CIHM
 Microfiche Series (Monographs)

ICMH
 Collection de microfiches (monographies)

回

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy avallable for filming. Features of this copy which may be blbliographlcally unique, which may alter any of the Images in the repruduction, or which may ilgnificantly change the usual method of filming are checked below.

Coloured covers /
Couverture de couleur

Covers damaged /
Couverture endommagée

\square
Covers restored and/or laminated /
Couverture restaurée etou pelliculéeCover title missing / Le titre de couverture manqueColoured maps / Cartes géographiques en couleurColoured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations /
Planches evou illustrations en couleur
Bound with other material /
Relié aveç d'autres documents

Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / Ilse peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments /
Commentaires supplémentaires:

L'Institut a microfilmé le meilleur exemplalre qu'il lui a ét'́ possible de se procurer. Les détails de cet exem. plaire qul sont peut-etre uniques du polnt de vue bibliographlque, qul peuvent modifier une Image reproduite, ou qul peuvent exiger une moditication dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages / Pages de couleur
Pages damaged / Pages endommagées
Pages restored and/or laminated /
Pages restaurées eVou pelliculées
Pages discoloured, stained or foxed /
Pages décolorées, tachetées ou piquées

Pages detached / Pages détachées

Showhrough / Trans parence

Quality of print varies /
Qualité inégale de l'impressionIncludes supplementary material /
Comprend du matériel supplémentaire
Pages wholly or partially obscured by errata slips, tissues, elc., have been refilmed to ensure the best possible image / Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux fois afin d'obtenir la meilleure image. possiole.

This item is filmed at the reduction ratio checked below /
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed hare hes been reproduced thanks to the generosity of:

National Library of Canada

The imegas appeering here are the beat quaily possibio considering the condition and iagibility of the original copy and In keeplng with the filming contrect specificetions.

Original copies in printed peper covers are fllmed beginning with the front cover and ending on the last page with e printed or illustresed impression. of the beck cover when appropriata. All other original copies are filmod beginning on the flras pege with e prinsed or lllustrated Impression. and ending on the leat pege with a printed or Illustrated impression.

The last recorded freme on each microfiche shall contain the symbol \rightarrow Imeening "CON. TINUED"), or the symbol ∇ (meaning "END"). whichevar applies.

Meps, plates, charts, etc.. may be filmed et different reduction retios. Those soo lerge to be entirely included in one exposure are fllmed beginning in the upper lets hend corner. left to right and top to botsom, as many fremes as required. The following diegrame illustrete the meshod:

L'axempiaire filmd fut raproduit gráce a ia génćrosité de:

Bibliothèque nationale du Canada

Las images suiventes ont tré paproduitas svac la plus grend soin. compra ranu de le condition at de la netraté de l'axampleira filmd. st an conformitd avec les conditions du contret de flimege.

Les axemplelras origineux dont le couverturs an pepier est Imprimbe sont fllmds en commençent per le premier plat at en serminant soit par le dernidre pege qul compore une ampreinse d'Impresaion ou d'liiustretlon, soir per la second plat, selon le ces. Tous les aurres exemplaires originaux sont fllmes en commencent per le premidre page qul comporte une ampreinte d'impression ou d'llustretion at an terminant par ie dernidre pege qui comporte une talle empreinte.

Un des symboies suivents appersitrs sur lo dernitro imege de cheque microficha, seion ls ces: le symbole \rightarrow signifle "A SUIVRE". It symbole ∇ signifie "FIN".

Les certes. pianches, tebieaux, etc., peuvent àte filmes 1 des raux de réduction differsnts. Lorsque le document est trop grend pour áre reproduit an un seul cliche. il est filmd partir de l'engle suptrieur gauche, de gauche à droisa. et de heut en bas, on prenent is nombre d'images nécessaire. Les diagrammes suivents illuarrent le mérhode.

MICROCOPY ICSOUTION TEST CHART

(ANSI Ond ISO TEST CHART No 2)

A Guide to

Rangional Anatumu

> by
> JUHN C A M ER O N, M. D. (Edin.) D. Sc., (St. And.) Professor of Anatomy in Dalhousie University. Fellow of the Royal Society of Edinburgh, Fellow of the Royal Society of Canada, Member of the Royal College of Surgeons, England, formerly Examiner in the Universities of London and St. Andrews, and on the Conjoint Examining Board of the Royal Colleges of Surgeons and Physicians, of London.

Copyright, Canada, 1920 by JOHN CAMERON

FOREWORD.

This book has been written at the urgent request of the students, of my anatomy classes at lathounie l'niversity, to whom it is hereby dedicated. The idea involved in the production of this book is to provide the student with a brief though concise guide to lis work in the dissecting rom, which is the only place where an adequate knowledge of Anatomy can he acquired. It was maniPesty impossible to provide illustrations in a work sold for so small an amount ; but even apart from this fact the methods of teaching adopted by the author requite that the student should make his own diagrams and sketches. Visualising is Nature's stimulus to the memory centres, and is the open sesame to a true and permanent knowledge of Anatomy.

JOIN CAMERON.

October 191%.

REGIONAL. ANATOMY OF THE UPPER LIMB.

Disection. The skin is to be reflected from the anterior aspect of the chent and the axilla under the supervision of the demonstratur who will make the necutary incisions. The dewcending cutaneous nerves that strearn over the clavicle must be wecured. An ant "rion cutanerous nerve will be found emerging next to the sternum in each of the upper six intercontal spaces except the first. Tn lateral cutaneous nerves (anterion and posterior branches) on the lateral aspect of the trunk ought also to be secured. The mamina is usually atropse in clisweting romm subjects. It may be noted, however, that its lohules which are from twelve to iwenty in number, are entirely superficial to the deep fascia. The ducts from the lobules open on the surface of the nipple. The deep facia is next to be removed from the pectoralis major and the serratus masnus muscles.

The axilla or arm pit is a four sided space with a base ind an ajex. In rach wall are found three structures, two of these being nutiscles. Tue anterior wall is componed of the pectoralia major, pectoralis minor and the costo-coracoul menn. brane. The posteriur wall contains the subscapularis, the tendon of the latissimus dorsi and the teres milior. The external wall exhibits the short head of the biceps, the coraco-brachialis and the surgical neck of the humerus, while the serratus magnus and the upper 5 or 6 ribs with their intercostal muscles consthtute the internal wall. The base is dome shaped and formed by the skin. The three sided apex is bounded by the clavicle in front, the upper border of the scapula behind and the ist rib internally (examine these in the skeleton).

The pectoralis major arises from the inner half of the anterior aspect of the clavicle (clavicular head) and from the lateral half of the front of the sternum, the first six costal cartilages and the aponcurosis of the external oblique. Its fibres converge towards their insertion which is into the outer lip of the bicipital gr.xove of the humerus. Its nerve supply is from the external and internal anterior thoracic nerves and its action is to flex and adduct the sh uulder joint.

Retlect the pectoralis major from its orixin, thus exp sing the costo-coracoid membrane and the pectoralis minor. The latter arises fr m the 3 rd , 4 th \& 5 th ribs close to their cartilage; and is inserted into the inner border of the coracoid process. Its nerve supply is from the internal anterior thoracic which pierces it, and its action is to depress the scapula. Refect this muxile from its origin.

The costo-coracold membrane is a layer of loose connective tissue which fills up the sap between the pectoralis minor and the clavicle to both of which it is attached. It contains one well defined band which pusies from the first costal cartilage to the coracoid process. It is pierced by the thoracic axis artery and vein, the cephalic vein and the external anterior thoracic nerve.

The contents of the axilla will be next exposed and cleaned. These are the axillary artery and its branches, the axillary vein and its tributaries including the cephalic vein, the three cords of the brachial plexus and their branches, the nerve to the serratus magnus, the intercosto-brachial nerve, lymphatic glands and vessels and the sheath round the axillary artery.

The axillary artery begins at the outer border of the Ant rith as a continu. ation of the subclavian, and after traverung the axilla ends oppowte the lower borter of the teres major by changing it " name into trachial. It It divided for convenience in demcription into three part by the pecturalia mimer. In front of the firs part are the akin, fanciac, pestoralin major, comelocoracoid membrane, cephalic vein and a nerve lexp comnecting the two anteror thoracic nerves. Be. hind is the firmt digitation of the wrratus maknus with ite nerve of mupply. Ex. ternally are the three cordn of the lrachial plexun anel meternally the axillary vein. In front of the wecond peret of the artery are the whin. lawiae, pectoralis majer and pecturalimener. Ihehinet is the proterior cord of the hrachial plexum, to the outade is the outer corl amd internally is the axillary vein with the internal cond in. tervering. In fromt of the third part of the artery are the pectoralis major, the akin and famelae, belind are the nubmeapularia, temeton of latimamux dorm and teres major, externally are the surgical neck of the humerus with the coracobrachialsa and the mort head of the biorm, while internally in as usual the axillary vein. In additum tuo branchen of the brachial plexus will be found on each anpect of the third part of the artery. Externally are the musculocutaneous nerve and outer hrad of the melian (the median nerve itwelf lower down), in front are the inner head of the median and the internal cutanemus nerve of the forearm, behind are the circumtlex and musculo-spiral nerves, and internally the ulnar nerve and the internal cutaneous nerve of the upper anm, the latter lying to the inner side of the vein.

The branches of the axillary artery are; the superior thoracic from the first part, the thoracic axis and lateral thoracic from the seond part, the alar thoracic, subscapular, anterior circumflex and penterior circumllex from the third part. The superior thoracic is very small and ramifies on the upper end of the serratus magnus. The thoracic axis pierces the costi-coracoid membrane and immediately divides intn clavicular, acromial, deltoid and pectoral branches, which supply the clavicular head of the pectoratis major, the tissues over the acromion. the deltoid and the pectoral muscles respectivety. The lateral or long thoracic takes its course from the lower border of the pectoralis minor. It supplies the pectoral muscles and the anterior aspect of the chest including the outer two thirds of the mamma in the female. The alar thoracic is an inconstant branch which supplies the lymph glands of the axilla. The subscapular which is the largest branch of the axillary artery takes its course from the axillary border of the scapula and ends at the inferior angle by anastomosing with the posterior scapular artery. It aupplies the muscles of the posterior axillary wall and gives off the large dorsalis scapulat which winds round the axillary boruer under cover of the teres minor and infraspinatus where it ends by anastomosing with tie suprascapular and posterior scapular. The same three arteries give off anterior branches which anastomose on the anterior appect of the bone under the subscapularis. The anterior and posterior circumflex arteries arise at the same level as the subscapular, and they form an arterial ring round the surgical neck of the humerus. The anterior proceeds outwards under the coraco-brachialis and both heads of the biceps to anastomose under cover of the deltoid with the posterior circumfiez. On the way it sends a branch up the hicipital groove into the shoulder joint.

The puaterior circumflex artery in larger than the anterine. It pawey difcctly backwards throush the quadrilateral space in ampany with the corcumilen nerve. It then sweep forwarde round the surgical neck of the humeris. Irvely supplying the deltoid all the time.

The axillary veln togins at the fower berder of the teres mif in or fromot
 artery. It runs hywards atome the inner aymet of the artery ant ent at the outer terefier of the first rib by chankink name into wutclavian. Ita tributaries correapend on the branches of the artery and it receivew in atditum the cophatic vein.

 eighe terininal branches ate diserbuted piutul the thred part of the artery as alo rady n. .d.

Tie external e ird given off the external anterior thracic nerve and then divides into the mosentocutane bus and the nuter he of of the medion. Phe
 plies the pectoratis majus. The nusculocutanems nerve leaved the arith by pie cing the coraco-brachialis and will te studnd later

The internal cord of the plexus given off the internal anterior tharacte ne res. the internal cutaneus nerve of the upper arta. He internil cutanens in we if the forearm and then divides into fhe uln or nerve ant the intor that, the median. The internal anterner thrack supphes the pot ralla matar $1: 1$:h:a piefces this muscle to end in the pecturativ initer. The cutament on rues of the upper arin and forearm and the ulnar nerve will be studied later.

The posterior e of 1 sives of the sumerior an laterin subsapular nerves ant the nerve so the latisimus dorsi. It the dividesinto the corcumber and mad hi,

 ends in the leres mitur. The nerve to the lathinthe dirsi acoupatie, the subcapular artery in its course to that muscle. The enuscu's, e; iral nerve i.i be studied later. The circumbex nerve passea hachonards through the y+it Irilateral space in company whth the postorior curcumbex artery and gives off a t is to the shwulder goint. It then diviles intos an anterner frimeh which pro eeds with the artery to suppiy the deltoid ant a posterior ivinen which sends a branelh, w.th a pecaine thickenint of its sheath, to the teres miner and atter supplyigi a feex extra tisiss to the deltuid sweeps rund the pusterior edse of that :mus ie to supply the s'in over it.

The intercosto-brachial nerve is the lateral cutaneous branch of the second intercistal nerve. It crusies the axilla to supply the inner aspect of the upper arm, and communicates with the internal cutaneous nerve of the upper ann.

The lymphatic glands are in three groups, one along the main vessels which receives the lymph vessels from the upper limb, one along the lateral thoracie artery which drains the lymph from the anterior chest wall including the outer

23 of the mamma and a third xroup slona lie euherapular artery which receivee the Inmph frow the back.

The Superfictal Diemertion of the Dack.

After reflecting the okln of the hack at far an the level of the lliac creed. the dormal cutanecris nerves are in be lanoted for choe to the middile lline of the back. There are fonud in the cervical reginn. iwelve in the dirual regton and three in the lumbar rexion The traperiun and latitimus dopui musctee are then to be cleaned. The trapexits artere from the external occipital motulerance, the inner thist of the supmerier curvel acciptal line. the ligamentum nuchec, the spines of the eventh cervical and of the iwelve dorsal vertebrac with their intervening oupranpingia ligaments. The fibere converpe tewardn their inertion which in into the outer third of the muaterior ampet of the clavicle, the Inner bordes of the acrimion preses. "the upper brpder of the apine of the scapula. Its nerve cupply in from the accrwiry nerve and the thind and fourth cervical nerven. fis actuin it th hrace elie shmulders.

The latimimus di rai taken origin from the lower ofx dormal apinen and theis suprapintum ligamenta, and by means of the lumbar aponmomala from all the lumbite amones. the back of the sacrum and the powerefor third of the llac creat. It alvi ariew indeparlently from another inch of the iliac creat. from the lower three ulan atel the infertor angle of the seapula. Its tenden sweeps round the
 the flexir of the becimtal gexese. fis nerve is denved from the posterior cord of the hriachual piexis. It is the great inuscle of swimming and proxduces the back. ward sucep of be arn.

 nuperer imple ind vertem ral hereder of the scapula as tar as the pext of the seapular
 frurth erevica!. It we vatezele scapula. 'Ther rombrideus miner rises form the ligatmentim michare and the spines of the wevent cervical and first dirsal verte-
 is frem the het vi th the rhembeids, a hranch of the fifth cervical nerve. and its action is en pull the scapulia upwarls and inwards. The phombeidens major aris. frim the upher four or five dersel spines and the intervening suppaspinous tgatmenta If \& dis retel into the vertebral border of the scapula between tlue spre and llw mfern angle. its nerve supply and its action are the same an tisase of the minor.

The tramserecervical, a 1 ranch of the subclavian, is the artery of this rexun. It divides into a superlicial hranch which acempanies the accorswry nerver alli smptios the trapeziess, and a deen hranch (posterior scapular) which accompanse the nerve to the rhombioids and supplies the same muscles.

The erpatiu muat he defined and examined before the limb is delactied from the trunk. This muscle arien frum the outer appects of the upper eighe nibe midway between theif anslen and anterine ends by nire digitatens. swo of whicb take origin from the apecial tuthercie on the winkl fit, The insertion is atome the while lenath of the vertetral bexder of the sapula in its venital avpect fis nerve in derived from the fith, wath and seventh cervical, and its actun is in thrux forwary the uxwleter girdle. as in buxing.

The Upper Arm.

The limh may nim be removelf from the teunk and the skin refected half way anw the upper arm. The supericial fawia covering the deftoid muscle in to be removed. Sccure the cutanems hranch of the circumlex nerve that oweeph pound the ponterio herder of the deltoid.

The deltoil ances from the onster third of the anterius aspect of the clavicle. the tip and outer horder of the acromion and the lower horder of the apine of the *apula. Its fitres converge towards their inserton inte the deltodd emenence of the humerus. Its nerve supply is from the circurnlex and its action in to alafuct the arm. Note the large sulacrumial hurma which intervenes between its origin and the shoulder foint. Refect this muscle from lis origin.

The subecapularis arises from the anterior aspret of the scapula except a portion near the neck where a bursi intervenes between the musle and the doulder joint. It is inserted into the lesser tuberosity of the humerus. Its nerve supply is from the superior and inferior sulneapular nerves and its action to to adduct and Inwardly rotate the upper arm.

The teres major arises from the forsall aypect of the inferior angle ants the Kower third of the axillary lorder of the scapula. Ifs inwrtion is into the innes Ilp of the bicipital grove of the humerus. It is supplied the the inferior sub*anpular nerve. It arlfucts the upiver arm. The teres minor arises form the middle third or so of the axillary border of the scapula, and is inserted into the lowest Impressinn on the great tuberowity of the humeris. lis nerve supply is from the circumllex and its action ls to adduct the unner arm

The supraspinatus arises from the inner two thirds of the supraspinous fosma of the scapula and is inserted into the uppermont impression on the great euperosity of the humerus. It is supplied by the suprascapular nerve and abJucts the arm. The infraspinatus arises from the infraspinous fossa of the ecipula and is inserted into the middle impression on the great tuberosity of the humerus. It is supplied by the suprascapular nerve and adducts the arm.

The supraseipul r visele and nerse supply the supri and in'rispin sus musile ind also rticuler twige to the shoulder joint.

The quadrangular space is the gap through which the posterior circum?ex artery and the circum'lex nerve pass. It is lxounded externally by the humerss inter ally by the lonz head of the triceps. below by the teres mijor and above by the teres minor when ssudied from behind alove by the subscap alaris when examined from the front).

The triangular space has the same upper and lower boundaries as the quadrilateral from which it is separated by the long head of the triceps which forms its third side. The dorsal artery of the scapula enters it in order to wind round

The Front of the Upper Arm.

The skin must now be reflected to a point two inches below the level of the elbow. The internal cutaneous nerve of the arm, the internal cutaneous branch of the musculo-spiral and the intercosto-brachial nerve will be found on the inner aspect of the arm, while the upper and lower external cutaneous branches of the musculc spiral nerve will be found in the lower part of the outer aspect of the upper arm.

The external and internal intermuscular septa divide the lower part of the upper arm into anterior and posterior muscular compartments. The anterior contains the biceps, coraco-brachialis and brachialis while the triceps nccupies the posterior compartment. Define the anterior group of muscles.

The long head of the biceps arises from the upper end of the glenoid fossa oi the s apula and from the glenoid fibro-cartilage. The short hea.' arises from the tip o1 the colacord process conjointly with the coraco-brachialis. The two heads unite about the middle of the upper arm and the tendon is inserted into the bicipital tuherosity of the radius. It also sends a strong band, the bicipital fascia, to the deep fascia of the forearm. Its nerve supply is from the musculocutaroous a.ld its action is to supinate the hand and flex the "how. The long head abducts and the short head adducts the arm.

The coraco-brachialis arises from the tip of the coracoid process in common with the short heaci of the bicens. It is inserted into the innor aspect of the humerus about its middle and it is supplied by the musculo-..utaneous nerve inmediately before piercin's it. It adducts the arm.

The brachialis arises from the lower half of the anterior aspect of the humerus and from the internal intermuscular septurn. It is inserted into the coronoid process of the ulna. It is supplied by the musculo-spiral and musculo-cutanenus nerves. It flexes the elbow.

The long head of the triceps arises from the axillary border of the scapula immetiatcly helow the glenoid fossa. The outer head takes its origin from the posterior aspect of the humerus above the musculo-spiral groove, while the inner head arises below the musculo-spiral groove and also from the external and internal intermuscular septa. The tendon is inserted into the upper and outer aspects of the olecranon process of the ulna. Its nerve supply is from the mus-culo-spiral and its action is to exterd the elbow. The tong head also adducts the arm.

The brachial artery begins at the lower border of the teres major as a continuation of the axillary artery. Its course in the upper two thirds is vertically down the inne- aspect of the upper arm, while the lower third sweeps downwards and outwards in front of the elbow to terminate opposite the necik of the radius by dividing into radial and ulnar branches. Superficially it is covered all the way
by skin, superficial and deep fascia which separates it from the median-basilic vein at the bend of the elbow. It is also overlapped slightly by the biceps. Posteriorly it is in relation with the long and inner heads of the triceps, the insertion of the coraco-brachialis and the brachialis. The median nerve is to the outer side of the artery in its upper part, crosses superficially or deeply at the level of the coraco-brachialis insertion and then lies to the inner side. The ulnar nerve and the internal cutaneous lie along the inner side of the artery as far as the coraco-brachialis insertion. There they leave it, the former by piercing the internal intermuscular septum and the latter by piercing the deep fascia. The musculo-spiral nerve runs down behind the i!pper part of the artery in company with its superior profunda hranch hut soon leaves it in company with that vessel. The brachial artery is accompanied throughout its course hy two companion veins and along the inner side in its a rer half by the basilic vein as well.

The branches of the brachial artery art superior profunda, inferior profunda, nutrient, anastomotic and muscular branches. The superior profunda arises an inch below the origin and at once associates itself with the musculo spiral nerve in company with which it sweeps downwards and outwards behind the humerus in the musculo-spial groove, supplying twigs to the triceps. On reaching the outer aspect of the upper arm it divides into anterior and posterior branches. The latter runs down behind the external condyle of the humerus to anastomose with the interosseous recurrent artery while the anterior branch pierces the external intermuscular septum in company with the musculo-spiral nerve, and anastomoses in front of the external condyle with thee radial recurrent artery. The inferior profunda arises just below the superior and very often in conjunction with it. The artery at once accompanies the ulnar nerve throush the internal intermuscular septum to the posterior compartment of the arm, where it sapplies the tricess and ends by anastomosimy witi the posterior ulnar recurrent. The nutrient artery to the humerus arises opposite the coracobrachialis insertion and enters the nutrient foramen of the bone which is situated at this level. The anastomotic branch comes of about two inches above the bend of the elbow and runs inwards upon the brachialis where it soon divide; into posterior and anterior branches which anastomese with the posterior and anterior ulnar recurrent arteres sehind and in front of the internal condyle respectively. The muscular branches of the imechial artery pass to the muscles of the anterior coinpartment of the upper arm.

The musculo-cutaneous nerve after its origin from the outer cord of the brachial plexus pierces the coraco-brachialis, and passes downwards and outwards between the biceps and brachialis to the bend of the elbow w late it pherees the deep fascia just externa. to the bieeps tendon. It en ts ly dividiag into anterior and posterior cutaneous branches which supply the anterior and posterior aspects of the skin of the forearm as far as the hand. The musculo-cutaneous nerve also supplies the coraco-brachialis, biceps, and brichialis, the latter part:ally.

The musculospiral nerve arises fom the posterior cord of the Erachial plexus. It runs down behind the third part of the axillary artery and the beginning of the brachial where it joins the superior profunda artery and winds
pound the back of the humerus with this veseel in the musculo-spiral groove. It pierces the external inter-muscular septum and runs down between the brachialis internally and the brachio-radialis and exteneor carpi radialis longus externally. In front of the external condyle it ends by dividing into the radial and porterior interoseous nerves. The musculo-spiral nerve supplies the triceps, brachialis (partially), brachio-radialis, extensor carpi radialis longus and anconeus (partially). High up it gives off its internal cutaneous branch which suppli:s the inner and back part of the upper arm as far as the elbow. Externally it has the upper and lower external cutaneous branches, of which the former supplies the outer aspect of the upper arm as far as the elbow and the latter the posterior aspect of the forearm as far as the wrist.

The Front of the Forearm.

The skin must now be reflected from the front of the forearm as far as the wrist. Running up the middle of the front of the forearm in the superficial fascia will be found the median vein which is joined just below the bend of the elbow by the profunda vein, the latter emerging through the deep fascia for that purpose. The median vein then divides into the median-basilic and the median- pphalic which pass inwards and outwards respectively to join the ulnar and radial superficial veins which course up the corresponding margins of the forearm after draining the venous arch on the dorsum of the hand. By these unions the ulnar and radial veins become the basilic and cephalic veins. and run upwards on the inner and outer aspects of the biceps respectively. The basilic pierces the deep fascia of the upper arm at the level of the insertion of the coraco-brachialis and its termination in the axillary vein has been already noted. The cephalic vein also joins the axillary vein as previously shown.

The cutaneous nerves on the anterior aspect of the forearm are the anterior terminal branches of the musculo-cutaneous and internal cutaneous nerves. Remove the superficial fascia and clean the muscles on the front of the forearm.

The antecubital fossa is a triangular space situated in front of the bend of the elbow. It is bounded externally by the brachio-radalis and internally by the pronator teres, while the hase is an imaginary line drawn through the condyles of the humerus. The roof is formed by the deep fassia which is thickened by the bicipital fascia and pierced by the profunda vein. The lioor is composed of the brachialis and supinator muscles. The contents ate the division of $\mathrm{t}^{\prime} \mathrm{e}$ brachial artery into its radial and ulnar branches, the median nerve and the endon of the ticeps. Of these the brachial artery is intermediate in position, while the nerve lies internally and the biceps tendon externally. On lifting the outer and inner boundaries of the space the radial recurrent and anterior ulnar recurrent arteries may be scen.

The muscles on the front of the forearm, are arranged in a superi:cial and a deep group. The superlicial muscles, five in number, are named from the radial to the ulnar side as follows-the pronator teres, the flewor carpi radialis, the palmaris long :s (sometimes absent) the flexor sublimis digitorum and the fexor carpi ulnaris. All the superficial muscles have a common origin from the incernal
condyle of the humerus. The three deep muscles are the flexor longus pollicis, the flexor profundus digitorum and the pronator quadratus. All these muscles are supplied by the median nerve except $1 f$ (Flexor Carpi ulnaris and inner half of the flexor profundus digitorum which are supplied by the ulnar nerve.) The pronator teres in addition to the common origin from the internal condyle of the humerus, also arises from the coronoid process of the ulna. Between the two heads will be found the median nerve. The muscle is inserted into the outer aspect of the radius about its middle. It is supplied by the median nerve. Its action is to flex the elbow and pronate the hand.

The flexor carpi radialis arises from the internal condyle of the humerus, from the investing deep fascia and from the septa on either side. Its tendon grooves the trapezium and is inserted into the bases of the second and third metacarpal bones on their palmar aspects. Its nerve is the median and it flexes the elbow and wrist.

The palmaris longus arises from the common cr:pin, the deep fascia and the septa on either side. Its tendon pases in front of the anterior annular ligament to be inserted into the palmar fascia and the short muscles of the thumb. Its nerve is the median and it flexes the elhow and wrist.

The flexor sublimis digitorum in addition to the common humerus origin also arises from the internal ligament of the elbow, the coronoid provess of the ulna, the oblique line of the radius and the anterior border of the radius for two inches. The four tendons pass to the fingers and each will be found to split to allow the flexor profundus tendon to pass. Afier reuniting, they split again to he inserted into the lateral margins of the second phalanges of the fingers. Its nerve supply is the median and it flexes the elbow, wrist and the two proximal joints of the fingers.

The flexor carpi ulnaris arises from the common origin an: also from the inner edge oi the olecranon process and the upper two-thirds of the posterior border of the ulna. The ulnar nerve enters the forearm between these tiwu heads. The tendon is inserted into the pisiform bone and the nerve supply is from the ulnar. Its action is to flex and adduct the wrist.

The fexor longus pollicis arises from the middle two-fourths of the anterior aspect of the radius and also slightly from the interossous memi'rane. It has an occasional oriyin from the coronoid process of the ulna. Its tendon is inserted into the palmar aspect of the distal phalanx of the thumb. It is supplied by the anterior interosseous branch of the median and its action is to flex the wrist and all the joints of the thumo.

The flexor profundus digitorum takes origin from the upper three fourths of the anterior and inner aspects of the ulna and also slightly from the interusseous membrane. The four tenlons are inserted into the palmar aspects of the distal phalanges of the fingers. Its nerve supply is from the ulnar and the anterior interosseous. Its action is to flex the wrist and all the joints of the fingers.

The pronator quadratus arises from the pronator ridge on the lower fourth of the anterior aspect of the uina and is inserted into the anterior aspect of the

12

radius in its lower fourth. It is supplied by the anterior interosseous branch of the median and its action is to pronate shand.

The radial artery begins in the antecubital fossa opposite the neck of the radius as the smaller terminal branch of the brachial with which its course is directly continuous. It runs aimost vertically downwards on the outer part of the front of the forearm to the wrist mund the outer aspect of which it winds to reach the back of the hand. In the forearm its posterior relations from above downwards are. the tenilon of the biceps, thr uninator, the insertion of the pronator teres, the flexor sablimis digitorum, the the sor longus pollicis, the pronator quadratus and the lower end of the radlius. It is overlapped in its upper third by the brachio radialis hut is merely covered by the stin and fasciae in its lower two thirds, thus providing a favourable site for examining the pulse. It is acc rnpanied by two compinion veins, and the radial nerve lies along its outer aspect in the middle third.

The branches of the radial artery in this part of its course are, the ratial recurrent, muscular branches, supericial volar and anterior radial carpal. The radial recurrent arises just below the origin and turns upwards in front of the extomal conlyle of the humerus to anastomose with the superior profunda artersThe muscular hranches arise all the way down. The superficial volar arises at the wrist and after supplying the muscles of the ball of the thumb anastomoses with the superficial palmar arch. The anterior radial carpal artery als) arises opposite the wrist and runs inwards under the flexor tendons to anastomose with the anterior ulnar carpal, thus completing the anterior carpal arch.

The ulnar artery is the larger terminal branen of the bracnial and runs downwards and inwards in the upper third of its courss in or der to reach the inner part of the front of the forearm in the lower tevo thirds of which it runsvertically downwards to enter the hand in front of the transverse ligament just external to the pisitorm bone. From ainve downwards its posterior relations in the forearn are, the brachialis, the fesor profuntus dicitorum nearly all the wav) and the transverse !:rament. The unper oollipue third of its curse is cr sise 1 superficiall: b; the pronator teres, 'exor curpi ralialis, pa'maris longus an l fexor subitos digitorum. The lower two thirls are overiaped be the lexer carai ularis. The artery as it lies on the transverse ligameat is protecte 1 by a special slip of strung fascia. Two commanion veins accompany the arterv and the ulnar narve lies along its imer side in the lower two thirds of its cuarse The melian nerve croses it sumericially clase to its orimin but is sepurated from it hy the corozoid head o! • - pronitor teres.
aches of the unar artery in the forempare, anterior and pusterior ulnar recurrent, the common interosseo: in, in eular brancizes. and the anterior and posturior ulnar carpal. The anterior ulnar 1 :urrent arises close t., the origin and turns upwards in front of the internal condyle ∂ anastonose witl/ the anastomotic The posterine ulner recurrent is rather larg : than the anterior and may arise hy a common stem. It tims ufwards behind the internal condyle to anastomose with the anastomstic and inferior profunda.

The common interoseous takes origin immediately below the posterior ulnar recurrent and almost immediately divides into anterior and posterior interoseous. The former runs downwards in front of the interosseous membrane in company with the anterior interosseous nerve and between the flexor longus pollicis and flexor profundus digitorum. At the upper border of the pronator quadratus it pierces the interusseous membrane and runs down on the back of the wrist to join the posterior carpal arch. It gives of muscular branches, the nutrient arteries to the radius and ulna and a communicating branch which runs down underneath the pronator quadratus to join the anterior carpal arch. A small branch may often be fornt accompanying the median nerve. The posterior interosseous artery enters the posterior aspect of the forearm over the upper border of the interosseous membrane and runs downwards between the sup rficial and deep groups of extensor muscles to the back of the wrist where it joins the pisterior carpal arch. It is accompanied a short distance by the posterior interossesus nerve. It supplies the extensor muscles and an interosseous recurrent branch which turns upwards underneath the anconeus to anastomose with the superior profunda artery.

The anterior and posterior ulnar carpal arteries pass outwards on the carpus underneath the flexor and extensor tendons respectively, to anastomose with the anterior and posterior ratial carpal arteries, thus completing the anterior and posterior carpal arches.

The median nerve enters the forearm between the two heads of the pronator teres. It courses vertically downwards between the !lexor sublimis and flexor profundus digitorum and enters the hand under cover of the transverse ligament of the wrist. It supplies the pronator teres, the flexor carpi radiolis, the palmaris longus and flexor sublimis digitorum. It then gives of the anterior interosseous nerve which accompanies the vissels of the same name and supplies the flexor longus pollicis, the pronator quadratus and the outer half of the flexor profundus digitorum. Just above the wrist the median nerve gives off a minute palmar cutaneous branch to the skin of the palm.

The uluar nerve enters the forearm between the two heads of the flexor carpi ulnaris and runs downwards upon the l'exor profundus digitorum. In the lower two thirds of the forearm this nerve fies along the inner side of the ulnar vessels. It then enters the palm by passing superficial to the transverse ligament of the wrist just external to the pisiform bone. In the foreann the ulnar nerve is overtapped throughout its course by the flexor carpi ulnaris. It supplies this muscle and also the inner half of the flexor profundus digitonım. In addition it gives an articular twig to the elbow joint, a dorsal cutaneous branch to the back of the hand and a palmar cutaneous twig to the skin of the palm.

The Hand.

The ball of the thumb or volar eminence is produced by three muscles-the abductor, llexor brevis and opponens poilicis. The projection afong the inner edge of the palm is also produced by three muscles-the abductor, flexor brevis and opponens minimi digiti.

After removing the skin and superficial fascia from the palm it will be noticed that the central hollow portion is covered by the very strong palmar fascia. This is attached above to the transverse ligament and also gives insertion to the tendon of the palmaris longus. When traced towards the fingers the fascia will be found to divide into four slips which are attached to the sheaths of the flexor tendons at the roots of the fingers.

On removing the palmar lascia the superficial palmar arterial arch will be exposed. This lies in a line with the lower border of the outstretched thumb. The arch is completed internally by the superficial branch of the ulnar artery and externally by the superficial volar, the radialis indicis, or the princeps pollicis branches of the radial artery. The superficial palmar arch rests upon the digitel branches of the median nerve and the tendons of the flexor sublimis digitorum. It gives o'f four digital arteries, of which the innermost supplies the inner margin of the ittle finger while each of the other three divides into two branches, which supply the adjacent margins of the index, middle, ring and little fingers. It should be noted that these vessels also supply the dorsal aspects of the last segments of the fingers including the bed of the nail.

Reflect the stin from the palmar aspects of the fingers and thumb and trace these diyital arteries to their termination. It will be noticed that the accompanying digital nerves lie directly in front of these. A little further dissection will expose the sheatheof the flexor tendons. On slitting these open the tendons of the flexor sublimis and flexor profundus digitorum will be released. These can now be traced to their insertions.

The median nerve enters the hand under cover of the transvarse ligament and immediately gives of branches to the three muscles of the ball of the thumb. It then divides into external and internal divisions of which the external sends branches to both sides of the thumb and to the radial side of the index finger: while the internal civision again divides into two branches to supply the adjacent margins of the index, middle and ring fingers. The nerve to the radial side of the index finger gives a twig to the first lumbrical muscle, while the nerve to the ulnar side of this supplies the second lumbrical muscle.

The ulnar nerve enters the hand in front of the transverse ligament alons with the vessels and soon divides into superficial and deep branches. The superficial branch passes downwards under the palmaris brevis muscle (a collection of muscle fibres attached to the slin along the inner edge of the palm and then divides into inner and outer branches. The inner supplies the ulnar margin of the itt!e finger, while the outer divides to supply the adjacent margins of the ring and little fingers, and usually sends a communicating branch to the median nerve.

The transverse or anterior annular ligament of the wrist is attached externally to the tubercle of the scaphoid and the ridge on the traperium, and internally to the pisiform and the hook of the unciform. Two synovial sheaths lie under cover of it, of which the outer encloses the tendon of the flexor longus pollicis, while the inner is wrapped round the tendons of the flexor sublimis and flexor profundus digitorum. Between these two synovial sheaths the median nerve lies. These synovial sacs extend about two inches above the wrist. The one enclosing the flexor longus
pollicis tendon in continued down to its insertion and therefore lines the llesor theath of the thumb. The synovial sac round the sublimis and profundus tendons is continued down to the middle of the palm. but in the cave of the little finger is prolonged as far as the insertion of thes? tendons.

The llesor sheaths are composed of dense fibrous tissue and are attached to the margins of the phalanges of the thumb and fingers. They therefore form fibrous tunnels which maintain the flexor tendons in close contact with the phalanges during flexion of the Ingers. Their tibrous walls are much thinned opposite the inter-phalangeal joints. They are lined by synovial membrane which sends loop like folds round the flexor tendons. As already mentioned, this synovial membrane is continuous with that under the transverse lisament of the wrist, only in the case of the thunb and lit!le finger.

The transverse ligament of the wrist :nd the flexor tendons will now have to be cut in order to expose the deep palmar arterial arch and the deep branch of the ulnar nerve.

The deep paimar arch resti uro the has of the meta arpal bones. It is formed externally by the radial artery and is completed internally lyy the deep branch of the ulnar artery. It gives of three palmar interosscous branches which anastomose with the digital branches of the super:' cial arch. three perforating arteries which pass backwards between the metacarpal bones to anastomose with the dorsal interosseons arteries, and two or three recurrent twigs which anastomose with the antarior carpal arch.

The deep branch of the ulnar nerve accompanies thr deep palmar arch and at once breaks up into numerous branches which supply the seven interosseous muscles, the two inner lunibrical muscles, the deep head of the flexor brevis pollicis, the two adductors of the thumb, the abductor minimi digiti, the flexor brevis minimi digiti and the opponene minini digiti.

The four lumbrical muscles take origin from the tendons of the flexor profundus disitorum, the frst and second arisi $1: g$ from one tendon, the third and fourth from two. Each winds round the radial margin of the corresponding finger to be inserted into the extensor tendon.

The abductor policis takes origin from the scapooid and the transverse ligament. It is inserted into the outer side of the base of the proximal phalanx of the thumb. Its nerve supply is the median.

The llexor brevis pollicis and the opponens pollicis possess a common origin from the ridge on the trapezium and the transverse ligament. The llexor brevis is inserted in common with the abdactor whil: the opponensobtains attachment to the radial border of the first metacarpal. Their nerve supply is from the median.

The abductor minimi digiti obtains origin from the pisiform and the trangverse ligament. It is inserted into the inner side of the base of the proximal phalanx of the little finger. Its nerve supply is the deep branch of the atmar

The flexor brevis and the opponens minimi digiti have a common origin from the transverse ligament and from the hook of the unciform. The flexor
brevis is inserted along with the abductor while the opponena obtains insertion along the ulnar border of the fifth metacarpal. Their nerve supply is from the deep branch of the ulnar.

The adductors of the thumb when defined will be found to consist of oblique and transverse fibres. The formor arise from the traperium, trapesoid, the os magnum and the bases of the second and third metacarpals, while the transverse fibres, spring from the lower tw.)-thirds of the shaft of the third metacarpal. The libres are all inserted into the inner side of the base of the proximal phalanx of the thumb. The nerve supply is from the deep division of the ulnar nerve.

The Back of the Forearm and Hand.

The skin may now be removed from the back of the forearm and hand. The posterior cutaneous branches of the musculo-cutaneous.the musculo-spiral and the internal cutanerous nerves must be defined.

The radial nerve will be found on the dorsum of the hand, where it dividee into five branches which supply respectively the two margins of the thumb, the radial margin of the index and the arljacent margins of the index. middle and ring fingers. The inner one and a half ingers are supplied by the dorsal branch of the ulnar nerve, one twig passing along the inner margin of the little finger while the other passes to supply the adjacent margins of the little and ring lingers.

The deep fasciá on the back of the forearm and hand is well marked and is specially thickened on the back of the wrist to form the annular ligament which is at tached externally to the lower end of the radius and internally to the cuneiform and pisiform. It possesses six compartments for the passage of the extensor tendons. On opening these up after clear ig the muscles, it will be noted that the first or radial compartment transmits the tendons of the abductor longus pollicis and the extensor brevis pollicis, the second contains the tendons of the extensor carpi sadialis longus and brevis, the third is occupied by the tendon of the extensor longus pollicis, the fourth transmits the tendons of the extensor communis digitorum and the extensor indicis and the interosseous vessels of the forearm, the fifth contains the tendon of the extensor minimi digiti and the sixth the tendon of the extensor carpi ulnaris.

The muscles on the back of the forearm are arranged in a supericial and a deep group. The superfial group is named as follows from the radial sidebrachioradialis, extensor carpi radialis longus, extensor carpi radialis brevis, extensor communis digitorum, extensor minimi digiti, extensor carpi ulnaris and the anconeus.

The brachio-radialis arises from the upper two thirds of the external supracondylar ridge of the humerus and the fascia. It is inserted into the outer aspect of the lower end of the radius at the root of the styloid process. Its nerve supply is the musculn-spiral and its action is to flex the elbow.

The extensor carpi radialis longus takes origin from the lower one third of the external supracontylar ridge of the humerus and the fascia. It is inserted into the base of the second metacarpal bone. Its nerve supply is from the musculo-spiral and its action is to extend the wrist.

The remaining five supericial muscles ariw from the external condyle of the humerus, the deep fascia and their intervening septa.

The extensor carpi radialis brevis is inserted into the hase of the third metacarpal bone. Its nerve supply is from the posterior interosmerous and its action is to extend the wrist.

The extensor communis digitorum is inserted by four tendons, each of which forms an expansion on the dorsal aspect of the frst phalanx of each finker. Thin expansion then splits into three slips of which the middle is Inserted into the second phalan x while the others unite to rbtain insertion into the distal platanx. Thesp tendons form the dorsal ligame:ts for the joints of the fingers. It should be noted that the tendon to the ring finger is connected with those on either side by lateral elips. Thls muscle is supplied by the posterior interosseous nerve and its action is to extend the metacarpe-phalangeal joints of the ingers, the other two joints of each finger being extended by the pull of the interossei muscles and the lum bricals upon the extensor tendon beyond this joint.

The tendon of the extensor minimi digiti divides into two slips which unite with the tendon of the extensor communis digitorum that goes to the little finger. This muscle obtains its nerve supply from the posterior interosseous and its action is to extend the little finger at its metacarpo-phalangeal joint.

The tendon of the extensor carpi ulnaris is inserted into the base of the fifth metacarpal bone. This muscle is supplied by the posterior interossoous nerve and its action is to extend the wrist.

The anconeus is inserted into the upper fourth of the posterior sarface of the ulna. Its nerve supply is derived from the musculo-spiral and posterior interosseous nerves and its action is to extend the elbow.

The muscles of the deep layer on the back of the forearm are five in number -the abductor longus pollicis, the extensor brevis pollicis, the extensor longus pollicis, the extensor indicis and the supinator.

The abductor longus pollicis arises from the middle third of the posterior surface of the radius, from the posterior surface of the ulna just below the insertion of the anconeus and from the interosseous membrane. Its tendon is inserted into the radial side of the base of the first metacarpal bone. Its nerve supply is from the posterior interosstous and its action is to abduct the thumb.

The extensor brevis pollicis arises from the lower third of the posterior surface of the radius and from the inte:orsecus membrane Its tendon is inserted into the base of the proximal phalanx of the thumb. Its nerve supply is derived from the posterior interosseous and its action is to extend the first two joints of the thumb.

The extensor longus pollicis arises from the posterior surface of the ulna Just above the extensor indicis and from the interosseous membrane, It is inserted into the base of the distal phalanx of the thumb. Its nerve supply is from the posterior interossevus and its action is to extend all the joints ot the thumb.

The extensor indicis arises from the lower fourth of the posterior surface of the uina and from the interosseous membrane. It ends by blending with the
tendon te the index finger from the extenwor communis digitorum. Itw nerv: aupply is from the ponterion intera weons.

The supinator muscle arisen from the orisicuiar ligament of the radius and a spectal hollow on the ulna junt betow this. The muscle fibres pasa outwards in be inserted round the neck of the sadius and into the V shaped area on this bone that is mapped out by the anterior and posterior obiique iines. Its nerve supply is from the posterior interosecoss and its a tion is w supinate the hand.

The posterior interosseous nerve is one of the terminal branches of the musculo-epiral. It reaches the back of the forearm by plercing the supinator muscle and becomes aswociated with the interosseous versils. It supplies all the muscles on the back of the forcarm exceitt the brachio-radialis, the extenwor carpl radialis longus and half of the anconeus. Its terminal flaments supply the carpal joints.

The radial artery reaches the back of the hand by winding round the carpus close to the root of the thumb. It passes between the heads of the irst dorsai inceroseous muscle in order to reach the palm where it enta hy joining the deep palmar arch. On the dorsum of the hand it is crossed super icially by the tendons of the abductor lonpus pollicis, the extensor brevis pxillicts and the extensor longus pollicis. In this part of its course the artery gives off two emall dorsal arteries to the thumb, a small dorsal artery to the index finger and the posterior radial carpal which joins the prosterior uin:r cirpil artery to form the posterior carpal arch. The latter arterial arch is situated upon the dorsal aspect of the distal row of carpal bones and gives of three dorsal interosseous arteries which run downwards to supply the inner three and a half fingurs. Just as the radial artery is entering the palm it gives of the princeps pollicis, which divides to supply both sides of the thumb, an! the radialis indicis which supplies the radial side of the index finger. These two arteries have been already shown to form an anastomosis with the superficial palmar arch.

The interosseous muscles consist of four dorsal and three palmar. The dorsal muscles ariee from the metacarpal bones between which they lie. They abduct the fingers from an imaginary line drawn through the middle digit, and they are inserted partly into the extensor tendons and partly into the bases of the proximal phalanges of the fingers. The first is inserted inte the outer sife of the inder tinger, the scoond and thirl intes each side of the midhle finger and the fourth into the inner side of the ring finger.
The palmar interossenus muscles are three in number, and each arises from the metacarpal bone of the finger upon which it acts. They adduct the fingers towards a line drawn through the middle digit. The first is attached to the inner side of the index finger, the second to the outer side of the ring finger and the third to the outer side of the little finger. The interosseous muscles are all supplied by the deep branch of the ulnar nerve.

The deep head of the flenor hrevis pollitis is the namb given to at जrali muscic found under cover of the first dorsal interosseous muscle. It arises from the base of the first metacarpal bone and is inserted into the base of the first phalanx of the thumb along with the adductors. It is supplied by the deep branch of the ulnar nerve.

The Reptonal Anatomy of the I,owif l.imb.

After the akin has been reflected from the upper half of the from of the thigh under the supervision of tha demonstrator who will mase the regultie incla. was, the following cutanerous nerves will be found in the supreficial facta- the external, intermediate and internal cutaneous nerves of the thigh. Their relative positions are indicated by their names, and thry can be traced downwards in a vertical direction as far as the patella. Two smaller cutaneous nerves should alw be looked for. These are the ilio-inguinal which emerges throw, n the subcutaneoss inguinal ring. and the genito-fermoral nerve which pierces the deen) fascla just below the centre of the inguinal ligament. The long eaphenous vein will be observed running upwards in the inner part of the dissection. A few lymph glands will be found in the region of the inguinal ligament. These recetve the lymph drainage from th: exterial kentals and the lower lim!, and are therefore in upper and lower groups. The; are termil the superficial inguital glands.

The deep fassia is well developed in this rexion. Towards the outer side of the thigh it becomes thickened into a strong aponeurosis termed the fascia lata which extends from the iliac crest down to the tibia and libula and receives towards its upper end the insretions of the gluteus maximus and tensor fasciae femoris muscles. The deep fascia of the front of the thigh is pierced by an opening for the long eaphenous vein termed the saphenous onening. This is situated
just below the inner end of the inguinal ligament. Th in shape, is about one inch long. and is bounded exter...
ing is vertically oval, by a sharp falciform edge, the upper end of which is attached to the inner e remity of the inguinal
ligament. Besides the long saphenous vein, a few superficial inguinal veins and lymphatic vessels will be found passing through the opening. The deep fascia may now be carefully removed, in order to define the muscles.

The femoral triangle will now be exposed. Its base is above and is formu. by the inguinal ligament. The sartorius muscle constitutes its outer border, while the inner boundary is formed by the inner edge of the adductor longus muscle. The triangle occupies approximately the upper third of the front of the thigh. Its floor is formed from without inwards by the ilio-posas, the pectineus, and the adductor longus muscles. The roof, as already shown, is formed by :he deep fascia, which is pierced by the saphenous cyening. The contents are (1) The upper half of the femoral artery and its branches: (2) The upper half of the femoral vein and its tributaries including the termination of the long saphenous vein: (3) The femoral nerve and its branches; (4) The external cutaneous and genitofemoral nerves before they pierce the deep fascia; (5) Some lymphatic glands; (6) The femoral sheath.

The femoral artery begins behind the inguinal ligament at a point midway between the anterior superior iliac spine and the symphyoia nuthis, as a continuation of the external iliac artery. A line from this point to the prominent internal condyle of the femur approximately indicates the course of the artery. At the apex of the femoral triangle it disappears into the adductor canal. Posteriorly
 and the adductor longun from alove downwards. while super ctaliy it is coveret merely by the akin and facia. The upper ende of both aftery and vein are invested by the dense fermural theath. The neeve to the pectineus will tre form! pasing inwards behind the upper end of the artery. Tlie femosal veth lies in ternal to the artery at the inguinal igeament, but comes to lie direitly pumertor at the apex of the femoral triangic. The lemoral nerve and ite i, ranclew lie en the ousuef side of the artery.

The hranches of the u;per h alf of the fe nowal artery in order of origin are (1) The superf cial inguinal vesels (2) The deep) external gudental. is The profunda femoris. (i) Muscular branchew. The inguinal vessels arise just below the ligament, and of these the super cial external pudendal runs in. wards to the gentals, the superfinial e;isastric supplies the anteriox abdomina! wall and the superficial circumflex llates supplies the subcutaneons tisuew over the region of the iliac creme. The deep external pudendal arisen just below the preceding, and courser inwards on the f'our of the femoral triangle to supply the genitals. The prol. nda femoris artery will be itudied later.

The femoral sheath invests the upper ends of the femoral vessels and is com. posed oí strong librous tissue. It extends downwards upon the artery for 1) inches, but its inner part is prolonyed betow the level of the inguinal ligament to the extent of half an inch only. Its anterior wall is continuous aloove with the fascia transversalis of the anterior ahdominal wall, while les powterior wall is coninuous with the fascia covering the ilio-psoas. The femoral sheath present, three compartments, of which the outer contains the femoral artery and the genito-femoral nerve, and the middle contains the femoral vein and a few lymph vessels. The inner compartment, which is half an inch long, is termed the femoral canal. It normally transmits lymph vessels and contains some adipos: tissue, but may contain a temoral hernia. On passing the finger up the canal it will be noted that the upper end is limited by a ring-the femoral ring. This is bounded in front by the inguinal ligament, internally by the sharp edge of the lacunar ligament, behind by the pubic bene, and externally by the femoral vein. This is the point where a femoral hernia becomesstrangulated, and in relieving this the surgeon is liable is cut the abnormal obturator artery which crosses the femoral ring in about $30{ }^{\circ} ;$ of individual:.

