The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculcéeCover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relii avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments:/
Commentaires siipplémentaires:

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or fored/
Pages décolorées, tachetées ou piquėesPages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index
Title on header taken from:/
Le titre de I'en-tête provient:

Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de la livraison

\square
Masthead/
Générique (périodiques) de la livraison

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

Vol I.-No. 5.
AUGUST, 1873.
Price $\$ 150$ per An.

DOUBLE ACTING STEAM HAM-

 MER AT VIENNA.We present, on this page, an en. graring of a small double acting hammer, erhibited at Vienna by the Chemuitzer Werkzeugmaschinen Fabrik (fermerly. J. Zimmerman), Chemnitz. It is a very neat and hands litt.'e tool, and is arranged to be cither hand-worked or self-acting, its maximum speed in the latter case being about 200 strokes a minute. The general shape of the hammer is clearly shown in the cograving; and we may remark that the casting is remarkably clean and good, which is by no means alrays the case in the tools of even the best German makers. The piston rod is of cast steel, the tup and piston being in one piece with it, and the lover cylinder cover and gland being on this account made in halves. Tho upper end of the piston rod is flattened to prevent it turning round. There ure two valves only, an admission valve, a_{2} and a distribution valve, b. The former is controlled by the lever, c, the rest of the gear being all in connexion with the distributing valve. When it is desired to make the hammer self-acting, the hand lever, d_{1} is made fast by a serew in the position it at present occupies in the link, e. This link is merely a slotted lever free to vibrate a little when the lever, d_{s} is moved, but not otherrise in con. nexio:: with the valve gear. Tho handlu, g, is then turned until the bliding block in the end of the connecting rod, f, has been moved by the screw to the end of the link furthest away from the spindle, k. The slotted link in which the block works is on the same spindle, k, with the rod, l, and is compelled to vibrate along witit the Jatter. The distribution valse is then worked automatically trom the tup by the lever, l, the distarte, k, f, (in the new position of f) being the length of the lever which works the valve through the connecting rods, f, and h, and the lever

of the end of the valve spindle. When it is desired to work the hammer by hand, the screw securing d to e, is loosed, so that the fonner can be moved at will, and f is screwed down by the handle, g, to the luwer and of the slotted link. As f is then immediately between n, and the valve, its motion (which is just as great angularly as before, being still derived from the tup), has no appreciable effect un the valve, which is now entirely under the contiol of the hand lever, d.
The maximum stroke of this hammar is 280 nm . (11.02 in.,) and the weight of its piston and rod, \&c., 70 kilogrammes (114 lb.) It is worked at a pressure of 75 lb . per square inch, and, as has been already mentioncd, it is double acting, the steam being admitted nbuva the piston to intensify the blow. The gear for working the distribution valve is of steel. The weight of the wholo machine is 2200 kilos, or very nearly 44 cwt.-Enginerring.

THE CANADIAN RIFLE:

The Camadian ritle, huwwn as tho Luval-Macnaughten, has beentriod at Wimbledun, and has elucited marked expressions of praise from the metropolitan press. The London Post thus refers to $i t$, and we select thin upinion from a number of others :-

During the afterneon at trial was made at the 900 vards mage with a new Canadian rifle, mamed the Duval-Macnaughten. This wrapon is constructed on the hinge-hlock principle, and somewhat resembles the Henry amd Martini-Henry in appearance. Its action, however, diffirs considerably from hoth these, and externally the prineipal difference is that there is no long lever below, the only lever visible being one which rises from the side of the lock, in much the same position as that occupied by the hammer of the Snider rifle The springs of the lock are ait upon the old principles, and if any were out of order they conld readily be repaired by a common blacksmith; they are, moreover, of considerable strength, and the objectionable spial string, one of the principal faults of the Martini-Henry, does not find a place in the lock. The extractor is of the most simple and ingenious character, being worked by a sort of donble action by which a pressure outwards is slowly given during the act of cocking the rifle against the cartridge case, followed by rapid stroke against the angle of the extractor, which throws out the catse at once. The facility of this action was well demonstrated by means of a tight cartridge case which, when a rapid pressure was applied to the hammer, was thrown out with a jerk that sent it a good tro yards belind the manipulator. The manipulation of the gun is extremels simple. and a man lying down can load, fire, throw out the case and load again without rlterng the position of the riffe, a great advantage when compared with the Martini-Henry, from which the cartridge cannot be extracted without using the lever below the stock, thus rendering it necessary to lift up the gun or tum it to one sade By taking out a single screw a plate on the side of the breechshue can be taken off, exposing the whole mechanism of the lock, which can thus be examined, and, if needful, clcaned, while if during such an operation it became necessary to use the weapon, the plate might be dropped into the pouch, and the rife loaded and fired withont it. The hinge lock of the breech is so grooved out that the barre: can be inspected or cleaned out from the breech, so that the soldier or sjortsman can clean out his riffe, both breech and barril, without for one moment losing its value as an effective weapon. The rife is entirely worked by the hammer and trigger, and 30 shots a minute can be readily got off from it by skilful hands. It can be half-cocked when necessary, and the barrel is constructed so as to use the ammunition supplied for the Martint-Henry. The barrel is also said to be of an improved construction, and to possess a considerably lower trajectory than the Henry barrel. It is rifled with seven shallow segmental grooves, and the recoil of the weapon is very slight compared to that of the Martini-Henry. It is sard that the Canadian Government are about to supply the torces of the Dominion with this rifle, and if so they will have men armed with probably the most serviccable weapon yct provided for troops."

STREET LI(HHTLNG IN PARIS.

M. Marme du Camp, in an able article in the Revue des Deax Jondes, bives some interebling particulars of the strect. lighting of laras. In diden times all goud citians were commanded in muments of truuble - "which, wlds the author, rather quaintig, " were of anure frequent oucurrence en than in our day" - to put a light in their windows and a pail of water on the threshold of their doors. These precautions were intended to prevent fires and nocturnal attacks. The first attempt at stacet-lighting was made in 1558, when by an ordinance of the Parlinment of Paris, a falot was placed at the c.rner of etriy street, and uthe case vo very lung strects, an additional one in the middle. This instrument resembled a giblet, having suspended from thy a chain a heavy iron bowl filled with resin and tow. The falote did not illuminate the city very brilliantly, but they at any rate displayed a ruddy flame, which served to "guide the wanderer's steps aright;" but the Wars of the Lexikue soon put an end to them, and for the space of a contury Paris was left in utter darkness. Luuis the Fourteenth, who, by the way, took for his device a rising sun, ordered Nicolas de Reynie, the founder of the city police, to put an en ! to this state of things, and gave him as a word of command three substantives-cleanliness, light, safety. Very little tinc was lust, and in 166" the edict was published preseribiag the establishment of lanterus These were simply candler, enclused in a glass frame, and muspended by cords at the height of the first storey of the houses. Lanterns were, in 1745 , succeeded by the oil lam;s called reverberes, which remai ed in use tull withiu the memory of many living persons.

Philippe Le Bon-the inventor of ga -met with a tragica! fate. On the day of the corouat on of the fir-t Napole on the unfortunate inventor was assassinated, it in said, in mistake for the emp. ror. Three yeats befor. thes, in 1801, he had exhberd this wouderful discovery in public, but what is most remark thle-allhough he had shown the quality of light that he could produce either from coal or wood-the chief point which struck the minister of the First Consul was, that the distillation of wood froduced eheap tar. 'To Puilippe Le Bon was therefore granted the concession of part of the forest of Rouviav for the purfose of anaking tar.
'lhe willow of Ie Bon endeasoured to carry out the plans of her deceased husband, but on hel death the patent was sultered to la, si-by her family, and was taken up by a German naturalised in England named Winsor. It was one more instance of the sic vos non robis, with which the hastory of inventions is filled. C'uriously enough the Frer.ch were slow to appreciate the advantages of gas. It was not till the ycar 1830 that the first street in Paris, the Bue de la laix, was lighted by gas in the teeth of a violent opposition. Every misfortune was attributed to the unpopular lght. The nature of the calamity did not matter much-the death of a tree or the arrival of the cholern-it was all put down to the gas.

For sume time the lighting of Paris was in the hands of several compua es, but by degrees these have been fused into one great corporation, possessiog ten great fact ries ia and around the sity. The Parisians, who found it so diffecult to accustom themselves to the new lisht, are now great and increasing consumers uf gas In 1855 they consumed 53 millions, in 1865 they used 155 million-, and in 1872 no less than 196 milliucs of culic yards of gas This vast monopoly is charged heavily by the mu icipality of Paris, in various in. genious ways Co begin with, the company pays the city 200,uno francs per annum fur the rent of the ground occupicd by its pipes, and, in addition, cimburses all costs of paving, \&c In 1869 these expenew, reached 179,667 francs, and are estimated at 100,000 francw in the munici; ai budget for 1873 . It is true that the company pay, no octri, duty on coal, but, on the other hand, pays a fixed duty of 2 centimes on every cubic metre ($39{ }^{3}$ inches) of $\boldsymbol{b}^{\text {as mannaf tured } 0 n \text { this account }}$ alone the company paid $2,508,953$ francs in 1872 , and was also obliged to pay to the city a proportion of its profits, amounting to 5 millions of francs. The good , ity of Paris thi a received from the gas company in 1872 no luss than $7,708,91$ francs, or $£ 308,3582 \mathrm{~s}$. 6d. sterling This i - truly a tremen.'ous tar upon light.

It is always curtuus twinvestigate the meanug of the sort progress as used by a distinguished furcigner. M. du camp observes that "gas enters every day more and more into out domestic habits-before a hun lred years are over, the smallest
hut will be supplied with gas and water. This will be grest progress."

Aloderation is a virtue-unhapfily so rase among Frenchmen, that we rannot help congratulatiog M. da Camp on possessing such un amplesupply. The hope that every Frenchman may have gas and water laid in his house within a hundred years does not reveal a very sanguine nature. Let us hope better things of France.

THE SOUDAN RAICWAY EXIEDITION.

(Continued from page 115.)

At Kohe, the sito of the proposed bridge for carrying the Soudan Railway across tho Nile, that river takes a sharp bend towards the cast, and between Kobe and Fakir Bender, a distance of about 35 miles, a camel track makes a chord line to the irregalar arc formed here by the Nile.
After the necessary soundings of the river at Kolst had been completed, and the party was ready to continue its southward journoy, it was determined to abandon the Noggare, and strike across the chord-line just mentioned, upon camels, as far as Eakir Bender. This resolution was taker becanse the duration of the north wind was uncertain, and the obstacles to navigation at the Third Cataract were great.

Leaving the Noggurs, therefore, to proceed as they could up the Nile to Ambukol, where probably their services would bo again required, preparations were made for the short desert ride. The caravan formed was quite an imposing spectacle, comprising 60 camels, a few horses, besides a number of more humblo quadrupeds carrying a military escort of mounted infantry, who, to their credit be it said, assisted their animals frequently by propelling them, the donkeys being short, the ${ }^{\text {r }}$ riders tall of stature, and the feet of the latter touching the ground with ease. When not assisting locomotion, the troops corled their legs around their donkey's necks and sought repose. 'The supreme charge of the caravan was entrusted to an officer of irregular cavalry in the Ehedive's army, and who, from the jealous care he bestowed upon the water-skins, received the title of "Turncock Pasha," a dignity in which ho much delightted

There being no wells or other means of obtaining water, except by conveying it, in the desert betwoen Kohe and Fakir Bender, the caravan started half an hour before midnight, and rapidly crossing the track, which is well defined throughout by the bones of camels, it arrived at its destination at four oclock the following morning. From Fakir Bender the caravan continued its ruate to Oordeb, or New Dongola, about 60 miles fuither on. New Dongola is situated on the west bauk of the Nile about 955 miles south of Cairo. The district contains a population of about 3000, and is a place of considerable importance. The houses are built principally of sua-burnt bricks, and many of them are comparatively important structures, some with gardens wherein are grown pearly all tho fruits common to Lower Egypt. The population consists of many nationalities; the principal foreigners, however, are Grecks, wholike Jews in other countries, are for the most part devuted to money-changing and store-keeping in the Bazaars Until quite recently New Dongola, or Ei Oordeh, was the principal seat of Government for a considerable district, extending almost to Khartoom. Latterly, however, it has given place to Berber, where laws are now pidministered by the Bey, who transmits instructions to the Vokeel, or sub-governor, at New Dongola, where a large Government establishment still exists. The amount of trade is considerable, and after Berber it is the most important town upon the Nile in Upper Egypt, north of Khartoom. During high Nile it can be easily approached from the river, which is then about one mile wide at this point. At low Nile,
bowerer, the inner or western channel is onnsvigable and bowever, the inner or western channel is unnavigable and uirect access by water is cut off. As the trade is large a great number of native merchant vessels rre generally lying alongside the river bank, increasing the appearance of activity and importance to which New Dongola can, in reality, lay
come claim. The bazasr contains mang stores in which al. come claim. The bazasr contains many stores in which almost all local requirements can be supplied, and the scene there, as well as in the strects, is striking, ealivened as it is by the strange blending of nationalities, by Nile sailors, Greek merchants, native Dongalese, Nubian soldiers, and most
pictureaque of all by the desert Arab, scantily attired with long heavily greased and plaited hair, carrying on his left shoulder tho lesthern shield, aud in his right hand a spear.

The mud huts and scattered villages which are seen at intervals along the banks of the Nile, point ont like the mimosas and palm-trees, and patches of cultivated ground, those places where the descrt sand has spared the soil. and a fair estimate of the extent of profitable land may be obtained from a glance at the different villages. Where, however, a few towns and some larger villages are situated upon the camel routes, trade has, of course assisted in raising their condition. IIandai, twosketches of which are shewn on page 134, may be taken as a fair cxample of a town thus benefited by the desert trade. It is situated on the west lank of the Nile, 45 miles couth of New Dongola, and sbout 1000 miles south of Cairo, and containg a population of some 1500 persons. The most striking feature ít possessers are the ruins of some ancient forts, which are situated on an cluvated gronnd and command a wide-spread view of the surrounding country. Handak is, 80 to speak, a considcrable shipping port, is large quantities of the products of the far south, such as gum, ivory, \&c. conveyed on camels by way of Khordofan and Khartoom, are unloaded here and placed on Noggurs to bo transported down the river to Cairn and Alexandria, Thu cown boasts of several Nubian merchante, whoso establinilments are hased upon a Turkish model, sure sign in Upper Egypt of wealth. It is worth noting that Handak, being on a randstone formation, and having bat litte ground in the vicinity that cna be cultivated, owes what importance and prosperity it does possess entirely to commerce

As a rule the route taken is within sight of the Nile and often pacses through plots of cultivated ground beside the bank. Short rests were always made by thecaravans at midday under the shade of palm-trees, and wheuever possille near villages the chiefs of which were always eager to do honnur to the staff, and the representatives of their suvervign, the Khedive, by presents of water, dates, and the loan of eary chairs. At night the tents wore pitched near the river, and thus progressing the party arrived at New Dongola. At this place, bowever, the authorities found it impossible to provide the necessary means for carrying the party forward, and all the inhabitants available were despatched to bring up the Noggurs which were lying becalmed some distance down the river. As toon as they arrived the New Dongola party and stores were got on board, and after six days of sailing and towing, Ambukol, the farthest point at which navigation couid be made available for the expedition, was ru'telued. Fere the second division of the party was left behind to work thrir wey back to Kohe, where their survey would join with that of the first division, who had charge of the section fiom Wady Halfa to the river crossing.

