IMAGE EVALUATION TEST TARGET (MT-2)

Photographic Sciences
Corporation

23 WESt MAIN Street
WEBSTER, NY. 14580
(716)872-4503

CIHM,ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the images in the reproduction, or which inay significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/

Couvertur's endommagée

Covers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverturs manque

Coloured maps/
Cartes géographiques en couleur

Coloured ink (i.e. other than blus or black)/
Encre de couleur (i.e. autre que bleve ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La re liure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments:/
Commentaires supplémentaires:

L'Institut a microfilmé le meilleur exemplaire qu'il lui a èté possible de se procurer. Les détails de cet exemplaire qui sont peut-ètre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite. ou qui peuvent eriger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurėes et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquèes
Pages detached/
Pages détachées

Showthrough/
Tra.1sparence
Quality of print varies/
Qualité inégale de l'impression
Includas supplementary material/
Comprend du matériel supplémentaire
Only edition available/
Seule édition disponible

Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/
Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure. etc., cnt été filmées à nouveau de façon à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy flimad hare hes been reproduced thanks to the genarosity of:

Library,
Geological Survey of Canada

Tha images appaering here are the best quallit possible considering the condltion and lagibillty of the originel copy and in keeping with the fllming contract speciflcetions.

Originel coplas in printed peper covers are filmed baginning with the front cover and ending on the last page with a prlnted or illustrated impression, or the back covar when appropriete. All other original copies ara fllmed baginning on tha first pege with a printed or illustreted impras:sion, and ending on the last pege with a printed or illustrated impression.

Tha last recorded frame on eech microfiche shall contain the symbol \rightarrow (maaning "CONTINUED"), or the symbol ∇ (maaning "END"). whichever applies.

Maps, plates, charts, atc., may be fllmed at different raduction ratios. Those too lerge to he entloely includad in one exposura are filmed beginning in tha upper left hand corner, left to right and top to bottom, as meny frames aa required. The following dlegrams illustratio the mathod:

L'exemplaire filmé fut reproduit gràce à la générosit́ da:

Bibliothèque,
Commission Géologique du Canada

Les imeges suiventes ont éth rappoduites avec le plue grend soin, compte tenu de la condition at de la nettet' de l'exempleire fllmé, et en conformitd evec les conditions du contrat da fllmege.

Lea exemplaires origlnaux dont la couvartura on pepler est imprimde sont fllmós en commancant par le promlar plat et en terminant soit par la darnlera pege qui comporte una empreinte d'impreasion ou d'illustration, soit par le sacond plat, selon le cas. Tous les autres exemplaires originaux sont fllmds en commançant par la pramidre paga qui comporte une emprainte d'impression ou d'illustration et en terminant par le dernidre page qul comporte una talla emprainte.

Un des symboles suivents apparaitra sup la dernidra image de chaque microfiche, salon la cas: le symbola \rightarrow signifie "A SUIVRE". le symbole ∇ signifle "FIN".

Lae cartes, planches, tablaaux, etc., psuvent étre fllmés à des taux de ráduction diffórents. Lorsque le documant est trop grand pour être reppoduit an un seul cllchd, il est filmd a partir de l'angle supdrieur geuche, de gauche à droita. et do haut on bas. on pranant le nombra d'images nicessaira. Les dlagrammes suivants illustrent la márhode.

1	2	3
4	5	6

©nell's Cettures on Cbeologn.

EIGH'T LECTURES ON GEOLOGY,

Delivered

AT THE BROADWAY TABERNACLE IN THE CITY OF NEW-YORK,

BY CHARLES LYELL, F. J. S. vice president of tie geological socirty of london, ktc.

FRESII WATER FORMATIONS OF AUVERGNE; EXTINCT VOLCANORS OF SUCCESSIVE PERIODS
GTRUCTURE OF ETTNA; ORIGIN OF GRANITIC ROCKS ; CHANGES IN THE ORGANIC WORLD.
UPHEAVAL AND SUBSIDENCE OF TIE EARTH'S CRUST; SUBMERGENCE AND RE-ELEVATION OF THE TEMPLE OF SERAPLS ORIGIN OF CORAL, REEFS, AND THEORY OF TIIEIR CIRCULAR FORM ; CORALINE LIMESTONE OF VARIOUS GEOLOGICAL AGBA NATURE AND ORIGIN OF COAL; PERIOD OF ITS FORMATION.
FOOT-MARKS OF FCSSIL ANIMALS; THE NIAGARA DISTRICT.
CIIIROTHERIUM ORGANIC REMAINS OF THE MOST ANCIENT ROCKS.
RECESSION OF TIIE FALLS OF NIAGARA.
goULDer formation ; Transporting power of ice; action of glacier and iceberge.

AEPORTEDFOR "THE NEW-YORK TRIBUNK."
\qquad

NEW-YORK :
GRDELEY \& McEIRATH, TRIBUNEOFFICE.
1842.

ADVERTISEMENT:

The Eight Lecture on Geology here submitted to the publie are substantially thess which have been delivered by Mr. LYELL before large and respectable andiences in the priacipal Cities of the Union. They present the conclusions to which Geologists have been: led by the most recent Diseoveries and Researches in that Science, by explorers in botis hemispheres, including those who have labored in the employment of our several States They may therefore be justly regarded as additions to the sum of Geological knowledge conveyed in preceding priblieations, and as such valualile to the man of Science no less than to the inquirer and stndent. They were reported for The N 9 w - York Tribune, as de livered at the Tabernacle, by Mr. H. J. RAYMOND, Assistant Editor of that paper whose Reports of Dr. LARDNER'S and other Seientific Lectures lave already been received with deeided and merited approbation. They have been carefnlly ravised and: prepared for this edition, which the publishers confidently trust will be found worthy $\boldsymbol{o}^{\text {a }}$: equal favor.

Nect-York, April 1:3, $1343:$

LECTURES ON GEOLOGY.

LE CTUREI.

Hy thoses s in the we beens in hoti? States
wledge no lese , is cle
paper ${ }_{r}$
cen re-
ed and rthy 0 ?

Mr. Lyril opened his Lecture by saying that he had been invited to give a short course of lectures upon one of the most extensive branches of Na tural Science; and as he was to have but a few meetings, he should lose no time in prefatory remarks, but would proseed at once to the subject and endeavor as well as he could to enable his class to comprehend the objects of Geology, the means of proof employed, and in what manner we attempt to interpret those monuments we tern geological. If any one should ask him in what way he could soonest arrive at an understanding of the subject so far as eight meetings would allow, he should take him at once inte the field of observation. I should go, said he, up this magnificent river-the Hudson-and point you first to the Palisades, which you can see from this City; I would show you the natural rock, called Basalt, with its columnar structure, and explain the reasons why we conclude that these rocks thus piled up have existed in a melted state in the interior of the Earth. I would show you the other rocks-as the Sandstone, which was once sand until it was consolidated-deposited, one above a nother, under the water until a flood of melted matter flowed over anel made it solid. Going still farther up, I would show you the gneiss and granite of the Highlands ; or I might come back to this very island on which New-York is sitmated.

But as it is impossible thus to carry you into the field, the next best thing I can do is to show you some representation of natural scenes, and explain their several parts. The scene to which I first call your attention is one of the most remarkable known in Europe-far more striking than any I have seen in the British Isles. The series of geological phenomena, here exhibited, all belong to the same great class of rocks, but it is easy for the merest novice to see that they belong to different periods : their erigin is to be referred to distinct epochs and to dissimilar causes.

This is a scene of Auvergue. Having visited all the portions of it I can vouch for the accuracy of the geological representation which is enlarged from a drawing by my friend Mr. Scrope. To understand the geographical position of the region it will be necessary to rofer you to a map of France. What is called the Puris Basin is a strata of comparatively modern origin: nearly two hundred miles South of Paris are situated the Extinct Volcanoes, of which the principal mass is Mount Dor, which is in the centre of the granite region-its rocks being of marine origin. And here let 1 lu say that by rocks we mean technically in Geology any set of mineral masses whether hard or soft-whether loose like sand or consolidated like granite-soft clay as well as hard shale. These rocks contain a variety of shells and corals, called marine as having beenformed originally beneath the sea. This is the zone of the granite region in France. Mount Dor, which is near Clermont, is more than $\mathbf{1 5 0}$ miles South of Paris.
The next scene I shall show you is a verticnl section of this region-just as if you should dig a railway-the rocks being represented to a certaita depth, as far as half a mile, as though they were cut down vertically, just as yeu may see in a line of sea cliff. The upper portion is of basalt-similar to the Palisades-and the lower is of a differ ont kind of volcanic rock-a Feldspar rock called Traclyyte. As it would be impossible for you to follow me were I to attempt it, I shall not enter upon any detailed explanation of these terms. It may be well to say that more rocks are found in this mountain than could be represented in a draw. ing. There is a great prevalence of Feldspathic rockz and of heavier basaltic rocks containing 1 dark mineral called augite. You see the granite represented below the volcanic rocks as we have abundant evidence for thus representing it in that section. You see the granite peeping out from the Trachyte: we find dykes of other kinds of
lava passing thro" sh the granite mud then joining into sheets of hava, a 3 wo may cull them, which wo know once flowed in a melted stream.
We have the granite then as the fundumental rock: then come the different kiuds of volcanic rocks: then at a grater distance the strutifed rocks, which we linow ure of fresh water originformed at tho bottom of lakes which havo naw disaperared just as the fires of the volcanoes are now extinct. The basalt appears, us I huve said, in precipitons eififs divided into verticul columus like the Palisades. In another portion is a mass of white calcareous marl abonnding in shells and not far off is a smaller cone-a mass of volcunic matter of Later dato than the other. After the volcano had poured forth its lava until it had piled up a mountain 3,000 fees high, and a valley had been cut down to the subjacent granito through a great serics of voleanic rocks, and after the lake had been drained by a river called the Cuos, then there harpened another volcanic cruption from the volcano called Puy de Tarturet similur to the one which was formed in the Bay oí Baiae which it resembles in structure and size. Now when this was thrown up (which is but a type of a hundred similar cones in that part of France,) it stopped up the course of the Coos-blocking it up so as to produce a lake which once extended much farther for the alluvial matter which was carried into it formed a large Delta which greatly curtailed its boundaries. At tho same time that the volcano bursted forth in the midst of this ancient valley out flowed streams of lava from the other side, which you may see passing at the base of the hill on which the castle of Muro stands. Flowing down the valley for thirteen miles in a narrow stream it dispossessed the river of its ancient bed as has been the case in Iceland within tho last century, when streains of lava have flowed from the sides of Hecla and Skapta Jokul and furced rivers to flow aside from their usual beds. So out of this flowed a stream which took its ceurse along the base of tho hills, cutting its way through the fresh water formations.
It is a matter of proof that these strata are really of fresh water formation-that they were formed in ancient lakes where were left valleys after the draining of the lakes, and that through the bottom of these flowed the lava. Thus we may trace the cappings up to Mount Dor, the aucient and grand centre of the first eruption. From this tho higher cappings of basalt were produced; and to cause these phenomena and cut through the valleys so as to allow other valleys to be
formed, how great a series of changes and how long a chrowological order of events is implied: The hight of Mount Dor above tho level of the sea is 7000 feet, and we can look back to the time when that conntry was only 3000 feet above the sea, and consiste. ${ }^{2}$ exclusively of tho fundamental granite. At that time we find there were depressions in which there were a number of lakes extending all the way from Phisis to the source of the river Loire. That was the first state of things, and the mountains were featureless in appearanco -with round swells but with no picturesque, un-evenoutline-and into the lakes sediment wos carried by rivera, and the bede, of which. I shall soon speak, were accumulated. Then came a period of the draining of the lakes, and then the excavation of the valleys; just as we Lave on the borders of Lake Superior and other Northern lakes, where the rocks are granite. If Eurthquakes should occur and shake that region and alter the Ievel of the country, tho lakes would be drained and we should lave tho second state of thing; as in this part of France. If we follow the volcanic eruptions in the same district until the lava was piled 3000 feet high, we sloold have the third period. If floods should produce deep valleys, ard a new set of volcanoes should form sunall mountains at the bettom of the valleys, we should have the fourth period. The fifth period would arrive when rivers should have eaten out deop chasms even in the most modern lava, and formed precipices some two hundred feet high-which would involve a period of considerable duration.
While great changes are going on in the inamimate world others no less interesting uro produced in tho animate world; for we see entire fluctuations in quadrupeds and other beings which successively inlabit the region. It is impossible to represent in a picture, in their proper proportions, tho hight of the various parts of the country. The fresh water formations do not appear sufficiently in depression to give the proper appearance of the ancient lakes.

There is no doubt that the superior upheaval of the Southern part of the country was what caused the drainage of the Lake and the excavation of the valleys which are cut through them, producing what is called the Lacustrine formation. If we simply take for granted the upheaval of the whole district, (which need surprise no one, for we shall have occasion to show that far more extensive upheavals abovo the level of the sea, are now going on;) we need only suppose a series of movements such as are demonstrated to have talien place, to
and how is implied : evel of the ack to the feet ubove tho fundahere wero jer of lakes source of c of things, ppearanco esque, unment wos l. I shall n came a d then the ave on the Northern rthiquakes 1 alter tho e drained thing; as o volcanic lava was the third , valleys, rm sinall e should d would put deop d formed 1-which ration. he inaniproduced fluctuanich sucssible tu portions, ry. The ciently in a of the eaval of t caused on of the oducing If wo e whole we shall sive upw going vements lace, to
have raised the Sonthern portion at a greater rate than tho Narthern, to find an easy explanation fur those geagraphicul phenomena.

I have now stated that cotemporaneously with these mighty changes, physical and geographical, there went on a acries of revolutions in organic life. I am not going to enter in the present liceture upon tho dithicult problem of the origin of granite. We nust talie the granito as it exists in the country. Hills aro inade of it, and lakes havo been hollowed out of it. I will come at oner, then, to the Lacustrine period. Tho lakes were inhabited by a different set of shell-fish, of molus. cular animals, water-birds, crocodiles and turtes from any that now exist in that part of Frunce. There are now no such animals as once abounded in tho ancient lakes of Auvergue. We find their remains well preserved in the various strata. The tortoise which then oxisted is not now to be found. I may remark, two, thut there havo been discovered the skeletons of some thirty or forty quadrupeds to which Cuvier gave as many different names, as the Yaleotherium, Anoplotherium, \&c., which need not be mentioned. The Paleotherinm is an intermediate species between the Tapir and tho Hhinoceros, and the Anoplotheria has some relation to tho same animals, and also to the hog tribe. There are also several species of animals found in the neighborhood of Paris, which now existthough not in that region-as, for instance, the species of Oppossum, which now exists only inthis country and Australis. On the whole, thero are about fifty species of quadrupeds discovered, some ef which are as largo as the Rhinoceros. I need not say that a single juw, or even sometimes a single tooth, is quito sufficient in tho hands of a Naturalist to decide the species of these Mammalia. These animals weroundoubtedly washed down by the swolling of the rivers, just ns they are liable to be now. Wo lave no hesitation in saying that these fifty species of quadrupeds have now passed awny from the glohe. Some might doubt our ability to say this; but a little consideration of the fossils found will be sufficiently convincing. I have procured drawings of one or two shells which are there found-as, for instance, the Planorbis, which abounds at present in the lakes of North America, and which once existed in the lakes of France, and are now found in the strata. The Valvata, a fresh-water shell which is common here and in Europe, was also to be met in the old Lagustrine fermation of France. Any naturalist will be easily convinced that these shells are now extinct in that region, and no one will be so akep-
tical as not readily to grant that wo are safe in saying that the Palwotherium, the Megatherinm, and many other large quadrupels which Cuvien dige covered aud compared, uro now lost, and havo been permittal by the Athor of Nature to die out from the globe. This is the tirse state of the ancient word of this region, to which we are carried back by tho geological momunents of this scene.

The next period of the ancient volcanie rocks of Monnt Dor was whon they produced a perfectly distiuct race of quadrupeds, of which I believe only one liat been fund to resemble those of the former period. All the genern are different, ald nlmost all of this period are of existing genera, but wot to be fand in that prit of Europe. We find the rhinoceros, the elephant, the hippopotamus, the bear, and othera, which never within listorical times have peopled that cold region. The beaver which is found is not the same as that now commion to Europo and North America, and eo with a vast multitude of athers.

But you nay ask how we should have these fossils remaining in volcanic rock-how they could be presorved if they were enfolded in a sheet of red-hot matter as from a furnace? It is easy to explain how this might huppen. In all volcanoes, where the lavas are feldspathic, there are great floods; lakes which exist in the craters are suddenly voided, as happened in Etna when floods issued from it which swept awny rocks and quadrupeds with ease. Showers of ashes also fall, and often surprise wild animal-destroy, bury and preserve them. In this way it is that we find the skeletons of so many quadrupeds entombed in the ancient ashes-conglomerates as they are calledthe rocks being formed of the pobbles carried dawn by these floods.

But befors I speak farther of the quadrupeds of that period, all of which are now extinct, let me describe mare minutely the aperations of tho first period-the first gradual filling up of the lakes and the formation of the Lacustrine strata; then we will speak of tha origin of the volcanic mass and of the animals buried in it. Let us first ask how these ancient lukes were filled up. We find around the borders, and under the other strata, beds of pebbles which have been derived from tho rounding of fragments torn from rocks in the neighborhood ; and there is this remarkable circumstance connected with it, that no geologist has ever detected a single pebblo of volcanic origin in these conglomerates. Every one knows that if a river flows from a country abounding in particular rocks, it will tear off and carry along portions of them, discharging them near the shores of the sea, The
fine mul in carried out to a greator distance. Now there are vast piles of voleanic rocks, some noft athd others hand and capable of being rounded ; thongla they are sometimes a buached feet thick, not one is found in the old gravel beels of the Larhatrine formation. Tho inference is obvionsthat not one volcanic cruption had occurred, uny more than upon the burders of Lako Superiur, which is a country without volcanin rocks. This negative fuct ulme proves that in the first priod tho region was tranguil and no voleanic ernptions had occurred.

The gravel bels at the bottom of the lake soon became fino sand und passed into fithe marl:somo sand was carried to a greater distance an you may now see falling clouds of it at the mouths of rivers settling to the bottom and being carried out. Marl which has a leaflike appearanco is often produced by the small shells of an insect called Cypris-a erustacean-or between an insect and a crustacenn-which is very hiko a bivalve, such as fresh water museles, with this differenee, that it mots its integuments, whilo the others do not. Aecordingly myriads of these shells fall to the bottom, and for hundrels of square miles you may find that the strata havo platos and leaves as micucauses sand-stone to divide; and this is produced entirely by the cases of that small species of auimals. Many other shells show that this is a fresh water and not a marine formation, and this may show how gradual was the procoss that went on, as does also another lind of rock called Indusial Limestonc-which consists of thousands of cases of animals which have been imbedded by tho waters that fowed into the lakes. This is in the upper part of the marl, und we see it breaking out in the side of the lill at Clermont, when it oceurs in round nodules. Every one of theso consists of cases of insects encased by himostone. This in sect, which is called Phrygarea, when it is in the larua state, and exists in tho water in the form of a eaterpillur, covers its case with shells to give it a proper weiglt; it often takes a hundred shells at once; as we sen in the American Lakes they take small stones for the same purpose. They of ten seize upon these shells without tho least ceremony, even when tho fish are alive within them, and walk about in this wry. It seems that they swam about in these lakes when they fell ono after another encased in carbonate of hime, antil you may now find the whole mass lengues in extent.This may givo some notion of the time required, and tho gradtal process neeessary to produce beds 1,200 feet thicls. You may often find the seed
vensel, of phants potrificd in theso beds. In sev. eral lakes of Now-York-in Seneca Lake for in. stance, the whole bottom is covered by a green plant called Chara and Gyrogonite in sueh num bers that withont other indicatlons these alone would tell us of the origin of the formation.
It wos formerly a matter of great difliculty with Mr. Scrope und other naturalists to explain how Indusial Limestone is often fuund over wido areas ; it wus eusy to see how it might exist near the shore, but not so easy to understand how it should ho found at a greut distance out ; for the berders of theso ancient lakes, with all their bays, can yot be traced as accurately as if they now existed. How should these Indusinl Limestones be found teln or twolve miles from shore? A few years since, white in Denmark, I behieve I found an explanation. In company with Dr. Beck, an emineut maturalist of Copenhagen, I saw in a lake 20 or 30 miles in diameter a large band of rushes or reeds fleating on tho water; they had been torn up and floated out miles from the shore. And on every one of them was an immense number of these Phrygarca, wafted out with them; and I fomd that twice every year a erop of these rushes of different kinds is prodaced, eovored by different kinds of Phrygarea, and earried out by storms to the middle of tho lake. Thus was removed the difficulty which before had existed with relation to this part of Auvergne.
The transition from the Luenstrine period to the Volcanic is not abrupt. Changes rarely occur se suddenly as are represented by geologists. None such have taken place in Auvergne. Thongh the two periods aro very distinct, yet the volcano began its eruption before tho lukes were drained. Showers of ashes fell into tho lakes sothat voleanic tuffs are often found to alternare with the marl containing limestone which is the upper part of the formation. Here and there may alse be found dikes or threads of basalt. These fiects show that there were few outbreal:s of this igneous matter beforo the lakes were drainod, when greet rivers were still carrying down mind to the lakos. Bur the lakes son disappeared and then conmenced the excavation of the vally ys.
Of this excaration of the vallcy there is a beautiful example along the valley of tho Ceos. When about twenty miles beyond the termination of the stream of lava which eame down froma mount Dor and filled the valley-we find breccias in which are contained the bones of auminals. A large part of this formation contains beds of pumice stone, which is sometimes fourd floating on the sea; itis
eds. In sev. Lake for in. d by a green in such num these alone mation. litticulty with explain how r wide areas; ist near the ow it sloould the borders ays, can yet 10w existed. s be found A fow years ound an excк, an emi. in n lake 20 f rushes or been torn And on number of om ; and I ese rushes by different storms to noved tho relation to
ciod to the occur so ts. None hough the alcano bedrained. t volcante the marl part of be found how that s matter rt rivers
1s. But meneed
a beautiWhen of the int Dor which ge part stone, a; itis
produced by the trachyte that is thrown up, the gasen expanding within it produciug the pores. Thero is no pumise in the bnsaltie formation nor in the upper part of Mt. Dor; but in the older portions you may seo thomande of them mhowing how gradually the monntin wns formed just as were the Lacnstrine formations.

In ngeneral view of there sulgiects yem may despair of understunding them; but when we exaunine the minute parts and snbodivisions-when you aed the animal remains preserved in the struta and soe in the voleanic rocks how one shower of ashee has fallen above another, you will hegin to have hope of compreliending the successive steps by which these geological monumeats have been built up. We see how the mountain was furmed by the greater filling up of volennic matter at that peint thun elsewhere; after thant we see how the valley was agnin hollowed out, atod then cnme the floed from Monnt Dor briuging along the rhinoceros and other animals of the second period. Again was this cut ont, leaving bones enough to determine its character; and lastly the river had its channel occupied by the most modern lavastream. Abent 40 different species of quadrupeds have exsted there-of all sizes from that of the water rat to the great. Mnstodon.

In the eruption of Coseguinạ, in Nienragun, Central Americn, on the 18 th of January, 1835, only seven yenrs ago, there was a fall of ashes which renched severnl hundred miles, and some fell at Chiapn, 1,200 miles distant. But for $\mathbf{2 5}$ miles the beds wore ten feet thick. Birds, cattlo and wild animals were scorched to death in great numbers and buried in these ashes; fish were smothered in the rivers; birds fell from the air, and the destruction extended over a vast region of country. There is evident reason to believo that a similar eruption occurred during the formation of this ancient mountain, and that the creatures which lived there were buried in the fall of redhot, melted matter from the air. Between the two eruptions there was probably a long interval, and the animals had time to recover their numbers. There hnve been intervals of seventeen centuries in the history of active volcanoes. In the island of Ischia is un instance : and in the history of Vesuvius there was an interval of five centuries. We have a description of Vesuvius in 1631; it was then covered with woed; its crater was five miles in circumference, and over its edge, after descending a short distance, was a beautiful copse wood; grassy plains spread out below, cattle were grazing upon them, and a pleasant lake added charms to
the scena. The peasants who lived about them had begun tolook upon the stories of fiery floods hnving poured out of it as fibles of the olden time. All wan peuce and seemrity. But thene carae an enrthynakf, sud in an instant all their forenta und grnsay plains and their nnimals were hurled intu the uir with the ashers and flame; then urose us from u caldron a fiery tluod that filled the whele gulf, flowed down in neven rivers and took a direction directly over where Herculaneum had heen destroyed sixteen centuries hefore by a similur flook of molten lava: and thus one town was buried beneath the other. After the heated gases have found relicf, burst forth and been discharged, it appen's that the dact or clunnel gets senled up -the lavitcools nnd consolidutes, and it then requires no little foree to burst it open again and cause n new disclonge. Thus there is a long interval of rest until the gases ognin accumulate and have suflicient furce to make for themselves a pas. sage.

Thus much for the Lacustrine prriod, and now a few words respecting the more modem volcano as a type of the class which nre the result of ouly one, two or threc eruptions, and are often formed oa the peaks of Vesuvitis and Fina a the light of from 500 to 700 feet in a few months. There is it considerable crater at the tep, covered with benutiful chessnut trees. Getting at the top of the crater you look downinto a deep funnel. One circumstance of interest in regard to this is its loose, incoherent nature. There can hnve heen no violent rush of water, of sufficient force to carry away animals, else much of this lonse matter would have been carried away. Every thing nbont it looked so freslı that one would say it could have been formed but a short tinse ago, and yet we find no inention in history of any eruption in this part of France; and when we go down the vnlley and examine the lava stream which we know to be its own, we open onr eyes to the prodigious antiquity of this most modern volcano. By reason of ity loose structure, as is also the case with Ætna all the rain that falls upon it is imbibed at once, and no streams can be formed down its sides.

Following these valleys along you see at lnst the old river bed as it wns in the olden time when there was no lake and the river flowed on unin. terruptedly. It has a bed of pebbles-formed by rounding the fragments of basaltic trachytic rocks from the higher country and from the enppings of the hills. At a still higher point we find no volcanic pebbles, because there were no volcanoes;

Hat then rnum: have been once the lower portion of the country in order to be a water course, as we know it was.
Comar oncmmped hie army but about ten miten from Chrmont, and yet it doen not appear that he, was nware of any ernption having taken place in that vicinity, clse he would have alluded to it in his Commentaries. And Apollomarius certainly woukt have recordenl it had any such ernption taken place whthin his historical knowledge, as hu rosided in this vicinity and wroto a very mimute necount of its history; bit it does not appear that ho had the least intea of the origin of the lake. So that his silence is comelnaive as to the bigh antiquity of sho occurrence of even these modern evente.

