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PREFACE.
-*-»-

r pHE preHent work on Analytic Mechanics or Dynamics is (lewgnea

as a text booli lor tlio students r)f ScientiKc t^cliools and Col-

leges, who iiave received training iu the elements of Analytic Geome-

try and tlie Calculus.

Dynamics is hero used in its true senso as the science of furce

The tendency anion<r the l)est and most logical writers of the presrn',

day ajjjjears to be to us this term for the science of Anal vlic Me-

chanics, while the branch formerly called Dynamics is now termed

Kinetics.

The treatise is intended es|)ecially for beginners in this branch of

science. It involves the use of Analytic (jetmietry and the Calculus.

The analytic method has been chiefly adhered to, ns beinp better

adapted to the treatment of the subject, more general in its applica-

tion and more fruitful In results tluui the geometric method; anii yet

where a geometric proof seemed jjreferable it has been introducrnl.

The aim has been to make every principle clear and intelligible,

to develop the different theories witli simplicity, and to exi)lain f'llly

the meaning and use of the various amilytic expressions in which the

principles are embodied.

The book consists of three parts. Part I, with the exception of a

preliminary chapter devoted to definitions and fundaiiiental princi-

jih'S, is entirely given to St/iticK.

Part II is occupied with Kinematics, and the ])rinciples of <]\\n

i<up(»innt briiuch of mathenuitics are so tri-ated that the student may

,iite> \ipon the study of Kinetics with clear notions of motion, veloc

itv mid accehratioii. Part III treats of the Kluetics of a particle and

of rigid bodies.



IV PREFA CE.

In this arrangement of the work, with the exception of Kine-

luatica, I have followed the plan usually adopted, and made the

subject of Statics precede that of Kinetics.

For the attainment of that pfrtisp of jmnciiiles which it is the

special aim of the lK)ok to impart, numerous examjjles are given at

the ends of the chapters. The greater part of them will present no

serious difficulty to the student, while n few may tax his best

eflTorts.

In preparing this book I have availed myself of the writings of

many of the best authors. The chief sources from which I have

derived assistance are the treatises of Price, Mincliin, Todhunter,

Pratt, Routh, Thomson and Tait, Tail and Steele, VVeisbach, Ventu-

roll, Wilson, Browne, Gregory, llankine, Bouchiirlnt, Pirie, Lagrange,

and La Place, while many valuable hints as well as exampl ;8 have been

obtained from the works of Smith, Wood, Bartlett, Yoiing, Moseley,

Tate, Miignus, Goodev.', Parkinson, Olmsted, Garnett, Renwick, Bot-

tomley, Morin, Twisden, Whewell, (ialbraith, Ball, Dana, Byrne, the

Encyclopedia Britannica, and the Mathematical Visitor.

I have again to thank my old pupil, Mr. R. W. Prentiss, of the

Nautical Almanac Office, and formerlv Fellow in Mathematics at the

Johns Hopkins Univ.'rsity, lor reading the MS. oud for valuable sug-

gestions. Several others also of my friends have kindly assisted me

by correcting proof-sheets and verifying copy and fonnulro.

E. A. B.

RuTOEits College, i

New Brunswick, N. J., June, 1884.

'
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ANALYTIC MECHANICS.

PART I

C H A P T F. R I

.

FIRST PRINCIPLES.

1. Definitions. —.lH'^/////r M''cii(inirn or D;/namics is

the fjok'iu'i' wlik-li treats of the cqiiilibriuiii aiul niot.on

of iHxlies uii'ler tlie net ion of force. It is aeeordiiigly

(livideil into two luirts, Shi/ics nnd Kineliu.

Slatim treats of tlie e(|uilil)riiiiii (jf Ixjdies, and the CDiidi-

tions governiniT the f.ircis wiiieh pi'oihiee it.

KiHclicK treats- of tlie motion of bodies, and the hiws of

the forces whicii proiluce it.

The consideration liiat the properties of motion, velocity,

and disi)lacenient may l)e tri'ated ai>art from tlie jiarticiilar

forces prodncing tliein and independently of the bodies sub-

ject to them, has given rise to an auxiliary branch of Dyna-

mics called KiiH'iiKi/icx*

Although Kiuenndics may not be regarded as properly

included under Dynamics, yet this branch of science is so

imi»orlant anil useful, and its ii|ti)IIiMtion to Dynamics so

immediate, that a portion of this work is devoted to its

treatment.

* This imnu' win' i;iviii l)j AmiiSro.

*



2 MATTER, INERTIA, BODY, MOTION, ETC.

Kiiu'iiiatics is tlic scienee of pure motion, without refer-

ence to mutter or force. It treats of the properties of

motion without regard to what is moving or how it i*;

moved. It is an extension of jiure geometry by introduc-

,
ing the idea of time, and the consecpient idea of velocity.

2. Matter.—Ma/icr is that wliicli can be perceived bv

the senses, and which can transmit, and be acted upon bv

force. It has extension, resistance, and impenetrability.

A di'finition of iimtter which woiilil satisfy tlie nietaphysicinn is

not reqiiirwl for tliis work. It is suflScient for us to conceive of it as

cai)iihle of receiving and transmitting force ; because it is In this

a.spect only that it is of importance in the present treatise.

3. Inertia.—By Inertia is meant that property of mat-
ter by which it remains in its state of rest or uniform
motion in a right line unless acted ui)on by force. Inertia

expresses the fact that a body cannot of itself change its

condition of rest or motion. It follows that if a body
change its state from rest to motion or from motion to rest,

or if it ciiange its direction from the natural rectilinear

path, it must iiave been inlluenced by some external cause.

4. Body. Space, and Time.— -1 Body is a portion of

matter limited in ev. y direction, and is consequently of a

determinate form and volume.

A Riijiil Bodji is one in which the relative jjositions of

its particles remain unchanged by the action of forces.

A Particle is a body indetinitely small in every direction,

and thougii retaining its material i)roperties nuiy be treated

as a geometric point.

Spdn' is indelinite extension. Time is any limited por-

tion ol' duration.

5. Rest and Motion.—A body is at rent when it con-

stantly occupies tiie same place in space. A body is in



VELOCITY. 3

iiiofion when the body or its part.s occupy successively dif-

lereiit positions in space. But we cuunot judge of the state

of rest or motion of a body without referring it to tlie

jiositions of oti)er bodies ; and iience rest and motion must

he considered as necessarily irlnfire.

If there were anvtliiiig wliieii we knew to be absolutely lixed in

s])ace, we might perceive absolute nuitiou by change ct' i)lace with

ret'erence to that object. But as we know of no such thing as al so-

lute rest, it follows tliat all motion, as measured by us, must be

relative ; i. e., must relate to sonu'thing which we assume to be tix<'(l

Iience the same thing may often be said to bo at rest and in motion

lit the same time ; tor it may Ix^ at rest in regard to one thing, and in

motion in regard to another. Fcr exaini)le, the objects on a vessel

may be at rest with reference to each other and to the vessel, while they

are in motion with reference to the neighboring shore. So a man,

punting his barge up the river, by leaning against a prJe which rests

on the bottom, and walking on the deck, is hi nioti(m relative to the

barge, and in motion, but in a different manner, relative to the cur-

vent, while he is at rest relative to the earth.

Mutiirii ii^ nniforni when the body i)asses over equal spaces

in e{iual times ; otherwise it is vai-iable.

6. Velocity.— The vcheilii of a Imbj is Us rate of

molion. When the velocity is roii.s/dHf, it is nieasuved by

Ihe sjjace ptissed over in a unit of time. When it is varin-

ble, it is measured, at any instant, by the space over which

the body would ptiss in a unit of time, Avere it to move,

during that unit, with the same velocity that it has at the

instttnt considered.

The siHJcd of a railway train is, in general, variable. If we were to

say, for exiinii)Ie, that it was running at the rat(^ of 80 miles an hour,

we would not mean that it ran DO miles during the last botir, nor that

it wouhl run 30 miles during the next hour. We would mean that, if

it were to run for a<i hour with the sp 1 which it tiow has, at the

instant coiisid'red, it would jiass over exactly ItO miles.

In order to have ti uniform unit of velocity, it is custom-

ary to c.\j)rcss it in feet and seconds ; and when velocities

^M



4 A CCELERA TIOX.

arc exiiresscd in any otlicr terms, they should be reduced tn

tlicir equivalent value in feet and seconds. The uini

velocity, therefore, is the velocity with which a Ixulv

describes owc/wV in oiw .second ; other units may be taken

where couveuieiiee demands, as miles and hours, etc.

When we speak of the space passed over by a body, we

mean the p>t//i or line which a point in the body or which a

particle describes.

7. Formulee for Velocity.—If s be the space jiassed

over l)y a particle in / units of time, and r the velocity, it is

phiin that, for uniform velocif>/, we shall have

V = V (1)

that is, we divide the whole space passed over by the time

of the motion over tiuit space.

If the velocity continually changes, equal increments are

not described in eijual times, and the velocity beconu's

a function of the time. But however much "the velocity

cluinges, it nuiy be regarded as constant during the

intinitesimal of time d/, in which time the body will

descril)e the intinitesimal of space ds. Hence, denoting the

velocity at any instant by i\ we have *

* mV =
dt

In this case the velocity is the ratio of two infinitesimals.

These two expressions for the velocity are true whether the

]tarticle be moviiiji' in a right, or in a curved, line.

8. Acceleration is the rale nf rlxoige of ralocitij. Il

is a velocity iucrfineiit. If the veU.eity is increasing, the

aceeh'ratioii is considered positive ; if decreasing, it is

negative.

Acceleration is said to be nniforni when the velocity
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receives equal iiuTeinent!: in ('(iiiul tinie.s. Otherwise it i-s

variable.

9. Measure of Acceleration.—Uniform acceleration

is measured by the actual increase of velocity in a unit of

time. Variable acceleration is leasiiretl, at any instant, by

the velocity which would be generated in a unit of time,

were the velocity to increase, during that unit, at the same

rate as at the instant considered.

Calling /the acceleration, v the velocity, and t the time,

wc have, when the acceleration is uniform.

/ =
t

(1)

However variable the acceleration is, it may be regarded

as constant during the infinitesimal of time dt, in which

time tlie increment of velocity will be dv. Hence, denoting

the accelerati...! at the time t hy f, we have

/ =
dv

Jt'
(2)

We also have (Art. 8)

whioh in (2) gives

ds

dv d ds

J ~
Tft
~ dt

'
lit dfi

(3)

That is, when the acceleration is variable it is measured, at

any instant, by the derivative of tiie velocity regarded as a

function of the time, or by the second derivative of .he

space rej^arded as a function of the time.

Ftom"(3) we get, by integration, when /is constant.

/" =
d.<

dt
(4)

ito^
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and 2/s = «;',

which dotermine the velocity and space.

10. G-eometric Representation of Velocity and
Acceleration.—The velocity of ii Iwdy may be conveni-

ently represented geonietricully in niiig'iitiide and direction

by moans of a straight line. Let the line be drawn from

the point at which the motion is considered, I'nd in the

direction of motion at that point. With a convenient scale,

let a length of the line be cut off that shall contain as many

units of length as there are nnits in the velocity to be repre-

sented. The direction of this line will represent tiic

direction of the motion, and its length will represent the

velocity.

Also an acceleration may be represented geometrically by

a straight lino drawn in the direction of the velocity

generated, and ccntaining as many units of length as there

ai"e units of acceleration in the acceleration considered.

Also, since an acceleration* is measured by the actual

increase of velocity in the unit of time, the straight line

which rei)reseiits an acceleration in magnitude and direc-

tion will also completely represent the velocity generated in

the unit of time to which the acceleration corresponds.

11. The Mass of a body or particle is the quantitij of

inal/rr which it contains; and is proportional to the

Volume and Density jointly. The Z>e«.'*)'^// may therefore

be defined as the quantity of matter in a unit of volume.

Let M be the mass, p the density, and V the volume, o'

a homogeneous body. Then we have

M= Vp, (1)

if we so take our units that the unit of mass is the mass ol

the unit volume of a bodv of unit dcnsitv.

If tl

uivc,

lntc<rr

Uniform acceleralion U here meant.
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If the density varies from point to point of tlie body, we

have, by flic above formuhi, and the notation of tlie

Integral Calculus,

M = /ful r ^ ///fxlr dif <lz, Ci)

where f)
is supposed to be a known function of .-r, //, z.

In England the unit of mass is th.e imperial standard

pound avoirdupois, which is the mass of a certain piece of

platinum preserved at the standard ottice in London. On

the continent of Europe the unit of mass is the gramme.

This is known as the nbmlulc or kinetic unit of mass.

12. The Quantity of Motion,* or the Momentum
of a body moving without ro'.ation is the product of its

mass and velocity. A double mass, or a double velocity,

would correspond to a double quantity of motion, and

so on.

Hence, if we take as the unit of momentum the mo-

mentum of the unit of mass moving with the unit of

velocity, the momentum of a mass M moving with velocity

V is Mv.

13. Change of Quantity of Motion, or Change of

Momentum, is proportional to the mass moving and the

change of its velot.iy jointly. If then the mass remains

constant the change of momentum is measured by the

product of the mass into the change of velocity ; and the

mte of chnnge of momentum , or acceleration of momentnm,

is measured by the product of the mass maving and the

rate of ch.ange of velocity, that is, by the product of the

mass moving and the acceleration (Art. 8). Thus, calling

M the mass, we have for the measure of tlie rate of change

of momentum,

Md^
dt^'

* This phraee was used by Newton in place of the more modern term " Momen-

tum.

"

^M
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14. Force.— Force is diiy cause which changes, or teyuh

to chfuifje, (I body's stitle of rest or motion.

X force alway.s tends to jirodiici' niotidii, but may be pn-
voiited froii! actually pnitliiciii^' it by tlio coimttTactioii df

ati iMiiial and (ippositc t'orcc. Sovoral forirs may so nci un

a ImkU as to ncntralizo caeb otlicr. Wlien a body ivniain.-

at rest, thon^jb aited on by forces, it is said to be in

erjuilibriiun; or. in otber words, tlie forces are said to

produce e(|uilibrinm.

Wliat force is. in its nature, we do not know. Forces

are known to us only by ibcir effects. In order to measure
them we must com|iare the etfects which tliey produce
under the same cin'umstances.

15. Static Measure of Force.— 77<e effect of a force

depends on: 1st, its niiii/ni/iittc, or intensity ; 2d, its direc-

tion; i.e., the direction in whicli it tends to move tiie body
on wliich it acts : and :]t\. its /miiif o/ap/dicntion ; i.e., the

point at wliicb tiie force is applied.

The effect of a force is pressure, and may be expressed bv

the weiu:ht which will counteract it. Every force, statically

considered, is a pressure, and hence has magnitude, and
may l)e measured. A force may i)roduce motion or not.

according as the body on which it acts is or is not free to

move. For example, take the case of a body resting on a

table. 'J"he same force which jiroduces ]iressure on the

table would cause the body to fail toward the earth if the

table were removed.

The cause of this pressure or motion is gravity, or the

force of attraction in the earth. In the lirst case the attrac-

tion f the earth produces a pressure; in the second case it

produces motion. Now either of these, viz., the pressure

which the body exerts wlien at rest, or the (piantity of

motion it accjuires in a unit of time, may be taken as a

means of measuring the magnitude of the force of attrac-

tion that tlie earth exerts ou the body. The former i-:
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METirOI) OP COMPARING FORCES. d

called the sfafir method, and the forces are called static

forces; the latter is called the kinetic method, and the

forces are called kiiirtic forces. Wri(//it is the name givi'ii

to the pressure which the attraction of the earth causes a

body to exert. Hence, since static forci's produce pressure,

we may take, as the unit of force, a pre.ssiire of ow poini'l

(Art. 11).

Therefore, t/ie mae/nifudc of a force may he measured

statieallij hy the pres.wre it will produce upon some hody,

and e.rpressed in pounds. This is called the Static measure

of force, and its unit, one pound, is called the Gravitation

unit offorce.

16. Action and Reaction are always equal and

opposite.—This is a law of nature, and our knowledge of

it comes from experience. If a force act on a body hold by

a fixed obstacle, the latter will oi)pose an eciual and con-

trary resistance. If the force act on a body free to move,

motion will ensue ; and, in the act of raoYing, the inertia

of the body will oppose an equal and contrary resistance.

If we press a stone with the hand, the stone presses the

hand in return. If we strike it, we receive a blow by the

act of giving one. If we urge it so as to give it motion, we

lose some of the motion which we should give to our limbs

by the same effort, if the stone did not impede them. In

each of these cases there is a reaction of the same kind as

the action, and equal to it.

17. Method of Comparing Forces.—Two forces arc

equal when being applied in opposite directions to a

particle they maintain equilibrium. If we take two equal

forces, and apply them to a particle in the same direction,

we obtain a force double of cither ; if we unite three equal

forces we obtain a triple force ; and so on. So that, in

general, to compare or measure forces, we have only to

adopt the same method as who i we compare or measure

^



10 REPRESENTATION OF FORCES.

any (luantitios of the Siimo kind ; tliat is, we must take

some known force as tiie tinil offoi'a\ and tlivjii express, in

ninnhers, tlie rehiMon which the otiier forces bear to th it

nieasurinj^ unit. For example, if one pound i)c tlie unit of

force (Art. 15), a force of 12 pounds is expressed by 12;

and so on.

18. Representation of Forces by Symbols and

Lines.—If 1*. Q. K., etc., represent forces, they are number.'*

expressing tlie number of times which the concrete unit of

force is contained in tiie given forces.

Forces may be rej)resented <ri'ometrically by right lines;

and tliis mode of representation iias the advantage of giving

the direction, magnituue, and point of appUcation of each

force. Tims, draw a line in the direction of the given

force ; then, having selected a unit of lengtli, such as an

inch, a foot, etc., measure on tiiis hue as many units of

length as the given force contains units of weight. The

viagnifiide of the force is rei)resented by the measured

length of the line ; Mi direction by the direction in which

the line is drawn; and \i& point of application by the point

from which the line is drawn.*

Thus, let the force P act at the point * ?

A, in the direction AB, and let AB '^'9- '•

represent as many units of length as P contains units of

force; then the force P is represented geometrically l)y

the line AB; for the force acts in the direction from A
to B; its point of application is at A, and its magnitude is

represented by the length of the line AB.

19. Measure of Acceleratiug Forces.—From our

definition ot force (Art. 14), it is clear that, when a single

• Forcee, vulocitloi*, nnd iiccelcratlont! arc lUrecleil i/tian/l/lm, nii<l ho niny ln'

repn>i<eiU(Hl by a liiiu, in (lircctiun and inai;nitiidt', uiid may be conipouiuled in t

game way as vectors.

If anything ha? maRnitiulo and ciiruction, th" magnitude and dirucUun lakvii

togelhur cuDBtitutn a rector.
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MEASVnB OF ACCELBttAflNG FOliCKS. 11

force acts upon a particle, perfectly free to move, it must

produce motion ; and hence the force may he represenleii

to us by (he motion it has produced. Mut motion is

meiisured in terms of velocity (Art. 0), and conse(iuently the

velocity communicated to, or impressed upon, a particle, in

a given time, may be taken as a measure of the force.

That is, if tiie same particle moves along a right line so

that its velocity is increased at a constant rate, it will be

acted upon by a constant force. If a certain constant force,

acting for a second on a given particle, generate a velocity

of 32.2 feet per second, a double force, acting for one

second on the same particle, woiUd generate a velocity of

64.4 feet per second ; a triple force would generate a

velocity of DO.O feet per second, and so on.

if the rate of increase of the velocity, (/. e., the accelera-

tion), of the particle is not uniform, the force acting oi\ it

is not uniform, and the magnitude of the force, at any

point of the particle's path, is measured by the acceleration

of the particle at this point. Hence, since one and the

same particle is capable of moving with all possible accelera-

tions, all forces may he measured by the velocities they

generate in the same or erjual particles in the same or equal

times. When forces are so measured they are called

A cederat in;/ Forces.

20. Kinetic or Absolute Mea£ ire of Force.*—Let

n equal particles be i)laced side by siile, and let each of them

be acted on uniformly for the same time, by the same force.

Each i)article, at the end of this time, will have the same

velocity. Now if these n separate jmrticles are all united so

as to form a body of n times the mass of each particle, and

if each one of them is still acted on by the same force as

• Arts. 80, 91, 88, and 98, trout of the Kindle incusiirc of force, und may be

omitted till Pnrt III la rcnclied ; but it Ih coiivcnli^iit to |iiewnt tliem once for all,

aivl, for the pake of reference mnl conipiuiHoii, to place them with the Htatic

meaxuro of force lit th(^ beginning of the work.

ita
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before, tliis body, at the end of the time considered, will

iiave tiu- same velocity that each separate partiei.? Iiad, and

will be acte<l on l>y n limes (be force which jijeneraled this

velocity in tiie particle. Comparing); a sin<rle particle, then,

with the body whose mass is n times the mass of tiiis

particle, v. v' see thar, to produce the same velocity in two

bodies by forces acting on them for the same time, the

magnitudes of the forces must be proportional to the

masses on which they act.* Ilenee, generally, since force

varies as the velocity when the mass is constant (Art. ID),

and varies as the nuiss when the velocity is constant, we

have, by the ordinary law of proportion, when both are

changed, force varies as the product of the mass acted ujjon

and the velocity generated in a given time ; that is, it varies

as the qnantity of moti w (Art. 13) it produces in a given

mass in a given time. If the force be variable, the rate of

change of velocity is variable (Art. 19), and hence the force

varies as the ))roduct of the mass on which it acts and the

rrt/e o/'r//rt«//t' of velocity, i.e., it varies as the <ureh'r(ifion

of the momentum (Art. l!]). Therefore, if any force P act

on a mass M, we have

P^ Mf',

or, in the form of an equation

/' = k-Mf,

(1)

(2)

where k is some constant.

If the unit of force be taken as that force which, acting

on the unit of mass for the unit of time, generates the unit

of velocity, then if we put M equal to unity, /'. c, take the

unit of mass, and /'equal to unity, i. e., take the unit of

acceleration, we must have the force producing the accel-

eration ecpial to the unit of force, or P equal to unity,

MliiclilnV Sialics p, D.

rfMM*i Hi tm
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Heuce k must also be eciual to unity, and we iiavc the

equation,

P = Mf. (3)

Therefore, tlic Kinetic or Abmlnle measure of a force is

llw rale of chanije or acceleration* (f momentum it produces

ill a uiiit of time.

If the force is constant, (3) becomes by (1) of Art. 9,

P = Mv
(*)

And if the force is variable, (3) becomes by (3) of Art. 9,

(5)

21. The Absolute or Kinetic Unit of Force.—

A second, a foot, and a pound being tlie units of time, space,

and ma.ss, respectively (Arts. 6 and 11), we are reciuired to

tind tiie corresponding unit of force that the above ecjuation

nuiy be true. The unit of force is that force which, actimj

for one second, on ttie muss of one jtound, yeneratcs in it a

velocity of one foot per second. Now, from the results of

numerous experiments, it has been ascerrained that if a

body, wcigliing one pound, fall freely for one second at the

sea level, it will acquire a velocity of about M.i feet per

second ; i. e., a force ecjual to the weight of a pound, if

acting on the mass of a pound, at the sea level, generates in

it in one second, if iVee to move, a velocity of nearly ^'Vi

feet per second. It follows, therefore, that a force of

,- ^ of the weight of a pound, if acting on the mass of

M pound, at the sea level, generates in it in one second, if

free to move, a velocity of one foot per second ; and hence

Bw T»U aud 8toi'l«'« UyuBiulvH of i Pnrllclo. p. 43.

^
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the unit of force is
j^^^

of the weight of a pound, or rather

less than the weight of iialf an ounce avoirdupois ; so tiiat

lialf an ounee, acting on the mass of a pound for one
second, will give to it a velocity of one foot i)er second.
This is the British abmlutc kineiic* unit of force.

In order tiiat Eq. 3 (Art. ^0) may be uni\ersally true

when a second, a foot, and a pound are the units of time,

space, and nuiss respectively, all forces must be expressed in

terms of this unit.

22. Three Ways of Measuring Force.—(1.) If a
force does not produce motion it is measured by the pres-

sure it produces, or the number of pounds it will sujiport

(Art. 15). This is tiie measure of Static Force, and its

unit is the weiyhf of a poutnl.

{'i.) If we consider forces as always acting on a unit of
muss, and suppose that there are no forces acting in the

opposite direction, then these forces will .be measured
siini)ly by the velocities or accelerations which tiiey generate
in a given time. This is the measure of Accelerating Force,

and its unit is that force which, acting on the unit of mass,
during the unit of time, generate the unit of velocity;

hence (Art. 21), the unit of force is the force tvhich, acting
on one pound of mass for one second, generates a velocity of
one foot per second.

(3.) If forces act oti different masses, and produce motion
in them, and we consider as before that there are no f(u-ccs

acting in the opposite directioTi, then the forces are meas-
ured tig the quantity of motion, or by the acceleration of
momentum generated in a unit of time (Art. 20). This is

the measure of Muring Force, and its nnil (Art. 21) is the

force vhichy (ictiiig on one pound if mass for one second,

tfueratcs a velocity of one foot per second.

* (ntriHlucod by GausB,
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It must be understood that when we speak of static,

accelerating, or moving forces, we do not refer to different

kinds of force, but only to force as measured in different

ways.

23. Meaning of f/ in Dynamics.—The most impor-

tant case of a consiaut, or very nearly constant, force is

gravity at the surface of the earth. The force of gravity u

so nearly constant for places near the earth's surface, that

falling bodies may be taken as examples of motion under a

constant force. A stone, let fall from rest, moves at first

very slowly. During the first tenth of a second the velocity

is very small. In one second the stone has acquired a

velocity of about 32 feet per second.

A great number of experiments have been made to ascer-

tain tiie exact velocity which a body would acquire in one

second under the action of gravity, and freed from the

resistance of the air. The most accurate method is indi-

rect, by means of the pendulum. The result of pendulum

experiments made at Leith Fort, by Captain Kater, is,

that the velocity acquired by a body falling unresisted for

one second is, at that place, 33.207 feet per second. The

velocity acquired in one second, or the acceleration (Art.

8), of a body falling freely in vacuo, is found to vary

slightly with tiio latitude, and also with the elevation above

the sea level. In London it is 32.1889 feet per second. In

latitude 45°, near Hordeaux, it is 32.1703 feet per second.

This acceleration is usually denoted by r/ ; and when wo

say that at any place g is equal to 32, we mean that the

velocity generated i)or second in a body falling freely*

under the action of gravity at that place, is a velocity of

32 feet per sfcond. The average value of g for the whole

of Great Britain differs but little from 32.2 ; and hence the'

nnincrical value of// for that country is taken to be 32.2.

A l)o<ly i» Huiil to l)c moviug//*Wy wlicu It U acted upon by no forcc8 except

tlioi*e imiler voueiilcratlou,

^^
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The formulii, deduced from observation, and a certain

theory regarding the figure and density of the earth, which

may be employed to calculate the most probable value of

the apparent force of gravity, is

g z=z 0{\ \- .005133 sin^ A),

where O is the apparent force of gravity on a unit mass at

the equator, and g the force of gravity in any latitude A;

the value of O, in terms of the British absolute unit, being

32.088. (See Thomson and Tait, p. 226.)

24. Gravitation Units of Force and Mass.—If in

(3) of Art. 20, we put for P, the weight W of the body,

and write g for / since we know the acceleration is </, (3)

becomes

W = mg. (1)

Wm = —

•

g
(2)

w
and hence — may be taken as the measure of the mass.

In gravitation measure forces are measured by the pres-

sure they will produce, and the unit of force is one pound
(Art. 15), and the unit of mass is the quantify of matter in

a body winch weighs (j pounds at that place where the accel-

eration of gravity is g.

This definition gives a unit of mass which is constant at

the same place, but changes with the locality ; i. e., its weight

clianges with the locality while the quantity of matter in it

remains the same. Thus, the unit of mass would weigh at

Hordeaux 32.K03 pounds (Art. 23), while at Leith Fort it

would weigh 32.207 pounds. Ijct m be the mass of a l)o(iy

which weighs w pounds. The (|uantity of matter in this

hody remains the same when carried from i)lace (o placi'.

If it were possible to transport it to another planet its mass
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would not be altered, but its weight would be very different.

Its Wi'ight wherever placed would vary directly as the force

of gravity ; but the acceleration also would vary directly as

the force of griivity. If placed on the sun, for example, it

would weigh about ^8 times as much as on the surface of

the earth ; but the acceleration on the sun would also be

i8 times as much as on the surface of the earth ; that is,

the ratio of the weight to the acceleration, anywhere in

ir
the universe is constant, and hence — , which is the

U
numerical value of m (Eq. 3), is constant for the same

mass at all places.

25. Comparison of Gravitation and Absolute

Measure.—The pound weight has been long used for the

measuremeut offorce instead of mass, and is the recognizeil

standard of reference. It came into general use because it

afforded the most ready and simple method of estimating

forces. Tiie pressure of steam in a boiler is always reck-

oned in jmunds per square inch. The tension of a string is

estimated in pounds; the force necessary to draw a train of

cars, or the pressure of water against a lock-gate, is

expressed in pounds. Such e.\i)re8sions as "a force of

10 poui\ds," or "a pressure of steam equal to 50 pounds on

the inch," are of every day occurrence. Therefore this

method of measuring forces is eminently convenient in

practice. For this reason, and because it is the one used

by most engineers and writers of median ii's, we shall adopt

it in this work, and adhere to the measurement of force by

pounds, and give all our results in the usual gravitation

measure. In this measure it is convenient to represent the

W
mass of a body weighing IT pounds by the fraction —

(.Vrt. 24), 80 (hat (3) of Art. 30 becomes

(1)

^
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To do so it will only be necessary to assume that the unit

of mass is the iiiiatitity of matter in a body weighing y
pounds, and changes in weight in the same proportion that

g changes (Art. 24).

Of course, the units of mass and force in (3) of Art. 20

may be either absolute or gravitation units. If absolute.

the unit of mass is one pound (Art. 11), and the unit of

force is - pounds (Art. 21). If gravitation, the units are

(J
times as great; i. e., the unit of mass is (/ pounds (Art.

24), and the unit of force is one pound (Art. 15).

The advantage of the gravitation measure is, it enables us

to express the force in pomids, and furnishes us with a con-

stant numerical representative for the same quantity of

matter ; that is to say, a mass represented by 20 on tiie

equator would be represented by 20, at the pole or on

the sun. Hence, in (1), P is the static measure of

any moving force [Art. 23, (3)], W is the tveight of the

body in pounds, (j the acceleration of gravity (Art. 23),

W— the mass upon which the force acts [(3) of Art. 24], and

which is free to move under the action of F, the unit of

mass being the mass weighing g pounds, and / the

acceleration which the force P produces in the mass.

EXAMPLES
1. Compare the velocities of two points which move

uniformly, one through 5 feet in half a second, and the

other through 100 y&,rd8 in a minute. Ans. As 2 is to 1.

3. Compare the velocities of two points which move uni-

formly, one through 720 feet in one minute, and the other

thro igli 34 yards in three-quarters of n, second.

Am. As is to 7.

3. A railway train travels 100 miles in 2 hours , 'inil

the average velocity in feet per second. Ans. 73^.
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4. One point moves uniformly round the circumferenoe

of a circle, while another point moves uniformly along

the diameter ; compare their velocities.

Ans. As n is to 1.

5. Supposing the earth to be a sphere 25000 miles in

circumference, and turning round once in a day, deter-

mine the velocity of a point at the equator. •

Ans. 1527^ ft. per sec.

6. A body has described 50 feet from rest in 2 seconds,

with uniform acceleration ; find the velocity acquired.

From (5) of Art. 9 we have

/=25;

and from (4) we have ft = v;

.'. V = 50.
I

^^. Find the time it will take the body in the last exam-

ple to move over the next 150 feet.

From (5) of Art. 9 we have

a = ift*; .-. etc

Ans. 2 seconds.

8. A body, moving with uniform acceleration, describes

63 feet in the fourth second ; find the acceleration.

Ans. 18.

9. A body, with uniform acceleration, describes 72 feet

while its velocity increases from IG to 20 feet per second ;

find the whole time of motion, and the acceleration.

Ans. 20 seconds ; 1.

^10. A body, in passing over 9 feet with uniform accelera-

tion, iuis its velocity increased f^m 4 to 5 feet per second

;

lind the whole space described from rest, and the accelera-

fi,)„_
Ans. 25 feet ; 4.

I*
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11. A body, uniformly accelerated, is found to l)e mov-
ing ut the end of 10 .seconds with a velocity wiiich if

continued uniformly, would carry it through 45 miles' in
the next hour

; tind the acceleration. Ans. ()|.

12. Find the mass of a straight wire or rod, the density
of which varies directly as the distance from one end.

Take the end of the rod as origin ; let a = its length •

let the distance of any point of it from that end = x
and let w = the area of its transverse section, and k = the
density at the unit's distance from the origin. Then

dV=u(lx; and p = kx;

and (2) of Art, 11 becomes

13. Find the mass of a circular plate of uniform thick-
ness, the density of which varies as the disUince from the
centre.

Ans. ^TTMa^ where a is the radius, k the density at
the unit's distance, and // the thickness.

'14. Find the mass of a sphere, whose density varirs
inversely as the distance from the centre.
J»w. 2nm% where p is the density of the outside stratum.
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CHAPTER II.

THE COMPOSITION AND RESOLUTION OF CONCUR-
RING FORCES—CONDITIONS OF EQUILIBRIUM.

26, Problem of Statics. —The primary conception of

force is tiiat of a cause oi" motion (Art. 14). If only one

force acts on a particle it is clear tliat the particle cannot

remain at rest. In statics it is only tlie tcndrnci/ which

forces have to produce motion that is considered. IMierc

must be at least two forces in statics ; and they are con-

sidered as acting so as to counteract each otiier's tendency

to cause motioti, thereby producing a state of equilibrium

in the bodies to which they arc applied. The forces which

act upon a body may be in e(iuilibrium, and yet motion

exist; but in such cases the motion is nniform. Hence

there are two kinds of eciuilibrium, the one relating to

bodies at rest, the otiier relating to bodies in motion. The

former is sometimes called Sialic Equilibrium and the lat-

ter KtHelic (or Dynamic*) Equilibrium. The problem of

sialics is to delerminc the conditions under tvhich forces act

tohen they keep bodies at rest.

27. Concurring and Conspiring Forces.—ResulV

ant.—When several forces have a common point of appli-

cation they are called concni-l-ing forces ; when -they act at

the same point and along the same right line they are

called conspiring forces.

The resultant of two or more forces is that force which

singly will produce the same effect as tlie forces them-

selves when acting together. The individual forces, when

considered with reference to this resultant, are called

• Gregory's Mochauics, p. U.
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componenta. 1'Iie process of finding the resultant of several

forces is called the cumposi/ion offorces.

28. Composition of Conspiring Forces.—Condi
tion of Equilibrium.—When two or more conspiring'

forces act in the same direction, it is evident that the

resultant force is eciual to their sum, and acts in the same
direction.

When two conspiring forces act in opposite directions

their resultant force is e<iual to their dififereuce, and acts iu

the direction of the greater component.

When several conspiring forces act in different directions

tiie resultant of the forces acting in one direction equals

the sum of these forces, and acts in the same direction
;

and so of the forces acting in the oi)posite direction.

Therefore, the resultant of all the forces is equal to the

difference of those sums, and acts in the direction of the

greater sum. Hence, if the forces acting in one direction

are reckoned positive, and those in the opppsite direction

negative, their resultant is equal to their algebraic sum
;

its sign determining the direction in which it acts. Thus,
if F^, Pg, Pj, etc., are the conspiring forces, some of

which may be positive and the others negative, and li is

the resultant, have

/<; = P, + Pg + P3 + etc. = SP, (1)

in which i: denotes the algebraic sum of the terms similar

to that written immediately after it.

Cou.—The condition that the forces may be in equilib-

rium is that their resultant, and therefore their algebraic

sum, must vanish. Hence, when the forces are in equilil)-

rium we must have 7^ = ; therefore (1) becomes

^1 + ^8 + i'a + t'tc. = 1P = 0. (^)
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29. CompoBitioii of Velocities.—// f* particle be

moving with two unifonii velocities represented in

magnitude and direction, by the two adjacent sides

of a parallelogram, the resultant velocity will be

repr sented in magnitude and direction by the

diagonal of t:.e parallelogram.

Let the particle move with a uniform

velocity v, which acting alone will take

it in one second from A to B, and with

a uniform velocity v', which acting

alone will take it in one second from A
to C ; at the end of one second the par-

ticle will be found at D, and AD will represent in magni-

tude and direction the resultant of the velocities represented

by AB and AC.

Suppose the particle to move uniformly along a straight

tube which starts from AB, and moves uniformly parallel

to itself with its extremity in AC. When the particle starts

from A the tube is in the position AB. When the particle

has moved over any part of AB, the end of the tube has

moved over the same part of AC, and the particle is on the

line AD. For example, let AM be the -th part of AB, and

AN be the -th part of AC ; while the particle moves from
n

A to M, the end A with the tube AB will move from A to

N, and the particle will be at P, the tube occupying the

position NL, and PM being parallel and equal to AN. P

can be proved to be on the diagonal AD as follows :

AM : MP :: -- :
-^ " AB : AC (=.. BD);

n n

therefore P lies on the diagonal AD. Also since

AM : AB : : AP : AD,

*
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the resultant velocity is uniform. Hence, the diagonal AD
represents in niaj^niitude and direction the nsnltunt of the
velocities represented by AB and AC.
Tins i)roposition is known as the Parallelogram of

Velocities.

30. Composition of rorces.—Prom the Parallelo-
gram of Velocities the Parallelogram of Forces follows

immediately. Since two simultaneous velocities, AB and
AC, of a particle, result in a single velocity, AD, and since

these three velocities may be regarded as the measures of

three separate forces all acting for the same time (Art. HI),

it follows that the effect produced on a particle by the com-
bined action, for the same time, of two forces nniy be pro-
duced by the acti(}n, for the same time, of a single force,

whicii is therefore called the rexuttaut of the other two
forces; and these forces are repret^entod in magnitude and
direction by AB, AC, and AD. (See Minchin, p. 7, also

Garnett's Dynamics, p. 10.)

Hence if two concurring forces be represented hi magni-
iucle and direr/ion bg the adjacent sides of a parallelogram,
their resultanl will be represented in magnitude and direction

by the diagonal of the parallelogram. Care must bo taken
in constructing the parallelogram of forces that the com-
ponents both act from the angle of the parallelogram from
which the diagonal is drawn.

This ])r<>|'ci.<ilioii Iimh Ix-eii jjrovcd in varioun wnys. It was onun-
cititoil in its present Cocin by Sir Ihbiic Newton, and by Vnriprnon, tlip

ci'l(!l)rnti'd nuitiicmuti'-ian, in the year 1087, i)robal)ly indepiMidcnt of

eai'h otlicr. Since thai tinu^ various proofs ;>f it liavu been given l)y

ditf'creiit niatlienuiticianH. One vorli gives a (Jiiciisfioii, more or less

complete, of 4') otlier proofs. A noted analytic proof ]b given by
M. I\.i.s.son. (See Price's Cal., Vol. Ill, p. 1!»). H e antliors ol)jec!

to proving the parallelopani of forces liv nieanw of the parallelogruni
of velocities. (See Oregory's MechanicH. p, 14.) The student wli.i

wants other proofs is referred to Duchayla's proof as found in 'I'od-

hunter's Statics, p. 7, uud in (ialbraith's MuchunicB, p. 7. and iu many
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If e be the angle between the sides of the parallelogram,

AB and AC (Fig. •^), and P and Q represent the two com-

ponent forces acting at A, and It represent the resultant,

AD, we have from trigonometry.

Ri = P^+ Q'i + 'iPQ cose (1)

an equation which gives the mmjnUude of the resultant of

two forces in terms of the magnitudes of the two forces and

the angle between their directions, the forces being repre-

sented by two lines, both drawn from the point at which

they act.

Cou.—If = 90°, and « and d be the angles which the

direction of A' makes with the directions of P and Q, we

have from (1)

(2)

(3)

Also cos a =

from which the nuignitnde and direction of the r-'sultant

are determined.

31. Triangle of Forces.—// fhraft eoncnrriti.^

forces be represented hi nut'Jiiitude and direct ion.

1>!I the sides <)f a triangle, taken in, order, theij will

lie in eqnUiliriuni.

Let AHC bo the triangle whose

sides, taken in order, represent in

nnignitude and direction three forces

aiiplied at the point A. Complete Fia.3

^
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the i)arallelograrn ABCD. Tlicn tliL' forces, AB and BC,
a])i)lied at A, arc cxjiressed by AB and AD (since AD is

equal and i)arallol to BC). But the resultant of AB and
AD is AC, acting in the direction AC. Therefore the three
forces represented by AB, BC, and CA, are equivalent t.i

two forces, AC and CA, the former acting from A toward
C and the latter from C towards A, which, being equal and
o))i)ositc, will clearly balance each otlur. Therefore the
three forces represented by AB, BC, and CA, acting at the
point A, will be in equilibrium.

It should be observed that though BC represents the
maynitude and direction of the component, it is not in the
line of its action, because the three forces act at the
point A.

The converse of this is also true ; viz.. If three concurring
forces are in e(|uilibrium, they may be re])resented in mag-
nitude and direction by the sides of a triangle, drawn
l)ariill('l respectively to the directions of the forces.

Thus, if AB and BC represent two-forces in magnitude
and direction, AC will represent the resultant, and hence to

produce equilibrium the resultant force AC must be opposed
by an equal and opposite force CA. Therefore, the three
forces in equilibrium will be represented by AB, BC, and
CA.

Cor.—When three concurring forces are in equilibrium,
each is eipnil and directly opposite to the resultant of the
other two.

32. Relations between Three Concurring Forces
in Equilibrium.— Siuce the sides of a plane triangle are
as the sines of iiu> opposite angles, we have (Fig. I})

AB : BC (or AD) : A(; :: sin WW : sin WW : sin ABC
:: sin T).\C : sin WW : sin MAI>.

Hence, calling /', Q, and A', (he forces represented by AM.
AD, and AC, ami denoting the angles l)etween the diree-
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tions of the forces P and Q, Q and h\ and li and P, by

A A A
I'Q, QR, and RP, respectively, we have

A A a'
sin QR sin RP sin PQ

Therefore, when three coucurrim/ forces are in cquilibriinn

they arc respectively in the same proportion as t/te sines of

the a:'(jles included between the directions of the other two.

33. The Polygon of Forces.—//" an// num/xir of

eoncivrring forces be represented in magnitiulc (ind,

direction hy the sides of a closed polygon taken in

order, they will he in equiUbriiun.

Ijet the forces be represented in

magnitude and direction by the lines

AP,, \\\, AP3, AP„ AP„. Take

AB to represent AP,, through B draw

BC equal and i)arallel to APg ; the

resultant of the forces AB and BC, or

AP, and APg is represented by AC
(Art. ;n). Of course the force, BC,

acts at A and is parallel to liC. Again through C draw CD
equal and parallel to APj,, the resultant of AC and CD, or

AP,, APj, and AP3 is AD. Also through D draw DE
equal and parallel to AP^, the resultant of AD and DE, or

AP,, APg, AP3, and AP4 is AE. Now if AE is equal and

oi)i)(»8ite to APg the system is in equilibrium .(Art. IH).

Hence the forces represented by AB, BC, CI), DE, EA
will l)e in eciuilibrium.

(joK. !.—Any one side of the pi»lygon represents in

magnitude and direelion tlie resiiKunt of ail tiie forces

represented l»y the remaining sides.

(!,)i{. •).-_ir the lines representing the forces do iiol I'onii

n closed polygon the forces are not in oquilibriuiu ; \\\ this

Fia.4



28 PAKALhKLOPIl'ED OF FORCES.

case the last side, AE, taken from A to Yj, or tliut which i?

required to close up the polygon, represents in magnitude

aiui direction tlie resultant of the system.

34. Farallelopiped of Forces.—// three concur-
ring forces-, not in the same plane, are represcntvil

in nia.gnitade and direction by the three edges of

a parallelopipcd, then tlie resultant will be repre-

sented in magnitude and direction by the diag-
onal ; conversely, if the diagonal of a parallel

-

opiped, represents a force, it is eqaivalent to three
forces represented by the edges of the p'lraUel-
opiped.

Let the three edges AB, AC, AD of tho

parallelopii)ed represent the three forces,

applied at A. Then the resultant of the

forces AH and AC is AE, the diagonal of

the face AHCE; and tho resultant of the

forces AE and AD is AF, the diagonal of

the parallelogram ADFE. Hence AF represents tlie

resultant of the three forces AB, AC, and AD.
Conversely, tlic force, AF, is equivalent to the three

components AB, AC, aiul AD.
Let 1\ Q, S represent the three forces AB, AC, AD; K,

the resultant; «, (i, y, the angles which the direction of E
nuikes with tlie directions of /', Q, S, and sujjpose the

forces to act at right angles with each other. Then since

AF" = A\f + AC* + Ai)^

P
ir

Q
li'l

we have

also, cos « =

cos [i -:

(1)

(2)

cosy = y-,
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from which the magnitude and tlireotion of the resultant

are determined.

EXAMPLES.

1. Three forces of 5 lbs,, ;} lbs., and 2 lbs., respectively,

act upon a point in thesaine direction, and two otber forces

of 8 lbs. and 1) lbs. act in the 0})posite direction. Wbat

single force will keep the point at rest? Anti. 7 lbs.

2. Two forces of 5^ lbs. and 31 ll)s., applied at a point,

urge it in one direction ; and a force of 2 Il)s., applied at

the same point, urges it in the opi)ositc direction. What

additional force is necessary to preserve equilibrium ?

Ans. 7 lbs.

3. If a force of 13 lb?, be represented by a line of 6|

inches, what line will represent a force of T| lbs.?

Ans. 3 J inches.

4. Two forces whose magnitudes are as 3 to 4, acting on

a point at right angles to each other, produce a resultant of

20 lbs.; required the component forces.

A71S. 12 lbs. and 16 lbs.

5. Let ABC be a triangle, and D the middle point of

the side BC. If the three forces represented in magnitude

and direction by AB, AC, and AD, act ui)on the point A;

find the direction and magnitude of the resultant.

Ans. The direction is in the lino AD, and the magni-

tude is represented by 3AD.

^, When r = Q and = 00°, find /?.

7. When J' = Q and = I35^ find Ji.

Ans. A' = pVl- V2.

8. When P = Q and 12(r, find A'.

vl//.v. /.' ^ P.

^^
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J

9. If P = q, sliow tl.at thoir resultant R = ^P cos f-

hS). If /' = 8, and Q = 10, and 6 = GO", find Jx\

A)ifi. Ji = i Vai.

11. If P = 144, R= 145, and 6 = 90°, find Q.

A71S. Q = 17.

12. Two forces of 4 lbs. and 3 \/2 lbs. act at an angle of

45°, and a third force of Vi^ lbs. acts at right angles to

their plane at the same point ; find thoir resultant.

Ans. 10 lbs.

35. Resolution of Forces.—By the resolution offorces
is vieant the process of finding the components ofgiven forces.

We have seen (Art. 30) that two concurring forces, P and

^ =: AB and AC, (P'ig. 2) are equivalent to a single force

R = AD ; it is evident then that the single force, R, acting

along AD, cau bo replaced by the two forces, P and Q,

represented in magnitude and direction by two adjacent

sides of a parallelogram, of whicii AD is the diagonal.

Since an infinite number of parallelograms, of each of

which AD is the diagonal, can be constructed, it follows

that a single force, R, can be resolved into two other forces

in an infinite number of ways.

Also, each of the forces AB, AC, may be resolved into

two others, in a way similar to that by which AD was

resolved into two ; and so on to any extent. Hence, a single

force may be resolved into any number of forces, whose

combined action is equivalent to the original force.

Cor.—The most convenient compo-

nents into which a force can be resolved

are those whose directions are at right

angles to each other. Tiius, let OX
and OF be any two lines at right

Fig.6

'1»

angles to each other, and P any force acting at in the
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at in the

plane XOY. Then complpting the rectangle OMPN wc

find the components of /' along the axes OA' and V to be

OM Awi ON, which denote by X and Y. Then we have

clearly

(1)
X= P cos

Y = P sin «;

)

vhcre « is the angle which the direction of P makes with

OX. These components X and Y are called the rect-

angular components. The rectangular component of a

force, P, along a right line is Px cosine of angle between

line and direction of /'.

In strictness, when we speak of the component of a given

force along a certain line, it is necessary to mention the

other line along which the other component acts. In this

work, unless otherwise expressed, the component of a force

along any line will be understood to be its rectangular

component; i.e., the resolution will be made along this line

and the line perpendicular to it.

36. To find the Magnitude and Direction of the

Resultant of any number of Concurring Forces in

one Plane.—When there are several concurring forces, the

condition of their equilibrium may be expressed as in

Art. 33, Cors. 1 and 2. But in practice we obtain much
simpler results by using the principle of the Resolution of

Forces (Art. 35), than those given by the principle of

Composition of Forces.

Let be the point at which all

t lie forces act. Through draw the

rectangular axes XX', YY'. Let

/',, Pg, P3, etc., be the forces and

«!, «2, «3, etc., be the angles which

their directions make with the axis

of X.

Now resolve each force into its two

components along the axes of x and y.

p

Y

^B

R

xl- ^ X
-j:.

f
X,

y>
Y'

f
7
•

Fig.7

Then the com-

^M
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ponciits along the axis of .r (^--components) are (Art.

35, Cor.), Tj cos «,. I\ cos «2, P^ cos «3, etc., and those

along the axis of y are I\ sin «,, /'^ sin (t^, i'j sin a^,

etc.; and therefore if Xand F denote the algebraic sum of

the x-components and y-conipoaents respectively, we have

X = Pj cos «i + 1\ cos «j + P3 cos «3 -f etc.

= "LP cos a,

(2)
P"= P, sin rtj+Pg sinag + Pj sin Wj+etc.

|^

= }LP sin «. (

Let R be the resultant of all the forces acting at 0, and

the angle which it makes with the axis of x ; then resolving

R into its x- and y-compononts, we have

P cos = X = SP cos «,

)

Rs\nd= Y — SP sin «. j

. 7? = Jr2+F2; tanO
F
X'

(3)

(4)

which determines the magnitude and direction of the

resultant.

Sen.—Regarding OX and OY as positive and OX/^ and

OF* as negative as in Anal. Geora., we see that Ox^, Oy^,

Oy^ are positive, and Ox^, Ox^, Oy^ are negative. Tlic

forces may always be considered as positive, and hence the

signs of the components in (1) and {'i) will be the same as

those of the trigonometric functions. Thus, since «g is

> 90° and < 180° its sine is positive and cosine is negative;

since «3 is > 180° and < 270° both its sine and cosine are

negative.

37. The Conditions of Equilibrium for any number
ofConcurring Forces in one Plane.—For the eqnilil)rinni

of tile forces we must have R — 0. Hence (4) of Art. ',)*>

becomes
X2+ }'» = 0. (1)
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Now (1) cannot be satisfied so long as X and Y are real

quantities unless X=0, V =0; therefore,

X = ^P cos « = and r = IP sin « = 0. (2)

Hence these are the two necessary and sutlicient conditions

for the equilibrium of tlie forces; that is, //w algebraic sum

of the rectangular components of the forces, along each of

two right lines at right angles to each other, in the plane of

the forces, is equal to zero. As the conditions of equilibrium

must be independent of the system of co-ordinate axes, it

follows that, if any number of concurring forces in one

plane arc in equilibrium, the algebraic sum of the rectan-

gular components of the forces along every right line in their

plane is zero.

EXAMPLES.

1. Given four equal concurring forces whose directions

are inclined to the axis of x at angles of 15°, 75", 135°,

and 325°
; determine the magnitude and direction of their

resultant.

Let each force be equal to P ; then

X - P cos 15° + P cos 75° + P cos 135° + P cos 225°

.3^-2= P
2*

r = P sin 15° + P sin 75° + P sin 135° + P sin 225°

= P(#.

.-. i2 = P(5-2v'3)*-

tan 9 = -T •

3* -2
2. Given two equal concurring forces, P, whose direc-

tions are inclined to the axis of x at angles of 30° and 315°;

find their resultant. Ans. i? = 1.59 P.

a*

^^
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3. Given throe concnrriiig forces of 4, 5, and 6 lbs.,

wlioso directions aro inclinc'<] to the axis of x ni angles o.'

0°, 60°, and 135' rcspectiwlv ; find tiieir resultant.

Afis. n = Vu7 + 15 Vc — 39 Va.

4. Given three ecpial coiieiirrin<? forws, P, wliose direc-

tions are inclined to the axis of x at angles of 30°, G0°, and
105°

; find their resultant. J«.s. 72 = 1.07 P.

^ 5. Given three concurring forces, 100, 50, and '^00 lbs.,

whose directions are inclined to the axis of x at angles of

0°, 00°, and 180° ; find the magnitude and direction of

their resultant. Ans. R = 86.6 lbs. : 6 = 150°

38. To find the Magnitude and Direction of the
Resultant of any number of Concxurring Forces in

Space.—Let P^, P^, P^, etc., be the forces, and the

whole be referred to a systoni of rectangular co-ordinates.

Ijet «i, /3,, yj, be the angles whicli the direction of P^
makes with three rectangular axes drawn through the point

of application ; let w^, (3^, y^, be the angles v Inch the direc-

tion of Pg makes with the same axes ; «3, (3^, y^ ';he

angles which Pj makes with the same axes, etc. Resolve

these forces along tlie co-ordinate axes (Art. 35) ; the com-
ponents of P, along the axes are P, cos «,, Pj cos 3,, P,
cos yj. Resolve each of the other forces in the same way,

and let X, V, Z, be the algebraic sums of the components
of the forces along the axes of x, y, and z, respectively

;

then we have

X = Pj cos «i -H Pg cos a, -}- Pj cos «3 -f- etc.

= £P cos «.

Y—P^ cos 01 + Pj cos /Sg + Pg co8 /Jj + etc.l . .

— SP cos /3. /
^^^

iT = P, COS yi 4- Pj cos y^ -f P, cos yj + etc.

= iP cos y.



CONDinoNS OF EQVITAUKIVM. 35

and 6 lbs.,

id tingles d,"

ant.

- 39 Va.

tfliose (liroc-

[)°, G0°, and

= 1.07 P.

id '^OC lbs.,

it angles of

lircction of

= 150°.

ion of the

Forces in

's, and tlie

3-ordinates.

tion of Pj

;li the point

h the direc-

c. Resolve

; the com-

cos 3,, P,

same way,

omjionents

spectively
;

+ etc.

+ etc.(

+ etc.

(1)

Let R be the resultant of all the forces; and let the

aiiirles which its direction makes with tlie three axes be a.

b. r ; then as the resolved parts of I! along flie tliree c'l-or-

dinate axes are equal to the sum of tlie resolved parts of

the several components along the same axes, we liave

R coaa = X, R cos b = V, R cos c = Z. (2)

Stpiaring, and adding, we get

COS a = T. > cos = -TT , cos p =
A h

Z
R'

(3)

(4)

which detei-mines the magnitude of the resultant of any

system of forces in space and the angles its direction makes

with three rectangular axes.

39. The Conditions of Equilibrium for any num-
ber of Concurring Forces in Space.—If the forces are

in equilibrium, R = ; therefore (3) of Art. 38 becomes

X« + F«+ Z^ = 0.

But as every s(iuare is essentially positive, this cannot be

unless .r = 0, Y = 0, Z = ; and therefore

SP cos « = 0, SP cos i3 = 0, SP cos y = ; (1)

and these are the conditions among the forces that they

may be in equilibrium ; that is, tlie sum of the components

of the forces along each of the three co-ordinate axes is

equal to zero.

40. Tension of a String.—By the tension of a string

is meant the pull along its fibres which, at any point, tends

to stretch or break the stiing. In the application of the

preceding principles the string or cord is often used as a

^
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means of communicating force. A string is said to be per-

fectly flexible when any force, however small, wliich is

applied otherwise than along the directitm of the string,

will change its form. In this work the string will he

regarded as perfectly flexible, inextensil)le, and without

weight.

If such a string be kept in equilibrium by two forces,

one at each end, it is clear that these forces must be equal

and act in opposite directions, so that the string assumes

the form of a straight line in the direction of the forces.

In this case the tension of the string is the same through-

out, and is measured by the force applied at one end ; and
if It passes over a smooth peg, or over any number of

smooth surfaces, its tension is the same at all of its points.

If the string should be knotted at any of its points to other

strings. Me must regard its continuity as broken, and the

tension, in this case, will not be the same in the two por-

tions which start from the knot.

EXAMPLES,

1. A and B (Fig. 8) are two fixed a

points in a horizontal line ; at A is

fastened a stiing of length b, with a

smooth ring at its other extremity, C,

through which passes another string with

one end fastened at B, the other end of
Fi9-8

which is att; ched to a given weight W ; it is required to

determine tiie position of C.

Before setting about the solution of statical problems of

this kind, the student will clear the ground before him, and

greatly simplify his labor by asking himself the following

questions : (1) What lines are there in the figure whose

lengths are already given ? (2) What forces are there

whose magnitudes are already given, and what are tlie

Torces whose magnitudes are yet unknown? (3) What
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variable lines or angles in the figure would, if they were

known, determine the required position of C ?

Now in this problem, (1) the linear magnitudes whicii

are given are the lines AB and AC. (2) The forces acting

at the point C to keep it at rest are the weight W, a ten-

sion in the string CIJ, and anotiier tension in tiio string

CA. Of tliese W is given, and so is the tension in

CB, which must also be equal to W, since the ring is

smooth and the tension therefore of WCB is the same

throughout and of course equal to W. But iis yet there is

nothing determined about the magnitude of the tension in

OA. And (;3) the angle of inclination of the string CA to

the horizon would, if known, at once determine the posi-

tion of C. For if this aii "le is known, we can draw AC of

the given length; then jmiing C to B, the position of the

system is completely knowi>.

Let AB = rt, AC = b, CAB = d, CBA = ^, and the

tension of the string AC = T. Then, for the equilibrium

of the point C under the action of the three forces, W, W,

and T, we apply (2) of Art. 37, and resolve the forces

horizontally and vertically : and equate those acting towards

the right-hand to those acting towards the left ; and those

acting upwards to those acting downwards. Then the

horizontal and vertical forces are respectively

IFcos<A = rcosS;

PTsin^ -H T'sinO = W.

Eliminating jTwe have

cos 6» = sin (0 -f ^) ;

.
•

. 20 + = 90°.

Also, from trigonometry we have

sin {0 + 0) _ a
^

sin ~~ 6
'

(1)

(a)

ite
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from (1) and (2) and <p may be found ; and therefore T
may be found; and thus all the circumstances of the
problem are determined.

2. One end of a string is attached to

a fixed point, A, (Fig. 9) ; the .string, after

passing over a smooth i)eg, B, sustains a

given weight, P, at its other extremity,

and to a given point, C, in the string is

•;notted a given weight, W. Find the posi-

tion of equilibrium.

Thi' entire length of the string, ACBP, is of no conse-

quence, since it is clear that, once equilibrium is estab-

lished, P might be suspended from a point at any distance

whatcvev from B. The forces acting at the jroint, C, are

the given weight, W, the tension in the string, CB, which,
since the peg is smooth, is P, and the tension in the string

CA, which is unknown.

Let AB =z a, AC = b, CAB = e, CBA ^ 0, and the

tension of the string, AC = T. Then for the ecjuilibrium

of the point C, we have (A;-t. 32),

cos

W ~ sin (0 + 0)

'

also, from the geometry of the figure, we have

b sin {0 + (j>) = a sin ((>.

From (1) and (2) we get

P _ 3^cos e

W ~ n sin <^'

(1)

(2)

or sin = -- cos 6;

cos <p
_ A/ffia/^S! - AW* C08» 6>

aP
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Expanding sin {0 + 0) in {'i), and substituting in it these

values of sin (j> and cos (p, and reducing, we have the

equation

eos3 e ^., -^ cos^ + -^^^ = 0,

from which d may be found. (See Minchin's Statics,

p. 29.)

3. If, in the last example, the weight, W, instead of

being knotted tn the string at C, is suspended from a

smooth rin/j whioJi is at liberty to slide along the string,

AOB, find the position of equilibrium.

W
Atis. sm 6 = —p.

41. Equilibrium of Concurring Forces on a
Smooth Plane.—If a particle be kept at rest on a smooth

surface, plane or curved, by the action of any number of

forces applied to it, the resultant of these forces must be in

the directioh of the normal to the surface at the point

where the particle is situated, and must be equivalent to

the pressure wiiicli the surface sustains. For, if the

resultant had any other direction it could be resolved into

two components, one in the direction of the normal and the

otiier in the direction of a tangent ; the first of these would

be ojjposed by the reaction of the surface ; the second being

unopposed, would cause the ])article to move. Hence, we
may dispense with the plane altogether, and regard its

normal reaction as one of the forces by which the particle

is kept at rest. Therefore if the particle on which the

statical forces act be on a smooth plane surface, the case is

the sanH> as that treated in Art. ;{!!, viz., equilibrium of a

particle acted upon l>y any number of forces; ami in writ-

ing down tiie e(|uati(jiis of ecpiilibriiim, we merely have to

include the normal reaction of the plane among all the

others.

^
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Fig. 10

EXAMPLES.

1. A heavy particle is placed on a

Bmooth inclined plane, AB, (Fig. 10),

and is sustained by a force, /', which

acts along AB in the vertical plane

Avhich is at right angles to AB ; find

P, and also the pressure on the in-

clined plane.

The only effect of the inclined plane is to produce a

normal reaction, R, on the particle. Hence if wc intro-

duce this force, we may imagine the plane removed.

Let W be the weight of the ])artic)e, and a the inclina-

tion of the plane to the horizon.

Resolving the forces along, and perpendicular to Ali,

since the lines along which forces may be resolved ai'e

arbitrary (Art. 37), we have successively.

V sin « = 0, or P = fF sin a j

and R — ]y COS « = 0, or It = W cos «.

If, for example, the weight of the particle is 4 oz., and

the inclination of tiie plane 30", there will be a normul

pressure of 2\/3 oz. on the plane, and the force, /', will

be 'i oz.

a. In the previous example, if P act horizontally, find

its magnitude, and also that of R.

Uesolving along AB and per|)endicular to it, we have

successively,

P cos « — H^sin « = 0. or /' = W tan «
;

W
and P sin a + W cos « — R — 0, .•. R —

COB a
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3. If the particle is sustained by a force, P, making a

given angle, 0, with the inclined plane, find the magnitude

of this force, and of the i)ressure on the plane, all the forces

acting in the same vertical plane.

Resolving along and per|)endicular to the plane succes-

sively, we have

P cos — W sin « = 0,

and R -\- P sind — Wcostt = 0,

from which we obtain

P = W~^- R = n/
^'oM« + ^),

cos 0' cos '

Rem.—The advantage of a judicious selection of direc-

tions for the resolution of the forces h evident. By resolv-

ing at riglit angles to one of the unknown forces, wo
obtiiin an etiuation free from that force ; whereas if the

directions arc .seleelod at random, all of the forces will

enter each ecjualion, which will nuike the solution less

simple.

The student will observe that tiiese values of /' and R
could have been obtained at once, without resolution, by

Art. 32.

42. Conditions of Equilibrium for any number of

Concurring Forces when the particle on which they
act is Constrained to Remain on a Given Smooth
Surface.— If a particle be ke])t at rest on a smooth sur-

face by tlie action of any number of forces a|)plied to it,

the resultant of these forces must be in the direction of tho

normal to the surface at the point where the particle ia

siluiitcd. iinil must i)e equivalent to the pressure which the

surface sustains (Art. 41). Hence siiu-e the resultant is in

the direction of the normal, and is destroyed by the roac-

mm
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tion of the surface, we miiy regard , this reaction as an
additional force directly opposed to the normal force.

Let ^Vbe the normal reaction of the surface, and a, 0, y,

the angles which JV makes with the co-ordinate axes of ;/,

y, and z, respectively. Let X, V, Z, be the sum of the

components of all the other forces resolved parallel to tiu'

three axes respectively. The reaction iV^may be considered

a new force, which, with the other forces, keeps the parti-

cle in equilibrium. Therefore, resolving N parallel to the

three axes, we have (Art. 39),

r-f- iVcoLj3 =
Z ^ iVcos

« = 0, )

r = 0.

)

(1)

Let u =zf{x, y, z) = 0, be the cqua^^ion of the given

surface, and x, y, z the co-ordinates of the f iirticle to

whicii the forces are applied. We have (Aial. Geom.,
Art. 175),

a'
cos a =

cos i3 =

cos y =

V«'2 + b'^ + 1

'

V

_1^

(2)

whore a' and V are the tangents of the angler which the

projections of the normal, N, on the co-ordinate i)lanes xz

and yz make with tlie axis of z. Si'.ice the nornud is per-

pendicular to the plane tangent t«', the surface at {x, y, z).

the projections of the normal are perpendicular to the

traces of the jdano. Therefore 'Anal. Geom., Art. 27.

Cor. 1), wo have

1 + aa' = 0, (;})

and 1 -f W = ; {*)
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if the given

\ iirticle to

iidl. Geom.,

in which

(3)

?r which tlie

te ])lanes vz

rnml is pcr-

) at (.r, //, z).

alar to fhc

1., Art. a?.

(8)

(4)

ax , dx' ,_ dy tj
_d£dx

dz'

(Calculus, Art. 56«.) Substituting in (3) and (4), we have

dx dx' _
^ + d-z'd7-^*

.,dydy[_Q,
and

from which
du

^ = -^ = 4^ (.Cal. Art. 87) = a', (5)

dz' dx du

dz

du

. dy' dz _Ty_ ,,
(6)

dz

Substituting these values of a' and b' in (2) and multiply-

ing both terms of the fraction by ^-, we have

du

dx
cos a =

cos (i =

V(I)'-(|F-(S)'
du

dy

duV'
,

^/m-a-'^
du

dz
cos y = —

\/o'+ cp^ cr

(7)

rtMta
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which give the values of the direction cosines of the normal

at (.r, y, z).

Putting the denominator equal to Q, for shortness, and

substituting in (1) and transposing, we have

(8)
du
di'

^ Q

du

z- ^ du

di

X Y Z
du

~
du ~ du'

dx dy dz

(9)

(10)

Eliminating N between these three equations, we obtain

the two independent equations,

(11)

which express the conditions that must exist among the

applied forces and their directions in order that their

resultant may be normal to tiio surface, i. e., that there may

be equilibriuni. If these two equations are not satisfied,

equilibrium on the surface cannot uxist. Hence the point

on a given surface, at wliich a given particle under the

action of given forces will rest in equilibrium, is the point

at which equations (11) arc satisfied.

CoK. 1.—Squaring equations (8), (!)), (10) and adding, wc

get

'(du\» (duV> /duyW V/y/^
,

\dz)_

\_'Q' + <?» ^ g>
A'3 + r« + z» = N^ = N^;

a = Vx» + r» + z», (12)
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d adding, we

= N^;

(18)
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which is the value of the normal resistance of the surface

and is precisely the same as the resultant of the acting

forces, as it clearly should be ; but this resistance must act

in the direction opposite to that of the resultant.

Cor. 2.—Multiplying (8), (9), (10) by dx, dy, dz, respec-

tively, and adding, and remembering that the total differ-

ential of w = is zero, we get

Xdx + Ydy + Zdz = 0, (13)

which is an equation of condition for equilibrium. If (13)

cannot be satisfied at any point of the surface, equilibrium

is impossible.

Cor. 3.—If the forces all act in one plane, the surface

becomes a plane curve ; lot this curve be in the plane xy,

then z — Q; therefore (11) and (13) become

(14)
X Y
du - du'

dx dy

and Xdx + Ydy = 0, (15)

in which (14) or (15) may be used according as the equation

of the curve is given as an implicit or explicit function.

EXAMPLES.

1. A particle is placed on the surface of an ellipsoid, and

is acted on by attracting forces which vary directly as the

distance of the particle from the princii)al planes* of sec-

tion ; it is recjuired to determine the position of equilibrium.

Let the equation of the ellipsoid be

M = ./ (x, y, »)

.2 ,,a ^a

* Plauos of xy, y*, tx.

itaii
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du _ 2x du _ 2y du _ 2z
•'• dx~¥' Ty"!^' dz~J''

Aiid let the x-, y-, and z-components of the forces be

respectively,

X=— Hi*, Y = —u^y, Z = —u^&;

then (11) will give

which may be put in the form

Ml «2 _ «3
6-2

If those conditions arc fulfilled, the particle will rest at all

points of the surface.

2. Again, take the same surface, and let the forces vary

inversely as the distances of the point from the principal

planes; it is required to determine the position of equili-

brium.

Here X=:--', r=z-^^, Z =
x' y

'

u.

therefore (11) becomes

^ «/2 ««

fl» _ J^ _ ^ -_ ^-

Ui ~ «sj
"~

V_^ ~ U^ + Mjj + t«8

by putting u for Hy + u^ + ti.^.

1

u

iun
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forces be

rest at all

forces vary

:; principal

L of equili-

which in (12) gives

1 «2 u.

x^ y*

-
'' L«^

"^
li' + c^J*

47

3. A particle is placed inside a smooth sphere on the con-
cave surface, and is acted on by gravity and by a repulsive
force which varies inversely as the square of the distance
from the lowest point of the sphere; find the position of
equilibrium of the particle.

Let the lowest point of the sphere be taken for the origin
of co-ordinates, and let the axis of z be vertical, and posi-

tive upwards; then the equation of the s])here, whose
radius is a, is

a;' + ^2 + «^ - 2(72 = 0.

Let IF = the weight of the particle, and r = the distance
of it from the lowest point; then

r* = .t2 + %f ^z^ ~ 2az.

Also, let the repulsive force at the unit's distaace
then at the distance r it will be

ui

u u

2az*

.*. X =
2az

(S

')'.

r =

z =

u

Uz

u

202

?/

- W.
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Let N = the normal pressure of the curve ; then (8) and

(10) give

2az r a

2az r a

from which we have

r3 = na
z = u^

2a^W^'

whence the position of the particle is known for a given

weight, and for a given value of n. (See Price's Anal.

Mechanics, Vol. I, p. 39.)

4. Two weights, P and Q, are fastened to the ends of a

string, (Fig. 11), which passes over a pulley, ;
and Q

hangs treeij' when P rests on a plane curve, AP, in a

vertical plane ; it is required to find the position of equili-

brium when the curve is given.

The forces which act on P are (1) the

tension of the string in the line OP, which

is equal to the weight of Q, (2) the weight

of P acting vertically downwards, (3) the

normal reaction of the curve P.

Let bo the origin of co-ordinates, and

the axis of x vertical and positive down-

wards. Let OM ^ X, MP = y, OP = r,

FOM = e, OA rzz a. Then,

X = P — Q cos 0— R dy

Fig. II

Y= -Qmxd + R^^;
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therefore from (15) we have

{P — Q cos 6) dx — Q sin ddy = 0,

or

But since

we have

X dx -{- y (ty
Pdx — Q L_e^-j? — 0.

r

a? + y^ = r',

xdx + y dy = rdr
;

.'. Pdx—Qdr = 0',

40

(1)

which IS the condition that must he satisfied by J', Q, and
the equation of the curve.

5. Required the equation of the curve, on all points of

which P will rest.

Integrating (1) of Ex. 4, we have

Px — Qr = a (1)

But since P is to rest at all points of the curve, this equa-

tion must be satisfied when /' is at A, from which we get

X = r = a', therefore (I) becomes

which in (1) gives

Pa- Qa= C;

.z. •

P '

1 — -^ cos

r =

which is the equation of a coni(^ section, of which the focus

is at the pole ; and is an ellipse, parabola, or hyperljola,

according as P <, =, or > Q.

3

^
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EXAMPLES,

1. Two forces of 10 and :iO lbs. act on a particle at an
angli' of CO' ; Hnd the resultant Alls. :iG.5 lbs.

'

'i. The resultant of two forces is 10 lbs.; one of tlic

forces is 8 lbs., and the other is inclined to the resultant at

an an^^le of ;]6°. Find it, and also find the angle between
the two forces. (There are two solutions, this being the

ambiguous ease in the solution of a triangle.)

Ann. Force is :;>.6G lbs., or 13.52 lbs. Angle is 47° 17'

05', or i;J2° 43' 55".

' 3. A point is kept at rest by forces of 0, 8, 11 lbs.

Find the angle between the forces and 8.

Ann. 77° 21' 53".

'4. The directions of two forces acting at a point are

inclined to each other (1) at an angle of (J0% (2) at an

angle ot^ 120", and the resi)ective resultants are as

Vl : V3 ; compare the magnitude of the forces.

Ans. 2 : 1.

5. Three posts are placed in the ground so as to form an
equilateral triangle, and an elastic string is stretched round
them, the tension of which is lbs. ; find the pressure on

G. The angle between two unknown forces is 37°, and
their resultant div' 'es this angle into 31 and G" ; find the

ratio of the component forces. .|«.y. 4.!)27 : 1.

7. If two equal rafters sup])ort a weight, W, at their

upi)er ends, required the com])ression on each. Let the

length of each rafter l)c a, and the horizontal distance

between their lower ends be b. . a W
Ans.

V4a2 -b^
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8. Three forces act at a point, and include angles of

00 !uid 45
'. The first two forces are each equal to iP,

and the resultant of them all is VlOP; find the third

'"'•t-'C- Ans. r y/-i.

'9. Find the magnitude, R, and direction, B, of the

resultant of the three forces. /', = 30 lbs., I\ = 70 lbs.,

7*3 = 50 lbs., tiie angle included l)etween J\ and P.,

being 5G°, and between P^ and P^ 104°. (It is generally

convenient to take the action line of one of the forces fur

the axis of x.

)

Let the axis of x coincide with the direction of P^; then

(Art. 3G), we have

X = 22.1G ; r = 75.13 ; R = 78.33 ; rr 73° 34'.

10. Tiirec forces of 10 lbs. eacii act at the same point

;

the second makes an angle of 30
' with the first, and the

third makes an angle of G0° with the second ; find the

magnitude of the resultant. J ha-. 24 lbs., nearly,

-^ 11. If three forces of t)9, 100, and 101 units respectively,

act on a point at angles of 120"; find the magnitude of

their resultant, and its inclination to the force of 100.

J«.v. V3; 90^

12. A block of 800 lbs. is so situated that it receives

from the Avater a pressure of 400 lbs. in a south direction,

and a pressure from tiie wind of 100 lbs. in a westerly

direction ; required the niagnitude of the resultant j)res-

sure, and its direction with the vertical.

Ans. 900 lbs. ; 27° IG'.

^ 13. A weigliT of 40 lbs. is supported by two strinps. one

of wiiicii makes an angle of 30° witii the vertical, the other

ly ; find the tension in each string.

Aiis. 20 (Vg - V2) ; 40 (a/3 — 1).
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14. Two forces, P and /", acting along the diagonals of

a parallelogram, keep it at rest in such a podition that one

of its sides is horizontal; show that

P sec «' = P' sec n = IV cosec (« + a'),

where U' is the weight of the parallelogram, and « and «'

the angles between the diagonals and the horizontal side.

15. Two persons pull a heavy Avcight by ropes inclineil

to the horizon at angles of G0° and 30° with forces of

160 Ibfi. and 200 lbs. Tlie angle between the two vertical

planes of tlie ropes is 30°
; find the single horizontal force

tliat would products the same effect. Atis. 245.8 lbs.

IG. In order to raise vertically a heavy weight by means

of a rope passing over a fixed pulley, three workmen pull at

the end of the rope with forces of 40 lbs., 50 lbs., ami

100 lbs. ; the directions of these forces being inclined to

the horizon at an angle of 00°. What is the magnitude ol

the resultant force which tends directly to raise the weight?

A us. 1(14.54 11)8.

17. Three persons pnll a heavy weight by cords inclined

to the hori'^on at an angle of GO", with forces of 100, 120,

, and 140 lbs. The three vertical planes of the cords arc

inclined to each other at angles of 30° ; find the single

horizontal force that would produce the same effect.

Aus. 10 V'US + 72 V3 lbs.

18. Two forces, ^ aiul Q, acting respectively parallel to

the base and length of an inclined plane, will each singls

sustain on it a particle of weight, )('; to determine tln'

weight of ir.

Fict «• = incliiuitioii of (lie plane to (lie horizon; then

resniving in each case along the jilane, so I hat the normal

pressures nuiy not enter into the etjuutions (See Kern., Ex. 3,

Art. 41)i wo hjivy
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P cos « = W sin « : Q = W sin «

;

W

19. A cord whose length is 21, is fa.stencd at A and B, in

the same liorizontal line, at a distance from each otiier

equal to 2a ; and a smootli ring upon the cord sustains a

wcigiit 11'; find the tension of the cord.

Ans. T
2 V?^ - «*

20. A heavy particle, whose weight is W, is sustained on

a smootli inclined plane by three forces applied to it, each

W
equal to — ; one acts vertically upward, another horizon-

o

tally, and the third along the plane ; find the inclination,

«, of the plane.
Ans. tan - = -•

/& At

"21. A body whose weight is 10 ^bs. is supported on a

smooth inclined plane by a force of 2 lbs. acting along the

plane, and a horizontal force of 5 lbs. Find the inclination

of the plane. Ans. siu~' |.

22. A body is sustained on a smooth inclined plane (in-

clination «) by a force, P, acting along the plane, and a

horizontal force, Q. When the inclination is halved, and

the forces, P and Q, each halved, the body is still observed

to rcoL ; find the ratio of P to Q. P
Ans. jj = 2 cos^

4

23. Two weights, P and Q, (Fig. 12), rest

on a smooth double-inclined plane, and are

attached to the extremities of a string

which passes over a smooth ])eg, 0, at a

point vertically over th(! intersection of the

planes, the peg and tiie weights
Fl9.«

ili ^^
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vertical rlane. Find the position of equilibrium, it I — the

length oi the string and h = CO.

Ans. The position of ciiuiiibrium is given by the equa-

tions

_ sin tc _ ^ ^}P_^
cos (^

~ cos f

'

cos « cos _ }
sin sin (j)

~ h

' 24. Two weights, P and Q, connected by a string,

length I, rest on the convex side of a smooth vertical

circle, radius a. Find the position of equilibrium, and

show tiiat the iieavier weight will be higher up on the

circle than the lighter, the radius of the circle drawn to P
making an angle with the vertical iliameter.

Ans. P sin ~ ^ sin I — dj-

"125. Two weights, P and Q, connected directly by a

string of given length, rest on the convex side of a smooth

vertical circle, the string forming a chord of the circle
;

find the position of equilibrium.

Arts. IF 2rt is the angle .subtended at the centre of the

circle by the string, the inclination, 0, of the string to the

vertical is given by the equation

P—0
cot = p 77^ tan «.

26. Two weights, P and Q, (Fig. 13),

rest on the concave siJe of a parabola

whose axis is horizontal, and are con-

nected l)y a string, length /, which

pa.sses over a smooth peg at the focus, /'.

Find (he position of equilii)rium.

Ans. Let = the angle which FP Fig.13 <j
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makes with the axis, and 4>« = the latiis rectum of tlie

parabola, then

cot
^ Vw (/^ + Q^)

27. A jiarticle is placed on the convex side of a smooth

jUipse, and is acted upon by two forces, F and F', towards

the foci, and a force, F'', towards the centre. Find the

position of equilibrium.

Ans. r = — , where r = the distance of the par-

Vl - n^

tide from the centre of the ellipse ; b = semi-minor axis,

F-F'
and n = —yr-

28. TiCt the curve, (Fig. 11), be a circle in Avhich the

origin and pulley are at a distance, a, above the centre of

the circle ; to determine the position of equilibrium.

QAns. r = -p a.

29. lict the curve, (Fig. 11), bo a hyperbola in which the

origin and i)ulley are at the centre, 0, the transverse axis

being vertical ; to determine the position of e(|uilil)rium.

Aiis, X = T-

30. A particle, P. is acted upon by two forces towards

two fixed points, S and H, these forces being -^,: and .jj,,Of 111

respectively; prove that P will rest at all points inside a

!<mooth tube in the form of a curve whose equation is SP.

PH = P, k being a (ionstant.

31. Two weights, /' and Q, connected by a string, rest

on the convex side of a smooth cycloid. Find the position

of equilibrium.
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Ans. If I = the length of the string, and a = radius of

generating oircle, the position of e(iuilibrium ii defined by

the equation

• « _ ^ J
'"'

2 - P + Q ' 4«'

where is the angle between the vertical and the radius to

the point on the generating circle which corresponds to J'.

32. Two weights, /' and Q, rest on the convex side of a

smooth vertical circle, and are connected by a string whicli

pusses over a smooth peg vertically over the centre of the

circle ; find the position of equilibrium.

Ans. Let h — the distance between the peg, B, and the

centre of the circle ; and </> = the angles made with the

vertical by the radii to P and Q, respectively ; « and /J
—

the angles made with the tangents to the circle at J' and

Q by the portions PB and QB of the string; I = lengtli

of the string; then

psin^ _ /)
"" "^

cos rt
~~ ^ cos i3

'

, /sin sin 0\ ,

Vcos a cos (3/

h cos {6 + «) = rt cos a,

h cos {(p + (i) = a cos /3.
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CHAPTER III.

COMPOSITION AND RESOLUTION OF FORCES ACTING
ON A RIGID BODY.

43. A Rigid Body.—In the last cluipter we considered

the action of forces whicli have a com i sun point of applica-

tion. We shall now consider the action of forces which are

applied at diiferent i)oi»its of a rigid body.

A rigid body is one in which the particles retain invari-

able positions with respect to one another, so that no
external force can alter tlieni. Now, as a matter of fact,

there is no such thing in nature as a body that is perfectly

rigid
; every body yields more or le^s to the forces which

act on it. If, then, in any case, the body is altered or com-
pressed aj)prociably, we shall suppose that it has assumed
its figure of equilibrium, and then consider the points of

application of the forces as a system of invarial)le form.

The term body in this work means rigid body.

44. Transmissibility of Force.—When a force acts

at a definite point of a I'ody and along a definite line, the

effect of the force will be unchanged at whatever point of

>ts direction we suppose it ai)|)lied, ])rovidcd this point be

either one of the points of the body, or l)e invariably con-

uected with the body. This jirinciple is called .the tratis-

viissibility of a force to any point in its line of action.

Now two e(]ual forces acting on a i)article in the same
line and in opposite directions neutralize each other (Art.

16) ; so l)y this prmciph^ two equal forces acting in the

«amo lino and in opjtosite directions at any points of a

rigid body in that line neutralize each other. Hence it is

<'lear that when many forces are acting on a rigid body,

any two, which are equal and have the same line of action

^M
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and act in oi)po8itc directions, may be omitted, and alsn

that two equal forces along llie same line of action and in

opposite directioi's, may ho inlroduced without changing

tlij tircumstances of the system.

45. Resultant of Two Parallel

Forces.*—(1) Let P and Q, (Fig.

14), be tiie two parallel forces acting

ot the point'i A and B, in the same

direction, on a rigid body. It is re-

quired to find the resultant of P
and Q.

At A and B introduce two equal

and opposite forces, F. The introduction of these forces

will not disturb the action of /' and Q (Art. 44). Pand F
at A are equivalent to a single forco, R, aad Q and F at M
are equivalent to a single force, S. Then let R and 8 bo

supposed to act at 0, the point of in;ersection of their lines

of action. At this point let them be resolved into their

components, P, F, and Q, F, respectively. The two forces,

F, at 0, neutralize each other, while the components, P
and Q, act in the line OG, parallel to their lines of action

at A and B. Hence the mngnitnde of the resultant is

P+ Q, (Art. 28). To find the point, G, in which its lino

of aciion cqts AB, let the extremities of Pand R (acting at

A) be joined, and complete the parallelogram. Then the

triangle PAR is evidently similar to GOA ; therefore,

P GO .... (? GO
^=: g-^; similarly ^=(j3i

therefore, by division,

P
Q

GB
GA" (1)

* Mltichln'H Statics, p. 86.
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P-Q

(2) When ike forces act in opposite directions.—At A and

B, (Fig 15), apply two equal and opposite forces /•', as

before, and let A', the resultant of P
and F, and <S', the resultant of Q and

F, be transferred to 0, their point of

intersection. If at the forces. It

and *S', are decomposed into their
_

original components, tiie two forces,
f o f

F, destroy each other, the force, P, ^'^'^

will act in the direction GO parallel to the direction of

P and Q, and the force Q will act in the direction OG.
Hence the resultant is a force =z P — Q, acting in the line

GO. To find the point G, we have, from the similar

triangles, PAR and OGA,

P_QO
, Q

F-GA' ""''" F
GO
GB

'

P
Q

GB
GA' (2)

Hence the resultant of ttoo parallel forces, actiiig in the

same or opposite directions, at the extremities of a rigid

right line, is parallel to the components^ equal to their

alffebrnic sum, and divides the line or the line produced,

into two segments which are inversely as the forces.

In both cases we have the equation

P X GA = ^ X GB.

Hence the following theorem :

(3)

If from a point on the resultant of two parallel forces a

right line be drawn meeting the forces, whether perpendicu-

larly or not, the products obtained by vniUiplying each force

by its distance from the resultant, measured along the arbi-

trary line, arc equal.

ScH.—The point G possesses this remarkable property

;

^^
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that, however P and Q are turned about their poii i of

application, A and B, tlieir directions ifp linin'? pavullel,

G, deteimined as allow '•niaiiiri iixi-d. Tins point is \n

conse^juenoe caied the centre of the parallel forces, P
and Q.

46. Moment of a Force.— The moment of n fo)ce with

respect to (i jwint is t/ie product of the force and tl>.e perpen-

dicular let fall OH its line of action from the point. The

moment of u force measures its tendency to produc rota-

tion ahout a fixed point or fixed axis.

Thus let a force, P, (Fig. 10), act on

a rigid body in the plane of the paper,

and let an axis perpendicular to this

plane pass through the body at any

point, 0. It is clear that the effect of

the force will be to turn the body round this axis (the axis

being supposed to be fixed), and the turning effect will

depend on the magnitude of the force, P, and the perpen-

dicular distance, p, of /' from 0. If P passes through 0,

it is evident that no rotation of the body round can take

place, whatever be the magnitude of P\ while if P
vanitnes, no rotation will take place however great p may

be. ILmicc, the measure of the power of the force to

produce rotation may be represented by the product

P. p,

and this product has received the special name of Moment.

The unit of force being a pound and the unit of length a

foot, the unit of moment will evidently be a foot-pound.

The i)oint is csdled the origin of mommts, and may or

may not be chosen to coincide with the origin of co-

ordinates. The solution of proldems is often greatly sim-

plified by a proper s 'lection of the origin of moments. The

perpendicular from the origin of moments to the action line

of the force is called the arm of (he force.
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47. Signs of Moment**.—A force may tend to tnrn a

body about a j)oint or about an axis, in either of two direc-

tions; 1 one be regarded as positive the other must be

nrgnlive ; -v.J I.-mcc we distinguish between positive and

ni'ijative moments, ^or the sake of uniformity the moment
of a force is said to be negative \\\\Gn it tends to turn a body

from left to right, /. e., in the direction in which the hands

of a clock move ; and positive when it tends to turn the

body from right to left, or opposite the direction in whi- ',

the hands of a clock move.

48. Geometric Representation of the Mome<< v

a. Force with respect to a Point—Let the li /. K

(Fig. l(i), represent the fc-'ie, P, in magnitude an<^, \..'c.

tion, unAp the perpendicular OC ; then the momei.' ^f /''

with respect to is ABx/' (Art. 40). But this it, i' >e

the area of the triangle AOB. Hence, tIte moment of o, force

with respect to a point is (/eometrically represented by double

t/ie area of the triangle whose base is the line representing

the force in magnitude and direction, and whose vertex is

the given point.

49. Case of Two Equal and Opposite Parallel

Forces.—If the forces, P and Q, in Art. 45, (Fig. 15) are

equal, the equation

P X GA = () X GB

gives GA = GB, which is true only when G is at infinity

on AB; also the resultant, P— Q, is equal to zero. Such a

system is called a Conple.

A Couple consists of two eqval and tipposi(e paralhl forces

acting on a r'gid bwtij at a finite disfanre from each other.

We shall investigate the laws of the composition iind

resolution of couples, since to these the composition and

•^
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resolution of forces of every kind acting on a rigid body

may be reduced.

6 d

50, Moment of a Couple.—Let ?
(Fig. 17) be any point in the plane of the

couple ; let fall the perpendiculars Oa
and Ob on the action lines of the forces

P. Then if is inside the lines of action

of the forces, both forces tend to produce ^'8""

rotation round in the same direction, and therefore the

eum of their moments is equal to

P (Oa + Ob), or P xab

If the point chosen is 0', the sum of the moments is

evidently

p (O'rt - O'b), or P X ab,

which is the same as before. lienee the ntioment of the

couple with respect to all points in its plane is constant.

The Arm of a couple is the perpendicular distance

between the two forces of the couple.

The Moment of a couple is the product of the arm and
ons of the forces.

The Axis of a couple is a right line drawn from any
chosen point perpendicular to the jjUme of the couple, and
of such length as to represent the magnitude of the mo-
ment, and in such direction as to indicate the direction in

which the couple tends to turn.

As the motion, in Statics is only virtunl, and not actual,

llio direction of the axis is fixed, but not tho position of it;

it may be any line perpendicular to tlio plane of the couple,

jind may bo drawn as follows; imagine a watcii pliiced in

the plane in which several couples act. Then let the axes

vf those couples which tend to produce rotation in the
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direction of tiie motion of the hands be drawn dowmvard
through the back of the watch, and tlieaxesof those which
ti'ud to pioduco the coiitiary rotation be drawn itpward
tbroHgii tlie face of the watclj. Thus each couple is com-
pletely represented by its axis, which is drawn upward or
downward according as tiio moment of the couj)le is posi-

tive or negative ; and couplos are to be resolved ami
compounded by the same geometric constructions jjerformed

with reference to their axes as forces or velocities, with
reference to the lines whicii directly represent tliera.

We shall now give three propositions showing tliat the
effect of a couple is not altered when certain changes are

made with respect to the couple.

51. TJie Effect of a Couple on a Rigid Body is not
altered if the arm be turned through any angle
about one extremity in the plane of the Couple.

Let the plane of the paper be the

plane of the couple, AB the arm of

the original couple, AB' its new posi-

tion, and P, P, the forces. At A
and B' respectively introduce two
forces each e(pial to P, with their

action lines perpendicular to the arm
AB', and opposite in direction to

each other. The effect of the given

couple is, of course, unaltered by the introduction of these
forces. Let BAB' — 20 ; then the resultant of P acting at

B, and of P acting at B', whose lines of action meet at Q,
is2Psin 6, acting along the bisector AQ; and the result-

ant of P acting at A perpendicular to AB and of P per-

pendicular to AB', is ^>/' sin 0, acting along the bisector

AQ in a direction o])posite to the former resultant. Hence
these two resultiints iicutralizo each other; and there

remains the couple whose arm is AB', and whose forces are

P, P. Hence the effect of the couple is not altered.
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52. Tlie Effect of a Couple nn a Rl^id Body is

not altered if we transfer t/ie Cnaple to any oilier

Parallel Plane, the Ann remaining parallel to

itself.