At A mbukol, then, the whole of the stores, \&c., were tukrn ont of the Noggurg, and that part belonging to divisions three and four, were transferred to camels, and transported to thir respective destination at Abou Halfa and El seteminch, a distance by camel route of 180 miles from Ambukol, and where the river is sgain met. The view seen from Jlount Fog, a granite rock some distance north of Ambukol, gives sn excellent ides of whe serpentine courso taken by the Nile through the desert. In the flat unbroken expanse of sand, of course the river is invisibleslmost until it is reached, and the groups of palm trees which grow upon the river baske, se rye as beacons to the Arab, gaiding him in bis conrse acioss the desert.
The caravan comprised about 70 camels, horses being now useless. as the wells in the desert ahout to bu traversed wers several days journey ayart, a circumstance which of course necessitated the employment of a large num'er of cimels as water carriers. The march through was conducted in the u-ual manner. The baggage camels and tho c ladun with the water skins continued their march st-adily without a balt until the night's resting place was reached; on the other hand the riding camels were urged forward with variablo speeds, btfore and after the m^{2} d.day rest, thus earbling tbe trave lers to enjoy as long as possible the grateful shade of the desert troes during the hottest part of the day. In order to facilitate the subsequent studies which were to be undortaken in their return journey by the third divi iun of the expedition, several of the party were occupied during the desert crossing in making sketch surveys of the country, the distances being estimated by the rato at which the camele travelled, and the

VIEW OF HANDAK ON THE NILE.

VIEW OF HANDAK ON THE NLLE.
directions by compass bearings. Ihe trouble thas tahen was amply repaid when the more complete aurvov wa-male, an it afforded great facilities in recognizing the different fintures of the coluntry.

At the orsis of A bou-Malfa, in midmerert the third devison was left behind, whil-t the fuarth nud last lavion pr cerdid onwards towards the extreme rad of the lame at Jetemmeh on fue river Nite.

We mig now indicate liriedy the proponed direetion of the route to be taken by the Soudan Mailway after it las irmes d the Nile at Kohe The river at the thar as wh have seta, takes a very remarkable had and as there are no obstar ha in the way the line fints the river after cromme it, amigore direct across the desert to Frhir Bender, minien a luggitiof at least 25 miles as compared with the alturnatise of followiug the river bank. After cross ng at Kohe the line passes over analluvial pain about five-cighths of a mile in breadth, and then for a dintance of three miles and the ee undrtors, follows the course of a Wady. lhis differs from the camel lmack, which by reason of its sught and frequient asents and desceuts over the broken gre und between the Nile valles and the desert plateau, is rendered unsubted for ralway purpo-s. After arriving at the level of the plams, abont $1+7$ fect above tho river baok at Kohe, a cerios of that sandy H^{h}, ins are crossed untll the 28 th mile from Wady Halfa is rached. After this point the ground becomes more difficult, and broken up with basaltic rocks, and occasional detoura ar" advisable to avoid costly cutting before the line reaches Fahir Bender, whert there will be a gmall station. The linu thea skirts the river

Oll Dougola, at one time the capital of the instrict of Dungola,
 Old I oneola there are thirtera villures withatatal propulation of :Tin For the next 7 or 8 milies the nell is allurial and theikl, atered with desert vegetation, through which the line passum, thrn : :ossing to the tnwn uf Aimo Goosi (l000 inlinhitamta), it strikes into the desert At Duble a station will the provided, Duble being a place of nome little importance, ar it Nome of the thiof fubtiti of de parture for caravans going to Khartunm, Khuritufan, a d whor di-iruta Ihe navigation

Thrumph a distance of a" males byyma Dubbe the lane pasaed over an allumal trait covered in many places with
 an interinediate rfation lis tur provided for the aciomnodation of five vhllages, haring " broulation of 3500 At Amfirhol the seconds. ction of the hone termmaters This lengith is one third longer than that between Wady Halfa and Kohe lat the works are much leas extensive, the embankment containing hithe more than one half, und the cuttiogs less than one-third of those on the freceding seituon Of the cuttings 79 per crint ate in light mat rial, 10 per cent in soft rock, 2 per c nt in hard rock and 9 per cent in rock of a medium quality The culverts, too, are insiguitioant in number and extent. The curves and gradients are favourable throughout, for although the ruling gradiont is occasionally necesbary, it occurs only iu sliort leugths.
(To be continued.)

RAIN゙WATER TANKS.
hank as far as the vialage of Sarr, 193 miles from Wady Halia, the works being easy with the exception of three large Wadys which have to be crossed.
Shortly after the railway leaves the river bank, aud crosses the desert direct to Hameby a village on the Nile, where the sumes of rapids extending up the siv r from Waiy Halfa, and the granite rocks on the western bauh terminate. The railway will then proceed at an aserage distance of about fiveseighths of a mile from the bank in order to avoid the cultivated ground, of which thete is a considerable extent, passiug twelve villages whose aggregate population 18 atwit juve For the arcommodation of these villages a station is to bo erected. At atout the $350 t h$ mile from Wady Halfa, New Dungola is reached, but in order to avoid interference with the bank of the river the line is carried to the west side of the town where a a t plain offers a favourable site for a tation Seventeen miles further the village of Satali is reached; a market is held at this place, and its ruins indicate that at some previons t me it must have b en a torn of considerable importance. A present, however, t has only a popu ation of 300. For another 30 miles the line follows the river bank, leaving it only to avoid the strips of alluvial soil which overlis the lower Nubian sandstone; it then leaves the Nile, passing through an open desert, and near two villages containing about 750 inhabitants. A station will be provided at the $m \mathrm{~m}$ portant town of Bandak, of which sketches are given on page 134. Acd ntiout 35 miles further there will be a station at

RAIN-WATER TANES.

The above shetch of rais-water tanks, which explains itself is by a correspondent of The Bulder. We reproduce it, thinking it may he of service to sume of our seaders.

Fine Detfctors - An experimental display of nome of Professur Grechi's icstruments for siguallug the commencement of tures in any room, or in interspaces dificult of access, has veen made in one of the coirilors adjoining the Mackinery Court at the International Lixhbition at South Kensington. Small straw fires, inflamed with petroleum, were ignited, when the instruments caused the alarmbells to ring, and notified the particular locality by the fall of a numbered disc. A lantern was also lighted in one compartment by the falling of a small weight upon glass glovules of sulphuric acid. The principle of the apparatus is this : a doulto spiral of zine and platinum is soldered to a dise carrying an index and a small wire contact-maker. When the spiral expands by the beat the contact-maker is turned by the motion of the spiral, thus putting in action a current from an electrical battery, by which the alarum-bells and sigual apparatus are put in action. The instruments are very roughly made, and cost about 28 a picce.

QUALITATIVE ANALYSIS FOR AMATEURS.-III

RMaCtIOM OP METALS OF GROUP GEOOND, SEOOND DIFISIOM.

It will be remembered that wo said (p. 118), that the second group embraced thoso metals whioh are precipitatod by hydrosulphuric acid from acid solutions. The sulphides of arsenic, antimony tin, gold, and platinum are soluble in ammonic sulphide, and constitute the second division of this group.

Ammonic sulphide $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$, is propared, according to Fre seulus, by astura ing a given volume of ammonia solution (8p. gr. 098) with hydrosulphuric acid gas, and adding to it an equal volume of the ammunia. The solution, which is at first colourless, soon becomes yellow by keeping, or may be at once converto i into the gelluw sulphide by the sddition of sulpant. It should yield no precipitato with magnesic sul. phate. This reagent is also decomposed by acld, sulphur being precipltated.

Arsentic is the most important member of this group, and owing to its very poisonous character great caution must bo ubserved in makiog the teste withit. A small piece of bright green wall paper usually contams enough of this metal so give several characteristic tests. Apply a single drop of nitric acid to the papur, a moment after neutralise with ammonia aud observe the colour-a deep blue slways indicating copper. When the white fumes have nearly disappeared, apply to the same spot a drop of argentic nitrate solution (Ag. NO). If arsenic is present, a yelluw ring of arsenite of sulver is furmed, which lecomes more distinct after drying. A ncutral solutiou of any suluble arsentite gives with argentic nitrate a jelluw precipitate. Arsenates produce a zeddishbrown precipitate; both are soluble in ammonia and in nitric acid. With hydrochloric acid, it will bu remembered, silver solutions give a white precipitate, insoluble in nitric acid With sulphate of copper, or cupric sulphate, neutral arsenic baltr give agretn pretheitate. Hydrusulphuric acid gives a berutiful yellow precipitate, soluble in ammonic sulphide, and in anmunic carbunate, from either of which solutions they are agan precipitated by hydrochloric acid. To hasten the precipitation of arsenic acid and arsenate; sulphurous acid un sudic sulphite is iutrodured befure precipitation with His. The most delicate and characteristic test fur arsenic is that known as the Barsh test. A small bottle is arranged with funnel and delivery-tube, the delivery-tube being hurizontal, and drawn out almost to a point. Some pieces of ainc are put into the bottle and covered with wator, and the cork is yut in perfectly tight, a luting of paraffine or a linsee I poultion being employed if mecossary. A litele sulphuric acid is now poured in by tho funnel tube, and hgdrogen gas is immediately evolved. Aft r the air has all been expelled from the bottle, the gas may be ignited at the end of the delivery tube, taking care to wrap a towel around the apparatus to pravent accident in case of an explosion. If the xinc and acid are pure, the gas will burn with a colouress flame, which produces no stain on a piece of cold porcelain held in it. A fow drops of a dilute arsenious solution are then introduced $5 y$ the funnel tube, and the arsenic at once unites with the hydrogen to form arseniuretted hydrogen. AsHs. This gas burns with a violet or peach-blow flame, and deposits a black stain of metallic arsenic upon cold porcelain. Suveral of thege stains upon pieces of broken china should be preserved for future use. A fow drops of a solution of bleaching powders, or of Javelle water, dissolve the stain with ease. While the arseniuretted hydrogen is burning, a gas or alcohol flame is applied to the delivery-tube a few inches from the end. The heat decomposes the gas and a mirror ef crystalline metallic arsenic is deposited on the cold portions of the tube berond. It arseniuretted hydrogen gas be passed into a solution of argentic nitrate, metallic silver will be precipitated, and enough nitric acid get free to prevent the precipitation of the yollow arsenite of silver. Atter filtering out the motallic silver, the solution may be neutralised with sodic acetate, when tho yollow arsenite of silfer will be precipitated.

Reinsch's test consists in placing a clean piece of copper in a Lydrochloric acid solution containing arsenic, and heating ; a gray film of CujAsis formed on the copper. If a few grains of arsenious acid be heated with sodic carbonate on charcoal, an odour resembling garlic is perceived. Compounds of arsenic heated with sodic carbonato and potassic cyanide, in
a tube ot hard glasm, ylolid a are Ulimato of metallic arsenic in the form of a mirror. Tho alifphide precipitated by IH'S may be used for thistoat. In tunting for arsonical poisoning, all of tho above testa ahould bo mado.

Antimony very clonaly ramomblos arsonic in many of its re actions, and the separation of tho two metals, when both are in the samo solution, in not a vory uany mattor, considerable practice being required to accompliah the reparation with certainty. If a curfunt of hydronulphurlc acid bo passed inte a solution of tartar amutle, wif uther nolublo salt of antimony, an orange-colourad priolpitato of mulphido of antimony is thrown down. Thin wilphilo is solublu in ammonic sulphide, from which it in agaln procipitatud by hydrochloric acid. It differs from tho anlphidu uf mestonlo In being much less soluble in a diluto solution of minmonido carbonato than the latter, so that tho two sulphidum may bo noparatod, to some extent, by this reagent. A concontratud nolution of chloride of antimony (called al so butter of mutimony) gives a white precipit. ate when poured finto whtur, and in this respect resembles bismuth, excupting that thly prucipitato with antimony is soluble in tartaric meld, tiant of blamuth is not. If a compound of antimuny bo introducud fato a hydrogen bottle, it will cumbine with that gun to form antimonetted hydrogen, SbH_{3}, and the burnlng kni doposits a black stain on cold percelain ; but, unliko tho astunlo stain, it is insoluble in Javelle water, wolutiva of blanching-powder, or other bypochlorites. Thif enablon un to dutuct antimony with great certainty, but fails to dutoct trnces of arsunic in the presence of antimony If antlmunuttud hydrogen be passed through a solution ofargentio nitrato, tho antionong combines with the atlver and is preciplimtud ma mititoon-ailver, SUAgs, soluble in tartaric acid. It will bo notud that this reaction differs entirely from that of arsenlo and atfords tho best means of separating two metali.

gEPABATIEG Allyynio and antigony.

A Marsh apparatux fo cunntructed, consisting of a generating flask, in wash-hultlo cuntaining plumbic nitrate, and a delivery-tube reachling to thu buttom of a teat-tube containing argentic nitratu in mulution. The solution to be tested is introduced gradually fisto tho pencrating bottle through the funuel tube, the mixturc of arseularutted and antimonetted hydrogen is passed through tho sllver solution for a considerable time; the contents of tho tost-tuhe are then filtered, and the filtrate boiled with noillu neotsto until a yollow precipitate of arsenit, of silvor is producod. The residue on the filter contains both metallio allvur and antimon-silver, and must be builed for 15 minuton with tartaric acid to dissolve the latter, the silver is thun filtured out, and the antimous precipitated from the solution by means of hodrosulphuric acid. In making these tests in canon of suspected poisoning, all the apparatus employed must bo new, and the zinc, acid, and water must bo carufully tontod to seo that they are perfectly pure.

The reactions for tin, Rold, and platinum will be given next, together with the sumbinof of soparating them from each other and from the above. Suffice it for the present to say, that none of these mutalin intorfuro with the detection of arsenic and antín ony In tho Marail npparatus.

Accondino to M. Offrel, In batswing burners it is found that, thougls the sizu of tho famo diminishes with the amount of gas consumed, it in not in equal ratio. The cost of a large flame for each candlo power per hour may be, for instance, 042 centimes, whillo with a small one, it will be 0897 centimes. Or, again, tho Hyht of a large flame may be equivalent to fiften candlen, whilo that of two small ones together will be 74 candlom. The cause of this is attributed to the complete combuation of tho gas in the blue zone in the gas flane, which givon littlo or no light in either case, and has more favourable efrcumstances for its occurrence relatively to the gizu of tha flatae in the small than in the large flame. Anothuy mors inuxplicable phenomenon is that with a flat flame the inturnalty of tho light is the same, whether the edge or the fiat ot tho flame is tested. This points to the absolute tranuparomy of tho flame. The use of cylindrical glass chimnita with rolind jets (argand, sc) is concluded to bo, on the wholo, komowhat more economical than pith fiattered chimpluf, after series of experiments to settle this point.