The skin must be rellected from the lower half of the front of the thigh and? the cutaneous nerves now traced to their linal terminations. In addition th." patellar branch of the long saphenous nerve will be found curving for wards on the inner aspect of the knee. The prepatellar bursa that lies over the lower part of the patella ought also to be looked for. Chronic in!lammatory enlargement of this produces the condition known as "housemaid's knee." The sartoriu; should now be cleaned. On lifting . this muscle a dense fibrous membrane will be observed covering the femoral vessels. This is the farcial ronf of the ard. ductor canal. Incise this and define the contents of the canal.

The adductor canal (Hunter's canal) is situated on the inner aspec: of the middle third of the thigh. Its outer wall is fomed by the vastus internus while

Ite poeterointernal boundary in compoeed of the adductuxa longus and maknus. The mod is a dence layer of lawia alt cling between the lateral bxundariom. On this reste the eartoriun musce. a minute glexua of nerves intervenitis. The upper end of the canal is continucxas with the apex of the fermeral ertanisle and recelven the femexal vesels, while at the limer end is the invening in the adductor magnua through which these vemeln pasu tuto the propliteal mace. The comente of the adductur canal are (1) The hatare hall of the femmeal atery ath its |ranches. (2) The lower balf of the fermual vein and itw erihuatrics. is The long saptemen nerve and the firpe to the vatus intermus.

The relatome of the femoral artery in the adfoctur canal are now otwons.

 mon divides inte a super chal and a dexp branh, of whith the former exape from the hower end of the canal alomge with the bong wherent nerve, and suphes the inner asyect of the knee regiom, whate the depp hrand conred diunwardo on

The fenot :ein begins at the chening in the addutor mamns as a continuation of the poppliteal. At lirst it hew in the phiternextentat inpect of the artiry, at the apex of the femoral triangle it lies direct'y posterior, and at the inguinal lyament it lles internal. Here th becomes contmums with the external iliac vein. Its tributaries correspond to the branchey of the artery, and it also resewes the long saphenous vein.

The sartorius muscle arises from the anterior superur iliac spine and sliphtly from the notch below this. It sweeps diagonally across the frint of the thish and is inserted into the inner surface of the tibia at te level of the anterior tubercle. Its nerve supply is from the femoral, and its action is on lex the hip and knee, and also rotate the thigh outwarts, and the leg inwards.

The adductor musiles of the thigh are arranger in three layers the mist anterior consisting of the pectincus and th: adfuctor fongus, the intermethate
 alductor maknus. Running vertically downwards on the inner asiect of these three layers is the adductur gracilis.

The pectineus takes origin from the a cending ramus of the puintio in fromt of the ilio-pectineal line between the pubic spine and the ilio-pectineal eminence. Its libres run downwards and outwards (1) $1 x$ inserted into an oblique line externling from the lesser trochanter to the hnea aspera of the femur. It is suppliof by the femoral nerve and, thaps by the obturator. Its action is to llex and addt : the thigh.

The adductor longus arises from the upper half of the anterior surface of the pubis. Its fibres run downwards and outwards to be inserted into the inner
lip of the linea aspera. Its nerve supply is from the obturator and its action is to adduct the thign.

The adductor brevis arises from the lower half of the front of the pubis and slightly from its descending ramus. The muscle is inserted into the upper end of the linea aspera hetween the adductors longus and magnus. Its nerve supply is from the obturator and its action is to adduct the thigh.

The adductor magnus takes origin from the outer surfaces of the descending ramus of the pubis and the ramus of ischium, and also from the lower portion of the iscivial tuberosity. The muscle is inserted into the whole length of the linea aspera, while the ischial tibres form a special tendon which obtains insertion into the adductor tubercle of the femur. There is thus an opening between the two portions of the muscle, through which the femoral vessels reach the popliteal space. The muscle is supplied by the obturator and seliatic nerves. Its action is to adduct the thigh and extend the hip.

The adductor gracilis arises from the inner edge of the pulis by the side of the synuhysis and also slightly from its descending ramus. Its tendon is inserted into the inner surface of the tibia under cover of the sartorius, and just above the semitendinosus. Its nerve supply is from the obturator and its action is to adduct the thigh.

The ohturator externus muscle may be studied at this stage. It arises from the margin of the obturator foramen, except above, and from the supericial surface of the ubturator meralirante. Its tendon proceeds outwards behind the neck of the fenar to obtain insortion into the trochanteric fossa. Its nerve supply is fron the obturator and its action is to rotate the thigh outwards.

The profunda femoris artery can now be fully exposed. It arises from the postero-extermat aspert of the femoral artery 1! inches behow the inguinal higament. It froceceis downwards and inwards behind the femoral veesels and then passes veder cower of the ins rtion of the adductor longus. It ends in the lower part of tite thist as the fourth perforating artery. Posterionly the profunda
 from anow down:urds. Ite lranches are : 1 the: external circum.ex. is the

The external irebulex artery arises chese on the ori in of the profunda and proceds outherdi under cover of the sertritas and rectus femors. It soon divides into asember, trasiserse and derenting branches. The ascending branch runs u_{1}. aris und: r cower of the tent or faseia - femoris to anastomose with the superiar eluteal art.ry. The transure t ranch winds round the out ir side of the femur in the suhtance of the vastus externus and anastomoses with the internal circumfex. The descending hranch runs domwards in the vastus externus in company with the nerve to this musile, and joins the patellar anastomosis.

The inturnal circumflex artery is directed backwards from its origin, which is close to that of the external circumblex. It passes first between the psoas and the pectineus, then hatween the obturator externus and the adductor brevis. Its transverse and ascending terminal branches will be found later in the dis-
section of the gluteal region appearing at the lower and upper borders of the quadratus femoris. This artery, in addition to muscular branches, supplies a twig to the hip joint.

The four perforating arteries are recognized from the fact that they pass backwards by the side of the femur through tendinous arches in the adductor muscles. The lirst and second pierce the adductors brevis and magnus, while the third and fourth pierce the magnus only. They end by anastomosing with one another and supplying the vastus externus and the hamstring muscles. The second or third gives of the main nutrient artery to the femur.

The obturator nerve, while passing through the upper part of the obturator foramen, breaks up into an anterior and a posterior division. The anterior passes downwards behind the pectineus and adductor longus and in front of the adductor brevis. It supplies these three muscles, the adductor gracilis, a twis to the hip joint, and a small cutaneous branch to the inner aspect of the thigh. The accessory obturator nerve, when present, enters the thigh in front of the ascending ramus of the pubis and after giving twigs to the hip joint and pectineus joins the anterior division. The pesterior division of the obturator nerve pierces the upper edge of the obturator externus, and then runs downwards between the adductors brevis and magnus. It innervates these three muscles, while its terminal tilament supplies the knee joint.

The quadriceps muscle is composed of the rectus femoris, the vastus externus, the vastus internus and the vastus intermedius. They possess a common inscrion into the upper and lateral margins of the patella. They are all supplied by the femoral nerve and their action is to extend the knee. The rectus femoris possesses the additional action of flexing the hip.

The rectus femoris arises from the anterior inferior spine of the ilium and from a special pit just above the upper edge of the acetabulum. The vastus externus takes origin from the anterior and inferior aspects of the ront of the great trochanter, from the outer side of the gluteal ridge and from the uppor part of the outer lip of the linea aspera. The vastus internus obtains its origin from the spiral line and from the inner lip) of the linea aspera. The vastus internedius arises from the anterior and external aspects of the femur in their upper two thirds.

The articular muscle of the knee is the name given to a fe.v scattered ibbres which arise from the anterior sarfac: of the femur in its lower third, and ootain insertion into the supraputellar protrusion from the synowial membrane of the knee joint. Its nerve supply is from the femoral and its action is to pull up this protrusion during the extension movement of the kn:e joint.

The femoral nerve enters the thigh behind the inguinal ligament. just external to the femoral artery. It immediately divides into anterior and posterior divisions. The anterior supplies the pectineus and sartorius, and is then continued on as the intermediate and internal cutaneous nerves of the thigh. The posterior division innervates the rectus femoris, the three vasti muscles and the articular muscle of the knee. Its only cutaneo:1s nerve is the long saphenous, which, after traversing the adductor canal, becomes cutaneous on the inner aspect of the knee. where it gives off its patellar twig. It is continued down the inner side of the leg
in company with the long saphenous vein and will be studied later in the dorsum of the foot. Certain of the nerves to the quadriceps mur-ie supply the knee joint while the nerve to the rectus femoris alsofurnishr., an articular twig to the hip joint.

Three septa, which pass from the deep fascia to the linea aspera of the femur, divide the thigh into three muscular compartments. The anterior contains the quadriceps group which is inr.arvated by the femoral nerve, the internal contains the adductors which are supplied by the obturatur nerve, while the posterior compartment lodges the three hamstring muscles which obtain their nerve supply from the sciatic

THE GLUTEAL REGION OR BUTTOCR.

After reflecting the skin the following cutaneous nerves will have to be searched for. Descending over the crest of the ilium will be found the posterior primary divisions of the fir it three lumbar nerves, the ilio-hypogastric nerve and the iliac branch of the last d ral nerve.

The posterior primary divisions of the firit three sarral nerve; may be discovered piercing the sacral origin of the gluteus maximus. Winding round the lower border of the gluteus maximus are one or two twigs from the posterior cutaneous nerve of the thigh.

Upon cleaning the gluteus maximus it will be observed that it is the largest muscle in the budy. It arises from the area on the dorsum ilii between the posterior curved line and the crest, from the lower two pieces of the sacrum, the upper three pieces of the coccyx, the sacro-tuberous ligament and slightly from the lumbar fascia. The muscie fibres are directed downwards and outwards and are all inserted into the fascia lata except the deep fibres of the lower half which obtain direct attachment to the gluteal ridge of the femur. Its nerve supply is from the inferior gluteal'and its action is to extend the hip and rotate the thigh outwards. Upon reflecting the muscle a bursa will be found intervening between it and the ischial tubercsity, and one between it and the great trochanter. The following muscles will also be expused, and are named from above duwnwards-(1) gluteus medius (2) pyriformis (3) The tendon of the obturator internus with the two gemellus muscles. (4) The quadratus femoris (5) The upper end of the adductor magnus.

The gluteus medius arises from the area on the dorsum ilii between the posterior and middle cured lines. Its fibres run downwards and outwards to be inserted into the diagonal line on the outer surface of the great trochanter of the femur. Its rerve supply is derived from the superior gluteal and its action is to abduct the thigh and rutate it outwards.

The pyriformis arises inside the pelvis from the second, thirr and fourth pieces of the sacrum and slightly from the upper edge of the great ciatic foramen through which the muscle emerges. The muscle is directed downvards and outwards to its insertion into the upper border of the great trochanter. Its nerve supply comes from the iacral plexus, and its action is to rotate the thigh outwards.

The obturator internus muscle als) takes origin inside the pelvis from the margin of the olturator foramen except above, and from the deep surface of the obturator membrane. Its tendon cecapes from the pelvis through the lesser sciatic foranen, which it grooves deeply. It is insertel into the inner aspect of the great truchanter. Its nerve supply is derivel from the steral plex's. ant its action is to rotate the thigh outwards. The superior and inferior gemellus muscles arise from the upper and lowre margins, respectively, of the less'r sciatic feramen and they are insertel into the tenton of the noturator interius. The superior muscle is supplied by the nerve to the obturator internus, an / the inferior ty the nerve to the quadratus fennoris.

The quadratus fem ris obtains oripin fron the outer edge of the ischial tuberosity. Its fibes pass harizontally outwards to be inserted into + tra postrins border of the great trochanter. It. nerve supply is derived irom the sa:ral p'ex'ts. and its action is to adduct the thigh and rotate it nutwards.

The following six nerves emerge from the pelvis throwh the great sciatic foramen below the level of the pyrifornis. These are (1) The stiatic (2) The posterior cutaneous nerve of the thigh (3) The inferior gliteal (4) The inter :al pudendal (5) The nerve to the obturater internus (6) The nerve to the quadratus fernoris. They are all branches of the sacral plexus. Two arteries, the inferinr gluteal and the internal pudendal, als) emerge in the sune sitation and they are both branches of the internal iliac artery.

The sciatic nerve after energine if on the pelvis throwh the l wer part if the great sciatic foranen belo v the p :riformis is lirect inv var is andoutwarts at first in or ler to gain a position interme liate betwe.. e ischial tu')ernsit 'an'l the great trochanter. Fron this point its coarse is varticall: do vasurls to its termin. ation half wa: dosn the bace of the thigh, where it en is by dividing iato the external and interal popliteal nerves. Fron above downwarls it rest upon the ischium, the obturator intern!s ten lon with the two genelli, the qualratus femoris an 1 the altuctor in gn's. supericiall: it is covere 1 b: the gluteus maximus an the bicep.. It suphlies the three linmatrin: muscles an 1 the adductor magnus.

 the thigh and the uper iner of the calf of the ler.

The inferior gluteal nerve innervases the glate is ma inus.
The interaal padendal nerve and the nerve to the obturater iaternus er ws the
 internal poden ial vessels, and thus re-enter the pelvis. They are therefoce seen for a very briei peri id in this dissecti in. the vespeis bein? intermediate, with the padental nerve on their inner sile and the narve t.) the obturater inte nus on their outer side.

The nerve to the quadratus femoris will be found lying under cover of the upper end of the sciatic nerve. It courses downwards on the deep aspect of the gemelli and obturator internus tendon in order to reach its muscle. It also supplies the inferior gemellus.

The inferior gluteal or sciatic artery emerges with the sciatic nerve and runs downwards in close association with it. It gives numerous branches to the gluteus maximus, and sends a few cutaneous twigs round the lower edge of this muscle. It is then continued down the back of the thigh as a cutaneous vessel in company with the posterior cutaneous nerve. It gives off branches to the other muscles of the gluteal region, a nutrient artery to the sciatic nerve and a branch to join the crucial anastomosis. The latter is a very important chain of communication between the internal and external iliac, the femoral and the popliteal arteries by means of the superior and inferior gluteal, the external and internal circumflex, the four perforating arteries, and a branch from the popliteal. The ascending and transverse terminal branches of the internal circumflex artery should now be looked for at the upper and lower borders of the quadratus femoris.

The gluteus medius must now be reflected in order to expose the gluteus minimus and the superior gluteal vessels and nerve.

The gluteus mini:nus takes origin from the area on the dorsum: i.iii included between the middle and anterior curved lines. Its fibres run downwards to be inserted into an impression on the anterior border of the great trochanter of the femur. Its nerve supply is derived from the superior gluteal, and its action is to abduct the thigh, and slightly rotate it inwards.

The tensor fasciae fe:noris is so closely associated with the anterior borders of the gluters medius and minimus, that its st .dy is essential at this stage. It arises from the outer edge of the iliac crest just behind the anteri, r superior spine, for about two inches. Its fibres run downwards an I slightly backwards to their insertion between two lamellae of the fascia lata. Its nerve supply is from the superior gluteal and its action is to render the fascia lata tense, and rotate the thigh inwards slightly.

The superior gluteal artery is a branch of the internal ihac, and emerges from the pelvis through the sreat sciatic foranen above the pyriformis. It immediately divides into a cuperficial !ranch which supplies the gluteus maximus and a deep branch which passes under cover of the gluteus medius. This als, divides into two branches, an upper which follows the middle curved line of the ilium to anastomise with the circumflex iliac and a lower brancla which acempanies the superior gluteal nerve under cover of the tensor fascine funoris, wheie it anastomoses with the assending branch of the external circumflex artery.

The superior gluteal nerve is a branch of the sacral plexus, e.d emerges above the pyriformis along with the superior glatent artery. It acempanies the weep branch of this artery between the gluteus medius and minimus, freely dispensing twigs to both and finally ending in the tensor fasciae femoris.

THE POPLITEAL SPACE.

It is bes to remove the skin from the back of the thigh and from the upper third of the back of the leg, and thus be able to complete the study of the course of the posterior cutaneous nerve of the thigh which has already been outlined. It will then be necessary to devcte attention to the popliteal space, which is the lozenge shaped area situsted on the back of the knee region. The deep fascia forming its roof is very dense, and is pierced by the terminal portion of the posterior cutaneous nerve of the thigh, and also by the short saphenous $v i n$. The popliteal space is bounded above and externally thy the hiceps, above and internally by the semimembranosus and semitendinosus, below and externally by the outer head of the gastrocnem:us and the plantaris, and infero-internally by the inner head of the gastrocnemius. Of these inuscles the three hamstrings are the only ones than can be fully studied at present, so that it will te necessir! to clean these and define their attachments.

The biceps arises by means of its long head from the inner area in the ischial tubersity in conjunction with the semiterdinosts. Its she rt e remoral head takes origin from the outer lip of the linea asper? and the upper part of the external supracondylar ridge of the femur. Its tendon of inscriin into the head of the fibula is split by the external ligament of the knee. A slip from its tendon is also inserted into the deep fascia of the leg. Its nerve supply is from the sciatic, and its chief actions are to extend the hip and flex the hnee.

The semitendinosus ha; been already shown to possess an oricin conmon to it and the long head of the biceps. The muscle is directed downwards upen the superficial surface of the semi membranosus to the level of the knee, below which it curves forwards to be inserted into the internal surface of the tibia, behind the sartorius and below the gracilis. Its nerve supply and chief actions are the same as those the biceps.

The seminembranosus ottains origin from the outer area on the ischial tuberosity by a lone tendon shaped like a razor-blade. It is directed downwards on the deep aspect of the biceps-semitendin's ts origin. and is insered into a groove on the postero internal aspect of the upper end of the tibia, and in addition sends slips to the posterior and internal ligaments of the knee, to the fascia of the popliteus muscle and to the deep fascia of the leg. Its nerve supply and chief actions are the same as those of the biceps.

On opening up the popliteal space ant removing the atipose tissuc, it will be ascertained that the contents are- 1 The popliteal artery and its branches 2 , The popliteal vain and its tributarics, including the short saphenoue vein (3. The internal and external popliteal nerves and their branches 1) The genicular branch of the obturator nerve (5) l.ymph glands and vesels. The floor of the space will then be found to he formed from ahove downwards by the popliteal sarface of the femur, the posterisr liga ment of the knee joint, and the fascia covering the pophteus muscin.

The popliteal artery begins at the opening in the adductor magnus as a continuation of the femoral. It is at first directed downwards and outwards, in
order to gain the interval between the two condyles of the femur, after which it runs vertically downwards. It ends at the lower isorder of the popliteus muscle by dividing into anterior and posterior tibial arteries. From above downwards it rests upon the flom of the popliteal space, being separated, however, 'rom the femur by a leyer of fat. The popliteal vein is to its outer side above, lies directly. superficial to it in the middle of the space, ant comes to lie to its inner side below The internal p.ppliteal nerve is external to both :-rtery and vein above, lies directly supericial it them in the middle of the space and comes to lie to their inner side belos. The branches of the popitral artery are -(1) Five genicular arteries (2) muscular (3) cutaneous.

Tue genicular arteries are recugnised by the fact that they lie upon the floor of the p pliteal space. The superior external arches outwards under the biceps, the stiperior internal arches inwards under the semi membranosus and semitendin is is, the inferior external passes outwards under the plantaris and outer head of the gastronenuis, and the inferior internal runs downwards and inwards under the inner head of the gastrocnemius. These four arteries join the patellar anastunusis, which will be studied later. The fifth or azygos genicular artery is resdity recognised from the fact that it pierces the posterior ligament of the knee.

Tite inuscular branches of the popliteal artery are arranged in upper and lower sets. Those of the upper group supply the hamstring muscles and one of these c mpletes the crucial anastom sis. The lower inuscular branches supply the catf muscles and are therefore termed sural.

The cutane us branches supply the sion over the calf and are therefore terned supricial saral.

The popliteal vein begins a: the lower horder if the propieds muscle by the uni n of the vente conites of the anterior and pisterior tibial arteries. At first it is the thner s.de of the artery in the ini ide of the sare it lies directly super ficia. an at the dipening in the adductormmon it isplaced the outer side of the: artery. llere it becomes continonus with the femoral vein. Its tributaries c ries ind t , the branches of the artery and in addition it receives the short splex:ous \cdots in.

T:e internalp pliteal nerve is the larser teminal branch of the sciatic, and commeaces ab, ut the midelle of the hack of the thigh. It enters the popliteal space at the upper angle and disappears between the two heads of the gastr. .nemius in'eri.rly, s, that it bisects the space vertically Above, it lies to the outer side of the popiteal vesse s. in the inidlle of the space it lies directly superficial to thes:, and below, it is placed to their inmer side. At the lower border of the ponliteis muscle it changes name into pasterior tibual. Its branches are -(1) genicuiar (2) inuscular (3) communicating.

Tife three genicular branches accompany the superior internal, inferior internal and azygos genicular arteries to the knee inint, The muscular branches supply the gastrocnemius, plantaris, soleus and popliteus. The communicating branch joins the corresponding branch f. . n the external to form the short sap)henous nerve in the lower part of the back of the les.

The external popliteal nerve has the same point and mole of origin as the internal. It takes its course from the tendon of the biceps, which it follows closely down to its insertion. The nerve then passea forwards on the neck of the fibula under cover of the peroneus longus, where it ends by dividing into the anterior tibial and musculo-cutaneous nerves. Its branches are (1) genicular (2) connmunicating (3) cutaneous. The three geni ulat branches accompany the supetior and inferior external zenicular and the anterior tibial rexurrent arteries into the knee joint. The commumeating branch unites with the corresponding branch from the internal popliteal as already noted. The cutaneous tsig supplies the skin on the outer aspect of the ler.

The genicular branch of the obturator nerve runs down wards in the p phatiteal space to the inner side of the artery and pierces the posterior liga nent of the knee joint.

THE FRONT OF THE LEG AND DORSUM OF THE FOOT.

Reflect the skin from the front of the leg and the darsun of the font. The long saphenous nerve and vein will be foun 1 rutine d , on the intar sids of the le; and bith pais in front of the internal malleolus. The nerve en lis a sh rit distance beyond this while the vein will be sefitodruin the inlirend of a ven rus arcin on the dorsum of the foot, the outer end being drained by the short saphenous vein which passes up the leg behind the external malleolus. In the lower thisd of the leg the musculo cutaneous nerve becones chataneous and when traceld donwards divides into inner and outer branches. The inner division supplies the inuer si le of the great toe and the adiacent marine of the second an l third tors, while the outer furnshes two branches to supply the ad acent margins of the third, fourth and fith toes. The terminal pution of the anterior tibial nerve supplirs the adacent margins of the great an leend tex. The stort sphen uaturve

 little t e

 special compartment, namely for the thialis anterior. \because dwer ant rior ammar 'igament is y' shaped and is attached be it-st' .o the fre eal of the
 while the lower swerps inwardsover the invertror of the for to bleal witi the plantar fascia. This ligament possesses three compartment:o which the inner most transmits the tibialis anterior tenton, the middle one the estensor longus halluris tenton and the outermost one the tendons of the extrmsor longus di sitorum
 ligament between the mid. ile and oatermost compartments.

There are four muscles in the front of the leg-the tibialis anterior, the extensor longus digitorum, the extensor longus hallucis and th? peroneus tertius.

The tibialis anterior arisce from the upper two thirds of the external surface of the tibia, from the deep fancia, interoseerus membrane, and the intermuscular eepta. Its tendon pases under the anterior annular ligaments and then sweeps round the inner border of the font to gain its insertion into the inner aspects of the internal cunciform bone and the base of the firat metatarsal bone. Its nerve supply is derived from the anterior tibial, and its action is to flex the ankle, and invert the foot at the mid tarsal joint.

The extensor longus digitorum arises from the external tuberosit : of the tibia, the head and upper three fourth. if the extensor surface of the fibuta, and also from the interosseous membran:, the deep fascia, and septa. Its tenton passes under the two anteror amular hasuents a I divides into four on the dars am of the foot. These pass to the four outer ties where each divid's into three slips mposite the proximal inter phalangeal oint. The milfle stip is inserted into the base of the second phalanx, while the 1 iteral slips unite at their insertion int, the distal phalanx. Thus the arrangement of the tendons of this muscle is exa tly similar to that exhituted by the extensor comm ins digitorum of the hand. The nerve sapply of the extens ir lonqus digitoruin is derived from the anterior tibial, and its action is to thex the ankle and extend the forir outer tese.

The extens)r longus hallucis arises from the niddie two fourths of the ex. tensor surlace of the fibula to the inner side of the extens or lonzus digitorum, and als, from the interossmus membrane and spta. Its tenton passes forwards on the dorsum of the fort to ohtain insertion into the distal phatanx of the great t.e. Its nerve eapply is from the anteri r tibizl, and its action is to flex the ankle and extend the great twe.

The peroneus tertius arise's from the lower forth of the extensir surface of the fibula innediately bel ow the extensor tongus digitorum, with the fibres of which it is directly emtinums. fis tenton after possong under the anterior annular ligaments diverge stowards the outer berder of the fort to obtan insertion into the base of the fith metararsal h ne on itsel real aspect. Its n"rve supply is from the anteri ir tibial, and its action is to thex the ankle, and evert the foot at the mid-tarsal joint.

 furwards ohliquei aver the d arsa'n of the fat. The innerm ist is inserted into the base of the proxianal phalanx of the great lox, white the other three blend with the tend ins of the extens or langeds dixit ruin to the secont, third an f fourth tes. Its nerve supaly is form the anterior tibial and its action is t, extend the four inner thes.

The anteri r tional artery is the smaller terminal branch of the ppliteal, and begins at the lowerberfer of the p, plite is musele. At lirst it is dirested forvards through the upper part of the erosse us membrane and then rans verticully downards up on lits. In the lower lhird of the leg it inclit: , inarards slightly,
 a p int modway between the two malitwii it pases on ts the dorstim of the fout and changes name int, d rsalis pedis. Supericially it is overapped fron the inside by the tiosalis anterior, and ir in the itsid: by th: extens ors of the toes. It is
scoompaniad by two venae comites. The anterter tibial nerve lion to its outer ade in the upper third of the leg, directly anterior in the middle chird, and again wits outer ade in the lower third.

The branches are-

(1) The two tibial recurrent.
(2) Muecular,
(3) The two malleslar.

The posterior tibial recurrent arises from the horizontal portion and passes upwards under cover of the ppliteus in order to enter the knee joint through the posteris ligamen. The anterio tibial recurrent aris inenediately after the main artery pierces the interjemous mernbrane. It runs upwards in the substance of the tivialis anterior to join the patellar anastomows. The anterior tibial zives of its muscular branches throughout its whole c.urse. The external and internal malleolar are an called because each passes over the correaponding malleolus. They supply the subcutaneous tissurs in their vicinity and the external, in additi,n, anastumoses with the tarsal and peroncal arteries.

The patellar anastomosis should be fully studied at this stage, as the six arteries entering into its composition have now been mentioned. These ax arteries approach one an ther from opposite margins of the limb and anastomose. The superior external genicular meets the anastomotic just above the patella, whil : the inferior external genicular and the anterior tibial recurrent meet. respectively, the s.perior internal genicular and the in erior internal genicular under cover of the ligamentu:n patellae.

The dursalis pedis artery begins in fo nt of the ankle joint at a pint mi lway betwern the two malleoli as a continuation of the anterior tixial. It runs forwarde upon the astrajalus, n.avicular and middle cuneiform loones to reach the interval between the base's of the first and second inetatarsal bones, throuzh which it passes iato the sole of the foxt to end by joining the planter arch. It is covered superficially by the skin and fascia and is also crossed by the innermost tendon of the extens,r brevis digiturusn The artery lies between the tendon of the extens's longus hallucis and the innemnest tendom of the extensor bongus disitorum. It is accompanied by two venae comites and the antering tidial nerve lies on its outer side.

Its branches are-
(1) Tarsal
(2) Metatarsal
(3) Dursalis Halluzis
(1) Maerna Hallucis

The tarsal artery passes outwar is over the tarsil bones and under cover of the extensors It supplies the tissues in its vicinity and ends by allastomosing on the outer border of the foot with the external mallembar, peroncal and met-
 metatarsal bones and under cover of the extensor tendons. It gives off three dorsal interosseous arteries which run forwards to supply the outer three and one half ties. The dors?iis hallucis branch of the dorsalis pedis comes off just as the
artery is dimppearing through the firt space. It runs forwards to supply the inner side of the great toe and the adjacent m ugine of the great and second toes-one and a half toes In all. The magna hallucis branch will be studied later In the oole of the foot. It supplien the inner one and a half toes upon their plantar aspects.

The anteror tibial nerve is the larger terininal branch of the external popliteal and at its origin rests on the neck of the fibuia under cover of the peroneus longua. It pierces the extenaro longus digitorum obliquely and cumes to ie on the outer side of the anteror tibial vessels. In the middle third of the les it lies directly in front of these, but in the lower third again lies external. On thederesm of the foot it is continued forvards on the onter side of the dorsalin pe-fis vesels and ends by dividin? to supply the adjacent margins of the great and second tocs It innervates the tibialis anteror, the extensor longus disitopum the extensor longus hallucis, the peronsus tertiss and the exterisor brevis divitoram. It likewise gives twigs to certain of the joints of the fort.

TII: Pi:RONFAI REGION OF TIE LEG.

The peroneus longus and peroneus brevis muxles will be found lyinz on the outer aspect of the lex. These shuld be cleaned and the inusculo-cutaneous nerve which lies between then exposed.

The peronets longus arises fro:n the heat and upper t wo thirds of the ex. ternal surface of the shoft of the fibula and from the facia. Its tendon curves forwards round the external inalie lus, and then enters the grione on the under aspect of the cubid in order t, , reach the gole of the fort, where it is in erted into the plantar aspect of the internal cuncifonn and the base of the first metatarsil. It is supplied by the macoll eutan and its action is to extent the ankle. and evert the fort at the ni ltarial j, int.

The per ness hrevis arises frem the lower tw, thir ls of the extemal surface of the finula. its upicer end twine in front of the ourments longus. Its tend on
 of the fort to its invertion int , the baie of the fith $: n$ antarial bine. Its nerve supply and its acti n are the same a; those of the per neus lon; ise

These tivo tendons are he!d in pace behin! the exterral maileolus by the external annular livarneat whe th pases éron th: pisterior berder of this drunwards and baciwarditse attached to the wer apet of the ca'cansas. Under this harnent, thre is a cenen men wial sheath which sen is an extension alon:
 extens:ons.

The in'scul)-cutanevis nerve begin; on the neck of the fibu'a unter cover of the peroneus longus as the smaller terminal branch of the external popliteal. It sourses downwards between the peroneus iongus and brevis, supphying both; and becomes cutaneous by pirreine the deep fascia in the lower third of the front of the leg. This part of its distribution has been already studied.

THE POSTERIOR ASPECT OF THE LEG.

After reflecting the akin from the beck of the les one wali be abie to trace the communscating nervee from the external and internal pupliteai to their undon in the bower thind of the leg to form the skert mphenous. The diveector will alloo be in a position to study the complete anarie of the ahort aphenous vein. The deep facia may then be remived in order tu expose the calf mus liet which are three in number, namely, the gastrocnemius, plataris and sieus.

The gastrocnemius arises by its inner head from the pesterior aspect of the femur just above the liternal condyle. The onter head has a corresponding relation to the external condyle; but is sightly higher and more external in order to make roxm for the plantaris origin. The two muscular bel kes remain distinct, and it will be neted that the internal descends to a sllghely lower level than the external. The flattened tendon of inser in hlends with that of the woleus to form the tendu achillis which is inserted into the transverse ridge on the tuberusity of the calcaneus. Its nerve supply is fron the internal pxpliteal, and its actlon is to flex the knee and raise the budy on tip tex:

The plantaris is atrophic in man. It arises under cover of the outer head of the gastrocnemius immediately above the external condyle of the femur. Its tendon blends with the tendo achillis, or may te inserted independently into the inner edge of the calcancal tuberosity, or even into the plantar fascia. Its nerve ouppiy and action are the same as those of the ga:trocnemius.

The tendon of the gastrocnemius may be divided just above its line of blending with the soleus in order to expose the latter muscle, which will be seen to arise from the posterior aspects of the head and upper third of the slaft of the fibula, from the oblique line of the tibia, and also from the inner edge of the tibia for about two inches. Its tendon forms the greater part of the tends achillis. The nerve supply is from the internal popliteal and its action is tu raise the body on tip toe.

On reflecting the soleus from the oblique line and inner border of the tibia a good view will be ootained of the pisterior tibial vessels and nerve and the four deep muscles which are the popliteus, the flexor longus digitorum, the flexor iongus hallucis and the tibialis p:sterior.

The popliteus arises within the capiule of the knee joint frum a special pit on the outer aspect of the external condyle of the femur. The musile spreads out into a fleshy insertion which occupies the area on the posterior aspect of th: tibia above the oblique line. Its nerve supply is from the internal popliteal, and its action is to flex and rotate the knee juint.

The flexor longus digitorum arises from the inner half of the posterior surlace of the tibia below the oblique line and from the septa. Its tendons will be stuciad later in the ope of the furt. They are inserted into the distai phaianges of the four outer toes. This muscle is thus the homologue of the flexor profundus digitorum. Its nerve supply is from the posterior tibial, and its action is to extend the ankle and flex the four outer toes.

14

The fexor longu hallucis artess from the lower two-iNinde of the poutertor curfece of the fibula and from the sope. Ita tendon in inverted into the ditat phalans of the great toe. It is innervated by the poxerore tibid and ite setion to to extent the anklo and fiez the arcet toe.

The tiblalis pocteriox arimen frinn the ouser half of the powertor mafface of the thita below the oblique line, fron a special donga. ted area on the fibula immadistely behind its interomexis bondor. and frum the cepta and the interoseorese membrane. Its sendon in inserted chleily into the tubercle of the navicular, butt it ale: sends wips to all the other bones of the tarmus except the atragalus. and s bascs of the moond, third and fourth metatarsala. Its nerve aupply is deriv.. from the poterior tiblal and it action is to axtend the ankle and invert the fort at the midtaral joins.

The internal annular ligament is a thickened hand of deep faccia which pasper from the ponterior border of the internal mallendus diwnwards and backward: to the subcronity of the calcanews. There are three compar'mentsfor tendons :
(1) The innennort tianamits the tibialis poteriver.
(2) The intermediate contalns the nexor longus digitorun
(d) The outermat the fexor longus hallucia.
(4) The posterior tibial vewels and nerve pasm under the ligament between the intermediate and the outermnt compartment the nerve lying next to the flexor longis hallucls.

The porior tibial artery is the larger ter.ninal branch of th: pppliteal and begins at she lirwer birder of the popliteus in-scle. It runs drensards on the oack of the leg with a slipht inctination in, y^{-}. ard ent ind way between the intermal malle, lus and the tuberwity of the calcantus, water cover of the Internal annular liganent, by dividing inte, the internal and external plantar arteries. It rests if im ahove dinnwards upin the ubialio poxterior, th: tiha and the prosterior liganont of the ande jont. Siperticially it is conerel in th: u_{p}, ore twotiords of the leg by the ealf mascles, an I in the ! iner thri by the skm. superficial and deep fas 1 and ind ding the internal annulur lig un n. It is acoon. panded by two vena comites. The posterior tibial nerve is at hrst to its inner side. crusses it superficial!y in the middle third of the leg and then lies to its outer aide in the lower third.

Its branches are -
(1) nutrient.
(2) peroneal.
(3) muscular.
(4) communicaing.
(5) calcanean.
(6) Serminal branches.

The nutient artery comes inf che in the oflain and is directed duwnwarto to enter the nutrient formmen of the ibde. It lo the laraed nutrient artery in the body.

The peronal artery artors one inch belinw the orixin of the pomertor disial and in directed down warde under eiver of the fibular oriatn of the flewer longua hallucie Juat above the ankle it dividet into anterior and powerior terininal tranchea. of which the anterber piercen the interoweroun mentrane to gain the anterior
 belund this. They anamfoncere with the external inalls.olar and tarmal arterice. In andition to muscular branctorn the peromeal a'el given of a communkeing branch which anawt rinees on the back of the ti'ta ath :he correrp nd ing lranch from the puteri er thitil.

The calcamean branch of the p metiof tibial artery pherces the internal annular ligatient clos en the calcaneus and supplies the wit timsum over the heel.

The powters: tibial nerve lopins at the lower border of the poplitoun mucie as a continuation of the iliternal groplteal. Ae first on the inner ade of the artery. it cromen this superficially in the midde of the leq and thus comen to lie in its outes side. At the saine p unt an the artery it enduly dividing intorexternal and in:ermal plantar nerves. It supplies the phbinhe pewte. ior, the flexer lungue distorum, and the flexor fongus hatiucis It also gives a twis to the ankle joint and a calcamon nerve wich accornuanes the artery of the same name to $\begin{gathered}\text { apply }\end{gathered}$ the skin of the heel.

THE SOLE OF TIE FOOT.

After reflecting the skin tt is best to mhe a longet himal incison through

 the cutamerns nerver and wesels wall te discovered These come front the plantar nerves and vesse's on removing the re ia inder of the super ..tial fascia, it will
 fanked by thinner evternal and internal forteris.
 tuberile of the calcanens. When traced forward it donder mintwe shps, each of which splits into two. These blend with the sheaths of the theror tendurs, as in the case of the hand.

The plantar fascia may now be re leited forwards, when it will be observed that the central porton clothes the llexor brevis divitorum while the extermal and internal portions invest the abductor minimi dixiti and the abductor halluchs

The abductor hallucis arises from the internal tubercie of the c ' c , reus, Irom the plantar fascia and from the intemal annular ligament Its ter. is inserted
into the inner aspect of the 5 -ne of the proximal phalanx of the great toe. it is Innervated by the internal plantar, and its action is to abduct the great toe.

The flezor brevis digitorum takes origin from the internal tubercle of the calcansus and from the plantar fascia. Each of its four tendons is split by the loug flexor terdon, as in the hand. They are inserted into the margins of the second phalanges of the four outer toes. This muscle is thus the homologue of the flexer sublimis digitorum. Its nerve supply is derived from the internal plantar, and its action is to flex the two proximal joints of the four outer toes.

The abductor minim: digiti arise; from the internal and extern; tubercles of the calcaneus and from the plantar fascia. It tendon is inserted into the outer side of the base of the proximal phalanx of the little toe. It is suppiied by the external plantar nerve, and its action to to abduct the little toe.

On reflecting these three muscles forwards from their origins, the plantar vessels and nerves will be exposed, as also the second laye- of the sole which consists of the loug flexor tendons, the accessorius musele and the lumbrical muscies which take origin from the tendons of the flexor longus digitorum. The first lumbrical anses from the inner side of the first tendon, while the second, third and fourth take origin frum the tend ons between which they lie. The lumbrical muscles sweep round the inner sid es of the four outer toes to gain insertion into the extensor tendons. The first is supplied by the internal plantar nerve, the others by the external plantar.

The accessorius muscle arises by its two heads from the inter and outer aspects of the calcaneus, and is inserted into the tendon of the flexor longus digitorum at its point of splitting. It is mnervated by the external plante: nerve, and its action is to pull the long foror tendons into line with the toes upm which they act.

The accessorius mist now be reflec'ed from its origins and the two long flexor tendons cut far back in order to expose the muscle of the third layer of the sole. On turning these forwards it will be ouserved that the tendon of the flexor longus hallucis gives a strong slip to the tendon of the flexor longus digitorum.

The four muscies of the third layer are arranged to form three sides of a square and one diagonal. They are-the flexor brevis hallucis, the flexor brevis minimi digiti, the efductor transversus hallucis and the adductor obliquus hallucis.

The flexor brevis hallucis arises from the cuboid bone and the tendinous slips of the trbials posterior. It divides into two parts at its insertion which is into both sides of the base of the proximal phalanx of the great toe. Its nerve supply is from the internal plantar and its action is to flex the great toe.

The flexor brevis minimi digiti arises froof the fifth metatarsal bone and from the she.
the plantar aspect of the base

It is inserted into the outer aspect of the base of the proximal plalinx of the little toe. Its nerve supply is derived from the external plantar and its action is to flex the little toe.

The adluctor transversus halluris arises from the capsules of the metatarso phalangeal joints of the three outer toes, and is inserted into the outer aspect of the base of the $y^{\text {-oximal phalanx of the great toe. It is mnervated by the ex- }}$ ternal plant... $-\cdots$. $:=\mathrm{s}$ tion is to adduct the great toe.

The at lic, jobluus akes origin from the plantar aspects of the bases of the secc 1 and and firith metatarsal bones and from the sheath of the
 verse adductor. Its :ace supply and action are the same as these of the preceding. On reflecting this muscle the plantar arterial arch will be expesed.

The external plantar artery is the larger terminal branch of the posterior tibual. From its point of origin midway between the internal malleolus and the calcanean tuberosity it proceeds at first outwards between the flexor brevis digitorum and the accessorius, and then forwards between the flexur brevis digitorum and the ahductor minimi digiti. Opposite the base of the fifth metatarsal bone it curves inwards upon the bases of the metatarsal bones, and under cover of the adductor obliquus hallucis, to reach the first space where it joins with the dorsalis pedis to form the plantar arch. The artery is accompanied by the extemal plant: nerve. The e.sernal plantar artery supplies cutaneous twigs to the skin of the heel and sole, and a few muscular branches; while the plantar arch gives off :
(1) four digital arteries to supply the outer three and one half toc: ,
(2) three perforating arteries which pass upwards through the outer three spaces to join the dorsal interosseous arteries
(3) two or three recurrent twigs to the tarsal joints.

The internal plantar artery passes forwards into the sole of the foot between the abductor hallucis and the flexor brevis digiturum. After supplying cutaneous twigs to the skin of the sole and a few muscuar branches, it ends in ill defined digital twigs to the inner toes.

The magna hallucis artery which springs from the dorsalis pedis in the first intermetatarsal space should now be secured. It passes forwards and divides into two branches which supply the inner side of the great toe and the adjacent margins of the great and second toes. It thus supplies one and a half toes.

The external plantar nerve is the smaller terminal branch of the posterior tibial, and arrses at the same point as the artery, which it accompanies in the sole of the foot. The trun's supplies cutaneous trigs to the sole of the foot and
muscular branclies to the abductor minimi digiti and the accessonus. It then divides into superficial and deep branctes, of which the former supplies the flezor brevis ininimi digiti and the outermost interosseous muscles and then terminates by supplying the outer side of the little toe and the adjacent margins of the fourth and fifth toes. The deep branch supplies the two adductors of the great toe, the outer three lumbricals and the interoseri.

The internal plantar nerve accompanies the artery, and from it trunk supplies cutaneous twigs to the sole and muscular branches to the abductor hallucis and the flexor brevis digitorum. It then divides into four digital branches which supply the inner side of the great toe and the adjacent margins of the great and econd, second and this \rfloor, and third and fourth toes. The first digital branch supplies also the flexor brevis hallucis, while the second innervates the first lumbrical muscle. It will be noted that the internal plantar nerve supplies the inner three and one half toes.

The interosseous muscles constitute the fourth layer of muscles in the sole of the foot.

The interosseous muscles are seven in number-four dorsal and three plantar The dorsal interossel abduct the toes from an imaginary line drawn through the second toe. They arise from the metatarsal bones between which they lie. The first and second are inserted on each side of thr second toe, the third on the outer side of the third toe and the fourth on the outer side of the fourth toe. Their insertions are partly into the bases of the proximal phalanges and partly into the extensor tendons.

Each plantar intersseous arises from the metatarsal bone of the toe upon which it acts. The first is inserted upon the inner side of the third toe, the second upon the inner side of the fourth toe, and the third upon the inner side of the fifth toe.

The time is now opportune for the completion of the study of the tendons of the tibialis posterior and peroneus longus, in order to ascertain their exact mode of insertion.

THE THORAX.

Dissecton. -The remains of the pectoral muscles, the serratus, the la stmus dorsi and the abdominal mushm will require to be removed in order to expose the external and internal intereostal musele: Whice oceupy the intercostal spaces.

The external intereostal muscle takes origin from the lower border of one rib, and its fibres which are direeted downwards and forwards, obta insertion into the upper horder of the rib hilow. its innervation is fra en the intereostal nerve. It i.s a muselo of inpliation. It will ben ubserved that the fibresend anteriorly at the junctions of the rib: with their cartilages, the gaps between these and the stormum being filled in hy the arterior intereostal membranes, throu th which the fibres of the internal intereostal muscles can be sen. Posteriorly the external intercostal muscle extends as fa: a; the tubereles of the riba. Remowe this muscle and the membrane in order to expoie the internai intercotal muscle.

The internal intercostal muscle extentls as far as the sternum anteriorly, but reaches only as far back as the angle of the rib, the gap beiween this and the head of the rib being occupied by the posterior intercostal membrane. The fibres of this metele are directed downwards, and backwards. Thoy tak: oremin abose frem the upper margin of the subcostal groove and are inserted inferiorly on the deep aspect of the rib. close to its upper border. Sime of tho fibre; rose two spares and are known as the subestal meselre. The iniernal intereostal musele i ., innervated by the intercostal nerie. Its artion is manly expiratory, thourh the inter-chondral fibres ari probithly inspiratory. On removing this mu*ele the parietal pleura will he exposed. The intereostal vessels and nerve can then be pulled downwards from the helter of the subeostal groove. At the same time remove the enatal cartilages in order to ${ }^{\text {... se the internal }}$ mammary vessels, and the triangularis sterni muscle; \cdot.. 1 is represerud by a few scanty fibres pasing from the stomum to the costal cartilages.

The intereostal nerve runs forwards between ti s intereostal museles in the subental groove along with the vesels, the order from above downwards being vein, artery, nerse. Half way towards the front it gives of it. lateral cutaneoss branch which divides into :anterior and posterior twigs to supply the skin on the lateral aspect of the body. The intercostal nerve then gradually sinks into the substanes of the internal intercostal musele and comes to lie between this and the parietal pleura. After passing in front of the internal mamonary artiry it pierces the intercostal space and the peetoralis major be the side of the sternum. linally ending in the skin over the front of the chest at the anterior cutaneous nerse. It also supplies the interostal muscher, the triangularis sterni and a few twige to the pleura.

The intercostal arteries for the upper two spaces come from the sub. elavian, and those for the lower nine spares rem the arti. Varl artery
runs forwards betwen the external and internal intereostal mascles ir. the subcostat growe, where it is intermediate in positinn to the vein and nerve. Half way towards the front it sends off : cuta the lateral entameon aerve, and then divides in
branch to accompany rper and lower branches interestalarteries.

The internal mammary artery i- a brameh oi the sublavian and enters the thorax behind the fir eostal cartilage. It romrses downards behind the er 'rartilages and interental spaces hatf an inch from the edge of the :sternum, and embis the sisth pace by dividing into the superior epigastric and musculn-phrenic artories. Poeteriorly it rests upon the pleura, but is separated partially from this hy the triangulariz sterni in the lower part of its cour r. It is acrompanied by venate comites. The upper intercostal nerves pase in front of it. The other hranches are
(1) A pair of anterior intwerostat arteries to each of the upper six spaces,
(2) A perforating cutamenus branch to each of the upper six spaces, which arcompanies t antrrior cutaneous norve to supply the skin of the rhest and also the inner third of the mamma in the female.
(3) Branches to the mediastinum and to the remains of the thymus gland,
(4) A small artery which accompanies the phrenic nerve to the diaphragm.

The supurior rpigactic artery enters the rectus sheath behin i the seventh costal eartilare, and after supplying the rectus abdominis, ends by anastomosing with the Iere epigastric.

The miesculn-phrenic artery runs downwards and outwards along the enstal attachment of the diaphragm, which it supplies. In addition it furnishes anterior intereostal arteries to the seventh, eighth and ninth spares. The tenth and meventh intercostal spaces possess nc anterior interental arteries.

The Pleura and Lungs

Cut away the rihs, from the second to the ninth, just in front of their angles with bole pliers, in order to expose the parietal pleura, which must then be incised crosswise so as to explore the pleural cavity. It will then be observed that the meura, like all serows membranes, is a closed sac which invests the lung. The sp. ee between the right and beft pleural sacs is termed the mediastinum, and contains the heart with its great vessels and many other structures.

The layer of pleura that invests the lung substance itself is an intimate part of it, and is termed the visceral pleura. At the root of the lung it becomes continuols with the parietal pleura, so called because it lines the wall of the chest. The portion of this that lines the ribs and intercostal -paces is termed the costal pleara, the part that extends upwards into the root if the neck is known as the cervical pleura, the layer that covers the
upper surface of the diaphragm is aptly termed the diaphragmatic portion while the part that is in relation to the modiastinum is known as the mediastinal pleura. It will be noted that the dome of the cervical ploura projects upwards one and a half inches above the level of the anterior end of the first rib, or one inclo above the inner third of the clavicle. A special layer of fastia whel is attache: to the innere eflge of the liret rib protects this dome superiorly. The right and left pleural saes when traced downwards, meet in the middle line hehind the junction of the manuhrium with the body of the sternim. The two sars remain in contact as far as the fourth costal cartilages, at which level ti.e left plearal sac diverges to the left, owing to the close approximation f the hoart to the anterior cliest wall. The right pleural sace, however, is cont,nofl lownaris behind the sternum as far as the level of the sixth or seventh: wotal cartilage. Both pleural saes diverge outwards on the upprer surface of the diaphragin, their lowest limits in the mammary lines being at the eighth ribs and in the mid-axillary lines at the tenth ribs. Both pleural saes extend half an inely below the inner ends of the twelfth ribs by the sides of the wertebral column which they reach at the level of the twelfth dorsal wertehra.

On attenpting to push the finger barkwards bel w the level of the ront of the lung, it will be forind that progress is arrested by the pressenee of two opposed layers of pleura which extend downwards from the under aspect of the root of the lung to the diaphragm, forming the hroas ligament of the lung.

Dissection.- Further progres is facilitame ly removing the lunge. Which will be no light tak in di, wrefing rom sublect - awing to the prosence of numerous plemal athesions. The demonstrat'r should exer the root of the lung dose to the inner surfare of the viserds and then 'ut through the remains of the liroad liganent of the lung.

Fach ling is cone shaped with a deep indentation, speriatly in the case of the left, on its inner surface, canstd mainly by the heart and the great vessels. The hang therefore presents for examination an apex, a base, external and internal surfares, and antorior and posterior borders.

The apex extends upwards in the root of we nock to the same level as the cervical dome of the plenra, with which it is in intimate contact. It presents anteriorly a well marked enring groow produced by the subclavian artery, from wheh, howewer, i: is ceparated hy the cervical pleura and the special layer of fascia previonsty mentioneci.

The base of the lung is concave and is in contact with the corresponding cupola of the diaphragn. It is linited by a sharp margin which does not extend downeards:o far as the pleura, since it only reaches the eighth rib in the mid-axillary line and the tenth dorsal vertebra at the back. The base of the right lung is more concave than that of the left owing to the greater convexity of the right cupola of the diaphragm on which it rests.