Let AB be the arm, and P, P, the

forces of the given couple; let A'B'

be the new position of the arm par-

allel to AB. At A' and B' apply two

equal and opposite forces each equal

to P, acting perpendicular to A'B',

and in a plane parallel to the plane of ^'o-"

the original couple. 'J'his will not altev the effect of the

given couple. Join AB', A'B, bisecting each other at ;

then P at A and P at B', acting in parallel lines, and in

the same direction, are efjuivalent to 'IP acting at ; also

P at B and P at A', acting in parallel lines and in tiie

same direction, are equivalent to 'iP acting at O. At

therefore these two resultants, being equal and opposite,

neutralize each other ; and there remains the couple whose

arm is A'B', and whose forces are each P, ac*^ing in tiie

same directions as those of tiie original couple. Hence the

effect of the couple is not altered.

53. Tlie Effect of a Couple on a Rigid, Body is

not altered if we replace it by another Couple of

jvhich th-'. Moment is the same; the Plane remain-

ing the i... m,e and the Arms being in the same
straight line and having a
common extremity.

Let AB be the arm, and P, P, the

forces of the given couple, and sup-

pose P = Q+ P. Produce AB to C
so that

AB : AC :: Q : P {= Q + R),

AB : BC

tP=Q+R

Fig.20

iP=Q+R

and therefore Q : R;

(1)

(2)
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at C introduce opjjosite forces eacii equal to Q and parallel

to P ; this will not alter the effect of tlie couple.

Now i2 at A and Q at (J will balance Q { li ixi B from

(2) and (Art. 45); hence there remain the forces, Q, Q,

acting on the arm, AC, wliicli form a couple whose moment
IS equal to that of P, P, with arm, AB, since by (1) we
have

P X AB = g X AC.

Hence the effect of the couple is not altered.

Rem.—From the last three articles it appears that we

may change a couple into another couj)le of equal moment,

and transfer it to any position, either in its 11 plane or

in a plane parallel to its own, without altering the effect of

the coui)le. Tlic couple must remain unchanged so far as

concerns the direction oj rotation which its forces would

tend to give the arm, i. e., the axis of tlic couple may be

removed parallel to itself, to any position Avithin the body

acted on by the couple, while the direction of the axis from

tiie plane of the couple is unaltered (Art. 50).

54. A Force and, a Couple acting in the same
Plane on a Rigid Body are equivalent to a, Single

Force.

Let the force be F nn(\. the couple {P, n), tiiat is. Pis
the magnitude of cacli force in tlie couple whose arm is a.

Then (Art. 53) the couple (P, a) = the couple (p, ^-Y

Let this latter couple be moved till one of its forces acts in

till' same line as the given force, F, but in the opposite

diri- tion. Tlie given force, P, will then be destroyed, and
the ( will remain a force, P, acting in the same direction

as the given one and at a iierpendicular distance from it

(iP
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Cor.—A force and a couple acting on a rigid hotly cannot

prodhcc e(/niIibriHin. A coupln can Ije i.'t equilibrium only

with an equivalent couple. BquivaletU couples are thoxe

wliose :nohients are equal.*

The resultant of several cmiples is one which will produce

the same effect singly as the component couples.

55. To find the ResuUdnt of amj number nj

Couples acting on a Body, the Planes of the

Couples being parallel to each other.

Let P, Q, R, etc., be the forces, iiiid a, h, c, etc., tlieir

arms rcspoctivel)'. Suppose all ciie couples tninsferred to

the same plane (Art. 53) ; next, let them all be transferred so

as to have their arms in the sanie straight lino, and one

extremity common (Art. •'51) ; lastly, let them be replaced

by other couples having the same arm (Art. 53). Ijet «c be

the common arm, and Pj, (?,, i?j, etc., the new forces,

80 that

Pj« — Pa, Qitt = Qh, Rytr = Re, etc.,

then P, = P-, Q. = Q~, R. = R-, etc.,

i.e., the new forces are P-, Q , R- , etc., acting on the

common arm «. Hence their resultant will be a couple of

which each force equals

pi + qI + „l + „tc.,

and the arm = «, or the moment equals

Pa + Qlj -\- Re -f etc.

If DUO of the coupleH. as Q, act in a direction opposite to

* The moiuotiti) ufcqulviileut cuupluu may have Uku or unllko HigUH

th

ead
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the otlier couples its sign will be negative, and the force at

each extremity of the arm of the resultant couple will bo

p'_'_ g* + /ei + etc.
« « a

Hence the moment of the resultant couple is equal to the

algebraic sum of the moments of the component couples.

56. To Find the Jlesioltant of tivo Couples not

acting in the same I'lane.*

Let the planes of tht couples be

inclined to each othci at an

angle y ; let the couples be trans-

ferred in their pianos so as to

have the same arm lying along

the lino of intersection of tiio two

planes ; and let the forces of the

couples thus transferred be P and Q. Lot AB be the com-

mon uruK Let A* be the resultant of the forces P and Q at

A acting in the direction Ali ; and of P and Q at B acting

in the direction lili. Then since P and ^ at A are parallel

to P and Q at 1$ respectively, thei'efore II at A is parallel

to Ji at B. Hence tiie two couples are e([uivalent to the

single couple li, R, acting on the arm AB ; and since

y'A^ = y, wo have

Ri = /'» + ga + 2PQ cos y (Art. 30). (1)

Draw Art, Bi perpendicular to the jdanes of the couples

/', /', and (>, Q, respectively, and proportional in length to

tiieir niomentf.

Draw Av perpendicular to the plane of U, li, and in the

same proj)ortion to Art, Wh, lliat the moment of the couple,

/.'. /.', is l(» those of /'. /'. and (>. Q, respectively. Tiien

Art, \l), Ar, may lie taken as the axes of /', /'
; Q, Q\ and

• Todt.Hiitor'B Stallcn, j). i-i. AIno Pmtt's McclmiilcB, p. S6.

rite
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li, R, rcspoctivoly (Art. 50). Now tlie three straight linen,

Art, Ar, Kb, make the same angles with each other that

A/', A^, A^ make with each other; also they are iu the

same proportion iu which

AB . P, AB /?, AB . (2 are,

or in which P, li, Q are.

But R is the resultant of P and Q ; therefore A<; is the

diagonal of the parallelogram on Aw, A/> (Art. 30).

Hence if two struujhf lines, having a common exircvitfi/,

represent the axes of tiro couples, that diagonal of the

parallelogram described on these straight lines as adjacent

sides which passes through their common extremity repre-

sents the axis of the resultant couple.

Cor,—Since R • AB is the axis or moment of the result-

ant couple, wo have from (1)

ii?.AB'= /'2.AB''+<?^AB'+2P.AB-(2-AB-cosy. (!i)

If Ij and ;]/ represent the axes or moments of the com-

j)onent couples and G, that of the resultant couple, (2)

becomes

(P = D + AP + 2L M cos y. (3)

Ren. 1.—If A, M, N, are the axes of three comp'mont

couples which act in ])l;nu's at right angles lo one aiioliier,

and G the axis of the resultant couj)le, it may lasiiy be

shown that

0« = 7^,2 -f Tlfs + NK (•1)

If A.. (I, V 1)0 tlie angles which the axis of the resultant

makes with tho'^e of the compoueiits, we have

L M
cos A -- -^ , cos fl = , , cos V

N
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ScH. 2.—Ileuce, conversely any couple may be re])lacecl

by three couples acting in planes at rigiit angles to one
another; their moments being ^r cos A,, (f cos fi, 6' cos j'

;

where O is the moment of the given couple, and A, /t, v the

angles its axis makes witli the axes of the three couples.

Thus the composition ami resolution of couples follow

laws similar to those wliich apply to forces, the axis of the

couple corresponding to the direction of the force, and the

moment of the conple to the mafjiiitmle of the force.

57. Varignon's Theorem of Moments.—TAw nw-
rnetit of the resultant of two coiiiponent forces
with respect to any point in their plane is ef/nal

to the algehraie sain, of the moments of the two
components with respect to the same point.

Let A P and A Q represent two com-

ponent forces ; oorn;)leto the parallelo-

gram and draw tie diagonal, Ali,

representing the resultant force. Let

be the origin of mcments (Art. 40).

Join OA, OP, OQ, OR, and draw PV
and QB parallel to OA, and let p = the perpendicular let

fall from to A h\

Now (he moment of AP about is the product of AP
and the perpendicular lot fall on it from (Art. 40), which

18 double the area of the triangle, A OP (Art. 48). But
the area of the triangle, A 01', = the area of the triangle,

A 00, since these triangles have the same base, AO, and

are between the same piirallels, AO and CP. Hence tho

moment of AP about ~ the moment of AC about

O -- AC -p. Also the nnmienl of .(('about is double

the area of tho triangle, AOQ, — doul)le the area of the

iiiangle, AOB, since the two triangles have (lie same base,

AO. and are between the same parallels. AO and Qli.

Uonce the moment oi AQ about — the moment of AH
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about = AB • p. Therefore the sum of the moments of

AP and AQ about = the sum of the niononts of AV
and AB about = {AV + AB)p, = {AB -\- BR)p,
(since AC = BR from tlie equal triangles .IPC and QBR)
= .1/^ '21 = the moment of the resultant.

If the origin of nioments fall bettueen AP and AQ, tht

foi-ees will tend to jjroduce rotation in oj)posite directions -

and hence their moments will have contrary signs (Art.

47). In this case the moment of the resultant = the dif-

ference of the moments of the components, as the student

will find no diiliculty in showing. Hence in either case

tlie moment of 'l^e resultant is equal to the algebraic sum

of the moments of the components.

CoK. 1.— li" tliere are any number of component forces,

(V'c may compound thorn in order, taking any two of tliem

!lrs't, tiien finding the resuUant of these two and a third,

iV.id so on; a l it follows that the sum of their moments

(with their projier signs), is equal to the moment of the

resultunt.

Cor. 2.—If the origii; of moments be on the line of

action of the resultant, p = 0, and therefore the moment
of the resultant ~r. ; hence the sum of the moments of

tiie components is equal to zero. In this case the moments

of the forces in one direction bahmce those in the opposite

direction ; i. c, tlic forces that tend to produce rotation in

one dire(!tion ai'e couiiteracted by the forces that tend to

])roduce rotation in the opposite direction, and there is no

tendency to rotation.

Cor. 3.—If all the forces are in equilibrium the resultant

A' ™ 0, and Hierefore tiic moment of A' = 0; hence the

sum (if the inonu'nts of the components is ecpial to zero,

and llicre is no t(;ndency to motion eitii.-r of tmuHlatiou or

rotation.
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Coil. 4.—Therefore when the moment of the resultant

= 0, wo conclude either that the resultant = (Cor. 3),

or that it ^^assjs through the point taken as the origin of

moments (Cor. 2).

58. Varignon's Theorem of Moments for Parallel
Forces.— Th,o aitnh of the moments of tivo jnirallei

forces about any point is equal to the moment of
their resultant about the poitit.

Let P and Q be two 'parallel forces

acting at A and B, and R their result-

ant acting at G, aiid let he tlie point

about which moments are to be taken.

Then (Art. 45) we have

R
<2

Fig.23

P X AG = <2 X BG,

.-. P(OG -OA) = Q (OB - OG),

.-. (P + OG = P X OA + ^ X OB,

7? X OG = P X OA + e X OB;

that is, the sum of the moments = the moment of the

resultant.

Cor.—It follows that the algebraic sum of the? moments
of any number of parallel forces in one plane, with respect

to a point in their plane, is equal to the moment of their

resultant with respect to tlie point.

59. Centre of Pai-allel Forces.— To find the mag-
iiitiidc, (1 irt'ction , ami point of applical ion. of the

resultant of niiij nnniJter of parallel forces acting
vn, a rigid body in on,e plane.
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d

Let P^, i'g, P3, etc., denote the

forces, i/j, M^, M^, etc., their points

of applitiition. Take any point in

the plane of the forces as origin and

draw the rectangular axes OX, OF.

Let {x^, y,), \^^, y^), etc., be the " * » " *

|)oints of application, My, i/g, etc.
''"

Join i/jJ/g; and take the point i¥on M^M^, so that

M^M Pg

M,

il/,3/g ~ F^+lrj J 0)

then the resultant of /\ and Pg is P, + Pg, and it acts

through M parallel to P, (Art. 45).

Draw M^a, Mb, M^c parallel, and M^e perpendicular to

the axis of y. Then we have

Mi^L - ^^'^ - ¥]l-i1i .

i/,7l/g ~ il/gC
~"

2/g -2/1
'

.'. Mb-y^=-jr~^-rr{y2-yi)'>
^ 1 "r ^ 2

Pi^i + Pg^a

which gives the ordinate of the point of ai^plication of the

resultant of 1\ and fg.

Now since the resultant of P, and Pg, which is

Pi 4- I\, acts at M, the resultant of J\ + Pg at M, and

P3 at iVg, is Pi + Pg + Ps at /;, and substituting in (x')

Pj + Pg, P3, i/i, and y^ for Pi, Pg, 7/,, and i/g resixn-

tively, we have

, _ (''1 + i\) Mb + P^tu „ i\y^±£^^li + ^\y-^
. r!i



p/m^''m, /
*^ r

i/
M.

d e

6 "A
Fig.24

J,
SO that

0)

^2, and it acts

rpendicular to

2/i);

2/8
(3)

lication of the

Pg, which is

Pg at M, and

titiiting in (x*)

and y^ resi)W'

;(:!)

CENTRE OF PARALLEL FORCES. 73

and this process may be extended to any nnmber of parallel

forces. Let R denote the resultant force and y the ordi-

nate of the point of application ;
then we have

R = I\ + Pg + 1\ + etc. = SP.

y = PilU + ^2l2jL:?3/^3__+ etc. _ SPy

I\ + Pg + P3 + etc. i:P

Similarly, if i« be the abscissa of the point of application of

the resultant, we have

X = -LPx

The values of x, y are independent of the angles which

the directions of the forces make with the axes. Hence

if these directions be turned about the points o iiS''"'-'ation

of the forces, their parallelism being preserved, i int of

application of the resultant will not move. For this reason

the point {x, y) is called the centre of parallel forces. We

shall hereafter have many ai)plications in which its position

is of great importance.

ScH. 1.— The moment of a force with respect to a plane.

is the product of tlie force into the perpcmlicnilar distance

of its point of application from the plane. Thus, /\y, is

the moment of the force P,, in reference to the plane

through OX perpendicular to OF. This must be carefully

distinguished from the moment of a force with respect to

a point. Hence the equations for determining the position

of the centre of parallel forces show that the sum of t/w

moments of the parallel forcer with respect to any i)lane, is

equal to the moment of their resultant.

Son. 2.— The moment of a force with respect to any line

is the product of the component of the force perpendicular

4
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Fig.25

tf,

CO tbo liijo into the sliortost distance between tlie line and
the line of action of the force.

60. Conditions of Equilibrium of a Rigid Body
acted on by Parallel Forces in one Plane.—Lot
1\, I\, 7*3, etc., denote the forces. Take
any jxiint in tiie plane of the forces as

origin, and draw rectangular axes, OX.
OY, the latter parallel to the forces. Let
A be the point where OX meets tlie direc-

tion of /",, and let OA ~ x^.

Apply at two opposing forces, each
equal and parallel (o P, ; this will not disturb the equili-
brium. Then I\ at J is replaced by I\ at along OY,
and a couple whos( moment is P^ OA, i. c, P x . The
renuiining forces, /%, /'j, etc., may oo treated in like man-
ner. We thus obtain a set of forces, P^, P^, p ^ etc.

acting at along OY, and a set of couples, /^.r,, P^x
,

P^x^, etc., in the plane of the forces tending to turn the
body from the axis of x to the axis of y. These forces are
equivalent to a single resultant force 7'j ^ p^j^-p ^ etc,

and the couples are equivalent to a single resultant couple,

Pi^\ + ^2-^2 4- P^x^ + etc. (Art. 55).

Hence denoting the resultant force by R, and the moment
of the resultant couple by O, we have

i? = Pj -I- Ps, + /"a + etc. = SP;

= Pi^i + P^x^ + P^x^ -j- etc. = SPa;;

that is, a system of jiarallel forces can bo reduced to a
single force and a coui)lo, which (Art. 54, Cor.) cannot
produce e(|uilibrium. ironci'. for o(iuilibriuni, the force
und the couj)lo nuist vanish ; or

SP = 0, and ^Px -. 0.
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Hence the conditions of eiiuilibrium of a system of par-

illel forces acting on a rigid body in one plane are :

17ie sum of the /orc<-'s mud = 0.

The sum of the moments of the forces about every jwint in

their plane must = 0.

61. Conditions of Equilibrium of a Rigid Body
acted on by Forces in any direction in one Plane.—
Lot 1\, Pg, P3, etc., be tiie forces acting at the points

(•^i> l/i), (^8. ^2). (^3' yw> etc., in the

plane xy. Resolve the force P^ into two

components, JTi, Fj, parallel to OX
and OY respectively. Let the direc- «

tion of Fj meet OX at M, and the

direction of X^ moot OF at X. Apply

at two op[)osing forces each equal and parallel to Xi,

and also two oi)posing forces each ocpial and parallel to Fj

.

Hence Fi at A^, or M, is etpiivalent to Fj at 0, and a

couple whose moment is F^ • OM; and X^ at Jj, or X, is

equivalent to X^ at 0, and a couple whose moment is

X, • ON.

Hence F^ is replaced by F, at 0, and the couple Y^Xi ;

and X^ is replaced by X^ at 0, and the couple X^y^ (Art.

47). Therefore the force Pj may be rejilacod by the com-

ponents X^, Fi acting at 0, and the couple whose

moment is

Fi^i - X,yi,

and which equals the moment of Pj about (Art. 57).

liy a similar resolution of all the forces we shall have

them replaced by tlio forces (X^, V.), {A\, F3), etc.,

acting at along the axes, and tlie (oui)les

Fj.'g — A g/Zj, ) 3'

3

X^y.,, etc.

Adding togetiier the couples or moments of Pj, Pg, etc.,
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and denoting by G the moment of the resultant couple, wc
get the total moment

G=:I.{Yx-Xy).

If the sum of the components of the forces along OX is

denoted by SX, and the sum of the components along OY
by i 1", the resultant of the forces acting ut is given by
the equation

Ri = {^Ay + (sr)2.

If a be the angle which li makes with the axis of X, we
.lavo

Ji cos a = iA", li am a = :^Y;

.'. tan a = —^•

Therefore, any system of f >rces acting in any direction

in one i)lane on a rigid body may be reduced to a single

force, E, and a single cou{)le whose moment is G, which
(Art, 51, Cor.) cannot produce equilibrium. Hence for

equilibrium wc must have li = 0, and 6* = 0, which
requires that

XX = 0, 2:Y= 3,

^{Yx- Xy) - 0.

Hence the conditions of equilibrium for a system of

forces acting in any direction in one plane on a rigid body
arc :

T/ie sum nf the componrnfs of the forces parallel to each of
tiro rvctaiiijular axes must = 0.

The sum of the momeids of the forces round every point in

their plane must — 0,
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Cor.—Conversely, if i\\o forces arc in er|uilil)riuni the

sum of the components of the forces parallel to any direc-

tion will = 0, and also the sum of the moments of the

forces about any point will = 0.

62. Condition of Equilibrimn of a Body under the

Action of Three Forces in one Plane.— //' tlirer

forces DKiintalii a hndij in eqitilihriuin, their

direotions Diitst Dieet in (i point, or he parallel.

Suppose the directions of two of the forces, /* and Q, to

meet at a point, and take moments round this point ; then

the moment of each of these two forces = 0; therefore the

moment of the third force li = (Art. 01, Cor.), which

requires either that Ji = 0, or that it pass through the

point of intersecti(m of P and Q. If R is not = 0, it must

pass through this jtoint. Hence if any two of the forces

meet, the third must pass through their point of intersec-

tion, and keep it at rest, and each force must ho equal and

opposite to the resultant of the other two. ^f the angles

between them in pairs be p, q, r, the forces must satisfy the

conditions

P : Q : E = sin p : sin q : sin r (Art. 32).

If two of the forces are parallel, the third must be

parallel to them, and equal and directly opposed to their

resultant.

EXAMPLES.

1. Suppose six parallel forces proportional to the numbers

1, 2, 3, 4, 5, G to act at points (—2, —1), (— 1, 0), (0, ]),

(1, 2), (2, 3), (3, 4) ; find the resultant, R, and the centre

of parallel forces.

By Art. 59 we have

R = I.P = \ +2 + ...G = 21;
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SPx = -2-2 + 4 + 10 + 18 = 28;

^Py = _ 1 + ;5 + 8 + 15 + 24 = 49.

^ ~ }uP - 21' y ~ ~1.P

49
21*

2. At the three vertices of a triangle parallel forces are

applied which are jjroportioi.al respectively to the opposite
sides of the triangle; find the centre of these forces.

Let(a-,, ^i), (xg, ijg), {Z3, y^) be the vertices, and let a,

b, c be the sides opposite to them ; then

fl+ *+ c '
^ a+ b+ c

3. If two parallel forces, P and Q, act in the same direc-

tion at A and B, (Fig. 14), and make an angle, 0, with

A B, find the moment of each about the point of applica-

tion of their resultant.

The moment of P with respect to O is

P-^G'sinOCArt. 46).

But from (1) of Art. 45, we have

P+ Q _AB
Q

.'. AG =

which j P' AG sin d gives

PQ

AG'

Q
P + Q

AB,

AB sin e,P^Q
for the moment of P which also equals the moment of Q
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4. Two parallel forces, acting in the same direction,

liave tlioir iniigiutndcH 5 and \'-\, and their points of appliea-

lion, A and //, leet apart. Find the magnitude of their

resultant, and tlie point of application, (I.

Ans. R = 18, A(J = 4^, BG = If.

5. On a straight rod, AF, there are suspended 5 weights

jf 5, 15, 7, 0, and 9 pounds respectively at the points A, B,

D, E, F; AH = 3 feet, BD — G feet, DE - 5 feet,

EF = 4 feet. Find the magnitude of the resultant, and

the distance of its point of application, G, from A.

Ans. R = 42 pounds. AG =^ ^^ feet.

G. A heavy uniform beam, Ali, rests

in a vertical plane, with one end, A, on a

smooth horizontal plane aiul the other

end, li, against a smooth vertical wall

;

the end, A, is prevented from sliding by

a horizontal string of given length fas-

tened to the end of the beam and to the wall ; determine

the tension of the string and the pressures against the

horizontal plane and the wall.

Let "Za = the length of the beam, and let W be its weight,

which as the beam is uniform, we may suppose to act at its

middle point, G. Let R be the vertical pressure of the

horizontal plane against the beam ; and R' the horizontal

pressure of the vertical wall, and T the tension of the hor-

izontal string, AC ; let liAC =: «, a known angle, since

the lengths of the beam and the string are given. Then

(Art. Gl), we have

for horizontal forces, T = R'

;

Fia.27

for vertical forces, W = R ;

for moments about A (Art. 47), 2R' a sin «

W
.-. A" = 7'=-^ cot a.

4

: Wn cos «
;

mm
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7. A heavy beam, A B = r/ + />, rests

oil two givtMi sniootli iiliinos which are

iiK'lincd iit angles, « and fi, to the

horizon; n'i|nirt'(l the angle wiiich

the beam makes with the horizontal

phme, and the pressures on the

phmes.

Let a and i be the segments, AG and BU, of t!ic beam,

made by its centre of gravity, G ; let I' and R' be the

pressures on the planes, AC and BC, the lines of action of

which are perpendicular to tiie planes since they are smooth,

and let IT be the weight of the beam. Then we have

for horizontal forces, E sin « = li' sin |8; (1)

for vertical forces. A' cos « + Ji' cos = W; (2)

for moments about G, Ra cos {a + &)= H'h cos (0—6). (3)

Dividing (.'{) by (1), we have

a cot a — a tan = b cot + b tan 8
;

a cot « — b cot
therefore, tan =

a + b

and from (1) and (2) wo have

W sin 3R =
sin (« -f 0)

; and R'
W Bin a

sinXfT+^y

Otherwise thus: since the beam is in equilibrium under

the action of only three forces, they must meet in a point (),

(Art. (i2), and therefore wo obtain immediately from the

geometry of the figure,

R _ sini3

W~ 8in(« + j3)'
/.'

W8m0
8in'V« + 0)'
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and
R' sm «

•. A"=-T
TFsin «

ir sin [a -\- liy '
' " sin (« + |3)

Also since the angles, (JOA ami (JOI?, are equal to « and |3,

respectively, and BGO —
^
— 0, we liave

therefore,

(rt + i) cot JJGO z= a cot GOA - b cot GOB;

a cot a — h cot /3
tan =

« + *

Hence, if -j = -' —^-, the beam will rest in a liorizontal
tan ji

position.

8. A heavy -nniform beam, AB, rests with

one end A, against a smooth vertical wall,

and the other end, B, is fastened by a string,

BC, of given length to a point, (', in the

wall ; the beam and the string are in a vertical

l)iane ; it is required to determine tlie pressure

against tho wall, the tension of the string, and

the position of the beam and the string.

Let AG = GB =. a, AC = .r, BC = b,

weight of beam = W, tension of string = T, pressure of

wall = R,

BAE = 0, BCA = ^.

Then we have

for liorizontal forces, 7?= Tm\^; (1)

for vertical forces, ]V = T cos
; (3)

for moments about A, Wa sin = T- AD = T.r. sin 0; (.1)

.'. a sin — X tan 0; (4)

^
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and by the geometry of tlie figure

b _ sill ^

Ha siu^'

X _ sin (9—4)
2a sin </>

Solving (4), (5), and (0), we get

" = L-ir-J

'

COS
^ 2 r^a - ia^y

sin 6 —
2a 3 T'

(5)

(6)

from which 7? and T become known. (Price's Anal.

Mech's., Vol. I, p. flO).

To determine all the unknown quantities many problems in Statics

require equations to be formed by geometric relations as well as static

relations. Thus (1), (3), (3) are static equations, and (5) is a geometric

equation.

9, A uniform heavy beam, AB = 2a,

rests with one end, A, against the inter-

nal surface of a smooth iiomi8i)herical

b;)wl, radius = r, while it is supported

at some point in its length l)y the edge

of the bowl ; find tho position of equili-

brium.

The beam is kept in equilibrium by three forces, viz., tho

reaction, R, at A perpendicular to the surface of contact,

(Art. 42) and therefore ]icrpendicular to the bowl, tlio

r>,>action, R, at C which, for the same reason, is per])eti-

dicular to the beam, and tlie weight U' acting at U,

Fig. 30
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Let = the inclination of tlie beam to the horizon

= <ACI). The solution will be most readily effected liy

resolving the forces along the beam and taking moments

iil)ont C, by which we shall obtain equations free from tise

unknown reaction, 7?'. Then we have

for forces along AB, Jt cos = W sin 0,

for moments about C,

R • 2r cos d sin d = W {2r coe 6 — «) cos d.

From (1) we have

B = W tan e,

which in (2) gives, after reducing,

2/- sin'^ — 2r cos'' d + acosO = 0,

4r cos^ — a cos — 'ir =: 0,

(1)

(2)

or. (3)

cos 6 =
8/-

Otherwise thus: since the beam is in or; iiilibrium under

tiie action of only three forces, tliey must cieet in a point

(Art. GH). Draw the tiireo forces AC, (W, GO, which

keep the beam in equilibrium. Let the line, GG, meet the

semicircle, DAC, in the point. Q. Thou AQ is a horizontal

line. Also

<QAG = <DCA = 6,

therefore

I IenCO

and also

<OAQ = 20.

AQ = AO cos 26,

AQ = AG cos 0;

m
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therefore

or

2r cos 2d = a cos 8,

4r cos^ — « cos — 2r = 0,

wliich is the same as (3) obtained by tlio other method,

'rhe student may prove that the reaction, W, at C
ffl= W
2r

Fig. 31
rw

10. Find the position of equilibrium of

a uniform heavy beam, one end of which

rests against a smooth vertical plane, and
the other against the internal surface of a

smooth spherical bowl.

The beam is in equilibrium under the

action of throe forces, the weight, W,
acting at G, the reaction, J?, at A, perpen-

dicular to the surface and hence passing through the centre,

C, and the reaction, E', of the vertical jdane perpendicular

to itself and benec horizontal.

Let the length of tlie I)oam, AH, = 2a, r = the radius

of the sphere, d = CD, tlie distance of the centre of the

sphere from the vertical wall, IT = the weight of the beam
;

and let = the required inclination of the l»eam to the

horizon, and = the inclinaliou of the radius A(' to the

horizon. Then we have

for vertical forces, R sin (p z= W

;

(1)

for moments about B, /?• 2a sin {(p—O) = W-acosO; (2)

Dividing (3) by (1) wo liave

2 sin (0 — 6)
=r cos 9,

or

sin (j)

tan <p = 2 tan 9. (3)
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Then wc have, from the geometry of the figure, the

horizontal distance from A to tiie wall = the horizontal

projection af AC + CD, that is.

2a cos = r cos + d. (4)

From (3) and (4) a value of d can be obtained, and hence

tile position of equilibrium.

Otherwise thus: since the beam is in e(inilibrium under

the action of only three forces they must meet in a point, 0.

Geometry then gives us

2 cot 0GB = cot AOG - cot GOB = cot AOG,

or 2 tan 9 — tan 0,

which is the same as (.3).

63. Centre of Parallel Forces in Different Planes.
— 2'() find the magnittidc, direction, and point of

a/)f)lication of the resultant of any number of
parallel forces acting on a rigid body.

The theorem of Art. 59 is evidently true also in the case

in which neither the parallel forces nor their fixed points of

application lie in tiie same plane, hence, calling i the third

co-ordinate of the point of application of the resultant, we

have for the distance of the centre ofparallel forces from

the planes yz, zx, and xy,

X =:
_ iP^ - _ I.Py . _ SP«

^P i/ J > e = ^r

Hence (Art. 59, Sch.) the equations for determining the

])osition of the centre of parallel forces show that the sum

I'f llie nionien/s of the parallel forces with respect to any

plane is equal to the moment of their resultant.
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64. Conditions of Equilibrium of a System of
Parallel Forces Acting upon a Rigid Body in
Sp-^ce.—Let 1\, l\, l\, etc., denote the forces, and let

them be referred to three rectangular axes,

0:C or, OZ; the last parallel to the

forces ; let (a;,, y„ z^), {x^, y„, z^), etc.,

be the points of ap2)lication of the forces,

1\, 7*2, etc. Let the direction of I\
meet the plane, xy, at J/,

.

Draw M^N^ perpendicular to the axis

of X meeting it at X^. Apply at 0, and also at N^, two
opposing forces each equal and parallel to I\. Then the
force Pj at Jf, is replaced by

(1) P, at along OZ;

(2) a couple formed of I\ at J/, and P, at N^
;

(:i) a couple formed of P, at N^ and 1\ at 0.

The moment of the first couple is P^y^, and this couple
may be transferred to the plane yz, which is parallel to its

original plane, without altering its effect (Art. 52). The
moment of the second couple is P^x^, and the couple is in

the plane xz.

Replacing each force in this manner, the whole system
will be equivalent to a force

Pi + Pg + P3 + etc., or SP at along OZ,

together with the couple

^12/1 +^2^2 + -Psys+etc, or ILPy, in the plane yz,

and the couple

Pj^i + Po-Tj -I- Pj.r J +etc., or SPa; in the plane u-z.

The first couple tends to turn the body from the axis of//

'y that of z round the axis of x, and the second couple

T
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tends to turn the body from the axis of x to that of z

round the axis of y. It is customary to consider those

t!)iipk's as i)ositive which tend to turn the body in the

direction indicated by the natural order of the letters, i. e.,

poaitice from x to y, round the 2-axis ; from ^ to z round
the X-axis ; and from z to x round the /y-axis ; and
vef/atire in the contrary direction.

Hence the moment of the first couple is +2P//, and

therefore OX is its axis (Art. 50) ; and the moment of

the second couple is —'LPx, and therefore OY' is its axis.

The resultant of these two couples is a single couple whose

axis is found (Art. 5G) by drawing OL (in the positive

direction of the axis of x) — '^i'y, and OM (in the nega-

tive direction of the axis of y) = "^Px, and completing the

parallelogram OLGM. If OG, the diagonal, is denoted by

G, we have

G = y/WxfT'i^'y?,

and R = 2P;

R being the resultant force.

Now since this single force, R, and this single couple, G,

cannot produce eqnilibrium (Art. 54, Cor.), we mi st have

R = 0, and G =: 0, i'.nd G cannot be = unless 2/^a; =
and ^Py = ; the conditions therefore of equilibrium axe

i? = 0,

2P« = 0, ^Py = 0.

Hence, the conditions of equilibrium of parallel forces in

space are

:

The sum of the forces must = 0.

The sum of the moiiiettts of the forces tvith respect to

iccry plahe parallel to them must =. 0.
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Fig.33

65. Conditions of Equilibrium of a System of

Forces acting in any Direction on a Rigid Body in

Space.— Lc'l 1\, /'„, l\, 'itc, donote <'ie fci-ecs, ami let,

them bo rofcrred to tlirco rectangulur axes, OX, 01'. OZ;
lot (.r,, Vj, z^), {x^, 11^, Zg), etc., be the pointis of applica-

tion of P,, P.^, etc.

Let .Ij be tlie point of application of

1\; resolve /'j into coniponent.s X-^,

I'j. iTj, jiarallel to the co-ordinate axes.

Lot the direction of Z^ meet the \Ai\\\c

xy at J/j, and draw M^N-^ perpendicu-

lar to OX. Apply at N^ and also at

tyro opposing forces each equal and i)ar-

allel to Zj. Hence Z^ at A^ or .1/", is ef[uivalent to Z^ at

0, and two coujdes of which the former has its moment =
Z^ X -Vj3/j — Z^iii, and may be supposed to act in the

plane yz, and the latter has its moment = Zj x ON^ =
— Z^x^ and acts in the jdane zx.

Hence Z^ is replaced by Z,i\i 0, a couple Z-^y^ in tlie

plane yz, and a couple — Z^i\ (Art. G-i) in the plane zx.

Similarly A'j may be rejilaced liy A'j at 0, a coujjle X^z^

in tlie plane zx, and a couple — ^^i^i i» the 2)lane xy.

And 3^1 may be replaced by Y^ at 0, a cou]de Y^x^ in the

])Iaue xy, and a couple — Y^z^ in the plane yz. Therefore

the force /*j nniy be rejjlaced 1)y X^, Y^, Z^, acting at 0,

and three couples, of which the moments are, (Art. 50),

Zj^i — FjZj in the piano yz, around the axis of .r,

XjZj — Z^x^ in the i)lane zx, around tlie axis oi y,

3'j;/'i
— X-^y^ in tlie jilane xy, around the axis of z.

By a similar resolution of all the forces we shall havo

them replaced by the forces

-^x, ir. 1^

acting at along the axes, and the couj)les
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S {Zy — J'z) = L, suppose, in the plane yz,

- {Xz — Zx) — M, ,sup})ose, in the plane zr,

^^.{Yx — Xy) = N, suppose, in the plane xy.

Let R he tl;o resultant of th*^ . rces which act at O; a,

I), (', the angles its direction makes with the axes ; then

(Arti. 38),

R^ = {^xf + (ir)2 + (:Lzy,

cos a
^X
ItR ' cos b

iF 2Z
R' «««^ = ^

Let G be the moment of the couple which is the result-

ant of the three couples, L, M. N ; A, fi, v, the angles its

axis makes with the co-ordinate axes ; then (Art. oG, Sch.),

6^2 = D + J/2 + N^,

L M N
cos A = —;, cos /It = -^, cos V = —•

b i.T Lt

Therefore any system of forces acting in any direction on

a rigid body in space may always be reduced to a single

force, R, and a single couple, G, and cannot therefore i)rn-

duce equilibrium (Art. 54, Cor.). Hence for equilibrium

we must have it' = and ^r = ; therefore

(i:x)2 + (i:r)2 + (iz)2 = o,

and 7.2 ^ j/a + jy-a _ o.

These lead to the six conditions,

i;x=o, i:F=o, 2:z=o,

i; {Zy - Yz) = 0, 1 {Xz - Zx) =:^ 0,

^{Yx -Xy) = 0.
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EXAMPLES.

1. If the weights, 1, 2, 3, 4, 5 lbs., act perpendicularly

to u straight line at the respective distances of 1,2, 3,4,

5 feet from one extremity, find the resultant, and the dis-

tance of its point of application from the first extremity.

Ans. R —\b lbs., .r = 3f feet.

2. Four weights of 4, —7, 8, —3 lbs., act perpendicularly

to ti straight line at the points A, B, C, D, so that AB =
5 feet, BC = 4 feet, CD = 2 feet ; find the resultant and

its point of ai)plication, G.

Ans. B = 2 lbs., AG = 2 feet.

3. Two parallel forces of 23 and 42 lbs., act at the points

A and B, 14 inches apart; find GB to three places of

decimals. Ann. 4 954 ins.

4. Two weights of 3 cwts. 2 qrs. 15 lbs., and 1 cwt. 3 qrs.

25 lbs. are supported at the points A and B of a straight

line, the length .VB = 3 feet 7 inches ; lii
d' AG to three

})laces of decimals of feet. Ans. 1.268 ft.

5. A bar of iron 15 inches long, weighing 12 lbs., and of

uniform thickness, has a weight of 10 lbs. suspended from

one extremity ; at what point must the bar be supported

that it may just balance.

Tlie weight of the bar acts at he> centre.

Ans. i^ in. from the weight.

0. A bar of uniform thickness weighs 10 ll)s., and is

5 feet long ; weights of 9 lbs. and 5 lbs. are suspeiuli'd from

its extremities ; on what point will it balance ?

Ans. 5 in. from the centre of th<' bar.

7. A beam 30 feet long balances itself ow a point ai onc-

thii'd of its k'ngtli from Die thicker end ; but when a 'vi.jirlii,

of 10 lbs. is suspended from the smaller end, the proj- must
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erpondicularly

i of 1, ^, 3, 4,

, iuid the dis-

extremity.

== 3f feet.

irpcndicnliirly

50 tliiit AB =
resultant and

J = 2 feet.

; at the points

liroe places of

. 4 954 ins.

1 1 cwt. 3 qrs.

of a straight

AG to three

IS. 1.268 ft.

12 Ihs., and of

spcnded from

be supported

the weight.

D ll)s.. and is

spcndi'd IVoin

' of the bar.

point -'li one-

wiicn a >v(.iglit

,he proj- must

be moved two feet towards it, in order to maintain the

e(iuilibrium. Find the weight of the beam. Ans. 90 lbs.

8. A uniform bar, 4 feet long, weighs 10 lbs., and Aveights

of 30 lbs. and 40 lbs. are ai)pended to its two extremities
;

where must the fulcrum* be placed to produce equilibrium ?

Am. 3 in. from the centre of the bar.

9. A bar of iron, of uniform thickness, 10 ft. long, and

weighing 1| cwt., is supported at its extremities in a hori-

zontal position, and carries a weight of 4 cwt. suspended

i'rom a point distant 3 ft. from one extremity. Find the

pressures on the points of support.

Ans. 3.55 cwt., and 1.95 cwt.

10. A bar, each foot in length of which weighs 7 lbs.,

rests upon a fulcrum distant 3 feet from one extremity

;

Avhat must bo its length, liuit a weight of 71^ lbs. sus-

jtended from that extremity may just be balanced by

20 lbs. suspended from the other? Ans. 9 ft.

11. Five equal parallel forces act at 5 angles of a regular

hexagon, Avhose diagonal is a ; find the point of application

of their resultant.

Ans. On the diagonal passing through the sixth angle, at

a distance from it of |«.

12. A body, P, suspended from one end of a lever with-

out weighty is balanced by a weight of 1 lb. at the other

end of the lever ; and when the fulcrum is removed

through half the length of the lever it re(iui.res 10 lbs. to

balance P ; lind the weight of P. Ans. 5 lbs. or 2 lbs.

13. A carriage wheel, whose weight is IF and radius r,

rests u[)on a level i-oad ; show that the force, /•', necessary

to draw the wheel over an obstacle, of height h, is

V2rF-A^F=W
h

* The support ou wliich it rustB.

m
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14. A beam of uuifonn tliicknotss, 5 feet long, woifiliiiig

10 llxs.. is supported on two props at tlio ends of the beam
;

find wliere a weight ol' 'M) lbs. mii't be i)laeed, so that the

pressures on the two props may bn 15 lbs. and ^5 lbs.

A)is. 10 ins. from the centre.

15. Forces of 3, 4, 5, lbs. lu-t at distances of ',\ ins.,

4 ins., 5 ins. (i ins., from the end of a rod ; at what distance

from the same end docs the resultant act';'

Anf>. 4^ inches.

10. Four vertical forces of 4, 0, 7. lbs. act at the four

corners of a S(|uare ; lind (lie point of application of the

resultant. Ans. ^'3 of middle line from one of the sides.

17. A flat board Vi ins. s(iiuire is suspended in a hori-

zontal position by strings attached to its four corners, A,

B, C, D, and a weight eipud to the wt ight of the lioard is

laid upon it at a point 3 ins. distant from the side AB and

4 ins. from AD ; lind the relative tensions in the four

strings. Aits. As f : | : J : ^^^.

18. A rod, AB, moves freely about the end, B, as on a

hinge. Jts weight, IT, acts at is middle point, and it is

kept horizontal l)y a string, AC, that makes an angle of 45°

with it. Find the tension in the string. ,
11'

^ Aim.

19. A rod 10 inches long can turn freely al)()ut one of

its ends ; a weight of 4 lbs. is slung to a point 3 ins. from

this end, and the rod is held l)y a string attached to its free

end and inclined to it at an angle of 120°; find the

tension in the string when the rod is horizontal.

Alls. ^ \/:\ lbs.

•20. Two forces of .'Mbs, and -1 lbs. act at the extremities

of a straight lever I'i ins. long, and inclined to it at angles

of VHf and 135° respectively; lind the position of the

fulcrum. j„^. (y _ ;{ ^ ,j^ ^ 9 (J j„y^ jYoni y„e end.
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21. Find the true v/eight of a body which is found to

weigh 8 o/,s. and 9 ozs. wlien placed in each of the scale-

pans of a false balance. Ans. V^ ozs.

22. A beam 3 ft. long, the weight of which is 10 lbs.,

and acts at its middle point, rests on a rail, with 4 lbs. iiang-

iiig from one end and 13 lbs. from the other ; find the point

at wiiieli the beam is supported ; and if the weights at the

two ends change places, what weiglit must be added to the

lighter to jireserve ecjuilibrium ?

Ahs. 12 ins. from one end ; 27 lbs.

23. Two forces of 4 lbs. and 8 lbs. act at the ends of a

bar 18 ins. long and make angles of 120" and !)0 with it;

tlnd the ])oint in the l)ar at which the resultant acts.

Ani*. fl (4 — 1/3) ins. from the 4 lbs. end.

24. A weight of 24 lbs. is Kusi)eiided by two flexible

strings, one of which is horizontal, and tiie othei is inclined

at an angle of 30" to the vertical. What is the tension in

each string ? Ahh. 8 \/3 lbs. ; Ki ^3 lbs.

2r). A pole 12 ft. long, weighing 25 lbs., rests with one

end against the foot of a wall, and from a point 2 ft. from

the other end a cord runs horizontally to a point in the

wall 8 ft. from the ground ; find the tension of the cord and

the pressure of the lower end of the jiole.

Ans. 11.25 lbs.; 27.4 lbs.

26. A body weighing G lbs, is placed on a smooth i>lane

wiiich is inclined at 30° to tlie horizon ; find the two direc-

tions in which a force e(|nal to the body may act to produce

ecpiiiibrium. Also find what is the pressure on the plane

in each case.

Ans. A force at 00" with the jilane, or vertically upwards ;

It = \/3, or 0.

27. A rod. AB, 5 ft. long, without weight, is hung from

a point, C, by two strings which are attached to its end.!

liMi
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and to the point ; the string, AC, is 3 ft., and BC is 4 ft. in

Icngtii, and a weight of a ll)s. i,s hung from A, imd a weight
of ;j lbs. from li ; find the tensions of tiie strings.

Ans. VS lbs.; 2 VS lbs.

28. Find tlie height of a cylinder, which can just rest oi:

an inclined \^\^\m, the angle of which is 00°, the diamctei

of the cylinder being G ins. and its weiglit acting at the

middle point of its axis. Ans. 3.4G ins.

29. Two equal weights, /', Q, are connected by a string

wiiich passes over two smooth pcg.s, J, B, situated in a

horizontal line, and supports a weight, W, which hangs
from a smooth ring through which tlie string passes; find

the position of equilibrium.

Ans. The depth of the ring below the lino

W
AJJ = AB.

30. Tlie resultant of two forces, P, Q, acting at an angle,

0, is = (2w + 1) V/'^T~^; when they act at an angle,

^ - 0, it is = (2?/t — 1) V'l'^ + Qi
; show that tan =

m — 1

m +1'

31. A uniform heavy beam, AB = 2a,

rests on a smooth peg, P, and against a

smooth vertical wall, AD; the horizontal

distiince of the peg from the wall being

h ; find the incliniition, 0, of the beam to

the vertical, and the pressures, A' and .9, on the wall and jieg.

.„..« = .„-.(;;)S.s.= „(;;)'. « = „^L-^.

32. Two ('((ual smooth cylinders rest in contact on two
smooth })lanes inclined at angles, «c and ti, to the horizon;
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find the inelination, 6, tc the horizon of the line joining

their centres. Atis. tan 6=1 (cot « — cot /3).

33. A beam, 5 ft. long, weighing 5 lbs., rests on a ver-

tical prop, CD = 2| ft. ; tlie lower end, A, is on a liori-

zontal plane, and is jtrevented from sliding by a string,

AD =
3-J-

ft.; find the tension of the string.

A us. r = fI lbs.

34. A uniform beam, AB, is placed with one end, A,

inside a sniootii hemispherical bowl, with a point, P, rest-

ing on the edge of the bowl. If AB = 3 times the radius

n, find AP. Ans. AP = 1.838 li.

35. A body, weight W, is suspended by a cord, length I,

from tile jioint A, in a iiorizontal plane, and is tiirust out

of its vertical position by a rod without weiglit, acting at

another point, B, in thi; horizontal iilane, such that

AB = d, and making the angle, 0, with tlie plane; find

the tension, 7, of tiie cord.
Ans. T = W -, cot b.

Fig.35.

3G. Two heavy uniform bars, AB and

(X), movable in a vertical plane about

their extremities. A, D, wiiicli rest on a

horizontal plane and are prevented from

sliding on it ; find their position of

equilibrium when leaning against each

other.

Tjct the bars rest against each other at . B, and let

AD = a, AB = b, CD = c. BD =z x, W and If, = tiio

weigiits of AB and CD, respectively acting at their niiddlo

points; then we have

'iA^W {a'i + />! _ a^) _ HI', (rtS + .r^ - W) (J« + x^ - a%

which is an efpiatioii of the fifth degree, and hence always

lias one real root, the value of which may bo determined

when numbers are put for a, b, and c.

I*
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37. A parabolic curve is

placed in a vortical i)laiic with

its axis vortical and vertex

downwards, and inside of it,

and against a peg in the focus,

and against the concave arc, a

smooth uniform and heavy
l)eam rests ; required the posi-

tion of ecjuilibrium.

Ijct PB be the beam, of

length /, and of weight W,
resting on the peg at the focus,

F ; let AF = p and AFP = e.

ng.36

A>IS. 6 = 2 ons~l i^'\^^COS" (0'

38. Find the form of the curve in a vertical i)lane such
that a heavy bar resting on its concave side and on a peg at
a given point, say the origin, may be at rest in all

l)ositions.

Ans. r = y + k sec 0, in which I =r tlie length of the
bar, X- an arbitrary constant, and the inclination of the
bar to the vertical. It is the equation of the conchoid of
Nicomedcs.

39. A rod wIkj.m centre of gravity is not its middle point
is hung from a smooth peg by means of a string attached
to its extremities

; find the position of equilibrium.
Atis. There are two iwsitions in which the rod hangs

vertically, and there is a third thus defined :—Let F be the
extremity of the rod remo(e from the centre of gravity, Ic

the distance of the centre of gravity from the middle ])oint

of the rod, '^a the length of the string, and 2c the length of

the rod
;
then measure on the string u length FI' from /'

e(|uallo«(l
-f- ), and place the point /' (.ver the peg.

This will detine a third position of equilibrium.
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40. A smooth hcmispiiere is fixed on a korizontal plane,

with its convex side turned upwards and its base lying in

the plane. A heavy uniform beam, AB, rests against tlie

hemisphere, its extremity A lieing just out of contact with

the horizontal plane. Supposing that A is attached to a

rope which, ])assing over a smooth pulley placed vertically

over the centre of the hemisiihere, sustains a weight, find

the position of equilibrium of the beam, and the recpiisite

magnitude of the suspended wcigiit.

/l«.v. TiCt ir be the weight of the beam, "la its length, P
the suspeiuled weight, ;• the radius of the hcmisi)here, h

tlie height of the i)ulley above the plane, and the

inclinations of the beam and roi)e to the horizon ; then the

position of ecpiilibrium is defined by the equations.

r cosec = A cot 0,

r cosec^ = a (tan (p + cot 0),

which give the single equation for 0,

r (r — a sin cos 0) = ah sin^ 0.

sin
Also p = \y

w

COS (0 — 6)

,^a sin2 \/l^^l^\x^d

(1)

(2)

(3)

(4)

41. If, in the last example, the position and magnitude

of the beam be given, find the locus of the pulley.

Ahs. a right line joining A to the point of intersection

of the reaction of the bemisi)here and 11'.

4-*. If, in the same example, the extremity. A, of the

beam rest against the plane, state how the nature of the

proble n is moditied, and find I lie position of e(|uilibrium.

Ans. The suspended weight must be given, insti;ul of

being a ."csult of calculation. Equation (1) still holds, but

5

^
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not (2) ; aud the position of equilibrium is defined by the

equation

Ph^ coss = War sin' 0.

43. If the fixed hcinispiierc be roi)hiced by a fixed splicre

or cylinder resting on the jdane, and the extremity of the

beam rest on the ground, find the position of equilibrium.

Ans. If h denote the vertical height of the pulley above

the point of contact of the sphere or cylinder with the

plane, we have
n

r cot r: = A cot <^,
a

6
Pr (1 + cot - cot 0) cos = Wa cos 0.

44. One end, A, of a heavy uniform beam rests against a

smooth horizontal plane, and the other end, B, rests against

a smooth inclined plane ; a rope attached to B passes over
a smooth pulley situated in the inclined plane, and sustains

a given weight; find the position of equilibrium.

Let 6 be the inclination of the beam to the horizon, « the

inclination of the inclined })lane, W the weight of the beam,
and P the suspended weight ; then the position of equili-

brium is defined by the equation

cos 6
( W sin « — 2P) = 0. (1)

Hence we draw two conclusiojis :

—

(rt) If the given quantities satisfy the equation If sin «
— 2P = 0, the beam will rest in all positions.

(b) There is one position of equilibrium, namely, that in

which the beam is vertical.

This position requires that both planes he conceived as

prolonged ihrnugh their line of intorsoctinn.

45. A uniform beiim. AB, movable in a vertical plane

about a smooth horizontal axis fixed at one extremity. A, is
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attached by means of a rope BC, whose weight is negligible,

to a fixed point C in the horizontal line through A, such

tliiit AB = AC; find the pressure on the axis.

Ans. U 6 = <CAB, IK = weight of beam, the re-

action is _
iTTy 4sin2- + 8ec2x.

ito



CHAPTER IV.

CENTRE OF GRAVITY* (CENTRE OF MASS).

66. Centre of Gravity.—Gravity is the name given to

the force of attraction wliieh the cardi exerts on all bodies:

tlie ellects of this force arc twofold, (1) statical iu virtue of

which all i)odics exert pressure, and (:i) kinetical in virtue

of which bodies if unsupported, will fall to tiie ground

(Art. 15). The force of gravity vai'ies slightly from place

to place on the earth's surface (Art. 2'S) ; but at each ])lace

it is a forci.' exerted ujwn every body and upon every

particle of the hotly in directions that arc normal to the

earth's surface, and which therefore converge towards the

earth's centre; but as this centre is very distant compared

witli the distance between the imrticles of any body of

ordiiuiry magnitude, the convergence is so small that the

lines in which the force of gravity acts are sensiljly parallel.

The centre of (jmrihi of a bodif is the poitif. of appJicntion

of the re,sult(nit of alt the forces of (jrarity vhieh act upon
every particle of the body ; and since these forces are

practically parallel, the problem of finding its position may
be treated in the mme loay as that offinding the centre of a
system of parallel forces (Arts. 45, 59, (13). The centre of

gravity may also be defined as the point at vhich the whole

ireif/hf of a body acts. Tf the body l)e supported at this

point it will rest in any position whatever.

T//e weiijht of a i/ody is th- resultant of all the forces of
i/rnri/y irhich act upon erery particle of it, and is equal in

iiiayniludr and dirrrlly uppn^i/i' /n the force which will fast
s'ippiirt the liiiily. Since the centre' of gravity is here

* Callod also Cnitiv c.f ^f sx nii.I Centre of InerHa ; and the term Ceniroid hat,

laiily ('omo into use lo df.sij;iiato lt.i

'
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regarded as the centre of parallel forces, it is more truly

coMceivcd of as the "'centre of mass;" yet in dflerenee to

usage we shall call the point the "centre of gravity."

67. Planes of Symmetry. -Axes of Symmetry.— If

a homogejieous body be syianielrical with reference U> any

plane, the c(!ntre of gravity is in that i)lane.

If two or more such planes of symmetry intersect in

one line, or axis of symmetry, the centre of gravity is in

that axis.

If three w more planes of symmetry intersect each other

in a point, that point is the centre of gravity.

By obr;erving these principles of the symmetry of the

tigurc there are many eases Mhere the centre of gravity is

known at once ; thus, the centre of gravity of a straight

line is its midijle point. The centre of gravity of a circle

or of its circumference, or of a si)liere or of its suriaee, is its

centre. The centre of gravity of a parallelogram or of its

perimeter is the point in which the diagonals intersect.

The centre of gravity of a cylinder or of its surface is the

middle of its axis ; and in a similar manner we shall

frequently conclude from the symmetry of the figure, that

the centre of gravity of a body is in a particular line which

can be at once dt .ermined.

When we speak of the centre of gravity of a line, we

are really considering a material line of the same density

and thickness throughout, whose section is infinitesimal ;

and when we consider the centre of gravity of any surface,

we are really considering the surface as a thin uniform

lamina, the "thickness of which, being uniform, can be

neglected.

68. Body Suspended from a PoirA.— When a body is

suspended from a point about which if can tvrnfreeiyjt

will rest with its centre of yravify in the vertical line passinq

throvgh the point of svspensinn. For. if the i)o:nt of sus-

^m
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pension and tlie centre of gravity are not in a vertical line,

llie weight acting vertically downwards at the centre of

gnn ity ai'd (ho reaction of the point of suspen.sion verticaliv

upwards form a statical couple and hence there will lie

rotation.

69. Body Supported on a Surface.— When a body is

placed un a surface it ivill stand ur fall accordiuff as the

vertical line through the centre of gi-avity falls within or

without the base. For if it falls within the base the reaction

of the surface upward and the action of the weight down-
ward will be in the same vertical line, and so there will bo

equilibrium. But if it falls without the base the reaction

of the snrface upward and the action of the weight down-
ward form a statical couple and hence the body will rotate

and fall.

70. Different Kinds of Equilibrium.—According to

the proposition just proved (Art. 09) a body ought to rest

ujjon a single point without falling, provided that its centre

of gravity is placed in the vertical line through the point

which forms its base. And, in fact, a body so situated

would be, mathematically speaking, in a position of equili-

brium, though practically the equilibrium would not sub-

sist. The body would be moved from its position by the

least force, and if left to itself it would depart further from
it, and never return to that position again. This kind of

equilibrium, and that which is practically possible, are

distinguished by the names of nnstabU and stable. Thus
an egg on either end is in a position of unstable equilibrium,

but when resting on its side it is in a position of stable

equiliLJum. The distinction may be defined generally as

follows

:

When the body is in such a position that if slightly dis-

placed it tends to return to its original position, the equili-

brium is stable. When it tends to move further away from
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led generally as

it if slightly dis-

tion, the equili-

thcr away from

its original position, its equilibrium is uiistnhle. When it

remains in /7s ?<('»' ^m/Viow, its oquilil)ri urn \» neutral. A
.sphere or cylindrical roller, resting on a liorizontal surface,

is in neutral equilibrium. In stable eqiiiUhrium the centre

iif (/rarity occupies tlie lowest possible position; and in

unstable it occupies the highest position.

We shall first give a few elementary examples.

71. GJ.ven the Centres of Gravity of two Masses,

Ml and 31 2, to find the Centre of Gravity of the two

Masses as one System.—Let g^, denote the centre of

gr.ivity of the mass Mi. and g^ the centre of gravity of the

mass 1/g. Join g^ g^ and divide it ai. the point, 0, so that

^^ = 4^^ , then O is the centre of gravity of the two
Gg^ Ml
masses as one system (Art. 45).

72. Given the Centre of Gravity of a Body of

Mass, M, and also the Centre of Gravity of a part

of the Body of Mass, m, to find the Centre of

Gravity of the remainder.—Let denote the centre of

gravity of the mass, M, and gi the centre of gravity of the

mass, nil. Join Gdi a^d produce it through tog^, so tliat

^-h — _-J!ii— , then (7o is the centre of gravity of the

Ggi M-nii'
remainder (Art. 45).

73. Centre of Gravity of a Triangular Figure of

Uniform Thickness and Density.—Let ABC be the

triangle; bisect BC in D, and join AD;

draw any line bdc parallel to BC ; then it

is evident that this line will be bisected by

AD in d, and will therefore have its centre

of gravity at d; similarly every line in the

triangle parallel to BC will have its centre

of gravity in AD, and therefore the centre of gravity of the

triangle must be somewhere in AD.

m
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In like manner tlic centre of gravity mnst lie on tiic lino

BE which joins B to the miildie point (if AC. It is there-

fore at the intersection, G, of AD an'i BE.

Join I)K, which will l)e i>arallel to AB; tiien the triangles,

ABfl, DE(/, are siniihir; therefore

AG
Gl)

AB
1)E

BC
DC

2

1'

or GD = |AG = |AD,

Hence, to find the centre of (/rarity of a triangle, bisect any
side, join the point of bisection witli tlie ojiposite angle, the

centre of yrarity lies one third Ihe way vj) this bisection.

Coil. 1.—If tiiree eq;.;.! ])articles be placed at the vertices

of the triangle ABC their centre of gravity will coincide

with that of the triangle.

For, the centre of gra\ity of the two eqnal particles at B
and C is tlie middle \)o\ut of BC, and the centre of gravity

of the tliree lies on tlie line joining this point to A.

Similarly, it lies on the line joining B to the middle of AC.

Therefore, etc.

CoH. 2.—The centre of gravity of any ])lune polygon may
be fonnd by dividing it into triangles, finding the centre of

gravity of each triangle, and then by Art. 59 deducing tlie

centre of gravity of tlie whole ligure.

Cor. 3.—Let the co-ordinates of A, referred to any axes,

be Xj, ^1, z, ; those of B. .r^, y^, z^ ; and those of C, .Tj,

^3, ^3 ; then (Art. 50). the co-ordinates, r, y, «. of the centre

of gravity of three equal particles placed at A, B, C, respec-

tively, are

3

_ h

, y - 3 »

3 ^ '
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which are also the co-ordinates of the centre of gravity of

the triangle ABC (Cor. 1).

74. Centre of Gravity of a Triangular Pyramid of

Uniform Density.—Let D-ABC be a triangulai- pyramid;

bisect AC at E; join BE, DE; take EF
= ^EB, then F is the centre of gravity of

ABC (Art, 73). Join FD ; draw ab, be, ca

l)arallcl to AB, BC, CA resi)ectivcly, and

let DF meet the plane, abc, at /; join bf

and produce it to meet DE at e. Then

since in the triangle ADC, ac is parallel

to AC, and DE bisects AC, e is the middle point of ac\ also

Fig.3S

BF "~ DF EF'

but

therefore

EF =- iBF,

ef=W\
therefore /is the centre of gravity of the triangle dbc (Art.

73). Now if we suppose the pyramid to be divided by

planes parallel to ABC into an indefinitely great number of

triangular lamina-, each of these lamiuiB has its centre of

gravity in DF. Hence the centre of gravity of the pyramid

is in DF.

Again, take EH = ^ED
;

join FB cutting DF at G.

Then, as before the centre of the pyramid must be on BH.

It is therefore at the intersection, CI, of the lines DF

and BH.
Join FH ; then FH is parallel to DB. Also, EF = ^EB,

therefore FH = ^DB ; and in the similar triangles, FGII

and BGD, we have

FG
DG

FH
DB

1

3'

therefore FG = JDG = pF.
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Hence, the reiifre of gravity of the pyramid is 07ie-fonrth

of the way ii/i the line joininf/ the centre of gravity of the

bane with the vertex. (Todluiiitcr's Statics, p. 108. Als(»

Pratt's Meelianics, j). T);?.)

Cou. 1 -Tlie cent re of gravity of four equal particles

placed at the vertices of the i)yrainid coincides with the

centre of gravity of the pyramid.

Cor. 2.— Let {x^,y.^, zj be one of the vertices
;
{x^, y^, z^)

a second vertex, and so on ; let (x, y, i) be the centre of

gravity of the pyramid ; then (Art. 59)

« = i C^'l + *'2 + -f 3 + ^i)>

« = i (^1 + ^2 + 23 + 24)-

Cor. 3.—The perpend icnlar distance of the centre of

gravity of a triangular pyramid from the base is equal to }
of the height of the pyramid.

75. Centre of Gravity of a Cone of Uniform
Density having any Plane Base.—Consider a pyramid

whose base is a polygon of any number of sides. Divide

the base into triangles; join the vertex of the i)yraniid with

the vertices of all the triangles ; then we may consider the

l)yramid as composed of a number of triangular pyramids.

Now the centre of gravity of each of the;^e triangular

pyramids lies in a plane whose distance from the l)ase is

one-fourth of the height of the ))yramid (Art. 74, Cor. li) ;

therefore the centre of gravity of the whole pyramid lies in

tills plane, /. e., its perpendicular distance from tlio base is

one-fourth of the height of the jjyraniid.

Again, if we suppose the ))yramid to be divided into an

indefinitely great number of lamiiue. as in Art. 74, each of

these lamina) has its centre of gravity on the right line
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Art. 74, each of

I the right line

joining the vertex to the centre of gravity of the base; and

hence the centre of gravity of the whole pyramid lies on

this line, and hence it must be one-iuurth the way up this

line. There is no limit to the number of sides oi the j)()ly-

gon which forms the base of the pyramid, and hence tiiey

may form a continuous curve.

Therefore, the centre of (/rariti/ of a cone whose base is

any plane curve whatever is found by joinimj tlie centre of

(/ravity of the base to tlie vertex, and taking a point one-

fourth of the way vp this line.

76. Centre of Gravity of the Frustum of a Pyra-

niid._Let A\M^-abc (Fig. :)«) l)e the frustum, formed by

tiie removal of the pyramid, \)-abc, from the whole pyramid,

I)-ABt! ; let // 1 and // be the perpendicular heights of these

pyramids, respectively; let m and 3/ denote their masses;

and let «,, Zg,? denote the perpendicular distances of the

centres of gravity of the pyramids D-ABC!, and \)-abc, and

the frustum, from the base ; then we have (Art. 59, Sch. 1

)

or

But

ifz, = z{M- m) + wizg;

8 ~ M

2, =

— «J2g

— m

H
•

4'

(1)

.3=(F. h,)+\ = H-\K.

Also, the masses of the pyramids are to each other as thoir

volumes* by (1) of Art. 10, and therefore as the cubes of

their heights, llenco (I) becomes

If tlH! bodlcB nre tionioKcnuonH. iho volumoH or tho wolRlitB arc proportional to

th« :na«B«B,aiid may bu »ubBl'.lul>il f')r iIhuii.

ita
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z =

EXAMPLES.

4' tP-hi^

H

T

(2)

Instead of the heights we may use any two corresponding

lines in the lower and upper bases, to whicii the heights are

proportional, as for example AB and ab. Denoting these

lines by a and b, and the altitude of the frustum by h, (2)

becomes

h a^ + Ub + 3J2
z =

4 rt2 _|_ f,l) ^ J2

This is true of a frustum of a pyramid on any base, a

and b being homologous sides of the two ends, and hence it

is true of tiie frustum of a cone standing oti any plane base.

EXAMPLES.

1, Find the centre of gravity of a tra])ezoid in terms of

the lengths of the two parallel sides, « and b, and of the

line, //, joining their middle points.

Tttke iiiomeuls with referoncc to the l-mger parallel side.

Alls. On the line bisecting the parallel sides and at a

// a + 2b
distance from its lower end

;} a + b

2. If out of any cone a similar cone is cut so that their

axes are in the same line and their I)ase8 iu the same plane,

find the height of the centre of gravity of the remainder

above the base.

Tuki' iiionientH with relereiu'c to tho base.
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I- 3/^2
(2)

corresponding

the lioightsare

Denoting these

istum by It, {'Z)

(3)

on any base, a

ds, and hence it

i any plane base.

loid in terms of

id b, and of the

Ik'l side,

sides and at a

it so that their

the same phme,

f the remainder

.In*'. \'~ ?^*, where //. is the height of the original

cune, and /;', the height of that wiiich is cut out of it.

3. If out of any cone anotlier eonc is cut haviirg tlio

siiine base and their axes in tlie same Hne, find the heiglit

of llie centre of gravity of the remainder above the base.

Alls. }(/(4-//,), where // and li y are tlie respective

iieights of tiie original cone and the one that is cut out

ot it.

4. If out of any right cylinder a cone is cut of the same

base and height, find the centre of gravity of the remainder

Ans. |ths of tiie height above the base.

77. Investigations Involving Integration.— Tlie

general formula' for the co-ordinates of the centre of gravity

vary according as we considei- a material line, an area or

thin lamina, or a solid ; and assume different forms accord-

ing to the manner in wliieh the matter is supposed to be

divided into infinitesimal elements.

In either case the principle is the same; the quantity of

matter is divided into an infinite number of infinitesimal

elements, the mass of the element being dm ;
multiplying

the element by its co-ordinate, x, for example, we get

X ' dm, which is the moment of the element* with respect to

the plane tfz (Art. 03) ; and ./'.*• • dm is the sum of the

moments of all the elements with respect to the plane yz,

and which corresponds to X/'a: of Art. 03.. Also, /dm is

the sum of the masses of all the elements which correspond

to i:/' of the same Article. Hence, dividing tlie former by

the latter we have

Till' inoinciil iif the fDrce iiiIIiil' oii clenn'iit itni I- slrlotlv ilni r/.r, hill since

llii' coii^miit f/ aiipoiM!' Ill ImiIIi li'i-cns of cxiiri'KHloii for i oiiriliiiiilcw cil' eriilri' o'

nmviiy, it limy In' iMiillti'd and II hcroniCK iiKirr coiivciiicnl lo npoak dftlic momfiil

(if the ilewent, iiicaiilii).' by 11 Ilic pnidiut nf llio m\\<-» of Ilic cloniciil itm. mid Iih

urni, r i'lic iiiiiiiiriil ol'uu climienl iiiuttHuruu Itu I'ffcQt In deturuiiulBg tliu iioeitliii:

of ilu' guutro of gravity.

itaM
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- _ J'x ' dm
~ J'dm

(1)

Similarly y = ll^^,
(2)

fz • dm
^

TdnT'
z = -^-

:

(3)

the limits of integration being determined by the form of

the l)ody ; the sign, ./', is used as a general symbol of sum-

mation, to be rej)laced by the symbols of single, double, or

triple integration, according as dm denotes the mass of an

elementary length or surface or solid. Hence, the co-or-

dinate of the centre of gravity referred to any plane is equal

to the sum of the moments of the elemetits of the mass

referred to the same plane divided by the sum of the elements,

or the li'hole mass. If the body has a plane of symmetry
(Art. 67), we may take it to be the plane xy, and only (1)

and (2) are necessary. If it has an axis of symmetry wo
may take it to be the axis of x, and only (1) is necessary.

78. Centre of Gravity of the Arc of a Curve.—If

the body whose centre of gravity we want is a material line

in the form of the arc of any curve, dm denotes the mass of

an elementary length of the curve.

Let ds = the length of an element of the curve ; let

h = the area of a normal section of the curve at the point

(x, y, z), and let p = the density of tiie matter at this

point. Then (Art. 11), we have dm = kpds, which is the

mass of the element ; multiplying this mass by its co-or-

dinate, a-, for example, we have the moment of the element,

(kp.rds), with respect to the plane, yz.

ITenee, sul)stitntiiig for dm in (1), (2), (3). of Art. 77.

ilie linear element, kpds, we obtain, for the jiosition of the

centre of gravity of a body in the form of any curve, the

equations



\'E.
EXAMPLES. Ill

(1)
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X material line

tes the mass of
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at the point

matter at thid

', which is the

!a by its co-or-

)f till' clement,

3). of Art. ::.

)osition of the

any curve, the

X =

y =

e =

fkpxds

J'kpda
'

fkpyds

fkpds *

fkpzds

fkpds

(1)

(2)

(3)

The quantities ^* and p must be given as functions of the

position of the point {x, y, z) before the integrations can

be performed.

If the curve is of double curvature all three equations

aie required. If it is a plane curve, we may take it to be

in the plane xy, and (1) and (2) are suflfteicnt to determine

the centre of gravity, since i = 0. If the curve has an axis

of symmetry, the axis of x may be made to coincide with

it, and (1) is sufficient.

EXAMPLES.

1. To find the centre of gravity of a circular arc of uni-

form thickness and density.

Let BO be the arc, A its middle point,

and the centre of the circle. Then as

the arc is symmetrical with respect to OA
its centre of gravity must lie on this line.

Take the origin at 0, and OA as axis of a;.

Then, since k and p are constant, (1) be-

comes

_ fxds
"

J'ds'
(1)

r being the co-ordinate of any point, P, in the arc. Lei 6

be liie angle I'OA. and a the radius of the circle, and let

,1 — the angle BOA. Then

*
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and

EXAMPLES.

X = a cos 6,

ds = a dd.

Hence x = fj
:' COS e dd

fj
= a

/:cos d do

dd If
= a

sina

a

Therefore, the distance of the centre of gravity of the arc of

a circlefrom the centre is the prodnct of the radius and the

chord of the arc divided by the leMjth of the arc.

Cor.—The distance of the centre of gravity of a semi-

2a
circle from the centre is —

•

It

2. Find the centre of gravity of the quadrant, AD, (Fig.

39), referred to the co-ordinate axes OX, OY.
The equation of tlie circle is

x^ -^ y'^ = a\

and

dx _ dy _ Vdx^ + dy^ _ ds
^

7 ~" ^^ ~ ^w+^ ~ ^ *

, axdx
.*. zds = ,

yds = adx,

J adx
ds = :

y

which in (1) and (3), after canceling k and p, give

C** X da-

rn = ^^0 VoT-a^ l-<"'-^)U 2a

I
dx

Va* — «' b^"-'li
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Y.

ds

P, give

T^)^ I"
2a
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J^'^"^ w:

I
dx

v^a^ _ x^ L-'-^I

2a

3. Find the centre of gravity of the arc of a cycloid.

Take the origin at the starting point of the cycloid, and

lot the base be taken as the axis of x. The equation of

the curve is

X = a vers~> - - — {2ay — y^)^ ;

dx dy _ ds

y*~(2«-#~(2«)*'

it is evident that the centre of gravity will be in the axis of

the cycloid ; therefore 1 — mi ; and as k and p are constant,

(2) becomes

''o Tia —
( !f)'

dy
^.

'o (2« — y)^

Cob.—For the arc of a semi-cycloid, we get

5 = \a, y = |rt.

4. Find the centre of gravity of a circular arc of uniform

section, the density varying as the length of the arc from

one extremity.

Let AH (Fig. ;U)), be the arc : let ji. be the density at the

nnits distance from A. tiien its will be the density at the

distance .v from A ; let 0.\ be the axis of r, and tt tiie

Z_ AOB. Then, putting iis for p. and a cos 0, a sin d, a dO,

and ad, for x, y, ds, and *•, in (1) and (2),

^
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I k ' \i, ad • a cos 6 n dO IS ccis

j, _ 1 „'[o

J k • fiad • a (16

lid

= n-

J ddd

= 2a
« sin « + cos « — 1

/ k • uaO • a sin 6 . a do 10 sin

7. - 'i yo dd

J k • fiad • a dd 0de
t/O

= 2a
sin « — « cos «^

CoK.—For a quadrant we get

4a 8a

5. Find the centre of gravity of one-lialf ot a loop of a

/eniiiiscate whose equation is r* =: i^ cos 20, I being the

length of the half-looii.

Here
dr rdfl da

—a? sin 29 a' cos 26 a» '

" etc.

Ans, X z=
2^1'

y = a'
,2* — 1

6. Find the centre of gravity of a straight rod, the den-

sity of which varies as the wth power of the distance of

each point from one end.

Take the orifj^in iit this end, su])i)08e tlie axis of .v to coincide witli

tlie axis uf tbu rod, and let I ~ the lengtli uf tlie rod.

Ans. X = ——-^ I.

n + 2
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T. Find tlie centre of gravity of the arc of a semi-car-

dioid, its eiiuation being

r = a (1 + cos 6),

Ans. The co-ordinates of tlie centre of gravity referred

to the axis of tlie curve and a perpendicular through the

cusp, as axes of x and y, are

i = y =z \a.

79. Centre of Gravity of a Plane

^rea.—Let AHCD i)e an area bounded

by the ordinates, AC and liD, the curve

AB whose e(puition is given, and the axis

of X ; it is recpiired to find the centre of

gravity of tliis area, the lamina (Art. G7)

Webeing supposed of uniform thickness and density,

divide the area into an infinite number of infinitesimal

elements (Art. 77). Suppose this to be done by drawing

ordinates to the curve. Let PM and QN be two consecu-

tive ordinates, let {x, y) be the point, P, and let g be tlie

centre of gravity of the trapezoid. MPQN, whose breadth is

dx and whose [larallel sides are y and y + dy. The area of

til is trapezoid is y dx, (Cal., Art. 184).

Let p be the density and ^- the thickness of the lamn.a.

Then (Art. 11) we have dm = kfty dx, w]v.(:h is the mass

of the element MPQX; multiplying this mass by its co-or-

di suite, X, for example, we have the moment of the element

(k-rxydx), with respect to OY, and niultii)lying by the

other co-ordinate, |//, we have tlit- moment with respect to

OX. Hence, substituting for dm in (1) and {i) of Art. 77,

till' surface elenu'iit. kpi/ dx. and remembering that k and p

;mv constants, we ol)taiii, fur the ])ositioii of the centre of

gravity of a body in the form of a plane area, the eciuations,
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the integrations extending over the whole area CABD.

EXAMPLES.

1, Find the centre of gravity of tlie area of a semi-parab.

ola whose equation is //^ = 'ipx.

Let a = the axis, and b tiie extreme ordinate, then we
have from (1)

/ V'-ip x^' dx I x^ dx
- _ ^^0 -A)"—

/K. _ — ,^ — t«»
/ V'ipx^dx

I
xi dx

Ipxdx I- I X dxI <.pxax ,- I xax

/ V^px^dx ^ x^ dx

2. Find the centre of gravity of the area of an elliptic

quadrant whoso equation is

y = - Va* — sfi.

a

Here i

Hxy dx f *
(rt2 _ a;2)i x dx

4a
* = 3^*
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x^ dx
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^)^dx

a?)dx

7?)^dx
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Hence for the centre of gravity of the area of a circular

quadrant we havo

4a
X = ]f

=z
3n

.*]. Find the centre of gravity of the area of a semi-

cycloid.

Take the axis of the cnrvo as axis of a; and a tangent at

the higliest point as axis of y ; then the e<iuation is (Anal.

Geom., Art. 157),

,«
y =z a vers"' - + V'^iax — x^;

where a is the radius of the generating circle. From (1) we

have
/^2o rya^ p^ -fa

_ ^ J^xydx ^ [V - ,/ 3
dyj^

^ \[y:<^-f
x{^ax- x^)^dx^

^ ^^ ^^^y _ ^^3

\yx — y{2ax — a^)^ dxT"

since when a; = and 2a, y = and no,

.«. i = ^a.

Also,

f^y' dx [y^x - 2 fyx dy]^

7Ta • 2a — ^Tra*
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y^x—% I y {2ax — x^)^ dx \~

Snu^

\fx—2aj (2rtx—x2)* \m-^ " dx—2j^{2(ix-x^) ,/xX'

Srra^

[y'x — 2(ix^ + p-^ — 2aJ{2ax — x^)^ vers-i - dxX

3 2 3
^«'

wliicli tlie student can verify by ussuniing

vers"'-- = 6,
a

(See Todlmnter's Statics, p. 118.)

80. Polar Elements of a Plane
Area.—Let Ali l)e the arc of a curve,

and let it be '-Hiuirod to liiid the centre of

ffi-avity of llie area bounded l)y the arc

AH and tiie oxtrcnie radii-voctors, OA
and OB, drawn from the pole, 0, to the

cxtrt'initios of tlie arc.

Divide tiio area into infinitesimal trian},des, such as POQ,
inchidcd between two consecutive riidii-vcclors, 01' and

OQ. liCt (r. 0) l)c tiie point, /'. tlicn tlie area of the

(lenient. POQ = \i^ dO (Cal., Art. l!)l) ; aad if the thick-

ness and density of tlio lumiua are uniform, the centre of

ng.4i
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2ax-.r^) (h-l^

^ -]2a

a Jo

, such as POQ.
Dtortj, OP iiiid

10 iirou of I- he

1 if tlio thick-

Ihu oi'iitro of
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gravity of this elementary triangle will be on a straight lino

drawn from to the middle of PQ, and at a distance of

two-thirds of this straight line from (Art. 73). Hence

the co-ordinates of the centre of gravity, <j, of POQ, are

OM and. M^, or,

\r cos 6, and \r siu 0.

Hence, (Art, 77),

/•)-3 cos e de

_ _ ,r\r^\Oj^dO

•'^dO

//•3 sin edO

Ji^dO '

(1)

(2)

the integrations extending over the whole area, x\OB.

E X A M P 1. E ,

Find the centre of gravity of the area of a loop of Bcr-

nouiili's Lemniscate wliose e(|nation is /^ = d^ cos W.

As the axis of the loop is synunetrical with respect to

the axis oi x, y — 0, and tlie abscissa of the centre of

gravity of the whole loop is evidently tli. same as that of

tiic half-loop abov the axis. Substituting in (1) f )r r its

value a cos* W, we have

S-U

w

A'osi 20 COS e dd
«'n

cos 20 dd

tr

_ A,, f\\ _ 2 sin" 0)' d sin B.

Put sin = -;--, then

ita
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Art /*2 J.// TT= —~ / c()s< # = - '- • I s (Cal., Art. 15T).

TTa

4V2

81. Double Integration.—Polar Formulae.—When
the density of tlio lamina varies from poinc to point, it may
be necessary to divide it into elements of the second order

instead of reetangnlar or triangular elements of tlie first

order (Arts. 79 and 80).

Suppose that the density of the lamina AOB (Fig. 41),

is not uniform. If we divide it into triangular elements,

POQ, the element of mass will be no longer proj)ortional to

the element of area, POQ = ^I'^dO', nor will the centre of

gravity of the triangle, POQ, be fr distant from 0.

Let a series of circles be described with as a centre,

the distance between any two successive circles being dr.

These circles will divide the triangle, POQ, into an infinite

number of rectangular elements, abed = rdOdr. If I' is

the thickness and p is the density of the lamina at this ele-

ment, the element of nuvss will he dm = kprdddr\ and

the co-ordinates of its centre of gravity will be r cos and

r sin 0. Hence, from (1) and {'I) of Art. 77, we have

X =

and

/' /'/• pr cos rdO dr f
j'kpi^cos dO dr

f I 'kpr do dr J
*

/ 'kpr dO dr

V =
/ / kpr' sin dd dr

77A"- do dr

(1)

(2)

In each of these integrals the values of k and {> are (o lie

substituted in terms of /• and ''.and the inlegralioiis taken

between [iropcr limits.



(Cal., Art. 15T).

irmulsB.—When
to point, it may
he second order

ents of tlie tir-st

AOB (Fig. 41),

iigular elements,

f proportional to

ill the centre of

from 0.

Ii O as a centre,

'ircles being dr.

into an infinite

rdOdr. If k is

inina at this ele-

k pr dd dr ; and

II be r cos and

7, we have

los do dr
-- —

; (1)

r de dr

(2)

and {> arc (o be

egralions taken
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Find the centre of gravity of the area of a cardioid in

which the density at a point increases directly as its distance

from the cusp.

Let ju = the density at the unit's distance from tiie

cusp, then p = /*»•, is the density at the distance r from

tiie cusp.

As the axis of the curve is an axis of symmetry (Art. GT),

I
— 0, and the abscissa of the whole curve is the same as

for the half above the axis ; then (1) becomes

js cos f/0 dr

w =
rr'' O ''0

/ / r'^dedr
t'O ^0

/*V cos e dO
• 'n

/ i^de

by performing the r-integration.

The etiuation of the curve is

e
r = o (1 + COS 0) = "id cos* ^'

Substituting this value for r, and putting
^j
= 0, wo have

/*'cos« {'i eos» ip — \) d<t>

•^0
5 = fa

— 1^'

/ cos* tft dip

rita
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82. Double Integration.—Rectangular Formulse.—
Lot. a series of cousocutive sti'fiiglit lines bo drawn parallel
to tlie axes of x and y respectively, dividing the area, ABCD,
(Fig. 40), into an infinite number of rectangular elements
of the second order. Then the area of each element, as
abed, = ilx dy ; and if k and p are the thickness and dcnsit.v

of the lamina at this element, the clement of mass will l)e

dm = kp dx dy ; and the co-ordinates of its centre of gravity
will be X and y. Hence from (1) and (2) of Art. 77, wo
have

J J k px dx dy

•=-7.> ; (1)

y / kp dx dy

fJk py dx dy

I I kp dx dy

the integrations being taken between proper limits.

EXAMPLE

Find the centre of gravity of the area of a cycloid the
density of which varies us the «th power of the distance
from the base.

Take the base as the axis of .r and the starting point as
the origin. Then tiie o(iuation of the curve is

X — a vers' — ['lay — y"^)^
;

y/'iay-f

(8)



ir FormulaB.—
B drawn parallel

he area, ABCD,
igular oleinonts

ach element, as

ness and density

)f mass will l)e

icntre of gravity

) of Art. 77, wo

(1)

(3)

limits.

a cycloid the

)f the distance

irting point as
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Tx!t p — /'//" = density at the distance y from the base.

It is evident that the centre of gravity will be in the axis of

tiie cycloid ; therefore x = ^^a \ and as k is constant (^)

becomes

/ / ,f^Ulydx
t/Q *^0

/ / ydydx

/ ?/« + 8 dz
n_+J t/o

nfla. yn^^du

r
~ n + -i r^ y"*^ dy^

_ « + 1 2?t + 5 ''^ ^/2ay — f .

"^0 V'irty — ^^

y =
n + 1 2ft 4- 5

jT-f^ ' T+ 3
'

83. Centre of Gravity of a Surface of Revolu-

tion. -Let a surface be generated l)y Hie revolution of the

curve, AH (Fig. 4(1). round the axis of .r. Tlien I lie

fleinentarv arc.' /'(,). (== */.<*). generutes an element of tiu'

surface whose area == 'i-^y ds (Cal.. Art. VX\). If /is Hi-

lliiekne.><sand p the density of tiie lamina or siioll m tlii>

element urv zone, the element of mass will be dm = 2rthy ds.

Also the centre of gravity of this «one is in the axis of .> ut

^ta
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the point Jf wlioso abscissa is x and ordiuate 0. Hcnc* (1)
of Art. 77 becomes, af^or cancelling 'Zir,

I kpxy ds

S = —
(1)

/ kpy ds

the integrations being taken between proper limits.

EXAMPLES.

1. Find the centre of gravity of the surface formed by
tlie revolution of a semi-cycloid round its base.

The equation of the generating curve is

X = a vers-i " — \/'iay — y^
;

. (^ dg ds ^

y V'iay-f~ V2ay''

or ds = ^^MM=.
V'ia — y

which in (1) gives, after cancelling V^ kp,

r^_^ydy_
•A Via — y

•'o y'i(, — If

'i. Find the centre of gravilyof the surface formed by
the revolution of a semi-cycloid round its axis.

It is clear that thcccntn'of gravity lies on the a.xis of

t ho curve ; hence y = U,



ite 0. Hcnc* (1)

(1)

cr limits.

irfaco formed bj

jasc.

fi

lay

•faoe formed by

vis.

j ou the axis of

KXAMl'hKS.

The equation of the generating curve is

X

a

Here

which in (1) gives

ds = \/^a a;"* dXf

•^0

125

yx'

\^yx^ —
^J\^

dyV

\\yx^ - \Jx^j'%a^^x dx^

[2^3:8^ — 2 / V^rt — X dxT

2TTrt (2«)» - I
(2rt)t

„ 15t — 8
= ^ « 3:r -4-

3, Find the centre of gravity of tlie surface formed by

the revolution of the semi-cycloid round the axis of?/ in the

last example, \. c, round the tangent to the curve at the

highest point.

Am. y = " (15t - 8).
1 tJ
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84. Centre of G-ravity of Any Curved Surface.—
Lot there be a .shell hiiving any given cur\ed -surface fur

one of its bounikrie.s; and let /.• — the thickness, p — tlie

density, and ds n= the area of an element of the surface at

the point [x, y^ z); then (I) of Art. 83 becomes

/ kpx ds

^ = ~. (1)

/ kp ds

and similar expressions for y and a.

Substituting the value of ds (Cal, Art. 201) and cancel-

ling k and p, we have

X = //K'+S + S)*^^^''^

//(^ + s + ^^)*'^^''^

EXAMPLES,

1. Find the centre of gravity of one-eighth of the

surface of a sphere.

Hero se' + f+ z> z= a>.

[
"^ dx"'^ dyV ~ {a^ - x^ - f)*'

p r xdxdy

J J (cvi — -a _ yt)^

^mm



7ed Surface.—
ir\cd surface for

ickuoss, p = tlu'

>f the surface at

)me8

(1)

!01) and cancel-

fa; dy

tdy

B-eighth of tho

i-

SOLID OP liKVOLUTlOS. Vil

First perform the y-intcgra-

(ion, :(• t)oing constant, from

tj = to ij = U = tj^ =
V«2 /» ; tlie effect will be

10 sum up all the elements

>;imilar to pq from // to /.

L'iie effect of a subsequent

./•-i?itegration will be to sum

all these elemental strips that

are comprised in the surface ^.

of which OAB is the projec-

tion, and the limits of this integration are a; = and

X = OA = a. Hence

S =

/^ P»> xdxdy

/'a /'!'" dxdy

fjnx dx

jy
= ^

dx

Similarly y = la, e = irt.

2. Find the centre of gravity of one-eighth of the surface

of the sphere if the density varies as the z-ovdinato to any

point of it. Here p = fiz.

Ans. x = ^,
4rt 2a

85. Centre of Gravity of a Solid of Revolution.—

Let a solid be generated by the revolution of the curve, AB,

(Fig. 40), round the axis of x. Then the elementary

lectangle, P^NM, {— ydx), generates an element of the

^ta H^
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solid wliose volnmo = TyS ijjr (Cal., Art. 203). Hence if the

density of the solid is uniform, we have for rhe [)osition of

tile centre of gravity (which evidently is in the axis of a),

I TTtfx dx I y^x dx

J;nfdx J'ifdx
(1)

the integrations Iwing extended over the whole area,

CABU, of the hounding curve.

If the density varies, the element of muss may require to

be taken ditferentiy. If the density varies with x alone, i. e.,

if it is uniform all over the r-Mtangular strip, PQNAf, the

volume may be divided up as already done, and the element

of mass = Txpy^ dx. Hence, we shall have in this caae,

<r =:

/ py^x dx

J Pf dx
(2)

If the density varies as y alone, we may take a rectangular

ebment of area of the second order, dx dy, at the point

{x. y) ; this area will generate an element of volume
= 'i-ny dx dy ; therefore the element of mass = "Z-npy dx dy,

and wo have

J Jpxydxdy

J J pyd^'iy
(3)

the y-integrations being performed first, from to y, the

ordinate of a point l\ on the bounding curve ; and then

the a;-integrationa from iiii to 01).



I). Hence if the

the position of

the axis of a),

(1)

he whole area,

1 may require to

ath a; alone, i. e.,

ip, PQNM, the

iind the element

n this case,

(2)

ke a rectangular

ly, at the point

ent of volume

s = 'inpy dx dy.

(3)

rom to y, the

urve ; and then
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1. Find tlio rontio of jrnivity of the hoinisphoro ponerntwl

1)V tiu- ivvoliitioM of till' (luadraut, AD, (Fijj. ;{!)), nmiid <)A

(taken iis axis of x). (1) wlicn the dciisitv is niiiforin : {'l)

wlieii it is coiislant over a scotion ))erpiMidiciilar to OA and

varii's a-! tiio distance of this section IVoiu 01): {''>) wlicii

it is constant at the same distance from OA and varies as

tliis distance.

±

(1) From (1) we have

X = I y^x dx

J y"^ dx

Putting X =. r cos (9, and y = r sin 0, where r is the

radius of the circle and integrating between = and

d = , wo have

x = |r.

(2) Since p = /«, we have from (2)

Px^ dx

X =
fxy^ dx

which gives « = A'*-

(3). Since p = ny, wc have from (3)

r I'xy^dxdy fx^dx
t> =

r I'y^dxdii I'fdx

^^
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and tlie previous substitutions for x and y give

a; = — -•

157T

2. Find tlie centre of gravity of a ])araholoid of revolu-
tion, tiio iengtii of whose axis is //. A71S. x = U.

3. Find the centre of gravity (1) of a portion of a prolate
splieroid, the lengtli of whoso axis measured from the vertex
is c, and (:i) of a iienii-spiieroid.

- , , V _ c 8rt — 3c , , _Am. (l). = -^-.^^___;(2).^|«.

86. Polar PormulaB.—Let a solid be generated by the
revolutioi. of AB, (Fig. 41), round the axis of a:. Then the
elementary rectanj:le, abed, whoso mass = pr dO dr, (Art.
HI), the thickness being omitted, generates a ring which is

an element of the solid whose volume = 2irr sin dpr dOdr'
and the abscissa of the centre of gravity of the ring is

r cos d. Hence (1) of Art. 77 becomes

X = I I
p)-^ sin 6 cos d dd dr

JJ pr'i sin e dd dr
(1)

in which p must be a function of r and 8 in order that the
integrations may be effected.

If the density depends only on the distance from a fixed
point in the axis of revolution, this point may be taken as
origin, and p will bo a function of r ; if the density depends
only on the nistance from the axis of revolution, r> will

be a function of ;• sin 0.

EXAMPLE.
The vertex ot a right circular cone is in the surface of a

sphere, the axis of the cone coinciding with a dianietirof



vHyrrtK of ouavity of am- souik V.W

rive

oloid of rovolii-

ns. i z= |//.

'ion of ji prolate

from the vertex

(2) X = |a.

nerated by the

'far. Then the

prdOflr, (Art.

I rintr which is

sin OprdOdr;
of the ring ig

(1)

Jrder tliat the

' from a fixed

V be taken as

nsity dej)ends

hjtion, .) will

3 snrfaee of a

I diainetc r of

the sphere, the base of the eone being a portion of the sui-

fiioe of the sphere. Find the distance of the centre of

gravity of tlic cone from its vertex, 2a being its vertical

angle, and «. the radius of tlie sphere.

