Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for scanning. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of scanning are checked below.

Coloured covers /

Couverture de couleur
Covers damaged/
Couverture endommagée
Covers restored and/or laminated /
Couverture restauree et/ou pelliculee
Cover title missing /
Le titre de couverture manque
Coloured maps /
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serree peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

L'Institut a numérisé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de numérisation sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées
Pages restored and/or laminated /
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorees, tachetées ou piquees
Pages detached / Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression

Includes supplementary materials / Comprend du matériel supplémentaire

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from scanning / Il se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas eté numérisées.

FREE TRADE or PROTECTION.
"Medio tutissimus iö̀s."*

N the remarks we are about to make on these importint political questions of the day, we wish it to be understood that they are not intended to have any political bearing on Trade Pulicy oL either one side or the other ; the country has given such a decided verdict in favor of protection, that we have now to await patiently until two or three years are past before the effect of protective duties will have had a sufficient trial to prove their benefit to Canada, or otberwise. The country has made a complete somerset in the political opinions it held tive years since, and it would not be at all surpiis. ing if several of these acrobatic exhibitions of oscillating opinions should be exhibited at the termination of every quintenuial term of parliamentary rule. But in writing on this subject in a mechanical magazine, No abjure all political theories; we have no axe to grind, the any selfish object in view; we simply wish to review Whichuestion, and exhibit it in other lights than those Which either party have shed upon it from the hustings; and readers then may possibly, from our deductions, and now that the effervescence of such political spinit han subsided, form a juster estimate as to whether benehte are likely to accrue from the present policy, or other-
Wiee.
${ }^{\text {Politicieing in }}$ discussing these questious are too apt to be carried away by their political feelings, and are
not al thot always actuated by truly unselfish motives, or by the force of calm reasoning' power. Too many of such influare attracted by the stronger will or magnutic Brow conf political professionals, and are very apt th brich confused under a flow of im; ulsive argumentbaich is too often but a superficial gilding over the
totally metal-from men wioo are fluent in words, but
depreagion ingont of the primary causes of the present
(*) ion in our manufactures.
(*) 4 middle coursea is the safost.

With respect to the fiat gone forth in Canada in favor of protection, several of the lealing English and American journals have spoken of it in a deprecating tone, and consiler that it is a retrogiale step from prosperity; and advocates of free tride, in this country, point out, as the principal cause of the low elib to which the manufacturers in Unitel States have fallen, to their high protective tariffs. Now let us first consider the question of a comparison of free trade in Groat Britain and free trade in Cadada at the present hour.

When lingland adopted a free trade policy, what was her position compared with all other rival nations competing with her in manufactured goods, when that policy was adopted by her people? and what is the condition of Canada now compared with Great Britain at that time?

Great Britain had arrived at a supremacy in particular lines of manufactured goods far above every other nation of the earth; in fact, she had no rivals that she feared in competition, or neoded to be protected against. Her policy was to endeavour to open the ports of all nations to a free entry of her goods, and why? because, at that time, she had machinery the finest in the world, aud coal and iron the cheapest. She had a population, trained to mechanical labur, far in excess of any other nation, and it was an important, and even vital object, in a country where the land was held by a few hundreds of nobility, and millionaires, to keep that population in constant employment. If she had rivals in any particular trade, the balance of superiority was pretty equal. She had no adjacent power, like the United States, on her very border, with a population ten times greater than her c.wn. She was then a nation which, at that period, had arrived at the very acme of perfection in many kinds of manufactured goods, and, therefore, when English journals twit us with making a retrograde movement, and attempt to draw a comparison between them then, and our country now, it is almost like comparing the setting up of a child to fight a giant. She had no country to contend against then that had a population ten times greater than her own, that could at any moment flood her markets with bankrupt stock, or with a surplus stock of manufactured goods, and ruin the manufacturers of similar goods in her own land, not only by bringing down the prices, but actually preventing the sale of
goods already manufactured, because they had glutted the market with their foreign manufacture. She had no country that could, at that time, compete with her in machinery. She could manufacture for millions without much competition, whilst we can only manufacture for hundreds in our own country, whilst an older, more powerful, and wealthier power, whose demarcation line runs for hundreds of miles along the most populous and wealthy part of Canada, difies us to compete with her in her own country by her high protected tariff. We are limited to a few thousands of actual purchasers--she has millions. She can afford to build manufactories for special parts of machinery-as in pianos and organs, and bring these portions to the highest pe:fection at the lowest rate of cost ; we, to compete with them, cannut afford to do this and mu-t make every part of a machine in one shop, or else purchase them in the United States, wilh the extra cost if $17 \frac{1}{2}$ per cent. duty, freight, and other charges besides; nor does this difficulty end here, for it is a well-knuwn fact that Americans will invoice certain kinds of goods to Canada far below what they sell them at in their own country, in order to keep their men in their large work-hops employed; they are willing to sell at such small profits, and even at cost price, as would ruin similar tades in this country. Over this the custum-house officials appear to have no control, for even if the Govemm nt took the goods at their invoiced price, they would soon have an fle, hant on their hands not easily to get rid of. Now supposing that a Canadian manufacturer went to the expense of refurnishing his workshops with the finest machinery that could be made, by which he could effect a saving in mechan ical labor of 30 per cent., and a saving in time hesides, of what use would it be to him if, after so doing, he found that he had no market in which 10 sell his goods ; that, although he could turn out machines in three-fourths of the time, he could not sell them, or curn if he could sell them, tiat, owing to the incleast d faclity with which he could manufacture, his outlay for capital for these improvements must lie dorniant and unremunerative for a great part of the year. To draw a conparison, therefore, letween England in her superiority, competing by free tade with other nations, her inferiors; and that of Canada in her iufancy, endeavouring to do so with an adjacent nation with ten times her pupulation, and more than ten times her wealth, shows that those who undertake to instruct us in such matters know very little of the true bearings of the case

It has been argued by the free trade party that it is to protective duties the United States now suffer from so great a depression in her manufactories and trades. To those who have not studied the international affairs of our neighbours during the past twelve years, and have not travelled throcgh the country and visited its numerous facturies, and ningled with her people, such an argument is likely to have great force; they only see a cause, as they suppose it to be, through a clouded atmosphere. This view of the effect of protection on the United States is altogether erroueous. There has been a depression in trade and manufactures, for some years past, in almost every part of the world ; it is still apparently increasing, and, therefure, the States are suffering from that general epidemic in trade, which has visited every nation; the argument, therefore, that protective tariffs have especially injured her, will not hold good. But why she suffers more particularly at present
than other conntries, and has not got over her difficulties with the quickness of her usual elastic nature, has arisen from over-manufucturing; the production of a supply far beyond the wants of her people ; overstocking her markets, speculation, ra-hness, and dishonesty; and, also, from an extravagance among her people, the outgrowth of the war, which has resulted, to thousands, in absolute ruin, and imporerinhed the nation: they exhausted their resources withont ever dreaming that a dark day was coming, and that their former rapid means of acquiring wealth would cease.

The principal cause, however, of the great lack of employnent in that country may be attributed to two sources:-

First-the civil war between the North and South.
Second-to the Trades' Union Sucieties.
After the commencement of that great civil strife, the demand for rectuis became greater vach uccecding year, until every one capable of bearing aums was drafted into the rauks of both almies, unless, as in the Noithein antiv, he was wealhy and could find a sulstitute ; but the bulk of the yourg men, be it of cken to tha ir han and lore of comnty, enlisted voluntarily. This elomous drain upon the youth, midule aged men of the comutry, and uon their resoures, became so constant during a period of six years, that women had to occury the positions previonsly filled by men only, and the inventive genius of the nition was taxed to the ulmost to lring nachinery to the greatest degree of perfection to supply the place of minnal labor that conld no longer be oltained. It was at this time there occuriod a great exodus of laborers, mechanics, and young wonen fiom this country to the States to become operatives at mills, or to tike domertis service. Hundreds of familics, at the sime time, emigrated to that country, wheme, in the face of the bloody stife going on, wealth and prosperity seemed to be overflowing. Paper money, allhough of a most do it preciated value, seemed to float through the country; it circulated with the greatest rapidity; the coffers of the merchants, manufacturers and farmess were overflowing; and every article of produce, commerce, manufictures, food and the luxuries of life was increased in value fourfold. Factories rose up like mushrooms in all the New England States, and every mountain stream capable of affiording water power, had several small nills erected upon its bank:. But it was not the mere necessities required for carrying on that war which alone created this immense demand for all kinds of manufactured goods, for the waste, destruction and robbery-the usual concomitants of civil war-was something enornous. The extravagance of the nation created an immense ${ }^{\text {en }}$ demand for naanufactured and foreign goorls to clothe itself in fine raiment, and pamper itself with luxuries, whle its best and noblest blood. was being shed on the field of battle and the flower and chivaly of the country were miselably perishing of fever, or in Southern prison ${ }^{8}$; therefore, during the six years' duration of that civil warf the manufactories and trade of the country increased fourfold. These goods were paid for, not out of tsu natural channel of commercial business, but by an iss to of national paper which the nation was plenged redeem at a future date, and which she is still nobly doing; although, she nust now acknowledge, had mor prudence, honesty and economy been used, that debl would not have been half so great.
With the sudden termination of tho war came the to
action that must naturally follow any great and overstrained exertion, either in physical life, or that of a nation. With its close there at once ceased to be any iurther demand for certain kinds of goods required by an army and navy composed of nearly a milion of men, including North and South-and it was immediately fol lowed by the closing up of all the small cotton and Woollen nills, and other fictories for manufacturing ordnance and small arms. The smaller factories had at once to close as they could no longer compete with the older and larger psiablishments. Still, however, there was a certain v tality in the nation that could not subside all at once to its previ , us normal condition ; many had seturned from the war with lange accumulated savings, and sought, with that national feeling of enterprise peculiar to the nation, to invest it in some form of traile or manufacture, althoush these had already far outgrown the wants of a nation in time of peace. Some invested in houses and landed property, which had increased in six years to a fictitious value, and on this value, in real estate, they had to pay $a n$ internal revenue tax in guld, for property that had been bought with greeulacks at a discount of 150 to 200 per cent., in addition to its abnormal value at the time.

Thou=ands of mechanics had done so well during the War, that they brought up and educated their children f_{1} above their previous pusition in life; they built for themselves expensive houses-many of them villas-and furnished them in an equally expensive way; in fact, the Whole nation imagined that it was rich and prospering, When it was building its expectations on a fictitious basis. For the first and second year after the war ceased the reflux of the tide was not much felt ; but soon the value of property began to fall, the price set upon manufactured goods decreased in value, when the abmormal demanil that had been created ceased to exist; and the once well filled purses became depleted, as the sources from which The money came ceased to flow. The nation no more required to issue its national paper for goods no longer Wanted, but called upon its people to pay back, in gold, Withe debt incurred. The slimulant to the nation was Fithdrawn, and like a man recovering from a crisis in ever, so she is prostrated at present, but will assuredly
rise again to The again to become a stronger and healthier nation in society reture, although some years will elapse before Nociety returns again to a safe normal condition.
Now the evil result of this war in the States was to
caluse to be erected a large number of manufactoriescallse to be erected a large number of manufactoriesexcess of the requirements of a country in times of peace; it was in fact a stride fifty years in advance of the times. Machines were invented altogether to supersede and banual labor, and to perform twice the amount of work, and better also, in the same period of time; the con$U_{\text {nite }}$ has been that the number of factories in the will be so fores are far in excess of its requirements, and Wond be so for some time to come; therefore, it is no in business of nearly every kind, with so much money sank in unremunerative machinery and speculations. Barely in unremunerative machinery and speculations.
we We canpot, with the kuowledge of these facts before us,
beighboute the cause of hard times with our noighbot attribute the cause of hard times with our $_{\text {now floors to their protective policy. If England could }}$ W_{0} flood her markets with her cheap goods, and if even "e could send in ours on equal terme of tariff, the conitis at present.

The other cause which has militated to her disadvantage has been the formation and instrumentality of

trades' union societies.

The high price paid for all classes of mechanics and laboring men in the United States, owing to the larce number annually required to fill up the ranks of the army, which required to be yearly augmented in numbers, created in the minds of certain men of foreign element, who wished to set themselves up as demagogues, a desire to create certain societies which should control the wages to be paid to different crafts. They thought that l.y working in concert, and under a certain organization, the manufacturers and capitalists would be obliged to accede to their demands. The bulk of this class was composed of foreigners, or the descendants of foreigners ;men who had come penniless to the country; mostly uneducated, and who, under the supposition of their power, hatd grown arrogant. Thry looked upon the propriftors of large factories as men of enormous wealth, who had grown rich by the sweat of the mechanic's brow, and their doctrine was that they were an nppressed and aggrieved body of men, and that by uniting they would force their employers to disgorge a portion of their large profits in higher wages to themselves. Ignorant men are unable to reason with much justness, and generally float along on the popular stream. The consequences that have followed thi se combinations have lieen fiuitful of dire results both to the employer and the employed, as well as to the country at large ; but to none mote so than to the strikers themselves. Capitalists have hesitated to invest in any business that can be brought to a stand still, at any moment, by a body of opratives working under the directions of such societues, and many manufactories, that were barely paying working expenses, closed up altogether in conrequence. The evils such sorietics cause, when one craft alone is forced to strike under the directions from a Head Centre Office, can be well illustrated by what occurred in New Yoik City alout five years ago, when by this strike of the masons and bricklayers, all other branches in house building trades, which depended upon these men to erect the walls, viz.: plasterers, carpenters, painters, roofers, \&c., \&c., \&c., were thrown out of work for a whole summer in consequence, and a very large amount of capital kept out of circulation. Contractors and builders refused to do any work except at a percentage on men's wages, not knowing at what moment a strike would take place that would be their ruin.

To these two causes, then, is the United States at present suffering, but in connection, also, with that general depression that exists throughout the world, and which restricts her finding much deinand in foreign markets to ker p her numesous manufactorics employed.

There can be no doubt that had her ports. been open to free trade, her markets would have been glutted with ceitain classes of English and German goods, which, however they may claim to the contrary-they cannot compete with-it is her protective policy alone that has kept these buck. The statements in the American journals that American goods are superseding those of English manufacture are not true. While no one can refuse to acknowledge the wonderful inventive genius of our clever neighbours in the construction of all kinds of labor-saving machines, and the improvements that they are making in some particular branches of hardware, is
which they have got the start of the Mother Country, they are silent to the actual fact that :hese improvemen s introduced into Eugland have ouly had the effect cf being a healthy stimulant, and that in steel and cutlery alone, Sheffield firms hav,s carried the war into the encmy's camp, and are now producing knives which have hitherto been made exclusively in America, at about half the price of those made in the United States and of a better quality; in fact, the bugbear of American competition is as yet really ouly a " bogey."