FACTS AND FIGURES CONNECTED WITH BELTLNG.

Bs Mr. J. H. Coopsu, in Journal of Franklin Institute.

PMCTIONAL DFAMNG

Fictional gearing is a term applind by Webster to wheels that transmit motion by surface contact without teotb. This atyle of gearing is much nsed in the lumbering regiuns of the North-West and is fast gaining fnvour wherever applicd. It jass some advantares, not possessed by other modes of communicating motion, which do not sppear to wh connteracted by any peculiar disadvantages In large mills where this gearing is used to tranamit pover to drive five or six gange, one or two large circular sawe, a muley, gang edgers, trimmers, slashers, lath mills, shinglo mills and other machinery, where 20,000 feet of boards may be sawn in an hour, the faces of the wheels are made as smooth and traight as possible; one wheel is made of iron and th.e other of wood or of iron covered with wood. Where it in practicable this gearing is so arranged that the wood drives the iron, to prevent the "slip" at starting from wearing the wood-faced wheel unevenly. Although this tendency is much less than might be supposed, as in most cases the "bull-wheel" used for drawing logs into the mill, is a large wooden wheel driven by a small one of iron, and these wherls started and stopped while the driver is in full motion a hundred times a day, work well and last for several years But for machinery in constant use, the wooden wheel should always drive the iron wheel. For driving heavy machinery, the wooden drivers are put upon the engine shaff and each machine ls driven by a separate counter-shaft. Two or more of these counter-ghafts are nsually driven by contart with the same whetl, and each 18 arranged so as to be thrown out from the driver and stop. ped whenever required, and again started at any moment, by 2 slight movement without interference with other machinery. To drive small machinery these friction drivers are put upon a line shaft so as to drive a small counter-shaft from which the machtne is driven by a belt, which may be shifted in the ubual way. In many mills from $10 n$ to $3 n 0$ horse-power are transmitted by this kind of gearing

For driving light machinery, running at high speed, as in sash, door and blind factories, bass-wood, the linden of the Southern and Middle States, has been fonnd to possess good qualities, having considerable durability, and being unsurpassed in the smoothness and softness of its movement.
Cotton-wood has been tried for small machinery, with results somewhat similar to those of bass-wood, but is found to be more affected by atmospheric changes; even white pine makes a driving surfaco which is, considering the softness of the wood, of astonishing efficiency and durability But for all heavy work, where from 20 to 60 horse-power is transmitted by a single contact, soft maple has, at present no rival. Driving-pulleys of this wood, if correctly proportioned and well built will run for years with no perceptible wear for very amall pulleys, leather is an escellent driver and very durable. Recently, paper has been introduced as a driver for small machinery, and has been applied in some situations where the test was most severe; and the remarkable manner in which it has thus far withstood the severity of these tests, appears to point to it as the most efticient material get The proportioning of friction pulleys to the work rey . . d, and their substantial and accurate constrution, are nuatters of perhaps mose importance than the selection of material. The mechanic who thinks he can put up frictional gearing temporarily and cheaply will make it a failure. Leather belts may be made to submit to all manner of abuse, but it is not so with friction pulleys They must be accurately und substantially made and pat up and kept in perfect line. All large drivers, say from 4 ft to 10 ft . diameter and frum 12 in . to 30 in. face should have rims of soft maple 6 in or 7 in. deep. These should be made up of plank $1 \frac{1}{2}$ in or 2 in thick, cut into "cants" $1-6 \mathrm{th}, 1-8 \mathrm{th}$ or $1-10$ th of a circle, bu as to place the grain of the wood as nearly as practicable in the direction of the circumference. The cants should be closely fitted, and be put together with white-lead or glue, strougly nailed and bolted. The wooden rim thus maje up to within about 3 id . of the width required for the finished pulley, is mounted upon one or two heavy iron "spiders" with 6 or 3 radial arms. If the pulley is above 6 ft . in diameter there should be 8 arms, and 2 spiders when the width of the face is more than 18 in.

Upon the ends of the arme are flat "pads," which ahonld be of just sumicient ridth to extend across the innor face of the wooden rim, as described, that is three inches less than the width of the finished pulley. Thene pads are gained into the inner side of the rim, the gains being cut large enough to admit keys under and beside the pads. When tho keys are well driven strong "lag" screws are put through the ends of the arm into the rim. This done an additional "round" is put upon each side of the rim to cover bolt-heads nad to secure the keys from ever working out. The pulley is now put to its place on the shaft and keyed, the edges trued up, and the face turned of with the utmost exactness.

For nmall drivens the best construction is to make an irou puller of about 8 inchers lesa diameter and 3 inches less face than the pulley required Have 4 lugs about one inch square cast actoss the face of this pulley Make a wooden rim, 4 inches deep with face equal to that of the irom pulley, and the inside diameter equal to the outer diameter of the iron Drive this rim snugls on over the rim of the iron pullev, having cut gains to receive the lugn, tugether with a hard wood key beside each. Now add a round of cants tupon each side, with their diameter less than the first so as to cover the iron rim If the pulley is designed for heavy work, the wood should be maple, and should be well fastened by lag screws put through the iron rim But for light work it may be of bass wood, or pine and the lag screms omitted. But in all cases the wood should be thoroughly geasoned.

In the carly use of friction gearing, when it was used only as backing gear in saw-mille, sad for boisting in grist-mills, the pulleys were made so as to present the end of the wood to the surface ; and we occasionally yet meet with an instance when they are 30 made. But such pulleys never run so smoothly nor drive 80 well as those made with the fibre more nearly in line with the work. Besides it is much more difficult to make up a pulley with tur grain placed ridially, and to secure it so that the hlocks will not split when put to heavy work, thas it is tomake it up as above described.

As to the width of face required in frictional gearing, when the drivers are of maphe, a wadth of face equal to that required for a good singlo leather helt to do the samu work is oufticient. Ur, to speak more deñitely, when the travel of the surface in equal to $1,200 \mathrm{ft}$. per minute, the width of fice should he at least I in. for earih horse nower to be transmitted, and for drivers of bass-wood or pine, if to 2 in . The driveu pulleys are wholly of iron, and similar to belt pullest, but much heavier, having more arms and struager rim. The arms should be straight rather than curved aud there should be two sits of arms when the face of the pulley is above 16 in A very good rule is to make the thickuess of the rim 2 ? ${ }^{\text {mor }}$ cent. of the diameter of the pulley. To sicure perlect ace ibracy these pulleys must be fitted and turned upon the shatt; and when large, the shaft should run in journal boxes, while the face is being turned, after which they should be balanced ; neglect of which has been the means of destroyink friction pulleys that were otherwise woll made lhe conditions and results of a few experiments made to test the tractive power of smooth face friction pulleys are here given, the he expleriments, when made, were not meant for publication or for the benefit of science, but to establish rules for private practice. They should b. repeated by others before being taken as conclusive. For the experiments, two pulleys were made in the usual way, one beiug of wood-soft maple-and the other of aron. Both were accurately and smoothly finished. These pulleys were cach 17 in in diameter, and of 6 in . face, and were put up as shown in the diagram (Fig. 1.)

A is a double bell crank frame, with arms 2 ft. long. The ends of the upright arms receive the bearings for the iron pulley, 1 The journals of this rulley are $1 \frac{1}{2} \mathrm{in}$. diameter aud 3 in . $\mathrm{O}_{\mathrm{n}} \mathrm{g}_{1}$ and run in Babbitt boxes. The trame is hung upon jeurnals, T, and is balanced by the weight B. The face of the pulley 1 , is extended beyond the six inches to recelve the cord C, for which purpose a shalluw groove is cut in the pulley, so as to bring the centre of the cord to the periphery. The driving pulley v, is put upon a shaft where it may be inade to revolse slowly in the direction of the arrow. It will be seen that P, will bring the pulleys together with a pressure just equal to its weight. The woodon pulliy being in motion, the pressure, when sufficient, will roll the other pulley and raisu the woight W. The manner of experimenting was to puta given weight upon the cond C, and while the driving palley was moving, to incremse the weight P,
untll W, was lifted. The machinory was then stopped, When the woight would descend, slipping tho iron palley upon the wood. The weight of P, was now noted ; the weight

Fig. I.

was again raised, and the pressure increased sufficiently to hold the weight from slipping down, and the pressure again noted. After these experiments were made and twice repeated with the pulleys, the frame A , was reversed, so that the weight P, would tend to separate the pullegs. They were then connected by a 6 -inch leathor belt, and the experiments repeated, giving the results in the fourth and fifth columns.

Faction Polleys.
Brlted Pelleys.

It will be seen that, in this test, the traction of the friction wheels was greater than that of the beited pulleys, ans? considerably more than is usually supposed to be obtaine it from belis upon pulleys of either wood or iron; and the t while there is a marked falling off in the adhesion of the belt as the work increased, that of the friction increases as the labour becomes greater. Also that the difference in the pressure required to just do the work, and that necessary to do it without loss or slip, advances in an increasing ratio with the work of the belt; but in the friction it is almost constant throughout the whole range of experiments. The figures applied to the friction wheels are the mean results of repested experiments; those applied to the belted pulleys are each of a single test. It is not thought that these experiments wero sufficient to fully establish all that the figures show; but they were cnough to prove that smooth faced wheels possess a much higher tractive power than has been generally supposed.

And now a word as to some of the advantages of friction gearing. Being always arranged with a movable shaft, so that the wheels may be thrown together or apart with the greatest ease, the machine driven by it is started and stoppod at any moment, while the driving wheel remains in motion.

And whon stopped, tho eeparation is complete, and may so romain for any number of minutes or months withont attention, and may be again started at any moment without tho least inconvenience or injary. So slight is the separation required, that it is done almost without an effort. And by it we entirely dispense with the nuisance of loose pulloys, belt shifters and idle running belts, and with the riak of throwing off and putting on bolts. It obviates the delay nad labour of shipping and unshipping pinions, and the rattle and bang and frequent breaking of clotches. It is durablo and requires no repairs; it is compact and economises rcom. It does not increase the pressure on journals when the speed is quiekened, as in the case with belts runring with great velocity, but remains constant at all spoeds. And it will transinit any amount of porrer, oven up to 100 horse-power, with nugreater percentage of loss, and with less pressure on journals than can be done by belts.

A METHOD OF FIXING TUBES IN VERTICAL BOILERS.

The following paper, descriptive of a method of fixing vertical boiler-tubes, was read before the Royal Scottish Society of $\Delta \mathrm{rts}$ by Mr. R. W. Thomson, C.E., F.R.S.E., and was awarded the silver medal of the Society :-

Manutacturers and others who, on account of limited space and other reasons, use vertical boilers, have found that one of the greatest objections to then: is the difficulty of keeping the tubes tight; all multitubular boilers are liable to have leaky tubes, for reasons which I will hereafter explain; but horizontal woilers do not give much trouble, as both ends of the tubes being under water, any small leaks "take up," as the deposit is forced into them. In vertical boilers, however, whenever a leak uccurs at the upper end of a tube, it gets worse and wo. se as no deposit can reach it, and causes great waste of fucl, and necessitates the stopping of the engine, in order to tighten the tube with a drift, or erpander, or otherwise. The principal reason why tubes leak is the unequal expansion and contraction. Stays maintain the temperature of the water; but the tubes, through which alternately flame or heated air only is passid-, are ever varying their temperature, and consequently their length. And this expansion follows no rule; a tongua of flame may shoot up one tube, wisich instantly lengthens to a much greater length than the tubes on all sides of it. This expansion and contraction being admitted, it follows that we must humour it, and still find out some means of keeping the tubes tight ; and, as I have shown above, it is necessary that the npfer ends, in vertical boilers, should bo kept perfectly tight, it follows that the upper ends must be perfectly and firmly fixed in the top plate, whilst a certain amount of play is allowed through the lower tube-plate. This is accomplished in the most perfect way as follows:-After the boiler has been put together, the holes in the top plate and lower tube-plate, but most particularly the latter, are carefully rimled out parallel by a rimer whirit passes throngh both plates; each tube has its lower end arned in the lathe to a good tight fit in its hole in the tube-plate; the tubes are then inserted in their places, and the uppor ends firmly fastened by being ex-

panded within and without the top plate, an shown in the diagram at A. The lower end is left as it is; care should be taken that it is not turned over the tube-plate in any way, bat be kept perfectly cylindrical, as at B. It then acts in the same way as the piston-rod of a steam-engine working through a gland, the deposit acting as packing, which, although \because may

DOUBLE ORIIIT: M MACHINE AT VIENAA
be constantly passing through, is always renewing itself. Some boilers so fitted by Roby and Co. have stood a water pressure of 300 lb . on the square inch withont leaking. Another way is to screw the apper ends of the tubes into the top piate, as at C. A simple way of fitting the lower ends of the tubes, is to oxpand them slightly with a Dudgeon's parallel tube expander, inatead of turning them to a perfect fit.
In the form of vertical boiler known as the "pot," he pot and lower ends of the tubes act so effectually in abstracting the heat trom the ascending gases, that the tubis last for a very long time, as witness the specimen shown, w.ich has been drawn oxt of a boiler after having been in co'istant use for
cight months. From the way in which it stands bending and hammering, aud from the fracture, it can be seen that the fibrous character of the iron is naaffected, although only onehalf of it was covered with water.

The pinciple on which my metiod of fixing tubes xesta, may be shortly stated thus :-It is impossible to fix tubes at both ends; any tendency to leak under water constantly cares itself, while a tandency to leak above water dues not cure itself. It therefure follows that if the tubes are more firmly fized at the top than they are at the bottom, the expansion and contraction will cause a shght moversent of the tube in the lower tabe-plate onlg, in which case no leak will take place.

The illustration on the preceeding page shows a double drilling machine cxhtbited at Vienna by Messrs. Pfaff, Fernau, and Co. It is a form of tool which is not common in England, but which possesses several advantages, and of which there are a number of npecimens in the Exhibition. The larger drill is double geared and is driven by a cone with four speeds. The twol receives its revolving movion by bivel gear in the usual way. The downward feed is arranged both to be self-acting and to be worked by hand. In the latter case it is giten by means of the emali handwheel, while in the former case a small eccentric rod worked by a steel eccentric on the drill spindle immediately uuderneath the be ecl pinion, is made to work a spring ratchet which communicates motion to a ratchet wheel on the same vertical spindle with the handwheel This drill has, ab will oe seen from the engraving, two tables, the upper one is circular, and is supported by a radius arm capable of being pushed aside out of the way when necessary. Tbe pin in which this arm works is made very large in diameter in order to prevent as far as possible the wear to which such an arrangement is necessarily subject. The whole upper table with its bracket can be moved up and down by tand by means of a worm and worm wheel, pinion, and rack. The lower table is fixed and forms a kind of base plate for the whole machine.

The second or smaller drill has only single driving gear, with a tbree-speeded cone, the feed of the tool is arranged in the same way as described above, either to be self-acting or to work by hand. It bas only a single table, which has a raising gear similar to that of the opposite table, and it has in addition a hand cross traverse. The framework of the machine is everywhere in section a hollow rectangle, which gives solidity in appearance as well as in reality.

