a piece of round timber be 10 feet long, and the quarter girt $12 \frac{1}{2}$ inches; required the solidity. Ans. 10.85.

To find the solid content by this table, look for the quarter girt $12 \frac{1}{2}$. in the column narked, Quarter Girt, aud in udjoining cohmum marked, A rea, will be found 1.08.), which multiHied by the length, 10 feet, will give 10.85 feet for the solid content.
3. A piece of round timber is 20 feet long, and the quarter girt $14 \ddagger$; how many feet are contained therein?

$$
\text { Ans. } 28 \cdot 2 \text { feet. }
$$

4. How many solid feet are contained in a tree 40 feet long, its quarter girt being 9 inches? Ans. $22 \cdot 48$.
5. How many solid feet iu a tree 32 feet long, its quarter girt being 8 inches?
6. How many solid feet in a tree $8 \frac{1}{3}$ feet long, its quarter girt being $7 \frac{1}{2}$ inches? Ans. 3315 feet.
7. Required the content of a tree, whose length is 40 faet, and quarter girt $27 \frac{1}{2}$ inches? Ans. 21008 feet.
8. What is the content of a tree, whose length is 30 feet 6 inches, and quarter girt $27 \frac{1}{2}$ inches? Ans. $160 \cdot 186$ feet.
9. Required the content of a piece of timber, whose length is 25 feet 9 inches, and quarter girt $12 \frac{3}{4}$ inches?

$$
\text { Ans. } 29.071 \text { feet. }
$$

10. What is the solid content of a piece of timber, whose length is 12 feet, and quarter girt $13 \frac{1}{2}$ inches?
11. What is the solid content of a piece of timber, whose quarter girt is 143 inches, und length 38 feet?

Ans. 57.418 fest.
When the square of the quarter is multiplied by the length, the product gives a result nearly one-fourth less than the true quantity in the tree. This rule, however, is invariahly practised hy timber merchants, and is not likely to be aholished. When the tree is in the form of a cylinder, its content ought to be found by Prob. IV. Sec. IV., which gives the content greater than that found by the last rale, nearly in the proportion of 14 to 11 . Notwithstanding that the true
content is not found by means of the square of the quarter girt, yet some allowance ought to be made to the purchaser on account of the waste in squaring the wood so as to be fit for use. If the cylindrical tree be reckoned no more than what the int scribed square will amount to, the last rule, which is said to give too little, gives too much. When the tree is not perfectly circe'ar, the quarter girt is always too great, and therefore the content, on that account, will be too great.

Doctor Hotton recommends the following rule, which will give the content extremely near the truth :

Rule. Multiply the square of one-fifth of the girt, or circumference, by twice the length, and the product will be the

## BY THE SLIDING RULE.

As double the length on $\mathrm{C}: 12$ or 10 on $\mathrm{D}:: \frac{1}{8}$ of the girt, in 12ths or 10 ths on D : content on C.
12. Required the content of a tree, its leugth being 9 feet 6 inches, add its mean girt 14 fect.

$$
\begin{aligned}
& 148.96 \text { coutent. }
\end{aligned}
$$

Let and $G$

Ruı. $\frac{L G^{2}}{2}=$ content

Ruli LG ${ }^{2}$ $\overline{3009}=$ content

Rule LG: $\overline{2845}=$ content.
Rule LG: $\frac{1}{2742}=$ content.

What or girt is

$$
7.9 .11 .10 .1
$$

19

$$
\mathrm{C} \quad \mathrm{D} \quad \mathrm{D} \quad \mathrm{C}^{184.9 .8 .11 .7} \text { content. }
$$

As $19: 10:: 28: 149$, conteat by the Sliding Rule.
Or $19: 12:: 33 \cdot 6: 149$, content without it.
Dr. Gregory recommands the following rales given by

Let $L$ denote the length of the tree in feet and decimals, and $G$ the mean girt in inches.

Rule I. Making no allowance for bark. $\frac{L G^{2}}{2304}=$ cubic feet, custoniary; and $\frac{L G \theta}{1807}=$ cubic feet true
content.

Rule II. Allowing $\frac{1}{8}$ for bark. $\frac{L G^{2}}{3009}=$ cubic feet, customary; $\frac{L G^{2}}{2360}=$ cubic feet, true content.

Rule III. Allowing i's for bark.
$\frac{L G^{2}}{2845}=$ cubic fect, customary; $\frac{L G^{2}}{2231}=$ cubic feet, true content.

Rule IV. Allowing $\mathrm{r}^{\frac{1}{2}}$ for bark.
$\frac{L G^{2}}{2742}=$ cubic feet, customary $; \frac{L G^{2}}{2150}=$ cubic feet, true content.

What is the solid content of a tree, whose circumforence or girt is 60 inches, and length 40 feet?

$$
\begin{aligned}
& \text { By Rule I. } \\
\frac{40 \times 60^{2}}{2304}= & 62 \frac{1}{2} \text { cubic feet, customary. } \\
\frac{40 \times 60^{2}}{1807}= & 793 \text { cubic feet, customary. } \\
& B y \text { Rule II. } \\
\frac{40 \times 60^{2}}{3009}= & 47.85 \text { cubic feet, customary. } \\
\frac{40 \times 60^{2}}{2360}= & 61 \text { cubic feet, true content. }
\end{aligned}
$$

## ARTIFICERS' WORE.

$$
\begin{aligned}
& B y \text { Rule III. } \\
\frac{40 \times 60^{2}}{2845}= & 50.61 \text { cubic feet, customary. } \\
\frac{40 \times 60^{2}}{2231}= & 64.54 \text { cubic feet, true content. } \\
& B y \text { Rule IV. } \\
\frac{40 \times 60^{2}}{2742}= & 52.4 . \text { cubic feet, customary. } \\
\frac{40 \times 60^{2}}{2150}= & 66.97 \text { cubic feet, true content. }
\end{aligned}
$$

When the two ends are very unequal, calculate its content by the rule given for finding the solidity of the frustum of a cone, and deduct the usual allowance from the result.

When it is required to find the accurate content of an irregular body not reducible to any figure of which we have already treated, provide a cylindrical or prismatic vessel, capable of containing the solid to be measured ; put the solid into the vessel, and pour in water to cover it, marking the height to which the water reaches. Then take out the solid, and observe how. much the water has descended in consequence of its removal ; calculate the capacity of the part of the vessel thus left dry, and it will evidently be equal to the solidity of the body whose content is required.

## ARTIFICERS' WORK.

Artificers compute their works by several different measures :

Glazing and masonry by the foot.
Plastering, painting, paving, \&c., by the yard of 9 square feet

Partitioning, roofing, tiling, flooring, \&c., by the square of 100 square feet.

Brick-work is computed either by the yard of 9 square feet, or by the perch or square rood, containing $272 \downarrow$ square feet, or $30 \neq$ square yards; $272 \downarrow$ and $30 t$ being the squares of $16 \frac{1}{3}$ feet and $5 \frac{1}{3}$ yards respectively.

To m togethe

If a broad;
100)
2. If a broad, he
3. If a broad, ho
4. If 8 inches br
5. In a foot broa scantling 6 inches,

[^80]
## 145

## CARPENTERS AND JOINERS' WORK.

## 1. of flooring.

To measure joists, multiply the breath, depth, and length together for the content.*

If a floor be 50 feet 4 inches long, and 22 feet 6 inches broad; how many squares of flooring are in that room?
e its content rustum of a esult.
it of an irrech we have natic vessel, put the solid marking the ut the solid, $d$ in consethe part of equal to ł.
ferent mea-
of 9 square
e square of
f 9 squảre
$72 \downarrow$ square be squares


Ans. 11 squares $32 \frac{1}{2}$ feet.
2. If a floor be 51 feet 6 inches long, and 40 feet 9 inches broad, how many squares are contained in that floor? Ans. 20.986 squares.
3. If a floor be 36 feet 3 inches long, and 16 feet 6 inches broad, how many squares are contained in that floor?
$A n s .5$ squares $98 \frac{1}{8}$ feet.
4. If a floor be 86 feet 11 inches long, and 21 feet 2 inches broad; how many squares are contained in it ?

$$
A n . .18 \cdot 3972 .
$$

5. In a naked floor the girder is 1 foot 2 inches deep, 1 foot broad, and 22 feet long; there are 9 bridgings, the scantling of each (viz. breadth and depth) being 3 inches, by 6 inches, and length 22 feet; 9 binding joists, the length of

[^81]each being 10 feet, and scantlings 8 inches by 4 inches; the ceiling-joists are 25 in number, each 7 feet long, and their scantlings 4 iuches by 3 inches; what is the solidity of the Ans. 85 feet.
6. What would the flooring of a honse three stories high come to, at $£ 5$ per square; the house measures 30 feet long, and 20 broad; there are seven fire-places,* two of which measure, each 6 feet by 4 feet, two others, each $;$ fect by 5 feet 6 inches; two, each of 5 feet 6 inches by 4 feet; and the seventh 5 feet by 4 ; the well-hole for the stairs Ans. $\mathscr{L} 69$ 2s.

## OF PARTITIONING

Partitions are measured by squares of 100 feet, as flooring; their dimensions are taken by measuring from wall to wall, and from floor to floor; then multiply the length and height for the content in feet, which bring to squares by dividing 100, as in flooring. When doors and windows are not included by agreement, deductions must be made for their amount. $\dagger$

1. A partition measures 173 feet 10 inches in length, and 10 feet 7 inches in height - required the number of squares in it?
2. A partition between two rooms measures 80 feet in length, and 50 feet 6 inches in height; how many squares in it?
3. If a partition masur Ans. $40 \frac{z}{3}$ squares. 10 feet 9 inches in height; how 10 feet 6 inches in length, and 10 feet 9 inches in height; how many squares in it? Ans. 1 square $12 \frac{1}{2}$ feet.
4. What is the number of squares in a partition, whose length is 50 feet 6 inches, and height 12 feet 9 inches? Ans. 6 squares, 43 feet, $10 \frac{1}{2}$ inches.
[^82]In of $\Omega$ meet.

To and d of on will $g$
1.
and 2 that $h$

[^83]In roofing, the length of the rafters is equal to the length of a string stretched from the ridge down the rafter till it meets the top of the wall.

To find the content, multiply this leugth by the breadth and depth of the rafters, and the result will be the content of one rafter; and that multiplied by the number of them will give the content of all the rafters.*

1. If a house within the walls be 42 feet 6 inches long, und 20 feet 3 inches broad; how many squares of roofing in that house?

| ft. |
| :---: |
| 42.5 |
| 20.25 |
| 2125 |
| 850 |
| $\frac{8500}{860.625}$ flat. |
| 430.3125 |

100)1290.9375
12.91 squares.
ft. in.
42.6

20 . 3
840
$6 \frac{1}{2} \quad 10.1$
$3 \frac{1}{4} \quad 10.7$
$860 \cdot 8$ flat.
430 . 4
100)1291

12: 91
2. What cost the roofing of a house at $11 s$. per square; the length within the walls being 50 feet 9 inches, and the breadth 30 feet; the roof being of a true pitch ?

$$
\text { Ans. } £ 1211 s .2 \frac{1}{5} \frac{1}{0} d .
$$

[^84]3. What number of squares are contnined in a house whose length within the walls is 40 feet, and breadth is feet; the roof being common pitch ? Ans. 10 squares and 80 feet.
4. How many squares in the roof of a bnilding, the length of the house being 60 feet, and the length of the rafter 14 feet 6 inches? Ans. 17 squares and 40 feet.
5. How many squares in a building, whose length is 50 feet, and length of the rafter 15 feet?

Ans. 15 squares.
6. How many equares in the roof of a building, whose
10. and 1 high, 1 this pos feet lons 6 inclies l R urt the stru 5 inehes and also

Nors. All the thmbers employed in ronfing are measured like those usell in Aonlig. except where there is a necessity fint cutting oul parallel pieces equal so cut unt must be deducted 2 fret ling. In this case the amount of the pieceas greatert scantings. When the pieces cuntent of the whole piece fornd from its sions. they are considered as uselesa, and out do not amount to the above ilimen. for them.* considered as useless, and therefore no deduction is to be made

$$
\text { Ans. } 9 \text { squares and } 62 \text { feet. }
$$

7. How many squares in the roof of a building, whose length is 70 feet 6 iuches, the length of the rafter being 14 feet 6 inches? Aus. 20 squares and $44 \frac{1}{2}$ feet.
8. How many squares in the roof of a building, whose length is 50 feet, and the length of a string reaching across the ridge from eave to eave being 30 feet?

## Ans. 15 squares.

 length is 37 feet, the length of the rafter being 13 feet?in a house, breadth 18 nd 80 feet. $g$, the length the rafter 14 Id 40 feet.
length is 50

## 5 squares.

ding, whose 13 feet? d 62 feet.
ling, whose er being 14 44눌 feet.
ling, whose hiug across

## squares.

those used in 1 pleces equal of the plieces cund from jts above dimen. is to be made
10. Let the tie-beam T B be 36 feet long, 9 inches broad, and 1 fiot 2 inches thiek; the king-post K 11 feet 6 inches high, 1 loot broad at the bottom, and 5 inches thick; out of this post are sawn two equal pieces from the sides, each 7 feet lonig nud 3 inches broad. T'he braces B B, are 7 feet 6 inches long, und 5 inches by 5 inches square; the rufters RR nre 19 feet long, 5 inehes broni, and 10 inches deep; the struts S S are 3 feet 6 inches loug, 4 inches broad, and 5 inches deep; what is the meas irement 1 .e worknauship and also for materials?

$$
\begin{aligned}
& \text { ft. in. } p \text {. } \\
& 31 \text {. } 6.0 \text { solidity of the tie-beam T B. } \\
& \text { 4. } 9 \text {. } 6 \text { solidity of the king-post K. } \\
& \text { 2. } 7.3 \text { solidity of the braces B B. } \\
& \text { 13 . 2 . } 4 \text { solidity of the rafters } \mathrm{R} \text { R. } \\
& 11.8 \text { solidity of the struts } \mathrm{S} \text { S. } \\
& 53 \text {. } 0.9 \text { solidity for workmanship. } \\
& \text { 1. 5. } 6 \text { solidity cut from the kiug-post. } \\
& 51 \text {. } 7 \text {. } 3 \text { solidity for materials. }
\end{aligned}
$$

## of Wainscotting.

Wainscotting is measured by the yard square, which is 9 square feet.

In taking the dimensions, the string is made to ply close over the cornice, swelling panels, nooulding, \&c. The height of the roon from the floor to the ceiling being thus taken, is one dimension, and the compass of the room taken all round the flow is the second dimension.

[^85]Doors, windows, shutters, \&e., where both their sides are planed, are cousidered as work and half; therefore in measuring the room, they need not be deducted; but the superficial content of the whole room found as if there were no door, window, \&c., then the contents of the doors and windows must be found, and half thereof added to the content of the whole room.

When there are no shutters, the content of the windows must be deducted; chimneys, window-seats, check-bourds, sopheta-boards, linings, \&c., must be measured by themselves.

Wiudows are sometimes valued at so mach per window, and sometimes by the superficial foot. The dimensions of a window are taken in feet and inches, from the under side of the sill to the opper side of the top-rail ; and from the outside to outside of the jambs.

When the doors are panelled on both sides, take double the measure for the workmauship.

For the surrounding architrave, girt round it and inside the jambs, for one dimeasion, and add the length of the jambs to the length of the cap-piece, (taking the breadth of the opening for the length,) for the other dimeasion.

Weather-boarding is measured by the yard square, and sometimes by the square.

Frame-doors are measured by the foot, or sometimes by the yard square.

Staircases are measured by the foot superficial. The dimensions are taken with a string passing over the riser and tread for one dimension, and the length of the step for the other. By the length of the step is meant the length of the front and the returns at the two ends.

For the bulustrade, take the whole length of the upper part of the hand-rail, and girt it over its end till it meet the top of the newel-post, for one dimension; and twice the length of the baluster upon the landing, with the girt of the hand$r$ ril, for the other dimension.

Modillian cornices, coves, \&c., are generally measured by the foot superficial.

Beads, skirting sure.

Front architra

To fir two cor content.

1. A moulding how man

* Baluster Balustrade or as an inclo Coruice is $t$ uppermnst or Bead is a ro of plujn bead, edge oiskirtis Architrave supposed to sometimes call mantel-piece. jambs and ove of the solid tin Astragal is column, like a and at bottom

Beads, stops, astragals, copings, fillets, hoxings to windows, skirting-boards, and water-trunks, are paid for by lineal measure.

Frontispieces are measured by the foot superficial, and the architrave, frieze, aud cornice, are measured separately.*

To find the contents of the foregoing work, multiply the two corresponding dimensions together for the superficial content.

1. A room, or wainscot, being girt downwards over the mouldings, measures 12 ft .6 in , and 130 ft .9 in . in compass; how many yards does that room contain?

| $\begin{gathered} \mathrm{ft} . \quad \mathrm{in} . \\ 130.9 \\ 12.6 \end{gathered}$ | $\begin{gathered} \mathrm{ft} . \\ 130 \cdot 75 \\ 12 \cdot 5 \end{gathered}$ |
| :---: | :---: |
| 1560 |  |
| 65.4 .6 | ${ }_{26150}^{6535}$ |
| 6.0 .0 3.0 .0 | 13075 |
| 9)1634.4.6 | 9) 1634.375 ft . |
| 181.5 Ans. | 181 yards, 5 ft . |

[^86]2. If the wainscot of a room be 15 ft .6 in . high, and the compass of the room 142 ft .6 in.; how many yards are courtained in it?
3. If the window $A n s .2451_{12}^{5}$ yards. broad, and 6 ft .4 in high. about a room be 60 ft .6 in . therein, at work and a half? Ans. $63 \frac{3}{36}$ yards.
4. A rectangular room measures 129 feet 6 inches round, and is to be wainseotted at 3 s .6 d . per square yard; after due allowance for girt of cornice, \&c., it is 16 feet 3 inches high; the door is 7 feet by 3 feet 9 inches; the windowshutters, two pair, are 7 feet 3 inches by 4 feet 6 inches; the cheek-boards round them come 15 inches below the shutters, and are 14 inches in breadth; the lining-boards round the doorway are 16 inches broad: the door and win-dow-shutters being worked on both sides, are reckoned as work aud half, and paid for accordingly; the chimney 3 fect 9 inches by 3 feet, not leeinge enclosed, is to be deducted from the superficial content of the room. The estimate of the charge is required. Avs. £43 4s. $6 \frac{3}{2} d$.
5. The height of a room, taking in the cornice and mouldings, is 12 feet 6 iuches, and the whole compass 83 feet 3 iuches; the three window-shutters are each 7 feet 8 inches by 3 feet 6 inches, and the door 7 feet by 3 feet 6 inches; the door and shutter, being worked on both sides, are reekoned work and a half. Required the estimate, at $6 s$. per square yard.

## OF BRICKLAYERS' WORK.

OF TLLING OR SLATING.

Tiling and slating are measured by the square of 100 feet. There is no material diference between the method
2. Tl both sid 9 inches ber of $s$
3. W per squa breadth 16 inche bricklayers sometimes the estimate of roofing and tiling; valleys. the co in bre usuall over t

Wh allowa their $\varepsilon$ 1. ' both si 6 inche are
4. WI 45 feet 9
high, and the vards are con$15{ }_{1}^{5}{ }^{5}$ yards. e 60 ft .6 in . ure contained $3 \frac{31}{36}$ yards. inches round, yard; after feet 3 inches the windowet 6 inches; $s$ below the living-hoards or and winreckoned as imney 3 fect educted from mate of the 34 s. $6 \frac{3}{4} d$. and mould: 83 feet 8 eet 8 inches inches; the re reckoned - per square $12 s$. $2 \frac{1}{2} d$.
are of 100 he method and tiling; r hips and

When gutters are allowed double measure, the nsual mode is, to measure the length along the ridge tile, and add it to the contents of the roof: this makes an allowance of one foot in breadth along the hips or valleys. Double measure is usually nllowed for the eaves, so much as the projector is over the plate, which is generally : 8 to 20 inches.
When sky-lights and elimney-slafts are not large, no allowance is to be made for thein; but when they are large, their amount is to be deducted.

1. There is a roof covered with tiles, whose depth on both sides (with the usual allowance at the eaves) is 30 feet 6 inches, and the length 42 feet; how many squares of tiling are contained therein?

2. There is a roof covered with tiles, whose depth on both sides (with the usual allowance at the eaves) is 40 feet 9 inches, and the length 47 feet 6 inches; required the number of squares contained therein? Ans. 19 squares $35 \frac{5}{8}$ feet.
3. What will the slating of a house cost at $£ 15 s .6 d$. per square; the length being 43 feet 10 inches, and the breadth 27 feet 5 inches, on the flat; the eaves projecting 16 inches on each side-true pitch? Ans. £24 9s. $5 \frac{1}{2} d$.
4. What is the content of a slated roof, the length being 45 feet 9 inches, and the whole girt 34 feet 3 inches ?

Ans. 174•104 yards.

## of Walling.

Brick-work is estimated at the rate of a brick and a half thick; so that if a wall be more or less than the standard thi $\cdot k n e s s$, it must be reduced to it : thus, multiply the superficial content of the wall by the number of half bricks in the thickness, and divide the rroduct by 3 .

The superficial content is found by multiplying the length by the height. Bricklayers estimate their work by the rod of $16 \frac{1}{2}$ feet, or $272 \frac{1}{4}$ square feet. Sometimes 18 feet are allowed to the rod, that is at syuare feet; sometimes the work is measured by the rad of 21 feet long, and three feet high, that is, 63 square feet; in this case, no regard is paid to the thickuess of the wall in measuring, but the price is regulated according to the thickness.

When a piece of brick-work is to be measured, the first thing to be done is to ascertain which of the above measures is to be employed; then, having multiplied the length and breadth together (the dimensions being feet) the product is to be divided by the proper divisor, namely, $272 \cdot 25,324$, or 63, according to t' ' measure of the rod, and the quotient will be the measure in iq!. :e rods of that measure.

To measure any arched way, arched window, or door, \&c., the height of the window or door from the crown or middle of the arcl to the bottom or sill, is to be taken, and likewise from the botton or sill to the spring of the arch, that is, where the arch begins to turn. Then to the latter height add twice the former, and multiply the sum by the breadth of the window, door, \&c., and one-third of the product will be the area, sufficienily near the truth for practice.

1. If a wall be 72 feet 6 inches long, and 19 feet 3 inches high, and 5 bricks and a half thick, how many rods of brick-work are contained therein, when reduced to the
standard?
[^87]Note.
In re ing the above is
2. Hc whose le the wall
3. The 55 feet 8 thick, an 15 feet 8 lar gable of which content ir
s and a half he standard ly the superricks in the
; the length by the rod 18 feet are qetimes the ithree feet card is paid the price is
d, the first e measures ength and product is 2•25, 324, equotient $\stackrel{\rightharpoonup}{2}$ door, \&c., or middle , and likearch, that iter height e breadth oduct will
t 3 inches rods of $d$ to the

BRICKLAYERS' WORE.
ft. in. 72 . 6 19 . 3

648
79
18. 1.6
9.6.0
1395.7.6

11
3) 15351 . 10 . 6
272)5117(18 rods.