In considering the udvantugrs of protection in some cases, we have much to remark on its disaclvantuges on the other side ; that is, so far as such a policy is iikely to be beneficial to a country like Canada. We have first to take into consideration what may be the approximate number of persons who are likely to be atfiected by a tariff in any case.

The great bulk of the French Canadian population will hardly feel it. They manufacture their own sugar, raise their own produce, knit their own stockings, s_{1} in their yarn and weave their own grey cloth, and even make many of their agricultural implements. They aro strictly economical in their mode of living, carefinl of their clothes, and will mend and patch and make last for a long time, what U_{p} per Caiada farmis would cast aside. There is hardly any restrictive duties on impurtations that would lie filt by them one way or the other; and yet this clas-s amounts to fully one million and a half of people. In fact, the increase of manufactories in this country has had rather a damaging effect upr n them than otherwise, by drawing from the agricultural districts, into cities, a large number of men and womin who would have been much better off and happier at home as cultivators of the soil, instead of flucking into cities to be at last thrown out of eniployment, and become demoralized by idleness and a burden to the commu-- nity. There is another numerous bedy of our community who likewise would feel little or no benefit from a protective tariff, and that class is one which neith r buys nor sells, but lives on the small produce of their small farms, or by fishing, hunting, lumbering, \&c.; they are a very poor class, that burly eke out an existence from year to year, but still are so numesous that they probably amount to 501,000 men, womin and children. Another class are clerks, travellers, religious communities and domestic ecrvants, who pay nothing out of their own pockets directly for those guods that would be affected in price by a change of tariff, and these classes in all probably amount to 200,000 more; here then we have about $2,200,000$ per:ons out of a population of, say $4,000,000$ who will not be affected either by a protective taiff or free trade, leaving then about $1,800,000$ whom it will either injure or benefit. Of these lust figures only 300,000 would be male adulte, the rest, acconding to the usual mode of calculation, would be women and children; these 300,000 are those then that are to receive the benefit or otherwise of the new policy. This number, of course, includes men of private fortunes, professionals, merchants, manufacturers and mechanics, tradesmen, clerks, \&c., \&c. This is cerainly a very small number, and when thus brought down to actual figures, show pretty conclusively how small an amount of over manufactured goods and over importations will create a glut in the market, and how small a quantity of imported goorls from the United States, when added to an overproduction of our own, is sufficient to produce the present troubles,under which we nuw suffer.

Another important point to be considered is the impossilility of granting protection to one trade or manufacture, without seriously injuring another class of the community. If a protective duty on coalz-that prime mover of steam wolks and machine shops, and most necessary article of comfort to all during a long Canadian winter-should raise the price to $\$ 2$ a tou extra, then every manufacturer in the country would feel that the benctit he received on one hand was taken away hy the other; the tax would be considered an cuppression by all clisses of the community, and like a bonus given to a few proprietoss of coal mines who merely enployed a few thousand labourere, and for whose benefit so large a body would have to pay. To many families, living on a ralay of from $\$ 800$ to $\$ 1000$ a year, such a tax would be equal to a loss annually of from sixt:on 10 twe nity lollars. Again, on the article of sugar, if for the lenetit of a single one industry in the bands of one, or even two or threo individuals, and which, at best, only cmploys about 500 to 1000 men ammally, the pluce jo rised again to $12 \frac{1}{2}$ cents jer lb., when we have only leen paying 10 cents for the last 5 years, it will le couside red by the publicus an unjust tax, particularly to the prorer classes, for :ugar is an aticle which, from the force of habitude, has become oue of the necessaries of life. Whatever protection may do for our manufacturens and unemployed, a high Hotective duty cannot 1 e impoed without afficting the pockets of a very numerous class who receive no bent fit from it in any way. So long as ןrutection will enuble us to compete with other conntivis and to be able to sell equally as good articles with a protit in curown cunntry, at the same price as is pail for them in another, all will hail it with sitisfaction; but if, through hieh prutection, the bulk of the people find that they are paying higher for an inferior article, for the benefit of a fuw individuals, comparatively speaking, then, at the next general election, as great a revolution will occur in public sentiment as has been recently exhibited.

That many of our inilustries, and particularly notw ones just starting into life, should be permitted to bo swamped by anuther country having all the advantare of capital, machiners, experience and pepulation on hers side, is neither just nor politic ; such industries should be prutected until they have matured.
is here are two great difficultios under which we lal ct in Canada: one is that there is lut a small number of our population, as before remarked, whu me dirctly affected by the question on either side, and therefure our manufacturers have, in fact, not four millions of people to manufacture for, but a Jittle over one million and a half, so that too much home competition soon brings trouble to ourselves. It has bern argued by the adro cates of protection that when onc manufacturer begirs to take advantage of a h:gh tariff in his favor, and ruises his prices, that another will start up in competition and krep them down; but here is jurt where a calamily is likely to occur; for, although one patty muy raise his prices, it is no griterion that these is thade enough for two, and so one or both are likely to be lankiupted. The greatest safeguard we have in such cases is that when prices get too high, the Ampricans will enter into competition to the extent that the tariff will s.dmit. have too many factories already to surply the demand; and we have too many nechanics, of un inferior claes, and laborers, who should be cultivating the soil ; who should be producers and not idle consumers. These are.
some of the causes of the present difficulties, and which the people, we trust now, from their past and costly experience, and the new parliament in the plenitude of its wisdom, will be able to remove. The question is indeed a very difficult one to be dealt with, and the Government of the country have no light task on hand. We all know that the professions of any party, before an election, cannot possibly be carried out to the letter; and it is to be hoped that those who returned them to represent their views before parliament, will be moderat.s in their expectations. Too great protection would probably be as great an evil as too iittle, and therefore we advocate the advice of Appollo to Phæton : "Medio tutissimus ibis,"-by steering a middle coerse we shall not give a monopoly to one party to the detriment of another. We trust that as the present depressed state of the country cannot altogether be set down to the want of high protective duties, but must be attributed as much to our own want of foresight and judgment and the general depression throughout the world, that the rock we have grounded on will, in future, bear a beacon and beavoided; and that we may sail for the next five years over smoother Waters. It is the first duty of every political representative to serve his country faithfully, and in a great day
of trial, like the present, he should, for the benefit of his country, sink all political bias and rancour and work in unity with any side of the House, in all matters intro-duced-which are not strictly political opinions-for the public weal, and bear in mind the statesmanlike and friendly advice given to us in the parting words of our late most excellent Governor-General.

And, as a warming note to all those following mechanical trades, we trust, when the days of prosperity again return, that they will remember the past, and not fetter the hands of their employers by vexatious strikes, under the erroneous supposition that the manufacturers were making fortunes gained through their labor, when, perhaps, they were on the verge of bankruptcy. Let them also remember the past in this way too, that as there is no knowing when an evil day may come upon them, to learn to save; a few cents laid by daily is something considerable at the end of a year, and small savings often bring about great gair s. We would further advice many young men who are 1 ,llowing mechanical trades, and who feel themselves wanting in that natural mechanical gift of eye and hand, which some men possess over others, to put aside their mechanical implements, and become farmers on the fertile lands of this country,

where, after a few years of hard but healthy work, but never of want, they will become independent men. Indeed were but half the money expended by the Government in bringing out emigrants to this country and paying inefficient agents, employed in founding colonization companies for our own unemployed population, we would not have to-day so many poverty-stricken people in our midst, hardly knowing where, during the coming winter, to find food for their families, or even a home to shelter them.

BELLEVILLE.

Wret Hastings Agricultural Society Show.

Happening to be at Belleville during the days of the Annual Show, on the 2nd and 3rd October last, we visited the grounds, in order to examine the machivery, animals and agricultural products there exhibited. We regret that we cannot, in justice to the capabilities of the country, which ought to have had a much better display on the ground, pay any flattering remarks on the exhibit there made ; there was evidently a want of life and interes; shown this year in the exhibition. The cause of this falling off, for a falling off we were given to understand it was, from previous exhibits, we do not pretend to account for, farther than to remark that there appeared to be rather a feeling of growing discontent amung exhibitors, and a desire that the judges should, on such occasions, be selected from a neighbouring county. Of course every allowance must be made for disappointed competitors for premiums, but these remarks were generally made to us on the first day of the show, before any prizes had been adjudged. We have always held the opinion that the introduction of young men into the committees for the management of all such societies has a very beneficial effect ; they naturally are more active and ambitious to carry out the metitorfous objects of all such societies in a way to prove satisfactory and with a certain eclat, and they are better able to take upon t emselves the burthen of the most arduous portion of the duties. We do not know whether there is a deficiency of this youthful element in the Hastings Agricultural Society, but certainly the exhibit was not to its credit this year, and in making these remarks we do so in all kindness, for it is our greatest desire to see the industries and agricultural interests of the country encouraged by pleasant competition for excellence. We are not an advucate for the distribution of many prizes in the form of money, the amount of which, ifter all, is but a bagatelle to many of the farmers. We think that honorary badges, or medals, as a mark of distinction, would answer equally as well, in lieu of prizes, for all minor exhibits-but that the funds of the Society should be applied to granting one, two or three silver cups or salvers for continued merit or excellence in some particular line of agricultural machinery or produce, and that these valuable prizes should have to be won three years in succession before they finally became the property of the successful contestor.

In the exhibits of grains and vegetables, we far prefer the custom of the Old Country : there the crops have to be reviewed on the ground, and the mead of merit given, not to the man who can pick out, grain by grain, a bushel of the finest looking wheat or barley for an exhibit, or make a selection of roots, grown, perhaps, in a few feet - of garden land brought to the highest degree of culture,
but given to the man who can show the best field crop, the result of his superior farming.

Our remarks in a mechanical journal will principally be made on the vehicles and machinery exhibited. The most extensive among the former was the exhibit of Carriages, which, certainly, were extremely creditable to the exhibitors; the trimming, in particular, of some of these being deserving of all praise. The foremost among those exhibited in this line were Mr. C. Ashley, of Foxboro, and Brown and St. Charles of Brockville. Mr. Palmer exhibited a very neatly finished democrat ; Messrs. Bristol and Brother, of Madoc, exhibited two exceedingly well finished buggies and a sleigh, to which was fitted a shifting and folding seat, by which contrivance a buggy could be converted from a two into a four seated vehicle; the arrangement is light, strong and comfortable ; it struck us as being a style of vehicle that will soon come into general use, particularly as the mechanism is so exceedingly simple and easily adjusted.

AGRICULTURAL IMPLEMENTS.

The largest and best display in this line was by Messrs. G. \& J. Brown, and by Messrs. J. M. Walker \& Co. The latter, we obsc rved, had a very superior threshing machine and serparator on the ground, with horse power attachment-also, a very powerful straw cutter, besides grain and cider mills, and ploughs of improved style. We also noticed some excellent light ploughs by Martin Bros., of Brockville. The Massey Company, of Newcastle, also exhibited a very superior reapler and horso rake, aud the combined drill and broadcaster of the Masson Manufacturing Company, of Oshawa, seemed to be very favourably noticed.
In the Fine Art Department, the exhibition of Canadian butterfies, moths and insects, was very good and attracted much attention, as well as a splendid specimen of a stuffed beaver. Among the paintings exhibited, those by Miss Goldemith, Miss B. Walker and Mr. W. H. Gooding, of Trenton, deserved the palm of merit. We may here venture to remark, however, that we would sonerer award a prize to the smallest drawing tuken from nature, than to those, however well executed, that are simply copies. If our Canadian artists aim at perfection they must cease to copy. A well executed water color or oil drawing from nature, or the well executed portrait of some well-known individual (not a coloured photograph), would, in our estimation, deserve the highest prize in preference to the most perfect copy of another's art.
MI. J. H. Ford had some very good colored photrgraphs increased to nearly life size, but this is an art in itself, to which the above remarks do not apply.
The domestic manufactures in wools and cottons were very poorly represented.

Mr. Beasley, of the Belleville Broom Factory, made ${ }^{8}$ very fair disylay of well-made brooms. We had, how ever, previously visited his factory, and were veri favorably impressed with their general excellence.
Owing to the lateress of the season the flower show was inferior-nnt up to excellence-but what fruit was exhibited was exceedingly fine.
We cannot close these few remarks without expressiing deep regret that so nuch rudeness and ill-conduct was ${ }^{98}$ hibited by several boys, and even young men, on the afternoon and evening of the last uay. Such conduct is a diggrace, to the city, and should be put down with ${ }^{3}$ strong hand. In the Centennial Exhibition at Philadel-

phia, one of its most marked features was the perfect order, courtesy, and conduct of the thousands present during several months. It is time that Canadian boys should have some respect for themselves and their country. Such conduct will undoubtedly keep many away from the next Annual Show. [Ed. C. M. M.]

THE LANE CIRCULAR SAW MILL.

(See page 334.)
The following illustrations, with text, relate to the saw-mill of the Lane Manufacturing Company, of Montpelier, Vt., which contains many excellent features.
First may be noticed the Lane Lever Set. The most prominent feature of the set-works are the frequent bearers or head blocks, and the corresponding uprights or side supports; the set beam or slide, with its various attachments for securing logs or cants of all kinds, under widely differing circumstances; the setting mechanism, which enables the sawyer to move the cant readily forward as desired, and the device for quickly withdrawing the set-beam and uprights, preparatory to taking on a fresh log.
The horizontal and side-rests are placed at three or four-foot intervals for the whole length of the saw works, thus allowin... of sawing a promiscuous lot of very long and very short logs, without moving the head-blocks; and also, by the increased stiffness given the cant, ensuring evenly sawed boards to the last cut.
Near each end, and at intermediate points in long set-works, are adjustable side bearings (see Fig. 2) for throwing forward the small end of a \log, independently of the other.
These are operated by a simple lever movement, so arranged that, when the retaining part is lifted, the projecting centre-slide is drawn back by the falling of the lever even with the line of uprights. The taper-slide, as shown in Fig. 2, is thrown furward a little in advance of the upright. The device is efficient.
Attached to the set-beam are also the ordinary hail-log dogs; a frost-dog for holding frozen timber ; dogs especially adapted to "live" or "through and through" sawing; and dogs for the last board-which latter are to be used after the cant is squared.
The bail dogs are forged with heads to strike against when driving. Patented rests hold the dogs in a safe and convenient position when not in use. Numerous "eyes" allow the dogs to be chauged from one place to another, as needed. The doublepointed frost-doy is shown near the middle of the set-beam, in Fig. 1; and while its function is to hold frozen logs securely, the makers state that some sawyers use it (on account of its con. venience and adjustability) even in summer. The short end reaching only balf an inch in advance of the uprights, it shonld answer very fairly the purpose of a "last-board dog." The long end used in dogging logs swings automatically out of the way when the \log is turnel, and is held from possible contact with the saw by the forked casting.
The pivoted levtr-dog attached to the center upright is for the purpose of catching the under side of a log and preventing it from rolling outward when sawing the first half through and through.
Connected with the compound uprights are dogs lifting vertically from the under side, operated by lever handles, and held in place by suitable pawls. These are intended to bring a half-sawn cant of round-edged lamber to an even and firm bearing, and there to retain it. One of these is shown partly raised in Fig. 2.
The "last-board" dogs slide in a planed recess on the right side of the large uprights. They appear to be kept out of the way until wanted, to be quickly applied, and to require no care or adjustmient ; and keep entirely clear of the saw. By a recent improvement, they can be instantly clamped and firmly held in the saw cant. The hand-dog, near the head end of the mill in Fig 1, is shown as out of use. The nearest the operator, as well as that in Fig. 2, is clamped to the upright in the position it would occupy in dogging a fair-sized cant. The act of seizing the handle of the hand-dog releases the car fastening, and would permit the ready return of the dog to its proper position when not in use.