The principal dimensions are as follows : diameter that can be taken in by large drill 1.300 metres (4 ft .3 in .), masimum distance between drill stock and face of top table 600 mm . ($23 \frac{2}{2} \mathrm{in}$.), maximum distance between drill stock and face of lumer table 1.300 metres (4 ft 3 in). Diameter that can be taken in by small drill 800 mm . (2 ft . 7 i in.), maximum height between drill stock and face of plate 350 mm . (137 in.)-Engincering.

BEFT-ROOT BOILERS.

In vien of the fact that attempts are now $\mathrm{b}_{\mathrm{in}} \mathrm{ing}$ made to establish in ${ }^{\circ}$ Canada the protution of bect-root sugat the appparatus we illustrate on pan-s 142 and 143 , will be of interest to our readers. The illustratiuns are from Engeneereng and repre-cut a very complete and anteresting sict of evaporating apparatus for beet-rout sugar mahing. Thi appamatus ia exhibited at Vie nos by Herr F. Hallitrom, of Ni i, burgh-on-theSaale:

Before proceeding tha detailed lescription of the constructiun and working of these ' oilers, it wall be well just in a few words to dencribe their gencral arrangement the bect-root juice is introduced first into the builer un the left-hand sides of the engraving-the "thin-juice pan." Here it undergoes its, first cuncentration by being heated with low pressure steam drann fom the engines and a certain amount of direct steam from the bollers. The rajour from the boiling jutce passes up through the dome and through the hindel safity versel into a steam chamber at the back of the si cond boilet or "thick-juice pan." This boiler recrives the partially concentrated juice from the first, and the concentration is here completed by the heat from the steam of the first boiler, which is comprlled to pass throtgh the tules. Th steam from the bolling juce in this second boiler is passed through a spfet. ressel and then condeneed in the usual way.
The thin-juice pan is a plain cylindrical srought-iron biler 1.75 metres (5 ft .3 m .) dinmeter, und 3.180 metrcs (10 ft .5 in.$)$ long. A rectadgular steam chamber or box, also of wrought iron, and about 12 in . decij, crosses its front, and the steran is admitted to this box by ether one of two valves placed at its ends. From this chamber there liad into the boiler 15 copper pines, which are so arranged that each one (cexcept the tiso 8. ones, which are somewhat shorter) verses the w..ule length of the boiler six times, and then. again connected with the front tube plate-but at a much lowe- level than the
steant chamber-and I as a small valve attached to it to lot off the wa!c:- The valves, however, are not allowed to communicate directly with the atmosphere, but are so connected with a long wrought iron cylinder in front of the boiler that no uncondensed steam is permitted to pass away along with the water The steam that is used in these tubes in the exhaust steam frum the engines about the factor;, and will conser u uently possess a pressure of ahout 3 or 4 lb . per square inch above the pressure of the atmosphere lis the lower part of the builer, below these tubes, are two sets of smaller jip. (ca h atranged to travers the length of the boiler six times) wh ch are supplied with st am direct from the stham boilers through separate valves, placed near the back of the pan
The second boller, or thick-juice pan, is entirely different in its construction from the first. It in also 5 ft 9 in . |iameter but is only 2.89 metres (9 ft .6 in) in length. It has a tube plate at each end, and contains 140 brass tubes 56 mm diameter (2.26 in .) running from end to end and communicating at iach end with aseparate chamb r. The chameer at the hander end rece,ves the tean from the boiling juice in the thin-juce pan, but a valve is provided by which low pres. nure steam can be introduced to it directly (a, to the thin. juice pan), if it should be desirable or necessary to do so. The chamber at the front end of the boiler is much smaller than the other, and i, pruv ded only with cocks for drawing off the condensed witer. The tubes are ke! tight by means very similar to those often used in surface condensers, viz., as follows: each end of the boiler (up to the level of the top tubes) consists of two thichnesses of plate, rivetted together, making i p a total thickness of 40 mm , (157 in .) The holes in the irner plate are made as nearly as possible the same di meter as the tubes, which passing throu.h them are left p rectly free to capand. The outs de plate has holes cone niric with the others, but cons derably larger in di meter. so as to forin a kind of stuffing box rumat tach tube. Into this an in inarubler sing is slipp d, then a thin brass wanh r, and then the whole is made tight by a urass gland, screwed into the outer tube plate. This system of packing is expensive, but it ought to be thoronylidy effective.
The domes of both boilers are alike, and are each fitted with intermal chamb is, as shown in dotted lines, for inter. cepting the sugar carried ap by the steam. The top of rach is connected by a copper pipe with the middle safety vess. 1 , but under ordinary circumstances only the second boiler actually communicates with this vessel, the communication with the tirst boiler b ing clos d by a biank tlange. The cor. struction of the safety vess-l is clearly shown in the drawiug The steam from the boiler oltains acce 8 , near the upper part if the vessel to the amular space left between its inner mad outer cylindirs. It in then compelled to pase downa - piral parsag l) an intercepting diaphoagm, and the sugar which has heen carried over by it, int recpte. by this diaphragm, falls o the buttom of the ressel, while the steam ascends through the inner cylinder or pipe, and is led away ly it to the condencer A glass gauge on the lower part of the ressel shows the devel of the sugar juice in it, and a small valve is fixed to its butt, m with pipes to conver the juice b.ack to either of the two boilers. In the usual made of working this apparatus, nas befo e explaned, the stcam from the juice in the first boller, prew nted from communicating with the middle safety vessel, passen through a pipe to a some what similar vessel jlaced on the top of the steam chamber at the lach of the second boiler. Having been by this vessel fred from sugar, it pasies through the tules of the second boiler, and is itsclf cond nsed th. iusparting its heat to the contents of that boiler.

The total heating surface of the copper tubes in the: fimt beiler amounts to 52 square metres, or 559 square feet, and the total heating surface of the brass tubers in the ercond beiler amounts to, 30 equare metres, 753 equare fect. The boilers are mounted with a complete set of fittings, which are clearly shown in our engravings. They include the ollowing . main steam valves, 6 in. diameter; juice induction valves 85 mm. (2 55 in .) diameter, juice eduction valves, i5 mm (2.95 in.) diameter, a cumplete set of water escape cocks for tubes if first boller, with valves fur preventing loss of steam, ad, ission and cgress valves for direct steam to the lower pipes in the first boiler, vacuum ganges, thernometers, butter cocks, glass gauges, testers, peepers, cic. The langer fittings are of cast aron with hrasa valres, the smaller ones endirely of brast, the domes and safety versels, as well as the boilets, are of wrought iron, and the stesm pipes of copper.

HOW TO IMPROVE THE APPEARANCE OF FURNITURE.

Mr. G. J. Henkele, of Philadelphiv, Pa., suggests that when the jolish on new furniture becomo dullit can be renewed by the foll wing pricess: Tuke a soft sponge, wet with clean cold water, and whsh uver the article Then takea soft chamois skill aud wipe it clean. Dry the skin as well as you can by wriuging it in the hands, bud wipe the water of the firniture, bilig careful to wipe outy une way Never use adry chamors un varnished work. If the rarnish is d-faced and rhows white mark, take haseed cill and turpentine in equal parts; fhake thean well ia a phial and ap by a very small quantity on a soft rak until t ie color is restored; then with a clean soft rag wipe the mixture entirely off. In def.ply carved work, the dant csinnut be rem ved with a sponge. Liee a stiff haired paint brush iutead of a sponge. The cause of varnished furniture becoming dull, and the reason why oil and turpentine restore its former polith, it witl be app opriate to explain. The humidity of the atmosphere aod the acti, n of g ts cause a bluish white coatidg to collect ou all furniture, and show confpicuously on bright plashed surfaces, such as mirrors, pituos, cabinet ware und pribished metal. It is easily removed as previously directed The white scratches on furniture are caused by bruising the gum of which varnish is made. Copal varni h is composed of gum copal, anseed oil, and turpentine or benzine. Copal is not soluble in alcohol as other gums are, but is dissolved by luat. It is the fun iation of varnisi, as the cil is used only to make the gam to gh , and the turpenine is required only to hold the other parts all liquid , tate, and it evaporates immediatels after its application to furniture. The gum then becomes hard and admits of a fine polish Thus, when the varni-h Is bruised, it is the gum that turas white, and the color is restored by applyang the oil and turpentiue. If the mixture is lift on the furmiture, it will amalgamate with the varaish and becume t ugh, therefure the necessity of wiug it entirely off at once. To varnish old furaiture, it h , ald be rubbed with pulverzed pumice stone and water to teke off the uld surfuce, and thea varuished with rarbish reduced, by addiug turpentine, to the consatency of cream. Apply with a stiff haired brush. If it does not lo.k well, repeat the rubbing whith pumice atone, and when dry, varnisk'it again.

yotas in pusiture.

The same nuthor says: There are two specios of moths which infot furuiture. One is a large fly of silvery white color; the sorm of the same is shaped like a chestnut worm, and in fimiliarly known. It rarely infests furniture. The - the: is a small fly of a dark drab color; the w rm is about wat fuurth of an iuch long, and tapering from the head to the tail. It was first observed iy upholsterers about thirteen years ago. This tiy penetrates a eofe or chair, generally bitween the back and sea's of sof is, or under the seata, where the vataucy among the spriogs affords a safe retseat. It may make a lodgment in one week after the furniture is placed in the huse. if such should be the case, in two mouths the worm will appear; and the contiuual process of procreation in n few munths increases the number to thousands. This tuoth has no season. It destroys in winter and summer alike, nud it is kept an active life by the constant heat of the house. Wo find at the same time, it the ramo piece of furniture, the Hy, the worm, and the eggs; thus showiug that they are bred dlug nud d. stroying all the time It dons not eat pare curled hair, but fastens it; coconn to it, the elasticity of which prevelits its being disturben. The j iside of furniture is used by th only for the purposes of propagation. The worm when rendy for fucd crawls out and destroys the cowring, if of wonllen or plu-h material ; and falling to the earpes, destroys it it rascly cuts througi plufh from the inside, as it is of cotton ba k, but there are instances where the worms have cut up muslin on the out.ide bick of sofa. There is no protecti.n against them but continual care New furaiture should bo remuved from the walls at least twice a week at this season of the jear, and should be well whisked all round, and parliculndy under the seats, to prevent the fly from lodging. This is an effectush preventive, sad the o..!y one knuws. thennu pepper, scotch sauff, camphor, turpentane aud all other semedies for protection from the large muth aro of little of no avail agamst the furniture moths. Saturation with alcohol will not destroy them when in a piece of furnturo. If the furbicure is infusted, they may be temoved by taking off
the mnslin from under the seats and of the outside onds and backs, where they congregate most, and exposing to the air as much as possible. Beat well with a whisk or the open hand, and kill all the flies and worms which show themselves This done often will disturb them, and may raske them leave the furniture, in their desire to be left in quiet. When the furniture is free from moths and is to be left during the summer monts without attention, it may be protected by camphor in small bags or highly concensrated patchouli The safest way is t have the furnituro well whi ked twice a week. If the moths attack the carpet, which they wall first do under the sofas and chairs, spread a wet sheet on the carpet and yass a hot fat iron over it quickly; the steam will effectually destroy both worms and eggs. If furniture is delivered in a awolling free from moths, the upholsterer's responsibility ends there and all rests with the housekeeper, as no tradesman can tell whether the moth will attack it or not. There are cases where the furniture has been in use ten or twelve years betore being attucked. It would be as fiir t, hoid tt tallor responsible for the safely of clothing from mothe as to sld the upholaterer responsible for the safety of furature.

STRENGTH OF CEMENT.

Professor Bauschinger, of the Polytechnic School of Manchen, has lately made experiments (in the techuical laboratory of that inatitution) with mortar of Perlmosen Portland cement and water-lime; and he publishes his results in the Žetschrift des Bayer. Inyen.-und Arch.-Ve setns.

Cubes of pure cement, as well as of mixtures of one part cement with sand or rubble up to five parts, were submitted to pressure. 'The resistance of pure cement was found to be greater than that of the mixtine of the proportion of $1: 5$; it diminithes very slowly, even if as much as three parts sand (even coasse rubble) are added. Cubes of water-lime and coarse rubble were found to resist pressure best, mired in the proportions of $1: 2$ or $1: 3$; pure water lime offeriog the least resistance. The resistance to pressure in a mixture of the proportion of $1: 4$ is nearly as great as in that of $1: 1$.

Cubes of brickwork, mado of common bricks and mortar of one part water-lime and three parts fine sand, after hardening for ninety days, wera next tried, when it happened that the mortar remained firm, whilst the bricks were crushed.

Slabs of one part cement and two parts tine sand, about it in. thick, also, after setting for ninety dags, were likewise experimented upon, and the resulte showed that the strength per square unit increases with the dimensions of the cross sectiou, but it is also determined by its form, and diminishes somewhat with the thickuess of the slab.

Similar experiments with cement prisms likewise showed that the strength of rupture of cement increages if it is mixed with sand in the proportion of $1: 3$, and even that of mortar mixed in the proportion of $1: 4$ is greater than that of pure cement.

In the trial with slabs made of one part cement and two parts fine sand it was found that they possess equal strength whether they rest on all four corners or only on two edges, and that the resistance was nesrly proportional to the square of thickness of the slabs. The slabs were tried after hardening for 105 days; the prisms after 90 days.

Professor Bauschinger intonds publishing an cmpirical formula as soon as a sufficient number of experiments are svailable for tho purpose.

For the weck ending September th there were shipped from Petrolia station 3,070 barrols of crude, 116 refined, and 1,120 of distilled oil.

The great pumping operation on the Lower Firxer has proved a failure. The pump will suck up water and sand like ia ad, but when it comes to gravel and boulders, it is not on $1 t$. The enterprase has been sbandoned.

Ebowy weighs 83 lb . to the cubic foot; lignum vite tho same hichory, $52 \mathrm{lh} . \mathrm{r}$ birch, 55 lb . ; beech, 40 ib ; yellom pinc, 38 it , white pine. $25 \mathrm{lb} .$, cork, 15 lb.

Thers are paws made so small and minute as not to exceed one-fiftieth of an inch in widith and less than that in thick ness.

Wrignt's Patent Air Gas.-The neve air gas manufactured onder the patent of Mr. William Wright, Carver Street, is being brought into practical use in Shefficid. The patentee has erected a complete amparatos at the London Music Hall, and the gas is said to be 20 per cent. better than that ordinarily extracted from coal, whilst it is Su per cent. cheaper. Mr. Wright's system is most peculiar. First he emplows two airometers, and as ono of them discharges, it lifts up the lid of the empty one. These work continuously, one helpins the other, and no pomping of air is necessary. At the "fomidon," horrofer, the air is forced into the airometer, the econd airometer not haring get bern completed. From the airometer the air passes in a state of compression into a large irou cylinder, in the interior of which are aranged composition fivtom,
and these latter are impreannsed with some particular description of spirit. Anpliauces are affixed to the cylinder which impreguate the pistons with the spirit. Directly the alr has passod through the eclivider, it becomes gas of great brilliance In the intriors of the pipes which lead to and from the cylinder, selfartiag valves are placed, which cut off tho supply of gas the mastant that the gas is turnerd of at the jets, thas preventing any evaporization of spirit. Wiaen a jet of air is turned on with the air kas. and the two are lirought into contart at the birner, the heat given out is on intense that a har of iron is readn!y melted by it. We understaud that Mr. Wright has other iaventions in hand which are of a most e trandinary character, and which wilh shortly be brobsht hefore the public.

