The Institute has attempted to obtain the best original copy avaitable for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée

Covers restored and/or laminased/
Couverture restauree et/ou pelliculieCover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajouties lors d'une restauration apparaissent dans le texte, mais, lorsque cola était possible, ces pages n'ont pas été filmóes.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurees et/ou pelliculdes

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées
\square Pages detached/
Pages df́tachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression
Continuous pagination/
Pagination continueInclucles index(es)/
Comprend un (des) index
Titie on hesder taken from:/ Le titre de l'en-tt̂te provient:

Titie page of issua/
Page de titre de la livraison

Caption of issue/
Titre de despart de la livraison

Masthead/
Générique (píriodiques) de la livraison

Additional comments:/
Commentaires supplímentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

THE PARMER AND MECMAML,

Dovoted to Agriculturai, Horticultural, Mechanical, and Domentic Shivjects.
Vol. I.

Agricultate:

HAX MAKING.

The season for making hay has now fair ly arrived, and a few practical directions, embracing the whole economy of this important branch of farm labour, may not be coneidered uninteresting to a portion of our readers. The great point to be observed in caring hay, so that it may retain its natural green color, is to keep it from being exposed to the parching influence of the sun, and also, if possible, to proct it whilst undergoing its curing process, from being drenched with rins. The ordinary method of spreading the newly-mown grass thinly over the ground is not to be recommended, only under cerain cincumstances. If the grass be very heavy, and the weather likely to ie unsettled, the sooner it is cured the better; but even under such circumstances, it would be well to make it up into cocks, containing two cwt. each, rather than to put it into the mow or stacks before it becones thoroughly cured. The loss sustained by spreading newly-mown clover, between evaporation and broken heads and leaves, must be equal to ten per cent. on the entire crop. To obviate that loss, the grass might be partially allowed to wilt in the swarth, say from four to six hours during a tolerably hot day, and then it ahould be put into small cocks, containining each about half a cwt. of cured hay. If the weather be rather cloudy and unfavourable for making hay, there doubtless woild se a necessity for spreading; but, in doing so, cure should be observed to retain, if possible, itw natural green color, which can only be done by making it up into cocks, each night, to as to prevent its becoming discolored by the sction of dews. When the practice of Wiling up the swarths into small cocks is
followed, it may frequently be found advantagecus to put from four to six of the small into large ones; but every farmer in this should be guided strictly by his owa judgment, as to the state of the weather, the force of hands he can command, and the average value of hay in his particular locality, should regulate the expenditure. It is however a matter that none will pretend to dispute, that a ton of well cured hay contains more nutriious matter for stock than two tons badly cured. In taking extra painsin curing hay, the great difference in value between good a good and bad article should be remembered, and if by expending half a dollar extra in giving thorough attention to the business, a much greater return will be obtained, and a more ready sale; herefore it certainly would be judicious to make such an investment.
In countries where labour is high, and farm produce comparatively low, expedition in executing the operations on the farm is a matter of the greatest importance. For this reason there may be many cases in which it would not be judicious, on the the score of economy, to employ the pains required in the foregning saggestions. The revolving horse rake, the coil tooth, or some of the other patterns of this useful implement, should be employed in the process of curing hay on every well-regulated farm. With, this implement and a horse, a man may without difficulty, perform the labour ci cight men. The ecenomy in the use of this valuable invention does not simply consist of the money value of the labour saved, but by its use every farmer may safely reckor upun being able to cure his hay crop, let it be ever so abundant.
Where a very large business is done, it would be well to scatter the grass evenly over the ground, as fast as it is mown, and at
the close of the evening the whole quantity cut during the day should be put in cochs containing about one cwt. each, where it should remain for a number of days to cure. The loss by evaporation will, in this case, bl considerable ; but if care be taken to put the whole that was mown during the day into cocks, before itis exposed to the influence of dews and rains, the hay will retain its natural green color. Mawing should, in most cases, be perfiormed in the forenoon, so that the whole force could be employed in the afterenoon in raking, cocking, and in driving in any portion that may be sufficiently cured for that purpose. By the aid of a rake and horse, a man will fund no difficulty in puatin! together in rows from two to three tons of havy hay per hour. Three men will find constant work to cock and hand rake as fats as it is put tugether with the horse rake. Many are disposed to think it ton much tronble to cock their hay, and prefer tahing it frum the rows to the barn; but, by this means, it becomes musty, and much duteriorated in valur. It is a dangerous exparimont to put hay in the barn or stack in a partially cured state; but when meessity equires such a course, layers of straw hould be spread at froquent interv:1 :hroughout the mass; and if this camnot be convenienty done, salt, at the rate of about ralf a bustel per ton, should bo scattered -venly over it as it is stowed away in hayer: ifrom two to three fret. Hay that is nown in the morning, and evenly scatered ther the scythe, may be drawn ino the barn the following day, providid that layers of .ther straw be scatered over the mower at atervals of from four to six fect each: the puantity of straw in proporion to the hay, hould be about twenty per cent. Wisen this plan is practiced, the hay will require to :re put in cocks, as much as if it was intended to remain in them for a number of days; even fifteen or twenty hours sweating will secure it from becoming mast if scatered through the mass as above described.

There is no labour on the farm that is more -evere than mowing, and it is a happy reIn c.ion to find that the science of ayricultural mechanics has come to the aid of the tarmer, by which he is able to employ his beasts of burden to perform the havy and tedions labour of swinging the scythe. Willian Ki thaum, Esq., (f Buffalo, New York, has invened a muwing machine to be propecled with two horses, which will cat one acre of leavy grass per hour, in as perfect a manner as could be done by the most shi!lful mower. We lately had an opporannizy of minutely examining Mr. Ketchum's machine, and we are prepared to sny that it is as perfect for the purposes intended a: could be designed.

CLOTER AND WHEAT OULTURE.

Tha Wheat growing farmer of Camada should bear in mind, that, in consequence of the liberal commercial policy of Great Briain, the advamages formerly enjoyed in the markets of tha mother country, are no longer exclusively retained for their benefit, but that Yoreigners, colunists, and British firmers, so far as the irem of breadstuffis are concerned, are now placed upon a level in the English markets. It mast be quite clear taevery man who has a knowledge of the vast agri-ultural resources of the north of Europe, and those also in the United States, that the prices of breadstuff miest range low in their average under the operations of unrestricted trade. The change in the Tariff Laws of Britain has, doubtless, had a serious influence in depressing the spirits of the wheat growers of this colony, and produced, at the same time, an opposite effect on the aninds of the farmers of those countries that formerly were shut out on account of the high tariff of the British markets. The Canadian farmers, to understand their true position, should be apprised of the fact, that the farmers of many of the grain growing countries ofi

Europe and America, consider themselves abundantly well paid if they can realize for their wheat from two shillings to two shillings and sixpeace per bushel.

The question to be determined is one of very simple soiu im, and the practical farmer must work it out practically on his own farm. If wheat cannot be grown protitably to compete with other wheat growing countries, in those markits where we send forward our surplus breadstuffs, then it is obvious that less of this great staple will be cultivated, and other branchers of husbundry made to superiede it. If possible, the cost of producion must be reduced, so as to enable the wheat growers to afford the arricle at a less price than they have formerly been able to do. The expensive system of making summer fallows, as we have on former occasions endeavored to impress upon the attention of our readers, must if possible be discontinued. The loss of a year's rent of land, the extra expense of cultivation, and the loss of a crop are not required to secure to the farmer a crop of wheat, yielding some twenty to thirty bushels per acre, which affords suthicient inducement.

On a former occasion we gave practical directions at length, showing how to cultivate clover in connection with winter wheat, thereby to get a full average crop, with one half the labour required to make a summer fallow. The period has now nearly arrived when the correctness of the opinions therein set forth can be practically tested.

If the proper appliances were at hand, to execute the work in a business-like style, a clean clover sod, ploughed the last week of August, to nine or ten inches in depth, would be preferable to two ploughings ; but as these cannot be had without incurring a heavy expense, it would be better not to risk it. A failure of crop, occasioned even from causes in which the farmor might be notoriously in fault, would, in the eyes of those who do not take the trouble to investigate them, be sufficient toinduce the suffer-
er to r pudiate the whole system. On this account it would be decidediy better to plough up the clover sward imm diately atier the grass crop is harvested, which, according to an average of seasons, woold be in the early part of July. The somer the plough is put to work, atier the heavy crop is harvested, the better will be the condition of the soil for wheat. On most soils, a furrow of from eight to ten inches in depth shonld be made, which will require a strong phough, and a heavy team to work it. By turning up two or three inches of new soil to the action of the atmosphere, a consisten. cy will be given to the old soil, which had become too light for wheat; besides this, the roots of the wheat plants will strike more deeply than on a hin soil, thus lessening the risk of loss from the action of spring trosts.

When clover sward is plonglied in July, it should be allowed to reman undistured until tine period when the second or seed furrow should be ploughed, which in most cases would require to be pertormed the latter part of Angust, so that the seed could be sown the tirst week in September. By allowing the inverted sod to remain untouched with either harrow or cultivator during the months of July and Aurnst, wild grasies and roots of weeds in the gromed will undergo decomposition, and be mich more thoroughly de.troyed than if it had been expensively worked with those implements.The second ploughing, or see:l furrow, will turn up rather cloddy, to sadden the tastes of some farmers, but those who understand the habits of the wheat plant do thoronghly appreciate the importance of keeping land for winter wheat in a cloddy condition, provided that weeds and grasses be destroyed. A well-managed crop of clover, if hay be worth two pounds per ton, will pay the entire expense of management required for both the clover and whent crops. This fact should be borne in mind, because it is of much grenter importance than would at first sight be sup, osed.

If the farmers of Canada are so situated that they will be under the necessity of selling their wheat at a lower price than formerly they have been in the practice of, the true method to adopt is to so alter their mode of farming as to enable them to fairly meet these altered circumstances, without allowing such, if possible, to check their ardour in effecting substantial agricultural improvements.

THE PERIOD FOR CUTTING WHEAT.
A few years agn, John Hannan, Esq., a celebrated and scientific Yorkshire agriculturist, made a number of experiments, with a view of ascertaining the best period for harvesting wheat, and after carcfully weighing the different samples, and comparing their products in flour, bran, and shorts, the difference in favour of cutting the crop about ten days before it might be considered dead ripe was equal to one-sixth the value of the whole. The net saving gained in this way was considered sufficient to pay the entire expense of harvesting and thrashing, besides which, the quality of the straw was vastly improved by early cutting. In England it requires a much longer period for grain crops to mature than on this Continent, and therefore it would be quite safe to say that wheat and other grain crops would make as much progress in ripening here in four days as in that country in ten. It would $b \geq$ difficult to lay down any general rule by which the reader could be correctly governed in determining the most profitable time to cut the wheat crop, but we can scarcely be misunderstood in recommending that it should begin a few days earlier than is usually the practice. When the straw mostly becomes yellow, having only a few streaks of green near the tips of the chaff, the heads quite erect, and the berry large and just out of the milky atate, we have found, from repeated experiments, that wheat cut in this state is more productive,
and will make a better quality of flour, than if harvested before or after that period.When wheat is cut early, the berry is of a light bright colour, the skin thin, and the flour finer and better in quality than if cut when fully ripe. If wheat has a very dark and luxuriant green colour a short time before it ripens, or when it is in a milky state, and shows pretty clearly that the crop is predisposed to rust, it wouid be well to begin cutting six to eight days earlier than in ordinary cases it would thoroughly ripen. By judiciously observing this advice, and putting the grain in round shocks, snugly capped, as fast as it is harvested, a great saving may be effected, and, indeed, the rust very frequently evaded. Wheat cut before the straw has become thoroughly yellow, or when the grain is in a doughy state, may not be quite so plump as if left for the straw to ripen; but the grain will be of a peculiarly transparent colour, and it will make more flour, and of a better quality; having less bran than if cut at the period usually practiced by our farmers.

MANAGEMENT OF CATTLE.

In attempting at essay on the management of cattle, I am well aware of the difficulty attending it. As the ground has so often been gone over, I fear there is little new to ald to what has already been written; but having been long connected with the breeding of cattle, particularly the "Improved Short-horns," I may be allowed to state that the contents of these pages are from practical experience.

I have divided the various breeds under the heads Scotch, Welsh, Irish, Euglish, and Channel Islands cattle.

In this brief survey it is only the well-defined breeds that will be noticed, as nearly every county of Britain contains a breed peculiar to itself, some of the characteristics of which are 80 slightly defilled that it would requife too mach space to mention them all. scotch Cattle-west highland gieed.
The West Highlands or Kyloes are undoubtedly the putte native breed, and have
remained uncontaminated. The head is not large, ears thin, muzzle fine, face broad, legs prominent, countenance placid, horns tapering tine and of a waxy color, widely set on, breast wide projecting before the legs, chest full, neck fine, rising with a gentle curve to the shoulders, back straight, flat, and wide; color black; coat thick, long, and an abundance of hair about the face; legs short and straight ; flesh of the best description when fat ; constitution very hardy; bad milkers.
There is much difference in their size, those from the island of Islay being the largest. The Argyles are a variety of this breed.

NORTH HIGHLAND BREED.

This breed inhabiting a cold dreary country are very small. 'X'hey have large coarse heads, shaggy ears, high and nar:ow backs, flat ribs, small chests, and long legs ; buttocks thin, bones prominent, horns short and bending forwards, color black or brindled, hair very long, close, and strong.
This diminutive breed will not thrive if removed far south of their native district; though placed in the midst of abundance they will pine and die.

fife breed.

Color black, horns white and small, turned up at the points; bones small, limbs clean and short, skin soft, ribs narrow, wide set, mach curved; body thick and round; gord milkers ; and good workers ; constitution hardy.

AXRSHIRE BREED.

This breed, though of recent date, have obtained much celebrity for the dairy. Nothing was known of these previous to 1730 , and their origin is clothed in obscurity.