The outer surface of the lung is strongly convex and is marked by alternate grooves and ridges corresponding to the ribs and intercotal spaces
respectively. Fhe muter surface of both lume is traversed by the great obligur fissure which begint on the penterior border about three inchess below the apex and ond below on the wharp margin of the base a little external to t'r anterior border. In mdition, the outor murfare of the right lange exhibits the lorizontal finutre whish begins on its unterior border at the lowel of tho forth co tal eartilages and is directed nutwards horizontally until it reathes the ohligum tisuras.

The inner zirfore of the lums is concave more so in the left lung owing to the greater prejution of the theat to the lift of the middle line of the body. It exhibits the ront of the lung which is rather nearer the base than the apex and just in front of the postarior border.

In the right lan the wericed growe in front of the root lodges the superior vena cava, whild the arebing broowe above the root is produced by the vena azyge major. The lowir porton of the inner surfaer of the right lung is in contact with the sighe auriote of tho heart. An additional frature is a small arca below the apex wheh is in relation th the trachea.

The inner suriate of the loft lung is in contact for the most part with the left wentride of the heart. The well promounced arching groowe nbowe the root lodges the arch if the abrta, and from this the grewe for the left

The anterior horter of the righ hang i.s sharp and wertical in direction
 its lower and twre il thardite neth, which is due to the intimate contact of the itwert and wratardium wh the anterior chest wall in that region.

The penterine border is roanded and massive and is in contact with the sides of the merebrace. In addition, it pre.ents a vertiral groove whith in the right lung lodges the ocsophagus, and in the case of the left is occupied by the de cradian thoracie aorta.

It will be obscrved from the foregoing paragraphs that the various portions of the lumg, with the exception of the apices, exhibit certain diferences 6 the two sibes of the body.

In addicion it shouth br noted that the right lung is the heavier of the two in the proportion of 11 to 10.

The root of each lang contains, the bronchus, the pulmonary artery, the two pulmonary wins, bronchial vessels, pulmonary nerves, lymphatic vessels and the brenchial lymphglands. These are firmly bound together by areolar tisue. It will be observed that of the two pulmonary veins one is the most anterior structure in the root, while the other is the most inferior. Just behind the upper vein is the pulmonary artery, and behind this again is the bronchus. The order of the main structures from hefore backwards is thus, vein, artery, bronchus.

In front of the ront of each lung is the anterior pulmonary plexus of nerves, white postcriorly the corresponding vagus nerve trunk breaks up to form the posterior mimonary plexus. Attached to the under aspect of the root of each loug is the broad ligament of the lung. The right and
 and the perienrtiuns athort distance in front of the ren of the corresponding lung, and may thus be regurded as antertor relations.

In addition to theme meroctures the re are relationships mperiat to the ront of earh lung. For example, the superior wha in front of the root of the right hang, white ther womas agos major arehes forwards over the top of it. Merefore the antice ateh is an important superior relation of the root of the left lums, and the descenting thoracic aorta lies diructly posterior to it.

The Medlastinum.

Alssection. Saw through the manbilum and remowe the lower part of the sternum: On gently separatine the right and left pheural membranes, one will thereby gain an impresion of the existrone of the mediastinum which, as previously mentioned, is the epsere betwern the right and left pleural sacs. After remoding some lowe fatty tivete, including the atrophed rematins of the thymus ghand, the most inportant rentent of the space will be exposed, in the shape of the heart aneto ed in its pericardab sar. Remove the modia tinal pleura on rach sill of this, taking care meanwhile to secure the right and left phrenie nerves.

The mediastinum contain: sol many important structures with significant relationships that it is newary the: ubdecide it into four portions. An imaginary plane which pases from the bewer border of the manuhrium to the lower border of the foarth dursal bertehra, is utili ed 60 mup off the superior frem the infierior mediastimum. 'This phane is rather r markable for it is practically horizontat. Morcoser it patar; through the bifurration of the trachea, and it rut: off tho werending abratand the dereending thoracie aorta from the aortic arch, which the hem in the superior mediastinum. The inferior mediastinum is conveniontly divided into the anterior. middle and posterior inediastina by the pericardiom.

The superior mediastinum is bonded in front by the manubrium, behind by the tirst four dorial vertebrate, and on each sido by the mediastinal pleura. Its chief contents from before backwards atre.
(1) Lymph glands and the atrophied remains of the thymus gland.
(2) The right and loft inconmate veins and the upper end of the superior vena cava.
(3) The right and left phrenic and the right and left vagus nerves.
(1) The arch of the aorta with its three grat branches - the innominate, left common carotid and teft subclavian arieries.
(5) The trachea.
(6) The oesophagus.

In addition the left recurrent haryngeal nerere abd the thoracie duct will be found in close relation to the left side of the onempargus.

The anterior mediastinum is a more ef hetween the back of the sternum and the pericardium. It is oreupied hy some adipose ti-sue and lymph glands.

The middle inediastimum rontains the horart und peridardium, the ascending aorta, the pilmonory artery, the lower part of the superior vena cava with the arch of the wena aggos major. the roots of the two lunge, the bronchial lymph glande, and the twen phrenie nervex.

The posterior mediastinum 1 e the narrow space bounded in front by the peridardium behind by the lower eikht doral vertelorme, on each side hy the mediastinal ploura, and h. how hy the diaphragm. It conta, is the descending thoracic arrta with itw branches, the vena azygos major, the vena azggos minor, the owsephagus, the thoracic duct, the two vagus nerves. the two great aplanchnie nerves, and some lymph glands.

The Perlcardium and Heart.

The perimardium is the strong tibro-serous hag that encloses the heart. The filmons hag is firmly uttarhed below to the central tendon of the diaphragm, though it encroachesslighty on to the left cupola as well. When traced upwards it will be found to bend with the conts of the three greut ressels at the bave of the heart. Named from right to left, these are the superior vella rava the asemding aorta and the pulmonary artory. It encloses the whole of the aorta and the pulmonary artery, but only the lower half of the superior bena eava.

Open the fibrous bag croswise in order to expose the serous layer. This consiste of a parietal portion which dosely lines the interior of the fibrous bag, kiving it its smooth glistening uppearance, and a visceral layer which is reflected along the coats of the great vessels on to the surface of the heart where it forms the epicardium. On examining the relation of the serons pericardium to the great vessels it will be noted that the ascending aorta and pulmomary artery possess a common investment, which is explained very simply by the fart that they arise from the subdivision of a single vessel in embryonic life. The finger can thus be passed between these and the auricular portion of the heart, this cleft being termed the transverse sints of the pericardium. In contrast to these vessels, the superior penas cava is covered only in front and at the sides. On tilting the apes of the heart well upwards a reces will be observed extending backwards behind the left auricleand bet ween the right and left pulmonary veins. This is sometimes termed the ohlique sinus of the pericardium. Another structure to be searehed for is the vestigial fold of pericardium which extend from the left branch of the pulmonary artery to the upper left palmonary vein. Between the lagers of this fold are the obliterated remains of the left superior vena chia of the embryo.

The surface anatomy of the heart should be examined on the skeleton before proceeding further with the dissection. The right border of the heart, which is represented mainly by the right auricle, is indicated on the surface of the body by a line which curves outwards half an inch from the right border of the sternum, between the third costo-sternal junction and the fifth interspace at its sternal extremity. The left border of the heare
is indicated by a curved line, strongly conver mutuarde. Wheh exteple from the sternat end of the werond heft interapare to the fextlon of the atex
 from the mid line of the xternum. Thi border is repremente mandy by

 poin: to the sternal extromity of the diflt right interesald phere Fha b rder corresponds in great measure to the prothon of the right wentrite.

The cormary arteries whell sup;ly homi to the heart athl lla rardiac veins will require to be disaceted out at this atage. The arte ion lice in the auriculo-ventrionlar grone which maps of the aricular from the ventrieular portion of the heart. but the pre mere of both is a dally masked
 secure the arteries at their origin from the commencoment of the asernding anota and trace them to the right athileft in the grewer. The anteriwand posterior interventrienar veswela will be observed to :n:ap oft the right und luft ventricles from one another rather prominently.
 above the anterior atortic valve, while the left take origin above the beft posterior value. These arterie; swerp to the right and hift in the atariculoventricular groove, in which they encirde the hart, and rad postreriorly by anastomosing slighty with cach other. Fiach artery furniohew branches to the correspondin; auricleand ventriclu, anda wed devend braneh whirh runs downwards along the corresponding margin of than low. In addition the left coronary artery arnd: the anterior intervenriblar brateld down the anterior interventricular grome, while the right furnishes the potorior interventricular artery for the mesterior interventricular groose. These vessels supply twigs to both ventriches.

Most of the weins irom the heart wall enter the eoronary sinus wheh is a large dilated vein that will be found lying on the powtorior :thpect of the heart in the auriculo-ventricular groove betwern the lift atricle and beft ventricle. By its right and it joins the right aturifte athl hy it + lof beromes rontinuous with the left or great cardiace vein wheld bains at the anterior enterventrs , ar vein, and while swerping roand the hft side of the hart receises the weins corresponding to the other lirathelies of the left coronary artery. The right cardiac win acoompanies the right foronary artery and is partly its vein of dranage. It enters the right end of the enonary sinus. Two or three promisent seins running upwartion the porturior aspert of the ventricular portion of the heart are tarmed the pooterior cardiar weins. They enter te coronary sinus. The oblighe win is a mintte structure which may be found on the pe te:ior asper of the leftarile. It enters the coronary sinus, and repments the low r part of the left cuperior ven: cava of the embryo. The atterior sardiat went, though small, may be observed on the anterior aspect of the right ventricle. They enter the cavity of the right auricle directly.

The Cavities of The lieari.

It will be wherered that the hare ix rather eone whaped, the bawe heing formed by the two atriche and the apex hy the left venterle. The right border of the venteredar pertion 16 rwher aharp, and it lefl border more full and rombdel. These cowite will now have tuberamined, und it is
 first of ull. This is done by meats of a rertiral inelsion eomereting the two werne cavare from the mishle of whith areond inciston ls protenged into the auricular appendix . Ine bowd eho must be turnod ont, and the intertor wiped of with a damperange.

The Right Auricle.

The right aurele is triangular in outline, with an opening at each angle; the shperior vena cava entering it from abow, and the inforior wena rava from below, while the auriculo-ventroular writiee, which leads inte the righe ventriche, is directenf forwards and to the left. At or near the centere of the posterior wall of the right auricte is an owal depression, the fossa watis, which in the foetus is a foramen, the foramen ov alo, which leads into the l ft auriche. It will thus be reergnised that the posterior wall of the right auriche is formet by the inter-anticular septum. The fossa ovalix is warrounded above and at the sider hy a horse show shaped rim, 'annulas ovalis, from the anterior edge of which a fold of endocardiun : he lining me drane of the heart pasese to the inferior vena casal
 that its function in the foedus is ted direce the stream of pure blood from the placenta, which enters the foetal heart through the inferior vena caval opening, into the left auricle and wertride. By the side of the ELastuehian valve is the opening of the cormary sinus, guarded by an imperfect walve. while seatered over the postorior surface of the auricle are the openine of a few small weins whith drain the blood from the cardiace wall.

The anterior wall of the right auriche will be observed to be covered for the most part with smatl fle hy projertions termed museuli pertinati. When traced to the right, howewer, these end in a vertical ridge, the erista eerminalis, leaving the portion of the auricular cavity into which the venae cavar open, free from muecular projertions. This portion corresponds to the sillus vemosus of the embryonic heart. The last feature to be noted in the right auricle is the auricular apmendix which is a small recess from the anterior wall lined by musculi pertinati.

The Right Ventricle.

The right ventricle is next opened hy an incivion just to the right of the inter-ventricular growse and ane parallel to the auriculo-ventricular groove. Turn thr llap to the riglit and clean out the eavity.

The fizht frntrale is also rather triancular in outline, on surface view, with two openings in its base-the right auriculo-ventricular or

 front and one behthe. The thap gharling the ortho of the milmonary artery ner semilunar porketw, henew thenr name of wemilunar valved. The

 flap of the nupideto-ventricular balle which is marme 10 it it ealled the infundibular thap. The ofhor, are berpat the shat or margimal and the pontepior taps. The inturlor of the right : wntride. "xcepe the Infunditulam is llned by muscular ridges, the collomnat rarmae, of whirh three typer

 The third type a repremented thy the mexenh papillares. which are attuehed

 pamblares antwrior und penterour. The cordow from the antorior muscle
 posterior pabillary munele pawa th the anjarme margine of tho right and the postarior dups. Ther adjacent margins of har patorior and the loft thep are controlled hy short chedar tembinate uhich apring dirertly ?rom the ventricular wall.

The moderator hand is usually well defind and pasere fom the interventricular septum to the :ntwrior wath of the risht ventrible at the point of attachment of the anterior papillary muselo. It this biolongs to the second type of coltmmane carneate. It contains a larse proportion of the
 down to the interventricular splum, and is appersed to consuy the impulse to the ventricles t makn them contract in the cardiac systole.

The Luft Auricle.

The left auricle shombl now be wemed hiy mane of a transverse incision connecting the peints of ehtrane of the right and left pulmonary veins. It is a transursely oval chamber. I! right and loft extremities of which receive two pulmonary : wins from the rorewombing lung. Each pair of veins may enter separat 'y ur hy a common stem. A large part of the anterior wall of the left auricle is furmed be the interauricular septum, hut just to the left of this will be found the inft aturewheventricular oritice and the opening into the left aupicular appendix which is the only portion of the ieft auricle that can be seen from the from. Note that the musculi

The left Ventricte.

 right wall, whats ta tore ed the mabranom part of the intervemerictar speptim, it comparatwely thin, and may li.. the wat of a congenital communcation beturen the right amblelt wentrides.

The Aorta.

The norta is the great armpial trank that lead from the heart. It is

 firs two parta at hix stage and define their retatimuthes.

The Ascending Aorta.

The surending abota is situacel in the middle mediastinum its rourse is H, wards, forwards and to lier right from the ha- of the feft

 trank of the pulmonacy arter: white the right braterh af the lather sume
 vena rava superior is to the right of the a conding aurta. Ticelira..... \& the asconding mota are the right and lell erronary artermes, w.... rave been already studied.

The Aorlic Arch.

 from right to left, are the innommates the Irf1 common rarotid and the lefl subulatian arteries.

The intominate artory indme upuards and to the right on that lateral

 wity right dils.
 on the Intral aypet of the tractea and where the met.. St tirst it lies

 ape of the efe ling and pleurs ir reder torand the poot of the nerk. In

The Desrending Thoracle Aorta.

 : boget on the life side of the lower berde of the fourth deral vertehra

 1 -atm and heroming the abdominal arta. Behind, it reste upon the dwer matht doral vertebrar, thaght the vena azigos minor also crosses pemberiongy to th at about the lewel of the eighth dorsal vertebra. In front

cardium and the sloping surfa". of the diaphrigm, while the oesophasue also crosses in front of it just be ore fiereing 'he diaphrugm. To the left are the left lung and n!eura. To the rishe are the thoracic duct, the Vena azygos major, the oe, ;hagus, and at it lowerent the right lung and pleura.

The branches of the descending tharace anrt aro
(1) Nine pairs of intercostal artwies.
(2) Oesophageal branches.
(3) A pair of subcontal arterie.:.
(4) Bronchial (right and left).
(5) Pericardiac and mediastinal twigs.

The intercostal arteries supuly the lower nine spaces on wach side. Each sweeps outwards over a vertabra in riler to pierce the posterior intercostal membrane, from which point the cour.e and distribution have been previously studied. The rig't arerice are slightly longer and pass behind the thoracic dact and vena arygos major. Lach intercostal artery gives off a dorsal branch which proced: barl:wards between the transverse processes of the dorsal vertebrae in company with the posterior branches of the spinal nerves in orter wsuphy the muscles and subcutaneous tissues of the back. Each dorsal branch on its passage backwards sends a small twig into the spinal canal to supply the spinal cord.

The oesophaseal branches are four oife in number and take origin from the anterior aspect of the aortia.

Each subcostal artery accompanies the last dorsal nerve along the lower aspect of the twelfth rib, and passes forwards in the abdominal wall. It supplies the abdominal muscles and enastomoses with the lumbar arteries.

There are usually two bronchial arteries for the left lung and one for the right. They enter the root of the corresponding lung on the posterior aspect of the bronchus and supply the walls of the bronchial tubes.

The pericardiac and inediastinal twigs sipply the pericardium, the ly mph glands and the connective tissues of the posterior medastinum.

The Puimonary Artery.

The pulmonary artery is situated in the middle mediastinum. It arises from the infundibulum of the riglit ventricle. At its origin it is directly in front of the ascending aorta, it. 3 trunk winds round the left side of this, and aster a cours of two inches it ends by dividing into right and left pulmonary arteries. It is enclosed within the fibrous bag of the pericardium throughout its course and is also enveloped together with the accending aurta in a common sheath of serous pericardium. Its bifureation is attached to the under aspect of the aortic arch by the ligamentum arteriosum which represents the obliterated remains of the ductus arteriosus, a channel which in the foctus conveys the impure blood from the right side of the heart into the aus. .i.

The position and relationships of the right and left put n: nary a erips within the roots of the corresponding lungs have been prefousiy studied.

The Azygos Veins.

The wem azyen major enters t!ue thorax through the aortic opening of the diaphragm to the right of the tharacis duct and the aorta. It maintains it: rolatimithip the the thoumbt it: whole course in the posterior mediavinu:n. Poaturiorly it ration the doral vertebrae and the right aortic intoroota! artorien, while in front of it lies the oe ophagus. To its right ard the right lany ant pleura. The veiat azygos major ends by arching forwarde ahowe the wot of the right lung and joining the uperior vena cava.

The tributarios of the ofolazere major are
(1) The lower cisht right interostat wein.
(2) The right superior intereort,! wein, which drains the second and third intercostal space:
(3) The right subenstal win,
(4) The right bronchial vein:,
(5) The oesophageal veins.
(6) Pericardia and mediastinal veins.

It also receivis the wena azges minor, which enters it by one or two stems.
The vena azghos minor mier; the thorax by piereing the left crus of the diaphragm. It runs apwards on the left side of the vertebrae and receives the weins from tha lower eipht loft intereotal spaces, the left subcostal vein and the left bronchial wins. tends by passing behind the descending thoracic anota and antorin: the vena azygos major by one or two sten.s. Above it unally ermmu icat." with the left superior intercostal vein. The later drains the second and third spaces, and passes upwards in front of the aotic areh to join the lefl innominate vein. It should be noted here that tho win which drains the first intereostal space on each side, enters the rore ponding innominate vein.

The Innominate Veins and the Superior Vena Cava

Each innominate veill is formed at the inner border of the scalenus anterior by the union of the corresponding internal jugular and subelavian veins. The right innominate sein runs downwards on the right side of the innominate artory. Whil the lnft innominate vein crosses to the rignt directly infront of the three brat., hes of the aortic a:ch. It joins the right innominate to form the superior wena cava behind the junction of the first right costal cartilage with the sternum.

Each innominate vein receives the first intercostal, the vertebral, the internal mammary and the inferior thyroid veins of the same side. The left innominate vein in addition receives the left superior intercostal vein and a few thymic and mediactinal twigs.

The superior vena cava begins behind the first right costo-sternal junction as already noted, and runs downwards to join the right auricle which it enters at the level of the third right costo-sternal junetion. It is

In front and to the right it is in relation to the inner surface of the right lung which it grooves. Behind is the root of the right lung, while to the left is the ascending aorta. An important relation is the right phrenic nerve which runs downward on its right side. Its only tributary of note is the vena azygos major.

The Phrenic Nerves.

The phrenic nerves lie in the superior and middle mediastina. In the superior mediastinum the right phrenic nerve runs downwards between the superior vena cava and the inner surface of the right lung, while the left phrenic patioc:; in front of the aortic arch and behind the left innominate vein. In the middle mediastinum bot's phrenic nerves run downward a short distance in front of the root of the corresponding ling, between the pericardium and the mediastinal pleura. As each nerve approaches the diaphragm it breaks up into small branches which pierce the corresponding cupola to supply it from its under surface.

The Vagus Nerves.

The vagus nerves are situated in the superior and posterior mediastina. In the superior mediastinum the right vagus nerve runs downwards on the right side of the trachein and in contact with the right pleura and lung, while the left erosses in front of the aortic arch to the left of the phrenic and behind the left innominate vein. Fach nerve then passes to the posterior aspect of the root of the eorre-ponding lung where it breaks up into the posterior pulmonary plexuc. Just before doing so, each vagus nerve sends a few t wigs in front of the root of the lung to form the anterior pulmonary plexus. Each vagus nerve emorges in:act from the posterior pulmonary plexus, and immediately passes to the oesophagus in the posterior mediastinum. This they enclose in a plexus termed the oesophageal plexus, the portion derived fr m tiee left vagus being mainly in front and that from the right behind. Each nerve becomes again reformed, and they pass through the opsophageal opening in the diaphragm, the left being still in front and the right behind the oesophagus.

In the thorax each vagus gives off twigs to the lungs (from the pulmonary plexures and branches to the cardiac plexus, to the oesophagus and to the pericardiuin. The left vagus in addition gives off the left recurrent laryngeal nerve which hooks round the attachment of the ligamentum arteriosum to the aortic arch, and tirn runs upwards in the groove between the trachea and oesophagus to reach the neck. In the abdomen the left vagus gives branches to the anterior surface of the stomach and to the liver, while the left stpplie: the pectorior surface of the stomach and also sends branches to the -pleen and pancreas.

The cardiac plexus of norver, i: formed mainly by six branches from the cervical sympathetic and two br: nehes from each vagus in the neck. It is massed chiefly behind the a. : $: \mathrm{i}$: arch and in front of the bifurcation of the trachea, though a small per in tormed the supericial cardiac plexus
lies in the concavity of the aortic arch. The offshots from the cardiac plexus closely follow the course and distribution of the coronary arteries in the heart wall.

The Trachea in the Thorax.

The trachea is situated partly in the neck and partly in the thorax, where it lies in the suprior modia tinum. It ivifureates into the right and left bronchi at the level of the manubrio-sternal junction or opposite the dise bet ween the fourth and fith doral vertebrae. It is situated throughout its course in the midfle line of the body. In front are the areh of the aorta with the origins of the innominato and left common 'arotid arteries, and the cardiac plexus. The loft innominate win is also in front of it a little higher up. Behind is the oesophagus with the left recurrent laryngeal ne:ve lying between the two on their loft sides. To the right of the trachea are the right vagus, the right lung with the pleura and the innominate artery, while to the left are the left common carotid and left subclavian arteries.

The two bronchi have been already studied in the roots of the lungs where they were found to be posterior to the pulmonary artery and veins. Note that the right bronchus is larger than the left, is more in line with the trachea than the left, and is shorter than the left, as it gives off a large branch to the upper lobe of the right lun very soon after its origin.

The Ossophagus In the Thorax.

The oesophagus is situated in the neck, thorax and abdomen. In the thorax it lies in the superior and posterior metiastina. Above it is slightly to the left of the middle line, 'ower down it inclines slightly to the right and it again passes very gently towards the left as it approaches the diaphragm. which it pierces in company with the right and left vagus nerves as previously noted.

In the superior mediastinum the oesophagus has the trachea and aortic arch in front of it, the first four dorsal vertebrae with the longus colli muscles behind it, and the left recurrent laryngeal nerve and the thoracic duct to its left side, thus intervening between it and the left iung and pleura. The oesophagus owing to its slight inclination to the left is not in close relation to the right lang and pleura in the superior mediastinum.

In the posterior mediastinum the oesophagus has the heart and pericardium and the sloping surface of the diaphragm in front of it. Posteriorly are the vena azygoi major and the thoracic duct, though lower down the oesophagus also comes to lie in front of the descending thoracic aorta. To the right are the right lung and pleura, and to the left the descending thoracic aorta at first and lower down the left lung and pleura to a slight degree. In the posterior mediastinum the oesophagus is surrounded by the oesophageal plexus, as already noted.

The Thoracic Sympathetic.

Remove the rematis of the pleara from the posterior thoracie wali

In order to expose the sympathetic cord which will be found running down on earh side upon the heads of the ribs. Above it enters the thorax in front of the neck of the firit rib where it lies to the inner side of the superior intercostal artery. The ganglia will usually be found resting upon the head of the ribs. Towarda the lower part of the thorax it comes to lie on the sides of the vertebrac, and it enters the atbomen by passing behind the internal arenate ligannt. Filown fanglia are usually all that can be counted. These cominunicato externilly with the spinal nerves by rami com nunicantes. The thora ie sympathetic gives minute twigs to the cardia and pilmonary plex:ses but its chipf branches are the three splanchnic nerves of which the great ari ses from the sixth, seventh, eighth, ninth and tenth ganslia, the leser frim the tonth and eleventh and the least, when preselit, from the ele enth ganglion. The splanchnic nerves run downwards by the sides of the vertebrae and pierce the corresponding crus of the diaphragin in or ler to join the so'ar plexus in the abdomen.

The Thoracle Duet.

The thoracic duct is the important channel along which the lymph from the t olower limbsand from the trunk bolow the level of the diaphragm is drained into the bl ofl itream. In it passage upwards through the thorax the thoracic duct receives al:o the lymph from the left half of the thorax, while at the root of the neck it is joined by the main lymph ducts from the left upp: limb and from the l.ft half of the head and neck. The thoracic dact entes the thorax thrours the aortie oponing of the diaphragm, between the aorta and the vena azy, major. It maintains its relation to these atr 1 "t are; throurn it it: c yurin in the posterior mediastinum. Oppsite the fifth Inral werthra it incline; slightly to the leat,
 oesopharus. At the roxt of tho $n \cdot k$ it arches outwards behind the left cominon carotid areey, and treminste; in the angle of junction between the lef internal jugilar and left subceavian vein ;

Iymphatic gland; will b, fo ind in each mediastinum. The most important onerare tho forn'l in the middle mediastinum. They are masse I mainly around the entrance of the bronchi into the lings, and are usually term?d tho bouchi ! ! \&ian l: They receive the lymph drainage from the lungs, and therofore ban very dark coloured in old age from absorption of soot particlez, pertic íaily in city dwellors.

- Another important groap of criand in the thorax is that arranged along the course of the internal in nmary artery. It receive: the drainage from the inner pat of $\mathrm{t}^{\text {bon }}$ an erest wall including the inner one third of the manma in the female. This group is tha; of great significance in reference to mammary carcinoms.

THE DISSECTION OF THE ABDOMEN.

The Anterlor Abdominal Wall.

The following eight layers will he identified in the anterior abdominal wall-
(1) Skin,
(2) Supnrficial fascia,
(3) The external oblique musele.
(4) The internal oblique muscle,
(5) The transversalis muscle,
(6) The transveraalis fascia,
(7) The extraperitoneal fatty ti-sur.
(8) The peritoneum.

These eight laye-s are very important in riation to the roverings of inguinal hernia, and must likewise be kept in mind when the surgeon is operating on the abdomen.

The following cotane us nerves will be found in this region. Fimerging through the anterior wall of the rectus sleath by the side of the midde line are the anteri r cutaneows bran hos of the lower six intercostal nerves, while on the lateral aspore of the trink wi!! be fount the lateral cutaneous branches of the same merves. Nearer the ilian crest the ilio-hypogastric and last dorsal nerves may be disowered nasine downward into tho gluteal region. The ilig-inguinal nrare will be sereured as it emerges through thes beutancous inguinat rine afong with tho epermatic rort or round ligament, while a! mout one inch above this the terminal branch of the ilio-hypogastric nerve pierees the a!oneuresi of the external obligue musce.

The deep layer of the superficial faseia blend; with the fascia latat of the thi. h approximately abong the line of the ing tinal ligament afart which is of some surgioal importance.

The Abiominal Muscles.

The external oblique mucrle will require to b ' clo aned and its attachments defined. It ari:es from the obter surfaces of the lower eight ribs by digitations, of which the upper five interdigitate with the serratus and the lower three with the latisimus dor-i. The inusele fibres are directed downwards and forward:, and give place to a strong aponeurosis which is inserted along the whole lengt! of the linea alba, which represents the intersection o! the aponeuroses of the abdominal muscles in the middle line of the anterior abolominal wall. The external oblique is likewise inserted into the anterior aspect: of looth pubic bones. Between the pubie spine and the anterior superior iliar spine the aponeurosis is folded upon its deep surface to form the inguinal ligament. The posterior portion of the external oblique i is inserted hy thesty fibres into the anterior half of the outer lin of the iliae resest. The no:terior edge of the muscle is frep
and assiuts the anterlor border of the latisslmus dorsi in hounding a small triangle (Petle's trlanc'p), the base of whlch la formed by the llac crest. The external oblig sscle is supplled by the lower six Intercostal nerves, and it ls a muscle of explration. Thls muscle must now be detached from its orlgin and also from the llac crest, and turned forwards in order to expose the Internal obllque muscle which will now be cleaned and defined.

The internal obllque arises from the outer half of the inguinal ligament from the anterlor two thlrds of the mlddle lip of the lllac crest and from the lumbar fascla. The fibres are directed upwards and inwards, and obtain Insertion Into the lower six costal cartilages, and also Into an aponeurosls which blends with the Ilrea alba throughout Its whole length. Note specially that he fibres whlch arise from the Inguinal ligament arch inwards and blend with the corresponding filires of the transversalis to form the conjoint tendon whlch ls Inserted into the pubic crest and also Into the llio-pectlneal line for about an inch. The nerve supply and the action of the internal obllque are the same as those of the external obllque. This muscle may now be reflected forwards from its origin and also from the costal cartilages. This is an operation of some difficulty owing to the presence of the Intercostal nerves and vessels on its deep surface.

The transversalis muscle arlses from the outer third of the inguinal ligament, from the anterior two thirds of the inner lip of the iliac crest, from the lumbar aponeurosis and from the lower six costal cartilages. The muscle fibres are for the most part directed transversely inwards to their insertion into the whole length of the linea alba. The fibres that take origin from the inguinal ligament, however, arch inwards to blend with the conjoini tendon, as already noted. The nerve supply and action of the transversalis are the same as those of the two oblique muscles.

The Rectus Sheath.

The rectus sheath is now to be opened longitudinally. Difficulty will b: experienced in reflecting the anterior wall of the sheath from the muscle owing to its blending with the three tendinous intersections. The sheath contains two muscles-the rectus and pyramidalis, two arteriesthe superior and deep epigastric, and two sets of nerves-the lower six intercostal and the last dorsal.

The rectus arises by an outer head from the pubic crest and an inner head from the ligaments in front of the symphysis. The muscle is inserted into the fifth, sixth and seventh costal cartilages. It is supplied by the lower six intercostal nerves, which pierce it. It is a muscle of expiration and also anteflexes the trunk. It possesses three transverse tendinous intersections, of which one is situated opposite the umbilicus, one opposite the ensiform cartilage and one midway between these. A fourth intersection is sometimes present midway between the umbilicus and the pubes. They represent body seg mentation.

The pyramidalis is only occaslonally present and arises from the ligaments In front of the pubes. Its insertlon is into the ilnea alba. It in innervated by the last dorsal nerve, and its action In to exert tractlon upon the llnea alba.

The superior and deep epigastric arteries will be found running downwards and upwards respectlvely upon the deep surface of the rectus, and supplying it. The superior eplgastrlc has been prevlously studied in the thorax. The whoie course and distributlon of the deep epigastrlc artery will be atudled later.

The last dorsai and the lower six intercostal nerves run forwards in the abdominal wall between the internal oblique and transversalis muscles. They enter the rectus sheath by piercing the posterior iameila of the internal oblique aponeurosis. The lower six intercostal nerves, traverse the substance of the rectus muscle, supply it, and then emerge through the anterior wall of the sheath as the anterior cutaneous nerves which have been previously studied. The last dorsal nerve supplies the pyramidalis.

Cut through the rectus about its middle in order to study the mode of formation of the rectus sheath which is as follows. The aponeurosis of the internal oblique muscle on reaching the outer border of the rectus splits into anterlor and posterior lamellae of whlch the former blends with the external oblique aponeurosis and the latter with the transversalis aponeurosis. Below a point midway bet ween the umbilicus and the pubes, however, all three aponeuroses come to the front of the rectus, thus leaving a free edge of the posterior wall, termed the semilunar fold, at the above level. Therefore the lower portion of the posterior wall of the rectus sheath has to be completed by the next layer of the abdominal wall, namely the transversalis fascia.

The Inguinal Canal.

Theanatomy of the inguinal canal and of inguinal hernia must be studied next. Begin by detaching the aponeurosis of the externai oblique from the inguinal ligament. Lift up the lower border of the internal oblique and define the spermatic cord if the subject be a male, or the round ligament of the uterus in the case of a female. The ilio-inguinal nerve will likewise be found in the canal in both sexes. The next step is to detach the internal oblique and transversalis fibres from the inguinal ligament, taking care mean while not to damage the deep circumflex iliac artery in so doing. On lifting these muscles upwards, the spermatic cord or round ligament will be found emerging through the transversalis fascia at the abdominal inguinal ring.

The inguinal canal is an oblique passage through the layers of the abdominal wali. It is one and a half inches long and is situated immediately above the inner half of the inguinal ligament. It transmits the spermatic cord and its coverings in the male. and the round ligament of the uterus in the female, as well as the ilin-inquinal nerve in both sexes, Its
superficiut opening, termed the subcutaneous Inguinal ring, is an opening in the extermal obllyue aponemrosla sltunterl just above the inner end of the inguial ligament. Sitrictly praking there is no opening. neeing that the marsins ar" prolonged downwaris ower the spermate cord and testin as one of their roweringe termed the external spermatic fascla. The leep opening of the inguinal canal, or abtominal ligeulnat ring, Is in the fascia transweralis and is wituated nt a point about half an inch above the inguinal lignment, mal miduay between the antefor superior aplae and the pubicesmphssis. Ihre agatin there is no openeng since lis margins are also protonked downwarda ower the spermatic cord and testls an the internal spermatic fanciat. The anterior watl of the canal is composed of the aponeuresis of the external ohtigue and the fower border of the internat obligue, whike the postericr wall presents from whout inwards the fascla transer is, the comjoint tendon and a few reflected fibres from the external of fue aponcurosis of the oppositeside. The floor is formed by the inguinal lignenent and the lacunar ligament which is a very small st ructure fitting into the angle between the inner end of the inguinal ligament and the itio-pertincal line. The roof of the canat is simply formed by the approximation of the unterior and posterior walls above the contents.

The Spermatic Cord.

The spermatic encl posseuses three sheaths or eoveringe derived from the layere of the abmominal wall namely -
(1) The external spermatic fascia from the external oblique apon"urosis.
2) The eremaster muscle which consi ts of a series of loops pulled awny from the losier border of the internal oblique. The cremaster has a sperial nerve supply from the genito-femoral nerve.
(i) The internal spermatic fascia which is derived from the transversalis faccia. Note once more that these three enverings are prolonged downuards as consituents of the wall of the serotum.

The constituents of the spermatic cord are-
(1) The duetusifeferens.
(2) Thespernaticartery.
(5) Three spermatic plexuses -veins, nerves and lymphatics.
(4) Three other structures the artery and nerve to the cremaster musele and the artery to the durtus deferens. It is diflicult to identify all these structures, though the durtus is readily recognised by the fact that it feels like a piecer of eorlf. The spermatio plexus of nerves is derived from the sympathetic system, and comes from the aortic plexus. The spermatic lymphaties from the testicle pass to the glands hy the side of the abdominalatort:.

The Scrotum and Testis.

Incise downards through the wall of the serotum slong the line of tise surmatic corti athi "anme ion iontin by rutting vertically through its.
coverings. Nute that undernea'h the shin of the serctum is a heyor of monstrlated musele, the dartow innsele, whith ontirely replatio the suthentaneous fat in this region, and causes the wrinkting of the serothl wall. In addition to these layers the edetclo la likewise covered by the external spermatic faseia, erematerle masele, the inturnal :permatio fatia ame the tunlea vaginalis whietr constitutes its surous rovering and therefore ronslate of parletal and viereral layers, the line of refletton between the two being along the posterior borde: of the tes it.

The certis conslsts of a borly along the powtorior bordar of which is moulded the elongated epididymis, which overlapt the teitid externatly, a small recess termed the digital fowsa lintervening betwern the two, and Indieating the side to whilel the testis belong. The body is owod in shape and hangs with its long axh more or loss vertical. It possessers a $:$ mooth glistendig appearance produred by the visereal hyer of the tunica vagimatis. On Its upper pole elose to the epididymis the minute bodies, one stalked the other unstalked, may be found. These ure the hydatids and are embryonic remnants, the stalked one representing the remains of the proneplros and the unstaked one the remains of the Mullerian duet. The epididymis consists of an enlarged uppor mol or heal, which oworhange: the upper pole of the te: tis, an elong...th hody and an athenumed lower end or tail. It contains a tube, the canal of the erpididymis, coiled to an amazing degree, which becomes continume with the duetus deferens. The latter emerges from the tail of the epididymixand then runs upwards in its inner side.

Make a horizontal section throught the body of the thetis in order to glean some knowledge of its structure. Note that immodiatoly underneath the tunica saginalis it is encased in a wrong resistant capsule tormed the tuniea albugimea from which fibrous septa pass backwards towards the posterior horder of the gland thus dividing it into compartments. The latter contain the much coiled and eonvoluted seminiferone tubules whieh join to form a plexus towards the posterior border of the testis. This plexus is drained by the vasa efferentia into the canal of the epididymis.

Ingulnal Herna.

The complete course of the de p epigastric artery must now be examined as a prelude to the study of ingninal hernia. This vessel arises from the external iliac artery one quarter of an inch abowe the inguinal ligament. It is directed upuards and inwards hehind the faseia transversalis and passes to the inner side of the abdominal ingumal ring. It soon pierces the fascia transwersalis and then entes tire rectus sheath in front of the semilunar fold. The decp epigastric :artery emds hy anatomosing with the superior epigastrice It gives of mbsenlar twige to the rectus, cu'aneous brancles which acempany the anterior chtaneots nerves, the artery to the cremaster must le and a hranch which amastomote with the obturator artery. Ihs explains the mode of formation of the abrormal
obturator artery which has been already mertioned in connection with fomoral hernia.

Oblique inguinal hernia emereen through the abdominal ingulnal ring, and traveraen the inguinai canal. If large it may protrude through the aubcutaneous inguinal ring and finally extend downwarde into the acrotum. It han thercfore the name coverings an the spermatle cord namely the internal apermatic fascia, the cremaster muncle the oxternal upermatic fascia, the superficial faccia and the akin. In addition the hernial sac is formed from a protrusion of the peritoneum.

Direct inguinal hernia in protruded through the area known as Henneibach's triangle. Thim is bounded externaliy by the deep epigastric artery, Internaily the outer border of the rectus sheath and below by the inguinsi ligament. In addition to the peritoneal hernial anc ita coveringe are the tranaversalia fascia, the conjoint tendon, the external spermatic fancla, the nuperficial fascia and akin.

The tunica vaginalis is developed as a protrusion of the peritoneum, which is pulled downwards into the scrotum during foctal life. This communication may remain open and a hernia be forced downward into it. This is known as congenital hernia. A second peritoneal sac may be pulled downwards into the acrotum behind the tunica vaginalis during foetal life. A hernial protrusion may be forced downwards into this asc, constituting infantile hernin.

It is convenient to study the deep circumflex iliac artery at this atage. !t arises from the outer aspect of the external lilac one quarter of an inch akove the inguinal ligament. It runs outwards along this ligament, and on the way pirces first the transversalis fascia and then the transversalis muscle. The artery is continued along the iliac crast between the transversalis an! internal oblique muscles, and it ends by anastomosing with the superior gluteal and with the lumbar urterlen.

The abdominal cavity is now to be opened by a vertical incision through the linea alba and a transverse incision extending outwards on each side from the umbilicus. The four flaps are then to be turned aside.

Upon examining the peritoneal surface of each lower flap, two ridges directed upwards and inwards towards the umbilicus may be detected. The outer one is produced by the deep epigastric artery, and the inner one by the obliterated hypogastric artery. In this manner the external, middle and internal inguinal fossae are produced. The external foam is to the outer side of the lower end of the external ridge, and corresponds to the position of the abdominal inguinal ring. It therefore indicates the site of the first protrusion of an oblique inguinal hernia. The miadle and internal inguinal fossae are placed on either side of the lower end of the internal ridge. They correspond to the floor of Hesselbach's triangie. Therefore a direct inguinal hernia may protrude either external or internal to the obliterated hypogastric artery.

The Pertioneum.

The peritoneum in the slistening serous membrane that linew the abdominal cavity. It la almo reffected over the vacera as covering for these. It arpangement is compilcated, and it is bent to atudy it firat of all In mesial vertleal section. Hegin firt of all with the great omentum whlch in the atructure loaded whth fat that hanga downwarda apron-ike over the Intestinem. This conalata of two anterlor and two pomterior peritoneal iayern which are continuous below at the free lower borde: of the itructure. The two anteriop iayera of the areat omentum, when traced upwardn, reach the greater curvature of the ntomach where they neparate to enclone this viscus. They meet again ut the leaser curvature of the stomach, from which they pasm to the transverne flsnure of the llver as the gastro-hepatc omentum. At the tranuverne fissure of the livet these two layers separate, and we will leave the poaterlor layer at thlm polnt, and trace the anterior layer forwards round the sharp margin of the flver, and then upwards on the anterlor and upper nurfacen of that organ. Here it Is reflected on to the under surface of the dlaphragm, and is continued downwards on the anterior abdominal wall, where it will also be left for the present.

On turning now to the two ponterior layern of the great omentum and tracing them upwards It will be found that they separate to enclose the transverse colon, from which they are continued upwards and backwards to the posterior abdominal wall as the mesentery of the transverse colon. The attachment of the latter will be found to be along the lower bord r of the pancreas, where lis two layers separate. The uppermost in directed upwards in front of the pancreas and the upper end of the abdominal aorta on to the diaphragm,from which It is reflected on to the posterlor and under aspects of the liver where it becomes continuous with the posterior layer of the gastro-hepatic omentum which we left at the transverse fissure of the liver. The fower layer of the mesentery of the transverse colon which we left at the iower border of the paucreas is almost immediately reflected from the posterior abdominal wall to form the mesentery of the small In testines. It is then continued downwards over the lower end of the posterior abdominal wail into the pelvis, and finally sweeps upwards on the anterior abdominal wall to become continuous with the layer we left there.

The arrangement of the peritoneum just described should be drawn on the black board in the form of a diagram. On doing so it will be observed that two peritoneal sacs have been outlined. These are the greater and lesser sacs of peritoneum, of which the former is the one that has been exposed in opening the abdominal cavity. The lesser sac is an extensive recess leading from this, and the opening of communication between the two is termed the foramen of Winslow. The latter opening will be discovered on passing the finger to the left behind the right free border of the āastrotepatie umentum. it should be nuted at this puinl lial the two layers of peritoneum which enclose the stomach, also envelop the first Inch

 the portal veln, the hepatie artery, the common hile duct and a fex lympe. it-
 hepatie artery helng in frone and wo the loft and tho comenen bilu duct in front and to the right. The uphe bendary of the foratuon of Whatuw in formed hy the under mefare uf tho liver, the pastorior by the Infertor vana cava and the loure bosmdary by the firat part of the dowlentum along wheth the hapatie artory no lt euptow forwaria

The bathlariow of the lesan ace are as follows. The satortor wall in
 layers of the grent omentum: while it posterior wall is formel by the two posterior layers of the great omernhem, the tratiswer colon, the manemtery of the transwerae colon, and the wertonenm cowering the perterior whelomin-
 the apleen, while tes rik! thit is at the fopamen of Winalion.

It will now he meressary to stuly the dhaposition of the peritenomim in a horizontal directon, and thia la beve done at the level of the foramom of Winsterw and at the level of the umbilions.

From the righe free burder of the gavero-hepatie omentum, ita two laypen pass townefle the loft, und reach the lesser curvature of the wtomuch where they meparate to enchose that vistus. The twolayers meet again ne the fundus of the stomach, from which they pase to the inner surface of the spleen as the gastro-phonic omentum. The latere is attached just in front of the hllum of the sploen, whilo immerlintoly behind this point twa layers of peritoneum pass from the spleren th the anterlor surface of the left kidney, to form the splenico-renal ligament The I wo layers of the later separate on the surface of the left killery, one of which swerpes to the left over the diaphragn and thener on to the antweror ablominnl wall: while the other layer passes to the right over the lefe kidney, the aurta, the inferior vena cava and the right kidney, linally paswing furunrds ower the diaphragm 10 moret the layer from the heft side on the interior abdominal wall. At this level the peritoneum is carried off fom the midlle line of the anterior abdominal wall by the ligamentum teres of the hver to form the faleform ligament of the liver.

The disposition of the preitonemom in a horizontul direction is ery simple at the levil of the umbilictes; for it will be ohserved that the right or upper layer of the mosentery of the small intestines sweppsto the right, and after covering the ascending colon in front athl at the xides, is continued on to the anterior abdominal wall. Similarly, lie left or lower layer of the mesentery of the small intestines, when traced towards the left, investes the descending colon in front and at the sides, ant is then continned forwards to meet the layer from the opposite side on the anterior aldominal wall.
 a neighboring viscus. There are three omenta the great or gastro-colic

 pernalx

 mosentery of the pelsice anlon
 that the abdominal envity in dovidol into lone regiony liy two horizontat and twat vertical planes. In this way the jotllons uf lho surinus vixtora

 about two and one hili incleay behind the anterior supurour spiow. It is therefore known as the interereistal plane

The two vertical blanes past throught the mid point of the right and left inguinal ligamernta, ant might therofore be namerl the mit-inguinat planes. Of the nime regionx thas maflell oft, flu thre in the uppermost row are named a* follows from the ris! tio loft the righe liypochondriac,
 row are the rikht lamhar. the umbibieal at at lefe lumbar regions, while
 iliac regions.

Dissectlon. - Thre intextinem hat io beromovel very parly in ortor to obtain a satisfactory viow of the wh lwe visora. It is therofore neressary to stindy the courme and divtributhon of the ewperior und inferior nowenteric arteries, and of the rovilas atis artory. Remove first of all the anterior layer of the mesantory of tha small inteatinos viary rorofally in order fo display the distribution of the shpurior merobloric artory. This also involves the removal of the lower lager uf the matitary of the transourse colon and also some of the peritomerm "n the phtorior abotominal watl.

The Superlor Mesenteric Artely.

The sunerine mosontoric artopy arises from the ant rior asbect of the abdominal aorta behind the pancrass. It passes downwards in front of the
recurved portion of the head of the pancreas, and after crossing in front of the third part of the duodenum, enters the root of the mesentery of the small intestines. It curves gently towards the right between the layers of the mesentery, and it ends by anastomosing with the ileo-colic artery, which is one of its own branches. The superior mesenteric artery is accompanied by the corresponding vein which lies to its right throughout its course. The branches of this artery are
(1) Branches to the small intestine.
(2) Ileo-colic artery.
(3) Right colic artery.
(4) Middle colic artery.
(5) Inferior pancreatico-duodenal artery.

The branches to the small intestines are 12 to 16 in number and spring from the left or convex side of the artery. They pass down wards towards the small intestine, and each divides into two branches which unite with their neighbours to form a row of arterial arches. From the summits of these a second series of arteries, much more numerous, arise, and each of these again divides to form with their neighbours a second row of arterial arches, from which innumerable terminal arteries pass to supply the wall of the intestine.

The ileo-colic artery springs from the right side of the superior mesenteric towards its termination, and passes to the right in order to escape from the root of the mesentery. It then divides into ileal and colic branches, of which the ileal supplies the lower end of the ileum and also anastomoses with the terminal branch of the superior mesenteric; while the colic branch supplies the lower part of the ascending coton and anastomoses with the right colic artery. The ileo-colic artery also gives off the anterior and posterior coecal arteries which supply the anterior and posterior aspects of the coecum respectively, as also the artery to the appendix which passes downwards be ind the termination of the ileum and then runs along the free edge of the mesentery of the appendix which it supplies.

The right colic artery arises from the right side of the superior mesenteric just above the ileo-colic artery, and very often in common with it After escaping from the root of the mesentery it passes towards the ascending colon which it supplies by means of ascending and descending branches, of which the former anastomoses with the middle colic and the latter with the ileo-colic, as previously shown.

The middle colic artery arises just as the superior mesenteric is crossing the third part of the duodenum, and passes forward between the layers of the mesentery of the transverse colon which it supplies by means of right and left branches of which the former anastomoses with the right colic in the vicinity of the hepatic flexure of the colon while the latter anastomoses with the left colic artery in the neighbourhood of the splenic flexure.

The inferior pancreatico-duodenal artery takes origin from the superior mesenteric just before it crosses the third part of the duodenum. It curv-
es upwards between the latter and the head of the pancreas, and after dispensing branches to both, ends by anastomosing with the superior pan-creatlco-duodenal artery.

Dissection.-The course and distribution of the inferior mesenteric artery must now be displayed. First of all locate its origin which is $1 \frac{1}{2}$ inches above the bifurcation of the aorta and strip ofl the peritoneum of the posterior abdominal wall alnng the artery and its branches.

The Inferior Mesenteric Artery.

The inferior mesenteric artery arises from the anterior (and left) aspect of the abdominal aorta $1 \frac{1}{1}$ inches above its bifurcation. It runs downwards and to the left on the front of the main vessel and then crosses in front of the left common iliac artery. It thus enters the pelvis and automatically changes name into superior haemorrhoidal. The artery runs down wards behind the commencement of the rectum, and soon divides into right and left branches which pierce the muscular wall of the gut to anastomose in the sub-mucous layer with the right and left middle haemorrhoidal arteries. The branches of the inferior mesenteric artery are the left colic and sigmoid arteites.

The left colic artery runs towards the left behind the peritoneum on the p rior atdominal wall in order to reach the descending colon which it sup s_{1}. s by means of ascending and descending branches, of which the former anastomoses with the middle colic and the latter with the sigmoid arteries.

The sigmoid arteries are two or three in number and supply the iliac colon and the pelvic colon. They form a chain of anastomoses with one another on the wall of the bowel, and also with the neighboring branches of the inferior mesenteric artery.

Before leaving the study of the inferior resenteric artery it should be noted that the corresponding vein does not accompany : closely, but lies slightly more to the left as it courses upwards to join the splenic vein.

Dissection.-The roeliac axis artery is now to be exposed. Pull a way the greater part of the gastro-hepatic omentum and pull the stomach downwards. The tortuous splenic artery will be detected running along the upper border of the pancreas. Remove the peritoneum towards the right along its course, and the main artery with its hepatic and coronary branches will be readily found. Trace the course and distribution of the coronary artery first of all and then sever the oesophageal end of the stomach in order to be a le to turn the latter downwards, thus giving a better view of the splenic artery.

The Coellac Axis Artery.

The coeliac axis artery arises from the anterior aspect of the abdominal aorta immediately above the upper border of the pancreas. After a course of about one quarter of an inch it divides into the coronary,
hepatic and splenic artaries. It lies behime the peritoneum on the osterior wall of the lesser sac.