You lave from these observations some iden of Uhe great succesnion of events contemplated by Goology. If you ask me why all these hills and
valleys may not have toon formed at once ln the origin of things ? - why they may nut all have been called into existence nt the sume tine as the nue clews of the phanct itself! -I may answes, that even tho brief skeloton of fucta I have glven will be: sulficlent tor mow that this could not have been the ease; that theas hills and valleys were nu inate at the oume iastant, but that they were the work of diffirent canses, ncting at different timessonse being produred by the acton of water, and uthers by fire; that they were produced at diffirent periods of time by secmulary eauses, appohted by the Author of Nature to govers tho successive changes in the hanimate and possibly in the animate creation, which he mal in his wisdomem. ployed in producing the successive changes of which the recourls are fornd in the very structure of the globe.

1. ECTUIII II.

In the ceurse of my last Leeturo, while endeavoring to deseribe the geologieal phenomena of n region about the centre of France in Auvergne, I and oceasion te introduce you to several classes of utrata-the granilic, the volsanic and cestain aqueous strata, constituting three of the grand divisions of the rocks of which the Eath's coust is made up. Let me remark that by the Earth's cruse techaically we mean that part of the exterio. of our planct which is accessible to human observation; and the whule of this may be said to be mado up of theso three kinds of rock.
The granitic rocks are erystalline and contuin ne organic remains which have been meationed as sharacterising the sedimentary or aqueous stata. Thoy aro crystalline masses and the true granite is unstratified. It has no pebbles nor any of those taffs or porous rocks which are found in the volcanic class.

The volcanic rocks may also be said to be void of organic remains except thoso portions which I described as containing beds of sand and nathes showered down from the nir or which fell into lakes; or except those Breccias and conglomerates which I described as having flowed down the
flanke of some velcano as at Nount Dor, in which quadrupeds and other animals have beou buried and their skeletons found so as to determine what animals iuhabited that country when the ever. whelming eatastrophe oecurred.
The aqueous strata, or those which were furmed in lakes and sens, are the next division. I shan! only aliude to these briefly by suying that they are known to be of fresh water formation from the fresh water shells, \&c, which are found inbedded in then. 'These fiesh water strata compose but a small portion of the strata of the Earth's erust: just as lakes new are of small extent in preportion to the seas on tho Earth's surface, so were formerly the estuaries and lakes of small area compared to the ocean: and we find these sedimentary strata containing Lacustrine or fresh water remains much less extensive than the marine strata. We find the strata of marine origin, containing sea shells and corals, at all distances from the present shore of the orman, and at thll hights above the level of the sea. This fact alone wrold render the results of geologicnl investigation extremely interesting. We find the marine strata often far in the in. terior: and among the Alpa there are met, 10,000
once in the tll have been 0 nithe nu4, othateven en will bre have been ys were nu ey were tho ent timeswater, and at diffirent polinted by successive in the nniistom cm . hanges of y structure
in which ou buried ine what he ever. c furmed - I sha!l they are rom the nbedded se but a s crust : oportion formermpared ry straremains a. We ng sea present level the reterest. the in. 10,000
or 11,000 foet above tha level of the sen, rocks contalning uneqpivocal remains of crentures thut once lived in the ocenn. I have onyself gathered limeownes contaluing marine shells fite ubove the hight of perpetual now in the Berueso Alps and at Mount Carmel, the higheat puint of the l'yreneo And still maro recently there have heen found in the Ilmmelnyn Mauntulns 16,000 feet abave the level of the sea, similur organle remalus; nut this not only ha the inourtains, but limestones contalning these formils are conthually found through tho whole tablo hush of Thibet; so that thla vast platfurm of Asia is made up of rocks formed-not nt the most metiont geologienl prod-grmbully heneath the ocem, and which have since risen up to higher rvgions. I speak as if we land utrealy proved that this process is carried on by the upheavnl of the Intul und not by tho subsidence of the sea. In my uext Lecture I will endenvar to convince you by diatinct evidence of the mighty changes that have taken place, that this was the rosult of a rising up of the land, ard not of n sink. ing : wn of the sen. Spcaking in the languago of that theory, these nountain masses, which now alp pear at higlits of one, two and cven tiree miles above the level of tho sea, were formerly beneath the ocean, nad were rnised up during the first era of animals und jinnts, nud not all at the same period.
Now the sedimentury or marine strata whlele enter thus largely into tho masses of the liarth are divided into varions groups, whieh we refer to dis:inct periods. They furm a chronological series of volcanic action-a history of the Earth; and when we trace this series dewn from the most ancient to the most modern, it is net till we arrive nt the latest of the great series thint we come to these groups that environ the section of France which I have already described. Grand as was this serics of events, it is not till we arrive at the latest of the larger groups thint we come down to this Epech. I shnll not nt the present meeting attempt te sketch the history of the different forma tions, but continue to describe most particularly this strata and those which are cotemporaneous with it-those containing the remains already alluded to, or those of a posterior date. Now the oldest of the series of which I spoke last, is the fundnmental granite and the fresh wnter formations are imposed upon it. In order to classify the different depositions which belong to this more modern period of the larth's history it is indispensable to attend to the organic remnins, and particubarly to the shells centained in it:-shclls are more
uneful in this science than any other indicationa, and have been appropslately called the medals, by alll of which nature has recorded the events of the mest anclent history of the globe. They are found In such mbundance lir the fresh water and marine strata of all uges that loy compuring and contrastling them we may build up a chronelogical acriea, and fiul charncters clenrly te distingulah the differo rent periods. In the fresh water fonmation In the no ghburhood of Parls are found twelve hundred species of these shells-carefully diso tinguished from each other ; ns is well known to Couchologista ouly same thirty of thuse spe. cles nre known now to exlst any where upon the globe. We aro acquainted with abeut 10,000 species of shells; and of these asty 30 resemble any of the 1200 found in thia strata.Yeu may ursk how we know thnt these rocks were formed in the Inkes in the province of Auvergne, at the same time that the others were formed in the sea on thosite of Paris. The manner in which we mnke out this cotempornneousness is briefly this: Rivers carry down sholls to the sea; tho shells of the A merienn Lnkes, for example, are carried fiom Lake Lrie and the other lakes by the river St. Lawrence into the marine gulf of Si . Lawrence. The Tiber carrie down the fresh water shells of Italy to the Mediterranenn, and depesits them in the Delta. So of the Adige and the Pe; and if we examine the strata in the Delta we find that they are filled with fresh water shells nnd contain also marine shells. Soin the neighborheod of lnris-shells of the Lacnstrine depesit nre mixed with marine shells.- Quadrupeds, too, aro carried dow n by rivers and deposited with the 10 or 1100 species of marine shells of which we were speaking; and by this means wo first know that these quadrupeds lived, and these shells inhabited the Inkes when the sea was inhabited by theso testaoca. In Vicenza, Italy, we find certain marine strata, and in Paris these alternate with volcanic formations, and thus we make out the cotempor-ancousness-the Synchronism-of n certain volonnic formation, and a certnin marine or Lncustrine strata.

It is necessary to have some technical names for these periods, otherwise it will be impossible for you to follow me when I allude to them. By a few terms wo may express in a word what it would be tedious otherwise to express. By the Eocene peaiod, then, I mean the oldest as when this fresh water strata of Auvergne and other districts centains the same shells of alternatiog stratn. It takes Its name from $\eta \omega$-the dawn and katvos, recent
because the fossiliferous strata of this period con－ tain but few species that are now living，which may indicate the dawn of tho existing species of testaceous fauna．The next period I call Miocene， from μ etov less，and кalvos，recent；because it ccntains a minority of reent species－a much greater number than the \mathbf{E} cene，but still a minor－ ity．The next period is the Pliocene，from $\pi \lambda_{\text {clov }}$ more，and кalvos，recent；because it contaius a plurality of the existing species．That is，out of 100 species of shells found in the Locene，one or two only will be of those now living．When the land had been raised by volcunoes－in the Miocene period，nbout one fifth or twenty out of the 100 may be identified with existing species．And if we come down to the more modern or Pliocenc pe－ siod more than ono half the stelle are identifiable－ and sometimes 90 out of the hundred．
When the volcano which formed Mount Dorin a period distinguishedas recent，was filling the lakes in that region，by volcanic eruptions lakes and seas in other parts of Europe wero filling up and that at no great distance．If you travel from this moun tain to the Loire near Tours you may find great numbers of marine depositions－strata rich in zholls；and you may find，too，anme of the very yuadrupeds buried by the ashes and scoriae and oreccias which floated down into the sea，and were buried near the shore in marine drpositions；ena－ oling us thus to prove that thosestrata were formed in the sume period，and that the basin of the Lo－ ire was formed in the same Zoological period as this Mountain．Sn also in Bavaria are many La 5° cuatrine deposites，and on the Rhine you may find the same quadrupeds ussociated with fresh water ohells．Thus extending you observations from she part of Europe to another，yju can prove that in the second period there were volcanoes making marine deposites．Thus is it on the borders of the Loire between Tours and Mount Dor；and iour－ 6 fths of the shells found there are of now extinct opecies－while the othor fifth are still living．This preriod is called Miocene－as containing a minori－ ty of shells of existing species．
I might remark that these formations are found all through the United States．In my tour to the Soath I found in Virginia formations belonging to the first or Eocene period．［The whole group is called Tertiary，to distinguish it from the Second－ ary formation．A friend lately suggested to mc that he conld never remember the order of the dif． ferent periods－Eocene，Miocene and Pliocene， until he observed that it was tho natural order of their initiols E．M．and P ．in the cilphabet．These
little helps to memory are often of considerable value．］At Liichmond， \mathbf{V} ．，at Wilnington， \mathbf{N} C．and for 40 miles on the Santice river and be． tweon Augusta and Savannah I found Eocene stra－ ta，containing shells of a species identical with those found in the Paris basin；the same shells are found all along your coast as on ours．You have on the James river heautifully develeped the ma－ rine Miocene strata－and this fact has before beon pointed out by Rongers and other American Ge－ ologists，whose observations I am ouly confirming and perhaps adding something of my own．You dee there the strata containing marine species in nearly the same proportion as those on the Loire． But I must not spend time upon these matters lest If pass over the main object of the present lecture． If you had examined a partion of this Country when the Lacustrine and Eocpne strata werolarge－ ly developed，and should then go some 20 or 30 miles from Mount Dor and explore the valley of that part of France，when on all the hill sides you iound nothing but fresh water formations，you might say that oetween the white marls that con－ tain these shells and the other period there was nothing intervening except a thin stratum of veget－ able soil；and that therefore（a mede of reason often followed by geologists，）there must have oeen a sudden transition from that state of the globe under which the Palootheria lived，and when inells people，the lakes－crocodiles，tactles，\＆c．－ to the present；that there must have been a sud－ den annihilation－a sweeping away of existing ra－ ces，and an introduction of those that now inhabit it．But when yont pass to Mount Dor and observe the marner in which the volcanic strata overlie the fresh water，you will see how vast a period must have intervened between the present and the Eo－ cene－giving time for another race of quadrupeds －the mastodon，hippopotamus，hyena，and other enimals to supplant the more ancient．But you may ask might not this at least have beon tho last formation？Examine the great sheets of lava which aro there．Then follow on and find where sud－ denly they are cut off and again resumed－a vast bed of pumice，and trachyte and basalt correspond－ ing to a similar one en the other side of the va： ley．Consider that instend of thie leing the last in the rexies that there has been an excavation of the great valley，and a throwing up of the Puy de fartiret and the fowing out of a stream of hava for 30 miles，and then a subsequent crosion of the ravines by the lava．By this time，if you are a phi－ losupher，you will have acgui red more caution，and
will not hastily assert that the Miocene period was

昰

11

considerable nington, N iver and be. Eocene straentical with ne shells are
You have red the mabefure been erican Geconfirming wn. You specics in the Loire. atters lest nt lecture. S Country vere large20 or 30 valley of sides you ions, you that conhere was of vegetof reason ust have the globe nd when
$\mathrm{s}, \& \mathrm{c}$. na sud. sting rainhabit observe crlie the od must the Eodrupeds d other But you tho last which re sud--a vast epondho valhe last tion of Puy de i lava of the a phi. and d was
the last ; you will say rather that on extendiag the sphero of your researches you were obligod to abandon your first opinions, and so if you stillfarther enlarge tho fiold of observation to other parts of Europe, you would seo that there was another strata between tho Miocene and our own-and such is the case.
When you have entered Italy and followed the Appenines from the Po to Calabria you find a low range of hills called by Brocchi, an Italian Geologist, the Sub-Appenines, consisting of strata of a date posterier to the Miocene. Theso wo cal' ho Pliocene-which are divided into the Older and Newer Pliocene. I shall net dwell upon the first but allude to the Newer Pliocene, or moro modern part of the group. In tho South-Eastern part of Sicily we havo an example of marine formations of the Newer Pliocenc. Thero are rocks of marine origin in which you would at first say that all the shells were the same as those that now people the waters of the Mediterranean; and yet when you come to a more sareful examination you will find that one-tenth are of a species never scon in that sca. These rocks aro sometimes 2000 feet thick, and it would bo easy, if I had time to describo them minutely, to show that they had been accumulated in the same slow and gradual manuer as the fresh water strata of Auvergne wer e elaborated by the deposition of one layer after another, with this difference, that in the former the organic remains are marine, and in tholatter they are those -of lakes, and therefore a fresh water species. Another difference is that volcanic rocks are distributed nearly through the whole thickness of the formation in the South of Sicily. Near Syracuse also you may see a strati 2000 feet thick, alternately of volcanic and marino origin; at the bottom is a bod several hundred feet thick of volcanic ashes, then a bed of linestone, ou which rests the great sheet of lava. In one of these strata at Vinconza an observer found a bed of oysters 20 feet thick. There had been time for this oyster bed to accumulate-for Serpulac and other parasitic animala to attach to them until the bed grew 20 feet thick; and then a stream of lava rolled over it. These facts show how gradually theso strata were formed. Another remarkable circumatance is that these rocks rise 2000 and in Castrogiovanni, in Sicily, 3000 feet abovo tho level of the sea. These havo all been formed sinco the newer series of strata wicro deposited. Volcanic matter often rises in the sea, overfows the bottom and forms a temporary island, as Graham's island was formed five years ogo. The waves soon de-
stroy it, spreading the volsanio matter over the bottom of the occan. All this takes place before thero is any upheaval. Here, too, we have proefs of what an extended veries of groups in the chronological table is to be formed subsequent to the Miocene period-the date of that volcano, before you thisk you have come to the end of the series of modern ovenis-those which are considered as belonging to modern history.
My princiral object in the present lecture is to convince ycu how far from the end of the series these rocks were formed, although they have a respectable claim to antiquity. When we examine Etna, and tho strata on which it rests, we shall see another poriod, called the Post-Pliocene period, as being subsequent to the Pliocene. In this all the shells are of the existing species. Its formation has been sufficiently protracted to admit the elaboration of this vast series of volcanic movements. The locality which I will select this evening is Mount $\begin{aligned} & \text { Etna-for that volcano rests on }\end{aligned}$ strata in which all the shells and corals appear to be identical with those now found in the neighboring scas.
The hight of Etna is nearly 11,000 feet. It was well described by the ancients. It is divided into three distinct zones, called the fertile, tho woody, and the desert regions. The lowest, the fertile, is a most beautiful territory, embracing the delightful country around the skirts of tho mountain. It is well cultivated, covered with groves, olives, wines, corn, lomen and other fruit trees, and is densely inhabited. When you pass above this, (and its extent may be judged when I say that tho base of the mountain is ninety miles in circumference,) you come to the woody region, a thick furest of chestnut, oak, and pine treos growing upon lavas of different dates: and as you go higher you occasionally find groves of oak and beech,This region is rendered extremely beautiful by the great number of minor eones, or small volcanoes like the Puy de Tartaret, which have broken out at different periods on one side of tho mountain. Some of these aro four or five hundred feet high, and one of them, Monte Minardo, is seven thou sand feet high. There are few objects in Nature more beautiful than this multitude of minor cones that have broken out and covered the trees of this woody region. This zone is two, five and in some places six miles wider and when at its upper limits you are about fivo thousand feet above the level of tho sea. From the upper confines of this forest region, in 1828, I took a sketch of the scene above us. We climbed up upon the castern side.

But from that point we have still six thousand feet olevation betweon the highest point and the foreground of this picture. The mountain is generally symmetrical, in the form of a lat cone, broken down nipon the eastern side by a deep chasm callad the Val del Bove, as may be seen in this figure.

Only that part of the drawing presented by Mr. Lyell,
which is necessary to show the Vall del Beve ist Which is necessary to show the Val del Bove, ish here copied. he following are all the explanations necessary:
$a-$-highest cone of E tna. b-Montagnonola.
c-head of Val del Bove.
f and g-lateral cones.
Zaffarana, at the lower lorder ofine, is a little village called [
After entering upon tho woody region, and riseing about one thousand feec from the base, you reach a great precipico two or three thousand feet high; then comes a plain covered deeply with snow, and lastly the cone, cleven thousand feet above the lovel of the sea, from which steam or aqueous vapor is constantly emitted. When these views were taken, which was in October, thero was less show upon the meuntain than at any other period of the year. One cruption from the summit occurs for every two of the cones on the flanks.When one of these happens the melted lava pours out over the snows, which are suddenly melted, and rush down the mountain, producing sometimes floods which sweep down the flanks and across the valleys. Except when floods thus occur, there is a singular absence of running water on the flanks of the mountain. The silence which pervades on this account is quite remarkable; for no torrents dash from the rocks, nor is there any movement of rumning water asin inost mountainous countriss. Not a rill runs down tho sides. All the rain that falls from the heavens, and all the water from the melting snow is instantly absorbed by the perous lava. There are numerous vertical dikes which traverse the mountain and sometimes extond for more than a thousand feet in a perpendicular. They consist of liquid matter enitted by fissures, which as it rises is consolidated, mixed with tuffs and scorix, and thus becoming harder than the cliffs around, resistsdecomposition and stands out in bold
relief, while the rocks around aro wasted away by tho rapid freezing and thawing to which this region is exposed. There was an opportunity during the eruption of 1669 of observing the manner in which theso dikes are produced. Tho mountain was rent asunder by fissures radiating from the centro-theugh some of them were parallel. These enitted a vivid light, showing the ir.candescent lava at a great depth below. The lava flows sometimes nine or ten miles down the split mountain, and when it is cooled and crystalized it forms one of theso vertical dikes. Similar dikes are formed
in Madeira, in Madeira, where basalt has been traversed by volcanic rocks.
It is supposed that as often as Mount Ætna is rent open, thero may bo a slight upheaval of the whole mass-an uplifting bodily of the whole mountain: and if we suppose that this has happened from the earliest periods, it may explain tho great difficulty which has puzzled some geologists in endeavoring to explain why the moro ancient part of the mountain has not been covered by posterior eruptions. It has been objected, that if the whole mountain was formed (as I believe it was) by successive eruptions, that the ancient parts of the volcano ought to have been buriod long ago by the more modern cruptions. I ought perhaps to have remarked, that there is a general dip of the beds in all directions, which there are two ways of endeavoring to explain. Cne attributes it to sheets of lava flowing to a certain point; and the other to an upheaval in the centre, tilting the beds in all directions. Both these may be in some degree true. I will now endeavor to show why tho most ancient parts of the mountain would not bo covered by the overflowing lava.
We know that there has been an upheaval of tho whole mass of 平tna at no very remote period; becauso the mountain rests on a marine stratum which contains shells identical with those now living in the Mediterranean. A force which could carry up this marine strata which skirts the sides of the meuntain must have been able to carry up the whole mountain; and if the lavns did no: cover, at each successive eruption, more and moro of this marine strata, we should be able to trace it to a greater hight up tho mountain. As it is, wo find it about 1000 feet above tho level. If tho an. cient part of tho mountaiu has been thrown up in this way, we readily find the explanation of the phenomena we aro seeking. First, let mo state that all geologists admit that the formations of al. ternate lava and scorixe of which the mass of Atna is constituted, is of supra-marino origin-

asted away by

 which this rertunity during ho manner in he mountain ing from the rallel. Theso ir.candescent a flows somelit mountain, it forms one s aro formed versed by volount Ætna is eaval of the the whole nis has hap. explain the re geologists ore ancient ered by pos. ed, that if I believe it the ancient seen buried 8. I ought s a general h there are Cne attrib. tain point; tre, tilting may be in or to show tain would aval of tho te period; e stratum thoso now hich could the sides carry up 3 did no: and moro to trace it s it is, wo If the an. own up in 11 of the me state ons of al. mass of origin-Hat it is formed above the water; for it contains no marine shells-no beds of tuff-no stratified mass-no fossils; but has overy indication of being a volrano found in the opon air. At first, the volcano may havo been of moderate hight-accunulating one bed upon another until it reached a height of 4 or 5000 feet. Then as it grew higher an eruption would take place, as it does now, chiefly on tho flanks. I told you that an eruption generally occurs on tho summit for every two on the sides : that is tho proportion that has beon observed during the historical period. Tho higher the mountain becomes, tho greater, evidently, is the hydrostatic pressure of the column of lava that rises up: the higher the climneys the greater the pressure of the lava rising within them upon the flanks. In this way the lava might continue to rise until at last, if it became more than two miles high, the pressure would have become so enormous as to burst tlirough the flank of the mountain. Every geologist will admit that in a volcano such an outbreak may take place. At first, before this the accumulation went on by eruptions from the summit; but these oruptions being afterward performed on the flanks about the woody region, the older part of the volcano was not buriod.

Before I go farther, there is ono point of grea ${ }_{-}^{2}$ interest which I will notice: © : tna is of all volca noes that of which we have the most ancient reccords, and to a knowledge of which history and tradition carry us the farthest back. There is a tradition mentioned by Diodcrus Siculus, that an eruption happened before tho Trojan war, which compelled the Sicani to desert their district. Thucydides tells us that in the sixth year before the Peloponnesian war, or in 435 B. C., an eruption occurred which was the third that had taken place there since the colonization of Sicily by the Greeks. (a) The second of thcse threo cruptions was the ono mentioned in that beautiful ode of Pindar, which is worth referring to because it is the deseription by a poet which corresponds precisely with the appearance of the volcano twenty centuries afterwad when Catanig was destroyed in 1669. Part of the city had been overflowed during the eruption, alluded to by Pindar, as having occurred in the year 475 B . C. In that passage Pindar speaks of "the snowy Cetna, the pillar of Heaven-the nurse of everlasting frost, in whose deep caverns lie concealed the fountain's of unapproachable fire-a stream of addying smoke by day-a bright and ruddy flame by
night: and burning rocks rolled down with loud uproar into the 8 ." (b)
We ha:e sti. 'stream of eddying smoke' by day produced I \quad eruption. It had the same appearance wbs it in 1828, and also when Mr. Scropo saw stream nine months after it began to flow in 1819. He says that it was then moving on at the rato of one yard in an hour: during tho day it constantly emitted a dense vapor: for aqueous vapor enters minutely into this lava, though no chemist has yet fully explained it. As often as the stream cracks, it emits several gases, but chiefly steam, which boiling up brings the lava to the surface, and causes it to overflow the crater just as steam in a kettle carries up the water, and causes it to spill over. So this steam and all tho gases become entangled with the red hot lava, causing it to discharge large quantities of aqueous vapor during the whole process of conglomeration. By night we suw the same cracks emitting a glowing heat, and tho whole stream makes out the 'bright and ruddy flame.'
It is a singular circumstance, in regard to tho theory of flowing lava, that, instead of being level, as you would naturally expect of a liquid, there are hillocks of considerable hight along its surface, in consequence of the uneven ground over which it flows. Another peculiarity of these streams is the fact of their becoming hard and solid whilo in motion. Instead of thinning out, as would be natural, at tho edges, the upper surface becomes cool, and the sides likewise, and both grow hard; so that the edges are often rocky walls, inclined at angles of from 30 to 40 degrees. It is thus a flood of red hot lava flowing along a solid tube. Thus, when they come to a rise of ground, the streams rise as water does in a pipe-as has been the caso in the Val del Bove. When the stream comes to a hill, it goes up the slant in a tube of its own making, and thus, too, it goes up the sides of solid walls. In 1669, when Catania was threatened with destruction by the approaching stream, a respectable citizen of the town, desiring to secure the city, took a troop of
(b) This passage may be found in the 1st Pythian Ode of Pindar, beginning

 $$
\text { vos каL } \operatorname{co\pi \lambda aка\mu \omega \nu }
$$

Zuvdikov Motqã̀ ктєavov, к. т. λ.
The description of Atna, the whole of which is extremely beautiful, commences with the concluding lines of Dec. V.