The characteristics of the breed are, horns small, clean, and smooth, bending forwards and tapering to the points which are turned up; legs short; neck finely tapering towards the head and thicker towards the shoulders; head small, rather long and narrow ; fore quarters light, deep in the carcass, shoulders thin, udder broad and capacious, milk veins large and prominent :eats short, culor light red and white with black muzzle, hair soft woolly, figure compact and well proportioned.
The quantity of milk, considering their size, is large; five gallons per day for ten weeks after calving is not above an average. The quautity of butter and cheese produced from the milk of this breed is very great.

I have had a few of this breed, but did not
find them to answer, taking all things into consideration, equal to the improved short horns.

The Dunlop cheese, of which so much has been said, is manufactured in the district where this breed is principally bred.

GaLloway breed.

The head is heavy ; horns none; eyes not prominent ; ears large, rough, and full of long hair; back straight and broad, and nearly level from the head to the rump; legs short, fine in the shank bone; neck thin; shoulders broad; chest brond, and deep; skin loose and mellow, covered with long silky hair; color black or dark brindled brown; constitution good and very profitable for the grazier, as they lay their fat on the most valuable parts, and their flesh is well marbled; their milking properties are not great, but the quality is rich. A cow oivis. sixteen quarts of milk per day is considerea a superior milker, but the average is not abave six quarts.

IRISH CATTLE.

Ireland evidently originally contained two distinct breeds, one found in the mountain districts with middle sized horns, and the other in the Lowlands with horns of enormous length. The first is decidedly the aboriginal breed; they have generally smallish heads, very thick in proportion; necks thick; horns rather short, fine, projecting rather forwards upright; hips wide, bones moderately'fine, skin thick, hair coarse and long, color black or brindled, faces white, eves gond, muzzle sharp, constitution good, good milkers and very hardy, fatten quickly with good beep, are very wild and will gallop like stags, being difficult to confine. No breed will produce the samequarttity of milk with the miserable keep this breed generally get in their native country.

The old breed are most valued for the dairy. Many of the cows will yield from 120 to 14016 s. of butter per year, and the average of then 8 slbs . per aumum.
The other breed have immense iong horns turning all ways, but generally downwards, which give them a very sorrowful countenance; they are much larger than the others; their origin is not known, bnt there is evidently a cross of the Craven to be seen.

WELSH CATTLE.-ANGLESEA BREED.
Heads medium size, face flat, horns long and turned up, chest deep, shoulders heavy, barrel round, dewlap very large, ejlor blank,
hide mellow, hair coarse, size small; they produce litule misk, and that ot a porr quaity.

It is said that nearly 1200 of these catule are ammanly imhorted from the isie of Anglesta, wheh when transplanted on better pastures speedily tatten.

glamorgan brfej.

This once celebrated breed is non :anch deteriorated from the muskillul management of th-Glamorgan farmers. They bave neat clan heads, long white horns tupe ring upwards, tapering necles, de wlaps stnail, tail high set on, sides flat, shap in the hip joints ana shoulder, high $\mathrm{m}^{\prime \prime}$: rimp and long on the lear, color dark l." a witis white beetie's and a white streak an we back, lair short alid siky, constitution gorel, excellent milkers, and good grazers; they are also good workers.

They have of late yrars been much crossed by other breeds, so that very fow of the native breed are now to be tound. This breed was in high tavour with old deorge the Third, and the royal dairy was mmanaly supplied with thr brot specimetis diat colda be procurtd in their mative vales.

PEMBHOKE BEEED.

The Pembrokes are undonbedly the best breed that the principaiity produces. Head nght, horns smath, yeiow, and meined ujwards; loin good, legs short, thighs thm, Larrel decpand rumed, coior priucipaly back, hade theckish, hair short and wavage, tair mitkers, and honest workers. "iliny have some resemblance to to the West Highand or Kylocs.
englisir cattle.-slesex mreed.
It ad small, horns long, tapering, projectiag forward and turned upwards; eye large ano tull, neck long and thin, forcoan large and muscular, loins wide, hiod quarters weil mate, thighs straicht, back straigh: barrel round and derp, color de ep chesmal red, histmedow, hai. shott and herk, comsithion !rund; they ure good workers, wad tation woll.

> Loxg arpic or conares.

I Mead long and thich, eyes hirer earc pery small, horns very long amd turmadin varions direchons; nech lieary, fore guanars t.iels: ribs short, harrel round, caine fine, rumi, coarse ; thighs heree, leres heayy: color red roan, hair long end rough ; constitution good, and medium rimkers.

It was frem this breed that Mr. Wakneil raised his ceabra od Dishoy herd, which has
now passed away. The author of British Catlle asks what hits become of this breed; the answer is, that the blowd is difiused far and wide, but the pure breed perished with the master-mind that created it.

SLFFOLK BREED.

Head fine, horns none, dewlap small, legs short and thin; cline thin and hothow, boins narrow, barrel large; belly heavy, hips high and ill covered; ndder large, muth veith very large; conor red, red and white, and brmdled; hair shagyy ; constitution good; good milher.
The old Suffolk duns, as they are called from their color, are fax disappramg. The polled cattle of Nortolk appruach the Suffolk breed, and both have evidently sprung from the same source, viz., the Galioway.

NOLTH DEVON BREED.

ilead small, remarhably so in proportion to the rest of the aninal; eye very prositnent, neck long and tum, dewiap very small; horns small, very tine, high colored, someumes tipped with yellow ; breast deep, shoulders obiiqne, tore-legss wide apart and well under; withers very light, fore-arms large, bones very hine, back straight, sides rather that, lind qurters long, and well filled up; tail long, small and tapering ; skin mellow and hin, colur biowd rad, hair curiy and glosis.

The cows of this breed are much smaller han the oxen, and those are preterred with orange or yellow muzzles, and a goid colored circle round the eyes; they must lave nothing of either black or white about them.

They are excellent workers, but as milkers are much interior to many other breeds; their aputude to fanten is very great, and their thesh is of the best description; they are truly an aboriginal breed.

HEREFORD BREED.

Ilead small ; horns rather leng, inelining upwards and spreading; eye full, neck long and tapering, chest full and deep, hins'road, I_{1} s wide, carcass deep, barrel round, ribs broad, thighs clean, legs short and upright, shoulder bone thin aid flat; flank large, color red, with white faces and sometimes neck and belly; hide thin, hair bright and silly; milking properties bad; excellent for draught.
'Iheir aptitude to fatten is very great, but their flesh is not equal to many other breed: it is stated that they are a pure aboriginal ibreed; but I have some doubts about this
point, as the old Herefords had not always white taces, that feature having only come into fasdion within the last sixty ytars. 1 thitk this white tace may be traced to some Welsh breed, but am not cortain Some suppose that they have sprung from the saine stock as the Devon; but their grounds of supposition are very slight.

From the American Cultivator. DRAINAGE OF LAND.

The principal object of draining is to taktaway surplus water, but in effecting this, othre imporiant bentits are secured. It is obvious that a larger quantity of water in the soil than is required for the support of plants, is injurious. It is injurions in tarious ways. That wet lands are" cold and sour is a common expression, and an acquaint.nce with the principles which this condition of the soil involves, shows that the popular idea is correct. It has been repeatedly proved that evapora inn produces coldness,- that in th. exhalation of moisture, heat is also carried off,-and this i, one of the reasons why a wet soil is r ally a cold one. That such a soil is also sour, is proved by the fact tha. vegetable matters formacids, when decemposed in water. The sournes of peat may be taken as an example, l'rof. Johnston observes-" When [scoils are] soaked in water, their vegr table matter either decomposi's very slowly, or produces acid compounds, inore or less injurions to the plant, and even exartsinjarions chemical reactions. upon the earthy and sailue constituents of the soil."

One of the first objects in the production of any plant, is to secure a temperature congemial to is halhits. Every person may have observed that vegetation makes no progress till the weather becomes sufficirntly warm. Different species of plants require different degrecs of heat; but as a general rule, those which grow in the lowest temperature, are least valuable.

The effect ot drainage has been found highly fa:uurable in raising the temperaure of suits. Experiments have been made which proved that, at seveniuches below the surfiac, the average degree of heat for thirty six succerssive days, on a soil which had been underdrained and pulverised, was ten degrees higher than on a suil precisely similar, that has not been drained and worked. [See experiments of Mr. Parkes, Journal

Royal Mg. Society, vol. v. pp. 141, 143.] The more rapid growth and pertect maturity of crops on drained lands, is doubtless attributable, in a considerable decrere, to the higher temperature thus attained, and is an evidence of the great value of drainage in high latitudes, where, from the shormess of the season, the results of agricultural labours are peculiarly uncertain.

It may be safely assumed that draining is the basis of the grat improvem nt which has taken place in British husbandry within the last fifty years. In America, the practice of draining systematically, can hardly be said to have been introduced. Various trials have, however, been made in different parts of the country: the subject is beginning to attract great attention, and we expect, shortly, to see the business carried on largely and profitably.
It has been objected that drainage is less necessary here that, in Britain-that in our drier climate, crops are more liable to injury from drouth than moisture. To this it may be replied, that proper drainage, with a thorough working of the soil, is the best possible protection a_{c} ainst drouth. A little observation will convince any person that those lands are most affected by drouth, which at some srasons of the yearare too wet; of this class are stiff clays, and soils with a "hard pan" subsoil. Clays, which are not draimed, keep the water so long on the surface, that the soil "runs together" and forms a mortar, which, when the water has evaporated, brcomes like sun buint bricks-unworkable, and totally unfit for the growth of plants. On the hard-pan soil, the surface is completely saturaced with water in spring, or in wet weather, the compact subsoil not permitting it to soak into the earth. In both cases, the workable soil is usually this, and as soon as a drouth comes on, the plants dronp, and "because they have not much root, they wither away." Crops on such suils are very precarious; the only bed for their ronts at any time, is the little portion moved by the plough, and it is but a small part of time, comparitively, that even this is wholly available to them-it being almost always either too wetor too dry. The roots cimnot, perhaps, penstrate the hard subsoil, or if they do, are liable to be brought in contact with substances more or less poisonous to vegetation. The effect of drainage in such cases, is to increase the deptin of the soil, to render it more permeable to the roots
of plants, and less liable to be affected by drouth.

The first action of the drain is to take away the water from that part of the soil with which it is ir direct contact. A contraction of the soil soon follows, and cracks are formed, beginring at the drain, and extending laterally and vertiaclly, which admit the percolation of water and conduct it into the drain. Waen the soil is thus brought into a state which allows the water readily to pass through it, the former difficulties of its rumning together and baking, are obviated; the soil reinains open and friable, and plants are protected against extremes of wet and and drouth.

It is a fact that plants suffer less from drouth on a friable soil, than on a compact one; as may be ssen by a comparisoll of crops on clay and loam. This results from two causes. The roots of plants have mort scope in a loose soil, and are thus enabled to draw support from a greater source. A mellow soil is also most moist, in time of drouth -pulverization favoring the ascent of moisture from below, as well as its absorption from the atmosphere. A heap of moulding sand will seldom dry but to a little depth, while hard clay in the same situation will become almost destitute of moisture.

Protessor Norton, in his lecture on drairing given at Hartford in 1847, states that the extreme drouth which prevailed in Scotland in 1845, it was found that in all ordinary cases, the crops on drained land withstood the drouth mucia better than those on undrained, " because of the greater depth of soil available to to the plant " And he adds that "it is now a proposition regarded among the best English and Scotch farmers ascompletely established, that drained land is not only better in wet seasons, but indry seasons alsu." [Cult. for Jan. 1848.]

The full benefit of subsoil ploughing, on tenaceous soils, cannot be fully obtained without thorough draining. If the water is not drawn off, it scon packs the soil together again, after the plough has been used. Prof. Norton states, that where drains have been laid at proper distances in hard-pan soils, the air and rains soon break up the crust, the water filters through into the drain, and the ocheous deposit is gradually dissolved and carried away. Air and heat being thus admitted into the soil, the noxious compounds which had there formed are decomposed, and wholesome food for plants is produced.

In regard to the question-Wheie is it proper to make drains? it may be said that they are necessary wherever the character of the natural vegetation indicates water. Rushes, ferns, and what are generally called water grasses, always grow where there is too much water in the soil, ai certain seasons of the ycar, for the growth of the more valuable plants. When the soil is properly drained, these aquatic plants can no longer live. There is scarcely a field on any common farm, that has not spots that would be benefitted by the drain, even for grass, and still more for grain and vegetables. The farmer thinks, perhaps, that as the produce of grass is apparently large, nothing is wanting. But it must be recollected that the produce of wet land is of less weight and value in proportion to its bulk, than that of dry land. If the land is in pasture, animals will reject the herbage that grows on these camp spots, till forced by hunger to cat it. It the grass is made into hay, the same reluctance of animals to eat it is manifested, and their loss of tlesh when kept on it, is evidence of its want of nutriment. Prof. Norton states that analyses of samples of grain from two fields, the one drained and the other undrained, showed a decided inferiority in that from the undrained field. It is plain. therefore, that draining not only increases the quantity of produce, but also improves the quality.

Another great advantage of draining, is the prevention of grain and grasis from being "winter-killed." This effect is caused by sudden freczing of the ground while the surface is wet. Land on which wheat and rye have been very uncertain from this cause, are found to produce the best crops after having been thoroughly underdrained.

But the advantages of draining in a sanatory view, are in many instances of the highest importance. It is well known that stagnant water is very prejudicial to health. In those sections of our country which are particularly subject to bilious fevers, and fever and ague, the soil usually abounds in vegetable matter, and during wet seasons is flooded with water, which frequently covers a large portion of the surface for several days or weeks, and finally goes off chiefly by evaporation. Sad experience has taught the inhabitants of those sections to regard such floodings as precursors of sickness. Similar causes have produced like effects in Europe. Aneminent physician, Dr. McNab, observes-" After twenty-six years practice,

I venture to add, that I have scarcely ever had a case of typhus in a malignant form, without discovering some stagnant drain, or over-charged cesspeol, or some other manifest cause of malaria, in the immediate residence of the patient." Another writer observes in reference to the sicuation of a neighbourhood where fevers had prevailed-" Most of the houses surround an undrained common, tull of pools of stagnaut water, that in the winter season overflow. In the summer months, and greater part of the spring and autumn, they are stagnant, and undoubtedly, a fruitful source of malaria."
The benefits of drainage on the healch of the inhabitants of wet and marshy districts, have been striking. An English report on this subject, says in reference to one district, where the inhabitants were formerly exposed to the malaria of marshy lands,-" for the last few years, ouing to the excellent plan of draining, yery few diseases have occurred that can be said to be produced by malaria. There is very little ague, scarcely any continued fever, and a case of typhus fever has not been known along the borders for the last three or feur years. Some years back, a great portion of the parishes adjoining these marshes, was under water from the end of autumn to the early part of the following spring; then fevers and agues of all characters prevailed to a very great extent." Much testimony of a character like this, has been obtained in Britain, and leaves no doubt of the great benefits of drainage in regard to healih.