Mechanicis' Magazine.

MONTREAL, AUGUST, 1873.

Double-acting stcam bammer at Vlenaa. Vlews of Handak, sondan rallway Raln-matertanks Frictional gearing.. Fixling tubes in vertical bollers. Double drilling machine Beet-sugar bollers......... Express locomotive Machine for testing lubrlcating materials...... Electric gas lighter Boy's hydranlic propeller Insane asylum, Calitornia. \qquad Bergmann's high-pres. \qquad Plate bending rolls at Vienna..................... 1 Horizontal engino with Sulzer valve gear at \qquad Schone \& Son's planing machine at Vienna Moulding and planing machine at Vienna..... Merryweather's nteam fire engine.................. drents: Double-acting steam hammer at Vienna...... The Canadian rife.. Gtreet llghting in Paris.. Soudan rallway expeditlon.,	

Flre detecters............... 135
Quallative analysis for
Qualltative analysis for 186
Gas burners.. 136
Facts and flgures con-
nected with belting..... 137
Fixing tubes in vertical
bollers.
138
Double driling machine. 140
Beet-root bollers............ 140 How to Improve the ap-
pearance of furniture... 1.11 strength of cement........ 141 Wright's patent air gas.. 143 Vlenna patent Congress 144 Correspondence \qquad ${ }^{-145}$
Machine fortesting lubrle-
ating materlals........... 147 Food and its preparation 148 Dominion nevs............. 1 The alr we breathe \qquad 148 The alr we breathe......... Miscellanca..........
Vlenna Exhiblition...... 150 Hardeningsurface of steel 150 Electric gas I!ghter........ 150 Boy's hydraulic propeller 157 Frult without flowers ... 152 Ancient coppermining,

Lake Superior............ Home made horse-powers 152 Wasp trap. \qquad rs 152
Insaneasylum, California 153 Bergmann's high-pres.
sure boiler 155
Plate bending rolls......... 157
Horizontal englne with
Sulzer valve gear
Planing machinc............ 160 Moulding and planing
machine..... 160
Merryweather's steam
fre engine. \qquad

${ }^{\circ}$ THE VIENNA PATENT CONGRESS

In a former number of this journal, we drew attention to the present ansatiffactory state of patent law in certain parts of Enrope, especially in Austria.

The Congress at Vienna of persons interested in such matters to visit the Intcrastional Exhibition, afforded an opportunity of discussing the whole question of patent right, and of laying down fixed principles which might serve as guides to Legislation with reference to an international patent law reform.

The Congress met for the first time on the 4th Augu6t, and after five days of animnted deliberation 'brought their labours to a satisfactory conclusion. The resolutions adopted are not as a whole so liberal as perhaps they might l.ave been; but it was conclusively shown that the party opposing Patent Laws, in toto, was a rery small minority.

On the other hand the work of the Congress is not concluded since at the closing of the present meeting, the committee was constituted as a permanent executive committee with power to publish the resolutions adopted, and to submit them to the various Governmerts. It is also authorised to choose members, and to make arrangements for a second congress at some futare time. The following are the resolutiong adopted by the Congress.
"Resolution 5 .-The protection of inventions is to be guaranteed by the lavs of all civilised nations under the condition of a complete publication of the same; because:
"a. The sense of right of civilised nations dernands the legal protection of intellectual work.
" b. Thas protection affords the only practical and effectivo means of introducing new technical ideas, without loss of time, and in a reliable manner to tho general knowledge of the public.
"e. The protection of invention renders the labour of th" inventor remunerative, and induces thereby competent men to devote time and means to the introduction and practical ap. plication of new and useful technical methods and improver mente, or to attract capital from abroad, which, in the absence of patent protection, will find means of secure investment elsewhere.
"d. By the obligatory complete publication of tho patented invention, the great sacrifices in time and of moncy; which the techDical application would otherwise impose upon the industry of all countries, will be considerably lessened.
"e. By the protection of invention the secrecy of manufacture, which is ono of the greatest enemies of industrial progress, will lose its chief support.
" f. Great injury will be inflicted upon the countries which have no rational patent laws by the native inventive talent omigrating to more congenial countries, where their labour in legally protected.
"g. Experience shows that the holder of a patent will hillself make the most effectual excrtions for a speedy introduction of his invention."
"Resolution $I I$.-An effective and useful patent must bave the following principles
"a. The inventor or his legal heir only can obtain a patent. A patent cannot bo refused to a foreigner.
" b. In order to carry out the principlo stated above (ω, , the introduction of the system of a preliminary cxamination is recommended.
"c. A patent for an invention sbould be granted for fifteen years, or the option should be to extend it to that pericd.
"d. The granting of a patent must bo accompanied b_{j} a detailed and complete publication, which reuders the practical application of the invention possible.
"e. The cost for the granting of a patent should be moderate, but in the interest of the inventor an increasing scale of fees should be fixcd, 80 as to cancel an uscless patent as $600 n$ as pos-ible.
"f. It should be easy for any one to oltain, through a wtllorganised patent office, the specificstions of any patent, as well as to ascertain which patentt are still in force.
" g. Laws should be passed by means of which a patentee may be compelled. in cases of public interest, to allow the use of his invention for a suitable remuneration to all bonafide applicants."

For the rest, and e-pecially with respect to the proceedings in the granting of pertents, the Congress refers to the t ugli h, American, and Bejgian patent Jaws, and to the proposition made by the uvion of Geiman enginecrs for a patent lai of the German empire.
"Resolution $/ I I$.-In consideration of the great difference between the existing patent laws, and in considern ion of the altered state of international communication, the necessity of ref.rm becom. 8 evident, aud it is to be strongly recommended that the different Governments should endeavour to arranee, as soon as possiale, an interuational understanding on the patent laws.
"The not executing of a patent in a country is no reason fer its becoming void in that country, as lcng as the invention has been carricd out once, and the possibility is there that the right of using the invention can be obtained by any inhabitant of this country."

CORRESPONDENCE

We da not hold murselvey accountable for the opmans ot our (orrespondente.)

Patent Law.

To the fidetor of the Mechanicy' Magazing,

Sth, - Having in my last letter pointed out what appeared to be the defects of the 28th section of the Act, I will nor proceed to discuss the 39 th section, passing over the intervening clauses as calling for no important remarks :
"39. An intendin; applicant for a patent who has not yet "perfected his invention, and is in fear of being despoiled or"
"his idea, may file in the Patent Office a descriptiou of his
" invention 80 far, with or without plans at his own will;
" and the Commissioner, on rezeption of the fee hereinbefore " prescribed, shall canse the said document to be preserved " in secrecy, with the exception of delivering copies of the " name whenever required by the said party, or by any judicial " tribunal, the secrecy of the docament to cease when be ob"tains a patent for his invention; and such document shall
"be called a caveat : provided always that if opplication shall
" be made by any other persun for a patent for any invention
"with which such caveal may in any respect interfere it shall "be the duty of the Commisbioner forthwith to give notice by " mail to the person who has filed such caveat, and such per" son shall within three monthe after the date of mailing the " notice, if he wunld avail himbelf of the caveat, file his petition "aud take the other steps nec"ssary on an application for "patent, and if, in the opinion of the Commissioner the appli"cations are interfering. like proceedings may be had in all "respects as are by this Act provided in the case of interfer". ing applications : Provided further, that unless the person
" filing any caveat shall within one year from the filing there-
"of, have made application for a patent, the Commissioner of
"Patents shall be relieved from the obligation of giving
" notice, the cavea: then remaining as a simple matter of " proof as to novelty or priority of invention if needed."
The only objection I have to make to this is that there is no provision by which the caveat may be renewed, and as many very valuable inventions require a much longer period than one year to bring them to the proper perfection to submit to the public, 1 think all will agree with me that by a yearly fee, the caveat should be renewed as long as the inventor may require. This privilege is allowed to to inventors by the United States Government. See Patent Office Rules, July, 1870, eection 93 , as follows :
"93. The caveator will not be entitled to notice of any ap" plication pending at the time of filing his caveat, nor of any "application filed after the expiration of one year from the "date of filing the caveat; but he may renew his caveat at the "end of one year by paying a second caveat fee of ten dollars,
"which will continne it in force for one year longer, and so on "from year to year as long as be may desire."
The pertinence of this remark I will only illustrato by one example, that of Mr Bessemer, in his improvements in the manufacture of steel, which took him about twenty years to bring to perfection, during which time his workmen were not only employed under osth of secrecy, but while engaged at labour, were strictly kept under lock and key Had Mr. Bessemer not had the command of a very large amonnt of money, his invention might at this day bo unknown, and I am convinced that 1 am . $\quad n$ limits if I say that his invention is worth $£ 5,000,000$ bterling to the human race for the present year.
I will now pass over the following clanses till I come to the 48th which is the last one worthy of notice, and with it I shall conclude tho subject for the present.

This reads as follows:

" 48. Every person, who before the issuing of a patent has "purchased, constructed, or accuired any invention for which "a patent has been obtained under this Act, shall have the
"right of using and vending to olhers, the spocific article,
" machine, manufacture, or compusition of matter patented,
"so purchased, constructed or açuired before the issue of
"the pritent therefor, without being liable to the patentee or
" his tepresentatives for so doing; but the patent shall not be
"huld invalid ss regards other perbons by reason of such pur-
"chase, construction or acquisition, or use of the invention
"by theperson firnt afiresaid, on by those to whom he may
"have suld the came, unless the sumo was purchased, con-
"strueten or acquired or used for a longer period than one year
"brsore the application to a patent therefor, which circum-
"stance would then have the effect of wakiog the invention " one having become public and in public use."

The provision of the clanse should be extended from one to two years, during which the invention may have been in use, before the inventor loses his rights, my reasons tor such an opinion aro already givea in my remarhs on the 61h section of the Act, and it is therefore unnecessary to repeat them here. But there is also another important deficiency in the Act, and that is that no provision is made for the inventor being protected from a breach of confidence in the parties to whom he may have exhibited his invention during the time that may elapse between the iavention and obtaining of Letters Patent therefor, and for this purpose th, following words might be added to the present clause
"But the above shall not apply to suy article m inufactured " by or for any person to whom the inventor may in confidence "have communicated his invention previous to the obtaining " of Letters Patent therefor, without the consout of the its. " ventor in writing."

In concluding this series of comments on the existing Patent Law, I may advert to one or tro points, the force and truth of which will, I think be readily admitted by all.

It cannot be denied that we of this present generation are indebted for the material comforts and pleasures we enjoy, and which have almost become neces-arics of life to us, to the efforts of inventors, especially during the last hundred years. To appreciate these comforts, we must try and realize a state of affairs with the steam engine and electric telegraph unknown, but littlo of our present abundant supply of manufactured articles, and not even a properly macadamized rosd to travel upon, and I think that thon all would fogrec that we cannot be too grateful to those who, under God, have been the means of so improving our condition, and neither be niggardls in re warding, nor slow in giving every possible facility to those who may, and will doubtless raise us still higher in the scale of civilization, and do as much for their fellow men within the coming hundred years, bs they bave done in the century past. I am Sir,

Your obedient servt.
C. G. C. SIAPSON.

A Wonderfol Agrictltrral Machine--Our onterprising American cousins are not content with machines designed to perform ordinary operations in agriculfure, but they devise extraordinary operations, and then proceed to invent machines to carry tbem out In this country wo are satisfed to wait a while after reaping before we begin to plough for another crop. At St. Louis, Illinois, a machinc is being built which is designed to cut and take up grain, and at the same time to plough and seed the ground. Surely the ingenuity of agricultural machinists cannot transcend this. -Iron.
Windsor has a fire alarm telegraph in working order.
A bridge is to be built across the St. Lawrence at Colean Landing.

Nut works are being estahlished in the town of Paris and will soon be in active operation.

MACIIINE FOR TESTING LUBRICATING MATERIALS.

The following is a description of a machine for testing the value of lubricating oils invented by Profesor IR. If. Thuroton, of the Stevens Institute of Technology, Holoken, Niw Jersey, which we extract from the ('heago Ratroad Gazette. 'The form shown in the illustation was designed by IIr J. A. Menderson, a student of the above-mentioned Institute. The machine is intended to give the conefticicut of friction, pressure on hearings, and temperature f jourmal boxes at any thme, and the readingo are proposed to be taten at short intervals througlout the test. Fig 1, pace 147 , is a sectional sid.

deration, and liig 2 a perspective elevation The marhne couststs of a shaft A, rumning in two bearings $B B$ and divern by apolley' lhe slaft is suppunted by a stamard is D, haribed on th base I. E, At the watem end of the shat is a journal, F, of enther sted or selceted ion ; susphended trom hhe 1 minal and clan ping it by means of b aes $(1$, is an arm 11 , carry mer an atyustuble weitht I, wheh may be chauged for one of difterent -ize, or adjutiod on the arm, an ts fonnd regnisite. The pressure under whath the oil is to be tested is obtanned by setting
 on which nut the sprang tests. The pressure per square inch is read of from the scale N which is traversed by an index M, atached to the spribs. The friction cawses the arm 14 to swing out from the vertical position, the moment of fiction being indacated by the index on the arm 1 , which traverses the gra. duated are 1 ' 'The coreticient of fraction is obtaned by divaling the reading on the scale cut on the are l ' by a second set of empirical divisors laid off on the scate N. The tomperature is indicated at all times by a thermometer Q, set in th. upier brass.

In using the machine, a small and determinate quantity of ther onl to be tested is placed on tho juurnal F , and the pressme being adjusted by the serew K to that at which the oil is desired to run under test, the machine is started at a speed which will give th. desired relative vel city of rubbing surfaces. Obser. vathous are made at short intervals, and recorded, until the test is closed by rapid heanny, as shown by the thermometer, and excessive increase of friction, as indicated by the arm H swinging up aganst its chocks. Competing onls are similarly tried, and the records afford a perfect mans of comparison.
Thus, sewing-machine builders desire oil of long endurance and small frictional resistance and viscosity ; on locomotives an o. that will bear high pressure for the greatest length of
time without heating is the most desirable, even alth , anh not as limpid and of a slight frictional resistance. 'The relative power of resisting high temperatures without decomposition is another important point which may be tested. Any lubricant may be tristed, whether mineral, vegetable, or snimal oil, or tallow or misture like arle-grease. The only precautions necessary are not to allow the temperature to run so high as to injue the thermometer or the journal surface, and to measure accurately the quantity of oil used
'Ihe firm shown in the cut is that propes a for general use, bat fol extermely heavg pressures another form has heen designed in which the pressure on the journal is obtained by a

Clamp composed of a tixed arm and a spring, the spring :) ing sct up by a han i wheel turning a nut in the end of the lixed arm. In this form of the machine, the moment of inction is measn ed by the compression of the spring. The essential feature of both forms is the combination in one mar hane or appar itus for makiog simultan ous dynamometr'cal and thermonetin 1 :il tosts of the lubricant. The machine is patented by I'rofespor Thurston, but the patentee announces that master methanues, an ohtain permission to construct and use it on application to hm . He will also furnish applicants wiht the necessary dimentions for the machanes and with the n.mb.r to be attached to the.n.