$\kappa เ \omega \nu$

Δ "ovpavia бvvexst

and t (coustiuned through the seven succeeding versees.
Rep.
some fifty mon, who, olothed with skins to protect them from the heat, and armed with iron crows and pick-axes, began to quarry the solid walls and let out the lava. They opened it at the village of Bolpasso, and the stream immediately issued forth, and took the direction of Paterno. But the inhabitants of that town, being alarmed for the safety of their own village, took up arms and prevented farther operations. The torrent, thereforo, moved on to Catania, and the inhabitants of that city, being terrified for their safety, turned out and threw up a rampart of stones, hewn from the lava, sixty feet high. On went the burning torrent, and when it arrived at the wall, it continued to accumulate upon itself until it topped the wall, curled ovor, and foll in a fiery cascade upon the town; it passed on to the Mediterranean, which it entered with a loud explosion. This corresponds precisely with the description of Pindar. The Prince of Biscari afterwards, at great expense, mado a quarrying out of the lava, so as to show the manner of its falling over; and you may now see the upright wall, with the stream of lava curling over the top-appearing liko a petrified cascade of lavn, and remaining visible to this day. This drawing will give you somo idea of the view of Etna, and the situation of various localities near it:-

a-highest cone.
b-Montagnuola.
c-marine formation-rarely found above the dotted line $h i$.
f-escarpment of volcanic tuff, \&c. N. W. of Catania.
g-town of Catania.
k-plain of Catania.
h-limestone platform of the newer Pliorene, from which the view is supposed to be taker.
m-La Motta di Catania.
From these facts you may get some idea of the slow manner in which tho lava current goes on, at the rate of a yard an hour for days, months, and sometimes for years.
It is very generally conceded that the origin of the chasm on the side of the cone-the Val del

Bove-was in the subsidonce of the ground for some 3000 feot. We have an example at no very remote period when the Dutch possessed the Island of Java, of a similar sinking down in the volcano Papandayang-but a little before the commoncement of the nineteenth century. Λ space of ground some fifteen miles long and six or soven wide gavo way during an earthquako, and buried forty villages ; and one part of tho volcano fell in after another, until Papandayang lost 4000 of its hight. The mass engulphed was larger than wo need suppose was swallowed in order to produce the Val del Bovo on tho East side of Etna. There are two monntains mentioned by Pliny, and since his time the chasm between them has been nearly filled by the deluges of lava.
The composition of all the lavas of Etna, from the oldost to the most modern, is singularly homogeneous. That of the modern eruptions of 1811 and 1819, when analyzed was found to consist of the dark mineral augite, and of a kind of feldspa, caHed Labradorite. It has largo quantities of iron, some of which is titaniferous. The most ancient lavas of which thousands of sheets are found, consist of nearly the same matrials. At these points where we can see farthest into the internal structure of the Mountain, we find that it is constituted of successive beds of lava and sco-riae-with large quantities of augite and feldspar, which have a granitic structure. As we go farther down, we find masses of reck, which are still more granitiferous: they are not divided into strata, nor do they agree with the volcanic rocks; we thus reach the Plutonic rocks, and I must endeavor to make you fumiliar with the cechnical term. Volcanic rocks are frequently porous, because they are found near the surface, and the discharge of their cases causes pores in them, as in the slag of iron furnaces. When they exist in a strata of considerablo deptli, the pores diminish and the rocks become stronger, and begin to cryatalize, until we reach the bottom, when they have no pores. Crys. talization las taken place under a pressure, and they have slowly cooled. The Plutonic rocks consist of certain perphyries, and havo silex and alumine, but never scoria or volcanic sand or pebbles, nor are any sigus of these found near the surface. As, therefore, Volcanons had been thus named, becauso Vulcan had lis fogge under Etna, so it was natural that thase rocks should be mpl가 Plutonic, as being found in the realm of Pluto, where flowed thePhlegethon-river of fire-and the Lethe rolled its watery labyrinth, which may be mythical of the Lethean infuence exerted by these
rock
come
destr
supp
with
sage
that
cryst
Tho
Forn
tho o
tiqui
rock
it of
fused
augit
the c
tion
one
that
Plut
when
It
acco
rock
shou
we h
matt
ral
tenth
fore
pore:
gage
whet
this
enor
in th
This
jecti
rock
unde
of th
ground for at no very ed the Islin the volthe com. A space x or soven and buried ano foll in 1000 of its or than we o produce na. There and since een nearly

tna, from

 singularly ptions of d to cona kind of argo quanus. The of sheets matrrials. tt into the nd that it and scofeldspar, fo farther still more trata, nor ; we thus deavor to m. Vole they are of their g of iron considocks beuntil we es. Crys. sure, and ocks conand alupebbles, surface. med, bena, so it e nordd f Pluto, -and the may be by theserockg-for we find that whex these granitic masces come in contact with a fossilifercus stràta, they destroy every trace of organic remains. If we suppose all the different strata to come in contact with these, wo shall find that we can traco the passage from those of the most fossiliferous stato to that when fossils are rare, at last come to a pure crystal rock, such as is sought by the Sculptor.Tho Carrara marble is an example of this kind.Formerly this was called a primitive rock-one of tho oldost. Now it is known not to be of high antiquity, but to have been converted from fossiliferous rock by contact with granite, which has deprived it of all its corals. Its nodules of fint have been fused, and occasionally will be found crystals of augite, against which the Sculptor sometimes breaks the edge of his chisel. I give this as an illustration with which you are all acquainted; it is only one of a thousand I might mention. Thus you see that rocks which are fossiliforous, when far from Plutonic rocks, may become non-fossiliferous when placed for ages in their vicinity.

It was formerly a great puzzle for chemists to account for the manner in which heat pervaded the rocks, because they are bad conductors. But they should recollect that in the interior of the Earth we have to deal not only with masses of melted matter, but with steam. Volcanoes, besides mineral matter, discharge various gases-but ninetenths of their matter is water. This steam, before it found vent, mingled intimately with the pores of the lava, and forced the sides to disengage. Any rock, no matter how solid and compact, when put in centact with an immense reservoir of this would become porous and spongy, under so enormous a pressure. This may be seen at Corinth, in the Lipari Islands, in Greece, and othor places. This hypothesis must not be combated, then, by objections founded upon the results of subjecting rocks to the heat of our furnaces; for they exist under altogether differant conditions in the interior of the Earth.

I may state, that, as these remarks rolate to the most difficult theories of geology, it is not to be expectod that you should at once follow them. As I omitted it at the last lecturo, I will say a few words of the origin of granite rocks. The true unstratified granite is generally believed to be of igneous origin, formed by that part of the volcanic phenomenon which is far below where tho eruption takes place. In Mount Dor, they are believed to be below tho Miocono, and in Etna, below the Post Pliocone; and so of all antecedent periods.
It is impossible, though we know more of the history of Etna than of any other volcano, to form even an approximate estimate of the number of years required for the accumulation of such a mass of volcanic matter. Thero is no reason to suppose that the ancient eruptions were more violent than the modern. The sheets of lava separated by beds of scoriw and breccia, in the anciunt part of the velcano, do not appear to be of any greater thickness than those of tho modern. There is one method of attempting the computation of the more recent part of the mountain-to consider the minor cones which adorn its flank. Of these there are eighty of the first magnitude. We cannot, from what we know of these, suppose that more than one-fourth of them were produced since the earliest periods mentioned by Diodorus Siculus and Thucydides. There may have been more activity, or less violeat convulsions; but if we suppose that, in 12,000 yoars all these eighty cones were produced; and if we strip them all off, we shall still have the great colossal mass of Etna remaining behind. It would still be ono of of the loftiest mountains in Sicily. It is evident, at all events, that, between the formation of the latest period of the Puy de Tartaret and the oldest of Etna, the whole of the older and newer Pliocene periods must have intervened.
In my next lecture I will endeavor to explain, from the remains of the temple of Serapis, some of the proofs of the upheaval of the earth.

LECTUREIII.

UPHEAVAL AND SUBSIDENCE OF THE EARTH.

Ladies and Gentlemen: I have had occasion, in both my previous Lectures, to allude to the fact that various marine fossils-tho fossil remains of animals that once lived in the ocean-have been found entombed in the rocks of various districts; not that we find these remains of marine creatures atrewed over the surface of the Earth merely, as if the Sea had once overflowed the land; but we find them imbedded in the midst of mountains, at all depths below the surface, and entering inte the composition of the mountain masses themselves, maling up their very materials, sometimes ff r two or three miles thick, all having been gredually elaborated under the water; thus furnishing the most indisputable proof that what is now dry land was once for ages under tho water and formed the bed of the sea. Here the geologist finds himself reduced to the alternative of supposing either that the ocean was orce higher thanit now is, and that it has been lowered; or that tho land, the solid land itself, has been raised up. The earlier geologists preferred tho notion of a sinking, a general sinking, of the sea; for the ocean cannot be lowered in one place without a general subsidence throughout its whole extent. But when the structure of the Earth came to be mere attentively studied and more thoroughly examined, geologists gradually came round to the opposite opinion, namely, that the land had been elevated; and this opinion was embraced for several reasons, but principally because it would account for all the observed phenomena, explain all the periods of stratification-those in which the strata are disturbed and fractured as well as those in which they are horizontal. For if they were all upon a level, then the going down of the sea might explain their appearance; but as we find them curved, bent and fractured, the other theory is the only one which will explain both appearances.

Another reason for embracing the hypothesis of an upheaval of the Earth is this-that we find in the crust of the Earth fresh water formations(you are now familiar with this term)-beds formed in lakes and estuaries, lying beneath the deposites which are evidertly of marino origin. For example, in some parts of Europe you find the white chalk-a marine, calcareous matter, produced be-
neath the saa mainly by the decomposition of shells; beneath that you find another stratum, evidently of fresh water origin. Now to explain how a marine stratum 1,500 feet thick could have boen thus depositod upon a fresh water formation, by the theory of the rising and the lowering of the ocean, you would have to mako the ocean first rctreat, in order that thero might bo dry land ; then rise again to deposite the mass of corals and shells which are found; then retire and again go down to explain the presont dry land which now exists in that part of the Earth where this calcareous matter is found. You would have a vast number of successive retirals upon that hypothesis; and the ocean must riso several miles and stand there for ages to form the marine rocks of the Himmelaya and other mountain chains.

But besides that this theory of the movement of the land explains all these geological phonomena, we have the experience of history, which teaches that the solid land, through extended districts, does sink down in some places and riso slc wly in others ; whereas there is no instance on record of a general lowering of the whole ocean-there has been no general sinking of the sea throughout the world. I think I shall be able to show in this and the next lecture, that there has been, and is now going on, a magnificent example of this, sometimes of a sudden and at others of a gradual and insensible risingtand sinking of the earth. I will here mention one example in Sweden, because originally I disputed the accuracy of the statement, until I visited the locality and satisfied myself of its truth. I found that the Northern part of Scandinavia, of Sweden and Nerway, was rising five or six feet in a century, as is ascertained by fact: that have been observed for several hundred years. As you go south to Gefle you find that the rising has diminished to three feet, and at Stockholm to only two or three inches in the hundred years, while still farther south there was no motion at all. It is thus asif the whole land were a lover, which is stationary at one point, rising more and more as you go toward the end. In Greenland it is certain that since the early Dares colonized the island, built churches there and settled the country, there has been a gradual sinking down of the whole coast for several hundred miles ; the churches
in some places have been submerged, and the greater part of the lower stories and the pavements aro now wholly under water. These movements of the earth are sometimes accompanied by volcanic eruptions, though not in Greenland and Sweden, but in South America they are. In Chili, for example, in 1835, that part of the coast near Conception was raised some nino feet, and remained permanently at that hight. The bed of the sea was raised, as wero the island of Santa Maria and a great part of the neighboring coast; at the same moment the volcano of Osarno, in the Andes, burst forth and lava was seen to flow from its crater. A submarine volcano also burst forth 400 miles west of Osarno at Bacalao, and the island of Juan Fernandez was also violently shaken. These facts show the vast extent of the subterranean volcanic activity accompanying the movement of the land. The land has relapsed in some degree, though not to its former position. In some places it maintains its upheaval.

But you may see a more remarkable illustration of this upward and downward movement in the immediate neighborhood of Naples : and Imention it because evidence drawn partly from antiquarian researches and partly belonging to geological proof, comes home more easily and more convincingly to the minds of those not accustemed to purely geological evidences. In my next lecture when I come to speak of the coral reefs-I think I say not too much when I say that I shall show that these vast areas of the Earth's surface-extending some 8000 miles from East to West, and 3000 or 4000 from North toSouth-are now undergoing in some sections a slow upheaval, and in others an equally gradual subsidence. To-day I shall confine my attention to a small space in the neighborhood of Naples, where the changes may be traced for the last 1800 years.
If you first look at a map of the country near Naples, you see extending inte the Bay of Naples, south of Vesuvius, the Sorentine Promontory, off which is the celebrated Island di Capri. Pompeii you will see at the south side of Vesuvius, and Naples at the northwest. At the northwest extremity of the beautiful Bay of Naples you see the small bay of Baix, to which I would call your particular attention. Now movements have taken place, which have caused a sinking and then a reelevation in the Bay of Baiz of twenty-five fectand yet have not affected the neighborhood of Na ples, which is only twelve miles distant. This view of the Bay [exhibited] was taken by Sir William Hamilton, from the south side of the

Bay at Puzzuoli. On the plain between the sea and the dark cliff, reprenented below is the town of Puzzuoli.

a. Antiquilles on the hill S. E. of Puzzuoll.
b. Ancient Clif-now inland.
c. Terrace composed of ancient submarine deponite.

This inland cliff is eighty fcet in hight. When I examined it in 1828, I found that it consisted of indurated volcanic tuff, containing some marine remains and the platform or terrace (a.) beiween the cliff and sea, contained evidences of having been formed under water. A wall had been built to protect the rich and valuable land of the terrace which slopes from the base of the cliff to the sea. But fortunately for me, a sterm had swept away a part of this rampart and laid open a section so that I was enabled to examine the alternate beds of pumice and lapilli and volcanic matter, with strata abounding in various marine shells, such as cockles and the Mytilus edulis or eatable muscle. In one of these strata I found squares of a rich colored mosaic pavement and various sculptured oriaments. My friend Mr. Babbage found at a great hight barnacles and other shells attached to the face of the cliff. Tha appearance is as if the sea had beaten againet the base and thus undermined the cliff.

When we pass round the promonitory to Puzzuoli and come in sight of the Bay of Baire we see what is called Caligula's Mole, a long line of arches and piers extending from the end of the town into the water. On the last of these arches but one there were found, ten feet above the sea level, great numbers of flustra and other marine zoophytes attached to the building, which must once have been submerged ten feet lower than it now is and then raised to its presenthight. On the sixth pier the same thing may be noticed. Breislak observes that as these arches now spring under water, and as it is certain that originally they were built so as to spring out of the water, though it is proved that the mole has been uplifted ten feet above its lowest level, still it has not yet been re . stored to its original position. If you stand on
one of the arches and look toward the land you see anothor inland cliff similar to, but not so high
as, the other. Between the cliff and the sea is a low terrace called La Starza, leading to the inference that the same movement which produced the other cliff, also extended to the Northwest and produced this with its plain and caused the cliff to become inland. Upon this plain is the temple of Jupiter Serapis. The cliff and plain are represented in this drawing :

a. Clicero's Academia.
b. Ancient Cliff-now inland.
c. Terrace of Submarine deposits.

I will now mention the manner in which this 'eraple of Jupiter Serapis was discovered. In traveling along this terrace-which corresponds so exactly to that on the ether side-some antiquaries in 1749, examining all the localities, saw concealed among some copse wood, the upper part of three columns-several feet above the ground.They were struck with the circumstance, and determined to remove the copse. They did so, and began to dig down to see how far the columns extended. They dug down, accordingly, ten, twenty and thirty feet, and still found theso great sbafts: at forty feet they found nobottom; but at forty-six feet they came to the pedestals, on which those columns stood. They were buried at this enormous depth, and when they had completed their digging, they found a large paroment, seventy feet in diameter, level at the base of the columns.Having found this, and still continuing to clear away, they discovered a large quadrangular building, the roof of which had been supported by fortysix of these magnificent columns, of whieh half were granite, and the rest marble-tho marble in each case being a single block, whole from top to bottom. Now, in attempting to account for this, you might at first, perhaps, suppose that the temple was buried like Pompeii, which was overwhelmed by a shower of mud and ashes-and was, after more than fifteen centuries, disentombed, and an immense amphitheatre dug out and exposed to view. You might think that this temple of Jupiter Serapis was thus buried, being in the region of the Volcano of Solfatara, of which an
eruption occurred in 1149. But we find that some of the beds, which have been dug through, contain marine shells, and fragments of works like these I mentioned as having been found in the terrace on the other side of Puzzuoli, and the situation of the temple is that represented in the drawing (d.)In endeavoring, too, to account for the burial of this templo by the rising and sinking of the sea, you have first to suppose, as the temple was built above ground, that the sea first went down-for the presenco of marine remains in the lowest strata, shows this: then that it was carried up again.But it is evident that in reality the temple was built above the water-that it went duwn and was buried in the sea, and that again it was raised.You may think all this very difficult to believe; but there are still greater wonders to account for, and which cas be satisfactorily explained, when you come to examine the building.

The marble columns have been examined. For the first twelve feet from the bottom they are smooth and uninjured-just as they wero originally in the interior of the temple. (I shall not stop to discuss the opposite opinions as to the use to which this temple was put. It is generally called the temple of Jupiter Serapis-from the ornaments found in it. Several hot bathsare found also-and hot springs which still flow out from the ruin.) Above this point is a zone of about nine feet perforated by Lythodomi, a kind of marine bivalve which has tho power of perforating rocks. The upper part of the column is smooth having only marks of its exposure to the weather.

These animals which have thus perforated the columns are a species called Mytilus Lythopha** gus-or stone-eating muluscas. A diver at the Bay of Genoa once told me that some years before he had thrown to the bottom a piece of biack marble to be bored by these animals: I prevailed upon him to go out in a boat, dive down to tho bottom and bring up the marble. It was filled with these shells-about the length of your fingor, buried in the solid rock. It has long been difficult to conceive how these tender shells and the still more tender animals that inhabit them, should be able to thus eat holes in the solid rock. It was supposed by some that they had the power of turning around as on an axis, and that thus the shells scraped out the holes like a file. But so tender are the shells that this seems impossible. If we suppose the animals to secrete an acid capablo of eating away carbonate of lime, of which the marble is composed, the question will oscur. why should not the
last
and
eve
how
lith
clo
anc
bow
acid eat up the shells, which are made of the samo substance? But we may well suppose that a feeble acid may act on the rock and not eat into tho shell which contains the living anlmal-especially when wo recollect that the shell is covered by an Epidermis or skln, upon which the acid will not act. It is probable that as they grow large-for the bole they make at first is small-they are enabled to oat away the calcareous matter by discharging the acid they secrete. They have drilled into the columus poal-sliaped, cylindrical cavities, which it must havo required a considerable time to excavate. Their numbers are so great, and they have so eaton into the columns as to diminish their diameter : and we find that some of the cavities which the Lithodomi have deserted have been occupied by a specie of bivalva. The appearance of the columns is indicated by the following figure.
15. 8 uninjured...
6. 6 uninjured ...
8. $2 \frac{1}{2}$ caten by mytili...........

1. 5 uninjured ...
2. 0 calc zone
3. 8 uninjured ...

Total hight from bottom of Plinth 41. 1t.
When first these phenomena were observed in the last century, it caused a great variety of opinion: and this was not confined to scientific men, but even the poet Goethe wrote an essay to explain how the salt water of the sea (in which alone tho lithodomi exist) might have been barred out-enclosed in a barrier so as to account for this appearance. As there are no tides in the Mediterranean, bow is the water to be carried up not only to the
hight of twelve, but of nineteen feet $1 \quad 1$ ao not say that if there were tide they would explaln it; because the Lithodomi cannot live six hours out of water like bivalves, which take water into their shells: thoy must be alway submerged.

But some geologists heve asserted that there must have beon a general chango in the lovel of the sea; that it nust have stood nineteen feet above its subsequent level. But it may be replied that there are a thousand proofs to be drawn from the history of all other parts of the Mediterranean, that no such change has ever taken place. It is certain that the temple existed in the thlrd century: for, in the atrium inscriptions have been found recording the reparations made by the Emperor Marcus Aurelius, and the additional ornaments given to it by another Emperor, Septimlus Severus. We know then that it was ueed as a place of worshipor for whatever purpose it was built-down to the third century: and nothing ls more certaln than that between the third and the middle of the last century there has been no general rise of the Mediterranean.

Nevertheless, in spite of this difficulty, many maintained that the sea had gone down. So unwilling were they to entertain what they called the paradox of attaching coustancy to the sea and mobility to the land. But after a time their opposition gave way. In 1828, the year when I had an upportunity of examining the place, some excavetions were mado through the pavement, and at the depth of six feet below it the antiquarians came upon another pavement more rich and costly than this. This suggested the ides that there had been a sinking dewn previous to the changen we have noticed. The building being near the sea, as it gave way it was necessary to construct a new pavement six feet above the other; and then upon this the whole bailding was erected.

The next discovery was made by Niccolini, who was employed in 1807 to make drawings of the temples; he was in the habit of remaining there all day and yet never saw the pavement overflowed by the sea. Sixteen years after, he had occasion to go back to the temple, and to his surprise be found many parta of the marble pavement where he had stood in 1807 dry, covered at high tide by water. (I said there was no tide in the Mediter ranean; and it is usually considered a tideless sea. Still there is a slight rise and fall of a few inches in the Bay of Baiæ.) This led Niccolini to make a series of --neriments with the hydrometer; and he found c. he ground in 1840 had been winking at the rave of about three fourths of an inch annu-
ally, se that in 1840, it would be two feet two inches lower than $\ln 1800$. When I was there it was always covered with water. When you know that the land is thus positively going down every year at a gradual rate you will be less skeptical ln relation to the subsidence of the earth's surface. Thus we have not only to carry down the temple far enough to account for the ninetoen foet we had before, but now we are obllged to add six feet farther for it to sink; we have now twenty-five feet of subsidence to acsount for.

Now, the question was, was this sinking gradual and successive, as it has been since 1800, or was it sudden 1 And to this wo have a most satisfactory answer. In 1828 Mr . Babbage, tho celebrated mathomaticion, and another of my friends, Mr. Head, carefully examined the temple and found the clearest evidence that the whole was gradually going down; and Mr. Babbage had the kindness to lend me the yet unpublished results of thls examination. We find the columns eaten at the ends and upon the sides, and they wished to show how the columns must have stood to allow this. They found first, the whole column incrusted near the bottom by a black deposite two feet thick, containing Serpula and marine animals.We may suppose that the temple had then begun to sink so that the sea should have covered the base of the columns where this incrustation was deposited. The top of the deposition represented the water level. Then came a shower of ashes, covering the column for six or seven feet, from an eruption of the neighboring volcano of Solfatara, probably, though there are many other volcanic cones in that vicinity. Now this may have shut out the sea, and the water flowing into pools and ponds of the uneven surface may have caused the fresh water formations, as there are ne serpule or marine animals to be found there. Then may have occurred another shower of ashes, perhaps from the eruption of 1149 , when was a considerable earthquake, which may have thrown down the other columns which perhaps stood till that time. Suppose the marble ones, (for the granite are untouched,) then to have rosted on the uneven surface of the layer produced by the second shower: the sea flowing in might have carried the lithodomi thither, and thus the columns might have been eaten on all sides and at both ends.

All these geological phenomena relate to the periods of the successive goings down of the temple. No less than 27 pillars have been carefully examined and measured inch by inch and their original position carefully made out. In the year 1488
it appears that the rising began to take place, when the great earthquake occurred which destroyed Puzzuoli and formed those inland cliff. We have a document, a charter of Ferdinand and Iabella of Spain, then sovereigns of Naples, granting to the University of Puzzuoli the piece of land near the town of Naples ' where the sea is drying up,' (che va seccando il mare;) and this was followed a few years after by anothor charter dated $\ln 1511$, granting to the University, solum desiccatum, the ground that is dried up frem the sea. So at this time there ls evidence that the gradual retreating of the sca had begun. In 1530, nineteen years after, we have still the testimony of an Italian writer Soffrcdo that though the sea had dried up still it washed the base of the inland cliff and swept across La Starza so that he tells us people might have fislicd from the ruins. We are now led nearly to the epoch of the formation of Monte Nuevo-the new mountain produced by an eruption in 1538 only eight years after Soffredo wrote. And there is ample evidence in the documents collected by Sir William Hamilton that the whole upheaval of the land took place about that time. I shall refer to some account of that memorable event when a mountain 450 feet high was produced in a few nights. This mountain stands partly on the site of the Lucrine lake and partly on the site of a little village in the vicinity enlled Tripergola. Sir William Hamilton has found two letters describing the eruption which formed the mountain and I shall read from them some interesting passages. One is from Falconi in which he says:
"It is now two years since there have been fre. quent earthquakes at Puzzuoli, Naples and the neighboring sections. On the day and in tho night before the eruption of Monte Nuovo above twenty shocks, great and small, were felt. The eruption began on the 29 th Sept. 1538 . It was on a Sunday about one o'cleck in the night, when flames of fire were seen between the hot bathisand Tripergola. In a short time the fire increased to such a degree that it burst open the carth in this place, and threw up so great a quantity of ashes and pumice stones mixed with water, as covered the whole country. The next morning the poor inhabitants of Puzzuoli quitted their habitations in terror, covered with the muddy and black shower which continued the whole day in that countryflying from death, but with death painted in their countenances. Somo with their children in their arms ; some with sacks full of their goods; others leading an ass loaded with their frightened families toward Naples; others carrying quantities of
lace, when destroyed We have d Ianbella granting to land near Irying up, as followed ed in 1511, :atum, the So at this retreating teen years lian writer up still it ept across ight have nearly to uevo-the in 1538 And there llected by oleaval of shall refer then a in n fow the site of of a little Sir Willescribing in and I passages. beea freand the d in tho vo above th. The It was ht, when baulisand reased to th in this of ashes covered the poor tations in k shower ountry 1 in their 1 in their ; others eed famintitices of
birds of various sorts, that had fallen dead at the beginning of the eruption; others, again, wi/h fush which they had found (mark this,) and which were to be met in plenty on the shore, the sea having left them lry for a considerable time."

This is the description of the cruption of the volcano that formed Monte Nuovo, by Falconi; there is another by Pletro Giacemo di Toledo, In which he anys:-
"It la now two years aince Campagna has bron aflicted with earthquakes-the country about Puzzuoli more than other parts. On the 27 th and 28 Lh of September last, the earthquakes did not cease day or night ; the town of Puzzuoli, that plnin beewoen Lake Avgrnus, the Monto Barbaro and the sea was raised a little [a remarkable exprossion which he would not have used if it had been merely s shower of ashes which raised it, as sometimes happens] and many cracks wore made in it, from some of which issued water: at the same time the sea adjoining the plain dried up for about two hundred paces, so that the fish were left on the land a prey to the inlabitants of Puzzuoli. At last on the 29th, about 2 o'clock in the night, the earth opesed near the Lucrine lake and discovered a horrid mouth, from which ever vomited furiously smoke, fire, stones and mud composed of ashes, making at the time of its opening a noiso like the loudest thunder. The stones which followed were by the flames converted to punice, and some of those were larger than an ox. The stones wero sent a high as a cross-bow can carry," and so he gors on to describe the shower of mud that built up a solid mountain which las a crater at the top as deep as the mountain is high. Toledo then proceeds to say that the eruption lasted two nights and two days-(the mountain was produced in two nights,) and that many persons were knocked down by the stones, and killed.

It appears to me evident, not that the sea had retired before the eruption, but that, when the tremendous explosion took place, the plain was suddonly raised, and there was then a drying up of the sea some time after; but a vast deal of rising must have taken place during those convulsions, as we know the red hot lava to produce that liquid fiery matter that was thrown up must have melted near the surface, so that the stream, instead of flowing over the crator, should escape through the yielding beds below-between which it might flow latitudinally until it became ligh enough to picrce through, just as it is easier to thrust a knifo between two leaves of a book than through them.
Eut I have too many facts to explain to you re-
lative to these superficial chenges having leen caused by an upwarl and downward movement of the Earth, to enter this evening upon the various speculations respecting these matters. You perceive that we have carried the temple down twentyfive feet gradually, and that it has shot up nearly the whole distance, though not entrely, at one eruption.

Not far from the Temple of Serapis are the ruins of two temples, one of the Nymphs and the other of Neptune. The colvmns of the former stand erect in five feet water. The temple was doubtless submerged, and if there should over be an upheaval of the bottom of the bay, this temple would probably be exhumed as was the other. As to the difficulty that arises from the columns not having fallen down like the others, it should be recollected that they went down slowly, only threefourtha of an inch in a year, and that before the great oarthquake of 1149 occurred, they were buried twelve feet deep in incrustation or in ashes; being made of one block, they would be quite likely to remain erect.
One fact I forgot to mention: that these columns are a little out of a perpendicular-inclining sllghtly toward the sea. Originally they must have been perpondicular ; therefore the movement must have been greater toward the land; and this, too, may explain why the tomples of Neptune and the Nymphs are lower down and are not yot raised. An antiquarian, named Capocci, has proved conclusively that whilo these movements eccurred at Puzzuoli, no changes havo taker place at Naples, so that we have an oscillation of twenty-five feot up and down, while at twelve miles distance every thing is stationary : an important fact in the explanation of a great variety of geological phenomena, some of which I alluded to in my other lectures.