The index to the elevated rule or indicator is attached to the front end of the set beam ; and the scale (in plain sight of the sawyer) not only shows the distance of the uprights from the saw, but gives the proper starting-points after the log is turned for the last time when sawing urdinary thicknesses.
The mechanism fur settling the log consists of a shaft turned in bearings attached to the wood slide, and having on each end pinions meshing into open racks secured to the side of certain of the head-blocks. Near the head end of this shaft is placed a
series or " nest" of ratchets, arranged for setting varions thicknesses. A double-pointed dog b-tween the forked arms of the set-lever engages with the ratchet teeth and advances the set beam and the log. A sickle-dog prevents the slide or beam from giving back. A horizontal extension of the forked lever enables the sawyer to do the setting with ease and convenience.

A quarter-turn of the handle disengages both dogs and allown the slide to be moved back, preparatory to taking on a new log. Instead of running back the wood-slide or set-beam by raising the sickle-dog, depressing the rear end of the setting-dog, and working the lever as when setting a log forward - the "LanePottee" footrig (shown in figs. 4, 5) runs the set beam both forward and backward by power. The sawyer turns the set-handle to raise the dogs, and by pressing his foot on the treadles \mathbf{C}, while jigging past the carriage, recedes the uprights. This is also of service in turning a cant. Pressing the $\mathrm{p}^{\text {redal }} \mathrm{C}$, while the carriage is feeding forward, brings the slide and uprights toward the saw. Using the upright gauge-roll, the log may be set for plank, scantling, etc., by the foot-rig alone. The friction of a pulley against a smooth wooden bar being depended upon to operate the foot-rig, no damage shouid be done if by chance the set and sickle-doys are not raised.

The carriage proper is made (for convenience in shipping) in dowred sections of not more than fifteen feet in length. The mill-frames, either wood or iron, are heavy. The arbor runs in three long bearings; the end play being regulated from the midule; the makers affirming that this removes one of the most contmon causes of hot collars and badly-running saws.

The novenent of the carriage is controlled by a single lever. Belting from the saw arbor over differential pulleys allows of four changes of feed; a paper friction pulley, out of reach of snow, dirt, etc., is made to revolve inside of the large flange-puliey on the ferd shaft. Throwing forward the handle tightens a loosebelt running over flange-pulleys, and gigs back the carriage.

The saw-guide (shown in Fig. 6) is adjustable in either direction (even while the saw is running), by turning a double-headed set-screw.

The splitter, or spreader-wheel, is thinnest at the middle, lesstming friction. Opposite the saw-plate, and nearly touching it, are cast-iron bearers, to hold short preces as they drop.

On the front part of the frame is a Fairbanks upright gaugeroll (Fig. 7) ; and in the same standard, a horizontal roll for the cant to run over as fed to the saw. This is set at any distance from the cutting line by a hand-wheel and screw. Its special feature is a hinged arm, allowing it to be swung instantly back out of the way when slabbing.

The Brown dogging device (Fig. 8) has the upper and lower bits independently adjustable, and forced into the \log by a partial turn of the crank H.
The advantages claimed are, that in through-and-through sam. ing, the small end of the log can be thrown forward in adrance of the line of uprights, while doing "live" sawing, and that it holds sled-crooks and ill-shaped logs.

The double-mill (shown in Fig. 1) has a rigid upper frame of iron. As the saws decrease in size, they are adjusted to each other by turning two set-screws to lower the upper mandrel. Provision is made for adjustment in line. The upper and lowes saws have the same center and pin-holes, so that, when the lowe is greatly worn, it may be transferred to the apper mandrel.

The cost of a double mill is little more than that of a singlo mill with a saw of the size equivalent to its two saws; while the large saw is more difficult to run, and wastes nore in saw-dust than the smaller and thinıer saws.-Polytechnic Rvview.

CANADIAN MECHANICS' MAGAZINE.

We gratefully acknowledge, and beg to return our best thanks for the large augmentation that is daily taking place to our subscription list. This rapidly in creasing patronage, in hard times, is a strong indication of the estimation in which the Magazine is held; and when, in the next volume, we introduce the improve ments alluded to in a previous number, it will render this scientific and mechanical journal one of the most popular, instructive and useful publications on this continent.

A metal that will expand in cooling, is made of nine parts of lead, two parts antimony, and one part of hismuth. This mety will be found very valuable in filling holes in castings.

PARIS EXHIBITION OF 1878.

official trial of plows.
The trial of plows at the Fronch Exhibition took place at PetitBoarg, in the department of the Seine and Oise, about 19 miles from Paris, under the direction of Monsieur Eugene Tisserand, the Director-General of Agriculture of France, on the 29th of July, 1878

Fowler, of Leeds, England, had two sets of steam plows on the field, and Debuins, of St. Kemy, Départment Seine et Oise, had one get. Both did good work, but 1 do not propose to refer to them at length here. Aveling \& Porter's steam plows are to be tried at Gonesse on the 12th proximo.
The ground for each was murked off ho a furrow, and each was given a field to plow. The farm itself is level and nearly devoid of trees and fences.

American plows are said to be preferred in France to the English, though, to juige by those exhibited in the French annex of agricultural implements, both are frequently copied. The true French plows, however, are in excess of those of either of the foreign nations mentioned, and there is an abundance of
crnde and heavy implements which may be termed Gallo-Rnmau, and probably not much unlike those used during the Roman оссирнtion.

Wooden mnuld hoards are not totally discarded yet. Manufacturers may do their best to introduce what they derm to be improvements, hut after all they are obliged to make what the preopleare willing to buy. Such plows weigh from 80 to 240 lts., and sell for from 30 to 75 francs ; anc a great many are sold for light and sandy lands. While the Euglich plows have generally two wherls to gauge the depth, it is by no means so viverval as in France, and the chrap plows, which are made as low as 35 francs, are frequently wherlless. Fig. 2 has a frame entirely of iron, and of all ordinary size weighs 132 llis , and costs 85 francs. It is a very good implement and does exrellent work. Its clavis arrang ment is good both for draught and depth, and the draught chain is likrwise commendable. The tuo-wheeled plow is the English form, with furrow and land whepls of unequal sizes, lut the lever is French, and is used to lift the front end and tilt up the point so that the team will draw it out of the ground at th; end of the furrow: a very goorl arrangement, and used aiso on the gang plows of Fiance aud of Eugland, the plowman alwcya

Mg. 1.-mgknch wooden molld board flow

Rg. 2--PHENCH ONE-WIBREI PLOW

Mir. b.-dipandig charhle a chaine.

Mu. s.-Dombasters two.weerled plow.

Dh. B.-DEEREX ILLINOLS PLOW.

Me. ho. CEEW 3a the land sids
M. D. NIEW ON THI mothb-bOARD SIDE

PLOWS EXHIBITED AT THE PARIS EXHIBITION.

Fig. \%.-POTATO DIGGER (Double-ffet).

Walking at work. These plows are made heavy and are drawn by four horses or oxen.
It must be noticed by all who travel by day in France that the Qsual plows have a fore-carriage which is intermediate between the team and the plow. Many extremely crude forms of this are to be seen, both in the fields and in the Exhibition, and were t_{80} at work at the trials at l'etit Bonrg. Without attempting t^{t} give the cruder shapes, which might perhaps be taken as an exaggeration, the charrue a chaine is offered to exhibit the idea, and is one of the best of its class. Unlike the English two-wheeled plows, these wheels are of the same size, and as one runs in the tiprow and the other on the land, it looks as if the plow were tipped sideways, but the round beam adjusts itself in the ${ }^{\text {socket }}$ These of the fore-carriage (avant-train) and no harm results. 120 to plows are made for four horses, and vary in price from 20 to 180 francs.
Fig. 7 shows a transition state, in which the nose of the plow ${ }^{4}$ pivoted to the avant-train, instead of merely resting upon it and being drawn by a chain.
Pig. Another step and we assimilate to the modern English style. train. 8 shows Durand's single Brabant plow, in which the avant. the circuply sustains the beam, and the draught is by a rod. In for circular handed to the spectators it is described as "intended Ior depths either ordinary or profound. It replaces with great
"pontage all the ancient models of plows. It will travel alone Pon the earth without having care to hold the handles."
In Figs. 9 to 12, the portions of the plow body are shown. A is the standard, B the sole, C the corner-piece, D the share, E the
breast prease, covering the front of the standard, F is the heel piece to prevent wear of the mould board, G the rear standard, and H the Theidal mould board.
indicatourne-oreille, or Brabant double plow, has, as its name can bese, a turning mould board, so that at the end of a row it frome revolved on the beam (or the beam rotated), and converted tham a right to a left hand plow or vice versa. This enables the beam to return in the last nade furrow, the near and off horses $t_{0} \mathrm{u}_{\mathrm{s}}$, it altrnately in the furrow. However clumsy it may look ${ }^{0} \mathrm{p}_{\mathrm{s}}$, it does excellent work, and if a whole commanity insists ${ }^{\text {upon }}$ beginning to plow at the side of a field and plowing it fur-
row by furrow clear across to the other side, not plowing in lands, why of course they must have an implement to suit that mode of working, and here it is.
The Brabant plow is made of all sizes from the small plow adapted for one horse to the large one drawn by 5 yokes of oxen. They vary in weight from 165 to 770 lbs., and in cost from 140 to 300 francs. The depth of furrow for which they are designed is from 0.60 meter to 0.330 meter, say from $6 \frac{1}{3}$ to 13 inches, though the latter depth was much exceeded at the trial.

There are many different patterns of this implement, but all preserve the main feature of being convertible into a right or left hand plow, either by turning with a sleeve upon the beam or the beam itself turning in a socket, on the fore-carriage, or hinged to the beam, as in Fig. 15, which has a wooden beam, and no avant-train.
Another form of what we call a hill-side plow, as we seldom use it for other purposes, was also exhibited.

The Director-General, like many of us at home, regards the gang plow as the plow of the future in large farming operations, enabling one plowman or boy to do the work of two or more by adding to the capacity of the plow and increasing the number of horses to the required extent. Quite a number of French and one American gang plow were shown at the trials.
The Meixmoron-Dombasle bisoc is made of three sizes; the largest works to a depth of from 0.15 to 0.20 m . (6 to 8 inches) ; a land of 0.55 to 0.60 m . (22 to 24 inches) in the width, with 4 to 6 horses in ordinary land and 6 to 8 horses in hard ground. The smaller sizes use from 2 tc 6 horses. The grand bisoc with cast iron standard and steel mould board weighs 544 lbs . and costs 290 francs.
The lightest size weighs 268 lbs . and cost 175 francs.
The Deere plow weighs 670 lbs. and costs 425 fraincs.
The Dombasle system, as is apparent by the cut, consists in rigging two plows to a single fore-runner with an inflexible bar which determines the latitude. In that rospect it resembles our gang plow. The English system is to make an angular frame of iron, and the same plan has also been adopted in France, and several of the manufacturers had implements of this description on the ground.
(Continued on page S49.).

LANE'S IMPROVED DOUBLE CIRCULAR SAW MILL.

LANE'S IMPROVED I川UBLE CIRCULAR SAW MILL.

Fig. 2.-Side Bearing.

Fig. 4.

Fig. 5. -The Lane-Potter Foot-Rig.
A, jointed foot-bar. B, set-beam. C, treadle-bar under foor. D, portion of saw-frame.

Fig. 6.-Saw Guide.

Fig 7.-Fairbanks Gauge Roll.

Fig. 8.-Brown's Patent Dogging veitce.

A SIMPLE WATER MOTOR.

The useful little water-wheel motor illustrated in the annexed enyraviugs has been patented by Mr. O. J. Backus, of Newark, N.J. Fig. 1 is a sectional view of one plate of the wheel case, showing the wheel partly in spection ; Fig. 2 is a vertical section through the wheel and case ; and Fig. 3 shows one method of putting the motor to work. The invertion consists of a wheel carrying bucket suitably shaped and disposed around its periphery in such a manner that when water is forced against them the wheel is caused to revolve with considerable power, sufficient even when of small size (about 7 in. diameter), to drive a stwing machine. The water wheel chamber is made up of two casing plates holted together. Each piate has an annular rib to receive the bucket-carrying portion of the wheel, and also a central annular tapression surrounding the bearing of the shaft. The lower portion of the casting or casing is provided with an upwardly faring pocket A, of less width than the casing itself, taken through the anmularspace, but of a length nearly equal to one-third of the cir unference of the casing; the bottom of this pocket converges to a discharging nozzle, which connects to the waste pipe P. The ingress pipe forms part of the upper edge of the procket, having a finely perforated nozzle to whicli the water inlit pipe W is secured. In Fig. 2, the casing is shown with a bracket to secure the motor to the top of a sewing machine or other table, so formed that while it serves to hold the motor to the table top, it also forms a part of one of the long bearings for the wheel shaft. This bracket extends sufficiently below the foint at whil h it forms one of the bearings of the shaft, to elevate the same above the table when the notor is in position, therely emabling a direct connection to be made between the shaft of the motor and the driving shaft of the machine to be oprated. The pocket A, nozzles, and tracket are all cast with, and form a part of, the plate forming the one-half of the casing. The other phate has neinher a bracket nor a pocket formed in it. The two plates, when holted together, form the bucket chamber of the wheel, and an annular laterally extended chamber m, to recrive the "ryelrows" or water sheds d. This chamber surrounds the shift and hearing, and owing to its concavity the water, flowing down the inuer face of plate over the eyebrows d, will lie conveyed past and below the shaft withnut escaping from the wheel case betwren the bearing and the shaft. By the peculiar form of chamber m, that part of the wheel case can be contracted luterulty, as shown at Fig. 2; and besides this the bearings can be made long enough to support the wheel shaft without occupying mose room laterally than the width of the wheel cuse. The buckt ts of the wheel ark struck by a minute stream of water from the nozzle, directed downward and inward on a line tangent to a circle within the circumference of the wheel, therely receiving all the furce of the stream to operate the wheel. To prevent the reaction of the water pron the buckets the porket A commences directly below the injecting nozzle, and conducts all the water down to the discharge pipe.
'To obtain a very light wheel, wire spokes may be used to commect the buckets io the hub of the wheel secur-d to the shaft C, yet his part of the invention is not confined to the above, as any suitable construction of wheels may be used. For the furpose of startil:g and stopping the machine a single-way cock is employed, through which the water passes on its way from the service pipe to the wheel case : this cack is mounted upon standards fixed in a drip pan. The plug of the coct extends so as to form a support for a pedal or foot lever by means of which an operator requlates the flow of water at will. Between the cock and the supply nozale is applied a versel made in two detachable parts, and provided nith a perforated diaphragm to prevent any foreign matter in the water from collecting in and closing up the nuzzle. Thix vessel, being in two parts, may be removed for cleaning without stypping the flow of water to the cock L .

