IMAGE EVALUATION

 TEST TARGET (MT-3)

Photographic Sciences
Corporation

CIHM/ICMH Microfiche Series.

> CIHM/ICMH Collection de microfiches.

Canadian Institute for Historical Microreproductions / Institut canadieri de microreproductions historiques
(C)

The Institute has attempted to cbtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/

Couverture de couleur

Covers damaged/
Couverture endommagée

Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée

Cover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured piates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other materia!
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distortion le long de la ،large intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments:/
Commentaires supplémentaires:

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagéss

Pages restored and/or laminated/
Pages restaurées et/ou pelliculéesPages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées
Pages detached/
Pages détachées
Showthrough/
Transparence
Quality of print varies/
Qualité inégale de l'impression
Includes supplementary material/
Comprend du matériel supplémentaire

Only edition available/
Seule édition disponible
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/
Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué cl-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

Library of Congress
Photoduplication Service

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning 'CONTINUED"), or the symbol ∇ (meaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in ihe upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grâce à la générosité de:

Library of Congress Photoduplication Service

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la dernière page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le ces. Tous les autres exemplaires originaux sont filmés en commençant par la première page qui com: rte une empreinte d'impression ou d'illustration et en terminant par la dernière page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite, et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

ELEMENTARY TREATISE

on
ANALYTIC MECIINICS

WITH NUMEROUS EXAMPLES.
${ }^{B Y}+$
EDWARD A. BOWSER, LL.D.,
professor of mathebatics and rnginehring in rutgers collbge.

NINTH EDITION.

NEW YORK:
D. VAN NOSTRAND COMPANY 23 Murray St. and 27 Warren St.
1896.

COPYRIGHT, 18sh, BY E. A. BOWSER

TManerin 59 JAN 241946 sertal Reserd Dividen The Llowry avy \qquad

'T
leges,
try und
Dyım
The ten
day aply
chanies,
Kinetics
The
science.
The ant
alapted
tion und
where a
The
to devel
the mea
principl
The
prelimis
phes, is
l'art
inuporta
chter ul
itr ull
of righl

PREFACE.

$\boldsymbol{T} \boldsymbol{H E}$ present work on Analytic Mechanics or Dynamics is designed

 as a text book for the sumbents of scientific schools uad (${ }^{(0)}$. leges, who have received training in the elements of Analytic Geome try and the Calculns.Dynamies is here used in its true sense as the science of force Tho tendency among the best and most logical writers of the presen. day appears to be to us. this term for the science of Analytic Me. chanies, while the branch formerly ralled Dynamies is now temed

Kinetics.

The treatise is intemed especially for beginners in this branch of science. It involves the use of Analytic Geometry and the Cabealus. Whe analytic methet has been chiefly adhured to, as being better adapted to the trentment of the subject, more general in its applicathom and more fruitfut in results than the geometrie methon; and yet where a geometrie proof seemed preferable it has been introduced.

Thes aim has been to make every primeiple clear and intelligible, to develop the different theories with simplicity, and to explain fully the thenning and use of the various analytic expressions in which the principles are embedied.

The book consists of three parts. Part I, with the excopition of a preliminary clapter deveted to definitions and fundamental principles, is entirely given to Statios.

Part 11 is ocrupied with linematies, and the prineiples of lisis important bramel of mathematies nre wo troated that the stmone may - Her upon the study of lineties with clenr notions of motion, velue it F and necolfration. Part III treats of the lifietice of a particle athd of rigid lendies.

In this arrangement of the work, with the exception of Kinematics, I have followed the plan usually adopted, and made the subject of Statics precede that of Kinetics.

For the attainment of that grusp of principles which it is the special aim of the book to impart, numerous examples are given at the ends of the chapters. The greater part of them will present no serious difficutty to the student, while a few may tax his best efforts.

In preparing this book I have uvailed myself of the writings of many of the best nuthors. The chicf sources from which I have derived assistance are the trentises of Price, Minchin, Todbunter, Pratt, Routh, Thomson and Tait, 'Tait and Stecle, Weisbach, Venturoli, Wilson, Browne, G regory, lankine, Boucharlat, Pirie, Lagrange, and La Place, while many valuable hints as well as exampl :s have been obtained from the works of Smith, Wood, Bartlett, Young, Moseley, Tate, Magnus, Goodevi, Parkinson, Olmsted, Garnett, Renwick, Bottomley, Morin, Twisden, Whewell, Galbraith, Ball, Dana, Byrne, the Eneyelopmedia Britannica, and the Mathematical Visitor.

I have again to thank my old pupil, Mr. R. W. Prentiss, of the Nantical Almanac Office, and formerly Fellow in Mathematics at the Johns IIopkins T'niversity, for reading the MS. and for valuable suggestions. Several others ulso of my friends have kindly assisted me by correcting proof-shects and verifying copy and formule.
E. A. B.

Rutgens College,

New Brunswick, N. J., June, 1884. $\}$
art.

1. De
2. M
3. In
4. Bod
5. 12
6.
7. For
8. Ac
9.
10. Ge
11. Ma
12. N
13. Ch
14. F
15.
16. Ac
17. Mo
18. 1
19. M
20.
21.
22. Tl
23. M nade the it is the given at esent no his best itings of I have dhunter, , Ventuagrange, ave been Ioseley. ck, Botrne, the

, of the

 ${ }^{3}$ at the ble sugted me
TABLE OF CONTENTS.

PARTI.

OHAPTER I.
FIRST PRINCIPLES.
art. ${ }_{\text {a }}$ Definitions-Statics, Kinetics and Kinematics.................. 1

1. Definitions-Statics, Kinetics and Kinematics..................................
2. Matrin
3. Inertia.... 2
4. Body, Space and Time... 2
5. Rest and Motion... 2
6. Velocity .. 3
7. Formulæ for Velocity... 4
8. Acceleration.... 4
(1. Measure of Acceleration.. 5
9. Geometric Representation of Velocity and Acceleration...... 6
10. Mass ... 6
11. Momentum. .. 7
12. Change of Momentum... 7
13. Force 8
14. Static Measure of Force... 8
15. Aetion and Reaction..................... 9
16. Method of Comparing Forces................. ${ }^{9}$
17. Representation of Forces.. 10
18. Mensure of Arcelerating Forces. 10
19. Kinetic Meanure of Force. 11
20. Ahsolute or Kinetie Unit of Force.............................. . . 13
?2. Three Ways of Measuring Force.................... 14
21. Meaning of g in Dynamics. 15
ART.
, 24. Gravitation Units of Force and Mass. 16
: $\mathrm{\sim}$) Gravitation and Alsolute Mcasure. 17
Esamples 13

STATICS (REST).

CHAPTER II.

THE COMPOSITION AND RESOLUTION OF CONCURRING FORCES-CONDITIONS OF EQUILIBIRIUM

26. Problem of Statics.
27. Concurring and Conspiring Force21
21
28. Ccmposition of Conspiring Forces.22
29. Composition of Velocitics 28
30. Composition of Forces 2431. 'riangle of Forces.25
31. Three Concurring Forces in Equilibrium.2633. The Polygon of Forces27
32. Parallelopiped of Forees 28
33. Resolution of Forees. 30
34. Magnitude and Direction of Resultant 31
35. Conditions of Equilibrium 32
¿3. Resultant of Concurring Forces in Space. 34
36. Equilibrlum of Concurring Forces in Space 33
37. 'Tension of a String.
4
38. Eqnilibrinm of Concurring Forces on a Smooth Plane. 3!
39. Equilibrinm of Concurring Forces on a Sinooth Surlince 41
45

CHAPTER III.
(oMPOSITION AND RESOLCTION OF FORCES ACTING ON A RIGID BOHY.
43. A Rigid Borly 5

1. Transmissibility of Force 57
2. Resultant of 'Two l'arallel Forees 58
3. Moment of a Force 60
ART.
4. Signs of Moments. 61
5. Veometric Represencation of a Monient. 61

6. Moment of a Couple. 62
7. Effect of a Couple on a Rigid Body.............................. . .
8. Effect of Transterring Couple to larallel Planc not altered... 64
9. A Couple replaced by anothar Couple. 64
,j4. A Force and a cor:ple. 0 .
5.) Resultant of uny number of Couples. 66
10. Resultant of Two Couples.. 67

5\%. Varignon's 'Theorem of Moments. $\mathbf{0} 9$
58. Varignon's 'Theorem for Parallel Forces 71
59. Centre of Parallel Forces. 71
60. Equilitoritam of a Rigid Body under l’arnllel Forces.......... . 74
61. Equilihrium of a Rigid Boty unde: Forces in any Direction. . Tij
62. Equilibrium under Three Forces.. 77
63. Centre of Purallel Forct's in 1)itferent Planes.. 85
64. Equilibrium of Parullel Fores's in Space. 86
65. Equilibriun of Forces acting in uny Direction in Space...... 88

Examples. 90

OIIAP'TER IV.
CENTRE OF GRAVITY (CENTRE OF MASS).
66. Centre of Gravity . 100
67. Planes of Symmetry-Axes of symmetry. 101
68. Body Susprinded from a Point. 101
69. Body Supported on a Surtace. 102

71. Centre of (imavity of 'Two Masses. 103
72. Centre of (iravity of Part of a Body. 103
73. Centre of (iavity of a 'lriangle. 103
74. Cuntre of (iravity of a Triangular Pyramid. 105

Ti. Centre of (iravity of a Come. 106
86. Centre of (iravity of Frastum of Pyramid. 107
\%. Investigetions involving Integration.............................. . . 109
Tis. Centre of (iravity of the Are of a Curve.......................... 110

80. Polar Elements of a Plate Area. 118
RT. page 120
81. Donble Integration-Polar Formule
81. Donble Integration-Polar Formule
 124
8:2. Contre of Gravity of a Surface of Revolution 123
s4. Centre of (iravity of any Curved Surface 126
85. ('entre of Gravity of a Solid of Revolntion. 10%
8t. Polar Formule. 130
87. Centre of Gravity of any Solid. $1: 11$
88. Polar Flements of Mass. 133
89. Epeeial Methods. 136
90. Theorems of l'appus. 138Examples140
OHAPTER V.friction.
91. Frictlon 149
92. Laws of Friction. 150
93. Magnitudes of ('oefficients of Friction. 152
94. Angle of Friction. 152
95. Reation of a luagh Curve or Surf 153
90. Friction ou an Inclined Plane. 154
9\%. Friction on a Double Inclined Plane 150
98. Friction on Two Inclined Plane 159
99. Friction of a 'lrumion159
160
100. Friction of a livot.
Examples 182

CIIAPTER VI.

tile principle of Virtial yelocities.
101. Virtual Velocity.
102. Principle of Virtual Velocities...................................... 18亿
103. Nuture of the Disylacement 169
104. Egnation of Virtual Moments.
105. System of Particles ligidly (onnected...................... . 170

Examples ra

ART.
106. Fu
107. Mec
108. Sim
109. The
110. Equ
111. The
112. Chi,
113. The
114. 'To
115. The
116. Equ
117. 'Too
118. Kel
119. Reld
120. The
121. The
122. The
123. Fire
124. Sect
125. Thi
136. The
127. Mec
128. The
129. Rel

129a. Pr

OHAPTER VII.

MACHINES.

106. Functions of a Machine
107. Mechanical Advantage... . 178
108. Simple Machines.................................. 180
109. The Lever. 181
110. Equilibrium of the Lever. 181
111. The Common Bulance. 184
112. Chief Requisites of a Good Balance.................... 186
113. The Stcelyard.. 188
114. To Graduate the Common Steelyard............... 188
115. The Wheel and Axle. 190
116. Equilibrium of the Wheel and Axle.......................... . . 190
117. Toothed Wheels. 192
118. Relation of Power and Weight in Toothed Wheels. 193
119. Relation of Power to Weight in a Train of Wheels......... 194
120. The Inclined Plane.................................... 196
121. The Pulley. 197
122. The Sinple Movable Pulley.................................... . . . 198
123. First Gystem of Pulleys.. . . 198
194. Second System of Pulleys. 200
125. Third System of Pulleys....................................... . . . 201
126. The Wedge... . . . 202
127. Meehanical Advantage of the Wedge......................... . 202
128. The Screw. 204
129. Relation between Power and Weight in the Screw.......... 204

129a. Prony's Differential Screw. 206 Examples. 207

CHAPTER VIII.
THE FUNICULAR POLYGON-THE CATENARY-ATTRACTION
180. Equilibrium of the Funicular Polygon........................ 216
131. To Constract the Funicular Polygon.......................... 218
132. Cord Supporting a Lond Cuiformly Distributed.............. 219
183. The Common Catemary-Its Equation......................... . . 221

133a. Attraction of a Spherical Shell................................ . . 220
Examples 22θ

$F=$

PARTII.

KINEMATICS (MOTION).

CHAP'ERI.

RECTILINEAR MOTION.

ART Pagt
134. Definitions-Velocity 184. 231
136. Relation be 23
137. Relation when the Acceleration is Constant2
138. Relation when Acceleration varies as the Times. 235
139. Relation when Acceleration Vuries as the Distance $23:$
140. Equations of Dotion fir Falling Bodies. 23 2
141. Particle Projected Vertically Cpwards. 238
142. Compositions of Vilocities 212
143. Resolution of Velacities. 24
144. Motion on un Inclined Plane 245
145. Timers of Descelit down Chords of a Cirele 24
146. The Struight Line of Quickest Deseent. 248
Examples. 249

CHAD'LER II.

CURVILINEAR MOTION.

147. Remurks on Curvilinemr Motion.258
148. Composition of Uniform Volority mad Aeceleration 258
149. Composition and Resolution of Acerleration.(i)
150. Motion of Prujertilen in Vacue 2:16
151. The Path of a Purticle in Varno is a P Mabola. 210
15:. The P'armeter-Range-(iremest Iloight-lleight of' Direr trix. 2in
152. Todreity of a Particla at any point of its lath 264154. 'lime of Fhght along a llorizontal Plane261
153. Point at which a Projectile will strike an Inclined Plane. $2 \pi 0$

$\triangle R T$.

Pagr
156. Projection for Createst Range on a Given Plane. 970
15\%. The Elevation that the Paticle may pass a (iven Point 291
158. Second Method of Fimling Equation of Trajectory. 2%
159. Velocity of Diseharion of Balls and Sholls. 23
160. Angular Veloxity mad Angulaw Acceleration. 2π
161. Accelerations Along and Perpendicular to Radius Vector. 278
162. Accelerations Along and Parpendicular to Tungent. 279
163. When Accelaration Perpendicular to Radias Vector is zero 281
282
164. When Angular Velocity is Constan.t.284

PARTIII.

KINETICS (MOTION AND FORCE).

CII APTER I.
LAWS OF MOTION-MOTION ENDER TILE ACTION OF A VARLABLE FORCE—MOTION IN A RESISTING MEDIUM.
165 Definitions. 289
166. Newton's Laws of Motion. 289
167. Remarks on Law I 290
168. Remarks on Law 11. 291
169. Remarks on Law III. 294
170. Two Laws of Mosion in the Wrench Treatises. 295
171. Motion of Particle under an Attractive Forer. 295
122. Motion under the action of a Variable Repulsive Force. 298
183. Motion mader the action of an Ittrative Fores. 249
1\%. Veloeity nequired in Falling through a direat lleight 300
175 Motion in a Resisting Meditun. 302
1\% Motion in the dir agnimst the Aetion of Gavity. 301
1\%\%. Motion of a l'ropectile in a Resisting Molinm. 307
 30 O
179. Motion in the Atmospluere under a small Angle of ElevationEx:mules.:313

CHAPTER II.

CENTRAL FORCES.

art.180. Definitions.Page$3 \geqslant 1$
181. A Particle under the Action of a Central Attraction.321
325
183. Velocity of particle at any Point of its Orbit
325
325
184. Orbit when Attraction as the Inverse Square of Distance. $32!$
185. Suppose the Orbit to be an Ellipse 333
186. Kepler's Laws. 335
187. Nature of the Force which acts mpon the Planetary System 33
Examples 338
CHAP'TER III.
CONSTRAINED MOTION
188.]efinitions. 345
189. Kinctic Energy or Vis Viva-Work. 345
190. To Find the Reaction of the Constraining Curve 348
191. Point where Particle will lenve Constraining Curvo 340
192. Constrained Motion Under Action of (iravity:
350
350
193. Motion on a Clrcular Are in a Vertical Plane. 350
194. The Simple Pendulum. 352
105. Relation of Time, Langth, and Force of (Gravity 353
196. Height of Momantain betermined with I'endulum. 354
197. Depth of Mine Determined with Pendulum 355
198. Centrin"tal and Centrifigal Forece. 356
199. The C Centrifugal Forre at the Equator. 338
200. C'entrifugul Force at Different Datitades. 359
201. The Conicnl Pendulum-The dovernor.
361
361
Examples 362

OIIAPTER IV.
impatt.
200. An Impulsive Force. 370
203. Impanct or Collision. :171
SOL. Direct and C'entral lmpurt.
32
32
20.5. Whastheity of Bodkes-C'ondlecient of Restitution. 173

contents.

art.
page
page
206. Direct Impact of Inelastic Bodies. 374
20i. Direct lmpact of Elastic Bodies. 325
208. Lans of Kinetic Energy in Impract of Bodics. $3 \% 8$
209. Ollique Impact of Bodics. 380
210. Oblique Impract of Two Smooth Spheres. 38:
Examples. 383
CHAPTER V.
WORK AND ENERGY.
211. Definition and Mensure of Work. 839
212. General Case of Work done by a Force 390
213. Work on an Inclined Plne. 391
Examples 393
214. Horse Power. 395
215. Work of Raising a System of Weights 396
Examples. 397
216. Modulus of a Macline 400
Examples 401
217. Kinetic and Potentinl Energy-Stored Work 404
Examples 406
218. Kinetic Encrgy of a Rigid Body Rovolving round an Axis.. 408
219. Force of a Blow. 411
220. Work of a Water Full 412
221. The Daty of an Engine 414
222. Work of a Varinble Foree. 415
223. Simpson's Rule 415
Examples 417

CHAP'IER VI.

moment of inertia.

224. Moment of Inertia. 421
225. Moments of Inertin relative to Paruliel Axes or Planes. 412
2:2. Radins of Gyration. 4:4
226. Polar Moment of Inertha. 436
227. Moment of Inerth of a sidid of Rewohution. 137
 $1: 18$
 f.111
2:31. Moment of In ritia of a Lamina with respect to my Axis. $44:$
228. Priscipal Axes of a Borly 115333. Products of Inertia
Examples. $44 i$
CHAPTER VII.ROTATORY MOTION.
229. Impressed and Effective Forces. 45
230. D'Alembert's Primejple $4 i{ }^{2}$
231. Rotation of a Rigrd Body almat a Fixed Axis 454
23\%. The Componad Pebdulum 45
232. Lengrth of Necond's l'endilum Determined lixperimentally $4(i)$
233. Notion of a Body when Uneonst mined. $4(\mathrm{il}$
?40. Centre of Percussion-Axis of Nontaneons Rotation 414
234. Principal Ratins of (iyration Doternined D'actically 467
235. The Bullistic l'endulum. 46 s
40
236. Notion of a bunly about a It
4π
4π
D.J4. Motion of a Wheel and Axle
42
42
237. Body Rolling down an Inelined lane. 473
238. Fulling Body under an Impulse not through its Centre. 4π
Examples

CIIAPTER VIII.

MOTLON OF A SYSTEM UF RUG(D BODHES IN SJACE.
 481
Q49. Independener of the Motions of Transhation and Rotation. 4×2
2i0. Principle of the ('onservation of the Centre of Ciravity 48.
251. Principle of the ('omservation of Areas. N
2in. Conservation of Vis Viva
253. Composition of Rotutions $49:$
25.t Mation of a liarid Body ratorred Io Pixal Axas. 494
Diti. Axis of Instantaneous Rotation 40%
Si6. Angular Vrelocity 401
25\%. Calor's Pipuations. 194
 olocit ()ill
300. The Integral at Eulequs Putations 10
bxamplex. 501

ANALYTIC MECHANICS.

PARTI.

CHAPTER I.

FIRST PRINCIPLES.

1. Definitions.-Autytic Mechunics or Dynamics is the seienere which treats of the equilibrium and motion of boties mund the arion of force, It is accordingly divided into two parts, staties and hinetics.

Staties treate of the ernilibrimu of boties, and the conditions governing the forres which prothee it.
Gineties treatse of the motion of bodies, and the laws of the forees which prowluee it.
The consideration that the properties of motwon, velocits, and displacement may be treated apart from the particular forces producing them and independently of the boolies subjeet to them, has given rise to an anithiry branch of Dyme mics callend Kinematios.*
Although Kimmatios may not be regarded as propery
 important :mal uschul. and its applicotion (0) Dymmices so immerliatte. that a portion of this work is devoted to its tratment.

* This name was given by Ampere.

Kinematics is the science of pure motion, withont reference to matter or force. It treats of the properties of motion without regard to what is moving or how it is moved. It is an extension of pure geometry by introducing the ideal of time, and the consefuent ideal of velocity.
2. Matter.-Matter is that which can be pereeived by the senses, and which can transmit, and be acted upon by force. It has extension, resistance, and impenctrability.

A definition of matter whieh wonld satisfy the metaphysician is not required for this work. It is sufficient for us to conceive of it us capable of receiving and transmitting force: becanse it is in this aspect only that it is of importance in the present treatise.
3. Inertia.- By Inerlia is meant that property of matter by which it remains in its state of rest or uniform motion in a right line unless acted upon by force. Inertia expresses the fact that a body cannot of itself ehange its condetion of rest or motion. It follows that if a body change its state from rest to motion or from motion to rest, or if it change its direction from the natural rectilinear path, it must have been influcneed by some external caluse.
4. Body. Space, and Time.-A Body is a portion of matter limited in ever direction, and is consequently of a determinate form and volume.
A Rigid Boly is one in which the relative positions of its particles remain melanged by the netion of forees.
A Particle is a body indefinitely small in every direction, and though retaining its material properties may be treated as a gememetric puint.

Spuere is indeffinite extension. Time is any limited porition of duration.
5. Rest and Motion. - A lody is at rest when it romstantly ocenpies the same phace in spuce. A body is in
motion ferent p of rest position be consi
If the space, we retierence lute rest, relative; Hence th at the nat motion in may be at are in m muting 1 on the bo barge, an sent, whii

Mutio in equal
motion. the spac ble, it is the hod during instant

The s say, fore we woul it would it were to instunt
lit or ary to e
out refererties of low it i ntroduclocity.
eived by upon by bility.
ysician is e of it ms is in this
; of mat uniform Inertia linge its a body 1 to rest, ctitinear al eause. ution of tly of a
itions of ces. irection, 3 treated ted ${ }^{10 r}$
it con dy is in
motion when the body or its parts ocenpy successively different positions in space. But we cannot julge of the state of rest or motion of a body withont referring it to the positions of other bodies ; amd hence rest and motion must be considered as necessarily relatire.

If there were anything which we knew to be absolutely fixed in space, we might percenve absolute monion by change of phace with reference to that object. But as we know of no such thing as al solute rest, it follows that nll motion, as measured ly us, must be relative; i. e., must relate to something which we assume to be fixed Hence the same thing may often be suid to be at rest and in motion at the same time; for it may be at rest in regard to one thing, and in motion in regard to mother. For example, the objects on a vessel may be at rest with reference to each other and to the vessel, while they are in motion with reference to the meighboring shore. So a man, punting his barge up the river, by leaning ngainst a pele which rests on the bottom, and walking on the deek, is in motion relative to the barge, and in motion. lunt in a different manner, relative to the curvent, while he is at rest relative to the carth.

Motion is uniform when the body passes over equal spaces in equal times ; otherwise it is rariuble.
6. Velocity.-The velocity of a bolly is its rute of molion. When the velocity is comstont, it is measured by the space prased over in a mit of time. When it is varinble, it is measured, at any instant, by the space over whieh the body wonld pass in a muit of time, were it to more, during that unit, with the same velocity that it has at the instant considered.

The speed of in rilway train is, in geneml, variable. If we were to say, for example, that it was romning nt the rute of 30 miles an hour, we would not mean that it run 30 miles daring the last homr, nor that it would rom 30 miles dhring the next hour. We would mem that, if it were to run for an hour with the speed which it anw has, at the instant emsid ored, it would puss over exactly 30 miles.
la order to have a miform unit of veloeity, it is customary to express it in feet and seconds; and when velocities
are expressed in any other terms, they shonld be rednced to their equivalent value in feet and seconds. The mis velocity, therefore, is the velocity with which a boly describes one foot in oue secome ; other units may be takeln where convenience demands, as miles and hours, ete.

When we speak of the space passed over by a body, we mean the path or line which a point in the body or which:a particle deseribes.
7. Formula for Velocity.—If s be the space passed over by a particle in t mits of tine, and v the velocity, it is
reccive cariabl
9. I
is mea: time. the ve were t rate as

Call we har plain that, tor uniform velocity, we shall have

$$
\begin{equation*}
v=\frac{s}{t} \tag{1}
\end{equation*}
$$

that is, we divide the whole space passel over by the time of the motion orer that space.
If the velocity emontinually changes, equal inerements are not deseribed in efyal times, and the velocity becomes a function of the time. But howerer much the velocity changes, it may he regmeded as constant during the infinitesimal of time at, in whieh time the body will deseribe the infinitesimal of space $d s$. Hence, denoting the velocity at any instant by r, we lave

$$
\begin{equation*}
v=\frac{d s}{d t} . \tag{2}
\end{equation*}
$$

In this case the velucity is the ratio of two infinitesimals. These two expressions for the velocity are true whether the particle be moving in a right, or in a cmuved, line.
8. Acceleration is thr rate uf change of celocity. It is a velocity inerement. If the veloceity is inereasing, the anceleration is comsidered positive: if decreasing, it is negative.
Acceleration is said to be uniform when the velocity
edisced to The mit a al body be tuken etc. body. "e or which :s
cee passed ocity, it is
the time ments are ; becomes e relocity uring the body will soting the
(2)
itesimals. nether the
'ocity. It asing, the ing, it is
receives equal increments in equal times. Otherwise it is cariable.
9. Measure of Acceleration.-Uniform acceleration is measured by the aetual increase of veloeity in a unit of time. Variable aceceleration is teasured, at any instant, by the velocity which would be generated in a unit of time, were the relocity to inerase, during that unit, at the same rate as at the instant considered.

Calling f the aeceleration, v the velocity, and t the time, we have, when the acceleration is uniform,

$$
\begin{equation*}
f=\frac{v}{t} \tag{1}
\end{equation*}
$$

However variable the acceleration is, it may be regarded as constant during the infinitesimal of time $1 t$, in whieh time the increment of velocity will be $d r$. Hence, denoting the accelcration at the time t by f, we have

$$
\begin{equation*}
f=\frac{d v}{d t} \tag{2}
\end{equation*}
$$

We also have (Art. 8)

$$
v=\frac{d s}{d t}
$$

which in (2) gives

$$
\begin{equation*}
f=\frac{d v}{d t}=\frac{d}{d t} \cdot \frac{d s}{d t}=\frac{d^{2} s}{d t^{2}} \tag{3}
\end{equation*}
$$

That is, when the acceleration is variable it is measured, at any instant, by the derivative of the velocity regarled as a function of the time, or by the sceond derivative of the space regarded as a function of the time.

From (3) we get, by integration, when f is constant,

$$
\begin{equation*}
f t=\frac{d s}{d t}=v \tag{4}
\end{equation*}
$$

$$
\begin{array}{r}
\frac{1}{2} f t^{2}=s ; \\
2 f s=v^{2} \tag{6}
\end{array}
$$

which determine the velocity and space.
10. Geometric Representation of Velocity and Acceleration. -The velocity of a hody may be conseniently represented geometrically in magnitude and direction by means of a straight line. Let the line be drawn from the point at which the motion is considered, and in the direction of motion at that point. With a convenient scale. let a length of the line be ent off that shall contain as many units of length as there are mits in the velocity to be represented. The direction of this line will represent the direction of the motion, and its length will represent the velocity.
Also an acceleration may be represented geometrically by a straight line drawn in the direction of the velocity generated, and containing as many units of length as there are nuits of acceleration in the acceleration considered. Also, since an acceleration* is measured by the actual increase of velocity in the unit of time, the straight line which represents an acceleration in magnitnde and direetion will also completely represent the velocity generated in the unit of time to which the acceleration corresponds.
11. The Mass of a body or particle is the quantity of matter, which it contains; and is proportional to the Tolume and Density jointly. The Density may therefore be defined as the quantity of matter in a mit of voleme.
Let M be the mass, ρ the density, and V the volnme, o? a homogeneous body. Then we have

$$
\begin{equation*}
M=V_{\rho}, \tag{1}
\end{equation*}
$$

if we so take our units that the unit of mass is the mass of the unit volume of a body of unit density.

* Uniform acceleration is here meant.

If the density varies from point to point of the body, we have, by the above formula, amd the notation of the Integral Calculas,

$$
\begin{equation*}
J=f \rho d V=I \cdot I \rho d x d y d z \tag{*}
\end{equation*}
$$

city and a conveniI direction awn from nd in the ient scale, n as many o be repureesent the resent the
rically by e velocity has there onsidered. he actual aight line and direcnerated in onds.
uantity of al to the y therefore voleme. volume. ot
where ρ is supposed to be a known function of x, y, z.
In England the unit of mass is the imperial standard pound avoirdupois, which is the mass of a certain piece of platimum preserved at the standard office in London. On the continent of Europe the unit of mass is the gramme. This is known as the absolute or himetic unit of mass.
12. The Quantity of Motion,* or the Momentum of a body moving withont roiation is the product of its mass and velocity. A double mass, or a double velocity, would correpond to a double quantity of motion, and so ons.

Hence, if we take as the unit of momentum the momentum of the mit of mass moving with the unit of velocity, the momentum of a mass M moving with velocity r is $M v$.
13. Change of Quantity of Motion, or Change of Momentum, is proportional to the mass moving und the change of its veloc.iy jointly. If then the mass remains constant the change of momentum is measured by the prodnct of the mass into the change of velocity; and the rate of change of momentum, or acccleration of momentum, is measured by the product of the mass moving and the rate of change of velocity, that is, by the product of the mass moving und the acceleration (Art. 8). Thus, calling II the mass, we have for the measure of the rate of change of momentum,

$$
M \frac{d^{2} s}{d t^{2}}
$$

*This phrase was used by Newten in place of the more moderu term "Momentum."

14．Force．－Forre is any ranse which changes，or lends to change，a borly＇s stute of rest or motion．

A force always tends to prodnce motion，but may be pre－ vented from actablly prodacing it by the comenteraction of an erpal and opposite foree Several fores may so act on a bedy as to mentralize cach oflocr．When a body remain． at rest，thongh acted on by forces，it is satid to be in equilibrimi：or，in other words，the forees are said to prodnce cyuilibrinn．

What force is，in its nature，we do not know．Forees are known to us only by their effects．In order to measure them wo mast compare the effects which they produce under the same rivemmstanees．

15．Static Measure of Force．－The effect of a force depends on：1st，its matmitule，or intensity； $2 d$ ，its direc－ tion ；i．e．，the direction in which it tends to move the body on which it acts ：and 3d．its pmint of application ；i．e．，the point at which the foree is upplied．

The effect of a foree is prexsmre，and may be expressed by the weight which will eomoteract it．Every force，statically considered，is a pressure．and hence has magnitude，and may be measured．A force may prodnce motion or not， according as the hody on which it acts is or is not free to move．For example，take the case of a body resting on a table．The stme force which prodnees pressure on the table would eanse the body to lall toward the carth if the table were removed．

The canse of this pressure or motion is gravity，or the force of attraction in the earth．In the first case the attrac－ tion f the earth prodnces a pressure；in the second case it prodnces motion．Now either of these．viz，the preseme which the body exerts when at rest，or the quantity of motion it acquires in a mot of time．may be taken as a means of measuring the maguitude of the force of attrac－ tion that the earth exerts on the body．The former is
nyes, or tends
t may be prenteraction of may so act on body remainsaid to be in ; alle said to
now. Forces r to mpasure they produce
ect of a force dl, its direcnove the borly ion ; i.e., the expressed by ree, statically gnitude, and otion or not. is not free to resting oll a ssure on the e eurth if the
ravity. or the se the attracecond case it the prosure e quantity of be taken as :b ree of attrache former is
called the static method, and the forces are called static forces; the latter is called the Rimetic method, and the forces are called kimetic forers. Wright is the name given to the pressure which the attraction of the carth eanses a body to exert. Hence, since static forees produce pressure, we may take, as the umit of foref, a pressure of one pauml (Art. 11).

Therefore, the magnitude of a force may be meusured statically by the pressure it will produre upon some body, aud expressed in pounds. 'This is called the Static measure of force, and its mit, one pound, is called the Gravitation unit of force.
16. Action and Reaction are always equal and opposite.-This is a law of nature, and our knowledge of it comes from experience. If a force act on a body held by a fixed obstacle, the latter will oppose an equal and contrary resistance. If the force act on a body free to move, motion will ensue ; and, in the act of moving, the inertia of the body will oppose an equal and contrary resistance. If we press a stone with the hand, the stome presses the hand in return. If we strike it, we receive a blow by the act of giving one. If we urge it so as to give it motion, we lose some of the motion which we shonld give to our limbs by the same effort, if the stone did not impede them. In each of these eases there is a reaction of the same kind as the action, and equal to it.
17. Method of Comparing Forces.-Two forces are equal when being applied in opposite directions to a particle they maintain equilibrium. If we take two equai corces, and apply them to a particle in the same direction, we obtain a foree donble of either ; if we unite three equal forces we obtain a triple foree; and so on. So that, in gencral, to compare or measure forces, we have only to adopt the same method as when we eompare or measure
any duantitics of the same kind ; thant is, we must take some known force as the mit of force, and then express. in mumbers, the relai ion which the other forces beat to thie measuring mit. For example, if one pound be the mit of force (Art. 15), a force of 12 pounds is expressed by 12 ; and so on.
18. Representation of Forces by Symbols and Lines.-If P. Q. R., etc., represent forces, they are numbers expressing the number of times which the concrete unit of foree is contained in the given forces.

Forces may be represented grometrically by right lines; and this mode of representation has the advantage of giving the direction, magnituuc, and point of application of each force. Thns, draw a line in the direction of the given foree; then, having selected a unit of length, such as an inch, a foot, etc., measure on this line as many units of length as the given force contuins units of weight. The magnitude of the force is represented by the measured length of the line; its direction by the direction in which the line is drawn; and its point of application by the point from which the line is drawn.*

Thus, let the force P act at the point

Fig. I. A, in the direction AB , and let AB represent as many units of length as P contaius units of force; then the force P is represented geometrically by the line AB ; for the force acts in the direction from i to B; its point of application is at A, and its magnitude is represented by the length of the line AB.
19. Measure of Accelerating Forces.-From our definition of force (Art. 14), it is cleur that, when a single

[^0]e must take 1 express, in bear to this the unit of ssed by 12 ;
nbols and we numbers rete unit of right lines; ge of giving ion of each the given sneh as an ny units of right. The a measured 1 in which y the point

B Fig. 1. us innits of trically by 11 from A gnitude is

From our n us single nd no may te cunded it irection taker
foree acts upon a particle, perfectly free to move, it must produce motion; and hence the force may be represented to us by the motion it has prodnced. But motion is measured in terms of velocity (Art. 6), and consequently the velocity commumicated to, or impressed upon, a particle, in a given time, may be taken as a measure of the foreo. That is, if the same particle moves along a right line so that its velocity is increased at a coustant rate, it will be acted upon by a constant force. If a certain constant force, acting for a second on a given particle, generate a velocity of 32.2 feet per second, a donble foree, acting for one second on the same particle, would generate a velocity of 64.4 feet per sceond ; a triple force wonld generate n velocity of 96.6 feet per second, and so on.

If the rate of inerease of the velocity, (i.e., the acceleration), of the particle is not uniform, the foree acting on it is not uniform, and the magnitude of the force, at any point of the particles path, is measured by the acceleration of the particle at this point. Hence, since one and the same particle is eapable of moving with all possible accelerations, all forces may be measured by the velocities they generate in the same or equal particles in the same or equal times. When forces are so measured they are called Acceleratiny Forces.
20. Kinetic or Absolute Meas ure of Force.*-Let n equal particles be placed side by side, and let each of them be acted on miformly for the same time, by the same foree. Each particle, at the end of this time, will have the same velocity. Now if these n separnte particles are all united so as to form a body of n times the muss of each particle, and if each one of them is still neted on by the same foree as

* Arts, 20, 21, 22, and 25, treat of the Kinctle meanure of force, and may be omitted till Part 111 is reached; but it is conventent to present them once for alt, amb, for the aske of reference and comparinot, to place them with the Static measure of force at the begiming of the work.
before, this body, at the end of the time considered, will have the same velocity that each separate particia had, and will beacted on hy $/$ times the force which generated this veloeity in the partick. Comparing a single particle, then. with the body whose mass is n times the mass of this particle, :.e see that, to produce the same velocity in two bodies by forees acting on them for the same time, the magnitudes of the forees must be proportional to the masses on which they net.* Hence, generaliy, since foree raries us the velocity when the mass is constant (Art. 19). and varies as the mass when the velocity is constmont, we have, by the ordinary law of proportion, when both are changed, force raries as the product of the mass ueted upon and the velocity gencrated in a given time ; that is, it varies as the quantity of motim (Art. 13) it produces in a given mass in a given time. If the foree be variable, the rate ol' change of velocity is variable (Art. 19), and hence the force varies as the product of the mass on which it acts and the rate of change of velocity, i. r., it caries as the acceleration of the momentum (Art. 13). 'Therefore, if any force P act on 11 muss. M, we have

$$
\begin{equation*}
P \propto M f ; \tag{1}
\end{equation*}
$$

or, in the form of an equation

$$
\begin{equation*}
P=k \cdot M f \tag{2}
\end{equation*}
$$

where k is some constant.
If the unit of foree be taken as that force which, ucting on the unit of mass for the unit ol time, generates the unit of velocity, then if we put M equal to unity, i.e., tuke the muit of mass, and f ' equal to unity, i. e., take the unit of neceleration, we must have the foree producing the aceelcration equal to the mit of foree, or P equal to mity

Hence k must also be equal to unity, and we have the equation,

$$
\begin{equation*}
I^{\prime}=M f \tag{3}
\end{equation*}
$$

Therefore, the Kinetic or . Ibsolute measure of a force is the rate of chanye or ucceleration* of momentum it produces is " unit of time.
I' the force is constant, (3) becomes by (1) of Art. 9,

$$
\begin{equation*}
P=\frac{M v}{l} . \tag{4}
\end{equation*}
$$

And if the forec is variable, (3) becomes by (3) of Art. 9,

$$
\begin{equation*}
P=M \frac{d^{2} s s}{d l^{2}} . \tag{5}
\end{equation*}
$$

21. The Absolute or Kinetic Unit of Force. A second, a foot, and a pound being the units of time, spuce, and mass, respectively (Arts. 6 and 11), we are required to find the corresponding init of force that the above equation may be true. The unit of force is that force which, uctiny for one second, on the mass of one poumel, generates in it a velocity of one foot per second. Now, from the results of numerons experiments, it has been arcerrained that if it body, weighing one pound, fall freely for one second at the seil level, it will acquire a velocity of abont 32.2 feet per second; i, e., a foree equal to the weight of a pound, if acting on the mass of a pound, ut the sen level, generates in it in one second, if fiee to move, a velocity of nemerly 32.2 feet per secombl. It follows, therefore, that a foree of $\frac{1}{3,2} 2$ of the weight of a promin, if neting on the muss of a pound, it the sea level, genemtes in it in one second, if free to move, a velocity of one foot per sceond; and hence

* Bee Tatt and Steele's Dyuamles of a Particle. p. 43.
the unit of foree is. $\frac{1}{3 \%}$, of the weight of a pound, or rather less than the weight of half in omnee avoirdnpois ; so that half an ounce, aeting on the mass of a poomd for one second, will give to it a velocity of one foot per second. This is the British absolute kinetic* unit of force.

In order that Eq. 3 (Art. 20) may be universally true when a second, a foot, and a pound are the mits of time, space, and mass respectively, all forees must be expressed in terms of this unit.
22. Three Ways of Measuring Force.-(1.) If a force does not produce motion it is measured by the pressure it produces, or the number of ponnds it will support (Art. 15). This is the measure of Static Force, and its unit is the weight of a pountel.
(2.) If we consider forces as always acting on a unit of mass, and suppose that there are no forces ating in the opposite direction, then these forces will be measured simply by the velocities or accelerations which they generate in a given time. This is the mensure of Accelerating Force, and its unit is that force which, acting on the unit of mass, during the unit of time, yenerate the unit of velocity; hence (Art. 21), the unit of force is the force which, acting on one pound of mass for one secould, generates a velocity of one fool per second.
(3.) If forces act on different masses, and produce motion in them, and we consider us before that there are no forees acting in the opposite direction, then the forees ure measwred by the quantity of motion, or by the acceleration of momentum yenerated it a unit of time (Art. 20). This is the mensinte of Mmeiny Finee, mud its muit (Art. 21) is the farce which, arting an oue pound uf mass forr one second, !"uerates a velocity of our foot per second.
*Introduced ly Gauks.

It must be understood that when we speak of static, accelerating, or moving forees, we do not refer to different kinds of foree, but ouly to foree as measured in different ways.
23. Meaning of $!$ in Dynamics.-The most important ease of a constant, or very nearly constant, foree is gravity at the surface of the earth. The foree of gravity i : so nearly constant for places near the earth's surface, that falling bodies may be taken as examples of motion under a constant force. A stone, let fall from rest, moves at first very slowly. During the first tenth of a second the velocity is very small. In one second the stone has acquired a velocity of about 32 feet per second.

A great number of experiments have been made to aseertuin the exact velocity which a body would aequire in one second under the aetion of gravity, and freed from the resistance of the air. The most acenrate method is indirect, by means of the pendulum. The result of pendulum experiments mado at Leith Fort, by Captain Kater, is, that the velocity acquired by a body falling unresisted for one second is, at that place, 32.207 feet per second. The velocity aequired in one second, or the aceeleration (Art. 8), of a body falling freely in vacno, is found to vary slightly with the latitude, and also with the elevation above the sea level. In London it is 32.1889 feet per second. In latitude 45°, neur Bordeanx, it is 32.1703 feet per second.

This aceeleration is usually denoted by g; and when we say that at any place g is equal to 32 , we mean that the velocity generated per second in a body falling freely* moler the artion of gravity at that place, is a velocity of 32 feet per second. The nveruge valne of g for the whole of Great Britain differs but little from 32.2 ; and hence the ${ }^{-}$ numerical value of g for that comntry is taken to be 32.2 .

* A body is cald to be moving freely when it fe acted upon by no forces except thove under convideration.

The formula, deduced from observation, and a certain theory regarding the figure and density of the eurth, which may be employed to caleulate the most probable value of the apparent force of gravity, is

$$
g=G^{\prime}\left(1+.005133 \sin ^{2} \lambda\right)
$$

where G is the apparent force of gravity on a mit mass at the equator, and g the foree of gravity in any latitude i : the value of G, in terms of the British absolute unit, being 32.088. (See Thomson and Tait, p. 226.)
24. Gravitation Units of Force and Mass.-If in (3) of Art. 20, we put for P, the weight W of the body, and write g for f since we know the acceleration is g, (3) becomes

$$
\begin{align*}
W & =m g \tag{1}\\
\therefore \quad m & =\frac{W}{g} \tag{2}
\end{align*}
$$

and hence $\frac{W}{g}$ may be tuken as the measure of the mass.
In gravitution measure forces are measured by the pressure they will produce, and the unit of force is one pound (Art. 15), and the unit of mess is the quantity of matter in a body which weighs ! pounds at that place where the accelaration of gravity is \boldsymbol{g}.

This definition gives a unit of mass which is constant at the same place, bat ehanges with the loeality; i.e., its weight changes with the lucality while the quantity of matter in it remains the same. 'Thus, the mit of mass would weigh at Bordeanx $30.1: 03$ pomads (Art. 03), while at Leith Fort it would weigh $3 ?: 207$ pommeds. Let m be the mass of a body which weighs w pounds. 'The quantity of mater in this body remains the same when carried from place to place If it were possible to tramsport it to another phunet its mass
d a certain arth, which ble value of
mit mass at latitude λ : unit, being
ass.-If in f the body, ion is g, (3)

10 mass.
by the pres. : one pomud f matier in e the accel-
constant at e., its weight matter in it Id weigh at ith Fort it of a body tter in this e to place. net its mass
would not be altered, but its weight would be very different. Its waight wherever placed would vary directly as the force of gravity; but the aceeleration also would vary directly is the force of gravity. If placed on the sun, for example, it would weigh abont 28 times as much as on the surface of the earth; but the acecleration on the sum would also be 28 times as much as on the surface of the earth ; that is, the ratio of the weight to the acceleration, anywhere in the universe is constant, and hence $\frac{\pi}{g}$, which is the numerical value of $m\left(\mathrm{E}_{\mathrm{q}}, 2\right)$, is constant for the same mass at all places.
25. Comparison of Gravitation and Absolute Measure.-The ponnd weight has been long used for the measurement of force instead of mass, and is the recognized standard of reference. It came into general use becanse it afforded the most ready and simple method of estimating forecs. The pressure of steam in a boiler is always reckoned in pounds per square inch. The tension of a string is estimated in pounds; the force necessary to draw a train of ears, or the pressure of water against a lock-gate, is expressed in pounds. Such expressions as "a force of 10 pounds," or "a pressure of steam equil to 50 pounds on the inch," are of every day oceurrence. Therefore this method of measuring furces is eminently convenient in practice. For this renson, and because it is the one used by most engineers and writers of mechanics, we shall adopt it in this work, and adhere to the measurement of foree by pounds, and give ull our results in the usual gravitation mensure. In this measure it is convenient to represent the mass of a body weighing if pounds by the fraction $\frac{W}{g}$ (Art. 24), so that (3) of Art. 20 becomes

$$
\begin{equation*}
P=\frac{W}{g} f \tag{1}
\end{equation*}
$$

To do so it will only be necessary to assume that the unit of mass is the quantity of matter in a body weighing g pounds, and changes in weight in the same proportion that y changes (Art. 24).
Of course, the units of mass and force in (3) of Art. 20 may be either absolute or gravitation units. If absolute. the unt of mass is one pound (Art. 11), and the unit of force is $\frac{1}{g}$ pounds (Art. 21). If gravitation, the units are g times as great; i. e., the unit of mass is g pounds (Art. 24), and the unit of force is one pound (Art. 15).

The advantage of the gravitation measure is, it enables us to express the force in pounds, and furnishes us with a constant numerical representative for the same quantity of matter; that is to say, a mass represented by 20 on the equator would be represented by 20 , at the pole or on the sun. Hence, in (1), P is the static measure of any moving force [Art. 22, (3)], W is the weight of the body in pounds, g the acceleration of gravity (Art. 23), $\frac{W}{g}$ the mass upon which the force acts [(2) of Art. 24], and which is free to move under the action of P, the unit of mass being the mass weighing g ponnds, and f the acceleration which the force P produces in the mass.

EXAMPLES

1. Compare the velocities of two points which move uniformly, one through 5 feet in half a second, and the other through 100 yards in a minute. Ans. As 2 is to 1.
2. Compare the veiocities of two points which move uniformly, one through yow feet in one minute, and the other thro ghl $3 \frac{1}{2}$ yards in three-quarters of a second.

Ans. As 6 is to $\%$.
3. A ruilway train travels 100 miles in 2 hours, finul the average velocity in feet per second.

Ans. 73ł.
hat the unit weighing $!$ portion that
) of Art. 20 If absolute, the unit of re units are ounds (Art.). it enables us with a conquantity of 20 on the pole or on measure of eight of the 1 (Art. 23), rt. 24], and the unit of and f the mass.
which move ol, and the 2 is to 1 .
a move uniI the other

6 is to 7. 10118s, find 4ns. 73 f .
'4. One point moves miformly round the cireumference of a eirele, while another point moves uniformly along the diameter ; compare their velocities.

Ans. As π is to 1.
5. Supposing the earth to be a sphere 25000 miles in cireumference, and turning round once in a day, determine the velocity of a point at the equator.

$$
\text { Ans. } 1527 \% \text { ft. per see. }
$$

6. A body has described 50 feet from rest in 2 seconds, with uniform acceleration ; find the velocity acquired.
From (5) of Art. 9 we have

$$
f=25
$$

and from (4) we have

$$
f t=v
$$

$$
\therefore \quad v=50
$$

4. Find the time it will take the body in the last example to move over the next 150 feet.
-From (5) of Art. 0 we have

$$
s=\frac{1}{3} f^{2} ; \quad \therefore \text { etc. }
$$

Ans. 2 seconds.
8. A body, moving with uniform acceleration, describes 63 feet in the fourth second; find the acceleration.

Ans. 18.
9. A body, with uniform acceleration, describes 72 feet while its reloeity inereases from 16 to 20 feet per seeond; find the whole time of motion, and the accelemation.

$$
\text { Ans. } 20 \text { seconds; } 1 .
$$

$\sqrt{10}$. A body, in passing over 9 feet with uniform aceeleration, has its velocity inereased from 4 to 5 feet per second; find the whole space deseribed from rest, and the acceleration.
11. A body, uniformly accelerated, is found to be moring at the and of 10 seconds with a relocity which, if continued uniformly, wonld carry it through 45 miles in the next hour ; find the acceleration. Ans. $6 \frac{3}{5}$.
12. Find the mass of a straight wire or rod, the density of which varies directly as the distance from one end.

Take the end of the rod as origin ; let $a=$ its length : let the distance of any point of it from that end $=x$; and let $\omega=$ the arca of its transverse section, and $k=$ the density at the unit's distance from the origin. Then

$$
d V=\omega d x ; \text { and } \quad \rho=k x
$$

and (2) of Art. 11 becomes

$$
\dot{M}=\int_{0}^{a} k \cdot \omega x d x=\frac{k \omega a^{2}}{2}
$$

13. Find the mass of a circular plate of uniform thickness, the density of which varies as the distance from the centre.

Ans. $\frac{2}{3} \pi k \cdot h a^{3}$, where a is the radius, k the density at the unit's distance, and h the thickness
${ }^{v} 14$. Find the mass of a sphere, whose density varics inversely as the distance from the eentre.

Ans. $2 \pi \rho a^{3}$, where ρ is the density of the outside stratum.
to be morty which, if 45 miles in A $n s$. $6 \frac{3}{5}$. , the density le end. : its length : it end $=x$; ind $k=$ the Then
iform thick. ee from the
density at asity varies TI de stratum.

STATICS (REST).

CHAPTER II.

THE COMPOSITION AND RESOLUTION OF CONCURRING FORCES-CONDITIONS OF EQUILIBRIUM.
26. Problem of Statics. -The primary conception of force is that of a canse of motion (Art. 14). If only one force aets on a particle it is clear that the particle camot remain at rest. In staties it is only the tendency which forces have to produce motion that is considered. There must be at least two forees in statics; and they are considered as acting so as to counteract each other's tendency to cause motion, thereby producing a state of equilibrium in the bodies to which they are applied. The forces which atet upon a body may be in equilibrinm, and yet motion exist; but in such cases the motion is uniform. Ilence there are two kinds of equilibrinm, the one relating to bodies at rest, the other relating to bodies in motion. 'The former is sometimes called Static Equilibrium and the latter Kinetic (or Dynamic*) Equilibrinm. The problem of statics is to determine the condilions under which forces act when they keep bodies at rest.
27. Concurring and Conspiring Forces.-Resuit-ant.-When several forees have a common point of application they are called concuring forces; when they act at the same point and along the same right line they are called conspiring forecs.

The resultant of two or more forces is that force which singly will prodnce the same effect as the forees themselves when acting together. The individual forces, when considered with reference to this resultant, are called

[^1]components. The process of finding the resultant of several forces is called the composition of forces.
28. Composition of Conspiring Forces.-Condi tion of Equilibrium. - When two or more conspiring forces act in the same direction, it is evident that the resultant force is equal to their sum, and acts in the same direction.

When two conspiring forces act in opposite directions their resultant force is equal to their difference, and acts in the direction of the greater component.

When several conspiring forees act in different directions the resultant of the forces acting in one direction equals the sum of these forees, and acts in the same direction; and so of the forces acting in the opposite direction. Therefore, the resultant of all the forces is equal to the difference of these sums, and acts in the direction of the greater sum. Ilence, if the forces acting in one direction are reckoned positive, and those in the opposite direction negative, their resultant is equal to their algebraic sum; its sign determining the direction in which it acts. Thns, if P_{1}, P_{2}, P_{3}, etc., are the conspiring forces, some of which may be positive and the others negative, and R is the resultant, have

$$
\begin{equation*}
R=P_{1}+P_{2}+P_{3}+\text { ctc. }=\Sigma P \tag{1}
\end{equation*}
$$

in which Σ denotes the algebraic sum of the terms similar to that written immediately after it.

Cor.-The condition that the forces may be in equilibrimm is that their resultant, and therefore their algebraic sum, must ranish. Hence, when the forces are in equilibrium we must have $R=0$; therefore (1) becomes

$$
\begin{equation*}
P_{1}+P_{2}+P_{3}+\text { etc. }=\Sigma P=0 \tag{}
\end{equation*}
$$

nt of several
s.-Condi conspiring nt that the in the same 3 directions and aets in t directions etion equals direction ; direction. qual to the tion of the 1e direction te direction braic sum ; cts. Thus, s , some of , and R is
ms similar
in equilibr algebraic in equilib) les
29. Composition of Velocities.-If a partiele be moving with two uniform velocities represented in magnitude and direction by the two adjacent sides of a paraitelogrant, the resultant velocity will be repr sented in magnitude and direction by the diagonal of ti.e parallelogram.
Let the particle move with a uniform velocity v, which acting alone will take it in one second from A to B, and with a uniform velocity v^{\prime}, which acting alone will take it in one second from Λ
 to C ; at the end of one second the particle will be found at D , and AD will represent in magnitude and direction the resultant of the velocities represented by AB and AC .
Suppose the particle to move uniformly along a straight tube which starts from AB , and moves uniformly parallel to itself with its extremity in $\Lambda \mathrm{C}$. When the particle starts from A the tube is in the position $A B$. When the particle has moved over any part of $A B$, the end of the tube has moved over the same part of $A C$, and the particle is on the line AD. For example, tet AM be the $\frac{1}{n}$ th part of AB , and AN be the $\frac{1}{n}$ th part of $A \mathrm{C}$; while the partiele moves from A to M, the end A with the tube $A B$ will move from Λ to N , and the particle will be at P , the tube occupying the position NL, and PM being parallel and equal to AN. P can be proved to be on the diagonal AD as follows:

$$
\mathrm{AM}: \mathrm{MP}:: \frac{\mathrm{AB}}{n}: \frac{\mathrm{AC}}{n}:: \mathrm{AB}: \mathrm{AC}(=\mathrm{BD})
$$

therefore P lies on the diagonal AD . Also since

$$
\mathrm{AM}: \mathrm{AB}:: \mathrm{AP}: \mathrm{AD},
$$

the resultant velocity is uniform. Hence, the diagonal AD represents in magnitude and direction the r sultant of the velocities represented by $A B$ and $A C$.
This proposition is known as the Paralleloyram of Velocities.
30. Composition of Forces.-From the Puralleloyram of Felocities the Parallelogram of Forces follows immediately. Sinee two simultaneous velocities, AB and $A C$, of a particle, result in a single velocity, $A D$, and since these three velocities may be regarded as the measures of three separate forees all acting for the same time (A rt. 19), it follows that the effect produced on a particle by the combined action, for the same time, of two forees may be produced by the action, for the same time, of a single force. which is therefore called the resultant of the other two forces; and these forces are represented in magnitude and direction by AB, AC, and AD . (See Minchin, p. 7, alsa Garnetiss Dynamies, p. 10.)
Hence if two concurring forces be represented in magnitude aud direction by the adjucent sides of a paratlelogram, their resultant will be represented in magmitude and direction by the diayonal of the parallelogram. Care must be taken in constructing the purallelogram of forees that the components both act from the angle of the parallelogram from which the diagonal is drawn.

This propesition has been proved in varlous ways. It whs enunchated in its present form by Sir Isaac Newton, umi by Varignon, the colebrated muthemutioinn, in the year 1087, probalily indepentent of earh other. Since that time varlous prools of lt have been glven by ditlierent mathemuticimas. One work gives a disensslon, more or less complete, of 45 ohber proofs. A moted numbtle proof ls given by M. Poisson. (Lio Prime's ('ul., Vol. III, ן. :1b). Some authore ohject to proving the prallelogran of forves by menas of the purallelogrom of velochtes. (See Gregory's Mechanhes, p. 14.) 'Ther stadent who Whats other proofs is reforted to Dueingla's proof as fommel la Tood. linnter's Statles, p. 7, und in Galbralth's Mechanles, p. 7, and In many
a diagonal AD sultant of the allelogram of he Paralle\%oorces follows ities, AB and AD , and since measures of me (Art. 19), e by the commay be prosingle force. he other two agnitude and in, p. 7, also
ed in mayniarallelogram, and divection nust be taken hat the comlogram from

It was enunVarignon, the indepentent of been given hy m , more or less of is given by authors ohjeet - purullelogran (student who found in 'Thod. 7 , and in many
other works; or to Laplace's proof. (See Mécmique Celeste, Liv. I, chap. 1.)

If θ be the angle between the sides of the parallelogram, $A B$ and $A C$ (Fig. 2), and P and Q represent the two component forces aeting at A, and R represent the resultant, AD , we have from trigonometry,

$$
\begin{equation*}
R^{2}=P^{2}+Q^{2}+2 P Q \cos \theta \tag{1}
\end{equation*}
$$

an equation whieh gives the magnitude of the resnlant of two forces in terms of the magnitndes of the two forces and the angle between their directions, the forces being represented by two lines, both drawn from the point at which they uct.

Cor.-If $\theta=90^{\circ}$, and c and β be the angles which the direction of R makes with the directions of P and Q, we have from (1)

$$
\left.\begin{array}{rl}
R^{2} & =I^{2}+Q^{2} \\
\cos u & =\frac{I^{\prime}}{R}, \tag{3}\\
\cos \beta & =\frac{Q}{R}
\end{array}\right\}
$$

from which the mugnitude und direction of the resultant ure determined.
31. Triangle of Forces.-If three coneurrius forces be represented in mugniturle and alirection" b!! the sider of a triangle, taken in order, thell will be ill equilibrium.
Let ABC' be the triangle whose sides, taken in order, represent in mugnitude and direction three forees applied ut the point Λ. Complete
 2
the parallelogram $A B C D$. Then the forees, AB and BC , applied at A, are expressed by $A B$ and $A D$ (sinee $A D$ is equall and parallel to BC). But the resultant of AB and AD is $A \mathrm{C}$, acting in the direction AC . Therefore the three forces represented by AB, BC, and CA , are equivalent to two forees, $A C$ and CA, the former acting from A toward: C and the latter from C towards A, whicl, heing equal and opposite, will elearly balance eath other. Therefore the three forces represented by $A B, B C$, and $C A$, acting at the point A, will be in equilibrinm.

It should be observed that though BC represents the maynitude and direction of the component, it is not in the line of its action, because the three fores act at the point A.

The converse of this is also true; viz., If three conenring forces are in equitibrium, they may be represented in magnitude and direction by the sides of a triangle, drawn purallel respectively to the directions of the forces.

Thus, if AB and BC represent two foreess in magnitude and direction, AC will represent the resultant, and hence to produce equilibrium the resultant force AC must be opposed by an equal and opposite force CA. Therefore, the three forecs in equilibrinm will be represented by AB, BC, and CA.

Cor.-When three coneurring forees are in equilibrimm, eneh is equal and directly opposite to the resultant of the other two.
32. Relations between Threo Concurring Forces in Equilibrium. -Since the sides of a plane trinugle aro us the sines of the opposite angles, we huve (Fig. 3)

$$
\begin{aligned}
A B: B C(o r A B): A C & :: \sin , A B: \sin B A C: \sin A B C \\
& : \sin B A C: \text { sin BAC: sin BAB. }
\end{aligned}
$$

Hence, calling I^{\prime}, Q, mond R, the forees represented by AB, AD , and $\Lambda \mathcal{O}$, and denoting the ungles between the direc-
$A B$ and BC, (sinee AD is it of AB and fore the three cquivalent to m A toward: ing equal and Cheretore the acting at the
cpresents the is not in the ; act ut the
se conemring ted in magmgle, dratwn ces. 1 magnitude mad hence to st be opposed re, the three AB, BC, and
equilibrium, altant of the

ing Forces

 triungle arr g. 3)$: \sin$ ABC
: sill lBAl.
uted by AB. on the disece-
tions of the forces P and Q, Q and R, and R and l^{\prime}, by $\widehat{P Q}, \widehat{Q R}$, and $\widehat{R P}$, respectively, we have

$$
\begin{equation*}
-\frac{P}{\sin \widehat{Q R}}=\frac{Q}{\sin \widehat{R P}}=\frac{R}{\sin \widehat{P Q}} . \tag{1}
\end{equation*}
$$

Therefore, when three concurviny forces are in equil!terinm they are respectively in the same proportion as the sines of the a:gles included between the directions of the other two.
33. The Polygon of Forces.-If any number of concurring forecs be represented in mugnitude and direction by the sides of a elosed polygon taken in order, they will be in equilibrium.

Let the forces be represented in magnitude and direction by the lines $\mathrm{AP}_{1}, \Delta \mathrm{P}_{2}, \Delta \mathrm{P}_{3}, \Delta \mathrm{P}_{4}, \Delta \mathrm{P}_{6}$. Take $A B$ to represent $A P_{1}$, thronghl B draw BC equal and parallel to $A P_{8}$; the resultant of the forces $A B$ and $B C$, or ΔP_{1} and ΔP_{2} is represented by ΛC (Art. 31). Of course the foree, BC,
 nets at Λ and is parallel to 13C. Again throngh \mathbf{C} draw CD equal and purallel to AP_{3}, the resultant of AC und CD , or $\Lambda P_{1}, \Lambda P_{2}$, and ΛI_{3} is ΛD. Also through D draw DE equil and parallel to AP_{4}, the resultant of AD and DE, or $\Delta P_{1}, \Delta P_{2}, \Delta P_{3}$, mad AP_{4}^{\prime} is $\Lambda \mathrm{E}$. Now if $\Lambda \mathrm{E}$ is equal and oprosite to AP_{5} the system is in equilihrium (Art. 18). Henee the forees represented by AB, BC, CD, DE, EA will be in equilibrium.
Cor. 1.-Any me side of the polygon represents in mannitude and direetion the resultant of all the foreres represented by the remaining sides.
Con. ?.-- If the lines representing the foreds do not form 4 elosed polygon the forces are not in equilibrium ; :in this
case the last side, AE , taken from A to E , or that which is required to close up the polygon, represents in magnitude and direction the resultant of the system.
34. Parallelopiped of Forces.-If three colletrring forces, not in the sume plane, ure represented opiped. components $\triangle \mathrm{B}, \mathrm{AC}$, and AD .
in magnituale and alirection by the three edges of a parullelopipea, then the reswltant will be repre. sented in megniturle and direction by the diagonal; conversely, if the diagonal of a parallelopipea represents a force, it is equivalent to three forces represcnted by the edges of the prisallel-

Let the three edges $A B, \Lambda C, A D$ of the parallelopiped represent the three forces, applied at A. Then the resultant of the forces $A B$ and $A C$ is $A E$, the diagomal of the fince ABCE ; and the resultant of the forces AE and AD is AF , the diagonal of
 the parallelogram $A D F E$. Hence $A F$ represents the resultant of the three forces AB, AC, and AD ,

Conversely, the foree, AF , is equivalent to the three

Let I^{\prime}, Q, S represent the three forees $A \mathrm{~B}, \mathrm{AC}, \mathrm{AD} ; R$, the resultant ; c, β, γ, the angles whieh the direction of R makes with the directions of l^{\prime}, Q, S, and suppose the forees to net at right angles with each other. Then since

$$
\begin{gather*}
\bar{\Lambda} \mathrm{F}^{2}=\bar{\Lambda} \bar{B}^{2}+\overline{\Lambda \mathrm{C}^{2}}+\overline{\mathrm{A} \mathrm{D}^{2}}, \\
R^{2}=P^{2}+Q^{2}+S^{2} ; \tag{1}
\end{gather*}
$$

we have
also,
that which is in magnitude
iree concurrepresented vee enges of ill be repre. If the diaga parallelent to three ee prorallel-

epresents the to the three
$\mathrm{AC}, \mathrm{AD} ; R$, lirection of R stippose the Then since
(2)
from which the magnitude and direetion of the resultant are determined.
EXAMPLES.

1. Three forees of 5 lbs., 3 lis., and 2 lbs., respectively, act upon a point in the same direction, and two other forces of 8 lbs . and 9 lbs. aet in the opposite direction. What single foree will keep the point at rest? Ans. 7 lbs.
2. Two forees of $5 \frac{1}{2} \mathrm{lbs}$, and $3 \frac{1}{2} \mathrm{lbs}$., applied at a point, urge it in one direction ; and a force of 2 lhs., applied at the same point, urges it in the opposite direction. What additional force is necessary to preserve equilibrium?

$$
\text { Ans. }{ }^{4} \text { lbs. }
$$

3. If a force of 13 lbs . be represented by a line of $6 \frac{1}{2}$ meches, what line will represent a force of $; \frac{1}{2}$ lbs.?

Ans. 33 inches.
4. Two forces whose magnitudes are as 3 to 4 , ueting on a point at right ungles to each other, produce a resultant of 20 lbs.; required the component forces.

Ans. 12 lbs. and 16 lbs.
5. Let ABC be a triungle, und I) the middle point of the side BC. If the three forees represented in magnitude and direction by AB, AC, and AD , act upon the point A ; find the direction and magnitude of the resultant.

Ans. The direction is in the line AD, and the magnitude is represented by 3 AD .
6. When $P^{\prime}=Q$ and $0=60^{\circ}$, fiud R.

$$
A n s . \quad R=P \sqrt{3}
$$

7. When $I^{\prime}=Q$ und $0=135^{\circ}$, find R.

$$
A n s . \quad l=P \sqrt{2}-\sqrt{2}
$$

8. When $I^{\prime}=Q$ and $\theta=120^{\circ}$, find h.

$$
A n s . \quad R=P
$$

9. If $P=Q$, show that their resultant $R=2 P \cos \frac{\theta}{2}$
10. If $P^{\prime}=8$, and $Q=10$, and $\theta=60^{\circ}$, find R.

$$
A n s . R=2 \sqrt{ } 61 .
$$

11. If $P=144, R=145$, and $\theta=90^{\circ}$, find Q.

Ans. $Q=1 \%$.
${ }_{12}$. Two forees of 4 lbs . and $3 \sqrt{2} \mathrm{lbs}$. act at an angle of 45°, and a third force of $\sqrt{42} \mathrm{lbs}$. aets at right angles to their plane at the same point ; find their resultant.

Ans. 10 lbs.
35. Resolution of Forces.-By the resolution of forces is meant the process of finding the components of given forces. We have seen (Art. 30) that two concurring forees, P and $Q=\mathrm{AB}$ and AC , (Fig. 2) are equivalent to a single foree $R=\mathrm{AD}$; it is evident then that the single foree, R, acting along AD, can be replaced by the two forces, P and Q, represented in magnitude and direction by two adjacent sides of a parallelogram, of which AD is the diagonal.

Since an infinite number of parallelograms, of each of which AD is the diagonal, can be constructed, it follows that a single foree, R, can be resolved into two other forces in an infinite number of ways.
Also, each of the forces AB, AC, may be resolved into two others, in a way similar to that by which AD was resolved into two ; and so on to any extent. Hence, a single foree may be resolved into any number of forees, whose combined action is equivalent to the original force.

Cor.-Tho most convenient components into which a force can be resolved are those whose directions are at right angles to each other. This, let $O . Y$ and $O Y$ be any two lines at right
 angles to ench other, and P any force acting at O in the
planc
find
$O M$
clear
wher
OX.
angu
foree
line :
In
fore
other
work
along
comp
and t

Art.
simp) Fore Comp
the f rectu P_{1}, " ${ }_{1}$, their of x. No coml

magnttude and direction of resultant. 31

$=2 P \cos \frac{\theta}{2}$
find R. $=2 \sqrt{ } 61$. nd Q. $Q=1 \%$ an angle of lit angles to ant. ls. 10 lbs. ion of forces given forces. rees, P and single force e, R, acting s, P and Q, wo adjacent tgonul. , of each of d, it follows other forees
esolved into ich AD was nce, a single orces, whose ree.

at O in the
plane $X O Y$. Theu completing the rectangle $O M P N$ we find the components of I 'along the axes $O X$ and $O V$ to be $O M$ and $O N$, which denote by X and Y. Then we have clearly

$$
\left.\begin{array}{rl}
X & =P \cos \boldsymbol{\alpha} \tag{1}\\
Y & =P \sin \kappa ;
\end{array}\right\}
$$

where \boldsymbol{c} is the angle which the direction of \boldsymbol{P} makes with $O X$. These components X and Y are called the rectangular components. The reetangular component of a foree, P, along a right line is $P \times$ cosine of angle between line and direction of P.
In strictness, when we speak of the component of a given force along a certain line, it is necessary to mention the other line along which the other component acts. In this work, unless otherwise expressed, the component of a force along any line will be understood to be its rectangular component; i. e., the resolution will be made along this line and the line perpendienlar to it.
36. To find the Magnitude and Direction of the Resultant of any number of Concurring Forces in one Plane.-When there are several conenrring forees, the condition of their equilibrinm may be expressed as in Art. 33, Cors. 1 and 2. But in practice we obtain much simpler results by using the principle of the Resolution of Forces (Art. 35), than those given by the priweiple of Composition of Forces.
Let O be the point at which all the forces act. Through 0 draw the rectimgular axes $X X^{\prime}, Y Y^{\prime}$. Let I_{1}, P_{2}, P_{3}, etc., be the forees and $\omega_{1}, \kappa_{2}, \alpha_{3}$, ete., be the angles which their directions muke with the axis of x.
Now resolve ench force into its two
 components along the axes of x and y. Then the com-
ponents along the axis of x (x-components) are (Art. 35 , Cor.), $P_{1} \cos \varepsilon_{1}, P_{2} \cos \epsilon_{2}, P_{3} \cos \varepsilon_{3}$, etc., and those along the axis of y are $P_{1} \sin a_{1}, P_{2} \sin \epsilon_{2}, P_{3} \sin \epsilon_{3}$. ete.; and therefore if Γ and Y denote the algebraic sum of the x-components and y-components respectively, we have

$$
\begin{gather*}
\left.\begin{array}{rl}
X=P_{1} \cos \varkappa_{1}+P_{2} \cos \varkappa_{2}+P_{3} \cos \varkappa_{3}+\text { etc. } \\
=\Sigma P \cos \alpha \\
Y=P_{1} \sin \varkappa_{1}+P_{2} \sin \varkappa_{2}+P_{3} \sin \alpha_{3}+\text { etc. } \\
=\Sigma P \sin \epsilon_{2}
\end{array}\right\} \tag{1}
\end{gather*}
$$

Let R be the resultant of all the forces acting at O, and θ the angle which it makes with the axis of x; then resolving R into its x - and y-components, we have

$$
\begin{align*}
& \left.\begin{array}{l}
R \cos \theta=\Gamma=\Sigma P \cos \alpha \\
R \sin \theta=Y=\Sigma P \sin \alpha .
\end{array}\right\} \tag{3}\\
& \ddots \quad R^{2}=Y^{2}+Y^{2} ; \tan \theta=\frac{Y}{X}
\end{align*}
$$

which determines the magnitude and direction of the resultant.

Scir-Regarding $O Y$ and $O Y$ as positive and $O X^{1}$ and $O Y^{1}$ as negative as in Annl. Geom., we see that $O x_{1}, O y_{1}$, $O y_{2}$ are positive, and $O x_{2}, O x_{3}, O y_{3}$ are negative. The forces may always be considered as positive, and hence the signs of the components in (1) and (2) will be the same as those of the trigonometric functions. Thus, sinee c_{2} is $>90^{\circ}$ and $<180^{\circ}$ its sine is positive and cosine is negative: since α_{3} is $>180^{\circ}$ and $<27^{\circ}$ both its sine and cosine are negative.
37. The Conditions of Equilibrium for any number of Concurring Forces in one Plane. - For the cquilibrimu of the forces we must have $R=0$. Hence (4) of Art. 36 becomes

$$
\begin{equation*}
X^{2}+Y^{2}=0 \tag{1}
\end{equation*}
$$

) are (Art. c., and those ${ }_{2}, P_{3} \sin \pi_{3}$. braie sum of ly, we have

+ etc. $\}$
+etc. $\}$
(2)
at O, and θ hen resolving
tion of the
nd $O X^{1}$ and at $O x_{1}, O y_{1}$, gative. The id hence the the same as , since r_{2} is e is negative: ad cosine are
any number e equilibrium t) of Art. 36

Now (1) cannot be satisfied so long as X and Y are real quantitics unless $X=0, Y=0$; therefore,

$$
\begin{equation*}
Y=\Sigma P \cos \varepsilon=0 \text { and } \Gamma=\Sigma P \sin \varepsilon=0 \tag{2}
\end{equation*}
$$

Hence these are the two necessary and sufficient conditions for the equilibrinm of the forces; that is, the ctgebraic sum of the rectangular components of the forces, alony each of two right lines at right angles to each other, in the ptane of the forces, is equat to zero. As the conditions of equilibrium must be independent of the system of co-ordinate axes, it follows that, if any number of concnuring forces in one plane are in equilibrium, the algebraic sum of the rectangular components of the forces along every right line in their plane is zero.

1. Given four equal concurring forces whose directions are inclined to the axis of x at angles of $15^{\circ}, 75^{\circ}, 135^{\circ}$, and 225°; determine the magnitude and direction of their resultant.

Let each force be equal to P; then

$$
\begin{gathered}
X=P \cos 15^{\circ}+P \cos 75^{\circ}+P \cos 135^{\circ}+P \cos 225^{\circ} \\
=P \frac{3^{\frac{1}{2}}-2}{2^{\frac{1}{2}}} \\
\begin{array}{c}
Y=P \sin 15^{\circ}+P \sin 75^{\circ}+P \sin 135^{\circ}+P \sin 225^{\circ} \\
=P\left(\frac{3}{2}\right)^{\frac{1}{8}} \\
\therefore \\
\therefore \quad R=P(5-2 \sqrt{3})^{\frac{1}{4}} \\
\therefore \\
\tan \theta=\frac{3^{\frac{1}{2}}}{3^{\frac{1}{2}}-2} .
\end{array} .
\end{gathered}
$$

2. Given two equal concurring forces, P, whose dircctions are inclined to the axis of x at angles of 30° and 315°; find their resultant.

Ans. $R=1.59 \mathrm{P}$.

$$
2^{*}
$$

${ }^{\vee}$ 3. Given three coneurring forees of 4,5 , and 6 lls ., whose direetions are inclinel to the axis of x at angles o: $10^{\circ}, 60^{\circ}$, and 133° respectively; find their resultant.

$$
\text { Ans. } R=\sqrt{97}+15 \sqrt{6}-39 \sqrt{2}
$$

4. Given three equal concmring fores, P, whose directions are inelined to the axis of x at angles of $30^{\circ}, 60^{\circ}$, and 165°; find their resultant.

$$
\text { Ans. } R=1.67 P
$$

${ }^{5}$ 5. Given three coneurring forees, 100,50 , and 200 lbs ., whose directions are inclined to the axis of x at angles of $0^{\circ}, 60^{\circ}$, and 180°; find the magnitude and direction of their resultant.

$$
\text { Ans. } R=86.6 \mathrm{lbs} ; \quad \theta=150^{\circ} .
$$

38. To find the Magnitude and Direction of the Resultant of any number of Concurring Forces in Space.-Let P_{1}, P_{2}, P_{3}, etc., be the forees, and the whole be referred to a system of restangular co-ordinates. Let ${ }_{1}, \beta_{1}, \gamma_{1}$, be the angles whieh the direction of P_{1} makes with three reetangular axes drawn through the point of applieation ; let $\kappa_{2}, \beta_{\mathbf{2}}, \gamma_{\mathbf{2}}$, be the angles phieh the direction of P_{2} makes with the same axes; $\mu_{3}, \beta_{3}, \gamma_{3}$: the angles which P_{3} makes with the same axes, ete. Resolve these forees along the eo-ordinate axes (Art. 35) ; the components of P_{1} aloug the axes are $P_{1} \cos \alpha_{1}, P_{1} \cos \beta_{1}, P_{1}$ $\cos \gamma_{1}$. Resolve each of the other forees in the same way, and let X, Y, Z, be the algebraic sums of the components of the forces along the axes of x, y, and z, respectively; then we have

$$
\left.\begin{array}{r}
X=P_{1} \cos \alpha_{1}+P_{2} \cos \alpha_{2}+P_{3} \cos \alpha_{3}+\text { etc. } \\
=\Sigma P \cos \alpha_{2} . \\
Y=P_{1} \cos \beta_{2}+P_{2} \cos \beta_{2}+P_{3} \cos \beta_{3}+\text { etc. } \\
=\Sigma P \cos \beta . \\
Z=P_{1} \cos \gamma_{1}+P_{2} \cos \gamma_{2}+P_{3} \cos \gamma_{3}+\text { etc. } \\
=\Sigma P^{2} \cos \gamma .
\end{array}\right\}
$$

But muld
and 6 lbs . at angles o: ant. $-39 \sqrt{ }$. hose direc$)^{c}, 60^{\circ}$, and $=1.67 \mathrm{P}$.
dd 200 lbs ., t angles of lirection of $=150^{\circ}$.
on of the Forces in s , and the o-ordinates. tion of P_{1} h the point h the direc$3_{3}, \gamma_{3}$: the c. Resolve ; the com$\cos \beta_{1}, P_{1}$ same way. omponents spectively;

Let R be the resultant of all the fores; and let the ungles which its direction makes with the three axes lee ". b, r; then as the resolvel parts of R along the three cerordinate ases are equal to the sum of the resolved purts of the several components along the same ases, we have

$$
\begin{equation*}
R \cos a=X, \quad R \cos b=Y, \quad R \cos c=Z \tag{2}
\end{equation*}
$$

Syuariug, and adding, we get

$$
\begin{gather*}
R^{2}=X^{2}+Y^{2}+Z^{2} \tag{3}\\
\cos a=\frac{X}{R}, \quad \cos b=\frac{Y}{R}, \quad \cos c=\frac{Z}{R} \tag{4}
\end{gather*}
$$

which determines the magnitude of the resultant of any system of forees in space and the angles its direction makes with three reetangular axes.
39. The Conditions of Equilibrium for any number of Concurring Forces in Space.-If the forces are in equilibrium, $R=0$; therefore (3) of Art. 38 becomes

$$
X^{2}+Y^{2}+Z^{2}=0
$$

But as every square is essentially positive, this cannot be muless $Y=0, Y=0, Z=0$; and therefore

$$
\begin{equation*}
\mathbf{\Sigma} P \cos \epsilon=0, \quad \Sigma P \cos \beta=0, \quad \Sigma P \cos \gamma=0 \tag{1}
\end{equation*}
$$

and these are the conditions among the forces that they may be in equilibrium ; that is, the sum of the components of the forces along euch of the three co-ordinate axes is equal to zero.
40. Tension of a String.-By the tension of a string is meant the pull along its fibres which, at any point, tends to stretch or break the string. In the application of the preceding principles the string or cord is often used as a
means of communicating force. A string is said to be perfectiy flexible when any force, however small, which is applied otherwise than along the direction of the string. will change its form. In this work the string will le regarded as perfectly tlexible, inextensible, and withont weight.

If such a string be kept in equilibrium by two forecs. one at each end, it is clear that these forees must be equal and act in opposite directions, so that the string assumes the form of a straight line in the direction of the forces. In this case the tension of the string is the same throughout, and is measured by the force applied at one end ; and if it passes over a smooth peg, or over any number of smooth surfaces, its tension is the same at all of its points. If the string should be knotted at any of its points to other strings, we must regard its continuity as broken, and the tension, in this case, will not be the same in the two portions whieh start from the knot.

EXAMPLES

i. A and B (Fig. 8) are two fixed points in a borizontal line; at A is fastened a sting of length b, with a smooth ring at its other extremity, C, through which passes another string with one end fastened at B, the other end of
 whieh is att: ched to a given weight W ; it is required to determine the position of C .
Before setting thout the solution of statical problems of this kind, the student will elear the ground before lim, and greatly simplify his labor by asking himself the following questions: (1) What lines are there in the figure whose lengths are already given? (2) What forees are there whose magnitudes are already given, and what are the corces whose magnitudes are yet unknown? (3) What
id to be per11, which is the string. ring will be nd withont
two forees, ist be equal ing assumes the forces. me throughe end; and number of f its points. ints to other ren, and the the two por-

required to
problems of ore lim, and e following figure whose are there hat are the
(3) What
variable lines or angles in the figure would, if they were known, determine the required position of C ?

Now in this problem. (1) the linear magnitudes which are given are the lines AB and AC . (2) The forces arting at the point C to keep it at rest are the weight W , a tension in the string CB , and mother tension in the string ca. Of these W is given, and so is the tension in CB, which must also be equal to W, since the ring is smooth and the tension therefore of WCB is the same throughout and of course equal to W . But as yet there is nothing determined abont the magnitude of the tension in CA. And (3) the angle of inclination of the string CA to the horizon would, if known, at onee determine the position of C. For if this angle is known, we can draw AC of the given length; then joming C to B, the position of the system is completely known.

Let $\mathrm{AB}=a, \mathrm{AC}=b, \mathrm{CAB}=\theta, \mathrm{CBA}=\phi$, and the tension of the string $\Lambda \mathrm{C}=7$. Then, for the equilibrium of the point C under the action of the three forces, W, W, and T, we apply (2) of Art. 37, and resolve the forces horizontally and vertically: and equate those acting towards the riglt-hand to those acting towarde the left ; and those acting upwards to those acting downwards. Then the horizontal and vertical forees are respectively

$$
\begin{gathered}
W \cos \phi=T \cos \theta \\
W \sin \phi+T \sin \theta=W
\end{gathered}
$$

Eliminating T we have

$$
\begin{align*}
& \cos \theta=\sin (\theta+\phi) ; \\
& \therefore \quad 2 \theta+\phi=90^{\circ} . \tag{1}
\end{align*}
$$

Also, from trigonometry we have

$$
\begin{equation*}
\frac{\sin (\theta+\phi)}{\sin \phi}=\frac{a}{b} ; \tag{2}
\end{equation*}
$$

from (1) and (2) θ and ϕ may be found ; and therefore T may be found; and thus all the eircumstances of the problem are determined.
2. One end of a string is attached to a fixed point, A, (Fig. 9); the string, after passing over a smooth peg, B, sustains a given weight, \mathbf{P}, at its other extremity, and to a given point, C , in the string is knotted a given weight, W. Find the posi-
 tion of equilibrium.

The entire length of the string, ACBP , is of no consequence, since it is clear that, once equilibrinm is established, P might be suspended from a point at any distance whatever from B. The forces acting at the point, C , are the given weight, W, the tension in the string, CB, which, since the peg is smooth, is P, and the tension in the string CA, which is manown.

Let $\mathrm{AB}=a, \mathrm{AC}=b, \mathrm{CAB}=\theta, \mathrm{CBA}=\phi$, and the tension of the string, $\mathrm{AC}=T$. Then for the equilibrium of the point C , we have (A t. 3 z),

$$
\begin{equation*}
\frac{P}{\mathrm{~N}^{\prime}}=\frac{\cos \theta}{\sin (\theta+\phi)} \tag{1}
\end{equation*}
$$

also, from the geometry of the figure, we have

$$
\begin{equation*}
b \sin (\theta+\phi)=a \sin \phi \tag{2}
\end{equation*}
$$

From (1) and (2) we get

$$
\begin{aligned}
\frac{P}{W} & =\frac{b \cos \theta}{a \sin \phi} \\
\sin \phi & =\frac{b W^{\prime}}{a J^{\prime} \cos \theta} \\
\therefore \quad \cos \phi & =\frac{\sqrt{a^{2} P^{2}-b^{2} W^{2} \cos ^{2} \theta}}{a l^{\prime}} .
\end{aligned}
$$

or
therefore T nces of the

if no consemm is estabay distance point, C, are CB, which, 1 the string
ϕ, and the cquilibrium
(1)
(2)

Expanding $\sin (\theta+\phi)$ in (2), and substituting in it these values of $\sin \phi$ and $\cos \phi$, and reducing, we have the equation

$$
\cos ^{3} \theta-\frac{P^{2} a^{2}+\frac{H^{2}}{2}\left(a^{2}+b^{2}\right)}{2 a b W^{2}} \cos ^{2} \theta+\frac{P^{2} a}{2 W^{2} b}=0,
$$

from which θ may be found. (See Minchin's Statics, p. 29.)
3. If, in the last example. the weight, W, instead of being knotted to the string at C , is suspended from a smooth rins, whioh is at liberty to slide along the string, ACB , find the position of equilibrium.

$$
\left\lfloor n s \cdot \sin \theta=\frac{W}{2 P}\right.
$$

41. Equilibrium of Concurring Forces on a Smooth Plane.-If a particle be kept at rest on a smooth surface, plane or curved, by the action of any number of forces applied to it, the resultant of these forces must be in the direction of the normal to the surface at the point where the particle is situated, and must be equivalent to the pressure whieh the surface sustains. For, if the resultant had any other direction it conld be resolved into two components, one in the direction of the normal and the other in the direction of a tangent; the first of these would be opposed by the reaction of the surfuce; the second being mopposed, would canse the partiele to move. Hence, we may dispense with the plane altogether, and regard its normal reaction as one of the forces by which the particle is kept at rest. Therefore if the particle on which the statical forces act be on a smooth plame surfice, the ense is the same as that treated in Art. 3!, viz, equilibrium of a purticle acted apou by any number of foress; and in writing down the equations of equilibrimm, we merely have to include the normal reaction of the plane among all the others.

EXAMPLES.

1. A heavy particle is placed on a smooth inclined plane, AB, (Fig. 10), and is sustained by a foree, P, which acts along $A B$ in the vertical plane which is at right angles to Al ; find P, and also the pressine on the in-
 clined planc.
The only effect of the inclined plane is to produce a normal reaction, R, on the particle. Hence if we introduce this foree, we may imagine the plane removed.

Let W^{\prime} be the weight of the partiele, and a the inclination of the plane to the horizon.
Resolving the forces along, and perpendicular to $\mathbf{A B}$, since the lines along which forces may be resolved are arbitrury (Art. 37), we have suceessively,
and $\quad R-W \cos \boldsymbol{c}=0, \quad$ or $\quad R=W \cos \alpha$.
If, for example, the weight of the particle is 4 oz., and whe inclination of the plane 30°, there will be a normal pressure of $2 \sqrt{3} \mathrm{oz}$. on the plane, and the force, P, will be 2 oz .
2. In the previous example, if P act horizontally, find its magnitude, und ulso that of R.

Resolving along Al 3 and perpendicular to it , we have successively,

$$
\begin{array}{r}
P \cos \pi-W \sin \star=0, \quad \text { or } \quad P=W \tan \alpha ; \\
\text { und } P \sin \pi+W \cos \pi-R=0, \quad \therefore \quad R=\frac{W}{\cos \pi} .
\end{array}
$$

3. If the particle is sustained by a foree, P, making a given angle, 0 , with the inclined plane, find the magnitude of this force, and of the pressure on the plane, all the forees acting in the sume vertical plane.

Resolving along and perpendicular to the plane successively, we have

$$
P \cos \theta-W \sin a=0
$$

and

$$
R+P \sin 0-W \cos \varepsilon=0
$$

from which we obtain

$$
I=W \frac{\sin \pi}{\cos \theta} ; \quad k=W \frac{\cos (a+\theta)}{\cos \theta} .
$$

Rem.-The advantage of a judieions selection of directions for the resolution of the forees is evident. By resolving at right ungles to one of the mannown forces, wo obtain in equation free from that foree; whereas if the directions are selected at random, all of the forees will enter each equation, which will make the solution less simple.
The student will observe that these values of P and R could have been obtained at onee, without resolution, by Art. 32.
42. Conditions of Equilibrium for any number of Concurring Forces when the particle on which they act is Constrained to Remain on a Given Smooth Surface.-If a purtiele be kept at rest on a smooth surface ly the action of any mumber of forees mplied to it, the resultant of these forees must be in the direction of the normal to the surface ut the point where the purticle is siluated, und must be equivalent to the pressure whieh the surfuce sustains (Art. 41). Hence since the resultant is in the direction of the normal, and is destroyed by the reac-
tion of the surface, we may regard this reaction as an additional force direetly opposed to the normal iorce.
Let N be the normal reaction of the surfice, and c, β, γ, the angles which N makes with the co-ordinate axes of x. y, and z, respectively. Let X, Y, Z, be the sum of the components of all the other forces resolved parullel to the three axes respectively. The reaction N may be considered a new force, which, with the other forcee, keeps the particle in equilibrinm. Therefore, resolving N parallel to the three axes, we have (Art. 39),

$$
\left.\begin{array}{l}
X+N \cos \varkappa=0, \\
Y+N \cos \beta=0, \tag{1}\\
Z+N \cos \gamma=0 .
\end{array}\right\}
$$

Let $u=f(x, y, z)=0$, be the equation of the given surfice, and x, y, z the co-ordinates of the rarticle to which the forees are applied. We have (Aral. Geom., Art. 175),

$$
\left.\begin{array}{l}
\cos a=\frac{a^{\prime}}{\sqrt{a^{\prime 2}+b^{\prime 2}+1}}, \tag{2}\\
\cos \beta=\frac{b^{\prime}}{\sqrt{a^{\prime 2}+b^{\prime 2}+1}}, \\
\cos \gamma=\frac{1}{\sqrt{a^{\prime 2}+b^{2}+1}},
\end{array}\right\}
$$

where a^{\prime} and b^{\prime} are the tangents of the angles which the projections of the normal, N, on the co-ordinate planes $x z$ and $y z$ make with the axis of z. Siace the normul is perpendicular to the plane tangent to the surfane at (x, y, z). the projections of the normal are perpendicalar to the traces of the plane. Therefore (Anal. Geom., Art. 2%. Cor. 1), we have

$$
\begin{equation*}
1+u a^{\prime}=0 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
1+b b^{\prime}=0 \tag{4}
\end{equation*}
$$

ction as all force.
and κ, β, γ, e axes of x. sum of the urullel to the e considereel os the partirallel to the
of the given rarticle to ral. Geom.,
es which the te plunes $x z$ rmul is perut (x, y, z), char to the 1., Art. 2%
in which

$$
a=\frac{d x}{d z}, \quad a^{\prime}=\frac{d x^{\prime}}{d z^{\prime}}, \quad b=\frac{d y}{d z}, \quad b^{\prime}=\frac{d y^{\prime}}{d z^{\prime}}
$$

(Calculus, Art. 56a.) Substituting in (3) and (4), we have
and

$$
\begin{aligned}
& 1+\frac{d x}{d z} \cdot \frac{d x^{\prime}}{d z^{\prime}}=0 \\
& 1+\frac{d y}{d z} \cdot \frac{d y^{\prime}}{d z^{\prime}}=0
\end{aligned}
$$

from which

$$
\begin{align*}
& \frac{d x^{\prime}}{d z^{\prime}}=-\frac{d z}{d . c}=\frac{\frac{d u}{d x}}{\frac{d u}{d z}}\left(\text { (.al. Art. 87) }=a^{\prime}\right. \tag{5}\\
& \frac{d y^{\prime}}{d z^{\prime}}=-\frac{d z}{d y}=\frac{\frac{d u}{d y}}{\frac{d u}{d z}}=b^{\prime} \tag{6}
\end{align*}
$$

and

Substituting these values of a^{\prime} and b^{\prime} in (2) and multiplying both terms of the fraction by $\frac{d u}{d z}$, we have

$$
\left.\begin{array}{l}
\cos \alpha=\frac{\frac{d u}{d x}}{\sqrt{\left(\frac{d u}{d x}\right)^{2}+\left(\frac{d u}{d y}\right)^{2}+\left(\frac{d u}{d z}\right)^{2}}}, \\
\cos \beta=-\frac{\frac{d u}{d y}}{\sqrt{\left(\frac{d u}{d x}\right)^{2}+\left(\frac{d u}{d y}\right)^{2}+\left(\frac{d u}{d z}\right)^{2}}}, \tag{7}
\end{array}\right\}
$$

which give the ralues of the direction cosines of the normal at (x, y, z).
Putting the denominator equal to Q, for shortuess, and substituting in (1) and transposing, we have

$$
\begin{align*}
X & =-\frac{N}{Q} \cdot \frac{d u}{d x}, \tag{8}\\
Y & =-\frac{N}{Q} \cdot \frac{d u}{d y}, \tag{9}\\
Z & =-\frac{N}{Q} \cdot \frac{d u}{d z} \tag{10}
\end{align*}
$$

Eliminating \boldsymbol{N} between these threc equations, we obtain the two independent equations,

$$
\begin{equation*}
\frac{X}{\frac{d u}{d x}}=\frac{Y}{\frac{d u}{d y}}=\frac{Z}{\frac{d u}{d z}} \tag{11}
\end{equation*}
$$

which express the conditions that must exist among the applied forces and their directions in order that their resultant may be normal to the surface, i. e., that there may be equilibrium. If these two equations are not satisfied, equilibrium on the surface cannot exist. Hence the point on a given surface, at which a given particle moder the action of given forces will rest in equilibrium, is the point at which equations (11) are satisfied.

Con. 1.-Squaring equations (8), (9), (10) and adding, we get

$$
\begin{gather*}
X^{2}+Y^{2}+Z^{2}=N^{2}\left[\frac{\left(\frac{d u}{d x}\right)^{2}}{Q^{2}}+\frac{\left(\frac{d u}{d y}\right)^{2}}{Q^{2}}+\frac{\left(\frac{d u}{d z}\right)^{2}}{Q^{2}}\right]=N^{2} \\
\therefore N=\sqrt{X^{2}+Y^{2}+Z^{2}} \tag{12}
\end{gather*}
$$

of the normal
shortness, and
which is an equation of condition for equilibrium. If (13) c:mnot be satisfied at any point of the surface, equilibrium is impossible.

Cor. 3.-If the forces all act in one planc, the surface becomes a plaue curve; let this curve be in the plane $x y$, then $z=0$; therefore (11) and (13) become

$$
\begin{equation*}
\frac{X}{\frac{d u}{d x}}=\frac{Y}{\frac{d u}{d y}} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
X d x+Y d y=0 \tag{15}
\end{equation*}
$$

in which (14) or (15) may be used according as tho equation of the curve is given as an implicit or explicit function.
EXAMPLES.

1. A particle is placed on the surface of an ellipsoid, and is acted on by attracting forees which vary directly as the distunce of the particle from the principal planes* of section; it is required to determine the position of equilibrium.

Let the equation of the ellipsoid be

$$
u=f(x, y, z)=\frac{x^{2}}{\overline{a^{2}}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}-1=0 ;
$$

$$
\therefore \quad \frac{d u}{d x}=\frac{2 x}{a^{2}}, \quad \frac{d u}{d y}=\frac{2 y}{b^{2}}, \quad \frac{d u}{d z}=\frac{2 z}{c^{2}}
$$

and let the x-, y-, and z-components of the forces be respeetively,

$$
X=-u_{1} x, \quad Y=-u_{\mathbf{2}} y, \quad Z=-u_{\mathbf{3}} x
$$

then (11) will give

$$
u_{1} a^{2}==i_{2} b^{2}=u_{1} c^{2} ;
$$

whieh may be put in the form

$$
\frac{u_{1}}{a^{-2}}=\frac{u_{2}}{b^{-2}}=\frac{u_{3}}{e^{-2}}=\frac{u_{1}+u_{2}+u_{3}}{a^{-2}+b^{-2}+c^{-2}}
$$

If these conditions are fulfilled, the particle will rest at all points of the surface.
2. Again, take the same surface, and let the forces vary inversely as the distances of the point from the prineipal planes; it is required to determine the position of equilibrian.

$$
\text { Here } \quad X=-\frac{u_{1}}{x}, \quad Y=-\frac{u_{9}}{y}, \quad z=-\frac{u_{\mathbf{s}}}{z} ;
$$

therefore (11) becomes

$$
\frac{\frac{x^{2}}{a^{2}}}{u_{1}}=\frac{\frac{y^{2}}{b^{2}}}{u_{2}}=\frac{\frac{z^{2}}{\bar{c}^{2}}}{u_{5}}=\frac{1}{u_{1}+} \frac{1}{u_{2}+u_{3}}=\frac{1}{u}
$$

by putting u for $u_{1}+u_{2}+u_{3}$,

$$
\therefore x=u\left(\frac{u_{1}}{u}\right)^{\frac{1}{2}}, \quad y=i\left(\frac{u_{1}}{u}\right)^{\frac{1}{2}}, \quad z=c\left(\frac{u_{3}}{u}\right)^{\frac{1}{4}},
$$

which in (12) gives

$$
\begin{aligned}
N^{2} & =\frac{u_{1}{ }^{2}}{x^{2}}+\frac{u_{2}{ }^{2}}{y^{2}}+\frac{u_{3}{ }^{2}}{z^{2}} \\
& =u\left[\frac{u_{1}}{a^{2}}+\frac{u_{2}}{b^{2}}+\frac{u_{3}}{c^{2}}\right] .
\end{aligned}
$$

3. A particle is placed inside a smooth sphere on the concave surface, and is acted on by gravity and by a repulsive force which varies inversely as the square of the distanee from the lowest point of the sphere; find the position of equilibrium of the particle.

Let the lowest point of the sphere be taken for the origin of co-ordinates, and let the axis of z be vertical, and positive upwards; then the equation of the sphere, whose radius is a, is

$$
x^{2}+y^{2}+z^{2}-2 a z=0
$$

Let $W=$ the weight of the particle, and $r=$ the distance of it from the lowest point; then

$$
r^{2}=x^{2}+y^{2}+z^{2}=2 a z
$$

Also, let the repulsive force at the unit's distace $=u$; then at the distance r it will be

$$
=\frac{u}{r^{2}}=\frac{u}{2 a z}
$$

$\therefore \quad X=\frac{u}{2 a z} \cdot \frac{x}{r}$,

$$
\begin{aligned}
& Y=\frac{u}{2 a z} \cdot \frac{y}{r} \\
& Z=\frac{u}{2 a z} \cdot \frac{z}{r}-W
\end{aligned}
$$

Let $N=$ the normal pressure of the curve; then (8) and (10) give

$$
\begin{gathered}
\frac{u}{2 a z} \cdot \frac{x}{r}+N \frac{x}{a}=0, \\
\frac{u}{2 a z} \cdot \frac{z}{r}-W+N \frac{z-a}{a}=0 ;
\end{gathered}
$$

from which we have

$$
r^{3}=\frac{u a}{W} ; \quad z=\frac{u^{\frac{y}{t}}}{2 a^{\frac{1}{t}} W^{\frac{2}{z}}} ;
$$

whence the position of the particle is known for a given weight, and for a given value of u. (See Price's Anal. Mechanies, Vol. I, p. 39.)
4. Two weights, P and Q, are fastened to the ends of a string, (Fig. 11), which passes over a pulley, O; and Q hangs treeiy when P rests on a plane curve, $A P$, in a vertical plane ; it is required to find the position of equilibrinm when the curve is given.

The forces which att on P are (1) the tension of the string in the line OP, which is equal to the weight of Q,(2) the weight of P acting vertically downwards, (3) the normal reaction of the eurve R.

Let O be the origin of co-ordinates, and the axis of x vertical and positive downwards. Let $O M=x, M P=y, O P=r$,
 $P O M=\theta, O A=a$. Then,

$$
\begin{aligned}
& X=P-Q \cos \theta-R \frac{d y y}{d s}, \\
& Y=-Q \sin \theta+R \frac{d x}{d s} ;
\end{aligned}
$$

hen (8) and
for a given ?rice's Anal.
he ends of a , O; and Q e, $A P$, in a on of equili-

therefore from (15) we have

$$
(P-Q \cos \theta) d x-Q \sin \theta d y=0,
$$

or

$$
P d x-Q \frac{x d x+y d y}{r}=0 .
$$

But sineo

$$
x^{2}+y^{2}=r^{2}
$$

we have

$$
x d x+y d y=r d r
$$

$$
\begin{equation*}
\therefore \quad P d x-Q d r=0 ; \tag{1}
\end{equation*}
$$

which is the condition that must be satisfied by P, Q, and the equation of the curve.
5. Required the equation of the curve, on all points of which P will rest.
Integrating (1) of Ex. 4, we have

$$
\begin{equation*}
P x-Q r=C . \tag{1}
\end{equation*}
$$

But sinee P is to rest at all points of the curve, this equation must be satisfied when P^{\prime} is at A, from which we get $x=r=a$; thereíore (1) becomes

$$
P a-Q a=C ;
$$

which in (1) gives

$$
r=\frac{\left(1-\frac{P}{Q}\right) a}{1-\frac{P}{Q} \cos \theta}
$$

whieh is the equation of a conic section, of whieh the focus is at the pole O; and is an ellipse, parabola, or hyperbola, according as $P<=$, or $>Q$.

EXAMPLES.

1. Two forces of 10 and 20 lbs. aet on a particle at an angle of 60°; find the resultant. Ans. 26.5 lhs.
?. The resultant of two forces is 10 Hes. ; one of the forces is 8 lbs ., and the other is inclined to the resultant at an angle of 36°. Find it, and also find the angle between the two forces. (There are two solutions, this being the ambignous case in the solution of a triangle.)

Ans. Force is 2.66 lbs , or 13.52 lbs . Augle is $47^{\circ} 17^{\prime}$ $05^{\prime \prime}$, or $132^{\circ} 42^{\prime} 55^{\prime \prime}$.
3. A point is kept at rest by forces of 6, 8, 11 lbs . Find the angle between the forces 6 and 8 .

$$
\text { Ans. } 77^{\circ} 21^{\prime} 52^{\prime \prime}
$$

4. The directions of two forces arting at a point are anclined to each other (1) at an angle of 60°, (2) at an angle of 120°, and the respective resultants are as $\sqrt{7}: \sqrt{3}$; compare the magnitude of the forecs.

$$
\text { Aus. } 2: 1 .
$$

${ }^{5}$ 5. Three posts are placed in the ground so as to form an equilateral triangle, and an elastic string is stretched round them, the tension of which is 6 lbs.; find the pressure on cach post.

Ans. $6 \sqrt{3}$.
${ }^{\vee}$ o. The angle between two minnown forces is 37°, and their resultant dir' 'es this angle into 31° and 6°; find the ratio of the component forces.

Ans. 4.927 : 1.
$\nabla_{\%}$
If two equal raffers sumport a weight, U, at their upjer ends, required the compression on each. Let the length of each rafter be a, and the horizontal distance between their lower ends be b.

$$
\text { Ans. } \frac{a \|}{\sqrt{4 a^{2}-}-b^{2}} .
$$

8. Three forces act at a point, and include angles of 90° and 45°. The first two forces are each equal to $2 I^{\prime}$,
article at an : 26.5 lls . one of the resultant at gle between is being the
gle is $47^{\circ} 17^{\prime}$

3, $8,11 \mathrm{lbs}$.
$7^{\circ} 21^{\prime} 52^{\prime \prime}$.
a point are $)^{\circ}$, (2) at an mits are as es.
$n s .2: 1$.
s to form $: 1$ tehed romid pressure on $n s .6 \sqrt{3}$.
is 37°, and $;^{\circ}$; find the $4.927: 1$.

IV, at their i. Let the tal distance all
$\overline{4 a^{2}-b^{2}}$ and the resultant of them all is $\sqrt{10} p$; find the thirl force.

$$
\text { Aus. } l^{\prime} \sqrt{\prime}^{2} .
$$

${ }^{\wedge} 9$. Find the magnitude, R, and direction, θ, of the resultant of the three forces, $P_{1}=30 \mathrm{lbs} ., P_{2}=\% 0 \mathrm{lbs} .$, $P_{3}=50 \mathrm{lbs}$, the angle included between P_{1} and P_{2} being 56°, and between P_{2} and $P_{3} 104^{\circ}$. (It is generally convenient to take the action line of one of the forces for the axis of x.)
Let the axis of x coincide with the direction of P_{1}; then (Art. 36), we have

$$
Y=22.16 ; \quad Y=75.13 ; \quad n=78.33 ; \quad \theta=73^{\circ} 34^{\prime} .
$$

10. Three forces of 10 lls , each act at the same point ; the second makes an angle of 30° with the first, and the third makes an angle of 60° with the second; find the magnitude of the resultant. Ans. 24 lbs ., nearly.
\checkmark 11. If three forces of 99,100 , and 101 units respectively, at on a point at angles of 120°; find the magnitude of their resultant, and its inclination to the foree of 100 .

$$
\text { Ans. } \sqrt{3} ; 90^{\circ} .
$$

12. A block of 800 lhs . is so sitnated that it receives from the water a pressure of 400 lbs . in a south direction, and a pressure from the wind of 100 lbs . in a westerly direction ; required the magnitnde of the resultant pressure, and its direction with the vertical.

$\sqrt{13 .}$ A weiglat of 40 lbs . is supported ly two striugs, one of which makes an angle of 30° with the vertical, the other 40°; find the tension in cach string.

$$
\text { Ans. } 20(\sqrt{6}-\sqrt{2}) ; 40(\sqrt{3}-1)
$$

14．Two forces，P and P^{\prime} ，aeting along the diagonals of a parallclogram，keep it at rest in such a position that one of its sides is horizontal；show that

$$
P \text { sec } a^{\prime}=P^{\prime} \text { see } a=W^{\prime} \operatorname{cosec}\left(a+\kappa^{\prime}\right)
$$

where $\mathcal{I V}^{\prime}$ is the weight of the parallelogram，and a and ${ }^{\prime}$ the angles between the diagonals and the horizontal side．
${ }^{15}$ ．Two persons pull a heary weight by ropes inelined to the horizon at angles of 60° and 30° with forces of 160 lbs and 200 lbs ．The angle between the two vertical planes of the ropes is 30° ；find the single horizontal force that would produce the sane effect．Ans． 245.8 lbs ．
＊16．In order to raise vertically a heavy weight by means of a rope passing over a fixed pulley，three workmen pull at the end of the rope with forees of $40 \mathrm{lhs}, 50 \mathrm{lbs} .$, and 100 lbs ；the directions of these forces leing inclined to the horizon at on angle of 60° ．What is the magnitude of the resultant force which tends directly to raise the weight？

Ans． 164.54 lbs.
17．Three persons pill a heavy weight ly cords inclined to the horizon at an angle of 60° ，with forces of 100,120 ， ，and 140 lbs ．The three vertieat planes of the cords are inelined to caeh other at angles of 30° ；find the single horizontal force that would prodnce the same effect．

$$
\text { Ans. } 10 \sqrt{145+72 \sqrt{3}} \mathrm{lbs} .
$$

18．＇Two forees， $\boldsymbol{P}^{\text {and }} Q$ ，aeting respectively purallel to the hase and length of an inclined plane，will eaeh singly sustain on it a particle of weight， JF ；to determine the weight of II：

Let $=$ inclination of the phane to the horizon；then resoiving in each case along the phane，so that the normal pressures may not enter into the equations（See Rem．，Ex．3， Art．41），we have
diagonals of tion that one
and a and a' zontal side.
opes inelined rith forces of two vertical rizontal force - 245.8 lbs .
ght by means kmen pull at $50 \mathrm{lbs} .$, and g inclined to magnitude of e the weight? 164.54 lbs .
ords inclined of 100,120 , the cords are ad the single effect.
$\sqrt{72} \sqrt{3} \mathrm{lbs}$.
y purullel to l cach singly etermine the
orizon ; then it the normul Rem., Ex. 3,

$$
\begin{gathered}
P \cos \varkappa=W \sin \iota ; Q=W \sin \epsilon ; \\
\therefore W=\frac{P Q}{\left(P^{2}-Q^{2}\right)^{\frac{1}{2}}} .
\end{gathered}
$$

19. A cord whose length is $2 l$, is fastened at A and B, in the same horizontal line, at a distance from each other equal to $2 a$; and a smooth ring upon the cord snsiains a weight I; find the tension of the cord.

$$
A n s . T=\frac{W l}{2 \sqrt{l^{2}-a^{2}}}
$$

20. A lieary particle, whose weight is W, is sustained on a smooth inclined plane by three forees applied to it, each equal to $\frac{W}{3}$; one aets vertieally upward, another horizontally, and the third along the plane; find the inclination, \boldsymbol{c}, of the plane.

$$
\text { Ans. } \tan \frac{a}{2}=\frac{1}{2}
$$

21, A body whose weight is 10 los. is supported on a smooth inelined plane by a fore of 2 llas. acting along the plane, and a horizontal foree of 5 lbs. Find the inclination of the plane.

Ans. $\sin ^{-1} \frac{3}{8}$.
"22. A body is snstained on a smooth inclined plane (inclination a) by a force, P, acting along the plane, and a horizontal foree, Q. When the inclination is halved, and the forees, P and Q, each halved, the body is still observed to rosi: find the ratio of P to Q.

$$
\text { Ans. } \frac{P}{Q}=2 \cos ^{2} \frac{\alpha}{4}
$$

23. Two weights, P and Q, (Fig. 12), rest on a smooth domble-inclined plane, and are attnehed to the extremities of a string which passes over a smooth jece, 0 , at a point vertieally over the intersection of the phones, the peg and the weights being in a

vertical rlane. Find the position of equalibrium, it $l=$ the leugth ol the string and $h=\mathrm{CO}$.

Ans. The position of equilibrium is given by the equations

$$
\begin{aligned}
& P \frac{\sin \epsilon}{\cos \theta}=Q \frac{\sin \beta}{\cos \phi} \\
& \frac{\cos \alpha}{\sin \theta}+\frac{\cos \beta}{\sin \phi}=\frac{l}{h}
\end{aligned}
$$

${ }^{24}$. Two weights, P and Q, connected by a string, length l, rest on the convex side of a smooth vertical cirele, radius a. Find the position of equilibrium, and show that the heavier weight will be higher up on the cirele than the lighter, the radius of the circle drawn to P making an angle θ with the vertical diameter.

$$
\text { Ans. } \mathrm{P} \sin \theta=Q \sin \left(\frac{l}{a}-\theta\right) .
$$

$\sqrt{25}$. Two weights, P and Q, connected directly by a string of given length, rest on the convex side of a smooth vertienl circle, the string forming a chord of the circle; find the position of equilibrium.
Ans. If $2 a$ is the augle subtended at the centre of the circle by the string, the inclination, θ, of the string to the vertical is given by the equation

$$
\cot \theta=\frac{P-Q}{P+Q} \tan \alpha
$$

26. Two weights, P and Q ((Fig. 13), rest on the concuve side of a parabola whose axis is horizontal, and are connected by a string, length l, which passes over il smooth peg at the focus, F. Find the prosition of equilibrimm.
Ans. Let $0=$ the angle which $F P$
 ibrium, and r up on the drawn to P $n\left(\frac{l}{a}-\theta\right)$.
lirectly by a of a smooth of the cirele;
centre of the string to the
makes with the axis, and $4 m=$ the latus rectum of the parabola, then

$$
\cot \frac{\theta}{z}=\frac{P \sqrt{l-2 m}}{\sqrt{m\left(I^{2}+q^{2}\right)}} .
$$

27. A particle is plaeed on the convex side of a smooth dlipse, and is acted upon by two forces, F and F^{\prime}, towards the foci, and a force, $F^{\prime \prime}$, towards the centre. Find the position of equilibrium.