2397
68)221(3 quarters.

17 feet.
Note. That 68.06 is the fourth part of $272 \% 26$, and 68 is one-fourth of 272 .
In redncing feet into rods, it is usual to divide 272 , rejecting the decinal $\cdot 25$. By this method, the answer found above is about $4 \frac{1}{2}$ feet too much.
2. How many rods of standard brick-work are in a wall whose length is 57 feet 3 inches, and height 24 feet 6 iuches; the wall being $2 \frac{1}{3}$ bricks thick?

Ans. $8 \cdot 5866$ rods.
3. The end wall of a house is 28 feet 10 inches long, and 55 feet 8 iuches ligh to the eaves; 20 feet high is $2 \frac{1}{2}$ hricks thick, another 20 feet high 2 bricks thick, and the remainiug 15 feet 8 inches is $1 \frac{1}{2}$ bricks thick, above which is a triangular gable one brick thick, which rises 42 eourses of bricks, of which every 4 courses make a foot. What is the whole content in staudard measure?

Ans. 253.62 yards.

## of CHimnizs.

When a chimney stands by itself, withont any party-wall being adjoined, take the girt in the middle for the length, and the height of the story for the breadth; the chickress is to be the same as the depth of the jumbs ; if the chimuey be built upright from the mantle piece to the coling, no deduction is to be made for the vacaney between the floo: (or hearth) and mantle-tree, on account of the gatherings of the bieast and wings, to make room for the hearth in the
nex.t story.

1st.

2nd.
uny party-wall or the length, the thickriess f the chinuey ae ceiling, no ween the floor gatherings of hearth in the
and is mea nbs is to be gth, and the kness is the the chimney aney-shaft, is length, and

5 , the thickann it really I on account
double funollows, viz., re 18 feet 9 hes ; in the inches, and st and the eet ; above hes, and its middle parthickness 1 adard measure being
manons' worg.

| $18 t$. | ft. in. <br> 18.9 <br> 12.6 | 5th. $\begin{gathered}\text { ft. in. p. } \\ 12.3 .0\end{gathered}$ |
| :---: | :---: | :---: |
|  | $\begin{array}{r} \overline{225.0} \\ 9.4 .6 \end{array}$ | 15.0 partition. 234 . 4. 6 parloar |
|  | 234.4 .6 | 130 . 6 . 0 first floor. <br> 71.9 . 0 second floor. |
| 2nd. | ft. in. 14.6 9 |  |
|  | 130.6 | 272)1082.0.0 double. |
| 3rd. | $\begin{gathered} \text { ft. in. } \\ 10.3 \\ 7 \end{gathered}$ | $\begin{aligned} & \frac{68) 266(3 \text { rods } 3}{62} \text { feet. } \end{aligned}$ |
|  | 71.9 |  |
| 4th. | ft. in. <br> 13.9 <br> 6. 6 |  |
|  | $\begin{aligned} & 82.6 \\ & 6.10 .6 \end{aligned}$ |  |
|  | 89.4.6 | ods, 3 quarters, and 62 feet. |

## MASONS' WORK.

To masonry belong all sorts of stone-work. The work is sometimes measured by the foot solid, sometimes $k$. the foot in length, and sometimes by the foot saperficial. Masons, in taking dimensions, girt all their monldings in the same manner as joiners.

Walls, columns, blocks of stone or marble, de., are measured by the solid foot, and pavements, slabs, chimney-picres, \&e., by the square foot.

In estimating for the workmanship, square measure is generally used, but for the materials, solid ineasure.

In the solid measure, the length, breadth, and thickness, are multiplied together.
In the superficial measure, there must be taken the length and breadth of every part of the projection, which is seen without the general upright face of the building.

1. If a wall be 82 feet 9 inches long, 20 feet 3 inches high, and 2 feet 3 inches thick; how many solid feet are contained in that wall?

| $\begin{aligned} & \text { ft. in. } \\ & 82.9 \\ & 20.3 \end{aligned}$ | $\begin{gathered} \mathrm{ft} . \\ 82 \cdot 75 \\ 20 \cdot 25 \end{gathered}$ |
| :---: | :---: |
| 1640 |  |
| $3=\frac{1}{4} \quad 20.8 .3$ | 41375 |
| $\mathbf{6}_{3}=\frac{1}{2} \quad 10.3 .0$ | 16550 |
| $3=\frac{1}{2} \quad 5.0 .0$ | 165500 |
|  |  |
| $\begin{array}{r} 0.0 \\ 2.3 \end{array}$ | $2 \cdot 2 \pi$ |
| 3351.4 .6 | ${ }_{335184875}$ |
| $3=\frac{1}{4} 418.11 .0 \frac{2}{4}$ | 33513750 |
| 3770. 3.63 | 3770.20687 |

2. If a wall be 120 feet 4 inches long, and 30 feet 8 inches high ; how many superficial feet are contained therein?
3. If a wall be 112 feet 3 inches long, and 16 fs. 36902 . high; how many superficial inches long, and 16 feet 6 inches tained therein?
4. What is the value of ans. 29 rods 25 feet. length being 5 feet 7 inch a marble slab, at $8 s$. per foot, the Ans. £4 10 inches $10 \frac{1}{9} d$.

Plaste plastering upon wal The col by the ya riched mo Deducti In plast braces and fifth is usa

Whiteni as plasteri fifth of the trouble of c
In arches for the supe

1. If a c inches broad ft 40 16 640 $6=$
$3=\frac{1}{2}$
$3=\frac{1}{2}$
$3=\frac{1}{4}$
9) 674

Ans. 74
2. The len feet 2 inches, the cornice,* upper part $n$

[^88]
## 159

, are mea ney-picres,
neasure is thickness, the length ch is seen 3 inches feet are

## PLASTERERS' WORK.

Plasterers' work is of two kiuds, viz., ceiling which is plastering upon laths; and rendering, which is plastering upon walls. These are measured separately.
The content is sometimes estimated by the foot, sometimes by the yard, and sometimes by the square of 100 feet. Enriched mouldings are calculated by the running foot or yard. Deductions are made for chimneys, doors, windows, \&c. In plastering timber partitions, where several of the large braces and other large timbers project from the plastering, a fifth is usually deducted.
Whitening and colouring are measured in the same manner as plastering. In timbered partitions, one-fourth, or onetrouble of colouriug the sides of the quarters and braces.
In arehes, the girt round them is multiplied by the length for the superficial content.

1. If a ceiling be 40 feet 3 inches long, and 16 feet 9 inches broad, how many square jards contained therein? ft. in. 40.3 ft. $40 \cdot 25$ 16.75

$$
640
$$

| $6=\frac{1}{2}$ | 20.1 .6 |
| ---: | ---: |
| $3=\frac{1}{2}$ | $10 \cdot 0.9$ |
| $3=\frac{1}{4}$ | $4.0 \cdot 0$ |
| $9) 674 \cdot 2 \cdot 3$ |  |

$$
20125
$$

28175

$$
24150
$$

$$
4025
$$

9) $674 \cdot 1875$

Ans. 74 yards 8 feet.
2. The length of a room is Ans. $74 \cdot 9097$ yards. feet 2 inches, and height 9 feet 14 feet 5 inches, breadth 13 the cornice,* which projects 5 inches to the under side of upper part next the ceiling 5 inches from the wall, on the

[^89]dering and plastering, there being no deduction but for ono door, which is 7 feet by 4 ?

1. A length, a $8 \frac{1}{6}$ tbs. to
2. The circular vaulted $n_{0} f$ of a church measures 105 feet 6 inches in the arch, und 275 feet 5 inches in length; what will the plastering come to, at $1 s$. per yard.

$$
\text { Ans. } £ 161 \text { 8s. } 5 \frac{3}{4} d \text {. }
$$

4. The length of a room is 18 feet 6 inches, the breadth 12 feet 3 inches, and height 10 feet 6 inches; to how much amount the ceiling and rendering, the former at $8 d$., and the latter at $3 d$. per yard; allowing for the door of 7 reet by 3 feet 8 , and a fire-place of 5 feet square?

Ans. £1 13s. $3 d$.

## PLUMBERS' WORK.

Plambers' work is rated by the pound, or by the hundred weight of 112 lbs. Sheet lead, used in roofing, guttering, \&c., weighs from 6 to 12 pounds per square foot, according to the thickness; and leaden pipes vary in weight per yard, according to the diameters of the bore.

The following table shows the weight of a square foot of sheet lead, according to its thickness; and the common weight of a yard of leaden pipe according to the diameter of its bore.

| Thickness of | ( ${ }_{\text {Pounde }}$ square foot. ${ }^{\text {a }}$ | ( $\begin{gathered}\text { Bows of } \\ \text { leaden pipes. }\end{gathered}$ | Pounds per yard. |
| :---: | :---: | :---: | :---: |
| Inch. |  |  |  |
| $\frac{1}{10}$ |  |  | 10 |
| 5 | $5 \cdot 554$ | 1 | 12 |
| $\frac{1}{8}$ | $37^{\circ}$ | 14 | 16 |
| $t$ | 3.42 | $1 \frac{1}{2}$ | 18 |
| $\frac{7}{\frac{1}{5}}$ | 9.831 11.797 | $1{ }^{\frac{7}{4}}$ | 21 |
| $\frac{1}{5}$ | 11.797 | 2 | 24 |

2. What flat, 15 feet lead weighin
3. What roof with lea 43 feet, and feet in length of lead to we
on bat for one feet of ceiling. sares 105 fect length; what il 8s. $5 \frac{3}{4} d$. the breadth o how much $8 d$., and the - 7 reet by 3
$113 s .3 d$.
the hundred tering, \&e., cecordiug to er yard, ac-
lare foot of le common liameter of

PLumbers' work

1. A piece of sheet lead measures 20 feet 6 inches in length, and 7 feet 9 inches in breadth; what is its weight at $8 \frac{1}{1}$ tbs. to the square foot?

| $\begin{gathered} \mathrm{ft} . \\ 20 . \mathrm{in}_{1} \\ 7 .{ }_{9}^{6} \end{gathered}$ | $\begin{aligned} & \mathrm{ft} . \\ & 20 \cdot 5 \\ & 7 \cdot 75 \end{aligned}$ |
| :---: | :---: |
| 143.6 | 1025 |
| 15.4 .6 | 14.30 |
| 158.10.6 | 1435 |
|  | $\begin{array}{r} 158.875 \\ 81 \end{array}$ |
|  | $\begin{array}{r} 1271 \cdot 000 \\ 39 \cdot 719 \end{array}$ |
|  | $\begin{aligned} & 112) \longdiv { 1 3 1 0 \cdot 7 1 9 } \text { cwt. qrs. ths. } \\ & 112 \end{aligned}$ |
|  | 190 |
|  | 112 |
|  | $\begin{gathered} 28) \\ 58 \\ 58 \end{gathered}(2$ |
|  | 22 |

2. What weight of lead $T^{T}$ of an inch thick will cover a flat, 15 feet 6 inches long, and 10 feet 3 inches broad, the lead weighing 6 tbs . to the square foot?

Ans. 8 cwt., 2 qrs. $1 \frac{1}{4} 1 \mathrm{~b}$.
3. What will be the expense of covering and guttering a roof with lead, at 18 s. per cwt, ; the length of the roof being 43 feet, and the girt over it 32 feet; the guttering being 54 feet in length, and 2 feet in breadth, allowing a square foot of lead to weigh $8 \frac{3}{6}$ the ?

Ans. $\mathscr{L} 104$ 15s. $3 \frac{3}{4} d$.

4. What will be the expense of 130 yards of leaden pipe of an inch and half bore, at $4 d$. per th., admitting each yard Ans. $£^{3} 9$.

## PAINTERS' WORK.

P'ainters' work is computed in square yards. Every part is mensured where the colour lies, and the measuring line is forced into all the mouldings and corners. Double measure is allowed for curved mouldings, \&c.

Windows are done at so much a-piece. Sash-frames at a certain price per dozen; sky-lights, window-bars, casements, \&c., are charged at a certain price per piece.

To measure balustrades, take the length of the hand-rail for one dimension, and twice the height of the baluster upon the landing, added to the girt of the hand-rail, for the other dimension.

No general rule can be given for measuring trellis-work; but, however, double the area of one side is often taken for the measure of both sides.

1. If $\imath$ room be painted whose height (being girt over the moulding) is 16 feet 4 inches, and the compass of the room 120 feet 9 inches; how many yards of painting in it ?

2. being 12 feet 6 inche window inches; 6 inches expense size of 6 inches
3. Th inches, painting inches, a inches?

Glazier parts; or work in so Window sions of number of breadth of dows are $n$ dimensions
l. If a and 1 foot glass in tha 3. 1.
3.

Ans. 4.

## Glazters' Trork.

2. A gentleman had a room to be painted, its length being 24 feet 6 inches, breadth 16 feet 3 inches, and height 12 feet 9 inches, also the size of the door 7 feet by 3 fect 6 inches, and the size of the window-shutters to each 3 fect windows, there being two, is 7 feet 9 inche each of the inches; but the breaks of the wind 9 inches by 3 feet 6

Every part suring line is uble measure

1-frames at a s, casements,
the hand-rail aluster upon for the other
trellis-work; en taken for
girt over the of the room it? 6 inches high, and 1 foot 3 indows themselves are 8 feet expense of giving it three coats, size of the fire-place to be deduct at $2 d$. per yard each; the 6 inches?
3. The length of a room is $\quad$ Ans. £3 $3 \mathrm{~s} .10 \frac{1}{2} \mathrm{~d}$. inches, and height 10 feet 4 in feet, its breadth 14 feet 6 painting in it, deducting a mehes; how many yards of inches, and two window.shutters of 4 feet by 4 feet 4 inches? 6 feet by 3 feet 2 Ans. $73 \frac{2}{2} 7$ yards.

## GLAZIERS' WORK.

Glaziers take their dimensions either in feet, inches, and parts; or feet, tentbs, and hundredths. They compute their work in square feet.

Windows are sometimes measured by taking the dimensions of one pane, and multiplying its superficies by the number of panes. But generally they take the length and breadth of the whole frame for the glazing. Circular windows are measured as if they were square, Caking for their dimensions their greatest length and broadth, taking for their

1. If a pane of glass lo 3 and breadth. and 1 foot 3 inches and 3 fcet. 6 inches and 9 parts long, glass in that pane?

2. If there be 10 panes of glass, each 4 feet 8 inches 9 parts long, and 1 foot 4 inches and 3 parts broad; how many feet of glass are contained in the 10 panes? Ans. 64:0407.
3. There are 20 panes of glass, each 3 feet 6 inches 9 parts long, and 1 foot 3 inches and 3 parts broad; how many feet of glass are in the 20 panes? Ans. 90.9224 ft .
4. If a window be 7 feet 6 inches high, and 3 feet 4 inches broad; how many square feet of glass contained therein? Ans. 25.
5. How many feet in an elliptical fan-light of 14 feet 6 inches in length, and 4 feet 9 ioches in lreadth?
6. What will the glazing of a triangular sky-light come to at $20 d$. ; the base being 12 feet 6 inches, and the perpendicular height 6 feet 9 inches? Aus. £3 10s. $3 \frac{1}{2} d$.

## PAVERS' WORK.

Paver's work is computed by the square yard; and the content is found by multiplying the length by the breadth.

1. What will be paid for paving a foot-path, at 4s. the yard, the length being 40 fcet 6 inches, and the breadth 7 feet 3 inches?

2. What will be the expense of paving a rectangular courtyard, whose length is 62 feet 7 inches, and breadth 44 feet 5 inches; and in which there is a foot-path, whose whent
length is at 3s. pe
3. Wl yard; th 14 feet 9
4. Wh ing-green bowling-g 5 feet?

How m broud, the

Arched
Domes or polygon centre of

Saluons building to

Groins ar each other.

Vaulted r and sometim
Circular r circumferenc Elliptical the circumfer Gotbic roc lai' arches, ex Groins are the content is oif ats hase b
length is 62 feet 7 inches, and breadth 5 feet 6 inches, this at $3 s$. per yard, and the rest at $2 s$. $6 d$. per yard ?
3. What is the expense of Ans. $33911 s .3 \frac{1}{4} d$. yard; the length being 27 feet 10 ing a court, at $3 s .2 d$. per 14 feet 9 inches?
4. What will the paring Ans. £7 $4 s .5 \frac{1}{4} d$. ing-green come to, at $2 s$, of a walk round a circular bowl-bowling-green being 40 . $4 d$. per yard, the diameter of the 5 feet? broud, the longer diameter being 60 felliptical walk 4 feet oud, the longer diameter being 60 feet, and shorter 50 ?

$$
\text { Ans. } 82.3797 \text { yards. }
$$

## VAULTED AND ARCHED ROOFS.

Arched roofs are either domes, vaults, saloons, or groins. Domes are formed of arches springing from a circular or polygonal base, and meeting in a point directly over the centre of that base.
Saloons are made by arches connecting the side walls of a building to a flat roof or ceiling.

Groins are made by the intersection of vaulted roofs with each other.
$V$ aulted roofs are sometimes cireular, sometimes elliptical, and sometimes Gothic. Circular roofs are those of which the arch is a part of the circumference of the circle.

Elliptical roofs are those of which the arch is a part of the circumference of an ellipsis.
Gothic roofs are made by the meeting of two equal circulai arches, exactly above the spau of the arch.
Groins are generally measured like a paralleopipedon, and toconteat is found by multiplying the length and breadth un :in base by the height.

Sometimes one-tenth is deducted from the solidity thus found, and the remainder is reckoned as the solidity of the
vacuity.

## PROBLEM I.

To find the solidity of a circular, elliptical, or Gothit raulted roof.

Rule. Find the erea of one end, by one of the foregoing rules, and multiply the area of the end by the length of the roof, or vault, and the product will be the content.

Nors. When the arch is a segment of a circle, the area is found by Prob. XXVIII, Sec. II. When the arch is a segment of an ellipsis, multiply the span by the height, and that product by 7854 for the area of the end. When it is a Gothic arch, find its sides equal to the two chords of the case is equal to the span of the arch. and areas of the two segments to the area of the segment of thearch; then add the area of the end.


1. What is the content of a concavity of a semi-circular vaulted roof, the span being 30 feet, and the length of the vault i50 feet?
$30 \times 30=900$; then $900 \times 7854=706.86$, hence $706.86 \div 2=353.43$ the area of the end; then $353.43 \times 150=53014 \cdot 5$ the content.

Let vaulted ness of $t$ feet, the the leng 60 feet, solidity

First, SO, the $51 \cdot 96+$ $60+4$ of the r 1018832 Problems) $63 \times 54$ required.

Note. Whe length of the and the prode whone end is the mixed so bridge may b and of the bat
3. Requ vault, who of the yau
solidity thus olidity of the

## l, or Gothic

he foregoing ength of the nt.
y Prob, XxYill. an by the height, Jothic arch, find of the arch. and h; then add the m will give the
2. What is the solid conteut of the vacuity A OEB of a Gothic vault, whose span A B is 60 feet, the chord B O, or A $O$, of each arch 60 feet; the distance of each arch from the middle of the ehords as $\mathbf{D E}=12$ feet, and the length of the vault 40 feet?

In this example, the triangle A B O equi-lateral, and its area is $\frac{1}{4} \mathrm{AB}^{2} \sqrt{ } \mathrm{D}^{2}=900 \sqrt{ } 3=1557$. Again, $\frac{2}{3}(\mathrm{BO}$ O $\times \mathrm{X}$
$\mathrm{DE})+\mathrm{D} \mathrm{E}^{3}$ segment $O \mathrm{E} \mathrm{B}$ and $\times 12)+\overline{60 \times 2}=494 \frac{2}{5}=$ area of segments OEB and OH $\mathrm{HA}^{2}=988 \frac{4}{5}$ the areas of the two $=101832$, the solidity required. then $\left.1557+988 \frac{4}{5}\right) \times 40$
Let M L K L represeut a perpendicular section of a vaulted roof (Gothic.) The span $\mathbf{A} \mathbf{E}$ is 60 feet, the thickness of the wall M A or BL L, at the spring of the areh $=4$ feet, the thickuess $O P$ at the crown of the areh $=3$, and the length of the roof $=40$ feet, the chord AO or $\mathrm{OB}=$ 60 feet, aud the .versed sine D E 12 feet; required the solidity of the materials of the arch.

First, $\sqrt{ }\left(A O^{2}-A C^{2}\right)=\sqrt{ }\left(60^{2}-30^{2}\right)=51 \cdot 96=$ SO , the height of the vacuity of the arch, and $\mathrm{SO}+\cap \mathrm{P}=$
 of the rectangle $=68=M \mathrm{~L}$, and $\mathrm{ML} \times \mathrm{SP}=$ the area 1018832 (the solidity K L; hence $\mathrm{ML} \times \mathrm{SP} \times 40-$ Problem), gives the solidity of the maty $A O_{B}$ by the last $63 \times 54.96 \times 40-101820$ of the materials; that is required. $\quad 101832=47659 \cdot 2$ feet, the solidity

[^90]vault whoired the capacity of the vacuity of an illiptical of the wault jeing 90 feet. Ans. $31808 \cdot 7$ feet.

## PROBLEM II.

 elliptical, or Gothic vaulted roof.Rule. Multiply the length of the arch by the length of the vault, and the product will be the superficies.

Nots. To find the length of the arch, make a line ply close to it, quite across from side to side.

1. What is the surface of a vaulted roof, the length of the arch being 45 feet, and the length of the vault 140 feet?

$$
140 \times 45=6300 \text { square feet. }
$$

2. Required the surface of a vaulted roof, the length of the arch being 40 feet 6 iuches, and the length of the vault 100 feet?
3. What is the surface of a vaulted roof, the length of the arch being 40.5 feet, and the length of the vault 60 feet?

Ans. 2430 feet.

## PROBLEM III.

To find the solidity of a dome, having the height and the dimensions of its base given.

Role. Multiply the area of the base by the height, and two-third sof the product will give the solid content.*

[^91]2. Th
a oircular, length of

- it, quite across
ength of the 0 feet?
length of f the vault 50 feet.
1gth of the 30 feet? 30 feet.
it and the
sight, and ; *
alf a sphere, base. It is a of a cylinder und b) mul. e rule when revery case, they are of elight of the llar or ellip. ) akes of jus I any other

1. What is the solid content of a dome, in the form of a hemisphere, the diameter of the circular base being 43 feet?
2. What is the solid content of an octagonal dome, each side of its base being 20 feet, and the height 21 feet? Ans. $27039 \cdot 1917$ cubic feet. dome, the two diam solidity of the stone-work of an elliptical the height 17.32 feet, and the base being 40 and 30 fect, feet thick. 4 Ans. $9479 \cdot 086848$ cubic feet.