Here the /•-limits are and in cos d
; the fi-hmits are

and «; fj
is constant; hence from (1) we have

m =
I I 1^ sin d cos JO dr
•'o_^o

/•* sin d dd dr

= *

5= \a

f (2a cos ey sin cos 6 dd
«{o

/'"(2rt cos 0)3 sin e dd

/ cos* 6 sin 6 d9
''o

/^cos3 sin 6 dd

1 — cos' a

1 — cos* «
0.

87. Centre of Gravity of any Solid.—Tjet {x, y, t)

and {x + dx, y + dy, z + dz) be two consecutive points E
and F, (Fig. 42), within the solid whose centre of gravity is

to be found. Tlirough E, pass tliree planes parallel to the

co-ordinate planes xy, yz, zx\ also through F pass three

planes parallel to the first. The solid included by these six

planes is an infinitesimal i)arallelopiped, of which E and F
are two opposite angles, and the volume = dxdydz. If p

is the density of the body at E, the element of mass at E
=z pdx dy dz. Iloncc the co-ordinates of the centre of

gravity of the solid are given by the equations
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» =

V =

f =

III P'- dx (ly dz

I I I pdx dy dz

JJ Jpydxdydz

J I I pdxdy dz

I I I pz dx dy dz

(1)

(2)

(3)
I I I p dx dy dz

the integrations being extended over the whole solid.

EXAMPLES.

1. Find the entre of gravity of the eighth part of an
ellipsoid included between its three principal planes.*

Let tiie equation of the ellipsoid be

t ,
?/'

,
^' _ 1

a»
"^

//«
"•

c»
~

Here the limits of the ^-integration are

which call 2, and ; the limits of y are

Z; = 3 (l _ ^)* and 0,

which call y^ and ; the x-limits are a and 0.

PlaiieH of xy, yz, tx.

MM
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(1)

(2)

(3)

le solid.

ith part of iin

pIlUU'S.*

First integrate witii respect to z, and we obtain the

infinitesimal prismatic column whose base is PQ, (Fig. A:'i),

and whose height is Pjo. Then we integrate with respect

to y, and obtain the sum of all the columns which form

(lie elemental slice llplmq. Then integrating with respect

to X, we obtain the sum of all the slices included in the

s did, OABC. Hence (1) becomes, since the density is

uniform,

If I X dx dy dz
•'z -'z ''o

III dxdydz
*^o «/o ^0

-Adx

Similarly y — \b, z = \c.

2. Find the centre of gravity of the solid bounded by the

planes z — (3x, z = yx, and the cylinder y^ = 'iax — a?.

5«
Ans. X = ja; y = 0; c

8
{d + y).

88. Polar Elements of Mass.—Let Fig. 43 repre-

sent the portion of the volume of a .soHd included between

its i)ounding surface and three rectangular co-ordinate

phines.



T
134 POLAR ELEMENTS OF MASS.

2(1) Through the axis of z draw

& series of consecutive planes, divid-

ing the solid into wedge-shaped

slices such as COBA.

(3) Round the axis of z describe

a series of right cones with their

vertices' at 0, thus dividing each

slice into elementary pyramids like

0-PQST.

(3) With as a centre describe

a series of canssecutive spheres;

thus the solid is divided into elementary rectangular par-

allelopipeds similar to abpt, whose voliune = aj) • ps • st.

Let XOA = ({>, COP = 6, Op = r,

AOB = cl(t>, POQ = fie, pa = dr.

Then pq is the arc of a circle whose radius is ;•, and the

angle is dO ; therefore

pq = rde.

Also ps is the urc of a circle in which the angle is d(t>,

and the radius is the perpendicular from ]> on OZ, or

r sii 0; therefore

ps = r sin d<l>.

Therefore the volume of the elementary parallclopipcd =
»•» sin e dr dO d(p

;

and if /) is the density of the solid at p, the element of

mass is

pr* sin dr dO d<p.

Also the co-ordinates of the centre of gravity of this

element are

f sin cos <p, r sin sin 0, uud r cos
;
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hence for the centre of gravity of the whole solid we have

/ / / p/-3 sin2 B cos 1^ dr dd d<t>

. J J J Pi"^ '^i» <^ <''• f''^#

f /' /'pf^ sill* sin </» rfr f/0 rf0

y =

fl =

J'
J'

/'pr^ sin ddrd0di>

I I I ^'^ ^'" ^ ''^^ ^ ''^ ^^ ^'^

J'J'fpr'^ sill '^ <?'•M d(f>

the limits of integration being determined by the figure of

tiie Roliil considered.

'i'hc isnglos, and di, are sometimes called the co-latitude,

and longihidc, respectively.

EXAMPLES.

1. Find tiie centre of gravity of a hemisphere whose

density varies as the nth power of the distance from tho

centre.

Take the axis of z perpendicular to the jtlane base of tho

Iu'niis])hore. Let n r=: the nitlius of the sphere, and

^1 r= //;", where // is I lie density at tlu' units distance from

the <eiilr('. Firsi integrate with respect to /• from to rr.

and we olitiiin tiic iiilinitesiinid pyramid O I'QS'I'. 'I'licn

inlfgnilc with respect lo b from lo Jt, and we obtain I lie

^•lllll of ill! the pyramids which form the elemental slice,

COMA, 'riieii iiilcgratinn \ntli icspcct to «/> from to 'It.

vve ol)tiiin the sum of ;dl (he slices included in the hemi-

sphere. Ileucej
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rHn p\w /ill

if r"^^s\nOcoad(/rd0dfb
''a ''o ''a

'^

$ --
(*2t /'It /la

I r"*» sin e drdO d<bOq i/q i/q ^

„ / / sin cos 9 fZe ^0

pin /ijrr >

/ / sill dd d<l>

n 4-—;

—

id'

?j + 3 a
.*. « = . -•

?? + 4 2

'

and it is clear that i = y ~ 0.

2. Find the oontre of gnivify of a portion of a solid

sphere contained in a rijrlit cono wlioso voricx is the centit
of tiie sphere, the density of the solid varying as the wtli

power of tlie distance from tlie centre, the vertical angle of
the cone being = 'iic, iiud tlie radius = a.

Take tho iixis of I lie coni^ us tluit of z, iiud tiuy pkuo through it as
tliat from which hmgitiule Is ineiiBiircd.

Am. z = ^^-^2 ^^ + ^''^ ")' '^'^'^ x = yz=0.

89. CIpecial Methods.—In tiie preceding Articles we
Inive given the usual forniuia^ for linding the centres of
gravity of bodies, but particular cases may occur which may
be most conveniently treated by special methods.

EXAMI^LES.

1. A circle revolves round a tangent line through an
angle of 180°; lind the centre of gravity of the solid

generated.
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Let OY be the tangent line about

which the circle revolves, and let the

plane of the paper bisect the solid ; the

centre of gravity will therefore lie in

the axis of x. Let P and Q bo two

consecutive points ; and let OM = x,

and MP = »/ = V^n^-^^. The
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elementary rectangle, PQqp, will gen-

erate a semi-cylindrical shell, ^vhose volume = ^yirxdx,

the centre of gravity of which will be in the axis of a; at a

distance — from (Art 78, Ex. 1, Cor,). Heuce,
TT

/ — Zy Ttx ax

/ 2y nx dx

r:r^ '^/'iax — x^ dx
- „ 5a

/ X '^"iax — :<t^ dx
2rr

3. Find the centre of gravity of a right pyramid of uni-

lorm density, whose base is any regular jilane figure.

Let the vertex of the pyramid l)e the origin, and the axis

of the pyramid the axis of a;; divide the })yramid into slices

of the thickness dx by planes perpendicular to the axis.

IMien us the areas of these sections arc as the squares of

their honuilogous sides, and as the sides are as their dis-

tances fiom tlie vertex, i^o will the areas of the sections be as

thvi sciuares of their distances fnmi the vertex, and therefore

the masses of the slices are as the S(|uares of their distances

tVoni liu' vertex. Now inuigine each slice to be condensed

into its centre of gravity, which point is on the axis of ,'.

Then the problotn is reduced to tindiug the centre of grav

^tM
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ity of a material line in which the density varies as the
square of the distance from one end, and which may be
found as in Ex. 6, (Art. 78). (Jailing a the altitude of the
pyramid, we have

y? dx

y"
— = |a.

o^dx

which i."? the same as in Art. 75.

90. Theorems of Pappus.*—(1) If a plana curve
revolve round any axis in its plane, the area of the
surface generated is equal to the length of the
revolving curve multiplied by the length of the
path described by its centre of gravity.

Let s denote the length of the cnrve, x, y, the co-ordinates
of one of its points, ^, y, the co-ordinates of. the centre of
gravity of the curve; then, if the curve is of constant
thickness and density, we have from {i) of Art. 78,

y =
I
yds

Jds

2nys = %-tT I y ds\ (1)

the second member of which is the area of the surface
generated by the revolution of tlio curve whose length is .v

about the axis of x, (Gal., Art. 11)3) ; and the first nioniber
is the length of the revolving curve, s, inulU{)lio(l l)y the
length of the path described by its centre of gravity, v'rry.

Usually calloci (Juldln'H Thporoms, but orlKli.ally uimnclalixl by I'appiiH. (800
Waltou'i) Mechanical ProblouiB, p. it, 8d Ed.)
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y =

or

(2) //' a plane area revolve round any axis in its

plane, the volume generated is equal to the area of

the revolving figure maltiplied by the length of the

path described by its centre ofgravity.

Let A denote tlie phme area, and let it bo of constant

thickness and density, tlien (2^ of Art. 83 becoinea

y^y"?/ (Ix dy

I I
dx dy

2Try C Cdk = 2rtJ J ydx dy,

(substituting dk for dx dy),

.-. ZnyA = TT hfdx, (3)

the integral being taken for every point in the perimeter of

tlic urea; but the second member is the volume of the

solid generated by tlie revolution of the area (Cal., Art.

20;3) ; and the first member is the area of tlie revolving

figure, A, multiplied by th_e length of the path described

ijy its centre of gravity, 2TTy.

Cou.—If the c\irve or area revolve through any angle, 0,

instead of 2tt, (1) and (2) become

6

and

= dj'y ds,

df/A = ^ej'y^dx,

(3)

(4)

and the theorems are still true.

Sen.— If thi' axis cuts the revolving curve or area, the

tiu'orems still apply will) the couvenlion tiiat the surface

or volume generated by the portions of the curve or area on

opposite sides of the axis are alleeted with opposite signs.

mm
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EXAMPLES.

1. A circle of radius, a, revolves round an axis in its own
plane at a distance, c, from its centre; lind tiie surface of

the ring generated by it.

The leng'Ji (circuniferonfc) of liie revolving curve —
2rra; the length of clie patii described by its centre of
gravity = 2tc

;

.
•

. the area of the surface of the ring = ^tt^oc.

2. An ellipse revolves round an axis in its own piano,
the perpendicular distance of wliicli from the centre is c\
Jiiid the volume of tlie ring generated during a complete
revoLiiion.

Let a and b be the semi-axes of the ellipse; then tiu>

revolving area = wi ; the length of the path described by
its centre of gravity = 'iic

;

• •. the volume of the ring = 2rr^aic.

Observe tliat tUo voliimo is the same for any position of the nxes
of tlie ellipse with respect to tlie axis of revolution, provided the per
pendicular distance from tlmt axis to tlie centre of the ellipse is the
same.

3. The surface of a sphere, of radius a, = 4Tr«2; the
lengih of a semi-cirouniferenre = ttk ; lind the length of
the ordinate to the centre of gravity of the arc of a semi-
circle.

.I«v. 7/ =

4. The volume of a sphere, of radius a, — ^m^ ; the

ar 'a of a semicirel' = j^mi^: lind tiie . stance of the centre
of gravity of the semicircle from ^ae diametei,

A us. y
ill

5. A circular lower, thc^ diameter of whici; is 20 li.. i.s

being bu it, and for every fool it .'ses it inclines 1 in. from
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the vertical; find the greatest height it can reach ,vitnout

falling.
^•'"^- "^-iOft.

(i. A circular tal)le weighs 20 lbs. and rests on /our legs

in its circumference forming a square ; find the least ver-

tical pressure that must be apjtlied at its edge to overturn it.

Am. 20(\/:i + 1) = 48.28 11)8.

7. If the sides of a triangle be 3. 4. and 5 feet, find the

distance of the centre of gravity from each side.

.4,v«. |, 1, i ft.

8. 7\n equilateral triangle stands vertically on a rough

plane ; tind the rati:) of the heiglit to the base of the plane

when the triangle is on the point of overturning.

Ans. •v/3 : 1.

0. A heavy bar 14 feet long is bent into a right angle so

that the lengths of the portions which meet ut the angle

are 8 feet and t! feet respectively; show that the distance

of the centre of gravity of the bar so bent from the point

of the bar which was the centre of gravity when the bar

9 V2
was straight, is feet.

10. An equilateral triangle rests on a sqnare, and the base

of the triangle is equal to a side of the squf.re ;
find the

centre of gravity of the figuie thus formed.

Ans. At a distance from the base of the triniiglc equal to

3___ of the base.

8
-f 3 \/3

11. Find the inclination of a rough plane on which half

a regular hexagon can just rest in a vertical position with-

out overturning, with the shorter of its parallel sides in

contact with tlie ])lane. Auk. W \/'5 : ^^

12. A cylinder, the diameter of which is 10 ft., and height

60 ft., rests on another cylinder the diameter of which i::

m ^
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1<S ft., atid height G ft.; and their axes coiiicido ; find their

coininMn centre of gravity. Aus. -iTy? ft. from the ba.se.

1:5. Into a Jiullow cylindrical vessel 11 ins. hiirh, and
weighing lU ll).s., the centre of gravity of whicli is T) ins.

from tile base, a iiniforin solid cylinder (J ins. long and
weighing -^O lbs., is just fitted; find their common centre of

gravity. Anf<. ;j§ ins. from base.

14. The middle points of two adjacent sides of a siiiiare

arc joined and the triangle formed by this straight line and
the edges is cut off; lind the centre of gravity of the

remainder of the s(jiuire.

.Ins. y,\ of diagonal from centre.

15. X trapezoid, whose ])arallel sides are 4 and l:i ft.

Jong, and the other sides eacii equal to 5 ft., is i)lace<l with

its plane vertical, and with its shortest side on an inclined

plane
; find the relation between the height and base <,f the

jilaiie wiien the trapezoid is on the point of falling over.

A us. 8 : 7.

I'i. A regular hexagonal prism is i)laced on an inclined

l)lan<> with its end faces vertical : find the inclination of

the plane so that tiie prism may just tumble down the plane.

Ans. 30".

K. A regnlar polygon just tumbles down an inclined

plane whose inclination is 10°
; how many sides has tlie

l'»'ygon ? A>u^. 18.

18. From a sphere of radius /»' is removed a sphere of

radius /•, tlie distance between their centres being c ; find

the eeiitre of gravity of tlie remainder.

.ins. h is 1)11 (he line joining their centres, and at a dis-

tance
rr

/.•^'
from tlu' centre.

l'». A rod of uniform thickness is made up of cipial

ngtiis of three snlistances, the densities of which taken in
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order arc in the proportion of i, 2, and :} ; fmd the position

of th.e centre of gravity of the rod.

Am. At I'Jg of the whole length from the end of the

densest part.

20. A heavy triangle is to be suspendctl by a string iiass-

ing through a point on one side ; determine the position of

tiic point so t'lat the triangle may rest with one side

vertical.

Ans. The distance of the point from one end of the side

.— twice its distance from the other end.

21. The sides of a iieavy triangle are 3, 4, .'). respectively ;

if it l)e susiiended from the centre of the inscrilH'<l circle

show that it will rest with the shortest side horizontal.

22. The altitude of a right cone is //, and a diameter of

the base is h ; a string is fastened to the vertex and to a

l)()int on the circumference of the circular base, and is then

put over a smooth peg; show that if the cone rests with its

axis horizontal the length of the string is ^{li^ + &).

23. Find the centre of gravity of the helix whose equa-

tions are

a; = rt cos <^ ; y = « sir^ 5 ^ = ht'P.

y - a — X . __ z

Ans. .« = ka-^ ; y = A-'"
T^""'

" '~
i'

34 Find the distance of the centre of gravity of the

c.atenarv (Cal., Art. 1T7), from the axis of /.the curve

being divided into two e(Hial portions l)y the axis ot //.

ins. If -11 is the length of the curve and (A, /•) is the

extn>mity. tlie centre of gravity is on the axis of ^ at a

distauce
^^-J^

- iV..m the axis of x.
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'i'). Find the centre ol" f,'nivity of tlie urea iucludeil
between the are of the ])ariib(.Ia, //-' = hix, and tlie strai^rhi

line y = kx.
. . 8« . -iu

Ans. . = ^, y = -^.

:e(;. Find tlie centre of gravity of the urea bonnded bv
•h" cissoid and it^i asymptote, the equation of the cissoiil

beiujj ifi =^ . J,,.. ; J,,

"Z". Find tiio centre of gravity of liie area of the witcli

of Agnes i.

Anx. At a distance from tiie asymptote equal to \ of the
diameter of the biuse circle.

;.'S. Find the centre of gravity of the area inchided be-
tween tlie arc of a semi-cycloid, the circumference of the
generating circle, and the base of the cycloid, the common
tangent to the circle and cycloid at the vertex of the hitter

lieing taken as axis of x, the vertex being origin, and a the
radius of the generating circle.'o

29. Find the centre <.f gravity of tlie area contained be-
tween the curves if =: a.c and f - 2ax — x-, which is

above the axis of x.
, . I.jt _ 44 . (,,A IIS. i := I!

1-,T^40' ^ - ;}Tr

30. Fiml the centre of gravity of the area included by
the curves f = a: and x^ — hi/.

Alls. :• .— 2V<ai:'; y = -^^ahK

;n. Find the distance of the centre of gravity of the area
of the circular sector, BOCA, (Fig. 3!)), from the centre.

Let 2d — the angle included by the bounding radii.

I - „ «in
Ans. X — |rt - n~-
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32. Find Llie distance of the centre of gravity of the

circular segment, BCA, (Fig. 39), from the centre.

a i'in^

Ans. X = \

B(f

y _ sin (7 cos 1'^ area of ABC

33. Find the centre of gravity of the area bounded by

the cardioid r = a{\ + cos b). Ans. x = ^a.

34. Find the centre of gravity of the area included by a

loop of the curve r — a cos 20.

Ans. X = 128flj\/2

35. Find the centre of gravity of the area included by a

loop of the curve r = a cos 39 81a \/3
Ans.x = —^-.

36. Find the centre of gravity of the area of the

sector in Ex. 31, if the density varies directly as the dis-

tance from the centre. .,„ . _ 3rt sin d

4 d

37. Find the centre of gravity of the area of a circular

sector in which the density varies as the wth power of the

distance from the centre.

Ans ^^- • ^, where a is the radius of the circle, I tho
n + 3 I

length of the arc, and c the length of the chord, of the

sector.

38. Find the centry of gravity of the area of a circle in

which the density at any point varies as the nlh power of

the distance from a given point on the eircunifereiice.

Ans. It is on the diameter passing through the given

2 (n + 2)
point at a distance from this point c(pial to ——r^" "''

a being the radius.

7

itaii
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3!). Find tlie centre of gmvity uf the area of u ([uadrant
of an ollii)se in which tiie density at any point varies as
the distance of the point from tlie major axis.

A)US. X :=z ^11 ; y =z
Sir

40. Find the distance of tlio centre of gravity of the sur-

face of a cone from the vertex.

Let a r= the altitude. Ans. X = la.

41. Find Uu centre of gravity of the surface formed by
revolving the curve

r =z a{\ + CCS 6),

round the initial line. A71S. X = 50a

i'i. A parabola revolves round its axis; find the centre
of gravity of a jtortion of the surface between the vortex
and a plane i)erj)tndicular to the axis at a distance from
the vertex oipial to f of tiie latus rectum.

A/IS. Its distance from the vertex —
^}j (latus rectum).

43. Find tlie centre of gravity of a cone, tlie density of

each circular slice of which varies as the nth power of its

distance from a parallel jilane through the vertex.

Let the vertex be the origin and a the altitude.

Ans. X := —— a.
M + 4

44. Find the centre of gravity of n cone, the density of

every particle of whicii increases as its distance from the
axis.

Anx. :7
—

- I'U where I',.,- vertex is the origin and a the

al'iiliuK'.

4'). Find the cenln' ol'gra\ity of the volume of uniform
density contained between ii lieniis|ihere and a cone whose
vertex is the vertex of the honiispliere and base is the base

of the hemisphere.



1 of ii (iuadrant

' point varies as

is.

,. _ 3:: ,

l'<-^y= j^
b.

ivity of the siir-

ins. X = l-rt.

face formed by

}IS. X
50a

find the centre

iveeii the vortex

a distance from

liitus rectum).

tlie density of

h power of its

L'rtex.

tude.

n + 3

the density of

tance from tiio

f^'in find (I the

inc of Mniloi'Mi

I 11 cone uhdsc

)aso is tlio base

EXAMPLES. 147

Ans. X — , where the vertex is the origin and a tiic

altitude.

40. Find the distance of tlie centre of gravity of a lienii-

sphere from tlie centre, the radius being a.

Aus. i =. |«.

47. Find tlie centre of gravity of the solid generated by

the revolution of the semieycloid,

y =. V^fta; — j^ \- a vers"' -

,

(1) round the axis of x, and (2) round the axis of y.

An.. (1) X = i^--^--- |A^
; (.>) , =: \^- +

~J-^-.

48. Find the centre of gravity of the volume formed by

the revolution round the axis of a: of the area of the curve

3/< — axy"^ + vS -z 0.

3fflTr

Ans. X — .•--•

49. Find the centre of gravity of the volume generated

by the revohition of the area in Ex. 2"J round the axis of y.

ba
Ans. V ~ -.

50. Find the centre of gravity of a hemisjihere when

the density varies as the s<iuare of the distance from the

centre. ,,„, - _ •'".
A niAns. X

'A. Find the centre of gravity of ll\c solid gcncnilcd l)y a

semi-|iarabola bounded by the latus rectum, ivvolving

round the latus rectum.

Ans. Distance from focus - /j of latus rectum.
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52. Tho voriifs of x right circular cone is at the centre of

M spliyrc ; And the centre of gnivity of a body of iiniforni

ilcns^ity oontained witiiiu the ( oiu' and the spliere.

Aus. The disianco (if [he oi'iitre of gravity from tlie ver-

tex of tho cone = -.,- (1 -h cos a), where « = the st-ini-
Cl

tertical angle of the cone and a —. the radius of the

sphere.

515. Fiiul the distance from tho origin to the centre of

gravity of the solid generated by the revolution of the

cardioid round its prime radius, its equation being

r ==«(! + cos 0).

A US. X = Ja.

54. Find by Art. 00 (1) the surface and (^Z) the volume
of the solid formed l)y tho revolution of a cycloid round

the tangent at its vertex.

Alts. Surface = ^'^d^; Volume = rrV.

55. Find (1) the surface and (;i) the volume of the solid

formed by the revolution of a cycloid n)und its base.

Ann. (1) \<Ti,fi\ (^>)5tV'.

5G. An e(iuilateral triangle revolves round its base,

whose length is (t ; find (1) tho area of the surface,

and (•^) the volume of the llgun! desci-ihed.

Ans. (!) ira-i \^'6
; (2)

'"'^.

57. Find (1) the surfiu-e and {'i) the volume of a rinu

with a circular section wln)se inlermd diameter is I'j ins.,

and Ihickness ;{ ins.

Alls. (1) 444.1 s.|. in.; (2) 333.1 cub. iu.
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CHAPTER V.

FRICTION.

91. Friction.— Friction is thai force which acts betweer

two bodies at their surface of contact, and in the direction

of a tangent to tl\at surface, so as to resist their sliding- on

each other. It depends on the force with which the bodies

are pressed together. All the curves and surfaces which we

have hitlu ito considered were supposed to be smooth, ami,

as such, to offer no resistance to the motion of a body in

contact with them in any other than a normal direction.

Such curves and surfaces, however, are not to be found in

nature. Every surface is cai)al)le of destroying a certain

amount of force in its tangent plane, i.e.. it i)ossesses a certain

degree of roiajlincxs, in virtue of wiiich it resists the sliding

of other surfaces upon it. Tiiis resistance is cidled ///'//ow,

and is of two kinds, viz., slidimj and rolliwj friction. The

first is that of a heavy body dragged on a plane or other

surface, an axle turning in a fixed box, or a vertical shaft

turning on a horizontal plate. Friction of the second kind

is that of a wheel rolling along a plane. Hoth kinds oi

friction are governed by the same liiws; tiie former is much

greater than the latter under the same circumstances, and

is the only (me that we shidl consiilcr.

A Kinnoth surface is one which opposes no resistance to

the motion of a body np.'ii it. A roxfili surface is oiu'

which does oppo.se a resistaiu'C to the mntion of a body

ujton it.

riic Hiirl'iircs of all li()ili;'s ("insist of very Htnall «>levritions iiml

(it'pi-t'csion.H, HI) tliiit, if tliin- arc prcssi'! npiiiint cacli oilier, tlui

oh'vatioiiH of om- fit. mor • Ii'sh. into tlip (I'Mivc-si'ms <f tin" i tlicr,

luid till' Hiirfiici'ii iiit('rii:'iiriiii;u .'Ui'li iitliur; aiid tlic uuiluul peiu'tru-
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tioii is of courso grnntcr, if tlic iiressiiig forco is greater. Hence,

when a force is apiilietl so as to cause one body to move on anotlier

with wliicli it is in eoiitact, it is necessary, liefon; motion can take

|)lace, eillier to break otttlie elevations or coiniiress tlieni, or force tlie

iMxlies to se|iarate far enough to aUow tiieiii to pass imic'i otlier.

Much III tliis ;w'y//;'('.'<.i niiiy be removed by polishing; and the etl'ect

of niucli of it may bi; destroyed by lultriciition.

Friction always acts along a tangent to the surface at the |)oiut of

contact ; and its direciion is opposite to tliat of tlu' line of motion ; it

presents itself in the motion of a body aa a passive force or resistance,"

since it can only hiiidi r motion, but can never produce or aid it. In

investigations in mechanics it can be considered as a force acting in

opposition to every motion whose direction lies in the plane of contact

of the two bodies. Whatever may bt* the direction in which we move

a body resting upon a horizontal or inclined plane, the friction wi'll

always act in the opjjosite direction to that of the motion, i. e., when

we slide a boily di.vii an inclined plane, it will a])pcar ns a force up

the plane. A surface may also resist sliding motion by means of thj

adhesian between its substance and that of another body in contact

with it.f

Tbo friction of a body on a surface i.s measured by the

least force wiiicli will put the body in motion along tiic

surfiice.

92. Laws of Friction.—In our ignorance of the

constil lit 1011 of biidie.'^. the laws of friction must be deduced

froiii experiment. Experiments made by Coulomb and

Morin have established the following laws of friction

:

(1) The fridioii. varies as the normal pn^si^ure when the

matcriah of ttw surf'acfs in con fact rrmain the same. Sub.se-

ijiient experiineutii have, liowever, considerably modified

this law, and shown thiii, it can be regarded only as tin

ai)pr()xiniation to the truth. Wh>n the 'iressure is very

great it is found that the friction is less than this law

would give.

* WcUbiich, p. .son.

t St'c liaiikiiicH .\|)|>IU!(I MeclinnicD, p. 800.
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(2) 77/1™ frirfioii- is indppcndcnl of tJic extent of the sur-

fdirx ill loiilfirt so loiifj as tJic iioriiiaf iirrssinr iritiaiiis the

smiic. When the stiri'accs in contact are very small, as ibr

'!isl;iiice a cylinder resting on a surface, tiiis hiw gives tlie

''riction mucli too great.

'I'liesc two laws are tnie when the body Is on the point of moving,

and also when it is actually in motion ; but in the case of motion the

magnitude of the friction is not always the same as when the body is

'jei/iiuiitif/ to nu)Ve ; when tliere is a difference, the friction is greater

in the state bordering on motion than in a'" lal motion.

(3) The friction is independent of the velocity when the

l/ody is in motion.

It follo\v.s fnmi these laws that, if R be tlie normal

pressure l)etween the bodies, /' the force of friction, and /i

the constant ratio of tlie latter to tho former when slipping

is about to ensue, we have

F = (lU. (1)

The fraction /t is called the cr fficieiit offriction ; and if

the first law were true, // wouhl 1)0 strictly constant for the

same pair of Ijodies, wliatever the magnitude of the normal

])ressure between them migiit be. This, iiowever, is not

tlie case, Wlien tlie normal jiressure is nearly e(|Uid to that

wliicli would crush cither of the siirlaces in conttict, tho

force of friction increases more rapidly than the normal

pressure. E(|tiation (1) is nevertheless very nearly true

when the difFerences of normal pressure are not very great ;

and in what follows wo shall assume this to I)e the case.

Hem AUK.—The laws of friction were eatal)lished by Coulomb, a

distinguished Fn'uch officer of Engineers, and were founded on

exi)eriments made by him at Hix-hefort. The n'sulta of these oxpori

ments were presented in I7S1 to the French Academy of Sciences, and

in ITB") his Memoir on Friction was publi^lled A very full abstract

of this jmper is given in I>(' Young's Nutnrnl fldlnKophji, Vol. II,

ji 170 (Ist Rd.), Further exiieiiments were nuide at ,Metz by Moiin,

1831-34, by direction of the French military authorities, ihi^ rertult of
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wliich has hocn to confirm, with slight fxcoptions, nil the results o<

Couloml). iind to (Ictcriniiic witli coiisidcrnMc prcrisinn the numerical
vhIui's of tiic coctlicii-nts o!' friction, for all the siibstnnccs usiiiillv

employed iti the coiislniction of machines. (See (iaibraith's Me
clianics, p. (is, TwisJeii's Practical iMechaiiics, p. l;i8, and WeisbuchV
M'cliaiiicri, \'ol. I, ]). ;il7.)

93. Magnitudes of Coefficients of Friction.—

I

'rac

ticiillv tluTc is no observed cofllicie'iil mucli greator lliaii 1.

Most of the onliiuiry coetHc'ioiits are loss tlian ^. Tlie fol-

lowing msulfs, selected from a table of coefficients,* will

iitford an idea of the amount of friction as determined by

experiment ; tlieso results apply to the friction of motion.

For iron on stone /t varies between .i? and .7.

For timber on timber " " " .2 and .5.

For liml)er on metals " " " .3 and .6.

For metals on metals " " " .15 and .25.

For full ])articidars on this subject tlio student is referred

to Itiiiikine's Applied .Mechanics, p. 209, and Moseley's

Engineering, p. 124, also to the treaise of M. Morin, where

he will find the subject investigated in all its completeness.

94. Angle of Friction.— 77/ r aiir/If at which a rov(ih

pliow or surface iiinij he inclined xo ihnl a hndy, when acted

upon by the force of (jravily only, mayjust re,"! upon it with-

out aliding, ih called the Aityle of Friction. \

Let « bo the angle of inclination of

the i»lane AH just as the weight is on

the point of slipping down ; IT the

weight of the body ; I! the iu)rmal pres-

sure on the plane; F the force of fric-

tion acting along the jila-.te = fiJ? (Art.

f)2). Then, resolving the forces along and porpondicular to

the plane we have for e(iiiilil)rium

Fi9.45

• Raiikliic'x Applied Mochiiiilcs, p. 811.

t SDint'ilinos calk'il " llio aiiijle of rt'pose;" iil^o cnllcd " tli« "'ailtlng aiifilc nf

TCBielHIlCC."

iiMi
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uR =: U'sin « ; A' =: IT cos «;

tan a == /t,

153

(1)

which jrivcs tlio limiting value of the inclination of the

plane fur which e(|uilil)riuin is possible. The body will rest,

on the plane when the angle of inclination is less than the

angle of friction, and will slide if the angle of inclination

exceeds that angle; and this will be the case however great

W may be ; the reason being that in whatever manner

we increase \V, in the same i)r()portion we increase the

friction upon the plane, which servos to prevent M'from

sliding.

From (1) we see that the tangent of the angle of friction

js equal to the coefficient of friction.

95. Reaction of a Rough Curve
or Surface.—Let Ali be a rough curve

or surface ; P the position of a particle

on it ; and siii)pose the forces acting on

P to be conlined to the plane of the

paper. Let A*i = the normal resistance of the surface,

acting in the nornuil, PN, and F — the force of friction,

acting along the tangent, Pl\
'J'he resultant of 7^*1 and Z^, called the Total Resistance*

of the surface, is represented in magnitude and direction by

the line J'R = R, which is the diagonal of the parallelo-

gram determined by 7?i and F. We have seen that the

total resistance of a smooth surface is normal (Art. 41) ; but

this limitation does not a})ply to a roiitjh surface. Let

denote the angle between R and the normal R^ ; then <^ is

given by the equation

tan =
R,

* Htncliln'H Simlcs, p. 54.
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Ileiico,
(f)

will bo a maxiniuri when the force of fr; 'on,

/', hojirs the greatest ratio to (lie normal nressiire li,. IJiit

this greatest ratio is :!ttai',>.(l whe:. tie lu-ily is just on the

point of slipp'ig along Hie surface, and is what we called

the eoetlicient oFfrietion (Art. Wi), thr.t is

= ^;

.'• tan (j) z= fi.

Therefore the greatest nwjh' by which the Total Resistance

of a rough curve or surface can denate fro7n the normal is

the angle tvhose tangent is the roefficient of friction for the

bodies in contact j and this deviation is attained when slip-

ping is about to coinmence.

Cor.—By (1) of Art. 94, tan « = /*;

.'. ^ = ce;

hence, the direction of the total resistance, R, is inclined at

an ai'iglf a co the normal ; i.e., the greatest angle that the

Total Resistance of a rough curve or surface can make with

the normal is equal to the angle of friction, corresponding

to the two bodies in contact.

96. Friction on an Inclined Plane.—A body rests on

a rough inclined plane, and is acted on by a given force. /',

in a vertical plane which is perpendicular to the inclined

plane; find the limits of the force, and the angle at which

the least force capable of drawing the particle up the plane

must act.

Let i = the inclination of the plane to the horizon ; Q =
the angle between the inclined plane and the line of action

of P\ n = the coeilicieiit of friction ; and let ns first sup-

pose that the body is on the jxiint of nioviuf^ down the
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to the inclined

angle at wliich

ilc up the plane

le horizon ; 6 =
10 line of action

let ns fu'st snp-

oviii'T down the

plane, so that frict' >n ir a force acting n\} the plane, tiicii

resolving along, and perpendicular to, the plane, we have

/r' ^ /' ^.^^fi — 11 sin t,

li + r sin = W cos i,

F = nE;

sin / — /t cos /
.-. P =W

cos 6 — n sin

And if P is increased so that motion up the ])1ane ."'i.,

begintiing, F acts in an opposite direction, and there. ^

the sign of ju must be changed and we have

P = W
sin i + /' cos i

cos^ + /i sin S
(2)

Hence, there will be equilibrium if the body be acted on by

a force, the magnitude of which lies between the values of

P in (1) and (2). Substituting tan <p for fi (Art. 95) ; (2)

becomes

P^W"^^^- (3)
cos (0 — o)

To determine 6 in (2) so that /' shall l)e a minimum we

must i)ut the first derivative of /' with respect to = 0,

therefore

dP rrr / • • . ., Siu » - /* COS 6

de
= ^ (8in i + ficos t)

^^^^ f+T^^-e]^

.'. tan = /t

;

0;

that is, the force P noces-ary to draw the body up the plane

will be the least possit)lo w'ii.'n = the angle of friction.

^^
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He'-ce wc infer tliat ii given force act.* to tlie greatest

adviintiigo in driiggiug a weiglit up a hill, if tiie angle .it

wliicli its line of action is inclined to tiic liili is e([iiai to

the angle of friction of the liill. Similarly, a force acts to

the greatest advanlage in dragging a weiglit along a hori-

zontal plane if lis line of action is inclined to the plane

•It the angle of frittioiiof the plane. We may al-so (h'ti-r-

mine from this the angle at which the traces of a drawing

horse should he inclined tw the plane of traction.

These results are those which are to he ex})ected, because

some part (jf the force ought to lie expended in lifting the

weight from the plane, .so that friction may be diminishetl.

(Sec Price's Anal. Mech's. Vol. I, p. 100.)

97. Friction on a Double-Inclined Plane.—Two
bodies, whose weights are /' and Q. rest on a rough double-

inclined [ilane, and are connected by a string which passes

over a smuolh jK'g at a point, A, vertically.over the intersec-

tion. U. of the two planes, Find the position of equili-

brium.

Let f< and ji be the inclinations of

the two planes ; let I — the length of

the string, and // — Al}; and let 6

and be the iUigles vhe porlior.s of

the string make with the planes.

Suppose P is on tiie point of

ascending, and (> of (k.<reti(lui(j.

Then, since the motion of each body is about to er.sue, the

total resistances. R and -S must each make the angle of

friction with the corresponding normal (Art. 95, Cor.) ; and

since the weight. /*, is about to move u|)wards the friction

must act downwards, and therefore J> must lie below the

normal, while, since Q is about to move downwards, the

friction mnst act vijjwards, and therefore ^S' must be above

the nnrmal.

Fig.47



to tlio greatest

if tlu' aii<i;le at

lull i.s eijUiil t'l

I foire acts to

il ailing' a linri-

umI to the piano

may also d'/tcr-

cc'S of a drawing

ction.

xpocted, hecaiKC

ed in lit'tinjj the

\- be diniinished.

a Plane.—Two
a rougii doiiblo-

ng wliieli i)a.sses

over tlie intersec-

isitioii of equili-

mt to or.siio, the

ike tlio angle of

t. 95, Cor.); and

ards the friction

ust lie below the

downwards, the

)' must be above

D()rnLK-L\( i.i.\i:d i'laxk. 157

If T is the tension of the string, we have for the equi-

librium of i', (Art. ;J2),

~ cos (0 - </))

.Vnd for the equilibrium of Q,

^ ^ cos (B' + <t>)

Equating the values of 7' we get

,sin (« + 0) _ ^^-^iii (l^ — '/»)

cos {() — <p)
' cos {()' + <\>y

0)

and if /' is alioiit to niovi' duini tiir plane the friction acts

in an oi)posite direction, and ther-fore the sign of must

be chunged and we have

sin (a -9) ^ ^sin (/^ + 0) _ /g)

cos (ft + (!>} ^cos {0' -0)

(1) or (2) is the only statical e(|uation connecting the

given (luantitics.

We obtain a geometric CKjuation by expressing the length

of the string in terms of //, «, li, d, and «', which is

, /c(»s (c
,

cos li\

Vsiu sill /
(3)

From (1) or (•.') and (:i) the values of and 0' can be found,

and this determines the positions of /' and Q.

Ol/icrifisf 111 us :

InsU-ad of cftnsidering the total resistances, /.' and N. we

mav consider two normal resist :.n(!es. //, and .S',, and two
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forces of friction, |lR^ and //>',, acting respectively down
tlie plane « and up the plane [i. In this case, considerin-,'

the equilibriiini of /'. and resolving forces along, and per-

pendicular to, the plane a, we have

n « + /«/?, = Tcose,
)

IS « = III + 2' sin e, \
(4)

and for the etiuilibrium of Q,

<2sin/3 = iiS^ + TcosO',
)

^coS)3 - <S', + T&mO'. \
(5)

Elimiiuiting ^,, .v,. and T from (4) and (r)) we get (1),

the same statical equation as before.

The method of considering total resistnnrcs instead of

their normal and tangential components is usnally more
simple than the separate consideration of the latter forces.

(See Minchin's Statics, p. GO.)

Cor.—If Q is given and P be so small that it is about to

ascend, its value, I\, will be given by (1),

^ ^ sin (« + <p) cos (6' + tpy (6)

and if P is so large that it is about to drag Q up, its value,

Pgj will be given by (2)

Q
sin (fi -\- (/)) cos (0 -f- </>)

sin (« — 0) cos (O' — 0)
(7)

the angles and 0' being connecled by (.'{).

'i'hei'c will be e(|uilibri!ini if f,H)c acted on by any force

whose magnitude lies between /', and /%.
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Fig.48

98. Friction on Two Inclined Planes.—A beam

rests on two rough inclined planes; find the position of

ei|uilil)rium.

Let a and b be the segments, AG
and BG, of the beam ; let 6 be the

inclination of the beam to the hori-

zon, u and i3 the inclinations of the

planes, and R and -S' the total resist-

ances. Suppose that A is on the

j)oint of ascending; then the total

resistances, R and S, must each

make the angle of friction with the corresponding normal

and act to the right of the normal.

The three forces, H', R, S, must meet in a
;

nt (Art.

G'^) ; and the angles GOA and GOB arc diual to « + <t>,

and (i - <p, respectively.

Hence {a + h) cot BGO = a cot GOA — 5 cot GOB,

or {a + I) tan = a cot (« + <t>)
— i cot (/i - <p). (1)

CoK.—If the planes ai-e smooth, = 0, and (1) becomes

(« -f- i) tan = rt cot a — J cot &.

(See Ex. 7, Art. 62.)

99. Friction of a Trunnion.*— T/w/jiM/ows are the

cijUndncal projcclions from the cmh o/afshnff, which rest

on the rourarc xiirfncex of cijUndrical boxes. A shaft rests

in M horizontal position, with its trunnions on rough

cyh. irieal surfaces; find the resistance due to friction

whieh is to lie overcome when the shaft begins to turn

about a horizontal axis.

* gometimcH called " Journal."

•^ •
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Fig.49

Let JA(7and BAED bo two rijxlit

sections of the trunnion and its box;

tiie two cireies are iiuigeut to each

other internally. If n<» rotation

takes place the trunnion presses

upon its lowest iioint, II, through

which the direction of the resulting

pressure, li, passes ; if tlie shaft

begins to rotate in the direction vVlI, the trunnion ascends

along the inclined surface, EAB, in conse((uencc of the

friction on its bearing, until the force, S, tending to move
it down just balances the friction. /'. Resolving R into a

normal force A' and a tangential ojie, (V, we have, since the

;angential conijtoncnt^ of R \n urging the truuuion down
the surface = the friction which opposes it.

S - F = //A'; but 7.'2 = S' + A^'j

or R^ = ifiN-^ + N^;

R
therefore

and the friction

N =
V'l+ii''

F = liR R tan (f>

Vl 4- p' Vl-f- tan2</)

-.-zrr. (Art. 95),

or /''= /? sin 0.

Hence, fo find Ihc frirlioii it/iDii a /nnnn'nii, iniilfipjj/ the

ri'siilhtnt iif f/ic /(irccs w/iirh (tcl ujmn. it by llie sine of tlm

inKjtc (iffrirlioH.

100. Friction cf a Pivot.—A hea,\y circular shaft

rests in a vertical position, with its end, which is a circular
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rnnnion ascMids

5i'(nioti(jc of tho

tending to move

Giving R into a

) hiivo, since tlie

L! truuuiou down

+ ^V»j

rt. 95),

'nil, multiply flip,

hij llie sine of //ui

y (.'irculiir sliaft

1 it'll is a circular
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section, on a horizontal plate; find the resistance due to

friction wliich is to he overcome, when tlie shaft begins to

revolve about a vertical axis.

Let a be the radius of the circular section of the shaft

;

let the plane of (r, 0) be the horizontal one of contact

between tlic end of the shaft and the plate; and let the

renire of tlie circular area of contact be the pole. Let

W — the weipiit of the .«liaft, then the vertical jiressure on

each unit of surface is —ii and thercioru, if r dr dO is the

area-clement, we h ive

W
the pressure op the element ==: -,, r dt dQ

;

,'. the friction of the clement — /t -- r dr dO.

The friction is opposed to motion, and the direction of its

acti'in is taii<>viit to the circle dcscrilied by tlic clement

;

the moment of tlie friction about the vertival a.xis through

the centre

_ fiWr'hlrdO

therefore the moment of friction of tlu' whole circular end

_ /'^T ,><i,, Wr-drdO _ '^J^IIVf ,,^

and conse(pieiitly varies as the radius, ilence arises tho

advantage of I'educiiig to the smallest jiossible dimensions

tlie area of the base of a vertical shaft revolving with its

end resting en a liorizoiitai lied.

From (1) we may regard tiie whole friction due to the

pressure as acting at a single point, and at a distance <":•..

m

the centre of motion ofiual to two-thirds of tho raums of
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the base of the shaft,

lover of friction.

EXAMPLES.

This distance is called the mean

When the shaft is vertical, and rests upon its circular end

in a cylindrical socket the cylindrical projection is called a

Pivot.

EXAMPLES.

1. A mass whose weight is 750 lbs. rests on a horizontal

plane, and is pulled by a force, /', whose direction makes

an angle of ].5° with the horizon ; determine P and the

total resistance, R, the coefficient of friction l)eing .02.

Ans. P :=: 413-3 lbs.; R = 75(5.9 lbs.

3. Determine P in the last example if its direction is

horizontal. Ans. P = 405 lbs.

3. Find the force along the i)lane recpiired to draw a

weight of 25 tons up a rough inclined plane, the coefficient

of friction being i^, and the inclination of the plane being

such that 7 tons acting along the plane would support the

weight if the plane were smooth.

Ans, Any force greater than 17 tons.

4. Find the force in tlie preceding example, supposing

it to act at the most advantageous inclination to the jdane.

Ans. IS-jSj tons.

5. A ladder inclined at an angle of 00° to the horizon

rest^ between a rovf/fi ]Hi,vement and the smooth wall of a

house. Show that if the ladder begin to slide when a tniin

has ascended so that his centre of gravity is half way uj),

then the coefficient of friction between the foot of the

ladder and the j)avement is
J VS.

(I. A body wlioso weight if 20 lbs. is just sustained on a

I'nugli incilined plane liy a horizontal force of 2 ll»s., and a

force of 10 11)8. .ilong the plane ; the coefficient of friction is

'i
; find the inclination of the plane. Ans. 2 tair'

(J J).
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7. A heavy body is placed on a rough plane whose

inclination to the horizon is sin ' (|), and is connected i)y

a siring passing over a smooth pvilley with a body of equal

weight, which hangs ti-ecly. Supposing that motion is on

the point of ensuing up the plane, find the inclination of

tlie string to the plane, the coefficient of friction being |.

Ans. = 2 tan-i
(J).

8. A heavy body, a(!ted upon by a force equal in magni-

tude to its weight, is just about to ascend a rough inclined

plane under the influence of this force; find the inclination,

0, of the force to the inclined i)lane.

Ans. z= /, or 20 + i — , where i
4t

inclination

of the plane, and </> =: angle of friction. (9 is here sup-

jmsed to lie measured from the iipiwr side of tl;e inclined

Itlane). If [^ > 2^ -f /, is negative and the ai)plicd force

vill act towards the nnder side.

!^». In the first solution of the last example, what is the

magnitude of the pressure on the plane ?

Ans. Zero. Explain this.

10. If ilie shaft, (Art. 100), is a square ]>rism of the

weight W, iind rotates about an axis in its centre, prove

that the moment of tlie friction of the square end varies as

the side of the scpiare.

11, If the shaft is composed of Iwo equal circular

cylimliM'S pliiced side l)y side, and rotates about the line of

contact of the two cylinders, show that the juoment of the

fri(!ttoii of the surface in contact with the horizontal plane

Vi. What is the least cocflicient of friction lluit will

allow of a heavy body's being just ke|)t from sliding down
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ail inclined plam' uf ^nveii inclination, the body (whoso

weight is IT) being sustained Liy a given horizontal force, /' ?

'"..u i -P
Ana

\\~-[-' P tun %

13. It is observed that a body whose weight is known to

be U'can be just sustained on a rough inclined plane by a

horizontal force P, and that it can also be just sustained on
the same plane by a force Q np the plane; exjiress the

angle of friction in terms of t hese known forces.

PW^
Aps, Angle of friction — cos~i

14. It is observed that a force, Q^, acting up a rough

inclined plane will just sustain on it a body of weight W,

and that u.force, (>g, acting up the plane will just drag the

same body up; iind the angle of friction.

Ans, Angle of friction := sin"' ^ -- ^ZL^—'ft'

ViP-^i^,

15. A heavy uniform rod rests with its extremities on

(he interior of a rough vertical circle; (ind the limiting

position of e<}uilibrium.

Ans. If 'Ik is the angle subtended at the centre by the

rod, and A, the angle of friction, the limiting inclination of

the rod to the horizon is given by the equation

, „ sin 2A,
tan —

cos !i/L -f- cos 2tt

K). A solid triangular prism is placed, with its axis

horizontal, on a rough inclined plane, the indinalion of

whidi is graxluidly incri'aHc(| ; determine the natiii'c of llic

initial motion of the prism.

Ans. If (he triangle AIi(! i^ the section perpendicular lo

the axis, and the side AB is in contact .vith the plane, A
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being the lower vertex, the initial motion will be one of

ti'.aibliiig if

J2 ^ 3(J _ di

f^> 4d

the sides of the triangle being n, h, c, and its area A. If fi

is less than this value, the initial motion will be one of

slipj.ing.

IT. A frustum of a solid right cone is i)l;iced with its

base on a rough inclined plane, the inclination of which

is gradually increased; determine! the initure of the initial

motion of the body.

yl«,s'. If the radii of the larger and smaller sections ar<' R
and /•, and h is the height of the frustum, the initial motion

will be one of tumbling or slipping according as

4/.' jr^ + nr_+ r"^

''^^ h" m + 'iRi- + 3r2"

IS. An elliptic cylinder rests in limiting '"quilibrium

between a rough vertical and an equally rough l)ori'.;ontal

plane, the axis of the cylinder l)eing horizontal, and the

major axis of the ellipse inclined to the liorixou at ai» angle

of 45°. Find the coefficient ()f friction.

-, e being the eccentricityAlls, fi = —

of the ellipse.

I. with its axis

V inclination o)'

le naiurc of llir

["-'rpendiciilai- to

til the plane, A

lAlMta



CHAPTER VI.

THE PRINCII-LE OF VIRTUAL VELOCITIES*

101. Virtual Velocity.—If the point of applicafion of
aforce be conceived as disphiced 'throv(/h an indefinitely .small

space, the resolred part of tlie displacement in the direction

of tlie force, is called the Virtual Telocity of the force ; and
tlie product of the force into the virtual velocity has been
called the virtual moment\ of the force.

Thus, let O bo the original, and A
the new ])oint of application of the

force, P, acting in the direction OP,
and let AN bo drawn i)erpendiciilar to

it. Then ON is the virtual velocity of

P, and P . ON is the virtual moment,
virtual displacement of the point.

If the projection of the virtual displacement on the line
of the force lies on the side of O toward which P acts, as in
the figure, the virtual velocity i • considered positive; but
if it lies on the opposite side, /. e., on the action line pn^
longed throngh 0, it is neyative. The forces are always
regarded as positive

; the sign, therefore, of a virtual mo-
ment will bo the same as that of the virtual velocity.

CoK.—If be the angle between the force and the virtual
displacement, we have for the virtual moment,

P . ON = P . OA cos = P cos ' OA.

OA is called the

Tlip priiii'iplo of Viiliml Vclodtios wan lil^<-^lverl(l by Oallleo, and waH very
fully (Icvclopod by Bcrnoiiilll mill LaKniii^'c.

t SdinoiimcH culled " Vlrluul Work." 'I'ljc iiaiuo ' Virtual Moment" \va» (ilveii
by Diilimnel.



DCITIES*

applicafion of

definilely fonall

t the direction

the force ; and
locify has been

N
Fig. 50

. is called the

it on the line

h P acts, as in

positive; but

tion lino }ir(>-

;cs are always

a virtual mo-
clocity.

md the virtual

. OA.

illleo, and waH very

VIRTl Ah 1 KLOCITIKS. liy-i

Now P cos is the projection of the force on the direction

of the displacement, and is equal to OM, OP bein*,' the

force and PM being drawn perpendicular to OA. Hence

we may also define the virtual moment of a force as the

product of the virtual dispiitrcmeiit of its point of applica-

tion into the projection of I lie force on the direction of thix

dixplaccment ; and this definition for some purposes is

more convenient than the former.

Remark.—A fore;' is said to do work if it moves the body to which

it is ai)i)lied ; und the work done by it is nieiisured by the product of

tlie force into tiie space through which it moves the body. (Jenerally,

tiio work (Ume by any force durintr an infinitely small displacement of

its point of application is the product of tlie resolved part of the force

in the direction of the displacement into the displacement ; and this

is the 8!ime as the virtudl moment of the force.

102. Principle of Virtual Velocitiep -(1) The

virtual moment of a force is cjual to t/ie sum / .' virtual

moments of its components.

Let OR represent a force. A', act-

.ng at 0; and let its components be

/^ and Q, represented by OP and

OQ. r^et OA l}e the virtual dis-

placement of 0, and let its projec-

tions on /'. P, and Q, he r, p, and

q, respectively. Then the virtual

moments of these forces are A' • r, P • p, Q <] I>i'iiw Jin,

Pm, and Qo. i)erpendicular to OA. Then On, Om, and Oo

{= nui), are the projections of R, P, and Q, on the direc-

tion of the displacement ; and lience (Art. 101, Cor.) we have

R.r =^ OAOk;

P.p= OA-Om;

Q . q z= OA • mn.

Fig.SI
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Uencc P •/' ^- Q -q — <)A ((>/// -\- mn)

— OA . On = A' r.

(See Miucliin's Statics, p. 08.)

{'i) If t' eiT fli( any inimbcr of component forces we may

eonipoi.nd tin in in order, takiiig any two of tln'm first, and

finding the virtual moment of tlieir resnltant an aitove, then

finding the \irtual moment of the resultant of these two

and a third, likewise the virtual moment of the resultant of

the (irst three and a fourlli, and .^o on to the last ; or we

may use the polygon of forces (Art. .'5IJ). The sum of the

virtual moments ul the forces is etpial to the virtual dis-

l)laeement mullipiied hy tjie sum of tlie j)rojeetions on the

displa"oni(iit of ihe sides of the j)olygou which represent

the forces (Art. 101, Cor.). But the sum of tiiese projec-

tions is equal to the projection of the remaining side of the

polygon,* and this side represents tlie resultant, (Art. 3;],

Cor. 1). Therefore, the tiiim of the virtual mumeiits of any

number of concurring forces is equal to the virtual moment

of the resultant.

{[]) If the forces are in e(piiUhrium, their resultant is

equal to zero ; hence, it follows that wtien any number of

concurring forces are in equilibriitm, the sum of their

virtual moments — 0.

This princii)le is generally kiu)\vn as the J'rinciple of

Virtual Velocities, and is of great use in the solution of

practical problems in Statics.

• Prom the nature of projcctionn (Anal. Qoom., Art. IBS), it If clear that in any

oerlew of points the projection (on a ;:iv(Mi line) ofllie line wliicli joinn Uic (Irnt and

lasl. is equal to llio funi of llie project ions of ihe lines which join llu( points, two

anil two. Thus, if Ihe siiies of a cIom'iI polyi;on, taken in ordir. lie muikeil Willi

arrows poinlint; from cat-li vertex to the next one; and if their projeelions he

nnirked with arrows in the same direelioiis, then, lines measured IVoui ieli to riulil

heiiiK considered positive, and lines Iroin ri(!hl lo left negative, llu sum of the piv-

jeetions qf (fte dilcs of a dosed iioli/con or. any right Hive is zero.
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103. Nature cf the Displacement.—It must he care-

fully ohserved tiiat the di8i)laeeiiieiit of the ])artiele on

which the forces act is virtiiul and arbitrary. The word

virtual in Statics i'i used to intimate that the displacements

arc not really made, hut only supposed, /. e., they are not

actual l)iit imagined displacements; hut in the motion of a

jiarticle treated of in Kinetics, the displacement is often

taken to he that which the jiarticle actually undergoes.

Ill Art. 101. the displacement was hmited to an iniinitesi-

mal. In some cases, however, a finite displacement may he

used, and it may h "i^ven more convenient to consider a

finite displacement. lint in very many cases any finite dis-

placement is sullicient to alter the amount or direction of

the forces, so as to prevent tiie jirinciple of virtual velocities

from heing apj)lical)le. This dilliculty can always he avoid-

ed in practice hy assuming the displacement to he intinitesi-

mal ; and if the virtual displacement is infinitesimal the

virtual velocities are all inlinitesimal.

104. Equation of Virtual Moments.—Let 1\, P„,

7*3, etc., denote the forces, and 6p^, 6p.^, i^p.^, etc., the vir-

tual velocities ; then the jirinciple of virtual velocities is

expressed (Art. 102) hy the o(piation

J\ ' ^Pi + ^^\ • 'h'-i + ^'i ' '^J>3 -r etc. = 0;

or I-PSp = 0, (1)

wliich is called the equation of virtual monmiis.*

Sen.—If the virtual displacement is at right angles to

the direction of any force, it is clear that dp, the virtual

velocity, is eipial to zero. Ilciive, 7rhen the virtual tlis-

placement is at rii/hi unyles to tlie direction of tlie force.

* Or WWwni M'ort (Sec Art. 101, Rom.). Thin eqimtioii liu« been made by I.a-

Kmiii;e the fmindatlon of bin great work on MecUanlCM, " Mocaniqut Analytiqiie."

(PriQcV Anal. Mecb., Vol. I, p. US.)
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the virtual inuineiU vf the force = 0, and ttie force will not

enter into tlie equation of cirtual moments.

Such a virtual (lisi)laccuiout i« always u, convenient one
to c'hoot^e wlicn we wish to get rid of some unknown force

wiiieli acts ujjon a particle or system.

105. System of Particles Rigidly Connected.—(1)

If a i)artiele in cciuilibrium, under tiie action of any forces,

he constrained to maintain a fixed distance from a given

fixed point, tlie force due to the constraint (if any) is

directed towards the fixed point.

Tjet W he the particle, and A the fixed ]ioint. Then it is

clear tliat w . may substitute for the string or rigid rod

wiiicii connects B witli A, a smooth circular tube enclosing

the i)article. witii the centre of the tube at A. Now, in

jrder tliat B may be in equilibrium inside the tube, it is

necessary that the resultant of the forces acting upon it

should be normal to the tube, /. e., directed towards A.

(2) liet there be any number of

particles, vi^, vi.^. m^, etc., each

acted on by any forces, Pj, Pg, Pj,

etc., and connected with the others

by inflexible right lines so that the

figure of the system is invariable.

Then each particle is acted on by all

the ixtcrnul forces ap])lied to it, and
by all the iiifprndl forces ])roeeeding from the internal con-

nections of the particle with the other ])articles of the

system. Tints tlie j)artiele, m. is acted on by P,, /'g, etc.,

imd by tlie internal forces whieii proceed from its con nee-

lion will) //<,, //(g, V//3. etc.. and which act along the lines.

Duii^. iiii>i.^. etc., by (1) of this Article. Denote the forces

•dong the lines iiiiiii, nini.^, iiiiii.^. etc., by t^, t^, t.,, etc..

.aid their virtual velocities by (J/j, fVj, dYg, etc. Now
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iniaijine tliat the system is >liglitly disjjlaccd so as to

occui)y •'' "^^^' i>osition. Then (1) of Art. 104: gives us

foi' 111,

I\6p^ + l^Sp^ + etc. + /,(5/, + /,<5/3 + etc. ^0, (1)

for nil,

^V/h + A'Vs + etc. + /,'5/i + //^2 + etc. = 0, (-J)

proceeding in this way as many ecpuitions may be formed as

tiiere arc particles in the system.

Now it is clear that /j'V,, and L^Sf^, in (1) have contrary

signs from what they have in (2). Thus if the system is

moved to the rii/fi/ in its disphicement, /"I'Vi, and /z'^/.^ will

be ])ositive in (I) and negative in {'i) (Art. lUl), and hence,

if we add (1) and (•.') together, these terms will disappear;

in tlie same way, the virtual moment of the internal force

along the line connecting /ii with any other ]>article disap-

pears by addition, and the same is true for the internal

force between any two particles of tlic system. Hence,

adding together all the equations, the internal forces

disappear, and the resulting etpiation for the whole

system is

^P6p = 0, (1)

and the same result is evidently true whatever be Mie num-
i)er of particles forming the system. Hence, {f nmj iiinii-

ber of forces in a xi/sfem arc. in equilibrium, the iiim of

their virtual moments ^^ 0.

The converse is evidently trnc, that if the sum of the

virtual moments of the forces vanishes for every virtual

displacement, tlie system is in ef|uilibrium.

The following are examples which are solved by the

principle of virtual velocities.
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EXAMPLES.

1. Determine tlie condition of fqiiiiihriuin of u heavy

body resting on II smoulli inclineil i)lune nnder tlie action

of given forces.

Let \V be the weiglit of tlie body

sustained on the plane BC by tlic

force, r, making an angle, 0. witli the

plane. To avoid bringing the un-

known reaction. R. into our equation,

Ave make the displacement of its point.

ol'apj)lication ])eri)endicular to its line of action, (Art. 104,

Sell.); hence \vc conceive O as receiving a virtual dis-

placement, OA, at right angles to \\, the magiiitiide of

which in the present case is unlir.ited. Draw \}ii and

Am jK'rpeiidicular to \V and P resjiectivcly, Om and ()//

are the virtual velocities of W and 1*, (Art. 101) ; and

W • 0//t and 1* • 0;/ are their virtual moments. Hence (1)

of xVrt. 10-i, gives

W . 0)11 - V On = 0.

But Om = Ox\ sin «,

and On = OA cos d ;

therefore W sin « — 1^ cos f) -- 0; (1)

which airrees with Ex. '>, Art. 41.

If •<> force acts parallel lo I lie plane.

becomes

V = W sin «;

0, and (1)

which agrees with lv\. i, Art. 41.
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2. Suppose tho pliiiio in Ex. 1 t'> '»<> rniigli, and tlnit the

body is on the point of ix'ing dragged \ip the phuie, lind

tlie condition of eipiilihriitni.

Tlie nonnal resistance wdl now he
'^'"1 a/ ^-p

replaced by tlie total resistance, IJ, "^^ xJK?^^^^^^
inclini'd to the normal at an angle ^^^'o"

~- </), the angle of friction (Art. i)5, ^^ili— __

Cor.). TiCt the virtual displacement, Fia.54

OA, take place i)erpendicularly to

11, then (1) of Art. 104, gives

W • Oin - r 0?i. = 0.

Hut Om = O.V sin (« + (p),

iind 0« = O.Vcos(<A-^0;

therefore W sin (« + (p) = P (•<)s (r/) — 0) ;

which agrees with (15) of Art. DG.

;}. Determine the horizontal force

which will keep a particle in a given

])()sition inside a circnlar tube, (1)

when the tube is smooth aiul {'l)

when it is rough.

(1) Let the virtual displacement,

OA, be an infinitesimal, = ilx, along

the tube. 'Phen since ds is intinites-

iinal the virtual velocity of U = 0. Then the equation of

virtual moments is

_ W.0»( + V-ihi = 0.

Fig. 55

lint

and

liicrefore

or

Om = (Is sin 0,

0)1 = i/s • cos ;

\y . sin « = !'• <os«;

1> rr: W tall <>.
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(2) Siipi)oso tlio force, P. just sustains tlic particle ; the

iiurmal resistance must now he replaced by the total resist-

ance, nnikiujf the anirle, <p, witii tiie normal at the ri<riit of

it. Take tiie virtual displacement. OA'. at right angles to

tiie total resistance (Arh 105. Seh.), and let it l)e as before,

an infinitesimal dn. Then (1) of Art. lU-i, gives

— W • Oct -I- P • On' = 0.

But Om = (Is • win (0 — <p),

and On' — ds • cos {6 — <j>),

therefore W • sin {0 — <l>)
= F - cos {0 — (f));

or P = W . tan (9 — 0).

Similarly, if the force, P, will y!<.«i' draff the particle up

the tube wo obtain

P = W . tan (0 + 0).

4. Solve by virtual velocities Ex. G, Art. 03.

Let the displacement be made by diminishing the angle

«, which the beam makes with the horizontal plane, by dn,

the ends of the beam still remaining in contact with the

horizontal and vertical pla'ies. Then I he virtual velocity of

T = rf • 2rt cos fc = — 2a sin « da;

and that of

W = f?rt sin « = rt cos « da,

and those of the reactions. R and R', vanish. Then tiie

e(puition of virtual moments is

mmm
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— T 2a sin « ila + W n cos « <Ui — ;

.•. -i'V sill a — W cos a.

5. Solve Ex. 8, Art. (12, l)y virtual velocities.

Let the displacement he made by increasing the angle

by (10, the point, A, remaining in contact with the wall;

the virtual displacement of B is at right angles to the

direction of the tension, T- and hence the virtual moment

of T is zero ; the virtual velocity of W is

d{b cos (p — a cos 0) z= a sin dO — h sin ^ dip.

Then (1) of Art. 104, gives

W {a sin 6 dd — h sin (/> d(p) = 0;

.*. b sin
(f)

dip = a sin dd.

But from the geometry of the figure we havo

b sin = 2a sin 0;

,•. b cos dcp = 2a cos 6 dd;

.'. 2 tan = tan ft;

which, combined with (")) of Ex. 8, Art.. 62, gives us the

values of sin and cos </> ; and these in (0) of that Ex.

give us the value of x.

G. Solve Ex. 38, Art. 65, by virtual velocities.

Since tin- bar w to rest in all positioiiH (in t}io curve and tlie

jK'f;, its centre of gravity will neither rise nor fall whe.i. tlio

bur receivet: a displacenient, lienco its virtual velocity wi'l— 0;

.
•

. etc.



EXAMPLES.

T

7. In Ex. 4, Art. 4'-3. prove tliat (1) is tlic equation of

virtual nionients.

S. Find the incliniition of the l)eain to the vertieal in

Ex. ;il, Art. tl5, by virtual velocities.

1). Deduce, by virtual velocities, (1) the formula for the

triangle of forces (see 1 of Art. 32), and ("J) the formula for

the parade logruui of forces (Sec 1 of Art. 130).

^

4
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C H A P T i: R VII.

MACIIIXES,

lOS. Functions of a Machine.— .1 niKc/iiiie, Slaltcauy,

i.i ((11 11 tWlCKOW f by iiwaiis nf (fhicli ne in((y c/KOiyr the

(lircc/icii, 'i)i(i(ii(i!>i'le. uml poiuf af ((//ilicKliitii nf k ijiceii

fiircc ; ((,!'( h'iiir/i'c.tl/f/, il is any inslndia'Dl by iiic((hh of

(t'ltirb (cv may <•!((( d'ji; the (/ir(ctioii and cchnily of a yireit

itintion.

Ill !iiii)lyiiif.r tlic ]iiin •i;)lc' of virtuiil vclocilicH to ii system

of coiiuectod bodios, •!(' viin'iiUL' is gaiiit'd l)y ciioosii'ig tiio

virtual di.sphu'omoiits ]« t'flaiii directions (Art. 104, fScli).

When \VL' use this |)rinci|ilt" in the discussion of niaeliines

the disjilaceiiieiits wiiicii we si. all ciioose will be those wliieli

the dMl'erent jiarts of a mavhuw (((ina/ly undergo when it

is eiiii»Ioyed in doing work, iiiid instead of c(|iiations of

virt !(((/ wovk we shall liuvo e(|iiaiioiis of art((al work; and

in future the principle of virtual velocities will often be

referred to as the J'rinci/ili' of W'or/i'. (See Minehin's

Statics. )). :)S;i.)

Every niacliiiu' is designed for the purpose of overcoming

certain forces which are called resi.st(()ii)s ; and the forces

which are applied to the machines to produce this effect are

called iiwviny forces. When the niachine is in motion,

jvery moving force displaces it > point of application in its

own direction, while the point of applicalion of a resistance

is displaced in a direction opjiosile to that of the resistance.

Hence, a moving force is one whose elementary work* is

positiec, and a resistance is one whose elementary work is

ue(intire. The moving forco is, for coiueiiieiice. called the

* See All. 101, Uoin.
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po/irr ; iiiul Ikhmiisc tlio iittractioii of firuvity is tlio most

ctMiiiiiKn i'lU'm (if the force or I'csistiiiU'i' to lit' ovt'rcoiiK' it is

usually ciillt'd I lie tri'lijlil.

The wcijrlit or resistiina-' to lie ovcrcimic iiiav he tlic ciirth's jittrac-

tioii. lis ill misiiiir a wciylit ; the HKilri'iihu- iittnictiiins li twccii Xhi:

imrtic'Ics of a liodv us in sti\iii|iiiijj or cKiliii!,' a metal, or dividing

wood ; or friction, as in drawing a licavv liody along a rough road.

Till' iiiiwcr iiiay tie that of iiirii, or liorses, or tlio steam engine, etc.,

and may be just suilicieiit to overcome the resistance, or it may lie in

excess of what is necessary, or it may li(> too small. It' just sufficient,

the machine, if in motion, will remain nniforinly so, or if it be at rest

it will he on the ]ioint of moving, and the power, weight, and friction

will be in eiiiiililiriiim. If the power be in excess, the machine will

be set in motion and will continue in accelerated liiution. If tlie

|xiwer bo too small, it will not lie atile to move the machine ; and if

it he already in motion it will gradually come to rest.

Till' griieral pfohlt'iu with iv<,'iird to luiiohinos i.s to liiul

tlie ri'lation between tlie power iiiid tlio weiglit. Some-

times it is most conveiiieiit that tliis roliitioii siioiilil bo one

of eqiiiiHty, i. c, tliat the power siioiiKl e(|iial the weight.

Ceiierally, however, it is most eotiveiiient tliat llie power

siioukl bo very dilTereiit from the weiglit. Tlius. if a man
has to nt't a weight of one ton liaiiging liy ii rope, it is eloar

that ho cannot do it lude.sa the meclianictil contrivance

provided enable him to Hf't the \ieigiit Ijy exorcising a pull

of very ntuoh loss, say one cwt. Wlieii the ])ower is much
smaller tlian the weight, as it is in *^'iis cii.<e, wliich is a

very common one. tlio niiiciune is said to work at a nirrhait-

iml advuntatjc. When, as in some other ciisos, it is dcsindile

that tlio power should be groiiter than the weigiit, there is

said to be a mcr/iaiiirni (/is/d/rdti/df/c of the machine.

107. Mechanical Advantage.— (1) I.et P and M' bo

the power and weight, and p and w their virtual velocities

respectively; and let friction be omitted. Then from the

equation of virtual work (Art. ]U4), we have

P w

\

Pp - ir«' or -rr =
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whicli shows that the smaller /' is in eomparisoii with li'.

l!io sinidlor //• will lie in cotiiparison witii ji. I'lit I lie

smaller /' is in coinparisoii with IT. the <rreater is the

tiiirlKtiiiral (K/i'dii/aiir. Hence, the <;ivaler the mechanical

iidvsinla.ne is. the less will lie the virtiiiii velocity of the

woiLrlit in coir.j)iiri<on with tluit ol' 'he powc'r. Now, if

motion Mclniilly takes phuv thi' rir/ind velocities hoconu'

iicfiKd \o\oc\t'w>i\ and lieneo we have the i>rineiple ir/iat is

ijainvd in pourr is lost in ir/ori/i/.

{•I) There are no cases in which the weight and power

arc the only forces to he considered. In every movement

of a machine there will always he a eerttiin timoniit of fric-

tion; iind this can ne\er he omitted from the e(piiitioii of

virtual work. There are eases, however, iis liiat of a biilance

on !i knife-edge, where the friction is very small; and for

these the jiriiiciple, winit is gained in jiower is lost in

velocitv, is very approximately trne. Where the friction is

eonsideriil)le this is no longer the ease.

Let /' and / he the resistance of friction and its virtual

velocity, then the equation for any machine will take the

form
Fj) - Wir - y;/' = 0,

which shows ns tlnit iiltlioiigh /'ctin he made as small as we

wish hy taking p large enough, yet the mechainciil

advantage of diminishing /' is restricted hy the fact that /
inciviises witliy^; ami therefore as /'diminishes there is a

e n-ri'sponding increase of the work to he done against fric-

iion. Hence if friction bo neglected, there is no jn-actical

Hniit to the ratio of P to II'; bnt if the friction be con-

siilered. the advaiitiige of diminishing /' has a limit, since

if Pp remains the snine, Wir must decrease as /y increases;

(. c, the work done against friction incroMses with the

comide.xity of the machine : and tiins jints a practic:il limit

to the mechiinical ml vantage which it is possible to obtain

by the use of machines.
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108. Simple Machines.—'Plic simple iimcl)iiu'.s. some-

tinic's called the Mcchanirdl I'mrrrK, are geiiLnil!;. eiiuiiier-

ate'l us six in iiiiuilier : tlie L)'rci\ I lie 11//* (7 und Axir, the

Iiidimd l'iani\ the /'iillci/, the HVv///r. ami the Scrcir.

Tlie Lcrcr, the Indinnl /'laiir, ami the Pii/Iri/, may he

considered a.s distinct in principle, while the othe .•; are

conihinations of them.

The efficiency* of a machine is the ratio of the useful

work it yields to the whole amount of work ])erf()rmed hy

it. The UHeful work is tha( whit-h is performed in over-

coming useful resistances, while lust work is that which is

spent in overcoming waslefid resistances. Usefnl resist-

ances are those which the machine is specially designed to

overcome, while tho overcoming of icastefiil resistances is

ftjreign to its purpose. Fric/ioii ami ri(/i(/i/>/ of cords are

wftsteful resistances while the weiijlit of the l)iidy to ho

Jifted is the useful resistance.

liCt W he the work done hy the moving forces, H'y the

useful and Wi the lost work when the machine is moving

uniformly. Then

W = \Vu + Wi,

and if .1/ denote the etiicieiicv of the machine, we liave

M = Wu
w'

In a perfect m.nchine, where there is no lost work, the

efficiency is unity; hut in every machine some of the work

is lost in overcoming wasteful resistances, so that the

efficiency is always less than unity: and the object of all

improvements in a machine is to bring its eflieiency as near

unity as possible.

The most noticeable of the wasteful resistances are fric-

ti(m and rigiditv of cords : and of these we shall consider

* Sometiiiios called iiutUulm.
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only the lirst. Tlio student who wants information on tht

A experimental laws of the rii^'idity of cords is referred to

\Veisl)acirs Mechanics, Vol. 1, p. :j(i:j.

109. The Lever.—A lever is a rii,nd liar, straight or

curved, niovahle ahout a lixi'd axis, which is called the

I'lili'ruin. The parts of the lever into which the fulcruni

divides il are called the (irin!< of the lever. When the arms

are in a straight line it is called a strdiijlii lever ; in all

other ca.^es it is a benl lerer.

Levers are divided, for convenience, into three kinds,

according lo the })Osition of the fiilcriiin. In the first kind

the riilcriim is hetwecn the power and the weight ; iii the

.secon<l kind the weigjit ),cts between the fiilcrnm and the

jiower ; in the third kind the power acts between the fn'

criim and the weight. In the last kind the power is always

greater than the weight.

A pair of scissors furnishes an examjile of a pair of lovers

of the lirst kind ; a pair of nut-crackers of tiio second kind;

and a pair of ,shears of the lliird kind.

le, wo have
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ne of the work
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.'fhall consider

110. Conditions of Equilibrium

of the Lever.— (1) Wdlunit l-'rielmn.

lict AB be the lever and V its fulcrum;

and let the two forces. /' and IT, act in

the plane of the paper at the jioints, A
and H. in the directions, AI' and BW.
From C draw CD and CR perpendicular to the directions

of /' and ir. Let a and (i denote the angles which the

directions of the forces make with the lover. Then, taking

moments around C, we liavo

yr

P.CD r= ir.CE,

por))endicular on direction of W
perpendicular on direction of /'

(1)
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That is, the condition of e({iiilil)riiim ivqiiires Unit (hr
power and wriijld slmuUt be to each vther innrsely an Hie
lenijlk of lltcir rcnpcctice arm ft (Art. 4«).

To liud tlio pressiiro on the fiilcriiin, and its direction ;

let tl,o directions of the pressures, /• uiid H', intersect in

F; join C and F; tlien, since tlie lever is in eqiiilihrinni
l)y the action of tiio forces, P and 11'. and tli" reaction of
tlie fulcrum, the resultant of /' and W must ho e(|U d and
op|)osito to that reaeticm, and hence must pass liu-ough (,'

and he equal to the pressure on the fulcrinn. Denote this
resultant hy R, the anjrlo whicli it makes with the lever by
Q; and the angle AFB hy w ; then we have by (1) of Art. ;50

IP=: pi + ira + X>/'ircos AFB
;

or li^ = ya + II 2 4- '>/^ircos u>, (a)

which (fives the pressure, R, on thefiilrrum.
To find its direction resolve /'. IT, and A' parallel and

perpendicular to tlie lover, and we have

for parallel forces, P cos « - IT cos (i~ U cos = 0\

for perpendicular forces, /' sin « + W sin (i—R sin 6 = 0;

by transposition and division we get

/' sin « + W sin fttan 6 = „
P cos <( — W i-osfi'

which gives the direction of the pressure.

(3)

Con.—When the lever is bent or curveil the condition of
eiiuilibriuin is the same.

Sohdion try tlie principle of rirtual rr/o.ities.

Supi)ose the lever to be turned round {.' in the direction
of /' (hrough the angle dd, into the position at); let p and
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'/ be the perpendiculars CD and CE respectively, then the

virtual velocity of P will be (Art. 101),

ka sin rt — AU-fW-sin « = pdd.

Similarly, tV.e virtual velocity II is — qdd.

Hence, by viie equation of virtual work we have

p.p. lie- W-q-de = 0;

.-. P-p = W-q. (4)

which is the same as (1).

(:2) With Friction.—In the ahovc we have supposed fric-

tion to be neglected ; and if the lever turns round a sharp

edge, like the scale beam of a balance, the friction will be

exceedingly small. Levers, however, usually consist of fiat

oars, tiLTuing aliout rounded pins or studs which form the

fulcrums, and between the lever and the {lin there will of

course be friction. To lind the friction let /• be the radius

of the pin round which the lover/turns ; then the friction

on the pin, acting tangent ially to the surface of the pin

and opposing motion, = R sin <)> (Art. 09) ; and the virtual

velocity of the point of application of the friction = rdO
;

and hence the virtual work of the friction = !l sin ^-rde.

Hence the ecjuation of virtual work is

p.pde — W-qdd — 72 sin rdd = 0.

Substituting the value of R from (2), and omitting dO, we

have

Pp _ 117/ = r sin </>
^pa +1?^+ 2Pircos w

; (5)

solving this quadratic for P we have
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r = w pq + ?•* cos w sin^

III- • ^ ^/'' + '^P'l
'^'*'' '' + '1^ — >''~ ^'"' •/• '^'"^ '•'

/,.i

/>- — /- .sui- </)
^ '

which pi\('s tlic relation hetwecii the jiowrr aiul tlic weight

wlieii liietioii is eoiisiilered, the upper or lower .sign of

/.sill (p l)eiiig lakeii ueconling us /-• or IT is about to pre-

ponderate.

('()!!.— If the friction is so small that it may be omitted,

r sill (p = Q, and (tj) becomes

^ = ?.
IF p

(7)

111. The Common Balance. --In luacliines geuoraliy

the ol)ject i.s to produce nioiion, not rest; in other words

to do work. The statical imestigation shows only the limit

of force to lie api)lied to pul the machine on the /)ni)it of

motion, or to gi\i' it 'nii/hnii motion. For aip'work to he

done, the force applied must I'xceed this limit, and the

greater the excess, the greater tiu' amount of work dune.

Tiiere i.s, however, one cla.ss of applicatioiLS ul' the lever

wliere the oiijeet is not to do work, but tu jirodnce e(|ui-

librium. and which are therefore specially adapted for treat-

ment liy statics, 'i'jiis is the class of measuring macliiues,

where the object is not to overc(une a particular resistance,

but to measure its amount. The testing maehiue is a good

example, measuring the pull wliici; a liar of any materi:il

will sustain before breaking. The cimimon balaiuv and

steelyard for weighing, are familiar example-.

The common balance i> an instrument f<u' weighing : it

is a le\er <>[' th^' tlrsl kind, with two eipiiil arms, with a

scale-|ian suspendi'd fiMin each cNtremily, the fulcrum

being vertically :diove the ce:itre nf Liravity of the beam
when the latter i> horizontal, and Iherelore vertically above

''J
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the eentre of gravity of the system formed by the beam, the

.seale-paiis. and the weifihts of the seule-paiis. The siib-

stauee to lie weighed is plaeed in one seale-paii, and weights

of known inagiiitude are jilaeod in the other till the beam

remains in i'(iuilibrium in a jierfectly horizontal position,

in wliieli case 1 lie weight of the substance is indicated by

the weiglils which balance it. tf these weights differ by

ever so little the liorizontality of the beam will bo disturbed,

and affor oscillating for a short time, in oousoquenco of

the fulcrum lieing placed ahore the centre of gravity of tlie

svsteni. it will rest in a position inclined to the horizon at

an angle, tlu' extent of which is a measure of the sensibility

of the balance.

Tho prccodinsj: i-xpliinntioii rpprcsents the balanop in its simplest

form; in practice tlieic lire nuiiiy niodificiitioiis and contiivancea

intrixhiced. Mudi skill lias been ex])enile(l npon the ('(instniction ol

balances, anil ;i;roat delicacy lias l)een obtained. 'I'liiis, the beam

fliiinld !)( suspended by means of a knit'cedge, /. c, ii projecting

metallic ed-,'!! tiansver>,e to its lenirtli, which rests ujion a plate of

agate or other hard siil)stance. The chains which support the scale-

pans should be suspended from the extreniities of the beam in tho

same manner. Thi' point of supi)ort of the beam (fulcrum) should be

at eipial distances from the i)oints of suspension of the scales; and

when the balance is not loaded the l)eam sliould be hoii'.onta). We
can nscer:aiM if these condiliiuis are satislied l)y ol)serving whether

there is still e(|uilibiium when the substance is transferred to tho

scale which tho weight originally occiiiiii'd and the weight to that

which the substance originally occupied.

The chief requisites of a good balance arc ;

(1) When eipial weights are ])laoed in the scale-pans tho

beam should be perfectly horizontal.

(•-') 'I'lie baiani'c should possess groat si'iisi/iili/ff : i. p., if

two weights which iirc very nearly oipial be plticed in tho

scale pans, tho beam .should vary .^cnsiOIi/ from iis horizontal

position.
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(;{) When tlie biilaiicc is (listurbi'tl it slniiild rt.urily

ivturii to its state of rosL, or it siiould iiiivo stabthty.

112. To Determine the

Chief Requisites of a Good
Balance.—Let /-• and 11 lie

tile weigiits in the sfak'-paiis ;

U tile I'ldcniin ; // its ilistaiice

from the straight hue, AH,
wiiicii joins tile [loiiits of at-

aeluiient of tiie seaic-pans to

liie l)eani; (J tiie centre of gravity of the beam : and let

AH be at right angles to OC. the line joining tiie fiilenim

to the centre of gravity of the I)eani. Let A(! =r CM =t ,7;

0(i = k; w = tiie weigjit of \\w lieani ; and = \\w

angle whieli the l)eani makes with tiie horizon when there

is e(|iiilibriinn.

Mow the perpendicnlar from

on the direction of /' = a cos fl — // sin fl;

" " "
ir = </ cos f // sin <9;

" '' "
/^ = ^-sln«;

therefore taking moinent.s round () we have

P [a cos e~h sin 0)— \V {„ cos 0-\-/i sin ti)— wk sin = 0;

, ^ (P - W) a
(1)

This c(|nation determines the position of e(piilibriiim. The
///>/! req II isite—tiie horizoiitality of llie beam when /'and
If are e(pial— is salisiied liy making the iirnis e((iial.

The ,s7Y'«//^/ re(piisite [(">) of Art. Ill], retpiires that, for

ii fi'iven vail f /' — ||', the inclination of the beam lo ihr

horizon must be as great as possible, and tliercfoiv ibc sen-

sibility is greater the greater Ian tl is for a given \alue of

P — H'j and for u gi\en \alur of tan M tlio sensibility is

m
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greater the sniuller the value of /' — W is ;
hence tlie sen-

sibility may bemeasuied l.y y,'^ ",|" "^^^'i^'^ requires that

be as small as possible. TlierefoR' a must be large, and w,

li, and k must i)e small ; /. c, the arms must be long, the

beam ligiit, and tiie distances of the fulcrum from the

beam and from the centre of gravity of the beam must be

small.

The llnril requisite, its stability, is greater the greater

the moment oi! the forces wiiich teiul to restori' the beam to

Its former i)osition of rest when it is disturbed. If P= W
this moment is

[(y + II )/, + wk] sine,

which should be made as large as possible to secure the

third requisite.

This condition is, to some extent, at variance with the

second requisite. They may both be satisfied, however, by

making (/' -f M) /' + n-k large and a large also
;

/. v., liy

iiicrearing the distances of the fulcrum from the beam and

from the'c'cntre of gravity of the beam, and by lengthening

(he arms. (Sec Todhunter's Statics, p. 180, also Pratt's

Mechanics, p. ^8.)

The coiiijiarativc inii)orta'nce of these qualities of w'».s'/-

hililil and sluhiUhj in a balance will depend upon the use

for which it is 'intended ; for weighing heavy weiglits,

slithilihi is of more importance; for use in a chemical

laix.ratory the l)alanc.' must possess great snisihilily ;
and

instruments have been constructed which indicate a varia

tion of weight less than a miUhulh part of the whole. In

., halaiicc of great di'licacy tli.' lulcrum is ma«le as thin as

possible; it is gmcrally a h-iiifi-rilijr of liardened sle.'l or

airate. resting on a polislicd agi.tc plate, which is supported

on a strong vertical iiillar of lirass.
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113. The Steelyard.—This is a kind <if l)iil;uur ii,

whicli \hv anus aw iiiicmiiil in |(.|i<;tlK (lie loiiovr one hciu-
f,n-ii(liiul(Hl, along wliicli a ;w/w mav he moved m (.rd.r u,

liaiiUKv (litl'i'ivnt ucinlits wliicii aiv plac'cd in a scak'-pan on
tlio short-arm. Whilo the moment of the substance
vveiglied is elianged liy increasing or diminishing its'(|nan-
tity, its arm remaining eonslanl. that of the poise is

changed l»y altering its arm, tlie weiglit of tlio poise
remaining the same.

114. To Graduate the Common Steelyard.— (1)
)Mn'n the pulnt of moipriisiun is (vnicli/v/d ivilli the rciilrr

of (iravUy.

I vet AF l)e tlie beam of the steel-

yard suspended about an axis pass-

ing through its centre of gravity.

C ; on the arm, ('!•", jdace !i mov-
ablo weight, /*

: (hen if a weiglit.

ir, e<|ual to /', is suspended from
A, (he beam will balance when /'

on the long arm is at a distance

from V efpial (o AC. If II' e(|iials twice the weigh! of /',

the beam will bahinee when (he distance of /* from C is

twice AO; and so on in any pr(>|(orl ion. Hence if IT is

successively 1 lb., 'i lbs., .'i lbs., etc.. the distances of the
notches, i,

"I, ;{, {. etc., where /' is placed, are as 1, •>, ;;.

etc., /. I'., the arm VV is divided inio ry//r// divisions, bcLriu-

ning at the fulcrum, ('. as the zero point.

{•.') Whi'u Ihi' poinl of sHsjinisioii is not roi.in't/cn/ nilli

flic rent re of i/niri/i/.

Let (' be the fulcriiin. II' the siibstaiuv to be wii-lied.

banging at (he e\(ivmi(y. A, and /' the movable wei-li!

Suppose that when 11' is ivmowd. the weight. /'. placd at

H will balance the long arm. ('I', ami keep Ihi' slce!\ard in

u horizontal position; (hen the inoinent of (he insdunieiit

((C) (s)|-UJ4_ij_Lf]xixxdl

Fig.58
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ilsi'lf, ;il)oii( C, is on tlio
'

k'. <'l''. iiiul is ('i|U;il to /'•('!>.

llriicT, if M luui;j;s from A, ami I' from luiy iioiiit, K, llici'

for rciuilibrium \\v iiiu>t iuive

P.CE + r- lU! = 11'. AC;

or p. BE = ir. AC;

BE = ,• AC.

If we niiik(! II' succpssivoly ('(|iiiil to /'. ^>/', HP, etc.. tlion

llu' viihu's of BK will he AC, '.'AC. :5A('. etc., ami tlH'so

ilisiaiii'i's must he mcasiiivd oil', comiiiciiciiiir at, H for tliu

/.wo jjoiiil, ami tiii' points so (k'termiiied marknl 1, i, ;}, 4,

etc. Such a steelyard eaiiuot \veij,di lielow a eertaiii limit,

(•orrt'spoiiding to the lirst noteli, 1.

To lind tl)" length of the divisions on the beam, divide

i?K. the distance of the poise from the zero point, hy the

weight, ir, which /' balances wiien at tiie point E. The

steelyard often has /iri) fnlcrnms, one for small and the

other for lartfe weights.

EXAMPLES.

1. What force mnst be api)lied at one end of a lever

12 ins. long to raise a weight of '.'>() ll)s. iianging 4 ins. from

the fiilcrnm which is at the other end, and what is the

pressure on the fulcrum ? A)is. lU lbs. : 20 lbs.

2. A lever weiglis 3 lbs., and its weight acts at its middle

point ; tlie ratio of its arms is 1 : '.]. If a weight of 4S lbs.

be hung from the end of the shorter arm, what weight

must l)e suspended from tln' other eiul to present motion?

J«,s. l.J lbs.
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3. Tlic ariiis of a ftni/ li'vor are :] ft. and 5 ft. and inclined

lo eat'li oilier at an an<j;le = {'){f. 'J'o the .sliort arm a

weijilit of T ll)s. is applied and to the long arm a weight of

(! li)s. is apiijieii. Re(jiiiri'd (lie inelination of each arm to

the horizon when there is erinililirinm.

Alls. The short arm is inolinod at an angle of 18° 2'i'

(tboi'c the horizon, and the long arm i.s inclined at an angle
of 48' 'i'i' hchiir the horizon.

115. The Wheel and Axle.—This
machine con-ists ol' a wheel, a, rigidly

connected with a horizontal cylinder,

//, movable ronntl two trunnions (Art.

!)!)), one of which is shown ; t r. The
power. /', is applied at the circnnifer-

eiico of the wheel, sometimes by a cord

coiled round the wheel, sometimes by

handspikes as in the ciijistini, or by

handles as in the iriiii/ldss : the weight, If, hangs at the

end of a cord fastened to the axle and coiled rouiid it.

116. Conditions of Equilibrium of the Wheel and
Axle. (1) Let a and be the radii of the wheel and a.\le

rt'spectively ; /'and H' the power and weight, sujiiiosed to

acl by strings i't tlie < innmference of the wheel and axle

perpendicular to tlie radii a and /j. Then either i)y the

principle of virtual velocities or l)y the princiide of momenta
wc have

or

Pa = ]\1>,

P radius of axlo

W ~ railing of wheel 0)

Tt is evident thai, by increasing the radius of (he wheel

(ir by diminishing (he I'adiiis of the axle, any amount of

nicchaiiieal advantage may be gained. It will also be seen
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that this machine is only a modification of the lever ; the

peeiiiiar advantage of tlic wheel and axle being that an end-

less series of levers are brougiit itito jilay. In tliis res|K'ct,

tlion, it surpasses the common lever in mechanical advan-

tage.

