The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Reliè avec d'autres documentsTight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, iorsque cela ètait possible, ces pages n'ont pas ètė filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les siėtails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages!
Pages de couleur

Pages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured. stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/ Le titre de l'en-tête provient:Title page of issue/
Page de titre de la livraisonCapaion of issue/
Titre de depart de la livraisonMasthead/
Générique (périodiques) de la livraison

Additional comments:/
Commentaires supplėmentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

THE CANADIAN JOURNAL.

NEW SERIES.

No. XXVIII.-JULY, 1860 .

NOTICE OF A SKULL BROUGHT FROM KERTCH, IN THE CRIMEA.

BE DANIEI WILSON, II.D.,
PRORE88OR OP IISTORE ANTD BNGLISA IITEBATUEE, UNIVEASITY COLLEGE, TOROXTO.

Read before the Canadian Institute, January 21st, 1860.
The Anglo-French campaign of 1855 in the Crimea, led to a general familiarity with much conceruing that remarkable peninsula, of which we were in ignorauce before. Its geography, its ethnology, and its antiquities all attracted attention; and rewarded research by novel disclosures; and its ancient history acquired a fresh interest, and received new illustrations from the investigations of the half obliterated remains of its long extinct past. Among its ancient historical sites, which, owing to peculiar circumstances, received a large share of attention, that of Kertch is, on various accounts, the most remarkable. Built on the site. where, some 500 years before Clrist, the Greek city of Panticaprum was founded, it was the centre of an area rich with memorials of the straugely chequered past, which has seen the same spot successively occupied by Milesian Greeks, Romans, Huns, Tartars, Genoese, Turks, and Russians. The Russian occupation of the Crimea dates only from a late period in the eighteenth century, but since then, a Museum had been formed in Voz. V.
the town of Kertch, in which were preserved many historical antiquities of the Crimean Bosphorus; and especiatly sepulchral relics recovered from the tumuli which abound on the site of the ancient Milesian colony.

Learning from an old fellow-student that he was about to proceed to the Crimea to join the Army Medical Staff, I wrote to him, drawing his attention to various objects worthy of observation; and in directing his notice to the treasures accumulated in the Museum at Kertch, specially requested him to note for me-should opportunity offer,-the characteristics of an ancient Macrocephalic skull preserved there. It is referred to in Captain Jesse's "Notes of Travel in Circassia and the Crimea," where it is said to have been found in the neighbourhood of the Don. The interest of such cranial remains increases in value, from the evidence they furnish of ancient analogies to the remarkable artificial compression which now we associate almost exclusively with American crania.

It chanced, as is.now well known, that, in the fortunes of war, the town of Kertch fell into the bands of the Anglo. French invaders; and some few of its ancient treasures were preserved and transmitted to the British Museum. . By far the greater portion of the Museum collections however, were barburously spoiled by the rude soldiery; and among the rest doubtless perished the little-heeded relic of the Macrocephali of the Crimea, first described by Flippocrates, five centuries before our era. Blumenbach has figured in his first Decade, an imperfect compressed skull, received by him from Russia, which he designates as that of an Asiatic Macrocephalus; and in 1843, Rathke commmunicated to Müller's "Archiv für Anatomie," the figure of another artificially compressed skull, also very imperfect, but specially marked by the same depression of the frontal bone. This example is described as procured from an ancient burial-placenear Kertch in the Crimea; and no doubt other illustrations of the peculiar physical characteristics of the ancient Macrocephali of theBosphorus will reward future explorers, when the attention of those engaged in such researches, or even in ordinary agricultural labours on the site, is specially directed to the interest now attaching to them.
Meañwhile, however, my hopes of obtaining any further facts from the Macrocephalic cranium seen:by Captain Jesse in the Kertch Museum, had been dissipated by the dispersion and wanton destruction of its treasures; and I had ceased to think specially of Crimean
crania, when I was gratified by receiving the gift of a skull, including the lower jaw, brought from Kertch, and described by the donor, as that of a Circassian lady. In form it presented no correspondence with the Macrocephalic type to which my inquiries had been previously directed, for the forehead is markedly vertical, and in its general proportions it is strikingly characterised as a brachycephalic cranium of unusual width at the parietal protuberances, while marked by much delicacy and beauty, especially in the facial bones.

A special interest attaches to the evidences of physical form, as well as of philological characteristics, pertaining to the tribes of the Cau-. casian area, owing to the factitious importance that has been assigned to certain of them in modern Ethnology. It may not, therefore, be altogether valueless to put on record the facts connected with therecovery of the Crimean cranium in question; and to note the peculiarities of its form and meacurements; though, from the mixed character of the population of Kertch it would not be safe to. assign the crania of its modern cemetery to any absolute ethnological group, or to make them the basis whereon to found data for classifcation, or for any comprebensive generalization.

Dr. Latham, in his "Varieties of Man," classes the antions and, tribes of the area within the range of Mount Caucasus under the generic designation of Dioscurian Mongolidæ, including in its chief divisions: The Georgians; the Lesgians; the Mizjegi: the Irôn; and the Circassians. He derives the term Dioscurian, from the ancient sea-port of Dioscurias, where the chief commerce between the Greeks and Romans and the natives of the Caucasian rauge took place. According to Pliny, it was carried on by one hundred and thirty interpreters, so numerous were the languages; and one striking characteristic of the locality, still noticeable, is the great multiplicity of mutually unintelligible tongues. This therefore is the idea designed to be conveyed by the term Dioscurian. Caucasian would have been a preferable, because more familiar and precise term, but it has been:already appropriated as an Ethnological division, in a way sufficiently confusing and indefinite, without adding thereto by the creation of such a contradictory union of terms, as would arise from such a designation as Caucasian Mongolidæ,-almost equivalont,.in popular acceptation, to European Asiatics!

The use of both epithets, Caucasian and Mongolian, is traceable to Blumenbach, and the history of his adoption of the former supplies
a curious example of a term, subsequently employed as one of the most comprehensive heads of classificaition, having its origin from the fewest possible premises. Among the captives taken by the Russians in one of their frequent inroads on the country lying between Mount Caucasus and the Euxine, was a Georgian woman, who was carried prisoner to Moscow, and died suddenly there. The body was made the subject of anatomical examination by Professor Hiltenbrandt, and the skull having been prepared, was subsequently presented to Dr. Asch, of St. Petersburg. From him it passed into the hands of Blumenbach, and its peculiar symmetry and beauty appear to have made a lively impression on his mind. That this was not without good reason appears from the following description of the Georgian -cranium by Dr. Lawrence:
"The form of this head is of such distinguished elegance, that it rattracts the attention of all who visit the collection in which it is - contained. The vertical and frontal regions form a large and smooth convexity, which is a little flattened at the temples; the forehead is high and broad, and carried forward perpendicularly over the face. The cheek-bones are small, descending from the outer side of the -orbit, and gently turned back. The superciliary ridges run together at the root of the nose, and are smoothly continued into the bridge of that organ, which forms an elegant and finely turned arch. The alveolar processes are softly rounded, and the chin is full and prominent. In the whole structure there is nothing rough or harsh, nothing disagreeably projecting. Hence it occupies a middle place between the two opposite extremes, of the Mongolian variety, in which the face is flattened, and expanded laterally; and the Ethiopian, in which the forehead is contracted, and the jaws also are narrow .and elongated anteriorly."

Little could the poor Georgian captive dream of the posthumous honours and admiration that were to atone to her for her living wrongs. She has avenged herself on her European captors, by introducing uncertainty and confusion into the science for illustrating which Blumenbach regarded her symmetrical cranium as a peculiarly valuable prize. It was in the Third Decade of his anatomical descriptions of skulls, published in 1795, that the skull of the fair Georgian :was introduced, accompanied by a glowing description of its elegance and unequalled grace; and a reference to the beauty of the Georgian women, which, as his example proved, lives even in their fleshless
bones. A comparison of the skull with a cast of one of the most beautiful classic busts in the Townley collection, seemed to the enthusiastic craniologist as though he had acquired the actual skull of the head from which the ancient marble was copied; and when r'aced alongside of the only Greek skull in his collection, the Georgian was superior to it, the dreek being next in rank.

Hence it was that Blumenbach adopted his Georgian skull is a typical cranium, for the most perfectly developed division of the human species. In the same decade in which the Georgian skull appears, the term Caucusian is introduced in connexion with it; and along with this term of classification appear also those of Mongolian and Ethiopian; and these, with the epithets Malay, and American,-subsequently added,-formed the names of a quinary division of the human species, which he conceived his physical researches to have established. By the term Caucasian, Blumenbach meant no more than the adoption of a convenient name for his highest division of the human species, the typical characteristics of which were most completely epitomised in his symmetrical cranium. But the associations and historical traditions connected with Mount Caucasus, supplied a tempting basis for theory and speculation. The mountain range was assumed by some as the central point for the origin of mankind ; and the epithet derived from it is now associated with so many extravagant ideas, and so much loose and confused classification, that the rague uncertainty it has acquired is abundantly sufficient to justify its abandomment. When, however, Dr. Latham substitutes the term Dioscurian for Caucasian, in its limited sense as applicable to the inhabitants of the actual area of Mount Caucasus, he does so not only from different data to those employed by Blumenbach, but even in defiance of such analogies as their ascertained physical conformation seems to suggest. He accordingly admits that he occupies exceedingly debateable ground. "So long has the term Caucasian been considered to denote a type of physical conformation closely akin to that of the Iapetidx, i. e. pre-eminently European, that to place the Georgians and Circassians in the midst of the Mongolidæ, is a paradox. Again, the popular notions founded upon the physical beauty of the tribes under notice, are against such a juxta-position; the typical Mongolians, in this respect, have never been mentioned by either poet or painter, in the langnage of praios." Perhaps, however, the facts which justify Dr. Latham in saying of

Blumenbach's solitary Georgian skull, "never bas a single head done more mischief to science, than was done in the way of posthumous mischief, by the head of this well-shaped female from Georgia," may have had their influence in tompting to the Caucasian paradox of his Dioscurian Mongols. The classification, at any rate, entirely ignores physical conformation, and rosts on vocabulary analogies, confirmed by an opinion expressed by M_{h}. Norris, of the Asiatic Society, that on the surer evidence of grammatical comparison, the closest philological affinity of the Dioscurian languages is with the Aptotic oues, of which the Chinese is generally accepted as the type.

It is scarcely necessary to say, that languages may belong to a different class from the people who speak them. Europe supplies abundant and well authenticated illustrations of this. An Euglishman speaking Chinese, dces not thereby kecome a Mongol, nor will the adoption of the English tongue by the Chinese emigrants to Australia and elsewhore, affect their essentially Mongolian physical characteristics. Dr. Latham ascordingly refers to the want of sufficient evidence for discussing the physical elements of classification in his Dioscurian Mongols. "Physiological objections," he observes, "based upon the symmetry of shape and delicacy of complexion on the part of the Georgians and Circassians, I am at present unable to meet. I cau only indicate our want of osteological data, and remind my readers of the peculiar climatological conditions of the Caucasian range ; which is at once temperate, mountainous, wooded, and in the neighbourhood of the sea-in other words the reverse of all Mongol areas hitherto enumerated. Perhaps, too," he adds, "I may limit the extent of such objections as a matter of fact. It is only amongst the chiefs, where the personal beauty of the male portion of the population is at all remarkable. The tillers of the soil are, comparatively speaking, coarse and unshapely."

The latter remark-whatever be its value,-may be made of the tillers of the soil everywhere; but if the Georgian and Circassian mothers are generally as graceful and beautiful in form as the concurrent opinion of travellers affirms them to be, the perpetuation of anything approximating to a Mongol physical type in their sons, would be one of the greatest marvels in physiological ethnology. In the absence, however, of osteological data, the smallest contribution towards the accumulation of the requisite facts may have its value.

The history of the cranium to which I now direct attention, is as
follows: Dr. Michael 'Yurner was present in the Crimea, and in active service on the medical staff, during the Anglo-Trench Invasion of 1855, and witnessed the capture of Kertch. At that period, its population was estimated at between seven and eight thousand; and was compnsed of Tartars, Cossacks, Greens, Russians, and a sprinkling from the tribes bordering on the shores of the Black Sea. More than two-thirds of the whole population of the Crimea are a mixture of the pure Asiatic Mongol Tartar with the modified European Turk; and except among the nobles, or murses, and partially among the population of the northern valless, they abundautly indicate their Tartar origin in their fentures.

The antipathies which the mutual wrongs of Russian and Turk have created, have obliterated in the minds of the latter any idea of kindred with the Tartar, or semi-Turkish population of the Crimea; and after the sack and pillage of the town of Kertch, the Turkish troops carried their violence so far, as to open and spoil the graves in the Christian cemeteries; and on finding trinkets and relics in some of the first they opened, a general desecration ensued. The articles found consisted of ringe, beads, and amulets, and also of crucifixes, and images of the saints; and these were sought for, and appropriated by the Turkish soldiers, with the utmost indifference to the condition in which they left the ravished occupants of the desecrated graves. Whilst strolling in the neighbourhood of the city where such shameful spoliation had been carried on, Dr. Turner passed through a large cemetery, which he was led to believe hadbeen confined exclusively to members of the Greek Church, from the number of large marble crosses heading the graves. Most of the latter were opened, and rifled of such of their contents as could tempt the cupidity of the spoilers; and the skeletons and partially desiccated remains of their former occupants lay strewed about the ground. On looking into one of the open graves which had been thus despoiled, he was tempted to examine .o nature of the sepulture, as the body still remained in its original position; and also to ascertain: whether the marauders had left anything of value behind. He accordingly jumped into the grave, and turning over the loose soil with his hands, he was struck, on uncovering the head, by its long black hair and beautiful teeth. The body was not yet returned to the dust, .so that the interment was one of no very renote date from that of the disturbance of what cannot properly under such circumstances be
called its last resting place. The muscles, which still remained on the forehead, were dry and contracted, and across the forehead, and round the head, was a broad gold fillet, sufficiently indicating that the grave was tenanted by one who had occupied a high social rank. No other ornaments or relics were observed, the whole of those having doubtless been removed by the original rifiers of the grave. Dr. Turner did not consider it a very serious aggravation of the desecration to which the dead had already been subjected, to possess himself of the skull, which struck him as one peculiarly marked with indications of former delicacy and beauty; and through the kind intervention of my friend Dr. C. W. Covernton, it has since been transferred to me.

From a comparison with other skulls procured by him, Dr. Turmer at first inclined to the opinion that he had acquired the cranium of a Greek lady. The breadth at the parietal protuberances, however, along with other marked features, differ essentially from the Greek type of head; and as there were many Circassions among the wives of the most influential and affluent families in the city, the probabilities he conceives are, a priori, in favour of its being ascribed to a people celebrated for the beauty of its females, and for their frequent introduction both to Turkish and Greco-Russian households around the Euxine. An elaborately sculptured, but broken marble cross at the head of the grave, added additional procf that the once loved and lost beauty of some Kertch househnld, whose remains were subjected to such indignities, had been ranked, during her life-time, among the finest porcelain of human clay. Dnder the peculiar system which prevails in oriental households, however, and by which Cbristian as well as Ottoman alliances are influenced, a wide area is embraced within the possible origin of the beauties who adorn such eastern homes; and a comparison of the most strikingly marked characteristics of this head with the varying types of cranium pertaining to what may be regarded, even in some respects philologically, as the European ethnic area, would rather suggest its classification among Armenian than Circassian forms. The materials however, for arriving at any very definite conclusion are limited, and perhaps inadequate for positive generalizations; and it may suffice to put on record such minute descriptions and measurements, as may afford the means of future comparison.

The skull, as already indicated, is that of a female, of fully 30
years of age. The bones of the face are characterised by great delicacy. The zygomata are slight, and inclose a space proportionally small by the zygomatic arch. The face is altogether small for the head, giving the idea of a considerable breadth of forehead; though it will be seen that the parietal diameter is in greater excess than usual when compared with the frontal diameter. The teeth, the beauty and completeness of which attracted the attention of Dr. Turner when first exposed in the cemetery at Kertch, have since mostly fallen out: but with the exception of one decayed molar, such as remain fully accord with his description, and with the delicacy of the superior and inferior maxillaries. The forehead is smooth, with no projection of the frontal sinuses, and no depression. above the nasal suture, but with marked frontal protuberances at the upper angles of the forebead. The occipital protuberance is slight, and the profile of the calvaria exhibits a markedly vertical aspect both in its frontal and occipital outlines. The frontal bone passes somewhat abruptly from the forehead to the top of the skull, thereby giving a square form to the profile instead of the more usual arched curvature; so that, with the nearly vertical occiput, the cranium has a singularly compact outline, when viewed in profile. The parietal bones are large, with a gradually increasing protuberance to their greatest diameter, a little behind the line of the mastoid processes. Owing to this the outline of the vertical aspect presents somewhat the form of a truncated wedge, narrowing gradually and with a nearly uniform diminution until abruptly rounded off into the forehead at the frontal protuberances.

The following are the most characteristic measurements of this skull :-
Longitudinal Diameter 6.7
Parietal Diameter 5.7
Frontal Diameter 3.8
Zygomatic Diameter 4.4
Vertical Diameter 4.7
Iutermastoid Arch 14.3
Intermastoid Line 3.7
Length of Face 6.2
Horizontal Circumference 19.7

Dr. J. Aitken Meigs has remarked in his "Oranial Characteristics of the Races of Men," chiefly founded on data supplied by the

Morton Collection in the Academy of Sciences at Philadelphia: "The extreme South-eastern section of the European ethnic area, occupying mainiy the table-land of Iran, is represented in the Morton Collection by six Armenian, twó Persian, and one Affghan skull. A general family resemblance pervades all these crania. They are all, with one exception, remarkable for the smallness of the face, and shortuess of head. In the Armenian skull, the forehead is narrow and well formed, the convexity extending upwards and backwards tomards the parietal protuberances and laterally towards the temporal bones. The greatest transverse diameter is between the parietal bones. This feature, combined with the flatness of the occlput, gives to the coronal region, an outline resembling a triangle with all three angles truncated, and the base of the triangle looking posteriorly. In fact, the whole form of the calvaria is such as to impress the mind of the observer with a sense of squareness and angularity. The dimensions of the orbits are moderate ; the malar bones small, flat, and retreating; zygomatic processes slender, and the general expression of the face resembling that of the Circassians, from which latter it differs in being shorter." On mearly all those points, the Kertch skull closely corresponds to this description of Armenian Cranial characteristics. The only noticable exceptions are in the orbits, which may be described as somewhat large, but with their perpendicular diameter the greatest; and in the length of the face, which has more of the assigned Circassian dimensions. The formation of the lower jaw indicates a delicately pointed and small chin. Viewed altogether, the peculiar features of this skull are well defined, and sufficiently characteristic to enable an experienced craniologist to assign it, wilh little hesitation, to the Iranian group, with its included Georgians, Lesgians, Circassians, and Armenians. Of those the last named-to which the Kertch cranium seems by its most prominent peculiarities to belong,-possesses some characteristics of peculiarinterest. In bis "Varieties of Man," Dr. Iatham places the Armenians foremost among his "unplaced stocks;" but regarding them from a philological point of view, he seems to consider them as in some respects presenting indicstions of a link between the Indo-European and the Semitic groups; but he also adds: "it is through the Armenian, that the transition from the Mongolidæ, to the Atlantidæ, is most likely to be recognised." Obtained as the skull now described has been, under peculiar and somewhat un-
ique circumstances, and with a minuteness of evidence relative to the social condition and the vital characteristics originally pertaining to her whose sepulture was involved in the ravages of the Crimean war, which led to its acquisition: the facts recorded in this paper, may possess some slight value as a contribution to data now accumulating from the labours of many independent workers, and destined ultimately to establish physical ethnology on a sure and well-determined basis.

GEOMETRIC PROBLEMS RELATING TO CURVES HAVING DOUBLE CONTACT.

BY J. W. MARTIN, LL.D., TORONTO.

Read before the Canadian Institute, 10th March, 1860.
Given a circle and a point o inside it; if a line passing through o and cutting the circle in the points a and b be divided externally in m, so that $\frac{(a o \times b m)}{a m \times b o}=\frac{c o}{c^{\prime} o}$ segrrents of fixed chord passing through o then tangent to circle from m will be to perpendicular from m on $r t$ the polar of o as secant of angle which $c c^{\prime}$ makes with diameter of circle passing through o to unity.