## PROBLEM IV.

To find the superficial
dimensions ontent of a dome, the height and Rule. Multiply by 1.5708 , and the product square of the diameter of the base For an elliptical base together, and the multiply the two diameters of its superficia! content, sufficiently prosulting by 1.5708 for the 1. The diameter of tently correct for practical purposes. and its height 10 feet; re base of a circular dome is 20 feet, $20^{2} \times 1.5708=628.32$ feet, the answer.
2. The two diameters of an elliptical dome are 40 and 30 feet, and its height 17.32 feet; required the coneave 3. What is the superficie Ans. $1884 \cdot 96$ square feet. earh side of the base bcing 10 a hexagonal spherical dome, $A n s .519 .6152$.

[^92]
## PROBLEM V.

## To find the solid content of a saloon.

there conte
${ }^{2} 0$ $=64$
640 saloon
2. D) $\mathrm{F}^{\prime}=$ solid feet.

$2^{2} \times{ }^{17854}=3 \cdot 1416=$ area of the quadrant C D A $F$ $2 \times 2 \div 2=2=$ area of the triangle C D F; then $3 \cdot 1416$ $-{ }^{2}=1 \cdot 1416=$ area of the segment $D A F$. Now, $2 \times 2=4=$ area of the rectangle C D E F ; then $4-$ $3 \cdot 1416=8584=$ area of the section D E F A D. $\checkmark\left(2^{2}+2^{4}\right)=V^{8}=2.8284271 . \quad 2 \times 16+2 \times 20=$ T2 $=$ the compass within the walls. $\frac{1}{2}(2 \cdot 8284271-2)$ $=\cdot 1142136=$ ES and $2 \cdot 8284271: \cdot 4142136:: 2: \cdot 2928932$ $=\mathrm{E} y:$ hence $72=(\cdot 2928932 \times 8=69 \cdot 6568544=$ the circumference of the middle of the solid part of the saloon; coutent of the solid part of the saloon.
$20 \times 16=320$ the area of the room floor, and $320 \times 2$ $=640=$ the solidity of the upper part of the room; then $040-59.79344=580.20656$ feet, the solidity of tho saloon.
2. If the height $\mathbf{D} \mathbf{E}$ of the saloon be 3.2 feet, the chord D $\mathrm{F}^{\prime}=4.5$ feet, and its versed sine $=9$ inches; what is the solid content of the solid part, the mean compass being 50

Ans. $138 \cdot 26489$ feet.

## PROBLEM VI.

To find the superficies of a saloon.
Rele. Find its breadth by applying a string close to it across the surface; find also its length by measuring along the middle of it, quite romed the room; then multiply these two dimensions together for the superficial content.

1. The girt across the face of the saloon is 5 feet, and its mean compass 100 feet, what is its superficial coutent?

$$
100 \times 5=500 \text {, the answer. }
$$

2. The girt across the face of the saloon is 12 feet, and it mean compass 98 ; required its surface?

Ans. 1176 feet.

## SECTION VIII.

## SPECIFIC GRAVITY.

1. The specific gravity of a body is the relation which the weight of a given magnitude of that body has to the weight of an equal magnitude of a body of another kind.

In this sense a body is said to be specifically heavier than another, when under the same bulk it weigbs less than that other. On the contrary, a body is suid to be specifically lighter than another, when under the same bulk it weighs less than that other. Thus, if there be two equal spheres, each one foot or one inch in diameter, the one of lead and the other of wood, then since the leaden sphere is found to be heavier than the wooden one, it is said to be specifically, or in specie, heavier, and the wooden sphere specifically lighter.
2. If two bodies be equal in bulk, their specific gravities are to each other as their weight, or as their densities.
3. If two bodies be of the same specific gravity or density, their absolute weights will be as their magnitudes or bulks.
4. If two bodies be of the same weight, the specific gravities will be reciprocally as their bulks.
5. The specific gravities of all bodies are iu a ratio compounded of the direct ratio of their weights, and the reciprocal ratio of their magnitude. Hence, again, the specific gravities are as the densities.
6. The absolute weights or gravities of bodies are in the compound ratio of their specific gravities and magnitudes or bulks.
7.
and $r$
8. of its of a if' the weigh it bo b betwee the flu differe than th betwee Guid, to
9. It
considet may be standart

A cut ments, t a cubic cubic inc specific the prod in pound $17 \overline{5}$, and be the w avoirdupe
10. Sit lute gravi fluid will it, as the woight. as the wei
7. The magnitudes of bodies are directly as their weights, and reciprocally as their specilic gravities.
8. A body specifically heavier than a fluid, loses as mnch of its weight, when immersed in it, as is equal to the weight of a quantity of the fluid of the same bulk, or magnitude; if the body be of equal density with the fluid, it loses all its weight, and requires no force but the fluid to sustain it. If it be heavier, its weight in the fluid will be only the difierence between its own weight and the weight of the same bulk of the fluid; and therefore it will require a force equal to this diflerence to sustain it. But if the body immersed be lighter than the floid, it will require a force equal to the difference between its own weight and that of the same bulk of the Guid, to keep it from rising in the quid.
9. In comparing the weights of bodies, it is necessary to consider some one as the standard with which all other bodies may be compared. Rain water is generally taken as the standard, it being found to be nearly alike in all places.

A cubic foot of rain water is found, by repeated experimonts, to weigh $62 \frac{1}{2}$ pounds avoirdupois, o1 1000 ounces, and a cubic foot containiug 1728 cubic inches, it follows that a cubic inch weighs 03616893148 of a pound. I'herefore if the specific gravity of any body be multiplied by 03616898148 , the product will be the weight of a cubic inch of that body in pounds avoirdupois ; ald if this weight be multiplied by $17 \overline{5}$, and the product be divided by 144 , the quotient will be the weight of a cubic inch in pounds troy, 144 pounds avoirdupois being exactly equal to 175 pounds troy.
10. Since the specific gravities of bodies are as their absolute gravities under the same bulk; the specific gravity of a fluid will be to the specific gravity of any body immersed in it, as tue part of the weight lost by the solid is to the whole weight. Frence the specific gravities of different fluids are as the weights lost by the same solid immersed in them.

## PROBLEMI.

To find the specific gravity of a body.
Case I. When the body is heavier than water.
Weigh the body first in water, and afterwards in the open air; the difference will give the weight lost in water; then say, as the weight lost in water is to the absolute weight of the body, so is the specific gravity of water to the specific gravity of the body.

## Case II. When the body is lighter than the water.

Fix another body to it, so heary as that both may sink in water together, as a compound mass. Weigh the compound mass and the heavier hody separately, both in the water and open air, and find how much each loses in water, by taking its woight in water from its weight in the open air. Then say, tha he difference of these remainders is to the weight of the liester body in air, so is the specific gravity of water to thise suectic gravity of the lighter body.
Case III. For a fluid of any kind.

Weigh a body of known specific gravity both in the fluid and open air, and find the loss of weight by subtracting the weight in water from the weight out of it. Then say, as the whole, or absolute weight is to the loss of weiglit, so is the specific gravity of the solid to the specific gravity of the fluid.

The usual way of fiuding the specific gravities of bodies is the following, viz :-

On the arm of a balance suspend a globe of lead by a fine thread, and to the other arm of the balance fasten an equal weight sufficient to balance it in the open air ; immerse the globe into the flaid, and observe what weight .balances it then, by which the lost weight is ascertained, which is proportional to the specific gravity.

Imm proport weight the prol

1. A water, a cific gra $83 \cdot 18$ lost in n specific ounces.
2. 1 in water
3. If that a pi 16 lbs . ir weighs 6
specific gr
4. A pi granite be only 80 lb water; req
5. A pie $298 \cdot 1$ ounc

Immerse the globe successively in all the fluids whose proportional specific gravity you require, observing the weight lost in each; then these weights lost in each will be the proportions of the fluide sought.
Examples.-Case I.

1. A piece of platina weighed $83 \cdot 1886$ pounds ont of water, and in water, only 79.5717 pounds; what is its specific gravity, that of water being 1000 ?
$83 \cdot 1886-79 \cdot 5717=3 \cdot 6169$ pounds, which is the weight lost in water; then $3 \cdot 6169: 83 \cdot 1886:: 1000: 23000$ the specific gravity, or the weight of a cubic foot of metal in onnces.
2. A piece of stone weighed 10 lbs . in the open air, but in water only $6 \frac{3}{4} \mathrm{lbs}$.; what is its specific gravity?

Ans. 3077.

> Examples.-Case II.
3. If a piece of elm weigh 15 lbs . in the open air, and that a piece of copper, which weighs 18 lbs . in open air, and 16 lbs . in water, is affixed to it, and that the componnd weighs 6 lbs. in water; required the specific gravity of the elm?

## Copper.

18 in air.
16 in water.
2 loss. Compound.
specific gravity of the elm.
4. A piece of cork weighs 20 lbs . in open air, and a piece of granite being affixed to it, which weighs 120 lbs. in air, and only 80 lbs . in water, the compound mass weighs $16 \frac{2}{3} \mathrm{lbs}$. in water; required the specific gravity of the cork? Ans. 240.

Examples.-Case III.
5. A piece of cast iron weighed $259 \cdot 1$ ounces in a fluid, and $298 \cdot 1$ ounces out of it; required the specific gravity of the




Photographic Sciences
Corporation


## SPECIPIC GRAVITX:

fluid, allowing the specific gravity of the cast-iron to be 7645.
$298 \cdot 1-259 \cdot 1=39$, loss of weight in the iron; then 298-1: 39 :: 7645: 1000, the specific gravity of the fluid; showing the fluid to be water.*
6. A piece of lignum vitæ weighed 423 ounces in a fluid, and $166 \frac{5}{8}$ out of it; what is the specific gravity of the fluid, that of the lignum vite being 1333 ?

Ans. 991 is the specific gravity of the fluid, which shows it to be liquid turpentine or Burgundy wine.

## TABLE OF SPECIFIC GRAVITIES.

|  |  |  |  | Spec. Grav. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Platina <br> Do. hammered |  |  |  | 19500 . |  |
| Cast zino |  |  |  | 20336 | 11.77 |
| Cast iron |  |  |  | 7190 | - 4.161 |
| Cast tin |  |  |  | 7207 | - $4 \cdot 165$ |
| Bar iron |  |  |  | 7291 | - 4.219 |
| Hard steel |  | \% |  | 7788 | - 4.507 |
| Cast brass |  |  |  | 7816 | - 4.523 |
| Cast copper |  |  |  | 8395 | - 4858 |
| Pure cast silver |  |  |  | 8788 | - $5 \cdot 085$ |
| Cast lead |  |  |  | 10474 | - 6.061 |
| ${ }^{\text {Pureury cast gold }}{ }^{\text {c }}$ |  |  |  | 13568 | - $-\quad 6.569$ $-\quad 7.872$ |
| Amber ${ }^{\text {a }}$ |  |  |  | 19258 | - 11.145 |
| Brick |  |  |  | 1078 | wt. cub. ft. |
| Sulphur |  |  |  | 2000 | - 12500 |
| Cast nichel |  |  |  | 2033 | 127.06 |
| Cast cobalt |  |  |  | 7807 | 4513 |
| Paving stones |  |  |  | 7811 | 4520 |
| Cominon stone |  |  |  | ${ }_{2520}^{2416}$ | - 15100 |
| Green glass |  |  |  | 2594 | a <br> .15750 <br> $-\quad 162.12$ |
| White glass |  |  |  | 2642 | $162 \cdot 12$ |
| Pebble |  |  |  | 2892 |  |
|  |  |  |  | 2664 | 166.50 |



[^93]e iron; then of the fluid;
es in a fluid, uity of the which shows


## PROBLEM II.

The specific gravily of a body, and its weight being giren, to find its solidity.
Rule. Say, as the tabular specific gravitpe of the body is to its weight, in ounces avoirdupois, so is 1 cubic foot to the content.

1. What is the solidity of a block of marble that weighs 10 tons, its specific gravity being 2742?

First, 10 tons $=200$ hundreds $=22400$ pounds $=358400$ ounces : then

$$
\begin{aligned}
& 8420 \\
& 8226
\end{aligned}
$$

2. How many cubic inches in .. irregular block of marble which weighs 112 pounds, allowing its specific gravity to be 2520 ? Aus. $1228 \frac{2}{2} \frac{1}{5} \frac{1}{2} \frac{9}{6}$ cubic inches.
3. How many cubic inches of gunpowder are there in 1 pound weight, its specific gravity being 1745 ?

Ans. $15 \frac{1}{4}$ nearly.
4. How many cubic feet are there in a ton weight of dry oak, its specific gravity being 925 ? Ans. $38 \frac{13}{1} \frac{3}{5}$.

## PROBLEM III.

The linear dimensions, or magnitude of a body, being given, and also its specific gravity, to find its weight.
Rule. One cabic foot is to the solidity of the body, ss
the ta avoird

1. of a pa inches, $56 \times$ Then 1 the wei,
2. W sures 10 gravity
3. W is 63 fee

To find
Rule. cific grav multiply

Then a onipound the two it

1. A whose sp quantity o 7320 , and

14757
14757

[^94]the tabular specifie gravity of the body is to the weight in avoirdupois ounces.

1. What is the weight of a piece of dry oak, in the form of a parallelopipedon, whose length is 56 inches, breadth 18 inches, and depth 12 ?
$56 \times 18 \times 12=12096$ cubic inches, the solid content. Then $1728: 12096:: 932: 6524$ ounces $=407 \frac{3}{4}$ pounds, the weight required.
2. What is the weight of a block of dry oak, which measures 10 feet long, 3 feet broad, and $2 \frac{1}{2}$ feet deep; its specific gravity being 925 ?
3. What is the weight of a block Ans. $4335 \frac{15}{\frac{5}{8}} \mathrm{lbs}$. is 63 feet, and its breadth and lhick of marble, whose length each 12 feet?
Ans. $694 \frac{1}{10} 10$ ons.

## PROBLEM IV.

## To find the quantities of two ingredients in a given componnd.

Role. Take the difference of every pair of the three specific gravities, viz., of the compound and each ingredient; and multiply the difference of every two by the third.

Then as the greater product is to the whole weight of the ic inches.
there in 1
${ }^{3}$ vearly.
ight of dry . $38 \frac{13}{1} \frac{3}{5}$. ompound, so is each of the other products to the weights of the two ingredients.*

1. A composition of 1121 bs . being made of tin and copper, whose specific gravity is found to be 8784 ; what is the quantity of each ingredient, the specific gravity of tin being 7320, and of copper 9000 ?


[^95]2. Hiero, king of Sicily, furnished a goldsmith with a quantity of gold, to make a crown. When it came home, he suspected that the goldsmith had used a greater quantity of silver than was necessary in the composition; and applied to the famous mathematician, Archimedes, a Syracusian, to discover the fraud, without defacing the crown.

To ascertain the quantity of gold and silver in the crown, he procured a mass of gold and another of silver, each exactly of the same weight with the crown; justly considering that if the crown were of pure gold, it would be of equal bulk, and therefore displace un equal quantity of water with the golden mass; and if of silver, it would be of equal bulk, and displace an equal quantity of water with the silver mass; but if of a mixture of the two, it wonld displace an intermediate quantity of water.

Now suppose that each of the three weighed 100 ounces; and that on immersing them severally in water, there were displaced 5 ounces of water by the golden mass, 9 ounces by the silver mass, and 6 ounces by the crown; what quantity of gold and silver did the crown contain?

$$
\text { Ans. }\left\{\begin{array}{l}
75 \text { ounces of gold. } \\
25 \text { ounces of silver. }
\end{array}\right.
$$

Nors: Questions relating to specific gravities may be wrought by the rules of Alligation In Arithmetic, as well as by any Algebraic process that might be em.
ployed.

## PROBLEM V.

To find how many inches a floating body will sink in a fluid.
Rule. Find, by Problem III. the weight of the floating body from its solidity and specific gravity, and that will be the weight of the fluid which it will displace.

Then say, as the specific gravity of the fluid is to 1728 cubic inches, so is the weight of the body, in ounces, to the cubic inches immersed. The depth will be found from the given dimensions.
1." pipedo 12 , is broades gravity
By I ounces, weight

Then immerse inches $t$

To fill narrower
2. Ho common 970?

To find w
th
Rule. ence betwe the produc sufficient to

1. What 56 inches lo it from risil specific gra oak 932 ?

Her
Then (100 pounds 12 or

1. "Suppose a piece of dry oak, in the form of a parallelopipedon, whose length is 56 inches, breadth 18, aud depth bron to be floated upon common smooth water, on its gravity being 932 ? many inches will it siuk, its specific

By Problem III., the weight of the piece of oak is 6524 ounces, which, by the preliminary part of this section, is the weight of the water displaced.

Then $1000: 1728:: 6524: 11273 \cdot 472$ cubic inches of oak inches the depth it will sink.
To find how far it will sink, allowing it to float on its narrower side, $11273.472 \div(56 \times 12)=16.776$ inches.
2. How many inches will a cubic foot of dry oak sink in commoll water, allowing the specific gravity of the oak to be 970 ? Ans. 11 .64.

## PROBLEM VI.

## To find what weight may be attached to a floating body, so that it may be just covered with a given fluid.

Rule. Multiply the cubic feet in the body by the difference between its specific gravity and that of the fluid, and the product will be the weight in ounces avoirdupois, just sufficient to immerse it in the fluid.

1. What weight must be attached to a piece of dry oak, it from rising above the surface of a fresh-water lake; the specific gravity of the water being 1000 , and that of the
Oak 932 ?

Here $56 \times 18 \times 12=12096$ cabic inches.
Then (1000 Then $12096 \div 1728=7$ feet.
pounds 12 onnces. 932$) \times 7=68 \times 7=476$ ounces $=29$
2. What weight, fixed to a piece of dry oak, 9 inches long, 6 inches broad, and 3 inches deep, will keep it from rising above the surface of common water, the specific gravity of water being 1000, and that of the oak 970 ?

$$
\text { Ans, } 2 \frac{1}{1} \frac{3}{6} \text { ounces. }
$$

3. A sailor had half an anker of brandy, the specific gravity of the liquor was 927 , the cask was oak, and contained 216 cubic inches, and its specific gravity was 932 ; to secure his prize from the custom-house officers, he fixed just as much lead to the cask as would keep it under water, and then threw it into the sea; what weight of lead was necessary for his purpose?

Ans. The cask of brandy contained 1371 cubic inches, the weight of sea-water of an equal bulk was $817 \cdot 20486$ ounces, the cask weighed 116.5 ounces, the brandy $619 \cdot 609375$, both together weighed 736.19375 ounces. The difference between the specific gravity of lead and seawater is to this remainder, as the specific gravity of lead to its weight in ounces, which will be found to be 89.09495 ounces, or 5 pounds 9 ounces.

## PROBLEM VII.

To find the solidity of a body, lighter than a fluid, which will be sufficient to prevent a body much heavier than the fluid, from sinking.

Rule. Find the solidity of the body to be floated; from its weight and specific gravity, by Problem II. Find also the weight of an equal bulk of the fluid by Problem III, Then say, as the difference between the specific gravity of the fluid, and that of the body lighter than the fluid, is to the difference between the weight of the body to be floated and the weight of au equal bulk of the fluid, so is 1728 to the solidity of the lighter body in cubic inches.

1. How many solid feet of yellow fir, whose specific gravity is 657 , will be sufficient to keep a brass cannon, weighing 56
cwt., and of First, floated Then, the can And, 1 sea-wat Hence, $407868^{\circ}$
2. Th of sea-w cubic inc lead aflo

T

For a sh straight lin ular, let fal of the wing upper deck from the fo these perpe breadth for foot of the of the rabb mainder will

The main outside plan:
tonnage of smirs.
cwt., afloat at sea, the specific gravity of brass being 8396 , First, 56 cwt. $=100352$ ounces, weight of the body to be floated, Then, 8396 : $100352:: 1728: 20653.675$ cubic inches in the cannon.

And, $1728: 20653 \cdot 675:: 1030: 12310 \cdot 9289$, the weight of sea-water equal in bulk to that of the cannon.
Hence, $1030-657: 100352-12310 \cdot 9289$ :: 1728 : $407868 \cdot 5545$ cnbic inches $=236.036$ feet, the answer.
2. The specific gravity of lead is 11325 , of cork 240 , and of sea-water 1030 ; now it is required to know how many cubic inches of cor'k will be sufficient to keep 49 ? pounds of lead afloat at sea? will be sufficient to keep $49 \frac{3}{8}$ pounds ma
Ans. 1570.84 cubic inches."

## TO Find the tonnage of ships.

 1st.-VEssels aground. By the Parliamentary Rule.
## PROBLEM VIII.

For a ship or vessel, the length is to be measured on a straight line along the rabbet of the keel, from a perpendic. ular, let fall from the back of the main post, at the height of the wing-transom, to a perpendicular at the height of the upper deek (bat the middle deck of the height of the from the forepart of the stern; then of three-decked ships), these perpendiculars subtract then from the length between breadth for the rake of the sternee-fifths of the extreine foot of the height of the winstern, and $2 \frac{1}{2}$ inches for every of the rabbet of the keel fortransom above the lower part mainder will be the length of the rake abaft; and the re-

The main breadth is to of the keel for tonnage. outside plank, in the hroadestakeu from the outside of the outside plank, in the hoadest part of the ship, either above
or below the wales, deducting therefrom all that it exceeds the thickness of the plank of the bottom, which shall be accounted the main breadth; so that the moulding breadth, or the breadth of the frame, will then be less than the main breadth, so found, by double the thickness of the plank of the bottom.

Then multiply the length of the keel for tonnage by the main breadth, so taken, and the product by half the breadth, then divide the whole by 94 , and the quotient will give the tonnage.
In cutters and brigs, where the rake of the stern-post exceeds $2 \frac{1}{2}$ inches to every foot in height, the actual rake is generally subtracted instead of the $2 \frac{1}{2}$ inches to every foot, as before mentioned.

1. Let us suppose the length from the fore-part of the stern, at the height of the upper deck, to the after-part of the stern-post, at the height of the wing-transom, to be 155 feet 8 inches, the breadth from out to outside 40 feet 6 inches, and the height of the wiug-transom 21 feet 10 inches, what is the tonnage?
```
                        ft.
                        40.6 breadth.
deduct
                    3
                    40.3
                        3
```

 of the midship-beangth of the keel to be 50.5 feet, breadth of the midship-bean 20 feet; required the tonnage? of the beam 30 of the keel be 100 feet, and the breadth age by the the breadth, will give the
tern-post extual rake is 0 every foot,

## FLOATING BODIES.

wales, exclusively of all manner of doubling planks that may be wrought upon the sides of the ship or vessel; then multiply the length mud breadth so found together, and that product by half the same breadth, and dividing by 94, the quotient will be the tonnage, according to which all such vessels shall be measured.
$\begin{aligned} & \text { Nots. Under certain penallies nothing but the fuel can bo slowed in the } \\ & \text { engine-rooil. }\end{aligned}$
Some divide the last product by 100 , to find the tonnage of king's ships, and by 95 , to find that of merchant's ships.

