BULLETINS

OF THE

Aprial Exprriment Asantiation

Bulletin No.XIX
Issued MOMDAY, NOV. 16, 1908

MR. Me CURDY'S COPY.

BULLETIN STAFE.

EditorGardiner H. BellAssistant Editor
Charles R. Cox
TypewriterMabel B. McCurdyStenographer

Buldatins of the Aorial Hxporinent Apoopiation.

-

v 8 in Vhdracriuld ＇دج⿱一𧰨土龰18 INNTVM BIOL Solanls jihbwoilotd yotesem

$$
A C+1=1
$$

2ABTA OY coxprarzs．

1．Iditorial Yotas and Corrmanteg：－

> tpectal object of bulletin. 3fr. Conrad hrederic Hneseler and hia photograph of Licut. Beliridge. .1-1
> Mr. Minfield Beett Clime and his account ofthe 海ight Diamater. 1-3

2．Hacmandspart Voric：－

3．Beinn Bhroagh Fory：－
4．H1acelianeous Cortunicationas－
Thoughts suggented by Orvilile viri ght ${ }^{\circ}$ a dizm astar by Alaxander Q．Bell．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 422 Synopala of paper．．．28 A few thouethts concerning the trictit diasater by G．H．Ourtisa．． $23-28$

A feu thoughta concarning the Fright Disaater by 3．シ．Buldvin．．． $24-27$

The Wricht diasstor by an oyomaltheas：by

The lessons to be learnod from the Fright dis－ astor：by Gardiner H．Bell

5．The Outzook on Ariation：－

Photogroph of the labe Lieut．Thomas E．Selfridge． By yrederic llaeaeler．．．．．．．．．．．．．．．．．．．．．．．．．．．frontiapisce．

Bketch illustrating Hr．Clirse＇s paper on the

This Bulletin is devoted apeeisaly to thoughta aum gected by the diamstor in mioh our Becretnry Ioleut. Belfrides Dot his death.

Tor the fine photorgaph of hieut. Bolfridge whoh Forms the frontiapioce of Wina mumber ive are indebted to Mr. Conrad Yroderic Hinoaeler, a former pupil of the Ponnoy 1 vania Institusion for the Doaf at Itt. Airy, Philadolphia. Mr. Haeseler wai born dens and eductsed oxeluaivaly by the oral nothod havilig ontered achool on the Pirst day that she aral clasa max bogun. He wha the firat pupil to gradunte, uncer the oral inntruction, Prors thest Inststiation, unt the only one of the originul clase that fintwhed the ontire course of inatruction. 路e wa tho sirat pupdi, sont to a hoaring mohoul fros the wt. Airy Inathtuston, having beon placed in the school of induatrial art in Ph ladelphia were pearned thron scholarihipe in throo successive yeara. Whia with two adilitional yenri bt the Ponnaylvnnia Aondery of Pine Arts, gave hin fully aix youra of uctive art atudy. At tho end of that tine ho becane intereated in photography, in wioh his Pather (Albort 3. Itanacier) enooursgod $n i n$, as being is rore practical occipation for a douf non. Thia ham roauted in the
 ion enjoyed by no o hor Philalelphia phosographer. Mr. Mueseler has oortainly unccoeded in frodueing the finest and mont natural photograph of Lieut. Acheriage I have men.

Mtr. Vinfiald Seott tiltac, Photographor of the Doparte ront of Agriculture, is apending his vacation at Boinn Bravest and Biving tas the boneftt of hia oxpert surviene in photow
graphing apparatua here. Mr. C2ime was present at the disage ter to Orville Wright a machine whon Isieut. Selfridge Loat his Life and took the Iast photogruph of the machine in the alr. Ho had juat inniahed the exposure and was changing his plate holdor when the aceident oceurred. He wam the isrst perinon, with the excoption of two mounted moldiors, to reach the acene of the disaster and go to the aid of the injured mon. When the propelier broke he was standing quite close to the sorodroce shed and had thus an excoptional omportundty of observing what hupponod. The aocount wich he has beon kind onough to write for us contains sorve now points not hitherto touched upon I think by other obaerveris. He is docidediy of the opinion that the rachine, inatord of diving hoad down as others have led us to believe, began with a atern dive With the froat control up in the Air. After faling noout hale the diatance to the ground moving backwaras n ahort distance it reaumod its horisontal poaition for a monont and thon divod head downwards on a reveraed path. He thinks that lar. Wright was regaining oontrol of the machine dien it atruck the ground and that if the aecident had ocourred at a considerably greater elevation in the sir, He would have aucoeeded In avorting the entastrophe.

Thim ia an entiroly difforent aceount fron ady other I have aeon and is not corroborsted by any published evidence 30 far as I know. Former nocounta have been uritton by vitem nesses who were at a great distmee awny. wr. Clime was near at hand and had a side viaw of the mpparatus. Hia obe servations therefore are more likely to be correct than these
of distant obaervera. An excersination or the plan aurfaces of the wright aerodrocie led me to think that the conser of eravm thy was not furthor forward than the conter of aurface und may oven hnve beon a little behind $1 t_{\text {, }}$ in hich oase we nicht expect a stern alve co bogin tith folloved by an oscillation bringing about a front dive juat as ur. Cline deacribes it. Lis obeorvations are oortainly entitied to careful conalieration. A.G.3.
\%iroumits 0c8. 25, 1908: by Aleamnder Grahan Bell

In the case of the aceident to Orvizie trichtia siyn ing maphine, we have resaon to bolieve thas a propeller blade eaught in one os the ruddar aires; nad that the propeliar and the wire both broice, leaving the suahine with a single prow poliar in oporation and with ita steering gear out of order.

How Orville Wright'a two propeliers wore placed one on either side of the longitudinal axis of the gmohine. Thue it happened thet whon the richt propelier broke, the lert prom pelior contimued puathing, not in the oentral lime of the maohe Ine, but on the lart side of $2 t ;$ and the nachine at onee turn ed sharply to the rictut.