If ac $b c^{\prime}$ be produced, they will meet at p, a point on $r t$; and if from p we draw a line parallel to $c c^{\prime}$ it must pass through m, the anharmonic ratio of the pencil p. aobmbeing as co:co, and as the angle $b p m=b c^{\prime} o=b a p(p m)^{2}=a m \times b m=s q u a r e ~ o f ~ t a n g e n t ~ t o ~ c i r c l e ~$ from m, locus of $m: \therefore$ is $s-c^{2} \alpha^{2}=0, s=0$ being equation of circle, and $\alpha=0$ that of the line $r t$. In like mamer, if p be joined with middle point of $c c^{\prime}$ joining line meets $a b$ in m^{\prime}. So that $\frac{a o \times b n^{\prime}}{a m^{\prime} \times b 0}=\frac{c o}{c^{\prime} o}$ and locus of m^{\prime} is $s+e^{\prime 2} a^{2}=0, e^{\prime}$ being $=$ to $c c^{\prime}$ divided by sum of perpendiculars on $r t$ from c and c^{\prime}. The conics $s-e^{2} a^{2}=0, s-e^{\prime 2} a^{2}$ $=0$, are polar reciprocals. The lines $c o c^{\prime}, f o f^{\prime}$, each of which makes with diameter of circle passing through o, an angle whose secant $=e$ are parallel to the asymptotes of the conic $s-e^{2} a^{2}=0$, and polars of the points where the asymptotes cut ($r t$), while the line joining their
middle points is the polar of the centre. If from my point on ($r t$) tangents be drawn to circle and the two conics, points of taction lio on a right line passing through 0 , and anharmonic ratio of any four points on $r t$ is $=$ that of lines drawn from o to points of taction where tangents drawn from the four points on (irt) toneh either conic.

ON SOMF QUESTIONS IN RELATION TO THE THEORY OF 'THE STRUCTURE OF PLANTS OF THE ORDRRS brassicaobe and phlidlacear.

US THE REV. W. HINCKS, F.X.S.

Fead before the Canadiun Institute, 11th February, 1860.
The title of my paper embraces two distinet Botanical notes or topics which would appear interesting to the theoretical Botanist who has had some expernence in such studies, but which would hardly at all have engaged the attention of most practical students of the scienec, and which it may almost seom hopeless to attompt making intelligible to those who do not make Botany a pursuit, yet it appears to me that as we all protess an interest in the adrancement of science, and as our society is formed on the plan of social meetings for mutual entertamment and improvement; as well as for endeavouring to produce something that may be useful beyond our own circle -it must be right that whilst I only bring before you what I hope may either posess some novelty, or at least contribute something towards a just decision on disputed points-I should endeavour to bring it formard in such a mamer that all who desire various information may understand the question under discussion and the opinious proposed for their acceptauce - I am afraid indeed that after all mayy will think the subject little worth their notice; I venture howerer to assure them, that inquiries of this kiud are deemed of some importance as well as curiosity, so that if I were so fortunate as to coutribute any thing torards clearing sither of the doubtful points about to be examined, I should find many to agree with me, that the labour would not be masted. I have only reason to fear
my being found unequal to the difficulties of the case. I am however, giving you specalations which have oceasionally occupied me during a number of years and which are foundod on cautions and repented observations of facts, not without study of the judgments pronounced by writers of authority which [. desire to trent with respect whilst I freoly examine their morits.

Our first inquiry relates to the renl nature of the order of the parts of the flower in a tribe of plants well known as cruciform flowers, and familiar from the wall-flower, stock, cabbage, and several common weeds constituting the order Brassicaceac of lindley. Plants of this order are distinguished by a very peculiarly constructed seed-vessel divided into two cells by a partition which is not casily brought into analogy with anything in the ordinary constitution of seed-vessels, and whilst the calyx and corolla consist of four parts each in the usual relative postions, the uumber of parts in the Gynoecium or ovary, is apparontly only two, and the androecium shows six stamens in two pairs with a single lower one at each end. Now it is well known to all who have attended to the subject, that every flower consists of circles of leafy organs variously modified in their development, the imer circle consisting of what are now called carpols, of which the apex is the stigma, and the margin usually at least bears the ovules-next follows the circle of stamens, often indeed several circles, each stamon consisting of a filament corresponding to the mid rib of the leaf, and an anther most commonly of two cells formed from its expansion, the parenchyma of one surface being converted into pollen grains. Outside the stamens occur the petals, or imner enreloping circle, and outside all the calyx, consisticg of pieces called sepals. Now it is the general rule that these circles alternate one with the other in regular order, the inner circle being indeed peculiarly linble to have its number of partsreduced by pressure, and the others exhibiting occasional anomalies from adherence, irregularity and suppression or abortion, cither of a wholecircle or some part of it. Every flower is formed on a certain definite plan as to the number of circles and of parts contained in each, and as to their relative position, and when there is any deviation from equal numbers and alternate arrangement we always expect to be able to offer some explanation which shall shew it to be a case naturally arising under the general law. Although five is the natural number of parts in each circle in Exogenous plants, it is by no means unusual to meet
with four or even, under pressure, more especially towards the interior of the flower, and rarely in the outer circles, three and two. In cruciform flowers the calyx and corolla have four parts each, the stamens are six, unequal, and there are seemingly but two carpels though with an anomalous comection between their opposite edges, which demands explanation. The late eminent Robert Brown, than whom a higher authority camot be appealed to, considered the fruit as really consisting of two carpels, whose placental edges are at the part where they first touch each other, but the exterior covering of each of which extends until the parts meet in a median line, thus forming a spurious partition. There is nothing impossible in this explanation since the separation of the principal portion of the carpel leaving the placenta in its position, occurs in other instances, and there are probably examples sufficient to justify the notion of the spurious partition though it is something extraordinary. Considering the cases in whioh a line is observable down the middle of the partition, and others in which there is a partial or even entire s.paration into two parts, it. must I think be agreed that the partition is due to the mecting in the middle of two parts projecting from the placental lines; but I confess I greatly prefer another theory which had occurred to myself many years ago, and which I have since ascertained to have been proposed by Lindley and defended by Kunth. Ihis is the supposition that the fruit is really formed of four carpels, two of which are abortive, their remains forming the partition, whilst the remarkable circumstauce of the stigmas being in the line of the placente is accounted for by the fact that each stigma is double, formed by the union of one from each carpel, the tip of the carpel dividing into two portions as in some other instances. This explanation is greatly confirmed by the manner in which the alternnte circles of cruciferous flowers exhibit increased development in opposite directions, the largest pair in one circle being opposed to the lesser pair in the next. On the whole, though Dr. Gray adheres to Brown's theory, I cannot but consider the other as better explaining all the facts of the case, and it is especially confirmed to my mind, by the consideration of the deviative structure of Parolinia. In vain it is contended by Moquin Tandon and Webb, in their ingenious article on the subject, that the prolongation of the valves into extremities with two horns is an unmeaning and unimportant accident. I cannot look at the figures which are said faithfully to represent the fruit of Parolinia, and which I have copied for your
information, without perceiving the very parts which make up the ordinary fruit in this tribe, the two portions of the stigmas and the styles being kept from adhering as usual by an unusual development of the imer pair of carpels, which is usually only represented by the partition, but here forms an interior style with its stigmas. Occasional monstrosities of the wallflower, in which it has a four-celled fruit, and the genus Te tracelion which has one constantly, confirm this explanation. I am not even quite sure that the theory of the four carpels, as maintained by Lindley and Kunth, is identical with that which
 I am defending, as I have not here access to the works in which it is proposed, but my own theory applies Brown's explanation of the structure of the stigmas with what seems to me a much more satisfactory view of the nature f the partition and the general symmetry of the flower, and I sh I be disposed to say is liable to no serious objection.

The difficulty, however, which yet remains, . .opecting the nature of the peculiar arrangement of the stamens, is probably to be accounted much greater than that which I think has been overcome respecting the structure of the fruit. Dr. Lindley, in his account of the order in the Vegetable Kingdom, if I rightly understand his meaning, (which however is obscurely expressed) takes essentially the same riew which I am disposed to favour. His words are: "their stamens are "arranged thus: two stand opposite each of the anterior and "posterior sepals, and one opposite each of the lateral sepals; "there being six stameus to four sepals, instead of either four "or eight as wouid be normal. Now in which way does this arise? "Is the whorl of stamens to be considered double, one of the series "belonging to the sepals and one to the petals, and of these a part "imperfect? I am not aware of any such explariation having been "offered, nor do I know of a better one. It appears to me that the "outer series is incomplete by the constant abortion of the stamens "usually belonging to the anterior and posterior sepals; the two pairs "that remain belonging in fact to four petals." The obscurity here arises from thr tpression "belonging to the sepals:and petals;"' applied to circles of stamens, which is unusual and not very expressive. Thiere
is also an absence of any notice of the ghands in this connection, though they must be accounted rudimentary stamens and ought unquestionably to be taken into account in any attempt at restoring the true symmetry of the flower. They are found in numbers varying from two to ten in different species. In some genera indeed entirely suppressed, but in others conspicuous enough and offering us assistance, which is surely not to be rejected. The extreme number ten with the four carpels, 6 stamens usually developed, 4 petals and 4 sepals gives 28 parts or 7 circles of 4 parts each. There is a peculiarity in the arrangement of the parts which also affords us important assistance in explaining the appearances, to which sufficient attention has not been given. If we look at the calyx or outer circle, we perceive that the anterior and posterior sepals are exterior to the lateral pair and a

little more developed, in some instances so much as to produce small gibbous protuberances like incipient tails at their bases. The circle of petals is very equal, alternating with the sepals. It is followed by the shorter pair of stamens, which has the appearance of being exterior to the other four, and the circle according to our theory, is completed by two glands, (being rudimentary stamens,) which in many genera are conspicuous in front of each pair of longer stamens and opposite to the anterior and posterior sepals. The four longer stamens form the nest circle, which like the petals is equal; within this are to be placed 4 glands, which are manifest in many species at each side of the outer stamens, but whose position is really interior to the longer stamens. There is another set of glands of which two immediately behind the shorter stamens are not unfrequently to be traced, very rarely the least appearance of the whole four, and then we arrive at the carpels of which the most developed pair having their faces to the
smaller stamens and lateral sepals, bear the seeds on their edges and unite a stigmatic segment from eac . to form the stigmas immediately over their line of junction; the other pair of carpels lies just within this, and is almost uniformly abortive, the remains forming the partition, but in Parolinia, as we have seen, it produces stigmas.

It is remarkable that whilst amalogies for the illustration of the structure of Brassicaceae have been sought-not always judiciouslyfrom Papaveraceae and Fumariaceac, so little use has been made oi Capparidaceac the order really most nearly related to Brassicaceae, and belonging to the same alliance. . In this we have the same tendency to circles of four parts, but slight irregularity intrudes to a greater extent, and the number of stamens is increased by the development in many instances of those which in Brassicaceae only appear as glands in a rudinentary condition, and of more numerous circles. The carpels are gencrally supported on a protrusion of the axis, so that the fruit scems elevated on a stalk within the flower, a circumstance not unknown in Brassicaceae, as is seen in the remarkable genus Stanleya. The irregnlar number of stamens, 6 instead of 8 or 12 , is found in many Capparidaceac. In some of them a spurious partition more or less perfect occurs, and has probably the same origin as in Brassicaceae, in others the carpels are reduced to two, and the pod is like one of a cruciform flower without the partition. In others again more carpels than two seem to be developed, perhaps a whole circle of four.

I must now explain the theory of Moquin Tandon and Webb, adopted and defended by Dr. Gray, for explaining the peculiarity of the Androecium in Brassicaceac. They leave the glands out of consideration and reduce the six stamens to a single circle of four primitive parts, by regarding each pair of the longer stamens as one original organ, separated into two by a principle called chorisis or deduplication. This principle, first proposed for the explanation of certain phenomena by Duval, consists in a supposed tendency of parts originally single, and which must be taken as one in explanation of symmetry, to divide themselves either into several layers, one in frout of the other, or in several portions standing side by side. This has been extensively applied by some botauical theorists, but Dr. Lindley entirely rejects it, maintaining that there is no sufficient evidence of any single case. I cannot but admit that it affords some very plausible explanations of difficult cases, yet some of those most relied upon, seem to me very donbtful; several obriously to admit of other
better explanations, and even if there is some trath in the principle, itis peculiarly liable to abuse in its applications. Dr. Gray follows. Brown in believing that the Gynoccium of Brassicaceac consists of only two carpels, a view which has been already sufticiently commented upon. Though particular in describing the ghands, and employingthem as characters of genera and species, he does not refer to them in judging of the symmetry of the order, and he relies on the arguments. of Moquin Tandon and Webb, to prove that the six stamens represent one circle of four. These arguments then I must review :-
lst. In some species, as Clypeola cyclodontect, the filaments of the solitary stamens are furnished with two teeth, one on each side, whilstthose of the double stamens have but oue on their outer side. If we join these two stameus together, so that they form but one, a bidentate filament will result entirely similar to the soiitary stamens. This is without doubt plausible, but we must recollect that the two anthers of a stamen repersent the two sides of the lamim of the leaf, their presence therefore shows the complereness of the organ, whilst the tooth-like projection on the tilament is only representative of a wing to the petiole, or an angle at the hottom of the leaf; since then each of the puirs of stameas has its two anthers, we must conclude that the developmeat of the tooth at the inner side in the pair of stamens is prevented by the two organs being so near to cach other, which canses a pressure manavomable to such development.

2nd. In other species a longer or shorter portion of the filament remains simple, thus in Sterigma tomentostm the division takes place as far as the misdle; and in Anchonium Billardieri in a third part only of the upper portion of the filament Here the position of the longer stamens, double only in their upper portion, is exactly the same as that of the solitary stamens-these facts I reply afford no argument, because they are easily explained by partial coherence (an exceedingly common occurrence) of organs really distinct, and the two authers tend to prove this distinctuess.
3. In Vella psendo-cytisus we find in the place of the double stamens, a single one, its filament being frequently rather broader, sometimes divided only at its summit, sometines entirely undivided, but bearing in that case an anther wholly or partially gemminated. Thave not examined this case, but the description indicates a more complete colkerence of two organs. Instances however which occur, of only one stamen being found in the place of the pair, are only cases in which that circle, as
well as geveral of the others, has two of its parts suppressed, and are perfectly eonsistent with the theory previously explained.
4. Many Crucifere become tetrandrous by pelorization; others are normally so. In either case the four stamens are thus equal. This, I answer, is at least as easily explained in our theory as on that of the separation of stamens into two.
i. Fimally, eertain Crucifere instead of returuing to the quaternary type recedr from it. The single stamens undergo a change analogous. or very similar to that of the double pair. One of us has observed flowers of Matthiola incana, in which the single stamens were cleft throughout their entire length, ench portion being provided with half an. anther wal hulf a filament. M. Lestiboudois speaks of a Cheiranthus Cheiri in which these stamens were completely geminated, not laterally as the longer pair, but from without inwards. M. Lermye met with a flower of the smue species, which had the lower stamens doubled evactly as the uper. Now let these cases be fairly considered : the first appears to show that a stamen may be occasionally slit vertically, but it is acknowledged that there is no increase in the real number of parts, each portion it is expressly stated consisting of half an anther (a single cell,) and half a inlament. This may render more probnhle Dr. Lindey's explanation of Fumariacere, destroying an analogy on which Dr. Gray greatly relies, but it supplies no argument in favour of a single primitive organ having become two perfect mes with all their parts. The ease ohserved by Lestibondois is apparently not one of Chorisis, bat of derelopment under the stimulus of cultivation of the gland, which is often noticed within theshort stamens; that of M. Lermye requires to be more accurately described, but it must not be hastily assumed to have consisted in a division of the single stamen into two perfect ones, it may have been a case like that seen by one of the authors themselves, a mere fissure of the stamen into two parts ; or it is perhaps just possible that the single stamen may have been suppressed, and the two glands which often appear at each side of it, dereloped into a pair of stamens. it is certainly not sufficient without more exact information, to support or overthrow a theory. Dr. Gray relies so completely on the arguments of Messrs. Moquin Tandon and Webb, that I need only farther observe that even if Chorisis furnishes the true explanation of the symmetry of Fumariacie, which I hold to be very doubtful, there is no such relation between that order and Brassicacese as would oblige
us to extend the principle to this latter, and I camot but conceive that a more probable explanation has been proposed.

My note on the structure of Primulacee relates to one point which I have not seen rightly explained. In this order the stamens are observed to be constantly opposite the petals, a circumstance which always seems to neel some explanation. In the present case, I think it evident that it is due to the abortion of a circle of parts belonging to the intermediate position between the petals and stamens and alternating with both. A careful examination of almost any Primula, the Auricula atfording an excellent example, shows that the coloured eye of the flower consists of a series of pieces like the petals, as it were fastened on to them, and in such an order that the middle of ench arch of the eye is exactly placed between two of the petals. In the genus alretice this is still more evident. In Samolus a set of abortive stamens occurs between the petals, and the same is the case with sereral species of Lysimachia; in Cyclamen this organ is also easily observed, and in Glaus the proper corolla as well as its double is suppressed. From these examples we are enabled ideally to restore the lost circle, where it is most completely suppressed, and thus to comprebend the true symmetry and the reason of a secming departure from a general rule. In how many other cases of opposite circles a similar explamation may be justified, I will not presume to say. In respect to this order I think it entirely satisfactory, but it is not the only one conceivable, for any one who has carefully considered a Camelia, in which the numerons circles of petais, instead of alternating as is usual, are forced into regular lines radiating from the centre, will be ready to admit the possibility of parts which are normally altemate becoming opposite by a sort of twist, and what occurs occasionally as a varicty, may occur miformly or nearly so, from a like cause, more constantly operating on a particular tribe, so that we are by no means driven to imagine without evidence an intermediate circle, in every instance of opposite parts, nor is there any necessity for assuming the occurrence of Chorisis where it camot be distinctly proved.

THE RELATION WHECH CAN BE PROVED TO SUBSIST beTween the drea of a plane triangle and TIIE SUM OF THE ANGLES, ON THE HYPOTHESIS THAT EUCLD'S 12 mH AXION IS FALSE.

By thy rliv. george paxton younc, m.d., plofessom of dogic and metaphisics, hinox college, toronto.

Read before the Canadian Institute, 25th February, 1860.

I propose to prove in the present paper, that, if Euclid's 12th Axiom be supposed to fail in any case, a relation subsists between the area of a plane triangle and the sum of the angles. Call the area A; and the sum of the angles S; a right angle being taken as the unit of measure. Then

$$
A=k(2-S) ;
$$

A being a constant finite quantity, that is, a finite quantity which remains the same for all triangles. This formula may be considered as holding good even when Fuclid's 12th Axiom is assumed to be true; only K is in that case infinite.
Before proceeding with the proof of the law referred to, I wonld observe, that, while on the one haud Euclid's 12th Axiom is assuredly not an Axiom in the proper sense of the term, that is, not a selfevident truth, on the other hand it has aever been demonstrated to be true. I even feel satisfied, from metaphysical considerations, that a demonstration of its truth is impossible. Legendre's supposed demonstration, which Mathematicians appear to have accepted as valid, was shown by me, in the Canadian Journal for November, 1856, to be erroneous.* For the sake of those who may not have the former

[^0]numbers of the Sournal at hand, the substance of my refutation of Legendre is given in an Appendix to the present paper.

Provosition I.

The sum of the angles of a triangle AELE (Fig. 1) is not greater than two right angles.

HIC,

For, produce IIE to F. Bisect AE in MI. Draw IMMB, making $\mathrm{MB}=\mathrm{HM}$; and join 3F. In like mamer construct the triangle CIIE; N being the middle point of BE ; and CN being equal to HN. In like mamer construct the trimgle DHE ; P being the middle point of CE ; and DP being equal to PII. And so on in. definitely. Denote by S, S_{1}, S_{2}, \&e.., the sum of the angles of the triangles AHE, BHE, CHE, \&e., respretively ; and by A_{1}, A_{2}, A_{3}. \&c., the angles HBE, HCE, IIDE, \&e, respectively. Then it is plain that the quantities S, S_{1}, S_{2}, ive., are all equal to one another. Also, as the number $\%$ becomes indefinitely great, the angle A_{n} becomes indefinitely small. For, the sum of all the angles in the scries, $A, A_{1}, A_{2}, \& c$., is less than $A E F$; and, since the scries, A, A_{1}, \&c., may be made to contain an indefinite number of terms, those terms which are ultimately obtained must be indefinitely small, in order that ALF may be a finite angle. But, the exterior angle DEF being greater than the interior and opposite angle DIEE, S_{3} camnot exceed two right angles by D. And $S_{3}=S$. Therefore S camot exceed two right augles by D or $\mathrm{A}_{\mathbf{3}}$. In like mamer it may be proved that S cannot exceed two right angles by A_{n}, whatever n be. And A_{n} is ultimately less than any assignable augle. Therefore S cannot exceed two right augles by any finite angle whatsoever.

Cor. 1.-If a line AE (Fig. 2) be drawn from A, an angle of a triangle ADF, to a point in the opposite side; and if the sum of the
angles of the triangles DFA and EAF respectively be \mathbb{S} and $S_{1} ; \mathbb{S}$ is not greater than S_{1}. For let s be the sum of the angles of the triangle dDE; then

$$
\begin{aligned}
S=F & +\mathrm{FAP}+\mathrm{BAD}+\mathrm{D} \\
\text { and, } S_{1} & =\mathrm{F}
\end{aligned} \mathrm{FAD}+\mathrm{AEF} .
$$

a right angle being taken as the unit of mensure. But, by the Proposition, s is not greater than 2 . Therefore S is not greater than S_{1}.