When you examine the new mountain you find no indication that it is more modern in its origin than the others in its neighborhood. Indeed, as the same country is under cultivation, for the most part the vines are lifeless for mucli of the year, and the olives are of a pale green. But Mt. Nuovo is covered with evergreens, myrtles, olives, and ar-butus:-it is the most verdant spot in all that region : showing apparently that it is less modern than the barren hills in its noighberhood. Nothing can be more striking than the whole landscape-every part of the picture is in such perfcct harmony with the rest, that you would not suppose different dates belonged to the different mountains.Yet I bave found at a hight of 2,600 feet marine
shells, identical in apecies with these which now live, buried in the strata of anclent, submarine tuff. The wholo country, which is se modern, olther consista of this volcanic mattor which has been thrown up aince it omerged from the sea, or of atrata in which you find shellu and zoophytos ldentical with those that now llve; and yet when the early Greek celony first took pessesslen of it 2,500 years ago, the appearanco of the valless and hills was much the same as you find lt now. You can acarcely aveld being surprised at the prodlglous antiquity, relatively te the histerical period, oven of the medern strata containing tho samo shells which I have spoken of in my last twe lectures, when alluding te the anticuity of the great mass of Etna, while all its vast sheete of lava and sceric rest on marine formations as modern as the Bay of Bale. These species of plants and animals whlch inhabit the hills of that country are more ancient than the ceuntry itself.
Now you may say that this is an apparent paradex : yet you will easily comprehend it if you attend to such a mountain as Nuevo, which since 1538 has been colenized by all the wild plants and animals of its neighborhood. So Etna hae been covered with vegetatien older than the mountain itself; net only were theso species of animals and plants alive before tho ceuntry roes from the sea, but during that whole period when the vast thick strata of hills first began to bo olaberated at the bottom of the ocean. So we nay affirm that the Fauna and the Flora of this region are of a higher antiquity than the country itself. Wero I to attempt to give yeu an idea of this period of time-the most modern subdivision of which, this tertiary and its succeeding periods, I have thus far censidered-if I were to compare it to any thing of which we have a conception, 1 would say that this period, of which I have spoken thus far, may be compared to such distances as exist within our molar system-between the different planetary
bodies. bodies.
Now when astreuomers endeaver to measure the distances of the solar system, they tell us that the earth is one hundred nillions of miles from the oun; because they find that when six menths have gone around, the earth is in the oppesitoside of her orbit, which is two hundred millions of miles in diameter. They calculate, therefore, by the angles subtended, with the diameter of her orbit as the base, that a distance of one hundred millions of miles is between the earth ond the sun. Then Jupiter is five times as far away; Saturn ten times, and so of the others.

Yot when they attempt to estimate the greater space which soparatos our Solar Systom from the nearest star, which again is probably the centre of a System as magnlificent as ours, they are bafled in tho endeavor, and can only find a diatance which , hall the the minimum-nor till lately have they arrivod at any accurato calculation concerning it. But it seems, by ebservations on the paraliax, a Prussian astronomer, Bessre, has measured the distance of one atar in the censtellation Cygni.The angle subtended by the diameter of the Earth's orblt at that star is found to be one-third of a seoond, and what distance does this third of a socond give youl Tuke tho diameter of the Earth's orblt for a unit, and then 700,000 of theso units, will express the distance of ono of those start in Cygni from our Earth, and perhaps that star is the nearest, and separated from the others whlch we see by a distance equally vast.
Porhaps, should we compare timo and space, this weuld be the kind of distance which should contain the myriads of organic remains of specios distinct frem the spocies immediately antecedent and following. The minor subdivisions of which I have speken would be compared to the space of our own solar system: the others, with the grander stellar distances.
Now it is a favorite speculation of astrenomers, that all these worlds, separated so widely, may be inhabited; but this is mere conjecture-a probable conjecture, if you tike, but still incapable of dc. monstration. But the geolegist proceeds differently. He has indisputable proofs, that thero have existed on this planet a succession of inhabi. tants, and distinct races of animals and plants. And though he does not measure the himits of timo se accurately, and with such geometric precisien, as the astronomer, still, by the vast series of events -by the methodical phenomena of the earth-ho finds eatablished, by purely physical phenomena and preufs, the declaration of Revelation, that in the first time Man had no existence; that man had a beginning, and that other races existed anterier te him. Man had a baginning; and therefore the present state of the organic world has not gone on from eternity, as the ancient philosephers pretended; vod we have been able to preve, that beings Livet, called b_{j} the Creator into existence, on this phar - and isplay the beautiful and perfect harshuay of the Universe-to show that all is medeled on one plan; that different as are the variousgenera that have lived, they all belong to the same family. Geology sbews that all things are the werks of one Intelligence-one Mind-all links of one chain ;

the greater

 m from the - centro of a bafled in ance which have they cerning it. parallax, asured the Cygni.ter of the - one-third * third of a ter of the 00 of these those stars that star is hers which
and space,

 ich should of specios antecedent of which e apace of le granderronomers, y, may be probable ble of de. ds differ. hat thero of inhabi. id plants. ts of time precision, of ovents arth-he enomena , that in man had 1 anterior efore the gone on pretendtheings , on this fect harmodeled as genera e family. ky of one e chain ;
that the Earth must have been admirably fitted for succensive states which were to endure for ages. Thus do we learn to admiro the variety and beauty of design displayed when we find traces and vigns
of the same design, the same unity of plan, the same harmony of wisdom through so vast a saries an has been established by the Infinite and Eternal Creative power.

L. ECTUREIV.

CORAL REEFS.

I have already said that in the structure of the crust of tho Earth we have a great variety of groups in which the distiact stratn may be expressed, if we group them largely-if we take wido and comprehensive divisions-by the diferent numbers and colors, as from one to eight in this figure [exhibited]; and that the difforent sets of strata-formations as they are called-are arranged one above the other in the order in which they are formed. Not that they are invariably all to be met in one placo, for it is not often that we find more than one, or tivo, or three, ef theso strata in any particular dis. trict: but if these different sets are present, we shall find them arranged in the order of relativo position in which they are represented-each corresponding to tho different period of the Earth's history at which it was fermed. So that they may bo regarded as a great chronological tablo-as so many volumes of History in which the strata aro the different page. ; and upon them are written the names and charasters of the plants and animals which lived and flourished at this poriod, with many other indications of climate, lrabits, \&c. in the periods when the different tribes flourished.Now if we examine in succession these rocks we find that a great number of those of calcareous formation, or limestones, are composed in great jart oí corals and shells; for examplo, if wo take the Chalk formation of Europe-represented in the figure as No. 2-we find a large portion of it to bo a white calcareous rock made up of corals and shells almost entirely decomposed. I have myself seen in the island of Seeland, fifty miles from Copenhagen, at Faxoe, this very chalk formation pass into a mass of corals in which more than a hundred species of zoophytes and shells are found. Betwoen the zoophytes is found chalky matter-like the ordinary chalk. This formation oxtends for more than a thousand miles in one diroction, and eight hundred in the other-not contizuously, but
in large paichen, which preservo nuch the same chnracter. In this country too, as in Now Jersey, are found rocks of the same ago, not with the white rocks of the same kind, but at different intervals down we find in tho rock, corals and shells made up of an aggregate of extinct species, but in great part of genera, the same as now live in tropical seas. And this is regarded as one proof that formerly the climate was much warmer than since; as it is only in warm climates that these stone building zoophites increase and abouna. There are zoophytes of the same class in all regiona of the globe : but those which form large masses of stone (which, when the animal dies becomes what we may term hard rock,) aro found at present only in warm regions of the globe.
Now, I might trace the different formations in which they occur, and point out the limestones in which they abound. In what is called the Jurassique or Oolite formation, these corals are found through England, France and Germany, at different hights with great intervals of clay-in some cases six or soven hundred feet thick. The corals are found above the other except when thoy have been destroyed by the depositions of clay, for they can live only in puro water. It is clear that where these take place and in the intervals between tho different layers of coralline formation there had been a sinking of the floor of the sea, since it is found that these zoophytes cannot build in the deep and dark parts of the ocean,-that they will not thrive in a depth of more than 120 feet below the surface: and therefore we find a mass of this coralline limestone with 1000 feet of clay abovo and then ansther layer of coral, and then 1500 feet thick of this cretaceous rock; it is evident that these were formed not at a depth of several miles but near the suraee: and that they then sank down to allow the accumulations above.
If we come to the carboniferous or coal forma-
tion, (which I shall describe more particularly in my next lecture,) we find beds of coal separated by vast thicknesses of other strata, which can only be explained by supposing that there has been a sinking of the surface of the land. Below the conl are found the most ancient fossiliferous rocks, which have an antiquity far higher than the thick limestenc, for the corals grow on spots which are now found covered in great part with extinct genera, or thoso which are only found in tropical seas, where coral reefs abound. In New-York, in particular, there are large developements of this formation, as I shall show when I come to speak of the district around Niagara, when I shall show the lights from which we are to suppose the bed of the sea has sunk, and tho era when theso marine plants and animals abounded. Now if we find, on examination of existing coral reefs that have limestone in their structure, similar in their character over a vast extent of the globe, that there is now in progress a considerablo going down of the bed of the sea; we shall then fcel more confidence in the appearances and facts on which depend some of the most interesting probloms respecting the origin of the materials of the Earth's crust.
I shall now proceed to give some account of the Coral Reefs, and of the manner in which they grow in the sea. I have been favored by Mr. Charles Darwin, who is about to publish a most excellent work on Coral Reefy, with this mapwhich will first be published in his book-drawn up after a personal examination of the region represented, and a most extensive reading of works upon the subject. On it are depicted all the spots known at present where Corals now grow. These portions [represented by the blue color] mark those places where there is reason to believe the bed of the sea is going down, as slowly, perhaps, as the floor of the Temple of Jupiter Serapis, described in my last lecture. By the red are marked the spacce where Corals have been raiscd at various elevations above tho level of the sca.

You will be able to sec at a glance the vast extent of the region where corals abound. You will sce, too, that it is chiefly within twenty degrees North and South of the Equatur-in the warmest parts of the occan. Sometimes it rcaches beyond the twentieth degree but rarely so far as thirty. Its greatest deviation is in the Bermuda Islands, which have a latitude of thirty-two degrees-which is the farthest point from the Equator where corals are yer known: and this is evidently conrected with the course of the Gulf Stream which
werms the ocean and raises the temperature beyond what naturally belongs to that zone. You seo by this map that in the Indian Ocean in particular and in the great Pacific and South Seas is a prodigious srowth of corals. And it is a very remarkable circumstance that almost all the islands in that part of the sea-all that are colored blue-consist of strips of coral of an amular form -more or less perfectly circular-and sometimes ovil. And theso strips havo lagoons in the cen-tre-small lakes of salt water. On ono side of this narrow strip is an unfathomable ocean at but a short distance from the edge of the ridge of coral. It was formerly supposed that these coral reefs were built up from the bottom of the unfathomable ocean ; but now since we know that these lithophytes, as they aro called, cannot exist at a depth of more than 120 feet-the limit assigned by Darivin (and some other considerable naturalists think that the limit is still more narrow,) we infer, as a fact of Natural History, that these wero not built up from the bottom of the ocean. And this is perfectly in accordance with the fact that in thousands of cases no soundings are te be found at enormous depths-only a fourth or half a mile from the outer part of these narrow rims of coral. One of these circular islands is represented in this picture, which was taken from an original drawing colored on the spot by Lieut. Smythe who accompanied Capt. Beechey in his veyage to the Pacific. It may be proper to say that the view is represented as having been taken from a higher point than the top of the mast from which it was actually taken, so that more of the inner part of the island can be seen than in the other case. The island is thrce or four miles in diameter, of cres. cent shape, and you seo a narrow rim of coral covered with tufts of cocoa, and bread fruit and other trees. On the windward sido the reef is higher than on the other; and on the leeward side is an opening of thirty or forty fcet-so that ships can enter and lie in safety in the lagoon. This opening, most fortunately, is just on that side where it is most needcd; for there, during terrible storms and tempests, vesscls may enter into the tranquil lagoon, where the water is shallow, compared with the ocean without, and wherc, in consequence of its shallow dcpth, it is of a most beautiful green color. Many of you who have sailcd across the Atlautic must have obscrved that, along tho Banks of Newfoundland, where the water is comparativaly shallow, it is of a deep green; and in thoso latitudes where there is white coral at the bottom and a burning tropical Sun over head, the
perature bezone. You Dcean in par;outh Seas is d it is a very st all the islt are colored anuular form d sometimes s in the cen1 one side of ocean at but ridge of cothese coral f the unfathw that these ot exist at a nit assigned lerable natuore narrow,) y, that these f the ocean. vith the fact gs are te be rth or half a row rims of represented n an original Mythe who oyage to the the view is om a higher vhich it was aner part of er case. The ter, of cresim of coral ad fruit and the reef is he leeward ect-so that the lagoon. on that side ring terrible ter into the allow, comcre, in conmost beauhave sailed 1 that, along he water is green; and̀ coral at the or head, the
vivid green of the sea water is described as most beautiful by those who have visited these islands. Down through its green depths, they tell us, you may see great herds of fish browsing upon the coral branches-for some species have strong, bony jaws by which they easily crush the coral, shell and all: you see them feeding upon the zoophytes as the herds of buffaloes feed on the herbs and trees of your wide prairies. And even the prairic itself in spring time is not enameled with more beautiful colors or with a greater variety of flowers and plants than are those beautiful beds of coral, according to the descriptions of Ehrenberg and otliers who describe these lakes as like beds of tulips-so beautiful and variegated are their colors when seen threugh the still waters beneath that tropical sun.

I may here mention a fuct of considerable geological interest relating to one of these fish, called Sparus. When their bodies are opened and their intestines examined, they are found to be filled with a very dry chalk-a seft, calcareous powder, which proves to be almost indistinguishable from soft, pulverulent chalk. I have myself seen somo brought from the Bermudas by Lieut. Nelson, which so nearly resembled European chalk that we were obliged to use creat care lest the labels should get changed, and we should mistake it for the chalk with which we were comparing it.
The animals which form these reefs-for the whole is a rim not half a mile, and generally but three or four hundred yards wide, covered often by shells of Echini, or sea urchins and other shell fish-cannot brild one inch above the level of the sea. They cannot allow themselves to be left bare at low tide; so that when the reef is so high that it remains almost dry, the corals leave off building. The heat of the sun then often causes the mass to crack, and the force of the waves tears off large branches of the coral, which are thrown up upon the reef, thus raising it above the reach of the usual tide. After this the white, calcareous sand thrown uron it by the wind lies undisturbed; and upon it are lodged tho seeds of the cocoanut and other plants, which grow up, until at length the little island is overshadowed with luxuriant vegetation. Then come stray birds and build their nests there; insects float thither on wood which las, drifted thousands and thousands of wiles, and at length the island becomes inhabited. Here is a specimen of the Meandrina coral-[ex Libited ;] it is a small shell of a young animal ; and you can conceive, when such is the size of this baby-coral, how vast must be the size of a number
of zoophytes of different genera-as the Madrepora, Astrea, Porites, (of which I here show you a section,) the ©culina, and others, of which the remains are found in the older rocks, and which now abound in the tropical seas. These shells and zoophytes constitute the mass of the materials of these reefs. As to the nature of these animal plants, as they are called-and very properly, too, for they seem to form the intervening link betwoen animal and vegetable organization-there is still great doubt. I shall only observe those called $P_{\theta} l$ lyps, inhabiting this stony structure, have a num ber of tentacula, or feelers, and a great cupshaped mouth, into which they force food seized by these tentacula, and which then closes, and they are able to digest their food. These assist in strengthening that part which is improperly called the root; for they are fixed at the lower point by a point which somewhat resembles a root, though, as it does not take in nourishment, as do the roots of vegetables, the analogy is not correct.

In the common red coral of the Mediterranean you see a solid internal skeleton, surrounded by a fleshy covering, which, in that case, is smooth; but when this, in which the animal residos, is taken off, you see a striated, fluted surface, to which attention must be paid in studying tho fus-sils-since we have not the living animals. I shall not enter (as I have so much geological ground to go over,) upon a description of the different varieties of Pollyps. But you may ask whether they exist as separate, independent individuals-or whether the whole mass of coral is regarded as one and indivisible. The same kind of question may be raised with regard to trees:-whether each flower is a separate individual, or whether the whole is to be regarded as an aggregate. We may perhaps best consider them as an animal republic, in which all combine to build one habitation, while each preserves its individuality. The general opinion, both in regard to the plants, and zoophytes, is that each is a definite individual.Although so beautiful when in the water, take one of these stone building corals out, and you see nothing but a brown slime when the animal is collapsed.

It is a remarkable circumstance, that, although these little islands are scattered about so far from each other in the wide ocean, uran every one capable of supporting them were found a few families when first dircovered. We should regard this as mysterions if we did not learn from the Voyages of Cook, Koezebue, Flinders, and Lieut. Beechey, that canoes are frequently drifted 500 or

26

1500 miles-driven before the wind in one direction by the monsoon, until, hopeless of recovering thair homes, they land upon some one of these is-lands-whero they find cocoa-nuts and bread fruit, and fresh weter too. This is singular, for you would think that there would be but little chance of finding fresh water upon these small islands : but if you dig into the sand, there it is-so that vessels at sea are often ablo to relieve their thirst.

The beauty of theso islands is described in glowing terms by most of those who have navigated those portions of the sea. Generally there is a constant white surf breaking over the outer margin, which is seen gradinally to die away with the dark heaving waters of the ocean, which continue to boil and rage far beyond. Within, the water is green and tranquil ; around it and outside the green line of blooming vegetation is a glittering beach of white sand. Beneath the water you may see fish and various kinds of Zoophytes. The very loneliness of these islands, moreover, gives them a romantic aspect. Sometimes they are sevenhundred miles away fyom the nearest neighboring island, and more than a thousand from the continent, or even much farther. The structure of theso islands, as well as their position in the unfathomable ocean, is remarkable. You find no part of them argillaceous or silicious; every portion is made up of an organic structure of which the tubes and stems are all you find. And what is still moro wonderful, these islands, which appear so weak and fragile in their nature-these mere barriers of coral are beaten upon incessantly by the swell of the great ocean, and yet are not annihilated. As Darwin truly observes, if they were only rocks of common granite or quartz, they would inevitably yield to the prodigious force of thess waves thus breaking over them. But here is a greater power than any mere inorganic structure: in its nature far superior to tho mechanical force of the waves : it is the power of life, of vitality; these zoophytes on the outer edge of the reef break the force of the waves by their yielding bodies; they bend like a willow before the storm, and thus conquer the power of tho great restless ocean. Indsed that part of the reef against which the waves beat with most turbulence increases much the fastest ; for these organic forces separate the atoms of carbonate of lime from the foaming breakers, and build them upinto their symmetrical structure : myriads of these architects are thus et work, day and night-month after month.
But what causes the singular, ring-like shape of
these islands and why are so many just on a leve with the sca and neither higher nor lower? These questions have been asked ever sinco the peculiar formation aud mineral claracter of these islands wero ascertained. It was at first imaginod, and I onco maintained the opinion, that they were the craters of sub-marine volcanoss. When it was Ascovered that Elinders was wrong in supposing that they could be built at a great depth, in the cold and dark regions of the ocean, up from the bottom, it was natural to suppose that they might have grown upon the tops of some submarine mountains. But what mountains would givo this shape to the corals? Or was it indispensablo that they should be built in this peculiar form? Now when Ehrenberg examined the coyals of the Red Sea lie found that some banks were square while others were ribbon-like strips with flat tops and without lagoons; and yet they were of the same genera as those which bad lagoons, the same as the atolls, as they were named from those observed in the Maldive fnd Laccadive Islands, tho term expressing an island with a rim of coral outside and a lagoon within. It was thus found that this annular shape is not essential; but that the corals may form in a different shape. It was therefore natural to suppose that this form depended on the outlino of the sobmarine bottom, and that they were based on velcanic craters, thousands of which were known to exist in that part of the sea. These craters would give the cup-shaped center and the rim might be covered with corals by these zoophytes. In tlie South Shetland Islands and in Barren Island in the Bay of Bengal, are submarine volcanoes with craters in the conter and a breach in the side so that you may sail within and see all around the walls of the crater. Now when submerged the corals might easily havo been built upon them. In farther support of this theory it was observed that in Gambier's group of islands there were volcanic rocks with a lagoon in the center, just as modern volcanoes have sprung up in the Gulf of Santorin.

Notwithstanding all these arguments in favor of the theory of a volcanic origin, it was found necessary to abandon it entirely; because, though it would account for some of the facts, there were many others which it could not explait and which could be explained by another theory. It was perfectly satisfactory so far as the rim and lagoons were concerned and it also explained why the Ocean near by should be unfathomable, which at first seemed an argument in favor of the volcanic theory. Mr. Darwin, after considering all the
ny just on a leve or lower? These ince the peculiar of these islands imaginod, and I at they were the
When it was ong in supposing eat depth, in the oan, up from the that they might some submarine would givo this it indispensable peculiar form? the couals of the ks were square ps with flat tops were of the same ns , the same as m those observed lands, tho term n of coral outwas thus found ential; but that shape. It was his form dopende bottom, and raters, thousands that part of the the cup-shaped ed with corals shetland Islands of Bengal, are s in tho center u may sail withhe crater. Now easily have been rt of this theobier's group of with a lagoon oes have sprung ments in favor , it was found pecause, though cts, there were laiu and which eoory. It was im and lagoons ained why the able, which at of the volcanic sidering all the
difforent facts I have related, observed that there wero in somo cases islands which had this samo coralline ring, and yet were not volcanic but granitic; and yet the ring of coral surrousded a precisely similar lagoon.-How was this to be explained? Again, Flinders discovered a magnificent reef-on the North-East Coast of New Holland more than a thonsand miles in length; aud he sailed for more than threo hundred and fifty miles and yet found no passage through that narrow reef. Instead of being circular or oval or in any such shape it was parallel to the Coast of New Holland. In the istand of Nery Caledonia, which is granitic, thero was also a long ridge of coral 400 miles long and prolonged at each end under the water beyond these limits: between the coral reef and the slore was what might be called a lagoon. Now we mus, have a theory which will explain these facts. Of these encircled islands, as Darivin ealled them-islands with encircling reefs around them-Vancouver's is one and Otahsite is another. Here we lave a coral reef with a lagoon inside. In the figure we have siven a section of one of these encireled islands.

A represents the island in the eentre; c and b are the points in the encireling recf upon which grow cotoa trees, Sc., and inside, or between c and b and the sides of the island, is a shallow sea communicating with the ocean through occasiona passages, similar to those met with in the lagoon, Now it was a rute laid down by Dampier and other navigators, that near high and bold coasts we shall have a deep sea; while along gently sloping coast the sea will centinue shallow for some distance from the shore. It was therefore surprising that when wo had or- island like that represented in the figure, going lown at so steep ati angle, instead of deep water, we find it shallow. Go two or three miles away, and still the water is shallow, and we have a cotalbottom. But go beyond the reef, and down goes the line some thousaud feet. It is obvions that the coral alone in the cause of the shallow water ; and we must
account by means of the coral for the fact that at a distance from the island, instead of several thonsand feet of water, as we are entitled to expect, we come suddenly to a bottom. Now in what manner can these zoophytes, which cannot livo at. a greater depth than 120 feet below the water, be able to build up a reef two, three, four or more thousand feet high from the bottom? Because the belief of Flinders that these creatures could work in the deep, dark, cold ocean and build up their structures to the lightand heat is proved not to bu true; though he did not err as a geographer in his statements respecting theso bold coasts.

Darwin here suggested a simple hypothesis which clears up the whole difficulty. Suppose the coral to begin to grow at c or d, in the figure above; and suppose these points at that time instead of being 1500 or 2000 feet deep, to be within 120 feet of the surface, the sea then standing at a different relative level from that which it occupies now. In short, the supposition of a sinking down of the land will explainitall. When the land began to sink the corals were building up, as is their mature, one gencration forming on the skeleton of the other, just as peat grows until it reaches a thickness of a hundred or more fect; each successive generation plants itself on the remains of the former. So with corals: cach mass forms a foundation on which a new one is built. As I have shown, or as Niccelini has shown, the rate of subsidence in the Bay of Baix is threc-fourths of an inch a year. Now common Corals will grow up at that rate; and perhaps two inches a year would bu a slow growth. Let me observe that we need only show that the greater part of them increase slowly; though passages of the Red Sea are known to have been filled up within a few years. This, however, may be casily explained, because the waves, \&c., may have thrown up sand and thus filled these passages. But the common growth of the coral is slow. Indeed Ehrenberg thinks that somo of the species, as the Meandrina, are as old as the most ancient tices of Europe, some of which are three or four thousand years old. Decandolle has shown that somo yews and other trees are two thousand years old, and some still more ancient. So Ehrenberg thinks that many of these corals in the Red Sea are several thousand years of age. But the vigor of their growth depends upon the warmth and carbonate of lime that reaches them.

Now we may suppose the land to be sinking down gradually as the corals are building up.What is the consequence? Instead of sinking
down with the land, the corals will grow up by building upon the former masses-just as one pnvemont of the Temple of Jupiter Sernpis bas buik upon the other, which liad sunk And when these colevel of the Mediterranean. And can rise no higher, rals come to the surface and the waves then throw up cal as sand opon them and furm a ridone as lising up, the muss ulwhile the corals are thas rising up, ways gaining in hight above its orignal same nosiyet remaining in other respects in it sinks is irrecovarably lost, and the distance becomes greater and greater from tho island to the reef. If the islaud sinks down, it diminishes in size above the water; but the reef remains as it was, (though, from its slight inelination inwards, it may be a very little affocted,) till at last the island peak disappears and is converted into a lagoonAll the land disappears, and the island becomes a perfect Attol; and if the subsidence still goes on, the lagoon will acquire considerablo depth. This theory also is us sutisfactory in explaining the barrier reef as in accounting for encircled islands, lagoons or attols. Let us take the following diagram as representing a barrier recf on the coast of Australia:

Here the land, instead of going down abriptly to the sea, has a gent:e slope. W wen the reef began to grow at d, suppose the land stood 1,000 feet higher than now ; the level of the sea would then be $c c$. But as the bed went down, tho reef would be raised 1,000 feet, or from a to g, and ef would represent the level of the sea. But as the distance $f g$ is greater than $c d$, it is obvions that the higher up towards the surface the reef be built so much faster must the land be constantly retreating; and the rate at which this will go on is in proportion to the anglo of descent. If at an anglen $\operatorname{f} 30^{\circ}$ ono foot in vertical light be lost, the chacre in cistanco will be about thirty feet. But in a gontly sloping coast every foot in hight mensures a vast number of yards; nod the land will retreat at a greater rate. Thus the iarrier reef is at a considerable distanco from the const- 20,30 and sometimes 70 miles out.