Ans. $r=\frac{b}{\sqrt{1-n^{2}}}$, where $r=$ the distance of the particle from the centre of the ellipse $; b=$ semi-minor axis, and $n=\frac{F^{\prime}-F^{\prime}}{F^{\prime \prime \prime}}$.
28. Let the curse, (Fig. 11), be a circle in which the origin und pulley ure at a distance, a, above the centre of the circle ; to determine the position of equilibrinm.

$$
\text { Ans. } r=\frac{Q}{P} a
$$

29. Let the curve, (Fig. 11), be a hyperbola in which the origin and pulley ure ut the contre, O, the transverse axis being vertical ; to determine the position of equilibrimm.

$$
\text { Ans. } x=\frac{b P}{l\left(P^{2}-l^{2} Q^{2}\right)^{\frac{1}{2}}}
$$

30. A particle, P, is acted upon by two forces towards two fixed points, S and H, these forees heing $\frac{\mu}{S P}$, and $\frac{\mu}{I I}$, respectively; prove that P will rest at ull points inside n smooth tube in the form of a curve whose equation is $S P$. $I M=k^{2}, k$ being a constant.
31. Two weights, P and Q, comected by a string, rest on the conrex side of a smooth cyeloid. Find the position of equilibrium.
$A n s$ ．If $l=$ the length of the string，and $a=$ radius of generating cirele，the prosition of equilibrium is defined by the equation

$$
\sin \frac{\theta}{2}=\frac{Q}{P+Q} \cdot \frac{l}{4 a},
$$

where θ is the angle between the vertical and the radius to the point on the generating circle which corresponds to l ．

32．Two weights，P and Q ，rest on the convex side of a smooth vertical circle，and are connected by a string which passes over a smooth peg vertically over the centre of the cirele ；find the position of equilibrium．

Ans．Let $h=$ the distance between the peg，B ，and the centre of the circle；θ and $\phi=$ the angles made with the vertical by the radii to P and Q ，respectively ；＂and $\beta=$ the angles made with the tangents to the circle at P and Q by the portions $P B$ and $Q B$ of the string；$l=$ length of the string ；then

$$
\begin{gathered}
P \frac{\sin \theta}{\cos \sigma}=Q \frac{\sin \phi}{\cos \beta}, \\
h\left(\frac{\sin \theta}{\cos \boldsymbol{\theta}}+\frac{\sin \phi}{\cos \beta}\right)=l, \\
h \cos (\theta+a)=a \cos \alpha, \\
h \cos (\phi+\beta)=a \cos \beta .
\end{gathered}
$$

등
tiol defined by
the radius to ponds to l.
ex side of a string which entre of the
f, B, and the ade with the " and $\beta=$ cle at P and $; l=$ length

CHAPTER III.

COMPOSITION AND RESOLUTION OF FORCES ACTING; ON A RIGID BODY.
43. A Rigid Body.-In the last chapter we considered the action of forces whieh have a comewn point of application. We shall now consider the aetion of forees which are applied at different points of a rigid boly.
A rigid body is one in which the particles retain invariable positions with respect to one another, so that no extermal foree can alter them. Now, as a matter of fact, there is no sueh thing in nature as a body that is perfectly rigid; every body yields more or less to the forces which act on it. If, then, in any case, the body is altered or compressed appreciably, we shall suppose that it has assumed its figure of equilibrimm, and then consider the points of application of the forces as a system of in cariable form. The term borly in this work means rigid body.
44. Transmissibility of Force. -When a force acts at a definite point of a lody and along a definite line, the effeet of the force will be unehanged at whatever point of its direction we suppose it applied, provided this point be cither one of the points of the bolly, or be invariably conneeted with the body. This principle is called the transmissibility of a force to any point in its line of action.
Now two equal fores acting on a partiele in the same line and in opposite directions nentralize ench other (Art. 16) ; so by this principle two equal forces acting in tho same line and in opposite direetions at any points of a rigid body in that hene nentralize cach other. Hence it is elear that when many forees are acting on a rigid boly, any two, which are equal and have the same line of netion
and act in opposite directions, may be omitted, and also that two equal foress along the same line of action and in opposite directions, may be introduced without clanging the circumstances of the system.

45. Resultant of Two Parallel

 Forces.*-(1) Let P^{P} and Q, (Fig. 14), be tie two parallel forces acting a^{\prime} the points A and B, in the same direction, on a rigid body. It is required to find the resultant of P and Q.At A and B introduce two equal
 and opposite forces, F. The introduction of these forces will not disturb the action of P and Q (Art. 44). P and F^{\prime} at A are equivalent to a single forec, $i i$, and Q and F at B are equivalent to a single force, S. Then let R and S bo supposed to act at 0 , the point of in iersection of their lines of action. At this point let them be resolved into their components, P, F, and Q, F, respectively. The two forces, F, at 0 , neutralize each other, while the components, P and Q, act in the line $O G$, parallel to their lines of action at A and B . Hence the magnitude of the resnltant is $P+Q$, (Art. 28). To find the point, G, in which its line of uction cuts AB , let the extremities of P and R (acting at Λ) be joined, and complete the parullelogram. Then the triangle PAR is evidently similar to GOA ; therefore,

$$
\frac{P}{F}=\frac{G O}{G A} ; \text { similarly } \frac{Q}{F}=\frac{G O}{G B}
$$

therefore, by division,

$$
\begin{equation*}
\frac{P}{Q}=\frac{\mathrm{GB}}{\mathrm{GA}} \tag{1}
\end{equation*}
$$

* Minchin's Stalice, p. 80.
ed, and also ction and in nt changing

these forces P and ${ }^{\prime}$ and F at B R and S be of their lines d into their e two forees, nponents, P es of action resultant is hich its line R (acting at Then the refore,
(2) When the forces act in opposite directions. $-\Lambda \boldsymbol{t} \boldsymbol{\Lambda}$ and B, (Fig 15), apply two equal and opposite forces r, at before, and let l, the resultiunt of P and F, and S, the resultant of Q and r, be transferred to 0 , their point of intersection. If at 0 the forces, R and S, are decomposed into their original components, the two forces, F, destroy each other, the foree, P,
 will act in the direction GO parallel to the direetion of P and Q, and the force Q will act in the direction $O G$. Hence the resultant is a force $=P-Q$, acting in the line GO. To find the point G, we have, from the similar triangles, PAR and OGA,

$$
\begin{gather*}
\frac{P}{F^{\prime}}=\frac{\mathrm{GO}}{\mathrm{GA}} ; \text { also } \frac{Q}{F}=\frac{\mathrm{GO}}{\mathrm{~GB}} ; \\
\therefore \frac{P}{Q}=\frac{\mathrm{GB}}{\mathrm{G} \bar{\Lambda}} . \tag{2}
\end{gather*}
$$

Hence the resultant of two parallel forces, acting in the same or opposite directions, at the extremities of a rigid right line, is parallel to the components, equal to their algebraic sum, and divides the line or the line produced, into two segments which are inversely as the forces.

In both cases we have the equation

$$
\begin{equation*}
P \times \mathrm{GA}=Q \times \mathrm{GB} \tag{3}
\end{equation*}
$$

Hence the following theorem:
If from a point on the resultant of two parallel forces a right line be drawn meeting the forces, whether perpendicularly or not, the products obtained by multiplying each force by its distance from the resultant, measured along the arbitrary line, arc equal.
SCH,-The point G possesses this remarkable property;
that, however P and Q are turned about their poirt of application, A and B, their directions ropuning parallel, G. determined as above -maidad hxed. Thes point is in conserafuce caded the centre of the parallel forces, P and Q.
45. Moment of a Force. The moment of a fon ce with respect to a point is the product of the force and the perpendicular lel fall on its line of action from the point. The moment of a foree measures its tendency to produc: rotation abont a fixed point or fixed axis. Thus let a force, P, (Fig . 16), net on a rigid body in the plane of the paper, and let an axis perpendienlar to this plane pass throngh the body at any point, 0 . It is clear that the effect of
 the force will be to turn the body ronnd this axis (the axis being supposed to be fixed), and the turning effect will depend on the magnitude of the force, P, and the perpendicular distance, p, of P from 0 . If P passes through 0 , it is evident that no rotation of the body romed 0 ean take place, whatever be the magnitude of P; while if P^{\prime} vanivies, no rotation will take place however great p may be. Ihnce, the measure of the power of the force to produce rotution may be represented by the product

$$
p \cdot p
$$

and this prodnct has received the special name of Moment.
The unit of foree being a pound and the mit of length a foot, the unit of moment will evidently be a foot-mound.

The point 0 is culled the origin of moments, and may or may not be chosen to coincide with the origin of coordinates. The solution of problems is often greatly simplified by a proper slection of the origin of moments. The perpendicular from the origin of momente to the netion line of the toree is called the arm of the force.
eir poir: of ing parallel, point is in el forees, P'
a for ce with : the perpenpoint. The roduc: rota-
47. Signs of Moments.- - fore may tend to turn is body about a point or about an axis, in either of two directins; i one be regarded as positive the other must be negatice;: ..ane we distinguish between positice and negative moments. For the sake of uniformity the moment of a foree is said to be negative when it tends to turn a body liom left to right, i. e., in the direction in which the hands of a clock move; and positive when it tends to turn the body from right to left, or opposite the direction in whis' the hands of a clock move.
48. Geometric Representation of the Momes: a Force with respect to a Point.-Let the li i is (Fig. 16), represent the fi:"me, P, in magnitude ans! 'la'c. tion, and p the perpendicular $O C$; then the momes. of i " with respect to 0 is $\mathrm{AB} \times p$ (Art. 46). But this is i : e the area of the triangle AOB . Hence, the moment of a force with respect to a point is geometrically represented by dowble the area of the triamgle uhose base is the line representing the force in maynitute and direction, and whose vertex is the given point.
49. Case of Two Equal and Opposite Parallel Forces.-If the forces, P and Q, in Art. 45, (Fig. 15) are equal, the equation

$$
P \times \mathrm{GA}=Q \times \mathrm{GB}
$$

gives $\mathrm{GA}=\mathrm{GB}$, which is true only when G is at intinity on AB ; also the resultant, $P-Q$, is cqual to zero. Such a system is called a Couple.

A Couple consists of turo equal and opposice parallel forces arting on a rigid borly at ". finite distunce from ecth other.

We shall investigate the laws of the composition and resolution of couples, since to these the composition and
resolution of forces of every kind acting on a rigid body may be reduced.
50. Moment of a Couple-Let 0
(Fig. 17) be any point in the plane of the couple; let fall the perpendiculars $0 a$ and $O b$ on the action lines of the forees I. 'Then if 0 is inside the lines of action of the forces, both forees tend to produce

Fig. 17 rotation ronnd 0 in the same direction, and therefore the sum of their moments is equal to

$$
P(0 a+0 b), \text { or } P \times a b
$$

If the point chosen is 0^{\prime}, the sum of the moments is evidoutly

$$
P\left(0^{\prime} a-0^{\prime} b\right), \text { or } P \times a b
$$

which is the same as before. Hence the moment of the couple with respect to all points in its plane is constant.

The Arm of a couple is the perpendicular distance between the two forces of the couple.

The Moment of a couple is the product of the arm and ons of the forees.

The Axis of a couple is a right line drawn from any ehosen point perpendicular to the plane of the couple, and of such length as to represent the magnitude of the moment, and in such direetion as to indicate the direction in which the couple tends to turn.

As the motion, in Statics is only virtual, and not actual, the direction of the axis is fixed, but not the posi/ion of it; it may be any line perpendicular to the plane of the couple, and may tre drawn as follows; imagine a wateh placed in the plane in which several couples act. Then let the uxes of those couples which tend to prodnce rotation in the
and
rigid body

erefore the
direction of the motion of the hands be drawn downward through the back of the watch, and the axes of those which tend to produce the contrary rotation be drawn upward through the face of the watch. Thus each couple is completely represented by its axis, which is drawn upward or downward aceording as the moment of the eouple is positive or negative; and comples are to be resolvel and compounded by the same geometric constructions performed with reference to their axes as forees or velocities, with reference to the lines which direcily represent them.

We shall now give three propositions showing that the effect of a couple is not altered when certain changes are made with respect to the conple.
51. The Effect of a Couple on a Rigia Body is not altered if the urm be turned through any angle about one extremity in the plane of the Couple.

Let the plane of the paper be the plane of the couple, AB the arm of the original couple, AB^{\prime} its new position, and P, P, the forces. At A and B^{\prime} respectively introduce two forces each equal to P, with their action lines perpendicular to the arm AB^{\prime}, and opposite in direction to each other. The effect of the given
 couple is, of course, unaltered by the introdnction of these forces. Let $\mathrm{BAB}^{\prime}=2 \boldsymbol{2}$; then the resultant of P acting at B, and of P acting at B^{\prime}, whose lines of action meet at Q, is $2 P \sin \theta$, acting along the bisector $\mathbf{A Q}$; and the resultant of P arting at A perpendicular to $A B$ and of P perpendicular to AB^{\prime}, is $2 P \sin \theta$, acting along the bisector ΛQ in a direction opposite to the former resnltant. Hence these two resultants nentralize each other; and there remains the comple whose arm in AB^{\prime}, ant whose forces aro P, P. Hence the effect of the couple is not altered.
52. The Effect of a Couple on a Rigid Bonly is not altered if we transfer the Couple to any other Parallel I'lane, the Arm remaining parallel to itself'.

Let AB be the arm, and P, P, the forces of the given couple; let $A^{\prime} B^{\prime}$ be the new position of the arm parallel to AB. Λ t Λ^{\prime} and B^{\prime} apply two equal and opposite forces each equal to I^{\prime}, acting perpendicular to $\mathbf{A}^{\prime} \mathbf{B}^{\prime}$, and in a plane parallel to the plane of
 the original couple. This will not alter the effect of the given couple. Join $\mathrm{AB}^{\prime}, \Lambda^{\prime} \mathrm{B}$, bisecting each other at \mathbf{O}; then P at A and P^{\prime} at B^{\prime}, acting in parallel lines, and in the same direction, are equivalent to $2 P$ acting at 0 ; also P at B and P^{\prime} at A^{\prime}, acting in parallel lines and in the same direction, are equivalent to $2 P$ acting at 0 . At 0 therefore these two resultants, being equal and opposite, neutralize each other; and there remains the conple whose arm is $\mathrm{A}^{\prime} \mathrm{B}^{\prime}$, and whese forces are each P, acting in the same directions as those of the original couple. Hence the effect of the couple is not altered.
53. The Effeet of a Couple on a Rigid Borly is not altered if we replace it by another Couple of which tha Moment is the sume; the Plane remaining the s. me and the Arms boing in the same straight line and having a common extremity.

Let AB be the arm, and P, P, the forces of the given couple, and suppose $P=Q+R$. Produce AB to C so that

and thercfore $\mathrm{AB}: \mathrm{BC}:: Q: R ;$
fid Borly is , any other purullel to

Fig. 19 effect of the other at 0 ; lines, and in s at 0 ; also s and in the at 0 . At 0 nd opposite, touple whose cting in the Hence the
id Borly is - Couple of ve remuinthe same

at \mathbf{C} introduce opposite forces each equal to Q and parallel to P; this will not aiter the effect of the conple.

Now R at A and Q at C will balance $Q+R$ at B from (2) and (Art. 45) ; hence there remain the forces, Q, Q, acting on the arm, $A C$, which form a conple whose moment is equal to that of P, P, with arm, AB , since by (1) we bave

$$
P \times \mathrm{AB}=Q \times \mathrm{AC}
$$

Hence the effect of the couple is not altered.
Rev.-From the last three artieles it appears that we may change a eouple into another conple of erpual moment, and transfer it to any position, either in its. 'n plane or in a plane parallel to its own, withont altering the effect of the eouple. The couple must remain unchanged so far as concerns the direction of rotation which its forces would tend to give the arm, i.e., the axis of the comple may be removed parallel to itself, to any position within the body acted on by the eonple, while the direetion of the axis from the plane of the couple is unaltered (Art. 50).
54. A Force and a Couple reting in the same Plane on a Rigial Body ure equivalent to a Single Force.

Let the force be F and the conple (P, a), that is, P is the magnitude of each force in the conple whose arm is a. Then (Art. 53) the couple (P, a) $=$ the couple $\left(F, \frac{a P}{F}\right)$. Let this latter couple be moved till one of its forces acts in the same line as the given force, F, but in the opposite dive tion. The given force, F, will then be destroyed, and the $\%$ will remain a force, F, acting in the same direction as the given one and at a perpendicular distance from it $=\frac{a P}{F}$.

Cor.-A force and a couple acting on a rigid bo:iy cannot prodhce equilibrium. A conple can be i:s equilibriem only with an equivalent couple. Equivalent couples are those whose croments are equal.*

The resultant of several cmuples is one which will produce the same effect singly as the component conples.
55. To find the Resultent of ciny number of Couples ucting on a Bodly, the Planes of the Couples being purallel to each other.

Let P, Q, R, cie., be the forces, and a, b, c, cte., their arms respectively. Suppose all the couples tansferred to the same plane (Art. 52) ; next, let them all be transferred so as to have their arms in the same straight line, and one extremity common (Art. 51) ; lastiy, let them be replaced by other couples having the same urm (Art. 53). Let a be the common arm, and P_{1}, Q_{1}, R_{1}, ete., the new forees, so that

$$
P_{1} c=P a, \quad Q_{1} c=Q b, \quad R_{1} \epsilon=R c, \text { etc. }
$$

$$
\text { then } \quad P_{1}=P \frac{a}{a}, Q_{1}=Q \frac{b}{a}, R_{1}=R \frac{c}{a} \text {, etc. }
$$

i. e., the now forces are $P \frac{a}{c}, Q \frac{b}{a}, R_{\frac{c}{c}}^{c}$, etc., teting on the common arm ex. Hence their resultant will be a conple of which cach force equals

$$
P \frac{a}{a}+Q \frac{b}{\epsilon}+R_{\frac{c}{a}}^{c}+\text { ctc. }
$$

and the arm $=\kappa$, or the moment equals

$$
I a+Q b+R c+v t c
$$

If one of the couples. ns Q, net in a direction opposite to

[^2]oixy caunot miunu only are those
ill produce
cmber of of the
etc., their isferred to asferred so e, and one e replace
Let a be ew forces,
h, R, respectively (Art. 50). Now the three stranght lines, $\mathrm{A} a, \mathrm{~A}, \mathrm{~A} b$, make the same augles with each other that $A I^{\prime}, A R, A Q$ make with each other; also they are in the same proportion in which
$$
\mathrm{AB} \cdot P, \mathrm{AB} \cdot R, \mathrm{AB} \cdot Q \text { are, }
$$ or in which $\quad P, R, Q$ are.

But R is the resultant of P and Q; therefore $A c$ is the diagonal of the paralletogram on $\Lambda a, \Delta b$ (Art. 30).
Hence if two straight lines, having a common extremity, represent the axes of turo couples, that diagonal of the parallelogram describe! on these straight lines as adjueent sudes which passes through their common extremity represents the axis of the resultant couple.
Con.-Sinee R • AB is the axis or moment of the resultaut couple, we have from (1)

$$
R^{2} \cdot \overline{\mathrm{AB}}^{2}=l^{n} \cdot \overline{\mathrm{~A}}^{2}+Q^{2} \cdot \overline{\mathrm{~A}} \overline{\mathrm{~B}}^{2}+2 P \cdot \mathrm{AB} \cdot Q: \mathrm{AB} \cdot \cos \gamma \cdot(2)
$$

If L and M represent the aves or moments of the component couples and G, that of the resultant couple, (2) becomes

$$
\begin{equation*}
G^{2}=L^{2}+M^{2}+2 L \cdot M \cos \gamma \tag{3}
\end{equation*}
$$

Sch. 1.-If' L, M, N, are the axes of three compment couples which act in planes at right angles to one another, and G the axis of the resultant comple, it may casily be shown that

$$
\begin{equation*}
G^{2}=I^{2}+M^{2}+N^{2} \tag{4}
\end{equation*}
$$

If λ, μ, v be the angles which the uxis of the resultant makes with those of the components, we have

$$
\cos \lambda=\frac{L}{\partial}, \quad \cos \mu=\frac{M}{\theta^{\prime}}, \quad \cos \gamma=\frac{N}{\theta} .
$$

tranght lines, 1 other that y are in the

re $A c$ is the

 30).4 extremity, onal of the : as adjucent emity repre.
f the result-
B. $\cos \gamma$. (2)
of the comcomple, (2)
component me another, y casily be
e resultant

Sch. 2.-Hence, conversely any couple may be replaced by three comples acting in planes at right angles to one another; their moments being $G \cos \lambda, G \cos \mu, G \cos 2 ;$ where G is the monent of the given conple, and λ, μ, ν the angles its axis makes with the axes of the three couples.
Thus the eomposition and resolution of conples follow laws similar to those which apply to forces, the axis of the couple corresponding to the direction of the force, and the moment of the couple to the maymitude of the force.
57. Varignon's 'Theorem of Moments.-The moment of the resultant of two component forces with respect to any point in their plane is equal to the ulgelraio sum of the moments of the two components with respeet to the same point.

Let $A P$ and $A Q$ represent two component forces; complete the parallelogram and draw the dingonal, $A R$, representing the resultant force. Let O be the origin of mements (Art. 46). Join $O A, O P, O Q, O R$, and draw $P O^{\prime}$
 and $Q B$ parallel to $O A$, and let $p=$ the perpendienlar let fall from O to $A R$.
Now the moment of $A P$ about O is the product of $A P$ and the perpendienlar let full on it from O (Art. 46), which is donble the area of the triangle, $A O O^{\prime}$ (Art. 48). But the aren of the triangle, $A O P,=$ the area ot the triungle, $.1 O C$, sinee these trinngles have the same hase, $A O$, and are between tho same parallels, $A O$ and $O P$. Hence tho moment of $A P$ ubent $O=$ the moment of $A C$ abont $O:=A C \cdot p$. Also the moment of $A Q$ atout O is donble the area of the triangle, $10 Q$, = dontle the area of the triangle, $A O B$, since the two triangles lave the same hase, dO. nul are between the same pmallels, $A O$ mad (ib). Hence the moment of $A Q$ abont $O=$ the moment of A / β
about $O=A B \cdot p$. Therefore the sum of the moments of $A P$ and $A Q$ about $O=$ the sum of the monents of $A C$ and $A B$ about $O=(A C+A B) p,=(A B+B R) p$, (since $A C=B l$ from the equal triangles $A P C$ and $Q B h^{\prime}$) $=A R \cdot p=$ the moment of the resultant.
If the origin of moments fall between AP and AQ , the forces will tend to produce rotation in opposite directions, and hence their moments will have contrary signs (Art, 47). In this case the moment of the resultant $=$ the difference of the moments of the components, as the student will find no duffienlty in showing. Hence in either case the moment of the resultant is equal to the algebraic sum of the moments of the components.

Con. 1.-Ii there are any number of component forces, we may compound them in order, taking any two of them first, then finding the resultant of these two and a third, aad so on; a 1 it follows that the sum of their moments (with their proper signs), is equal to the moment of the resultant.

Con. 2.-If the origin of moments be on the line of action of the resultant, $p=0$, and therefore the moment of the resultant $=0$; hence the sum of the moments of the components is efunl to zero. In this case the moments of the forees in one direction balance those in the opposite durection; i.e., the forces that tend to produce rotation in one direction are comuteructed by the forces that tend to prodnce rotation in the opposito direction, and there is no tendeney to rotation.

Cor. 3. - If all tine forces are in equiliorim the resultant $h=0$, und therefore the moment of $l=0$; hence the sum of the moments of the components is equal to zere, mul there is no tendency to motion cither of trmaslation or rotation.
moments of ents of $A C$ $B+B R) p$, C and $Q B h^{\prime}$) and $A Q$, the e directions. t sigus (Art. $t=$ the difthe student either case lyebraic sum
nent forces, two of them and a third, cir moments ment of the
the line of the moment moments of the moments tho opposite rotation in that tend to there is no
the resultunt ; hence the full to zero, anslation or

Cor 4.-Therefore when the moment of the resultant $=0$, we conclude either that the resultant $=0($ Cor. 3$)$, or that it pass ss through the point taken as the origin of moments (Cor 2).
58. Varignon's Theorem of Moments for Parallel Forces.-The sum of the moments of too purallel forces about any point is equal to the moment of their resultant about the point.

Let P and Q be two parallel forees acting at A and B , and R their resultant acting at G, and let O be the point about which moments are to be taken. Then (Art. 45) we have

$$
\begin{array}{rlrl}
P \times \mathrm{AG} & =Q \times \mathrm{BG}, \\
& \therefore & P(O G-O A) & =Q(0 \mathrm{~B}-\mathrm{OG}) \\
\therefore & (P+Q) O G & =P \times O \mathrm{OA}+Q \times \mathrm{OB} \\
\therefore & R \times O G & =P \times O \mathrm{~A}+Q \times \mathrm{OB} ;
\end{array}
$$

that is, the sum of the moments $=$ the moment of the resultant.

Cor.-It follows that the algebraic sum of the moments of any number of purallel forces in one phane, with respect to a point in their plane, is equal to the moment of their resultant with respeet to the point.
59. Centre of Parallel Forces.-To fint the mags "ithede, direction, aud point of apmliantion of the resultant of any mumher of parallel forces acting on a rigied body in one plane.

Let P_{1}, P_{2}, P_{3}, etc., denote the forces, M_{1}, M_{2}, M_{3}, ete., their points of application. Take any point in the plane of the forees as origin and draw the rectabgular axes $O X, O Y$. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, etc., be the points of application, M_{1}, M_{2}, etc.
 Join $M_{1} M_{2}$; and take the point M on $M_{1} M_{2}$, so that

$$
\begin{equation*}
\frac{M_{1} M}{M_{1} M_{2}}=\frac{P_{2}}{P_{1}+P_{2}} \tag{1}
\end{equation*}
$$

then the resultant of P_{1} and P_{2} is $P_{1}+P_{2}$, and it acts t!rough M parallel to P_{1} (Art. 45).

Draw $M_{1} a, M b, M_{2} c$ parallel, and $M_{1} e$ perpendienlar to the axis of y. Then we have

$$
\begin{align*}
\frac{M_{1} M}{M_{1}} M_{2} & =\frac{M d}{M_{2} e}
\end{aligned}=\frac{M b-y_{1}}{y_{2}-y_{1}}, ~ \begin{aligned}
\therefore \quad M b-y_{1} & =\frac{P_{2}}{P_{1}+\Gamma_{2}}\left(y_{2}-y_{1}\right) \\
\therefore \quad M b & =\frac{P_{1} y_{1}+P_{2} y_{2}}{I_{1}+P_{2}}
\end{align*}
$$

which gives the ordinate of the point of application of the resultant of I_{1} and P_{2}.

Now since the resultant of P_{1} and P_{2}, which is $P_{1}+P_{2}$, aets at M, the resultant of $P_{1}+P_{2}$ at M, and P_{3} at M_{3}, is $P_{1}+\Gamma_{2}+P_{3}$ at g, and smbstituting in (*) $P_{1}+P_{8}, P_{3}, M b$, and y_{3} for P_{1}, P_{2}, y_{1}, and y_{2} resperetively, wo have
$y h=\frac{\left(P_{1}+P_{2}\right) M b+P_{3} y_{3}}{P_{1}+P_{3}+P_{3}}=\frac{P_{1} y_{1}+P_{2} y_{2}+P_{3} y_{3}}{P_{1}+P_{2}+P_{3}} ;($ i)
and this proeess may be extended to any number of parallel forees. Let R denote the resultant force and \bar{y} the ordinate of the point of application ; then we have

$$
\begin{gathered}
R=P_{1}+P_{2}+P_{3}+\text { ete. }=\Sigma P . \\
\bar{y}=\frac{P_{1} y_{1}+P_{2} y_{2}+P_{3} y_{3}+\text { ete. }}{P_{1}+P_{2}+P_{3}+\text { ete. }}=\frac{\Sigma P^{2} y}{\Sigma P} .
\end{gathered}
$$

Similarly, if \bar{x} be the abscissa of the point of application of the resultant, we have

$$
\bar{x}=\frac{\Sigma P x}{\Sigma P}
$$

The values of \bar{x}, \bar{y} are independent of the angles which the directions of the forces make with the axes. Hence
 of the frrees, their parallelism being preserved, ' $\%$ int of application of the resultant will not move. For this reason the point (\bar{x}, \bar{y}) is called the centre of parallel forces. We shall hereafter have many applications in which its position is of great importance.

Sch. 1.-The moment of a force with respect to a plane is the protuct of the force into the perpendicular distance of its point of application from the planc. Thus, $P_{1} y_{1}$ is the moment of the force P_{1}, in refcrence to the plane through $O X$ perpendicular to $O Y$. This must be carefully distinguished from the moment of a force with respect to a point. Hence the equations for determining the position of the centre of parallel forcess show that the sum of the moments of the parallel forces: with respect to amy plane, is equal to the moment of their resultant.

Scir. 2.-The moment of a force with respect to uny line is the product of the component of the force perpendicular 4
to the line into the shortest distance between the line and the line of action of the foree.
60. Conditions of Equilibrium of a Rigid Body acted on by Parallel Forces in one Plane.-Let P_{1}, I_{2}, I_{3}, etc., denote the forces. Tahe say point in the plane of the forces as origin, and draw rectangnlar axes, $O X$. $O Y^{r}$, the later parallel to the forees. Let A be the point where $O X$ meets the direction of I, , and let $O A=x_{1}$.

Apply at O two opposing forces, each equal and parallel to P_{1}; this will not disturb the equilibrim. Then l_{1} at A is replaced by P_{1} at O along $O F$, athd a conple whose moment is $P_{1} \cdot O .1$, i.e., $P_{1} x_{1}$. The remaining forces, P_{2}, I_{3}^{\prime}, etc., may ive treated in like manner. We thus obtain a set of forces, P_{1}, P_{2}, P_{3}, ete., acting at O along $O Y$, and a set of couples, $P_{1} x_{1}, P_{2} x_{2}$, $I_{3} x_{3}$, etc., in the plane of the forees tending to turn the body from the axis of x to the axis of y. These forces are equivalent to a single resultant force $P_{1}+P_{2}+P_{3}+$ etc., and the couples are equivalent to a single resultant couple, $P_{1} x_{1}+P_{2} x_{2}+P_{3} x_{3}+$ etc. (Art. 55).
Hence denoting the resultant force by R, and the moment of the resultant couple by G, we have

$$
\begin{gathered}
R=P_{1}+P_{\mathrm{g}}+P_{3}+\text { etc. }=\Sigma P ; \\
G=P_{1} x_{1}+P_{\mathrm{q}} x_{2}+I_{3} x_{3}+\text { etc. }=\Sigma P x ;
\end{gathered}
$$

that is, a system of parallel forces can be redneed to a single force ind a comple, which (Art. 54, Cor.) cannot produce equilibrium. IEnce, for equilibrime the force and the couple nanst rimish ; or

$$
\Sigma P^{\prime}=0, \quad \text { and } \quad \Sigma P x=0 .
$$

the line and
ligid Body Plane.-Iet

, the equilialong $O Y$, $P_{1} x_{1}$. The in like man${ }_{2}, P_{3}$, etc., ${ }_{1} x_{1}, P_{2} x_{2}$ to turn the se forces are $+P_{3}+$ etc., ant couple,
the moment
duced to : or.) cumnot , the force

IIence the conditions of equilibrium of a system of parHel forces acting on a rigid body in one plane are :

The sum of the forces must $=0$.
The sum of the moments of the forces about every point in their plane must $=0$.
61. Conditions of Equilibrium of a Rigid Body acted on by Forces in any direction in one Plane.Let P_{1}, P_{2}, P_{3}, etc., be the forces acting at the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$, etc., in the plane $x y$. Resolve the force P_{1} into two components, X_{1}, Y_{1}^{\prime}, parallel to $O X$ and $O Y$ respectivel:- Let the direction of Y_{1} meet $O X$ at M, and the direction of X_{1} meet $O Y$ at N. Apply
 at O two opposing forces tach equal and parallel to X_{1}, and also two opposing forces each equal and parallel to Y_{1}. Hence Y_{1} at A_{1}, or M, is equivalent to Y_{1} at O, and a comple whose moment is $Y_{1} \cdot O M$; and X_{1} at A_{1}, or N, is equivalent to X_{1} at O, and a conple whose moment is $X_{1} \cdot 0 . V$.
Hence Y_{1} is replaced by Y_{1} at O, and the couple $Y_{1} x_{1}$; and X_{1} is replaced by X_{1} at O, and the conple $X_{1} y_{1}$ (Art. 47). Therefore the force P_{1} may be replaced by the components X_{1}, Y_{1} acting at O, and the couple whose moment is

$$
Y_{1} x_{1}-X_{1} y_{1}
$$

and which equals the moment of P_{1} about O (Art. 57).
By a similar resolution of all the forces we shall have then replaced by the forces $\left(X_{2}, Y_{2}\right),\left(X_{3}, Y_{3}\right)$, ete., acting ut O uloug the axes, wind the couples

$$
r_{2} r_{2}-X_{2} y_{2}, \quad Y_{3} r_{3}-X_{3} y_{3}, \text { ctc. }
$$

Adding together the couples or moments of P_{1}, P_{2}, etc.,
and denoting by G the moment of the resultant couple, we get the total moment

$$
G=\Sigma(I x-X y)
$$

If the sum of the components of the forces along $O X$ is denoted by ΣX, and the sum of the components allong $O Y^{\circ}$ by ΣV, the resultamt of the forces acting at O is given by the equation

$$
R^{2}=(\Sigma X)^{2}+(\Sigma Y)^{2}
$$

If a be the angle which R makes with the axis of X, we alavo

$$
\begin{gathered}
R \cos a=\Sigma \Sigma, \quad R \sin a=\Sigma Y ; \\
\therefore \tan a=\frac{\Sigma}{\Sigma} Y .
\end{gathered}
$$

Therefore, any system of frrces acting in any direction in one plane on a rigid body may be reduced to a single force, R, and a single couple whose moment is G, which (Art, 54, Cor.) cimnot produce equilibrium. Hence for equitibrium we must have $R=0$, and $G=0$, which requires that

$$
\begin{aligned}
& \mathbf{\Sigma} X=0, \quad \Sigma Y=0, \\
& \mathbf{\Sigma}(Y x-X y)=0
\end{aligned}
$$

Hence the conditions of equilibrinm for a system of forces acting in any direction in one plane on a rigid body are:

The sum of the components of the forces parallel to each of turo rectungular axes must $=0$.
The sum of the moments of the forces round every point in their plane must $=0$.

Cor--Conversely, if the forees are in equitibrium the sum of the compronents of the forees parallel to any direction will $=0$, and also the sum of the moments of the forces about any point will $=0$.
62. Condition of Equilibrium of a Body under the Action of Three Forces in one Plane.-If theree forces maintuin a bodly in equilibrium, their directions must meet in a point, or be parullel.

Suppose the directions of two of the forees, P and Q, to meet at a point, and take moments round this point ; then the moment of each of these two forees $=0$; therefore the moment of the third foree $R=0$ (Art. 61, Cor.), which requires either that $R=0$, or that it pass through the point of intersection of P and Q. If R is not $=0$, it must pass through this point. Hence if any two of the forees meet, the third must pass throngh their point of interseetion, and keep it at rest, and each foree mast be equal and opposite to the resultant of the other two. 'f the angles between them in pairs be p, q, r, the forces musi satisfy the conditions

$$
P: Q: R=\sin p: \sin q: \sin r(\text { Art. 32 }) \text {. }
$$

If two of the forces are parallet, the third must be parallel to them, and equal and directly opposed to their resultant.
EXAMPLES.

1. Suppose six parallel forees proportional to the numbers $1,2,3,4,5,6$ to at at points $(-2,-1),(-1,0),(0,1)$, $(1,2),(2,3),(3,4)$; find the resultant, R, and the centre of parallel forces.
By Art. 59 we have

$$
R=\mathbf{\Sigma} P=1+2+\ldots 6=21 ;
$$

$$
\begin{aligned}
& \Sigma P x=-2-2+4+10+18=28 ; \\
& \Sigma P y=-1+3+8+15+24=49 . \\
& \therefore \quad \bar{x}=\frac{\Sigma P x}{\Sigma P}=\frac{\ddot{ }}{21} ; \quad \bar{y}=\frac{\Sigma P y}{\Sigma} \frac{49}{21} .
\end{aligned}
$$

2. At the three vertices of a triangle parallel forees are applied which are proportiolal respectively to the opposite sides of the triangle; find the centre of these forces.

Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ be the vertices, and let a, b, c be the sides opposite to them; then

$$
\bar{x}=\frac{a x_{1}+b x_{2}+c x_{3}}{a+b+c} ; \quad \bar{y}=\frac{a y_{1}+b y_{2}+c y_{3}}{a+b+c}
$$

3. If two parallel forces, P and Q, aet in the same direetion at A and B, (Fig. 14), and make an angle, θ, with $A B$, find the moment of each about the point of applieation of their resultant.

The moment of P with respect to G is

$$
P \cdot A G \sin 0(\text { Art. 46). }
$$

But from (1) of Art. 45, we have

$$
\begin{gathered}
\frac{P+Q}{Q}=\frac{A B}{A G} \\
\therefore A G=\frac{Q}{P+Q} \cdot A B,
\end{gathered}
$$

which i $P \cdot A G \sin \theta$ gives

$$
\frac{P Q}{P+Q} \cdot A B \sin \theta
$$

for the moment of P which also equals the moment of Q

IMAGE EVALUATION TEST TARGET (MT-3)

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

4. Two parallel forees, aeting in the same direction, have their magnitndes 5 and 13 , and their points of applieation, A and l, , feet alpart. Find the magnitude of their resultant, and the point of application, (r.
$A n s . ~ R=18, A G=4 \frac{1}{3}, B G=1 \frac{2}{3}$.
5. On a straight rol, $A F$, there are suspended 5 weights of $5,15,7,6$, and 9 ponnds respectively at the points A, B, $D, E, F ; A B=3$ fect, $B D=6$ feet, $D E=5$ feet, $E F=4$ feet. Find the magnitude of the resultant, and the distance of its point of appliation, G, from A.

Ans. $R=42$ pounds. $A G=8 \frac{3}{7}$ feet.
6. A heary uniform beam, AB, rests in a vertical plune, with one end, Λ, on a smooth horizontal plane and the other end, B, against a smooth rertical wall ; the end, Λ, is prevented from sliding by
 a horizontal string of given length fustened to the end of the beam nud to the wall; determine the tension of the string and the pressures against tho horizontal plane and the wall.
Let $2 \pi=$ the length of the heam, and let W be its weight, which as the beam is uniform, we may suppose to aet at its middle point, G. Let R be the vertical pressure of tho horizontal plame against the beam ; and R^{\prime} the horizonial pressure of the vertical wall, and T the tession of the horizontal string, AC ; let $\mathrm{BAC}=\pi$, a known angle, sinee the lengths of the beam and the string are given. Then (Art. 61), we have

$$
\begin{aligned}
& \text { for horizontal forees, } T=R^{\prime} ; \\
& \text { for vertical forees, } \quad W=R ;
\end{aligned}
$$

for moments about Λ (Art. 47), $2 h^{\prime} a \sin a=W a \cos a$;

$$
\therefore \quad R^{\prime}=T=\frac{W}{2} \cot \alpha
$$

7. A heary beam, $\Lambda B=a+l$, rests on two given smooth phanes which are inclined at angles, σ and β, to the horizon; required the angle θ which the bean makes with the horizontal phane, and the pressures on the planes.

Let a and b be the segments, $A G$ and BG, of the beam, made by its centre of gravity, G ; let R and R^{\prime} be the pressures on the planes, ΛC and BC , the lines of action of which are perpendicular to the phanes since they are smooth, and let If be the weight of the beam. Then we have

$$
\begin{equation*}
\text { for horizontal forees, } R \sin \not \epsilon=R^{\prime} \sin \beta \text {; } \tag{1}
\end{equation*}
$$

for vertionl forces, $R \cos a+R^{\prime} \cos \beta=W^{\prime}$;
for moments abont G, $R a \cos (\alpha+\theta)=R ' b \cos (\beta-\theta)$. (3)
Dividing (3) by (1), we have

$$
a \cot a-a \tan \theta=b \cot \beta+b \tan \theta
$$

therefore, $\quad \tan 0=\frac{a \cot \varepsilon-b \cot \beta}{a+b}$,
und from (1) and (2) we have

$$
R=\frac{W \sin \beta}{\sin (\alpha+\beta)} ; \text { and } h^{\prime}=\frac{W \sin a}{\sin (\sigma+\beta)}
$$

Otherwise thus: since the beam is in equilibrinm under the action of only three forces, they must meet in a point 0 . (Art. 62), and therefore we obtain immediately from the geometry of the figure,

$$
\frac{R}{W}=\frac{\sin \beta}{\sin (\sigma+\beta)}, \quad \therefore \quad R=\frac{W \sin \beta}{\sin (\sigma+\beta)},
$$

and $\quad \frac{R^{\prime}}{\|^{\prime}}=\frac{\sin \pi}{\sin (\pi+\beta)}, \quad \therefore \quad R^{\prime}=\frac{W \sin a}{\sin (\pi+\beta)}$.
Also since the angles, GOA and GOB, are equal to cand β, respectively, and $\mathrm{BGO}={ }_{2}^{\pi}-\theta$, we have

$$
(a+b) \cot \mathrm{BGO}=a \cot \mathrm{GOA}-b \cot \mathrm{GOB}
$$

therefore, $\quad \tan \theta=\frac{a \cot a-b \cot \beta}{a+b}$.
Hence, if $\frac{a}{b}=\frac{\tan a}{\tan \beta}$, the beam will rest in a horizontal position.
8. A heavy aniform beam, $A B$, rests with one end A, against a smooth vertical wall, and the other cind, B, is fastened ly a string, BC, of given length to a point, $(C$, in the wall; the beam and the string are in a vertical phane; it is required to determine the pressure against the wall, the tension of the string, and
 the position of the beam and the string.

$$
\text { Let } \quad \mathrm{AG}=\mathrm{GB}=a, \quad \mathrm{AC}=x, \quad \mathrm{BC}=b
$$

weight of beam $=W$, tension of string $=T$, pressure of wall $=R$,

$$
\mathrm{BAE}=0, \quad \mathrm{BCA}=\phi
$$

Then we have

$$
\begin{array}{ll}
\text { for horizontal forces, } & R=T \sin \phi ; \\
\text { for verical forces, } & W=T \cos \phi ; \tag{2}
\end{array}
$$

$$
\text { for moments about } \Lambda, W a \sin \theta=T \cdot \Lambda \mathrm{D})=T x \sin \phi ;(.)
$$

$$
\begin{equation*}
\therefore \quad a \sin \theta=x \tan \phi ; \tag{4}
\end{equation*}
$$

and by the geometry of the fignre

$$
\begin{align*}
& \frac{b}{2 a}=\frac{\sin \theta}{\sin \phi} \tag{5}\\
& \frac{x}{2 a}=\frac{\sin (\theta-\phi)}{\sin \phi} . \tag{6}
\end{align*}
$$

Solving (4), (5), and (6), we get

$$
\begin{aligned}
x & =\left[\frac{b^{2}-4 a^{2}}{3}\right]^{\frac{1}{2}} ; \\
\cos \phi & =\frac{2}{b}\left[\frac{b^{2}-4 a^{2}}{3}\right]^{\frac{1}{2}} ; \\
\sin \theta & =\frac{1}{2 a}\left[\frac{16 a^{2}-b^{2}}{3}\right]^{\frac{1}{2}} ;
\end{aligned}
$$

from which R and T become known. (Priee's Anal. Mech's., Vol. I, p. 69).
To determine all the unknown quantities many problems in Statics require equations to be formed by geometric relations as well as static relations. Thus (1), (2), (8) ure static equations, and (5) is a geometric equation.
9. A uniform heary beam, $\mathrm{AB}=2 a$, rests with one end, A , against the intermall surface of a smooth hemispherical bowl, radius $=r$, while it is supported at some point in its length by the edge of the bowl ; find the position of equilihrium.

The beam is kept in equilibrium by three forces, viz., the reation, R, at Λ perpendienlar to the surface of contart. (Art. 42) and therefore perpendicular to the bowl, the ration, R^{\prime}, at C whieh, for the same reasen, is perpendicular to the beam, unul the weight if acting at $(i$.

Let $\theta=$ the inclination of the beam to the horizon $=<\mathrm{ACD}$. The solution will be most readily effeeted ly resolving the forees along the bean and taling moments alout C , by which we shall obtain equations free from the nuknown reaction, R '. Then we have
or,

$$
2 r \sin ^{2} \theta-2 r \cos ^{2} \theta+a \cos \theta=0
$$

$$
\begin{equation*}
4 r \cos ^{2} \theta-a \cos \theta-2 r=0 \tag{3}
\end{equation*}
$$

roblems in Statics 18 as well as static $1(5)$ is a geometric

forces, viz., the rface of contact. the bowl, the son, is perpenlg at θ.
therefore
or
$2 r \cos 2 \theta=a \cos \theta$,

$$
4 r \cos ^{2} \theta-a \cos \theta-2 r=0
$$

which is the same as (3) obtained by the other methot.
'The student may prove that the reaction, R^{\prime}, at C $=W \frac{a}{2 r}$.
10. Find the position of equilibrium of a uniform heary beam, one end of whieh rests against a smooth vertical plane, and the other against the interual surface of a smocth spherical bowl.
The beam is in equilibrium under the action of three forces, the weight, W, acting at G , the reaction, R, at Λ, perpendienlar to the surface and hence passing through the centre, C, and the reaction, R^{\prime}, of the vertical plane perpendienlar to itself and hence horizontal.

Let the length of the beam, $\mathrm{AB},=2 a, r=$ the radius of the sphere, $d=\mathrm{CD}$, the distance of the centre of the sphere from the vertical wall, $W^{+}=$the weight of the beam; and let $\theta=$ tho required inelination of the beam to the horizon, and $\phi=$ the inclination of the radius $\mathrm{A}(\mathrm{f}$ to the horizon. Then we have

$$
\begin{equation*}
\text { for vertical forees, } R \sin \phi=W \text {; } \tag{1}
\end{equation*}
$$

for moments alout $\mathrm{B}, R \cdot 2 a \sin (\phi-0)=W \cdot a \cos \theta ;$ (
Dividing (2) by (1) wo have

$$
\frac{2 \sin (\phi-\theta)}{\sin \phi}=\cos \theta,
$$

$$
\begin{equation*}
\tan \phi=2 \tan \theta . \tag{3}
\end{equation*}
$$

Then we have, from the geometry of the figure, the horizontal distance from A to the wall $=$ the horizontal projection of $\mathrm{AC}+\mathrm{CD}$, that is,

$$
\begin{equation*}
2 a \cos \theta=r \cos \phi+d \tag{4}
\end{equation*}
$$

From (3) and (4) a value of θ can be obtained, and hence the position of equilibrium.

Otherwise thas: since the beam is in equilibriam under the action of only three forces they must meet in a point, 0 . Geometry then gives ns

$$
2 \cot O G B=\cot A O G-\cot G O B=\cot A O G,
$$

or

$$
2 \tan \theta=\tan \phi,
$$

which is the same as (3).
63. Centre of Parallel Forces in Different Planes. -To find the magnitude, clirection, and point of amplication of the resultant of any number of prevalle forecs reting on a rigid body.

The theorem of Art. 59 is evidently true also in the case in which neither the parallel forees nor their fixed points of applieation lie in the same plane, hence, calling \bar{z} the third co-ordinate of the point of application of the resultant, we have for the distance of the centre of parallel forces from the planes $y z, z x$, and $x y$,

$$
\bar{x}=\frac{\Sigma P x}{\Sigma P}, \quad \bar{y}=\frac{\Sigma P y}{\Sigma P^{\prime}}, \quad \bar{z}=\frac{\Sigma P z}{\Sigma P^{\prime}} .
$$

Hence (Art. 59, Nch.) the equations for determining the position of the centre of parallel forces show that the sum uf the moments of the parallel forces with respect to amy plene is cqual to the moment of their resultant.
64. Conditions of Equilibrium of a System of Parallel Forces Acting upon a Rigid Body in Space.-Let I_{1}, I_{2}, I_{3}, cte., denote the forecs, and let them be referred to three rectangular ixes, $O Z, O Y, O Z$; the last parallel to the forces ; let (x_{1}, y_{1}, z_{1}), $\left(x_{2}, y_{2}, z_{2}\right)$, ete., be the points of application of the foress, P_{1}, P_{2}, ete. Let the direction of P_{1} meet the plane, $x y$, at M_{1}.
Draw $M_{1} N_{1}$ perpendicular to the axis
 of x meeting it at N_{1}. Apply at O, and also at N_{1}, two opposing forecs each equal and parallel to P_{1}. Then the foree P_{1} at M_{1} is replaced by
(1) P_{1} at O allong $O Z$;
(2) a couple formed of P_{1} at M_{1} and P_{1} at N_{1};
(3) a couple formed of P_{1} at N_{1} and P_{1} at O.

The moment of the first couple is $P_{1} y_{1}$, and this couple may be transferred to the plane $y z$, which is parallel to its original plane, without altering its effect (Art. 52). The moment of the second couple is $P_{1} x_{1}$, and the couple is in the plane $x z$.
Replacing each force in this manner, the whole system will be equivalent to a force

$$
P_{1}+P_{2}+P_{3}+\text { etc., or } \Sigma P \text { at } O \text { along } O Z,
$$

together with the couple

$$
P_{1} y_{1}+P_{2} y_{2}+P_{3} y_{3}+\text { cte., or } \Sigma P y \text {, in the plane } y z
$$

and the couple

$$
P_{1} x_{1}+P_{2} x_{2}+P_{3} x_{3}+\text { ete., or } \Sigma P x \text { in the plane } z z .
$$

The first comple tends to turn the body from the axis of y to that of z round the axis of x, and the second couple

System of id Body in forces, and let

so at N_{1}, two ${ }_{1}$. Then the
it $N_{1} ;$ at 0 .
ad this couple parallel to its Art. 52). The co couple is in whole system $\lg O Z$,
de plane $y z$,
e plime az.
In the axis of y second couple

EqUILIBRIUM of parallel forces in si’ace.
tends to turn the body from the axis of x to that of z romed the axis of y. It is customary to consider those couples as positive which tend to turn the body in the direction indieated by the natural order of the letters, i. e., positice from x to y, round the z-axis; from y to z round the x-ixis; and from z to x round the y-axis; and vegative in the contrary direction.
Hence the moment of the first comple is $+\Sigma P y$, and therefore $O X$ is its axis (Art. 50) ; and the moment of the second couple is $-\Sigma P x$, and therefore $O Y^{\prime}$ is its axis. The resultant of these two couples is a single couple whose axis is found (Art. 56) by drawing OL (in the positive direction of the axis of x) $= \pm \stackrel{y}{P} y$, and $O . M$ (in the negative direction of the axis of y) $=\Sigma P x$, and completing the parallelogram $O L G M$. If $O G$, the diagonal, is denoted by G, we have

$$
\begin{aligned}
& G=\sqrt{(\Sigma P x)^{2}+(\Sigma P y)^{2}} \\
& R=\Sigma \mathbf{\Sigma} P
\end{aligned}
$$

and
R being the resultant foree.
Now since this single force, R, and this single couple, G, camnot produce equilibrium (Art. 54, Cor.), we mi st have $R=0$, and $G=0$, and G cimnot be $=0$ unless $\triangle P x=0$ and $\Sigma P y=0$; the conditions therefore of equilibrium are

$$
\begin{gathered}
R=0, \\
\Sigma P x=0, \quad \Sigma P y=0 .
\end{gathered}
$$

Hence, the conditions of equilibrinm of parallel forces in space are:

The sum of the forces must $=0$.
The sum of the moments of the forces with respect to every plane parallel to them must $=0$.
65. Conditions of Equilibrium of a System of Forces acting in any Direction on a Rigid Body in Space.-Let P_{1}, P_{2}, P_{3}, nte., denote 'lu furces, and het them be referred to three rectangular axes, $O X^{\prime}, O Y, O Z$; let $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right)$, cte., be the points of application of P_{1}, P_{2}, etc.

Let A_{1} be the point of application of P_{1}; resolve P_{1} into components X_{1}, Y_{1}, Z_{1}, parallel to the co-ordinate axes. Let the direction of Z_{1} meet the plane $x y$ at M_{1}, and draw $M_{1} N_{1}$ perpendicnlar to $O X$. Apply at N_{1} and also at O
 two opposing forces each equal and parallel to Z_{1}. Hence Z_{1} at A_{1} or M_{1} is equivalent to Z_{1} at O, and two couples of which the former has its moment $=$ $Z_{1} \times V_{1} M_{1}=Z_{1} y_{1}$, and may be supposed to act in the plane $y z$, and the laiter has its moment $=Z_{1} \times O N_{1}=$ $-Z_{1} x_{1}$ and acts in the plane $z x$.
Hence Z_{1} is repaced by Z, at O, a comple $Z_{1} y_{1}$ in the plane $y z$, and a conple $-Z_{1} x_{1}$ (Art. 64) in the plane $z x$. Similarly X_{1} may be replaced by X_{1} at O, a couple $Y_{1} z_{1}$ in the plane $z x$, and a conple $-X_{1} y_{1}$ in the phane $x y$. And Y_{1} may be replaced by Y_{1} at O, a couple $Y_{1} x_{1}$ in the plane $x y$, and a couple $-\Gamma_{1} z_{1}$ in the plane $y z$. Therefore the force P_{1} may be replaced ly X_{1}, Y_{1}^{+}, Z_{1}, acting at 0 , and three conples, of which the moments are, (Art. 56),
$Z_{1} y_{1}-Y_{1} z_{1}$ in the plame $y z$, around the axis of x,
$X_{1} z_{1}-Z_{1} x_{1}$ in the plane $z x$, aroman the axis of y,
$Y_{1} x_{1}-X_{1} y_{1}$ in the plane $x y$, aromend the axis of z.
By a similar resolution of all the furees we shall have them replaced by the forces:

$$
\triangle X, \quad \cup Y, \quad \Sigma Z,
$$

acting at O along the ases, and the couples

System of

 igid Body in furees, anul let A, OJ.OZ; its of applica-lent to Z_{1} at ts moment $=$ to act in the $V_{1} \times O N_{1}=$
$\mathrm{e} Z_{1} y_{1}$ in the the plane $z x$. couple $Y_{1} z_{1}$ the phane xy. e $Y_{1} x_{1}$ in the z. Therefore , acting at O, (Art. 56),
e axis of x, e axis of y, e axis of z. we shall have
$\mathbf{x}\left(Z_{y}-Y_{z}\right)=L$, suppose, in the plane $y z$,
$\pm(X z-Z x)=M$, suppose, in the plane $z x$,
$\Sigma(Y x-X y)=N$, suppose, in the plane $x y$.
Let R be the resultant of thr . rees whieh aet at O; a, b, c, the angles its direction makes with the axes; then (Art. 38),

$$
\begin{gathered}
R^{2}=(\mathrm{\Sigma} Y)^{2}+(\mathrm{\Sigma} Y)^{2}+(\mathrm{\Sigma} Z)^{2} \\
\cos a=\frac{\mathrm{\Sigma} Y}{R}, \quad \cos b=\frac{\mathrm{\Sigma} Y}{R}, \quad \cos c=\frac{\Sigma Z}{R}
\end{gathered}
$$

Let G be the moment of the couple which is the result. ant of the three couples, $L, M . N ; \lambda, \mu, \nu$, the angles its axis makes with the co-orlinate axes; then (Art. 56, Sch.),

$$
\begin{gathered}
G^{2}=L^{2}+M^{2}+N^{2}, \\
\cos \lambda=\frac{L}{G}, \quad \cos \mu=\frac{M}{G}, \quad \cos v=\frac{N}{G} .
\end{gathered}
$$

Therefore any system of forces acting in any direction on a rigid boly in space may always be reluced to a single force, R, and a single conple, G, and cannot therefore produce equilibrium (Art. 54, Cor.). Hence for equilibrium we must have $R=0$ and $G=0$; therefore

$$
\begin{gathered}
(\Sigma X)^{2}+\left(\Sigma Y^{\prime}\right)^{2}+(\Sigma Z)^{2}=0, \\
L^{2}+M^{2}+N^{2}=0 .
\end{gathered}
$$

and
These lead to the six conditions,

$$
\begin{gathered}
\searrow Y=0, \quad \pm Y=0, \quad \pm Z=0 \\
\pm(Z y-Y z)=0, \quad \cup(X z-Z x)=0, \\
\pm(Y x-X y)=0 .
\end{gathered}
$$

EXAMPLES

1. If the weights, $1,2,3,4,5$ lbs., act perpendienlarly to a straight line at the respective distances of $1,2,3,4$, 5 feet from one extremity, find the resultant, and the distance of its point of application from the first extremity.

Ans. $R=15$ lbs., $x=3 \frac{2}{3}$ feet.
2. Four weights of $4,-7,8,-3 \mathrm{lbs}$, act perpendicularly to a straight line at the points A, B, C, D, so that $A B=$ 5 fect, $\mathrm{BC}=4$ feet, $\mathrm{CD}=2$ feet; find the resultant and its point of application, G.

$$
\text { Ans. } R=2 \text { lbs., } \mathrm{AG}=2 \text { feet. }
$$

3. T'wo parallel forces of 23 and 42 lbs., act at the points A and 13, 14 inches apart; find GB to three places of deeimals. Ans. 4954 ins.
4. Two weights of 3 cwts. 2 qrs. 15 lhs., and 1 cwt. 3 qrs. 25 lbs. are supported at the points A and B of a straight line, the length $\mathrm{AB}=3$ feet 7 inches; fird $A G$ to three places of decimals of feet.

A $u s .1 .268 \mathrm{ft}$.
5. A bar of iron 15 inches long, weighing 12 lbs , and of uniform thickness, has a weight of 10 lbs . suspended from one extremity; at what point must the bar be supported that it nay just balance.

The weight of the bar acts at its centre.
Ans. 4_{1}^{11} in. from the weight.
6. A har of uniform thickness weighs 10 lhs. : ind is 5 feet long; weights of 9 lbs. and 5 lbs. are suspended from its extremities; on what point will it halanee?
$A n s .5 \mathrm{in}$. from the centre of the bar.
\%. A beam 30 feet long balances ifseff on a point ai onsthien ol its length from the thicker end ; but when a weight of 10 lhs. is suspended from the smaller end, the prop minst
be moved two feet towards it, in order to maintain the efuilibrium. Find the weight of the beam. Ans. 90 lbs .
8. Λ miform bar, 4 feet long, weighs 10 lbs , and weights of 30 lbs . and 40 lbs . are appended to its two extremities; where must the fulcrum* be placed to produce equilibrium?

$$
\text { Aus. } 3 \text { in. from the centre of the bar. }
$$

9. Λ bar of iron, of uniform thickness, 10 ft . long, and weighing $1 \frac{2}{2}$ ewt., is supported at its extremities in a horizontal position, and carries a weight of 4 cwt . suspended from a point distant 3 ft . from one extremity. Find the pressures on the points of support.

Ans. 3.55 cwt., and 1.95 ewt .
10. A bar, each foot in length of which weighs 7 lbs ., rests upon a fulerum distant 3 feet from one extremity; what must be its length, foat a weight of $71 \frac{1}{2}$ liss. suspended from that extremity may just be balameed by 20 lbs suspended from the other? Ans. 9 ft .
11. Five equal parallel forces act at 5 angles of a regular hexagon, whose diagonal is a; find the point of application of their resultant.

Aus. On the diagonal passing throngh the sixth angle, at n distance from it of ${ }^{\prime}$ ".
12. A body, P, suspended from one end of a lever without weight, is balmeed by a weight of 1 lb . at the other end of the lever; and when the fulerum is removed through half the length of the lever it requires 10 lbs . to balance P; find the weight of P. Ans. 5 lbs. or 2 lbs .
13. A carriage wheel, whose weight is W and radins r, rests upon a level road; show that the foree, F, necessary to draw the wheel over un obstacle, of height h, is

$$
F=W \frac{\sqrt{2 r h-h^{2}}}{r-h}
$$

[^3]14. A beam of uniform thickness, 5 feet long, weighing 10 He.. is supported on two props at the ends of the the:m; find where a weight of 30 lbs . mont be phaced, so that the pressures on the two props may be 15 lbs anil 25 lbs .

Ans. 10 ins. from the centre.
15. Forees of $3,4,5,6$ lbs. act at distances of 3 ins., 4 ins., 5 ins. 6 ins., from the end of a rod ; at what distaneo from the same end does the resultamt act:'

Ans. 47 inches.
16. Four vertical forces of $4,6,7,9$ lhs. act at the four corners of a square; timd the point of application of the resultant. Aus. $\frac{i}{3}^{6}$ of middle line from one of the sides.
17. A flat board 12 ins. stuare is suspended in a horizontal position by strings attached to its four comers, Λ, B, C, D, mid a weight enhal to the wight of the board is laid upon it at a point 3 ins. distant from the side $A B$ amd 4 ins. from AD ; tind the relative tensions in the fome strings.

$$
\text { .Ins. As } \frac{8}{4}: \frac{1}{2}: \frac{1}{3}: \frac{5}{2} .
$$

18. A rod, AB , moves freely abont the end, B , is on a hinge. Its weight, F , nets at it, middle point, and it is kept horizontul by a string, AC, that makes un angle of 45° with it . Find the tension in the string.

$$
A \| s . \frac{11}{\sqrt{2}} .
$$

19. A rod 10 inches long can turn freely about one of its conds; a weight of 4 lhs. is slung to a point 3 ins. from this end, and the rod is held by a string attached to its free end and indined to it at an :angle of 120°; tind the tension in the string when the rod is horizontal.

$$
A \mathrm{lns.} \text { I } \sqrt{3} \mathrm{llss} .
$$

20). Two forees of 3 ths. and 4 hns ant at the extremities of a straight lever te ins. long, and inclined to it at angles of 120° and 135° respectively; find the position of the fulerum. $\quad A n s .(8-3 \sqrt{ } 6) \times 9.6$ ins. from one end.
long, weighing s of the beam ; d, so that the $1: 5 \mathrm{lbs}$. the centre. rees of 3 ins., What distance 47 inches. et at the fonr lication of the of the sides.
led in a horiur corners, Λ, f the hoard is side $A B$ and s in the four : $: \frac{1}{2}: \frac{1}{3}: \frac{5}{12}$. al, B, as on a oint, and it is n angle of 45° $A n s \cdot \frac{I V}{\sqrt{2}}$ abliont one of nt 3 ins. from hee to its firee 40°; find the al.
: $\frac{4}{8} \sqrt{3} \mathrm{lls}$. he extremities 0 it al amgles sition of the m one end.
21. Find the trme weight of a body which is found to weigh 8 ozs. and 9 ozs . when placed in eateh of the scalepans of a false bulance.

$$
\text { Ans. } 0 \sqrt{2} \text { ozs. }
$$

22. A beam 3 ft . long, the weight of which is 10 llhs , and acts at its middle point, rests on a lail, with 4 lhs. hanging from one end and 13 lhs . from the other ; find the peint at which the beam is supported ; and if the weights at the two ends change places, what weight must be added to the lighter to preserve equilibrimm?

Aus. 12 ins. from one end ; 27 lles.
23. Two forces of 4 lbs. and 8 lbse aet at the ends of a bar 18 ins. long and make angles of 120° and 90° with it; find the point in the bur at which the resultant acts.

Ans. $\frac{78}{3}(4-\sqrt{3})$ ins. from the 4 lhs. end.
24. A weight of at lhs. is suspended by two flexible strings, one of which is horizontal, and the other is inclined at an ingle of 30° to the vertical. What is the tension in eaeh string? $\quad A / 1 \mathrm{~s} .8 \sqrt{3} \mathrm{lbs}: 16 \sqrt{3} \mathrm{lbs}$.
25. A pole 12 ft . long, weighing 95 lhs., rests with one end against the foot of a wall, and lrom a point 2 ft. from the other end a cord rims horizontally to a point in the wall 8 ft. from the ground; find the tension of the cord und the pressure of the lower end of the pole.

$$
\text { Aus. } 11.25 \mathrm{lbs} ; 2 \% .4 \mathrm{lbs} .
$$

26. A body weighing 6 lbs. is phaced on a smooth plame which is inclined at 30° to the horizon: find the two direefons in which a force equal to the body may act to prodnce equilibrium. Also find what is the pressire on the plane in ench case.

I $u s$. Λ force at 60° with the plane, or vertically upwards; $R=0 \sqrt{ }: 3$, or 0 .
2\%, A rool, AB, 5 ft long, withont weight, is hang from a point, C , by two strings which are attached to its ent;
and to the point ; the string, AC , is 3 ft ., and BC is 4 ft . in length, and a weight of 2 lhs . is hung from A, and a weight of 3 lbs . from B ; find the tensions of the strings.

$$
\text { Ans. } \sqrt{5} \text { lhs. } ; 2 \sqrt{5} \text { lbs. }
$$

28. Find the height of a eylinder, which can just rest or: an inclined plane, the angle of which is 60°, the diameter of the eylinder being 6 ins, and its weight acting at the middle point of its axis.

Ans. 3.46 ins.
29. Two equal weights, $I,, Q$, are conneeted by a string which passes over two smooth pegs, A, B, situated in a horizontal line, and supports a weight, W, whieh hangs from a smooth ring throngh which the string passes; find the position of equilibrium.
Ans. The depth of the ring helow the line

$$
A B=\frac{W}{2 \sqrt{41^{2}-1^{2}}} \cdot A B
$$

30. 'The resultant of two forees, P, Q, acting at an angle, 0 , is $=(2 m+1) \sqrt{l^{2}+Q^{2}}$; when they act at an angle, ${ }_{2}^{\pi}-\theta$, it is $=(2 m-1) \sqrt{1^{2}+Q^{2}}$; show that $\tan \theta=$ $m-1$.
31. Λ uniform heavy beam, $\Lambda B=2 n$, rests on a smooth peg, P, and against a smooth vertienl wall, AD ; the horizontal distance of the peg from the wall being h; fiud the inelination, 0 , of the beam to
 the vertical, and the pressures, A and S, on the wall and peg.
Ans. $0=\sin ^{-1}\binom{h}{a}^{\hbar} ; S=W\binom{a}{\frac{a}{h}}^{\frac{1}{4}} ; R=W \frac{\sqrt{a^{\frac{1}{2}}-h^{\frac{h}{2}}}}{h^{\frac{1}{b}}}$.
3.. Two equal smooth eylinders rest in contact on two smooth phanes inclined at angles, a ind β, to the horizon;

BC is 4 ft . in , and a weight ngs. $; 2 \sqrt{5} \mathrm{lbs}$. in just rest ot: the diameter acting at the es. 3.46 ins.
d by a string sitnated in a which hangs ; passes; find
g at an angle, at an angle, that $\tan \theta=$

wall and leg. $\frac{\sqrt{a^{\frac{1}{2}}-a^{2}}}{n^{\frac{b}{b}}}$.
natact on two the horizon;
find the inelination, θ, to the horizon of the line joining their centres.
$A u s . \tan \theta=\frac{1}{2}(\cot \alpha-\cot \beta)$.
33. Λ beam, 5 ft . long, weighing 5 lbs., rests on a vertical prop, $\mathrm{CD}=2 \frac{1}{\mathrm{t}} \mathrm{ft}$; the lower end, A , is on a horizontal plane, and is prevented from sliding by a string, $\Lambda \mathrm{D}=3 \frac{\mathrm{ft}}{\mathrm{ft}}$; find the tension of the string.

$$
A u s . T=\frac{36}{8} \mathrm{llss} .
$$

34. Λ uniform beam, AB , is placed with one cad, A, inside a smooth hemispherical buwl, with a point, P, resting on the edge of the bowl. If $\mathrm{AB}=3$ times the radius R, find $A 1$.

Aus. $\Delta \mathrm{P}=1.838 \mathrm{R}$.
35. A boily, weight W; is suspended by a cord, length l, from the point A, in a horizontal plane, and is thrust ont of its vertical position by a rod withont weight, acting at another point, B, in the horizontal plane, such that $\Lambda \mathrm{B}=d$, and making the angle, θ, with the phane; find the tension, \bar{A} ', of the cord.

$$
\text { Ans. } T=W \frac{l}{d} \cot \theta .
$$

36. Two heavy uniform bars, ΛB and (9), movable in a verticul plane about their extremities, Λ, D, which rest on a horizontal plane and are prevented from sliding on it; find their position of equilibrium when leaning against each
 other.

Let the bars rest against each other at. B, and let $\mathrm{AD}=a, \mathrm{AB}=b, \mathrm{CD}=c, \mathrm{BD}=x, W$ and ${\Pi_{1}}_{1}=$ the weights of $A B$ and CD , respectively aeting at their middlo points; then we have

$$
x^{3}\left\|^{\cdot}\left(a^{2}+b^{2}-x^{2}\right)=c\right\|_{1}\left(a^{2}+x^{2}-b^{2}\right)\left(b^{2}+r^{2}-a^{2}\right),
$$

whieh is mon cymation of the fifth degree. and hence ahwas has one real root, the value of which may be determined when numbers are put for a, b, and c.
37. Λ parabolic curve is placed in a vertical plane with its axis vertical and vertex downwards, and inside of it, and against a peg in the focus, and against the concave are, a smooth miform and heavy heim rests ; required the position of ectuilibrium.

Let Pl3 be the beam, of length l, and of weight W, resting on the peg at the foens, $\mathrm{F} ; \operatorname{let} \mathrm{AF}=p$ and $\mathrm{AFP}=\theta$.

$$
\text { Ans. } \theta=2 \cos ^{-1}\left(\frac{l}{l}\right)^{\ddagger}
$$

38. Find the form of the curve in a vertical phane such that a heary bar resting on its concave side and on a peg at a given point, say the origin, may be at rest in all positions.
Ans. $r=\frac{1}{2} l+k$ sec θ, in which $l=$ the length of the bar, k an arbitrary constant, and θ the inclination of the bar to the vertical. It is the equation of the conchoid of Nicomedes.
39. Λ rod whos centre of gravity is not its middle point is hung from a smooth peg by means of a string attached to its extremities; find the position of equilibrium.
Ans. There are two positions in which the rod hangs vertically, and there is a third thas defined: -Let F be the extremity of the rod remote from the centre of gravity, k the distiuce of the centre of gravity from the middle point of the rod. $v a$ the length of the string, and $2 c$ the length of the real ; then measure on the string a length $F P$ from F^{\prime} equal to a $\left(1+\begin{array}{c}k \\ d\end{array}\right)$, and plate the print p weer the peg. This will detine a third position of equilibrium.

$$
=2 \cos ^{-1}\left(\frac{\eta}{l}\right)^{\ddagger}
$$

tical plane such and on a preg at at rest in all
ie length of the elination of the the conchoid of
its middle point string attached librium.
the rod hangs -Let F^{\prime} be the re of gravity, k middle point $2 c$ the length of h $F P$ from F over the peg. mm .
40. Λ smooth bemisphere is fixed on a borizontal plane, with its convex side turned upwards and its base lying in the phane. A heavy uniform beam, AB, rests against the hemisphere, its extremity A being just out of contact with the horizontal plane. Supposing that A is attached to a rope which, passing over a smooth pulley phaced vertically over the centre of the hemisphere, sustains a weight, find the position of equilibrium of the beam, and the requisite maguitude of the suspended weight.
$A u s$. Let 1 l be the weight of the beam, $2 a$ its length, P the suspended weight, r the radius of the hemisphere, h the height of the pulley above the plane, θ and ϕ the inclinations of the bean and rope to the horizon; then the position of equilibrium is defined by the equations.

$$
\begin{gather*}
r \operatorname{cosec} \theta=h \cot \phi \tag{1}\\
r \operatorname{cosec}^{2} \theta=九(\tan \phi+\cot \theta) \tag{2}
\end{gather*}
$$

which give the single cruation for θ,

$$
\begin{equation*}
r(r-a \sin \theta \cos \theta)=a l \sin ^{3} \theta \tag{3}
\end{equation*}
$$

Also

$$
\begin{align*}
P & =W \frac{\sin \theta}{\cos (\phi-\theta)} \\
& =W \frac{a \sin ^{2} \theta \sqrt{r^{2}+h^{2} \sin ^{2} \theta}}{r^{2}} \tag{4}
\end{align*}
$$

41. If, in the last example, the position and magnitude of the beam be given, find the locus of the pulley.
Ans. A right line joining A to the point of intersection of the reaction of the hemisphere and II:
42. If, in the same example. the extremity, Λ, of the beam rest agminst the plame, state how the nature of the proble n is moditied, and find the position of equilibrimm.
Ans. The suspended weight must be given, instead of being a vesult of culculation. Eqnation (1) still holds, but 5
not (2) ; and the position of equilibrium is defined by the equation

$$
P h^{2} \cos ^{3} \phi=W a r \sin ^{2} \phi .
$$

43. If the fixed hemisphere be replaced by a fixed sphere or cylinder resting on the plane, and the extremity of the beam rest on the ground, find the position of equilibrium.

Ans. If h denote the vertical height of the pulley above the point of contact of the sphere or cylinder with the plane, we have

$$
\begin{gathered}
r \cot \frac{\theta}{2}=h \cot \phi \\
I^{\prime} r\left(1+\cot \frac{\theta}{2} \cot \theta\right) \cos \phi=W a \cos \theta .
\end{gathered}
$$

44. One end, Λ, of a heavy uniform beam rests against a smooth horizontal plane, and the other end, B, rests against a smooth inclined plane; a rope attached to B passes over a smooth pulley situated in the inelined plane, and sustains a given weight; find the position of equilibrinm.
Let θ be the inclination of the beam to the horizon, \boldsymbol{c} the inclination of the inclined plane, W the weight of the beam, and P the suspended weight; then the position of equilibrium is defined by the equation

$$
\begin{equation*}
\cos \theta(W \sin c-2 P)=0 \tag{1}
\end{equation*}
$$

Henee we draw two conclusions:-
(a) If the given quantities satisfy the equation $W \sin$ a $-2 P=0$, the beam will rest in all positions.
(b) There is one position of equilibrimm, namely, that in which the beam is rertical.
'This position requires that both planes be eonecived as prolonged through their line of intersection.
45. A uniform beam, AB, movable in a vertical plane about a smooth horizontal axis fixed at one extremity, Λ, is
defined by the
y a fixed sphere ctremity of the of equilibrium. the pulley above inder with the

$\cos \theta$.

rests against a B , rests against o B passes over ne, and sustains ilum.
e horizon, \boldsymbol{r} the rht of the beam, sition of equili-
fuation $W \sin$ a 11s.
namely, that in he conceived as
a vertical phane extremity, A, is
attached by means of a rope BC, whose weight is negligible, to a fixed point C in the borizontal line through A , such that $\mathrm{AB}=\mathrm{AC}$; find the pressure on the axis.
.Ins. If $\theta=\angle C A B, W=$ weight of beam, the reaction is

$$
\frac{1}{2} W \sqrt{4 \sin ^{2} \frac{\theta}{2}+\sec ^{2} \frac{\theta}{2}} .
$$

CHAPTER IV.

CENTRE OF GRAVITY* (CENTRE OF MASS)

66. Centre of Gravity.-Gravity is the name given to the lorce of attraction which the earch exerts on all bodies; the effects of this foree are twofold, (1) statical in virtue of which all bodies exert pressure, and (${ }^{2}$) kinetical in virtue of which hodies if unsupported, will fall to the ground (Art. 15). The force of gravity varies slightly from place to phace on the earth's surface (Art. 23) ; but at cach place it is a foree exerted upon every body and upon every particle of the body in directions that are normal to the earth's surface, and which therefore converge towards the earth's centre; but as this centre is very distant compared with the distance betwell the particles of any body of ordinary magnitude, the convergence is so small that the lines in which the foree of gravity acts are sensibly parallel.

The centre of gracity of a borly is the point of apmpication of the resultant of "ll the forcess of gruvity which at upon every particle of the body; and since these forces are prueticully purallel, the problem of finding its position may be lreated in the same way as that of finding the centre of a system of parallel forces (Arts, 45, 59, 63). The centre of gravity may also be defined as the point at which the whwle "reight of a borly ucts. If the body be supported at this point it will rest in any position whatever.

The weight of " borly ix the resultunt of all the farces of "rimit!t which act "pon" arery partirle of it, and is equal in mutmitude and dirertly npmite to the force which mill just wapont the borty. Nince the centre of gravity is here

* Called also fentre of M RN and Centre of Inerta; and the term Centrotd hat ately come lnto use to deskghate it.,
regarled as the centre of parallel forees. it is more truly conceived of as the "centre of mass;" yet in deference t" usage we shall call the point the "coutre of gravity."

67. Planes of Symmetry.-Axes of Symmetry.-If
a homogeneons bedy be symutrical with retiencee to any plane, the centre of gravity is in that plane.

If two or more such planes of symmetry intersect in one line, or axis of symmetry, the centre of gravity is in that axis.

If thres or more planes of symmetry intersect each other in a print, that point is the centre of gravity.

By observing these principles of the symmetry of the figure there are many eases where the centre of gravity is known at once; thas, the centre of gravity of a straight line is its middle point. The centre of gravity of a cirele or of its ciremference, or of a sphere or of its surface, is its centre. The centre of gravity of a parallelogram or of its perimeter is the point in which the diagonals intersect. The centre of gravity of a cylinder or of its surface is the middle of its axis; and in a similar manner we shall frequently conchude from the symmetry of the figure, that the centre of gravity of a body is in a particular line which can be at once de.ermined.
When we speak of the centre of gravity of a line, we are really considering a material line of the same density and thickness throughont, whose section is infinitesimal; and when we consider the centre of gravity of any surface, we are really considering the surface as a thin uniform lamina, the thickness of which, being uniform, can be neglected.
68. Body Suspended from a Point.-When a botly is shspended from a point about which it can turn frepily, it will rest with its centre of gravity in the rertical time passing through the point of suspensinn. For, if the juint of sus-
pension and the centre of gravity are not in a vertical line, the weight acting rertically downwards at the centre of gran ity and the reation of the point of suspension vertically mpwards form a statical couple and hence there will bo rotation.
69. Body Supported on a Surface. - IVhen a body is placed on a surfice it will stand or fall according as the vertical line through the centre of gravity falls within or without the base. For if it falls within the base the reaction of the surface upward and the action of the weight downward will be in the same vertical line, and so there will be equilibrium. But if it falls without the base the reaction of the surface upward and the action of the weight downward form a statical conple and henee the body wiil rotate and fall.
70. Different Kinds of Equilibrium.-According to the proposition just proved (Art. 69) a body ought to rest upon a single point without falling, provided that its centre of gravity is placed in the vertical line through the point which forms its base. And, in fact, a body so sitnated would be, mathematically speaking, in a position of equilibrium, though practically the equilibrinm wonld not subsist. The body would be mored from its position by the least force, and if left to itself it wonld depart further from it, and never return to that position again. This kind of equilibrium, and that which is practically possible, are distinguished by the names of mustable and stable. Thus an eggr on either end is in a position of unstable equilibrium, hut when resting on its side it is in a position of stable equiliL. ium. The distinction may be defined generally as follows:

When the body is in such a position that if slightly displaced it tends to return to its original position, the equilibrium is stable. When it tends to move further away from

I a vertieal line, at the centre of ension verticall! e there will bre

When a body is uccording as the falls within or base the reaction: re weight downso there will be ase the reaction e weight downbody will rotate
-According to y ought to rest d that its centre ough the point ody so situated sition of equiliwould not subposition by the rt further from - This kind of y possible, are d stable. Thus able equilibrium, sition of stable ed generally as
t if slightly distion, the equilither away from

CENTRE of gRAITTI of a priangle 102
its original position, its equilibrium is unstable. When it remains in its uew position, its equilibrium is neutral. A sphere or cylindrical roller, resting on a horizontal surface, is in ueutral equilibrium. In stable equilibriam the centre of !yravity occupies the lowest possible position; and in unstable it occupies the highest position.

We shall first give a few elementary examples.
71. G:iven the Centres of Gravity of two Masses, M_{1} and M_{2}, to find the Centre of Gravity of the two Masses as one System.--Let g_{1}, denote the centre of gravity of the mass M_{1}, and g_{2} the centre of gravity of the mass M_{2}. Join $g_{1} g_{2}$ and divide it at the point, G, so that $\frac{G g_{1}}{G g_{2}}=\frac{M_{2}}{\bar{M}_{1}}$, then G is the centre of gravity of the two masses as one system (Art. 45).
72. Given the Centre of Gravity of a Body of Mass, M, and also the Centre of Gravity of a part of the Body of Mass, 111 , to find the Centre of Gravity of the remainder.-Let G denote the centre of gravity of the mass, M, and g_{1} the centre of gravity of the mass, n_{1}. Join $G g_{1}$ and produce it throngh G to g_{2}, so that $\frac{G g_{2}}{G g_{1}}=\frac{m_{1}}{M-m_{1}}$, then g_{2} is the centre of gravity of the remainder (Art. 45).
73. Centre of Gravity of a Triangular Figure of Uniform Thickness and Density.-Let. ABC be the triungle ; biseet BC in D , and join AD ; draw any line blle parallel to BC ; then it is evident that this line will be biseeted by AD in d, and will therefore have its centre of gravity at d; similarly every line in the triangle parallel to BC will have its centre
 of gravity in AD , and therefore the centre of gravity of the triangle must be somewhere in AD.

In like manner the centre of gravity must lie on the line BE which joins B to the middle point of AC . It is therefore at the intersection, G , of AD and BE .
Join IE E, which will he parallel to AB; then the triangles, ABC, DE 6 , are similar; thercfore

$$
\begin{gathered}
\frac{\Lambda \mathrm{G}}{\mathrm{GD}}=\frac{\Lambda \mathrm{B}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{DC}}=\frac{2}{1} ; \\
\mathrm{GD}=\frac{1}{2} A \mathrm{G}=\frac{1}{3} \mathrm{AD} .
\end{gathered}
$$

Hence, to find the centre of gravity of a triangle, bisect any side, join the print of bisection with the opmosite angle, the ceutre of granity lies oue thirel the uay up this bisection.

Cor. 1.-If three equ...l partieles be placed at the rertices of the triangle ABC their centre of gravity will comeide with that of the triangle.
For, the centre of gravity of the two equal particles at 13 and C is the middle point of BC , and the entre of gravity of the three lies on the line joining this point to Λ. Similarly, it lies on the line joining B to the midale of $A C$. Therefore, cte.

Cor. 2. -The centre of gravity of any plane polygon may be found by dividing it into triangles, finding the centre of gravity of each triangle, and then by Art. 59 dedueing the centre of gravity of the whole figure.

Cor. 3.-Let the co-ordinates of Λ, referred to any axes, be x_{1}, y_{1}, z_{1}; those of B. x_{2}, y_{2}, z_{2}; and those of C, x_{3}, y_{3}, z_{3}; then (rrt. 59), the co-ordinates, $\bar{x}, \bar{y}, \bar{z}$, of the centre of gravity of three equal particles placed at Λ, B, C, respectively, are

$$
\begin{gathered}
\bar{x}=\frac{x_{1}+x_{2}+x_{3}}{3} ; \quad \bar{y}=\frac{y_{2}+y_{2}+y_{3}}{3} ; \\
\bar{z}=\frac{z_{1}+z_{2}+z_{3}}{3} ;
\end{gathered}
$$

the lie on the line C. It is thereen the triangles,
angle, bisect any mosite angle, the iis bisection.
d at the vertices ty will coineide

1 particles at B entre of gravity is point to A . e middle of AC .
ne polygon may ag the centre of 9 deducing the
ced to any axes, those of C, x_{3}, , $\overline{2}$, of the centre A, B, C, respec-
which are also the co-ordinates of the centre of gravity of the triangle ABC (Cor. 1).
74. Centre of Gravity of a Triangular Pyramid of Uniform Density.-Let D-ABC be a triangular pyramid; bisect AC at E ; join BE, DE; take EF $=\frac{1}{3} \mathrm{~EB}$, then F is the centre of ε ravity of ABC (Art. 73). Join FD; draw ab, bc, ca parallel to $\mathrm{AB}, \mathrm{BC}, \mathrm{CA}$ respectively, and let DF meet the plane, abc, at f; join bf and produce it to meet DE at e. Then since in the triangle $\mathrm{ADC}, a c$ is parallel
 to AC , and DE bisects $\Lambda \mathrm{C}, e$ is the middle point of $a c$; also
but
therefore

$$
\frac{b f}{\overline{\mathrm{~B}}}=\frac{\mathrm{D} f}{\mathrm{D} \mathrm{~F}}=\frac{e f}{\mathrm{EF}} ;
$$

$$
\begin{aligned}
\mathrm{EF} & =\frac{1}{2} \mathrm{BF}, \\
e f & =\frac{1}{2} b f ;
\end{aligned}
$$

therefore f is the centre of gravity of the triangle $a b c$ (Art. 73). Now if we suppose the pyramid to be divided by planes parallel to ABC into an indefinitely great number of tringgular lamine, each of these lamina has its centre of gravity in DF. Hence the centre of gravity of the pyramid is in DF.
Again, take $\mathrm{EII}=\frac{1}{8} \mathrm{ED}$; join HB cutting DF at G . Then, as before the centre of the pyramid must be on BH. It is therefore at the intersection, G. of the lines DF and BH .

Join FII ; then FH is parallel to DB . Also, $\mathrm{EF}=\frac{1}{3} \mathrm{~EB}$, therefore $\mathrm{FH}=\frac{1}{f} \mathrm{DB}$; and in the similur triangles, FGII and BGD, we have

$$
\frac{\mathrm{FG}}{\mathrm{DG}}=\frac{\mathrm{FII}}{\mathrm{DB}}=\frac{1}{3} ;
$$

therefore

$$
\mathrm{FG}=\jmath \mathrm{DG}=\frac{1}{\mathrm{DF}} .
$$

Henee, the centre of gravity of the pyramid is onc-fourth of the uray up the lime joining the centre of gravity of the buse with the rerter. ('Toolhminter's staties, p. 108. Also l'ratt's Mechanics, p. 53.)

Cor. 1-The centre of gravity of four equal particles placed at the vertices of the pyramid coincides with the centre of gravity of the pyramid.

Cor. 2.-Let $\left(x_{1}, y_{1}, z_{1}\right)$ he one of the vertices; $\left(x_{2}, y_{2}, z_{2}\right)$ a second vertex, and so on; let ($\bar{x} . \bar{y}, \bar{z}$) be the centre of gravity of the pyramid ; then (Art. 59)

$$
\begin{aligned}
& \bar{a}=\frac{1}{4}\left(x_{1}+x_{2}+x_{3}+x_{4}\right), \\
& \bar{y}=\frac{1}{4}\left(11_{1}+y_{2}+y_{3}+y_{4}\right), \\
& \bar{z}=\frac{1}{4}\left(z_{1}+z_{2}+z_{3}+z_{4}\right) .
\end{aligned}
$$

Cor. 3.-The perpendicular distance of the centre of gravity of a triangular pyramid from the base is equal to $\frac{7}{4}$ of the height of the pyramid.
75. Centre of Gravity of a Cone of Uniform Density having any Plane Base.-Consider a pyrannid whose base is a polygon of my number of sides. Divide the base into triaugles; join the vertex of the pyramid with the vertives of all the triangles; then we may consider the pyramid as composed of a number of trimgular pyramids. Now the centre of gravity of each of these triangular pyrumids lies in a plame whose distance from the base is one-fourth of the height of the pyrumid (Art. 74, Cor. 3); therefore the centre of gravity of the whole pyramid lies in this plune, i.e., its perpendiculur distance from the base is one-fourth of the height of the pyramid.
Again, if we suppose the pyramid to be divided into an indefinitely grent number of lumine, as in Art. 74 , euch of these lamina hus its centre of gravity on the right line
aid is one-fourth of gracity of the s, p. 108. Atso
equal particles ncides with the
ices; $\left(x_{2}, y_{2}, z_{2}\right)$ de the eentre of
joining the vertex to the eentre of gravity of the base; and hence the centre of gravity of the whole pyramid lies on this line, and hence it must be one-fourth the way up this line. 'There is no limit to the number of sides of the polygon which forms the base of the pramid, and hence they may form at continnons curve.
Therefore, the centre of gravity of a cone whose base is any plane curre whatever is found by joining the centre of granity of the base to the vertex, and takiag a point onefourth of the uray up this line.
76. Centre of Gravity of the Frustum of a Pyra-mid.-Let ABC-abc (Fig. 38) be the frustum, formed by the remoral of the prramid, D-abc, from the whole pyramid, D-ABC; let h_{1} and I be the perpendienlar heights of these pyramids, respectively; let m and M denote their masses; and let z_{1}, z_{2}, \bar{z} denote the perpendicular distances of the centres of gravity of the pyrumids D-ABC, and D-abc, and the frustum, from the base ; then we have (Art. 59, Sch. 1) ase is equal to
e of Uniform sider a pyramid f sides. Divide he pyramid with nay consider the gular pyramids. these trimignalar from the buse is Art. 74, Cor. 3) ; pyramid lies in from the base is
divided into an Art. 74 , euch of the right line

$$
\begin{gather*}
M z_{1}=\bar{z}(M-m)+m z_{8} \\
\bar{z}=\frac{M z_{1}-m z_{2}}{M-\frac{1}{m}} \tag{1}\\
z_{1}=\frac{\mathrm{H}}{4} \\
z_{2}=\left(H-h_{1}\right)+\frac{h_{1}}{4}=H-\frac{8}{8} h_{1}
\end{gather*}
$$

But

Also, the masses of the pyramids are to each other as their volumes* by (1) of Art. 10, and therefore as the cubes of their heights. Hence (1) beeomes

* If the bodles are liomogeneonar the volumer or the welghas are proportional to the :nanses, and may be subut!uted for them.

$$
\begin{align*}
\varepsilon & =\frac{1 I^{1}-\left(I I-\frac{3}{4} h_{1}\right) h_{1}^{3}}{I^{3}-h_{1}^{3}} \\
& =\frac{1}{4} \cdot \frac{\Pi^{4}-4 I I h_{1}^{3}+3 h_{1}^{4}}{I^{3}-h_{1}^{3}} \\
& =\frac{I I-h_{1}}{4} \cdot \frac{I^{2}+2 I I h_{1}+3 h_{1}^{2}}{I^{2}+M h_{1}+h_{1}^{2}} \tag{2}
\end{align*}
$$

Instead of the heights we may use any two corresponding lines in the lower and npper bases, to which the heights are proportional, as for example AB and $a b$. Denoting these lines by a and b, and the altitude of the frustum by $h,(:)$ becomes

$$
\begin{equation*}
\varepsilon=\frac{h}{4} \cdot \frac{a^{2}+2 a b+3 b^{2}}{a^{2}+a b+b^{2}} \tag{3}
\end{equation*}
$$

This is troe of a frustum of a pyrumid on any base, a and b being homolugous sides of the two ends, and hence it is true of the frustum of a cone stunding on any plane base.
EXAMPLES.

1. Find the centre of gravity of a trapezoid in terms of the lengths of the two parallel sides, a ant b, and of the line, h, joining their middle points.

Take moments with reference to the longer parallel side.
Aus. On the line bisecting the parallel sides and at a distance from its lower end $=\frac{h}{3} \cdot \frac{a+2 b}{a+b}$.
2. If ont of any cone n similar cone is cut so that their axes are in the same line and their bases in the samo plane, find the height of the centre of gravity of the remainder nhove the base.

Take moments with reference to the base.

Ans. $\frac{1}{4} \cdot \frac{h^{4}-h^{4}}{h^{3}-h^{3}}$, where h, is the height of the original cone, and h^{\prime}, the height of that which is cut out of it.
3. If out of any cone :mother cone is cut havirg the same base and their axes in the same line, find the height u' the centre of gravity of the remainter alowe the base.

Alus. $\frac{1}{4}\left(h+h_{1}\right)$, where h and h_{1} are the respective heights of the original cone and the one that is cut out of it.
4. If out of any right eylinder a cone is cut of the same buse and height, find the centre of gravity of the remainder Ans. 尔 ths of the height above the base.
77. Investigations Involving Integration. - The general formulat for the co-ordinates of the centre of gravity vary according as we consider a material line, an area or thin lamina, or a solid; and assume different forms aceording to the manner in which the matter is supposed to be divided into infinitesimal elements.

In either case the prineiple is the same; the quantity of matter is divided into an infinite number of intinitesimal elements, the mass of the clement being d $d m$; multiplying the element by its co-ordinate, x, for example, we get $x \cdot d m$, which is the moment of the element* with respect to the plane $y z$ (Art. 63); and $f \cdot x \cdot d m$ is the sum of the moments of ull the elements with respect to the plane $y z$, and which corresponds to $\Sigma P x$ of Art. 63. Also, , $f^{\prime} d m$ is the sum of the masses of all the clements which correspond to $\triangle P$ of the same Article. Hence, dividing the former by the hitter we have

[^4]\[

$$
\begin{equation*}
\bar{x}=\frac{J^{\prime} x \cdot d m}{J^{\prime} d m^{-}} \tag{1}
\end{equation*}
$$

\]

Similarly

$$
\begin{align*}
& \bar{y}=\frac{f y \cdot d m}{J^{\prime} d m} \tag{2}\\
& \overline{\mathbf{z}}=\frac{f z \cdot d m}{J^{\prime} d m} ; \tag{3}
\end{align*}
$$

the limits of integration being determined by the form of the body; the sign, f ', is used as a general symbol of summation, to he replaced by the symbols of single, donble, or triple integration, aceording as $d m$ denotes the mass of an elementary length or surface or solid. Hence, the co-ordinate of the centre of gravity referred to any plane is equal to the sum of the moments of the elements of the mass referred to the same plane divided by the sum of the elements, or the whole mass. If the body lias a plane of symmetry (Art. 67), we may take it to be the plane $x y$, and only (1) and (2) are necessary. If it has an axis of symmetry we may take it to be the axis of x, and only (1) is necessary.
78. Centre of Gravity of the Arc of a Curve.-If the body whose centre of gravity we want is a material line in the form of the are of any curve, $d m$ denotes the mass of an elementary length of the eurve.

Let $d s=$ the length of an element of the curve ; let $k=$ the area of a normal section of the curve at the point (x, y, z), and let $\rho=$ the density of the matter at thid point. Then (Art. 11), we have $d m=$ kipds, which is the mass of the element ; multiplying this mass by its co-ordinate, x, for example, we have the moment of the clement, (kiprdx), with respect to the plane, $y z$.
Hence, sulstituting for dim in (1), (2), (3), of Art. ir. the linemr element, keds, we oltain, for the position of the centre of gravity of a body in the form of any eurve, the equations
oy the form of mbol of sumgle, double, or he mass of an ence, the co-or' plane is equal 's of the mass of the elements, of symmetry , and only (1) symmetry we is necessary.
a Curve.-If a material line tes the mass of the curve ; let e at the point matter at this , which is the by its co-orof the clement,
3), of Art. ir. rosition of the any curve, the

$$
\begin{align*}
& \text { EXAMPLES. } \\
& \bar{x}=\frac{\int k \rho x d s}{\int k \rho d s}, \\
& \bar{y}=\frac{\int k \rho y d s}{\int k \rho d s}, \tag{1}\\
& \varepsilon=\frac{\int k \rho z d s}{\int^{\prime k} \rho d s} \tag{2}
\end{align*}
$$

The quantities k and ρ must be given as functions of the position of the point (x, y, z) before the integrations can be performed.
If the eurve is of double curvature all three cquations aie required. If it is a plane curve, we may take it to be in the plane $x y$, and (1) and (2) are sufficient to determine the centre of gravity, sinee $\bar{z}=0$. If the curve has an axis of symmetry, the axis of x may be made to coincide with it, and (1) is sufficient.

EXAMPLES

1. To find the centre of gravity of a circular are of uniform thickness and density.
Let $B C$ be the are, Λ its middle point, and 0 the centre of the circle. Then as the are is symmetrical with respeet to OA its centre of gravity must lie on this line. Take the origin at 0 , and $O A$ as axis of x. Then, since k and ρ are constant, (1) becomes

$$
\begin{equation*}
\bar{x}=\frac{\int x d s}{f d s} \tag{1}
\end{equation*}
$$

r being the co-ordinate of any point, P , in the are. Let 0 lee the angle $\mathrm{l}^{\prime} \mathrm{OA}$, and a the radius of the circle, and let $"=$ the mugle BOA. Then
and

$$
\begin{aligned}
x & =a \cos \theta \\
d s & =a d \theta
\end{aligned}
$$

Hence $x=\frac{\int_{-a}^{a} a^{2} \cos \theta d \theta}{\int_{-a}^{a} a d \theta}=a \frac{\int_{-a}^{a} \cos \theta d \theta}{\int_{-a}^{a} d \theta}=a \frac{\sin a}{a}$.
Therefore, the distance of the centre of gravity of the are of a circle from the centre is the product of the radius and the chord of the are divided by the length of the arc.

Cor.-The distance of the centre of gravity of a semicircle from the centre is $\frac{2 a}{\pi}$.
2. Find the centre of gravity of the quadrant, $A D$, (Fig. 39), referred to the co-ordinate axes $O X, O Y$.

The equation of the cirele is

$$
\begin{gathered}
x^{2}+y^{2}=a^{2} \\
\bullet \frac{d x}{y}=\frac{d y}{-x}=\frac{\sqrt{d x^{2}+d y^{2}}}{\sqrt{x^{2}+y^{2}}}=\frac{d s}{a} ; \\
\bullet x d s=\frac{a x d x}{y} \\
y d s=a d x \\
d s=\frac{a d x}{y}
\end{gathered}
$$

which in (1) and (2), after canceling k and ρ, give

$$
\bar{x}=\frac{\int_{0}^{a} \frac{x d x}{\sqrt{a^{2}}-x^{2}}}{\int_{0}^{a} \frac{\left.d-\left(a^{2}-x^{2}\right)^{\frac{1}{2}}\right]_{0}^{a}}{\sqrt{a^{2}-x^{2}}}}=\frac{2 a}{\left[\sin ^{-1} \frac{x}{a}\right]_{0}^{a}}=\frac{2 a}{\pi}
$$

$$
y=\frac{\int_{0}^{a} d x}{\int_{0}^{a} \frac{d x}{\sqrt{a^{2}-x^{2}}}}=\frac{[x]_{0}^{a}}{\left\lfloor\left.\sin ^{-1} \frac{x}{a}\right|_{0} ^{a}\right.}=\frac{2 a}{\pi} .
$$

3. Find the centre of gravity of the are of a cycloid.

Take the origin at the starting point of the eycloid, and let the base be taken as the axis of x. The equation of the curve is

$$
\begin{aligned}
& x=a \operatorname{vers}^{-1} \frac{y}{a}-\left(\mathfrak{k} a y-y^{2}\right)^{\frac{1}{2}} ; \\
& \therefore \frac{d x}{y^{\frac{1}{y}}}=\frac{d y}{(2 a-y)^{\frac{2}{2}}}=\frac{d s}{(2 a)^{\frac{1}{2}}} ;
\end{aligned}
$$

it is evident that the centre of gravity will be in the axis of the eycloid; therefore $\bar{x}=\pi a$; and as k and ρ are constant, (2) beeomes

$$
\bar{y}=\frac{\int_{0}^{2 a} \frac{y d y}{(2 a-y)^{\frac{1}{2}}}}{\int_{0}^{2 a} \frac{d y}{(2 a-y)^{\frac{1}{2}}}}=\frac{4}{3} a .
$$

Cor.-For the are of a semi-cycloil, we get

$$
\bar{x}=\frac{4}{3} a, \quad \bar{y}=\frac{4}{3} a .
$$

4. Find the eentre of gravity of a circular are of uniform section, the density varying us the length of the are from one extremity.
Let $A B$ (Fig. 39), be the are : let μ he the density at the units distance from Λ, then μ, s will be the density at the distames from A : let 0.1 be the axis of x, and ${ }^{\circ}$ the $\angle A O B$. Then, putting μs for ρ, and $a \cos \theta, a \sin \theta, a d \theta$, and $c t$, for $x, y, d s$, and s, in (1) and (2),

$$
\begin{aligned}
\bar{x} & =\frac{\int k \cdot \mu a \theta \cdot a \cos \theta \cdot a d \theta}{\int^{6} k \cdot \mu a \theta \cdot a d \theta}=a \frac{\int_{0}^{a} \theta \cos \theta d \theta}{\int_{0}^{\alpha a} \theta d \theta} \\
& =2 a \frac{a \sin a+\cos a-1}{a^{2}} . \\
\bar{y} & =\frac{\int k \cdot \mu a \theta \cdot a \sin \theta \cdot a d \theta}{\int^{\bullet} k \cdot \mu a \theta \cdot a d \theta}=a \frac{\int_{0}^{a} \theta \sin \theta d \theta}{\int_{0}^{\partial u} \theta d \theta} \\
& =2 a \frac{\sin a-a \cos a}{a^{2}} .
\end{aligned}
$$

Con.-For a quadrant we get

$$
\bar{x}=\frac{4 a}{\pi^{2}}(\pi-2), \quad \bar{y}=\frac{8 a}{\pi^{2}}
$$

5. Find the centre of gravity of one-half of a loop of a lemuiscate whose equation is $r^{2}=a^{2} \cos 2 \theta, l$ being the length of the half-loop.

Here

$$
\begin{aligned}
& \frac{d r}{-a^{2} \sin \overline{2 \theta}}=\frac{r d \theta}{a^{2} \cos 2 \theta}=\frac{d s}{a^{2}} ; \therefore \text { etc. } \\
& \\
& \text { Ans. } \bar{x}=\frac{a^{2}}{2^{\frac{1}{2}} l} ; \quad \bar{y}=a^{2} \frac{2^{\frac{1}{2}}-1}{2^{\frac{1}{2}} l} .
\end{aligned}
$$

6. Find the centre of gravity of a straight rod, the density of which varies as the nth power of the distance of each point from one end.

Take the origin at this end, suppose the axis of .0 to coincide with the axis of the rod, and let $l=$ the length of the rod.

$$
\text { Ans. } \bar{x}=\frac{n+1}{n+2} l .
$$

\therefore Find the centre of gravity of the are of a semi-cardioid, its equation being

$$
r=a^{\prime}(1+\cos \theta)
$$

Ans. The eo-ordinates of the centre of gravity referred to the axis of the curve and a perpendicular through the cusp, as axes of x and y, are

$$
\bar{a}=\bar{y}=\frac{f}{b} a .
$$

79. Centre of Gravity of a Plane

 Area.-Let ABCD be ant area bounded by the ordinates, AC and BD, the curve AB whose equation is given, and the axis of x; it is required to find the centre of gravity of this area, the lamina (Art. 67) being supposed of uniform thickness and density. We divide the area into an infinite number of infinitesimal elements (Art. 77). Suppose this to be done ly drawing ordinates to the curve. Let PM and QN be two consecntive ordinates, let (x, y) be the point, P , and let g be the centre of gravity of the trapezoid. MPQN, whose breadth is $d x$ and whose parrallel sides are y and $y+d y$. The area of this trapezoid is $y d x$, (Cal., Art. 184).
Let ρ be the density and k the thiekness of the lamina. Then (Art. 11) we have $d m=k \rho y d x$, which is the mass of the element MPQN ; multiplying this mass by its co-ordiaste, x, for example, we have the moment of the clement ($k \cdot x y d x$), with respeet to OY, and multiplying by the other co-ordinate. $\frac{1}{y}$, we have the moment with respeet to OX. Hence, substituting for dm in (1) and (2) of Art. 77, the surface element, $k \cdot p y$ i $(x$, and remembering that k : ind ρ are constants, we obtain, for the position of the centre of gravity of a body in the form of a plane area, the equations,

$$
\begin{equation*}
\bar{x}=\frac{\int x y d x}{\int y d x}, \quad \bar{y}=\frac{1}{\frac{1}{2} y^{2} d x} ; \tag{1}
\end{equation*}
$$

the integrations extending over the whole area CABD.

EXAMPLES.

1. Find the centre of gravity of the area of a semi-parab. ola whose equation is $y^{2}=2 p x$.
Let $a=$ the axis, and b the extreme ordinate, then wo have from (1)

$$
\begin{aligned}
& \overline{\boldsymbol{x}}=\frac{\int_{0}^{a} \sqrt{2 p} x^{\frac{3}{2}} d x}{\int_{0}^{a} \frac{\sqrt{2 p} x^{\frac{1}{d}} d x}{}=\frac{\int_{0}^{a} x^{\frac{3}{2}} d x}{\int_{0}^{a} x^{\frac{1}{2}} d x}=\frac{8}{8} a ;} \\
& \boldsymbol{y}=\frac{1}{2} \frac{\int_{0}^{a} 2 p x d x}{\int_{0}^{a} \sqrt{2 p} x^{\frac{1}{y}} d x}=\sqrt{p} \frac{\int_{0}^{a} x d x}{\int_{0}^{a} x^{\frac{1}{4}} d x}=\frac{3}{8} b .
\end{aligned}
$$

2. Find the centre of gravity of the area of an elliptic quadrant whose equation is

$$
\begin{gathered}
y=\frac{b}{a} \sqrt{a^{2}-x^{2}} . \\
\text { Here } \overline{\bar{x}}=\frac{\int_{0}^{a} x y d x}{\int_{0}^{a b} y d x}=\frac{\int_{0}^{a} \frac{b}{a}\left(a^{2}-x^{2}\right)^{\frac{1}{2}} x d x}{\int_{0}^{a} \frac{b}{a}\left(a^{2}-x^{2}\right)^{\frac{1}{2}} d x} ; \\
\therefore \bar{x}=\frac{4 a}{3 \pi} ; \\
\bar{y}=\frac{1}{2} \frac{\int_{0}^{a} y^{2} d x}{\int_{0}^{a} y d x}=\frac{1}{\frac{1}{2}} \frac{\int_{0}^{a} \frac{b^{2}}{a^{2}}\left(a^{2}-x^{2}\right) d x}{\int_{0}^{a}} \frac{b}{a}\left(a^{2}-x^{2}\right)^{\frac{1}{4} d x} ;
\end{gathered}
$$

$$
\therefore \vec{y}=\frac{4 b}{3 \pi}
$$

f a semi-parab. inate, then we
$x d x$
$\frac{}{x^{\frac{1}{3}} d x}=\frac{3}{8} b$.
of an elliptic

Hence for the centre of gravity of the area of a circular quadrant we have

$$
x=\bar{y}=\frac{4 a}{3 \pi}
$$

3. Find the centre of gravity of the area of a semicycloid.

Take the axis of the curve as axis of x, and a tangent at the highest point as axis of y; then the equation is (Anal. Geom., Art. 157),

$$
y=a \operatorname{vers}^{-} \frac{x}{a}+\sqrt{2 a x-x^{2}} ;
$$

where a is the radius of the generating cirele. From (1) we have

$$
\begin{aligned}
\bar{x} & =\frac{\int_{0}^{2 a} x y d x}{\int_{0}^{2 a} y d x}=\frac{\left[\frac{y x^{2}}{2}-\int \frac{x^{2}}{2} d y\right]_{0}^{2 a}}{\left[y x-\int x d y\right]_{0}^{2 a}} \\
& =\frac{\frac{1}{2}\left[y x^{2}-\left.\int x\left(2 a x-x^{2}\right)^{\frac{1}{2}} d x\right|_{0} ^{2 a}\right.}{\left[y x-\int\left(2 a x-x^{2}\right)^{\frac{1}{3}} d x\right]_{0}^{2 a}}=\frac{1}{2} \frac{\pi a(2 a)^{2}-\frac{1}{2} \pi a^{3}}{\pi a \cdot 2 a-\frac{1}{2} \pi a^{2}}
\end{aligned}
$$

since when $x=0$ and $2 a, y=0$ and πa.

$$
\therefore \bar{x}=f a
$$

Also,
$\bar{y}=\frac{1}{2} \int_{0}^{2 a} \int_{0}^{2 a} y \frac{y^{2} d x}{2 a}=\frac{\left[y^{2} x-2 \int y x d y\right]_{-}^{\infty}}{3 \pi a^{2}}$

$$
\begin{aligned}
& =\frac{\left[y^{2} x-2 \int^{2} y\left(2 a x-x^{2}\right)^{\frac{1}{2}} d x\right]_{0}^{2 a}}{3 \pi l^{2}} \\
& =\frac{\left[y^{2} x-2 a \int^{2}\left(2 a x-x^{2}\right)^{\frac{1}{2}} \operatorname{vers}^{-1} \frac{x}{a} d x-2 \int\left(2 a\left(x^{2}-x^{2}\right) d x\right]_{0}^{2 a}\right.}{3 \pi a^{2}} \\
& =\frac{\left[y^{3} x-2 a x^{2}+\frac{2 . x^{3}}{3}-2 a \int\left(2 a x-x^{2}\right)^{\frac{1}{2}} \operatorname{vers}^{-1} \frac{x}{a} d x\right]_{-0}^{2 a}}{3 \pi a^{2}} \\
& =\frac{2 \pi^{2} a^{3}-\frac{8 a^{3}}{3}-\frac{\pi^{2} t^{3}}{2}}{3 \pi a^{2}}-\frac{3 \pi^{2} a^{3}-\frac{8 a^{3}}{3}}{3 \pi a^{2}} ; \\
& \cdot \cdot \bar{y}=\frac{a}{3 \pi}\left(\frac{3}{2} \pi^{2}-\frac{8}{3}\right),
\end{aligned}
$$

which the student can verify by assuming

$$
\operatorname{vers}^{-1} \frac{x}{a}=\theta
$$

(See 'Todhunter's Staties, p. 118.)
80. Polar Elements of a Plane

Area.-Let $\Lambda \mathrm{l}$ s the the are of a curve, and let it be ropuired to find the centre of gravity of the area bomaded by the are AB und the extreme radii-vectors, $O A$ and OB , drawn from the pole, O , to the extremities of the are.

Divide the area into intinitesimal trimurles, sueh as POQ, indeluded botween t wo anserntive radii-sectors, op and O(). Let (r, θ) be the point, I, then the aren of the
 ness and density of the lamina are uniform, the centre of
gravity of this elementary triangle will be on a straight line drawn from 0 to the middle of $P Q$, mind at a distance of two-thirds of this straight line from O (Art. 73). Hence the co-ordinates of the centre of gravity, y, of $P O Q$, are OM and My, or,

$$
\frac{2}{3} r \cos \theta, \quad \text { and } \frac{2}{3} r \sin \theta .
$$

Hence, (Art. 77),

$$
\begin{align*}
& \bar{y}=\frac{\int h_{3} r \sin \theta \cdot \frac{1}{3} r^{2} d \theta}{J^{2} \frac{1}{2} r^{2} d \theta}=\frac{\rho^{\prime} r^{3} \sin \theta d \theta}{J^{2} r^{2} d \theta} ; \tag{1}
\end{align*}
$$

the integrations extending over the whole area, $\triangle O B$.
EXAMPLE.

Find the centre of gravity of the area of a loop of Bernouilli's Lemniseate whese equation is $r^{2}=a^{2} \cos 2 \theta$.

As the uxis of the loop is symmetrical with respect to the axis of $x, \bar{y}=0$, and the abscissa of the centre of gravity of the whole loop is evidently the same as that of the hall-loop above the axis. Substituting in (1) $f r r$ its value $a \cos ^{\frac{1}{2}} 2 \theta$, we have

$$
\begin{aligned}
\bar{\Phi} & =\frac{2}{3} \theta \frac{\int_{0}^{\frac{\pi}{4}} \cos ^{\frac{3}{2}} 2 \theta \cos \theta d \theta}{\int_{0}^{\pi} \cos 2 \theta d \theta} \\
& =\frac{4}{3} \pi \int_{0}^{\pi}\left(1-2 \sin ^{2} \theta\right)^{\frac{1}{l}} d \sin \theta
\end{aligned}
$$

Put $\sin \theta=\frac{\sin \phi}{\sqrt{2}}$, then

$$
\begin{gathered}
\bar{w}=\frac{4 a}{3 \sqrt{2}} \int_{0}^{\frac{\pi}{2}} \cos ^{4} \phi d \phi=\frac{4 \|}{3 \sqrt{2}} \cdot \frac{3}{8} \frac{\pi}{2}(\text { Cal., Art. 15i). } \\
\therefore \bar{x}=\frac{\pi a}{4 \sqrt{2}}
\end{gathered}
$$

81. Double Integration.-Polar Formula.-When the density of the lamina varies from poinc to point, it may be neecssary to divide it into elements of the second order instend of rectangular or triangular elements of the first order (Arts. 79 and 80).

Suppose that the density of the lamina AOB (Fig. 41), is not uniform. If we divide it into trimgular elements, POQ, the element of mass will be no longer proportional to the element of area, $\mathrm{POQ}=\frac{1}{2} r^{2} d \theta$; nor will the centre of gravity of the triangle, POQ, be $\frac{g_{3} r}{}$ distant from 0 .
Let a series of circles be described with 0 as a centre, the distance between any two sucerssive eircles being dr. These cireles will divide the trimgle, POQ , into an infinite number of rectangular elements, abcd $=$ rel $\theta d r$. If L : is the thiekness und ρ is the density of the lamina nt this element, the element of mass will be $d m=k \cdot p r d \theta d r$; and the co-ordinates of its centre of gravity will be $r \cos \theta$ und $r \sin \theta$. Hence, from (1) and (2) of Art. 7\%, we have

and

$$
\begin{equation*}
y=\frac{\iint k p r r^{2} \sin \theta d \theta d r}{\iint \operatorname{limr} d \theta d r} \tag{2}
\end{equation*}
$$

 sulnstituted in terms of r and θ, and the integrations taken between proper limits.
(Cal., Art. 15i).

rmule. - When

 to point, it may he second order ents of the firstAOB (Fig. 41), agular elements, - proportional to ill the centre of from 0. 10 als a centre, sircles being dr. into in infinite red d dr. If k : is minal at this elekipr do dr ; and II be $r \cos \theta$ mad 7 , we have
$\frac{\cos \theta d \theta d r}{d \theta d r}$;
and p wre to the tegrations tuken

EXAMPLE.