Con. 2.-From B, a point within the triangle DAF, draw BC to a point C in AF ; and let S_{2} be the sum of the angles of the triangle $A B C$. Then S_{2} is not less than S. For, produce $A B$ to E; and join BC. Then, by Cor. 1, S_{2} is not less than the sum of the angles of the triangle AEC; which sum, again, is not less than S_{1}, or the sum of the angles of the triangle ABF; and S_{1} is not less than S, Therefore $\mathbb{S}_{\mathbf{2}}$ is not less than \mathbf{S}.

Proposition II.

If any triaugle CHE (Fig. 3) have S , the sum of its augles, equal to two right angles, every triangle has the sum of its angles equal to tivo right angles.

For, CE being a side which is not less than any other side of the triangle CIIE, let fall HD perpendicular on CE. Then HD camot fall without the base CE; else (supposing
 it to fall beyond E) the angles CEH would be greater than a right angle: hence, because CE is not less than CH , the augle CHE would be greater than a right angle: so that S would be greater than two right angles: which (Prop. I.) is impossible. Produce $\cdot \mathrm{CD}$ to F ; making $\mathrm{DF}=\mathrm{CD}$.

Draw $\mathbb{F N}$ perpendicular to CF , and equal to HD. Produce it to L , making $\mathrm{LN}=\mathrm{HD}$; and join HL and HN. Then the sum of the angles of the triangle CHD is not less (Cor. 1. Prop. I.) than S; that is, it is not less than two right angles. Therefore (Prop. 1) it is. equal to two right angles. But (4.I. E.) the triangles CHD and FHD are every way equal. Therefore angle $\mathrm{HCD}=$ angle HFD . But the sum of the angles DCFI and DHC has been proved to be equal to a right angle. Therefore the angle $\mathrm{CHO}=$ the angle DHF $=$ the angle RFN. Therefore (4.I.E.) the triangles DHF and HFN are erery way equal ; and hence HNF is a right angle. Consequently (4. I. E.) the triangles HNF and HNL are every way equal. Hence

$$
\begin{aligned}
\angle \mathrm{LHF}+\angle \mathrm{CHF} & =2 \angle \mathrm{NHF}+2 \angle \mathrm{CHD} \\
& =2 \angle \mathrm{HFD}+2 \angle \mathrm{CHD} \\
& =2 \angle \mathrm{HCD}+2 \angle \mathrm{CHD} \\
& =2 \text { right angles } .
\end{aligned}
$$

Therefore CHL is a straight line. Also the sum of the angles of the triangle LCF is equal to two right angles. Hence, beginning with the hypothesis that the sum of the angles of the triangle CEDD is equal to two right angles, we have found that the sum of the angles of the triangle LCF is equal to two right angles; the sides of the latter triangle being double those of the former. By going on in the same manner, we can find a triangle ABC, with one of its angles BAC a right angle, and the sum of all its angles equal to two right angles; and having each of the sides greater than any given line. Suppose now that $x y z$ (Fig. 4) is any triangle whatsoever; $x y$ being not less than either of the other sides: in which case, as DH (Fig. 3.) falls within the base CE of the triangle HCE, the perpendicular $z t$ from z (Fig. 4) upon $x y$ falls within the line $x y$. Then
 the triangle BAC (Fig. 3). being constructed in the mamer above described, so that each of the sides BA and AC may be greater than any of the lines $x z, x y$, $y z$, in Fig. 4, cut off MA equal to $x t$, and AP to $z t$. The sum of the angles of the triangle BAC is not greater (Cor. 2, Prop. I.) than the sum of the angles of the triangle PAM or $x z t$. That is, the sum of the angles of the triangle $a z t$ is not less than two right angles. Hence (Prop. I.) it is equal to two right angles. in like mamer the
sum of the angles of the triangle $z t y$ is equal to two right augles. Therefore the sum of the angles of the triangle $x z y$ is equal to two right angles.

Cor.-Either every triangle has the sum of its angles equal to two right angles, or no triangle has the sum of its angles so great (see Prop. I.) as two right angles.

Proposition $1 I I$.

If the base CD of a triangle ACD (Fig. 6) be diminished indefinitely according to any law, while neither of the other sides becomes greater than a given line $A B$, the area of the triangle $A C D$ becomes ultimately less than any finite space L (Fig 5) ; and the sum of its angles does not ultimataly differ from two right angles by any finite angle.

For, within the area L take a point F. Then, by choosing 1 a radius sufficiently small, we can describe, with F as a centre, a circle lying wholly within L , and therefore less thau L . Draw a diameterEG, with a radius IIF perpendicu-
 lar to it. Join EH; and from any point Al in EH let fall MN perpendicular on EF. By bisecting NF, and again bisecting tbe parts obtained, and so on, we can divide NF into n equal parts; where n may be taken greater than any number that can be named. Let NF be so divided into the n equal parts,

FV, $V Q, \ldots \ldots, S N$; the number n being taken so great that n times $M N$ is greater than the given line AB . Let $T V, \mathrm{PQ}$, \&c., be perpendicular to NF. Suppose then the base DC of the triangle ADC (Fig. 6) to diminish, according to the law of its variation, until CD becomes less than FV ; and, if AC be not less than AD , produce AD to K , making $\mathrm{AK}=\mathrm{AC}$. Join CK ; draw Al perpendienlar to CK ; and cut off the parts $R z, z y, y x$, \&ce., each equal to MN, until AR is exhausted; the last part being possibly less than MN. At the points of section, $z, y, x, \& \in c$, raise the perpendiculars $z u, y h, x b$, \&c. Then, because CD is (by hypothesis) less than FV or NS (Figs. 5 and 6), and because it is obvionsly greater than CR, NS is sreater than CR. Also, because n times $M N$ is greater than $A B$, and $A C$ is (by hypothesis) not greater tham AB, n times MN is greater than AC . Much more is n times MN greater than AR. And the parts $\mathrm{Rz}, z y$, \&c., were cut off each equal to MN. Hence the number of such parts is not greater than n; and the number of the spaces,

$$
\begin{equation*}
R w, z h, y b, \& c . \tag{1}
\end{equation*}
$$

into which the triangle ARC is divided, is not greater than the number of the spaces,

$$
\begin{equation*}
\mathrm{FT}, \mathrm{VP}, \ldots \ldots, \mathrm{SM}, \tag{2}
\end{equation*}
$$

into which the figure MNFI has been divided. But since NS is greater (as we have proved) than RC, and MN is equal to Rz , the space $R_{z a w} \mathrm{C}$ may be wholly inserted within the space MNSt, and is therefore less than that space. But Rzw C is the greatest space in the series (1), and MNS: is the least in the series (2). Hence, since the number of terms in (1) is not greater than the number of terms in (2), the sum of the terms in (2) is greater than that of the terms in (1): that is, the triangle ACR is less than MNFH. Hence the triangle AKC is less than the circle EHG. Much more is the triangle AllC less than the space I .
In the next phace, suppose, if possible, that, as $C D$ is indefinitely diminished, the sum of the angles of the triangle ACD ultimately differs from (in which case it must, by Prop. I, be less than) two right angles by more than the finite angle BAIH (Fig. 7) ; BA being, as in the previous case, a given line which neither of the sides, AC , $A D$, ever exceeds. Produce FIA to any point W, and $A B$ to any point E. Join EW; and draw BV perpendicular on EW. Let the base DC (Figs. 6 and 7) be diminished, according to the law of its
variation, until 1 (: is less than VB3. Them ultimately the triangle ADO many be wholly inserted (as in Fig. 7) within the triangle EWA. For,

simee the sum of the angles of the triangle ADC falls short (by hypothesis) of two right angles by more than the angle BAII, the angle DAC must be ultimately less than the angle BAW ; and therefore DA falls between BA and WA. Again, the point D cannot lie beyond EW ; else DC would be greater than the perpendicular from C upon EW, and consequently (since $A C$ is less than $A B$) greater than BV: which is contrary to hypothesis. Hence (Cor. 2, Mrop. 1.) the sum of the angles of the triangle $A D C$ is not less than the stun of the angles of the triangle EWA But the sum of the angles of the triangle ADC is (by hypothesis) less than the angle EAW: which is impossible. Consequently, as D(diminishes indefinitely, neither of the other sides, AD, AC, beconing at any stage greater than AB, the sum of the angles of the triangle ADC camot ultimately differ from two right angles by any finite augle.

Proposmion IV.

If ABC and FCD (Fig. 8) be two triangles of equal areas, and having the angle $A C B$ equal to the angle FCD ; and if S be the sum of the angles of the triangle ABC, and sthe sum of the angles of the triangle FCD; S and s are equal to one another.

For, if the sides FC and CD be equal to AC and BC , each to each, the triangles $A B C$ and $F C D$ are equal in every respect. It is therefore only necessary to consider the case in which FC is greater than AC : in which case (in order that the triangle ABC may not be a part of the triangle FCD) CD must be less than BC. Place the triangles so that AC and CF may be in the same straight line; in which case, since the angle ACB is equal to the angle $\mathrm{FCD}, \mathrm{BC}$ and CD are in
the same straight line, ('ut of' ClS equal to Cl3, mud OK equal to CA; and join EK. 'Then (4. I. R) the triangle EOK is every why equal to the miangle ABC. Therefore triangle $\mathrm{B}(\mathrm{CK}=$ =triangle BC (D ; and consequently trimghe BDH = triangle FKII. (at ofl IIM equal HE, and MP equal to MD; and join MP. Then trinngle MMP is every way equal to triangle linll. 'Therefore trimgle IMM'=trimugle IIKF: and consequently triangle KMN=triangle FNP. The point Peamot tall beyond F , so as to make ILP greater than IHF for, if it did, the point ME wond (in order that the trimere MKF may not be a part of the triangle IIMD') fall between K and II ; in which case the amgle F would be greater than the ategle II l'M ; that is, F would be ereater than the angle IDDE: wherens, sine the exterior angle of a triangle is sreater than cither of the interior and opposite angles, the angle IDDE is areater than lf. In like mamer it ean be proved that the point P does not coincide with F. And therefore P is between II and E : whieh implies that II is beyond K in the line MKME. Hence, from the two wiven egual tringles $A(C B$ and FOD , with the angles at Cequal to one another, we have passed to the equal triangles KMN am FNP, with the angles at N equal to one another. Let S_{1} be the sum of the mgles of the triamgle $K B N$; mi s_{1} the sum of the angles of the trimgle FNP. Then

$$
\begin{aligned}
s_{1}-s_{1} & =M+M K N-(F+F B N) \\
& =5+B N C-(F+F D() \\
& =B+A \quad-(F+E D() \\
& =s-s .
\end{aligned}
$$

Let the same construction that was made with reference to the triangles $A B C$ and FDC be now made with reference to the triangles KMN and FNP; that is to say, cut off NQ equal to NM, and Nr equal to NK. Join Qr. Cut off RL equal to RP, and RT equal to RQ. Join WL, cutting NE in k. Then Q must lie beyoud P, on the line NPQ; for, if it did not, the point r would lic bevond F on the line NrF; in which case the angle Q wonld be greater than the angle NPF; that is, the augle E would be greater than the angle CDF : which is not true. ind the point Q lying beyond P, the point r must fall between N and F. Hence, as above, we can prove that the triangles Till and FLh are equal to one another; and, if S_{2} be the sum of the angles of the triangle Trh, amel s_{2} the stan of the angles of the trimgle PLh.

$$
s_{2}-s_{2}=s_{1}-s_{3}=s-s
$$

We can go on thus inderinitely, forming a series of pairs of equal trimgles KMN and PNF, Trh and FLle, \&ic., to which there is no limit; and, if S_{n} be the sum of the angles of the first triangle in the $n^{\text {th }}$ pair, and s_{n} the sum of the angles of the second triangle in the $n^{\text {th }}$ pair,

$$
\mathrm{S}_{\mathrm{n}}-s_{\mathrm{n}}=\mathrm{S}-s
$$

But, as the series of triangles, FPN, FLh, \&c., is indefinitely increased in number, by a continued repectition of the construction above described, the base (such as $l \mathrm{~L}$) of the triangle ultimately obtained becomes indefinitely small. For

$$
\begin{aligned}
\mathrm{BC} & =\mathrm{CD}+\mathrm{DE} \\
& =\mathrm{CD}+\mathrm{NP}+\mathrm{MN} \\
& =\mathrm{CD}+2 \mathrm{NP}+h \mathrm{~L}+\mathrm{T} h,
\end{aligned}
$$

and so on, without limit; so that, if the hase (such as hL) of the triangle (such as $\mathrm{FL} / 4$) ultimately obtained did not become indefinitely small, the finite line BC would be greater than the sum of an indefinite number of lines, none of which was less than a given finite line : which is impossible. Since therefore the base (such as 7 L) of the triaugle (such as FhL) ultimately obtained must become indefinitely small, the sum of the angles of the triangle (such as FLh) ultimately obtained cannot (Prop. III.) differ by any finite angle from two right angles That is, S_{n} does not continue, as n is indefimitely increased,
to differ by any faite angle froun two right aughes. In like manner, if it be observed that CP is greater than tbe smm of the limes, AC or CR, KN, wh, \&o., it will apperar lhat sames not ultimately differ by any tinite anele from two risht myles. Therofore ultimately the quantity, $s_{n}-s_{n}$, is loss than my assiguable magh. But it was proved that

$$
s_{n}-s_{n}=s i-x
$$

Therefores and sto not diftor bey atur timite augle ; that is, rhey are cqual to ome another.

Cor. 1.-If two triangles $A(!B$ and $P(: D)$, having the angle $A C B$ equal to the angle FCO , be unequal: and AOB be the wrenter ; then S, the sum of the angles of the triangle $A C B$, is not spenter than s, the sum of the angles of the triangle RCD. For, the same eonstruetion as that deseribed in the Proposition may be made, matil a point is reached at whieh one of the trimgles obtained, as 'Ther has the sides. ' $\mathrm{T} h$, hr, either less than hhand $h \mathrm{~F}$ respectively, or greater thm $\mathrm{I} h$ and $h \mathrm{E}$ respectively. The tormer of these cases tamot oceur ; because then the triangle 'Thy wonld be less than the triangle $\mathrm{F} / \mathrm{I}_{4}$, and comsequently the friangle $L(1)$ less than the triangle ICD: which is impussible. Hence the latere case must oceur, viz. : that a triangle The must be fome, having Th ereater than M, and rhe greater than $h \mathrm{~F}$; and therefore, sines the triangle $\mathrm{F} \% \mathrm{l}$ ean be wholly inserted in the trimgle Thr, the sum of the angles of the triangle Thr is mot greater (Cor. 2. Prop. 1.) than the stum of the mgles of the triangle $\mathrm{F} h \mathrm{~L}$. Hence S is not greater than s.

Con. 2.-If two equal triangles (Fig. 9) ACD and BCD have the common hase CD. and if s be the sum of the angles of the former, and s the sum of the angles of the latter, S is equal to s. For the difference between S and s is the same as the difference between the sum of the angles of the triangle ACE and the sum of the angles of
 the triangle BDE. But, by the Proposition, these latter quantities are equal to one another. Therefore $S=s$.

Cor. 3.-Let the two triangles (sce tig. to Cor. 2) ACD and BCD, on the common base DC, be mequal. Then, if S be the sum of the angles of the triangle ACD , and s the sum of the angles of the tri-
angle BCD, and if the former triangle be grenter than the later, S camot be greater thans. For the difference between s and x is equal to the difference the sum of the angles of the trinugle ACS and the sum of the angles of the triangle BED. Bat the former of these quantities (since the trimurle ACD is greater than the friangle BED) is not greater (Cor. 1) than the lattes. Therefore s is mot greater than s.

Con. 4.-In the case supposed in the previous Corollary, should. the assumption be made that the angles of a triangle are not (see Cor. Prop. II.) equal to two right angles. S must be less chan s. For, by the reasoning in the Proposition and in the foregoing Corollaries, it appears that the difference between S and s is equal to the difference between the sum of the angles of a triangle ACB (Fig. 10) mind the sum of the angles of a triangle ADE inscribed within the former in the mamer shown in the figure. Suppose, if possible, that $S=s$. Then the angles of the triangle ADE are together equal to those of the triangle AOB. Therefore (Cor. 1. Prop. I.) they are equal to those of the triangle ACE . Therefore angle ADE is
 equal to the sum of the angles DCE and DEC. Therefore the angles of the triangle DEC are together equal to two right angles: which is at variance with the hypothesis on which we are at present proceeding. Hence S is not equal to s. But (Cor. 3) S is not greater than s. Therefore S is less than s .

Con. B .-If the triangle $\Lambda B G$ (Fig. 11) be divided by the straight line AC into two parts, of which ACG is the greater, two lines AD

mad AF em be drawn, cuting off trimgles ADO and AEC, the one loss, mid the other grenter, than ABC, but neither of them differing from the triaghe ABC by an area so great as a given men; while at the same time the difference between the sum of the angles of the triangle ABC and the sum of the angles of either of the trimgles, ACO, ACE, is hess than any given mage.

If the hypothesis be made that the angles of a plame triangle are together (see Cor. Prop. 11.) equal to two right magles, the problem com be effiected by the methods whieh Buelid deseribes.

We oulyueed, therefore, to show how it ean be performed on the hypothesis that the angles of a phane tringle are not equal to two right angles. Biseet (G in F ; and join AF. The trinugles ABC and AOP have a comon side AC. Therefore (Cor. 4) the area of the one will (on the hypothesis on which we are now proceeding) be less than. equal to, or greater than, the area of the other, according as the sum of the angles of the former is grenter tham, equal to, or less than, the sum of the angles of the latter. No we can flad the sum of the angles of each by eonstruetion. Therefore we em tell whether the triangle ACF is less than, equal to, or grenter than, the tringele ABC. Should the triangle ACF be greater thm the triangle ABC, we may repeat the construction; bisecting Cr, and drawing a line from i to the point of section. By repeating this construction sufficiently often, the base (such as CD) of the triangle (such as ACD) ultimately obtained will become less than any assignable line; and hence the area of the triangle will become (Prop. IIT.) less than any assignable area, and consequently less than the triangle $A B C$. Let ACD, the trimgle obtained by bisecting CE, and joining AD, be less than the triangle ABC: the triangle AEC being greater than ABC. bisect DE in the point t : and join At. Find, as above, whether the triaggle $A C t$ is less or greater than the triangle ABC, or equal to it. Should it be greater, the triangle ABC lies between the limits, ACD and $\mathrm{AC} t$; but should it be less, the triangle ABC lies between the limits $\mathrm{LC} t$ and ACE. And so on. Ultimately we obtain two limits, which we may suppose to be represented by the triangles $A C D$ and ACE, between which the triangle ABC lies, the base DE of the triangle ADE, which is the difference of the limits, being made as small as we please. Therefore (Prop. III.) the area of the triangle ADE becomes ultimately indefinitely small; so that each of the triangles ACD and ACE becomes indefuitely near in area to the triangle ABC .

At the same time (Prop. 1F1.) the sum of the nughes on the triangle ADE becomes indefinitely nour to two ripht angles. Lett a be the sum of the aughes of the triangle $\triangle B C$; s_{1}, the sum of the angles of the triangle ACD ; S_{y}, the sum of those of the trinugle Λ (\mathcal{E}; and δ_{2}. the difference betwixt two right mugles and the sum of the angles of the trinugle ADE. Then δ is equal to the difference betwixt \mathcal{S}_{1} and S_{u}; so that, since δ ultimately becomes indelinitely small, the difference betwixt S_{2} and S_{2} altimately becomes indefinitely small. And (Cor. 4) S is intermedinte betwixt S_{1} and S_{2}. Therefore iltimately its differenee from cither of them becomes indefinitely small.

Proposition V. -

If a line LD (Fig. 12) be drawn from L to any point D in the base of a triangle LBC; and if 1 represent the area, and S the sum of

the angles, of the triangle LBD ; and a represent the area, ands the sum of the angles, of the triangle LDC; then, rensoning on the hypothesis that the angles of a plane triangle are (see Cor. Prop. II.) unequal to two right angles, we can prove that $\mathrm{A}: a=2-\mathrm{S}: 2-5 ;$ a right angle being taken as the unit of measure.