The peculiar advantages of the arrangement depicted by Fig. 3 are that the motor or wheel is sat up upon an adjustable swinging bracket to operate a sewing machine or luthe at different angles and locations without crossing the belting, and without disconnecting the water pipe. Fig. 3 is, then, a side elevation of reversible water motor provided with projerting lugs G and Gl fashioned to fit into a dovetail slot of the swinging section of a bracket ; this bracket is secured to the wall or wainscoting, and the swinging section is secured to the horizontal projecting portion of the lracket by means of a thumbscrew or pill, which forms the pivot or hinge upon which the motor is swung either to the right or left. The dovetail projections G are cast upon, and form an integral part of the case A, by which means the motor is reversed, without crossing the driving belting, to operate sewing machines in any part of the room.

Tez eale of German hardware is gaining ground in Great Britain. A Sheffield correspondent writes that he was shown, in the warehouse of a leading Sheffield merchant and manufac turer, samples of tailors' scissors which were quite equal to thoso made in Sheffield. This is an impritant branch of the scissort trade, and was for many years monopolized by Sheffield makers. The difference in prices is astounding. The Sheffield-made tailors' scissors cost 18 s .; the Germanarticle, similar in size and equal in quality, costs only 7 s .3 d . They look well, cut well, and, we are informed, wear well. Does this sjeak well fos England's trades-unions, with their obnoxious restrictions 1 As the organ of the hardware trades, we regret that the backbone of England, namely, her workingmen, should be so stupid in their demands as to cause their employers to be beaten in the market like this by our German competitors. The masters hsvo been to blame at times; but when they have conse to the frond and laid down expensive machinery, they have frequently foun themselves checkmated by the very workmen who are now roap ing in comparative poverty, the fruits of their folly., -Irow monger.
Silvering Mirrors, Etc. - Boettger saspends tartrate of silver in very fine powder in distilled water, and carefully edde ammonia until the tartrate is dissolved, stopping at a point where a small access of silver still remains undissolved, and whe be the liquid gives off no ammoniacal odor. The objects to in silvered are placed in this bath, after thorough cleaning, and
about 10 minutes they will be found to be coated with a unifor about 10 minutes they will be lound
film of silver. D. Indust. Zeitung.

PARIS EXHIBITION.-THE RUSSIAN BUILDING.

DECOMBE'S UNIVERSAL VENTILATOR, SKY-LIGHT,

 AND EXHIBITOR.
(From the Mining and Scientific Press.)

It represents the lower portion of the sky-light. The vertical end timbers B, are extended upwards, as shown, and their upper ends are formed of metal, by the extension C, being formed with a socket, which fits over the ends of the timbers B. Each side of the cover or top D, is made with rafter and glass; but the rafters are fastened at top and bottom to horizoucas timbers, which work each side of the top or roof sepurate and distinct from the main structure, these horizontal timbers not being sesured to either plates or apex permanently. Through its upper irou portion C, of the end timbers B, are pivoted the bolts, forming part of the hinges, attached to tie sides of the top. These hinges admit of the sides of top being rained or opened, as the lower edges of the rafters are not secured to the plates.

The side braces F are secured to the plates of the lower portion and to the lower portion of the arm extension C, of the uprights, thus forming braces for the uprights and drawing the extension pieces C firmly into place, where they hold them. On these side braces F are pivoted the hinged braces G, which, when not in use, hang down uuder the side braces F. When the top i raised, however, these hinged braces G, having their outer ends tursed at right angles, as shown, engage with the holes in the plate of the under part of the sides of the roof, as shown in Fig. 1, and on one side of Fig. 2. The hinged brace may then be put in any hole in the plate, so as to set the top at any angle. When it is desired to close the top by lifting this brace out of the holes in the plate, the top may be lowered and closed as shown in Fig. 3.

The gables are also hinged so as to be dropped down. When they are up, however, and the top dropped, the top covers the laps of the sides or gables and holds them in position as shown in Fig. 3.
It will be suen that the combination of braces in this at once renders it ary strong, and that the roof can be set at any desired angle. The roof can be set so as to cause a draft of air to puss either one way or another. Only one side need to be raised, in desired, as shown in Fig. 3.
This same construction may be applied for portable houses, fruit and vegetable star. at, \&ec. In such cases with a wooden or cloth roof, the side from tr \urcorner sun can be sec"red and the front be plared on the stand in the shade. The sidns can be dropped so $a 0$ to be locked at night.

This invention serves the purpose not only uof a sk y-light, but is adapted in a marked degree for use as an exhibito. ad ventilator. Shelver maj be arranged under ine glass, on which any article may be placed fol xhibition in w-uic places. The roof may be lifted out of the way during th3 exhibit and afterward shut down and locked for safe keciong without disarrangiug the articles within. As a ventilator this invention claims advantages over all others. The different parts move independently, so that they
may be arranged in many different ways, according to the state of the weather. If the day is warm and air is wanted in the house, even a light breeze can be made to descend and all of it used in cooling the apartments. Suppose, for instance, the breeze blows diagonally across the sky-light. It may be collected and sent down by arranging the parts as follows: Put up one end piece and shut down one roof piece, so that a corner will be formed, opened toward the wind. The wind rushing into this corner and against the inclined roof piece will be collected and shot vertically down into the house. It is evident that an infinite number of combinations are possible, according to the strength of the wind and the amount of air wanted below. On very hot and quiet days the full ventilating capacity of this invention can be utilized and at the same time the whole of the top covered, so that a full shade is obtained along with as much air as possible. Rain will not prevent ventilation, for the parts may be 80 fixed that openingッ will be presented only in such positions that the rain, coming from one direction only. cannot enter. So this patent provides for protection from raiL aud too great light, aud at the same time affords most complete ventilation.

THE STRONGEST STEAMER IN THE WORLD.

The Italian Government has just launched the ironclad " Dandolo," sister ship of the "Duilio." Both are to be armed with 100 -ton guns, and be armored with 29 :ach plates. Not content with these ships, which carry heavier metal than any one in the English nary (the Elaciish "Inflexibie" has 24-inch armor, and carries a pair of 80 -ton guns), the Government is constructir two others, which are to be armored with 24 -inch plates, and are to cuiry cannon of perhaps 200 tons.
It is a matter of gene ${ }^{-}$-umpise that Ita! should be expending enormous sums for such en irresistible navy. Simple prid= of possession cannot be the only impelling motive.

THE DIFLUEATCE OF ONE MIIL

A single ${ }^{-c o l e n}$ mill in the city of Lawrence produces evary week a million yards of dyed or printed cloths. It pays $\$ 160,000$ ps wages. It emplows 5,300 persons, naving them at an average to rate of 95 cents a day to women an. hus, and $\$ 1.40$ a day to men. It consumes 500 tons of starch, and expends $\$ 400,000$ fos printing and dyeing materials every year. The wool it required, calls for the fleeces of 10,000 head nf sheep. It secיrres food, clothing, and usually respectable savings to 5,300 persons anis, their dependents-not less than 10,000 souls altugether. This, with the froights paid for transportation of its materials and pro ducts, show what one mill contributes to the wnalth, pc wer ande prosprity of the country. The woolen industry of tie whole country amounts to more than $\$ 200,000,000$ a y ar. There
$\mathrm{nt} \cdot \mathrm{rly}$ a thousand woolen mills in Ohio and other Western'States.

25 Subscribers not receiving their numbers regularly are requested to report the same at once to the Editor, P.O. Box 205, Mont"eal.

HaINes' PATENT UPRIGHT SELF-FEEDING DRILL.

The drill represented by the annexed engraving is for boring iron, steel, \&c.
The manner of feeding, the ease of regulating the feed for either light or heavy wirk, the facility for raising the drill-shaft from the work when completed or at any time desired, the adVantage of the adjustable stop for liniting the downward motion of the drill-shaft, will readily appear from the following explanation of the engraving:
A is the drill-shaft, having the fly-wheel B at its upper ead. To the upper part of the shaft are attached collars, and between them is a sleeve which is secured for vertical movement of the shaft, by means of the collars, and prevented from revolving with it by the trunnions, which attach it to the beam C. The shaft A is free to move vertically within certain limits, it being made loose in its bearings and loose vertically in the pinion. Its vertical position is regulated by the beam C, which is attached to the shaft by the sleeve above referred to. The short end of the beam is connected by a link to the frame. The long arm is notched so that the weight may be adjusted upon it to cause more or less downward jressure on the drill-shaft, as required for either light or heavy work. This beam is operated by neans of a lever D, the short arm of which is cogged and engages with the cogs of the bell-crauk shown, which latter is counected to the beam by means of clevists. By bearing down on lever D, the long arm of the beam is elevated, and consequently also the drill-shaft. This is a quick way of raising the drill-shaft froms the work; and it can be kept up if desired, without holding on to the lever, by catching the lever in a hook attached to the frame for that purpose. In order to limit the motion of the beam, and through it of the shaft, an adjustable stop E is proVided, which may be secured in any desired position by a thumbscrew. When a number of holes are to be hored to a certain depth, the stop E can be adjusted so as to stop the downward motion of the shaft at the proper point.
The table is likewise adjustable, and is placed as desired by means of the dog F, which engages with a rack upon the standard, requiring only a moment in cluaging its position.
\ln drills fed by gearing, the feed must be always alike for iron and steen, and different sizes of drills. This difficulty is here entirely obvinted by the adjustable weight causing a fast or slow feed as required.

COMBINED L\&TCH AND HASP.

A combined latch and hasp, affording double security, is represented in the engravings. The hasp is made to combine the convenience of the latch, ly simply putting a strap over it, to hold it in place, as shown in Fig. 1. The staple (Fig. 2) has a raised portion on cach side, to catch and hold the latch. By this sinple duvice, a door to a box-stall, or other door or gate, Which it is often desired to close quickly, may be shut, and firmly fastened without delay ; additional security may be obtained by ${ }^{\text {slipping a jin into the carve of the staple, as seen in Fig. } 2 .}$

CLEANING AND BURNISHING IRON.

This tool is in use in the Prussian army, for polishing the bits, It is i_{n} is simply a piece of hardened steel, 4 or 5 inches long, inserted an handle, as shown in the pugraving. The cross section is It is oval or, if round, it would probably do just as good work. T_{0} brigde of $\frac{1}{2}$ inch sterl, with the surface smooth and polished. ${ }^{81}$ brighten a tarnished or rusty piece of iron or steel, the inand cent is simply rubbed vigorously upon it, making it bright Work clean in a short time. Whire there are facilities for the or to fhe old, half-roundeil file may be readily ground and polishad to form a sluilar burnisher.

AN IRON POLJSHER.

Fig. 1-A latcu-masp.

Fig. 2. the staplecater.

THE QUALITY OF CANADA PLATES.

An important question as to the quality of Canada plates was raised in an action tried at the last Liverpool Assizes. The action was Gillespie \& ('o. rs. Marshall (Mr. John Marshall, of the Monway Works, Wedneshury.) Mr. Marshall received an order through Mr. Fox, broker, of Liverpool, for 500 boxes of Canada plates, Marshali's make, for the alove firm. Mr. Marshall made and sent his plate of the unal make, which were shipped in due course to Kingston. Gunn \& Co., the real buyers, objected to the plates, conterding they were not Canada plates, as the grain of the iron ran crosswise and not the whole length of the plate. The contract was for "Marshall's Canada plates" of merchantable quality, and not " Canada plates" alone, and they were not to be cold rolled or close annealed, the defendant having no plant for this to be done. The jury found the contract was for plates as manufactured by Mr. Marshall, and that they were of good merchantahle quality and condition, and a verdict was given fur the defendut.

RDISON, THE INVENTOR OF THE PHONOGRAPH.