I ought here to say that corals will not grow too near the shore, in consequence of the sand and mud carried thither by streams and carried up by waved. It is only in clear, salt water that they live ; fresh water poisons them. On tho other hand, they will not grow too far away from land, hecause the sea is thers too deep. Just as ouly a ring or zone nround Etna and Teneriffe is inhabited ly humau beings, because on one sido is tho sea and on the other voleanic ashes, \&c-so is it with these corals, which grow omly in a narrow zone at a certuin distance from the land. As the ishand goes down, the corals build up, and we have nothing left but tho lagoon. We have islands also in an intermediate state, as Tahiti and Garahier's group, most of which, however, are perfect attols. Nine-tenths of them have arrived at this state.

In this figure suppose A to represent an island 2000 feet high, and B a shonl in the sea, when $c c$ is the sea level. Now if the coral grow on both
islands as islands as they sink gradually until it be 2000 feet thick, we shall have attols at the summits. If the top be washed, so that the corals will not grow, a ring will be formed, and grow up, and we shall have a lagoon ; Λ will become an encircled island for nges, until it is sulmerged, and then the rising coral will forin a lagoon. So that this $l a$ goon island really represents a sunken mountain. This may be seen at Tahiti, in Gambier's group. and in the Dangerous Archipelago-an area of 4000 miles in one direction, and 600 in the other. From this you may infer what must have beeut the vist differences in level of so vast an area. Take any continent containing a thousand mountains, and low very great in difference will there bo be. tween the clevation of the different summits.What a difference between the ligh and low:And what an amount of subsidence must take place before they aro all so sunk ay that we shall see only the topmost, upon the same level! nnd yet to this ure we led 1 y the theory of subsidence; nor should we be terrified or frightened out of any sound theory by contemplating the vastness of the results to which it leads.
I may as well mention that this theory of subsidence wns not invented for the purposo of oxplaining these phenomena. Iong beforo Darwis had
 .

29

will not grow of the sand and d carried up by ater that they On the other vay from land, Just as only a eriffe is inhabone sido is the , *c-so is it y in a narrow land. As the d up, and we e have islands iti and Garzr, are perfect rrived at this
 rrow on both be 2000 feet mits. If the not grow, a d we shall ncircled isnd then the mat this $l a$ mountain. er's group. an area of the other. e bees the ea. Take mountains, ere bo be-mmits.dd low! nust take we slanll ! ! and yet lence; nor ut of any ess of the of subsi-oxplainwis had
maite his examinations of theso corai islands, in 1835, I published my opinion upon this point, that the sinking down of the Pacific might be in excess: that its depression might be greater than its up." beaval. For in no other way could wo explain how sucli a multitude of islands should exist first at a level, and now more than 60 feet above the surface. Henderson's Island is about 60 feet above, and the Tougn islands of Capt. Cook, are about 20 or 30 fect. The theory, then, was not made for the purpose of fitting the facts-blough it is a perfectly legitimuc reason for adopting a nheory, that you find it will explain all the known phenomena which no other theory will explain.-Still, it is somewhat moro satisfactory if the prine ciple was not formed expressly to suit the facts of the case. I argued that if there was a: equal amount of upherval and depression-supposing a motion of oscillation-a novement up as well as down-to take place, large masses of coral will be raised above tho level of the sea; and that, unless we assume that the downward movement is in excess we are impelled to conclude tho coral would not have remained on the level. For if it sink 30 feet in a century, the coral would grow up in th at time 30 feet:-if it rose ten feet we should then find the solid ground of the cornl ten foet. bigher up. If you reflect you will see that it is quite impossible to have so vast a number of islands just on a level without supposing the sinking to be alightly in excess; and when you find that this will explain the formation of attols and encircled islands, you must be skeptical if you reject the evidence in favor of it; especiatly when it is ascertained that in Greenland the land is settling-that there is a small subsidence in the Bay of Baieat the mouth of the Indus, and along parts of the coast of South America. But what shall we say when we are forced to conclude that, not only must there have been a sinking down of the floor of the ocean to bring all its mountains to the ame hight, but that all must have gone down so gradually as never to sink one hundred and twenty feet at once? For if thero had ever been a fall of 120 feet the corals never more would have grown ; all would have perished, and ne new ones would spring up. The whole process of subsidence then must have gone on at a very gradual rate-not more than a few yarda at any one time.

But when islands are rising (and we find that a large proportion of the islands in these seas are volcanic islands, or that in some part of them are volcanoes in active operation,) in this case we beve coral reefs, but they do not encircle the
islands; but wo shall have a formation called by Darwin, fringing recfs; reefs fringing the shore as near as the zoophytes could live. There is a small island of Sumatra overspread, at all hights from the coast to 200 or 300 feet above, with coral sholls of tho tridachna. At the sumo timo this upheaval lus not carried the island as far above us it must before have been below the lovel.

Tho coast of Suth A merica is one where no coral grows. Why it is that zooplay ies will not livo there is not perfectly explained, any more than why none grow in the Athantic. Tho Atlantic is warm enough and has all the necessary conditions; but except on the borders of the gulf-stream no coral islands are found on the coast situated must favorably in the tropical region; at present we canno more explain this than why certain plants do not grow in the United States; why roses are not indigenous in the Sonthern hemisphere, ©. But in the geographical distribution of plants the Author of Na ture has given certain laws; and so with tho zooplytes. They do not flourish on the Atlantic coast. Tho coast of South Anerica is a coast of upheaval so far as wecan jadge. There are volcanoes here, and animals and shells are found at varicus hights, Yet there are no coral islands. Then in Gambier's group, in Tahiti and the Friendly Islands and in the Dangerous Archipelago are attols which have flat tops; here we suppose there wero stationary periods when the lagoons had time to fill up. Then in the Navigators' and in Cook's island the oscillating movernent causes attols and upraised reefs. Then in another region, in Suilivan's Island and the new Hebrides-for a long way from North West to South-Last, the upward movement is in excess. In New Caledonia we find an example of an excess in subsidence. Then in tho volcanic island*, Java and Sumatra, there is a great line of upheaval under which the beds of coral and recent shells aro raised higher.

One of the most remarkable ridges of attols is in the Laccadive and Maldive Islands. For several hundred miles in extent you fird a series or circular assemblage of islets all of corul, some o them 30,40 or 50 miles in diameter. So you may trace them along the coast of Africa and the Red Sen, and go over a large area 2,000 or 3,000 milea from North to South, and from 7,000 to 3,000 from East to West, and find the same alternations.

It is often a subject of wonder to geologists to trace the same shells in different countries. Thus in Siberia and Russia Murchison has found shells identical with those in England; and the same spo

30

ries as the C'arynphyllia and others may bo found in the North of Scathad mad in this State of Newlook. Liocks are met containing this extinct spesices with fifty others; and they may be traced at least to Iowa and very likely to the pocific. It is a mater for wouder and marvel that these same apecies should thomish over so large a space of the glibe an from Siberia to Inwa: yet it is nothing to the extent over which masses of limestone ase nuw forming. But if you penctrate to a
litte depth all the interstices will bo found to be filled, tho carboniferous lime will bo fund as solid as any limestone, and all its organic texture will havo disuppeared or can only be discovered by microscopic examination. So is it with the old rocks at Trenton and Niagara which are of most minute texture ; so that it is not true that the extent of tho ohd limestone was on a grander scale than what is now exemplified in the present state of the globe.

I. ECTUREV.

ORIGIN OF COAL.

In spealing of the different strata of which tho Earth's crust is composed-those at least which contain organic remains-I spoke of them as so many volumes of History-as so many monuments of the ancient states of the globe; and of their different structures as being so many leaves of theso volumes. All that I can do in this short comse of lectures is to take down at random, frst one and then another of these volumes and endeavor not to give you any idea of the contents of the wholo but just to express something of the method employed in the attempt to decypher theso ancient memorials of tie Earth's History. Now the volume which I intend to take down to-night is that which we term the Coal formation; and I shall speak of it only so far as to show the relative position, and the stateof the different periods when they were deposited beneath the water.
Now when I term this formation Coal, I merely mean this assenhlage of strata which rests on the Older Sandstone, and in which is found that valuable fucl wo call coal; and although the quantity in which it is contained is very snatll in eomparison with the bulk and volume of tho other etrata, there is still great interest and importance attached to it. Wo see that in going from the highest to the lowest beds yet discovered, the coal occupies quite an ancient position-one indicating a formation low down in the Sea-as we have above it the most modern formations. We have first the Post-Pliocenc, ther the Tertiary formation, then tho Chalk, which is made up of calcareous matter formed nostly, at least in Europe,
from decomposed shells and coals and of thoso green marls which are found in Now Jersey and aro of such extensive use in Agriculture; then wo have tho Jurn limestone or Oolite, in which also are masses of coral like the common coral reefs: below this are two other groups, of which I shall net speak at present, and lastly we come down to the Carbonifernus or coal-bearing stratum which rests upen the thick sandstono beds, or the limestone containing corals and which like evory other formation contains species of aminals, shells and plants of difierent specie, from these immediately antecedent or following. Below this again we see limestone and shale, which enter mont largely into the structure of the rocks of tha State of New-York and which abound in fossils.

Now a great change must have been experienced beforo the coal period, when the fossila were deposited. I am indebted to Mr. Sopwith, an eminent civil euginecr, for copies of some models prepared by him of those sections, which are faithful and accurate representations of actual locali* ties, as has been fully verifird by Dr. Buckiand and myself in examinations which we made last spring. The different strata of sandstone, shalo and conglomerate of which the carboniferous formation is composed, are here represented. Tho sections represent facts ascertained in cutting perpendiculaty through the Newcastle conl dis. trict. They are not hypothetical but are founded upon exact measurement. In one of these sections you see the dip of the beds is at an angle of 20°, while the sloge of the valley is 40°. In the
other the dip is 50° and the slupe of the valley in the same direction is 20°. In these two cases, therefore, the relation of the slope of the valley and tho dip of tho beds is reversed. In both cases, also, the shope of the valley and dip of the Leds aro to the South. To those who are not acquainted with these technical terms I may say that the deviation from a horizontal plane of the beds is called the dip; while the strike, as it is called, is the extension of the strata in a direction at right angles to the dip. In this case, as the dip is to the South, the strike must be from Last to West. Tho flexures of the valleys depend on their inclination relatively to the dip; and these two sections cut through beas of coal and shale and sandstone-the shalo being indurated clayure illustrations of cases in which the two strata come up to the surface according to the various relations of the slope of the valley and the dip of the bed. It is a rule among miners that when the dip of the beds is less steep than the slope of the valley in the same direction, then the V 's, as they are termed, will point upwards, those formed by the newer beds appearing in a superior position and extending higher up the valley. But when the case is reversed, and the dip of tho beds is steper than the slope of the valley, then the V's point downwards and those formed of the older beds appear uppermost. These rules may often be of great practical service in many cases. For example, suppose a miner first to begin his operations in one valley with the structure of which he is familiar. If he should sink his shaft through the formations above he would come to the coal which is below. But suppose one unacquainted with these rules which I have been explaining, to go to anether valley; and in England he mighteasily go to such a valley, for these cases, as I said, are not hypothetical. He might, continuing along the same side of the hills as he had seen in the other valleys, where be observed the same out-croping, as it is termed, of the coal seams, suppose, reasoning from his former experience, that he might begin his workings in the bed at the higher part of the valley with the expectation of coming down to the other bed. But he would be disappointed, as you will readily sce by observing that the uppermost bed is lowest down in the valley, and tho lower bed is tho highest up. This you can easily trace with your eye upon these sections. An acquaintance with these rules and their application is of the greatest importance to those speculating in mining transactions. In the coal field of l'emasylvania, to which I shall presently allude, near Pottsville, I saw an
exemplification this year of the two cases alluded to-when in the coal of the same valleys the V's in somo cases pointed one way, and in the others in the opposite-the dip and slope being both towards the south. There is nothing more singular or which has struck me so forcibly in respect to the coal fiehls of this country as their close resemblance to those of the north of Europe, and of England in particular. I have traveled on the north side of the A_{1} s towards the south, nud have been astonished to find minerals of fossil of entirely distinct genern from those met with in the Pyrenees. Nor have the chains of mountains any thing to do with this remarkable change-for the beds were formed at the bottom of the sea before the mountains existed. Observing thiz great change, then, in the short passage of a few hundred miles, it geems to me most surprising that in passing, at the distance of three or four thousand miles, fiom England to the Apubachiun chain in Virginia, we should find the coal measures the samo as those we left behind, represented in the red sandstone, and containing white gritand slaty shales, and clays not slaty, and beds of conglomerate containing quartz pebbles.

It is generally admitted by geologists that all that fuel which we call coal is of vegctable origin. If there has been any dispute with regard to this, it was settled when a portion of the Newcastle coal some years ago was submitted to a microscopic examination. After cutting off a slice so thin that it should transmit light, it was found that, in many parts of the pure and solid coal in which geologists had no suspicion that they should be able to detect any vegetable structure, net only were the annular rings of the growth of several kinds of trees beautifully distinct, but even the medullary rays, and, what is still more remarkable, in some cases even the spiral vessels could be discorned. But besides these proofs from observing a vegetable structure in the coal itself, there has been found in the shales accompanying it, fern leavas and branches as well as other plants, and when we find the trunks of trees and the bark converted into this same kind of coal as we find in the great solid beds, no one will dispute the strong evidence in faver of the vegetable origin of this coul. If we find a circumference of bark surrounding a cylindrical mass of sand, we know that it has been a hollow tree filled up with sand, nor can there be any doubt that the coal is formed of vegetable matter. No less than three hundred species of plants have been well determined by botanists, some of whom have devoted a great
part of their lives to this study. Frons this it is to 1,0 inferred that the carboniferaus formation of Burope and America is made up of comparatively recent plants. I will mllulo to threo or fone of the most peculiar facts that lead to this conclusion.

In the first place the bonghs and leaves of Ferns are the most frefucutly and strikingly mot in A merica as well as in Europe. So perfectly have they been preserved that there can be no doult that they aro really ferns; and in some cases even their inflorescence has been preserved at the back of the leaves. Whre wo have not the flowers and prints remaining we have found it possiblo to distinguish tho differnt species of fossils and ancient ferns by attending to the veining of the leaves. At least one hundrel species are determined in this way. Tho most numerous of these vegetable veinings are those which have been called Sigillaria-or Tree Ferns. Their stems are found to be fluted vertically and in the flutings, aro little stars-as it were-each of which indicates the place where tho leaf was attached: and it is evident, as M. Adolphe Brongnlart has shewn, that they aro recent Tree lerns. Ono argument for believing this is that athongh the bark of these trees is so woll mated that forty-two species have been described, yet thero is never found any leaf attached; whilo we have in the same beds loose leaves in abundance which have no tuunks. The natural inference is that they must have belonged to the arborescent ferns; as for instance the section named Caulopteris is admitted by all to have belonged to this species. This fact is also important because tho treo ferns and especially the Caulopteris are now known be cxclusively the inhabitants of a warm and humid clinate-much more hot and moist than in those parts of the globe where coal now abounds. For we find coal not only in England and Nova Scotia but as far noth as Melville's Island and Baffin's Bay, in al climate where the grow th of such fern plants is dwarfish and stinted. It is evident that when theso vegetables existed there must have been a warmer, and probably a more equable climate than now even in warmer latitudes.

For even in the tropical zones, whero we meet with large developements of the Caulopteris, their general grow th is much smaller than these fossil remains. So is it with all tha phants of the fir tribe ; many of them of which wo find fussilremains in the coal now exist only in the Sonthern f latitudes, where no coal is found. The Araucaria c wo now find in Clili, and other warm parts of the c globe, but never at the North, where its fossils sbound in coal. The gigantic plants of the Equi.
cctaceous twhe ure also found to be much smaller now in hot latitudes than aro their fossil remains. This would lend to the inference that the climate in Northern latitules was then much warmer and more moist than it is now in any part of the globe. The some thing is made evident by a comparison of these fossil Sigillaria with thoso which now attuin that greatest size in the islands of the l'acifie. I havo also found several 1 dants, as the Asteroplylltes in the Apalachian chuin, this gear, which 1 have also from Nova.Scotia aud liurope, and winch camot cortainly be referved to may living familios. These all, however, bospenk a terrostrial vegetation, though orcheionally found mixed with marine thells and corals.

Anuther class of forsils common in coal shales is tho lepidodendra-somewhat allied in form to the modern lycopodiums, or white mosses. Though the mosses of the present day are never more that mere shrubs even in the warmest regions, yet at the carboniferous period they attained an enormous developement, being 50,60 or even 70 feet high.

There have been two theories to explain how these plants could have been carried into the sea, estuaries or lakes, and drawn beneath the water and accumulated in the strata so as to form coal. Ono of them asserts that the plants must have been drifted and buried in the water, since we find them intercollated between diferent slates or shales: just as plants lie between the leaves of a botanist's herbarium and are pressed together, so have these ferns been found flattened between the eeams of shale. They have been carried from the place where they grew, drifted out to a certain distance, water logged and sunk in tho mud and other strata deposited above them, so as to form this intercollation between the different leaves of cliy.

Bur maty believed, from seeing the roots, that the plants grew on the spot where we now find them. But when we come to observe that these ruots terminate in diferent strata, it will seemevident that they were carried lown, sunk and stuck in the mud as snags are now in the Mississippi. In the quartzose sundstone at St. Etiemne, near Lyons, are found a vast number of these L.epidodendra and Sigilluria. No one aprarently candoubt that these drifted to their present position, and that they wole aftewards corered with sand brought down by rivers. Many apperances favor this hypothesis. Sometimes we fint bedt of marine shells, then vegetable matter and then a mixture of' fresin water and marine shells.

But though these facts may be thus expluined the dizcoveries that are being mmilo lead geologists to come round more and nore to the oppesito viow of the case-tis the hypothesis which refers the growth of large beds of coal to the increase on the spotafter the manne: of peat, as it is seen in cold and dark climates. This may appear eontradictory to what I said with regarl to a change of climate since the earboniferous era: but it is not necesgarily so. The opinion of Wernere, confirmed by the spechlations of Brongnart, led me to believe contrary to my early impressions, that by fur the greater part of the coal had grown in the spot whero it is found. Accemmalating like peat on the land, the land mnst have been subnerrged again and again tu allaw the strata of sand mad mad to be superimpiosed as wo now find treni.

In exeavating for coal at Balgray moar Glasgow, in 1835, many upright trees wote found with their roots terminating in a bed of coal; and only three years agn, in cutting a section of the Bolton Railroad in Lameashire, eight or ten trees were found in a vertical position; they were referable to the Lepillodendra speries and allied to the Laycopodiums, or club masses. All wero within 40 or 50 feet of each other, and some of them were 15 feet in circumference at the bottom. The roots spread in all directions and reached beds of elay, and also spread out into the seams of coal.There is ne doubt that these trees grew whero they are fomd and that the roots are in thecir arig. inal position. The seam of conl has possibly been formed of tho leaves wh ich fell from the trees. This is a singular fact: that just below the coal seam and abeve the cowring of the roots was found mer. than a bushel of the Lepilestrok, asa ${ }^{\text {f. }}$: ont unlike the elengated cone of the fir tree. I.: on imagined that the Lepidostrohus 1... it of the Inepidodendra; but here they ar

Under $ᄂ$. scant of coal in Whtes is fomed the fire clay-a sandy, blne mud, abousading in the planta called Siigmaria. First is the semm of enal, then the fire clay, then another sam of ewal, and then the sand stone. In one part of the Newcastle coal field ahcut 30 species of Sigillaria were discovered: the trunks were two or thee fert in diameter. They pierce through the sand itt a vertical direction, and after going for sume 11 feet perpendicularly, the uper pait bends ound horizontally, and extends laterally into the sand,-and then they are so flattened by the suporincumbont strata, that the opposite barks are forced within hadf an inch of each other. The flutings are beau-
tifully preservedin the flatened horizontal stems. Here we had an ancient forest growing in a bed of clay-butied in some way with suxd to a certain depth, mul then the upper part was bent and broken off by tho water current, und buried in lay. ers of shale und stud. Thero aro many cases of this kiml in Wales, where the reots of the trees evidently preserve their origiaal position. Mr. Logan, an excellent geohgist, has examined no less thran 90 of these seams of coal in Wales. They are so exceedingly thin that they are of but littlo value in un ceonomicallight-yet, they ure just as important for geological purposes, ns if they were thick strata. Under every one of the 90 he has found the fire clay, a sandy mud containing the plants called S/igmaria. It was discovered years ago that this fire clay existed with the coal mine ; but it was not known that it was the floor of every coal seam, anl not the roof, which contnined this plant in a perfect state. The Stigmaria appears in the under clay (to use the tern employed by ininers,) a cyliudrical stem, from every side of which extend leaves-net onlyfrem the opposite sides-but from every side; they appear like tubercles, fitting on as by a joint. They radiate in all directions in the mud, where they are not flattened liko the ferne. Had they been wo might havo had leaves in two directions, but not on every side. These plants resemble the Euphorbiaceos in their structure, and in some respects are analogous to the Coniferous or fir tribes. In their whole structure they are distinct from all living gencra or tamilies of plants.In ono instance a deme-shaped mass was found with stems and leaves-some of the branches being 20 or 30 feet in length and sometimes longer. It has been thought by Dr. Buckland and other geologists, that these plunts cither trailed along in the mud at the bottom of swumps, or te have floated in lakes like the modern Siratiotes.

After Mr. Login had arrivedat this remarkable fact, we became particularly desirous to know if the smine fact was true in the United States. When I arrivel here in August, I had no idea how far it was true, yet it was known the Stigmaria did eccirr; and my first opportunity to iuquire into the fact was at Blossburgh, in the Bituminous field in the Northern part of Pemsylvania. My first inquiry of the geologist was whether he fomnd Stigmaria there. I was answerd in the affirmative: and on askiug if the plant oceurred in the under clay, he said we could soon settle the point. He kad one of the mines lighted up, and the only plant ue could find in the unter claywas this Stigma ria: it existed in abundance-its leaves radiatin
in all directiona, just as in Wales, more than 4000 milos distant. The same crutal appearance was preserved. In the roof of the conl seam were seen different species of ferns,-Sigillari and Calamites, just as in North Carolina and in Wates.Afterwneds another apportunity occurred in tho Potaville region of Anthracite coal. Professor Rodaris, the State Geologist, who, though well acquainted with the strata of the district, was as anxious as I was to know if the rule would hold good, examined first at I'otsville and nt Mauch Chunk, when the same phenomena were observed. In the first conl mine we cano to, the coal had all been quarried away (for the work wascarried on in open day) and nothing but the cheeks of the mine romained. The beds, as they havo been horizontal, are nuw not vertical, but have gone through an angle of a little more thak 90°, und turned a little over; so that what is now the under side was eriginally tho upper; therefore the chcek on the left sido was originally the floor of the mine. We now looked at the lower elieek; and the first thing we saw was the Stigmaria, very distinct; on tho other side, but a little way off, were ferns, Sigillariew, Calunites, Asterof hyllites, but no Stigmaria. So it was at Mauch Chunk, where we found one 30 feet long with leaves radiating in all directions. At this place there is a bed of Anthracite noarly 60 feet thick-a magnificent accumulation of vegetable matter, to which there is nothing comparable in Europe. Except in one place it is perfectly pure.

It has now been ascertained for many years that Prof. Eaton was quite correct in affirming the Antluracite and Bituminous Conls to be of the same age. This is shown not only ly their relative position with regard to the red sand-stone, but from the plants found in both being identical.
All the coal fields, therefore, may bo regarded as one whole, and the question will accur, How did it happen that the great floer was let down so as to prevent the accumulation of coal and yer plants of so different textures should be found in it? It has been suggested that these plants grew in swamps; and it is possible to imagine that there may lave been morasses fitted only for the growth of the species of plants called Stigmaria; and that this marsh filling up, this and the other plants became dry, and the lenves accumulated one layer above another, so as to form beds of coal of α different nature from those that preceded. You know it is a common th'ng for shallow ponds to fill up gradually with mud and aquatic plants and at last peat and trees are formed upon them. A corresponding
change is constantly going on in different parts et Furope-the same transition from bogs and marshes to a soil capablo of supporting various great trecs is taking place, mid then the ground is submerged; for always, again and again, we must refer to this sulssidence of the soil.
Many of you, I supprase, have aeen the mornss called the Great Dismal in North Carolina and Virginia; and you have probally had an opportunity, as I have, of crossing the northern extremity of it on a ruilway supported by pilos, from Narfolk to Weldun. This is no less than forty miles from noth to sauth, and twenty from east to west, covered entirely with various forest trees, under which is a great quantity of moss; the vagetation is of evely varicty of size from common creep: ${ }^{\prime}$ mass to tall cypresses 130 feet high. The water surrounds the roots of these trees for many montha in the year. And this is a most singular fact to one who has traveled only in Europe, that, as is the case in the United States, trees should grow in the water, or surrounded to a certain hight by water, und yet not be killed. This Great Dismal was explored some years since ly Mr. Fiduund Ruprin, author of a valuable Agricultural Journal. He first calls attention to the fact that a greater portion of the vast morass stands higher than tho ground that surrounds it; it is a great spongy mass of peat, standing some seven or eight feet higher than its banks, as was ascertained by careful mea. surements when the railroad was cut through. It consists of vegctable matter with a slight admixture of earthy substance, as in coal. The sourco of peat i_{1} Scotland is that one layer of vegetation is not decomposed before another forms. So is it in Chili, Patagenia and Terra del Fuege. Thus also is it in different parts of Europe, in tho Falkland Islands, as Dairwis has shown. Thus, too, is it in the Great Dismal, where the plants and trees are different from those of the peat in New. Yerk. It is found on cutting down the trees and druining the swamp and letting in the sum, that the vegetation will not be supported ats it was before beneath the dark shade of the trees. In the middle is a fine lake, and the whole is inlabited by wild animals, and it is some what dangerous to dwell near it by reason of the had atmosphere it creates. It is covered ly most luxuriant vegetation. Wo find in some places in England that there is a species of walking mosses, which are sometimes seized with a fancy to walk off from their places: the noss swells up, bursts and rolls off, sumetimes burying cottages in its path. In some places this peat has been dug inte and heuses have been found
several feet rian remai Dismal ma country.