For, by taking FD sufficiently small, the triangle LFD can be made (Prop. III.) smaller than any given space; the sum of its angles also falling short of two right angles by an angle less than any given augle. Having cut off a small triangle LFD from LiBD, we can next (Cor. 5, Prop. IV.) draw lines LG, $\mathrm{LG}_{1}, \mathrm{LG}_{2}$, \&c., (only the first of these lines is expressed in the figure), in such a mamer that thie triangle LGF shall differ from the triangle LFD by a space less than any given space, the sum of its angles at the same time differing from the sum of the angles of the triangle LFD by an angle less .than any

Vol. V.
given angle; and that the triangle LGG_{1} shall differ trom the triangleLGF by a space less than any given space, the sum of its angles at the same time differing from the sum of the angles of the triangle LGF by an angle less than any giveh angle; and so on, till the whole of the triangle LBD has been exhausted, except a remainder LBE, which is less than the triangle to which it is adjacent. Proceed next to divide the triangle LDC into triangles LDI', LTH, \&e., related to the triangle LFD and to one another in the same manner as the triangles LFG, $L_{G G}$, ive.; the remainder LMC being finally left over, less than the triangle to which it is adjacent. Then, since any two adjaceat triangles in the series,
LDF, LFG, LGG
which together constitute the triangle LDE, may be made as nearly equal as we please, we can make every one of them as nearly equal to the first as we please. And, from a similar consideration, it appears that we can at the same time make the sum of the angles of any triangle in the ${ }^{2}$ series as nearly equal as we piease to the sum of the angles of the first. In like mamer we can make every one of the triangles in the series,
LD'
which together constitute the triangle LDM, as nearly equal to LDF as we please; the sum of the anyles of each being at the same time made as nearly equal as we please to the sum of the angles of the triangle I,DF. Let there be N terms in the sexies (1), and n in the. series (2). Then

$$
\begin{equation*}
\mathrm{LED}=\mathrm{N} \text { times } \mathrm{LED} \infty \mathrm{Q} \tag{3}
\end{equation*}
$$

Q being a quantity which we may arrange to have as small as we please. In like manner,

$$
\begin{equation*}
\mathrm{LMD}=n \text { times } \mathrm{LFD} \infty q ; \tag{4}
\end{equation*}
$$

q being a quantity which we may arrange to have as small as weplease. Again, if S_{1} be the sum of the angles管of the triangle LIFD, $S_{1} \sim h_{1}$ the sum of the augles of the triangle LPG, $S_{1}=h_{2}$ the sum of the angles of the triangle $L G G_{1}$: and so on, and S_{2} the sum of the angles of the triangle LED, we have

$$
\begin{align*}
\mathrm{S}_{2} & =N S_{1}-2(N-1) \cos h_{1} \operatorname{con} \text { \&e. } \\
\therefore 2-S_{2} & =N\left(2-S_{1}\right) \cos h_{2} ; \ldots \ldots \ldots \ldots \tag{5}
\end{align*}
$$

where, since we may arrange to have h_{1}, h_{2}, \&c., as small as we please, we may understand that k is a quantity which we can arrange to have as small as we please. In like manner, if S_{3} be the sum of the angles of the triangle LDM, we can get

$$
\begin{equation*}
2-S_{3}=n\left(2-S_{1}\right) \text { or } k ; \tag{6}
\end{equation*}
$$

k being a quantity which we can arrange to have as small as we please. Hence, from (5) and (1), we can order our construction so as to make the ratio, $2-S_{3}: 2-S_{3}$, as nearly equal as we please to the ratio, $N: n$; the same means by which this is secured having the effect of rendering [see (3) and (4)] the ratio, LED : LMD, as nearly equal as we please to the ratio, $\mathrm{N}: \mu$. Hence we can order our construction so as to make the two ratios,

$$
\begin{array}{r}
\text { LED }: L M D, \\
\text { and, } 2-S_{2}: 2-S_{3}
\end{array}
$$

as nearly equal as we please. This is nccomplished by the means above described, whatever be the length of the line FD. It may therefore be still accomplished, though FD be taken indefinitely small. But as Kl is indefinitely diminished, the area of the triangle LFD, and therefore that of the triangle ILBE is (Prop. III.) indefinitely diminished. Hence, as FD is indefinitely diminished, the ratio of the triangles LED and LBBD ultimately becomes indefinitely near to a ratio of equality; the ratio of the triangles LDM and LCM also becoming, under the same circumstances, indefinitely near to a ratio of equality. Consequently, by taking FD small enough, the ratio, LBI : LCD, or, A: a, becomes indefinitely near to the ratio, LED : LMLD. In like manner it can be proved, that, as FD becomes indefinitely small, the ratio, $2-\mathrm{S}_{2}: 2-\mathrm{S}_{3}$, approximates indefinitely to the ratio, $2-S: 2-s$. Therefore the ratio, $A: a$, camnot differby any finite amount from the ratio, $2-S: 2-s$. That is,

$$
-\mathrm{A}: a=2-\mathrm{S}: 2-s
$$

Proposition VI.

If $B G C$ and IHCF (Fig. 13) be any two plane triangles, S being the sum of the angles of the former, and s the sum of the angles of the latter; then, reasoning on the hypothesis that the angles of a
plane tringle are not equal (see Cor. Prop. II.) to two right augles, we can prove that

$$
\text { tri. } \mathrm{BGC}: \text { tri. } \mathrm{HCF}=2-\mathrm{A}: 2-s:
$$

a right angle being taken as the unit of measure.

For join $3 F$; and let S_{1} be the sum of the augles of the triangle CLF and S_{2}, the sum of the angles of the triangle
 BCF. Then (Prop. V.),

> triangle $B C G:$ triagle $B C F=2-S: 2-S_{2} ;$
> and, triangle $B C F:$ triangle $L C F=2-S_{2}: 2-S_{1} ;$
> and, triangle $L C F:$ triangle $I L C F=2-S_{1}: 2-s$
> \therefore triangle $B C G:$ triangle $H C F=2-S: 2-3$.

Con.-If A be the area of the triangle BCG, we have

$$
\mathrm{A}=k(2-\mathrm{S}) ;
$$

k being a finite quantity, which remains the same for all triaugles.

APPENDIX.

Legendre endenvours to make it appear,* without the assistance of any special Axiom, that C, the third angle of a triangle ABC, is determined from the other two, A and B, independently of the magnitude of c, the intervening side. If this be made out, all the properties of parallel lines can easily be deduced. The difficulty is to demonstrate the fundamental position. But here it may be well to quote Legendre's own words: "Soit l'angle droit égal à l'unité, alors les angles A, B, C seront des nombres compris entre 0 et 2 ; et puisque

[^1]$\mathrm{C}=\phi(\mathrm{A}, \mathrm{B}, c)$, je dis que la ligne e ne doit point entrer dans la fonction ϕ. Un effet, ou a vu que C doit être entierement determiné par les seules domées $\mathrm{A}, \mathrm{B}, \mathrm{c}$, sums autre angle ou ligne queleonque ; mais la ligne c est heterogene avec les nombres $\mathrm{A}, \mathrm{B}, \mathrm{C}$; et si on avait une equation quelconque entre A, B, ($!$ et c, on en pourrait tirer la valeur de c en A, B, C, d' où il resulteroit que c est egale a um nombre, ce qui est absurde. Done c ne peut entrer dans la valeur de C et on a simplement $(\mathbb{O}=\phi(\mathrm{A}, \mathrm{B})$." Sir John Leslie committed the unaccountable mistake of supposing the argument here stated, to be, "that the line e is of nature heterogeneous to the angles A and B, and therefore camot be compounded with these quantities"-whereas the argument plainly is that c, which is a line, camot be expressed in terms solely of $\mathrm{A}, \mathrm{B}, \mathrm{C}$, which are numbers. "'The quantities A, B, C," says Playfair, in his exposition of Legeudre's reasoning, are "angles; they are of the same nature with numbers, or mere expressions of ratio, and, according to the language of Algebra, are of no dimension. The quantity c, on the other hand, is the base of a triangle; that is to say, a straight line, or a quantity of one dimension. Of the four quantities, therefore, $\mathrm{A}, \mathrm{B}, \mathrm{C}, c$, the first three are of no dimensions, and the fourth or last is of one dimension. No equation, therefore, can exist involving all these four quantities and them only : for, if there did, a value of c might be found in terms of A, B, and C ; and c therefore would be equal to a quantity of no dimensions : which is impossible."

In this reasoning it is assumed, that, because C is determined by $\mathrm{A}, \mathrm{B}, \mathrm{c}$, therefore $1:$ can be expressed in terms of $\mathrm{A}, \mathrm{B}, \mathrm{c}$. Now Legendre does not prove that when a quantity is determined by certain others, it cin be expressed in terms of them; and I affirm that such a principle, without limitation, is not true.
For example, consider the angle C of the triangle ABC . And let it be observed that I mem the angle itself, that is, the inclination of a and b to one auother, and not the numerical value of the angle, calculated upon the supposition that a right angle, or any other angle, has been assumed as a unit of measure. The angle C is determined by the sides, a, b, c; yet it cannot be expressed in terms of these quantities alone; because the vaiue of an angle can only be indicated by: pointing out its relation to some other angle or angles; and therefore camot be expressed by means simply of lines It is true that the numerical value of C may be expressed in terms of a, b, and c :
viz., in an equation where only the ratios of a, b, and c, occur; the ratios being numbers. Thus, if $b=\beta a$, and $c=\gamma a$, we might have

$$
\text { numerical value of } \mathrm{C}=f(\beta, \gamma)
$$

But this is altogether a different thing from saying that C itseif, the angle properly so called, the inclination of a and b to one anorher, can be expressed in terms of a, b, and c. Now, if C itself (not its numerical value, bat the absolute angle) is determined by a, b, and c; and if, nevertheless, it cannot in the nature of things be expressed in terms of a, b, and c; Legendre's demonstration, the very foundation of which is that a quantity which is determined by certain others, can be expressed in terms of them, falls to the ground.

Should it be maintained that C (the angle itself) may be expressed in terms of the numbers β and γ, a right angle being understood to be the unit of measure; or more fully thus:

$$
\mathrm{C}=\text { right angle } \times f(\beta, \gamma) ;
$$

I reply that in the same mauner the line c, in Legendre's reasoning, may be expressed in terms of A, B, C, some line L being understood to be the unit of linear measure; thus:

$$
=I \times f(i, T, C)
$$

ON A NEW SPECIES OF AGELACRINITES, AND ON THE StRUCTURAC RELATIONS OF THAT GENUS.

BY ङ. J. CHAPSAAN,

Read before the Canadian Ynstitute, 17th March, 1860.
Introductory Notice.-The accompanying figure represents, on a somewhat enlarged scale, the upper side of the undescribed species of Vanuxem's rave and interesting genus dyclacrinites, referred to in a late number of the Canadian Journal. ds there stated, the species in question was discovered amongst some Lower Silurian fossils, from the Trenton Limestone of Peterborough, Canada West, collected by Mr. W. M. Roger, of the University of Toronto. It is dedicated to the able palæontologist of the Geological Survey of Canada, whose
researches have so greatly added to our knowledge of the obscurer organisms of the Silurian age, and who has done so much, in all respects, for the advancement of Camadian Palæontology.

The present communication is sub-divided into two short sections. The first contains a detailed description of the new species. This description, it should be remarked, however, is founded on a single example. The second section comprises an malytical review of the genus Agelacrinites in general, more especially with regard to its structural relations and affinities.

1. Description of Agclacrinites 33illingsii.- Body, circular, or nearly so. In the specimen on which this description is based, its diameter exactly equals half an inch. It is slightly convex above, and fiat, or apparently somewhat concave below. From the centre of the upper side, five rays, composed ench of a double series of alternating or interlocking plates, radiate towards the margin of the dise, and terminate in well-defined points at about the twelfth of an inch from this margin. The rays, is. the solitary specimen under examination, exhibit no traees of pores, even when strongly magnified. Nevertheless, pores may have been, and probably were, originally present. It is easy to conceire how minute orifices of this kind might become obliterated during fossilization; whilst, on the other hand, the object of the rays is altogether inexplicable, unless we look upon them as really representing ambulacral areas. Moreover, poniferous ray-plates have actually been discovered in certain examples of Agelacrinites; and amalogy, consequently, would lead us to infer that, in all, they existed originally. These rays, at their origin, leave a small central space covered hy larger and somewhat rhombic plates. The latter appear to be five in number, and to constitute the first ray-plates, one being common to itwo adjacent rays. Very possibly, however, each of these rhombic plates may be divided through the centre, longi-
tudinally; for the specimen is at this spot much broken, and the plates are pressed more or less one over the other. The inter-radial spaces and the margin of the dise are covered by numerons, irregularly disposed, seale-like, and partially imbrieating plates. At the margin these are very small, exceedingly numerous, and arranged in three or four irregular rows, with their lo s.t diameter pointing towards the centre of the disc. To these succeed a series of larger plates, having their greatest diameter in a direction at right angles to that of the border plates, or, in other words, parallel with the circumference of the dise. To these succeed, again, other and somewhat smaller plates, all partially overlapping. This arrangement of the surface plates scems to be au extreme modification of that which obtains in A. Hamiltonensis of Vanuxem, and A. Bohemicus of F. Roemer; but the larger plates merge gradually, as it were, into the others, and thus there is no defined circle of large plates separating (as in the latter types) the border phates from those of the centre. Fimally, in one of the inter-radial spaces, at a distance of about one-sixth of an inch from the centre of the disc, a well-marked "pyramidal orifice" is situnted This, in the specimen umder examination, is about one-twenty-fourth of an inch in diameter, and is made up, apparently, of ten plates, in two sets of five-one set altemating within the other, as in Halll's Hemicystites parasitica. The under side of our species remains unknown, but, in the specimen examined, it is not attached to a shell or other organic body; and hence, as shewn moreover by examples of other species, the gems camnot properly be considered a parasitic one.

Agelacrinites Billingsii differs essentially from our Canadian -4. Dicksmi of Billings, (and also from the Cedrioaster Bigsbyi of that paleontologist), by the possession of short and straight rays, and by its numerous marginal plates. It is also at once distinguished by its. straight rays, independently of other characters, from the typical Devonian species, A. Hamiltonensis of Yanuxem, and the more recently discovered Carboniferous species, A. Kaskaskiensis of Hall. It agrees, on the other hand, somewhat closely with Hall's Hemicystites parasitica $=$ Agelacrinites parasiticus from the Niagara Limestone of New York; but, in this latter species, the rays are very narrow at their origin, and are connected there (in the centre of the dise) by a small tubercle or rounded plate. In place of becoming narrower also towards the margin (as in A, Billingsii) and terminating in well-defined
points, they become rapilly broader, "coalesce with the plates of the body," (Professor Hall), and are altogether undefined at their extremitics. These characters, as given in the Paboontology of New York (vol. 2, p. 245; and plate 51, figs. 18-20) from an examination of several specimens, are exactly the reverse of those which obtain in our new species. Whilst, also, (although this character is probably somewhat indefinite,) the small border plates in A. Billinysii form two or three circles, in A. parasiticus they appear to occur only in a single row.
2. Analytical Reviex of the Genus dgelacrinites and its included species.-The generic characters of Ayclucriniter may be thus defined. Form; circular; stemless; flat or concave below, and somewhat convex above; and covered by numerous small plates, arranged in part irregularly, and in part in regular order. The defimitely arranged plates form five rays (ambulacral areas,?) which originate at the centre of the upper side of the body. These rays are either short and straight, or long and curved. They are also composed of a double series of small polygonal plates, interlocking along the central line of the ray ; or, otherwise, of a single (?) series of plates (Roemer's A. Rhenanus). The irregularly arranged plates are elliptical or circular, varisble in size, very numerous, thin, scale-like, and imbricating; or, imbricating at and around the margin of the disciform body, and joining by their edges in the more central part of the disc. The marginal plates are commonly very small, and, in some species, are separated from the more central plates, by a circle of comparatively large pieces. In the centre of one of these (interambulacral?) spaces, and about midway between the apex of the body and the margin, is situated an orifice covered by a pyramid of five or more (moreable?) plates. The apex itself, or centre and origin of the rays, is covered by a single circular plate; or is surrounded by five or ten angular plates-these latter constituting the first plates of the rays. Characters of the under side of the body, position of mouth, Sc., not definitely known.

From this definition, it is clear, as, indeed, universally allowed, that Agelacrinites belougs to the Eominodermasta. In the present state of our knowledge, however, it is impossible to refer it satisfactorily to any one of the admitted Oiders or Families of that class: With the Crinoids proper; and the Blastoids, it appears to have only geveral affinities; but with the Cystideans it is evidently closely
connected : more especially by the possession in common of a pyramidal orifice or; so called, annl-pyramid. It differs from the cystidean structure, nevertheless, in many important respects. The peculiar rays, the imbricating phates, the absence of a stem, for example, are essential points of difference. The imbrication of the plates serves to comnect it, through the geuus Protaster, with the Euryales or the Ophiurims; and the conformation of the rays, in certain species, appears to afford another link in support of this view. But is it not equally related to the Echinida? After a careful consideration of the subject, I comnot refrain from hazarding an opinion that the position of the mouth, as usually given, is erroneous. In several species, as in A. parasiticus and A. Kaskaskiensis of Hall (Geology of Iowa, Vol. L., Part II., Plate xxv.) the centre or origin of the rays is a simple dise or rounded tubercle incontestably, no mouth: and hence we may fairly assume, that, in other species, the mouth must also be situated elsewhere. The question theu arises as to the real nature of the pyramidal orifice. This is usually looked upou either as an anal orifice, or as an ovarian sperture. Neither of these views is by auy means certain, nor, indeed, apparently susceptible of proof. To consider this orifice as the mouth, however, appenrs a still. less satisfactory conclusion. In the Crinoids proper, the true position of the mouth is still, strictly, unknown. It is considered in some genera to be in the centre of the "vault," or upper surface; and in others to occupy an excentric position, as between two of the arms, de. This latter view is unsustained by any proof, beyond the mere occurrence of an orifice at the points in question. The excentric orifice may or may not be the mouth. But if we onit these forms from consideration, aud turn to those types of Radiata, in which the position of the mouth is no louger doubtful, that organ, it will be seen, is invariably situated in the centre of the body, except in the Family of tho Spatangide, the highest Tamily or matural group of the entire series. In the other Families of the Ecumida, in the Asteuma, Opmonida, and other Orders in which the position of the mouth is truly known, the mouth is always central. This is evidently its normal position in the radiated type of structure, and one, consoquently, that we should scarcely expect to see departed from, except in the case of those forms which stand at the higher limit of the series. Unless this view bo adorted, we must almost necessarily
assume, that, in the Radiata, there are certain natural groups (not yet thoroughly worked out) which are perfectly unconnected with each other; and in which, respectively, the higher forms foreshadow an advanced type of structure, whilst the lower forms present the normal type. 'The higher forms of a low group, however lowly organized as to their entire structure, will be thus in certain respects, in advence of the lower forms of a higher group. Whatever grounds there may be to believe that some law of this kind really holds good in Nature, its application in the present place would be evidently forced. Discarding therefore the idea, that, in the pyramidal orifice of the Cystideans and Agelacrinites, the mouthris represented, this latter organ must be sought for in mother place. Reasons have already been stated against this being the centre of the rays. Its true position will be found, I believe, in the centre of the under side of the body. But -it may be urged in objection to this-the genus Agelacrinites is sessile: is attached by its under surlace to shells and other foreign bodies : and bence the mouth cannot be there situated. Several examples, it is quite true, have been met with attached in this manner to brachiopod shells; but this is by no means a geueral coudition of occurrence; and, rightly considered, is no proof of an original permanent attachment. $\mathrm{T} i$ is just as exceptional a mode of occurrence, iudeed, as that from which γ^{7} anuxem derived the name of the genus.

This suggestion as to the true position of the mouth, camot, of course, be satisfactorily adopted, until confirmed by the examination of more perfect specimens than those hitherto discovered; or until the proper functions of the pyramidal orifice, in this genus and in the cystidenns, are clearly ascertained. But under any view, it seems obvious, that, without a forced collocation, these peculiar forms camnot be placed in any existing group. In the present restricted state of our knowledge, at least, they must form a group apart. Mr. Billings (Decade III. of Canadian Organic Remains, under description of Agelacrinites Dicksoni) appears inclined to regard them as constituting a sub-order of Star-fishes; and he proposes to arrange them in this connection, under the term of Edrio-asterida. This name seems objectionable, however, on two grounds: first, because the supposed sessile (id est, parasitic,) condition of Agelacrinites is by no means proved; and secondly, because the relations of the genus to the Star-fishes-in so close a way, at least, as the name would imply-is
not yet established. For these reasons I would suggest the term Thyrond, in allusion to the valved aperture, as the name of the special group or order framed for the reception of these forms. The following scheme will then represent the probable relations of the various leading groups belonging to the Echinodermata generally :

In the group Thyroida, we have, at present, but one Familythat of the Agelacrinitide, comprising, probably, but one known genus: Ayelacrinites. The recognised species of this genus are enumerated in the annexed tabular view:

Sub-kingdom Radiata, Class Ecginodermata, Order Thyroida, Family Agrlacrinitide, Gejus Agelacrinites.

> Synopsis of Species.
A.-Lower Silurian Spectes:
(Rays curved) :

1. A. Buchianus, E. Forbes.
2. A. Cincinnatiensis, Roemer.
3. A. Dicksoni, Billings.
4. A. (Edriouster) Bigsbyi, Billings.
(Rays straight):
5. A. Bohemicus, Roemer.
6. A. Billinysii, Chapman.
B.-Upper Silurian Species:
(Rays straight):
7. A. parasiticus, Rall.

C.-Devonian Species:

(Rays curved):
8. A Hamiltonensis, Vamuxem.
9. A. Rhenamus, Roemer.
D.-Carboniferous Specina:
(Rays curved):
10. A. Kaskaskiensis, Thall.

REVIEWS.