In the above we have sii|i[)osed friction to be neglected,

or, wliat amounts to the same thing, iiave assumed that the

trnnnion is indednitclj small. In practice, of course, the

trunnion has a certain radius, r. and a certain coefHcicnt of

friction. Cilling A' tlie resultant of /'and H', ami takiug

into account the friction on the trunnion we have for the

relation between /' and W

Pa = Wl) -j. ,• ,siu (ji \//'2T ir^~+^^/'lT77)S (.), i^i)

M being the angle between the directions of P and U'

exactly as in Art. 110.

(v') Differential Wheel and
Axle.— By diniinishing li, the radius

of the axle, the strength of the

machine is diminished ; to avoid this

disadvantage a (liJfi'nuiKil wheel and
axle is sometimes employed. In this

instrument liie axle consists of two

cylinders of radii h and It ; the rope

is wound round the former in one

direction, and a^ter jiassing under a

movable pulley to which the weight

is attached, is wound niuiul the latter in the opposite direc-

tion, so that as the p.iwer, /', which is applied as befiu'c,

tang<'iitiMlly to the wbeel of radius, a. moves in its own
dir.'ctioii, I he rope at b winds up while the rope al //

unwinds.

l''(M' the ei|uililiriuui of the forces (whether at rest or in

uniform motion), the tensions of the rope in bm and b'

n
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art" each equul to iW. lli'iui', taking moiiu'iiis round tlm

ceiiLrc of the truniiiuii, c, we havi'

Pa + iWb' - illV; = 0;

•. Fa = l\l{b- l>'), (3)

hence l)y makiiij]? tlie iliiTerenec, b — b', small, the power

can 1)0 nuide as .<mall as wo pleuso to lift a given weight.

Let tlie wheel turn throngh tiie angle (SO; the point of

apjilication of /' will descrilie a space -= «(5W, and the

weiglit will lie lifted tlirough a space = ^ {b — b) '50,

which lattoi- will he very small if b — b' is very small.

Therefore, since the amount of work to he done to raise t\\v

weiirht to anv gisen heigiit, is constant, economy of i)ower

is accomplished hy a loss in tiio time of performing the

work.

117. Toothed Wheels.— 7W/<rr/ or mfned vhcvh are

wheels ]»rovided on tlie circumt'eronces with projections

called teetli or cogs which interlock, as shown in the figure,

and which are therefore capaiile of transmitting foi'ce, so

that il" one of the wheels he turned round hy any means,

the oilier will be turned round also.

Wiien the teeth are on liic sidcx of the wheel instead of

the circuml'erence. they are called crowa wiieels. When

tiie axes of two wheels are

neither perpendicular nor

parallel to each other, tlio

wheels take the form of

fru-tums of cone^. and are

called hi rrlrd wlicrlx. When

tlicii' is a i)air of toolhcd

v\ III I'ls on each axle with the

teeth of the laruv one on one

axle titting between the teeth Fig.61
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of the snuill one on tlie next axle tlie larger wlieel of each

pair is called tiie wheel, and the smaUer is called the yv/,/ w/.

By means of a eonihination of toothed wiieels of tliis kind

called a train of wheels, motion may he transtVrred trom

one point to anotlicr and worl<. tlone, each wheel driving

the next one in the series. The discussion of this kiml of

niaciiinerv possesses great giv)metric elegance ;
hut it would

he (Hit of" place in this work. We shall give only a sliglit

sketcli of tiie simplest case, that in which the axes of tlie

wheels are all i.arallel. For the investigation of the proi)er

forms of teeth in order tliat the wheels when made shall

rnn trnly one upon another the student is referred to other

works.*

118. To Find the Relation of the Power and

Weight in Toothed Wheels.— 1-ct A and U he the lixcd

centres of the toothed wlieels on tlie ciuHimfercnces of

whicli tlie ^?eth are arranged ; QCQ a normal to tlie sur-

faces of two Veetti at their piuiil of contact. ('. Suppose an

axle is fixed on llie wheel. H. and llie weigiit, W, suspended

from it at K iiy a cord : also, suppose the jiower. /'. acts at

1) with an arm DA ; draw Xa and 15/ [U'l-pendiciilar to

QCQ. Let Q he tiie mutual pressure of one tootii upon

another at C; tliis jtressure will he in tlie directi.m of the

normal QCQ. Now since the wheel, A. is in eipiilihrium

ahont the fixed axis, A, under the action of the forces,

r and Q, we have

(1)P- AD - Q- Art;

and since the wheel, B, is in e.pnlihriiim ahont the fixed

axis, B. under the action of tlie forces. Q and If, we have

11'. HK =r n.m. i-i)

* Soe GoodoveV m^uml^of ifeeha'iism: Huiikiro's .l/i/ilh,! M.cha>,U'x :
Mmsc

l,..v'H Knqlmering; WiUiH'H Pnnci,>le,< of .\fec/,uni.-m ;
(;(illi-iioir.>^ SlaHqtie

:
and

a Pajyer of Mr. Airy's in Ike Camb. PhU. Trans.. Vol. II, p. 3TI.

5)
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Dividinj? (I) by (:*) wc luivo

or

If. BE ~ B6'

moment of P Ka
moment of IT

~ Bd'

If the direction of tiie normal, QC'Q. at the point of con-

taet, C. eliiiiiges as tlie action passes froii one tooth to the

snceei'dinij:, tlie rehition of /' to IT becimies varial)le. But.

if the teeth are of siieli f(jrm that tlie normal at their point

of contact shall always he taniroiit to hoth wheels, the lines

An and BA will l)ecome radii, and their ratio constant.

And since the nnmher of teeth in the two wheels is propor-

tional to their radii, we have

moment of P _ niind)er of teeth on the wheel /'

•moment of IF ~ number of teetli on the wheel ()"' (=5)

119. Relation of Power to Weight in a Train of n
Wheels.—Let R^, J?,,, R^, etc., be the radii of the suc-

cessive wheels in such a train ; r,, r^, r^, etc., tl>e radii of

I he corresponding pinions; and let P, P,, Pj, P3, . . . \y,

be the powers ap{)licd to the circumferences of the successive

wheels and i)inions. Then the first wheel is in eciuilibrium

about its axis under the action of the forces P and /',,

since the power applied to the circumference of t!ie second

wheel is equal to tiie reaction on the tirst pinion, therefore

Similarly

P X h\

Pi X Po

P, X /.\

etc.

P, X Ti.

2 '^ ^8 >

etc.;

-Pfi-l X H„ = W X rn.
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I'

point of con-

tooth to tilt'

ri!il)le. But,

t thtir point

els, the lines

tio constant,

ils is jiropor-

hecl P
heel I)'*

(a)

,
Train of n
of the snt'-

the radii of

P„ . . . W,

he siirecpsive

equilihrinni

I Piind /',,

f tlie second

1, therefore

Miiliililvin^r these eciuations together and omitting eouimon

factors, we have

P r, X r., X r X

A'l X Rz X /.'s

(1)

It will be observed, in toothed gearing, that the smaller

the radius of the pinion as ccmipiired with the wheel, tin-

greater will be the mechanical ad\antage. There is, how-

ever, a [iractical limit to the size that can be given to the

pinion, because the teeth must be large enough for strength.

;iiid must not be too few in number. Six is generalh the

lea^t number admissible for the teeth of a pinion. E(iua-

tiun (1) shows that by a tram consisting of a very few pairs

of wlieels and pinions there is an enormous nieehanical

advantage. Thus, if there arc three pairs, and the ratio of

each wheel to the pinion is 10 to 1, then P is mily mie

tiiousandth part of U'; but on the other liiind, IT will only

make one turn where /' makes one tiiousnnd. Such trains

of wheels are very useful in machinery such as hand cranes,

where it is not essential to obtain a nuick motion, and

where the power available is very small in comparison to

the weight. (See Browne's Mechanics, p. lUU.)

EXAMPLES.

1. What is the diameter of awheel if a jxiwer of :$ lbs.

is just able to move a weight of l".' lbs. that hangs from the

axle, the radius of the axle l)eing 'l ins.? Ans. IC ins.

'i. If a weight of ;iO lbs. be s!ii)ported on a wheel and

axle by a f>rce of 4 lbs., and the radius of the axle is

5 in., find the radius of the wheel. -!«•'>•
-'i

i'-"'-

;*). A capstan is worked by a mim lushing at the end of

a pole. lie exerts a force of .")(> liis., and walks lo fl.

roiiml for every 'i ft. of rope pulled in. What is the

resistance overcome J*
-^l"*- ^y" 1''3.
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4. An axlo wliosc dianalir is lU ins., has on it two

wlu'C'ls the (liaiiietcrs of wliich aiv 'i If. and vlj ft. rcspoo

tivi'ly. Kiiitl the wt'jolit tlial would lie sujipoitcd on llic

axli; liy \Vfiiri:ls of :*.") Il)s. and ;IA Itis. on iIil- sinalh'i' and

hirgcr wliofis ivspoctivok. Anx. V.Vl il»s.

120. The Inclined Plane -Tliis lias alivaiiy lurn

partly considtTcd (.Vrt. '.Mi. clc). Let the power. /'. wliose

dircclion makes an an'j;le, 0. with a ronirli inclined plane,

lie employed to drai; a weiirht. IT, np the ]ilane. Then if

is the aiiirle of friction and / the inclination ot" tlie piano,

we have from (3) of Art, !)(],

P= II

.sin {i + (/.)

cos (r^ — 0)

If /' acts along the jilaiie, =. 0, and (1) hocomes

.sin (/ + 0)

(1)

p= ir
cos f/i

(^)

If P acts horiz(>ntaily, = — /, and (I) hecoraes

I' = It tan (t + ^). (3)

0()i!.-^lf WO suj)j)oso the friction = 0, (1), (2), and (3)

hocomc resi)octivoly

,sin i

ir
cos Q' (4)

7'= II sin /, (5)

/•= W Ian /. (d)

ScH.— It follows from (I), (5). and (C) that the smaller
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tile inclinution* of tlic |ihinc lo lin' lur i/on. the j/rcatiT will

lie tlif inrcliaiiical advanlam'. If uc take in friction tiitic

i> an ('\cc|M ion to iliis rule when / > _^
_ (/,. 'I'li,.

gradii'nts on railways arc tlio ni.ist comnion cxainiilcs ol'

till' iisf of llio incluK'd plant'; |Ik'?;c arc always niadi' a> |nw

a.s IS fonvi'niont in orik'i' tu inabk' tin' cnyint,- to iili tiu'

lieaviest possii)k' train.

121. The Pulley.—Tlie pulfn/ oonsisfs of a i/ninrri/

?rArr/, capaljlo of iL'Voh ing freely about an axis, lixcd into

u framework, called the block. A cord passes over a por-

tion of the circinnfererue of tlie wlictd iji the groove.

When the axis of tiie i>uliey is tixed. tlie pulley is called a

lij-i'd pulley, and its only effect is to c
' ange the direction

of the force exerteil liy tiie cord : hut where the pnlley can

ascend anil descend it is called a innrdblc pnlley, and a

lueclianical advantage may lie gained. Condiinations of

pulleys may !)e made in endless variety ; we shall consider

only the simple nujvaiile i)ullev and three of the more

ordinary eomhinations. No account will lie here taken of

the weight of the pulleys or of the cord, or of friction and

stiffness of cords. The weight of a -et of pulleys is gener-

ally small in comparison with the loads which they lift:

and the friction is small. Tlie use of the pulley is to

diminish the elfects of friction which it does by transferring

the friction between the cord ami circumference of the

wheel to tlio axis and its supports, which may be highly

])olislied or lubricated. The mechanical principle iinohed

in all calculations with respect to the pulley is- the constancy

of tiie force of tension in all parts of the same string

(Art. to).

* To find llic inrlinaiion of llu- rl'""' f'"" n iii.Txiiiiiim viiliic of P win u it aits

pariilli'l to tlie ptaiio wo put the ili'i-ivMtiM' cf /' wiili rp-^jn'it to i il. and t;rt

j ,/i Iti'ii ' wl.i'o llii' iiiiliiiatlon of tln' plane

i/., inccliaiiical advuiitat;.' i- liiiiiiii-^liiiit%

Hi
W •p)

cos

ih dluiiiii.-'liiiii' from , to
2 2
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122. The Simple Movable Pulley.—Lot bo Ww
(•('iilic of the ])iillev wliicli is siiiij)ortt'(l by a cord passiiit:

iiiidiT it, «i!li oil" ciiil attiiciiod to a licaiii al A and tlu'

oIIkt end .sti't'tciicd by tbc force /'.

Now since tiic tension of the string,

A 1)1)1', is tiiosanu; tlirt)uglioiit, and tlie

Wright, ir, is supported by the two

strings at IJ and D, in eueli of which

the tension is P, we have

2P = W;
P

1

Fig.62

Tlic same result follows by the prin-

ciple of virtual velocities. '.appose the

l)ulley and the weight, H', to rise any

distance. Tlien it is clear that both halves of the string

must 1)0 shortened by the same distance, and hence /'

must rise double the distance ; and therefore the ctpiatiou

of virtual work gives

P 1
3/' = W; .

^

IV 3

The mochanieal advantage with

is 2.

123. First System of Pulleys, in which
the same cord passes round all the Pul-
leys.—In this system there are two blocks, A
and B, the upper of which is lixed and the

lower movai)le, and each containing a number
of pulleys, each pulley being movable round
the axis of the block in wliicli it if. A single

cord is attached to the lower block and pa.s.ses

alternately round the pulleys iu the upper and

lower blocks, the portions of I lie cord between

successive pulleys being parallel. The portion

a single movable pulley



.ot bo tlu'

cord pass lilt:

ill A iiiiii till'

Fig.62

of llu' striiif^

mil luiire /'

tlie c'i[iiiitioij

Fifl.63

finST SYSTEM OF VrLI.FAS. 195t

of cord prococdiug from one pulley to the next is ealloil ii

ply; Uk' portion at which the powi'r, /'. is iippHtd is

called the hirk-le-faU.

Since the cord jiasses round all the pulleys its tension is

the same throuaiiout and eipial to /'. 'I'lieii if n l)e the

nuniher oi' jilies at the lower block, nP will lie the resultant

upwaicl tension of the cords at the lower block, which

must equal \\ ;

.-. nP = W,

or
P
W

1

n

This result follows also liy the principle of virtual vcloci-

ties. Let^ denote the length of the tackle-fall and x the

common length of the jdies ; then since the length of the

cord is constant, we have

p 4- n.r. = constant

;

.•. dp 4- ')ulx = 0.

But the equation of virtual work is

Pdp + Wdx = 0;

IF PI
P =

n
or W n

This system is most commonly ust.l on ncconnt of its

superior portaliility and is the only one of practical impor-

tance. The several jiulleys are usually mounted on a com-

mon axis, as in the figure, the cord being inclined slightly

(imde to jiass from one jniir of pulleys to the next.

This forms what is called a set of 7iJnr/,-s and Fnl/tt. It,

is very commonly used on shipboard and wherever weights

have to l»e lifted at irregiiliir times and places. 'l"he weight

of the lower set of pulleys in this case merely forms part of

tlu' gross weight \V.
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Tlu' i'ri('ti<iti <iti tlic siiiiullo of ;iiiy partifuliir p-.illcv is

lirii|)()rli(in;il to llic total pressure on (lie jmlley, wliicli is

{•k'iirlv •.'/'. Ilfiico, if n is llic footliciciil of iriction. tlu'

rcsisliiiicc of Iriction (in any imlliy = :.'/'//; ;inil ilic

unioiini of its (lis|)la(cnirni. wlicn IT is raised, will be to

the diT^plaeemont oT 11 in tlie ratio of tiic imliiis of the

s](iiidle to tluifc of Ihc jjiiiley.

X124. Second System of Pulleys, [

in which each Pulley hangs from a

fixed block by a separate String.— '^

'

Let A lie the lixi-d jmlley, n the number p

of movable ]uilleys ; each cord has one

end aitarhed lo atixrd point in the beam,

and all exeejit the last liavr tiie oIIut end Qw
attached to a movalije i illey, the jior- Fig. 64

tions not in eontaet witii any pniley iieini,' all parallel.

[I'heii the tension of the cord passing under the lirst

(lowest) pulley =
_^

(Art. 1'.'^)
; the tension of the eord

Ijassinif under the second pulley — ^j, and so on ; and the

tension of the cord passiiii^ under the «th pulley ^ --

,

wiiieh must eipud tlie power, 1'

;

/' _ J.

W ~ 2«' 0)

The same result follows by the prineinle of work. Sup-

pose tile lirst pulle\ and the weiirlit IC to rise any di.^taiiee.

:r \ then it is clear that lioth portions of the cord pa.ssinjj

round this pulley will be shortened liy the saiii(> distance,

and hence the second pulley must rise double this distaiiee

or "ix, and the third pulley must rise double the distance of

the second or 5i'.''. and so on : and tlie )i\\\ ])iilley niuKt rise

!i" "'.< and /'must descend ;.'".(: llierefore the work of /'
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is P-i'^.r, and tlio work to lie done on IT is W-t. llonce

the eciuation of work gives

P 1
V.-VKc = \Vx,

' w

125. Third System of Pulleys, in which each cord

is attached to the weight.— In this system one end of

each curd is utLached to the bar from which the weight

hangs, and the other supports a pulley, the cords being all

parallel, and the number of nioval)le pulleys one less than

the numlier of cords.

Let n be the number of cords; then the

tension of the cord to which /' is attached is

P ; the tension of the senmd cord is 2/' (Art.

\n)', that of the next -^-i/', and so on; and

tli(! tension of the «th cord is 3«-iF. Then

the sum of all the tensions of the cords

attached to the weight must e(iual W.

Hence

P 4- 2i' + 2«P + .

Fig:65

.
2"-!/' = (2'« - 1) /» = W)

W 2«- 1

In this system the weights of the movable jiuUeys assist P\

ill the two former systems they act against it.

EXAMPLES.

1. What force is necessary to raise a weight of 480 lbs.

by an arrangement of six iiulleys in which the same string

passes round each pulley ? Ans. 80 lbs.

2. Find the power which will 8U])port a weight of

800 lbs. with three movable pulleys, arranged as in the

sec(md system. Ans. 100 lbs.
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.'5. If tluTc 1)1" ('(|iiilil)iiiim In'twot'ii /' iitid W witii three

|piilli'vs in tlic thinl -vstciii, wlial additional wci.vlit can be

raised if •> U.S. he added to r> Aii.^. 14 lbs.

126. The Wedge.—Tiic weilgp is a triaiipnlar prism,

iisualiy isosceles, antl ia used for .separating bodies or jjarts

of tlie same body l)y introducing ilo edge l)et\veen them and

tlien tiinisiiiig liie weilge forward. This i.s effected by the

iijow of a hammer or other such means, which produces u

violent ))re.ssnre, for a short time, in ii direction i)erj)en-

dicular to tiie back of tiie wedge, and tlie resistance to 1h?

overcome consists of friction and a reaction due to the

molecular attractions of the particles of the l)ody which

are Ix'ing separated. Tliis reaction will be in a direction

perpendicular to the inclined surface of the wedge.

127. The Mechanical Ad-
vantage of the Wedge.— Let

ACH rejiresent a section of the

wedge peri)endicular to its in-

clined laces, the wedge having

been driven into the nuiterial a

distance ecpial to DC by a force,

i-*, acting in the direction DO.

Draw DE, DF, jierpe.ulicuhir to

AC. 1K;. and let 7.' denote the

reactions along ED and FD ; then fiR will bo the friction

acting at K and Fin the directions EA and FH. Let the

angle of the wedge or AVH =z 2«.

He.solve the forces which act on the wedge in directions

perpendicular and j)arallel to the back of the wedge, iheu

we have for perpendicular forces

Fig.66

P =: 2/? sill rt -f 2/tA' cos rt. (1)

This equation may aho hr ohfninod from the principle of

work as follows: If the we ige has been driven into the
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material a distance ('(iiial to DC by a force, /', acting in

tiic direction DC, then tiie work done i)y /' is /' x DC
(Art. 101, Weni.) ; and sinci' tlie pninis E aiul F were

Mi'iginally togcliier, tbe \vori\ done against tlie resistance

// is A'"x DK + /.' X DF = 27? x DK; and the woriv

done against friction is •.'/'/»* X KC. Ilenec tiie e((iiatioii

of woriv is

P X DC = :>/; x DK + i,iR x EC, (-J)

wiiich reduces to (1) l)y snl)stitntinir sin a and cos « for

DE , EC
DC ""^^ DC-

Con.— If friction be neglected. {;i) becomes

r
Ji

'.'DE

DC"
AB
AC'

that is
P
11

back of the wedge

length of one ot the ('(luul sides

It follows that the narrower the back of the wedge, the

greater will lie the rncclianical advantage. Knives, chisels,

and many other imidemcnts are exainjiles of the wedge.

In the action of the wedge a great part of tiie power is

employed in cleaving the material into which it is driven.

The forec re((nired to effect this is so great that instead of

applying a eontinnons pushing force jierpendiciilar to the

back of the wedge, it is driven by a series of blows. Be-

tween the blows tliere is a jiowerful reaction. /?, acting to

pn-li the wedge back again out of tlie cleft, and this is

resisted by the friction which now acts in the directions

VX and FC. Hence when the wedge is on the point of

starting back, between the blows, the eipnition of ecpii-

librium will be from (1)

Hit sin « — HfiR cos fe = ;

.• . « = tuir' ^^.
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And tlio wedgo will fly buck or not arcording us a > or

< tair^/t. (See Browne's Mccliauics, p. 117. Also Magnus's

Mechanics, p. 157.)

128. The Screw.—The screw consi.>its of a right cir-

cular cylinder, on the convex surface of which tiiere is

traced a uniform projecting thread, abed .... inclined at

u constunt angle to straight lines parallel to the axis of the

cylinder. The path of the thread

may be traced by the edge AC of

an inclined plane, ABC, wrajiped

round the cylinder; the base of

the plane corresponding with the

circnmferenco of the cylinder, and

the height of the plane witii the

distance between the threads which

is culled the pitch of the screw.

The threads may be rectangular or

triangular in section. The cylinder

fits into a block, on the inner sur-

face of which is cut a groove which is the exact counterjiart

of t'.ie thread. The block in which the groove is cut is often

called the lud. The i)ower is generally applied at the end of

a lever fixed to the centre of the cylinder, or fixed to the nut.

It is evident that a screw never requires any ])ressure in the

direction of its axis, but must be made to revolve only ;

and this can be done l)y a force aiting at right angles to

the extremities of its diameter, or its diameter produced.

129. The Relation between the Power and the

Weight in the Screw.—Su])pose the power, P. to act in

a plane perpendicular to the axis of the cylinder and at the

end of an arm, DE = a, and suppose the screw to have

made one revolution, the power, /', will have moved
through the circumference of which a, is the radius, and

the work done by /' will be Px'Zna. During the same

Fig.67
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time the screw will have moved in the direction of its axis

through the distance, AB — •*::)• tan «, /• being the radius

of the cylinder, and « tiie angle which the thread of the

screw makes with its base. Then as this is the direction in

which the resistance is encountered, the work done against

the resistance, W, is W'i^r tan «. Hence if no work is lost

the eciuatiou of work will be

F X "-iTTrt = ir X 'Z-^r tan k. (1)

That is the power i.s to the weight as the pitch of ttie screw

is to the circumference descril>e't by the power.

If there is fricticm between tiie thread and tiie groove, let

R he the normal pressure at any poitit, p, of the thread,

and /t/i' the friction at this point, then tiie work done

against the friction in one revolution is }i)LR-i,nr sec «, 1/'

denoting the sum of tiie normal reactions at all points of

the thread. Hence the eipiation of work is

P2-rta = ]\'2Trr tan « + ii2nr sec a^E. (2)

But, for the e(iuilibrium of the screw, resolving parallel

to the axis, we have

W = i: (^ cos « — /«/? sin «),

W
therefore i:i? =

cos rt — ^ sin «

which in (3) gives

or

ur sec «W
j'li = ]\ r tan « + -— -

-.r.j;r~'>cos re — /* sm a

Pa - Wr tan (« + <}>}, (3)

(p Iteing the angle of friction,

ita
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129a. Prony's DiflFerential Screw.— If h denoto flie

pitch of a ticrew (1) ljL'C(>mL'.s

^Pna = Wh,

wliicli expresses the reliitioti between /' and W, when fric-

tion is neglected. Therefore the meehanieai advantage is

gained by nniking tlie pitch very small. In some cas-s,
however, it is desirable that the screw should work at fair

speed, us in ordinary bolts and nuts, and then the pitch
must not bo too small. In cases where the screw is used
specially to obtain pressure, as in screw-presses for cotton,
etc., we do not care for speed, but only for jtressure. But
in practice it is impossible to get the jjitch very small from
the fact that if the angle of inclination is very Hat, the
threads run so near each other as to be too weak, in which
ca<e the screw is apt to "strip its thread," that is, to tear

bodily out of the hole, leaving the thread behind.

Where very great pressure is rcpiired a differential nut-
/lole is resorted to. Let the screw work in two blocks,

A and 15, the first of

which is fixed and the

second movable along a

fixed groove, n ; and let

h be the ])itch of the

thread which works in

K wM
Fig. 68

the block, A. and //' the pitch of the thread which works
in the block H. Then one revolution of the screw impresses
two opposite motions on the block, li, one equal to // in the
direction in which the screw advances, and the other eipial

to //' in the opposite direction. If then the block. H, is

connected with the resistance W, we liave by the principle

of work

2Pna = II (/* —h')-

itlld the rc((uisite power wjll bo diminished by diminishing

I

mmM
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// _ //'. By means of this screw a comparatively small

pressure may be made to yield a pressure enormously

<rieater in magnitude.

EXAMPLES.

1, A lever 10 ins. long, the weight of which is 4 lbs., and

acts at its miildle point, balances about a certain point

when a weight of G lbs, is hung from one end; find the

lioiiit. Ans. 2 ins. from the end where the weight is.

•I. A lever weighing S Uis. balances at a point 3 ins. from

one end and 9 ins. from tlie other. Will it continue to bal-

ance about that point if e(pial weights be suspended from

the extremities ?

3. A beam whose length is 13 ft. balances at a point 2 ft.

from one end : but if a weight of 100 lbs. be hung tVom the

other end it balances at a point 3 ft. from that end ; find the

weight of the beam. Ans. 25 lbs.

-1. A lever T feet long is supported in a horizontal jiosi-

tion by props placed at its extremities : find where a weight

of 28 lbs. must be placed so (hat the pressure on one of the

projis may be 8 lbs. Ans. Two IVet from the end.

5. Two weights of i2 lbs. and 8 lbs. respectively at the

ends of a horizontal lever 10 feet long lialance : find how

far the fulcrum ought to be moved for the weights to bal-

ance when each is increased by 2 lbs. Atis. Two inches.

(i. A lever is in equilibrium under the action of the forces

/'and (), and is also in ei|uilibrium when P is trebled and

<,> IS increased by lbs.: find the magnitude of Q.

Ans. 3 lbs.

;. In a lever of the first kind, let the power bo 217 Uis .

the weight ivT) lbs., and the angle between them 12(J .

Fiiui the [iressure on the fulcrum, Ans. 622.7 lbs.

mm
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8. If the power ami weiglit in a strai<?lit lover of tho f
first kind be 17 lbs. and ^i lbs., and make witli "ach other
an angle of 70°; find the pressure on tlie fulcruni.

A lis. 39 lbs.

9. The length of the beam of a false balance is .'5 ft.

9 ins. A body placed in one scale balances a weight of

9 lbs. in the other ; but wiien placed in tbc other scale it

balances 4 lbs.; recn'ired tiio trne weight, W, of the bod}
and the lengths, a and b, of the arms.

xins. W = G lbs.; a = 1 ft. U ins.; b = i ft. 3 ins.

10. If a balance be false, l)aving its arms in the ratio of

15 to 16, find iiow much ]m- lb. a customer really ])avs
for tea Avhich is isold to him from the longer arm at 3s. 9'd.

per lb. A)is. 4s. peril).

11. A straight uniform lever whose weight is 50 lbs. and
length feet, rests in e(|uilibriuin on a fulcrum when a
weight of 10 lbs. is suspen(le<l from one extremity: find the
position of the fulcrum and the i)ressure on it.

Ans. 2^ ft. from the end at which 10 lbs. is suspended

;

60 lbs.

12. On one arm of a false balance a body weighs 11 lbs.;

on the other 17 lbs. 3 oz.; what is the true weight?

Ans. 13 lbs. 12 oz.

13. A bent lever is composed of two straight nnifV)rm
rods of the same length, inclined to each other at 120°, and
the fulcrum is at the i)()iMt of intersection : if the weight of
one rod be double that of tlu' other, show that the lever will

remain at rest with the lighter arm horizontal.

14. A uniform lever. / feet long, has a weight of W lbs.,

suspended from its extremity: find the position of the ful-

crum when the long end of tlie lever balances the short
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end with the weight attached to it, supposing each unit of

length of the lever to be w lbs.

^"*- ;rTTi^-7- 7-^. '8 the short arm.
i{\\ + Iw)

15. A lever, I ft. long, is balanced when it is placed upon

a prop ^ ofits length from the thick end; when a weight

df \V 11)S. is suspended from the small end the prop must

be shifted j ft. towards it in order to maintain equilibrium

;

required the weight of the lever. Ans. \W.

16. A lever. I ft. long; is balanced on a prop by a weight

of \V lbs.; first, when the weight is suspended from the

thick end the prop is a ft. from it; secondly, when the

weight is suspended from the small end the prop is b ft.

from it ; required the weight of the lever.

Ans. 1 V--—rr Ihs.
I — {a +b)

17. The forces, P and W, act at tho arms, a and b,

respectively, of a .>^tr;iight lever. When P and W make
angles of 30° and 90" with the lever, show that when etpii-

2b W
librium takes place P =

18. Supposing the beam of a false l)a1anco to be uniform.

a and b the lengths of the arms, /' and Q the apparent

weights, and If the true weight ; when the weight of the

beam is taken into account show that

a

b

P- W
11" -<2

19. If « be the length of the .'short arm in Ex. 14, what

must be the length of the whole lover when equilibrium

lakes place? /aflir""T
A U.S. a + \/ - - + «".

'M. A man whose weigiit is 140 llis. is jnst able to sup-

port a weight that hangs over an axle of (i ins. nidius, by
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liaiigiiig to the rope tluit passes over tlie corresponcllng

wlu'c'l, the (iiameter of wliieli is 4 ft,; tiud tlie weiglit &\\\)-

I'orted. Ans. 500 lbs.

^'1. If tlie diirerenoe between the diaiiicter of a wheel -Mxi

the diameter of the axk' be six times tlie radius of the axK\
tiiid tlie greatest weigiit that euu be sustained by a loree of

<•*> ll>s- An.'i. 240 lbs.

'Z'i. If the radius of tiic wheel is three times that of the

axle, and the string round the wiieel ean sup])ort a weight
of 40 lbs. only, find tiie greatest weight that can be lifted.

Alls, im lbs.

2:?. What force will be required to work the handle of a
windlass, the resistance to be overcome being 115G lbs., the

radius of the axle being six ins., and of the handle 2 ft.

yi"*-? Ann. 2 10. Id lbs.

24.. Sixteen sailorB, exerting each a force of 29 li)s., push
u capstan with a length of lever ecpial to 8 ft., the radius of

the capstan being 1 ft. 2 ins. Find the resistance which
this fon e is capable of sustaining.

Ans. 1 ton 8 cwt. 1 (jr. ITf lbs.

25. Supposing them to have wound the roi)e round the
capstan, so that it doul)les back on itself, the radius of the
axle is thus increas"! by the thickness of the rope. If this

be 2 ins. how much wdl the power of the instrui7ient be
diminished. Ans. By J^, or 12^ jter cetit.

20. The radius of the axle of a capstan is 2 feet, and six

men push each with a force of one cwt. on spokes 5 feet

long; find the tension they will bo able to produce iji the

rope which leaves the axle. Ans. 15 cwt.

27. The difference of the diameters of a wheel and axle

is 2 feet inches ; and the weight is eijual to six limes the

power ; find the radii of the wheel and the iix'e.

Ans. 18 ins. ; 3 ins.

i

*j
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28. If the radius of a wheel is 4 ft., and of the axle

K ins., lind the power that will balance a weight of

SOU lbs., the thickness of the rope coiled round the axle

being one inch, the power acting without a rope.

Ans. 88.5-1 lbs.

29. Two given weights, P and Q, hang vertically from

two points in the rim of a wheel turning on an axis;

find the pi)sition of the weights when equilibrium takes

place, sni)posing the angle between the radii drawn to

the points of suspension to be •JO'', and that is the

an<de wliich the radius, drawn to i"s point of sus-

pension, makes witli the vertical.
Ans. tan = 9.

r'

30. What weight can l)e fUi»ported on a plane by a hori-

zontal force of 10 lijs., if the ratio of the height to the base

is 3 v Ans. 13-i lbs.

31. The inclination of a plane is 30°, and a weight of

10 lbs. is supported on it by a string, bearing a weight, at

its extremity, which passes over a smooth pulley at its

summit ; find the tension in the string. Ans. 5 V)S.

32. The angle of a plane is 45°
; what weight can be

supported on it by a horizontal force of 3 lbs., and a force

of 4 lbs. parallel to the plane, both acting together.

Ans. 3 + 4 V^ lbs.

33. A body is supported on a plane by a force parallel

to it and e<|ual to ^ of the weight of the body ; find the

ratio of the height to tlie base of the plane.

Ans. 1 : 2\/0.

34. One of tlie longest inclined planes in the world is

the road from Lima to (Jallao, in S. America ; it is miles

long, and the fall is 511 ft. Calculate the inclination.

A71S. 55' 2T", or 1 yard in 03.
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35. If the forc'u rcquiri'd to draw m wiifroii on ji horizontal

roiul he ^S^th part oi" the weight of the wagon, wl'at will l)e

the force required to draw it up a hi'l, the sloi»c of which

is 1 in \o. Alts. Tj.Vi^'' l"^'"*^
of tlie weight.

3G. If the force recpiired to draw a train of cars on a

level railroad be jj-ftth i)art of tiie loud, lind the force

required to draw it up a grade of 1 in 5(1.

A U.S. jg^Jys*'^ P'lJ't of the load.

37. What force is required (negleciing friction) to roll a

cask weighing !»(i4 lbs. into a cart 3 ft. high, by means of a

j)lank 14 ft. long resting against (he cart.

^liis. 'i'he force must exceed 2(»(i^ lbs.

38. A body is at rest on a sniootb inclined plane when

tlic power, weight and normal ])ressure are 18, ^0, and

12 lbs. respectively; find the inclination, «. of th. i)lane to

the horizon, and the angle, 0, which the dircciiou of the

power makes with the plane.

An.s. u z^ 37" 21' 20" ; = 28° 4G' 54".

30. If the power which will sujiport a weight when ict-

ing along the piane be half that which will do so acting

horizontally, find the inclination of the plane. Aiis, (',0°.

40. A jwwei- /'acting along a plane can support IT, and

acting hoii>;ontally can support x ; show (hat

41. A weight ll' would he supported by a jiower P act-

ing horizontally, or by a power Q acting i)arallel to the

l)lane ; show that

Qi />.. ^ 1(1!

42. The base of an indiiu'd plane is 8 ft., the height

(1 ft., and \y = 10 Ions; reipiircd /* and (he normal

pressure, N, on the plane.

J A-., r — G tous; N = S tons.

i

•J
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43. A weight is supported on an inclined plane Ijy a

force whose direction is inclined to liie plane at an angle

of 30"
; when the inclination of the plane to the horizon is

30', show that 11'= P ^/d.

44. A man weighing IhQ lbs. raises a weight of 4 cwt. by

a system of fonr movable pulleys arranged according to the

second system ; what is his pressure on the ground ?

A)is. \n lbs.

45. What power will be required in the sk und system

with four movable jJuUeys to sustain u weight of IT tona

VZ cwt. Atis. I ton -i cwt.

40. Two weights hang over a pulley fixed to the summit

of a smooth inclined plane, on which one weight is sup-

ported, ami for every 3 ins. that one descends the other

rises 2 ins. ; find the ratio of the weights, ami the length

of the plane, the height being IS ins. Ans. 2 : 3 ; 27 ins.

47. If W — 330 lbs. and P — 42 lbs. in a combination

of pulleys arranged according to the first system, how many

movable i)ulleys are there ? An^. 4.

48. In a system of i)iilleys of the th-rd kind in which

there arc 4 cords attached to the weig* ', determine the

weight, \y, suppofV'd, and the strain on ttie fixed ]nilley.

the power being 100 lbs., and the weight, w, of each

pulley 5 lbs.

Ans. \\ — 157' + \\w = 1555 lbs. ; Strain = Ul'+ lbto

= 1075 lbs.

4!). In a system of pulleys of the third kind, there arc

2 movalde pulleys, each weighing 2j^ lbs. What power is

required to ii.pport a weight of cwl. ? .Iw.v. !)4.57 lbs.

50. Kind the power thai will support a weight of KM) His.

by means ((f a system of -I pulleys, the strings being all

attached to the weight, and each pulley weighing 1 II).

Alls. 5|J lb.s.

^m
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51. Tlie lircumferoiK'e of tho circle corresponding io tho

point of upplicution of P is 6 feet; find how many turns

the screw must make on a cylinder 5J feet long, in order

th.it ll'may oe ecpnil to 144/'. Aiif<, 48.

b'Z. Tiie distance l)ctw('cn two consecutive threads of a

screw is a quarter of an inch, and tiie longtli of tiio powci *

arm is a feet ; lind what weight will be susiained l»y a

power of 1 lb. Ans. 480tt lbs.

53. IIow many turns must be given to a screw formed

upon a cylinder whose length is 10 ins., and circumference

5 ins., that a power of 'i ozs. may overcome a pressure of

lOOozs.? Ans. 100.

54. A screw is nuide to revolve by a force of 2 lbs.

applied at the entl of a lever 3.5 ft. long; if the distance

between the threads be \ in., what i)rcssure can be pro-

duced? Ans. 1) cwts. 1 ([r. 20 lbs.

55. The length of the power-arm is 15 indues; find the

distance between two consecutive threads of the screw,

that tlio mechanical advantage may be 30. Ans. n ins.

50. A weight of ir jiounds is suspended from the idock

of a single nu)val)le pulley, and the end of the cord in

which the powt'r acts, is fastened at the dislance of /> ft.

from (lie fulcrum of a ]iori7,ontal lever, a ft. long, of the

seconil kind ; lind the force. /'. which must be applied per-

pendicularly ut the extremity of the lever to sustain IT.

Am. /' = . •

\

57. Tn a steelyard, the weight of the beam is 10 lbs., and

the distance of its centre of gravity from (he fulcrum is

'.' ins., lind where a weight of 4 lbs, must be placed Io bal-

ance it A ns. At 5 ins.
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ding lo tho

11 iiiy turns

g, in order

Ann. 48.

iroads of :i

tiio powi'i *

lined l»y a

180TT lbs.

rew formed

3umferenco

pressure of

Iws. 100.

5H. A body whose weigiit is \/'Z lbs., is ])luoed on a rough

phme inclined to the horizon at an angle of 45°. The co-

ctticientof friction being ,
find in wliat direction a force

of (v'lJ — I) ll'S. must act on the body in order just Id

sui)port it. .1//.S'. At an angle of 30° to the jjlane.

f)!). A rough plane is inclined to the horizon at :i:; angle

of 00°
; find tlie magnitude and t lie direction of the least

for-e which will prevent a l)ody weighing 1(10 lbs. from slid-

ing down the i)lane, the coellicieut of friction being ——

•

Ans. 50 lbs. inclined at 30° to the plane.

e of 2 lbs.

lie distance

an be pro-

r. 20 lbs.

s; find tho

the screw,

(s. TT ins.

I the i)lock

he cord in

ice of h ft.

ong, of the

ipplied per-

tain U'.

,, _ Wb
~ aa

*

10 lbs., and

fulcrum is

ccd lo l;al-

At 5 inu.



CHi^ PTER VIII.

THE FUNICULAR* POLYGON—THL: CATENARY
ATTRACTION.

130. Equilibrium of tho Funicular Polygon.— If u

cord wliose weight is lu'glected, is .suspetidud IVoin two fixed

points, .1 and B, and if a series of weiglits, 1\, P^, J\,

etc., be suspended from the given points Q^. Q.^, (>.,. e'c,

tlie cord will, when in eqiiilihrinm, form a polygon in a

vertical plane, which is called the Funicular Polygon.

Let the tensions along

the successive portions

of the cord, .'!(;>,, Q^Q^,

Q^Qi, etc., be respec-

tively ',, T^, 7\, etc.,

anu let 0^, 0^, 0^, etc.,

l)e the inclinations of

these portions to the

horizon. Then Qf is

in equilibrium under the action of three forces viz., /',,

acting vertically, 7',. the tension of the cord .!(),, ami T^,

the tension of (J^ Q^. Resolving these forces we have,

for horizontal forces, 7', cos 0, — 7'j cos 0^=0, (1)

for vertical forces, /', + T^ sin 6„ — 7\ sin 0, = 0, (2)

In the same way for the point Q^ we have,

for horizontal forces, 7',, cos 6., — 7'., cos 0,, := 0, (3)

for vertical forces, I'... + 7'., sin 0^ 'l\ sin fl„ — (i, (4)

Fig.60

The term, F^inlciilar. hno rc'lcn^ict^ uloiic to llio cord, iiinl Iiiih no iinThiiniciil

fi((iilflcaiice.
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lygon.—If a

)in two fixed

P /' /'' 1' •' 2' ^ 3'

olytjoii in u

olygon.

T«i

p,

R
^

/p.

J^

!0s viz., /',,

Qi, and 7'g,

0 have,

! = 0, (1)

I
= 0, (2)

.
= 0, (3)

J
- <'- (4)

H no nu'obiiiiical
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Hence from (1) and (3) we have

2\ cos 0, = 7^2 cos 02 = 7^3 cos 03 = etc.

,

that is, the horizontal components of the tensions in tlie dif-

ferent portions of tlte cord are constant. Let this constant

be denoted by T; then we have

T, = T
. T — =
' *

~ cos 0,
* COScos 0,

which in (3) and (4) give

I\ + rtan flj — ytan 0, = 0,

I\ + T tan 03 - r tan 0, = 0,

and from (5) and (0) we have

; etc.,

(6)

tan 0, = tan 0g + -J,

and
p

tan 0j = tan 03 + - ' •

Similarly
/>

tan 03 = tjin 0^ 4- ,y?,

and
p

tan 0. = tan 0. + - *,

(7)

etc., etc.

If we suppose tiie weights P,, 1\, etc., each equal to IK,

(7) becomes

tan 0, tan 0g = tan 0j — tan 0. = tan 03 — tan 0^

(«)

Hence, tlie tangents of the successive inclinations form a

series in Arithmetic Progression. In the figure 0, = 0,

10
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tan Q^

tan 0g

^,; tan 03 = -^\

3 IF 4ir
(f')

™- ; tan ^i = -^ ; t'te
i,.

131. To Construct the Funicular Polygon when
the Horizontal Projections of the successive Por-
tions of the Cord are all equal. -IAt (),,Q^. QiQi^'ls'li-'

'Ii'/\' ^'t''v ''I' nil of con.stiuit longtli = a, uiul lei Q^q^ = r.

Then since by (!l) of Art,

]:}(), the tan<,H'iits of 0^, d.^,

(K, Oi, ete., are as 1, '2, li,

4, etc., we have

sl'^

q/0
III

<h 'I' 'J<

Q,H = WQ^q^ = 36'; etc. Fig.70

Hence, takinj:; the middle point. O. of the horizontal

l)ort'ioi). Qf,Qn, as orif^in, and the horizontal and vertical

lines tlirouiih it as axes of x and ?/, the co-ordinates of (>,

arc (|rt, c) ; those of Q„ are (|r/. Wc) ; those of -^j are {la.

Be), and those of the ni\\ vertex from Q^ arc evidently

2n + 1
X =

2

n (// 4- 1)

Eliminating ti from these eciuations we get

- 4-
c

3?
_ 'iahj a*

'' "^
4

(1)

which, being independent of «, is satisfied by all the ver-

tices inditfcrently, and is therefore the e(|iiation of a curve

passing through all the veilices of tiie polygon, iind

denotes a |)araliola whose axis is the verlicid line. OV, iiiid

whose vertex is vertically below (> at a di-tauce = •

'The shorter the distances ^,>,, Vii- QtQi^ ^^^'•- ^'"' >ii"i*'

nearly does the funicular j>i)ly;/iiii coincide with the para

bolic curve.
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(0)

jon when
sive Por-

''i^'/,v'/.•^'/2'

Q^i 3 = '

/
A

i

/

n
H

X

horizontal

11(1 vertical

latt's of Q^

Qi are (Jrt,

duntly

(1)

ill the vor-

1 of a curve

IviTdii, and
•". OV. and

r

~
s'

. tllC IMiil'i'

li the para

com) sci'i'ouTiyo load. 2l!t

132. Cord Supporting a Load Uniformly Dis-

tributed over the HorJroataL— If tlie iiuiiil)er of vertices

of the i)oly^foii be very great, and the suspended weiglits ail

('(|iial so tliat the load is (iistril)utcd uniformly along the

.straight line, FE, the parabola whicii j)asses through all llio

vertices, virtiii.lly coincides with tlu' cord or chain forming

the jiolygon, and gives the tigure of the Situprnsioii lindoi'.

In this bridge the weights suspended from the successive

portions of the chain are the weights of ecpial ]K)rtio!is of

the flooring. The weight of the chain itself aiul the

weights of the sustaining bars are neglected in coiin)arisou

with the weight of flooring and the load which it carries.

Let the span, AB. = 2a, and the lieight, OD, = h.

'i'hon the equation of the parabola referred to the vertical

and horizontal axes of .e and y, respectively, through 0, is

y2 — inix, (1)

lin being the parameter.

Hecause the load between and A is uniformly dis-

tributed over the horizontal, OE. its resultant bisects OK
ai ("; therefore the tangents at A and O intersect at C
i.\rt. (;.').

fmiu ( I) Ave have

(/// _ "iiii _ y
dx ~ f ~ U'
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which is the tangent of tiic inclination of tlic curvo at any
point {x, y) to tiie axis of ./•. Ilonco the tangent at the

point of support, A, makes with the horizon an angle, «,

2/t
whose tangent is

"
, which also is evident from the tri-

angle ACE.
Let ir be the weight on the cord ; then 1 11' is the weight

on OA, and therefore is the vertical tension, V, at A. Then
the tiiree forces at A are tlie vertical tension V = |U', the

total tension at the end of the cord, acting along the

tangent AC, and the horizontal tension, T, which is every-

where the same (Art. i;JO). Hence, by the triangle of

forces (Art. 81) these forces will be represented l)y the

three lines, AE, AC, CE. to which their directions are

respectively parallel ; therefore we have for the horizontal

tension

WT= AE cot « = W

and the total tension at A is

W
in

EXAMPLE.

The entire load on the cord in (Fig. 71) is 320000 lbs.;

the span is 150 ft. and the height is IT) ft.; lind the tension

at the points of support ami at the lowest point and also the

inclinati(m of the curve to the horizon at the points of

support.

tan « = ''^'

=: A; .-. « = 21° 48'.
(I

The vertical tension at each point of support is

r —
i
weight : 1(10000 lbs.;

I

^1^



curvo at any

ugent at t!io

an angle, «,

roni the tri-

is the weight

at A. Thon
' = i W, the

g along the

licli is every-

.' triangle of

ntcd l)y the

irections are

le horizontal

320000 lbs.;

I tlie tension

: and also the

lie points of

8'.

IS

f

Tit/-: C<tMM().\ CATi:XARi'.

the horizontal tension is

m

.. n
T — W ,, ^ 400000 lbs.:

and the total tension at one end is

^ y-il^T^ = 430813 lbs.

133. The Common Catenary.—Its Equation.—A

catenary is the curve assumed l)y a {)eri"uctly llexible I'ord

when its ends are fastened at two points, A and B, nearer

together than the length of the cord. When the cord is of

constant thickness and density, i. e., when equal portions of

it are equally heavy, the curve is called the Cuvimon

Catenary, which is the only one we shall consider.

Let A and B be the fixed

points to which the ends of

the cord are attached ; the

cord will rest in a vertical

plane passing through A and

B, which may be taken to be

the plane of the paper Let

C bo the lowest point of the

catenary; take this as the

origin of co-ordinates, and

let the horizontal line

through C be taken for the

axis of r, and the vertical

line through C for the axis of y. Let {x, y) be any point,

P, ii the curve ; deiiote the length of the arc, C/'. by .s' ;

let 6'* be the length of the cord whose weight is etjual to

the tension at 0; and T the length of the cord whose

weight is etiual to the tension at /'.

Y
/

^ /\ /*
\ N i

\
P

\^ X
C

Tl

/

O / X

Fig. 72

» Tlie weight of a iiuit of lengtli of Uie cord beins here taken no tin' unit ci(

wui);ht.

^ iin
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Tlioii the iirc, ('/'. aftor it lias iissiimcd its pcm.aneiit

form of 0(|iiilil)riiiiii. may Ik" considored as a rigid body

kept ,it ri'st hy tlireo forci'S. \iz.: (1) 7'. (lie tciisinn. acliiig

at /'along tlic tuiigont. (•^) r, the horizontal tension at the

lowest point ('. and (')) the 'Veiglit of the eord. ('/'. acting

vertically downward, and denoted by x. Draw /'7" the

tangent at /', meeting the axis of // at 7". Then by the

triangle of forces (Art. 31), these forces may be represented

by the three lines FT', \F. 7"X to which their directions

are respectively parallel. Therefore

T'N _ vveiglit of CP
NF '~

tension at G '

dy s , .

Differentiating, substituting the value of ds, and reducing,

we"have

\dx/ _ (te

~ c

^/^*m
dv

Integrating, and remembering that when a; = 0, t- = 0,

we obtain

log

where e is the Naperian base. Solving this ct|Uation for

/, we obtain
ax



! porn.anent

I rigid boijy

isinii. acliiii,'

iisiiin at lli<>

. CI', acliii.ir

nv rr tlu-

Tlu'ii In' tl)('

roprescnti'd

lir directions

id reducing,

= o,| = o.

equation for

(I)

Tin: ((jMMit.X r.iVA'.V.i//)-. 2'i^

and l»y integration, ol)serving tliat // = U wiien x = 0,

we have

y = '., ((^ +'•')- c, (5)

wliieli is the e(|ualion recjnired. We may simplify tliis

eijuation by nioving the origin to the point, O, at a dis-

tance e(|ual to c below C, by putting //
— c for y., so that

(3) becomes,

y = \\^ +'")' (3)

which in the eqtialion of the ratonanj, in the usual form.

'Hie horizontal line through is called the directrix* of

Ihe catenary, and O is called the oriyin.

CoK. 1.—To find the length of the arc, CP, we have

= V 1 + iV'' - ^~V '/^' fi"""^ (1)'

= i (e^ + e~') dx ; (4)

^ - . <'

j

(5)

the constant being = 0, since when x — 0. s 7= 0.

This etiuation may also be found ininicdiat-.ly by equa-

ting the values of ; in (a) and (1;.
dx

* 8et^ Price's Anal. Meclis., Vol. I, p. 416.

^
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Cor. 2.—Since r = Of is tiic length of tlie cord whose
weight is ecjiial to tiie tension of the curve at tlie lowest

l)oint, C, it follows tliat, if the half, /W, of the curve were

removed, and a cord of length r, icud of the same tliickness

and density as llie cord of the eurve. wrre joined to the

are 67*, and siisi)ended over a smooth peg at (', the curvf

would be in cquilihriuin.

CoK. 3.—We iiave from the triangle, PNT',

tension at P
tension at 6'

pjv

FN'

or
T
c ^ = ^ from (3) and (4),

that is, fhe tension at nrii/ point of tlie catenary is equal to

the weifj/it of a jtortion of llie cord whose lenyth is equal to

tlie ordinate at tliat point.

Therefore if a cord of constant thickness and density

/langs freely over any two smooth i)egs, the vertical por-

tions which hang over the i)egs, must each terminate on

the directrix of the catenary.

Cor. 4.—From (3) and (5) we have

if = s^ + c^,

and from (0) we hove

dy

(fi)

(7)

At the point, P. draw the ordinate. PM, and from M
the foot of the ordinate, draw the perpendicular 3/7'. Then

PT yco,}frT^y'^,
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ind from M
ir AfT. Then

rUE CUMMoy CATENARY.

which in (7) gives

PT = s = the arc, CP,

225

(B)

and since f = PT' + TJP, we have from (0) and (8)

TM = c. (^)

Therefore the point, T, is on the involute of the catenary

which ori-inateK from the curve at C, TM is a tangent to

this involute, and 77', tiie tangei.t to the catenary, is

Tiormal to the involute, (See C!alculus, Art. 124). As TM
i^ the tangent to this last curve, and is equal to the con-

stant quantity, c, the involute is the equitangeutial curve,

or tractrix (See Calculi's p. 357).

By means of (8) an. I (9) we may construct the on^rtwand

(lireclrix of the catenary as follows : On the iauf/ent at any

point, P, measnre ofa hmitli, PT, equnlio the arc, CP

;

at T erect a perpendicular, TM, to tlie tanyent meeting ttie

ordinate of P at M; then tlie horizontal line tlirouyh M ts

tlie directrix, and itn intersection with the axis of the curve

is the origin.

(Job. 5.—Combining (2) and (5) we obtain

therefore

{y + f-Y = s^ + <^>

^ z= y^ + 2cy. (10)

The catenary possesses many interesting geometric and

mechanical properties, but a discussion of them would

carry us beyond the limits of this treatise. The student

who wishes' to pursue the subject further, is referred to

Price's Anal. Mechs., Vol. I, and Mincliin's Statics.

®
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133a. Attraction of a Spherical Shell.—By iho law

of universal gravitation even particle of matter attracts

every other i)artielc with a force that varies diirr/Iif as the

mass of the attracting jiai'licle. and i?ir('r.srly as the S([uare

of the distance between the particles.

To find the resultant (ittrartioii of a spherical shell of

uniform density and small uniform thickness, on a par-

ticle.

(1) Suppose the particle, P,

on which the value of the

attraction is required, to be

outside the shell.

Let p and k he the density

ami thickness of the shell,

its centre, and M any ])article of it. Let OM = a,

PM — r, OP = c, the angle MOP = d,<p the angle which

the plane MOP m. kes with a fixed jdane through OP.

Then vhe mass of the element at M (Art. 88) is

ph a^ sm d dd d(f>. The attraction of the whole shell acts

along 0P\ the attraction of the elementary mass at M on

P in the diroctioji PM

pi- a^ sin dO dtp
^

thercforo the attraction of Jlf on P, resolved along OP,

pi- n^ sin dO d(p c — a cos 8
(1)

We shall eliminate from this equation by means of

r» = rt2 + (,-2 _ 2ac cos
;

rdr = ac sm 6 dO \

^^
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Sin W«0 =: ,

ac

and c — a cos

substituting these values in (1), the attraction of il/ on /*

along PO
oka /, c? — d\

, ,j

To obtain the rtsnltant attraction of the whole shell, wo
take the 0-.ntegral l)etvveon the limits and 2t, and the

r-integral between c — a and c + u.

Honce the resultant attraction of the hell on /'along PO

k'n^ka^ mass of the shell___ _
^^^ (3)

Since c is the (^stance of the point P from the centre this

shows that the attraction nf thi' shell on the particle at /'

is the same as if the mass of the shell were condensed into

its centre.

It follows from this that a sphere which is cither homo-

geneous or consists of concentric spherical shells of uniform

density, attracts tiie i)iiiti(le at P in the same manner as if

the whole mass were collected at its centre.

(2) Let the particle, /'. be inside the sphere. Then we

proceed exactly as lieforc. and obtain eijuation (2). which is

true whether the particle be outside or inside the sphere •
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but the r-limits in tliis case are a — c and a -\- c. Hence
from (a) we have, by i)erforming tlie ^-integration,

attracMon of sl.ell = ^-/^"(l - ''^)dr.

therefore a particle within the siiell is equally attracted in

every direction, i. o., is not attracted at all.

OoR.—If a particle be inside a hoinogoiious sphere at the

distance r from its centre, all that porjion of the sphere

which is at a greater distance from the centre tlu'n the

particle i)roduces no effect on the particle, wliile the re-

mainder of the sphere attracts the particle in the same
manner as if tin- mass of the remainder were all collected

at the centre of the sphere. Thus the attraction of tlie

sphere on the particle

_ l^rpr^ 4Trpr— ; or -—

•

H 3

Heiue, within a homogeneous sphere the attraction varies

Its the distance from the centre.

The propositions respecting the attraction of a uniform
spherical shell on an external or internal particle were

gi en by Newton (Principia, liib. I, Prop. 70, 71). (See

Todhunter's Statics, p. 275, also Pratt's Mechs., p. 137.

Price's Anal. Mechs., Vol. I, p. 2G6, Minchin's Statics,

p. 403).

EXAMPLES.

1. The span AB — 800 feet, and CO = IfiOO fc<'t, find

tlie length of the curve, C.i. the hcigiit. (1{, and the
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inclination, B, of the curve to the horizon at either point of

suspension.

(1) Here ^_ = {, and e = 2-71838,

therefore

and

e« = (2.71828)* = 1-2840,

e~« = (2-71828)"* = 0-7788.

Suhstituting these values in (5) we get

S = 800 X 0-5052 = 404-16.

CA = 404-16 feet.Hence

(2)

(8)

therefore

= 800 X 2-0628 — 1600

= 50- 24 feet

tan e =
f^
= i(e* - e-i), from (1),

= 0-2526,

e = 14° 11'.

s 404-16
Otherwise tan 8 = -, from (a), = -^jt^/t" = 0-2526, aa

hcfore.

1600

2. The entire load on the cord in Fig. 71 is 160000 lbs.,

(he span is 192 ft., and the height is ITi ft.; find the tension

at the points of 8U|)port, and also Ihe tension at the lowest

uoint. Ans. Tension at one end = 268208 lbs.

Horizon (a! teiie»on = 256000 '•

^m
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3. A chain, AOB, 10 feet long, and weighing GO lbs., is

snspcndcd so (hat the lieight, 67/, — 4 feet ; find the

horizontal tension, and the inclination, 0, ot the chain to

the horizon at the points of su[)p()i't.

A)is. Horizontal tension = 3| lbs., 6 = 77° 19'.

4. A chain 110 ft. long is suspended from two points in

the same horizontal plane, 108 ft. apart ; show that the

tensi(m at the lowest point is 1.477 times the weight of the

chain nearly.
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PART II.

KINEMATICS (MOTION).

CHAPTER I.

RECTILINEAR MOTION.

134. Definitions. —Velocity. —Kinematics is that

hranch of Dynamii-s which tieatn of motion without refer-

ence to the bodies moved or the forces producing tlie mo-

tion (Art. 1). Altliough we do not know motion as free

from force or from tlie mc'Jer that is moved, yet there are

cases in wiiich it is advantageous to separate the ideas of

force, matter, and motion, and to study motion in the

abstract, /. e., without any reference to tohat is nwviii;/, or

the cause of motion. 'I'o tlie study of pure motion, then,

we devote this and the following chapter.

The velocity of a particle has been defined to be its rntc

ofviofioii (Art. 0). The formula' for uniform and variable

velocities are those which were deduced in Art. 7. From

(1) antl {i) of that Art. we have

V =

V = ds

ifr

(1)

in which r is the velocity, .s the space, and t the time.
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J EXAMPLES.

1. A body moves at the rate of 754 yards per hour. Find
the velocity in feet per second.

Since tlie velocity is uniform we use (1), hence

J

s 754 X 3
V = - = ~ — = 0.628 ft. per sec, Atis.

t 00 X 60

2. Find the position of a particle at a given time, t,

when the velocity xaries as the distance from a given point
on the rectilniear i)ath.

Here the velocity being variable wo have from (2)

ds ,

where k ia a constant;

(Is
therefore = kdi] .'. \og8 = kt + c. (1)

where c is an arbitrary constant.

Now if wo suppose that s^ is the distance of the particle

from the given point when t — Q we have c = log «„,

which in (1) gives

log — =z kt; or s = s^e**.

«o

^ 3. A railway train travels at the rate of 40 miles per
liour ; find its velocity in feet per second.

Ans. 58.06 ft. per second.

V 4. A train takes 7 Ii. 31 ni. to travel 200 miles ; find its

velocity. Ans. 39.02 ft. per sec.

\j
5. U s = 4/'^ lind the velocity at I he end of five seconds.

Ans. 300 ft. per sec.

^6. Find the position of the particle in Ex. 2, when the

velocity varies as the time. Ans. s = s^ + ^kt\
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^7. Find the distance the particle will move in one

minute, when the velocity is 10 ft. at the end of one

second and varies as the time. Ans. 18000 ft.

135. Acceleration.—Acceleration has been defined to

be the rats of change of velocity (Art. 8). It is a velocity

increment. The formulae for acceleration are from (1), (2),

and (3) of (Art. 9),

f-
t

1

f dv

J-Tt'
\:'

i) . d^s
] J — ITi*

(1)

(2)

(3)

(1) being for uniform, and (2) and (3) for variable,

acceleration/

If the velocity decreases, f is negative, and (2) and (3)

become
do f ^ — f'

I ' ,112 — ~ /

»

dt df^

and the velocity and time are inverse functions of each

other.

136. The Relation between the Space and Time

when the Acceleration = 0.

Hero we have

dt^
= 0,

80 that if v^ is the constant velocity we have

da

dl='^\

.«, 8 = v„t 4- «o»

*
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in wliich .<„ is the space wiiicli tlio body has pabsed ovor

when / = 0. If / is computed from the time the body

starts from rest, then s = v^t. The student will observe

tiial this is a ease of uniform velocity.

137. The Relation (1) between the Space and
Time, and ('i) between the Space and Velosity,

w'aen the Acceleration s Constant

(I) Let A be the initial position of o a p
'

the particle supposed to be moving ^'8-''

toward the right, P its position at any time, /, from A, v

its velocity at that time, and /the ccnstant acceleration of

its vf'locity. Take any fixed point, 0, in the line of motion

as o'-igin, and let OA = Sg ; OP = s. Then the equation

of aioti(>u is

as

dt
= ft-\-c.

Suppose the velocity of Mie particle, at the jmint A to bo

r„, then when ^ = 0, v = r^;* hence c = i'^, and

.-. 3 = \fl^ + rj + c.

But when f = 0, s = x^; iience c' = Sg, and

s ^ |.//« + r,/ + .So,

CO

(^)

Heii.'e if a ])articl(' nK>ins from r.'.-^t f'' "n ilie oi i^in O, wiih

•! ciin.qant acccli-nilion. \\( iiave

• Called inilial velocity and upacc roHpcctlvoly, or tho velocity Ibc ptrtlcle has,

aiiu i<pnc« It bati lauvcd uvvr at tho iiistau. t bc^iim to be reckoucd.

aiMtimm
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(4)

«nd thus the space described varies as the square of the

time.

(2) From (1) we have

dp

dJ
'ifs + 0.

But when s = s^, v = r,,; lionco C = v^' — 2/Sg, and

therefore

i^ = 2fs -f- r„2 _ 2/s„. (5)

Ecjiiations (2) and (3) give the velocity and position of the

particle in terms of / ; and (5) gives the velocity in terms

of s.

138. When the Acceleration VarieB directly as

the Time from a State of Rest, find the Velocity

and Space at the end of the Time t

Ilere
dt^

ds

dt

= at;

where I'o is the initial velocity
;

the initial spax^c being since I is estimated from rest.

139. When the Acceleration Varies directly as

the Distance from a given Point in the line of Mo-
tion, and is negative, find the Relation between

the Space and Time.
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by calling «„ the >ttift. of * when the piirticle is at rest.

••• --^r^^ = k^dt,

the negative sign being taKo./ since the particle is moving
towards the origin

;

.'. cos-'— ^ kk,

if « "= Sg when / = ;

.•• « = So co«*M<.

EXAMPLES

1. A body commences to move with « \clocity of 30 ft.

per sec, and its velocity is increased m ouch .second by
10 ft. Kind the si)ace described in 5 seconds.

Here f =z 10, f„ = 30, a„ =: 0, and . =. o, therefore
from (;{) we have

v)

s- = i • 10 . 25 + 30 . 5 = 275, Ans.

2. A body starting with a velocity of 10 ft. per )thc , and
moving with a constant ijcceleration, descrilws 90 ft. in
4.sees.

;
find tlie aeeolenitioii. Ans. (!' ft, per .see.

'.'!. Kind the velocity of a body which starting from rest

with an acceleration of 10 ft. per sec, has descril)ed a space
"^20 ft. ^„^,. 20 ft.
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at rest.

) 18 moving

y of 30 ft.

.second by

i, tlicreforo

!T sfcc , and
i 90 n. in

. per siH!.

:
from nsl

:)ed a space

lA'. 20 ft.

4. Througli what space must a liody pass under an accel-

eration of 5 ft. per sec, so that its velocity may iucrcade

from 10 ft. to 20 ft. per sec. ? Ans. 30 ft.

N^. In what time will a Ixxly moving* with an accelera-

tion of 25 ft. per sec, acquire a velocity of 1000 ft. per

second? '!««• 40 '^^'^'S-

'^
fi. A body starting from rest has been moving *or 5 min-

utes, and has accjuired a velocity of 'M) miles an hour;

what is the acceleration iu feet per second ?

Ans. {I ft. per sec.

/n. If a body moves from rest with an acceleration of | ft.

per sec, liow long must it move to ac(iuire a velocity of

40m:!esanhour? ^1"^. 88 sees.

140. Equations of Motion for Falling Bodies.—

Tiie most important case of the motion of a particle with a

constant acceleration in its line of motion is that of a body

moving under the action nf gravity, which for small dis-

tanc-'es above the earth's surface may be considered constant.

When a body is allowed to fall freely, it is found to acquire

a velocity of about 'M.2 feet per second during every second

of Its motion, so that it moves with an acceleration of 32.2

feet per second (Art. 21). This acceleration is less at tne

summit of a high mountain than near the surface of the

earth ; and less at the etiuator than in the neighborhood of

the poles ; i. e., the velocity which a body actpiires in falling

freely for one second varies with the lalihide of the place,

and with its altitude above the sea level ; but is independ-

ent of the size of the body and of its mass. Practically,

however, bodies do not fall freely, as the resistance of the

air ojiposes their motion, and therefore in practical ciises at

high speed (c f/., in artillery) the resistance of the air must

be taken into account. But at present we shall neglect

In each case the body is Dupposed t" marl from reel uiilesB othorwiBc stated
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this resistance, and consider the hodies as moving in vacuo

under the action of gravity, t. e., with a constant accelera-

tion of about '.I'i.'i feet per second.

As neitlier iho substance of the body nor tlie cause ot

the motion needs to be taken into consideration, all prol)-

lems relating to falling hodies may be regarded as eases of

accelerated motion, and treated from purely gcometru *

considerations. Therefore if we denote the acceleration by

g, as in Art. 2',), and consider the particle in Art. 137 to be

moving vertically downwards, then ('i), (3), (5) of Art. 137

become, by substituting^ foi'/j

V = gt + ?•„,

s = W^ + ''oi + •%»

v^ = 2gs + j'o'
— '^gs^,

(A)

,1 '•I .>

s being measured as before from a fixed point, 0, in the

line of motion.

Suppose the ]>article to be projected downward from O,

then A commences with O and .v^ = 0. Hence (A) be-

comes

V = gt + Vo, (1)

v^ = 2gs + Vo'.

(2)

(3)

As a particular case suppose the particle to be dro])ped

from rest at (Fig. 73). Then A coincides with O, and

.Sj = 0, r„ = 0. llei e equations (A) become

V = gt,

s = yt^,

1)2 = igs.

(4)

(5)

(6)

I
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141. When the Particle is Projected Vertically

Upwards.—Here if we measure .s' upwards from the point

of projection, 0, the acceleration tends to diminish tlic

space and therefore tiie acceleration is negative, and the

equation of motion is (Art. 135)

(Ps = —II'

In other respects the solution is the same

therefore *•

obtain

Taking

J
= in (A) and changing the sign of (j,* we

'" = I'o — 'Jt> (1

)

8 = vJ.- \fjP, (2)

v* = v,^ - 2ffs. (3)

CoR. 1.— 77/c time darimj ivhich a j)article rises when

projected vertically upwards.

When the particle reaches its highest point, its velocity

is zero. If therefore we put r = in (1), tiie correspond-

ing value of t will be the time of the particle ascending to a

state of rest.

ff

Cor. 2.

—

The time of fliyht before returning to the start-

ing point.

From (i) we have the distance of the particle from the

starting point after / seconds, when projected vertically

upwards with the velocity v^. Now when the particle has

risen to its maximum height and returned to the point of

])roje('tion. .v = 0. If. tiierefore. we put .v = (t in ('I), and

solve for /, we shall get the time of flight. Therefore,

* g '\<i positive or negative accordinj;

ceuding.

as the particle is deBcending or as-
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which gives
2?'

t = 0, or -^.
9

The first value of t shows the time before tlie particle

starts, the latter shows the time wh''n it has returned.

Hence, the whole lime of lliglit is
—", which 's just double

the time of rising ((.'or. 1) ; that \&,the time of rising equals

the time offalling.

The final velocity, by (!) of Art. 140, z= gt z=z g x^-^

(C!or. 1) zjz r„ ; hcr.co a body returns to any \m\\i in its

path with the sai.ie velocity at which it left it. In other

words, a body passes each point in its path with the same

velocity, wholher rising or falling, since the velocity at any
point may be considered as a velocity of projection.

Cor. 3.

—

The greatest hcigut to which the particle will

rise-

At the summit v = (», and the c.n-respondiii<i value of s

will be the greatest heigiit to which the particle will rise
;

when V = 0, (3) becomes

fo^ = ''igs
;

.'. s = i-

Von. 4.—Since ?'„» — 'igs, where s is the height from

whicii u liody fails to gain I he velocity ''„• '' follows thai ii

body will rise through the same space in losing a velocity

?'„ as it would fall thn ugh to gain it.

«MM
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L

^
1. A body projected vertically downwards with a velocity

of 20 ft. a see. from the top of a tower, reaches the ground

in 3.5 sees.-, tind the height of the tower.

Here t = 2^, and r„ -^ 20 ;
assume g = 32. Then

from (2) of Art. 140 we have

g — iB^sjL 4- 20 X I
= 150 ft.

^'

2. A body is projected vertically upwards with a velocity

of 200 ft. per second ; find the velocity with which it will

pass a point 100 ft. above the point of projection.

Here v^ = 200, .s = 100 ; therefore from (3) we have

1)2 = 40000 — (5400 = 33(300

;

. •
. V = 40 a/21.

'
3. A man is ascending in a balloon with a uniform

velocity of 20 ft. per sec, wlieu he drops a, stone whieli

reaches the ground in 4 sees.; find the height of the

balloon.

Here t'„ = 20, and / == 4 ; therefore from (2) we have,

after clumging the sign of the se(!on(l menil)er to make the

result positive,
'

« = - (80 - 25(i) == 170,

which was the height of tlie balloon.

^4. A body is projected upwards with a velocity of 80 ft.;

after what time will it return to the hand ?

.'1//.S'. 5 seconds.

'^5. With what velocity must a body be projected ver-

tically uinvards that it may rise 40 ft. ?

Ann. 1(5 V 10 ft. per sec.

11

I*
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0. A l)()(ly projected vertically ui)wards passes a certain

point with a velocity of 80 ft. per sec; how much higher

will it ascend ? Ans. 100 ft.

T. Two balls are diop])od from the top of a tower, one of

them 3 sees, before the other ; how far will they l)e apart

5 sees, after the tirst was let fall ? Ans. 33fj ft.

V 8. If a body after having fallen for -'3 sees, breaks a pane

/)f glass and thereby loses one-third of its velocity, find the

entire space through which it will have fallen iu 4 sees.

.'1ms. 221 ft.

142. Composition of Velocities.— (1) From the Par-

nilvtngram of Velan ill's, (Art. 2!), l-'ig. 2), we see that if A I?

rcpreseiils in magnitude and direction the space which
would l)e described in one second by a particle moving with

» given velocity, and AC represents in magnitude and
(liit'cfion the space which would be descril)ed in one second

i)y another particle moving with its velocity, then Af). //ir

dimjonal of the paralkloi/rom, rcpreaenls the rvsuUant

velocity 1)1 infit/uifitdr and direction,

(2) Hence t/ie resultant of any two velocities, as AH. HI),

(Kig. 2), is a velocity represented by the third side, I).\. «/'

the Irianyle AHD; and if a point hare siniiillanronsly,

velocities repi-esented by A15, HC, CA. the sides of a trian-

<)le, tahvn in the samr order, it is at rest.

The lines which arc taken to rci)rescnt any given forces

may clearly be taken to represent the velocities which

measure tlu'sc forces (Art. 19), therefore from the Polyyon

ami I'arallelopipetl of Forces the Polyyon and Parallel-

(ij)iped of Velocities follow.

(.'>) Hence, if any iiiimbrr if velorilies tw represnited in

viaynitiide and direction t/y /he sides if a closed polyyon,

taken all in the same order, ihe resultant is zero.

(4) Also, if three velocities Ijr reprc'^cnted in magnitude
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nnil direction by the three edijes of a paralleloptped, the re-

sultant velocity wilt be represented by tlic diivjonat.

(.")) When there are two velocities or three velocities in

two or in three rectangular directions, tlie resultant is the

siiuare root of the sum of tl'.eir squares. Thus, if

ds itx dii dz . 1 •.• .. ^1 ^ 1

-J,
. , :

, y, are the velocities ot the inovnig point and

its components parallel to the axes, we have from {'Z) of

Art. 30,

and from (1) of Art. 34,

(2)

143. Resolution of Velocities.—As the diagonal of

tiie parallelogram (Fig. 2), whose sides represent the com-

ponent velocities was found to represent the resultant

velocity, so-any velocity, represented by a given straight

line, may be resolved into component velocities represented

l)y the sides of the parallelogram of which the gi\en line

is the diagonal.

It will be easily seen that {'l) of Art. 134 is ecjually

applicable whether the point be considered as moving in u

straight line or in a curved line ; l)iit since in the latter

case the direction of motion continually changes, the mere

ivnoiiiit of the velocity is not sntticient to describe the

motion completely, so it will l>e necessary to know at every

instant the direction, as well as the nini/iiitinte. of tlu' point's

velocity. In such cases as this the meliiod commonly em-

ployed, whether we deal with velocities or accelerations,

consists mainly in studying, not the velocity or acceleration,

directly, but its components parallel to any three assumed

rectangular axes. If t lie particle beat the point (.r, y, z),
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at tlie time I, and if we denote its velocities parallel

respectively to the three axes by u, v, w, we have

ax

lit
= v^;

ily

lit

(Iz

-" dt~
^''

Denotinfi: by v the velocity of the moving ])article along

the curve at tlie time /, wo Inive as above

da n<ix^ [di/\^ ldz\^

and if «, (i, y be the angles wiiich the direction of motion

along the curve makes witli the axes, we have, as in {t) of

(Art. 34),

(Ix (^ ^

-T- = — cos « = V COS « = Vx

;

dt dt

dy ds ^ _

dz ds
-J- = -J-,

cos y = v cos y = v..
dl dt

'Ix cltJ (iz

Hence each of the components --.r, j', -r, is to be

found from the whole velocity by resolving tlie velocity,

i. v., l)y multiplying tiie velocity by conine of the anyle

between the direction of motion and that of the compo-

nent.

EXAMPLES.

'^1. A body moves under the indnence of two velocities,

at I'ight anglcH to ciU'li dtju'r, ('(|na! respectively to 17.14 ft„

Mild i;{. 11 ft. per second. l-'ind the magnitude of tlie

resultant motion, and Ihe angles into wliicli it divides the

right angle.

Ann. -H.bV.i ft. per see. ; '.iT 25' and 52" 35'.
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^2. A ship sails due north at the rate of 4 knots p-s*-

hoHF, and a ball is rolled towards the east, across her deck,

at right angles to her motion at the rate of 10 ft. per

second. »'ind the magnitude aiul direction of the real

motion of the ball.

Ans. 12.07 ft. per see.; and N. 50^ H.

y 3. A boat moves N. 30° E., at the rate of miles jur

hour. Find its rate of motion northerly and easterly.

Ans. 5.2 miles per liour north, and 3 miles per hour

east.

144. Motion on an Inclined Plane.—By an exten-

sion of the eciuations of Art. 140, we may treat the case of

a particle sliding from rest down a smooth inclined ])lane.

As this is a very simple case in whicli an acceleration is

resolved, it is convenient to treat of it in this part of our

work
;

yet as it properly belongs to the theory of con-

strained motion, we are unable to give a comi)lete solution

of it, until the principles of such motion have been ex-

plained in a future chapter.

Let P be the position of the particle at

any time, /, on the inclined plime OA, OP
= .«, its distance from a fixed point, 0, in

the line of motion, and let « be the inclina-

tion of OA to the horizontal line AH. Let

Pi re[)resent //, the vertical acceleration with '"'B-'*

which the body would move if free to fall. Resolve this

into two components, V<t = </ sin « along, and P^ = ,r/

cos « perpendicular to OA. The comiiou-ut // cos a pro-

duces pressure on the plane, but does not affect tlie motion.

The oidy acceleration down the iilane is that component of

the whole acceleration whicii is parallel to the plane, viz.,

g sin «. The equation of motion, therefore, is

dt^
=

(J
sin «, (1)

Aim
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the solution of which, as g sin « is constant, is included in

that of Art. 140; and all the results for particles moving

vertically as given in Arts. 140 and 141 will he made to

apply to (1) hy writing.'/ sin « for//. Thus, if the particle

he projected down or up the pkne, we get from (1), (a), (;5)

of Arts. 140 and 141, by this means

V = t'o ±6' sin «•/, (2)

s z=z v^t ± y sin «• f\ (3)

i^ = i'o^ ± 2</ sin «•.?, (4)

in which the -f or — sign is to be taken according as the

body is projected duion or np the plane.

If the particle starts from rest from 0, we get from (4),

(5), (G) of Art. 140
i; = (/ sin a-i, (5)

s = iff sin «• t\ (6)

V* = 2ff
sin «.,s. (7)

Cor. 1.

—

The velocity acquired 'by a particle in falliiu,

(loivu a given inclined plane.

Draw PC parallel to AB (Fig. 74), then if v be the

velocity at P, we have from (7)

v' = 2(/ sin tfS

= 2g-0a

Hence, from (G) of Art. 140 the velocity is the same at P
as if the particle had fallen througli tlie vertica! space OC ;

tiiat is, the velocity acquired in falling dunm a smooth

inclined plane is the same as would be acquired in falling

freely t/irough the perpendicular height of the plane.

t
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(2)

(3)

(4)

ng as the

from (4),

(5)

(6)

(7)

t

Cor. 2.— When the particle in projected up the plane luith

a given i hcity, to find how high it will ascend, and the time

of ascent.

From (4) we have

v^ = vj' — 2g sin «•«.

When V = the particle will stop ; hence, the distance it

will ascend will be given by the equation

= I'o^ — 2g sin ««s,

s =
Hg sin «

To find the time we have from (2)

V = Vq — g sin n't;

and the particle stops when i* = 0, in which case we have

t = -^^.
g sin a

From (6) we derive the following curious and useful

result.

145. The Times of Descent down
all Chords drawn from the Highest

Point of a Vertical Circle are equal.—

Ix't AB be the vertical diameter of the

circle, AC any cord through A, «e its

inclination to the horizon
;
join HC ; then

if / be the time of descent down AC wc

have from (0) of Art. 144

Bat

AC = yt^ sin «.

AC = AH sin a;

Fig.75

^aM
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.-. Ml = ^gt\

or t = V y
vliich 13 constant, and shows that the time of falling down
u \\ t'luml is the same as the time of falling down the

diameter.

"IJoK.—Similarly it may be shown that the times of

defeoent down all cliords drawn to B, the lowest point,

are equal
; tiiat is. tlie time down C15 is oqiial to hat

down AB.

146. The Straight Line of Quickest Descent from
(1) a Given Point to a Given Straight Line (2) from
a Given Point to a Given Curve.

(1) Let A be the given point and BC
the given line. Through A draw the

horizontal line AC, meeting CB in C;
bisect the angle ACB by CO whicli intcr-

Kccls in tiie vertical line drawn through

A ; from draw OP perjiendicular to BC;
join AP ; AP is the required lino of quick-

est de;iCC!lt.

For OP is evidently equal to OA, and therefore the

circle described with O as centre and with OP (= OA) for

radius, will touch the line BO at P, and since the time of

falling down all chords of this circle from A is the same,

AP must be the line of quickest descent.

(2) To find the straight line of quickest descent to a

given curi'p, all that is required is to draw a circle having

the given point as the upper extremity of its vertical

diameter, and tnngent tj the curve. Hence if DE (Fig.

70) be the curve, A the point, draw AH vertical; aad, with

centre in AH, describe a circle passing tlirough A, and
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couching DE iit P, then Al .s the requirecl line. For, if we

take any other point, Q, in DE, and draw AQ cutting tlic

circle in q, then liic time down AP --— time down Ay<
•m" ,.vvn AQ. Hence AP is the line of (piickest descent.

The proh'-'u. -T ''nding the line of (juickcst descent from ii point to

a line or curve is thus "lund to resolvi' itself into the [uirt ly geometric

problem of drawing a circle, tlie biphest ]M)int of wliich sliall be the

given point and which shall touch the given line or curve.

EXAMPLES.*

1. If the earth travels in its orl)it 600 million mile'- r-.x

3()5J days, with uniform motion, what is its veloci' 'u

miles per second ?
• Atis. 19-01 mi- '«.

•^ 2. A train of cars moving with a velocity of 20 m.jos ^"

hour, had been gone 3 'lours when a locomoi e i\,.;'

dispatched in pursuit, with a velocity of 25 miles - 'on ;

in what time did the latter overtake the former ?

, Ans. 12 hours.

J
3. A body moving from rest with a uniform acceleration

describes 90 ft. in the 5th second of its motion ; find the

acceleration,/, and velocity, v, after 10 seconds.

Am. f =z %0; V — 200.

^ 4. Find the velocity of a particle which, moving with an

acceleration of 20 ft. per sec. has traversed 1000 ft.

A ns. 200 ft. per sec.

5. A body is observed to move over 45 ft. and 55 ft. in

two successive seconds ; find the space it would describe in

the 20th second. Ans. 195 ft.

G. The velocity of a body increases every hour at tiie rate

of 360 yards per hour. What is the acceleration,/, in feet

per second, and what is the space, .s, describeil from rest in

20 seconds? .l//.s. / = 0.3; s — 60 ft.

In these exannik^H take g aa ft.
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V 7. A body is moviiifr. at :\ given instant, at the rate of

8 ft. per sir.; at tlio end of 5 sees, its vciofity i.-' I'J ft. per
sec. Assnniing its acceleration to l)e utiifonn, what was its

velocity at tlic end of 4 sees., and wliat will be its velocity

at the end oflO sees. ? Ans. lU-8; 30.

"^8. A body is moving at a given instant with a velocity of

30 miles an bonr. and comes to rest in 11 sees.; if the

retardation is uniform what was its velocity 5 sees, before it

stopped ? Ans. 20 ft. per sec.

^ 9. A body moves at the rate of 12 ft. a sec. with a
nniform acceleration of 4 ; (1) state exactly what is meant
by the number 4 ; (2) suj)pose the acceleration to go on for

5 sees., and then to cease, what distance will the body
describe between the ends of the 5th and 12th sees.?

Ans. 224 ft.

10. A body, whose velocity undergoes a uniform retardii-

tion of 8, describes in 2 sees, a distance of 30 ft.; (1) what
was its initial velocity ^ (2) How much longer than the

3 sees, would it move before coming to rest ?

AH.<i. (1) 23; (2) I sec.

11. A body whose motion is uniforndy retarded, changes
its velocity from 24 to (1 while describing a distance of 12
ft.; in what time does it descnbe the 12 ft.?

Ans. 0-8 sec.

12. The velocity of a bmly, which is at first G ft. a sec,

undergoes a uniform acceleration of 3 ; at the end of 4 sees,

the acceleration ceases ; how far does the body move in 10

sees, from the beginning of the motion? Ans. 15G ft.

13. A body moves for a quai-ter of an hour with a uni-

form acceleration ; in the first 5 minutes it describes 3r»0

yards; in the second 5 minutes 420 yards; what is the

whole distance describtid in a quarter of an hour?

Ans. 1200 vds.



EXAMPLES. •251

tlie rate of

i.-' I'J ft. ])er

AvAi was its

its velocity

U-8; 30.

I velocity of

3C.S.; if the

cs. before it

. per sec.

sec. with a

it is meant

go on for

1 the body

?cs. ?

\ 224 ft,

m retardiu

.; (1) what

if than the

;2) I sec.

h1, changes

tance of 12

0-8 sec.

G ft. a .sec,

d of 4 sees.

nove in 10

. 156 ft.

I'itli a iiiii-

scribes 3r>0

hat is the

p

200 vds.

14. Two sees, after a body is let fall another body i^

|)roje'jted vertically downwards with a velocity of Kto It.

lier sec; when will it overtake (he former':'

A)is.
1
J sees.

15. A body is projected npwanls with a velocity of KtO

ft per sec; lind the whole time of llight. .•I//.S'. 0] sees

'

It!. A balloon is rising uniformly with a velocity of 10 ft.

per sec, when a man drops from it a stone which reaclu'S

the ground in 3 sees.; tind the height of the balloon, (1)

when the stone was dropped; and (2) when it reached the

ground. A„x. (1) 114 ft.; (2) 144 ft.

17. A man is standing on a platform which descends

with a uniform acceleration of 5ft per.«ec. ; after havinjj

descended for 2 sees, he drops a ball ; what will be the

velocay of the ball after 2 more seconds? Ann. 74 ft.

'
18. A ballojn has been ascending vertically at a uniform

rate for 4- 5 sees., and a stone let fall from it reaches tlie

ground in 7 sees.; find the velocity, r, of the balloon and

the height, s, from which the stone is let fall

Ans. V = 174f ft per sec; s = 784 ft. If the ballo.)u

is still ascending w'lon the stone is let fall v = G8-17 ft.

per sec; .s = 300.76 ft.?

Kll. With what velocity must a particle be projected

downwards, that it may in / s'cs overtake another jjarticle

which has alreadv fallen through i "i. 'i

/
Anf^- " ==

I
+ V2r///.

20. A person while ascending in a balli.oi? with a vertical

velocity of F ft. per sec, lets fall a stone wlien ho is // fi-

ai)ovo the ground; reciuired the time in which t!'C stou-

will roach the g.'ound.
Ans.

V + V V^ + ty/h

7
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21. A body, A, is i)n)jected vortical!}' downwards from

tlie top of a tower witli tlie velocity V, and one sec. after-

wards aiiotlier Itody, H, is let fall from a window n ft. from

tiio toj) of the tower ; in what time, /, will A overtake B ?

22, A stone let fall into a well, is heard to strike the

bottom in t seconds ; reijuired the depth of the well, sup-

posing the velocity of sound to bo a ft. per sec.

Anx. V . I* It

23. A stone is dropped into a well, and aUer .3 sees, the

sound of the splash is heard. Find the depth to the

surface of the water, the velocity of sound being 1127 ft.

per sec. A>i>i. 132.9.

•^ 24. A body is simultaneously impressed with three

uniform velocities, one of which would cause it to move

10 ft. North in 2 sees.; another 12 ft. in one sec. in the

same direction; and a third 21 ft. South in 3 sees. Where

will the body be in 5 sees. ? Ans. 50 ft. North.

25. A boat is rowed across a river 1{ miles wide, in a

direction making an angle of 87° with the bank. The
boat travels at the rate of 5 miles an hour, and the river

runs at the rate of 2.3 miles an hour. Find at what point

of the opposita <mk the boat will land, if the angle of 87°

be made against thj stream.

Ans. 898 yards down the stream from the opposite

point.

26. A body moves with a velocity of 10 ft. per sec. in a

given direction ; find the velocity in a direction inclined at

an angle of 30° to the original direction.

Ans. 5 Vo ft. per sec.

^M
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JJ7. A smooth plane is inclined at an angle of 30° to the

horizon ; a body is started up the plane with the velocity

b(j ; find when it is distant 9// from the starting point.

Ans. 2, or 18 sees.

^8. Tiie angle (»f a plane is 30°; find the velocity with

which u l)ody must be projected np it to reach the top,

the length of the plane being ^0 ft.

Am. 8 VlO ft. [)er sec.

'^W. A body is projected down a plane, the inclination of

which is 45°, with a velocity of 10 ft.; find the space

described in 2| sees. Ans. 95.7 ft. nearly.

'' 30. A steam-engine starts on a downward incline of

1 in 200* with a velocity of 7^ miles an honr neglecting

friction ; find the space traversed in two minnt

.I//.V. 824 yards.

'' 31. A body projected up an incline of 1 in 100 with a

velocity of 15 miles an hour just reaches the summit ; find

the time occupied. Ans. 68.75 sees.

^ 32. From a point in an inclined plane a body is made to

slide up the ))lane with a velocity of Ki.l ft. per sec. (1)

How far will it go before it comes to rest, the inclination

of the plane to the horizon being 30° ? (2) Also how far

will the body be from the starting point after 5 sees, from

the beginning of motion ?

Ans. (1) 8.05 ft. ; (2) 120.75 ft. lower down.

v/ ...
33. The inclination of a plane is 3 vertical to 4 hori-

zontal ; a body is made to slide up the incline with an

initial velocity of 30 ft. a sec; (1) how far will it go before

beginning to return, and (2) after how many seconds will

it r urn to its starting point?

Alls. (1) 33J ft.: (2) 3J sees.

* All iiirliiie of 1 in 800 mean? hero 1 foot vortically to a Ungth of 200 ft., thoug))

it is used b En(;inccr« to mean 1 foot vertically to aiO ft. horizontaUy.
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34. There is an inclined iiiuno of 5 vortical to 1:^ hori-
zontal, a bod^ .slides down 5:> ft. of its length, and then
l)as.ses without kiss of veiocity on to the horizontal jdane;
after how long from the beginning of the motion will it be
at a distance of 100 ft. from the foot of the incline y

Ans. 5.7 sees.

/
as. A body is projected up an inclined i)]ane, whose

length is 10 times its height, with a velocity of .'JO ft. per
sec.

;
in wliat time will its velocity be destroyed ?

Ans. ^ sees., iff/ — 32.

30. A body falls from rest down a given inclined plane;
compare the times of describing the first and last halves

*^^ ''^-

Ans. As 1 : V^ - 1.

37. Two bodies, projected down two planes inclined to
the horizon at angles of 45° and (10°, descrU)e in the same
time spaces respectively as V'i : V3 ; find the ratio of the
niitial velocities of the projected bodies.

Ans. -y/a : \/;\.

38. Through what chord of a circle must a body fall to

acquire half the velocity gained by falling through the
diameter?

Ans. The chord which is inclined at 00° to the vertical.

/ 30. Find the velocity with which a body should be ))ro-

jected down an inclined plane. /, so that the time of

running down the jjlano shall be equal to the time of

falling down the height, h.

(I— h m\ «\

^ 40. Find the inclination of this ]ii,;ne. when a velocity

(if Jths that due to the height is sullit'ient to render the
times of running down the ]>lane, and of falling down tho
height, ecjual to each other. Am, 30°,
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il. Through what eliord of a eircle, draAvn from the

iKiltoiu of the vertical diameter must a body descend, so as

to afi|uin^ a veloeity equal lo -tli part of the velocity

iu<iu!red in falling down tlie vertical diameter?