Several diseases of domestic animals, such as " liver-complaint" in cattle, and "rot" in sheep, are known to be connected with the same causes which produce the diseases in man above mentioned. The effects of maiaria, and watery succulent herbage, in producing the rot, have long been known. As might have been expected, the health of sheep and cattle has been benefited by drainage to an equal or greater degree than that of the human race. C. W. Johnson states that the rural population of drained districts in England, have often remarked the favorable effects of drainoge on the health and improvement of animals, by which losses of stock have been prevented to a great extent.

There is no insuperable obstacle to the drainage of those sections of this country which have heretofore been 80 subject to particular diseases. A gentleman of g_{i} jat experience in draining, states that drains will draw effective'y, if properly made, where
there is a descent of only four inches to the mile. There are a few cases where a much greater fall cannot be had. How immernse would be the benefits which woulid follow from the adoption of a thorough system of draining, in those sections !

Modes of forming drains.-Drains have been made in various ways. In clayey soils they have been form d by digging a trench to the required depth, and then placing a block of wood four inches square in the bottom, around which the soil is rammed hardthe timber being then drawn along, and the same operation repeated. The subsequent contraction of the clay, allows the water to enter the cavity thus formed. Such drains operate well for a time, butare not, probably, very lasting.

Stones have long been used for the construction of drains. They are made both with and without an eye, or open space, and if rightly constructed, are considered as efficient as any. It has been found that small stones are best for this purpose, and in England and Scoland they are broken to about the size ordinarly used for macadamized roads, or so smal! that they will pass through a ring two and a-half inches in diameter. Prof. Norton says-" The botom of the stone drain should be about six inchesacross, and from six to eight inches in depth of these small stones, should be thrown in. Turfs cut thin and very carefully so as exactly to fit, should be laid on the top, over-lapping each other, and the eartk rammed down hard, as the object is to prevent entirely the access of water from abcve; it should all filter in at the sides, for if it finds an enterance at the top, sand and small stones will wash down, and eventually choke the drain."

But the principal operations of draining in Britain, for the last few years, have been with tiles made of clay, and burnt after the manner of burning bricks. These could be used with more economy, especially in districts where stones were scarce, the expense of transporting the former, being much less. They have been made of various forms. The curved or "horse-shoe" shape was first adopted. The tiles were made in lengtha on fourteen to sixteen inches, and three to fourinches wide, with "soles" for the tiles to rest on when laid in the drain. The manner of making drains with these, has so frequently been described in our pages, that nothing further seems nocousary in regard to them. Of late, another form, called 'pipe' tile, has beon introduced. We have never
seen any of this hind; but in regard to the maner of making them, and their operation, we presante they cannt t be better described than in the language of Prof. Norton, who durngs lis residence in England and Scotland, made drainage a subject of particular inve shauiom. We copy from l.i, licture on dramag, before referred to in this article:
"It sa a simple round pipe, made in leiggh;, lhe the tirst, and for the cross druins of not more than an meh and a-balf in the diameter of the bore. These canb: made much cheaper than the other hind, as they aresmanter, and all in one piece. 'Thry are not more than half the weight of the old la,hioned tile and sole, a nd therefore an addaional saving is tficcted on the transporiaion. 'The trench for their recerption is aloo muchsmaller, being at the top just wide enough to al. low the trencher to work, and cut at thebotom with a narrov thol, to exactly the proper size for the reception of the pipe. The pheces are simply laid end to end, and weded with small stones when becessary. The water finds its way in at the joins. Mang tave expressed doubts as to the operathen of these drains, thinking that water would scarcely penctrate into so small a channel, urough such minute apertures. No daticulty has been experienced inany case. One genteman, residing in the sonth of Enoland, woo has employed these small pipe the in draining exceedingly stiff clays, laying them at the depth of three feet, and ramming the clay hard down, offered a promi iom of filuts to any person who woud keep tite water out of them. These tiles, of both varietics, are made by machin ry. The clay is worked in an ordinary pug mill, such an usod in brick-making, care bing taken that no stones are present; it is then forced through a die of a circular or horse-shoe shape, according to the kind of tile intended whe made. It passes through in a continuous strcam, which is cut off into the proper lengiths by hand, or by a litile apparatus connecued with the machine."

It affords us pleasure to state that the Hon. Lohn D. latield, of Oaklands Farm, nıar Geneva, has lately imported from England, one of the most appruved machines for making ti.es. It is Scragg's patent. It has n-ceived two prizes of $\mathbf{f} 20$ each, from the Royal Agricultural Society, and the Highland Agticaltural Siciety, as the beyt tile machine exhibited at their shows. We have received from Mr. Delafield the following remarks in reference to the machine-" It
was made by Scragg, of Cheshire, England It is of the larecost size, and embraces every inprovement to the pres at time. This machine works the clay and screens it, so as to remove all stones and ethersubstances-it is then carried forward by the mach nery, and passed through dies of any required form or pattern, and deliver d at the end of the table, rady for the kiln. 'The dies which accomfany the machine, will produce drain pipes of $1,1 \frac{1}{2}, 2,2 \frac{1}{2}, 3,5$, and 6 inches bore. Horse-shoe tile, rising $2 \frac{1}{2}$ and 4 inches, with soles to match the tiles-semi-cyinders of 8 and 11 inches in diamoter. A pattern has also arrived for a new form of pipe, with a fout atached. 'This iv a n.w fenture, and, as it seems, an impro en nt. The machine is arranged also for making ridge tiles and pan tiles for roufing.
"A. soon as the machine is put into work, I will send a specimen of tach tile to the Arriculural Rumo. It is probable that it thay be in operation loy June, and then drain ales will b- thaninhed fornot over tend dullars per 1000, and 1 hope in grod time to see them deliver d for a lens cons. We cannot yet torm an accurate calcuation, but we are sure nut to exceed $\$ 10$ per 1000.
"I hope to cause the works tw be crected cluse to the canal, t at a rady delivery may be made to distant faum rs.
"In procuring this machine, I have been much favored by the gememanly at entions of Mr. John Girdwood, of Chirk Cavole, Scouand, who interested himelf much and earucstly in the erction of this particular hind. I an also under obligations to P'rof. Norton, who tirst brought this machine into notice in this commry in one of his lectures, and through whom I received an introduction to Mr. Girdwend."

As to the expense of $\frac{l r a i n a g e ~ i n ~ t h i s ~ c o u n-~}{\text { a }}$ iry, no pr cise stat m nts can at present be made. When mathines for making tile shall have been brought into full operation here, and all other branches of the business become fully undersitoxd and systematised, the cost will be reduced. Bur Mr. Johnston, nיar Geneva, whose draining operations have been several times spoken of in our plages, states that at the cost which he has incurred, twenty-right cents p. r rod, the investment is the most profitable he has made on his farin.

We are not prepared to lay down any definite rules as to the disinnce aparl which drains should be laid. This must depend on the condition of the land. In many fields,
drains are only neded in particular situations or wet spote, viher purcions be ing stlfictently dry. Where the suil is uniturmly wet, or is generany imjured by water in the subsoil, the rule whach is fellowed in Britain will probaby be tound best, and that, according to Prot. Nor.on, is to lay the drains at eightreen or twenty-tour tee ayar, which he says will dram the sutfest and wettest land.
The de ${ }_{1}$ th of drails, it is gellerally agreed, should nut be less than two and a hall feet. They should be so diep that there is no danger of their being aff cted by any oppratuin on the soil, cither in using the cummon plough or the silbsuil plough. Whent the tiles are once laid, and the tarth is pruperly fixed around them, they should never be disturbed, except to remedy some obstruction.

FARMING ON TWENTY-ONE ACRES OF Lard.

by whilam garbutt.
Mrssrs Enitons:-Many of the cultivatorof the sini, who occupy lirge posesisiour, do not realize the anount of labour that can b. protiliabty emphoyed on cultivation; and few farm libhourers are aware how small a piece of ground will afford full cmpleyment to an in tustricus man, and yridd tmuself nom family the comforts of hife, and make them an andepend.nt home.

In illustration of these facts, I will give an account of firmer B. His farm consists of tw-nty-one acres: one acre of it is occupied with buildngys, yards nud garden, and twen'y acres are for culuxation-all made productuve by thorough draming and hountitul manuring A good substantal fence all round it, but no division fences. He has 57 rods of pitent fence, which is ensily removed, with which he encloses on--fourth of the ground for paiture.

The firin is divided into four equal parts-5 acres in each part. Fir tseason, No. 1 is in grass, cluver and timothy. for pasture; No. 2.n hor crop-mine acre in wurizels, one putatues, and three in corn ; No. 3, harl.y; and No. 4 in wheat. With these crops he keeps a rygular rotation cach year. Second season, No. 1 is manured in the fali with all the manure he has collected the past yenr, and ploughed for next seasonn's hoe crop; No. 2 is ploughed in the fall for briley next spring; No. 3 (barley stubble) is sown with wheat ; and No 4 (wheat) is sown with timothy and clover for next season's pasture-which rotation he uniformly pursues.
He kreps a yoke of oxen, two cows, twenty good ewee, and a breeding son, for which 5
arres of frech clover on a rich soil will afford plenty of pasture, provided that he dues not tuin mino it two soon in the -ping. The wheat and barley straw, corn etrak; and roots, will be ample furage for them in w nter. He is industrous, economical, and prutent. Every thing is well done, and in season, The ground is kept clean, no weeds bring allowid to grow, not even around the fence. a is made rich by plentiful applications of m:nure, which renders it very pioductive. His wheat averiges 30 bushels per acre. It will the wenty-four bu-hels to bread the fanmily thr year, (which consists of himself, w.fe, anil fur litule ones, and will take 7 bu-huls for seed, which will lenve 119 to seli; this, at $\$ 1$ per burhel, will make \$119. His barley yirids 40 bushels p-r acre: it will take of of for seed, and 192 bushel: to maket, at 50 cents per bushal, will be $\$ 36$. The corn average- Gil bu-hels per acre; the three acres pronluce 180 bu hels: it will take 80 bunhels to fued the pigs, fat the pork, and ure of the fim.i.y. for they cat Johnny cake and man:h, wherl leaves him 100 bu hels to market, at 50ce rate per buthel, is Sion. Th - potatoes amb beres are all used at hime. The wool of the 2) ewes, averaging $\$ 1$ per ftece, will be $\$ 20$. Thry raie 20 inmbs, wach he sells n July or August for \$30. By taking the lam's from th" ewes carly, the later will get fo hy ful ; 1.5 of them are sold for $£ \mathbf{x} 34$, with which hr purchnses 20 - wes fur mext season's kerp:ng-and he has 5 fit sherp lift for the ue of the fami y The oows have s:x pg the last of March or early in April: 5 of th m , with the sow, are fatted, and a young sow kept fir pigs next pring. The 5 pigs and otd ow when fatted will make 1,110 liss. of $p, k ; 500$ w.ll do the family, with the 5 fat shecp, and leave him fino lbs to sell, which at 5 cen 8 a pount is $\$ 3$). The two colvers are fatted ind -old for $\$ 5$. This makes $\mathbf{8} 340$ wuith sold from the products of the 20 acres, in I the fam.ly have had their farm living the past year.
It may be thought that this calculation is too large for an nverage production, but 1 assure you that if the operator is industrious, economiral and judicious, he will seldom fall short of the quantity stated. But it is anked, how can on industrious man be constantly employid on 20 acres of ground cutivated for farm purposes? Look at it. His ground for spring crops is all ploughed in the fill. On the first of April he commences operations for the season. He first sows the gras seed on the wheat ; then 10 cwt . of plaster on the hoe ground; and as soon as the groun 1 is sufficiently dry he harrows it and sows the barley; then harrows and crons harrows until it is thoroughly paiverized, and then rolls it. By that time thr planting ground is ready to harrow, wich operation is continued
until the ground is well pulverized, and the nearer it can be made to a garden tilh the better.

But if he is ahead of the season with his work he can always have full employment in making the manure heap. He collects every thing that will make manure that his time and means permit; he puts on it at least one ton of plaster at different times. Leached ashes, swamp muck, marl, dirty salt, and old brine, are all collected and mixed with the barn-yard dung, so as to increase the manure heap to at least 200 loads.

The ground being in good order and the season favourable, he commences planting the first of May, and takes time and does it wellfor there is more lost by careless planting than would pay for four times the labour of doing it well. He first plants the wurtzels, then the potatoes and corn. Planting done, the wheat is to be wed; and as soon as the wurtzels are up he begins hoeing which affords him employment untill the first, and perhaps the fifih of July. He then has some leisure, and assists a neighbor in haying, to procure help in hauling in the grain.

He commences harvest as soun as the grain will auswer, and barley will do to cut pretty green. If it is not sufficiently dry to bind let it lie two or three days in swarth. Harvest begun he may work as faithfully as he he chooses until the grain is all secured. That dune, he harrows, cultivates, or ploughs shalluw the barley stubble, so as to pulverize it thoroughly four inches deep, and sows on it halt a ton of plaster. The corn is now ready to cut up ; that done he ploughs the barley stubble deep and well, and sows the wheat. The summer crops are now ready to gather, which employs hum a while. When all are secured, he takes out the manure, spreads it evenly over the surface, and ploughs it under. The hoe ground is also to be ploughed for barley next spring, which keeps him busy until it is time to prepare for winter.

In winter he takes good care of the stock, thrashes the grain, and provides fuel-having none on his farm. The orchrord is planted by the fence around the farm and door yard.