Journal de L'Instruction Publique, Vol. IIT. 1859. Publié par le Département de l'Instruction Publique. Redigé par l'honorable Pierre J. O. Chauveau, Surintendant de l'instruction publique du Bas-Canada, et par MI. Joseph Lenoir, du département de l'instruction publique, assistant rédacteur. Montreal, Bas-Canada.
The Journal of Education for Louer Canadn, Edited by the Honourable P. J. O. Chawvenu, Superintendent of Rducation for Lower Canada, and by James Phelan, Esly., of the Department of Education, Assistant Editor. Vol. III, 1859. Montreal.
The receipt of the completed volumes of the French and English Journals of Education for Lower Canada at an early period of the present year, would have iuduced us to notice them with the commendations they are so well entitled to, had not an unusual pressure on our very limited space prevented our overtaking this, as well as other intended references to Canadian publications. The primary purpose of both Journals is, we presume, to furnish a vehicle for official and semi-official communications to Trustees, Teachers, and others connected with the various local branches of the educational departuent. The active and intelligent Superintendent of Education for Lower Canada has, however, availed himself of the existence of such periodicals to render them the mediums of a great deal of interesting and instructive information for both the French and English speaking population of the Lower Province. Along with a judicious selection from Erench and English periodicals, both Journals are also characterised by original articles and reviews of a very creditable character.

We can conceive of such a dournal materially contributing to pop- . ular education in many ways. Standard poems re-appear here, with novel claims to attention and interest. We find such an old and familiar favourite as Gray's Elegy, for example; but it assumes for us new Canadian attractions when read here, accompanied by the anecdote of Wolfe repcating it the night before his death-victory, as he rowed along the St. Lawrence, to visit some of the out-posts; and exclaiming to a companion officer--who heard the beautiful, and then recent poem, for the first time, -that he would rather be the author of that poem, than win the glory of the morrow's victory! What an added charm is thus given, for us, to that beatiful elegy, as we picture to ourselves the youthful general gliding along under the wooded heights of the St. Lawrence, the night: before that memorable 13th of September, 1759, on which he fell in the rrisis of his triumph, and repeating:-
"'lhe boast of heraldry, the pomp of nover, And all that beauty, all that wealth cerir gave, Await alike the inevitable hour:--The paths of elory lead but to the grave."

In like manner the Centenary Burns Celebration at Montreal, gives occasion for other quotations equally familiar and weleome. Among other fruits of that remarkable recognition of the Scottish peasnnt bard, are translations of some of his popular verses. His "Caledonia" is thus paraphrased by a native Cauadiam, M.. Joseph Lenoir, the assistant editor of the Journal:-
" O myrtes embaumes, laissez les autres terres
Nous vanter il'envi leurs bosquets solitaires,
Dont l'été fait jaillir d'enivrantes odeurs.
J'aime mieux ce vallon, frais et riant asile,
Oi, sur un lit d'argent, coule ane onde tranquille.
Sous la fougere jaume et les yenets en fleurs."

The reader will not estimate the less, this offering from the Canadian to the Scottish muse, from having placed alongside of it, the corresponding stanza in its original homely Seottish guise :-

> "Their groves o' sweet myrtle let foreign lauds reckon,
> Where bright-beaming summers exalt the perfume;
> Far dearer to me you lone glen o' green breckan, Wi' the burn stealing under the lang sellow broom."

Properly speaking this quatrain is but half of the true sranza, but it is so rendered in our French Canadian version. Although presenting occasional counterparts such as this, and embracing a good deal of
educational information in common, the French and English journals are quite distinct, though each characterized by the same commendable effort to adapt it to the special tastes and sympathies of its readers. Indeed a local interest and a Camadian feeling of a healthfin kind pervade both Journals. Bishop Laval, the Hon. James MeGill, Generals Brock, Wolfe, and Montcalm; Jacques Cartier, Champlain, and other notable names interestingly associated with the carly history of the province, are introduced to the reader in comnexion with historical narratives of discoveries made, Colleges founded, or victories won on Cadadian soil. The illustrative wood-cuts are also appropriate, and well executed; including views of the most imporlant public buildings of Lower Canada, of its monuments, and some of its most striking city scenes. The Editors also merit the high commendation of aiming at the very difficult achievement of dealing in an impartial aud unsectarian spirit with the questions of education, which in the Lower Province are aflected by elements of language, race, and creed, very partially felt in Upper Canada.

Feeling as we do, how greatily some means is required for getting hold of the whole population of Lower Canada, and developing among the peopie le lings of a common sympathy and interest in the spirit of intelligent proyress which is at work in the great centres of our public provincial life, se cordially wish success to both Educational Journals, and shall welcome new evidences of improvement, such as we have good renson for aaticipating, with each succeeding volume.
D. W.

On the Origin of Species by meuts of Natural Selection, or the Preservation of Faroured Races in the Struggle for Lifé. By Charles Darwin, M.A., \&e. London, John Murray, 1860.

The idea of a species as conceived by most minds, is that of a distinct and independent creation, capable of continuing itself unchanged in all its fundamental characters, although subject to partial modification by the influence of external agencies. It is believed, moreover, by those who hold this view, that all our living species having been thus separately created from the beginning of the existing geological age or present condition of things, no real species (id est, a type-form capable of continuing itself) has originated, or is capable of being originated, by the intermixture of two distinct
types. Such is the general, but not the universal, belief. An. opposite view, dating probably from a very distant period, has been brought forward and maintained, from time to time, by many philosophic minds. This vier is to the effect that what we call species, are no independent-creations-at least for the greater partbut are simply varieties, axising from the modification of a few original types, or, if pushed to its extreme length, of a single originally-existing organism. 'The object of Mr. Darwin's book is to impart an increased vitality and support to this viem, by arguments based on a large series of facts, the accumulation of many years of research on his own part and on that of other naturalists. The present work purports to be merely a general synopsis of the materials thus gathered together, and of the results to which their consideration tends ; but it is on a sufficiently extended plan to enable us to test, fairly, the relative solidity of the structure which its facts and arguments support.

Although an hypothesis of this kind must naturally seem to those who consider the question seriously for the first time, as one wholly indefensible and preposterous; it is nevertheless probable, that, few persons have ever made the close contemplation of Nature their study for any time, without having experienced, at oue period or another, the visitation of suadry hauntings of a similar character. When we see, for example, certain forms, at first remarkably distinct, become more and more closely sonnected by after-discoveries, until the one appears to merge into the other, and our once clear definitions become no longer tenable; when we see in many species the extraordinary varieties sometimes produced by the crossing and intercrossing of other varieties; when we consider the transition stages of foetal development, the homologies of organic structure, the presence of rudimentary organs in many forms, the marked relations which obtain more or less between all living and extinct types of the same series, with other facts of an allied kind-the question becomes forced upon us : why is this? Why these relations, these homologies, these tran-sition-phases of embryonic development, these rudimentary organs, these closely-connected forms, if all species were separate and distinct creations? Why, in other words, this recngnised unity of plan, amidst this variety of structure, unless by the long-continued - modification of an original unit-organism? Here, however, we merely express our inability to fathom the design of the Crearor
in these varied repetitions, so to say, of the Cneative thovairt; and the transmutation theory, with all Mr. Darwin's ingronious and eloquent reasonings, offers to us no real help in our difficulty. We yield willing bomage to the unquestionable ability which his book displays in so many of its details; we go with him most willingly to a certaiz point, but there our steps are arrested by obstacles that we are altogether unable to surmount. In his introductory observations, for example, we find the following statements:

[^2]Now, if the author had confined himself to these limits; if he had sought, by his laborious collection of facts and his skilful deductions, to prove the truth of his opinion as here expressed-using the term species, not in its absolute or normal sense, but as limited by our present knowledge-many, we think, who cannot honestly follow him farther, would have become his willing disciples. That various socalled genera have merely the right to rank as species, we firmly believe, and confidently look forward to such researches as those in which Mr. Darwin is engaged, to afford direct proofs of this conclusion * Thus far then we are prepared to listen trustfully to Mr. Darwin's teachings, but when he seeks to carry his applications beyond this, we lose our convictions; certain broad and apparently insurmountable barriers stand up before us; and we find ourselves anable to believe, for example, in the probability of a true transition-link between the carnivorous, retractile-clawed Felidæ, and the four-stomached, hoofed, and herbivorous sheep : and yet this is nothing to what the theory advocated in Mr. Darwin's book would impose upon us.

[^3]"It may be asked how far I extend the doctrine of the modification of species. . The question is difficult to answer, beenuse the move distinct the forms are which we may consider, by so much the arguments fall away in force. But some arguments of the greatest weight extend very far. All the members of whole classes can be connected togelher by chains of affivities, and all ean be classified on the same principle, in groups subordinate to groups. Fossil remains sometimes tend to fill up very wide intervals between existing orders. Orgams in a rudimentary condition plainly show that an early progenitor had the organ in a fully developed state; and this in some instances necessarily implies an enormous amount of modification in the deseendants. Throughout whole classes various structures are formed on the same pattern, and at as embryonic age the species closely resemble each other. Therefore I caunot doubt that the theory of descent with rodification embraces all the members of the same class. I believe that animils hatve desceoded from at most only four or five progenitors, and plants from an equal or lesser number.

Analogy would lead me one step further, namely, to the belief that all animals and phants have desceuded from some one prototype. But analogy may be a deceitful guide. Nevertheless all living things have nuch in common, in their chemical composition, their germinal, vesicles, their cellular structure, and their laws of growth and reproduction. We see this even in so trifing a circumstance as that the same poison often similarly affects plants and animals; or that the poison secreted by the gall-fly produces monstrous growths on the wild rose or oak tree. Therefore I should infer from aualogy that probably all the organic beings which have ever lived on this earth have descended from some one primordial form, into which life was first breathed."

It is very clear, as already stated, that many of the so zalled species of naturalists, are not true species, but simply varieties; and hence, arguments founded merely on closely related forms, are of comparatively little weight as regards the main question here at issue. For the proper acceptation of the theory, it will be necessary to show the passage of one truly distinct type into another, or of these into some common parent-: y ype, so as to render an explanation of the structural homologies and other relations existing between them. If this cannot be effected by reference to existing Nature, let us look back into the rock-preserved annals of the Past, and see if these will lend us any aid. Mr. Darwin is forced to acknowledge that Geology fails, in this respect, to furnish any direct support to his hypothesis. But then, he argues, the geological record is incomplete. In place of a full and comected history, it offers to us only a few isolated leaves of the great book of the Past. Granting this, it must nevertheless be considered highly adverse to his view-as he himself, indeed, has candidly stated--that in these stony annals we find everywhere the same unity
of plan with the same distinctness of type as in existing Nature; and that in no part of the world can we glean from them any examples even approaching to a transitional series of forms, in the sense demanded by the theory. But leaving this subject for awhile, let us examine the theory itself, as modified and set forth in Mr. Darwin's Essay, a little more in detail. We will take in succession the more prominent chapters of the book, and attempt respectively, a brief analysis of their contents.

In his first chapter, the author discusses the variations to which species give rise under domestication. He considers more especially and in great detail, the various breeds of the domestic pigeon. He shews, and every one must be familiar with this fact, the extraordinary differences in external aspect, mode of flight, etc., exhibited by many of these. So great is this diversity of character, that Mr. Darwin thinks an Ornithologist would not hesitate to class most of these breeds as distinct species, if he met with them for the first time, and were led to suppose them wild birds; nay, that he would even feel warranted in placing them under several genera. And yet, Mr. Darwin regards all our known breeds as undoubted descendants of the rock pigeon, the Columba livia. The strongest fact, perhaps, in favour of this view, is the production from time to time in various breeds, of the normal colours of the supposed parent-type. The question however, is by no means proved. If these pigeons have all sprung from Columba livia, should there not be occasionally a more striking reversion to the characters of the original type? Are we moreover authorised to conclude from any direct cvidence, that a pair of rock pigeons could ever produce the numerous varieties that we now possess? Mr. Darwin shews us that a certain amount of variation does constantly occur amongst pigeons generally, and hence he assumes by inference that in course of time, the variation being accumulative, so to say, we miyht obtain the breeds we now possess. It seems, however, as legitimate an inference, notwithstanding Mr. Darwin's able advocacy of the contrary view, that various sub-species or varieties of the pigeon were originally created; just as we believe the leading varieties of the dog and horse have sprung from originally-created varieties. We have certainly no authority to assume that the greyhound and the mastiff were not originally created as such, although capable of breedin $\begin{gathered}\text { together, and }\end{gathered}$ producing fertile offspring. We can produce varieties now, because we have rarieties from which to produce them ; but if we had to breed
from a single variety, it seems evident that, in spite of the most judi- . ciously-excrcised selection in continuing the breed so as to produce the greatest possible variation, no great success could in this respect be arrived at; and a return to the characters of the original type would be constantly occurring. In the case of the dog, this is apparently allowed by Mr. Darwin, for, whilst expressing his conviction that all our domestic pigeon-breeds have descended from the rock pigeon, he does not regard our various dogs as the descendants of a single wild species. But granting that, in the case of the pigeon, and even in that of the dog, horse, \&c., all known varieties have sprung from one existing or extinct type-pair-granting this-what does the admission amount to? Simply to the fact, that certain species are capable of great variation; but, after all, of a variation amounting to no real specific, much less generic, difference. Stay! cry the upholders of this theory : a certain amount of time is required for the production, in this manner, of changes to that extent. We point to the monumental records of Egypt-but these, we are told, are but the works of yesterday. We exhume the dead forms of the geologic Past -and the assumed imperfection of our record is brought against us. On this latter point however, we shall have more to say in the sequel-

In his succeeding chapter, the author discusses some important points connected with "variation under Nature;" but much of his argument is here based rather on the deficiency of our present knowledge, than on absolutely-proved facts. He points out for instance, how greatly certain naturalists differ as to what should be considered species and what varieties, in particular genera, more especially amongst plants and insects; but, rightly considered, although this may go far to prove the unnatural sub-divisions of the systematists, it cannot be looked upou as helping in any material way to explain the origin of true species : id est, of God's actual creations as distinguished from the necessarily imperfect conceptions of man. The grand argument of the chapter is founded on the (to a great extent, perhaps, undoubted) fact, that, in large genera, the amount of difference between the included species is often exceedingly small; and that such species present also, as a general rule, more varieties than belong to the species of smaller genera.

[^4]many closely related species (i. e. species of the same genus) have been formed, many rarieties or incipient species ught, as a greneral rule, to be now forming. Where many large trees grow, we expect to find saplings. Where many species of a genus have been formed throurh variation, circumstaces have been fivomable for variation; and hence we might expect that the circumstances would generally be still favourable to variation. On the other hand, if we look at each species as, a special act of creation, there is no apparent reason why more varieties should occur in a group having many species, than in oue having few.

To test the truth of this ant:cipation I have arranged the plants of twelve countries, and the coleopterous jusects of two districts, into two nu, itly equal masses, the species of the larger genera on oue side, and those of the smabler genera on the other side, and it has invariably proved to be the case that a larger proportion of the species on one side of the larger genera present varieties, than on the side of the smaller genera. Morcover, the specins of the large geuera which present any varieties, invariably present a larger averare number of varieties than do the species of the small genera. Both these results follow when another division is made, aud when all the smaller geuera, with from only one to four species, are absolutely exeluded from the tables. These facts are of plain sigafication on the view that species are only strongly marked and permanent varieties; for wherever many species of the same genus have been formel, or where, if we may use the expression, the mauufactory of species has been active, we ougbt generally to find the manufactory still iu action, more especially as we latve every reason to believe the process of manufacturing new species to be a slow one. And this certainly is the case, if varieties be looked at as incipient species; for my tables clearly show as a geueral wale that, wherever many species of a gemus have been formed, the species of that genus present a. number of varieties, that i ; of incipient specits, beyond the average. It is not that all large genera are now varying much, and are thusincreasing in the number of their species, or that no small genera are now varying and increasing ; for if this ?ad been so, it would have been fatal to my theory; inasmuch as geology plainly tells us that small genera hatve in the lapse of time often grently increased in suze; and that large genera bave often cone to their maxima, declined and disappeared. All that we want to show is, that where many species of a genus have been formed, on an average many are still forminy; and ihis holds good.

With regard to the deductions contained in this quotation, as bearing on the origin of actual species, two things have to be observed: first, that many of the so-called species of these large genera may not be, and in many cases decidedly are not, true species; and secondly, as already observed in the case of the dog, \&c., many leading varicties in these genera, may be varieties of original creation, or sub-species if. we choose to call them so ; and thus, a larger amount of material for variation being provided in the one case than in the other. a more extended variation in the former will follow as a natural consequence:

It is just as rational to assume for example, that several pairs of a type or species A, differing slightly from one another but capable of fertile intermixture, were created with a single pair, or a smaller number of pairs, of another species B-as to suppose that these types with their varieties, and in addition, other types C, D, E, F, etc., all sprang from an umknown type-pair, X, endowed with an innate plasticity of nature sufficiently accommodating to produce such changes in its descendants, as, gradually branching off in different directions, led eventually to the generation of a whale, a cat, and a sheep-not to mention other and more widely separated forms. This may be a rude, and in the cyes of those who favor Mr. Darwin's view, a coarse and very unphilosophic method of putting the argument; but it is a perfectly legitimate one. Granted, we say, that our system-species, which in many instances are not species at all, are susceptible of a certain amount of variation: there your argument stops. You can go no farther except by the help of blind and gratuitous surmises; of surmises clothed certainly in attractive colours, and in some cases possessing probably the germs of an unseizable truth-but gratuitons, all the same, in the present condition of our knowledge.

Passing over a chapter headed "the Struggle for Existence," in which in brief but graphic terms, the mutual antagonism, and the no less mutual dependency of living forms, thronghout the wide range of nature, is forcibly depicted, we arrive at one of the principal topics discussed in Mr. Darwin's volume. This is entitled "Natural Selection," a term employed to express the assumed tendency of Nature to avail itself of any slight change advantageous to a species, in the gradual production of varieties, and through these, of new types. The author appears to claim this principle of natural selection as a doctrine peculiar to the present work; but, in truthas shown by his own illustration of how a fleet brood of wolves might be produced, in this manner, by the destruction of all but swift-footed prey in their locality-it is essentially identical with tbe viers of the author of the Vestiges of Creation. The latter, indeed, goes farther, in recognising also the full claims of climatic and other external causes towards the production of these changes, whilst to such influences, Mr. Darwin is inclined to concede no more than a very secondary importance. Logically cousidered, however, the first step in this principle of "natural selection," must be more or less dependent, at least in most instances, on the agency of physical
conditions. The first slight change, in an accumulative series of changes produced ina plantoranimal, can scarcely be effected otherwise than through ine direct or indirect influence of external causes. In his introduction, Mr. Darwin alludes to the "Vestiges of Creation," but seeks apparently to mask the mutual affinities of the two works, by assuming, for the earlier one, a theory which certainly does not in any way fairly represent its views. He states, for example:-

[^5]Now the " Vestiges" theory, really supposes nothing of the kind; but, and in so far at least in accordance with Mr. Darwin's vier, that one form is capable of originating another, br a slow and accumulative process of development. The author of "the Vestiges" does not assume, for example, that a bird of an absolutely different kind ever gave birth to a woodpecker "perfect as we now see is;" but that this latter type originaied from an older one, by slight, gradual, and long-continued modifications of beak, clars, \&c.,- the process giving rise to a complete series of intermediate forms. The two theories are thus essentially alike; although the works themselves stand widely apart. Whilst the one contents itself with broad assumptions, the other seeks to afford proofs of its statements, and honestly brings forward and discusses points apparently hostile to its views. All the proofs it is able to collect, howerer, are, as we have already attempted to shew, totally inadequate to affect the main question. But-explains Mr. Darwin-although the changes recorded are confessedly slight, they are sufficient to show what would be accomplished, if greater time were called into play; and, in illustration of this, he refers to the agency of present causes in
producing, contrary to an earlier belief, geological changes of the greatest magnitude: But the two cases have no true parallelism, One who had never seen the sea, or had never studied its effects, might naturally be inclined to look with incredulity on statements of its wasting powers, and of the results asserted to arise from these. But if he were to reside for a certain time on a sea-coast, where this wasting action were going on, and thus witnessed how, bit by bity the destruction of the coast tools place, he could not shut his eyes to the fact, that, however slight the annual waste, this must amount in a given number of years, to such or such a quantity. In like manner, one residing near an estuary in which rock-sediments were constantly under process of deposition, would be forced to acknowledge by what he saw daily or annually going on, that in course of time (other conditions not interfering) a delta of greater or less extent must necessarily arise. But to make the two cases parallel, we should. have to assume that these natural processes would produce, not their obvious and natural results, but some altogether unexpected issue. Natural selection as maintained by Mr. Darwin, is undoubtedly a modifying power or principle of recognised action; and no one can read the section of his book which refers to that subject, without deriving profit and instruction from the peruss? But when the author attempts to establish the sufficiency of t.s power to effect generic changes, stronger arguments are certainly required, than any he has yet been able to bring forward.