Alts. If denote the angle between the required chord

and the vertical diameter cos 6
1

n

''•43. Find the inclination, d, '.>f the radius of a eircle to

the vertical, .«nch that a body running down will c'escribe

the radius in the san;o time that anoMier botly requires to

full down the vertical diameter. Am. = 60".

''43. Find the inclination, Q, to tl:o vertical of tiie diam-

eter down which a body falling will describe the last haif

in the same time as the verticid diameter.

3 \/2 — 4
Ans. cos 6 =

2\/5i

41. Show that the times of descent down all the radii of

curvature of the cycloid (Fig. 40, tJalculus) are equal; that

/Sr"
is, the time down 1*Q is equal to the time down O'A := y -- •

'45. Find the inclination, 6, to the horizon of an inclined

pliine. so that the time of descent ..f a particle down the

l.'iigth may be « times that down the height of the plane.

Ans. 6 = sin^i - •

n

1(1. I''ind the line of quickest descent from the focus to

a paraltoia whose axis is vertical and vertex upwards, and

show that its length is equal to that of the latus rectum.

17. Find the line of quickest descent from tiie focus oi a

\)arab()la to the curve when Ihe uxis is horizontal.
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'48. Find geometrically the line of quickest descent (1)

from a point within a circle to the circle
; (2) from a circle

to a point without it.

49. Find geometrically the straight line of longest

descent from a circle to a point without it, and which
lies below the circle.

^' 50. A man six feet high walks in a straight line at the

rate of four miles an honr away from a street hunp, the

height of which is 10 feet; supposing the man to start

from the lamp-post, find the j-ate at which the end of his

shadow travels, and also the rate at which the end of his

shadow separates from himself.

Ans. Shadow travels 10 miles an hour, and gains on
himself G miles an hour.

51. Two bodies fall in tlie same time from two given

points in space in the same vertical down two straight

lines" drawn to any point of a surface ; show that the sur-

face is an equilateral liyperboloid of revolution, having the

given points as \ertices.

62. Find the form of a curve in a vertical i)lane, such
that if heavy particles be simuUaneonsly let fall from each

jioint of it so as to slide freely along the normal at that

point, they may all reach a given iiorizontal straight line at

tlio same instant.

53. Show that the time of quickest descent down a focal

chord of a parabola whose axis is vertical is

V g

where / is the latup- rectum.

54. Particles slide from rcht at the highest point of a

vertical circle down chords, and are then allowed to move
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freely ; show that the locus of the foci of their paths is a

circle of half the radius, and that all the paths bisect the

vertical radius.

55. If the particles slide down chords to the lowest point,

and be then suffered to move freely, the locus of the foci is

a cardioid.

56. Particles fall down diameters of a vertical circle ; the

locus of the foci of their subsequent paths is the circle.
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CHAPTER II.

CURVILINEAR MOTION.

147. Remarks on Curvilinear Motion.—The mo-
don, whicli wus coiisidorod in tlie last elmptcr, was that of

d piU'ticle describhig a rectilinear i)at]i. In this chapter the

cireunutanc'os of motion in which the ])atli is c»r/'j7t«ert/-

will he considered. The concei)(ion and the definition of

velocity and of acfo'eration which were given in Arts. i;}4,

135, are evidently as applicalile to a particle descrihing a
curvilinear path as to one moving along a straight line;

and conseqnently the fornnila' for velocity in Arts. 142, 14:S,

are applicable either to rectilinear or to curvilinear motion.
In the last chapter the effects of the comi^sition and the

re .''ition of velocities were considered, when the path
ta^ven by the particle in consequence of them was straight

;

wo have now to investigate the effects of velocities and of

accelerations in a more general way.

148. Composition of Uniform Velocity and Ac-
celeration. " Su|ipose a l)ody tends to move in one direc-

tion witli a uniform velocity which would carry it from A
to B in one second, and also subject to an

acceleration that would carry it from A
to C in one second ; then at the end of

the second the body will be at ]), the

opposite end of the diagonal of (he j)ar- \ p. „
allelograni AMDC. just as if it had moved
from A to B and tlu'u from Biol) in the second, but the

l>ody will move in the ritnr ami not along (he i/iiii/oiuiL

I'or, the body in its motion is making progress uniformlv
in the direction AH, at (be sanit^ rale us if it had no other

motion; and at the sumo time it is being uccelcrated in the
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direction AC, as fast as if it had no other motion. Henco

the Lody will rcjich D a.s far from the line AC as if it had

moved over AB, au^ as far from AB as if it had moved

over AC ; but since tl.c velocity along AC is not uniform,

tho spaces described in (((ual intervals of times will not be

equal along AC while th'jy are e(iual along AB. and tiicre-

fore the points «,, a^, a^, will not bo in a straight line. In

this case, therefore, the i)ath is a curve.

149. Composition and Resolution of Accelera-

tions.—If a body is subject to two dififerent accelerations

in different directions the sides of a parallelogratn may Ijo

taken to represent the Component Accelerations, aiul

tho diagonal will rejjresent the liesnltant Accclerafion,

although the i)ath of the body may bo along some other

line.

Rem.—Tliese results with those of Arts. 14^, 14.'5, may be

summed up in one general law: When n body tends to

inove with several different velocities in different directions,

the tmly will be, at the end of any yiven time, at the same

point, (IS if it had moved with each velocity separately.

This is the fundamental law of Die composition of veloci-

ties, and it shows that all pn)l)loms which involve tendon- •

cios to motion in different directions simultaneously, may
be treated as if those tendencies were successive.*

(Ps
If ..-^ bo the acceleration along the curve, and (a;, y, z)

be the place of the moving particle at the time, t, it is

evident tiiat the component accelerations parallel to tho

(P.r (Py dh
axes arc

nave
dt^ ' dp ' dp

(Px

ilp

Denoting these by «x, tty, us, wc

<Pz
KX',

(Py

dp
— ««

and '\/uJ -\- k/ + «««' is the resultant arrelrration.

* Sou Kumai'kH ud Ncwton'i* td law, Art. 166.
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Also if n, (i, y, be lliu uiiglos wliich the direction o!

motion makes with the axes, we have

d^x (Ps

cPz cPs

^3 = ^ COS y = «..

d-1
The acceleration

^^,
is not generally the complete resultant of the

three component acccleintions, but is so only when the path is a
Straight iine or the velocity is zero. It is, however, the only part

of tlieir resultant which has any effect on the velocity. — is the

sum of the resolved parts of the coniiwnent accelerations in the direc-
tion of motion, aa the following identical equation shows:

^ _ dx d-x dy d'y dz d'e

dt^~ (h- dfi
*

ils
•
dt''

"•"

ds dT''

which follows immediately from (1) of Art. 143 by differentiation.
Accelerations are therefore subject to the same laws of composition
and resolution as velocities

; and cnsequently the acceleration of the
particle along any lino is the sum of the resolvid partH of ilie axial

accelerations along that line. Tliusto find V'!, the acceleration nloiur »

^^^
has to 1)0 multiplied by -, which is the direction-cosine of tlie

Bmull iir<- ilx. 'I'he other part of the resultant is at right angles to

this, and its only effect is to change the dircrthm of the motion of the
]ioint. (See Talt and Steele's Dynamics of a Particle, also Thomson
and Tait's Nat Phil.)

The following arc oxamplos in hIiIcIi Iho iircccdiiiij cx-

prcssioiiK aiv iii)i)lif(l to oases in which the laws of velocity

and of acceleration are given.
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1. A particle moves so that the axial components of its

velocity vary as the corresponding co-ordinates ;
it is

re(iuired to find the equation of its path ; and the accel-

erations along the axes.

Here | = A:a:; | = %;

... ^ = '^ = kdt;
X y

... log? = !ogf = A.^

if {a, b) is the initial place of the particle,

... X = a<M\ y = 6e«-

' ' a h

is the equation of the path.

And the axial accelerations are

m,.

2. A wheel rolls along a straight line with a uniform

velocity ; compare the velocity of a given iwint in the cir-

cumference with that of the centre of the wheel.

Lot the line along which the wheel roils be the axis of x,

and let o be the velocity of its centre; then a point in its

circumference describes a cycloid, of which, the origin

being taken at its starting point, the equation is

X = a vers-i ^ — (iay — .'/')*;
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But

dx _ (ly _ da

d ( ^,y\ a dy

\ a'dt \ af ('},,„ „ ./2»i dt

ds __ ds

J/ ~ dy

CZay - f)^

dt - \a) '^'

whicl) is tlio velocity of the point in the circumference of

the whci'l, 'I'hiis the velocity of the highest point of the

tvheel is twice as great as that of the centre, while the

point that is in contact with the straight line has no

velocity. (See Price's Anni. Mecfi's., Vol. I, p. 41 G.)

dx (In
3. ]i -jj = ky, -:- = kx, show that the path is an equi-

lateral hyperbola and that the axial components are

(Px _ <iPy _
dfi - '^

""'
dt^

- '^y-

4. A particle describes an cllij)se so that the a;-component

of its velocity is a constant, « ; find the ^-component of its

velocity and acceleration, and the time of describing the

ellipse.

Let the equation of the ellipse bo

rt^
^

ft2
~ ^ '

and let {x, y) be the position of the particle at the time t
;

,, dx , dy b'^x
then -,- = « ; and / = —

;

dt
'

dx a^y'

dy _ dy dx _ afjf> x
dt ~ <fx' dt ~ ~

n^
' y'

which is the y-component of the velocity.
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—

-

d^jf
>

26.S

Also

iience the acceleration parallel to the axis of // varies

inversely as the cube of the ordinate of the ellipse, and acts

towards tlie axis of a*, as is shown by the negative sign.

The time of passing from the extremity if the minor

axis to that of the ma, axis is found hy dividing a by «,

the constant velocity parallel to the axis of x, giving

-, and the time of describing the whole ellipse is — •

« "

If the orbit is a circle h = a, and the acceleration par-

allel to the axis of y is — ^—^•

If the velocity parallel to the //-axis is constant and equal

to /3, then
dx _ _a^(i 1/

,

dt

df

fp X

Ab
and the periodic time = -^•

x^ wS

5. A particle describes the hypc.bola ^^ = 1 : find
w' IP'

(1) the acceleration parallel to the axis of x if the velocity

parallel to the axis of y is a constant, 3, and (2) find the

acceleration parallel to the y-axis if the velocity paralN *
'<>

the .r-axis is a constant <.:.

(1) Here we have

dy

dt
; and

dy _ b^ x^

dx~ a^ y'
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dx _ (l.v (hj _ /?«' y•' M ~ dy' lit ~'fJ^'x

which is the velocity j)anillel to the ^-axis.

dy dx

Also
dPx _ fi(^

dfi
~ ^

"

_^

""dt- ydi

hence the acceleration parallel to the x-axis varies inversely

as the cube of tlie abscissa, and the a;-coniponent of the

velocity is incrcsing.

(2) Here we have

dx

di
.-= a:

and

dy

di

^ _

«J2 X

hence the acceleration parallel to the y-axis is negative and

the ^-component of tiie velocity is decreasing.

G. A particle describes the parabola, x^ + ^' = «*, with

a constant velocity, c ; find the accelerations parallel to the

fixes of X and y.

Here we have
ds

di
= c;

and
dje _ — dy ds

y* {x + y)^'
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and

dr' (Is^ <?x

df^
~ dt^ z + y x + y'

di^
~ dP' X + ~y X + y'

dififerentiating we get

dfi

jHay)i_.
2{x + yf*

ss inversely

lent of the
dP ~ 2{.c + yf

7. A particle describes a parabola with such a varying

velocity that its projection on a line perpendicular to the

axis is a constant, v. Find the velocity and the accelera-

tion parallel to the axis.

Let the equation of the parabola be

t/2 = 2px;

then
dt

-""'

3gative and

= «', with

allel to the

and
dx

di

dx dy

dy dt

which is the velocity parallel to x

Also
t
P'

which shows that the particle is moving away from the

tangent to the curve at the vertex with a constant accelera-

tion.
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Ili'iice as the eartli acts on jjarticlcs near its surface with

a constant acceleration in vertical lines, if a particle is

])rojc<'t('(l with a velocity, r, in a horizontal line it will move
in a panilxiliu path.

150. Motion of Projectiles in Vacuo.—If a i)article

he projected in a direetion ohli(|ne to the horizon it is

called a Projectile, and the i)ath wiiicii il describes is called

its Trajvclory. The case which we shall liere consider is

that of a particle movino; in vacuo under the action of

frravity; so that the problem is that of the nio/ion of a

pnijerUIi' in mciio ; and hence, as gravity does not affect

its horizontal velocity, it resolves it.self into the purely

kinematic problcjn of a particle moving so that its hori-

zontal acceleration is and its vertical acceleration is the

constant, </, (Art. 140).

151. The Path of a

Projectile in Vacuo is a

Parabola.— Let tiie plane

in which the particle is pro-

jected be tiie ])lane of .ry;

let tl'.e axis of x be horizon-

tal and the axis of y vertical

and positive upwards, the

origin being au the i)oint of

jtrojection ; let the velocity

of projecti(m = r, and let the line of jn-ojection be inclined

at an angle « to the axis of x, so that ;• cos «, and r .sin «

are the resolved parts of the velocity of projection along tlie

axes of .(• and //. It is evident tliat the ]>article will con-

tinue to move ii! tlic ])lane of xy, as it is |)rojected in it.

and is su' iect to no force whicli would tend to wiiiidraw

it from thu. plane.

Let {x, y) be the jtlace, /'. of the particle at the time /

;

then the equations of motion are

S D
E

f

<

A-

\.
/

M C a

L
Fig. 78
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the iioc'ilc'ration being nogativc siiico the ^-component of

the velocity is ilocreatsiiig.

The first and second integrals of those equations will

then bo, taking the limits corresponding to ^ = / and

/ = 0,

dx dy . . ^..

^- = V cos « ; ^~ = V siu ci — gt; (1)

X =z V cos {(t; 1/ = V sin uf — y/l\ (5J)

E(|uation8 (1) and (2) give the coordinates of the particle

and its velocity parallel to either axis at any tinio, f.

Eliminating I between eipiations (2) we obtain

f/^
y = X tan « — .^ /—r"
'' Zv' cos'' « (3)

which is the C((uation of the trajectory, and shows that the

particle will move in a {jurabola.

152. The Parameter ; the Range li ; the Greatest
Height II \ Height of the Directrix.—E(piai ion (:j) of

Art. 151 nniy be written

„ 2r'^ sin rt cos a 2)1^ ens'* «
x* X = y,

(I 9

or
1^ sin'^ «A/ i»^ sill « cos «V "Zv'cos'nl j** sin'^ «A ,,

Hy comparing this with I he ecjiiation of a paraboin

roforrel to its vertex as origin, wo find lor

the ttbscisaa of the vertex =
(''* sin a cos «

g
(^)
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the ordinate of the vertex =:
v^ sin^ «

2^ '
(3)

the paramder (latus rectum) = (4)

And by transferring the origin to the vertex (1) becomes

, 2v- cos* aa^= —
y (5)

wiiicli is the equation of a parabola with its axis vertical

and tlie vertex tiie higlicst point of the curve.

Tlie distance, OB, between the point of projection and

the point wliere the pntjectile strikes the horizontal plane

is called the liidige on tiie horizontal jtlune, and is tlie

value of X when y — 0. I'utting ^ = in (3) of Art. 151

and solving for x, we get

the horizontal range R = OB
?/* sin 2a

(<o

which is evident, also, goometrically, as OB = 200; tluit

is, tiie range is etjual to twice the abscissa of the vertex.

It follows from (0) that the range is the greatest, for a

given velocity of projection, when « — 45
', in which ca.se

the range = — •

ff

Also it appears from (fi) that the range is the same when

a is replaced l»y its complement : that is, lor the same

velocity of projection the range is the same for two ditTer-

ent angles tliiit are eomplements of each other. Il" « = 45°

the two angles iu'eoine identical, and the range is a

mu\ininin.

CA is eidled ihv (/rra test /iriii/it, II. of ilie ))rojectile, and
,.3

is given by (;}) which, when <« = 4.-)° becomes j-- (7)



cos^

«

(3)

(^)

1) becomes

(5)

axis vertical

rojectioii and

izoiital plane

, and is the

) of Art. 151

= 20C; tiiat

e vt'itox.

reatest, for u

which case

3 same when
•r tlie same

p two diffor-

If « = 45°

range is a

ojectile, and

r (7)
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TJie height of the dinxlrir — CD

t'2 sin^ a . ii^ cos'"' « v^

269

(«)

Hence when « = 45° the focus of tlie parabola lies ii\

the horizontal line through the point of projection.

153. The Velocity of the Particle at any Point of

its Path.— Let V be the velocity at any point of its path,

then F^ = (||)'+ (;^)', or by (1) of Art. 151

= v^ cos^ « + (('2 sin2 « — 2/' sin itgt + (ff^)

To acquire this velocity in falling from rest, the particle

must have fallen through a height ^j-, (G) of Art. 140, or

its equal

= PS.

Hence, the velocity at any point. P, on the curve is that

which the ])article would acquire in falling freely in vacuo

down the vertical height SP; that is, in falling from the

directrix to the curve ; and the velocity of i)rojection at

is that which the particle would actiuire in falling freely

through the height CD. The directrix of the puralmla is

therefore determined by the velocity of projection, and is iit

a vertical distance above the point of i)rojection equal to

that down which a i)article falling would have the velocity

of projection

154. The Time of Flight, T, along a Hoizontal

Plane.—Put ^ = O in (IJ) of Art. IT)!, and .solvi. for r. the
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1 t \ \ A J 2i'' sin « COS rt ^, , ,, ,values of which arc and lint tlie liorizon-

tal velocity is v cos «. Jli-nce ^/le time of Jlii/hf — 'if sill r<

wiiicli varies as the sine of the inclination to the axis of

155. To Find the Point at which a Projectile will

Strike a Given Inclined Plane passing through the
Point of Projection, and the Time of Flight—Let the

inclined plane make an angle )J with the horizon; it is

evident that we have only to eliminate y between y = x tan

and (3) of Art. lal, which gives for the abscissa of the

point where the projectile meets ihe plane

a;, = 2v^ cos « sin (« — (3)

(J
cos (i

and the ordinate is
(1)

_ 'iv^ cos a tan /3 sin (« — /3)

Hence the time offlight

rp _ Xj _ 2v sin (« — (3)

V cos « g cos /3
(2)

156. The Direction of Projection which gives the
Greatest Range on a Given Plane.—The range on the

horizontal piano is

?'* sin 2a

which for a given value of v is greatest wlion a = - (Art.

152).

The range on the inclined plane = ,r, sec (3

_ 2v^ cos n sin (« — ^3)
""

g cos* /3
(1)
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the horizon-

_ 'It' sill fi

~
.'/

iL' axis of ./•.

}jectile will

through the

;ht.—Let tile

jrizon ; it is

en y = X tan

bscissa of tiie

(1)

(2)

b gives the

•ange ou tlio

K = 7 (Art.

(1)

To find tlie value of « which niakes tliis a maximum, wo

must equate to zero its derivative with respect to «, wliich

gives

cos (2« - i3) = ;

and hence

(2)

(3)

which is the angle which the direction of projection makes

with the inclined plane when tlie range is a maximum;

that is, the projection bisects the angle between the

inclined plane and the vertical.

In this case by substituting ill (1) the values of « and

(a _ |3) as given in (2) and (3) and reducing, we get

the greatest range = v2

g{l -h sin j3)
(4)

157. The angle of Elevation so that the Particle

may pass through a Given Point—From Art. 152,

there are two directions in whicli a particle may be pro-

jected so as to reach a given point ; and they are equally

inclined to the direction of projection (« = jj-

Let the given point lie in the plane which makes an

angle p witl» tlio horizon, and suppose its abscissa to be h
;

then we must have from (1) of Art. 155

2v^
cos « sin (« — 0) = h.

g cos (i

If a' and «" be the two values of « which satisfy tliia

etiudtion, we must have

cos «' sin {n — (i) = cos «" sin (a" — P)
',
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and therefore «" - /3 = ^
- «',

or «"-4(.:+»)=s(.j+fl) «, (1)

But eaeli member of (1) is the angle between one of the

direetions of projection and the direction for the greatest

range [Art. 15G, (2)]. Hence, as in Art, 152, the two

direetions of projection wliieii enable the particle to pass

through a j)oint in a given plane through the point of pro-

jection, are equally inclined to the direction of projection

for the greatest range along that plane. (See Tait and

Steele's Dynamics of a Particle, p. 89.)

158. Second Method of Finding the Equation of

the Tr^yectory.—By a somewhat simpler method than

that of Art. 151, we may find the e(|uation of the ])ath of

the i)rojectile as the resultant of a uniform velocity and an

acceleration (Art. 148).

Take the direction of projection (Fig. 78) as the axis of

X, and the vertical downwards from the point of projection

as the u-Kis of ij. Then (Art. 149, Rem.) the velocity, v,

due to the ])rojection, will carry the i)article, with uniform

motion, parallel to the axis of j; while at the same time, it

is carried with constant acceleration, (/, parallel to the axis

of y. Hence at any time, /, the eraations of motion along

the axes of a; and y respectively are

X = vt,

y = W-
That is, if the particle were moving with the velocity v,

alone, it would in the time /, arrive at Q; and if it were

then to move with the vertical acceleration y alone it would

in the same time arrive at P\ therefore if the velocity v
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and the acceleration g are simuUaneous, the particle will i^

the time i arrive at P (Art. 140, Rem).

Eli'iiinatiug / we have

which is the e({uation of a parabola referred to a diameter

and the tangent at its vertex. The distance of the origin

from the directrix, being |^tii of the coetticient of y, is

'^g
, as ill Art. 152, (8).

EXAMPLES.

1. From the top of a tower two particles are projected at

angles « and i3 to the horizon with the same velocity, v, and

both strike the horizontal plane passing through the bot-

tom of the tower at the same point; find the height of

the tower.

Let h =: the height of the tower; v =r the velocity of

projection ; then if the ])article8 are projected from the

edge of the top of the tower, and x is the distance from the

bottom of the tower to the point where they strike the

horizontal plane we have trom (3) of Art. 151

— ?i = x tan « — "^ (1 -f tan' «),

gx^
h = x tan /3 -

l^j
(1 -h tan' (3),

by subtraction

X =:
2v^

g (tan « -|- tan (i)

which in (1) or (2) gives

2t^ cos a cos
_

«/sin(« + (i)
'

, 2iP cos « cos (i cos (« -f- j3)

- Tpin (« -I- Hjy

(1)

(2)

m
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2. Particles jiro projectod with a given velocity in all

lines in a vertical plane from tiu> point 0; it is re((uireil tn

Ind the locus of tiieir highest points.

Let (x, y) be the highest point; then iVoni (•J) and (;J) of

Art. 152, we have

X :—
i^ sin « cos a

y =

!/

r' sin^ «

•^ff

therefore sin^ « = ~-^ , and oos'^ « = f-j--

Adding

v^

4/ + a«
iv^y

which is the equation of an ellijtse, whose major axis = -
;

V* . .

'.

and the minor axis = — ; and the origin is at .the extremity

of the minor axis.

3. Find the angle of projection, <«, so that the area con-

tained between the patli of the projectile and the hori-

zontal line may be a maximum, and find the value of the

maximum area.

H 1

Ans. n = 60° and Max. Area = , (3)*.

4. Find the ratio of the areas Ai and A, of the two

parabolas described by projectiles whose horizontal ranges

are the same, and the angles of projection are therefore

complements of each other.
Ans. ~ = tan' «.

Aj

159. Velocity of Discharge of Balls and Shel's

from the Mouth of a Gun. —As the result of niinieiMii.v
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experinieiits made at Woolwieli, the followini,' t'nrimil;i w;,.-

regarded as a eorreet expression for the velocity of liiilN ;iii(i

siiells, on .|iiitting the gun, and fired with iiiodeiair

charges of powder, from the pieces of orilnance coininonlv

used for military purposes:

where r is the velocity in feet ])er second, P the weight of

the charge of powder, and IT the weight of the hall.

For tile investigation of the path of a projectile in the

atmosphere, see Chap. I of Kinetics.

160. Angular Velocity, and Angular Accelera-

tion.— Hitherto the method of resolving velocities i'kI

accelerations along two rectangular axes has l)een employed.

It remains for iis to investigate the kinematics of a particle

descriljing a curvilinear path, from another point of view

and in relation to another system of reference. Hefore we

consider velocities ami accelerations in reference to a

system of polar co-ordinates, it is necessary to enquire into

a mode of measuring the (ingular irlocifi/ of a particle.

Anyulnr Velocity may he drfiicd ax the rti/c of aiiyiildr

nio/inn. Thus let (/•. f)) he the jjosition of thi point /'. and

sii])pose that t'.ie radius vector has revolved uniformly

tiirougii the angle in the time /, then denoting the

angular velocity hy o>, we shall have, as in linear velocity

(Art. 7)

(.) =z
e

t'

If however the radius vector does not

revolve uniformly througli the angle 6

we may always regard it as revolving

uniformly through the angle dO in the

infinitesiriial of time di ; hence we shall

have as the proper value of w,
n^7i

r
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U) =:
(Id

dt'
(J)

Hence, whether tlie angular velocity be nniform or

variable, it is the ratio of the angle described by the radiiia

vector in a given time to the time in which it is described;

thus tlie increase of the angle, in angular velocity, take

the place of the increase of the distance from a fixed })oint,

in linear velocity, (Art. 7).

Anf/ular Acrelern/ioii is tltc rafc of incri-ase of angular

velocity : it is a velocity increment, and is measured in the

same way as liiirar acrclernlion (Art. !t). Thus, whether

the angular acceleration is uniform or varialjle, it may
always be regarded as uniform during the infinitesimal of

time dt in which time the increment of the velocity will bo

d(>). Hence denoting the angular acceleration at any time,

/. by
<l>,

we have

^ =
dt

IQf'"""'<i>

dfi'
(2)

and thus, whether the increase of angular velocity is

uniform or variable, tiie angular acceleration is the increase

of angular velocity in a unit of time.

The following examples are illustrations of the preceding

mode of estimating velocities and accelerations.

EXAMPLES.

1. If a particle is placed on the revolving line at the

distance r from the origin, and the line revolves with a

uniform angular velocity, w, the relation between the linear

velocity of the particle and the angular \elocity may thus

be found.
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Let d6 be the angle throiigli wliich the radius revolves in

the time dt, ai'd let dx l)e the path described by the particle,

so that ds = rdO ;

then
ds do

; ) that the linear velocity varies as the angular velocity and

• he length of the radius jointly.

2. If the angular acceleration is a cons^lnt, as (p ; then

from {'^) we have

</26>

df'
1 = 0;

dd

dt
^ V + '-'o.

and e = ^^/' + i.,J + 0„,

where w^ and 6^ are the initial values of u) and 9.

Hence if a line revolves from rest with a constant angular

acceleration, we have

6 = k/</2

;

and the angle described by it varies as the s(|uari. of the

time.

']. If a particle revolves in a circle uniformly, and its

place is continually projected on a given diameter, tiie

linear acceleration along that diameter varies directly as

the distance of the projected place from the centre.

Ijet 0) be the constant angular velocity, 9 the angle

between the fixed diameter and the radius drawn from the

c'.'Mtre to its place at the time /, x the distance of this

projected place from the centre. Then, calling a the

radius of the circle, we have

iC = (I cos 0,
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dx . ^dO . „-— = — « Sin ,. = — flw sin d;
at dt '

d^ do

whicli proves the theorem.

4. If tlie angular acceleration varies as tiie angle

generated from a given fixed lint, and is negative, find tlie

angle.

Here the equation wliich exju-esses the motion is of tlie

form

§ = -»
Calling « the initial value of d we find for the result

= ic cos kt.

5. If a particle revolves in a circle with" a uniform

velocity, sliow that its angular velocity about any point in

tlie circumference is aNo uniform, and ecjual to one-half of

what it is about the centre.

At jtrescnt this is sufticient for the general explanation

of angular velocity and angular acceleration. We shall

return to tlie subject in Chap. 7, Part III., when we treat

of the motion of rigid bodies.

161. The Component Accelerations, at any instant,

Along, and Perpendicular to the Radius Vector.—
Let (/', 0) (Fig. 79) be the place of the moving iiartidc, I\

at the time /, {.t; //) being its place referred to a system of

rectangular axes having the same origin, and (he r-axis

coincident with the initial line. Then

x = r cos 0\ 1/
~ r sin S

; (1)
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tiierefore

and

fPx rcPr

Similarly

dx dr ^ r^dd^ = ^co8e~rBm0^; (3)

©]-»-[>.dr dd
,

(PS-\ . a ,n^

'di-di+'dPr''^-^^^

(Pdl

which are the accelerations parallel to the axes of x and y.

Resolving these along the radius vector by multiplying (3)

and (4) by cos B and sin resjjectively, since accelerations

may be resolved and conij)ounded along any line the same

as velocities (Art. 149), and adding, we have

dt^

^ ,
(Py . „ (Pr /ddY ,..cos0 + ^sm0 = ^p-ry; (5)

which is the acceleration along the radim vector.*

Multiplying (3) and (4) by sin 6 and cos respectively,

and subtracting the former from the latter, we get

(Py

dP
cos d

(Px . „ , dr de d?d

dP ^'" ^ = ^ dt
•

It
-' '

rfr»

_ 1 rf / 2
</6i\

~ r dt V' dtr (6)

which IS the acceleration perpendicular to the radius i'rctor.\

162. The Component Accelerations, at any in-

stant, Along, and Perpendicular to the Tangent—
U't (j; y) (Fig. 79) be the place of the moving particle. I',

at tiic time /, and .v Ihc Icnulli of the arc described during

• Hiinictliiu'H lalli'd Ih,. lailiui aceekra'ion.

t Sonietlmeii callud the traniiv«r»(U aectltfalUm.

ita
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that time. Then the iici'ek'rations along the axes of x and «/

JO JO 7 1

iii'e -7^ and yf ; and the direction cosines* are ,- and ~^-
ur at' lis Us

To find the acceleration along the tangent we must multi-

ply these axial accelerations by .^ and
'-f,

respectively, and
(IS CIS

add. Thus the tangential acceleration, T, is

„ _ ^ dx iPy iy

dfl
'

ds
•"

rf/2 ds

'

(1)

Since d»^ = dT> + dy\ therefore, by differentiation we
have

ds (Ps = dx {fix + dy d?y

;

and dividing by ds dP we get

iPs _ (Px dx fPy dy

dfi

which in (1) gives

dP '

ds + dP '

ds'

~
dl^'

(2)

for the acceleration alony the tangent.

Similarly we have for the normal acceleration, N,

~Wi'ds~ dt^
' ds

__ (d^y dx — (Px dy) d^~
'd? dp

1 rfs*= - • -A3 , (by Ex. 4, p. 144, Calculus),

where p is the radiu.s of curvalure ;

* C'Dvliiuii of Ihi' aiiijlus which thu tiiii^'oiit inukos with tlie axes of r and y.
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(3)

vf :; is ihr vplocity of the particle at the point (x, y).

Hence ut any jwint, P, of the trajectory, if the accelera-

tion is resolved along the tangent to the curve at P and
along the normal, the accelerations along the two lines are

respectively

df^
'^"^ r

163. When the Acceleration Perpendicular to
the Radius Vector is zero.—Then from (U) of Art. 161

we have
,dd
'

dt
constant = h suppose;

and

dd
•*• di-

h

dr

dt

dr do
~ dd '

dt

h
- ri

dr
' de'

dfi ~ r*' d0i ^ 1^ \dBI
'

which in (5) of Art. 161 gives

the acceleration along the radius vetttor

,.4 \((p /•MrfO/ r8'

an expression which is indei^ndent of /.

(1)

'his may he put into a more convenient form as follows:

\H r = ; then
u

dr 1 du
_

de M» ' rfe

'
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' dm ~ ?<2 d(P
'^

1? \dd}
'

wliich in (1) and reducing, gives

tiie acceleration along the radius v<»oior

(-•)

P^rom these two formulae the law of acceleration along

the radius vector may be deduced when the curve is given,

and the curve may be deduced when the law of accelera-

tion along the radius vector is given. Examples of these

processes will be given in Chap. {-Z), Part III.

164. When the Angular Velocity is Constant—
Let the angular velocity be constant = w suppose. Then

dd

di=''*

therefore from (5) of Art. 161

the acceleration along the radius vector

The acceleration perpendicular to the radius vector

dr

(1)

= 2(i)

df (^)

and both of these arc indei)endent of 9.

The following example is an illustration of these

formula'

:

A particle describes a i)ath witii a constant angiihir

velocity, and without acceleration ahnig the radius vector;

find (1) the equation of the path, and (2) the acceleration

perpendicular to the radius vector.
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(1) From (1) w" have, from the conditions of the

question.

Integrating we have

w2r — 0.

dfi
— 0)8 (r* _ a?)f

dr
\t r = a when -3- = 0.

at

Therefore
dr = o)dt',

(r2 _ r,2)i

if r = o when t = 0,

.'. r = 5(r' + e-"'). (3)

de
Also, as

Yf
= o), therefore 6 = oit, it 6 = when < = 0.

Substituting this value of u)t, we have,

r = ,^{e» + e-o)
;

which is the path described by the jiarticlc.

(*)

{'i) Tjet Q be the required acceleration perpendicular to

the radius vector, then from (2) we have

Q^^ii
dr

(it

uu)^ U^ — t'-"'). fi'om (3)
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= aw2 (e» — e-9)

(5)

wliich is the acceleration perpendicular to tlie radius
vector.

The preceding discussion of Kinematics is snfticient for
this work. There are various other problems whicli might
be studied as Kinematic questions, and inserted here ; but
we prefer to treat them fioni a Kinetic point of view.

For the investigation of the kinematics of a i)articie

describing a curvilinear path in space, see Price's Anal.
Mech's, Vol. I, ]). 430, also Tait and Steele's Dynamics of
a Particle, p. 12.

EXAMPLES.

1. A particle describes the hy])erbola, xy = P; find (i)

the- acceleration i)arallel to tiie axis of x if the velocity
parallel to the axis of // is a constant, (3, and (2) find the
acceleration iiarallel to the axis of // if the velocity parallel
to the axis of a: is a constant, «.

?^.^- (2)
^"'A «.v, (i)=^^-«; (a) -i^f

2. A ])artic]e lescribes the paral)ola, ?/» = 4a.r • find
tile acceleration parallel to the axis of //if the velocity
l)arallel to the axis of x is a constant, «. 4^,vA U.S. —

:5. A particle describes the logarithmic curve, // z= a-^;

find (1) the .f-component of the acceleration if the y-com-
ponent of the velocity is a constant, fi, and (2) find the
//-component of the acceleration if the r-comi)onent ..f the
velocity is a constant. «.

^"'-
^'^-«^log«' (•^)«''0»g«)^y-
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(5)

the riKlius

iiftioioiit for

liicli might
(I here

; but

P view.

)f a particio

Vice',s Anal.

Dynamics of

^•2; find (1)

the velocity

(S) find the

city parallel

'ifi-r ; find

lie velocity

t
e, y — a' ;

the y-com-

2) find the

lenl of (he

\ogay-y.

4. A particle describes the cycloid, the starting point

being the origin; liud (1) the j-cornponent of the accel-

eration if the //-component of the velocity is /3, and (2) find

the _y-component of the acceleration if the x'-comptnient of

the velocity is «.
Ahs. (1/

li^ay

{Zay
„ 8 '

(^)-

5. A particle describes a catenary, y = ic" -}- <• "1;

find (1) the .'-component of tlie acceleration if the //-com-

ponent of the velocity is (i, and (2) find the ^-component

of the acceleration if the r-compoiient of the velocity is «.

yins. (I)__^«^_..
(//-«')«' i^)ty.

6. Determine how long a particle takes in moving from

the point of projection to the furtlur end of the latns

rectum. . /• , . ,
Atifi. - (sin « + cos «).

//

7. A gun was fired at an elevation of 50°; the ball

struck the ground at the distance of 244!) ft.; find (1) the

velocity with which it left the gun and (2) the time of

flight, {g = 32i).

Alls. (I) 282.8 ft. per sec; (2) 13.47 sees.

8. A ball fired with velocity n at an indiiuition « to the

horizon, just clears a vertical wall which subtends an angle,

(i. at the point of projection; determine the instant at

which the ball just clears the wall.

u sin « —
I///

U cos rt

Ans. tan (i.

5). In the preceding example determine tiie horizontal

distance between the foot of the wall and the i)oitit where

the bill! strikes the ground.
Aths. — cos* « tan H.

U
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10. At the (listunee of a quarter of ii mile from the bot-

tom of ii dirt", wliicli is 120 It. liigli, a shot is to be lireil

which sliall just clear the cliff, and pass over it horizon-
tally

; find the angle, «, and velocity of projection, v.

Ans. a = 10" 18'; ?• = 490 ft. per sec.

the range i-
11. When the angle of elevation is 40

2449 ft.
; find the range when the elevation is 29f'

.

Ans. 2131.5 ft.

12. A body is projected horizontally with a velocity of

4 ft. ])er sec: tind the latiis rectum of the parabola de-
scribed, (// = ;}•>). Ans. 1 foot.

13. A body projected from the top of a tower-at an angle
of 45" above the horizontal direction, fell in 5 sees, at a
distance from the bottom of the tower equal to its altitude;
find the altitude in feet, {(/ = 32). Ans. 200 feet.

14. A ball is fired up a hill whose inclination is 15°;
the inclination of the i)iece is 4.V', and the velocity of pro-
jection is 500 ft. per sec; find the time of flight before
it strikes the hill, and the distance of the place where it

falls from the point of projection.*

Alls. T = 10.n sees.; R = 1.121 miles.

15. On a descending jjlane whose inclination is 12°, a
l)all fired from the top hits the plane at a distance of two
miles and a half, the elevation of the piece is 42°

; find the
velocity of projection. Ans. v = 579.74 ft. per sec.

K). A body is projected at an inclination « to the hori-
zon : determine when the motion is i)erpendicular to a

plane which is inclined at an angle ti to the horizon.

, n sin <( — (if.

A US. •' — ± cot 3.
II cos (C

-L. r-

' The ruiigf on tlie iiirlincil plane.
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17. Calculate the maxiuuiin range, and time of flight,

on a descending iilane, the angle of depression of which is

15°, tlie velocity of projection being 1000 ft. per sec.

Ann. Max. range = 7.it8 miles ; T = 51.34 sec.

18. With what velocity does the ball strike the plane in

the last example ? Ans. V = VMY.i feet.

lit. If a ship is moving horizontally with a velocity

= ;](/, and a body is let fall from the top of the mast, find

its velocity, V, and direction, 0, after 4 sees.

Auk V = 5//; = tan ' ^.

20. A body is jirojected iiorizontally from the top of a

tower, with the velocity gained in falling down a space

eipial to the height of the tower; at what distance fron\

the base of the tower will it strike the gronml ?

Ans. R = twice the height of the tower.

21. Find the velocity and time of flight of a body pro-

,jecled from one extremity of the base of an C(iuilateral

triangle, and in the direction of the side adjacent to that

extremity, to pass through the other extremity of the base.

, .
/-«.'/. 'p _ . /2rtV3

V v';5 V c/

22. Given the velocity of sound, V; find the horizontal

range, when a ball, at a given angle of elevation, «, is so

jirojectcd towards a jicrson that the ball and sound of the

discharge reach him at the same instant.

A US. " tan «c.

//

23. A body is projected horizontally with a velocity of

4f/ from a point whose height al)ove the ground is Ki/y ;
tiiid

tiie direction of motion. ^>. (!) when it has faUeii iiali'-way

to the ground, and (2) when half the whole time of falling

hag elapyed. - -1
.l,,.v. (1)« = 45°; (2)0 tan

Vi
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\

^4. Particles are projectod witli a given velocity, /•, in

all lines iii a vertical i)lane from tiie point ; find the locus

of them at a given time. /.

Aus. x^ + (ii + V/y/-')^ = vVK whicii is the equation of a

circle whose radius is rt and whose centre is on the axis of

// at a distance hjl'^ below the origin.

2."). How much powder will tiirow a i;}-inch shell*

•tOOO ft. on an inclined plane wIdsc angle of elevation is

10° -10'; the elevation of the mortr.r being '.]b\

Alts. Charge = 4.07 lbs.

20. A ju-ojectilc is discharged in a horizontal direction,

with a velocity of 450 ft. j)er sec, fn»m tlie summit of u
conical hill, the vertical angle of which is 120 ; at what
distance down the hillside will the projectile fall, and what
will be the time of flight?

Alls. Distance = 2812.0 yards ; Time =: 10.23 sees.

2?. A gun is placed at a distance of 500 ft. from the base
ofa cliff which is 200 ft. Iiigh : on the edge of the cliff

there is built the wall of a castle OO ft. high ; find the
elevation, «, of the gun. and the velocity of discharge, r,

in order that the ball may graze the top of the castle wall,

and fall 120 ft. inside of it.

Alls, a = 5.3° VS ; /• = 105 ft. per sec.

28. A piece of ordnance bui-st when 50 yards from a
wall 14 ft. high, and a fragment of it. oi'iginally in con-
tact with the ground, after grazing the wall, fell ft.

beyond it on the oi)j)osite side ; find how high it rose in
fli^" 'lir- AnR. U ft.

* The weight of a 13-lncli shell Is 196 lbs.
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CHAPTER I

.

LAWS OF MOTION—MOTION UNDER THE ACTION OF

A VARIABLE FORCE- MOTION IN A RESISTING

MEDIUM.

165. Definitions.— /I'l^eZ/Vv is thttt branch of Dynamioi,

which treats of the motion of bodies under the action of

forces.

la Part I, forces were considered with reference to the

pressures which they jirodut-ed upon bodies at rest (Art.

15), i. e., bodies under the action of two or more forces

in equih rium (Art. 20). In Part II we considered the

purely geometric properties of the motion of v. point or

j)article without any reference t(» the causes producing it,

or the iiroperties *)f the thing moved. We arc now to

consider motion witli reference to the causes which produce

it, and the things in which it is produced.

Tlie student must here review Chapter T, Part I, and obtain rlear

conceptions of Mumentum, Accileratinn of Momentum, and the Kiiietir

meosnre of Foref (Arts. 12, 13, 19, sind 20), as this is necessary to a full

iiiiderstandinff of tl)e fundnniental laws of motion, on the trtitti of

which all our succeedintf invest ifrations are founded.

166. Newton's Laws of Motion.—The fundamental

13

Em



2'JO XEtyroys imwn of Mono.\.

})riiicii)lo;i in lueKnlaiicL- with wliicli inotiuii takes place are
fiiiboilicd ill throe stutonienta, generally known an Mirfon's
Jmh'i of Motion. These laws nnisl he eonsidered as resting
on con viel ions drawn from ohservation and experiment,
and not on intuitive perception.* The laws are the fol-

Law L—Every hndij contimtes in its state of rest
or of itiiiform niotiau in a straight line, except in
so far as it is conipclied by force to change that
state.

Law W.—Change of motion is proportional to the
force applied, ami takes place in tlie direction of
the straight line in adiich the force acts.

Law Ul.—To cilery action there is always an
eqaal and contrary reaction: or. the niiitaal ac-
tions of any two bodies are always eqaal and oppo-
sitely directed.

167. Remarks on Law I.—Law I suppii.M u« with a
(lofiiiition (if loic<'. It iiulicatcs tliat force i.s that whicii tends to
change a bodj'H state of rest or of miiforni motion iu a straiglit line

:

for if a hody docs not continue in its state of rest or of uniform mo-
tion in a straight line it must be under the action of force.

A body has no power to rhange its own state as to rest or motion
;

when it is at rest, it lias no ])ower of jmttiiig itself in motion ; wlieu
in motion it has no power of increasing or diminishing its velocity.

Matter is inert (Art. 3). If it is at rest, it will remain at rest ; if it is

moving with a given velocity along a rectilinear path, it will continue
to move with that velocity along tlmt path. Ft is alike natural to

matter to l)e iit rest or in motion. Whenever,' therefore, a body's

state is changed either from re,-t to motion, or from motion to rest,

or when i;.< velocity is increase I or diminished, that change is due 1

1

some external cause. This cause is I'lilliul fmt' (Art. 14); and the

W(>i<l/;>/w is used in Kinetics in tliis nuaniug only.

• TUonii-o ajid TaitV Nat. Pliil., p. ^1.
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/./•..l/.l/.'A.S O.V LAW II. X»!tl

168. Remarks on Law II.—Law II asserts that if any

,niri. jrenerates motion, a double force will generate doulile motion,

niid so on, wh.'thor applied simultaneously or successively, instau

i;ineously or gradually. And this motion, if the Ixxly was movintf

I) forehand, is either added to the previc-us motion if directly cons] ir

iujf with it, or is subtracted if directly oi)poscd ;
or is geometrically

conipouiided with it according to the principles already explaiiuvl

(.\rt. 29l, if tlie lino of previous motion and the directi(jn of the f..rce

are im-liiied to eucli other at an angle. The term 7Witi»n here meai.s

qiiaidity of motion, and the phrase c/(^(//i/e o/ «"<'"« here means rnte

iijChnnyc of qniintity of nwlioii lArt. 1:5). If the force be Unite it will

require a finite time to produce a sensible change of motion, and the

change of momentum pHxluccd by it will depeuil upon the time dur-

ing -.vhich it acts. Tlu? change of motion must then be understood tir

be the change of momentum produced per un t of time, or the rut

of change of momentum, or nccelerati..ii of momentum, whicli agrees

with the principles already explained (.Arts. 13 and 20). In tiiis law

nothing is said about the actual motion of the body before it was

acted on by the force; it is only the c/cn/.'/c of iiiolion that concerns

us. The same force will i)roduce precisely the same change of mo-

tion in a body; whether the bwly be at rest, or in motion with any

velocity whatev(-r.

Siiifo, wlu'ii .*('viM-al furees act at oiicl' oii u particle either

at rest or in motion, the .sceoii'l law of motion is true for

erery ouv of these forces, it follows tliat each must htive the

same etfect. in so far as the chaiiac of motion i)riHlucecl l)y

it is concerneil, as if ;/ were the only force in action.

Hence the assertion of the secoiul law may be put in tiie

following form :

Wlun (1)11/ nuinho- offo ires ort simuHaneotn^hj on a hody,

ivhellier at rrnf or in motion in any dirrrtion. mrli forrr pro-

i/iir<'s in the hoihj llie sanu- c/mnyo of motion as if it alone

had acted on llic hody at rest.

It follows from tliis view of tlie law that all problems

which involve forces actiiifr siiiiiiltancoiisly may be inaicil

as if the forces acted .snrcrssirrJy.

The operations of this law have p' ready been considered in Kine



292 REMAUKS OX LaW IT.

Jiiatics (Art. 149) ; but motion there was understood to mean velocity

only, since tlie maes of tlie IkkIv was not considered. Tbis law in

eludes, therefore, the law of the coniijosition of velocities already
referred to (Art. 29). Another consequence of the law is the follow-

ing : Since forces an; measured by the changes of motion they | ro-

(luce, and their directions assigned by the directions in which the.se

dianges are produced, and since the changes of motion of one and tlie

i;aine body are in the <lirectiona of, and proportioniil to, th(( changes
of velocity, therefore m single force, measured hy the resultant change
of veloci*y, and in its direction, will be the equivalent of any number
of simultaneously acting forces.

IloilfO,

The rcsidiaitf of an// number of concurrin(/ forces is to be

found by the same (jeomeirie process as the resultant of any
number (f simuJlaneovs velocities, and conversely.

From this follows at once tlio J'oly/jon of Velocities aiifl

the Parallelopiued of Velocities fi-oni the Polygon and
Parallcloijipod of Forces, as was described in Art. 14:;'.

This law also gives us the means of measuring /--m-, and ahso of

measuring the maitii of a lio<ly : for the actions of diflereiit forces upon
the same body for e(|ual times, evidently produce <'!ianges of velocity

wliich are proporliioia' to tin ./'.(/rev Also, if eipud forces act on dif

f'rent IxMlies for e(|ual times, the changes of velocity i)ro(luced must
be iiirersi''if as the mr/.«.v,,v of the bodies. Again, if difterent bodies,

each acted on by a force, accpiire in tli<^ same time the same changes
of velocity, the forces must bi' ])roi)ortlonal to the masses of the
bodies. This means of measuring force is i)ractical]y the same as

that already deduced by abstract reasoning (Arts. 1!) and 30).

It appears from this law. thjit every theorein of F^iiie-

matics coiiiu'cted with acceleration litis its counterpart in

Kinetics. 'riuis. the mcnsiire (if acceler;if ion or velocity

increment, (.\rt. '.)). wiiich was discn.ssed in Chap. I (Arl,<.

H and H). and in Kinemiitics (.\rt. i:;.')). and which is

denoted hy /'or ils e(|iial ,'„. is al.so liie ell'ect and the
III-

mciisiiro of force ; tiu'refore all liie icsnlls of the e<iiia(ion
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its various forms, and the reniari<s wliich have been made

on it, are applicalile to it when ./' is tiie accelerating force.

Thus, (Art. 10'^), we sec tliat the force, under wiiich a

particle describes any cnrve, may l)e resolved into two

components, one in the tangent to the curve, the other

/o/rfl/(/,s the centre of curvature: liieir nuignitudes being

the acceleration of momentum, and the product of the

momentum into the angular velocity about the centre of

curvature, respectively. In the case of uniform motion,

the first of these vanishes, or tiie whole force is perpen-

dicular to the direction of motion. VViien there is no force

perpendicular to tiie direction of motion, there is no curva-

ture, or the path is a straiglit line.

Hence if we suppose the particle of mass w to be at the

point (.(•. ;(/. z), and resolve the forces acting on it into the

three rectangular eomj)onents, X, Y, Z, we have

in
dPx

tlt^

X in
iPz

(IP
(3)

In several of the chapters these ecpititions will be sim-

l)litied bv assuming unity as the mass of the moving

particle. When tliis cannot be done, it is sometimes cim-

venient to assume X. Y, Z, as the component .orces on the

unit muss, and {-l) l)ecomes

m -r-, — niX, etc.
dr

from which m may of course be omitted. It will be ob-

served that an equation such as

(Px

(U^
= X

may be interpreted either as Kinctical or Kinematical; if
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tlie former, tlic unit of muss must bo undcrstoou as a liio-

•or on till' li'l'tliaiid siilo, in wiiicii case X is liic ./-ooni-

ponent. i'<ir I'li' unit of mass, of [\\v wliolc t'oiro ' xorled (<ii

till' niuvi'^ l)oily.

'I'!'? lirst two liiwH, Imvo, tlieroforc, liirnislicd us with ii dcfinUinn

a. . II uiciiKiirc oi I'orci'; iiiul tlicv also uliow how to coiiipouiui, and
ncriit'on' liow to rusolve, t'orcos ; ami also liow to iaveftigati' tlie

eoiiditioiis of ((luilibriuin or motion of a single particle subjected to

given forces.

169. Remarks on Law III.— According to Law III, if one
lM)dy presses or draws another, it is pressed or drawn by this other

with an e(|ual force in the opposite direction (Art. 10). A horse

towing a Ijoat on a canal, is pulled backwards l>y a force e(]ual to that

which he impresses on the towing ro|ie forwards. If one body strikes

another body and clmiitres the motion of the other body, its own
motion will Ite changi in an e(iual quantity and in the opi)osite

direction; for at each instant during the impact the l)odio8 exert on
eaeJi other e<|ual and opposite pressures, and the momentuui that one
body loses is eiputl to that wliicli the other gains.

Tlie earth attracts a falling pebble with n certain force, while the

peblile attracts the earth with un eijual force, 'fho result is thai

wliile the pebble moves towards the earth on account of its attrac-

tion, the <!artli also moves towards tlie pebble under the influence of

the attraction of the latter ; but the mass of the earth being enor-

mously greater than that of the pebble while the forces on the two
arisinjr from their nnitual attractions are e()ual, the motion jircKluced

thereby in the earth is almost incoiiiparalily less than that jiroduced

in the pebble, and is consecpiently insensible.

It follows that the sum of the (lunntities of motion parallel to any
fixed direction of tlie particles of any system influencing one another
in uiiy possible way, remains unchanged by their mutual action.

'I'lieivfori! if the centre of gravity of any system of niutually

iiiHuencing particles is in motion, it continues moving uniformly in a

straight line, unless in so far iis the direction or velocity of its motion
is changed by forces between the (lartich's and some ol/icv matter not

livtinKjiiKj til the .ii/.tt,m : also the centre of gravity of any system of

particles moves just as all the matter of the system, il concentrated in

11 iioint, would move under the influence of forces equal and parallel

to tlie forces really iicting on ils different parts. (For further
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(For further

remarks on these laws see Tait and Steele's Dynamics of a Particle,

i'honison and Tail's Nat. I'hil., Pratt's Mechanics, etc.)

170. Two Laws of Motion in the French Trea-

tises.—Newtou's Liiws of motiuii ai'o not adojjU'd in tlii"

iniiifipal French treatises : but we find in them two prin-

;iple.s only as borrowed from experience, viz.:

FiKST.—The Lav of Inert ia, that a body, not acted

upon liy any force, would ^o on for ever with a uniform

velocity. Thi.s coincides with Newton's First Law.

Second.—That the /'('/(K!//^ communicated is proporfional

lo the force. The ."i'coik/ and l/iird i^aws of Motion are

thus reduced to this second principle by the French writers,

esjiecially I'oisson and Laijlace.*

171. Motion of a Particle under the Action of an
Attractive Force.—-1 particle mores under a force of

attraction irlii^h is in it.i line <f motion, and varies directly

as tJa; distance of tfie particle from the centre offorce; it is

required, to determine the motion.

The ])oint whence the inlliu>ncc of a force emanates is

called the centre offorce ; and the force is called an attrac-

tive or a re/nilsire force according m it attracts or repels.

Let l)e the centre of force, P the ^,

positi(m of the particle at any time, /, r '

its velocitv at that time, and let OP =: .r.

-4A
Fig.BO MX

and OA = a, where A is the position <)t the particle when
'. = ; let /t = the absolute force j that is, the force of

attraction on a unit of mass at a unit's distance from 0,

which is supposed to be known, and is sometimes called

the strcHf/th of the tittraction. At pn'sent we shall suppose

• ParWinHOti'd MechnniCK, p. 187. 800 paper by Pr. Whowoll mi the princlplei*

«r nyiiiiniics, piirliculurly aa atated by Fruiicb writtTi* la tla' EkliiibufKb Juuraul of

Scli'uce, Vol. VIII.
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tlie mass of the particle to ho unity, as it simplifies the

('(Illations. 'Plien fix is the magnitude of the force at the

distance ,»• on tlie particle of unit mass, or it is the accelera-

tion at P ; and the e<(uation of motion is

(IP
= — fix (1)

the negative sign heing taken hecause the tendency of the

force IS to diminish x
;

'idx (Px

dt^
= — 2fj.x dx.

Integrating, we get

d^
dl^

u (rt2 - a^), (2)

if the particle be at rest wlien x = a and / = 0,

= fiidt,

the negative sign being taken, because ,r decreases as t

increases. Integrating again between the limits correspond-

ing to / = ^ and ^ = 0,

COS"' - = ui/,
a ^ '

t = ~T COS ' -• (3)

From (2) it appears that the velocity of the particle is

zero when x = a and — a ; and is a maximum, viz.: tifi^,

when ;(• = 0. Hence the particle moves from rest at A: its

velocity increases until it reaches where it becomes a
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iiiiiximum, and wliore tlie force is zero ; tlie particle passes

tlu'ough that point, and its velocity decreases, and at A', at

a distance =: — n, becomes zero. From this point it will

return, under tlie action of the Force, to its original posi-

tion, and continually oscillate over the space 'Za, of which

is the middle point.

Fi-om (3) we find when a; = rt, ^ = and when x = 0,

/ = —j-; so that the time of passing from A to = —v,

and the time from to A' is tiie same, so that the time of

7T

oscillation from A to A' is I'his result is remarkable,

as it shows that the time of oscillation is independent of

the velocity and distance of projection, and depends solely

on the strength of the attraction, and is greater as that is

less.

This problem includes the motion of a particle within a

homogeneous sphere of ordinary matter in a straight shaft

through the centre. For the attraction of such a sphere on

a particle within its bounding surface varies directly as the

distance from the centre of the sphere (Art. 133a). If the

earth were such a homogeneous sphere, and if AOA' (Fig.

80) represented a shaft running straight through its centre

from surface to surface, then, if a jiarticle were free at one

end, A, it would move to the centre of the earth, 0, where

its velocity would be a maximum, and thence on to the

opposite side of the earth, A', where it would come to rest;

then it would return through the centre, 0, to the side, A,

from where it started ; and its motion would continue to be

oscillatory, and thus it would move backwards and forwards

from one side of the earth's surface to the other, and the

time of the oscillation would be independent of the earth's

radius; that is, at whatever point within the earth's surface

the particle be placed it would reach the centre in the

same time.

i^m mm^
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Cow..— T(i find f/iis fiitic. Sinco /t is the attracKon at a

unit nf tlistaiico ami (j Hie attraction at the distance R, we

have /x — •-, which in / = --, elves

_ "" III

for the time it would take a body to move from any point
within the earth's surface to the centre.

If we put^ z= 32| feet and R = 3!)(J3 miles we get

/ = 21 m. f) s. about,

which would be the time occupied in passing to the earth's

centre, however near to it the body might be placed, or
however far, so long as it is within the surface.

172. Motion of a Particle under the Action of a
Variable Repulsive Force.—Lei the force be one of
repulsion and vary as the distance, then this equation of
motion is

^ —
dt»

- ^'^•

Tjet ua suppose the particle to be projected from the cen-
tre of force with the velocity v^ ; then we have

rf^
= ''-^ + V; (1)

As t increases x also increases, and the particle recedes
further and further from tlie centre of force; and the
velocity also increases, and ultimately eqtuils oo when x =
t = <x>. Thus in this case the motion is not oscillatory.
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173. Motion of a Particle under the Action of an

Attractive Force which is in the line of motion, and

which varies Inversely as the Square of the Distance

from the Centre of Force.

Let (Fig. 80) bo the centre of force, P tlie po.sition of

tlio particle at the time t; and A the position at rest when

/ = 0, so that the particle starts from A and moves to-

wards O. Tjet OP = .r. OA = a, and fi = the absolute

force as before or tbe acceleration at unit distance from O.

Then the equation of motion is

(Px _ fJ^

Multiplying by 'idx and integrating, we get

dP = ^" L- - ah
(1)

whicn gives the velocity of the i)article at any distance, a;

from the origin.

From (1) we have

dx _ /"in

dt
~ ~ W a

2li Vnx — x^

the negative sign being taken l)ecaaso in the motion to-

wards 0, X diminishes as I increases. This gives

V"-
^^dt=

-^'^

\}

y/ax — 3?

a — 'ix a 1
dx.

*
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Integrating and taking the limits corrospojitling \r)t=:t

and t = 0, we have

t

V^/'

/ : a , ''ix Txa
y ax — x^ — - vers"' 1

—

-

2 a %
(2)

which gives the vahie of l.

When the particle arrives at 0, a: = 0, therefore the

time of falling to the centre O from A is

From (1) we see that the velocity = when x =. a\ and

= cc when y = ; hence the velocity increases as the

particle approaches the centre of force, and nltimately,

when it arrives at the centre, becomes infinite. And
although at any point very near to there is a very great

attraction tending towai'ds O, at the point itself there is

no attraction at all ; therefore the particle, approaching

the centre with an indefinitely great velocity, must pass

through it. Also, everything Ijcing the same at equal

distances on either side of the centre, we see that the

motion must be retarded as rapidly ^s it was accelerated,

and therefore the particle will proceed to a point A' at a

distance on the other side of O equal to that from which it

started ; and the motion will continue oscillatory.

174. Velocity acquired in Falling through a Great
Height above the Earth.—The i)receding case of motion

includes that of a body falling from a great height above

the earth's surface towards its centre, the distance through

which it falls being so great that the variations of the earth's

attraction due to the distance must be taken into account.

If a sphere attracts an external particle with a force which

varies inversely as the s(juaro of the <listance of the particle
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from the centre of the spliere (Art. 133a) ; therefore if R is

the earth's radius, g the kinetic measure of gravity on a

unit of mass at the earth's surface (Arts. 20, 23), and x the

distance of a body from the centre of the earth at the time

/, then the e((uation of motion is

iPx IP

dp ~ '-^7?'

which is the same as the etpiation in Art. 173 by writing n

iov (jU^x therefore the results of the last Art. will apply to

this case. Substituting (jW for /t in (1) of Art. 173 we

have

(1)

When the body reaches the earth's surface, x = R and

(I) becomes
(n — R

.- = ...("
i^')- w

If a is infinite (2) becomes

V — y/'igR
',

so that the velocity can never be so great as this, Viowever

far the body may fall ; and lience if it were possible to

project a body vertically upwards with this velocity it would

go on to infinity and never stop, supposing, of course, that

there is no resisting medium nor other disturbing force.

If in (2) we put // = 32^ feet and R = 31363 miles we

V = [2-32f 3963 -5280]* feet = 6-95 mdes
;

80 that the greatest possible velocity which a body can

acquire in falling to the earth is less than 7 miles per

second, and if a boily w>';c iirojeeted upwards with that
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velocity, and were to meet with no resistance except
gravity, it would never return to the earth.

Cor.—To find the velocity which a body would acquire
in falling to the earth's surface from a height // above the
surface, we have from (1) by putting x =-. R and a = h-^ R,

t^ = 2gR4\. - --!_) = ML.
\R R + h) R + h

If h be small comiiared with R, this may be written

v^ = %gh,

which agrees with (6) of Art. 140.

The laws of force, enumerated in Arts. 171, 173, are the
only laws that are known to exist in the universe (Pratt's
Mecbs., p. 212).

175. Motion in a Resisting Medium.—In the pre-
ceding discussion no account is taken of (hd atmospheric
resistance. We shall now consider the motion of a body
near the surface of the earth, taking into account the
resistance of the air, which we may assume varies as the
square of the velocity.

A particle tinder the action of gravitji, m a constant force,
moves in the air supposed to be a resisting mcditnn of
uniform density, of which the resistance varies as the square
of the velocity required to determine the motion.

Suppose the particle to descend towards the earth from
rest. Take the origin at the starting point, let the line i-f

its motion be the axis of .?• ; and let .r be the distance <f
the particle from (he origin at the time /, and for con-
venience let gk:^ be the resistance of the air on the })article

for a unit of velocity; gk^ is called the coefficient of rrsisf.

irncc. Then the resistance of the air at the distance x from
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the origin is^pT.y) , which acts upwards, and the force of

•rravity is g acting downwards, the mass being a unit.

Hence the equation of motion is

tPx . „ Idx-^
(1)

d

.«. gdt =
dx

It

idx\^

-KD'

Integrating, remembering that when ^ = 0, « = 0, we

get

I
dx

gt = ~jr log ^^, (Calculus, p. -259, Ex. 5).

1-k
dt

Passing to exponentials we have

1 eJcgt — e-^dx

dt k ekgt + e-*ff<

'

(2)

which gives the velocity in terms of the time. To find it in

terms of the space, we have from (1)

•^^m = 2gJ<^dxi

(3)

observing the proper limits

;
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dx^ 1
•••

rf^ = F^ ^1 - ^-^*'")'
(4)

which gives the velocity in terms of tiie distance.

Also, iiitegratiiig (2) taking the same limits as ocfore,
we get

gk^x = log (e*?< + e->^t) — log 3 ;

... 2f9r*"a: — gkgi ^ ^-kgt^
(5)

which gives the relation between the distance and the time
of falling through it.

As the time increases the term <'-*!7< diminishes and from

(5) the space increases, becoming infinite wiien the time is

infinite; but from {-i), as tiie time increases the velocity

becomes more nearly uniform, and wiien t = rj.
, the

velocity = , ; and althougli this state is nevei- reached, yet

it is that to which the motion a]iproaches.

176. Motion of a Particle Ascending in the Air
against tb" Action of Gravity.— Let us suppose tlie

particle to .,{ projected upwards, that is, in a direction
cdutrary to that of the action of gravity, with a given
velocity, v, it is required to determine the motion.

Let us supjiose the particle to be of the same form and
size as before, and the same coefficient of resistance.

Then, taking .r positive upwards, both gravity and the
resistance of the air tend to diminish the velocity as t

increases; so that the equation of motion is

tP.

(I)
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dx

= — kgdt;

305

dk
dt

dx\^

dx
.*. tan~i k -r- •=. tan""^ (kv) — gkl

;

(Calculus,
J).

:244, Ex. 3), since the initial velocity is v.

Taking tiie tangent of l)oth members and solving for

, we get
dx

di

dx _ 1 vk — tan kgt

dt ~ Tc 1 + vk tan kgt
' (2)

which gives the velocity in terms of the time. To find it

in terms of the distance, we have from (1)

••• log
'+-(ir

r= - 2^P.r;
1 + ^•^«'2

.• . {^^= u'^e-^k'x -
^2

(1 - e-«!7*'*),

which gives the velocity in terms of the distance.

(3)

(4)

Also, integrating (2) after substituting sine and cosine

for tangent, and taking the same limits as before, we get

yL^x = log {vk sin kyt + cos kgt) ; (5)

which gives the space described by the particle in terms of

the time.
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Cor. 1.—To liiul the gmitt'st height to which the par-

dx
tide will ascend put the velocity, ^'^ = 0, in (3) and get

. = .^^,log(l+iV),

which is the distance of the highest point

Putting 1^
= in C^) we get

/ = =— tan~* vk,
kg

(6)

(7)

which is the time required for the particle to reach the

highest point. Having reached the greatest height, the

])article will begin to fall, and the circumstances of the

fall \vill be given by tlie e(iuations of Art. 175.

Cou. 2.— Since k is the same in this and Art. 175, we

iniiv compare the velocity of projection, r, with that Avhich

the particle would acquire in descending to tlie point

whence it was projected. Denote by t\ the velocity of

tlie ])article when it reaches the point of starting. From

(3) of Art. 175 we have

W '"^ r Pj'„2'

and placing this value of x cciual to that given in ((!).

we get,

r--xv
=

' +
**"•

uliiih is less tiian r; hence the velocity acquired in the
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descent is less than that lost in the ascent, as might have

been inferred.

Cor. 3.—Substituting (0) in (5) of Art. 175, we get for

the time of the descent,

ired in the

t = ^-log(^/i + kh'i + kv),

which is dilTerent from the time of the ascent as given in

(7). (.See Price's Anal. Mech's, Vol. I, p. lOG; Ventnroli's

Mech's, p. 82 ; Tait and Steele's Dynamics of a Particle,

p. 237.

)

177. Motion of a Projectile in a Resisting Me-
dium.—'I'he theory of the motion of i)rojectiles in vacuo,

wiiich was examined under the head of Kinematics, affords

results which (litfor greatly from those obtained by direct

experiment in the atmosphere. When j)rojectiles move
with but .small velocity, the discrepancy between the para-

bolic theory, and what is found to occur in practice, is

small ; but with increasing velocities, as those with which

l)alls and siiells traverse their paths, the air's resistance

increases in a higher ratio tha';. 'he velocity, so that the

diserei)ancy becomes very great.

The most ..nportant application of the theory of lu'ojec-

tilcs, is that of (Junnery, in which the motion takes place

in the air. If it were ailowal)le to neglect the resistance of

the air the investigations in Part II would explain the

theory of gunnery ; but when the velocity is consideral)le,

the atmospheric resistance changes the nature of the tra-

jectory 80 much as to render the c(»iiclusions drawn from

tlie meory of projectiles in vacuo almost entirely inap-

])li('able in jn'iictice.

Tile problem of gunnery may be stated as follows:

(liven a projectile (tf ktiowii wciglil and dimeesions,

starling witii a known velocity at ii known angle 'if eleva-
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tioii ill a calm iitmosj)Iierc' of Jii)i)i-oximiitoly known duii^it v

;

to find its range, time of flight, velocity, direction, and
position, at any !nomeiif ; or, in other words, to construct
its trajeefory. Tiiis jiroljlem is not yet, however, suscepti-

l)le of rigorous treatment ; mathematics has hitherto proved
uiii'ble to furnisli comi)!etc formula} satisfying the condi-
tions. The resistance of the air to slow movements, say of

10 feet per second, seems to vary w^ith V\q first power of
the velocity. Above tiiis the ratio increases, and as in the
case of the wind, is usually reckoned to vary as the scpiare

of the velocity; beyond this it increases still further, till at

1200 feet per second the resistance is found to vary as the

cube of the velocity. The ratio of increase after this point
is i)assed is supposed to diminish again ; but thoroughly
satisfactory data for its deteriniiiation do not exist.

From experiments* made to delerinine the motion of

cannon-balls, it appears that when the initial velocity is

consrderable, the resistance of the air is more than "v'O times
lu* great as the weight of the ball, and the horizontal range
is often a small fraction of that wliich the theory of pro-

jectiles in vacuo gives, go that the form of the trajectory is

very different from tiiat of a paraliolic ])a(h. Such experi-

ments have been made with great care, and siiow how littlf

the parabolic theory is (o be dejiciided upon in determining
the motion of military projectiles.

178. Motion of a Projectile in the Atmosphere
Supposing its Resistance to vary as the Square of
the Velocity.— .1 pari iclc under f/i,' (ir/ion of (fnirilij is

prnjvr.h'd /roiii a t/ircii point iu n (/ireii dirrrfioii irilli n

(fimi rclorifi/, and mores in the atmosphere ir/iosr rcsistinice

is assumed to rari/ as the st/iiare of the veloaift/ ; to dvler-

iiiiiie the niolioii.

* Sen KncyclopiwUa Biitnniiira, Art. Ouuiiory ; ulxu Itobiii's Gnmiiiv, aiul
IIuttou'H TraclH,
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Take the given point as origin, the axis of x horizontal,

the axis of j/ vertical and positive upwards, so that the

direction of projection may be in the plane of ay. Let r

lie the velocity of projection, (j tiie acceleration of gravity,

K the angle between the axis of x and the line of projection,

and let the resistance of the air on the particle be k for a

unit of velocity; then the resistance, at any time, t, in the

j\ ; and the x- and w-ooTriponents of

this resistance are, respectively,

dx

Tt'
and k

ds

Jt' dt'

Then the equations of motion tire, resolving horizontally

and vertically,

d^x _ ,
dfi dx /.v

dp - ~
dl dV ^

'

iPy _ ds dy

d(^
- - -9-^ at dt

(2)

From (1) we have

(dx\
d
idx\

\dt)

dx

= — kds ; . •
. log

dx "^
t; cos «

di

r. dx
since when / = 0, -jr = v cos «;

= —ks;

dx

di
,- = V cos « e-k*. ("•)

Multiplying (I) and (2) by dij and dx, respectively, and

subtracting the former from the latter we have

(Py dx -jPxdy _
(4)

* MB..
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Substituting in (4) fjP dP its value from (3) we get

dx^ dx r'cos^a *
^'

'

Substituting in the second member of (5) for dx its value

rfs_^ Wl + ^•^.^, we get

du
Put -,- = p, and (6) becomes

dx

( 1 + P^)^ dp = — -»" ,— e^ ds.
^ -f ' / ^2 cos' «

Integrating, and rem;5nbering tliat when s = 0, j» = tan «,

we get

p{i +;>')* + log [;> + (1 +F')*]

= c - ^-/ -Y e*^- (V)
kv' COS'* «

where <• is the constant of integration whose value

= tan « sec rt + log (tan n -\- sec «) + -rir^—^- • (8)

From (5) we have

i'* cos^

«

dx ^dxl

'

whicli in (7) gives

;;(! + ;;»)* + log [p + {\ + ;>«)*] - c =
^.^|,

;,(1 +;;!')* ^ log[/M- (1 +/''')^] -c
kdx. (!»)



get

f^dx. (5)

Ix its value

(6)

,p = tan «>

(7)

uo

COS'* a '

I dp
''

kdx'

kdjc, (9)
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= A%. (10)*""
P (1 +i^)* + log [i' + (1 + Z'^)*] - c

From (4) we have

dx • dp ~ — (/fi^<*.

Substituting this vahie of dx in (9) and solving for dl we

get

^iL = (i^)irf^. (11)
{,. _ p (1+ ;^)i _ log [;; + (1+/)*] i*

the negative sign of dp being taken because jo is a decreas-

ing function of /,

Ileplacing the value of p = -•
, (9), (10), luul (1 1) become

d

dx ss
dx

*l('+;£)*-M^-('+g)V
(A)

dy = dx dx

*i('+g)^-[2-('+^r]
(B)

-d
dt =

(ty

dx
.TfTTT.

(C)

<^''^-t('^•;;^*-H2-^(+l:r]s'

from which etiuations. were it possible to integrate then,

:r, y, and / might he found in lerm.s of ; ; and if ; were
' -" '" dx dx

eliminated from the two integrals, of (A) and (H), the re-

sulting equation in terms of .«' and y would bo that of the
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rc([aired trajectory. But those equations cannot be inte-

grated in finite terms; only approximate solutions of them

can be made ; and by means of these the i)ath of the pro-

jectile may be constructed approximately. (See Venturoli's

Mech.5., p. 92,)

S<iu,aring (A) and (B), and dividing their sum by the

square of (0) we get

2(1 +W-'-[l +('+:!)*]

(t>)

which gives the velocity in terms of -'
dy

179. Motion of a Projectile in the Atmosphere

under a small Angle of Elevation.—The case fro-

(piently occurs in practice where tiie angle of projection is

very small, and where the projectile rises but a very little

above the horizontal line. In this case the ecpiation of the

part of the trajectory that lies above the horizontal line

nuiy easily l)e found ; for, the angle of projection being

very small, . , will Ije very small, and therefore, throughout

the path on the upi)er side of the axis of x, powers of

'
• higher than the first may l)e neglected. In this case

then

rfs = (?a; ; . •
. s =: x\

wliich in (5) of Art. 178, becomes

(7-^ _
dx

!l

V* cos* «
^^dx

;
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Integrating, we get

dy

dx
— tan « = —

:y77
2^•t•2 cos'

«

(e"»'-l);

dy
sinjc when a; = 0, "j' = tan «.

Integrating again we get

gx
y = X tan « + ^:^;r^^« - 4^.2^ eos' a

Expanding e^** in a series, (1) becomes

-.7:oA^(^-l)-(l)

gi? gks?

y = x tan « - .^^^^l„ - 3^2 pos^ «
(2)

the first two terms of which represent the trajectory in

vacuo. [Sce(:5)of Art. 151.]

From (3) of Art. 178, we have

dt = • dx
VCO8 a

e^-1
hv cos rt

t (3)

which gives the time of flight in terms of the abscissa.

The most comjjlete and valuable series of experiments

on the motion of projectiles in the atmosphere that has yet

been maxle, is that of Prof. F. Bashforth at Woolwich.

EXAMPLES.

1. Find how far a force equal to the weight of n Hts.,

would move a weight of m lbs. in t seconds ; and find th«

velocity acquired.

^m
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Here P = n, and W = in ; therefore from (1) of Art

25 we have
ng

n = —/

;

f m

which hi (i) and (5) respectively of (Art. D), gives

v = — ; and s = i— i^m m

lbs.

2. A body weighing n lbs. is moved by a constant force

which generates in the body in one second a velocity of a

feet per second : find the force in pounds. . na

9

3. Find in what time a force of 4 lbs. would move a

weight of 9 lbs. through 49 ft. along a smooth horizontal

plane ; and And the velocity acquired.

Ans. t = --=; ; V = ^t.
V2g

4. Find the number of inches through which a force of

one ounce, constantly exerted, will move a mass weighing

one lb. in half a second. A7is. 3g (J)'.

5. Two weights, P and Q, are connected by a string

which passes over a smooth peg or pulley ; required to

determine the motion.

Since the peg or pulley is perfectly

smooth the tension of the string is the

same throughout; hence the force which

causes the motion is the difference between

the weights, P and Q, the weight of the

string l)cing neglected. The moving force

therefore is P — Q\ but the weight of the

maj^s moved is /' + Q. Hence substituting

in (1) of Art. 25, we get

P+Q Fig. 80'i.

Q = /;
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P — Q

which is tlic acceleratioti.

Substituting this in (4) and (5) of Art. 'J, we have

315

(1)

(2)

(3)

which gives the velocity and space at the time /, the initial

velocity i\ being 0.

0. A bodv whose weight is Q, rests on a smooth hori-

zontal tableland is drawn along by a weight /^attached to

it by a string passing over a pulley at the edge of the table;

find the motion of the bodies.

Sit>ce the weight Q is entirely supported by the resistance

of the table, the moving force is the weight P, hanging

vertically downwards, and the weight of the mass moved is

P + Q; therefore from (1) we have

/ = P + Q
(1)

an<l this in (4) and (.5) of Art. 9 gives the velocity and

space.

7. Required the tension, T, of the string in the pre-

ceding example.

Here the tension is evidently tliat force whicli. acting

along the string on the body whose weight is Q. produces

,n it the acceleration, 75^^.'/. «'hI therefore is measured

by the mass of Q into its acceleration. Hence
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9 = -n
PQ

P+Q" P+Q
8, Find the tension, T. of the string in Ex. 5.

Here the tension eoiuls ilie weight Q, phis tlie foree

which, acting along the string on Q, produces in it the

acceleration

P+Q^'

T= Q + Q P
u P+Q""

2PQ
~ P+Q'

or it equals P minus the accelerating force which, of course,

gives the same result.

9. Two weights of 9 lbs. and 7 lbs. hang over a i)ullev, as

in Ex. 5 ; motion continues for 5 sees., when the string

breaks: find the height to which the lighter weight will

rise after the breakage.

Substituting in {'i) of Kx. 5 we have

V = -^^ ;W . 5 = 20

;

therefore each weight has a velocity of 20 feet, when the

string breaks. Hence from (0) of Art fl, we have (calling

ff
32 ft.)

.V = v/ = H ;

that is. the lighter weight will rise GJ feet before it begins

to descend.

10. A steam engine is moving on a horizontal plane at

the rate of 30 miles an hour when the steam is turned off;

supposing the resistance of friction to be 4^5^ of the weight,

lind how long and how far the engine will run before it

stops.
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h:XA.vi'Lj-:s. 'W:

Let ir be the weight of tin- enginf; then the resistance

A friction is t,\a. and this is directly opposed to motion,

W _ W
400 ~ g-'

' ••• /-
400

„,, ,
., . .,„ ., , 30x1760x3

I he velocity, r, is 30 miles an hour = ——— --- = 44
' 60 X 60

feet per second. Substituting these values of/ and v in the

equation v = ft, we get

44 = ;^;;

. t = 550 sees.,

which is the time it will take to bring the engine to rest if

the velocity l)e retarded ^^j- feet per second.

Also v^ = 'ifs, therefore

s = 4Aiii^-4jio _ 12100 feet.

11. A man whose weight is 11', stands on the platform

of an elevator, as it descends a vertical shaft with a uniform

acceleration of 4 (/; find the pressure of the man upon the

platfcrm.

Let P be the jtressure of the man on the platform when

it is moving with an acceleration of ^/ ; then the moving

force is W — P ; and the weight nii)ved is W; therefore

w-P=^^hr, p = ^w.

12. A plane supporting a eight of 12 ozs. is descending

with a uniform acceleration of 10 ft. ])cr second ; find the

pressure that the weight exerts on the plane.

Ans. 8 J ozs.
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i:}. A weight of 24 lbs. hanging over the edge of a

smooth table drags a weight of Vl His. along the table;

tiiid (1) the accelei-ation. and (--i) the tension of the string.

Am. (1) ai^ ft. per sec; (^) 8 lbs.

14. A weight of 8 lbs. rests on a platform ; find

its pressure on the phitforni (1) if the latter is de-

scending with an aeeeleration of \(U and (2) if it is

aseeiuling with the same acceleration.

Am. (1) 7 ll)s.; (2) 9 lbs.

15. Two weights of 80 and 70 lbs. hang over a smooth

pulley as in Ex. .5 ; find the space through which they will

move from rest in 3 sees. Aiis. 9| ft.

16. '•^wo weights of 15 and 17 ounces respectively hang

over a smooth pulley as in Ex. 5 ; find the space de-

scribed and the velocity acquired in five seconds from rest.

Am. ,s = 25, V — 10.

17. Two weights of 5 lbs. and 4 lbs. together pull one

of 7 lbs. over a smooth fixed pulley, by means of a con-

necting string; and after descending through a given

space the 4 lbs. weight is detached and taken away without

interrnpting the motion ; find through what space the

remaining 5 lbs. weight will descend.

Ann. Through | of the given space.

18. Two weights are attached to the extremities of a

string which ia hung over a smooth pulley, and the weights

are observed to move through 0.4 feet in one second : the

motion is then stopped, and a weight of 5 lbs. is added

to the smaller weight, which then descends through the

same space as it ascended before in the same time ; deter-

mine the original weights. Am. % lbs.; ^ lbs.

19. Find what weight must be added to the smaller

weight in Ex. 5, so that the acceleration of the system may
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have the same numerical value as before, but may l)e in

ihe opi»osite direction. A US.

20. A body is projected up a rough inclined plane with

tiie velocity which would be acquired in falling freely

through 12 feet, and just reaches the top of the plane;

the inclination of the i»'",ne to the horizon is 00", and the

coet!icient of friction is equal to tan 30°; find the height of

the plane. Ans. 9 feet.

21. A body is projected up a rough inclined plane with

the velocity Ig ; the inclination of the plane to the horizon

is 30°, and the coefficient of friction is e([ual to tan 15°

;

lind the distance tilong the plane which the body will

describe. Jns. </ (V3 + 1).

22. A body is projected up a rough inclined plane ; the

inclination of the plane to the horizon is «, and the coef-

ficient of friction is tan e ; if m be the time of ascending,

and n the time of descending, show that

(>n\^_ sin (fc — e)

\» /
~ sin (rt + e)

23. A weight P is drawn up a smooth plane inclined at

an angle of 30° to the horizon, by means of a weight Q
which descends vertically, the weights being connected by

a string passing over a small jjullcy at the top of the plane

;

if the acceleration be one-fourth of that of a body falhng

freely, find the ratio of Q to P. Ans. Q — P.

24. Two weights P and Q are connected by a string,

and Q hanging over the top of a smooth plane inclined at

30° to the horizon, can draw P up the length of the plane

in just half the time that P would take to draw up Q ;

show that Q is half as heavy again as P.

ite
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25. A particle moves in a stniiglit line under the action

of an attraction varying inversely as the (|)th power of

the distance ; show that the velocity acquired hy falling

from an infinite distance to a distance a from the centre is

equal to tlie velocity which would be acquired in moving

from rest at a distance a to a distance -:>
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CENTRAL FORCES.*

180. Definitions.—A central force is o!ie which acts

directly towards or from a fixed jioint, urv.l is called an'

attraclire or a repuhire force according as its action on

any particle is altrncti">i or repulsion. Tiie fixed point is

called tb.o Centre. Tiie intensity of the force on any jiar-

ticli is some function of its distance from the centre.

Since tiie case oi attraction is t'lc most important applica-

tion of tlie subject, we shall tal-^ that as our standard ease;

but it will be seen that a simple change of sign will adapt

our general formula) to repulsion. If the centre be itself

in motion, we may treat it as fixed, in which case I he term

"actual motion " of any particle means its motion "rela-

tive " to the centre, taken as fixed.

Tlie line from the centre to the particle, is called a

Radius Vector. The path of the particle under tlie action

jf an attraction or repulsion directed to the centre is

"ailed its Orbit.\ All the forces of nature with which we

are acquainted, are central forces; for this reason, and lie-

cause t.ie motion of liodies under the action of central

forces is a branch of the general theory of Astronomy, we

shall devote this chapter to the consideration of their

action.

181. A Particle under the Action of a Central

Attraction ; Required the Polar Equation of the

Path.—The motion will clearly take place in the plane

{lassiiig through the centre, and the line along which the

* This chapter contalni* the flrxt prliiolplc" of Miitheinutlcal Antronomy. It

may, howcvor, be oiiiillcd by tli« hHuIciiI of KiiKliic«iiii){-

t Called Central OrbltH,

»^i
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particle is initially inojootcd, as tliciv is iiotliinp to With-

(haw the particlo from il. lid tlio cc'iilre of al trad ion, O,

\w tlio origin, ami OX. OY. anv

two lini's tiirongh Oat right angles

to etich other, l)e the axes of co-

ortlinates. Let (.c. //) he the

pioition of the partiele M at the

.time /, and (r, 0) its position

referred to polar co-ordinates.

OX heing the initial line. Then, \/ p. g,

calling /* the central attractive

force, we have for the components parallel to the axes of x

and y, respectively, — P^, — P-{, the forces heing nega-

tive, since they tend to diminish the co-ordinates. There-

fore the e(iuations of motion are

(Px _ pX
im

~
r

(1)

Multiplying the former hy y. and the latter by x, and

subtracting, v. e have

(Pu iPx -

Integrating we have

dt

dx

y-dt
hi

(2)

(8)

where h is an undetermined constant.

Since a; = r cos 0, and y — r sin 0, we have

dx = cos dr — r sin dd,

dy = sin B dr + r om d dO,

whicli in (3) gives

(4)



C^)

(3)

(4)

CJCXTR. I ;. A TTJi'A I 'TIOS.

Agiiin, multiplying the first and socond of (1) by -2(lr

and 'idy respci-tively, and adding, we get

2dx ifir + -idyiPy _ _ 'iP{.edx + rj dij)

dP
'

r

(dj^ dy\ _ ,2Pdr. (6)

Substituting in (0) the values of dr^ and <// from (4), we

have

(7)

Put r = '

; and .-. dr = - '-"„; and (T) becomes
u «

IKTforniiiig the differentiation of the first member, and

dividing by 'idii, aiid transposing, we get

tPu
,

/'
o (8)

which is the diffi'rontinl fqiiafinn of the orbit described;

and as, in any partienlar instance, the foree P will »)e given

in terms of r, and therefore in terms of «, the integral of

this ecpiation will be tiie polar equation of the re(|uired

path.

Solving (8) for /' we have
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Idhi

"""C-")^ (»)

which is the same result that was found by a different pro-

cess in Art. 1G3 for the acceleration along the radius

vector.

(!oR. 1.—The general integrals of (1) will contain four

arbitrary constants. One, //, that was introduced in (a),

and two more will be introduced l)y the integration of (8).

If the value of r in terms of it, deduced from the integral

of (8), be substituted in (5). and that e(iuation be then

integrated, the fourth constant will be introduced, and the

path of the particle and its position at any time will be

obtained. The four constant? must be determined from

the initial circumstances of motion ; viz.. the initial

position of the particle, depending on two independent

30-ordinatcs, its initial velocity, and its direction of pro-

jcction.

Cor. 2.—By means of (9) we may ascertain the law of

the force which must act upon a particle to cause it to

describe a given curve. To effect liiis we must determine

the relation between « and from the polar ciiuation of the

orbit referred to the re(|uired centre as pole ; we iiuist then

differentiate u twice with resjiect to 0, and sul)stitute the

result in the expression for /', eliminating W, if it occurs,

by means of tlu; relation between n and 0. In this way wi.

siiall obtain 7' in terms of u alone, and therefore of ?

alone.

Coil. 3.—When we know the relation between r and «

from (0), we may by (5) detormine the time of describing

a given portion of tiie orbit ; or, conversely, find the posi-

tion of the particle in its orbit at any time.*

Sec Talt and SiccWm UynnmlcM of a Particle, p. 110; alKo PiUI'k Mecli's.
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(9) (joK. 4.—If p IS the periJendiciihir from the origin to

the tangent wc have from Calcuhis, p. 170,

which in (;3) gives

and this in (0) give

xdy — y dx — p ds
;

hds

Jt P
(10)

.li^

(11)

(ZA: = -2Pdr.
r

DiflFerentiating, and solving for P, wo have

Zt2 dp

f dr'

which is the equnlion of the orf)i/ Iwtwecn the radius vector

and the j)erpcndtenia r on the taiujcnt at any point.

182. The Sectorial Area Swept over by the

Radius Vector of the Particle in flny time is Pro-

portional to the Time.— Let A denote this area; then we

have from Calculuo, p. ^(i-i,

A = i ./' ?•« de

= I ./• h dt, by (5) of Art. 181,

if A and t be botli measured from the commencement of

tiie motion. Therefore the areas swept over, try the radius

vector in different times are proportional tn the times, and

equal areas will be described in equal times.

foR.— If / = 1, we have A = ^fi. Hence h = twice

the sectorial area described in one unit of time.

183. The Velocity of the Particle at any Point

of its Otbit—Wc have Cur tlie velocity,
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ds
V =

dt

= by (10) of Art. 181. (I)

Hence, the velocity of the purticlv al each jmint of its

pat/i is inversely proportional to the perpendicular from the

centre on the tangent at that point.

Cor. 1.—We liave, by Calculus, \). 180,

1 1 1 rf/^

i^~ ?-2
'^

r* dm

= " -i^
aoi^

since

which in (1) give?

«

V^ :

//2

= -{'" + a. (a)

another important expression for the velocity.

Cob. 3.—From (G) of Art. 181, we have

(a)

Let V be the velocity at the point of projection, at

which let /• =: R, and since P is some fi'.nction of r, let

P = f{r), tlien integrating (3) we get

%=-,Jlf(r)dr,

(•1)

which is another expression for the velocity ; and since this

is a function only of the corresponding distances, II and /•,

it follows that the I'vlocity at any point of the orbit is
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(I)

(a)

(3)

{^)

iiulependeiU of //le pal ft ikscribi'd, and depends solely on the

mnynilude of the attraction, the distance of the point from

llie centre, and the velocity and dixiance ofprojection.

From (4) it appears tliat tlie velocity is the same at all

points of tlio same orbit which are equally distant from the

centre; if r = /.', the velocity = T; and thus if the orbit

is a re-entering curve, the particle always, in its successive

revolutions, passes through the same point with the same

velocity.

If the velocity vanishes at a distance a from the centre

(4) becomes

r-2 = 3[/i(fl)-A(r)] (5)

and a is called the radius of the circle of zero velocity.

(6)

Cor. 3.—From (3) wo have

d{f) = -2Pdr;

.•. vdv = — Pdr.

Taking the logarithm of (1) we have

log V = log h — log p.

Dilferentiating we get

dv _ dp

~v
~ ~ p'

Dividing (G) by (7), wo get

'' = ^P^lp = ^^-2Tp

= 2P x{ chord of curvature* through the centre
; (8)

an

* To i)i()ve that \r< ;)iU'-fouilli the elioid of curvature.
•i il/)

Let MI) (Fig HI), be llu^ liiiini'iit to tlie orbit, atid the centre of ciirvaliiri! ; let

OD =
i>. CM - (), tlie radius ofciirvotiire ; and tbo angle MEN = -A. Then MS. the
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and, comparing this with (C) of Art, 140, it appears that

tho particle at any point haa tlie same velocity which it

would liave if it moved from rest at tliat point towards the

centre of force, under tiie action of the force continuing

eonstiint, through one-fourth of the chord of the circle of

curvature.

Hence, the velocity of a. p-rtiv(e at any point of a cei'tral

orbit is the mine as that which would be acquired by a

particle moving freely from 7 est throuyh one-fourth of the

chord of curvature at that point, throuyh the centre, under

the action of a constant force whose magnitude is eqiial to

thai of the central attraction at the point.