The coronary artery is directed up"ards and to the left towards the oesophageat opening of the stomach, and britid the peritomen on the posterior wall of the lever sac. It defitc, into an wepphageal branch which passes upwards through the wown:a;ed upening of the diaphragm to anatomose with the owophagn! hranche of the thoracio aorta, and a gastric braneh, which swerps to the right het wern the layers of the gastrohepatie omentum along their lines of attabment to the le:eer curvature of the stomach It diepenoes bramelise th buht surfaces of this viseus and ends by ana tomosing with the pyloric brach f the hepatic.

The hepatic artery passes forwarle and to the right helow the foramen of Winslow, and then turns upwarls in the right free border of the gastrohepatic omentum in order to reach the liver, where it ends by dividing into right and left terminal branches. The right is the larger of the two, and they enter the two extremities of the tansverse fiture in order to supply the supporting tis ue of the liver. Note that the rigl i branch also supplies a small cystic artery to the walls of the gall bladder. The other branches of the hepatic artery are the pylorie and gastro-duodenal arteries.

The pyloric artery passes to the left along the lesser curvature of the stomach between the layers of the gastro-hepatic omentum. It is very small and ends by anastomosing with the gastric artery as previously noted.

The gastro-duodenal is a well marked branch which proceeds downwards behind the first part of the duodenum and then divides into the right gastro-epiploic and superior pancreatico-duodenal arteries. The former of these is directed towards the left along the greater curvature of the stomach and between the layers of the great omentum. It dispenses branches to both surfaces of the stomach and to the omentum, and ends by anastomosing with the left gastro-epiploic artery. The superior pan-creatico-duodenal artery carves downwards between the duodenum and the head of the pancreas, supplie.s branche: 10 both, and ends by anastomosing with th inf rior pancreatico-luodenal, as already shown.

The splenic artery is the largest branch of the codiac axis and exhibits a very tortuous eourse along the upper border of the pancreas, behind the peritoneum on the posterior wall of the tesser sale. At the same time it passes in front of the left kidney and reaches, the hilum of the spleen between the iagers of the splenico-renal ligament, where it ends in terminal splenie branches. It also supplies numerous branches to the body of the paner as, and in addition gives off the tas brevia and left gastro-epiploic branches which rearh the stomach betweren the lager. of the gastro-splenic omentum. The vasa brevia supply the fundus of the stomat: and anastomose with the gastric !ranch of the coronary artery; while the left gastroepiploic courses to the right along the line of attachment of the great omentum to the greater curvature of the stomach to anastomose with the right
gastro-epiploic artery. In this why the stomach is surrounded by a completering of anastomoses.

The Stomach.
The stomach poweses an oe onphageal opening, a pyoric opening. lesser and greater eurvatares, antorior and poterior surfaces. The fundus is the name givel to that protion which halres upwards and to the left above the level of the nesophaseal noming. Wecasionally a slight constriction may be deterted on the greater cursature a short distance from the pyloris. This selgenets a divi ion of the stomarh into two chambers, of which the larger portion towarks the loft is the body while that next to the pylorus is the pyturie portion. The stomath is sitmated in the epigastric and left hypothondriae region of the abdomen.

The position of the ocsophageal opening of the stomach is indicated on the surface of the hoty by a point on the seventh left costal cartilage one inch from its junction with the strmum. Note that the opening is over four inches from the surfare and is situated at the level of the tenth dersal vertehra.

The pyloric opening lies in the transpybric pane which is horizontal in position and plaed midway betwen the top of the sternum and the top of the symphysis pubis, onposite the first lumbar vertebra. The pylorus is at least half an inch to the right of the middle line, and is readily recognised by the thickening of the muscular coats of the stomach to form the pyloric sphincter. Note that the oponing looks almost directly harkwards. The great difference in the levels of the t wo openings of the stomach is not always fully appreciated.

The lesser curvature connects the two aportures and affords attachment to the gastro-hepaticomentum.

The greater curvature is much more extensive than the preceding. It sweeps upwards over the fundus and gives attachment to the great omentum, ard the gastro-splenic omentum.

The anterior surface of the stomach looks slightly upwards as well. A wide area of it next to the lesecr curvature is in enntact with the i.nder surface of the loft lobe of the liver. Of the remainder the portion next to the fundus is in contact with the diaphragm and therefore under the shelter of the left costal margin; while the smaller area nearest to the pylorus is in contact with the anterior abdominal wall.

The posterior surface of the stomach looks also slightly downwards, and is in contact with a number of structures which are mouided round it to form what is known as the "stomach bed." lying horizontally behind the stomach is the pancreas. with the splenic artery running along its upper border. Above the pancreas the stomach is in contact with the left kidney and suprarenal eapsule, the inner surfare of the spleen and a small area of the diaphrapm just below the nesophageal opening. Below the pancreas the stomach is in apposition with the mesentery of the transresse colon, the bowel itarlf boing moulded along the greater curvature.

The muscular crats of the stomach may be made out in a dissecting room subject, and are three in number. The external coat ls composed of longitudinal fibres, while the intermediate layer consists of circular fibres and is much thickened in the region of the pylorus to form the pylorle sphincter. The internal nuscular coast is rather scanty and is composed of fibres placed more or less obliquely. The other coats of the stnmach are peritoneal, submucous and mucous.

The Duodenum.

The duoden:l is is the horse shoe shaped portion of small intestine which immediately succeeds the stomach. It is situated in the epigastric and umbilical regions. It is 10 inches long and is moulded round the head of the pancreas, the first part being above, the second part being to the right and the third part being below that viscus. On the left side of the second lumbar vertebra the duodenum ends by bending forwards upon itself to form the duodeno-jejunal fexure.

The first part of the duodenum is about two inches long, and is directed at first upwards, backwards ind to the right from the pylorus. It then turns downwar's into the sccond part. Its first inch in invested by the same two layer: i peritoneum which enclose the stomach, so that the right free border of the gastro-hepatic omentum passes lipwards from it to the liver. The second inch, and also the remainder of the duodenum are covered only in front hy peritoneum. Above and in front of the first part of the ruodenum is the under surface of the liver to which it bears a varying relationship. If the stomach be comparatively empty, the pylorus and the first inch of the duodenum are in contact with the quadrate lobe of the llver. If, however, the stomach be full, the quadrate lobe of the liver is entirely occupied by its pyloric end, the first part of the duodenum being then pushed under the right lobe of the liver along with the beginning of the second part. Below, the first part of the duodenum is in relation to the head of the pancreas, while lying posteriorly are the common bile duct. the portal vein and the gastro-duodenal artery in that order from right to left. Another important superior relation of the first part of the duodenum is the foramen of Winslow with the hepatic artery.

The second or descending portion of the duodenum is three inches long and it ends on the right side of the third lumbar vertebra. In front it is crossed abnut the middle of its course by the transverse colon which at this point pussesses no mesentery. Above this the duodenum is still in contact with the under surface of the liver, while below are coils of the small intestine. Behind the second part of the duodenum is the hilum of the right kidney with the right renal vessels and ureter; to the right is the hepatic flexure of the colon, and to the left the head of the pancreas. The common bile duct opens by a common orifice with the main duct of the pancreas on to the postero-internal aspect of the second part of the duodenum a little above its middle.

The third part of the duodenum sweeps first of all to the left, and thell bends forwards upon itnelf to form the duodeno-jejunal flexure, an already noted. In front it is crossed from right to left by the superior mesenteric vein and artery and the ront of the mesentery; while it is in contact posteriorly with the vena cava inferior, the abdominal aorta and the left psoas muscle from right to left. Above it lies the head of the pancreas.

The duodeno-jejunal flexure is situated on the left side of the second lumbar vertebra. To its rignt is the lead of the pancreas, above it is the body of the pancreas and to its left are the lower end of the left kidney and the left ureter. The flexure is attached to the left crus of the diaphragm by an ill defined band of non-striated muscle, termed the suspensory muscle of the duodenum and mecentery. It prevents the root of the mesentery from being dragged downwards on the posterior ablominal wall by the weight of the intestines, so that defect or inefficiency of this structure produces the condition known as enteroptosis.

The JeJunum and lleum.

The remainder of the small intestine is composed of the jejunum and ileum and measures roughly about 20 feet of which 8 feet (or 2-5) are allotted to the jejunum and 12 feet (or $3-5$) to the lleum. These are attached throughout their whole course to the posterior abdominal wall by means of the mesentery of the small intestines. The line of attachment of this is known as the root of the mesentery and is represented by an oblique line which crosses in front of the third part of the duodenum, the aorta, vena cava inferior and the right psoas muscle. The root of this mesentery is only about six inches long, but the other edge is reduplicated to an amazing degree, until it is able to afford attachment to the whole lengths of the jejunum and ileum.

Dissection.- Cut through the duodeno-jejunal flexure, and release the jejunum and ileum by severing their mesenteric attachment. Finally cut through the ileum an inch or two from the coecum. Select portions of gut from the upper end of the jejunum and from the lower end of the ileum. Slit these up along the line of their mesenteric attachments and wash away their contents at the tap in order to study their mucous membrane.

The division into jejunum and ileum is very arbitrary, as there is no definite line of demarcation between them. On examining their mucous membrane, however, it will he noted that the transverse folds (the valvulae conniventes) are larger and more crowded together in the jejunum. They becone smaller and less nurnerous in the upper part of the ileum; while the lower part of the latter is usually quite free from them. It is advisable to slit up the duodenum at this stage in order to ascertain the fact that these transverse folds begin about 2 inches from the pylorus, and become more and more numerous as une approaches the jejunum.

The villi which are such a feature of the small intestine may be studied
by means of a pocket lens. They glve the fine velvety pile to the mucous membrane. They begin above at the same level as the transverse folds, they are largest and most numerons in the jejunum, and they end at the ileo-coccal valve.

The patches of Peyer are mongated masses of lymphold tissue, placed with their long axes in the line of the gat, and always opposite the mesenterle attachenent. They ure eonfined montly to the lower part of the ileum.

The Great Intestine.

 ascending colon, hepatie flexure, tranwerue rolon. splenic flexure descending colon, iliac colon, pelvic colon, rectum and anal canal. The last two segments will be studief in the pelvis hater. The great intestine is wider in calibre than the small intestine. The longitudinal nuscular coat is collected into three bands or taeniar which by their tonicity throw the wall of the large intestine into sacculations. These taeniae are not seen on the walls of the rectum or anal canal. Another distinguishing feature of the great intedtine is the presence of small peritoneal sacs of adipose tissue (appenchere: epiploicae) which are attached to its walls.

The coecum is situated in the right iliac region, its junction with the ileum being indicated on the surface of the anterior abdominal wall by the intersection of the intercristal and right inid inguinal planes. It is the blind $\because \mathcal{I}$ inches of the great intestine, hence its name. It is covered entirely by peritoneum, and show the retro-coceal fossa behind it. The coecum is placed obliquely iminediately above the outer part of the right inguinal ligament. In front of it is the anterior abdominal wall, while posteriorly is the right ikiopsoas muthe. The attachment of the vermiform appendix to the coecum is on its postars-internal aspect, directly below the ileo-eoceal junction, and within half an inct of it. It can always be discovered by the fart that the thre taeniae of the coecum converge upon it. The mesentery of the appradix is a narrow V shaped structure one edge of which is oceupied by the appendix and the other by the appendical artery The appendix varies very mach in length, but a fair average is about 3 or 4 inches. Ite pesition alio varies sereatly, bat it is usually directed inwards with a slight inclination up or dwal and it often hanga down over the brim of the pelvis.

The ileo-eoceal valur is sitablel on the postero-internal aspect of the coccum at its junction with the a cendiug colon. On opening up the cor-
 lower lap, the on le of which ar" prongel rosind the wall of the gut for

 fore tend to bring tho flap: fogethes al provent reflux of material into the ileum.

The :umputin: : ondon acone in the right lumbar rogion. and is not
more than 6 or 8 inches long. It is covered in front and at the sides by peritoneum, but \ln rare rases may, like the dosernding colon, posmess a mesentery. Posteriorly it rewty upon the righe iliargw nad quadratuatumborum muxeles, and the right patasia direetly toitanner wille.

The hepatic flexere is wimatel in the right hypehondriate region. It posterior surfare whel i : bare of probobeatn is it contact with the lower part of the anterior surfare of the riglet kilmey. Ahove it is the under surfare of the right lobe of the iiver, while to its left side is the sereond part of the duotenum.

The tranuvere colon is watally the lompowt pertion of the large in testine and is from ie to 16 incher long. Its middle portion posserses as mesentery which permite of the howel hanging lownwardw like a festoon in the umhilical region. It its rig't end. homberer, before it fossergeses at mesentery It lios in direct contart posteriorly with the weond part of the duodenum, while its left end is moulded directiy against the lower border of the pancreas. Above, the transverse colon is in relation to the greater curvature of the stomach, while below are the roils of small intestine

The splenic flexure is: waced at a higher leved than the hematie flexure and is also situated derper in the abolominal ravity. It lies in ther left hypoehomlriace region, and is attached to the diaphragm by the phrenicocolic ligament. It is namul from the fart that it is in contact with the inner surface of the splern.

The desending colon runs downward in the loft lumbar region and is about 6 or 8 inches Ing. It is covered in front and at the sides by peritoneum. Posteriorly it lies in contact with the lower end of the left kidney and the left quadratus limborum muse's. The left psoas musele lies direetly to its inner side. The descending colon clanges name into iliac colon after erossing the iliac crest.

The iliac colon lies in the left lumbar and left iliac regions, and extends from the iliac crest to the pelvic brim which it crosses opposite the saeroiliac joint. From abowe downwarts it crosses the left iliaeus the left psoas, and the left external iliac vessels at the pelvic brim. It is covered in front and at the sides by peritoneum, but its terminal portion frequertly possesses a mesentery. An important posterior relation in the male is represented by the loft spermatic artery and vin. The latter may be compressed by a loaded bowel in clironic constipation, and produce varicocele.

The pelvie colon is defined as that portion of the great intestine which is attached to the pozterior wall of the true polvic by a . I shaped mesentery. The outer limb of the $\$$ is the shorer and extend from the pe'vie brim at the point of termination of the iliae colon upward. and inwa:ds towards the sacral promontory. The inner limb of the.$~ I$ is almost vertical in direction, and extends downwards from the region of the sacral promontory to the front of the third piece of the sacram in the middle liser. where the pelvie rolon ends and the roctum begins. The surgiral importance of the
peritoneal fomsa in the ungle of the A whaped mementery has been previounly emphasised. The pelvie colon ponnesmen a conslderable degree of latitude of movement, and unually remta in the recto-venical foran in the male or the recto-uterine fossa in the female, in the form of a Ω ahaped loop of bowel lying on lta nide.

Dissection. The colon is to be cutacrons at the pelvic brim, and the whole of the proximal porton removed by severing the blood vensela and perltoneal attachments. Slit up a aegment of it, and after washing it at the tap, study the mucous membrane, and apecially note the absence of villi and valvulae conniventes. Now pull the stomach upwards or downwards and defline the relationshlps of the pancreas and spleen.

Ths Pancreas.

The pancreas is situated in the ppigastric und left hypochondriar regions. It consists of a head, a neck, a hody and a tail, and lips almont horizontally across the ponterior abdominal wall.

The head is received into the concavity of the duodenum and lies in front of the first and second lumbar vertebrae. The first part of the duodenum is above it, the second part is to its right, the third part is below and the duodeno-jejunal flexure in to lits left. The pyloricend of the stomach is in front, while posteriorly from right to left the common bile duct, the inferior vena cava and the abdominal aorta will befound. Note that the head of the pancreas is rurved upon itself and presents a special relationship to the superior mesenteric vessels which pasm downwards behlnd the neck of the pancreas and in front of the recurved portion of the head.

The neek of the pancreas is the slightly constricted portion connecting the head with the body. In front of it is the pyloric end of the stomach, while posteriorly are the superior mesenteric vessels, together with the point of junction of the superior mesenteric and splenic veins to form the portal vein.

The body of the pancreas presents anterior and posterior surfaces. and upper and lower bordera.

The anterior surface of the body is slightly hellow and forms part of the "stomach bed." It is therefore in close relation to the posterior surface of the stomach.

The posterior surface of the body of the pancreas lies in front of the hilum and the middle third of the anterior surface of the left kidney, with the left renal vessels and ureter. I small portion of the Ieft suprarenal gland is likewise behind it, as also the splenic vein, which is joined here by the inferior mesenteric vein.

The upper border of the body of the pancreas presents at its right end a small projection. the omental tubercle, which may be in contact with the gastro-hepatic omentum. Just above this projection is the origin of the ropliac axis artery. while its splenic branch pursues a very tortuous course along the remainder of the upher horder in order to readh the spleen.

The lower border of the body of the pancreas affords attachment l" the mesentery of the tranaverse colon, except towards the tail where the colon In directly moulded along it after losing lis mesentery. The rlght end of the lower border resta us on the duu no-jejunal flexure.

The tall reaches the Inner surface of cte spleen hetween the layers of the enplenico-penal ligament and Is In contact with the lowerend of the hilum.

The maln duct of the pancreay puns from loft to righe in the subutance of the gland and opens into the second part of the duodenumalong with the common hlle duct, as previously noted. A minute arcesoory pancreatic duct may he found of ening into the duodenum half an inch above the main duct.

The Spleen.

The apleen lies in the left hyporhondriar and epigastric regions. It is placed very ohliquely, its upper end being much nearer the middle line of the body than lta lower end. Its general direction corpesponds to that of the ninth, tenth and eleventh left ribs, opposite which It lies, being separated, however, from thesp by the diaphragm and the lower margin of the left lung and the pleura. The spleen varies greatly in slare, and presents for examination external and internal surfares, anterior and posterior borders, and upper and lower ends.

The external surfare is smooth and convex. It is entlrely covered by peritoneum and is in contact with the diaphragm.

The internal surface presents a ridge which begins at the upper end of the spleen and runs downwards hehind the hilum, opposite the lower end of which it fades a way into a triangular area which is in contact with the splenic flexure of the colon, and is therefore known as the colic surfare. The narrow area hehind the ridge is in eontact with the Ieft kidney, while the larger hollow area In front is in relation to the fundus of the stomach. A fourth relationshlp of the inner surface of the spleen is the tail of the pancreas which is in contact with the lower end of the hilum. Two peritoneal folds, namely the gastro-splenic omentum and the splenico-renal ligament, are attached to the inner surfare of the apleen.

The anterior border of the splepn is usually more convex than the posterior, and is moreover notched, while the other is smonth.

The upper end of the spleen almost touches the left suprarenal gland.
The lower end of the spleen rests upon the phrenico-colic ligament. and does not usually extend forwards beyond the midaxillary line. This is an important point clinically.

Dissection.-The stomach, duodenum, pancreas and spleen may now be removed together after severing their blood vessels. The next step is to remove the liver hy cutting the peritoneal ligaments, the structures at the transverse fissure, and the inferior vena cava hoth above and below.

The Liver.

 Intlon twit righn laterat xapfawe. It wrigh npprovimately nfty ounces in the male, and about five wemere leas in the fomalo. The llere in situated In the right hyperhondriac. phigatele and loft hepochoulfine reglons and may de-cend stighty Inta the rig': 'umber reglon as wrll. The liver therefore whow the gematme lemh nese the righe lateral surfare, whlle enwarda the
 The surfaces of the liver are anterior mupertore, eleht latepal. Inferlor and ponterinp

The antreine wepl er i omewhet prangular in outline, and is limited below ly at warg margin which erparate it feom the Inferior mur ace. It i* in contart with tholiaptragm "xewpt wera a haped aren wheh is in contart with the onteriur dedominal wall, and is thercfore mapped of hy the right andloft eovetal mapging Plix I whapel apea will be found to be hisected by the line of attarhenent of the fahriform ligament whech artificially mape off the anteriop and xuperiar wiffeos intoright and left lobes.

Tho superiorsurfare is in contart wilt the under surface of the diaphragm and therefore pre ente two cifevatiant which are in relation to the
 in reiatiun to the central tomion of the liaplifatem and to the heart and pertrardiam.

The right lateral wiffere is diphely convers and is situated opponite the seventh, eighth, ninti, Anth and eloventh pight rihs. It is separated from thene, Fowever. bex l laphragm hy t pleura as far as the tenth ril), and hy: he lune it if at far as the oighth rih. These are important data in prforenere to aperations for heptice ahaceses.

The inferior surface in limited in front hy the sharp margin of the llver. It is trawe col from hefore hackward hy the Inngitudinal fissure which maps off the inferior and postrpiop apfices of the liver into right and left Tohes. The und"e surfare of the left the preants a hollow area next to the sharp margin we ich ie in polation th the alterior surface of the stomach More poweriorly, how er, in a light prominence. the omental tubercle. which is in contat with is erehrpatio omentum.

The under silff efe if the right lolie is still firther mapped off by the transverse fisture wis hisies th the right from the middle of the longitudinal fisenre, and diwide the latter into anterior and posterior portions. T: enterior f retion contains the rolin' ligament of the liver the of literated umbitiol vein and is the fefore known as the umbilical fissure. It is offen bridged over hy hepatie tissur The posterine portion of the Iongitudina! fiscupe contains Cle obliterated duetus venosus of the foetus. and ie therefore de:al!y ! nown as the fissure for the ductus venosus. The umbilical fissurn. the eraniterse fissure, the gall hiadder and the sharp margin of the liver maf ofl an area appropriately known as the quadrate Iobe, which lias been alreally shown 1, be in contart with the pylorus and the remmencernent of liow immionum. To ther right of the gail hiarifer is
un extenmive porthon oithe und tarface of the liver, on whob tirue areaw
 fexure of the colon, the larger posterlor area in ill contart with the right kidncy, while the mallest area, which has next to the now of the gall hiadder, is in relation to the first and areond part of the duabemim.
 tremlty, hut taitawny into the wharp mar:en of - he liver at haf extrem-

 The trlang dar areat, the rlght of thas i known av the tore afe af the liver. the base uf whlel is formed by the inferior bona cava, whill the upper and lower margins are formed by the upper and lomer layera of the eoronary ligament, which meet towneds the right t"form the right lateral ligament, the lattor thus forming the nfex of tho aroat "the bare area of the liver is bound down to the diaplaragm ny armatar tiaxue with the exception of a amall portion oy the wille of the onferier verna rava, clowe to the lower angle. which is In contace with the reght suprarmal kind. 'It "Spegelian lobe i* the narrow tonglue shat il area vithated bet wown the informor vena cava
 tho feware sate, and is in contine whth the diap'ragen. Fho lower end of
 turneto the righe bet wem the transberse fosare and lhe infurior vena rava.

 after it pieress the diaphragm.

The five "lobes" of the liver are the right, left. andrit", madate and Spgelian. The five fiswures of the tiver ard the lungithlmal, transverse, umbilical, the fissure for the duetus ve me: : athl the finvire for the inferior vena cava. The five tigaments of the fiser are the falcoform, Ioft latoral, coronary, right lateral and the ligamentum tores. or pound ligament. The round ligament is the ohliterned umbilieal min of the fortus and it passes from tha umbilicu* to ber att ached lo the hoft ox remtity of the transverse fiswire. It liew in the fre burder of the falciform hament. the right and left lagers of which eon - 1 the anterior and npper .urfaces of the liver to the anterior aldominal wall a 11 de diaphragen Ploe left
 the liver and bend : upon itanf toform :her ateral lagat fot whirlo ron-

 to the under surface of the diaphragm. 'IV" hawer hayer uf thi, ligament is
 on to the posterior abominal wall. The mesting, \{the the lars of the
coronary ligament to form the right laterat ligament has neen already re. ferred to.

The Gall Bladdef and Bue Ductn.

The gali hiaditer is pear whafeel and lien in ite apecial fossu to the right of the yuadrate lobe. The robnied endis known an the funtumand projecten matly h. yond be wharp margin of the liver opposite the ainth right comeal cartulage, while the murrow ent or neck of the all biadiep is difected couardn the wht extrenuty of the tranmerne fiswure wher it becomet continums with the rystir duct The under surface and the fundus are the only prortiont of the gall bladiler that are covered by perisoneum, the remainde boing firmly bund down to the liver molbiance by connective tisaue. On 口perning ub the intertor and wathing it oc: it will be noticel that the nuceras membrate exhihits honceroml, like depremanone. An exammaton of the interior of the cystic duct at the same time will thow that ita murous membrane is throun up in the form of a epiral valve. The cevetr duce makes un \mathcal{A} shamelloend, and then miten with the common hegatio duct to borm the common hille duct, the former belng rooduced by the union of the righl and left hepratie ducta which emerge trom the two extremitics of the transverse ib:are in front of the right and left branchen of - he tiepatic urtery and pertal vein. The celamon bile duce is about 3 inchex long. and iw dierected down warde in the right free bordes of the gastoothepatic omentum, to the right of the hepatic artery and in frout of the portal vein. It then passes behind the first part of the duodenum. and after lying in the groove loetwoen the head of the pancrean and the scoond part of the duodentur, opens int., the latter on ita postero-internal aspect by . common orifice with the clief duct of the pancreay. This opening in on the summit of a small projection of mucous membrane known as the bile papilla. Jist inslde this orifice is a slight dilatation known as the ampulla.

Dlssection. The arlipose tissue murrounding the kidneys and suprarenal klands is now to he removed, and theme viscera prepared for examination. At the same time trace rech ureter down to the brim of the pelvia.

The KJdneys.

Earh kidney has the characteristic reniform shape, the hilum being placed on the inner border of each. The left kidney in situated in the epigastric und left hepochondriac regions, while the right in addition descends about half an inch into the righe lumbar and umbilical regions. The kidnegs aro placiol opposite the twelfth dorsal and first :hree lumbar vertebrae. The righe kidney is in front of the iwelfth rib; while the left, owing to its heing placed slightly higher, comes to lie in front of the eleventh and twelfthribs.

The posterior surface of earh kidney is in relation in its upper third to the dipihragin which separates it from the ploura, while the lower two i.uras in cach case are in contact from without inwards with the trang

 are the last doramb, llfo-hypogatere and life-ingunal nepvea, named in that

The unterior marface of the right killey exhitite a coupvel area hext (1) the hilum which in enctact whet the werond part of elo dhadenum. The upper two thirde of the ermainlot are in rontare with the liver, and the lower third with the lepatie texure of the rotem Tras whly whe of

 greatermac.

The anterior nurfure , he, hel in its mildle third by the body of the pance third is in relation Inte. externally to the inn id wessela The upper - of the stobath and the lower third Is in conemet externally wit as coverrd more interi : two peritomeal areas... bi... |nod splerent and these ars deveroling colon, and sepurated from earh oth - is. . - inent of the aplentico-ronul!igainent.
 The lewere ends of the kithe: fo abe atart thate the upper ends. "wing to the fact that they are pushed out wards by the sloping outore borters of the psoas muscles. The tower end of the right kuloey is one inch aboue the iliacerest white the lowerend of the fepe is one and a hulf inches from the illac crest.

The hilum of cach kidroeg preseate the renal vein, renal artery, ard the ureter, named in that order from before hackwards. As the neoter in directed downwards, the side to which a detarhed bidney belongs ran be readily detormined.

Fte - reters.

The ureter is io inche long, the upper half being in the abdomen and the fown, half in the pelvis. After emerping from the poster 'or aspece of the hilum the ureter is difected alrabit vertically down wo ts anon the panas musele, and enters the pelvis by crosuing in front e: the bifurcatio. of the common iliac artery. Antorioply each up: is covered by the peritoncum of the greater sace and is crowod liy the spermatio or ovarian vessels 'whlch supply matute arterial twig en tes midtle sog. ment. Note in addition that the upg a end of the right ureter lies hehind the duodenuin, while the upper eidl of the left is situater! hehint the thoty of the pancrias, The righe ureter ir crossed anteriorly by the rone wi the
 "front of it at , he pelvid brim.

Dlssectlon. Split the lideley so at i, study the upper end of the ureter which widens out in the hilum to form the phlsis of the ureter. This exhibits a series of romesterwers the apiora of the remal pyramids, termed calices.

The Suprarenal Glands.

 outline. prethed on the uppre ead :nd inner border of the eoresponding kidney. Posteriorly each irsta up at the "orpespolidin: crus of the diaphragn, while to its inner sile is the asenilanat innetion of the solar plexus.

The anterior relations of the thele suprarenal fitad ure the hare area of the liver and perhapas amall portion of the duodenum.

The anterior relations of the loft suprareral indand are the posterior surface of the stomash and the posterior aspeet of the body of the pancreas.

The Abdominal Aorta.

Dissection. The abdominal abrta must now be eleaned and its paired branches defined. It will be noted that the majn vessel as well as its branthes are invested in a touth plexins of sy mathertie nerves, white afew lymph glands will be found on each side and in froat of the aorta.

The abdominal austa herins in the middle line of the body in frost of the lower border of the twelfth dorsal vertehera. Ha cours: is downwards and slighty to the left, and it eads on the left side of the bedy of the fourth lumbar vertobra he disidin: into the rieht and hef common iliac arteries. This hifur aton is indentel an the surfare hy a wint half an inch below and to the left of the umbilicus (the latter is situated opp site the dise between the third and fourthlumbirr vertebrar.)

The posterior relations of the abominal anta are the upper four lumbar vertebral with their anturior ennmon ligaments, and the four left lumbar veins.

The immediate anterior relations are arranged in pairs from above downeards as follows:
(1) The perituream on the poterior wall of the lesser sas. and the coeliar sympathetio plesus whin surounds the empliac axi artery:
(2) The pancreasand the splenierem:
(3) The thirel part of the dhodeaum and the left remal vein:
(4) The peritume um the phiterior wall of the greater vac and the aortiesympathertulexus.

The more remotr anturine relations are the liver, gastro-hepatic omentum, the stomath, the fivat omentan, the tamserse colon, the mesentery of the transverer colon. the naerntery of thesmall intestines, and thesmall intustine itsulf.

By the rizht sige of the abtominal aorta in the lowe portion of its course is the inforior vena cava, whish separates it from tle right sympathetio cord. White to ite hift side is the left sympathetio rhath. On earh
side his: : up is the corresponc:nto crus of the diaphragm, and between the vessei an the right "rus the recepturulum chyli with the commencement of the thorari" dut, and the vesa azwios major will be found.

The branthes of the abfominal aota from above downwards are as follow:-
(i) Inferior phreni. (paired),
(2) Coetiac axis (unp arell),
(3) Middle (apsular (pairml),
(4) Superior mesenteric (unpaired).
(5) Renal (paired),
(6) Spermatic or ovarian (paired).
(7) Inferior mesenteric (unpairea).
(8) The four pairs of lumbar arteries are given of in series all the way down, but are conveniently mentioned here;
(9) The midrle sacral (unpaired),
(10) The torminal conmon iliac (pared).

It may thus be noted that the paired and unpaired branches arise alternately except at one point.

Each inferior plirenic artery sweeps outwards upon the corresponding crus of the diaphragm, the right passing behind the inferior vena cava and the left behind the oceophagus. Ea divides into inner and outer brare:hes of which the former ansatomose with one another round the central tendon of the diaphragm, whike the oute branches proeed towards the lateral margins of the diaphaym and afor supplying it, end ly anastomosing with the intercostal and musculo-phrenic arteries. Each inferior phrenic artery also furnishes the superior capsular artery to the suprarenal gland.

The coeliac axis artery has been already deseribed.
The middle capsular arteries arise opposite the suprarenal glands and constitute part of their arterial supply.

The superior mesenterie artery has hern presiously deseribed.
The renal arteries are comparatively !arge vessels. Each passes out wards transversely in order io elitl, the hi'um of the corresponding kidney, where its position has been presionsly seem, to be intermediate between the renal vein and the ureter.

The spermatre or ovarian vessols arise immeriately beiow the renal arteries and run downwards and ontwards in front of the ureter and the psoar muscle, the vessels of the ripht side laving to cross, in adtition, the inferior vena cava. Their upper ends are situated behind the third part of the duodenum, but for the remainder of their course they are covered merely by the pe itoneun of the posiorior abominal wall.

The ovarian artery enters the p.lvis by crossing "he externalian artery close to its origin and therefore i:nst ia front of the ureter and inmediately behind the colon. Its further course in the fomale pelsis will be studied later.
 in order to reach the abdominal inis tinal rim!s, where b joins the other constituents of the spermathe eord. It the latter print the vessel is sitwated immediately in front of the termitation of the evtornal ilia artery, having previously bee an exterat retation of tai att in fat som distane.

 varicocele has heren previously " np'u.tit it.

 under the quadratus lamboram: but th forth atley, being situated below the level of the iliae (exst, run watwar.f up on the iliacus mas le. and supplies its upper part. The upre there arterips after supplyits: tho psoas and quadratus homboram, are continued forwards betwert the ab-
 the lower intereostal arteries and the shemetal arters:

The middle sacral artery is beremall, a d arises from the abgle of bifureation of the abdominal atma. It runs downwards upon the tifth himbar vertebra and eators the phliw in froat of the saral promontory. It is continued dow. ards in fro it of the middle line of the sarrum and
 placed in front of the worex. The midhle sat ral artory anastomoses with the lateral sacral arteries after supplyin! the tissue ; in front of the salormm.

The Common Illac Arteries.

The enmmon iliar arteries are the terminal braneher of the abolominal aorta and arise on the left sithe of the fourth lambar vertehat. They diverpe on the anterior aspet of the lifth lumbar vetoba and end opposite the lumbosaral dise beg dividin: into the whernal and internal iliae arteries. In front they are cosered by the peritonesm of the posterior abdeminal wall and be many sympathen - nerbe fiteres wheh are streaming:

 The external and internal dia arterie a be the only branelys of the rom-
mon iliae viexsels. Of these the internal ilia artery will be sthich later in the pelvis

The External lilac Arteries.

The external iliar artery be pins opposite the lumbo-sarral dise as the larger terminal branch of the connon itiar. He course follows approximately the line of the pelvic brim, and it termates behind the inguinal ligament at a point midway betwere the anterion superior iliar spine and the symphysis by changine name into fomutal. At tirst the external iliar artery lies alon: the inner border of the poas. binally eoming to lie in frout of thin muscle and the faspia iliana. Antorionly the artery is cowered throughout almost its whole colarese hes the preitoneurn as this swepps downwards into the pelvis over the pelvie brim. In addition the artery is crossed at its very origin by the ureter, just below this, in the female, by the ovarian vessels and immediately beyond this again, on the left side only, by the colon, as this sweeps over the pelvic brim. At its very termination the artery is crossed by the deep cireumflex iliac vein in both sexes, and in the female by the round ligament of the uterus as it enters the abdominal inguinal ring. To the outer side of the externul iliac art'ry are the genito-femoral nerve, and in addition, in the male, the spermatic vessels which meet the ductus deferens at the abdominul inguinal ring immediately in front of the termination of the artery. It will be notieed that the external iliace vein is situated on the postro-internal aspect of the artery.

The two branches of the external iliac artery namely, the deep epigastric and the deep eircumflex iliac have been already statiedi in the anterior abdominal wall.

The Portal System.

The blood from the eoeliae axis, the superior mesenteric and the :nferior mesenteric arteries that goes to supply the walls of the alimentary canal, has to pass through the eapillaries of the liver and the series of veins that eollects this blood eonstitutes the portal system. Thus the portal eirculation differs from the systemir circulation in this respere that its blood has to pass throagh two spts of "apillaries mamely, those of the gastrointestinal canal and those of the liver, before being returned to the heart. It is important to note that the veins of the portal \mathbf{y} ystem possess no valves a factor that has a predisposing intluence upon the clevelopment of haemorrhoids.

The portal vein is formed behind the neek of the pancreas by the union of the superior mesenteric and splenic veins. It is tirected upwards behind the first part of the duodenum, and cnters the right free border of the gastro-hepatic omentum, where it lies posterior to the hepatie artery and common bile duct. At the transwere fissure of the liver the portal vein ends by dividing into (large right and (amaller) left terminal branches which enter the liver at the extremities of this fissure.

The portal vein is joined hy the pylorie vein and the coronary vein
from the stomach and the lower end of the owophogus, white its right branch receives the cystic vein from the gell blatder.

The superior mesenteric vein receives the veins corresponding to the branches of the artery, and in addition the 'uperior pancreatico-duodenal and right gastro-cpiploic veins.

The inferior mesenteric win reesia. fia lioud eurresponding to the artery, and its venules in the wat of ! a rem an communieate with those of the middle and inferior hamorrhomblat which of ain into the systemic circulation. There is aft to be a $\begin{aligned} & \text { :. } \\ & \text { 有 } \\ & \text { wer condition of the venules }\end{aligned}$ at the junction of these two ry: tems in the reetal whill, thus producing haemorioid or piles.

The bood of the portal -yeping, after trave ing the hiver, is re-coltected into the hepatic vei s which empt! moth the vena cava inferior, as it lies in the fissure on the posterior aspect of the liver.

The Inferlor Vena Cava.

The inferior vena cava begins on the right side of the fifth lumbar vertebra by the union of the rig t and left common iliae veins. It runs upwards upon the right side of the a domin:l aorta, but becones separated from this higher un by the right erus of the diaphragm. Towarda the end of its coure it lies in the un:s raval fieure on the posterior surfare of the liver and hea es 1 e abdenem by pa ing through the vena caval opening in the diaphragis in order to enter the right auricte of the heart. From below upward it rests t:pon the humbar vertebrae and he diaphragm. The right renal artiry and the right emilunar ganglion of the solar plexus also lie behind it. Anteriorly from below upwards it is in relation to the peritoneuin of the postorior abdominal wall, th third part of the duodenum, the head of the pancreas, the foramen of Winslow and the posterior surface of the liser. It is also crossed in front by the root of the mesentery of the smallintestines.

The tributaries of the ena cavainferior are -
(1) The inferior phentic veins,
(2) The hepatic vein:,
(3) The rig't rapsular vein.
4. The renal veins.
15. The right spermatio or oxarian vein,
16. Four paire of lumbar veina.
(i) The veine of formation.

Note that the left capsataterin and the left phematie or owarian vein join the left renal wein, white the midhe sacrat win enters the hef eommon ihace win.

The Muscles And Fasclae on the Posterior Abdominal Wall.
Dissection.- Remove the kidneys and clean the fascia covering the
psoas, iliacus and quadratus lumborum muselow and who that lining the under surfaee of the diaphragm.

The fascia iliara is the name siven to the farcia werme the prose and iliacus maschas, which forme one eontinuous shat. Intert illy it is at-
 vessels, and lower down to tion phbirbim. Externa . from than downwards it is attacherl to the facia conerint lír quadrater omber and to
 ligament exerpt "pposite theremora! wesel , where it is prolonged downwards into the thigh az the poseriar wall of the femoral sheath. Above.

 process of the fir thamber werthra to the idfo of the body of the second. and gives part origin to the diaphengin.

The factia roweing l!a quadratns lamborm is prally the anteriop
 below to the iliace cres and ilo-lumbire ligament. und externally to the fascia transwera!is. H: uppr fordor form: the external arcuate ligament which passes from the twelfet rib th the traminese procese of the first hambar vertabatandat if if prioriziothe diapiragm.

Dissecton. There lacup of facia may now be removed in order to define the attadements of the p ats and q tadratus lanbormm museles. In so doing take rare not whatare the hrancheg of the lumbar plexus which appear at the outer horder of the pionas.

The powas met cio ari-e from the interemploral dies and adjacent margins of the bodies of the serfebr:", from the twelth dorsal to the fifth
 from the fibrous arches thrown ower the lumbar arteries. The muacle rapidly narrows as it pases duwharls alone the polvic brim. It enters the thigh behind the ingeninal liganent and is joined by the tibres of the iliacus to form the ilio-pedas whe? f - in ered into the smatl frochanter of the femar and alishtle into the home below this. Its nerve supply is from the lumbar ples sand is ation is to flex the thigh and rotate it inwards. The pewa: parive is the natme given to a separate tendon sometimes seen on the front of the musret.

The iliacus musde ari-1 from the upper two llids or so of the iliac fossa, and its fibers convery in a downward direction to obtain insertion into the poas tendon. it ref supply is from the femoral, and its artion is the same as that "! the pow.

The quadratus lambor ${ }^{\circ}$: $: 1$ ald take neigin from the posterior third of the iliac erest, from the - phar ligatarnt and from the traniverse processes of the lambar wrobeus. It: ineretion is into the inner portion of the lower borker of the fwelfth riband into certain of the lumbar transverse processes. It - nerve iuphiy i, therived foum the lumbar plexus, and
itn action is to assiat the epector mpinae group in bending the trunk over in the same side. It ulwo strudles the ribs in reapiration.

The Diaphragm.

The diaphragm arises posteriorly hy the right and left crura of which the right arises from the first lifere lumbar vertebrae and the left from the the first two. More externally the muxcle arises on pach side from the internal and "xternul arelute ligaments and from the deep aspects of the lower six costal cartilages, the lacter fibres interdigitating with those of the transwersalis. In fromt the musele takes origin hy two slips from the pesterior aspert of the ensifurm cartiluge. The muscte fibres arch inwards to obtain insertion into the central tendon, the upward bulging on each side of which constitutew the ripht and left eupolace. The central cendon is trefoil in shape, the right lobe being the largest while the anterlor or middle lobe is also intermediate in size. The diaphragm is supplied by the two phenie nerves, as alreds shown, and alan by thelower intercostal nerve. It is the great musele of inspiration, and is therefore next to the heart the most important musele in the body.

The diaphragm exhibits there maill openings. The aortie opening is formed by the union of the iso rerara and is situated in front of the twelfth dopsal vertohra. It transmit- the anta, thoracic durt and vena azygos major in that order feom left toright. The uesophage ol opening is between the untic opening and the left lobe of the erotrat tendon. and is situated onposite the touth dursal eprepbra. In addition 10 the oerophagus it transmits the right ant left vagu berses, the former being behind and the latere in front of the oesoplagus. The inferior vena caval opening is

 1 Fetwe Notefuther that peth -ans is piered by the three splanehnie
 cord pases behied the i-mbenal arellate liwatnent. The superior epi-
 ne aghth oret.al \because atthame.

The Lumbar Plexus.

 order to expene the lombar phexus which is indherded in its sulatance.
 and femoral hram! !e vinh apmate at its ruter border, the obturator hranel whith apmats at its in eur latder, at the ernitu-femoral nerse
 remove the psatas hit by hit untit te where plexus is exposed.

 downwarls n bratolh to the fiftir luml ar pero to form the lumberaceral

 fruscle：

 the ufpermest of the t wo．

 th the thish has I eren presmes，st Alom．

 ramely ter the ilinum muatle．

 with the fenoral atores in the ant emort ompartmont of the femoral

The Solar Plexus．

 かけどばい。

The diatribution of the solar plexu* Honely follows the branches of the abdominal aorta fine example the dlaphragmati. plexumen follow

The Abdominal l.smph cilands.

Tb:C Mafe reinesam.

remove the remaina of the skin from the prrinemafler tyiug the ponin and the remainn of the serotum upwurts out of the way. Note that the perineum ts the nutfet of the pelvit. It la timefore ensentinl to axamine fis boundarioy in the skefito:i. In feont it to ! miteal by the semphyait pubin,

The Ischlo-Rectal Foes.

 fascia. In contrapt to thes. the buerer wall is markonlly sopoln: and is

 boneder of the plutmes masimes. The letrar apex of the iw. 中m prith fosma i: formed by the fision of the wht eator facia with the anal fancia and the buse is formed by the ski?

The internal phatendal veswiy and nerere will be found pannise forpwards in a tunnel in the whteater fise i.s tremed Alook's ranal. In this part of theip course they efor olf We inferiop hamemehotial and the super-
 as follows
(1) (rassin: the quace transeresely form the adere tid the inner wall are the inferior huemorthodal vessels and urpor:
(2) In the antione portiotion the fosa are the sumeficial perineal veseds and nerves, whin should he tratel fopwarda to the prineum and spotum.
(:3) In the pers ion portion of the spater will he found the perforating: cutaneous nerse abd the periofal banel of the forith satral nerer which piere the levator at mu, le hy the side of the woeryx. The

 fthatu.

The external sphinctedin dimeult to define owine to the palenews of It Abren. It arines ponterioply from the tip of the cocryx and anterioriy from the central point of the perineum. From theme two polnt the fibres pace to form an interiaring syatem round the anal oplicer. ita nerve supply in from the two inferior haemortholdal nerves and the two perinoal branchew of the fourth sacral nerve.

The Urethral Triamgle.

The superficial perifes vensels and nepris have been already found (t) supply the akin over thil triangle, together with the long pudendal nerve $\mathrm{fr} . \mathrm{m}$ the pomepior cutancoul nerve of the thigh. The layer of fascia which coveru the muperficlal perineal muxclea is known an the fascia of Coillen. This in attached pouterloply to the base of the trinneuiar lizament, un earh alde to the rami of the lachium and pubia, while anteriorly It aweeps on each slide of the root of the penis to herome contlnusur with th memhranous layer of the siuperficial fascia on the lower part of the anterior abdominal wall. This explains why an extravasation of urine due to rupture of the anterior urethra in foreed upwards on to the anterior abdominal wall.

The nuperficial perineal muselen when defined and cleaned will be found to b:
(1) The inchio-savernosus lying alone the pubic and ischial pami:
(2) The bulboravernosua of ejarulator urinam in the midnle line;
(3) The transversus perinei, which in directed transversely and meet ${ }^{*}$ ita fellow, the aphineter ani externun, the rjarulator urinar and the levator ani in a tendinous interapetion tepmed the eentral point of the perineum.

The ischio-ravernosus covern the cpun of the penis. It arines posteriorly from the inner anpect of the ischial tuberosity and apreads out into a cendinous expanaion which is inserted into the crus of the penis. Its nerve nupply is from the internal pudendal.

The ejaculator urinae covers the bult of the corpus spongiosum of the penim. It arisen ponteriorly from the central point of the perineum and from a π saial Intersection or raphe on the supprficial anpert of the bult The fihpen ape inserted into the triangular ligament, but those most anterior encircle the hulh and the junction of the rooth of the penis. It is inneprated by the internal pudendal nerve.

The transversus perinei musclen pent upon the base of the triangular ligament. Farch arimen from the inner anpect of the ischial thberoxity and they meet in the central point of the perineum. They are supplied by the internal pudendal nerver.

Dtseetion. Remove the perineal murcies rapefully, in order to expowe the root of the penis and the superficial xuffare of the triangular ligament. Dissect out at this stage the dopsal veln, the dorsal arterips and doran nerves on the doratim of the peni= and then remove the skin from
this in order to atudy the corpora cavernoma which conmetitute tim dormal portion and the corpus apongloaum *hlch forma lit ventral portion.

The corpora cavernowa ape two cyllndeleal mamase of epectle timaus. enclomed In atrong ibroum capaulew. whichblend with one another in the midde line to form the doraal poption of the penla. Thale anteriop enda dive attsechment to the ulana penin while posteplorly they diverge to form the two crura which are fiemly attached along the rami of the pubew.

The corpum aponaloum, : he bulli and the glans penis forin one conltinuoum mase of erectlle tlane which in tunnelled by the urethra. The bulls or posterior end is firmly attached to the surfare of the irlanzular lisament and recelven the urethra which plercen thin ligament. The poaterior end of the hulh in notched to whow itn bilateral chaparter, embryongically mpeaklne. The corpum noongionim in firmly attwehed to the ventral aspert of the corporacavernoma.

The doral ligament of the penis is the name given to an ill defined band of fibrous thane ennnerting the nopsal aspert of the jemin to the ligamente In front of the symphysin pubin.

Dissection, -Carefuliy detach the erura of the penin from the pubie raml and the bulb from the surface of thm triangular ligament. The upet hea will have (0) be severed an alan the pudendal venela and nepres an they piese the ligament under cover of the crupa.

The trianzular ligament is the muperficial wheath of the compresmor urethrae muscle specially thickened to afford support to the ront of the penis. It In plerced about itm centre by the urethra, on each mide of which emerges the artery to the bull. It in also piepred on each mide under cover of the anterlor end of the cepus hy the internal pudrmial vensein and norve. Note further that the dorsal vein of the penis passes bet ween its truncated apex and the aymphyais pubin.

Dtssection. - Great difficulty will be found in exposing the comprensor urethrae owing to the manty rhararter of the muscle. Note, however. that it possempes an ill-defined wheath on its deep asproct alwo. This is clansed an parletal pelvic fancia. hut is sometimen known an the deep layer of the triangular ligament. If one accepts this description it may be noted that the following structures lie between the two layera of the triangular ligament -
(1) The compressor urethrae muscie murrounding the membranous portion of the urethra.
(2) Cowper's glands.
(3) The internal pudendal vessels with the arte:len to the bulb,
(4) The Internal pudendal nerves. Note that the dorsal vein of the penis does not lie whin the two layers of the triangular ligament as it pasues bet ween them and the symphysis pubis.

The compressor upethrae muscle arises on each side from the deep aspect of the descending rami of the pubes and forms an interiacing system of fibrea round the membranous portion of the urethra, upon which it

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No 2)

appears to exert a sphincteric action. It is innervated by the internal pudendal nerves.

Cowper's glands are minute pea-like structures lying on each side of the urethra, into which their ducts discharge their mucous secretion.

The internal pudendal artery after leaving the gluteal region by entering the lesser sciatic foramen runs forwards in Alcock's canal in the outer wall of the ischio-rectal fossa. It is then continued forwards along the line of the pubic ramus between the two layers of the triangular ligament the superficial layer of which it pierces under cover of the anterior end of the crus penis. Immediately after doing so the artery terminates by dividing into the dor:al artery of the penis and the artery to the corpus cavernosum. Its other branches are the inferior haemorrhoidal artery, the perineal arteries and the artery to the bulb.

The inferior haemorrhoidal artery arises in Alcock's canal and runs transversely inwards in the ischio-rectal fossa to supply the lower end of the rectum and the anal canal. It anastomoses with the middle haemorrhoidal artery.

The perineal arteries are small branches which arise in Aicock's canal and after traversing the anterior part of the ischio-rectal fossa, supply the superficial perineal muscles and then end as cutaneous branches to the skin of the perineum and scrotum.

The artery to the bulb arises between the layers of the triangular ligament, and runs transversely inwards. After supplying Cowper's gland it pierces the superficial layer of the triangular ligament in order to reach the bulb.

The internal pudendal nerve accompanies the vessels in Alcock's canal, and also between the layers of the triangular ligament, where it lies next to the pubic ramus. It pierces the superficial layer of the triangular ligament along with the artery and ends like it by dividing into the dorsal nerve of the penis and the nerve to the corpus cavernosum. Its other branches are the inferior haemorrhoidal nerve and the perineal branches.

The inferior haemorrhoidal nerve arises in Alcock's canal and traverses the ischio-rectal fossa along with the artery. It ends by supplying the external sphincter and the skin round thr nus.

The perincal branches spring from the nerve in Alcock's canal and run forward in the anterior portion of the ischio-rectal fossa. They supply the ischio-cavcrnosus, the ejaculator urinae, the transversus perinei and the compressor urethrae muscles, and also twigs to the bulb, and are then continued as two superficial perineal branches which supply the skin of the perineum and scrotum.

On the dorsum of the penis the dorsal vein lies in the middle. On each side of this is the corres onding artery and on each side of this again is the dorsal nerve.

The Female Perineum.

The dissection of the ischio-rectal fossae will be foun to te the sume as in the male.