After some additional remarks of an interesting and original character, on the laws influencing variation, but which our comparatively limited space compels us to pass over, we arrive at a distinct portion of the work, in which the author, having stated his views in detail, and advauced facts in support of the theory which these embody, takes up the so-called difficulties of this theory, or the questions which oppose themselves to its reception. Some of these have been already touched upon, and others must have suggested themselves to the reader, but we have forborne to consider them collectively until reaching the present part of the work, in which they are boldly brought forward and combated by the author himself. Mr. Darwin enunciates them as follows:

[^6]ment, the greater number are ouly apparent, and those that are real are not, I think, fatal to my theory.

These diffivulties and objections may be classed unler the following heads:Firstly, why, if species have descended from other species by insensibly fine gradiations, do we not everywhere see innumerable transitional forms? Why is not all nature ịn coufusion instead of the species being, as we see them, well defined?

Secondly, is it possible that an animal having, for instance, the structure and habits of a bat, could have been formed hy the modification of some amimal with wholly different habits? Can we believe that natural selection could produce, on the one hand, organs of triffing importance, as as the tail of a giraffe, which serves as a fly-flapper, and, on the other hand, organs of such wonderful structure, as the cye, of whicil we hardly as yet fally muderstand the inimitable perfection ?

Thirdly, can instincts be aequired and modified through natural selection? What shall we siny to so marvellous an instinct as that which leads the bee to make cells, which have practically anticipated the discoveries of profound mathematicians?

Fourthly, how can we account for species, when crossed, being sterile and produciug sterile offspring, whereas, when varieties are crossed, their fertility is unimpared?

The first objection is met on Mr Darwin's part by several pleas, of which we give the author's own suminary below, merely stating our personal inability to see clearly the force of his replies. We should remember, in this comection, that our present knowledge is not confined to a few limited areas, but extends over almost the whole surface of the globe; and imperfect as the geological record may be, it is at least exceedingly surprising that neither dead nor existing nature in any part of the world should be capable of affording direct support, howeven slight, to the author's views. We caunot but think, consequently, that he asks us here to accord him too much. The following are the arguments-as given in a condensed form by the author himself-by which the first of the above most serious objections is attempted to be overcome:-

[^7]produced and the old ones acting and reacting on each other. Su that in any one region and at any one time, we ought only to see a ferv species presenting slight modifications of structure in some degree permanent; and this assuredly we see.

Secondly, areas now continuous must often have existed within the recent period in isolated portions, in which many' forms, more especially amongst the classes which umite for each birth and wander much, may have separately been rendered sufficiently distinct to rank as representative species. In this case, intermediate varieties between the several representative species and their common parent, mnst formerly have existed in each broken portion of the land, but these liaks will have b en supplanted and exterminated duriug the process of aatural selection, so that they will no longer exist in a living state.

Thirdly, when two or more varieties which have been formed in different portions of a strictly continuous area, intermediate varieties will, it is probable, at first have been formed in the intermediate zones, but they will generally have had a short luration. For these interme.liate varicties will, from reasons already assigned namely, from what we know of the netual distribution of closely allied or representative species, and likewise of acknowled,yed varieties), exist in the intermediate zones in lesser numbers than the varieties which they tend to connect. From this cause alone the intermediate varietics will be liable to aceidental extermination; and during the process of further modification through natural selection, they will almost certuinly be beaten and supplanted by the forms which they connect; for these, from existing in greater numbers will, in the aggregate, present more variation, and thus be further improved through nataral selection and gain further advantages.

Lastly, looking not to any one time but to all time, if my theory be true, numberless intermediate varieties, linking most closely all the species of the same group tugether, must assuredly have existed; but the very process of natural gelection constantly teuds, as has been so often remarked, to exterminate the parent.forms and the intermediate links. Cousequently evidence of their former existence conid be found only amongst fossil remains, which are preserved. as we shall in a future chapter attempt to show, in an extremely impe:fect and intermittent record."

With regard to the objections placed under the second head, objections of perhaps a still more grave character, the replies, as might be expected, are even still less satisfactory. We have here, indeed, two principal difficulties which it is impossible to set aside except by the aid of entirely gratuitous suppositions. In one of these dificulties, the mode of transition of one generic form into another-of (and Mr. Darwin might have chosen a more startling example) an insectivorous quadruped into a bat, for instance-the author confesses that he cau give us no rational explanation. At the same time, le thinkes such cifficulties have very little weight. 'The arguments here, we trust we do not speak offensively, for nothing
is farther from our intention--the arguments here, become painfully akin to those of the "Vestiges." Take the following for example:

Abstract

"Seeing that a few meatibers of such water-breathing classes as the Orustacea and Mollusca are adapted to live on the land, and seeiug that we have flying birds and mummals, flying iusects of the most diversified types, and formerly had flying reptiles, it is conceivable that flying fish, which now glide far through the air, slightly rising and turning by the aid of their fluttericg fins. might have been modified into perfectly winged animals. If this had been effected, who would have ever inngined that in an early transitional state they had been inhabitants of the open ocean, and had used their incipient organs of flight exclusively, as far as we know, to escape being devoured by other fish?"

If the author had attempted to show that an imperfectly-flying fish might become gradually modified into a fish possessing more perfect powers of flight, the principle might perhaps be admitted, at least for the sake of discussion: but when " perfectly winged animals" are spoken of, especially in connexion with the context, the argument, if it mean anything, implies the possible transformation of a flying fish into a pterodactyle or some kind of flying reptile; and through this, or without its intervention, into a bird or a bat-a transformation involving most assuredly, greater difficulties, than any examples of petty, subordinate modifications, such as the author's tabular lists may exhibit, will help us to consider one of little weight. Turning now to the second of the grave difficulties referred to above, the formation of a complex organ, like the eye of a vertebrated animal, by the gradual modification of an inferior organ in a lower type, we may again let the author speak for himself: only warning the reader unfamiliar with geological discussions, that where Mr. Darwin speaks of our having to descend far beneath the lowest known fossiliferous stratum to discover the earliest stages by which the eye in the vertebrated class has been perfected, he assumes data altogether denied by the greater number of our most eminent geologists. The lowest sedimentary rocks (containing it should be remarked many beds which retain all their sedimentary cbaracters, and thus agree with higher and fossiliferous strata) are generally looked upon as truly azoic formations: as deposits accumulated before the dawn of life upon the globe. The first fish-remains, moreover, the earliest recognised examples of Vertebrata, do not occur at or near the actual base of the fossiliferous strata, but only at the extreme upper limit of the Silurian formation; and in all our earliest fishes the eye exhibits
apparently the normal structure. Fishes and other organisms, may, it is true, have lived at earlier periods than Geology indicates; but that view, whether true or false, is purely hypothetical, is opposed to the results of actual observation, and cannot therefore be: legitinately introduced into an argument of this kind. But we proceed to our quotation, the last that our decreasing space will allow us to give.
"To suppose that the eye, with all its inimitable contrivances for adjusting the focus to different distances, for admitting different amounts of light, and for the correction of spherical and chromatic aberration could have been formed by uatural selection, seems, I freely confess, absurd in the highest possible degree. Yet reason tells me, that if pumerous gradations from a perfect and complex eyo to one very imperfect and simple, each grade being useful t its possessor, call be shomn to exist; if, further, the eye does vary ever so slightly, and the variations be inherited, which is certainly the case; and if any variation or modification in the organ be ever useful to an animal under changing conditions of life, then the difficulty of believing that a perfect and complex eye could be formed by natural selection, thongh insuperable by our imagination, can hardly bo considered real. How a nerve comes to be sensitive to light, hardly concerus us more than how life itself first originated; but I remuk that sereral f.ats make me suspect that any sensitive nerve may be rendered sensitive to light, and likewise to those coarser vibrations of the air which produce sound.

In looking for the gradations by which an organ in any species his been perfected, we ought to look exelusively to its lineal ancestors; but this is scarcely ever possible, and we are forced in each case to look tospecies of the same group, that is to the collateral descendants from the same originall parent-form, in order to see what gradations are possible, and for the chance of sume graditions having been transmitted from the earlier stages of descent, in an ur:Itered or little altered condition. Amongst existing Vertebrata, we find but it small amomet of gradution in the structure of the eye, and from fossil species we can learn nothing on this head. In this great class we should probnbly have to descemd far beneath the lowest known fossiliferous stratum to discover the earlier stages, by which the eye has been perfected.

In the Articulatil we can commence a series with an optic nerve merely conted with pigment, and without any other mechanism; and from this low stige numerous gradations of structure, branching off in two fumdimentally different lines, can be shown to exist, until we reach a moderately high stage of perfection. In certain crustaceans, for instance, there is a double comea, the inner ones divided iato facets, within reach of which there is a lens-shaped swelling. In other crustaceans the transparcut cones which are coated by pigment, amd which properly act only by excluding lateral pencils of light, are convex at their upper ends and must act by convergence; and at their lower ends there seems t :, be an imperfect vitreous substince. With these facts, here far tow briefly amd imperfectly given, which show thet there is much graduated diversity in the eyes of living crustaceans, and bearing in mind how small the number of living animals is in
proportion to those which have become extinct, I enn see no very great difficulty (not more than in the case of many other structures) in believing that uatural selection has converted the simple apparatus of an optic nerve merely conted with pigment and invested by transparent membrane, into an optical instrument as perfect as is possessed by any member of the great Articulate class.
He who will go thus far; if he finds on finishing this treatise that large bodies of fact:, otherwise inexplicable, can be explained by the theory of descent, ought not to liesitate to go further, and to admit that a structure even as perfect as the eye of an engle might be formed by natural selection, although in this case he does nut know any of the tansitional grades. His reason ought to eonquer his imagination, though I have felt the difficulty far too keenly to be surprised at any degree of hesitution in extending the principle of natural selection to such startling lengths."

An entire chapter, and a most instructive one, in Mr. Darwin's book, is devoted to the sulject of Instinct, another serious obstacle as all will readily understand, to the reception of the transmutation theory. Mr. Darwin seeks to overcome this obstacle, by establishing two poiuts: first, that a certain amount of judgment or reason enters into the composition of instinct; and secondly, and chiefly, that, instinct can be shewn, in certain remarkable cases, to be a quality of gradation, so to say. In the cell-building instinct of the bees for example, he traces out, as he imagines, a specific connexion between the humble bees and the hive bee-the Mexican Melipona domestica affording a transition-link. But here, we should consider, that, the principle of instinct is perhaps in no case a simple specific principle, nor even a generic one; but a principle pervading entire families or groups, and, as such, one that we might naturally infer to offer inherent degrees of variation. To establish the point aimed at by Mr. Darwin, we ought to be able to shew, that the humble-bee could be made to acquire the higher artistic-instinct of the hive-bee. We may be told that this might probably be effected under favourable circumstances, aud with sufficient lapse of time; but as this assumption is altogether without proof, we have an equal right to infer that these scparate amounts, or rather kinds of instinct, were oniginally bestowed on these different bees at their special creation. The followers of Mr. Darwin's theory, would, of course, riaicule the idea of a separate creation on the part of insects so nearly allied; but as they can offer us nothing to the contrary but inferences and surmises, every one is at liberty, on this point, to entertain his own opinion. Instinct may be legitimately regarded as entirely depend-
ent upon the inherent character of the brain or its representatives, much as the mode and power of flight in birds and other winged animals, depends essentially upon the conformation of the wing. Hence the possession of peculiar instiacts in the case of neuter insects incapable of continuing their race (as the reuter bees, neuter ants, \&c.,) alluded to by Mr. Darwin as of difficult explanation, becomes, on the older theorf, easily explained. Instinct forms, so to say, a portion of the organization of the animal : and thus, if a neuter insect were so organized as to become a fertile one, its instincts would necessarily become modified with the other parts of the organization. If instinct be really capable of improvement or modification, as the transmutation theory is forced to assert, but of which not the slightest proof is afforded, instinct and reas $\cap \mathrm{n}$ must in a manner be one. But all known facts are opposed to this, although the two principles are sometimes confounded by the unreflective, or by those who are disinclined to allow a certain share of reason to the lower animals. Rightly considered, these principles are not only distinct, but are actually antagonistic elements. The higher the reasoning powers, the feebler or less developed become the manifestations of the instinct principle.

We now come to the fourth great obstacle to the reception of Mr. Darwin's views-the fertility of varieties when crossed, and the sterility of the offspring of separate species in the few cases in which these latter can be made to unite. This subject is discussed by the author at some length, although necessarily under a very limited aspect. His data are chielly, indeed almost entirely, derived from the Vegetable Kingdom, and hence, are scarcely available as fair test-elements for the proper elucidation of the question. The broad, opposing facts presented by animal hybridism are left, and unavoidably, almost untouched; or are masked under other more or less distinct inguiries: as where the author says-" Laying aside the question of fertility and sterility, in all other respects there seems to be a general and close similarity in the offspring of crossed species and of crossed varieties." Briefly, on this subject, we require to know why separate species (which under Mr. Darvin's view are nothing more than varieties) camnot be made to breed together, or do not breed together in the wild state - or why, in the few instances in which this is effected between closely allied forms, the offspring are sterile-whilst on the other hand, our known varieties
breed freelv, and produce fertile offspring? This is the real question at issue; and, up to the present time, it has received no definite answer, except on the aesumption that true species are separate and distinct creations, and are intended by the Creator to remain distinct.
Some of the most striking arguments in opposition to the transmutation theory, are based on geological revelations. These have been already referred to in a previous page, but as Mr. Darwin has devoted a separate chapter to their consideration at the portion of the work to which we have now arrived, we will briefly re-discuss them before closing our review. These geological arguments are twofold : First, the non-occurrence of intermediate or transilionary forms in rock-strata; and, secondly, the simultancous occurrence, again and again, at various geological horizons, of entire groups of allied forms, distinct entirely (or for the greater part) from the organisms of lower and consequently earlier formed deposits. To make these points clear to our non-geological readers, we may observe, that, on each side of the Atlantic, we find certain beds entirely destitute of organic remains, underlying other beds in which these remains occur in great numbers. In some places it is difficult to draw an exact line of demarcation between the two, but that in no way affects our argument. At a certain depth all fossils cease. Now, some observers, Mr. Darwin amongst others, believe that orgauic forms really existed during, and perhaps before, the deposition of these fossil-free strata. Many of these strata, it should be observed, are evidently much altered, by various chemical, igneous, or other agencies, from their original sedimentary condition; and hence, fossils, if ever enclosed in them, may have become obliterated. Other strata of this fossil-free series, however, in various parts of the world, clearly retain their original characters, and do not differ, except in the absence of fossils, from many fossiliferous strata above them. From this fact, combined with the great thickness and extent of the rocks in question; most geologists consider these to be truly azoic rocks, formed out of sediments deposited before the actual creation of living things. If this could be absolutely proved, the transmutation theory would receive its death-blow: because in the strata which suceed or lie above these, and which constitute, be it remembered, the first or earliest fossiliferous strati really known, we find various types appearing simultaneously; and amongst these types we meet with various
allied forms without any intermediate or truly transitionary links . between them. If we cannot absolutely assert, however, that these Silurian forms (using the term Silurian in its extended sense) were the first created forms upon'our earth, the weight of evidence is in favour, and strongly in favour, of that view. Hence, in common justice, the contrary hypothesis, resting as it does on purely negative evidence, ought not to be admitted into the discussion. But if we exclude it, what becomes of Mr. Darwin's theory? "If my theory be true," writes Mr. Darwin -"it is indisputable that before the lowest Silurian stratum was deposited, long periods elapsed, as long as, or prol 'ly far longer, than the whole interval from the Silurian age to ulie present day: and that during these vast yet quite unknown periods of time, the world swarmed with living creatures." But if so, where are the remains of these? Vast thicknesses of rocky strata, formed during some at least of these periods, occur in various parts of the rorld, but as yet no fossils have been obtained from them; whilst the remains of forms which flourished afterwards, are entombed in thousands in the overlying rocks. It is not sufficient to urge, in refutation, that the lower limit of the fossilbearing strata has been pushed lower and lower by the discovery of an obscure graptolite. here, and the fragment of a trilobite, there. Tlo substantiate Mr. Darwin's theory, something more than this is clearly required.

But passing over this weighty obstacle, we find in these geological revelations, others not less weighty. Above the Silurian formations, for example, we find another set of strata, to which, collectively, the term Devonian has been applied, and in which the fossils (with very few exceptions) are entirely different. Above the Devonian beds again, we come upon the Carboniferous with another distinct series of organic remains; and so on successively, through various other groups of strata, each representing a certain period of time during which it was under process of deposition in the form of muddy, sandy, or calcareous sediments. In these sediments, moreover, a portion of the flora and fauna of the period (id est: of the plants and animals then living) was entombed, and so preserved to us: just as we see, at the present day, the leaves, shells, bones, \&c., of existing organisms, enclosed in sediments under process of deposition in scas, lakes, and estuaries. Now, on the hypothesis of distinct acts of creation, there is nothing unaccountable in the sudden appearance, successively, of these distinct sets
of forms, and in the want of transitional forms amongst them; but the abrupt appearance in this manner, of numerous, varied, and distinct types; and especially, the abrupt appearance of distinct sets of these, again and again, in grological history, if not absolutely fatal, is, at least, highly adverse to the larmarckian or transmatation viev. The only possible way indeed, in this ce 3 , to reconcile fact with theory, is to maintain, with Mr. Darwin, the imperfection of the geological record. Butadmitting freely the impertect state of this record, we may legitimately inquire if the imperfection be rally sufficient.to invalidate the force of our argument. In each of these groups of rocks, we have evidence, according to Mr. Darwin's own shewing, of the lapse of an immense interval of time-and yet, transition-forms are absent. And, again, is it not most remarkable that the annals of this imperfect record, belonging to different and distant ages, and collected from such widely distant localities, should all tell the same tale, should all poist to one and the same conclusion, and that an adverse one to Mr. Darwin's view. Assuredly, this cannot be the mere effect of chance. If so, it is as remarkable as would be the case of a hundred coins, thrown at random into the air, all falling with the same face uppermost. It seems inpossible therefore, to avoid the conclusion, that, although - by the advancement of organic forms generally, from lower to higher types, which it reveals; by the extinction of entire races, which it plainly announces; by the vast periods of time, which the just explanation of its facts demands-Geology might scem at first thought to favor the transmutation hypothesis: its records, when rightly-and fairly read, will be found altogether opposed to that illusive view.

We havenot yet reached the end of Mr. Darwin's book : several chaptersistill remain undiscussed, but the grand argument virtually closes.kere. The remaining portions of the work are occupied chiefly by additional illustrations, and by a general recapitulatory statement. of the subjects brought.under review in the earlier chapters of the olume. These illustrations bear principally on the difficulties attached to the cosamonly received belief, the special-creation theory as this has been termed; and seek to uphold the development view, not by shewing the real strength of this, but by exposing the assumed weakness of the opposing system - in its impossibility, for example, to explain the cause of various striking phenomena connected with the geographicat
distribution of plants and animals, the embryological development of . these, and so forth:
Lut this is scarcely a logical, certainly not a just method, of meeting the question. The case stands thus. Certain facts are given: certain remarkable phenomena are witnessed everywhere aroun'. us. We are asked to explain them. We are forcea to confess they trans, cend our explanation. We are asked how the world comes to be peopled by so very many different plants and animals. We reply, by the act of the Creaton: these plants and animals being the essen-tially-unchanged descendants of species separately created at the commencement of the existing state of things. But, say our questioners, if this be the ease, if these type-forms were all separately created, is it not most strange that certain points of resemblance should pervade the whole? Even proud Man in his physical organization is but the endlink of the series, differing only in special points of structure from the beast that perisheth. Is it not most remarkable that many forms should hare been created with rudimentary organs (as the mammex of male mammals, the soldered and ahortive wings of certain insects, \&c.) useless, normally, to themselves, though useful, under an enlarged dexelopment, to other forms? Is it not most startling that the foctal forms of various animals should pass through certain stages of development, representing in part the organization of other types? Are not these and other facts that might be adduced, really without obvious explamation on the view that each species has been separately created, and kept distinct?

To these questionings, we have, of course, but one reply: These strange phenomena, we make answer, are regarded by us, as parts of a great plan, conceived and carried out by the Alamgaty in his wisdom, for some purpose unfathomable to us at present, and perbaps ever to remain unfathomed by our restricted powers of inquiry. Beyond this, they are as inexplicable to us, as the object of our presence here is inexplicable. They belong to those mysteries of God which are kept "on the outside of man's dream." Mina have attempted their interpretation, but all, as yet, have failed. Not so, say the supporters of the transmutation theory-these difficulties are met and answered by the principle of " descent with modification" of species from one another. Let us do this theory no injustice. It certaiuly does afford a rational explanation of the remark-
able facts detailed above; but when tested by other facts, it fails entirely. It is comparatively easy to invent a theory in explanation of a particular series of phenomena, provided we be allowed to exclude all collateral facts from consideration. If we look back into the history of any science, how many futile, though at one time universally-aceepted theories of this kind, do we not encounter. Many of these, however, though eventually discarded, have helped by their claboration, to enrich our knowledge; and the wide discussion to which the present work has led, will undoubtedly yield the same good fruits.