OoR. 4.—If the orhit is a circle having the centre of force

part of the radius vector CM, which ix intercepted by the circle of curvature li

calleii the chord o/ntrratiire. Its value is (IcloriiiiiU'd m follows;

We have (Fig. 81)
li) = + OMD

= e 4 Bln-l -

d* = rf» +

From Calculus, p. 180, (10), we have

rdp—pdr_

and

Subtititiiting C») in (I) we get

«t» =

pdr__

rVr'—p''

r'd» rdr

Vr"-p«

d<i>~
dp

But CalcaluB, p. 881, we have

p

r: j\v M3 (Fig. 81) = aMP sin OMD

i'r'-p'

IVP dp

- 'in ' = «/) ~-
,

/• dp
'y (8)

thr chord of curvature ; therefore

5~ =- (/iiefou-.lh the chord of curvattire.
%dp

0)

CD

CO

(«)
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in the centre, and R, T, P, are respectively the radius,

velocity and central faro, we have

F» = PR.

0)

(4)

Cor. 5.—From (5) of Art. 181, we have

^ _ A

dt
~ »•»' {»)

The first member, being the actual velocity of a point

on the i-;uliiis vector at the unit's distance from the centre,

is the angular velocity of the particle (Art. 100). Hence

the aiii/ular velocity of a particle varies inversely as the

square of the radius vector.

ScH.—A point in a central orbit at which the radius

vector is a maximum or minimum is called an Apse ; the

radius vector at an apse is called an Apsidal Distance ; and

the angle between two consecutive apsidal distances is called

an Apsidal Awjlf of the orbit. The aaalytical conditions

(III

for an ai)se are, of course, that -j^ = 0, and that the first

derivative which does not vanish sliould be of an even

order. The first condition ensures Mat the radius vector

at an apse is perpendicular to the tangc'it.

184. The Orbit when the Attraction Varies In-

versely as the Square of the Distance.—.1 particle is

projectedfrom a f/iven point in a r/iven direciidn vitli a i/iven

relorify, and moves under the action of a central attraction

varying inversely as the.square of the distance; to determine

the orbit.

Let tbecciilrc of forc" !)e the origin ; I' = the velocity

of projection ; A' = 'ho distiMU'C of the point of i)rojecti()n

from tlio origin; (i =-- the angle between R and the line of
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projection ; and let fi = the absolute force and / --

when the particle is projected. Then since the velocity =

(Art. 183), and at the point of projection _p = ^ sin (i,

we have

V = ,-i-^ ; h=VR sin /3. (1)
R sin p

As the force varies inversely as the square of the distance,

we have

P = "^ = (iifi, (since r = -)• (2)

wh'ch in (9) of Art 181 gives

tPu

5^ + " = W |3)

Multiplying by 2du and integrating, we get

%^u^ = 2lu^c;

F21 1 du^ r -

when / = 0, M = - = -^, and ^^ + «* = -p-, (Art. 183,

Cor. 1 ) ; therefore

'^ -
Iv'
~ WR ~ li'R

Substituting this value for c we get

V^R - %\i 2uu
+ W' = —T-o-f,

-^ +
A^ii;

Therefore (Art. 183, Cor. 1) we have

(velocity)-^ = ^'' + "''^C-i)

(4)

(5)
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which shows that (he velocity is the greatest when r is the

least, anil the least when r is the greatest.

Changing the form of (4) we have

V^R - 2ti /i

h^R ' h*

To express this in a simpler form, let

-(£-«)• (6)

h'
- = b, and

V^R 2/t

h^R

dm

-I- ^ = c* ; and (6) becomes
¥

= c2 -(«-&)»;

— du

[C2 _ (m _ J)2]*

= de,

the negative sign of the radical being taken. Integrating

we have,
_,u — b ,

cos * =0 — Cf

(4)

(5)

where c' is an arbitrary constant;

. • . u = b + c cos {6 — c'). (7)

Replacing in (T) the values of b and c. and the value of h,

from (1), and dividing both terms of the second member by

ft, we have for the equation of the path.

1 +
u = LF'

{V^R-2n) RVUm^fi + 1 cos(fl— c')

/r^ v^ sin'^ a
(«)

which is the eciuation of a conic section, the pole being at

the focus, and the angle {(> — c') being measured from the

m
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shorter length of the uxis major. For if e is the eccentricity

of ii conic section, r the focal mdius vector, and </> the

angle between r and tliat point of a conic section which is

nearest the focus, we have.

1 _ _ ^ + c cos ^
r ~ ~ 1 ~ e^ '

(9)

Comparing (8) and (9), we see that

ca = -^ ( F2/.' - -ifi) RV^ 8in2 13 + 1; (10)

(f)z=d — c'. (11)

Now the conic section is an ellipse, parabola, or hyper-

bola, according as e is less than. ci|iuil to, or greater tlian

unity; and from (10) c is less than, cfjual to, or greater

than, unity according as V^K — 'ifi is negative, zero, or

positive ; therefore we see that if

%H
F* < -^, e < 1, and the orbit i§ an ellipse, (18)

2u
V^ = -py e = 1, and the orbit is a parabola, (13)

F' > -^, c > 1, and the orbit is a hyperbola. (14)

CoK. 1.—By (1) of Art. 173, wq see that the square of

the velocity of a pa icle falling from infinity to a distance

R from the centre of force, for the law of attraction we

arc considering, is
//

Hence the above conditions tmuv

be expressed more concisely by saying that f/ir nrhif,

described about Ihi^ centre of force, will be an ellip.ye, a
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cx'iitricity

id
<f»

till'

which is

(9)

(10)

(11)

or hyper-

3iitcr than

)r great or

, zero, or

(13)

., (13)

hi. (14)

square nf

I distance

action we

ons niay

'he iir/iif.

cifip.sr, a

parabola, or a hypcrbohi, tiaonliiKj as thv vflority is lean

ifian, equal to, or (jrvulvr than, the velocityfrom injinity.

The speriis of conic section, tliereforc, docs not depend

oil the po.-ilion of tlic line in wliich tlic particle is pro-

jected, but on the velocity of projection in reference to the

distance oi the point of projection from the centre of

force.

Cor. 2.—From (11), we see- that — c' is the angle

between tlie focal radius vector,

r, and that i)art of the principal

axis which is between tiie focus

and the jioint of the orbit wliicli

is nearest to the focus ; /. e., it

is the angle PFA (Fig. 82) ; and

therefore if tiie principal axis is the initial line c =z 0.

185. Suppose the Orbit to be an Ellipse.—Here

r* < "^' ; so that from (10) we have

e« = 1 -
yj

{2ii - r^B) R V^ sin* j3. (1)

Now the ecpiation of an ellipse, where /• is the focal

radius vector, B t!ie angle between / and tiic shorter seg-

ment of the major axis, 2« the major axis, e the eccen-

tricity, is

_ a (1 - e")
,

^ ~ \ + ecosfl'

u = ^ +
e cos

fl(l _e2) ' a {I -e«)'

comparing (2) with (8) of Art. 184, we have

_!„ _ /^ .

(2)

m
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substituting for J — e^ its value from (1), and solving for

a, we have

_ \iR . ,

which tyiows that the major axis is independent uf tfie direc-

tion ofproject ioti. '

We may explain the several q.iantities which we have

used, by Fig. S'i.

B is the point of projection; FB = R; DB is the line

along Avhich (ho particle is projected with the velocity V;

KBD = f3, the angle of |)rojecti()n ; FP = r; PFA = 6,

FD =: R sin li ; if (3 = 90", the particle is projected from

an apse, i. e., from A or A'.

CoK. 1.—To determine the apsidal distances, FA and

FA', we must put '^." = 0, (Art. 183, Sch.), and (4) of

Art. 184 give us the quadratic equation

u*
ifi ya

h'\i " + Wr ~ li'i
- ^' 14)

the two roots '<f which arc the recijirocnls of the ttvo apsidal

distances, a {1 — r) and ^^ (1 -4- c).

Coiv. 2.—Since the coetticient of the second term of (4)

is the sum of the roots witii their signs changed, wo have

1

-)
+

1

0(1- « (1 + e)-

• • ail--^) =

2^.

(6)

which (/ires /he l(ih(s rectum of the orbit.

rtMiiAa
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Cor. 3.—From Art. 182 we have, calling T the time,

2A
T = V

where A is the area swept over by the radius vector in tiio

time T. Therefore for the lime of describing an ellipse,

we have

rp _'i area of ellipse

(5)

_ %-rxd>- Vl - «»

'^a\i. (1 — e^j

, from (5),

which is the time occupied by the particle vn passing frmt

any point of tlie ellipse around to the same point again*

186. Kepler's Laws.—By lal)o)ious calculation from

an immense series of observations of the planets, and of

Mars in particular, Kepler i'nunci.i'.ed the following as the

laws of the planetary motions about the Sun.

T. The orbits of the phinets are ellipses, of which

the Sun, occupies a, focus.

IT. Tlie radius rector of each planet describes

equal areas iu equal times.

in. The squares of the periodic times of the

planets are as the cubes of the major a.ves of their

orbits.

187. To Determine the Nature of the Force which

Acts upon the Planetary System. -( 1) Froin the

Called feriixilc Time.
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second of these laws it follows that the planets are rctuinod

in their orbits hy an uttraetion tending to the Hun.

Let {x, y) be tiie jjosition of a planet at the time t

referred to two eo-ordinate axes drawn through the Sun in

tiie plane of motion of the planet; X, Y, the component

accelerations due to tiie attraction acting on it, resolved

parallel to the axes; then the equaticnis of motions are

iPy _ r;

dp

(I 30 -wr- TT
0)

But, by Kepler's second law, if A bo the area described

(lA

dt
by the radius vector, -^ is constant,

rfA r^de

^ dt

=
*(^!/f "•'^fl)

= a constant.

Diflfercntiating, we have

'dp

iPx

^J7^-!/dP=^-

xV- !/X = 0, fVom(l),

X
r

X

which shows that the axial components of the acceleration,

due lo the atiraedon acting on tiie j)lanet, are proportional

Id the cD-ordiiKitcs of Die |)hinet; and therefore. I)y the

parallelogram of forces (Art. ;5<M, the resultant of A' and )'

passes Ihrougli the origin.
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ire retuinotl

un.

the time i

the Sun in

component

it, resolved

ous are

(1)

a described

icceleriition,

liropnrtioniil

lore. I)y the

of A'liiul )'

Hence l/ie forces actinj on the phmels all pass Ihrotujh

the Sun's centre.

(2) From tlic first of these laws it follows that the

central attraction varies inversely as the square of the

distance.

The polar equation of an ellipse, referred to its focus, is

_ «(1 - e'l^
'" —

1 4- e cos 0'

1 + fc' cos

(Pti
, _ 1 .

or

Hence

u =

and t'lereforo, if /' is the attraction to the focus, we have

[Art. 181, (9)],

h^ 1

~ a{l-e^) »•*

Hence, if the orbit be an ellipse, described about n centre

of attract ion at the focus, tlie law of intensity is tliat of the

inverse square of the distance.

{']) From the third law it follows that the attraction of

the Sun (.supposed fixed) wliich acts on a unit of mass of

each of the planets, is the same for each planet at the same

distance.

By Art. 185, Cor. 3, we have

4tt3

T» = --- a^
1^

U
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But by the third law, 7^ oc u% iind therefore w must be
constant; i. e., the strength of attraction of tlie Sun must
be the same for all the planets. Hence, not only is the law
of force the same for all the plaufcts, but the ahsohde force

is tlie same.

Tl)i.s very brief discussion of central forces is all that we
have space for. To pursue these enquiries further would
com])el us to omit matters that are more especially entitled

to a place in tliis book. The student who wisiies to pursue

the study further is referred t^o Tait and Steele's Dynamics
of a Particle, or Price's Anal. Mech's, Vol. I, or to any
work on Mathematical Astronomy. We shall conclude

witii the following examples.

EXAMPI. ES,

1..A particle describes an ellipse under an attraction

always directed to the centre ; it is required to find the law
of the attraction, the velocity at any point of the orbit, and
the periodic time.

(1) The polar equation of the ellipse, the pole at the

centre, is

cos8(? . sin^e
u^ =

a"
+

But [Art. 181, (!))] we have

(1)

(2)

(•'0
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w must be

3 Sun must

y is the law

solute force

all that we
ther would

lly entitled

'S to pursue

Dynaniies

or to any

1 conclude

attraction

ind the law

J orbit, and

pole at the

(1)

(2)

0. (3)

by (3),

(cos' d - sin^ e)], by (2),

by factoring,

(4)

ami th(>rcfore the attraction varies directly as the distance.

If ft = the absolute force wc have, by (4),

/t2 - ft (W. (5)

(2) If V = the velocity, wc have, by Art. 183,

,ii = -! = -iS^(Ana]. Geom., p. 133)

= ltb'% by (5),

where b' is the semi-diameter conjugate to r.

,
•

. V = 0' V/*.

(3) U T = the periodic time, we have, by Art. 182,

and iu'iice tlie periodic time is independent of the magni-

tude of the ellipse, iind depends only on the absolute

central attraction. (Sec Tait and Steele's Dynamics of a

^IM
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Particle, p. 144, also Price's Anal. Mech's, Vol. I,

p. 516.)

2. A particle describes an ellipse under an attraction

always directed m one of the loci ; it. is retiiiired to find tiie

law of attraction, the velocity, and the periodic time.

(1) Here we have

1 + '^ cos
u =

r,'\ '

and
(Pii

(lu _
dd ~

'

— e cos

e sin
(1)

which in ('.)) of Art. 181 gives

F =
a(i -(») a n — £•«) r»'

(2?

hence the attraction varies invcr.vly as the stpiare of the

distance. If /i = tiie absolute force, we have by (2)

//2 = lia (1 - e*). (a)

(2) By Art. 183, Cor. 1, we have

1 „ (lit^ 2ai<. — 1 , /^v ,.\^-«* +
;?ff.

-,,^7r3.-,i)'V(i); (4)

A^ fi^iau — 1) ,
. , .

•'•
p^
^

It ' ^^ ^^ "" ^^' ^^

(3) If r = the iHTJodic time wo have (Art. 182)

_ 'i^^
(J.
- ^t

" h'



m attraction

d to find tlie

c time.

-- • (1)

(8?

iliiare of tlie

(3)

); (4)

(4). (5)

182)

«», (G)

I's, Vol. I,
I

,1
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and hence the periodic time vir.-ic° as the sf|uare root of

tlie cube 'f the major axis.

3. Find the attraction l»y whicli a particle may describe

a circle, and also the velocity, and the periodic time, (1)

when the centre of attraction is in the centre of the ciiclc.

and (3) when the centre of attraction is in the circiiiii-

ference.

(1) Let a = the radins; then the polar equation, the

pole at the centre, is

r = «;
1 (ht. fPu __ -

^ = ^^'K«+S) = ^r.3"

Also ,.«= -., and y= -ir-

(1)

(2)

From (1) and (3) we have

P = !?,
a

and hence the central attraction is etpial to the square of

the velocity divided )>y the radius of the circle.*

(2) The equation, is

r = 2a cos d ; .
•

. ;iau = sec fl.

and « + TS = 8a''?*'

;

.-. P = 8fl%«7t» = ^'

;

and hence the attractioi\ varies inversely as the fifth

* Called \\v\ <'ei)tHptgtil Fin\ Sec Art 108.
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power of the distance ; and if /' = the absohite toro-, w«

iiiive n = SuVi^;

A« and ?* —
Zi"

If 7' ==: the periodic time, we have

T ^ -^1™'. (See Price's Anal. Mech., Vol. I., p. 618.)

4. Find the attraction by which a particle may describe

the lemniscatc of Bcrnouilli and aKso the velocity, j,nd tiie

time of describing one loop, the centre of attraction being

in the centre of the lemniscate, and the equation being

'/•2 = a« cos 20.

„.... = 5'^; .^ = ,ii;r=©V.

5. Find tlie attraction by which a particle may describe

the cardioid and also the velocity, and the periodic time,

the equation being r z= a {I + cos 6).

Ans, P = -^'^ ^' = ^> ' = \-y)''-

(]. Find the attraction by which a particle may describe

a luirabola, and also the velocity, the centre of attrpction

. , - 2a
being at tl.e focus, and the equation bemg r = ^ -y

Ans. P -
2ar*

f2 = Compare (13) of Art. 184.

T. Find the attraction by which a particle may describe

A hyperbola, and the velocity, the centre of attraction l)eing

. , . a(«2-l)
at the focuc, and the efpuition bemg r = i-JT^-^fQ

h^ 1 „ fi (2fl» + 1)
Am. P = ,, —sr ;j; '^ = •

a (1 — e*) r^ a
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8. If the centre of utt'-. .aion is at tlic centre of the

liyperbohi, find tlio attraction, and velocity, the c'luation

beins'
cos'^ 6 sin^

b^
= H'

ir-

Ans. "=.--j^r = fir; v^ — fi (r^ — a^ + //*).

9. Find the attraction to the pole under which a particle

will describe (1) the curve whose equation is /• = ia cos nd,

2a
and (2) the curve whose equation is r = „•

^ ' ' 1 — e cos nO

¥n-

• .e!

Ans. (1) /' = j^— + ' ^-~ ;
{2)F -

^^^

> '— • That is, the attraction in the first curv

partly as the inverse fiftii [. )wer, and partly as th<! .iveioO

cube, of the distance : and in the second it varies
;

:, 'y • .

'

the inverse square, and partly as the inverse cube, i ihe

distance.

10. A planet revolved round the sun in an orbit with a

major axis four times that of tiie earth's orbit ; determine

the periodic time of tiie ])lanet. Ans. 8 years.

11. If a satellite revolved round the earth close to its

surface, determine the periodic time of the satellite.

of tlie moon's period.A71S.

(60)«

12. A body describes an ellipse under the action of a

force in a focus : compare the velocity when it is nearest

the focus with its velocity when it is furthest from the

focus.

Ans. As 1 + e : 1 — ;', where n is the eccentricity.

13. A Vdy describes an ellipse under the .iction of a

force to the focus ,S' ; if // l)e the other foois show that the

^
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velocity at any point /'may he resolved into two velocities,

resi)e"tively at riglil angles to A'/' and ///', and each vary-

ing ilS III*.

14. A body deseriltes an ellipse under tlie aetion of a

force in t lie eentre: if the greatest velocity is three times

the least, find the eccentricity of the ellipse. Am. | v-'.
•

15. A body d< scribes an ellipse under the action of a

force in the centre : if tlie major axis is 20 feet and the

greatest velocity 2U feet per second, find the periodic time.

Ans. n seconds.

16. Find the at tract i<m to the pole under which a par-

ticle mav descrihi' tin eipiiangular spiral. , ,, 1^

17. If P =- (oj-^ — Hr), and a particle be projected

from an apse at a distance c with tlie velocity from infinity ;

prove that the equation of the orbit is

18. If P = 2u ( — "X 'i'>J '''^' particle be projected

from an ap^ie at a distance n with velocity - ,
prove tiiat

it will be at a distance r after a time

1 / , , r + Vr« — ffl*
, ^

a
Vr^ - «')•
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CHAPTER III.

CONSTRAINED MOTION.

188. Definitions.—A particle is cnnslrnined in its mo-

tion when it is compelled to move ahmg a given fixed curve

or surface. Thus far the sul)jeets of motion have been

particles not constrained by any geometric conditions, but

tree to move in such jiaths as arc due to the action of the

impressed forces. We come now to tiie case of the motion

of a particle which is constrained ; that is, in which the

motion is subject, not only to given forces, but to undeter-

mined reactions. Such cases occur when the particle is in

u small tube, eitiier smooth or rough, the bore of which is

supposed to be of the same size as the particle ; or when a

small ring slides on a curved wire, with or without friction
;

or when a particle is fastened to a string, or mo\es on a

given surface. If we substitute for the curve or surface a

force whose intensity and direction are exactly equal to

those of the reaction of the curve, the particle will describe

tiie same path as l)efore, and we may treat the problem as

if the particle were free to move under the action of this

system of forces, atid therefore api)ly to it the general equa-

tions of motion of a free particle.

189. Kinetic Energy or Vis Viva (Living Force),

and Work.—A particle, in constmined to move on a given

smoutli plane ritrre, under given forces in the plane of the

curve, to determine the motion.

Let APC be the ciTtve along which the particle is com-

pelled to niove when acted upon by any given forces. Let

0.C and 0^ be the rectangula.' axes in the plane of tiic
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curve, the axis y positive up-

wards, aud (X, y) tlic place of

tiie particle, /', at tlic time /

;

lot X, Y, parallel respectively to

the axes of .r ami //. he the axial

components of the forces, the

mass of the jiarticle being m ;

let li be the pressure between

the curve and particle, which

acts in the normal to the curve, since it is smooth. Then

the equations of motion are

Fig.83

di^ as
(1)

(Py dx

dP ds
(2)

Multiplying (1) and (2) respectively hy dx and Jy, and

adding, we have

dx d^x + du d^ti „ , , „

,

Integrating between the limits t and t^, and calling v^ tho

mitial velocity, we have

m _^V= f{Xdx+Ydy) (3)

The term -^ v^ is called the vis viva*, or Kinetic Energy

of the mass m ; that is, vis viva or kinetic energy is a

quantity which varies as the product of the mass of the

particle aud the square of its velocity. There is particular

advantage in defining vis viva, or kinetic energy, as hrdf

See Thomson and Tail's Nat Phil., p. 288.
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tho product of the nia,*s and tiio sijuaro of its velocity.*

Tiic lirst nieml)cr, therefore, of (3) is the vis viva or kinefi(

energy of »( ii((|uirfd in its nn.tion from (,'•„. //,,)
to (.r,

//)

under tlie action of the given fonvs.

Tlie terms Xdx and Vdy arc the products of the axial

components of the forces by the axial displacements of the

mass in the time dt, and are therefore, the elements of work

done hy the acceleniting forces X and V in the time <//,

according to tiie delinition of work given in Art. 101, Rem.;

so that the second member of (3) expresses the work done

Ity these forces through the spaces over which they moved

the mass in tlie time between /„ and /. This equation is

QnWinX the equation of kinet ir eneriiy and of work ; it shows

that the work done by a force exerting action through a

given distance, is !(|ual to the increase of ki tic energy

which has accrued to the mass in its motion through that

distance.

If in the motion, kinetic energy is lost, negative work is

done by the force ;
('. c, the work is stored up as potential

work in the mass on which the force has acted. Thus, if

work is s|)ent on winding up a watch, that work is stored

in the coiled si)ring, and is thus i)otential and ready to be

restored under adapted circumstances. Also, if a weight is

raised through a vertical distance, work is spent in raising

it. and that work may be recovered by lowering the weight

throuiih the same vertical distance.

This theorem, in its most general form, is the modern

jirinciple of conservation of energy : and is made the funda-

mental theorem of abstract dynamics as applied to natural

philosophy.

In this case we have an \n»tanci' of spare-integrals, which,

as we have seen, gives us kinetic energy and work ; the

soli >n of problems of kinetic energy and work will be

explai.ied in Chap. V.

* Some writers defliie vis viva a-* the whole product of the ina^o and the equaw

of the vclocily. See RouthV Rigid I)yiiam|i». p. 259.

*
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Now if .rand J' arc functions of the co-ordinates x and

1/ the second momhe- of (;5) can he integrated ; let it he the

differential of some fiinetion of .r and //, as (/> {x, y). Inte-

grating (3) on this hypothesis, and sui)posing r and v^ to

be the velocities of the particle at the points {x, ij) and

(a:,, ?/u) corresponding to / and Z^, we luive

m
(t;2 _ j,„2) = (.r, y)~-4> (Xo, v/o) (4)

which siiows that the kinetic energy gained by the particle

constrained to move, nnder the forces J:', F, along

any path whatever, from the point {x^, y^) to the point

{x, y), is entirely independent of the patii pursued, and

depends only upon tiie co-ordinates of the points left and

arrived at; the reaction R does not appear, which is clearly

as it should be. since it does no work, because it acts in a

line perpendicular to the tlirection of motion.

190. To Find the Reaction of the Constraining

Cxirve.— For convenience, the mass of the particle may bo

taken as unity. Multiplying (1) aiul (2) of Art. 189 by

f- and 'v. subtracting tl>e former from the latter, and
m (Is

solving for R, we have,

iPif dx........ ^dh^ly ydy
^^ ~

,'lPch
'^

ds lis

- H-

P
X'll - F^^, by (:{) of Art, 1G3 (1)

in which p is the radius of curvature at the point P. The

last two terms of (1) are the normal components of the

impressed forces; and Iherciore. if the ])artiele wi're at rest,

they would denote the whole pressure on tiie curve; but
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(4)

the particle

, F, along

3 the point

ursueil, and

ints left and

cli is clearly

it acts in a

>nstraining

tick' may bo

Art. 189 by

latter, and

It

'h

^rt. 102 (1)

int r. The

lents of the

were at rest.

curve ; but

the particle being in motion, there is an additional pressure

V-

on the curve expressed by - •

In the above reasoning we have considered the particle to

be on the concare side of the curve, and tiie resultant of A'

and F to act towards the convex side along some line as PI

so as to produce pressure against the curve. If on the

contrary, tliis resultant iK'ts towards the concave side, along

J'F' for example, then, whether tl.c- pa>-ticle be on the

concave or conve.v side, the pressure agai".:;i thf curve wid

.,2

be the difference between and the normal resultant of X
P

and Y.

191. To Find the Point where the Particle Vill

Leave the Constraining Curve. -It is evident tint at

that point. A' — 0, as there will be no pressure against the

curve. Therefore (1) of Art. 190 becomes

p (Is
^ ds

= F' COS F'PB

if /" bo the resultant of A^and Y.

.-. i^ = F'p cos F'PR

= )iF'- 1 chord of curvature in the direction PF'.

Comparing tliis with (6) of Art. 140, we see that fhe

pailich' icill h'uvt' tin: curve at the point where its velocity is

such «.s woidd he produced by the resultivit force then actinfj

on it, ifrontinved ronsfun/ duviny if.^ full from rest throuyh

u s/ntc'e et/i((d to { of the chord (f vurvalure parallel to that

rrsultunt. (See Tait and Steele's Dyuumics of a Particle,

p. 170.)
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192. Constrained Motion Under the Action of
Gravity.—When gravity is the only force acting on tlio

particle, the formulae are simplified. 'J'aking tiie axis of y
vertical and positive downwards, the forces become

X= 0, and Y = +</;

and for the velocity we have, by (3) of Art. 189,

\^^-\i\' = <j{y~y^) (1)

where ?/, is the initial space corresponding to the time t^.

For the pressure on tiie curve we have, by (1) of Art. 190,

If the origin be where the motion of the parlicle begins,

the initial velocity and apace are zero, and (1) becomes

ii^ = gy. (3)

This shows that the velocity of tiio particle at any time

is entirely indeiwndent of the form of the curve on which

it moves; and depends solely on the perpendicular distance

through which it falls.

193. Motion on a Circular Arc in a Vertical

Plane.—Take the vertical <liameter as axis of y. and its

lower extremity as origin ; then tlie ci[Uation of I he circle is

(1)

a^zzz Uy -f\

dx

a — y
~ 'hi-

X

(Is

a



Action of

iag on till!

c axis of 1/

tiio

(1)

e time /,.

af Art. 190,

(2)

clo begins,

iconics

(3)

b any tiiiio

c on whicii

lar distance

Vertical

//. and its

IJK' circlo is

(1)

MOTION ON A CIRCULAR ARC.

Let {k, h) be the point K where

the particle starts from rest, and (x, y)

the point P where it is at the time /.

Tlien the particle will have fallen

through the height HM — h — y,

and hence from (3) of Art. 198 we

have

ds

351

o
Fi8.84 4-

dt
= V = V'ig (/t — y)' (2)

Hence the velocity is a minimum when y = h, and a

maximum when y = 0; and this maximum velocity will

carry the particle through to A'' at the distance h above

tlie liorizontal line through 0.

To find the time occupied by the particle in its descent

from A' to the lowest point, 0, we have from (3)

di ~ - d.'i

V2y {h - y)

— ady

V2g{h-y)Ci'<ry"~y^)
by(l) i'i)

the negative sign being taken since t is a decreasing func-

tion of .S'.

This expression does not admit of integration ; it may bo

reduced to an elliptic iti/eyral of the first kind, and tables

are giveiv of the approximate values of the integral for

given values of//.*

If, however, the radius of the circle is large, and the

<Te!it(v<t distance fCO. over wiiich the particle moves, is

small, we may dcelupe ('•)) into a- series of terms in ascend-

in" powers of , and thus find the integral ap])roximatelv,
^ '

'iu

Sue Ijegendro'is Traltd dee Foiictloiin Elllptl(iiic».
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Let T\)Q the time of motion of the ])article from A' to K\
L e., from y — h, through y = 0, to y = h again, tlien (3)

becomes

V !J ^h y/hy — y^^ ^^^'

integrating each term separately we have

-=^\/;DH-«.^o'(^y

+ (2T4- «) (2-;.) + '"' (4)

which is the complolc expression for t!;e time of moving

'rom the extreme position A' on one side of the vertical to

the extreme jKisition A" on the other; this Is called an

oscillation. (See Price's Anal. Mechs., Vol. 1., p. 518.)

If the arc is very small, // is very small in comparison

with «, and ail the terms containing ^~ will be very small,

and by neglecting them (i) becomes

-V^- ip)

194. The Simple Pendulum.—Instead of supposing

the particle to move on a curve, wo may imagine it sus-

])fniled bv a siring (tf invarial>le length, or a thin rod

((•Msulered of no weight, mid moving in a vertical plane

about tiie point V : for. whether tin- force acting on the

particle be the reaction of I he curve or the tension of the

string, its iuh'usily is the same, while its directwn, iu

either ca.se is along the nonnal to the curvy.
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n K to K\
w, then (3)

(4)

of moviiif!;

vertical (o

I called ail

). 518.)

comiiarisoii

very sniull,

(6)

supposing

^inc it Hus-

a thin rod

•tical plane

ing on the

ision (if the

'ii'cclion, iii

When tho particle is supposed to be suspended by a

bread without weight, it boconies what is termed a miiple

ptKduluw t'^'d although such au instrument can never be

pertLctly attained, but exists only in theory, yet approxima-

tions may be made ^o it sufHciently near for practical pur-

jwses, aiid by met-iis of Dynamics we may reduce the

calculation of the niotion of such a pendulum to that of

the simple pendulum.

If I is the length of the rod, the time of an oscillation is

approximately given by the formula

—V^ (1)

when tho angle of oscillation is very small, /. e., not ex-

ceeding about 4° ; * and therefore, for all angles between

this and zero, the times of oscillation of the same pen-

dulum will not perceptibly differ ; /. e., in very small arcs

thfl osrillalions may be regarded as isochronal, or a^j all

performed in the same time.

195. Relation of Time, Length, and Force of

Gravity.—From (I) of Art. l'J4, we have Tec V/ if i/ i«

constant; T<x. --- if / is constant; <j<x.l\i 7' is constant,

that is

(1) Vov i\\c rnma \t\aGQ the times of nsciUalion are as the

square roots of the lengths of tfie pendulums.

(2) For the same i)ciululum the times of osrillation are

inversely as the square rootf of the forre of gravity at

different places.

* If the liiliiRl IncUiiBlion t» r.*, tlie Bcconti term of (4) U only 0.00047(1
;
If V Ihc

socoud term Is uul; O.OOUOlb.
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(3) For the same time ike lengths of pendulums vary as

fhe force of gravity

.

Hence by means of tlie pendulum the force of gravity at

different places of the earth's surface may be determined.

Let /. be the length of a pendulum which vibrates seconds

at the place where t. -a value of g is to be found ; tlien from

(1) of Art. 194 we have

i =
^y^f;

• ^ = "'^5 (1)

and from this formula g has been calculated at many places

on the earth. The method of determining L accurately

will be investigated in Chap. VII.

Cor.—If u be the number of vibrations performed dur-

ing iV^ seconds, and T'the time of one vibration,

then n = ~, by (1) of Art. 194 = -\/f • (2)

Since gravity decreases according to a known law, as we
ascend above the earth's suiface. the comparison of the

times of vibration of the same pendulum on the top of a

mountain and at its bai'*' would give approximately its

height.

196. The Height of a Mountain Determined with
the Pendulum.—A seconds pciiduliim is carried to the top

of a mountain ; required to fnil the height of the mountain
by observing the change in the time of osrilfation.

Let /• be the radius of the earth considered spherical ; h

the height of tlie mountain above tiie surface; / the length

of the penduhmi ; // and //'tin.' values of gravity cm llie

earth's surface, and i>t the to]» of the mountain respectively.

Then (Art. 174) we have



(1)

(2)
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(> + h\ . ., _ 91^
.

f=(^-)--^' {r + hy

355

(1)

which is the force of gravity at the top of the mountain.

Let «- = the number of oscillations which the seconds

pendulum at the top of the mountain makes in 24 hours;

24 X 60 X CO
then the time of oscillation =
(i) of Art. 195, we have

24 X 60 X 60

Hence from
71

n

h

r

24 X 60 X 60

n
- 1, (since ttW- = 1), (2)

which gives the height of the mountain in terms of the

radius of the earth. For the sake of an ex!> „;'\ suppose

tlie ponduliim to lose 5 seconds in a day ; t!. w '- to make

5 oscillations less than it would make on the su.i.. .;€ of the

earth.

Then /t = 24 x 60 x 60 - 5

;

which in (2) gives

h _ 24 X 60 X 60

r — 24 X CO X 60 — 5

» 1

-1

~V 24 X 60 X 12/ ^ 24 X 60 X 12
- nearly

;

h
4000

^. = { miie, nearly,
24 X CO X 12

f being 4000 miles (apjn-oximately).

197. The Depth of a Mine Detennined by Ob-

serving the Change of Oscillation in a Seconds
Pendulum.— Let /• be the radius of the earth as in the
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last ciiso ; // tlio depth of the niiiu- ; (j and <j the vuliics of

gravity on tlie earth's surlaee and at the bottom of the

mine. Then (Art. 171) we have

g' ~ r -h ''^'

Let )i — the number of oscillations which the seconds

pendulum at tiie bottom of the mine makes in 24 hours.

,p, 24 X ()0 X 00 / Tr

= \/rI-A-

^ _ /j _ / n \2

•'• ^
r
— \24 X 00 X GO/'

from which h can be found. If, as before, the pendulum

loses 5 seconds a day, we have

h

r
1 _ (i I y

V 24 X GO X 12/

nearly,~ 13 X GO X 12

.
•

. /< = ^ mile nearly.

(See Price's Anal. Mech's, Vol. I, p. 590, also Pratt's

Mech's, p. ;J7G.)

198. Centripetal and Centrifugal Forces.—Since

the pressure -, at any j)oint, depends entirely upon the

velocity at that poilit and the radius of curvature, it would

remain the same if the forces X and Y were 1)oth zero, in

which case it would be the wliole normal pressure, /»',

A
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\ ill IK'S of

torn of tlif

(1)

lio seconds

4 hours.

penduliiin

Jso Pnilt's

es.—Since

upon flic

', it W(uild

Ml zero, ill

ossure, li,

against the curve It is easily seen, therefore, that this

pressure arises entirely from the incrlia of the moving

particle, /. e., from its tendency at any point, to move in

the direction of a tangent ; and this tendency to motion

along the tangent necessarily causes it to exert a prest^ure

against the deflecting curve, and which requires the curve

to oi)pose the resistance — • Hence, since tlio particle if

left to itself, or if left to tlie action of a force along the tan-

gent, would, by th ' law of inertia, continue to move along

that tangent, — ia the effect of tlie force whicii deflects the

liarticle from its otherwise rectilinear path, and draws it

towards tlie cen''''o of curvature. This force is called the

Ceiifrijietal Force, which, therefore, may be dtfiued to be

f/if force which deflects a particle from its otherwise recti-

linear path. Tiie equal and opposite reaction exerted away

from the centre is called the CenlrifiKjal Force, which may
he defined to he the resistance ivhich the inertia of a particle

in motion opposes to 'whatever deflects it from its rectilinear

path. Centripetal and centrifngal are therefore tlie same

<iuantity under different as-pects. The action of the former

is towards the centre of curvature, while that of the latter

i>ifrom the centre of curvature. The two arc called central

forces. They determine the direction of motion of the par-

ticle hut do not affect tlie velocity, since they act continu-

ally at right angles to its path. If a particle, attached to a

string, be whirled abo, t a centre, the intensity of these

central forces is measured by the tension of the string. If

tiie string be cut, the piirticle will move along a tangent to

the curve with unchanged velocity.

Coit. 1.'— If m be the mass moving with velocity v, its

cenlrifugiil force is m -• If w be tlie anguhir velocity
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described by the radius of curvature, thcu (Art. 1G(», Ex. 1),

V = ou), and consequently

the centrifugal Ibrco of in = rru^p. (1)

Cor. 2.—Let m move in a circle with a constant velocity,

v; let a = the radius of the circle, and 2' the time of a^

complete revolution ; then iTra = vT;

.-. the centrifugal force oim = m -^ ; (2)

ai>d thus the centrifugal force in a circle varies directly as

the radius of the circle, and invert^ely as (he square of the

pp.riadic tini .

Cor. 3.—If m moves in the circle with a constant

angular velocity, u>, then (Art. 1(50, Ex. 1), v = aw

;

the centrifugal force oi in = md^( (3)

and therefore varies directly as the radius of the circle.

Thus if a i)article of mass ni is fastened by a string of

length a to a point in a horizontal plane, and describes a

circlt. ni the plane about the given point as centre, the cen-

trifugal force produces a tension of the string, and if w is

the constant angular velocity, the tension = m u^a.

199. The Centrifugal Force at the Equator.—Let

Ji denote tiie eciuatorial radius of the earth = 2092G202*

feet, T the time of revolution upon its axis — 80104

seconds, and tt = 3.1415926. Substituting these values in

(2) of Art. 198, and denoting the centrifugal force at the

e()uator by/, and the mass by unity, we have

/ = 0.1 U2(; feet. (1)

• E . Brit., Art. Geodesy.
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G(»,Ex. 1),

(1)

t velocit}',

time of a

(2)

liredly as

are of the

constant

fo)

;

(3)

circle.

[I string of

lcscriV)es a

e, the cen-

nd if w is

ator.—Let

20926^02*

3
- 80164

e values in

>rce at the

0)

The force of gravity at the equator has been found to be

32.09023 ; if Hiis force were not diminished by the cen-

trifugal force ; i. e., if the earth did not revolve "bn its

axis the force of gravity at the e(iuator would be

G = 32.0!)022 + 0.1112(i = 32.20U8 feet. (•^')

To (k'terniine tlie relation between the centrifugal force

and the force of gravity, we divide (1) by (2) which gives

/ _ 0.11126

O ~ 32.20148 ~ 289«o>
iiearly. (3)

that is, the centrifiKjal fortV at tlie equator in ^J^ of that

which the force of (/rarity at the equator would be if the

earth did not rotate.

200. Centrifugal Force at Differ-

ent Latitudes on the Earth.— Let

P be any particle on the earth's surface

describing a circumference about the

axis, NS, with the radius PD. Ix»t

= ACP = the latitude of P; R
the radius, AC, of the earth ; and R'

the radius PD of the parallel of lati-

tude passing through P. Then we have

A" = R cos (p.

cN-^,^Y^
vj

jx

s
Fig.85

(1)

Let the centrifugal force at the point P, which is exerted

in the direction of the radins DP, be represented by the

line FB. Resolve this into the two components PF, act-

ing along the tangent, and PB, acting along the normal.

Tlien by (2) of Art. 198 we have

PB = ^"^'L

in^R cos (ft

, by (1). (2)
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Hence, the crnh'tfitc/al forrv (it nini point on tJiv earth's

fnirface varies directly as tlie rosine of the latitude of the

place.

For the normal coinj)()ncnt we have

PE = PB cos

4Tr^/i* cos^ (\)

T-f
by (2)

= /cos2 (/), hy (1) of Art. 1!)!». (:{)

Hence, the component of the centrifugal force which direrth/

opposes tin: force (f(/rarifi/, at ainj point on the earth's sur-

face, is equal to tliv coitrifuijal force at the equator, viul-

tiplied by tite square of tlie cosine of the latitude of the

phCce.

Also /'/' = PB sin f/.

in'^li sin (/) cos
,
by {'i)

= {,m\ 2(p, by (1) of Art. 1!)9
; (4)

that is, the component of Hic centrifiiyal force which tends

to draw jiart ides from auy parallel (f latitude, P, towards

the equator, and to cause the carf' to assume the figure

of an, oblate spheroid, varies as tlie sine of twice the

latitude.

T' proeedinir calciiliitioii is mnde on the liypothesis tir„.t;

tile eartli is .i pert'eet sphere, wiiereas it is an eljlate

spheroid; and llie attraction of tlie eartii on particles at

its snrface decrease.' as we [>ass from tiie poles to the

eqiuitor. The pendulum furnislies the mo.>t aecuiate
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a

metliod of dolenniiiiiig the force of gravity ut tliffereul

l)lu'3os on tlic eartli'i^ surface.

201. The Conical Pendu-

lum.—The Governor.—Suppose

a parucle, /'. of luast; w, to be at-

tached to one end of a string of

length /, tlie ctlier end of which is

fixed at A. Tlie particle is made

to describe a horizontal circle of

radius PO, with uniform velocity

round the vertical axis .KAso that

it makes n revolutions per second.

It is required to find the inclina-

tion, 0, of the string to the vertical,

and the tension of the string.

The velocity ')1 P in feet per second = 'iirn-OP — 2mi I

sin 0. The forces acting upon it arc the tension, 7', of the

string, the weight, w. of the particle, aiul the centrifugal

force, m '^i'-f f^*^— (Art. 1 1)8). 1 lence resolving, we have
'

I sm

Fi9.86

7' COS =z DIIJ.

in- irt'^n^ I,

(a)

(3)

(4)

for horizontal forces. 7'siu — in-\"'hiU sin ; (1)

for vertical forces,

Fnmi (1) T

which in (5i) gives

where 7' and are emnpletcly determined.

if the string be rejdaced by a rigiil rod. which can turn

about .1 in a ball and socket joint, the instrument is called

a conical pendulum, autl occurs in the (joucmor of the

steum-engine.

10

m
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EXAMPLES.

1. If the length of the .seconds iiendulnm he 39.1393
inche.s in London, lind tlie value of y to three places of
I'fcinials. Am. 32.191 feet.

2. In what time will a pendulum viln-ate whose length is

15 ineiies ? ,i„,,. 0.62 sec. nearly.

3. In what time will a pendulum vibrate, whose length is

double that of a seconds pendulum ? Ans. 1,41 sees.

4. How iiuiny vibrations will a pendulum 3 feet long
make in a minute? Ans. 02.55.

5. A peiululum which beats seconds, is taken to the top
of a mountain one mile high : it is re(|uired to find the
number of seconds which it will lose in 12 hours, allowing
the radius of the earth to be 4000 miles. Ahk. 10.8 sees.

(i. What is the length of a pendulum to beiit seconds at
the place where a body falls lOjV ft. in the first second ?

Ahk. 39,11 ins. nearly.

7. If 39.11 ins. be taken as the length of the seconds
pendulum, how long must a pendulum be to beat 10 times
in a minute? Ans. 11 Tift.

S. A particle slides down the arc of a circle to the
lowest point; lind t!ie velocity at the lowest point, if the
angle described round the centre is 'iO . Am. \/gr.

9. A pendulum which oscillates in a second at one place,
is carried to another place where it makes 120 more oscil-

lations in a day
:
lomjiare the force of gravity at the latter

place with that at the ibrnier. Ans. (ll\l)'K

10. Find the nnmliei'of vihral ions. ;/, .which a pendiiliiin

will gain in .V si!coiids by shortening the length of the

pendulum.
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Let the length, I, he decreased hy a small (piantity,

/,. and let n bo increased by ?«i ; then from (2) of Art. 195

we get

which, divided by (2) of Art. 195, gives

Hence

11. If a pendulnm be i') inches long, how many vibra-

tions will it gain in (mo day if the bob* be screwed np one

tnrn, the screw having 32 threads to the inch ?

.'l/(.s. 28.

12. If acloek loses two niinuto a day, how many tnrns

to the right hand must we give the nut in order to correct

its error, su^jposing the screw to iiave oO threads to the

iiicl,
y Ans. 5-4 turns.

13. A mean solar day contains 24 hours, 3 minutes,

50-5 seconds, sidereal time ; calculate the luiigth of the

pendulum of a clock beating sidereal seconds in London.

Sw Ex. 1. ''"*' 38-935 inches.

14. A lieavy ball, suspended by a fine wire, vibrates in a

small arc; 48 vibrations are counted in 3 niinuti's. Cal-

culate the length of the wire. Alls. 45-87 feet.

15. The height of tiic cupola of St. Paul's, aliove the

floor, is 340 ft.; calculate tiie nunilier ol' vilirations a heavy

body would mnke in iialf an hour, if suspended from the

dome by a line wire wliieli reaches to wilhiu H inches of

the floor. •I""- K'i-l-

* The lowor oxtrenilly of tho iiumlulum.

mm
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IG. A seconds pendulum is carried to the top of a

mountain m niiles liigli ; assuming that the force of

gravity varies inversely as tiie square of the distance from

the centre of the earth, find the time of an oscillation.

Ans.
/4000 + m.

40UU )"sees.

17. Prove that the lengths of jicndnlums vibrating dur-

ing the same time at the same i)lace are inversely as the

squares of the number of oscillations.

KS. In a series of experiments made at Ilarton coal-pit, a

pendulum which beat seconds at the surface, gained -i\

beats in a day at a tlepth of 12G0 ft.; if // and//' be the

force of gravity at the surface and at the depth mentioned,

show that

9' - _ 1—^ — Tff^irO'

lit. A pendulum is found to make fi-tO vibrations at the

e(|uator in the same time that it makes 041 at Greenwich;

if a string inuiging vertically can just sustain 80 lbs. at

(Jreenwich, how nuuiy lbs. can the same string sustain at

the equator? Ans. 80|- lbs. about.

'v'O. Find the time of descent of a jjarticle down the arc

of a cychiid, tiu' axis of the cycloid lu'ing vertical and vertex

downward ; and show that the time of descent to the lowest

point is the same whatever point of the curve the particle

starts from.
^

'

r

A us. Ti \ / •

'.M. If in Ex. '^0 the ])articl(> begins to move from the

extremity of (hf liasi' ol' tlic cycloid linil the pressure at tlie

lowest point of the curve.

Ans. 'i(/\ i. r., the ])ressur(! is twice the weight of the

particle
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22. Find the pressure on the lowest point of the curve

in Art. 19.'], (I) when the i)article starts from rest at the

highest point. A. (Fig. S4), {'i) when it starts from rest at

the point B.

A)is. (1) 0^; (2) ;i// ; i.e., (1) tiie pressure isfivctinus

tlie weight of the particle and (2) it is three times tlie

weight of the particle.

215. Tn the simple itendulum find the point at which the

tension on the string is the same as when the jiarticle

liangs at rest.

Anx. y = §//, where // is the height from which the

pendulum has fallen.

24. If a particle be compelled to move in a circle with a

velocity of 300 yards per minute, the radius of the circle

being IG ft., find the centrifugal ferce.

Ans. 14- OG ft. per sec.

25. If a body, weighing IT tons, move on the circum-

ference of a circle, whose radius is 1110 ft., with a velocity

of K) ft. per sec, find the centrifugal force in tons (take

g = 32-1948). Ans. 0-1217 ton.

2G. If a body, weighing 1000 lbs., be constrained to move

in a circle, whose radius is 100 ft., by means of a string

capable of sustaining a strain not exceeding 450 lbs., find

the velocity at the moment the string lireaks.

Ans. 38.06 ft. per sec.

27. If a railway carriage, weighing 7-21 tons, moving at

the rate of 30 miles per hour, describe a portion of a circle

whose radius is 4G0 yards, find its centrifugal force in tons.

Ans. 0-314 ton.

28. If the centrifugal force, in a circle of 100 ft. radius,

be 140 ft. per sec., I'.id the periodic time.

Ans, 5-2 sees.
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29. If the centrifugal force lie i:U ozs., and tlio ratlins

of the circle 100 ft., the iieriodic time being one hour, find

the weight of the Ixuly. An.s. :]8G-'3m ioufi.

30. P^ind the force towards the centre re(|iiired to make
a body move uniformly in a circle whose radins is 5 ft.,

with .such a velocity as to coniplete a revolution in 5 sees.

Ans. -—

•

5

.11. A stone of one lb. weight is whirled round horizon-

tally by a string two yards long having one end fixed ; find

the time of revolution when the tension of the string is 3 lbs.

Ans. 2^^] sees.

32. A weight, w, is placed on a horizontal har, OA,
which is made to revolve round a vertical axis at 0, with

the angular velocity 6); it is re(iuired to determine the

position, A, of the weight, when it is upon -the i)oint of

sliding, the coefficient of friction being /'.

fgAns. OA z=
w*<

33. Find the diminution of gravity at the Sun's equator

caused by the centrifugal force, the radius of the Sun being

441000 miles, and the time of revolution on his axis being

G07 h. 48 m. J«.v. 0- 0192 ft. per sec.

34. Find the centrifugal force at the equator of Mercury,
the radius being 1570 miles, and tiie time of revolution
«4 h. .') m. Ans. 0.0435 ft. per sec.

35. Find the centrifugal force at the equator, (1) of

V^enus, radius being ;59()0 miles and rime of revolution

23 h. 21 m., (2) of Mars, radius being 2050 miles and
l)eriodic time 24 h. 37 m., (3) of Juiuter, radius being

43500 miles and periodic time 9 h. 50 m., and (4) of Saturn,

radius })eing 395H0 miles and periodic time 10 h. 29 m.
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Aiif. (1) 0-11504 ft. per sec.; (2) 0-0544 ft. per sec;

(;i) 7- 0907 ft. per sec; (4) 5- 7924 ft. per sec

3fi. Find tlie eft'ect of centri<"ugal force in diniinisUin^

Ifravity in the latitude of t]0 . [See (3) of Art. 200).

J lis. 0-028 ft. per sec.

37. Find (1) the diniinutio!! of gravity caused by cen-

trifugal force, and (2) the component wliich urges j)articles

towards the equator, at the latitude of 23°.

Ans. (1) 0-09 ft, per sec; (2) 0-04 ft. pr sec,

38. A railway carriage, weighing 12 tons, is moving

along a circle of radius 720 yards, at the rate of 32 miles

an hour; find the horizontal pressure on the rails.

Ans. 0-38 ton, nearly.

39. A railway train is going smoothly along a curve of

500 yards radius at the rate of 30 miles an hour; find at

what angle a pluml)-line hanging in one of the carriages

will be inclined to the vertical. Ans. 2° 18' nearly.

40. The attractive force of a mountain horizontally is/

and the force of gravity isg; show that the time of vibra-

tion of a pendulum will be "W,^^?^' " '^^'"^ ^^^^ length

of the pendulum.

41. In motion of a particle down a cycloid prove that the

vertical velocity is greatest when it has completed iialf its

vertical descent.

42. When a particle falls from the highest to the lowest

point of a cycloid sliow that it describes half the path in

two-thirdr of the time.

43. A railway train is moving smoothly along a curve at

the rate of GO miles an hour, and in one of the carriages a

pendulum, which would ordinarily oscillate seconds, is

observed to oscillate 121 times in two minutes. Show that

the radius of the cui've is very nearly a (piarter of a mile.

m
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44. One end of a string is fixed ; to tlie otlier end a

particle is attached wliich describes a horizontal circle with

iinirorni velocity so tliut the string is always iclined at an

angle of GO to the vertical; show that the velocity of the

partiele is tiiat which would he acquired in falling freely

from rest tlirough a space equal to three-fourths of the

length of tiie string.

45. The horizontal attraction of a mountain on a particle

At a certain place is such as would produce in it un accelera-

tion denoted hv • Show that a seconds pendulum at that

,
... . 21000. . . , ,

place wul gain —j— beats in a day, very nearly.

46. In Art. 201, sujjpose I eijiial to 2 ft. and m to be 20

lbs., and that the system makes 10 revolutions per sec, and

g = ;32; find and T.

Ans. = co.s-i -^ ,; T = 5007t2 pounds.
25Tr'^

47. A tube, bent into the form of a plane curve, revolves

with a given angular velocity, about its vertical axis; it is

required to determine the form of the tube, when a heavy

particle placed in it remains at rest in all parts of the

tube.

(Take the vertical axis for the axis of y, and the axis of x

horizontal, and let w = the constant angular velocity).

Ans. x^ui^ = 2gy, if a; = when i/ =. 0, i. e., the curve

is a parabola whose axis is vertical and vertex downwards.

48. A particle moves in a smooth straight tube which

revolves with constant angular veloeity round a vertical

axis to which it is perpendicular, to determine the curve

traced by the particle.

Let (.) = the constant angidar velocity: and (r, 6) the

position of the particle at tliL- time /, anu let r =: a when
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/ = 0. Then since the motion of the particle is. due

entirely to the centrirnga! force, wu have

dr
if - = 0, when r = a. Hence we have

dt

ii

m



chapti:r iv.

IMP A C T .

202. An Impulsive Force.— llitlierto \vc have con-

sidered force only as coii/iiiiioKs. i, >:, as acting tiirougii a

(J"iinite and finite i)ortioii of time, and jjrodncing a finite

cliaiige of velocity in tliat time. Siicli a force is measured

at any instant by the mass on whicii it acts niiilti})lied by

the acceleration which it causes. If a ]»articleof nniss in be

moving with a velocity v, and be retarded by a constant

force whicli Itrings it to rest in the time /, then the measure

of this force is --- (Art. 'H)). Now suppose the /i)in' t dur-

ing which the particle is brouj;ht forest to 'le made very

small; then the /o/yv rcipii red to bring it to rest must be

very large ; and if we suppose / so small that we are unable

to measure it, fiien the force becomes so great tiiat we are

unable to oljtain its measure. A typical case is the l)low of

a hammer. Here the time during which there is contact is

apparently infinitesimal, certainly too small to be measured

bv any ordinary methods; yet the effect produced is con-

siderable. Similarly when a cricket ball is driven back by

a blow from a bat, the original velocity of the ball is

destroyed and a new velocity generated. Also when a bul-

let is discharged from a gun. a large velocity is generated

in an extremely brief time. r\uces acting in this way are

called impulsive forces. An hnpulsive force nnijj therefore

he defined to he a force lohich produces a fiiii/e clianr/e of

motion in an indefiniteli/ hrief time A n Impulse is the

effect of a hlow.

In snch cases as these it is impossible accurately to

determine the force and time; but we can ileterniinc
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their product, or Pf, since tliis is merely the cliangc

in velocity caused by the l)low (Art. >()). Hence, in

tiie cas^' of blows, or in Isivc forces, we do not attenipt

to measiirt' the force ami tiic time of action scparati'ly, but

simply take the /rjioh' iniDucnlmn pvoihunl ar ilrshuiju'il, fis

llir nii'itsiirr nf the iin/iiilsc. lUraiix' impulsive forces pro-

duce tbcir rfffi-ts in an indffinilciy slm.-l time they are

sometime-! called iii.^tfnitdncoiis forrcs. I, c, forces requiring

no time for their action. lint no >ucli force exists in

nature: every force requires tiiiii' hiv its action. There is

no case in nature in which a finite change of motion is

])roduced in an infinit.Jmal of time : for, whenever a

finite velocity is generated or destroyed, a finite time is

occu])ied in the jjrocess, though we may be unable to

measure it. even approximately.

203. Impact or Collision.—When two bodies in rela-

tive motion come into contact witii each other, an iinpnrt

or cotlision is .said to take i)lace, and i)ressure begins to act

between them to i)revent any of their parts from jointly

occupying the .^ame space. This force increases from zero,

when the collision begins, up to a very large magnituile at

the instant of greatest compression. If, as is always the

case in nature, eucii body ))osse.s.ses some (h'gree of elasticity,

and if they are not ke])t together after the impact l)y

cohesion or by some artificial means, the mutual pressure

between them, after reaching a maximum, will gradually

diminish to zero. The whole ])rocess woukl occupy not

greatly more or less than an hour if th" bodies were of such

dimensions as the earth, and such degrees of rigidity as

copper, steel, or glass. In the case, however, of globes of

the.-<e substances not exceeding a yard in diameter, the

whole i)rocess is probably finished within a thousandth of

a .''econd.*

Tlie im]mlsive forces are so much more intense than the

* Tlinin-ori iin.i T;nl's \at. Phil., p. 274.
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ordinary forces, that during tlic l)ri('f linu' in wliich tlio

i'ornior act, an ordinary I'oroc docs not prodnce an cltVct

comparahk' in anionnt with that })rodnci'd hy an iininilsivc

force. For oxanijiic, an iin[iulsivf force niight gi'nerate a

velocity of 1000 in less time tiian onetcntli of a second.

while gravity in one-tenth of a second would generate a

velocity of ahoiit three. IKiiee. in dealing with t lie effects

of impulses, Unite forces need not he ccnisidered.

204. Direct and Central Impact. — When two hodie8

impinge on each other, so that their centres het'ore im{)act

are moving in tiie same straigiit line, and the common tan-

gent at the i)oint of contact is perpendicular to the line of

motion, the impact is said to he (linrt anil nulnd. When

these conditions are not fidfllled, the impact is said to he

nbli(iuc.

When two hodies impinge diu'ctly, one upon the other,

tlie mutual action hetween them. a> any instant, nnist he

in the lino joining their centres; and hy the third law

(Art. IGG), it must be e([ual in amount on the two hodies.

Ilence, hy Law II, they must experience e([ual changes of

motion in contrary directions.

We nuiy consider the impact as consisting of two jjarts ;

during the first jiart the hodies are coming into closer con-

tact Avith each other, mutually displacing the particles in

the vicinity of the point of contact, producing a comi)res-

sion and distortion ahout tiiat |)oint. which increases till it

reaches a nuiximum, when the molecular rein i imis. thus

called into play, arc suiheient to resi<i further compression

and distortion. At this instant il is evident that the

ixnnts in contact are moving with the same velocity. No
hody in nature is perfectly inrhtxiic : ami hence, at the

instant of greatest compression, the I'liisflc fiirri:i of resfi-

fiifinn are l)rought into action ; and during the second part

of the impact the mutual pressure, ])roduce(l hy the Oa^^tic

I'oriH'S, which were hrought into action iiy the compression
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lUiring the tirst part of the impact, tend to separate the

two bo<lies, and to restore them to their original form.

205. Elasticity of Bodies.—Coefficient of Resti-

tution.— It aj. pears from experiment that hodies may lie

eompressed in various degrees, and recover more or les,

their original forms after the coniiiressing force has ceased,

this property is termed daslicity. The fnrce urging the

approaeli of bodies is called the fuvrr of comprcmoH ; the

force causing the hodies to separate again is called the

force of irsfi/iifion. Elastic hodies are such as regain a

part or all of tlieir original form when the compressing

force is removed. The ratio of the force ..f restitution to

that of comi.ressior. is called the Cuefficirm of h'rs/,/»/,o,i/-

It has been found that this ratio, in the same bodies, is

constant whatever may lie their velocities.

When this ratio is unitv the two forces arc e(iual, and (he

body is said to ho perfcrthj vhixtic; when the ratio is zero,

or the force of restitution is m.thing, the body is saul to bb

uoH-dasli<-; when the ratio is greater than zero and less

than unitv. the bodv is said to be mperfi"-ily elastic. There

are no hodies cither perfectly elastic or iierfeetly non-clas-

tic, all being more or less elastic.

In the cases discussed the hodies will be supi)osc<l splier-

ieal, and in the case of direct impact of smooth spheres it

is evident that tliev maybe considered as particles, since

they are symmetrica'l with respect to the line joining their

The theory of the impact of hodies is chiefly due to

Newton, who" found, in Ids experiments, that, provided the

i,„,,.,ct is not so violent as to make any sensible iiideiitati.m

i„ either body, the relative velocity of separation after the

i,„paet bears a ratio to the relative selocity of approach

before the impact, which is constant for the same two

» 8imii:liiii('> iSllrd CmMl'u'U'iil uf l^la-licily. Tixlliiiiiicr'BMi'ih.. p. 878.

mm
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bodios. In Newton's oxporiiui'iits, liowevor, the two bodies

seem always to have been I'ornied of tlie same sub-

stance. He fdiind tbiit the value nf tiiis ratio (the cof///-

vicnt of ri'sfitulion), fur balls of compressed wool was about

J, steel about tlie same, cork a little less,, ivory |. glass \l.

The results of more recent experiments, made by Mr.

Ilodgkinson, and recorded in the Hrpoit of tliv BrUish
Associiifio)! for ISSJf show that tlie theory may Iw; received

as satisfactory, with the exception that the value of the

ratio, instead of being (piite constant, diniinishes when the

velocities are very large.

206. Direct Impact of Inelastic Bodies.— .1 sphere

of ma.-<s M, movimj with a vrlori/i/ v. overtakes and impinges

dirertty on another sphere of iiiaxs M', niorin;/ in the same
direrlicn with velocity v', and at the instant of greatest,

mutual compression the spheres arc moving with a common
velocity V. Determine the motion after impact, and the

impulse during the compresswn.

Ix't R denote the inipiilso during the compression, which

acts on each body in opposite directions ; and let us siip-

])ose \\w bodies to be moving from left to right. Then,

since the impulse is measured by the amount of momentum
gained by one of the impinging liodies or lost by the other

(Art. 202), we have

Momentum lost by M = M {v — V) = L\

" gained by J/' ^ J/' ( V- v') = A',

.-. .J/(r- V) ^ .]f'(V-v').

Solving (.'}) for Two get

r

wiiich in (1) or (2) gives

Afc + ^t',>'

^f+^{'''

(1)

(4)
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DIRECT IMPACT OF LXKLASTIC BODIES. 3T5

(5)_ MM' {
i' - V)^- M + M'

liencff the common vdonlieft of the two ladies after impact

is n/uat to t/ic ahjfbraic mm of ilteir momenta, divided by

the snm of their masses, and also, from (4), the whole

momentum after impact is equal to the sum of the momenta

before.

Cor. 1.—Had the balls been moving in opposite direc-

tions, for example had J/' been moving from right to left,

(•' would have been negative, in which case we would have

^^ Mv - M'v-
, ,,

MM' {r + v') , .

From the first of these it follows that both balls will be

reduced to rest if

Mv - Mv;

that is, if before impact they have equal and opposite

momenta.

(j„j[, >^._lf M' is at rest before impact, v' =. 0, and (-1)

becomes
Mv

^ - M + M''

If the masses are eciual we have from (4) and (0)

r = V + V
or

V — V'

(7)

(8)

according as they move in the same or in ojjposite direc-

tions.

207. Direct Impact of Elastic Bodies.—Win n ihc

balls are clastic the problem is the same, up to the instant

of tfreatest compression, as if they were inelastic; but at

^
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this instant, the force of restitution, or that tendency which
elastic bodies have to regain their original form, begins to

throw one ball forward wit!" the same nionientiim that it

throws the other back, and this mutual pressure is jn-opor-

tional to R (Art. 205).

Let be the coetlicient of restitution ; then during the
second part of the impact, an impulse, eU, acts on eacii

ball in the same direction respectively as i^ acted during
the com])ression. Let c, and i\ be the velocities of the
balls M and J/' when they are linally separated. Then we
liave, as before,

Momentum lost by M z= M{V—i\) = cR, (1)

gained by M' = M' (r/ - T') = cR. (2)

From (1) we have

i\ = V - eii

M
Mv + M'r' _e.y'

by (4) and {')) of Art. WG,

M'
JHTm' <! + '')(" -" )•

Similarly from (2) we have

M
*''

=
^'

+ irq: J/' ^^ +0(^-"');

(J3)

(4)

v'hich are fhe vclocifics of I lie //(tils ir/icii Jiunlhj separated.

These results may be more easily ol)tained by the con-

sideration that the whole impulse is (1 -\- e) R\ for this

liives at once the whole iiiomeMtnm lost bv iV or gained bv
.1/' during compression and restitution as follows:

M{v-,',) = (1 +e)R, (5)
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and M' {v,' - v) ^ {I + e) R. (0)

Substituting in (")) and (C) the value of R from (5) of Art.

•^OG, \vc have the values of c and i\' immediately.

C'ou. J.— If the l)alls are moving in opposite directions,

/•' becomes negative. If tlie balls are non-elastic, e — 0,

and (3) and (4) reduce to (4) of Art. WG, as they should.

Cor. -2.—If the balls are perfectly elastic, e = 1, and (;3)

and (4) become

2M'
i; = r

V +

M + M {V - v'),

- {v - v').

(7)

(«)M 4- M

CoK. ;i.—Subtracting (4) fnmi (:]) and reducing, we get

,.,_,.,' ^ r-r -(I + e){v-v'\

= -c{c-r'). (9)

Hence, the relative velocity after impart is — e times tlic

relatire relocity before impart.

(.'oii. 4.— >[ultiplyiiig {i) and (4) by .)/ and J/', respect-

ively, and adding, we get

Mr, -f M'r; = Mr + Mr'. (10)

Hence, as in Art. •^()(i, the alyehrair .sinii nf tlie momenta

after impart is the same as tiefire ; i.e., there is no mo-

iiiriitiim lost, which of course is a direct consequenoe of the

tliird law of motion (Art. Kii)).

Coii. .'i.—Suppose (•' — 0, .so that the body of mass .)/,

moving with velocity /', impinges on a body of mass .1/' at

rest, then (3) and (4) become

ito
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_ M - eM'
una

Hence the body which is struck goes (iiiwards ; and tlie

Htnking body goes onwards, or stops, or goes backwards,

according as J/ is greater than, eijual to, or less than eM',

If J/' = eM, then (11) becomes

r, = (1 — (') V, and r,' = v. (1^)

CoK. C—If M = M and r = 1 ; that is, if the l)alis

are of equal mass and perfectly elastic,* then (T) and (8)

become, respectively,

v', and r,' (13)

that is, the balls interchange their velocities, and the

motion is the same as if they had jjassed through one

another without exerting any niutiud action whatever.

Cor. 7.—If M' he infinite, and v' = 0, we have the case

of a ball impinging directly upon a Jixed surface ; substi-

tuting these values in (3) it becomes

V, = — ev] (14)

that is, the ball rebounds from the fixed surface with a veloc-

ity e times that with which it impinyed.

208 Lobs of Kinetic Energy f in the Impact of
Bodies.— Scpiaring (it) of Art. ^(»7, and multiplying it by

MM' , we iiave

MM' (r, - lu'Y = MM' c' (/- - v'f

- MM' {r - v)i - (1 - ^^) MM' {r - v'y. (1

)

' TliU is llic usual iihrascolojiy, hut iiiiKU'ttdiiif;, Eiicy, Brit., Vol. XV, All.

Mi'cUV.

t See Art. 189.

D
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Squaring (10) of Art. :^0T, wo have

(J/f, + M'v^f = {Mv + M'v'f. (3)

Adding (1) and (•.*), we get

{M + M) (J/r,2 + J/(','2) =. {M + M') (Mv^ + M'v'^)

- (1 - e^) MM' {v - vy
;

-i{l-'''^)-j^^77(^-i'T,(3)

the last term of which is the loss of kinetic energy by

inii)act, since c can never be greater than unity. Hence,

there is always a l()s.s of kinetic energy by impact, exee})t

when c — 1, in wliich ca.se the loss is zero; L e., when the

coefficient of restitution is unity, no kinetic energy is lost.

When c = the loss is the greatest, and equal to

i
MM'
M + MW ^^ - ^')'- (4)

From (3) we see that during compression kinetic energy

to tiie amount of i il^y' ('' — '')' ''^ ^^^^
' '^"*^ ^'^''"

during restitution, c' times this amount is regained.

Kkm.—From the theory of kinetic energy it ai)i)ears

that, in every case in which energy is lost by resistance,

heal is generated ; and from Joule's* investigations wo

learn that the (jiumtity of heat so generated is a lu'rfeetly

delinite rt/uiralrtit for the energy lost; and also tiiat, in

Sic "The Corri'liitioii (lint ruii-crvnlidii of Forres," liv nclnilinllz, Fur.iduy,

Melil;;, clc. ; a\m " Heal ii^ ii Mode cif Motion." liy I'rof, Tvndull Also ». SIcwiirf.i

" Conservation of Eiier{;y."

mm
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any natural action, there is never a development of energv
whicii cannot be accounted for by the disappearance of an
equal amount elsewhoie by mean.< of some known phvsical

atrency. Hence, the kinetic energy which api)ears to be

lost in the above cases of impact, is only transformed,

partly into heating the bodies and the surrounding air, and
partly into sonorous vibrations, as in the impact of a ham-
mer on a bell.

209. Oblique Impact of Bodies.—The only other

case which we shall treat of is that of oblicjue impact when
the bodies are spherical and pei'feetly smooth.

A particle iinpnir/cs iri/Ii a fjircii vehcify, and in a (jiven

direction, on a smooth plane; required to determine the

motion after impact.

Let AC represent the direc-

tion of the velocity before im-

])aet, meeting the plane at C,

and CB the direction after

impact. Draw CD perpen-

dicular to the plane ; then

since the plane is smooth its impulsive reaction will be

along CD.

Let V ar.d i\ denote tbe velocities before and after

impact, respectivelv : and let a and (i denote the angles

ACD and IK'D.

Resolve v along the plane and perpendicular to it. The
former will not be altered, since the impulsive force acts

l)erpendi{Milar to the ])lane ; the latter may be treated as in

the case of direct imjiact, and will therefore, after impiict.

Fig.87

be e times what it was before (Art. 20;, Cor. T)

resolving ^>, alon

have

Hen
and perpendicular to the plane, we

r, sin /i — V sin «, (1)

(2)'c, cos fi =z — e 'V cos «.
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Dividing ('-i) by (1), we got

cot ^} = — c cot «.

S(piaring (1) and {'I), and adding, we get

i\^ = ('2 (si 11^ a + f2 cos^ «).

381

Ci)

(^)

Tims (3) determines tlie diredioiu and (4) tiie mfif/iiitndc

of the velocity after impact.

The angle ACl) is called the (iii(/le af incidence, and the

angU' BCD the angle of reflexion.

CoH. 1.— If the elasticity be perfect, or '; = 1, we have

from (3) and (4),

cot /3 = — cot «, or /J =

and ("', or r,

(5)

CO

Hence, in perfertlii elastic hulh the (inf/Ie.'^ of incidence

and reflexion are nmnrrienlli/ ci/iiid. and tite velocities bi'forv

and after impact are rquaJ. This is the ordinary rule in

the case of a billiard ball striking the cnsiiion.

Coll. X'.—8ui)pose r = 0; then from (3), H ^ 'Mf.

Tims, if there is no elasticity, the body after impact moves

along the plane with the velocity v sin «(.

If a = 0, so that the impact is direct, we have from (4),

r, = ev ; i, e., after the impact the body roounded along

its former course with e times its former velocity.

If fc = 0, and e = Oj then from (4), r, = 0, and the

body is l)ronght to rest by the imj)act.

Sen.—Of course the results of this iirticleare applieal)le

to cases of impact on any smooth surface, by substituting

for tlie plane on which the impact has been supposed to
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tiiki' pliR'L' tlio jdane' which is tungoiit to the surfi'.cc at the

j)()int of iinpacl.

210. Oblique Impact of Two Smooth Spheres.

—

Ticti siniiDlh sjilicn-s. murimj in ijiven dircrtioiix iiuil irilli

ijiri-n rcloriUrs, impinge; to deteDiiine the impulse and the

•ntbuequent motion.

Q
Let the masses

of the sj)lu'res be

AL M' ; their cen-

tres (', C; tiieir

velocities before
impact V and /•',

and after inij)act
Fig. 88

V, and i\ . Let ED lie the line wiiicli joins tlieir centres at

the instant of impai't (called the line of impact): C'A and

C'H the directions of motion of the imjjinjrinij si)iiere, M,

before and after impact ; and C'A' and C'B' those of the

other spiiere: let «, a' be the anjiflcs, ACD and A'C'D,

which the ori<^inal directions of motion make with the line

of impact: /i i3' the angles. BCD and B'C'D, which their

directions make after the impaci.

It is evident that, since tiie spheres are smooth, the

entire mntiial impulsive pressure takes ])lace in the line

joininir the centres at the instant of impact. Ijct 7^ be ti-,e

imi)ulse. and e tiie coeflicieni of restitution. Resolve all

the velocities alon<i the line of imi)act and at right angles

to it ; the latter will not be affected by the inii)act. and the

former will l)e affected exactly in the same way as if tlie

impact had l)een direct. Hence, since the velocities in the

line of impact are r cos «, r' cos «', ?', cos /3, ;',' cos /3', we

iiave. by substituting in (:5) and (4) of Art. '-iUT,

r, cos /i = r cos «
.1/'

M+ M -, (1 +1') {'' t'os «— /•' cos «'), (1)
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),•/ eos/i' =::: c' COS «' +
^f',

]/'(•+'') ('' ^'''S «- ''' ^OS «'), {'i

,

irhich lire lliv fiiKtl rrlocilii'.s of IIn' two spliercs aluinj llir h'lii'

of iin/iaci ED.

Also, from (.")) of Art. '-iOii, we obtain by substitntion.

1/ 1/'

E
MM' , ,.-^——̂ , (<• cos « — V COS « ),

Ji + M

(5)

Jl -t- JH

(See Tait and Steele's Dynamics (jf a Particle, p. 323.)

Cor. 1.—Multiplying (I) by .)/, and (-2) by M', and add-

ing we get

Mi\ cos li + M'i\ cos fl' = Mn cos « + M'v ' cos «', (4)

wiiich shows that Ilir moineitlum af the .si/slein nsulred

aJiniij the line of impact is the smnv after impact as before.

Cou. -2.—Subtracting Ci) from (1) we ()l)tain,

r, cos /3 — r,' cos /J' = — e {o cos u — v' cos «'). (5^

That is, the relative rehcili/. resotred alomj the line o,

impact, after impact is — e times its calue before.

EXAMPLES.

1. A body* weigiiing 3 lbs. moving with a velocity of

10 ft, per second, impinges on a body weighing l lbs., and

moving with a velocity of 3 ft. per second ; find the com-

mon velocity after im|)act. Ans. Tl ft. per second.

'.'. A body weighing 7 lbs. moving 11 ft. per secnni.

imi)inges on another al rc<t weighing l."i Uts.; lind the com-

mon velocity after imjiact. A)is. 31 ft. per second.

* The bodies Brc iIltla^-tic iiiili's- (illieiwi-f st.ntod. The first 27 f.\aiui)l.';4 mv in

direct Impact.

m
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:]. \ body weigliiiif,' -I Hi.s. moving 1) ft. per a'foinl.

iiiipinges on another body weigliiug 2 lbs. and moving in

the op])osite direction with a velocity of .j ft. per second;

find tlie common vclticiiy after impact.

A 11^. 4^ ft. per second.

4. .\ body, M', weighing 5 lbs. moving 7 ft. per second,

is imi)inged njion by a body, .1/, weighing lb.«. and mov-

ing in the same direction : after impact the velocity of J/'

is doiil)led: iind the velocity of .]/ before impact.

Ans. U)f. ft. per second.

5. Two bodies, weighing 2 lbs., and 4 lbs., and moving in

the same direition with the velocities of and !1 ft. respec-

tively, impinge iijton each other ; find their common
velocity after im|)act. -!//•'>. 8 ft. per second.

(). X weight of i lbs., moving with a velocity of "^O ft.

per second, overtakes one of ') lbs., moving with a velocity

of ft. per second ; find the common velocity -after impact.

Alls. !l^ ft. per second.

T. If the same bodies mcf with the same velocities find

the common velocity after impact.

,l//.s'. •i\ ft. i)er second in the direction of the first.

8. Two bodies of dilTerent mas-jes, are moving towards

each other, with velocities of In ft. and \'i ft. per second

respectively, and contiinie to move after impact with a

velocity of 1 • 3 ft. per second in the direction of the greater;

c.npare their masses. Ans. As ;J to •^.

1). A bodv impinges on anotiier of twice its mass at rest;

show that the itupinging body loses two-thirds of its

velocity by the iin[iact.

1(1. Two bodies of uneijnal masses moviiig in opposite

directions with momenta iinmerically ecpial meet ; show

til, it the momenta are numerically eijual after imjiact.

^



t. i)er fici'oiul.

11(1 moviiif,' in

t. per second
;

per seeonil.

n. per second,

i ll).s. and niov-

vclocity of J/'

act.

. per .second.

and niovin<; in

x\ ft. re.* pee

-

heir common
per second.

locity of W ft.

"itii a velocity

y after impact.

, i)er second.

velocities find

of the tirst.

loviiif^ towards

ft. per second

imjiact with a

of the greater;

s. As;Jto'^.

s mass at rest;

-thirds of its

)i<r in opposite

1 meet ; sIkjw

r imjiact.

^

EXAMri.KS. :5K.')

n. A hody. .1/, wei.iriunj: 10 ihs. moving 8 ft. per second,

impinges on M\ weighing <1 His. and moving in the same

direction .> ft. per second ; tinil their velocities after impact,

snpposing (=1.
Ans. Velocity of .1/ = 5J ; velocity of .)/

' = Sj|.

Vi. A liody. M. weighing 4 lbs. moving ft. per second,

meets M weighing 8 lbs. and moving 4 ft. jier .second;

find their velocities after imi)act, v — 1.

An<. Each body is retlected back, J/ with a velocitv of

7^ and.l/' with a velocity of -11

13. Two balls, of 4 and H lbs. weight, impinge (m each

other when moving in the same direction with velocities of

and 10 ft. re.<])Oclively ; find their velocities after impact,

snpposing e - |. ^l''-- 10-<>8 and !)-;i8.

14. Find the kinetic energy lost by imjiact in examide o.

Alls. h\-

15. Two bodies weighing 40 and dO lbs. and moving in

the same direction with velocities of IC and '^t; ft. resi)ee-

tively, imjiinge on each other, liiul the loss of kinetic

energy by 'in jiact. ^l"''- -ST-o.

IG. An arrow shot from a bow starts oil with a velocity

of 120 ft. per second; with what velocity will an arrow

twice as heavy leave the bow. if sent off with three times

the force? ''"*'• 180 ft. per second.

17. Two balls, weighing 8 ozs. and (i ozs. respectively,

are simultaneously projected upwards, the former rises to a

height of ;i'24 ft. and the latter to '-ioG ft.: compare the

forces of projection. '«•''• As 3 to 2.

18. A freight train, weigliing 200 tons, and traveling 20

miles i)cr hr. runs into a i)asscnger train of 50 tons, stand-

ing on the same track; find the velocity at which the

remains of tlie passenger train will be propelled along the

track, supposing c = \. Ans. 19-2 miles per hr.

iftM



380 EXAMPLES.

10. Tliere is a row of ton jiorfectly elastic belies whose

masses increase geoinetncally l)y the constant ratio 3, and

the first impinges on the second witii the velocity of

ft. i)C'r second ; tind tiic velocity of the last Imdy.

Alls, sf J ft. i)er second.

20. A body weighing .5 lbs. moving with a velocity of 1-f

ft. per second, hnpinges on a body weighing 3 lbs., and

moving with a velocity of 8 ft. per second; lind the veloci-

ties after impact supposing p = {. Aiix. 11 and 13.

'i\. Two bodies are moving in the same direction with

the velocities 7 aiu. h ; and after impact their velocities

are 5 and G; lind c, and the ratio of their masses.

J HA', c = \\ M' = 'iM.

'^i. A l)ody weighing two lbs. impinges on a body weighing

one lb.; c is i, show that r, = \{r + r'), and that r,' = v.

To. Two bodies moving with numerically equal velocities

in o|)posite directions, impinge on each other; the result is

that one of tliem turns back with its original velocity, and

the other follows it with half that velocity; show that one

body is four times as heavy as the other, and that c =
J,

24. A strikes H, which is at rest, and after imj>act the

velocities are numerically ctiual; if r be the ratio of B's

mass to A's mass, show that e is "
, , and that B's mass
1

is at least three times A's mass.

25. A body impinges on an eipial body at rest; show

thill the kinetic eiu'rgy before impact cannot be greater

than twice the kinetic I'liergy after impiict.

2(!. A series of perfectly elasiic balls are arranged in the

Slime straight line; oiu' of Iheiii impinges on the next,

then this on the n^'xt iiinl so on; show thiit if (heir musses

form a geomelrie progression of which the common ratio
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.<ion nl' wiiieii the common ratio is

is /•. tlieir velocities after imiiact form a geometric progres-

2

'•'+ l"

jr. A l)iiil falls from rest at a height of 20 ft. above a

fixed horizontal plane: find the height to which it will

rebound, c being J.
and // being '-Vl. Ans. l\\ feet.

28. A ball impinges on an e(iual hall at rest, tlie elas-

ticity being perfect; if the original direetion of the strik-

ing ball is inclined at an angle of 4.V' to the straiglit line

joining the centres, determine the angle between the

directions of motion of the striking ball before and after

impact. Ann. 45".

29. A ball falls from a height // on a horizontal jdano,

and then rebounds; find the height to which it rises in its

ascent. •'"*'• f^/'-.

30. A ball of mass .lA, inqiinges on a ball of mass M'. at

rest ; show that the tangent of the angle between the old

and new directions of the motion of the imping; 'g body is

1 4- (! M' sin 2fe _
~Y ' M +lr (sin- H — r eos^ «)'

31. A ball of mass i¥im])inges on a liall of nuiss M' at

rest ; find the comlition in order that the directions of

motion of tiie impinging ball iH'fore and after impact may

be at right angles. A UK. tan^ « = Tr + M

32. A ball impinges on an eiiual ball at rest, tlu' angle

between the old and lu'w directions of motion of the

imiiin'Mnsr ball is <10 ; find the velocity after imitact. c

i.('in<'' 1. Aii>. r sin :iO".

3;;. A hall imiiinges on an e<iual hall at rest, > being 1 ;

lind the condition under which the velocities will l)e e(|ual

after impact. Ans. « = -iS"
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34. A hall is projectod I'roiii I lie middle jioiiit of one sidy

of a billiard table, so as to sirilu' tirst an adjuet'iit side, and
tlu'ii till' middle puint of the sidi' o|)posite to tliat from
wliieM it started: iiiid where the hail must hit the adjaeeiit

side, its lenglh heinfi^ b.

Alls. At the distance from the end nearest the
J 4- <'

ojiposite side.
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CHAPTER V.

WORK AND ENERGY.

211. Definition and Measure of Work.— Ho/ ^ /

flic jirodHdiiiH of iii(i/i(in <i(/(iiiist ri'si.stdiirr. A force is said

to lid iri,rl\ if it moves tiie body to which it is ai)i»lied :

and tlie woik done by it is measured by the product of the

force into the si»aee tlirouj,di wliieh it moves the Itody

(Art. 101. l{eni.).

Tims, the work done in liflinj,' a weigiit ti\rimgli a ver-

tical distance is proportional to the weight lifted and

tiie vertical distance tlirongh whicli it is lifted. Thr unit

i,f tntik- used in Kiiglaiid and in this country /n Unit which

i.< ri'ijuiri'il Id oirironii' Ihr irrii/hf of a pinnnl Ihrniiijli Ihr

rrrliriil lin(jht (»/" ^« /'/w/, and is called r^ /(w/-7'""«^/. For

instance, if a weight of 10 lbs. is raised to a height o''

T) ft., or T) lbs. raised to a height of 10 ft.. .V) fool-pounds o-

work must have been e\i)cnded in overcoming the resist-

ance of gravity. Similarly, if it re(piiros a force of hi) lbs.

to move a load on a horizontal plane over a distance of

100 ft., 5000 foot-pounds of work must have been done.

If a carpenter urges forward a |)lane through 3 ft. with a

force of VI ll)s.. he does 'M\ foot-pounds of work ; or. if a

weight of 1 ll's. desci'uds tlirongb 10 fl., gravity does

TO foot-pounds of work on il.

Hence, the nnmiier of units of work, or foot-pounds,

necessary to overcome a lonsMani resistance of /' iiounds

through a distance of ,S' feet is e(pial to the jirotlitct /'>'.

From this it appears that, if tlu' point of application

move always pcr])endicular to the direction in which the

force acts, siu'h a force does no work. Thus, no work in

dot;,' by gravity in the case of ii ))article moving on u
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liorizDiital piano, and wlicn a i)artielo movos on any smooth

^nl•^ace no work is dono hy tliu force wliicli llic surface

exerts npon i(.

Neither /o/Y'c nor iiuiUdh iihnie is sulTieient to constitute

iroik ; so tiiat a man wlio nieri'ly snpiMjrts a h);id without

moving,' it, does no work, in the sense in wliicl) thai term is

used mei'hanieally, any more tliiin a cohimn does whicii

sustains a heavy weight upon its summit.

If a body is moved in the direction oppnxile to that in

wiiich its weight acts, the agent raising it (h)es work upon

it, wliile tlie work dtjue l)y tiie eartii's attraction is ncud-

tirp. \Vhcn the work (h)ne by a force is negative, i. c,

when the point of applii'ation moves in the direction oppo-

site to that in which the Ibrce acts, this is fre<picntly

expressed by saying tluit work is done (if/(ti)isf tlie force.

In tiie above case work is done by tlie force lifting the

liody, and (Kjit'uisl the earth's attraction.

212. General Case of Work done by a Force.—
Wiien eitlier the magnitude or direction of a ibrce varies, or

if lioth of them vary, the work done by the force during any

finite disjtiacement cannot be detlned as in Art. 211. Iii

this case tlie work done during any indelinitely small dis-

))lacemenl may be found liy s\ip})osing tiie magnitude and

direction of the force constani during llie displacement, and

linding tlie work done as in Art. "ZW ; then taking the sum
of all such elements of work done during the consecutive

small displacements, which together make up the finite

displaeenient, we ol)taiii the wiioji' work done by the force

during siu'h liuite displacemeni

.

Thus let a forcp, P act nt a point, 0, in tlip dirertioii OP {Fij;. 50),

1111(1 let us suiiposo the point, (), to move into iiiiy otlier position, .1,

very ncnr 0. If lie tlio tingle lictwccn the direction, OP, o( the

force iind the direction, OA, of the diHjtluceiuent of the |)()int of appii-

ciition, then the jtruduct, /*• OA cos 0, is culled the work done by the

force. If we dro)) n perpcndiculiir, AN, on OP, the work done liy the

force 1b also etjunl to tlu' product POiV, where ON in to !» esti-
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mated ns positive whon in the dircrtioii of tlio loice. If scvoral forct-s

act, tin' worli done by eacli can I'C found in tlic same way
;
and tlio

sum of all tliesM^ i.s the work done l)y tlic \vliol(> .sysK^in of forcos.

It appeals from tiiis that tlie vvorlt done by any fonv duiiiiK an

infinitesimiil displacement of the iioint of application, is the iiroduct

of the lesolvd part of tlie force in tlie direction of tiie displacement

into the disphiceineiit ; and tliis is tlie same as tlie cirtioi/ nmiuviit (d'

the force, which has been described in Art. 101. In Statics we are

concerned only with tlie small hypnthetkal di.splacement winch wo

sjive the point of application of the force in applying the principle of

virtual velocitit«. But in Kinetics ttie bodies are in motion
;
the

f.)rce (ictiKdli/ disjjlaces its iioint of ajiplication in such a manner that

the displacement has a projection alonfr the direction of the force. If

(1.1 denote the projection of any elementary arc of a curve alonjr the

direction of P, the work done by /' in this dis))lncement is /'(/,v. The

sum of all these elements of work done by /' in its mmion over a

finite space is the whoh; work found by taking the integral of Pds

between proper liinit.s.

Hence generally, if » be an arc of the path of a particle, P the

tangential component of the forces whicli act on it, the work done on

the particle betv ecu any two points of its path is

/Pih, (1)

the inteirral being taken between limits corresponding to the initial

and (ina) positions of the jiarticle.

213. Work on an Inclined Plane.— Let « he the

inclination of the plane to the horizon, W the weight

moved. .V the di.stance along the plane through which the

weisrht is moved. Ifesolve W into two comi)onents, one

along the plane and the other perpendicuhir to it ; the

former, W sin «, is the comjionent which resists motion

along the plane. Hence the aiiKJunt of work re<piired to

draw the weiglit up the i)lano = IT sin a • s = U'xthe

vertical height of the plane ; /. c, the anion )if of work

required is iinchnxtjed by Ihe fubstituiion of the oblique pnfh

for the vertical. Ileiire the irork in monnf/ a tuxlij up an

inclined plane, without friction, is equal to the product of

the veifjht of the body by the vertical hciijht through which

it is raised.
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Coit. 1.—If tlie \i\m\k' 1)0 roiijili, let /< = tlic coeflicicnt

of friction ; thou sini'o tlic iioriinil coinijoiu'iit of the weight

is II' ciis «, tlie resistiiiice of frietioii is /t IT cos »< (Art. !)•»').

The work nM|uire(l consists of two parts, (1) raising tiic

weight along the plane, and {-l) overcoming the resistance

of IVietion along the plane, tlio former = II' sin « • s. ami

tile latter is // il cos ,£ . x. Hence tlie whole work ni'ces.s(iri/

to more lite iveight up Ihe plane is

(sin « + fi. cos «) s. 0)

Since s sin <c represents the vertical height through

which the weigiit is raised, and .v cos « the horizontal si)ace

througii which it is drawn, this result may he stated thus :

The work expended is the satne as that which would be

required to raise the weight throin/h the vertical height of

the plane, together with that which would be required to

draw the t>ody along the base of the plane horizontallif

against friction,

Coii. 2.

—

If a body be dragged through a spare, s, down
an inclined plane, whirh is ton rough for the body to slide

down by itself, the work done is

ir(/t cos « — sin «) s. (2)

Cor. 3.—If h = the height of the inclined plane, and

b — its horizontal hase, then the work done against gravity

to move the body u]) the plane = Wh ; and the work done

against friction to move tlie body along the plane, suppos-

ing it to be horizontal, = tibW. Hence (Cor. 1) the total

work done is

]\7i + libW. (;{)

If the body be ilrawn down the ])lane, the total work

expended (Cor. 'i) is

— 117/ -t- ld>W. (4)
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= tlic coeflicicnt

'lit of the weight

cos « (Art. !)•.>).

(1) raising tlic

g the resistance

^^sill « • s, and

) work necessary

(1)

height through

horizontal space

lie stated thus :

whicli wotihf hi

rlical heufht of

I be rei/uirrd to

me horizonlallt,

a space, s. down
he body to slide

(3)

incd jilane, and

e against gravity

I tiie work done

3 plane, snppos-

jor. 1) the total

(3)

the total work

If in (4) the former term is greater than the latter,

gravity dues more work than what is expended on friction,

and tiie body slides down tiie plane with accelerated

velocity.

.Sen. 1.—If tiie inclination of the plane is small, as it is

in most cases wiiieli occur in practice, as in coninion roads

and railrorjls, cos « may without any important error be

taken as e(jual to unity, and the exjjression for tlie work

becomes (C'ors. 1 and 'Z)

W {(IS ± s sin «), {^)

the upper or lower sigu being taken according as the body

is dragged up or down the plane.

Sen. 2.— If tlie inclination of the plane is small, as in

the case of railway gradients, the j)ressure ujion the idane

will lie very nearly e(jnal to the weight of the body; and

the total work in moving a body along an inclined plane

will be from (3) and (4),

[ilW± Wh, (6)

where filW is the work due to friction along the plane

of length I, and Wh is the work due to gravity, the proper

sigu being taken as in (5).

EXAMPLES.

1. How much work is done in lifting 150 and 200 lbs.

through the heights of 80 and 120 ft. respectively.

The work done = 150 x 80 + 200 x 120

= lUJOOO foot-pounds, Ans.