Examine next the female external genitaiia or pudenda. The most external folds guarding the uro-genital orifices are the halia majora which meet infront of the pubes to form the mons verneris. Tu the inner wide of
 divides into two folds to enclose the elitoris which is the homolorue of the penis. The upper fold meets its fellow of the opmosite side to form the prepuce of the clitoris, while the lower folds will be found to bend with the under aspect of the clitoris, thus forming its fraenulum.

The vaginal orifice is guarted in the virgin by a fold of mucous inembrane termed the hymen. In women who have borne ehildren this gets broken up into small projections termed the (arumculae mytiformes. The triangular area in front of the vapinal oribice is called the vestibule; at the base of which, tlat is to say immenitatoly in front of the vapinal opening, is the orifice of the femele urethra.

Dissectlon.-Stitch up the vaginal orifice and remore the skin from the urethral triangle. Note that no fascia of Colles fom be distingtished in the female. The superficial perincal musdes are wery pate ard poorly developed in the female so that their exart defnition is a matter of difficulty.

The isenio-cavernosus covers the crus of the slit,., is. It arises from the inner aspect of the ischial tuberosity as in the male, ard erds in a membranous expansion over the crus clitoridis. It is suppited by the internal pudendal nerve.

The sphincter vacinae covers each half of the bulb and is the homologue of the ejaculator urinae muscle of the male. It anises posteriorly from the central point of the perineum, and sweeps for wards on cach side of the vaginal orifice upon which it exerts a splincteric athon. It is innervated by the internal pudendal ner"e.

The transversus perinei is usually difficult to define ith the female. It arises as in the mate from the inrer aspect of the is hial tuberosity and is inserted into the central point of the perineum where it meets its fellow of the opposite side, the sphincter vamae, the sphimer ani and the levator ani muscles. Its nerve is derived from the in tern al pudendal.

Dissection.- Remove the superficin perinal musdes and expose the structure of the clitoris which is the homolorue of the peris. Its dorsal portion is composed of two corpora cavernosa as in tie male, and to the anterior ends of these tlie clans clitoridis is attach ent. Tle pesterior ends of the corpora cavernosa separate as in the male to form the crura which are attached to the pubic rami.

The bulb in the female is in right and left hatves which are situated upon each side of the vaginal orithe under cover of the sphincter vaginae.

Their anterior ends are connected with the glans clitoridis by means of a plexus of small veins termed the pars intermedia.

The gland of Bartholin will he found lying under cover of the bulb. Its mucous-like secretion is discharged by means of its duct, whlch opens on to the vestibule directly internal to the labium minus.

The triangular ligaments (both superficial and deep layers) are feebly developed in the female, but enclose the same muscle as in the male, namely the compressor urethrae. The same structures, with the exception of Cowper's glands, will be found lying in their relative positions between the two layers of the triangular ligament, as in the case of the male.

In the female there are the dorsal vein of the clitoris, the dorsal arteries of the clitoris and the dorsal nerves of the clitoris, bearing the same relations to one another as in the male. They are however very much smaller.

The : Aale Pelvis.

Dissection. - The best way to study the relations of the pelvic viscera is to make a mesial sagittal section of the pelvis under the supervision of the demonstrator. Previous to this, however, examine the disposition of the pelvic peritoneum.

The Peiltoneum of the Male Pelvis.

The Peritoneum leaves the posterior aspect of the rectum at its vely commencement opposite the third piece of the sacrum. It gradually leaves the sides of the rectum, when traced downwards, thus forming the pararectal fossa. The peritoneum finally leaves the anterior surface of the rectum at the junction of its upper two thirds and lower third, and is then reflected on to the base of the bladder about its middle, thus forming the recto-vesical pouch of peritoneum in which rests the pelvic colon. The peritoneum covers the upper half of the base of the bladder, including the deferent ducts and the upper ends of the seminal vesicles, sweeps forwards over the upper surface of the bladder when it covers completely, and is finally reflected from the apex of the bladder on to the anterior abdominal wall by the urachus to form the anterior false ligament of the bladder. Laterally the peritoneum is carried off from the upper sulface of the bladder on to the side wall of the pelvis by the obliterated hypogastric artery as it proceeds forwards towards the anterior abdominal wall.

The recto-vesical fossa is the deep peritonal pouch lying between the rectum and bladder in which rests the luop of pelvic colon. On each side wall a faint ridee may be seen descending. This is produced by the ureter and may therefore be telmed the ureteral ridge. A little lower there may be seen a slight peritoneal ridge, the sacro-genital fold, which sweeps forwards from the posterior pelvic wall to end on the base of the biadder. The pararectal fossa is the slight recess on each side of the rectum, while depression seen on each side of the bladder when it is $\mathrm{f} \mu \mathrm{ll}$, is known as paravesical fossa.

Dissection.- After the pelvis has been sectioned mesinliy, choose one half and strip the peritoneum and viscera from its side wall right down to the pelvic floor. Remove all the adipose tissue from the side wall and pelvic floor. At the same time sever the internal iliac vessels, and after removing many veins, define the branches of the artery and pull them in. wards. The pelvic fascia may now be studied, together with the pelvic diaphragm which is composed of the levator ani and cocrygeus muscles of both sides.

The Pelvic Fascia.

The pelvic musiles, as in the case of all muscular tissue, possess fibrous sheaths to which the term pelvic fascia has been applied. This is grouped under two headines namely, parietal and visceral pelvic fascia.

The parictal pelvic fascla is represented by the sheaths covering the pelvic surfaces of the pyriformis on the posterior wall, the compressor urethrae between the pubic rami, and the obturator internus on "he lateral wall. The fascia covering the latter muscle is the most important, and is termed the obturator fascia. This is attached to the posterior part of the pelvic brim where it becomes continuous with the fascia iliaca. When traced forwards, however, its line of attachment descends rapidly alrng the upper border of the olturator internus to the level of the lower end of the posterior surface of the pubis. Opposite the point of exit of the obturator vessels and nerve it sweeps over the upper border of the muscle to ob\&ain attachment to the obturator membrane. The line of attachment of the obturator fascia inferiorly is along the rami of the pubis and ischium an t to the tuberosity of the ischium and the sacro-tuberous ligament.

The visceral pelvic fascia is the sheath investing the upper or pelvic surfaces of the levator ani and coccygeus muscles. It will not be understood until these musclea have been described.

The levator ani possesses a continuous line of origin from the posterior espect of the pubis, from the obturator fascia and from the inner aspect of the ischial spire, at which point it is in direct continuity with the coccygeus which lies more posteriorly. The muscle fibres are directed inwards and backwards, thcse most poeterior obtaining insertion into the margin of the coccyx; while between this and the anal canal they meet their fellows of the opposite side in a mesial intersection termed the ano-coccygeal body. The most anterior fibres are directed backwards by the side of the prostrate which they support very closely, and they then meet their fellows in the central point of the perineum. The levator ani is supplied by the fourth and fifth sacral nerves. Its action is to support the pelvic viscera alorg with the coccygeus, the muscles of opposite sides thus constituting the pelvic diaphragm.

The coccygeus muscle is directly continuous with the levator ani and takes origin with it from the deep aspect of the ischial spine. Its fibres run backwards and inwards to obtain insertion into the margin of the
coccyx. Its nerve supply and artion are the same as those of the levator ani. Note that the sacro-spinous hipament rovers its superficial aspert.

The visceral pelvic fascia will now he rerognisel us forming the sheath for the upper or pelvic surfares of the levator ani and coccyseus musclea. Its upper border (termed the white line) thus followa the line of uttarhment of these muscles to the posterior surface of the pubis, the obturator fascia and the inner surface of the ischial spine. When traced towards the viscera it will be found to blend with the sheaths of the prostate and badder (the vesical portion), and the rectum (the rectal portion.) The intermediate portion that passes between the bladler and rectum might thus be termed recto-vesical. Posteriorly the visceral layer of the pelvic Incia does not extend beyond the coccypeus, thus leaving a gnp through which the sacral plexus quits the relvis. Anteriorly the fascia sweeps round the free elge of the levator ani muscle that passes backwards from the pubis, thus forming the pubo-prostatic ligament of that side.

The Male Rectum.

The rectum begins in the mid line in front of the third piece of the sacrum as the continuation of the pelvic colon. Its course is slightly h vy and follows the concavity of the sacrum and coccyx. It ends one inch in front of the tip of the coccyx by bending downwards and backwards into the anal anal. The rectum is about 5 inches long. Anteriorly it is novered in its upper two thirds by the peritoneum of the recto-vesical pouch in which lies a loop of pelvic colon. The lower third is in relation to the base of the bladder from which it is separated by the deferent ducts and seminal vesicles, and also to the posterior surface of the prostate, which lies just in front of the bend of the rectum. Posteriorly the rectum is bound to the sacrum, coccyx and ano-coccygeal body by dense connective tissue. On each side of the upper part of the rectum is the pararectal peritoneal fossa. Lower down, however, the rectum lies in a gutte: formed by the fibres of the levator ani and coccygeus muscles as they converge on the coccyx. The course of the rectum is slightly wavy, with two concavities to the left and one to the right. Corresponding to these bends there are three folds of mucous membrane, known as the rectal valves in the interior, of which two are u ually to the left and one to the right.

The anal canal is one and a half inches long and is directed downwards and backwards from the termination of the rectum. Posteriorly is the anococcygeal body, and on each side is the levator ani muscle covered by its fascia. Anteriorly the anal canal is separated from the urethra by an angular gap in which is the central point of the perineum formed by the union of the levator ani, transversus perinei, ejaculator urinae and external sphincter muscles. The anal orifice is surrounded by the external sphincter, while there is a thickening of the circular coat of the canal for its last inch, consituting the internalophincter.

The mucous membrane of the anal canal is arranged in longitudinal
columns, the lower ends of which are connected just invide the anal orifice by the so calied anal valves. The lattor indieate the line of junction of the hind gut wlth the prortodaeum In the embryo, and therefore the line of unlon (whlte line) of the stratlfied squamous epithelium of the skin with the columnar epithelium of the intestine.

The Male Biadder.

The bladder possesses an apex, a hase, a superior surface, two inferolateral surfaces, and a neck.

The apex rests against the anterior ablominal wall at the upper border of the symphysls publs (when the bladurer is empty and affords attachment to the urachus which passes from it to the umbilicus. When to bladder Is dlstended it rises into the abdomen, and in so doing separates off the perltoneum from the anterior abdominal wail.

The base of the bladder is directed towards the rectum, from whleh its upper half is separated by the recto-vesical pouch, containing the loop of pelvic c-lc:. Its lower half is separated from the rectum by the deferent ducts, the seminal vesicles ar ${ }^{-1}$ some connective tissue. Fach ureter is attached to the base of the bladder just external to the upper end of the semlnal vesicle.

The superior surface of the bladiler is completely covered by perltoneum and upon it rest coils of small intestine. Arching backwards on each slde of its posterior part in order to reach the base will be found the deferent duct.

Each Infero-lateral surface of the bladder is in relation to the obturator internus and levator ani muscies, being separatril from these by the pelvic fascia and loose connective tissue. Running forward on each lateral aspect of the bladder is the obliterated hy pogastric artery, which is crossed here by the ductus deferens. Note that the bladcler rests against the upper part of the symphysis pubis, but is separated from the lower part by a mass of adipose tissue termed the retro-pubic pad of 'at.

The neck of the bladder is surrounded by the base of the prostate and is attached anteriorly to the pubic bones by the pubo-prostatic ligaments between which lies the dorsal vein of the penis. The neck of the bladder is continuous with the urethra.

The mucous membrane of the bladder is markedly rugose except over the trigone where it is quite snooth owing to the fact that it is firmly bound down to the muscular coat over that area. The trigone is the triangular area mapped out by the two ureteral openings and the urethral orifice. A small projection of the merouls membrane immediately behind the urethral orifice is termed the uvula vesicae.

The muscular coat consists of cuter. intermediate and internal layers. The fibres of the outer and inner coats run for the most part longitudinally, while those of the intermediate layer are disposed in a circular manner and are thickened at the neck of the biadder to form its sphincter.

The true ligaments of the blacley are fre in numher-the nrechus,
the lateral ligaments composed of the viscoral fielvic fuscia, and the puhoprostatle ligaments.

The false ligamenta are composed of peiltoncum and are also five in number-
(1) The aperlor false ligament in the pelitoneum that is carsied off from the apex of the bladder on to the anteior abdominal wall by the urarhus:
(2) and (3) The lateral false lignments are the layers of peritoneum carried off from the supeilor surfare on to the side wall of the pelvis on each side by the oblitezated hypogantric irtory;
(4) and (5) The posterior fa liguments are the scro-genital folds. already deacrlbed.

The Prostate.

The prostate consists of a mass of ron-striped musele in which mucous glanda are imbedded. It surrounds the nerk of the bladder and the first or prostatic portion of the urethra; and corsists of a base, an apex, and anteifor, posterior and lateral surfaces.

The base is difected upwards and suirounds the neck of the bladder.
The apex is directed downwards and rests upon the deep surface of the compressor urethrae mus.le. From it the urathra emerges.

The anterior surface of the prostate is attached to the posterior aspect of the pubes by the pubo-prostatic ligaments betueen which lies the dorsal vein of the penis.

The posterior sulface is in clcse relation to the termination of the rectum, a thin layer of connective tissue alore intervering. The upper end may exhibit a notch indicating the bilateral orip, in of the prostate.

The lateral surfaces are intimately invested by the levator ani muscles, the pelvic fas:ial covering of which provides the outer capsule of the prostate.

The dimensions of the prostate are one and a half inches from side to side, one inch from before backwards and one and a quarter inches from the base to the apex.

The prostate possesses two capsules. The inner is the capsule of the gland proper and is intimately attarhed to its substance. The outer-sheath is derived from the pelvic fascia. Between the two capsules lies the prostatic plexus of veins which is joined anteriorly by the dorsal vein of the penis.

The common ejaculatory ducts will Le found to traverse the prostate from behind, and in so doing imperfectly map off a portion of the prostatic substance between them and the neck of the bladder, which is known as the "middle lobe" of the prostate. In senile enlargement of the prostate this portion hypertrophies, and presses upon the neek of the bladder thus interfering with mietarition.

The Mate Urethra.

The maie urethra la about 8 inchen long and connistn of the prontatic, membranous and penife portions.

The prostatic portion is directed almost vertically downwards from the reck of the bladder. It in enclosed throughout lis course by the prostate, and Is thum one and a quarter inchea long. It is nearer the anterior than the ponterior surface of the prostate. Note that it is the wident portion of the urethra. In crose sectlon it is cpescentic in outline owing to the presence of a lingitudinal ridge termed the verumontanum which project: forwards from lin posterlor wall. If the centre of this ridge be examined with a small probe, a tiny recess wlil be discovered. This is the homolosue of the female uterus and is therefore termed the literus masculinus. On each laterai ilp of thls cpening is the orifice of the common ejacuiatory duct. It should be noted that the ducts of the prontatle mucousglands open into the recess on each side of the verumontanum.

The membranous portion of the urethra is three quarters of an inch long and is thus the shortest portion. It is also t ig narrowest portion. It dencribes a gentle curve, concave forwards, whlch at all points is about one inch from the lower end of the symphysls pubis. This portion ls Im bedded in the compressor urethrae muscle throughout its course, and thus lies between the two layers of the triangular ligament.

The penile portion traverses the buib, corpus spongiosum and glans penin, in the erectile tissues of which it is imbedded throughout its whole course. Its external opening on the glans is a vertical slit termed the meatus urinarius. Immediately inside this the canal widens slightly Into a spindie shaped cavity termed the navicular fossa, from the roof of which a slight recess known as the lacuna magna extends backwards and may thus catch the polnt of a catheter. The wall of the penile urethra possesses a few mucous glands, while Cowper's glands open into its very commencement.

The ductus deferens after leaving the other constituents of the spermatic cord at the abdominal inguiral rince sweeps downwards into the pelvis across the external iliar vessels directly under the peritoneum. It then passes over the obliterated hypogastric artery as it approaches the side of the bladder. After arching over the upper surface of the bladder it turns downwards on the base, directly internal to the seminal vesicle, and ends by joining the duct of the latter to form the common ejaculatory duct which tunnels the prostate to open into the prostatic urethra, as previousiy shown.

The seminal vesicle is a sacculated structure about two inches long which is bound down to the base of the hladder by arenlar tissue. Its upper part is covered by peritoneum, and the ureter joins the bladder just external to its upper end. Its lower portion is separated from the rectum by connective tissue.

The ureter in the pelvic portion of its course is directed downwards immediately in front of the internal iliac artery. It then curves gently

Their lowerends terminate in the genglou impar on the front of the coceyx. An a rule tlve pant:lia can be rounted on each cord in the lumbar refion and five in the marral re.ion. Theme communicute an uxual with the correaponding nuinal nervem and in midition mend offahoot to the solar and pelvie plexumes.

The right and wif pelvic plexteres are derived from the antic plexun. as already shown. They fotlow the course of the correxpondlng Internal liiac: arterien and therefore furninh vesical, prostatic and haemorrholdal offhoots to the hadder, proqtate and rectum. They are jolnot by vin. reral twige from the thirl mat lourth narpul nepves, an aiready indleated.

The iympli :- hands of the polvia are masned mainly alone the course of the Intornal itiar artopy. They Ifrin the lymph from the pelve viseera und emply into the afferent arescls of the fumbar giandn. The lymph from the extornal eolitalia, ifs nirady nrown, passen to the superficial inguinal plands.

The Female Pelvis.

Dissection. The pelvie peritoneum will he first ntudled, and the pelvin is then to be sectioned mexially as in the ense of the male.

The pelvic peritoneum in the female leaves the posterlor axpect of the iectum at its very commenement, as in the male. It then pradually leaves the sides of the bowel, thun formin!: the parapestal fossae. It leaves the front of the rectum at the junction of its upper two thirds and lower third, as in the male: and is rellected from there on to the upper three quarters of an inch of the posterior vapinal wall. It mounts upwardn on the postetior wall of the ute:us, neepa forwa-ls over the fundus, and desrende on the antesio: wall t, the junction of the body with the cervix at which point it is relle ted on to the hase of the bladder. It covers the upper half of the latter, as well as the whole of the upper surface of the bladder, as in the male; and is carrict off from the apex by the urachus on to the anterior abdominal wall as the superior false ligament of the bladder. On each side the pesitoneum is carried off from the bladder on to the side wall of the pelvis by the obliterated hypogastric artery, as in the male.

The utero-rectal and uturo-vesical pourhes of peritoneum are well marked feutures of the female polvis. The former is the deener of the two and exhibits on each side wall the utero-sacral fold, produced by the uterosacral limament, which passes form the sacrum to the uterus at the junction of the body with the cervix. The utero-rectal pouch is sometimes known as the pouch of Douglas, and is occupied normally by the loop of pelvic colon. The utcro-vesical pouch is limited on each side by a slight fold, and is occupied normally by coils of small intestine. Note that there is no ureteral ridge on the side wall of the female pelvis owing to the presence of the uterine broad ligament.

The levator ani and coccygeus have the same dispositions as in the mate with libe .ublithoul puint that the levator ani fibres are inserted

Into the wally of the vagina, whith which the vaceral pelvie fancia alacoblenda The analomy of the remainder of the pelvie fancia la the asme an in the male. The pubo-prosiatic ligamenta must of course be termed "puloovealeal" owing to the abmence of the prontate in the female. They hlend wlth the neek of the female bladder and the beginning of the urethra.

The Female Rectum.

The whole anatomy of tle female rectum correaponde to that of the malr except fin anterlor relations. The upper two thleds of itn anteplop wall are spparated from the uterus and vaxina by the utern-rectal pourh contalning the loop of peivic colon. The lower third, Including the hend of the rectum, is in Intiriate contact whth the poterior vaginal wall.

The whole anatomy of the femule anal canal correnponda to that in the inale exeepting ita anterior relations. Its anterior wail is separated from the lower part of the posterior vaginal wall by a wedge shaped mana of fibro-muscular tasue, known as the "shatetrical perineum." This tissue Includes the central polnt of the perineum, formed by the unlon of the levator anl, tranaversua perinel, aphincter vaginac and aphineter anl externus muscles.

The whole anatomy of the femaie bladder corresponds to that of the male exeepting the refatlons of the hase and the neck. The upper half of the base of the female hladder is separated from the hody of the uterun by the utero-vesical pouch containing coils of small Intestines. The lower half is in direct contact with the cervlx uterl and the upper half of the anterior vaxlnal wall, a thin layer of connectlve tissue alone intervening. The neek of the bladder is enclosed hetween the edgen of the two levator anl museles, and has attached to it anterlorly the pubo-venical ligaments.

The five true ligaments of the female hladder correnpond to those of the male, and all the false ligaments also correnpond except the two posterior which in thls case pass from the base of the bladder to the uterus on each side of the utero-vesical pouch.

The female urethra is one and a half inches cong and in directer downwards and forwards from the neek of the hiadder. It is in intimate conep ? posteriorly with the lower half of the anterior vaginal wall. It is partially surrounded by the compressor urrthrae muscle and also higher up by a plexus of veins which is joined by the dorsal vein of the clitoris. Ite external opening has heen previously studied. A lew isucous giands which open into its upper part are the homologues of the prostatic tubules of the male.

The Uterus.

The uterus is pear shaped, the broad upper end being termed the fundus, while the narrow lower end exhibits the os externum which opens into the upper end of the vagina. The fundus should normally touch the

the body white the lower thied is termed the eervix. The body la sishely elled firwarde en that H form* alight angle with the cervix. Thla is iermed anteflexton. Moreover, the whole uterua forma a alight angie with the vaxina thit lolige cupmed antovepslon. The utapun in 3 Inchea long. 2 inchea whe hetwententaternlangleand one in h thlok.

The punterlop nurface of the utceptia entirely covered by perituncum and is separated from the poetum hy the bleperpectal pouch containing petviecolon. Nute that it tomereconvexthan the anteriop murface.

The antorior surfure ia unly cowered in the upper two thitas by periconcuin and is thercfirs ampatatind foum the hate of the bladeler by the utepo-vimical pouch embaining colls of amall intewtine. The lower third or cervis in In Intimato contact whe the base of the lifadder and in firmly bound tult by connective thante.

Eiach lateral angle of the utrous will be olmerved to afford attachment to the uterine or Falloplan cube: whillo cach latural margin has attached ot it the two layepa of the hiroalligament.

The cavity of the body of the utepins when examined later wili be found to be mooth and triangulur in outtinc. the uppor angies representing the openings of the uterine thber, whille the foner angle is continuous with the canal of the cepvix and tif nownathe os internum.

The cavity of the cervix la pather spindle shaped and it mucoun membrane exhibita a peculiar pattern like the branches of trees. The external os will teertudled with the vagina. Nute that the uterus act uterine tubes ara lined by cillated pplthelium.

The Broad Ligament.

The broad ligament extends outwards and ellghtly barkwardn from - ach lateral margin of the uterus. It pearhes the nide wall of the pelvls opposite the maro-ifiac joint, and there its layers open apart in anterior and ponterior dipections. Its upper margin encloses the uterlne tube, but after this opens into the pepitoneal cavits, the edge of the broad ligament liself In continued on wards to the pelvic lirim an the infundibulo-peivle fold whleh contains the ovarian vessels, nerverand lymphaties.

The uiepitie tube is 3 to 4 inches long and is enclosed In the upper margin of the hroal ligament. The portion next to the uterus is very thin and is sometimes tepmed the isthmus. Towards its outer ead It arches above the ovary and dilates slightly to form the ampula. Its outer extremity exhibits a slighty funnel shaped apertupe termed the infundibulum. which opens into the peritoneal cavlty in recelve the ova discharged from the surface of the ovary. The infuntibulum is surpoinded by a fringe of delicate processes covered with cilia. These are the fimbrine, and one of them, known as the nvarian fimbria, is always attached to the outer pole of the ovary.

The ovary will he found dangling from the posterior surface of the beoad ligament. It is noold in shape, is nver one incin long, hali an incil
wide and a quapter of an Inch or mure in thicknem. It lies obllquely,
 towards the infindluhtum of the utepine tube and in attaclied to li hy the ovarian fimbia. Clowe io it may he found the ataiked hylatid which in
 Aleceted towaris the uterim, to the lateral angle of whith, clome to the junct.
 The anteflop border of the ovary repremente fie line of attachment to the broad ligament. It is thopoform atealght and may he tapmod the hilum,
 pounded, convex and fere, and therfope hangs downwarla, wo that one supfare of the ovary look upwarde and back waple, nndthe ne hef downwards and for ward

Het wenen the ovary and the therine tulve a cultertion of atrophled tubut-
 the parovarlum which is the remains of the mesonephrow, and to thus tho homologie of the eplilidymis of the male.

The pound ligament f the uterus will he nowepved to be attarhed to the fateral angle of the uterun hestle the junction of the uterine tube. It Is deperted outwards and forwards and in sul doing caprien of a fold foom the antepiop layef of the heond llgament. It then sweepa upwards above the oblleented hypugatric artepy and eposom in front of the external lliar vassels In opder 10 ontore the nblominal inguinal sing. It traverses the Ingulnal ramal and ends in the connective thate of the tablum majua It in thus the eefnains of the subernaculem of the foetus, and may pull a *lght pocket of peritonoum into the inguinal ranal.

The ovarian vererle after epossing the external ilian aptery fust in foont of the uretor pasa betwern the layere of the Infundibulo-peivie fotd. They are then continied between the layere: of the broad Igament juat below the utreine thibe, and ond by anastomosing with the uterine vessels at the latepal angie of the uterus. In additlon to the wary the artery nupplles the llemince thbe and the funclux of the utcrens. Therefore the lymph vessels from these peocerd upwarily to the lumbite glands by the alde of the aopta. It may be mentioned that the lymph foom the remaindee of the uterus and vagina passen to the inecenal iliac glands.

On exposing the diatribution of the internal iliac uptery in the female it will be noted that its hranches enperapond to those in the malr, with the aldition of the literine aptopy which passes inwards above the ureter in reach the latoral margin if tho iltepos along which it puns. It lies between the layers of the beoat ligament and lispronses t wigs to both surfuces of the utepus. It also supplies a vacinal ariepy to the vagina, which may. however, arise inifepenfently from the intermaliliue.

The Vagina.

It is directed downwards and forwards. The os externum of the uterus projects with smooth rounded lips into its upper end, thus producing anterior, posterior and lateral recesses termed the fornices. Of these the posterior fornix is the deepest.

The posterior wall of the vagina is in relation at its upper end to the peritoneum of the utero-rectal pouch for about three quarters of an inch. Below this it is in intimate relation to the termination of the rectum, while its lower part is separated from the anal canal by the "obstetrical perineum" as previously shown.

The anterior vaginal wali is in intimate relation in its upper half with the base of the bladder, and in its lower half with the urethra.

Each lateral wali is closely supported by the levator ani muscle and the visceral pelvic fascia. On each side opposite the lateral fornix the iateral vaginal wall is in close relation to the ureter which at this point is crossed superiorly by the uterine artery. This is an important clinical point in forceps delivery.

The orifice of the vagina is guarded by the hymen in the virgin and is enclosed on each side by the sphineter vaginae under cover of which are the bulb and the gland of Bartholin.

The mucous membrane of the vagina is very rugose and is lined by stratified squamous epithelium.

The female ureter sweeps downwards in front of the internal iliac artery as in the male. It then curves forwards by the side of the upper end of the lateral vaginal wall at the lovel of the lateral fornix and os externum. At this point it is crossed superiorly by the uterine artery. Just in front of this it enters the upper lateral aspect of the base of the bladder, as in the male.

THE HEAD AND NECK.

Dissection. - Reflect the skin from the anterior quadrant of the scalp. Thls should be done under the supervision of the demonstrator, as the skin ls thin and firmly bound down to the aponeurosis by fibrous strands

The Scalp.

The scalp is composed of five layers Skin Cutaneous fat. Aponeurosis
Loose areolar tissue
Periosteum of the cranial bones
The follc ing cutaneous nerves will be found in the cutaneous fat of this area. isweeping upwards on to the forehead through the supraorbital notch or foramen is the supraortital nerve. This is readily located at the junction of the inner third and the outer two thirds of the supraorbital margin. The supra-trochlear nerve curves upwards round the inner end of the same margin, and is smaller than the preceding. The small temporal branch of the temporo-malar nerve may be found emerging behind the posterior edge of the malar bone, while the well marked auriculo-tempoial nerve is directed upwards immediately in front of the external ear or auricle. It supplies sensory branches to the latter and to the temporal region of the scalp. It should be noted that all four nerves are branches of the fifth cranial nerve, which is the great sensory nerve of the face. Upwards over the zygoma stream the temporal branches of the seventh cranial (facial) nerve, which is the motor nerve to the facial muscles of expression. These temporal twigs thus innervate the muscles of the frontal region and the extrinsic muscles of the ear.

The arteries of the anterior quadrant of the scalp are the frontal, supraorbital and superficial temporal which accompany the supratrochlear, supraorbital and auriculo-temporal nerves closely. The two first named arteries are branches of the ophthalmic, while the superficial temporal is one of the terminal branches of the external carotid artery. The superficial temporal ariery will be observed crossing the root of the zygoma immediately in front of the ear. It supplies the latter and soon divides into anterior and posterior branches, of which the former passes forwards to anastomose with the supraorbital and frontal, while the posterior branch curves backwards into the posterior quadrant of the scalp to anastomose with the posterior auricular and occipital arteries. In addition to its terminal branches to the scalp, the superficial temporal artery gives off the middle temporal artery to the temporal muscle and a muscular branch to the orbicularis oculi. It also furnishes twigs to the parotid gland and the external ear and the transverse facial artery which will be studied in the face.

Dissection.- The best way to remove the cutaneous fat is to scrape it off the aponeurosis and the frontalis muscle with a knife gently. This is the only satisfactory way of cleaning all the facial muscles, as they are exceedingly thin, and their fibres are very pale in colour.

The frontalis muscle is attached helow to the orblcularis oculi, with the fibres of which it forms an elaborate series of intersections. At the root of the nose it is continuous with the pyramidalis nasi muscle and with its fellow of the opposite side. The fibres form a thin stratum which sweeps upwards over the forehead to obtain insertion into the epicranial a poneurosis. It is innervated by the temporal branches of the facial nerve. It acts as a muscle of facial expression.

The epicranial aponeurosis is really the expanded intermediate tendon connecting the frontalis with the ocripitalis muscle which lies in the occipital region of the scalp. Laterally it is attached to the mastoid process, to the external ear and to the zygomatic arch. In addition it affords origin laterally to a few stray muscle fibres which pass down wards and back wards to the ear, and represent the atrophied remains of the attollens and attrahens, two of its extrinsic muscles. These are supplied by the temporal branches of the facial nerve.

Scalping takes place through the fourth layer of the scalp, namely the loose areolar tissue. If the first three layers be severed, the flap thus produced can be peeled off like an orange. Suppuration in this layer of the scalp is very serious as the pus is apt to burrovi 1 nder the aponeurosis fo considerable distances, and may involve the fifth layer or periosteum, thus producing necrosis of the cranial bone.

The Face.

Dissection.--The skin is to be removed from the face after stitching up the eyelids and the mouth. Confine the attention first of all to the parotid gland which is situated immediately below the zygoma. Define its duct and the branches of the facial nerve that pierce it. The gland is then to be removed piece by piece in order to expose the facial nerve, the external carotid artery and the temporo-maxillary vein.

The Parotid Gland.

This is the largest of the salivary glands, $2 t$ is situated for the most part in the recess between the ramus of the lower jaw and the mastoid process; but it is tucked away into every available recess in the vicinity, thus imparting a very irregular outline to the gland. Superficially it is covered by a very resistant sheath of fascia, which is continuous below with the cervical fascia, and is attached above to the zygomatic arch, the latter thus demarcating the upper limit of the gland. Posteriorly it is in relation to the tympanic plate, the external auditory meatus, the mastoid process and the sterno-mastoid muscle. Below it rests upon the posterior belly of the Cigastric muscle and the stylo-mandibular ligament, while anteriorly it is
in contact with the posterior efge of the ramus of the mandibie. It encroaches upon this to a considerable degrce, and thus comes to overlap the maeseter muscle superficially and the internal pterygoid muscle deeply The deep relations of the parotld gland are important for it rests upon the internal carotid artery and the internal jugular vein, betwern which lie the ninth, tenth, eleventh aud twelfth cranial nerves. The derp surface is also in close relation in front of these structures with the styluid process and its three muscles.

The parotid gland is traversed by four arteries, the cexternal carotid. the superficial temporai, the internal maxillary and the transverse facial; also by the temporo-maxillary vein, and the facial newe. which here receives communicating twigs from the great auricular and auriculo-temporal nerves. Of the three most important structurcs the facial nerve is the most superficial, the external carotid is deepest and the vein is intermediate. The six termiaal branches of the facial nerve enterge from the enterior border of the gland, as also does the parotid duct which runs forwards on the masseter, a finger's breadth below the zygoma, and sweeps round the anterior border of that muscle in order to pierce the buccinator and the mucous membrane of the cheek opposite the second molar tooth of the upper jaw. The line of the duct is indicated on the surface by the mildle third of a line drawn from the lower border of the external auditory meatus to a point midway between the ala of the nose and the red margin of the upper lip. A tiny semi-detached lobule of gland substance may often be found lying between the parotid duct and the zygoma, in which situ:tion the transverse facial artery will also be found.

The Facial Nerve.

This nerve will be found to emerge from the base of the skull through the stylo-mastoid foramen. The main trunk sweeps forwards in the parotid gland superficial to the temporo-maxillary vein and the external carotic artery, and soon breaks up into a plexiform network from which six main branches proceed. Named from above downwards these are-(1) temporal, (2) malar, (3) infraorbital, (4) buccal, (5) mandibular, (5) cervical. The temporal kranches have been already found in the scalp, supplying the frontalis and the attollens and attrahens muscles of the ear. They also supply the corrugator supercilii and the upper half of the orbicularis oculi. The malar branch supplies the lower half of the latter muscle, and also some of the muscles going to the upper lip. The main nerve supply to these, however, is from the infraorbital branch. The buccal nerve supplies the buccinator. The mandibular branch supplies the muscles passing to the lower lip, except the platysma which is :upplied by the cervical branch. The trunk of the facial nerve immediately after emerging from the skull supplies the stylo-hyoid, the posterior belly of the digastric muscle, and the posterior auricular nerve which runs upwards behind the ear, and innervates its retrahens muscle and the occipitalis.

Dissection. - In tracing the branches of the facial nerve on to the face the adipose tlssue , the cheek has been removed. The facial muscles will then be scraped gent.y to clean them, and their arrangement defined.

The Facial Muscles.

The facial muscles of expression are arranged in three groups-round the eye, round the nose and round the mouth.

The orbicu!aris oculi is . wr!l marked muscle which surrounds the crbital ape:ture. A few muscle bundles which pierce it over the region of the eyebrow have been termed the corrugator supercilii. The outer circle of the orbicularis oculi consists of a series of loops which are attached internally to the frontal process of the superior maxilla, and are arranged concentrically. In the eyelids themselves, however, it may be noted that the muscle fibres are attached to the internal and external tarsal ligaments at the inner and outer angles of the lids respectively.

The muscles of the nose are very ill defined in man, and will be mentioned briefly. The pyramidalis nasi is really a continuation of the frontalis muscle at the root of the nose. The compressor naris which arises from the nasal notches of the superior maxillae, and sweeps over the bridge of the nose is perhaps the best defined. At the nostril a dilator muscle and a depressor and a levator of the ala of the nose have been described. These muscles like the others of the face are supplied by the facial nerve.

The orbicularls oris which surrounds the mouth is strongly developed. It is a composite structure, being formed by the intersection of numerous muscles which pass to it from all directions. For example, directed downwards to the upper lip is the levator labii superioris and directed upwards to the lower lip is the depressor labii inferioris. Similarly, directed downward to the angle of the mouth is the levator anguli oris, and directed upward to the angle is the depressor anguli oris. Three muscles converge on the orbicularis oris from behind. From above downwards these are the zygomaticus, the risorius and the platysma. These muscles are therefore all described as being inserted into the orbicularis oris. Note that the deeper strata of the orbicularis oris are formed by the buccinator muscles.

The levator labii superioris arises from the upper margin of the infraorbital foramen and from the frontal process of the superior maxilla. This muscle overlaps the origin of the levator anguli oris which thus arises from the lower margin of the infraorbital foramen. In contrast to this ar:angement, note that the origin of the depressor labii inferioris from the external oblique line ot the mardi: 'e is overlapped by that of the depressor anguli oris from the same line.

The zygomaticus arises rom the outer surface of the malar bone and forms a well marked band o, muscle. The platysma muscle constitutes one of the layers of the nerk, and sweeps upwards over the base of the mandible in order to converge upon the angle of the mouth. The risorius is
really composed of a few scanty detached fibres of the platysma which assume a horizontal position.

The bucelnator muscle lakes origin from the alveolar margins of both jaws opposite the three inolar teeth and from the pterygo-mandibular ligament whlch separates it from the superior constrictor of the pharyn:. The fibres from both muscles pass towards the angles of the mouth to form the deep strata of the orbicularis. The Intermediate fibres form an elaborate decussation, while the upper and lower fibres pass uninterruptedly into the corresponding lip.

The Facial Artery In the Face.

The facial artery has been exposed durlng the process of defining the faclal muscles. It reaches the face by passing upwards over the base of the mandible immediately in front of the masseter muscle. It wends a very tortuous course towards the inner angle of the eye where it ends as the angular artery which anastomoses with the ophthalmic. From below upwards it rests upon the lower jaw, the buccinator and the levator anguli oris mascles, whlle its terminal portion is imbedded in the levator labii superioris. Superficially it is overlapped by the platysma, risorius and zygomaticus muscles from below upwards.

In the fucial part of its course the facial artery gives off-(1)inferior labial, (?) superior labial, (3) lateral nasal, (4) muscular and cutaneous branches. The labial arteries run inwards along the margins of the lips, and anastomose with their fellows of the other side. From this union, in the case of the upper lip, a small septal artery is sent upwards to the septum between the nostrils. The lateral nasal is the chief artery of supply to the nose. The muscular and cutaneous branches of the artery arise indiscriminately and oue of these anastomoses with the transverse facial artery.

Note that the facial vein does not accompany the artery closely. It begins at the inner angle of the eye by the union of the prominent frontal vein with a small communicating vein from the ophthalmic. It runs downwards and backwards posterior to the artery, and comes to lie directly behind it at th? base of the mandible.

Dissection. - Most of the facial muscles will have to be removed in order to expose the sensory branches of the fifth cranial nerve.

The Fifth Nerve In the Face

The fifth or trigeminal cranial nerve is the sensory nerve of the face, and it will be found that each of its three divisions furnishes three branches to the face. The first or ophthalmic division supplies the supratrochlear, supraorbital and nasal branches; the second or superior maxillary division furnishes the infraorbital, and the temporal and malar branches of the tem-poro-malar nerve; while from the third or inferior maxillary division are derived the long buecal, mental and aurientotempozal nerves.

The bupratrochear at.d supraorhital erves law hew alrody studied in lle frontal region of the scalf. The firminal portion of the nasal nerve appeas on the nose lotuece the lower licider of the nasal bone and the lateral cartilage. It supplics the slin of the nose.

The emporal branch of the temporo-malar nerve has been previounly studied In the temperal replon of the scalp. Its mular branch emerges on to the face through the malar formen, und supplies the skin of the cheek. The infraorbital nerve npeara through the infraorblal foramen. It is well marked, and semds brameris to the lower cyelid, to the side of the nowe and to the upper lip.

The long luceal nerse appears on the face from under rover of the maseter muscle. It is the chef sensory nerve to the cheek, supplying both its skin and its mucous nembrume. Tlie montal nerve emerges from the mental foramen of the Inwor jaw, and supplies the skin of the chin. The auriculo-temporal nerve has been ulready siudied in the temporal reglon.

The Posterior Quadrant of The Scalp.

Dissection. - The shin must now be removed from the posterior quadrant of the scalp and from the posterior asper t. f tice neck in collaboration with the dissector of the upper limb.

The following cutancous nerves will be exposid in the posterior quadrant of the scalp. Piercing the occipital oripin of the trapezius in company with the occipital artery, within one inch of the external occipital protuberance, will be found the great orcipital nerve which conacs from the postering division of the second cervical rerve and supplics a considerable area of skin. The small occipital nerve should be looked for as it runs upwards along the posterior border of the sterno-mastoid mustle, while the great auricular nerve will be found ascending vertically over the same muscle in order to supply the skin of the car and the mastod region of the sealp. The comminicating t wig from this nerve to the farial in the parotid gland has been aiready referred to.

The motor nerve of this refion is the posterior alricutar branch of the facial, which runs upwards behind the car under cover of the retrahens muscle. It innervates the latter and the occipitalis muscle.

The arteries of the posterior quadrant of the scalp are the occipital and the posterior auricular, which are both branches of the external carotid artery. The occipital artery has been already noted as it pierces the occipital origin of the trapezius in company with the great oceripital nerve. It exhibits a very tortuous course over the occipital region of the scalp in company with its vein and after supplying the neighbouring tissues anastomoses with the superficial temporal and pesterior auricular arteries.

The posterior auricular artery is much smalher than the preceding, and courses upwards behind the ear in association with the pesterior auricular nerve. It furnishes a few twigs to the ear and the scalp, and an astomoses with the superifial temporal and vecipitai arterics.

The orcipitalis masele and the aponeurosiy should now be peritly seraped with the edge of the knife in orior to cloan then. The orcipitalik wlll be observed to arise from the outer hall o" mose of the muperior curved ocelplal llne, the mponeurosis itself oltaining attuchment to the occipital bone to the Inner sidn of this. After a brief course the seanty fibres of the ocelpitalls are inserted Into the epicranial aponeurosis. It is innersated ly the posterlor auricular nerve and its action is to move the sealp in conJunctlon wilth the frontalis

The retrahens extrinsic musife of the ear is composed of two small slips whlch arlse from the mastoid process and are inserted into the eranial surface of the external ear. Its nerve is the postorior nuricular.

The Deep Muscles of The Back.

Dissection.--The upper portion of the posterior triangle of the neck should now be defined and the cervibal portion of the trapezius cleaned. The posterior division of the third, fourth and fifth cervicul nerves which pierce the cervical oribin of the tranezins to supply the stin over it should be secured. The sides of the postorior trian:le are formed by the trapezins and sternomastoid muscles. The semispinalis rapitis, the splenius capitis and the levator scupulae muscles which constitute the upper part of its floor will likewise be exposed. Take care to secure the accessory nerve and the twigs from the third and fourth cervienl nerves which accompany one anotl.er obliquely across the floor. The traperius will then he retlected in orde: to assist the dissector of the upper limb to trace these nerves to their distribution. The serratus superior which passes flom the vertebral spines to the upper four ribs may now be severed and the splenits muscle defined.

The splenius arises from the upper four or fise dorsal si fies and from the ligamentum nuchae. It divides into the splenits rervicis und the splenius capitis, of which the former is inserted into the upper three or four cervical transverse proctsses uncer cover of the levator scapulae, while the splenius capitis crosses the flonr of the posterior triancle to obtain insertion into the mastoid process and the outer end of the superior curved ocripital line under rover of the sterre-mastord. Its nerne supply is from the posterior divisions of the cervical and corsal spimal nerves and its chief action is to roatte the head and retk to the s:ane side

Dlssection.- Reflect the splesius from itc origin and commence the definition of the erector spinae muscle. Sever the aponeurosis of the latissimus dorsi and serratus inferior which cover: the lower end of this, and note that the serratus inferior is a scanty muscle inserted into the lower four ribs. The lumbar aponeurosis should also be studied at this stage.

The lumbar aponeurosis consists of three lamellae which enclose between them the erector spinae posteriorly and the quadratus lumborum anteriorly. Therefore on lifting up the lower end of the erector spinae the middle lamella will be found intervening between it and the quadratus lumborum. The porterior lamplla io eomposed of the fused aponeuroses
of the latimaimus dorsi and serratus inforior musdes, and in athached to the lumbar spines, to the back of the sacruin and to the posterior third of the illacerest. The middle lamella is attached tothe transuerse procosses of the lumbar vertebrap, while the anterior lamella. which hav been ulreudy atudied in the abdominal cavity, is attached to the botien of the lumbar vertebrae.

The erector apinae will only be dereribed in outline. I a crigin in from the tower d rabal pinces, the lumbar spines, the back of the acrum und the posterior third of the lliae crest. The muscie divides into inner, middle and outer columns. The lower ent of the outer column is aptly named the llio-costalis as it is inserted into the lower ribrat their angles. If this outer column be traced upwards it will be noted tiat it is conllnued as the costulis dorsi which passes front the lower to the upprer ribs at their angles, and is in its turn prolonged into the cervicul region us the costalis cervinis $\%$ inth passes from the upper ribs to the transverac processes of the cervical vertebrae.

The mlddle column passes upwards into the dorsal region as the longissimus dorsi and is attuched to the ribs. It is continued upwards into the neck as the longissimus cervicis which passes to the transverse processes of the lower cervical vertebrae, and is In its turn prolonged upwards to the mastoid process as the longisslmus capitis.

The inner column of the erector spinae is termed the spinalis dorsi. It does not extend beyond the dorsal region and is inserted into the vertebral spines.

Dissection. - Remove the erector spinar in order to expose the semlspinalis group.

The semispinalis dorsi and semispinalis cervicis pass from the transverse processes to the spines in the dorsal and cervical regions. The fibres cross several vertebrae, but a deeper group of fibres passes from the transverse processes to the spines of neighbourit g vertebrae and has been termed the multifidus spinae.

The semispinalis capitis is an important muscle. It arises from the upper six dorsal transverse processes and also from the lower cervical vertebrae. It is inserted into the oval area between the superior and Inferior occipital curved lines.

The deepest layers of the back muscles consist of the intertransverse muscles, the rotatores spinae and the levatores costarum.

All the muscles of the back that have juat been describet are supplied by the posterior divisions of the spinal nerves in their respective regions.

Dissection.-Reflect the semispinalis capitis from its insertion in order to expose the suboccipital triangle. In doing so take care to disengage the great occipital nerve from the muscle.

The Subocelpital Triangle.

This space might be described as a three-sided box with three lids and
three contents. Itw inner wide in formed by the rectus rapitim ponterior major, itn upper and wher side by the oblitquis supmeior muscie, and its lower and outer side by the whilyusinfurior. The throe lids are the reminpinalis capitis, the aplenius capitia, and the trapezilua. The three contents are the ponterior arch of the atias, on which revta the wortebral artery, while the ponterlor division of the first rarvieal nerveremerges between the two.

The rectus capitis posterior inajor arises from the apine of the axis and is inserted into the middie third of the inforior orripital curved line. The obliquus inferior also takes origin from tho mpine of the axis. It is directed upwards and outwards to the transverse proeess of the atias. The ohliquus superior arises from the eranaverse process of tho atias andila inserted into the outer third of the inferior oceiplat curved ilne. At this atage fook for the rectus capitis posterior minor which passes from the tubercle on the ponterior arch of the atias to the inner thirif of the inferior oceipital curved line. Ail these muscies are innervated by the posterlor division of the first cervical nerve.

Dissection. - The body in now turned again on Itw hack, and the skin removed from the remainder of the neck. The nuperficial fascia in now gently scraped of the piatysma muscle, and after noting how extensive a sheet it forms i.t the superficial fascia, remove it in orifer to expose the cutaneous nerves of the neck which appear at the mildile of the posterior border of the sterno-mastoid. Secure also the external jugular vein which runs downwards to join the subciavian vein and the anterior juguiar vein which lies by the side of the middie line of the neck.

The Cutaneous Nerves of the Neck.

The cutaneous nerves of the neck appear at the middle of the posterior border of the sterno-mastoid. Of these the small occipital and the great auricular have been previously studied. The descending cutaneous stem is very prominent. It divides into outer, middle and inner branches which stream downwards over the claville, and supply the skin of the lower part of the front of the neck and the upper portion of the pectoral region. The transverse cutaneous nerve of the neck sweeps forwards round the posterior border of the sterno-mastoid and divides into upper and lower branches which supply the skin over the anterior triangle of the neck.

The Posterior Triangle of the Neek.

The posterior triangle curves obliquely round the lateral aspect of the neek. It is bounded in front by the sterno-mastoid and behind by the trapezius, while its base is formed by the middle third of the ciavicle. Ita truncated apex is formed by a small portion of the superior occipital curved line. The floor is formed from above downuards by a small piece of the semispinalis capitis, the splenius capitis, the levator scapulae, the scalenus medius and posterior, and the first rib with the first digitation of the ofrratus magnus. The rool is formed by the cervical fascia. The content
are (1 , Arteries the third part of the subthavian, the tranaverae cervical. the muprascapular, the orelpltal: Vilna arcompanylug the above; and also the cxternal jugular veln: (3) Nerver the arcessory nurve and alan
 and vessels.

The thled part of the subelavian areery lie. in the ba or of the trlangle, and just above it the suprascapular and ranswere cervical arteri, reoss the trlangle. The ocelpital artery erosese the apex of the triangle. All these contents will be stodied tator.

The posterlor trlangle is divided into an upper ocefpital und a lower aupraclavlcular porton by the portorior belly of the omo-hyod musele which crosese It just above the clavicle

The aterno-mastold arises from the anterior aspect of the manubrlum aternl and from the inner third of the upber aspect of the clavicle. It is directed upwards and backwards to lta insertlon into the outer anpect of the mastoid process and the outor half of thesuperior ocelpital curved line. Its innervation is from the aceessory nerve and the second erpical nerve. It a action is to rotate the liend to the oph, site side. I: Is also a muscle of extraordlary reapiration. It la very limportant landmark in the neek and separate, the posterior from the anterior triansle.

The Anterfor Triangie of the Neck.

The base of the anterior triangle is above and is formed by the lower border of the mandible. One side is formed by the middle line of the neek and the other by the sterno-mastoid. The roof is lormed by the cervical fascia. It is subdivided into three subsidiary triangles as follows: The submaxillay or digastric triangle is bounded by the lower horder of the mandible and the two bellies of the digastric musile, the posterior belly being supplemented ly the stylo-hyoid mucle. The carotid triangle is bounded by the sterno-mastoid, the anterior b ill. of the omo-lyoid and the posterior belly of the digastric muscle. Tho muscular triangle is mapped off by the middle line of the neck, the sterno-mastoid and the anterior belly of the omo-hyoid. This triangle possesses a lloor formed by the sternohyoid and sterno-thyroid muscles which will also have to be defined at this stage.

The posterior bolly of the digastric museln arises from the digastric fossa on the under aspect of the mastoid-temporal bonc, while the anterior belly takes origin from the digastric fossa on the under aspect of the mandible by the side of the symphyis. The intermediate tention of the muscho is bound down to the hyoid bone by a sling of fascia. The posterior belly is innervated by the facial or seventh cranial nerve and the anterior belly by the trigeminal or fifth cranial nerve. The action of the muscle is to open the mouth.