Now, my Young Friends, be industrious and saving, and you will suon be able to purchase 21 acres of land. And you who have large possessions, and sons you wish to settle near you, divide your possessions with them, and teach them to realize that industry and economy are the sources of wealth-and that a neat, comfortable and independent home, though it is small, will afford more rational enjoyment in old age, than large powescions, with a princely mancion, even if it is not encumbered with debt. Wheathad, N. Y., 1849. -Genese Farmer.

Docking and Oastrating Lambs.

Eds. Cultivator-As the time is at hand to attend to docking and castrating lambs, I will give you my method of performing that operation.

When the lambs are from one to two weeks old, and the weather is good, I drive up my ewes and lambs to the barn yard, in the afternoon, towards sunset; put them in a close yard, take out all the lambs. Put the lambs in a small pen, or on the bain floor; then let the ewes out in the barn-yard, which should be well littered with straw. Have a boy to catch the lambs; hand them to rnother hand, who lets them stand on their feet. I take the tail in my left hand, hold it out stright, have a good shoe knife, and cut off the tail as close as suits fancy. I find this method quicker and better than a chisel and block. Then mark the ear and let the lamb go keeping them in the yard over night.

In the course of a week or two, bring up the ewes and lambs again. Put them in a close pen; select out the lambs; let the ewe lambs go ; put the ram lambs in a pen or on a barn floor. After the lambs are ail taken out, let the ewes into the yard. Remember to have it well covered with dry straw. Have a boy to catch the ram lambs, place a good hand on a low bench, who should take the lamb on his lap; hold him by his fore and hind legs. The operator will soon find in what position the lamb should be held. I take my knife, cut off about half the pouch, pull out the testicle, and set down the lamb. The mother comes up to meet him ; he soon lays down, consequently soon s:ops bleeding. The next morning I let them out. The lamb will go offas sinart as if nothing had occurred. There is inore danger from docking than altering. To perform both operations at the same time is too severe.

I will give my reason for chousing the evening instead of the morning, which is the usual time for altering. If you perform the operation in the morning the ewes are hungry, and ramble about for food, the poor lamb will drag along in pain, and continue bleeding, from the exercise. Reverse the time, and the ewes and lambs lie down and continue quiet all night, and the bleeding sonn stops. O. M. F. Wheeler, Stuben Co., N. Y., April, 1849.

The Quantity of Seeds amanlly Sown to $2 n$ Acre.

We are often applied to for information as to the proper quantity of field and garden seeds that is necessary 10 sow an scre of ground. This, it will be perceived, cannot be definitely answered, as all seeds differ in their degree of excitability, or rapidity of germination, and are influenced more or lem by the mois:ure, tempesuture, and nichneat of the soil, as well as by
the season and climate in which they are sown. Thus, no two aceds taken from the same serd vessel will germinate precisely at the same time, but on the contrary, one will ofien do so promptly, while its companion beed will remain dormant in the soil for one or more years.

For instance, fresh tobacco seedling have been known to continue to thppar annually for ten years on the same plot, thuugh no seed was sown after the first yenr. The sam. phenomenon often occurs for two or three yeats, with the hawthorn, the peony, and vther plants. Why one seed is nore easily excited than another is as yet unexplained.

The quantity of ficld seeds usually sown broadcast per acre, in this country, is as follows:

The following table shows the quantity of seeds usually sown to an acre in rows and drills:-

Griddle Cafes of Unbolted Wheat.A quart of unbolted wheat and a teaspoonful of salt; wet it up with water, or sweet milk, in which is disoolved a teaspoonful of saleratus; add three spoonfule of molasees. Some raise this with yeant, and leave out the saleratus.

Sour milk and saleratus are not as good for vabolted as for fine flour.

These are better and more healthful calee than buckwheat.-[Prairie Farmer.

Manufacture of Oheese.

The following article is from the pen of Mr. A. L. Fish, one of the most experienced cheese dairymen of Herkimer county. It will be interesting to that portion of our hundred thousand readers who are engaged in the dairy business-a large number of whom take but one agricultural journal. We copy from the May number of the Cultivator:-

Having been so frequently addressed by different persons in this and other States upon the subject of dairying, that to reply to each individually would be quite inconvenient and burthensome, I propose answering some of the most important questions generally asked by new beginners, through the columns of your widelycirculated paper-hoping they will reach every person who deems bouk-farming of sufficient imporiance to take an agricultural paper. At the low rate that such papers are now afforded, those who do not take one have a poor excuse for begging infurmation of their neighbours, to keep pace with the present tide of improvement.
"What kind of cows are most profitable in a dairy l"

It depends much upon location. If a dairyman is remote from a good grain market, where the coarser grains would bear a better profit fed to milch cows than to market otherwise, his selection should be of deep milkers, that will hear grain feed without accumulating too much flesh. If near a good beef market, where beef is worth nearly as much per hundred as cheese, look well to the size and thrift of a cow, so that if she is not deep milker she will turn well for beef. As a general rule, those are most profitable that are deep milkers, and will hold out a good flow of mills through the season, keep in good condition, and are quiet and gentle. He who cannot furnish plenty of good feed should beware of such cows as have been highly fed, or his profis will be small.

"What is the best -ge of a cow ?"

From five to cen years old. I have no objection to a cow ten years old for a season. She will consume more food than a younger one, but her milk is richer till she begins to decline in condition, and loee strength and vigor.
"What is the most congenial food for cown immediately before and after calving ?"

Ylenty of good tender hay or gram, and a small quanity, daily, of ench other food as is
rest calculated to looern the bowels and neurish ne system, wathout creating a fever in the seretive organs. Wheat biat, oammal, petares, or other roots, are deemed best for that urpose. If a cow is in high flesh, a mild bliedif from the neek, with half a pound of salts, d in a ma-h, previunt to calving, is good
"What quantity of grain will a cow bear feeding, pritha iv. ind lhoud the kind be varied, at different periods, during the milkng season?"

All cows will not bear feeding alike. Some not being deep milkers, would acquire too much flesh, and shrink in mik, with the same amount of teed that othres would turn to profit in milk Hence the necessity of feeding separately, with close observation in regard to the constitution and capacity of different cows. A man's observation in his own practice is generally the best test in this matter. I have long since abandoned the practice of heavy feeding before and immediately after calving. Two quarts of corn or barley meal, or fuur of ca:meal, or six quarts of wheat bran, may bc safily fed, dally, to each cow. While kcpt to hay, gran feed should be made into slop, and fermented before feeding. The profit of feeding grain more, or longer than to bring cows to grass healihy and strong would depend upon the comparative value of the feed with that of the product. Nothng can be fed to a cow that will increase the quantity of her milk from plenty of good grass. The only gain in feeding slop and grain during flush of feed is by enriching the milk, and retaining the cows' appetite for it when grass fails. When first turned to grass, cow sare apt to scour, and shrink in milk Dry wheat bran, or cob meal, will then be better than slop feed. Barley and corn meal are too cathartic to feed in large quantities while he cows are at grass.
"Can all dairymen make it profitable to grow corn, sown broadcast or otherwise, to feed to milch cows?"

Where the soil is strong enough to bear a large burthen without manuring too highly, it will hear a poofit, as it is the hest feed that :an be given to keep up the flow of milk between early and fall feed. But where the soil needs math manuu, it is not good policy to manure highly a small piece of ground to obain a large crop of any kind, to the nerglect of other imporiant crops. In other words, the lairyman would receive a greater benefit, in a long run, from distributing one hundred loads of manure on ten acres of mendow land, after harvest, or putting on that amount with the seed when stocking down for meadow, than by putting it on one or two acres to grow com, to feed cows in summer. A .au feeding of corn daily will take take away
the appetite for grass, with little or no benefit. I have found it best to feed plentifully at evening only.
"What is the best mode of heating milk and scalding curd!"

That whech will produce the most perfect equilibrium of heat through the whole mass, with the least exposure to excess af heat. A smaller vessel containing the milk or curd, with whey, set into a larger versel which contains water, through which heat is conveyed to the vessel containing the milk or whey, is the $=$ afest mode, and is nuw generally practiced here. The more water there is in the larger vessel, the more uniform heat is conveycd to the milk. If a large tin vat is used, set into a wooden box or vat, the tube attached to one end of the tin vat, and extending down through the bottom of the wood vat, to disclarge the whey when the curd is sufficiently scalded, should be large enough to let off he whry at once, or the curd will settle or pack together, and require much hard labor, tad will waste, by friction, in separating it, and making it fine enough to drain and sale properly. A vat for thirty or more cows hould hnve a tube at least two inches in dianeter, and the tin cylinder, with a tube at ine end, to fit snug into the tube carrying off the whey, should be as high as the vat, and four or five inches in diameter, with as many very small holes punched in it as can be, ud hold together, in oider to strain the whey from the cuid as fast as it will pass off through the tube.
" Why would it not answer as well to pass stcam direcily into the milk or whey and curd, as it would save expense in fixtures?

Because that portion coming in contact with rean would be exposed to an excesy of heat, ind would not be affected by rennet like wher purtions which were not overheated. Con-equenily, a strict affinity would not be namtamed, which is necessary for a perfect olverence; and more or less would float off wuh the whey, or make trouble in curing the cherse.
"Is a thermometer a sufficient guide in making cheese !"

A thermometer that is correct is an indispensable gude in measuring the amount of heat to be used ; but the time of raisung the heat and continuing its effect mast be varied to meet contingent circumstances.-[Genesee Farmer.

A Fact for Farmers.-Farmers may rely on this fact, that most of their luxurinnt cuitivated crops are produced by the presence or application of due proportions of p tash, (as
wood ashes, leaf mould, green-sand marl, drcomposed ficlspar, saltpetre, farm-yard dung, \&c)-pho.sphoric acid, (as bones cru hed, burm, or di-solved, guana, farm-yard dung, oyster-fhell lime, shell fish, corprolites, and super phosphate of lime,) and mtugen, (n. sulphate and muriate of ammona, urine, guano, and auimal manures gemerally.) combined w th small quantities of lime, sall, maynesia, \&c. \&c.

SPAYING.

The pxtennt to which this is done in our State renders it de-irable that the hest modes of operaung be made known. The Prarre Fiarmer has treertofore treated of two which have their requective advocates. We find anoder, translated from a French Juurnal for the "Working Farmer," which seeclins to differ somewhat from either, and which may be worth attention.
" Hawng covered the eyes of the cow to be operated upun, we place her aganst a wall. providec wath five rings firmly fastene.l, and placedaf fullows: the firit corie pomds to the top of the wathers; the second to the lower anteriorpart of the breast; the third is phaced a little distance from the angle of the shoul.ter ; the fourth is opposite to the anterior in! superiar part of the lower region, and the tifih. whech is behand, answers to the under part of the buttocks We place a strong assistime between the wall and the bead of the animal. who Gruly holds the left horn in his lefi han.l, and with his right, the muzze, which he che vattes a litue. This done, we pass through and fi-ten the end of a long and strong plaitel cord in the ring, which corre:ponds to the lower pirt of thr breast ; we bring the free end of the cordatang the lefi flank an I pass it through the ring whech is beiow and in from of the withress. W, bing it duwnalong the breast behin t the shoulderes and the angle of the tore leg to phe it tho ough the ring which is at the top of the back: then it mut the passed around agamst thr" outer nngle of the leff h.p. and we fasten it, off.er h swang drawn it tighly to the positerior rmg by at sunple bow knot.
" The cow being firmly fixed to the wal!. we place a cord, fastened by a slip-noore, ancurn: its hocks to krep them tog ther in suth a m mner that the animal cannot kick the oppron:or. the free end of tire cord and the tail is heth by an asisistant.
"The cow, thus secured. cannot, during th. ioperation, move foreward, nor he down. an! the veterinary surgeon has all the ease destrab.:. and is protected from accident.
"Mr. Levrant advisis that an assitant should hold a plank or a bar of wood cull.quely under the teats and before its limbs to ward ot.
the kicks, but this method is not always without danger buth to the operator and the animal, because, at the commencement, that is, when the suggeon makes the incision through the hide and the muscles, the cow makes stelt sudden movenuents and tries so frequenty to strike with its left hund foot, that it may happen that upon every movement, the plaik or the bar may be itweck aganot the operator's leg.
"On the other hand, although the dffence may be firmly held by the asistemt, yet it may happen that in spite of his exertuons, he sometumes may be thrown against the opprator by the movements she may attempt, and there may be an uncontrollable di-place mem of the phank or bar; and then it may happen that she becomes wounded, and at the same tine prevents the operation, while by the mule we poumt out, there is no fear of accident, either to the operator or the beast.
" In case of the want of a wall provided with rings, we may use a strong palisade, a =olid fence, or two trees a suitable distance apart, acruss which we fix two strung bars of wwod, \because parated from each other, accurding to the si<e of the cow.
" The.e is another means of confining them we have employed for some tume past, where the cow. were very strong and nititible, more smple than the preceeting. less fatigung for :he anim it, less troublesonce to the opesator, and which answers perfectly. In conowls:
Firtt In ieaving the cow almo-t fice, covering her cyrs, holding her head by two stuong a \because riants, one of whum seizes the nose wath his hand and strongly pinches the nuetrils, whencerer the animal makes any vivin nt moveun ats during the operation.
Srcond. To cause another assitant to bold the two hind legs, kept tugether ly menn - of a cord passerd above and benealh the hocks; his assistant also holds the tall and pulls it, whenever the anmal sreks to change its place.
"The cow being convenennly dr-posed, and the instrument anflapplances, such ats cuived. sii-sorn upon a table, a convex edged bi tua. y, It straight onf, and one bullumed ar ite pum, snturr- needle filled with double thread onf desireI leagth, pledzels of lint of app oprate size and length, a mass of tow (in ple.lgete) berng collected in a shaylow basker, hetd ty a m metelhgent n-isitant, we place our-elves opposite to the leff flank, our back turned a lithle: owards he hend of the animal; we cut off the hair which covers the hide in the mid dle of the flanks, It in equal distance between the back and the thip, for the space of thirtern or fuarteen centiwietres in circumference; this done, we take 'hr convex bistury and place it open between nur tee th. the edile out, the joint to the left; then, with both hands, we seize the hite in the
middle of the flank and form of it a wrinkle of the requisite elevation, and running lengthwise of the body. We then direct an assistunt to seize with his right hand the right side of this wrinkle ; we then take the bistoury that we held in our teeth, and we cut the wrinkle at one stroke through the maddle; the wrinkle having been suffered to go down, a separation of the hide is presented of sufficient lengih to enable us to introduce the hand; thereupon we separate the edges of the hade with the thumb and iorefinger of the left hand, and in like manner we cut through the abdominal muscles, the ilias (slightly obliquely) and the lumioar, (cross) for the distance of a centimetre from the lower extremity of the inciston made in the hide; this done, armed with the straight bistoury, we make a puncture of the peritoneum at the upper extremity of the wound; we then introduce the buttoned bistoury, and we move it oblquely from above to the lower part, up to the termination of the mesion made in the abdominial muscles. The flank being open we introduce the nght hand into the abdem:n and direct it along the right side of the cavity of the pelvis behud the cal de saurnmen (punch) and underneath the rectum, where we find the cornes de l'uterus, (matrix) ; after we have ascertained the position of these viscera, we search for the ovaires (organs of reproduction), which are at the extremity of the cornes, and when we have found them, we seize them between the thumb and for-finger, detach them completely from the lygaments that keep them in their place, pull hightiy, separating the cord, and the vessels (uterine or fallopian tube) at their place of union with the ovarum, by means of the nail of the thumb and forefinger, which presents itself at the point of touch; in fact we break the cord and bring away the ovarium. We then introduce again the hand in the abdominal cavily, and we proceed in the same manner to extract the uther ovaria.
" This operation terminated, we, by the assistance of a needle, place a suture of three or four double threads waxed at an equal distance, and at two centemceres, or a little less from the lips of the wound, passing it th-ongh the divided tussues, we move from the left hand with the prece of thread; having reached that point, we fasten with a double knot, we place the seam in the intervals of the thread from the right, and as we approach the lips of the wound, we fasten by a simple knot, with a bow, being careful not to close too tightly the lower part of the seam, so that the suppuration which may be established in the wound, may be able to escape.
" This operation effected, we cover up the wound with a pledget of lint kept in its place by three or four threads passed through the stiches, and all is completed, and the cow is then led back to the stable.
" It happrns, sometimes, that in cutting the muscles, of which we have before spoken, we cut one or two of the arteries, which bleed so much that there is necessity for a ligature before opening the peritoneal sac, because, if this precaution be omitted, blood will escape nto the abdomen, and may occasion the nost serious consequences.