The inventor of the phonograph, Thomas Alva Ellison, was born in Ohio, thirty-one years ago. He commenced his enterprising career as a newsboy on the Grand Trink Railway. V.m soon he had obtninel a monopoly for the sale of papers over ine line, and employed four boy-assistants. By and by he conceived the idea of publishing for hinıself. There was an old, springless car, with a smoking-room, attachell to the train on which he sold his papers; and as ne one would travel in it, Elison got leave to use it. He bought an old press and a yuantity of type, fitted it up in the smoking.room, and regnlarly issued a small Weekly print called the Granl Trunk Herald, price three cente, Containing gnssip of the neighborhuod, accidents, and other matter. George Ste!henson, at work nu the Montreal tubular bridge, fonn! Edison engayed on his paper, and was so pleased with the bny's earnestuess that he ordered an extra edition for
himself. This connection with the press introduced him to the himself. This connection with the press introduced him to the telegraph, which he straightwiy determined to master. Having learned how to send and receive messiges, at the age of seventaen he obtained a situation ns telegraph operator in Stratforil, Canada. Thenae he went from city to city of the States-west, Onith and east-Cincinnati, Indi-napolis, Lonisville, New Orleans, Boston and New York, leading an unspttled operator's life ; now being discharged, now leaving on his nwn accord. All his spare cash and time were spent in providing experimental electri-al ipparatus to illustrate his studies or to try some of the original ideas which thronged his brain. At Indianapnlis he produced his first inventive success, nn automatic signaling instrument, and at Cincinnati, in 1865, he perfected a duplex eystem for sending two messages in contrary directions over one to at once. He was proh-poohed and ridiculed until he went to Boston, in 1868, where an appreciative superintendent of the office recognized in him the fire of suppressed genius. It hap-
pened that eight years agn there was unusual excitenient in the penel that eight years agn there was unusual excitement in the gold market, and at the climax of the hurry the company's indienting instrument broke down. The superintendrnt was out, and no one could set it right. In the milst of the confusion Elison steppe! up and volinteered to do it. The minager looked greathat dubionsly at the new comer; but the emergency was great, and Elison's offer was accepted. In a few moments the lastrument was working as before, and Edison was forthwith thgiged at agood salary in the s rvice of the company. From this time his career is that of an electrician and inventor. He know pateuted several valuable inventions, an'l became wellthown, was app interl Inventor-in-Chief to the Western Union, the colossal telegmph monopoly of A murici, and to other comPuies. Two years ngo he retired to Mpnlo Park, a sequestered Mort on the Penusylvania Railway, twonty-four miles from New York. His establishment here consis s of his laboratory, dwell-
ing house, and the cottages of his workmeu, illcluding a res. tagrant started the cottages of his workmen, incluiling a res. Visitory started by a smart Yankee for the convenience of Edison's high, isolated ou an eminence. The lower part is occ two stories Pdison's office and library, and a mechanic's shop, where a dozen fitters are forging and shaping his ideas into iron and wooll. end wirs is the luboratory proper, a long room lined from end to end with an array of chemicals. On tables and in show-cases about the room are lving all manner of tel-graphic apparatus, plion, crucihles, and pieces of his own instruments-telephones, Plionographs and aerophonss. A perfect tangle of telegraph Wiry froin all parts of the Union is focused at one end of the
room. An ashor an old. An ash-covered forge, a cabin+t organ, a rusty stove, with an old privot-chair, a tahle well stained with oils and acids, complete the furniture of this curious deu, into which the sunlight putches on the the chemical jars, and falls in parti-colored pltehes on the dusty floor. The moving spirit of this place hy
day and night is best descrihed as an overgrown s:hoolhey. His $f_{\text {dee }}$ is pale nigh is best descrihed as an overgrown s:choolhoy. His and is pale and bear.lless. His nose and chin are well shaped
sive, bument; his mouth thin; his forehead full and exprnfive, but not high; his hair is dark chestnut brown, and silvered
With With gray. The inost striking feature of his fare are his eyes, amile is blue-gray, dsep-set, intense, and peretrating. His Elison is boyish and pleasant, and his manner somewhat shy tific know an inventor by sheer dint of native genius. His scienmatices are repalaive electricity is by no means thorough ; mathethy now or repulsive to him. As so0: as his mind lights upon it. The or peculiar fact, at once h: conceives an appilication of Be had phonograph was discovered in the following manner: ajenaly invented an apparatus for recording ordinary telegraph
setpe to oxperimentinamit the me-sacie automatically. One day, while
a pricker was fixed, the pricker pierced his finger by the forco of the vibrations, and drew blood. In an instant there fiashed into his mind the idea of the phonograph. He saw that the voice hal power to cause a similar pricker to indent its vibrations in a sheet of tinfoil, so that ther could be automatically reproduced. As proof of his power of work, it may be further said that the idea of the phonograph occurred to him one Wednesday afternoon, and he worked on all Wednesday night, Thurslay, Thursd:ly night, Friday, and Friday night, till Saturday morning. By that time he had constructed a completely succesaful phnnograph; then he went to bed, and slepit with hardly a break till Monday
evening. evening.
Edison has been described by the United States Commissioner of Patents as the young man whin has kept the path to the PatentOffice hot with his footsteps. During the last ten years he has taken out 157 patents. and applied for seventy-seven more. Of these, however, only fifteen or twenty are important inventions, the rest being obtainel to fence them round. His yearly income from his patents is now over $10,000 l$., and he has realized in all over 80,000l. from them. This sum has been sunk, as soon at it was earned, on books and experiments. As for the phonograph his faith in it is boundless. In future, he believes, letters will be talked, books read, sermons preached, languages and music taught, parlor operis played, announcements made, and reporting done by phonograph. Voice-allums will become the fashion, and the memorable words of great men mill be treasured in musenms. "There was a fortune in the Pope's last blessing," says Elison, somewhat irreverently ; "the phonograph record of it, multiplied hy electrotyping, wonld have sold for five dollars a piece easilv." It is said that Dore gets suggestions for profiles from the shadow of a piece of crumpled tissue-paper thrown on the sunlit gromud; and so will the phonograph, driven backward, hint all manner of new musical combinations to the musician. Elison is now muking one with a sapphire point, which will record even a whisper, and contain a complete novel of Dickens's- 50,000 words-on a sheet of tinfoil 10 in . square. There are other marvels yet to come. By the aerophone he hopes to rake ships converse at sea, though several miles apart ; and his boast is that he will make the statue of Liberty, to be set up in New York harbor, read the declaration of independence so loul that all Manhattan Island shall hear it. Another new thing is the "mega-phone," a kind of small ear-trumpet, loing for the ear what the op ra-glass does for the eye; and slightly deaf as he inclines to be, Edison declares that by its aid he can hear a cow chew her cud an eighth of a mile distant. These are things of the future. Meanwhile it is enough that his actual achievements stamp him as a prodigy in mechanical invention.-World.

CORROSION IN SOLL PIPES.

Cases of corrosion in lead soil pipes are common in the experience of every plumber. Sections of a drain will ba found frirly honercombed with holes, varying from the size of a pin-head to a quarter of a dollar. They are almost invariably located on the upper side of the pipe, and hence are difficult to detect, as there is no fluid lak age from them. Their origin has ben laid to the over-use of disinfectants, purticularly carbolic acid, but chemital analysis shows that sewer gas alone is sufficient to cause such corrosion in unventilated lead pipe. Proper ventilation will undoubtedly guard against the evil by carrying off the gas before it can do harm.

Several cases of corrosion have come to our notire. In one instance a vent flue was carried to the roof through an attic extension which was not occupied, and there slanted across the side wall. The family were taken sick. The plumber when called suggested that a leak in this pipe might be the cause, but was only laughed at. He insisted on making an examination, and found a score of holes along the upper surface of th: pipe. I ust about that time the occupants began to smell something. In another case damp spints on a parlor floor led to opening a brick wall in which the soil pipe was caserl, and it was found in a like state as the one first narned. In still another case, a corroded pipe passed through a bed-room, which for some months was occupied by a malarial fever patient, just adjoiuing a water closet and bath-room.

We would thank any of our readers to send us full particulars of the location and circumstances under which they find corroded pipes, as it is a sulject of considerable interest just now.

THE system of lighting lamps by electricity, which was tried recently in Pall Mall, lomion, is saill to be a failure, and the local authorities have ordered the removal of the apparatus.

THE MICRO-TELEPHONE.

BY GEO. M. HOPKINA.
The Edison carbon telephone and the instrument known as Hughes' .icrophone, which according to general belief

Fiq. L

Fig. 1.-A NEW MICRO-TELEPHONE.
are identical as to principle, depend, according to the inventor's theory, upon the changing conductivity of carbon under a varying pressure. It has been generally admitted that no instrument that would make and break the electric current could transmit articulate .ounds. Nor has such an instrument to my knowledge been produced prior to the one shown in the accompanying engravings. My instrument, so far as I know, differs materially from the multitude of other forms of telephone or microphone, whichare all based upun the principle discovered by Edison.

Fig. 2.-MICRO-TELEPHONE ON A VIOLIN.
The instrument which is the subject of this articl: consists essentially of two springs secured to a small base piece, and each supporting at their upper end a piece of ordinary battery carbon. These two pieces of carbon are placed in
light contact, and the two springs are put in an electrical cir cuit in which there is also a receiving telephone of the Bell form.

Fig. 3.-MICRO-TELEPHONE ON A PLALN SOUNDLNG BOARD.
This instrument is represented full size, in detail, in Fig. 1. In Fig. 2 the microtelephone is placed upen a violin. In Figs. 3 and 4 it is secured to a small sounding board. The two carbon supporting springs are fastened to a single base by the binding posts which receive the battery wires.

Fig. 4.-MICRO-TELEPHONE USED AS A TELEPIONE.
An adjusung screw passes through one of the springs at or near its center, and bears against a rubber button projecting from the other spring. This simple device when placed on a table indicates in the receiving telephone the slightest touch of the finger on the table or on the instrument. Blowing on it makes in the receiving instrument a deafening roar; drawing a hair or a bit of cotton across the carbon is distinctly audible in the cecejving instrument.

When the device is placed on a small sounding board every sound in the room is received and transmitted. An ant running across the sounding board can be plainly heard. And a touch upon the instrument or the table which supports it, which without the microtelephone would be entirely inaudible, can be distinctly heard in the receiving telephone by aid of the instrument, even though miles intervene.
When it is placed on a violin, as in Fig. 2, blowing lightly upon the strings produces Æolian harp tones in the receiver, and a song sung to the violin is rendered in the receiving instrument with an E犬olian harp accompaniment. When mounted on a violin or sounding board it will transmit articulate speech uttered in any portion of a room of ordinary size; it will receive and transmit the music of a piano, and even the turning of the music may be heard. Whistling, Hute music, and other sounds are transmitted with their characteristics of volume, pitch, and timbre.
This instrument, although so very simple, is capable of doing all that has been done by other instruments of an analogous character, and it will be determined by further experiment whether it will do more.
Although carbon contact points are preferable, they are notabsolutely essential to the operation of the instrument, as metallic points will do the same things, but not so satisfactorily.

THE MICROPHONE CONTROVERSY.

A Lettrr \sim rom Sir William Thomson-He Deprecates the Prronil accusation that have been made.
To the Editor of the New York Tribune:
SIr,-The pleasure with which those beautiful discoveries and inventions-the telephone, the phonngraph aud the microphone Thave been appreciated ly the worlit has been, nnhappily, and I bust say I think unnecessarily, marred by one of the mont disagreeable things that can be thrust upon the public-a personal claim of priority, a crompranied by accusations of bad faith-1 specially when made against any one with whose name aud fame the patich has come to feel concerned.
Before troubling the public at all with such a matter, Mr. Prison might surely have reasoned out his claim with Mr. Preece, with whom he had been from the beginning in correspondeluce, with whe might have written immediately to the "public journals, pointed out the close relation between his own "carbon telephone" and Mr. Hughes' subs+quent "microphove." The scientific public could then have calmly judged, and would have felt much interest in julgiug, how much iut common, or how much not in common, thire may be in the physical principles concerned in the two iustruments. But by his violent attack in the public journals on Mr. Preece and Mr. Hughes, clarging them with "piracy" and "plagiarisu"" and "atuuse of confilence," he has rendered it for the time impossible for either them or others to give any consideration whatever to his claim.
Nothing can be more unfuunded than the accusations. Mr. Preece himself gave, at the Plymouth meeting of the British AssoCiation, last August, a char and thorougnly appreciative desCription of Mr. Elison's carton telephone, und published it in the printed reports of his leculure which alpleared in the pablic journals. The leautifill results shown since the beginning of the bresent. Year by Mr. Hughes with his microphone, were described had maself in such a manuer as to leave no doubt but that he had worked them out quite indeprendently, and that he had not the slightest intention of appropriating auy credit due to Mr.
Edison. Edison.
in his dies seem to me that the physical principle used by Edison in his carloun tolethone, and liv Hughes in the miarophone, is the same as that used by M. Clerac, of the French "Administration des Ligues Télegraphiyunes," in the " variable resistunce
carbon tube carbon tubes,' which be had given to Mr. Hughes and others ior inj jontant practical applications us early as 1866, nnd that it dipends entirely on the fact loug ago pointed out by Du Moncel, that increase of pressure between iwo conductors in coutact pro-
dnces dimination of electric resistance between them.

I connot but think that Mr. Wison will see that he has let himself be hurried monainjustice, and lat he will, ther fore, not rest until he retracts his accusations of tad faith publicly and amply as he made them.

I remain, Sir, your obedient servant,
William Thomson.
Yacht Lalla Rookh, Cowres,
Isle of Wight, July 30, 1873.

INTERESTING ITEMS.

Cleaning thr Teeth. - A writer says: A good way to clean the teeth is to dip the brush in water, inl it over genuine white Castile soap, then dip it in prepared chalk. I have been complimented upon the whiteness of my teeth, which were originaliy anything but white. I have usen the ssap, constantly for two or three years, and the chalk for the last year. There is no darger of scratching the teeth as the chalk is prepared ; but with a good stiff brush and the soap it is as effectual as soap and sand on a floor.
How to Kill a Tapewormin an Hedr. - Dr. Kanl Bettelheim, of Vienna, narates, is the Deutiches Archur, a lieroic method and nearly sure cure in the siont space of time of three yu rters of an hour to two hours. It is this: He instrts a tube in the oesonhagus, to the stomarh, and ponrs down from 200 to 400 gramines of a voly concututated deroction of pomeranate root, having ! 1 reviously had his putient fast for 24 hours. The worm is stuptfied, and passed, hend and nll, to a certainty; the patient has no sickness of the stomach, and no naseous swailuwing to do ; aud the drug is cheap.
Curting Rails.-The difficulty of cutting red or nearly whitehot rails, so that they may be all of the silme length whin cold, has been met, says the Engincer, in some German and Rusian rail mills by an ingenious method; The rails are looked at through a dark glass; when they have cooled to a certain teniperature, they cannot be parceived. If a dark-blue or an orange-yellow glass is used, the rails may be still at a red glow, but the light radiated from them does not reach the eye. It may be cunsidered that the light from two rails, ohserved through the same dark glass, disappears at the same temperature, and thus a rule is obtained for cutting the rails to the same gange. Each rail is allowed to cool till it can no longer be seen through the dark glass, and is then cut. The result is said to be satisfactory.

Asharp controversy has lately been cariied on in the columns of the Times with respect to the application of iron or steel horse shoes to the feet of our equiae luvourites. It is simply a revival of the oid dispute whether horses require to be shod or whether they should remain shorless like colts and wild lorses. Mr. Sidney remarks that the ider of dispensing with iron shoes is not bew' on the contraty, ' it is as old as anything in the shape of horsey literature." We are asked to follow nature, but nature did not make macadamized roads. We are told how horses in some foreign counties travel long distances daily, without shoes, with no evil results. But neinher do hese holses travel on granite-made roads, but priucipally over flastic turf, or beaten tracks, on which a shovelful of road metal has never been placed. Riding ou unshod horses has been tried ovar and over again in England, but the syst.m has proved a fallure, a r.d the practical experience of nine hundred and ninety-nine horsemen out of every thousand is aganst it. Even the "Chanlier" shoe receives little support from practical men, norwithstanding the frequent periodical attempts to push it into common use. The almost universal verdict is in tavour of using the common shoe on English roads, in town and in country alike. A retired Birmingham manufacturer has lately patenttd an improved furm of horse-shoe, which is, we hear, likely to eclipse everything of the kind yet introduced. Nous verrons.