It is obvious the wach a trarning netion, if not quickly neutralknod by steering to the lert, would eause the mahina to move in a eirele of amal diameter, or even to apin round ifise a top, a condition nes Invarable to aupport in the air, if indeed not absolutely fatel to it.

The only thing posadbie for itr. Wright to do under the circusatances whe to shut orf pover and attaryt to glice to the ground. This he did orith dianatrous reaulte to hinsele and hia pasaonger.

The fatel result to our friond and masoelate, Limut. Selpridge, brings have to us, as nothing elas could do, the advianbility of atuating elosely fall the earaces that oould lead to suoh a onfastrophe, so an to uvaid then in our future experimenta.

The aecifent ahowa ua how earerua we should be to see that our propeliers huve plenty of reock and that thore
ahould be nothing near thers that could posestbiy oatch, or that could possibly be tram within renoh of a rotnting prow pallor by the powertal aucsion axerted by one face. The breake ing of a progeliar in tho air isus evidantly becore a woriouk ratter, and we Fould do well therefore co zonce absosutely aure thnt our propelieris are conatruetod of such strong and sound ranterial that they oould not poasibly brenk under the centrifugni force generated by their rapid rotations and that tha blades are mo atife that thoy could not break by bonding under tho prassure of the air drivon fron thom. In Ledoratary ex eximentas we have had propellera anaah froct all theso onsasea, and we cannot be too oareful in our inopection of propelieris to be used in tuetuad P11撸t.
 that dauble propallers, rotating in oppoaito alrections, alo though exoeadingly cosirable because they elininate the alam turbing erfocts of torgue and eyroacopic action, introduce na element of dunger whon arrangod as in the Vricht mohino.

It Eideht porhapa be saror to tave eoneontric propale 2ora both puathing (or pulling) In the oentraz 2ino of the machine. Then if one is jut out of eccmiasion, the other vili. contimue paathing in the oontrnd line and not to one side of ito Socse dieturbanoe of equilibriva might meili reatait froa uno balnnced torgnt, or oyromoopic action, but tho dungor would not bo so groas as when coetbinod uth an ossoontrie push.

With ooncentrie propellera two engines, one for emch propeller, might be of advantage; for ahould one of the enfines break dotin in the air bath propallers mosid not stop.

One of thon would atili continue in action pusting in the eontral line. It ia hardiy ilkely that both engines, or beth propellera, would give way at the save tiase; and, in cace of moeident to one, the aviator would not be osliged to eone aovn st once without being able to chooue his place of dasennt.

When the aocident at Port Leyer occurred, Jr. Wright did not know exactly what had huppaned, for the rudder and propallers mere behind hin , and therefore out of his aight. He did not dare to lock round very much, for the oporation of hia controlling levers demanded all of hla attontion at the time.

Ihia equasiaen the ixportence or the auccestion made by Mr. F. W. Balduin that the moveable parts of an aorodrome should be placed in front of the uriator ea mueh aa possible, so that he may reep than under conatant obararvation (see divm ousaion concerning frent and rear controla, Mulletin $x V I$, ppos6-44). If anything wont wrong he would then see at a glanget whet hed happened, and would be in a better position to meet the energeney.

3r. Baldwin auggoate thet the vertical rudder should be phacod in froms of the machine instead of at the rear hike the horizontal rudder known as the "front oontrol". In both cases the natural and proper poaition would auem to be at the rear; but no inherent reason exiata why the vertical rudder ahould not be able to operate in front, at least as woll as the front control.

Where it is irypracticable to put moveable parts in front, it nitht be werth while conaidering whethor a fixod

$$
-40
$$

mirror in front might not be of uivantigge into which the aviator could look and see the moving parts bohind hin, or on at ther alde, without the necosulty of turning hia head.

The wright mohine, after the wocident, was round with ita hoed pointsing in a very different afrection fren that In which it tain foing wen the propelier broke, ougesuting
 ed the ground, and hat thus loat $i t s$ notson of tranalation through the air. Whether or net this wan the frmediate eause of the disaster to the winght machine, it is sufe to may, that under present oondstions of aerodroze conetruction, lons of hooduny is the rreategt fannor the aviator hat to foar. This, I think, will be adenitted by sll.

But why ahouid loss of houdwing be accory anited by dsnger? Ihia is of the greatest consequence for as to deterraine for a machine my loae headway as any mavont fron omuses that are quite boyond our control. An ongine may break denn, a prom peller may go, oven an unsxpeeted gast or wind may stop our machine for a monont, and at once Asuggor remuita. What uzually haypens under auch eircuratanceef the nachine turns bead down and divom. What does this indiontef That the mohine it not properiy balancod then headuay is lost. Ghe Surning dovn of tho head thows that the center of gravi ty is see far formaw for
 the center of rrurity is then the cause of tho donter.

How it is aomeathat diaconoerting to find that the tondency of progrous in the Humentapert axperinents has been to advance the gasition of the eontor of gravity in our mach-
ines. This has been done by bringing the place of the avintor further forward in the mohine than before, by ontiteing the tail, by using a hearier front control, and by putting the front contral at a grenter alatance froe the main aupporting aeroplanos. Wle ahould give Grave conalderation to the question Whether thene ohanges have, or have not, increased the danger to the aviater in the event of loas of headway.

Hut why ohould there have bem this tendency of prom greas in our experimonts to bring forward the oenter of grave 1ty. I think it reands fron the fact that we naturally dendre that our maehine whold be properiy balanced whon in rapid filght. The Jung Bug, in ita oarly days used to elimb under the full powor of the notor. Instead of reavdying this defect by the use of a larger front control anvanced the place of the man, thua violating the important primeiple that ohangea of equilibrium should be malaneed by the motion of noveable surfaces, rather than by changes in the position of the convert of gravity.