Care after the operation.

"The regimen that we prescribe during the first eight days following the operavon, is a hght diet, and a soothing lukewarm draught; If the weather should be cold, we cove the cow with a woolen covering. We must provent the animal from licking the wound and from rubbing it against other bodies. The hird day after the operation, we bathe moning and evening about the wound, with waterand mallows lukewarm, and in default of this we anoint it with a salve of hog's lard, and we administer an emolhent glyster duringthree or four days.
"Eight days after the operation we take away the bandage, the lint, the fasterings and the theeads; the wound is at that tine completely cicatrized, as we have observed that a re-unton takes place almost always by the first intentior, as we have only observed suppuration it three cows, and then it was very slugh. In thes case we must use a slight pressure above the part where the suppuration is estalished, so as to cause the puss to leave it, and if it continues mure than five or six days, we must supply emollients by alcholized water, or chloridized, especially if it be in summer. We then bring the cow gradually back to her ordinary nourishment.
"We have remarked in some cows a swelling of the body a short time after the operation, and state that we attributed it to the introduction of cold air into the abdomen during the opesation; but this derangement has gradually ceased within twenty-four hours after the operation. If the contrary should occur, we - d minister one or two sudorific draughts; such as wine, warm cider, or a half glass of brandy, in a quart of warm water; treatment which suffices in a short time to re-establish a healihy state of the belly, the animal at the same time being protrected by two coverings of wool.
" The operation which we have been describing, ought to be performed as we have said before thiry or forty days after calving, upon a cow which has had her third or fourth calf, so that we may have a greater abundance of milk.
" The only precaution to be observed before the operation, is, that on the preceeding evening we should not give so copious a meal as usual, and to operate in the morning before the animal has fed, so that the operator shall not find any obstacle from the primary digestive organs, es-
pecially the paunch, which, during its state of ordinary fullness, might prevent operating with facility.
"From what has preceded, it is fixed and irrefutable, -
" 1 . That spaying induces permanency of milk, increase of quantity, and improvement of quality, richer, more buttery, superior color, finer taste and flavor.
" 2 . The most suitable age is six years, and after the third or fourth calf.
"3. The spayed cow fattens mare easily, and furnishes beef of a better quality.
"4. Cows that are bad breeders may be kept as good mikers, and the quality of good sattle kept up."

OVERFEEDING HORSES.

It is one thing to give the horse enough to eat and another to over feed him. A Scotch Journal contains a report of a conversation at a mecting of an Agricultural Socipty, on this subject.
"Professer Dick said he had been induced to come forward to offer a few remarks on the consequences arising from injudicious feeding of horses, which, if made known, might be prevented, and much disease avoided. The horse was, by nature, always feeding. His stomach was small, and able only to contain small quantities at a time, and if it was gorged, disease was at once induced. He observed a gentieman, now in the room, who had in one year lost about a dozin horses from these causes. The horses were allowed to be indulged by servants with an extra pailful-the stomach was not enabled to act-digestion was suspended-and death was frequently produced in a few hours; if not, some oiher disease, such as acute founder, ensued. Now, all this might be prevented by a very slight attention to the practice of feeding. If horses were allowed to stop and feed twice-a-day, instead of being worked six hours, and then allowed only one, or at most two, hours in the forenoon to feed-or were the day divided into three portions-the digestive process would go on more readily Even if no more time were allowed, the division of his feeds would be more in accordance with his nature; but when he is fatigued by long conunued fasting and hard work, the powers become exhausted, and the natural processes do not go on with the same readiness; and rest and time are required. When a person is on a journcy, and pressed for time, he frequently gives his horse some oat meal and water instead of corn -forgetful that digestion must have time to be re-established and set going, otherwise disease is likely to arise in another form, and the stomach is often burst by the generation of gas from suapended digeation. But the greateat
harm is done by overieeding immediately after the day's work is over. After working hard all day, and returning to the stable in the evening, hungry and fatigued, the horse is indulged with a full allowance, which is placed before him at once; he overloads his stomach, and indigestion takes place. All this occurs soon ofier the men have left the stable, and, unless the noise he makes is heard by chance, he is found dead in the morning. After the day's work is over, instead of a pailful (which is the ordinary allowance) being given on their returning from their work, he would recommend only a quantity sufficient to take of the edge of the appetite, and in an hour and a half afierwards the rest of the feed. He would strongly recommend this plan to be adopted at all times, but especially at this season. A gentleman in the room to whom he had recommended this plan, who had previously lost many horses from indigustion and its consequences, has for several years snbsequently searcely lost any, and these only when, from som- accidental cause, the proper precaution had not been taken. There was another circumstance which he wished to bring before the meeting. He would call attention to the practice of giving horses food of an improper description. In the neighbourhood of mills, husks were sold at a small price, and were mixed and boiled up as food for horses; this was always dangerous, and was the common cause of an accumulation of dust balls in the stomach and intestines. He called the attention of the meeting to specimens which he laid on the table. These balls were often found in large quantities. He exhibited four balls of large size taken by him from the same horse, and had seen half a dozen as large as those on the table taken from one horse, which must have been farmed in about six weeks, as the horse had never tasted the kind of food until within that period. This disease was most common in Scotland. In England, especially in the chalk districts, another form of concretion was found; there, instead of the dust, or as some call them, dung-balls, calcarious concretions are found, specimens of which were shown. The progress of the disease was sometimes slow, at others very. rapid -fresh coatings grew with fresh applications of the same food, and ultimately the passage through the intestines was generally stopped, causing inflamation and death; in other cases the balls remain stationary in size and situation, if the kind of feeding is withheld. He suggested the propriety of doing away with such food-it might be used for years without bad effects; but sc.ne accidental cause might produce a nucleus for the formation of a dust ball from the particles of barley or oats. Another circumstance, which he found to be attended with much evil, was giving roots, such as turnips, carrots and potatoes, without being wathed. Some thought that these roots should not
be cleaned at nil-they believed that earth promuted dyestom. Horees, no doubt, wert sonectures torid of it; ;istunet taught them to eat earth when acidny exsted in the stomach They mish, however, take 100 much ; tu though a remedy for a disease to a certain eatent, it wats nol to be given when the diceast did not exsit. He woald, therefiore, recommend that all roots, waen given to animals, shoula be washed."

On Stone Fences.

The Editor of " The Plough, Loom, and Anvi" :ay--Peter Minor, of Virgma, wa a man of tare moulesty, and of very rare merit, boih in the di position and his example-m his puran: of unf fal knowledge, and in his perfycuous manner of mparing, unresenvedIy, wiat be knew, for the benetio of ohers Ou the fiest of Octuber, 1819, a piper was read from ham to the A.bemarle A grieutiural hoctity, on the subject of stone faners. He mantamed that the enst of keeping up timbe. fences would, in thrry-hhee yevar, amomut to more that the worth of the: lan i, supp,.. ing it to be worth more than \$20) an acre.The view he p esented was thes :-
An inq ury maturilly pres: nts ites! ? on thisub,ect. What is the relatue value o a farm fenced with stove, compared with one fruced with dead unber! Take the followny data :-
From the be-t accounts I have been able to obtan from others, and from my own exprerience, it miny be fairly stated that one tulh nomth of the ammal labour of every firm icon unird in the various opration of cuting. manumg, handage and paung up fences. Tai is one-iwath of the year, or one compl-te year in iw Ive, that is devoted exclusiveiy to makng and repuring dend fences; and, athe expmone sis amual, it is clear that the condutun of sweh f nees is no hetter at the end of any year than nt the brginning. Agzan, 1 think it may be farly stated that when the mintermats are mplice, the expene of urecunt: a stone f.nce dow not exced that of erectury one of rals, including the various op-rationatove m munned. The value of the timber, (which is tot taken into the nccount above.) and he advintagrs of havine the lan t cleared of stone, will b.lince the expenge of moving the stone three or four ha nd od yards. So that on a farm alounding w th stone. an! wherrthe tran-poriation does not exceed this distance. I think a fence of stune will in the firt instance be as cheap as a rail one. Suppoce. then, two farm - of 500 acres of arnble land each, in all other re:pecte equni, exc"pt thnt one is fenced with stone, and the other wuth dead timber. Each of them employs twelve
urtourers, at \$100 dollars a pece per annum. Our is at no expense, while he who frores with . mber consumes one month in every year in anking and reparing fences. This is an exprave of \$1ut, being the labour of one hand turng a counplete year. At nnnual compound aterest this would amount in less than thirtytrece years to $\$ 110,000$, which is the entire piice of the land, supposing the farm to be worth $\$ 20$ dollars per acre. Thus, in thartythree yairs the one farm would be able to huy the other. fiom the expense saved in the different mode of fencug. It is true that there are not many farms e:pible of benare entirely fencd wah stone, bur there are scarcely any that to nut adiun of it in some degree, and the advannurs: would be derived in a similar ratio to any pant whach could be thus enclosed.

Rulos in Raising Poultry.

1. All young chickens, ducks, and turk y^{c}, haty br k pt under cover, out of the wealher, d.rines rainy seassons
2. Twiee or thrice a week, prpper, shallote, s'uves, or garlic should be maxed up with th ir f.all

3 A snanll lump of asenfetita should be phaed in the pan in which their water is given din in to drink.
4. When-ver they manife t disense, by the 1-owing of the wings or any other oat ward - gn of ill-heaith, a liste assferida, broken into an th limps, should be mixed with their food.
5 Chickens which are k.pt from the dung'iill while young, seldem have the gapes:there fore it shauld be the object of those who hive the charge of them, so to confine the hene $a-$ to rrectude their young from the range of larn or stable yarth.
6. Should any of the chickens have the gapps, in: x up small portions of assafeetidn, rhubarb, an: ipepper, in fresh butter, and give each chicken a- much of the mixture as will lie upon one half the bowl of a smill tenspoun.
7 For the pip, the following treatment is :u ticiou-: Take off the indurated convering on Th- point of the tongue, and give, twice a day, fir two or three days, a piece of garlic the size of a pra If garlic eannot be obtain•d, onion. thallot, or shives will answert and if neithro of three be convenient, two grains of black pepp.r. to be given in fresh butter, will an: wer.
8. For the snuffes, the same remedies as for the gap's will be found highly curative ; but in ad hition to them, it will be necessary to innlt a littic as:afetida in fre-h buter, and nob thr chicken about the nostrils, taking care to clena them out.
9. Grown-up dncks are sometimes taken off rapitly by convulsions. In such cases, four drops of thubarb and four grains of cayenne
pepper, mixed in fresh butter, should be administered. Last year we lost several by this discase, and this year the same symptoms manifested themselves among them ; but we nrre-ted the malady, without losing a single duck, by a dose of the above meducine to such a; were ill. One of the ducks was at the tume paralyzed, but was thus saved.

Loc'jaw in Horses Cured by Chloroform.

Mob'le, March 17.h, 1849.

Dear Sir,-Some tune in Supiember last, I addressed a communcation to you on the application of Chloroform in cases of Lockjaw in horses, and which you were kind enough to publish in your peper.

Since then I have had several opportunities of testing thas mole of treatment, unl in no instance has it falled, whth the exception of one. when the allmanstration of Chloroform wis delayed all the patient was almost in the agonies of death

My plan of trentrn int in this hitherto incurable disease is as follow, :-On the first symptoms, I give a dre uch coupsel of thiry drop of Crotun Oil, momnt ly rabbed in a moitu wita thack muciage or (fum Arahic, an I grad. ually diuted w:ha pat or a pat an I a haf of good ale. lminedatioy on t.le dren th being swallowed, the pat. int antat be bled peofusety. put in a warm stible, anl, if the w ather be cool, carefally covered w ta rurs. Now is the time to use Chloroform-fout ounces w.ll be sufficient for an appacation, and a convenient mode of applyms it 1 s , to make a t mpurary nose bag of a sott material, on 1 as arr-ught as possible; in the botton of it pace a sponge, and on this pour the l.q ud; by introdueng the horse's nose, an I tying the b.ig cound and above the no tals, he will be obliged to inhale, an in a few manu.es will be under its influence. Upon rising, the muscles will have lo.t the rigy hiy peculiar to the disease, his nervous system whi have become quated and his face have lost that anxiety of expression wa.ch accompanies Luckjaw.