2. A body weighing 500 lbs. slides on a rough horizontal

plane, the coeUicieiit of friction being 0.1 ; how niuch work

must be done against friction to move the body over

100 ft. ?

l!Mto«i
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Hero tlu' fruition is ii force of '>() lbs. acting directly

opposite to tin- molion ; liciice the work done iigainst fric-

tion to move the hody over UM) ft. is

50 X 100 =^ 5000 fbot-pou?uL<, Ans.

'^. A train weighs 100 tons; the total resistance is 8 lbs.

per ton; how much work must be expended in raising it

to the top of an inclined plane a mile long, the inclination

of the ])lane being 1 verticid to 70 horizontal.

Hero the work done against friction (Sell. 2)

= 800 X 5280 =: 4224000 foot-pounds,

and the work done against gravity

= 224000* X 5280 X Vo = 1089G000 foot-pounds,

BO that the whole work = 21120000 foot-pounds.

4. A train weighing 100 tons moves 30 miles an hour

along a horizontal road; the resistances are 8 lbs. per ton;

find the quantity of work expended ach hour.

A)is. 12G720000 foot-pounds.

5. If 25 cubic feet of water are pumped every 5 minutes

from a mine t40 fathoms deep, recjuired the amount of

work expended per minute, a cubic foot of water weighing

02i lbs. Aiis. 202500 foot-pounds.

C. How much work is done when an engine weighing

10 tons moves half a mile on a horizontal road, if the

total resistance is 8 lbs. per ton.

Ans. 211200 foot-pounds,

7. If a weight of 1120 lbs. be lifted up by 20 men, 20 ft.

high, twice in a minute, how much work does each man

do i)er hour ? Ans. 134400 foot-pounds.

» Oii« ton boing -JilO lbs. iiiiIokk cilbcrwlHC Ktatcd.
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8. A l)ody falls down the whole length of an ineiin.'i

plane on which the coetHcient of friction is 0.2. 'i hi'

lieight of tlie plane is 10 ft. and tlie l)ase ;50 ft. On reach-

ing the bottom it rolls horizontally on a plane, having the

same coefficient of friction. Find how far it will roll.

Ann. 20 ft.

9. IIow nuicli work will be required to pumj) 8000 cul)i('

feet of water from a mine whose depth is 500 fathoms.

Ans. 1500000000 fool-pounds.

10. A hor.<e draws loO lbs. out of a well, by means of a

Yo\w going over a Hxed jiulley, moving at the rate of

'2\ miles an hour; how many units of work does this horse

perform a minute, neglecting friction.

Ans. ;53O0O units of work.

214. Horse Pcwer.— It would be inconvenient to

ex])re,ss the power of an engine in foot-pounds, since this

unit is so small ; the term Horse Power is therefore u.^ed

in measuring the performance of steam engines. From
experiments made by Boulton and Watt it was estimated

that a horse could raise ;}3000 lbs. vertically through one

foot in one minute. This estimate is ])robably too high on

the average, but it is still retained. Whether it is greatei-

or less than the ])ower of a horse it matters little, while it

is a |)ower so well defined. A Horse Power therefore means

(I power which can perform 33000 foot-porinds of work in a

minute. Thus, when we say that the actual horse power

of an engine is ten, we mean that the engine is able to per-

form 3;}0000 foot-pounds of work per minute.

It has boeii ostinintcil that % of the 33000 fool iwunds would be

about the work of a horse of averatje stronprtli. A mule will jierform

I the work of a horse. .\ii asH will ])erforin al)out \ the work of a

horse. A man will do about /,, the work of a liorse, or about ;f3()0

units of work per minute. Seo Evers' Ai)|)lied Mech's; also Byrne's

Practical Mech's.

B^^
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215. Work of Raising a System of Weights.—
Ijct /', Q, li, 1)0 aiiv tl>n.'i' wciglils at iIr- (li.staiici's, y. y,

/•, rc^poctivc'ly alxivoa tixinl Imrizoiital plaiu'. 'I'lu'ii |.\rt.

r)9 (3)] or (Art. T3. Cor. 3), tlic distaiKv uf tlie foiitrc i.f

gravity of I', Q, R, above tlii.s lixod horizontal i)laiic is

Pp+Qq + Rr
I'-f (J +'R '

(1)

Now suppose that the weights are raised vertieally

through the heights a, b, c, resj>eetively. Then the dis-

tance of the centre of gravity of the three weights, in the

now jjosition, above the .same fixed horizontal i)lano is

f + Q+ R

Subtracting (1) from (••i), wo have

7' + \f + R '

i'i)

(^)

for the vertical distance between the two po-sitions of the

centre of gravity of the three bodies.

Now the work of raisii'g vertically a weight e(|ual to the

sum of /-*. Q, R. through the s]»ace denoted by (3) is the

product of the sum of the weights into the space, which is

Pa + Qb.+ Rr, (-t)

but (4) is the work of raising the throe weights /\ Q, R,

through the heights n, h, c, respectively. In the sanio way

this may be shown for any number of weights.

Hence when several weights are raised vertically through

different heights, the whole work done is the same as that of

raising a weight equal to the sum of the weights vertically

from the first position of their centre of gravity to the last

position. (See Todhunter's ^kch"s. p. 33S.)
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3;i7

1. How manv horse-pnwer would il lake to raise '^ cwt.

of coal a minute from a i)it whoso depth is 110 fathoms';'

Depth = 110 X 'i = <ifiO feet.

3 cwt. = 11-^ X :i = :33(; Ihs.

Hence the work to he done in a minute

= GGO X 33G = --i-^lTfiO loot-pounds.

Therefore the horse-i)o\ver

= -Z-ZVitO -=r 33000 = i).ri. Am.

3. Find how many cubic iVcl of waier an engine of

40 horse-jtower will raise in an hour from a mine 80

fathoms deep, supposing a cubic loot of water to weigh

1000 ozs.

Work of the engine per hour =z 40 x 33000 x 60 foot-

pounds.

Work expended in raising one cubic foot of water

through 80 fathoms — 'H" >' *^" x '^ = '^*^^'^'* ^"o^"

pounds.

Hence the number of cubic feet raised in an Inur

= 40 X 33000 X 00 ^ 30000 = :iG40, Ans.

3. Find the horse-power of an engine which is to move

at the rate of 20 miles an hour up an incline which ri.ses

1 foot in 100. the weight of the engine and load b"ing

GO tons, and the resistance from friction I'-i lbs. per ton.

The horizontal space ])asscd over in a minute = ITGOft.;

the vertical space is one-lumdredth of this rr: 17. GO ft.

lieiice from (G) of Art. 213, we have

12x1 rOO X GO + GO X 2240 x 1 T.G= 1 TGO x 20G4 foot-pounds.
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Therefore the horse-power

= ir<iO X -MM -r- :3:}(lO() = 110.(18, J Hi.

4. A well is to be dug 'iU I't. deei), and 4 ft. in diameter:

find the work in raising the niuterial, suppo.sing tiiat a

cnhie foot of it weighs 140 Ib.s.

Here the weight of tl)e material to be raised

= 4Tr X ;J0 X 140 = 140 x 80t lbs.

The work done is equivalent to raising this through the

height of 10 ft. (Art. llr>). Hence the whole work

= 140 X 80tt X 10 — ]12000tt foot-pounds, Jh,s.

5. Find the horse-power of an engine that would raise

7' tons of coal per hour from a pit whose depth is a

fathoms.

Work jKT minute = = 22iaT;

•. the horse-power =: ..7—-- , Ans.
O'iOOU

(!. Re<[uired the work in raising water from three different

levels whose deptlis are a, h, c fathoms respeetively ; from

the first J, from the second B. from the third C, cubic

feet of water are to be raised per minute.

Work in raising water from the first level

= G2.5 J X « X G = 375 J. «;

and so on for the work in the other levels
;

.. work per min. = 375 {A-(i+ li-h-\- C-c) foot-pounds.

7. Fin i tlu^ horse-power of an engine which draws a

load of T tons along a level rouii at the rate of m miles
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an hour, the friction Ijeing /> pounds per ton, all other

resistances being neglected.

Work of the engine per minute

_ 5380 ?» „T ,n= Tp --^^p- = 88 Tpm.

~ 33000 ~ 3000 '
ns.

8. Required the number of horse-power to raise 2200

cubic ft. of water uii hour, from a mine whose depth is 03

fathoms. Ans. 2G^.

9. What weight of coal will an engine of i iiorse-power

raise iu one hour from a pit whose depth is 200 ft. ?

Ans. 39G00lbs.

10. In what time will an engine of 10 horse-power raise

5 tons of material from the depth of 132 ft.?

Ans, 4-48 minutes.

11. How many cubic feet of water will an engine of 36

liorse-power raise in an hour from a mine whose depth is 40

fathoms ? Ans. 4752 cubic feet.

12. The piston of a steam engine is 15 ins. in diameter
;

its stroke is 2^ ft. long ; it makes 40 strokes per minute

;

tlie mean pressure of the steam on it is 15 lbs, per square

inch; what number of foot-pounds is done by the steam
per minute, and what is the iiorse-jjower of the engine ?

Jmv, 205072.5 foot-pounds ; 8-03 11.-?.

13. A wciglit of 1^ tons is to be raised from a depth of

50 fath(jms in o'le minute; determine the horse-power of

the engine capable of doing the work.

Ans. 30t8j IT,-J».

T'.ie IetttT« n.-P. arc often used a» ftbbrcvlatlone of the words horse-power.

ita
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14. The resisUince to the motion of a certain body is

440 lbs.; how many foot-ijouiids imisl be expended in

making- this body move over 30 miles in one hourV What

nuist be the horse-power of an en^riiie that does the same

naniber of foot-pounds in tiie same tinie!-'

Ans. ti'JG'JGOOO foot-pounds; ;)5| II.-P.

If). An eii'dne draws a load of '!() tons at the rate of 20

miles an hour: the resistances are at tlie rate of 8 lbs. ))cr

ton ; iiiid the horse-i)Ower of the engine. Aux. ^o-O.

IC). How many cubic feet of water will an engine of 'IhO

horse-power raise per minute from a depth of 2oo fathoms":'

A)iK. 110 cubic ft.

17. Til ere is a mine with three shafts which are respec-

tively 300, 450, and oOO ft. deep: it is re(|uired to raise

from the first SO. from the second 00. from the third 40

cubic ft. of water per minute; liud the horse-i)ower of thi'

engine. -''•>•• 1'54||.

216. Modulus* of a Machine.—The wliole work per-

formed by a machine consists of two parts, liie iificfid work

and the lod work. Tiie useful work is that whicii the

maciiine is designed to produce, or it is liiat whieli is

employe'^ in overcoming u.^cfid resistances : the lost work

is thai which is not wanted, but wiiich is uiuivoidai)ly

produced or it is that which is spi'nt in overcoming wnxtc-

fill resistances. For instance in drawing a train of cars, tho

useful work is ])erformed in niov.ng the train, but the lost

work is tliat which is doito in overcoming tho friction of

the train, the resistance of gr;i\ ity on up grailes. the resist-

ance of the air, v\r. 'I'lie woi'k iipplied to a machine is

('(puii to (he wiiol.' work done l»\ tiie nuichine. botii useful

and lost, liierefc'v the useful work is always less than the

work applieil to tiic machine.

* Sonii'tliufi* tttlli'd Kmcli'iicy. (Art. 108.)
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The Modulus of a mdi-hine is the ratio of tho useful work
(lour to tlie work ap/ilieil. Thus, if the work applied to an

engine be 40 horse-power, and the engine delivers only .'30

horse-i)ower. the modulus is J, /. e., one-quarter of the work
apj)lied to the machine is lost by friction, etc.

Let ir i)e the work applied to the machine, ll'„ the use-

ful work, and ui the modulus. Then we have from the

above definition

W
"' =

T,;-
(1)

If a machine were perferl. i. /'., if there wore no lost work,

the modulus would l)e unity; but in every machine, some

of the work is lost in overcoming wasteful resistances,

so that tile modulus is always less than unity ; and it is of

course the object of inventors and improvers to bring this

fraction as near to unity as possible.

EXAMPLES.

1. An engine, of X effective ''.jrsc-power, is found to

pump A CI 'lie ft. of water per isiin.. from a mine a fathoms

ileep ; lind the modulus of the ])iimps.

Work of the engine per min. — ;{:{0()0 .V II. -P.

'i'he useful v,'ork, or work exju'iidcd in pumping water,

= (VZ-'y A X <)'' = -JT") A- a;

henc( Trom (1 ) wc have

'^ - ;):iOooA^~ 88 ,V'
'"'''•

.*. There were .\ cul)ic ft. of water in a mine wlic-e deptli

is u fathoms, when an I'Ugiiu' of .V horse-power began to

work liie pumi»: the water c<»ntinued (o ilow into the mine

at the rate of U cubic ft. per minutej required (he (inu;

mmm^m t^
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in which the mine would l)i' cleiirod of water, the niodnhis

of the pump tieiug iii.

Let X = the number of minutes to clear the mine of

water. Then

weight of water to be pumped = (J:.; -5 (A + Bar)
;

work in pumping water = 37r)rt (A + B.r) foot-pounds;

effective work of the engine = m- Ji-'.i'MOOx
;

.
•

. a.'iOOO m Nx = 3?5rt (A + lix)
;

A-

a

X =z
88m.V— h-a'

Ans.

3. An engine has a foot cylinder ; the shaft makes 30

revolutions per minute, the average steam pressure is 25

lbs. per H(iuarc inch ; recjuired tiie hoise-powcr wiien the

area of the jjiston is 1800 square inches, t lie modulus of

the engine being [J.

Work done in one minute = IHOO x ^"» x 'J X 2 x 30

foot-ponnds. We multiply by twice the length of the

stroke, because the piston is driven both u|> and down in

one revolution of the shaft.

Tlie effective Jiorse-power = isiLa^n^iu lu x [J

= iM, A U.S.

4. The diameter of the j)isloii of a steam engine is (10

ins.; it makes 11 strokes per minute; the length of each

stroke is 8 ft.; the mean pressure per s(piare in. is 1.5 ll)s.;

reipiired the luimlier of cubic ft. of water it will raise per

hour from a depth of 50 fathoiiLs, tlie modulus of the

engine l)eing O-tl.'").

The nuinbcr of l"()i)t-|Hmii<lH of useful work done in one lioui' iiml

[i^nt in raining water =^ ir ^ 80' > 8 x in • tl x (to . o ().">. tlieiefoi'<', etc

Ans. 7703 cubic ft.

f
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i). An engine is required to j)umi) 1000000 gallons of

water every \'i hours, from a mine 13'^ fathoms deep ; find

the horse-power if the modulus be \^, and a gallon of

water weighs 10 lbs. Ans. SGSy'ij II.-P.

(i. What must be the horse-power of an engine working

e hours per day. to suj)j)ly ii families with //
gallons of

water each pm- day. siij)posing the water to be raised to the

mean height of // feet, uiu! that a gallon of water weighs 10

lbs., the modulus being in. lujh ,, .,

""'•
nt8ooo7w

T. Water is to be raised from u mine at two dilTerent

levels, viz., 50 and 80 fathoms, from the former 30 cubic ft.,

and from the latter 15 cubic ft. per minute : find the horse-

l)o\ver of the machinery that will be required, assuming

the modulus to be O-O. Ans. 51- U II.-P.

8, 'Che diameter of the piston of an engine is 80 ins., the

mean pressure of the steam is Vl lbs. |)er square inch, the

length of the stroke is 10 ft., the number of strokes made
per minute is 1 1 ; how many cubic ft. of water will it raise

))er minute from a depth of 250 fathoms, its modulus being

0.0? Ans. 42-40 cubic ft.

II. If the engine in the last example had raised 65 cubic

ft. of water per minute from a depth of 250 fatlumis, what

would have been its modulus? Ans. 0-7TT1.

10. llow many strokes jter minute must the engine \\\

Ex. 8 make in order to raise 15 cubic I't. of water per

minute from the given depth? J«.v. 4.

11. What must be the length of the stroke of an engine

whose modidiis is (I- 05, and whose other dimensions and

eouilitinns of working are I he same as in l']\. S, if thev both

do the same quanlity of useful work? I us. !3 ft.

^
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217. Kinetic and Potential Energy. Stored
Work.— The viwrgy of a body mmiis i/.< jxi/rrr of doitui

work; and tlic total amount of encrqy possessed t>i/ I lie body
is mmsKicd by tlie total amount of work wldrl, it /,s- rapable

of doiny in j'nssiny from its prm'nl condition to some
standard condition.

Every niuving Ixuly po.ssessi'.s energy, tor il can he made
to do work l)y parting with its veloeity. 'I'lie velocity of

rlie l)ody may l>e used for causing it to ascend vertically

against the attraction of the earth. /. >:. to do work against,

the resistance of gravity. A caniioi! hall in motion can

penetrate a resisting hody; water flowing against a water-

wheel will turn the wheel ; the moving air drives the ship

through the water. Wherever we find matter in motion
wo have a certain amount of eiiergv.

Energy, as known to us, hdongs to one or the other of

two cla.sses, to which tiu' mimes kinetic* cneryy and
potential I'neryy are given.

Kinetic enen/y is eneryy tliat a body possesses in virtue of
its beiny in motion. It is energy actually in use, energy

that is constantly i)eing spent. 'I'lie energy of a hiiUet in

motion, or of a ily wheel revolving raj)idly, or of a pile-

driver just hefore it strikes the pile, are examples of kinetic

cneryy. The work done hy a force on a hody free to move,
exerted through a given distance, is always ('(jI'mI to the

C(?rrespoiiding increase of kinetic energy [Art. ISD (;i)]. If

a mass. /«, is moving with a velocity, r. its kinetic energy

is pnr'^ [(;!) of Art. 18il]. If this velocity ho generated hy a

constant force, P, acting through a space, ,s, we have.

(Art. 211)

Ps ^ hin^, (1)

thai is, the work done on the hody is the exact e(|iiiTali'nl

of the kinetic energy, and the kim'tie energy is rwon-

Ciillwl iiIho (uiuut (nenjij, di (iieryij (tf motion.
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Tgy is riH'on-

vertiblo into the work; and the exact amonnt of work

which the mass m, witii a velocity v, can do against resist-

ancu before its motion is completely destroyed is hin\

'I'liis is called xtoml ivork,* and is the amount of work that

any opposing force, /', will have to do on the lunly before

bringing it to rest. 'I'lius, when a heavy Jly-wheel is in

rapitl motion, a considerable jwrtion of the work of the

-ngine must have gone to produce this motion ; and before

the engine can come to a state of rest all the work stored

up in the lly-wheel, as well as in the other parts of the

machine, must be destroyed. In this way a lly-wheel acts

as a reservoir of work.

If a body of mass //;, moving through a space .v, change

its velocity from v to Cj the work done on the body as it

moves through that space, (Art. 18it), is

\m{v^-r,% C'i)

If the body is not perfectly free, /. v., if there is one force

urging the body on, and another force resisting the body,

the kinetic energy, hnv'^, gives the excess of the work done

by the former force over that done by the latter force.

Thus, when the resistance of friction is overcome, the

moving forces do work in overcoming this resistance, and

all the work done, in excess of that, is stored in the moving

mass.

Potential energy is eneriiy that a body possesses in virtue

of its position, i'he energy of a bent watch-spring, which

does work in uncoiling: the energy of a weight raised

above the earth, as the weight of a clock which does work

in falling ; the energy of compressed air, as in the air-gun,

or in an air-brake on a locomotive, which does work in

expamling; the energy of water st.tred in a mill-dam, ami

of steam in a boiler, are all examples of potential enertjy.

* I'allcd «Ni) mviimiitufeit imrk. S.u Todluinli'i'H Mi'chf., ulfo wtorud I'licrRy anil

DC wo'k, Diduho'm Muclmiilt-', \i. 178.

ite
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Such energy may ur may not l)e called into action, it may
be dormant fur years; the power exists, l)ut the action will

begin only when the weight, or tiie water, or the steam is

released. Hence the word potential, is significant, at,

expressing that the energy is in existence, and that a new
power has been conferred upon it by the act of raising or

aonliiiing it.

For example suppose a weight of 1 II). be projected

vertically ujjwards with a velocity of '.i2-2 ft. per second.

The energy imparted to the body will carry it to a height

of 16-1 ft., when it will cease to have any velocity. The
whole of its kinetic energy will have been expended ; but

the body will have acquired jtotential energy instead ; /. c,

the kinetic enei'gy of the body will all have been converted

into potential energy, which, if the weight bo lodged for

any time, is stored up and ready to be freed whenever the

body shall be permitted to fall, and bring it l)ack to its

starting point with the velocity of IVi- 2 ft. ])er second; ap.d

thus the body will reacfpiire the kinet c energy which it

originally received. Hence kinetic energy and potential

energy are mutually convert il)le.

Let h be the height through which a body must fall to

ac(|uire the velocity r, in and IT the mass and weight,

respectively. Then since v^ = 'Zgh, we have, for the stored

work,

W W
i""' = «,/

"' =
•../

• '^9l>' = "V^ (3)
'i'.l •i'J

Hence we may say that the work stored in a moving body
is measured hji llic prinlxrl of Ihc iiwiiiht af the hotli/ info the

heiijld t/iroiiyh ir/iic/i il niunl fall lo (tcquire the velocity.

EXAMPLES.

1. Let a bullet leave the barrel of a gun with the velocity

if 1000 ft. per second, ami suppose it to weigh 2 ozs. ; lind
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the work stored up in the l)ullet, and the height from which

it must fall to acijvnre that velocity.

liere we have from (3) for the stored work

(1000)2 = Wh
2 X IGg

= 1941 foot-pounds.

.'. h = 155;i8 feet.

2. A ball weighing lo lbs. is projected along a horizontal

piano with the velocity of v ft. per second ; what space, s,

will the hall move over before it comes to a state of rest,

the coefficient of friction being /'?

Here the resistance of friction is />, which acts directly

opposite ti» the motion, tberef(tre the work done by friction

while the body moves over s feet = fn's ; the work stored

up in the ball = f/wy" = — ; therefore from (1) we have

tos =
.,

tvv*

'^y

3. A railway train, weighing 7' tons, has a velocity of v

ft. per second when the steam is turned off ; what distance,

,s, will tiie train have moved on a level rail, whose friction

is p ll)s. i)er ton, when the velocity is i\ ft. per second ?

Here the work done by friction = pTs; lienco from {5J)

wc have

_ U20 { o^ - Vq ^)

• • « ' — *

f/P

4, A train of T dms desccuids iin incline of s ft. in

length, havinvf a toliil rise <)f /H't.: what will be the velocity,

/', acquired by the train, the friction Ijoing^y lbs. per ton?

ito
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Here we have (Art. :213, Scli. •-.*). Hie work done on tlio

train = the work of gravity — the work of friction

= -iUi) Tit -pT.s;

wliich is e(iiuil to the work stored up in the train. Heuco

22W Tv^

^
= 2240 Th —pTs;

.'. V = \/-l(jh - j^.ns[/ps.

5. If the velocity of the train in the last example ho

y'o
ft. per second when the steam is turned otT, what will he

its velocity, v, when it reaches the bottom ol the incline?

*;. A body weighing 40 lbs. is projected along u rough
horizontal plane with a velocity of 150ft. per sec; the

coctlicient of friction is \; find the work done against

friction in live seconds. Ans. 3500 foot-pounds.

7. Find the work accumulated in a body which weighs
300 lbs. and has a velocity of (34 ft. per second.

Ans. 19200 foot-pounds.

218. Kinetic Energy of a Rigid Body revolving
round an Axis.— Let m be tlie mass of any particle of

tiie body at the distance r from the axis, and let w be the

angular velocity, which will be the same for every particle,

since the body is rigid; then the kinetic energy of m =
\ni (/•(.))«. The kinetic energy of the whole body will be

found by taking the sum of these expressions for every

particle of the body. Hence it may be written

(1)
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i tnr'^ is called the moment of inertia of the body about the

axis, and will be explained in the next chapter.

Hence the kinetic energy of any rottitiny boily = ^I*^,

where I is Hie moment of inertia round tlie axiit, and w tlie

angular velocity.

In the ease of a fly-wheel, it is sutKcient in practice to

treat the whole weiglit a^^ distributed uniformly along the

circumference of the circle di'scribed l)y the mean radius

of the rim. Let r l)e this radius; then the moment of

inertia of any particle of the wheel = mr'^, and the moment
of inertia of the whole wheel = 3/K where ^f is the total

mass. Hence, snbstiliiting in (1) we have -— Mr\ which

is the kinetic energy of the fly-wheel.

EXAMPLES.

1, Two equal particles are made to revolve on a vertical

axis lit the distances of a and b feet from it; required the

point where the two particles uiiist be collected so that the

work may not be allt'ivd.

Let m = the mass of each particle, k = the distance of

the refpiircd point from the axis, and w = the angnlar veloc-

ity ; then we have

Work stored in both particles = J/h (rtoj)2 + ^m (buyY;

Work stored in both partick's collected at j)oint = m (ku)'',

.. m (^•w)2 = |/rt {a(^Y + ^m (iw)*;

.-. k = Vf(a^^+b^).

This point is called the centre of gyration. (See next

chapter.)

'i. The weight of a fly-wheel is v> lbs., the wheel makes

H revolutions per minute, the diameter is 'ir feel, diameter

m^ttmrn
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of axle a iiiclies, ami the foetlicioiit of friction on tlie axlo

/; how many revc'utions, x, will the wheel make before it

stops ?

AVork stored in the wlieel = "-
(— V/-2.

•i(j \ (JO / '

~
2y Im"

Work done by friction in x revolutions

and when the wlieel stops, we have

X =

3. Required tlie number of strokes, .'•, which tiie fly-wheel

in the last example, will give to a forge hammer whose
weight is W I'us. and lift // feet, supposing the hammer to

make one lift for everv revolution of tht; wheel.

Here the work due to raising hammer = Whx. . &c

W 7t2«2/'24 It It'll- 1
-

Aii<3 qr — -

4. The weight of a fly-wheel is SOOO lbs., the diameter
yO feet, diameter of axle 14 inches, eoellicicnt of friction

0.2; if the wheel is separated from I lie en;,nne when mak-
ing 27 revolutions per ininute, lind bow many revolutions

it will make before it stoj)s (y taken = 32.2).

J«*'. 10.9 revolutions.
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219. Force of a BIotv In order to express the

.inioiinl of force between the face of a hammer, for in-

sliiiur, and the head of a nail, wc must consider what

Wfijiht ni'ist he laid upon tiie iiead of the nail to force it

into the wood. A nail recpiires a larjji' force to pull it out,

when friction alone is retaining it, and to force it in must

of course reipiire a still larger force.

Xow the head of the hammer, when it delivers a Idow

upon the head of the nail, must be capable of develo})ing a

force equal for a short time to the continued pressure that

would be produced by a very heavy load. Hence, the effect

of the hanuner may be explained by the principles of enciyi/.

When the hammer is in motion it lia.5 a <[uantity of kinetic

energv stored up in it. and when it comes in contact with

the nail this energy is instantly converted into work which

forces the nail into the wood.

EXAMPLES.

1. Suppose that a hammer weighs 1 lb., and that it is

impelled downwards by the arm with considerable force, so

that, at the instant the head of the hammer reaches the

niiil. it is moving with a velocity of 20 ft. ))er second ; find

tiie force which the hammer exerts on the nail if it is

driven into the wood one-tenth of an inch.

Let P be the force which the hammer exerts on the nail,

tiien the work done in forcing the nail into the wood =
/' X j^Ts, and the energy stored up in the hammer

— Iniri= i»l
(14

fi.

Siiu'c the work doiu' in forcing the nail into the wood

niusi be e(puil to all the work stored in the hammer, (Art.

•.M ',), we have

r^o
- = (>:i

;
/' = 744 lbs.
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Ilenee the force which tlio lianimor exerts on the head of

the null is at least Ti-l lbs.

2. If the hanimcr in tiie last example forces the nail into

the wood only O.Ul of an int'li, lind tiie force exerted on

the nail. Ahx. T44<) lbs.

Hence, we see tliiit, iicpor<liii<r us the wood is harder, /. ,"., arcord

ing as the nail enters h'ss at each stroke, the forct; of tlie l)lo\v

iH'Coines jjreater. So that wlien we speak of the " force of a blow,"

we must spirify how soon the body giving the IjIow will come to

rest, otherwise the term is nieuniiiglese. Tims, sui-pose a hall of

100 lbs. weight have ii velocity that will cnus); it to ascend 1000 ft.;

if l' e ball ib to be 8to|.])ed at the end of 1000 ft., a force of 100 lbs.

will do it ; but if it is to be stoj)ped at the end of one foot, it will

need a force of 100000 lbs. to do it ; and to stop it at the end of one
inch will require a force of '200000 lbs., and so on.

220. "Work of a Water-Fall.—When water or any
Ixtdy falls from a <fiven heifflit, it is plain that the work
which is stored up in it, and which it is cai)a"l)le of doing, is

ccpial to that wiiieh wonld be re(|nired to raise it to the

hci<,dit from which it has fallen ; /. v., if 1 lb. of water

de.-^cend ih rough 1 foot it must accumulate as much work
as wonld be required to rai.se it throngii 1 foot. Ilenee

when ii fall of water is cmplo^-ed to drive a water-whed, or

any other hydfiuilic machine, whose modulus is given, the

work done ujxm tlic mtichine is eipuil to the weight of the

water in pounds x its fall in feet x the modulus of the

machine.

EXAMPLES.

1. The breadth of a .-stream is /; feet, depth a feet, mean
velocity /• feet per uiiiiufe. mid the h.'ight of tiie fall // feet;

lind (1) the horse-pnucf. .\'. of the water-wheel who,se

modidus is ///. and {-i) lind I he number of cubic feet, A,

which the wheel will pump per minute from the bottom of

the fall to the height of //, feet.
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Weight of water going over tlif fall per niin. = Cyllt aor.

.-. Work of wheel jicr niin. = I'ri.'t tifu'/im. (1)

O'.'.,') iibrlini
(i)

Work in pumping water per niin. = 02.5 .1//,;

whieii must = the work of the wheel i)er niin.; hence

from (1) we have

G2.5 J/.i = ()2..") a/tr/im;

(ibi'/tni

A = —,— • (3)

2. The mean section of a stream is 5 ft. by 2ft.; its

mean velocity is 35 ft. per iniiiut(! ; there is a fall of 1.3 ft.

on tliis stream, at which is erected a water-wheel whose

woduhis is 0.C5 ; find the horse-power of tiie wheel.

Ans. 5.0 1 1. -I'.

3. In how many hours would the wheel in Ex. 2 grind

8000 bushels of wheat, supposing each horse-power to grind

1 bushel per hour? Auh. 14284 hours.

4. llow many cuhic feet of water must be made to

descend the fall per minute in Kx. 2. that the wheel may

grind at the rate of 28 bushels per hour?

Am. 1750 cu. ft.

5. Given the stream in Ex. 2, what must be the height

of the fall to grind 10 bushels jier hour, if the modulus of

the wheel is 0.4 'i .l«,s. 3r.r feet.

0. Find the useful horse-power of a water wheel, sup-

])osing the stream to be 5 ft. broad and 2 ft. deep, and to

flow witli a velocity of 30 ft. ]H'r minute: the height of the

fall being 14 ft., and tiie modulus of tiie machine 0.05.

.Im.s. 5.2 nearV.
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221. The Duty of an Engine.— The (hifi/ of an pixjinf

/.v llic number of units of work irhicli it is cdpahlc of (/di/ii/

by burniiKj a ffircii t/nan/ifi/ if /'nrh— ft Iiiis liocii IoiiihI 1)\

I'xiH'riment that, wliattner may \)v the iirossiirc at wliicli

tlic steam is formed, the (itiantiry of fuel iieeessarv tu

eva|)<)ratc a given volume of water is always nearly the

same; hence it is most advantageous to employ steam of a

high pressure.*

Ill good ordinary pngiiics the duty varies between 200000 and
500000 units of work for a lb. of coal. The extent to wliich tlie

economy of fuel niiiy be earried in well illustrated by the engiuet* em-
ployed to drain the mines in ("ornwall, England. In 1815, the

average duty of these engines was 20 million units of work for a

bushelf of coal ; iu 1843, by reason of giiec-ssive improvements, the

HTcrage duty had become 00 millions, ert'ecting a saving of £85000
])er annum. It is stated that in the case of one engine, the duty was
raised to l«o millions. The duty of the engin(> depends largely on
the construction of the boiler; 1 lb. of coal in the Cornish boiler

evaporates 11?. lbs. of water, while iu a ditferently-shaped boiler 8.7

is the maximum.^

E;X A M P I, ES ,

1. An engine burns 2 lbs. of coal for each horse-jjower

per hour ; find the duty of the engine for ii lb. of coal.

ilere the work dojie in one hour

= 60 X 33000 foot-pounds;

therefore tiie duty of the engine ^ 30 x 33000 foot-pounds,

— OilOdOO foot-pounds.

2. IIow many bushels of coid must be expended in a

day of ^*4 hours in raising 150 cubic ft. of water per minute

8i!e Tiile In MoclmiilcH' Mnjrazliic, hi tlio vcnr 1R41.

+ Oue liusliol of coal = HI or M Ills., (lc|icmliiii; upon ulicro il is. (iooilcvr,

X Hourni! on Ihu SU'aui Enginf, p. 171, iiiid Kar'miin, Unrful Inforniiulou,

,1 177
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from a dei)tli of 100 fathoms ; tlie duty of the engine

licing (JO millions for a bushel of coal ?

J//,v. 135 hiishels.

.'5. A steam engine is required to raise TO cuhic ft. of

water jier minute from a depth of 800 ft. ; liiul how many
Ions of eoal will be reijuired per day of 24 hoin's, supposing

the duty of the engine tobo 250000 for a lb. of coal.

Am. ti tons.

222. Work of a Variable Force.—When the force

which performs work through a given space varies, the

work done may be determined by multiplying the given

si)acc by the mean of all the variable forces.

Let AG represent the space in units

of feet through whieh a variable

force is exerted. Divide AG into

six equal parts, and su])pose /',, /'g,

I\, et"., to be the forces in pounds

ui)i)lied at the points A, B, C, etc.,

nspeetively. At these ])oiuts draw the ordinates 1/1,1/3, y^,

etc., tc re])rescnt the forces which act at tlie })oints A, B,

0, etc. Then the work done from A to B will l)e equal to

the space, AB, multiplied by the mean of the forces 1\
and /',, i.e., the work will be re])resentcd by the area of

the surface Aal/K In like manner the work done from

B to will be represented by the area \\bcC, and so

on ; so that the work done through the whole space, AG,
by a force which varies continuously, will be represented by

the area Ar/r/G. This area may be found approximately by

(he ordinary rule of .l/r«,sv'm//f/» for the area of a curved

surface Avith e((uidislant ordinates, or more accurately by

B c

Fig. 09

Simpson's* rule, the proof of which we shall now give.

223. Simpson's Rule. -Tict //,, //j. ?/,, etc., bo the

Alili(Hij,'li II wii'- not liivi I'd by SimpHon, Sou Toilhuiitch

i^m
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e(|iiitlistiiiit ordiiiatcH (Fifj. Si)) and / tlso distam'o l)etweon

aiiv two coiisecutive' ordiiiuU's ; tlioii liv taking tlic snni of

tlif (rapczoids, AabH, liOrC, etc.. we liave Uiv the area (if

A(i(/(J,

jMz/i + ^2) + yo/i + Hi) + 1'(//3 + ux) + i^'c-

= Vd/i + -^i/s + •-V/3 + -!/i + -^1/, + -'z/6 + //i); (0

winch i.-i tlio di'dinary formula of uuMisiiration.

Now it is ovidont that wlioii the curve is always concave

to the line ACJ (I) will give i<»» .undl a result, and ii' con-

vex it will give loo large a resuli.

Let Fig. 1)0 rei»re.>jenl the sjjace hetwecii any two odd

consecutive oi'dinates, as (V; and Ke(Fig. 8!») ; divide CE
into tln-ce ei|ual i)ii.rt,«, CK — KL = LK, ^ ^_ rf i

and erect the ordinates Kk and L/, dividing

the two trapezoids CVv/D and IWt-E into the

three trapezoids (V/'K, K/('/L, and IJrK.- ^

—

k~pl"

The sum of the aretis of t hese throe trapezoids Fig.M

= ^C;K ((V; -f 2Kk + 21./ + Kc)

= y {Ce -f -iKl- + 2T./ + E^). (since \VK = iOD -^ j/)

= |/(Cf; + Wo -f Er). (since '^K^- + 2\J = 4I)o). (2)

which is a closer a])proxinnition lor the area of VerK

than (1).

Now when the cnrve is concave towards CE. (2) is

smaller than the area lietween CE and the curve r/v/A'; if

we substitute for \)ii, the ordiiuite IW, which is a little

greatei' than Do and wiiicii is given, (2) hecomes

which is a still closer approximatiiu tlian (2).

(3)
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Similarly we liave for the areas of AflfK' and Ef^CJ.

y. {\,i + 4!V> 4- Ct), and V (l'> + -^^Y + <V/)- C-^)

Adding (:3) and (4) logether, we have for an approximate

value of the whole area,

w/;/r// /.v Siinpaoii's Fonimld. Hence Simpson's rule for

findinsr the area approximately is tiie following: Divide the

nhscis.sd, AO, in/o an eirii vumhvr n/ri/nnl jxir/s, mid erect

ordinuten at the puin/s of dirixion ; t/icii adil lo;/etIicr the

first and last ordinatps, twice tJie sani of all the other odd

jrdiuates, andfoar times the sum of all the even ordinate^ ;

multiply the sum Inj one-third of the common distance

hetween any two adjareut ordinatrs. (See 'I'odhnnter's

Mensuration, also Tale's (ieonietry and Mensuration, also

Morin's Moch's, by Bennett.)

EXAMPLES.

1. A variable force has act'>d throngli .T ft.; the value of

the force taken at seven successive e(iui.)istanl points,

including the first and the last, is in ll)s. IhO, If)!. 2, 1^*',

108, (14. T), 84. 75. f! ; lind the whole work done

.l//,v. :i4(!.4 foot-pounds.

•i. A variable force has acted through (1 ft.; the value of

the force taken at seven successive e(|uidistant ])oinls,

including tho first am' the last, is in lbs. 3, 8, 15, 24, :ib,

48, G;} ; find tho whole work done.

.1 //.•.'. I<t2 foot-pounds.

3. A varialile force has acted Ihrougli Si ft.; the value of

the force taken at seven successive eiiuidistant points,

iiu'luding the first and the last, is in lbs. (1.082, (!.l()4,

(;,24r>, (>.:{2r>, tUO.J, (1.481, (;..5r)T; find the wliole work done.

.|/;.v. .")(i.'.t07 foot-pounds.

^m
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SlionkI any of tlio ordiiiiili's lu'cunu' zito. it will not pro-

vcnl (lie nsc of Simpson's nilo.

Simpson's imiIc is iippliciiliic to otiici' invest igiit ions as

well as to (liat. of work done by a varial)l(' force. For

(.\ainj)Ie, if we want tlie velocity fjenerated in a given time

ill a particle liy a varialtle force, let the straight line A(J

represent the wiiolc time (hiring which the force acts, anil

let the straight- lines at right angles to AG represent the

force at the corresponding instants; tiien the area will

represent the whole space descrilied in the given time.

E :. A M P L E s .

1. The ram of a jiile-driving engine weighs half a ton,*

and lias a fall of 17 ft.; how many niiits of work are |)er-

formed in raising this ram ? Aiis. 1!)()4() foot-pounds.

"i. How many units of work are rc(Hiired to raise 7 cwt
of coal from a mine whose depth is i;$ fathoms ?

A US. (11152 foot-pounds.

',]. A horse is used to lift the earth from a trench, which

he does by means of a cord going over a pulley, lie pulls

up, twice every r> minutes, a miui weighing \'M) lbs., and a

barrowful of earth weighing ::i<jO Ills. Kach time the horse

goes forward 40 ft.; find the units of work done by the

horse iier hour. Ans. 3T-t4()().

4. A niilwiiy train of 7' tons ascends an inclined jilanc

which has a rise of c ft. in 100 ft., with a uniform speed of

))i miles per liour ; find the horse-power of the engine, the

friction being j:; lbs. per ton.

mT{p + 22Ae)

5. A railway train of 80 tons ascends an incline which

rises one foot in Soft., with the uniform rate of 1.") miles

• Onr 1(111 aicvM. - a-.Mlllbu.
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per hour ; find the horse-jxjwer of the engine, the friction

being S lbs. per ton. Aiis. l(;s.9(J H.-P.

C. If a horsf exert a traction of / lbs., what weight, /r.

will he pull up or down a hill of small inclination which

has .1 rise of c in 100, the coetficient being /"?

100/

100/
±"«'

T. From what depth will an engine of 22 horse-power

raise 13 tons of coal in an hour? .l//v. U'.Mi ft.

8. An engine is observed to raise 7 tons of material an

hour from a mine wlu'se dejith is S.l fathoms ; find the

hor^e-i)ower of the engine, supposing ^ of its woik to be

lost in transmission. Ann. 4.S4(i.5 II.-P.

il. Re(|uired the horse-power of an engine that would

supply a city with water, working 12 hours a duy, the

water to be raised to a height of 50 ft.; the number of

inhabitants b^Iug i.JOOOO, and each person to use 5 gallons

of water a day, the gallon weighing 8^ lbs. nearly.

Alls. 11.4 H.-P.

10. From what de])th will an engine of 20 liorse-powcr

raise 000 cubic feet of water per hour ? .Iw.v. 1050 feet.

11 At wliat rate per hour will an engine of 30 horse-

jiower draw a train weighing 00 tons gross, the resistance

being 8 lbs. per ton ? Ans. 15.G25 miles.

12. What is H'.c- gro.-s weight of a train which an engine

jf 25 horse-power will draw at the rate of 25 miles an

hour, resistances being 8 lbs. per ton?

An^. 40.875 tons.

13. A train whose gross weight is 80 tons travels at the

rate of 20 miles an hour ; if the resistance is 8 lbs.

per ton, what is the horse-power of the engine ?

Am. 34,1, H.-P.
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14. What must bo tlio l('ii<i;th of the stroke of ii piston

of an engine, the siirf'aee of wliieh is 1500 B<iuaro inches,

which makes '10 strokes per minute, so tliat. with a mean

pre.vsure of 12 lbs, on eaci) scpuire inch of the piston, the

engine may be of SO horsc-jtower ? Anx. 'i\ ft.

15. The diameter of the piston of an engine is SO ins.,

tile leugtli of tile stroke is 10 ft., it makes 11 strokes ])er

minute, and the mean pressure of tlie steam on the piston

is 12 lbs. per square inch : wiial is the horse-power ?

Anx. 201 -Ofj 1 1. -P.

IG. The cylinder of a steam engine has an internal

diameter of 3 ft., the length of the stroke is O ft., it makes

(i strokes jier minute: under what effective pressure per

square inch would it have to work in order that 75 horse-

power may be done on the piston ? Anx. G7- 54 lbs.

17. It is said that a horse, walking at the rate of 2^ miles

an iiour, can do 1050000 units of work in an hour ; wliat

lorce in pounds does he continually exert ?

Anx. 125 lbs.

18. Find the horse-jjower of an engine which is to move

at the rate of 150 miles an hour, the weight of tiic engine

and load l)eiiig 50 tons, and the resistance from friction

U; lbs. per ton. Ans. 04 li.-P.

1!). There were 0000 cubic ft. of water in a mine whose

depth is 00 fathoms, when an engine of 50 horse-power

began to work the pump ; the engine continued to work 5

hours before tiie mine was cleared of the water ; required

the number of cubic ft. of water wiiieh had run into the

mine during the 5 hours, supposing | of the work of the

engine to be lost by transmission. Ans. 10500 cubic ft.

20. Find the horse-power of a steam engine which will

raise 30 cubic ft. of water per minute from a mine 440 ft.

<leep. Ans. 25 ll.-l'.
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21. If a pit 10 ft. deep with an area of 4 s(iuare ft. i)e

OAsavated and the earth thrown up, how mncli work will

have been done, supposin-x a cubic foot of earth to weigh

i .)o lbs. Alls. 18000 ft.-lbs.

I
22. A well-shaft :{0<) il. deep and 5 ft. in diameter is full

of water; iiow many units of work must l)e expended in

-'ettinsr this water out the well
; (/. e., irrespectively of any

other water Howiug in)? I "•>•• r)522:J2()2 ft.-lbs.

215. A shaft a ft. deep is full of water; lind the depth of

the surface of the water when one-(iuarter of the work

recpxired to empty the shaft has been done.
Atis. "ft.

24. The diameter of the cylinder of an engine is 80 ins.,

the piston makes per minute S strokes of 10^ ft. under a

mean pressure of 15 li)s. per sipuire inch ; the modulus of

the engine is 0-55; how nuiuy cubic ft. of water will it

raise from a depth of 112 ft. in one minute?

Alls. 485- 78 cub. ft.

'

25. If in the last example the engine raised a weight of

r)(i4:3:5 lbs. through tlO ft. in (me minute, what must be the

mean pressure per s(iuare inch on the piston ?

Ans. 26-37 lbs.

2(). If the diameter of the piston of the engine in Ex. 24

had been 85 ins., what addition iu horse-power woiild that

nuike to the useful power of the engine ?

Alls. 13-28 II.-P.

27. If an engine of 50 horse-power raise 28(1(1 cub. ft. of

water per hour from a mine 00 fathoms deep, liml the

modulus of the engine. Aiis. -05.

28. Find at what rate an engine of 30 ho'rse-powcr could

draw a train weigiiing 50 Ions up an incline of 1 in 280,

Ihv resistance from friction being 7 il)s. per Ion.

,l//.v. 1320 ft. per minute,

ita
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'V.K A forgo Iiiimmer wi-l^liing ;}()() lli.s. niakos 100 lifts a

minute, tlio porpi'iKiicular iici;,f|it <>f cacli liCl \mu^ 2 ft.;

what is llic horso-powor uf tlio I'ligiiio that gives isiDtioii to

^0 such ham iiiers? Jh.v. ;!(;.;5(; n..l>.

.'iO. An "ugiiu! of ].) horse-power raises -iitOO :l)s. of eoal

from a pit r^OO ft. deep in an liour, and also gives motion
to a hammer which mukes 50 lifts in a minute, eaeli lift

having a i)eri)en(licular height of 4 ft.; what is the w.'ight

of the hammer ? Ann. 1250 lbs.

'.U. Find the liorsr-power of i!ie engine to raise 7' tons of

coal i)er hour from a [lit whose depth is a fathoms, and at

the same time to give motion to a foim- hammer weiirhiii<>-

w lbs., which makes n lifts per minute of h ft. each.

3-3000

32. Find the useful work done by a fire engine per

second whicli discharges every second 13 lbs. of water with

a velocity of 50 ft. \m' second. Aiim. 508 nearly.

33. A railway truck weighs m tons ; a horse draws it

along horiz(mtally. the resistance being n lbs. jter ton ; in

passing over a space .» the velocity clianges from u tor;
find tho work done by the liorse in this space.

A us. (' i(') + ni/ts.

34. The weight ^f a ram is GOO lbs., and at the end of

the blow has a velocity of 32^ ft.; what work has been

done in raisin" it ? J;(,v. '.xi.'io.

'.)'). l?t'.'jUired th" work stored in a cannon bal! whose

weight is '.i-^ lbs., and velueily 15(10 ft. Aiis. H25(JOO.

3fi A ball, weighing -JO lbs.. i> |irojected with a velocity

of tic ft. a second, on a liowlin'r-greeii ; what space will the

ball move over bebire it comes to rest, allowing llr.' IVietion

to be
^'f^

the weight of the ball? .J/(.v. loor-3 ft.

mmm



EXAMPLES. 433

;c'.s !(»(» lifts a

t hviuyr :> n.;

c'S motioii t(»

iii-;5(; ii.-p.

il)s. of coal

frivi'.s morion

into, oiU'li lift

is the w.'iglit

. 1250 lbs.

ii.se T tons of

loais, ami at

nor weighing-

each.

nhir
\\.-\\

J engine per

•f water with

J08 nearly.

rse draws it

per ton ; in

rom H to r ;

t^) + inns.

\ the end of

rk lias hi.'t'n

\us. '.)(;.>().

liali whose

iri:)0()(».

til a vdoeil

y

laee will I lie

!lr.' IVictinii

l(l(ir';{ ft.

:J7. A train, weighing 19:J tons, has a velocity of ;U)

miles an hour when the .steam is tu.'ned off; how far will

liie train move on a level rail before coming to rest, the

friction being .")i !b.s. })er ton y Ann. 12250 ft.

;{8. A train, weighing 00 Ioils. has a velocity of 40 miles

an hour, when the steam is turned off, how far will if

ascend an inchne of 1 in 100, taking friction at 8 lbs. a ton ?

A us. 3942^ ft.

;51». A carriage of 1 ton moves on a level rail witfi the

speed of H ft. a second ; through what s{)ace must the

carriage move to have a velocity of 2 ft., sujjposing friction

to he lbs. a ton? Ans. 348 ft.

40. If the carriage in the last example moved over 400

feet before it comes to a state of rest, what is the resistance

of friction per ton? Afis. 5.5T lbs.

41. A force, P, acts upon a body parallel to the plane;

liiid the space, .v, moved over when the body has attained a

given velocity, /', f lie coe(li(nent of friction being /', and the

hodv weighing w lbs. , 7vr^

4'3. Suppose the body in the last example to be moved

for / seconds; rc([iiired (1) the velocity, r, acrpiired, and

(2) the work stored.

An.s. (1)

/'

\'^. A bo(^y, weighing 40 lbs., is projected along a rough

Imrizontal ])!ane with a velocity of I50 ft. per second ; the

coetlicient of friction i- \\ lind the work done against fric-

li'in in ") seconds. Anx. 3500 foot-pounds.

44. .\ body weighing 50 lbs., is projected along a rough

horiziiiital iilaiic with the velocity of 40 yards jicr second ;

'Mill the work expended when the body comes to rest.

' Ans. 11250 ft.-lbs.
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45. If a trail! of cars weigliing 100000 lbs. is moving ol

a horizontal track with a velocity of 40 miles an hour when
the steam is turned off; through wiiat space will it move
before it is brought to rest by friction, tiie friction 'leing

8 lbs. per ton P A as. 133T4.8 ft.

4G. V/hat amount of energy is acquired by a body weigh-

ing 30 lbs. that falls through the whole lengtli of a rougli

inclined plane, the height of which is 30 ft., and the base

100 ft., the coefficient of friction being \ ?

Ans. 300ft.-lbs.

47. If a train of cars, weighing y tons, ascend an incline

having a raise of e ft. in 100 ft., with the velocity i\ ft. per

second when the steam is turned off; through what space,

X, will it move before it comes to a state of rest, the friction

being jo lbs. per ton ?
,«« . ^ _ 11~0('„2

^i^Ac +p)'
Ans. X

48. Suppose the train, in Ex. 4, Art. 217, to be attached

to a rope, passing round a wheel at the top of the incline,

which has an empty train of 1\ tons attached to the other

extremity of the rope: what velocity, r, will the traia

acquire in descending * ft. of the incline ?

/ T — "i

Ans. V = Y V' y-qr^

'7\

+ T,

gps_

1120'

40. An engine of 35 horse-power makes 20 revolutions

per minute, the weight of the fly-wheel is 20 tons and the

diameter is 20 ft.; what is the accumulated energy in foot-

pounds? Ans. 307054.

50. If the fly-wheel in the last example lifted a weight of

4tM)() |l)s. tlirougii 3 It., wiiat [»art of lis angular velocity

would it lose ? Ans. gif.

51. If the axis of the aliove fly-wheel be H ins. in

diameter, the cucilicient of friction 0-075, what fraction,
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approximately, of the 3.") horse-power is expended in turn-

ing the lly- wheel ? Ans. ^.

b-i. In pile driving, 38 men raised a ram 12 times in an

hour; the weight of the ram was 12 cwt., and tlie height

through wiiicli it was raised 140 ft.; tind the work done by

one mall m a minute. Aiis. ':)00 ft.-lbs.

53. A liattering-ram. weighing 2000 lbs., strikes the

iiead ol' a pile with a velocity of 20 ft. per second; how far

will it drive liie pile if the constant resistance is 10000 lbs.?

Ans. 1.25 ft.

54. A nail 2 ins. long was driven into a block by sue

cessive blows from a monkey weighing r).01 lbs.; =ifter one

blow it was found that the head of the nail projected 0-8

of an inch ai)Ove the surface of the block ; the monkey was

then raised to a height of l..") ft., and allowed lo fall upon

the head of the nail: after this blow the head of the nail

was 0.40 of an inch above the surface; tind the force which

the monkev exerted upon the head of the nail at this blow.

Ans. 265.24 lbs.

55. The monkey of a pile-driver, weighing 500 ll>s. is

raised to a height of 20 ft., and then allowed to tall upon

the head of a pile, which is driven into the ground 1 indi

by the blow; find the force wliicli the monkey exerted

upon the head of the pile. Anx. 120000 lbs.

50. A stciini hammer, weighing 500 lbs., falls through a

height of 4 ft. under the action of its own. weight and a

steam pressure of 1000 lbs.; find the amount of work

which it can do at the end of the fall.

/Ih.x. 0000 ft.-lbs.

57. The mean section of a stream is 8 scjuare ft.; its

mean veloeitv is 40 ft. per minute; it has a fall of 17J ft.;

it is required' to raise water lo a height of 300 ft. by means

of a water-wheel whose modulus is 0.7; how many culiic ft.

will it raise per minute 'i
Ans. 13.07 cub. ft.

*
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58. To what liciglit would the wheel in the last example
raise 'i^ cub. ft. of water pt-r minute ? Ans. 174.if ft.

50. The meau section of a stream is 1| ft. by 11 ft.; its

mean velocity is --i^ miles an hour ; tliere is on it a fall of
fi ft. on which is erected a wheel whoso modulus isU.T; this

wheel is employed to raise tiie hummers of a forge, each t.t

which weighs 2 Urns, and has a lift of U ft.; how many
lifts of a hammer will the wheel yield i)er minute!'

Ans. H2 nearly.

()(). In the last example determine the mean depth of
the stream if the wheel yiehls 135 lifts per nunute.

Ans. 1.43 ft.

61. In Ex. 59, how many cubic ft. of water must descend
the fall per minute to yield 97 lifts of the hammer per
''»''>"tt'? A/is. ^4.:>3 cub. ft.

()--i. A stream is a ft. broad and b ft. dcej), and flows at

the rate of c ft. per hour; there is a fall of /i ft.-; the water
I urns a nuichine of which the modulus is e ; find the num-
l)er of bushels of corn which the machine can grind in an
hour, supposing that it re(iuires m units of work i)er

minute for one hour to grind a bushel.
An

lOOOabchc
s.

I'i X iiOm

ly.i. Down a U-ft. fall 2(K) cul). ft. of water descend every
minute, and turn a wheel whose modulus is O.fi. The
wheel lifts water from the l)ottom of the fall to a height of
54 ft.: (1) hov, many cubic ft. will be thus raised per
minute? (•*) If the water were raised from the toj) of the
fall to the same point, what would the number of cubic ft.

1'"^^" ^^''- ^l"-*- (1) 31.1 cub. ft.; (•>) ;{4.: cub. ft.

In tlie second Pase tlu> numlHT of ciil>. ft. of water tiikeii from tlio

top of tlie full l)eint!: j; tlie nunilMT of ft. tliut will turn tlie wlieel will
be 200 - <:

U4. Find how many units of work are stored up in a
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mill-pond which is lOd ft. long, oO ft. i)road, and .'! ft. deep,

and has a fall of 8 ft. A7is. 7500000.

05. There are three distinct levels to be pumped in a

mine, tlie tirst 100 fathoms deep, the second 120, the third

150 ; ;K) cub. ft. of water are to come fnmi the first, 40 from

the second, and (iO from the third jK'r minute ; the duty of

the engine is TOOOOOOO for a busiiel of coal. Determine (1)

its working horse-power and (2) the consumption of coal

per hour. Ans. (1) 191 II.-l'.
; (2) 5.4 bushels.

CO. In the last example suppose there is another level of

IGO fathoms to be i)umi)ed, that tiie engine does as much
work as l)eforo for the other levels, and that the utmost

))ower of tho engine is 275 II.-P. ; tind tho greatest number
of cub. ft. of water that can ijo raised from the fourth level.

A)is. iO^ cub. ft.

07. A variiilde force has acted through 8 ft.; the value

of the force taken at nine successive equidistant })oints,

including the first and tho last, is in lbs. 10.204, !t.804,

0.434, U.OOO, 8.771, 8.475, 8.197, 7.937, 7.G92 ; find the

whole work done. Aiis. 70.041 foot-jjounds.

G8. The value of a variabl'» force, taken at nine succes-

sive equidistant points, including the first and the last

points, is in lbs. 2.4840, 2.5049, 2.(3391, 2.7081, 2.7726,

2.8332, 2.8904, 2.9444, 2.9957, the common distance between

the points is 1 ft.; find tho whole work done.

Alls. 22.0957 foot-pounds.

09. A train whose weight is 100 tons (including the

engine) is drawn by an engine of 150 horse-power, the fric-

tion be''ig 14 lbs. per ton. and all other resistances neglect-

ed ; find the maximum spetd which the engine is capable

of sustaining on a level rail. Jus. 40|;*jf miles per hour.

70. If the train described in the last example be moving

ut a particular instant with a velocity of 15 miles per hour,

ita



428 EXAMPLES.

iind tlu' oiigiiio working at full power, wluit is tlio accelera-
tion at that instant ? (Call // = •.V>.) A^s. AV

71. Find the horse-power of an engine i-equired to drag a
*rain of 100 tons up an incline of 1 in oO with a velocity of
30 uiilos an hour, the friction being 1400 lbs.

Alls. The engine must be of not less than 4?0f horse-
power. This is somewhat ahove tlie j)ower of most locomo-
tive engines.

72. A train, of 200 tons weight, is ascending an incline
ot 1 in 100 at the rate of 30 miles per hour, tlie friction

being 8 lbs. per ton. The steam l)eing shut, off and the
break applied, the train is stopped in a (piarter of a mile.
Find the weight of the break-van, the coeflicient oi' fric-

tion of iron on iron being f Ans. ll^j tor: 5.
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C H A I^ T E R VI.

MOMENT OF INERTIA.*

224. Moments of Inertia.—'I'lic ([uantity ^mr^ in

which vi is the ma.s.s of an element of a IhkIj, and /• it.s

distance from an axis, oecnr.s fre(|ucntly in problems of

rotation, so that it becomes necessary to consider it in

detail ; it is called /he niomviit of inertia of the body about

the axis (Art. 218). Hence, "moment of inertia" may be

defined as follows: If //le inasft of crn-j/ jiurHdc (fa bodij be

muUipliod by the squun' of itx dis/aiicrfrom a straight lim,

tlie ftum of the products: so formed is called the Moment of

InertiAi of the body about that tive.

If the mass of every particle of a body be multiplied i)y

the square of its distance I'rom a given plane or from a

given point, the sum of the pioducts .so formed i.s called the

moment of inertia of the body with reference to that plane

or that point.

If the body be referred to the axes olV and y, and if the

mass of each particle be multiplied by its two co-ordinates,

X, y, the sum of the j)roduct8 so formed is called the

product of inertia of the l)ody about those two axes.

If dm denote the mass of an element, p its distance from

the axis, and / the moment of inertia, we have

I=^lPdm. (1)

If the body be referred to rectangular axes, and x, y, z,

be the co-ordinates of any element, tiieu, according to the

definitions, the moments of inertia aluiut the axes of .r, //,

!., respectively, will be

• This term wbh Inlrodiiccil by KuU.t, and lias now k"! '»•" Ki-nural ui^o wlicii

ev'ir I):U;'(1 UyuBulM U sludioil.

^
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2: (y2 + «2) dm, ^ (z2 4- .1-2) dm, ^ {a^ + if) dm. (2)

The moments of inertia witii respect to the planes yz, zx,

xy respectively, are,

1 x^dm, X ifdm, il zhlm. (;{)

The products of inertia witli respect to the axes y and 2,
•

% and ./, X and //, are

1 yzdm, i zxdm, }L xydm, (4)

The moment of inertia with respect to tiie origin is

V (.,.-'
-I-

//3 + 2^) ,li,i = V ,a^{„^^
^5^

where r is the distjinee of the particle from tlic origin.

Tile moment of inertia of a lamiiiii, when the axis lies m
it, is called a rcr/inH/ii/ar iiHiiiifid nf inertia, and wiien it is

jK'rpendiciilar to the lamina it is called a imlur moment of

inertia, and the corresponding axis is called the redanyular

or the jiolar axis.

The process of linding nionirnts and prodacts of inertia

is merely that of integration ; but after this has been accom-
plished for the simplest axes possible, they can be found
without integration for any other axes.

EXAMPLES.

I. I''ind the moment of ii\ertia of a uniform rod, of nniss

/«. and length /, aliout an axis through its centre at right

angles to it.

\a'{ t be the distaitco of any element of the rod from the

centre, and /( tiie mass of a unit of leiigtii ; then dm = jidx,

wliieh in (1) gives for the moment of inertia "^iix^dx, or

'ir

= I fi.r'hlx,
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remonibfring that the symbol of siinimatioii, 1, iiioliidos

iuUgralion in the cases wherein the body is u continuous
mass.

Hence / = ^^fiP = ^\mP.

If the axis l)e drawn tiiroiigh one end of tho rod and
perpendicular to its length we shall have for tlie inomenl
of iiiei tia

/ = ImP.

2. Find the moment of inertia of a rectangnlar lamina*
aliout an axis through its centre, parallel to one of its sides.

Ix't d and r/ denote the breadth and depth respectively of

the rectangle, the former being iiarailel to the axis. Im-
agine the lamina composed of elementary strips of length />

liarallel to the axis. Let the distance of one of them from
tiie axis be y, and its breadth dy ; tlien, denoting the mass
of u unit of area by //, we have dm — iihdy, which in (1)
gives

I = idxfdy =: ^Kiif)(P = J^mcP.

If the axis be drawn through one end of the rectangle, we
shall have for the moment of inertia

/ = \vuP.

3. Find the inoment of inertia of a circulfir lamina with
respect to an axis through its centre and perpendicular to

its surface.

fiCt the radius — a, and fi the mass of a unit of area as

before, then we have

nut-

* III nil cjixi'!* wi' r-hiill iissiimr IIk^ llilikiic-- of tliu liimiiiiB or platos to b«
tuflniU'ginial.
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4. Y'wA tlio moment of iiicrtiii of a circular i)la(c (1)

iil^out u diameter us an axis,, and (:i) about a tangent.

Ans. (1) \ma^', {'i) InutK

5. Find the moment of inertia of a square plate, (1)

about an axis through its centre and perpendicular to its

plane, ('-i) about an axis which joins the middle points of

two opposite sides, and (3) about an axis jiassing through

an angular j)oint of the ])late. and perpendicular to its

plane. Let a = the side of the plate and /t the mass of a

unit of area.
(I II

(5>) ,»jm«^; (:J) InutK

0. Find the moment of inertia of an isosceles triangular

plate, (I) about an axis through its vertex and perpen-

dicular to its plane, and (2) aboiit an dxis which passes

through its vertex and l)isects the l)a.se.

Let 21 = the base and a = the altitude, then

/ ,1 (.r^ + r') d,/ dx = y {:u,^ + i»)
; (2) \n,b\

225. Moments of Inertia relative to Parallel

Axes, or Planes.— The moment of inertia of a bodi/ about

any axis ('* rtiual toils moment of inertia alioid a parallel

axis through tlie centre of urarity of the body, phis the

product of the mast of the body into the square of the dis-

tance between the t(xes.

Let the plane of tl-.e i)aper pass

through the centre of gravity of tlic

liody, and l)e perpendicular to the two

parallel axes, meeting them in and

(i. and let P be the projection of any o

element on the plane of tin.' paper.
Fig.gi
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rcular i)la(i' (1)

1 tangent.
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Take tlie centre of gravity, G, as origin, the fixed axis

through it jjcrpendicular to tlie plane of the paper as the

axis of z, and the plane through this and the parallel axis

for that of i.r; and let/, be the moment of inertia about

the axis thnmgh 0, / that for the parallel axis through U,

a the distance, OG, between tiic axes, and (.r,
_(/)

any point,

J'. Then we shall have

I^ =1. {.r^ + tf) dm ; / =^ 1 [(•'• + ")- + if] dm..

Hence I — 1^ = )l(i.^xdm + a'^'^dm = lihn,

since }Lxdm = 0, as the centre of gravity is at the origin.

.-. 1 = 1, +ahn, (1)

which is called llu' fonindn (f irdiic/ioii.

Hence tlie moment of inertia of a body relative to any

axis can be found when tbat for the parallel axis tiirougii

its centre of gravity is known.

Von. 1.—The mouu>nls cf inertia of a body are the same

for all parallel axes situated at tlie same distance from its

centre of gravity. Also, of ail parallel axes, that which

passes through the centre of gravity of a body has the least

moment of inertia.

(',„•, ;i._lL is evident tiiat the same theorem holds if the

moments of inertia lie taken with respect o i»arallel planes,

Instead of })arallel axes,

A similar property also connects the moment of inertia

relative to any point with that relative to the centre of

gravity of the body.

EXAMPLES.

1, The moment of inertia of a rectangle* in reference

to an axis through its centre and iiarallel to one en. I is

* »!'« Nolo to Ex. 8, Art. 384 ; sirlclly hipcoUiui;. an area Iiuh b mi)muiil (if iiii.'rtiu

no luoic Uinii It Imw wol^lit.

m
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^\md''
;
find the nioniont of inertia in roferenco (;> a parallel

axis through one end.

From (1) we have

2. The moment of inertia of an isosceles triangle about
an .ixis through its vertex and perpendicular to its plane
;s \,n (;jrt2 + ^2), (Art. 224, Ex. G); tind its moment about
a }iarallel axis through the centre.

From (1) we have

.'5. Find the luomeiit of inerfiu "l\i circle about an axis
tlirongh its circumference and perpendicular to its plane
(See Ex. 3, Art. 224). Ans. |w«8.

4. Find the moment of inertia of a square nbout an axis
through tiie middle point of one of its sides and perpen-
dicular to its plane (Ex. 5, Art. 224). Jns. ^^mdK

226. Radiusof Gyration.—Let k be such a qtiantity
that the moment of inertia = mk-, tlicn wo shall have

^r~dm = VIk\ (1)

The distance k is called the radius of gyration of the
body with respect to the fixed axis, and it denotes tlie

distance from the axis to tiiat jjoint into wliich if tlie wiiole
lUiiss were concentrated tiie niomeiit of inertia wouki no!, lie

altered. Tiie /wW into whicii the hoily might be concen-
trated, witiiout altering its moment of inert i;i, is called the
ccnln' ofiijiralinn. When the lixed axis passes through the
centre of gravity, [\\v louifh /• ;,nd tiie point of concentra-
tion are called principal radiun and princiiml centre of
(jijralion.
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KADI IS OF aVUATIOS. 4:5:

\a'\ k\ = the prinoi|)al rinlius of <ryration and /•, tlio

distanoo of an olomcnt from tlio axis through tho centro of

gravity; then from (1) wo have

mic' 1 r'hlm

= i; )\^dm + md^, [by (1) of Art. a^io]

from which it aj)poars that tho principal rndinx of (jyratiiin

is the Irasf radiioi fur parallel axes, which is also evident

from Cor. 1, Art. •^'^5.

Sen.— III homogonoous bodies, since the mass of any part

varies directly as its volume, (1) may be written

^rMV= r^-2, (••5)

where d T denotes the clement of volume, and V the entire

volume of the body.

Hence, in homogeneous bodies, the value of /. is inde-

pendent of the density of the body, and depends only on its

form; and in determining the moment of inertia, we may
take the element of volume or weiglit for the element of

mass, and the total volume or weight of the body instead

of its nuiss.

Also in tinding the moment of inertia of a lamiiui, since

/• is independent of the thickness of the lamina, we may
take the element of area instead of the clement of ma.s.<,

iind the total area of the lamina instead of its mass.

From (1) we have

P =
m

Suuilurly,
' m (5)
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hence, the square of /he •iidim of ryrafi'/i wuli respect to f

any axis equals // mor„eHl oj inertia with respect A. the .

same aa is divided by t/ie mass. f

EXAMPLES.

1. Find the prin(.'ii)al nulius of gyiation of a straight

line.

From Ex. 1, Art. 224. we have

J\ = ^mP;

therefore from (5) we have k^^ = ^P.

2. Find the jjrincipal radius of gyration of a circle (1)

with respect to a i)oliir nxin, and (2) with resi)e('t to a

rectangular axis. Ans. (1) ^rt^; (2) J(/2.

;j. Find the principal radius of gyration of a rectangle

with respect to a reel angular axis. Ans. ^iP.

4. Find ti)e principal radius of gyration (I) of a S(iuare

•vith respect to a polar axis, and (2) of an isosceles triangle

with respect to a polar axis.

.I//.V. fi)K; {-i) HW + i^)-

227. Polar Moment of Inertia.—If any thin plate, or

lamina, he referred to two rectangular axes and x, y be the

co-ordinates of any clement, then (Art. 224) the moments
of inertia about the axes of .r and y respectively, are i ifdm
and i ,rVy» ; and therefore the moment of inertia with

respect to the axis drawn perpendicular to the plane at the

inrersection of the axe< of ./ and // is

- (.'^ -V y') dm.

Hence the polar moment o/' inertia of any lamina is equal

to the sum of the nnnnrnts of inertia with respect to any two

rectangular axes, li/iix/ in the plane of the lamina.
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EXAMPLES.

1. Find the moment of inertia of a rectangle ; .M; r-- ..(.nt

to an axis through its entrc and perpendiculai > its ^ ni\<

.

From Fx. 2, Art. 224, the reetangulur -ne t,s of

inertia are

-,\hu/^ and ^hmb^ ;

therefore tlic polar moment of inertia =: i^^in {(f'' + t/^) ;

2. Find the moment of inertia of an isosceles triangle

with resi)ect to an axis through its centre parallel to its

iKise, a being the altitude and and 2b the base.

Atis. ^nia^; ki^— ^^aK

228. Moment of Inertia of a aolid of Revolution,

with respect to its Geometric Axis.— Let the axis l)e

that of .*•; and let the e(|uation of the generating curve

be y 7= fix). Let the solid lie divided into an infinite

nund)er of circular plates perpendicular t(( liie axis of

revolution; let the density be unil'orm and fi the mass (»f a

unit of volume ; and denote l)y .;• the distance of the centre

of any circular plate from tiie origin. // its radius, and dx

its thickness : then the moment of inertia of this circular

plate iibout an axis through its eentiv and i)erpendieu]ar to

its plane, by (Ex. 3, Art. tl\), is

mm
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(licrcforo the moment of inertia ol' tiic whole soHcl is

. YJ\f{^)Ydx, (1)

tile integration being taken hetween proper limits.

EXAMPLES.

1. Find the moment of inertia of a rigjit cirenlar cone

about its axis.

Let h —. the height and h = the radius of tlie bsise

;

then tlie equation of the generating curve i^^ U = , ^'>

which in (J) gives for the moment of inertia,

^ - 2h* Jo ~ ^0'

— j^iiiff', (since m = nhhA-

Therefore Z-,2 = ,yA

2. Find the moment of inertia (1) of a solid cyrnder
about its axis, b being its radius and // its height, and [i)

of a liollow cylinder, h and b' being the external and
internal radii. A)is. (1) ^mU^; {'i) ^m (I^ + b'^).

.'5. J-ind the moment of inertia of a paralwloid about its

axis, h being its altitude and b the radius of the base.

229. Moment of Inertia of a Solid of Revolution,
with respect to an Axis Perpendicular to its Geo-
metric Axis.—Take the origin at the intersection of the

tmm ^m
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solid is

iniits.

(1)

it circuliir cone

i of the biisc

;

b
vei. y = ^^,,

nn

solid cyl'nder

u'iglit, and (2)

' oxtcrnal and

r//( <i' + b'^).

oloid ahouf its

the base.

, rruhb^

I Revolution,

r to its Geo-
rsoctioii of tiio

axis of rovolntioii with the axis ahont which the moment
of inertia is m|iiired ; and denoting by x the distance of

I he centre cd' any circular phite from the ori«:in, // its

ladius and dx its thickness, we liave for th" moment of

inertia of this circnlar plate, about a diameter, bv Ex. 4,

Art. ^•.>4,

4 "•''

'

therefore (Art. -iil'y) the moment of inertia of this plate

about the i)ara]lel axis at tlie distance x from it is

- -^ dx + TT/t yix^ dx ;

therefore tlie moment of inertia of the whole solid is

'^/'/(f + ?H''-^' (1)

the integi-ation being taken between proper limits.

EXAMPLES.

1. Find the moment of inertia of a right circular cone
about an axis through its vertex and perpendicular to its

own axis.

Let // = the height and b =. the radius of the base, then
the moment of inertia from (1)

2. Find the moment of inertia of a cone, whose altitude

= //, and the radius of whose base := /;, about an axis

through its centre of gravity and i)erpendicular to its own
iixis. Alls, ^m (Ji-i + W).
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*>. Find the monifiit of iiit-niii of a paraboloid of rcvoln-

tioii about an axis tliroiij^b its vortex ami |H'rpt'iidicMilar to

its own axis, tiio allitiido boin^' // and tho I'adiiis of tin'

base b. , -ftlib'^

A us
Vi

(//^ + :5//2).

230. Moment of Inertia of Various Solid Bodies.

EXAMPLES.

1. Find the moment of inertia of a rcctanguhir parallel-

.ipiped about an axis tiiroujrb its rcntiv of gravity and \)&y-

aliel to an edge.

Ijet tiie edges l)e a, b, < ; since a parallelopiped may be

conceived as consisting of an infinite number of rectangular

hiniiiiiP, caeli of which lias the .same ratlins of gyration

relative to an axis perj)endicular to its plane, it follows

that the radius of gyrarion of the ])arallelopiped is the

same as that of the laniinte. Hence, the moments of

inertia relative to three axes through the centre and par-

allel to the edges a, b, r, respect i >ely, are by Ex. 1, Art.

227, j\tn (W + (?), iV" («' + '')•
i^'j'" («^ + ^'^)-

2. Find the moment of inertia of a rectangular parallel-

opiped al>out an edge.

Thi,. may be obtained immediately from the last exam-

l)le !)y ubing Art. 225. or otherwise independently as

follows :

Take the three edges rt, h, c for the axes of x, y, z,

rcsi)cctively ; let }i be the mass of a unit of volume, then

the moment of inertia relative to the edge a is

I I l'{ f + z^) lU dy dz
vi '0 ''O

o
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oloiil of rovoln-

iM-pt'iidicMilar to

I' ^il(ii^l^• of tlif

Solid Bodies.

ngiilar parullol-

[ravity and jiar-

lopiped may l)o

ir of rectaiifjular

ins of fifyration

)laiu', it follows

k'lopiped is the

U' nionients of

:;enti'c and i)ar-

by Ex. 1. Art.

ngular panilk'l-

1 the last exam-

idopendently as

axes of X, y, z,

jf volume, then

t is

dz

')',

and iriiniiliirls I'nr Ihc nioincnts of inertia aliiiu! t lie edges

f> and r.

'i'he Mionicnl <<\' inertiji of ,i cuhe w iiosc edge is </ with

respect to oni> of its edges i~ I'nr' = piK/'.

'A. l-'iiiil tiic niiimciit of inerti;i of a segment of a spheri'

relative to a (!iainetcr parallel to the plane of section, the

radius of the sphere oeing a and tiie distance of the ])Iaia'

section from the centre I).

Alls. ^„-u (Ku^s + \')ii^f) + \()tiV>^— 91^).

231. Moment of Inertia of a Lamina nth respect

to any Axis.— When the moment of inertia of a plane

figure about any axis i> known, we easily find the moment
of inertia about iiny parallel axis (Art. ^'2.")); also, when

the moments of inertia about two rectangular axes in the

plane of the ligure are known, the moment of inertia about

the straight line at right angles to the j)lane of these axes

at their intersection is known immediately. (Art. 227) ; we

now proceed to lind the moment of inertia about any

straight line in the jilaiie inclined to these axes at inii/

angle.

Through any point, 0, as

origin, draw two rectangular

axes, OX, OY. in the ])lane of

the lamina; ami draw any

straight line, O.r, in the ])lane.

It is reiiuired to lind tlie mo-

ment of inertia about O.r in

U-'-'ns of the moments of inertia about OX and OY.
|,<'t P be any point of the lamina, .r, //. its rectangular,

aiul . 6, its polar co-ordinates, p = PM, and « the angle

^•OX. Then if / be the monu'iit of inertia of the lamina

relative to Ox, a and h the moments of inertia relative to

the axes of x and // respectively, and h the product of

inertia relative to the same axes, we have

Fig.92

^mm
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I = i;/>Vm = ^ /••- m\' (0 — u) dm

=z i; {if cos (I — .' sill (()' (hii

=: ('(is^ ,t i ij'-diii
I

sin- »c 1 y-ihii — 'I sin <« cos « i .ri/dni

= II cos- <c -f- A sill- ic — '^/i sill ic ('lis »£. (1)

If we ciioosr the ii.M's sii (liiit the (crm // or }1 xi/dm = 0.

t lie expression for y liecomes iiiiich sinijilcr. Tlio pair of

iixes so t'liosen jire ciilled tlie j/riiicipal i!.ri's at the point;

iiiul the ooiTeS})on(ling nionieiits of inertia are called I he

principal momenl.s of in ni. in of the lamina, relative to the

point.

If A and IJ represent these jirincipal nioinents of inertia,

(1) becomcH
/ = A cos^ ,i + />' siii2 «. (i)

Hence, /he moment of inerlia if a la in inn with rc^tpecf to

any iixis iliroiKjh. a point maij tw found when the principal

moments with respect to t/ie /loiiit ore detennined.

232. Principal Axes of a Body.—At any point of a

rigid twdy ami in any plane there is a pair of principa\

axes.

Let OX, OY (Fig. 03), be any rectangular axes in the

])lune; let 0.r, Oy, be anotlier set of rectangular axes in

tlu' same phme, inclined lo the tbriner at an angles: let

a, I), and //, as before, denote the nionients and jiroduet of

inertia about OX, OY. and let (x', y') be any ]ioint, /^

referred to the axes 0,r, Oy. Then, using the nutation of

the last article, we have

x' = r cos {0 — rt) ;
y' = r sin (6 — a) •

S x'y'dm ~ \)l r^ sin "2 {0 — «) dm

= cos 2« 1 r^ sin cos dm
-

I
sin 3fc X ;•» (cos2 - sin» 6) dm.

Putting this =z 0, and sohiiig for tc. we obtain



a cos ^c !• .ri/dm

V i; xi/(hn =0.
, Tlic pair of

ill, tlie point;

are called I he

relative to the

ents ot inertia,

ivi/h respect to

>i the principal

ited.

any point of a

ir of principa[

iv axes in the

iigiilar axes in

in aiifi'le « : let

iiul ])r()(liiel of

any ]ioiirl, /^

he ii'-tatiou of

- «)

;

Im

dm

— sill* 6) dm.

tin

(1) 1

Tiiia:h: i'iii\<ii'Ai. axks. 44;

tan 2a
22 /' sill ft cos H dm

^^?lcos' H -~^\n' H)dm

2^.ri/dm _ 2h
(1)

As the tanpent of an •mgle may have any value, positive

or negative, from G to oo , it follovs that (1) will a)way,
.rife a real value lor itt, so there is always v, set of princi-

pal axes ; that is, ,'/ ererj/ p')uit in a bodi/ i/iere exi.<tii one

pair of recta>i(/i/tar axes fir ir/iirh t/n' i/hnntiii/ I, or

^ xi/ dm = 0.

Cou.— It may also lie sliou!, that at every ])oint o. a

rigid hody tliere are three axes at right angles f-i one
another, for wiiieh ijie ju-oduets of inertia vanish.*

Let a, 6, c. bo llie momoiit» of liiorliii iiboul three
axes, ox, OY, OZ, at right angles to one aiiotlier ; d. e,

/, till' iiroduetn of inertia (i' >«?/?, "i-iuzi; "Hmxi/y re-

f|ieclivel,vl. Let Ox be any line drawn i1ii(jii!,'Ii the

origin, making' antjIi^H », /?, j
, with the en iinliiiate

axes

Let, OL, LM, MP, be the co ordiiiiites x. y, z, of any
point 1' of the body at which an elcnieui of mass m is

Hiiiialeci. nraw I'N i^erperidienlar to Or,

ProjecliriLr the broken line, OLMP, on ON, (Art.

lOS). we have
.! COS II I y cos + z cos

j ;

Fig.ora
ON

iilfo OI'- .I-'' + I/' + z\ niid 1 - cos' II + cos' /? + cos* y.

The moment of inertia I abont Or I'mPN'

" I'm (OP" - ON')

= i'm [,!' f ;/• 1 ' - (.1' cos It I y cos + z cos >)'']

= Sto [(.!' + y'N j'i(cos' .r4cos' i9 + cos'' ))—(.! cos H + y cos /? + « cos ))>]

= i'm(y» I- z'\ ma' n + >:tn (?' + x,'') cos» + Iw (,/' y') cos"
;

— Hyimyz cos cos ;
— aiiwi.c cob j cos n - Sim cos u cos //

= a cos" II (- h cos" ^ r cos" ;
- !J</ iios // cos

j

- 'if. cos ) cos II - -y cos II cos 0. il)

To n^present this ireometrically, takt! n point Q on ON ; and 'ct Its distance
from O be /, and Its eoordinnleH be :r,, y,, z,. Then

8!, = rcoB «, Vi
"" /"cos/?, S| _ r COB v.



M

%

444 THRKK rnrxriPAr, axes.

Sni.—In Jtiniiy Ciisos tlic position of tlio prinoipal axes

can bo seen iit once. Supj'ose, for example, \Vf wish the

lu'incipal axis for a rectangle when tiie jjiven point is tlie

centre. Draw thi-ough the centre straigiit lines parallel to

the sides of the rectangle ; then these will be the principal

Therefore (!) becomes

ax,' + 6j/,' + «,» — 'i(ly,z, - %ez,<e, —3f'.i-,t/,

But the uiuation

2(/y,i, - 'iez,x, — yx,i/, n 1,

(2)

(3)

(IcnolCB an elliiiKoiil whonc centre is iit () ; heciiufe a. A, e are necessarily poBilivc,

Hince a moineiil of inertia ii* csfenliiillv positive, being llie sum of a ninnlxr (jf

i^qnareH, If then (^ in a point on tliis ellippoid, {'i) 1)econieH

I >:ml'>i'
1

or the moment of inertia about any line llirougli (), is nioasurerl by the Kcpiare of

the reciprocal of the radius vector of this ellipsoid, which eoinciiles with the

line.

This Is called the momen/al elHpsold, and was first used by Cauehy K'j-ircixeK tie

Math.. Vol. II. It has no i)hysical existence, but is an artifice to hrinj.; under the

methods of (,'eouietry the properfii's of nionienls of iiiorliM. The luonieutal ellip-

sold liHs a definite form for e\ ery imint of a rl^'id body.

Now every clli|>soid has three axes, lo which if it is referred, ilie eoeflliieiiLs (jf

yz. !..i\ xy vanish, and tlierefore (:!). when tninsl'oiuio<l to these axes takes the

form
A.r,» + By,' - C;,' = 1;

and hence (I) or (i) when referred to these axes, becomes

I = A cos" (I r B cos' /V 1^ C cos' )

,

(I)

(K)

where A, H, C, ore the moments of inertia of the body about these a\-es.

When three reeianirulrir axes, ineetiiifjin a u'lven point, are eljosen so ihai ibe

nroducts of inertia all vanish. Iliey are lulled thc^ iivincifml a.rei- at ;he givei.

Iiidnl.

The three plain's ilM'ouj.'h any two principMl nses are (ailed Ilic /»-inrt/Hil /)/nn,N

al the Klven ])olnt.

The moinentB of inertia about the prln<ipiil iixes ai any pointare called lhe;jHft-

cipal momtnlKo/liierlia M that poini.

If the iliiee prinri|ial moments of inorlla of a body are e(iuiil lo one anotlKT, the

ellipsoid (I) becomes a spiien', since A H -- ('; and therefore the moment of

inertia about every other axis Is equal to these, for (5) hccotius

1 - A (cos" (I + COS' /3 + COB' )) :- A

;

and every axis is a |)rinilpal axis. (See llonlb's nip;id nynaiules, p Iv;, I'rIceN

Anal. Mech «, Vol. II, p. IWi, Pirle's Itlgi.l Dynamics, p. "tl. ete.i
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lirinc'ipal axofl

L', wo wish till!

in point is tlic

inos purailul to

e the priiK'ipal

(2)

= 1, (3)

necessarily poeltivc,

juni <il a miiiibi'r of

red by tlie square of

1 ci)iiiciilo!> with tlie

Cancliy. Exircixm ile

((' ti> l:riii^; under tlic

Till' iiiii'iioiital ('llip-

I'll, llll' I'licfllricllts of

IliCHC uxi'M takes the

(1)

these axes.

re ehosoii so ihnt the

)(tt (Vrn lit ;he i^lven

axes; because for every element, thii, on one side of tiie

axis of X at the })oint {.r, //), tliere is another element of

ecjual mass on Die otlier side at tiie point {x, — y). lleiiee,

1 xy dm consists of terms wiiicli may lie arranged in pairs,

so that the two terms in a pair are niimericully eipial but

of opposite signs ; and llierefore 1 ./// (/u) = 0.

Again, if in any uniform body a straiglit line can be

drawn with respect to which the body is exactly symmetri-

cal, this must be a principal axis at every point in its

length. Any diameter of a uniform circle or sphere or the

axis of a parabola or ellii>se or hyperbola is a principal axis

at any point in its line; but the diiigoiial of a rectangular

phite is not for this reason a i)rincipal axis at its middle

point, for every straight line drawn i)er])endicular to it is

not equally divided liy it.

Let the body l)c symmetrical about the plane ()f xi/, then

for every element (/id, on one side of the i)lane at the point

(x, y, z), tliere is another element of e(|ual mass on the

other side at the point (,r, y, —z). Hence, for such a body

i xz (lilt — and 1 t/z dm — 0. If the body be a lamina in

the plane of xi/, then z of every element is zero, and we

liave again 1 .rz dm = 0, 2 yz dm = (I.

Thus, in the case of the ellipsoid, the three })rincipal

sections are all jdanes of symmetry, and therefore the three

axes of tiie ellipsoid are princifial axes. Also, at every

jxiiiit in a lamina one principal axis is the perpendicular to

the plane of the lamina.

il I he /ttinci/xil planet

lint are inllei! lhe;jHn-

iial lo line aniilher, the

refiire I lie iiiiiniiiit of

)ynnniies, |i I'J, TilceN

I'll'. I

K X A M P U E S .

1. Find the moment of inertia of a rectangular lamina

alioul a iliagonal.

l''roni Ex. 'i, Art. 5J'M, the moments of inertia, about two

lines through the centre jiarallel to the sides (principir

luyuieuts of inertia) are
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^^md^ and ^^m¥\

when' h and d hit the l)roadth and deptli rospectivelv.

Also, if « he the angle whicii the diagonal niake.s with
the side b, we have

'/2 - b^

W + iP'
eos' « —

i^ + ,/2'

f^iihstituting tliese values for A, B, sin^ ,«, cos^ «. in (2) of
Art. '^31, we have

2. Find the moment of inertia of an isosceles triangular
plate ahont an axis through its eentre and inclined at an
angle « to its axis of syrametrv, a heing its altitude and 2b
its base. An.s. ^m (\a^ cos^ « -f l/^ sin^ «).

.'5. Find the moment of inertia of a square plate ahout a
(.iagonal, a heing a side of the S((uare. Jus. ^\iiia\

233. Products of Inertia.—The value of the product
of inertia iit any point may be made to depend on the value
of the product of inertia for panillel axes through the cen-

tre of gravity. Let {.i; //) be the jjositioii of any element,
dm, referred to axes through any as.signed p.)int

;
{x',y') the

position of the element referred to pirall.l axes through
the centre of gravity, and (//, k) the centre of gravity

referred to the Hrst i)air of axes. Then

,r .- ./ + h, ,/ = _,y'
-I-

/•
;

(hevefore X .// ^/w = X ^,.'
, h) (if -\- h) dm

z= V j;'_//' ,/„!
I

//// l,dm, (1)

Hlicc i. tux' :-^ 0, and i- mi/' ._; 0.

i
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ScH.—By (1) we niuy often liiid tlio product of inertia

I'oi an a>:oi^;:.'u origin and axes. Tlius, suppose we require

tlic product of iiurtia in tlic case of a rectangle, when the

origin is at tiie corner, and the axes are tlie edges wliich

meet at that cornei. Hy Art. i'S^, IScli. wo have l.xy'din

= 0; tlierefore from (1) we have

l..ti)dni =z hk^din
;

and as h and h are known, being half the lengths of the

edges of tlie rectangle to which they are respectively

parallel, the product of inertia is known.

EXAMPLES.
Find the ex])resBions for the moments of inertia in the

following, the bodies being Kui)posed homogeneous in all

cases.

1. The moment of inertia of a rod of length d, Avith

respect to an axis perpendicular to the rod and at a distance

(/ from its middle i)oint.
. / a- \
A,IS. ini^^-^ + d^y

'i. The moment of inertia of an arc (,f a circle whose
radius is (( and whieli subtends an angle 2« at the centre, (1)

about an axis through its centre perpendicular to its plane,

{•I) al)out an axis through its middle point perpendicular to

its plane, ('}) about the diameter which bisects the arc.

( /i\ •) /o\ o /i sin «\ . . / sin 3«\ ^2
Ans. {\))i\a'\ (2) 2//i (1 Iff.^; (3) m f 1 — »..

;). 'file inomenl of inertia of the arc of a comjilete

cycloid whose length is n with respect to its base.

4. The moment ( f inertia of an equilateral triangle, of

side II. relative to a line in its plane, parallel to a side, at

the distance d from its (ientre of gravity.

Ans. m r^' -I- iP\.
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5. Given a triangle whose sides are a, b, r, and wliose

perpendiculars on these sides, from the opposite vertices

arejy, g, r, respectively; find tlie moment ol" inertia of tlie

triangle about a line drawn tlironjrh eaeli vertex and
parallel respcc :vely, (1) to the side a, (2) to the side b, (3)

to tlie side c. Jus. (1) ^m])^; (i) ^mif ; (3) Imr'-.

('). Find the moment of inertia of the triangle in the last

example relative to the three lines draun through the

centre of gravity of the triangle and parallel res])ectively

to the sides a, b, c. Ana. -^nip^
; ^\»irf ; -iginr'.

7. Find the moment of inertia of the triangle in Ex. 5,

relative to the three sides a, b, c, ivspectively.

v/n.v. ^?njP; }i)i'/~; |?«r*.

8. The moment of inertia of a riglit angled triangle, of

hypothenuse c, relative to a perpendicular to its plane

passing through the riglit angle. J«,v. ^mc^.

',K The momeni of inertia of a ring whose outer and
inner radii aw a and b respectively, (1) with respect to a

polar axis through its centre, and (2) with respect to a

diameter, Ans. (1) |«; {a^ + b^)
; (2) im (a^ + V).

10. The moment of inertia of an ellipse, (1) with respect

to its major axis, (2) with resjiect to its minor axis, and (3)

with respect to an axis through its centre and perpendicular

to its plane.

An,^. (I) \..,li^\ {).) \mifi; (3)" \m {<t^ + li^).