Find the centre of gravity of the area of a cardioid in which the density at in point inereases directly as its distance from the eusp.
Let $\mu=$ the density at the unit's distunce from the ensp, then $\rho=\mu r$, is the density at the distance r from the cusp.
As the axis of the curve is an axis of symmetry (Art. 67), $\bar{y}=0$, and the abseissa of the whole curve is the same as for the half above the axis; then (1) becomes

$$
\begin{aligned}
\bar{x} & =\frac{\int_{0}^{\pi} \int_{0}^{r} r^{3} \cos \theta d \theta d r}{\int_{0}^{3 \pi} \int_{0}^{\pi r} r^{2} d \theta d r} \\
& =\frac{\int_{0}^{\pi} r^{4} \cos \theta d \theta}{\int_{0}^{2 \pi} r^{3} d \theta}
\end{aligned}
$$

by performing the r-integration.
The equation of the eurve is

$$
r=a(1+\cos \theta)=2 u \cos ^{2} \frac{\theta}{2}
$$

Substitnting this value for r, and putting $\underset{2}{\theta}=\phi$, we have

$$
\begin{aligned}
\bar{x} & =\frac{3}{2} a \frac{\int_{0}^{\frac{\pi}{4}} \cos ^{8} \phi\left(2 \cos ^{2} \phi-1\right) d \phi}{\int_{0}^{\pi} \cos ^{8} \phi d \phi} \\
& =\frac{\pi}{4} a .
\end{aligned}
$$

82. Double Intcgration-Rectangular Formulæ.Let it series of consecutive straight lines be drawn parallel to the axes of x and y respectively, dividing the area, ABCD, (Fig. 40), into an infinite number of rectangular elements of the sceond order. Then the area of eaeh element, as $a b c d,=d x d y$; and if k and ρ are the thickuess and deusity of the lamina at this clement, the clement of mass will be $d m=k \cdot \rho d x d y$; and the co-ordinates of its centre of gravity will be x and y. Hence from (1) and (2) of Art. 77, we have

$$
\begin{align*}
& \bar{x}=\frac{\int \mathcal{J}^{\prime} k \rho x d x d y}{\iint k \rho d x d y} ; \tag{1}\\
& \bar{y}=\frac{\iint k \rho y d x d y}{\iint k \rho d x d y} \tag{2}
\end{align*}
$$

the integrations being taken between proper limits.

EXAMPLE
Find the contre of gravity of the area of a cyeloid the density of which varies as the nth power of the distance from the base.

Take the luse as the axis of x and the starting point as the origin. Then the chation of the eurve is

$$
\begin{gathered}
x=a \operatorname{vers}^{-1} \frac{!}{\prime \prime}-\left(2 a y-y^{2}\right)^{\frac{1}{2}} ; \\
\therefore \quad d x=\frac{y / d y}{\sqrt{ } 2 a y-y^{2}}
\end{gathered}
$$

r Formule.

 3 drawn parallel he area, ABCD , gular elements ach element, as ness and density of mass will be entre of gravity) of Art. 77, we(2)
limits.
a eycloid the of the distance irting point as

Let $\rho=\mu y^{n}=$ density at the distance y from the base. It is evident that the centre of gravity will be in the axis of the eycloid ; therefore $\bar{x}=\pi a$; and as k is constant (2) becomes

$$
\begin{aligned}
& \bar{y}=\frac{\int_{0}^{2 \pi a} \int_{0}^{n y} y^{n+1} d y d x}{\int_{0}^{2 \pi a} \int_{0}^{n} y^{n} d y d x} \\
&=\frac{n+1}{n+2} \frac{\int_{0}^{2 \pi a} y^{n+2} d x}{\int_{0}^{2 \pi a} y^{n+1} d x} \\
&=\frac{n+1}{n+2} \frac{\int_{0}^{2 a}-\frac{y^{n+3} d y}{\sqrt{2 a} \cdot y-y^{2}}}{\int_{0}^{2 a}-\frac{y^{n+2}}{\sqrt{2 a y-}}} \\
&=\frac{n+1}{n+2} \cdot \frac{2 n+5}{n+3} a \frac{\int_{0}^{2}}{\int_{0}^{2 a}} \frac{y^{n+2} d y}{\sqrt{2 a y-y^{2}}} \\
& y_{0}^{n+2} \frac{d y}{\sqrt{2 a y-y^{2}}} \\
& \therefore \bar{y}=\frac{n+1}{n+2} \cdot \frac{2 n+5}{n+3} a .
\end{aligned}
$$

83. Centre of Gravity of a Surface of Revolution. - Let a surfine be genemted by the revolution of the enve, AB (Fig. 40), romed the axis of r. Then the chementary are, $P Q .(=d s)$, gememtes mu element of the
 thickness and ρ the density of the laminn or sholl in this chementary zone, the element of mass will he $d m=2 \pi k p y d s$. Also the centre of gravity of this zone is in the axis of x at
the point M whose abscissa is x and ordinate 0 . Henes (1) of Art. 77 becomes, after cancelling 2π,

$$
\begin{equation*}
\bar{x}=\frac{\int^{\rho} k \rho x y d s}{\int^{\cdot} k y d s} \tag{1}
\end{equation*}
$$

the integrations being taken between proper limits.

EXAMPLES.

1. Find the centre of gravity of the surface formed by the revolution of a semi-cyeloid round its base.

The equation of the generating curve is

$$
\begin{gathered}
x=a \operatorname{vers}^{-1} \frac{y}{a}-\sqrt{2 a y-y^{2}} ; \\
\therefore \quad \frac{d x}{y}=\frac{d y}{\sqrt{2 a y-y^{2}}}=\frac{d s}{\sqrt{2 a y}} ; \\
d s=\frac{\sqrt{2 a} d y}{\sqrt{2 a-y}} .
\end{gathered}
$$

or
which in (1) gives, after cmeelling $\sqrt{2 a} k \cdot \rho$,

$$
\bar{x}=\frac{\int_{0}^{2 a} \frac{x y d y}{\sqrt{2} a-y}}{\int_{0}^{2 a t} \frac{y d y}{\sqrt{2} a-y}}=18 a .
$$

2. Find the centre of gravity of the surface formed by the revolution of a semi-reyeloid round its asis.
It is clear that the exntre of gravity lies on the axis of the curve; hence $\bar{y}=0$.
ate 0. Hence (1)
or limits.
arface formed by mase.
face formed by is.
on the axis of

The equation of the generating curve is

$$
y=a \operatorname{vers}^{-1} \frac{x}{a}+\sqrt{2 a x-x^{2}}
$$

Here

$$
\begin{aligned}
d y & =\sqrt{\frac{2 a-x}{x}} d x \\
d s & =\sqrt{\overline{2 a} x^{-\frac{1}{2}}} d x
\end{aligned}
$$

which in (1) gives

$$
\begin{aligned}
& \bar{x}=\frac{\int_{0}^{2 a} y x^{\frac{1}{2}} d x}{\int_{0}^{2 a} y \cdot x^{-\frac{1}{2}} d x} \\
& =\frac{\left[\frac{{ }^{3}}{3} y x^{\frac{3}{2}}-\frac{2}{3} \cdot \int^{\frac{3}{2}} d y\right]_{0}^{2 a}}{\left[2 y x^{\frac{1}{2}}-2 \int x^{x^{\frac{1}{2}} d y}\right]_{0}^{2 a}} \\
& =\frac{\left[\frac{2}{3} y x^{\frac{3}{2}}-\frac{9}{3} \int x \sqrt{2 a-x} d x\right]_{0}^{2 a}}{\left[2 y x^{\frac{1}{4}}-2 \int \sqrt{2 a-x} d x\right]_{0}^{2 a}} \\
& =\frac{9 \pi a(2 a)^{\frac{3}{3}}-\frac{{ }^{\frac{8}{8}} 5(2 a)^{\frac{8}{4}}}{2 \pi a(2 a)^{\frac{1}{2}}-\frac{1}{3}(2 a)^{\frac{5}{2}}}}{2} \\
& =\mathrm{f}^{2} 5 \text { a } \begin{array}{l}
15 \pi-8 \\
3 \pi-4
\end{array} \text {. }
\end{aligned}
$$

3. Find the centre of gravity of the surface formed by the revolution of the semi-cycloid round the axis of y in the last exmmple, i. e., round the tangent to the curve at the highest point.

$$
\text { Ans. } \bar{y}=\frac{{ }_{15}}{{ }_{15}}(15 \pi-8) .
$$

84. Centre of Gravity of Any Curved Surface.Let there be a shell having any given eurved surface for one of its bonudaries: and let $k=$ the thickness, $\rho=$ the density, and $d s=$ the area of an element of the surface at the point (x, y, z); then (1) of Art. 83 becomes

$$
\begin{equation*}
\bar{x}=\frac{\int k \rho x d s}{\int^{2} k \rho d s} \tag{1}
\end{equation*}
$$

and similar expressions for \bar{y} and \bar{z}.
Substituting the value of $d s$ (Cal., Art. 201) and cancelling k and ρ, we have

$$
\bar{x}=\frac{\iint x\left(1+\frac{d z^{2}}{d x^{2}}+\frac{d z^{2}}{d y^{2}}\right)^{\frac{1}{2}} d x d y}{\iint\left(1+\frac{d z^{2}}{d x^{2}}+\frac{d z^{2}}{d y^{2}}\right)^{\frac{1}{2}} d x d y}
$$

EXAMPLES.

1. Find the centre of gravity of one-eighth of the surface of a sphere.

Hero

$$
x^{2}+y^{2}+z^{2}=a^{2},
$$

$$
\begin{gathered}
\left(1+\frac{d z^{2}}{d x^{2}}+\frac{d z^{2}}{d y^{2}}\right)^{\frac{1}{2}}=\frac{a}{\left(a^{2}-x^{2}-y^{2}\right)^{\frac{1}{2}}} \\
\therefore \bar{x}=\frac{\left.\iint \frac{x d x}{\left(a^{2}-x^{2}\right.}-y^{2}\right)^{\frac{1}{2}}}{\iint \frac{d x}{\left(a^{2}-x^{2}-y^{2}\right)^{\frac{1}{2}}}}
\end{gathered}
$$

red Surface.

 irved surface for ickness, $\rho=$ the of the surface at mes1) and cancel-
e-eighth of the

First perform the y-integration, x leing constint, from $y=0$ to $y=L l=y_{1}=$ $\sqrt{a^{2}-a^{2}}$; the effect will be 10 sum up all the elements similar to $p q$ from $I I$ to l. The effeet of a subsequent r-integration will be to sum all these elemental strips that are comprised in the surface of which $O A B$ is the projection, and the limits of this integration are $x=0$ and $x=O A=a$. Hence

$$
\begin{aligned}
\bar{a} & =\frac{\int_{0}^{a} \frac{\int_{0}^{y_{1}} \frac{x d x d y}{\left(a^{2}-x^{2}-y^{2}\right)^{\frac{1}{2}}}}{\int_{0}^{a} \int_{0}^{y_{1}} \frac{d x d y}{\left(a^{2}-x^{2}-y^{2}\right)^{\frac{1}{2}}}}}{} \\
& =\frac{\int_{0}^{a} \frac{1}{2} \pi x d x}{\int_{0}^{a} \frac{1}{2} \pi d x}=\frac{1}{8} a .
\end{aligned}
$$

Similarly

2. Find the centre of gravity of one-eighth of the surface of the sphere if the density varies as the z-ordinate to any point of it. Here $\rho=\mu z$.

$$
A n s . \bar{x}=\frac{4 a}{3 \pi} ; \bar{y}=\frac{4 a}{3 \pi} ; \ddot{z}=\frac{2 a}{3} .
$$

85. Centre of Gravity of a Solid of Revolution.-

Let a solid be generated by the revolution of the eurve, AB, (Fig. 40), round the axis of x. Then the elementary rectangle, $P Q N M,(=y d x)$, generates an element of the
solid whose volume $=-7 y^{2} d x$ (Cal., Art. 203). Itence if the density of the solid is uniform, we have for the position of the centre of gravity (which evidently is in the axis of x),

$$
\begin{equation*}
\bar{x}=\frac{\int^{0} \pi y^{2} x d x}{\int^{0} x y^{2} d x}=\frac{\int y^{2} x d x}{\int^{1} y^{2} d x} \tag{1}
\end{equation*}
$$

the integrations being extended over the whole area, CABD, of the bounding enrve.
If the density varies, the clement of mass may require to be taken differently. If the density varies with x alone, i. e., if it is uniform all over the rectangular strip, $P Q N M$, the volume may be divided up as already done, and the element of mass $=\pi \rho y^{2} d x$. Hence, we shall have in this case,

$$
\begin{equation*}
\bar{x}=\frac{\int \rho y^{2} x d x}{\int \rho y^{2} d x} \tag{2}
\end{equation*}
$$

If the density varies as y alone, we may take a rectangular elsment of area of the second order. $a x d y$, at the point (x, y) ; this area will generate an element of volume $=2 \pi y d x d y$; therefore the element of mass $=2 \pi \rho y d x d y$, and we have

$$
\begin{equation*}
\bar{x}=\frac{\iint \rho x y d x d y}{\iint \rho y d x d y} \tag{3}
\end{equation*}
$$

the y-integrations being performed first, from 0 to y, the ordinate of a point P, on the bounding curve; and thea the x-integrations from OC to OD).
). Itence if the - the position of the axis of x),
he whole area,
may require to ith x alone, i. e., ip, $P Q N M$, the and the element n this case,
ke a rectangular $l y$, at the point ent of volume $s=2 \pi \rho y d x d y$,
om 0 to y, the urve ; and thea

EXAMPLES.

1. Find the centre of gravity of the hemisphere genemated by the revolnton of the quadrant, AD, (Fig. 39), romed OA (taken as asis of x). (1) when the density is miform: (\because) when it is constimn orer a seetion perpendicular 60.1 and varies at the distamee of this section from OI): (:3) when it is constant at the same distance from $O A$ and varies as this distance.
(1) From (1) we have

$$
\vec{x}=\frac{\int y^{2} x d x}{\int y^{2} d x}
$$

Putting $x=r \cos \theta$, and $y=r \sin \theta$, where r is the ratins of the circle and integrating between $\theta=0$ and $\theta=\frac{\pi}{z}$, we have

$$
\bar{x}=\frac{3}{8} r .
$$

(2) Since $\rho=\mu x$, we have from (2)

$$
\begin{aligned}
& \qquad \begin{aligned}
\dot{x} & =\frac{\int x^{2} y^{2} d x}{\int^{6} x y^{2} d x}, \\
\text { which gives } & x=\frac{8}{18} r .
\end{aligned},
\end{aligned}
$$

(3). Since $\rho=n y$, we have from (3)

$$
\overline{\boldsymbol{\alpha}}=\frac{\iint x y^{2} d x d y}{\iint y^{2} d x d y}=\frac{\int x y^{3} d x}{\int y^{3} d x} .
$$

and the previons substitutions for x and y give

$$
\bar{x}=\frac{16 r}{15 \pi} .
$$

2. Find the centre of gravity of a paraboloid of revolution, the length of whose axis is h.

$$
\text { Ans. } \bar{x}=\frac{g}{y} h .
$$

3. Find the centre of gravity (1) of a portion of a prolate spheroid, the length of whose axis measured from the vertex is c, and (2) of a hemi-spheroid.

$$
\text { Ans. (1) } \bar{x}=\frac{c}{4} \frac{8 a-3 c}{3 a-c} ;(2) \bar{x}=\frac{8}{8} a \text {. }
$$

86. Polar Formulæ.-Let a solid be generated by the revolution. of AB, (Fig. 41), round the axis of x. Then the elementary reetancle, abcl, whese mass $=\rho r d \theta d r$, (Art. 81), the thickness being omitted. generates a ring which is all element of the solid whose volume $=2 \pi r \sin \theta \rho r d \theta d r$; and the abscissia of the centre of gravity of the ring is $r \cos \theta$. IIence (1) of Art. 77 becomes

$$
\begin{equation*}
x=\frac{\iint \rho r^{3} \sin \theta \cos \theta d \theta d r}{\iint \rho \rho r^{2} \sin \theta d \theta d r} . \tag{1}
\end{equation*}
$$

in which ρ must be a function of r and θ in order that the integrations may be effeeted.

If the density depends only on the distance from a fixed point in the axis of revolution, this point may be taken as origin, and ρ will be a function of r; if the density depends only on the aistance from the axis of revolution, a will be a function of $r \sin \theta$.

EXAMPLE.
The vertex of a right circular cone is in the surface of a sphere, the axis of the cone eoinciding with a diancter of
oloid of revolu$4 n s . \bar{x}=\frac{?}{y} h$.
fion of a prolate from the vertex
(2) $\bar{x}=\frac{5}{8} a$.
nerated by the ff x. Then the $\rho r d \theta d r$, (Art. a ring which is $\sin \theta \rho r d \theta d r ;$ of the ring is
order that the
from a fixed y be taken as ensity depends lntion, a will
surface of a diameter of
the sphere, the hase of the cone being a portion of the surface of the sphere. Find the distance of the centre of gravity of the cone from its vertex, $2 a$ being its vertical angle, and α, the radius of the sphere.

Here the r-limits are 0 and $2 a \cos \theta$; the θ-limits are 0 and a ; p is constant ; hence from (1) we have

$$
\begin{aligned}
\bar{x} & =\frac{\int_{0}^{a} \int_{0}^{r} r^{3} \sin \theta \cos \theta d \theta d r}{\int_{0}^{1} \int_{0}^{r} r^{2} \sin \theta d \theta d r} \\
& =\frac{\left.\int_{0}^{a}(2 a \cos \theta)\right)^{4} \sin \theta \cos \theta d \theta}{\int_{0}^{a a}(2 a \cos \theta)^{3} \sin \theta d \theta} \\
& =\frac{\int_{0}^{2} n \cos ^{5} \theta \sin \theta d \theta}{\int_{0}^{a} \cos ^{3} \theta \sin \theta d \theta} \\
& =\frac{1-\cos ^{6} a}{1-\cos ^{4} \alpha} a .
\end{aligned}
$$

87. Centre of Gravity of any Solid.-Iet (x, y, z) and $(x+d x, y+d y, z+d z)$ be two consecutive points E and F, (Fig. 42), within the solid whose centre of gravity is to be found. Through E, pass three planes parallel to the co-ordinate planes $x y, y z, z x$; also through F pass three phanes parallel to the first. The solid included by these six plames is an infinitesimal parallelopiped, of which E and F are two opposite angles, and the volume $=d x d y d z$. If ρ is the density of the body at E , the element of mass at E $=\rho d x d y d z$. Hence the co-ordinates of the centre of gravity of the solid are given by the equations

$$
\begin{align*}
& \bar{x}=\frac{\iint_{d} \rho x d x d y d z}{\iint_{d} \rho d x d y d z}, \tag{1}\\
& \bar{y}=\frac{\iint^{0} \int \rho y d x d y d z}{\iint^{0} \int \rho d x d y d z}, \tag{2}\\
& \bar{E}=\frac{\iint_{0} \int_{0} \rho z d x d y d z}{\iint_{0}^{d} \rho d x d y d z}, \tag{3}
\end{align*}
$$

the integrations being extended over the whole solid.

EXAMPLES.

1. Find the ontre of gravity of the eighth part of an ellijsoid ineluded between its three principal planes.*

Let the equation of the ellipsoid be

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

Here the limits of the z-integration are

$$
c\left(1-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\right)^{\frac{1}{2}} \text { und } 0,
$$

which eall z_{1} and 0 ; the limits of y are

$$
L l=b\left(1-\frac{x^{2}}{a^{2}}\right)^{\frac{1}{2}} \text { and } 0
$$

which call y_{1} and 0 ; the x-limits are a and 0 .

* Planee of ry. yz,zr.

First integrate with respect to z, und we obtain the
th part of an platues.* infinitesimal prismatic column whose base is PQ. (Fig. 42), and whose height is $\mathrm{P} p$. Then we integrate with respect to y, and obtain the sum of all the columns which form the elemental slice Hplmq. Then integrating with respect to x, we obtain the sum of all the slices included in the shid, OABC. Hence (1) becomes, since the density is uniform,

$$
\text { Similarly } \quad \bar{y}=\frac{3}{b} b, \quad z=\frac{3}{8} c .
$$

2. Find the centre of gravity of the solid bounded by the planes $z=\beta x, z=\gamma x$, and the eylinder $y^{2}=2 a x-x^{2}$.

$$
\text { Ans. } \bar{x}=\left\{a ; \bar{y}=0 ; \bar{\varepsilon}=\frac{5 a}{8}(\beta+\gamma)\right. \text {. }
$$

88. Polar Elements of Mass.-Let Fig. 43 represent the prortion of the volnme of a solid ineluded between its hounding surfuce and three rectangular co-ordinate planes.

$$
\begin{align*}
& \bar{z}=\frac{\int_{0}^{a} \int_{0}^{y_{1}} \int_{0}^{z_{1}} x d x d y d z}{\int_{0}^{a} \int_{0}^{y_{1} y_{1}} \int_{0}^{z_{1} z_{1}} d x d y d z} \tag{3}
\end{align*}
$$

$$
\begin{aligned}
& =\frac{\int_{0}^{a}\left(1-\frac{x^{2}}{a^{2}}\right) x d x}{\int_{0}^{a}\left(1-\frac{x^{2}}{a^{2}}\right) d x} \\
& \therefore \bar{x}=\frac{3}{8} a \text {. }
\end{aligned}
$$

(1) Through the axis of z draw \& acries of consecutive planes, dividing the solid inte wedge-shaped slices such as COBA.
(2) Kound the axis of z deseribe a series of right cones with their vertices' at 0 , thus dividing each slice into elementary pyramids like $0-$ PQST.
(3) With 0 as a centre describe a series of consecutive spheres;
 thus the solid is divided into elementary rectangular parallelnipipeds similar to abpt, whose vulune $=a p \cdot p s \cdot s t$.

$$
\text { Let } \quad \begin{aligned}
\mathrm{XOA} & =\phi, \quad \mathrm{COP}=\theta, \quad \mathrm{O} p=r, \\
\mathrm{AOB} & =d \phi, \mathrm{POQ}=d \theta, \quad p t=d r .
\end{aligned}
$$

Then $p q$ is the are of a circle whose radins is r, and the angle is $d \theta$; therefore

$$
p q=r d \theta .
$$

Also $p s$ is the lire of n eircle in which the angle is $d \phi$, and the radius is the perpendienlar from p on OZ, or r sit θ; therefore

$$
p s=r \sin \theta d \phi .
$$

Therefore the volume of the elementary parallelopiped $=$

$$
r^{2} \sin \theta d r d \theta d \phi ;
$$

and if p is the density of the solid at p, the element of mass is

$$
\rho r^{2} \sin \theta d r d \theta d \phi .
$$

Also the co-ordinates of the centre of gravity of this element are

$$
r \sin \theta \cos \phi, \quad r \sin \theta \sin \phi, \quad \text { and } \quad r \cos \theta ;
$$

hence for the centre of gravity of the whole solid we have

$$
\begin{aligned}
\bar{x} & =\frac{\iiint \rho r^{3} \sin ^{2} \theta \cos \phi d r d \theta d \phi}{\iiint \rho r^{2} \sin \theta d r d \theta d \phi} ; \\
\bar{y} & =\frac{\iiint \rho r^{3} \sin ^{2} \theta \sin \phi d r d \theta d \phi}{\iiint \rho r^{2} \sin \theta d r d \theta d \phi} ; \\
& =\frac{\iiint \rho r^{3} \sin \theta \cos \theta d r d \theta d \phi}{\iiint \rho r^{2} \sin \theta d r d \theta d \phi}
\end{aligned}
$$

the limits of integration being determined by the figure of the solid considered.
The angles, θ and ϕ, are sometimes called the co-latitude, and longitude, respectively.

> EXAMPLES.

1. Find the centre of gravity of a hemisphere whose density varies as the nth power of the distance from the centre.

Take the axis of z perpendicular to the plane base of the hemisphere. Let $a=$ the radius of the sphere, and $r=\mu^{\prime n}$, where μ is the demsity at the mits distance from the centre. First integrate with respect 10 r from 0 to μ°. and we oftain the intinitesimal pramid O P'(Q'I'T. 'Thern integrate with respect to θ from 0 to $\frac{1}{2}$, and we obtain the smm of all the pramide which form the cemental slice, COBA. Then intagrating with rexpert to ϕ from 0 to 关T, we obtuin the stm of all the slices included in the hemi--phere, Hence,

$$
\begin{aligned}
& \bar{z}=\frac{\int_{0}^{2 \pi} \int_{0}^{\frac{1}{2} \pi} \int_{0}^{a+r^{n+3} \sin \theta \cos \theta d r d \theta d \phi}}{\int_{0}^{\alpha_{0}^{2 \pi}} \int_{0}^{\Delta \pi} \int_{0}^{a r^{n+2}} \sin \theta d r d \theta d \phi} \\
& =\frac{n+3}{n+4} a \frac{\int_{0}^{2 \pi} \cdot \int_{0}^{\frac{2}{2} \pi} \sin \theta \cos \theta d \theta d \phi}{\int_{0}^{2 \pi} \cdot \int_{0}^{\frac{2 \pi}{2} \pi} \sin \theta d \theta d \phi} ; \\
& \therefore \quad \bar{z}=\frac{n+3}{n+4} \cdot \frac{a}{2} ; \\
& \bar{x}=\bar{y}=0 .
\end{aligned}
$$

and it is clear that
2. Find the contre of gravity of a portion of a solid sphere contained in a right cone whose veriex is the centre of the sphere, the density of the solid varying as the nth power of the distance from the centre, the vertical angle of the cone being $=$ Qoc, and the radius $=u$.

Take the axis of the cone as that of z, and any plane through it as that from which lougitude is measured.

$$
\text { Ans. } \dot{\varepsilon}=\frac{n+3}{n+4} \frac{a}{2}(1+\cos \alpha), \text { nnd } \bar{x}=\bar{y}=0 .
$$

89. Epecial Methods.-In the preceding Articles wo have given the usual formula for finding the zeutres of gravity of bodies, but particular cases may ocenr which may be most conveniently trated by special methods.
EXAMPLES.
90. A cirele revolves round a tamgent line throngh an angle of 180°; find the eentre of gravity of the aolid generated.
tion of a solid x is the centre ing as the nth erticul angle of
ane through it as
$\bar{x}=\bar{y}=0$.
ng Articles wo the zeutres of cur which may ods.
mgh min y of the solid

Let $O Y$ be the tangent line about which the circle revolves, and let the plane of the paper bisect the solid; the centre of gravity will therefore lie in the axis of x. Let P and Q bo two consecutive points ; and let $0 \mathrm{M}=x$, and $\mathrm{MP}=y=\sqrt{2 a \cdot x}-x^{2}$. The
 eiementary rectangle, $\mathrm{PQ} q$, will generate a semi-cylindrical shell, whose volume $=2 y \pi x d x$, t^{1} ecentre of gravity of which will be in the axis of x at a distance $\frac{2 x}{\pi}$ from O (Art 78, Ex. 1, Cor.). Hence,

$$
\begin{aligned}
x & =\frac{\int_{0}^{2 a} \frac{2 x}{\pi} 2 y \pi x d x}{\int_{0}^{2 a} 2 y \pi x d x} \\
& =\frac{\int_{0}^{2 a}}{\pi} \frac{x^{2} \sqrt{2 a x-x^{2}} d x}{\int_{0}^{2 \pi} x \sqrt{2 a x-x^{2}} d x}=\frac{5 a}{2 \pi} .
\end{aligned}
$$

2. Find the centre of gravity of a right pyramid of uniorm density, whose base is any regular phane figure.

Let the vertex of the pyramid be the origin, and the axis of the pyramid the uxis of x; divide the pyramid into slices of the thiekness $d x$ by planes porpendicular to the axis. Then as the areas of these sections are as the squares of their homologons sides, mid as the sides are as their distances from the vertex, so will the arens of the sections be as the squures of their distances from the vertex, and therefore the musses of the slices are as the squares of their distances from the vertex. Now imugine emblase to be condensed into its centre of gravity, which point is on the axis of :.: Then the problem is rednced to finding the centre of grav-
ity of a material line in which the density varies as the square of the distance from one end, and which may be found as in Ex. 6, (Art. 78). Calling a the altitude of the pyramid, we have

$$
\bar{x}=\frac{\int_{0}^{a} x^{3} d x}{\int_{0}^{2 a} x^{2} d x}=\frac{3}{8} a
$$

which is the same as in Art. 75.
90. Theorems of Pappus.*-(1) If a pinne curve revolve round any axis in its plane, the area of the surface generated is equal to the length of the revolving curve multiplied by the lengith of the path described by its centre of gravity.

Let s denote the length of the curve, x, y, the co-ordinates of one of its points, \dot{x}, \bar{y}, the co-ordinates of the centre of gravity of the curve; then, if the curve is of constant thickness and density, we have from (2) of Art. 78,

$$
\begin{align*}
\bar{y} & =\frac{\int y d s}{\int^{\prime} d s} ; \\
\therefore 2 \pi \bar{y} s & =2 \pi \int^{\prime} y d s ; \tag{1}
\end{align*}
$$

the second member of which is the area of the surface generated by the revolution of the curve whose length is s about the axis of x, (Cal., Art. 193) ; and the first member is the length of the revolving curve, s, multiplied by the length of the path described hy its centre of gravity, $\because \pi \bar{y} y$.

[^5]varies as the which may be ltitude of the
pinne curve area of the ngth of the ngith of the
e co-ordinates the centre of is of constant rt. 78,
f the surface ie length is s first member iplied by the ravity, $\because \pi y$.
(2) If a plane area revolve round any axis in its plane, the volume girnerated is equal to the area of the revoiving figure multiplied by the length of the path described by its centre of gravity.
Let A denote the plane area, and let it be of constant thickness and density, then (2) of Art. 82 becomes
$$
\dot{y}=\frac{\iint y d x d y}{\iint^{\cdot} d x d y} ;
$$
or
$$
2 \pi \bar{y} \iint d \mathrm{\Lambda}=2 \pi \iint^{\cdot} y d x d y
$$
(substituting $d \Lambda$ for $d x d y$),
\[

$$
\begin{equation*}
\therefore \quad 2 \pi \bar{y} \Lambda=\pi \int y^{2} d x, \tag{2}
\end{equation*}
$$

\]

the integrat being taken for every point in the perimeter of the area; but the senond member is the volume of the solid generated by the revolution of the area (Cal., Art. 203); and the first momber is the area of the revolving figure, Λ, multiplied by the length of the path deseribed ly its centre of gravity, $2 \pi \bar{y}$.

Cor.-If the curve or area revolve through any angle, θ, instead of 2π, (1) and (2) become
and

$$
\begin{align*}
\theta \bar{y} s & =\theta \int y d s, \tag{}\\
\theta \bar{y} \Lambda & =\frac{1}{2} 0 \int y^{2} d x, \tag{4}
\end{align*}
$$

and the theorems are still true.
Sim.-If the axis cuts the revolving eurve or area, the theorems still apply with the convention that the surface or colume genemated by the portions of the curve or aren on "ppusite sides of the axis are affected with opprosite signs.

EXAMPLES.

1. A circle of radins, a, revolves round an axis in its own plane at a distanee, c, from its centre ; find the surface of the ring generated by it.

The leng'h (riremmference) of ine revolving curve $=$ $2 \pi a$; the length of the path described by its centre of gravity $=2 \pi c$;

$$
\therefore \text { the area of the surface of the ring }=4 \pi^{2} a c \text {. }
$$

2. An ellipse revolves romd an axis in its own plane, the perpendienlar listance of which from the centre is c; find the volume of the ring generated during a complete revol.ation.
Let a and b be the semi-axes of the ellipse; then the revolving area $=\pi / b$; the length of the path deseribed by its centre of gravity $=2 \pi c$;

$$
\therefore \text { the volume of the ring }=2 \pi^{2} a b c \text {. }
$$

Observe that the volume is the same for any position of the axes of the ellipse with respect to the axis of revolution, provided the per. pendicular distance from that axis to the centre of the ellipse is the same.
3. The surface of a sphere, of rudius $a,=4 \pi u^{2}$; the lengih of a semi-cireunference $=\pi a$; find the length of the ordinate to the centre of gravity of the are of a semieircle.

$$
.1 n s, \bar{y}=\frac{2 a}{\pi} .
$$

4. The volume of a sphere, of radins $a,=\frac{4}{3} \pi a^{3}$; the ar a of a semicirel $=\frac{1}{2} \pi \mu^{2}$; thad the : istance of the centre of grarity of the semicirele from tioe diameter.

$$
A n s . \bar{y}={ }_{3 \tau}^{4 n} .
$$

5. A circular tower. the diameter of whieh is 20 Fi. . is being ho it, and for every foot it ises it inclines 1 in. from
axis in its own the surface of lving curve = its centre of $: 4 \pi^{2} a c$.
its own plane, he centre is ϵ; ing a eomplete
ipse ; then the la deseribed by
sition of the axes rovided the perthe ellipse is the
$=4 \pi u^{2}$; the the length of are of a semi$n \times . \bar{y}=\frac{2 a}{\pi}$.
$=\frac{4}{3} \pi a^{3} ;$ the eof the centre $n s . \bar{y}=\frac{4 \prime \prime}{3 \tau}$.
c_{1} is $20 \mathrm{ff} . . \mathrm{is}$ nes 1 in . from
the vertieal ; find the greatest height it can reach witnout falling. Aus. 240 lt.
f. A circular tathe weighs 20 lbs and resta on iour lags in its circumference forming a square; find the least vertical pressure that must be applied ut its edge to overturn it.

$$
\text { Ans. } 20(\sqrt{ } 2+1)=48.28 \mathrm{lhs}
$$

\therefore. If the sides of a triangle be 3,4 , and 5 feet, find the distance of the centre of gravity from eath side.
$A n s . \frac{4}{3}, 1, \frac{4}{3} \mathrm{ft}$.
8. An equilateral triangle stands vertically on a rough plane ; find the ratio of the height to the base of the plane when the triangle is on the point of overturning.

$$
\text { Ans. } \sqrt{3}: 1
$$

9. A heavy bar 14 feet long is bent into a right angle so that the lengths of the portions which meet at the angle are 8 feet and 6 feet respectively; show that the distance of the eentre of gravity of the bar so bent from the point of the har which was the centre of gravity when the bar was straight, is $\frac{9 \sqrt{2}}{7}$ feet.
10. An erfuilateral triangie rests on a squate, and the base of the triangle is equal to a side of the stucre; find the centre of gravity of the figure thus formed.
Ans. At a distance from the base of the triangle equal to 3 $\frac{3}{2} \sqrt{3}$ of the base.
11. Find the inclination of a rough plane on which half a regular hexagon can just rest in a vertical position without overturning, with the shorter of its parallel sides in contact with the plane.

$$
\text { Ans. } 3 \sqrt{3}: 5
$$

12. A cylinder, the dimmeter of which is 10 ft. and height 60 ft ., rests on amother eylinder the diameter of which is

18 ft. , and height $6 \mathrm{ft} . ;$ and their axes coincidn ; find their common centre of gravity. Ans. vizge ft. from the lawe.
13. Into a hollow eytindrical vessel 11 ins. high, and weighing 10 lls s., the centre of gravity of which is 5 ins: from the base, a uniform solid cylinder 6 ius. long and Weighing $\geqslant 0 \mathrm{lb}$ s., is just fitted ; find their common centre of gravity.

$$
\text { Aus. } 3 \frac{3}{3} \text { ins. from base. }
$$

14. The midille points of two adjacent sides of a square are joined and the triangle formed by this straight line and the elges is cut off; tind the centre of gravity of the remainder of the spuare.

Ans. z'r of diagonal from centre.
15. A traperoid, whose parallel sides are 4 and 12 ft . hong, ant the other sides each equal to j ft., is placed with its plane vertical, and with its shortest side on :un inclined plane ; tind the relation between the height and base of the plane when the trapezoid is on the point of falling over.

Alus. $8: 7$.
16. A regular hexagonal prism is placed on an inclined phare with its end faces rertical : lind the inclination of the phane so that the prism may just tumble down the plane. Ans. 30°.
1i. A regular pelygon just tumbles down an inctined phane whose inelination is 10°; how many sides hats the polygin:

Ans. 18.
18. From a sphere of radins R is removed a sphere of radins r, the distance between their centres being c; find the entre of gravity of the remainder.

An.s. It is on the line joining their centres, and at a dis. 1,3 tallere $/ h^{3} r^{3}-r^{3}$ from the eentre.
19. I roul of miform thicknows is made up of equal hengths of three substances, the densities of which taken in
ide ; find their on the hase.
ins. high, :mud hich is is ins. ins. long :and mon centre or s. from hatse.
es of a stuare aight line and gravity of the
from centre.
4 and 12 ft . is phaced with 0 an inclined nd lase of the lling over. Ans. $8: 7$ on an inclined inclination of own the plane. Ans. 30°.
11 an inclined sides hats the Ans. 18.
ed a sphere of being c; find and at a dis-
uj) of erplail hich taken in
order are in the proportion of 1,2 , and 3 ; find the position of the ceutre of gravity of the rool.
Ans. At is 7 of the whole length from the end of the densest part.
20. A heary triangle is to le suspended by a string passing through a point on one side ; determine the position of the point so that the triangle may rest with one side vertical.
Ans. The distance of the point from one com of the side $=$ twiee its distance from the other end.
21. The sides of a heaty triangle are $3,4,5$, respectively; if it be suspended from the centre of the inseribed cirele show that it will rest with the shortest side horizontal.
22. The altitude of a right cone is h, and a diameter of the base is b; a string is fistencd to the vertes and to a point on the cirenmference of the circular base, and is then put over a smooth peg; show that if the cone rests with its axis horizontal the length of the string is $\left.\sqrt{(} / l^{2}+b^{2}\right)$.
23. Find the centre of gravity of the helix whose equations are

$$
\begin{aligned}
& x=a \cos \phi ; \quad y=a \sin \phi ; \quad z=k a \phi . \\
& \quad \text { Ans. } \bar{x}=k i a \frac{y}{z} ; \bar{y}=k a \frac{a-x}{z} ; \bar{z}=\frac{z}{\bar{z}} .
\end{aligned}
$$

24. Find the distance of the centre of gravity of the catenary (Cal., Art. 1:7), from the axis of x, the curve being divided into two eymal portions by the axis of $!$.
Ans. If $\because l \mathrm{is}$ the length of the elure and (h, k) is the axtremity, the centre of gravity is on the axis of y at a distance $\frac{k l+h}{2 l}$ from the axis of x.
25. Find the centre of gravity of the area included between the are of the parabola, $y^{2}=4 a x$, and the straight line $y=k x$.

$$
\text { Ans. } \bar{x}=\frac{8 a}{\overline{5 k} k^{2}} ; \bar{y}=\frac{\ddot{z}(l}{k} .
$$

26. Find the centre of gravity of the area bounded by the: cissoid and its asymptote, the equation of the eissoid being $y^{2}=2 \pi \stackrel{x^{3}}{2}$.

$$
A n s . \bar{x}=\frac{\xi}{3} d .
$$

2i. Find the centre of gravity of the area of the witeh of Agnesi.
Ans. At a distance from the asymptote equal to $\frac{1}{4}$ of the diameter of the base cirele.
28. Find the centre of gravity of the area included between the are of a semi-cycloid, the circumference of the generating eirele, and the base of the cyeloid, the common tangent to the circle and cyeloid at the vertex of the latter being taken as axis of x, the vertex being origin, and a the radias of the generating eirele.

$$
. \operatorname{ln.s.} \bar{x}=\frac{3 \pi^{2}-8}{4 \pi} a ; \bar{y}=\frac{3}{4} 4 .
$$

29. Find the centre of gravity of the area contained betwen the curves $y^{2}=a x$ and $y^{2}=2 a x-x^{2}$, which is

30. Find the centre of gravity of the area ineluded by the enres $y^{2}=a$ and $x^{2}=b y$.

$$
\text { Ans. } \bar{x}={ }_{2}^{9} \bar{\pi}^{1} b^{\frac{2}{a}} ; \bar{y}=\frac{{ }_{2}^{9} a^{\frac{a}{3}} b^{1} .}{}
$$

31. Find the distance of the centre of gravity of the area of the cirenlar sector, BOCA, (Fig. 39), from the centre.
Let $2 \theta=$ the angle included by the bomding radii.

$$
\text { Ins. } \bar{x}=\frac{2_{3}^{2}}{} \iota_{-\theta}^{\sin \theta}
$$

to area included , and the struight $=\frac{8 a}{\overline{3} h^{2}} ; \bar{y}=\frac{\partial \prime}{h}$.
area bomded by on of the cissoid
$A n s . \bar{x}=\frac{8}{3} n$.
rea of the witch
equal to $\frac{1}{4}$ of the
rea ineluded beamference of the sid, the common tex of the latter rigin, and a the
$-8 a ; \bar{y}=\frac{8}{4} \cdot$.
cat contained be-$:-x^{2}$, which is
$\bar{y}=\frac{a}{3 \pi-8}$.
rea included by
$; \bar{y}={ }_{2}^{9}{ }_{5} a^{\frac{2}{3}} b^{1}$.
wity of the area m the centre. ding radio.
$\bar{x}=\frac{2}{3} u^{\sin } \theta$
32. Find the distance of the centre of gravity of the circular seginent, BCA , (Fig. 39), from the centre.

$$
\text { Ans. } \dot{x}=\frac{2}{3} \cdot \frac{a \sin ^{3} \theta}{\theta-\sin \theta \cos \bar{\theta}}=\frac{\overline{\mathrm{BC}}^{3}}{12 \operatorname{arca} \text { of } \mathrm{ABC}}
$$

33. Find the centre of gravity of the area bonnded by the cardioid $r=a(1+\cos \theta) . \quad \quad A n s . \bar{x}=\frac{5}{a} a$.
34. Find the centre of gravity of the area included by a loop of the curve $r=a \operatorname{sos} 2 \theta$.

$$
\text { Ans. } \bar{x}=\frac{128 a}{105 \pi}
$$

35. Find the centre of gravity of the area included by a loop of the curve $r=a \cos 3 \theta$.

$$
A n s . \bar{x}=\frac{81 a \sqrt{3}}{80 \pi}
$$

36. Find the centre of gravity of the area of the sector in Ex. 31, if the density varies directly as the distance from the centre. \quad Ans. $\bar{x}=\frac{3 a}{4} \cdot \frac{\sin \theta}{\theta}$.
37. Find the centre of gravity of the area of a circular sector in which the density varies as the nth power of the distance from the centre.

Ans. $\frac{n+2}{n+3} \cdot \frac{a c}{l}$, where a is the radins of the circle, l the length of the are, and c the length of the chord, of the .sector.
38. Find the centre of gravity of the area of a circle in which the density at my point varics as the nth power of the distance from a given point on the cireumference.

Ans. It is on the diameter passing throngh the given point at a distance from this point equal to $\frac{2(n+2)}{n+4} a$, a being the radius.
39. Find the centre of gravity of the area of a quadrant of an ellipse in which the density at any point varies as the distance of the point from the major axis.

$$
\text { Ans. } \dot{x}=\frac{3}{8 \prime}: \bar{y}=\frac{3 \pi}{16} b .
$$

40. Find the distance of the centre of gravity of the surfaee of a cone from the vertex.
Let $a=$ the altitude.
Ans. $\bar{x}=\frac{2}{3} u$.
41. Find the centre of gravity of the surface formed by rerolving the eurve

$$
r=a(1+\cos \theta),
$$

round the initial line.

$$
A n s . \bar{x}=\frac{50 a}{63} .
$$

42. A parabola revolves round its axis; find the centre of" gravity of a portion of the surface between the wertex and a plane perpondicular to the axis at a distance from the vertex equal to $\frac{3}{4}$ of the latus rectum.

Ans. Its distance from the vertex $=\frac{o_{0}}{8}$ ((hitus reetum).
43. Find the centre of gravity of a cone, the density of each cirenlar sliee of which varies as the ath power of its distance from a parallel phane throngh the vertex.

Let the virtex be the origin and a the alitude.

$$
\text { Ans. } \dot{x}=\frac{n+3}{n+4} a \text {. }
$$

44. Find the centre of gravity of a eone, the density of every purticle of which mereaves as its distance from the axis.
Al/s, $: \bar{r}=\frac{4}{8}$, where ficu vortex is the origin and a the altitude.
45. Find the center of erranty of the volume of miform drasity contaned betwen a homisphere and at come whise revex is the vertex of the hemisphere and base is the base of the hemisphere.
a of a ruadrant point varics as is.
$\frac{3}{} n: \bar{y}=\frac{3 \pi}{16} b$.
wity of the sur-
$1 u s . \bar{x}=\frac{2}{3} u$. face formed by
$n s, \bar{x}=\frac{50 a}{63}$.
find the centre ween the vertex a distance from litus rectum). the density of h power of its ertex.
tide.

$$
i=\frac{n+3}{n+4} a .
$$

the density of tance from the gin and "t the
me of uniform at come whise baso is the bise

Ans. $\bar{x}=\frac{a}{2}$, where the vertex is the origin and a the altitude.
46. Find the distance of the centre of gravity of a hemisphere from the centre, the rudins being a.

$$
A u N . \quad i=\frac{3}{8} u .
$$

47. Find the centre of gravity of the solid generated by the revolutiou of the semicyeloid,

$$
y=\sqrt{2 a x-x^{2}}+a \operatorname{vers}^{-1} \frac{x}{a},
$$

(1) round the axis of x, and (\because) round the axis of y.

Ans. (1) $\bar{x}=\frac{\left(63 \pi^{2}-64\right)}{6\left(9 \pi^{2}-16\right)}{ }^{6} ;\left({ }^{2}\right) \bar{y}=\left(\frac{16}{9}+\frac{\pi^{2}}{4}\right) \frac{2 a}{\pi}$.
48. Find the centre of gravity of the volume formed by the revolution round the axis of x of the area of the curve

$$
y^{4}-a x y^{2}+x^{4}=0 . \quad \text { Ans. } \bar{x}=\frac{3 n \pi}{3 \overline{2}} .
$$

49. Find the centre of gravity of the volume generated by the revolution of the area in Ex. 29 romed the axis of y.

$$
A n s . \bar{y}=\frac{5 a}{2(1 \overline{1} \pi-44)} .
$$

50. Find the centre of gravity of a hemisphere when the density varies as the symure of the distance from the centre.

$$
A \| s, \bar{r}=\frac{\bar{m} \mu}{1 \ddot{0}}
$$

51. Find the centre of gravity of the solid gememed hy a semioparabota bomaded by the tatus rectum, reotving romed the hatus rectum.

Ans. Distunce from thens $={ }^{3}$ of hatus rectum.
52. The yeres of. right circular cone is at the centre of $\dot{\alpha}$ sphere: find the eevtre of gravity of a body of uniform consity contained within the cone and the sphere.

Ans. The distance of the centre of gravity from the vertex of the cone $=\frac{3 a}{8}(1+\cos \pi)$, where $a=$ the semi. rertical angle of the cone and $a=$ the radins of the sphere.
53. Find the distance from the origin to the eentre of gravity of the solid generated by the revolution of the cardioid round its prime radius, its equation being

$$
r=a(1+\cos \theta) .
$$

$A n s . \bar{x}={ }_{8}^{4} a$.
54. Find by Art. 90 (1) the surface and (2) the volume of the solid formed by the revolution of a eycloid romed the tangent at its vertex.

$$
\text { Ahs. Surface }=\frac{32}{3} \pi l^{2} ; \text { Volume }=\pi^{2} l^{3}
$$

55. Find (1) the surface and (2) the volume of the solid formed by the revolution of a cyeloid romal its base.

Ans. (1) $\left.{ }_{3}^{64} \pi \mu^{2} ;\left({ }^{2}\right)\right)^{2} \pi^{2} a^{3}$.
56. An equilateral trimugle revolves romed its base, whose length is a; tind (1) the area of the surface, and (:) the volume of the tigure deseribed.

$$
A n s . \quad \text { (1) } \pi \iota^{2} \sqrt{3} ;(2) \frac{\pi \iota^{3}}{4} .
$$

57. Find (1) the surfice and (2) the volnme of a ring with a cirenlar seetion whose internal diameter is 12 ins., und thickness 3 ins.

$$
\text { Ans. (1) } 444.1 \text { si. in.; (i) } 333.1 \text { cub. in. }
$$

8 at the centre of body of miform sphere. ity from the serc $\approx=$ the semie radius of the to the centre of evolution of the m being
$A u s . \bar{x}={ }_{8}^{A} a$.
1 (2) the volume a cyeloid romed

$$
\text { olume }=\pi^{2} u^{3} .
$$

lume of the solid dits base. $\pi \mu^{2}$; (${ }^{2}$) $) \pi^{2} u^{3}$. round its base, of the surface, d.
$\sqrt{2} 3 ;(2) \frac{\pi r^{3}}{4}$.
volume of a ring ameter is 12 ins.,
333.1 cnb . in.

CHAPTER V.

FRICTION.

91. Friction.-Priction is thet force which atets betweer two hodies at their surface of contact, and in the direction of a tangent to that surface, so as to resist their sliding on each other. It depends on the foree with which the boties are pressed together. All the curves and surfices which we have hitherto considered were supposel to be smooth, and, as such, to offer no resistance to the motion of a body in contact with them in any other than a normal direction. Such curves and surfaces, howerer, are not to be found in nature. Every surface is capable of destroying a certain amome of force in its tangent phane, i.e., it posstrsees a certain degree of rougheness, in sirtue of which it resists the sliding of other surfaces upon it. 'I'his rexistance is callel frittion, and is of two kinds, viz, slitiug and rolling friction. The first is that of a heary body dragged on a plane or other surface, an axle turning in a tixed box, or a vertical shaft turning on a horizomtal plate. Priction of the serond kime is that of a whee rolling along a phune. Both kints on friction are governed by the same laws: the former is much greater than the latter under the sume ciremmstances, muld is the only one that wo shall emsider.

A smooth surfice is one which opposes no resistanee to the motion of a body upon it. A rough surface is one which does oppose a resistance to the motion of a muly upon it.

The surfuces of all hoult:s romsist of very small elevations mud depressions, so that if they are pressel aguinst emell wher, the clevations of one tht, more or less, inta the depreations af the c ther,

tion is of course greater, if the pressing ioree is greater. Hence, when a force is applied we ns to cunse one hody to move om another with which it is in combet, it is neeessary, before motion can take place, cither to break oft the elevations or compress them, or fore the boolies to sepmate fur emough to allow them to pass enel other. Much of this ronghnexs may be removed by polishing; mad the effect of murl of it may be destroyed by lubrication.

Friction always acts along a thugent to the surface at the point of contact; nud its direction is opposite to that of the tine of motion ; it presents itsilf in the motion of a body as a passive force or resistance," since it can only hinder motion, but can never produce or aid it. In investigations in mechanics it can be considered as a forec acting in opposition to every motion whone direetion lies in the plane of contact of the two bodies. Whatever may be the direction in which we move a boly resting upon " horizontal or inclined plane, the friction will always act in the opposite direction to that of the motion, $i . e$., when we slide a body down an inclined phane, it will appear as a force up the phane. A surface may also resist sliding motion by means of tho adhesion between its substance and thet of another body in contact with it. \dagger

The friction of a body on a surface is measured by the least foree which will put the body in motion along the surface.
92. Laws of Friction.-In our ignorance of the constituton of bodies. the laws of friciion most be dednced from experiment. Experiments made by Conlomb and Marin have established the following laws of friction:
(1) The friction varies as the normal prossure when the materials of the surfiaces in contact remain the same. Subsequent experiments have, however, considerably modified this law, and shown that it can be regarded only as an aproximation to the truth. When the messure is very great it is fomed that the friction is less than this law would give.

* Wembach, p. 309
+ See lanklife's Applied Mechanks, p. 204.
greater. Hence, o move on unothar motion can take them, or force lher pass (emel other. ng; mud the eflect
ace nt the point of line of motion ; it orce or resistaner," cluce or aid it. In is a force acting in se plane of contact in which we move in, the friction will motion, i.e., when pear as a force up a by means of tho er body in contacs
neasured by the otion along the

1orance of the anst be deduced - Conlomb and friction:
roswure when the 'e same. Subsecrably modified ded only as an messure is very than this law
(2) The friction is ibdependent of the cxtent of the surfaces in coulut so lony as the normat perssure remains the somere. When the surfaces in contact are very smatl, as for :nstance a eylinder resting on a surface, this law gives the "riction much tow great.

These two laws are trat when the body ts on the point of moving, and also when it is actually in motion; but in the case of monion the magnitule of the friction is not nlways the same as when the body is beginuing to mowe; when there is a difference, the triction is grater in the state bordering on motion than in ar- aal motion.
(3) The friction is independent of the velocity when the lody is in motion.

It follows from these laws that, if R be the normal pressure hetween the bodies, F the forec of frietion, and n the constant ratio of the later to the former when slipming is about to ensue, we have

$$
\begin{equation*}
F=\mu R . \tag{1}
\end{equation*}
$$

The fraction μ is called the $c e$ efficient of friction; and if the first law were true, a would be atrietly constant for the same pair of bodies, whatever the mannitude of the normal pressure between them might be. This, however, is not the case. When the normal pressure is nearly epmal to that which would erusb cither of the surfaees in contact, the force of friction increases more rapidly than the normal pressure. Equation (1) is nevertheless very nearly a rue when the differences of normal presinte are not very great; mal in what follows we shall assme this to be the case.

Remark.--The laws of friction were establishod by (oulomb, a distinguished Prench offeer of Engineers. and were founded on experiments mude ly him at Rochefori. The resulta of these experi ments were presented in 1 iss to the Freneh Academy of Sciences, and in 178: his Smoir on Frietion was published A very fall nbistract of this paper is given in Do Yomug's Nittural Philosophy, Vol. II,
 1831-34, hy direction of the French military nuthoriltes, the rewalt of
which has been to confirm, with slight exepptions, all the results of Coulomb, and to determine with considerable precison the numerical values of the coetlicients of friction, for all the substances usually
 chmics, p. 6世, Twisden's Praetical Mechanies, p. 1:is, nud Weishach's M. chanies, Vol. I, 1. 317.)
93. Magnitudes of Coefficients of Friction.-l'ractically there is no wherved coetherient mueh greater tham 1 . Most of the ordinary eoetficients are less than $\frac{1}{2}$. The follewing resilts, selected from a table of coetficients,* will atford an idea of the amount of friction as determined by experiment ; these results apply to the friction of motion.

For iron on stone μ
$r^{\prime}{ }^{\circ}$ " varies between . 3 and .7.
For timber on timber " " " 2 and . 5.
For timber on metals " " " . 2 and 6.
For metals on metals" " " . 15 and .25.
For full particulars on this subject tion student is referred to Ramkine's Appled Merhanics. p. 209, and Moseley's Engincering, p. 124, also to the treacise of M. Morin, where he will find the snbject investigated in all its completeness.
94. Angle of Friction.-The angle at which a rough plame or surface may be inclined so that a botly, when arted upon by the force of grtevity only, may just rese upon it without slidiny, as called the . Ingle of Friction. \dagger

Let s be the angle of inclination of the plane $A B$ just as the weight is on the point of slipping down; IV the weight of the body ; i the normal pressure on the plane: F the fore of friction acting along the phate $=\mu R$ (Art.
 92). Then, resolving the forces along and perpendientar to the plame we hare for equilibrimm

[^6]ns, all the results of cision the numerical - substances usually fie (ialbraith's Me. 1:88, nud Weishmelis

Friction.-Prac h greater than 1. thiun $\frac{1}{2}$. The folcoefficicuts,* will as determined by etion of motion.
n . 3 and .7.
.2 and .5.
.2 and .6 .
.15 and 25.
tudent is referred 9, and Museley's M. Morin, where its compheteness.
th which a routh body, when acted rest upon it with:-

Fig. 45
perpendicutar to

$$
u R=W \sin \pi ; h=W \cos \varkappa ;
$$

$$
\begin{equation*}
\therefore \quad \tan \|=\mu, \tag{1}
\end{equation*}
$$

which gives the lumiting value of the inelination of the plane for which equilibrimen is possible. The body will rest on the plane when the angle of inclination is less than the angle of friction, and will slide if the angle of metination exceeds that angle; and this will be the case however great If may be; the reason being that in whaterer manner we increase W, in the same proportion we increase the friction upon the phane, which serves to prevent $I \mathbb{f}$ from sliding.

From (1) we see that the tangent of the augle of friction is equal to the coefficient of frietion.

95. Reaction of a Rough Curve

 or Surface.-Let AB be a rough curve or surface; P the position of a particle on it ; and suppose the forecs ating on P to be confined to the plane of the paper. Let $l_{1}=$ the normul resistance of the surface, acting in the normal, $I^{\prime} N$, and $F^{\prime}=$ the force of friction, acting along the tangent, $P T$.
The resultant of R_{1} and F, ealled the Total Resistance* of the surface, is represented in magnitude and direction by the line $P R=R$, which is the diagonal of the parallelogrom determined by R_{1} and F. We have seen that the total resistance of a smooth surface is normal (Art. 41) ; but this limitation does not upply to a romgh surface. Let ϕ denote the angle hetween R and the normal R_{1}; then ϕ is given by the equation

$$
\tan \phi=\frac{F}{R_{1}}
$$

[^7]Henee, ϕ will be a maximura when the force of fry : on, F, bears the greatent ratio to the normal messure R_{5}. But this greatest ratio is :0tain whe: fere bedy is just on the point of slipperg atoug the surface, and is what we called the coefficient of friction (Art. : 2), thet is

$$
\begin{gathered}
\frac{F}{R_{1}}=\mu ; \\
\therefore \operatorname{tin} \phi=\mu
\end{gathered}
$$

Therefore the greatest amyle by which the Total Resistance of " rough curve or surface can dernute from the normal is the angle whose tangent is the coefficient of friction for the boties in contact; and this deviation is attained when slipping is about to commence.

$$
\text { Cor-By (1) of Art. 94, } \tan \varepsilon=\mu \text {; }
$$

$$
\therefore \phi=\alpha \text {; }
$$

hence, the direction of the total resistance, R, is inclined at an angle a to the normal; i. e., the greatest angle that the Tofai Resistance of a rough curre or surface can make with the normal is equitl to the angle of friction, corresponding to the two bodies in contact.
96. Friction on an Inclined Plane.-A body rests on a rough inclined plane, and is acted on by a given foree, P, in a vertical plano which is perpendicular to the inclined plane; find the limits of the foree, and the angle at which the least foree capable of drawing the particle up the plame must act.
Let $i=$ the inclingtion of the plane to the horizon ; $\theta=$ the angle between the inclined plane and the line of action of $P ; \mu=$ the coefficient of friction : and let us first suppose that the body is on the point of moving doum ther
———

force of fri: 'on, cessure R_{5}. But ly is just on the s what we called

Total Resistance n the normal is friction for the ined when slip-
R, is inclined at t angle that the e can make rith n, corresponding

A body rests on 1 given force, P, to the inclined ungle at which le inj the plane ehorizon ; $\theta=$ se line of action et us first supoving down thir
plane, so that friet in is a force acting up the plane. then resolving along, and perpendicmar to, the plane, we have

$$
\begin{gathered}
f^{\prime}+P \cos \theta=W \sin i, \\
R+P \sin \theta=W \cos i, \\
F=\mu R ; \\
\therefore \quad P=W \frac{\sin i-\mu \cos i}{\cos \theta-\mu \sin \theta} .
\end{gathered}
$$

And if P is increased so that motion $n p$ the plane begiming, F acts in an opposite direction, and there :the sign of μ must be changed and we have

$$
P=W \frac{\sin i+\mu \cos i}{\cos \partial+\mu \sin g} .
$$

Hence, there will be equilibrium if the body be aeted on by a foree, the magnitude of which lies between the values of P in (1) and (2). Substituting $\tan \phi$ for μ (Art. 95); (2) becomes

$$
\begin{equation*}
P=W \frac{\sin (i+\phi)}{\cos (\phi-\theta)} \tag{3}
\end{equation*}
$$

To determine e in (2) so that l ' shall be a minimam we must put the first derivative of P with respect to $\theta=0$, therefore

$$
\begin{gathered}
\frac{d P}{d \theta}=W(\sin i+\mu \cos i) \frac{\sin \theta-\mu \cos \theta}{(\cos \theta+\mu \sin \theta)^{2}}=0 \\
\therefore \tan \theta=\mu
\end{gathered}
$$

that is, the foree P necesary to draw the body up the plane will be the least possible when $\theta=$ the angle of friction.

Heיee we infer that a given force acts to the greatest advantage in dragging a weight up a hill, if the angle at which its line of action is indinem to the hill is equalt, the ange of frietion of the hill. Similarly. a forece acts to the greatest allwimtige in dragging a weight along a homizontal phane it its lime of action is inclined to the phame at the angle of frim tion of the phane. We may atso determine from this the angle at which the traces of a drawing horse should be inclined to the phame of traction.

These results ate those which are to be expected, beeanse some part of the ferce ought to be expended in lifting the weight from the phane, su that friction may be diminished. (See Priec's Anal. Mech's. Vol. I, p. 160.)
97. Friction on a Duuble-Inclined Plane.-Two bodies, whose weights are P^{\prime} and $(9$, rest on a rough doubleinclined plane, and are connected by a string which passes over a smooth peg at a point, Λ, vertically orer the intersection, B, of the two planes. Find the position of equilibrimm.

Let "and β be the inclinations of the two planes; let $l=$ the length of the string, and $h=A 13$; and let θ and θ the the angles the portions of the string make with the planes.

Suppose P is on the point of
 ascemling, and Q of descemding. Them, sinee the motion of each budy is abont to etane, the total resistances, R and s, most catch make the angle of friction with the corresponding normal (Art. 95, Cor.) ; and since the weight, P, is abont to move mpards the friction must act dewnwards, and therefore h must lie below the normal. while, since Q is about to move downards, the friction must act upwarls, and therefore S mist be above the nurmal.
$=$ to the greatest . If the angle at - hall is equital th a foree acts to it along a horired to the plame may also deterces of a drawing ction.
xpected, because ed in lifting the be diminished.
d Plane.-Two a rough dumbleng which passes ser the intersecsition of equili-

mit to etsine, the we the ingle of t. 97, (or.) : and ards the friction ust lie below the downwards, the most be above

If T ' is the tension of the string, we have for the equilibrium of I^{\prime}, (Art. 3%),

$$
T=P \frac{\sin (\iota+\phi)}{\cos (\theta-\phi)}
$$

And for the equilibrium of Q,

$$
T=Q \frac{\sin (\beta-\phi)}{\cos \left(\theta^{\prime}+\phi\right)}
$$

Equating the values of T we get

$$
P^{\sin (c+\phi)} \begin{gather*}
\cos (\theta-\phi)
\end{gather*}=\left(\begin{array}{c}
\sin ^{2}(\beta-\phi) \tag{1}\\
\cos \left(\theta^{\prime}+\phi\right)
\end{array}\right.
$$

amd if P is abont to move denen the plane. the friction acts in an opposite direction, and therelore the sign of ϕ must be changed ant we have

$$
\begin{equation*}
P \frac{\sin (\varepsilon-\phi)}{\cos (\theta+\phi)}=Q^{\sin (\beta+\phi)} \frac{\cos \left(\theta^{\prime}-\phi\right)}{} \tag{2}
\end{equation*}
$$

(1) or (?) is the only statical equation comnecting the given gmantities.

We obtain a geometric equation $)$ expressing the length of the string in terms of h, \not, β, θ, and θ^{\prime}, which is

$$
\begin{equation*}
l=h\left(\frac{\cos c}{\sin \theta}+\frac{\cos \beta}{\sin \theta^{\prime}}\right) \tag{3}
\end{equation*}
$$

From (1) or ((3) and (3) the values of 0 and θ^{\prime} can be fonod, amb this determines the positions of P and Q.

Ohlurevise thus:

Instad of considering the total resistances, A and s we may consider two normal resistances. I_{1} and S_{1}, und two
forces of friction, μR_{1} and μs_{1}, acting respectively down the plane ${ }^{6}$ and up the plane β. In this case, considering the equilibrium of P. and resolving forces along, and perpendicular to, the plane a, we have

$$
\left.\begin{array}{l}
P \sin \epsilon+\mu R_{1}=T \cos \theta, \\
P \cos \epsilon=R_{1}+T \sin \theta, \tag{4}
\end{array}\right\}
$$

and for the equilibrinm of Q,

$$
\left.\begin{array}{l}
Q \sin \beta=\mu S_{1}+T \cos \theta^{\prime}, \\
Q \cos \beta=S_{1}+T \sin \theta^{\prime} \tag{5}
\end{array}\right\}
$$

Eliminating R_{1}, S_{1}, and T from (4) and (5) we get (1), the same statical equation as belore.
The method of considering total resistances instead of their normal and tangential components is usually more simple than the separate consideration of the latter forces. (See Minchin's Statics, p. 60.)

Cor--If Q is given and P be so small that it is abont to ascend, its value, P_{1}, will be given by (1),

$$
\begin{equation*}
P_{1}=Q \frac{\sin (\beta-\phi) \cos (\theta-\phi)}{\sin (\sigma+\phi) \cos \left(\theta^{\prime}+\phi\right)} . \tag{6}
\end{equation*}
$$

and if P is so large that it is about to drag Q up, its value, P_{2}, will be given by (2)

$$
P_{2}=Q \frac{\sin (\beta+\phi) \cos (\theta+\phi)}{\sin (\overline{\sin }-\phi) \cos \left(\theta^{\prime}-\phi\right)}
$$

the angles θ and θ^{\prime} being connected ly (3).
There will he equilibrinm if φ the aded on by any foree whose magnitude lies between P_{1} and P_{2}.
spectively down :ase, considering along, and per-
(5) we get (1),
enres instead of is nsually more he latter forces.
at it is about to
Q up, its value,
by any foree
98. Friction on Two Inclined Planes.-A beam rests on two rongh inclined planes; find the position of equilibrium.
Let a and b be the segments, AG and BG, of the beam; let θ be the inclination of the beam to the horizon, c and β the inclinations of the planes, and R and S the total resistances. Suppose that A is on the point of ascending; then the total

Fig. 48 resistances, R and S, must cach make the angle of friction with the corresponding normal and act to the right of the normal.
The three forees, \mathbb{W}, R, s, must meet in a : ' int 0 (Art. (62); and the angles GOA and GOB are equal to $6+\phi$, and $\beta-\phi$, respectively.

Hence $(a+b) \cot \mathrm{BGO}=a \cot \mathrm{GOA}-b \cot \mathrm{GOB}$, or $\quad(a+b) \tan \theta=a \cot (a+\phi)-b \cot (\beta-\phi)$. (1)

Cor.-If the planes are smooth, $\phi=0$, and (1) becomes

$$
(a+b) \tan \theta=a \cot a-b \cot \beta
$$

(See Ex. 7, Art. 62.)
99. Friction of a Trunnion.*-Trunnions are the culiudrical projections from the ends of a shaft, which rest on the concare surfares of cylindrical boxes. A shaft rests in a horizontal position, with its trmmions on rough all trical surfaces; find the resistance due to friction whel is to be overeome when the shaft begins to turn about a horizontal anis.

Let $b A d$ and BAED be two right sections of the trumion and its box; the two cireles are tungent to each other internally. If m, rotation takes phace the trumion presses upon its lowest point, H, throngh which the direction of the resulting
 pressure, R, pusses; if the shift begins to rotate in the direction $A H$, the trumion ascends along the inclined surface, EAB , in consequence of the friction on its bearing, mntil the force, S, tending to move it down just balances the friction, F. Resolving R into a normal force N and a tangential one, S, we have, since the fangential component of R in urging the trumion down the surfice $=$ the friction which opposes it.

$$
S=F^{\prime}=\mu N ; \text { but } \quad R^{2}=S^{2}+N^{2} ;
$$

or

$$
R^{2}=\mu^{2} N^{2}+N^{2}
$$

therefore

$$
N=\frac{R}{\sqrt{1+\mu^{2}}}
$$

and the friction

$$
\begin{gathered}
F^{\prime}=\frac{\mu R}{\sqrt{1+\mu^{2}}}=\frac{R \tan \phi}{\sqrt{1+\operatorname{tanl}^{2} \phi}}(\text { Art. } 95), \\
F=R \sin \phi .
\end{gathered}
$$

Hence, to find the frirlion upon "trmmim, multiply the
 angle of friction.
100. Friction of a Pivot.-A heary circular sluft rests in a vertical position, with its end, which is a circular
section, on a horizontal plate ; find the resistance due to friction which is to be overeome, when the shaft begins to revolve about a vertical axis.

Let a be the rallins of the circular section of the shaft; let the phane of (r, θ) be the horizontal one of contact between the end of the shaft and the phate: and let the eantre of the circular area of contact be the pole. Let $W=$ the weight of the shaft, then the rertical pressure on cach unit of surface is $\frac{W}{\pi a^{2}}$; and thereione, if $r d r d \theta$ is the area-element, we have

$$
\text { the pressure (sir the element }=\frac{W}{\pi t^{2}} r d r d 0 \text {; }
$$

\therefore the friction of the element $=\mu \frac{\mathrm{H}^{2}}{\pi \mu^{2}} r d r d \theta$.
The friction is opposed to motion, and the direction of its netion is tangent to the cirele deseribed by the element; the moment of the friction about the vertiaal axis throngh the centre

$$
=\frac{\mu \| r^{2} d r d \theta}{\pi \pi^{2}}
$$

therefore the moment of frietion of the whole eirenker end

$$
\begin{equation*}
=\int_{0}^{2 \tau} \cdot \int_{0}^{\mu} \frac{\| \| r^{2} d r d \theta}{\pi \mu^{2}}=\frac{2 \mu\| \|}{3} \tag{i}
\end{equation*}
$$

and eomsequently varies an the matins. Elence arises the advanage of reflucing to the smallent possible dimensions the area of the hase of a vertienl shaft meonsing with its end resting en it horizontal heed.

From (1) we may regard the whale frietion due to the pressure as acting it a single point and at a distance foom the centre of motion equal to two-thirds of the reinus of
the base of the shaft. This distance is called the mean lever of friction.

When the shaft is rertical, and rests upon its circular end in a cylindrical socket the cylindrical projection is called a Pivot.

EXAMPLES.

1. A mass whose weight is 750 lbs . rests on a horizontal plane, and is pulled by a foree, P, whose direetion makes an angle of 15° with the horizon; determine P and the total resistance, R, the coefficient of friction being .62 .
$A u s . P=413.3 \mathrm{lbs} ; \quad R=759.9 \mathrm{lbs}$.
2. Determine P in the last example if its direction is horizontal. $A n s, P=405 \mathrm{lbs}$.
3. Find the force along the plane required to draw a weight of 25 tons n p a rough inclined plane, the coefficient of friction being $\frac{5}{2}$, and the inclination of the plame being such that $\%$ tons acting along the plane would support the weight if the plane were smooth.

Ans. Any force greater than 17 tons.
4. Find the force in the preceling example, supposing it to act at the most advantageons inclination to the plane.

$$
\text { Aus. } 15_{13}^{8} \text { tons. }
$$

5. Λ ladder inclined at an angle of 60° to the horizon rests between a rough parement and the smouth wall of it house. Show that if the ladder begin to slide when a mum has aseended so that his centre of gravity is half way up, then the coeflicient of friction between the foot of the ladder and the guvement is $\delta \sqrt{3}$.
(i. Λ body whose weight is 80 lbs is just sustuined on a rough inclined phane by a horizontal foree of 2 lhse, and a firee of 10 liss along the plame: the coeflicient of friction is of find the inclination of the planc. Ans. a tan ${ }^{-1}\binom{$ a }{8} .
alled the mean
its circular end tion is called "
on a horizonta lirection make nine P and tho 1 being .62. $=755.9 \mathrm{lbs}$.
its direction is $P=465 \mathrm{lbs}$.
ired to draw a e, the cuefficient the plame being ald support the than 17 tons. mple, supposing on to the plane. 1s. 155_{13}^{8} tons. ' to the horizon smooth wall of : ide when a mun is half way up, he foot of the
t sustumed on a of 2 llss, and cut of' 'riction is $2 \tan ^{-1}\binom{8}{8}$.
6. A heavy body is placed on a rough plane whose inclination to the horizon is $\sin ^{-1}\left(\frac{3}{3}\right)$, and is connected by a string passing over a smooth pailey with a body of equal weight, which hangs frecly. Supposing that motion is on the point of ensuing up the plane, find the inclination of the string to the planc, the coefficient of friction being $\frac{1}{2}$.

$$
\text { Ans. } \theta=2 \tan ^{-1}\left(\frac{1}{2}\right) \text {. }
$$

8. A heary body, acted upon by a forec equal in magnitude to its weight, is jut a aout to ascend a rough inclined plane under the inthence of this foree; find the inelination, θ, of the foree to the inelined plane.

Ans. $0=\frac{\pi}{2}-i$, or $2 \phi+i-{ }_{2}^{\pi}$, where $i=$ inclination of the plame, and $\phi=$ angle of friction. (θ is here supposed to be mensured from the wiper side of the inclined plime). If ${ }_{2}^{\pi}>2 \phi+i, \theta$ is negative and the mplied force will act towards the under side.
9. In the first selution of the lust example, what is the magnitude of the pressure on the plane?

Ans. Zero. Exphain this.
10. If the sluft, (Art. 100), is a square prism of the weight ir, and rotates uhout an axis in its centre, prove that the moment of the friction of the syuare end varies as the side of the square.
11. If the shaft is composed of two cyumb circulur cylinders pheed side by side, and rotates about the line of contact of the two cylimers, show that the moment of the frietion of the surfice in contact with the horizonfal phane $=\frac{32 \mu \mathrm{~N}}{\square \pi}$.
12. What is the bost romedicient of friefion that will ullow of a heavy body's being just kept from sliding down
an inclined phane of given inclination, the body (whose weight is II^{\prime}) being sustained by a given borizontal foree, P^{\prime} ?

$$
\text { Ans. } \frac{11+P \text { in } i}{11}
$$

13. It is observed that a boly whose weight is known to be W can be just sustained on a rough inelined plane by a horizontal force ${ }^{\prime}$ ', and that it can also be just sustaned on the same plane by a loree Q up the plane; express the angle of friction in terms of these known forces.

$$
\text { Ars. Angle of friction }=\cos ^{-1} \frac{P W}{Q \sqrt{P^{2}+W^{2}}} .
$$

14. It is observed that a foree, Q_{1}, acting up a rongh inclined plane will just sustain on it a body of weight W, and that a force, Q_{2}, acting up the plane will just drag the same body up; find the angle of friction.

$$
\text { Ans. Angle of friction }=\sin ^{-1} \frac{Q_{2}-Q_{1}}{2} \text { ل } W^{\prime 2}-Q_{1} Q_{2} .
$$

15. A heary miform rod rests with its extremities on the interior of a rongh vertical circle; find the limiting position of equilibrinm.

Ans. If $x=$ is the angle subtended at the centre by the rod, and λ the amgle of friction, the limiting inclination of the rod to the horizon is given by the equation

$$
\tan 3=\frac{\sin 2 \lambda}{\cos 2 \lambda+\cos 2 c}
$$

16. A solid triangular prism is phaced, with its uxis horizontal, on a rough indined phane, the inctimation of which is grahnally incrensed ; theremine the muture of the initial motion of the prisin.
Ans. If the trinugle A Be is the section perpendicular to the axis, and the side AB is in contact with the plane, A
he body (whose rizontal force, P ? $\because \quad=i-P$ $11+l^{\prime} \tan i$
sight is known to lined plame by a just sustained on me; express the iorces.
$\frac{P W}{Q \sqrt{P^{2}+W^{2}}}$.
ting up a rongh oly of weight W, vill just drag the
$Q_{2}-Q_{1}$
$\sqrt{ } W^{2}-Q_{1} \overline{Q_{2}}$
extremities on ind the liniting
the centre by the ug inclination of tion

1, with its uxis (a inclination of ce muture of the
werpendiculitr tw th tho plane, A
being the lower vertex, the initial motion will be one of twombling if

$$
\mu>\frac{b^{2}+3 c^{2}-u^{2}}{4 \Delta}
$$

the sides of the triangle being a, b, c, and its area Δ. If μ is less than this value, the initial motion will be one of slipping.

1\%. A frustum of a solid right cone is pheed with its base on a rongh inclined plane, the inclination of which is gradnally increased; determine the nature of the initial motion of the bodj.
$A n s$. If the radii of the larger and smaller sections are R and r, and h is the height of the lirnstum, the initial motion will be one of tumbling or slipping according as

$$
\mu><\frac{4 R}{h^{2}} \cdot \frac{R^{2}+R r+r^{2}}{R^{2}+2 R r+3 r^{2}}
$$

18. An elliptic cylinder rests in limiting equilibrinm between a rongh vertieal and an equally rough horizontal phane, the axis of the cylinder being horizontal, and the mujor axis of the ellipse inclined to the horizon at ar angle of 45°. Find the coefficient of friction.
Ans. $\mu=\frac{\sqrt{1+2 c^{2}-e^{4}}-1}{2-e^{2}}, e$ being the ecectricity of the ellipse,

CHAPTER VI.

THE PRINCIFLE OF VIRTUAL VELOCITIES.*

101. Virtual Velocity.-If the point of application of a force be conereived as clisplaced throngh an inulefinitely smalt space, the resolced part of the displacement in the direction of the force, is called the Virtual Veloeity of the force ; and the product of the force into the virtual velocity has been culled the virtual moment \dagger of the foree.

Thus, let 0 be the original, and A the new point of application of the foree, P , acting in the direction OP , and let $\Lambda \mathrm{N}$ be drawn perpendicular to it. Then ON is the virtual velocity of P , and $\mathrm{P} \cdot \mathrm{ON}$ is the rivtual moment.
 virtual displacement of the point.
If the projection of the virtual displacement on the line of the force lies on the side of \mathbf{O} toward which P aets, as in the figure, the virtnal velocity in considered positive; but if it lies on the opposite side, i. e., on the action line prolonged through O , it is negative. The forces are always regarded as positive ; the sign, therefore, of a virtual moment will be the same as that of the virtual velocity.

Cor.-If θ be the angle between the foree and the virtmal displacement, we have for the virtual moment,

$$
\mathrm{P} \cdot \mathrm{ON}=\mathrm{P} \cdot \mathrm{OA} \cos \theta=\mathrm{P} \cos \theta \cdot \mathrm{OA} .
$$

* The princlple of Virlual Velocillea was dienvered by Gailleo, and was very fully developed by Bornonilis and Laprange.
+ Nometimes called "Vhriual Work." The name "Virtual Moment " wangiven by Dilumed.

Now $\mathrm{P} \cos \theta$ is the projection of the forec on the direction of the displacement, and is equal to OM, OP being the force and PM being drawn perpendieular to OA. Hence we may also define the rirtual moment of a force as the product of the virthal dispidacement of its point of thplication into the projection of the forre on the direction of this. displacement; and this definition for some purposes is more convenient than the former.

Remark.-A fore is said to do mork if it moves the body to which it is applied; and the work done by it is mensured by the product of the force into the space ilurongh which it moves the body. Generully, the work done by any force during an infinitely sumbl displacement of its point of application is the product of the resolved part of the force in the direction of the displacement into the displacement ; and this is the sume as the virtual moment of the force.
102. Principle of Virtual Velocities - (1) The virtual moment of a force is cqual to the sum if itw virtnal moments of its components.

Let OR rejresent a force, h, actng at 0 , and let its components be P and Q, represented by OP and OQ. Let OA be the virtual disphacement of 0 , and let its projections on $l r, P$, and Q, be r, p, and
 q, respectively. Then the virtnal moments of these forces are $R \cdot r, P \cdot p, Q \cdot q$. Draw $R=$, $P m$, and $Q o$, perpendiculur to OA . Then $\mathrm{On}, 0 \mathrm{~m}$, and $\mathrm{O} o$ $(=m n)$, we the projections of R, P, and Q, on the direction of the displacement ; and hence (Ari. 101, Cor.) we have

$$
\begin{aligned}
& R \cdot r=0 \Lambda \cdot O n \\
& r \cdot p=0 \Lambda \cdot O m \\
& Q \cdot q=0 \Lambda \cdot m n
\end{aligned}
$$

$$
\text { Hence } \quad \begin{aligned}
\mathrm{P} \cdot p+Q \cdot q & =0 \mathrm{~A}(0 m+m n) \\
& =0 \mathrm{~A} \cdot 0 n=\boldsymbol{R} \cdot \boldsymbol{r} .
\end{aligned}
$$

(Ske Minchin's Statics, p. 68.)

 comporach thom in order, taking any two of them first, and finding the virthal moment of their resnlant as atowe, then finding the sithal moment of the resultant of these two and a third, likewise the virtual moment of the resultant of the first three and : fonrth, and so (on to the last; or we may tise the polygom of forces (Art, 33). The sum of the virtual moments of the forces is cipual to the virtual displacement multipied ly the wim of tise projections on the displarement of the sides of the polygon which represent the forces (Art. 101, Cor.). But the sum of these projections is equal to the projection of the remaming side of the polygon,* and this side represents the resultant, (Art. 33, Cor. 1). Therefore, the sum of the cirtual moments of any number of consurring forces is equal to the virtual moment of the resultant.
(3) If the forees are in equilibrium, their resultant is equal to zero; hence, it follows that when any manber of concurring forces are in equilibrium, the sum of their virtual moments $=0$.

This principle is generally known as the l'rinciple of Virtual Velocities, and is of great use in the solation of practical problems in Staties.

[^8] if them first, amd mit as above, then ant of these two f the resultant of the last; or we The sum of the the virtual disrojections on the which represent of these projeccining side of the :ultant, (Art. 30, t moments of any e virlual moment
heir resultant is uny ummber of he sum of their
he l'rinciple of the solution of
it In elear that In any hich jolne the flrst and In join the proints, two order. be marked with of thelr projections bue ared tirom lati to rieht ve, the sum of the jrv.
103. Nature of the Displacement. - It must be carefully observed that the displacement of the particle on which the !orees act is cirtual and arbitrary. The word virtual in Staties is used to intimate that the displacements are not really mace, but only supposed, i. e., they are not actual but imagined displacements; but in the motion of a particle treated of in Kiuetics, the displacement is often taken to be that which the particle achally midergoes. [11 Art. 101, the displacement wats limited to an infinitesimal. In some cases, however, af finite displacement may be used, and it may b, aen more convenient to consider a finite displacement. But in very many cases any finite disphacement is sulficient to alter the amment or direction of the forees, so as to prevent the principle of cirtual velocilies from being applicable. This diflicuity can always be avoided in practice ly assuming the displacement to be intinitesimal ; and if the virtual displacement is infinitesimal the virtual velocitics are all infinitesimal.
104. Equation of Virtual Moments. - Let P_{1}, P_{2}, P_{3}, ete., denote the forces, and $\delta p_{1}, \delta p_{2}, \delta \mu_{3}$, ete., the virtual velocities; then the prineiple of virtual velocities is expressed (Art. 102) by the equation
or
whien is ealled the equation uf virtual moments.*
Sch.-If the virtnal displaeement is at right angles to the direction of any foree, it is clem that δ / μ, the virtual veloeity, is equal to zero. Hener, when the rirtual displacement is "t riyblt auyles to the elivertion of the fores,

[^9]the virtnal moment of the force $=0$, and the force will not enter into the equation of cirtual moments.

Such a virtual displacement is always a convenient one to choose when we wish to get rid of some nnknown fore which ats upon a particle or system.
105. System of Particles Rigidly Connected.-(1) If a particle in equilibrium, under the action of any foress, be constrained to maintain a fixed distance from a given tixed point, the force due to the constraint (if any) is directed towards the fixed point.

Let B be the particle, and $\boldsymbol{\Lambda}$ the fixed point. Then it is Flear that $W_{\text {- may substitute for the string or rigid rod }}$ which comnects B with A , a smooth circular tube enclosing the particle. with the centre of the tube at A. Now, in order that B may be in equilibrimm inside the tube, it is necessary that the resultant of the forees aeting upon it should be normal to the tube, i. e., directed towards A.
(2) Let there be any number of particles, m_{1}, m_{2}, m_{3}, etc., each aeted on hy any forecs, P_{1}, P_{2}, P_{3}, ete., and comnected with the others by inflexible right lines so that the figure of the system is invariable. Then each particle is acted on by all the external foress applied to it, and
 by all the infermal forces proceeding from the internal connections of the particle with the other particles of the eystem. Thus the particle, m. is acted on by P_{1}, P_{2}, ete. and by the internal forees which proced from its comnec. tion with: m_{1}, m_{2}, m_{3}, cte., and which atet along the lines. $m m_{1}, m n_{2}$, "te., ly (1) of this Article. Denote the foreses rlong the lines $m m_{1}, m m_{2}, m m_{3}$. etc., by t_{1}, t_{2}, t_{3}, cte.. and their virtual velorities by $\delta t_{1}, \delta t_{2}, \delta t_{3}$, etc. Now
e force witl not
convenient one unknown force
'onnected.-(1) n of any forees. e from a given mint (if any) is
int. Then it is ng or rigid rod tabe enelosing at A. Now, in te the tube, it is acting upon it towards A .

he internal conarticles of the P_{1}, P_{2}, ete. om its comere. long the lines. note the forces t_{1}, t_{2}, t_{3}, etce.. t_{3}, etc. Now
imamine that the system is slightly displaced so as to oecupy a new position. Then (1) of Art. 104 gives no for $1 m$,

$$
P_{1} \delta p_{1}+I_{2} \delta p_{2}+\text { ctc. }+t_{1} \delta t_{1}+t_{2} \delta t_{2}+\text { ctc. }=0,(1)
$$

for m_{1},

$$
P_{4}^{\prime} \delta p_{4}+P_{5}^{\prime} \delta p_{5}+\text { ctc. }+t_{1} \delta t_{1}+t_{2} \delta t_{2}+\text { etc. }=0, \quad(3)
$$

proceeding in this way as many equations may be formed as there are particles in the system.

Now it is clear that $t_{1} \delta t_{1}$, and $t_{2} \delta t_{2}$, in (1) have eontrary signs from what they have in (2). Thus if the system is moved to the right in its disphacement, $t_{1} \delta t_{1}$, and $t_{2} \delta t_{2}$ will be positive in (1) and negative in (2) (Art. 101), and hence, if we add (1) and ($\%$) together, these terms will disappear ; in the same way, the virtual moment of the internal foree along the line connecting m with any other partiele disappears by addition, and the same is true for the internal foree between any two particles of the system. Hence, adding together all the equations, the internal forces disappear, and the resulting equation for the whole system is

$$
\begin{equation*}
\mathbf{\Sigma} P \delta p=0, \tag{1}
\end{equation*}
$$

and the same result is evidently true whaterer be the number of particles forming the system. Hence, if ary umuber of forces in a system are in equilibrium, the suan of their rirtual moments $=0$.

The converse is evidently true, that if the simm of the virtual moments of the forces sanishes for every virtmal displacement, the system is in equilitriam.

The lollowing are examples which are solved by the principle of virtual velocities.

EXAMPLES

1. Determine the condition of equilibrimm of a heary bolly resting on a smooth inclined plane nuder the action of given forces.

Let IV be the weight of the body sustained on the plane BC by the forec, l', making an angle, θ, with the plane. T'o avoid bringing the meknown reaction, R, into our equation,
 we make the disphacement of its point, of application perpendienlar to its line of action. (Art. 104, Sch.); hence we conceive O ats receiving a virtual displacement, OA, at right angles to R , the magritude of which in the present case is umlireiterl. Draw Am and An perpenticular to W and P remectively, Om and $\mathrm{O}^{\prime \prime}$ are the virtnal relocities of 16 and P, (Art. 101); and $\mathrm{W} \cdot \mathrm{Om}$ and $\mathrm{P} \cdot \mathrm{O}_{n}$ are their virtnal monents. Hence (1) of Art. 104, gives

$$
\mathrm{W} \cdot \mathrm{O} m-\mathrm{P} \cdot \mathrm{O} n=0 .
$$

But

$$
O m=O A \sin \mu,
$$

and $\quad 0 n=O A \cos \theta$;
therefore $\quad W \sin \pi-\mathrm{P} \cos \theta=0$;
which agrees with Ex. 3, Ari. H.
If in forre ade paralliol th the plane. $\theta=0$, and (1; becomes

$$
P=W \sin \pi ;
$$

which agrees with lix: i, Art. 41.

IMAGE EVALUATION

Photographic
Sciences Corporation

CIHM/ICMH Microfiche Series.

> CIHM/ICMH Collection de microfiches.

2. Suppose the plame in Ex. 1 to be rongh, and that the body is on the point of being dragged np the plane, find the comblion of "yuilibrimm.
The nurnal resistance will now be replaced by the total resistance, li, inclined to the nomal at an angle $=\phi$, the angle of friction (Art. 95, (or.). Lat the virtual displatement,
 OA, take place perpendicubarly to R, then (1) of Art. 104, gives

$$
W \cdot O m-\mathrm{P} \cdot \mathrm{O} n=0
$$

But

$$
0 m=0 \mathrm{~A} \sin (\pi+\phi)
$$

and

$$
0 n=0 . \mathrm{A} \cos (\phi-\theta) ;
$$

therefore $\quad W \sin (a+\phi)=\mathrm{P}^{\prime} \cos (\phi-\theta)$;
which agrees with (3) of Art. 96.
3. Determine the horizontal force which will keep a particle in a given position inside a cireular tube, (1) when the tulve is smooth and (\%) when it is rough.
(1) Let the virthal displarement, $O A$, be an infinitesimal, $=d s$, allong

Fig. 55 the tube. 'Then since ds is infinitesimul the virtual velocity of $R=0$. Then the equation of virtual moments is

$$
-\mathrm{W} \cdot \mathrm{O} m+\mathrm{P} \cdot \mathrm{O} n=0 .
$$

But

$$
O m=d s \cdot \sin \theta
$$

und

$$
\sigma_{n}=d s \cdot \cos \theta ;
$$

therefore
$\mathrm{W} \cdot \sin \theta=\mathrm{P} \cdot \cos \theta ;$
$1=W$ tall 0 .
(2) Suppose the forec, P. just sustains the particle: the normal resistance must now be replaced by the total resistance, making the angle, ϕ, with the normal at the right of it. 'Take the virtual displacement. OA', at right anglas to the total resistance (Art. 105, Sch.), and let it be as before, an infinitesimal ds. Then (1) of Mrt. 104, gives

$$
-\mathrm{W} \cdot \mathrm{O} m+\mathrm{P} \cdot \mathrm{O} n^{\prime}=0
$$

But

$$
\mathbf{O} m=d s \cdot \sin (\theta-\phi),
$$

and

$$
O n^{\prime}=d s \cdot \cos (\theta-\phi),
$$

thercfore $W \cdot \sin (\theta-\phi)=P \cdot \cos (\theta-\phi)$;
or

$$
\mathrm{P}=\mathrm{W} \cdot \tan (\theta-\phi)
$$

Similarly, if the foree, P, will just drag the particle up the tube we obtain

$$
\mathrm{P}=\mathrm{W} \cdot \tan (\theta+\phi) .
$$

4. Solve by virtnal velocitics Ex. 6, Art. 62.

Let the displacement be made by diminishing the angle a, which the beam makes with the horizontal plaue, by da, the ends of the beam still remaining in contact with the horizontal and vertieal planes. Then the virtual velocity of

$$
\mathrm{T}=d \cdot 2 a \cos a=-2 a \sin c d c ;
$$

and that of

$$
\mathrm{W}=d a \sin \approx=a \cos \pi d u,
$$

and those of the renctions. R and R^{\prime}, vanish. Then the equation of virtual moments is

examples.

ac particle : the the total resist at the right of right angles to it be as before, rives
$\phi) ;$
the particle up

62.

ishing the angle al plane, by dar, ontact with the irtual velocity of
ish. Then the
7. In Ex. 4, Art. 42, prove that (1) is the equation of virtual moments.
s. Find the inclination of the bean to the vertical in Ex. 31, Art. 45, by virtual velocities.
9. Deduce, by virtual veloeties. (1) the formula for the triangle of forces (see 1 of Art. 32), and ($: 2$) the formula for the parallelogram of forces (See 1 of Art. 30).
cquation of
vertical in

CHAPTER VII.

machines

105. Functions of a Machine.- I muchine, Stathctuy, is any invtrome"; by weans "f which we muly chunge the
 fintre; and hinetigally, il is any instrument by mems of whirh ae may change the dirction und arducily of a yiven motion.
In applying the pron imple of virtual reluecities to at system of eomected bothes, serantage is gained by choosiag the virtual displacements in cetain directions (Art. 104, S(h). When we use this princople in the discossion of mathines the dixplacements which we aball chowe will be those which the different parts of a machise acturlly underge when it is employed in doing work, and instead of equations of virtmel work we shall have equations of artarl work; and in finture the principle of virtual relocitios will often be refered to as the Princinte of' liork. (See Minchin's Statiers, j. 383.)
Every mathine is designed for the purpose of overeming certain forees which are catled resis/ances; and the borees which are applied to the machines to produce this effect are salled moriny furres. When the mathine is in motion, wery moving fore displace it - paint of application in its own direetion, while the point of applinetion of a resistane is dixphared in a direction mppesite to that of the resistance. Hence, a moting foree is one whose chementary wo:k* is positiof, and a resistance is one whose clementary work is medetione 'The moting fore is, for comenience. called the
pourer ; and lecemse the attration of gravily is the most eommon form of the foree or resistance to be overome it is usmally walled the uright.

The weight or resistance to be owereme may be the earthes attrae. tion. as in raising a weight: the molderatar attractions b tween the particles of a lusly as in stamping or cibting a metal, or dividing woen; or friction, as in drawing a hoasy body along a rough read. The power may be that of men, or horses, or the steam engine, ete, and may be just suflicient to overcome the resistance, or it may be in excess of what is necessary, or it may be tow small. If just sufficient, the machine, if in motion, will remain uniformly so, or if it be at rest it will be on the point of moving, and the power, weight, and friction will be in equilibrium. If the power be in excess, the machine will be set in motion and will contime in acederated mution. If the power be tor small, it will not ber athe to move the machine; and if it be already in motion it will gradually come to rest.
The general problem with regard to machines is to fiud the relation between the power and the weight. Sometimes it is most comvenient that this relation shonld be one of equality, i, e., that the prower should equal the weight. Generally, however, it is most convenient that the power should be very different from the weight. Thas, if it man hats to lift a weight of one fon hanging ly a rope, it is clear that he cannot do it muless the mechanical contrivance provided enable him to lift the weight by exercising a pull of very much less, sily one ewt. When the power is much smaller than the weight, as it is in this ease. which is a very common one. the machine is said to work at a mechanical adrantage. When, as in some other cases, it is desimable that the power shonld be greater than the weight, there is said to be at mechanical disuldrautage of the mathine.
107. Mechanical Advantage.-(1) Let P athd $\|$ the the power and weight, and p and w their virtual velocities respectively; and let frietion be mitted. Then from the equation of sirtual work (Art. 104), we have

$$
P p-W w=0, \quad \text { or } \quad \frac{P}{W}=\frac{w}{p},
$$

ty is the most wereome it is:

10 Marth's attrar. Miss 1 I ween the etal, or diviting ug a rough read. ram engine, etc., or it may be in If just sutficient, or if it be at rest ight, and friction he machine will mution. If the marchine ; and if
lines is to find eight. Someshould be one al the weight. at the power lus, if a min ope, it is clear a contrivance reising a pull ower is much ee, which is a k at a mochaait is clesimale dight, there is achine.
P and If be tual vebocities hen from the
which shows that the smaller I is in comparison with I : the smallar μ will la $^{\prime \prime}$ in comparison with μ. Pat the smaller P is in comparison with 11 '. the greater is the merhanicel aldembaye. Hencre the grater the mechanieal adramatice is the bess will he the virtual velocity of the weight in eomparion with that of the power. Now, if motion athally tak's phaer the rirture velocities become achul volocities: and hence we have the principle what is yained in pouter is lost in retority.
(:) There are no cases in which the weight and power are the only forees to be considered. In every movement of a machine there will always be a certain amonnt of fricetion: and this cam nerer be omited liom the equation of virthal work. There are tases, howerer. as that of a balance on a kinifectge, where the frietion is very smatl; and for these the principle, what is ganed in power is lost in relocity, is very approximately true. Where the friction is considerable this is no longer the case.

Let F and f be the resistance of frietion and its virtual veloeity, then the equation for any machine will take the form

$$
r_{p}-\|^{\prime} w-F f=0
$$

which shows as that althongh P cam be made as small as we wish hy taking f large enough, yet the mechanieal andiantage of diminishing P 's restricted by the fact that f increases with p; and therefore an P thminishes there is a roresponding inerease of the work to be dome against friciion. Hence if frietion be neglected, there is no pratieal limit to the ratio of P to I ; but if the frietion be considered. the alvamtage of diminishing P has a limit. since if $I p$ remains the same. IV'm must decrease as Ff increases: i. a., tha work done aganst friction inneases with the complexity of the machiue : and thus puts a practieal limit to the mechanieal advantage which it is possible to obtain by the use of machines.
108. Simple Machines.-'The simple machines, sometimes called the Merlamal I'amers, are gemuall? enmmeraterl tis six in momber : the Lerere, the IVherl and Arle, the Inetined I'late, the I'ulley, the llielyfe and the serewe The Lever, the Luclimed I'lane, and the I'alley, maty be considered as distinet in principle, while the othe s are combinations of them.

The efficiency* of a machine is the ratio of the useful work it vieds to the whole amomet of work performed by it. The useful work is that which is performed in overcoming useffel resistances, while lost work is that which is spent in overeoming uastefal resistances. Useful resistances are those which the machine is speeially designed to overcome, while the overeoming of urastiful resistances is: foreign to its purpose. Firiction aud rigidity of cords aro wasteful resistances while the weight of the body to be difted is the useful resistance.

Let II be the work done by the moving forces, II ${ }_{u}$ the useful and W_{l} the lost work when the mabhine is moving miformly. 'Then

$$
W=W_{u}+W_{l}
$$

and if $1 /$ denote the eflicionce of the mathine, we have

$$
M=\frac{W_{u}}{W^{\prime}}
$$

In a perfect maehine, where there is no lost work, the effieiency is unity; but in every machine some of the work is lost in overeoming wasteful resistanees, so that the efficiency is always less than mity; and the oljeet of all improvements in a machine is to bring its efficiency as near unity as possible.

The most noticeable of the wasteful resistances are friction and rigidity of cords : and of these we shall consider

[^10]nathines. someHe riall: ennmer
 and the sereer. Fultey, m:ey ber the otles are

0 of the useful k performed by lommed in overs that whicha is L'sef゙ul resistilly designed to 17 revistances is Pity of corls are the body to be
forces, H_{u} the chine is moring
ne, we have
lost work, the ne of the work so that the be whect of all iciency as near
anees are fricshall consider
only the first. 'The stadent who wants information on the experimental laws of the rigidity of eords is referred to Weisbuch: Mechamice, Vol. I. p. 36:3.
109. The Lever.-A lewer is a rigid bar, straight or comend, movable about a tixed axis, which is called the finc:""ni. The parts of the lever into which the futermin duvides it are called the arme of the lever. When the arms are in at staight line it is called asmernghi lever ; in all other cases it is a bent leter.

Levers are divided, for comsunience, into three kinds, accurding to the position of the fulermi. In the first kind the fulerum is between the jower and the weight ; in the second kind the weight acts between the fulerum and the power ; in the third kind the power acts between the fu' crum and the weight. In the tast kind the power is always greater than the weight.
A pair of seissors furnishes an example of a pair of levers of the first kind; a pair of mut-ratackers of the second kind; and a pair of shears of the third kind.
110. Conditions of Equilibrium of the Lever.-(1) Wilhont Frichom. Let $A B$ be the lever and C its fulerum; and let the two forces, P and W, act in the plane of the paper at the points, A and B, in the directions, Al^{\prime} and BW.
 From C draw CD and CE perpendienlar to the directions of P and II: Leet a and β denote the angles which the directions of the forces make with the lever. 'Ilien, taking moments around θ, we have

$$
P \cdot C D=H \cdot C E,
$$

$$
\begin{equation*}
P^{W^{\prime}}=\frac{\text { perpendicular on direction of } W}{\text { perpendiculat on direction of } P} . \tag{1}
\end{equation*}
$$

That is, the condition of equilibrium requires that the power aut weight stuculd be to parh other incersely as the length of their respective arms (Art. 46).

Fo tind the pressure on the fulcrum, and its direction; let the directions of the pressures, P am! II, intersect in F ; join C and F ; ther, since the lever is in equilibrinm by the action of the forecs, P^{\prime} and $I F$, and the praction of the finlermm, the resultant of I^{\prime} and $I V^{*}$ must be equal and opposite to that reaction, and hence mast pass throngh (and be equal to the pressure on the fulcram. Denote this resultant by h, the angle which it makes with the lever by θ; and the angle $\Lambda F B$ by ω; then we have by (1) of Art. 30
or

$$
\begin{gather*}
R^{2}=I^{2}+\left\|^{2}+9 P\right\|^{2} \cos \Lambda \mathrm{FB} \\
R^{2}=I^{2}+\left\|^{2}+2 P\right\|^{2} \cos \omega \tag{2}
\end{gather*}
$$

which gives the messure, R, on the fulerum.
'To find its direction resolve r, $\|$, and R parallel and pupendicular to the lever, and we have
for parallel forces, $\quad P \cos \pi-H \cos \beta-R \cos \theta=0$;
for perpendicular forces, $P^{2} \sin a+\mathrm{J} \boldsymbol{\mathrm { s }} \mathrm{\sin } \beta-R \sin \theta=0$;
by transposition and division we get

$$
\begin{equation*}
\tan \theta=\frac{I^{\prime} \sin a+U^{\prime} \sin \beta}{P^{\prime} \cos \varepsilon-W \cos \beta} \tag{3}
\end{equation*}
$$

which gives the direction of the pressure.
Cor.-When the lever is bent or curved the condition of equilibrimen is the same.

Nolution by the principle of aithul mo iales.
Suppose the lever to be turned round C in the direction of l 'through the angle $d \theta$, inte the position $a b$; iet p and
pirires that the uerersely as the
its direction: I, intersect in in equilibrimm hr reaction of be equal and ass through C

Denote this h the lever by (1) of Art. 30
? parallel and
$-R \cos \theta=0 ;$
$R \sin \theta=0 ;$
condition of the direction b; let p and
q be the perpendiculars CD and CE respectively, then the iirtual relocity of P will be (Art. 101),

$$
\Lambda a \sin c \varepsilon=\Lambda \cup \cdot d \theta \cdot \sin c=p d \theta
$$

Similarly, the virtual velocity $\quad \|$ is $-q d \theta$.
IIence, by the equation of tirtual work we have

$$
\begin{align*}
& p \cdot p \cdot d \theta-W \cdot q \cdot d \theta=0 \\
& \therefore \quad P \cdot p=W \cdot q \tag{4}
\end{align*}
$$

which is the same as (1).
(:) With Friction.-In the above we have supposed fricfion to be neglected; and if the lever turns romed a sharp edge, like the scale beam of a balance, the frietion will be exceedingly small. Levers, however, usually consist of flat bars, turning about romnded pins or stuls which form the fulcrums, and between the lever and the pin there will of course be friction. To find the friction let r be the radius of the pin round which the lever, turus; then the friction on the pin, acting tangentially to the surface of the pin ind opposing motion, $=R$ sin $\phi($ (rt. 99$)$; and the virtual velocity of the point of application of the friction $=r d \theta$; and hence the virtial work of the friction $=? \Omega \sin \phi \cdot r d \theta$. Hence the equation of virtmal work is

$$
P \cdot p d \theta-W \cdot q d \theta-R \sin \phi r d \theta=0
$$

Substituting the value of R from (2), and omitting $d \theta$, we havo

$$
\begin{equation*}
P p-W_{q}=r \sin \phi \sqrt{P^{2}+W^{2}+2} \overline{P W} \cos \omega \tag{5}
\end{equation*}
$$

solving this quadratic for P we have

$$
\begin{aligned}
& I^{\prime}=W \frac{p q+r^{2} \cos \omega \sin ^{2} \phi}{p^{2}-r^{2} \sin ^{2} \phi}
\end{aligned}
$$

which gives the relation between the power and the weight when friction is considered, the upper or lower sign of r sin ϕ leming taken aceording as P or IV is abont to preponderate.

Con.- lf the frictiom is so small that it may be omitted, $r \sin \phi=0$, and (6) becomes

$$
\begin{equation*}
\frac{P}{W}=\frac{q}{p} \tag{7}
\end{equation*}
$$

111. The Common Balance.--In machines generally the object is to produce motion, not rest ; in other words to do work. The statieal incestigation showe omly the limit of force to be applied to prut the madrhine on the pmint of motion, or to give it miform motion. For inf •work to be done, the foree applicel mist execed this limit, and the greater the exass, the greater the amomint of work dome. There is, however, whe clase of apliations of the lewer where the whipet is not to do work, hot to produce equilibrium, and which are therefore apeeially adapted for treatment by staties. 'This is the rlass of measuring mardines, where the object is not to overeome a particular resistame. but to measure its amment. 'The testing machine is a grow (xample, measuring the pull whicl: a bar of any material will sustain before hreaking. Tha common haidance and sterelyard for weighing, are lamiliar examples.

The common hatane is an intrument for weighing: if

 haing vertially abow the contre of aravity of the beam when the hatter is horizontal. and therefine vertically athove
the eentre of gravily of the system formed by the beam, the scallepans, and the weights of the saale-pans. The substance to low weighed is placed in one seale-pan, and weights of known magnitnde are plated in the other till the beam remains in cquilibrimm in a perfectly horizontal position, in which case the weight of the sulhstance is indieated by the weights: which ballance it. If these weights differ by ever so little the borizontality of the heam will be disturbed, and anter oscillating for a short time, in eonsequence of the fulterm being plated cubore the centre of gravity of the serstem. it will rest in a position inclined to the horizon at an angle, the extent of which is a measure of the sensibility of the balance. work done. f the lever wluce ernidor freatmathines, resislance, to is a grood ny material alance and cighing: it ms. with a e fulcrill! [the beallo ieally above

The preceding explanation represents the balanee in its simplest form; in practice thore are many modifications and contivancers introduecel. Muela skill has heen expemded upun the eonstruction of balaness, and great delicacy has beeon obtained. Thus, the beam shourd be suspended by means of a knife-edge, i.e., a projecting metallic edpe transverse to its length, which rests upon a plate of agate or other hard substance. The chains which support the sealepans should be suspended from the extremitios of the beam in the same manmer. The puint of support of the benm (fulerum) should be at equal distances from the points of sumpronsion of the seales; and when the batance is not haden the beam should in horimotal. We ean ascerain if these conditions are satistiod by observong whether there is still cquilibrium when the substance is transferesd to the seale which the weight originally occupiod nad the weight to that which the substance originally occupied.

The chief requisites of a good balance are:

(1) When eymal weights are placed in the scale-pans the heam should he perfectly horizontal.
 two woinhts which ate very nearly equal bu plated in the valu paths, the beam should vary semsibly from its horizontal position.
(3) When the balanee is disturbed it shomld rendily return to its state of rest, or it should hatve stabulity.
112. To Determine the Chief Requisites of a Grod Balance.-Let P and II br the weights in the scale-prans; 0 the filhrime : h its distance from the straight line. AB. which joins the points of att-
 archment of the scale-pins to the beam; a the centre of gravity of the beam : and let AB be at right angles to OC, the line joining the fulerum to the centre of gravity of the beam. Let $\mathrm{AC}=(\mathrm{C} B=a$; $O(i=k: w=$ the weight of the betim: and $a=$ the angle which the beam makes with the horizon when there is equilitrimm.

Now the perpendienlar from 0

$$
\begin{aligned}
& \text { on the direction of } l=\mu \cos 0-h \sin 0 \text {; } \\
& \text { ". } \quad \text {. } \quad \mathrm{IV}^{=}=u \cos \theta+h \sin \theta \text {; } \\
& \text { " " " } \quad \text { " }=k \sin \theta \text {; }
\end{aligned}
$$

therfore taking moments romed 0 we have
$I^{\prime}(a \cos \theta-h \sin \theta)-\|^{\prime}(a \cos \theta+h \sin \theta)-w k \sin \theta=0 ;$

$$
\begin{equation*}
\therefore \quad \tan \theta=\frac{\left(I^{\prime}-W^{\prime}\right) \|}{(I+\|) / 1+i^{\circ}} \tag{1}
\end{equation*}
$$

This equation determines the position of "rpuilitrime. The first requisite-the horizontality of the beam when I 'amd if are cymal-is satistied by making the arms equal.

The second requisita [(2) of Art, 111]. repuires that, for

 sibility is greater the gratere tand is for a gicen valum of $P-W$; and for a given vallue of tan θ the semsibility is
uld re..dily uty.

m: : and let he fulcrum $=C B=a ;$ (d) $A=\mathrm{tha}$ when there
greater the emaller the value of $l-W$ is; henee the sen sibility may be meatured by $P^{\prime}-\frac{\theta}{1}$, whieh requires that

$$
\left(I^{\prime}+W^{\prime}\right){ }_{11}+w \frac{k}{a}
$$

be as smadl an possible. 'Therefore a must be large, and u, h, and k must be small $: i$. e, the arms must be long, the bean light, and the distances of the fulcrum from the beam and from the centre of gratity of the beam must be small.
The thired requisite, its stability, is greater the greater the moment of the foreres whim temb torestore the beam to Its tormer pusition of rest when it is disturbed. If $I^{\prime}=W$ this moment is

$$
\left[\left(I^{\prime}+I I^{\prime}\right) h+w^{\prime} k^{\prime}\right] \sin \theta,
$$

which should be made as large as possible to secure the thirit recuisite.

This conduion is, to some extent, at variance with tive secomd remuisite. They may both be satistied, however, by making $\left(l^{\prime}+\|^{\prime}\right) h+w h$ large and a large also; i. e., by increasing the distances of the fulcrum from the beam and from the centre of gravity of the beam, and by lengthening the arms. (Sew 'Towhmater's Nhaties, P. 180, also Pratt's Merhamies. p. is.)
The companative importane of these pualities of sensibility ind stability in a balanere will depend upon the use for which it is intended; for weighing heary weights. stubility is of more importance; for use in a chemical baboratory the halaner must possess great sensibility ; and instruments have heern construeted which indicate a varia tion of weight leses than a millimeth part of the whole. In a hatane of great delicaly the fuldrime is mate as thin ats
 agate, resting on a polishoud :gite plate, which is suppurted on a atrong vertical pillar of hass.
113. The Steelyard. -This is a kind of halinner in which the arms are unculaal in lough, the longer one beins. graduated, along which a pmise may be mosed morder to Thalance different weights which are phaced in a seale-pan on the short-am. While the moment of the substime wrighed is changed hy increasing or diminishing is"pmantity, its arm remaining comstam, that of the poise is changed hy altering its amm, the weight of the poise remaming the same.
114. To Graduate the Common Steelyard.-(1) When the point of susvirusion is concurident with the rentre of gravity.
wet AF be the beam of the steelyard sumpended alkout an axie passing through its centre of gravity. C ; on the arm, CF , plate a moxable weight. P ': thom if a weight. II', equal to I^{\prime}, is shependerl from Λ, the beam will batanee when p
 on the lome arm is at at distince from C equal to A(. It II equals a wiere the weight of P, the hean will batanee when the distane of P from C is twice ΛC; and so on in :my proprtion. Hence if $\mathrm{If}^{\text {a }}$
 motches, I, : $\because, 3,4$, we., where 1 is phated. ate : is $1, \because, 3$, ete.. i. c., the arm CF is divided into equal divisimes, heginning at the fulermm, ©, as the zero point.
() I'hen thr peint af' suspension is not coi,,ridtunt with the crutrer of tyrurity.