The Chloroform must be repeated three or four times-say an hour apart, on the horse'recovery, his strength should be suppoited by light and nutritve food, and, if the weather b warm, turning him out in a pasture for two or three hours a day, will extend the muscleof his neck, and bring him to the use of his limbs.

I would also suggest, that hand-rubbing of the extrem ties during the applying of the Cilloroform will be highly beneficial.

> Respectuly, \&c., Tetanus [Spirit of the Times.

Marmine Saekp.-An Agriculurist gays, 1 wish to impress it upon every one who keep +a
flock, if not more than haif a dozen, that Venetian red is the best thing that I ever used to mant-she p. It is, as most all know, a cheap red paint, only a few cents a pound, and one pound mill mark a thousand. Trake a pinch of dry puwder, and draw the thumb and finger throush the wool upon the paiticular spot you would mark, loosing the powder at the same ume, and it will combine with the oil of the wool, ani 1 make a bright red mark that rains will never wash out, and which will endure from one shearing to another, but does not in, ure the woot. It is readily cleansed out by the manufacturer.

Care of New Miloh Oows.

Iftened U.tders. D.aring this and the next mon h. cows will be calving, and huul 1 recerive tior kudest care and attention. A very common tuouble with cows, e-pectaily voung cows, it inllammation of the udder, wh.ch, enther from the eilect of c.hd or from not bemg m.lk.d zoon enough, and therefore stretched or dist n led too much, becomes "caked," as it is called, and mitlamed. Cold water, freely applacd two or thiee tumes per day, we have found to be an excellent remedy. Soft soap has been recomin n led ns bing very excerlent $t a$ soit n and reduce the inflamantion.

Retention of the after-birth. Anoih $\cdot \mathrm{r}$ trouble wheh we oit n hear of, is "that the cow has nut ceataed well." Sunetunes from want of health, e pecally in very iean cattle, there is not sufficient acuon in the proper oig ins to throw off this substance, and =omk t.ancs there is an adhesion, an it it is retained.

The best mode is to prevent this trouble by timeiy attention to the cow by lieding her well pr - voous to her calving, so as to increase the hea th ani tone of the eystem. Afirth birth of the calf, warm drinks should be given, and the following simple m thod of managing the cow we have found serviceable, for lite knowledge of which we are indebted to one of our n iguburs, who has practiced it for several years wt.1 good success.

Bind a thick blanket or buffilo skin on the back and loin: of the cow, so as to mer ase the kecp up the warinth of the body, and e.pecially that puit of it.

Farming in Aroostook

A correspondent of the Maine Firmer states, that he began farming in this distru't in 1846. H: gave une dollar an acre for hi- lanl in the ". wilderness state," and three dolars an acre for felling trees, and one dollar an acre addinonal for "chopping the limbs,"-innking the cost of clearing including the board of the men, right dollars per acre. He gives the following account of the profits of an oat crop produced
on three acres of this land. He sowed six bushels of "sinall Russian oats" on the three acres, in the spring of 18.48 , and the yield was 225 bushe!s, weighing 34 to 38 pounds to the bushel, and yielding 2.2 pounds of meal to the bushel, deducting from which one-sixth for the miller's toll, leaves 184 pounds to the bushel. worth $\$ 5$ per hundred. The account is stated thus:
D_{R}.
To felling and clearing three acres of land 36.00
Six busheti oats for seed, 5.00
Myself two hours to sow same
Koy and horse three days to harrow thrm in, 4.50
Twelve days reaping, binding and
stocking, 18.00
Man, boy and team if days, to haul them to barn,
Man 12 days in winter to thresh them out,
15.00

Taking them to mill and retnrning meal
15 mules. .
15.00

Total, $\$ 99.00$
Cr.
By 225 bushels oats, giving 181 lbs meal per bushel, 4125 lbs . meal, at 5 cents per ib, $\$ 20625$
Cost of crop, 99.00

Leaving a profit of, $\$ 107.25$
The Russian oats spoken of, are said to be n variety particularly adapted to the rich soil of Aroostook. They do not grow as high as thr common oat by ten or twelve inches; are finestrawed, and seldom lodge so as to injure the grain ; are two weeks earlier than the common oat, and are said to make the best meal of any variety.

figorticultaral.

DISEASES AND ENEMIES OF THE ORCH-
ARD AND GARDEN.
by john a. hennicott, m. d.
Messes. Editors :-I had prepared an article for the May number of the Prainic Farmer, but have lozt, or mislaid it. But as it is much better to be in season, if not so well treated, I will give you a hasty sketch of our experience with that "Little Turk," The Curculio or "Plumweevil."

We have lost many bushels of the choicest plums by his quiet mode of propagation ; and the little "hump back" and his cresent mark, are as fanniliar with us at The Gnove, as are the disgusting appearance and defacing traces of his somewhat later, and bolder companion-

The Curculio often commences work as soon as the germ of the fruit is fairly uncovered, but not in general until it is hall the size of a large pea. By close examination you will discover his mark-which is the segment of a circle-or rather of an ovoid-oftenest nearest the stalk than the flower end, and seldom in duplicate. The plum Weevil attacks all smoori skinned fruits, but he prefers the Apricot Plum and Nectarine, and will attack the apple, peach, \&c., when other fruits are scarce. 'The Curculio is native here-and has stung our native plums, time immemorial-and we think that his ragages are yet confined to the vicinity of our abundant groves of wild plums. Our choice sorts, neurest the wild plums, are soonest attacked in the spring, and always suffer most.

The Curculio is a very shy litte rascal-and as the boys say, is great at "plnying Pussum." His appearence is very odd, and at first you maght mistake him for a dry bud-but after finding two or three you will learn to know him readily. He is somewhat "flea shaped"-but looks about as " like a Camel" as a fles, and perhaps more so-for he has a " hump," two of them, one quite prominent. Mr. Downing says he resembles "a ripe hemp seed"-a pretty good comparison, as to size and color. He ss from one and a half to two and a half lines in length and of a brown color, with light and dark spots.

The only sure way of destroying this pest (and the defiling Rose I3ub) is by hand picking. But the Plum Weevil is wide awake, if he does somotimes " play possum"-and one must be as stealihy as a cat, and about as quick, if you would take him napping. Our mode of carching him is the one invented by that lover of good fium, and father of Horticulture in Western New York, David Thomas. In the evening or very early in the morning cover the ground under the trees where you suspect his presence, with sheets or canvass, and then with a muffled mallet, (the hand, if hard enough, is safest,) strike the tree two or three smart blows in quick succession, and then stoop down and secure the fallen enemy as fast as possible, lest he line of shanming dead, and take to his wings, which he can do, though he is not very fund of using them. We have sometimes caught a dozen or two from a small tree; and this plan, if persevered in, and commenced soon enough, will save your crop, or a reasonable part of it. We say that the above is the only way of getting rid of the Curculio, and Kose Bug also, which we have found uniformly efficient for the time being. Other modes of destruction may be practiced however; and there are several of prevention, more or less deserving of trial. Hens and chickens, or turkeys, "cooped" under the trees are found to answer quite well-the young birds catching many and perhaps frightening more away. It is agreed on all hands
the Rose Bug. These two are our greatest pests ; and our mode of treating them somewhat similar.
that 10 gs , pastured in the orchard, will prevent the ravages of the Curculio. But we do not patronize the animal, neither do we believe in "seeding down" an orchard at all, even though "seeded down with hogs;" as some one at Buflalo Convention very quaintly and sensibly advised as the only safe seeding down for an orchard. The hogs eat all the dropped fruit, and the young worm of course; and their constant rubbing against the trees-and perhaps their odor-frightens off the pregnant Curculio.

This insect, as well as most others, is not a great admirer of strong odors-pungent or bitter articles. And we think, that after preparing the ground in the spring, Quassia or a decoction of it, Wormwood, Rue, Tansy, or other cheap bitter; or Capsicun, or 'Iobacco, Whale Oil Soap, sc., spread on the ground, or appled to the tree, would certamly send them elsewhere to seek a place of deposit for their future progeny.

We have tried salt, but have seen no good effects from the application as yet. We always gather up all the fruit as it drops (a good precaution) and burn it, and yet we have plenty of the Plum Weevel left. But of one thing we are very certain, and that is, that we have $d_{1}-$ minished their numbers, and that now we have not so many as heretofore; and that our trees nearest our large grove of wild plums suffer the most, and those farthest removed, but very hutc. From this we infer that the colonies in the native plum groves, supply those that attack the trees near them-and that the insect is not inclined to take long flights, though he can use his wings at a pinch, as we have observed when about to pinch him.

There is one means of diminishing the Curculio, which we have practiced, and which so far as I know, may be original with us-and that is to turn the earth under the plum trees entirely over, to the depth of the large roots, just before the insect appears, which we take to be about the time the flowers first show themselves in the spring; by this method we agan bury him deeply in the earth, about the time he should emerge therefrom. We finish this process by levelling the earth, and treading or ramming down very hard and emooth, and then applying sall, sulphur matches, pepper; tobacco, bitterarticles, or nauseous ones-and trust that we do good thereby-at all events, we leave a clear, level surface, to spread the cloths on to catch him, and from which the marked plums can be readily gathered up.

The Grove, Ill., April, 1849.
Cabmistify is the key which unlocks the great laboratory of nature, and ahows us how
she performs her complicated processes, and produces all her wonderful phenomina.

To Destroy the Striped Bug, Acc.

To destroy striped bugs and other insects, a brond of fifteen or twenty chickens, in a small garden, will keep it free from the above named ravagers. The brood should be hatched about a week before the vines and plant: come up. The hen should be secured in a coop near the centre of the garden, with spaces for the chickens to go in and out; it voould do you good to be up as soon as lignt, and see the little busy bodies drawing the worms from the cabbage roots, or the bugs from their hiding-places among the vines. I have used the above remedy for several years with complete success.

I am wintering 160 or more fowls, and intend to raise 12 or 1500 chickens, and I recken bugs and worms won't trouble my garden much. I find fowls the most profitable stock on a farm; my hens have laid between 19 and 20 hundred egga (and that too without any fresh meat to fied on) since the first of Decimber up to this date. A gentleman from Fort Edward, that was wintering 5 to 600 fowls, called, in my absence, to buy eggs for his own family use; was it not laughable? I have kept an account with my fowls, and find myself in debt to them. The more I feed, and the more pains I take to p2y them, the more I get in debt ; and finally, after three or four years, I find myself so involved, that I kill off my creditors, and send them to the city to be dissected. S. O. Chafis. Pennsylvania Cultivator.

Parsnips.

The cultivation of the parsnip, as fond for stock, has not been generally tested. It is a hardy plant, and the yield, under good cultivation, is very large. This root is sweet and nutritious, and it is doubless one of the most valuable for stock. In the Istand of Guernsey, England, this root is cultivated very entensively for all kinds of stock, and whih excellent success. It would be well if this root was more cultivated among us than it is. Every mechanic who has a small garden should not neglect to plant some parsnips.

Earth the Natural Friend of Man.

The great Roman naturalist, Pliny, in one of the most beautiful passages of his elaborate history of nature, observes:-It is the earth that, like a kind mother, receives usat our birth, and sustains us when born. It is this alone, of all the elemonts around, that is never found an enemy of man. The body of waters deluge him with raing, oppress him with hail, and

274 Pleasures connected with the Pursuit of Science.

drown him with inundations; the air rushrs on in :torms, prepares the tempest or hights up the voleano: but the earth, gembe and in lulgont, ever subservient to the wante of man, spr and his walk w with thow ers, an I his table with pen ty : returns with interest every good committel to her care ; an 1 though she produces th - poison, she still supplies the antidote, though constantly teased to furni-h the luxuries of man rather than has neceswites; yet, ceven to the la-t, she cominups $h \cdot r$ kind indulerence, and when life is over she prously hides his remains in her bo om.

poetry.

Abou Bon Adhem and the Angel.

Abou Ben A lhem (may his tribe increase!)
Aw he vore mght from a decp dream of pace, And aiw, watha the muonligat in his rovem An angel, writing in a book of g id :
Exec dury puace had made Ben Adhem bold,
Anl to the presenee in the room he said,
" What whest thon:" 'The visiun raised its head,
AnI, wath a smining look of sweet record,
Ancwered The names of those who love the Lod.
"And 1-matue one!" said Abuu-" Nay not so,"
R plicil the anorl. Abou spoke more luw.
But ch edy stult, and sail, "Ip y thee, then. Whate an: as one who loves his filluw men."
The ansel wrote and vani-hed. The next night
It can armia whith a great wak rning hgat,
And sh whed the names whon luve of God had blest.
And to 1 Ben Adhem's nome led all the rest !

LIGHT AND LOVE.

Ligh: an 1 Love should go together; Wa:n co.nhan d they sweely charm, More that wit n, on moumain heather, Clear an 1 g.nnte sum ner wenther Glado tite heart with glory warm.
Alwzy w.re they with each other, W.ati of gloom were thin to :hun?

What of hat to show or smether,
Were th y eaca to each a brother,
Jom'd as boch were only one?
D. I th.y warmly hover o'er us-

Fie.ly round us halos fing,-
Did they cear the way befure us,
Earth w.oull heavenwaril pour in chorus
Anthems such as angels bring.
Ligh: 'alon. will never render,
T'u ih - toliy or the low,
More of feeling, warm and tender,

Thin the fair reflected splendour Of the morning from the snow.

Nor will love alone enlighter

And complete the mund's array,
Nose thas warmilatone woud brighten,
And the charms of sumaner hegighen, In the aboence of the day.
Bat where both abound together B tams abroad a glory w trm;
Not the vale' in summer weather,
Nor the bloorning mountain heather, Ever shed so sweet a charm.

alliscullancons.

PLEASURES CONNEOTED WITH the PURSJIL OE SOLENOE.