REMARKABLE STEAMBOAT SPEED.

The highest speed ever attained by any loat or ship was that obtained by the steam launches recently built for the Finglish Amiralty by Messrs. Yarrow \& Co.
The boa:s are each 85 feet long, 11 feet beam, and draw 3 feet. They are constructed of stecl, and have engines capable of indicating 420 horse-power.
Run with the tide the one made 2259 knots, or 26 niles per hour ; the other, 23.92 knots, or 27.56 miles per hour. Against lhe ide, one made 17.69 k zots; the other, 18009 . The mean of the two was, reapectively, $20 \cdot 14$ knots, or 23.2 miles, and 21 knots, or $24 \cdot 2$ milem.

HOTICE TO SUBSCRIBERS.

As the information we afford to subscribers is gratuitous, all those asking for such are requested to forward a postage stamp for reply.

TEE NEW BAPTIST TABERNACLE, OTTAWA.

 (See page 852.)The material used in construction is Gloucester lime-stone. The exterior dimensions are 100×60 feet, the walls being relieved With buttresses of cut stone. The main entrance is ornamented With two handsome pillars of Nova Scotia marble. Immediately over this is a stained window. The tower has an elevation of 170 feet, and on the north-west there is a neatly finished turret Which gives the main tower a more imposing appearance. The seats are arranged in amphitheatre style, so that every one in the charch faces the officiating clergyman. They are elevated on a scale of 2 feet 6 inches. The baptistry and platform are located in the ctntre of the western wall, and immediately above is the choir gallery. In rear of the baptistry, it is understood that Mr. Howe, one of the deacons, will produce an imitation of the River Jordan, which will certainly have a pretty effect when Viewed from the body of the church. Two doors, one on either side, lead to the font ard conceal the candidates from the congregation until the immersion ceremony is performed. There are two dressing rooms in the rear. The ceiling is arched and relieved by three centre pieces, from which are suspended brass gasaliers. The ceiling is tinted a light blue, and the walls a light pink. The whole building, in fact, is a credit to the architect, Mr. Mather, the pastor; and the congregation, who exerted themelves so energetically towards its successial erection. When completed, it will cost $\$ 20,000$.

kIIGSTON AND THE MILITARY COLLEGE.

This is a view of the beautiful old city and its harbor taken from Fort Henry. Its main features will be easily recognized, ad the more that they have not materially changed, at least the Water approaches, for several years.

CUTTING LARGE LOGS FOR FIRE.

"A Subscriber" wants a method of using a horse-power with

- drag-saw for cutting large logs into firewood. A simple arrangement for doing this may be made as follows: A drag-sew is attached to the balance wheel of the horse-power, the wheel Thaing a crank rod attached, as indicated in the illustration. This rod may be made of tough hickory or oak. The saw is Pivoted to the shaft, as shown in Figs. 1 and 2. The forward part of the crank rod rests and slides in a groove or guide in a post of the foundation timber (Fig. 1). This guide is arranged so that the saw will not drop lower than the bottom of the log, and not cut into the log carriage. In Fig. 2, the crank is made to Sive a reciprocating motion to the saw by the lever a, the guide being at b. The log carriage may be a common sled, upon which teat nog may be rolled and drawn to the saw; the lug should test topon rollers so as to accommodate the saw, and be blocked ip to keep it steady. The supporting frame is shown in section in both of the above illustrations.

CARPENTER'S VISE.

The object of this invention is to provide a vise which will hold firmly in its jaws tapering pieces as well as straight. A vise-screw F of the ordinary kind works through a nut fixed as usual in the stationary jaw, while in the loose jaw it works through a tapering mortise which allows the jaw to have a good deal of play. This screw and jaw have a bearing-plate and stops, so that the screw may work through the loose jaw as though the mortise were plain and not tapering. The change can be effected at will by disengaging the stops. At the top, on the inner face of the fixed jaw, is an adjustable force-plate, which is composed of a bed-plate S, a top-plate R, and side-plates $P . \quad P$ and R are hinged together at the top, and P is also hinged by its middle to the bed-plate S. A short spiral spring below the central hinge, between the lower part of P and the bed-plate, keeps the face of P parallel to the face of the movable jaw A. When a tapering piece is to be held, P and R are disengaged at the top, which allows P a certain freedom of motion about its central hinge, which, taken in connection with the motion allowed the loose jaw, when the removal of the stops makes the mortise in it a tapering one, will enable the vise to hold securely tapering and oblique objects of many shapes.

A NEW NUT LOCK.

A novel nut lock is shown in the accompanying engraving Fig. 1, representing the device as applied to the fish plate of railway rails, and Fig. 2 shows the bolt, nut, snd washer in detail.
While this improved nut lock is designed more especially for the purpose indicated, it may be used wherever a secure bolt is required.
The threaded portion of the bolt \mathbf{A} decreases gradually and slightly in diameter from the outer end inward toward the head, and the nut B, which is split lengthwise on oneside, is made conical, and is fitted to a countersunk washer C, or to countersunk holes in the fish plates, as represented in Fig. 1. The nut, when screwed down on the washer or fish plate, is contracted by the engagement of the two conical aurfaces, and is thus made to bind the bolt so that it cannot become loosened accidentally by jarring or concussion. The conical nut and countersunk washer may be used advantageonaly in connection with ordinary bolts.-Scientific American.

Fig. 2.-bhowing crank and lefse attachment.

WHITMARSH'S KUT LOCR.

VENTILATLNG SEWERS.

The Board of Health of San Francisco have begun again to bore holes in the covers of sewer openings. While we do not profess to know all there is involved in the practice, we may cite the testimony against the practice of ventilating sewers. Mr. Henry E. Knapp, a civil engineer of New York City, read a paper recently before the Polytechnic Branch of the American Institute, in which he attacked the theory of ventilating sewers and drains. He said that the conclusion seemed almost unanim. ous among engineers that the poisonous and mephitic vapors should be allowed to escape into the atmosphere so that the sewers should be purified, thus to contaminate the atmosphere and transpose the pure air into the sewers where it is not needed, and from the sewers bring the poisonous gases where they will act detrimentally to animal life. The prevalence of this theory, which Mr. Knapy declared to be an egregious error, he attribated to the writings of Robert Rawlingson, K.C.B., a personal friend of the Prince of Wales, who, after the illness of the latter by typhoid fever, devoted much attention to the subject, and spread his views by means of the press.
The first objection Mr. Kıaןp urged against the theory was that the liberated gases are heavier than atmospheric air, and if liberated from the sewers would hag the surface of the earth, so that invigorating air could not be had inside the city. It would be as sensible to ventilate graves. The sewers, like corpses, ought to be buried, mainly because the earth is the best abvorbent of the products of the decay of animal and vegetable substances.
The proper way to deal with sewers, he contended, was to give them plenty of water, which carries the matter contained in them to the sea, impedes decomposition as long as the solid matter is sufficiently immersed, and is a powerful absorbent of sewer gases, especially the ammoniacal, which it takes up to the extent of about one-third its weight, or some four hundred times its own bulk. If this be done, and proper traps are constructed, no evil results will follow.

more significant facts for the amgeicans.

Edge-tool manufacturers generally are well employed-in one or two instances they are exceedingly busy, chiefly for foreign aud colonial markets. It is satisfactory to find that the American competition in this line is not exactly slackening, but suffering. In several Transatlantic markets the edge tools of Birmingham makers are displacing those of United States manufacture, and even in Australia and the Cape a strong reaction of feeling in favour of English-made tools is apparent. In Brazil, the River Plate, Venrzula, Mexico, and other central Ameriean States, the orders for Birmingham-made hoes, axes, hook-knives, \&c., are rapidly increasing, while the demand for American-made tools declines. This preference, we are glad to find, is not due only to the lower price of English-made tonls, but to their superior quality. Even the famous American Collins axe is now produced here by a well-known maker of superior quality and appearance for about 20 per cent. less money. Of this fact we have had ocular $d+$ monstration within the last dayortwo, having examined samples from a newly-arrived consigmment of American Collins' axes side by side with those of Birmingham make. The superiority of the English-made Collins axe is especially manifest in the eye through which the halt passes-the American-made eyes being for the most part very unequal and imperfect, while those of English make are as true and even almost as if gauged by machinery. Some admirable specimens of miners' picks, for the Cape, and hoes of every variety, for Cuba and diver's markets of South America, are being produced to order by the same firm in thousands of dozens; but perlhaps the most active markets just now for edge-tools are the tea-planting districts of Northern India.

Wood Pavements in London. - The asphaltum pavements, which were being extensively laid in London six years ago, have been mostly taken up in the business sections, and wood pavements substituted. The greater portion of the Strand is now laid in wood, and it is being laid at various points, of Cheapside, Fleet street, up toward the Bank of England. Sone of the suburban stre-ts are also paved with wood. A bed of asphaltum is at first laid, and allowed to harden, and on this the blocks are laid. They are of hard seasoned wood, and are first kyanized. After being laid, coal-tar is poured in all the crevices, and when opened for travel it presents a very solid and enduring appearance. It has been in use for a couple oî years in the neighborhood of Charing Cross, and it is solid and perfest as when first laid. The asphaltum caused great injury to horses, as it became very slippery in wet weather, and for this reason was removed and abandoned.

THE OFFICE OF PERSPIRATION.

A writer on hygiene for the Prairie Farmer makes the follow. ing allusions: The amount of perspiration that exudes from the surface of the skin is greatly varied by circumstances. As for example, it is large when the body is surrounded by hot, dry air, even to the extent of five pounds in 24 hours, while in a cold and moist one the amount in the same time may be but one pound. The results of these conditions are often strongly felt by man and beast. We should naturally suppose that if we loose five pounds of water in 24 hours, we should need that large amount of water to supply the place of that which has passed away. And to some extent this is no doubt true. It may have bren observed by all who labor that they feel the want of a large amount of drink. The sensation of thirst does not arise from dryness of the mouth or throat alone, hut in part from dryness or need of moisture felt by all the tissues. They all employ the throat and mouth to make known their wants. Another fact is not to be forgotten, that the kidneys hara duties so similar to to those of the skin, that they aid each other. On a cold, moist day the skin is disabled and cannot execute its usual anıount of secretion. Moisture checks evaporation from the surface, and cold lessens the caliber of its pores. In this disability of the skin, the kidneys lend a helping hand in relieving the system of its impurities. And so if the air be hot and dry, the skin is well able to do extra duty and grant the kidneys a recess from their usual toil.
Another fact is worth a passing notice, namely, that the dryness of the skin retains the hent generated within the system and so creates a fever. Relieve the skin, help it to do duty by warm baths or in some other way, and the fever disappears. No mo: ture came upon the surface and so no evaporation and no cooling of the system could occur. On this fact is based the habit of washing the surface two or more times a day, because this process induces evaporation, cools the skin, opens the pores and lets off the heat retained.

In health, perspiration is graduated by the temperature of the air and amount of exercise. On reducing our temperature in hot seasons of the year, not only our health and comfort but our life depends. The ordinary heat of the human body is $98 \subset$ Fabr. If the air surrounding us is higher, we suffer more or less. Heat disease begins to manifest its power, and the great remedy is the free application of cold water to reduce the temperature of the body and induce free perspiration. Thus it seems persprration contributes largely to our health and comfort. But to reap its greatest good, we should daily wash the surface and so prevent the absorption of what is waste and poison. Excessive bathing as practiced by some boys, may be harmful. All that healt and comfort can require is simply washing away the exceretion deposited on the skin.

PATENTEES REWARDED.

The following, compiled from the Tribune, indicates the manner in which Great Britain rewards her inventors
Since 1860, England has paid 102,775l. to inventors for dis coveries in connection with ordnance and small arms. Mr. Henry got $5,600 l$. for breech-loading rifles and improvements in fire arms; Wr. Westley Richards, 2,375l. for his breech-loading carbine; Mr. Snidrr, Mr. Wilion and Colonel Roden, 16,000l. for their plan for converting muzzle-loaders into breech-load rifl ; Colonel Snider got another sum of $5,000 l$. for the Snider rifle, and Mr. Lancaster 4, 000l. for his plan of rifling guns and smial arms. In artillery, Major Palliser got $15,000 \mathrm{l}$. for his chilled prujectile, 7,5100 . for his plan for converting cast iron guns, and 1,500l. for improvements in artillery ; Captain Moncrieff got $10,000 l$. for his method of nounting giuns, with $1,000 l$. a yegit and 5,0007 . when his engagement rnded in 1875 ; Mr. Hale go 8,000l. for rockets ; Mr. Frazer, 5,000l. for construction of guns Captain Scott, 2,000l. for improvements in gun carriages, ${ }^{\text {a }}$ 8,0001. for other gunnery inventions, and Commodore Harvoj: $16,000 \mathrm{l}$. for torpedoes, during the Crimean War, Majol General Buxer, R.A., got 5,000l. for his improvements in shelh and rockets, besides which he bolds a patent, in his own right, for the Elie-Boxer Cartridge ; Mr. Elie being merely the manufacturer of them.

Protecting Iron from Rust.-Mr. Bower's process of pro tecting iron from rust ly coating it with a film of magnetic oxid has been tried at Dudley. in England, and has proved to be that so satisfactory a character that there is reason to believe in henceforth iron structures may be regarded as practically destructible.

HORSES WITH AND WITHOUT SHOES.