In specu Carbonifen only to inna over the su prevails, to mate as 1 flourishe. high lauds cold. If to the thol the tempe every one and fossil gnography cient cond tion of wl evidences and other the coal ting a hig shadow fa phere.

I have
these poi
logists er
bors will
not avoic
the grout
me great
racy of t
taken, al
ducted t
ance of
labors,
and the
different
much g
:lan any
the adv:
remenb
in differ
have fai
in an e
scarche
interest
ledge o
several feet below the surfacc-curbous antiqua. rian remains. In the sume namer tho Grout Dismal may spread itself over the surrounding conntry,

In spectating njon the polmble climate of the Carboniferous period, it is Lellemb that wo have only to inngine a ditherent listribution of the land over the surfise of the planet than that which now prevails, to produce such a warn and hamid elimate as must have prevaiked when theso plante flourishel which form eoul. It i is the existence of high hands near the pule which produces such great cold. If these monntains were to bo transferred to tho thopical regions, it would immediately lower the temperature of all climates of the earth. Now every one who has attended to the sturly of rocks and fessils sees at once that the presert physical geography of the globe has no reference to its ancient condition. Seas once occupied a large portion of what are now coutinente, and we ulso find evidencos of marked change in the Carboniferous and other strata. In the limestone accompanying the coal we find corals und shelts, strougly indicating a higher temperature of the sca, as the plants shadow forth a higher temperature in the atmosphere.

I have been favored with a map illustrating these points by l'rof. Haric, one of the State Geologists engaged in surveying this State, whose labors will soon he made public. And here I cannot avoid saying that I have been over much of the ground which they have surveyed, and it gives me great pleasure to bear testimony to the accuracy of their labors, to the great pains thry have taken, and the science with which they have conducted the survey. I look forward to the appearance of their work, embracing the results of their labors, as an erain the advancement of science; and the patronage which has been afferded by the different States of the Union to these sarveys is much greater, in proportion to the population, than any European power has ever extended to the advaneement of geological science. When wo remember, ton, the complaints that may be heard in different parts of the State that the geologists have failed to discover any mineral wea'th, even in an economical point of view, these scientific rescarches are of high value, though their greatest interest arises from the promotion of the knowledge of the structure of the globe.

But mervly in eatimating the mischiof thry havo prevented, we shall see an ample remuneration for tohl the expenee nttending the survey. I have been of that in this State alone more than a million of dullars have been expended since the Revolutionary Wir in boring for coal in formations were it is impussibic to find any-lelow the carboniferous strata. I sheuh not, to be sure, have venturel ta gencrulize from Birope as a type and say that the rocks in the crust of the earth occupy the same relative position here, and thut coal would be fouml always in this country muder the same conditions as in Vinrope. But when fer twenty years or more we find coal accompanied by tho same phants, and that no valuable fuel has ever been found under any other circumstances we should be safe in saying that none could be feund in the older strata. If we begin in the newer beds wo may come down to the conl, and find enough coal to pay the expense of boring for it. But if we begin in the strata beneath the carbeniferous wo should certainly never reach the coal until we had bored through the wholo earth: we might find it at the antipodes but not before.
Thus complaints are made against these geologists not only that they have found no coal, but that they have passed sentence of sterility upon the State, for they say that through all time no coal shall be found within its borders. And when we reflect on the enormous sums that have been wasted upon strata more ancient than the coal, in searching for coal, we shall see the great saving made in consequence of this survey; for when all its maps and sections are published it will be seen how impossible it is to find conl in these more ancient beds. This is a kind of ndvantage which is never casily appreciated: because, to prevent mischicf is never so clear and palpaple a benefit to the multitude as to find mineral wealth. But one of thogreatest advantages which have resulted from these surveys in England, and it will be among the greatest here, is the prevention of this rash and absurl speculation to find coal in strata below that in which those plants known to be essential to the formation of coal are found to exist: and after examining the whole ancient strata, both in the United States and in Earope, there has never been found a sitgle bed of coal where these plants do not exist.

L. ECTUREVI.

FOSSIL FOOT-PRINTS.

I have been asked hy several persons whoheard my last lecture, upon the Origin of Coal, if I could explain the differenee between Coal and Anthracito ; and as I then had no time to toueh unon this subjeet, although my last lecture was prolonged boyond the limit which I wished, I will now speak of it in n few words. It certainly is a good question; but sevoral persous have asked me whether, cenceding tho vegetable origin of coal, it may. not be the difference in the wood which causes tho differenco in the coal: whether one kind may not produce tho Coal and another the Anthracito. Now there is no donbt that, in the strata of the Earth, there is some variety in tho charactor if the various Coals discovered, which may be owing to a difference in the original toxture and composition of tho different plants from which they were formed. But this, novertheloss, is not the cause of the difference between Anthracite and Bituminous Coal, as they have been produced by the same plants. There is no doubt that the Palm, and other Monocotyledonous plants, and bamboos, reeds, \&e. would glve a kind of coal to a certain degree different from that produced by the Ar and other Dieotyledons. But as preeisely the same assemblage of plants is found in the Authraeite and Coal, it cannot be in this way that the difference between these substances is caused; and tho concluston to which the geologist and chomist havo eomo is this: that Antkracite has once been Bituminous Coal, but has lost its bituminous matter by its escaping; that tho volatile part of it has eseaped and the wood las beeeme gradually converted into coal by tho loss of its ox-ygen-vegetables being eomposed of carbon, oxygen, and hydrogen. The vegetable matter losing first its oxygen loses also in the combination somo portion of its carbon, forming a carbonie acid which eseapes from the wood, often as a pure gas-as may be seen in bubbles which rise from the bottom of pools of :vater : it is thas eonverted into coal by the loss of its oxygen; and this conversion is so gradual that there are found in the Earth woods in every stage of the change-both in that stato when they are called lignites and when they have become perfect coal. We find, too, all the antervening forms between wood and eoul, and then all between coal and anthracite, This is
enused ugain by the loas of the hydrogen whieh es enpes in eombluation with carbon, in tho form of earburetted hydrogen gns-the same substance that we are now burning here. You are aware that this gas sannot bo producel from anthrneite because in that theoperntion has nlready takenplace: it is mane ufuctuaced entirely from bituminous coal. This volatile, inflainmable gas may be seen to escape fram rents in the liarth-natural rents from which this carbo-hydrogen issues; and if the coal below be examined it will be found to bo in proeess of grad. ual ehange. But there is ono remarkablo fact observed in this country: that, in the coal region of Pennsylvania for example,-and this has been especially pointed out by Prof. Rodaers in his survey of Pemsylvania-the anthracite is found to bo purest in the most disturbed part of tho mountains; and it is half bituminous when you get into tho regions that have been slightly disturbed-in the western part of the Stato; and when you reach the perfeetly horizontal coal district-that where there hus been no disturbance, no shattoring and tear ing up of the mountains-there the coal is purely bituminous, not having lost its hydrogen. Some have suggested that this is owing to the rending and fissuring of the rocks in the disturbed region, in which all tho volatile matter would havo escaped more easily. Of this there is no eertainty. But the general fact is undoubted-that in proportion to the disturbance, overthrow and bending of the strata-some of which have been folded baek upon themselves-do we find that the eonversion inte anthracite from pure carbon is most completa.

The next subjeet of which I shall treat is that of Fossil Footsteps found in the formation whieh wo enll the New Red Sar ilstone. Its position in the berics is as follows:

1. Clialk.
2. Oolite.
3. Now Rid Sandstone,
4. Magnesian Limestone,
5. Coal.
6. Old Red Sandetene,
7. Silurian Group.
8. Granite.

In the upper part are found organie remains in great abundanco and in the red and white sandstone there were found about seven years ago in

Germnny ly made sented in six pairs found ne and their sensntion the anim of man, form of tho hums largest tr each of t referred were elos sembled tho right whatover thus to al aver is er of seme in a soft under sid eut ; beet of looso lows of t tho apper of tho sul cast in re walked o
Some c
the Mars
feet of tl
parison
much int
ed it to
Link ear trachian was going ter thisSandston Hill in O banks of observed layors of clay, and low quar footsteps It had be tion of $t h$ questioin, in which
They we the largo

Germany the remains offooteteps-printe apparently made by the feet of quadrupeds (rudely represented in this drawing) [exhibited.] Often five or six pairs of these are found in one track. They are found near the lorders of Bohemia nt Hessberg; and their discovery created at first a prodigious sensution in (iermany becauee some innagined that the animals were a sort of extinct form, perhapp, of nan, or some prototype of mm. The haud-like form of these tracks, resenbling in some degree the human hand, created great astonishment. The largest track was about eight inches long; before each of these large tracks is a small one which is referred to the fore foot of the creature. There were ebserved four toes and one other which renembled a thumb. In one track that was found on the right, in the next on tho left, atd soon; and to whatever distance they were truced they were found thus to ulternate right and left. No doubt whatever is entertained that these represented the steps of seme animal inprinted on layers of clay when in a soft state. They stood out in relief upon the under side of the slabs of saud-stone when taken -ut ; because this sand-stone was onee in the form of loose sand, nud was thus deposited in the hollows of the clay bolow; so that it would present the appearance of a cast monlded in the hollows of the suljncent clay, and wo should have a perfect cast in relief of the foetsteps of the animal as it walked on the elay.
Some conjectured that this animal belonged to the Marsupial or Kangaroo tribe, because thelind feet of this animal are remarkally large in comparison with its fore fuet; and it has feet also very much in the form of the humanhand. Others behered it to beleng to the Crocodile tribe; and Prof. Link early conceivod that it belonged to the $B a$ trachian or Frog family. While this discussion was going on in Germany-or but few months after this-sinilar footsteps were found in tho Red Sandstone of tho same age in England, at Storeton Hill in Cheshire, not far from Liverpool, on the bauks of the Mersey. These sulient footmarks were observed on no less than five distinct ranges or layors of sandstone; there were five thin layers of clay, and resting on each was a thin white or yellow quartzose sandstone, which presented these footsteps precisely like those found in Germuny. It had been previously ascertained from the position of these beds, and the other fossil rocks in questiou, that they wcre of the same nge with those in which the foutprints ware found in Germany. They were found of several sizes; one in which the larger fuotstep was oight iuches in length; ano-
ther in which it was twetve; this was catled the Cheirotherium Hereulis, on account of its great size. The tracks were about faurteen lichen apart. In the Museum at Liverpoot in proserved a long slab of sandstone-as long as this ataff (nome ten feet) In which the prints are so beautifilly diatinct in relief that you would suppose they had been mado ly the clisel of the sculpor. In some slabs proserved in tho British Museum you may ane prints of thils shape [exhibited] which are evidently casts of the small cracks below. The clay having ylirunk, these cracks were opened by the heat of the sun: so that when the loose sand was deposited in the footprints of the animals, it found them filled with these rents in the clay; and when they came to be taken up, these cracks are found to be in relief, as well as the footsteps. The same things are found in the same beds of England; and in this red sandstone, which is found all over Cheshiro and other parts of the hingdom, are found ripple-marks-parallet ridges, marking the ripple on the beach of the sea at low-tide.

It was remarked when reasoning upou the subject in Lendon, and in the discussions of tho Geologicat Society, that these feotsteps must have been made by an nir-breathing animal; as no animal which existed under water could make such distinct foot-marks, not being heavy enuugh in that fluid; they were pressed down ly the weight of an animal walking in the atmosphere, and therefore at low tide. And nothing is moro commen now than te observe the tracks of vatious animals upon the beach at low tide. I had un opportunity myself of observing this in the islands near Savannah in Georgia. At low tide I have seen tho whole beach covered with the tracks of the Opossum, Rucoon and otheranimals; and in many places after tracing these tracks somo hundreds of feet, I came to places where the quartzose loose sand of the low cliffs of the islands had been blown by tho wind only a few hours before while the tide was down; still there had been time for the tracks to be made and for the wind to blew the sand over, and in some places the tracks were thus obliterated, sume entirely and others only in part. We have then only to suppose a submergence of a coast so situatel carrying down this sand, afterwards that it was consolidated by ferruginous or other matter, and we should have a counterpart of this. Tuke up a slab of tho common sand and it wsuld present the samo marks of the racoun and opossum.

At the same time that these fossil remains were discovered by Prof. Kaup who devoted considerablo
attention to the subject, Mr. Owen procured from Warwick several fossil teeth of a conical form; and being engaged at the time in investigating the internal texture of the tecth of various animals, he cut away a thin slice and subjected it to examinatio.. by a powerful microscope, and he was surprised to find that this tooth, found in tho New Red Sandstone, No. 3, differed greatly from these of all the other reptiles found in No. 2, or tho Oolite formation. This Oolite has been called tho age of Reptiles, because we have in it so many of the Tcrabratulo, and roptiles-flies, fish, lizards, Ichthyosaurians and Saurians of variouskindsnot one of which has a texturo resembling in the least degree the texture of those found in the New Red-Sandstone. He made a representation of a small part-one-fourth of a tooth, which lee has allowed me to copy. [Exhibited.] Youn see that jts texture recalls the appearance of a section of the human brain; it has the same convoiutions, formed by the dentine and pulp of the tooth; the animal that exlibited so remarkable a structure was believed to be distiuct from any living species, Supposing this to be tho case and beeoming greatly interested in this discovery, Mr. Owen applied te the German Professor Kaur ${ }^{\prime}$, to have one of his fossil teeth sent from Gormany that it might be dissected, and thus that it might be ascertained if it had the same structure as those found in England. This was done and the same remarkable texture was observed. Thus we have in both countriesfive hundred miles npart-fossil tectl, found in the same rock and having the same structure, entirely distinet from that of reptiles in other formations. It was evident that they had belonged to reptilesfar they were different from any belonging to quadrupeds or fish. It was thus believed that they were a reptilian class of a new and before unknown family.
The next discovery made in the rocks of this very age, and in the same series of Sandstone in which theimpressiors of footmarks were fuind, was of parts of the seapula, femor and pelvis of more than one species of this animal. It liad received the ${ }^{1}$ rovisional name of Cheirotherium or Bcast of the Hant, from the shape of the imprinted footstep. The question now was whether the teeth and the bones could belong to tlie Cheirotherium.

Mr. Owen remarked, nfter examinine some of the bones of the hinder extremities and eomparing them with tho bonos that exidently belunged to tho antecior axtremities-to the foream, found in the same place and probably belonging to tho same
animal-that there was as great a disparity in the relative size of these boncs as in the marks of the hind feet compared with those of the fore feet. Soon after a portion of the jaw was found and Mr. Owen was ablo to construct a skeleton of this animal-to restore in imagination something of the form of the animal that onco may have walked so ts to produce these lines of foot-marks, by bringing its lind foot forward so as to make an impression close to the last one of the fore foot. This, figure is a representation of the animal and the position of his traeks:

These parts were found when I left England nine months ago and it is probable that more have been found since that time, for ull these discoveries havo been made within the last twelve or fourteon months.

It was therefore now clear that there had existed, at the period of the deposition of this stratum in which theze inpressions are found, several species of animals which correspond well, in relative dimensions, with tho sire of the several sets of footsteps found in Gernany and Eingland. At leust three distinct sizes were found-tecth belong. ing to three distinct species. They were called Labyrinthodon from the labyinthine convolutions in the structure of the tooth.
The hext step made in Lugland was to ascertain whether this Labyrinthodon was an airbreathing animal or not. Now Owes has shown from the structure of some bones in the lower jaw, and also of one in the upper, that there was an orifiec which implied a nasal exvity, placed as in airbreathing reptiles of the division Batrachia. For it is possible from the bones to diseover whether the animal breathed by gills, or at least by bronchia, for in that case the opening would extend to the nostrils; wherens if the animal l reathed air, the eavity would bo placed mueh farther backnearer the back of the head. We are able to show that this Lathyrinthodoahad bren an air-breathing mimal, und, mu thave been able to walk along the side of the retiring water.

You are into four gre

The lirst el
\&c.; the se snakes and salamander toology that ehian order a bull, and as an eleph represented comparative an aquatic feet in leng in the old island of J exactly res this animal volcanic cr den, where Museum. a female, al brought ho erous I nee male devor one in the creatures, bo found in has always period-us Aristotleand there 1 made befo of whom a been seen been expos or three m full examir fable.

I will nt eompleto or the $L a b$ remains to the mind of tho sat same footil tain teeth to that roo lived at th made. W

39

arity in marks the fore as found skeleton mething ay have t-marks, o make ro foot. nal nud

You are aware that reptiles aro distinguished into four great divisions-

1. Saurians,
 2. Chelonians,
 3. Ophidians,
 4. Batrachians.

The first embraces crocodiles, alligators, lizards, \&e.; the second, tortoises, turtles, \&e.; the third, snakes and boas, and the fourtl frogs, newts and salamanders. Now it is quite evident from its osteology that this creature belongs to the Batrachian order-that it is a gigantic frog, as large as a bull, and the Cheirotherum perhaps was as large as an elephant. The salamandrine reptiles are represented in tho living order by creatures of a comparatively small size. In this country there is an aquatic salamander among the Alleghanies two feet in length-much larger than any that we have in the old world, except one which is found in the island of Japan, called tho Salamandra Maxima exactly resembling a frog. It is very singular that this animal should have been found in a lake in a volcanic crater in that island. It is now in Leyden, where for eight or ter years it has been in the Museum. There were two procured, a male and a female, about four feet in length. Only one was brought home ; and to prove tiat they are carniverous I need only mention that on the passage the male devoured the female, so that wo have only one in the Museum. They are fierce, voracious ereatures, and it is very singular that they should be found in the crater of a velcano; because there has always been a story-from the most remote period-as long ago, at any rate, as the time of Aristotle-that the Salamander was inconsumable; and there have beer depositions in great numbers made before most respectable magistrates, some of whom are now living, that these creatures have been seen to come out of a fire in which they had been exposed to the white heat of coals for two or three minutes perfectly uninjured. But after a full examination it turns out that this is entirely a fable.

I will now observe that although we have no complete specimen of either the Cheirotherium or the Labyrinthodon, we have still enough of their remains to leave no doubt of their character on the mind of any person. We lave first in rocks of tho samo ago in Germany and England the same footprints. We have in both countries certain teetl of a most remarkable structure, peculiar to that rock to which belong the animals which lived at the period when these footmarks were made. We find the hinder extremities in each
species as much larger than the anterior portion. as the posterior footsteps are larger than those of the forefeet. And lastly wo require air-breathing animals, and we find the structure of the nasal cavity such as to show that the Labyrinthodon was evidently an air-breathing creature.

You may be aware that in this country there have been found some remarkable tracks of birds in the Red Sundstone of the valley of tho Connecticut; and Professor Hitchcock has embodied an excellent account of them in his final Report of the Geological Survey of Massachusetts, and has given some excellent plates not only of the cxtinct species, but also of the animals and birds that may now be found on the shores of the lakes of America. It appears to me that he has completely made out that several species of lirds existed at that period which, so far as is known, is the same as Nos. 4 and 5 in which are Cound the footsteps in Europe; and he has found some as large there as an ostrich and others again of smaller size. The variety is considerable. He lias found, too, the same ripple-marked figuses-in which are seen easts of the skeletons of the cracks in the clay produced by shrinking. I liave seen as near this as at Newark, examples of this sandstone ripple with casts of the cracks in the subjacent clay.In England there are places where occurs cliy which has been pitted over ly small depressions as though it were done by a shower of rain. You can see that if rain falls upon sand it will cause a pitted appearance; and of such we find slabs containing casts which have been called fossil showers of rain; and I am inclined to believe that this is the origin of the appearance. And I think that upon this point Mr. Redpieiti and myself will agree-that in Newark we have slabs in which can be seen the same marks, not so exactly representing a shower of rain as those in England but still having a close resemblance to then. In this case the marks are in soft shaie and we have pits; but when salient casts are found we have all the apparent marks of rain in relief like the footprints and casts of cracks in the clay. There are some beautiful remains of fish in the same strata in the valley of the Connecticut and in parts of New Jersey, some of which are upon the table. They are not in the samo beds as the footprints-but in the same strata-formed deeper under water.

But as I must not dwell too long on any one subject-as the course I am delivering is so short, and as I am desirous of treating as many subject: as possible-and having already spoken of forma. tion No. 3. I pass the coal-of the Flor a of which

I spoko in my last lecture-below tho Red Sandstono to Stratn No. 7, which we see abounding in fossils; and in no part of tho world has it so mag. nificent a development as in New-York, though it occurs in greater thickuess in Pennsylvania. But thero is at least no part of the world that has been investigated where we see the fossil character of the different periods so well mado out as in NowYork. When we come to the subdivisions of this one formation, you will see nt once that it forms a3 many groups as are represented in the other table. The first of these divisions was formerly called Transition-but new the Silurian Strata ; because it is found mostly in Siluria, a region on the borders of Wales, composed of the berder counties of Wales and England. It has been well studied and elucidated by my friend Mr. Murchisos. For this seetion [here exhibited] I am indeted to Pro. fessor Emmons and Mr. Halle of the State of New-York. It exhibits portions of the results of their joint labors; and I have had the advantage of going over tho region and seeing the beds in the order they are here represented.
First of all we have what is called the Mohawk group, which is 1200 feet thick in the state of New-York and thicker in Pennsylvania; for the thickness depends on lucal or accilentul causes. If tho material of which it is composed be coarse the strata will be thick. The finc sand will be dloated farther out to sea. In this strata oeccurs the Trenton limestone-with trilobites and other species of fossils. We have in this strata some extinet species as tho Lingula and others that must have lived in the seas. The Graptolite is found in tho old rocks, and is a species of zoophyte related to the Pennatula. It is an example of an extinct form only found in ancient rocks, uever beyond the Transition or Silerian Strata. When we pass to the Red Sandstoze we havo a resemblance to the more modern rock, of which I have before speken, in which are found the fossil foot prints. I_{t} is called the Ontario saudstone because it is found along the borders of Lake Ontario. The lower part of the Cliff at Lewiston, in the Niagara Distriet is the same bed saen horizontally; it is 60,80 and in the lower part 120 fect thick. Of its exact position I will speak more at length in my next leeture; I only wish now to point out the order in which they follow. If you suppese yourself aloft in a balloon-looking down over that part of tho country, it would present the appearanco in this figure-in which a portion of the wood is supposed to be cut away so that the geological structure of the roek can be seen.

After the Ontario sandstone comes that which is called by Mr. Vanuxem tho Protean group from the many different forms in which it appears. It contains the Pentamerus, an extinct species of bivalve shell. Sometimes it is also in the form of iron ore. This Protemn mass is only ubout 50 feet thick at (Qucenston and Lewiston, though in some parts of the country it is probably thicker. It is found farther Last and South. Passing, then, from the Molawk limestone to tho Ontario sandstone and thenco to the Protean group, we next come to the shale and limestone of the Niagara district. These beds contain an assemblage of organic remains, as, for example, the Chain Coral-so called from the resemblance of its tuper surfaco to a elain. It is a genus peculiar to the anciemt rocks of Norway, England and the United States. When I say that each of these groups is distinguished by a different asscmblage of animals, of which there are several hundreds in one, I would bo understood to mean that some species have a wide, vertical range, as it is called. Some may live longer on the globe during its changes than others; nnd this would le expected when we consider that some species at present bear different climates witi more facility than others: they ure a sort of cos. mopolitan species, which are found every where. Thus we find the same shells in the Hudson as in our seas and in the Baltic ; the same may be found in tho temperate and the tropical zoncs.
The same group which borders Lake Eric and is scen at Buffalo forms the Black Rock of Buffalo. It is called the Helderberg lime-stone, because in the Helderberg Mountains we have no other beds of lim:stone, and upon the fossils found in them I might employ tho whole of eight lectures; and you might suppose that the whole uf geology was ons. braced in their discussion. Still that is only one subdivision of this one stratum, and there are beds of Corals found in other lime-stone, and in the oldest Trenton lime-stone liko the aneient reefs-the species being for the most part differert in each. There are found in the same series of the Silurian strata in England corresponding lime-stones at different stages, and occurring in the position in which they originally grew. They have the point of attachnent at the botom of the stratum, and the upper part continues to be uppermost. Or if they aro hemispherical, thow which radiate, you must determine by the mamner of radiation which is the base and which the upper surface of the cornl, and dus determins whether it is in its original position or has becu overtuned. We often sce them in their natural position, as they grew,
cir upenth broken aurl waves. In case at the the other n aorals 20 n onnable aby surfuce, en Some of t at William a long dist way and has forme the Grat which the bottoms. of fine sal in deep regulate F sily see th velocities bullet of 1 air at the the earth will fall reaches a never fall stant for in a geor would ne second; only fall lead fron in diam instead be still scent wi

But fil the ocea an hour.
into a c ample, hour-s the Am: into this by the 600 fee we have Gulf St_{1} the surt bergs.
in sayin chormo depth.
which group ppears. cices of form of 50 feet a some It is , then, distone come istrict. nic recalled to a rocks When hed by there undere, verlonger ; and r that s witis $f \cos$. vhere. as in found ic and uffalo. use in r beds nem I ad you 5 cm. ly one beds oldest te speeach. lurian es at on in point , and Or if , you which f the 8 orioften grew,
cor upon the other. In severai cases we find them, so far, I see no reason whiy it may not be carried broken and thrown over, as if by the forse of the waves. In both cuses the same coral grew in one case at the surface in reach of the waves, and in the other near the surface; becanse it is known that arals do not grow in the decp, dark, cold, unfathomable abyss of the sea, but within 120 feet of the surface, enjoying the light and warmth of the sun. Some of these corals are as large as this table, as at Williamsville, near Buffalo. In following for a long distance, as may bo done in England, Norway and Sweden, this stinta of fine sard which has formed this group, youfind noother fossils but. the Graptolite, belonging to the zoophytes of which the living specimens are found in muddy bottoms. Bencatly that fine mud is no example of fine sand being deposited, for it will not go on in deep water. If you consider the laws which regulate matter falling through fluids, you will rasily sce the truth of this: the doctrine of terminal velocitics explains it. For example, if you let a bullet of lead one incli in diameter foll through the air at the density at which it exists at the surface of the carth it will never fall beyond a given rate; it will fall faster and faster from the hand until it reaches a rate of 260 feet in asecond, when it will never fall faster; for the force of gravity is a constant force, but the resistance of the air increases in a geometrical ratio. So in water: a bullet would never fall at a greater rate than $3 \frac{1}{2}$ feet in a sccond; while it would fall $\mathbf{2 6 0}$ feet in air it will only fall $8 \frac{1}{3}$ in water. If you reduce the ball of lead from an inch to a hundredth part of an inch in diameter it will fall only one inch in a second instead of $8 \frac{1}{2}$ fect; and so we shall find that if it be still farther reduced its maximum rate of descent will be much less.
But fine mud such as large rivers deliver into the ocean, only falls at the rate of about two feet an hour. Now, suppose the mud to bo directed into a current like that of the Gulf Stream for example, which runs at the rate of three miles in an hour-suppose it to be delivered into the ecean by the Amazon or some other great river, aud thrown into this current, it would be carricd 2000 miles by the Gulf Stream in a month, while it was sink600 feet, which is ne dcptle at all in the occan: and we have reason to believe that the influence of the Golf Stream extends for at least 600 feet below the surface, as is shown by its action upon icebergs. I think Mr. Redfleld will agree withme in saying that the action of the Gulf Stream on chormous floating masses of ice extends to that depth. When therefore the mud might be carried
from the Equator to the l'ule ly this influence.
I will now offer a few observations on the inferences whichmay be deduced from these fossils found in the aucient rocks, cencerning the state of the globe ut those very remote periods. Eiven the most trivial circumstances derive a great degree of interest from their mere antiquity-they become consccrated, as it were, by time. These who walk in the streets of Pompeii will look with the decpest intcrest and the most lively curiosity uron the mere mits left ly carriages cighteen hundred years agn, which are now as distinetin theirimpressions as if they had rolled there yesterday: they will look with pleasure and interest on the scribblings in Greek of the soldiers, on the walls of tho barracks, in this nncient city, which has remained buried under voleanic ashes since se remote a period. How much more interest will the naturalist feel when he examines the remains of creatures believed to have flourished on tho earth-in water or on land-thousands of years ago-as he finds them in these recks we have been considering.