Let 0 be the fuldem. If the sumbiane to be weipland.

 a horizontal position ; then the moment of the insimment
balance it er one lecinse 111 wrdar t1 seale-pan on e sulist:mere ig ils- frimlhe poise is f the poise
lyard. -(1) 1 the rentre
cight of I, ' liom C is Her if If is meres of the as 1. : : 3 , ions, begrin-
"ident will
(a weipherl. hla welight locelyard in instrument
itself, about C , is on the • le. ('F. and is eymal to I '. ('R. Hener, if $\|^{\circ}$ hange fiom A, and I from any puint E, ther for equilibrime we mast have

$$
\begin{gathered}
P \cdot \mathrm{CE}+P \cdot \mathrm{BC}=\| \cdot \Lambda \mathrm{O} ; \\
P \cdot \mathrm{BE}=\| \cdot \Lambda \mathrm{C} ; \\
\therefore \mathrm{BE}=\frac{{ }^{\prime}}{j} \cdot \Lambda \mathrm{C} .
\end{gathered}
$$

If we make IV snceessively ermal to $P, 8 P, 3 P$, ete., then
 distances mast be measmed ott, commencing at 13 for the zero peint, and the points so determinerl marked $1,:, 3,4$, etc. Such a stedyard (ammot weigh bolow a certain limit, corresponding to the lirst notel, 1 .

Fob tind the length of the divisines on the heam. divide BE, the distance of the prise from the zero point, !y the weight, H, which I 'alamees when at the point E. 'The sterepard often has faro fulermas, one for small and the other for large weights.

EXAMPLES.

1. What force must be applied at one end of a lever 12 ins. long to raise a weight of 30 lhs. hanging 4 ins. from the fulermm which is at the other end, and what is the pressure on the fulerim? \quad Ins. $10 \mathrm{lbs}: 20 \mathrm{lbs}$.
2. A lever weighs 3 lhs, and its weight atets at its middle peint : the ratio of its arms is $1: 3$. If a weight of 48 los. he hang firom the rad of the shorter arm, what werghat minst be smivemed from the other and to present motion?

$$
1 u s, 15 \mathrm{lhs} .
$$

3. The arms of a bent lever are 3 ft and 5 ft , and inelined to each other at an angle $\theta=150^{\circ}$. 'To the short arm a weight of : llis. is applied and to the long arm a weight of ${ }^{6} 6 \mathrm{lls}$. is applied. Required the inclination of each arm to the borizon when there is equilibrime.

Ans. The short arm is inelined at an angle of 18° 跑' wbore the horizons. and the long arm is inclined at angle . of 48° :2. e^{\prime} belwe the horizon.
115. The Wheel and Axle.-This machine contints of a whecl, a, rigidly comected with a horizontal eylinder, b, movalle rommd two trumions (Art. 99), one of which is shown : t c . The $\mathrm{p}^{\text {mwer. }}{ }^{\prime}$, is appled at the ciremmerence of the wheel, sometimes by a cord roiled romed the wheel, sometimes by
 hamdepikes as in the copstem, or by bandles at in the urmellass: the weight, W, hangs at the end of a cord fastened to the axte and coiled romind it.
116. Conditions of Equilibrium of the Wheel and Axle.-(1) Let a and b be the radii of the wheel and axle respedively; I' and IV the power and weight, supposed to act by strings at the comemerener of the whee and aske perpendwilar to the radii "and b. Then either by the principle of virtual velocities or hy the principle of moments we have
or

$$
\begin{gather*}
P a=W b, \\
\frac{P}{W}=\frac{\text { radius of axle }}{\text { raddius of whed }} . \tag{1}
\end{gather*}
$$

It is evident that, hy increasing the malins of the wheel on the diminishing the radins of the axle, any amount of merehanical adrantage may be gamed. It will also be seen
d inclined ort arm a 1 weight of tch arm to
of 18° t in angle.

ags at the id it.

Theel and 1 and axle apposed to at and ask her by the f moments
that this machine is only a moditication of the lever ; the peculiar adrantage of the whed and asle being that an endless series of levers: are brought into play. In this respect, then, it surpases the common lever in mechanical advamtage.
In the alme we have supposed frietion to be neglecton, or, what amomis to the same thing, have assmmed that the trmmion is indetinitely small. In practice, of course. the trumbon has a certain radins, r, and a certain coeflicient of friction. ('alling R the resultant of l 'and I, and taking into aceonut the frietion on the trommion we have for the relation between P and W

$$
\begin{equation*}
\Gamma^{\prime} a=\left\|b+r \sin \phi \sqrt{ } I^{2}+\right\| 2+\cdots \Gamma \cos (0, \tag{}
\end{equation*}
$$

(1) being the angle hetween the directions of P and W exactly is in Art. 110.
(: $:$ Differential Wheel and Axle.-By diminishing l, the radins of the asle, the atrength of the machine is diminished ; to a woid this disadvantage a differentidel whel and a.cte is sometimes employed. In this instrument the arle consiste of two cylinders of radii b and b; the rope is wound round the former in one direction, and after passing muder a movalle pulley to whieh the weight

Fig. 60 is attached, is wound romed the latter in the opposite direcetion, so that as the prower, P, which is applied ats before, tangentially to the whem of radins, a. move in its own diredion, the rope at b winds up while the rope at b^{\prime} unwinds:
For the cruilitrimu of the foreers (whether at rest or in uniform motion), the trusions of the rope in bmani b^{\prime},
are each efnal to $\frac{12}{2}$. Hence, taking moments roud the centre of the trumion, c, we have

$$
\begin{align*}
& \quad P^{\prime} a+\frac{1}{2}\|b-1\| b=0 ; \\
& \therefore \quad l^{\prime} a=\frac{1}{2} \|^{\prime}\left(b-b^{\prime}\right), \tag{3}
\end{align*}
$$

hence by making the difference, $b-b$, small, the power ean be made as small as we please to lift a given weight. Let the wheel turn through the angle $\delta \theta$; the pont of application of I will deseribe a space $=$ a 00 , and the weight will be lifted throngh a space $=\frac{1}{2}(b-b) s 0$, which latte: will he very small if $b-b$ is very smath. Therefore, since the amomen of uork to be done to raise the weight to any given height, is constant, economy of power is acromplished by a loss in the time of performing the work.
117. Toothed Wheels.-Twotherd or cogyed whels are wheels provided on the circmmerences with projections called teeth or cogs which interlock, as shown in the figure, and which are therefore calpable of tramsmitting force, so that if one of the wheels be thrmed romd by any means, the other will be turned romm also.

When the teeth are on the wides of the whee instemb of the circminference, they are called crown wheels, When the axes of (wo wheels are neither perpemdientar nor paratlel to each ofher, the where take the form of fruthons of conce, and are falloed breteted uhiefls. When there is a pair of towthed wheste on enchante with the seeth of the large one on one axle fitting between the teeth

Il, the power given wetght. the point of tof, thed the $(b-b) s \theta$ s very small. e to raise the my of pown rforming the
ed wheels are 1 projections in the tigure, ting force, so y any means, ed insteal of heels. When

of the small one on the mext axle, the larger whed of each paid is called the wherl, amd the smaller is called the pimion. By means of a combination of toothed wheeds of this kime called a train of wheels, motion may be tramsterped from one point to another and work done, each wheed driving the noxt one in the series. The disenssion of this kind of machinery poseesses great gemetric elegance ; but it would the out of phace in this work. We shatl give only a slight sketeh of the simplest case, that in whieh the axes of the wheck are all parallel. For the investigation of the proper forms of teeth in order that the wheels when made shall run truly one upon another the student is referred to other works.*
118. To Find the Relation of the Power and Weight in Toothed Wheels.-I A A and B be the tixed centres of the toothed wheces on the eiremmferences of Which the toeth are arranged : Q('O a normal to the surfaces of two teeth at their point of contact. C. Suppose an axle is fixed on the wheel. 13 , and the weight, 11 , suspembed from it at E by a cort : also, suppere the power. I, aets at D) with an arm D. D : draw A a amb $\mathrm{B} /$ perpemdientar to QCQ . Let Q be the matatil persure of one tooth umon amother at C^{\prime} : this pressure will be in the direction of the normal QCQ. Now since the wheel, λ, is in cyuilibrimm about the fixed axis, A, under the action of the forces, P and Q, we have

$$
\begin{equation*}
P \cdot \Lambda D=Q \cdot \Lambda a \tag{1}
\end{equation*}
$$

and since the whecl, B, is in equilibrimm abont the fixed axis, 13 , mater the netion of the foreres, Q and $I I$, we have

$$
\begin{equation*}
\mathrm{H} \cdot \mathrm{BE}=0 \cdot \mathrm{~B} b \tag{?}
\end{equation*}
$$

 ley's Engineering; Whis's Principles of ifechanism; ©ollinnon's statique; and a Paper of Mr. Airy's in the Camb. Phil. Trans., Vol. II, p. 277.

Dividing (1) by (2) we have

$$
\frac{P \cdot \Delta D}{\eta \cdot B \bar{E}}=\frac{\Lambda n}{B \bar{b}} ;
$$

or

$$
\frac{\text { moment of } P}{\text { moment of } I V}=\frac{\mathrm{A} a}{\mathrm{~B} b} \text {. }
$$

If the direction of the normal, QCQ, at the point of contact, C, changes as the action passes from one tooth to the succeeding, the relation of P^{\prime} to If becomes variable. But, if the teeth are of such form that the normal at thir point of contart shall always be timgent to both wheels, the lines Aa and $13 b$ will hecome radii, and their ratio constant. And since the number of teeth in the two wheels is proportional to their radii, we have
$\frac{\text { moment of } P}{\text { Anoment of } W}=\frac{\text { number of teeth on the wheed } V^{\prime}}{\text { number of teeth on the wheel } V^{*}}$.
119. Relation of Power to Weight in a Train of \boldsymbol{u} Wheels.-Let R_{1}, R_{2}, R_{3}, ete., be the radii of the suceessuve wheels in such a train; r_{1}, r_{2}, r_{3}, ete., the radii of the corresponding pinions; and let $P, P_{1}, P_{2}, P_{3}, \ldots W$, be the powers appled to the cirenmferences of the suscessive wheels and pinions. Then the first wheel is in equilibrinm aiont its axis under the action of the fores P and P_{1}, sinee the power applied to the cirenmference of the second wheel is equal to the reaction on the first pinion, therefore

Similarly

$$
\begin{aligned}
I^{\prime} \times R_{1} & =P_{1} \times r_{1} \\
P_{1} \times R_{2} & =P_{2} \times r_{2} ; \\
P_{2} \times R_{3} & =P_{3} \times r_{3} ; \\
\text { etc. } & =\text { etc. } \\
P_{n-1} \times R_{n} & =W \times r_{n} .
\end{aligned}
$$

Mnliphying these equations together and omitting eommon tiactors, we have

$$
\begin{equation*}
\frac{P}{W}=\frac{r_{1} \times r_{2} \times r_{3} \times \ldots}{l_{1} \times R_{2} \times l_{3} \times \cdots} \tag{1}
\end{equation*}
$$

It will be observed, in toothed gearing, that the smaller the radius of the pinion as compared with the whecl, the
point of comtooth to the riable. But, t their point els, the lines io constant. ls is proporthe radii of P_{3}, \ldots II, he surcessive equilibrimm P and P_{1}, f the second 1 , therefore
greater will be the mechanical adantage. There se, however, a pratical limit to the size that can be given to the pinion, berame the teeth must be large enongh for strength. amd must not be too few in mumber. Nix is generally the least momber admissible for the teeth of a pinion. Ennation (1) shows that by a train consisting of a very fow parms of wheels and pinions there i an enormons mechanical alvantage. Thas, if there are three pairs, and the ratio of each whed to the pinion is 10 to 1 , then P is only one thousandth part of IF ; but on the other hand, If will only make one turn where I makes one thonsand. Such trains of wheals are very usefnl in machinery such ats hand erames, where it is not essential to whtain a quick motion, and where the power asalable is very mall in comparison to the weight. (See Browne's Mechanies, p. 109.)

> EXAMPLES.

1. What is the diameter of a whee if a power of 3 thes is just albe to move a weight of 12 lhes. that hamgs from the axle, the radnes of the axhe being : ins.? Ans. 16 ins.
2. If a weight of 20 lis. be supported on it whed and axle by a foree of 4 lis., amb the rame of the axle i : in in. find the radins of the wheel. 1 ms. $8 \frac{1}{3}$ ins.
3. A rapsian is worked by a man pushing at the cond ol a polde. He exerts a lorece of su lhs., amb walls. 80 ft . rommel for every $\underset{\sim}{ } \mathrm{ft}$. of rope pulled in. What is the resistance overeome? Ans. 250 lb ,
4. An axle whose diancter is 10 ins., hats on it two
 tively. Find the weight that would be smpperted on the axle ly weights of ex lbs. athe it lhes on the smallere and larger whend respectively.
5. The Inclined Plane - This has abready been
 diretion makes an angle, 0 . with a rough inelined phane. be employed to drag a weight. IV. up the plate. The if ϕ is the angle of friction and i the inclination of the plane, we have from (3) of Art. 96,

$$
\begin{equation*}
P=W^{\sin (i+\phi)} \frac{\cos (\phi-\theta)}{} \tag{1}
\end{equation*}
$$

If P acts along the plane, $\theta=0$, and (1) becomes

$$
\begin{equation*}
r=\Pi^{\sin (i+\phi)} \underset{\cos ,}{ } \tag{2}
\end{equation*}
$$

If P acts homizontally, $0=-i$, and (1) becomes

$$
\begin{equation*}
I^{\prime}=\| \tan (i+\phi) . \tag{3}
\end{equation*}
$$

Cor.-If we suppose the friction $=0,(1),(2)$, and (3) become respeetively

$$
\begin{align*}
& P^{\prime}=W^{\sin i} \tag{4}\\
& \Gamma^{\prime}=W^{\sin i}, \tag{5}\\
& \Gamma=M^{\prime}, \tag{i}
\end{align*}
$$

Son. - It follows from (4), (5). and (i) that the smaller mited on the : smallor and (N. $1: 3 \mathrm{ll} \mathrm{s}$.
atready been wer. I', whose elined plame. ne. Then if of the plane,
ecomes
(2)
comes
(2), and (3)
(5)
(i)
the smaller
the inclination* of the plane to the hari\%un. the greater will be the meehanieal advantare . If we take in frietion there
 graduents on ralways are the most common exampen at
 as is consenient m order to andble the engine fo dith the heaviest possithe train.
121. The Pulley.-The pulley consists of' a grommet wherl, capable of revolsing freely about in axis. lixed into a framework, called the block. A cord patsis over a prortion of the abemmerence of the where in the growe. When the axis of the polley is fixed, the pulley is called at .iecred pulley. and its only offect is to ange the direction of the fore exerted hy the cond: but where the pulley can aterend and descemd it is called a momble polley, and a merhanieal adoantage may be gained. (ombinations of pmlleys may he made in entless variety; we shall comsider only the simple movable pulley and three of the mome ordinary combinations. No areount will be here taken of the weight of the pulleys or of the cord, on of friction and stiliness of cords. The weight of a set of pulleys is generally small in comparison with the louls which they lif: : and the friction is small. 'The we of the pulley is to diminish the elfects of friction which it does by transferming the friction between the cord and circumference of the whee to the axis and its smports, which may be highly polished or labricated. 'The mechamienl princeiple insolved in all calenations with respere to the pulley iv the constaney of the fore of tension in all parts of the same string (1rt. 10).

* To flad the inclination of the thane for a maximum value of P when it acts paraldel to the phane we put the derivation of P with reapet to $i-0$ and get

122. The Simple Movable Pulley.-Let O be the rentre of the pulley which is supported by a cord passung muder it with onr and attached to a beanm at A and tho nther 'rad stretehed by the force l^{\prime}.

Now since the tension of the string, ABl)l', is the stme thronghont, and the woight, II, is supported by the two wrings at 13 and D , in ench of which the tension is P, we have

$$
2 P=W ; \quad \therefore \quad \frac{P}{\|}=\frac{1}{2}
$$

'The same result follows by the pinciple of virtual velocities. inplose the

$\underbrace{}_{\text {Fig. } 62}$ pulley and the weight, I^{\prime}, to rise any distame. Then it is clan that hoth hatres of the string mast be shortened by the same distanee, and hence P mist rise double the distance; and therefore the erpation of virtual work gives

$$
a l^{\prime}=W ; \quad \therefore \quad \frac{l^{\prime}}{H^{\prime}}=\frac{1}{2}
$$

The mechanieal ulvantage with a single movable pulley is 2.
123. First System of Puileys, in which the same cord passes round all the Pul-leys.--In this system there are two horeks, A and 13 , the upper of which is fixed and the !awrer movable, and each containing in number of pulleys, ach palley being mosalble round the anis of the block in which it is. A single eord is attached to the lower block and passes alterately romen the pulters in the apper and lower blocks, the portions of the comb between successive pmolleys being parallel. 'The portion

cet O be the cord passurg at A amd the

of the string ind hence I' the equation
vable pulley

Fig. 63
of eord proceedng from one pulley to the next is called : $\mu l y$; the portion at which the power, l. is applied is salled the turkile-full.

Since the cord pases romed all the pullers its temsion is the same thronghont amd equal to I '. 'linen if n be the mumber of pies at the lower block, $n P$ will the the resultant "pwat tenston of the cords at the lower block, which must equal IV;
or

$$
\begin{aligned}
\therefore \quad n P & =W, \\
\frac{P}{W} & =\frac{1}{n} .
\end{aligned}
$$

This result follows also by the principle of virtual velocities. Let p denote the length of the tackle-fall and x the common length of the plies; then since the length of tho cord is coustant, we have

$$
\begin{aligned}
& p+n x=\text { constant } ; \\
& \therefore d p+n d x=0 .
\end{aligned}
$$

But the equation of virlual work is

$$
\begin{gathered}
P \cdot d y+W d x=0 ; \\
\therefore \quad P=\frac{W}{n}, \text { or } \frac{P}{W}=\frac{1}{n} .
\end{gathered}
$$

This system is most commonly uschi on necount of its supenor portahility and is the only one of practical importance. 'The several pulleys are usmally mounted on a common axis, as in the figure, the cord being inclined slightly "sude to pass from one pair of pulloys to the next.
This forms what is called a set of Bloch's and Fralls. It is very rommonly used on shiphoard and wherever weights bave to be lifted at irregular times and places. The weight of the lower sot of pullers in this ense merely forms part of the gross wright W.

The friction on the spindle of any particular malley is propmertional to the total pressure on the pulley, which is dendy $\because I$. Hence, if μ is the coetlicient of arietion. the rexistance of friction on any pulley $=\because P^{\prime} \mu$; and the mamme of its displacement, when if is raised, will be to the dieplacement of II^{\prime} in the ratio of the radins of the sjuindle to that of the pulley.
124. Second System of Pulleys, in which each Pulley hangs from a fixed block by a separate String.Let A loe the fixed pulley, 14 the number of movalle pulleys: cach cord has one and at ateded to a tixed point in the beam, and all exeept the list hawe the other eme attached to at movable pillere, the prom-

Fig. 64 tions mot in comtant with any pulley being all parallal.

I'lhen the tension of the cord passing mulder the first (lowest) pulley $=\frac{10}{2}$ (Art. 1×2) ; the tension of the cord passing under the second fulley $=\frac{V^{2}}{2^{2}}$, and so on ; mud the tension of the cord passing under the u th pulley $=\frac{W}{2^{n}}$, which must equal the pewer, I;

$$
\begin{equation*}
\therefore \frac{P}{W}=\frac{1}{2^{n}} \tag{1}
\end{equation*}
$$

The same result follows by the princinde of work, Sulpose the first palley and the weight if to rise any distance. x; then it is cleme that both portions of the cord passing romed this pulley will he shortened hy the same distanee, and henoe the seond pulley must rise donble this distanee or S.r, and the thind pulley must rise donble the distane of the seeond or $\dot{2}^{2} x^{2}$, und so on: and the nth pulley mist rise

ular palley is ley, which is riction. the μ : and Ha d, will be to radius of the

Fig. 64

parallel. der the first of the cord on ; mad the mlley $=\frac{11}{2^{n}}$,
work. suן:my distance. cord pissing me distance, this distamee o distance of ley must rise (e work of 1
is $\rho^{2} 2^{n} \cdot x$, ant the work to be done on If^{r} is $W \cdot x$. Hence the equation of work gives

$$
I^{\prime} \cdot \because^{n} x=\| x, \quad \therefore \quad \frac{P}{W}=\frac{1}{2^{n}}
$$

125. Third System of Pulleys, in which each cord is attached to the weight.-ln this system one cmel of each cord is attached to the bar from which the weight hangs, and the other supports a pulley, the cords being all parallel, and the number of movable pulleys one less than the number of cords.

Let n be the number of eords: then the temsion of the cord to which P is attamed is P; the tension of the second cord is $2 P^{\prime}$ (Art. 1×2); that of the next $2^{2} l$, and so on ; and the tension of the nth cord is $x^{n-1} P$. Then the sum of all the tensions of the cords attached to the weight must ergul W. Hence

$$
\begin{gathered}
P+2 P+2^{2} P+\ldots 2^{n-1} P=\left(2^{n}-1\right) P=W \\
\cdot \frac{P}{W}=\frac{1}{2^{n}-1}
\end{gathered}
$$

In this system the weights of the movable pulleys assist \boldsymbol{P}; in the two former systems they act ugainst it.

EXAMPLES.

1. What force is necessily to mise a weight of 480 lhs . by un artugement of six pulleys in which the sime string passes round each pulley ?

Ans. 80 lhs.
2. Find the power which will support a weight of 800 lbs. with thise movable pulleys, arranged as in the seeond system.

Ans. 100 ths.
3. If there be equilibrimm between P and W witis three pulleys in the thial system, what alditional wei.ght can be raisud if ? lhs. be adeled to $/$? Alas. $1+1 \mathrm{l}$ s.
126. The Wedge.-Tlue wedge is a triangular prism, usmally isosceles, and is misd for soparating bodies or parts of the same body by introducing its edge between them and then throsting the wedge forward. This is effected by the blow of a hammer or other such means, which produces a violent pressure, for a short time, in a direction perpendieular to the back of the wedge, and the resistance to be overcome consists of frietion amb a raction due to the molecular attactions of the particles of the body whieh are being separated. This reation will he in a direction perpendientar to the inclined surface of the wedge.
127. The Mechanical Advantage of the Weige.-Let ACB represent a section of the werlge perpendicular to its inclined faces, the wedge having been driven into the material a distance equal to InO by a foree, P, neting in the direction DO. Draw DE, DF, perpeadicular to
 AC, BC, und let R denote the reactions nlong ED and FI ; then μR will be the friction aeting at E and F in the directions EA and Fl3. Let the angle of the werge or $A(B=9$.

Resolve the forces which aet on the wedge in directions perpendioular and parallel to the back of the wedge, then we have for perpendicular fores

$$
\begin{equation*}
P=2 R \sin \alpha+2 \mu h \cos c \tag{1}
\end{equation*}
$$

This equation may also be obtained from the minciple of uork ns follows: If the welge has been driven into the

I with three ci.hit call be ns. $1+\mathrm{lls}$.
gular prism, dies or parts en them and ected by the - produces a tion perpenstince to be due to the body which a a direction dge.

the friction 3. Let the a directions vedge, hen n into thic
material ad distance equal to DC liy a foree, P, ateting in the direction DC, then the work done by P^{\prime} is $I \times{ }^{\prime}$)((Art. t01, Rem.); and sime the prints E and F were originally tordether, the work done against the resistance R is $R \times \mathrm{DE}+R \times \mathrm{DF}=2 R \times \mathrm{DE}$; and the work dome against friction is $\stackrel{\mu}{ } / R \times \mathrm{EC}$. Hene the equation ot work is

$$
r \times \mathrm{DC}=\vartheta R \times \mathrm{NE}+2 \mu R \times \mathrm{EC},
$$

which reduces to (1) by substituting sin "and cos afor 1)E

Cok.-If friction be negleeted. (?) becomes

$$
\frac{P}{R}=\frac{\partial \mathrm{DE}}{\mathrm{DC}}=\frac{A B}{\mathrm{~A}}
$$

that is

$$
\frac{P}{R}=\frac{\text { back of the wedge }}{\text { length of one of the equal sides }} \text {. }
$$

It follows that the narrower the back of the welge, the greater will be the mechanical adrantige. Knives, chisels. ard many other implements are examples of the werge.

In the action of the wedge a great part of the power is employed in cleaving the material into which it is driven. The lorce repuired to etfect this is so great that instead of applying a contimons pushing force perpendieular to the back of the wedge. it is drivion ly a series of hows. BeI weon the blows there is a powerful reaction, R, acting to push the wedge back again out of the eleft, and this is resisted by the driction which now acts in the direetions EC and FC. Hencer when the wedge is on the point of starting back, between the blows, the equation of equilibrium will be from (1)

$$
\begin{gathered}
2 R \sin "-2 \mu R \cos \pi=0 ; \\
\therefore \quad "=\tan ^{-1} \mu
\end{gathered}
$$

And the wedge will fly lack or not arcording as $: s>$ or $<\tan ^{-1} \mu$. (See Browne's Mechanies, p . 117. Also Magnus's Mechanies, p. 15\%.)
128. The Screw.-The screw consists of a right circular eylinder, on the convex surface of which there is traced a miform projecting thread, abod inclined at a constant augle to straight lines parallel to the axis of the evlinder. The path of the thread may be traced by the edge AC of tal inclined plane, ABC, wrapped romed the cylinder; the base of the plane corresponding with the cirenmference of the cylinder, and the height of the plane with the distance between the threads which is called the pitch of the screw. 'The threads may be rectangular or triangular in section. The cylinder fits into a block, on the inner sur-
 face of which is cut a groove which is the exact connterpart of the thread. The block in which the groeve is cut is often called the mut. The power is generally appliet at the end of a lever fixed to the centre of the cylinder, or fixed to the nut. It is evident that a serew never requires any pressure in the lirection of its axis, hut must be made to revolve ouly; and this can be done by a foree acting at right angles to the extremities of its diameter, or its diameter producen.
129. The Relation between the Power and the Weight in the Screw.-Snplose the power, P. to act in a plane perpendicular to the axis of the cylinder and at the end of an arm, $\mathrm{DE}=a$, and suppose the serew to have made one revolution, the power, P, will have moved throngh the circumference of which a, is the radins, and the work done hy P will be $P \times 2 \pi a$. During the same

Ig as $: x$ or Iso Magnus's
a right eirnich there is . inelined at e axis of the

counterpart ; cut is often it the end of 1 to the unt. ssure in the evolve only: ht angles to roduced.
r and the P. to aet in r and at the ew to have ave moved ridins, imd g the same
time the screw will have moved in the direction of its axis through the distance, $A B=2 \pi r$ tan a, r being the radius of the eylinder, and a the angle which the thread of the serew makes with its buse. Then as this is the direction in which the resistance is concomtered, the work done against the resistance, W; is $W 2 \pi r$ tam e. Hence if no work is lost the efuation of work will be .

$$
\begin{equation*}
P \times v \pi a=\| \times 2 \pi r \tan c \tag{1}
\end{equation*}
$$

That is the porer is to the teright as the pitch of the serew is to the circumference dexcribed by the pourer.

If there is friction between the thread and the groove, let R be the normal pressure at any point, p, of the thread, and μR the friction at this print, then the work done againast the friction in one revolution is $\mu \geq R: 2 \pi r$ see $\mu, ~ \searrow R$ denoting the sum of the normal reactions at all points of the thread. Hence the equation of work is

$$
\begin{equation*}
P 2 \pi a=\| 2 \pi r \tan c+\mu 2 \pi r \sec \pi \leq R \tag{2}
\end{equation*}
$$

But, for the equilibrium of the screw, resolving parallel to the axis, we have

$$
\begin{gathered}
W=\searrow(R \cos \pi-\mu R \sin \pi) \\
\Sigma R=\frac{U}{\cos \pi-\mu \sin \epsilon} ;
\end{gathered}
$$

therefore
which in (2) gives

$$
\begin{gather*}
P a=\| r \tan u+\frac{\mu r \sec u W}{\cos a-\mu \sin a} ; \\
P a=W r \tan (a+\phi) \tag{3}
\end{gather*}
$$

or
ϕ being the angle of friction.

129a. Prony's Differential Screw.-If h denote the pitch of a screw (1) beeomes

$$
2 P \pi \pi=W h,
$$

which expresses the relation hetween I and W, when friction is negleeted. Therefore the meehanian advantage is gained by making the pitch very small. lu some cases, howerer, it is desirable that the serew should work at fair sperel, as in ordinary bolts and muts, aud then the piteh must not toe too small. In eases where the serew is used specially to obtain pressure, as in serew-presses for cotton, cte., we do not care for speed, but only for pressure. Bat ill practice it is impossible to get the pitch very small from the fact that if the angle of inclination is very Hat, the threads run so near each other as to be too weak, in which cave the screw is apt to "strip, its threat," that is, to tear bodity out of the hole, leaving the thread behind.

Where very great pressure is requited a differential mutnole is resorted to. Let the serew work in two blocks, A and 3 , the first of which is fixed and the second movable along a tixed groove, $"$; and let h be the pitch of the thread which works in
 the block, A, and l^{\prime} the piteh of the thread which works in the block 13. Then one revolution of the serew impresses two opposite motions on the block. B, one equal to h in the direetion in which the serew advances, and the other equal to h^{\prime} in the opposite direction. It then the block. B, is comeeted with the resistance W ', we have ly the prineiple of work

$$
2 P^{\prime} \pi a=\mathbb{H}^{-}\left(h-h^{\prime}\right) ;
$$

and the requisite power will be diminished by diminishing
denote the
, when frieWvantage is some cusse, vork at fair 11 the piteh crew is used for cotton, ssure. But small from ry flat, the k, in which it is, to tear rential nutwo blocks,
hich works w impresses to l in the other erpual lox.k. B, is (eprinciple
$h^{\prime}-h^{\prime}$. By means of this serew a comparatively small pressure may be mate to yield a pressure enormously greater in magnitude.

EXAMPLES.

1. A lever 10 ins. long, the weight of which is 4 lbs ., and acts at its middle point, balances about a certain point when a weight of 6 lbs . is hung from one end; find the point. Ins. $:$ ins. from the end where the weight is.
2. A lever weighing 8 lbs . balances at a point 3 ins. from one end and 9 ins. from the other. Will it continue to balance about that point if equal weights be suspended from the extremities ?
3. Λ beam whose length is 12 ft . balances at a point 2 ft . from one end : lut if a weight of 100 lbs . be hung from the other end it balumees at a point 2 ft . from thatend; find the weight of the beam.

Ans. 25 lbs.
4. A lever $\%$ feet long is stipported in a horizontal position by props placed at its extremities: find where a weight of 28 lhs. must be placed so that the pressure on one of the props may be $8 \mathrm{lbs} . \quad A n s$. Two feet from the end.
5. Two weights of it lis. and 8 lbs. respectively at the ends of a horizontal lever 10 feet long balane : find how fiur the fulerum ought to be moved for the weights to balance when each is increased by 2 lhs . Ans. Two inches.
6. A lever is in equibibrium under the aetion of the forces P and Q, and is also in equilibrinm when P is trebled and Q is increased by 6 libs.: tind the magnitude of Q.

$$
\text { Ans. } 3 \mathrm{lbs} .
$$

\therefore In a lever of the first kind. let the power be 217 lls . the weight $7: 5 \mathrm{lhs}$., and the angle between them 120 . Finu the pressure on the fulermm. Ans. 622.7 lbs .
8. If the power and weight in a straight lever of the first kind be 17 lbs , and 32 lbs., and make with oach other an angle of $\% 9^{\circ}$; find the pressure on the fulermm.

$$
\text { Aus. } 39 \text { livs. }
$$

9. The length of the beam of a false balance is 3 ft . 9 ins. A body placed in one scale balances a weight of 9 lbs . in the other; but when placed in the other seale it balanees 4 lbs .; refpired the true weight, W, of the body and the lengths, a inud b, of the arms.

Ans. $\|=6$ lls. $; \quad a=1 \mathrm{ft} .6$ ins. $; b=2 \mathrm{ft} .3$ ins.
10. If a balance be false, having its arms in the ratio of 15 to 16, find how much per Ib . a customer really pays for tea which is sold to him from the longer arm at 3 s .9 d . per lb.

Alus. 4s. per lb.
11. A straight uniform lever whose weight is 50 lbs and length 6 feet, rests in eftribibrium on a fulerum when a weight of 10 lhs. is suspended frem one extremity: find the position of the fukerm and the pressure on it.

Ans. $2 \frac{1}{2} \mathrm{ft}$. from the end at which 10 lbs is suspended; 60 lbs .
12. On one arm of a false bulance a body weighs 11 lbs ; on the other 17 lbs .3 oz ; what is the true weight?

Ans. 13 lbs .12 oz.
13. A bent lever is composed of two straight uniform rods of the same length, inclined to each other at 120°, and the fulerum is at the point of intersection: if the weight of one rod be domble that of the other, show that the lever will remain at rest with the lighter arm herizontal.
14. A miform lever, l feet long, has a weight of W lbs., suspended from its extremity: find the position of the fulcrum when the long end of the lever balanees the short
lever of the 1 ach other 111. s. 39 lios.
nce is 3 ft . a weight of her seale it of the borly

ft. 3 ins.

the ratio of really pays -m at 3 s .9 d . 4s. per lb.

50 lbs and am when a ty: find the
suspended ;
ghs 11 lbs.; ht? bs. 12 oz .
ht uniform t 120°, and e weight of se lever will
of $W \mathrm{lbs}$, of the fuls the short
end with the weight attached to it, supposing each unit of length of the lever to be w lbs.

$$
\text { Ans. } \frac{l^{2} w}{\left.2(1)^{2}+l w\right)} \text { is the short arm. }
$$

15. A lever, $l \mathrm{ft}$. long, is balaneed when it is placed upon ${ }^{2}$ prop $\frac{1}{4}$ of its length lirom the thick end; when a weight of W lhs. is suspented from the small end the prop must be shifted $\frac{1}{2} \mathrm{ft}$. to wards it in orier to maintain equilibrium; required the weight of the lever.

Ans. $\frac{1}{2} W$.
16. A lever, $l \mathrm{ft}$. long; is balaneed on a prop by a weight of 1 F lbs.; lirst, when the weight is suspended from the thick end the prop is a ft. from it; secondly, when the weight is suspented from the small end the prop is $b \mathrm{ft}$. from it ; required the weight of the lever.

$$
\text { Ans. } \frac{W(a+b)}{l-(a+b)} \mathrm{lbs}
$$

17. The forces, P and W, act at the arms, a and b, respectively, of a straight lever. When P and 11 make angles of 30° and 90° with the lever, show that when equilibrinm takes place $P^{\prime}=\frac{2 b W}{a}$.
18. Supposing the beam of a false balance to be uniform. a and b the lengths of the arms, l and Q the apparent weights, and 11 the true weight; when the weight of the beam is taken into aecount show that

$$
\frac{a}{b}=\frac{P-W}{H-Q}
$$

19. If a be the length of the short arm in Ex. 14, what must be the length of the whole hever when equilibrium lakes place?

$$
A n s . a+\sqrt{\frac{2 a}{u}}+u^{2}
$$

20. A man whose weight is 140 lbs , is just able to sulpport a weight that hangs over an axte of 6 ins. radius, by
hanging to the rope that passes over the corresponding wheel, the dianeter of which is 4 ft .; find the weight supported. Ans. 560 lbs .
21 . If the difference between the diameter of a wheed and the diameter of the axle be six times the ralins of the axle. find the greatest weight that can be sustained by a force of (:0) lbs.

$$
\text { Ans. } 240 \mathrm{lbs} .
$$

0. If the radius of the wheel is, three times that of the anle, and the string round the wheel can support a weight of 40 lbs. only, find the greatest weight that eim be lifted.

Ins. 120 lbs.
23. What foree will be reguired to work the hande of a windlass, the resistince to be overeme being 1156 ll s., the radins of the axle being six ins., and of the handle 2 ft . 8 ins.? $1 / \mathrm{us} .216 .75 \mathrm{lbs}$.
24 . Sixteen sailors, exerting each a force of $\because 9 \mathrm{lls}$., push at cupstan with a length of lever equal to 8 ft , the radins of the capstan being 1 ft . 2 ins. Find the resistance whieh this force is capable of sustaining.

$$
\text { Ans. } 1 \text { tom } 8 \text { rwt. } 1 \text { qr. } 17 \frac{\rho}{\frac{s}{8}} \mathrm{lbs} .
$$

25. Supposing them to have wound the rope round the capstan, so that it donbles hack on itself, the radius of the axle is thus increasel by the thichness of the rope. If this be 2 ins. how muell will the power of the instrument be diminished.

Aus. By $\frac{1}{8}$, or $1: \frac{1}{2}$ per cent.
26. The radius of the axle of a capstan is 2 feet, and six men push each with a foree of one ewt. on spokes 5 feet long; find the tension they will be able to prodnce in the rope which leaves the axle. Aus. 15 cwt .
2\%. The difference of the diameters of a where and axke is 2 feet 6 inches; and the weight is equal to six times the power ; find the radii of the wheel and the axte.

Ans. 18 ins.; 3 ins.
28. If the radins of a wheel is 4 ft ., and of the axle 8 ins., tind the power that will balance a weight of 500 lbs ., the thickness of the rope coiled round the axle being one ineh, the power acting withont a rope.

Ans. 88.54 lbs.
29. 'Two given weights, P and Q, hang vertically from two prints in the rim of a wheel turning on an axis; find the position of the weights when equilibrium takes place, supposing the angle between the radii drawn to the points of snspension to be 90°, and that θ is the angle which the radius, drawn to I 's point of suspension, makes with the vertical. $\quad A u s . \tan \theta=\frac{Q}{P}$.
30. What weight can be supported on a plane by a horizontal foree of 10 lbs , if the ratio of the height to the base is. $\frac{3}{4}$?

Ans. $13 \frac{1}{3}$ lbs.
31. The inclination of a plane is 30°, and a weight of 10 lbs . is supported on it by a string, bearing a weight. at its extremity, which passes over a smooth pulley at its snmmit; find the tension in the string. Ans. 5 lis.
3%. The angle of a plane is 45°; what weight can be supported on it by a horizontal force of 3 lhs , and a force of 4 lhe parallel to the plane, both acting together.

$$
A n \mathrm{~s} .3+4 \sqrt{2} \mathrm{lbs} .
$$

33. A body is supported on a plane by a force parallel to it and equal to $\frac{1}{3}$ of the weight of the body; find the ratio of the height to the base of the plane.

$$
1 n s \cdot 1: 2 \sqrt{6}
$$

34. One of the longest inelined planes in the world is the road from Lima to Callao, in S. America; it is 6 miles long, and the fall is 511 ft . Calenlate the inclination.

$$
\text { Ans. } 55^{\prime} 2:^{\prime \prime} \text {, or } 3 \text { yard in } 62 .
$$

35. If the foree required to draw a wagon on a horizontal road be $\frac{1}{2}_{1}^{1}$ th part of the weight of the wagon, what will be the force required to draw it up a hill, the slope of which is 1 in 43 .

Ans. ${ }_{14.11^{1}}{ }^{\text {th }}$ part of the weight.
36. If the foree required to draw a train of cars on a level railroad be $\frac{1}{8}$ th part of the load, find the foree reguired to draw it up a grade of 1 in 56 .

Ans. ${ }_{43} \mathbf{3}^{2} \cdot 5_{5}$ th part of the load.
37. What fore is required (neglecting friction) to roll a cask weighing !6t Hs, into a cart 3 ft , high, by means of a plank 14 ft . long resting against the cart.

$$
\text { Ans. 'ithe force must exceed } 2106 \text { it lbs. }
$$

38. A body is at rest on a smooth inclined plane when the power, weight and normal pressure are 18,26 , and 12 lbs . respectively; find the inclination, a, of the phane to the horizon, and the angle, θ, which the direction of the power makes with the phane.

$$
A n s . a=37^{\circ} 21^{\prime} 26^{\prime \prime} ; \theta=28^{\circ} .46^{\prime} 54^{\prime \prime} .
$$

39. If the power which will support a weight when eting along the patne be half that which will do so acting horizontally, find the inclination of the plane. Ans. 60°.
40. A power l^{\prime} acting nking a plane (an support IV, and acting hoizontally can support x; show that

$$
I^{2}=\|^{2}-x^{2}
$$

41. A weight If would be supported by a power P acting horizontally, or by a power Q acting parallel to the phane; slow that

$$
\frac{1}{Q^{2}}=\frac{1}{p^{2}}+\frac{1}{\|^{2}}
$$

42. The hase of an inclined platue is 8 ft., the ineght ${ }^{6}$ lt., and $W^{\prime}=10$ tons; repuired I^{\prime} and the momal pressure, N, on the plane.

$$
.1 N: P=6 \text { tous } ; N=8 \text { tous. }
$$

Lhorizontal lat will be of which weight. cars on a I the force the load.) to roll a means of a
$206: \frac{1}{7} \mathrm{lbs}$. dane when 8, 26, and ("plame to ion of the $46^{\prime} 54^{\prime \prime}$. when ret, so acting ns. 60°.
rt If°, and
er P actlel to the IC normal 8 tons.
43. A weight is supported on an inclined plame by a foree whose direction is inclined to the plane at all angle of 30°; when the inclination of the phane to the horizon is 30°, show that $\mathrm{IV}^{\circ}=P \sqrt{ } 3$.
44. Λ man weighing 150 lh . raises a weight of 4 ewt. by a system of four movable pulleys armanged according to the secomel system; what is his pressure on the ground?

Aus. 122 lbs.
45. What power will the required in the socond system with four movable pulleys to sustain a weight of $1 \hat{i}$ toms 12 cwt. 14 s .1 ton $\because \mathrm{cwt}$.
46. Two weights hang over a pulley fixed to the summit of a smooth inclined plame, on which one weight is sulpported, and for every 3 ins. that one descends the other rises 2 ins.; find the ratio of the weights, and the length of the plane, the height being 18 ins. $1 / \mathrm{m} .: 2: 3 ; 27$ ins.

47 . If $N=336 \mathrm{lbs}$, and $I^{\prime}=42 \mathrm{lbs}$. in a combination of pulleys urranged according to the first system, how many movalle pulleys are there? Aus. 4.
48. In a system of pulleys of the theod kind in which there are 4 cords attached to the weig, !, deternine the weight, W, sumpror ad, and the strain on the fixed pulley, the power being 100 lbs , and the weight, w, of emeh pulley 5 lbs .

Ans. $W=15 I^{\prime}+11 w=1555 \mathrm{lbs} ;$ Strain $=16 I^{\prime}+15 w$ $=1675 \mathrm{lbs}$.
49. In a system of pulleys of the third kind, there are 2 movable pulleys, each weighing ${ }^{2} \frac{1}{2}$ his. What power is required to support a weight of 6 ewt.? Ius. 94.57 lhs .
50. Find the power that will support at weight of too loss. by means of a system of 4 pulleys, the strings being all attuched to the weight, and each pulley weighing 1 lb .

$$
\text { Ans. } 5 \text { to lls. }
$$

51. The circumference of the circle corresponding to the irint of aplication of P is 6 feet; find how many turns the serew must make on a cylinder 2 feet long, in order that W may ie equal to $144 I$.

Ans. 48.
52. The distance betwen two consecutive threads of a serew is in puarter of an inch, and the length of the powe arm is a fret; find what weight will be sustained by is power of 1 lb .

Aus. $480 \pi \mathrm{lbs}$.
53. How many turns must be given to a screw formed upon a "ylinder whose length is 10 ins., and cirememerence sins., that a power of 2 ozs. may overcome a pressure of 100 ozs ?

Aus. 100.
54. A serew is made to revolve by a force of 2 lbs . mplied at the end of a lever 3.5 ft . long; if the distance between the threads be $\frac{1}{2}$ in., what pressure can be produced? Ans. 9 ewts. 1 qr. 20 lbs.
55. The length of the power-arm is 15 inches; find the distance between two consentive threads of the serew, that the mechanical advantage may be 30 . Ans. π ins.
56. A weight of if poonds is su:pended from the block of a single movalle pulley. and the end of the cort in which the power iets, is fastened at the distune of $b \mathrm{ft}$. from the fulcrem of a horizontal lever, aft. long, of the seroud kind ; find the forer. $P^{\text {? }}$, which must be uphied perpendienlarly at the extremity of the lever to sustain \mathbb{I}.

$$
A n s . P=\frac{\| b}{\because a} .
$$

5\%\% In a steelyard, the weight of the beam is 10 hlos, and the distamee of its renter of gravity from the fulermen is \because ins.. tind where a woight of 4 lhe. must be phated to late allese it.

Ans. At 5 ins.
ding io the nany turns g , in order Ans. 48.
reads of at the power rined by a 480π lbs.
rew formed cumference pressure of Ins. 100.
c of 2 lbs. he distance an be pror. 20 lbs.
s; find the the serew, s. π ins.
the block he corll in lee of $b \mathrm{ft}$. ong, of the uplied pertain II:
$=\frac{11}{2 a} \cdot$
10 hlws, numl fulerim is ced to lal. At 5 ins.
58. A body whose weight is $\sqrt{ } 2$ lbs., is placed on a rough plame inclined to the horizon at an angle of 45°. The coefficient of friction being $\underset{\sqrt{ } 3}{\frac{1}{3}}$, find in what direction a foree of ($\sqrt{ } 3-1$) lbs. must act on the body in order just to support it. Ans. At an angle of 30° to the phane.
59. A rough plame is inclined to the horizon at an angle of 60°; lind the magnitude and the direction of the lenst foree which will prevent a body weighing 100 lbs . from shiding down the plane, the cocllicient of friction being $\frac{1}{\sqrt{3}}$.

Ans. 50 lbs inclined at 30° to the plane.

CHAPTER VIII.

the funicular* polygon-the catenary attraction.

130. Equilibrium of the Funicular Polygon.-If a cord whose weight is neglected, is suspended firm two tixed points, A and B, and if a series of weights, I_{1}, I_{2}, I_{3}, cte., be suspended from the given points $\ell_{1}, \ell_{2}, Q_{3}$, ${ }^{+}$e., the cord will, when in equilibrium, lorm a polygon in a vertical plane, which is called the F'unicalar I'olygon.
Let the tensions along the successive portions of the cord, $A Q_{1}, Q_{1} Q_{2}$, $Q_{2} \ell_{3}$, ete., be respectively ' ${ }_{1}, T_{2}, T_{3}$, ete., anc: let $\theta_{1}, \theta_{2}, \theta_{3}$, etc., he the inclinations of these portions to the horizon. Then Q_{1} is
 in equilibrium under the action of three forees via, P_{1}, acting vertically, T_{1}. the tension of the cord $A Q_{1}$, and T_{2}^{\prime}, the tension of $Q_{1} \varphi_{2}$. Resolving these forees we have,
for horizontal forces, $\quad T_{1} \cos \theta_{1}-T_{2} \cos \theta_{2}=0, \quad$ (1)
for vertical forces, $P_{1}+T_{2} \sin \theta_{2}-T_{1} \sin \theta_{1}=0, \quad$ (2)
I_{1} the sume way for the point Q_{2} we have,
for hurizontal forces, $\quad T_{2}$ cos $\theta_{2}-T_{3} \cos \theta_{3}=0, \quad$ (3)
fin vertical forces, $l_{2}+T_{3} \sin \theta_{3}-T_{2} \sin \theta_{2}=0, \quad$ (4)
*The term, Funtcatar, haw reterence alone to the cord, and bas no mechanical significance.
gQUiLIBRIUM of tile funic'Clith poligon. 217
Hence from (1) and (3) we have

$$
T_{1}^{\prime} \cos \theta_{1}=T_{2} \cos \theta_{2}=T_{3} \cos \theta_{3}=\text { ctc. }
$$

that is, the horizontal components of the tensions in the different portions of the cord are constant. Let this constant be denoted by T; then we have

$$
T_{1}=\frac{T}{\cos \theta_{1}} ; \quad T_{2}=\frac{T}{\cos \theta_{2}} ; \quad T_{3}=\frac{T}{\cos \theta_{3}} ; \text { etc. }
$$

which in (2) and (4) give

$$
\begin{align*}
& P_{1}+T \tan \theta_{2}-T \tan \theta_{1}=0 \tag{5}\\
& P_{2}+T \tan \theta_{3}-T \tan \theta_{2}=0 \tag{6}
\end{align*}
$$

and from (5) and (6) we have

$$
\begin{array}{ll}
& \tan \theta_{1}=\tan \theta_{2}+\frac{P_{1}}{T}, \tag{7}\\
\text { and } \quad & \tan \theta_{2}=\tan \theta_{3}+\frac{P_{2}}{T} \\
\text { Similariy } \quad & \tan \theta_{3}=\tan \theta_{4}+\frac{P_{3}}{T_{3}}, \\
\text { and } \quad & \tan \theta_{4}=\tan \theta_{8}+\frac{P_{4}}{T}, \\
& \text { ete., } \quad \text { etc. }
\end{array}
$$

If we suppose the weights P_{1}, I_{2}, cte., each equal to W, (7) becomes

$$
\begin{align*}
\tan \theta_{1}-\tan \theta_{2} & =\tan \theta_{2}-\tan \theta_{2}=\tan \theta_{3}-\tan \theta_{4} \\
& =\ldots=\frac{W}{T,} \tag{8}
\end{align*}
$$

Hence, the tangents of the successive inclinations form a series in Arithmetic I'rogression. In the figure $\boldsymbol{\theta}_{\mathbf{6}}=\mathbf{0}$, 10

$$
\left.\therefore \quad \begin{array}{rl}
\therefore \tan \theta_{4} & =\frac{W}{T} ; \quad \tan \theta_{3}=\frac{2 W}{T} ; \\
\tan \theta_{2} & =\frac{3 W}{T} ; \tan \theta_{1}=\frac{4 W}{T} ; \text { ctc. } \tag{9}
\end{array}\right\}
$$

131. To Construct the Funicular Polygon when the Horizontal Projections of the successive Portions of the Cord are all equal.--1et $Q_{5} Q_{4}, Q_{4} q_{3}, \eta_{3} q_{2}$. $\eta_{2} \eta_{1}$, ete., be all of constant length $=a$, and let $Q_{3} \eta_{3}=r$. Then since by (9) of Art. 130 , the tangents of θ_{4}, θ_{3}, θ_{2}, θ_{1}, etce, are as $1,2,3$, 4, etco, we have

$$
Q_{2} m=: Q_{3} \psi_{3}=: c
$$

$Q_{1} n=3 Q_{3} 1_{3}=3 c$; cte.

Hence, talking the middle point. \mathbf{O}, of the horizontal purtion. $Q_{5} Q_{4}$, as origin, and the horizontal and vertical lines through it as axes of x and y, the co-ordinates of Q_{3} are ($34, c$) ; those of Q_{2} are $\left(\frac{5}{2} a, 3 c\right)$; those of $\cdot Q_{1}$ are $\left(\frac{3}{2} a\right.$, ${ }^{6} c$), and those of the nth vertex from Q_{4} are evidently

$$
x=\frac{2 n+1}{2} \cdot u ; y=\frac{n(n+1)}{2} \cdot c .
$$

Eliminating n from these equations we get

$$
\begin{equation*}
x^{2}=\frac{2 a^{2} y}{c}+\frac{a^{2}}{4} \tag{1}
\end{equation*}
$$

which. being independent of n. is satisfied by all the vertiese indiffrently, and is therefore the equation of a curve patssing through all the rettices of the polygom. and denotes a parathela whose asis is the rerticel lime, of, and whose vertex is vertieally below 0 at a diatame $={ }^{\circ}$. .

The shorter the distateres $Q_{4} Q_{3}, Q_{2} Q_{2}$, efte. the mow nearly does the fanicular polygun coincide with the parat imlic curve.
132. Cord Supporting a Load Uniformly Distributed over the Horizental.-If the number of vertices of the polygon be very great, and the suspended weights all cymal so that the load is distributed uniformly along the -traight line, FE, the parabola which passes through all the vertices, virtmally coincides with the cord or chain forming the polygon, and gives the tigure of the s'uspension Brolym. In this bridge the weights suspended from the sureessive portions of the chain are the weights of equal portions of the flooring. 'The weight of the chain itself and the weights of the sustaining bars are neglected in comparison with the weight of flooring and the load which it carries.

Let the span, $\mathrm{AB},=2 a$, and the height, $\mathrm{OD},=h$. Then the equation of the parabola refered to the vertical and horizontil axes of x and y, respectively, through 0 , is

$$
\begin{equation*}
y^{2}=4 m x \tag{1}
\end{equation*}
$$

$4 m$ being the parameter.
Because the load between O and A is unifurmly distributed orer the horizontal, OLE its resultant hisects OE al (: therefore the tangents at A and O intersect at \mathcal{C} (Art. (f:).
From (1) we have

$$
\frac{d y}{d x}=\frac{2 / n}{y}=\frac{y}{2 x},
$$

which is the tangent of the inclination of the curve at any point (x, y) to the axis of x. Hence the tangent at the point of support, A, makes with the horizon an angle, c, whose tangent is $\stackrel{9 /}{a}$, which also is evident from the triangle ACE.

Let II be the weight on the corl ; then $\frac{1}{2} \|$ is the weight on OA, and therefore is the vertical tension, V, at A. Then the three forces at A are the vertical tension $V=\frac{1}{2} W$, the total tension at the end of the cord, acting along the tangent $A C$, and the horizontal tension, T, whieh is everywhere the same (Art. 130). Hence, by the triangle of forees (Art. 31) these forees will be represented by the three lines, $\Lambda \mathrm{E}, \mathrm{AC}, \mathrm{CE}$, to which their directions are respectively parallel ; therefore we have for the horizontal tension

$$
T=\Lambda \mathrm{E} \cot \varepsilon=W_{4 h}^{a}
$$

and the total tension at A is

$$
\sqrt{V^{2}+T^{\prime 2}}=\frac{W}{4 h} \sqrt{4 h^{2}+a^{2}}
$$

EXAMPLE.
The entire load on the cord in (Fig. 71) is 320000 lbs ; the span is 150 ft . and the height is 15 ft . ; find the tension at the points of support and at the lowest point and also the inclination of the curve to the horizon at the points of silpport.

$$
\tan \imath={ }_{\imath}^{\bullet 3}=.4 ; \quad \therefore \quad \quad \iota=21^{\circ} 48^{\prime}
$$

The vertical tension at each proint of support is

$$
V=\frac{1}{2} \text { weirht }=160000 \mathrm{lbs}
$$

curve at any agent at the an angle, u, rom the triis the weight at Λ. Then $T=\frac{1}{} W$, the g allong the ich is everytriangle of nted by the irections are te horizontal

320000 lbs.; I the tension : and also the he points of
the horizontal tension is

$$
T=\|_{t h}^{a}=400000 \mathrm{lbs} .
$$

and the total tension at one end is

$$
\sqrt{V^{2}+T^{2}}=430813 \mathrm{lbs}
$$

133. The Common Catenary.-Its Equation-A catenary is the curve assamed by a perfectly flexible cord when its ends are fastened att two points, A and B , nearer together than the length of the cord. When the cord is of constant thickness and density, i.e., when equal protions of it are equally heavy, the curve is callell the Common Catenary, which is the only one we shall consider.
Let A and B be the fixed points to which the ents of the cord are attached; the cord will rest in a verlical plane passing through A and B, which may be taken to be the plane of the priper Let C br the lowest point of the catenary; take this as the origin of co-ordinates, and let the horizontal line through C be taken for the
 axis of x, and the vertical line throngh C for the axis of y. Let (x, y) be any point, P, in the emrve $:$ denote the length of the arc, $C P$. by x : let c^{*} be the length of the cord whose weight is equill to the tension at C ; and T the length of the corl whose weight is equal to the tension at P.

* The weight of a unlt of length of the cord being here taken as the unit of weigh.

Then the are, ('P, after it has assumed its perwament form of equilibrimm, may be considered as a rigid bo:ly kept at rest by three forees, viz.: (1) T, the tomsinn, acting at Pabong the tangent. (2) c, the horizontal temsion at the lowest point (', and (3) the veight of the cord, ('l'. ateting vertically downward, and denoted by \therefore Draw $P T^{\prime \prime}$ the tangent at l ', meeting the axis of y at T^{\prime}. Then by the triangle of forces ($A \mathrm{pi} .31$), these forees may be represented by the three lines $P^{\prime} T^{\prime}, N P \cdot T^{\prime} N$, to which their directions are respectively parallel. Therfore

$$
\begin{gather*}
\frac{T^{\prime} N}{N P}=\frac{\text { weiglit of } C P}{\text { tension at } C} \\
\frac{d y}{d x}=\frac{s}{c} \tag{a}
\end{gather*}
$$

Differentiating, substituting the value of $d s$, and redneing, we have

$$
\frac{d\left(\frac{d y}{d x}\right)}{\sqrt{1+\left(\frac{d y}{d . c}\right)^{2}}}=\frac{d x}{c}
$$

Integrating, and remembering that when $x=0, \frac{d y}{d x}=0$, we o! tain
therefore

$$
\begin{aligned}
& \log \left[\frac{d y}{d x}+\sqrt{1+\binom{d y}{d x}^{2}}\right]=\frac{x}{c} ; \\
& \frac{d y}{d x}+\sqrt{1+\binom{d y}{d x}^{2}}=e^{\frac{x}{c}},
\end{aligned}
$$

where e is the Naperiam base. Solving this equation for ly, $d x$, we obtain

$$
\begin{equation*}
\frac{d y}{d x}=\frac{1}{2}\left(e^{\frac{x}{c}}-e^{-\frac{x}{c}}\right) \tag{1}
\end{equation*}
$$

pervament rigid bo:ly wim. arting nsion at the ('l': acting IW I'T' the Then by the represcuted ir directions
$=0, \frac{d y}{d x}=0$,
equation for
and by integration, observing that $y=0$ when $x=0$, we have

$$
\begin{equation*}
y={ }_{:}^{c}\left(\dot{c}^{\dot{x}}+{r^{-x}}^{-c}\right)-c, \tag{}
\end{equation*}
$$

which is the equation recpured. We may simplify this conation by moving the origin to the point, 0 , at a distance cernal to c below C , by putting $y-c$ for y, so that (2) becomes,

$$
\begin{equation*}
y=\frac{c}{2}\left(e^{x}+e^{-\frac{x}{c}}\right), \tag{3}
\end{equation*}
$$

which is the equation of the catonary, in the usual form. The horizontal line through O is called the directrix* of the catenary, and O is called the origin.

Cor. 1.-To find the length of the are, CP, we have

$$
\begin{align*}
\tilde{u} s & =\sqrt{1+\frac{d y^{2}}{d x^{2}}} d x \\
& =\sqrt{1+\frac{1}{4}\left(e^{x}-e^{-x} c\right)^{2}} d x, \text { from (1) } \\
& =\frac{1}{1}\left(e^{x}+e^{-\frac{x}{c}}\right) d x ; \tag{4}\\
\therefore s & =\frac{c}{2}\left(e^{\frac{x}{c}}-e^{-\frac{x}{c}}\right) \tag{5}
\end{align*}
$$

the constant being $=0$, since when $x=0, s=0$.
This equation may also be fomd immediately by equating the values of $\frac{d y}{d x}$ in (a) and (1;

[^11]Con. 2.-Since $r=O C$ is the length of the cord whose weight is equal to the tension of the enrve at the lowest point, C, it follows that, if the half, $B C$, of the curve were removed, and a eord of length c, and of the same thickness and density ats the cord of the curve. were joined to the are $C P$, and suspended over a smooth peg at ($'$, the eurre would be in equilit,rium.

Cor. 3.-We have from the triangle, $P N T^{\prime \prime}$,

$$
\begin{aligned}
& \text { tension at } P \\
& \text { tension at } C^{\prime}
\end{aligned}=\frac{P^{\prime} T^{\prime}}{P^{\prime} N},
$$

or

$$
\begin{gathered}
\frac{T}{c}=\frac{d s}{d x}=\frac{y}{l} \text { from (3) and (4), } \\
\therefore \quad T=y
\end{gathered}
$$

that is, the tension at any point of the catenary $2 s$ equal to the weight of "t portion of the cord whose length is equet to the ordinate at lhat point.

Therefore if a cord of constant thickness and density nangs freely over any two smooth pegs, the vertical portions which hang over the pegs, mist each terminate on the directrix of the catenary.

Cor. 4.-From (3) and (5) we have

$$
\begin{equation*}
y^{2}=s^{2}+c^{2} \tag{6}
\end{equation*}
$$

and from (6) we have

$$
\begin{equation*}
s=y \frac{d y}{d s} \tag{7}
\end{equation*}
$$

At the point, P, draw the ordinate, $P M$, and from M the foot of the ordinate, draw the perpendicular MT. Then

$$
P T=y \cos M P^{\prime} T=y^{d y} d s
$$

4e cord whose at the lowest e curve were me thickness joined to the (', the eurve
ry 2 s equal to th is equal to and density vertical porterminate on
and from $1 /$ r MT. Thei
which in (7) gives

$$
\begin{equation*}
P T=s=\text { the are, } C P \tag{8}
\end{equation*}
$$

and since $y^{2}=P T^{2}+T M^{2}$, we have from (6) and (8)

$$
\begin{equation*}
T M=c \tag{9}
\end{equation*}
$$

Therefore the point, T, is on the involute of the catenary which originates from the curve at $C, T M$ is a tangent to this involute, and $T P$ ', the tangent to the catenary, is normal to the involute, (See Calenlas, Art. 124). As TM is the tangent to this last curve, and is equal to the constant quantity, c, the involute is the equitangential curve, or tractrix (See Caleulus, p. 357).
By means of (8) and (9) we may construet the origin and directrix of the catenary as follows: On the tangent at any point, P, measure off a length, P 'T, equal io the arc, CP; at T'erect a perpendicular, TM, to the tangent meeting the ordinate of P at M; then the horizontal line through M is the directrix, and its intersection with the axts of the curve is the origin.

Cor. 5.-Combining (2) and (5) we obtain
therefore

$$
\begin{gather*}
(y+c)^{2}=s^{2}+c^{2} \\
s^{2}=y^{2}+2 c y . \tag{10}
\end{gather*}
$$

The catenary possesses many interesting geometric and meehanical properties, but a diseussion of them wonld carry us beyond the limits of this treatise. The student who wishes to pursuc the subject further, is referred to Price's Anal. Mcehr., Vol. I, and Minchin's Staties.

133a. Attraction of a Spherical Shell.-By the law of universal gravitation ever? particle of matter attracts every other particle with a foree that varies directly as the mass of the attrating particle, and iarersely as the square of the distance between the particles.

To find the resultant altruetun of a spherical shell of uniform density amd smetl umform thuckiness, on a particle.
(1) Suppose the particle, P, on which the value of the attraction is required, to be outside the shell.
Let ρ and k be the density and thickness of the shell, O
 its centre, and M any particle of it. Let $O M=a$, $P . M=r, O P^{\prime}=c$, the angle $M O P=\theta, \phi$ the angle which the plane MOP m. kes with a fixed plane throngh $O P$.
Then the mass of the element at M (Art. 88) is $\rho k: a^{2} \sin \theta d \theta d \phi$. The attraction of the whole shell acts along $O P$; the attraction of the elementary mass at M on P in the direction $P . M$

$$
=\frac{\rho k}{} \frac{a^{2} \sin \theta d \theta d \phi}{r^{2}} ;
$$

therefore the attraction of M on P, resolved along $O P$,

$$
\begin{equation*}
=\frac{\rho k \cdot u^{2} \sin \theta d \theta d \phi}{r^{2}} \frac{c-u \cos \theta}{r} . \tag{1}
\end{equation*}
$$

We shall eliminate θ from this equation by menns of

$$
\begin{aligned}
& r^{2}=a^{2}+c^{2}-2 a c \cos \theta ; \\
& \therefore r d r=a c \sin \theta d \theta:
\end{aligned}
$$

-By che law ter attracts pelly the the the sfinare

$$
c-a \cos \theta=\frac{r^{2}+c^{2}-a^{2}}{2 c}
$$ cal shell of on a par-

and

$$
\therefore \sin \theta d \theta=\frac{r d r}{a c},
$$

substituting these values in (1), the attraction of M on P along $P O$

$$
\begin{equation*}
=\frac{\rho k \cdot a}{2 c^{2}}\left(1+\frac{c^{2}-u^{2}}{r^{2}}\right) d r d \phi . \tag{2}
\end{equation*}
$$

To obtain the resultant attraction of the whole shell, we take the ϕ-integrall between the limits 0 and $2-$. and the r-integral between $c-a$ and $c+a$.

Hence the resultant attraction of the hell on P along $P O$

$$
\begin{align*}
& =\frac{\rho k \cdot l}{2 c^{2}} \int_{c-a}^{c+a} \int_{0}^{3 \pi}\left(1+\frac{c^{2}-a^{2}}{r^{2}}\right) d r d \phi \\
& =\frac{\pi \rho k \cdot l}{c^{2}} \int_{c-a}^{c+a}\left(1+\frac{c^{2}-a^{2}}{r^{2}}\right) d r \\
& =\frac{4 \pi k k a^{2}}{c^{2}}=\frac{\text { mass of the shell }}{c^{2}} . \tag{3}
\end{align*}
$$

Since c is the cistance of the point P from the centre this shows that the attraction of the shell on the particle at P is the same as if the mass of the shell were condensed into its centre.
It follows from thas that a sphere which is either homogencous or consists of concentric spherical shells of uniform densty, attracts the particle at P in the same mamer as if the whole mass werre collected at its centre.
(2) Let the purticle, P, be inside the sphere. Then we proceed exactly as lufore and oltain equation (2), which is true whether the partiele be ontside or inside the sphere .
but the r-limits in this case are $a-c$ and $a+c$. Hence from (2) we have, by performing the ϕ-integration,

$$
\begin{aligned}
\text { attraction of shell } & =\frac{\pi \rho k \cdot a}{c^{2}} \int_{a-c}^{a+c}\left(1-\frac{a^{2}-c^{2}}{r^{2}}\right) d r, \\
& =\frac{\pi \rho k a}{c^{2}}(2 a-2 a)=0 .
\end{aligned}
$$

therefore a particle within the shell is equally attracted in every direction, i.e., is not nttrueted at all.

Cor.-If a particle be inside a homogenous sphere at the distance r from its centre, all that porton of the sphere which is at a greater distance from the centre than the particle produces no effect on the particle, while the remainder of the sphere uttracts the particle in the same mannes as if the mass of the remainder were all collected at the centre of the sphere. Thus the attraction of the sphere on the particle

$$
=\frac{4 \pi \rho r^{3}}{r^{2}} \text { or } \frac{4 \pi \rho r}{3} .
$$

Hense, within a homogeneous sphere the attraction varies us the distance from the centre.

The propositions respecting the attraction of a nuiform spherient shell on un external or internal pmrticle were gi en by Newton (Principia. Lib. I, Prop. \%0, 71). (See 'Todhunter's Stutics, p. 275, also Prutt's Meehs., p. 137, Price's Anal. Mechs., Vol. I, p. 266, Minehin's Stuties, p. 403).

EXAMPLES

1. The span $A B=800$ feet, and $C O=1600$ feet, find the length of the eurve, CA. the height, (II, and the
inclination, θ, of the curve to the horizon at either point of suspension.
(1) Here ${ }_{c}^{x}=\frac{1}{4}$, and $e=2.71828$,
therefore

$$
e^{x}=(2 \cdot 71828)^{\ddagger}=1 \cdot 2840,
$$

and

$$
e^{-\frac{x}{c}}=(2.71828)^{-1}=0.7788 .
$$

Substituting these values in (5) we get

$$
S=800 \times 0.5052=404 \cdot 16
$$

Hence

$$
C A=404 \cdot 16 \text { feet. }
$$

(2)

$$
\begin{aligned}
C H & =y-c=\frac{c}{2}\left(c^{t}+e^{-t}\right)-c \\
& =800 \times 2 \cdot 0628-1600 \\
& =50.24 \text { feet. }
\end{aligned}
$$

(3) $\tan \theta=\frac{d y}{d x}=\frac{1}{2}\left(e^{t}-e^{-t}\right)$, from (1),

$$
=0.2526,
$$

therefore

$$
\theta=14^{\circ} 11^{\prime} .
$$

Otherwise $\tan \theta=\frac{s}{c}$, from (a) $=\frac{404 \cdot 16}{1600}=0 \cdot 2526$, as before.
2. The entire load on the cord in Fig. 71 is 160000 lbs., the span is 192 ft . . and the height is 15 ft .; find the tension ut the points of support, and also the tension at the lowest point.

Ans. Tension at one end $=268208 \mathrm{lbs}$.
Horizontal teusion $=256000 "$
3. A chain, ACB, 10 feet long, and weighing ;o lbs., is suspended so that the height, $C I I,=4$ fert ; find the horizontal tension, and the inclination, θ, of the ehain to the horizon at the points of support.
$A n s$. Horizontal tension $=33_{8} \mathrm{lbs} ., \theta=77^{\circ} 19^{\prime}$.
4. A ehain 110 ft . long is suspended from two points in the same horizontal phane, 108 ft . apart; show that the tension at the lowest point is 1.477 times the weight of the chain nearly.
hing 50 lhs ., is eet ; find the the chain to $\prime=77^{\circ} 19^{\prime}$.
two points in how that the weight of the

PARTII.

KINEMATICS (MOTION).

CHAPTERI.

RECTILINEAR MOTION.

134. Definitions. - Velocity. - Kinemarics is that branch of Dynamies which treats of motion without referenee to the bodies moved or the forces producing the motion (Art. 1). Although we do not know motion as free from force or from the meriter that is moved, yet there are cases in which it is adrantageons to separate the idens of foree, matter, and motion, and to study motion in the ahstract, i. e., without any reference to what is moviny, or the cause of motion. To the study of pure motion, then, we devote this and the following ehapter.

The velocity of a particle has heen defined to he its rate of moteon (Art. 6). The formula for uniform and variable veloeities are those which were deluced in Art. 7. From (1) and (z) of that Art. we have

$$
\begin{align*}
& v=\frac{s}{t} \tag{1}\\
& v=\frac{d s}{d t} \tag{2}
\end{align*}
$$

in which r is the velocity, s the spmee, and the time.
/ EXAMPLES.

1. A body moves at the rate of 754 yards per hour. Find the velocity in feet per second.

Since the velocity is uniform we use (1), henee

$$
v=\frac{s}{t}=\frac{754 \times 3}{60 \times 60}=0.628 \mathrm{ft} . \text { per scc., Ans. }
$$

2. Find the position of a particle at a given time, t, when the velocity varics as the distance from a given point on the rectilnear prath.

Here the velocity being variable wo have from (2)

$$
v=\frac{d s}{d t}=k s,
$$

where k is a constant;
therefore $\frac{d s}{s}=k d t ; \quad \therefore \log s=k t+c$,
where c is an arbitrury constant.
Now if we suppose that s_{0} is the distance of the particle from the given ${ }^{\text {wont }}$ when $t=0$ we have $c=\log s_{0}$, which in (1) gives

$$
\log \frac{s}{s_{0}}=k \cdot t ; \quad \text { or } \quad s=s_{0} e^{k t} .
$$

${ }^{V}$ 3. A railway train travels at the rate of 40 miles per hour ; find its velocity in feet per second.

Ans. 58.66 ft . per second.
$\sqrt{ }$ 4. Λ train takes 7 h .31 m . to travel 200 miles; find its velocity.

Ans. 39.02 ft . per sec.
$\sqrt{5}$. If $s=4 \pi^{3}$, tind the velocity at the end of five sceonds. Aus. 300 ft . per sce.
V. Find the position of the partiele in Ex. 2, when the velocity varies as the time. $A n s . s=s_{0}+\frac{1}{2} t^{2}$.
ven time, t, given point
the particle $c=\log s_{0}$,

0 miles per er second.
les ; find its t. per see.
five seconds. t. per sec.

2, when the $i_{0}+\frac{1}{1} k t^{2}$.
$: v=1: 10 \quad v=10 \tau$

$$
\begin{array}{rl}
, ~ & 10 x d t \quad c= \\
& \operatorname{ACOELERATION} \text { ZERO. }
\end{array}
$$

7. Find the distance the particle will move in one minute, when the velocity is 10 ft . at the end of one second and varies as the time. Ans. 18000 ft .
135. Acceleration.-Acceleration has been defined to be the rate of change of velocity (Art. 8). It is a velocity increment. The formulæ for acceleration are from (1), (2), and (3) of (Art. 9),

$$
\begin{align*}
& f=\frac{v}{\hat{t}} ; \tag{1}\\
& f=\frac{d v}{d t} ; \tag{z}\\
& f=\frac{d^{2} s}{d t^{2}} \tag{3}
\end{align*}
$$

(1) being for uniform, and (2) and (3) for variable, acceleration.

If the velocity decreases, f is negative, and (2) and (3) become

$$
\frac{d v}{d t}=-f ; \quad \frac{d^{2} s}{d t^{2}}=-f ;
$$

and the velocity and time are inverse functions of each other.
136. The Relation between the Space and Time when the Acceleration $=0$.

Here we have

$$
\frac{d^{2} s}{d t^{2}}=0
$$

so that if v_{0} is the consiant velocity we have

$$
\begin{aligned}
\frac{d s}{d t} & =v_{0} \\
\therefore s & =v_{0} t+s_{0}
\end{aligned}
$$

in which s_{0} is the space which the body has passed over when $t=0$. If t is compnted from the time the body starts from rest, then $s=v_{0} t$. The student will observe that this is a case of uniform velocity.
137. The Relation (1) between the Space and Time, and (2) between the Space and Velosity, widen the Acceleration ; Constant.
(1) Let A be the initial position of the particle supposed to be moving \qquad toward the right, P its position at any time, t, from A, v its velocity at that time. and f the constant acceleration of it velocity. Take any fixed point, $\mathbf{0}$, in the line of motion us origin, and let $0 \mathrm{~A}=s_{0} ; \mathrm{CP}=s$. Then the equation of moticli is

$$
\begin{align*}
\frac{d^{2} s}{d t^{2}} & =f \tag{1}\\
\therefore \quad \frac{\bar{d} s}{d t} & =f t+c .
\end{align*}
$$

Suppose the velocity of the particle, at the point A to bo v_{0}, then when $t=0, v=v_{0} ;$; hence $c=v_{0}$, and

$$
\begin{aligned}
v & =\frac{d s}{d t}=f t+v_{0} \\
\therefore \quad 3 & =\frac{1}{2} f t^{2}+v_{0} t+c
\end{aligned}
$$

But when $t=0, s=s_{0}$; hence $c^{\prime}=s_{0}$, and

$$
\begin{equation*}
s=-\frac{1}{2} f t^{2}+r_{0} t+s_{0} \tag{3}
\end{equation*}
$$

Hence if a particle momes from rest f, m the om in 0 , wint, of consant succleration, we have

* Called inifial velocily and apace respectively, or the velocity the particle has ans wime it has hoved over at tite instan. t begins to be reckued.

$$
\begin{equation*}
s=\frac{1}{2} f t^{2} \tag{4}
\end{equation*}
$$

and thus the space described varies as the $\begin{gathered}\text { gquare of the }\end{gathered}$ time.
(2) From (1) we have

$$
\begin{aligned}
& d s \frac{d^{2} s}{d t^{2}}=f d s \\
\therefore & \frac{d s^{s}}{d t^{2}}=\Delta f s+\mathbf{C}
\end{aligned}
$$

But when $s=s_{0}, v=v_{0}$; hence $\left(:=v_{0}{ }^{2}-2 f s_{0}\right.$, and therefore

$$
\begin{equation*}
r^{2}=9 f s+v_{0}^{2}-2 f s_{0} \tag{5}
\end{equation*}
$$

Equations (2) and (3) give the zelocity and position of the particle in terms of t; and (5) gives the velocity in terms of s.
138. When the Acceleration Varies directly as the Time from a State of Rest, find the Velocity and Space at the end of the Time t.

Here

$$
\begin{aligned}
\frac{d^{2} s}{d t^{2}} & =a t \\
\therefore \quad \frac{d s}{d t} & =\frac{1}{2} a t^{2}+v_{\bullet}
\end{aligned}
$$

where v_{0} is the initial velocity ;

$$
\therefore \quad s=\frac{1}{6} a t^{3}+v_{0} t
$$

the initial space being 0 since t is estinuted from rest.
139. When tiic Acceleration Varies directly as the Distance from a given Point in the line of Motion, and is negative. find the Relation between the Space and Time.

Hun

$$
\begin{aligned}
\frac{d^{2} s}{d t^{2}} & =-k s ; \\
\therefore \quad e d s \frac{d^{2} s}{d l^{2}} & =-2 k s d s ; \\
\frac{d s^{2}}{d t^{2}} & =k \cdot\left(s_{0}{ }^{2}-s^{2}\right),
\end{aligned}
$$

by calling s_{0} the vaite of s when the particle is at rest.

$$
\therefore-\frac{d s}{l_{\sigma_{0}^{3}}-s^{2}}=h^{\frac{1}{2} d t}
$$

the regative sign being take, since the parcicie is moving towards the origin ;

$$
\therefore \cos ^{-1} \frac{8}{s_{0}}-k^{\frac{1}{2} t},
$$

if $s^{\circ}=s_{0}$ when $t=0$;

$$
\therefore s=s_{0} \cos x^{\frac{1}{t} t} t .
$$

EXAMPLES

1. A body commences to move witu a velocity of 30 ft . per sec., and its velocity is increased on each second by 10 ft . Find the space described in 5 secouds.

Here $t^{\prime}=10, v_{0}=30, s_{0}=0$, and $\iota=\mathfrak{j}$, therefore from (3) we have

$$
s=\frac{1}{2} \cdot 10 \cdot 25+30 \cdot 5=275, A n s
$$

2. A body starting with a velocity of 10 ft per see, and moving with a constant acceleration, descrihes 90 ft in 4 secs.; find the aeceleration. Ans. $6 \frac{1}{4} \mathrm{lt}$. per sece.
S3. Find the velocity of a body which starting from rest with an aceeleration of 10 ft . per sece, has deseribed a space of 20 ft .
3. Throngh what space must a body pass under an aceeleration of 5 ft . per see., so that its velocity may increase from 10 ft . to 20 ft . per sec.? Aus. 30 ft .
4. In what time will a body moving* with an accelerition of 25 ft . per sec., acquire a velocity of 1000 ft . per second?

Ans. 40 secs.
\checkmark f. A body starting from rest las been moving for 5 min utes, and has acguired a velocity of 30 miles an hour; what is the acceleration in feet per second?

Ans. $1 \frac{1}{f} \mathrm{ft}$. per sec.

$\sqrt{7}$. If a body moves from rest with an acceleration of $\frac{2}{3} \mathrm{ft}$. per sec., how long must it move to aceuire a velocity of 40 m .!es an hour?

Ans. 88 secs.
140. Equations of Motion for Falling Bodies. The most important case of the motion of a particle with a constant acceleration in its line of motion is that of a body moving muler the action of gravity, which for small distances above the carth's surface may be considered constant. When a body is allowed to fall frecely, it is lomed to aequire a velocity of about 32.2 feet per second during every second of its motion, so that it moves with an acceleration of 32.2 feet per second (Art. 21). This acceleration is less at the summit of a high mountain than near the surface of the carth ; and less at the equator than in the neighborhood of the poles; i.e., the velocity which a body acquires in falling freely for one second varies with the latitude of the place, and with its altitude above the sea level; but is independent of the size of the body and of its mass. Practically, however, boties do not fall freely, as the resistance of the air opposes their motion, and therefore in practical cases at high speed (e. g., in artillery) the resistance of the air must be taken into accomit. But at present we shall neglect

[^12]this resistance, and consider the bodies as moving in vano under the action of gravity. i. e.. with a constunt acceleration of abont $32 . \therefore$ feet per second.

As neither the substance of the body nor the cause of the motion needs to be taken into eonsideration, all problems relating to falling bodies may be regarded as eases of accelerated motion, and treated from purely geometric. considerations. Therfore if we denote the acceleration by g, as in Art. : 3 , and consider the particle in Art. 137 to be moving vertically downwards, then (z), (3), (5) of Art. 137 become, by substituting g for f,

$$
\left.\begin{array}{rl}
v & =g t+v_{0} \tag{A}\\
s & =\frac{1}{2} g t^{2}+r_{0} t+s_{0} \\
v^{2} & =2 g s+r_{0}^{2}-2 g s_{0}
\end{array}\right\}
$$

s being measured as before from a fixed point, 0 , in the line of motion.
Suppose the particle to be projected downward from O, then A commences with O and $s_{0}=0$, Hence (A) becomes

$$
\begin{align*}
v & =g t+v_{0} \tag{1}\\
s & =\frac{1}{2} g t^{2}+v_{0} t \tag{2}\\
v^{2} & =2 g s+v_{0}^{2} \tag{3}
\end{align*}
$$

As a particular case suppose the particle to be dropped from rest at O (Fig. \%3). 'Then Λ eoineides with O, and $s_{0}=0, v_{0}=0$. Her e equations (A) become

$$
\begin{align*}
v & =g t \tag{4}\\
s & =\frac{1}{2} g t^{2} \tag{5}\\
v^{2} & =r g s \tag{6}
\end{align*}
$$

ing in vacuo ant accelera-
the cause of on, all probd as cases of y geometric clerition by rt. 137 to be) of Art. 137
(A)
$t, 0$, in the rd from 0 , snce (A) be-
be dropped vith 0 , and
(6)
141. When the Particle is Projected Vertically Upwards. - Here if we measure s upwards from the point of projection, 0 , the acceleration tends to diminish the space and therefore the acceleration is negative, and the equation of motion is (Art. 135)

$$
\frac{d^{2} s}{d t^{2}}=-g
$$

In other respects the solution is the same. Taking therefore $s_{0}=0$ in (A) and changing the sign of g,* we obtain

$$
\begin{align*}
v & =v_{0}-g t \tag{1}\\
s & =v_{0} t-\frac{1}{2} g t^{2} \tag{2}\\
v^{2} & =v_{0}^{2}-2 g s \tag{3}
\end{align*}
$$

Con. 1.-The time during which a particle vises when projected vertically upuards.

When the particle reaches its highest point, its relocity is zero. It therefore we put $v^{\prime}=0$ in (1), the corresponding value of t will be the time of the particle ascending to a state of rest.

$$
\therefore \quad t=\frac{v_{0}}{g}
$$

Cor. 2. -The time of flight before returning to the starting point.
From (2) we have the distance of the particle from the starting point after t seconds, when projected vertically upwards with the velocity v_{0}. Now when the particle has risen to its maximum height and returned to the point of projection, $s=0$. If, therefore, we put $s=0$ in (2). and solve for t, we shall get the time of flight. Therefore,

* g is positive or negative according as the particie is descending or as cending.

$$
v_{0} t-\frac{1}{2} g t^{2}=0
$$

which gives

$$
t=0, \quad \text { or } \quad \frac{2 v_{0}}{g} .
$$

The firsi value of t shows the time before the particle starts, the latter shows the time when it has returned. Hence, the whole time of tlight is $\frac{2 v^{\prime}}{g}$, which is just double the time of rising (Cor. 1) ; that is, the time of rising equals the time of falling.

The finai velocity, by (1) of Art. $140,=g t=g \times \frac{v_{0}}{g}$ $($ Cor. 1$)=r_{0}$; heiaee a body returns to any point in its path with the salle velocity at which it left it. In other words, a body passes each point in its path with the same velocity, whether rising or falling, since the velocity at any point may be considered as a velocity of projection.

Cor. 3.-The greatest heigit to whirh the particle will rise.

At the summit $v=0$, and the eorresponding value of s will be the greatest height to which the particle will rise ; when $v=0$, (3) becomes

$$
\begin{aligned}
v_{0}^{2} & =2 g s \\
\therefore s & =\frac{v_{0}^{2}}{2 g}
\end{aligned}
$$

Con. 4. - Since $r_{0}{ }^{2}=9 . g s$, where s is the height from which a boty falls to gain the velocily r_{0}, it follows that a body will rise throngh the smme spuee in losing a veloeity r_{0} as it would fall threngh to gam it.

EXAMPLES.

${ }^{\vee}$ 1. A body projected vertically downwards with a velucity of 20 ft . a sec. from the top of a tower, reaches the gromid in 2.5 secs.; tind the height of the tower.
Here $t=2 \frac{1}{2}$, and $c_{0}=20$; assume $g=32$. Then from (Z) of Art. 140 we have

$$
s=16 \frac{4}{4}^{25}+20 \times 5=150 \mathrm{ft} .
$$

${ }^{6}$ 2. A body is projected vertically upwards with a relocity of 200 ft . per second; find the relocity with which it will pass a point 100 ft . above the point of projection.

Here $v_{0}=200, s=100$; therefore from (3) we have

$$
\begin{gathered}
v^{2}=40000-6400=33600 \\
\quad \therefore \quad v=40 \sqrt{21}
\end{gathered}
$$

3. A man is nscending in a balloon with a uniform velocity of 20 ft . per see., when he drops as stone which reaches the ground in 4 sees.; find the height of the balloon.

Here $v_{0}=20$, and $t=4$; therefore from (2) we have, after changing the sign of the second member to make the result positive,

$$
s=-(80-256)=1 \% 6
$$

which was the height of the balloon.
${ }^{4}$ 4. Λ body is projected ippords with in velocity of 80 ft. ; ufter what time will it return to the hand?

Ans. 5 seconds.
${ }^{5}$. With what velocity must a body be projected vertically upwards that it may rise 40 ft . ?

Ans. $16 \sqrt{ } 10 \mathrm{ft}$. per sec.
${ }_{6}$ 6. A body projected vertically npwards passes a certain point with a velocity of 80 ft . per sec.; how mach higher will it ascend?

Aus. 100 ft .
${ }^{2}$. Two bulls are dropped from the top of a tower, one of them 3 sees. before the other; how far will they be :upart 5 sees. after the first was let fall? . 1 ns .336 ft .
\checkmark 8. If a body after having fallen for 3 secs. breaks a pane of glass and thereby loses one-third of its velocity, find the entire space throngh which it will have fillen in 4 sees.

Aus. 224 ft .
142. Composition of Velocities.-(1) From the Pormlleloyram "f' Veheities, (Art. 29, Fig. : 2), we see that if AB represents in magnitude and direction the space which woukl be described in one second by a particle moving with a given relocity, and AC represents in magnitude and direction the space which would be described in one secome ly amother particle moving with its relocity, thell AD, the diayonal of the parallelogrem, represents the resultemt relacity in magnitude and direction.
(2) Hence the resultant of any two relocilies, as AB, B1), (Fig. 2), is a velacity represented by the thiril side, DA, of the tritugle ABD); and if "point hare simnltancousily. relocities represented by AB, BC. (A , the sides of a triunyle, takens in the same order, it is at rest.
The lines which are taken to represent any given forces may clearly be taken to represent the relocilies whieh measmre these fores (Art. 19), therefore from the Poly!fon and Paratlolopiped of fiorees the Polygon and Parullelapipued of V'elocilies follun".
 ma!nitude and dirrection by ther sides af" a closed pal!gan. taken all in the semme order, The mesultant is zero.
(4) Also, if three relocitios bre represented in magnitule

es a certain

 nuch higher 2s. 100 ft . ower, one of ey he apart s. 336 ft .caks a pane ty, find the 14 secs. s. 224 ft .
om the I'rer-- that if AB pate which noving with mitule and one secoml ent Al), ther e resultant
as AB, 13 H , ide, 1)A, of ulture'ons: y. of a lrian-
iven forcess lies which he Poly,yon 1 Parutlel-
exswed in al pely!for.
and direction by the three edges of a parallelopipert, the res:alltanl relocity uill be represented by the diayonal.
(.) When there are two relocities or three velocitios in two or in three rectangular directions, the resultant is: the sptuare root of the sum of their squares. 'Thus, if $\frac{d s}{d!}, \frac{d x}{d t}, \frac{d y}{d l}, \frac{d z}{d t}$, are the relucities of the moving point and its components parallel to the axes, we have from (i) of Art. 30,

$$
\begin{equation*}
\frac{d s}{d l}=\sqrt{\binom{d x}{d l}^{2}+\binom{d l}{d l}^{2}} \tag{1}
\end{equation*}
$$

and from (1) of Λ rt. 34,

$$
\begin{equation*}
\frac{d s}{d l}=\sqrt{\binom{d l x}{d l}^{2}+\left(\frac{d y}{d l}\right)^{2}+\left(\frac{d z}{d l}\right)^{2}} \tag{2}
\end{equation*}
$$

143. Resolution of Velocities.- $\boldsymbol{\text { s }}$ the diagonal of the parallelogram (Fig. 2), whose sides represent the component velocities was found to represent the resultant velocity, so-any velocity, remesented by a given straght line, may be resolved into eomponent velocities represented by the sides of the parallelogram of which the given line is the diagonal.

It will be casily seen that ($\%$) of Art. 134 is equally upplicable whether the point be considered as moving in a straight line or in a curved line; but since in the latter (ase the direction of motion continually changes, the mere anmout of the relocity is not sutficient to deseribe the motion completely, so it will he neressary to know at every instant the direflion, as well as the magnitude, ol' the point's velocity. In such cases as this the method eommonly amphyad, whether we dral with velucities or ancelerations. consists manly in studying, not the velocity or arcelemtion. direrly, but its eomponents parallel to any three assumed rectungular axes. If the particle be at the point $(, r, y, z)$,
at the time l, and if we denote its velocities parallel respectively to the three axes by u, v, w, we have

$$
\frac{a x}{d i}=v_{x} ; \frac{d y}{d t}=v_{y} ; \frac{d z}{d t}=v_{s} .
$$

Denoting by v the velocity of the moving particle along the curve at the time t, we have as above

$$
\begin{equation*}
v=\frac{d s}{d t}=\sqrt{\binom{d t x}{d t}^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}}, \tag{1}
\end{equation*}
$$

and if κ, β, γ be the angles which the direction of motion along the curve makes with the axes, we have, as in (2) of (Art. 34),

$$
\begin{aligned}
& \frac{d x}{d t}=\frac{d s}{d t} \cos \iota=v \cos \alpha=v_{x} \\
& \frac{d y}{d t}=\frac{d s}{d t} \cos \beta=v \cos \beta=v_{v} \\
& \frac{d z}{d t}=\frac{d s}{d l} \cos \gamma=v \cos \gamma=v_{x}
\end{aligned}
$$

Hence each of the components $\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}$, is to be found from the whole veloeity by resolving the velocity, i. e., ly multiplying the velocity by cosine of the anyle between the direction of motion and that of the component.

> EXAMPLES.
$\sqrt{1}$. A body moves under the influence of two velocities, at right angles to milh other, equal respectively to 17.14 ft . und 13.11 ft . per secomel. Find the magnitude of the resultan motion, and the angles into which it divides the right nugle.

Ans. : $1.50^{4} \mathrm{ft}$. per see. ; $37^{\circ} 25^{\prime}$ and $52^{\circ} 35^{\prime}$.
\vee_{2}. A ship sails due north at the rate of 4 knots μ hour, and a ball is rolled towards the east, across her deek, at rigit angles to ber motion at the rate of 10 ft . per second. Find the magnitude and direction of the real motion of the ball.

Aus. 12.07 ft . per sec.; and N. $56^{\circ} \mathrm{E}$.
V 3. A boat mores N. 30° E., at the rate of 6 miles p^{k} hour. Find its rate of motion northerly and easterly.

Ans. 5.2 miles per honr north, and 3 miles per homr cast.
144. Motion on an Inclined Plane.-By an extension of the equations of Art. 140, we may treat the case of a particle sliding from rest down a smooth inelined plane. As this is a very simple case in which an acceleration is resolved, it is convenient to treat of it in this part of our work; yet as it properly belongs to the theory of constrained motion, we are unahle to give a complete solution of it, until the prineiples of such motion have been explained in a future ehapter.

Let P be the position of the particle at any time, t, on the inclined pline $0 \mathrm{~A}, \mathrm{OP}$ $=s$, its distance from a fixed point, 0 , in the line of motion, and let a be the inclination of $O A$ to the horizontal line $A B$. Let $1 \mathrm{~F} b$ represent g, the vertical acceleration with
 which the body would move if free to fall. Resolve this into two components, $\mathrm{P} a=!$ sin " along, und $\mathrm{Pe}=$! cos a perpendieular to OA. The componant ! \cos a produces pressure on the plane, but does not affect the motion. The only areceleration down the plate is that eomponent of the whole neceleration which is parallel to the plame, viz.. $g \sin \pi$. The equation of motion, therefore, is

$$
\begin{align*}
& l^{2} s \tag{1}\\
& d t^{2}
\end{align*}=!\text { sin } c
$$

the solution of which, as $g \sin$ a is constant, is included in that of Art. 140; and all the results for particles moving vertically as given in Arts. 140 and 141 will be made ta apply to (1) by writing g sin a for g. Thus, if the particle be projected down or n p the plane, we get from (1), (2), (3) of Arts. 140 and 141, by this means

$$
\begin{gather*}
v=v_{0} \pm g \sin \alpha \cdot t \tag{2}\\
s=v_{0} t \pm \frac{1}{2} g \sin \alpha \cdot t^{2} \tag{3}\\
v^{2}=v_{0}^{2} \pm 2 g \sin \alpha \cdot s \tag{4}
\end{gather*}
$$

in which the + or - sign is to be taken according as the body is projected down or up the plane.

If the particle starts from rest from 0 , we get from (4), (5), (6) of Art. 140

$$
\begin{align*}
& v=g \sin \alpha \cdot t \tag{5}\\
& s=\frac{1}{2} g \sin \alpha \cdot t^{2} \tag{6}\\
& v^{2}=2 g \sin \alpha \cdot s \tag{7}
\end{align*}
$$

Cor. 1.—The velocity acquired by a particle in fallin, down a given inclined plane.

Draw PC parallel to AB (Fig. 74), then if v be the velocity at P, we have from (7)

$$
\begin{aligned}
v^{2} & =2 g \sin c \cdot s \\
& =2 g \cdot 0 \mathrm{C}
\end{aligned}
$$

Hence, from (6) of Art. 140 the velocity is the same at P ss if the particle had fallen through the vertica! space OC ; that is, the relocity acquired in falliny doven a smoolh inclined plane is the same as would be acquired $2 n$ falling freely through the perpenelicular height of the plane. e particle , (2), (3)
in fallin., v be the

Cor. 2.-When the particle is projected up the piane with a given c.locity, to find how high it will ascend, and the time of ascent.

From (4) we have

$$
v^{2}=v_{0}^{2}-2 g \sin c \cdot s .
$$

When $v=0$ the particle will stop; hence, the distance it will ascend will be given by the equation

$$
\begin{aligned}
& 0=v_{0}{ }^{2}-2 g \sin \alpha \cdot s, \\
& \therefore s=\frac{v_{0}{ }^{2}}{2 g \sin \epsilon} .
\end{aligned}
$$

To find the time we have from (2)

$$
v=v_{0}-g \sin c \cdot t
$$

and the particle stops when $v=0$, in which case we have

$$
t=\frac{v_{0}}{g \sin a} .
$$

From (6) we derive the following enrious and useful result.
145. The Times of Descent down all Chords drawn from the Highest Point of a Vertical Circle are equal.Let AB be the vertical diameter of the cirele, AC any cord through $\mathrm{A}, \boldsymbol{c}$ its inclination to the horizon ; join BC ; then if t be the time of descent down AC we
 have from (6) of Art. 144

But

$$
\mathrm{AO}=\frac{1}{2} g t^{2} \sin c
$$

$$
A C=\Lambda B \sin \alpha ;
$$

$$
\begin{aligned}
\therefore & A B=\frac{1}{2} g t^{2}, \\
t & =\sqrt{\frac{O A B}{g},}
\end{aligned}
$$

which is sonstant, and shows that the time of falling down a. y chord is the same as the time of falling dewn the dameter.

Jor.-Similarly it may be shown that the times of deceent down all ehords drawn to B, the lowest point, are equal; that is, the time down CB is equal to hat down AB.
146. The Straight Line of Quickest Descent from (1) a Given Point to a Given Straight Line (2) from a Given Point to a Given Curve.
(1) Let A be the given point and BC the given line. Throngh A draw the horizontal line AC , meeting CB in C ; bisect the angle ACB by CO which interseets in O the vertical line drawn throngh A ; from 0 draw $O P$ perpendieular to $B C$; join AP; AP is the required line of quiek-
 esl desecnt.
For $O P$ is evidently equal to $O \Lambda$, and therefore the circle described with O as centre and with $O P(=O \Lambda)$ for radius, will touch the line BC at P , and since the time of falling down all chords of this cirele from A is the same, AP runst be the line of quickest descent.
(\mathcal{X}) To find the straight line of quickest descent to a given curce, all that is required is to draw a circle having the given point as the upper extremity of its vertical diameter, and tingent ts the curve. Hence if DE (Fig. 76) be the carve, A the point, draw AlI vertical; aad, with centre in AII, deseribe a cirele passing through A, and
touching DE at P, then $A 1$ is the required line. For, if we take any other point. Q, in DE, and draw AQ cutting the circle i: q, then the time down $\mathrm{AP}=$ time down $\mathrm{A}_{\mathrm{l}}<$ - me wn AQ. Hence AP is the line of quickest descent.

The problr... . © inding the line of quickest descent from a point to a line or curve is thas "ound to resolve itself into the purely geomertic problem of drawing a circle, the highest point of which shall be the given point and which shall touch the given line or curve.

EXAMPLES.*

${ }^{1}$. If the earth travels in ite orhit 600 million mile : $395 \frac{1}{4}$ days, with uniform motion, what is its veloci' it miles per second? Ans. 19.01 mi ? us.
\checkmark 2. A train of cars moving with a velocity of 20 hases $\boldsymbol{\sim}$: hour, had been gone 3 'ours when a locomorice w. 2 dispatched in pursuit, with a velocity of 25 miles 7. 'on. ; in what time did the latter overtake the former?

Ans. 12 heurs.
3. A body moving from rest with a uniform acceleration deseribes 90 ft . in the 5 th second of its motion; find the acceleration, f, and velocity, v, after 10 seconds.

$$
\text { Ans. } f=20 ; v=200 \text {. }
$$

$\sqrt{4}$. Find the velocity of a particle which, moving with an acceleration of 20 ft . per sec. has traversel 1000 ft . $A n s .200 \mathrm{ft}$. per sec.
${ }^{5}$. A body is observed to move over 45 ft . and 55 ft . in two successive seconds; find the space it would deseribe in the 20th second.

Ans. 195 ft.
$\int_{6 \text {. The velocity of a boly increases every hour at the rate }}$ of 360 yards per hour. What is the acceleration, f, in feet per second, and what is the spuce, s, described from ress in 20 seconds? $\quad A n . . . f^{\prime}=0.3 ; s=60 \mathrm{ft}$.
7. A body is moving, at a given instant, at the rate of 8 ft . per sec.: at the end of 5 sece. its veloeity is 19 ft . per sec. Aswming its acerelation to be uniform, what wats its velocity at the end of 4 seces., and what will be its velocity at the end of 10 secs.?

Ans. 16.8; 30.
$\sqrt{ }$.
Aody is moving at a given instant with a velocity of 30 miles an honr, and comes to rest in 11 secs.; if the retardation is miform what was its velocity 5 secs, before it stopped?

Ans. 20 ft . per sec.
$\sqrt{ } 9$. A body moves at the rate of 12 ft . a see. with a uniform atceeleration of 4 ; (1) state exactly what is meant by the number 4 ; (2) suppose the aceleration to go on for 5 secs., and then to cease, what distance will the body describe between the ends of the 5 th and 1 th secs.?

Ans. 224 ft .
10. A body, whose velocity undergoes a uniform retardation of 8 , describes in 2 secs. a distance of 30 ft .; (1) what was its initial velocity? (2) How much longer than the a sees. would it move before coming to rest?

Aus. (1) 23 ; (2) $\frac{7}{8} \mathrm{sec}$.
11. A body whose motion is uniformly retarded, changes its velocity from 24 to 6 while describing a distance of 12 ft .; in what time does it describe the 12 ft .?

Ans. 0.8 sec.
12. The velocity of a body, which is at first 6 ft . a sec., undergoes a miform acceleration of 3 ; at the end of 4 secs. the acceleration ceases; how far does the body move in 10 sees. from the beginning of the motion?

Ans. 156 ft.
13. A body moves for a quarter of an hour with a mini. form acceleration; in the first 5 minutes it describes 350 yards; in the second 5 minutes 420 yards; what is the whole distance described in a quarter of an hour?
$A n s .1260 \mathrm{yds}$.
the rate of is 19 ft . per hat was its its velacity $6.8 ; 30$.
velocity of ecs.; if the 2s. before it - per sec.
sec. with a t is meant o go on for the body es.? .224 ft. m retarda; (1) what or than the
2) $\frac{7}{8}$ sec.
d, changes tance of 12
0.8 sec .

6 ft . a see., d of 4 sees. nove in 10 . 156 ft .
vith a uniseribes 350 hat is the 260 vds.
14. Two sees. after a body is let fall another borly is projested vertically downwarls with a velocity of 100 ft . ber see.; when will it overtake the former:

$$
\text { Alne. } 17 \text { secs. }
$$

15. A body is projected upwards with a velocity of 100 ft . per sec.; find the whole time of llight. Ams. fi_{4} sees.
16. A balloon is rising uniformly with a velocity of 10 ft . per sece, when a man drops from it a stone which renches the ground in 3 seces; find the height of the balloon, (1) when the stone was dropped; and (?) when it reached the ground.

Ans. (1) 114 ft ; (: 144 ft .
1\%. A man is standing on a platform which deseends witil a miform acceleration of 5 ft . per sec.; after having descended for \approx sees. he drops a ball; what will be the velocity of the ball after 2 more seconds? $1 / \mathrm{s}$. it ft .
18. A ', alloon has been aseending vertically at a uniform rate for 4.5 sees., and a stone let fall from it reaches the gromd in 7 sees.; find the velocity, t, of the halloon and the height, s, from which the stone is let fall.

Ans. $v=174^{7}$ ft. per sec.; $s=884 \mathrm{ft}$. If the balloon is still ascending when the stone is let fall $v=68.1 \% \mathrm{ft}$. per see.; $s=306.76 \mathrm{ft}$.?
V19. With what velocity mhst a particle be projected downwards, that it may in $t s^{\prime \prime} e s$ evertake another particle which has already fallen throngh i fi. :

$$
A n s . n=\frac{a}{t}+\sqrt{2 a g} .
$$

20. A person while ascending in a ballion with a vertical relocity of $V \mathrm{ft}$. per sce., lets fall a stone when he is $h \mathrm{fi}$. thove the gronnd; required the time in which the stom. will reaeh the gromed.

$$
\text { Ans. } \frac{V+\sqrt{V^{2}+2 g h}}{g}
$$

\checkmark 21. A body, A, is projected vertically downwards from the top of a tower with the veloeity V , and one sece. afterwards another body, B. is let fall from a window a ft. from the top of the tower ; in what time, l, will A overtake B ?

$$
A n s . t=\frac{2 a+g}{2(V+g)} .
$$

22. A stone let fall into a well, is heurd to strike the bottom in t seconds ; required the depth of the well, supposing the veloeity of somd to be $a \mathrm{ft}$. per sec.

$$
A n s \cdot\left[\sqrt{\left.a t+\frac{a^{2}}{2 g}-\frac{a}{\sqrt{2 g}}\right]^{2} ~}\right.
$$

$V_{\text {23. A stone }}$ is dropped into a well, and atłer 3 sees. the sound of the splash is heard. Find the depth to the surface of the water, the velocity of sonnd being 1127 ft . per sec.

Ans. 13\%.9.

- 24. A body is simultanconsly impressed with three uniform veloeities, one of which would cause it to move 10 ft . North in 2 sees.; another 12 ft . in one see. in the same direction ; and a third 21 ft . South in 3 sees. Where will the body be in 5 sees.?

Ans. 50 ft . North.
25. A hoat is rowed aeross a river $1 \frac{1}{4}$ miles wide, in a direction making an angle of 87° with the bank. The boat travels at the rate of 5 miles an hour, and the river rums at the rate of 2.3 miles an honr. Find at what point of the opposita ank the boat will land, if the angle of 87° be made against the stream.

Ans. 898 yards down the stream from the opposite point.
V_{26}. A body moves with a velocity of 10 ft . per see. in a given direction ; find the veloeity in a direction inclined at an angle of 30° to the original direction.

Ans. $5 \sqrt{3} \mathrm{ft}$. per sec.
wards from e sec. afterv a ft. from rtake 13? $\frac{2 a+g}{(V+g)}$. , strike the a well, sup-

$$
\left.-\frac{a}{\sqrt{2 g}}\right]^{2}
$$

3 sees. the pth to the ng 1127 ft . s. $13 \geqslant .9$.
with three it to move sec. in the ecs. Where t. North.
wide, in a ank. The d the river what point agle of 87°
ce opposite ar see. in a inclined at per see.
${ }^{8}$ 27. A smooth plane is inclined at an angle of 30° to the horizon ; a body is started up the phane with the velocity $5 y$; tiud when it is distant $9 g$ from the starting point. A $n s$. 2 , or 18 sec's.
28. The angle of a plane is 30°; tind the veloeity with "hich a body must be projected up it to reach the top, the length of the plane being 20 ft .

$$
1 u s .8 \sqrt{ } 10 \mathrm{ft} . \text { per see. }
$$

V.9. A body is projected down a plane, the inclination of which is 45°, with a velocity of 10 ft .; find the space deseribed in $2 \frac{1}{2}$ secs. Ans. $95 . \% \mathrm{ft}$ nearly.
$r^{\prime} 30$. A steam-engine starts on a downward incline of 1 in 200* with a velocity of $7 \frac{1}{2}$ miles an hom neglecting friction ; find the space traversed in two minut ...

Ans. 8:4 yards.

\checkmark 31. A body projected 11 , an incline of 1 in 100 with a velocity of 15 miles an hour just reaches the snmmit ; find the time occupied.

Ans. 68.75 secs.
/3x. From a point in an inclined plane a body is made to slide up the plame with a velocity of 16.1 ft . per see. (1) How far will it go before it comes to rest, the inclination of the plane to the horizon being 30° ? (2) Also how far will the body be from the starting point after 5 sees. from the beginning of motion?

Ans. (1) 8.05 ft. ; (i) 120.75 ft . lower down.
33. The inclination of a plane is 3 rertical to 4 horizontal ; a body is made to slide up the incline with an initial velocity of 36 ft . a sec.; (1) how far will it gro before beginning to return, and (*) after how many seconds will it rourn to its starting point?

$$
\text { Ans. (1) } 333 \mathrm{ft} \text {. : (2) } 33 \text { sces. }
$$

* An incline of 1 in 200 means here 1 foot vertically to a tength of 200 ft ., though it is used bs Engineers (o mean 1 fool vertically to 210 f . horizontally.
${ }^{34}$. There is an inelined plane of 5 vertical to 12 horizontal, a booly slides down $5: \mathrm{ft}$. of its length, and then passes withont loss of verocity on to the horizontal plane; after how long from the beginning of the motion will it he at a distance of 100 ft . from the foot of the incline?

Ans. $5 .{ }^{7}$ secs.
35. A body is projected up an inclined plane, whose rength is 10 times its height, with a velocity of 30 ft . per sec.; in what time will its veloeity be destroyed?

$$
\text { Ans. } 9 \frac{3}{8} \text { secs., if } g=32 \text {. }
$$

\checkmark_{36}. A boly falls from rest down a given inclined plane; compare the times of deseribing the tirst and last halves of $i t$.

$$
A u s . \Lambda s 1: \sqrt{ } i-1 .
$$

37. Two berlies, projected down two planes inclined to the horizon at angles of 45° and 60°, deseribe in the same time spaces respectively as $\sqrt{2}: \sqrt{3}$; find the ratio of the mitial velocities of the projected bodies.

$$
\text { Ans. } \sqrt{2}: \sqrt{3} .
$$

38. Through what chord of a circle must a body fall to acquire half the velocity gained by falling through the diameter?
Ans. The chord which is inelined at 60° to the rertical.
$\sqrt{39}$. Find the velocity with which a body should be projected down an inclined plame, 1 , so that the time of ruming down the plane shall be equal to the time of falling down the height, h.

$$
A n s . \|=!\binom{I-h \sin "}{\sqrt{ } \times g h} .
$$

40. Find the inclimation of this piane, when a velocity of 3 the that due to the height is sulficient to render the times of ruming down the plane, and of falling down tho height, engal to cach other.

Ans. 30°.
41. Through what chord of a circle, drawn from the bottom of the vertical diameter must a body deseend, so as to atequire a velocity equal $10 \frac{1}{n}$ th part of the velocity acequired in falling down the vertical dianeter?
Ans. If 0 denote the angle between the required ehord and the vertical diameter $\cos \theta=\frac{1}{n}$.
γ_{42}. Find the inciination, θ, of the radius of a circle to the verticul, such that a body rumning down will describe the radins in the sunse time that another boty requires to fall down the vertical dimeter. Ans. ${ }^{9}=60^{\circ}$.
\checkmark_{43}. Find the inelination, θ, to the vertical of the diameter down which a body folling will deseribe the last haif in the same time as the vertical diameter.

$$
\text { Ans. } \cos \theta=\frac{3 \sqrt{2}-4}{2 \sqrt{2}}
$$

44. Show that the times of descent down all the radii of (rurvature of the eveloid (Fig. 40, Calculus) are equal ; that is, the time down $P^{\prime} Q$ is equal to the time down $O^{\prime} \Lambda=\sqrt{\frac{8 r}{g}}$.
'4. Find the inclination, θ, to the horizon of an inclined phane, so that the time of descent of a particle down the lngith may be n times that down the height of the phane.

$$
\text { Ans. } \theta=\sin ^{-1} \frac{1}{n}
$$

Ni. Finm the line of quickest descent from the foens to a paratoola whose axis is vertieal and sertex upwarts, and show that its length is equal to that of the latns rectum.
47. Find the lime of quickest descent from the fous oi a parabola to the cure when the axis is horizontal.
48. Find geometrically the line of quickest descent (1) from a point within a circle to the circle; (2) from a circle to a point without it.
49. Find geometrically the straight line of longest deseent from a circle to a point without it, and which lies below the circle.
$` 50$. A man six feet high walks in a straight line at the rate of four miles an hour away from a strect hamp, the height of which is 10 feet; supposing the man to start from the lamp-post, find the rate at which the end of his shadow travels, and also the rate at which the end of his shadow separates from himself.

Ans. Shadow travels 10 miles an hour, and gains on himself 6 miles an hour.
51. T'wo bodics fall in the same time from two given points in space in the same vertical down two straight lines drawn to any point of a surface; show that the surface is an equilateral hyperboloid of revolution, having the given points as vertices.
52. Find the form of a curve in a vertionl plane, such that if heavy particles be simultaneonsly let fall from earh point of it so as to slide frecly ulong the normal at that pmint, they may all reach a given horizontal straight line at the same instant.
53. Show that the time of quickest descent down a focal chord of a parabola whose u xis is vertical is

$$
\sqrt{\frac{3^{\frac{1}{l}}}{g}},
$$

where l is the lutus rectum.
it. Particles slide from reet at the highest point of a vertical circle down chords, and are then allowed to move
frecly; show that the locus of the foci of their paths is a circle of half the radius, and that all the paths bisect the vertical radius.
55. If the particles slide down chords to the lowest point, and be then suffered to move freely, the locus of the foci is a cardioid.
56. Particles fall down diameters of a vertical circle; the locus of the foci of their subsequent paths is the circle.

CHAPTER II.

CURVILINEAR MOTION.

147. Remarks on Curvilinear Motion.-The motion, which was considered in the last chapter, was that of ${ }^{4}$ particle deseribing a rectilinear path. In this chapter the cireumstances of motion in which the path is curcilinear will be considered. The conception and the definition of velocity and of acencration which were given in Arts. 134, 135 , are evidently as applicable to a particle describing a eurvilinear path as to one moring along a straight line; and consequently the formula for velocity in Arts. 142, 143, are applicable either to rectilincar or to curvilinear motion. In the list chapter the effects of the composition and the re ..ntion of velocities were considered, when the path taien by the particle in consequence of them was straight; we have now to investigate the effects of velocities and of accelerations in a more general way.
148. Composition of Uniform Velocity and Ac-celeration.-Suppose a borly tends to move in one direction with a miform velocity which wonld carry it from Λ to B in one seeond, and also sulject to mo acceleration that wonk carry it from Λ to O in one second; thens at the end of the second the body will be at 1), the opposite end of the dingonal of the par-
 allelogram ABI)C, just as if it hatd moved from A to 13 and then from 13 tw in the seeond, hat the hooly will move in the curtre mad not along the didyomen. F'or, the bolly in its motion is making progress uniformly in the direction $A B$, nt the sume rate as if it had no other motion; and at the same time it is being accelerated in the
direction $\Lambda \mathrm{C}$, as fast as if it had no other motion. Hence the lody will reach D as fiur from the line AC as if it had moved over $A i=$, and ats far from $A B$ as if it had moved over $\Lambda \mathrm{C}$; but sinee the velocity along AC is not uniform, the spaces deseribed in cqual intervals of times will not be effial along $A C$ while they are ernal along $A B$, and therefore the points a_{1}, a_{2}, a_{3}, will not be in a straight line. In this case, therefore, the path is a curve.
149. Composition and Resolution of Accelera-tions.-If a body is subject to two different accelerations in different directions the sides of a parallelogram may be taken to represent the Component Aceelerations, and the diagonal will represent the Resultant Acceleration, although the path of the boly may be along some other line.