There is no station in life however lowly but has it sweets, and there is no station in life however high, but has its sorrows. In no instance can orrow be traced to the parsuit of science. Whatever pleasure it may bring-one thung is ceraanly truc, it brings no sorrows. On the contrary, it is a source of enjogment to every matn who has a taste to pursue it, be that maa an hamble trade:man or a weathy merchant. It is a commen upinoia tinat no man is scienufie unless he to master of all the to tract knowl. g te relaung to astronomy, mathematics, chemoriry, geolugy, and is somewant vereed in Lan and Greck. But whese cian we find a man so thuroughly endowed wah scentific kuowledge. 'lacre are men witu have a parnat knowledge of these selences, and we are anoug the namber of those who do not berlieve In the old athge, " a little knowitedge doe more haim then good." 'Inat man ti sceenutic who Is mister of his trade-medestand, all ats principles and practices, or to master of his profission, be it teacher of languages or mathamanes. So much for pracheal scientitic atain-m-nts. And now what shall we siy regarding mure knowtedge than me rely comes within the cope of a mat's buiness and proti-sson. We have every thing to say that is faverable. The mure knowledge a man po-sesies, he is more likely to be a better citazon nad member of -octety. lgaomace degrades, kuowiedge elevales.

How much pleasure would a shormaker lerive foun being aeq amted with he pataciples of the st ans engine, or the myoleates of chemistry. He could not turn to the rigit of to the left in the course of a short walk, whihout hiving his min. attracted to som ting interesting and areful, and calculated to draw his mini from the drulgeries of his own occupation, which, we regret to say, ofien exentes vor sympathes, ns wr believe shoemakers are not so well paid for their labour as they should be. And with
regard to chemical science, it would teach many of them to labor mbetter ventillated apartments, than they in general do. How much pieasure would a tailvi, or any other tradesman enjoy, if he poss sseed some knowledge of geologyit makes no matter he v little it may be at tist, it is of so attractive and pleasurab!e a nature, that "th: latle leaven would soon leaven the whole lump.". It he takes a walk into the fields, he is delighted not ouly with the per pective beautues of nature but with its wonders too. The mute rocks speak to him in a well known tongue, and the p.bbles by the river side chaunt to hum the song of mouaram ratl, and cataract. He may lif: up a graiu of the caiburet of iron, and his mental eye sees it in the pencil of the artast sketchay the outhes of some immortal woik of ort. He may liti from bermeath ho feet a crystal of the magnetic oxide of iron, and has mencal eye may tigure it transformed minto the pen of the staterman, or author; or into the sword of the warret, or the hubandman's pi.sugh-hare of pea.e. He may litt up a backnis b.own powder fiom beneath his feet, and to odirs it woud be as an idle tale, but his menal eye can trace the chromate of iron adormng in orange or gold colurs, the turban of the Tariar or the scarf of the fair. Did zpace p rmit, we might here bianch out into a most interesting and mstrurture field, but it is as well perhaps that we cannot do so at present, and we beheve that it as far better to p esent objects to make others thunk, than to d.al with subjects in such a manner asto prevent them from thanking.

Tentilation...-Combustion.-.-Docomposition.

Weacillation is the art of supplying by arificial means, the required quanuy of oxygen for teepration, \&c. This is to be accomp.ished by the atr containng oxygen forced into the space requirng it, by means of blow.ng-machines, worked by steam, or other power; thus kecping up the supply of fresh air as fast as it becomes depnved of its oxygen. By thi, method we do not supply oxygen to that part of the air from which the oxygen has been withdrawn by respration-that portion will remains durived of its oxygen-1t is, thetefor: necessary to remove it, in order to moke room for the pure arr. This is accomplinhed by making an oulet for the air at the oppowite extreesity of the apace to be ventiated, to the: at whish the air enters. Another methold dents upon the fact. that air when heated, is render 4 lighuer, and has a ten lancy to ascend. To ventilate a space upon this principle, all that is necessary is that the air should have a means of entering at one extremity, and that at the other extremity it should be heated by mrans of a furnace, constructed in such a manner as to heat the air as much as pos-ible with the smallest quantity of fuel. The more the air is heat-
ed, the greater will be the quantity of air that will enter in a given time, into the space required to be ventlated. It is on this principle that sone of the largest mines in Eingtand are venthated. Thry have two shafis, down one of winch the ar emters, and is directed along the different galleries, by means of doors properly arranged unul it arrives at the other shatt, up whelh it is caused to ascend by a large funace placed at the top. In this manner, galleries seven males in length, have been perfectly ventilated by means of n single furnace.

In the construction of furnaces, the object to be attained, is the perfect combustion of the tuel. Now, this can only be arrived at by such un arrangement as will admit of every part of the tue r recelving a sufficient quantty of oxygen, for convering it into carbonic acid and water. If the supp.y of oxygen is sulficient, no fuel e-capes fiom the famel or shafi unconsumed. When, therefore, we observed the dense black smoke emitted fiom some of vur faciories. \&c., we bay well express surprise that men, clever mo.her thugse, should antuw such a slur upon thi ir mjenuity to exist. There are however, many circumstances in the way of improvement in this parti. ular, which render thas subject one of consderable difficulty, viz. -the want of knowledge, for it is obvious that a furnace requires more oxygen at one monemt than at auother; also that when fresh coals are thrown in, the supply of oxygen is required over or abuve the fuel, in order to unte wath the volatile mitters of the coal; at other tunes the supp y of oxygin is required helow, or through the fuel. It so jumpossible to make a furnace s-If acting in these particulars, and these are points seidom attended to. The remedy lies with the fizemen; when they are properly in tructed, the smoke nuisance will nu longer ex.st.

It may be enquired,-if we, and all animals, constanily converting a portion of the atmosphere, into carbonic achl, and if aill furnaces and fires, anil even cominon candles or lamps, are al=o converting other portions of this oxygro mo the same carbonic acad, how does it come o pass that the quantity of oxyg n in the atmo there is not so much dunamsined as to rember it unft for respiration ?

Oxygen consumed by reepiration and combu ton, is converted into carbon c acd and water; nuw plants decompese to.h cart once acid and water-converting the cat on of the one, and the hydrogen of the other, inio their own substance, and give back to the atmoziphere in a frer state, oxygen previously combined with these. In this manner a contant and uniform supply of oxygen is maintaincd in the atmospherr.

Oxygen is the cause of the lecay or putrefaction of vegetable and animil matier. The oxygen unites with the carbon contained in

276 Cruelty to Animals-The End of Arudence-The True Lady.

these substances, to form carbonic acid, and with the hydrogen to form water; the nitrogen contarned in animal matter unites, in some cases: with the oxygen, to fonn nitric acid; in other instances the nitrogen unites with a portion of the hydrogen contained in the decaying substance, to form ammonia-this it is which give to stale meat its peculiar disagreeable smetl In this way Nature c inverts the solid matter of dead plants and of animals into gases, which becoming diffused throughout the atmosphere, serve as food for living plants, which again decompose these substances, taking from them what they require for their own increase, and giving bark to the atmosphere the oxygen employed in the decaying process.

Graelty to Animals.

Mr. Editor: Could the Lumb beast speak or make known its feelings to its master, how often would that master have his feelings hurt for the manner in which he has trented his horse, his ox, or some animal over which he has control! The noble horse was given for the use of man, and to be by him treated kindly. There is perhaps no animal in the service of man of more actual profit, and one deserving of kinder treatment. But how often is he abused! Olten is he loaded beyond his strengh, and, if unable to move his load, is goaded and lashed by an unmerciful driver, until, with distended nostrils, he stares his master in the face, as if imploring mercy. How many horses are spoiled hy bring compelled to draw too heavy loads! Whena horse is willing to draw all his strength will allow, how careful ought his owner to be not to go beyond this! The lash ought never to be applied to on animal that refuses to draw be ause his lead is too heavy for him to move. The farmer who is always plying the lash to his team, seldom has a team that is well disciplined. I have always noticed that the best teams are those used by drivers who " bawl" and whip the least.
"A merciful man is merciful to his beast;" and he who is not merciful to his beast, general!y shows but little mercy to his fellow-creatures. The man who will goad and abuse the dumb beast is very liable to abuse his own family. A horse that is treated kindly by his master, will treat him kindly in return. So with other animals in the service of man. For instance, take the cow that is rather cross about being milked. Few cows are made gente by incessant beating. There is no more ready way to spolia cow, when you sit down to draw the milk from her, than to give her a blow with the malking stool, or a kick with the foot, if she should happen to feel a little uncasy about standing. A person may be obliged to chase a cow around the yard several times before being
able to get near her, after such unmerited treatment.
I well remember the way I managed with a kicking cow, when I was a youngster. Like o her buys, I was fretful and hasty. Soon after I commenced milking, the cow would begin io. step, and ometimes raise her foot as if about to kick. The first thing, with me, perhaps would be to speak out sharply, aud if that did not have the desired effect, the milking stool won'd come next. After this mode of management, the cow grew no better very jast. I soon had to tie her legs; and even then, she woull: contrive to kick over my pail of milk; and if she happened to get loose or break her rope, which was oftentumes the case, it was no easy matter to confine her again. As it fell to my lot always to milk the " kicker," as she was called, I resolved to resort to another method. I accordingly commenced by being mild, (although it was a pretty hard matter ;) but the result was, I brought the cow back to be quite a gentle milker; thus proving to a demonstration that kindness to animals will succeed when other means would fail; and I have ever aimed, since then, to be kind to dumb beasts, believing it the only and sure way of retaining the good will and mastery over them.

-New England Farmer.

A. TODD.

The Find of Pradence.

The great end of prudence is to give cheerfulness to those hours which splendor cannot gild, and acclamation cannot eximlirate. Those soft intervals of unclouded amusement, in which a man shrinks to his natural dimensions, and throws aside the ornaments of disguses which he feels, in privacy, to be useless encumbrances, and to lose all effect when they become familiar. To be happy at home is the ultimate result of all ambition, the end to which every enterorise, and labor tends, and of which every desite promps the prosecution. It is, indeed, at home that every man must be known by those who would make a just estimate of his virtue, or f.licity; for smiles and embroidery are alike occasional, and the mind is ofien dressed for slow in painted hotour, and fictitious benevolence.

The True Lady.
The fucetious Dow, Jr. occasionaliy throws off some happy hits at the affectations of high life. The following remarks, although they may have but lithe poetry in them, contain, nevertheless, some wholesome truths which would be particularly seasonable to some we could mention. In his advice to young men in search of companions, he remarks: Oh, you
foolish idolaters at the shrine of beauty ! Know you not that hundreds of husbands are made miserable by handsome wives, and that thousands are happy in the possession of homely ones ? homely without, beautiful within. Alas! what is beauty? It is a flower that wilts and withers almost as soon as plucked-a transient rainbow-a fleeting meteor-a deceitful will-o-the-wisp-suffumigated mounshine. The kind of wife you want is one of good morals, and knows how to mend trowsers-who can reconcile peeling potatoeswith practical or fashiunable piety-who can waltz with a dash-churn and ging with the tea-kettle-who understands broomology, and the true science of moppingwho can knit stockings without knitting her brows, and knit up her husband's ravelled sleeve of care-who preters sewing tears with a needle to sowing tares by scandel with the tongue. Such is decidedly a better half. Take her if you can get hier, when you find her-let her be up to the elbiows in suds of a wash-tub, or picki:g geese in a cow stable.
Aly hearers-our text speaks of a lady before a tub. You may think it absurd, but let me assure you that a female can be a lady before a tub or in the kitchen, as well as in the drawing room or parlor. What constitutes a lady? It is not costly dress, paint for the cheeks, false hair, and still falser airs, but it is her general deportment-her intellectual endowments, and that evidence of virtue which commands the respect and silent admiration of the world.She would be recognized as a lady at once-it matters not where, or in what stuation she may be found.

Social Kindness.

How sweet is social affection! When the Forld is dark without, we have light within. When cares disturb the breast-when sorrow broods around the heart-what joy gathers in Lhe circle of love! We forget the world, with all its animosities, while blest with social kindrese. The man cannot be unhappy who has bearts that vibrate in sympathy with his ownwho is cheered by the smiles of affection and the voice of tenderness. Let the world be lark and cold-let the hate and animosity of bad men gather about him in the place of busi-ace-but when he enters the ark of love-his own cherished circle-he forgets all these, and the cloud passes from his brow, and the sorrow from his heart. The warm sympathies of his wife and children dispel every shadow, and he ferele a chrill of joy in his bosom which words are inadequate to express. He who is a stranger to the joys of social kindness, has not begun to live.

1 bave known one or two doses of jalap to rebiere hena entirely from a deaire to sec; and
in my opinion, it is far better for the purpose than the cold water cure. I have known English fowls to lay in three weeks afterwards.

The Oharm of Clenliness.

"A white-yellow shirt on a man, said William Cobbett, speaks at once the character of his wite; and be you assured, that she will not take with your dress pains wheh she never takes with her own. Then the manner of puting on the dress, is no bad foundation for judging,-if it be careless, slovenly, or if it do not fit properly. No matter its mean quality; mean as it may be, it may be neatly and trimly put on; and if it be not take care of yourself, for, as you will find to your cost, a sloven in one thing is a sloven in all things. The country people judge greatly from the state of covering of the ankles; and if it be not clean and tight, they conclude that all out of sight is not as it ought to be. Look at the shoes; if they be nodden on one side, loose on the foot, or run down at the heel, it is a very bad sign; and, as to slipshod, though at coming down in the moming, and even before daylight, make up your mind to a rope, rather than live with a slipshod wife."
Coffee.
"Coffee as a beverage is either incomparably excellent or incemparably vile. Its quality depends upon the method of its preparation. Roast the berry to a dark brown. Never allow it to become black. During the process of roasting, let it be constantly stirred ; so that the whole mass shall be equally roasted. After this process its flavour diminishes. A small quantity, therefore, should only be roasted, for family use, at any one time; not more than enough for two or three days. The berry should be ground rather coarsely. Then by the application of boiling water in the ordinary way, its properies will be extracted in a few mioutes. The coffee grec, or biggm, is the best article in use for this purpose. The water filters shrough the grounds of the coffec quickly, and a pure, strong, and delicious drink is thus obtained. The betuer preparation of coffee is that which is made very strong, and then reduced by the audition of an equal quantity of new milk of the cow. The milk should be added when hot."