In concluding our confessedly-imperfect analysis of this noted Essay, we may perhaps be allowed to state, apologetically, that having been disappointed of a review on the sulject, by another pen, we have been forced, at the eleventh hour, to throw thus hastily into form, the thoughts suggested to us by an impartial study of the work when first obtained. If we have been compelled to record our protest against the reception of what we believe to be an unfounded theory, no one, we may saicly atfirm on the other hand, can lay down Mr. Darwin's book, so remarkable in many points of view, without feeling that a large accession of new thought has been added by it to our common store. E.J. G.

SCIENTIFIC AND LITERARY NOTES:

LIST OF BIRDS OBSERVED IN THE VICINITY OF HAMILTON, C. W. ARRANGED AFTER TEE SYSTIEM OF AUDUBON

- BY THOMAS MCIEWRAITH, ESQ.

The object of the writer in preparing the following list, has been to afford such. information as may be of use, should inquiry at any future period he made regarding the birds frequenting this part of the couvtry. In its present state, the list has been drawn up from observations made during occasional excursions within a period of four years. Those who are acquainted with the subject will see that it is necessarily incomplete; but it will be easy to add the names of such species as may yet be found. In order that the list may be strictly local, no species has been mentioned which has not been found within six miles of tho eity limits.

Genus Buteo.-Bbzzard.

1. B. horealis-Red-tailed Hawk. Seen in spring aud fall. Not very common.
2. B. lineatus-Rcu houldered Hawh: More plentiful tban the preceding. which it resembles in appearance aud habits.
3. B. lagrapus-Rongh-legged Buzzard. Frequents the marshy shotes of the. Bay; feeding m mice and wounded birds.
4. B. Pemsylvauicus-Broad-vinged Buzzard. Abundaut during spring. Froqueats the meadows near the Lake.

Geuus Haliætus.-Sea Enale.

1. H. leucocephalus-Bald Eagle. A few pairs winter round the Bry Shore, feeding on musk-rats, gulls, \&e. The young birds are of a unifom brown eolour: being more plentiful, and more easily appronched than the adult.

Genus Pandion.-Ojrbey-Fisn-Hawk.

1. P. Halixtas-Fish-Hawh. Seen fishing in the Bay in spring and fall. Not known to breed Lere.

Gemus Falco.-Faleox.

1. F. peregrims-Peregrinc Fialcon. Accidental. Has been observed strikiug down ducks near Burlington Beach.
2. F. palumbaius-Pigcon Hauk. Common in nutumn, when it attends the nocks of blackbirds which roost in the marsh.
3. F. sparverius-Sparros Havk. More common than either of the preceding. Breeds uear the city.

Genus Astur.- Hatwr.

1. A. Conperi-Cooper's Hank. Seen in spriug and fall. Not common.
2. A. fuscus-Sharp-shinned Hawk. Seen in spring and fall. Not commou.

> Genus Circus.-Harbieu.

1. C. cyancus-Common Harrier. Often seen sailiag over the marshes; particularly during the fall.

Genus Surnia-Dar Owe.

1. S. funerea-Hauk Owl. Oceasionally met with during severe sinters.
2. S. nyctea-Snomy Owl. Very plentiful during some winters, at the beach. Detween Nuvember, 1858, and March, 1859, seventeen specinens were brought to merket by fishermen and others. Betseen November, 1859, and Mareh, 1860, only two individuals were killed.

Cenus Ulula-Nrart Owh.

1. U. Acadica-Sara-whet Owl. Frequeutly caught during the day, in empty houses, throughout the country. Not seen in winter.

Genus Syrnium.-Hooriva Owh.

1. S. nebulosum-Barred Owl. The most common species of this family, Seen in spring and fall: not observed in summer.

Genus Otus.-EAaed Owh

1. O. rulgaris-Long-Eared Owl. Rather rare. Observed only in the fall.
2. 0 . brachyotus-Whort-Eared Ow? More frequently seen than the preceding. :Observed to hunt during the day, in cloudy wenther.

Genus Bubo.-Hoaned Owl.

1. B. Virginianus-Tirginian Honned Ool, Not very rare. No particular hanat.
2. B. Asio-Mratled Rorned Owl. One shot on the top of a store-house at Cook's Wharf, November, 1859.

Genus Oaprimulgus,-Goat Sucerea.

1. C. voriferus-Whip-poor-Will. Generally distributed. Common.

Genus Chordeilez-Nighr Hawe.

1. C. Virginianus-Night Hawk. Abmonat. Breens in the woods near the Bay. Genus Chaetura-Smifr.
2. C. pelasgia-Chimney Suallow. Abundant everywhere.

Geuus Rirumio.-Svallow.

1. H. purpurea--Parple Martin. Quite common in the city.
2. H. bicolor-White-bellied Sioallow. Abundant. Gencrally distributed.
3. H. fulva-Cliff Swallong. Less commun than the precediug. Builds in colonips on the outside of barms, \&c.
4. H. rustica-Barn Scallow. Quite commod. Builds inaide of barns, de.
5. H. siparia-Bank Sucallow. Abundant. Nesty in sand-banks round the Bay Shore and elsewhere.

Genus Musicapa-FIlycatcher.

1. M. tyramus-Tyrant Flycatcher. Generally distributed. Not abmanat.
2. M. crenitia-Great Crested Flycutcher. Quite common in tint woods.
3. M Cooperi-Cooper's Fiycatcher. One individual shot in a swamp uear the Bay Shore.
4. M. Acadica-Sinall Green-crested Flycatcher. Abundant in the woods.
5. M. fueca-Pcczose Filycatcher. Quite common. Builds in bridges, sheds, deo,
6. M. virens-Wiod Pec-wec Fiycutcher. Less common than the preceding. Frequents dead trees.
7. I. ruticill:-Redstart. Common in the woods, in fummer.
8. M. flaviventris-Ycllow bellicd Ilycatcher. Only one found. (Not mentioned by Audubon.)

Genus Mylodoctes.-Flycatcher Warblem.

1. M. mitratus-Hooded Warbler. Only one sprcimen found.
2. M. Cnuadensis-Canada Flycuteleer. Quite common during spring and early summer.
3. M. Wilsoni-Wilson's Flycatcher. Only one specimen fuubd.

Genus Sylvicola-Wood Warbler.

1. S. coronata-Yellow-crotaned Wood Warbler. Abundant duriug spring and fall.
2. S. striata-Black-poll Wood Warller. Rather rare, Arrives lato and leaves early.
3. S. c:stanea-Bay-brcasted Wood Warbler. A regular visitor in sprivg. Not numerons.
4. S. icterocephala-Chestnut-sided Wood Warbler. Rather common. Nests among the briars.
5. S. vinus-Vine-creeping Wood Warbler. Quite common. Ove of tho first to arvive.
6. S. Varus-Hemlock Warbler. Observed in September only.
7. S. virens-Black-threated Green Wool Warbler. Ruther common in spring.
8. S. maritima-Cape Mray Wood Warbler. Rare Two specimens procured.
9. S. ccerulen-Ccrulean Wood Warbler. Abundant in some seasons: less so in others.
10. S. Blackburnix-Blackburnian Wood Warbler. A regular visitor, in uncertain numbers.
11. S. æestiva-Yellow-poll Warbler. Abundant. Builds in shade trees in the cily.
12. S. Petechin-Yellov Red-poll Warbler. Common in the fall ; rare in spring.

13 S. Americana-Blue Yollovoback Wood Warbler. Not very plentiful.
14. S. Canadensis-Black-tlleroated Blue Wood Warbler. Plentiful in spring.
15. S. maculon-Black and Yellow Wood Warbier. An irregular spring visitor.

Genus Trichas.-Giound Warbler.

1. T. Marilandica-Mfaryland Yellow-throat. Not common near the city : more so in retired swamps.
2. T. Philadelphia. Rare. One found May 28 (h, 1860 .

Genus Helinaja.-Swamp Warblem.

1. H. celata-Orange crooned Swamp Warbler. Only one specimen found.
2. H. rubricapilla-Nashville Swamp Warbler. Quite common. Breeds near the city.
3. H. cirysoptera-Golden-winged Sioamp Warbler. Only one specimen found.

Genus Minotilta-Caeering Warbler.

1. M. vaiia-Black and White Crcepiny Warbler. Abuodant in the woods.

Genus Certhia.-Cueeper.

1. C. familiaris-Brown Tree Creeper. Common. Resident.

Genus Troglodytes.-Wrex.

1. T' aedon-House Wren. A few pairs spend the summer in the gardens of the city.
2. T. hymenalis- Winter Wren. Conmou in spring and fall.
3. T. palustris-Mfarsh Wren. Found in all the marshes round the Bay in summer.

> Genus Parus.-Tri.

1. P. atricapillus-Blach-capped Tit. Abuudaut. Resident.

Genus Regulus.-Misaret.

1. R. satrapa-Gold crested Wron. Plentiful in spring and fall.
2. R calendula-Rubycrowncd Wren. Plentiful in spring aud fall.

Genus Sialia.-Buve Bind.

1. S. Wilsoni-Common Bluc Bird. Pleutiful from early spring till late in the fall.

Genus Orpheus.-Mocrisg Bird.

1. O. Carolinensis-Cat Bird. Quite common. Frequents low thickets.
2. O. Rufus-Brown Thrush. Less common than the preceding. Genus Turdus.
3. T. migratorius-Robin. Abuadant; breeds in the city gardens.
4. 'T. mustcinuus-Wood Thrush. Rather rare. Frequents solitary woods.
5. T. Wilsoni-Tazony Thrush. Rather common.
6. T. solitarius-Hermit Thrush. Rather common. Similar in manner and haunt to the preceding.

Genus Seiurus.-Wood Wagralls.

1. S. aurocapillus-Golden-crowned Wood Wagtail. Common in the woods in summer.
2. S. novaeboracensis-Aquatic Wood Wagtail. Common; less so thau the preceding.

Genus Anthus.-Piprr.

1. A. Ludovicianus-American Pipit. Stragerling flocks seen in spring and fall. Genus Alauda.-Lark.
2. A. alpestris-Shore Lark. Occasionally seen in company with plectrophanes nivalis.

Genus Plectrophanes.-Lark Burtivg.

1. P. Lapponica-Lapland Lark Bunting. Occasionally found in company with the succeeding species.
2. P. nivalis-Snow-fluke. Abundant while snow remains on the ground. Genus Emberiza.-Bunting.
3. E. graminea-Bay-winged Bunting. Found in any grass field in summer.
4. E. Savama-Savannah Bunting. Rather rare. Similar in habits to the preceding.
5. E. pusilla-Ficld Sparrow. Not very numerous; breeds near the city.
6. E. socialis-Chipping Sparrovo. Quite common. Builds in shade trees in streets.
7. E. Canadensis-Tree Sparroio. Small flocks seen during winter.
8. E. passerina-Yellow winged Buntine. Rather rare.

Genus Niphœa - Snow Brad.

1. N. hyemalis-Common Snow Bird. Commou. Resideat.

Genus Spiza.-Panted Bunting.

1. S. cyanca-Indigo Bird. Common in the woods from May till September.

Genus Ammodramus.-Suore Fiver.

1. A. palustris-Swamp Sparrov. Breeds in the reed beds of the Bay. Genus Linaria.-Linnet.
2. L. minor-Lesser Redpoll Linnet. A winter visitor. Plentiful in some seasons; less so in others.
3. L. pinus-Pine Limet. Less numerous than the preceding. Genus Carduelis.-Gond Fince.
4. C. tristis-Gold Finch. Abundant. A few remain duriug winter.

Genus Fringilla.-Frecr.

1. F. Iliaca-Fox-colourcd Sparrow. Accidental in the fall.
2. F. melodia-Song Sparrov. Abuudant from March till November.
3. F. Peunsylvanica-White Throated Sparrow. Common in spring and fall.
4. F. leucophrys-IWhite-crowned Sparrow. Rather rare. Ouly seen in spring. Genus Pipilo.-Ground Frisur.
5. P. erythropthalmus-l'owhe Bunting. Not very numerous.

Genus Erythrospiza.-Purple Finch.

1. E. purpurea-Putple Finch. Occasional in the woods in winter.

Genus Corythus.-Pine Fiscir.

1. C. enucleator-Pino Grosbcak. A winter visitor, appearing in considerablo numbers in some seasons, and not at all in others. Common during the winter of $1859-60$.

Geuus Loxin.-Crossbind.

1. L. Curvirostra-Crossbill. An irregular winter visitor.

Genus Coccoborus.-Song Grosbeas.

1. C. Ludovicinuus-Rose-breasted Grosbcak. Not very numerous. Frequents secluded groves.

Genus Pyranga.-Red Bred.

1. P. rubra-Scarlet Tanager. Common in the woods in summer.

Genus Dolichonyx-Rioe lhird.
2. D. oryzivora-Bob-o-link. Commou. Frequents grass fields.

Geaus Molothrus.-Cow Bird.

1. M. pecoris-Common Cow Bird. Abundant all over the country. Genus Agelaius.-Marsil Blackbind.
2. A. phocniceus-Red-zoinged Starling. Abund.unt in all the marshes.

Genus Icterus.-Hangnest.

1. I. Balumore-Balimore Oriole. Cummon in the woods and orchards.

Genus Quiscalus.-Cnow Blackbiad.

1. Q. versicolor-Crow Blacklird. Seen iu springr and fall. Not observed to breed near the city.
2. Q. ferrugineus-Rusty Grackle. Abundant in the fall, when they spend the day in the ploughed fields, and ront in the reeds of the marsh at wight.

Genus Sturnella. -Meanow Starlisg.
S. Ludoviciana-Meaders Lark. Common from early spring till late in the fall. Genus Corvus.-Crow.

1. C. Americanus-Common Crow. The main body migratory; a few resident. Genus Garrulus.-Jar.
2. G. cristatus-Bluc Jay. Common. A few resident.
Genus Lanius.-Sunme.
3. L. borealis-American Shrike. A few individuals seen every winter.
4. L. Ludovicianus-Loggerhea 1 Shrikc.* Two iudividuals shot in April, 1860. Not observed prior to that date.

> Genus Vireo.

1. V. flavifrons-Yellow-lhroated Virco. Not very numerous.

[^8]2. V. gilvus-Warbling Greenlet. Rather common. Visits the shado trees in the city.
3. V. olivaccus-Red-eyed Grcenlet. Common in the woods in summer.

Genus Bombycilla.-Waxwisa.

1. B. garrula-Bohemian Chutterer. An irregular wiuter vistor. Usually seen in company with the pine gro-beak.
2. B. Carolineusis-Cedar Birc. Quite common during summer, frequently staying late in the fall.

Gemus Sitta.-Nuthater.

1. S. Carolinensis-White.bellicd N̈uthatch. Common. Resident.
2. S. Ganadensis-Red bellicd Nullatch. Common. Not seen in summer.

Gemus Troelialus.-Hummina Bird.

1. T. colubris-Ruby-throated Humming Bird. Conmon. Seen whercver there are flowers in summer.

Genus Alcedo.-Kingriserer.

1. A. Alcyon-Belted Kineqfisher. Common aloug the Bay shores.

Genus Picus.-Woodrecker.

1. P. villosus-Hairy Wondfocker. Quite common, Resident.
2. P. pubescens-Downy Woodpecker. Quite common. Resident.
3. P. vaiius-Yellutb-bellied Woodpccier. Common during summer; breeds near the city.
4. P. Arcticus-Aretic I'hrec-locd Woodpecker. Rare. Two specimens procured in November, 1859.
5. P. Curolineusis-Red bellied Wondpecker. Rather rare. Not seen in winter.
6. P. erythrocephalus-Red leaded Woodpecker. Common in the country; less so near the city.
7. P. auratus-Gold-winged Woodpecker. Quite common. Breeds near the cityGenus Coceyzis.-Amerioan Cuchoo.
8. C. ergthropthalmus-Black-billed Cuckoo. Not very rare.

Genus Ectopistes.-Long Talled Dove.

1. E. migyatoria-Passenger Pigeon. A regular visitor, in uncertnin numbers.
2. E. Carolinensis-Carolina Dove. Accidental, in the fall.

Genus Ortyx--Anerican Partridge.

1. O. Virginiana-Particilge Quail. Commou iu fall and winter.

> Genus Tetrao.-Grouse.

1. T. umbellus-Rufled Gror ic. Common. Resident:

Genus Gallinula.-Galeexule.

1. G. chloropus-Common Gallenule. Found in the marshes. Not very numerous.

Genus Fulica.-Соот.

1. F. Americana-Common Coot. Found in the marshes. Not plentiful.

Genus Ortygometr..-Crohe Galientere.

1. O. Carolinus-Sora Redil. Extremely abundaut in all the marshes during summer.

Gebus Rallus.-Rail.

1. R. crepitans-Clapper Rail. Oceasional, in the marsh.
2. R. Virginianus-Virginian Rail. More plentiful than the preceding.
3. R. clegaus-Great Red-brcasted Rail. Accidental. One specimen found.

Genus Charadrius.-Plover.

1. C. Melveticus-Black-bellied Plover. A regular visitor at the Beach in spring and fall.
2. C. marmoratus-Golden Plover. More numerous than the preceding.
3. C. vociferus-Kildeer Plover. Occasional. Never numerous.
4. C. semipalmatus-Ring Plover. Numerous in spring and fall.

Genus Strepsilas.-Turnstone.

1. S. interpres-Thrnslone. Occasional at the beach.

Genus Tringa.-Sasdpiper.

1. T. pectoralis-Pectoral Sandpiper. Abundant in the fall.
2. T. alpiua-Red-backed Sandpiper. Extremely abuadant about the 25 th of May.
3. T. subarquata-Curlew Sandjiper. Occasional. Not numerous.
4. T. himautopus-Long-legged Sandpiper. A few seen at the beach every season.
5. T. semipalmata-Semipalmated Sandpiper. Very abuudant in spring and fall.
6. T. pusi'la-Little Sandpiper. Not quite so uumerous as the preceding, with which it associates.
7. T. arenaria-Sanderling Sundpiper. Quite common at the beach.
8. T. islandica-Red-leaded Sandpiper. Never very numerous.

Genus Lobipes.-Loberoot.

1. L. hyperboreus-Hyperbor-an Lobcfoot. Occasioually seen in small ponds near the bay.

Genus Totanus.-Tatler.

1. T. נnacularius-Spotted Tatler. Breeds near all the muddy creeks round the Bay.
2. T. flavipes-Yellow-shanks Tatler. Rather conmon during spring and fall,
3. T. vociferus-Tell-tale Tatler. Less numerous than the preceding.

Genus Limosr.-Godwit.

1. L. fædon-Great Mrarbled Godwit. Occasional. Not numerous.
2. L. Hudsonica-Hudsonian Godioit. Rather rare.

Geaus Scolopax.-Svipe.

1. S. Wilsoni-Wilson's Snipe. Abundant. Migratory.

Genus Numenius.-Curlew.

1. N. longirostris-Long-billed Curlew. Accidental on the Lake Shore.
2. N. Hudsonicus-Ifudsonian Curlev. Less frequent than the preceding. Genus Ardea.-Heron.
3. A. nycticorax-Black-crovoned Night Heron. Accidental. Migratory.
4. A. lentiginosa-American Bittern. Abundant in all the marshes.
5. A. exilis-Least Bittern. Less numerous than the preceding.
6. A. Herodias-Great Blue Heron. Rather common.

Geuus Anser--Gonse.

1. A. Canadensis-Canada Goose. A few rest on the Bay in their migratory course.
2. A. hyperboreus-Snoro Goose. Accidental, in the Bay. Cenus Cygnus.-Swan.
3. C. Americanus-American Swan. Accidental, in the Bay.

Genus Auns.-Duck.

1. A. boschas-Mallard. Common. Migratory.
2. A. obscurat-Dusky Duck. Common. Migratory.
3. A. strepera-Gadwall. Rare. Only two individuals seen.
4. A. Americana-Widgeon. Numerous in spring and fall.
5. A. acutn-Pin-tail Duck. Occasional. Not numerous.
6. A. sponsa-Wood Duck. Quile common. A feys breed near the marsh.
7. A. Carolinensis-Green-winged Teal. Numerous in spring and fall.
8. A. discors-Blue-winged Teal. Less numerous than the preceding.
9. A. clypeati-Shoveller. Rather rare.

> Genus Fuligula.-Sea Dock.

1. F. valisncriana-Canvass-back Duck. Accidental. Only troo individuals seen.
2. F. ferina-Rtd-head Duck. Rather common.
3. F. marila-Scaup Duck. Abundaut in spring and fall.
4. F. marila minor-Lesser Scaup Duck. Abundant. Not distinguished by Audubon from the preceding.
5. F. rubidn-Ruddy Duck. . Immense numbers taken with the gill-nets in some seasons: not seen in others.
6. F. fusca-Velvet Duck. Occasional, in stormy weather.
7. F. clangula-Golden-Eye Duck. Not very numerous.
8. F. albeola-Dipper. Abundant in sprivg and fall.
9. F. glacialis-Long tailed Duck. Abundant. Winters in the Lake. Often caught in the gill-nets along wit' white-fish, twelve miles from shore, and at a depth of 200 ft . to 250 ft .

Genus Mergus.-Merganser.