News of a rather extraordinasy feat in photography comes from San Francisco. It appears that a gentleman desic d a photographic portrait of a celebrated trottiog horee twhen while theanimal was going at full speed. The photographer set to work by Hrranging all the sheets in the stable as a sort of reflecting backgiound. In front of these the horse was trained to trot, moving at the rate of 38 ft a second. 4 fter two unsuccessful atternpts, the photographer hit upou a method which gave a result as excellent, we are told, as could be desired. The operator closed his camera by two boards, so arranged that on touching a spring they shipped past each other, leaving an opening of one-cighth of an inch for the 500 th part of a second. Using double lenses, crosied, a perfect likeness of the horse was obtained, and so instantancous was the impression of the sensitive film that the spokes of the wheels of the vehiole to which the animal was harnessed were shown as if at rest This method may youbably be turaed to account in other directions.

FOOD AND ITS PREPARATION.

The following notes are taken from an interesting essay by Dr. George Derby, secretary of the State Board of Health of Massachubette, treating upon the forms of food in common use throughout that State, how they are prepared and how they are eated, logether with the considerations whether this food, as generally used, promotes public health, power, and usefulners. The question :

IS BUCH AN ARTICLE WHOLESOME OR NOT?

cannot be truly answered in a general sense. Very few articles ranked as good are absolutely unfit, but a man laying a stone wall may digest and thrive on dict which would be very unwhole some to him if employed in shoemaking or other sedentary occupation. Of the many causes of consumption, want of proper food is surely one, and there is good reason to believe that the many forms of dyspepsia so commonly met with are but too often the danger-signal that Nature gives us to show that the food, cither in its quality, its preparation, or its varicty, is unsuited to maintain the vital process. It is buta modified form of starvation, with the mockery of a displas of abundance.

Bread.

Leavened or fermented bread is as old as the time of Moses and its ralue bas been fairly tested. Whatever be the precise action of the leaven, it transforms grain by partial decomposition of its original elements, and lcaves as its resultant what men in all ages have approzed. Modern substitutes impair the flarour, diminish the nutritive preperty, and break the staff of life Lakers' bread is almost universally composed of four with extraneots substances, alum and carbonate of ammonia being most employed. Bread hastily made in families is mixed in a varicty of ways with carbonates of soda or potash, combincd with phosphate of lime, with cream of tartar or with sour milk, and is generally imperfectly cooked. Very often the elements of wheat and fat which the body demands are furnished in underdone pastry made of flour and hogs' lard ; the first legitimate effect of such food as this with people of average condition is indigestion or dyspepsia ; the second is all that train of ailments caused by imperfect nutrition.

Good bread should be made from a mixture of flour such as is generally used in our markets, water, salt and yeast, and nothing elfe. The feast is composed of malt, potatoes, and hops, and the dongh, kneaded for from one and a half to two hours, is then thoroughly baked In this connection. regarding the quality of bread retailed in large cities, we should ;udge from Dr Derby's report that Boston bread was inferior to that sold in New, York. Some time since one of our great dailies, desinng to gather a column or two of seasational matter, made arrangements with a young phe ian of this city to procure oue hundred samples of bread from various localities, analyse the same, and astomsh the country with revelations of gross adulteration, swindling the poor, \&c. After gathering a few specimens from corner groceries and other unfromising spots, the investigator was obliged to discontinue his labours, for the simple reason that the bread contained no impurities worth mentionng, and such as there were did not exist in any deleterious quantity. It is needless to add that the enterprising journal did not pubhsh the results obtained.

Varibty of Food.

Experience has proved that, for some reason unknown to sclence, varicty is essental to health after reaching the age when we are free to choose our food. The perpetual recurrence of the same chabes, even though their mumber be considerable, becomes in all periods of hife except infancy not only wearisome, but positively injuious. The lack of varicty in many cases is due to the poventy of pooren classes and the difficulty of buyng fresh provisions in places remote fiom markets. Salt-pori, salt-fish, and putatoce, with ples, puour bicad, and Japan tha, ore the staples of food of thousands of familaes daring oul long waters. It should be understood how necedful a chaige of diet is trom thme to thate. Fresh vegetables, partheularly in the cunitry, are readily ubtined and preserved, and should be masparmgly unce the cdable roots, as turnips, (arrots, omons, and leets, and cabbage, are ats well worth prebervation as the omuipresent potato All these vegetables need thorugh builang, ind more than they generally get.

Fryina Meat.

A common habit in Anerican cookery, is most unprotitable to the eater. It robs the meat of its juices and hardens its texture. The extremo heat of the fat not only burns the outes :ayers of the meat. so as to injure thein value for nutritive purposes, but also elanges the chemical condition of the fatty acide, giving riee to products which obstruct the breathing and couse tingling of the nose and eyes of the cook, and which are more or less hamful to the eater. The peculiar tlavour of the meat is in a great measure lost by frying, and for it is substituted the thavour of the fat in which it is cooked. This fat permeates the fibres of the meat in sucha way as to remper them less solable in the watery fluids of the mouth and stemach, and thas couses difficult digestion. Broiling on a gridiron over a quick tire costs a little more time and trouble. and very likely fuel also, but by this process the juices of the meat are senled up (to a certain extent) instead of being craporated, and the nutritive value is thereby much increased

DOMINION.

A large potash factory is in course of erection in reaforth.

Tur business of the new railroad-the South Eastern Railway -excecds the expectations of all. Every passenger train is well loaded, and the first freight through comprised elevet cars. This road has upwards of 300 cars of freight promise d and weady along the lane to come through. The road when fully known is sure to become one of the most important in the countiy for travel and freight as well.

Amethists on the Gatineat.-We were shown inday by M: Sutherland, jeweller, some splendid specimens of amethyst, which were found up the Gatincan. The specimens are of fine color, and run down deeply into a quart/ surface. Surely theremust be some valuable minerals in the neighborhood whelt would be worth looking after. Ottawa Free Press.

Cobozr, July 26. -There has been a Company formed hue for the purpose of manufartuning suga: from the sugar bect. Mr. Jolnn Purser, President; Mr. A. F. Burnet, Managing Directon. Shares $\$ 25$ cach, which are payable cither in cash on be s. The best quality of seed has been imported from France, and is supplied to the share-holders by the Mandrinh Director on application. The best and most approved machinery has been purchased for the factore. The experinnents made thus far prove highly satisfactory, nud there is no douht but that the cpterprise will be a sucecss.

Mn Marwood Gilbert, who formerly resided in St Thomas and lately removed to Thlsonburgh, and Prichard Bros, of Bayham and Fort William, have been on a visit to the Laks Superior mining region, and while there discovered a rich mine of silver, lead. and copper, mixed with gold, about 150 miles from Fort William. They purchased 320 acres of land upon which the mine is situated. They had the ore tested, and were offered $\$ 50,000$ for their claim by thos: who tested the ore. They brought some specimens of the metal home with them. and also some of the ore.

The Great Western Railway (ompany have just cumpleted a steam passcnger car, to be placed on the branch of the ir ?me running fiom Wyoming to Petrolia. In one end of a passe ugea car a powerful upright steam engitu and bohbr has been placed, having direct connection with the axles of the whed truk below. The car will accommodate about thirty or thatyfive pernons comfortably, and it is eapected will do the worh of conveyong pastagers hetween Perrolia and Wyoming at a satisfactory speed at a much less cost to the Cumpany than l! the use of a lucomutive. A refitted pony car will accompany the passenger car, and do duty as a baggage van.

TIT: . IR WF. BREATIE

Much attention is now being paid to the characteristics of the atmosphere in vario, incalities, and under diverse circumatancers Analys show that nir in open and exponed localitites varms in the amonnt of oxygen which it contains from $20 \cdot\{$ to 210 per ceat The most favorable localities, as on the heaths of Scotland, show the latter; while it is necesmary to go underground into a minc to tind the formen Well velt tilated mines show about 204 ; whale our illy ventilated mines, where it is possible to labor, rarely go below en thene ennlts are derived from thousands of careful analysed Caveudich made 500 in the course of his enquiries.
The cutsory reader may thiuk that the ditherence between 21 , and 20 in the per cent. of oxygen in the atmosphere can have but little importance, and is hardly worth enquiring It is true that the defoiency named is small when considered in figuring, but when we reffect that while 21 represents the largest amount of oxygen ever found in the best natural atrasphwe, a candle goes out at 1850 , and life can bare!y be sustained for a short time at $17 \cdot 20$, the importance of a small per cent. of difference becomes apparent. Even 30 small a differonce as thit between 21 , and 20981 is equal to 190 in a million; and if we place impurity in water at that rate it will amount to 13 grains in a gillon. This amount would be consillered enormous, if it consisted of putrifying matter or any organic matter usua! ly found in water.

But we drink but a small quantity of water, and with such a percentage we night be several days in swallowing the whole 13 grains; whereas we take into our lungs flom 1,500 to 2,000 gallons of air cath day. Morcover the blowl receives such impurities almost entire, very little being nltered ont in its passage to the lungs, while the stomach has powers of disinjection and d"struction which render hirmless very much of the organic impurities contained in water. But of we take the air found in the pit of the theatre, fenerally 2 bout 20.740 we find the ninute analysis becomes a mattet of the highest m portance.

The senses are bad and inefficient guides to the wholesonneness of tir as regards the amount of oxygen and earoonic acid, save when the former is reduced and the latter increased to such an extent that the lungs seem to refuse to expand and the whole vital action is threatened with paralysis. Ilooms badly ventilated, which contain less than 20.7 per cent of exygen are very unwholesome, and the necessity of taking into consideration the proportion of oxygen and carbonic acid in the sanitary inspection of factories and workchops is abundantly evident from the result obtained by Dr. Smith.

Mr. Clemson, a French chemist, made public, in 1856, a wheory with regarl to the presence of living organisms in the atmosphere, so minute as to be almot or quite unobser able by the best microscope, and which organisms exerted a marked intluence on health-in fact were the origin of :nost discas. 8 to which men are subjected. He also argued that there is phosfleric acid in the air, lerived from the successive generations after gencrations of m^{*} ials of these onganisms, froduced, living and dying in the atmosplete ; that such or onanisms exist and are at work, assimilating from one to the other, prepasing fond har wore pu fect organisms, from the microscopsic points of life to the most perfect animal existence. He also entertaned theider that the increased ferfility of the carth by being broken up and exposed to the ammosphere, was due to the prerence of such animalcule.-Rural Home.

If there is a thing which is utterly detestable to look upon by a strict observer and one who has a general knowle Ige of what is right, it is to see the heads of bolts driven down below the surface of the wood. The bolt has a certain duty to perform, and where that duty is the securing of a piece of iron to wood, or wood to iron, if the head of the bolt gets firmly upon the wood, and the nut is firm apon the iron, it is all that is required; but when we ommence to draw upon the bolt until the head sets below the surface of the wood, that moment we commence destroying the fibre of the wood, and aid the premature rottivg at that one point ; for, no matter how nicely painted, or how neatly puttied up, there will soon be a cavity for the retention of a few cirops of water. 'I'his elone would be enough to condemn the practice, to say nothing of the other resulta it produces.

MISCELLANEA

Ir arems that the ohd stury of • berad with gin in it ${ }^{\prime \prime}$ is not withont foundation mecording to Mr Themas solas, who writes in the Chemical Neus stating that forty 2 lh loaves contain about the same amount of alcolsal as a bottle of port

Garmbnars have long aflimed that the moon's rays give great activity to the growth of mushrooms M Charbonnier, of I'arie, states that he has observed in hix aguaria a very remakable growth of cryptozamus vegetation meller the miluener of the light of the fall mooon.

T'ue cultivation of sotence spremals stadile A seinntitio society has recently been entablehed at litemos Ares. Mr A Inis Inergo for its first president According to thetr programore, the members have arranged for catrying out siteral brancises of original rescarch.

Ir is reported that hemp. When the blossoms are just opened is an infallible preser vative of textile fabrics against the attacks of moths. The stalik, with leeves and tlowers, is cut when blooming (about July), and dried in the shade. It is said to preserve its properties for seremal years

It is worthy of note that Mr. E H. Hoskins, of Lowell, Massachusetts, U.S has showed by experiment. that collodion
 Many pape s charted in the great fire of chicago-bann-notes, \&e-weac treated with collodion, which forms a than transparcnt film, and dries in a few minutes The printing on writing can be read through this film.
l'enpetr sle Paste - The Journal of Applied Chemistry says: Dissolve a teaspoonful of alum in a puart of warm water. When cold, stir in as much four as will give it the consistency of thick cream, being paticular to break up all the lumps; stir in as much powdered rosin as will lie on a dime, and throw in half a dozen cloves to give a pleasant odor. Have on the fire a tea cup of beiling water, pour the flour mixture into it, stirring well at the time. In a very few minutes it will be of the consistency of mush. Puur it into an earthern or china vessel; let it cool; lay a cover on, and put it in a cool place. When needed for use, take out a portion and soften it with warm water. Paste thus made will last twelve monthe.

To Clean Paint. - A correspondent of the Country Gratleman says: Use but little water at once: keep it warm and clean by changing it ofren. A flannel cloth takes off fly speckn better thau cotton. Soap will remove the paint; so use but little of it. Cold tea is the best liquid for cleaning varnished paint, window panes and mirrors. A sharp piece of soft wood is indispensable for cleaning out corners. A saucer of sifted ashes should aiways be at hand to clean unvarnished paint that has become badly smoked; it is botter thin soap. Never put suap upon glasi, unless it can be thoroughly rinsed off, which can nevel be done to wnilow glass. Wash off the specks with warm tea, and rub the panes dry; then make a paste of whiting and water, and put a little in the center of cach pane. Take a diry cloth and rub it all over the glas: and then rubit off with a chamois skin or flannel, and your win lows will shine like crystal.

An Anatoxcal Hint.-Dr. Merman Meyer of 7urichasserts that a shoemaker ought not only to produce a shoc that does not pinch, but a shoe so constructed that it will give to a foot distorted by the pinching it has borne already, a fair chance of a return to its right shape, and full possession of its power as a means of carrying the body onward He arys that in measuring a foot for a shoe or boot, the first thing to be considered is the place of the great toe. Upon this tor, in walking, the weight of the whole body turns at every step; in a natural font, therefore, it is in straight line with the heel A contral straight line drawn from the point of the great toe to the middle of its root, if continued, would pass very exactly to the middle of the heel. But, by the misfitting boot usually worn, the point of the toe is pressed inwards, the root outwards. No last, or model of a foot aircady injured by wearing ill-fitting boots or shoes should ever be made of the exact size of such a foot.

IXPRESS LOCOMOTIVE AT THE VIENNA EXEIBITION.