The center of presaure of courne in further formaxd when a machine is in zotion, than wen it is atationary in the air; and, in order to be properky balaneed, the conter of gravity should oone under the oontor of preasure.

Tre following propositions are important and intexesting and shoula be fulky diaeuasedse
2. If the meehine is properiy balanced when it has no hosdway, it will beeone unbulanoed when headway in gained. The hend then turns 呺, with a tendenoy to continue the turning ${ }^{\text {movenent }}$ until the head pointe vertieally upwards tewards the aky.
2.If an aerodrone is properiy balanead while it has heatway, it will becorse unbalanced when headuay ia loat. The head then turns down, with a sentency to continue the turning zovernent until the hend points vertionlly downuards towarts the tround.

10th are dangerous conditions, but there ia a notevorthy tifforonce between thornte
3. Wo can corruct the clinbing tondoncy by atoering down with the Eront control. because there is headway; but we cannot correct tho diving tondency by steoring up, 50 cause there is no headway.

You cannot atoer a boat without headray far leas a rlying machine. The firat condition is far safer than the aocond.

Whon there is no headvay the iront control can no longer exercise its function as a horizontal rudder. When turned up at a positive angle to the horison it is no $20 n g o r ~ p u a h e d ~ u p ~$ by the presaure of tho wind of advance. Por the sare reason there is no adr proasure againat it to jush it down wen turnod at a negntiva angle. It ia merely paasive in its action and reaists the very upward and dommard turnine movonents it would oause in ita nctive condition.

Whare tho machine in hoad-heavy when hondway is loat, as In the aocond case noted above, the rachine tends so turn dover wards nt tho head, and the aurface of the front control reskatis this turning cendency.

At Firat aight it would appoar that by increasing the aurface of the front control wo oould prevant a dive, but consideration will whor that this is not ne.

Uhen headray is lost, the presonce of a front eontrol will not prevont the sendency of a headehoavy machine to turn head dommards, hovever large its aurface may be, or howover

Par out it may be placed in front ar the main aupporting auroplanos. The most it onn do is to retard the turning nowenont. It connot provent it. The rawohine wotains a tendency to turn cocpletely over until the head pointe vertionlly downwards towarda tho ground.

Thin is a dangorous tontoncy no: fully roalined by us. I thank, and tho casate not claarly underatood by mal. Lat Do try to explain tho point.

In a stationary mohine if the centor of gruvity in too far forvard for correot balanoe the meschine turn ovor in front and dives. If it is teo far back it turne ovor backwarda and divos storn towns and the anfo position for the oonter of gravity liea noezomere betwon. Is not this goint the geomete rical conter of aurface of the tholo mohine *the geocsetridit center of all tho ourfacea concorned including the front contral?

Whon thu machine ralle without any motion of trank-
 not "headmen*; and the goosyetrical oontor o? surface beoorses the aenter of proasure or roaistanco.

How as the machine falle the extended aurfooes rom sist the motion, being pushed upwuris ts it were by the air proasure below. Ir sherefore the contor of prosaure and the contor of gravity aro not in the anese vorticnl $2 i n e$, a turn* Ing consile is produced wioh tonds to turn the mothine around an axia betwoon the centera of proasure and gravity: or rather in thia ense, the conter of prosaure ia itsols the aucis of rom tation, for though the air puathes upuards againat tio surfaoes,
it does not auceaed in pushing then up, thoy are falling ald the time. It onty aucooeda in retarding their drop, so thet they fall more alouly than the contor of gravity and thus produee the Gurning urfoot.

How whon thore is no hoodury it appeara that the oorter of presurure is in the geosetrical centor of surface. If this is wo it follows, the if tho oonter of gravity la alom placed froci that poaition, efther forvard or bnokward, or to oither oide, tho muchine tenda to turn over on the hoavy oide until the center of gravity cocsos vertically undor the conter of preasure. It th a head-hoavy machine the tondency would bo to turn complotoly over forvards until the hend pointis tounarda the cround, and no front control could prow vent it is the machine ham no hoadway. Hore ilea che dungor. It ia obvious that re must atudy tho oause of chis tendency and coabst it is poasible. Porhupa a ginizo may nake ry position more plain.

Subsestute for the conter of eravity, the sod of a pondulua; and, for the conter of preasure, the avia wioh supports it.

How hold the pendulun ouc horisontally froci its point of aupport asd wllow it to drop. The pondulum whll then turn upon its axis until the bob coves verticnliy beneath the point of auppert. Ho rasting place is found antil tiat poaition is remohod.

How can ve prevent this action by giving the phentuab if a front oontrolp prolong the rod of the pendulum sa fart as
ou Liko boyond the bob, and attach so 解 a artrerse end a resisting aurface whioh tany be as large as you ohoose. How hold the pendulue out horizontally as before with the rosiaiing surface also herizontal and let fo. The penculum will awing nore alomiy than before on acoownt of the reatatance of the frons oontrol; but the point I would ensoreo in this, that the resisting aurface howover large und howovor far recevod frov the axis of rotation, will pot prevent the surning mownmont fros contimuing atomaliy to the very ond, whon the contry of gravity conce direetzy bonosth the onetor of mupport.

The bane is true of an anrodroese fioh is hond-hoavy in the allghtoat degree. The front oontral will not provent it Fron turning combletely ovor, hoad dovn, if it the no hondway: Only headray can save it.

How it ia noteworthy that an aorodrose with its oeno ter of cravity at the conter of surface does not heve this tondenoy to continue turning oxer, even though it whould be tipped one why or the other.

Suppose it should be tapped allohtly dow in front. It would bogin to alide coun an inolined plane; but gravity his no tendenoy to make the dive becoco vteoper, as would be the case wore it head-heavy, aternmonvy, or aidemhasvy. On the contrury, from the \mathbf{v} ry farat gravity axerta a corrective influonce. As the center of gravity fenda to asauce the hownat poasible positionits action to to lover the elevated side of t : o aerodroce, instead of doproaaing the lower alde atill mord thus chusing the aurfaces of the nerodroce so return to the horinontal poastion.