Rem.-These results with those of Arts. 142, 143, may be summed up in one general law: When a body tends to move with several different relocities in different directions, the body will be, at the end of any given time, at the same point, us if it had moved with each relocity separately. This is the fundamental law of the composition of velocities, and it shows that all problems which involve tenciencies to motion in different directions simultaneously, may be treated as if those tendencies were successivc.*

If $\frac{d^{2} s t^{2}}{d^{2}}$ be the acceleration nlong the eurve, und (x, y, z) be the place of the moving particle at the time, t, it is evident that the component accelerations parallel to the nxes are $\frac{d^{2} x}{d l^{2}}, \frac{d^{2} y}{d l^{2}}, \frac{d^{2} z}{d l^{2}}$. Denoting these by μ_{x}, a_{y}, μ_{z}, wo have

$$
\frac{d^{2} x}{d d^{2}}=u_{x} ; \quad \begin{aligned}
& d^{2} y \\
& d l^{2} \\
& =u y ;
\end{aligned} \quad \begin{aligned}
& d^{2} z \\
& d l^{2}
\end{aligned}=u z ;
$$

and $\sqrt{c e^{2}}+\mu_{y}{ }^{2}+\mu_{z}^{2}$ is the rexultant acrelerution.

Also if κ, β, γ, be the angles which the dircetion of motion makes with the axes, we have

$$
\begin{aligned}
& \frac{d^{2} x}{d l^{2}}=\frac{d^{2} s}{d t^{2}} \cos c=\alpha_{x} ; \\
& \frac{d^{2} y}{d t^{2}}=\frac{d^{2} s}{d t^{2}} \cos \beta=\alpha_{y} ; \\
& \frac{d^{2} z}{d t^{2}}=\frac{d^{2} s}{d t^{2}} \cos \gamma=\alpha_{s} .
\end{aligned}
$$

The acceleration $\frac{d^{2} t^{2}}{d t^{2}}$ is noi generally the complete resultant of the three component accelerations, but is so only when the path is a z'raiglit iine or the velocity is zero. It is, however, the only part of their resultant whiel has muy. effect on the velocity. $\frac{d^{2} s}{d t^{2}}$ is the sum of the resolvel parts of the emponent accelerations in the direction of motion, as the following identical equation shows:

$$
\frac{d^{2} s}{d t^{2}}=\frac{d \cdot r}{d s} \cdot \frac{t^{2} x}{d t^{2}}+\frac{d y}{d s} \cdot \frac{d^{2} y}{d t^{2}}+\frac{d z}{d s} \cdot \frac{d^{2} z}{d t^{2}},
$$

whicll follows immediately from (1) of Art. 143 by differentiation. necolerations are therefore subject to the sume laws of componsition and resolution us velocities; and unsequently the acceleration of the partiele along any line is the sum of the resolved parts of the axinl aecelerationsulong that line. Thus to find $d^{d / 2}$, the neecleration nlong s. $\frac{d^{2}, x}{d t^{\frac{3}{2}}}$ hus to be multiphied by $\frac{d x}{d s}$, which is the direction-ensine of the sumall ure iss. The other part of the resultant is at right angles to this, und its only effect is to elange the dirertion of the motion of the point. (S'en Thit aud Stecele's Dymamies of a Particle, alsw 'Thomeon unil 'Tnit's Nat. Pliil.)

The following are examples in which the preceding expressions are applicd to cases in which the laws of retority and of acceleration are given. ration of the of the axial Hion along s. osine of the hit angles to notion of the (s) Thomson

EXAMPLES.

1. A particle moves so that the axial components of its velocity vary as the corresponding co-ordinates; it is required to find the equation of its path; and the aceelerations along the axes.

Here

$$
\begin{aligned}
& \frac{d x}{d t}=k x ; \quad \frac{d y}{d t}=k y ; \\
\therefore & \frac{d x}{x}=\frac{d y}{y}=k d t ; \\
\therefore & \log \frac{x}{a}=\log \frac{y}{b}=k t
\end{aligned}
$$

if (a, b) is the initial place of the particle,

$$
\begin{gathered}
\therefore x=a e^{k t} ; y=b e^{k t} . \\
\therefore \frac{x}{a}=\frac{y}{b}
\end{gathered}
$$

is the equation of the path.
And the axial accelerations are

$$
\frac{d^{2} x}{d t^{2}}=k^{2} x ; \quad \frac{d^{2} y}{d t^{2}}=k^{2} y
$$

2. A wheel rolls along a straight line with a uniform velocity ; compare the velocity of a given point in the eircumference with that of the centre of the wheel.

Let the line along which the wheel roils be the axis of x, and let v be the velocity of its centre; then a point in its eircumference deseribes a eyeloid, of whieh, the origin boing taken at its starting point, the equation is

$$
x=a \operatorname{vers}^{-1} \frac{y}{a}-\left(2 a y-y^{2}\right)^{\frac{1}{2}} ;
$$

$$
\begin{gathered}
\therefore \frac{d x}{y^{\frac{1}{2}}}=\frac{d y}{(2 a-y)^{\frac{1}{2}}}=\frac{d s}{(2 a)^{\frac{1}{2}}} \\
\text { But } \quad v=\frac{d}{d l}\left(a \operatorname{vers}^{-1} \frac{y}{a}\right)=\frac{a}{\left(2 a y-y^{2}\right)^{\frac{1}{t}}} \cdot \frac{d y}{d t} \\
\therefore \frac{d s}{d l}=\frac{d s}{d y} \cdot \frac{d y}{d t}=\left(\frac{2 y}{a}\right)^{\frac{1}{2}} v
\end{gathered}
$$

which is the velocity of the point in the circumference of the whed. Thus the velocity of the highest point of the whed is twion as great as that of the centre, while the point that is in contart with the straight live has no velocity. (See I'rice's Anal. Mech's., Vol. I, p. 416.)
3. If $\frac{d x}{d t}=\dot{d y}, \frac{d y}{d!}=k x$, show that the path is an equilateral hyperbota and that the axial components are

$$
\frac{d^{2} x}{d t^{2}}=k^{2} x, \quad \frac{d^{2} y}{d t^{2}}=k^{2} y
$$

4. A particte describes an ellijso so that the x-component of its velocity is a constant, c; find the y-component of its velocity and acceleation, and the time of deseribing the ellipse.
Let the equation of the ellipse be

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 ;
$$

and let (x, y) be the position of the particle at the time t;
then

$$
\begin{aligned}
\frac{d x}{d t} & =a ; \text { and } \frac{d y}{d x}=-\frac{b^{2} x}{a^{2} y} ; \\
\therefore \cdot \frac{d y}{d l} & =\frac{d y}{d x} \cdot \frac{d x}{d t}=-\frac{a b^{2}}{a^{2}} \cdot \frac{x}{y},
\end{aligned}
$$

which is the y-component of the velocity.
ference of int of the while the ne has no 6.)
is an equire
omponent rent of its ribing the

$$
\begin{aligned}
\frac{d^{2} y}{d t^{2}} & =-\frac{a b^{2}}{a^{2}} \cdot \frac{y \frac{d x}{d t}-x \frac{d y}{d t}}{y^{2}} \\
& =-\frac{b^{4} c^{2}}{a^{2} y^{3}}
\end{aligned}
$$

hence the acceleration parallel to the axis of $\|$ varies inversely as the cabe of the ordinate of the ellipse, and acts towards the axis of x, as is shown by the negative sign.
The time of passing from the extremity of the minor axis to that of the mad axis is found by dividing a by a, the constant velocity parallel to the axis of x, giving $\frac{a}{a}$, and the time of describing the whole ellipse is $\frac{4 a}{a}$.
If the orbit is a circle $b=a$, and the acceleration parallel to the axis of y is $-\frac{a^{2} c^{2}}{y^{3}}$.

If the velocity parallel to the y-axis is constant and equal to β, then

$$
\begin{aligned}
& \frac{d x}{d t}=-\frac{a^{2} \beta}{b^{2}} \cdot \frac{y}{x} \\
& \frac{d^{2} x}{d t^{2}}=-\frac{a^{4} \beta^{2}}{b^{2} x^{3}}
\end{aligned}
$$

and the periodie time $=\frac{4 b}{\beta}$.
5. A partiele deseribes the hype bola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$; find (1) the acceleration parallel to the axis of x if the velucity parallel to the axis of y is a constant, B, and (2) find the acceleration parallel to the y-ixis if the velocity parallo to the x-axis is a constant f o.
(1) Here we have

$$
\frac{d y}{d t}=\beta ; \quad \text { and } \quad \frac{d y}{d x}=\frac{b^{2}}{a^{2}} \cdot \frac{x}{y}
$$

EXAMI'HES

$$
\therefore \frac{d x}{d t}=\frac{d x}{d y} \cdot \frac{d y}{d t}=\frac{\beta a^{2}}{b^{2}} \cdot \frac{y}{x}
$$

which is the velocity parallel to the x-axis.

$$
\text { Also } \quad \begin{aligned}
\frac{d^{2} x}{d t^{2}} & =\frac{\beta a^{2}}{b^{2}} \cdot \frac{x \frac{d y}{d l}-y \frac{d x}{d t}}{x^{2}} \\
& =\frac{\beta^{2} a^{4}}{b^{2} x^{3}},
\end{aligned}
$$

hence the acceleration parallel to the x-axis varies inversely as the cube of the abscissia, and the x-component of the velocity is incere sing.
(2) Here we have

$$
\frac{d x}{d t}=\boldsymbol{\alpha} ;
$$

$$
\therefore \frac{d y}{d t}=\frac{c b^{2}}{a^{2}} \cdot \frac{x}{y} ;
$$

and

$$
\frac{d^{2} y}{d t^{2}}=-\frac{c^{2} b^{4}}{a^{2} y^{3}}
$$

hence the acceleration parallel to the y-axis is negative and the y-component of the velocity is decreasing.
6. A particle describes the parabola, $x^{\frac{1}{2}}+y^{\frac{1}{2}}=a^{\frac{1}{y}}$, with a constant velocity, c; find the accelerations parallel to the axes of x and y.

Here we have

$$
\frac{d s}{d t}=c ;
$$

and

$$
\frac{d x}{x^{\frac{t}{y}}}=\frac{-d y}{y^{\frac{5}{y}}}=\frac{d s}{(x+y)^{\frac{1}{2}}}
$$

$\therefore \quad \frac{d x^{2}}{d t^{2}}=\frac{d s^{2}}{d t t^{2}} \cdot \frac{x}{x+y}=\frac{c^{2} x}{x+y} ;$
and

$$
\frac{d y^{2}}{d t^{2}}=\frac{d s^{2}}{d l^{2}} \cdot \frac{y}{x+y}=\frac{c^{2} y}{x+y} ;
$$

differentiating we get

$$
\begin{aligned}
& \frac{d^{2} x}{d t^{2}}=\frac{c^{2}(a y)^{\frac{1}{2}}}{2(x+y)^{2}} ; \\
& \frac{d^{2} y}{d t^{2}}=\frac{c^{2}(a x)^{\frac{1}{2}}}{2(x+y)^{2}}
\end{aligned}
$$

7. A particle describes a parabola with such a varying velocity that its projection on a line perpendienlar to the axis is a constint, v. Find the velocity and the acceleration parallel to the axis.
Let the equation of the parabola be

	$y^{2}=2 p x ;$
then	$\frac{d y}{d t}=v$,
and	$\frac{d x}{d t}=\frac{d x}{d y} \cdot \frac{d y}{d t}=\frac{v y}{p} ;$

which is the velocity parallel to x
Also

$$
\frac{d^{2} x}{d t^{2}}=\frac{v^{2}}{p}
$$

which shows that the partiele is moving away from the tangent to the curve at the vertex with a constant acceleration.

Hence as the earth ats on particles near its surface with a constant acecleration in vertical lines, if a particle is projected with a velocity, u, in a horizontal line it will move in a parabolic path.
150. Motion of Projectiles in Vacuo.-If a particle be projected in a direction obligue to the horizon it is called a I'rojectile, and the path which it deseribes is called its Trejectory. The calse which we shall here consider is that of a particle moving in vacuo under the action of gravity; so that the problem 1 s that of the molion of a mojerclile in racuo; and hence, als gravity does not affect its lowizontal velocity, it resolves itself into the purely hinematic problem of a particle moving so that its horizomtal aceceration is 0 and its vertical acceleration is the constimt, y, (Art. 140).
151. The Path of a Projectile in Vacuo is a Parabola.-Let the plane in which the particle is projected be the plane of $x y$; let the axis of x be horizontaland the axis of y vertical and positive upwards, the
 origin being an the point of projection; let the velocity of projection $=v$, and let the line of projection be inclined at an angle a to the axis of x, so that r cos c, and r sin $"$ are the resolved p arts of the velocity of projection atong the axes of x and y. It is wident that the partiele will contimue to move in the plane of $x y$ as it is projected in it. and is su' iect to no foree which would tend to withdraw it from that plane.

Let (x, y) be the place, l ', of the particle at the time $/$; then the equations of motion are
surface with a particle is e it will more
-If a particle horizon it is ribes is called re consider is the action of motion of a es not affect , the purely hat its horiration is the
be inclined , and $r \sin c$ on along the cle will conjeceted in it. to withdraw
the time $/$;

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

CIHM/ICMH Microfiche Series.

> CIHM/ICMH Collection de microfiches.

$$
\frac{d^{2} x}{d t^{2}}=0 ; \frac{d^{2} y}{d t^{2}}=-g ;
$$

the ace ${ }^{\text {leration }}$ being negative since the y-component of the velocity is deereasing.

The first and second integgals of these equations will then be, taking the limits corresponding to $t=t$ and $t=0$,

$$
\begin{align*}
& \frac{d x}{d t}=v \cos c ; \frac{d y}{d t}=v \sin a-g t ; \tag{1}\\
& x=v \cos c t ; y=v \sin c t-\frac{1}{2} g t^{2} \tag{2}
\end{align*}
$$

Eflations (1) and (2) give the coordinates of the particle and its velocity parallel to either axis at any time, t.

Eliminating t between equations ($*$) we obtain

$$
\begin{equation*}
y=x \tan u-\frac{g x^{2}}{2 \iota^{2} \cos ^{2} \varkappa} \tag{3}
\end{equation*}
$$

which is the eruation of the trajectory, and shows that the particle will move in a parabola.
152. The Parameter ; the Range N; the Greatest Height $/ I$; Height of the Directrix.-Equition (3) of Art. 151 may be written

$$
\begin{gather*}
x^{2}-\frac{2 v^{2} \sin \because \cos u}{g} x=-\frac{2 v^{2} \cos ^{2} u}{g} y \\
\text { or }\left(x-\frac{v^{2} \sin u \cos u}{y}\right)^{2}=-\frac{2 v^{2} \cos ^{2} u}{y}\left(y-\frac{v^{2} \sin ^{2} u}{2!}\right) \cdot(\tag{1}
\end{gather*}
$$

By compuring this with the equation of a parabola referved to its vertex as origin, we find for

$$
\begin{equation*}
\text { the abseissa of the vertex }=\frac{r^{2} \sin \text { "cos } "}{g} \text {; } \tag{2}
\end{equation*}
$$

$$
\begin{align*}
& \qquad \text { the ordinate of the vertex }=\frac{v^{2} \sin ^{2} \alpha}{2 y} ; \tag{3}\\
& \text { the parameter (latus rectum) }=-\frac{2 v^{2} \cos ^{2} a}{g} \tag{4}
\end{align*}
$$

And by transferring the origin to the vertex (1) becomes

$$
\begin{equation*}
x^{2}=-\frac{2 v^{2} \cos ^{2} \tau}{g} y \tag{5}
\end{equation*}
$$

which is the equation of a parabola with its axis vertical and the vertex the highest point of the curve.

The distance, OB, between the point of projection and the point where the projectile strikes the horizontal plane is ealled the lange on the horizontal plane, and is the value of x when $y=0$, Putiong $y=0$ in (3) of Art. 151 and solving for x, we get

$$
\begin{equation*}
\text { the horizontal range } R=\mathrm{OB}=\frac{v^{2} \sin 2 c}{!} \tag{6}
\end{equation*}
$$

which is evident, also, geometrically, as $O B=2 O C$; that is, the range is equal to twice the abseissa of the vertex.

It follows from (6) that the range is the greatest, for a given velocity of projection, when $\varepsilon=45^{\circ}$, in which ease the range $=\frac{v^{2}}{g}$.

Also it appears from (6) that the range is the same when ce is replaced hy its complement: that is, for the same veloeity of projection the range is the same for two different amgles that are complements of emeh other. If $\boldsymbol{c}=45^{\circ}$ the two angles beomo identieal, and the range is a maximum.
(A is called the greatest height. II, of the projectile, and is given by (3) which, when $c=40^{\circ}$ becomes $\frac{v^{2}}{4 y}$.

1) becomes
axis vertical
rojection and izontal plane , and is the) of Art. 151
$=20 \mathrm{C}$; tinat c vertex.
rentest, for a which case
a same when or the sanue - two differli $«=45^{\circ}$ rauge is a
ojectile, und

The height of the alirectrix: $=\mathbf{C D}$

$$
\begin{equation*}
=\frac{r^{2} \sin ^{2} a}{2 g}+\frac{1}{2 r^{2} \cos ^{2} a} \frac{v^{2}}{2}=\frac{2 g}{} \tag{K}
\end{equation*}
$$

Hence when $a=45^{\circ}$ the focus of the parabolis lies in the horizontal line throngh the point of projection.
153. The Velocity of the Particle at any Point of its Path.-Let V be the velocity at any point of its path,

$$
\text { then } \quad \begin{aligned}
V^{2} & =\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}, \text { or by }(1) \text { of Art. } 151 \\
& =v^{2} \cos ^{2} a+\left(c^{2} \sin ^{2} c-2 c \sin \operatorname{ceg} t+g^{2} t^{2}\right) \\
& =v^{2}-2 g y .
\end{aligned}
$$

To acquire this velocity in falling from rest, the particle must have fatlen through a beight $\frac{V^{2}}{2 g}$, (6) of Art. 140, or its equal

$$
\begin{aligned}
\frac{v^{2}}{2 g}-y & =M S-M P \text { by }(8) \\
& =I S
\end{aligned}
$$

Hence, the velocity at my point, P, on the curve is that which the particle would acquire in fulling freely in vacno down the vertical height $S P$; that is, in falling from the directrix to the curve; and the velocity of projection at 0 is that which the particle would acquire in falling frecly through the height ('D). The directrix of the parabola is therefore determined by the velocity of projection, and is it a vertical distance above the point of projection equal to that down which a purticle falling would lave the veloeity of projection.
154. The Time of Flight, T, along a Ho izontal Plane.-lut $y=0$ in (3) of Art. 151, and solve for x, the
values of which are 0 and $\frac{2 v^{2} \sin a \cos a}{g}$. But the horizon. tal velocity is v cos e. Hence the time of flight $=20$ sin " Whieh raries as the sine of the inclination to the axis of x.
155. To Find the Point at which a Projectile will Strike a Given Inclined Plane passing through the Point of Projection, and the Time of Flight.- Let the inclined plane make an angle β with the horizon; it is evident that we have only to climinate y between $y=x$ tan β and (3) of Art. 151, whieh gives for the abscissa of the point where the projectile meets the plane

$$
x_{1}=\frac{2 v^{2} \cos \varepsilon \sin (\varepsilon-\beta)}{g \cos \beta}
$$

and the ordinate is

$$
\begin{equation*}
\left.y_{1}=\frac{2 v^{2} \cos \varepsilon \tan \beta \sin (\varepsilon-\beta)}{g \cos \beta} .\right) \tag{1}
\end{equation*}
$$

Hence the time of flight

$$
\begin{equation*}
T=\frac{x_{1}}{v \cos a}=\frac{2 v \sin (\alpha-\beta)}{g \cos \beta} \tag{2}
\end{equation*}
$$

156. The Direction of Projection which gives the Greatest Range on a Given Plane.-The range on the horizontal plane is

$$
\frac{v^{2} \sin 2 \alpha}{y}
$$

which for a given value of v is greatest when $a=\frac{\pi}{4}$ (Art. 152).

The range on the inclined plane $=x_{1}$ sec β

$$
\begin{equation*}
=\frac{2 v^{2} \cos }{g \operatorname{cosin}(\boldsymbol{c}-\beta)} \underset{g \cos ^{2} \beta}{ } \tag{1}
\end{equation*}
$$

the horizon$t=20 \sin 6$ $!$ e axis of x.
jectile will through the ht.-Let the rizon ; it is en $y=x$ tan uscissa of the

h gives the

 ange on the$$
x=\frac{\pi}{4}(\text { Art. }
$$

To find the value of e which makes this a maximum, we must equate to zero its derivative with respect to a, which gives

$$
\cos (2 c-\beta)=0
$$

$$
\therefore \quad c=\frac{1}{2}\left(\begin{array}{l}
\pi \tag{}\\
2
\end{array}+\beta\right)
$$

and hence

$$
\begin{equation*}
\alpha-\beta=\frac{1}{2}\left(\frac{\pi}{2}-\beta\right) \tag{3}
\end{equation*}
$$

which is the angle whieh the direction of projection makes with the inclined plame when the range is a maximum; that is, the projection bisects the angle between the inelined plane and the vertical.

In this ease by substituting in (1) the values of c and $(\alpha-\beta)$ as given in (\cdot) and (3) and reducing, we get

$$
\begin{equation*}
\text { the greatest range }=\frac{r^{2}}{g(1+\sin \beta)} \tag{4}
\end{equation*}
$$

157. The angle of Elevation so that the Particle may pass through a Given Point.-From Art. 15: there are two directions in which a particle may be projected so as to reach a given point; and they are equally inelined to the direction of projection $\left(x=\frac{\pi}{4}\right)$.

Let the given point lie in the plane whieh makes an angle β with the horizon, and suppose its abseissa to be h; then we must have from (1) of Art. 155

$$
\frac{2 v^{2}}{g \cos \beta} \cos r \sin (\varepsilon-\beta)=h
$$

If \boldsymbol{a}^{\prime} and $\boldsymbol{a}^{\prime \prime}$ be the two valnes of \boldsymbol{c} whieh satisfy this equation, we must have

$$
\cos \alpha^{\prime} \sin \left(c^{\prime}-\beta\right)=\cos \varepsilon^{\prime \prime} \sin \left(c^{\prime \prime}-\beta\right)
$$

and therefore

$$
\iota^{\prime \prime}-\beta={ }_{2}^{\pi}-\iota^{\prime},
$$

or

$$
\boldsymbol{c}^{\prime \prime}-\frac{1}{2}\left(\begin{array}{l}
\pi \tag{1}\\
2
\end{array}+\beta\right)=\frac{1}{2}\left(\frac{\pi}{2}+\beta\right)-\boldsymbol{c}^{\prime} .
$$

But each member of (1) is the angle between one of the directions of projection and the direction for the greatest range [Art. 156, (2)]. Hence, as in Art. 152, the two directions of projection which enable the particle to pass through a point in a given plane through the point of projection, are equally inclined to the direction of projection for the greatest runge along that plane. (See Tait and Steele's Dynamics of a Particle, p. 89.)
158. Second Method of Finding the Equation of the Trajectory.-By a somewhat simpler method than that of Art. 151, we may find the equation of the path of the projectile as the resultant of a miform velocity and an acceleration (Art. 148).
Take the direction of projection (Fig. 78) as the axis of x, and the vertical downwards from the point of projection as the axis of y. Then (Art. 149, Rem.) the velocity, v, duc to the projection, will carry the particle, with uniform motion, parallel to the axis of x, while at the same time, it is carried with constant acceleration, y, parallel to the axis of y. Hence at any time, t, the ecrations of motion along the axes of x and y respectively are

$$
\begin{gathered}
x=v t, \\
y=\frac{1}{2} g t^{2} .
\end{gathered}
$$

That is, if the particle were moving with the velocity v, alone, it would in the time $!$, arrive at Q; and if it were then to move with the vertical acceleration g alone it would in the same time arrive at l; therefore if the velocity v
and the acecleration g are simultaneous, the particle will id the time t arrive at P (Art. 149, Rem).

Eliminating t we have

$$
x^{y}=\frac{2 v^{2}}{g} y
$$

which is the equation of a parabola referred to a diameter and the tangent at its vertex. The distance of the origin from the directrix, being $\frac{1}{}$ th of the coefficient of y, is $\frac{v^{2}}{2 g}$, as in Art. 152, (8).
EXAMPLES.

1. From the top of a tower two particles are projected at angles " and β to the horizon with the same velocity, v, and both strike the horizontal plane passing through the bottom of the tower at the same point; find the height of the tower.
Let $h=$ the height of the tower; $v=$ the velocity of projection; then if the partieles are projected from the edge of the top of the tower, and x is the distance from the bottom of the tower to the point where they strike the horizoital plane we have from (3) of Art. 151

$$
\begin{align*}
& -h=x \tan \alpha-\frac{g x^{2}}{2 v^{2}}\left(1+\tan ^{2} \kappa\right) \tag{1}\\
& -h=x \tan \beta-\frac{g x^{2}}{2 v^{2}}\left(1+\tan ^{2} \beta\right) \tag{2}
\end{align*}
$$

by subtraction

$$
x=\frac{2 v^{2}}{g(\tan a+\tan \beta)}=\frac{2 v^{2} \cos \boldsymbol{a} \cos \beta}{g \sin (\alpha+\beta)} ;
$$

which in (1) or (2) gives

$$
h=\frac{2 v^{2} \cos a \cos \beta \cos (a+\beta)}{g[\sin (\sigma+\beta)]^{2}} .
$$

2. Particles are projected with a given velocity in all lines in a vertical plane from the point O; it is required 11 ind the locus of their lighest points.

Let (x, y) be the highest point; then from (${ }^{2}$) and (3) of Art. 152, we have

$$
\begin{gathered}
x=\frac{r^{2} \sin \pi \cos a}{g} ; \\
y=\frac{v^{2} \sin ^{2} u}{2 g} ;
\end{gathered}
$$

therefore $\sin ^{2} \epsilon=\frac{2 g y}{v^{2}}$, and $\cos ^{2} \approx=\frac{g x^{2}}{2 v^{2} y}$.
Adding

$$
4 y^{2}+x^{2}=\frac{2 v^{2} y}{g} ;
$$

which is the equation of an ellipse, whose major axis $=\frac{v^{2}}{g}$: and the minor axis $=\frac{r^{2}}{2 g}$; and the origin is at the extremity of the minor axis.
3. Find the angle of projection, ce, so that the area contained between the path of the projectile and the horizontal line may be a maximum, and find the value of the maximum area.

$$
\text { Ans. } a=60^{\circ} \text { and Max. Area }=\frac{r^{4}}{8 g^{2}}(3)^{\frac{1}{2}} .
$$

4. Find the ratio of the areas Λ_{1} and A_{2} of the two parabolas described by projectiles whose horizontal ranges are the same, and the angles of projection are therefore complements of eaeh other.

$$
\text { Ans. } \frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}}=\tan ^{2} c
$$

159. Velocity of Discharge of Balls and Shel's from the Mouth of a Gun. - As the result of numerons
locity in all s reyuired to
(2) and (3) of or $\operatorname{axis}=\frac{v^{2}}{g}$ the extremity
the area connd the borie value of the
```
= \frac{\mp@subsup{r}{}{4}}{8\mp@subsup{g}{}{2}}(3\mp@subsup{)}{}{\frac{1}{z}}.
```

2 of the two zontal ranges are theretore $=\tan ^{2} c$.
experiments mate at Woolwich, the following formula was: regarded as a correct expression for the velocity of hallo and shells, on quitting the gon, and fired with moderat. charges of powder, from the pieces of ordnance common! used for military purposes:

$$
v=1600 \sqrt{\frac{3 P}{1}}
$$

where r is the veloeity in feet per seeond, P the weight of the charge of powder, and it the weight of the ball.

For the investigation of the path of a projectile in the atmosphere, see Chap. I of Kineties.
160. Angular Velority, and Angular Accelera-tion.-Hitherto the method of revolving veloeities and arcelerations along two reetangular axes has been employed. It remains for us to investigate the kinematies of a particle deseribing a curvilinear path, from another point of view and in relation to another system of reference. Before we consider velocities and aecelerations in reference to a system of pohar eo-ordinates, it is necessitry to enquire into a mode of measuring the ongutar relocity of a partiele.

Angular Velocity may lie depined as the rate of anymlar: motion. 'Thus let ($r . \theta$) be the position of the point l ', and suppose that the radius vector has revolved miformly throngh the angle θ in the time t, then denoting the angular velocity by o, we shall have, as in linear velocity (Art. 7)

$$
\omega=\frac{\theta}{t}
$$

If however the radius sector does not revolve uniformly through the angle θ we may always regurd it as revolving uniformly throngh the angle $d \theta$ in the infinitesimal of time $d t$; hence we shall have as the proper value of ω,

$$
\begin{equation*}
\omega=\frac{d \theta}{d l} . \tag{1}
\end{equation*}
$$

Hence, whether the angular velocity be uniform or variable, it is the ratio of the angle deseribed by the radias vector in a given time to the time in which it is described; thus the increase of the angle, in angular velocity, take the place of the increase of the distamee from a fived point, in linear velocity, (Art. \%).

Angular Acceleration is the rate of increase of angular relocity; it is a relocity inerement, and is measured in the same way as linear acreleration (Art. 9). Thus, whether the angular accelcration is nniform or variable, it may always be regarded as miform during the infinitesimal of time $d t$ in which time the increment of the velocity will be $d \omega$. Hence denoting the angular aceeleration at any time, t. by ϕ, we have

$$
\begin{align*}
\phi=\frac{d \omega}{d \bar{t}} & =\frac{d}{d l}\binom{d \theta}{d \ddot{l}} \text { from (1) } \\
& =\frac{d^{2} \theta}{d t^{2}}, \tag{2}
\end{align*}
$$

and thus, whether the increase of angular velocity is nuiform or variable, the angular acceleration is the increase of ungular velocity in a unit of time.

The following examples are illustrations of the preceding mode of estimating velocities and accelerations.

EXAMPLES.

1. If a particle is placed on the revolving line at the distance r from the origin, and the line revolves with a uniform angular velocity, ω, the reiation between the linear velocity of the particle and the angular velocity may thus be found. y the radios is described; elocity, take I fyed point,
se of angular asured in the 'luss, whether able, it may finitesimal of locity will be at any time,
r velocity is s the inerease the preceding
line at the olves with a en the linear ty may thus

Let $z \theta$ be the angle throngh which the radius revolves in the time dl, and let ds be the path described by the particie, so that $d s=r d \theta$;
then

$$
\frac{d s}{d t}=r_{\because}^{d \theta}=\omega r
$$

\therefore that the linear reiocity varies as the angular velocity and the length of the radins jointly.
2. If the angular acceleration is a const:ut, as ϕ; then from (z) we have

$$
\begin{gathered}
\frac{d^{2} \theta}{d l l^{2}}=\phi \\
\therefore \quad d \theta=t+\omega_{0}, \\
\therefore \quad \theta=\frac{1}{2} \phi t^{2}+\omega_{0} t+\theta_{0},
\end{gathered}
$$

and
where ω_{0} and θ_{0} are the initial values of ω and θ.
Hence if a line revolves from rest with a constant angular acceleration, we have

$$
\theta=\frac{1}{2} \phi l^{2}
$$

and the angle described by it varies as the square of the time.
3. If a partiele revolves in a circle uniformly, and its phace is continually projected on a given diameter, the linear acceleration along that diameter varies directly as the distance of the projected place from the centre.

Let σ be the constant angnlar velocity, θ the angle between the fixed diameter and the radins drawn from the enntre to its place at the time 1 , x the distance of this projected place from the ecutre. Then, calling a the radius of the eircle, we have

$$
r=u \cos \theta
$$

$$
\begin{aligned}
& \frac{d x}{d t}=-a \sin \theta \frac{d \theta}{d t}=-a \omega \sin \theta \\
& \frac{d^{2} x}{d t^{2}}=-a \omega \cos \theta \frac{d \theta}{d t}=-\omega^{2} \cdot x
\end{aligned}
$$

which proves the theorem.
4. If the angular acceleration varies as the angle generated from a given fixed line, and is negative, find the angle.
Here the equation which expresses the motion is of the form

$$
\frac{d^{2} \theta}{d t^{2}}=-k^{2} \theta
$$

Calling c the initial valne of θ we find for the result

$$
\theta=\pi \cos k t
$$

5. If a particle revolves in a cirele with a miform velocity, show that its angular velocity about any point in the eirenmference is also miform, and equal to one-half of what it is about the centre.

At present this is sufficient for the general explanation of angnlar veloeity and angular aceleration. We shall return to the subject in Chap. 7, Part III., when we trent of the motion of rigid bodies.
161. The Component Accelerations, at any instant, Along, and Perpendicular to the Radius Vector.Let ($r, 0$) (Fig. 79) be the phee of the moving purticle, P, at the time $t,(x, y)$ being its place refirred to a system of rectangular ases having the sume origin, and the x-asis (oincident with the initial line. Then

$$
\begin{equation*}
x=r \cos \theta ; y=r \sin \theta \tag{1}
\end{equation*}
$$

radical and transiersal accelerationg. 279
therefore

$$
\begin{equation*}
\frac{d x}{d t}=\frac{d r}{d t} \cos \theta-r \sin \theta \frac{d \theta}{d t} \tag{2}
\end{equation*}
$$

and
${ }_{d t^{2}}^{d^{2} x}=\left[\frac{d^{2} r}{d t^{2}}-r\left(\frac{d \theta}{d t}\right)^{2}\right] \cos \theta-\left[2 \frac{d r}{d t} \cdot \frac{d \theta}{d t}+r \frac{d^{2} \theta}{d t^{2}}\right] \sin \theta .(3)$
Similarly
$\frac{d^{2} y}{d t^{2}}=\left[\frac{d^{2} r}{d t^{2}}-r\left(\frac{d \theta}{d t}\right)^{2}\right] \sin \theta+\left[2 \frac{d r}{d t} \cdot \frac{d \theta}{d t}+r \frac{d^{2} \theta}{d t^{2}}\right] \cos \theta ;(4)$
which are the accelerations parallel to the axes of x and y. Resolving these along the radius vector by multiplying (3) and (4) by $\cos \theta$ and $\sin \theta$ respectively, since accelerations may be resolved and compounded along any line the same as velocities (Art. 149), and adding, we have

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}} \cos \theta+\frac{d^{2} y}{d t^{2}} \sin \theta=\frac{d^{2} r}{d t^{2}}-r\left(\frac{d \theta}{d t}\right)^{2} ; \tag{5}
\end{equation*}
$$

which is the acceleration along the radius vector.*
Mnltiplying (3) and (4) by $\sin \theta$ and $\cos 0$ respectively, and subtracting the former from the latter, we get

$$
\begin{gather*}
\frac{d^{2} y}{d t^{2}} \cos \theta-\frac{d^{2} x}{d t^{2}} \sin \theta=2 \frac{d r}{d t} \cdot \frac{d \theta}{d t}+r \frac{d^{2} \theta}{d t^{2}} \\
=\frac{1}{r} \frac{d}{d t}\left(r^{2} \frac{d \theta}{d t}\right) ; \tag{6}
\end{gather*}
$$

which is the acceleration perpendicular to the radins rector. \dagger
162. The Component Accelerations, at any instant, Along, and Perpendicular to the Tangent.let (x, y) (Fig. $\boldsymbol{i} 9$) be the place of the moving purticle, P , at the time t, and s the length of the ure descrilied during

[^13]that time. Then the aceelerations along the axes of x and y are $\frac{d^{2} x}{d t^{2}}$ and $\frac{d^{2} y}{d t^{2}}$; and the direction cosines* are $\frac{d x}{d s}$ and $\frac{d y}{d s}$. To find the acceleration along the tangent we must multiply these axial accelerations by $\frac{d x}{d s}$ and $\frac{d y}{d s}$, respectively, and add. Thus the tangential acceleration, T , is
\[

$$
\begin{equation*}
\mathrm{T}=\frac{d^{2} x}{d t^{2}} \cdot \frac{d x}{d s}+\frac{d^{2} y}{d t^{2}} \cdot \frac{d y}{d s} \tag{1}
\end{equation*}
$$

\]

Since $d s^{2}=d x^{2}+d y^{2}$, therefore, by differentiation we have

$$
d s d^{2} s=d x d^{2} \cdot x+d y d^{2} y
$$

and dividing by $d s d t^{2}$ we get

$$
\frac{d^{2} s}{d t^{2}}=\frac{d^{2} x}{d t^{2}} \cdot \frac{d x}{d s}+\frac{d^{2} y}{d t^{2}} \cdot \frac{d y}{d s}
$$

which in (1) gives

$$
\begin{equation*}
\mathrm{T}=\frac{d^{2} s}{d l^{2}}, \tag{2}
\end{equation*}
$$

for the acceleration along the tangent.
Similarly we have for the normal aceeleration, N ,

$$
\begin{aligned}
\mathrm{N} & =\frac{d^{2} y}{d t^{2}} \cdot \frac{d x}{d s}-\frac{d^{2} x}{d t^{2}} \cdot \frac{d y}{d s} \\
& =\frac{\left(d^{2} y d x-\frac{d^{2} x}{d s^{3}} d y\right)}{d s^{2}} \\
& =\frac{1}{\rho} \cdot \frac{d s^{2}}{d t^{2}}, \text { (by Ex. 4, p. 144, Calculus), }
\end{aligned}
$$

where ρ is the rudius of curvature :

* Corfines of the anglen which the tangent makes with the axen of x and y.

$$
\begin{equation*}
\therefore \quad \mathrm{N}=\frac{v^{2}}{\rho}, \tag{3}
\end{equation*}
$$

Lf y is the velocity of the particle at the point (x, y).
Hence at any point, P , of the trajectory, if the acceleration is resolved along the tangent to the curve at P and along the normal, the accelerations along the two lines are respectively

$$
\frac{d^{2} y}{d l^{2}} \text { and } \frac{v^{2}}{\rho}
$$

163. When the Acceleration Perpenaicular to the Radius Vector is zero.-Then from (6) of Art. 161 we have
and

$$
\begin{aligned}
r^{2} \frac{d \theta}{d t} & =\text { constant }=h \text { suppose; } \\
& \therefore \frac{d \theta}{d t}=\frac{h}{r^{2}} ; \\
\frac{d r}{d t} & =\frac{d r}{d \theta} \cdot \frac{d \theta}{d t}=\frac{h}{r^{2}} \cdot \frac{d r}{d \theta} ; \\
\because \quad \frac{d^{2} r}{d l^{2}} & =\frac{h^{2}}{r^{2}} \cdot \frac{\left(d^{2} r\right.}{d \theta^{2}}-2 \frac{h^{2}}{r^{5}}\left(\frac{d r}{d \theta}\right)^{2} ;
\end{aligned}
$$

which in (5) of Art. 161 gives
the neceleration along the rudius vector

$$
\begin{equation*}
=\frac{h^{2}, d^{2} \cdot}{r^{4} d\left(\overline{\theta^{2}}\right.}-2 \frac{h^{2}}{r^{5}}\left(\frac{d r}{d \theta}\right)^{2}-\frac{h^{2}}{r^{3}} ; \tag{1}
\end{equation*}
$$

mn expression which is independent of t.
This may be put into a more convenient form as follows:
Let $r=\frac{1}{u}$; then

$$
\frac{d r}{d \bar{\theta}}=-\frac{1}{u^{2}} \cdot \frac{d u}{d \bar{\theta}} ;
$$

$$
\therefore \frac{d^{2} r}{d \theta^{2}}=-\frac{1}{u^{2}} \cdot \frac{d^{2} u}{d \theta^{2}}+\frac{\dot{\partial}}{u^{3}}\left(\frac{d u}{d \theta}\right)^{2} ;
$$

which in (1) and reducing, gives
the acceleration along the radius santor

$$
\begin{equation*}
=-l^{2} u^{2}\left(\frac{d^{2} u}{d \theta^{2}}+u\right) \tag{:}
\end{equation*}
$$

From these two formulie the law of aceeleration along the radins vector may be dednced when the curve is given, and the curve may be deduced when the law of aceeleration along the radius vector is given. Examples of these processes will be given in Chat. (2), Part III.
164. When the Angular Velocity is Constant.Let the angular velocity be constant $=\omega$ suppose. Then

$$
\frac{d \theta}{d t}=\omega ;
$$

therefore from (5) of Art. 161
the aceeleration along the radius veetor

$$
\begin{equation*}
=\frac{d^{2} r}{d t^{2}}-r \omega^{2} \tag{1}
\end{equation*}
$$

The aceeleration perpendicular to the radins vector

$$
\begin{equation*}
=2 \omega \frac{d r}{d t} ; \tag{2}
\end{equation*}
$$

and both of these are independent of $\boldsymbol{\theta}$.
The following example is in illnstration of these formula :

A particle deseribes a puth with a constant angular veloeity, and withont aceelemation along the radins vector: find (1) the equation of the path, and (2) the aceeleration perpendicular to the radius vector.
(1) From (1) wo have, from the conditions of the question,

$$
\frac{d^{2} r}{d t^{2}}-\omega^{2} r=0
$$

Integrating we have

$$
\frac{d r^{2}}{d t^{2}}=\omega^{2}\left(r^{2}-a^{2}\right)
$$

if $r=a$ when $\frac{d r}{d t}=0$.
Therefore $\quad \frac{d r}{\left(r^{2}-a^{2}\right)^{\frac{1}{3}}}=\omega d t$;
and

$$
\log \left[\frac{r+\left(r^{2}-a^{2}\right)^{\frac{1}{2}}}{a}\right]=\omega t
$$

if $r=a$ when $t=0$,

$$
\begin{equation*}
\therefore \quad r=\frac{a}{2}\left(e^{\omega t}+e^{-\omega t}\right) \tag{3}
\end{equation*}
$$

Also, as $\frac{d \theta}{d t}=\omega$, therefore $\theta=\omega t$, if $\theta=0$ when $t=0$. Substituting this valne of ωt, we have,

$$
\begin{equation*}
r=\frac{a}{2}\left(e^{\theta}+e^{-\theta}\right) ; \tag{4}
\end{equation*}
$$

which is the path described by the particle.
(2) Let Q be the required acceleration perpendieular to the radius vector, then from (2) we have

$$
\begin{aligned}
Q & =2 \omega \frac{d r}{d l} \\
& =u \omega^{2}\left(e^{\omega t}-e^{-\omega t}\right), \text { from }(3)
\end{aligned}
$$

$$
\begin{align*}
& =a \omega^{2}\left(e^{\theta}-e^{-\theta}\right) \\
& =2 \omega^{2}\left(r^{2}-a^{2}\right)^{\frac{1}{2}} ; \tag{5}
\end{align*}
$$

whieh is the acceleration perpendicular to the radius vector.
The preceding discussion of Kinematics is sufficient for this work. There are various other problems which might be studied as Kinematic questions, and inserted here; but we prefer to treat them from a Kinetic point of view.
For the investigation of the kinematics of a particle describing a curvilinear path in space, see Price's Anal. Mech's, Vol. I, p. 430, also Tait and Steele's Dytamics of a Particle, p. 12.

EXAMPLES.

1. A partiele deseribes the byperbola, $x y=k^{2}$; find (1) the aceeleration parallel to the axis of x if the velocity parnllel to the axis of y is a constant, β, and (2) find the acecleration parallel to the axis of ! if the velocity parallel to the axis of x is a constant, \boldsymbol{c}.

$$
\text { Ans. (1) } \frac{2 \beta^{2}}{k^{4}} x^{3} \text {; (2) } \frac{2 c^{2}}{k^{4}} y^{3} .
$$

2. A partiele deseribes the parmboln, $y^{2}=4 a x$; find the acceleration parallel to the axis of y if the velocity parallel to the axis of x is a constant, α.
3. A particle deseribes the logarithmic curve, $y=a^{x}$; find (1) the x-component of the acceleration if the y-component of the veloeity is a constant, β, and (2) find the y-romponent of the aceeleration if the x-romponent of the velocity is a constant. u.

$$
A u s .(1)-{ }_{u^{2 x}}^{\beta^{2}} \log a ;\left(i^{2}\right) \alpha^{2}(\log a)^{2} y
$$ which might d here ; but f view. ff a particle Price's Anal. Dymamies of

4. A particle describes the cycloid, the starting point being the origin; find (1) the x-component of the arceleration if the y-component of the velocity is β, and (2) find the y-component of the aceeleration if the x-component of the veloeity is \boldsymbol{r}.

$$
\text { Ans. (1; } \frac{\beta^{3} a y}{\left(2 a y-y^{2}\right)^{\frac{3}{2}}} ;(2)-\frac{a c^{2}}{y^{2}} \text {. }
$$

3. A particle describes a catenary, $y=\frac{a}{2}\left(a^{\frac{r}{a}}+e^{-\frac{x}{a}}\right)$; fiad (1) the r-component of the acecleration if the y-component of the velocity is β, and (${ }^{2}$) find the y-component of the acceleration if the x-component of the velocity is α.

$$
\text { Aus. (1) }-\frac{\beta^{2} a y}{\left(y^{2}-a^{2}\right)^{\frac{1}{2}}} ; \text { (2) } \frac{a^{2}}{a^{2}} y .
$$

6. Determine how long a particle takes in moving from the point of projection to the further end of the latus rectuns.

$$
\text { Ans. } \frac{r}{g}(\sin a+\cos \pi) .
$$

7. A gun was fired at an elevation of 50°; the ball struck the gromed at the distance of 2449 ft .; find (1) the velocity with which it left the gun and (2) the time of Hight. $(g=32 t)$.

$$
\text { Alus. (1) } 282.8 \text { fl. per see.; (2) } 13.47 \text { sees. }
$$

8. A ball fired with velocity u at an inclination c to the horizon, just clears a vertical wall which subtends an angle, β. at the point of projection; determine the instant at which the ball just elears the wall.

$$
A u s . \frac{u \sin \varepsilon-\frac{1}{2} y t}{u \cos \varepsilon}=\tan \beta .
$$

9. In the preceding example determine the horizontul distame between the foot of the will and the point where the ball strikes the gromad.

$$
\text { Ans. } \frac{2 u^{2}}{g} \cos ^{2} u \tan \beta
$$

10. At the distance of a quarter of a mile from the bot. tom of a clift, which is $1 \geqslant 0 \mathrm{ft}$. high, a shot is to be fired which shall just clear the eliff, and pass over th horizontally : find the angle, a, and velocity of projection, v.

$$
\text { Ans. } \quad c=10^{\circ} 18^{\prime} ; r=490 \mathrm{ft} \text { per sec. }
$$

11. When the angle of elevation is 40° the range i. 2449 ft . find the range when the elevation is $29 \frac{1}{2}^{\circ}$.
$A n s .2131 .5 \mathrm{ft}$.
12. A berdy is projected horizontally with a velocity of +ft . per sec.: find the latus reetum of the parabola deseribed, $(y=3:)$.

Aus. 1 foot.
13. A body projected from the top of a tower-at an angle of 45° almove the horizontal direction, fell in 5 secs. at a distance from the bottom of the tower equal to its altitule ; find the altitude in feet, $(y=32)$.

Ans. 200 fect.
14. A ball is fired 1 p a hill whose inclination is 15°; the inclination of the picce is 45°, and the velocity of projection is 500 ft . per sec.; find the time of flight before it strikes the hill, and the distance of the place where it falls from the point of projection.*

$$
.1 / \mathrm{s} . \mathrm{T}=16.1 \% \text { sees. } ; \mathrm{R}=1.121 \text { miles. }
$$

15. On a desecoding plane whose inclination is 12°, a ball fired from the top hits the plane at a distance of two miles and a hallf, the eleration of the piece is 42°; find the velocity of projection.

$$
A n s . v=5 i 9.74 \mathrm{ft} . \text { per sec. }
$$

16. A body is projected at an inelination a to the horizom: determine when the motion is perpendicular to a plame which is inclined at ann angle β to the horizon.

$$
A n s \cdot \frac{u \sin u-n t}{u \cos a}= \pm \cot \beta .
$$

[^14]rom the botis to be fired : it horizontion, v. t. per sec. he range i. $9 \frac{1}{2}^{\circ}$.
2131.5 ft .
l velocity of parabola deis. 1 foot.
-at an angle 5 secs. at a its altiture ; 200 feet.
ion is 15°; city of proight before ce where it

21 miles.
11 is 12°, a ince of two ${ }^{\circ}$; find the - per sec.
o the horiicular to a izon.
$\pm \operatorname{eot} \beta$.

1\%. Calculate the maximum range, and time of tlight, on a descending phane, the angle of depression of which is 15°, the velocity of projection heing 1000 ft . per sece.

Ans. Max. range $=3.98$ miles $; ~ ' T=51.34$ sece.
18. With what velocity does the ball strike the phane in the last example? $\quad f / n . s . V=1303$ feet.
19. If a ship is moving horizontally with a relocity $=3 g$, and a body is let fall from the top of the mast, tind its velocity, V, and direction, 0 , after 4 sees.

$$
A n . V^{\prime}=\bar{y} y: \theta=\tan ^{1} \frac{3}{}
$$

20. A boty is projected borizontally from the top of a tower, with the velocity gained in falling down a satee equal to the height of the tower ; at what distance from the base of the tower will it strike the ground?

Ans. $\mathrm{R}=\mathrm{twice}$ the height of the tower.
21. Find the velocity and time of dight of a body profected from one extremity of the base of an equilateral triangle, and in the direction of the side adjacent to that extremity, to pass through the other extremity of the base.

$$
A n s . r=\sqrt{\frac{i a!}{\sqrt{3}}} ; ' \mathrm{I}=\sqrt{\frac{2 a \sqrt{3}}{!}}
$$

22. Given the velocity of sombl, V; find the horizontal range, when a bill, at a given angle of elevation, e, is so projected towards a person that the bull and sound of the discharge reach him at the same instant.
23. A body is projected horizontally with a volocity of 4 from a point whose height above the gromed is ltig: tind the direction of motion, θ. (1) when it has fallen halt-way 10 the gromid, and (2) when half the whole time of falling has elapsed.

$$
A n s .(1) 0=45^{\circ} ;(2) 0=\tan ^{-1} \frac{1}{\sqrt{2}}
$$

24. Particles are projected with a given velocit; r, in all lines in a vertical phane from the point 0 ; find the loens of them at a given time. t.
Ans. $x^{2}+\left(y+\frac{1}{2} / f^{2}\right)^{2}=r^{2 / 2}$, which is the equation of a cirele whose radins is $x t$ and whose centre is on the axis of If at a distance $\frac{1}{3} f^{2}$ below the origin.
25. How much powder will throw at 13 -inch shell* 4000 ft . on an inclined phane whose angle of elevation is $10^{\circ} 40^{\prime}$; the elevation of the morts. being 35 .

$$
.1 \mathrm{~ns} . \text { Charge }=4.67 \mathrm{lbs} \text {. }
$$

26. A projectile is discharged in a horizontal direction, with a velocity of 450 lt . per sec., from the summit of a conical hill, the vertical angle of which is 120 ; at what distance down the hillside will the projectile fall, and what will be the time of flight?

Ans. Distance $=2810.5$ yards; Time $=16.23$ secs.
27. A gmo is plated at a distance of 500 ft . from the hase of a eliff which is 200 ft . high: on the edge of the cliff there is built the wall of a calstle 60 ft . high : tind the elevation, c, of the gun, and the velocity of discharge, v, in order that the ball may graze the top of the eastle wall, and fall 120 ft . inside of it.

$$
1 u s . a=53^{\circ} 19^{\prime}: u=16 \overline{\mathrm{ft}} \text {. per sec. }
$$

28. A piece of ordnance burst when 50 yards from a wall 14 ft . high, and a fragment of it. owignally in contaet with the gromud, after grazing the wall, fell 6 ft . beyoud it on the opposite side; find how high it rose in the air.

Ans. 84 ft .

* The weight of a 13 -tnch shell 18196 lbs .
velucit; , c, it find the locus equation of a on the axis of

3-inch shell* clevation is
$=4.67 \mathrm{lbs}$.
tal direction, summit of a 20 ; at what ill, and what
16.23 secs.
rom the hase of the eliff gh ; find the discharge, v, castle wall, ft. per sece.
ards from a pally in con11, tell 6 ft . gh it rose in 1 ns .84 ft .

PARTIII.

KINETICS (MOTION AND FORCE).

CHAPTER I.

LAWS OF MOTION-MOTION UNDER THE ACTION OF A VARIABLE FORCE-MOTION in A RESISTING MEDIUM.
165. Definitions.-Kinetics is that branch of Iynamics which treats of the motion of bodies under the action of forces.

In Part I, forces were considered with reference to the pressures which they produced upon hodies at rest (Art. 15), i. e., bodies under the ation of two me more forees in equih timu (Art. 26). In liart II we considered the purely geometric properties of the motion of a point or particle without any reference to the canses producing it, or the properties of the thing moved. We are now to consider motion with reference to the causes which produce it, and the things in which it is produced.

The student must here review Chapter I, Part I, and obtain clear conceptions of Momentum, Acctleration of Momentum, and the Kinctir measure of Force (Arts. 12,18, 19. and 20), as this is necessary 10 a full understanding of the fundamental laws of motion. on the trum of which a!! our succeeding investigations are founded.
166. Newton's Laws of Motion.-The fundamential 13
principles in accordince with which motion takes place are embotied in three statements, generally known as Neuton's Lau's of Molion. These laws mast be considered as resting on "onvictions drawn from observation and experiment. and not on intuitive perception.* 'The laws are the fol. lowing:
L.aw I.-Every bodly continues in its state of rest or of uniform motion in a straight line, eacept in so fiar as it is compelled by force to change that state.

Law II. - Chunge of motion is proportional to the forere applicht. and takes place in the direction of ther straight line in which the force acts.

Law IH.-To every action there is always an ratual and contraty reaction: or, the mutual artions of "any two bodies are clways equal and oppositely directed.
167. Remarks on Law I.-Law I supplics us with a definition of torce. It indicates that force is that which tends to change a borly's state of rest or of miniform motion in a straight line : for if a mondy dors not continue in its state of rest or of uniforin motion in a straight line it must be under the action of force.
A body las no power to change its own state as to rest or motion ; When it is at rest, it has no power of putting itself in motion; when in motion it has no power of inereasing or diminishing its velocity. Matter is inert (Art. 3). If it is at rest, it will remain at rest ; if i is is moving with a given velucity along a rectilinear pall, it will continue to move with that velocity along that path. It is alike natural to matter to be at rest or in motion. Whenever, therrefore, a moxly's state is changel either from rest to motion, or from motion to rest, or when i a velocety is inerrase 1 or diminished, that change is due 11 some external cause. This eause is refled firee (Art. 14); and the word force is used in kineties in this muming only.

[^15]kes place are I as Neuton's ed as resting experiment, are the fol.
tute of rest , e.cecept in range that
oncel to the irection of
elocreys an leturel areand oppo-
cs us with a hien tends to straight line: - uniform moce.
st or motion ; notion ; when ; its velocity. rest ; if is is will continue ike natural to fore, in loody's otion to resi, nge is due t 14); and the
168. Remarks on IJaw II.-Law 11 asserts that if any are gencrates motion, a doable force will generate double motion, anifl su) (on, whether apphied simulancously or sucessively, instantanconsly or gradumly. And this metien, if the boly was moving b for hand, is rither udded to the previous mution if direetly eoms is bug with it, or is subtractod it directly opposed; or is geometrically rompounded with it according to the principles already explained (.)rt. 29), if the line of previous motion and the direction of the firer are inclined to cach othrer at angle. The term motion hore means quantity of motion, and the phruse chunge of motion here memis rute "t changr" of qu"ntity of motion (Art, 13). If the force be finite it will require a finite time to prodnce a sonsible change of motion, and the ehange of momentum produced by it will depend mon the time during which it acts. The change of motion must then be understood to be the change of momentum prolured per un't of time, or the raie of change of momentum, or accelerati.in of monentum, which agrees with the prineipless already explained (Arts. $1: 3$ mid 20). In tinis law nothing is said about the netual motion of the body before it was acted on by the force; it is omly the chunge of motion that coneerns us. The same force will proluce precisely the same change of notion in a body; whether the berly be at rest, or in motion with any velocity whatever.

Since, when sevemal forces act at once on a particle either at rest or in motion, the secomb law of motion is true for every one of these forces. it fohlows that cach must have the same ettecet. in wo far as the change of motion prosluced hy it is coneerned, as if there the only force in actom. Hence the assertion of the second law maty be put in the following form:

When amy number of forres act simultaneously om aboly, whether at rest or in motion in tuy direction. vach forer prothres in the borty the same change of motion as if it alone bued acted on thr botly at resst.

It follows from this view of the law that all problems
 as if the forces acted surcessimerly.

The operations of this hw have a'realy been consildered in kine
maties (Art. 149); but motion there was understood to mean velocity only, since the mass of the body was not considered. This law includes, therefore, the law of the composition of velocities alroady referred to (Art. 29). Another consequence of the law is the following: Since forces are measured by the chmuges of motion they 1 roduce, and their directions assigned by the direetions in which these changes are proiuced, and since the changes of motion of one and tha same boly are in the directions of, and proportional to, the clanges of velocity, therefore a single force. measared by the resultant change of velocity, und in its direction, will be the equivalent of any number of simultureously acting forces.
Hence,
The resullaul of any unmber of concurriny forces is to be fouml by the same geometric pracess as the resultant of any number of simullaneous velocilies, and conversely.

From this fullows at onee the Polygon of Velocities and the Paralldopined of lelocites from the Polygon and Pabrallelopijed of Forees, as was described in Art. 142.

This haw alse gives us the means of mensuring force, and also of mensuring the merss of a bouly : for the actions of different forces upon the same body for efual times, cevidently produce ehanges of velocity which are proportionta' to ila forces Also, if equal forces act on different boclies for equal times, the changes of velocity produced must Le inversely as the maswe of the bodien. Agnin, if different bodies, each acted on by a force, nequire in the same time the same changes of velocity, the forces must be proportional to the masses of the bodies. This means of measuring fore is practically the sume as that ulready dodnecd by ubstract reasoning (Arts. 10 and 20).

It appears from this law, that every theorem of Kinematies comnected will acederation has its combepart in Kineties. Thas, the measure of aceelemation of relocity increment. (Art. 9), which was disenssed in Chapl. I (Arts. 8 and (1), and in Kinematies (Ara 13:i), and which is
 measure of loree: therefore all the resulls of the equation sultant clange of any number
orces is to be iltant of any y
elocities and 'olygon and it. 142.
ce, und also of It forces upon res of velocity ces act on dif. roduced must fferent bodies, same changes masses of the y the sume as 120).
\cdots of Kinemerpart in or relocity iap. I (Arts. 1d which is et and the e equation

$$
\begin{equation*}
f=\frac{d d^{2} s}{d t^{2}} \tag{1}
\end{equation*}
$$

its varions forms, and the remarks which have been made on it, are applicable to it when f is the acerelerating forere. Thus, (Art. 162), we see that the foree, unter which a partiele deseribes any eurve, may be resolved into two components, one in the tangent to the eurve, the wher tomards the centre of curvatme: their magnitudes being the aceeleration of momentum, and the product of the momentum into the ungular velocity abont the centre of eurvature, respectively. In the case of uniform motion. the first of these vanishes, or the whole force is perpena licular to the direction of motion. When there is no force perpendicnlar to the direction of motion, there is no curvature, or the path is a straight line.

Hence if we suppose the particle of mass m to be at the point ($x, y, 2$), and resolve the forees acting on it into the three rectangular components, X, Y, Z, we have

$$
\begin{equation*}
m \frac{d^{2} x}{d t^{2}}=\mathrm{X}: m \frac{d^{2} y}{d l^{2}}=\mathrm{Y} ; m \frac{d^{2} z}{d t^{2}}=\mathrm{Z} \tag{2}
\end{equation*}
$$

In several of the chapters these equations will be simplitied by assuming mity as the mass of the moving partiele. When this cannot be done, it is sometimes comvenient to assume X. Y, Z, as the component arces an the unit mass, and (i) becomes

$$
m \frac{d^{2} \cdot x}{d d^{2}}=m \mathrm{X}, \text { etc. }
$$

from which m may of course be omitted. It will be observed that an equation such as

$$
\frac{d^{2} x}{d t^{2}}=\mathrm{X}
$$

may be interpreted either as Kinctical or Kinematical; if
the former, the mit of mass must be miderstoou as a face tor on the left hand site, in wheh ease X is the e-cotinponent. for the mil of mass, of the whote foree exerted on the mowi"g hooly.

The fint two laws, have, therefore, furnished us with a definition a: . a measure of forer; and they ulso show how to compound, and ancelore how to resolve, forces; and also how to invertignte the conditions of equilibriun or motion of a single particle suljected to given forces.
169. Remarks on Law III.-Aecording to Law III, if one lody presses or draws nother, it is pressed or drawn by this other with an equal foree in the opposite direction (Art. 16). A horse towing a beat on a canal, is pullet lonekwards by a foree equal to that which he impresses on the towing rope forwards. If one body strikes another boyly and changen the motion of the other body, its own motion will be change in an equal quantity and in the opposite direction; for at each instant during the impart the haxlien exert on end other mual and opposite pressures, and the momentim that one burly loses is canal to that which the other guins.

The earth attracts a falling pebble with a certain force, while the pebble attracts the parth with an equal foree. The result is that while the pebble moves towards the earll on account of its attrace. tion, the earth also moves towards the pebble under the influene of the altraction of the latter; but the mass of the earth being foormously greater than that of the pebble while the forecs on the two arising from their mutual attractions are equal, the motion probluepl thereby in the earth is almost incomparably hess than that produced in the pebble, and is consefuently insensible.

It follows that the sum of the quanities of motion parallel to any fixed direction of the particles of any system influencing one anether ill any possible way, remains unchanged by their mutual action. Tharefore if the eentre of gravity of any system of matually influencing particles is in motion, it continnes moving uniformly in a st taight lene, untess in so fur us the direction or velocity of its motion is changed by forces between the particles and some other matter wot helonging to the system; also the centre of gravity of nuy systim of purtieles moves just as all the mater of the sestem, if concent rated in " point, wonld move under the inlluener of forces equal and parallel to the forces really actlog on its different parts. (For fiurther
triou as a face
 r "xerted onf
rith a definition componnd, and invertignte: the le subjected to

Law III, if one n loy this other 16). A horse ce equal to that Hic Iroly strikes boty, its own in the opposite botios exert on entum that one

Porce, while the e result is that ut of its atime. he inflnener of th being rnorcose on the two otion proxluceal that produced
arallel to any ng one another nutual action. 1 of mutunlly miformly in in r of its molion her matter mot any sestem of ourentrated in I ned parnlle] (For liurther
remarks on these laws see Thit and Stere's Iymamics of a Particle, 'i'homson and 'Tait's Nat. Phil., 'Pratt's Mechanice, etc.)
170. Two Laws of Motion in the French Treatises. -Newton's Laws of motion are not adopted in the principal French treatises; but we find in them two prinaples only as borrowed from experience, viz:

Fhist.-The Lav of Inertia, that a body, not acted upon ly any force, would go on for ever with a uniform velocity. This coineides with Newton: First Law.

Second.-That the erlocity commmicated is propartional to the force. The second and third Laws of Notion are thas reducel to this second principle by the French writers, especially Poisson and Laplace.*
171. Motion of a Particle under the Action of an Attractive Force.-A purtirle moves under " force of attruction urhigh is in its line of motion, and varies directly as the distance of the particle from the centre of force; it is required, to determine the motion.
The print whence the inlluence of a force emanates is called the centre of force; und the force is called an attrartive or a repulsive force according as it attracts or repels.

Let O be the centre of force, P the pusition of the particle at any time, t, r
 its velocity at that time, and let $\mathrm{OP}=x$, and $O A=\pi$, where A is the position of the particle when $t=0$; let $\mu=$ the absolute force, that is, the foree of attraction on a mit of mass at a mit's distance from 0 , which is supposed to be known. and is sometimes called the streagth of the attruction. At present we shall suppose

[^16]the nass of the particle to be unity, as it simplifies the equations. Then μx is the magnitude of the foree at the distance x on the particle of unit mass, or it is the aceeleration at P ; and the equation of motion is
\[

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}=-\mu x \tag{1}
\end{equation*}
$$

\]

the negative sign being taken becanse the tendency of the force is to diminish x;

$$
\therefore \frac{2 d x d^{2} x}{d t^{2}}=-2 \mu x d x .
$$

Integrating, we get

$$
\begin{equation*}
\frac{d x^{2}}{d t^{2}}=\mu\left(a^{2}-x^{2}\right), \tag{2}
\end{equation*}
$$

if the particle be at rest when $x=a$ and $t=0$,

$$
\therefore \frac{-d x}{\sqrt{a^{2}-r^{2}}}=\mu^{\frac{1}{2}} d t
$$

the negative sign being taken, because x decreases as t inereases. Integrating ugain between the limits corresponding to $t=t$ and $t=0$,

$$
\begin{array}{r}
\cos ^{-1} \frac{x}{a}=\mu^{\frac{1}{t} t,} \\
\therefore \quad t=\frac{1}{\mu^{\frac{t}{t}}} \cos ^{-1} \frac{x}{a} . \tag{3}
\end{array}
$$

From (2) it appears that the velocity of the partiele is zero when $x=a$ and $-a$; and is a maximum, viz.: $\mu^{\frac{1}{2}}$, when $: x=0$. Hence the partiele moves from rest at A : its velocity increases until it reaches, 0 where it becomes a
implifies the force at the the accelera-
dency of the
creases as t 3 correspond-
maximnm, and where the force is zero; the particle passes througit that point, and its velocity deereases, and at A^{\prime}, at, a distance $=-a$, becomes zero. From this point it will return, mader the action of the force, to its original position, and contimually oscillate over the space $2 a$, of which O is the middle point.

From (3) we find when $x=a, t=0$ and when $x=0$, $t=\frac{\pi}{2 \mu^{\frac{1}{2}}}$; so that the time of passing from A to $O=\frac{\pi}{2 \mu^{\frac{1}{3}}}$, and the time from 0 to A^{\prime} is the same, so that the time of oscillation from \mathbf{A} to A^{\prime} is $\frac{\pi}{\mu^{\frac{1}{2}}}$. 'I 'his result is remarkable, as it shows that the time of oscillation is independent of the veloeity and distance of projection, and depends solely on the strength of the attraction, and is greater as that is less.

This problem includes the motion of n particle within a homogeneons sphere of ordinary matter in a straight shaft through the centre. For the attraction of such a sphere on a particle within its boonding surface varies directly as the distance from the centre of the sphere (Art. 133a). If the earth were such a homogeneons sphere, and if AOA^{\prime} (Fig. 80) represented a shaft running straight throngh its centre from surface to surface, then, if a particle were free at one end, A, it would move to the centre of the earth, O, where its velocity wonld be a maximum, and thence on to the opposite side of the earth, A^{\prime}. where it wonld come to rest ; then it would return through the centre, O, to the side, A, from where it started ; and its motion would continne to be oscillatory, and thus it would move backwards and forwards from one side of the carth's surface to the other, and the time of the oseillation wonld be independent of the earth's radius; that is, nt whatever point within the earth's surface the particle be placed it would reach the centre in the sume time.

Cor-To, find this time. Sinee μ is the attraction at a mit of distanee amd g the attraction at the distance R, we have $\mu=\frac{g}{R}$, which in $t=\frac{\pi}{2 \mu^{\frac{1}{2}}}$ gives

$$
t=\frac{\pi}{2} \sqrt{\frac{R}{g}},
$$

for the time it would take a body to move from any point within the earth's surface to the eentre.
If we put. $g=321$ feet and $R=3963$ miles we get

$$
t=21 \mathrm{~m} .6 \mathrm{s.about},
$$

which would be the time occupied in passing to the earth's centre, however near to it the body might be placed, or however far, so long as it is within the surface.
172. Motion of a Particle under the Action of a Variable Repulsive Force.-Let the force be one of repulsion and vary as the distance, then the equation of motion is

$$
\frac{d^{2} x}{d t^{2}}=\mu x .
$$

Let us suppose the partiele to be projected from the centre of force with the velocity v_{0}; then we have

$$
\begin{gather*}
\frac{d x^{2}}{d t^{2}}=\mu x^{2}+v_{0}^{2} ; \tag{1}\\
\therefore \quad x=\frac{v_{0}}{2 \mu^{2}}\left(e^{\mu} t t-e^{-\mu t}\right) .
\end{gather*}
$$

As t increases x also increases, and the particle recedes further and further from the centre of force; and the velocity also increases, and ultimately equals ∞ when $x=$ $t=\infty$. Thus in this case the motion is not oseillatory.
attraction at a listance R, we
om any point s we get
to the earth's be placed, or

Action of a ce be one of equation of
rom the cen-
(1)
utiele recedes ree; and the ∞ when $x=$ oseillatory.
173. Motion of a Particle under the Action of an Attractive Force which is in the line of motion, and which varies Invefisely as the Square of the Distance from the Centre of Force.

Let O (Fig. 80) he the centre of force, P the position of the partiele at the time t; and Λ the position at rest when $t=0$, so that the particle starts from A and moves towards 0 . Let $\mathrm{OP}=x . \mathrm{OA}=a$, and $\mu=$ the absolute foree as before or the acceleration at unit distance from 0 . Then the equation of motion is

$$
\frac{d^{2} x}{d t^{2}}=-\frac{\mu}{x^{2}}
$$

Multiplying by $2 d x$ and integrating, we get

$$
\begin{equation*}
\frac{d x^{2}}{d l^{2}}=2 \mu\left(\frac{1}{x}-\frac{1}{a}\right) \tag{1}
\end{equation*}
$$

whien gives the velocity of the particle at any distance, x, from the origin.

From (1) we have

$$
\frac{d x}{d t}=-\sqrt{\frac{2 \mu}{a} \frac{\sqrt{a x-x^{2}}}{x}}
$$

the negative sign being taken becanse in the motion towards $0, x$ diminishes as t increases. This gives

$$
\begin{gathered}
\sqrt{\frac{2 \mu}{a}} d t=\frac{-x d x}{\sqrt{a x-x^{2}}} \\
=\left[\frac{1}{2} \frac{a-2 x}{\sqrt{a x-x^{2}}}-\frac{a}{2} \frac{1}{\sqrt{a x-x^{2}}}\right] d x .
\end{gathered}
$$

Integrating and taking the limits corresponling t o $t=t$ and $t=0$, we have

$$
\begin{equation*}
t=\sqrt{\frac{a}{2 \mu}}\left[\sqrt{a x-x^{2}}-\frac{a}{2} \operatorname{vers}^{-1} \frac{2 x}{a}+\frac{\pi a}{2}\right] \tag{2}
\end{equation*}
$$

which gives the value of t.
When the particle arrives at $0, x=0$, therefore the time of falling to the centre 0 from A is

$$
t=\frac{\pi}{\sqrt{\mu}}\left(\frac{a}{\frac{a}{2}}\right)^{\frac{3}{2}}
$$

From (1) we see that the velocity $=0$ when $x=a$; and $=\propto$ when $x=0$; hence the velocity inereases as the particle approaches the centre of foree, and ultimately, when it arrives at the centre, becomes infinite. And although at any point very near to O there is a very great attraction tending towards O, at the point O itself there is no attraction at all; therefore the particle, approaching the centre with an indefinitely great velocity, must pass through it. Also, everything being the same at equal distances on either side of the centre, we see that the motion must be retarded as rapidly ..s it was aceelerated, and therefore the particle will proceed to a point A^{\prime} at a distance on the other side of O equal to that from which it

- started; and the motion will contime oscillatory.

174. Velocity acquired in Falling through a Great Height above the Earth. -The preceding ease of motion includes that of a body falling from a great height above the earth's surface towards its centre, the distance through which it falls being so great that the variations of the earth's a^{+}iraction due to the distance must be taken into accomnt. - ir a sphere attracts an external particle with a force which varies inversely as the square of the distance of the particle
$\operatorname{ling} \operatorname{tat}=t$
$\mathrm{n} x=a$; and reases as the d ultimately, afinite. And s a very great itself there is , approaching ty, must pass ame at equal see that the as accelerated, point A^{\prime} at a from which it tory.
ugh a Great ase of motion height above ance through 3 of the earth's into account. 1 a force which of the particle
from the eentre of the sphere (Art. 133a); therefore if R is the earth's radius, g the kinetic measure of gravity on a unit of mass at the earth's surface (Arts. 20, 23), and x the distance of a body from the centre of the earth at the time t, then the equation of motion is

$$
\frac{d^{2} x}{d l^{2}}=-y \frac{R^{2}}{x^{2}}
$$

which is the same as the equation in Art. $1 ; 3$ by writing n for $g R^{2}$: therefore the results of the last Art. will apply to this case. Substituting $g R^{2}$ for μ in (1) of Art. 173 we have

$$
\begin{equation*}
r^{2}=k y R^{2}\left(\frac{\pi-x}{4 . x}\right) . \tag{1}
\end{equation*}
$$

When the body reaches the earth's surface, $x=R$ and (1) becones

$$
\begin{equation*}
v^{2}=2 g R\left(\frac{a-l}{a}\right) \tag{2}
\end{equation*}
$$

If a is infinite (2) becomes

$$
v=\sqrt{2 g R}
$$

so that the velocity can never be so great as this, however fir the body may fall; and hence if it were possible to project a body vertically upwards with this velocity it would go on to intinity and never stop, supposing, of course, that there is no resisting medimm nor other disturbing force.

If in (2) we put $g=32 f$ feet and $R=3963$ miles we get

$$
v=\left[2 \cdot 32 \frac{1}{6} \cdot 3963 \cdot 5280\right]^{\frac{1}{2}} \text { feet }=6 \cdot 95 \text { miles } ;
$$

so that the greatest possible velocity which a body can aequire in falling to the earth is less than 7 miles per second, and if a body wiec projected upwards with that
velocity, and were to meet with no resistance except gravity, it would never return to the earth.

Cor.-To find the veloeity which a body would aequire in falling to the earth's surface from a height l above the surface, we have from (1) by putting $x=R$ and $a=h+R$,

$$
v^{2}=2 g R^{2}\left(\frac{1}{R}-\frac{1}{R+h}\right)=\frac{2 y R h}{R+h} .
$$

If h be small compared with R, this may be written

$$
v^{2}=2 g h
$$

which agrees with (6) of Art. 140.
The laws of force, enumerated in Arts. 171, 1i3, are the only laws that are known to exist in the universe (Pratt's Meehs., p. 212).
175. Motion in a Resisting Medium.-In the prereding diseussion no account is taken of the atmospherie resistance. We shall now consider the motion of a body near the surface of the earth, taking into aceonnt the resistance of the air, which we may assmue varies as the square of the velueity.

A particle under the action of gracity, as a constant force, mores in the air supposed to be a resistiuy medium of uniform density, of uhich the resistance raries as the square of the velocity required to determine the motion.
Suppose the particle to descend towards the earth from rest. Take the origin at the starting point, let the line of its motion be the axis of x; and let x be the distance of the particle from the origin at the time t, and for convenience let $g h^{2}$ be the resistance of the air on the particle for a unit of velocity; $y^{2} h^{2}$ is called the coefficient of resistance. Then the resistance of the air at the distance x trom
stanee execpt
rould acquire $t l$ above the od $a=h+R$,

173, are the verse (Pratt's
-In the preatmospherie on of a body account the aries as the
nstant force, medium of as the square
earth from ; the line of distanee ref and for conthe particle nt of resist ance x from
the origin is $g h^{2}\left(\frac{d x}{d t}\right)^{2}$, which aets upwards, and the force of gravity is g aeting downwards, the mass being a unit. Hence the equation of motion is

$$
\begin{align*}
\frac{d^{2} x}{d t^{2}} & =g-g h^{2}\left(\frac{d x}{d t}\right)^{2} \tag{1}\\
\therefore g d t & =\frac{d \frac{d x}{d t}}{1-k^{2}\left(\frac{d x}{d t}\right)^{2}} .
\end{align*}
$$

Integrating, remembering that when $t=0, v=0$, we get

$$
g t=\frac{1}{2 k} \log \frac{1+k \frac{d x}{d t}}{1-k \frac{d x}{d t}},(\text { Calculus, p. } \cdot 259, \text { Ex. 5) }
$$

Passing to exponentials we have

$$
\begin{equation*}
\frac{d x}{d t}=\frac{1}{k} \frac{e^{k g t}-e^{-k g t}}{e^{k g t}+e^{-k g t}} \tag{2}
\end{equation*}
$$

which gives the velocity in terms of the time. To find it in terms of the space, we have from (1)

$$
\begin{gather*}
\frac{k^{2} d\left(\frac{d x}{d t}\right)^{2}}{1-k^{2}\left(\frac{d x}{d \bar{t}}\right)^{2}}=2 g k^{2} d x \\
\therefore \log \left[1-k^{2}\left(\frac{d x}{d t}\right)^{2}\right]=-2 g k^{2} x \tag{3}
\end{gather*}
$$

observing the proper limits;

$$
\begin{equation*}
\therefore \frac{d x^{2}}{d l^{2}}=\frac{1}{k^{2}}\left(1-e^{-2 g k^{2} x}\right), \tag{4}
\end{equation*}
$$

which gives the velocity in terms of the distance.
Also, integrating (2) taking the same limits as isfore, we get

$$
\begin{align*}
& g k^{2} x=\log \left(e^{k g t}+e^{-k g t}\right)-\log 2 ; \\
& \therefore 2 \overbrace{}^{g k^{2} x}=e^{k g t}+e^{-k g t}, \tag{5}
\end{align*}
$$

which gives the relation between the distance and the time of falling through it.

As the time increases the term $e^{-k g t}$ diminishes and from (5) the space increases, becoming infinite when the time is infinite; but from (\%), as the time iecreases the velocity becomes more nearly uniform, and when $t=\infty$, the velocity $=\frac{1}{k}$; aud although this state is never reached, yet it is that to which the motion aproaches.
176. Motion of a Particle Ascending in the Air against tbe Action of Gravity.-Let us suppose the particle to we projected upwards, that is, in a direction contrary to that of the action of gravity, with a given velocity, c, it is required to determine the motion.
Let us suppose the particle to be of the same form and size as before. and the same cocficient of resistance. Then, taking x positive upwards, both gravity and the resistance of the air tend to diminish the velocity as t increases; so that the equation of motion is

$$
\begin{equation*}
\frac{d^{2} \cdot x}{d t^{2}}=-y-y k^{2}\left(\frac{d, x}{d \bar{l}}\right)^{2} ; \tag{1}
\end{equation*}
$$

and the time
shes and from n the time is the velocity $t=\infty$, the
r_{r} reached, yet
; in the Air surpose the a direction with a given ion.
ane form and f resistance. rity and the veloeity as t

MOTIOV OF ASTEVT IV THE A/R.

$$
\therefore \frac{d k k^{\frac{d x}{d t}}}{1+k^{2}\left(\frac{d x}{d t}\right)^{2}}=-k g d t ;
$$

$$
\therefore \tan ^{-1} k \frac{d x}{d t}=\tan ^{-1}(k v)-g k t ;
$$

(Calculus, 1. 244, Ex. 3), sinee the initial velocity is v.
Taking the tangent of both members and solving for $d x$ $\frac{d x}{d t}$, we get

$$
\begin{equation*}
\frac{d x}{d t}=\frac{1}{k} \cdot \frac{v k-\tan k \cdot g t}{1+v k \tan k \cdot g t} ; \tag{2}
\end{equation*}
$$

which gives the veloc:ty in terms of the time. To find it in terms of the distance, we have from (1)

$$
\begin{gather*}
\frac{d h^{2}\left(\frac{d x}{d t}\right)^{2}}{1+k^{2}\left(\frac{d x}{d t}\right)^{2}}=-2 g k^{2} d x ; \\
\therefore \log \frac{1+h^{2}\left(\frac{d x}{d l}\right)^{2}}{1+h^{2} t^{2}}=-2 g h^{2} x ; \\
\therefore\left(\frac{d x}{d t}\right)^{2}=\iota^{2} e^{-2 g k^{2} x}-\frac{1}{h^{2}}\left(1-e^{-2 g k^{2} x}\right), \tag{3}
\end{gather*}
$$

which gives the velocity in terms of the distance.
Also, integrating (2) after substituting sine and cosine for tangent, and taking the same limits as before, we get

$$
\begin{equation*}
g h^{2} x=\log (v h \sin k \cdot y t+\cos k g t) ; \tag{5}
\end{equation*}
$$

which glves the space deseribed by the particle in terms of the time.

Cor. 1.-To tind the greatest height to which the particle will ascend put the velocity, $\frac{d x}{d \bar{t}}=0$, in (3) and get

$$
\begin{equation*}
x=\frac{1}{2 g k^{2}} \log \left(1+k^{2} \iota^{2}\right), \tag{6}
\end{equation*}
$$

which is the distance of the highest point.

$$
\begin{align*}
& \text { Putting } \frac{d x}{d t}=0 \text { in (2) we get } \\
& \qquad t=\frac{1}{k g} \tan ^{-1} v k \tag{7}
\end{align*}
$$

which is the time required for the particle to reach the highest point. Having reached the grealest height, the particle will begin to fall, and the circunstances of the call will be given by the equations of Art. 175.

Con. 2.-Since k is the same in this und Art. 175, we may compare the velocity of projection, r, with that which the particie would acquire in descending to the point whenee it was projected. Denote by r_{0} the velocity of the particle when it reaches the point of starting. From (3) of Art. 175 we have

$$
x=\frac{1}{2 g k^{2}} \log \frac{1}{1-k^{2} v_{0}^{2}},
$$

and placing this value of x equal to that given in (6). we get,

$$
\begin{aligned}
& \quad-\frac{1}{1-\overline{k^{2}} v_{0}^{2}}=1+h^{2} v^{2} ; \\
& \therefore \quad v_{0}=\frac{v}{\left(1+h^{2} r^{2}\right)^{\frac{1}{2}}} ;
\end{aligned}
$$

which is less than r; heure the velocity ucpuired in the
descent is less than that lost in the ascent, as might havo been inferred.

Cor. 3.-Substituting (6) in (5) of Art. 175, we get for the time of the descent,

$$
t=\frac{1}{h g} \log \left(\sqrt{1+h^{2} v^{2}}+k v\right)
$$

which is different from the time of the ascent as given in (7). (See Price's Anal. Meeh's, Vol. I, p. 406 ; Venturoli's Meeh's, 1. 82 ; Tait and Stecle's Dynamies of a Partiele, p. 237.)
177. Motion of a Projectile in a Resisting Me-dium.--The theory of the motion of projectiles in vacho, which was examined under the head of Kinematies, affords results which differ greatly from those obtained by direct experiment in the atmosphere. When projectiles move with but small relocity, the discrepancy between the pariobolic theory, and whit is found to oceur in practice. is small: but with inereasing velocities, as those with which balls and shells traverse their paths, the air's resistance increases in a higher ratio tha: 'he velocity, so that the diserepancy becomes very great.

The most ..mportimit application of the theory of projectiles, is that of Ginnery, in which the motion tukes place in the air. If it were allownble to neglect the resistance of the air the investigations in Purt II would explain the theory of ginnery; but when the velocity is consideruble, the nimospheric resistimee ehanges the nature of the tratjectory so much us to render the conclasions drawn from the theory of projectiles in meno almost entirely inatrpliable in practioe.

The problem of grmmery may be stated as follows: Given it projectile of known woight and dimensions, sharting with a known velocity at a known angle of elevn-
tion in a calm atmosphere of approximately known deasity; to find its range, time of tlight, veloeity, direction, and position, at any moment ; or, in other words, to construet its trajestory. 'This problem is not yet, however, susecptihe of rigorous treatment ; mathematics has hitherto proved mable to furnish complete formule satisfying the conditions. The resistance of the air to slow movements, say of 10 feet per second, seems to vary with the first power of the velocity. Above this the ratio increases, and as in the case of the wind, is manally reckoned to vary as the square of the velocity; beyond this it increases still further, till at 1200 feet per second the resistance is found to vary ats the eube of the velocity. The ratio of increase after this point is passed is supposed to diminish again ; but thoronghly satisfactory data for its determination do not exist.

From experiments* male to determine the motion of cannon-balls, it appears that when the initial velocity is eonsiderable, the rexistance of the air is more than 20 times as great as the weight of the bull, and the horizontal range is often a small fraction of that which the theory of projeetiles in vacue gives, so that the form of the trajectory is very different from that of a parabolic path. Such experimeats have heen made with great care, and show how little the purabolic theory is to be depended upon in determining the motion of military projectiles.
178. Motion of a Projectile in the Atmosphere Supposing its Resistance to vary as the Square of the Velocity.-. purticle under thr u"tion of gremity is projecterl from a given pmint in "! given dirertion will " giten relucity, and moves in the atmosphere uhose resistamien is assumed to colly as the square of the velucit!! ; to detere. mine the motion.

[^17]wn density ; ection, and 0 construct r, susceptierto proved the condients, say of st power of d as in the the squmre ther, till at vary as the - this point thoronghly st.
motion of velocity is In 20 times intal range ory of proajectory is ch experihow little etromining

mosphere

 Square of grenrily is ion with " resistantere ; to deter-Take the given point as origin, the axis of x horizontal, the axis of y vertical and positive upwards, so that the direction of projection may be in the plane of $x y$. Let c° le the velocity of projection, y the ncceleration of gravity, ie the angle hetween the axis of x and the line of projection, and let the resistance of the air on the partiele be k for a mit of velocity; then the resistance, at any time, t, in the line of motion, is $k\left(\frac{d l}{d l}\right)^{2}$; and the x - and y-components of this resistance are, respectively,

$$
k \frac{d s}{d t} \cdot \frac{d x}{d t}, \quad \text { and } \quad k \frac{d s}{d t} \cdot \frac{d y}{d t}
$$

Then the equations of motion are, resolving horizontally and vertically,

$$
\begin{align*}
& \frac{d^{2} x}{d t^{2}}=-k \cdot \frac{d s}{d t} \frac{d x}{d t} \tag{1}\\
& \frac{d^{2} y}{d t^{2}}=-g-k \frac{d s}{d t} \frac{d y}{d t} \tag{2}
\end{align*}
$$

From (1) we have

$$
\frac{d\left(\frac{d x}{d t}\right)}{\frac{d x}{d t}}=-k \cdot d s ; \quad \therefore \log \frac{\frac{d x}{d t}}{v \cos \alpha}=-k s ;
$$

since when $t=0, \frac{d x}{d t}=v \cos a ;$

$$
\begin{equation*}
\therefore \frac{d x}{d t}=v \cos \alpha e^{-k s} \tag{i}
\end{equation*}
$$

Multiplying (1) and (2) by $7!y$ and $d x$, respectively, and subtracting the forner from the latter we have

$$
\begin{equation*}
\frac{d^{2} y d x-d^{2} x d y}{d t^{2}}=-g d x \tag{4}
\end{equation*}
$$

Substituting in (4) for $d t^{2}$ its value from (3) we get

$$
\begin{equation*}
\frac{d^{2} y d x-d^{2} x d y}{d x^{2}}=d \frac{d y}{d x}=-\frac{g}{v^{2} \cos ^{2} \varepsilon} e^{2 k s} d x \tag{5}
\end{equation*}
$$

Substituting in the second member of (5) for $d x$ its value $d s \div \sqrt{1+\frac{d y^{2}}{d x^{2}}}$, we get

$$
\begin{equation*}
d \frac{d y}{d x}\left(1+\frac{d y^{2}}{d x^{2}}\right)^{\frac{1}{2}}=-\frac{g}{r^{2} \cos ^{2} \varepsilon} e^{2 k g} d s \tag{6}
\end{equation*}
$$

Put $\frac{d y}{d x}=p$, and (6) becomes

$$
\left(1+\gamma^{2}\right)^{\frac{1}{3}} d p=-\frac{g}{v^{2}} \frac{g}{\cos ^{2} c} e^{2 k s} d s
$$

Integrating, and remembering that when $s=0, p=$ tan ce, we get

$$
\begin{gather*}
p\left(1+p^{2}\right)^{\frac{1}{y}}+\log \left[p+\left(1+p^{2}\right)^{\frac{1}{2}}\right] \\
=c-\frac{g}{k r^{2} \cos ^{2} c^{2 k s}} \tag{7}
\end{gather*}
$$

where c is the constant of integration whose value

$$
\begin{equation*}
=\tan \varepsilon \sec \approx+\log (\tan \epsilon+\sec a)+\frac{g}{k v^{2} \cos ^{2} a} . \tag{8}
\end{equation*}
$$

From (5) we have

$$
-\frac{y}{x^{2} \cos ^{2} u} e^{2 k x}=\frac{d}{d x}\binom{d y}{d x} ;
$$

which in (7) gives

$$
\left.\begin{array}{rl}
& p\left(1+\mu^{2}\right)^{\frac{1}{2}}+\log \left[p+\left(1+p^{2}\right)^{\frac{1}{t}}\right]-c=\frac{1}{k} \frac{d p}{d x}, \\
\therefore \quad & p\left(1+\mu^{2}\right)^{\frac{1}{1}}+\log \left[1 /+\left(1+\mu^{2}\right)^{\frac{1}{2}}\right]-c \tag{9}
\end{array}\right)=k \cdot d x,
$$

and $\frac{p d p}{p\left(1+p^{2}\right)^{\frac{1}{2}}+\log \left[p+\left(1+p^{2}\right)^{\frac{1}{4}}\right]-c}=k d y$. (10)
From (4) we have

$$
d x \cdot d p=-g d t^{2}
$$

Substituting this valne of $d x$ in (9) and solving for $d t$ we get
$\left\{c-p \frac{-d p}{\left(1+p^{2}\right)^{\frac{1}{2}}-\log \left[p+\left(1+p^{2}\right)^{\frac{1}{2}}\right]^{\frac{1}{2}}}=(k \cdot g)^{\frac{1}{t}} d l\right.$. (11)
the negative sign of $d p$ being taken because p is a decreasing function of t.

Replacing the value of $p=\frac{d y}{d} x,(9),(10)$, ind (11) become
$d x=\frac{1}{k} \frac{d \frac{d y}{d x}}{\frac{d y}{d x}\left(1+\frac{d y^{2}}{d x^{2}}\right)^{\frac{1}{2}}+\log \left[\frac{d y}{d x}+\left(1+\frac{d y^{2}}{d x^{2}}\right)^{\frac{1}{2}}\right]-c}, \quad(\Lambda)$
$d y=\frac{1}{k} \frac{d y}{\frac{d y}{d x}\left(1+\frac{d y^{2}}{d x^{2}}\right)^{\frac{1}{2}}}+\frac{\frac{d y}{d x} d \frac{d y}{d x}}{\log \left[\frac{d y}{d x}+\left(1+\frac{d y^{2}}{d x^{2}}\right)^{\frac{1}{2}}\right]-c}$,
$d t=\frac{1}{(k \cdot y)^{\frac{1}{2}}} \frac{-d \frac{d y}{d x}}{\left\{c--\frac{d y}{d x}\left(1+\frac{d y^{2}}{d x^{2}}\right)^{\frac{1}{2}}-\log \left[\frac{d y}{d x}+\left(1+\frac{d y^{2}}{d x^{2}}\right)^{\frac{1}{2}}\right]\right\}^{\frac{1}{2}}}$,
from which equations, were it possible to integrate them, x, y, ant $/$ might be found in terms of $\frac{d y}{d y}$; und if ${ }_{d}{ }^{d} / x$ were eliminated from the two integrals, of (1) and (13), the resulting equation in terms of x and y wonld be that of the
required trajectory. But these equations cannot be integrated in finite terms; suly approximate solutions of them can be made; and by meaus of these the path of the projectile may be constructed approximately. (See Venturoli's Mechis., p. 92.)

Squaring (A) and (B), and dividing their sum by the square of (C) we get
$\frac{d s^{2}}{d l^{2}}=\frac{g}{k} \frac{1+\frac{d y^{2}}{d x^{2}}}{c-\frac{d y}{d x}\left(1+\frac{d y^{2}}{d l^{2}}\right)^{\frac{1}{2}}-\log \left[\frac{d y}{d x}+\left(1+\frac{d y^{2}}{d x^{2}}\right)^{\frac{1}{2}}\right]}$
which gives the velocity in terms of $\frac{d y}{d x}$.
179. Motion of a Projectile in the Atmosphere under a small Angle of Elevation.-The case frequently oceurs in pratice where the angle of projection is very small, and where the projectile rises but a very little above the horizontal line. In this case the equation of the part of the trajectory that lies above the horizontal line maly easily be found; for, the angle of projection being very small, $\frac{d y}{d x}$ will be very small, and therefore thronghout the path on the upper side of the axis of r, powers of ${ }_{d y}^{d y}$ ligher than the first may be neglected. In this case then

$$
d s=d x ; \quad \therefore s=x ;
$$

which in (5) of Art. 178, becomes

$$
l \frac{d y}{d x}=-\frac{y}{v^{2} \cos ^{2} \boldsymbol{\alpha}} e^{2 k x} d x ;
$$

not be inteons of them of the proVenturoli's
sum by the

tmosphere

te case frerojection is a very little ation of the izontal line ection being
thronghout , powers of In this case

Integrating, we get

$$
\frac{d y}{d x}-\tan \alpha=-\frac{g}{2 k \cdot v^{2} \cos ^{2} \alpha}\left(e^{2 k x}-1\right)
$$

\sin e when $x=0, \frac{d y}{d x}=\tan \alpha$.

> Integrating again we get

$$
y=x \tan c+\frac{g x}{2 k \cdot v^{2} \cos ^{2} \alpha}-\frac{g}{4 h^{2} v^{2} \cos ^{2} \alpha}\left(e^{2 k x}-1\right)
$$

Expanding $e^{2 k x}$ in a series, (1) becomes

$$
\begin{equation*}
y=x \tan c-\frac{g x^{2}}{2 v^{2} \cos ^{2} a}-\frac{g k x^{3}}{3 v^{2} \cos ^{2} c}-\ldots \tag{2}
\end{equation*}
$$

the first two terms of which represent the trajectory in vacuo. [See (3) of Art. 151.]

From (3) of Art. 178, we have

$$
\begin{align*}
d t & =\frac{e^{k x}}{v \cos \alpha} d x \\
\therefore \quad t & =\frac{e^{k x}-1}{h v \cos r} \tag{3}
\end{align*}
$$

which gives the time of flight in terms of the abseissa.
The most complete and valuable series of experiments on the motion of projectiles in the atmosphere that has yet been made, is that of Prof. F. Bashforth at Woolwich.
EXAMPLES.

1. Find how fur a force equal to the weight of n lhs., would move a weight of m lbs. in t seconds; and find the velocity ucquired.

Here $P=n$, and $W=m$; therefore from (1) of Art. 25 we have

$$
n=\frac{m}{g} f ; \quad \therefore f=\frac{n g}{m},
$$

which in (4) and (5) respectively of (Art. 9), gives $v=\frac{n g t}{m} ;$ und $s=\frac{1}{2} \frac{n g}{m} t^{2}$.
2. A body weighing n lbs. is moved by a constant force which generates in the body in one second a velocity of a fect per second; find the force in pounds.

$$
\text { Ans. } \frac{n a}{g} \mathrm{Ibs} .
$$

3. Find in what time a force of 4 lbs . would move a weight of 9 lbs . through 49 ft . along a smooth horizontal plame; and find the velocity acquired.

$$
\text { Ans. } t=\frac{21}{\sqrt{2 g}} ; v=2 g t .
$$

4. Find the number of inches through which a foree of one ounce, constantly exerted, will move a mass weighing one lb . in half a second.

Ans. $3 g\left(\frac{1}{2}\right)^{5}$.
5. Two wcights, P and Q, are connected by a string which passes over a smooth peg or pulley; required to determine the motion.

Since the peg or pulley is perfectly smooth the tension of the string is the same throughout; hence the foree which canses the motion is the difference between the weights, P and Q, the weight of the string being neglected. The moring force therefore is $P-Q$; but the weight of the mass moved is $P+Q$. Hence substituting in (1) of Art. R 2 , we get

Fig. 80a.

$$
P-Q=\frac{P+Q}{g} f
$$

(1) of Art.

$$
\begin{equation*}
\therefore f=\frac{P-Q}{P+Q} g . \tag{1}
\end{equation*}
$$

which is the acceleration.
Substituting this in (4) and (5) of Art. \because, we have
9), gives
nstant force velocity of a s. $\frac{n a}{g}$ lbs.
nld move a h horizontal
$; v=\frac{q}{g} t$.
ch a force of ass weighing 2s. $3 g\left(\frac{1}{2}\right)^{5}$.
by a string required to

Fig. 80a.

$$
\begin{align*}
& v=\frac{P-Q}{P+Q} g t \tag{2}\\
& s=\frac{P}{P} \frac{P-Q}{P+Q} g t^{2} \tag{3}
\end{align*}
$$

which gives the velocity and space at the time t, the initial velocity v_{0} being 0 .
if. A body whose weight is Q, rests on a smooth horizontal table and is drawn along by a weight P attached to it hy a string passing over a pulley at the edge of the table; find the motion of the bodies.
Since the weight Q is entirely supported by the resistance of the table, the moving force is the weight P, hanging vertically downwards, and the weight of the mass moved is $P+Q$; therefore from (1) we have

$$
\begin{equation*}
f=\frac{P}{P+Q} \cdot g \tag{1}
\end{equation*}
$$

and this in (4) and (5) of Art. 9 gives the velocity and space.
7. Required the tension, T, of the string in the preexding exumple.
Here the tension is evidently that foree which, acting ulong the string on the body whose weight is Q, produces in it the aceleration, $\frac{P}{P+Q}$ y, and therefore is measured hy the mass of Q into its acceleration. Hence

$$
T=\frac{Q}{g} \times \frac{P}{P+Q} g=\frac{P Q}{P+Q} .
$$

8. Find the tension, T. of the string in Ex. 5.

Here the tension efrals ihe weight Q, phes the force which, acting along the string on Q, produces in it the acceleration

$$
\begin{gathered}
\frac{P-Q}{P+Q} y \\
\therefore \quad T=Q+\frac{Q}{y} \cdot \frac{P-Q}{P+Q} g, \\
= \\
\frac{2 P Q}{P+Q},
\end{gathered}
$$

or it equals P minus the aceelerating force which, of course, gives the same result.
9. Two weights of 9 lhs. and 7 lbs . hang over a pulley, as in Ex. 5 ; motion continues for 5 sece.. when the string breaks: find the height to which the lighter weight will rise after the breakage.
Substituting in (2) of Ex. 5 we have

$$
v=\frac{2}{10} 32 \cdot 5=20 ;
$$

therefore each weight hats a velocity of 20 feet, when the string breaks. Hence from (6) of Mrt. 9, we have (ealling $g 3: \mathrm{ft}$.)

$$
x=\frac{80}{64}=6 \frac{1}{4} ;
$$

that is, the lighter weight will rise 64 feet before it begins to tescend.
10. A steam engine is moving on a horizontal plane at the rate of 30 miles an hour when the steam is turned off; supposing the resistance of friction to be $4^{\frac{1}{20}}$ of the weight, lind how long and how far the engine will run before it stops.

Let If be the weight of the engine; then the resistanco sf friction is $\frac{W}{400}$, and this is directly opposed to motion,

$$
\therefore \quad \frac{W}{400}=\frac{W}{g} f ; \quad \therefore f=\frac{g}{400} .
$$

The velocity, v, is 30 miles an hour $=\frac{30 \times 1760 \times 3}{60 \times 60}=44$ feet per sceond. Substituting these values of f and v in the equation $v=f t$, we get

$$
\begin{gathered}
44=\frac{88}{100} t ; \\
. t=550 \text { secs. }
\end{gathered}
$$

which is the time it will take to bring the engine to rest if the velocity be retarded $\mathbf{c o s}^{32}$ feet per sccond.

Also $v^{2}=\eta f s$, therefore

$$
s=41 \times 4 \times 400=12100 \text { fret. }
$$

11. A man whose weight is 11 ; stands on the platform of an elevator, as it descends a vertical shaft with a miform acceleration of $\frac{1}{2} g$; find the pressure of the man upon the phatferm.

Let P be the pressure of the man on the platform when it is moring with an acceleration of $\frac{b}{2}$; then the moving foree is $W-P$: and the weight moved is W; therefore

$$
W-P=\frac{W}{g} \frac{1}{2} g ; \quad \therefore \quad P=\frac{1}{2} W .
$$

12. A plane supporting a weight of 12 ozs . is descending with a uniform aceeleration of 10 ft . per sceond ; find the pressure that the weight exerts on the plane.

Ans. 8 ozs.
13. A weight of 24 lbs . hanging orer the edge of a mowth table dragss a weight of 12 hls . along the table; find (1) the acceleration, and (\because) the tension of the string.

$$
\text { Ans. (1) } 21 \frac{1}{3} \mathrm{ft} \text {. } \mathrm{per} \text { sec.; (2) } 8 \text { lhs. }
$$

14. A weight of 8 lis. rests on a platform; find its pressure on the phatform (1) if the latter is descending with an acceleration of $\frac{1}{3} \%$, and (2) if it is aseending with the same aceeleration.

$$
\text { Ans. (1) } 7 \mathrm{lhs} \text {; ; (2) } 9 \mathrm{lbs}
$$

15. Two weights of 80 ind 00 lbs. hang over a smooth pulley as in Ex. 5 ; find the space through which they will move from rest in 3 sees.

Ans. 938 ft .
16. Two weights of 15 and 17 ounces respectively hang over a smooth pulley as in Ex. 5 ; find the space described and the velocity acquired in five seconds from rest.

$$
\text { Aus. } s=25, v=10 \text {. }
$$

17. Two weights of 5 lbs . and 4 lbs . together pull one of 7 lls . over a smooth fixed pulley, by means of a conneeting string; and after descending through a given space the 4 lbs. weight is detached and taken away withont interrupting the motion; find through what space the remaining 5 llbs. weight will descend.

Ans. Through $\frac{3}{4}$ of the given space.
18. Two weights are attached to the extremities of a string which is hung over a smooth pulley, and the weights are olserved to move through 6.4 feet in one second ; the motion is then stopped, und a weight of 5 lbs . is added to the smaller weight, which then descends through the same space as it ascended before in the same time ; determine the original weights.

Ans. $\frac{9}{8}$ lhs. $; \frac{21}{8} \mathrm{lhs}$.
19. Find what weight must be added to the smaller weight in Ex. 5, so that the acceleration of the system may
e edge of a g the table; f the string.
(z) 8 lbs.
tform ; find atter is le(き) if it is
(2) 9 lbs.
ier a smooth ch they will $1 / 1 s .93 \mathrm{ft}$.
ectively hang he space deIs from rest. $5, v=10$.
her pull one ns of a conigh a given away withont at space the
iven space.
remities of a d the weights second ; the lbs. is added through the time ; deterhs.; $\frac{21}{8}$ lhs.
the smaller e system may
have the same muncrical value as before, lont may be in the opposite direction.

$$
\text { Ans. } \frac{P^{2}-Q^{2}}{Q}
$$

20. Λ body is projected up a rough inelined plane with the velocity which wonld be acquired in falling ireely through 12 feet, and just reaches the toll of the plane; the inclination of the pine to the borizon is 60°, and the coeflicient of friction is equal to $\tan 30^{\circ}$; find the height of the plane.

Ans. 9 feet.
21. A body is projected ul a rough inclined plane with the veloeity $2 g$; the inclination of the plane to the horizon is 30°, and the coefficient of friction is equal to $\tan 15^{\circ}$; find the distance along the plane which the body will describe.

$$
\text { Ans. } g(\sqrt{ } 3+1)
$$

22. A body is projected up a rough inclined plane ; the inclination of the plane to the horizon is ce, and the coefficient of friction is $\tan \varepsilon$; if m be the time of ascending, and n the time of descending, show that

$$
\left(\frac{m}{n}\right)^{2}=\frac{\sin (r-\varepsilon)}{\sin (r+\varepsilon)}
$$

23. A weight P is drawn up a smooth plane inclined at an angle of 30° to the horizon, by means of a weight Q which descends vertically, the weights being connected by a string passing over a small pulley at the top of the plane; if the acceleration be one-fourth of that of a body falling freely, find the ratio of Q to P.

$$
\text { Ans. } Q=P
$$

24. Two weights P and Q are connected by a string, and Q hanging over the top of a smooth plane inclined at 30° to the horizon, can draw P np the length of the plane in just half the time that P wonld take to draw up Q; show that Q is half as heavy again as P.
25. A particle moves in a straight line under the action of an attraction rarying inversely as the ($\frac{8}{2}$)th power of the distance; show that the velocity acquired by falling from in infinite distance to a distance " from the centre is equal to the velocity which would be acquired in moving from rest at a distance a to a distance $\frac{a}{4}$.
r the action th power of d by fating the centre is d in moring

CHAPTER II.

CENTRAL FORCES.*
180. Definitions.-A central force is one which acts directly towards or from a fixed point, ans is called ain uttructive or a repulsive force aceording as its action on any particle is altraction or repulsion. The fixed point is called the Centre. The intensity of the force on any particle is some function of its distanee from the centre. Sinee the case of atraction is the most imprortunt application of the snbject, we shall tak $)$ that as our standard case; but it will be seen that a simple change of sign will adapt our general formula to repulsion. If the centre be itself in motion, we may treat it as fixed, in which case the term "actual motion" of any particle means its motion "relntive " to the centre, taken as fixed.
The line from the centre to the particle, is called a Rudius Vector. The path of the particle muder the action of an attraction or repulsion direeted to the centre is salled its Orbit. \dagger All the forees of mature with which we are aequainted, are central forces; for this reason, and becanse tale motion of bodies muder the action of central forces is a brancl of the general theory of Astronomy, we shall devote this chapter to the consideration of their aetion.
181. A Particle under the Action of a Central Attraction; Required the Polar Equation of the Path.-The motion will chomly take phace in the plane passing through the centre, and the line along which the

[^18]particle is initially projected. as there is mothing to withdatw the particle from it. Lat the centre of attration. 0 , be the origing, and OX, OY. any two lines through 0 at right angles to eath other, be the axes of eoordinates. Leet (x, y) be the position of the particle M nt the .time t, and ($r, 0$) its position referred to polar co-orinates. OX being the initial line. Them calliag P the central attractive
 foree, we have for the components parallel to the axes of x ond \ddot{y}, icspectively, $-P^{\frac{x}{r}},-P_{r}^{y}$, the forees being negative, since they tend to diminish the eo-ordinates. Therefore the equations of motion are
\[

$$
\begin{equation*}
\frac{d x}{d t^{2}}=-P^{x}, \quad \frac{d^{2} y}{d t^{2}}=-P \frac{y}{r} \tag{1}
\end{equation*}
$$

\]

Multiplying the former by y, and the latter by x, and subtracting, v.e have

$$
\begin{equation*}
x \frac{d^{2} y}{d f^{2}}--y \frac{d^{2} x}{d l^{2}}=0 \tag{2}
\end{equation*}
$$

Integrating we have

$$
\begin{equation*}
x \frac{d y}{d t}-y \frac{d x}{d t}=h ; \tag{3}
\end{equation*}
$$

Where h is an undetermined constunt.
Since $x=r \cos \theta$, and $y=r \sin \theta$, we havo

$$
\begin{align*}
& d x=\cos \theta d r-r \sin \theta d \theta \\
& d y=\sin \theta d r+r \cos \theta d \theta \tag{4}
\end{align*}
$$

which in (3) gives uetion. (),

$$
\begin{equation*}
r^{2} \frac{d \theta}{d t}=h \tag{J}
\end{equation*}
$$

Again, multiplying the first and second of (1) by $2 d x$ and wdy respectively, and adding, we get

$$
\begin{gather*}
\frac{2 d x d^{2} x+2 d y d^{2} y}{d t^{2}}=-\frac{2 P(x d x+y d y)}{r} \\
\therefore \quad d\left(\begin{array}{l}
d x^{2} \\
d t^{2}
\end{array}+\frac{d y^{2}}{d t^{2}}\right)=-2 P d r \tag{6}
\end{gather*}
$$

Substituting in (6) the values of $d x^{2}$ and $d y^{2}$ from (4), we have

$$
\begin{array}{r}
\quad l\left[\left(\frac{d r^{2}}{d \theta^{2}}+r^{2}\right) \frac{d \theta^{2}}{d l^{2}}\right]=-2 P d r \\
\therefore \quad \tag{}\\
\therefore\left(\frac{1}{r^{4}} \frac{d^{2} \cdot{ }^{2}}{l \theta^{2}}+\frac{1}{r^{2}}\right)=-\frac{2 P}{h^{2}} d r, \text { by }(5)
\end{array}
$$

Pui $r=\frac{1}{u}$; and $\cdot \cdot d r=-\frac{d u}{u^{2}} ;$ and (7) beeomes

$$
l\left(\frac{l u^{2}}{l \theta^{2}}+u^{2}\right)=\frac{\varrho P}{l^{2} u^{2}} d u
$$

performing the differentiation of the first member, and dividing by odu, and trunsposing, we get

$$
\begin{equation*}
\frac{d^{2} u}{d \theta^{2}}+u-\frac{P}{u^{2} u^{2}}=0 \tag{8}
\end{equation*}
$$

which is the differential equetion of the orbit describen; and as, in any partienlar instance. the force P will be given in terms of r, and therefore in terms of u, the integral of this equation will be the polar equation of the required path.

Solving (8) for I ' we have

$$
P=h^{2} u^{2}\left(\begin{array}{l}
l^{2} u \tag{9}\\
d \theta^{2}
\end{array}+u\right) ;
$$

which is the same result that was found by a different process in Art. 163 for the acceleration along the radius veetor.

Con. 1.-The general integrals of (1) will contain four arbitrary constants. One, h, that was introduced in (s), and two more will be introluced by the integration of (8). If the value of r in terms of θ, deduced from the integral of (8), be substitnted in (5), and that equation be then integrated, the fourth constant will be introduced, mad the path of the particle and its position at any time will be obtained. The four constants must be determined from the initial circumstances of motion; viz., the initial position of the particle, depending on tuo independent so-ordinates, its initial velocity, and its direction of projection.

Cor. 2.-By means of (9) we may ascertain the law of the force which must act upon a particle to canse it to deseribe a given eurve. To effect this we must determine the relation between u and θ from the polar equation of the orbit referred to the required centre as pole: we must then differentinte u twice with respect to θ, and substitute the result in the expression for P. eliminating θ, if it occurs, by means of the relation between u and θ. In this way wo shall obtain P^{\prime} in terms of u alone, and therefore of 1 alone.

Con. 3.-When we know the relation between r und A from (9), we may by (5) determine the time of describing a given portion of the orlit; or, conversely, find the position of the purtiele in its ortit nt :ay time.*

[^19]ent proe radius aill four in (5), In of (8). integral be then and the will be ed from e initial ependent 1 of pro-

e law of

 unse it to letermine ion of the mist then itute the t oceurs, is way we fore ofr and A lescribing the posi-

Cor. 4.-If p is the perpendicular from the origin to the tangent we have from Calculus, p .176 ,

$$
x d y-y d x=p d s
$$

which in (3) gives

$$
\begin{equation*}
\frac{d s}{d t}=\frac{h}{p} \tag{10}
\end{equation*}
$$

and this in (6) gives

$$
d \frac{h^{2}}{p^{2}}=-2 P d r
$$

Differentiating, and solving for I ', we have

$$
\begin{equation*}
P=\frac{h^{2}}{p^{3}} \frac{r p}{i r} \tag{11}
\end{equation*}
$$

which is the equation of the orbit betueen the radius vector and the perpendienlar on the tangent at any point.
182. The Sectorial Area Swept over by the Radius Vector of the Particle in any time is Proportional to the Time.- Let A denote this area; then we have from Calcuitio, p. 364,

$$
\begin{aligned}
\Lambda & =\frac{1}{2} f^{\prime} r^{2} d \theta \\
& =\frac{1}{2} \cdot f^{\prime} h d t, \text { by (5) of Art. 181, } \\
& =\frac{1}{2} h t
\end{aligned}
$$

if A and t be both mensured from the commencement of the motion. Therefore the aretes suept ocer. by the radius cretor in different times are proportional to the times, and equal areas will be etescribed in equal times.