## FLOATING BODIES.

1. The buoyancy of casks, or the load which they will carry, without sinking, may be estimated by reckoning lolbs. avoirdupois to the ale gallon, or $8 \frac{1}{3} \mathrm{lbs}$. to the wine gallon.
2. The buoyancy of pantoons may be estimated at about half a hundred weight, or 56 lbs . for each cubic foot. Therefore a pantoon which cointained 96 cubic feet, would sustain 48 hundred weight before it could siuk.
N.B.一This is an approximation, in which the difference between ' $\frac{6}{}$ ' and $\frac{1}{f}$ viz., $\frac{1}{2} \frac{1}{2}$ of the whole weight is allowed for that of the pantoon itself.
3. The principles of buoyancy are very ingeniously applied in the self-acting flood-gate, which, in the case of common sluices to a mill-dam prevents inundation when it sudden food occurs. By means of the same principle it is that a hollow ball attached to a metallic lever of about a foot long, is made to rise with the liquid in a water-cask, and thus to close the cock and stop the supply from the pipe, just before the time when the water would otherwise run over the top of the vessel.

The property of buoyancy has also been successfully employed in raising ships which had sunk under water, and in pulting up old piles in a river when the tide ebbs and flows. A large barge is brought over as pile a the water begias to
ing planks that or vessel; then together, and and dividing by ording to which
in be stowed in the ind the tonuage rehant's ships.
wich they will ckoning lolbs. wine gallon. nated at about c foot. Thereet, would sus-
between ' $\frac{6}{1 \mathrm{f}}$ ' and $\frac{1}{\frac{1}{2}}$ on itself.
ingeniously 1 the case of idation when ane principle ever of about a water-cask, ply from the ald otherwise
rise ; a strong chain which 187 pile by a ring, Ace, is made the been previously fixed to the firmly fustened; then, as the to gird the harge, and is then and by means of its buoyant fore rises, the binge rises also, In a cuse which aetmily orce draws up the pile with it. 12 fect wide, 6 decp, and drawined, a harge of 50 feet long, ployed. Then $50 \times 12 \times(6-2) \times \frac{4}{7}=\frac{50 \times 12 \times 16}{7}$ $=192 \times 74=1344+274=1371 \frac{3}{7}$ ewt. $=66 \frac{1}{2}$ tons, burge acted in pulling up the pile.

## SECTION IX.

## WEIGHT AND DIMENSIONS OF BALLS AND SHELLS.

The foregoing problems furnish rules for finding the weight and dimensions of balls and shells. But they may he found much easier by means of the experimental weight of a ball of a given size, and from the well-known geometrical property, that similar solids are as the cubes of their diameters.

## PROBLEM I.

To find the weight of an iron ball from its diameter.
Rule. Nine times the cube of the diameter being divided by 64 , will express the required weight in pounds.*

1. The diameter of an iron shot is 5 inches; required its
$5 \times 5 \times 5=125=$ cube of the ball's diameter. Then $125 \times 9 \div 64=17 \frac{37}{6} \frac{1}{4} \mathrm{lbs}$., the answer.
2. The diameter of an iron shot being 3 inches; required

The
2. is 6.6
3. is 3.5 i
4. 1 is 6 incl

## Having

Rule. root of $t$

1. Wb is 42 lbs .

Tb

[^96]
## PROBLEM II.

## To find the weight of a leaden ball, by haring its diameter

Rule. Multiply the cabe of its diameter by 2 , and divide the product by 9 , and the quotient will give the weight in pounds.*

1. What is the weight of a leaden ball of 5 inches diameter ?

$$
\begin{aligned}
& 5 \times 5 \times 5=125 \text { cube of ball's diameter. } \\
& 125 \times 2 \div 9=250 \div 0
\end{aligned}
$$

Then, $125 \times 2 \div 9=250 \div 9=27 \frac{7}{7} \mathrm{lbs}$., answer.
2. What is the weight of a leaden ball whose diameter is 6.6 inches? Aus. 63.888 lbs .
3. What is the weight of a leaden ball, whose diameter Ans. 9.53 lbs. is 6 inches?
Ans. 48 lbs.

## PROBLEM III.

Haring the weight of an iron ball, to determine its diameter.
Rule. Multiply the weight by $7 \frac{1}{8}$, then take the cabe root of the product for the diameter. $\dagger$

1. What is the diameter of an iron ball, whose weight is 42 lbs .

$$
42 \times 7 \frac{1}{6}=298 \frac{2}{2} .
$$

Then, $\sqrt[2]{ } 298=6.685$ inches, the answer.
2. Required the diameter of an iron ball, whose weight

[^97]3. What is the diameter of an iron ball, whose weight is 3.8 lbs ?

Ans. 3 inches.

## PROBLEM IV.

Having the weight of a leaden ball, to determine its diameter.
Ruis. Multiply the weight by 9 , and divide the product by 2 ; and the cube root of the quotient will express the diameter.*

1. What is the diameter of a leaden ball, whose weight is 64 lbs .?

$$
64 \times 9=576
$$

Then, $576 \div 2=288$.
Hence, $\sqrt[3]{ } 288=6 \cdot 6$ inches, the answer.
2. Required the diameter of a leaden ball, whose weight is $27 \frac{7}{9} \mathrm{lbs}$.?

Ans. 5 inches.
3. What is the diamcter of a leaden ball, whose weight is 63.888 lbs ?

Ans. 6.6 inches.

## PROBLEM V.

Having given the external and internal diameter of an iron shell, to find its weight.
Rule. Find the difference between the cubes of the two diameters, and multiply it by 9 ; divide the product by 64 , and the quotient will express the weight in pounds. $\dagger$

1. What is the weight of an 18 -inch iron bomb-shell, whose mean thickness is $1 \frac{1}{4}$ inches?

$$
18-2 \frac{1}{2}=15 \frac{1}{2}=\text { internal diameter. }
$$

Then, $18^{3}=5832$ the cube of external diameter.
$(15.5)^{3}=3723.875$ the cube of internal diameter.
And, $5832-3723 \cdot 875=2108 \cdot 125=$ difference of cubes.
Hence, $2108.125 \times 9 \div 64=296.45 \mathrm{lbs}$., the answer.

[^98]ose weight 3 inches.
s diameter.
he product express the ose weight
ose weight 5 inches. ose weight 6 inches.
of an iron
of the two uct by 64 , $\dagger$
bomb-shell,
reter. reter. of cubes. 3 answer.
2. What is the weight of a 9 -inch iron bomb-shell, whose mean thickness is $1 \frac{1}{2}$ inch.
3. What is the weight of an iron bomb-shell, whose external diameter is $9 \cdot 8$ inches, and internal diameter 7 Ans. $84 \frac{1}{8} \mathrm{lbs}$.

## PROBLEM VI.

To find how much powder will fill a shell of given dimensions.
Rule. Divide the cube of the internal diameter in inches, by 57.3 , and the quotient will express the answer.*

1. What quantity of powder will fill a shell, whose internal diameter is 10 inches?

First, $10 \times 10 \times 10=1000=$ cube of diameter. $57.3) 1000(17.45 \mathrm{lbs}$., answer. 573

4270
4011
2590
2292
2980
2865
$115, \& c$.
Nore. In some recent works, the culte of the diameter is divided by 59.32 , for the weight of powder in pounds.
2. How many pounds of gunpowder are required to fill a hollow shell, whose internal diameter is 13 inches?

Ans. 37 lbs ., according to the note.
3. Required the number of pounds of powder that will fill a shell, whose internal diameter is 7 iuches?
$A n s .6 \mathrm{lbs}$. by the rule in the text.

[^99]
## PROBLEM VII.

To find hove much poroder will fili a restangular box of given dimeinsions.

Role. Multiply the length, breadth, and depth together in inches, and the last result by 0322 , and the last product will give the weight in pounds.*

1. How many pounds of powder will fill a rectangular box, whose length is 16 inches, breadth 12 inches, and depth 6 inches?

$$
\begin{aligned}
& 16 \times 12 \times 6=1152=\text { content of the box. } \\
& \text { Then, } 1152 \times \cdot 0322=37.0944 \text {, the answer. }
\end{aligned}
$$

2. How many pounds of powder will fill a rectangular box, whose length is 10 inches, breadth 5 inches, and depth 2 inches?

Aus. $3 \cdot 22$ lbs.
3. How many pounds of powder will fill a rectangular box, whose length is 5 inches, breadth 2 inches, and depth 10 inches?

Ans. $3 \cdot 22 \mathrm{lbs}$.

## PROBLEM VIII.

Haring the length and diameter of a cylinder, to determine how many pounds of gunpowder will fill it.
Rule. Multiply the square of the diameter by the length, and divide the product by 40, for the weight in pounds. $\dagger$

1. The diameter of a hollow cylinder is 10 inches, and the length 14 inches; how many pounds will it hold?

$$
\begin{aligned}
& 10 \times 10=100=\text { square of diameter. } \\
& \text { Then, } 100 \times 14=1400 . \\
& \text { Hence, } 1400 \div 40=35 \text { lbs., the answer. }
\end{aligned}
$$

[^100]2. T length
3. T length

To find
given
being
Rule. divide $t$ cylinder,

1. Th much of
2. H hold 1011
3. Ho hold 144

Iron-shc either in being eitb
2. The diameter of a hollow cylinder is 5 inches, and its length 40 inches; how much powder will it hold?

Ans. 25 lbs.
3. The diameter of a hollow cylinder is 5 inches, and the length 12 inches; how many pounds will it hold?

Aus. 7.5 lls s.

## PROBLEM IX.

To find what portion of a cylinder will be occupied by a given quantity of powder, the diameter of the cylinder being given.

Rule. Multiply the given weight of powder by 40 , and divide the product by the square of the diameter of the cylinder, and the quotient will be the pounds required.*

1. The diameter of a hollow cylinder is 10 inches; how much of it will hold 50 lbs . of powder?

$$
\text { Then, } 2000 \stackrel{50 \times 40=2000 .}{\div 100=20 \text { inches, the answer. }}
$$

2. How much of a cylinder of 14 inches diameter, will hold 10 lbs . of powder? 3. How much of a cylinder, 12 inches in diameter, will hold 144 lbs . of powder? 12 inches in diameter, w
the length, unds. $\dagger$ es, and the
termine how

## PILING OF BALLS AND SHELLS.

Iron-shot and shells are usualls piled in horizontal courses, either in a pyramidical or in a wedge-like form; the base being eitb or an equi-lateral triangle, a square, or a rectangle

[^101]Those piles whose bases are triangles or squares, terminate in one ball at the top: but piles whose bases are rectangles terminate in a single row of balls.

In triangular and square piles, the number of horizontal rows of courses, is always equal to the number of balls in one side of the bottom row.

Aud in rectangular piles, the number of rows is equal to the number of balls in the breadth of the bottom.

Also the number in the top row or edge, is one more than the difference between the length and breadth of the bottom row.

## PROBLEM I.

## To find the number of balls in a rectangular pile.

Rule. Multiply the number in one side of the bottom row, by that number increased by 1 , and the result by the same number increased by 2 ; then the one-sixth of the last product will give the number of balls required.*

1. Required the number of shot in a complete triangular pile, one of whose sides contains 22 balls?
$22=$ the number in one side of base.
$23=$ the number +1

66
44
506
$24=$ the number +2.

## 2024

1012
6) 12144

$$
-2024=\text { the number of shot in the pile. }
$$

[^102]2. Required the number of shot in a complete triangular pile, one side of whose base contains 15 bails? Ans. 4960.

## PROBLEM II.

## To find the number of balls in a square pile.

Rule. Multiply continually together the number in one side of the bottom course, that number increased by 1 , and double the same number increased by 1 ; then one-sixth of the last product will be the answer.*

1. How many balls are in a square pile of 30 rows? $30=$ number in one side.
$31=$ number in one side +1.
930
$61=$ twice the number in one side +1.
6) 56730

9455 answer.
2. Required the number of shot in a complete square pile, one side of whose base contains 19 ? Ans. 2470.
3. How many shot in' a finished square pile, when a side of the base contains 21 shot?

## PROBLEM III.

To find the number of shot in a finished rectangular pilc.
Rule. Add 1 to three times the number of shot contained in the length of the base, subtract the number of shot in the

[^103]breadth of the base, multiply the remainder by the said number increased by 1 , and this result again by the number in the breadth; then one-sixth of the last result will give the number of shot in the rectangular pile.*

1. Required the number of shot in a finished rectangular pile, the length of the base containing 59 , and its breadth containing 20 balls?
${ }_{3} 59=$ the number of shot in the length.

$$
\begin{aligned}
& 177 \text {; then } 177+1=178 \text {, and } 178-20=158 \text {. } \\
& 158 \times 21=3318 \text {, and } 3318 \times 20=66360 \text {. Hence } \\
& 66360 \div 6=11060 \text {, the answer. }
\end{aligned}
$$

2. How many balls are in a rectangular complete pile, the length of the bottom course being 46, and its breadth 15 ? Ans. 4960.

## PROBLEM IV.

To determine the number of balls contained in a ple which is not finished, the highest conrse being complete, and the number of balls in each side therenf being given.

Rule. Find the number of shot which would ibe contained in the pile if it were complete. Find also the number in that complete pile, each side of whose base contains one shot fewer than the corresponding side of the uppermost course of the unfinished pile, and the difference between these results will evidently give the number of balls in the unfinished pile.

1. How many shot are there in an unfinished triangular pile, a side of whose base coutains 23 , and a side of the uppermost course 7 shot?

[^104]the said the numresult will
ctangular s breadth

## 158.

Hence
e pile, the dth 15 ? 4960.
ozle which and the
'ibe conalso the base cone of the difference $r$ of balls
riangular le of the
$23=$ number of balls in the base. $24=$ number of balls in the base +1 .
6)13800
$2300=$ number of the pile when complete.
6
7
42
8
6) 336

56 number of balls in the imaginary pile. Therefore, $2300-56=2244$, the answer.
2. How many balls in an incomplete square pile, the side of the base being 24 , and of the top 8? Ans, 4760.
3. How many balls are there in the incomplete rectangular pile of 12 courses, the length and breadth of the base being 40 and 20 ?

Ans. 6146.

## DETERMINING DISTANCES BY SOUND.

The velocity of sound, or the space through which it is propagated in a given time, has been very differently estimated by philosophers who have written on this subject. We shall, however; take it to be 1142 feet in a second.
From repeated experiments it has been ascertained that sound moves uniformly, or, to speak more philosophically, that the pulses of air which excite it move uniformly. The relocity of sound is the same with that of the ærial waves, and does not vary much whether it go with the wind or agrainst it. By the wind, no doubt, a certain quantity of air
is carried from one place to another, and the sound is somewhat accelerated while its waves move through that part of the air, if their direction be the same as that of the wind. But as the velocity of somud is vastly swifter than the wiuld, the acceleration it will thereby receive is but inconsiderable, being at most but $\frac{1}{20}$ of the whole velocity.

The chief effect perceptible from the wind is, that it increases and diminishes the space through which sound is propagated. The utmost distance at which sound has been heard is about 200 miles. It is said that the nuassisted human voice has been heard from Old to New Gibraltar, a distance of about 12 miles. Dr. Derham, placing cannon at different distances, and causing them to be fired off, observed the intervals between the flash and report, by means of which he found the velocity of sound to be as above stated.

1. Having observed the flash of a cannon, I noticed by my watch that 5 seconds elapsed previous to my hearing the report; determine my distance from the gun.

1142
5
5710 feet, the answer.
2. Being at sea, I saw the flash of a cannon, and counted 8 seconds between the flash and the report; required the distance?

Ans. $1{ }_{10}^{7}$ mile.

Gaus such as

The of two and the

By th after the having sliding which th

On th marked formed; and serv slider, an edges of M D. T tance frol radius.
each com \&c., or 1 ginning is times as But 1 on $2218 \cdot 2$ or the cubic numbered
und is some. hat part of of the wind. on the wind, onsiderable,
, that it inh sound is id has been unassisted Fibraltar, a $r$ camon at ff, observed ins of which ted.
noticed by my hearing
nd counted quired the ${ }^{7} 70$ mile.

## SECTION X.

## GAUGING.

Ganging is the art of measuring the capacities of vessels, such as easks, vats, \&c.

The business of guaging is generally performed by means of two instruments, namely, the gauging or sliding rule, and the gauging or diagonal rod.

## 1. of the: galging milhe-leadbetter's.

By this iustrument is computed the contents of casks, \&c., after the dimensions have been taken. It is a square rule, having various logarithmic lines on its foar faces, and three sliding pieces capable of being moved through grooves in which they fit, in three of these faces.

On the first face are delineated three lines, namely, two marked $A \mathrm{~B}$, on which multiplication and division are performed; and the third marked M D, signifies malt depth, and serves to guage malt. The middle one $B$ is on the slider, and is a kind of double line, being marked at both edges of the slider, for applying it to both the lines $\mathbf{A}$ and M D. These three lines are all of the same radius, or distance from 1 to 10 , each containing twice the length of the radius. $A$ and $B$ are numbered and placed exactly alike, each commencing at 1 , which may be either 1 , or 10,100 , \&c., or 1 , or $\cdot 01, \cdot 001$, \&c. Whatever the 1 at the beginning is estimated at, the middle division, 10 , will be 10 times as much, and the last division 100 times as much, But 1 on the line M D is opposite 2220 , or more exactly 2218.2 on the other lines, which number 2218.2 denotes the cubic inch in an imperial malt bushel; and its divisions numbered retrograde to those of $A$ and $B$. On these two
lines are also veral other marks and letters; thos on the line $A$ and M B, or sometimes only B, for malt busliel, at the number 2218.2, and A for ale, at 282, the cubic inches in au old ale gallon; and on the line B , is W , for wine, at 231 , the cubic inehes in an old wine gallon.

These marks are nuw usually omitted upon the rule, since the late new Act of Parliament for uniformity of weights and measures, and $G$ for gallon is put ut $277 \cdot 274$ the inches iu an imperial gallon,* whether for ale, wine, or spirits.

On many sliding rules are also found $s i$, for square inscribed at ${ }^{\circ} 707$, the side of a square inseribed in a circle, whose diameter is 1 ; $s e$, for square equal at 886 , the side of a square which is equal to the same circle; and $c$ for circumference, at $3 \cdot 1416$, the circumference of the same eircle.

On the second face, or that opposite the first, are a slider and four lines marked $\mathrm{D}, \mathrm{C}, \mathrm{D}, \mathrm{E}$, at one end, and root square, root cube at the other end; the lines $C$ and $D$ containing, respectively, the squares and cubes of the opposite numbers on the lines $\mathrm{D}, \mathrm{D}$; bhe radius of D being double to that of $A, B, C$, and triple to that of $E$; therefore whatever the first 1 on $D$ denotes, the first on $C$ is its square, and the first on E its cube ; that is, if D begin with $1, \mathrm{C}$ and E will begin with 1 ; bat if D begin with $10, \mathrm{C}$ will begin with 100 , and $E$ with 1000 ; and so on.

On the line $\mathbf{C}$ are marked oc at $\cdot 0796$, for the area of the

[^105]circle whose circumference is 1 ; and od ; at •8854, for the area of the circle whose diameter is 1 .

On the line $D$ are marked $G S$, for gallon square at 16.65 , and QR for gallon round at 18.789 ; ulso M S for malt square at 47.097 , and $M \mathrm{R}$ for malt round at 53.144 .
These are the respective gauge-points for gallons and bushels. The first 16.65 is the side of a square, which and an inch depth holds a gallon; the second 18.789, the dinmeter of a circle, which at an inch depth holds a gallon; the third 47.097 the side of a square, which at an inch; depth holds a bushel; the fourth, $53 \cdot 144$, the diameter of a circle, which at an inch depth holds a bushel.

On the third face are three lines: one on a slider, markel standiug and segment lying, which serve ullaging, standing
and lying casks.

And on the fourth side, or opposite face, are a scale of inches, and three other scales, marked spheroid, or 1st variety, 2nd variety, 3rd varicty; the scale for the fourth or conic variety, being on the inside of the slider in the third face. The use of these lines is, to find the mean diameter of casks. On the inside of the two first sliders, besides all those already described, are two other lines, being continued from one slider to the other.

The one of these is a scale of inches, from $2 \frac{1}{2}$ to 36 , and the other is a scale of ale gallons, between the corresponding number 435 and 3.61 ; which form a table, to show, in ale gallous, the contents of all cyliuders whose diameters are from $12 \frac{1}{2}$ to 36 inches, their common altitude being 1 inch.

> VErie's sliding rule.

This rule is in the form of a parallelopipedon, and is generally made of box.

1. The line marked $\mathbf{A}$, on the face of this rule, is called At 2218.192 is fixed a brass pin, marked IM, D, signifying the cubic inches in a imperial bushel; at 277.274 is fixed
another brass pin marked IM, G, denoting the number oi cubic inches in an imperial gallon.
2. The line marked $\mathbf{B}$ is on the slide, and is divided exactly like that maked A. There is another slide B, on the opposite side, which is used along with this. The slide on the first face is called the second radius, and that on
the
deno imult ans the thea $14.5 \cdot 4$ propo used
3. C, an like th

The next t towaro agrain marked the rig. variety used, w
The several others
that to 1s. $4 d$. that to at $8 s$. pe 27. | sig 4s. per b
7. The ther, wit ments st ullaging $2,3,4,5$, groes on fr to 100 , th 4, which tise left-ho
the square gauge-point for malt bushels. At $53 \cdot 144, \mathrm{M} \mathrm{R}$ denotes malt round, the round or circular gauge-point for malt bushels. The line D on this rule is of the same nature ts the line marked D on the carpenter's rule, which has been utready deseribed. The line $A$ and the two slides B, are usid together, for performing multiplication, division, simple proportion, \&e.; and the line D, and the same slides B, are used together for extracting the square and cube roots.
6. The other two slides belonging to this rule are marked C, and are divided in the same manner, and used together,
like the slides $\mathbf{B}$.

The back of the first slide or radius, marked $\mathbf{C}$, is divided, next the edge, into inches, and numbered from the left-hand towards the right, 1, 2, 3, 4, 5, \&c., and these inches are again subdivided into 10 equal parts. The second line is marked spheroid, and is numbered from the left hand towards the right $1,2,3,4,5,6,7,8$. The third line is marked second variety, and is numbered $1,2,3,4,5,6$. These lines are used, with the scale of inches, for finding a mean diameter.

The back of the second slide or radius, marked C , has several factors for reducing goods of one denomination to others of equivalent values. Thas |X. to VI. 6. 1 signifies that to reduce strong beer at 8 s . per barrel, to small beer at 1 s. $4 d$. you are to nultiply by 6 .| VI. to X. 17. | signifies that to reduce small beer at $1 s$. $4 d$. per barrel to strong beer at $8 s$. per barrel, you are to multiply by $\cdot 17$. $\mid C 4 \sim \infty$ to $X$. 27. I signifies that 27 is the multiplier for reducing cider at
45 . per $4 s$. per barrel to another at $8 s$., \&e.
7. The two slides $\mathbf{C}$, just described, are always used together, with the lines on the rule marked Seg. St., or S S, seg. ments standing; and Seg. Ly or S L, segments lying; for $2,3,4,5,6,7,8$, which stands at the right hand end; it then goes on from the left-hand on the other edge $8,9,10$, \&c., to 100 , the latter is numbered in other edge $8,9,10, \& c$. , 4. which stands at the right hand the same manner $1,2,3$, the left-hand on the other edgand end; it then goes on from the left-hand on the other edge, 4, 5, 6, 7, \&c., to 100.