1. M. merganser-Goosander. Not very plentiful.
2. M. serrator-Red breasted Merganser. Not very plentiful.
3. M. cucullatus-Hooded Merganser. More numerous than cither of the preceding.

> Genus Sterdr.-Tern.

1. S. hirundo-Common Tern. Visits the Bay about the end of May.
2. S. nigra-Black Tern. Usually accompanies the preceding.

Genus Larus.-Gull.

1. L. Bonapartii-Bonaparte's Gull. Common during fall.
2. L. argentatus-Herr:2g Gull. Winters at the beach.
3. L. marinus-Great Black backed Gull. Winters at the beach, Very diffcult of approach.

Genus Uris.-Gumafaiot.

1. T. grylle-Black Guillemot. Accidental, after ensterly storms.
2. U. Truile-Foolish Guillemot. Asendentai, aftur stor:ny weather.

Genus Colymbus -Diver.

1. C. glacialis-Linn. Often swen in the Bay.
2. C. Buptentrimalis-Red throated Diver. Immature specimens frequent; the adult not ubserved.

Genus Podiceps --Grebr.

1. P. rubuicollis-Rad nerked Grele. Rather rave. Scen only in spring.
2. P. cornutus-Flornad Girche. Cummon huring sumnier.
3. P. Carolinensis-Pied:ith Dabchick. Not so numerous as the preceding.

METEOROLOGICAL OBSERYATIONS, 185̊, ST. MLARY'S, C. W.

$$
1
$$

Io the President of the Canadian Institute.

Sin, -I have herewids forwarded a continnation of the Meteorolngical Observatious made by me in St. Mary's, Canada West, which youreceived last year. They are in Reduced Tribular form for referene, and I hope may bo useful as to our clinate, in this the highest portion of the Province, which is about 1090 fect nbove the level of the ocenan, and in Letitude Nowth $43^{\circ} 17^{\prime} 57^{\prime \prime}$ and West Longitude about $81^{\circ} 13^{\prime} 20^{\prime \prime}$, as detailed in my last communication. I have prepred the paper ir tahular form. Eath month exhibits barometris flactuations, similar to thuse ia the corresponaling months of 1858 , indienting I presume some general haw, and the mean height of the whate year did not differ more thew tofo of an inch from thit of 1859. Sfarch was again the lowest last year, aud had also the greatest uumber of miny days.

The amount of rainfall was ennsidembly greater this year, 1859, than in 1858, being $4 \overline{0} 71$ ins. instead of 3542 last year; the increase maiuly haviug fallen in the summer and autumnal months.

The direction of the air currents as in last year was mainly from the West. being 186 days in 1859, and 139 days in 1858, and the Easterly winds which invariably bring min or fnow, in this part of the frovince, prevailed 85 days in 1850, to 75 days in 1858; which may accomt for the greater rainfall this year, especially as the increased rate is nuticeable in the summer and autumual months in both eases.

The bright, clear, sunshiny days were as before greally in exeess of the dull cloudy ant rainy ding. ing 217 in 1859 , fine \&c., to 148 dull and rainy days.

In order to analyse the phenomena of the two years observations 1858 and 1852 more easily, I have divided the tables into seasons, and placed the directions of air currents, and the amospheric appearance in the form of a percentage on the year
for easier comparison，all of which can readily be seen in the accompany ing Table －Named Comparative＇Table of yents 1858 and 1850.

In conclusion， 1 must spologise for their brevity，but can vouch for their accuracy，aud thus sub．nit them respectfully to the Institution．

W．GRAEJIE TUMKINS，C．E．，P．L．S．de．
St．Mary＇s，March 1， 1860.
P．S．－I have appended a Comparative Table of Sensomal Temperatures deduced from my own and other authentic sources．

METEOROLOGICAL OBSERVATIONS，1859，AT ST．MARY＇S，C．W． SBASONAL TABLE MADE FOR ST．MARY＇S，A．D． 1859.

BY W．GRAME TOMKINS，C．E．，P．L 8．，ETC．

	Konth．				Dircetion of Vind．				Atmospheric Apuroxima－ tion．			
					Nor．	Sou＇d．	East．	West	Finc．	Ch＇ge．	Dull．	Rain．
茫	Decmmber ．．．	25.83	31.45	2.85	0	8	8	9		8	10	7
	Jawuary ．．．．．．	28．56	$26.7{ }^{2}$	3.0.	5	17	5	10	10	6	10	5
	Vebruary ．．．	28.73	26.96	1．3．1	8	4	8	8	8	5	10	5
	Mean ．．．	28.83	28.30	T7 $2 i$	21．15．	25．55．	23．4n．	301．	26．75．	21．1n．	33．15．	18．8p．
$\begin{aligned} & \text { 茫 } \\ & \text { 号 } \end{aligned}$	March	28．6\％	3745	4.05	5	7	9	10	11	7	${ }^{6}$	8
	Anil ．．．．．．．．	2868	41.40	$2.5 *$	10	2	10	8	10	7	9	4
	May ．．．．．．．．．．．	28.91	59．43	2.31	4	7	14	6	15	8	5	3
	Mean．	23.73	46.21	T8．94	20．71）．	17．4p．	36．0n．	26．0p	39．4p．	22．9p．	21．8p．	16．0p．
$\begin{aligned} & \dot{0} \\ & \stackrel{E}{E} \\ & \text { 芴 } \end{aligned}$	Junc．．．．．．．．．．	28.83	63.00	5．2：	2	8	3	17	16	7	4	3
	July ．．．．．．．．．．．	28.84	71.13	$2 \cdot 23$	$11)$	6	4	11	18	7	4	4
	Anfust ．．．．．．	25.81	66.93	7.88	9	4	3	15	17	5	4	5
	Mealı	28.84	67.02	T15．3i	2.7 p ．	193 p ．	11．0p．	47p．	42．7p．	22．9p．	13．2p．	18．2p．
	S．ptember．．．	28.83	56.03	1.77	5	11	3	11	9		7	7
	Ortuber ．．．．．	${ }^{28} 8.77$	33.84	3.14	10	2	8	11	9	9	6	
	November ．．	28.70	35.03	5.2%	4	6	10	10	10	5	8	7
	Menn ．	28.78	43.63	T10．14	21.0 p ．	21．0p．	23p．	35 p ．	31 p.	23．0p．	23p．	23 p ．
Annual Mean ．．．．．．		23.80	46.20	42.71	21．5p．	17．7n．	28．3p．	37．5p	37．8p．	22p．	22．7p．	17．5p．

Wind from Northward 78 days．
$\begin{array}{llll}\text {＂} & \text { Southward 76 } \\ \text {＂} & \text { Enstward 85 } \\ & \text {＂} & \text { Westward } 136\end{array}$
＂Westward 136 ＂

137 Fine days．
80 Changeable．
83 Dull．
65 Rain or Snow．

COMPARATIVE TABLE OF YEARS 1859 AND 1859, at ST. MARY'S, C. W.
by w. ardife tomking, c.b., r.d.s.

Barometric Table.

Thermometric.

1858	27.60	42.42	73.69	49.33	43.23
1850	28.39	40.11	67.02	43.03	46.29
Difference-1859	+0.73	+2.80	-6.67	-5.70	-1.94

Rain or Snow in inches.

1858 ...	7.63 7.27	10.73 8.94	10.99 10.36	5.87 10.14	$\begin{aligned} & 35.42 \\ & 42.71 \end{aligned}$
Difference-1859	-. 36	-1.70	+4.37	+4.27	+7.29

Wind Direction, per centum.

Direction.	1858.	1859.	1858.	1859.	1858.	1859.	1858.	1859.	
North	17.8	21.1	10.0	20.7	33	29.7	37.0	21	+10 in '58
South ..	26.6	25.5	18.5	17.4	10	10.3	18.5	21	+ 9 in '59
East	24.1 31.2	23.4 30.0	31.5 40.0	36.0 28.0	${ }_{46}^{11}$	11.0 47.0	15.2 20.3	23 35	+10 in '59 +3 in '58
West...........	31.2	30.0	40.0	26.0	46	47.0	20.3	35	+ 3 in'5s

Atmospheric Appearance, per contum.

Fine	30.0	26.7	39.0	39.6	62.0	42.7	41.5	31	+21 in' 58
Change	32.2	21.1	28.4	22.9	17.5	22.9	17.5	23	+ 7 in' 58
Dull	21.0	33.4	15.2	21.8	10.5	13.2	24.0	23	+18 in' 59
Rain	26.8	18.8	17.4	16.0	10.0	13.2	17.0	23	+10 in ' 59

OANADIAN INSTITUTE.
 SEssion-1859-00.

twelftit ordinary meeting-10th March, 1860.
Professor Wilson, LL.D., President, in the Chair.

I. The following Donation for the Library was announced, and the thanks of the

 Institute voted to the donor:From Hon, J. M. Brodhead, Washington.
Explorations for \mathfrak{a} Railroad route from the Mississippi to the Pacific Ocean. Vol. X.

II. The following Papers were read:

1. By the Rev. Prof. Hincks, F.L.S.:
"On the true aims, foundations, and claims to attention of ".litical Economy."
2. By W. Martin, LL.D.:
"On some geometric problems relating to curves having double contact."
3. By J. H. Dumble, Esq. C.E.:
"On the Expansion and Contraction of Ice."
thirteenti ordinaby meeting-17th March, 1860.
Prof. Daniel Wilson, LL.D. President, in the Chair.
I. The following Donation for the Library was announced, and the thanks of the Institute voted to the donor:
From Major R. Lachlan, Cincinnatti.
Meteorlogische Waamamingan in Nederland en Zyne Bezittingan, su afeoykingen van Temperateuer en Barometerstand op vele Plaasten en Europa. Uitgeven door het Koninklyk nederlandich Meteorologisch Institeut, 1856 and 1857. Quarto. Two Vols. .

Fourth Meteorological Report of Professor James P. Espy, to the United States Government, 27 th July, 1854. Quarto. Two Vols.

II. The following Papers weere read:

1. By Professor Chapman:
"On the Geological struclure of the 'Blue Mountains' near Collingwood." (2.)
"On some simple rules for calculating the thickness of Inclined Strata." And (3.)
"On a new species of Agelacrinites from Peterboro', C. W."
2. By the Rev. Professor G. P. Young, M.A.:
"Proof of the impossibility of representing the common transceadental functions of a variable, as finite algebraical functions."
3. By Professor Wilson, LIT.D.
"On the origin of Alphabets, in reference to he question of the age of Man."

- fourteenth-oruinary meeting-24th Mfurch, 1860.

Professor Danees Walson, LL.D., Iresident, in she Chair.
I. I\%e following Gentlemen.woerc elected Members :
U. Onmex. Esq , M.D., Turonto.

Roban Casciley, Esq, M.D., Whitby.
II. The follooing Donations for the Library were announced, and the thanks of ihe Institute voted to the doners:
From J. H. James, Esq., per Dr. Philbiek.
"Principles of Puliticial Economy." 3rd Edition: by J. S. त्यill. .Two Vols.
From the Historicul Suciety of Pemnsylvania.
"The Record of the Court at Upland Pennsylvania, 1676 to 1681, and Military Journal kept by diajor E. Druny, 1781 to 172ă. One Vol.

III. The following Papers were read:

1. By Professor J. B. Ciserrimau, M.A.:
"Remarks on Newton's investigation of the Velocity of Sound."
2. By Professor Croft, D C.L.:
"On a reputed Blue Saud from India."

> fifteremti ordinamy aeeting-31st March, 1860 . Professor Whlon, LL.D., President, in the Chinir.

I. The follou 9 Ge:tieminn woas elecied a Member:

Jons De Cerv, Provincial Land Surveyor, Caycga.
II. The President amounced that this was the last regular Meeting of the Session, but in consequence of there being several papers yet to read, it was proposed to Bjjourn to Sizarday the lith A pril.

Messrs. Sprenll and Harman were appointed Anditors of the Treasurer's Accounts for the present year.

III. The following Papcrs.were read:

1. By G. R. R Cuckbur:, Esq., M.A. :
"On Rent."
2. By Professor J. B. Cherriman, M.A.:
"On a Problem in Substitutions."
3. By S. Tleming, Dsq, C.E. :
"On the derelupment of lines of Interual Communication with a vien to the future progress of Can:da."
smimeenti ozdinaby meetng-14th April, 1860.
Professor H. Ceory, D.C.L., Vice-President, in the Chair.
I. The following Gentleman was a elected Member:

Doctor R. W. Hrelary, Whitchurch, C. W.
II. The following Donations for the Library and AFuseum were announcel, and the thanks of the Institute voted to the donors.
For the Library.-From the Royal University of Caristiana, Norway.
Forhadlinger ved de Skaudenaviske Natuaporskarns Syvende Mode-1- Christiania Don. 12-1S, Julie 1356. One Vol.

Geueralberatiug fra Gausted Sindssygensyl for aeret 185 S . One Vol.
Tale Cautate bid del \&c. for Kong O: Y. One Vol.
Uber die Geometrische Reprasentation de. Von C. A. Bjerknes and Dr. O. J. Broch Professor. One Vol.

Karlamagnus Saga ok Kappa Houst. One Vol.
Al-Nutussal Edidet. J. P. Broch. One Vol.
Det Kongelige Noaske Frederiels Unveloitets Aarsbereting for oaset 18561858. One Vol.

Traces de Buddhisme en Norvège avant 1 'introduction du Christianisme. var M. E. A. Holmboe. One Vol.

Beretning on en Zoologiske Reise foretagen i sommeren 1857, vad D. C. Daniclssan. One Vol.
Fortegnelfe over Modeller of Landhusholdnugs-Reciskaber, fe. One Fol.
Personalies oplaeste ved Eaus Magestaet Kong Oscar den Is. One Vol.
Beretning om Gedsfaengslets Verksombed i arare ${ }^{+}$1858. Gne Vol.
Unbound or in Pamphlet form,-Total 12.
For the Muscum.-From John Fleming, Esq.
A collection of Trilobites and other Gcological Sperimens from Collingwond, Ganada West.

III. The following Papers werc read:

1. By Professor Hind, M. A.:
"On the occurrence of Grasshoppers, (so called) in the Forth West."
2. By the Rev. Professor Hatch, B.A.:
"On Moxal Relatinns of the Greek Oracles."

REMARKS ON TORONTO METEOMOLOGICAT, REGISTHR FOR APRIL, 1860

MONTILLY METEOROLOGICAL IUEGISTER, AT TIE PROVINCIAL MAGNETMCAL OBSERVATORY, TORONTO, CANADA WESI-MAY,ISUO.

REMARKS ON TORONTO METEOROLOGICAL REGISTER FOR MAY.

407

MONTHLY METEOROLOGICAL REGISTER, ST. MARTIN, ISLE JESUS, CANADA EAS'R-MAY, 1560.

RAMARKS ON THE ST. MARTLN, ISLE JESUS, METEOROLOGICAL REGISTER FOR APRL, 1860.

REMARKS ON THE ST. MARTLN, ISLE JESUS, METEOROLOGICAL REGISTER FOR MIAY, 1860.

Highest, the 9th day Lowest, the 19th day	$\begin{aligned} & 30.146 \\ & 29.187 \end{aligned}$
Barometer $\{$ Monthly Mear: ..	29.864
(Monthly Rang	0.959
(Highest, the 12th day	$87^{\circ} 9$
Thermometer $\left\{\begin{array}{l}\text { Lrowest, the } 3 \text { lip day } .\end{array}\right.$	$26^{\circ} 9$
Thermometer... ${ }_{\text {Monthly SIean }}$	59.95
(Monthly Range	$61^{\circ} 0$
Greatest intensity of the Sun's rays	$99^{\circ} 2$
Low " - noint of Terrestri: 1 Radiation.	$15^{\circ} 1$
M Mean of Humidity	. 695
Amount of Evaporation..	$2^{\circ} 89$
Rain iell on $\%$ days, amounting to 4.310 inches; it was raining $2 s$ hours $: 2$ minutes, accompanied by thunder on two days.	and was
Snow fell on 1 day, amounting to 0.07 inches; it was snowing 1 hour 15 minutes.	
Most prevalent wind, the S. S. E.	
Least prevalent sind, the E.	
Most windy day, whe 14th day; mean miles per hour, 12.09.	
Least windy day, the 5th day ; mean miles per hour inappreciable.	
Aurora Borealis visible on 1 night.	
Slight frost on the mornings of the 17th, 21st and 23rd days.	
Parhelia visible 1 day.	

[^0]: * In an Bssay on Mathematical Reasoning, appended to his Mathematical Euclid, Dr. Whewell refers to the attempts which have heen made to dispense with Euclid's 12th Axiom. "No one," he writes, "has yet been able to construct a system of Jrathematical truth by means of Definitions alone, to the exchsion of Axioms; though attempts having this tendency have been made constantly and earnestly. It is, for instance, well known to most readers, that many mathematicians have endeavoured to get rid of Euclid's Axioms respecting straight lines and parallel lines; but that none of these essays have been generally considered satisfactory:" The last clause in this statement calls for remark. Sir John Leslie objected to Iegendre's reasoning ; but on gromids which (as Professor D!ayfair showed in the Edinburgh Review) are altozether frivolons. Playfair maintained that Legendre's proof was satisfactory; and since then, till the publication in the Canadian Joumal of the article above referred to, mathematicians have-by their sifence at leastacquieseed in his verdict. If legendre's proof has been generally considered unsatisfactory, why did none of those by whom such a view was taken show where the reasoning is defective

[^1]: - It may be proper to mention that Legendre has treated the subject of parallel lines in two different ways, one in the text of his Elements of Goemotry, and the other in the notes to that work. Playiair considers the former method "quite logicnl and conclusive," as well as the latter; only objecting to it that it is "Jong and indirect," and too "subtle" for "those who are only begiming to study the Mathematics." Bnt, as the admission of Legendre himself is on record that this method is not couclusive; as it is, in fact, palpably the reverse-taking for granted what requires proof, as much as Euclid's Axiom does; no further attention need be given to it. The proof here oriticised-a proof, the fallacy of which was for the first time (it is believed) pointed out by the author of the present paper in the Canadian Journal for Novembor, 185i-is that advanced or Iegendre in the Notes to his Geometry. •

[^2]: "Although much remains obscure, and will long remain obscure, I ean entertain no doubt, after the most deliberate study and dispassionate judgenent of which I mm capable, that the view which most naturalists entersain, and which I formenly entertaised-wamely, that each species has been independently created-is erroneous. I am fully convinced that species are not immutable; but that those belonging to what are called the same genera are lineal descendants of some other and generally extinct species, in the same manner as the acknowledged varictics of any one species are the descendants of that species."

[^3]: - It is somewhat remarkable, that, with regard to genera and species, the Inorganic sub. division of Natural History should differ so completely from the Organic branches of that study. That which to the majority of Mineralogists is simply a species, to the Botanist and Zoologist would rank as a genus, and be subdivided into species and varinties. Mineralogy was at one time, in this respect it is true, in unison with these other departments; but notwithstanding various attempts from time to time, to raise its varieties into species, and ta bestow upon these latter, "Natural History" names, the broader and more philosophic view has long prevailed.

 VoL. V.

[^4]: "From looking at species as only strongly-marked and well-defined varieties, I was led to anticipate that the species of the larger geners in each country would oftener present parietics than the species of the smaller genera; for wherever

[^5]: "It is preposterous to attrioute to mers external conditious, the sfructure, for instance, of the woodpecker, with its feet, tail, beah, and tongue, so admimbly adnpted to catch insects under the bark of trees. In the ease of the misse!toe, which draws its nourishment from certain trees, which has seeds that must be transported by certain birds, and which has flowers with separate sexes absolutely requiring the agency of certain insects to bring pollen from one flower to the other; it is equally preposterous to accomnt for the structure of this parasite, with its relations to several distinet organic beings, by the effects of external conditions, or of habit, or of the volition of the plant itself.

 The author of the 'Vestiges of Creation' would, I presume, say that, after a certain number of generations, some bird had given birth to a woolpecker, and some plant to the missletoe, and that these had been produced perfect as we now see them."

[^6]: "Ling before having arrived at this part of my work, a crowd of difficulties will have oceured to the reader. Sume of them are so grave that to this day I can never reflect on them without being staggered; but, to the best of my judg:

[^7]: "To sum up, I believe that species come to be tolerably well-defined objects, and do not at any one period present an inextricable chans of varying and intermediate liuks: firstly, becuse new varicties are very slowly formed, for variation is a very slow process, and natural selection can do nothing unti! fivourable variations chance to occur, and until a place is the natural polity of the country can be better filled by sme molification of some one or more of itsinhabitants. And such new phaces will depend on slow change of climate, or on the occasional immigration of new inhabitants, and probably, in a still more important degree, on some of the old iuhabitants becoming slowly modified, with the new forms thus

[^8]: - It is possible that this may prove to be the Collyrio excur bitoroicles of Baird, as according to that author, L. Ludovicianus is fomb only in the South Athantio and Gulf States; while C. ercurbitoroides has been gradually advancing from the west, and mirht be expected to oceur here about this time. Without comparing specimens, it is dimeult to distinguish between the two.