We give on page 146, a perspective view of the express locomotive" Rittinger," constructed by Mr. Q. Sigl, of Wlener Neustadt, for the Southern Railmay of Austris. The illustration will give a good idea of its geueral arrangement.

The engine has four coupled wheels, and a four-wheeled bogie at the leading end, the diameter of the coupled wheels leing 6 ft . $\mathrm{F}_{\mathrm{F}}^{\mathrm{F}}$ in., sad the total whecl base 17 ft .7 in . The cslinders are $16 \frac{1}{2}$ in. diameter and $24 \frac{1}{\mathrm{l}} \mathrm{in}$. stroke, and they are as will be seen, placed outside, the coupled axles having outside cranks. The arrangement of the valve gear will be readily understood from our illustration. The eccentrics, we mas inention, are forged solid on the boss of the driving cranke, this making a very neat job. The boiler contains 179 tubes, $1 \frac{1}{2} \mathrm{in}$. diamoter outside, and $11 \mathrm{ft} .7 \frac{3}{4} \mathrm{in}$. long between tube phates, these tubes giving an outside surface of 1073.8 square feet. The firebox surface is 85 square feet, the totai heating surface being thus 1158.9 square feet. The firegrate area is 17.22 squars feet, and the boiler pressure 147 lb . per equare inch.

The reight of the engine is $33 \frac{1}{2}$ tens empty, and $37 \frac{1}{2}$ tons in working order, of which latter weight 23 tons rest on the coupled wheels, namely, 11 tons on the trailing and 12 tons on the driving. The engine is very neatly finished, and the rorkmanship is altogether very creditable to the manufacturer, Mr. Sigl.-Engineering.

Net Method of Mardfnino the Surfaok of Sterl.-A method of bardening the surface of steel by subjecting it. while in motion, to the action of a surface in contact moving at a high velocity, bas been patented in the United States. If, for example, it is desired to harden the surface of a cylinder made of steel, the cylinder is mounted in a lathe turning at the slow motion usually given for turning such an article. To this is applied an cuery wheel rotating at a velocity of about 1,800 revolutions per minute. The periphery of the emery wheel is kept in contact with the surface of the cylinder, which in addation to its slow rotary motion has a traversing motion of a hathe less than an inch to each revolution. At the end of this operation the entire surface of the cylinder will, it is said, be hardened to a depth of alout one thirty-second of an inch, so hard. in fact, that it will resist the ation of the best tools Better results, it is stated, can be obtaned when the emery whec can be rom at a higher velocity than that above given, and castiron wheels with smooth fices, or hard substances, may be cmployes in heu of cmery wheels. For hardening flat surfaces, the pisce of stecl should be mounted in a carria;e so that it can be moved forward, in order to present in suceesision every part of the surface to contact with the periphery of the whed ; or the same result can be produced by monting the wheel in a carriage having the required traversing motions. Or if the surface to be hardened be of greater width than the tace of the whet, the block steel may be mounied on a carriage having one motion, and the whecl alen mounted in a carriage hating a motion at right angles to the motnon of the block-carriage. If the sumface to be pardened he of any other form than in a cylindrical or that sufface, the fom of the periphery ot the wheel or the motions to be sinen, wher than the lotary hardemme motion, must be such ats to present in successon c.very part of the surface to the action of the wheel.

ELECTRIC GAS LIGHTER.

This is a very neat and ingenious apparatus, the invention of Ur. Klinkerfues. Our illustration on this page is from the Belgian liulletin de Musee. The principle of the arrangement consists in the heating of a coil of finc platinum wire, by a wesk current of electricity, to a sufficient temperature to ignite the gas.
The invention is composed of a glass vase of suitable shape, closed by a cover screwed on, and packer so as to exclude the air by a rubber plate, A. The two elements, B and C, are zinc and graphite, the former is in the shape of a tube, is pierced with several boles, and is attached to the cover. The graphits is in the form of a cylinder and is secured as described forther on. Upon the cover are the two electrodes, D and E , consisting,

LIHOTHC GAS LIGHTER.

of rods of brass at the upper extremities of which are spring clamps whin I hol. thes aplral of platinum wire. One elestrote, D, is attithed dleuselly to the cover, the other, E , carries the gra. phite cylinder, nal is lachated at its point of contact with the cover by a rulibur unvelipe.
The liquid contulned th the vase is comnosed of three parts chromate of puish, fur of sulphaic acid, and eighteen of distilled water, 'l's hero the apparatus it is only necessary to slightly inclina tho vase so that the liquid is brought in contact with tho clemunte. A current is es abliched which beat, the platimum by which the gas is lit. On retarning the device to its vertional poxition, the fluid rests at the bottom and the current is interrupted.

Tar Midland Enulneritue Company of Alexandria have, it is said, contracted whit thos Khedive to supply a quantity of cotton machinery for crertlom th the Soudan, the districts just wisted by Baker lasha, and opened to forcign enterprise. The machanery, conshalimu of engines, ginning, carding, and bale pressing apparatus, in th he ko constructed as to admit of its being transported on this Nilo to the highest possible point on the river, and to bre carried on tho backs of camels across the desert to its destimation. Lathea, drilling machines, and other tools for the reparr of tho turuhines, will b? sent out with cach set, and these several fucterics will be set ap at various parts of the

HYDRAULIO PROPELLFR,

Mr. Henry B. A. Boys, of Barrio, Ontario, has recently perfected a rers novel plan for the propulsion of vessels at sea. The propelling force is to be the reaction of water ejected from the hull, the ejection to beaccomplished, without the aid of any machinery whatever, by the rolling of the ship and the dash of the waves. Dur illustrations are from the Scienctic Amertcan, Fig. 1. shewing the general application of the device to a vessel and Fig. 2, a section of the ship with the arran. gements tepresented in detail. The inventor explains his idea more fully in his own words, as follows
"For a vessel of 36 ft . beam, 30 ft. depth of hold, amu 400 ft long," saja the inveutor, "I make tanks or penstocks (A, Fig. 2) on each side, for the whole length of the ship, these tanks to be le fect high, 8 feet above and 8 fect below the water line when loaded, to be 5 feet wide fore and aft, and 3 feet wide from the vessel outwards or across beam. In the top of these tanks are holes 6 inches in diameter, and as close as they can be conveniently made, to admit water (whenever, through rolling, or pitching, or high seas, the outside water may be over the tanks) Valves B, one foot square, are arranged near the water line, opening inwards, for the purnose of admitting water whenever the outside water is above that inside; and there is an opening ($;$, at the bottom of each tank, shaped 8088 to discharge aft, and 6 by 12 inches in the opening.
"A ship so fitted will, from the rolling or pitching, or from the dash of the waves, receire water into the tanks when submerged, or whenever (from any oi the causes previously mentioned) the water within the tanks is lower than the water outside And whenever the hollow of the waves
is being passed, or the roll or pitch is upzard, and the water in the tanks is above the water outside, then the re-action, consequent upon the discharge from the outlets at the bottom of the tanks, will propel the vessel forward.
"The discharge outlet may be made to close by pressuru from without, or it may be drawn up by rods attached and leading to the deck, or made to reverse the action, the ralves also may be manipulated by rods, if necessary ; but it is thought that fixed outlets and plain valves will answer best."

The inventor also suggests a plan for similarly utilizing the pitching of a ship, by arranging two tanks, one net either end: "Valves in the bottom admit water in cither tank when down; and when the tank is up, valves will let it discharge into a tube on the bottom of the vessel ; said tube discharges both tanks at the stern or each at its own extremity of the ship, or, for the sake of the fraster head of water, each at its opposite end."

Prog. Tyndall argur: against the commonly taught notion that man requirep absolutely pure air and water. Chemically pure air-air shat is without a traco of ammonia, carbonic acid, or water-is, he says, not to be found, and the one thing certaiu about it ic, that if it were, no one could live in it. Neither is pure water ever found in nature; and observation of the whole animal creation, including man himeelf, tends to show that pure water is not necessary, nor even demunstrably desirable. Every sunbeam which enters a darkened room shows how thick with sclid impunties is the air which man breathes-yet no one on that account fears to breathe is; the same thing holds true in regard to water, but this need not necessarily make any ouc afraid to drink it. Neither all foreign matters, nor even all foreign organic matters, are of necessity unwholesome, and the votaries of strict science too often represent man as a being who must submit the world to a series of severe chemical operations before it is fit for him tolive in.

In removing int spots from delicate colours, when oxalie acid or chloride of lime cannot be used withont injary to the colour, a concentrated solution of sodium pyrophosphate is reccommended.

FRUIT WITHOIT FLOWERS.

At a meeting of the Academy of Natural sciences, Philadelphas, Februn-y lith, Ir. Ruschenberger, the president, in the chair, Mr. Thomas Meehan presented an applo, which was borne by a tree at Kittanine, in Penosylvania, and which toe never produced any flowers in the popular acceptation of the term ; but always yielded an abundance of fruit. This epecimen furnished a practical illustration of some morphological tuth which could not often be demonstrated in the way this afforded the opportumity of doing. It was mimitted that a fruit was a branch with its secessory leaves transformed. The apple fruit was made up of n series of whorle of leaves comprising five each. Cutting an npple through we found a series of five formed the carpels containing tho seeds. Several scrles of whorls, very much retarded in development, probably formed the stamens, but this could not be so well seen in the spple fruit, es they seemed to bo almost absorbed in the corolla series. This was the next in order that appesred in the divided apple-the green curved fibrous line which we find in all apples midway between the "core" and the "rind" is the dividing line between the series which forms the corolla and the outer series forms the calyx.

In this tree there are no pistils, the series which usually goes to make up this part of the fruit atructure being either very rudimentary or entirely wanting. Hence there was no cors to the fruit. The result of this want of development was that the usual calyr basin of the apple wa, in this case occupied by, a cavity three-quarters of an inch acrose. There were no petals; but in place five gland or rather bud-scale-like processes, at regular distances, on the edge of the areen fibrous outline before referred to. The outer whorl, which usually forms the calyx, was almost asepalous, as 8 mere scarious membrane marked the place where the calyx segments or cepals should have appeared. It was so easy in this specimen to trace the divding line between the outer or calycine whorl and the inner or corolline whorl, which uniting and becoming s actlent, tormed the popular apple fruit, that it was worthy of note is this connectica. But the most interesting feature in this specimen was what were probably, from their similarity in appearance, cork cells, formed abundantly on the outs de of the apple. It would seem that, with the lack of development in the inner series of wherls necessary to the perfect fruit, those which remained were liable to take on somewhat the character of bark structure.

Thy walls of aquaria, exposed to light, become coverid with a growth of cryptogamous vegetation. M. Charbonnier has observed that sometimes two or three days are sufficient for the full growth of this green moss, while at other times it hardly appeared in eight or ten days. He has noticed that every month, at the time of full moon, the vegetation has its maximum of intensity, and it is almost nil at new moon. At full moone daily cleaning is needed; whereas, this period over, cleaning twice a week will be sufticient. M. Charbonnier bas also made observations on the germs of microgropic conferve in water coming to his reservoirs from the Ourg, in Paris. This water passes a considerable distance in the open air. Now, the quantity of these germs is found to be very variable, and it is greatest as the time of the full moon. The explanation he suggests for such a curious phenomenon is as follows: Vegetable germe lying at the bottom of a stream are raised in sunlight by the gas bubbles they then give off in respiration, and which continue some time attached to them. When night comes on the bubbles disappear, and the plants sink again; but if there is strong moonlight the production of gas continues, and they are kept flosting; hence the superabundance met with at full moon.

The copper operations of the ancients in the Lake Superior regions still remain a mystery, though there seems every reason to believe that they were conducted by the Aztecs, who left their haunts in Mexico and the Ohio Valley; and made summer pifgrimages to the copper region. There have not been found either bones or implements or any means of identification whatever, except the tools which are occnsionally picked up in the ancient pits. And some of these pits and workings are 80
completely covered with drift and formation that it is impossiHe to form any estimate in regard to the time when they were worhed The presche" of bismutis, lead, merctury, and arsenir in this copluer inabled the e ancient minors to monld it into (utting tinis. whit h peasess a finer and tongher edge than purn me:tal, and nuswered to some extent the place of iron and steel -though the tools fumbl, after lioing claned of their oxidatoon, do bot appear materially hardir than the copper itiself Along the cumess of some of the wins old shafts or surface gongings have bern found, wheh, whan freed of debris, shon plainls the mothowloparsued by their former workers in extrat ting the ore. So far as can be judged the rocks were softened nud caacked by muans of fire built against at, and kept going for days, then the loosened masses were forced out by poles Remains are found of huge stone hammers, and ropper chisels Bind other cutting tools, and in several cases large masses of metal have been found that have been dug around on all sides and partly underneath. and then left, as if the miners had given up all hopes of detah hing and raising them to the surface Th" only reason for inferring that this was the work of the λ atece is the fact that specmons of this copper, with native solver adhering, have heen foumd in the momads of the Ohio Valing, having evidently been usn! as ormamenta be the mound buidiers, and buried with chem. :imilar specimens have been hamed down for way genetation. in Mesicu, ats naving been possessed by the Aztece, who were said to be - ognizant of valuable mineral lands far to the north.

HOME MADE HOLISE-POWEIRS.

The cheapest and best way to make a horse-power fol dairy and other light use, is to put a light drum on a centre post, high enough to have the belt clear the horsc's hean Athach a sweepten or twelve feet long to the centre post, so that the track in which the horse walks will be from twenty to twentyfour feet in diameter if possible. Let the track be soft gronnd. The whole arraugement may be made of white pane except the sweep, which should be hard wood. Let the drum be about ten feet in diameter, and six inches face. Use a two-inch rubber helt. Make a small pulley from four inches to a foot in diameter, according as you want fast or slow motion. If you want the motiou still faster, gear up with a second belt and set of pulleys. The direction of the motion may be changed by a quarter twist in the second belt, or by passing the first belt over idler pulleys.
This arrangement will be almost noiseless, while the clatter and jar of a circular platform would be cnoush to drive a semsitive or nervous person almost crazy. Besides, it is much easier and safer to teach a horse to follow a circular path than to keep his balance on a revolving platform.-C... Country Gentleman.

Wasp Trap,-It sometlmes becomes desirable to rid one's premises of the unpleasant presence of numerc s wasps, and here is a wey tr, do it as suggested by a cotemporary: Mount four panes of glass of equal dimensions in tin framing (lihe a lant ra), leave the top and bottom pen, cover the lattei end with thick white paper well attached with strong we ${ }^{2}$ cr-proof glue, and the paper well oiled, and protected from damp or fire. In this make a hole about six inches in diameter, and the a place this hole over a plate, on thich three pieces of bricks are put; in this plate you will haves put a mixture of beer, sugar, and a litt'e rum. On the top end you will lave fitted in a glass pane, removable at plessure, to clean the tray. Now prepare som: long matches of stout paper dipped in bimstone; when your trap is "all alive" with captives, ignte a match and pit it under the hole, they will soon be suffocated. Each das empty out the contents for your pet toad's dinner. I once saw a most incenious insect-catcher in Africa, invented by some English artisan. There was a wirework dome like a meat cover; just below it a roller covered with cluth, saturated in syrup, slowly revolved when the cluchwork adjustment had been wound up. Into this "Sirens' cave" every flying thing tempted to settle on the spret stuff was unconsciously drawn, and the cage was soon a moseum of Diptera and Hymenoptera' 'l'here was a trap-door at which the ruffocating operation was carried out (as in the first mentioned trap.) It was altogether a great success.