## PROBLEM I.

## To find the several multipliers, divisors, and gauge-points belonging to the several measures now used

MULTIPLIERS FOR SQUARES.
As 277.274 solid inches are contained in one imperial gallon, and $2218 \cdot 192$ solid inches in an imperial bushel; then it is obvious that if 1 be divided by $277 \cdot 274$, and $2218 \cdot 192$, respectively, the quotients will be the multipliers for imperial gallons and bushels respectively.

Hence the method of finding the following maltipliers is obvious:-
$277 \cdot 274) 1 \cdot 00000(\cdot 0036065$ multiplier for imperial gallons. $2218 \cdot 192) 1 \cdot 00000(\cdot 0004508$ multiplier for imperial bushels.

Now it is manifest that if the solid inches contained in any vessel be multiplied by the first of these multipliers, the product will be the imperial gallons that vessel will contain; and if multiplied by the other, the product will be the imperial bushels.

## MOLTIPLIERS AND DIVISORS FOR CIRCLES.

It has been shown that when the diameter of a circle is 1 , the area of that circle is $\cdot 785398$, \&c., • 7854 , nearly; then by dividing the solid capacity of any figure by 7854 , the quotient will be the proper divisor for the square of the diameter of a circular figure. Then to reduce the area at one inch deep into gallons, divide •7854, or •785398; \&c., by $277 \cdot 274$, and $2218 \cdot 192$, and the quotients will give the multipliers for imperial gallons and bushels respectively; and $\cdot 7854$ divided into $277 \cdot 274$ and $2218 \cdot 192$, will give the divisors for the imperial gallons and bushels.
$277 \cdot 274) \cdot 785398(\cdot 002832$ multiplier for imperial gallons. $2218 \cdot 192) \cdot 785398(\cdot 00354$ multiplier for imperial bushels. $\cdot 785398) 277 \cdot 274(350 \cdot 0362$ divisor for imperial gallons. $\cdot 785398$ )2218-192(2824-2897 divisor for imperial bushels.

The gauge-points are found by extracting the square root of the divisors.

GAUGE-POINTS FOR SQUARES.
$\begin{aligned} 277 \cdot 274 & =16 \cdot 651 \text { imperial gallons. } \\ 2218 \cdot 192 & =47.097 \text { inperial bushels. }\end{aligned}$

GAUGE-POINTS FOR CIRCLES. $\sqrt{353 \cdot 0362}=18 \cdot 789$ imperial gallons.

In this manner the numbers in the following table were
Notr. It very often happens in the pracice of gauging, that when the one given number is set to the ghinge joint on the sliding rule, the other given num. second or new gauge-poif hence in many cases it will be necessary to find a ten times the divisors in The second geuge-points are the square roots of polnt for imperial gallong is 6265 , for cauge-point for gallons is \& 4.2. for malt bushels 14898 ; and for circles, the new

To
1.
3. If dicular
4. W the side 5. All the perp

[^106]
## PROBLEM II.

To find the area, in imperial gallons, of any rectilineal plane figure.

Rule. By the rules given in Mensuration of Superficies, find the area of the figure in inches, which being divided by $277 \cdot 274$, or multiplied by $\cdot 0036065$, will give the area in gallons.*

1. Suppose a back or cooler in the form of a parallelorequired the area in imperial gallons.
$100 \times 40=4000$ the area in inches, which divided by 277.274 the quotient $14.426=$ the number of imperial gallons; or if we multiply 4000 by $\cdot 0036065$, the product 14.426 is the number of imperial gallons as before.

BY THE SLIDING RULE.

$$
\begin{array}{cccc}
\text { On A } & \text { On B } & \text { On A } & \\
\text { On B } \\
277 \cdot 274 & : 40 & :: & 100: \\
\text { he } 14 \cdot 4, \text { nearly. }
\end{array}
$$

2. If the side of a square be 40 inches, what is the area in imperial gallons?
3. If the side of a rhombus be 40 inches, and its perpendicular breadth 37 inches; required its area in wine gallons. Ans. $5 \cdot 41$.
4. What is the area of a square cooler, in imperial gallons, the side being 144 inches? 5. Allowing the side of a hexagon to be 64 inches, and the perpendicular from the centre to the middle of one of

[^107]the sides 55.42 inches; required its area in imperial gallons and malt bushels ?

Ans. $\left\{\begin{array}{c}38.38 \text { imperial gallons. } \\ 4.8 \text { malt bushels. }\end{array}\right.$

## PROBLEM III.

## The diameter of a circular vessel being given in inches, to find its area in imperial gallons.

Rule. Multiply the square of the diameter by -002832; or divide the square of the diameter by $353 \cdot 036$, the product or quotient will give the area in imperial gallons.

When it is required to find the area in any other denomination than imperial gallons, use the proper multiplier or divisor for the required denomination, as given in the table, page 206.

1. The diameter of a circular vessel is 32.6 inches; required the area in imperial gallons?
$(32 \cdot 6)^{2}=1062 \cdot 76$. Then,
$1062 \cdot 76 \times \cdot 02832=3 \cdot 01$ gallons.
Or', $1062 \cdot 76 \div 353 \cdot 036=3 \cdot 01$.
by the sliding rule.
As $18 \cdot 78$ is the circular gauge-point for imperial gallons, say

$$
\begin{array}{rcc:c}
\text { On D On B } & \text { On D On B } \\
\text { As } 18.78: 1^{-}:: ~ & 32 \cdot 6: 3
\end{array}
$$

2. If the diameter of a circular vessel be 10 inches, what is the area in imperial gallons? Ans. 283.
3. Suppose the diameter of a circular vessel is 30 inches, what is its area in imperial gallons? Ans. 2.548.
4. What is the area in imperial gallons of a ronnd vessel, whose diameter is 24 inches ?

Axe. 1.681.

Given

RuL -00283 353.03 lons re

Whe multipli

1. Su

10, and wine ga
2. Th is 20 , an is the ar
3. Sup is 70 inc imperial

Notr. As ovals, the ar truly mathen - found by the Let A and let $A$ meters, at

## PROBLEM IV.

Given the transverse and conjugate diameter of an elliptical ressel, to find its area in imperal measure.

Role. Multiply the product of the two diameters by .002832 ; or divide the product of the two diameters by 353.036 ; the product or quotient will give the imperial gal-
lons required

When any other denomination is required, the proper multiplier or divisor in the table is to be employed.

1. Suppose the longer diameter of an elliptical vessel is wi and the shorter diameter 6 , required the area in ale and wine gallons.

30 inches, s. $2 \cdot 548$.
and vessel, s. $1 \cdot 681$.

inches. Divide this transverse ( 102.8 ) by some even number which will leave a small remainder, the quotient will be the distance of the ordinates; which distance may be laid off on both sides of the conjugate diameter a number of times equal to half the even number by which the transverse was divided, then with chalk and a parallel ruler, draw the ordinates through the points $1,2,3,4$, \&c. Then, by Problem XXI., Sec. III., the area may be found, which being multiplied or divided by the proper tabular numbers, will give the area in gallons, \&c. Or,

1st. Add together the first and last ordinates.
2nd. Add together the even ordinates, that is, the 2, 4, 6, $8,10, \& c$. , and multiply the sum by 4.

3rd. Add together the odd ordinates, except the first and last; that is, add the ordinates $3,5,7,9, \& \mathrm{c}$., and multiply the sum by 2 .

4th. Multiply the sum of the extreme ordinates by their distance from the curve.

5th. Add the three first fonnd sums together, and multiply the sum by the common distance of the ordimates, and to the product add the fourth found sum, and divide the total by 3 , and the quotient resulting by 277.274 , or $2218 \cdot 192$, for the area in imperial gallons, or malt bushels, respectively.

First, $102 \cdot 8 \div 10=10$ the distance of the ordinates asunder, and the remainder 2.8 is double the distance of the extreme ordinates from the curve; that is, $1 \cdot 4=A 1$, or B 11 .
Now let us suppose the lengths of the ordinates to be $20,40 \cdot 2,57,66 \cdot 6,73,75,73,66 \cdot 6,57,40 \cdot 2,20$, respectively beginning at 1 , and proceeding to 11.
1st. $\left\{\begin{array}{r}1=20 \\ 11=20\end{array}\right.$
.40 inches, sum of the first and last.
1.4

56
2nd. $\left\{\begin{array}{r}2=40 \cdot 2 \\ 4=66 \cdot 6 \\ 6=75 \cdot 0 \\ 8=66 \cdot 6 \\ 10=40 \cdot 2\end{array}\right.$
3rd. $\left\{\begin{array}{l}288.6 \times 4=1154.4 \\ 3=57 \\ 5=73 \\ 7=73 \\ 9=57\end{array}\right.$

$$
260 \times 2=520
$$

Then, $40+1154 \cdot 4+520=1714 \cdot 4$ sum of first three sums. 10

$$
\begin{gathered}
\begin{array}{c}
17144 \\
56
\end{array} \\
\frac{3) 17200}{5733 \cdot 3 ;} \text { then, } \\
5733 \cdot 3 \div 277 \cdot 274=2064 \text { gallons. } \\
5733 \cdot 3 \div 2918 \cdot 192=2.58 \text { malt bushels. }
\end{gathered}
$$

## aluging.

When the vessel is not circalar, or elliptical, it is best to measure the equi-distant ordinates, which, though ever so unequal, will, by proceeding as above, serve to find the area of the base. Wheneve. the vessel is an irregulur curved figure, the area should be invariably found by the method of equi-distant ordinutes, as the trac result cannot be found by any other method.
4. What is the area, in imperial measure, of an ellipse, whose trausverse axis is 24 , and conjugate 18? Ans. 1-2.334 gallous.

## PROBLEM V.

To find the content of a prism, in imperial gallons.
Rule. Find the area of the base, by Problem II., in gauging, which, being mulciplied by the depth within, will give the content in gallons.

Or, fiud the solid content by mensaration, and divide that content by $277 \cdot 274$ for imperial gallons.

A vessel, whose base is a right-angled parallelogram, is $49 \cdot 3$ inches in length, the breadth 36.5 inches, and the depth $42 \cdot 6$ inches; required its content in inperial gallons?

> Here, $49.3 \times 36.5 \times 42.6=76656.57$. en, $76656.57 \div 277 \cdot 374-97 \varepsilon .45$ Then, $76656 \cdot 57 \div 277 \cdot 274=276 \cdot 465$ gallons. And $76656 \cdot 57 \div 2218 \cdot 192=34 \cdot 558$ malt bushels.
by the sliding rule.
$\begin{array}{ccc}\text { On B } \\ 49 \cdot 3 & \text { On D } & \text { On B }\end{array}$ $49 \cdot 3: 49 \cdot 3:: 36 \cdot 5: 42 \cdot 42$.

On D
$16 \cdot 65$
46.37

On B On D $: 42.6:: 42.42\left\{\begin{array}{l}27.6 \text { gallons. } \\ 34.5 \text { malt bus }\end{array}\right.$
2. Fach side of the square base of a vessel is 20 inches, and its depth 10 inches, what is the content in old ale gallons?
3. The side of a vessel in inches, breadth 15 inches, in the form of a rhombus is 20 content in old ale gallons?
4. What is the Ans. 10.638 gallons. the form of a ruomboid, whose wine gallons of a vessel in breadth from side to side, whose longe st side is 20 inches, Ans. 6.88 wine gallons.

## PROBLEM VI.

## To find the content of any vessel, whose ends are squares or rectangles of any dimensions.

Rule. Multiply the sum of the lengths of the two ends, two ends; this sum, multiplied by one-sixth of the depth, will give the solidity in cubic inches; then divide by $277 \cdot 274$, or
$2218 \cdot 192$ for the $2218 \cdot 192$ for the content in imperial gallons, or malt bushels.

1. Suppose the top and bottom of a vessel are parallelograms, the length of the top is 40 inchess, and its breadth 30 inches; the length of the bottom is 30 inches, and its breadth 20 ; and the depth 60 inches; required the contents
in imperial gallons?

$$
\begin{aligned}
40+30 & =70 \text { sum of the lengths. } \\
30+20 & =50 \text { sum of the breadhts. }
\end{aligned}
$$

$40 \times 30=3500$ product.
$30 \times 20=600$ area of the greater base.
$\times 20=600$ area of the lesser base.
5300
10 one-sixth of the depth.
53000 solidity in cubic inches.
Then $53000 \div 277^{\prime} \cdot 274=191 \cdot 146$.

## By THE SIIIDING RULE.

Find a mean proportional $(\sqrt{ }(40 \times 30)=34 \cdot 64)$, between the length and breadth at the top, and a mem proportional $(\sqrt{ }(30 \times 20)=24.49)$, between the length andi breath at the boitoin; the sum of these is $59 \cdot 13$, twice a mean proportionnl between the length and breadth in the middle. Then, On D On B
2. Suppose the top and bottom of a vessel are parallelo. grams, the length of the top is 100 inches, and its breadth 70 inches; the length of the bottom 80 , and its breadth 56 , and the depth 42 inches; what is its content in imperial Ans. 862.59 imperial gallons.

## THE GAUGING OR DIAGONAL ROD.

The diagonal rod is a square rule, having four faces, and $i_{3}$ generally 4 feet long. It folds together by joints. This instrument is employed both for gauging and measuring casks, and computing their contents; and that from one dimension only, namely, the diagonal of the cask, or the length from the middle of the bung-hole to the meeting of the cask with the stave opposite the bung; being the longest line that can be drawn from the middle of the bung-hole to tany part within the cask.

On one face of the rule is a scale of inches for measuring this diagonal; to which are placed the areas, in ale gallons, of cireles to the corresponding diameters, in like manner as the lines on the uuder sides of the three slides in the sliding rule.

On the opposite face, there are two scales of ale and wine gallons, expressing the contents of casks having the corresponding diagonals.

Al! on the

Exa of the found tent in

To 3 or 111 quired ?

Note. ${ }^{1}$ cusks, and

Casks easily disi

1. The variety.
2. The the second
3. The third varie
4. And fourth varie

If the col proper rule quotient wil respectively.

To find the

Role. To add the squar

## gadging.

$\left.=34^{\prime} 64\right)$, bemens propore length mad $9 \cdot 13$, twice a eadth in the

46 impêrial lons.
tre parallelos breadtlı 70 breadth 56 , in imperial al gallons.

20 D.
$r$ faces, and sints. This
measuring t from one ask, or the meeting of the longest ing-hole to
measuring ale gallons, ke manner des in the
e and wine the cor-

Al! the other lines on the instrument are similar to those on the sliding rule, and are used in the same manner. Example. The diagonal, or distance between the middle
the bung-hole to the most distant part of the cask, as of the bung-hole to the most distant part of the forgonal rod, is $34 \cdot 4$ inches: what is the content in gallons?

I'o 34.4 inches correspond, on the rod, 807 ale gallons, or 111 wine gallons, $92 \frac{1}{2}$ imperial gallons, the content required?

Noris. The contents shown by the rod answer to the most common form of cusky, and fall in between the 3nd and Ird varietles following. OF CASKS, AS DIVIDED INTO VARIETIES.

Casks are usually divided into four varieties, which are easily distinguished by the curvature of their sides.

1. The middle frustum of a spheroid belongs to the first variety.
2. The middle frustum of a parabolic spindle belongs to the second variety.
3. The two equal frustums of a paraboloid belong to the third variety.
4. And the two equal frustums of a cone belong to the fourth variety.

If the content of any of these be found in inches by their proper rules, and this divided by $277 \cdot 274$, or $2218 \cdot 2$, the quotient will be the content in imperial gallons, or bushels,
respectively.

## PROBLEM VII.

To find the content of a vessel, in the form of the frustums of $a$ cone.

Role. To three times the product of the two aiameters
third of the depth, and divide the product by 353.0362 for imperial gallons, and by $2824 \cdot 289$ for malt bushels.

1. What is the content of a cone's frostum, whose greater dinmeter is 20 inches, least diameter 15 inches, aud depth 21 iuches?

$$
\begin{aligned}
& 20 \times 15 \times 3=900 \\
& 20-15=5 \& 5^{2}=900 \\
& 925 \times 7=6475 \text {. Then. } \\
& \text { 353.0362)6475(18.34 imperial gallons. } \\
& 294 \cdot 12) 6475(22.01 \text { wiue gallons. }
\end{aligned}
$$

2. The greater diameter of a conical frustum is 38 inches, the less diameter $20 \cdot 2$, and depth 21 inches; what is the content in old ale gallons? Ans. $51 \cdot 07$ gallons.

## PROBLEM VIII.

## To find the content of the frustum of a square pyramid.

Rule. To three times the product of the top and hottom sides, add the square of their difference, multiply their sum by one-third of the depth, and divide the product by 282 and 231, for old ale and wine gallons, respectively; and by $277 \cdot 274$, for imperial gallous.

1. Suppose the greater base is 20 inches, the less hase 15 inches, and depth 21 inches; required the centeat in old wine measure?

$$
\begin{aligned}
& 20 \times 15 \times 3=900 \\
& 20-15=5 \\
& \text { Then, } 5 \times 5= 25 \\
& 925 \times 7 \div 231=27.8 \text { gallons. }
\end{aligned}
$$

Noras. The coment of tha frusium of a pyramid is found just like that of a cone, circular factort, and the premid the squer, or multipiier, the cone requiring the circular factor, and the pyramid the square one.

Ro
ferenc meter circula
1.

RoL tiply by gallons. $34^{3}=3$
2. W measure
3. Re meter is

To find $t$

Rule.
and the hallf the d altitude; agaill by resıectivel
353.0362 for els.
hose greater s, aud depth

Then,
s 38 inches, $t$ is the congallons.
yramid.
nd bottom their sum ct by 282 y; aud by
ss base 15 old wine
allons.
at of a cone, qulting the
gatgina.

## PROBLEM IX.

## To find the content of a globe.

Rous. Multiply the diameter of the glohe by its circumference, and the resulting product by one-sixth of the diameter; then the last product multipled or divided by the circular factor, will give the content in gallous.

1. Let the diameter be 34 inches, what is its content? $34 \times 34 \times 34 \times 5236=20579.5744$. Then, $20579 \cdot 5744 \div 282=72 \cdot 9772$ old ale gallons. And, $20579 \cdot 5744 \div 231=89 \cdot 08$ old wine gallons.
Rele II. Or cube the diameter of the globe, which multiply by 001888 (z of $\cdot 002832$ ) for the coutent in imperial gallons. $34^{3}=39304$; then $39304 \times \cdot 001888=74 \cdot 2$ imperial gallons.
2. What is the content of a globe in old ale and wine measure, the diameter being 20 inches?

Ans. $\left\{\begin{array}{l}14.848 \text { old ale gällons. } \\ 18.128 \text { old wine gallons. }\end{array}\right.$
3. Required the content of a globular vessel, whose dia-

Ans. $1888 \frac{1}{3}$ imperial gallons.

## PROBLEM X.

To find the content of the serment of a sphere, as the rising crown of a copper still, \&-c.
Rule. Measure the diameter, or chord of the segment, and the altitude just in the middle. Multiply the square of half the diameter by 3 ; to the product add the square of the altitude; multiply this sum by the altitude, anid the prodnct again ly 001856 , or 002206 , for old ale or wine measure, resrectively, and by 001888 for imperial gullous.

1. The diameter of the crown of a copper still is 27.6 , its depth $9 \cdot 2$; required its content?

Here, $27 \cdot 6 \div 2=13 \cdot 8$.
Then, $13.8 \times 13.8 \times 3=571.32$
 $9 \cdot 2$ depth.
imperial gallons.
$6034.832 \times \cdot 001888=13.39$

## PROBLEM XI.

 or what is called a falling bottom, or rising crown.Rule. If the side of the vessel be straight with a falling bottom, find the content of the segment $\mathrm{C} y \mathrm{D}$, by Prob. $\mathbf{X}$.; find also the content of the upper part A B D C, by riob. VII.; the sum of both will give the content of the copper.


When the copper has a rising crown, find the content of A B C D, by Prob. VII., from which deduct the content of the segment $\mathrm{C} x \mathrm{D}$, and the remainder will be the content of the vessel $\mathbf{A} \mathbf{B D} x \mathbf{C}$.

$$
T_{o}
$$

## PROBLEM XII.

## To gauge a vessel whose side is curved from top to bottom.

Take the diameters at equal distances of $2,3,4$, or 5 inches, according as the case may require; if the side of the vessel be considerably curved, the number of diameters that will be required will be considerable; the less the curvature of the side, the less the number of diameters that will be required.

To gauge the vessel, or copper, A B D C, fasten a piece of pack-thread to $A$ and $B$, as A F B; then with some con-

renient instrument find the distance $a \mathbf{C}$ of the deepest part of the copper, which let us suppose to be 47 inches.

By means of the same instrument measure the distance o $F$ from the top of the crown $F$ the middle of $A B$; which let us suppose to be 42 inches, this deducted from $a \mathbf{C}, 47$, will leave $5(=o G)$ the height of the crown.

## To find the diameter C D, of the bottom of the crown.

Measure the top diameter A B, which suppose to be 99 inches: then hold a thread, so that a plummet attached to the end thereof, may hang just over $C$, and measure $A a=$ $B E$, each of which let us admit to be $17 \% 5$ inches; add

## QADGING.

these together, and deduct their sum (35) from 99, and the remainder (64) will evidently be equal to C I), the diameter at the botton of the crown. Measure the diameter mo n, which touches the top of the crown, which suppose is 65
iuches.
Now, as this copper is not considerably curved, the diameters may be taken in the middle of every 6 inches of the depth, which suppose to be as in the secoud column of the following table; to each diameter find the area in imperial grallons, by Prob. III., which write in the third column; find also the content of every 6 inches, corresponding to these diameters, which write in the fourth column of the table; lastly fiud the content of the crown by Prob. X., and subtract it from the content of ABDGC, the remainder will give the capacity of the copper.
Or thus, C D being 64 inches, the area answering to it is $11.60 \% 2$, this multiplied by half the altitude of the crown, viz., by $2 \cdot 5$, gives 29.0055 gallons, the content of the crown. The content of the part $m n \mathrm{D}$ C is 58.9222 gallons, from Which the content of the crown being deducted, the remainder ( 29.9161 gallons) is the quantity of liquor which covers
 the crown.

## PROBLEM XIII.

## To jind the content of any close cask.

Whatever be the form of the cask, the following dimensious must be taken; that is,


On accomnt of the difficulty in ascertaining the figure of the cask, it is not, in many cases, easy to find the exact contents of casks.

In taking the dimensions of a cask, it is essential that the bung-hole be in the middle of the cask, and also that the bung-stave, and the stave opposite to it, are Loth regular and evell within.

It is likewise essential that the heads of casks are equal and truly circular; and if so, the distance oetween the inside of the chimb to the outside of the opposite stare, will be the head diameter within the cask, nearly.

From the variety in the forms of casks, no general rule conld be given to answer every form; two casks may have equal head diameters, equal bung diameters, and equal leugths, aud yet their couteuts may be very unequal.