Cor.-If $t=1$, we have $\mathbf{A}=\frac{1}{2} h$. Hence $h=$ twice the seetorial area deseribed in one mit of time.
183. The Velocity of the Particle at any Point of its Orbit.-We have for the velocity,

$$
\begin{align*}
v & =\frac{d s}{d t} \\
& =\frac{h}{p} \mathrm{by}(10) \text { of Art. } 181 \tag{1}
\end{align*}
$$

Hence, the velocity of the particle at each point of its path is inversely proportional to the perpenclicular from the centre on the tangent at that point.

Cor. 1.-We have, by Calenlus, p. 180,

$$
\begin{aligned}
\frac{1}{p^{2}} & =\frac{1}{r^{2}}+\frac{1}{r^{4}} \frac{d r^{2}}{d \theta^{2}} \\
& =u^{2}+\frac{d u^{2}}{d \theta^{2}}, \text { since } r=\frac{1}{u}(\text { Art. } 181)
\end{aligned}
$$

which in (1) gives

$$
\begin{equation*}
v^{2}=\frac{l^{2}}{p^{2}}=h^{2}\left(u^{2}+\frac{d u^{2}}{d \theta^{2}}\right) \tag{2}
\end{equation*}
$$

mother important expression for the velocity.
Con. 2.-From (6) of Art. 181, we have

$$
\begin{equation*}
\downarrow\left(\frac{d s^{2}}{d t^{2}}\right)=d\left(v^{2}\right)=-2 P^{2} d r \tag{3}
\end{equation*}
$$

Let Y be the velocity at the point of projection, at which let $r=R$, and since P is some function of r, let $P=f(r)$, then integrating (3) we get

$$
\begin{align*}
\frac{d s^{2}}{d t^{2}} & =-2 \int_{R}^{r} f(r) d r \\
\therefore \quad v^{2}-\mathrm{V}^{2} & =2\left[f_{1}(R)-f_{1}(r)\right] \tag{4}
\end{align*}
$$

whieh is mother expression for the velocity ; and since this is a function only of the corresponding distances, R und r. it follows that the evecity ut any point of the orbit is
independent of the patl described, and depends sotely on the maynitude of the attraction, the distance of the point from the centre, and the relocity and disitunce of projection.
From (4) it appears that the relocity is the same at all points of the same orbit which are equally distant from the centre ; if $r=l$, the velocity $=r$; and thus if the orbit is a re-entering curve, the particle always, in its suceessive revolutions, passes through the same point with the same relocity.

If the velocity vanishes at a distance a from the centre (4) becomes

$$
\begin{equation*}
v^{2}=2\left[f_{1}(a)-f_{1}(r)\right] \tag{5}
\end{equation*}
$$

and a is called the radius of the circle of zero velocity.
Cor. 3.-From (3) we have

$$
\begin{align*}
d\left(v^{2}\right) & =-2 P d r ; \\
\therefore \quad v d v & =-P d r . \tag{6}
\end{align*}
$$

Taking the logarithm of (1) we have

$$
\log v=\log h-\log p
$$

Differentiating we get

$$
\begin{equation*}
\frac{d v}{v}=-\frac{d p}{p} . \tag{7}
\end{equation*}
$$

Dividing (6) by (7), we get

$$
v^{2}=P p \frac{d r}{d p}=2 P \cdot \frac{p}{2} \frac{d r}{d p}
$$

$=2 P \times \frac{1}{4}$ chord of eurvature* through the centre; (8)

* To prove that $\begin{aligned} & \prime \prime \prime d r \\ & 2 d y\end{aligned} d$ in one fourth the chord of curvature.

Let MD (Fig 81), be the tangent to the orbit, and \mathbf{C} the centre of curvature; let $O D=\mu, C M=\rho$, the radius of curvature; and the angle $\mathrm{MEN}=\phi$. Then MS, the
and, comparing this with (6) of Art. 140, it appears that the particle at any point has the same velocity which it would have if it moved from rest at that point towards the centre of force, under the action of the force continuing constant, through one-fourth of the chord of the circle of curvature.

Hence, the velocity of a proticte at any point of a central orbit is the same as that which would be uequired by a particle moving freely from iest through one-fourth of the chord of earrature at that pmint, through the eentre, under the action of a coustant force whose maynitude is equal to thai of the central attraction at the point.

Sor. 4.-If the orbit is a circle having the centre of force
part of the radins vector OM, which is intercepted by the circle of curvature is callen the chord of curcature. Its value is determitued as follows:

We hàve (Fig. 81)

$$
\phi=\theta+\mathrm{OMD}
$$

$$
=\theta+\sin -\frac{p}{r} ;
$$

$$
\begin{equation*}
\therefore d \phi=d \theta+\frac{r d p-p d r}{r \sqrt{r^{2}-p^{2}}} \tag{1}
\end{equation*}
$$

From Calculus, p. 180, (10), we have

$$
\begin{equation*}
d \theta=\frac{p d r}{r \sqrt{r^{2}-p^{2}}} \tag{?}
\end{equation*}
$$

and
Substituting (2) in (1) we get

$$
d \phi=\frac{d p}{1 r^{2}-p^{2}} .
$$

But Caiculue, p. 221, we have

$$
\rho=\frac{\wedge}{d \phi}=r \frac{d r}{d \dot{p}}, \text { hy (3) and (4). }
$$

$$
\mathrm{C} \text { sin omb. }
$$

$$
=v_{p}{\underset{r}{p}=2 p \frac{d r}{d p}, y(5)}_{d p}
$$

$=$ the chord of curvature ; therefore

$$
\frac{p}{2} \frac{d r}{d p}=\text {, ne font th the chord of curvatare. }
$$

cars that which it vards the ntinning circle of
a cer!tral red by a th of the re, unter equal to
e of force
in the centre, and R, V, P, are respectively the radius, velocity and central foren, we have

$$
V^{2}=P R
$$

Cor. 5.-From (5) of Art. 181, we have

$$
\begin{equation*}
\frac{d \theta}{d l}=\frac{h}{r^{2}} . \tag{9}
\end{equation*}
$$

The first member, being the actual velocity of a point on the radius vector at the unit's distance from the centre. is the angular velucity of the particle (Art. 160). Hence the anyular relocity of a purticle varies mevsely as the square of the ratius cector.

Sch.-A point in a central orbit at which the radius vector is a maximum or minimum is called an Apse; the radius vector at an apse is called an . Ipsidel Distance; and the angle between two consecntive apsidal distances is called an Apsital Anyle of the orbit. The analytical conditions for an apse are, of course, that $\frac{d u}{d \theta}=0$, and that the first derivative which does not vanish should be of an even order. The first condition ensures that the radins vector at an apse is perpendieular to the timgent.
184. The Orbit when the Attraction Varies Inversely as the Square of the Distance.-A particle is projecterl from a given point in a given divection wita ativen culocity, and moves under the action of a central attraction rarying inversely as the square of the distance; to determine the writ.

Lef the eantre of fores be the origin; $V^{*}=$ the velocity of projection $; R=$ the distance of the proint ol projection from the origin; $\beta=$ the angle between R and the line of
projection; and let $\mu=$ the absolute force and $t=0$ when the particle is projected. Then since the velority $=$ $\frac{h}{p}$ (Art. 183), and at the point of projection $p=R \sin \beta$, we have

$$
\begin{equation*}
V=\frac{h}{h \sin \beta} ; h=V R \sin \beta \tag{1}
\end{equation*}
$$

As the force varies inversely as the square of the distance, we have

$$
\begin{equation*}
P=\frac{\mu}{r^{2}}=\mu u^{2},\left(\text { since } r=\frac{1}{u}\right) . \tag{2}
\end{equation*}
$$

which in (9) of Art. 181 gives

$$
\begin{equation*}
\frac{d^{2} u}{d \theta^{2}}+u=\frac{\mu}{h^{2}} . \tag{8}
\end{equation*}
$$

Multiplying by $2 d u$ and integrating, we get

$$
\frac{d u^{2}}{d \theta^{2}}+u^{2}=2 \frac{\mu}{\bar{h}^{2}} u+c
$$

when $t=0, u=\frac{1}{r}=\frac{1}{R}$, and $\frac{d u^{2}}{d \theta^{2}}+u^{2}=\frac{V^{2}}{h^{2}}$, (Art. 183, Cor. 1) ; therefore

$$
c=\frac{V^{2}}{h^{2}}-\frac{2 \mu}{h^{2} R}=\frac{V^{2} R-2 \mu}{h^{2} k}
$$

Substituting this value for c we get

$$
\begin{equation*}
\frac{d u^{2}}{d \theta^{2}}+u^{2}=\frac{V^{2} R}{h^{2} R}-2 \mu+\frac{2 \mu u}{h^{2}} \tag{4}
\end{equation*}
$$

Therefore (Art. 183, Cor. 1) we have

$$
(\text { velocity })^{2}=I^{2}+\ddot{2}_{\mu}\left(\begin{array}{l}
1 \tag{5}\\
r
\end{array}-\frac{1}{R}\right)
$$

$t=0$
ority $=$ $R \sin \beta$,
which shows that the velocity is the greatest when r is the least, and the least when r is the greatest.

Changing the form of (4) we have

$$
\begin{equation*}
\frac{d u^{2}}{d \theta^{2}}=\frac{V^{2} R-2 \mu}{h^{2} R}+\frac{\mu^{2}}{\bar{h}^{4}}-\left(\frac{\mu}{h^{2}}-u\right)^{2} . \tag{6}
\end{equation*}
$$

To express this in a simpler form, let

$$
\begin{gathered}
\frac{\mu}{h^{2}}=b, \text { and } \frac{V^{2} R-2 \mu}{h^{2} R}+\frac{\mu^{2}}{h^{4}}=c^{2} ; \text { and (6) becomes } \\
\frac{d u^{2}}{d \theta^{2}}=c^{2}-(u-b)^{2} ; \\
\therefore \frac{-d u}{\left[c^{2}-(u-b)^{2}\right]^{\frac{1}{2}}}=d \theta
\end{gathered}
$$

the negative sign of the radical being taken. Integrating we have,

$$
\cos ^{-:} \frac{u-b}{c}=\theta-c^{\prime}
$$

where c^{\prime} is an arbitrary constant;

$$
\begin{equation*}
\therefore \quad u=b+c \cos \left(\theta-c^{\prime}\right) . \tag{7}
\end{equation*}
$$

Replacing in ($\left(\begin{array}{c}r\end{array}\right)$ the values of b and c, and the value of h, from (1), and dividing both terms of the seconi member by μ, we have for the equation of the path,

$$
\begin{equation*}
u=\frac{1+\left[\frac{1}{\mu^{2}}\left(V^{2} R-2 \mu\right) R V^{2} \sin ^{2} \beta+1\right]^{\frac{1}{t}} \cos \left(\theta-c^{\prime}\right)}{\frac{R^{2} V^{2} \sin ^{2} \beta}{\mu}}(\tag{8}
\end{equation*}
$$

which is the equation of a conic section, the pole being at the foens, and the angle ($\theta-c^{\prime}$) being measured from the
shorter length of the axis majer. For if e is the eccentricity of a conie section, r the focal radius vector, and ϕ the angle between r and that point of a conic section which is nearest the focus, we have,

$$
\begin{equation*}
\frac{1}{r}=u=\frac{1+e \cos \phi}{1 \sim e^{2}} . \tag{9}
\end{equation*}
$$

Comparing (8) and (9), we see that

$$
\begin{gather*}
\Theta^{2}=\frac{1}{\mu^{2}}\left(V^{2} R-2 \mu\right) R V^{2} \sin ^{2} \beta+1 ; \tag{10}\\
\phi=\theta-c^{\prime} . \tag{11}
\end{gather*}
$$

Now the conic section is an ellipse, parabola, or hyperboha, according as e is less than, eppail to, or greater than mity; and from (10) e is less thinl, equal to, or greater than, unity according as $V^{2} h-2 \mu$ is negative, zero, or positive; therefore we see that if

$$
\begin{align*}
& \nabla^{2}<\frac{2 \mu}{R}, e<1, \text { and the orbit is an ellipse, } \tag{12}\\
& \nabla^{2}=\frac{2 \mu}{R}, e=1 \text {, and the orbit is a parabola, } \tag{13}\\
& \nabla^{2}>\frac{2 \mu}{R}, e>1 \text {, and the orbit is a hyperbola. } \tag{14}
\end{align*}
$$

Con. 1.-By (1) of Art. 1;3, we see that the square of the velocity of a pa iele falling from infinity to a distance R from the centre of force. for the law of attraction we are considering, is $\frac{2 \mu}{1 i}$. Hence the ahove conditions may be expressed more concisely by saying that the orbit. described about this centre of force, will be un ellipse, a
parabola, or "hyperbole. "erording as the velocity is less than, equal to, or yreater than, the relority from infinity.
The speries of conic section, therefore, does not depend oin the position of the line in which the particle is projeeted, but on the relocity of projection in reference to the distance of the point of projection from the centre of force.

Cor. 2.-From (11), we see that $\theta-c^{\prime}$ is the angle between the focal malins veetor, r, and that part of the principal axis which is between the foens and the point of the orbit which is nearest to the focus; i. e., it is the angle PFA (Fig. 8:) ;and
 therefore if the principal axis is the initial line $c^{\prime}=0$.
185. Suppose the Orbit to be an Ellipse.-Here $V^{2}<\frac{2 \mu}{h}$; so that from (10) we have

$$
\begin{equation*}
e^{2}=1-\frac{1}{\mu^{2}}\left(2 \mu-V^{2} R\right) R V^{2} \sin ^{2} \beta \tag{1}
\end{equation*}
$$

Now the equation of an ellipse, where r is the focal radins vector, θ the angle between r and the shorter segment of the major axis, $2 a$ the major axis, e the eccentricity, is

$$
\begin{gather*}
r=\frac{a\left(1-e^{2}\right)}{1+e \cos \theta} \\
\therefore \quad u=\frac{1}{a\left(1-e^{2}\right)}+\frac{\rho \cos \theta}{u\left(1-\frac{\theta}{\left.e^{2}\right)}\right.} \tag{2}
\end{gather*}
$$

comparing (2) with (8) of Art. 184. we have

$$
\frac{1}{u\left(1-c^{2}\right)}=\frac{\mu}{l^{2} V^{2} \sin ^{2} \beta}
$$

substituting for $1-e^{2}$ its value from (1), and solving for a, we have

$$
\begin{equation*}
a=\frac{\mu R}{2 \mu-V^{2} R}, \tag{3}
\end{equation*}
$$

which singes that the major axis is independent of the direc. tion of projection.
We may explain the seyeral quantitics which we have used, by Fig. 3).
B is the point of projection ; $\mathrm{FB}=R ; \mathrm{DB}$ is the line along which the particle is projected with the velocity V; $\mathrm{FBD}=\beta$, the ingle of projection; $\mathrm{FP}=r ; \mathrm{FFA}=\theta$; $\mathrm{FD}=l$? $\sin \beta$; if $\beta=90^{\circ}$, the particle is projected from in apse, i. e., from A or A^{\prime}.

Cor. 1.-'io determine the apsidal distances, FA and FA' $^{\prime}$, we must put $\frac{d u}{d \theta}=0$, (Art. 183, Sch.), and (4) of Art. 184 give us the quadratic equation

$$
\begin{equation*}
u^{2}-\frac{2 u}{h^{2}} u+\frac{2 \mu}{h^{2} R}-\frac{V^{2} 2}{h^{2}}=0 \tag{4}
\end{equation*}
$$

the two roots wh which are the recinrocals of the two apsidal distanews, " $(1-c)$ and $"(1+c)$.

Con. 2.-Since the coefficient of the second term of (4) is the sum of the roots with their signs changed, we have

$$
\begin{align*}
& \frac{1}{a(1-\varepsilon)}+\frac{1}{a(1+e)}=\frac{2 ;}{h^{2}} ; \\
& \therefore \quad a\left(1-c^{2}\right)=\frac{h^{2}}{\mu^{2}} ; \tag{5}
\end{align*}
$$

which gives the lathes rethm of the orbit.
living for ocity V; $A=\theta$; ted from

FA and
d (4) of
4)
o apsidal
m of (4) o have

Cor. 3.-From Art. 18% we have, calling T the time,

$$
T=\frac{2 \mathrm{~A}}{h},
$$

where A is the area swept over by the radius vector in the time T. Therefore for the time of describing an ellipse, we have

$$
\begin{aligned}
T & =\frac{2 \text { area of ellipse }}{h} \\
& =\frac{2 \pi a^{2} \sqrt{1-e^{2}}}{\sqrt{\pi \mu\left(1-e^{2}\right)}}, \text { from }(5), \\
& =2 \pi \sqrt{\frac{a^{3}}{\mu}},
\end{aligned}
$$

which is the time occupied by the particle in passing from any point of the ellipse around to the same point again.*
186. Kepler's Laws.-By laborious calculation from an immense series of observations of the planets, and of Mars in particular, Kepler comelisted the following as the laws of the planetary motions about the Sun.
I. The orbits of the planets cure ellipses, of which the Sun occupies "focus.
II. The radius vector of each planet describes equal areas in equal times.
Iii. The squares of the periodic times of the planets are as the cubes of the major aves of their orbits.
187. To Determine the Nature of the Force which Acts upon the Planetary System. - (1) Prom the

* Called Reriodle Time.
second of these laws it follows that the planets are retained in their orbits by an aftraction tending to the Sinn.

Let (x, y) be the position of a planct at the time t referred to two eo-ordinate axes drawn through the Sun in the plane of motion of the planet ; X, Y, the component accelerations due to the attraction acting on it, resolved parallel to the axes; then the equations of motions are

$$
\begin{gather*}
\frac{d^{2} x}{d t^{2}}=X ; \quad \frac{d^{2} y}{d t^{2}}=Y \\
\therefore \quad x \frac{d^{2} y}{d t^{2}}-y \frac{d^{2} x}{d t^{2}}=x Y-y X \tag{1}
\end{gather*}
$$

But, by Kepler's second law, if A be the area described by the radius vector, $\frac{d \mathrm{~A}}{d t}$ is constant,

$$
\therefore \frac{d \mathrm{~A}}{d t} \text { or } \frac{1}{2} \frac{r^{2} d \theta}{d t}
$$

$$
=\frac{1}{2}\left(x \frac{d y}{d t}-y \frac{d x}{d t}\right)=a \text { constant. }
$$

Differentiating, we have

$$
\begin{gathered}
x \frac{d^{2} y}{d t^{2}}-y \frac{d d^{2} x}{d t^{2}}=0 . \\
\therefore \quad \\
x Y-y I=0, \text { from }(1), \\
\\
\therefore \frac{X}{Y}=\frac{x}{y},
\end{gathered}
$$

which shows thint the uxinl components of the acceleration, dae to the attmetion acting on the planet, are proportiomal to the ro-ordinates of the phanet; and therefore by the pamallelogmon of forces (Art. 30), the resmlant of I and V^{*} pusses throngh the origitn.
we retained im. the time t the Sun in component it, resolved ons are
(1)
a described fore, by the of X and 1^{\prime}

Hence the forces acting on the planets all pass through the Sun's centre.
(2) From the first of these laws it follows that the central attraction varies inversely as the square of the distance.
The polar equation of an ellipse, referred to its focus, is
or

$$
\begin{aligned}
& r=\frac{a\left(1-e^{2}\right)}{1+e \cos \theta} \\
& u=\frac{1+e \cos \theta}{a\left(1-e^{2}\right)}
\end{aligned}
$$

Hence

$$
\frac{d^{2} u}{d \theta^{2}}+u=\frac{1}{a\left(1-e^{2}\right)}
$$

and t ':erefore, if l ' is the attraction to the focns, we have [1 rt. 181, (9)],

$$
\begin{aligned}
P & =l^{2} u^{2}\left(\frac{d^{2} u}{l \theta^{2}}+u\right) \\
& =\frac{h^{2}}{a\left(1-e^{2}\right)} \frac{1}{r^{2}} .
\end{aligned}
$$

Hence, if the orbit be an ellipse, described about a centre of attraction at lhe focus, the law of intensity is that of the inverse square of the distance.
(3) From the third law it follows that the attraction of the Sm (supposed fixed) which adts on a unit of mass of each of the planets, is the sume for eneh planet at the samo distance.

By Art. 185, Cor. 3, we have

$$
I^{2}=\frac{4 \pi^{2}}{\mu} a^{3}
$$

But by the third law, $T^{2} \propto a^{3}$, and therefore μ must be constant; i. e., the strength of attraetion of the Sun must be the same for all the planets. Hence, not only is the law of foree the same for all the planets, but the ulbsolute force is the same.

This very brief disenssion of central forces is all that we have space for. To pursue these enquiries further would compel us to omit matters that are more especially entitled to a place in this book. The student who wishes to pursine the study further is referred to Tait and Steeles Dynamics of a Particle, or Price's Anal. Mech's, Vol. I, or to any work on Mathematical Astronomy. We shall conclude with the following examples.

EXAMPIES.

1. A particle describes an ellipse under an attraction always directed to the centre ; it is required to find the law of the attraction, the velocity at any point of the orbit, and the periodie time.
(1) The polar equation of the ellipse, the pole at the centre, is

$$
\begin{equation*}
u^{2}=\frac{\cos ^{2} \theta}{a^{2}}+\frac{\sin ^{2} \theta}{b^{2}} ; \tag{1}
\end{equation*}
$$

$\therefore u \frac{d u}{d \theta}=\left(\frac{1}{b^{2}}-\frac{1}{a^{2}}\right) \sin \theta \cos \theta$,
and $\quad u \frac{d^{2} u}{d \theta^{2}}+\frac{d u^{2}}{d \theta^{2}}=\left(\frac{1}{\theta^{2}}-\frac{1}{a^{2}}\right)\left(\cos ^{2} \theta-\sin ^{2} \theta\right)$.
But [Art. 181, (9)] we have

$$
P=l^{2} u^{2}\left(u+\frac{l^{2} u}{l^{\theta^{2}}}\right)=\frac{l^{2}}{u}\left(u^{4}+u^{3} \frac{d^{2} u}{u \theta^{2}}\right)
$$

μ must be Sun must y is the law solute force all that we ther would lly entitled s to pursue Dynamics or to any l conclude
attraction and the law orbit, and pole at the

$$
\begin{align*}
& =\frac{h^{2}}{u}\left\{u^{4}+u^{2}\left[-\frac{a u^{2}}{d \theta^{2}}+\left(\frac{1}{b^{2}}-\frac{1}{a^{2}}\right)\left(\cos ^{2} \theta-\sin ^{2} \theta\right)\right]\right\} \\
& =\frac{h^{2}}{u}\left[u^{4}-\left(\frac{1}{b^{2}}-\frac{1}{u^{2}}\right)^{2} \sin ^{2} \theta \cos ^{2} \theta+u^{2}\left(\frac{1}{b^{2}}-\frac{1}{a^{2}}\right)\right. \\
& \\
& \left.\quad\left(\cos ^{2} \theta-\sin ^{2} \theta\right)\right], \text { by }(\cdot 2) \\
& =\frac{h^{2}}{u}\left[u^{2}+\left(\frac{1}{b^{2}}-\frac{1}{a^{2}}\right) \cos ^{2} \theta\right]\left[u^{2}-\left(\frac{1}{b^{2}}-\frac{1}{u^{2}}\right) \sin ^{2} \theta\right], \\
& \text { by factoring, } \\
& =\frac{h^{2}}{u} \cdot \frac{1}{b^{2}} \cdot \frac{1}{a^{2}}, \text { by }(1),=\frac{h^{2}}{u^{2} b^{2}} r, \tag{4}
\end{align*}
$$

and therefore the attraction varies directly as the distance. If $\mu=$ the absolute force we have, by (4),

$$
\begin{equation*}
h^{2}=\mu a^{2} b^{2} \tag{5}
\end{equation*}
$$

(2) If $v=$ the velocity, we have, by Art. 183,

$$
\begin{aligned}
v^{2}=\frac{l^{2}}{p^{2}} & =\frac{l^{2} b^{\prime 2}}{u^{2} b^{2}}(\text { A nal. Geom.,]. 133) } \\
& =\mu b^{\prime 2}, \text { by }(5)
\end{aligned}
$$

where b^{\prime} is the semi-dianeter conjugate to r.

$$
\therefore \quad v=b^{\prime} \sqrt{\mu}
$$

(3) If $T=$ the periodie time, we have, by Art. 182,

$$
I \prime=\frac{2 \pi a b}{h}=\frac{2 \pi}{\sqrt{\mu}}, \operatorname{by}(5)
$$

and hence the periodie time is independent of the magnitude of the ellipse, and depends only on the absolute rentral attraction. (See 'lait und Steele's Dynamies of a

Particle, p. 144, also Price's Anal. Mech's, Vol. I, p. 516.)
2. A particle describes an ellipse under an attraction always directed $i \boldsymbol{o}$ one of the foci ; it is required to find the law of attraction, the velocity, and the periodic time.
(1) Here we have

$$
\begin{equation*}
i t=\frac{1+e \cos \theta}{a\left(1-e^{2}\right)} ; \quad \therefore \frac{d u}{d \theta}=-\frac{e \sin \theta}{a\left(1-e^{2}\right)} ; \tag{1}
\end{equation*}
$$

and

$$
\frac{d^{2} u}{d \theta^{2}}=\frac{-e \cos \theta}{\pi\left(1-e^{2}\right)},
$$

which in (9) of Art. 181 gives

$$
\begin{equation*}
P=\frac{h^{2} u^{2}}{a\left(1-e^{2}\right)}=\frac{h^{2}}{a\left(1-c^{2}\right)} \cdot \frac{1}{r^{2}} ; \tag{2}
\end{equation*}
$$

hence the attraction varies inversely as the square of the distance. If $\mu=$ the absolute force, we have by (2)

$$
\begin{equation*}
h^{2}=\mu a\left(1-e^{2}\right) \tag{3}
\end{equation*}
$$

(2) By Art. 183, Cor. 1, we have

$$
\begin{align*}
& \frac{1}{p^{2}}=u^{2}+\frac{d u^{2}}{d \theta^{2}}=\frac{2 a u-1}{a^{2}\left(1-e^{2}\right)}, \text { by }(1) ; \tag{4}\\
\therefore \quad & u^{2}=\frac{l^{2}}{p^{2}}=\frac{\mu(2 a u-1)}{a}, \text { by }(3) \text { and }(4) . \tag{5}
\end{align*}
$$

(3) If $I=$ the periodie time we have (Art. 182)

$$
\begin{align*}
T & =\frac{2 \pi a^{2}\left(1-e^{2}\right)^{\frac{1}{2}}}{h} \\
& =\frac{2 \pi a^{2}\left(1-e^{2}\right)^{\frac{1}{4}}}{\left[\mu a\left(1-e^{2}\right)\right]^{\frac{1}{4}}}=\frac{2 \pi}{\sqrt{\mu}} a^{\frac{3}{3}}, \tag{6}
\end{align*}
$$

is, Yol. I,
m attraction d to tind the c time.
$\frac{1 \theta}{-2}$
(1)
(2)
quare of the oy ((2)
and hence the periorlic time vasice as the square root of the enbe of the major axis.
3. Find the attraction by which a article may describe a circle, and also the velocity, and the periodic time, (1) when the centre of attraction is in the centre of the ciache. and (2) when the centre of attraction is in the circomiference.
(1) Let $a=$ the rudins; then the polar equation. the pole at the centre, is

$$
\begin{gather*}
\mathbf{r}=a ; \therefore u=\frac{1}{a} ; \frac{d u}{d \|}=\frac{d^{2} u}{d \theta^{2}}=0 ; \\
\therefore \quad P=h^{2} u^{2}\left(u+\frac{d^{2} u}{d \theta^{2}}\right)=\frac{h^{2}}{a^{3}} \tag{1}\\
v^{2}=\frac{h^{2}}{a^{2}}, \text { und } T=\frac{2 \pi a^{2}}{h} .
\end{gather*}
$$

Also
From (1) and (2) we have

$$
P=\frac{v^{2}}{a}
$$

and hence the central attraction is equal to the square of the velocity divided hy the rudins of the circle.*
(z) The equation, is

$$
r=2 a \cos \theta ; \quad \therefore \quad 2 a u=\sec \theta
$$

and

$$
u+\frac{d^{2} u}{d \theta^{2}}=8 a^{2} u^{3}
$$

$$
\therefore P=8 a^{2} h^{2} u^{5}=\frac{8 a^{2} h^{2}}{r^{5}}
$$

and hence the attraction varies inversely as the fifth

EXAMPLES.

power of the distance ; and if $\mu=$ the absolnte for ${ }^{\mathrm{P}}$: we have $\mu=8 a^{2} h^{2}$;

$$
\therefore \quad h^{2}=\frac{\mu^{\prime}}{8 g^{2}} ; \quad \text { and } \quad r^{2}=\frac{\mu}{2 r^{2}}
$$

If $T=$ the periodic time, we have
$T=\frac{\frac{2}{2}^{5} \pi t^{3}}{\mu^{\frac{1}{8}}}$. (See Price's Anal. Mech., Vol. I., p. 518.)
4. Find the attraction by which a particle may describe the lemmiscate of Bernonilli and also the velocity, and the time of describing one loop, the centre of attraction being in the centre of the lemniscate, and the equation being $r^{2}=a^{2} \cos 2 \theta$.

$$
\text { Aus. } I^{P}=\frac{3 h^{2} a^{4}}{r^{4}} ; r^{2}=\frac{\mu}{3 r^{6}} ; T=\left(\frac{3}{u^{6}}\right)^{\frac{1}{2}} a^{4}
$$

5. Find the attraction by which a particle may describe the cardioid and also the velocity, and the periodic time, the equation being $r=a(1+\cos \theta)$.

$$
A n s, I^{\prime}=\frac{3 a i^{2}}{r^{4}} ; t^{2}=\frac{2 \mu}{3 r^{3}} ; \quad T=\left(\frac{3^{3} a^{6}}{\mu}\right)^{t} \pi
$$

d. Find the attraction by which a particle may describe a parabola, and also the velocity, the centre of attraction being int the focus, and the equation being $r=\frac{2 a}{1+\cos \theta}$. Ans. $P=\frac{h^{2}}{2 a r^{2}} ; v^{2}=\frac{2 \mu}{r} . \quad$ Compare (13) of Art. 184.
i. Find the attraction by which a particle may describe a byperbola, and the velocity, the centre of attraction being at the focus, and the equation being $r=\frac{a\left(e^{2}-1\right)}{1+e \cos \theta}$.

$$
\text { Ans. } P=\frac{h^{2}}{a\left(1-e^{2}\right)} \frac{1}{r^{2}} ; v^{2}=\frac{\mu(2 a u+1)}{a}
$$

8. If the centre of atrextion is at the centre of the hyperbola, find the attraction, and velocity, the equation being $\frac{\cos ^{2} \theta}{a^{2}}-\frac{\sin \theta}{b^{2}}=u^{2}$.

$$
\text { Ans. } \quad \prime=-\frac{h^{2}}{u^{2} b^{2}} r=-\mu r^{r} ; v^{2}=\mu\left(r^{2}-a^{2}+b^{2}\right) .
$$

9. Find the attraction to the pole under which a particle will describe (1) the curve whose equation is $r=2 a \cos n \theta$, and (2) the curve whose effuation is $r=\frac{2 a}{1-e \cos n \theta^{\circ}}$

Ans. (1) $P^{\prime}=\frac{8 n^{2} h^{2} n^{2}}{r^{5}}+\frac{\left(1-n^{2}\right) h^{2}}{r^{8}}$; (2) $P=\frac{h^{2} n^{2}}{2 r} \dot{r}$ $\frac{\left(1-n^{2}\right) h^{2}}{r^{3}}$. That is, the attraction in the first curr a a partly as the inverse fifth ${ }_{1}$. wer, and partly as the avel oc cube, of the distance: and in the second it varies in : the inverse square, and partly as the inverse cube, it the distance.
10. A planet revolved round the sun in an orbit with a major axis four times that of the earth's orbit; determine the periodic time of the planet. Ans. 8 years.
11. If a satellite revolved round the eartl close to its surface, determine the periodic time of the salellite.

$$
\text { Ans. } \frac{1}{(60)^{\frac{3}{2}}} \text { of the moon's period. }
$$

12. A body describes an ellipse under the action of a force in a focus: compare the velocity when it is nearest the focus with its velocity when it is furthest from the focus.

$$
\text { Ans. } \Lambda \mathrm{s} 1+e: 1-e \text {, where } e \text { is the eccentricity. }
$$

13. A h dy describes an ellipse under the action of a force to the focus S; if $I I$ be the other focus show that the
veloeity at any point P may be resolveci into two velocities, respestively at right angles to $S l^{\prime}$ and $H P^{\prime}$, and pach varying as $I P^{\prime}$.
14. A body describus an ellipse mader the action of a force in the centre: if the greatest velocity is three times the least, find the cecentrieity of the ellipse. Ans. $\frac{8}{3} \vee ?$.
15. A body deseribes an ellipse under the action of a force in the eentre: if the major axis is 20 feet and the greatest velocity 20 feet per second, find the periodic time.

Ans. π seconds.
16. Find the attraction to the pole under which a particle may descrike an equiangular spiral.

Ans. $P \propto \frac{1}{r^{3}}$.
17. If $P=\frac{1}{r^{5}}\left(5 r^{2}-8 c^{2}\right)$, and a particie be projected from an apse at a distance c with the veloeity from infinity ; prove that the equation of the orbit is

$$
r=\frac{c}{2}\left(e^{2 \theta}+e^{-2 \theta}\right) .
$$

18. If $P=2 \mu\left(\frac{1}{r^{3}}-\frac{a^{2}}{r^{5}}\right)$, and the particle be projeeted from an apee at a distance a with veloeity $\frac{\sqrt{\mu}}{n}$, prove that it will be at a distance r after a time

$$
\frac{1}{2 \sqrt{\mu}}\left(a^{2} \log \frac{r+\sqrt{r^{2}-a^{2}}}{a}+r \sqrt{r^{2}-a^{2}}\right) .
$$

p velocitics, mach saryaction of a three times (s. 㝵 $V \geqslant$.
action of a et and the iodic time. seconds. hich a par\& $P \times \frac{1}{r^{3}}$.
e projected om infinity;
e projected , prove that

CHAPTER III.

CONSTRAINED MOTION.

188. Definitions.-A particle is constrained in its motion when it is compelled to move along a given fixed curre or surface. Thus far the subjects of motion have been particles not constraincd by any geometric conditions, but free to move in such paths as are duc to the action of the impressed forces. We come now to the case of the motion oi a particle which is constraincd; that is, in which the motion is subject, not only to given forces, but to undetermined reactions. Such cases occur when the particle is in a small tube, either smooth or rough, the bore of which is supposed to be of the same size as the particle; or when a small ring slides on a curved wire, with or without friction; or when a particle is fastened to a string, or moves on a given surface. If we substitute for the curve or surfuce a force whose intensity and direction are exactly equal to those of the reaction of the curve, the particle will describe the same path as before, and we may treat the problem as if the particle were free to move under the action of this system of forces, and therefore apply to it the gencral equations of motion of a free particle.
189. Kinetic Energy or Vis Viva (Living Force), and Work.-A particle is constrained to move on a given smooth plane curve, under given forces in the plane of the curve, to determine the motion.

Let APC be the curre along which the particle is con pelled to move when acted upon by any given forces. Let $O x$ and $O y$ be the rectangula: axes in the plane of the
eurve, the axis y positive upwarls, and (x, y) the place of the particle, l, at the time t; lot X, Y, parallel respectively to the axes of x and y, he the axial components of the forces, the mass of the particle being m : let R be the pressure between
 the curre and particle, which aets in the normal to the curve, since it is smooth. Then the equations of motion are

$$
\begin{align*}
& m \frac{d^{2} x}{d t^{2}}=X-R \frac{d y}{d s} \tag{1}\\
& m \frac{d^{2} y}{d t^{2}}=Y+R \frac{d x}{d s} \tag{2}
\end{align*}
$$

Multiplying (1) and (2) respectively by $d x$ and $d y$, and adding, we have

$$
m \frac{d x d^{2} x+d y d^{2} y}{d f^{2}}=X d x+Y d y
$$

Integrating between the limits t and t_{0}, and calling v_{0} the mitial velocity, we have

$$
\begin{equation*}
\stackrel{m}{\because} \imath^{2}-\frac{m}{2} v_{0}^{2}=\int_{t_{0}}^{t}(X d x+Y d y) \tag{3}
\end{equation*}
$$

The term $\frac{m}{2} v^{2}$ is calleì the vis vica*, or Kinetic Energy of the mass m; that is, vis viva or kinetic energy is a quantity which varies as the product of the mass of the particle and the square of its velocity. There is particulur advantage in defining vis viva, or kinetic energy, as half
the product of the mass and the sopuare of its velocity.* The first member, theretore, of (3) is the vis visa or kineti, energy of m acpuired in its motion from $\left(. r_{0} \cdot y_{0}\right)$ to (x, y) nuder the aetion of the given forces.
The terms Xals and rity are the prolucts of the axial components of the forees by the axial displacements of the mass in the time d, and are therefore, the elements of work done by the accelerating forces X and Y in the time $d t$, according to the definition of work given in Art. 101, Rem.; so that the sicond member of (3) exuresses the work done by these forecs throngh the spaces over which they moved the mass in the time between t_{0} and $/$. This equation is callen the equation of kinetic energy cund of uork; it shows that the work done by a force exerting action through a given distance, is "unal to the increase of ki we energy which has acerned to the mass in its motion through that distance.
If in the motion, kinetic energy is lost, negative work is done by the foree; i.e., the work is stored up as potentinl work in the mass on which the foree has acted. Thus, if work is spent on winding up a watel, that work is stored in the coiled spring, and is thus potential and ready to be restored uider adapted ciremmstances. Also, if a weight is raised through a vertical distance, work is spent in raising it. and that work may be recovered by lowering the weight through the same vertical distance.
This theorem, in its most general form, is the modern principle of conservation of energy ; and is male the fundamental theorem of abstract dyamies as applied to natural philosophy:

In this case we have an instance of space-integrals, which, as we have seen, gives ins kinetie energy and work; the soln on of problems of hinetic energy and work will be explaned in Chap. V.

* Some writers deflne vis viva as the whole product of the mass and the square of the velocity. Sce Routh's Rigid Dynamies, 1. 259.

Now if X and Y are functions of the co-ordinates x and y the second member: of (3) can be integrated ; iet it be the differ n utial of sone function of x and y, as $\phi(x, y)$. Integrating (3) on thas hypothesis, and supposing v and v_{0} to be the velocities of the particle at the points (x, y) and $\left(x_{0}, y_{0}\right)$ corresponding to t and t_{0}, we have

$$
\begin{equation*}
\frac{m}{2}\left(v^{2}-v_{0}^{2}\right)=\phi(x, y)-\phi\left(x_{0}, y_{0}\right) \tag{4}
\end{equation*}
$$

Which sinows that the kinetic energy gained by the particle constrained to move, under the forces X, Y, along any path whatever, from the point $\left(x_{0}, y_{0}\right)$ to the point (x, y), is entively independent of the path pursued, und depends only upon the eo-ordinates of the points left und arrived at; the reaction R does not appear, which is elearly as it should be, since it does no work, because it acts in is line perpendienlar to the direction of motion.
190. To Find the Reaction of the Constraining Curve. - For convenience, the muss of the particle may be tuken as unity. Multiplying (1) and (2) of Art. 189 by $\frac{d y}{d s}$ and $\frac{d x}{d s}$, sulatracting the former from the hatter, and solving for R, we have,

$$
\begin{align*}
R & =\frac{d^{2} y \frac{d x-d^{2} x d y}{d t^{2} d s}+Y \frac{d y}{d s}-Y \frac{d x}{d s}}{} \\
& =\frac{r^{2}}{\rho}+X \frac{d y}{d s}-Y \frac{d x}{d s}, \text { hy }(3) \text { of Art. 16: } \tag{1}
\end{align*}
$$

in which ρ is the radius of curvature at the point P. The last two terms of (1) ure the normal components of the impressed forees; and theriwre. if the particle were at rest. they would denote the whole pressure on the unve; but
the particle being in motion, there is an additional pressure on the curve expressed by $\frac{v^{2}}{\rho}$.
In the above reasoning we have considered the partiele to be on the concare side of the curve, and the resultant ol' X amil Y to act towards the convex side atong some line as $P F$ s) as to prodnce pressure against the curve. If on the contrary, this resultant ants towards the concave side, along o the point ursued, and ints left and ch is elearly it acts in in

nstraining

ticle may be Art. 189 by latter, and
int P. The rents of the were at rest. eurve; lint
$P^{\prime} F^{\prime}$ for example. inen, whether the particle be on the concave or conve: side, the presone agains the curve will be the difference between $\frac{r^{2}}{\rho}$ and the normal resultint of X and Y.
191. To Find the Point vohere the Particle $\mathrm{K}_{\mathrm{r}} \mathrm{ill}$ Leave the Constraining Curve. - It is evident thit at that point. $R=0$, as there will be no pressure agamst the curve. Therefore (1) of Art. 190 becomes

$$
\begin{aligned}
\frac{v^{2}}{\rho} & =Y^{d d x} \\
& =F^{\prime} \cos F^{\prime} P \boldsymbol{d y}
\end{aligned}
$$

if $F^{\prime \prime}$ be the resultant of X and Y.

$$
\therefore r^{2}=F^{\prime} \rho \cos F^{\prime} P R
$$

$=2 F^{\prime} \cdot \frac{1}{4}$ chord of curvature in the direction $P F^{\prime}$.
Comparing this with (6) of Art. 140, we see that the particle will leare the curre al the point where its velocity is such as would be producoll by the meswllant force then actimg wa it, if rontimued ronstant during its fall from rest through "anace equal to $\frac{1}{4}$ of the chord of chrveture parallel to that resulttaut. (Stec Thit and Stecle's Dynamics of a Particle, p. 170.$)$
192. Constrained Motion Under the Action of Gravity.-When gravity is the only foree actiag on the particle, the formule are simplified. Taking the axis of y vertical and positive downwards, the forces become

$$
i
$$

$$
X=0, \text { and } \quad Y=+g
$$

and for the velocity we have, by (3) of Art. 189,

$$
\begin{equation*}
\frac{1}{2} v^{2}-\frac{1}{2} v_{0}^{2}=g\left(y-y_{0}\right) \tag{1}
\end{equation*}
$$

where y_{0} is the initial space corresponding to the time t_{0}. For the pressure on the curve we have, by (1) of Art. 190,

$$
\begin{equation*}
R=\frac{v^{2}}{\rho}+y \frac{d x}{d s} \tag{2}
\end{equation*}
$$

If the origin be where the motion of the purticle begins, the initial velocity and space are zero, and (1) becomes

$$
\begin{equation*}
\frac{1}{2} v^{2}=g y . \tag{3}
\end{equation*}
$$

This slows that the velocity of the particle at any time is entirely independent of the form of the curve on which it moves; and depends solely on the perpendieular distance through which it falls.
193. Motion on a Circular Arc in a Vertical Plane.-Take the vertieal diameter us axis of y. and its lower extremity as origin ; then the erpution of the evele is

$$
\begin{gather*}
x^{2}=2 a y-y^{2} ; \\
\therefore \quad \frac{d x}{a-y}=\frac{d y}{x}=\frac{d s}{a} . \tag{1}
\end{gather*}
$$

Action of

 iag on the e axis of y me(1)
c time $\boldsymbol{t}_{\mathbf{0}}$. of Art. 190,
(2)
t any time e on which ar distance

Vertical

y, and its the cirele is

Let (k, h) be the point k where the particle starts from rest, and (x, y) the point P where it is at the time t. Then the particle will have fallen through the height $H M=h-y$, and hence from (3) of Art. 192 we have

$$
\begin{equation*}
\frac{d s}{d l}=v=\sqrt{2 g(i-y)} \tag{2}
\end{equation*}
$$

Hence the velocity is a minimum when $y=h$, and a maximum when $y=0$; and this maximum velocity will carry the particle through O to K^{\prime} at the distance h above the horizontal line through O.
To find the time oceupied by the particle in its descent from k^{\prime} to the lowest point, O, we have from (2)

$$
\begin{align*}
d t & =-\frac{d s}{\sqrt{2!(h-y)}} \\
& =\frac{-a d y}{\sqrt{2 g(h-y)\left(2\left(y-y^{2}\right)\right.}} \operatorname{by}(1) \tag{3}
\end{align*}
$$

the negative sign being taken since t is a decreasing function of s.
This expression does not admit of integration ; it may bo reduced to an elliptic integral of the first kind, and tables are given of the upproximate valnes of the integral for given vulues of y.*
If, however, the ralins of the circle is large, and the gre: itest distance k^{K}). over which the particle moves, is small, we may develope (3) into a series of terms in aseending powers of ? ? and this find the integral approximately.

[^20]Let T be the time of motion of the particle from K^{\prime} to $K^{\prime \prime}$, i.e., from $y=h$, through $y=0$, to $y=h$ again, then (3) becomes

$$
\begin{aligned}
T & =-\sqrt{\frac{a}{y}} \int_{h}^{\infty} \frac{d y}{\sqrt{h y-y^{2}}}\left(1-\frac{y}{2 a}\right)^{-\frac{1}{2}} \\
& =\sqrt{\frac{a}{y}} \int_{0}^{h a}\left[1+\frac{\frac{1}{2}}{2} \frac{y}{2 a}+\frac{1}{2} \frac{3}{4}\left(\frac{!}{2 a}\right)^{2}+\cdots\right] \frac{d y}{\sqrt{h y-y^{2}}} ;
\end{aligned}
$$

integrating each term separately we have

$$
\begin{align*}
T=\therefore & \sqrt{\frac{a}{g}}\left[1+\left(\frac{1}{2}\right)^{2} \frac{h}{2 a}+\left(\frac{1 \cdot 3}{2 \cdot 4}\right)^{2}\left(\frac{h}{2 a}\right)^{2}\right. \\
& \left.+\left(\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}\right)^{2}\left(\frac{h}{2 a}\right)^{3}+\text { etc. }\right] \tag{4}
\end{align*}
$$

which is the complete expression for the time of moving "rom the extreme position K on one side of the vertical to the extreme position K^{-1} on the other; this is called an oscillation. (See Price's Anal. Mechs., Vol. I., p. 518.)
If the are is very small, h is very small in comparison with a, and all the terms containing $\frac{h}{2 a}$ will be very small, and by neglecting them (4) becomes

$$
\begin{equation*}
T=\pi \sqrt{\frac{a}{g}} \tag{5}
\end{equation*}
$$

194. The Simple Pendulum.-Instend of supposing the particle to move on a curre, we may imagine it suspended by a string of invariable length, or a thin rod monsdered of mo weight, and moving in a vertical phate atwat the peint (': Fior, whether the foree neting on the particle be the reaction of the carve or the tension of the string, its intrusit! is the same, while its direction, in either case is ulung the normal to the enrve.
$\frac{d y}{h y-y^{2}} ;$ ing on the sion of the irection, in

When tho particle is supposed to be suspended by a thread without weight, it becomes what is termed a simple pevelulem -and although such an instrument ean never be pertectily attainel. but exists ouly in theory, yet approximations may be made to it sufficiently near for practical purposes, and by means of Dynamics we may reduce the caleulation of the motion of such a pendulum to that of the simple pendulum.

If l is the length of the rod, the time of an oscillation is approximately given by the formula

$$
\begin{equation*}
T=\pi \sqrt{\frac{l}{g}} \tag{1}
\end{equation*}
$$

when the angle of ascillation is very small, i.e., not exceeding about 4°;* and therefore, for all angles between this and zero, the times of oscillation of the same pendulum will not perceptibly differ; i. e., in very small ares the ossillations may be regarded as isochronal, or as all performed in the sume time.
195. Relation of Time, Length, and Force of Gravity.-From (1) of Art. 194, we have $T \propto \sqrt{ } l$ if g is constant ; $T^{\top} \propto \frac{1}{\sqrt{g}}$ if l is constimen; $g \propto l$ if T is constims, that is
(1) For the sume plaee the times of oscillation are as the square roots of the lengths of the penilulams.
${ }^{(2)}$) For the same pendulum the times of assillation are inrersely as the square roots of the forre of grouity at different plares.

* If the mitial tacliuation is 5°, the second torm of (4) It oniy 0.000470 ; If 1° the second term le only 0.00001 .
(3) For the sume time the lenyths of pentulums vary as the force of gravity.

Hence by means of the pendulum the force of gravity at different places of the earth's surface may be determined. Let L be the lengt.' of a pendulum which vibrates seconds at the place where $t . e$ value of g is to be found; then from (1) of Art. 194 we have

$$
\begin{equation*}
1=\pi \sqrt{\frac{L}{g}} ; \quad \therefore g=\pi^{2} L \tag{1}
\end{equation*}
$$

and from this formula g has been cileulated at many places on the earth. The method of determining L aecurately will be investigated in Chap. VII.

Cor.-If n be the number of vibrations performed during N seconds, and T the time of one vibration,

$$
\begin{equation*}
\text { then } n=\frac{N}{T} \text {, by (1) of Art. } 194=\frac{N}{\pi} \sqrt{\frac{g}{l}} . \tag{2}
\end{equation*}
$$

Since gravity decreases aceording to a known law, as we ascend above the carth's surface, the comparison of the times of vibration of the same pendulum on the top of a monntain and at its base would give approximately its height.
196. The Height of a Mountain Determined with the Pendulum.-A seconds peutulum is curried to the top of a mountain; requiret to find the height of the mountain by observing the chunge in the time of osrillution.

Let r be the radius of the enrth considered spherical: h the height of the momntain above the surface; l the length of the pendulum: $!$ and g^{\prime} the athes of gravity on the curth's surface, and at the top of the mountain respectively. Then (Art. 174) we have terminerl. es seconds then from
any places accurately
med dur-
aw, as we in of the top of a nately its
ned with to the top) mountain
herical; h he length ty on the jectively.

$$
\begin{equation*}
\frac{g}{g^{\prime}}=\left(\frac{r+h}{r}\right)^{2} ; \quad \therefore \quad g^{\prime}=\frac{g r^{2}}{(r+h)^{2}} \tag{1}
\end{equation*}
$$

which is the force of gravity at the top of the mountain.
Let $n=$ the number of oscillations which the seconds pendulum at the top of the mountain makes in 24 hours; then the time of oseillation $=\frac{24 \times 60 \times 60}{n}$. Hence from (i) of Art. 195, we have

$$
\begin{align*}
& \quad \frac{24 \times 60 \times 60}{n}=\pi \sqrt{\frac{l}{g^{\prime}}}=\pi \frac{r+h}{r} \sqrt{\frac{l}{g}}, \text { by }(1) \\
& \ddots \frac{h}{r}=\frac{24 \times 60 \times 60}{n}-1,\left(\text { since } \pi \sqrt{\frac{l}{g}}=1\right) \tag{2}
\end{align*}
$$

whieh gives the height of the monntain in terms of the radius of the carth. For the sake of an ex: whe suppose the pendulum to lose 5 seconds in a day; tl. u is to make j oseillations less than it would make on the swaice of the earth.

Then

$$
n=24 \times 60 \times 60-5
$$

which in (2) gives

$$
\begin{gathered}
\frac{h}{r}=\frac{24 \times 60 \times 60}{24 \times 60 \times 60-5}-1 \\
=\left(1-\frac{1}{24 \times 60 \times 12}\right)^{-1}-1=\frac{1}{24 \times 60 \times 12} \text { nearly } \\
\therefore h=\frac{4000}{24 \times 60 \times 12}=4 \text { mise, nearly }
\end{gathered}
$$

r being 4000 miles (approximately).
197. The Depth of a Mine Determined by Observing the Change of Oscillation in a Seconds Pendulum.-Let r be the radius of the earth as in the
last case; h the depth of the mine $; y$ and g the values of gravity on the earth's surface and at the bottom of the mine. Then (Art. 171) we have

$$
\begin{equation*}
\frac{g}{g^{\prime}}=\frac{r}{r-h_{l}} \tag{1}
\end{equation*}
$$

Let $n=$ the number of oscillations which the seconds pendulom at the bottom of the mine makes in 24 hours.

Then

$$
\begin{aligned}
\frac{24 \times 10 \times 60}{n} & =\pi \sqrt{\frac{1 r}{g(r-h)}} \\
& =\sqrt{\frac{r}{r-h}} \cdot \\
\therefore 1-\frac{h}{r} & =\left(\frac{n}{24 \times 60 \times 60}\right)^{2}
\end{aligned}
$$

from which h can be found. If, as before, the pendulum loses 5 seconds a day, we have

$$
\begin{aligned}
\frac{h}{r} & =1-\left(1-\frac{1}{24 \times 60 \times 12}\right)^{2} \\
& =\frac{1}{12 \times 60 \times 1}{ }^{2} \text { nearly, } \\
& \therefore h=\frac{1}{2} \text { mile nearly. }
\end{aligned}
$$

(See Price's Anal. Meeh`s, Vol. I, p. 590, also Pratt's Meclis, p. 3\%6.)
198. Centripetal and Centrifugal Forces.-Since the pressure $\frac{v^{2}}{\rho}$, at any point, depends entirely upon the velocity at that point mud the radius of curvature, it would remain the same if the forees X and Y were both zero. in which case it would be the whole normal pressure, R,
values of tom of the
he secounds 4 hours.
pendulum
against the curve. It is easily seen, therefore, that this pressure arises entirely from the inertia of the moving particle, i. e., from its tendency at any point, to move in the direction of a tangent; and this tendency to motion along the tangent necessarily causes it to exert a pressure against the deflecting enrve, and which requires the curve to oppose the resistance $\frac{r^{2}}{\rho}$. Hence, since the particle if left to itself, or if left to the action of a foree along the tangent, would, by th haw of inertia, continuc to move along that tingent, $\frac{v^{2}}{\rho}$ is the effect of the force which detlects the particle from its otherwise rectilincar path, and draws it towarts the centre of curvature. This force is called the Centripetal Force, which, therefore, may be dcfined to be the force which deftects a particle from its otherwise rectilinear path. The equal and oplosite ration exerted away from the centre is ealled the Centrifugal Force, which may be detined to be the resistance which the inertia of a particle in motion opposes to whaterer deflects it from its rectilinear path. Centripetal and centrifugal are therefore the same quantity under different aspeets. The aetion of the former is tousurds the centre of eurvature, while that of the latter is from the centre of eurvature. The two are called central forces. They determine the direction of motion of the particle but do not affect the velocity, since they aet contimeally at right angles to its path. If a particle, attached to a string, be whirled abo t a centre. the intensity of these central forces is measured by the tension of the string. If the string be cut, the particle will move along it tangent to the curve with menchinged velocity.
('or. I.-If m he the mass moving with veloeity r, its centrifugal force is $m \frac{v^{2}}{\rho}$. If ω be the angular velocity
deseribed by the radius of curvature, then (Art. 160, Ex. 1), $v=\omega \omega$, and consequently

$$
\begin{equation*}
\text { the centrifugal foree of } m=m \omega^{2} \rho \text {. } \tag{1}
\end{equation*}
$$

Con. 2.-Let move in a circle with a constant veloeity, r; let $a=$ the radins of the circle, and T the tine of a complete revolution; then $2 \pi a=v T$;

$$
\begin{equation*}
\therefore \text { the centrifugal foree of } m=m \frac{4 \pi^{2} a}{T^{2}} ; \tag{2}
\end{equation*}
$$

and thus the centrifngal force in a circle varies divectly as the rudius of the circle, and inversely as the square of the periodic tim.

Cor. 3.-If m moves in the circle with a constant angular velocity, ω, then (Art. 160, Ex. 1), $v=a \omega$;

$$
\begin{equation*}
\therefore \text { the centrifugal force of } m=m \omega^{2} r^{\prime} \tag{3}
\end{equation*}
$$

and therefore varies clirectly as the radins of the circle.
Thus if a particle of mass m is fastened by a string of length a to a point in a horizontal plane, and describes a circle in the plane abont the given point as eentre, the eentrifugal force produces a tension of the string, and if ω is the constant angular velocity, the tension $=m \omega^{2} a$.
199. The Centrifugal Force at the Equator.-Let R denote the equatorial radins of the earth $={ }^{2} 0926202^{*}$ feet, T the time of revolution upon its axis $=8616 \pm$ seconds, and $\pi=3.1415926$. Substituting these values in $(?)$ of Art. 198 , und denoting the centrifugal force at the equator by f, and the mass by nnity, we have

$$
\begin{equation*}
f=\frac{4 \pi^{2} R}{T^{2}}=0.11126 \text { feet } \tag{1}
\end{equation*}
$$

60, Ex. 1),
t velocity, time of a
lirectly as are of the

The force of gravity at the equator has been found to be 32.09022 ; if this force were not diminished by the centrifugal force; i.e., if the earth did not revolve on its axis the foree of gravity at the equator would be

$$
G=32.09022+0.11126=32.20148 \text { feet. }
$$

To determine the relation between the eentrifugal furce and the force of gravity, we divide (1) by (2) which gives

$$
\begin{equation*}
\frac{f}{G}=\frac{0.11126}{32.20148}=\frac{1}{289}, \text { nearly } \tag{3}
\end{equation*}
$$

that is, the centrifugal force ut the equator is $\overline{z e} \overline{5}$ of that which the force of gravity at the equator would be if the carth did not rotate.
200. Centrifugal Force at Different Latitudes on the Earth.-Let I be any partiele on the earth's surface describing a circumference abont the axis, N'S, with the ralins PD. Iet $\phi=A C P=$ the latitude of $P ; R$ the radins, $A C$, of the earth; and R^{\prime}
 the radius $P D$ of the parallel of latitude passing through P. Then we have

$$
\begin{equation*}
R^{\prime}=R \cos \phi . \tag{1}
\end{equation*}
$$

Let the centrifugal foree at the point P, which is exerted in the direction of the radius $D P$, be represented by the line $P B$. Resolve this into the two components $P F$, acting along the tangent, and $P E$, arting aleng the normal. Then by (2) of Art. 198 we have

$$
\begin{align*}
P B & =\frac{4 \pi^{2} R^{\prime}}{T^{2}} \\
& =\frac{4 \pi^{2} R \cos \phi}{T^{2}}, \text { by (1) } \tag{2}
\end{align*}
$$

Hence, the centrifugal force at "tu! peint on the carth's surface varies directly as the cosine of the latitude of the place.

For the normal comporent we have

$$
\begin{aligned}
P E & =P B \cos \phi \\
& =\frac{4 \pi^{2} R \cos ^{2} \phi}{T^{2}} \text { by (2) } \\
& =f \cos ^{2} \phi, \text { by (1) of Art. 199. (3) }
\end{aligned}
$$

Hence, the component of the centrifugel force which directly opposes the force of !rarity, at any point on the eurth's surfiuce, is equal to the centrifugal force at the equator, muttiphied by the square of the cosine of the latitude of the plucice.

Also

$$
\begin{aligned}
P F & =P B \sin \phi \\
& =\frac{4 \pi^{2} R}{2} \frac{\sin \phi \cos \phi}{T^{2}}, \text { by (2) } \\
& =\frac{f}{2} \sin 2 \phi, \text { by (1) of Art. } 199 ;(4)
\end{aligned}
$$

that is, the compmuent of ihe centrifugal faree which tents to draw partieles from any prrallel of latitude, P, twicards the equator, and to cause the curnt: to assume the figure of an oblate spheroid, varies as the sine of twiee the lutitude.
'T preceding calculation is made on the hypothesis that the earth is a perfect sphere, whereas it is an edate pheroid; and the attraction of the carth on particles at its surface decrease, ans we pass from the poles to the equator. The produlum fumishes the most accurate

$$
\rightarrow
$$

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

method of determining the force of gravity at different plases on the carth's surface.
201. The Conical Pendu-lum.-The Governor.-Sujpose a phaticle. I. of mass m, to be attached to one end of a string of length 1 , the other end of which is fixed at A. The partiele is made to describe a horizontal cirele of radius $P O$, with uniform velocity round the vertical axis.$t O$, su that it makes n revolutions per second. It is required to find the indinattion, 0 , of the string to the vertical,
 and the tension of the string.

The velocity of P in feet per second $=2 \pi n \cdot O \Gamma=2 \pi n l$ $\sin 0$. The forces acting umon it are the tension, T, of the string, the weight. m, of the particle. and the centrifugal force, $m \frac{4 \pi^{2} n^{2} l^{2} \sin ^{2} \theta}{l \sin \theta}$ (Art. 198). Hence resolving, we bave
for horizontal fores, $T \sin \theta=m \cdot 4 \nabla^{2} n^{2} l \sin \theta ; \quad$ (1)

$$
\begin{equation*}
\text { for vertical forces, } \quad T r o s \theta=m g \tag{2}
\end{equation*}
$$

From (1)

$$
\begin{equation*}
T=m \cdot 4 \pi^{2} n^{2} l \tag{3}
\end{equation*}
$$

which in (2) gives

$$
\begin{equation*}
\cos \theta=\frac{!}{4 \pi^{2} n^{2} l} \tag{4}
\end{equation*}
$$

where T'und 0 are completely determined.
If the string be replaned by origid rod, whieh ean turn about . 1 in a hatl and socket joint, the instrment is called a romical pendulum, and ocems in the governor of the steam-engine.

EXAMPIES.

1. If the length of the seconds pendulum be 39.1393 inches in London, find the value of g to three phaces of decimals.

Ans. 32.191 feet.
2. In what time will a pendulum vilnate whose length is 15 inches?

Alus. 0.62 sec . nearly.
3. In what time will a pendulnm vibrate, whose length is double that of a seconds pendinm? Ans. 1.41 sees.
4. How many vibrations will a pendulum 3 feet long make in al minute? Ans. 62.55.
5. A pendulum which beats secomds, is taken to the top of a mombtain one mile high; it is rengired to find the number of seconds which it will lose in 12 hours, ullowing the ratius of the earth to be 4000 miles. $A n s .10 .8$ secs.
6. What is the length of a pemoulum to beat secomds at the place where a body lalls $16 \frac{1}{1} \frac{\mathrm{ft}}{}$. in the first second?

Ans. 30.11 ins. nearly.
7. If 39.11 ins. be taken as the length of the seconds pendulum, how long must a pendulum be to beat 10 times in a minute?

Ans. 11 宩 ft .
8. A particle slides down the are of a cirele to the lowest point: find the velocity at the lowest point, if the angle described romad the centre is so .

Ans. Vgr.
9. A penduhum which oseillates in a second at one place, is carried to another phare where it makes 120 more ose itbations in a day: compure the fore of gravity at the hater place with that nt the former.

Ans. $\binom{889}{8}^{2}$).
10. Find the nmmber of vibuations, ", which a pemduhm will gain in A seeonds by shortening the length of the pendulum.

Let the length, l, be decreased by a small guantity, 1_{1}, and let n be increased by n_{1}; then from (2) of Art. 195 we get

$$
n+n_{1}=\frac{v}{\pi} \sqrt{\frac{\bar{g}}{l-l_{1}}} ;
$$

which, divided by (2) of Art. 190, gives

$$
\begin{aligned}
& \quad \frac{n+n_{1}}{n}=\left(\frac{1}{l-l_{1}}\right)^{\frac{1}{2}}=\left(1-\frac{l_{1}}{l}\right)^{-\frac{1}{2}}=1+\frac{l_{1}}{2 l} \text { nearly. } \\
& \text { Hence } \quad n_{1}=\frac{m l_{1}}{2 l}
\end{aligned}
$$

11. If a pendulnm be 45 inches long, how many vibrations will it gain in one lay if the hoh* be serewed up one turn. She serew having 3 , threads to the inch?

Ans. 28.

12. If a d lock loses two minnter a day. how many turns to the right hand must we give the mut in order to correct its error, supposing the serew to have 50 threads to the inch:

Ans. $5 \cdot 4$ thrus.
13. A mean solar duy contains it hours, 3 minntes, 56.5 seconds, sidereal time: culculate the length of the pendulum of a clock beating sideral secomds in Londm. See Ex. 1.

Ans. 38.925 inches.
14. A henry ball, suspended by a fine wire, viluates in a matl are; 48 vilnations are commed in 3 minutes. Calculate the length ol' the wire. - 1 ms. 45.88 fent.
15. The height of ther cupola of St. Paul's, ahove the
 lonly would make in hatf an hour, if suspembell from this dome by a line wire which rathes to within of inches of the floer.

Ans. 1iti. 1 .

* The lower extremily of the pondulutu.

16. A seconds pendulum is earried to the top of a monntain m niles high; assuming that the foree of gravity varies inversely as the square of the distance from the eentre of the earth, find the time of an oscillation.

$$
\text { Ins. }\left(\frac{4000+m}{4000}\right) \text { secs. }
$$

1\%. Prove that the leagths of penduhms vibuating during the same time at the same place are inversely as the squares of the number of oseillations.
18. In a series of experiments made at Larton coal-pit, a pendulum which beat seconds at the surface, gained 24 heats in a day at a depth of 1260 ft .; if g and g ' he the force of gravity at the surface and at the depth mentioned, shew that

$$
\frac{g^{\prime}-g}{g}={ }_{1 \theta^{\frac{1}{2}}} \frac{00}{}
$$

19. A pendulnm is found to make 640 vibrations at the equator in the same time that it makes 641 at Greenwieh; if a string hanging vertically can just sustain 80 lhs. at Greenwich, bow many los cain the same string sustain at the equator?

I 14 s. $80 \frac{1}{4}$ lbs. about.
20 . Find the time of descent of a particle down the are of a cercloid, the axis of the eyeloid being vertieal and vertex downward: and show that the time of deseent to the lowest point is the same whatever point of the enrve the particle starts from.

$$
\text { Ans. } \pi V^{\prime} \frac{r}{9} .
$$

?1. If in Ex. 20 the partide begins to move from the extremity of the hase of the cercloid find the pressure at the luwest peint of the curve.

Ans. 则; i. c., the pressure is twice the weight of the particle.
the top of a the force of distance from scillation.
$\left(\frac{1+m}{000}\right)$ secs.
vibrating durwersely as the
rton coill-pit, a wee, gainerl 24 y and g^{\prime} he the pth mentioned,
mations at the at Greenwich; tain 80 lhs at ing sustain ut $\frac{1}{4}$ Ibse about.
c down the are tical and vertex it to the lowest we the particle
1us. $\pi V^{\prime}{ }^{2}$.
move from the pressure at the weight of the
22. Find the pressure on the lowest point of the curve in Art. 193, (1) when the particle starts from rest at the highest print. A, (Fig. s4), (?) when it starts from rest at the proint 13 .

Ans. (1) $5 y$; (2) $3 y$; i.e., (1) the presure is five times the weight of the particle and (2) it is three times the weight of the particle.
23. In the simple pendulum fiud the point at which the tension on the string is the same as when the particle hangs at rest.
Ans. $y=\frac{g_{3}}{3}$, where h is the height from which the pendulum has fallen.
24. If a particle be compelled to move in a circle with a veloeity of 300 yards per minnte, the radius of the circle being 16 ft ., find the centrifugal ferce.

A $n s .14 .06 \mathrm{ft}$. per see.

25. If a body, weighing 1% tons, move on the circumference of a circle, whose rullus is 1110 ft ., with a velocity of 16 ft . per see., find the centrifugal force in tons (take $g=32 \cdot 1948)$.

Ans. 0.1217 ton.
26. If a body, weighing 1000 lls. ., be constrained to move in a eircle, whose radius is 100 ft., by mans of a string capable of sustaining a stritin not exceeding 450 lbs., find the veloeity at the moment the string breaks.

Alus. 38.06 ft . per sec.
27. If a railway carringe, weighing $\tilde{\gamma} \cdot 21$ tons, moving at the rate of 30 miles per homr, describe a portion of a circle whose ralius is 460 yards, tind its centrifugal foree in tons. Aus. 0.314 tom.
28. If the centrifngal foree, in a cirele of 100 ft . radius, be 146 ft . per sece, fiad the periodic time.

$$
A n \mathrm{x}, 5 \cdot 2 \text { seex. }
$$

29. If the centrifngal foree be 131 ozs , and the rudins of the circle 100 ft .. the periodic time being one hour, tind the weight of the body. Ans. $386 \cdot 300$ toms.
30. Find the foree towards the centre repuired to make a body move uniformly in a cirele whose radius is 5 ft., with such a velocity as to complete a revolution in 5 sees.

$$
\text { Aus. } \frac{4 \pi^{2}}{5} \text {. }
$$

31. A stone of one ll. weight is whirled round horizontally by a string two yards long having one end fixed; find the time of revolution when the tension of the string is 3 lbs .

$$
\text { Ans. } 2 \pi \sqrt{\frac{2}{g}} \text { secs. }
$$

32. A weight, w, is placed on a horizontal bar, OA, which is made to revolve round a vertical axis at 0 , with the angular velocity ω; it is required to determine the position, A, of the weight, when it is npon the point of sliding, the coefficient of friction being f.

$$
\text { Ans. } \mathrm{OA}=\frac{f g}{\omega^{2}}
$$

33. Find the diminution of gravity at the Sun's equator caused by the centrifugal force, the radius of the Sun being 441000 miles, and the time of revolution on his axis being 607 h .48 m.

Ans. 0.0192 ft . per sec.
34. Find the centrifugal force at the equator of Merenry, the radius being 15% miles, and the time of revolntion 24 h .5 m .

Ans. 0.0435 ft . per sec.
35. Find the centrifugal force at the erfuator, (1) of Venns, radius being 3900 miles and tume of revolution 23 h .21 m ., (2) of Mars, radius being 2050 miles and periodic time 24 h .37 m ., (3) of Jupiter, radius being 43300 miles and periodic time 9 h .56 m ., and (4) of Saturn, ratias being 39580 miles and periodic time 10 h .29 m .
mod the radins one hour. find $86 \cdot 300$ tons. wired to make radius is 5 ft , ion in ō secs.
Ans. $\frac{4 \pi^{2}}{5}$.
:ound horizonand fixed ; find string is 3 lbs . $\pi \sqrt{\frac{2}{g}}$ secs. ntal bar, OA, axis at 0 , with determine the the point of
$0 \Lambda=\frac{f g}{\omega^{2}}$.
Sun's equator the Sun being his axis being ft. per sec. or of Mercury, of revolution ; ft. per sec.
quator, (1) of of revolution 500 miles and radius being (4) of Saturn,) h. 29 m .

Aths. (1) 0.11504 ft . per sec.; (2) 0.0544 ft per sec.; (3) 7.0907 ft . per sec.; (4) $5 \cdot 7924 \mathrm{ft}$. per sec.
36. Find the effect of centrifugal foree in diminishing gravity in the latitude of 60 . [see (3) of Art. 200).

Ans. 0.008 ft . per sec.
37. Find (1) the diminution of gravity cansed by centrifugal force, and (2) the component whieh urges particles towards the equator, at the latitude of 23°.

$$
\text { Ans. (1) } 0.09 \mathrm{ft} \text {. per sec.; (2) } 0.04 \mathrm{ft} \text {. per sec. }
$$

38. A railway carriage, weighing 12 tons, is moving along a circle of radins 920 yards, at the rate of $3: 2$ miles an hour; find the horizontal pressure on the rails.

$$
\text { An.s. } 0.38 \text { ton, nearly. }
$$

39. A railway train is going smoothly along a curve of 500 yards radins at the rate of 30 miles an hour ; find at what angle a plumb-line hanging in one of the curriages will be inclined to the vertical. Ans. $2^{\circ} 18^{\prime}$ nearly.
40. The attractive foree of a mountain horizontally is f, and the force of gravity is g; show that the time of vibration of a pendulum will be $\pi \sqrt[4]{\frac{a^{2}}{a^{2}+f^{2}}} ; a$ being the length of the pendulum.
41. In motion of a particle down a cyeloid prove that the vertical velocity is greatest when it has completed half its vertical descent.
42. When a particle falls from the highest to the lowest. point of a cyeloid show that it describes half the path in two thirde of the time.
43. A railway train is moving smonthly along a curve at the rate of 60 miles an loour, and in one of the earriages a pendulum, which wonld ordinarily oseillate seconds, is observed to oseillate 121 times in two minutes. Show that line radius of the eurve is very nearly a cuarter of a mile.
44. One end of a string is fixed; to the other end a particle is attached which describes a horizontal circle with uniform velocity so that the string is always celined at an angle of 60 to the vertical; show that the relocity of the particle is that which wonld be acquired in falling freely from rest through a space equall to three-fourths of the length of the string.
45. The horizontal attraction of a mountain on a particle at a certain place is such as would produce in it an acceleration denotel by ${ }_{n}^{g}$. Show that a seconds pendulum at that pace wili gain $\frac{21600}{n^{2}}$ beats in a day, very nearly.
46. In Art. 201 , suppose l epmal to 2 ft . and m to be 20 lbs., and that the system makes 10 revolutious per sece, and $g=32 ;$ find θ and T.

$$
\text { Ans. } \theta=\cos ^{-1} \frac{1}{25 \pi^{2}} ; T=500 \pi^{2} \text { pounds. }
$$

47. A tube, bent into the form of a phane eurve, revolves with a given angular selocity, about its vertical axis; it is required to determine the form of the tube, when a heavy particle placed in it remains at rest in all parts of the tube.
(Take the vertical axis for the axis of y, and the axis of x horizontal, and let $\omega=$ the eonstant angular velocity). Ans. $x^{2} \omega^{2}=2 g y$, if $x=0$ when $y=0$, i. e., the curve is a parabola whose axis is vertical and vertex downwards.
48. A partiele moves in a smooth straight tube which revolves with constant angular velocity round a vertical axis to which it is perpeudienlar, to determine the curve traced by the particle.

Let $\omega=$ the constant angular velocity; and (r, θ) the position of the particle at the time l, ana let $r=a$ when

ERAMILES

369
$t=0$. Then since the motion of the particle is due entirely to the centrifingal force, we lave

$$
\frac{d^{2} r}{d t^{2}}:=\omega^{2} r ; \frac{d r^{2}}{d t^{2}}=\omega^{2}\left(r^{2}-a^{2}\right)
$$

if $\frac{d r}{d t}=0$, when $r=a$. Hence we have

$$
\left.r={\underset{2}{a}}_{a}^{\left(e^{\omega t}\right.}+e^{-\omega t}\right) .
$$

curve, revolves rtical axis; it is , when a heavy tl parts of the
and the axis of x gular velocity). i. e., the curve ex downwards.
ght tube which ound a vertical mine the eurve
and (r, θ) the let $r=a$ when

CHAPTER iV.

IMPACT.

202. An Impulsive Force.--Hitherto we have considered force only ats comtinume, i. e., ats acting through a dafinite and finte portion of time and produeing a finite change of velocity in that time. Sucha foree is measnred at any instant by the mass on which it acts multiplied by the acceleration which it cumses. If a particle of mass m be moving with a velocity r, and be retarded by a constant force which brings it to rest in the time t, then the measure of this force is $\frac{m v}{t}($ Art. $2(1)$. Now suppose the time t during which the particle is bronght to rest to be made very small; then the force required to bring it to rest monst be very large; and if we suppose $/$ so small that we are unable to measure it, then the forec becomes so great that we are unable to obtain its measure. A typical case is the blow of a hammer. Here the time during which there is contact is apparently infinitesimal, certainly too small to be measured by any ordinary methods; yet the effect prodnced is considerable. Similarly when a ericket ball is driven back hy a blow from a bat, the original velocity of the ball is destroyed and a new velocity generated. Also when a bullet is discharged from a gun. a large velocity is gencrated in an extremely brief time. Forces acting in this way are called impulsive forces. An impulsive force may therefore be defined to be a force which pioduces "fimite change of motion in an indefinitely brief' time in Impulse is the effect of a blous.

In such cases as these it is impossible acenrately to determine the foree and time; but we can determine
their product, or P, smee this is merely the chamge in relocity amsed by the blow (Art. e(0). Hence, in the cate of blows, or in lise forces, we do not attempt to measure the forer and the time of action separately, but simply take the uhole mumentum produred or idestroyel, as the meresure of the impulse. Becemser impulsive forces produce their efferefs in an indetinitedy shot time they arre sometimes called instantumens forres. i. o., forees reguiring no time for their action. But no surl foree exists in nature : every force repuires time for tis actiom. There is no case in nature in which a finite elange of motion is prodnced in an intinitaimal of time : for, whenever a tinite velocity is generated or destroyed, a linite time is necopied in the process, thongh we may be mable to measure it, wen approximately.
203. Impact or Collision. When two bodies in relative motion come into contact with cald other, ann impurt or collision is said to take place. and pressure begins to ant between them to prevent any of their purts from jointly oncupying the same space. This fore increases from zero, when the collision begins, up to a very large magnitude att the instant of greatest compression. If, as is always the cave in nature, each body possesses some digree of elasticity, and if they are not kept together alter the impact by cohesion or by some artificial means, the mutnal pressure Inetween then, after reaching a maximum, will gradually diminish to zero. The whole process wonk oceupy not greatly more or less than an hour if the hodies were of such dimensions as the earth, and such degrees of rigidity as copper. steel, or glass. In the ease, however, of globes of these sulstanees mot execeding a yard in dameter, the whole proeess is probably finished within a thousandth of a second.*

The impulsive forees are so much more intense than the

acenrately to

 can determineordinary forces, that during the hrief timb in which the former act, an ordinary force does not prodnce an effect comparable in amomet with that produced by an impmese foree. For example, an impulsive fore might generate a velocity of 1000 in less time than matenth of a secomel. while gravity in one-tenth of a recomd wonld genemate a velocity of abont three. Hence. in dealing with the effeets of impulses, tinite forces need not be considered.
204. Direct and Central Impact. - When two bodies impinge on each other, so that their centres before impuet are moving in the same straght line amb the eommon tamgent at the point of contact is perpendienlan th the line of motion, the impact is said to be diret and contrel. When these conditions are not fulfilled, the impaet is sald to be obligue.

When two bodies impinge dinectly, one new the other, the mutual action hetween them, a any instant, monst be in the line joining their centres ; and by the third ha (Art. 166), it must be efual in amoment on the two boties. llence, by Law 11 , they must experience equal changes of motion in contrary directions.

We may consider the impact as consisting of two parts: during the first part the bodies are coming into closer eontact with each other, monally displacing the particles in the vieinity of the point of contact, producing a compression and distortion abont Aat point, which increases till it reaches a maximm, when the molecular ranetions. thas called into phay, are sulficient to rexisi furber eompression and distortioni. It this instant it is avident that the points in contact are moving with the same velocity. No body in nature is perfectly indestic: amd hence, at the instant of greatest compression, the elestic foreses of restitution are bronght into action; and during the second part of the impaet the matual pressure, prodneed by the datio forees, which were bronght into atotion by the compression

11 which the luce an effect :In impulsive it gencrate a of a seromul. d gencrate a th the effects d.
entwo bodies refore impact common tillo the line of atrol. When is said to be
on the other. tant, must be the third haw (wo bodies. al changes of
of two parts: to closer comc particles in g a compres(roises till it netions, thus rempression lent that the velocity. No hence, at the ures of rextiseconed purt by the clistie "rombermion
during the first part of the impact, temd to separate the two bolless, and to restore them to their original form.
205. Elasticity of Bodies.-Coefficient of Resti-tution.-It appears from experiment that bonles may be compressed in vations degrees, and recorer more or les their original forms after the compressing torce has eatised, this property is termed elasticity. The fore urging the approaeh of bodies is culled the forer of compression; the foree cansing the bodies to scparate :again is called the force of restitution. Elastic bodies are such as regain a part or all of their original form when the compressing force is removed. The ration of the firree of restitution to that of compression: is called the Chefficieni of Restitution.* It has been fomd that this ratio, in the same bodies, is constant whatever may be their velucities.
When this ratio is mity the two forces are equal, and (ho booly is said to be perfectly clustic; when the ratio is zero, or the force of restitution is nothing, the body is said to bo non-elastic; when the ratio is greater than zero and less than unity, the hody is said to be imperferely elustic. There are no bodies either perfectly chastie or perfectly non-elastic, all being mure or less chastic.
In the caves disenssed the bodies with be supposed spherieal, and in the case of tirect impaet of smooth spheres it is evident that they may be comsidered an partieles, since they are symmetrical with respect to the line joining their rentres.
The theory of the impuet of bodies is chicfly the to Newtom, who foum, in his experiments, that, provided the impad is not so violent as to make any sensible indentation in either body, the relative velocity of sparation after the impact hears a matio to the relative wefacity of approm beffere the impact, which is constant lor the sime two

[^21]bodies. In Newton's experiments, however, the two bodies seem always to have been fomed of the same substance. ILe fomben that the value of this ratio (the coeffirient of restitution), for balls of compressed wool was about 8, steel about the same, cork a little less, ivory $\frac{8}{8}$ glass 18. The results of more recent experiments, made by Mr. Hodgkinson, and recorded in the Repont of the Brithsh Asxocinton for 1834, show that the theory may be received as satisfiactory, with the exception that the value of the ratu, instead of being guite colnstant, dunimishes when the relocities are very large.
206. Direct Impact of Inelastic Bodies. - 1 sphere of muss. M, moving with a refocity r, nerlakes and impinges directly on another sphere of mass: M^{\prime}, movimy in the same divection with relocity v^{\prime}, and tht the instaint of greatest mutnal rompression the spheres are moring with a common relocity V. Determine the motion after impact, and the impulse during the compression.

Latt R denote the impulse during the compression, which aets on eath body in opponite direetions: and let us suppose the bodies to be moving from left to right. Then, since the impulse is measmed by the amonnt of momentum gainel by one of the impinging bodies or lost by the other (Act. 202), we have

$$
\begin{align*}
\text { Momentum lost by } M & =M(l-V)=R, \tag{i}\\
\text { " gained by } M^{\prime} & =M^{\prime}\left(V^{\prime}-r^{\prime}\right)=R \tag{ㄹ}\\
\therefore M\left(r-V^{\prime}\right) & =M^{\prime}\left(V-r^{\prime}\right) \tag{3}
\end{align*}
$$

Solving (3) for IF we get

$$
r=\begin{gather*}
M+M^{\prime} v^{\prime} \tag{4}\\
M+M^{\prime}
\end{gather*}
$$

Which in (1) or (2) gives

$$
\begin{equation*}
R=\frac{M M^{\prime}\left(r-v^{\prime}\right)}{M+\overline{M^{\prime}}} \tag{5}
\end{equation*}
$$

Hence the rommon verlorities of the two bodies after impact is cyual to the ulyebraic sum of their momenta, dirided by the sum of their masses, and also, from (4), the whote momentuni after impact is equal to the sum of the momenta before.

Cor. 1.-Had the balls been moving in oposite directions, for example had V^{\prime} been moving from right to left, r wonld have been negative, in which case we would have

$$
\begin{equation*}
V=\frac{M v-M^{\prime} v^{\prime}}{M+M^{\prime}} \quad \text { and } \quad R=\frac{M M^{\prime}\left(\cdot+v^{\prime}\right)}{M+M^{\prime}} \tag{6}
\end{equation*}
$$

From the first of these it follows that ioth balls will be reluced to rest if

$$
M v=M v^{\prime}
$$

that is, if before impaet they have equal nud opposite momenta.

Con. 2.-If $M M^{\prime}$ is at rest before impact, $v^{\prime}=0$, and (4) becomes

$$
\begin{equation*}
V=\frac{M}{M+M^{\prime}} \tag{7}
\end{equation*}
$$

If the masses are efnal we have from (4) and (6)

$$
\begin{equation*}
V=\frac{v+v^{\prime}}{z^{-}}, \text {or } \frac{r-v^{\prime}}{z} \tag{8}
\end{equation*}
$$

acording as they move in the same or in opposite directions.
207. Direct Impact of Elastic Bodies.-When the halls are chastie the prohlem is the same, up to the instant of greatest compression, us if they were inelastic; but at
this instant, the force of restitution, or that tendeney which elastic bodies have to regain their original form, begins to throw one ball forward wit! the same momentum that it throws the other back, and this matual pressure is proportional to R (Art. 205).

Let e be the coctficient of restitution; then during the second part of the impact, an impulse, eld, acts on each ball in the same direction respeetively as R acted during the compression. Let r_{1} and r_{1}^{\prime} be the velocities of the balls M and M ' when they are finally separated. Then we have, as before,

$$
\begin{align*}
\text { Momentum lost by } M & =M\left(V-v_{1}\right)=e R \tag{1}\\
\text { " gained by } M^{\prime} & =M^{\prime}\left(c_{1}^{\prime}-V\right)=e R . \tag{2}
\end{align*}
$$

From (1) we have

$$
\begin{align*}
v_{1} & =V-e M^{\prime} \\
& =\frac{M v+M M^{\prime} r^{\prime}}{M+M}-\frac{e \cdot M^{\prime}}{M+M^{\prime}}\left(v-v^{\prime}\right) \\
& =v-\frac{M^{\prime}}{M+M^{\prime}}\left(1+c^{\prime}\right)(v-v) \text { ind (i) of } \Lambda \text { rt. } 206,
\end{align*}
$$

Similarly from (:) we have

$$
\begin{equation*}
v_{1}^{\prime}=v^{\prime}+\frac{M}{M+\bar{M}^{\prime}}(1+e)\left(v-v^{\prime}\right) \tag{4}
\end{equation*}
$$

whirh are the relorities of the trells when timally sepurated.
These results may be more easily obtained by the eonsideration that the whole impulse is $(1+r) R$; for this gives at once the whole monentum lost by M or gained hy . $/$ ' during compression and restitution as follows :

$$
\begin{equation*}
\Delta\left(v-r_{1}\right)=(1+c) l \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
M^{\prime}\left(v_{1}^{\prime}-r^{\prime}\right)=(1+e) R \tag{6}
\end{equation*}
$$

Substituting in (i) and (i) the value of R from (5) of Art. 206, we have the values of c and c_{1}^{\prime} immediately.
('on. 1.-If the balls are moving in opposite dircetions, a° becomes negative. If the balls are non-clastic, $e=0$, and (3) and (4) reduce to (4) of Art. 206 , as they should.
(OR. :.-II' the bialls are perfectly chastic, $e=1$, and (3) and (4) become

$$
\begin{align*}
& r_{1}=r-\frac{2 M^{\prime}}{M+M^{\prime}}\left(v-v^{\prime}\right), \tag{7}\\
& r_{1}^{\prime}=v^{\prime}+\frac{2 M}{M+M^{\prime}}\left(v-v^{\prime}\right) . \tag{8}
\end{align*}
$$

Con. 3.-Subtracting (4) from (3) and redacing, we get

$$
\begin{align*}
r_{1}-r_{1}^{\prime}= & r-v^{\prime}-(1+e)\left(v-v^{\prime}\right) \\
& =-e\left(v-r^{\prime}\right) \tag{9}
\end{align*}
$$

Hence, the relutive relocity uftre :imphat is - e times the relative refocity before impurt.
Cor. 4.-Mnltiplying (3) and (4) hy M and M^{\prime}, respectively, alld adding, we get

$$
\begin{equation*}
M_{c_{1}}+M^{\prime} u_{1}^{\prime}=M_{1}+I^{\prime} v^{\prime} \tag{10}
\end{equation*}
$$

Hence, as in Art. 20t, the ulgrherair sum of the momenta ufter impact is the same as berfore; i. e., there is no momerutum lost, which of conrse is a direct consequence of the thired law of motion (Art. 169).
('on. \therefore. - Sinjpese $r^{\prime}=0$, so that the body of mass M, moving with velocity r, impinges on a body of mass.M^{\prime} ill rest, then (3) and (4) become

$$
\begin{equation*}
u_{1}=\frac{M-e M^{\prime}}{M+M} \quad \text {, and } \quad r_{1}=\frac{M(1+e)}{M+M^{\prime}} \quad \text {. } \tag{11}
\end{equation*}
$$

Hence the body which is struck goes onwards; and the striking body goes onwards, or stops, or goes backwards, according as M is greater than, equal to, or less than $e M^{\prime}$. If $M^{\prime}=e M$, then (11) becomes

$$
\begin{equation*}
v_{1}=(1-e) v, \quad \text { and } \quad r_{1}^{\prime}=r . \tag{12}
\end{equation*}
$$

Con. 6.-If $M=M$ and $\rho=1$; that is, if the balls are of equal mass and perfectly elasicic,* then (i) and (8) become, respectively,

$$
\begin{equation*}
v_{1}=v^{\prime}, \quad \text { and } \quad r_{1}^{\prime}=v ; \tag{13}
\end{equation*}
$$

that is, the balls interehange their velocities, and the motion is the same an if they had passed throngh one another withont exerting auy mutual action whatever.

Con. i.-If M^{\prime} be infinite, and $\ell^{\prime}=0$, we have the case of a ball impinging directly upon a fixell surface; substituting these values in (3) it becomes

$$
\begin{equation*}
v_{1}=-e c^{\prime} ; \tag{14}
\end{equation*}
$$

that is, the ball rebounds from the fixed surface with a celocit!! e limes that with which it impinged.
208. Loss of Kinetic Energy \dagger in the Impact of Bodies.-Squaring (9) of Art. N.i, and multiplying it by . $/ M^{\prime}$, we have

$$
\begin{gather*}
M M^{\prime}\left(r_{1}-v_{1}^{\prime}\right)^{2}=M M^{\prime} c^{2}\left(r-v^{\prime}\right)^{2} \\
=M V^{\prime}\left(r-v^{\prime}\right)^{2}-\left(1-r^{2}\right) M V^{\prime}\left(r-r^{\prime}\right)^{2} . \tag{1}
\end{gather*}
$$

[^22]+ See Arl. 189.
urls; and the es back ward, ess than $e . M^{\prime}$.
s, if the balts n (i) and (8)
ties, and the throngh one hatever.
have the case rface ; substi-
with a veloc-

Impact of Itiplying it by

From (3) we see that during compression kinetic energy to the amome of $\frac{1}{2} \frac{M X V^{\prime}}{M^{\prime}}\left(r-V^{\prime}\right)^{2}$ is lost ; and then during restitution, c^{2} times this amont is regained.

Rem,-From the theory of hinetic energy it appears that, in every case in which energy is lost by resistance. heai is generated: and from Joule's* investigations we learn that the quantity of heat so generated is a purfectly definite equirelent fin the anergy lost; and also that, in

* Hee "The correlation abs Comervation of Forces," by Helmbolta, Faraday, Liehige etc. : also " Heat a a Mole of Motions" lig trot Tyodall Also B. Stewart", "Comerration of Encrgy."
any natural action, there is never a development of energy which cannot be accounted for by the disappearance of an equal amonnt elsewhere by means of some known physical agence. Hence, the kinetic energy which appears to be lost in the above eases of impact, is only transformed, partly into heating the bodies and the surromnding air, and partly into sonorous vibrations, as in the impact of a hummer on a bell

209. Oblique Impact of Bodies.-The only other ease which we shall treat of is that ot obligue impact when the bodies are spherical and perfectly smooth.

A particle impinges wilh a given velocity, and in a giren direction, on a smooth plane; required to determine the motion after impact.

Let $A C$ represent the direction of the velocity before impact, meeting the plane at C, and CB the direction after impact. Draw CD perpen-
 dicular to the plame; then since the plane is smooth its impulsive reaction will be along CD.

Let v and x_{i} denote the velocities before and after impaet, respectively: and let a and β denote the angles ACD and BC'D.

Resolve v along the phane and perpendienlar to it . The former will not be altered, since the impulsive foree aets perpendienlar to the phane : the latter may be treated as in the ease of direct impact, and will therefore, after impact. he e times what it was before (Art. 20\%, Cor. ©). Hence. resolving v_{1} along, and perpendientiar to the plane, we have

$$
\begin{align*}
& v_{1} \sin \beta=r^{\prime} \sin c \tag{1}\\
& v_{1} \cos \beta=-\epsilon v \cos \kappa \tag{ㄹ}
\end{align*}
$$

$$
\text { OBLIQTE } M M I A C T
$$

ent of energy carance of an fown physical appears to be trinsformed, hding air, ind aet of a hinm-
e only other impuet when
ud in a gicen determine the

Dividing (*) by (1), we get

$$
\begin{equation*}
\cot \beta=-e \cot c \tag{3}
\end{equation*}
$$

Stuaring (1) and (*), and adding, we get

$$
\begin{equation*}
v_{1}^{2}=r^{2}\left(\sin ^{2} \iota+\epsilon^{2} \cos ^{2} «\right) \tag{4}
\end{equation*}
$$

Thas (3) determines the divection, and (4) the maynitude of the velocity atter impact.
The angle A(D) is called the amgle of incidence, and the angle BCD the angle of reffexiou.

Cor. 1.-If the elasticity be perfect, or $n=1$, we have from (3) and (4),
and

$$
\begin{equation*}
\cot \beta=-\cot \varkappa, \text { or } \beta=-« ; \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
r_{1}^{2}=r^{2}, \text { or } r_{1}=r . \tag{i}
\end{equation*}
$$

Hence, in perferfly elustic butls the ungles of incidence aud reflexion are numerically equal, and the velocities beforer and after impact are equat. This is the ordinary rule in the ease of a billiard ball striking the eushion.

Cor. \because-Suppose $r=0$; then from (3), $\beta=90^{\circ}$. Thus, if there is no elasticity, the body after impuet moves along the plane with the velocity r sin 6 .

If ${ }^{\prime}=0$, so that the impact is direct, we have from (4), $r_{1}=e c$; i. e., after the impaet the !ody revounded along its former course with e times its former velocity.
If $"=0$, and $c=0$, then from (4), $r_{1}=0$, and the bouly is brought to rest by the impact.

Sen.-Of conse the results of this article are applicalble to cases of impaet on amy smooth surface. by substitnting
take place the plane which is tangent to the smrfece at the point of impact.
210. Oblique Impact of Two Smooth Spheres.-Turo smonth spheres. moring in giren directions und with giren relocities, impinge; to determine the impulse and the subsequent motion.

Let the masses of the spheres be M, I^{\prime}; their centres (', C': their velocities before impact r and r, and after impact

Fig. 8 8 r_{1} and r_{1}^{\prime}. Let ED be the line which joins their centres at the instant of impact (ealled the line of impact): ('A and ('B the directions of motion of the impinging sphere, $I /$, before and after impact ; and $\mathrm{C}^{\prime} \lambda^{\prime}$ and $\mathrm{C}^{\prime} B^{\prime}$ those of the other sphere: let c, a' be the angles, $A\left({ }^{\prime} D\right.$ and $A^{\prime} C^{\prime} D$, which the original directions of motion make with the line of impact: β, β^{\prime} the angles, BCD and $\mathrm{l}^{\prime} \mathrm{C}^{\prime} 1$), which their directions make after the impari.

It is evident that, since the spheres are smooth. the cutire mutual impulsive presure takes place in the line joining the centres at the instant of impact. Leet R be the impulse. and e the areticient of restitution. Revolve all the whocities along the line of impact and at right angles to it: the latter will not be affected by the impact. and the former will be affected exactly in the same way as if the impact had been elirect. Nence. since the velocities in the
 hare, by sulstitnting in (:3) and (4) of Art. 90%,
$r_{1} \cos \beta=r \cos u-\frac{M^{\prime}}{M+M^{\prime}}\left(1+r^{\prime}\right)\left(r \cos \pi-r^{\prime} \cos c^{\prime}\right),(1)$
$r_{1}^{\prime} \cos \beta^{\prime}=r^{\prime} \cos c^{\prime}+\begin{gathered}M \\ M+M^{\prime}\end{gathered}(1+c)\left(r \cos \pi-v^{\prime} \cos a^{\prime}\right),\left(r^{\prime}\right)$
which are the final relocities of the treo spheres along the line of impuct ED.

Also, from (i) of Art. x (ow, we oltain by subtitution.

$$
\begin{equation*}
R=\frac{M M^{\prime}}{M+M^{\prime}}\left(v^{\prime} \cos \pi-v^{\prime} \cos \kappa^{\prime}\right) \tag{3}
\end{equation*}
$$

(See Tait and Steele: Dyamics of a Particle, p. 323.)
 ing we get

$$
M t_{1} \cos \beta+M^{\prime} n_{1}^{\prime} \cos \beta^{\prime}=M M^{\prime \prime} \cos c+M^{\prime} c^{\prime} \text { cos } c^{\prime},(4)
$$

which shows that the momentmen of the system resolved along the line of impact is the strme after impact as beforte.
Con. :..-Sultatring (2) from (1) we obtain,

$$
\begin{equation*}
r_{1} \cos \beta-r_{1}^{\prime} \cos \beta^{\prime}=-v^{\prime}\left(v \cos a-v^{\prime} \cos a^{\prime}\right) . \tag{5}
\end{equation*}
$$

That is, the relatire relocity, resolved alony the line of impact, after impaet is $-e$ times its culue before.

EXAMPLES.

1. A hody* weighing 3 Its. mowing with a velocity of 10 ft . per second, impingres on a hody weighing 2 the,, and moring with a velocity of 3 it . per seeond; find the common veloeity after impact. Ims. is ft. per second.
\because A body weighing f lhs. moving 11 ft. per swomd. impinges on another at rext wemheng 15 lise; find the common wherity after impact.

* The bodies are incla-tic uniess othernion stated. The first 27 exampies are in direct Impact.

3. A boty weighing + his. moving ! ft. per second. impinges on another body weighing 2 lbs. and moving in the opposite direction with a velocity of 5 ft . per second; find the common velocity after impact.

$$
\text { Ins. } 4 \frac{1}{3} \mathrm{ft} \text {. per second. }
$$

4. A booly, $1 I^{\prime}$, weighing 5 lbs. moving i it. per second. is impinged upon ty a bods, M, weighing 6 llse and moving in the sime direction: after impact the velocity of M^{\prime} is doubled: find the veloeity of.$/ /$ before impact.
. 1 ns .195 ft f. per second.
5. Two bodies, weighing ${ }^{2}$ lbs., and 4 lbs., and moving in the same direction with the velueities of 6 and 9 ft . respectively, impinge upen each other: find their common velocity after impact. \quad Ans. 8 ft . per secomd.
(3. A weight of 2 Hs.. moving with a velocity of 20 ft . per second, overtakes one of 5 lts... moving with a velocity of 5 ft . per second: lind the common veloeity atter impact.

F. If the same boolies met with the same velocities find the common veloeity after imparet.

Ans. $y_{6} \mathrm{ft}$. per second in the direction of the first.
8. Two bodies of different mases, are moving towards each other, with velocitios of 10 ft and $1:$ ft. per second respectively, and contime to move alter impact with a velocity of 1.2 ft . per second in the direction of the greater; c. . npare their masses.

Ans. As 3 to 2.
9. A booly impinges on inother of twice its mass at rest: show that the impinging boly loses two-thirds of its velocity ly the impact.
11. Two !odies of unefual masses moving in opposite directions with momenta numerieally efoal meet; show that the momenta are momerically equal alter impact.
t. per secomd. nd moving in t. per secoml;
per second
t. jer second, thes and mosvelocity of I^{\prime} alet. - jer second. and moving in d 9 ft . respecheir common per secomil.
locity of 20 ft . ith it velocity y after impact. per second.
velocities find of the first. moring towiards ft. per second impact with a of the greater; s. As 3 to :

8 mass at rest: -thirds of its
ng in opposite I meet; show r impact.
11. A borly, M, weighing folbs moving \& ft. per second, impinges on,Z^{\prime}. Weighing f lls. and moving in the same direction ift. per second : timl their velocities alter impact, supposing $r=1$.

$$
\text { Ans. Vehecity of } M=5 \frac{3}{4} \text { : velocity of } I^{\prime}=\mathrm{s}_{3} \text {. }
$$

12 . A body, \dot{I}, weighing 4 lhs. moving 6 tit. per seeond, meets . $/=$ weighng it lbs. aml moving +ft . per second: find their selocities after impant, $e=1$.

Ans. Each body is reflected back, il with a velocity of ' $\frac{1}{3}$ and U^{\prime} with a velocity of $?$?
13. 'Two balls. of 4 and $;$ lhs. weight, impinge on each other when moving in the same direction with velocities of 9 and 10 ft . respectively; tind their velocities after impact, supposing $e=\frac{4}{3}$. Ans. 10.08 and 9.28.
14. Find the kinetic energy lost by impact in extmple 5.

$$
A / 1 s .3^{6} 9^{9}
$$

15. Two bodies weighing 40 and 60 lhs . and moving in the same direction with velocities of 16 and 20 ft. respectively, impinge on each other find the loss of kinetic energy by implact.

Aus. 3\%.3.
16. An arrow shot from a bow starts off with a velocity of 120 ft . per second; with what relocity will an arrow twice as heary leave the bow. if sent off with three times the force?

Ins. 180 ft . per second.
1\%. 'Two balls, weighing 8 ozs. and i ozs. respeetively, are simultaneonsly projected upwards, the former rises to a height of 324 ft . and the latter to $256 \mathrm{ft}:$ compare the forees of projection.

Ans. As 3 to : 2.
18. A freight train. Weighing 200 tons, and traveling 20 miles per hre rums into a passenger tran of 50 tons, standing on the same track; find the velocity at which the remains of the passenger train will be propelted along the track, supposing $e=\frac{1}{8}$.

An: 19.2 miles per hr.

19．There is a row of ten perfectly elastic borlies whose masses increase geometrically by the constant ratio 3 ，and the first impinges on the second with the velocity of is ft．her second；tind the velocity of the last hody．
． 1 us．б⿱丷天心． ft ．per second．
20．A body weighing 5 ths．moring with a velocity of 14 ft．per second，fmpinges on a body weighing 3 lbs．，and moving with a veloeity of 8 ft ．per second；find the veloci－ ties alter impact supposing $\rho=\frac{1}{3}, \quad A n s .11$ and 13.

Q1．Two bodies are moring in the same direction with the velocities $?$ allu 5 ；and after impuet their velocities are 5 and 6 ；lind ϵ ，and the ratio of their masses．

$$
\text { Ins. } e=\frac{1}{2}: M^{\prime}=2 M .
$$

：2．A body weighing two llsw．impinges on a body weighing one $1 b$ ，r is $\frac{1}{2}$ ，show that $b_{1}=\frac{1}{2}\left(r+r^{\prime}\right)$ ，and that $r_{1}^{\prime}=v$ ．

2：3．＇Two bodics moving with mumerically equal velocities in opposite directions，impinge on cach other ；the result is that one of them turns back with its original velocity，and the other follows it with half that velocity；show that one body is four times as heary as the other，and that $e=\frac{1}{4}$ ．
24．A strikes B，which is at rest，and after impuet the veloeities are numerically efual；if r be the ratio of 1 ＇s mans to A＇s mass，slow that e is $\underset{r-1}{\stackrel{2}{-1}}$ ．and that l＇s mass is at least three times A＇s mass．

25．A body impinges on an enfual body at rest；show that the kinctic emergy before impact ammot be greater than twice the kinetic energy after impaet．
？i．A series of perfectly chastic balls are arranged in the same straight line：ome of them impinges on the next， then this on the nevt and so on：show that if their massers form a geometric progression of which the common ratio
orlies whose ratio 3, and velocity of ody. rer second.
clocity of 14 ; 3 lbs., and I the veloci11 and 13.
rection with cir velocities es, $M^{\prime}=2 M$.
oly weighing that $c_{1}^{\prime}=v$. jal velocities the result is velocity, and ow that one wat $e=1$.
r impact the ratio of l 's hat B's mass
t rest ; show it be greater
angen in the on the next, their massers ommon ratio
is r. their velocities after impact form a geometric progression of which the common ratio is $r+1$.
\therefore A ball falls from rest at a height of 20 ft . athore a fixed horizontal plame: find the height to which it will rebomul, e lreing $\frac{3}{4}$, and $!$ being $3!$. Ans. $11 \frac{1}{4}$ fect.
28. A ball impinges on an equal ball at rest, the elastieity being perfeet ; if the original direction of the strikang ball is inclined at an angle of $40^{\prime \prime}$ the straight line joining the centres, determine the ingle between the directions of motion of the striking ball before and after impaet.

Ans. 45^{3}.
29. A ball falls from a height h on a horizontal plane, and then rebonnds: find the height to which it rises in its ascent.

$$
A n s \cdot e^{2} h .
$$

30. A ball of mass M, impinges on a ball of mass M ', at rest : show that the tangent of the angle between the old and new directions of the motion of the impingi, "r body is

$$
\frac{1+e}{2} \cdot \frac{M^{\prime} \sin 2 \pi}{2} \cdot M^{\prime}\left(\sin ^{2} "-c \cos ^{2} \pi\right)
$$

31. A hall of mass M impineres on a hall of mass M^{\prime} at rest: find the condition in order that the directions of motion of the impinging ball before and after impact may be at right angles. $\quad A n \mathrm{~s} . \tan M^{2} a=\frac{M I^{\prime} e-M}{M^{\prime}+M}$.
32. A bull impinges on an erpall haill at rext, the angle between the old :and new direetions of motion of the impinging ball is 60 : timd the volocity atter impate o tring 1 .
. 1 m. 14 :in 30°.
3:3. A ball impinges on an ceplat ball at rest, e being i: timel the condition nuder which the velueties will be ramal alfor impact.

Ans. $r=45^{\circ}$
34. A ball is projected from tha middle point of one side of a billiard table, so as to strike first an adjacent side, and then the middle peint of the side opposite to that from whird it started: fime where the ball mast hit the adjacent side, its lengili being b.

Ans. At the distance $\frac{1+e}{1+e}$ from the end nearest the opposite side.
int of one side ne int side, and - to that from it the alljacent
d marest the

CHAPTER V

WORK AND ENERGY.
211. Definition and Measure of Work- Hork i. the mrodur limn uf mutimu ayminst resistunce. A force is sild (1) d^{\prime} uork, if it moves the body to which it is applied: and the work dome ly it is measured by the product of the foree into the spate through which it moves the body (Art. 101. Rem.).

Thins, the work done in lifting a weight through a verticel distance is propertional to the weight lifted and the vertieal distimere through which it is lifted. The wnit of uork used in England and in this comutry is that which is required to orescomes the wright af a pound through the cortical hright of a fout, and is called a foot-pumed. For instunce, if a weight of 10 lbs is raisel to a height of
 work must have been expended in orereming the resistance of gravity. Simibuly, if it reguires a fore of so ths. to more a load on a horizontal plane over a distamse of (III) ft., 5 ocil) frot-pomids of work must have beell doue. If a carpenter urges forward a plame through 3 ft , with a force of 10 the... he dues 3 af foot-pumds of work; or, if a weight of : thes. deseemels thromgh 10 ft, gravity does io foot-pominds of work wit.
Hence. the mumter of mits of work, or foot-pomols, necessury to overemo a comstant resistunce of P pomads

From this it appens that, if the point of appliation move always perpendienlar to the direetion in which the forre acts, such at force dows mork. Thus, no work is don: by gravity in the case of a particle moving on a
horizontal plane, and when a particle moves on any smooth :urface no work is done ly the foree which the surface cuerts upon it.

Neither force mor molion alome is sufticiont to comstitute monk; so that a man who merely supports a load withont moning it, does no work, in the semee in which than term is usel merhanically, any more than a colum does which sustains a healy weight upon its summit.

If a body is moved in the direction opposite to that in which its weight acts, the agent raising it does work upon it, while the work done liy the carth's attraction is megretire. When the work lome by a force is negative, i. e., when the point of application moves in the direction opposite to that in which the force acts, this is frepuently expressed by saying that work is done against the force. In the above case work is done by the forec lifting the luely, and cyainst the carth's attraction.
212. General Case of Work done by a Force.When either the magnitude or direction of a foree vuries, or if Inth of them vary, the work done by the force during iny finite displacement camot be defined as in Art. 211 . In this case the work dome during amy indetinitely small displament may be fomd ly sumposing the magnitule and direction of the force constani during the displarement, and tinding the work done as in Art. 211; then 1aking the amm of all such elements of work done during the conseentive small di-placements, which together make up the tinite displicement, we obtain the whole work done by the foree during such finite thisplacement.

Thus lat a force, P act at a point, O, in the direction $O P$ (Fig. 50), nod let us suppose the point, O, to move inte any other position, A, very nati O. If θ be the angle betwern the direction, $O P$, of the force and the direetion, $O A$, of the disilacement of the point of applis. antion, then the prombet, $P \cdot O A \cos \theta$, is culled the work done by the force. If we dropin perpundicular, $A N$, on $O P$, the work done by the force is atso equal to the product $P \cdot O N$, where $O N$ is to 1 be estl-
n any smooth It the surface to constitute louil withomt In thian terin is " does which ite to that in es work ulon ction is megaregative, i. e., irection oquois frequently ust the force. re lifting the

a Force.-

 foree vuries, or ce during iny Art. 211. In tely suall disnignitule and diacement and uking the sum te consecutive II] the tinite by the foreeion op (Firs. 50 , her position, t, tion, op, of illic a point of of nplilipurk dome by the vork done thy the N is to be exti-
mated an positive when in the direction of the rore. If several forces act, the work done by each can be found in the same way; and the sum of all these is the work done by the whole system of forees.

It appens from this that the work done by any force daring an infinitesimal displacement of the point of aphication, is the product of the resolverl part of the foree in the dirertion of the displacement into the displacement ; mul this is the same as the cirturl moment of the force, which has been described in Art. 10t. In staties we are concerned only with the small hypothetical displacement which we give the point of application of the force in applying the prineiple of virtual velocities. But in Kineties the bodies are in motion; the force retually displaces its point of application in such a manner that the displacement has a projection atong the direction of the force. If ds denote the projection of any elementary are of a curve along the tirection of P, the work done by P in this displacement is P^{2} / s. The sum of all these elements of work done by P in its motion over a finite space is the whole work fonnd by triking the integral of Pels between proper limits.

Hence generally, if $*$ he an are of the puth of a particle, P tho tangentinl component of the forces which act on it, the work done on the purticle bety een uny two points of its path is

$$
\begin{equation*}
f^{\prime} l^{\prime} d s \tag{1}
\end{equation*}
$$

the interrol being taken betwern limits corresponding to the initind and final positions of the particle.
213. Work on an Inclined Plane.-Let " be the inclination of the plane to the horizon, If the weight moved, x the distance along the phane through which the weight is moved. Resolve W into two components, one along the plame and the other perpendicular to it ; the former, II' sin a, is the component which resists motion -long the plane. Hence the moment of work required to Wraw the weight n, the phane $=\|$ sin $c \cdot s=\| \times$ the vertical height of the plame; i. c., the monnt of work required is unchungel by the substitution of the obtique path for the vertical. Hence the work in morugg "borly up an iurlined plane, without friction, is aquat to the product of the uright of the body by the certical hright through which. it is raised.

Cor. 1.-If the phane be rongh, ift $\mu=$ the coefficient of friction ; then since the normal component of the weight is IV ens a, the resistance of friction is $\mu \mathrm{II}$ cos ${ }^{\prime}$ (Art. $9 ?$). The work reguired consists of two parts, (1) raising the weight along the phane, and (?) orercoming the resistaner of friction along the phane, the former $=I^{\prime}$ sin $\& \cdot s$, and the latter is $\mu \mathrm{H}$ cos ". \cdot. Hence the whole work necessary to more the weight "p) the plane is

$$
\begin{equation*}
W^{\prime}(\sin c+\mu \cos \varepsilon) s \tag{1}
\end{equation*}
$$

Since s sin " reprevents the rectical height through which the weight is raised, and $*$ ess "s the horizontal space throngin which it is drawn, this result may be stated thus: The nork exprended is the sume as that which woult te required to ruise the weight throngle the rertival height of ther plane, tolfether with that which would be required to draw the body ulony the buse of the plane horizontatly, ayainst friction.

Con. 2.-If a body be dragged through a space, s, down an inetined planc, wethich is too romgh for the body to slide dou'n by itself, the work doue is

$$
\begin{equation*}
W(\mu \cos \mu-\sin \mu) s \tag{2}
\end{equation*}
$$

Cor. 3.-If $h=$ the height of the inclined plane, ant $b=$ its horizontal base, then the work done against gravity to move the body up the phane $=11 \%$; and the work done against friction to move the body along the plane, supposing it to be horizontal, $=\mu b \mathrm{~W}$. Hence (Cor. 1) the totat work done is

$$
\begin{equation*}
W h+\mu b W: \tag{3}
\end{equation*}
$$

If the borly he drawn down the plane, the total work expentod (Cor: :) is

$$
\begin{equation*}
-\|h+\mu\| \| \tag{4}
\end{equation*}
$$

$=$ the coefficient oft of the weight cos a (Art. 9:). (1) raising the g the resistance If $\sin \boldsymbol{a} \cdot s, a \ln$ work necessary
height through horizontal space be stated thus: which would te rhical height of be requirel to the horizoutally
a space, s. down he body to slide
ined plane, and o against gravity the work done plane, supposOor. 1) the totat
(3)
the total work

If in (4) the former term is greuter than the latter, gravity does more work than what is expended on frietion, and the body slides down the plane with aceelerated velocity.