The stylo-hyoid muscle arises from the posterior aspect of the root of

the digastere muscle and ia inereted into the body of the hyod bune by two wipw whel enclowe the Intermedlate tendon of that muarie betwen them Ita nerve nupply is from the farial, and lex action lato etevate the hyoid bobe

The Depresant Mumicn of the Ifyold Bome.

 depresanor mus.jes of tiohgulto.e.

 de: of the hody of the hyond hone leetreen the amplyoid and the midello

The sterno-thyroid whtains orifin from the posterlor aspo.ts it the manubrium sterni and 11 e lirst costal carthare. It is ineerted Inta the oblique line on the ala of the thyrohl, from whinh lt la comblned up to the hyoid ns the thyro-hynil. The lateremurto is ins med into the tower hordee of the body of that bene umber cover of the ombehyoid and aterno-
 whaining its nerves mbly dionty fom the tunh of the hy phghesal nerve.

The ical Fascia.

 able derer in expesing the triangles of the nech, it is atvisable t. now. In the middle lite posteciorly it in attanhed to the ligamentum When traced lorwards it ؛iven a sheath io hoth surfares of the trapuzito and then resses the pretarior triangle, the musthe in ther flone of which it invests eompletely. It furnishea alienthe ta both sarfares 0° he sternomastoid and lien serepa forvards to enver the museles in the anterior triangle. At the middle line of the neck it beromes continuous with the deep rervical fascia from the opposto side. Superinrly from hefore hackwards it is attached to the lower border of the mandible. Behind the angie of the jaw it is continnous ahove with the parotid fascia as previously shown. Still further back it ohtains attachment of the external ear. to t^{\prime} e hase of the mastoid pro"ess and to the superior orcipital curved line. : s inferior attachments f-em hefore barkwards are to the upper border of :'se inanultium ster:i, the davtle, the a combon pro ess and the spine of the scapuls. It is attachet to the upper horder of the manubrium sterni in two lameliae, betwer wich a small wain connecting the lower ends of the anterior jueular veits, and one or iwn lymphatic glancis may be found.

tween the layern of lle nock Theme are the ureverteliral and the pretrachenl layepn of ceprical famila.

The pueventeliral layep im really the anteriop aheth for the preveptobeal
 op and the malmus ar terior lielon, te therdore ende on the upper two or three dorat vertoliras at the lowest limit of the lonelis collitand in attarhed
 on the deeps ntrfare th the torno-maztolid.
 of the hyond hath Therefore it ende Hbove oft the hyold bone and io attarhel belon to the bach of the sternurin at the lowent limite of the aternoliyoid and stornu) thypold mustles. (If each side it ohtalna attarhment to
 Armly attar lied to the apmule of the thyroid miand.

Themar on cach wite of tle reak that in bourefed in front by the pretracheal lantia, lehitel liy the peverteliral fancia, extepnally by the

 cupted by an agerir tion if armiat tixnt in whiflithe carotd vemels. the internal jusular vin, and cettin tetwomeinledded, and is the known an the cerotid mhath.

The contonts of the capothd shath apre - (1) the common carotid

 patietic cond lien directly lid ind the cor mon and internal carotd apteplen. 1tille vapus nerve lies lietwern the raroblds and the internal jugular veln. lut on a more puateriup tevel; 5, Tle dearandens hypogional nerve and the ansa liypoghossi lie in front of lfo common carotid artery.

Disaectlon.- Upen up the lourer part of the rarotid aheath and define. Ita contents. St the same time expese the courac and relations of the rommon ratotid artops:

The Common Carotid Artery.

The rommon rarntid artery aimen on tire right side hehind the sterno. clavicular joint as tho larper tepminal branch of the innominate artery: The loft "ommon ca:otid urtery aprings directly from the apch of the aorta, und enters the roos of the nech hehind the lete sierno-clavicular joint. The coupse of all three carotid alteries is indicated by a line drawn from the inner end of the clavicle to the fobule of the eap, which follows approximately the anterior horder of the storno-mastoid musele. The common capotid artery terminutes opposit. the upper horder of the thyroid cartlage hes dividing into the external and internal carntid atteries.

The relations of the cominon carotid artery are as follows. In front it is cove il he the shin, whurticial fascia, platysma, and deep fascia and is, moreover, werlaphed thrmghout its course thy the anterion border of the

 nerve. Tho latoral lohe ul the thyenid aland is alat an foternal relulton
 In the Internal jue?har win whith wsurlap it to wome extont experfally on

 eoneme In the carotil wheath. If lias nu heabches upart from its termanal artiorlen.
 and curnod upuarife Thin letath tho storno-ligoid and mornothyrold

 the lower end of the intornal jughlar beln and the vagun nerte the firat part of the suhclavinn artery will hexpenod. Dedne its henalion.

The s sbelavian Artery.

The whbriavian artery nrises on the right side belind the neponoclavlcular netienlation as the smaller terminat branch of the innominate artery. In the feft side it exprings directly from the aortice arch and renches the root of the newis hehind eho loft stormo-ditvicular joint. The course af the artery in Indieated on the atrface hy a curved line passing from the inner end to the centro of the clavide and arding hall an inch above it. The artery changes name into axillary at the nuter border of the tirst rib. The subelavian artor: is divided by the scolentas anterior into three parts for ronvenience in demeription, the tirst part being to the innep aide of this inusele. the serond fart lirhind it and the third part beyond it. Before studying the prlations it mos le moted that one merve und at frast one vein lie in irmit of each part of llo artcory.

118

fascia, the sterno-mastoid and the sterno-hyoid, and sterno-thyroid muscles, between which and the sterno-mastoid lies the anterior jugular vein. In front also are the internal jubutar and vertehral veins, the vagus nerve and a few minute cardiac twig. Below and behind, the first part is in relation to the groove on the apex of the lung, with the cerviral ple ira and a special layer of fascia intervenimp. The cervical sympathetic is further back but of ten sends a loop around the first part of the artery. In aldition, on the ripht side the ripht recurrent laryneseal nerve hooks round it, while on the left side the thonacio dow arched downwards in front of it in ordel co enter at the point of junction of the internal jugular and wublavian veins.

The second part of the subclavian artery is crossed in front by the scalenus anterior which separates it from the phrenic nerve and the subclavian vein. Anterior th thee, again, are the ste:no-mastoid muscle and the superficial layers of the nect:. It should he noted that on the left side the phrenic nerve runs downards along the immer edge of the scalenus anterior. Below and behind, the se:ond part of the sublavian a!tery is in relation to the apex of the lung and pleura, just like the first part.

The third part of the subclavian artery is situated in the posterior triangle of the neck. Therefore at first it is covered merely by the skin, superficial fascia, platysina and deep fascia, but at its termination it dips behind the clavicle and the subclavius muscle. It is also crossed in front by the nerve to the subclavius and by the external jugular vein on its way to join the subclavian vein which is below and in front of the artery. The suprascapular and transverse cervical arteries and veins and the posterior belly of the omohyoid which lie in the hasal portion of the posterior triangle must also be considered as anterior relations. Posteriorly the artery is in relation to the scalenus medius, the lowest trunk of the brachial plexus, however, intervening between the two. Inferiorly the artery rests in the groove on the upper surface of the first rib, while above it are the upper and middle trunks of the brachial plexus.

The Branches of The Subciavian Artery.

The branches of the subelavian artery are as follows: From the first part are given off the vertebral, the thyroid axis and the internal mammary arteries; and from the second part the superior intercostal artery. The posterior s:apular branch of the thyroid axis may arise separately from the third part.

The vertebral artery is the first branch of the first pari, and arises from its portero-superior aspect. It is directed upwards, and after a brief course enters the foramen in the transverse process of the sixth cervical vertebra. It traveises the upper six foramina with its vein which lies in front, and then curves backwards and inwards in the groove on the upper surface of the posterior arch of the atlas, where we previously saw it in the nubucepital tinngl It disenpears through the posterior occirito-atlantal ligament and the dura mater and enters the spinal canal and ckull, wher
it will be studied later. In the extracranial portion of its course :t supplies splnal twigs to the spinal cord and its membranes, and twigs to the prevertebral muscles.

The thyrold axls artery arlses from the anterior aspect of the subclavlan close to the inner border of the scalenus anterior muscle. and almost immediately divides into the inferior thyroid, transverse cervical and suprascapular arteries.

The inferior thyrold artery runs upwards along the inner border of the scalenus anterior muscle. and then bends inwards behind the common carotid artery at the level of the sixth cervical vertelira in order to reach the thyroid gland and divides into anterior and poste: ior branches which supply the corresponding aspects of the g'and, and also anastomose with the superior thyroid artery. The inferior thyroid also supplies twigs to the trachea, to the oesophagus, to the preverteliral muscles, and the infericr laryngeal artery which accompanies the recurrent laryngeal nerve to the larynx. In addition, the ascending cervical artery is given of from the bend of the vessel, and is distributed to the prevertebral nuscles.

The transverse cervical and suprascapular arteries run outwards in front of the scalenus anterinr and the phrenic nerve, and after crossing the basal purtion of the posterior triangle, disappear under the trapezi'is muscle from which point their further course has been already studied in the upper limb. The transverse cervical divides into superficial and deep (posterior scapular) branches at the outer border of the levator scapulae. The su rascapular artery accompanies the corresponding nerve to the upper horder of the scapula, bit it passes over the suprascapular ligament while the nerve passes under. Its distribution to the supra and infra spinatns muscles and to the scapular anastomoses has been already studied.

The internal mammay artery taine:; origin from the under aspect of the first part of the subclavian opposite the thyroid axis. It runs down wards behind the clavicle, and enters the therax belind the first costal cartilage. Note that the phrenic nerve sweeps round the anterior aspect of the artery in this part of its course. Its further distribution in the thorax has been already studied.

The superior intercostal artery takes origin from the posterior aspect of the second part of the subclavian. It arches backua ds over the lung and pleura to reach the neck of the first rib in front of winch it enters the thorax just external to the sympathetic cord. It terminates by dividing into two branches which supply the first two intercostal spaces. Just before entering the thorax it sends backwards the profunda cervicis artery above the neck of the first rib. This vessel runs upwards under the semispinalis capitis to anastomose with the princeps cervicis branch from the occipital artery, and also supplies the deep muscles of the neck.

Dissection.--As the clavicle will have to be removed in order to obtain a satisfactory view of the subclavian vein, it will be necessary to examine the sublawius musele, whind arises from the upper aspect of the first
rib close to its sternal end, and is directed upwards and out wards to be inserted into the groove on the under aspect of the middle third of the clavicle. Its nerve is derived from the upper trunk of the brachial plexus and its actlon is to depress the clavicle.

The subclavian vein begins at the outer border of the first ril) as the continuation of the axillary vein. It runs inwards in the groove on the upper surface of the first rib in front of the insertion of the scalenus anterior at the inner border of which it ends by joining the internal jugular to form the innominate vein. It is situated below and in front of the subclavian artery and moreover, is separated from the second part by the scalenus anterior and the phrenic nerve. It is a peculiar fact that the subclavian vein as a rule receives no tributaries corresponding to the branches of the artery. The only tributary is the external jugular vein, which in its turn is joined close to its termination by the transverse cervical, suprascapular and anterior jugular veins. The latter may, however, join the subclavian directly.

The Cervical Plexus.

This plexus lies under cover of the upper half of the s'erno-mastoid muscle. Neariy all its branches have been already expose * It is formed by the anterior divisions of the first four cervical nerves, whicu are connected together by loops. The fourth also sends down a communicating branch to the brachial plexus. The branches of the plexus are arranged as follows -the first cervical nerve gives off two sets of branches, the second cervical nerve gives off two branches, the second and third cervical give off conjointly three branches, and the third and fourth cervical give off conjointly three sets of branches.

The branches from the first cervical are to the recti group of muscles (the rectus capitis anterior major and minor, and the rectus lateralis) and a communicating branch to the hypoglossal nerve at the base of the skull.

The branches from the secend cervical nerve are to the sterno-mastoid, and the small occipital nerve which runs upwards along the posterior border of the sterno-mastoid muscle to supply the scalp as already described.

The branches given off conjointly from the second and third cervical are the great auricular, the transverse cutaneous nerve of the neck, and the communicating nerve to the ansa hypoglossi. The first two have been already described, while the latter curves downwards over the internal jugular vein to join the ansa hypoglossi in front of the common carotid artery.

The branches furnished conjointly by the third and fourth cervical nerves are the descending cutaneous trunk, tl:e twigs to the trapezius and levator scapulae, and the upper two roots of the phrenic nerve. All these have been already described except the phrenic nerve which runs downwards, and may receive a third root from the fifth cervical nerve. The phrenic nerve has a characteristic course in front of the scalenus anterior and hehind the suhninvian vein. It rnter the theras after curving round
the anterior anpect of the internal inammary artery just below its origin. Its further course in the thorax has been studied previously.

In addition to these branches it should be noted that the first four cervical nerves communicate with the superior cervical ganglion of the sympathetic.

The Brachlal Plexus.

This plexus is formed by the fifth, sixth, seventh and eighth cervical nerves and the first dorsal nerve. In addition the fifth cervical receives a small branch from the fourth while the first dorsal nerve is joined by a twig from the second. From these nerves three trunks are formed as follows. The fifth and sixth cervical unite to form the upper trunk, the seventh cervical nerve is continued as the middle trunk, and the eighth cervical and first dorsal nerves join to forin the lower trunk. These three trunks appear along with the subclavian artery bet ween the scalenus anterior and scalenus medius. Each trunk then divides inte anterior and posterior divisions of which the three posterior divisions unite to form the posterior cord, the t wo upper anterior divisions join to form the external cord and the lower anterior division is continued as the inner cord. Note that the latter cord though formed only from one trunk is larger than the external, owing to the fact that it receives nearly the whole of the lower trunk, whose posterior division is very small. The three cords of the brachial plexus and their branches have been previously studied in the axilla. Certain branches, however, spring from the earlier stages of the plexus, and are known as the supraclavicular group. These branches take origin as follows -
(1) Two nerves arise from the $5 t^{\text {th }}$ cervical.
(2) Two nerve efrom the 5 th and 6th cervical.
(3) One nerve arises from the 5th, 6th and 7th cervical.
(4) One set of nerves arises from the 5 th, 6 th, 7 th and 8 th cervical.
(5) One set of nerves arises from the 5th, 6th, 7th and 8th cervical and 1st dorsal nerves.

The two nerves taking origin from the fifth cervical are the lower root of the phrenic nerve, and the nerve to the rhomboids, which pierces the scalenus medius. Its distribution to the levitor scapulate and rhomboid muscles has been already studied.

The two nerves from the fifth and sixth cervical are the suprascapular and t^{\prime}. . rve to the subclavius and they take origin from the upper trunk. The suprasce, ular nerve is the largest of this group and passes backwards and outwards to reach the suprascapular foramen. It supplies the supraand infra-spinatus muscles and articular twigs to the shoulder joint. The nerve to the subclavius has been already examined as an anterior relation of the third part of the subclavian artery.

The branch from the fifth, sixth and seventh cervical nerves is the nerve to the serratus magnus. Note that its upper two roots pierce the scalenus medius. Its further course in the axilla has hem previously examined.

The set of nerves from the fifth, sixth, seventh and eighth cervical nerves supplies the three scalene muscles.

The fifth, sixth, scventh and eighth cervical nerves and the first dorsal nerve furnish a set of communicating ncrves to the ganglia of the sympathetic.

The Scalene Muscles.

The scalenus antcrior takes ot gin from the anterior tubercles of the transverse processes of the third, fourth, fifth and sixth cervlcal vertebrae. The muscle is dirceted downwards and slightly outwards to its insertion into the scalenc tuberile and the triangular area on the upper surface of the first rib between the subclavian grooves. Its innervation is from the lower cervical nerves andi its action is that of a muscle of extra-ordinary respiration.

The scalenus medius and posterior have a common origin from the posterior tuherctes of the transverse processes of the cervical vertebrae. The fibres of the scalenus medius are inserted into an oval rough area on the upper surface of the first rih between the groove for the subclavian artery and the tubcrelc of the rih. The scalenus posterior is defined as the bundle of fibres which passes downwards to be inserted into the outer aspect of the second rib. The nerve supply and action of these scalene muscles are the sane as those of the scals anterior.

The Temporal and Pterygo-Maxdlary Regions.

The exploration of thesc regions is simply the dissection of the temporal and zygomatic fossac of the skull, which therefore ought to be studied first of all. The two laycrs of the temporal fascia must then be removed in order to expose the origin of the muscle. The masseter is to be defined at the same time.

The temporal fasci $\sqrt{ }$ is strongly developed and consists of two strata with a layer of adipose tissue between. It is attached above to the upper temporal line of the parictal and to the temporal ridge of the frontal bone Anteriorly it obtains attachment to the posterior border of the malar bone helow to the upper border of the zygomatic arch and behind to the supramastoid crest of the temporal bonc.

The masscter muscle obtains origin from the lower border and the inner surface of the zegomatic arch. Note that its superficial fibres run downwards and backwards, while the deeper strata are directed downwards and forwards. The muscle is inserted into the angle and the whole of the outer surface of the ascending ramus of the mandible. Its nerve supply is from the third division of the fifth cranial (trigeminal) nerve and its action is to elevate the jaw in mastication.

Dissection. - The zygomatic arch is to be sawn through behind and in front of the origin of the masseter, and turned downwards with the muscle which must be stripped ofit the ramus of the jaw down to the angie, but rot
removed. The temporal muscle is now fully exposed. The cut ends of the manseteric vessels and nerve wlll he found in the sigmo ${ }^{\circ}$ notel of the jaw.

The temporal muscle arises from the temporal fossa of the skull as high up as the lower temporal line of tne parietal bone. The anterior fibres are vertical in direction, the Intermediate fibres show various degrees of obllquity, while the most posterlor fihreq are directed horizontally forwards. The miscle obtains insertion intn the apex, the anterior and posterior borders, and the whole of the inner surface of the coronoid proeess of the mandible. Its insertlon is prolonged downwards along, the anterior border of the ramus of the jaw as far as the third nolar tonth. The muscle is innervated by the third division of the fifth eranial nerve. The muscle for the most part acts as an elevator of the jaw in mastication; but the posterior fibres are the retractors of the jaw.

Dissection.--The ramus of the mandible is now to be sawn horizontally about its middle, taking eare not to injure the inferior dental vessels and nerve upon its deep surface. The neek of the jaw is then severed, and the piece thus released is to be turned upwards with the temporal musele. A little dissection will expose the horizontally directed fibres of the external pteryoid musele, round which the internal maxillary artery and its branches and the nerves of the space are grouped.

The external pterygord musele is the key to the pterygo-maxillary region. For example it divides the internal maxillary artery, which is the artery of the region, into three parts. The first part of the artery runs along its lower border, the second part erosses it cither superfieially or deeply, and the third part passes between the two hearls of origin of the musele. The third division of the fifth cranial (trigeminal) nerve likewise distributes its branches round the external pterygoid muscle in a characteristic manner. At the lower border the lingual and inferior dental nerves will be secured, while at the upper border of the musele are found the nerves to the masseter and temporal museles. The long buecal nerve appears between the two heads of the musele and the auriculo-temporal nerve winds round its insertion into the neck of the jaw in order to reach the temporal region of the sealp.

The external pterygoid muscle arises by two heads of which the upper obtains origin from the infra-temporal crest on the great wing of the sphenoid bone, while the lower head arises from. the outer surface of the external pterygoid plate. The muscle is dirceted horizontally backwards to its insertion into the special fossa on the anterior aspect of the neck of the jaw, and into the meniscus of the temporo-maxillary joint. It is innervated by the third division of the fifth eranial nerve, and its action is to protract the jaw in mastication.

The internal pterygoid muscle encloses the lower head of the external pterygoid by means of its superficial and deep heads. The superficial head arises from the tuberosity of the superior maxilla and from the tuberosity of the paiate bome as it appears in the aybumatic fussa of the strull.

The deep head obtains origin from the inner surface of the external pterygoid plate and from the tuberosity o! the palate bone, as it appears in the pterygoid fossa of the skull. The muncle fibres are directed downwards and backwards to their insertlon into the angle of the mandible and into a rough trlangular area between thls and the mylo-hyold groove on the deep surface of the ramus. It is supplied by the third division of the fifth cranial nerve, and its actlon is to elevate the jaw in mastlcation.

The Internal Maxlliary Artery.

This artery is the larger terminal branch of the external carotld artery and takes origin in the substance of the parotld gland behlnd the neck of the jaw. The first part of the artery is directed forwarde on the deep aspect of the neck of the jaw and then along the lower border of the external pterygoid muscle. The spheno-mandibular ligament lies to the inner side of the first part. The second part crosses the external pterygoid muscle either superficially or deeply, while the third part of the artery passes between the heads of the external pterygoid and disappears Into the sphenomaxillary fossa through the pterygo maxillary fissure. The thlrd part ends by dividing into six terminal branches. The internal maxillary vein forms a dense plexus round the artery and a terminal stem jolns ties superficial temporal vein in the substance of the parotid gland to form the tem-poro-maxillary vein.

The branches of the internal maxillary artery are very numerous. It should be noted that the branches from the first and third parts pass through bony canals while those from the second part go to miscles.

The bronches of the first part are-
(1) the deep auricular,
(2) the tympanic,
(3) the middle meningeal,
(4) the small meningeal,
(5) the inferior dental.

The deep auricular artery pierces the wall of the external auditory meatus between the bone and the cartilage, and is its vessel of supply.

The tympanic artery passes upwards behind the head of the mandible and enters the tympanum through the petro-tympanic fissure. It supplies the tympanum, the mastoid antrum and the mastoid air cells.

The middle meningeal artery proceeds upwards under cover of the external pterygoid muscle and enters the skull through the foramen spinosum. It divides into anterior and posterior branches which groove the parietal bone deeply and supply the dura mater or outer membrane of the brain.

The small middle meningeal artery passes into the skull through the foramen ovale and is distributed to the dura mater.

The inferior dental altery is the only branch of the first part of the
internal maxillary that is directed downwards. It lies behind the corresponding nerve and the two enter the Inferior dental loramen in order to supply the lower tectit. The mandlbuiar canal in which they lie ought to be opened up to expose them. The main stem of the artery supplies the three molar and the two premolar teeth. It then divides Into an incisor branch which supplies the canine tooth and the two incisors and also anastomoses with its feliow; and a mental branch which emerges on to the face through the mental foramen. It supplies the tissues over the chin and anastomoses with the facial artery. Just before entering the inferior dental foramen the inferior dentai artery and nerve give of the mylo-hyold vesseis and nerve which groove the mandible just below the foramen and supply the muscie of that nare.

The nuscular branches furnished by the second part of the internal maxillary artery suppiy the masseter, externai and internal pterygoid, buccinator and temporal muscies. The branches to the latter muscie are two in number and are termed the deep temporai arteries. They run upwards betwren the muscle and the cranial wall.

The branches of the third part of the artery will not all he seen at present but a little dissection of the spheno-maxillary fossa with the forceps wili expose at least three of them. Ail six pass through bony canals and are moreover, named after these.

The posterior superior dental artery is readily lound. It runs downwards on the posterior surface of the superior maxilia in order to enter the posterior superior dental canal which conveys it to the supply of the three upper moiars and the two upper premolar tecth. It aiso supplies the mucous membrane of the maxillary antrum.

The infra-orbital branch enters the orbit through the spheno-maxiliary fissure and then runs forward in the infra-orbital groove on the floor of the orbit. This groove rapidly deepens until it becomes the infraorbital canal which opens on to the face at the infra-orbital foramen. The artery supplies the tissues of the face and anastomoses with the facial artery. It also gives of the anterior superior dental artery which runs downwards in a minute bony canal on the anterior wall of the maxillary antrum to supply the two upper incisors and the canine tooth. It likewise furnishes twigs to the mucous membrane of the maxiliary antrum.

The descending or posterior palatine artery runs downwards in the posterior palatine canal to supply the tissues of the hard and soft palates.

The Vidian and pterygo-palatine arteries run backwards in the bony canals of the same name in ordor to supply the roof of the pharynx and the Eustachian tube.

The spheno-paiatine artery enters the nasal fossa through the foramen of the same name. Its distribution will have to be studied later.

Dissection.-Disarticulate the head of the jaw and turn it forwards along with the external pterygoid muscle in order to expose the third division of the fifth rranint nerve.

The Third Divinton of the Futh Cranlal Nerve.

The third division of the trigeminal or fifth craniai nerve in the only one that contains motor fihrea. The sensory portion arines as uaual from the Gamerian ganglion and is joined by the motor ront of the fifth nerve. The completed nerve leaves the base of the akull through the foramen ovalo and almont immediately divides into anterior and ponterior branches. The trunk giver off a recurrent iwig to the dura mater and the nerve to the internal perrygoid nitircle, in which is the minute otic ranglion. The fatter gives off the nerves to the tensor palati and the tensor tympani, and a communirating twig to the auriculo-temporal nerve. It also receives the smali sup. riciai petronal nerve whirh bringe it into communication with the ninth cranal nerve.

The anterior branch of the third division of the fifth nerve gives of the nerve to the external pterygoid which at once sink into the deep surface of that muscie, the nerves to the masseter and temporal muscles; and the long buccal nerve which is its onily sensory offshoot. The nerve to the masseter and the two nerves to the temporal nuscie appear at the upper border of the external pterygoid, the latter nerves being the more anterior. The long buccal nerve passes forwards between the two heads of the external pterygoid muscie and emerges on to the face from under cover of the masseter muscie. Its distribution to the skin and mucous membrane of the cheek has been aiready studied.

In contrast to the preceding the posterior branch of the third division of the fifth nerve i" mainly sensory. It gives off three branches-the auriculo-temporal, the lingual and the inferior denta!. The auricuiotemporal arises by two rootlets which enciose between them the middie meningeal artery. The nerve sweeps backwards round the neck of the jaw and then turns upwards over the root of the zygoma and in front of the ear in company with the superficial temporal artery on the posterior aspect of which it lies It has been already shown to end by supplying the external ear and the temporal region of the scalp. It aiso gives off an articuiar t wig to the temporo-mandibular joint, and receives a communicating twig from the otic ganglion which, however, appears to come off again as the secretory branch to the parotid giand.

After giving of the auriculo-temporai nerve the posterior branch of the third division of the fifth cranial nerve divides into the lingual and inferior dental branches. The former proceeds downwards and forwards between the ramus of the jaw and the internal pterygoid muscle in order to reach the suhmaxillary region where it will be studied subsequently. In the meantime note that the nerve in this part of its course is joined at an acute angie by the chorda tympani branch of the facial nerve which emerges through the petro-tympanic fissure. Note further that as the lingual nerve enters the submaxillary region it lies is close contact with the inner surface of the jaw immediately below the last ...olar tooth, and is covered therefore
by the mucous membrance of the gums only. It in thux apt to be injured in a clumsy extraction of the last molar tooth.

The Inferior dentri nerve procerda downwarda in front of the Inferior dental vesmels in order to enter the inferior dental foramen. It runs forwards in the mandibular canal and has tibe same distribution an the artery. Thus the trunk supplies the three molars, the two premolars, and then dividen Into incisor and mental hranches. The former supplies the canine tooth and the two incinors, whilu the nental nerve emerges on to the chin through the foramen of nat name. Ita distribution to the akin of the chin has been already examined. Just before entering the inferior dental foramen, the nerve gives of the branch to the mylo-hyoid, which represents the only motor fibres of the posterior branch of the third division of the fifth cranlal nerve. The mylo-hyoid nerve runs downwards with the vessels in the gronve of the same name, and ends by mupplying this muscle and the anterlor beily of the digantric muscle.

The Submaxillary Reqion.

Dissection. - Cut the facial artery as it emerges on to the face, and puli back wards th submaxiliary gland in which the lower portion of the artery is imbedded, so as to expose the submaxiliary region. After doing so the submental branch of the facial artery will be uncovered as it ramifies under the chin. This artery will have to be sacrificed. Reflect tie anterior belly of the digastric muscle and turn it downwards in order to dispiay the mylo-hyoid muscle and its nerve.

The mylo-hyoid muscle takes origin from the mylo-hyoid ridge on the Inner surface of the mandible. The fibres run downwards and inwards to be inserted into the upper and anterior aspects of the body of the hyoid bone, but the most anterior portion of the muscle meets its fellow in a mesial raphe which extends upwards from the body of the hyoid. The muscle is supplied by the third division of the fifth craniai nerve. Its action is to support the floor of the mouth aiong with its fellow in mastication.

Dissection. It is best to reflect both mylo-hyoid muscles in une piece Which is to be turned down fion the origin. A little cleaning up with the forceps will expose the hyoglossus muscle as it passes upuards from the hyoid to the side of the tongue. To facilitate natters it is best to saw through the mandible half an inch from the symphysis and turn it upwards

The hyoglossus muscle is the key to tie submaxillaty region, since all the main structures are grouped around it. Note in the first place that it is in relation to the following muscles. Lying along its insertion into the side of the t, gue is the stylo-glossus. In front of it will be found the geniohyoid and. genn-glossus muscles. Fimerging from under cover of its posterior border the middle constrictor muscle of the pharynx will be displayed. Moreover, its anterior half or so is overlapped oblicuely from the frent by the mylo-hyoid muscle.
 lowing structurex will be fornd foom ahowe downeards
(1) the ilngual nerve, hanging from wheis by two rootleta will b. mepn the submaxillary cancllon.
(2) the deep portion of the suhmavillary alivary s'and with the deset.
(3) the chlef veln of the tongan.
(4) the hypo glosal nerve.

Passing under cover of the porterior edge of the misele from abown downwards are -
(1) the glowso-pharyngeal merve
(2) the stylo-hyoid ligament.
(it) the flrat part of the linglial artores.
The third part of the linguad artery nill b fomme rumiog upwardy undur
 of the upper end of : bis bordur i the whllegal adivary gland. It will thus be reagnized that the hyoglotand maselo dividet the liagual urtery into three parta, und that the wond pare mut lie under cover of the musche

The hyoglossus taked origin from the upper asperts of the body und great cornu of the hyoid bone. The fibrew run upwards to their insertion which is into the lateral aspect of the tongue under cover of the styinglosens. it is innervated lyy the hypogloseal nerve, and ite artion is to depress the tongue. A fow derp fibres th at epriny from the lesser cornu of the hyold bone have been termed the choniro-ghossic.

The stylo-glossus arises from the antorior aspect of the styluid process close to its tip. Its insertion is nlong the lateral asperet of the tongue. It.s ner"e supply is derived from the hypoglossal and its action is to retract the tongue.

The genio-hyoid obtains origin alongade its frllow from the lower genial tubercle on the posterior aspect of the symphysis of the lower jaw. The muscle is directed downwards and barkwards to its insertion into the anterior aspect of the body of the hyoid hone. It is pplied by the hypoglossal nerve. Its action is to depress the jaw or elevate the hyoid according to the point of origin that is fixed.

The genio-glossus is a fan shaped muscle that arises along side its fellow from the upper genial tubercle on the poiterior aspect of the symphysis of the lower jaw. The fibres diverge rapidly and obtain insertion along the whole length of the under aspect of the congue where they hend with the intrinsic muscles of the organ. A few of the lower fibres may reach the hyoid bone. The muscle is innervated by the nypuglossal nerve. It is a protractor of the congue.

The lingual nerve can now be traced to its termination. In the submaxillary region it is directed forwards along the upper border of the hyoglossus musele, and is then continued fo:wards along the lateral margin of the tongue underneath the mucous membrane. The lingual nerve supplies the anterior two thirds of the tongue with sensury hites and through
the chords tympanl nerve with Rusfatory tilorim. It alan givem of the necretory nerve to the subllngual glant, a fow twig* to the mucoun membrane of the guma and the doore of the mouth, and a lowif of emmunleaton
 minute nubmaxillary qumplion suxprnided from it by twit rooplets which belone malnly to the chorda tympand llbere of the noreve. The eangllon in Ite turn will be oliserved to furnish mecretoly flbere to the nubmaxliary gland.

The submaxillary gland consiata of suberficial and dorp portines. The
 fore forma a prominent object in the dignvtric triangle. It la covered by the akln, superflelal faxela, platysmand denp favela, hut a portion of it liex in a apeclal hollow on the deep axpert of the mantible below the myto-hyold ridge. Note that the facial artery lies in a dopplirrou in tha gland, and furnlahen it with les arterial supply. The derp portion of the gland la bent pound the posteplop border of the mytoliyoill muxde, and thus comes to lie between It and the hyoglonsur. The duct cmergex fom this portion and in prolonged forwards upon the hyoglossum musele to peacls the floor of the mouth on to which It opron upon the summit of a mall pmpilla loy the side of the iraenum of the tongue.

The sublingual is the smaliest of the salivary glands. It is In diroct contact with the mucous membrane of the floor of the mouth on to which Its numerous ducts (at least twelve) open. Its position there is readily recognized by a allght butging of the mucous membrane bet ween the mandlble and the root of the tongue. The inner surface of the gland pests upon the gendo-xlossus, while its external aspert reclines in a sproial hollow on the deep nurface of the mandible above and in front of tho mylo-hyold ridge. Its posteriop extremlty peaches the hyoglossus muscle and receives the artery of supply from the lingual.

The External Carotid Artery.

This vessel is now exposed throukhout its whold cours and is therefore most conveniently studied at this stage. It arises opposito the upper border of the thyroid cartilage at the level of the fourth rervical vertebra. as the smaller terminal branch of the common carotid artery, of which its course is a continuation. It ends in the substance of the parotid gland, behind the neck of the mandible hy diviling into the superficial temporal and internal maxiliary arteries.

The superficial relations of the external carotid artery are as follows. It is crossed about the middle of it course by the posterior h Hy of the digastric and the stylo-lyobit muscle. Belou this point it is cross d by the hypoglossal nerve, the common facial and the lingual vein and is in addition covered by the sterno-mastoid muscle and ther superficial layers of the neck. Above these two muscles it is imbedded in the parotid gland, where it has the temporo-maxillary vein and the factai nerve as superfictal relations.

The important depprelaton of this aptery io the internal e ipetil aptery
 hetween the two arterlem. From abovo lownwaril: these ape -
(1) the deep poption of the parothl sland.
(2) the utylold prowess,
(a) the atylimpharyngeu* mis le.
(t) the glosaco-pharyngeal nerve.
(b) the pharyneral hrancher of the vasue. Nute that at the origin of the vesel the Internal capollid artory lievdipectly bulen, urap alite and alinwalt to come into alight relathon wh the latwal wall of the pharyne at thim point.

The branchen of the external carutid in adiltion to ite terminal arterlew are
(1) the nuperiop t! Id, the llagenal and the farlal aremeies wheh arise from len antering aspect In that order fr un below upwards;
(2) the ocelplial and postoplor auriculur beanches whech arlas from its ponteplor aspere In that order from helow upwarda.
 aspect.

The superior thyroill apringe from the very orlgen of the external carotld artery and is diefeted downwards and forwaris under cover of the anterior belly of the omo-hyoidin order to reach the thyrold gland where It ends In three turminal hranchea - one to tho posterior aspect of the gland and one to the anterlor axpeet which anastomose with the Inferlor thyrold artery. The thifl terminal hranch runs incurds along the upper border of th sthmus of the glandin order to anastomose with its fellow. In addition the superior thyonid artery furnlahea the Infra-hyold branch whleh runs Inwards below the level of the hyodid bone tosupply the superficial thasue: of the neek and annstomose with lis fellow: the erleo-thyroid branch which is dleceted inwards o \& \because. in upfes brdue of the crlen-thyroid membrane to supply the adjoining tissues and anastomose with lis fellow; the superlor larynceal branch which accompanies the intornal laryngeal nerve into the larynx through the thyoo-hyod membrane; and the stepno-mastoid branch which crosses in front of the common carotid artery in order to reach that musele. Finally the superlor thyroid artery supplies nuscular twigs to the other muscles in the vielnity.

The lingual artery arises at the level of the hyoid bone and is very tortuous. It forms a marked loop beyond its orixin which is crossed superficially by the hypoglossal nerve. This vesuel then passes forwards under cover of the posterior belly of the digastric muscle and the stylohyoid and then disappears uncerneath the posterior border of the hyoglossus muscle. This portion constitutes the first part of the artery. Deeply it is in relation to the latepal wall of the pharynx. The second part of the artery is situated on the depp aspect of the hyoglossus muscle about one third of an inch above the level of the hyoid bone. Therefore this portion of
the artery munt reat upan the middie conatpletor muscle of the pharynx and the gento-xtoestum. The third part of the artery in directed upwards alone the anterior buriter of the higoglinaus and then dividem inter the artery to the sublingual alivary glanil netid the terminal artory to the tongue whith runs forwarls un it under axpert lowaris the tip and ia dietibuted to fer subatance. From the fext part if the artery fatern of the supra-

The rhlef veln that drains the engsue pasues hack wards superflal to the hyoglowsum. The linkuil artery t.in addition, accompanied by venae eomitea. Theme veine crose he external carotid aptery in order to foin the internal jugular verin.

The faclal areory arime Imermellately above the lingeral and very often in confunction with it. The vesel plasere upwaridand forwarda under eover of the posterior lielly of the digastefe and the stylli-hyod in order to reach the whenaxlifary eqgine whope it it encloard in a drep geonve in the aubatence of the sulmaxillary annd. After eacaping form the the artery aweeps upwaris over the fower borter of the mandibio in front of the masere. er mucle in ordep to peach the face, whrer fis subariuent distribution has been previously studied. In the whb-mandibular portion of ita mourar the faclal artery glves of leasernding paintine, tonelliar, submaxiliary and xuhmental bractes. The two foriner arturies pun upwards upon the lateral wall of the pharynx in order to reach their dedination. The tonsilar artery piercen the suprepor ernatietor and mupplies the tonstl, while the aseending paiatine passer now the uppor border of thls musele and is conducted to the soft palate alink the ennor and ievator paiati muncles. The submaxillary liranches anpply the sulimaxilary gland, and the nubmental artery has been already obsepved supplying the tiseues underneath the chln. It anastomoses with its follow of the opporite side.

The oce: $: \therefore$ artery arixes from tha posterine aspect of the external rarotid at the fevel of the lower border of the posteplor belly of the digantric and runs upwards and backwards anong this muscie. The hypoglossal nerve sweeps forwards round the origin of this vessel and at this point gives off its deacendens hy mogiossi branch. The nceipital artery proceeda backwards under cover of the sterno-mastold, spienius capitis, and longissimun capltis muscles and the mastoid process and in this porti n of fits course lies in a apocial groove on the inferior surface of the mastold temporal bone. The artery then escapes from under cover of these three muscles and crosses the apex of the puaterior triancter where it rests upon the semispinalis capitis muscle. Finally it plerces the occipital origin 0° the trapezius muscle together with the graat occipitai nerve. The terminal distribution has been already d scribed. In the carly portion of its course the occipital gives

aterno-mastoid branch accompanies the accensory nerve into that muscle. The other 's the princeps cervicis artery which runs downwards under cover of the semispiralis capitis to supply the deep nusicles of the neek, and anast, ose with the profunda cervidi artery. Two mall meningeal branches of the oceipital artery which pasa through the mastoid and jugular foramina may bo found. The sterno-mast id hranch of the occipital artery sometimes rises separately from the external carotid.

The posterior auricular artery takes its origin from the posterior aspect of the external carotid just above the posterior belly of the digastric and runs upwards and backwards between that musele and the parotid glant It then passey upwards with the posterior auticular nerve behind the ear and ends in terminal branches to it and to the scalp as already shown. It also supplies the parotidgland, and the st: in,-mastoid branch which enters the foramen of the same name in the hase of the skt:ll and is distributed to the mastod antrum and colls and to the faciai nerve.

The ascending tharyngeal artery arises from the deep aspect if ''e external carotid close to its origin and is directed upwards on the side wall of the pharynx towards the hase of the skull. It supplies the pharyngeal wall and the prevertel)ral musc and ends in the form of three meningeal arteries which piere the foramen lacerum medium, the jugular foramen and the hypoglossal ranal in order to supply the cerebral meninges.

The supericial temporal and interne. maxillary arteries have been already a soribed. Their veins unite to form the temporo-maxillary vein uhich runs downwards in the parotid gland superficial to the external carotid artery, and soon divides into anterior and posterior branckes. The former joins the fecial to form the rommon facial vein which crosses the external carotidartery to enter the internal jugular vein, while the posterior division joins the posterior auricular vein to form the external jugular which rins downwards superficial to the deep ascia of the neck and pierees the ronf of the posterior triangle of the neck just above the clavicle in order to join the subclavian vein as previously noted. The posterior external jugular is the nane given to a vein which drains the occipital region of the scalp and enters the externel jugular vein.

Dissection. (ut the external carotid artery close to its termination and after severing the other branches turn the vesel downwards in order to expose the internal earotid artery and the other chief structures found in the deep dissection of the neck, namely the internal jugular vein, the last four cranial nerves and the sympathetic cord.

The Deen Elssection of the Neck.

The important structures exposed in this disscetion have a very characteristic relation to one unother. The internal carotid artery and the internal jugular vein will be observed to lie side by side, and at the base of the skull the ninth, tenth, eleventh and twelfth cranial nerves will be found to emerge b tween them. Of these nerves the tenth or vagus nerve runs
dewnwards wrtisally betwen the two vessels. the ninth or glo sopharyngealsweops forwarts het wern the in'wral and 'xternal carotid arterise, the

 ficial to both the external amb the internal carotid artories. Note, further that the pharymeal hramel of the vagus lies betwerent the wo carntid arteries while its supe fior laryngeal liancla passes deeply to both.

The Internal Carotid Artery.

This artery wommere apmsite the upher bord or of the thyroid \because. thage as the largur terminal brand of the eommon carotid artery, with
 ty anterine do earotid ramal in the perents tomporal hone, which cond eets it into the skull.

Sliperficially the intornal rarotid is werlapped throughont its whole course excent at its origin by the extermal carotidartery. The fivestructures that intervene between the two vessels have been already enumerated. From ahove downwards they are
(1) the deep portion of the parotici gland,
(2) the styloid process.
(3) the stylo-pharyngens muscle.
(4) the glossonharyngeal morue.
(5) the wharynall branh of the vagus. The hypuglossal nerve also crosses it superficially, but is separatod by the external caroticl artery

Posterior to the internal carotid artery are the transwerse processes of the upper tl rese or foisr orvical vertobrae, with the provertabral museles and faseia. The :symathomberd rims downwards vertically behind the artery, and the superior iarsugeal nerve passes forwards posterior to it. To the inner side of the internal carotid are the lateral wall of the pharynx and the ascending pharyngeal artery. In operations on the tonsil the relation of the internal carotid artery to the lateral pharyngeal wall should always be recollected.

At the base of the skull the internal jugular vein lies directly posteror to the internal carotiol artery with the ninth, tenth, eleventh and twelfth cranial nerves intervening. Lower dian h, hwever, the vein comes to lie on the onter aspect of the artery, with the vagus or tent cranial nerve alone intervening. Both vessels are invested with the carotid sheath.

The internal carotid artery gives off no branches in this part of its course.

The Internal Jugular Vein.

This vein rommences at the ponsterior compartment of the jugular foramen as the continution of the lateral sinus of the skull. At the base of the skull it lies directly posterior to the internal carotid artery with the last four cranial nerves intervening. Lower down, however the vein comes to lie on the cuter sides of bot? the internal and commen carotid arterips,
with the vagus nerve interveuing between them. At the root of the neck the internal jugular vein crosses in front n ! the first part of the subclavian artery and joins the subclavian vein to form the innominate vein at the inner border of the scalenus anterior. Throughout its course the internal jugular vein is enclosed in the carotid sheath.

The tributaries of the vein from above downwards are the infcrior petrosal sinus, the pharyngeal veins, the common facial vein, the lingual veins, and the superior and middle thyroid veins. Moreover, at its junction with the sublavian vein it is joined on the left side by the thoracic duct and on the right side liy the right lymphatic duct.

The Glosso-pharyngeal Nerve

$T /$ is is the ninth cranial nerve. It escapes from the skull through the middle compartment of the jugular foramen and possesses its own sheath of dura mater. At first it lics between the internal carotid artery and the internal jugular vein. It then swepps forwards between the external and internal carotid arteries along the lower border of the stylo-pharyngeus muscle. On reaching the submaxillary region it passes under cover of the posterior border of the hyoglossus inusele and curves upwards to supply the mucous membrane of the posterior third of the tongue with sensory and gustatory fibres. Its trunk is joined by a small twig from the facial nerve which soon romes off again as the branch to the stylo-pharyngeus muscle. The glosso-nharyngeal, as its name implies,also gives a pharyngeal branch to supply the mucnus membrane of the pharynx through the pharyngeal plexus of nerves. A small branch which pierces the superior constrictor muscle to supply the tonsil will also be found.

As the glosso-pharyngeal nerve lies in the jugular foramen two minute sanglia are developed upon it. The lower one of these gives off the tympanic nerve which enters a canal on the inferior aspect of the petrous temporal bone between the carotid ranal and the jugular foramen. After supplying the m: cous membrane of the middle car this nerve is joined by a twig from the facial nerve, and then changes name into the small superficial petrosal nerve, which has been already shown to join the otic ganglion. These nerves will all be studied later.

The Vagus Nerve in the Neck.

This is the tenth cranial nerve. It emerges from the skull through the middle compartment of the jugular foramen, and possesses a sheath of dura mater in cormon with the accessory nerve. The vagus nerve runs vertically downwards in the neck, first of all betwcen the internal carotid artery and the internal jugular vein, and finally between this vein and the common carotid artery, but on a more posterior plane. At the root of the neck it passes in front of the first part of the subclavian artery and enters the thorax, where its subsequent course has beel already examined.

The vagus nerve possesses two ganglia-the root ganglion and the
ganglion of the trunk. The root gangion is situated in the jugular foramen and gives of the auricular nerve which supplies the external ear. It a course to this is rather clrcuitous, as it first of all enters a foramen on the floor of the jugular fossa of the petrous temporal bone, and emerges agaln from thls bone through the auricular fissure which lies between the external audltory meatus and the mastold process.

The garglion of the trunk is a spindle shaped swelling nearly one inch long situated on the nerve just below the base of the skull. Note that immediately above this ganglion the vagus is joine 'by the medullary portion of the accessory nerve, and that the hypoglos a nerve is firmly bound to the trunk ganglion by an interchange of communicating filaments. The gangion of the trunk gives of the pharyngeal and the superior laryngeal branches of the vagi:s. Of these the pharyngcal branch proceeds forwards between the external and internal carotid arteries to join the pharyngeal piexus. Its fibres are accessory in origin, and represent the motor filaments for the supply of the pharyngeal muscles. The superior laryngeal branch is directed downwards and forwards on the deep aspects of both the Internal and e.'ernal carotid arteries. It divides into external and internal laryngeal branches of which the former supplies the crico-thyroid muscle, while the internal laryngeal nerve pierces the thyro-hyoid niembrane in association with the superior laryngeal artery in order to supply the mucous membrane of the larynx with sensory filaments.

Further down the neck the vagus neive will be found to give off the superior and inferior cardiac nerves which enter the thorax to join the cardiac plexuses. In addition, the right vagus nerve gives off the right recurrent laryngeal nerve at the root of the neck. This branch hooks round the first part of the right subclavian artery. and passes upwards and inwards behind the right common carotid artery to reach the groove between the trachea and the oesophagus. The left recurrent largyngeal nerve, as already shown, is given off in the thorax. Each nerve enters the larynx under pover of the lower $b \operatorname{rif}^{\prime}$ of the inierior constrictor muscle of the pharynx, and supplies the intrinsic laryngeal muscles of its own side except the crico-thyroid, which war already shown to be suppliod by the superior laryngeai nerve.

The Accessory Nerve.

This is the eleventh cranial nerve. It consists of a medullary and a spinal portion which unite inside the skull. The nerve emerges through the middie compartment of the jugular foramen, possessing a sheath of dura mater common to it and the vagus nerve. It immediately divides into its accessory aid spinal portions of which the former has been already shown to join the vagus. The spinal portion inclines downwards and backwards over 'he internal jugular vein to enter the deep surface of the sternomastoid muscle. After supplying this the nerve emerges from the posterior border of the muscle, crosses the posterior triangle of the neck and ends by supplying the trapezius.

The Hypoglossal Nerve.

This is the twelfth cranial nerve. It penapes from t ' skull through t e hypoglossal canal which tunnels the occipital condste. The nerve appears in the depp dissection of the trunk of the vagus to ments. It then sweeps forw is tenal and external carotid arteries, and hools round the nrigin of the orcipital artery. The nerve passes under cover of the posterior belly of the digastric and the stylo-hyoid muscles, and enters thn submaxillary region where it rests upon the superficial aspect of the hyoglossus muscle. It finally disappears from view by sinking into the genio-glossus muscle, and its terminal filaments supply the four intrinsic muscles of the tongue. It also innervates four extrinsic muscles namely, the genio-glossus. the hyoglossus, the stylo-glossus and the chondruglossus.

In addition tu these cranial filunients of the hypoglossal nerve, there is an important branch of crmmunication from the first cervical nerve which joins it below the base of the skull. This new set of fibres, which might be ternied the spinal filaments of the hypoglossal nerve, come off again as the descendens hypoglossi, and the nerves to the thyro-hyoid and genio-hyoid muscles. The descendens hypoglossi is given off as the hypoglossal nerve hooks round the occipital artery. This offshoot runs downwards in the carotid sheath in front of the common carotid artery to join the communicating branch from the second and third cervical nerves, the result being the nerve loop known as the ansa hypoglossi which supplies the sterno-hyoid, the sterno-thyroid and both bellips of the omo-hyoid.

The Cervical Sympathetic.

The cervical sympathetic cord is imbedded throughout its course in the posterior wall of the carotid sheath. It therefore lies hehind the common and internal carotid arteries and in front of the prevertebral muscles and fascia. Above, it enters the skull through the carotid canal in the form of a plexus surrounding the internal carotid artery, while below it enters the thorax in front of the neck of the first rib and becomes continuous with the thoracic sympathetic. There are thren ganglia on the cervical segment of the cord. The superior ganglion is an elongated spindle shaped structure about two inches long situated at the level of the second and third cervical vertebrae, therefore lying behind the internal carotid artery. It communicates with the first four cervical nerves by means of grey rami communicates, and must therefore represent four ganglia fused together. The middle and inferior cervical ganglia are placed at the levels of the sixth and seventh cervical vertebrae behind the common carotid artery. Each represents two fused ganglia, since the middle communicates with the fifth and sixth cervical nerves and the inferior with the seventh and eighth by means of grey rami communicantes. The superior ganglion gives off the superior cardiac nerve, a branch to the pharyngeal plexus,an offshoot along the facial
artery and cominunicating twigs to the ninth, tenth and twalfth cranial nerves. The micldie ganglion furnishes the middle cardiac nerve and sympathetic nerves to the thyroid gland. The inferior ganglion given off the inferior cardiac nerve and a large offshoot along the subrlatian and axillary arteries. The two lower ganglia are often connected by a loop) which passes in front of the first part of the subclavian artery.

The stylo-pharyngeus muscle will be observed to arise from the inner aspect of the root of the styloid process. It passes forwards between the external and internal carotid arterles to enter the wall of the phary n, where it will be studied later. It is innervated by the gloss?-pharyngeal nerve.

The Prevertebral Muscles.

The longus olli is the name given to an irregular arrangement of scanty muscle slops connecting the bodies of the cervical and upper three dorsal vertebrae.