## PROBLEM XIV.

## To find the content of a cask of the first variety.

Rut.e. To the equare of the head diameter add donble the square of the bung diameter, and multiply the sum by the length of the cask. Then multiply the last product by 0009 分, 0 dizide by 10591 , the prodicat or quotient witl be the content in-imperial gallons.
-0034 7 dervite K 3

1. What is the content of a spheroidal cask, whose length is 40 inches, bung diameter 32 iuches, and head diameter 24 incles?


$99 \cdot 1289$ imperial gallons.
BY the gauging rule.
Set 40 on C, to the GR $\quad 18.79$ on D, against
24 on D, stands
32 on D, stands

$$
\begin{aligned}
& 18 \cdot 79 \text { on D, against } \\
& 64.99 \text { on C, } \\
& 116.2 \text { on } \mathbf{C} . \\
& +116.2
\end{aligned}
$$

3) $297 \cdot 39$
$99 \cdot 13$ gallons.
is 20 inches, bung diameter 16 spheroidal cask, whose length inches?

$$
\text { Ans. }\left\{\begin{array}{l}
12 \cdot 36 \text { old ale gallons. } \\
14 \cdot 869 \text { old wino }
\end{array}\right.
$$

To find the content of a cask by the mean diameter.
Rule. Multiply the difference of the head and bung diameters by 68 for the first variety; by 62 for the second variety; hy 55 for the third; 'and by $\cdot 5$ for the fourth, when the difference between the head and bung diameters is less 6 inches, multiply that diffe difference between these exceeds 6 inches, multiply that difference by 7 for the first variety;
by the sum and prod divis

B
mea
In t will be gallons

$$
T o
$$

Rule. the squa two-fifth multiply by 0009

- 031

1. Wh whose let meter 32
24 inches

Gaugino.
by 64 for the second; by 57 for the third; and by 52 for sum will be a mean diameter. and multiply the square by square this mean diameter, product multiplied, or divided by length of the cask; this divisor, will give the content. by the proper multiplier or

By resuming the last example but one, we have Bung diameter 32 Head diameter 24
$29 \cdot 6$ mean diameter. $29 \cdot 6$


In the same manner the content for the second variety gallons; and for the fourth variety $83 \cdot 34$ gallons.

## PROBLEM XV.

To find the content of a cask of the second variety. Rule. To the square of the head diameter add double the square of the bung diameter, and from the sum deduct two-fifths of the square of the difference of the diameters; multiply the remainder by the length, and the product again by eoogs for the content in imperiat gallons.

- os il

1. What is the content of a cask, whose length is 40 inches, bung diameter 32 inches, and head diameter


$$
\begin{aligned}
& 32-24=8 \text {; then } 8^{2}=64 \text {, and } \frac{5}{} \text { of } 64=25.6 \\
& 24^{2}=576 \text {, and } 32^{2}=1024 \text {, then } 1024 \times 2=2048 \\
& 2048+576=2624 \text {, and } 2624-25 \cdot 6=2598 \cdot 4
\end{aligned}
$$

## PROBLEM XVI.

To find the content of a cask of the third variety.
Rule. To the square of the bung diameter add the square of the head diameter; multiply the sum by the length, and the last product by $\cdot 001416$ for the answer in imperial
gallons.

Let us resume the last example: thas

$$
32 x=1024
$$

$24^{2}=\frac{5 i 6}{1600} \times 40=\begin{array}{r}64000 \\ 001416\end{array}$


90624 imperial gallons.

## PROBLEM XVII.

## To find the content of a cask of the fourth variety.

Rele. Add the square of the difference of the diameters to 3 times the square of their sum; multiply the sum by the leugth, and the last product by 000230 for the content in gallous.

Resuming still the last example 32 $+24=56$, and $56^{2} \times 3=3136 \times$ $3=9408$, and $8^{2}=64$, then 9408 $+64=9472$; then $9472 \times 40=$ 378880 , and $378880 \times \cdot 000236=$ $89 \cdot 41668$ imperial gallons.

$R_{t}$

This is in a. cask

To ullag known, as

## $64=25 \cdot 6$ <br> $2=2048$ <br> $=2598 \cdot 4$ <br> 103936

variety.
$d$ the square length, and in imperial

ariely.
diameters im by the sontent in

## gatging.

## PROBLEM XVIII.

To find the content of any cask by Doctor ILulton's geveral rule.

Rule. Add into one sum, 39 times the square of His. bung diameter, 25 times the square of the hqual dinmetire. and 26 times the product of the two dinmeters; then mininipl: the sum by the length, and the product again by $00031 \frac{1}{9}$ for the content in gallons.

1. What is the content of a cask, whose length is 40 inches, and the bung and head diameters 32 and 24 ? $32^{2}=1024$

$\qquad$

## ULLAGING.

## PROBLEM XIX.

To ullage a lying cask.

This is the finding what quantity of liquor is contained in a cask when partly empty.

To ullage a lying cask, the wet and dry inches mast be known, as also the content of the cask and buag diameter.

Rule. Take the wet inches, and divide them by the bung diameter; find the quotient in the column of versed sines, in the table at the end of the pratical part of this book, and take out its corresponding segment; multiply this segment by the whole content of the cask, and the product arising by $1 \frac{1}{4}$ for the ullage required,


1. Find the ullage for 8 wet inches, the bung diameter being 32 inches, and the content 92 ale gallons?
32) $8(\cdot 25$, whose tabular segment is $\cdot 153546$.

Then, $\cdot 153546 \times 92=14 \cdot 126232$. And $14 \cdot 126232 \times 1 \frac{1}{4}=17.65779$ gallons.

## PROBLEM XX.

## To ullage a standing cask.

Rule. Add together the square of the diameter at the surface of the liquor, the square of the diameter of the nearest end, and the square of double the diameter taken in the middle between the other two; multiply the sum by the length between the surface and nearest end, and the product arising by $\cdot 000472$ for the gallons in the less part of the cask whether empty or filled.

1. What is the ullage for 10 wet inches, the three diameters being 24,27 , and 29 inches?


## PROBLEM XXI.

To find the content of an ungula, or hoof, of the frustum of

Rule. For the less hoof, multiply the product of the less multiplied by a mean proportional between both diameters, three times the circular diameter, and this last divided by of the diameters, gives thactor multiplied by the difference

1. $\mathrm{CD}=30, \mathrm{AB}$, content of the less hoof. 20 , required the content $=40, \mathrm{C} d=$ hoof.
40
30
40
30

$$
\begin{aligned}
& \times 0 i=1200, \text { and } \\
& =34.6 \text { mean. }
\end{aligned}
$$

$$
\begin{aligned}
& \times 20=600,1 \text { st product. } \\
& \times 34.6=13849 \text { nd }
\end{aligned}
$$

$$
\begin{aligned}
& \times 34 \cdot 6=1384, \text { 1st product. } \\
& \times 30=900 \\
& \times 3 \text { product. }
\end{aligned}
$$

$$
=900
$$

484 remainder.

$$
40-30=10, \text { then } 359 \times 300=290400
$$

$$
\begin{aligned}
& 30=10, \text { then } 359 \times 3 \times 10=10770, \text { and } \\
& 290400 \div 10770=26.96 \text { callons }
\end{aligned}
$$

Rule. For the $10770=26.96$ gallons.
greater diameter and the hoof multiply the product of the square of the greater diae height of the frustum, by the the less diameter multipled der made less by the product of those diameters: this remain a mean proportional between circular divisor multiplied byer, divided by three times the gives the content of the greater hoof.

Resuming the last example we have

$$
\begin{gathered}
40 \times 40=1600 \\
20 \times 40=800,1 \text { st product. } \\
40 \times 30=1200, \text { and } \sqrt{ } 1200=34 \cdot 6 \\
34.6 \times 30=1038, \text { nd product. } \\
40-30=10 .
\end{gathered}
$$

223

> oatging.
> Then $1600-1038=562$
> 800
> $359 \times 3 \times 10=10770) 449600$, last product.
> $41 \cdot 74$ old ale gallons

## PROBLEM XXII,

## To guage a still.

Fill the still with water, and draw it off in another vessel This is by far therm, whose content is easily computed. ployed.

Or gauge the shoulder hy itself, and gange the body by taking a greater number of diameters at near and equal distances throughout, first covering the bottom, if there be any cavity, with water, the quautity of which is known.

## SECTION XI.

## LAND SURVEYING.

ther vescel computed. :an be em.
e body by equal dis. ere be any

Land surveying is that art which enahles os to give a true plan or representation of any field or parcel of land, and to determine the superticial content thereof.

In measmring land, the area or superficial content is, always expressed in acres, or in acres, roods, and perches; each acre contaluing 4 roods, and each rood 40 perches.

Land is measured with a chain, called Gmiter's chain, of 4 poles, or 22 yards in length, which consists of 100 equall links, each link being foo of a yard long, or riso of a foot, or 1.92 inches. 10 square chains, or 10 chains in length and square poles, or 100,000 acre; or 4840 square yards, 160 lenarth of lines measured square links make an acre. The in links as intigers; every chuinain, are generally set down Therefore, after the content in heing 100 links in length. links, and as 100,000 square is found, it will be in square necessury to cut off five of the fink muke an acre, it will be decimals, and the rest will be figures on the right hand for duced to roods by multiplying be acres. The decimals are reas before for decimals, which 4, and cutting off five figures perches by multiplying by 40 , decimal part is reduced to from the product. As an example: cuttiug off five figares

Suppose the length of a rectangular piece of ground to be 792 links, and its breadth 385; required the number of acres, roods, and perches it contains?

## LAND BURVEYING.

| 792 |  |
| ---: | ---: |
| 385 |  |
| 3960 |  |
| 6336 | $3 \cdot 04920$ |
| 2376 | 4 |
| 304920 | 19680 |

A. R. P.

Ans. 3. 0.7.
The statute perch is $5 \frac{1}{2}$ yards, but the Irish plantation perch is 7 yards; hence the length of a plantation link is

## PROBLEM I.

To measure a line or distance on the ground, two persons are employed; the foremost, for the sake of distinction, is called the leader, the hindermost, the follower.

Ten small arrows or rods, to stick in the ground at the end of each chain, are provided; also some station-staves, or long poles with coloured flags, to set up in the direction of the line to be measured, if there do not appear some marks naturally in that direction.

The leader takes the 10 arrows in one hand, and one end of the chain by the ring, in the other; the follower stands at the beginning of the line, holding the ring at the end of the chain in his hand, while the leader drags forward the chain by the other end of it, till it is stretched straight and the leader, directed by the follower, by moving his hand to the right or left, till the follower see him exactly in a liue with the mark or direction to be measured to; then both of them holding the chain level and stretched, the leader sticks an arrow upright in the ground, as a mark for the follower to come to, and advances another chain forward, being directed in his position by the follower standing at the arrow, as before, as also by himself, now and at every succeeding chain's length, by moving himself from side to side, till the follower and back-mark be in a direct line. place is
Besid and me chords, perpendi

In sur required, when it is instrumen

Having then streter as before, the follower the chain, and stuck down an arrow, proceed till the 10 arrowses ap the arrow, and thus they the follower, and the leas are employed, or in the hands of the end of the eleventh lear, without an arrow, is arrived at sends or brings the 10 arrows longth. The follower then them downeat the end of his the leader, who puts one of chain, as before. And of his chain, and adrances with his one to the other at every 10 the arrows are changed from line is finished, if it exceed 10 chains' length, till the whole changes shows how many tim choins; and the number of to which the follower add times 10 chains the line contains, or end of the line. Thus, if ther chain over to the mark chains 45 links, or 3645 links, the whole line measure 36 three times, the follower will the arrows have been changed leader 4, and it will be 45 linke 5 arrows in his hand, the taken up by the follower, to thes from the last arrow, to be In works on Sur instruments used in the art is usual to describe the various learn the use of these inst. The pupil, however, will best the practice. The chief instruments when actually engaged in the plain table, the theodolite inents employed are the chain, the offset staff, the perambulator cross, the circumferentor, and other great distances. Levels, with telescopic or other sights, are used to find the levels between two or more places, or how mach one place is higher or lower than the otlor.

Besides all these, various scales are ased in protracting and measuring on paper; such as plane scales, line of chords, protractor, compasses, reducing scales, parallel and perpendicular rulers, \&c.

In surveying the field-boor. required, as everything is plain table, a field-book is not when it is measured. But whan on the table immediately instrument is used, some sort the theodolite, or any other nd one end wer stands the end of rward the d straight 5 his hand $y$ in a line 0 both of he leader $k$ for the forward, anding at at every a side to rect line.
to register all that is done relative to the survey in hand. This book every one contrives and rules as he thinks fit. It is, however, usually divided into three columus. The middle column contains the different distances on the chain-line, angles, bearings, \&c., and the columins on the right and left are for the offsets on the right and left, which are set against their corresponding distances in the middle column; as ulso for such remarks as may occur, and may be proper to hote in drawing the plan; such as bouses, pouds, castles, churches, rivers, trees, \&c., \&c.

But in smaller surveys, an excellent way of setting down the work is, to draw by the eye, ou a piece of paper, a figure resembling that which is to be measured; and then write the dimensions, as they are found, against the corresponding parts of the figure. This method may be practised even in larger surveys, and is far superior to any other at present practised. A specimen of this plan will be seen further on.
ey in hand. thinks fit. mis. The es oll the ns on the left, which the middle ad may be ses, pouds, ting down ar, a figure then write espouding ed even in at present urther on.

Land surveying.

FORM OF THE FIELD-BOOK.

| Offsety and remarks on the left. |  | Offsets and remarks on the right. |
| :---: | :---: | :---: |
| Cross a hedge 24 <br> a brook 30 | $\begin{array}{cc} \square & 1 \\ 104^{\circ} & 25^{\prime} \\ 00 \\ 67 \\ 120 \\ 734 \\ 954 \\ 736 \end{array}$ | Brown's barn. <br> Tree. <br> 67 Stile. |
| House corner 61 <br> Footh-path 15 | $\begin{aligned} & 82 \\ & 62^{\wedge} \\ & 00 \\ & 40 \\ & 40 \\ & 67 \\ & 84 \\ & 95 \\ & 467 \\ & 976 \end{aligned}$ | 44 14 Spring. |
| Clayton's hedge 24 | $\square$ $\square$ 54 68 68 124 630 767 767 305 760 | 20 Pond. |

In this form of a field-book $\square 1$ is the first station, where the angle or bearing is $104^{\circ} 25^{\prime}$. On the left, at 67 links in the distance or principal line, is an offset of 24 ; and at 120 an offset of 30 to a brook on the right: at 67 Brown's barn is situated; at 954 is an offset of 20 to a tree, and at 736 an offset to a stile.

And so on for the other stations.
A line is drawn under the work, at the end of every station, to prevent confusion.

## PROBLEM II.

## To make angles and bearings.

Let it be required to take the bearings of the two objects $B, C$, from the station A.

In this problem it is required to measure the angle at $A$, formed by
 two lines, passing from the station $\mathbf{A}$, throngh two objects

## 1. By measurement with the chain, \&c.

Measure with the chain any distance along the two lines $A \mathrm{~B}, \mathrm{~A} \mathrm{C}$, as $\mathrm{A} b, \mathrm{~A} c$; then measure the distance $b c$; and this being done, transfer the three sides of the triangle A bc to paper, on which measure the angle $c A b$, as in Problem XV., Practical Geometry.

## 2. With the magneiic needle and compass.

Turn the instrument, or compass, so that the north end 0 : the needle may point to the flower-de-luce. Then direct the sights to a mark at B, noting the degress cut by the needle. Next direct the sights to another mark at C, noting the degrees cut by the needle as before. Then their sum or difference, as the case may be, will give the number of
degrees in the angle C A B. degrees in the angle C A B.

Direct the fixed sights along the line AB, by turning the instrument about till you see the mark B through these sights, and in that position screw the instrument fast. 'lien turn the moveable index about till, through its sights, you see the other mark C. Then the degrees cut by the index, on the graduated limb or ring of the instrument, show the number of degrees in the angle CAB.

## 4. With the plain table.

Having covered the table with paper, and fixed it on its stand, plant it at the station A., and fix a fine pin, or a point of the compass in a proper point of the paper, to represent the station A. Close by the side of this pin, lay the fiducial edge of the index, and turn it about, still touching the pin, till one object $B$ can be seen through the sights; tine by the fiducial edge of the index draw a line. By a similar process draw another line in the direction of the object C. And it is done.

## PROBLEM III.

## To measure the offsets.

Let Abcdefg be a crooked hedge, river, or brook, de., and A Ga base line.

Begin at the point $A$, and measure towards $G$; and when you come opposite to any of the corners $b c d$, \&ce., which is

ascertained by means of the cross-staff, measure the offsets $\mathrm{B} b, \mathrm{C} c, \mathrm{D} d$, \&c., with the chain, and register the dimension, as in the annexed field-book.

FIELD BOOK.

| 91 | 785 = A G. | $=$ |
| :---: | :---: | :---: |
| 57 | 634 | - |
| 98 | 510 | - |
| 70 | 340 | - |
| 84 | 220 |  |
| 62 | 45 | $=$ |
| - | $\square$ in go North. | - |
| Offsets | Base line A G, or | Offsets <br> Left. |

To lay down the plan.
Draw the line $A G$ of an indefinite length; then by a diagonal scale, set off A B equal to 45 links; at $B$ erect the perpendicular $B b$ equal to 62 links taken from the same scale. Next set off A C equal to 220 links, or 2 chains 20 links, and at $C$ erect the perpendicular $C$, equal to 84 links; in the same way set off A C equal to 340 links, or 3 chains. 10 links, and at $D$ erect the perpendicular $D d$ equal to 70 links. Proceed in a similar manner with the remaining offsets, and straight lines joining the points $\therefore b c d$, $e$, \&c., will complete the figure.

## To find the content.

Some anthors direct to add up all the perpendiculars B b, $\mathbf{C c}$, \&c., and divide their sum by the number of them, then multiply the quotient by the length $A G$. This method, however, should never be nse except when the isets B $b, C c$, \&c., are equally distant from each other.

When the offsets are not equally distant from each other, which indeed is generally the case, this method is erroneous; therefore the following method ought to be employed.

Find the content of the space A B $b$ as a triangle, by Pro. hem V., Section II. Find the contents of the figures $\bar{B} C c b$, O I) $d c$, \&c., as trapezoids, by Problem XIII., Section II., the sum of all these separate results will be the coutent of the figure $\mathbf{A} G g f e d c b \mathrm{~A}$.

The actual calculation is as follows :
calculation.


These respective products are evidently double the true contents of the respective figures $\mathbf{A B} b, \mathrm{BC} c b, \mathrm{CD} d \boldsymbol{c}$. \&c., that is,
$2790=$ double area of $A B b$.
$25550=$ double area of B C cb.
$18480=$ douhle area of C D $d c$.
$28560=$ double area of D E e d.
$19220=$ double area of E F $f e$.
$22348=$ double area of $\mathrm{EGg} f$.
2) $116948=$ doable area of the whole in square links.

58474 = area in square links.
$\cdot 58474=$ area in acres $=01 ., 2 \mathrm{R}$., 18.5584 p. the following field-book:


Ans. 04., 2R., 12p.


## PROBLEM IV.

To measure a field of a triangular form.

1. By the chain.

Set up marks at the three corners $A, B, C$, and measure with the chain, the distance $A D, D$ being the point at which a perpendicular demitted from $C$, would meet the line A B; measure also the distance D B; hence you have the measure of $\mathbf{A B}$. Next measure the perpendicular $D \mathrm{C}$; then from the two
 dimensions $\boldsymbol{A} B$ and $D \mathbf{C}$, the conten Problem -V., Section II.

Let $\mathrm{AD}=794, \mathrm{~A} B=1321, \mathrm{D} C=826$ links.
$1321 \times 826 \div 2=545573$ links.
Then, $545573 \div 100000=5.45573$ acres.

$$
4573 \times 4=1.82292 \text { roods }
$$

$82292 \times 40=32.91680$ perches.
Hence the answer 5a., 1r., 33p., nearly.
2. What is the area of a trianglar field, whose base is $12 \cdot 25$ chains, and beight 8.5 chains. Ans. 5 A ., $0_{\text {R., }} 33$.
2. By taking one or more of the angles.

Measure two sides A B, A C, and the angle A, included between them; then half the continual product of the two sides, and the natural sine of the contained angle will give the area.*

Or, measure the two angles $A$ and $B$, and the adjacent side A B, from which the figure may be planned, and the perpendicular C D found, which perpendicular being maltiplied by half the base A B, will give the area. Or by measuring the three sides of the triangle, its area may be found by Problem V., Section II.

## PROBLEM V.

## 1. By the chain.

To survey a four-sided field.
Measure the diagonal A C, and, as before directed, measare the perpendiculars DE and BF; then the area of each


[^108]of the triangles A B C, A D C may be found, as in the last problem, and both areas being added together, will give the content of the four-sided figure A B C D.

1. Let $\mathbf{A} \mathbf{C}=592, \mathrm{D} \mathbf{E}=210, \mathrm{BF}=306$ links. $592 \times 210=124320$ double area of $A B C$. $592 \times 306=181152$ double area of A B C .
2) 305472 double area of $A B C D$.

$$
\underset{4}{1 \cdot 52736}=\text { area of A B C D. }
$$

2•10944
4.37760

Hence 14., 2r., 4 p., the answer.

## 2. By taking one or more of the angles.

Measure the diagonal A C, also the sides $A \mathrm{D}$ and $A$ B. Next measure the angles D A C and B A C: then the area of each of the triangles $A B C$ and $A D C$ may be found by case 2 , last problem.
2. Required the plan and content of a field by the following field-book :

## FIELD-BOOK.

| - | $1360=$ A B. | - |
| :---: | :---: | :---: |
| 342 <br> 1190 <br> 600 <br> $\square D$ <br> go East. | - |  |
| Offsets <br> Left. | Station D, <br> or base line. | Offsets <br> Right. |

Ans. 6a., 2R., 12p.

Ho diago on it, tively

Let Set up there
into tral in the $t$ results

In thi be divid nals fro may be

The 18 GDEF measure and $B n$. anà tine

How many acres are there in a four-sided field, whose diagonal is 4.75 chaius, and the two perpendiculars fulting oll it, from its opposite angles, 2.25 and 3.6 chains, respectively?

$$
\text { Ans. } 1_{\text {A., }} 1_{\mathrm{R} .} 22 \cdot 3 \mathrm{p} .
$$

## PROBLEM VI.

To survey a field of many sides by the chain only.
Let ABCDEFG be the field whose content is required. Set up marks at the corners of the field, if there be none there naturally. Consider how the field may be best divided

into traperinms and triangles; measure them separately, as in the two last problems: and the sum of all the separate results will give the area of the whole field.

In this way of measuring with the chain, the field should be divided into trapeziums and triangles, by drawing diagonals from corner to corner, so that all the perpendiculars may be within the figare.