Let us, then, endeavor to draw some inferences from the study of these animals, respecting the state of the planet where they lived-how far it was similar to, different from, that in which it now exists. Take first the invertebrated, and then the vertebrated animals. Here upon the tashe are the remains of Trilobites, of which there is a prodigious number in this country. It is an extinct form of crustacea-believed to be of the same form as that of the crab and living lobster, but of a genera now extinct. They are very characteristic of the ancient rocks in Europe and Asia: but they are never found in the newer rocks. Examine the eye-for it is a siagular circumstance that the eye of some of these creatures is preserved in a most perfect manner in the fossil in the mud in which it was buricd. You find that some species have a hemispheric eye-sometimes placed upon a pedal. Here is represented one consisting of a great number of facets; the living dragon fly has no less than 14,000 facets upon each cye. Some of the living crustacea have a great multitude and to some extont they are analagous to the ancient. These were intended-as we know by reasoning upon the hatits and structure of living species nearly analagons-to cnable them to see horizontally by these lenses. The facets are set so as to look in all directions except one which is supplied by the hemispheric form of the other aye. Hence it bas been justly observed by Dr. Buckland, from an examination of optical laws and
the cye of the extinct asimal, that we see there was the same relation of light to the eye, and of the eye to light, at that remote period as now exists in every species. The ocean must then have been transpareut as $i_{\text {s }}$ is now ; and must have given a passage to the rays of light, and so with the atman pinere; and this leads us on to conclude that liae Sum existed then ats now and to a great varieiy of other inferences.
If we turn to vertebrated animals, therefore, we have serimal species of fivh, of which the parts tivand were called Ichihyodorulite before they were aware of their origin. It was supposed that they were some part of a fish; but they are now know:a to be portions of the fir $s t$ spine or darsal i in, of the genus of fish, like the living genern called Cestracion. A tooth in the jaw of a different species has been fowad in England in the upper part of the Siberian series. In this country geologists have traced the existence of analageus species of fish a steplower. In several of these subdivisions there have been found remains, but never vertebrec ner ribs or other parts of the skeleton; but bony tubercles, Sc. by which Mr. Agassiz has shown that they all belong te a cartillaginous fish, like the sturgeon; in which the external parts are bony, while the parts which in others are bony in these are soft; something like the Crustacea.Still they are as perfectly vertebrated aximals as any others.

What is implied here in the existence in the rocks from this remote period of these creatures is, that they may yet be traced back to an organie begimning. We find here a type of vertebrated ani-mals-not of a hign order, not yet fully developed, nor yet of the lowest order. They have the vertebal column, with the spinal marrow terminating in the brain; they have organs of motion in the orbit of the eye. There must, then, have been vision, locomotion, circulation of the blood, a nervous system-in short, we have sketched in this vertebrated animal of the earliest period a great eutline of the very skeleton which now appears in reptiles and mammalia, and in man himself; and this acquires the highest interest when we find this first outline of that plan of organization already in existence, destined, after modification at different periods, to raappear in the inferior animals, and in man himself.

It has been a subject of marvel and of incredulity to many to aecount for the existence of so many races of animals and plants which are now nxtinct, which all preceded the creation of man on the Earth. It is often asked for what purpose
could they have fiourisined; and this difficulty arises from the habit in which we are too apt to indulge, of innagining that all the works of nature are produced either to satisfy the wants or to minister to the instruction and amusement of man. But those who take a wide and philosophical
view of the present view of the present state of the creation must mect with the same dilliculty. Look at the animalcule in a drop of water, and you might put the same question: Why do these exist in such myriads, of which nearly all are invisib'e? Look, too, at the thousands of shells and other fish with which the whole ocean teems, and which do not come under the knowledge even of the naturalist. When this question presented itsolf to the mind of our great Poet, in the exercise of his liigh imagination, he sees that beings might lave looked over the world, though uubeheld by inan. He even says that
'Millions of spiritual creatures walk this earth, Uuseen, both when we wake and when we sleep;' and had the existence of these countless creatures been known to him he might have imagined that they lived and meved under the eye of spiritual beholders, though man were not. And certainly the light now cast upon these periods by Science makes them as wonderful and sublime as could the imagination of him or of any other poet. For we fnd that these ereatures, in such multitudes, and in such varietics, existed upor the Earth for ages, then disappeared-dying and giving place to other races which likewise for a time inhabited the globe. But they too perished and then came the period of vegetation-of coal; and all the creatures that before lived and flourished in the water gave place te other and new varieties. So succeeded many other ehanges-eacin greater than the first in the catalogue. Yet throughall these periods of stupendous chauges we find the same perfect unity of plan-the same infinite wisdom-the same great outline of organization. Throughout the whole miverse and in all these ancient periods of the Earth's formation we see the same great laws prevailing-those laws of organie and physical life which govern all the revolutions of the animal tribes; at length we find superađded to these other osteological and physical organs; yet the type re-appears not only in the inferior animals but linked with the iutellectual and reasoning powers of man; and we find him by the power of those
thoughts that thoughts that

- ——wander through eternity;

taking a retronpect of all these great periods-cxamining their characters, ole after another, until he arrives at the remotest period of animal exist.
ence and f and the ch he merely
but an ine rials have placed, for of the glol

When
successive
look upon
ganic wor
doctrines
these law
inanimate
the will o
referred t the mate of matte us up to Spiritual

But I
pass to o clusions
rocks in
find in E
den and
original
which w
ried aw
more ful
one stra
may be
has left
agree,
lifted u
sent hig
I, ositiol
alterna
the ear turbane

43

ficulty apt to of na3 or to man. phical t meet nalcu-
ence and finds himself able to study their history and tho character of their organization. Nor has he merely tho powar to de:jpher theso records; but an inexhaustible, infinite store of such meraosials have been written upon the great rocks and placed, for his instrection, i:: the solid framew ork of the globe.

When I speak of the laws that govern theso successive changes, I am aware thai some persons look upon the idea, that, such revolutions in tho organic world are governed by laws, as fivoring the doctrines of the Materialist. But we may regard these laws-when given either to the animate or inanimate world-as exponents fully to express the will of the Supremo Being. A law cannot be referred to any thing material ; it belongs not to the material creation; it is higher than tho world of matter-it is spiritual in its essence and leads us up to the contemplation of one Immaterial and Spiritual Lawgiver.

But I will not dwell longer upon this subject, but pass to one more stristly geological; to tho conclusions which we draw from fineling the older rocks in a horizontal position. It is striking to find in Europe, in great parts of Russia, in Sweden and in this country these ancient strata in their original horizontal position. As to tho manner in which whole portions of tho country havo been carried away and left great cliffs behind, I shall speak more fully in my next lecture. You may observe one strata resting on another on a level; and this may be owing to the depression of the sea, which has left them exposed, or, as I believe nearly all agree, that the beds themselves have been gently lifted up out of the ocean and raised to their present hight, where they remain in their horizontal fosition. It is thought by some that there have been alternate periods of repose and violenco all over the eartl; ; but it may be laid down as a rule that the more ancient the rock tho greater is the disturbance that has been suffered; because in the
first periods the convulsions wero more violent than those which occurred at late epoch.

But whether we adhere or not to the opinion that there has been a great series of alternations-periods of violence and convulsion followed by long eras of tranquillity -one thing is certain, that, from the earliest period, we have no record of ono such epoch-no knowledge of any such dissolution of streta-no such paroxysmal convulsion in the crust of the globe; and had there been any such occurrence, it would not be possible new to find the an cient fossiliferous rocks in their original position. As 10 tho fact, it is true, that in general we find tho older rocks havo undergone tho greatest convulsions; and this will be quite intelligible if we refer them to volcanie forces which always shift their points of principal developement. There have been volcanoes, as I stated in one of my early lectures, in districts where they aro now extinet-and where there is left no vestige of volcanic explosions. After a long period of disturbance and convulsion the fires wero spent and then succeeded a period of tranquillity. It may be shown, too, that in former periods there were more volcanoes than during the more recent ; and, therefore, if we suppose a shifting of tho prineipal points of developement, which vere near the sulface and attended by earthquakes, it would follow that in time they would extend over a groat part of tho Earth's surface, and we should find, as is the fact, in the more ancient rocks greater convulsions undergone. I should infer from the examination of all the districts in which these phenomena may be observed-fron Iowa to this section and so through the Northern parts of Europe and Asia-that during all tho suecessive periods there had been prodigious volcanic action; and that the areas of the volcanic districts during any one period had been limited to comparatively small portions of the surface of the earth.

With this observation I will conelude my present lecture; and ia my next return to the consideration of the Niagara district.

LECTUREVII.

RECESSION OF THE FALLS OF NIAGARA.

You will bave learned from what I said in my last Lacture respecting the relative position and the age of the different rocks of which the Earth's crust is composed, that the rocks of which the Niagara district is composed, and of which I then said something, belong to a period of great antiquity in the Earth's history. Below thom is only one stratum in which may be observed traces of fossiliferous remains, and wo may regard this group of rocks as the most ancient respecting which we have any authentic information. Though we are in the habit, therefore, of calling this the New World, from the great developemont of an. cient rocks and the remarkably perfect state and tee richness of their fossils, it is to this New World that the geological antiquary is compelled to rosort for a knowledge of the most ancient rocke. Not only the pyramids themselves, but even the lime-stone rocks out of which the pyramids are built, are things of yesterday compared with tho ancient rocks found in this State of New-York. The rock of which the pyramids are made belongs to the upper part of what is called the Secondary series; the primary being the lower and formerly supposed to be older than any that contain fossil remains, though we now know that this is un. founded, and that they are igneous rocks that have come up at different periods. The fessiliferous rocks, however, were named Secondary as being supposed to be newer than tho Primary. When sonze other fossiliferous strata were discovered in Germany-rocks with but faint traces of organic remains-W ERNER, requiring for them some new name to distinguish them from both the others, salled them Transition rocks, becauso they seomed to form a passage between the crystalline primary and the earthy, uncrystalline, secondary rocks of Germany. In the first were found no organic remains while the latter teemed with them. But Werner went farther, and, finding that the primary and transition strata in the district he examined were highly inclined while the newer fossiliferous rocks were horizontal, he named these flotz or flat rocks. His nonenclature woald then run thus:

IIorizontal,
 Transitive,
 siscondary.

"A strange transition this," says an eminent English geologist, "from primogeniture to horizontal-
ity;" and in fact ite strangeness is not itz only objection; for, as I told you in my last Lecture, the fossiliferous rocks are, in mnny districts, no more horizontal than the transition rocks; and this may be seen through this country to Iowa-through northern IRussia and Sweden. The others are not vertical there, as Werner found them in patts of Germany.

The appellation of Silurian :, , , given to these rocks by my friend Mr. Mr' . . Necause they characterizo the ancient dis, t^{\prime}, of Siluria in Wales and on the borders of England. Wo have therefore in this Niagara district a comutry composed of the most ancient rocks yet diacovered in the Earth's crust, and yet rich in organic remains. I have here a map of the district between Lake Ontario and Lake Fric. You see represonted the Protean group, as it has been named by Mr. VanUXES?, and above that is a bed of soft sliales some eighty feet in thickness, and upon the top of that is the Niagava lime-stonc. That lime-stone extends for seven miles from its termination in the escarpment to a point near the rapids. The River Niagara flows out of Lake Erie in a tranquil, lake-like state, and runs gently along all the way by Grand Island, being on a level with Lower Canada on one side and New-York on the other. So nearly level is it that were the river to rise thirty feet, a considerable district of country on its border would be under water. From Lake Frie to the rapids-a distance of sixteen mily whe fall of the river, I believe, is not more than twenty feet; so that it quite resembles the expansion of an arm of Lake Eric. The hight of Lake Eric above tho lovel of the sea is 565 feet; its hight above Lako Outario is 334 feet. This fall is divided first into the fall of twenty feet in the sixtec, miles from Lake Erie to the rapids; then comes a fall of forty feet in half a mile at the rapids; at the Falls it plunges at once 164 fect; then, between the base of the Falls and Lewiston, a distance of seven miles, it rushes rapidly along and falls 101 feet. It is evident that ull attempts at representing the beauty and grandeur of this scene by any drawing must be per fectly unavailing. I have eudeavored in this sketch te give youanotion merely of the geological situation of the country. It will of course seem to those acquainted with it most inadequate and in false proportion; but it must be remembered that it is a

Bird's eye v you were r idea of tl Bakewelt of that nain years ago. tlemau's try I consic into his vie try: and be rocks in th the State sooner tha pared such now see it who, tho tered so given nu geologica

Three
and just
Bloody R
there; th
below, of
first featu
Escarpm
runs to a
On the C 300 feet.
the Blac
gypseous
stop to
groups.
gypsum
called sa
The fi
the natu
produce
range to
to the st
similar
cially wl
consider
become
try has
mine
reflect
bo ruise
raised
notion
uscarpn
pearenc
alterua
the bas

45

jird's eye viow-such as you would actually get if you wore raised above it in a balloon. The first idea of this drawing was suggosted by Mr. Bakewele, son of the ominent English gevlogist of that name, who visited the falls ten or twelve years ago. He published his drawing in the Gentleman's Magazinc. On my arrival in this country I considered in what manuer I could introduce iuto his view the geelogical structuro of tho country: and being able to mako myself master of the roeks in that region, by having Mr. Hall, one of the State Geologists, for a travelling companion, sooner than I could otherwise have done, I prepared such a one, which has been copied, as you now see it by Mr. Russel Smith of Philadelphiawho, though unacquainted with the country, entered so completely into the conception that he has given un excellent representation of its prominent geological features.
Three miles below the Fall is the Whirlpool; and just below that is a deep ravine, called the Bloody Run, from an Indian fight which occurred there; there is also another ravine some ten miles below, of which I shall have occasion to speak. The first feature which strikes jou in this region is the Escarpment, or line of inland cliff, one of which runs to a great distance East from Queenstown.On the Canadion side it has a light of more than 300 feet. The other is found at the junction of the Black Rock of Buffalo with the shales-and gypseous inarls, as they are called. I shall not stop to describe mineralogically these various groups. They are sets of soft marls which contain gypsum and so much salt that they are often called saliferous gypsums.
The first question that occurs when we consider the nature of the country is, how the cliffs were produced: why do we so suddenly step from this rango to the gypseous marls and then as suddenly in the subjacent shale and sanditone. We have similar lines of escarpment in all countries, especially where the rock is limestono; and they are considered to be ancient sec. cliffis which havo become more gentle in their slope iss the country has emerged from the ocean. If we examine what is now going on on the sea-side, and refloct what would happen if the sea cliffs should be raised up as the country around was gradually raised (for I trust you are now familiar with this notion of upheaval) you wili readily see how these uscarpments are formed. There aro similar apprarences at Boulogne, in France, where wo have alternate eds of limestono and clay, and between the base of the cliff and the present sea shere. (for
the sea has evidently retired half a mile,) we see the edges of the strata cropping out between high and low water mark. Fifty years ago this cliff was 3000 feet high, as wo see from its present position. I have myself seen frigates floating in places whero we know historically that land existed but a few years since. The waves have beaten againsi the baso of the rock, and broken off fragments which have fallen down and been swopt away by the tide in the shape of mud and pebbles, until a whole yard of the coast has given way in a single year. In the rourse of tino a considerable part of the rock is swept away. The shale and sandstono would thus be swept away, and tho formation of the inland cliffs would bo easily accounted for.

You may perhaps ask if tho Ontario may not once have stood at a higher level and the cliffs have been produced by ita action instead of that of the ocean. Some of you may have rode along the Ridge-coad-as it is called-that remarkable bank of sand which exists parallel, or nearly so, to the present borders of Lake Ontario, at a considerable hight above it. I pefectly agree with the general opinion xesperting this: that it was the ancient boundary of Lake Ontario. In some parts of it fresh water shells havo been found. You cannot explain the escarpement by the aid of the action of the lake, for it extends farther and not in the same direction. It may be traced to the Hudson River and is not peculiar to any locality; but may be traced in all parts of the globe. When the land emerged gradually from the sea, as it is now doing, the sea would naturally creato these seacliffs and during the upheaval they would of course bccome inland. In Europe proofs that limestone rocks have been washed away are abundant. In Greece in the Morea this is especially conspicuous. We have there three limestones one above the other at various distances above the sea. Along the line you may see literal caves-worn out by the action of the waves. In many of them aro fragments of tho limestone which have fallen down and are perforated by the lithodomi, and you can find among them shells of the Strombus, and va. rious kinds of shells. The action of the salt spray which has also effected a sort of chemical decomposition, is also easily to be observed. So completely is this thecase with each of these lines that you cannot doubt for an instant that here is a series of inland sea-cliffs; and this phenomenon being so certain in the Morea leads us by analogy toinfer that these escarpements of the Niagara district were produced by a similar cause.

Other proofs of this denudation exist in the sur-
face of every country and especially in the coal district of England. There in the coal field of Ashby de la Zouch in Leicestershire you seo coalbeds pushed up 500 feet higher on one side than they are on tho other-or there has been a letting down of the other side. This is called by the miners a fault. You would expect to find a corres. ponding inequality in the surface; you would think you ought to find a line of hills 500 feet high; but thero is none. The whole mass has been carried away and the surface is as smooth and mubroken as in any other part of the comntry. In this way we can see that thousands of feet of earth must have been removed fur an extent of twenty or thirty miles. When we examine the subterranean structure of the countiy we find proofs of such a denudation ; and this it may be suid has occurred in the Niagara District, either forcing up the clifis or letting down tho lower country between the base of the escarpment and Lako Ontario.But an examination of the country will satisf s you that the cliffs could not have been thus preduced. The rocks are continued on the other side. There are first the 150 feet of shale, then 25 feet of white limestone and then the grey and mottled limestone, giving threo great divisions and a great number of subdivisions, in which the beds can bo traced and described by their orgasic remains.If these cliffs were produced by a fault, as in Eugland the beds would not be found upon the opposite side.

But without dwelling longer on this denudation, I must pass to the more immediate subject of the present lecture. I have endeavored to show that these lines of escarpment wero originally sea-cliffs, fermed when the district was grudually energing from the ocean. It is not disputed that there is some change going on at the Falls even now.There occurs, as we know, occasionally a falling down of fragments of rock, as may be seen in Goat Island. Tho shale at the lottom is destroyed in consequence of the action of the spray and frostthe limestone being thus undermined falls downand it itas been believed that in this way there has been a recession of fifty yurds in about forty ycars; but this is now generally admitted to havo been overstated. There is at lenst a probable recession of about one foot in a year; though part of the Fall may go back fuster than this, yet if you regard the'whole rivereven this will probably be something of an exaggeration. Our observations upon this point are necessarily imperfect; and when we reflect that fifty years ago the country was perfectly wild and inhabited by bears, wolves, and here and there a
hunter, we shall think it surprising that we have any observations at all, even for such a period back. We have an account of the Falls, giveu in 1675 by Father IIennepin, a French Missiohary, whogives an exaggerated description of them, and yet one which is tolerably correct. Ho published with his travels a plate representating tho Fall; but it greatly exaggerated its hight compared with its width. He describes Goat Island just as it is fonul now. He estimates tho hight of tho Falls at double what it actually is, which, after all, remenbering that he did not measure them is not so gross as might appear; and any one who has witnessod them will readily excuse him for having given way to a little exaggeration in attempting to describe the grandear and magnificence of the scenc, without the slightest intention to deceive.

As you will see by this copy of his picture he represents a cascade as falling from the Cunada side across the other two. He says that between Lake Erie and Lako Ontario dhere is a vast and wonderful waterfull: after speaking of this he says that there is a thiril cascade at the left of the other two, falling from West to East-the others falling from South to North. He says in anothor place, 'I wished a hundred times somo one had been with me who could describe the wonders of this frightful fall.' He several times alludes to the third cascade which he says was smaller than the other two. Now those, who consider that because Father Hennepin gave the hight of tho Falls at 600 feet, small value is to bo attached to his testimony respecting any part of the country, do him injustice. I think it porfectly evident that there must have been such a third cascade, falling from West to East, as that to which he alludes.

A Danish naturalist, in 1750 , came to this country, and visited the Falls, of which he has also given us a description, which was published in the Gentleman's Maguzine in 1751. He also gives a view of the Falls. In its general features his description agrees well with that of Father Henhepin.He went seventy-threc jears after him, and there was then no third cascade. But the point where Father H. had put this cascade he has marked and says that 'that is the place where the water was forced out of its dircet course by a prodigious rock which turned the uater and obliged it to fall across thc falls.' He goes on to say that only a few years before there had been a downfall of that rock, which was undoubtedly part of Table Rock-and after that the cascade ceased to flow. Now, it does not applear whether ho hae ever seen Hennepin's account or notes. He only mentions the fact that there had been a
third casc of tho go descriptio an interv ing on th remark a years; an down of t tion of th Falls, on that have America than it straight. there is Horseho It is not but has Goat Is from wh given.

It is tionary, action manner Genese tained this rec servatic seo and far bacl ton yea has bee time.
feet sin years that t going

Fro I was remai said: there sand
They
sever
amon
and
found or in

since

and
thist
have 75 by gives t one h his put it h its it is Falls 1, reot so wit-

third caseado ; and it is a striking confirmation of the general accurney of Father Hennepin's deseription. Wo find these two obsorvers, at ${ }^{\text {nin }}$ interval of seventy years apart, remarking on the very kind of chav, which wo now remark as having taken phace within tho hatt fifty years; an underaining of the rock, and a falling down of tha limestone, and a eonseqnent obliteration of the fall. Every one who has visited tho Falls, on inquiring of tho guides abont tho clangos that have takien place, may have been told that the Ameriean Full has beeomo more rescent shaped than it was thirty years ago, when it was nearly straight. The eentro has given way, and now there is as indentation of nearly thirty fect. Tho Horsehoc Full,also, has been eonsiderably ultered. It is not of so regular a reseent shape as formerly, but has a more jarged outho-especially near Goat Island; it las less of the Horseshoe-shape, from which it derives its name, than when it was given.
It is quite evident that things there are not stationary, and tho great question is, whether by this action tho wholo fall has been produced in this manner. I have visited this year the Falls of the Genesoe both at Portage and Rochester, and obtained many faets, especially at the upper fall, of this recession on a small sealo. I mado like observations at Le Roy, at Jacoek's Run ncar Geneseo and in other places where it is impossible to go far baek; for there time immemorial is only about ten years. But the people there will tell you there has been a ehange of a few fect or yards within this time. Mr. Hall observed a recession of several feet sineo ho surveyed the same distriet a few years before. It is highly probable, therefore, that there has been an action of this sort constantly going on.