The rectus capitis anterior major takes origin from the anterior tuhercles of the transverse processes of the third, fourth, fifth and sixth cervical vertebrae. The muscle passes upwards to the hase of the skull where it is inserted into the under aspect of the hasi-occipital. It is supplied by the first cervical nerve and its antion is to tilt the head forwards.

The rectus capitis anterior minor lies behind the upper end of the major muscle. It takes origin from the atias and oltains insertion into the basi-occipital behind the major muscle. Its nerve supply and action are the same as those of the preceding.

The rectus lateralis arises from the transverse process of the atlas and is inserted into the under aspect of the jugular process of the occipital bone. It is supplied by the first cervical nerve. Its action is to tilt the head to the same side.

Dissection. - The skull cap is now to be removed in order to extract the hrain, under the supervision of the demonstrator who will make the requisite mark on the bone with coloured chalk. In this operation the demonstrator will point out the various cranial nerves and processes of dura mater that must le severed in order to release the brain. Plare this in a pot with a little spirit, for future study. The dura mater that constitutes the roof of the cavernous sinus on each side of the body of the sphenoid must be remioved, and the various cranial nerves that are exposed will require to be identified.

The Cavernous Sinus.

This venous sinus is a space between the layers of the dura mater on the lateral aspect of the body of the sphenoid, and is so named on account of the numerous trabeculae that traverse its cavity. Anteriorly it ends at the sphenoidal fissure, where it receives the two ophthalmic veins, while its posterior extremity is in contact with the Gasserian ganglion on the apex of the petrous temporal bone, and is drained there by the superior and inferior petrosal sinuses. The inner wall of the sinus completes the fossa for the
pitultary gland. The sloping outer wall has imbedded in lt the following nerves--the thlrd and fourth cranlal nerves and the first and second dlvlslons of the fifth cranlal nerve. The lateral limlt of the sinus is at the Inner edge of the foramen ovale, a fact which excludes the thlrd division of the fifth cranlal nerve from th: outer wall. Thls foramen, however, transmits an emisary veln from the slnus to join the Internal maxillary veln. In the cavlty of the sinus ltself will be found the internal carotid artery,
 slath cranlal nerve. These structures are of course enclosed \ln a delicate membrane which separates them from the blood stream. Each cavernous slnus ls connected with lts fellow by means of the minute anterlor and posterlor \ln tercavernous sinuses whlch lie behind and \ln front of the pltuitary body.

The Dissection of the Orblt.

Dissection.- Most of the nerves that traverse the cavernous sinus are on thelr way to enter the orbit, the dissectlon of which is therefore a natural sequel. The roof of the orbit is to be removed under the supervislon of the demonstrator. A llttle dissectlon wlth forceps will expose the fourth cranlal nerve, the frontal and the lachrymal nerves, named from within outwards. Pick away the loose adipose tissue, and define the levator palpebrae superioris muscle as it rests upon the upper surface of the superior rectus muscle of the eyeball. Trace the lamellae of the levator muscle into the upper eyelid, and attempt to define the structure of the latter. Sever the frontai nerve and turn it forwards.

The levator palpebrae superioris arises from the roof of the orbit immediately in front of the optlc foramen. The muscle expands anteriorly and divides into three lamellae of which the superior blends with the orblcularis oculi, the middle is attached to the tarsal plate of the upper eyelid and the lower is inserted into the superlor fornix of the conjunctiva, whlch is the line of reflection of the conjunctiva from the eyelid on to the eyeball. The muscle is innervated by the third cranlal nerve, and its actlon is to elevate the upper eyelid. Cut this muscle and turn It forwards.

The Ocular Muscles.

The superior rectus muscle of the eyeball takes origin from the upper margin of the optlc foramen. Its insertion is into the sclerotic coat of the eyeball on its upper aspect about one quarter of an inch behind the corneosclerotic junction. Its nerve supply is from the third cranial or oculomotor nerve. Its action is to turn the eyeball upwards. Divide this muscle and turn it forwards in order to study the origins of the other three recti muscles.

The internal rectus arises from the inner margin of the optle foramen, and is dlrected forwa ds along the inner wall of the orbit to lit Insertion Into the sclerotlc on the Inner aspect of the eyeball one quarter of an inch behind
the corneo-sclerotic junction. It is supplied by the oculo-motor nerve. Its action in to turn the eyeball inwarda.

The external rectus arlses from the outer edge of the optic foramen and alno from a speclal tubercle on the lower border of the sphenoldal fissure, thus divlding the latter into upper and lower compartments for the passage of its contents. The muscle is inserted into the outer aspect of the sclerotle about one quarter of an inch behlnd the corneo-sclerotic junctlon. It la supplied by the sixth cranlal nerve, and lits action is to turn the eyeball outwards.

The inferlor rectus takes crigin from the lower border of the optic foramen, and is Inserted on the under aspect of the sclerotic about one quarter of an lnch behind the corneo-sclerotic junctlon. It ls supplled by the oculomotor nerve, and its action is to turn the eyeball downwards.

The superlor obllque muscle takes origin above and to the inner aide of the optlc foramen. The muscle is directed forwards along the inner wall of the orbit. Its tendon passes through the pulley attached to the trochlear fossa of the frontal bone, and then passes outwards and backwards under the superior rectus to obtain insertion into the outer aspect of the eyeball. It is innervated by the fourth cranial nerve. It acts along with the inferior rectus, and turns the eyeball downwards.

The inferlor obllque muscle is best exposed by incising along the lower orbltal margin and picking away the loose adipose tissue from under the eyeball. The muscle will be observed to arise from the orbital floor just external to the opening of the naso-lachrymal duct. It passes outwards underneath the inferior rectus to gain its insertion into the outer surface of the eyeball. It is supplied by the third cranial nerve. It acts along with the superior rectus, and turns the eyeball upwards.

The Nerves of the Orblt.

The second cranial or optic nerve arises from the optic commissure and enters the orbit through the optic foramen. It is directed forwards, outwards and slightly downwards, and pierces the eyeball just below and to the inner side of its posterior pole. It is distributed to the retina of the eye.

The third cranial or oculomotor nerve as it runs forwards in the outer wall of t'ie cavernous sinus divides into upper and lower divisions which enter ti.e orbit through the sphenoidal fissure below the external rectus muscle. The upper division supplies the superior rectus and the levator palpebrae superioris. The lower division innervates the internal rectus, the inferior rectus and the inferior oblique and also furnishes : he motor root to the ciliary ganglion.

The fourth cranial or trochlear nerve enters the orbit through the sphenoidal fissure above the external rectus, and ends by supplying the superior oblique muscle.

The sixth cranizl or abducens nerve enters the orbit through the sphenoldal fissure below the external rectus and ends in tiat muscle.

The firnt or ophthalmic division of the fifth cranlal nerve takea orlgen from the Gasserlan ganglion and is directed forward in the outer wall of the cavernous sinus, where it divides Into three branchen. Of these the frontal and lachrymal enter the orhit through the sphenoldal fasure above the external rectus, while the nasal branch entern below that muscle.

The frontal nerve runa forwards Immedlately under the roof of the orbit and sonn divides Into its supra-orbi al and suprutrochlear b:nnches whlch have been prevlously studled In the irontal reglon.

The lachrymai nerve is directed forwards along the outer wall of the orbit alonk with the lachrymal vessels and supplies secretory fibres to the lachrymal gland and minute twiga to the eyellds.

The nasal nerve passes forwards along the inner wall of the orbit just below the superior oblique muscle. It enters the anterlor ethmoldal canal which conducts it on to the cribriform plate of the ethmold. It leaven the cranium a second time by the side of the crlsta galli, and enters the nasal fossa, where it grooves the posterior surface of the nasal bone. It appears on the nose between the lower border of the nasal bone and the lateral cartilage of the nose ancl puds in terminal sensory twigs to the nose. While in the nasal fossa it furnishes sensory twigs to both the septum and the outer wall. In the orlit it gives off an infratrochlear branch to the skin of the eyelids the two long ciliary nerves to the eyeball, and the sensory root to the ciliary ganglion. The latter lies near the apex of the orbit between the optic nerve and the external rectus muscle. It ls rather quadrangular in form and its posterior horder is joined by its sensory root from the fifth nerve, its motor root from the third nerve and its sympathetle root from the carotid plexus. The short ciliary nerves are its branches of distribution and proceed from its two anterior angles. These may be as many as twelve in number, and enter the eyeball in a ring round the entrance of the optic nerve. The motor filament in the short ciliary nerves that are derived from the oculomotor nerve supply the sphincter pupillae and the clliary muscle of accommodation, while the sympathetic filaments innervate the dilator pupillae.

The Ophthalmic Artery.

This artery takes origin trom the internal carotid and enters the orbit through the optic foramen below and to the outer side of the optir nerve. In the orbit it sweeps over the ton of the optic nerve and takes its forward course from the inner wall. At the inner angle of the eye it ends by dividing into nasal and frontal branches of which the former anastomoses with he facial artery, and the frontal accompanies the supratrochlear nerve to supply the forehead. The other branches of the ophthalmic are -
(1) the central artery of the retina,
(2) Supraorbital,
(3) lachrymal,
(4) anterior and posterior ethmoida!,
(5) long and short ciliary,
(6) internal palpebral
(i) muscular brancines to the orbital munclen.

The central artery of the retlna slnks Into the substance of the optic nerve and in thls way enters the pyeball. It Is dintrlbuted to the retina by upper and lower branchen.

The supra-orbleal artery accompanles the nerve of the same name through the aupra-orbltal notch or foramen to the forehead and salp, where ita distribution has been previously examined.

The lachrymal artery supplies the lachrymal gland, and likewlse given off external palpebral twige to both eyelida.

The anterior and posterior ethmoidal arterien traverse the canals of the same name, and supply the unterlor, middle and posterlor yroupa of ethmoidal air colls. The anterlor artery in addition furnlahes a small anterior meningeal twig to the anterior cranlal fossa.

The ahort clliary arterles plerce the sclerotle round the entrance of the optic nerve, and supply the tismues of the eyeball. The two lous cillary arteries bierce the sclerotic a little further forward in company wlth the two long ciliary nerves. A few anterior ciliary arteries which supply the front part of the eyeball apring froin the other branches of the ophthalmicartery.

The internal palpehral arteries are minute twigs which run along the margins of the cyelids, and anastomose with the twigs from the lachrymal artery.

The two ophthalmic veins do not closely accompany the artery. In front they communicate with the facial vein. They receive tributaries correspondinis to the branches of the artery, and pass through the bottom of the sphenoidal fissure in order to join the cavernous sinus.

The Lachrymal Apparatus.

This consists of
(1) the lachrymal gland and lts ducts which open into the conjunctival sar.
(2) the two puncta, and the lachrymal canals.
(3) the lachrymal sac,
(4) The naso-lachrymal duct.

The lachrymal gland lies under the antero-external angle of the roof of the orbit. It is slightly constricted into two by the outer edge of the membranous expansion of the levator palpebrae superioris. The upper part lies in the laclirymal fossa of the frontal bone, and the lower portion rests against the upper eyelid. About twelve ducts emerge from the lower part of the gland, and open into the outer portion of the superior fornix of the conjunctiva. The eyeball is thus bathed with the glandular secretion from above downwards and inwards.

Earh punctum is a minute pin point opening situated on the summit
 point where the eyelashes begin. The papilla is kept pressed against the
eyebail in order to drain awsy murplun mecrotion by capillarity. The larhrymal ranal into which the punctum opens tunnels the margin of the lid between it and the inner angle of the eye, and in thus leat than a quarter of an Inch long. Theme canala ifrain into the larhrymal ase. Note that the small red projection at the inner angle or canthus of the eye is termed the caruricle. Immediately extornal to thim in a tiny vertical fold, known an the plica nemilunaria which reprements the third eyelid of some lower animain (the nictitating membrane of hirds).

The iarhrymal anc resta in the special foman on the inner wall of the orhl: formed by the superior maxilla and lachrymal bonem, and is about half an'ich ione. Anteriorly it in cromacel by the Internal taral ligament as it pasaes to the eyelidn, while ponteriorly lies the censon caral muscle. The latter arises fron. the lachrymal crest and blends externally with the paipebral fibres of the orbicularin oculi. Its evident function thus, is to compress the iachrymal sac against the resistant Internal tarsal ligament, and exprees its content.

The naso-lachrymal duct extends from the lower end of the lachrymal sac. It in half an inch long and is directed downwards, outwards and slightly backwards. Its opening in the fore end of the inferior meatus of the nose will he studied later.

The Capaute of Tenon.

The eyeball is en closed in a large lymph space, the ldea being to keep it free from the surrounding orbital tissues and thus facilitate its movements The wall of this lymph sac is known as Tenon's capsule and is so dellcate that it is difficult to demonstrate. Posterlorly it blends with the sheath of the optic nerve, while anteriorly it blends with the sclero-corneal junction The six tendons of the ocular muscles have to pierce it in order to reach their insertions and at these points the cspsule blends with the tendon sheaths.

The Suspensory Ldeament of the Eyeball.

This is represented by no definlte band, but by an ill-defined aggregation of connective tissue which passes hammock-like underneath the eyeball from side to side. It is attached internally to the frontal process of the superior maxilla, and externally to the malar bone, half way up the orbital margin in each case. It is therefore important to remember not to disturb these attachments in excision of the superior maxilla, as otherwise proptosis of the eyeball would result.

The Eyellds

Each eyelid presents the following layers from before backwards-
(1) the skin
(2) Superficial Iascia.
(3) Orbicularis oculi.
(4) the tarsal plate,
(6) the layer of Meitomian giands.
(6) the conlunctiva

The skln wlii the ohsepved to be very thin. The superficial fascia contalns too fatty thaue and is very lax, so that extravamationa of hiood or fluld are very mpt to take place in it. The paipehral portion of the orhlcularis ocuil musele han been already mhown to be attarhed Internaily and externaliy to the Internal andi external tarnai ligamenta. 'the tamal pla: is a semliuna: mana of condenneci connective tianue which in attached externaily and Internally to the orbital margina hy the externai and internai tarnailigaments, of which the latter is the better marked and in nometimea called the tendo oculi. The Melhomianglandin open along the edge of the ifd behind the lashes, the row of openinga indicating the line of junction of the akin with the conjunctiva. The later la the delicate layer covering the deep surface of the lid. It is reflected from this on to the eyebail, the Ilne of reflection being termed the fornix of the conjunctiva.

Disecetion.- The orbital contents will now require to be removed in order to inventigate the accond diviaion of the fifth nerve. There is a pecuilar agregation of non-btriated mumele toward the apex of the orbit, known as Muiler's muscie. Fixophthalmon is beileved to ise due to peraistent contraction of theme fibres. The Infra-orbital groove will be found to contain part of the second divislon of the fifth nerve. It will therefore be necensary to trace this forwards and backwards, and remove bone, where necensary. Lay open the sphenold down to the level of the foramen rotundum, and aiso open up the spheno-maxliary fonas slightiy from above.

The Second or Superior Maxillary Diviston of the Fifth Cranial

 Nerve.This sensory nerve takes origin from the Gasserlan ganglion, and runs lorwards in the outer wall of the ravernous sinus in rearh the foramen sotundum through which it leaves the cranium and enters the sphenomaxilary fosma. The nerve crosses the upper end of thin narrow space, and entera the floor of the orbit, where it will be found iying in the infraorbital gronve. It is continued forwards in the infra-orbitai canal, and emerges on to the face through the infra-orhital foramen as the infra-orblal nerve, the distribution of which on the face has been already described. It Is convenient to note that the chief iranchen of the second division of the Gith nerva are arranged in three groups, each composed of three nerves.-namely-three branches to the fare, three branches to the upper teeth and three main branches of distribution from the spheno-paiatine gangilon which is associated with this division of the fifth nerve

The three sensory branches to the face are the infra-orbital, and the temporai and maiar branches of the temporo-malar nerve. The distribution of theae three nerves on the face has been previousiy examined The
 directed forwards in ciose contact with the outer orbital wali, where it

 antrutn

 nasumblatise nerseand tio plarymerat hrafoly. 'T| "patatime stem divid-

 murous membratio of the nasill foswat with he examit ed latex

The Pharynu.

The auperfor conat. if tor minen from the lower tllal of the pemterlor
 pterygormanifibular lisament, from the laner atface of the mandible and from the musulature of the tongur. The hilirem nurop upwarda and linek. marda round the lateral wall of the plargax, and 19 eret tha fellown in the

 into that kone. Itm innersution is from the phargneral keranch of the vague through the pharyngeal plexus.

The midalle conatictor then wifit fom the prent mat lesser cornua of the hyoid and from the ntslo-hysid ligamert. Its filhes spered out fanwine as they procerd backuatds en lleir in wellen then the pharyneal rapl6. Note that this misale csomaj: the perior mumbe, and in in itm turn overlapped by the Inferior cof - fintor. Aofurefly un uhote

The Inferior constrictor aises from the lateren asperem of the thyroil

 lowermost eet suecps de "nuats in tecome continuens with the loneitudinal muacular coat of thereoghans. Nerro sums: an alove.

It will be evident that lhere are mardeas agis betwed the constrictor muncles, and also letwen the supmior mustre and the lase of the skoll. In pach of these gaps two important athutures will te frebid. Breseen the muperior constrictor and the lase of the skuld a litte disemtion will ex-

 wall and at this ponit lle "lossopharyneal nerse wirds =on?, it. In the gap between the midde and infornor constidor miseles die intornal laryngeal nerve and the stperior larynueal siftery fremenforwards to pierer the thyro-hyoid membrane. Note that the tererollt lapyenest nerte and the
 the inferior constrictur musde in urdep to reach the harynx.

The pharyngeal phexus is formed by the pharynereal brationes of the vagus and the glossopharynemal norves, in if the superne cervieal st mpathetie ganglion. It is massel maialy on the aurface of the midride enerap riet-
 the pharyngeal ard palatal museles, and the sensory fihres from the glossosharyngeal to the mucous membrase of the pharynx.

The pharyngeal aponeurosis is attached above to the base of the skull. It fills up the gaps betwern the constrictor muscles.

Dissection. - Open the pharynx from lehind by a mesial incision and
detach the walls freely from the hase of the skull in orcier to expose the naso-pharynx more fully. Wlpe out the cavity and define its openings.

The Cavity of the Pharynx.

It wii ive observed that the cavity of the pharynx is divided Imperfectly into upper and lower chambers by the projecting soft palate.

The upper chamber ls termed the naso-pharynx and presents four openings viz. -the two posterior nares and the two Eustachlan tubes. The lormer aro vertlcally oval apertures, separated by the posterior edge of the vomer, whlch open directly backwards into the naso-pha:ynx from the nasal fossae. Each is one inch in height and half an inch in width. Immediately in front of the mid point of the outer border of each is seen the posterior end of tl , inferior turbinated process. Each Eustachian tube opens into the lateral wall of the naso-pharynx by a trumpet shaped opening, which it half an inch below the roof, half an inch from the posterior wall and half an inch behind the end of the inferior turbinated process. The rlm of the opening is prominent above and behind but is deficient below, owing to a gap in the cartilage of the tube. The Eustachian tube ls one and a half inches long and is directed backwards and outwards to communicate with t'ie mlddle ear. The posterior one third is composed of bone whlle the z .nterior two thirds possess a wall of yellow elastic cartilage which is deficient below. The tube is completely lined by mucous membrane covered with ciliated epithelium. It is narrowest at the junctlon of the bone and cartllage, and is widest at its pharyngeal end. Behind the the opening of the Eustachian tube is a deep recess on the lateral wall of the naso-pharynx termed the retro-pharyngeal recess. The roof of the nasopharynx is composed of mucous membrane covering the basl-occipital and basi-sphenoid. At the junction of the roof with the posterior wall is a mass of lymphoid tissue termed the pharyngeal tonsil which is the seat of adenoids. Note that the naso-pharynx is a portion of the respiratory tract and is therefore lined by ciliated epithelium.

The lower chamber of the pharynx is termed the oral pharynx, as the mouth opens directly backwai us into it; and both, it may be noted, are lined by stratified squamous epithelium. The other two openings into this chamber are those of the larynx and oesophagus. The opening from the mouth is termed the fauces, which is bounded above by the soft palate with the uvula, below by the posterior one third of the tongue, and on each side by the anterior and posterior pillars of the fauces with the tonsil lying in the recess between them. A little dissection will show that the anterior pillar contains a small muscle bundle termed the palato-glossus, while the posterior contains the palato-pharyngeus which joins the stylo-pharyngeus in order to gain insertion into the posterior border of the thyroid cartilage. The two pillars of the fauces converge above as they join the soft palate. so that the tonsil oceupi... the lower portion of the gap between
them the unoccupled portlon above the tonsll belng termed the supratonsllar fossa.

The opening into the larynx is triangular \ln outline. The base is above and \ln front, and is formed by the posterior surface of the eplglottls. Each lateral margln is represented by the aryteno-eplglottidean fold of mucous membrane in which two tiny swellings produced by minute cartilages of the larynx may be distinguished. The apex of the aperture is much lower than the base and is formed by the inter-arytenoid fold. Note the presence of a deep :ecess, termed the pyriforn fossa, on each slde of the laryngeal aperture.

The lower end of the pharynx narrows rapidly, and it becomes continuous wlth the oesophagus opposite the sixth cervical vertebra.

Dissection.-Trace the levator and tensor palati muscles downwards and the palato-glossus and palato-pharyngeus upwards Into the palate and endeavour to mscertain their dispositions there. Thls ls a matter of difficulty, and requires much skill and manipulation.

The Solt Palate.

The soft palate is a fibro-muscular curtain attached to the posterlor edse of the hard palate, and covered on its upper and under surfaces with mucous membrane. The characteristic mesial projection from lts posterior border is termed the uvula. The uppermost strata of the palatal musculature are formed by a splitting of the palato-pharyngeus into two layers which enclose between them the levator palati and azygos uvulae muscles. The palato-glossus forms the lowermost stratum and between It and the palato-pharyngeus lies the tendinous expansion of the tensor palati. All these muscles are supplied by the pharyngeal branches of the vagus except the tensor which is innervated by the otic ganglion.

The levator palati arises from the under aspect of the apex of the petrous temporal bone and from the inner aspect of the cartilage of the Eustachian tube. It is inserted into the palatal aponeurosis.

The tensor palati lies in front and to the outer side of the preceding. It arises from the navicular fossa at the root of the internal pterygoid plate and from the outer aspect of the cartilage of the Eustachian tube. T? \cdot tendon hooks round the hamular process, and is inserted partly into the r. alatal aponeurosls and partly into the horizontal plate of the palate bone.

The azygos uvulae takes origin from the posterior nasal spine on the posterior edge of the hard palate. It is a tiny twin bundle of muscle fibres which extends backwards into the uvula.

The two lamellae of the palato-pharyngeus meet their fellows in a mesial decussation in the soft palate. Each muscle is directed downwards in the posterior pillar of the fauces and is joined by a small bundle from the cartilage of the Eustachian tube, known as the salpingo-pharyngeus. The union of the palato-pharyngeus witl the stylo-pharyngeu. 's been already noted.

The palato-glossus meets its fellow on the under aspect of the palate in a mesial decussation. The nuscle procreds downwards in the anterior pillar of the fauces, and blends with the stratum transversum of the tongue.

The palatal aponeurosis is the common mecting place of the palatal muscles, and is attached to the posterior border of the hard palate.

The mucous membrane of the palate is supplied by the great and the accessory palatine nerves and by the ascending and descending palatine arteries. Note that it is rather rich in lymphoid tissue.

Dissection. Make a sagistal section of the anterior portion of the hasis cranii just to one side so as to preserve the nasal septum. It is difficult to avoid damaging the turhinated processes. Saw down into the mouth and turn the halves aside so as to study the nasal fossae.

The Nasal Fossae.

The nasal fossae are narrow cnambers placed on each side of the nasal septum. Each is two inches in height. The width is half an inch at the floor but is reduced to a mere cleft at the roof. Each nasal fossa possesses a roof, a floor. inner and outer walls, anterior and posterior apertures.

The roof consists of a middle horizontal portion represented by the cribriform plate of the ethmoid, a posterior sloping portion consisting of the anterior and inferior aspects of the body of the sphenoid and an anterior sloping portion provided by the under surface of the nasal bone. The floor is concave from side to sids and is formed by the mucous membrane covering the upper surface of the hard palate. The posterior apertures of the nasal lossae or posterior nares look directly backwards into the naso-pharynx and have been already examined. The anterior apertures or nostrils look directly downwards, and inside each is the vestibule of the nasal fossa, formed by both the inner and outer walls.

The inner wall of the nasal fossa is represented by the nasal septum. The upper one third or so of this i; formed by the vertical plate of the ethmoid, the portion below and behind this being completed by the vomer, and the portion helow and in front by the septal cartilage. There are two very distinct areas of mucous membrane on the nasal septum. Thus the portion covering the vertical plate of the ethmoid is the olfactory mucous membrane, and contains the ramifications of the olfactory nerves as they supply the olfactory epithelium. The remainder of the mucous membrane of the septum is respiratory, and is therefore lined by ciliated epithelium. The nasal nerve gives a few twigs to the fore part of this, but the chief nerve is the naso-palatine which will be found running downwards and forwards underneath the mucous membrane covering the vomer. This nerve is a branch of the second division of the fifth nerve and enters the nasal fossa through the spheno-palatine foramen. At first, therefore, it passes inwards on the roof, and then runs downwards in a faint groove in the vomer. It supplies the respiratory mucous membrane of the septum, and then passes through one of the mesially placed foramina in the anterior palatine canal
in order to end in the mucoun membrane of the hard palate. The naso-- palatine is the artory of the septum and accompanies the nerve, but it passes through one of the laterally sitatedf. amina in the anterior palatine canal. Note that the depressed area of the septum just inside the nostril corresponds to the pasition of the veatibule. It is lined by integument, and exhibits a series of short hairs arranged so as to exclude dust from the nasal fossa.

The outer wall of the nasal fossa presents the superior, middle and inferlor turbinate processes, which represent the three turbinate bones covered with a thick and highly vascular mucous membrane. The superior process exists only in the posterior half of the outer wall, and is therefore quite short, but may be double. The middle process is at first directed downwards and barkwards in front of the superior process and then runs almost horizontally backwards below it. The inferior process is the longest and is practically horizontal in position throughout its extent. Below each turbinate process is the corre ponding meatus of the nose. The superior middle and inferior meatusea are thus passages on the outer wall of the nasal fossa, each of which is overhung by the corresponding turbinate process. In the superior meatus will be found the opening of the posterior ethmoidal air cells. On levering up the middle turbinate process an obliquely placed groove termed the hiatus semilunaris will be exposed. This is curved round a slieht bulping of the wall termed the ethmoidal bulla. At the posterior ead of this hiatus is the opening of the maxillary antrum. while the anterior end turns upwards, and is continuous with a passage termed the infundibulum, which leads upwards into the frontal sinus. The anterior ethmoidal air cells will also be found to open into the anterior part of the hiatus semilunaris. The opening of the middle ethmoidal air cells is situated between the b:illa and the middle turbinated process. There is only one opening into the inferior meatus, namely that of the naso-lachrymal duct, which opens near its anterior end. Look next for the opening of the sphenoidal air sinus which is into the spheno-ethmoidal recess between the superior turbinate process and the roof of the nasal fossa. The depressed area of the outer wall inside the nostril corresponds to the nasal vestibule, and like that on the septum, is lined by ints yument and covered by short hairs (vibrissae.) The area on the outer wall between the vestibule and the anterior ends of the turbinate processes is termed the atrium.

The olfactory area of the outer wall consists of the mucous membrane covering the superior turbinate process, the anterior end of the middle turbinate process and the portion of the outer wall between these and the roof. It is lined by olfactory epithelium. The remainder of the mucous membrane of the outer wall. like that of the respiratory area of the septum, is covered by ciliated epithelium, and is innervated by twigs from the fifth cranial nerve. These are farnished by the nasal, anterior superior dental, and the palatine nerves, and the spleno-palatine ganglion and are excessively minute. The splacmopatatine is the artery of the nasal fossa. It is one of
the terminal branches of the internal maxillary artery, and enters the nasal fossa through the spheno-palatine foramen. It furnlshes the naso-palatine artery to the septum, and la Itself dlstributed to the outer wall.

Note that the anterior portlon of the outer wall of the nasal fosas, like that of the septum, is completed by cartliage. This is termed the lateral cartilage of the nose and ls attached to the nasal notch of the superlor maxllia. It is unlted to the septal cartilage by the cartlage of the aperture, which completes each nostril anteriorly and also forms the ilp of the nose.

Dissection.- Very little dissection wlll be required to detach the larynx with the tongue, trachea and oesophagus from the remalnder. Cut away the extrinsic muscles and the inferior constrletor from the laryngeal cartllages, and strip off the pharyngeal mucous membrane posteriorly.

The Larynz.

This is a portlon of the respiratory tract specially modified for the production of volce. It consists of a skeletal framework composed of nine cartlages whlch are connected together by certain membranes and joints. The latter are acted upon by certain muscles as part of the vocal mechanism. The interior is lined by mucous membrane, and presents the important vocal cords.

There are three single and three palred cartllages. The epiglottis, thyroid and cricoid cartilages represent the former. The palred cartllagen are the two arytenoids, the two cuneiform cartilages and the two cornlculae.

The outline of the epiglottis can be recognized under the mucous membrane. It is a leaf shaped piece of yellow elastic cartllage. The stalk is directed downwards and is attached to the angle between the alae of the thyroid cartilage by a tiny ligament. Its posterior surface ls entirely covered by mucous membrane and bounds the laryngeal aperture anteriorly It presents a slight projection of the mucous membrane termed the cushlon of the epiglottis. The anterior surface is covered only in its upper part by mucous membrane and is attached to the root of the tongue by the three glosso-epiglottidean folds. The lower part of the anterior surface is attached to the musculature of the tongue. Each lateral margin is attached to the arytenoid cartilage by the aryteno-epiglottidean muscles and folds of mucous membrane.

The thyrold cartilage consists of two quadrangular plates or alae connected together by their anterior borders to form the angle of the thyroid. The upper end of this union forms the characteristic projection in the mlddle line of the neck, popularly known as Adam's apple. The upper border of the ala forms a concavo-convex curve from behind forwards, and affords attachment to the thyro-hyoid membrane which will be observed to pass upwards to the body and great cornu of the hyoid bone, and to be pierced by the internal laryngeal nerve and the superior laryngeal artery. In the middle line it is attached to the upper border of the body of the hyoid and is separated from the posterior surface of the bone by a burse. Note that
the crico-thyroid membrane ls attached to the lower end of the angle of the thyrold cartlage, whlle its upper border is free and forms the fibrous basls of the true vocal cord. The posterlor border of the ala gives insertlon to the stylo-pharyngeus, and exhlblts projectlons at its upper and lower ends termed the superior and Inferlor cornua. The superlor cornu aflords attachment to the posterlor border of the thyro-hyold membrane, whlle into the angle formed by the inferlor cornu and the lower border of the ala is Inserted the crlco-thyrold muscle. The inner surface of the inferior cornu presents a thy flat facet for articulation wlth the crlcold cartilage. The outer surface of the ala exhlblts an oblique line whlch aflords attachment to the sterno-thyroid and thyro-hyoid muscles. The area below and behlnd thls is occupied by the thyroid origin of the inferior constrletor of the pharynx. The inner surface of the thyroid ala forms the lateral boundary of the pyrlform fossa of the pharynx.

Dissection.-Sever one ala of the thyrold cartilage from its attachment to the angle and remove It. A little dissectlon will expose the arytenold cartllage and its muscles.

The cricold cartilage is shaped like a signet ring, the broad portion belng at the back. It therefore presents inferior and superior borders, and external and internal surface;. The inferior border is horizontal and is attached to the uppermost ring of the trachea by a strong membrane. The superlor border is horizontal posteriorly and then suddenly slopes downward and forwards at a point which is occupied by an oval facet for the base of the arytenold cartilage. The sloplng portion of this border gives attachment to the crico-thyroid membrane which extends upwards and ends in a free upper border composed of yellow elastic fibres. Thls passes from the angle between the alae of the thyroid to the vocal process of the arytenoid and forms the fibrous basis of the true vocal cord. On the lateral aspect of the outer surface of the cricoid cartilage is a small round facet which forms a glidlng joint with the inferior cornu of the thyroid. In front of this facet is the origin of the crico-thyroid muscle, above and in front is the origin of the lateral crico-arytenoid muscle, immediately below is the origin of the inferior constrictor, and behind is a very definite quadrangular area for the origin of the posterior crico-arytenoid muscle. The internal surface of the cricoid cartilage is closely lined by the mucous membrane of the larynx.

Each arytenoid cartilage is shaped like a three sided pyramid. It therefore presents a base, an apex, and internal, posterior and anteroexternal surfaces. It is slightly bent backwards upon itself. The base exhibits an oval facet which articulates with the facet on the cricoid, the joint being enclosed in a fibrous capsule. The arytenoids possess a gliding motion towards or away from one another at these joints, as well as a rotatory movement round their long axes. To the apex of ea.h arytenoid is attached the cornicula, which is a tiny nodule of yellow elastir cartilage.

The cunelform cartlage in a simliar nodule which lien In front of each cornlcula In the aryteno-eplglottldean fold.

The posterior surface of the arytenold is slightly concave from above wards, and affords attachment to the transverse and oblique fibres of the unpalred arytenoldeus muscle. The oblique fibres are prolonged beyond the arytenolds into the aryteno-epiclottldean fold as the arytenoeplglottldean muscle which is inserted Into each lateral margln of the epiglottls. The internal surface of the arytenold looks towards Its fellow. They are both covered by an extenslon backwards of the mucous membrane of the larynx. and thus form the posterlor one thlrd of the plottls.

The antero-external surface gives attachment to the thyro-arytenold muscle which is attached anteriorly to the angle between the thyrold alae, and lies on the lateral aspect of the vocal cord. A few of the flbres of this muscle may be observed to sweep upwards and join the aryteno-epiglottidean muscle.

The anterior angle of the base of the arytenoid gives attachment to the true vocal cord and ls therefore termed the vocal process. The cord has been already shown to be the free upper border of the crico-thyroid membrane, and to be composed of yellow elastic fibres. It is attached in front to the angle between the thyrold alae a little below its middle. The external angle of the base of the arytenoid cartilage is sometimes called the muscular process, as it receives anteriorly the insertion of the lateral crico-arytenoid and posteriorly the insertion of the posterior crico-arytenoid.

It is now evident that the functlons of the laryngeal muscles are-
(1) To widen the glottis which is the cleft between the true vocal cords,
(2) To reduce the width of the glottis,
(3) To tighten the vocal cords,
(4) To slacken the vocal cords,
(5) To constrict the upper aperture of the larynx during deglutition. The posterior crico-arytenoid muscles widen the glottis by pulling the muscular processes of the arytenoids backwards. The lateral crico-arytenoid muscles close the glottis by pulling the muscular processes of the arytenoids forwards. Their actions are supplemented by that of the arytenoideus muscle which pulls the arytenoids towards one another. The crico-thyroid muscles tighten the true vocal cords by pulling the thyrold cartilage forwards, and therefore away from the arytenoids. On the other hand the thyro-arytenoid muscles slacken the cords by pulling the thyroid and the arytenoids towards one another. Finally, the upper aperture of the larynx is constricted during deglutition by the aryteno-epiglotidean muscles. Note that all these muscles are innervated by the recurrent laryngeal nerves except the crico-thyroids which are supplied by the external laryngeal nerves.

Dissection.-Make a mesial sagittal section of the posterior wall of the larynx and turn the flaps agide in order to nxamine the intertior.

The Cavity of the laryax.

Eachlateral wall of the larynseal cavity presents upper and lower folds. The latter are the true vocal cords, and are closer together than the upper folds or falee vocal cords. The cleft between the true vocal cords is termed the glottis, whlch also extends backwards between the inner surfaces of the arytenoid cartllages. It will thus be ncted that the vocal cords constitute the anterior two thleds of the complete glottis. The average length of the latter \ln the male is 23 mm . and 16 or 17 mm . in the female. Between the true and the false cord on each slde wall is a recess termed the laryngeal slnus, which is a resonating chamber. The presence of the true and false cords has been utilised to divide the laryngeal cavity into upper, middle and lower compartments. When examined from above, both sets of cords are seen, owing to the false cords being further apart, as well as higher up. than the true cords. The lower compartment rapidly widens out into the trachea. The Interior of the larynx is lined by ciliated epithelium except over the true cords, where this is replaced by stratitied squamous epithellum which is directly attached to the cords owing to the absence of submucous tissue. The mucous membrane of the larynx is supplied by the internal laryngeal nerve.

The Thyrold Gland.

Thls ductless gland consists of two lateral lobes connected together in front of the trachea by the isthmus. The latter is situated in front of the second, thlrd and fourth tracheal rings, and each lateral lobe is moulded against the sides of the trachea and larynx. It may ne noted that each lateral lobe is rather pear shaped, and that the isthmus conne 'ts together the lower or broad ends, the apical portion of each being moulded against the sides of the larynx. The fibrous capsule of the gland is firmly adherent to the pretracheal layer of the deep cervical fascia. Anteriorly the gland is also covered by the sterno-hyoid and sterno-thyroid muscles and by the deep fascia, the platysma, superficial fascia and skin. On each side the lateral lobe comes into cloze association with the common carotid artery which may create a groove on the gland. The pyramidal lobe is occasionally present. It is attached to the upper border of the isthmus, and ir is: its turn connected to the hyoid bone by a band of nonstriated muscle. The latter represents part of the wall of the obliterated thyro-glossal duct which in the embryo had its opening at the site of the foramen caecum of the tongue.

The distribution of the superior and inferior thyroid arteries to the gland has been already examined. An extra vessel termed the lowest thyroid artery may be present. This springs from the innominate, and runs upwards in front of the traciea between the inferior thyroid veins which are really its venae comites. This explains why superior, middle and inferior sets of thyroid veins are present. The nerve supply of the thyroid gland is from the middle cervica! sympathetic genglion.

The Trachea in thd Noel.

The trachea is four and a half inches iong, and ls situated partiy in the neck and partly in the thorax, about one haif being in each reglon. It begins at the lower border of the cricold cartilage opponite the alxth cervleal vertebra as a continuation of the larynx. Its anterior roiationa in the neck are-ine isthmus of the thyroid sland which lios in front of the aecond and third and fourth rings, the Inferior thyrold velns and perhaps the lowest thyroid artery. As it enters the thorax the left innominate vein crosses obllquely In front of lt. More superficiai are the pro-trachoal fancia, the sterno-hyoid and sterno-thryoid muscles, the doep fascia, the superficiai fascla and the skin. Note that as the trachea descends it gets deeper and deeper from the surface. Posteriorly ls the oesophagus, with the recurrent iaryngeal nerve lylng in the groove between the two tubes. On each side are the iateral lobe of the thyrold gland and the common carotid artery.

The trachea conslats of a serles of horse shoe shaped rings of hyaline cartilage, Imbedded In a dense flbrous membrane. The ends of the rings are directed backwards, and are connected together by bundles of nonatriated muscie, constituting the trachealis muscle. The mucous membrane is iined by ciliated epithelium. In crose section the trachea has a D-shaped outiine.

The Oesophagus in the Neck.

The oesophagus is ten inches long but has a very brief course in the neck. It begins opposite the sixth cervlcal vertebra as a continuation of the pharynx. It is directed downwards and sllghtly to the ieft in the neck. In front is the trachea with the recurrentiaryngeal nerve lying In the groove between the two tubes on eacil slde. Posterioriy are the alxth and seventh cervicai vertebrae with the longus colli muscies. Laterally ls the common carotid artery.

The Tongue,

In studying the mucous membrane of the tongue it is bent to locate first of all the position of the foramen caecum, which will be recognised as a slight depression in the middle line of the dorsum at the junction of the anterior two thirds wlth the posterior one third. Leading forwards and outwards on each side from thls is a groove termed the sulcus terminalis which maps off the dorsum of the tongue into posterior one thlrd and anterior two thirds, the mucous membrane of which displays totally diferent characters. The mucous membrane of the posterior one third is nonpapilated and therefore comparatively smooth. It is dotted over, however, with the crypts of the lingual tonsiis which are readily recognised. The anterior two thirds of the dorsum of the tongue are covered with papiilae which are grouped into three , ategories. Arranged \ln a V shaped manner directly in front of the sulcus terminalis are the circumvaliate papilae, which are recognised by the fact that each is mapped out by a
ring. One of these is directiy in front of the foramen caecum, and there are unually four or five others plared on each side of it. The fungiform papilise are dotted irreguiarly over the dornum and are eapeclally numerous at the tip and aiden. The pointed or fillorm papillae are of course by far the most numerous and are ciosely packed all over the anterior iwo thlode of the dorsum.

There are certaln folds of mucous membrane to be noted in amociation with the tonsue. Its root is attached to the anterior aspect of the epiglottis by the middle and the two iatcrai gioma-epigiottidean folda, which bound the two gicso-epiglottidean loase. The connection with the anterlor pilar of the fauces on each slde has been previously noted. Examine next the fraenum which connects the under aspect of the tongue to the floor of the mouth. On each side of the under surface is a alight fringed foid, hence termed the plica fimbriata. Finaliy, on each iaterai margin, about two thirds of the way back la a serles of vertical ridgen, supposed to represent the papilla follata of the rabbit. Note that the mucous membrano of the anterior two thirds of the tongue is supplied by the inguai nerve, and that of the posterior one third by the glosso-pharyngeai nerve. This is only approximate.

The intrinsic muscuiature of the tongue is best studied in a transverse section. There are four extrinsic and four intrinsic muxcles of the tongue. The extrinsic muscies have been previously studied. These are the genio-glossua, the styio-giossus, the hyo-giossus anil the chondroglossus. The four intrinsic muscies are the atratum transversum, the verticalis, the iinguaiis superior and the ingualis inferior. The fibres of the stratum transversum and the verticalis interiace at right angies to one another. The lingualis superior runs iongitudinaily from the tip to the root of the tongue underneath the mucous membrane of the dorsum and is broken up into bundles by the fibres of the verticaiis. The lingualis inferior is represented by a iongitudinai bundie of muscle on the under surface of the tongue, on each side of the genio-glossus muscies as they enter the organ to mingle with the fibres of the verticalis. All the intrinsic and extrinsic muscles of the tongue are innervated by the hypogiossal nerve.

The Lymphatics of the Head and Neck.

The iymph from the anterior quadrant of the scalp is drained into the auricuiar giands in front of the ear, whiie that from the posterior quadrant passes to a group of smail glands situated below and behind the ear. The lymph from the lace is drained into the submaxilary group of glands and their efferents enter the deep cervical glands. The latter form an extensive chain of giands situated along the course of the internal jugilar veins. They receive the iymph drainage from the nasai fossae, the mouth, pharynx, larynx. trachea, thyroid gland and neanphagne. The lymph from the tongue and mouth goes partiy to them and partly to the submaxili ary
giands. The efferente from the deep, cepvical glande enter the thoracie duct on the lefi mide and the right lymphatle duct on the righe wide.

The supra-ciavicular lymph glanda In the base of the posterior triangle of the neck recelve the lymph dralnage from the upper llmb. A set of gland" higher up in the posterlor trlangle, alone the ponterior border of the me.no-mamtold in of Importunce an a diagnamtle feature in secondapy nyphillin.

The Organ of Heartag.

The organ of hearing is divided Into three parts-the externel ear, the middle ear, and the internal par.

The external car conulats of the auricle and the external auditory meatus.

The aurlcle is composed of a framework of yellow ciastlc cartliage continuous with the cartliaginous portion of the external auditory meatun, and covered with akin and subcutaneoum tasue. The prominent inturned margin is termed the heilx, which prements posteriorly Darwin's tubercle, a atructure of evolutlonary importance. Anterioriy It enda at the crus of the hellx Immedlately above a prominent nodule termed the tragun, which overhangs, and therefore guards the opening into the external auditory meatus. Inside the helix is another ridge termed the antlheilx which will be observed to end above in two crura. Inside this agaln, in a deep depremsion known au the concha which leads into the external auditory meatus. The moft dependent portion at the lower end of the auricle is termed the lobule.

The external auditory meatus is fuily one inch long, and in directed forwards and Inwards. It is closed at its inner end by the drum or tympanic membrane of the ear. The inner two thirds of the meatus are composed of bone and the outer one third of yellow elastle cartilage which is firmly attached to the rough outer edge of the tympanic plate. Note that the meatus is slightly curved upon itself and that it is narrouest in its middle segment. Its roof is slightly shorter than its floor owing to the obliquity of the tympanic membrane. The meatus is lined by integument which also covers the outer surface of the drum. Its outer segment is studded with ceruminous or wax secreting glands, and exhibits a series of fine hairs desigred to exclude dust.

The Middle Ear.

The middle ear or tympanum is a cavity in the petrous temporal bone This is best exposed by a sa;ittal section of the bone through its site, each half of the section thus exhibitirg the outef and inner walls. Try to preserve the three ossicles of the middle ear during this operation. As a further help it is useful to have a macerated temporal bone, sectioned in a similar manner, alongside one during the study of the middle ear. The cavity will be ohserved to nossess inner. outer, anterior and poaterior wa!? a roof, and a floor. It measures half an inch in height and half an inch
from before hackwards. The distance between the outer und inner walla In reduced to one sixth of an Inch owing to the fact that each of theme bulges Into the cavity.

The inner wall of the middle ear prementa at lem centro a hulging tepmed the promontory. This in produced by the firat turn of the cochlen, and exhlbita a minute branching gronve for the tympanle benneh of the giomanpharyngeal nepse which suppiles the mucoun memitrane of the middle ear. Ahove and behind the proniontory is the fenestra ovalls, Into which fitw the font-plece of the atagen surpounded by its annular lipament. Below and behind the promontory la the fencatra rotunda, occupled hy a membrane which clomen the lower end of the acala tympanl of the cochlem. Aloove and In front of the promontory in a small shelf of bone which in proionged forwards into the anterlor wall, and divides it Into two canala. The tenano eympanl muscle peste upon thin whelf and then hookn outwards round its posterior end to reach the tympanle membrane. At the junctlonn of the inner wall with the roof and the posterior wall in a right angled projectlon representinf: a portion of the agmedurt for the farial nerve. Attached to this at a polnt directly hehind the fenestra ovalis in a minute hollow projection termed the pyramld from whirh the slender stapedius muscle emerges In order to gain Insertion Into the stapow, one of the auditory onsicles.

The outer wall of the mlddle ear ls represented hy the tympanic membrane or drum which is fitted intoa special hony rim. The latter, however, exhibits a not hor deficlency above, and the portion of membrane flling this gap has been termed the membranu Hacrida. Note the obllquity of the drum, the result of which is that its Inner surface looks also upwards. The drum ls composed of an outer integumentary layer, an Inter-mediate fibrous layer consisting of concentric and radiating fibrila and an internal layer of mucous membrane. Imbedded in the fibrous layer in Its upper hall is the handle of the malleus which is directed lownwards and stightly backwards, its lower end terminating at the centre of the membrane. The chorda tympani nerve may be found passing forwards over the upper end of the handle of the mallous, and just below this is the insertion of the tensor tympani muscle into it. The traction of this muscle keeps the membrana pulled inwards towards the cavity of the tympanum and produces the characteristic "cone of light" on the outer surface of the drum when examined with the otoscope. Leading upwards from the outer wall towards the roof of the tympanum is a recess, termed the attic, for the reception of the head of the malleus and the body of the incus (anvil). Note finally that the petro- tympanic fissure is situated at the junction of the outer wall with the anterior wall of the tympanum, and transmits the chorda tympani nerve and the tympanic artery.

The anterior wall exhibits upper and lower canals of which the upper transmits the tensor tympani muscie into the cavity, while the lower is the
ameous portion of the Fiustachian tuhe withich onmmuniewten witu Ehe pharyn.

The ponterior wall withita, high up. the ofreming into whe mantoid antrum. Note that the inner wall of this opening an formed by the lacial aquedurt. from whirh the chorda tympant nerve emerges at shim point. The mastold antrum is amall ravity in the romatoid temporal, inned hy an extenaion of the mucoun membirane of the mildie ear, and in its turn communicatew with the mantold air cella.

The roof of the middie oar la formed by a thin lamina of bone cermed the cormen tympani which soparatos it from the midde cranial foasa.

The floor of the tympanum is bevelled cr in frone by the carotid canal for lis internal carotid artery, and behind by the jusuiar foman for the Internal juguiar vein, two very important relationshipa.

The three ossicles of the ear, the malleus, the incus and stapew, form a chain connecting the membrana tympanl with the feneatra ovalis.

The malleus or hammer consists of head, a handle and a short prosems. The head is situated in the attic. It is rounded in outilne and procents Incet on ita posterior aspect for articulation with the incus. The handle has been already wiudied with the tympanic mombrane. The short procew is attached at the junction of the handie with the head and abuta against the upper end of the tympanie membrane.

The incus or anvil consinta of body, short process and a lons procens. The body presenta hollow facet lor the reception of the head of the malleus, smail diarthrodial joint connecting the two. The short proceas is attached to the rool of the tympanum by a ligament. The lons process in directed downwards parallel to the handie of the malleus, lying pontero-Internal to it. On its lower end is a minute knob which looks inwards for articulation with the stapes.

The stapes or stirpup in so named from Ita characteristic shape. The foot piece is attarhed to the feneatra ovails by its annular lisament. Its anterior end is pointed and is calied the toe. The two limbs or crura of the stapes are curved, the posterior crus more sis than the anterior. The cup shaped head recelves the end of the long process of the incus in a minute diarthrodial joint. The neck of the stapes affords insertion posteriorly to the stapedius musrie.

The tympanum is iined by mucous membrane which is continuous posteriorly with that lining the mastoid antrum and air cells, and anteriorly with that of the naso-pharynx throush the Eustachian tube. It is also reflected over the auditory ousicies, and covers the inner aurface of the drum.

The Internal Ear or Labyrinth.

The internal ear consists of an intricate cavity in the petrous temporal bone termed the bony labyrinth, fllied with perilymph in which float the dellcate membranous labyrinth.

The neannis labyrinth presents a centrai cavity termed the vestibule,

Which is on y one quarter of an inch in ilismeter. Ita outur wall exhibitu the fencutry ovalis, oceupied by the foct piece of the atapew. On the Inner wall are numerous minute infamina for the transmiaxion of the branchen of the audioory nerve, and also the aqueduct of the veatibule which containg a blind tuoe from the membranoum labyrinth. On the powterior wall of the ventibi le are the openinge of the three memicircular canale, while anteriorly is the copening into the cochles. The latter is a cansl coiled upon iteelf two and a liall timen round a central pillar (the modiolua), and therelore lookn like s snsil shell.

The me.. h hranous labypinth conniata in the firat place of two minuta anen termod the utrmle and the waccule foating in the perilymph of the veatibule. Thee are connected together by a Y shaped tube, the blind end of which nite unto ${ }^{\circ}$ a aqueduct of the ventibule al previously itated. The utricle fir the larser und is posterior in position. It therefore siven attachment posteriorly to the throe semicircular canals. The latter are named superior, posterior and external. The two former are joined toether at one end to form a right angle which looka directly outwardm towards the lateral uspect of the body, while the external canal lits horlsontally he ween them. It is therefore clear that they constitute the three dimensious of apace, and are amociated with the balancing of the body.