Son. 1.-If the inclimation of the plane is small, as it is in most cases which ocenr in practice, as in common romds and railroads, cos a may without my important error be taken as equal to mity, and the expression for the work becomes (Cors. 1 and 2)

$$
\begin{equation*}
W^{\prime}(\mu s \pm s \sin c) \tag{5}
\end{equation*}
$$

the upper or lower sign being taken aceording as the body is dragged up or down the plane.
Seri. 2.-If the inclination of the plane is small, as in the case of railway gradients, the pressmre upon the plame will be very nearly equal to the weight of the body; and the total work in moving a body along an inclined plane will be from (3) and (4),

$$
\begin{equation*}
\mu l W \pm W h \tag{6}
\end{equation*}
$$

where $\mu l W$ is the work due to friction along the plane of length l, and $1{ }^{\circ} h$ is the work due to gravity, the proper sign being taken as in (5).

EXAMPLES.

1. How meneh worh is done in lifting 150 and 200 lbs. therongh the heights of 80 and 120 ft . respeetively.

$$
\begin{aligned}
\text { The work done } & =150 \times 80+200 \times 120 \\
& =36000 \text { foot- }- \text { oinnds, Ans. }
\end{aligned}
$$

2. A body weighing 500 lbs . slides on a rough horizontal plane, the codlicient of friction being 0.1 ; how mucli work must be done against friction to move the body over 100 ft ?

Here the friction is a force of 50 lhs. acting directly opposite to the motion: hence the work done against fribtion to move the body over 100 ft . is
$50 \times 100=5000$ foot-ponnds, 1 ns.
3. A train weighs 100 tons: the total resistance is 8 lbs . per ton; how much work must be expeniled in raising it to the top of an inelined plane a mile long, the inclination of the plane being 1 vertical to $\% 0$ horizontal.

Here the work done against friction (Seh. 2)

$$
=800 \times 5280=42: 4000 \text { foot-pounds }
$$

and the work done against gravity

$$
=224000^{*} \times 5280 \times \frac{1}{70}=16896000 \text { foot-pounds, }
$$

so that the whole work $=21120000$ foot-pounds.
4. A train weighing 100 tons moves 30 miles an hour alung a horizontal road; the resistances are 8 lbs . per ton; find the quantity of work expended ach hour.

Ans. $126 \% 20000$ foot-pounds.
5. If 25 cubic feet of water are pumped every 5 minntes from a mine 140 fathoms deep, required the amount of work expended per minute, a enbic foot of water weighing ($; 2 \frac{1}{2} \mathrm{Ibs}$.

Ans. 262500 foot-pominds.
6. How mnch work is done when an engine weighing 10 tons moves half a mile on a horizontal road, if the total resistance is 8 lbs . per ton.

Ans. 211200 foot-pounds.
7. If a weight of 1120 lls . be lifted m$)$ by $20 \mathrm{men}, 20 \mathrm{ft}$. high, twice in a minnte, how much work does each man do per hour?

Ans. 134400 foot-pounds.

[^23]ting directly agrainst fric-
nds, Ans. ance is 8 lbs . in raising it le inclination
8. A body falls down the whole length of an inelineni plame on which the coeflicient of friction is 0.2 . 'ilhw height of the plane is 10 ft , and the lase 30 ft . On reach. ing the bottom it rolls horizontally on a plame, having the same coefficient of friction. Find how far it will roll.

Ans. 20 ft.
9. Itow much work will be required to pump 8000 cubic feet of water from a mine whose depth is 500 fathoms.

Ans. 1500000000 foot-pounds.

10. A horse draws 150 lbs. out of a well, by means of a rope going over a fixed pulley, moving at the rate of $2 \frac{1}{2}$ miles in homr; how many units of work does this horse perform a minute, neglecting friction.

Ans. 33000 units of work.
214. Horse Power.-It would be inconvenient tw express the power of an engine in foot-pounds, since this unit is so sunall; the term Horse Power is therefore used in measkeing the performance of steam engines. From experiments made by Boultom and Watt it was estimated that a horse could raise 33000 lls . vertically through one foot in one minute. Ihis estimate is probahly too high on the average, lut it is still retained. Whether it is greater or less than the power of a horse it matters little, while it is a power so well defined. A Horse Pouer therefore means: "power which ctur perform 33000 foot-pounds of work in a mimute. Thns, when we say that the actual horse power of an engine is ten, we mean that the engine is able to perform 330000 foot-pounds of work per minute.
It has been estimated that ${ }_{3}$ of the 33000 font pounds would be about the work of a horse of average strength. A mule will perform $\frac{2}{3}$ the work of a horse. An ass will perform alout $\frac{1}{6}$ the work of a horse. A man will do aboul ${ }_{1}^{\prime}$, the work of a horse, or about 3800 units of work per minute. See Evers' Applied Mech's; also Byrne's Practical Mech's.
215. Work of Raising a System of Weights.Let I^{\prime}, Q, R, be any three woights at the distancers. $\mu, \%$. r. respectively ahore a fixed horizontal plane. Then [Art. 59 (3)] or (Art. 83. Cor. 3), the distance of the centre of gravity of P^{\prime}, Q, R, above this fixed horizontal plane is

$$
\begin{equation*}
\frac{P p+Q q+R r}{P+} \frac{Q q}{Q+R} \tag{1}
\end{equation*}
$$

Now suppose that the weights are raised vertically through the heights a, b, c, respectively. Then the distance of the centre of gravity of the three weights, in the new position, above the same fixed horizontal plane is

$$
\begin{equation*}
\frac{P(p+u)+Q(\eta+b)+R(r+c)}{P+Q+R} \tag{2}
\end{equation*}
$$

Subtracting (1) from (:), we have

$$
\begin{equation*}
\frac{P^{\prime} a+Q b+R c}{I^{\prime}+Q+R} \tag{3}
\end{equation*}
$$

for the vertical distance between the two positions of the centre of grasity of the three bodies.

Now the work of raisirg vertically a weight eqmal to the smon of P. Q. R. throngh the spate denoted by (3) is the product of the sum of the weights into the space, which is

$$
\begin{equation*}
I^{\prime} a+Q b+R c \tag{4}
\end{equation*}
$$

but (4) is the work of raising the three weights I^{\prime}, Q, R. throngh the heights a, b, r, respectively. In the sane way this may be shown for any number of weights.

Hence when sweral weights are raised vertically through different heights, the whole work done is the same as that of raising a weight equal to the sum of the weights vertically from the first position of their centre of grarit!! to the last pesition. (See 'Todhunter's Meclis. p. 338.)

Ifillts.

Weights.-

 tistimeres. $p \cdot 4$. Then |Art the centre of al plane isised vertically Then the disweights, in the plane is
$-c)$.
ositions of the he equal to the d by (3) is the space, which is
ights P, Q, R. n the sanue way its.
rtically through same as that of pights rertically wity to the last

EXAMPLES.

1. How many horse-pwer wond it take to raise 3 cwt . of coal a minute from a pit whose depth is 110 fathoms:

$$
\begin{aligned}
\text { Depth } & =110 \times 6=660 \mathrm{fect} . \\
3 \mathrm{cwt} & =112 \times 3=336 \mathrm{lbs} .
\end{aligned}
$$

Hence the work to be done in a minute

$$
=660 \times 3336=\{31 ; 60 \text { fcot-pounds. }
$$

Therefore the horse-power

$$
=221660 \div 33000=6 . \% 2, \text { Ans. }
$$

2. Find how many colbice feet of water an engine of 40 horse-power will raise in an hour from a mine 80 fathoms deep, supposing a eubic foot of water to weigh 1000 ozs .
Work of the engine per hour $=40 \times 33000 \times 60$ footpounds.

Work expended in raising one enhic foot of water through 80 fathoms $={ }^{1890} \times 80 \times 6=30000$ footpomels.

Hence the number of cubic feet ruised in an hour

$$
=40 \times 33000 \times 60 \div 30000=2640, A n s
$$

3. Find the horse-power of an engine which is to move at the rate of 20 miles an hour up an incline which rises 1 foot in 100, the weight of the engine and load being fol toms, and the resistance from friction $1 \geqslant$ lls. per ton.
The horizontal spaer pased over in a minute $=1 ; 60 \mathrm{ft}$; the vertieal spafe is one-humdredth of this $=1 \% .60 \mathrm{ft}$. Hence from (6) of Act. 213 , we have
$12 \times 1660 \times 60+60 \times 2,+11 \times 1 \%, 6=1: 60 \times 2064$ foot-pounds.

Therefore the horse-power

$$
=1760 \times 2064 \div 33000=110.08, A n t
$$

4. A well is to be ding 20 ft . deep, and 4 ft . in diameter : find the work in raising the material, supposing that a cubic foot of it weighs 140 Ibs.

Here the weight of the material to be raised

$$
=4 \pi \times 20 \times 140=140 \times 80 \pi \mathrm{lbs}
$$

'The work done is eqnivalent to raising this throngh the height of 10 ft . (Art. :15). Hence the whole work

$$
=140 \times 80 \pi \times 10=112000 \pi \text { foot-pounds, A } n s .
$$

5. Fint the horse-power of an engine that wonld raise T tons of coal per hom from a pit whose dephil is a fathons.

$$
\begin{gathered}
\text { Work per minute }=\frac{T \times 2240 \times a \times 6}{60}=2,4 a T ; \\
\quad \cdot \text { the horse-power }=\frac{224 a T}{33000}, A n s
\end{gathered}
$$

6. Required the work in raising water from three different levels whose deptlis are a, b, e fathoms respectively; from the first A, from the second B. from the third C, enbic feet of water are to be raised per minute.

Work in raising water from the first level

$$
=62.5 A \times a \times 6=375 A \cdot a
$$

and so on for the work in the other levels;
\therefore work per min. $=3 \pi(A \cdot 11+B \cdot b+(\cdot \cdot c)$ foot-pounds.
\approx Fin i the horse-power of an engine whieh draws a load of T tons along a level road at the rate of m miles
all hour, the friction being p pounds per ton, all other

Ans.
in diameter: posing that a
s through the work nds, Ans.
at wonld raise se depih is a
three different cetively; from hird C, cubic
frot-poinds.
hich draws at te of m miles
resistances being neglected.
Work of the engine per minnte

$$
\begin{gathered}
=T p \frac{5280 m}{60}=88 T p m . \\
\therefore \quad \text { H.-P.* }=\frac{88 T p m}{33000}=\frac{8 T p m}{3000}, \text { Ans. }
\end{gathered}
$$

8. Required the number of horse-power to raise 2200 cubic ft. of water an hour, from a mine whose depth is 63 fathoms.

Ans. 26 .
9. What weight of coal will an engine of 4 horse-power raise in one hour from a pit whose depth is 200 ft .?

Ans. 39600 lbs .
10. In what time will an engine of 10 horse-power raise 5 tons of material from the depth of 132 ft .?

Ans. $4 \cdot 48$ minutes.
11. How many cubic feet of water will an engine of 36 howe-power raise in an hour from a mine whose depth is 40 fathoms?

Ans. 4752 cubic feet.
12. The piston of a stean engine is 15 ius. in diameter ; its stroke is $2 \frac{1}{2} \mathrm{ft}$. long; it makes 40 strokes per minute; the mean pressure of the steam on it is 15 lbs . per square inch; what number of foot-pounds is done by the stean, per minute, and what is the horse-power of the engine?
$A n$ s. 265072.5 foot-pounds ; 8.03 H.-P.
13. A weight of $1 \frac{1}{2}$ tons is to be raised from a depth of 30 fathoms in one minute; determine the horsc-power of the engine capable of doing the work.

$$
\text { Ans. } 300_{\mathrm{TI}}^{6} \mathrm{H} .-\mathrm{P} .
$$

[^24]14. The resistance to the motion of a certain body is 440 lbs.; how many foot-jounds must be expended in making this body move over 30 miles in one hours What must be the horse-power of an engine that does the same number of foot-pounds in the same time:

Ans. 69696000 foot-pounds; 35! ll.-l'.
15. An engine draws a loidd of fot tons at the rate of 20 miles an homr: the resistances are at the rate of \& lbs. per ton ; find the horse-power of the engine. Ans. 25.15 .
16. How many cubic feet of water will an engine of 250 horse-power raise per minute from a depth of ano fithoms:

$$
\text { Alus. } 110 \text { enbie ft. }
$$

17. There is a mine with three shafts which itre respectively 300,450 , and 500 ft . deep) it is required to raise from the first 80 , from the second 60 , from the third 40 enbic ft, of water per minnte: find the horse-power of the engine.
. is. $134 \frac{31}{66}$.
18. Modulus* of a Machine.-The whole work performed by a muchine consists of two parts, the "asfat work an: the lost work. The nsofn] work is that which the machine is designed to produre or it is that which is employed in overemming mseful resistances: the lost work is that which is mot wanted, hut which is mavoidably prodnced or it is that, which is spent in overeoming wastefal resistances. For instance in drawing a train of cars, the insefnl work is performed in mosing the train, but the last work is that which is dane in overeoming the friction of the tram. the resistance of elan ity on up arades, the resistance of the air, etc. 'The work applied to a marhine is equal to the whole "ork done he the mathine, hoth useflul and lost, therefore the useful work is always less than the work appled to the marhime.
tain body is expended in onr: What es the same

$35 \frac{1}{5} 1 .-\mathrm{P}$.

e rate of 20 of 8 lbs. per 1111 . $25 \cdot 6$.
ngine of 250 (o) fathoms: 0 enbic ft.
h are respeeired to raise the thind 40 power of the is. $1: 34 \frac{3}{6}$.
le work perusefoll work It which the hat which is he lost work mavoidably oming wasto in of cars, the but the lost he friction of es, the resista marhine is , hoth useful lese than the

The Morlutus of a murline is the ratio of the useful uork doue to the uotk applied. 'I'hus, if the work applied to an engine be to horse-power, and the engine delivers only 30 horse-power, the modulns is $\frac{3}{4}$, i. e., one-quarter of the work applied to the machine is lost by friction, ete.

Let II be the work applied to the machine, W_{u} the nsefinl work, and m the modnlus. Then we have from the alove definition

$$
\begin{equation*}
m=\frac{W^{*}}{W} . \tag{1}
\end{equation*}
$$

If a machine wero perfect, i. e., if there we:c no lost work, the modulas would be hnity; but in every machine, some of the work is lost in overcoming wasteful resistances, so that the modahs is ahwas less than mity ; and it is of eonrse the object of incentors and improvers to bring this fraction as near to unity as possible.

EXAMPLES.

1. An engine, of I effertive !.use-power, is found to
 deep: find the modulus of the pamps.

Work of the engine per min. $=330000 \times 1 \mathrm{I}-\mathrm{P}$.
The usefal work, or work cxpended in pumping water,

$$
=62 \cdot 5 \Lambda \times 6=3 i n A \cdot n
$$

hence irom (1) we have

$$
M=\frac{335 A \cdot n}{33000 N}=\begin{gathered}
\Lambda \cdot \pi \\
88 . V
\end{gathered}, \text { Aus. }
$$

\because There were A cubic ft, of water in a mine where deptl: is "thethoms. when un engine of J^{\prime} horse-power began ta work the fump: the water eontinned to flow into the mine at the rute of 13 enbic ft. per minnte; required the time
in which the mine wonld be eleared of water, the modulus of the pump being m.

Let $x=$ the number of minutes to clear the mine of water. Then
weight of water to be pumped $=6 \div \cdot 5(A+B x) ;$
work in pumping water $=3 \% \pi a(A+13 x)$ foot-pounds;
effective work of the engine $=m \cdot N \cdot 33000 x ;$

$$
\begin{gathered}
\therefore \quad 33000 m N x=375 a(\Lambda+B x) ; \\
\quad \therefore \quad x=\frac{\Lambda \cdot a}{88 m} \overline{N-B \cdot a}, A n s .
\end{gathered}
$$

3. An engine has a 6 foot cylinder; the shalt makes 30 revolutions per minute, the arerage stean pressure is 25 lbs. per spuare inch; required the horse-power when the area of the piston is 1800 square inches, the modulus of the engine being 11.

Work done in one minute $=1800 \times 25 \times 6 \times 2 \times 30$ foot-pomads. We multiply by twice the length of the stroke. becanse the piston is driven both minad down in one revolution of the shaft.

$$
=4 i v, . \mid m
$$

4. The diameter of the piston of a steam engine is tio ins.; it makes 11 strokes per minute; the length of eath stroke is 8 ft . ; the mem pressure per spuare in. is 15 llsw .: reguirel the number of culice ft. of water it will mise per hour from a depth of 50 fathoms, the molulus of the engine being 0. 6 .
 gent in ruising whter $=\pi \times 30^{2} \times 8 \times 15 \times 11 \times 10 \times 0 \cdot 13.5$, therefore, ete modnlus of
$6 \times 2 \times 30$
gth of the not! down in
'hgine is 90 igth ol' eath . is 15 lbs.; ill raise per Inlis of the
ane hour nul therefore ore cubic ft.
5. An engine is required to pump 1000000 gallons of water every 12 hours, from a mine 132 fathoms deep: find the horse-power if the modulus be $\frac{1}{12}$, and a gallon of water weighs 10 lbs .

$$
\text { A } u s .363_{\mathrm{T}}^{\mathrm{T}} \mathrm{II} .-\mathrm{P} .
$$

6. What must be the horse-power of an engine working e hours per day. to supply " families with !/ gallons of water each per chay. supposing the water to be raised to the mean height of \bar{h} feet, and that a gallon of water weighs 10 lbs., the modulus being m.

$$
\text { Ans. } \frac{n g h}{198000 \mathrm{~cm}} \mathrm{II} .-\mathrm{l}
$$

\therefore. Water is to be raised from at mine at two different levels, viz., 50 and 80 fathoms, from the former 30 cubie ft., and from the latter 15 cubic ft . per minute: find the horsepower of the machinery that will be required, assuming the modulus to be $0 \cdot 6$. Ans. $51 \cdot 14$ II.-P.
8. The diameter of the piston of an engine is 80 ins., the mean pressure of the steam is 12 lbs. per syunte inch, the length of the stroke is 10 ft ., the mumber of strokes made per minute is 11 ; how many eubic l't. of water will it raise per minute from a depth of eso fathoms, its modulus being 0.6?
. Ins. 42.46 cubic ft.
9. If the engine in the last example hatd raised 55 cubie ft. of water per minute from a depth of 250 futhoms, what would have bern its modulas?

$$
\text { Ahe } 0 \cdot 3 .
$$

10. How many strokes per minute mast the engine in Ex. 8 make in order to raise 15 enbic fto of water per minute from the given depth?

$$
\text { Ans. } 4 .
$$

11. What must be the length of the stroke of manemge whose modutus $\mathrm{is} 0 \cdot 6 \mathrm{~B}$, mod whose other dimensions and combitions of working are the same an in Bix. 8 , if they buth do the same quatity of nefful work: $.1 n s .9 . \pm 3 \mathrm{ft}$.
12. Kinetic and Potential Energy. Stored Work. -The enirgy of a body mriths ils pomet of doint vorth; and the total amount of energy possesssed by the botly is mrtasured by the total ammont of uwork whirh it is rupable of doiny in passing from its present condition to some slandated condition.

Every moving body possesses energy, for it can be made to do work by parting with its velocitt. The velocity of the body may be meed for causing it to aseend vertically against the attraction of the earth, i, ℓ., to do work against the resistance of gravity. A cimmon ball in motion ean penctrate a resisting body; water flowing against a waterwheel will tarn the wheel; the moring air drives the ship throngh the water. Wherever we find matter in motion we have a certain amomet of energy.

Energy, as known to ns, belongs to one or the other of two chasses, to which the mames kimetic* eneryy and potential eneryy are given.

Kinetie energy is energy that a borly possesses in rivtue of its buing in motion. It is energy actually in use, energy that is constantly being spent. The chergy of a bullet in motion, or of a fly whee revolving rapidly, or of a piledriver just before it strikes the pile, are examples of himetic enarty. The work done by a force on a body tree to move, exerted through agiven distance, is uwnys equil to the eerresponding increase of kinetic energy [Art, 1s: (3)]. If " mass, m, is moving with o velocity, r, its kinelic chergy is $\frac{1}{2} r^{2}$ [(3) of Art. 189]. If this velocity be generated by a constant force, P, athing through it space, s, we have. (Af. 211)

$$
\begin{equation*}
P s=\frac{1}{2} m u^{2}, \tag{1}
\end{equation*}
$$

that is, the work done on the budy is the exact erpiralent of the kinetia energy, amd the kinetic enorgy is reeme

[^25]vertible into the work; and the exact amonnt of work which the mass m, with a velocity r, can do against resist. ince before its motion is completely destroyed is $\frac{1}{2} m r^{\circ}$ This is called stored work,* and is the amomet of work that any opposing lorce, l^{\prime}, will have to do on the body before briuging it to rest. 'lhus, when a hemy fly-wheel is in mipid motion, a considerable portion of the work of the angine must have gone to prodnce this motion ; and before the engine can come to a state of rest all the work stored uy in the tly-wherl, as well as in the other parts of the machine, must be destroyed. In this way a fly-wheel acts as a reservoir of work.

If a body of mass m, moving throngh a space s, chango its relocity from v to v_{0} the work dome on the body is it moves through that space, (Art. 189), is

$$
\begin{equation*}
\frac{1}{2} m\left(v^{2}-r_{0}{ }^{2}\right) \tag{2}
\end{equation*}
$$

If the body is not perfectly lree, i. $c^{\text {, , if there is one foree }}$ urging the body on, and another force resisting the bocly, the kinetic energy, $\frac{1}{2} m r^{2}$, gives the exeess of the work done by the former fore over that done by the latter foree. 'lhas, when the rasistance of friction is orercome, the moving forees do work in overeoming this resistance, ind all the work done, in ercess of that, is slowed in the moving mitss.

Potential ruergy is anergy that a borly possesses in wirlue of its posilion. The energy of a bent wateh-spring, which does work in uncoiling: the energy of a weight ruised uhove the earth, ns the weight of a clock which loes work in falling ; the energy of compressed nit, is in the air-gun, or in ma ar-bruke on a locomotive, which does work in expanding; the energy of water stored in a mill-dam, and of atcan in a hoilere me all examples of potemtial rmeray.

* Called also arimmhtatel cork, Sce Todhunter's Mteche, alno stored energy and ber wow. Itwone's Mechandex, p. 178.

Such energy may or may not be called into action, it may be dormant for years; the power exists, but the action will begin only when the weight, or the water, or the stean is released. Hence the word potential, is significant, an expressing that the energy is in existence, and that a new power has been conferred upon it by the aet of raising or rontining it.

For example suppose a weight of 1 lb . be projected vertically upwards with a velocity of $32 \cdot 2 \mathrm{ft}$. per second. The energy imprarted to the hody will carry it to a height of 16.1 ft , when it will cease to have any velocity. The whole of its kinetic energy will have been expended; but the body will have aerpuired potential energy instead ; i. e., the kinetic energy of the boty will all have been converted into potential energy, which, if the weight he lodged for any time, is stored up and ready to the freet whenever the booly shall be permitted to fall, and bring it back to its starting point with the velocity of 32.2 ft . per second; and thus the body will renequire the kinete energy which it originally received. Itence kinetie energy and potential energy are mutually convertible.

Let h be the height throngh which a body must fall to achuire the velocity r, m and $\|^{\prime}$ the mass and weight, respectively. Then since $v^{2}=2 g h$, we have, for the stored work,

$$
\begin{equation*}
\frac{1}{2} m r^{2}=\frac{W}{2 \cdot j} \mu^{2}=\frac{W}{2 y} \cdot \alpha g h=W h \tag{3}
\end{equation*}
$$

Hence we may say that the work stored in a moving booly is masusured by the prothet of the ureight of the berty into the height throngh mhich it must fill to crquire the velocity.

EXAMPLES.

1. Lat a bullet leave the harrel of a gan with the velocity of 1000 ft . per secome, and suppose it to weigh 2 azs. ; find
action, it may the action will or the steam is significant, as id that a new et of raising or

- be projected ft. per sccond. it to a height velocity. The expented; but instead ; i.e., oeen converted be loilged for whenever the it back to its 1 recond ; ased ergy which it and potential
ly must fill to s and weight, for the stored
moving booly borly into the e velocity.
h the velocity h 2 ozs. ; find
the work stored up in the hullet, and the height from which it must fall to acepire that velocity.
fere we have from (3) for the stored work

$$
\begin{aligned}
& \frac{2}{2 \times 16 g}(1000)^{2}=W h \\
& =1941 \text { foot-pounds. }
\end{aligned}
$$

$$
\therefore \quad h=10528 \text { feet. }
$$

2. A ball weighing w lbs. is projected along a horizontal phane with the velocity of $v \mathrm{ft}$. per second ; what space, s, will the ball move over before it comes to a state of resi, the coellicient of friction being f ?

Here the resistance of friction is $f u$, which acts elirectly opposite to the motion, therefore the work done by frietion while the body moves over s feet $=$ fu's; the work stored up in the ball $=\frac{1}{2} m v^{2}=\frac{w v^{2}}{2 g}$; thercfore from (1) we have

$$
f u s=\frac{w v^{2}}{3 g} ; \quad . \ddots \quad s=\frac{v^{2}}{2 g f}
$$

3. A railway train, weighing T tons, has a velocity of v ft . per second when the stemm is turned off ; what distance, s, will the train have moved on a level rail, whose friction is p lbs. per ton, when the velocity is $r_{0} \mathrm{ft}$. per second?

Here the work done by frietion $=p T s$; hence from (2) we have

$$
\begin{gathered}
p T s=\frac{1}{2} \cdot \frac{2240 \eta}{g}\left(v^{2}-v_{0}^{2}\right) ; \\
\therefore \quad s=\frac{1120\left(v^{2}-v_{0}^{2}\right)}{g \prime}
\end{gathered}
$$

4. A train of T lons descents in incline of $s \mathrm{ft}$. in length, having a total rise of h fl.: what will be the velocity, x, aeduired by the train, the friction heing p lbs. per ton?

Here we have (Art. 213, Sch. :), the work done on the train $=$ the work of gravity - the work of frietion

$$
=2 \pi 40 T h-p T s ;
$$

which is equal to the work stored up in the train. Hence

$$
\begin{aligned}
& \frac{2240 T v^{2}}{2 g}=2: 40 T h-p T s ; \\
& \therefore v=\sqrt{2 g h-T_{20}^{2} y p s}
\end{aligned}
$$

5. If the veloeity of the train in the last example be r_{0} ft. per second when the steam is turned off, what will be its relocity, c, when it reaches the bottom of the incline:

$$
\text { Aus. } v=\sqrt{v_{0}^{2}+2 g h-n^{1} \frac{\pi g h s .}{} .}
$$

fi. A body weighing 40 lbs . is projected along a rough horizontal plane with a velocity of 150 ft , per sec.; the coefficient of frietion is $\frac{1}{8}$; find the work done against friction in five seconds. $\quad \mathrm{A} n \mathrm{~s} .3500$ foot-pounds.
i. Find the work aceumulated in a body whieh weighs 300 lls . and hass a velocity of 64 ft . per second.

Ans. 19200 foot-pounds.
218. Kinetic Energy of a Rigid Body revolving round an Axis.-Let m be the mass of any particle of the body at the distance r from the axis, and let ω be the angular velocity, which will be the same for every partiele, since the boly is rigid; then the kinetie energy of $m=$ $\frac{1}{2} m(r \omega)^{2}$. The kinetic energy of the whole body will be found hy taking the sum of these expressions for every particle of the body. Hence it may be written

$$
\begin{equation*}
\pm \frac{1}{2} m m^{2} \omega^{2}=\frac{\omega^{2}}{2} \leq m r^{2} \tag{1}
\end{equation*}
$$

$\mathrm{S}_{n r^{2}}{ }^{2}$ is called the moment of inertir of the body about the axis, and will be explained in the next chapter.
Hence the kimetic eneryy of any rotutin! borty $=\frac{1}{2} \mathrm{~L} \omega^{2}$, where I is the moment of inertia ronnd the axis, and wt the angular velocity.
In the calse of a $f l y$-wheel, it is sutficient in practice to treat the whole weight as distributed uniformby along the cireumference of the circle described by the mean radins of the rim. Let r be this radius; then the moment of inertia of any partiele of the wheel $=m r^{2}$, and the moment of inertia of the whole wheel $=M r^{2}$, where M is the total mass. Hence, substituting in (1) we have $\frac{\omega^{2}}{2} M r^{2}$, which is the kinetic energy of the fly-wheel.

EXAMPLES.

1. Two cqual particles are made to revolve on a vertical axis at the distances of $"$ and b feet from it; required the point where the two particles inust be collected so that the work may not be altered.

Let $m=$ the mass of earh particle, $k=$ the distance of the required point from the axis, and $\omega=$ the angular velocity ; then we have

Work stored in both particles $=\frac{1}{2} m(n \omega)^{2}+\frac{1}{2} m(b \omega)^{2} ;$
Work stored in both particles collected at point $=m(k \cdot \omega)^{2}$;

$$
\begin{gathered}
\therefore \quad m(k \omega)^{2}=\frac{1}{2} m(a \omega)^{2}+\frac{1}{2} m(b \omega)^{2} ; \\
\therefore \quad k=\sqrt{\frac{1}{2}\left(a^{2}+b^{2}\right) .}
\end{gathered}
$$

This point is called the centre of' gyration. (Sce next chaprer.)
‥ The weight of a fly-whed is w lbs., the wheel makes n revolutions per minute, the dianeter is $2 r$ feet, diameter
of axle a inches, and the coeflicient of friction on the axle f; how many revalutions, x, will the wheel make before it stops!

Work stored in the wheel $=\frac{w}{2 y}\left(\frac{2 \pi n}{60}\right)^{2} r^{2}$,

$$
=\frac{w}{2 y} \frac{\pi^{2} n^{2} r^{2}}{900} .
$$

Work done by friction in x revolutions

$$
=f w \frac{\pi a}{12} x
$$

and when the wheel stops, we have

$$
\begin{aligned}
& f w \frac{\pi a}{12} x=\frac{w}{2 g} \frac{\pi^{2} n^{2} r^{2}}{900} \\
& \therefore x=\frac{\pi n^{2} r^{2}}{150 f a g}
\end{aligned}
$$

3. Refuired the number of strokes,.r, which the $\mathrm{A} y$-wheel in the last example, will give to a forge hammer whose weight is W lhs. :mid lift /h feet, supposing the hammer to make one lift for every revolution of the wheel.

$$
\begin{aligned}
& \text { Here the work due to raising hammer }=W h x . \quad \therefore \& c . \\
& \qquad \text { Ans. } x=\frac{u^{2} \pi^{2} n^{2},^{2}}{150 g\left(12 \|^{2} h+\pi a f w\right)} .
\end{aligned}
$$

4. The weight of a fly-wheel is 8000 thes, the diameter 20 feet. diameter of axle it inches, coeflicient of frietion 0.2 : if the whee is separated from the engine when making 27 revolutions per minute. lind how many revolutions it will make before it stops ($!$ taken $=32.2$).

Ans. 16.9 revolutions.
on on the axle make before it
219. Force of a Blow. In orter to express the amonnt of fore between the face of a hammer, for insance, and the head of a mail, we must consider what weight most be laid upon the head of the nail to foree it into the wood. A nail reguires a large force to pull it out, when friction alone is retaining it, and to force it in must of course reguire a still larger foree.

Now the head of the hammer, when it delivers a blow upon the head of the nail, must be capable of developing a foree equal for a short time to the continned pressure that would be prodnced by a very heavy load. Hence, the effect of the hammer may be explained by the principles of energy. When the hammer is in motion it has a quantity of kinetic energy stored up in it, and when it comes in contact with the mail this enrogy is instimtly comerted into work which forees the nail into the wood.
EXAMPLES.

1. Suppose that a hammer weighs 1 lb ., and that it is impelled downwards by the arm with considerable foree, so that, at the instant ine head of the hammer reaches the mail, it is moving with a velocity of 20 ft . per second; find the foree which the hammer exerts on the mail if it is driven into the wood one-tenth of an inch.

Let P be the foree which the hammer exerts on the nail, then the work done in forcing the nail into the wood $=$ $I \times{ }^{\frac{1}{2} \sigma}$, and the energy stored $n p$ in the hammer

$$
=\frac{1}{2} m m^{2}=\frac{(20)^{2}}{64}=6.2
$$

Since the work done in foreing the nail into the wood must be eforal to all the work stored in the hammer, (Art. ?li), we have

$$
\frac{P}{120}=6.2 ; \quad \therefore \quad P=744 \mathrm{lbs} .
$$

Hence the foree which the hammer exerts on the head of the nail is at least 744 lbs .
. If the hammer in the last example forees the mail into the wood only 0.01 of an inch, tind the force exerted on the mail.

$$
A n s . i 440 \mathrm{llos} .
$$

Hence, we see that, according as the wood is harder, i.e., accord ing as the nail conters less at euch stroke, the force of the blow becomes gromer. No that when we spak of the "foree of a blow." we mast specify how soon the looly giving the blow will come to rest, oherwise the term is meaningless. Thus, suppose a ball of 100 lhs . weight have a velocity that will cause it to ascend 1000 ft . : if 1 ' e ball is to he stopped at the and of 1000 ft ., a force of 100 lls . will do it; but if it is to be stopped at the entl of one foot, it will neet a loree of 100000 lis . to do it; and to stop, it at the end of one inch will require a force of 1200000 lbs ., and so on.
220. Work of a Water-Fall. When water or any body falls from a given height, it is plain that the work which is stored np in it, and which it is capable of moing, is egual to that whieh would be reguired to raise it to the height from which it has fallen; i.f., if 1 lb . of water descend hrongh 1 foot it most aceummlate as mench work as: wonld be refuired to mise it throngh 1 foot. Hence when a fall of water is employed to drive a water-wheel, or any other hydranlic machine, whose modulas is given, the work lone ipm the machine is equal to the weight of the waller in pounds x its fall in feet \times the modulas of the machine.
EXAMPLES.

1. The breadth of a stream is 1 feet, depth a feet, mean volocity \cdot feet per minnte, and the luight of the fall h feet : tind (1) the homepourr. . $\$. al the water-whed whose modulus is m. and (\sim) find the ummber of rubie foet, A, which the wheel will pump per minute from the bottom of the fall to the height of l_{1} leet.
on the head of
as the mail into oree exerted on $n s . \quad i t)^{\prime} \mathrm{lbs}$.
arder, i.e., accord force of the blow " force of a blow." blow will cone to supprise a lall of to nsecend 1000 ft . force of 100 llss . of one foot, it will at the end of one
water or any ithat the work able of doing, is raise it to the 1 lb . of water as much work 1 foot. Hence water-wheel, or is is given, the e weight of the modulus of the
h a feet, mean the fitll $l i$ feet: er-wheel whose ' whice fret, A, the bottom of

Weight of water going over the fall per min. $=62.5$ aive
\therefore Work of whed per min. $=$ 促. athem.

$$
\begin{equation*}
\therefore \quad V=\frac{6 \cdot .5 \text { nbr } r m m}{3.3000} \text {. } \tag{1}
\end{equation*}
$$

Work in pumping water per min. $=62.5 . \mathrm{I}_{1}$;
which must $=$ the work of the wheel per min.; hence from (1) we have

$$
\begin{align*}
62.5 A h_{1} & =62.5 \mathrm{ab} \cdot \mathrm{hm} ; \\
\therefore A & =\frac{a b r h m}{h_{1}} \tag{3}
\end{align*}
$$

2. The mean section of a stream is 5 ft . by 2 ft ; its mean velocity is 35 ft . $\mathrm{p}^{r e r}$ minute: there is a fall of 13 ft . on this stream, at which is erected a water-wheel whose modnlus is 0.65 ; find the horse-power of the wheel.

Ans. $5.6 \mathrm{II} . \mathrm{P}$ '.
3. In how many hours would the wheel in Ex. 2 grind 8000 bushels of wheat, supposing eiteh horse-power to grind 1 bushel per hour?

Ans. 14284 hours.
4. How many cubie feet of water must be made to deseend the fall per minute in Lix. 2 , that the wheel may grind at the rate of 28 hushels per hour?

Ans. $1750 \mathrm{~cm} . \mathrm{ft}$.
5. Giren the stream in Ex. ${ }^{2}$, what must be the height of the fall to grind 10 bushels per home, if the modults of the wheel is 0.4 ? Ans. 3 i. 7 feet.
6. Find the useful horse-power of a water wheel, supposing the stream to be if ft hroad and 2 ft . deep, and to flow with a velocity of 30 ft . per minute: the height of the fall leing 14 ft ., and the modulns of the machine $0,6 \mathrm{~s}$.
. 1 ns. 5.2 nearly.
221. The Duty of an Engine. - The duty of un engine is the number of units of work which it is cupabte nt duinu) lyg burning a giren quantity af gimel.-It has heen tomul bey experiment that, whatever may be the presenre at which the steam is formed, the quantity of fuol necessary to (raporate a given volume of water is alwass nearly the same; hence it is most adrantageons to employ stem of a high pressure.*

In good ordinary engines the duty varies between 200000 and goroon units of work for a lb . of coal. The extemt to which the economy of fael may be curried is well illustrated by the engines embployed to drain the mines in Cornwall, England. In 1815, the averuge duty of these angines was 20 million units of work for a bushelf of coal; in 1843, by reason of successive improvements, the uverage duty had become 60 mitlions, effecting a saving of $£ 85000$ per anmum. It is stated that in the case of one engine, the duty was rused to $1 \approx \mathrm{c}$ millions. The duty of the engine depends largely on the construction of the boiler; $\mathbf{1} \mathrm{lb}$. of coal in th" Cornish boiter evaporates $11_{2}^{1} \mathrm{lbs}$. of water, while in a differently-shaped boiler 8.7 is the maximum. \ddagger

E:XAMPI.ES

1. An eugine burns 2 lbs. of coal for each horse-power per hour ; find the duty of the engine for a lb. of coal.

Here the work tlone in one hour

$$
=60 \times 33000 \text { foot-pounds; }
$$

therefore the duty of the engine $=30 \times 33000$ foot-pounds,

$$
=99000 \text { foot-pounds. }
$$

2. How many bushels of conl must be expended in a lay of 24 hours in raising 150 enbie ft, of water jer minute
[^26]1 of an engine able of doint een tomad by we at whirh necessary to is nearly the y steam of a en 200000 and t to which the he engines emIn 1815, the of work for a rovements, the ing of $£ 85000$ the duty was mads largely on Cornish boiler laped boiler 8.7
horse-power . of coal.
foot-pounds, t-pominds.
pended in a reer minnto
eil is, Goodere, (fin Information
from a depth of 100 fathoms; the duty of the engine heing 60 millions for a bushel of coal :

$$
\text { Ans. } 135 \text { bushels. }
$$

3. A steam engine is regnired to ratise 80 enbic ft . of Water frel minute from a depth of 800 ft ; find how mathy tons of coal will be required per day of 24 hotas, supposing the duty of the engime to be 250000 for a llo of coal.

Aus. 9 tons.
22\%. Work of a Variable Force.-When the force which performs work through a given space varies, the work done may be determined by multiplying the given space by the mean of all the variable forces.
Let AG represent the spuce in mits of feet throngh which a variable foree is exerted. Divide AG into six equal parts, and suppose P_{1}, P_{2}, P_{3}, etr., to be the forees in pounds
 applied at the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$, ete., respectively. At these points draw the ordinates y_{1}, y_{2}, y_{3}, ete., to represent the forces which act at the points A, B, C, ete. Then the work done from A to 13 will he equal to the spater, $A B$, multiplied by the mean of the forees P_{0} and P_{1}, i. e., the work will be represented by the area of the surfate Aabls. In like mamer the work done from B to C will be represented by the area Bbc C , and so on ; so that the work done throngh the whole space, AG , he a foree which varies continuonsly, will be represented by the ate Aagd. This area may be fomal aproximately by the ordinary rule of Mensuration for the area of a emred surface with equidistant ordimates, or more aremately by Simpson's* me, the proof of which we shall now give.
223. Simpson's Rule.-1، $1 y_{1}, y_{2}, y_{3}$, ete., be the

- Alhough il way not inve, ad by Simpan. See Torthunter.
equidistant ordinates (Fig. s9) and 1 the distane between any two comsecative ordinates; then hy taking the sum of the trapezoids, AabB, BbeC, etce. we have for the area of Aayli,

$$
\begin{aligned}
& 3 l\left(y_{1}+y_{2}\right)+1 l\left(y_{2}+y_{3}\right)+1 \quad l\left(y_{3}+y_{4}\right)+\text { etc. } \\
& =1 /\left(y_{1}+2 y_{2}+2 y_{3}+: y_{4}+2 y_{5}+2 y_{0}+y_{7}\right):(1)
\end{aligned}
$$

which is the ordinary formula of mensuration.
Now it is evident that when the curve is alwas concme to the line $\mathrm{A}(\mathrm{i}(1)$ will give fou annall a result, and if eonvex it will give too large a resulf.

Let Fig. 90 represent the space between any two old consentive ordinates, as ('c mad Ee (Fig. 89) : divide ('E into three eppal parts, CK = KL = LE, and erect the ordinates $\mathrm{K} k$ and $\mathrm{L} /$, dividing the two traproids Cod) and IVdeE into the three traperoids CrkK, K k / L, and L/eE. The sum of the areas of these three trapezoids

$=\frac{1}{2} \mathrm{CK}(\mathrm{C} c+2 \mathrm{~K} k+2 \mathrm{~L} l+\mathrm{E} e)$

which is a choser approximation for the area of Cees than (1).

Now when the emre is coneare towards (C . (2) is smaller tham the area between CE mat the eurve chelle; if we substitute for Do, the ordinate Ded, which is a litthe greater than 1 and which is given, (2) heromes

$$
\begin{equation*}
\left.y^{\prime}(\mathrm{C} r+4 \mathrm{l}) d+\mathrm{E} r\right) \tag{3}
\end{equation*}
$$

which is a still closer approximati, min than (2).
stance between ing the sim of for the area of
$\left.y_{4}\right)+$ elc.
$\left.3 y_{6}+y_{7}\right):(1)$
in.
always concave ilt, and if con-

I my two odd 39) : divide ('E

Fig. 90
$=\frac{1}{3}$)
$\left.=4 D_{0}\right)$.
area of Cer E
ds ($\mathrm{E},(\mathbb{2}$) is curve chodle; if hich is : litthe mes

Nimilarly we have for the areas of Sace and EegG,

$$
\begin{equation*}
\frac{1}{3} l(A n+413 b+C c), \text { und } \frac{1}{3} l(E e+4 F f+(i y) \tag{4}
\end{equation*}
$$

Adding (3) and (4) tograther, we have for an approxamate value of the whole area,

$$
\frac{1}{3} l\left[y_{1}+y_{7}+2\left(y_{3}+y_{5}\right)+4\left(y_{2}+y_{4}+y_{6}\right)\right] . \text { (i) }
$$

which is Simpson's formulu. Ifence Simpson's rule for finding the urea approximately is the following: Diride the abscissu, AG, into an eren numbrr of "qual parts, and erat orlinates at the points of dirision; thrm uld together the first and last ordinates, twice the sum of all the other odd ordinates, und four times the sum of ull the even ordinates ; multiply the sum by one-third of the common distance between any tuo adjucent ordinetrs. (See 'Todhnutar's Mensuration, also 'Tate's (Geometry and Mensuration, also Morin's Mech's, by Bemnett.)

EXAMPLES.

1. A variahle force has netod throngl 3 ft . ; the value of the forer taken at seven successive equidistant peints. inchuling the first and the last, is in lhs. $189,151,2,129$, $108,94.5,84,75.6$: tind the whole work done

$$
\begin{equation*}
\text { Ins. 34f. } 4 \text { foot-pounds. } \tag{i}
\end{equation*}
$$

\therefore A variable foree has aeted through if ft : the value of the force taken at seven sucressive equidistunt points, inchading the lirst and the last, is in lhs. 3, 8, 15, 24,35 , 48,63 ; find the whole work done.
.Ins. 162 foot-pomits.
3. A varimbe force has acted throngh a ft.; the valne of the force taken at serem shecessive equidistant points.
 6.245, 6.325, 6.403, 6.481, 6.557: lind the whole work done.

> . Ins. sti.307 foot-ponmels.

Shomld any of the ordinates thecome zero, it will not prevent the use of Simpson's rule.
Simpsom: ruld is applicathe to other investigations as well as to that of work dome by a variable force. For example, if we want the velocity generated in a given time in a particle he a variahle foree led the straight line Af represent the whote time during which the foree aets, and let the straight lines at right angles to AG represent the foree at the correspomding instants; then the area will represent the whole spare deseribed in the given time.
E: A MPLES.

1. The ram of a pile-driving engine weighs half a ton,* and has a fall of $1{ }^{7}$ ' ft.; how many mits of work ure jerformed in raising this ran :' $.14 \mathrm{~s}, 19040$ foot-pounds.
2. How many units of work are required to raise 7 cwt . of coul from a mine whose depth is 13 fathoms?

Aus. 6illine foot-pounds.
3. A horse is used to lift the earth from a trench, which he does by means of a cord going over a pulley. He pulls np , twice every 5 minutes, a man weighing 130 lts ., and n barrowful of earth weighing 260 ths. Each time the horse gees forward 40 ft ; find the mils of work done by the horse per hour.
.tus. 3it400.
4. A mailwy train of 7 'tons ascends an inclined phane which has a rise of $c \mathrm{ft}$. in 100 ft ., with a uniform speed of m miles per homr; find the horse-power of the englue, the friction being p lbs. per ton.
5. A railway train of 80 tons aseends minctine which rises one foot in 50 ft., with the uniform rate of 1 i miles
t will not pre-
vestigrations as le forrce. Fior 1 a given time right line AG foree acts, ma represent the the area will ven time.
is half a ton,* work are per-oot-pounds. a raise 7 cwt . $\therefore ?$ bot-pomds. trench, which ev. He pulls 30 lbs., and a ime the horse done by the 2.s. $3: 4400$.
nelined plane orm speed of c emgine, the
H.-P. inetine which 3 of 15 ailes
per hour : find the horse-pwwer of the engine, the frietion being 8 lhe. prer ton.

Ans. 168.96 II.-I'.
fi. If a horse exert a traction of / lhs.. what weight, u, will he pull up or down a hill of small inelination which has a rise of e in 100, the coefticient being f ?

$$
A u s . u=\frac{100 t}{100 f \pm e}
$$

\%. From what depth will an engine of 22 horse-power raise 13 tons of coal in an hour? $1 / 1 \mathrm{k} .1+9 \% \mathrm{ft}$.
8. An engive is ohserved to raise $\%$ tons of material an honr from it mine whese depth is 8.5 fathoms; find the horse-power of the engine, supposing $\frac{1}{6}$ of its work to be lost in transmission.
. Ins. $4 . \mathrm{s} 4 \mathrm{ij}$: $\mathrm{II} . \mathrm{P}$.
9. Required the horse-power of an engine that would supply a city with water, working 12 hours a day, the water to be raised to a lieight of 50 ft ; the number of inhabitants besing is0000, and each person to use 5 gallons of water a day, the gallon weighing $8 \frac{1}{3}$ lbs. nearly.

Aus. 11.4 II.-P.
10. From what depth will an engine of 20 horse-power

11. At what rate per hour will an engine of 30 horsepower draw a train weighing 90 toms gross, the resistance being 8 lbs. per tom? $\quad .1 n s .15 .625$ miles.
12. What is the gross weight of a train which me engine of 2.5 horse-power will draw at the rate of 25 miles an hour. resistances being 8 lhe per ton?

$$
\text { Ans. } 46.8 \% 5 \text { tons. }
$$

13. A train whose gross weight is 80 tons travels at the rate of 20 miles an hour: if the resistnnce is s lhs. per ton, what is the horse-power of the engine?

$$
\text { Ans. } 34_{18}^{{ }^{2}} \text { H.-1'. }
$$

14. What must be the length of the stroke of a piston of an engine, the surface of which is 1500 square inches, Which makes 20 strokes per minnte, so that. with a mean pressure of 12 lbs on each square inch of the piston, the engine may be of 80 horse-power: \quad Ans. $i \frac{1}{3} \mathrm{ft}$.
15. The diameter of the piston of an engine is 80 ins., the length of the stroke is 10 ft., it makes 11 strokes per minute, and the mean pressure of the steam on the piston is 12 lbs. per square inch: what is the horse-power?

Ans. 201.04 H.-I.
16. The eytinder of a stean engine has an internal diameter of 3 ft ., the iength of the stroke is 1 ft .. it makes 6 strokes per minute: muler what effective pressure per square inch wonld it lave to work in order that $\% 5$ horsepower may be done on the piston :

Ans. 6\%. 54 lbs .
1% It is said that a horse, walking at the rate of $2 \frac{1}{2}$ miles an hour, can do 1650000 units of work in an hour; what force in pounds sloes he continnally exert?

Aus. 125 lbs.
18. Find the horse-power of an engine which is to move at the rate of 30 miles an hour, the weight of the engine and load heing 50 tons, and the resistance from friction 10 lbs. per ton.

Ans. 64 II.-1.
19. 'There were 6000 culue ft. of water in a mine whose depth is 60 fathoms. when all engine of 50 horse-power began to work the prmp; the engine continued to work a homs before the mine was cleared of the water ; required the number of enbie fte of water which had run into the mine during the $\bar{\sigma}$ hours, supposing $\frac{1}{4}$ of the work of the engine to be lost by transmission.

Ins. 10500 cubic ft .
20. Find the horse-power of a stean engine which will ruise 30 cubie ft . of water per minate from a mine 440 ft . reep.

Ans. 25 II.-1',
oke of a piston square inchers, with a mean the piston, the A $\mu \mathrm{s} .: 1 \frac{1}{3} \mathrm{ft}$. gine is 80 ins.. It strokes per on the piston power? $101.06 \mathrm{II} .-\mathrm{P}$. is an internal (; ft., it makes a pressure per - that 75 horse9. 67.54 lbs . cate of $2 \frac{1}{2}$ miles an hour; what
ms. 125 Ibs.
ich is to more of the engine from triction ns. 64 II.-P.
a mine whose ; horse-power med to work : ater ; required run into the he work of the 500 cubic ft.
ine which will a mine 440 ft . $n s .25$ H.-1'.
21. If a pit 10 ft . deep with an area of 4 square ft. . Se exavated and the carth thrown up, how much work will have been done, supprosing a cubic foot of earth to weigh 90 lbs.

Aus. 18000 ft -lhs.
2.2. A well-shaft 300 fo. deep and 5 ft . in diameter is full of water: how many units of work must be expended in getting this water ont the well ; (i. e., irrespectively of any

23. A shalt a ft. deep is full of water; find the depth of the surface of the water when one-quater of the work required to empty the shaft has been done.

$$
A u \mathrm{~s} \cdot{ }_{2}^{"} \mathrm{ft}
$$

24. The diameter of the evlinder of an engine is 80 ins., the piston makes per mimute 8 strokes of $10 \frac{\mathrm{ft}}{\mathrm{ft}}$. muder a meim pressure of is thes. per stuare inch ; the moduhs of the engine is 0.55 ; how many culic ft. of water will it raise from a depth of 112 ft . in one minute?

$$
\text { Ans. } 485.78 \mathrm{cub} . \mathrm{ft} .
$$

25. If in the last example the engine raised a weight of 66433 lbs . through 90 ft . in one minute, what must be the mean pressure per square inch on the piston?

$$
\text { Atus. } 26.37 \mathrm{lbs} .
$$

26. If the diameter of the piston of the engine in Ex. 24 had been 85 ins., what nddition in horse-power woild that make to the useful power of the engine?

$$
\text { Aus. } 13.281 \mathrm{ll} . \mathrm{l}^{2} .
$$

2π. If an engine of 50 horse-power raise 2860 cull. ft. of water per hour from a mine 60 fathoms deep, find the modulus of the engine.

Ans. . 65.
$\because 8$. Find at what rate an (rigine of 30 horse-power could draw a train weighing sol tons up un incline of 1 in 280 , the resistance from friction being of the per ton.

$$
\text { . Ins. } 13: 00 \mathrm{ft} \text {. per minute. }
$$

29. A forge hammer weighing 30% ths, makes 100 lifts a minute, the perpendienlar hoight of each lift lxeing z It.; what is the horse-power of the engine that gives motion to 20 such hammers?

An.s. 36. 36 H.-P.
30. An ongine of 11) horse-power raises 4000 ths. of (mal from a pit $1: 00 \mathrm{ft}$. deep, in an honr, ame also gives motion to a hammer which makes 50 lifts in a minnte, each lifi having a perpendicular height of 4 ft .; what is the waight of the hammer?

Alss. 1250 lbs .
31. Find the burse-power of the engine to rase Th tons of coal per hour from a pit whose depth is a lithoms, and at the same time to give motion to a forge hammer weighing w lbs., which makes n lifts per minute of $h \mathrm{ft}$. cach.

$$
\text { Ins. } \frac{22+a t+n h m "}{33000}-\mathrm{II} .-1
$$

32. Find the useful work done by a fire engine per seeond which diseharges every seeond 13 lbs. of water with a velocity of 50 lt . per second.

$$
\text { Ans. } 508 \text { nearly }
$$

33. A ralway truck weighs m tons; a horse draws it along horizontally, the resistance being u lbs. per ton; in passing over a space s the velocity changes from n to r : find the work done by the horse in this spated.

$$
\text { Ams. } \underset{\Delta y}{2 \cdot y}\left(r^{2}-u^{2}\right)+m n s
$$

34. The weight of a ram is 600 lhs., and at the coll of the blow has a velocity of $32 \frac{1}{6} \mathrm{ft}$. ; what work bis leen done in misine it? Ims. ! M, O.
3i. Required fhe work stomed in a cmon bali whose

36 A ball, weighing 20 lls., is pojereded with a polocily
 hall move over hefore it comes to resk albowing the fridion 10 We it the weight of the ball:

es 100 lifts : becing : ft.; es motion to ;1.3i; H.-1'.

0 !hs. of coal gives motion inte, each lift is the wight 1250 lbs.
lise T tons of loms, and at wer weighing each.
nh ${ }^{\prime \prime}$ II.-I'.
engine for of water with ;08 nearly.
rse draws it per ton ; in rom $\|$ to r :
$\left.c^{2}\right)+m m s$.
the eme of ris bis been

bali whosice $11 \because 20 \% 10$. th a voluedty are will the the triction $100 \div \cdot 3 \mathrm{~A}$.
3% A trim, weighing 193 tons, has a velocity of 30 miles an hour when the steam is tu:ned off; how far wila the train move on a level rail before coming to rest, the friction being it ! bs. per ton: I $1 / \mathrm{s}, 12254 \mathrm{l}^{2} \mathrm{t}$.

3s. A train, weighing 60 tons. has a velocity of 40 miles ant hour, when the steam is turned off, how far will it ascend an incline of 1 in 100, taking friction at 8 lbs a ton : Ans. $3942 \frac{1}{2} \mathrm{ft}$.
39. A carriage of 1 ton moves on a level rail with the speed of $\delta \mathrm{ft}$. a second; through what space must the carriage move to have a velocity of $\approx \mathrm{ft}$., supposing friction fo be f lbs. a ton?
$A / 1 s .348 \mathrm{ft}$.
40. If the carriage in the last example moved over 400 fied before it comes to a state of rest, what is the resistance of frietion per ton?

Ans. 5.5 .
41. A forec, P, acts upon a body parallel to the plane; find the space, s, moved over when the body has attained a given velocits, r, the coelficient of friction being f, and the borly weighing w lbs.

$$
\text { Aus. } s=\frac{w v^{2}}{2 g\left(l^{\prime}-f u\right)}
$$

43. Suppose the body in the last example to be moved for $/$ secouls: required (1) the velocity, i, acquired, and (: 2) the work stored.

$$
A n s .(1) \frac{P-f w}{w} t g ;(2) \frac{(I-f w)^{2}}{2 w} t^{2} g
$$

4:). A bor'y, weighing 40 lbs ., is projected along a rough horizontal pame with a velocity of 1.00 lt. per second ; the coollicient of frotion is : find the work done against frie. tion in is seconds. Ins. 3500 foot-poumls.
4. A hody weighing 50 lhs. is projected along a rongh horizontal watur with the velocity of 40 yards per serond: "ulthe work expended when the body comes to rest.

Ans. 11250 ft.-llos.
45. If a train of cars weighing 100000 lbs . is moring of a horizontal track with a velocity of 40 miles an hour when the stem is turned off; through what space will it move before it is brought to rest by friction, the friction being 8 lbs . per ton? Alus. 13374.8 ft .
46. What amount of energy is aequired by a body weighmg 30 lhs. that falls through the whole length of a rough inclined plane, the height of which is 30 ft ., and the base 100 ft ., the coefficient of friction being f ?

Ans. 300 ft - lbs .
47. If a train of cars, weighing T tons, ascend an incline having a raise of $e \mathrm{ft}$. in 100 ft , with the velocity $c_{0} \mathrm{ft}$. per sceond when the steam is turned off ; through what space, x, will it move hefore it comes to a state of rest, the friction being p lbs. per ton:'

$$
A n . . x=\frac{1120 c_{0}^{2}}{g\left(x_{2}^{2} \cdot t c+p\right)}
$$

48. Suppose the train, in Ex. 4, Art. 217, to be attached to a rope, passing ronnd a wheel at the top of the incline, which has an empty train of T_{1} tons attached to the other extremity of the rope; what velocity, r, will the traia acquire in descending $s \mathrm{ft}$. of the incline?

$$
A n s . v=\sqrt{2 g h \frac{T-T_{1}}{T+T_{1}}-\frac{g p s}{1120}} .
$$

49. An engine of 35 horse-power makes 20 revolutions per minute, the weight of the fly-wheel is 20 tons and the diameter is 20 ft .; what is the accumulated energy in footpounds?

Ans. 307054.
50. If the fly-whech in the last example lifted a weight of 4own lbs. through ? ft ., what part of its angular velocity would it lose?

Ans. ${ }_{3}$.
51. If the axis of the athore fly-wheel he 6 ins. in diameter, the enoflicient of frietion 0.075 , what fraction,
approximately, of the 35 horse-power is expented in turning the lly-wheel! Ans. 1_{1}^{1}.
5\%. In pile driving, 38 men raised aram 12 times in an hour ; the weight of the ram was $1: 2$ ewt., and the height through which it was raised 140 ft .; find the work tone ly one man in a minute. \quad I/w. 990 ft - lb .
53. A buttering-ram. weighing 2000 lbs ., strikes the heall of a pite with a velocity of 20 ft . per second; how far will it drive the pile if the constant resistance is 10000 lbs .'

Ans. 1.25 ft.
54. A mail 2 ins. long was driven into a block by suc. cessive hows from a monkey weighing i.01 lbs.; after one blow it was found that the heal of the nail projected 0.8 of an inch athove the surface of the block: the monkey was then raised to a height of 1.5 ft, and allowed to fill upon the head of the nant; after this blow the head of the mail was 0.46 of an inch above the surface; find the force which the monkey exerted upon the heid of the nail at this blow.

Ans. 265.24 lbs .
55. The moukey of a pile-driver, weighing 500 lis. is raised to a height of 20 ft .. and then allowed to tall upon the head of a pile, which is driven into the gromed 1 inch by the blow; find the force which the monkey exerted upon the head of the pile.
$A n s .1 \because 0000 \mathrm{lbs}$.
56. A steam hammer. weighing 500 ths., falls through a height of 4 ft. under the action of its own. weight and a steum pressure of 1000 lhs ; find the :amount of work which it can do at the end of the fall.
$A n s . \quad 6000 \mathrm{ft} .-\mathrm{Jbs}$.
5\%. The man section of a stream is 8 square ft.; its menu relocity is 40 fl . fer minute; it has a fall of $1 i \frac{\mathrm{ft}}{\mathrm{ft}}$; it is required to raise watter to a height of 300 ft . by meams of a water-wheel whose modulus is 0.7 : how many cubic ft . will it raise per minate: \quad Ans. 13.07° cub. ft.
58. To what height would the wheel in the last example

Sal. The mean section of a stream is $1 \frac{1}{2} \mathrm{ft}$. by 11 ft .; its mean veloeity is $\geqslant \frac{1}{2}$ miles an hour ; there is on it a fall of $f i f t$. on which is ereeted a wheel whose modulus is $0 . t$; this wheel is employed to raise the hammers of a forge, each of which weighs 2 tons, and has a lift of $1!$ ft.; how many lifts of a hammer will the wheel yied per minute?

Aus. 14: nearly.
60. In the last example determine the mean depth of the stram if the wheel yields 135 lifts per minute.

Ans. 1.43 ft .
61. In Ex. 59, how many enbie ft. of water must descend the fall per minnte to yield 9% lifts of the hammer per minute?

Ans. 2483 cub. ft.
62. A stream is $a \mathrm{ft}$. broad and $b \mathrm{ft}$. deep, and flows at the rate of $c \mathrm{ft}$. per hour; there is a fall of $h \mathrm{ft}$; the water lurns a machine of which the modulus is e; find the number of bushels of corn which the machine can grind in inn hour. supposing that it refuires m units of work per minute for one hour to grind a bushel.

$$
\text { Ans. } \frac{1000 a b c h e}{16 \times 60 m}
$$

(;3. Down a $14-\mathrm{ft}$. fall $\mathfrak{2 0 0}$ cul, ft. of water descend every minute, and turn a wheel whose morlulus is 0.f. The wheel lifts water from the bottom of the fall to a height of it ft.: (1) how many cubic ft. will be thus raised per minnte? (\because) If the water were raised from the top of the fill to the same point, what wonld the mumber of cubie fi. thell be?

$$
\text { fus. (1) } 31.1 \text { cub. ft. ; (} \because \text {) } 34 . \% \text { cul. ft. }
$$

In the sicond ense the number of coll. ft. of water taken from the top of the fill bering x, the number of ft. that will turn the wherel will be $200-r$.
64. Find how many units of work are stored up in a
last example $174: 8 \mathrm{ft}$.
by $11 \mathrm{ft} . ;$ its a it a fall of us is $0 . i$; this orge, each of . ; how mathy te? 14* nearly. 2in depth of inte. s. 1.43 ft . must deacent? hammer prer 83 cub. ft.
and flows at \because; the water ad the nimmgrind in an of work per $1000 a b c h e$ $16 \times 60 \mathrm{~m}$
escend every ; 0.6. The a height of s raised per e top of the of cubic ft. . \sim cul). ft.
ken from the the wheel witl
mill-pond which is 100 ft . long, 50 ft . broad, and 3 ft . deep, and hass a fall of 8 ft . Ans. 7500000 .
65. There are three distinct levels to be pumped in a mine, the tirst 100 fathoms aleep, the seeond 120 , the third 150 ; 30 cub. ft . of water are to come from the first, 40 from the second, and 60 from the third jer minute ; the daty of the engine is $\mathbf{i 0 0 0 0 0 0 0}$ for a bushel of coal. Determine (1) its working horse-power and (2) the consumption of ecal ler hour. Ans. (1) $191 \mathrm{H} .-\mathrm{i} \cdot$; (2) 5.4 bushels.
66. In the last example suppose there is another level of 160 fathoms to be pumped, that the engine does as much work as before for the other levels, amd that the utmost power of the engine is 2π.in.-I'. ; find the greatest number of cub. ft. of water that can be raised from the fourth level. Ans. $46 \frac{1}{4}$ cub. ft.
6\%. A variable force has acted through 8 ft ; the value of the foree taken at nine successive equidistant points, inchuding the first and the last, is in lbs. $10.204,9.804$, $9.434,9.090,8.7 \div 1,8.475,8.19 \%, 7.93 \%, 7.692$; find the whole work done. Ans. 70.641 foot-pounds.
68. The value of a variable foree, taken at nine suceessive equidistant points, including the first and the last points, is in lbs. 2.4849, 2.5649, 2.6391, 2. 7081 , 2.7726, $2.8332, \therefore .8904,2.9444,2.995 \%$, the common distance between the points is 1 ft ; find the whole work done.

Alus. 22.095% foot-poninds.
69. A train whose weight is 100 tous (ineluding the engine) is drawn by an engine of 150 horse-power, the friction being 14 lbs. per ton, and all other resistances neglected ; find the maximmon speed which the engine is capable of : mstaining on a level rail. . Ias. 402_{2}^{5} miles per hour.
70. If the train deseribed in the last eximple be moving ut a partienlar instant with a velocity of 15 miles per hour,
and the engine working at full jower, what is the aceceleration at that instant? (Call $g=30$) Ans. $1_{14}^{4} \frac{4}{2}$.
71. Find the horse-power of all engine required to drag a train of 100 tons up an incline of 1 in 50 with a velocity of 30 miles an hour, the friction being 1400 lls .

Ans. The engine must be of not less than $470 \frac{2}{5}$ horse. power. This is somewhat ahove the power of most locomotive engines.
72. A train, of 200 tons weight, is ascending an incline of 1 in 100 at the rate of 30 miles per hom, the friction being 8 lbs . per ton. The steam heing shut eff and the break appiod, the train is stopped in a quarter of a mile. Find the weight of the break-will, the eoefficient of friction of iron on iron being $\frac{1}{6}$.

is the acceeleratAns. 48. uired to drag a ha velocity of an 4702 horse f most locomo-
ing an incline wr, the friction ut, cff and the ter of a mile. licient of irie. 111_{14}^{3} ton 3.

CHAPTER VI.

MOMENT OF INERTIA.*
224. Moments of Inertia.-The quantity $\Sigma m r^{2}$ in which m is the mass of an element of a berly, and r its distance from an axis, ocelurs frequently in problems of rotation, so that it becomes necessary to consider it in detail ; it is called the moment of inertian of the body about the axis (Art. 218). IIence. "moment of inertia" may be tefined as follows: If the mass of ecery jurticter af a body be muttiplied by the sifuare of its disicuse grom " struight lime, the sum of the products so formed is culled the Mouent of Inertia of the berely choolt that lines.
If the mass of every particle of a body be multiplied by the square of its distance from a given plane or from a given point, the sum of the products so formed is called the moment of inertia of the body with reference to that plane or that print.
If the body be referred to the axes of s and y, and if the mass of each particle be multiplied liy its two en-ordinnter, x, y, the sum of the products so formed is called the protuct of inertia of the body about those two axes.
If dim denote the mass of an element, p its distance from the axis, and I the moment of inertia, we have

$$
\begin{equation*}
I=\Sigma p^{2} d m . \tag{1}
\end{equation*}
$$

If the body be referred to reetmungher axes, and x, y, z, le the co-ordimates of any element, then, according to the detinitions, the moments of inertia nhent the axes of x, , y 2, respectively, will be

* This term war latroduced by Euler, and has now got biog gemral nee when

$$
\pm\left(y^{2}+z^{2}\right) d m, \quad \leq\left(z^{2}+x^{2}\right) d m, \quad \dot{(}\left(x^{2}+y^{2}\right) d m
$$

The moments of inertia with respeet to the planes $y z, z x$, $x y$ respectively, are,

$$
\begin{equation*}
\dot{\mathrm{x}} x^{2} d m, \quad \searrow y^{2} d m, \quad \cup z^{2} d m . \tag{3}
\end{equation*}
$$

'The prodncts of inertia with respect to the axes y and z, " x and r, x and y, are

$$
\begin{equation*}
\text { ๖'yzdm, ப } z x d m, \quad \text { ப } x y d m . \tag{4}
\end{equation*}
$$

'Ihe moment of inertia with respect to the origin is

$$
\begin{equation*}
\dot{\Sigma}\left(x^{2}+y^{2}+z^{2}\right) d m=\Sigma r^{2} d m \tag{5}
\end{equation*}
$$

where r is the distance of the particle from the origin.
'The moment of inertia of a hamina, when the axis lies in it, is called a rechangular momment of inertion, and when it is perpendienar to the lamina it is called a polder moment of inertiat, and the corresponding axis is called the rectangular or the polar axis.

The process of finding moments and products of inertia is marely that of integration ; but after this has been aeeomplished for the simplest axes possible, they can be found without integration for any oh her axes.
EXAMPLES.

1. Find the moment of inertia of an unform rod, of mass m, and length l, abont an axis throngh its centre at right magles to it.

Let x be the distunce of any element of the rod from the centre, und μ the mass of a unit of length ; then dm $=\mu d x$, which in (1) gives for the moment of inertia $\mathrm{S}_{\mathrm{y}} \rho \cdot x^{2} d x$, or

$$
I=\int_{-\frac{1}{2}}^{\frac{1}{2}} \mu_{1}^{\prime 2} d x
$$

$\left.y^{2}\right)(d m . \quad(2)$ planes $y z, z x$, axes y and z,
rigin is
origin. e axis lies in nd when it is - moment of i rectanyular
sts of inertia been accoman be foumd
rod, of mass ntre at right
rod from the $n d m=\mu d x$, $14 x^{2} d x$, or
remembering that the symbol of summation, $\dot{\Sigma}$, includes int gration in the cases wherein the body is a continnons, mass.

$$
\text { Hence } \quad I=\frac{1}{12} \mu^{3}=\frac{1}{12} m l^{2} \text {. }
$$

If the axis be drawn throngh one end of the rod amb perpentienlar to its length we shall have for the moment of inettia

$$
I=\frac{1}{3} m l^{2} .
$$

a. Find the moment of inertia of a rectangular lamina* about an axis through its centre, parallel to one of its sides.

Let b and d denote the breadth and depth rexpectively of the rectingle, the former being parallel to the axis. Imagine the lamina composed of elementary strips of longth b parallel to the axis. Lat the distance of one of them from the axis be y, and its bradth dy; then, denoting the mass of a unit of area by μ, we have dun $=$ ubly, which in (1) gives

If the axis be drawn through one end of the rectangle, we shall have for the moment of inertia

$$
I=\frac{1}{3} m d^{2}
$$

3. Find the moment of inertia of a cirrular hamina with respeet to an axis through its centre and perpenidicular to its surfuce.
Let the ralins $=\mu$, and μ the mass of a mit of area us before, thell we have

$$
I=\int_{0}^{\bullet 2 T} \int_{0}^{4 t} \mu^{3} d r d \theta=\frac{\pi^{2} \cdot 1 u^{4}}{2}=\begin{gathered}
m r^{2} \\
v
\end{gathered}
$$

* In all casen we nimall arentme the thicknews of the lamime or plates to be Influiterslmal.

4. Find the moment of inertia of a circular phate (1) about a diameter as an axis, and (z) about a tangent.

5. Find the moment of inertia of a square phate, (1) about an axis throngh its centre and perpendienlar to its plane, (${ }^{2}$) about an axis which joins the middle peints of two opposite sides. and (3) about an axis passing through an angular point of the plate. and perpendicular to its plane. Let $a=$ the side of the plate and μ the malss of a unit of area.
(1) $I=\int_{-\frac{a}{2}}^{\frac{\pi}{2}} \int_{-\frac{a}{2}}^{\frac{a}{2}} \mu\left(x^{2}+y^{2}\right) d y d x=\frac{\mu \mu^{1}}{6}=\frac{m}{6} d^{2}$;
(2) $\mathrm{I}^{1} 2 m m^{2} ;(3){ }^{2} m m l^{2}$.
f. Find the moment of inertia of an isosedes triangular plate, (1) about an axis through its vertex and perpendicular to its plame, and (2) alomt an dxis which passes through its vertex and lisects the lase.

Let $2 b=$ the base and $a=$ the altitude, the"n
$I=2 . \int_{0}^{m}, \int_{0}^{a_{a}^{\prime \prime}} \mu\left(. r^{2}+y^{2}\right) d y d x=\frac{m}{6}\left(3 u^{2}+l^{2}\right) ;\left({ }^{2}\right) f m l^{2}$.
225. Moments of Inertia relative to Parallel Axes, or Planes.-The moment "f incrlia of "l botly about amy axis is rqual to its moment af inertia abotet a parallel uxis through the exhtre of grarity of the body, plus the moduct of the moss of the botly into the square of the distance between the axes.

Let the plane of the paper pass through the couter af gravity of the body, and be perpendicular to the two parallel nxes, meeting them in 0 and (i, and let P be the projection of any
 element on the plane of the paper.
cular plate (1) a tangent. $2 a^{2}$; (2) ${ }^{5} m l^{2}$. quare phate, (1) pendieular to its niddle points of passing throngh madienhar to its $i x$ the mass of a
${ }_{6}^{\prime \prime \prime}=\frac{m}{6} c^{2} ;$
seeles triangubiar ex and prerpencis which prasses
thent
$\left.+l^{2}\right) ;(2) \frac{1}{2} m l^{2}$.
e to Parallel of " bud! about t about a parallel e body, plus the square of the dis-

Take the centre of gravity, G, ats origin, the fixed axis through it perpendieular to the plane of the paper as the axis of z, and the phame through this and the parallet axis for that of $z x$: and let I_{1} be the moment of inertia about the axis throngh G, I that for the parallel axis through O. a the distane, $O G$, hetween the ases, and (x, y) any point, I. Then we shall have

$$
I_{1}=\cup\left(x^{2}+y^{2}\right) d m ; I=\cup\left[(x+u)^{2}+y^{2}\right] d m
$$

Hence $\quad I-I_{1}=2 a \leq x d m+u^{2} \leq d m=u^{2} m$,
since $\dot{\Sigma} x / m=0$, as the centre of gravity is at the origin.

$$
\begin{equation*}
\therefore \quad I=I_{1}+u^{2} m, \tag{1}
\end{equation*}
$$

which is called the formula af' retuction.
Hence the moment of inertia of a body relative to any axis can be fomd when that for the parallel axis through its centre of gravity is kuowa.

Cok. 1.-'The monents of inertia of a body are the same for all parallel axes sitnated at the same distance from its centre of gravity. Also. of all parallel ixes, that which passes through the centre of gravity of a body has the least moment of inertit.
('or. 2.-It is cuident that the same theorem holds if the moments of inertia be taken with respeet to paratlel phanes, insteud of parallel ases.
A similar property ulso comects the moment of inertia relative to miny point with that relative to the centre of gravity of the body.
EXAMPLES.

1. The moment of inertiat of a rectangle* in referener to un axis through its centre met parallel to one chat is
 no mone than it has welght.
$\frac{1}{12} m d^{2}$; find the moment of inertia in reference to a parallel axis through one end.

From (1) we have

$$
I=\frac{1}{1_{2}} m l^{2}+\frac{d^{2}}{4} m=\frac{1}{3} m d^{l^{2}}
$$

2. The moment of inertia of an isoseeles triangle abont an axis through its vertex and perpendicular to its plane is $\frac{1}{6}: 3\left(3 a^{2}+b^{2}\right)$, (Art. 224, Ex. 6); find its moment about ${ }^{4}$ parallel axis through the centre.

From (1) we have

$$
I_{1}=\frac{1}{8} m\left(3 a^{2}+b^{2}\right)-\frac{1}{8} r^{2} m=\frac{1}{6} m\left(\frac{1}{3} a^{2}+b^{2}\right) .
$$

3. Find the moment of inertia of a cirele abont an axis throngh its ciremmerence and perpendienlar to its plane (See Ex. 3, Art. 224).

$$
\text { Ans. } \frac{3}{2} m a^{2} .
$$

4. Find the monent of inertia of a square about an axis throngh the middle point of one of its sides and perpendicular to its plane (Ex. 5, Art. 224). Aus. ${ }_{T_{2}} m a^{2}$.
5. Radius of Gyration.-Let k be such a quantity that the moment of inertia $=m k^{2}$, then we shall have

$$
\begin{equation*}
I=\Sigma r^{2} d m=m h^{2} \tag{1}
\end{equation*}
$$

The distimee k is called the rudius of gyration of the body with respeet to the fixed axis, and it denotes the distance from the asis to that point into whieh if the whole mass were concentrated the moment of inertia would not be ahered. The point into which the body mught be concentrated, without altering its moment of inertia, is culled the centre of !y!yration. When the ixixed axis passes through the centre of gravity, the lemyfl k iand the point of concentration :ure called principal ralius and principal centre of gyration.

Let $k_{1}=$ the principal matius of gyration and r_{1} the distance of an element from the axis through the centre of gravity ; then from (1) we have

$$
\begin{align*}
m k^{2} & =\sum r^{2} d m \\
& =\sum r_{1}{ }^{2} l m+m a^{2},[\text { by }(1) \text { of Art. } 2: \tilde{5}] \\
& =m k_{1}{ }^{2}+m a^{2} ; \\
\therefore \quad k^{2} & ={h_{1}{ }^{2}+a^{2},}^{(2)} \tag{ㄹ}
\end{align*}
$$

from which it appears that the mincipal ratius of gyration is the least radius fior perallel axes, which is also evident from Cor. 1, Art. 2 L 5.
sicu-Dh homogeneous bodies, since the mass of any part varies divectly as its volume, (1) may be written

$$
\begin{equation*}
\dot{r^{2} l} l V=V k^{2} \tag{3}
\end{equation*}
$$

where $d V$ denotes the element of volume, and V the entire volume of the body.
Hence, in homogeneous bodies, the value of k is independent of the density of the body, and depends only on its form ; and in determining the moment of inertia, we may take the element of volume or weight for the element of mats, and the total volume or weight of the body instead of its mass.

Also in tinding the moment of inertia of a lamina, since b is independent of the thickness of the lamina we may take the element of area instend of the clement of mass, and the total area of the lamina instead of its mass.

Prom (1) we have

$$
\begin{equation*}
h^{2}=\frac{I}{m} \tag{4}
\end{equation*}
$$

similarly, $\quad k_{1}{ }^{2}=\frac{I_{1}}{m}$,
hence, the square of the velius os ration with respect to any axis equals it. momest of inertia with respect th the same ax is divided by the mass.

EXAMPLES.

1. Find the prineipal radins of gyration of a straight line.

From Ex. 1, Art. 224. we have

$$
I_{1}=\frac{1}{12} m l^{2} ;
$$

therefore from (5) we have ${k_{1}}^{2}=\frac{1}{12} r^{2}$.
2. Find the principal radius of gyration of a circle (1) with respect to a polar axis, and (i) with respect to a rectangular axis. Alns. (1) $\frac{1}{2} \epsilon^{2}$; (泣) $\frac{1}{4} t^{2}$.
3. Find the principal radins of gyration of a rectangle with respeet to a rectangular axis. . $1 / / s .{ }_{1 \frac{1}{2}} / t^{2}$.
4. Find the prineipal radins of gyation (1) of a square vith respect to a polar axis. and ($?$) of an isosceles triangle with respect to a polar axis.

$$
A \| s .(1) \frac{1}{8} a^{2} ;(\geqslant) \frac{1}{6}\left(\frac{1}{3} a^{2}+b^{2}\right) .
$$

227. Polar Moment of Inertia.-If any thin plate, or lanima, be referred to two rectangular anes and x, y be the co-ordinates of any element, then (Art. :2 24) the noments of inertia abont the axes of x and y respectively, are $\leq y^{2} d m$ and $\mathcal{E} x^{2} d m$; and therefore the moment of inertia with respect to the axis drawn propendicular to the plane at the intersection of the axes of x and y is

$$
\leq\left(x^{2}+y^{2}\right) d m
$$

Hrnce the polar moment of inertiot of any lamina is equal to the sum of the mompuls of inrrtia with ;espert to atly tu'o rectangular uxes, lyiny in the phone of the lemina.
wich respect to the respect to the
on of a straight
n of a cirele (1) ith respect to a) $\frac{1}{2} a^{2} ;\left({ }^{2}\right) \frac{1}{4} n^{2}$.
n of at rectiangle . $1 / \mathrm{s} . \mathrm{s}_{1 \frac{1}{2} / r^{2}}$.
(1) of a square sosseles triangle
$\frac{1}{6}\left(\frac{1}{3} a^{2}+l^{2}\right)$.
ny thin plate, or and x, y be the 4) the moments vely, are $\leq y^{2} d m$ of inertia with the plane at the
lamina is equal spert to any turo mina.

Con.-For every two rectamgulatixes in the plane of we lamina, at any point, we hate

$$
\dot{\Sigma} x^{2} d m+\dot{y} y^{2} d m=\text { const. }
$$

that is, the sum of the moments of ine wia with respert to " pair of rectangular ares is constant. Hence, if one ln : maximum, the other is aminimm, and wiee reasa.

EXAMPLES.

1. Find the moment of inertia of a rectangle ...t? wert to an axis throngh its entre and perpendienlar on its, ithe.

From Wx. 2, Art. 224, the rectangular me is of inertia are

$$
{ }_{1}^{1} 2 m l^{\prime} \text { : and }{ }_{1}^{1}: m b^{2} \text {; }
$$

therefore the polar moment of inertial $=1_{12}^{2} m\left(d^{2}+b^{2}\right)$; $b_{1}{ }^{2}=\frac{1}{12}\left(d^{2}+b^{2}\right)$.
2. Find the moment of inertia of an isoseeles triangle with respeet to an axis through its centre parallel to its hase, a being the altitude and and $2 b$ the base.

$$
A n s \cdot \frac{1}{18} m a^{2} ; h_{1}^{2}:=\frac{1}{1_{8}} u^{2}
$$

228. Moment of Inertia of a Solid of ERevolution, with respect to its Geometric Axis.-Let the axis he that of x; and let the equation of the generating eurve be $y=f(x)$. Let the solid be divided into an intinite number of circolar phates perpendieutar to the axis of revolution; let the density be miform and μ the mass of a unit of volnme ; and denote by x the distince of the centre of any circular plate from the origin. $!$ its radius, and $d x$ its thickness : then the moment of inertia of this eirenlar phate ahont an axis throngh its centre and perpendieular to its plane, by (Ex. 3, Art. :3.t), is

$$
\frac{\pi \mu, f^{4} d r}{2}=\frac{\pi \mu}{2}[f(x)]^{4} d x
$$

Sherefore the moment of inertiat of the whole solid is

$$
\begin{equation*}
\frac{\pi \mu}{2} \int[f(x)]^{4} d: x \tag{1}
\end{equation*}
$$

the integration being taken between proper limits.

EXAMPLES.

1. Find the moment of inertia of a right eirenlar eone abont its axis.

Let $h=$ the height and $b=$ the radius of the base : then the equation of the generating curve is $y=\frac{b}{b} x$, which in (1) gives for the moment of inertia,

$$
\begin{aligned}
I & =\frac{\pi \mu b^{4}}{2 h^{4}} \cdot \int_{0}^{h} x^{4} l x=\frac{\pi \mu h b^{4}}{10} \\
& =\frac{x^{3} 0}{1^{3}} m b^{2},\left(\text { since } m=\frac{\pi}{3} \mu h b^{2}\right)
\end{aligned}
$$

Therefore $k_{1}{ }^{2}=\frac{3}{10} / 2$.
\therefore. Find the moment of inertia (1) of a solid eylader about its axis. b being its radins and h its hoight, and (z) of a hollow eylinder, b and b^{\prime} being the external and internal radii. $\quad A n s$. (1) $\frac{1}{2} m b^{2}$; (2) $\frac{1}{2} m\left(b^{2}+b^{\prime 2}\right)$.
3. Find the moment of inertia of a paraboloid about its axis, h being its altitude and b the radins of the base.

$$
A n s . \frac{\pi \mu h b^{4}}{6}
$$

229. Moment of Inertia of a Solid of Revolution, writh respect to an Axis Perpendicular to its Geometric Axis.-Take the origin at the intersection of the
axis of revolution with the axis abont which the moment of inertia is required ; and denoting by x the distance of the centre of any cirenhar plate from the oriwin. y its rallius and dre its thiekness. we have for the moment of inertia of this circular plate, about a diameter, by Ex. 4, .irt. wet,

$$
\frac{\pi / v y^{4}}{4} d x
$$

therefore (Art. 2:5) the moment of inertia of this plate about the parallel axis at the distance x from it is

$$
\frac{\pi \mu y^{4}}{4} d x+\pi \mu y^{2} x^{2} d x
$$

therefore the moment of inertia of the whole solid is

$$
\begin{equation*}
\pi \mu \int\left(\frac{y^{4}}{4}+y^{2} x^{2}\right) d x \tag{1}
\end{equation*}
$$

the integration being taken between proper limits.
EXAMPLES.

1. Find the moment of inertia of a right eircular cone about an axis through its vertex and perpendicular to its own axis.
Let $h=$ the height and $b=$ the radius of the base, then the moment of inertia from (1)

$$
\begin{aligned}
=\pi \mu \int_{0}^{h}\left(\frac{b^{4}}{4 h^{4}}+\frac{b^{2}}{h^{2}}\right) x^{4} d x & =\frac{\pi \mu h b^{2}}{20}\left(4 h^{2}+b^{2}\right) \\
& =\frac{3}{20} m\left(4 h^{2}+b^{2}\right) .
\end{aligned}
$$

2. Find the moment of inertia of a cone, whose altitude $=h$, and the radins of whose base $=l$, about an axis throngh its centre of gravity and perpendicular to its own axis.

$$
\text { Ans. } \frac{3}{80} m\left(l^{2}+4 b^{2}\right) .
$$

3. Find the moment of inertia of a paraboloid of revolntion abont an axis through its vertex and perpendicnlar to its own axis, the altitnde being $/ 1$ and the radius of the base b.

$$
A u \times \cdot \frac{-\mu h b^{2}}{12}\left(b^{2}+3 u^{2}\right)
$$

230. Moment of Inertia of Various Solid Bodies.
EXAMPLES.
231. Find the moment of inertia of a reetangular parallelapiped about an axis through its eemere of gravity and parallel to an edge.

Let the edges be a, b, a; sinee a parallelopiped may be ronceived as consisting of an infinite number of rectangular laminar, earch of which has the same radius of gyration relative to an axis perpendicular to its plane, it follows that the radius of gyration of the parallelopiped is the same as that of the lamine. Hence, the moments of inertia relative to three axes through the centre and parallel to the edres a, b. c. respectively, are by Ex. 1. Art. $227,1_{12}^{1}=m\left(b^{2}+c^{2}\right),{ }_{12}^{12} m\left(a^{2}+c^{2}\right),{ }_{12}^{1} m\left(a^{2}+l^{2}\right)$.
2. Find the moment of iucrtia of a reetungular paralledopipet about an elge.
Thin may be obtained immeliately from the last example by using Art. :25, or otherwise independently as follows:
Take the three edges a, b, c for the axes of x, y, z, respectively; let μ be the mass of a unit of volume, then the moment of inertia relative to the elge a is

$$
\begin{aligned}
& =\int_{0}^{a} \cdot \int_{0}^{b} \int_{0}^{c} \mu\left(y^{2}+z^{2}\right) d x d y d z \\
& =\frac{\mu a b r}{3}\left(b^{2}+r^{2}\right)=\frac{1}{3} m\left(b^{2}+r^{2}\right)
\end{aligned}
$$

oloid of revolnerpeudicular to e riadius of the $b^{2}\left(b^{2}+3 l^{2}\right)$

Solid Bodies.
ngular parallelravity and par-
lopiped may be r of rectangular ins of gyration lane, it follows elopiped is the ne moments of centre and parby Ex. 1, Art. $\left.+l^{2}\right)$.
ngular parallel-
the last examidependently as
axes of x, y, z, of volume, then is
and similaty for the moments of inertia alont the edges b alld c.
'The moment of imertia of a abo whome alge is a with

3. Find the moment of inertial of a sument of a sphere relative to a diameter parallel to the plame of section, the radius of the phere being a and the distance of the phane section lion the centre b.

$$
1 \mu s \cdot \frac{1}{60}-\pi\left(16 u^{5}+15 u^{4} b+10 c^{2} b^{3}-9 b^{5}\right)
$$

231. Moment of Inertia of a Lamina rith respect to any Axis.-When the moment of imertia of a phane ligure about any axis is known, we easily find the moment of inertia abont any parallel axis (Art. $\because 20$) ; also, when the moments of inertia alout two rectangular axes in the phane of the ligure are known, the moment of inertia about the straight line at right angles to the plane of these axes at their intersection is known immediately. (Art. 22i) : we now proced to lind the moment of inertia about any straight line in the plane incianed to these axes at miy imgle.

Through any point, 0 , as origin, draw two rectangnlar axes, $\mathrm{OX}, \mathrm{OY}^{2}$, in the plane of the lamina; mud draw any straight line, Ox, in the plane. It is repuired to lind the mo-
 ment of inertia about $O x$ in te "nis of the moments of inertia abont $O X$ and $O Y$.
bet P be any point of the lamina. r. I/, its rectangnar, ant \because, θ, its polar co-ordinates, $p=P M$, and o the angle $x \mathrm{OX}$. Then if I be the moment of inertia of the lamina relative to $0 x, a$ and b the moments of inertia relative to the axes of x and y respectively, and h the product of inertia relative to the same axes, we have

$$
\begin{aligned}
& l=\dot{\Sigma} p^{2} d m=\Sigma r^{2} \sin ^{2}(0-c) d m \\
& =\dot{\Sigma}(!\cos \varepsilon-r \sin \pi)^{2} d m
\end{aligned}
$$

$$
\begin{align*}
& =a \cos ^{2} c+h \sin ^{2} \pi-\geqslant h \sin u \cos a \text {. } \tag{1}
\end{align*}
$$

If we choose the axes so that the tom h or \mathbf{x} aydm $=0$. the expression for I becomes much simpler. The pair of axes so ehosen are called the principal aress at the point; and the corresponding moments of inertia are called the principal moments of inrotia of the lamina, relative to the point.

If A and B represent these principal moments of inertia, (1) beeomes

$$
\begin{equation*}
l=A \cos ^{2} \varepsilon+B \sin ^{2} \varepsilon \tag{:}
\end{equation*}
$$

Hence, the moment "f iner!ia "f al lamina with respect to any axis through a point ma! br foumd when the principal moments with respect to the point ine determined.
232. Principal Axes of a Body.- It any point of a rigid body and in am! plane there is " puir of principal axes.

Let OX, OY (Fig. 92), be any rectangnlar axes in the plane: let $O x, O y$, be mother set of rectangular axes in the same phane, inclined to the former at an angle as let a, b, and h, as before, clenote the moments and product of inertia abont $O X, O Y$, and let $\left(x^{\prime}, y^{\prime}\right)$ be any point, P, rofered to the axes O.r, Oy. Then, nsing the notation of the last article, we have

$$
\begin{aligned}
& x^{\prime}=r \cos (\theta-c) ; \quad \eta^{\prime}=r \sin (\theta-c) ; \\
& \Sigma x^{\prime} y^{\prime} d m=\frac{1}{2} \Sigma r^{2} \sin 2(\theta-c) d m \\
& =\cos 2 \pi \operatorname{Lr}^{2} \sin \theta \cos \theta \mathrm{dm} \\
& -1 \sin \because \subset \operatorname{rr}^{2}\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \mathrm{d} m \text {. }
\end{aligned}
$$

Putting this $=0$, and soling for a, we obtain

$$
\begin{align*}
\tan 2 a & =\frac{2 \Sigma r^{2} \sin A \cos \theta d m}{2{r^{2}}^{2}\left(\cos ^{2} H-\sin ^{2} \theta\right) d m} \\
& =\frac{2 \mathrm{~S} x y d m}{\Sigma\left(x^{2}-y^{2}\right) d m}=\frac{2 h}{b-a} \tag{1}
\end{align*}
$$ at the point: are called the relative to the ents of inertia.

wilh respect to the principel ned.
any point of a ir of principal
ur axes in the ngular ases in . 1 angle a: let and proluct of any mint, P, he motation of

$$
\left.=\operatorname{Lim}\left[\left(x^{2}+y^{2}+z^{2} 2 \cos ^{2} 1+\cos ^{2} \beta+\cos ^{2} y\right)-\left(r^{2} \cos n+y \cos \beta+z \cos \right)\right)^{2}\right]
$$

```
--. c);
```

$$
\left.=\Sigma m\left(y^{2}+z^{2}\right) \cos ^{2} a+\operatorname{\Sigma i}\left(z^{2}+x^{2}\right) \cos ^{2} \beta+\Sigma m\left(r^{2}+y^{2}\right) \cos ^{2}\right)
$$

lm

$$
-2 \Sigma m y z \operatorname{con}(\beta \operatorname{con})-2 \Sigma m z a \cos) \cos 11-22 m \cos 11 \operatorname{con} \beta
$$

$$
\left.\left.=a \cos ^{2} a+b \operatorname{con}^{2} \beta+c \operatorname{con}^{2}\right)-2 d \cos \beta \operatorname{con}\right)
$$

θ dm
$\left.-\sin ^{2} \theta\right) d m$.
1i11

As the tangent of an angle may have any value, positive or negatize, from s to ∞, it follows that (1) will alway, give a real value for 2 ace, so there is alwejs a set of principal axes; that is, at erery prim in a body ihere exints one peir of rectangullir acers fin whinh lher quatutily a ar $\dot{x} x / \mathrm{l} / \mathrm{m}=0$.

Con.-It may also he slow? that at every point of: a rigid body there are firre axes at right angles to, me another, for which the products of inertia vamish.*

* let a, b, c, be the moments of thertin about three axes, $\mathbf{O X}, \mathrm{OY}, \mathrm{OZ}$, at right angles to one amsther ; d, e, f, the proxinctes of Inertia (E myz, \& max, zmxy, roeprectively). Let $0 x$ be uny line drawn through the ongin, making angles ", $\beta, 1$, whth the coorlinate

Let OL, LM, MP, be the co ordinten x, y, z, of any point P or the body at which an element of mase m in klmated. Draw PN perpendichlar to Or.

Projecting the broken line, OLMP, on ON, (Art 10:), we liave

Fig. 91 a
alno \quad ON $=r \operatorname{con}$ " $+y \cos \beta+z \cos$; ;
The moment of inorifal abont Od VmiNa

$$
\begin{aligned}
& =\operatorname{Im}\left(\mathrm{Ol}^{2}-O N^{n}\right) \\
& =\operatorname{Im}\left[r^{2}+y^{2}+z^{2}-(r \cos n+y \cos \beta+z \cos ,)^{2}\right]
\end{aligned}
$$

$$
\begin{equation*}
-2 e \operatorname{con}, \cos a-a f \operatorname{con} a \cos \beta . \tag{1}
\end{equation*}
$$

To represent this grometricalty, laku a polnt Q on ON ; and 'et lis distance from O be r, and lis co-orthater be r_{1}, y_{1}, z_{1}. Then

$$
x_{1}=r \cos a_{1} y_{1}=r \cos \beta_{1} z_{1}=r \cos r_{1}
$$

Scu--In many cates the position of the principal axes ean be seen at once. Suppose, for example, we wish the prineipal axis for a rectangle when the given point is the centre. Draw through the centre straight lines parallel to the sides of the rectingle; then these will be the primeipul

Therafore (1) becomed

$$
\begin{equation*}
\mathrm{I}=\frac{a x_{1}^{2}+b y_{1}^{2}+c z_{1}^{2}-2 d y_{1} z_{1}-2 z_{1} x_{1}-3 l_{1} x_{1} y_{1} .}{r^{2}} . \tag{}
\end{equation*}
$$

But the expation

$$
\begin{equation*}
a r_{1}^{2}+b y_{1}^{2}+c z_{3}^{2}-2 d y_{1} z_{1}-2 z z_{1} x_{1}-2 f x_{1} y_{1}=1 \tag{3}
\end{equation*}
$$

denotes an illipsold whose entre $\mathrm{i} \sim$ nt 0 ; bechuse a, b, c are necessarlly postive, since a monent of inertia is essentially poxitive, being the sum of a number of squares. If then Q is a point un thin ellijsold. (2) hecomens

$$
\text { I } \quad \sin \mathrm{P}^{2}=\frac{1}{r^{2}} \text {; }
$$

or the moment of mertia about any live through O, is measured by the aquare of the reciproeal of the radins vector of thin elljpoid, which conneldes with the Hue.
Thin Is called the momental cllipsoid, and was first ned by Canchy. Exyrcixes de Math.. Vol. $I T$. It has no phymieal exiftence, but in an urtitiee to bring mader the methods of geometry the propertios of momente of inertis. The monoental ellpp. wold has a deflulte form for every point of a rigid heoty.

Now every ellipood has three axen, to which if it is referred, the conefirbenie of $y z, z, x, x y$ vanish, nud therfore (3), when tranformen to thene axes takes the form

$$
\mathbf{A} \cdot r_{1}{ }^{3}+\mathbf{B} y_{1}{ }^{2}+\mathbf{C} z_{1}{ }^{2}=1 ;
$$

and hence (1) or (2) when referred to thene axem, becomes

$$
\begin{equation*}
I=A \cos ^{2} a+B \cos ^{2} A+C \cos ^{2} 3 \tag{5}
\end{equation*}
$$

where A, B, C, are the moments of inerfla of the body about these axes.
When three rectangular axes, meeting in agiven point, arp chomen so that the
 point.
The three plnues through any two prinelpal ases are called the minctpat phanes at the given polat.
 dipat momenta of inertia ut that pobin.
If the three principal moments of inertla of a bouly are cqual to one another, the ellipeolil (4) becomera a mphere, where $A=B=C$; and therefore the monent of inerta about every other axin in equal to thene, for (5) becomes

$$
I=A\left(\cos ^{2} a+\cos ^{2} \beta+\cos ^{2} t\right)=\mathbf{A} ;
$$

principal axes e, we wish the n point is the nes parallel to e the principal
red by the square of 1 colncider with the

Canchy. Extreikes th ce to bring mader the The monental (dllp.

Wh, the exefly ienis of these axes takes the
axes; becanse for every clement, $d m$, on one side of the axis of x at the point (x, y), there is another element of equal mass on the other sick at the point $(x,-y)$. Hence, $\because x y d m$ consists of terms which may he arranged in pairs. so that the two terms in a pair are numerically equal bont of opposite signs; and therofore $\Sigma x y d m=0$.

Again, if in any uniform body a straight line can be drawn with respect to which the body is exaetly symmetricall, this must be a principal axis at every point in its length. Any diameter of a miform circle or sphere or the axis of a paratola or ellipe or hyperbola is a principal axis at any point in its line; but the diagonal of a rectangular plate is not for this reawom a principal axis at its midde point, for every straight line drawn perpendicular to it is not equally divided by it.

Let the body be symmetrical about the phane of $x y$, then for every element $d m$, on one side of the plane at the point (x, y, z), there is another clement of equal mass on the other side at the point $(x, y,-z)$. Hence, for such a body $\pm x z d m=0$ and $\Sigma y z d m=0$. If the body be a lamina in the plane of $x y$, then z of every element is zero, and we have again $\grave{x} x z d m=0, \mathrm{\Sigma} y z d m=0$.
Thus, in the case of the ellipsoid, the three principal rections are all planes of symmetry, and therefore the three axes of the ellipsoid are principal axes. Also, at every point in a lamina one principal axis is the perpendicular to the plane of the lamina.

> EXAMPLES.

1. Find the moment of incertia of a rectungular lamima ahout a diagonal.

From Ex. 2, Art. 2.24, the momemts of inertial alwat two lines through the eentre parallel to the sided (prineip' moments of inertia) are
where b and d are the breadth and depth respectively.
Also, if a be the angle which the diagonal makes with the side b, we have

$$
\sin ^{2} c=\frac{d^{2}}{b^{2}+d^{2}}, \quad \cos ^{2} c=\frac{b^{2}}{b^{2}+d^{2}}
$$

Substituting these values for $\mathrm{A}, \mathrm{B}, \sin ^{2}$ «, $\cos ^{2} \boldsymbol{\alpha}$, in (2) of Art. ©31, we have

$$
\begin{aligned}
\mathrm{I} & =1_{12}^{1} m d^{2} \frac{b^{2}}{b^{2}+a^{2}}+\frac{1}{2} m b^{2} \frac{d^{2}}{b^{2}+d^{2}} \\
& =\frac{1}{8} m b^{2} \frac{b^{2} l^{2}}{}+d^{2}
\end{aligned}
$$

2. Find the moment of inertia of an isosefles triangular phate about an axis throngh its centre and inclined at an angle a to its axis of symmetry, a being its altitude and $2 b$ its base.

$$
\text { Ans. } \frac{1}{f} m\left(\frac{1}{3} \pi^{2} \cos ^{2} c+b^{2} \sin ^{2} c\right)
$$

3. Find the moment of inertia of a square plate abont a aiagonal, a being a side of the sethare. Ins. $1_{2} m a^{2}$.
4. Products of Inertia.- The value of the product, of inertia at any point may be made to depend on the value of the product of inertia for parallel axes through the centre of gravity. Lat ((x, y) the the position of any element, dow, referred to ases through any assigued p int ; $\left(x^{\prime}, y^{\prime}\right)$ the povition of the element referred to parallitaxes through the ceatre of gravity, und (h, k) the centre of gravity referred to the tirst pair of axes. Then

$$
\begin{align*}
& x=x^{\prime}+h . \quad y=y^{\prime}+k ; \\
& \text { Therefore } \quad \pm x / d m=\Sigma\left(a^{\prime}+h\right)\left(y^{\prime}+l i\right) d m \\
& =\Sigma x^{\prime} y^{\prime} d m+\| x x^{\prime} d m . \tag{1}
\end{align*}
$$

-incr $2 m, c^{\prime}=0$, and $\Sigma m y^{\prime}=0$.

Soh.-By (1) we may often find the product of inertin for an axysed origin and axes. Thus, suppose we require
ectively. 1 makes with

\vec{q}^{*}

${ }^{2}$ c, in (2) of
es triangular aclined at un itude and $2 b$ $: \ell^{2} \sin ^{2}(c)$.
hate alout n $n s . \quad 1_{2}^{1} m a^{2}$.
f the product on the value agh the cenany element, ; $;\left(x^{\prime}, y^{\prime}\right)$ the xes through e of gravity the prodnet of inc rtia in the caise of a rectangle, when the origin is at the corner, aind the axes are the edges which meet at that cornes. By Art. : 23%, Sch. we have $\mathrm{L} x^{\prime} y^{\prime} d m$ $=0$; therefore from (1) we hate

$$
\Sigma x_{j} y_{d}=h k \Sigma(d m ;
$$

and as h and k are known, being half the lengths of the colges of the rectungie to which they are respectively parallel, the product of incrtia is known.
EXAMPLES.

Find the expressions for the moments of inertia in the following, the bodies being supposed homogeneons in all calses.

1. The moment of inertia of a rod of length 1 , with respeet to an axis perpendienlar to the rod and at a distas:ce d from its middle point.

$$
A n \cdots, m\left(\frac{a^{2}}{1 \cdot 2}+l^{2}\right) .
$$

\therefore The moment of inertia of an are of a cirele whose radius is a and which sultends an angle 2α at the centre, (1) abom an axis through its centre perpendicular to its phane, (2) athout an axis throngh its middte point perpendicular to its phame, (3) abont the diameter which bisects the are.
. Ins. (1) $m a^{2}$;
(2) $2 m\left(1-\frac{\sin a}{a}\right) a^{2}$;
(3) $m\left(1-\frac{\sin 2 e}{2 r}\right)_{z}^{n_{2}^{2}}$.
3. The moment of inertia of the are of a complete egeloid when lenghth is a with reepeet to its bense.

Ans. $3^{\frac{1}{3}} m t^{2}$.
4. The moment of inertia of an equilateral triangle, of wide or relative to a line in its plame, pmatlel to a side, at the distanee drom its emtre of gravity.

$$
\text { Ans. } m\left(\begin{array}{l}
a^{2} \tag{1}\\
24
\end{array}+\left(c^{2}\right) .\right.
$$

5. Given a triangle whose sides are a, b, c, and whose perperdiculars on these sides, from the opposite vertices are p, q, r, respeetively; find the moment of inertia of the triangle aboat a line drawn through each vertex and paratlel respec :vely, (1) to the side $a,(2)$ to the side b, (3) to the side c. Ans. (1) $\frac{1}{2} m r^{2} ;(*) \frac{1}{8} m q^{2}$; (3) $\frac{1}{8} m r^{2}$.
(f. Find the moment of inertia of the triangle in the last example relative to the three lines drawn through the centre of gravity of the triangle and parallel respectively

6. Find the moment of inertia of the triangle in Ex. 5, relative to the three sides a, b, c, respectively.

Ans. $\frac{1}{8} m r^{2} ; \frac{1}{6} m q^{2} ; \frac{1}{6} m r^{2}$.
8. The moment of inertia of a right angled iriangle, of hypothemse c, relative to a perpendicular to its plane passing through the right angle. Ins. $\frac{\mathrm{f}}{\mathrm{f}} \mathrm{me}^{2}$.
9. The moment of incria of a ring whose outer and inner radii are a and b respectively, (1) with respect to a polar axis through its centre. and (2) with respect to a diameter. $\quad A n s .(1) \frac{1}{2} m\left(a^{2}+b^{2}\right) ;(2) \frac{1}{4} m\left(a^{2}+b^{2}\right)$.
10. The moment of inertia of an cllipse, (1) with respect to its major axis, (2) with reepect to its minor axis, and (3) with respect to an axis through its centre and perpendicular to its plane.

$$
A \| s . \text { (1) } 4 \cdot b^{2} ;(?) \frac{1}{4} m u^{2} ;(3) \frac{1}{4} m\left(a^{2}+b^{2}\right) .
$$

11. The moment of ineriat of the surface of a sphere of

1?. The moment of incsiat of a tight prism whose latse is a right angled triangle, with respect to an axis passing through the centres of gravity of the ends, the sides conbining the right angle of the triangular base heing a and b and the height of the prism c : Ans. $\frac{1}{18} m\left(a^{2}+b^{2}\right)$.
c, and whose porite vertices inertia of the I vertex and the side b, (3) ${ }^{2}$; (3) $\frac{1}{3} m r^{2}$.
gle in the last through the le] respectively $m q^{2} ; 1_{18}^{18} m r^{2}$. angle in Ex. 5, $m_{q^{2}}^{2} ; \frac{1}{6} m r^{2}$. ed triangle, of to its plame Ans. $\frac{1}{f} m c^{2}$.
ise onter anl a respect to a respect to a $=m\left(u^{2}+b^{2}\right)$.
) with respeet ir axis, and (3) perpendicular
$m\left(a^{2}+b^{2}\right)$.
of a splicre of A w. 部mai.
m whose lase in axis prissing the sides conheing a and b ${ }_{8} m\left(a^{2}+b^{2}\right)$.
13. The monent of iucrtia of a right prism whose height is c, about an axis passing through the centres of gravity of the ends, the base of the prism being an isosceles triangle whose base is a and height b.

$$
\text { Ans. } \frac{1}{8}\left(\frac{a^{2}}{4}+\frac{b^{2}}{3}\right) m \text {. }
$$

14. The moment of inertia of a sphere of radius a, (1) relative to a diameter, and (2) relative to a tangent.

$$
\text { Ans. (1) } \frac{8}{5} m a^{2} ;(2) \frac{7}{3} m a^{2} \text {. }
$$

15. The moment of inertia, about its axis of rotation, (1) of a prolate spheroid, and (2) of an oblate spheroid.

$$
A n s . \text { (1) } \frac{\rho_{8} m b^{2} ; ~(2) ~}{\frac{2}{8} m a^{2} .}
$$

16. The moment of inertia of a cylinder, relative to an axis perpendicular to its own axis and inter ect, it, (1) at a distance c from its end, (2) at the end of $b, \ldots, 3$, and (3) at the middle point of the axis, the altitude of the eylinder being h and radius of its base u.

Ans. (1) $\frac{1}{4} m a^{2}+\frac{1}{3} m\left(h^{2}-3 h c+3 c^{2}\right)$;
(2) $\frac{1}{12} m\left(3 a^{2}+4 h^{2}\right)$; (3) $\frac{1}{12} m\left(h^{2}+3 a^{2}\right)$.
17. The moment of inertia of an ellipse about a central radius vector r, making an angle a with the major-axis.

$$
\text { Ans. } \frac{4}{} m \frac{a^{2} b^{2}}{r^{2}}
$$

18. The moment of inertia of the area of a parabola cut off by any ordinate at a distance x, from the vertex, (1) about the tangent at the vertex, and (2) about the axis of the parabola.
Ans. $\quad m x^{2}$; (2) $\frac{f}{f} m y^{2}$ where y is the ordinate corresponding to x.
19. The moment of inertia of the area of the lemniseate. $r^{3}=\pi^{2} \cos 2 \theta$, about a line through the origin in its plane and perpendicular to its axis. Ans. $\frac{1}{8 /} m(3 \pi+8) a^{2}$.
20. 'The moment of inertia of the ellipsoid,

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

ahout the axis a, b, c, respectively.
Ans. (1) $\frac{1}{5} m\left(b^{2}+c^{2}\right) ;(2) \frac{f}{b} m\left(c^{2}+a^{2}\right)$;
(3) $\frac{1}{8} m\left(a^{2}+b^{2}\right)$.

CHAPTER VII.

ROTATORY MOTION.

234. Impressed and Effective Forces.-All forces acting on a body ther than the mutual actions of the particles, are called the Impressed forces that act on the body.

Thus, when a ball is thrown in vacuo, the impressed force is gravity: of a ball is rotating abont a vortical axis, the impressed forces are gravity and the reaction of the axis.

The impressed or external forces are the cause of the motion and of all the other forees. Which are the impressed forces depends mpon the particular system which is under consideration. The same force may be external to one system and internal to another. Thus, the pressure between the foot of a man and the deck of a ship on which he is, is external to the ship and also to the man and is the cause of his own forward motion and of a slight backward motion of the ship; but if the man and ship are considered as parts of one system the pressure is internal.

When a particle is moving as part of a rigid body, it is acted on by the cxternal impresed forces and also by the molecular reactions of the other particles. Now if this particle were considered as separated from the rest of the body, and all the forces removed, there is some one force which, singly, would move it in the same way as before. This force is called the Effective Force on the particle; it is evidently the resultant of the impressed and moleculan fores on the particle.

Thus, the effective force is that part of the impressed force which is effective in causing netum motion. It is the force which is required for producing the devhation from the straight line and the change of
velocity. If a particle is revolving with -onstant veludy rouns a fixed axis, the effective force is the centrip. . f force (Art. 108). If a heary borly falls without rotation, the whole force of gravity is effective ; but if it is rotating abont a horizontal axis the weight goes partly to balance the pressure on the axis.

If we suppose the panticle of mass m to be at the point $(. r, y, z)$ at any time, t, and resolve the forees acting on it into the three axial components, X, I, Z, the motion may be fomm [Art. 168 (2)] by solving the simultancous equations

$$
\begin{equation*}
m \frac{d^{2} x}{d t^{2}}=X ; \quad m \frac{d^{2} y}{d t^{2}}=\zeta ; \quad m \frac{d^{2} z}{d t^{2}}=Z \tag{1}
\end{equation*}
$$

If we regard a rigid body as one in which the partieles retain invariable positions with respect to one another, so that no external force can alter them (Art. 4:3), we might write down the equations of the several particles in aceordance with (!), if all the "orees were known. Such, however, is not the case. We know nothing of the mutual actions of the particles. and consequently camot determine the motion of the body by calculating the motion of its particles separately. When there are several rigid bodies which mutually act and ract on one another the problem becomes still more complieated.
235. D'Alembert's Principle.*-By D'Alembert's Principle, however, all the necessary equations may be obtained withont writing down the equations of motion of the sereral particles, and withont any assumption as to the nature of the matual atetions except the following. which may be regurded as a matural conseduence of the laws of motion.

The internal actions and retctions of amy system of rigid bodies in motion a n in ravilibrinam amomy themselvers.

* Introduced by D'Alembert in 17ss.
velediy round a Art. 198) if a ce of gravity is the weight goes

Ihe axalal accelerations of the particle of mass m, which is moving as part of a rigid body, are $\frac{d^{2} x}{d t^{2}}, \frac{l^{2} y}{d d^{2}}$, $d^{2} z$ Let f be their resultime, then the effeetive foree is measmed ly $m f$. Let F and R be the resultants of the impressed and motecular forces, respectively, on the particle. Then $m f$ is the revultant of F and R. Hence if $m f$ be reversed, the three forees, F, R, and $m f$, we in cquilihninm.
The same reasoning may be applied to every particle of eath body of the system, thus furnishing three grouns of forees, similar, respectively, to F, l, and $m f$; and these three groups will form a system of forces in equilibrium. Now by D'Alembert's prineiple the group h will itself form a system of furees in equilibrium. Whence it follows that the group F will be in equilibrium with the group $m f$. Henee,

If forces equal and exactly opposite to the effective forces were appliel at each particle of the system, they routd be in equilibrium with the impressel forces.