THE BHANCH INSANE ASYICM, NAPA, CALIFORNIA

In asylum for 500 insane pationts being required for Napa, designo were invited in combetition, and from those gubmitted the projed we now illustrate wiss selected, and will bu carried out. The architcets ars Messrs. Wright \& Sunders. The architects eay they have worked on the principles laid down for the construction of hosutals, at the consention of medical superintendents of Amerian instatutions for the ineane, in 1871.

The new asylum is intended to face the west, and consists of a cente building with wings extending on each side, and exactly alike-the divisions for the bextes beang equal ; twelve wards un each side, exclusive of the :atirmaries, and one ward on the forth floor of the centre building, and has accommodations for 500 prtients. 'The style of architecture is Domestic Gothic. The building will accomuodate:-

Females.

First floor, four wards. .	74
Second floon, four wards....	34
Third thoor, three ward*. .	60
Fourth floor, cne ward .	$\begin{aligned} & 20 \\ & -228 \end{aligned}$
Males.	
First fluor, four wards. .	74
Second floor, four warts.	7.1
Thard floor, three wards	61
Fourth tlous, one ward.	20
Fourth tionr, centre building, one ward.	44

The outside walls of the bastunent story were designed to be built of stone from the quarries adjoining the asylum property; but it has been determined to use pressed brick facings and stone dressings. The walls will be 16 in. thick, laid hollow, with an air space of 4 m . ; the interior walls on the corridors will be 16 in., to leave room for the ventilating and herating dues, the division walls between the single rooms will be 9 in . thick. The roof will be framed in wood and prepared lor slate or medallion metal. 'lhe plastering will be done directly upon the brick walls, and the floors will be deafened with spent ashes and mortar, with view of rendering the bnilding as nearly fireproof as possible, without going to the expense of iron joists and brick atches. The circular tovers at the intersection of the wards are t be built upon a system of fireproof construction with stone staincases and well-holes buitt up solid. The floors will be on the Dennett arch principle, and paved with artilicial stone. The doorways comecting with the wards on the different stories, are all to have stone sills with iron doors, in addition to the ordinary woolen ones. The upper stories of the towers are intended for watertanks.

The basement, about 5 ft . above the ground, contains the hot-water boilers for supplying the wards, the tramway, which extrads through the basement of every ward-and also to the basement of the laundry,--dumb-saiters from the kitchen and laundry, with the other dumlowaiters for supplying thr dining-rooms on the difterent floors, the clothes and dustshafts, also th: hot-air chambers for heating the building, and a number of storerooms under the kitchen wing.

On the ground floor, the main centre building is divided by the centre hall into two equal parts, that to the left contain. t'ie apothecary's shop, superintendent and secretary's offices, with private staircase communicating with the superintendent's apartmente above, and in the rear the steward's oftice and mens rece tion-room ; while that to the right coatains the public parlour, library, and ofticers' diniug-100m, and immediately behind these the matron's room and ladies' reception room

The second floor is reached by the main centre staircase, and is appropriated exclusively to th e use of the medical superintey dent's family It contains a parlour, sitting-room, library, dining-room, and three bedrooms, water-closet, bath-room, dumb waiter, and three clothes-closets, and in the rear four large spare rooms, and also a private entrance and staircase from the ground floor.

Each ward has connected with it a day-room, a corrudor, single longing-rooms for patients, an associsted durmitory
communiating with a chamber for two aitendants, \boldsymbol{n} clothes. romm, a bath-rion, a water-iloset, a lavatory, soiled-clothes shaft, closet for brushres and buekets, a drying-closet, n dust-flue and two fire-pronf staircases to ench, so that the patsente will ber able to reach the chelused ware in the rear, or the pleasuregronnds in front, without communicating with the other wards. livery rour in the buiding has a the communicating with the fresh-air dut for wims or cold nir, "ith ventilatug-llues terminating in the various ventilators in the roof of the builitin: The water-cluact, lavat ry, and bath-room opry from a small pasaga', "ond wot frum the man coiridor; and the hath-romm and the lavatory have communicatiar door, in obler that the Intter may bervo on bathang-inay as dressingroom to the former.

The wards for excited patiasts are to have on one side of the corrider a conservatury fur tlowering plante, birds, \&c, and a water fountain in the centre of ench.
lanndry, bakery, and engint-house are placed in a detached structure 100 ft . to the : ar of the hospital buildings, and containing on the first-fioor the engine-rocm, workshop, bakery, bread room, store-room, foul linen-room,mending-room, laundry, with staircase to the drying and ironing toom on the second-tioor.

In detached buildings in the rear of the last wings, but connected by means of covered cotridors, intirmaries are provided for cach sex.

It is proposed to light tho building rith gas, to be manufactured from gasoline, without the use of fire, the works to be placed in a brick building adjoining the dead-lsouse.

Hydrants are to be placed on the landings of each staircase throughout the building, and supplied direct from the main, with hose constaidy attached, to be used in case of fire.
'Ithe boilers for heating the building are placed in the detached building in i..e rear of the hospital, and are al=o used for driving the machinery, cooking, washin -and heating the hot-water boilers in the bisement for supplying the baths in the difterent wards.

It is also proposed to have in the basement story hot-air chambers, built in brick, to receive the steam-c'uests, which aro supplied with steam from the boilerg, with direst tles lealing from them to the wards above.

With a view thorough ventilation, it is preposed to place above the collat-ties a horizontal equancod trou tube, to receive he vitiated air through separated vertica! flues from the different wards below; terminating in tho towers and yeadilation turrets.

Downward currents of air, for the ventilation of the waterclosets urinals, bath-tuls, and-inks, are to be secured through an arrangement of pipers termiuating in the fire-buxes of the boilurs.

In the rear of the bulding there are three private yards on cach side connected dorectly with the adjacent wards, for the use of the patients, with large aiving rheds, and water fountain in the centre of each.

The stipulated cost is 600,000 dollars.

Tue smallest circular saws ia use are those employed in the manufacture of gold pens, an 1 are a-half incli in diamet r. It is said that some of the sarcophagi of ancient Egypt bear the marks of having been hollowed out with tools of the crown or cylinder saw order.

Haxdsaws in America and Ingland have the teeth pointed from the handle, while in Asiatic countries tad in Greece they are mado with teeth pointed the other way. 'I'he latter must be operated by pulling thim, the former by punhing. In delicate work, and where very fine small saws are used, the l-astern 6 ow is the licst. Whe Orient ils differ from us in setting the tecth of the saw also. They turn a group of a dozen one way, and the next group the other, while we alterna. one on one side, the nevt on the other.

T'us ancient Egyptians made saws of bronze, and applied them to cutting ont planks from logs. These were singlehanded like those now used liy carpenters, and the \log was placed on one end, and tixed firmly in the ground. The sawyer then bigan operatio ss, sawing downwards, and dividing the log into planks, but the process was very slow. The Greek saws were fixed in a fraine, very much as the contrivance used saws were fixed in
in modern times.

BERGMANN'S HGH-PIESSULE BOLLER AT THE VIENNA EXHIBITION.

On this and following pages we illustrate some of the $\mathrm{q}^{2} \mathrm{rin}$ cipal exhibits at the Vicnna Exhibition. Our first illustration is from Engineering and represents ont of the two large boilers on Bergwann's patent. They are not exhibited at wo: k bat are lyiag outside the German boiler house in a position where every part oi them can be freely inspected. Their construction is somerrat novel and the boilers themselves have crcited a good deal of attention in Germany
In our engrarings lig. 1 chows a front and a side chevation of the boiler, with corresponding cross sections of its farnace and brick setting. Fig. 2 is a longitudinal section, wf the boiler only. Fig. 3 shows a cross section of the boilar and furnace along the line 13, 1 " $"$ ' in Fig. 1, and Fig. 4, above, a gimilar section along the line $A, A^{\prime \prime \prime}$. Figs. 5 and 6 are sentions through the opper and lower horizontal brancher rctpectivoly. The boiler consists cessentially of two cyliunfere, if which the uppur one is larger in diameter and shorter than the ? lower one. Thi lower cylinder is 10 ft . 37 in. long by 2 ft . 7 the presure of the steam ring, the tubes being kept in int \because :
in. in diameter, its bottom end is e tirely eminedded in brick"ork for a depth of about 14 in. A wrought-iron sediment thle, which also is mosily imbedded in brich work, and which is 1 ft ?! ia in diameter, is rivetted to the shell as near the bottom an possible. In the cover of this tube are the ferd valve and the hlow-off valoe, but the latter is thus necessarily several inches above the lowest part of the builer. The upper part of the boiler is 4 ft . $\mathrm{i} \frac{1}{2} \mathrm{in}$. in diameter by f ft. f in. higit. From its lower plate hang suspended 44 tubes of the kind well known it England as Field tubes, that ia, water tubes cinsed at the lower end, and having an internal circulating tube of small diameter. These tubes, as will be seen from the engravinge, are placed bo as to hang verti, ally in a double 'ir:round the lower part of the loiler. They are 3 in catc....ai diameter, and 4 ft .8 id . long. On the upper end of es. f . a conical ring is welded and the holes in the tobe plate arm in is of the same taper as the ring, the tubes being kept that:1 $1:$
the presure of the steam. In order that the steam and wall:

gaugrs may be placed dinectly on the boiler and not connected to a unly by tubes through the setting, a cyiindrical bor is wetted in the npper shell of suflicient length to extend through the brickwork, and on the front of this are attached the gauges. Un the top of the boiler is a small steam dome, on which stand the stop and safety valves, the latter being enclosed in a luck-up case.

The furnace, it will be seen is entirely caternal to the boiler thelf, and is constructed of brickwork laned with firebricks. The grate i, 4 ft 11 in . long (the tirebars buing in two lengthe) by 4 ft .3 in . wide. The surface is all in one; but there are two fire-duors, so as more easily to distribute the tuel The flues are arrauged so as to compel the products of combustion to pass spirally round the lower shell and among the tubes in the way indicated by the arrows. After leaving the tubes they go direct to the chmoney, scarcely playing at all on the upper part of the shell, which is almost entirely emucdded in brick work.

ri.tTe beNDING ROLLS AT THE VIENNA EXHIRI-

 TION.The accompanying illustration represents a plate-bendiog mar hine exhibited at Vienns by the Chemnitzer Werkzeagmaschinen Fabrik (formerly J Zimmormana), Chemnitz. The rolls are 325 metres (88.58 in .) in length, and 250 mm . (984 313.) in diameter. The pulleys ale arrauged so as to drive, though double gear, both lackwards and forwards. There is a very weat arravgement for mising and lowering the top roller. A handwheel at one end of the machine communtates m.tion through a pair of bevel whecls to a horizon13! spiodle traversing the whole length of the rolls. This spindle has two worms on it which give motion to worm whels (one of which is seen in the end viers) on the outside of two columns lying zight underacath the end gudgeons of the ruller. The rotation of these worm whecls raises the roller (which ss showa in the cugraving in its lowest possible postime) by means of interan screws. The machine is simply and strongly constructed, and its workmanship is firstaclass; it is intended to bend plates ap to $\frac{1}{4} \mathrm{in}$. in thickness. .
-Engineering.

HoRIZONTAL ENGINE WITH SULZER VALVE GEAR AT THE VIENNA EXHIBITION.

The ralves in this engine are four in number-two inducmon, and two eduction-and are of the ordinary doublo-beat equilibrium type. The steam valves are placed on the top of the cylinder, and the exhaust valves below it. A spindle running along the back of the bedplate is drizen off the crankshaft by bovel gearidg; it drives the governor in the same way, and aleo, by means of two cccentrics, opens the steam palres. Cams on the same spindle, close to the eccentrics, open the exhanst vaives. which are closed by spiral springa,

HLANING MACIINL, A': THE VIENNA EXHIBITION.

CONSTHICTED BY MESSRS. SCHONE AND SON, LEIPZIG.

and kept chosed also hy the prosenre of the steam. The arrangement for chosing the steam valve's is under the control of the governon a folloms. The connection between the reds of the ecoentice abore menthoned, and the levers wheh directly operate upon the valve spmadles is a trigid, hat is eflected ly the contact of steel edges in the f rmer with steel sliding borks connected with the later. 'Illeae blochs are entirely wader the control of the: x overum, wheh it will be seen is of the approvinately paratohe deveription, and the length of the contact whil, it permits between them and the ediges bef re mentomed, determines the cout off. The actual closig of the valves is effected bis mean-if spmal springe, the boxer of which are each furni-hed wat! a enail an cylinder as a buffer. 'The steam in admitted to the jacket near its under-ile, and passes through it on its way to the valve, to which it $i, ~ a d m i t t e d$ by the stop valve shown on the top of the cyliuder
'The bedplate is of the nsall! Corliss type, and well designed. the pirton rod gaiden arelnurd out. and the head, which is, as usual, male separate lom the rod, has its brasser adju-table ly two bolts The comuectimg lod in of fom what unusual design, being flattened on each side from the head downwards for a consideralule portion of it lengif, and the air pump rod is made in the same way. The crank itself, like many ohers at Vienna, has, a cutisiderathle amount of unrecesoary whilh at the small ebd. 'The arr pump is made in a casting entirely separate from the engine, it is plared at an angle, and wonked b! an eccentric on the cranhshat The exhaunt pue from the cylmuler is connected with a largerpipe lyug hormontally, aud beadung to the arr pump, thas pipe rerves as the coudonser, a get of water bing introduced nuto it at the back ciud

W' ${ }^{2}$ illustrate above, a planing machine exhibited at Vienua along with other tool-, ly Mersss. Schone \& Son, of Leipag The machine emb dars nuthing specially new in its constructim, lut is vety strougly and simply made, and ought to be an excellent working tool. It is intended for planing both hori\% nt il, vertical, und bevelled surfacee. It will be seen then it is proviled with two toal hoxes ; of these the one to the right in a fixed box of the ordinary cometruction, while the one t" the left cousists of a cunple of chapre vither of which can be moved ridewave at pleasure The obyect of the latter in to allow the tuul to be placedin the rest at an angle, which is often more convenient for, for instance, undereut surfoers The machine is made self-acting throughout, and the slide rest, as usual, can be set at ary angle. The widih between the standard, in $850 \mathrm{~mm}(3346 \mathrm{in}$.) and the maximum height avai?-he for work is the same distance. The length of the moving bed is 1700 mm , or 5 ft .7 in .

MoUlding and planing machine at the viensa EXHIBITION.

Tins machine planes or monlds up to sinc incher wide, and is fully shown by the clevation aud plan. The specialities consist in the cutters being all ranged on one side of the mato framing and the feed-driving gear un the other. The , bject of this is to give ea-y access to the cutters for sharpening and setti ${ }^{4}$ withuut the incunvenience of having to get on or lean over the gearing, as in other machines of this class. A further advautage is obtained in having the fecd-rollers to overbasg