To the above by the editor of the Popular Cyclopadia of Domestic Medicine we can add our full assent. The latter clause, directing the use of hot milk insted of cold, is worth remembering. It bears trial.

Incomostible Wasm,-Slack stone lime in a large tub or barrel, with boiling water,

278 How to get Rich-To Shake off Trouble-Glanders-Burns.

covering the tub or barrel, to keep in all the steam. When thus slacked. pass six quarts of it thourh a fine sieve. It witl then be in a state of tine flour. Now, to six quats of the lame ahid one guart of rock or 'lurk's lslamd sali, and one gation of water; then boll the mexture and =kim it clean. To every tive gallons of thes mxture, add one pound of ahtan, hali a pound of copperas, by slow degrees, three-qaaricrs of a pound of poia-h, and four quarts of line sand or hard wood a-hes, sified This maxture will now atmit of any coloring matter you ple:ase, and may be appaed with a brush. It tooks b- ther dhan paint, and will $\leq t \mid p$ small leaks in the roof, prevent the moss fiom grownir over and rotung the wood, and rendel it incoubu-tible from sparks fallong upon it. When taid upon briek woik, it rend•rs the brick impervious to ram or wet.-[Emmiant's Book.

How to get Rich.

Almost every body wants this information. It is comprised in this advace: Be economical; be mdustrious; attend to your own business; never take great hazards; doèt be in a hurry for wealith; never do bu-iness solely for the salie of domir $1 t$; and do not love moncy extravagamly.

> To Shase off Tronble:

Set about doing gocal to somebody; put on your hat, and go in I visit the sicl and the poor: Inquire into their wints and administer unto thein; seek out the desolate and oppressed, and tell them of the consolations of religion. I have often tried this methol, and have always found it the best medreine for a heavy heart. [Howard.

The Glanders.

Messrs Emturs: While writing, I will mention a fact for your veterinary department. More thon thiny years since, the glanders, of the most virulent kin.f, was anongst the horses of the neighbourtaod in whach $m y$ father lived. Great numbers die 1 off. His horse was taken, and und. the belief that be: also would die, ing father commenced an exp-riment on him with a stron ${ }^{\text {d }} \mathrm{d}$ coction of toba coo juice, given internally. In a short time, the horse broke out all over his body in sores. These cured up in a month or m , and the horse was sound, soon fatted, and was, as lon \boldsymbol{z} as 1 kncw him afterwards, a sound nn.i healthy animal. This was the only horse in all the neighbourhood that recorered. Some farmers in this vicinity, noted for fine, sleck horses, give ocea-ionally Scotel snuff to their horses. J. B. Cooz.- [Albany Cultivator.

EUSNS.

These are of frequ:nt occurrences in families, and often of a ve. y distressing character. A latele care will ofien peevent them It is advisain' to clorhe chadren and young femalos in woulengoid, in winter, when there lit must danger. Stuves also decrea:e the habinty to buas. We glean the following dinecuons from Imay's Poputar Cyclopeda of M.dame:
"The want of presence of mind at the time of the accident often renders the burns more severe than thry otherwise wound be. How trequenuly does it happen that fentites, when their dresses catich time, mstead of aking the most p. onpt means of exturguishaug the fi.mat 8 , generaly merease them, by rasamy about s.reammg fur assistance, when the y ought to le down on the floor and roll over and over on the caipet. The erect position of counse allows the flanes to spread and ase rapidiy to the head parts wiere the fire is most 10 be dreaded; whereas the horizontal position, on the contrary, has a consdesable effect in pieventug thear extending. In such cases the hearth-oug, tablecover, a shawl, or any woolen adicie, are the thungs to be used by any one who hitpp na to be uear, for the pupose of $+x$ ingui=hing tue flames. It al-o frequenty oceurs wae a the a gs and feet are scalded, tha, insted of cuting the stockage and removing them gemly, they a.e diawn off, carrymg the scarf-shn alung wilh them; and the tiuc skin being the a exposed, the most excrutait.ng pain is produced.
" The p.inciple on wheh burns are now trented wh that of excluding them from the air; whi, h may be done by coverng the barned of scalded parts with fluar, or envelopnong them wih cotion wool. It is in general a Ivisable bifote employang the colton, el, her to mamerse the parts in cold water, if their situation will admut of this being don:, or appiy to them peces of fine linen dipped in cold wate ${ }^{-}$, or vinegar and water, and witted frequenily during etveral hours, uncil the pain and heac are remuved. Bat when the burned surface isexiensive there is alw.yys a sensation of chilinesi, which is generally accompanced with shuverings In this cave cold applicatons would do harm, and they ought not to be employed, ev:n when the burn is slight. if there be a unlency to shisering; no: should they be continued if the patient be not relieved by them, or if the y bring on sluvering; and thry are always improper when the injury is on the breast, belly, or anf part of the trank of the body.
"When the legs and feet are scalded, thes should be plunged as soon as possible into cold water, and kept immersed in it a considerable length of time before the stockings are remored. By this means blisters are often prevented.
The blisters, or vesicies, which frequendis
make theirappearance suddenly, in consequenc.of a burn or ecald, should be punctured wi:h a need.e, and the fivid allowed to escape. The burned parts are afterwards to be carefully washed wah tepid water before applying fluu. or cotion.
" Ther cotion employed should be finely carded, and then applied over the burned surfice in ibin tayers one over another, unal there is a c sverang sulliciently thick to exclude the air, and is piotect the pars from undue pressure In mid casts this dassing will be sultianan, and when remov, din the course of ten or fourteen days, the part will be found covered with new okin. But if the discharge of matter be very profuse, it will fand its way through the dre-sing, the coiled part of whirh must then be removed, allowng that which a lheres to the -kin to remam, and fresh layers of coton appued with as lute delay as possible, in orderto prevent the action of the ar on the buined parts. The dressing is to be renewed in thimanner as ofien as it may be found necessary, until the cure is completed.
" 'lhe applicat.on of flour to burned and sealded yaris is now pr ferred in sonse of th. London h epmatals to any other plan of treatment Th.s method is preferable to the use of cotion, inasmach a the flour releeves the pain almost as soon is it is applied, thus rendering the application of cold lotions unnecessary.

THE CHOLERA

The following was sent us some time since, but would seem to be in place at present. Its a lvice to clean up all filth is worth heeding, not only in city but in country:

Messrs. Editors:-The southern atmosphere is already polluted wath the breath of this dire disense. It only waits for the ice to yield -the -now to melt-the miry pools to sen:l forth :heir tugs-me pens of filth and the hog trodden paths to thaw out, to render its presence more secure, and its aim more dendly here, than in the northern latitudes. A few more weeks, a fewmore months at longest, and its presence may be looke:l for here in sections, and more or lessevery where. Its descent into uncleanly and damp situations is as natural as is the law of gravity to bring a cast up pibble to the earth, and those who may stand nearest its haunts may perhops be first to feel its fatal pangs.

Every filthy mudhole, pond and spawny lake, with mucky, sandy shores; sloughs, creeks, muddy ravines, privies, dunghills and heaps of mouldering straw, are rife with its influence. All collections of dirt and filth-decomposing substances of every kind, in and about diwellings, are most sure to invite the evil. Rumshops and greasy barrooms, presenting briwling
dissipation, in country, town and city, are among its congenal hauns, there too 11 poonts ou, one by one ats fated victm. Ever shy of neaness and good order, it ofien passes by, unharmed, :he shady suburbs and clean strectis of the city; delighted with swine to mingle and with the stench and souring filth therro!.

We are liable to, and may err in opinion. My own is that the proper precantions aide, to timely remove, as far as powhb, the canee, and put these matters to right-- ach doing so upon is own premises, with a detrmanation to "prepare for the enemy in time of prace"also cneourage it in others who are inctined to be negl:gent.

A strect observance of good habits-reither cating nor dinking anything that would be likely to destroy a healthy action of the stomarlh -a clean, shady dwelling and out houses, a pure well of water, a clean door-way, clean barn-yard, a clean conscerace and somad sleep; an active mind, honorabiy pursumg its calling, and with moral courage, its every duty, are perhnjs the best of all safe guards in the prevalence of epidemics.

Februay 7, 1849. Anti-Proorast.

Superiority of Hrown Bread over White.

In the month of June, 1847, when breadsuuffs were nearly at their maxmm, in Great Bri:an, and bread sold at from 1h. to :s. Id. the $4-b$ loaf, an article was pubhihed in England "On the Nurritive Qualities of Bread in Common Use," in order to show the fallacy of common opinion, by emhodying the leading points of a paper writion by that able, analytical chemist, Professor J. Johnston, then of Edinburgh. From the period that the older organic chemi:ts announeed that all the consticurnt elements of the iuman and amimal frames were built up, and supported hy, the assimilation of certain specific maters contaned in the food with which each was fur-ni-hed, it brcame a primary object with them to subject every articie of such food to severe analyis. Bone, muscle, and fut constitute the three chief maternals of nnimal structure, the blood being the vialized fluid which contains, and conveys through approp:iate channils, thoge elements that are destined for their ultimate supply.

Brond ranks among the chicf of the natri mental substances destined for the support of the human frame; and therefore, particularly at the time of the late or anticipated scarcity, it became an imperative duty not merely to secure to the public a genuine and pure article, but to point out the menns by which pure wheaten meal could he most economicnlly prepared, and so manipulated ns noore effectually to nourish the body, and promote its general
health. The Professor announced that the best and most nutrimus bread could not be made from the "whites," or household flour, but only from the "whole meal," consisting of the entire wheat grain ground up in one way, and used as it comes from the millstones, unsifted, and therefure containing all the bran. He also showed by calculation that 1,000 pounds of such whole or entire meal contains of the elements of-
Muscular matter,
Fat,.
Bone material,

Whereas, in fine flour are found only of

Muscular matter, . . . 130 lbs .
Fat, 20
Bone material, 60
210 lb

If, then, the real elements of food, convertible by assimilation into muscular flesh, fat, and bone superabound to the extent of 144 lbs . in whole meal, and, as an inevitable consequence, to pure brown bread, when compared with the white, tasteless, artificial compound made by the white and "fancy" bread bakers. Some allowance must, however, be made for constitutional varieties ; for it is proved, that in many instances bread which contains all the coarse bran becomes flatulent and too laxative, in consequence, perhaps, of irritation produced by the mechanical action of unreduced scaly particles. In such cases, the best "one-way," or grist flour, obtained from the mill, with the separation of the rough bran only, should be substitu-ted.-[Selected.

Read to Improve.-Any young farmer who will make it a point to read a little every day, from some approved agricultural book or paper, will have protitable food for reflection as he treads the furrows-and will find his mind rapidly advancing in useful knowledge connected with his profession.

Sily.-The quantity of silk used in England alone amounts each year to more than four millions of pounds in weight! for the producuon of which myriads upon myriads of insects are required. Fourteen thousand millions of animated creatures annually live und die to supply this comer of the world with an article of luxury. If astonishment be excited at this fact, let us extend our view to China, and survey the dense population of that widely spread region, whose inhabitants, from the Emperor on his throne to the peasant in his lonely hut, are indebted for their clothing to the labours of the Silk Worm. It is sruly remarked by Scot'a excelleat paper, "that imagination,
fatigued with the flight, is lost and bewildered in contemplating the countless numbers which every successive year spin their slender threads for the service of man."

Mustard Plasters.-When a mustard plaster is to be applied, there should always be a piece of clean muslin or gauze plated between it and the skin, unless the contrary is expressly ordered by a physician. The mustard acts quite as powerfully, and the whole can be removed more quickly, and without the disagreeable effects of dropping it about.

How to Remove Dust or Lint froh Velvet or Woollen Clotues.-Dust or lint may readily be removed from veivet or woollen - loth by wiping it, while dry, with a piece of tpe, without reference to color.
Save the Urine.-The urine from cattle is worth as much as the solid droppings. Any farmer can easily secure the wisole, both in summer and winter, by having a bed of turf or vegetable matter deep enough to catch and retain the liquid. The watery portion soon evaporates, while the solid matter, amounting to about 12 per cent., is incorporated with the turf, and held till needed for use.

fitarkets, sis.

LIVERPOOL CORN MARKET, June 16.-The market was stcady during the week, but with only a moderate amount of business passing. Flour slightly advanced yesterday, best Western Canal bringing 223. to 23s. per barrel. Canadian 22s.9d. to 23 s . Wheat advanced 2d. per bushel.

NEW YORK, July 2.-There is a fair demand for Western and New York State Flour, for the east and for export. The prices range from $\$ 4.12$ to $\$ 4.75$ per barrel, according to quality. There is a fair inquiry for Wheat, at 75 cents to $\$ 1.25$ per bushel, according to quality. There is a fair demand for Ashes of buth sorts. Pearls $\$ 5.60$, Pots $\$ 5.65$. Lard is in fair demand, at 6 to 7 cents per lb .

TORONTO, July 4th.-Flour per barrel 15 s . to 20s. Oatmeal per barrel 16 s . to 183. Wheat per bashel 3s. 6d. to 4d. Rye per bushel 2s. 6d. to 3s. 2d. Barley 1s. 6 d. to 1 s . 9 d . Oats 10d. to 1 s . Peas 1s. 6d. to 2s. Potatoes 2s. to 2s. 6d. Onions 3s. 6d. to 5 s . Fresh Butter 6 d . to 7 fd . per lb . Egge, per dozen, 5d. to 6d. Beef per cwt. 123. 6d. to 17s. 6d. Mutton, per lb., 21d. to 4d. Veal $2 \frac{\mathrm{fd}}{} \mathrm{d}$ to 3d. Bacon, per lb., 3d. to 4dHams, per cwt., 25s. to 30s. Lard, per lb., 4d. to 4id. Hay, per ton, 353. to 45s. Straw, 30s. to 37s. Gd. Timothy Seed, per buehel, 6s. to 8s. Turkeys, each, 18. 3d. to 3s. 9diGeese, each, 2s. 3d. to 2s. 63d.