Chis oentral position of the center of igravity, wikes it pisoos the serodroese in the mriest oondision if it has no hendway, has it: diandvantages. Tho aurfaces wil net reo ratin horisontal for any great length of tirse, but, under the sotion of the varying conditions met mith in the air, चin2 tip alichtly ono why or the othor.

Por exwaples- Let the urrface sip down a $210 t 10$ in front, mat the renchine elidea down forwards in stable atupport 30 long ns isa houdway is inconsidorable. As more heuden Thy is granod the conter of preaguro moves forward while the conter of gravity remains behind at the oonter of aursnoe. Thus as the ruohine glides cummards on its incilned path the contor of efravity, boing bohind the oontor of presaure londs tho raschine dovn bohind tho axia of rotestion, so that travisy ovor-baloncos tho nochine beiolwards perforning the Sunction of a rucider to steer the mathine wid to the horizontan position agrin. But during this proousa bhe raohino has gainad hoadmay so that 6ho curning movornont would so a 115620 fur fom than the horizontal poaitson, and tho omohime vould begin to climb with its surfaces tilted up in front unti2 its hoadway Whas exthausted and it cane to a stop. 2ivo aurfooes then being inclinod dommards at sho rear, the ruchine would begin to slide beckuards down an inolinod plane, but eravity would nots act to inoronse the inclinntion. With tho remappoarnnee of hondway, which in this oase would bo stornomy, wo center of Gravity would be in front of the ooncer of preasure and thas aghin nct ma a corrective influence to bring the machine up to the hordmontal and beyond.

Buppose that tho originna incianation ohould thico the form of a fip to one side, thon mrter gidding down hill a litile may on that side, the machine mould move up until its asdo-may wha oxhameted, and bhen comence a revorse gaide doun on the other aido.

Thus, hovever the aurfaons thould happen to eip in the firat instunce, tho rashine would foll with an oselliatom ing eotion, eirat moving one why, ant thon reverasing 2 ta path

Tho inclination that could be nost anaily controlled
y tho aviator is tho dommard tip in front, so that the moohine should gain headway rathor than aternway or side-may. Thia can be sooured by baving the centor of cravity a little in front of the conter of aurface, only just aurfielentiy so to prevent the poasibility of a stern tip. When the reahine then begins to clide down hill in front, the hoadway grined alli onable the aviator to uee his frons control as a rudder. The furthor nowersent of his rwohine mould then be within hin ow ooncrel.

Ve nre hore of course dealing with a rswehine that han lest ita notive power, so that tho propalling power is erawe ity alone. The avinsor, biving seoured control must proserve hia hoadwny at all basards, or he will 2000 his steoring pover. Hie whould bo careril to koep his machine on the downGrade. Shoul he steer the mochine on a horisontal path, or upon un upmerade, the resistance of the alr would soon chook has ndvenoe and he would be helpleas until the bochine whould mnde another dive.

The fryortant leanon to be learned is that the oenter of Iravity, alathough it ahousd be in front of the ounter of aurface to aeoure a front dive whon houduay is leat, ohould be as littlo rersoved froz that point as posaible. The furthor forwasd the conter af gravity is placed, the quicker vill be the turning action produced by cravity and the etoeper the ©ivo that is necosasary to restore heudvay.

Those conditsons then are i-portant wioh reduce the rapidity of the turning moversont, so thes there my bo tiree to zain steoring heatway betore the head has tipjed down to a dangerous extont. The conditions that roduce the rato of turnine ares-
2. The conter of cravity as nerr the centor of aurface as possible, wo that gravity may not have much leverage to belp the turninf reyersont.
2. Tho tront contral very far roroved froc the main aupporting aoroplenes, so ab to aecure the advantage of leverage in rem alating the iurning moversent.
3. Large nurfaoes upon she front oontrol to incroase its resisting aotion.
4. A horianontel teall very far romoved from the main experting aeroplanes, so reo tard the turning noversent by the proseure of

5. A lurge aurface for tho tall to inm orease its resistinc action.

Ail theae conditions tend to roduce the velooity of the turning raoversent, and thererore facilltate the moquisite ion of atooring headway before the dompmurd tip has beoose too ateop for anfety.

She eonditiona that incrase the velocity of the turning movement, and hence increase the dnnger to the aviator whon headian is 2oat are the revorge of those vias-

1. The conter of gravity for in front of the eonter of surfises.
2. The front contrel near the rain planes.
3. Thall aurfacea upon the frent oontrol.
4. The tail mear the supporting aeroplanes.
5. The bail surface mall, or omitted alm together.

A lurge fromb control woll removed fram the main anroplanea, and a large horizontal tail equally far remeved behin wald give grens loneltadinal abublifty to the noparatua; and by this wo men in reality that the verthoal tarning nวขาสenまs would be alom.

I tis deairable however, that when in mosion we ahoukd be able bo atwer up or dom faickly if so wo deasres and by making the front censrol and the tall both moveable, wh aseure the very dosirable oambination of quick ateering when in motion by moving boih controle aimultumooasly so na 60 eoraperate with ono snother, und slow hurning then heacway la luas by halding both fixod.

There is atill sancther faint about the front eontrol. Trie looution of the axiz upen thich is wums is ipportant. Wo are acenatersed so plaon the wasa nearer the frontedge than the raar, at at to secure the point that wan tire nachine in In rapid motion the center of promaury of the front control shall fall upon the sxis. This of course reduces the powar
necessary so turn it beeause the olv prossures are noarly bade anoed on elther side of the acia.