The European papers are discussing the question of shoes or Do shoes for horses, with the argument apparently in favor of nece who advocate barefeet The fact is tited that wild horses, Decessarily unshod, always have fine feet, as also do the horses of most savige and taabarous peoples, even in rocky and morses thinins wountries. Against the assertion that the hard, macadamized, and paved roads of cities and towns demand a metallic shoe, is opposed the fact that in Porto Rico, at least np to 1840 , bo shoes whatever were used, yet the streets are prived and macalamized. The racos of St. Johm even, where horses go a mile in less than 4 minutes, are run on the tome paved streets of the town of Sm Juan; and a writer in the Lice Stock Journal (Eng.), who spent many yoars in that island, says that he almost bever saw a some-footed hore there. Rut the celebrated veteriBarian, Mr. Fleming, cemes out strongly in the Veterinary bournul agaiust baref et, claiming that their moist climate and by hods demand a net.llic protection to the hoof, as proved by experience. At any rate the bew-ohl itiea is attracting attenremoven some horse owners have adopted it in pactice. Aiter removing the shors, the horse is driven only a short distance daily, on a hard roat, increasing gradually to from four to six miles in the course of a week. Water is not a voided, but grease is, as then nature is imitated the closest. Until the mail-holes and disappeared, i.e., grown out, the hoof wili hook rough, and crack off more easily than afterwards. The results of the thials reported seem favorable to the shoeless practice. At first the hoof chips off badly, but soon becones hard, and the horse $\mathrm{B}_{\mathrm{se}}^{\mathrm{m}} \mathrm{m}$, to like it as much as the urchin likes his bare footeduess. and the experinuce of generations of shod horses, and the facts ${ }^{\text {and }}$ arguments in favor of no shoes, suggest a middle ground, Piz.: for paved or stony streets and roads, a metallic shoe ; and $\mathrm{n}^{\text {o }}$ shops for smooth, even hard roads, for country roads free from stones, and for field work, especially on prairie and other farms where there are no stones, or very f.w. We are not familiar With any instance in A merica where the use of horses without and has been thoroughly tried, but considering the great saving and possible benefits that might ensue, we suggest that the quesD_{0} ion worthy of careful consideration, as it is certain that at Do time is the horse's foot in so healthy a condition as when resting. A near approach to nature, which allows of the foot the hesting squarely on the ground, yet at the sanie time protects n_{0} hoof from injury, is the (harlier system of shoeing which dew finds considerable favor in Europe. The method is fuly ${ }^{\text {described }}$ in the excellent work on "Horse-shoeing," by Mr. reming, (1) who says: " Leave the hrop in a natural condition, tipa fas frog, sole, and wall are concerned, and imbed a narrow ference iron, no thi.ker thin the wall, around the lower circunbence of the fio--th texposed to wear--like the heel of a Than's boot, and we obtain au Idea of the method."
a The crust or wall is beveled olf with the rasp, and by means of ahoe, with a novable gilide, a groove is made to receive the thoe, as illustrated in Fig. 1. The groove is a little shallower that the thickness of the sole, and somewhat narrower than the "eparating of the wail, "not exthnding beyond the white line "eparating the sole fiom the w 11 ." "The shoe is a narrow but forged band of iron, narrower at top than at the bottem, and so $\mathrm{in}_{\mathrm{n}} \mathrm{Fig}$ that its front sur ace follows the sl.pe of the hoof, a seen little ${ }^{\text {Fig. 3 }}$. Its upper iuner eilge is rounded by the file, and a boof, whe horn is removed trou the angle of the groove in the horn which prevents undue presure of the shoe against the soft in the that place. In strong hooft, the shoe is alnost ouried to me groove; but with flat soles and low heels, it is not safe lighted it so deeply. Four to six light nails are used; with toet, and dring borses four are sufficient, piaced wide apart at the hoo. and close to the heel, as in Fig. 4. Fig. 2 represents the and It camot be used on all fect, and to make the groove by the of fit well requires some care; but when once understood teqee farrier, the shoeing is said to be very simple. The advansole, "t are leaving the foot in its natural condition as to frog and the "the small number and size of nails required, lightness of the foot, and security to the horse in progression," as it places of wort fairly upon the ground. It is used on borses at all kinds aterark, and it is said that the combination of horn and metal These an astonishing amount of wear for so light a rim of iron. feete shoes are usually applied to only the foreleet, as the hindfit are thought to be not so well adapted to them.
Judd Practicul Horse-shoetins," by G. Fleming. Published by Orange
$0_{\text {Ne }} \longrightarrow \longrightarrow$.
$\mathrm{p}_{\mathrm{Ne}} \mathrm{O}_{\mathrm{Ne}}$ hndred and eleven thusiand nine hundred and fifty-five of the chisf visit the Paris Exhilition on the 15th of August, one

Fig.2. cearliter shoe.

Fig. 1.-HOOF FITTED FOR

Fig. 3.-the shoe in place.

The Population of the World.-The latest edition of Behm and Wagner's Bevolkerungder Erde gives the fresent population of the earth at $1,439,000,000$ as compared with $1,424,000,000$ as given in the previous issue. These figures are hased upon the most recent censuses taken in various countries. The population is divided as follows. Europe, 312,398,480; Asia, 831,000,000; Aftica, 205,219,500; Australia and Poly resia, 4,411,300; America, $86,116,000$.

Dangers that Beset Submabine Cables.-Every one who has at all studied oceanic telegraphy perfectly, understands the dangers to which the shore ends of the communicating wirts are exposed from the action of curients, the anchors of ships, \&c. But the general idea prevailed that once the cable was laid in the gloomy depths of the ocean it was in safety. Such, however, is not the case, for the inhabitants of those regions seem to resent the intrusion. In many cases, owing to the intqualities of the bortom of the spa, the wires cannot rest wholly on the bed, but in some places hang in festoons. Then they are liable to accidents from the larger denizens of the sea, anong which we may particularly meution the sun-fish (Oythogoriscus). That peculiar but little known animal is nearly circular, of a brilliant silvery white, and at night emits a powerful phosphorescent light, whence its name probably arose. When swimming it turns round like a wheel, and moves with great rapidity. It grows to an enormons size, often attaining four feet in dianicter, and some of them are said even to reach eight feet. Specimens have been caught weighing 500 pounds. It is found in all seas from the Arctic to the Antarctic Circle. Where the tail is in ordınary fishes, this curious creature has a sort of flattening in its circular shape from which bony spines project. Not long, since, an interruption occurred in a cable, and on examination it was found that it had been prnctrated by one of the caudal spines of the sun-fish. Even when the wire lies quiet at the bottom it is not safe ; for a species of marine weevil attacks the gutta-percha and gradually destroys the conductivity. But the most curious instance of damage inflicted on a cable is that which lately befell the one from Portugal to Brazil. A fault having been lound, the tests were applied and the precise spot iudicated. The wire was fished up and was discovered to be broken. In one of the ends was entangled a large whate. The monster was covered with parasites, and, in attempting to free itself from its tormentors, had broken the cable, and then managed so to twist itself in the coils of one end that it was held fast a prisoner, and, not being able to rise to the surface for air, was drowned.

FIRE-PROOF LADDERS.

When recently at Kingston, we noticed, particularly, several iron ladders on the roofs of houses and stores, and which led also from the eaves to the ground. These ladders are manufactured by Geo. A. Rumrill, of Kingston, and of course are of wrought iron.

It is seldom we notice patents in the columns of this Magazine, and never, unless the patent is really of a useful and practical kind ; butin this instance we deem it a duty to the public to strongly recommend the adoption of this ladder, not only from the facilities it affords for the escape of the inmates of a house on fire, but from its safety in other ways, and its great durability. Iron attachments can be thrown out from windows, and fastened to it, in the form of light platforms, thus affording an easy means of reaching such a ladder from a window on every story of a house. We particularly call the attention of the public to this safety ladder and recommend its attachment to every hotel and public building.

THE WILD RABBIT IN AUSTRALIA.

Something like half a century ago the wild rabbit was introduced from England to Southern Australia, and now we learn, but certainly not with surprise, that the colonial farmers and graziers are even more anxious to see the "scut" of the last of these rodents disappear from their fields than they were to welcome their introduction for acclimatization. Every one who has any acquaintance with rural matters must be aware how very difficult it is even to keep rabbits within bounds by trapping, and the extraordinary rapidity with which they multiply immediately the keeper's trapping operations are relaxed, in order to give more attention to pheasant rearing and other kindred duties, is marvellous. It is a perennial trouble to most land owners in this country, and has probably been the cause of more dissensions between landlord and tenant then anything else. Rabbit shooting is a very enjoyable and exciting sport, but when a man knows that he is losing at the rate of $300 l$. a year by these prolific creatures, it is somewhat conducive to uncomfortable reflection, and he is naturally anxious to be rid of them. Rabbits have been allowed to increase to such an extent in South Australia, that it would appear that one district of 150 miles long by 30 miles wide is infested to such an extent that the matter has for some time been attracting the attention of the legislature. All kinds of means have been adopted for their destruction, one of which is the blowing of sulphur down the burrows by means of a machine constructed for the purpose ; but this has not been found to answer, as the sulphur, being lighter than the air, returned again to the blowers. At the second reading of a rabbit bill, which was passed in June last, it was atated that one farmer had lost $1,000 l$. from rabbits during the last three years. The principle on which the bill is framed is that the proprietor of every estate that harbors the rabbits shall be compelled, as far as possible, to eradicate them. This principle is to be enforced in the case of the large as well as of the small landholder, and the Government are not to be behind hand in their duty, but undertake to co-operate in the general crusade by destroying the rabbits which are found in such awarms upon Crown Lands.

As shooting and trapping have bepn found to be ineffectual, poisoned grain is in some instances laid for them during the winter months, when other food is short. Hundreds are destroyed in a single night in this way, but great caution has to be used in the use of the poison. The grain is subjected to treatment with strychnine, and it is stated that experiments have proved that the flesh of rabbit destroyed by strychnine is not affected by the poison. We are net prepared to offer any testimony on this point, but we think we should now scarcely sit down to Australian tinned rabbit with any very great gusto.

At a great shoe manufactory in Lynn, Mass., recently, a pair of kid side-laced woman's boots was made from the stock' in just -leven minutes, in sight of visitors.

Out of 294,382 men admitted into the French army in 1877, only 4,992 were unable to read and write. This in regarded as a very strong proof of the stride education has made in that country.

THE SERPEETS' CAVE, MANITOBA.

a strange fact in natural history.

About thirty miles north-west of Winnipeg there exists a large upheaval of lime-stone. This strange mountain of rock stands on the level and stoneless prairie, and is about eighty feet high and nearly a mile in diameter ; the rock is level on top and covered with gravelly earth. It is on this strange elevation that the penitentiary has heen erected. Bat the natural curiosity for which this rock is celebrated is a subterranean recess extending towards the interior. To this cave all, the snakes from the immense extent of encircling prairie congregate to spend the winter months. How so many thousand reptiles of apparently all ages and sizes know where to find the only available shelter from the extreme cold of a northem winter, is not easy to digcover, but it is certain that on the approach of cold weather all the suakes within many miles of Serpents' Cave repair to their winter home, where they spend the time in retirement, to emerge in the spring from their seclusion and scatter over the surrounding prairie.

During the mild weather of last winter, some of the convicts of the penitentiary were set to work to build a wall around the entrance to the cave. When the time arrived for the snakes to seek their summer haunts they found their progress impeded, and soon the strange gathering was incresied by tresh arrivals from the interior, until many thousands of snakes were racing and wriggling around the entrance, vainly seeking an opening in the wall. Heads with small eyes and red tongues were projected in hundreds from every crevice in the rock, and a most unearthly hissing was kept up.

CHEMISTRY, PHYSICS AND TECHNOLOGY.

Utilizing Solar Heat in Algeria.- M. Mouchot, the inventor of a successful form of sun-engine, has presented to the Paris Academy an account of his experiments with it in varions parts of Algeria. In that country he has demonstrated that solar heat can be utilized for cooking food, baking bread, and distilling alcohol, besides furnishing the motive power for machinery;

Niello.-According to the Berliner Tagblatt, the firm of I. Zacher \& Co., in Berlin, have discovered the method of manufacturing the Russian tula or Niello silver, the real composition of which has been guarded hitherto as a secret, and have mado it in large quantities. It consists of nine parts silver, one part copper, one part lead, and one part bismuth, which are melted together and saturated with sulphur. This mixture produces a gorgeous blue which has often been erroneously spoken of as stoel hlue.

Making Gems.-A general idea of the process by which MI. Feil and Fremy have succeeded in making real gems has booy nade public in Paris. The materials used are aluminate of lead and silica. The alumina is crystallized into white corundum, by exposing these substances to a red heat for twenty days. To make rubies, a little bichromate of potash is added; to make sapphires, a little oxide of cobalt. The quality and beanty of natural gems are said to be reproduced in the precious stones thus obtained.

Improvement in Eye-Glasses.-An attarhment to the ordinary spring eve-glasses, by which they can at will be transformed is into spectacles, and as quickly relieved from the attachment, is among the most recent and useful devices that have been brought forward. It was Dr. Cid, the well-known Paris surgeon, who found that the spring eye-glasses injuriously compressed the arteries by which the nose is nourished, making that organ long and thin. The effect of this improved mechanism is to remoro all pressure from the spring, and at the same time to hold the glasses firmly in position, and thus is avoided the irritation cansol, by a continued nse of ordinary spring glasses, as in reading, writing, \&c. The advantage of being able thus to convort at onco the same lenses into eye-glasses or spectacles is obvious.

Large Belits.- We read that, at the Paris Exposition, someme fine main driving belts, made after Sampson's patent, are sho by Mr. Edwards, of Manchester, England. There is one dound belt, 207 feet long, 63 inches wide, which weighs 2,062 lbe., 2184 is made to transmit 600 indicated horse-power. Another is 68 feet long, 53 inches wide, whilst a third is 163 feet long, and are inches wide. These two latter weigh together 4,378 ibs., without cross-joints from end to end, and aro intended for alarg cotton mill, to drive direct a flywheel 30 feet in diametor, 10 feet 8 inches on the face. The combined horse-power are mado to transmit is 1,000 .

A WRINKLE IN FILING.

(Continued from page 330.)

There does not seem to be anything to urge against the principle of these, and they work well, but the plow Fig. 18 was preferred. In each case the long backwardly extending lever raises the forward end, so that the plows come out of the ground as the toam reaches the end of the land ready for turning.
The Gilpin sulky plow made by Deere \& Co., of Mouline, Illinois, was an object of much attention.
Besides the plows for executing the usual work, at this concours there were ridging, subsoil, trenching, and mole plows, implements for digging potatoes, pulling up beets ; harrows, rollers, clod-crushers, potato-planters, grain and seed drills.
The ridging plows, buttoirs, were stocked with wooden or iron rows, and are much used in the potato and beet culture; the the of these are so close that the buttoir will ridge up against the plants on both sides going once in a row. These plows eigh 120 lbs. and cost 85 francs.
The subsoil plows are those which work behind an ordinary plow to break up the hard pan, but not to elevate it above the ${ }_{22}{ }^{\text {sarface mould. Quite a number were exhibited, of which Fig. }}$
22 is fairly representative. The price is 45 francs.
of the trenching or ditching plows exhibited at Petit-Bourg were of two kinds. Une had a deep cutting share, a sloping breast, and at carved board wheh directed the excavated soil on to the land The side of the ditch. This is shown in Fig. 23.
The sloping one is adapted for cutting drains in natural prairies. and sloping cutter and curved share cut the sod, which is lifted ordinary a equally on each side of the ditch. The plow has an The sousant-train, not shown in the figure.
The sous-sol, or underground plow, known to us as the mole plow, from the mode and effect of its work, is used as with us as a mode of effecting drainage of soils where water stands too per-
aintently. ently.
bat one potato diggers were of single and double effect. One has sang beneat of lifting fingers, the other has two grids. The first between the the hills of potatoes and lifts then, the soil falling The second bars of the grids, leaving the potatoes on the surface.
a second grid repeats and completes the operation.
A beet puller, such as shown in Fig. 28, will deplant two and half acres of beet roots per day, and is converted into a potato2 Tger, by detaching the fork, 1, Fig. 29, and attaching the grid, it That point of excellence in an instrument of this kind is that and not wrench it beet, and that it shall raise it and turn it over root not wrench it out in such a manner as to break the tap
threanse it to bleed. The price of the machine, made in throe sizes, is from 170 to 200 francs. - Abridged from the
Scientific American.