The saccule in connected with the scala media of the cochlea by meann of a short canal. The scala media contains the end organ of hearing (the organ of Corti) and pasees upwarda in the apiral cochlear canal which it divides into two other scalao-the acala vestibull and acala tympani. Thus a sound wave is tranamitted by the foot plece of the stapes to the perllymph of the ventibule, and is continued from there up the scala ventibull, pound the blind end of the scala media and down the scala tympani tolmpinge against the membrane of the fencatra rotunds. The vibrations of the perilymph in these acalae affert the endolymph of the scala media, and hence the organ of Cortl.

The auditory nerve divides in the internal auditory meatus into cochlear and ventibular divisions, of which the cochlear supplies the organ of hearing, while the ventibular portion innervates the organ of equilibration.

The Intra-Petrous Portion of the Facial Nerve.

At the bottom of the internal auditory meatus the facial nerve is joined by the pari intermedia and enters the facial aqueduct. It is at firat directed outwards and forwards for a short cistance. It then turns backwards suddenly at the site of the geniculate ganglion, and lies along the Junction of the inner wall with the roof of the tympanum. Finally it makea a right angled bend and is directed vertically downwards behind the tympanum to its exit at the stylo-mantoid foramen. The geniculate gangllon gives of the great superficial petrosal nerve. The latter emerges through an opening on the upper surface of the petrous temporal bone, and is joined by a branch from the capctid plexus to form the Vidian nerve,
which traverses the canal of the sume name to juin the spheno-palatine ganglion. The geniculate ganglion ulso furmshes a small twir: which joine the tympanic branch of the glosso-pha:ynseal to form the small superficial petrosal nerve. The latter emeriges from the upper surface of the petrous temporal bone just external to the great saperticinl petrosal, and turns downwards between the petrous tempral atd the great wing of the sphenoid to join the otic ganglion. The desendiner portion of the facial nerve gives ofl the nerve to the stapedius and the chorda tympani which, as already shown, crosses the upper part of the tympanic membrane and the handle of the malleus in order to reach the petro-tympanic fissure through which it leaves the skull to join the lingual nerve.

The Eyeball.

The eyeball in dissecting room subjects is usually in a state of collapse so that it is necessary to supplement the dissuction by studying the eyeball of the ox.

In order to gain a true appreciation of the mechanism of the eyeball, it is useful to compare it to a photographic camera. In this case the wall of the camera is represented by the sclerotic, which is lined inside by the black pigment of the choroid and iris, just as a photographic camera has to be painted black inside to prevent reflection of light from its walls. In the eye the focussing mechanism is represented by the muscles of accoms dation, while the refractive media take the place of the photographic lens. The iris provides the moveable diaphragm, while the sensitive retina takes the place of the photographic plate, and transforms the light impressions that fall upon it into nerve impulses which stimulate the visual centres of the brain.

The eyeball possesses an outer protective coat or sclerotic, an intermediate vascular and pigmented coat termed the choroid, and finally the retina.

The sclerotic is composed of tough interlacing fibrous tissue, and forms about five sixthe of the area of the eye-ball. The remaining sixth is completed by the transparent cornea which forms a segment of a smaller sphere, and thus buiges slightly in advance of the sclerotic. At the corntosclerotic junction the sclerotic overlaps the cornea, particularly above and below. The sclerotic is pierced by the fibres of the optic nerve below and to the inner side of the posterior pole of the eyeball.

The choroid presents three strata in which pigment is irregularly distributed. The outer stratum contains the ciliary arteries and nerves as they course forwards to the ciliary region. The middle stratum is occupied by a mass of veins remarkably arranged in four vortices, and hence named the venae vorticosae. The inner stratum of the choroid is represented by a layer of capillaries. When traced forwards the choroid gets broken up just behind the corneo-sclerotic junction into a series of ridges termed the ciliary processes which contain the ciliary muscles of accommodation' In
front of the ciliary processes the choroid is projected inwards towards the cavlty of the eyeball as the pigmented iris, whlch exhibits an opening-the pupll of the eye. The iris contains the sphincter pupillae which surrounds the pupil, and the dilator pupillae composed of radiating fibres. The nerve supply to these has been already shown to be from the third cranial nerve and the sy mpathetic respectively.

The retina possesses an outer pigmented layer and an inner layer which exhlbits nine strata under the microscope. The retina is prolonged forwards to cover the ciliary processes and the back of the iris. In thls positlon both retinal layers are pigmented and form the uvea. The serrated edge between the pigmented and non-pigmented portions of the inner layer of the retina displays a characteristic appearance, and ls termed the ora sorrata.

The greater part of the cavity of the eyeball behind the iris is occupied by the vitreous whlch is a clear transparent jelly-like susbstance. This is enclosed in the hyaloid membrane which is firmly attached to the ciliary portion of the retina, and is there termed the zonule. Immediately in front of this point the zonule splits into two lamellae, the posterior one of which s weeps behind the lens to complete the bag for the vitreous, while the anterior lamella passes to the equator of the lens, and there splits again into two layers which fuse with the capsule of the lens, thus constituting the suspensory ligament of the lens.

The lens in health is clear and crystalline. It is highly elastic and is always tending to bulge forwards, but is held in shape by its capsule and suspensory ligament. At rest the posterior surface of the lens is more convex than the anterior. In accommodating the eye for near objects the radiating fibres of the ciliary muscle, which arise from the corneo-sclerotic junction, contract and pull upon the zonule, the result of which is to relax the suspensory ligament of the lens. The latter immediately bulges forwards by its elasticity.

The anterior chamber of the eye is the space between the cornea and the front of the iris, while the posterior chamber is the narrow cleft bet ween the back of the iris anu the front of the lens. They communicate with one another through the pupil, and are both filled with aqueous humor.

In this description of the eye, only those structures which can be seen with the eye, or by means of a pocket lens, have been referred to. For further microscopic detail the student is recommended to study textbooks of histology.

The Brain.

The three membranes of the brain, named from without inwards, are the dura mater, the arachnoid mater and the pia mater.

The dura mater is a strong fibrous membrane which constitutes the internal periosteal layer for the cranial bones, and at the same time sends inwards septa between the main portions of the brain. It is therefore described as consisting of an outer periosteal layer, and an inner supporting
layer which separates from the other at certain points. The various venous slnuses of the akull are sltuated between the two layers of the dura mater along these lines of separatlon. The exlstence of two dural layers ls well demonstrated at the foramen magnum, where the perlosteal layer sweeps round the margin of thls opening to become continucus with the perionteum outside the akull, whlle the Inner supporting layer ls prolonged downwards Into the apinal canal as the dura mater of the spinal cord.

The four cepta of the dura mater are-
(1) The falx cerebri,
(2) The tentorium cerebeili,
(3) The falx cerebelli,
(4) The dlaphragma sellae.

The falx cerebri, as its name implies, is a sickle shaped process of dura mater, which is attached by lts narrow anterior end to the tip and posterior border of the crista galli of the ethmuid. Its convex upper border ls attached to the mld line of the cranial vault, and is occupied by the auperior longitudlasl ainus. The latter begins anteriorly as an emissary veln which communlcates with the velns of the nasal fossae through the variable foramen caecum, whlle posteriorly it ends at the internal occlpital protuberance by diverging to the right or left (usually the right) and becoming continuous with the lateral slnus. The lower free edge of the falx cerebri projects downwards between the cerebral hemispheres, and touches the posterior end of the corpus callosum. This margin contains the mlnute Inferior longitudnal slnus which ends posteriorly by joining the great vein of the brain to form the straight sinus. The posterior end of the falx cerebri is much wider than the anterior and is attached to the upper surface of the tentorium cerebelli. Along this line of union the straight sinus runs backwards towards the internal occipital protuberance, and diverges usually to the left to become continuous with the left luteral inus.

The tentorium ceredelli forms a tent-like roof over the poaterior reanial fossa and the hind brain, the door of the tent being occupied by the nidbrain. On each side the tentorium is attached along the line of the lateral sisus and more anteriorly along the upper border of the petrous temporal along which the superior petrosal sinus courses backwards to join the lateral sinus. The anterior end of the attached border of the tentorium terminates at the posterior clinoid process, while the tentorial free border sweeps forwards over this to obtain attachment to the anterior clinoid proceas on each side.

Each lateral sinus sweeps outwards along the attached border of the tentorium and grooves the occipital bone and the posterior inferior angle of the parietal. It then dips downwards in the groove on the mastoid temporal bone to reach the posterior compartment of the jugular foramen, where it leaves the skull and becomes continuous with the internal jugular vein.

The falx cerebelli is attached to tae internal occipital crest and there-
fore fits in between the lobes of the cerebelium. The occipltal sinus runs upwards along its attached border,and ends \ln the right or left lateral ainus.

The diaphragma sellae is attached to the four cllnoid processes, and therefore forms a roof for the pitultary fossa. Th? opening In lts centre Is for the stalk of the pltuitary gland. Between its layers are the minute anterior and posterior inter-cavernous sinuses which connect the two cavernous sinuses. The latter have been previously described.

The Arachnold Mater.

When the brain is renoved from the cranium, both the arachnold and the pia come out with It , owing to the fact that the arachnoid is united to the pia mater by innumerable fibrous processes, while the pia is intlmately attached to the brain substance,

The arachnoid is a thin seml-transparent non-vascular membrane which is distinguished from the pia by the fact that it bridges acroas the cerebral fissures while the pia mater dips down to the bottom of each. It will be observed that the cerebral arteries and veins lle between the arachnoid and pia. This fact is very apparent at the base of the brain, where all the large arteries lie in an extensive space between the arachnoid and the pia termed the cisterna basalis, so called because normally it is full of cerebro-spinal fluid. Another of these cisternae may be observed between the under aspect of the cerebellum and the dorsal aspect of the medulla.

The Pla Mater.

This is the vascular membrane of the brain. All the smaller bloodvessels ramify in it and send their branches deeply into the cerebral sub. stance. The pia mater therefcre covers every portion of the brain intimately and dips to the bottom of all the fissures. It also sends an extensive fold termed the velum interpositum into the interior of the brain. This will be studied later.

Dlssection.-Remove the arachnoid along the courses of the numerous arteries that ramify on the surface of the brain, and study the maln distribution of these.

The Arterial Supply of the Braln.

The vertebral arteries enter the skull through the foramen magnum They gradually converge in front of the medulla, and unite at the lower border of the pons to form the basilar artery. Each gives off.
(1) A posterior meningeal artery,
(2) The posterior spinal artery,
(3) The anterior spinal artery,
(4) The posterior iniarior cerebellar artery, and
(5) Twigs to the medulla.

The posterior meningeal artery supplies the dura mater in the posterior cranial fassa.

The poaterlor splnal artery dividen into two branchen which run downwards on the lateral aspect of the splnal cord to supply it. On the other hand the two anterior splnal arteries unite to form a single vessel which runs downwards on the antcrior aspect of the cord and dibpenses twige to it.

The posterior inferior cercbellar artery supplies the posterlor part of the under surface of the cercbellum.

The basilar artery begins, as aircady explained, at the lower border of the pons, and runs upwards in the basilar groove to its termination at the upper border where ii divides into the right and left posterlor cerebral arteries. Its other branches are-
(1) The anterior infericr cercbellar,
(2) Pontine to the pons,
(3) Internal auditory,
(4) The superior cerebellar.

The anterior inferior cerebellar artcry supplies the anterior portion of the under surface of the cerebellum, while the superior cerebellar, which arises close to the termination of the basilar, supplies the upper surface of the cerebellum.

The internal auditory artery enters the internal auditory meatus to supply the internal ear.

The internal carotid artery after entering the cranium through the carotid canal, traverses the cavernous sinus and on emerging from this gives of the ophthalmic artery and twigs to the pituitary gland. It then divides into the anterior and middle cerebral arteries, after having sent a posterior communicating branch to the posterior cerebral artery. A short stem which conncets the two antcrior cerebral arteries is known as the anterior communicating artcry. In this way an arterial circle is produced known as the circle of Willis, which is composed from before backwards as follows-the anterior comnunicating, the two anterior cerebral, the two internal carotid, the two posterior communicating and the two posterior cerebral arteries.

The middle cerebral artery should now be traced outwards in the lateral fissure of the brain and its distribution on the outer surface of the hemisphere examined. Its branches stream out from both lips of the latera! fissure, and supply the greater portion of the outer surface of the hemisphere, leaving margins little more than one inch wide next to the upper and lower borders which are supplied by the anterior and posterior cerebral arteries respectively. Posteriorly its arca of supply extends as far as a line continuing the paricto-occipital fissure downwards, thus leaving the outer sirface of the occipital lobe to be supplied by the posterior cerebral artery.

Dlssection. - The demenstrator should now release one hemisphere by severing the corpus callosum and the crus cerebri, in order to be able to examine its mesial surfare.

On the mesial aspect of the hemisphere the anterior cerebral artery will be ohserved to sweep upwards round the anterlor end of the corpun rallosum. It supplies the mesial surface as far back as the Inte:nal parietoocelpital fissure, thus leaving the posterior cerebral to supply the meslal aspects of the occipital and temporallohes of the hemisphere.

The central or hasal arteries of the brain pass through the three perforated spacen to supply the haval ganglia. Each middle cerebral artery glves off one group which enters the anterlor perforated space. The latter is found at the very eommencement of each lateral fissure on the base of the brain, and is secognised by the little cluster of arteries piercing it. One oi these vescels is the lenticulo-striate which usually ruptures in apoplexy. The posterior perforated spare is found at the bifurcation of the basllar artery and therefore receives its hasal arteries from both posterior cerebral arteries.

The cerehral veins are arranged in three main groups. Those of the superior group enter the superior longitudinal sinus from behind forwards and inwards and are therefore directed agalnst lts current. The inferior group enters the lateral, petrosal and cavernous sinuses. The third group is represented by the great vein of the brain which drains its interior, and emerges from under cover of the posterior extremity of the corpus callosum. Its termination in the straight sinua has been previously studied.

The Lobes, Convolitions and Fissures.

The outer surface of ach hemisphere is covered by a layer of grey matter enclosing a core of white matter and is divided into frontal, parietal, occipital and temporal lobes by three fissures-the lateral fissure (Silvius), the central fissure (Kolando' and the parieto-occipital fissure.

The lateral fissure begins on the hase of the brain at the anterior perforated space, and curves outwards in front of the temporal pole to reach the outer surface of the hemisphere, when it immediately divides into anterior, ascending and posterior limbs. The anterior limh is short and turns forwards almost horizontally into the frontal lobe. The ascending limb is directed upwards into the frontal lobe, while the posterior inclines backwards and slightly upwards hetween the frontal and temporal lobes, and ends in an upturned tail in the parietal lobe. On separating the edges of the fissure well it will be recognised that its production is due to the meeting of four lips over a submerged area of the cortex cerebri termed the island. The latter is a triangular area of cortex in which five small convolutions may be counted.

The central fissure commences on the upper edge of the hemisphere half an inch behind the mid point between its frontal and occipital poles, and is directed downwards and forwards on its outer surface for about three and a half inches, to end immediately above the middle of the posterior limb of the lateral fissure. Its course is slightly sinuous, its upper half

The parioto-ocelpltal fisure is less than an Inch long, as seen on the outer surface of the hemisphere. It is situated about two Inches in front of the occipitai pole. If it be contlnued downwards by an Imaginary line towards the lower margin of the hemisphere and the lateral fasure be similariy continued backwards, four loben will be mapped out. The frontal iobe is bounded above by the upper border of the hemisphere, below by the iateral fissure, behind by the central fissure, and in front by the frontal poie of the brain. The parietal lobe is bounded above by the upper margin of the hemisphere, beiow by the line of the iateral fisure in front by the centrai fissure and behind by the line of the parieto-occipital fissure. The occipitai lobe is bounded in front by the line of the parietooccipitai fissure and behind by the occipitai poie of the hemlsphere. The temporal lobe is iimited above by the iateral fissure, below by the iower margin of the hemisphere, behind by the continuation of the parieto-ocelpitai fisaure snd in front by the temporal poie.

Flssures and Convolutions on the Outer Surface of the Hemisphere.

The fissures of the brain make an amazingiy compiex figure, so that the most important of these need oniy be mentioned. In the frontai lobe the upper and iower portions of the precentral fissure wili be readily found. as they lie immediateiy in front of the centrai fissure. The ascending frontal convoiution, is mapped off by these fissures and is one of the most important in the brain for it contains the motor areas. The upper end controis the movements of the leg of the opposite side. Below this is the area for the trunk muscies of the opposite side. Stili further down is the motor area for the oppoalte upper limb, while at the lower end is the motor area for the opposite side of the head and neck. A further examination of the frontal lobe wili demonstrate the existence of upper and lower horizontaliy directed fissures which usualiy join the upper and iower portions of the precentral fissure, thus producing two T's piaced on their sides. These are the superior and inferior frontai fissures, which map off the superior, middie and inferior frontal convolutions. The inferior frontai convolution is cut into by the anterior and ascending limbs of the laterai fissure, thus dividing it into three portions-the pars orbitaiis, the pars trianguiaris and the pars basiiaris, named from before backwards. It may be noted that the pars basilaris is immediateiy in front of the motor area for the head and neck, and is said to contain the motor centre for speech.

The parietal iobe presents the ascending parietal or post-central fissure, which is directiy posterior to the centrai fissure and more or less paraiiei to it. Between the two lies the ascending parietal convoiution. There is oniy one horizontal fissure in the parietal lobe. It is joined to the postcentral fissure by its anterior end. Between it and the upner margin of che hemisphere is the superior parietal convolution, which is continuous
round the end of the parieto-occipital fissure with the superior occipital convolution. The lower portion of the parietal iobe is cut into by the tails of three fiasures-the lateral, the superior temporal and the inferior temporal fissures from before backwards. Curving around the end of each of these is an arching convolution or gyrus. The most important of these is the angular gyrus, which is bent round the tail of the superior temporal (parallei) fisaure, and contains the wordsoeing centre for the interpretation of written and printed speech.

The occipital lobe is comparatively smali. It presents two ill defined fissures which might be termed the superior and inferior occipital fissures. thus mapping off superior, middle and inferior occipital areas or convolutions.

The temporsl lobe likewise exhibits only two fissures, the superior temporal or paraliel, and the inferior temporai. Their tails extend upwards into the parietal lobe, as previously stated. The inferior fissure is often broken up into two or more component parts. There are therefore three temporal convolutions-superior, middle and inferior. The superior is the most important as it contains the centre for hearing.

Flssures and Convolutions on the Mestal Surface of the Hemisphere,

The convolutions on the mesial surface of the hemisphereare arranged in an outer and an inner circle round the corpus callosum.

The inner circle is conveniently termed the rhinencephalon as it contains the centre for the perception of smell. The portion of it that arches above the corpus callosum is termed the callosal convolution, which is mapped off below by the callosal fisure and above by the extensive cal-loso-marginal fissure. The portion of the rhinencephalon that curves forwards below the corpus callosum is named the hippocampal convolution, from its fancied resemblance to a sea horse. The recurved portion at its anterior end is termed the uncus, and represents the head of the sea horse. Note that the calcarine fissure cuts into the rhinencephaion from behind and thus maps off the caliosal from the hippo-campal convolution, the narrow neck connecting the two being termed the isthmu:.

The olfactory bulb and peduncle will require to be examined at this stage. They will be found lying in the olfactory sulcus on the orbital surface of the frontal lobe close to the mesial border of the hemisphere. When traced backwards the peduncle divides into two roots which enclose between them the anterior perforated space. One root passes to the anterior extremity of the callosal convolution and the other to the uncus.

The fissure which maps of the hippocampal convolution externaliy is termed the collateral fissure, while the one on its mesial aspect is the dentate fissure, so called because it contains the dentate convolution, which is the strophied remains of a portion of the rhinencephalon. Note further, that the uncus is mapped off from the temporal pole of the hemisphere by a slight fissure termed the incisura temporalis.

The outer circle of lobes and convolutions on the mesial surface of the
hemisphere ls compomed of the following, nained froin hefore hackwards
(1) The marcinal convolution is quite extenaive and is sltuated be tween the upper horder of the hemlaphere and the prominent callowomarginal fisure. The upturned posterior end of the latter terminates on the upper border of the hemlaphere Immediately behlnd the upper end of the central fisure.
(2) The term quadrate lobe ls applled to the quadrangular area between the tall of the calloso-marglnal fisaure, the upper border of the hemlaphere, and the parieto-occlpltal fissure. The latter will he observed to run downwards and forwards on the mealal surface of the hemlaphere to its junction whith the calcarine fissure. The latter is a prominent fissure whlch heglns on the ocrlpleal pole and runs almost horizontally formards. Ita anterlor end has heen already shown to cut deeply into the rhinencephalon.
(3) The cuneate lohe is the wedge shaped area between the converging parleto-occlpltal and ralcarine fissures.
(1) The narrow convolution hetween tle calcarine fissure and the posterior end of the collateral fissure is termed the lingula. It is important to note that the vlsual cortex (the striate cortex) is represented by the crey matter immediately surroundine the posterior part of the calcarlne fissure. It thercfore includes portions of the runeate lobe and of the lingula.
(5) The Inferior ocripito-temporal convolution, as its name implies, is the term applied to the elongated convolution on the under surfaces of the occipital and temporal lobes, lying immediately external to the collateral fissure.

Three of the fissures in this neighbourhood create certain elevations on the walls of the ventricular cavity of the hemisphere, Ind are on that account classed as complete fissures. They are the dentate fissure, the collateral fissure and the anterior end of the calcarine fissure.

On the orbital surface of the frontal lobe the olfactory sulcus has been already studied, as it was found to lodge the olfactory bulb and peduncle. External to it is an H shaped sulcus which maps of the anterior, posterior, external and internal orbital convolutions.

The Corpus Callosum.

This is the great commissure connecting together the right and left hemispheres. It is described as consisting of a body with a rounded posterior end or splenium, and a curved anterior end or genu, terminating below in a sostrum. The upper surface presents on each side a minute bundle of white fibres, the longitudinal striae, which pass from the anterior perforated space to the dentate convolution. Laterally the upper aspert of the body passes into the callosal sulcus, in whith a slender band of white fibres termed the ringulum wil! !er fonnd. Note once mote that the luwre edge of the falx cerebri which lies in the mesial fissure between the hemis-
pherem, touchew the ponterior part of the upper nurface of the rorpun rallosum.

The under surface of the corpua callosum is in contant \ln the mid line with the septum lucidum in its anterior half and the body of the fornix In its posterior helf. More lateraily the fibrem of the corpun callonum pass into each hemi, here, and form the roof of the lateral ventrill. Note that the fibres from the genu and aplenium aweep forwardn anch hackwards reapectively towards the frontal and occipltal polen.

Discection. - Slice anay the upper part of one heminphere dowil to the level of the corpus callosum, and then remove the body of the latter carefuliy in order to expore the cavity of the lateral ventricle.

The Lateral Ventricies.

Each hemisphere presents a cavity termed the lateral ventricle. These communicate with the meaially situated third ventricle by means of the interventriculs foramen. The third ventricle is connected by means of the aqueduct of the mid braln with the fourth ventricle, which in its turn is continuous with the central canal of the spinal cord. Thene cavities are full of cerebro-spinal fiuid whlih escapes into the subarachnold space throurh openings in the roof of the fourth ventricie. The lining membrane of the ventricuiar aystem is termed the ependyma.

Each lateral ventricle consists of a hudy from which anterior, postreior and descending horns project.

The body possesses a roof formed by the fibres of the corpus callosum. and floor which presents the following five structures from hefore barkwards -
(1) The body of the caudate nucleus which hecomes rapidily attenuated in a backward and outward direction to form an elongated tail which enters the roof of the descending horn.
(2) The taenia semi-ircularis which is a minute bundle of nerve fibres lying in an obliquely placed groove between the proje tions caused by the caudate nuciets externally and the optic thalumus internally.
(3) A small portion of the optic thalamus, resting upon which ure the fourth and fifth structures.
(4) The choroid plexus of hlood vessels which forms the fringed lateral border of the velum interpositum.
(5) The lateral marcin of the body of the fornix.

The anterior horn of the lateral ventricle is directed forwa:ds, outwards and slightiy downwards. It is separated from its fellow of the opposite side by the septum lucidum whith forms its inner wall. Ahove is the body of the corpus callosum, in front is the genu of the corpus callosum, and in the floor will be found the rostrum and the head of the caudate nucleus.

The posterior horn curves horizontally backwards and inwards. On its inner wall afe upper and lower elevations. The lowew foroduce:l hy the anterior end of the calcarine fissure and is termed the hipporampus
minar, whlie the upper projection in produced by the aplenial fibres of the eorpus callosum an they aweep backwards towardn the occipleat pole.

The deacending horn is much the ionjent. It is directed at first outwarda and backwards, and the.s curven eently downwardn, forwarin and Inwards. It contains an extension of the choroid -iexise of the lateral ventricle. In the roof the tail of the randate nuclecta and the capnla semisircularls pane forwards to end in the amygdaiod nurleus. In the floor is an eiongated projection termed the hipporampus major, prohlucel by the dentate fasure. This enda anteriorly in a trllohed strurtiro known n4 tho pen hippocampl. The posterlor pillar of the fornix will be observed to extend into the deacending horn. It fusce partlally with the wipface ef the hippocampus major, but extenda beyond this, and ends in the uncum. To the outer alde of the hippocampus major is a faint profertion of the floor of the deacending horn produced by the roliatoral fissure, and hence ralled the colinteral eminence.

The Third Ventricle.

This ventricle ss mitusted in the mid line, and has therefore been opened in the removal of one hemlaphere. It is a very narrow cleft situateif between the two optle thaiami, and presents lateral walis, a roof, a floor. an unterlor wall and a poaterior wall.

In each laterai wali in the optic thaiamus which may bulpe so much into the cavity, that its ependymai covering fuses with that of its feliow. Immediately In front of the anterior pole of the optic thalamus is the interventricular foramen leading into the lateral ventricle, the anterior houndary of this being formed by the anterior pillar of the fornix.

The roof is formed from above downwards by the corpus callosum, the body of the fornix and the velum interpositum. The latter in a fold of pia mater tucked into the interlor of the brain under cover of the fornix and corpus callosurr. It is triangular in shape like the body of the fornix. only it is a little wider, so that its margin vihich contains the chorold plexus projects into the cavity of the fateral ventricle, as previnusly described. From its under surfare a slight choroill plexus of hlood vessels projects into the third ventricle. Betweer, its layers are two veins which unite to form the great vein of the brain. The latter, as already shown, enters the straight sinus.

In the floor of the third ventricle ase the following structures from before backwards-
(1) The infundibulum, which is a funnel shaped depression leading to the stalk of the pituitary body. The latter lies in, its fossa in the base of the skull and therefore becomes detached when the braill is removed. Note that the stalk is connected with the posterior portion of the giand. The anterior portion is developed from the roof of the primitive mouth. and is aiso structuraily different from the posterior.
(2) The corpora nammillaria are two smaii hodies shaped like mammae.
pared nide lis side. They are rell stations in the formix syatem, an will be nhoun premently.
(i) The ponterior jerforated spare which transmits the basal arterles to the bassil pangla,

At the junction of the floor whth the anterlor wall la attached the optle comminsure, which in connerted with the romtrum of the rorpus callooum ly a th ulaninu of grey matfor termed the lamina cinerea.

The nnturfer wall of the third ventricle in clomed in by the two anterlor millarn if the fornix un they nweep downardn mide by mide towarile the corpora mammillaria. In mesial aertion of the brain the minute anterior commisaure will le wherved inmediately in front of theme is it aweeps across bet worn the hemispherem.

The postertor wall is very much shorter than the anterlor. It presents the oproing of the aqueduct which leads to the fourth ventricle. Immediately abore thin ls the minute posterlor commasure, and above this again is to pineal gland, a manll cone shaped ntructure which in the atrophied remains of a thirdeye.

The fornix consists of a body ulth two anterior and two posterior pillars. The body is triangulu? in shape with an anterior and two iateral ungles. It is partially fused to the posterior half of the under murface of the corpus callosum and in interposed between the latter and the velum interpositum. The fwanterior pillare spring from its anterior angle and run downwards side by side in the anterlor wall of the third ventricle, immediately in front of the right and ieft interventricular foramina. They end in the corpora mammillaria from which fresh relays of tibres forming the inammillo-thalumic hundles proceed to the two optic thalami. Each posterior pillar takes origin from the lateral angie of the fornix. It sweeps downwards and outwards into the descending horn of the lateral ventricle and ends in the uncus. The fornix is thus a comminsure associated with the rhinencephalon.

The septum lucidum in a thin lamina occupying the anguiar gap betwee, 1 the under aspect of the corpus callosum and the anterior pillars of the fornix. It therefore lies between the anterior horns of the lateral ventricles. It rontains a tiny rieft in its interior misnamed the fifth ventricle.

Dissection. - A few thin horizontal slices with the knife below the level of the lloor of the lateral ventricle will expose the basal ganglia.

The Basal Ganytia.

The basal ganclia are masses of grey matter imbedded in the white matter lowards the base of t e brain. They are-the optic thalamus, the candate nucleus, the lenticular nucleus and the claustrum. In the ihurizonitai section jusi prepared the optic thalamus will be first recognised as it lies in the fateral wall of the third ventricle. Immediately in front of
it is the head of the candate nucleus, whil lyine esternal to both theee eanglia in the lenticular nurleus, an rulled from lia ahape. Hetween the latter and the cortex of the ialund is a thin atreak of grey matter tepmed the claustrum. The while nistles on the outer and inner anpecta of the lenticular nucleus has been termed the external and internal capaule renpertiveiy. That portion of the internal capmule between the lentleular nurleas and the optic thalamus is hy far the moat important, an Ita antepior two thirds contain the motor Alires dearending from the motor arean while the ponterior one third containa the senanry, the visual and the audit. ory Hbree. In the motor portion the flires to the oppoite half of the body are arranged an follows from timfore backwards- head and neck, upper limb, trunk and iower limh.

Dtacection.- Release the wher hemiaphere by aevering it above the crus, in order to atudy the mowencophai, on or mid brain. Thin will bo atudied from itn doraal and ventral anpects firat of all and then mectioned tranavermely arroma.

The Mild Braln.

In crman aection the mid brain will be seen to be tunnelled near ite doram aspect by the aquabluct, connecting the third and fourtia ventriclen. An imaginary plane at this level is utilised to divide the mid brain into dormalaind ventral portiona

The dorsal portion of the mid brain consirts of the four corpora yuadrigemina, two superior and two inferior, of which the former are the larger. Each corpus will be ohmerved to glve off laterally a amall arm or brachium. On tracing these outwards two other projectlons on the lateral : u! ect of the mid brain will be obaerved. These are the xternal and internal genIcular bodies which are intimately associated with the optic tract. The latter will be observed to be formed by offshoots from the posterior end of the optic thalamus and the external and internal cenicular bodies, and it is also joined by the superior brachium. The inferior brachlum passes under cover of the internal genicular hody, but apparently doea not become continuous with the optic tract. Earh optic tract sweeps forwards round tie Interal aspect of the mid brain to meet its fellow in the optic cominimsure from which the optic nerve takes origin an already described. The decussation of the fibres in the commissure is so arranged that the right halves of both retinae are supplied from the right hemisphere. and vice versa.

The ventral portion of the mid brain is composed of the two crura cerebri, each of which when s:udied in section, will be observed to be dlvided by a narrow rescentic strip of pigmented grey matte., termed the substantia nigra, into anterior and posterior portions. The anterior gnption contains in its middle threr fifths the motor trarts in their course down wards from the internai rapsule. The posterint jartion of each crus cercbri, sometimes termed the tegmentum, contains the sensory tracts which are aggregated to form the mesial fillet. The two crura cerebri are separat-
ed vonerally by a loop cleft theough which abrears on each site the thiril of orulomostor nerve. The latter taken oflelis from the grey matlor llowing the aqueduct and in ita pasage forwarde through the crus cerebrl temeperea a "nasa of groy matier altunted na earh alde of the mill line termed the red nucleus. I'he praterlor longitudinal bunde which lien in contace wheh the prey mater lining the aqueduct can only be atadied atiofareo-lly with the meponcoure; but It I Important to note here that it connerta togethor the nuclei of orloin of the third, fourth and alxth reanial nerven, and thus co. ordinatem the innervation of the orular musclom. The fourth nerve alac "Flice from the groy matter linlng the nguedurt: hut it plerres the roof of thr fourth ventricle. It may be seen, however, at this atage an It fe coveda lornarim round the outer anpect of the reus cerebori

The AInd Braln.

isints of the pona, medulla and coreliellum. It in canial fowa and in roofed in by the tentorium
from the superficial neratum of transverse ilhrem ie right and left tobes of the cerebellum, and forms :1. ... '1 i. ne latter. The pons is one Inch In extent from the U. $\quad \therefore$ Ier. The upper horder recolves the two crura cere${ }^{1,-1}$. . is ontinnous wlith the midulia. The ventral surface 4t. i.. it an the dorsum sellae of the rphenold. It presents m_{1}. y. . : i it onve for the basilar artery, the rldge on each slde of whi - it 16.1 t , motor thbres an they run downwarde from the crura cereber. wedulla in the deeper atrata of th: pons. The dormal surfare of the pons lorms the upier half of the lloor of the fourth ventelele. and will thercore have to be studled later. On earh ulde the transverse fibreg of the pors converge slightly, and become continuoun with the middle pedancle of the cerchellum, the point of junction being indleated by the exh of the hith cranial nerve which emergea hare. rather neurer the upper than the lower border of the pors.

The Medulle.

The . ero.ulla or bulb is rather conical In shape its upper broad end or hase beinit next to the pons Ita lower end is continuous with the spinal ecid at the foramen magnum. It measures one inch in length.

Its anterior azpect restr in the basilar gruove on the occipleal bone, and peesents a mesial lorgi ..dinal grouve on each side of which is an elongated projertion, the pyr 1 inl, produced wy the pyramldal motor fibrea as they rundownwards to the pinal cord. Ninety to ninety-fice per cent of thesp ibres derussate at the lnwer end of the medulla to form the crossed p.amidal tracts of the spinal cord, t'ie remainder being continued dounwaris as the direct pyramidial tract. ins is termed the decossation of the pyramids. which, it may be noted, interrupts the lower end of the
mesiai iongitudinai grocve. External to the upper haif of each pyramlic is an ovsi eminence, half an Inch long, termed the oilve. No fewer thar. seven of the craniai nerves make thelr appearance round thls structure. For exampie the slxth, seventh and elghth sppear between it and the pona in that order from within outwards; the ninth, tenth and eleventh nerves emerge behind it; whlle the numerous rootlets of the twelfth make their exit between it and the pyramld. Beiow the ievel of the oiive the direct and indirect cerebeilar tracts may be distinguished. The latter is next to the pyramid, and when traced upwards disspears under the oilve. It is continued upwards in the substance of the medulia, and enters the cerebeilum through lts superior peduncle. The direct cerebeilar tract inclines upwards behind the olive, and enters the cerebelium through Its Inferior peduncle.

Dissection.-Split the cerebellum by a mealal section and turn the haives saide in order to get a good view of the posterior aspect of the medulis and the floor of the fourth ventricle.

It wili be observed that the posterior aspect of the meduila also possesses a mesial longltudinal groove, but this exists only In the iower haif, as the upper half opens out to form the floor of the fourth ventricle. On each side of the posterlor mesiai iongitudinal groove is a weil marked tract termed the funiculus gracliis. This is the continuation of the posterointernal sensory tract of the spinal cord, and ends above in a sweiliing produced by the nucleus gracilis. Immediateiy externai to each funicuius gracilis is another weli defined tract termed the funicuius cuneatus. This is a continuation of the postero-externai sensory tract of the apinal cord, and ends above in a swelling produced by the nucleus cuneatus. It may be atated here that a fresh reiay of sensory fibres springs from the nucieus gracliis and the nucleus cuneatus, and after cecussating, is continued upwards towerds the hemisphere as the fliet.

Immediateiy extersai to the funicuius cuneutus is an eiongated band of neuroglia tissue which comes to the surface at this point. Beyond this again is the direct cerebellar tract which has been aiready studied from the front. At the upper end of each lateral aspect of the meduila is the prominent inferior peduncle of the cerebeilum which connects the latter with the meduila and spinal cord.

The Fourth Ventricle.

This is a diamond shaped space situated on the dorsal aspects of the pons and medulla, one half if the floor being formed by each. It also poasesses lateral boundaries and a roof. The upper end of the cavity ls contlnuous with the aqueduct whlie the iower end is proionged Into the centrai canai of the spinal cord which also tunneis the lower half of the medulia.

The floor is bisected by the mesiai longitudinal groove, whlle it is crossed transversely about its middie by the striae acousticae, so calied
because they are associated with the eighth ranial hive. In this wis tha floor is divided into two upper and two iourer pottionm each of which p esents a siight depression termed a luvea, of whid, harefore, two are superfor and two inferior. Each Inferior foven is . 1 shajert, with the apex upwards, between the two dimbs of which lie the chicf: wiei of oripin for the ninth, tenth ald eleventh cranial nerses. letucen earls inferior fovea and the mesial longitudimal groove is the nutleus of origin of the twelfth craniai nerve. Immediately above the striac arousticac, and on each ade of the mid line is a rounded projection terned the eminentia teres. Thls is produced by the nuslei of the sixth and serwith ranial nervea, of which the iatter is the deeper. The superiur fovea is situated above and external to this, while towneds the upper angle of the floor is a tiny, smented patch under the ependyma. In cabch lateral angle of the floor are situated the nuclei of origin of the eiglth rarial nerve.

Each laterai boundary of the fourth ventricle is formed from above downward by the superior cerebellar peduncle, thee inferior rerebellar peduncle, the nucieus cuneutus and the nucleus gracilis.
'The ruof of the fourth ventricle is formed by the following from above downwards-
(1) The supersor medullary velum, which is a thin lamina occupying the upper angle of the roof. From its upper surface emerge the two trochlear nerves. This lamina passes into the cerebellum.
(2) The cerebelium itself.
(3) The inferior medullary velum which is a thin lamina emerging from the white. latter of the cerebellum.
(4) The remainder of the roof is iormed by the pia mater lined with ependyma, and exhibits a small choroid plexus of blood vessels projecting Into the cavity. This portion of the roof is perforated by one or more openings through which the cerelru-spinal fluid escajes into the subarachnoid space.

The Cerebellum.

This consists of two lateral lohes connected in the mesial plane by the vermis, so termea from its segmented appearance. The convolutions of the rerebellum are closeiy packed together like the leaves of a book and are therefore te:med folia. These are collected into groups by deeper fissures, and have been given more or less fanciful names, which are me; ely of interest as such and possess no clinical signiticance. They are therefore a burden on the neniory. On examining the mesial section oi the vermis it presents a character:stis appearance, which has been aptly termed the tree of life, from its elaborate branching arahinement.

The cerebellum possesses superior, middle and inferior peduncles. The two superior connect it with the cerebral henispleres, the two inferior with the medulla and sninal cord, while the middle peduncle forms the superficial transverse thures of the pons, and connets toxether the two lateral iobes of the cercbellum.

The white matter of each lateral cobe of the cerebellum parmonta at crumpled sheet of grey matter termed the corg:is dentatum.

The Spinal Cord and Its Mambraneq.

Dlssection.-The spinal cord is extrar:ed fiom the upinal canal by sawing through the laminae, and then releasin': the corl and its inembranes by severing the spinal neives. The eced should be tatern out after the removal of the brain.

The spinal cord is clothed by the anme three meningre as the brain.
The dura mater of the cond is a loose bar? which is attached above to the margins of the foramen magnum, where it is rontinuon's with the inner o" supporting layer of the dura of the lrain. It exteads fownwaris as far as the level of the second or third sacral yentobra, where it enda ly he me. ing with the flum terminale of the codl. Lateraily it eads by hendin: with the sheaths of the spinal nerves. The mode of exit of the later will requlre to be studied by alitting the dura mater lonpitudinally. when it will be noted that the anterior and poaterior roots of each spinal nerve possesses separate openings, and unite within a funmel like extersion of the dura which finally ends hy blending with the sheath if the completed spinal nerve.

The arachnold mater of the eord is wey diflecult to define owing to its transparency and the delicary of its texture. It is non-vascular as in the case of the brain and extends downwards as far as the dura. It is the subarachnoid space that is opened in lumbar puncture.

The pia mater of the cord is its vascalar membrane and inveits it closely. It ends below by blending with the filum termioale. It dips into the anterior mesial longitudinal fissure of the cord, but this is disguised , y the fact that it forms a narrow glistening band, cermed the linea splendens, which is fused to the lips of the fissure. The anterior surface of the cord is distinguished from the posterior by this hand. Attached along pach lateral aspect of the cord is the ligamentuin denticulatum, so termed from the fact that its outer border is broken up into 20 or 22 denticulations by which it is attached to the dura mater. This arrangement is of course necessary in order to permit of the exits of the spiral nerves, lietween which the pointed nrocesses of the ligament are attached to the dura mater. Posteriorly the Iragile septum posticum, which connects the pia to the arachnoid, may be detected.

The origin of the spinal arteries from the vertebral arterics has been already described. The anterior spinal trunk courses downwards urderneath the linea splendens, while the two posterior spinal arteries are directed downwards upon each lateral aspect. These arteries are reinforced all the way down by anastomosing twigs from the vertebral, intercostal, lumbar and lateral sacral arteries, which run inwards along the spinal nerve roots. There are six ill defined longitudinal columns of minute veins along the cord. These drain into a vennus plexus e:ternal to the
dura mater and thle in its turn is drained into the vertebral, Intercoutal lumbar and lateral ascral velns.

The Spinal Cerd.

The aplnal cord as a rule ls just under eighteen inches In length, and ls, of course, longer in the male than in the female. It is contlnuous above with the medulla at the furamen magnsm, and it ends below opposlte the lower border of the first or the upper border of the second lumbar vertebra by becoming contlnuous with the thin thread-like filum terminale. The latter is prolonged downwards to be attached to the posterior aspect of the coccyx. It will be observed that the spinal cord is not uniformly cyllndrical. It presents two enlargements cervical and lumbar. The cervical enlargement beglns at the foramen magnumi, is widest opposlte the origin of the sixth cervical nerve and falles away below opposite the orgln of the second dorsal nerve. The lumbar eulargement begins opposite the tenth dorsal vertebra, is widest opposite the twelfth, and then rapldy tapers away towards the lower end of the cord. The cervical enlargement is assoclated with the origins of the cervical and brachia. plexus, and the lumbar enlargement with the origins of the lumbar and sacral plexuses. Owing to the spinal cord being so niuch shorter than the spinal canal, the spinal nerves have to travel gradually increasing distances from above downwards in order to reach their foramina of exit from the spinal canal. The result ls that the roots of the lumbar and sacral nerves form an elongated cluster within the dura mater, which las been aptly termed the mare's tall.

Examine the upper end of the cord for the spinal portion of the accessory nerve which arises by rootlets from each lateral aspert as far down as the sixth cervical segment.

It should be noted that the exit of the fibres of each of the anterior or motor spinal nerve roots is spread over an irregular area, while that of the posterior or sensory nerve roots forms almost one continuous line down the cord. The ganglia on the posterior roots should be looked for close to their points of junction with the motor ronts. The result of the union of the two roots is to form the spinal nerve which has merely a momentary existence for the purpose of allowing an intermingling of the two kinds of fibres. The spinal nerve then divites into anterior and posterior divisions of which the posterior proceed backwards to supply the tissues and skin of the back by outer and inner branches usually, while the anterior divisions sweep forwards to supply the body wall or furnish the various limb plexuses to tbe upper and lower extremities.

Some slight idea of the structure of the cord may be gleaned in the dissecting room by means of transverse sections at different levels. Note first of all that the white matter which constitutes the superficial layer of the spinal cord gradually diminishes in amount from above downwards. The grey matter in the interior forms an H shaped mass in the centre of
the crme iimb of which the minute central canal of the cord may be distinguished by means of a powerfui lens. The anterior and pusterior horns of the grey matter are readlly distinguished, as also their ansociation with the anterior and posterior spinal nerve roots.

The white matter is diviled by these into anterior, lateral and posterior columns on each slde. The position of the various nerve tracts in these can of course only be demonstrated satisfactorily by means of special stains and the use of the microscope. A rerthin amount of information can however be gained even by a naked eye inspection. For exampie, each posterior column ls occupied liy the postero-internal and postero-external sensory tracts whleh are separated from their fellows by a mesiai partition of neurogia. The crossed pyramidal motor tracts can he located approximately in the posterior halves of the lateral columns, each being separated from the surface of the cord by the direct cerebellar tract, in front of which lies the indirect cerebellar tract, alsn on the surface of the cord. A narrow strip of territory on each side of the anterior mesial fissure of the cord is occupied by the direct pyramidal motor tract.

INDEX TO SECTIONS.

Page
The Upper Limb : As!!!a 3
Superficial Dissection of th: 13ack 6
The U;per Arm 7
The Firont of the Furesem 10
The Mand. 13
The Back of the torearm and tiand 15
The Lower Limb :Front of Thigh 19
The Gluteal Region 24
The I'opliteal Space 26
The Front of the Leg and the Dowem of the Foot 29
The Peroneal Region of the I eg.. 32
The Posterior Aspect of the Leg 32
The Sole of the Foot 34
The Therax 39
The Ileura and Lungs. 40
The Mediastlnum. 43
The Pericardium and Heart 44
The Cavitues of the Ileart 46
The Right Auricle. 46
The Right Vintricle. 46
The Left Auricle. 47
The Left Ventriele 48
The Aorta. 48
The Ascending Aorta. 48
The Aortic Arch 48
The Descending Thoracic Aorta.. 49
The Pulmonary Artery 50
The Azygos Veins. 51
The Innominate Veins and The Superior Vena Cava. 51
The Phrenic Nerves 52
The Vagus Nerves 52
The Trachra in the Thorax. 53
The Oesophagus in the Thorax.. 53
The Thoracic Sympathetic 53
The Thoracic Duct 54
The Abdomen 55
The Anterior Abdominal Wall 55
The Abdominal Muscles 55
The Rectus Sheath. 56
The Inquinal Canal 57
The Spermatic Cord. 58
The Scrotum and Testis 58
Inguinal Hernia.
The Peritoneum 61
The Superior Mesenteric Artery 68
The Inferior Menenteric Artery. 66
The Coclize Axim Artery 66
The stomach 67 67
The Duodenum
The Duodenum 68 68
The Jejunum and lieum 69 69
The Great Intestine 70 70 72 72
The Pancrean
The Pancrean
The Spleen. 73 73
The Liver. 73 73
The Gall lladder and Bile Ducts.. 76
The Kidneys. 76 76
The Ureters 77 77
The Suprarenal Glands 78 78
The Abdominal Aorta 78 78
The Common Iliac Arteriew. 80 80
The External lliac Arteries. 81
The Portal system 81
The Inferior Vena Cava.. 82
The Muscles and Fascia on the Posterior Abdominal Wall. 82
The Diaphragm. 84
The Lumbar I'lexus 84
The Solar llexus 85
The Abdominal Lymph Glands. 86
The Male Perineum 86
The Ischio-rectal Fosasa. 87
The Urethral Triangle 88
The Female Perineum 81
The Male Peivis 92 92
The Peritoneum of the Male Pelvis. 92
The Pelvic Fascia. 83 83
The Male Rectum 94 94
The Male Bladder.. 95
The Prostate 96
The Male Urethra.. 97 97
The Internal lliac Artery 98 98
The Sacral Plexus. 99 99
The Sympathetic Cord in the Abdomen and Pelvis. 99 99
The Female Pelvis 100
The Female Rectum. 101
The Uterus. 101
The Broad Ligament 102

- The Vagina 103 103
181
The Head and Neek 105
The Scalp. 108
The Fiace 106
The Paruld Giland. 108
The Parlal Nervo 107
The Faclal Muscles.. 108
The Finclal Artery In the Face
109
109
The Flith Nerve In the Face. 109
The Pontorior Quadrant of the Scalp.. 110
The Deep Museles of the Back 111
The Sulsocripital Trlangle. 112
The Cutaneous Nerver of the Noek. 113
The Prowterlor Triangle of the Neck.
113
113
The Anterior Triangle of the Neck
114
114
Thic Dupresmar Muzeles of the Hyoid Bone 115
The Cervical Finseia
The Cervical Finseia
118
118
The Common Carotld Artery.
116
116
The Subelavlan Artery..
The Subelavlan Artery..
117
117
The Branchea of the Subelavian Artery
118
118
The Cervical Plexis.
The Cervical Plexis.
120
120
The Brachial Plexus.
121
121
The Sralene Miseles
The Sralene Miseles
122
122
The Tomporal and Ptorygo-maxillary legions
122
122
The Internal Minxillary Artery
124
124
The Third Division of the Fifth Cranial Nerve
126
126
The sul,maxillary Region
127
127
The External Carotid Artory 129
The Derep Dissertion of the Neck 132
The Internal Carotid Aftery
133
133
The Internal Jugular Vein..
133
133
The Glosso-pharyngeal Nerve..
134
134
The Vagus Nerve in the Noek
The Vagus Nerve in the Noek
134
134
The Accemsery Nerve.
The Accemsery Nerve.
135
135
The Hypogloseal Nerve
136
136
The Cervical Sympathete
136
136
Thi. Prevertobral Muscles.
Thi. Prevertobral Muscles.
137
137
The Cavernous Sinus.
The Cavernous Sinus.
137
137
The Dissertion of the Orbit
The Dissertion of the Orbit
138
138
The Grular Mu-clow
The Grular Mu-clow 138
The Nerves uf the Orhis
139
139
The Ophtha!mie Artery
140
140
The Lachrymal Apparatux
141
141
The Copente of Temon
The Copente of Temon
142
142
The Susponenrs Ligannont of the Eyohatl.
142
142 142
Th.e Eyrelid
Th.e Eyrelid

The Second op Superlor Maxillary IViviton of the Fifth Cranial
Nerve

148

The Pharynx 144

The Cavity of the l'hurynx. 146
The Solt Palate 147
The Nasal Fonmae 148
The Larynx 150
The Cavity of the larynx. 163
The Thyrodd ciland 158
The Tracher In the Nock 154
The Oemophaguy in the Neck 154
The Tongur. 154
The L.jmphatice of the Head and Nerk. 165
The Organ of Hearing 156
The Mldde Einr 156
The Intornal Fiar or lahyrinth.. 168
The Intra-Pctrous Portion of the F'acial Nerve. 169
The Eyehall 160
The Braln. 161
The Dura Mater 161
The Arachnoid Nator 163
The Via Mater.. 163
The Arterlat Sapply of the Urain. 163
Tlie l.ohes, Convelutions and Eisures 165
Fixkures and convolutions on the Outep Surface of the Hemis- prepr 166
Fissures and ronvo!ations on the Mexial Surface of the Hemis- phere. 167
The Corpus Callosum. 168
The dateral Vintricle". 169
The Third Ventricte 170
The Bacal (ianglia 171
The Mid Vrain 172
The Hin! I Brain 173
The Medulla 173
The Fourth Ventrietr. 174
The (ermbellum. 175
The Spina! Cort and its Membranew. 176
The Spinat Cord 177