11, The moment of inertia of the surface of a sphere of

radius a about its diameter. yl;/.s\ ^nia',

\'i. The moment of ineui-inf a right jirism whose base

is a right angled triangle, wiili respect to an axis passing

through the centres of gravity nl' the ends, the sides con-

laining the right iingle of tlic triangular base being a and b

and the height of the jirism r. Anti. -^m (a* +i').
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13. The moment of iuortia of u right prism whose height

is c, about an axis passing through the centres of gravity of

the ends, the base of the prism being an isosceles triangle

whose base is a and height b. , . id^ d*\
Ans. i (f +

3 j
w .

14. The moment of inertia of a sphere of radius «, (1)

relative to a diameter, and (2) relative to a tangent.

Ans. (1) \md~\ (2) fma^.

15. The moment of inertia, about its axis of rotation, (1)

of a prolate spheroid, and (2) of an oblate spheroid.

Ans. (1) \mtl^; (2) f/wal

16. The moment of inertia of a cylinder, relative to an

axis perpendicular to its own axis and inter • '> ,' it, (1) at

a distance c from its end, (2) at tlie end of J:\> .5, and (3)

at the middle point of the axis, the altitude of the cylinder

being h and radius of its base a.

Ans. (1) {ma? + ^m {h^ - She + :!r')

;

(2) ^m (3rt2 + 4^2)
; (3) ^m {}fi + Sa^).

17. The moment of inertia of an ellipse about a central

radius vector /', making an angle « with the major-axis.

A ns. *m —r- •

18. The moment of inertia of the area of a parabola cut

oflF by any ordinate at a distance r, from the vertex, (1)

about the tangent at the vertex, and (2) about the axis of

the parabola.

Ans. fmx*; (2) \my^ where y is the ordinate correspond-

ing to X.

19. The moment of inertia of the area of the lemniscate,

7^ = d^ cos W, about a line through the origin in its plane

and perpendicular to its axis, Ans. ^m (3n-.-f- 8) a*.
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20. The moment of inertia of the ellipsoid,

X8 ;/'' z^

+ i-^? 1.

about the axis a, b, c, respectively.

Am. (1) im (bi + 6-2)
; (2) {m (c» + a»)

j

(3) \m (a^ + b%



n (c' + a')

;

CHAPTER VII.

ROTATORY MOTION.

234. Impressed and Effective Forces.—All forces

acting on a body H>er tlian the mutual actions of the

particles, are called tlie Jmpresfied Forces that act on the

body.

Thus, when a ball is thrown in vacuo, the impressed

force is gravity ; iful)all is rotating about a vrlical axis,

the impressed forces arc gravity and the reaction of tlie

axis.

The impressed or external forces are the cause of the motion and of

nil tiie otlier forces. Which are the hiipressed forces depends u])()n

the partieulnr svsleni wliich is under consideration. The same force

may he external to one system and internal to another. Thus, the

pressure between the foot of a man and the deck of a ship on which

he is, is external to the ship and also to the man and is the cause of

liis own forward motion and of a slight backward motion of the ship

;

but if the man and ship are considered as parts of one system the

pressure is internal.

When a particle is moving i?,s part of a rigid body, it is

acted on by the external impressed forces and also by tiie

molecular reactions of ihe other particles. Now if tliis

])arti('le were considered as separated from the rest of the

l)ody, and all the forces removed, there is some one force

which, singly, would move it in the same way as before

This force is called the Effective Force on the particle; it is

evidently the resultant of the impressed and molecular

forces on the ])article.

Thus, the effective force is that oart of the impressed force wliicli

is effective in causinc: actual inotioii. It is tlie force which is required

for producing the deviation from the straight line and the chaiige of
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velocity. If a pnrticlo is rt;volving with -onstant vel icily rounj a

fixed axis, the f'fti'ciivi^ force is tlii^ centripc. .1 force (Art. li)H). if a

heavy limly falls without rotation, the whole force of gmvity is

effective ; but if it is rotatinji al)out a liorizontal axis the weight goes

partly to balance the pressure on the axis.

If we suppose; the iiiii'ticlo of muss m lo he at the point

(.r, y, z) at any timo. /. ami resolve the forces aetinjf on it

into vlie three axial eonij)onents, X, )', Z, the motion may

be found [Art. 1G8 {'i)\ by solving the simultaneous equa-

tions

-i; '«:7^ = ^ ; '"7,72 = ^- (1)m
(ir^

'" Tm

If we regard a rigid body as one in which the ])artic]e8

retain invariable jiositioiis with respect to one another, so

that no external force can alter them (Art. -13), we might

write down the equations of the several particles in accord-

ance Avith (!), if ail the "jrces were known. Such, how-

ever, is not the case. We know nothing of the mutual

actions of the i)artieles. and consecnu'Utly cannot determine

the motion of tlie body by calculating tiie motion of its

jiarticles separately. When there are several rigid bodies

Avhich mutually act and react on one another tiie problem

becomes still more conuilicated.

235. D'Alembert's Principle.*—By IVAlembert's

Principle, however, all the necessary equations may be

obtained witliout writing down the eqtuitions of motion of

tiie several |)articles. and without any assumption as to tiie

nature of the iniitual actions exceiit tlie following, whicli

int.y lie regarded as a natural e(mse(iiience "f the laws of

motion.

Till' iiili'iiud KctioitK ami rracfiims of mii/ siisfnn of riijld

Ooi/ii'n in motion a •" in I'l/iiilibriitin nmonij llii'iiisi'lris.

* IntrcKlucod by D'Alunibcrt in 1T43.
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s of motion of

»tion as to tlie
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of the laws of
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The axial accelerations of the })article of mass m, which

(I^X il^U (t^Z

is moving as i)art of a rigid l)ody, are -y.^ , .."J, . .^

Let/ bo their resultant, then the effective force is measured

Ijy vif. Let /•'and R be the lesultants of the imi)ressed and

molecular forces, respectively, on the particle. Then inf

is the resultant of /'and H. Hence if inf be reversed, the

tl)ree forces, F, R, and //;/, are in e(piilibrium.

The same reasoning may be applied to every ])arti(le of

each body of the system, thus furnishing three groups of

forces, similar, respectively, to /', R, and nif; and these

three groups will form a system of forces in ecpiilibrium.

Now by D'Alembert's principle the group R will itself

form a system of forces in ecpiilibrium. Whence it follows

that the group F will be in equilibrium with the group nif.

Hence,

// forces equal and exactly opposite to tlie effective forces

were applied at each particle of tlie sjistein, they woidd be

in equilibriidii with tlie imjrressed forces.

That is, D\itembert's principle asserts that the whole

effective forces of a system are together equivalent to the

impressed forces.

ScH.—By this principle the soluticm of a problem in

Kinetics is reduced to a problem in Statics as follows: We
lirst choose the co-ordinates by means of which the position

of the system in space may be fixed. We then express the

eifective forces on each element in terms of its co-ordinates.

These effective forces, reversed, will be in ecpiilibrium

with the given impressed forces. Lastly, the equations of

motion for each 1)ody may be formed, as is usually done i?i

Statics, by resolving in three directions and taking mo-

ments aliout three straight lines. (See Konth's l{igid

Dvnamics. Pirie's Rigid Dynamics, Pratt's Mecli's, Price's

Anal. Mech's, Vol. IL)
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236. Rotation of a Rigid Body about a Fixed
Axis under tl:;e Action of any Forces.— Let tiny

ItlaiK' passing tlinnigli tlie axitj of rotation and lixed in

space- l)e taken a.s a ])lani of rotVreniv. Let vt be the mass

of any element of the body. /' its disianee from tlie axis,

and the angle wliieh a plane throngh the axis and the

element makes with tiie plane of reference. *

Then the veloeitv of /// in a direi'tion jierpendicular to

(10
the plane containing the element and the axis is r

ill

The mODioit of the momentum* of this particle about

the axis is w/-'-' ,, . Hence tlie moment of the momeutu of
at

all the particles is

E m/-«
(Id

lit'
(1)

Since the particles of the body are rigidly connected,

• • '10 . . .. 1 • ,

it IS clear that -7, is tiie same lor everv particle, and is the
(//

.-1

angular velocity of the body. Hence tlie moment of the

momenta of all the part iden (f titc lioihi abintt tlie ajrin is tlie

moment of inertia of the l)ody about the axis multiplied bij

the angular relociti/.

The acceleration of m perpendicular to the direction in

iPO
whicii /• is measured is r r,.,, and therefore the moment of

(tt^

. . iPn
the moving forces of h/ about the axis is ?h/-2 - . Hence.

/'•e moment of the efferlice forces of all the part iclen of the

i,:ity about the a.ris is

2. mri

lit''
(i)

irhirli is the moiiwiit of iiurtia of the tioilij abintt the a.ris

iiiiilli/ilifil III/ the ani/ular acre/era/ ion.

I'alletl ul^ii Aiuiular Momentum. (Sie I'irieS Uigid Uyuamic!', \>. 41.)
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(1) Lei Hu' forces bo impulsive (Art. :30'^) ; let o), o/, he
the angular velutilieri just liel'ore and just after the action
of the forces, and .V tlie moment of t lie impressed forces

about the axis of rotation, by which the motion is pro-
duced.

Then, since by D'Alembert's principle the efreclive

forces when re\ersed are in e([uilibriuni with the impressed
forces, we have from (1)

0)' 2 mi'^ — w i: mr'^ = JV";

w — w
i; nir^

moment, of imi)ulse about, axis

moment of inertia al)out. axis' (3)

that is, f/ic chaiifie in the aminlar rvlorily nf a hodif, pro-
duced bji an impulse, is etjuiil to the nmuienl of the iiujmlse

divided bij the moiiient of inertia of the tjodi/.

(2) Let the forces be Unite. Then taking moments
about the a.vis us before, we have from (2)

(PO

dt^ 1 mr^

moment of forces al)out axis

moment of inertia alxiut axis
' (^)

that is, the ani/utar amteration of a liodji, produced hif a

force, is equal to the niouie/it of the force dicided hji ttie

moment of inertia of tite body.

\\y integrating (4) we shall know the angle Ihrougli

which (!•;' Ijody has revolved in u given time, 'J'wo arbi-

li'ary conslanis will .-ippear in llie integrations, whose
\aliies are lo be delennined from I he given initial valuer

of W and • Thus (he whole motion can bo found, and
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we shall consequently be able to determine the position of

the body at any instant.

ScH.—It a|)poars from (3) and (4) that the motion

of a rigid body round a fixed axis, under the action of any

forces, (U'lR'nds on (1) the moment of the forces about

that axis, and {'i) the moment of inertia of the bod} about

the axis. If the wliole mass of the body were concentrated

into its centre of gyration (Art. tiij), and attached to the

lixed axis of rotation by a rod without mass, whose lengtli

is tlie radius of gyration, and if this system were acted on

by forces having the same moment as befoi-e, and were set

in motion with the same initial vahies of f> and the angular

velocity, then the whole subse(iuent angular motion of the

rod would be the same as that of tiin body. Hence, we may
say brielly, lliat a body turning al)out a fixed axis is

kinetically given when its nniss and radius of gyration are

known.

EXAMPLE.

A rough circular horizontal Itoard is capable of revolving

freely round a vertical axis through its centre. A nuin

walks on and round at the edge of the board ; when ho

has completed the circuit what will l)e bis position in

space ?

Let a be the radius of the board, .1/ and M' the masses

of the board and man resi)ectively ; and 0' the angles

described by the lH)ard and nan. and /''the action between

the feet of tiie man and the board.

The ecpnition of motion of the board by (4) is

A

Fa = 7^/^•,2
(Pd

ill*'

Since the action between the man and tlie board is con-

tinually tangent to the path desriribed liy the num, the

ei|uation of motion of tin' nuiu is, by (.")) of Art. 'iO,
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Eliminating /'and integrating twice, the constant being

x-ero in botli cases, because tiie num and board start frt)ni

rest, we get

Mh\^Q = M'lfd'. (1)

When the man has complete(' the circuit we have + 0'

= ^tt; also I'l'^ = -• .Substituting these in (I) we get

2nM
0' =

2M' +~M'

which gives the angle in space described by the man.

If jM = .)/', this becomes

and

0' = ^n;

e = in,

which is th.e angle in space described by the board. (See

Routh's Higid Dynamics, p. (iT.)

237. The Compound Pendulum. J hiK/i/vmrrsohdnf

n fixed /lorizon/dl a.i is (tried mi hij i/rari/i/ nti/ij. In deleniiine

l/ie motion.

Let ABO be a sectiim of the l)ody made by

the ])lane of the paper passing tiirough (J,

the centre of gravity, and culling the axis

of rotation peri)endicularly at <>. l-et =
the angle whii'h ()(i makes with the vertical

OV : and let // = 00, /•, = the i)riiici|>al

liidius of gyration, and M = the mass of

I lie body. Then by (4) of Art. :;»;j(i, we

have

20
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d^d _ Mijli sin 6 _
dt'

(jh

Mgh sin Q

the negative sign being taken because is a decreasing

function of the time.

This ecpiation cannot be integrated in lini*^e terms, but

if the oscillations l)e small, we may develop sin d and reject

•ill powers above the first, and (1) will become

cPd (]h_
6. (2)

Multiplying bv 'Z dO and integrating, and sui)posing that

the body began to move when was ecpial to «, {I)

Itecomes

d0^ _ f/h
(«» — <92).

Hence denoting the time of a complete oscillation by T,

we have

-=v- gh (;o

which gives the time in seconds, when Ji and ^;, arc meas-

ured in feet and ^ — ;52.18.

When a heavy Ijody vil)rates about a horizontal axis, by

the force of gravity, it is called a roin/winid jioididh)!!.

Coit. 1.— If we suppose tlic whole mass of tlie coniitound

pendulum to be concent ruled into a single point, inu! liiis

point coinu'cted with tlie axis by a nuHliuin without weight,

it lieeomes a simple poidiihini (Art. l'.»4). Di'uotiiig the

ilistanee of the point of concentration from the axis hy /,

we have for tlie linie of an oscillation, by (1) of Art. l'J-1,



ofArt.22G],(l)

is ii (lecroiisiiii,'

tii^o terms, but

sin 6 and reject

ne

(2)

siii)posing tluit

(liiiil to «, (i)

scilhition by T,

(3)

11(1 /;, iiro meas-

'izontal axis, by

/)rii(liilh)ii.

r liic ('(iniitound

point, iinil tiiis

witbont wcijilit.

Denotiiifi' lilt'

ii tlie axis liy /,

(1) of Art. iw,
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^ V /' ^^ "'^ point ijo so clioson tiiat the simple jiendii-

liiMi will iierforin an oscillation in tlie same time as tlic

cornponnd pendulum, tliesc two expressions for the time of

an oscillation must be equal to each other, and we shall

have

h
1 =

= A+f = 00', (^)

(()' being the point of concentration).

t;ou. 2.—This length is called the lon/fk of fhr simple

((piivalenf prndaluin ; the point is ciillcd the coilre of
.sns/ti'nsioii ; the point ()', into which the muss of the com-
pound jH'iiduhim must he concentrated so that it will

oscillate in the same time as before, is called the centre of
osrillah'on : and a line through the centre of oscillation

and paralli'l to the axis of siisiiension is called an axis of
osriUatioii.

From (4) we have

{l-h)h = k^^i

or GO'. GO k,^. (5)

Now (5) world not he altered if the place of and ()'

were interchanged; hence if O' be made the centre of

suspension, then O will be the centre of osc'illation. 'I'liiis

///r rt'ii/irs if osriUtiHiiii and (f saspeiisiou are (oiirertibl.

,

mill the liini' if osrillalion ahinil rarli is lliv sanir.

Coii. 3.— Putting the derivative ot' / with respect to h in

I
I) e(pi,il to zero, and solving for //, we get

h = ^-j,
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which makes / a mininmni, aiul therefore makes t a mini-

miiiii. Hence, when the axis of suspension passes f/troni/h

the principal centre of gyration the time of oscillation is a

minimum.

Rem.—The problem of (letemiining tlie law under whieli a heavy

body swings about a horizontal axis is one of the most iniiM)rtaiit in

tlic history of science. A simple i)endulain is a thing of theory; out

accurate knowh'dge of the acceleration of gravity deiKJuds therefore

on our understanding the rigid or compound jHindulum. This was

the first problem to which D'Alembert applied his principle.

The problem was called in the days of D'Aleml)ert, the "centre of

oscillation." It was retiuired to find if there were a point at which

the whole mass of the body might be concentrated, so as to form a

simple pendulum whose law of oscillation was the same.

The [lositicm of tlu- centre of oscillaticm of a body was first correctly

determined by Iluyghens and published at Paris in 1073. As

D'Alembert's princiide was not known at tliat time, Huyghens liad to

discover some principle for himself.*

EXAMPLES.

1. A materiiil straiglit lino oscilliites about an axis pcr-

pcndicuhir to its length ; find tlie length of the eciuivalent

siin|)le pendulum.

Let ia = tlie length of the line, iiud // the disttineeof its

centre of gravity from tlie point of suspension. Then since

A-,^ = --, we have from (4)

I = h + U (1)

Cor. 1.—If the poiiil of suspension heat the extremity

of tlio line (1) lieconies

I =-- ^a;

Uuuih'« Itiyiil pyimmicb, (). (}9.
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out an axis pcr-

f tile cMiuivalent

le distil iic'o of its

1)11. Then since

(1)

it the extremitv

that is, Hio length of the e({iiivaient simple peiuluhim is

two-tliirds of tlie length of the rod.

Cor. 'Z.—Let /( = ^a; then (1) becomes

I = ^a.

Hence, the time of an oscillation is the same, whether the

line be suspended from one extremity, or from a point one-

third of its length from the extremity. This also illustrates

the convertibility of the centres of oscillation and of sus-

pension (See Cor. 2).

CoH. 3.—If // = lOfl!, then (1) becomes

2. A circular arc oscillates about an axis through its

middle jjoint perpendicular to the plane of the arc. Prove

that the length of the simple equivalent pendulum is

independent of the length of the arc, and is e((ual to twice

the radius.

From Ex. i, Art. 2'.V), we have

k» = h^ + Ji;^ = 2(i-'^)aK

From Ex. 1, Art. 78, we have

, sin rt

h = n — a •

«

Therefore (4) becomes

l = 2a^(\-
^^
)^"(l-

,r)
= ^"- *

m
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.'}. A riglit 00110 oscilliitos about an axis inxssing tlirou<rli

its vertex ami pcriu'iidieiilar to its own axis; it is roi|iiiro(l

to lind tlio it'iifitli of the sim|ilc eciuivaioiit poiKlnliiiii, (
I

)

wlion // is tlio altitiulo of ti>o cone and l> tiio radius id" 'lo

baso, and {'I) when tiio altitude = the radius of the base = //.

Ml' + Zr\
A.s. (1)--.^ ;

{i)h.

That is, in the second cone, the oontro of oscillation is in

the centre of the base; so thai the times of oscillation are

eijual for axes through the vortex and the centre of the

base peri)cudicular to the axis of the cone.

•t. /V sphere, radius a, oscillates about an axis ; find the

length of the simple ecpiivalent pendulum, (1) when the

axis is tangent to the sphere, (2) when it is distant 10«

from the centre of the sphere, and (3) when it is distant

- from the eentre of the sphere.

J«.v. {I) la; (•>) W^h; (:5) -V^'-

238. The Length of the Second's Pendulum
Determined Experimentally.—The time of oscillation

of a compound pendulum depends on h H- ^ by (4) of

Art. 2:57. But there are difHoultios in the way of determin-

ing h and k^. The centre, (r. can not be got at, and, as

every body is more or less irregular and variable in density,

A'l cannot bo calculated with sufficient accuracy. These

i|uantitios must therefore bo determined from experiments.

Hi'ssol observed the times of oscillation about different

axes, the distances l)etween which wore very accurately

known. Captain Kater employed the projierty of the

convertibility of the centres of suspension and oscillation

(Art. 337, Cor. 2), as follows :

Lot tlie pendulum consist of nn ordinnry sfrniglit Imr, CO, and ii

sinnll weight, m, whicli may bo cliunpcd to it liy means of a sitcw,

and sliiftt'd from one position to anotlior on the pendulum. At tliu
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iieariH of a screw,

[iduluiii. At tilt'

Q

o
Fig.94

points ( and () in two tiiangiilar aper-

turcH, al till' distanci' I ii|)nrt, let two knife

edfrpH ot liard steel lie placed imrallel to

earli other, and at riijlil angles to tbo
peiiduluni, so that it may vibrate ou either

)f tlieni, as in Vxg. 111. Let m I.e shifted

• ill it is found that the times of oscilhltion

about (' and O are exactly the same. It

remains only to measure ("0, and olwerve
the time of oscillation. The distance be-

tween the two i)oints (' and () is tlie length
of the simple equivalent pendulum. This diataneo between the knifo
edges was measured by Captain Kater wif'.i the greatest care. The
mean of three measurements differed bv less than a ten thouanndth
of an inch from each of the separate measurements.

The time of a single vibration cannot be observed directly, because
this wonhl re(iuire the fraction of a second of time as shown by the
clock, to be estimated either by the eye or ear. 'J'he dilHculty jniiy

be overcome? by observing the timi-, say of a thousand vibrations, and
thus the error of the time of a single vibration is divided by a
thousand. The labor of so much counting uuiy however be avoided
by the use of " the method of coincidences." The ])endulum is placed
in front of a clock pendulum whose time of vibration is sliglitlv

different. Certain marks made on the two pendulums are observed
by a telescope at the lowest jioint of their arcs of vibraticn. The fuld
of view is limited by a diapliragm to a narrow aperture across which
the marks are seen to |)ass. At each succeeding vibration one
]iendulum follows the oth.'r more closely, and at last its mark is

completely covered by the other duiing their passage across ihe field

of view of the telescope. After a few vibration,-, it ajijjears again
Iireceding the other. In the interval from one disappearance to the
next, one pendulum has made, as nearly as ])ossible, one complete
oscillation more than the other. In this manner 'yM) half-vibrations of
a clock pendulum, each efjual to a secotul, were found to correspond to
r);W of Captain Kater's pendulum. The raiio of the times of vibra-
tion of the pendulum and the clock pendulum may thus be calculated
with extreme accuracy. The rate of going of the clock must then bo
found by astronomical means.

The time of vibration thus fouTul will require several corrections
which are called "reductions." For instance, if the oscillation be
not so small that we can ]iut sin 0^.0 in Art. 237, we must make a
reduction to infiniudy small arcs. Auotlier reduction is necessary if
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we wiwh to reduce the rcsiiilt to wlint it would have been nt the levtl

of the sea. The attraction of the intervening, luuu may l)e allowed

for l>y l>r. Youiiy;'« rule, d'hil. Tiaim., IHI'J). We may thus obtain

the force of frruvity at the level of the sea, wiippotiiug all the land

above this level were cut o'*" and the sen constrained to keep its

present level. .\s the level of the sea is altered by the attraction of

the land, tiirlher corrections are still necessary if we wish to r-diice

the result to the surfac of tliat spheroid which most nearly repre-

sents the earth. See IJouth's Higid 1)\ iiamics, p. 77. For the details

of this experiment the student is rferred to the Phil. Trana. for 1818,

and to Vol. X.

239. Motion of a Body when Unconstrained.— If

nil iiiipiiLse be communicated to any point of a free body

111 ii diroctioii not passing tlirough the centre of gravity, it

will jjroduce both translation and rotation.

Let P be the impulse imparted to
^p

the body ai, A. At ]?. on ilieoi)positc

side of tlie centre (i, i' distiinee GB ^|—

= AG, let two opposite impulses be
[^p

applied, each eijual to i/'; they will

not alter the effect. Xow if i/'

applied at A is combined with the y
at H which acts in the siiine direction, their resultant is J',

acting at U and in the same direction, and this produces

translation only, 'i'he remaining y at A combined with

the remaining J/' at B, which actn in the o|)posite direc-

tion, form a couple which produces rotation about the

:-entre G.

Hence, wJien a body receives nn impnlse in a direction

vhich does not pass through the centre of (jravity, that centre

will (tsstune a motion of irntislntion as though the impulse

were applied imwediafeh/ to it; and the body will hare a

motion of rotation aboiU the centre of (jracily, as thoi/yh

that point ice re fixed.

240. Centre of Percussion.—Axis of Spontaneous

Rotation.—Let Mv represent tlie iinpul-^e impressed upon

p

Fig.95
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resultant is J',

1 this produces

combined with
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ion about the
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)thj will have a

ity, as thouijh

Spontaneous
mpres.sed upon

±
the body (Fip. 90) wliose mass is M, atul

// tlie perpcndicuhir distance, (U). from

the centre of gravity, (/, to the line of

action, 0/', of the impulse. The een*"

of srravitv will assume a motion of t.-ms-

lation with iiie veloeit\ v, in a direction

/)arallel to that of the imi)ulsive force.

Then from (3) of Art. 'Z'.\%, we have for the angular

velocity

Mvh vh

Fig.96

b) =:
MT^ ~ L?

The absolute velocity of each point of the body will be

comi)ounded of the two velocities of .ranslation and rota-

tion. The point 0, for example, to which the impulse is

applied, has a velocity of translation. Off, equal to that of

the centre of gravity, and a velocity of rotation, ab, about

the centre of gravity; so that the velocity of any ]K)int at

a distance a from the centre, G. will be expressed by

V ± a<.); the upper or lower sign being taken according as

the point is, or is not, on the same side of the centre of

gravity as the point 0. Thus, if we consider the motion of

the body for a very short interval of time, the line OGC
will assume the position bG'C, the point remaining at

rest during this interval ; that is, while the point C would

be carried forward over the line Cc by the motion of trans-

lation, it would be carried l)ackward through the same

distance by the motion of rotation. Hence, since the abso-

lute velocity of O is zero, we have

V — au) 0;

w h (1)

and hence denoting OC by / we have
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I
l\^

c^>

Now if tliorc liiid been ii lixcd axis llimugli C pcrpcn-

ilicular to the i)liim' of motion, I lie initial motion would
liiivc bocii jn-cfisrly the same, and this lixcd axis I'vidcntlv

would not JKivo riMvivcd any pri'ssui'f from the iini)uls(.'.

Wlu'u a riyid body rotates a!)out a tixod axis, and tlio

body can be so struck that there is no pressure on the axis,

any ])oint in the line of action of tiie force is called a centre

ofpercussio)!.

When the line of action of tlio blow is given and the

body is free from all constraint, so that it is capable of

translation as well as of rotation, the axis abont which the

body begins to turn is called the axis of sponftineoiis rota-

tion. It obviously coincides with the position of the fixed

axis in the first case.

CoK. 1.—From (J) we have

oh — GC-GO = k?;

hence the points aiid C are convertible, that is, ;/ the

axis of rotation he supposed to pa^s throwjh tlte point 0,
ttie centre of spontaneous rotation will coincide with the cen-

tre ofpercussion.

Con. '^».—From (2) it follows, by comparison with (4) of

Art. 2;5T, that if the aais of spontaneous rotation niincides

with thi' axis of suspension, the centre of percussion coin-

cides with the centre of oscillafion.

Sen.—It is evident that if there be a fixed obstacle at G.

and it be struck by the liody 0(^ rotating about a fixed

axis tlirough (', the ol)stacle will receive the whole force

of the moving body, and the axis will not receive any.

Hence the centre of percussion also detertnines the jiosition

in which a fixed ol)stacle must be placed, on which if the

rotating Itody im])inges and is brought to rest, the axis of

"otution will sutfer no pressure.
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EXAMPLES. 10)

An axis through tlie centre of gravity, parallel lo the

axis of s|K)ntaneous rotation, i^ called the axis of iiisldtitane-

oiis rotation. A free body rotates al)out this axis (Art. ^;ill).

EXAMPLES.

1. Find the centre of jjcrcussion of a circular plate of

radius a capable of rotating about an axis which touches it.

a^
Here ki^ ~. , and h — n. Hence from (••2) wo have

I a + !''•

2. A cylinder is capable of rotating at)Out the diameter

of one of its circular ends ; find the centre of ])ercussion.

Let a = its length, and b = the radius of its ba.se.

W + 4«2
.•I«.s\ I — —

Cm

Hence if 3/>^ = 2a'^, the centre of percussion will l)e at

the end of the cylinder. If t) is very small compared with

a. / == |y/ ; thus if a straiglit rod of small transverse section

is lield by one end in the hand, I gives the point a! which

it may Ite struck so that tlie hand will receive no jur.

241. The Principal Radius of Gyration Deter-

mined Practically.- -Mount the body upon an axis not

passing through the centre of gravity, and cause it to

oscillate; from the number of oscillations jieiformed in a

aiven time, say an hour, the time of one oscillation is

known. 'I'lu'ii to find h, which is the distance from the

axis to the centre of gravity, attach a spring balance to the

lower end, and bring the centre of gravity to a horizontal

])lane through the axis, which position will be indicated by

the maximum reading of the balance. Knowing the maxi-

mum reading. A*, of the balance, the weight, U', of the

body, and the distance, a, from the axis of suspension to
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tlie point of attachnioiit. we luivo from the jtriiiLMple <>f

moments, Ra = 117/, {"nmi which // is found. fjul)stitut-

inp in (:?) of Art. 2:37, this vahie of //. and for T the time

of an osciUation. /•, becomes known.

242. The Ballistic Pendulum.—An interestiiig ap-

])lication of tlie principles of tiie comi)onnd i)endiilum is

the old way of determining tlie velocity of a bullet or caii-

(m-ball. It is a matter of consi<lerable importance in the

Theory of Gunnery to determine tlie velocity of a bullet as

it issues from the inoutli of a gun. It was to determine

tills initial velocity that Mr. Robins about 1743 invented

the IMlisfic Penduhrm. 'Phis consists of a large thick

lieavy ma.ss of wood, suspended from a horizdutal axis in

the shape of a knife-edge, after the mannoi of a compound

pendulum. The gun is so i)laccd that a ball projected

from it horizontally strikes this pendulum at rest at a cer-

tain point, and gives it ;i certain angular velocity about its

axis. The velocity of the ball is itself too .great to be

measured directly, but the angular velocity communicated

to the pendulum may be made as small as we plea.<e by

increasing its bulk. The arc of oscillation being meas-

ured, the velocity of the bullet can be found by calcu-

lation.

The time, which the bullet takes to penetrate, is so short

that we nuiy suppose it completed before the pendulum has

sensiblv moved from its initial position.

Lot .U be the mass of the jiendulum and ball; in

that of the ball ; r the velocity of the ball at the instant of

imi»aet ; h the distance of the centre of gra\ity of the \)vn-

duhim and ball from the axis of suspension ; a the distance

of the point of imi)act from the axis of suspension ;
(.' the

angular velocity ihw to the blow of the ball, and k the

radius of gyration of the pendulum and ball. Then since

the initial velocity of the bullet is r, its impulse is measured

by lar, and therefore from (.'}) of Art. 'IW we have for the
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e is measured

have for the

initial angular velocity generated in tlie pendulum liy tliis

impulse,
Ull'll

(1)

men

and from (1) of Art. •^37 we have for the subsequent

motion
a^e nil .

dp =- -
k-^

^"' ' (^)

Integrating, and observing tiiat. if a l)e tiie angle tiirough

which the pendulum movt's, we iiave ,, — ^^ when — U,
</f

d9
and :^ wlien (f = k. {'i) i)ecomes

M' = ' (1 — COS U).

Eliminating w between (1) and (3) we have

>Mk , . . «
V = --- V'/fi sin .,

,

IIKI 4

(3)

(4)

from which v becomes known, since all the (|Uantities in

the second member may l)e observed, or are known.

We may determine « as follows: At a point in the jien-

dulum at a distance // from the axis of suspension, attach

ilie end of a tape, an(l let the rest of the tape be wound

tightly round a reel ; as the peiiduhim ascends, let a length

r be unwound from the reel ; then c is the chord of the

angle « to the radius /i, so that c = 'Z/t sin ,., which m (4)

Af/i;

IIHI,
(5)

'I'he values of k and // may l)e delermincd as in Art. '•v'41.

Jl" the moudi of the gun i~ placed near lo the pemlulum.



4,U liOTATloy OF A HEAVY POPV.

tlie value of c, given bv {•)), must be nearly the velocity of

l)rojeetion.

The velocity nuiy also be deterniin .d in the following

manner: Let tiu' gun l)e attached to a heavy pendulum;

when the gun is discharged the recoil causes the pendulum

to turn round its axis and to oscillate through an arc

whicii can lie measured ; and the velocity of the bullet can

be deduced from the magnitude of this arc. (See Price's

Anal. Mecii's, Vol. 11, x^.t-W.)

Hi nil- tlu' invention of the Imllistic iiendiilmn by Mr. Robins in

174;i, Imt little i)rogreHM liad been made in tlio true thnry of military

jn'ojcctiles. liohUm' N< ir Priiicipli'x "f (riiiiiiiri/ was soon translated

into several languages, and Euler added to his liimslation of it into

(Jerman an exton.sive commentary : tlio work of Killer's being again

translated into Knglish in 1784. The es])eriment8 of Hol)ins were

all eonducted with musket balls of about an ounce weiglit, but they

were afterwards conliiiued during several years by Dr. Hutton, who

used cannon-balls of from one to nearly three jKUinds in weight.

Hutton used to 8us|)end his cannon as a pendulum, and .measure the

angle thnmgli which it was raised by the discharge. II itj experi-

ments are still regarded as some of the most trustworthy on smooth

bore guns. See Rout it's Rigid Dynamics, p. !I4, also F".cyclopa>dia

Britnnnica, Art. (lunnery.

243. Motion of a Heavy Body about a Horizon-

tal Axle through its Centre.— Ixd the l)ody be asphcre

whose radius is Ji, and weiglit IT, and let a weight 1' be

iittached to a cord wound round the circumference of a

wheel on tlie same axle, the radius of the wheel being /•

;

renuired the distance passed over by /' in t seconds.

From (4) of Art. •^•;}<! we have

Pi'fl

irX-,2 + Pr'

Multiplying by dt and integrating twice, we have

e = (1)
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the constants being zero in both integrations, since the lx)dy

iitarts from rest when t = {). The space will be rO.

EXAMPLES.

1. Let the body be a si)here whose radius is 3 ft. and
weight 500 lbs.; let P be 50 lbs., and the radius of the

wheel 6 ins.; required the time in viiich tiie weight P will

ilescend through 50 ft. (Take ^ = 32.)

Ans. 21 seconds.

2. Let the body be a sphere whose radius is 14 ins. and
weight 800 lbs.; let it be moved by a weight of 200 lbs.

attached to a cord wound round a wheel the radius of

which is one foot ; find the number of revolutions of tho

sphere in eight seconds. (Take y = 32.) A^tii. 51.3.

244 Motirii of a Wheel and
Axle when a Given Weight 1*

Raises a Given Weight IF.—Let
the weights P and IT be attached to

cords wound round the wheel and axle,

respectively, (Fig. (I?) ; let I\ and r be

t)e tiie radii of the wheel and axle, and

w and w' their weiglits; required the

angular distance passed over in t

seconds.

From (4) of Art. 230, we have

m _ _ PR^
cm

Fis.97

Wr
PRi 4- Wi-i -{- u^lli + \w'r^ ffi

lavG

(1)

EXAMPLE.

Let the weight /' = 30 lbs., 11' = 80 lbs., w = 8 lbs.

and w' = 4 lbs.; and let // and r bo 10 ins. and 4 ins.;
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required (1) the .space passed over by P in 12 s^'coiids if it

starts from rest, and (2) the tensions 7' and T' of the cords,

supporting P and W. (Take
ff
— 32.)

Ans. (1) 'jr.;0 ft.; (2) T = 31.28 lbs.; T' — WM lbs.

245. Motion of a Rigid Body
about a Vertical Axis.—Let Ali

be a vertical axis about which the

body C, on the horizontal arm ED,
revolves, under the action of a con-

stant horizontal force /•', applied at

the extremity E, ])erpendicnlar to

ED. Let M be the mass of the body whose centre is C,

and r and h the distances ED and CD, respectively. Then
from (4) of Art 23G, we have

\
-^

Fig. 98

d^ _ Fr
dP ~ Mjk'^ + ¥)'

Multiplying by df and integrating twice, observing that

the constants of both integrations are zero, we have

e = Fk-fl

2J/(^•l^ + h^)

which is the angular space passed over in t seconds.

(li

EXAMPLE.

Lot the body be a spiiere whoso radius is 3 ft., whoso

woigiit is 000 lt)s., and Hic distance of wlioso centre fnmi

tlie axis is S ft., and let /•' br a force of W lbs. acting at the

cud of an arm 10 ft. lung; find (1) tiie numl)er of revolu-

tions which the body will make about the axis in 10

minutes, and (2) the time of one revolution. (Take

tj = 32.) Ah.s. (I) !K}1(;.3
; (2) 0.2 sees.
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246. Body Rolling down an Inclined Plane.— .1

lioinui/encoits spliere rolls d'lrectly down a ronyJi inclined

plane under the action of gravity. Find the motion.

Let Fig. !»'J represent a section

of tJie sphere and plane made by a

vertical plane passing through C,

the centre of the sphere, l^et « be

the inclination of the jdane to the

horizon, a the radius of the sphere, /
the point of the plane which

was initially touched l)y the sphere

at the point A, P the point of contact at the time f.

AC'P = 0, which is the angle turned througli by the

spliere, m = the mass of the sphere, F — tlie friction

acting upwards, R = the pressure of the sphere on the

])lane. Then it is convenient to choose O for origin and

OB for the axis of a; : hence OP = x.

The forces which act on the s])here are (1) the reaction,

7i', ])erpendicular to OB at P. {'i) the friction, F, acting at

P along PO, and (.'5) its weight, nii/, acting vertically at il

the centre. Now C evidently moves along a straight line

])arallel to the plane; so tliat for its motion of translation

we have, by resolving along the plane.

F. (1)

The spliere evidently rotates about its point of contact

with the plane; but it may be considered as rotating at

any instant about its centre (' as fixed; and the angular

velocity of (J at tiuit instant in reference to P is the same

as that of P in reference to V. From (4) of Art. 236, we

have for the motion of rotation

mk.^^j, = Fa (a)
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and since the plane is perfectly rough, so that the sphere

does not slide, we have

X = .'0. (3)

Multiplying (1) by a and adding the result tt> {'i), we get

ma -t::: + inh\*
df^ dp

m(i(j sm «. (-t)

Differentiating (-i) twice we get -.^ = a ,.^, which

united to (4) gives

dp dp'

(Px

dP «^-+T?^^"'"- (5)

Since the sphere is homogeneous, /(:,2 = ^a?, and (5)

becomes

d'^x . . .,,,

7/72
= y ^'» « (*^)

/^7n'c// f/Zms ///(' nca'lprnfioii down Hip plane.

if the si)here had been sliding down a smooth plane, the

acceleration would have been g sin « (Art. 144) ; so tiiat

two-sevenths of gravity is used in turning the s})here, and

live-sevenths in urging the si)here down the plane.

Integrating ((i) twice, and supi)osing the sphere to start

from rest, we have

X = -^n • sin a • P

which (jives the xpace passed over in fhc iime t.

Resolving perpendicular to the plane, we have

R = VKJ cos t(.

CoH.—If the rolling body were a circular cylinder with

its axis horizontal, then /•,'- = hi^. and (5) becomes

fPx
^=|i/sin«; (')
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so tliat one-third of gravity is used in turning the cylinder,

and two-thirds in urging it down the i)lune.

From (7) we have

.r = \y sin a • fi

which (jivex the space passed over in the time t from rest.

(8)

247. Motion of a Falling Body under the Action
of an Impulsive Force not Directly through its

Centre.—A string is wound round tlie circumference of a

reel, and the free end is attached to a fixed point. The reel

is tlien tifted up and let fall so that at the moment wlien

the string becomes tight it is vertical and tangent to f/ie reel

The whole "'dion being supposed to tahe place in one plane,

determine the effect of the impulse.

The reel at first will fall vertically without rotation.

Let V 1)0 the velocity of the centre at the i lomont when the

string becomes tight; v' , w the velocity of the centre and

tlie angular velocity just after the impulse ; T the imi)ul-

sive tension ; m tlie mass of the reel, and a its radius.

Just after the impact tiie part of the reel in contact with

tlie string lias no velocity, and at tills instant the reel

rotates about this part; l)ut it may lie considered as

rotating about its axis as fixed, and the angular velocity of

its axis, at this instant, in reference to the part in contact

is the same as that of the latter in reference to the former.

The impulsive tension is

T - m {v - v'). (1)

Hence from (;!) of .\ii. 'l'M\, we have for the motion of

rotation

niki^u) = m {c — v')a. (2)
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Sinw tlie i)arl of tlif ivol in cuiitai't wilh tlic string lui.s

no velocity at tiie instant of impact, wo have

V = ad).

Solving (2) and (3) vvc have

(TV

n^ + k,^

(3)

(4)

If the reel he a homogeneous cylinder, ^•J^ = -, and we

have from (3) and (4)

= !,, '-'^I's (5)

and from (1) we have for the imj)ulsive tension,

T = i»n'.

Cor.— To find fhe mibsequrn/ motion. The centre of the

reel Jp«;('m.v to descend vertically ; and as there is no hori-

zontal force on it. it will continue to descend in a vertical

straight line, and throughout all its sul)se(|uent motion the

string will he vertical. The motion may therefore he

easily investigated, as in Art. 240, since it is similar to the

case of a body rolling down an inclined plane which is

vertical, the tension of the string taking the place of the

T
friction along the plane. Hence putting « =

^, , and

letting the friction F =z the tinite tension of the string, we

have, from (1) and (7) of Art. 340.

F = \v)(i, and
(^3-

(W \0

that is, the finite tension of the string is one-third of the
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tlic string luLs

(3)
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St
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, and

the string, we

e-third of the

Wfii<4ht, •.mil the reel tlescends with a uniform aeeeleration

off//.

Since the initial velocity of the reel from (o) i.s \r, we

have, for the space descended in the time t after the impact,

from (8) of Art. Uij,

X =1 \vt-\- y/'\ (See Eolith's Rigid Dynamics, p. 131.)

EXAMPLES.

1. A thill rod of steel 10 ft. long, oscillates abonf an axis

passing through one end of it ; find (1) the time of an

oscillation, and (2) the number of oscillations it makes in a

(lay. Alls. (1) 1.4;}4sec.; {2} m25i.

2. A pendulum oscillates about an axis ))assing through

its end ; it consists of a steel rod GO ins. long, with a rect-

angular section | l)y J of an inch ; on this rod is a steel

cylinder 2 in. in diameter and 4 in. long; when the ends of

the rod and cylinder are set square, find the time of an

oscillation. Ans. 1.1 74 sees.

3. Determine the radius of gyration with reference to

the axis of sus})ension of a body that makes 73 oscillations

in 3 minutes, the distance of the centre of gravity from tlie

axis being ."5 ft. 2 in. Ans. 5.267 ft.

4. Determine the distance between the centres of suspen-

sion and oscillation of a body that oscillates in 2J sec.

Ans. 20.2G4ft.

5. A thin circular plate oscillates about an axis passing

through the circumference : tiiid the length of the simple

ecpiivalent pendulum, (1) when tiie a.xis touches the circle

and is in its plane, and (2) when it is at right angles to

the plane of the circle. Ans. (1) f« ; (2) |</.

tl. A cube oscillates about one of its edges; find the

length of the simple equivalent pendulum, the edge being

— 2«. Ans. |rt V2.

m
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7. A j)risni, wliohc cross section is a s({uare, each side

being = 2c/. and wiiose length is I, oscillates about one of

its upper edges; find the length of the simple equivalent

pendulum. Am. | y/iaf+^lK

8. An elliptif lamina is such tiuit when it swings about

one latus rectum as a horizontal axis, tiie other latus

re(!tuin pas.-es through the centre of oscillation; [)rove''

that the eccentricity is ^.

!J. Tile density of a rod varies as the distance from one

end ; find the axis perpendicular to it about wiiich the

time of oscillation is a minimum, I being the length of the

rod.

Am. Tlie distance of the axis from tlie centre of gravity

JS
^. V-'-
o

10. Find the axis about whicli an elliptic lamina must
oscillate that the time of oscillation may be a minimum.
Am. The axis must be parallel to the" major axis, and

bisect the semi-minor axis.

11. Find the centre of percussion of a cube which rotates

about an axis parallel to the four parallel edges of the cube,

and eciuidistant from the two nearer, as well as from the

two farther edges. Let -ia \w a side of the cube, and let e

be the distance of the rotation-axis from its centre of

gravity.

•>ai

Am. I = r + , where / is tl>e distance from the rota-

tion-axis to the centre of percussion.

li. Find the centre of percussion of a sphere which
rotates about an axis tangent to its surface.

Alls. I ?"•

i;{. Tjet the body in Art. •>4I5. be a sphere whose radius is

ir ins. and weight 1200 lbs.; let it be moved by a weight
if 250 lbs. attached to a cord wound rt)iind a wheel whose
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Ahs. 1 l«-
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ved by a wi'ight

1 a wheel whose

ladius is 15 ins.; find the number of revolutions of the

si)here in 10 seconds. (// = 3-J.) Ans. 58.77.

14. Let the body in Art. 'i\',i be a s|)iiere of radius 8 ins.

and weight 50U lbs.; let it be moved l)y a weight of 100 lbs.

attached to a ct)rd wound round a wheel whose radius is

I) in.; find the number of revolutions of the sphere in

5 seconds. (// = IJ-.'f) J «.s. rW.O'J.

15. In Art. v'44, let the weight /' = 40 lbs., W — 100

lbs., w = I'i ll>s., and «•' = <; lbs.; and let II and /• be

12 ins. and T ins.; recjuired (1) the spac' passed Mver by P
in K) sees, if it starts from rest, and {i) tLe tensions T and

T of the cords supporting /' and IT. (// = ''Vi\

Ans. (1) '.»2(;.5; {'i) T - 49.04 lbs.. 7" =:: 80.81 lbs.

16. In Art. 244, let the weight /' = 25 lljs., IT = fiO

lbs., w = C> lbs., and w' = 2 lbs.: and let R and r bo

8 in. and :5 in.; reiiuired (1) the si)ace passed over by J' in

10 sees, if it starts from rest, and (2) the tensions 7' and

7" of the cords supporting /'and IT. {;/
— :i2^.)

Ans. (1) 10<».!)2ft.; (2) T= 2;{.21t ll)s. ;
7' = (il.54 lbs.

17. In Art. 245, let tlie body be a sithere whose radius

is :] ft., whose weight is 800 lbs., and the distance of whose

centre from the axis is !) ft. ; and let /' be a force of GO lbs.

acting at the end of an arm 12 ft. long; find (1) the num-

ber of revolutions wiiich the body will make about the

axis in 12 min., and (2) the time of one rev(jliition.

{(/ = 32.) Aii.y. (1) 1 404:5. ; (2) (1.07 sees.

18. Tn Ex. 17, let the radius — one foo*^, the weight =
100 lbs., the distance of centre from axis = 5 ft., and

F — 25 lbs. acting at end of arm 8 ft. long; find (1) the

number of revolutions wliiili the liody will make about the

axis in 5 min.. and (2) tiie lime of one re\o!utioii.

in
-

:52f

)

.1/'^. (1) 18i:{!).0'.l ; (2) 2.2;i sees.

19. If the body in Art. 247 be a homogeneous si)here,

the string being round the circumi'erence of a great circle,

m
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find (1) the angular velocity just after the impulse, and {'i)

the impulsive tensicn. 5(

20, A bar, / feet long, falls vertically, retaining its hori-

zontal position till it strikes a fixed obstacle at one (juarter

the length o' the bar from the centre ; find (1) the angu-
lar velocity of the bar, {-i) the linear velocity of its centre

jn«r after the impulse, and (."5) the impulsive force, the

velocity at the instant of the im])ulse being v.

Ans. (1) ^"; {•i)\i'; (3) 4m-.

21. A bar, 40 ft. long, falls through a vertical height of

50 ft., retaining its horizontal jwsition till one end strikes

a fixed obstacle 60 ft. above the ground ; find (1) its angu-
lar velocity, (2) the linear velocity of its centre just after

the impulse; (3) the number of revolutions it will make
before reaching the ground, (4) the whole time of falling

to the ground, and (5) its linear velocity on reaching the
ground.

75.10.

ins. (1) 2.12; (2) 42.43; (3) 0.345; (4) 2.79; (5)
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CHAPTER VIII.

MOTION OF A SYSTEM OF RIGID nODIES IN SPACE.

248. The Equations of Motion of a System of

Rigid Bodies obtained by D'Alembert's Principle.—
Let {x, y, z) be the position of the jjarticle m at the time i

referred to any set of rectangular axes fixed in space, and

X, V, Z, the axial components of the impressed accelera-

iVx (Ptl (Pz
ting forces acting on the same particle. Then -^, -.'^, jr^,

are the axial components of the accelerations of the parti-

cle ; and by D'Alembert's Principle (Art. 2:?5) the forces,

'"(^-S)' '"(^'-S)' '"(^-S)'
acting on m together with similar forces acting on every

particle of the system, are in e(|uilibrinm. Hence by the

principles of Statics (Art. 05) we have the following six

equations of motion :

.,„(.r-g) = o.^

Sw {yZ — z Y)

I.m (z.V — j-Z) — 1,1)1 1 z
Px

(1)

C^)
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By means of those t-ix ('(juiitions tlie iiiotion of a rigid

body acted on l)y any fiiiit(! forces, may be determined.

They lead immediately to two important jtropositions, one

of which enables us to calculate the motion of trMmlation

of the body in space ; and the other the motion of ro/alioti.

249. Independence of the Motion of Translation

of the Centre of Gravity, and of Rotation about an
Axis Passing through it— [.et (7. 'i/. i) be the i)osition

of the centre of gravity of the body at the time f, referred

to fixed axes, {x, y, z) the position of the particle m referred

to the same axes, (.r', y', z') tiie position of m referred to a

system of axes passinji; through the centre of gravity and

parallel to the fixed a-\ s, and J/ the whole mass. Then

1. x = 'z + x', y == y + y', z = i + z'. (1)

Since the origin of the movable system is at the centre of

gravity, we have (Art. 59)

^mx' = ^my' = ^mz = 0;

Also }Lmz = Afx, ^my = My, I.mz = Me;

,(Px „ (Pi/ „(PJi

(a)

(3)

r(Pz^, (Px .,(Px „ (Pi) ..(Py ^. cPz „.
• ^"^rf/^^^^' '""(lP=^^dP' -'"'dt^^^dP

Substituting these values in (1) of Art. 248, wo have

(Px

(4.

M (Pi

dP
i: . mZ.

maam
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-I + z'. (I)

is at tJie centre of

0; (^)

= 0. (3)

= m-,

248, wo liavo

(4.

These three cqtiations do not eontain tiie co-ordinates of

the point of application of the forces, and are the same as

those which would be obtained for the motion of the

ci'utre of gravity supposing the forces all aj»j)lied at that

point. Hence

ITIie nwtimi of llie centre of (jrnrily of a system acted on

/ty any forces is the same as if all tlie mass were collected at

I ttie centre of gravity and all the forces loere ajjplied at that

point parallel tu their former directions.

"Z. Differenhiating (1 ) twiee we liavo

(fx _d^ dlr (Py _ d^J, (Py'

dt^
~ df^

"^ dp ' S ~ dP "^ dp '

iPz _ d^k tPz'

dp ~ f//a+ dty

Substituting these values in the first of ecpnitions (3) ol

Art. 248, we have

Lm[{i + y')Z-(-. + z')r]

I'erforming the operations indicated we get

= 0.

yl-?M^-; yL-m
dh'

dp + ^»./(^-'^0

fy'
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Omitting the 1st, iJd, 4th, 5th, Cth, and 8th terms which

vanisli by reason of (2), (3), and (4), we have

}Lm{ii'Z-z'Y),

Im Ix
dfi

y j = ^m{x'Y— y'X).

similarly from the other two etj nations of (2) we havci'

/ tPx' dh'\ I ^^

These three equations do not eontain the co-nrdinates of

tile centre of gravity, and are exactly the e(jnati()ns we

would have obtained if we had regarded the cent'-e of

gravity as a fixed point, and taken it as the origin of

moments. Hence

The motion of a bod//, acted on f>y any fnrcex, atmut its

centre of (jravity in t/ie same as if tliv centre (f (jravity were

fixed and the same forces acted on the body. T\\i\t is, from

(4) the motion of Iraiislation of the centre of fjrarity of the

body is independent of its rotation ; and from (5) the rota-

tion of the body is independent of the translatiou of its

centre.

These two important propositions are called respectively,

the principles of the conservation of tfie ^notions of ti'ansla-

tion and rotation.

Son.—By the first principle the problem of finding the

motion of the centre of gravity of a system, however com-

plex the system nniv \n\ is reduced to the jiroblcm of

finding the motion of a single particle. By the second

principle the problem of fitiding the angular moti(m of a

free body in space is reiliiei d to that of determining tho

motion of that body alxiut a fixed point.
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Rem.—In nsing the iirst principle it should be noticed

that the inijn-essed forces are to l)e applied at the centre of

gravity /Jrtrrt//''/ tu their former directions. Thus, if a rigid

body be moving under the inliuence of a central force, the

motion of the centre of gravity is not generally tlie same

as if the whole mass Were collected at the centre of gravity

and it were then acted on by the same central force. What

the principle asserts is, that, if the attraction of the central

force on each element of the body be found, the motion of

the centre of gravity is the same as if these forces were

applied at the centre of gravity parallel to their original

directions.

250. The Principle of the Conservation of the

Centre of Gravity.—Su])pose that a material system is

acted on by no other forces than the mutual attractions of

its parts ; then the impressed acc;elerating forces are zero,

which give

therefore from (4) of Art. 24!), we got

d^l

dt^
~ "'

dt:^

-:0,
(Pi

df
=

di
•

'
• dt~

?'q COS «, dt-^°
cos|3,

(Cz

dl
?'o

COS y. (1)

where i\ is the velocity of the centre of gravity when

/ = 0, and «, 0, ->, are the angles which its direction makes

with the axes. Therefore, calling r the velocity of the

centre of gravity at the time /, we have

v = sj
d^ + dy^ + d? _

~dP - "«' (2)

vdiich is midently eonst :nl.

m



(3)

"i^^' COXSEinWTlOX OF AKKAS*.

Uvg = 0, the centre of gravity remains at rest.

Integrating (1) wo get

X = v^t cos « + ff, y = v^t cos (i + b,

i = Vgt cos y + c

;

ic — a _y — b _z — c

cos « ~ cos /i
~~

cosy

{a, b, c) being the place of tlie centre of gravity of the
system wlien / = 0. As (;{) are the equations of a'straight
line it follows that the motion of t/ie centre of gravity is

rectilinear.

Hence token a material system is in motion under the
action of forces, none of which are external to the .system,

then the centre of gravity moves uniformly in a straight line

or remains at rest.

Rem.—Thns the motion of the centre of gravity of a
system of particles is not altered hy their mutual collision,

whatever ilegree of elasticity they may have, because a
reaction always exists equal and opposite to the action. If

an explosion occurs in a moving body, whereby it is broken
into pieces, the line of motion and the velocity of (!<e

centre of gravity of the body are not changed by the
explosion

; thus the motion of the centre of gravity of the
earth is unaltered by eartlKpiakes ; volcanic explosions on
tile moon will not change its motion in space. The motion
of the centre of gravity of the solar system is not affected
by the mutual and recii)rocal actit)n of its several members;
it is changed only by the action of forces external to the
system.

251. The Principle of the Conservation of Areas.—
If .r. y be the rectangular, and r, the polar co-ordinates
of a particle, we have
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^dt y dt
-""

dt\xl

m

d dd= r^ cos^ - (tan fi) = r' ,^
dt dt

(1)

Now \r'^dd is the elementary area described round the

origin in the time dt by the projection of the radius vector

of the particle on the i)laiie of xy, (Art. 182.) If twice

this polar area be multiplied by the mass of the particle,

it is called ttie area conserved by the particle iu the time di

iou>id the axis of z. Hence

2m \x
dy

di

dx\

is called the area conserved bj the system.

lA't dAx, dAy, dAz be twice the areas described by the

])rojections of the radius vector of the jiarticle m on the

planes o^ yz, zx, xy, respectively ; then from (1) we have

_ / dy dx\ dAt
^'''Vdt-ydt) = -'^'dr'

and diflferentiating we get

Im (i
dt^

(fix

)
= l/n

dt^
' (2)

If the impressed accelerating forces are zero the first

member of {'i) is zero, from (5) of Art. 249; therefore the

second member is zero. Hence

Xw(
iPAi

di''

= 0;

m
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similarly ^fii -TT^ — 0, I.m ^y," = 0;
df^ dfl

and therefore by integration

ft, //', //' being constants.

.-. I.mAj, — M, lmA„ = h'f, I.mAz = h"i;

the limits of integration being snob that the areas and the

time begin sinuiltaneonsly. Thus, the snm of the products

of the mass of every particle, and the projection of the area

described by its radius vector on each co-ordinate i)lane,

varies as the time. This theorem is called the principle of
the conservation of areas. That is,

When a material syxfrm is in motion under the action

offorcex, none of which are external to the system, then the

sum of the products of tlie mass of each particle by the pro-

jection, on any plane, of the area described by the radius

vector of this particle measured from any j. ved point, varies

as the time of motion.

252. Conservation of Vis Viva or Energy.*—Let
{x, y, z) be the place of the i)article m at the time /, and
let X, Y, Z be the axial components of the impressed

accelerating forces acting on the particle, as in Art. 24K.

The axial components of the effective forces acting on the

same particle at any time / are

"^df^'
m

(Py

dt^'
m (Pz

dt»'

If the effective forces on all the particles be reversed,

• See Art.
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thoy will ho in ei(iiilil)riiini with the whole group of ini-

|)ressed forces (Art. 2:5.')). Hence, by the principle of

"irtual velocities (Art. 10+), wo have

„„[(x-f;)*..(r-|?).,. + (^-;^,.]=o,,o

wV.oro dr, 6y, 6z are any small arbitrary displacements of

the ])articlo ni parallel to tlio axes, consistent witli the con-

nection of the parts of the system with one another at the

time /.

Now the spaces actually described by the particle m dur-

ing the instant after the time / parallel to the axes are

consistent with the connection of the parts of the system

with each other, and hence we may take the arbitrary dis-

placements, &x, 6y, (h, to be respectively equal to the

actual displacements, .-- (5/, ij 6t, -f^ 6t, of the particle.*
dt dt dt '

Making this substitution, (1) becomes

/(Px dx iPy dy (Pz dz\

\dP di ^ dP dt + dp dt)

=-"'{^"£ ^ ^^h '%)

Integrating, we get

Em?;3 - i;w,t'„2 = 2Swi / {Xdx + Ydy + Zdz), (2)

vhere v and i\ are the velocities of the particle m at the

times / and /„.

The first member of (2) is twice tiie vis viva or kinetic

energy of the system ac(|uired in its motion from the time

/q to the time t, under the action of the given forces.

• That Is, nlihough &« 1» not equal ti) Ux, yet the ratio of &j: to dj' iu rqual to the

ratio of U to (It.

M>
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Tlio sopond m('ml)cr oxprcsst's twice tlio v^ork done l>v

tliese forces in the siiiiie time (Art. 18!)).

If I lie seciiiKl iiii'iiilier of (t>) he iiii exact ditTereiitial of a

fiiiictioii of r. //. z. so that ii e(nials '//"(.'•, ij, z) ; then tak-

iiifT tlie (ielinite inte^'ral hetween the limits x, y, z and u-^,

f/g, Zf,. corresponding to / and Z^, (0) l)ecomes

imr^ - -»,r,^- = y {x, //, z) - -^/{.r,, y„ z,). (3)

Now the second memher of (•*) is an exact differential so

far as any particU' m is acted on by a centn.l force whoso
centre is fixed at {a, b, r), and which is a functior. of the

distance r between the centre and {x, y, z) the phice of m.
Thus, let Pbe the central force — f(r), sayj then

X = 'fir), Y=y^'fir) z = -"F/w.

'fi^ix-af+iy If + (2 - cf;

.'. rdr = {x — a) dx -f {y ._ h) dy + {z — c)dz\

.'. m {.Ydx + Ydy + Zd?) = nif(r) dr;

which is an exact diilerontial ; substituting this in the

second member of (2), it

= 2m r/ir)dr,
t o

where the limits r and r„ correspond to / and /„.

Also, the second member of (2) is an exact differential,

so far as any two i)articles of the system are attracted

towards or repelled from tsich other by a force which varies

as the mass of each, and is a function of the distance

between them. fiCt m and m' be any two particles ; let

(.r, y, z), (x', y', z') be their places at the time t ; r their

distance apart ; P = f(r), the mutual action of the unit

mass of each particle. Tlicn the whole attractive force of
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time i ; r their

tion of the unit

tractive force of

jn on m' is I'm, and the wliole attractive force of /// mi //.

is Pm' ; and we liave

X=,n-^ ^J', y 1)1
•' - -^ /', Z = III P;

A"= -m"" " P, y=-n,^^ •'
x—x

r /•

Also r2 = (r - x')' + (.'/
- //')- + (z - z')'-

Therefore for these two particles, we have

m {Xdx + Ydij + ir^/z) 4- m' {X'lU + )'V///' + Z'dz')

=^ i^ [(-^ - ^') ('/'• - '/•'•') + (// - y') ^'^y - '///')

+ (z - 2') {dz - (.y)]

= mm'f {)•) dr;

which is an exact differential. The same reasoning applied

to every two particles in tiie system must lead to a similar

result ; so tiuit liiuilly the second member of (2)

= 2m7n' I f{r) dr,

where the limits /• and r^ correspond to / and /„, so thut

the integral will be a function solely of tlie initial and final

fo-ordinates of the particles of the system.

Hence, when a iiialvrial xijslrm /.s in motion nndtr the

action of forces, none of which arc e.iicrmd to the system,

then the chaiif/e of the ris viva of the si/stem. in passii'y

from one position to another, depends only on the tiro posi-

tions of the syste^n, and is independent of the path descritml

by each particle of the system.

This tlieorem is called the principle of the conservation of

vis viva or energy.
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Con. 1.— ff a system 1)0 iiiulcr tlu- action nf no oxtcrnal

forces, we liave X = V = Z = (», and lience the vis viva

of tlie system is constant.

CoK. 2.—Let gravity he the only force acting on tlie

system. Let the axis of z he vertical and positive down-

wards, then wo have ,r _ (I. r _ 0, Z — :/. llenee (•.')

becomes

Itnv'^ — ^mi-g^ = 21//J {z — z„).

But if z and z, are the distances from tlie plane of .ri/ to the

centre of gravity of the system at the times / and /„. and if

M is the mass of the system, we have

Mi — I.mz, .!/?„ = -iiiz^;

.'. Smi-^ — I.mr^^ = ^.Vy (5 — ig). (4)

Tiiat is, fjte inrtrase of vix viva of the si/sfrni drpeniU only

OH the verticdl dislance over which the centre of yravity

passes ; dud therefore the cis vica is the s(i)iie whenever the

centre of gravity passes thronyh a yiren horizontal plane.

HkM.—The 1 iple of vis viva whs first used l)y Huyghons in

)iis determinati m of the centre of osfillatifin of a body (Art. 2:i~,

Hi>ni. ).

Tlie advantage of this principle is that it gives at once a relation

between tli" velocities of the bodies considered and the co-ordinates

which detenuine their positions in space, so tliat when, from the

nature of the ])roblem, the position of all the bodies may be made to

depend on one variable, thi: e(iaation of vis viva is sufficient to deter-

mine the motion.

Supix)se a weight mg to be placed at any height h above the snr-

face of tlie earth, .^s it falls through a height z, the force of gravity

does work which is measured by mijz. The weight has acquired a

velocity r, and therefore its vis viva is Iwi:' which is equal to mgz

(An, 217). If tlie weight falls through the remainder of the height

//, gravity does rnori' work whicli is measured by mg (ti — z). Wlien

tlie weight has reached the ground, it has fallen as far as the circuui
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stances of tlie eaue permit, and j^ruvily tins done work wliicli is meas-

ured by infill, anil can do no more work until tbe weight has liei'n

lifted up again, llenee. tbroughmii the motion when the weight ban

de8ceu''ed through any space z, its vis viva. \nir-\ mgz\, together

with the Work that can be done diiriiit; the rest of the desient,

nig {h — J), is c msli.ni sind etpial to mgli, the work done by gravity

during tliu whole descent //.

If we conipliciili' the motion by making the weight work .-lome

niaeliiiie during its descent, the same theorem is still true. The vis

viva of the weight, when it has descended any spai'e z, is e<iual to the

work mgz which has been done by gravity during this ('escent, dimin-

ished by the work done on the niachiiie. Hence, as before, the vis

viva together with the ditterence lii'tweeii the work done by gravity

and that done on the machine during I hi' remainder of the descent is

constant and ('((ual to the excess, i f the work done liy gravity over

that done on the machine during the whole descent. (Sec liouth's

Rigid Dynamic!--, ]>. 270.)

253. Composition of Rotations.— It i.s often neees-

sarv to ciinijiound fotationti alioiit axes wliieli meet at a

point. Wiien a body is said to liave angular velocities

about three ditTereiit axes at the same time, it i.soidy meant

that the motion may be determined a.s follows: Divide the

whole time into a number of infinitesimal intervals eaeh

e([ual to ill. During eaeii of these, turn the body round

the three axes successively, through aughs (.)^ill,o)^i/l,tj.^i/l.

The result will be the same in whatever order the rotations

take place. 'I'hc final dLsjilacemeiit of the body is the

diagonal of the parallelopiped described on these three lines

;!S sides, and is therefore inilependent of the order of the

rotations. Since then the tiiree successive rotations are

(juite independent, they may be said to take place simul-

taneously.

Hence we infer that anguliir velocities ami anguhir accel-

erations may be cotniioundcd and resolveil liy the same

rules and in the same way as if they were linear. Thus. an

anguhir velocity (•> aliont any given axis may be resohed

into two. <.) CO.- (( and i-i .in </, i'bout exes at right angles to

m



494 Mui'iox Oh' A nidi I) rwDr.

each otiier and niakiiig angles a and
,^
— « witli tlic given

axLs.

Also, if a body liavc angular vcldcities Mj, o)g, m^ alxint

three axes at right angles, they are together e<|uivaleiit to

a single angular velocity w, where w = \/io];^+ i.y^^M"'\
al)out an axis inclined to tlie given axes at angles wliose

cosines aro respectively ', *, •^.

• W 6) w

254. Motion of a Rigid Body referred to Fixed
Axes.—Let us suppose that one point in the hody is (ixed.

Let this point l)e taken as the origin of co-ordinates, and
l(>t the axes OX, OV, OZ he any directions fixed in spjice

and at right angles to one another. Tlic body at the time
/ is fiiniing about some axis of instantaneous rotation
(Art. ^40). Let its angular velocity about this axis I)e w,

and let this be resolved into the angulai' velocities w,. 6)„,

<.)3 :'.''<'iit the co-ordinate axes. It is ref|uii'ed to l.,id the

resolved linear velocities, 'f '
f '

j, parallel to the axes of
lit III (11

co-ordinates, of a particle m at tlie point P, (./•, y, z), in
terms of the angular velocities about the axes.

These angular velocities arc sup-

posed positive "hen tliey tend the

same way rnund (he axes that

positive couples tend in Statics

(Art. (m). Thus the positive

directions of f.),. <.)„. m.^ are re-

spectively from // to z about :/•,

froni z to ./; about //. and from r
to // about X '. jMid (hose negative

which act in (lu' oj)po.sito direc-

(iiins,

liCl M- de(ennine (he V('loei(\

"f /' piiiallel (o the axis of z. Let l'X be the ordinate z,
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'< with tlie given t

',, <.)g, M.^ al)()iit

er t'((uivaleiit lo

at angles wliose

rred to Fixed
lie l)0(ly is (ixod.

o-ordiiiates, and
IS fixed in gj)jM?e

)()dy at the time

aneoiis rotation

tins axis lie w,

c'locities 6),. oig,

I'ed tu l.,id tlio

el to tlie axes of

A (•'•, y, z), in

es.

llie ordinate z,

\

and draw IWf jierpendienlar to the axis of x. The velocity

(if /Mue to rotation aliout OX is m^PM. Resolviii"- this

parallel to tlie axes of // and z, and reckoning tliose linear

velocities jiositive which tend from the origin, and vice

rerun, we have the velocity

along MN = - w,PM cos XPM = — oi.zi*»

I
and along NP ~ (i>iPM sin NPM = w,?/.

I
Similarly the velocity due to (he rotation abont OV par-

I allel to CXis <.>„z, ami parallel to OZ k — („„x. And that

iiie to the rotation ahont OZ parallel to OA' is — ut^y, and
parallel to 01' is (.).,.f.

Adding together those velocities which are parallel to

the same axes, we have fen- the velocities of P parallel to

the axes of x, y, and z, respectively.

doc

dv

dz^ = u,,y- u,,x

(1)

255. Axis of Instantaneous Rotation.—Every jiar-

ticle in the axis of insiaiitaneoiis rotation is at rest relative

to the origin; hence, for these particles each of 1 lie first

members of (1) in Art. -^M, will reduce to zero, and w
have

6),2 - 6)3?/ = 0,

'

6)3.7; — (i)j2 = 0, (1)
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which are the equalions of the axis of instantaneous rota-

lion, the third equation being a necessary consequence of

thefirst two j heuoe,

6), ' -5' O), ' (2)

that is, the instiintaiioous axis i,s a straiglit lino passing

throiigli the origin wliich is at rest at tlio instant con-

sidered
; and the whole body must, for the instant, rotate

about this liue.

Cor.—Denote by «, (i, y the angles which this axis

makes with the co-ordinate axes x, y, z, respectively,

then (Anal. Geom., Art. 175) we have

cos f< = w.

Vw,« + Wi* -f- Ws»

COS (3 =
Vw,2 + Wj^ + W3«

COS y =:

\/Wi* -f Wg* + 0)3''

which gives the position of the instant(nieons axis in termi*

of tlie angular rrtorities aliout tlie co-ordinate axes.

256. The Angular Velocity of the Body about the
Axis of Instantaneous Rotation.—Tlie angular veloc-

ity of the body iilxmi this axis will lie the snnic as that of

any single particle chosen iit pleasure. Let the particle be

taken on the axis of x ; if i'roni it we draw a perpendicular,

/). to the instantaiK'ous axis, llicn the distance of the par-

ticle from the origin being ./, we have
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s fixis in tertm
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ody about the
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sanic as lliat of

the particle lie

I perpendieular,

nee of the par-

p = xsm rt = a; Vl — eos^ a = x\/ ~*—d—i

Since, for this particle, ^ = U, « = 0, we have from (1)

of Art. 'Zb\, for the al)Solute velocity,

,^ Vdx^ -f- dif + dz^ .
-

V = ~ = X yu)
dt

* 4- f.) *
2 T^ "^S I

and hence, for the angular velocity v, we have

V
V
- \/w,« + Wjj2 -1- 6)

3 >

which is the am/ii/dv velocily required.

257. Euler's Equations.— To determine the general

equuliuns of motion of a body about a fixed point.

Lot the fixed jioint he taken as origin ; let {x, y, z) he

(he plai'e of any particle in. at the time /, referred to any

rectangular axes lixed in space, and let 0:r,, Oy^. Oz^ he

the lu'incipal axes of the hody (Art. 231). Differentiating

(1) of Art. '^54 with respect to /, we have

<Px dM„ dut,
,

, , ,
" -

.'/ -/, + "'2 (''1.'/ — '»2P) — Wj ((.)3.r— <.),

df^
~ ^ dt

z).

dh

dh

dt^

di

d(>>
,

du— ^ It + "'3 ('*'2« - "'3^) - '•'i ('^ly — <^«^)>
dt

•'/
,//

- - dt
^ .n + '''1 ('^3'- - '''i^) - <^« ('^«« — "»y)-

Henoting ity /,. I/, .V, tin- lirst terms respectively of (".').

(An. •-MH), and suhstiliiting the ahove values of , ^ and '

in the last of these eipnilions, we get
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l.m{x^+y^) j^— 'Lmyz
<w„

dt
-r —i^mxz

(=A (1)

'I'he other two equations iiiay be treated in the sunie way.

The coefficients in this equation are the moments wnA
))roihicts of inertia of tiie body with regard to axes lixed in

space (Art. 22-t), and are therefore varial)le as tlie b^dy
moves about. Let w^., lOy, w^ be the angular velocities about
the principal axes. fSince tiie axes fixed in space are per-

fectly arbitrary, let them l)e so chosen that the ])rincipal

axes are coinciding with them at the moment under con-
sideration. Then at this moment we have (Art. '^3;^;,

^mxy = 0, l.niyz = 0, l^mzx =
;

also o)j = (Oj., Wjj = Wj,, Wj =r lOg
; and likewise

dt

d<<>^

dt'
etc* Hence, denoting by A, B, (\ the moments of inertia

about the principal axes (Art. ^31), (1) becomes

in which all the coefficients are constants; and similarly

for the other two e(|uatioiis.

Hence, uniting them in order, and retaining the letters

a),, Wg, Wj, since they are e(jual to w.,., u^, w^. the three

lif
~

lit
' " •''""-''" '" ""' '"" niitriil'ir vrldciticH, (u, anil ...,, diiriii;; n

(jiv.'ii Hiniill time iillcT llic w^W nf .c, iDiiicUlfs will, til,, ii.xi- (if ./, will (IlllVr onlv Iit

Hi|ii.uii;iy Hliiili Icpciids ii|><)ii Ihciuiifln piwscMl Ihmiisri, by tluuixiHor.-', dmliiK
'timl ulviMi small llnio

;
ilm .llir.Mvi.tv bclw.rti ,.,, ai will IIiitWoiv bran

int. iKi'simiil olth.-scnmil oidrr ami Ih.Tifori' their dcrivallvcx will becciiiul. (Scu
I'iMllV Mpch., p. ISW. K(.r fnitlMT .lemoiiMnili.ih of this fipmllly, llic student l«

IfI'uirod to UoiitU'a lligid Uyimmic>s 1>1>. ISH and 18U.)

t
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equations of motion oj the body referred to the principal

axes at the fixed point are

A%'.-yn-n 'i"'i = L,

dt
iy-^,2 _ (6'_ j)o)3,.)j = M, (2)

" dl
(-1 B) WjW^ = ^>

These arc called Euler's Ecpjations.

Kcir.—If the l)ody is moving so there is no point in it

which is fixed in space, the motion of the body al)out its

centre of gravity is the Hime as if that point were fixed.

It is clear that, iuiUcad of referring tiie motion of the

liody to tiic principal axes at the fixed point, an Euler has

done, we may use an\ axes fixed in the body. JUit these

are in general so comj Heated as to be nearly useless.

258. Motion of a Body about a Principal Axis
through its Centre of Gravity.—//' a body rolato about

our of its principnl nxt'x passing t/iroufffi flic centre of

(/rnviti/, this axis irill miffer no /treasure from the centrifn-

gnl force.

Let the body rotate about the axis of «; then if u) be its

angular velocity, the centrifugal force of any jjarticle ni

will be (Art. I'JH, Cor. 1)

which gives for the .i-and //-components w/o)'./' and w((i)*y

;

and (he moments of these t'orecs with respect to (he axes of

y and x are for the wliole body

l.ini>>^xz, and ^un^yz.
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IJut thcso aro "iich ociuai to zero when tlio axis of rotation

is a principal axis (Art. •-i;5:i) ; iiciice, tlie centrifugal force

will have no tendency to iiniiiic the axis of z towards the

]ihuK' of .ry. In this case tlio only ctfcct of the forces miJ^x

ami nu^y^y ou the axis is to move it parallel to itself, or to

1 ranslate the 'jody in the directions of x and y. But the

sum of all these forces is

^tnui^x and ^nu<y^y,

each of which is eqiud to zero when the axis of rotation

passes through tiie centre of gravity ; hence we conclude

that, lohen a butly rotates about one of its princiiml (turs

passing t/trouyh its centre of ynirity, the rotation causes no

pressure upon tin' axis.

If the l)ody rotates al)out this axis it will continue to

rotate about it if tlie axis he removed. On this account a

principal axis tlirough the centre of gravity is called an

axis ofpernuuient rotation.*

Sen.—If the l)oily be free, and it begins to rotate about

an axis very near to a princii)al axis, the centrifugal force

will cause tiie axis of rotation to change continually, inas-

much as the foregoing conditions cannot obtain, and this

axis of rotation will citiier continually oscillate about the

principal axis, always rcuiiiining vei'y near to it, or else it

will remove itself indctinitely from the jjrincipal axis.

Hence, whenever we observe a free body rotating about an

axis during any lime, however short, we may infer tliat it

has continued to rotate al)out tiiat axis from tiie beginning

of the motion, and that it will continue to rotate about it

forever, unless checked bv some extraneous obstacle. (See

Young's Meehs.. p. "•:{(). also Venturoli. pp. K?") and KiO.)

* Pralt"« MccliH.. |). ia.>. Ciillcil al<c) a nalnnil n.ii« ql' ifilatinn. hcc Y<)iiii(t'ii

MechH.. p. 830 ; alw an inrariablc «.Ws, fi't' I'liccV Mi'cli^., Vol. II, I'
4''7.



VOA-. VELOCITY ABOUT A PRISCII'AL AXIS. OUI

axis of rotation

centrifugal force

of z toM'ards tlie

' the forces mul^x

el to it.self, or to

md y. But the

axis of rotation

CO we conclude

? priuciiHtl axes

'at ion causes no

ivill continue to

tiiis account a

ity is called an

to rotate about

'ntrifugal force

mtinually, inas-

btaiu, and this

illato about flic

to it, or else it

l)rincii)al axis,

ating alioMt an

v infer that it

the bcginnijiif

rotate alxuit it

obstacle. (See

i:)'} and 1(10.)

tffi/inii, Kcc VdiiUK's

1. II, p. *'<7.

259. Velocity about a Principal Axis when there

are no Accelerating Forces.— In liiis case L = .V =
y = in (2) of Art. :^57 ; also A, B, C are constant for

the same bjdy; and if we put

B-C ,, C-A ^ A- B rr

~A~ = ^' ~B~ = ^' ~C~ = ^'

{'I) of Art. 257 becomes

du^ = Huy^io^dt.

Put WjWgWg^/^ = dtp, and we have (1)

6)jr?Wi = Fdcp, Wg</wj = Gd(p, M^dio^ = Hd(f>\

and integrating, we get

w,» = -IF^ + a\ wg" = 'iG(p + b\ Wj^ = UI<t> + <^. (2)

where a, b, c are the initial values of Wj, w^, Wj ;* hence

from (1) and (2)

dt —
V(2i^ + o?) (^G^b + A^) (2H(p + (?)

(3)

Suppose now the body begins to turn about only one of

tlie principal axes, say the axis of ,r, with the angular

velocity a, then J = 0, c = 0, and (3) becomes

dl = d<t>

2VGH (fiV^iFtp + a«

Replacing '2F<f> -f «' by its value Wj^, and d<p by its value

u>,dM. ,

-n—> we haveF
dt = 1 dw^

V'Gir «•>,'-«*'

ita
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and integrating, we get

2« " Wj + a

Wj -f- a
(4)

Die constant C must he determined so that when / = 0.

(')y is tlie initial velocity a; hence eP^ = or C = — go,

which makes the first member of (4:) zero for every value

of /. Hence, at any time /, we must have w, = «; and

therefore from (2) <f>
= 0, and Wj = Wj r= 0. Conxe-

qiiciitlji the impressed velorify about one of the principal

(i.res of rotation continnes perpetual and uniform, as before

shown (Art. 258).

260. The Integral of Euler's Equations.—A body

rernires abonl its centre of ijravitif acted on by no forces but

snc/i as pass througti that point ; to intetjrate. Ike equations

of mat ion.

As the only forces acting on the body are tliose which

pass through its centre of gravity, they create no moment
(if rotation about an axis passing through that centre; and

therefore (2) of Art. 257 become

^'^ -(/>'- (7)6,20)3 = 0,

^'s«
— (C — A) WjW, = 0,

(It

— {A — B) <.),a)2 = 0,

(1)

t'lC priiu'ipal axes Ijeing drawn through the centre of

gravity.
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Multiply these erjuiitiotis severally (1) by w,, w,, w,
;

and {2) by Jwj, Bo)^, C'wj, and add ; then we have

dt dt

db)g dto.
i-i)

(3)

integrating, we have

Jw,« + Bo}^^ + Ou^i = hi;

where A' and k'^ are tlie constants of integration.

Eliminating Wj^ from (3), we have

A {A - C) w,2 + B{B- C) WgJ = k^ - 6%2;

and c.3« = ^-
^^

[^•^ _ /y/^a _ A (.1 _ //) w,aj. (5)

Substituting these values ol'wg and (.>j in the lirst of ecjua-

tions (1), we have

+
\A-C){A-B)^

a
_'t2-<',7tM

i?C' T' ~yr(.i-r7)/

which is generally an elliptic transcendent, and so does not

admit of intcgnitidii ill finite tt-rnis. In certain particular

cases it may be iiitcirrated. which will give the value of <•),

in terms of /, and if this value be substituted in (4) and (5),
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the values of Wj and Wj in terms of / will l)e known, iind

thus, in these eases, the problem admits of complete solu-

tion.

CoK.—Let lOx, u)y, (.)« be the axial components of the

initial angular veloeity about the principal axes when

/ = 0; then integrating the first of (^i), and taking the

limits corresponding to / and 0, we have

Jwi^ + Z?Wjj2 + C'wj" = .Iw/ + Bm.^ + do?. (7)

Let «, (3, y be the direction-angles of the instantaneous

axis at the time t relative to the j)riMcipal axes; so tliat, if

«) is the instantaneous angular velocity, and !;/(/•' is tlu'

moment of inertia relative to that axis, we have (Art. ih^).

w, = w cos ((, (.)g =: w cos /J, Wj = oj cos y, which sub-

stituted in (T), gives

Ai^/ + i?w^8 + C'w/ = i,yi {A cos2 ,i + B cos2 /3 + C'cos^ y)

= w2lwr;-2 (Art. t^'i, Cor.)

= the vis viva of the body;

from which it appears that the ri>< viva of the body is con-

stant tliroiiijlioiit tlw whole motion.

Ukm.—An api^licatioM of the general ecpuitions of rotatory

motion (Art. 357), which is of great interest and impor-

tance, is that of the rotatory phenomena of the earth under

the action of the attracting forces of the sun and the moon,

tlu' rotation being considered relative to the centre of

gravity and an axis j)assing through it, just as if the centre

of gravity was a ti.xed point (Art. ^49, Sch.) ; and the

jir()l)lem treated as purely a mathematical one. Also, in

addition to the sun and the moon, the problem may be

r
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extended so as to include the action of all the other bodies

whose influence affects the motion of the eartii's rotation,

lu fact the investigation of the motion of a system of bodies

in space miglit bo continued at great length ; but such

investigations would l>e clearly l)eyond the limits i)roposed

in this treatise. The student who desires to continue this

interesting subject, is referred to more extended works.*

EXAMPLES.

1. A hollow sidierical shell is filled with fluid, and rolls

down a rough inclined plane; determine its motion.

Let .\f and J/' be the masses of the shell and fluid

respectively, k and k' their radii of gyration respectively

about a diameter, and a and a' the radii of the exterior and

interior surfaces of the shell ; then using the same nota-

tion as in Art. 240, we have

iP.r
(M + M') ;^^ =.(.»/+ J/')5r sin a - F. (1)

As the sphericsd shell rotates in its descent down the plane,

the fluid has only motion of translation; so that the equa-

tion of rotation is

.^/^•^|,- = Fa. (2)

Multiplying (1) by a'' aiul (2) by a, aiul adding, we have

[{M + M') a^ + Mk^ '^ - (Af + M') a^(/ ain «. (3)

If the interior were solul, and rigidly joined to the .shell,

the equation of motion would Ik;

• Sec Price'a Mcch'g, Vol. II, PrattV MccbV, HouthV KiBid Dynamics, La I'lacc's

V.ccauiquc CMlcBtc, etc.

m
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(Px
L(.)/n'-J/')«H.l/^^+ .!/'/t-^j"^ = (.l/+.J/')«^^8in«. (4)

Intcf>ratiiig {.]) and (4) twice, and denoting l)y * and ,v' the
Himces tlirongli wiiicii the centre moves during tlie time /

in tiiese two eases respectively, we liave

s' (.¥ + M ') d^ -Y Ml^ (5)

Ro that a greater space is described by the sphere which lias

the lliiid than by that which lias the solid in its interior.

If the densities of the solid and the fluid are the same,
we have fro.a (5), by Art. 233, Ex. 14,

>'
~ 7«5"^2(?5" (P"'^^''^ ^"'^l- '^Iw'l's-, Vol. II, p. 368).

2. A homogeneous sphere rolls down within a rough
spherical bow! ; it is re(juired to determine the motion.

Let n l)e the radius of the sphere, and h the radius of the
bowl

; and let us suppose the sphere to be placed in the
bowl at rest. Lo"^ OCQ = <p,

Ql'A = e, BCO = (c, o) =
the angular velocity of the

ball about an axis through its

centre P, h = the correspond-

ing radius of gyration ; 0.]f=
X, MP = y \ m — Wxa mass of

the ball. Then Fig.ioi

— /? sin + /"cos <p\ (1)

^11



")a^g sin «. (4)

by * imd ,v' 1 ho

ing the time /

k'^

(5)

here which has

its interior.

I are the sunie,

.1. II, p. 368).

ithin a rough

le motion,

e radius of the

placed in the

I.IOI

'ffl

(1)

(^)

EXAMI'LES.

mi^ 77 = aF.
(It

507

(3)

Also X = {h — «i) sin <p ; y = f/ — {/> — a) cos <p.

dfi
= (b-a) cos <p

;;^J
- '/. - a) sin Q , (4)

(6)

(p'l

m {/> — a) . ^= F— mtj sin 0. (7)

Now to doterminc the angular velocity of the ball, we must

estimate tlie angle described by a lixed line in it, as I'A,

from a line fixed in direction, a.s PM, and tiie ratio of the

jnfinitesimal increase of this angle to that of the time will

lie the angular velocity of the ball.

_ tlMPA _ (H> dd
•*•

'^ - (H - (It
'^

(if

Since the sphere does not slide, (tO = b((c — 0)

;

a — b c/0^
w =

a (It
'

du) _ a — b (Prji^

dt ~ "
rt dP '

from (.'5), (7), and (8) we get

(P<t>

(*-«)^^" = --fi/siuc^;

(8)

(9)
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,, , /d(b\^ 10,7 ,
••• (* — «)

(,/[/
= -y (^^^ 't' — ^^^ «)• (1^)

Substituting (9) in (7) we have

F = ^y/*// sill (/». (11)

Substituting (4), (!)), (10), (11) in (1) we have

li z=^'-^(l7 cos 4> — 10 cos «) J

tlioreforc the pressure at the lowest point

= '-„- (1< — 10 cos u);

and the pressure of tiie ball on the bowl vanishes wlten

cos :=: i-^ COS «.

Cor.—If tlic l)all rolls ove:- a small arc at the lowest part

of the bowl, so that « and D are always small, co- »«, and

cos (p may be replaced by I — ^ -uid 1 — — re8])ectively

;

and from (10) we have

t;

tliiis (he ball comes (o rest at points whoso angular distance

IS « on both sides of (I, the lowest point of the iiowl ; and
the periodic time is

— af0

; {h - «)_(«a _ ,/,2)i

~

'. z= « COS
: [b - a]

'[p'^-^l



0. (10)

(11)

ve

ishes when

Hie lowest piirf:

mil, 0()> «, iiiid

l>'
,

J res])ectively

;

iigular (listaiicp

the bowl ; iiiiil

A'AM.l/y'/,AW. 500

therefore the oscillations are ])errorme(l in the same time as

those of a simple pendulum whose length is } {It — a),

(Art. l'.)4). (Price's Anal. Mech's, Vol. II, p. 369.)

3. A homogeneous sphere has an angular velocity (.i

about its diameter, and gradualh contracts, remaining

constantly homogeneous, till it has half the ori!j;inal

diameter; recpiired the tioal angular velocity. ,l/(.v. \m.

4. If the earth were a honiosreneous sphere, at what point

must it be struck, that it may receive its present velocity

of translatioi' and of rotation, tiie former being (JISOOO miles

l)er iiour tiearly? Ann. '^4 miles lunirly from the centre.

T). A homogeneous sphere rolls dow.i a rough inclined

j)lane; the inclined plane rests on a smooth horizontal

plane, along which it slides by reason of the pressure of the

sphere; required the motions of the inclined plane and of

ihe centre of the sphere.

Let in = the mass of tlie sphere,

M = the mass of the inclined

plane, a == the radius of the sphere,

a = the angle of the inclined

plane, Q its apex ; the place of Q
when / = ;

0' the point on the

])lane which was in contact with

the point A of tlie sphere when

/ = 0, at which time we may sup-

])ose all to be at rest ; ACP = 0, the angle through which

the sphere has revolved in the time t.

Let \w the origin, and let the horizontal and vertical

lines through it be the axes of r and // ; OQ —. ,r' ; and let

(.r.
//) (//, k) be the jdaces of the centre of the sphere at the

times / = / and / — respectively. Then the e({uatioii8

of motion of the sphere are

tPx

Fig. 102

m
dP

F cos « — R sin a.

^
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|ww'
dp

nF',

and the equation of motion of tlie i)hine is

(Px'^
^^2

— — -Fcosfc + It sin «.

From the geometry we have

X =. h -{- x' — aO cos a,

y =. k — ad sin o.

From these equations we obtain

, m cos a -

tn + M

— 5>w sin « cog « ^/*
~

7 {m +'M ) — 5wj cos^ « * T

'

a; = A
5^/sin « cos a

7(/« + M) — 5m cos^K 2'

_ ,
5 (?» + ii/ ) sin* rt 9^»

^
"~

7 (m + i/ ) _ Ahj cos* « "

y

which give the vahiea of a; and y in terms of t.

Also W3 obtain

(m + Af) {x - ft) sin a ~ M {y — k) cos « = ;

which is the equation of the path described by the centre
of the sphere ; and therefore this path is a straigiit line.

6. A heavy solid wheel in the form of a right circular

cylinder, is composed of two substances, whose volumes are

,1



mg.

w.

a J^.
I cos^

«

a

»

fft'

%'

)s rt = ;

l).v the centre

niiglit lint".

right cirt'ulur

se volumes are

i

KXAMl'LEH. fill

equal, iiiid wliose densities are /> and p ; these substances

are arranged in two different forms; in one case, that whose

di'nsitv is p (iccn|>ies tlie central part of the wheel, and tiie

other is placed as a ring round it; in the secontl case, the

places of the substances are interchanged ; / and /' are the

times in whidi the wheels roll down a given rough inclined

[ilane from rest; show that

(i
:

/'•*
: : 5/) + tp' : 5p' + 7p.

7. A homogeneous sphere moves down a rough inclined

plane, whose angle of inclinatiou « to the horizon is greater

than that of the angle of friction ; it is recjuired to show (1)

that the sphere will roll without sliding when fi is equal to

or greater than f tan «, and {'X) that it will slide and roll

when }i is less than f tan «, where /t is the coeflicient of

friction.

8. In the lask example show that the angular velocity of

the sphere at the time t irom rest = —'^ 1.

y. If the body moving down the plane is a circular

cylinder of radius = a, with its axis horizontal, show that

tlie body will slide and roll, or roll only, according as « is

greater or not greater than tau"* 'i(i.

ite