The last figure is divided into two trapezinms A B C G, GDEF, and the triangle GCD. In the first trapezium measure the diagonal $A C$, and the two perpendicnlars $G m$ and $B n$. In the trangle $G C D$, measure the base $G C$, anc the perpendicular $\bar{D} q$. Finally, measure the diagonal

F D, and the two perpendiculars $G o$ and $E p$. Having drawn a rough fignre resembling the field, set all these measures against the corresponding parts of the figure. Or set
2. $R$ them down thus:

Calculation.

| A m 135 | $130+180=310$, |
| :---: | :---: |
| A $n 415$ | $275 \times 310=85250=\dot{\text { A }}$ |
| A. C $550{ }^{180} n \mathrm{~B}$ | $440 \times 230 \div 2$ |
|  | C G D. |
| C G 440$\} 230 q$ D | $\begin{aligned} & 120+80=200,520 \div 2=260, \\ & 260 \times 200=42000=\mathrm{DEFG} . \end{aligned}$ |
| Fo 206 |  |
| Fp $p 288$ | $1.878502=$ ABCDEFG |
| FD $520{ }^{\text {c }} 80 \mathrm{p} \mathrm{E}$ | 4 , |

3.51400
20.56000

$$
1_{\mathrm{A} .,} 3_{\mathrm{R} .,} 20 \cdot 56_{\mathrm{P} .} \text {, answer. }
$$

Other methods will naturally present themselves to an ingenious practitioner who has read the preceding part of this work, or who has been previously acquainted with the principles of Mathematics. Every surveyor ought to be well acquainted with Plane Geometry at least. This, with a knowledge of Trigonometry, would be sufficient for the purpose of most surveyors.

The content of the last figure may be found by measuring the sides A B, BC,CD,DE, EF,FG,GA; and the diagonals A C, C G, G D, D F, by which the figure is divided into triangles, the conteit of each of which may be found by Problem V., Section II.

Ep. Having $t$ all these meafigure. Or set
land surveying.
2. Required the plan and conient of a field of an irregular form from the following.
field-boor.


Ans. 10 A., $1_{\text {R., }}$ 24•64p.

## PROBLEM VII.

To sirvey a field with the theodolite, \&c.

1. From one point or station.

When all the angles can be seen from one point, as sup-

Having placed the instrument at $\mathbf{C}$, turn it about till, through the fixed sights, the mark $B$ may be seen. Fixing the instrument in this po ition, turn the moveable index about, till the mark $A$ is seen through the sights, and note the degrees on the instriment. In the same manner, tarn the
 index successively to the angles $\mathbf{E}$ and D, B note the degrees cut off at each; by which you haveare to angles, viz, B C A, B C E, B C D. Now, having obtained the angles, measure the lines C B, C A, C E, C.D; entering the respective measures against the corresponding part of a rough figure, drawn to resemble the figure.

## 2. By going round the field.

Set up marks at B, C, D, \&c. Place the instrument at the point $A$, and turn it avout till the fixed index be in the direction A B, and then screw it fast: turn the moveable index in the direction A $F$, and the degrees cut off will be

the angle $A$; next measure $A B$, and planting the instrument at. B, measure, as before, the angle B; measure the line $B C$, and the angle $C$ : and so proceed round the figure, always measuring the side as you go along, as also the angles.
The 32d Proposition of sie 1st Book of Euclid affords an easy method of proving the work : thus, add all the internal
angles must has sid has a which right interna than 18 Whe first cas in the and the figure.

Measu near the along the as before conuectin the plane on the pa with the sures are and angle the field.

III surv marks at lines $s \mathrm{E}$, angles E's the four-si $\boldsymbol{s}, k, l, m$, and of the

When t? in the abo
angles, $A, B, C, \& c$., of the figure together, and their sum must be equal to twice as many right angles as the figure has sides, wanting four right ungles. But when the figure has a re-enterant angle as $\mathbf{F}$, measure the external anyle, which is less than two right angles, and deduct it from four right angles, or 360 degrees, the remainder will give the internal angle (if such it may be called), which is greater than 180 degrees.

When the field is surveyed from one station, as in the first case shown above, the content of the figure is found as in the second case of Prob. IV., since we have two sides and the angle included between them in each triangle of the figure.

## PROBLEM VIII.

## To survey a feld with crooked hedges.

Measure the lengths and positions of lines running as near the sides of the field as you can; and, in proceeding along these lines, measure the offiets to the different corners, as before taught, and join the ends of the offsets; these conuecting limes will represent the required figure. When the plaue table is used, the plan will be truly represented on the paper which covers it. But when the survey is made with the theodolite, or other instrument, the different measures are to be noted in the field-book, from which the sides and angles are laid down on a map, after returniug from the field.

Iu surveying the piece $\dot{A} B C D E F G H I K L M$, set up marks at $s$ E F $x$. Begin at the station $s$, and measure the lines $s \mathrm{E}, \mathrm{E} \mathbf{F}, \mathrm{F} x, x$, as also their positions, or the angles E $s x, s$ EF, E F $x$, and $\mathrm{F} x s$; and in going along the four-sided firure s E F $x$, measure the offsets at $a, b, d$, $\mathfrak{g}, k, l, m$, as before taught. By means of the figure $s$ E F $x$, and of the offsets, the ground is easily planned.

When the principal lines are takeu within the figure, as in the robeve case, the contents of the exterior portions

$s$ C B A, C D E, \&c. must be nidded to the area of the quadralateral $s x$ F E . But when the principal lines are taken outside the figure, the portions included between them and the boundaries of the feld are to be deducted from the content of the quadralateral, and the remainder will give the true content of the field.


When there are obstractions within the figare, sach as wood, water, hills, \&c., measare the lengths and positions of the four-sided figure $a b c d$, taking care to measure the offets from the difierent corners as you go along.

## L.AND gCRTEYING.

## PROBLEM IX.

To surrey any piece of land by two stations.
Choose two stations, from which all the corners of the ground can be seen, if possible; measure the distance between the stations; at each station take the angles formed by every object, from the station line, or distance. Then the station line, and these duferent angles being laid down from a regular scale, and the external points of intersection connected, the connecting lines will give the bonndary.

The two stations may be taken within the bounds, in one of the sides, or withont the bounds of the ground to be surveyed.


Let $m$ and $n$ be two stations, from which all the marks A, B, C, \&e., can be seen, plant the instrument at $m$ and by it, measure the angles $\mathbf{A} m n, \mathbf{B} m n, \mathbf{C} m n$, \&c. Next measure $m n$, and planting the instrament at $n$, measure the angles Anm; Bnm,Cnm, \&c. These observations being planned the lines joining the points of external intersection, will give a true map of the ground. The method of inding the content will be shown further on.

The principal objects on the ground may be delineated on
the man. by measuring the ingles at each stution, which




 ohsorving the angies formed be all the vasible oljocte with
 loriming. Ihes respective anghes, will give the positomo of mil the ramonkalite oljects thus uhserved.

In lhis manner may very extensive survers he taken; and the positions of hills, rivers, coasts, dec., aseertained.

## PRÚBLEM $X$.

## To survey a large estate.

The following method of surveying a large estate was first given hy Emeroon, in his "Surreying," page 47. It has been folliuned by IInton and Ke:th.
When the estate is very large, ami contains a great numher of tiekis, it e: ant he accomately surveged and phamed by neasming each intl: spamately, and then adding ull the stparate resmes towether; mor by taking all the angles, nad measming the homdaries that enelose it. For in these canses the sumbll errors will be so multipled as to render it very much distorted.

1. Walk over the estate two or three times, in order to get " purfert inta of its ligure. And to help yom memory, make a pough draft of it on paper, inserting the mames of thin different fields within it, and noting down the principal ohjecto.
2. C oose two or more elevated places in the estate for your stations, from which you can see all the principal parts of it; and let these atations be as far distant from each other
as possible, as the fewer stations yon have to command the whole, the more exact the work will be.
In selecting the stations, cure should be taken that the lines whelt comnect them may run along the boundaries of the estate, or some of the hedges, to which offsets may be taken when necessary.
3. 'lake such angles, between the stations, as you think necessary, and measure the distance from station to station, always in a right line; these things must be done till yon get ats miny lines and angles as are sufficient for determining all the station points. In measuring any of these station distances, mark accurately where these lines meet with miy hedges, ditches, roads, lanes, paths, rivulets, \&c., and where my remarkable object is phaced, by measuring its distance from the station line; and where a perpendicular from it cuts that line; nud always mind, in any of these observations, that you be in a righo line, which you may easily know by taking a back-sight and fore-sight, along the station line." In going along any main station line, take offisets to the ends of all hedges, and to miny pond, house, mill, bridge, \&e:, omitting mothing that is remarkuble. All these things must be noted down; for these are the data by which the places of such objects are to be determined on the plan.

Be careful to set up marks at the intersections of all hedges with the station line, that you may know where to measare from when you come to survey the particular fields that are crossed by this line.

These ficlds must be measured as soon as you have completed your station line whilst they are fresh in your memory. In this mamer all the station lines must be measured, and the situations of all adjucent objects determined. It will be proper to hay down thie work ou paper eve $i_{\text {y }}$ night, that you may ste how you go on.
4. With respect to the internal parts of the sstate, they mast be determined by new station lines; for, ufter the main stations aro determined, and every thing adjoining to them, then the estater must be subdivided into two or three
parts by new station lines: taking the inner stations at proper places, where you can have the best view. Measure thete station lines as you did the first and all their intersections with hedges, ditehes, roads, \&c., also take offsets to the bends of hedges, and to such objects as appear near these lines. Then proceed to survey the adjoining fields by taking the angles which the sides make with the station line at the intersections, and measuring the distances to each corser from these intersections; for, cevery station line will be a basis 10 all future operations, the situation of every object being entirely dependent on them; and therefore they should be taken of as great leugth as possible: and it is best for them io ran along some of the hedges or boundaries of one or more fields, or to pass through some of their angles.

All thing being determined for these stations, you must take more inner stations, and continue to divide and subdivide, till at last you come to single fields; repeating the same work for the inner stations as for the outer ones, till the whole is finished. The oftener you close your work, and the fewer lines you make use of, the less yon will be liable to error.
5. An estate may be so situated that the whole cannot be surveyed toget $\therefore$, because one part of the estate may not be seen from another. In this case you may divide it into three or four parts, and survey these parts separately, as if they were lunds belonging to different persons, and at last join them together.
6. As it is necessary to protract or lay down the work as you proceed in it, you must have a scale of due length to do it by. To get such a scale, measure the whole length of the estate in chains; then consider how many inches long the map is to be; and from these you will know how many chaius you must have in an inch: theu make your scale accordingly, or choose one already made.
7. The trees in every hedge-row may be placed in their proper situation, which is soon done by the plane table; but may be done by the eye. without an inst at; and being
thus taken by guess in a rough draft, they will be exact enough, being only to look at; except it be such as are at auy remarkable places, as at the ends of hedges, at stiles, gates, \&c., and these must be measured or taken with the plane table, or some other instrument. But all this need hedges, what side the gutter or ditch is on, and to whom the fence belongs.

## PROBLEM XI.

## To survey a town or city.

To survey a town or city, it will be proper to have an instrament for taking angles, such as a theodolite or plane table; the latter is a very convenient instrument, becanse the minute parts may be drawn npon it on the spot. A chain of 50 feet long, divided into 50 links, will be more convenient thau the common surveying chain, and an offset staff of 10 feet long will be very nseful. Begin at the meeting of two or more of the principal streets, through which you can have the longest prospects, to get the longest station lines. There having fixed the instruments, draw lines of direction along these streets, using two men as marks, or poles set in wooden pedestals, or perhaps some remarkable places in the houses at the farther ends, as windows, doors, corners, \&c. Measure these lines with the chuin, taking offsets with the staff, at all corners of streets, bendings, or windings, and to all remarkable objects, us churches, markets, halls, colleges, eminent buildings, \&c. Then remove the instrument to another station along one of these lines, and there repeat the same process as before. And so continue until the whole is finished.
'Thus, fix the instrument at $A$, and draw lines in the directions of all the streets meeting there; then measure A. C, noting the street at $x$. At the second st tion $C$, draw the directions of all the streets meeting there; measure from 0 to $D$, noting the place of the street $K$, ae jon pass hy it. A.

the third station D, take the direction of all the streets
measure all the hases and perpendirulars of nll these new fignes, by means of the sente from which the plan was drawn, and from these dimensions compute the contents, whether trimgles, or trupeziums, by the proper rules for finding the areas of such figures.

The chief difficulty in computing consists in fisding the contents of land hounded by curved or very irreguhar tines, or in reducing such crooked sides or hommaries to straight lines, that shall enclose an equal area with those crooked sides, and so obtain the area of the curved figure by means of the right-lined one, which in general will be a trapeciann.

The reduction of crooked sides to straight ones is easily pertormed thus:

Apply a horse-hair or silk thread across the crooked sides in such a mammer, that the small parts cint 'ot' from the crooked firure by it, may he equal to those token in. A little practice will enable yon to exclude exactly us mach as you include; then, with a pencil, draw a line along the thread or horse-hair. Do the same by the other sides of the figne, and you will thas have the figure rednced to a struight-sided figure equal to the curved one: the content of which, heing computed as hefore directed, will he the content of the curved figure proposed.

The best way of using the thread or horse-hair is, to string a small slender bow with it, either of whatebone or wire, which will keep it stretched.

If it were required to find the contents of the following crooked-sided figure; draw the four dotted straight limes. A B, B C, C I), and D A, excluding as mueh from the survey as is tuken in by the straipht lines; by which hac cronked firgure is reduced to a right-lined one, both equal in area. Then draw the diagonal B D, which heing mensurrel by a proper scale, and multiplied by half the sum of the perpendiculars let $f_{B} l l$ from $A$ and $C$ upon B D (measured ou the sarie scale), will give the area required.


Many other methods might have been given for compating the contents of a survey, but they are omitted, the above being, perhaps, the most expeditious.
3.
base
solid
is 8 the $b$ city
5.
reach street out of on the
6.

## MISCELLANEOUS PROBLEMS.

or compating d, the abnve
distance of 5 feet asunder on the axle-tree, what was the circuaference of the track described by the onter wheel? Ans. 63 feet, nearly.
7. A cable which is 3 feet long, and 9 inches in compuss, weighs 22 lbs. ; what will a fathom of that cable weigh, which measures a foot abont?

Ans. is iths.
8. Haw mnyy rialid cubes, a side of which equals 4 inches, may be cut out of a large cube, whose side is 8 inches?
9. Determine the areus of an equilateral triangle, a square, a hexagon, the perimeter of each being 40 feet ?

$$
\text { Ans. } 76 \cdot 980035-100-115 \cdot 47 .
$$

10. A person wants a exlindricul vessel 3 feet deep, that shall contain twice as much as another cylindrical vessel whose diameter is $3 \frac{1}{2}$ feet, and altitude 5 feet; find the diameter of the required vessel?

$$
\text { Aus. } 6 \cdot 39 \text { feet. }
$$

11. Three persous having bought a couical sugar-loaf,

1 shal the

$$
20 .
$$

milk s be cot
other
cost 4
the to
to kno
quanti
21.
inch, t inchen
15. A cirenlar fish-poud is to be made in a garden, thant shall tuke up just half an acre; what must be the length of the chord that strikes the circle? Ans. $27 \frac{3}{4}$ yurds.
16. A gentleman hes a gurden 100 feet long, and 80 feet broad. Now a gravel walk is to be made of an equal width all round it; what must the breadth of the walk be, to take up just half the ground?

Ans. 12.9846 feet.
17. A silver cup, in form of a frustum of a cone, whose top diameter is 3 inches, its bottom diameter 4, and its altitude 6 inches, being filled with liquor, a person drank ont of it till he could see the middle of the bottom; it is required to find how much he drank? Ans. $\cdot 152127$ ale gallous.
18. I have a right cone, which cost me.£5 13 s . 7d., at 10s. a cubic foot, the diameter of its base being to its altitude as 5 to 8 ; and would have its convex surface divided in the same ratio, by a plane parallel to the base; the upper part to be the greater; required the slant height of each part?

Ans. $\left\{\begin{array}{l}3.9506486, \text { the slant keight of the upper part. } \\ 1.0854612 \text { then }\end{array}\right.$ from the top of a steeple whose height is 400 feet, the earth being supposed to be a perfect sphere, whose eireumference is 25000 miles. Ans. $12120981 \cdot 338267112$ acres.
20. Two boys meeting at a farm-honse, had a tankard of milk set down to them; the one being very thirsty drank till he could see the centre of the bottom of the tankard; the other drank the rest. Now, if we suppose that the milk cost $4 \frac{1}{2} d$., and the tankard measured 4 inches diameter at the top and bottom, and 6 inches in depth; it, is required to know what each boy had to pay, proportionable to the quantity of milk he drank?

## Ans. $\left\{\begin{array}{r}14-1802815 \text { farthings for the first. } \\ 3.8197185 \text { farthings for the second. }\end{array}\right.$

21. If the linear side of a certain cube, be increased one inch, the surface of the cube will be iuereased 246 square inches : determine the sicu of the cube.
22. If from a piece of tin, in the form of a sector of a circle, whose radius is 30 inches, and the length of its arc 38 inches, be cut another sector whose radius is 20 inches; and if then the remaining frustum be rolled up so as to form the frustum of a cone; it is required to find its content, supposing that one-eighth of an inch to be allowed off its slant height for the bottom, and the same allowance of the circum. ference, of both top and bottom, for what the sides fold over each other, in order to their being soldered together? Ans. $685 \cdot 3263$ cubic inches.
23. Three men bonght a grinding-stone of 40 inches diameter, which cost 20 s., of which sum the first man paid $9 s$., the second $6 s$., and the third 5 s., how much of the stone must each man grind down, proportionably to the money he paid?

Ans. The first man must grind down $5 \cdot 167603$ inches of the radius; the second 4.832397 inches, and the third 10 inches.
24. There is a frustum of a cone, whose solid content is 20 feet, and its length 12 feet; the greater diameter is to the less as 5 to 2 ; what are the diameters?

$$
\text { Ans. }\left\{\begin{array}{r}
2 \cdot 02012 \text { feet. } \\
-80804 \text { feet. }
\end{array}\right.
$$

25. A farmer borrowed of his neighbour part of a hayrick, which measured 6 feet in length, breadth, and thickness; at the next hay-time he paid back two equal cubical pieces, each side of which was 4 feet. Has the debt been discharged? -ins. No; 88 cubic feet are due.
26. There is $a$ bowl in form of the segment of an oblong spheroid, whose axes are to each other in the proportion of 3 to 4 , the depth of the bowl one-fourth of the whole transverse axis, and the diameter of its top 20 inches; it is required to determine what number of glasses a company of 10 persons would have in the contents of it, when filled, using a conical glass, whose depth is 2 inches, and the diameter of its top an inch and a half.

$$
\text { Ans. } 114.0444976 \text { glasses each. }
$$

27. If anhinal foot of bress wert to be urawa into wire
of $\frac{1}{x}$
lengt
28. pile, and $t$ and 6 29. pile 0 40 an 30. for a bore $n$
29. feet, al in the $6 \cdot 15$, it
30. 

sisting
scribing
33.
quired
34. sum of ment of
35. posite 0 lengths shorter the leng roof, anc Ans. of the $b$
a sector of a ngth of its arc is is 20 inches; p 80 as to form id its content, ved off its slant of the circum. the sides fold ed together? ubic inches. 40 inches diaman paid $9 s$., the stone must oney he paid? 603 inches of the third 10
lid content is neter is to the

02012 feet. 80804 feet. art of a hayin, and thickequal cubical he debt been et are due. of an oblong roportion of whole transles; it is recompany of when filled, les, and the
isser each. wa into wire
of $\frac{\pi}{6}$ of an inch in diameter; it is required to determine the length of the said wire, allowing no loss in the metal?
28. How many shot are ther. $55 \frac{5}{g}$ miles. pile, the length and breath there in an unfinished oblong and the length and breadth of whose base being 48 and 30 , and 6 ?
29. How Ans. 17356. pile of 12 courses; b are there in an nnfinished oblong 40 and 10 shet res, length and breadth of the top contain

30 . Of what Ans. 8606 shot. for a ball of 24 pounds must the bore of a cannon be cast bore may be 1 pounds weight, so that the diameter of the bore may be $\frac{1}{1}^{\frac{1}{0}}$ of an inch more than that of the ball?

$$
\text { Ans. } 5 \cdot 757098 \text { inches. }
$$

31. What is the content of a tree, whose length is $17 \frac{1}{2}$ feet, and which girts in five different places as follows, viz., in the first place $9 \cdot 43$ feet, in the second $7 \cdot 92$, in the third $6 \cdot 15$, in the fourth $4 \cdot 74$, and the fifth $3 \cdot 16$ ?
32. What three numbers will express the proportions subsisting between the solidity of a sphere, that of the circumscribing cylinder, and circumscribing equilateral cone? Ans. 4, 6, 9.
33. Given the side of an equilateral triangle 10 , it is required to find the radii of its circumscribing circle?

Ans. $5 \cdot 7736$.
34. Given the perpendicular of a plane triangle 300 , the sum of the two sides 1150 , and the difference of the segment of the base 495; required the base and the sides?

$$
\text { Ans. 945, 375, and } 780 .
$$

35. A side wall of a house is 30 feet high, and the opposite one 40 , the roof forms a right angle, at the top, the lengths of the rafters are 10 feet and 12; the end of the shorter is placed on the higher wall, and vice versû; required. the length of the upright, which supports the ridge of the roof, and the breadth of the house?

Ans. $41 \cdot 803$, length of upright, and 12 feet the breadth of the bouse.