[^0]
GRASPING AND CARRYING THE FILE.

In their new work entitled H, $f t$, on Filing, the Nicholson File Company, of Providence, Rhode Island, make the following points:
In using the larger files, inteuded to be operated by both hands, the handle should be grasped in such a manner that its end will fit into, and bring up against, the fleshy part of the palm, bolow the joint of the little finger, with the thumb lying along the top of the handle, in the direction of its length; the ends of the fingers pointing upward, or nearly in the direction of the operator's face.
The point of the file should be grasped by the thurai and first two fingers, the hand being so held as to bring the thumb, as its ball presses apon the top of the file, in a line with the handle, when heavy strokes are required. When a light stroke is wanted and the pressure demandell beconues less, the thumb and ningers may change their direction, until the thumb lies at a right angle, or nearly so, with the length of the file ; the pasitions changing more or less, as may be needed to iucrease the downward pressure.
In holding the file with one hand, as is often recessary in filing light work, pins, \&ce, the handle should toy grasped as already deseribed, with the exception that the hamd siould be turned ${ }_{3}$ quarter turn, bringing the forefinger on 1op, and lyiug alon's the handle nearly in the dirertion of th: l-ngth. In this posi. tion the frecot action of the hand and wrist may be has upon light work. Amatours will find that by following therse directions, the movements of the file will be simplified, ind made somewhat easier than if grasped at random and with, it consideration.

The most natural movement of the hands and arms in fil:ug is to carry the file in circularlines, the several joints of the fing being the centers of motion; this movement of a convex file would apparently give a concavity to the work; the real tend ncy, however, especially on narrow work, is the reverse (owing to the work acting as a fulcrum, over which the file moves with more or less of a rocking motion,) giving an actual convexity to its surface, except when in the hands of a skilful operator. The real aim, therefore, should be to cause the file to depart only so much from a true, right line as will be necassary to feel that each inch of its stroke is brought into exact contact with the desired portion of the work.
The movements here referred to have rufference to those in which both hands are used upon flat work, requiring nicety and trueness of finish, and the difficulties to be overcome in producing even a comparatively true flat surface with a file require mach practice on the part of the operator. In point of economy, the pressure on the file should be relieved during the back stroke; this will be apparent to any one who will examine the formation of the points of the teeth, when it will be seen that the file can only cut during ordinary or advan ing stroke, and that equal pressing during the back stroke must be very damaging to the points of the teeth.

FROM THE AMERICAN ARCHITECT AND BUILDING NEWS.

SPECIfication of plumbing work AND MATERIAL

As shown on plans, furnish and set one 27 Istate the kind $]$ double acting lift and force pump to draw water from well and cistern. Connect purap with these by it lead pipe weighing 3 liss. per foot, said pipe to be run of fett below the surface of the ground, outside of house and down to a point one foot from hottom of well and cistern, and to have id-inch ronnd way stop cock placed on each pipe so that Water can be pumped from either by closing the stop cock on the line not needed. Carry a branch of $\frac{y}{z}$ lead pipe, weighing 2 lbs. 3 ounces per foot, from a point just below the retaining valve of pump to cold water cock over kitchen Sink. Connect to pump and continue up to and over top of tank in attic a $t \downarrow$-inch lead pipe, to weigh 3 lbs. per foot.
As a tell-tale or alarm pipe, carry down from lank, four inches from top of same, a line of $\frac{1}{2}$-in. lead pipe, to weigh $\frac{f}{f}$ lbs. per foot, to wash-tubs in basement. (If roof water runs into tank, this tell-tale pipe may be omitted.)
(Inch that case, say, connect gutter to a point 4 inches from top of tank with 5 -inch lead pipe, to weigh 10 lis. per foot, and to run to weithin 6 inches of bottom of tank. Put a proper brass uire strainer over end of said pipe at gutter.)
Connect a 6 -inch lead pipe, to weigh 12 lbs.
per foot, a few inches (say 6) from top of tank, ${ }^{0} v_{\text {ERFLI }}$ and run to outside of befilding, and Rutter or connect to leader or run into some Rutter or roof lower than where the tank stancis.
At outtet end of this pipe place a brass flap valve to keep out cold.
with a tank (tank to be furnished by owner) with 5 pound sheet lead; wipe the seams and Tank. dot the sides, leaving the lead smooth all around; dots to be $2 \frac{1}{2}$ inches in diameter and 2 feet from centres ;
(t inned tamed copper nails only to be used.) Connect Weighing soil pipe by a $1 \downarrow$-inch lead pipe, Pipe, as 3 liss. in or per foot, placing on said Palve, as near tank as practicable, a it open way the (state kind preferred
e purpose of emptying tank
Run a $\frac{2}{8}$-inch lead pipe. weighing 3 lbs. per Col.D $f_{\text {ixture }}$ supt.y. branches to supply the different hiace with cold water, except sink in kitchen; saide a ${ }^{3}$-inch rough lever handle stop cock on at pleasure. pleastre.
outside cent with 6-inch vitrified drain pipe just outside cellar wall a 6 -inch cast iron pipe, and Waspe and continue same with proper ascent Soll. phres. to the point where the t bend re-
ceives the main soil pipe, which is to be ceives the main soil pipe, which is
through inches and continued up, full size, securgh and three feet above roof, and properly vecured, and to be surmounted with a hood or As show cap.
3 -inch shown on plan, carry from main soil-pipe a Sured to branch up to and through the roof, sehereinbefore te sand surmounted with hood as wastes from basins and baths this to receive $\mathrm{R}_{\mathrm{A}_{\text {N }} \text { : }}$ from basins and baths.

Furnish and set complete one
thr kind range with waterback [here state
Furnish and set one 40-gallon copper boiler,
Brooklyn prescure, dome head, and set the same
Moll.ek. on a lockwood pattern boiler stand,
A) lead supplie 4 with water through 4 -inch Connead pipe, weighing $3 \frac{1}{2}$ lbs. per foot, to be lmiler to have range with sante kind of pipe; said Thit to have the necessary t-inch sediment pipe in moch.id sediment pipe to be connected ceranse boiler at pariensure sink, so as to empty and Cork on suler at pleasure; also place z-inch stop
Furnish supply pipe.
teyn and ap plumbing of three wash
wash trays. to cold water through a A lead pipe, \#-inch flange and thime $2 \frac{7}{2}$ lbs. per foot; and two the kind \quad, $\mathrm{I} \frac{1}{2}$ inch brass plugs and chains, and the necessary length of 2 -inch lead waste pipe, to be trapped with a 2 -inch [state kind, if any special one
trap and trap screw-said 2 -inch trap to be connected to main drain by 3 -inch lead waste pipe as shown.
Furnish and fit u_{j}) one cast-iron sink, size indicated on plan, and to have cast-iron back and ккнen sink. legs [if any special kiad of sink, state it here
to be supplied with hot and cold water through $\frac{5}{8}$-inch AA lead pipe, to weigh 2 t liss. per foot; and two 8 -inch flange and thimble bilb cocks [state kina of bibbs here
J. one to have hose screw for filter ; to waste through $1 \frac{1}{2}$-inch lead trap and trap screw [if any special kind of trap, state it
]; to be connected into 2 -inch cast-iron pipe at a point just below the ceiling in cellar with a 2 -inch brass ferzule, and from that point to the grease-trap outside of house it is to be 3 -inch cast-iron.
As marked on plans, furnish and fit up one copper butler's sink (size 20×14), and set the PANTRY SINK. same in a best Italian marble slab, edges, and base 12 inches dingh, supp, molied with hot and cold water through 3 -inch AA lead pipe, to weigh 2 lbs. per foot, and two upright pantry cocks [here state kind of pantry cocks and kind of plating

1, and to waste through $1 \frac{1}{\frac{1}{-i n c h}}$ waste-pipe, to weigh $3 \ddagger \mathrm{lbs}$. per foot, and be trapped with a $1 \frac{1}{2}$-inch lead trap and trap screw [if any special trap is preferred, state it here.
], connected with the 2 -inch cast-iron pipe, with 2 -inch brass ferrule, and branch into 3 -inch pipe under kitchen sink.
As on plans, furnish and fit up one 14-oz. stamped and guaranteed copper bath [if any BATH. special make preferred, state it], water through $\%$-inch AA lead pipe, to weigh 2 ? lbs. per foot, and two \& plated flange bibb cocks [state kind of bibbs and kind of plating *
to be emptied through it-inch waste, with plated plug, with chain and the necessary $1 \frac{1}{2}$-inch 3 lb . lead waste-pipe, $1 \frac{1}{2}$-inch heavy lead trap and trap screw, and connected into Y branch of 3 -inch iron pipe by 2 -inch brass ferrule and z-inch castiron pipe.
As per plans, furnish and fit up 14 -inch marble pattern, common overflow wash b-....e, each to wash basins. be set in a best Italian marble slab, back and sides $\frac{7}{z}$-inch thick, 12 inches high, and two plated basin cocks [state what kind and what kind of plating *
], plated plug, chain and rhain stay, and be supplied with hot and cold water through $\frac{1}{2}$-inch AA lead pipe, to weigh 2 lbs. per foot, and the necessary length of $1 \frac{1}{2}$-inch D waste-pipe, to weigh 3 lbs. per foot, st-inch lead trap and trap screw, [if any special trap, say what kind], and 3 -inch brass ferrule to connect waste-pipe into Y branch of 2 -inch iron pipe. There must be a line of $1 \$$ inch lead pipe run from back of the two traps under basins, second floor, and continue up to a convenient point above, when they will be connected into the 3 -inch cast-iron pipe, as indicated by dotted lines. There will also be a pipe run from back of trap of bath and water-closet on second story and connected into the 5 -inch soil pipe two feet above these fixtures in same manner.
All lead connections with ion pipe to be by brass ferrules, which must be soldered to the lead waste-pipes, and be calked with oakum into the iron hub, and the joints run with molten tead. All the lead pipes must be secured to walls by hard metal tacks and screws, and not by hooks.

There must be safes placed under basins, bath and water-closet on second story and tank in attic, the size of spaces occupied, and to the turned ip two inches all around, made of 3 ll . sheet lead : have a separate r -inch lead wastepipe with $1 \frac{1}{2}$-nch convex ctrainer to ruti to cellar
direct from each safe, leaving the end open, and not to he conncited to anvthing in cellar

There must be a line of $\frac{8}{4}$-inch AA lead pipe run from boiler direct to bath-room for hot water, to weigh $3^{\frac{1}{2}} \mathrm{lb}$ s. per foot, and to have stop and waste cork placed on it so as to shat off hot watet from the upper part of the honse when necessary. There must be a $\frac{1}{2}$-inch AA lead pipe, to weth ? lles. per fort, ronnected to the -inch lead pipe in bath-room, and to run down to helow boiler, and which must be connected to sediment pipe inside of sediment cock for the purpose of keeping up a continued circulation of hot water. Citre must be taken in putting in this, as well as the thot tiater line from top af boiler te bath-room, so as to insure a fire circulation, and it can only be done by not alloneting ant aepressiun ti be made in the pistes after leaving the boilcr-that is. they must bi kift rising from the head of boiler te" bath-1oum
Run a line of $\frac{1}{2}$-inch A lead pipee, to weigh 2 lbs. per foot, trom the top of 8 inch hot water supply in bath-room, up to and over top of tank in attic, leaving the end open for steam escape, and to prevent collapse of boiler.

Furnish and fit up, as shown on plan, a water closet [here state whint kind of closet: if pat. value closet, whose? if cistern closet, what make?
if cistern is to be any special one, state whose
if to be made by the nlumber, give the size, weight of lead it is to be lined with-size, and weight of lead in the service box-size of cistern valve, and what kind of ball cock; if sloset selected requires trap, say so
to have 4 -inch heavy lead trap, to be connetted to the Y branch of soil pipe by, the necessary 5 -inch 6 lb . lead waste-pipe and brass ferrule. If closet called for requires separate binol, state French water-closet bonel for valve closet, and oval bowl with fan and screws, if istern closet is used supply pipe to cistern to be $\frac{1}{2}$-inch AA lead pipe, weighing 2 lbs per foot : and of AA, weighing $2 \frac{8}{4}$ lbs to foot, if to supply a valve closet.

Chain for wash trays to be No. 2 Safety Brass Chain ; for bath, No. 1 Plated Safety Chain ; for basin, No. o Plated Safety Chain.

The contractor to plug up all openings in waste or iron vent pipes, and fill the same with water from highest point of said pipes. If any leak is shown, the defective joint to be emade tight-in other words, to satisfactorily demon strate the waste pipes are gas and water tight; this to be done before scratch coat is put on the walls.

Over-flow pipes from basins and bath to be branched into dip of traps of same. All soldered joints to be wiped joints, except at couplin's of basin cocks, which may be cupped joints. Leave out all necessary Y branches for work, as marked on plans. Cast-iron pipes to have a coat of coal tar inside, and all work to be done in : vorkmanlike manner. Where this specifica. tion varies or conflicts with the drawings, the contractor to be governed by the specification.

* (If bocins are to be supplied with ant special sUGGESTIONS. faucet, or emptied by any special appliance, state what kind is wanted) ; the same applies to bath tub.

When faucets are to be plated, state whether nickel or sil: :r plated, and if "vilver Alet:, "," whose silver plate is requirea. wow that there are so many neze appliances in plumbing materials, it is absolutely neiessary to state explicitly just what is wanted, otheruise the contractor is justified in using whatever he can buy for the least money.

notes.

Plumber must never be allowed to place any water or waste pry an outside wall of a country house; on ac-
count of cold, they snu.? be run in or on the surface of count of cold, they sov. ? be run in or on the surface of Parll cal
In all cases, the waste, 4 , which the trat empties
must he of larger area the trap and from the point of must the of larger area thi, tut trap and from the point of its junction (this refers to lead traps under fixtures).

The architect can judge from the character of trimmings should be, in order to be in keeping …th the surrounding.

[^0]: Ay whw patent law has just been passed by the Spanish Senate reduced. the cost of a patent in Spain and her colonies is much on payment term of a patent is extended to twenty years