That is, D'Alembert's minciple asserts that the whate affective forces of a system are together equivalent to the impressel forces.

Scir-By this principle the solution of a problem in Kinetics is reduced to a problem in Statics as follows: We first ehoose the co-ordinates by means of which the position of the system in space may be fixed. We then express the cffective forees on each clement in terms of its co-orlinates. These effeetive forees, reversed, will be in equilibrium with the given impressed forces. Lastly, the equations of motion for each body may be formed, as is usually done in statics, hy resolving in threr directions and taking moments ahout three straight lines. (Nee Ronth's Rigid Dymamics, Pirices Rigid Dynamies, Pratt's Meeh's, Price's Anal. Meeh's, Vol. II.)
236. Rotation of a Rigid Body about a Fixed Axis under the Action of any Forces.-Let illy plane passing throngh the axis of rotation and fixed in space be taken as a plane of reference. Let m be the mass of any clement of the borly, r its distance from the axis. and 0 the angle which a plane throngl the axis and the element makes with the phane of reference.

Then the velocity of m in a direction perpendicular to the plame eontaning the clement and the axis is $\mathrm{r}^{\prime \prime \prime}{ }^{\prime \prime}$. The moment of the momentum* of this particle about the axis is ${m r^{2}}^{2} / l l^{\circ}$. Hence the moment of the momenta of all the particles is

$$
\begin{equation*}
\pm m r^{2} \frac{d \theta}{d t} \tag{1}
\end{equation*}
$$

Since the particles of the body are rigidly conneeted, it is clear that $\frac{d \theta}{\text { dt }}$ is the same for every particle, and is the angular velocity of the body. Hence the moment of the momenta of all the purticles of the hoely abumt the axis is the moment of inertia of the boty about the axis multiplied by the angular retucily.

The acceleration of m perpendienlar to the direction in which r is masured is $r^{d^{2} 0} \frac{d I^{2}}{}$, and therefore the moment of the nowing forces of m about the axis is $m r^{2} \frac{R^{2} \theta}{\text { Il }} t^{2}$. Hence, f moment of the reffectice forcess of all the particles of the undy about the axis is

$$
\begin{equation*}
\mathbf{\Sigma} m r^{2} \frac{d^{2} \theta}{d t^{2}}, \tag{}
\end{equation*}
$$

which is the moment of intertie of the body abond the artis "mulliptionl lay thr atequiar ucceleration.
('alled also Angutar dfomentum. (See liric's ligid Dynamics, p. 41.)
at a Fixed es.-Let any and fixed in n be the mass from the axis, - axis and the remendicular to axis is $r^{d / d t}$. narticle about re momenta of
dly comnected, ide, and is the moment of the the uxis is the s multiplied by
he direction in the moment of $r^{2} \frac{d^{2} \theta}{d t^{2}}$. Hence, particles of the
y chorut the aris
buamics, p. 41.

IMAGE EVALUATION TEST TARGET (MT-3)

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

(1) Let the forces be impulsive (Art. 202) ; let ω, ω^{\prime}, he the angular velocities just hefore and just after the action of the forces, and N the moment of the impressed forces about the axis of rotation, by which the motion is $p^{r o-}$ duced.
Then, since ly Dodrembert's prineiple the aflective forees when reverem are in equilibrimm with the impressed forces, we have from (1)

$$
\begin{gather*}
\omega^{\prime} \Sigma m r^{2}-\omega \pm m r^{2}=N ; \\
\therefore \omega^{\prime}-\omega=\frac{N}{\Sigma m r^{2}} \\
=\frac{\text { moment of impulse ahont axis }}{\text { moment of inertiat abont axis; }} \tag{3}
\end{gather*}
$$

that is, the change in the angular velarity of " body, produced by an impulse, is equal to the moment of the impintse divided by the moment of iureties of the budy.
(2) Let the finces le finite. Then taking moments about the axis as before, we have from (2)

$$
\frac{d^{2} 0}{d t^{2}}=\frac{N}{\Sigma m r^{2}}
$$

$$
\begin{equation*}
=\frac{\text { moment of forces ahout axis }}{\text { moment of inert ial about }} \text { axis } \tag{4}
\end{equation*}
$$

 fincere, is aquent to the moment of the forere divided by the mement of inertia of the botly.

By integrating (4) we shall know the ungle through which tra body has revolved in agiven time. 'Two arrbitrary constants will : 1 pumb in the integrations, whose bathes are to be determitued from the given initial values; of θ und $\frac{d \theta}{d t}$. 'Thus the whote notion cinn be found, and
we shall consequently be able to determine the position of the body at any instant.

Sch- - It appears from (3) and (4) that the motions of a rigid body romad a tixed axis, mader the action of any forces, depends on (1) the moment of the forees abont that axis, and (2) the moment of incertia of the body about the axis. If the whole mass of the body were concentrated into its centre of gyration (Art. $2: 26$), and attached to the fixed axis of rotation by a rod without mass, whose length is the radius of gyration, and if this system were ated on by forces having the same moment ass before, and were set in motion with the same initial values of θ and the angular veloeity, then the whole subsequent angular motion of the rod would be the same as that of the body. Hence, we may say brictly, that a hody turning about a fixed axis is kinetically given when its mass and radias of gyration are known.

EXAMPLE.

A rough cireular horizontal board is capable of revolving freely ronnd a vertieal axis through its centre. A man watks on and romed at the edge of the boart; when he has completed the circuit what will be his prosition in spuce:
Let a be the radius of the board, M and M^{\prime} the masses of the board and man respectively; θ and θ^{\prime} the angles described by the hoard and anar and F the action between the feet of the man and the board.
The equation of motion of the homed by (4) is

$$
F^{\prime} u=M k_{1}{ }^{2} \frac{d^{2} \theta}{d t^{2}} .
$$

Sinere the adion betwern the man and the loard is eomtimally tangent to the path desoribed by the man, the cepuation of motion of the man is, hy (5) of Aet. 20 ,
he position of
it the mutions action of any e forces about the body about re concentrated attached to the , whose length were seted on , and were set nd the angular motion of the Hence, we may a fixed axis is of gyration are
hle of revolving evitre. A man wand; when he his position in
$1 M^{\prime}$ the masses il θ^{\prime} the angle action between
4) is

10 lowith is conY the mam, the Art. $\because 0$,

$$
F^{\prime}=M^{\prime} l^{d^{2} \theta^{\prime}}{ }_{d I^{2}}
$$

Eliminating F 'and integrating twice, the constant heing zero in both cases, beeanse the man and board start from rest, we get

$$
\begin{equation*}
M l_{1}^{2} \theta=M^{\prime} u^{2} \theta^{\prime} . \tag{1}
\end{equation*}
$$

When the man has completer the cirenit we have $\theta+\theta^{\prime}$ $=2 \pi$; also $k_{i}^{2}=\frac{a^{2}}{2}$. Substituting these in (1) we get

$$
\theta^{\prime}=\frac{2 \pi . M}{2 . M^{\prime}+. M^{\prime}},
$$

which gives the angle in space described by the man.
If $M=M^{\prime}$, this lecomes

$$
\begin{aligned}
\theta^{\prime} & =\frac{3}{3} \pi ; \\
\theta & =\frac{9}{3} \pi,
\end{aligned}
$$

and
which is the angle in spare described by the board. (See Ronth's Rigid Dyamics, p. 6i.)
237. The Compound Pendulum.-. 1 budy mores. whomt a fired horizontal aris acted on b! ! frarity omly, to detarmine the motion.

Let ABO be a section of the berly mate by the phane of the paper passing throngh (i, the centre of gravity, and conting the axis of rotation perpendicularly at 0 . Let $\theta=$ the angle which of makes with the vertical $O \mathrm{O}$: and let $h=O\left(\mathrm{C}_{\mathrm{a}} \mathrm{k}_{1}=\right.$ the principal radius of gyration, and $I I=$ the mass ol the body. Then by (4) of Art. Di36, we have

20

$$
\begin{aligned}
\frac{d^{2} \theta}{d l^{2}} & =\frac{M y h \sin \theta}{\Sigma m r^{2}}=-\frac{M g h \sin \theta}{M h^{2}} \\
& =-\frac{g h}{h_{i}^{2}+h^{2}} \sin \theta[\text { by (2) of Art. 226], (1) }
\end{aligned}
$$

the negative sign being taken because θ is a decreasing function of the time.
Thbis equation camot be interrated in finite terms, but If the oseillations be small, we may develop $\sin \theta$ and reject rll powers above the first, and (1) will become

$$
\begin{equation*}
\frac{t^{2} \theta}{d t^{2}}=-\frac{g h}{k_{1}^{2}+h^{2}} \theta . \tag{2}
\end{equation*}
$$

Multiplying by $2 d \theta$ and integrating, and supposing that the booly hegan to move when θ was equal to e, (2) hecomes

$$
\frac{d \theta^{2}}{\bar{d} t^{2}}=\frac{g h}{k_{1}^{2}+h^{2}}\left(\alpha^{2}-\theta^{2}\right)
$$

Henee denoting the time of a complete oseillation by T, we have

$$
\begin{equation*}
T=\pi \sqrt{\frac{h_{1}^{2}+h_{1}^{2}}{g h}} \tag{3}
\end{equation*}
$$

whieh gives the time in seconds, when h and k_{1} are measnred in feet and $g=39.18$.
When a heary body vibutes about a horizontal axis, by the force of gravity, it is called it rompoumd proutulum.

Con. I. - If we suppose the whole mass of the comumud pradulam to be concentrated into a single point, and this point comented with the axis by a medium withont weight, it hecomes a simple proflatum (Art. 194). Denoting the distance of the point of concentration from the axiv by 1 . we have for the time of an oscillation, by (1) of Art. 194,
of Art. 226], (1)
is a deereasing
nite terms, but $\sin \theta$ and reject ne
sulposing that qual to e, (2)
seillation by T,
od k_{1} ite meats-
izontal axis, ly mentuluru.
fthe com!numed piniut, and thix without weightit. Denoting tha , the usix by 1 , (1) of Art. 194,
πV_{g}^{i}. If the point he so choven that the simple pendnlum will perterm an oseillation in the sume time as the :omponnd pendulum, these two expressions for the time of an oscillation must be equal to each other, and we shall have

$$
\begin{align*}
l & =\frac{h^{2}+h_{i}^{2}}{h} \\
& =h+\frac{k_{i}^{2}}{h}=00^{\prime}, \tag{4}
\end{align*}
$$

(0^{\prime} being the point of concentration).
Cor. 2.-This length is called the lenyth of the simple "quivalent pendulum; the point 0 is called the centre" of surpmonsion ; the point 0^{\prime}, into whicla the mass of the compound pendulum must be concentrited so that it will oscillate in the same time as before, is called the centre of f^{\prime} "serillations ; and a line througl the centre of oscillation :and parallel to the axis of stsprension is called an axis of uscillation.
From (4) we have

$$
\begin{align*}
& (l-l) h=k_{1}{ }^{2} ; \\
& G O^{\prime} \cdot \mathrm{GO}=k_{1}{ }^{2} . \tag{5}
\end{align*}
$$

Now (5) wo:ld not be altered if the place of 0 and 0^{\prime} were interchanged: hence if σ^{\prime} be made the eentre of suspension, then 0 will twe the eentre of osecillation. Thus
 "und the time uff ascilltation ubout rech is the samere.

C'on. 3.- Putting the derivative of / with respect to h in 1.1) "ylu:l to zero, and solving for h, we get

$$
h=k_{1},
$$

which makes l a minimum, and therefore makes t a minimnm. Hence, when the axis of suspension passes throuyh the principal centre of gyration the time of oscillation is " minimum.

Rem.-The problem of determining the law under which a heavy body swings about a horizontal axis is one of the most importunt in the history of science. A simple pendulam is a thing of theory ; our accurate knowledge of the acceleration of gravity depends therefore on our understanding the rigid or compound pendulum. 'This was the first problem to which D'Alembert applied his principle.
'The problem was called in the days of D'Alembert, the "centre of oscillation." It was reguired to find if there were a point at which the whole mass of the booly might be concentrated, so as to form a simple pendulum whose law of oscillation was the same.

The position of the centre of oscillation of a body was tirst correctly determined by Huyghems and published at Puris in 1673. As l'Alembert's principle was not known at that time, Huyghens had to discover some principle for himself.*

EXAMPLES.

1. Λ material straight line oscillates about an axis perpendicular to its length; find the length of the ergivalent simple pendulum.

Let $2 a=$ the length of the line, and h the distance of its centre of gravity from the point of suspension. Then since $t_{t}{ }^{2}=\frac{u^{2}}{3}$, we have from (4)

$$
\begin{equation*}
l=h+\frac{a^{2}}{3 h} \tag{1}
\end{equation*}
$$

Cor. 1.-If the print of suspension he at the extremity of the line (1) beromes

$$
l=\frac{f_{3}}{} n ;
$$

* Kouth's Rigid Dynamice, b. Lia.
takes t a minipasses throuth oveillation is "
ler which a heavy nost important in ug of theory ; our depends therefore lulum. This was rinciple.
ert, the "cenire of a point at which 1, so as to form a ame.
wus first correctly ris in 1673. As Huyghens had to
out an axis pert' the equivalent e distance of its ou. Then since
(1)
it the extremity
that is, the length of the equivalent simple pendnlum is two-thirds of the lengith of the rod.

Cor. 2.-Let $h=\frac{1}{3} a$; then (1) becomes

$$
l=\frac{4}{3} a
$$

Hence, the time of an oscillation is the same, whether the line be suspended from one extremity, or from a point onethird of its length from the extremity. This also illnstrates the convertibility of the centres of oscillation and of suspension (See Cor. 2).

Cor. 3.-If $h=10 a$, then (1) beeomes

$$
l=\frac{301}{30} a .
$$

2. A cireular are oscillates abont an axis through its middle point perpendienlar to the phane of the are. Prove that the length of the simple equivalent pendulum is independent of the length of the are, and is equal to twice the radins.

From Ex. ?, Art. 233, we have

$$
k^{2}=h^{2}+k_{1}^{2}=2\left(1-\frac{\sin \pi}{\pi}\right) a^{2}
$$

From Ex. 1, Art. 78, we have

$$
h=a-a \frac{\sin \pi}{u}
$$

Thercfore (4) becomes

$$
l=2 a^{2}\left(1-\begin{array}{c}
\sin \pi \\
*
\end{array}\right) \div u\left(1-\frac{\sin \pi}{u}\right)=2 a
$$

3. A right eone oseillates about an axis passing through its vertex and perpondienlar to its own axis; it is repuired to find the length of the simple equivalent peodulum, (1) when h is the altitude of the cone and " the radius of 'te base, and (\because) when the allitude $=$ the radine of the hase $=\%$.

$$
A h \times .(1) \frac{4 h^{2}+b^{2}}{5} ;(\cdot 2) h .
$$

That is, in the second cone, the centre of asciltation is in the centre of the base; so that the times of oscillation are equall for axes throngh the vertex and the centre of the base perpendicular to the axis of the cone.
4. A sphere, radins a, oscillates abont an axis; find the length of the simple equivalent pendulum, (1) when the axis is tangent to the sphere, (2) when it is distant $10 a$ from the centre of the sphere, and (3) when it is distant ${ }_{5}^{a}$ from the centre of the sphere.
238. The Length of the Second's Pendulum Determined Experimentally.-The time of oscillation of a compomen pendulum depends on $h+\frac{k_{1}{ }^{2}}{h}{ }_{h} \mathrm{ly}$ (4) of
Art. 237. But there are difficulties in the way of determining h and k_{1}. The centre, $(4$, cam not be got at, ind, as arery hody is more or less irregular and variable in density, i_{1} camot be calenlated with sufficient acematey. These tuantitics must therefore be determined from experiments. Bessel observed the times of oseillation abont different axes, the distances between which were vary aceurately known. Captain Kater employed the property of the convertibility of the centres of suspension and oscillation (Art. 237, Cor. 2), as follows:

Let the pendulum consist of an ordinary straight bar, CO, and a smali weight, m, which may be clamped to it by menns of a serew, and shifted from one position to another on the pendulum. It the

+ 12,
ssing through it is repuined remblulutt, (1) radius of 'u' the have = $\%$. $+b^{2}$; ; (: h l.
cillation is in useillation are centre of the
axis; find the (1) when the is distant $10 a$ n it is distant (1) ; (3) ${ }^{11}=$

Pendulum

 of oscillition $k_{1}{ }^{2}$ by (4) of h y of determingot at, alld, as ble in density, uacy. These a experiments. bont different ary acemately יjerty of the tide oscillationthar, CO, and n deans of a screw, adulum. It the
prints C and O in two triangular aper. tures, a: the dislance l apurt, let two knife orlges of hurd steed be phaced parallel to each other, and at riglt angles to the peululum, so that it may vibrate on rither of them, as in Fig. :31. lat m le slififed t:ll it is fromed that the times of oscillation atheut (' and 0 are exartly the samc. It remnins only to measury CO, and observe the time of oscillation. The distance be-
 tween the two prints ('and () is the lengtl of the simple equivalent pendulum. This distance between the knife edges was measured by ('aptain Kater with the greatest care. The mean of three measurements differed be less than a ten-thousamith of an inch from each of the separato measurements.

The time of a single vibration cannot be olserved directly, because this would require the traction of a second of time as shown by the clock, to be cestimated either by the eye or car. 'The difficulty may be overcome by observing the time, say of a thousand vibrations, and thas the error of the time of a single vibration is divided by a thousand. The labor of so much counting may however be avoided by the me of "the method of coincilences." The pendulum is placed in front of a clock pendulam whose timo of vibration is slightly different. Certain marks made on the two pendulams are observed by a teleseope at the lowest point of their ares of vibratien. Tho held of view is limited by a diaphragm to a narrow aperture ncross which the marks are seen to pass. It each succecrling vibration one pendulum follows the other more closely, and at last ita mark is completely covered by the other duing their passage across the field of view of the telescopw. After a few vibrations it appears again precerling the other. In the interval from one disappearunce to the next, one pendulnm has made, as nearly as possible, one complete oscillation more than the other. In this manner id30 half-vibrations of a clock pendulom, cach equal to a second, were found to correspond to 532 of Captain Kater's pendulum. The ratio of the times of vibralion of tho pendulum and the clock pendnhom may thus be calcolated with extrome accurary. The rate of going of the clock must then be found by astronomical means.

The time of vibration thus found will require several corrections which are called "reductions." For instance, if the oscillation be not so stmall that we can pit $\sin \theta=\theta$ in Art. 237, we must make a reduction to infinitely small arcs. dnother reduction is necessary if

```
Hj% MOTGON OF . BODY WHEN UNCONNTRAINED,
```

We wish to reduce the result to what it would have been at the level of the sea. The attraction of the intervening lanu may be allowed for by Dr. Youmg's rule, Phil. 'Tans., 1819). We may thas obtain the force of gravity at the level of the som, supposing all the had above this levil were cat of and the seat constrained to keep its present level. As the leved of the sea is attered by the attraction of the laml, further corrections are still necessary if we wish to rulace the rosult to the surface of that spheroid which most nearly represents the carth. See Routh's Rigid Dynamics, p. 77. For the dehils of this experiment the stment is referred to the Phil. Trans. for 1818 , and 10 Vol. X.
239. Motion of a Body when Unconstrained.-If an inpulse be communicated to any point of a tree body in a direction not passing throngh the centre of gravity, it will produce both translation and rotation.

Let P be the impulse imparted to the body ai A. At 13 , on the opposite side of the centre (i , a distance GB $=\mathrm{AG}$, let two opposite impulses be applied, each equal to $\frac{1}{2} P$; they will not alter the effect. Now if $\frac{1}{2} /$ ' applied at A is combined with the $\frac{1}{2} P$
 at 13 which acts in the same direction, their resultant is P, acting at G and in the same direction, and this produces transtation only. The remaining $\frac{1}{2} P$ at A combined with the remaining $\frac{1}{2} P$ at 13 , which acts in the opposite direction, form a couple which produces rotation abont the centre G .

Hence, when a body receives an impulse in a direction which does not pass through the centre of gravity, that centre will assume a motion of translation as though the impulse urere applied immediately to it; aml the body will litue a motion of rotation about the centre of gracity, as thouyth that point were fixed.
240. Centre of Percussion.-Axis of Spontaneous Rotation.-Let $M v$ represent the impulse impressed upon

esultant is P, 1 this produces combined with opposite direcion abont the
in a direction ity, that centre gh the impmlse why will have a ity, as though

CENTRE OF PERCVSSION.
$46 i$
the body (Fig. 9f) whose mass is M, and h the perpendicular distance, (i) from the centre of gravity, (i, to the line of aetion, $O I$ ', of the impulse. 'The cepr." of gravity will assume a motion of tan anslation with the veloeity r, in a dircetion parrallel to that of the impulsive force.
 Then from (3) of Art. $2: 36$, we have for the angular velocity

$$
\omega=\frac{M v h}{M h_{1}^{2}}=\frac{v h}{h_{i}^{2}} .
$$

The absolute veloeity of each point of the body will be compounded of the two velocities of cramslation and rotation. The point 0 , for example, to which the impulse is applied, has a velocity of translation, $O a$, equal to that of the centre of gravity, and a velocity of rotation, $a b$, about the centre of gravity; so that the velocity of any point at a distance a from the centre, G, will be expressed by $v \pm(t \omega)$; the upper or lower sign being taken aceording as the point is, or is not, on the same side of the centre of gravity as the point 0 . Thus, if we consider the motion of the body for a very short interval of time, the line $O G C$ will assume the position $b C^{\prime} C$, the point C remaining at rest during this interval ; that is. while the point C would be carried forward over the line $C c$ by the motion of translation, it would be carried backward through the same distance by the motion of rotation. Hence, since the absolute velocity of C is zero, we have

$$
\begin{array}{r}
v-a \omega=0 ; \\
\therefore \quad a=\frac{v}{\omega}=\frac{k_{1}^{2}}{h} ; \tag{1}
\end{array}
$$

and hence denoting $O C$ hy l we have

$$
\begin{equation*}
l=h+\frac{k_{1}^{2}}{h} . \tag{2}
\end{equation*}
$$

Now if there hand been a dixed axis throngh C perjendientar fo the plane of motion, the initial motion would have been precisely the same, and this fixed axis evidently would not have received any preswer from the impulse.

When a rigid body rotates about a fixed axis, and the body can be so struck that there is no pressure on the axis, any point in the line of adion of the force is called a centre of percussion.

When the line of action of the how is given and the body is free from all comstraint. so that it is cajable of transiation as well as of rotation, the axis about which the body begins to turn is called the axis of spontaneons rotation. It obviously coincides with the position of the fixed axis in the first cuse.

$$
\begin{aligned}
& \text { Cok. 1.-From (i) we have } \\
& \qquad a h=G C \cdot G O=h_{1}^{2}
\end{aligned}
$$

bence the points O and C are convertihle, that is. if the aris of rotution be supposed to puss through the point O, the centre of spontaneones rotution will coincide with the centre of percussion.

Cor. 2.-lirom (2) it follows, by comparicon with (4) of Art. D3:, that if the a.ris of spontancous rotetion coincildes with the axis of suspension, the rentre of pereussion coincides with the centre of owetllation.

Scir.-It is evident that if there be a fixed olstacle ut 0 . and it be struck by the body $O C^{\text {b }}$ rotating about a fixed anis throngh ($'$, the obstacle will receive the whole force of the moving body, and the axis will not receive any. Wence the ecute of percussion also detemines the position in which a fixed obstacle must be pheerd, on which if the rotating body impinges and is bronght to rest, the axis of othtion will sulfer no presine.

An axis through the centre of gravity, parallel to the axis of spomtancous rotation, is called the crivis af instantaneons rotation. A free bonly rotates about this axis ($\mathrm{Art} .2 \mathrm{2} 3:$).
EXAMPLES.

1. Find the centre of perenssion of a circular plate of radius a calpable of rotating about an axis which tonches it.
Here $k_{1}^{2}=\frac{a^{2}}{4}$, and $h=\pi$. Itence from (2) we have

$$
l=a+\frac{a}{4}=\frac{5}{4}
$$

2. A eylinder is eapable of rotating about the diameter of one of its cireular ends; find the centre of perenssion. Let $a=$ its length, and $b=$ the radins of its base.

$$
A u s . l=\frac{3 b^{2}+4 a^{2}}{6 a}
$$

Hence if $3 /^{2}=2 n^{2}$, the eentre of pereussion will be at the end of the cylinder. If b is very small compared with I, $I=\frac{0}{3}$ ": thus if a straght row of small tramserse section is held hy one cond in the hame, I gives the point at which it may be struck so that the hamed will receive no jur.
241. The Principal Radius of Gyration Determined Practically.--Mount the body upon an axis not passing throngh the centre of gravity, and canse it to oscillate ; from the number of useillations performed in : given time, say an home, the time of one oscillation is known. 'Then to lind h, which is the distance from the axis to the eentre of gravity, attach a spring balance to the lower end, and bring the centre of gravity to a horizontal plane through the avis. which position will be indicated by the maximum reading of tae lolunce. Knowing the maximum reading, R, of the balance, the weight, II, of the hooly, and the distance, α, from the axis of suspension to
the point of attachment, we have from the priaciple of moments, $R u=W h$, from which h is fomml. Substituting in (3) of Art. 237 , this value of h, and for ' 7 ' the time of an oscillation. h_{i} becomes known.
242. The Ballistic Pendulum.-An interesting application of the principles of the compound pendulum is the old way of determining the velocity of a bullet or can-on-ball. It is a matter of conside mable importance in the Theory of Gumery to determine the volocity of a bullet as it issnes from the mouth of a gun. It wats to determine this initial veloeity that Mr. Robins about $1: 43$ inventer the Ballistic Pembulum. 'This consists of a large thick heavy mass of wood, suspended from a horizontal axis in the slape of a knife-edge, after the mamer of at compound pendulam. The grun is so phaced that a ball projected from it horizontally strikes this pendulum at rest at a certain point, und gives it a certain mgular velocity about its axis. The relocity of the ball is itself' tow .great to be measured directly, but the ingular velocity communicated to the pendulum may be made as small as we phease by fucreasing its bulk. 'The are of oscillation being menswred, the velocity of the bullet cim be found by calenration.
The time, which the bullet takes to penetrate, is so shert that we may suppose it completed before the pembulum has sensibly moved from its initial position.
Let M be the mass of the pendulum and ball: m that of the ball ; or the velocity of the bali at the instant of impaet ; 4 the distane of the centre of gravity of the penduhm and ball from the axis of suspension: " the distanee of the puint of impact from the axis of suspension: ω the mugulat veloeity dhe to the blow of the hall, and k the ramlins of gyration of the pendulnm and ball. Then since the initial velocity of the bullet is r, its impulse is monsured by ine, and therefore from (3) of A:t. e3sj we have for the
iuitial angular velocity generated in the pendulum hy this impulse,

$$
\begin{equation*}
\omega=\frac{m c^{\prime \prime}}{M h^{2}} \tag{1}
\end{equation*}
$$

and from (1) of Art. 23% we have for the subsequent motion

$$
\frac{d^{2} \theta}{d t^{2}}=-\frac{y / t}{k^{2}} \sin \theta
$$

Integrating, and observing that, if "be the angle tirrongh which the pendnhmm moves, we have ${ }_{\mathrm{d}}^{\mathrm{d}} \mathrm{d}=\omega$ when $\theta=0$, and $\begin{aligned} & d \theta \\ & d t\end{aligned}=0$ when $\theta=\mu$. (2) beromes

$$
\begin{equation*}
\omega^{2}=\underset{k^{2}}{2!/ h}(1-\cos (c) \tag{3}
\end{equation*}
$$

Eliminating ω between (1) and (3) we have

$$
\begin{equation*}
v=\frac{v M k}{m u} \sqrt{g / h} \sin { }_{2}^{\prime \prime} \tag{4}
\end{equation*}
$$

from which r becomes known, since all the quantities in the second member may be observed, or are known.

We may determine a as follows: At a print in the pendulum at a distance $/$ from the axis of suspension, attach the end of a tape, and let the rest of the tape be womed tightly round a reel; as the pembulum aseonds, let a length a be unwound from the reel; then c is the chord of the angle $\%$ to the radius h, so that $c=2 h$ sin $\underset{\sim}{c}$, which in (4) gives

$$
\begin{equation*}
r=\frac{. v k \cdot r}{m u a} \sqrt{\frac{\bar{g}}{h}} \tag{5}
\end{equation*}
$$

The values of k and $/ /$ maty be determumed ass in Art. 84. If the month of the gen is plated near to the pendulum.
the value of c, given by (5), must le nearly the veiocity of projection.

The velocity maly also be determinal in the following manner: Let the gun be attached to a heavy penduhm: when the gin is discharged the recoil causes the pendulum to turn round its axis and to oseillate throngh an are which can be measured; and the velocity of the bullet can be dedued from the magnitude of this are. (See Priee's Anal. Meelis, Vol. II, p. 2.31.)

13, fore the invention of the ballistic pendulum by Mr. Robins in 17ti;, but little progress had been made in the true the ry of military projectiles. Robins' Ner I'riuciples af Cinumery was soon translated into several languages, and Euler added to his translation of it into (ibrman an extensive commentary ; the work of Euler's being agnin translated into Eaglish in 1884. The experiments of Robins were all comalucted with masket bafls of about an ome weight, but they were afterwards continued during several years by Dr. Huthon, who used cannon-mals of from one to mearly three pounds in weight. Hatton used to suspend lis cannon as a peodalum, nod mensure the nagle through which it was raised ly the discharge. Mis experimenis are still regardecl as some of the mont trast worthy on smooth bore guns. See Roath's Rigid Dynamies, p. 94, also Fucyelopedia Bridumiea, Art. Gumery.
243. Motion of a Heavy Body about a Horizontal Axle through its Centre.- Wet the body be asphere whose radins is R, and weight I^{\prime}, and let a weight P^{\prime} be altached to a cord womd romed the cirenmference of a whed on the same ance, the radius of the wheel being r; refuired the distance passed over by l^{\prime} in t seconds.

From (4) of Art. 236 we have

$$
\frac{d^{2} \theta}{d t^{2}}=\frac{P r y}{\| r_{i}^{2}+P r^{2}}
$$

Mnltiplying ly at and integrating twice, we have

$$
\theta=\begin{gather*}
r_{r}, / /^{2} \tag{1}\\
\sim\left(\| / h_{1}^{2}+P^{2} r^{2}\right.
\end{gather*}
$$

the constants being zero in both integrations, since the body otarts from rest when $t=0$. The space will be r.

EXAMPLES.

1. Let the body be a sphere whose radius is 3 ft . and weight 500 lbs ; let P be 50 lbs ., and the radius of the whee! 6 ins.; required the time in which the weight P will descend throngh 50 ft . (Take $g=32$.)

Ins. 21 seconds.
2 . Let the body be a sphere whose radins is 14 ins. and weight 800 lbs ; let it be moved by a weight of 200 lhs . attached to a cord wound romud a wheel the radins of which is one foot; find the mumber of revolutions of the sphere in eight seconds. ('lake $g=32$.)

Ans. 51.3.
244. Motiris of a Wheel and Axle when a Given Weight \boldsymbol{P} Raises a Given Weight \boldsymbol{W} :-Let the weights P and If be attached to cords wound romed the wheel and axte, respectively, (Fig. 9r) ; let R and r be the the radii of the wheel and axle, and w and u^{\prime} their weights; required the ungular distance passed over in t
 seconds.

From (4) of Art. 230, we have

$$
\begin{gather*}
\frac{d^{2} \theta}{d l^{2}}=\frac{P R-W r}{P h^{2}+W r^{2}+\frac{1}{2} w h^{2}+\frac{1}{2} w^{2} r^{2}} g \tag{1}\\
\therefore \theta=\frac{(P h-W r) t^{2}}{P R^{2}+W r^{2}+\frac{1}{2} w h^{2}+\frac{1}{2} w^{\prime} r^{2} \frac{1}{2} g .} \\
\text { EXAMPLE. }
\end{gather*}
$$

Let the weight $I^{\prime}=30 \mathrm{lhs} ., W=80 \mathrm{lhs},.{ }^{\prime \prime}=8 \mathrm{lhs}$. und $w^{\prime}=4$ lbs.; and let R and r be 10 ins. and 4 ins.;
required (1) the space passed over by P in 12 siconds if if starts from rest, and (2) the tensions T^{\prime} and $T^{\prime \prime}$ of the corts, supporting P and W. (Take $g=3 \%$.)

Ans. (1) $9 \% . .^{9} \mathrm{ft}$; (2) $T^{\prime}=31.28 \mathrm{lbs}$; $T^{\prime \prime}=78.64 \mathrm{lbs}$.
245. Motion of a Rigid Body about a Vertical Axis.-Let AB be at vertical axis about whieh the body C, on the horizontal arm ED, revolves, under the action of a constant horizontal force F, applicd at

Fig. 98 the extremity E, perpendienlar to ED. Let $1 /$ be the mass of the boly whose centre is C , and r and h the distances ED and CD, respectively. Then from (4) of Art. 236, we have

$$
\frac{d^{2} \theta}{d l^{2}}=\frac{F r}{M\left(h_{1}{ }^{2}+l^{2}\right)^{2}} .
$$

Multiplying by dt and integrating twice, observing that the constants of both integrations are zero, we have

$$
\begin{equation*}
\theta=\frac{F r t^{2}}{2 M\left(h_{1}{ }^{2}+h^{2}\right)} \tag{1}
\end{equation*}
$$

which is the angular space passed over in t seconds.
EXAMPLE.
Thet the body be a sphere whose radius is 2 ft ., whose weight is 600 lhs., and the distance of whose centre from
 coud of an arm fo flong; time (1) the number of revolntions which the body will make alout the axis in 10 minutes, and (2) the time of one revolution. ('Take $y=3 \%$.$) \quad Ins. (1) 9316.3$; (2) 6.2 sees.

2 s.couds if it $T^{\prime \prime}$ of the cords, $=88.64 \mathrm{lls}$.
se centre is \mathbf{C}, ctively. Then
observing that re have se centre from s. aeting at the sber of revoluhe axis in 10 lution. ('Take (2) 6.2 seces.
246. Body Rolling down an Inclined Plane.-A homoyencous sphere rolls directly down a rough inclined plane under the action of grurity. Find the motion.

Let Fig. 99 represent a section of the sphere and phane made by a vertical phane passing through C , the centre of the sphere. Let a be the inclination of the plane to the horizon, athe radins of the sphere, 0 the point of the plane which
 was initially touched by the sphere at the point A. P the point of contact at the time t. $\Lambda \mathrm{CP}=\theta$, which is the angle turned throngh by the sphere, $m=$ the mass of the sphere, $F=$ the friction acting upward, $R=$ the pressure of the sphere on the plane. Then it is convenient to choose O for origin and OB for the axis of x; hence $\mathrm{OP}=x$.
The forees which act on the sphere are (1) the reaction, R, perpendicular to OB at P , (?) the friction, F, acting at P along PO, and (3) its weight, my, acting vertically at (the centre. Now C evidently moves along a straight line parallel to the phane; so that for its motion of translation we have, by resolving along the phane,

$$
\begin{equation*}
m \frac{d^{2} \cdot x}{d t^{2}}=m y \sin c-F . \tag{1}
\end{equation*}
$$

The sphere evidently rutates about its point of contarct with the plame; but it may be considered as rotating at any instant about its centre $(1$ as fixed ; and the angular velocity of U at that instant in reference to P is the same as that of P in reference to C. Prom (4) of Art. 236, we have for the metion of rotation

$$
\begin{equation*}
m k_{1}{ }^{2} \frac{d^{2} \theta}{d l^{2}}=F^{\prime} a \tag{2}
\end{equation*}
$$

4 4 body rolling mown an incliven plave.

and since the plane is perfectly rough, so that the sphere does not slide, we have

$$
\begin{equation*}
x=، \theta \tag{3}
\end{equation*}
$$

Multiplying (1) by a and adding the lesult to ($*$), we get

$$
\begin{equation*}
m a \frac{d^{2} x}{d t^{2}}+m k_{1}{ }^{2} \frac{d^{2} \theta}{d t^{2}}=m a y \sin c \tag{f}
\end{equation*}
$$

Differentiating (3) twice we get $\frac{d^{2} x}{d t^{2}}=a \frac{d^{2} \theta}{d t^{2}}$, which united to (4) gives

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}=\frac{u^{2}}{a^{2}+k_{1}^{2}} y \sin \alpha \tag{5}
\end{equation*}
$$

Since the sphere is homogeneons, $k_{1}{ }^{2}=\frac{2}{5} a^{2}$, and (5) becomes

$$
\begin{equation*}
\frac{d^{2} x}{d l^{2}}=\frac{5}{7} y \sin a \tag{6}
\end{equation*}
$$

which gives the acceleration dourn the plane.
If the sphere had been sliding down a smooth plane, the acceleration would have been $g \sin$ a (Art. 144); so that two-sevenths of gravity is used in turning the sphere, and five-sevenths in urging the sphere down the phane.
lutegrating (6) twiee, and supposing the sphere to start from rest, we have

$$
x=\frac{\pi}{14}!!\cdot \sin \not e \cdot t^{2}
$$

which gives the spuce passed over in the time t.
Resolving perpendicular to the plane, we have

$$
R=m y \cos c
$$

Cor.-If the rolling booly were a cirenlar cylinder with its axis horizontal, then $b_{1}^{\prime 2}=\frac{1}{2} c^{2}$ and (5) heomes

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}=\frac{o}{3} y \sin a \tag{7}
\end{equation*}
$$

at the sphere
th plane, the 44) ; so that e sphere, and the. here to start
ylinder with reomes
so that one-third of gravity is used in turning the cylinder, and two-thirds in urging it down the plane.
From (7) we have

$$
\begin{equation*}
x=\frac{1}{3} y \sin a \cdot t^{2} \tag{8}
\end{equation*}
$$

which yives the spuce passed our in the time t from rest.
247. Motion of a Falling Body under the Action of an Impulsive Force not Directly through its Centre.-1 string is cound romml the circumference of a reet, ant the free end is utluched to a fired point. The reel is then lifteel up und lot full so that at the moment when the string becomes tight it is certical, and tanyent to the reel. The whole "rotion being supposed to take place in one plane, determine the affect of the impulse.

The reel at first will fall vertically withont rotation. Let v be the veloeity of the centre at the 1 ioment when the string becomes tight; v^{\prime}, ω the velocity of the centre and the angular velocity just after the impulse: T the imponlsive tension: m the mass of the reel, and a its malius.
Just after the impact the part of the reel in contact with the string has no velocity, and at this instant the reel rotates alont this part; but it may be considered as rotating albout its axis as fixed, and the angular velocity of its axis, at this instant, in reference to the part in contact is the same as that of the latter in reference to the former. The impulsive tension is

$$
\begin{equation*}
T=m\left(v-v^{\prime}\right) . \tag{1}
\end{equation*}
$$

Hence from (3) of Art. 236 , we have for the motion of rotation

$$
\begin{equation*}
m k_{1}{ }^{2} \omega=m\left(v-v^{\prime}\right) a \tag{7}
\end{equation*}
$$

Since the part of the reel in contact with the string has no velocity at the instant of impact, we have

$$
\begin{equation*}
v^{\prime}=a \omega . \tag{3}
\end{equation*}
$$

Solving (2) and (3) we have

$$
\begin{equation*}
\omega=\frac{\alpha v}{a^{2}+k_{1}^{2}} . \tag{4}
\end{equation*}
$$

If the reel be a homogeneous cylinder, $k_{1}{ }^{2}=\frac{a^{2}}{2}$, and we have from (3) and (4)

$$
\begin{equation*}
\omega=\frac{\frac{e}{3}}{a}, \quad r^{\prime}=\frac{e_{3}}{3} u^{\prime}, \tag{5}
\end{equation*}
$$

and from (1) we have for the impulsive tension,

$$
T=\frac{1}{3} m
$$

Cor.-T'o find the subsequent motion. The centre of the reel begins to descend vertically; and as there is no horizontal foree on it, it will continue to deseend in a vertical straight line, and throughout all its subsequent motion the string will be vertical. The motion may therefore be easily investigated, as in Art. 246 , sinee it is similar to the case of a body rolling down an inclined plame which is vertical, the tension oi the string taking the place of the friction along the plane. Hence putting $\quad=\frac{\pi}{2}$, and letting the friction $F=$ the finite tension of the string, we have, from (1) and (7) of Art. 246 .

$$
F=\frac{1}{3} m y, \quad \text { and } \quad \frac{d(2 x}{d t^{2}}=\frac{2}{3} y ;
$$

that is, the finite tension of the string is one-third of the
weight, and the reel descends with a miform aceeleration of 影.

Since the iuitial velceity of the reel from (5) is are, we have, for the space descended in the time t after the impaet, from (8) of Art. 246 ,

$$
x=\frac{2}{3} v t+\frac{1}{3} y t^{2} \text {. (Sce Routh's Rigid Dynamics, } \mathrm{p} .131 . \text {) }
$$

EXAMPLES.

1. A thin rod of steel 10 ft . long. aseillates about an axis passing through one end of it ; find (1) the time of an oseillation, and (z) the number of oscillations it makes in a day. Ans. (1) 1.434 sec . ; (2) 60م254.
2. A penduhm oscillates about an axis passing through its end; it eonsists of a steel rod 60 ins. long, with a rectangalar section $\frac{1}{2}$ by $\frac{\ddagger}{}$ of an inch; on this rod is a sted cylinder 2 in. in diameter and 4 in. long; when the ends of the rod and eylinder are set square. find the time of an oscillation.

Aus. 1.1 it secs.
3. Determine the radius of gyation with reference to the axis of suspension of a body that makes 73 oscillations in 2 minutes, the vistamee of the centre of gravity from the axis being 3 ft .2 in .

Ans. 5.267 ft .
4. Determine the distince between the centres of suspension and oscillation of a body that oseillates in $2 \frac{1}{2}$ sec.

Ans. 20.264 ft .
5. A thin circular plate oseillates about an axis passing throngh the circumference: find the length of the simple equivalent pendulum, (1) when the axis tonches the eirele and is in its plane, and (2) when it is at right angles to the plane of the circle.

Alus. (1) $\frac{5}{4} t$; (2) 3π.
6. A cube oscillates abont one of its edges; tind the length of the simple equivalent pendulum, the edge being $=2 a$.

$$
A n s . \frac{4}{3} a \sqrt{ } 2
$$

7. A prism, whose cross section is a square, each side being $=2 a \cdot$ and whose length is l, oseillates about one of its upper edges; find the length of the simple equivalent pendulum.
$A n \mathrm{~s}$. $\frac{8}{3} \sqrt{4 a^{2}+\bar{l}}$.
8. An elliptic lamina is such that when it swings abont one latus reetum as a horizontal axis, the other latus rectum pasees through the centre of uscillation; prove" that the eceentricity is $\frac{1}{2}$.
9. The density of a rod varies as the dintance from one end; find the asis perpendicular to it about which the time of oxcillation is a minimum, l being the length of the rod.
Ans. The distance of the axis from the centre of gravity is ${ }_{6}^{l} \sqrt{ }$. .
10. Find the axis about which an elliptie lamina must ascillate that the time of oscillation may be a minimum.
Ans. The axis motst be parallel to the major axis, and bisect the semi-minor axis.
11. Find the centre of peremssion of a cube which rotates about an axis parallel to the four parallel edges of the cube, and equidistant from the two nearer, as well as from the two farther edges. Let $2 a$ be a side of the cube, and let c be the distance of the rotation-axis from its eentre of gravity.

Ans. $l=a+\begin{gathered}2 a^{2} \\ 3 c\end{gathered}$, where l is the distanee from the rota-tion-axis to the centre of percussion.
12. Find the centre of perenssion of a sphere which rotates about an axis tangent to its surface.

$$
A u s . l=\frac{7}{} u \text {. }
$$

13. Let the body in Art. 843 , he a sphere whose radius is $1:$ ins. and weight 1200 lbs.; let it be moved by a weight if 250 lbs attached to a cord wound romed a wheel whose
"uare, each side tes about one of imple equisalent . $\frac{0}{3} \sqrt{4 a^{2}+r^{2}}$.
it swings alout the other latus scillation; prove ${ }^{-}$
stamee from one bout which the the length of the
centre of gravity
tie lamina must ea minimum. major axis, and
lhe which rotates dges of the cube, vell as from the cube, and let c m its centre of
efrom the rota-
a sphere which
$A n s . l=7 n$.
e whose rallius is ved by a weight I a wheel whose
radius is 15 ins.; find the number of revolutions of the splere in 10 seconds. $(y=3 \%) \quad$ Ans. $58 . i \%$.
14. Let the body in Art. 243 be a sphere of radius 8 ins. and weight 500 lbs . ; let it be moved ly a weight of 100 lth . attached to a cord wound round a wheel whose radins is 6 in .; find the number of revolutions of the sphere in

15. In Art. :24t, let the weight $I^{\prime}=40 \mathrm{lln}$.., $W=100$ lbs., $w=12$ lhs., and $w^{\prime}=6$ lbs.; and let R and r be $1 \because$ ins. and $;$ ins. : repured (1) the pare passed ofer by P in 16 secs. if it starts from rest, and (\because) tice tensions T and T^{\prime} of the cords supporting l 'and $I I . \quad(y=3)^{2}$.
Ans. (1) 926.5; (${ }^{(2)} T^{\prime}=49.04 \mathrm{lls}. . T^{\prime \prime}=86.81 \mathrm{lbs}$.
16. In Art. 244, let the weight $I^{\prime}=25 \mathrm{lbs.}. \mathrm{II}^{\circ}=60$ lbs., $u=6 \mathrm{lbs}$., and $w^{\prime}=2 \mathrm{lbs}$; and let R and r be 8 in . and 3 in.: required (1) the space passed over by P in 10 sees. if it starts from rest, and (?) the tensions T and $T^{\prime \prime}$ of the cords supporting I^{\prime} and $I I . \quad(g=3 \operatorname{la}$.
Aus. (1) $109.9 \because \mathrm{ft}$; ; (\because) $T=23 . \because 9$ lhs.: $T=61.54 \mathrm{lls}$.
17. In Art. :4.i, let the body be a sphere whose radins is 3 ft., whose weight is 800 lhs.,. and the distance of whose centre from the axis is 9 ft . and lat F^{\prime} be a fore of 60 lhs. acting at the end of an am 10 ft . long ; find (1) the number of revolutions which the body will make about the axis in 12 min., and (2) the time of one revolution.

18. In Ex. 1\%, let the radius $=$ one foot, the weight $=$ 100 lbe., the distance of centre from axis $=5 \mathrm{ft}$.. and $F=25 \mathrm{lbs}$, acting at end of arm 8 ft . long; find (1) the nomber of revolutions whid the body will make about the asis in is min., and (:2) the lime of one resolution.

19. If the boily in Art. via be a momogeneous sphere, the string being round the cireumference of a great cirele,
find (1) the anguliar velocity just after the impulse, and (2) the impulsive tensien.
20. A barr, l feet long, falls vertically, retaining its horizontal position till it strikes a fixed obstacle at one quarter the length o. the bar from the centre ; find (1) the angnlar velocity of the bar, (2) the linear velocity of its centre jost after the impulse, and (3) the impulsive force, the velocity at the instant of the impmse being v.

$$
\text { Ans. (1) } \frac{12 v}{\gamma l} ;(2) \frac{3}{3} v ;(3) \frac{4}{4} m v .
$$

21. A bar, 40 ft . long, falls through a vertical height of 50 ft ., retaining its horizontal position till one end strikes a fixed obstacle 60 ft . above the ground ; find (1) its angular velocity, (2) the linear velocity of its centre just after the impulse ; (3) the number of revolutions it will make before reaching the ground, (4) the whole time of falling to the ground, and (5) its linear velocity on reaching the ground.

Ans. (1) 2.12 ; (2) 42.43 ; (3) 0.345 ; (4) 2.79 ; (5) 75.10 .
he impulse, and (2) s. $\frac{5 r^{2}}{7 a}$; (2) $\frac{q u m}{7}$.
retaining its horiacle at one-quarter find (1) the angnlocity of its centre nipulsive force, the ing v.

vertical height of ill one end strikes ; find (1) its angus centre just after tions it will make ole time of falling y on reaching the
(4) 2.79 ; (5)

CHAPTER VIII.

MOTION OF A SYSTEM OF RIGID BODIES IN SPACE.

248. The Equations of Motion of a System of

 Rigid Bodies obtained by D'Alembert's Principle.Let (x, y, z) be the position ot the particle m at the time t referred to any set of reetangular axes fixed in space, and X, Y, Z, the axial components of the impressed accelerating fores acting on the same particle. Then $\frac{d^{2} x}{d t^{2}}, \frac{d^{2} y}{d t^{2}}, \frac{d^{2} z}{d t^{2}}$, are the axial components of the accelerations of the particle; and by D'Alembert's Principle (Art. 235) the forces,$$
m\left(X-\frac{d^{2} x}{d t^{2}}\right), \quad m\left(Y-\frac{d^{2} y}{d l^{2}}\right), \quad m\left(Z-\frac{d^{2} z}{d t^{2}}\right),
$$

aeting on m together with similar forces acting on every partiele of the system, are in equilibrinm. Hence by the prineples of Staties (Art. 65) we have the following six equations of motion:

$$
\begin{align*}
& \left.\leq m\left(x-\frac{d^{2} x}{d t^{2}}\right)=0,\right) \\
& \left.\mathbf{\Sigma} m\left(1-\frac{d^{2} y}{d t^{2}}\right)=0,\right\} \tag{1}\\
& \left.\operatorname{\Sigma m}\left(Z-\frac{d^{2} z}{d t^{2}}\right)=0 .\right) \\
& \left.\Sigma m\left(y Z-z \mathrm{I}^{-}\right)-\Sigma m\left(y \frac{d^{2} z}{d t^{2}}-z \frac{d^{2} y}{d l^{2}}\right)=0,\right) \\
& \leq m\left(z . I^{-}-: x Z\right)-\Sigma m\left(z^{\frac{d 2}{2} x} \frac{d t^{2}}{d d^{2}} \frac{d^{2} z}{d l^{2}}\right)=0, \tag{2}\\
& \operatorname{Lim}(x Y-y X)-\operatorname{Lm}\left(x \frac{d^{2} y}{d t^{2}}-y \frac{d^{2} x}{d l^{2}}\right)=0 \text {. }
\end{align*}
$$

21

By means of these six equations the motion of a rigid body acted on by any finite forces, may be determined. They lead immediately to two important propositions, one of which emables us to calculate the motion of translation of the body in space; and the other the motion of rotation.
249. Independence of the Motion of Translation of the Centre of Gravity, and of Rotation about an Axis Passing through it.-Let (\bar{x}, \bar{y}, i) be the prosition of the centre of gravity of the body at the time t, referred to fixed axes, (x, y, z) the position of the particle m referred to the sume axes, $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ the position of m referred to a system of axes passing through the centre of gravity and parallel to the fixed as s, and M the whole mass. Then

$$
\begin{equation*}
\text { 1. } x=\bar{x}+x^{\prime}, \quad y=y+y^{\prime}, \quad z=\bar{z}+z^{\prime} . \tag{1}
\end{equation*}
$$

Since the origin of the movable system is at the centre of gravity, we have (Art. 59)

$$
\begin{gather*}
\leq m x^{\prime}=\Sigma m y^{\prime}=\Sigma m z^{\prime}=0 ; \tag{¿}\\
\therefore \quad \Sigma m \frac{d^{2} x^{\prime}}{d l^{2}}=\Sigma m \frac{d^{2} y^{\prime}}{d l^{2}}=\Sigma m \frac{d^{2} z^{\prime}}{d t^{2}}=0 . \tag{3}
\end{gather*}
$$

Also $\quad \Sigma m x=M \bar{x}, \quad \leq m y=M \bar{y}, \quad \mathrm{~s} m z=M \bar{z} ;$
$\therefore \quad \operatorname{sim} \frac{d^{2} x}{d t^{2}}=M \frac{d^{2} x}{d t^{2}}, \quad \leq m \frac{d^{2} y}{d t^{2}}=M \frac{d^{2} \bar{y}}{d t^{2}}, \quad \leq m \frac{d^{2} z}{d t^{2}}=M \frac{d^{2} z}{d t^{2}}$.
Substituting these values in (1) of Art. 248, we have

$$
\left.\begin{array}{l}
M \frac{d^{2} \bar{x}}{d t^{2}}=\Sigma \cdot m X ; \tag{4}\\
M \frac{d^{2} \bar{y}}{d t^{2}}=\Sigma \cdot m Y ; \\
M \frac{d^{2} \bar{z}}{d t^{2}}=\Sigma \cdot m Z
\end{array}\right\}
$$

These three efluations do not contain the enordinates of the point of application of the foreses, and are the same as those which would be obdained for the motion of the centre of gravity supposing the foress all applied at that point. Hence

The motiom of the centre of gracity of a syssem acted on by amy forces is the same as if all the mass uere collected "t the centre of grurity and all the forces were applied at that point parallel to their former directions.
2. Differentrating (1) twice we have

$$
\begin{gathered}
\frac{d^{2} x}{d l^{2}}=\frac{d^{2} \bar{x}}{d l^{2}}+\frac{d^{2} x^{\prime} x^{\prime}}{d t^{2}}, \quad d^{2} y l^{2}=\frac{d^{2} \bar{y}}{d l^{2}}+\frac{d^{2} y^{\prime}}{d l^{2}}, \\
\frac{d^{2} z}{d l^{2}}=\frac{d^{2} z}{d t^{2}}+\frac{d l^{2} z^{\prime}}{d l^{2}} .
\end{gathered}
$$

Substituting these values in the first of equations (2) of Art. 248, we have
$\operatorname{\Sigma } m \frac{d^{2} z}{d l^{2}}=M \frac{d^{2} z}{d l^{2}}$.
248, we have
(4)

$$
\begin{aligned}
& \bar{y} \mathrm{\Sigma} \cdot m\left(Z-\frac{d^{l^{2} z}}{d l^{2}}\right)-\bar{y} \Sigma \cdot m \frac{d^{2} z^{\prime}}{d l^{2}}+\Sigma m y^{\prime}\left(Z-\frac{d l^{2} z^{\prime}}{d t^{2}}\right) \\
& -\frac{d^{2} \dot{z}}{d t^{2}} \Sigma m y^{\prime}-\dot{z} \operatorname{\Sigma } m\left(Y-\frac{d^{2} \vec{y}}{d l^{2}}\right)+\dot{\operatorname{con}} m \frac{d^{2} y^{\prime}}{d t^{2}} \\
& -\Sigma m z^{\prime}\left(Y-\frac{l^{2} y^{\prime}}{d l^{2}}\right)+\frac{d^{2} \bar{y}}{d l^{2}} \Sigma m z^{\prime}=0 .
\end{aligned}
$$

Omitting the 1st, 2d, 4th, 5 th, 6th, and 8 th terms which ranish by reason of (2), (3), and (4), we have

$$
\mathbf{\Sigma} m\left(\begin{array}{c}
y^{\prime} d^{2} z^{\prime} \\
d t^{2}
\end{array}-z^{\prime} \frac{t^{2} y^{\prime}}{d t^{2}}\right)=\Sigma_{m} m\left(y^{\prime} Z-z^{\prime} Y\right)
$$

similarly from the other two equations of ($\left(^{2}\right.$) we have

$$
\begin{align*}
& \sin \left(z^{\prime} \frac{l^{2} x^{\prime}}{d t^{2}}-x^{\prime} \frac{d^{2} z^{\prime}}{d t^{2}}\right)=\operatorname{sim}\left(z^{\prime} X-x^{\prime} Z\right) \tag{5}\\
& \sin \left(x^{\prime} \frac{d^{2} y^{\prime}}{d t^{2}}-y^{\prime} \frac{t^{2} x^{\prime} x^{\prime}}{d t^{2}}\right)=\operatorname{sim}\left(x^{\prime} Y-y^{\prime} X\right)
\end{align*}
$$

These three equations do not contain the co-mrdinates of the centre of gravity, and are exactly the equations wo would have obtained if we had regarded the centre of gravity as a fised point, and taken it as the origin of moments. Hence

The motion of " bonly, acted on by ainy forces, about its centre of grarity is the same as if the centre of gravity were fixed and the sume forcess ueted on the borly. That is, from (4) the motion of tramslation of the centre of gravity of the budy is indenendent of its rotation; and from (5) the rotution of the bodly is imlppendent of the translation of its centre.
These two important propositions ure called respectively, the principles of the conservation of the motions of translation and rotation.

Foli.-By the first principle the problem of timding the motion of the centre of gravity of a system, however complex the system muy bre, is reduced to the problem of timding the motion of a single particle. By the seeond principle the problem of finding the angular motion of a free body in space is rewhered to that of determining tho motion of that hody abrent a fixed proint.
id 8th terms which have
$\left.-z^{\prime} Y\right)$,
of (z) we have
(5)
$\left.-x^{\prime} Z\right)$,
$\left.-y^{\prime} X^{\top}\right)$.
the eo-morlinates of the equations we ded the centre of it as the origin of
iny forres, about its tre of gravity uere ty. That is, from 'e of yracity of the 1 from (5) the rotutranslation of its
salled respectively, notions of transla-
m of tinding the em, however como the problem of

By the recond gular motion of a f determining tho

Ren-In using the first prineiple it shonld be noticed that the impressed forces are to be applied at the centre of gravity parallel to their former directions. Thus, if a rigid body be moving muter the influence of a central forec, the motion of the centre of gravity is not generally the same as if the whole mass rere collected at the centre of gravity and it were then ateted on by the sane central force. What the principle asserts is, that, if the attraction of the central foree on each element of the body be found, the motion of the eentre of gravity is the same as if these forces were applied at the centre of gravity parallel to their original directions.
250. The Principle of the Conservation of the Centre of Gravity.--Suppose that a material system is acted on by no other forces than the mutual attractions of its parts; then the impressed accelerating forces are zero, which give

$$
\Sigma X=\Sigma Y=\Sigma Z=0 ;
$$

therefore from (4) of Art. 249, we get

$$
\begin{equation*}
\frac{d^{2} \bar{x}}{d l^{2}}=0, \quad \frac{d^{2} \bar{y}}{d l^{2}}=0, \quad \frac{d l^{2} z}{d t^{2}}=0 ; \tag{1}
\end{equation*}
$$

$\therefore \frac{d \bar{x}}{d t}=r_{0} \cos \varepsilon, \frac{d \bar{y}}{d t}=v_{0} \cos \beta, \frac{d \bar{z}}{d t}=v_{0} \cos \gamma$.
where $"_{0}$ is the velocity of the centre of gravity when $t=0$, and c, β, γ, are the angles which its direction makes with the uxes. Thercfore, calling r the velocity of the centre of gravity at the time t, we have

$$
\begin{equation*}
v=\sqrt{\frac{d x^{2}+d y^{2}+d d^{2}}{d l^{2}}}=v_{0} \tag{2}
\end{equation*}
$$

which is eridently const at.

If $v_{0}=0$, the centre of gravity remains at rest.
Integrating (1) we get

$$
\begin{gather*}
\bar{x}=v_{0} t \cos \pi+a, \quad \bar{y}=i_{0} t \cos \beta+b, \\
\bar{z}=v_{0} t \cos \gamma+c ; \\
\therefore \frac{\bar{x}-a}{\cos \alpha}=\frac{\bar{y}-b}{\cos \beta}=\frac{\bar{z}-c}{\cos \gamma} \tag{3}
\end{gather*}
$$

(a, b, c) being the place of the centre of gravity of the system whell $l=0$. As (3) are the equations of a straight line it follows that the motion of the centre of gravity is restilinear.

Hence when a material system is in motion under the action of forces, none of which are external to the system, then the centre of gravity moves uniformly in a struight line or remains at rest.

Rem. -Thus the motion of the centre of gravity of a system of partieles is not altered by their mutual collision, whatever degree of elastieity they may have, becanse a reaction always exists equal and opposite to the action. If in explosion occurs in a moving body, whereby it is broken into pieces, the line of motion and the velocity of the centre of gravity of the body are not changed by the explosion ; thas the motion of the centre of grasity of the earth is unaltered by carthquakes; volemice explosions on the moon will not change its motion in space. The motion of the centre of gravity of the solar system is not alfected ly the mutual and reciprocal action of its several members; it is changed only by the action of forces external to the system.
251. The Principle of the Conservation of Areas.If x, y be the rectangular, and r, θ the pohar co-ordinates of a partiele, we have
2. at rest.
$\cos \beta+b$,
of gravity of the ations of a straight entre of gravity is
motion under the rual to the system, y in a straight line
re of gravity of a : mutual collision, have, because a to the action. If hereby it is broken ic velocity of t!e : changed by the e of gravity of the anic explosions on aree. The motion m is not affected ; several members; es external to the
tion of Areas.polar co-ordinates

$$
\begin{align*}
& x \frac{d y}{d t}-y \frac{d x}{d t}=x^{2} \frac{d}{d t}\binom{y}{x} \\
= & r^{2} \cos ^{2} \theta \frac{d}{d t}(\tan \theta)=x^{2} \frac{d \theta}{d t} . \tag{1}
\end{align*}
$$

Now $\frac{1}{2} r^{2} l \theta$ is the elementary area described round the origin in the time dt by the projection of the radins vector of the particle on the plime of $x y$, (Art. 18\%.) If twice this polar area be multiplied by the mass of the partiele, it is called lhe area conserved by the particle in the time $d t$ round the axis of z. Hence

$$
\Sigma m\left(x \frac{d y}{d t}-y \frac{d x}{d \bar{l}}\right)
$$

is called the area conserved by the system.
Let $d A_{x}, d A_{y}, d A_{z}$ be twiee the areas described by the projections of the radius vector of the particle m on the planes of $y z, z x, x y$, respectively ; then from (1) we have

$$
\mathbf{\Sigma} m\left(x_{d}^{d y}-y_{d t}^{d x}\right)=\mathbf{\Sigma} m \frac{d A_{z}}{d t}
$$

and differentiating we get

$$
\begin{equation*}
\mathbf{\Sigma} m\left(x \frac{d^{2} y}{d t^{2}}-y \frac{d^{2} x}{d t^{2}}\right)=\mathbf{\Sigma} m \frac{d^{2} A_{x}}{d t^{2}} \tag{2}
\end{equation*}
$$

If the impressed accelerating forces are zero the first member of (2) is zero, from (5) of Art. 249 ; therefore the sceond member is zero. Hence

$$
\Sigma m \frac{d^{2} A_{z}}{d l^{2}}=0 ;
$$

similarly

$$
\leq m \frac{d^{2} A_{x}}{d t^{2}}=0, \quad \operatorname{s} m \frac{d^{2} A_{y}}{d l^{2}}=0
$$

and thercfore by integration

$$
\leq m \frac{d A_{n}}{d t}=h, \quad \Sigma m \frac{d A_{y}}{d t}=h^{\prime}, \quad \Sigma m \frac{d A_{z}}{a l}=l^{\prime \prime}
$$

$\dot{h}, h^{\prime}, h^{\prime \prime}$ being constants.

$$
\therefore \quad \leq m A_{x}=h t, \quad \leq m . A_{y}=h^{\prime} t, \quad \Sigma m A_{z}=h^{\prime \prime} t
$$

the limits of integration being such that the areas and the time legin simultaneonsly. Thus, the sum of the prodnets of the mass of every particle, and the projection of the area described by its radins vector on each co-ordinate plane, varies as the time. This theorem is called the principle of the conservation of areas. That is,

When a material system is in motion under the action of forces, none of which are external to the system, then the sum of the products of the mass of each particle by the projection, on any plane, of the area described by the radius vector of this particle metsured from any ; ved point, raries as the time of motion.
252. Conservation of Vis Viva or Energy.*-Let (x, y, z) be the place of the particle m at the time t, and let X, Y, Z be the axial components of the impressed accelerating forces aeting on the partiele, as in Art. 246 . The axial components of the effective forces acting on the same particle at any time t are

$$
m \frac{d^{2} x}{d t^{2}}, \quad m \frac{d^{2} y}{d t^{2}}, \quad m \frac{d^{2} z}{d t^{2}} .
$$

If the effective forees on all the particles be reversed,
they will be in equilibrium with the whole gronp of impressed forces (Art. :335). Hence, by the principle of mirtual velocities (Art. 10t), we have
$\operatorname{sm}\left[\left(X-\frac{d^{2} x}{d t^{2}}\right) \delta x+\left(Y-\frac{d^{2} y}{d t^{2}}\right) \delta y+\left(Z-\frac{d^{2} z}{d l^{2}}\right) \delta z\right]=0,(1)$
where $\delta x, \delta y, \delta z$ are amy small arbitrary displacements of the particle m parallel to the axes, consistent with the conneetion of the parts of the system with one another at the time t.

Now the spaces actually described by the particle m during the instant after the time t parallel to the axes are consistent with the connection of the parts of the system with each other, and hence we may take the arbitrary disphacements, $\delta x, \delta y, \delta z$, to be respectively equal to the actual displacements, $\frac{d x}{d t} \delta t, \frac{d y}{d t} \delta t, \frac{d z}{d t} \delta t$, of the particle.*
Making this substitntion, (1) becomes

$$
\begin{aligned}
& \Sigma_{m}\left(\frac{d^{2} x}{d t^{2}} \frac{d x}{d t}+\frac{d^{2} y}{d t^{2}} \frac{d y}{d t}+\frac{d^{2} z}{d t^{2}} \frac{d z}{d t}\right) \\
= & \Sigma m\left(X^{d} \frac{d x}{d t}+Y \frac{d y}{d t}+Z \frac{d z}{d t}\right)
\end{aligned}
$$

Integrating, we get

$$
\begin{equation*}
\mathbf{\Sigma} m v^{2}-\mathbf{\Sigma} m v_{0}^{2}=2 \Sigma m f(X d x+Y d y+Z d z) \tag{2}
\end{equation*}
$$

where v and v_{0} are the velocities of the particle m at the times t and t_{0}.
The first member of (2) is twice the vis viva or kinetic energy of the system acpuired in its motion from the time t_{0} to the time t, under the action of the given forces.

[^27]The second momber expresses twice the work done by these furees in the same time (Art. 189) .

If the second member of (\because) be an exact differential of a function of $r . y, z$ s. that it equals of $(. x, y, z)$: then taking the detinite integral hetwern the limits x, y, z and x_{0}, y_{0}, z_{0}. corresponding to $/$ amd f_{0}, (\boldsymbol{z}^{2}) becomes

$$
\begin{equation*}
\mathbf{\Sigma} m r^{2}-\Sigma m u_{0}^{2}=\because f^{\prime}(x, y, z)-\because f^{\prime}\left(x_{0}, y_{0}, z_{0}\right) \tag{3}
\end{equation*}
$$

Now the second member of (\because) is an exact differential so far as any particle m is acted on by a centrat forec whose eentre is fixed at (a, b, r), and which is a function. of the distance r between the centre ami (x, y, z) the place of m. 'Ihus, let l ' be the centrul force $=f(r)$, say : when

$$
\begin{gathered}
X=\frac{x-a}{r} f(r), \quad Y=\frac{y-l}{r} f(\mu) \quad Z=\frac{z-c}{r} f(r) \\
r^{2}=(x-a)^{2}+(y \cdot b)^{2}+(z-c)^{2} \\
\therefore \quad r d r=(x-a) d x+(y-b) d y+(z-c) d z \\
\therefore \quad m(X d x+I d y+Z l x)=m f(r) d r
\end{gathered}
$$

whieh is an exact differential ; substituting this in the second member of (2), it

$$
=2 m \int_{r_{0}}^{r} f(r) d r
$$

where the limits r and r_{0} correspond to t and t_{0}.
Also, the second member of (2) is an exact differential, so far as any two particles of the system are attracted towards or repelled from eveh other by a foree which varies as the mass of each, and is a function of the distance between them. Let m and m^{\prime} be any two particles; let $(x, y, z),\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ be their places at the time $t ; r$ their distance apart; $P=f(r)$, the mutual action of the unit mass of each partiele. Then the whole attractive force of

- work done ly differential of a y, z) : then tak$; x, y, z$ and x_{0}, nes
$\left.r_{0}, y_{0}, z_{0}\right)$.
et differential so atri:l forec whose functior. of the) the place of m. ay: then
$Z=\frac{z-c}{r} f(r) ;$
$-c)^{2} ;$
$(z-c) d z ;$
r) $d r$;
ing this in the
cact differential, em are attracted ree which varies of the distance vo particles; let time $t ; r$ their tion of the mit tractive foree of
m on m^{\prime} is $I^{\prime} m$, and the whole attractive force of $1 / \prime^{\prime}$ on n is $P m^{\prime}$; and we have

$$
\begin{aligned}
& X=m \frac{r-x^{\prime}}{r} I^{\prime}, \quad Y=m^{\prime} \frac{y^{\prime}-y^{\prime}}{r} l^{\prime}, \quad Z=m \frac{z-z^{\prime}}{r} P ; \\
& X^{\prime}=-m \frac{:-x^{\prime}}{r} P^{\prime}, \quad Y^{\prime}=-m^{y-y^{\prime}} l^{\prime}, \quad Z^{\prime}=-m^{z-z^{\prime}} r \\
& \text { Also } \quad r^{2}=\left(r-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}
\end{aligned}
$$

Therefore for these two particles, we have

$$
\begin{gathered}
m\left(X d x+Y^{\prime}(y+Z l z)+m^{\prime}\left(X^{\prime} d r^{\prime}+Y^{\prime} d y^{\prime}+Z^{\prime} d z^{\prime}\right)\right. \\
=\frac{m m^{\prime}}{r} P\left[\left(x-x^{\prime}\right)\left(d x-d x^{\prime}\right)+\left(y-y^{\prime}\right)\left(d y-d y^{\prime}\right)\right. \\
\left.+\left(z-z^{\prime}\right)\left(d z-l z^{\prime}\right)\right] \\
=m m^{\prime} f(r) d r ;
\end{gathered}
$$

whieh is an exaet differential. The same reasoning applied to every two particles in the system must lead to a similar result ; so that finally the second member of (2)

$$
=\Omega m m^{\prime} \int_{r_{0}}^{r} f(r) d r
$$

where the limits r and r_{0} correspond to t and t_{0}. so that the integral will be a function solely of the initial and final ro-ordinates of the particles of the system.

Hence, when a muterial systom is in motion muder the action of forces, none of which ure e.tternel to the system, then the change of the ris riva of the sysum. in pussin!? from one position to another, depeneds miny on the tro prasitions of the systcm. amt is independent of the path destribed by euch particle of the system.

This theorem is called the principle of the conservation of vis viru or energy.

Cor. 1.-If a system be unile the action of no exterual forces, we have $\dot{X}^{*}=Y^{+}=Z=0$, and hence the vis viva of the system is constant.

Cor. 2.-Let gravity be the only force acting on the system. Let the axis of z be vertical and prositive downwarts, then we hate $Y=0 . Y-0, Z Z-3$. Hence (${ }^{(2)}$) becomes

$$
\Sigma \Sigma_{m} v^{2}-\Sigma m r_{0}{ }^{2}=x \leq\left(z-z_{0}\right) .
$$

But if z and \vec{z}_{0} are the distances from the plane of $x y$ to the rentre of gravity of the system at the times t and t_{0}. and if M is the mass of the system, we have

$$
\begin{gather*}
M_{z}=\Sigma m z, \quad M_{z_{0}}=\Sigma m z_{0} ; \\
\therefore \quad \Sigma m v^{2}-\Sigma m r_{0}^{2}=2 . M y\left(\bar{z}-\bar{z}_{0}\right) . \tag{4}
\end{gather*}
$$

That is, the increase of vis viru of the system depends ouly on the rerticel distance over which the centre of grarity masses; and therefore the dis rive is the stmur whenerer the rentre of grucily pusses, through a !!iren horizontal plane.

Ren. -The, iple of vis viva whs first used by Huyghens in his determination of the centre of oscillation of a body (Art. 23\%, R $\mathrm{H} \cdot \mathrm{m}$.) 。

The advantage of this principle is that it gives at once a relation between tho velocities of the boties considered and the coordinates which determine their positions in space. so that when, from the nature of the problem, the position of all the bodies may he made to depend on one variable, the equation of vis viva is sufficient to determine the motion.

Suppose a weight $m g$ to be placed at any height h above the surface of the earth. As it falls through in height z, the force of gravity does work which is measured by myz. The weight has acquired a velocity r, and therefore its vis viva is $\frac{1}{2} m v^{2}$ which is equal to $m g z$ (Art. 217). If the weight falls through the remainder of the height h. gravity does more work which is mensural by $m g(h-z)$. When the weight has reached the ground, it has fatlen as fur as the circum

11 of no external nee the vis viva
e acting on the 1 positive down-- 3. Hence (-3)
lane of $x y$ to the t and t_{0}. and if
em depends ouly entre of grarily mire whencrer the izontal plane.
d by Huygheus in a body (Art. 23T,
at once a relation ad the coorlinates at when, from the ©s may he made to sufficient to deter-
it h above the surhe force of gravity ght has acquired a ch is equal to $m g z$ nder of the height $m g(h-z)$. Whon far as the circum
atances of the case permit, and gravity has done work which is mens. ured by moh, and cats do mo more work nutil the weight has bern hifted upagain. Ifence, throughom the monim when the weight has descen'ed through any space z, its vis viva, ! $m r^{\prime \prime} /=m g z$), togethor with tie work that can be done durine the rest of the desseme,
 daring the while descent h.

If we complicate the motion by making the weight work some machine during its descent, the same theorm is still true. The vis viva of the weight, when it has descended any spmer z, is empal to the work $m g z$ which has beren dome leg gravity during this descent, diminished by the work doue on the machine. Hence, as before, the vis visa together with the differenee le ween the work dome hy gravity and that done on the madhine during the remander of the deseent is constant and equal to the excess, if the work done by gravily ower that done on the machine during the whole descernt. (See Routh's ligid Dynamics, p. 2\%0.)
253. Composition of Rotations.-It is oftell necessary to compond rotations ahout axes which meet at a point. When a borly is said to have angular velocities about three different ines at the same time, it is only meant that the motion may be determined as follows: Divide the whole time into a mumber of infintesimal intervals each "qual to dl. During catch of these, turn the body romed the three axes successively, through angles $\omega_{1} d t, \omega_{2} d t, \omega_{3} d t$. The result will be the same in whatever order the rotations take place. The final displacement of the body is the diagomat of the parallelopiped described on these three lines :s sides, and is therefore indepentent of the order of the rotations. Since then the three sncessive rotations are yuite independent, they may be said to take place simultaneonsly.

Hence we infer that angular velocitics and angular acectrations may be companded and resolved ly the same rules and in the same way as if they were linear. Thus, an anglar velocity o : about any given axis may be resohed intu two, ω cos "and ω : ill «, about :nes at right angles to
each other and making angles of and $\underset{\sim}{\bar{T}}$ - e with the given axis.

Also. if a body have amgular velocities ω_{1}, ω_{2}, ω_{3} about three axes at right angles, they are tugether eypivalent to a single angular velocity ω, where $\omega=\sqrt{\omega_{1}^{2}+\omega_{2}^{2}+\omega_{3}{ }^{2}}$, abont an axis inclined to the given axes at angles whose cosines are respectively ${ }_{\omega}^{\omega_{1}},{ }_{\omega}^{\omega_{2}}, \frac{\omega_{3}}{\omega}$.
254. Motion of a Rigid Body referred to Fixed Axes.-Let us suppose that one point in the borly is fixed. Let this point be taken as the origin of co-ordinates, and let the axes O.V, OIF OZ be amy directions fixed in space and at right angles to one another. The body at the time t is turning abont some axis of instantameons rotation (Art. : 40). Let its angular velocity about this axis be $\boldsymbol{\omega}$, and let this be resolved into the angular velocities $\omega_{1} . \omega_{2}$, (6) : ${ }_{3}$ hant the co-ordinate axes. It is required to haid the resolved linear velocities, $\frac{d x}{}, \frac{d y}{}, \frac{d z}{d}, \frac{d /}{}$, parallel to the axes of co-ordinates, of a particle m at the point $P,(x, y, z)$, in terms of the angular velocities ubont the axes.

These angnlar relocities are supposed positive when thiey tend the same way roand the axes that positive conples tand in Statics (Art. 65). Thas the positive directions of ω_{1}, ω_{2}, ω_{3} are respectively from y to z ibont x, from z lo x about y, and from: x to !/ ahomi z : and those negatiw which net in the opposite dimerfions.

Fig. 100

Lat mes determime the velorin! "I' I' parallel to the axis of z. Let PN be the ordinate z,
(6 with the given
$J_{1}, \sigma_{2},\left(\sigma_{3}\right.$ about er erfuivalent to $\sqrt{\omega_{1}}{ }^{2}+\omega_{2}^{2}+\omega_{3}^{2}$, at angles whose

rred to Fixed

 he borly is fixed. o-ordinates, and is fixed in space orly at the time ancous rotation this axis be \quad, clocities ω_{1}. ω_{2}, red to f.and the e] to the axes of $P,(x, y, z)$, in (ㄴ. 7 NFig. 100
the ordinate z,
and draw $P^{\prime} / /$ perpendicular to the axis of x. The velocity of' P ' due to rotation about $O X$ is $\omega_{1} P . M$. Resolving this panallel to the axes of $!$ and z, and reckoning those linear velocities positive which tend from the origin, and vice rersa, we have the velocity
illong $\quad M N=-\omega_{1} P M \cos N P M=-\omega_{1} z$;
and along $\quad N P=\omega_{1} P M \sin N P M=\omega_{1} y$.
Similarly the velocity due to the rotation about $O Y$ parallel to $O X$ is $\left(\sigma_{2} z\right.$, and parallel to $O Z$ is - $\omega_{2} x$. And that due to the rotation about $O Z$ parallel to $O V^{\prime}$ is $-\omega_{3} y$, and parallel to $O Y$ is ω_{3}, r.

Alding together those velocities which are parallel to the same axes, we have for the velocities of I parallel to the axes of x, y, und z, respectively,

$$
\left.\begin{array}{l}
\frac{d x}{d t}=\omega_{2} z-\omega_{3} y \tag{1}\\
\frac{d v}{\bar{d}_{\iota}}=\omega_{3} x-\omega_{1} z, \\
\frac{d z}{d t}=\omega_{1} y-\omega_{2} x
\end{array}\right\}
$$

255. Axis of Instantaneous Rotation.-Every parlicle in the axis of insmatancons rotation is at rest relative to the origin: aence, for these purticles ench of the first mombers of (1) in Art. Xit, will reduce to zero, and w. have

$$
\left.\begin{array}{l}
\omega_{2} z-\omega_{3} y=0 \\
\omega_{3} x-\omega_{1} z=0 \tag{1}\\
\omega_{1} y-\omega_{2} x=0
\end{array}\right\}
$$

which are the equations of the mxis of instantaneous rotation, the third equation being a necessary consequence of the first two ; hence,

$$
\begin{equation*}
x=\frac{\omega_{1}}{\omega_{3}} z, \quad y=\frac{\omega_{2}}{\omega_{3}} z ; \tag{2}
\end{equation*}
$$

that is, the instantaneons axis is a straight line passing through the origin which is at rest at the instant considered; and the whole body must, for the instant, rotate about this line.

Cor.-Denote by a, β, γ the angies which this axis makes with the co-ordinate axes x, y, z, respectively, then (Anal. Geom., Art. 175) we have

$$
\begin{aligned}
& \cos \varepsilon=\frac{\omega_{1}}{\sqrt{\omega_{1}^{2}}+\omega_{2}^{2}+\omega_{3}^{2}} \\
& \cos \beta=\frac{\omega_{2}}{\sqrt{\omega_{1}^{2}}+\omega_{2}^{2}+\omega_{3}^{2}} \\
& \cos \gamma=\frac{\omega_{3}}{\sqrt{\omega_{1}^{2}+\omega_{2}^{2}+\omega_{3}^{2}}}
\end{aligned}
$$

which gives the position of the instantuneons axis in terms of the angular relocities ubout the co-urdinate axes.
256. The Angular Velocity of the Body about the Axis of Instantaneous Rotation.--'The migular velocity of the thody abome this anis will he the same as that of any single particle chosen at pleasure. Let the particle be taken on the axis of x : if from it we draw a perpendienlar, f. To the instantanems axis. hem the distance of the partiele from the origin being x, we have
:lantaneones rolaconsequence of
hat line pussing he instant cone instant, rotate
whieh this axis z, respectively,
s axis in terms eares.
ody about the Ingrular velersame as that of the proticle be a perpendienhar, nee of the par-

$$
p=x \sin c=x \sqrt{1-\cos ^{2} \epsilon}=x \sqrt{\frac{\omega_{2}^{2}+\omega_{3}^{2}}{\omega_{1}^{2}+\omega_{2}^{2}+\omega_{3}^{2}}}
$$

Sinec, for this particle, $y=0, z=0$, we have from (1) of Art. 254, for the absolute velucity,

$$
\boldsymbol{V}=\frac{\sqrt{l x^{2}+}+\cdots y^{2}+d z^{2}}{d t}=x \sqrt{\omega_{2}^{2}+\omega_{3}^{2}}
$$

and hence, for the angular velocity c ', we have

$$
v=\frac{V}{p}=\sqrt{\omega_{1}^{2}+\omega_{2}^{2}+\omega_{3}^{2}}
$$

which is the an!mular velocity required.
257. Euler's Equations.-To determine the general equations of motion of " body aboul a fixed point.

Lat the fixed point 0 be taken as origin ; let $(x, y, z$) be the phace of any partiele m, at the time t, referred to any reetmgnlar ases fixed in space, and let $O x_{1}, O y_{1}, O z_{1}$ be the principal axes of the body (Art. 231). Differentinting (1) of Art. 254 with respect to t, we have
$d d^{2} x=z \frac{d \omega_{2}}{d t}-y \frac{d \omega_{3}}{d t^{2}}+\omega_{2}\left(\omega_{1} y-\omega_{2} x\right)-\omega_{3}\left(\omega_{3} x-\omega_{1} z\right)$,
$\frac{d^{2} y}{d l^{2}}=x^{d / \omega_{3}}{ }_{d!}-z \frac{d \omega_{1}}{d t}+\omega_{3}\left(\omega_{2} z-\omega_{3} y\right)-\omega_{1} \cdot\left(\omega_{1} y-\omega_{2} x\right)$,
$\frac{d l^{2} z}{d l^{2}}=\eta^{\prime l\left(\omega_{1}\right.} d t-x \frac{d \omega_{2}}{d l}+\omega_{1}\left(\omega_{3} x-\omega_{1} z\right)-\omega_{2}\left(\omega_{2} z-\omega_{3} y\right)$.
Wonoting hy l.. M, N, the Mrst terms respeetively of (\%). (Art. : -48), and substituting the abow valnes of $\frac{d^{2} r}{d 1^{2}}$ and $\frac{d^{2} y}{d I^{2}}$ in the hast of these equations, we get

$$
\left.\begin{array}{c}
\operatorname{\Sigma } m\left(x^{2}+y^{2}\right) \frac{d \omega_{3}}{d t}-\Sigma m y z \cdot \frac{d \omega_{2}}{d t}-\operatorname{\Sigma } m x z \frac{d \omega_{1}}{d t} \tag{1}\\
-\Sigma m x y\left(\omega_{1}^{2}-\omega_{2}^{2}\right)+\Sigma m\left(x^{2}-y^{2}\right) \omega_{1} \omega_{2} \\
-\Sigma m y z \omega_{1} \omega_{3}+\operatorname{\Sigma } m x z \omega_{2} \omega_{3}
\end{array}\right\}=N .
$$

The other two equations may be treated in the same way,
The coefficients in this equation are the moments ind products of inertia of the body with regard to axes fixed in spaee (Art. 224), and are therefore variable as the budy moves about. Let $\omega_{x}, \omega_{y}, \omega_{z}$ be the angular velocities abont the principal axes. Since the axes fixed in space are perfectly arbitrary, let them be so chosen that the principal axes are eoineiding with them at the moment under consideration. Then at this moment we have (Art. 23%,

$$
\Sigma m x y=0, \quad \Sigma m y z=0, \quad \Sigma m z x=0 ;
$$

also $\omega_{1}=\omega_{x}, \omega_{2}=\omega_{y}, \omega_{3}=\omega_{z}$; ant likewise ${ }^{d / \omega_{1}}{ }_{d t}=\begin{gathered}d \omega_{x} \\ d t\end{gathered}$, ete.* Ilence, denoting by A, B, C, the moments of inertia about the prineipal axes (Art. 231), (1) beeomes

$$
C \frac{d \omega_{3}}{d t}-(.1-b) \omega_{x} \omega_{y}=N
$$

in which all the cocfficients are constants; and similarly for the other two equations.
lence, miting them in order, und retnining the letters $\omega_{1}, \omega_{2}, \omega_{3}$, sinee they are equal to $\omega_{x}, \omega_{y}, \omega_{2}$, the three

 A quantity which tepands upon the nugle pmened throurh by the axis of. $\mathrm{r}_{\text {, during }}$ - that given smant the; the difference betweell on and cis will therefore be all inta niterimat of the wecomb order und therefore their therlvatlvew will be "pluai. Asce Pritt's Mech., D. des. For firther flemonatration of this cynully, the student is

equations of motion of the body referred to the principal ases at the fixed point are

$$
\left.\begin{array}{l}
A \frac{d \omega_{1}}{d t}-\left(B-\left(^{\prime}\right) \omega_{2} \omega_{3}=L\right. \tag{2}\\
B \frac{d \omega_{2}}{d t}-\left(C^{\prime}-A\right) \omega_{3} \omega_{1}=M, \\
C \frac{d\left(\omega_{3}\right.}{d t}-(.1-B) \omega_{1} \omega_{2}=N,
\end{array}\right\}
$$

These are called Euler"s Equations.
Son.-If the body is moving so there is no point in it which is fixed in space, the motion of the body athout its centre of gravity is the same as if that point were fixed.

It is clear that, instead of referring the motion of the body to the principal axes at the fixed point, as. Enler hats done, we may use an! axes fixed in the body. But these are in general so complicated as to be nearly useless.
258. Motion of a Body about a Principal Axis through its Centre of Gravity.-If a bodly rotate about one of its principal axes passing through the centre of Iravity, this axis uill suffer no pressure from the centrificyinl fores.
Let the boly ronate about the axis of z; then if w he its angular velocity, the centrifingal foree of any particle m will be (Art. 198, Cor. 1)

$$
m\left(\omega^{2}\right)=m\left(\omega^{2} \sqrt{x^{2}+y^{2}}\right.
$$

which gives for the r and y-components $m \omega^{2} \cdot{ }^{2}$ und $m \omega^{2} y$; and the moments of these forees with respeet to the ases of y and x are for the whole borly

$$
\Sigma m \omega^{2} \cdot r z, \quad \text { und } \quad \searrow m \omega^{2} y z .
$$

But these are nach equal to zero when the axis of rotation is a principal axis (Art. 232); henee, the centrifugal force will have no tendency to incline the axis of z towards the phame of $x y$. In this case the only effeet of the foress $m \omega^{2} x$ and $m w^{2} y$ on the axis is to move it parallel to itself, or to 1 ranslate the 'oody in the directions of x and y. But the strm of all these forces is

$$
\Sigma m \omega^{2} x \text { and } \Sigma m \omega^{2} y
$$

each of which is equal to zero when the axis of rotation passes through the centre of gravity; hence we conclute that, when a buly rotates about one of its princinul ares. passing through its centre of grurity, the rotation causes no pressure upote the axis.
If the body rotates about this axis it will contimue to rotate abont it if the axis be removel. On this aceount a principal asis through the centre of gravity is called an uxis of permanent rotation.*

Sent-lf the boly be free, and it begins to rotate abont maxis very near to a principal axis, the centrifngal force will canse the axis of rotation to ehange continually, inasmuch as the forgoing ronditions camot obtain, and this axis of rotation will either continually oseillate abont the primeipal axis, always remaining very near to it, or else it will remove itvelf indrfinitely from the principal axis. Hence, whencer we observe a free body rotating abont an axis during any time. however short. we may infer that it has contimed to rotate about that axis from the begiming of the motion, and that it will pontinue to rotate ahont it for ever. unkes chereked by some extraneons obstacle. (Ne Yonng's Merhs.. p. $\because 330$, also Venturoli, p!!. 135 and 160.)

[^28]Ios.
axis of rotation eentrifugal force of z towards the the forces $m \omega^{2} x$ el to itself, or to and y. But the
axis of rotation ce we conclude princiunal axes ation causes nu
vill continue to this accomnt a ity is called an
to rotate abont intrifugal force utinually, inasbtain, and this llate abont the to it, or else it principal axir. ating about an y infer that it the beginuing wotate about it ohstinele. (isee 135 and 160.)
tation, see Young' 1. II, p. wro.
259. Velocity about a Principal Axis when there are no Accelerating Forces. - In this case $L=\|=$ $V=0$ in (2) of Art. 255^{7}; also A, B, C are constant for the same body; and if we put
$$
\frac{B-C}{A}=F, \quad \frac{C-A}{B}=G, \quad \frac{A-B}{C}=H,
$$
(2) of Art. 257 becomes
\[

$$
\begin{gather*}
d \omega_{1}=F \omega_{2} \omega_{3} d t, \quad d \omega_{2}=G \omega_{3} \omega_{1} d t \\
d \omega_{3}=H \omega_{1} \omega_{2} d t \tag{1}
\end{gather*}
$$
\]

Put $\omega_{1} \omega_{2} \omega_{3} l t=d \phi$, and we have
$\omega_{1} d \omega_{1}=F l d \phi, \quad \omega_{2} d \omega_{2}=G d \phi, \quad \omega_{3} d \omega_{3}=H d \phi ;$
and integrating, we get

$$
\omega_{1}{ }^{2}=2 F \phi+a^{2}, \omega_{2}{ }^{2}=2 G \phi+b^{2}, \omega_{3}{ }^{2}=2 H \phi+c^{2} . \quad \text { (2) }
$$

where a, b, c are the initial values of $\omega_{1}, \omega_{2}, \omega_{3}$; henee from (1) and (2)

$$
\begin{equation*}
d t=\frac{d \phi}{\sqrt{\left(2 F \phi+a^{2}\right)\left(2 G \phi+b^{2}\right)\left(2 H \phi+c^{2}\right)}} \tag{3}
\end{equation*}
$$

Suppose now the body begins to turn about only one of the principal axes, say the axis of x, with the angular velocity a, then $b=0, c=0$, and (3) becomes

$$
d t=\frac{1}{2 \sqrt{\bar{G}} \overline{\bar{H}}} \cdot \frac{d \phi}{\phi \sqrt{2 F \phi+a^{2}}} .
$$

Replacing $2 F \phi+a^{2}$ by its value $\omega_{1}{ }^{2}$, and $d \phi$ by its value $\omega_{1} \omega_{1}{ }^{\prime}{ }^{\prime} \omega_{1}$, we have

$$
d t=\frac{1}{\sqrt{G} I} \cdot \frac{d \omega_{1}}{\omega_{1}^{2}-l^{2}}
$$

and integrating, we get

$$
\begin{align*}
& C+\iota \sqrt{G} H=\frac{1}{2 a} \log \frac{\omega_{1}-a}{\omega_{1}+a} ; \\
& \therefore e^{2 a C} \cdot e^{2 a t \sqrt{ } \overline{ } H}=\frac{\omega_{1}-a}{\omega_{1}+a} . \tag{4}
\end{align*}
$$

The constant C must be determined so that when $t=0$. ω_{1} is the initial velocity a; hence $e^{2 a C}=0$ or $C=-\infty$, which makes the first nember of (4) zero for every value of ℓ. Hence, at any time t, we must have $\omega_{1}=\pi$; and therefore from (2) $\phi=0$, and $\omega_{2}=\omega_{3}=0$. C'onsequently the impressed velocity about one of the principal ures of rotution continues perpetual and uniform, as before shown (Art. 258).
260. The Integral of Euler's Equations.-A body rerntere chout its centre of yruvity ucted on by no forcea but such as pass through that point; to integrate. the equations of motion.

As the only forces acting on the body are those which pass through its centre of gravity, they create no moment of rotation about an axis passing through that centre; and therefore (2) of Art. 25% become

$$
\left.\begin{array}{l}
A \frac{d \omega_{1}}{d t}-(B-C) \omega_{2} \omega_{3}=0, \\
B \frac{d \omega_{2}}{d t}-(C-A) \omega_{3} \omega_{1}=0, \tag{1}\\
C \frac{d \omega_{3}}{d t}-(A-B) \omega_{1} \omega_{2}=0,
\end{array}\right\}
$$

the principal axes being dawn throngh the centre of gruvity.

Multiply these equations severally (1) by $\omega_{1}, \omega_{2}, \omega_{3}$; and (2) by $A \omega_{1}, B \omega_{2}, C \omega_{3}$, and add; then we have

$$
\left.\begin{array}{l}
A \omega_{1} \frac{d \omega_{1}}{d t}+B \omega_{2} \frac{d \omega_{2}}{d t}+C \omega_{3} \frac{d \omega_{3}}{d t}=0 ; \\
A^{2} \omega_{1} \frac{d \omega_{1}}{d t}+B^{2} \omega_{2} \frac{d \omega_{2}}{d t}+C^{2} \omega_{3} \frac{d \omega_{3}}{d t}=0 ; \tag{2}
\end{array}\right\}
$$

integrating, we hive

$$
\left.\begin{array}{r}
A \omega_{1}^{2}+B \omega_{2}^{2}+C \omega_{3}^{2}=h^{2} ; \\
A^{2} \omega_{1}^{2}+B^{2} \omega_{2}^{2}+C^{\prime 2} \omega_{3}^{2}=h^{2} ; \tag{3}
\end{array}\right\}
$$

where h^{2} and k^{2} are the constants of integration.
Eliminating $\omega_{3}{ }^{2}$ from (3), we have

$$
A(A-C) \omega_{1}^{2}+B\left(B-C^{\prime}\right) \omega_{\mathrm{g}}^{2}=h^{2}-C^{\prime} h^{2} ;
$$

$\because \quad \omega_{2}{ }^{2}=\frac{1}{B(B-C)}\left[h^{2}-C h^{2}-A\left(. t-C^{\prime}\right) \omega_{1}{ }^{2}\right] ;$
and $\omega_{3}{ }^{2}=\frac{1}{C(C-B)}\left[h^{2}-B h^{2}-A(A-B) \omega_{1}^{2}\right]$.
Substituting these values of ω_{2} and ω_{3} in the first of equations (1), we have

$$
\begin{align*}
\frac{d \omega_{1}}{d t}+\left[\frac{(A-C)(.1-B)}{B C}\right. & \left(\omega_{1}^{2}-\frac{h^{2}-\left(h^{2}\right.}{A(.1-\bar{C})}\right) \\
& \left.\left(\frac{k^{2}-B h^{2}}{A(A-B)}-\omega_{1}^{2}\right)\right]^{\frac{1}{2}}=0 \tag{6}
\end{align*}
$$

which is gencrully an elliptie transerndent, and so does not almit of integration in tinite terms. In certain particular cases it may te integrated. which will give the value of $\left(\omega_{1}\right.$, in terms of ℓ, and if this value be substituted in (4) and (5),
the valucs of ω_{2} and ω_{3} in terms of t will be known, and thus, in these cases, the problem admits of complete solution.

Con.-Let ω_{x}, ω_{y}, ω_{z} be the axial components of the initial angular velocity abont the principal axes when $t=0$; then integrating the first of ($\%$), and taking the limits corresponding to t and 0 , we have

$$
\begin{equation*}
A \omega_{1}{ }^{2}+B \omega_{2}{ }^{2}+C \omega_{3}{ }^{2}=A \omega_{z}^{2}+B \omega_{y}^{2}+C \omega_{2}^{2} . \tag{7}
\end{equation*}
$$

Let «, β, γ be the direction-angles of the instantaneons axis at the time t relative to the principal axes: so that, it () is the instantaneous angliar velocity, and $\Sigma\left(m r^{2}\right.$ is the moment of incria relative to that axis, we have (Art. 253). $\omega_{1}=\omega \cos \Omega, \omega_{2}=\omega \cos \beta, \omega_{3}=\omega \cos \gamma$, which substituted in (7), gives

$$
\begin{aligned}
& A \omega_{x}^{2}+B \omega_{y}{ }^{2}+C \omega_{z}^{2}=\omega^{2}\left(.1 \cos ^{2} \varepsilon+B \cos ^{2} \beta+C \cos ^{2} \gamma\right) \\
& =\omega^{2} \Sigma_{1 m r^{2}} \text { (Art. } 232 \text {, C.er.) } \\
& =\Sigma m r^{2} \\
& =\text { the vis viva of the body; }
\end{aligned}
$$

from which it appearn that the ris riva of the body is constant throughout the whote mation.

Rem.-An ipplication of the general equations of rotatory motion (Art. 257), which is of great interest and importime, is that of the rotatory phenomena of the earth under the action of the attracting forces of the sun and the moon, the rotation being considerel relative to the centre of gravity and an axis passing through it, just as if the centre of gravity was a fixed point (Art. 249, Sich.) : and the problem treated as purely a mathematical one. Also, in addition to the sun and the moon, the problem may be

QUCATIONS.

be known, and f' complete solı-
nponents of the ipal axes when and taking the
${ }_{2}^{2}+C \omega_{2}^{2}$.
he instantaneons axes: so that. if and $\dot{s} m m^{2}$ is the have (Art. 253), os γ, which sub-
$\cos ^{2} \beta+\left(\cos ^{2} \gamma\right)$
(.ar.)
body
f the borly is com-
tions of rotatory rest and importhe earth under is and the moon, , the eentre of as if the centre S(h.) : and the I onc. Also, in moblem may be
extended so as to include the action of all the other bodies whose influence affects the motion of the earth's rotation. In fact the inrestigation of the motion of a system of bodies in space might be continued at great length; but such investigations would be clarly beyond the limits proposed in this treatise. The student who desires to continue this :nteresting subject, is referred to more extended works.*
EXAMPLES.

1. A hollow sphericul shell is filled with fluid, and rolls down a rough inelined plane; determine its motion.

Let M and M^{\prime} be the masses of the shell and fluid respectively, k and k^{\prime} their radii of gyration respectively abont a diameter, and a and a^{\prime} the radlii of the exterior and interior surfaces of the shell; then using the same notation as in Art. 246, we have

$$
\begin{equation*}
\left(M+M^{\prime}\right) \frac{d^{2} \cdot r}{d t^{2}}=\left(. M+M^{\prime}\right) g \sin a-F \tag{1}
\end{equation*}
$$

As the spherical shell rotates in its descent down the plane, the fluid has only motion of tramslation ; so that the equation of rotation is

$$
\begin{equation*}
M h^{2} \frac{d^{2} \theta}{d t^{2}}=F a \tag{2}
\end{equation*}
$$

Multiplying (1) by a^{2} and (2) by a, and adding, we have

$$
\left[\left(M+M^{\prime}\right) a^{2}+M h^{2}\right] \frac{d^{2} x}{d t^{2}}=\left(M+M^{\prime}\right) a^{2} y \sin \kappa
$$

If the interior were solid, and rigidly joined to the shell. the equation of motion would be

* See Price's Mech's, Vol. II, Prall’н Mech'r, Roulh’n Rigid Dynamicr, La Piace's ?'écauique Céleste, etc.
$\left[\left(H^{+} \cdot I^{\prime}\right) a^{2}+M h^{2}+M^{\prime} k^{2}\right] \frac{\left(c^{2} x\right.}{d t^{2}}=\left(M+M^{\prime}\right) a^{2} g \sin c .(4)$
Integrating (3) and (4) twice, and denoting by s and s^{\prime} the spaces throngh which the centre moves during the time t in these two cases respectively, we have

$$
\begin{equation*}
\frac{s}{s^{\prime}}=\frac{(M+M) a^{2}+M h^{2}+M^{\prime} k^{\prime 2}}{\left(M+M^{\prime}\right) a^{2}+M k^{2}} \tag{5}
\end{equation*}
$$

so that a greater space is deseribed by the sphere which has the fluid than by that whieh has the solid in its interior.

If the densities of the solid and the fluid are the same, we have froal (5), by Art. 233, Ex. 14,

$$
{ }_{s}^{s}=\frac{\pi a^{5}}{7 u^{5}-2 a^{\prime s^{\prime}}} \quad \text { (Price's Anal. Mechs., Vol. II, p. 368). }
$$

2. A homogeneons sphere rolls down within a rough spherical bowl: it is reguired to determine the motion.

Let $"$ be the radius of the sphere, and b the radius of the bowl; and let ns suppose the sphere to be placed in the bowl at rest. Le ${ }^{+} O C Q=\phi$, $Q C^{\prime} A=\theta, \quad B C O=\varkappa, \omega=$ the angular velocity of the hall about an axis through its centre $P, k=$ the corresponding rathus of gyration ; $O . M=$ $x, M I^{\prime}=y ; m=$ the mass of the ball. Then

$$
\begin{gather*}
m \frac{d^{2} \cdot x}{d t^{2}}=-R \sin \phi+F^{\prime} \cos \phi \tag{1}\\
m \frac{d^{2} y}{d t^{2}}=R \cos \phi+F \sin \phi-m g \tag{Z}
\end{gather*}
$$

$$
\begin{equation*}
m k^{2} \frac{d \omega}{d t}=a F \tag{3}
\end{equation*}
$$

by s and s^{\prime} the ing the time t
(5)
here which has its interior.
I are the same,
I. II, p. 368).
ithin a rongh motion.
e radins of the placed in the

Now to determine the angular velocity of the ball, we must estimate the angle described by a fixed line in it, as $P A$, from a line fixed in direction, as $P . M$, and the ratio of the meninitesimal increase of this angle to that of the time will le the angular velocity of the ball.

$$
\therefore \omega=\frac{d M P .1}{d t}=\frac{d t}{d t}+\frac{d \theta}{d t} .
$$

Since the sphere docs not slide, $a \theta=b(a-\phi)$;

$$
\begin{align*}
& \therefore \omega=\frac{a-b}{a} \frac{d \phi}{d t} ; \\
& \therefore \frac{d \omega}{d t}=\frac{a-b}{a} \frac{d^{2} \phi}{d l^{2}} ; \tag{8}
\end{align*}
$$

from (3), (7), and (8) we get

$$
\begin{equation*}
(b-a) \frac{d^{2} \phi}{d t^{2}}=-\frac{6}{g} g \sin \phi ; \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\therefore \quad(b-a)\left(\frac{d \phi}{d t}\right)^{2}=\frac{10 \xi}{\tau}(\cos \phi-\cos r) . \tag{10}
\end{equation*}
$$

Substituting (9) in (7) we have

$$
\begin{equation*}
F^{\prime}=\frac{z_{7}}{z^{\prime} m y \sin \phi .} \tag{11}
\end{equation*}
$$

Substituting (4), (9), (10), (11) in (1) we have

$$
R=\frac{m y}{7}(17 \cos \phi-10 \cos \alpha) ;
$$

therefore the pressure at the lowest point

$$
=\frac{m y}{7}(17-10 \cos (c) ;
$$

and the pressure of the ball on the bowl vamishes when

$$
\cos \phi=\frac{10}{4} \cos c .
$$

Cor.-If the ball rolls ove a small are at the lowest part of the bowl, so that "and $力$ are always small, cos a, and $\cos \phi$ may be replataed by $1-\frac{\pi^{2}}{2}$ nud $1-\frac{\phi^{2}}{2}$ respectively ; and from (10) we have

$$
\begin{aligned}
& \frac{-d \phi}{\left(\sigma^{2}-\phi^{2}\right)^{\frac{1}{2}}}=\left[\frac{5 g}{\tau(b-a)}\right]^{\frac{1}{2}} d t ; \\
& \therefore \phi=\| \cos \left[\begin{array}{c}
\delta g \\
\tau(b-a)
\end{array}\right]^{\frac{1}{t} t ;}
\end{aligned}
$$

thas the ball comes fo rest at points whose angular distance is " on twoth sides of 1 , the lowest pint of the bowl ; mind the periodic tine is

$$
\pi\left[\frac{i(1)-a)}{5 g}\right]^{\frac{t}{2}} ;
$$

therefore the oseillations are performed in the same time as those of a simple pendulum whose length is $\frac{7}{3}(b-a)$, (Art. 194). (Price: Amal. Mech's, Vol. II, 1. 360.)
3. A homogeneous sphere his an angubar velocity o about its diameter, and gradually contracts, remaining constantly homogencons, till it has half the origimal diameter; refuired the fial ingular velocity. Ans. \& f .
4. If the earth were a homogeneous sphere, at what point must it be struck, that it may receive its present velocity of translation and of rotation, the former being 68000 miles ger hour nearly? Ans. at miles nearly from the centre.
5. A homogeneoms sphere rolls dow. a rough inclined phame; the inclined plame rests on a smooth horizontal piane, along which it slides by reason of the pressure of the sphere; required the motions of the inclined plane and of the centre of the sphere.
Let $m=$ the mass of the sphere, $M=$ the mass of the inelined plime, $a=$ the radius of the sphere, $"=$ the angle of the inclined plane, Q its apex; O the place of Q when $t=0$; O^{\prime} the point on the phane which was in contact with the point A of the sphere when
 $t=0$. at which time we may suppose all to be at rest: $A C P=\theta$, the angle through which the sphere has revolved in the time t.
Let O be the origin, and let the horizontal and veetienl lines through it be the axes of x and $y ; O Q=x^{\prime}$: and let $(x, y)(h, k)$ be the places of the centre of the sphere at the times $t=t$ and $t=0$ reppetively. Then the ergations of motion of the sphere are

$$
m \frac{d^{2} x}{d l^{2}}=r^{\prime} \cos \alpha-R \sin \alpha,
$$

$$
\begin{aligned}
m \frac{d^{2} y}{d t^{2}}= & F \sin c+R \cos c-m g \\
& \frac{\rho_{b}}{\mathrm{~b}} \cdot \pi^{2} \frac{d^{2} \theta}{d t^{2}}=a F^{\prime}
\end{aligned}
$$

and the equation of motion of the plane is

$$
M \frac{d^{2} x^{\prime}}{d t^{2}}=-F \cos \iota+R \sin \alpha_{0}
$$

From the geomenry we have

$$
\begin{aligned}
& x=h+x^{\prime}-a \theta \cos \alpha \\
& y=k-a 0 \sin \alpha
\end{aligned}
$$

From these equations we obtain

$$
\begin{aligned}
& x^{\prime}=\frac{m \cos \boldsymbol{a}}{m+M} a \theta \\
& =\frac{5 m \sin a \cos a}{7(m+M)-5 m \cos ^{2} c} \cdot \frac{g t^{2}}{Z} ; \\
& \therefore \quad x=\ddot{h}-\frac{5 M \sin c \cos \varepsilon}{7(m+M)-5 m \cos ^{2} \varangle} \cdot \frac{g t^{2}}{2}, \\
& y=k-\frac{5(m+M) \sin ^{2} c}{7(m+M)-5 m \cos ^{2} c} \cdot \frac{g t^{2}}{2}
\end{aligned}
$$

which give the values of x and y in terms of t.
Also wa obtain

$$
(m+M)(x-h) \sin \varepsilon-M(y-h) \cos u=0
$$

Which is the equation of the path deseribed by the centre of the sphere ; und the ${ }^{2}$ fore this puth is a straight line.
6. A heavy solid whed in the form of a right cireular eylinder, is composed of two substanees, whose volumes are
equal, and whose densities are ρ and ρ^{\prime}; these suhstances are arranged in two different forms; in one cave, that whose density is ρ ownpies the central part of the whed. and the other is phaced as a ring round it: in the second calse, the phaces of the substances are interchanged ; t and t are the times in which the wheds roll down a given rough inclined phane from rest; show that

$$
t^{2}: t^{\prime 2}:: 5 \rho+7 \rho^{\prime}: 5 \rho^{\prime}+7 \rho
$$

7. A homogeneous sphere moves down a rough inclined plame, whose angle of inclination a to the horizon is greater than that of the angle of friction; it is required to show (1) that the sphere will roll without sliding when μ is equal to or greater than $\frac{8}{\text { g tan }} \boldsymbol{c}$, and (2) that it will slide and roll when μ is less than $\frac{3}{7}$ tan a, where μ is the coefficient of friction.
8. In the last example show that the angular velocity of the sphere at the time t from rest $=\frac{5 \mu g \cos a}{2 a} t$.
9. If the boly moving down the plane is a cirenlar cylinder of radius $=4$, with its uxis horizontal, show that the body will slide and roll, or roll only, according as a is grenter or not greater than $\tan ^{-1} 3 \mu$.

[^0]: * Forces, velocities, and accelerations are arected quanilhex, and wo may be represented by a line, in difvetion and anagnitude, and may be compounded in, samo way as vectors.

 If anything has magnimide and direction, the magnitude and direction laken together constitute a vector.

[^1]: * Oregory's Mcchaulce, p. 14

[^2]: * The moments of egulvaleut couples may have like or unlike elgne

[^3]: * The support on which il reste.

[^4]: * The moment of the force actine on clement dm io atricty dm. $\boldsymbol{g} \cdot \boldsymbol{r}$, but alnce
 thvity, it may be oultted and It becomes more convenient to speak of the moment
 of the dement, meaning by if the proinct of the mase of the rlement $l \boldsymbol{m}$. and if
 of the centre of gravity.

[^5]: * Usually called Guldin's Theorem, but orlgitally counclatexl by lappun. (See Wattou't Mechanical I'roblems, p. 42, 8d Ed.)

[^6]: * Ranklue's Applied Mechamien, p. 211 .
 + Sometmes called "the angle of repose; "also called "the "inting angle of respetance."

[^7]: * Minchin's Stalice, p. S4.

[^8]: * From tho nature of projections (Anal. Geom., Art. 168), it In clear tiat in any acries of polnis the projection (on a given the) of the lle which joins the first and lisal. In equal to the sum of the projections of the lines which join the pohtes two and lwo. Thum, if the aldes of a clowed polygon, taken in ordre. be marked wilh arrown polnting from each vertex to the next one; and if their projectlotw ber marked whth arrowe in the same directions, then, lines measured from left to right being consldered powttive, and llas from right to left megntive, the sum of" the pro. jections of the sides of a closed podyson on any rifht line is zero.

 8

[^9]: Or reltual vork (See Art. 101, Rem.). This cquation has been made by larruuge the foundation of hiк great work on Mechanlen, "Mecanlquo Salyifuc." (Price's Anal. Mech., Vol, J. p. 1+2.)

[^10]: * Sometimes called modulus

[^11]: * See Prlce's Anal. Mechs., Vol. I, p. 216.

[^12]: - Lo each case the body is supposed to start from ret unles otherwise stated

[^13]: * Sometmen called the radid acoteraiton.
 + Somedmes called the (ransversal acceleration.

[^14]: * The range on the linclined plane.

[^15]: *Thomeo and Tait'r Nat. Phil., p. 241.

[^16]: * Parkineon's Mechanice, p. 187. See paper by Pr. Whewell on the prineiplea of Dymamles, purlicularly as atated by Froneb wrikers in the Edinburgh Journal of scieuce, Vol. VIll.

[^17]: Ilutlon's Tracta.

[^18]: * This chapter contalns the firat principles of Mathematical Artronomy. It may. however, be omitifed by the mindent of Engineerlug.
 \dagger Cabled Central Orbits.

[^19]: * Ser Talt and stecle'm Dymanice of a Partile, p. 119; also Prall'm Merh's. p. 28.

[^20]: * See Legentréle Tralté des Fonctions Eiliptiques.

[^21]:

[^22]: * This is the usual phraseology, lut minleadlug, Ency. Brit., Yol. XV, Art Mectis.

[^23]: * One ton lofing weso low. unlerr oherwise slated.

[^24]: * The letters II.-P. are often used as abbreviations of the words horse-power.

[^25]: * Called mas actual energy, or energy of motion.

[^26]: * Sce Tate In Mechanice' Magazine, in the year 1811.
 + One busbel of coal $=81$ or lt lbs., deponding upon where it is. Goodeve, 1. 120).
 \ddagger Bonrne on the Stean Engine, 1. 171, mid Fibrairn, Ukefnl Information, 1). 177

[^27]: * That Is, althongh δx is not equal to $d x$, yet the ratio of δx to $d x$ in cqual to the ratio of δt to ct .

[^28]: Meche., p. 230; alwo an invariable adis, nee Pricern Mecla, Vol. II, p. 出々.