## A TABLE

## OF THE AREAS OF TIIE SEGMENTS OF A CIRCLE，

Whove diameter is 1 ，and supposed to be divided into 1000 equal parts．

|  | Area $\mathrm{Seg}_{\text {en }}$ ． | Hetight． | Ared ${ }^{\text {a }}$ ers． | itright． | Area Seg． | Height． | Alph ${ }^{\text {ceg．}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| － 101 | － 000012 | －038 | －009－133 | ． 075 | －02 0 －61 | －112 | －048：30 |
| － 102 | －000119 | －033 | －010148 | －Qif | －027339 | － 113 | －045844 |
| － 0418 | － 1609219 | －0 011 | － 010837 | ．07\％ | －027ぶ1 | －114 | －04：15，${ }^{\text {O }}$ |
| － 004 | 0.10387 | －1）41 | －010931 | － 118 | （12430゙6 | － 110 | －0ü0145 |
| － 00.3 | － 000470 | －012 | －011330 | －074 | －0．88494 | － 116 | － $0.5(180) 4$ |
| －00）t | ＇000618 | －043 | 011734 | －080 | $0 \cdot 9435$ | －117 | － 0 E14．fi |
| －1117 | －000779 | －01t | － 012142 | －081 | －086979 | － 118 | －0．20） |
| － 008 | －000951 | － 114. | －0125is | －08： | －0：10．72； | －119 | －0．3－3：36 |
| －009） | －001135 | －0413 | 01997 | －0．3：3 | 031076 | －120 | － 1535388 |
| －010 | －001：3！ | － 047 | － 018389 | －0．34 | －0．31039 | －121 | － $05.40: 36$ |
| －011 | －0015：3．3 | －018 | －018818 | －085 | －0：32180 | －12．2 | －0．54i88 |
| －012 | －00174tj | － 049 | － 014247 | －08； | －03．－45 | －183 | －05538 |
| －013 | －0019．18 | －0．50 | －014631 | ． 087 | －0：38：507 | －124 | －（0）${ }^{\text {a }}$ |
| －014 | －013213n | －051 | － 015119 | －088 | －03338－3 | －125 | － 0 Einibis |
| －015 | －100．4：38 | －053 | －016．54 | －089 | $\cdots 34411$ | －120 | －0．5－3．3i |
| －011i | －1002 3 85 | －059 | 013007 | － 040 | 03．3011 | －127 | －0．5－i， 1 |
| －017 | － 00.3440 | －054 | －01134 3 | －091 |  | － 128 | －058ijis |
| － 018 | －00：3：202 | －0．i5 | － 016911 | －093 | －0：361！${ }^{2}$ | －12！ | －0．94：3－ |
| －019 | －013471 | －05； | －017389 | －043 | － $0: 36741$ | －1：10 | － 0.508899 |
| －029 | －00：3748 | －057 | ． 017881 | －094 | －0：3782：3 | －181 | －000i\％ |
| －021 | －004081 | －0．38 | －018．393 | －09．5 | － 137909 | －132 | － 011348 |
| －023 | －104829 | －059 | －0187tit | －（19）？ | －0889！${ }^{\text {a }}$ | －133 | － 0 i $002 i$ |
| －0：3 | －001618 | －060 | －019：39 | －097 | －039087 | －1：34 |  |
| － 021 | －004921 | －0131 | － 114716 | －098 | －0：39＋380 | ． 135 | － 01333888 |
| －0\％） | － $005 \pm 30$ | －0：3 | － 020161 | －099 | － 040276 | －186 | －0idor4 |
| －02， | －00．．i46 | － $013 \%$ | － $0 \cdot 3!+81$ | － 100 | ． 01085 | － 137 | －014760 |
| － 02 | － 00 E8is | －0154 | －0） 21168 | － 101 | －041176 | －138 | －065144 |
| －02r | －006191 | －0135 | －0211559 | －102 | －0．14380 | － 139 | －Oti61 40 |
| －0， 3 | －0015： 7 | －014 | － $0 \cdot 2.2154$ | －103 | － 0124687 | － 140 | －10468：33 |
| －0：30 | － 100186 | －057 | －02，\％${ }^{\text {a }}$ | －104 | －043246 | － 141 | － 067528 |
| －0：31 | －00－ 000 | －068 | －023154 | － 105 | －043：0 | －142 | －098＊25 |
| －0：3 | －1475．8 | －004 | － 0233859 | － 109 | － 014603 | －143 | －038421 |
| －0；3： | －007913 | －070 | － 011138 | －107 | －045130 | － 144 |  |
| －0．31 | －00x273 | －071 | － 121380 | － 108 | － 015759 | －145 | －070：328 |
| －0335 | －1081：38 | －07\％ | －02．j195 | － 109 | － 0463381 | － $14 i$ | － 0 － 1033 |
| －0．3＇ | －1109008 | $\cdot 073$ | － 035714 | － 110 | －047005 | ． 147 | －0717．f1 |
| ． 037 | －0048883 | －074 | －1）36236 | －111 | －04763\％ | ． 148 | － 0 －！！！ |

AREAS OF THE SEGMENTS OF A CIRCTE:

## CIRCLE,

000 equal parts.


Atraceg
-048:3:2
-048894

- $04: 15: 28$
- (0)0165
-05080 4
-05144is
-0.:23:30
-0.32736
-05:3:\%
-05.41:36
-0.54i89
-0.50.45
- (0)
-05
-0.7.32
-0.37: 1.1
-0.088:8
-0.043:
-0.501499
-0.0itio
-0.13.18
-06302i

-0032089
-064074
-004760
-065 149
-0bel 40
-0668:3:3
-067528
-0682.25
-038924
-06! fen
-070:32
-0T103?
-0713.4 -0! ! ! ! !

| Height. | \| Area sug. | Ateight. | Area Seg. | Height. | Area Seg. | Height. | Area Sag. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -329 | -225093 | -372 | - 266111 | -415 | - 308110 | -458 |  |
| - 330 | -220033 | -373 | . 267078 | . 416 | - 309095 | -458 | - 350748 <br> - 351745 |
| -331 | - 2226974 | -374 | - 268045 | -417 | -310081 | - 460 | $\begin{array}{r} \cdot 351745 \\ \cdot 352742 \end{array}$ |
| - 332 | - 227915 | -375. | - 269013 | . 418 | -311068 | -461 | $\begin{array}{r} \cdot 352742 \\ \cdot 353789 \end{array}$ |
| -333 | -228858 | -376 | - 269982 | . 419 | -312054 | . 462 | $\text { - } 354736$ |
| - 334 | -229801 | -377 | -270951 | . 420 | -313041 | -463 | -355732 |
| - 835 | - 230745 | -378 | . 271920 | - 421 | -314029 | -464 | $\text { - } 350330$ |
| -336 | - 231689 | - 379 | . 272890 | - 422 | -315016 | . 465 | -357727 |
| - 337 | -23:2634 | -380 | . 273861 | . 423 | -316004 | -466 | -358725 |
| -338 | -238580 | -381 | - 2.4832 | -424 | -316992 | . 467 | -359723 |
| -339 | - 234526 | -382 | $\cdot 275803$ | -425 | -317981 | -468 | $\text { - } 360721$ |
| - 310 | - 235173 | - 883 | - 276775 | -426 | -318970 | -469 | $\text { - } 361719$ |
| -311 | - 286421 | -384 | -277748 | -427 | -319959 | -470 | -362717 |
| -342 | -337369 | -385 | . 278721 | -408 | - 320918 | .471 | -363715 |
| - 313 | - 238318 | -386 | -279694 | . 429 | -321938 | -472 | -364713 |
| -344 | -239248 | -387 | - 280 668 | -430 | -3229.88 | . 473 | -365712 |
| - 345 | - 240218 | -388 | . 281662 | . 431 | -323918 | . 474 | - 366710 |
| - 346 | - 241169 | -389 | -282617 | -432 | -324900 | . 475 | -367709 |
| - 347 | - 242121 | -390 | - 288592 | -433 | -325900 | -476 | -368708 |
| - 348 | -243074 | -391 | -284568 | -484 | - 326892 | . 477 | -369707 |
| - 349 | -244026 | -392 | - 285544 | -435 | -327882 | . 478 | . 370706 |
| -350 | -244980 | -393 | -286521 | -436 | -328874 | . 469 | -371705 |
| -351 | - 245934 | -394 | -28-498 | -437 | -329866 | . 480 | -372794 |
| -352 | - 246889 | -395 | - 288176 | -438 | - 330858 | -481 | -373703 |
| - 353 | -247845 | -396 | . 289453 | . 439 | - 331850 | -482 | -374702 |
| - $35 \pm$ | -248801 | -397 | . 290432 | . 440 | - 332843 | . 483 | -375702 |
| - 850 | -249757 | -398 | -291411 | .441 | . 333836 | . 484 | . 376702 |
| - 8356 | -250715 | -399 | -292390 | -442 | - 334829 | . 485 | . 377701 |
| - 357 | . 251673 | . 400 | - 293309 | .443 | . 335822 | . 486 | .878701 |
| - 358 | -25:631 | - 401 | -294319 | -444 | - 336816 | -487 | $.379700$ |
| - 859 | -2:3590 | -402 | - 295380 | . 445 | - 337810 | . 488 | $\text { - } 380700$ |
| - 360 | - 254550 | . 403 | - 296311 | - 446 | -338804 | . 489 | . 381699 |
| -361 | - 2.55510 | - 404 | - 297292 | .447 | -339798 | . 490 | -382699 |
| -3ti2 | . 256471 | - 405 | - 208273 | - 448 | -310793 | -491 | $\text { - } 383699$ |
| -3i3 | - 257433 | -40t | - 2992.55 | -449 | - 341787 | . 492 | $\text { . } 084699$ |
| -364 | - 258395 | - 497 | - 300288 | .450 | -342782 | -498 | . 885999 |
| - 3135 | . 259357 | - 403 | - 301220 | - 451 | . 343 7\% | -494 | -386699 |
| . 366 | - $2303 \geqslant 0$ | - 409 | -302208 | -452 | 344772 | . 495 | . 387699 |
| - 367 | - 281284 | - 410 | -30318i | . 453 | -345768 | . 490 | . 388699 |
| -3138 | - 262248 | - 411 | -304171 | - 64 | - 3476763 | - 497 | - 383699 |
| - 3139 | - $2 \pm 8218$ | -412 | -305155 | . 455 | -347-59 | - 498 | -390699 |
| .870 | -2;4178 | - 413 | -306140 | - 456 | -348755 | -499 | - 391699 |
| -371 | - 265144 | -414 | - 307125 | -457 | - 349752 | -600 | -392839 |

## CLE

| Height. | Area Sog. |
| :--- | :--- |

-458 -350748
-352742

- 353739
-354736
-355732
-356730
-357727
-358725
- 359723
- 360721
- 361719 -362717 - 363715 - 364713 - 365712 -366710 -367709 -368708 - 369707 - 370706 -371705 -372734 -373703 -374702 -375702 -376702 37701 878701 -379700 -380700 381699 -382699 - 383699 - 884699 - 885999 386699 387639 388699 -380699 390699 391699 -392809




[^0]:    *See Appcudix, Denoustration 1.

[^1]:    - See Appendix, Demonstration 4.

[^2]:    * See Appendix, Demonstration 7.

[^3]:    * In mutiplication, the multiplier must always be a number of times; to talk of multiplying feet by feet, \&c. is absurd, for what notion can be formed of 7 feet taken 3 times? Howerer, since the above easily suggests the correct meanillg, and is a concise method of cxpressing the rule, it has been thought proper to retala it. See Appendix, Denomination 8.

[^4]:    * See Appendix, Demonstration 8.

[^5]:    * See Appendix, Demonstration 11.
    t See Appendix, Demonstration 12.

[^6]:    * See Appendix, Demonatration 13.
    t See Appendix, Demonstration is.
    f See A ppendix, Demonatration 16.

[^7]:    * Aoe Appendix, Demonstration 16.
    *2

[^8]:    * See Appendix, Demonstration 17.

[^9]:    - Seo Appendix, Demonstration 18.

[^10]:    * Seo Appoddix, Demonatration 10

[^11]:    

    + In Appendix, Demopstration 20.
    In finding the area of an Irregular figure, draw a line, theough the extreme the polygon, which on which let fall perpendiculars from pht the other anglea of of these by Problems IV. and XIII.

[^12]:    * See Appendix, Demonstration $2 z$.

[^13]:    - See Appendix, Demonatration 23.
    $\dagger$ See Appendix, Demonstration 24

[^14]:    * By "versed sine," in works on mensuration, is not meent the trisengmetrical
    $\dagger$ See Appendin, Demonstration of helf the are.
    \& Ee Appendix, Demonstration 22.
    S Sew Appendix, Demonatration 29.

[^15]:    * Eec Appendix, Demonetration 26.

[^16]:    4 Se Appandlx, Demonatration 27.
    Sth Appendfx, Demonstration 27.

[^17]:    * See Appendix, Demonstration 30.
    $\dagger$ Ree Appendix. Demonatration 81.
    

[^18]:    200 Appendix, Demonatration 83
    A Appandix, Demonatration 84 \& see Appondix, Domonatration 24

[^19]:    Nots J. If the quotient of the helght by the diameter be greater than 3 sulh. truct it from I, and find the Area Seg. correapending to the remainder, which subtract from 7854 for the correct Area Seg.
    Nots: II. If the quotient of the height by the diameter does not terminate in three figures, find the Area Seg. corresponding to the firt thes not terminate in malnder by the fractract it from the next greater Area Seg., multiply the resegment first taken fractional part of the quotient, and add the product to the area fractional part may be omltted.
    6. Let the diameter be 20 , and the versed sine 2 , required the area of the segment?

    $$
    \begin{aligned}
    & \boldsymbol{z}^{2} \delta=\cdot 1 \text {, to which answers } \cdot 040875
    \end{aligned}
    $$

    Square of diameter, 400

[^20]:    *See Appendix, Demonstration 37.

[^21]:    * See.Appendix, Demonatration 88.

[^22]:    *See Appendix, Demonstration 89.
    † See A prendix, Demonstration 40.

[^23]:    FFor defnitluns of the ellipsin (or, es it is frequently written, ellipue) sad the t Soe Appendix, Demons Appendix, Proporties of the Conic sections.

[^24]:    * Ale Appondix, Demonstration 48.

[^25]:    * See Appendix, Demonntration 44.
    † See Appendix, Demonntration 44.

[^26]:    

[^27]:    * See Appendix, Demonstration 46.
    \$ See Apperdiar, Demonstration 46.

[^28]:    * See Appendiz, Demonztration 50.

[^29]:    *See Appondix, Demozatration 81.

[^30]:    *Ses Appendix, Demoustration 60.

[^31]:    * Bee Appendix, Demonstration 63. † See Appendix, Deinonstration 54.

[^32]:    - See Appendix, Domonstration 64.
    - Sine Appendix, Demonstretiow fis

[^33]:    * Soe Appondix, Demonstration sf.

[^34]:    * Sice Appendix, Demonstration 67.

[^35]:    *See Appendix, Demosistration 38,
    t Soe Appendia, Drmonstration 69.

[^36]:    - Sce Appendix, Demenatration no.
    \%

[^37]:    - seo Appaidíx, Demsonatration é.

[^38]:    *See Appendix, Demonstration 63.

[^39]:    * Bee Appendix, Demonstration 64.

[^40]:    *See Appendix, Dornonstration 6s.

[^41]:    - See Appondis, Demanstration Ch

[^42]:    * Sea Appendix, Demonstration 64

[^43]:    * Sen IIrrendix, Demonatration 64. ; Eve Appendix, Demonstralion 6a.

[^44]:    - Ampendix. Damonatration 06.

[^45]:    * See Rppegdix, Dẹmonstration 67:

[^46]:    * See Appendlx, Demonetration' 68.

[^47]:    * See Appandix, Demonstration 69.
    † See Appendix, Demonttration 70.

[^48]:    * See Appeadlx, Demonstration 71.

[^49]:    * See A prendix, Demonstrution 72.
    † See Appendix, Demonatration 73.

[^50]:    * Dee Appendix, Demonstration 74.

[^51]:    *See Appendlx, Demonatration 76.

[^52]:    *See Appendix, Demonatration 77.

[^53]:    * Eee Appendix, Demonatretion 78.

[^54]:    - See Appendix, Demonstralion 79.

[^55]:    * See Appendix, Demnnstration 80.
    † See Apleudix, Dempustration of.

[^56]:    - 800 Appendix, Demonatration 62.

[^57]:    * See Appendix, Demonstration 88.
    t See Appendix, Demonstration 84.

[^58]:    - Seo Appendix, Demonstration 85.

[^59]:    * See Appendix, Demonstration 86.

    5*

[^60]:    * Soe Appendix, Damonatrition 87.

[^61]:    - Seo Appendix, Demonatrallon es.

[^62]:    - Eet Appendix, Dernonctration 89.
    + Soo Appendix, Demonstration of.

[^63]:    - If Aguren aimilar to those annexed to the defniluons, bo drawn on pasteboand, and cot out, by cutting through the bounding lines, and if the other plineteboand,
    

[^64]:    * See Appendix, Demonatrition 91.

[^65]:    * See Appendix, Demonstration 64.
    ; Seo Appendix, Demonstration 92.
    i See Apiendix, Dbmoantration $8 \%$.

[^66]:    - 850 Asppeadtr, Democostration or

[^67]:    *Though the next section treats excluslvely of the rurfaces of solids, and would therefore seem to be the proper place for thls problem and the following ones in this section, yot it has been thought more convenicut to place together the rulea both for Anding tha solidities and zurfaces of those curious bodies.
    $\dagger$ See Appemilix, Demonatration 95 .
    $\ddagger$ See Appendis, Demonstration 96 .

[^68]:    - See Appendix, Demonatration 97. † See Appendix, Demonstration 98.

[^69]:    *See Appendix, Demnnatration 90.

[^70]:    - See Appendix, Demonstration 100.

[^71]:    - Ser A ppendis, Demonstration Fiv.

[^72]:    - Eee Appendix, Demonstratioa 108.
    $i$

[^73]:    *See Appendix, Demonstration 108.
    6

[^74]:    * See A ppendix, Demonstration 104.

[^75]:    * See A ppendix, Demonstration 108 .

[^76]:    * Soe Appendix, Demonstrelian 10 g
    f See Appendix, Demonatrecion 109.

[^77]:    *See Appendix, Demonstration 110.

[^78]:    This rule, which is generally employed in practice, in far from being correct, When the breadth and depth differ mutarially from each other, tad the timher

[^79]:    * This rule is correct when the timber does not taper; but when the timber iapels consuderably, and the breadth and depth are nearly equal the rule is very erroneous. The neasurer, therefore, ought are nearly equal, the rule is very he is about to messure before he applies either of the ab the shape of the timber

[^80]:    * Jolsta rec joista, trimmi of fooring ar wall at oanh

[^81]:    - Jolata receive various ne joists, trimming. joista, common joista celling position; auch an girders, binding. of diooring are deaigned to bear considerabis weitho. When girders bind joingts wall at eanh and about two-thlrds of the thickneight, they ohould be let invo the

[^82]:    * Fire-places, \&c., are of course to be deducted.

    TThe beat and strangest partitions ara those
    king.posis are meacured at roofing, the rest ense made with framad work. Tho

[^83]:    * Workm the walls, only when pitches, in Gothic pite the bniluin of the breac When the rally of a tr pantiles; th

[^84]:    *Workmen generally take the flat and halif the flat of any house, taken within the walls, to be the measure of the roof of the same house. This, howerer, is only when the roof is of a true pitch. The usual pitches are the common, or trite Gothic pitch is when refters are threefourths of the breadth of the buididing: the the building: the pediment pitch is we prineipal ratters is equal to the hreadth of of the breadth.
    When the corering of the building is to be plain tiles or slates, the roof is gene pautiles; the pediment pitch pitch; the Gothic pitch ls used when the covering is of pautiles; the pediment pitch is used when the roof is covered with lead.

[^85]:    vents the taftera $R$ R from pressing nut the well. The braces $\operatorname{E}$ E gerve in
     Wheatheading the ratiers, the braces and struts serve to hind purpuse. Bowides rod, tho ruftogether. Whea head-rvom is required, tho rafters are braces simply by $\boldsymbol{R} R$.

[^86]:    *Baluster is a small column or pillar, used for balustrades.
    Balustrade is a row of balustors, joined by a rail; serving for a rest to the arms, or as an ioclosura to balconjes, staincasas, altars, \&c.
    Cornice is the third and uppermost part of the entablatura of a column, or the uppermost ornament of any wainscotting. \&e.
    Bead is a round mouldng carved like beads in necklaces. There is also a kind of pluin bead, often set on the edge of each fascia of an architrave, on the upper edge of skirting-boards, on the fining-board of a door.cake, \&o.
    Architrave is that part of a coluinif that bears immediately on the capital. It is supposed to represent the principal beam in timber buildings, In which it is sometimes called the master-picce or reason-pirce. In chimneys it is called tha mantel-piece. Architrave doors are those which have an architrave on the jambs and over the dinors. Arehitrare windows of timber are usnally raised out of the solid timber, and sometimes the munding are struck and laid on. Astragal is a small round monlding enes
    column, like a ring or bracele. The ohoftermiasing the top of the shaft of a and at botlom with a fillet, which in this perminates at the top with an astragah

[^87]:    Nove. The standard means a wall a hrick and a half thick; therefore, to reduce - hny "all to the standerd, mnltiply the superficial content of it by the number of

[^88]:    * Cornices, festo

[^89]:    * Cornices, featoons, sue. re put on after the room is plastered and are not, of
    course, taken into accou at by the plasterer.

[^90]:    - 

    Norf. When the arch A OB is an elliplical semment, its area multiplied by the and the product by the the solidity of the vacuity, and ML multiplied by $8 P$, whose end is M N K L; and of he arch, gives the solidity of tiphied by 8 P, the mived solid whose spetion is A Ance of the two solidities is the solidity of bridge may be calculated after the A NKLBEOHA The materials of of und of the battlements, to the solidity as found in by alding the soliditics of $T$, $T$,'
    3. Deq.

[^91]:    -This rule is correct ont and in this case the conly in one case, namely, when the dome is half a sphere, well-known property that the solidity of a sphere is of the circular base. It is a having the same base and height. But the solie is twothirds of that of a cylinder tiplying the area of its base by the height. Hence the rylinder is found by mul. ajplied to this particular case. No general rule can be reason of the rule when as some domes are circular, sonse elliptical, some given to answer every case, various heights, and their sidea of dimepent curvature polyoual, \&e.; they are of dome is equal to the radius of its baso, (the curved sides bein the licight of the ellipticund quats), or to half the meen proportional betweing circular or ellip. olliptical base, the aboveruls will answer pretty well ; but with any of ite

[^92]:    the radius of tho base.-See Appendix, Demenstration 112 and its belght equed to 8

[^93]:    * In this manner may the species of a fluid or a solid be ascertainoce, by meana Oregory's work for prootioal mon.

[^94]:    * For the rea metic, publishe

[^95]:    *For the reasen of this rule, see Alligation Total in the -
    metic, published by the Cominissioners.

[^96]:    * See Appendix, Demonstralion 113.

[^97]:    - See Appendlx. Demnustration 114.
    + This rule is ubvious from Problem
    (he converse thereof.

[^98]:    * This rule is manifest from Prohlem H., being its converse.
    $\dagger$ See Appendix, Demonstration 116 .

[^99]:    - See Appendix, Demonstration IIB.

[^100]:    - See Appendix. Demonstration 117. f See Appendix, Demonstration 118.

[^101]:    † See Appendix, Demonstration 119.

[^102]:    * See Appendix, Demonstration 120.

[^103]:    * See Appendix, Demonstration 121.

[^104]:    * See Appendlx, Demenstration 122.

[^105]:    * Until $s$ George IV., in which a uniform System of weights and measures Was established under the denomination of basponal woritre and mbacurs there were, amongst other sources of inconvenjence, lifiarent meanores. thungh
    
     nches.
    T'o reduce old measure into new, may, as the number of cubic inches in the Imperial standard is to the number of enbic inches in the old standard. sn is the munher of galions or bushels, \&o., old measure, to the number of galions, sic., measitre.
    When great accuracy is not required, old wine gallone may be redicel to imperial gallons by diviling by $1 \cdot 2$; ond the old ale gailuns may be reduced to iniperlal gullons by multiplying by 60 , and dividing the produci by 59 ; and old or Wincliestor bushels may be reduced to imperial bushele by multiplying by

[^106]:    * The area For there $w$ superficial ir resility a aur Whole cone

[^107]:    *The areas of nlane figures. in gauging, are exper For there will be as many solid inches in any are expressed in gallons, or bushels suparficial Inches in its base. What is any vessel of one inch deep, as there are reslity a surface of one inch deap, which, mulingauging a surfece or area is in whole content in galloni or bughela.

[^108]:    - See Appondix, Domonatration LL.