Hut how about the pparation of the front oantrol whon the machine has loat hedeway? In uuch a ease the main gurface of the front contral being beinind the axis of rotation and she center of prewaure being also behind the aris in that case, an unbulnnced presaure would exist upon the wnder aurm Sace of the front control whon the tsachine begina to turn dew in frent for a Alve, wich tende to 21 ft the rear of the front contral, and cause the front contral to se inelined dosmmaras in front, t u ik assisting the dive instesd of reaisting it. Thise at the most eritical tires, thon houdway ia loat, it would talce nore power to nowe the front eontral, thnn under ordinary oirewastances fhon the machine ia in mosion.

Wha knows but rint thia aetion may have eontributed So the Wright disastert With atrymees lurge evough to be difo sicult of manipulasion under the ordinary conditions of rapid filght it racy well bn posaible thet the avistor may not have arfficiont strength to resist the thrning tohdoney of the front control at a eritical mersent of time shan it is inportant that the wurfuees ahould offer thoir rackivue realatance to deseent Why would it not be bater to place bhe axia of rotation in the middie of the front oontrol, ag she to ruke it us eady an josalble for the sviator to hande it when hoadmay is loat.

If I ata right in ray various ilned of roasoning, it is extronely irportant that the centar of aurfaee of the thole maehine, then the front contral it hold parmilel te the mein aeroplane surfseos, whould not full behind the center of

I do not think it did ao in the case of the Wright achine. I made a rough asthate of the ares of the front control, of the area of the ratin aurfaces, and of cholr diam tance apart, and case to the conclusion hat the conter of surfisce, undar the conditions specified above, owe very near the front eage of the main noroplanes. The center of. grave ity appeared to be at about the suse point, or a little further back, so that if tha aurfaces of the front control hed besn held rigidiy in their position of nacimion reaistance I do not aee how a disausrous dive ound havo resultad. The evidence however acecis bo point to she conolusion that the ajparatus really did make a dive hoed firat.

I oun onls underatand thia, upon the axpoasicion that the gront contras was incilnod at the tirse of the fall. efther by the action or the aviaser, or by the unbrinnced preusure of tho air bolow it when hendway was lost. It As obvious that if the aurfocea were very men inclined tho aparatua ligigh purhapa hive become head-hoavg; and this hoad-heaviness would huve beon inereasod by the fnete that the machine earried twe men inatead or one both aouted at the front part or the iever meroplatee.

Suypose for examie that in anch a machine the wurfaces of the frent control mould be turned inte the verticnd poaition inatead of the horisontal, so as to be placed edgewaya to gravity, then the shole suppert of the suchine would have been threwn upon the ruin aaroplanes. The oenter of gravity would then be in frent of the eenter of surfaee of the main weroplanes, and the mohine would becone hond-hoavy.

Of courae it whe impousible for the front control of the Fright suchine to shasume this vartion position on sew count of 1 initations to its motion. But if the aurfaees were much inclinod head=houviness nicht perhups have been produood though in a Leamer dogree.
of couree it da irqoasible to any oxnethy what hape poned in the owse ot tho Wrigite rachine; but I vould urge upon the Hurnondsport narabers to calouk te end rate sure that tho contar of wurftee of tho 3 ofver-Dart ia nos behind the conter of Grivity when tho eront control 19 placed in ita most resistent position. I would slas luve thon consider the adviatallity of plnoink the axis of rotation in the miadle of the srant control rather than further pormard.

There is one othor point and I have done. In an aorod Arocio aithout hoadway a atable condition reasuls wen the
 center of surface.

1. If tho contor of gravity be verticaliy above the conter of suxpace, then, though the zachine ia badanoed, it is In a atate of unatable equilibrian, 2ixe to whiringecane wtanding upe right upon ita ond.
2. If the contar of gravity be belaw the conter of surface, we have a atable condition with a ilability to aaing, like an oscillating pondulum huns froe its support.
3. If the conter of sravity and the conter of aurfaee arc absolutely comincident, is stable condition reaul te thich the action of gravity asmnot diaturb. Eitis point is wel2 worthy of conaidorabion.

In conclusion it secus to ne desirabie that the eonter of gravity shoald be a 12 tste in front, and a 21562 e belaw the conter of aurfaeeg but that the diaplacesont from this aufo

$$
-2.7=
$$

position thould be ms silftht ad pousible, and only aurpicient on the one hand to provont tho poasibility os a stern diva, and on the other to be oertasin that the rumohino will send to keep rictht aide up.

gyiopgio or pleximy Pap Par

Orvinde Wi het is disaster deacribed (1); Pointa for tho inatection of propoliors (2); Two propoliors rotating in opyosite directions dosirible but thoy ahould bn conoontric (2); With concentric propeliors two eneinoa advino able, one ior onch jropelzor (3): Lovoable prrta hhould be lopyt in istine and therestore piocod in front was euch 38 poasible (3); Vorm thoal rudder could bo placed in Pront (3); A nisror could bo used to soe bohind and to osbhur aide ti bhout Eumine joad (4); Inroos360 csube of Wri, tit ilinator rrobably 1085 of hoaditay (4); Fans of lioadimy (freategt drum (GOr aviator has to foar (4); why dungorous? Bercnusso wanesly machine not proforly bulanood ahen hoadimy 102046 (4); Ceuse of draneor? Cancor of srisvity Bonomnily too far formard for corroot baluzzo thon hondway 1 a lose, so that تuchine turns how down and dives (4); Tundoncy of procresa st Harnondaport has been to ravance the position or tho contor of cravity (3); Mi? 20 properras bilance tuschane onile 1t has hoadury (5) Doon thin violate principle that ch engen of ogatilimilu should be bnlanced by rotion of roverbie tarpaces rativer thin by changon in roastion or concor of gravity (5); doocrasend comaidoration of fuestion whether ingzondaport changea hove snoreaged danger to aviuter in ovont of loss of houdany (5); Throe propositionsto Machine properiy bohenced thon it hous no houduny bococeas inbolumoed thon hoadwny 1 a trined ard clirbis. Hachine properiy balanoed when it has headvay heaco en unbalanced Won headmay is lost and divea. Avistor can ateer dewn to correct the clirb becouse there is houdray, but cannot ateer ip fo correct the dive bocause bhore is no hoadmay (6); iront confrol carnot oporate bs a rudiar without headza, tiorely offers ysasivo reaisbince to turn ing moverient that jodiacen the dive (6); yront contral vithout headim cunmot provent turne in; moverjent of headmorvy muchine, onls reo tsidas it, no zhat it thaes longor finc for hoad to biam vertsondiy donmaruda (7); condition of nachine without hoodinay oonaddered in dem tesil (7); jefocta of ohange in poastion of oenter of cravity (7); Concor of proisoure in genoryetrical conter of surface (7); Benlmoed Ghon conter of (Jtulty and ooncor of misfnoe in sacie vertioal line (B); If oontor of Cravity in front of oonter of aursace minchine tends to turn coctiletely ovor in front till houd pointa comards pround and, without hoadway, no frons control oun prevont it (e);

This oustion onforced by pondulus afinze (9); conber of cravity at conter of aurrsoe no torm oncy to continue turninc over if ruchine tipa ono way or acher (9); jluing dom hill with front tipped doum no bendency to incrense aboopnoss of dive (10); (uvity tacts as es rudder to atoor it up atgin (10); 34ardvant ago oscililitom I: fishline (12); Centor of ratity ahoult be a 2 itile in front of conter of wirface, but ond auficiontly ao so coternine that directson of itp ils bo sn front iso te to jecure hardimay rabive cinul cornomay, or aidommy (11); Tin hoadmy crimod brince melidno urctor conm szol uf vi tor (12); ite who la aleer on foum Crude (22); Is he atoora on ho-isontal proth, or on upecrade bo 1532 2one 110 houdray and won bo holpzon uncil nochor dive occurs (22); Contistions the soctuce ero otupnose of to initini divo (12); Condictona that increase it
 roveable sectres grets ionesculimas ot bilsty When both we hell ilwod, whi treat quaclencss vertionl stoering inot bowh ro movol in comoperation (1) ; Axis of eront conerol nearor Front inu rear incilitatos manipulution of front control mon there io headuay but more direscult to operrtc won headmay is lost roguirea toine poner to oporate (24); faster surfaco o fros: control dein Dohint areis it ia lf ible to be bited at nogrtive ancie by prodauro o" air undornoath men ho ndwey ia 1001 thus masiating a dive inutend of resiasting it (1:): Suy oots that axis ahould bo in riddie o Sront control (2); Conter of burfroe of whe trachine should not fall behind contor of zuv: ty (15); Hot behind in irig hit rachine when front control parallel to rrin surfaces (15); twohine becoree hond-henvy with Front control inclined (ló); Vas it anolined at tirye of sccidont (26); decormondation to muse sure int contor of aurface of 3ilverDurt is not bohind center of xutity mon front control in nose rosiat nt position (16); won inchine bunnced ti houk raadmay if oenm tor of cravity is thave nontor of alytace oquilibriun unatible; is Dolow, it ia thale with tendency to aving like is pendulue, if the tifo centera ro co-incitont Gravity has no tondenc: 6o alatturb tho bilance (2\%); Locorje nondation thast conter of Jivity whould be ali thely in edwance and alis titily below conter of ourfoce, but tas lit6le as pouasho consistontly with revontion of stern dive, whd kooping ridt olde up (17). A. (.3.

By G． H ．Curtiss．

Havmondaport．Oct． 30 ．1908：－I have been reading with great interest your paper on the cause of the Orville vricht dise aster．Your deductions are confirroed by our eagerience with the＂June Bug＊．

Wen the aviator ast close to the min surfaces，good landines were invariably effocted，the rear whoeln uaually atriking firat．As we noved the aviator formard，the manine ahowed a tendency to pitch down and atrike on the front wheel first whon the power was ahut off．I rould augreat the pollowm ing method of overconing thia difficulty．

Halance the norodrone se that it will slide at a $10 w$ apeed of 12 or 15 giles an hour．Place the propeller wo 22 above the center of reaiatence so that su the apeed increasas， and the conter of prosaure travela formard，the eondency to 11ft in front will be overeque by the push of the propeller and the machine should Ply at，aRy， 40 ziles an hour with the front control in a noutral poaition．Whould the engine atop， the tendency to pitch dom forward is neutralized by the abo sonce of the thruat in the upper part of the aerodrome．

While the punh of the propeller will not exactly bulance at all apeeda the change in the conter of pressure， the difference can be taken care of by the front oontrol．

$$
\mathrm{G} \cdot \mathrm{H} . \mathrm{C}
$$

A yTc By P.W. Dalduin.

Beinn phreache Hoy. Hhe 190g:- Hy candid opinion is that wo will never know exactly whet did happen to Mr. Mricht, nor learn any usarul leason froz wheh noagro and conflicting aom counts as me have of the disunter.

Unleas lif. Wright himaelf should soe fit to enlighten us there is very litsle to base our deductions upon. The indirect cause of the loss of control we know wes due to the turning action produced by the eocontric thrust of the thbroken propoller. The leason from thin da clear and convincing but further than this it aearas Anngereus to apoculate as to tho irmodiate cause of tho aubsequent dive vith reale ly aroeked the muchine. Our knowledge of tho sacts is very linited indeed.

Vithout the least disparagent to ur. Clime who we one of the many firat to arrive at the noenc of the dianater, or to the voraion of it, utilich he mas good onough to give us the bomorit of. it is only right to note that such was their oxcitement that eye oitneasea could not agree oven as to Which propeller broke. How if we are to arrive at any userul conclusions it soons to the that wo suat confine ourselvea to the Pacte and roason onk fron that wich wnow to be true. There are pe zany plausible explanations that then we oonsidar the extrene likelinood of a conbination of any nuaber of thema a diagnosis of canse and orfect is almost oertain to be aatarny.

If a critical abudy of the iright'a mohine ahould diacloas any defect it would of courae be decidediy holpful, but for wy oum part I can Find nothing faully oithor in
principle or dosign. While I attach no ixportanoe to ry oun vievs ipon the aubject, in the hope of 111ustrating the oome pleaity of tho problon, I ulli mugceat two ochor factora which any hwe eontributed to tho scoident.
 a vertionl monae? Ehat 13 , wa the line of the propelier thrust at or noar the center of resistanco, or was it above this point?

Socond. Whas not tho center of Eruvity too low eive Ing a pendulues action tending to incroase tho ayplitnde of nux suinging motion. Hoth of these features, if true, vould be accontuated by the additionn2 weicht and hend resiatance of a pasaengor in a two man R21ght as Mr. Uricht had it arrangod.

All that we really know of tha sctions of Ghe zmoninn could be most roasonably explained by the thrugt boing above the conter of rosistance, and the conter of gravity boing below tho conter of reaiatance. I do not for a minute elain that this vis the cause of the scoident, nor zould I like to infor it, but from looking over photographs of lit. withto is mochine, it aeons at lonst as roasonable as that it was hoadMeavy th suggosted by Mr. Boll.

The unoaky p itching and soonding obisorved provioualy when Mr. Wright Mlev in a guaty broose may havo beon caused by the propeller thruat boing above tive conter of reaiatance and the contor of gravity acting as a pondulue.

On the other hand this tondonoy ran hrve boen due to the rotary motion of the rind, so that whon as sirgle an acto Ion as this is opon to arguroont, it seors hopeless and un aciontifie to make doductions fron auch flimay jromiana as we
havo.
Vr. Beil'a ginize of a pentulue loes not geem to mo to be very wroll ohosen in as ruch as the aris about mich an serom drome tends to turn is not rixed.

Mr. Hell anyas-
Whon hondway is 20at, the prosence of a front control will not revent the tendenoy of a hood-hoavy mohine to turn head doumwards, however large its aurfaoe may be, or hovever far out it may be placed in front of the main aupporting aeroplanea. The mont it oan do is to retard the turning noverzent. It ounnot prevont it. The rachine retains a tendency to turn cormpletely over until the hoad points vorticaliy dommenreds sownards the tround ${ }^{\prime \prime}$.

This would undoubtedly be srue wore the oenter of surface (or matevor point the rsachine tonded to turn about as an suin fixed in tho tir) but is this the oase. Let the rache Inc lose hoadway and fall in this way. If it be only slichtly head-hoavy tho turning action alli thon be slow. It will quickly acquire headvay due to the horisonnlly resolved oompoment of preasure being a propoliling force. Tho mohine, arili and all will then nove forward, the oenter of preasure regain its poaition vertically above the oenter of gravity and balanon be reatored without the machine ahoung a concinued tendency to turn cocpletely over until tho hend points vertionldy dommards tomards the cround.

逝. Bedx': goneral concluaions nro of course correet and ahould guide us in nos producing a budy bolanoed moohine. I do not quite agree with wat he anya about the axis for a front oontrol. To pivot it et the oonter of aurface mould cive us a $3 t 111$ mero dungerous arrangersont. The conter of pressure would bo in front of tho aris at $h i$ in apoeds, a positm

- 0

Ion of unntrblo equilibriun wich would ranto oontrol difficult and loas of oontrol zuch more dangerous than wa we have it Bt present.

I think we vill learn more sroci a oarefial study of the wivizto is machine than by guoasing as to whet hyponed to it in the oir. Pov.B.

THic wixar accidan ix sil By W.S. Clime.

As had boen 5 daldy ousten sinee itr. Wriche a arrive al at Port Moyer, gopt. 27 Iound me the the Port again to witm ness inother of his apectewoular elichts. Sho gissaing of a oar mado ry arrival the the port monernat later than unand that ovenincs, and upon roaching the wouth ond of the siold. the notor was alroady hurming out ita merning note thest the Plicht was about to begin. Doeiding to romain whore I wae and deasirous of soeuring a photograph of the machine berore it acgulred the normal plying height, I amited ita coning . and exposed a plate as it awopt by with the grace and asse of a aoaring bird. yor aoveral oocplete cireuisa of the fleld the filcht was unevontrul. The novelty having worn ors to such an extent that one no longer kept his oyes glued to the machine, but only grave a glanoo uppard whon it vent direcely overisead. It was at anch a eirse that Vright oould be soun, hands on levors looking straldet thaod, and tavat. Selfridge to hia rigt, sama roded as cool as the daring aviator beside hirs.

Whlle malking over to the werodrocie whed and in front af it, after having made min exposure on the machine direethy overhead, thore was a ornok like a piatol ahot cocing froen above. Loozang quickly up I aam a pioce of a propoller blade twirling off to the mouthrard. llealising inctinctively that something terrible was abouk to bappon, I stood rivoted to the apot for a noroont with ny oyou on the nuchine. Por a brief period it kept on its cexrac, thon aworvod to the lort and with a awoop baokinarda, but in an ingaot porpondioular
manner it foll for hall the 11 istance to the fround. Thon auddonly righting itmele regainod for an instant its normil position only to pitch formard and utrize on the parallel flanea in front for altering the elevation, raising an irwens: cloud of duat that mosaentarily hid it froci view. The terripic inpact instintly redueed the atrueture into an inconceivable nas of $\mathfrak{f r w c k a g e}$, and it was apparent that the muchine was partially inverted, the skids being on the fop, Ind the nschine lying in a poaition at right auglea to its course then the accident occurred. At topnost apeed I ran over to where the machinc lay and found that two mounted soldiors had preceded me by a few seconda. Throwing ty camers to the round with sufficiont force, as I diacovered later, so knoek 11 of ry plates out of the holders, and break half of them, I cau ht hold of one of the curved aurfaces and with all my atrongth puahed it up and broke it. Hr. Wright was under it and a few feet from me apparently in great pain and moaning. He had fallon aeross a wire stay and one of the struts of the nachine, and was awaponded by hia chest and atomach. His foet were baroly touching the ground, and his hands were hanging liey; blood was atreening dow his face and triokling in a tiny streas fraz his chin, but he was conacious and feebly said, melp mew.

Liout. Selfridge was lying on his back aroast direct1y boneath Wright, but to Mr. Vricht'a right. One of the enlisted mon reaching ovor ouught Mr. Wright around the body and lifted has eloar of the wrecknge. It was then that he exclainod me careful of ty leg. It is exceedingly difficult
to deacribe 7 th exnctness just wht ones rovernents were siring the intense oreiteraont of the moramnt. I havo a howy recoliection of the two nnliatod mon and myavis litisng up and carrying wr. Wright cienr of Ghe dobris, hnd kNing hin on the grass. Murning buck to the machine we tried out utmost to raach liseut. Belfridge, tho wsas $2 y$ ing on his back rud had apparently atruck the tround with tho beok of his head and base of bive spine. Hia knees were alidatiy drawn up due porhaps to the areoknge bonnath hir. Wire stays, pieces of cunvas and broiton strista vore piled in confuaion about him, sud is twa dupossible for the fow ot hund to do more than Peebly attempt to reach hin. Hism face and olothing were cove arod with blood. Ho Fan umoonselous mad is ho groke at end I Aid not howr hine.

The Last rays of the motting sum ware gone, tho drupneas of night was in the nir. und a slight fog whe nromy onveloping the distranee. The ailence was unturoken erve for the L ow moaning of ofright, rand an I Looicod about zae in a holpless sort of why a wiord spooteole presented itnelf; hornemon wore fewloplng nndly sorosa the broken plald in aur die roction. A picture of $2 y$ ides of a oavalry oharge in sotuni batble, nd in their rear is mass of humnity blended together by tho twilight into on Low black line, ard reppronching with over increasing rapidity. It sook but a fow minutes for the horsersen to travel the thire of a nile to the wreek and on their arrival pnnterioniws broke 2oose. Orderis for she aribulaueo, shosta to prevent aroking and atriking of netches, the odor of gasoline frocs the broken sank boing strong in the air, the
pushing back of the over increaling crowd by bhe soldiars and tho ruahing here and there of netrpaper correspondente and photographers. A ofrixing con wast to the forrex period of deathly atilineas, but a relief to ohes overwrought nurves. Willing hande soon extrieatod tiout. ivelfridige fron the \#reckage and phyaicians at hund adminiatored as best they could to tho two ingured reon. After wht goomed an intorminohl lonith of time two stretehers were bsoutht to the scenc, and the unfortuntes placod upon then shet carriod acrose tho lones field to the hompital.

The aiveraity of opinion as to wich propeller vas broken, was probably aue to the poouliar pouition in ofich ch ruchine luy. In some mnner too quitok for me to porecive, bhe口uchine turned at rijut ungles to ita path of llicht and was headed to the northtward then it atruck the fround. The wreek was ao oomplote that it was difficult to mace out its originat conatruction, but that it was the right propellor I an convinced, as I diatinotly remorber noting that the propeller Loward the anst had beth its blades broken off completely, while the one tomard the weat wan unbroken. This wo:ld heve rande it the itarboard propelier that was brocon. Photogrophic eviconce had aince corroborated this fact.

I agroe with Ur. Wright thet if the propeller had broken at a Greator diatamee froc: the rround, whe accidont would not hnvo ocourred, the mahino wad regeining iba oquie libriun when it atruck. The tcooctonying diagram will explain the position of the machine, and ry oum it the tirse of the accident. Wos. clime.

DIsAarzat ay Gardiner it. Boll.

Vo are very greatrul to wr. Clime for the article he has oritten concorning tho Vrigtt disaator at Fort Woger. Nr. Clize had undoubtodxy a ponition of grast advantage from which to view the aceldent, and he had the rood fortuno of being the Pirat civilian on the riold.

It haa been auggeated that if we knew just what soor: place aftor the breaking of the propoller fhile the machine was in the air, many valuable lasaons tadoht be learned fron the accidont. Undoubtealy we whould gnin much if we could enow the aetlone of the machine anen the propellor broke; but 13 thia not 2mpoasible?

It in very dipficult to follou tho manoouvrea of a body in mid-adr: It may be because the oye has no derinite background by filich to gauge the direction of a noving object, but however this nay be the fact is irportant and only goes to ahow the holpleasnoss of deducting practical knowledge fron such a oase as this.

Do are told that there was a roport lice that of a piatol; the machine iurched formard a fen timea and cose to oarth. Yollowing this the utrost conrusion reigned. Tho erove one and all ruahed nadly to the acone of the diaanter. Socebody callod for an arbulance.

It was intoresting to know the dirforent viewe on the aubject of what happened, but technical2y shoy oan be of no inyortance.

We are asking a man to deacribe acourately what hape pened in the ajace of a fow aeconds. We are not taking inte
-200
consideration the intense ercitement irwediately following Which alone in opoagh to blook froen the mind of the orlmest the nost conmonplace circuastances. We are niming a man te doacribe accurately the manoouvres of a mohine ariven throug out space, performed with ${ }^{\text {warning }}$ in the swinkling of an oye. We aso not taking into consideration the tromondous rayidity With which che rachine perforned thoae ourious manoouvres in mid-alr. Wo are aaking hin to put com in black and wite that ahich he actualiy axw, yea, thet mich notually happoned, ao that the world ray know - tand bonerif by the knosiodge.

Ho two stories aro the anum. The viev of the locul preas agant is of litile inmortance. Hie wan there. Ho man it. Zherefore it was his duty as a prens agent to relate exacely Whit happened in detail. He ald not realize, or it was not hif business to realise, thet thero was every roamon why he mould not know what happenod; and if he groos on tolling the arne atory to a new victin oach fine, with a fea variations, he