From representations made by other travellers I was desirous of ascertaining whether fresh water remains were found on Goat Island as had been anid: for it would be striking if on this Island there should be in a stratum of twenty-five fect of sand and loam, pebbles and fresh water shells. They were found there and I made a collection of several speeies of shells found on the Island; among them were the Planorbis, a small Valvata and several other kinds. They were of genera found living either in tho rapids, i:: the river above or in the Lake.
In digging a mill-race there only a few years since, there were found a great number of sliells, and also the tooth of a Mastodon, some twelve or thisteen feet below the surface. It was the com.
mon Ohio Mastodon, and nust have been burie beneath theso twelve or thirteen fuet of frosh water deposits-one layer at a time, each containing different sholls. In answer to ny question, whether sinilar shells wero ever found lower dowa, the guide said ho would take me to a placo half a mile tolow, whero the strata had been laid open. We found thero deposited in the rook a small quantity of fresll water sholls, showing that this old doposition extended down to that distance. Hero we have proof that the river once stood at a higher level and in a trunquil state; and there is every appearance of tho roek having been like a solid barrier to huld the waters buek in a lake-like state, so that they might throw down these fresh water deposites at that hight. You will understand this better if you consider that if tho Falls go on recoding, no matter at what rate-an ineh, a foot, a yard in a year-in the courso of time the whole must rocede considerably from its present condition. What proofs should wo have of this afterwards? You will easily see that if tho river should cut its way back to a certain point, the effect would be to remove the roeky barrier, the limestone of the rapids, which had been sufficient to pond the river back. But if the river cuts its way back, this barrier could no longer exist; the channel would bo deepened, and the deposites existing high and dry upon tho land would becomo proof of the recession. This kind of proof we have that the Falls have receded threo miles from tho whirlpool, the limestone having been higher at the whirlpool than the river at the Falls. It may bo well to say that the beds all dip to the south, at a rate of about twenty-five feet in a mile. In seven miles the dip eauses a general rise of the platform to the north, so that, when at the top of the eliff, you are at a greater hight than the level of Lake Erie; and if tho Falls were formerly at Lewiston, their hight was probably nearly double what it now is. Mr. Hall suggested that at that timo the whole fall was not at one place, and I think it quite likely that that was tho case. There is reason to beliovo that one fall was upon tho quartzose sand below, and tho other on the Protean bed. The upper part would of course reeede faster than the lower, because it is softer, as is seen to be the case at Rochester; but the limestono becoming thicker and harder would recede more slowly. There may havo been several falls, as at Rochester-each one of them being less high than at present, and yet the wholo being nearly double its present hight. I told you that the river fell about 100 feet between the base of the Falls and Lewiston-so that
the beds slope at that rate. This slope of the river and then the upwurl slope of tho phatform are the reasons why the falls now are of less hight than formerly. So when we carry ourselves buck in imagination to the time when tho iver had not receded 80 far, we have a barrier of timestone much higher. The volley in which the river then flowed must have been much narrower tham its prosent ravine. The disturce now from the Cauada to the American side is about three-guarters of a mile, whereas half a mile below it is only half that willh. Fiuther investigations ly tracing the fresh water deposites lower will give moro precise information.
You might suppose that, if we find the remains of a Mastodon in a frosh water deposite so lately laid dry as that near the village of Niagara anil only twelve feet below tho surfice, the Mastodon had livel in the country at a modern period: you might think that perlinps a few centuries would have been sufficient for the accumulation of twelve feet of shelly sandstone and limestone and that it may have been recently that this Mastodon was buried when the larrier was at the whirlpool be. fore thistwelve feet of fluviatilostrata weredeposited. Yet these strata are older than the whirlpool.
Among tho objections to the supposition that the ravine was cut out by the Niagara, one is that at the placo called the Dovil's Holo or tho Bloody Run, the :avine must have been cut by some more powerful cause than by a slight stream. But this I regard as no objection at all; for on examining the nature of the soil, \&c. I am cenviaced that even the small stream which now flows would have been perfectly competent to have cut out the ravine, and that we need look fer no more powerful causo. Suppose the Falls once to have been near Lewiston: it would recede differently at different times-faster when the solt shales were at the base; at other times slowly when the hard sandstone was to be cut through. First of all cano the quartzose sandstone for a certain distance; then the Falls receded slowly, but more rapidly when it came to the soft shales. Then comes the sandstone again at the baso which now extends to the whirlpool, and here the movement was slow. It probably stool for ages at the whirlpool. Then for anuther period it receded more rapidly; and it is probable that for the last mile its recession has been comparatively slow, because the Protean group and about twenty feet of sandstone, making about fifty feer of hard rock at the baso, were to be cut through. It is certain that the movement now is at a faster rate, as the shale is exposed. If
it recelos ono foot in a gear, then in about five thounnml yours it would rececte a milo; and na the npward slope of the bed uf the river is about fifteen feet in a mile, aull ns the bed's dip to the south is about twenty-five feet in a milo, wo must have ubont firty feet for the toss in hight of the Fulls by the receding of ono mile. Ancther 5,000 years wonld canse tha toss of another forty feet, and then eighty feet won'd have disappeared and the cataract would fall over a solid mass of limestone only cighty feet high. Thus, at the end of 10,000 ynars, when the Fulls slall have receled two miles, thry would be eighty feet high. Tho rocession then would be extremely slow, as the base would bo of solid tinestone.
But all these calculations would be ensily vitinted by disturbing causes. Thus by interfering with the bol'y of water nbove the full-ly carrying them away, as is new done by the Eric Canal and the Welland Canal in Cauada wo should have a different state of affiirs. All the water taken from the upper lakes, as by the Illinois canal, \&e. cheats the Niagara of its waters and acts as a disturbing force. Every mill race built above the fally hins the same effect: and though this may seem to be a trifling matter, still in the progress of population and civilizatien such things may be frequently perpetrated and thus, in the end havo a serious influence.
It has been estimated that about $15,000,000$ of cubic feat fall over the cataract in every minute: this was ascortuined by an engineer under the direction of Mr. Rugales. By all the causes I have mentioned, perhaps one four-hundredthpart of this may be diverted into other directions; and this is certainly an appreciable quantity, and might have 110 inconsiderable efiect in the pragress of the recession. I only mention this as one of the disturbing causes which may vitiate all the calculations of which I spoke. The movenent of the whole country which I have before alluded to may be another cause of disturbance. It is extremely probable that during the period when the Falls were receling itom the whirlpool there may have been an upward, or down ward,orperhaps an oscillating movement of the whole country. This would leave whole eliffs exposed, ns has been done in other localities in the St. Lawrence, of which yeu have here a representation-where columus of limestone are standing, perforated at diflierent hights by the lithodomi. The same nution may have extended to the great lakes and have affected this wholo section of country. You will see, therefore, what a variety of different causes we have to regard in makiug any estimato of the former state of this District.

Tures what we times the plied to superficio some, ch thls form lieve that mud, in of rock, some mi ferent po they saw other cat i_{1} to cc exu'pt tl that the means o the pare have bec this cel through ecssary any part by the g streets
fifty fee unstrati taining suay bo of the s mation of Euro Contine able in ning wi
Yoland,
through
country covered with th feet thi tains 1 after h rare ar format ther st sence

LECTUREVIII.

BOULDERS AND ICEBERGS.

The subjeet of which I shall treat to-night is what we terin the Boulder Formation, or sometimes the Norfolk Drift. The term boulder is apphed to nuy large moss fonnd resting upon the saperficial gravel brought from a distance. By some, chiefly the writers of the last forty yenrs, thls formation is called diluvial ; beenuse they beliove that this superficial gravel, and snad, and mud, itr whicle aro found these rounded fragments of rock, have been bronglit thither by a rush of some mighty deluge, either at ono time or at different poriods. But those who have thought that they saw renson to refer a large part of this to other eauses prefer tho term Drift-as not chioosit to commit themselves to nny pmrticular theory escopt that which is certainly known to be true, that these boulders have been drifted, by some means or other, to a considernble distance from tho parent rocks, from which, ns fragmenta, they have been torn. You havo so many esamples in this ecuntry, of theso foreign rocks seatterod through beds of sand and mud, that it is not neeessary for mo to enter upon tho doseription of any particular localities in Europe. If you pass by the great excavations that have been made for streets in Brooklyn, you may see some foity or fifty feet in thickness of what we call rubbish, an unstratificd, confused mass of clay and snnd, containing fragments of rock of various kinds. This way bo seen nonr the Navy Yard, and in all parts of the suburbs of the city. Tho samo kind of formation may be seen in various parts of the Noth of Europe, as well as in different districto of this Contincut. In Europe, it is particularly noticeable in the country bordering the Baltic, beginning with Finlnnd, and through part of Russia and Poland, to Pomerania, I'russia, and Denmark, through the lowor pait of Sweden. The whole country consists of land at a moderate elevation, covered, to depths that have never been pierced, with this boulder formation, sometimes a thousand foet thick, and often, indeed, still more. It contains no strata; and you would become sensible, after having made a geological survey, how very raro are unstratified rocks which are not crystalline, like gra:ite. Sometimes we find the boulder formation, entirely unstratified, passing iuto another strata which is arranged in lnyers. The ubsence of fossils-of erganic remnins-is another
characteristio which makes it difficult to decide the nuturo or origin of this formntion; ; whether it bo fresh-water, formed in lakes, or a marine formution, formed in the sen-is a matter of great doubt from tho absence of all organic remains. Sometimes, indeed, we havo foumd shells and bones wasted out of the older rocka; for, relatively speaking, this is a modern doposite-being strowed over other strata contnining fragments of them all, and ocensionally of their imbedded fose sils. Sometimes, teo, we find them alternately of stratified and unstrntified roeks.

In tracing along this remarkable dopesito through the borders of the Baltic, wo sometimes find fringments of rock which must have traveled hundreds of miles from their point of departure, and, as a general thing, we shall find that they grow larger in sizo as wo approach the region from which they wero derived. This I found to be the fact in going nortis from the margin of the Rhino to Holstein, and Denmark, where I found fragments of Scardinnvian rocks, in Sweden nine and sometimes forty feet in diameter; and at last tho whole country was made up of these rocks. Thus by tracing the stream along, we shall find that as it diminishes in size tho stones continually diminish in their individual dimensions This may be seen any where between the Thames and the Tinc, and by following it out in any region you will becomo convineed that thero has been a general drift from the north. You mny travel for eight or nino hundred miles over tho plains of Rus. sia, and you will find these Erratics, as they are called, associated to such an extent with the rocks in the neighborhood, or immediately suljacent, that they have aequired the celor and mineralogical character of the rocks of each country. If, for example, you trace the boulders to the red sandstono of New Jersey, you will find them red. Se at Brooklyn, you will fiud that in great part thoy are red. Yet hero in the red base you find scatter. ed fragments of the trap of the Pulisades, huge musses of granite from the Highlands, and some of the green serpentine of Hoboken, all mixed together, and yet the whole reddened by tho colors and marked by the character, of the adjoining sands'ouc. So in Europe, tho boulders nre white in the chalk of Seandinavia; black in the carbenifesons formation near Edint urgh, where the bitu-
minons shale of the coal formation enters largely lutu their componition. Sometimes you find them onticely angular, as if they lud not suffered any of that meelaulcal rubbing agulnat adjoining rocks, or against each other, which has perfeatly rounded other masses equally large. Some of theso are so large that it is difficult to imagine that any firce of water, which is the agent usually asslgned, could bo sufficient to roll them over and over as is necessury. Take some of the gneiss for instance : the edg. es of some luge masses have been cut off, so that the whole is as perfectly rounded as any of the smaller pebbles. Oftentimes, too, theso latgo boulders have been carried across scas-as from the Scanduiavian rocks to the south side of the Baltic. We have them too, perched upon the Jura peaks, having evideutly been carried from tho higher Alps over a valley fifty miles wide, and deposited upon fossiliferous limestone rocks, which have nothing in common with those of the Alps. This is tho kind of appearance which has so perplexed Gcologists, and to explain which, shall be one purpose of this evening's lecture.

I will first, however, allude to ono other appearance which distinguishes the boulder formation.When it rests upon hard rocks-rocks which are enpable of taking and retaining a polish-rocks which have not wasted away by disintegrationwe find, unon romoving the sand, \&c. the solid rock below sometimes polished so as almost to answer the purpose of a looking-glass; at other thenes we find it scratched and ridged with long parallel stripes, perfectly struight for hundreds of yards, and sometimes for a quarter of a mile, occasionally deviating from being parallel to each other, but still retaining the same general direction from north to south, or sometimes 20 or $\$ 5$ degrees towards the cast or west of that direction. This is evidently a common characteristic of these crratics; and any theory advanced to explain them must comprehend that appearance.

Another grand fact which is now established respecting their geegraphical distribution is, that they are found in the Northern Hemisphere, both in Europe and this country, extending from the poles, and they diminish in quantity as they upproach the warmer and equatorial regions, and at length disappear whon we come near the tropics. We fiud them in Europe from the north of Sweden and Norway to the coast of England, in latitude 50°. We find them here still further south, but tho Long Island deposite is one of the last grand deposites, and that on the Susquehanna is, I believe, the most southerly ; and in traveling toward

Georgia, or even on the James river and the P_{0}. tomac, you will be struck with the ubaence of these largo erratic fragments. It is tho anme \ln Russin, in travelling from north to south; and it is only when there is a chain of mountalns like the Alps, in latitude 46°, that any exception is observed. Frons these mountains, as from the Jura chain, these boulders seem to radiate ns from a centre. You may seo them traveled to Lombardy and toward the Italian side. Fiven in the Gramplan mountains of Scotland, you may see them scattered over the hills on every side; so also with the small Cumberbnd chain. Thus, mountain chains seem to luve exerted the same kind of inftuence as tho poles; for this general theory is found to be true, not only of the north pole, but also of the scuth. When you pass from the southern part of the United States through Mexico to P'ern, at Quitn you find no boulders, except at the foot of some mosutain chanin, where we may easily supposo the melted suow and other causes sulticiently obvious, account for their presence. l'assing to Chili, it is not till you reach latitude 41: that you begin ugain to meet these bouklers, and then they continuo to increase to Terra del Fuego, where they are as magnificent in their developement as in New Eingland or in Sweden.

Another very remarkable appearanco in regard to the stratification of this formation, is the contortion and disturbance of some of the beds. In parts of the strata in Scotland, for example, you find masses of the unstratified boulder with pebbles below of various kinds, as fragments of granite, gneiss, \&c, in which parts shall be twisted so that a vertical section would pass through the same bed three times. You find alternate layers, first pebbles of a particular kind and color; then sand, then loum, und then gravel-all loose, but so that you may trace the sume bed for several yards, one layer being deposited above another in a nearly horizontal position; and we find them semetimes folded together-bent back upon themselves. This appearance was of r. most perplex ing kind, and evidently implied a lateral thrust by which the pliant beds were brought into the folded position, though those below had suffered no disturbaисе.

In s.me cases we have a mass of chalk resting on another bed, in which one has been pushed out of its original position, and the gravel and sand falded around it In other cases, as in part of the northern coast of lingland, for twenty miles this unstratified till, as it is locally called in Scotland,
in coverud with aro curved stru the beds lin a c and tho horizon turbed; no that which hus cau subwidence, whi by volcanic ac chains, \&e. I cause in that en disturbed as m seen in the sec the contortons on the Norfolk the same gene

As to the ag both here ind it the most mode tunity in Swed the erratics ar teen feet in dio thea came a mense numbor which tho blu muscle is now is found at U_{I} Several other Bahtic. The fourth part as and tho shells not of differen aro yet of a d from those th found freshw down by river modern is th blocks; for no whon those sp now live, b those peculi have modifie

I do not sa for some of t tinct, or at an region. In camo across blage of shel ago; and Dr. that thero w from the Ba time. There liar to the S chiefly found the Pole, as
in covered with a layer of horizontal loain in which aro curved stratm. This folding and bonding of the beds in a circlo sometimes, has been effiected, and the horizontal thyera below are not at all dise turbed; so that it enanot be a motion from below wheh has causect it-a sulterranean upheaval or subuldence, which I have beforo explaher, caneed by volcante action, by which wo explnin mowntain chains, Se. This cannot to introluced here, becauso in that ease the lower beds would have lieen disturbed as much as the higher. This may bo seon in tho scetion faid apen in Brooklyn; none of the contortions these have been so violent as some on the Norfolk coast of lingland ant Scotland; but the same general disturbance may be olserver.

As to the age of these boulders, you find them both herome in Lurope, standing over rocks all of the most modern tertiary strata. I had an opportunity in Swedon of showing how modern some of the orratics are, by finding fragments of gneiss sixteen feet in diameter, rest'ng upou a layer of sand; then camo a bed of blue marl, containing an inmense numbor of shells of the catable musclo, from which the blue color of the marl is derived. That muselo is now a living species in tho Baltic, and is found at Upsala, nenr the ancient University.Several other shells are also found peculiar to tho Baltic. The water of the Baltic contains only onefourth part as much salt as the water of the ocem ; and the shells found in its brackish waters, thongh not of diffecent species from thoso of tho ocean, aro yet of a dwarfish form, und of a different shape from those that live in the sea. 'Thero nro also found freshwater shells, which have been brought down by rivers. Wo may ohserve, then, how very modern is tho transportation of some of these blocks; for not only do we traco them to the times whon those species existed the same as those which now live, but when they lived placed under thoso peculiar geographical relations which have modified the character of the waters.-

I do not say that they are all as modern as that, for some of them contain shells that are partly extinct, or at any rate which do not livo in the same region. In tho St. Lawrence Capt. Bayfield camo across houlders containing a small assemblage of shells which ho sent to me many years ago; and Dr. Beck, a Danish Geologist, ubserved that thero were fauna more ancient than those from the Baltic, which I received at the same :ime. Thare was a sinall number of species peculiar to the Southern regions, and the same as are chiefly found in Greenland and other districts near the Pole, as if tho country had formerly been
colder and tho boulders hud been drapped down by leebergs; far Capt. Bayrosenh frequently saw immense rock* earrled by lechergst and let down deposited with stratu eontaining whells the same as those I spoke of in treating of tho Nilugura diso trlct. 'Ihas wo arrive ut the eomelusion that this boulder funnation is one of the nowt molern do ${ }^{-}$ posites geologically conaldered-somethes ex. tremely modorn, nud in other points ascending os Ilthe higher, fust to the period when tho mane whells existed, nearly all of them belonging to liv. Ing species: tho newer l'llocene period as I have beforo deslgnated the era-when perhajs 90 out of the humbed shells found nre of living species. Dowa to tho latter part of this newer Pliocono pe* rlod it appears that those erraties extencl. We liavo to atscount then for this formation being of such vost thickness and mustratifisd; for rocks having been transferred hundreds of miles over lakes and valleys; for their being nearly non-fos. siliferous; for thair being found chiefly in tho Aretic and Antarctic regions or near mountain chains ; and to explain how they are so often found contorted and disturbed while tho strata they overlio are still horizontal.

In the hopo to explain the grenter part of these phenomenn, I propese first tu treat of Claciers, and then of Icebergs. You nre aware that in lefty mountains, especially in the ligh latitudes, the snow never disappears during tho wholo year.There is constantly falling snow which the summer heat is never sufficient to molt ; and in Switzerland whero the Alps nro three miles $i \cdot 1$ hight above the level of the sea, although in latitute 46°, their peaks are covered with perpetual snow; which comes down and fills tho valley for ten or fifteen miles: then this ice becomes consolidated, being melted daring the day and frozen in the night-so that it is pushed down towards tho valley to a point 3000 feet above tho level, whero the heat becomes so great as to arrest its progress, and it melts, and givos rise oftentimes to a considerable stream of water. The cause of the motion of these glaeiors has been a matter of considerable controversy. Gravity is admitted on all hands to be ono considerablo cause. It is suggested by Saussure, and ly the carlier writers is believed to be the principal cause; but this is denied by M. Agassiz in tho history of his late exploration of the Alps.That this snow, if it goes on accumulating upen tho mountains which nre so steep, will by its own gravity fall down, is unquestionable. You see this to be the case in avalanches, as they called-sliding own of large masses of snow in warm weather,
which continues until the valley is choked by this descending mass, which crushes the trees and vegetation that lie in its puth. These beeone of such enormous size that they are sometimes 100 or 200 feet thick, and in particular places 500 or 600 , though it is supposed now that 120 or 180 fect expresses their ayerage depth. In Switzerland, whero the glaciers of the Arve, the Santer Arve, and the Shrecken meet, the former being merged in the other, along the midule is a remarkable ridge of rocks-many of them angular and some rounded. Now the first question is, how "ame these blocks in the middle of the valley where it is two or three miles wide. The glaciers descend from the region of perpetual snow to ahight of, say 8000 feet above the level of the sea. How came all these rocks in the middle? You might imagine that from tho steep sides there woild be fragments detached.Avalunches might cause this, or frost penetrating the rents and feeezing the water, would occasionally force them ont and cause the rocks to descend. Sometimes lightuinr strikes the Apine peaks, and shivers of large masses of rocks which deseend. So that we should not be puzzled to find along the base of lofty cliffs thio, three or four thousand feet high, these fragments of rock. This would bo perfectly intelligible. But how should they get into the middle of the valley, and why are there five distinct parallel ridges of these stones? Saussure was at first conipletely balled in accounting for this. But having once found the explanation, it was so easy that it became surprising how it could have been missed.
Prof. Agassiz found in exploring the higher regions that this was a necessary consequence of the junction of the two glaciers. It is easy to see why these lateral moraines, as they are called, should exist-the rocky fragments being deposited along these glaciers by their rubbing against the sides of the momntains. But suppose one of these immense masses of ice to be deseending the valley of the Arve; and here comes a tributary to juin it from tho Lauter Arve-the rocks instead of being deposited in lateral moraines by rubbing agaiust the mountain sides will be brought into the middle of these two united frozen rivers, thus forming a contral or medial moraine. Now as the glacier moves along, (and in a liot day you may see the motion daily-although an inch, or perhaps half un inch an hour would be a rapid movement, -you may see sometimes fragments fulling down-rubbing one against tho other, and great rents often traverse the ice with a noise like thunder. By this rubbing against the sides of the mountain the rocks
beeome rounded. Many of the fragments fall through the fissures to the bottom, and some are caught in the middle-the fissure penetrating only twenty or thirty fert. Sometimes, however, they fall to the bottom, and then the ice resting upon them grinds them along the rock, which becomes polished-those at least capable of receiving a pol-ish-and selatched and furrowed as we afterward find it. All this may be seen by the oecasional meiting back of the glacier. So at the termination of the glacier it presents a beautiful green arched cavern, out of which a torrent of water rushes down the valley. Frequently the glacier melts back from the extremity, and thus gives :ul opportunity to see what has taken place under it, and you will find tho bottom oftentimes most beautifully polished. In some of the boulders you will find quartz pebbles, and these have scratched and made furrows upon the linestone and other rock along which they lave moved-just as a diamond scratehes glass.In other places you will find still deeper furrows :early parallel to each other. You will also seeas I have had oceasion to refer to the prodigions power of these ice masses-rocks that have been ground down to the finest impalpable powder; and nothing can execed the fineness of this mud whicin is formed from tho powder thus produced by these masses of ice one or two hundred feet thick, equal in weight to five and twenty or even fifty feet of solid rock.

The downward motion of the glaciers is partly due to gravity. But Profi. Agassiz says that still more is due to the alternate melting and freezing of the water. The iee is in fact a great spongo und not only may yon see water in the day tine held up in the elefts-as many of you who have traveled in Switzerland can testify-but the whole surface is a spongy mass which inbibes the water during the day, which every night is frozen by the same frosts, and thus oceurs a universal dilatation of the whole mass; the water in all the rents freezing cuuses an expansion, and as this cannot push iside the mountains on the flanks, the only vent for the force is downward-in which direction it has the effect to force the huge mass down at the rate of one, two, thareo or four inches an hour, according to the heat of the summer and the amount of alternate melting and freczing that goes on, and also according to the farther distanco which the glaciers have reached. I may mention that every one of the moraines between the eentral one and the sides is produced just like the large one-by the junction of the tributaries which come one afer another down for many miles. Thus the dif-
fent moraine and others up. Those tral onesthe bound: heat of the Saster: ani dle to the and more great late and when mination ments at eounting fragments why shol from thon block f.ill by rising glacier g surfacethe bloc distance There rays of melted. heated
Thus if
if large ed up
of evar phor, w The ge up the

seeing

feetly
fectly
twelv
know
glacie
built
rocks
the a
bene
that,
to w
you
com
tion
size
per
neti
fent moraines maybe traced-one to the Schrecken some time age. There are some remarkable ob and others te vanious tributaries which join higher up. Those at the sides move faster than tho central ones-becanse tho reflection of the heat from the boundiry rocks is in addition to the direct heat of the Sun, causing the ice to melt away faster: and thes the ice is drawn from the middle to the sides and the moraines become more and more scattered. At last we have only one great lateral moraine with smaller medial ones, and when we behold the beautiful areh at the termination we shall find in the middle of it ne fragments at all. There was some difficulty in accounting for this, becanse it was supposed that the fragments had been caught in the fissures. But why should the extremity be so beautifulty free from thom? The answer is this: that when a block falls into a fissure it works its way up-not by rising against gravity-but in this way: as the glacier gnes down, it continually diminishes at the surface-the upper surface melting away; and the bleck which had dropped down to a certain distance must continually get nearer the surface. There too this block protect; the ice frem the rays of the Sun, and you see the mass below unmelted. If the pebble be small it seen becomes heated through, and thus forms a peol or hollow. Thus if the reck be small, we shall have a hollow; if large, the epposite-or the rock will be mounted up on a pedestal. The wind also is ene cause of evaporation. The ice wastes away like camphor, without passing through the liquid form.The general waste of superficial ice tends to bring up the fallen mas. toward the surface.
I have said that there was great difficulty in seeing hew such large fragments could be se perfectly rounded. Sometimes we have masses perfectly angular-twenty feet in one direction, and twelve or fifteen in the other. There is one, well known to travelers, in the central moraine of the glacier of tho Arve. It was here that a hut was built in which a family lived in the summer. The rocks are reunded here, as is said by some, net by the action of the ice, bnt of the river that flows bencath the ice. But Professor Agassiz says that, as a proof that it is the ice, and not the river, to which the rounding of the rocks is attrivutable, you may go up to points above where any stream commences, and still you will fird that the motion of the ice above has rounded masses of all sizes. This is found so far above the line of perpetual now that it comnot be atributed to the section of running water.

I mentiened a hut, built by Professor HuGz,
servations cencerning it, which shew the rate of motion in these glaciers. It was built in 1827, on the glacier of the Arve. When Professor H. went back nine years after in 1336, he found that the hut had gone down, without being otherwise disturbed or injured, 2900 fret. He went again four years after, and found that it had gone down at twice the same rate. Taking an average of the whole for the thirteen years, it was found that it had gone down at the rate of eight inches in twenty four heurs. In the first part of the distanco it went cight, and in the secend sixteen; and the motion was entime in the summer. In the winter, this glacies stationary, showing again, as Professor Agassit remarked, that the motion was chicfly owing to difatation-to this alternate melting and freczing. This is certainly a stroug argument in favor of that theery, that it is chielly during this congelation and melting that the chief motion is olserved.

There have been periods when the glaciers made less advance than at ethers, as between the eleventh and fifteenth centuries; and again in the scventeenth and eighteenth a general metion ferward occurred. This period of retrecessien and advance is a striking meterological phenomena showing the cycles of climate. When there is a great fall of snew during the winter, which metts in summer, there is an advince.

In Chili, which has the same latitude as the Alps in Switzerland, we have glaciers desconding to the sea; but at the Atps they only descend within 3000 feet of the sea level, and this toe, altheugh the Andes aute only 7000 feet high-half the hight of the Alps in the same latitude. The reasen of this singular phenomenen is that to which I have alluded-that the summer heat is less intense in the Alps. In Enrepe we have te go te latitude 67° before we find a single glacier reaching the sea.But in the Sonthrn Homisphere, in latitude 46° in Chili-we find this occurring twenty-one degrees nearer the equator ; se that there is here an actual generation of icebergs in a region which is almost the limit to which the floating icebergs reach. That alternate period of advance and retrocession among the Swiss glaciers is one of the most reremarkable facts, and explains many geological of the Alp. In observing the terminal meraines left at the ent glaciers we often find a huge maps glacier advances a gain it pushes forward then the raine of the lust year into that of the year meand that into the thind, aud so on until be bore, and that inte the third, aud so on until we have
four or five together, forming a hugo mountain.You may seo many of these aneiont moraines covcred with houses, and lofty trees, and various kinds of herbare; and as I witnessed in 1033, when the glacier was advanring, if it approach this ancient moraino it destroys the forests upon it, forcirg in the walls of the houars and crushing them ly at a slow and almost imperceptible, but, it the same time irresistible, power; and after treadigy down these lofty trees for a series of yeara, it will again retreat; and then the woud wisl grow again, the inhabitants again bild their houses, and forget the disaster which once rendered them desolate. So that the trees show ly their ago how it has been sinco the ice visited that part of the country.
These phenomena liave been well described by M. Charpentien, who remarked that we always have an unstratified mass of large boulders in the same district, the angular and rounded being mingled together. This shows that they cannot be attributed to any action of water, for water exerts an assorting power carrying tho finer materials farther than the coarser, and would carry the small stones to farther points than the large ones. Each different size would, supposing the whole to be attributed to the action of water, be arranged in different layers. But ice would carry them all indifferently to the samo place, and we should find them unstratified-a promiscuous, confused mass, and that is the character of all tho noraines. Now we are not to jump to the conclusion that all the boulders of Long.Island are attributable to glaciers. I believo that they are not, but still to the action of ice. The pebbles found at North Haven and along the Connecticut valley, in the boulder formation are rounded on three sides but flat on the other-resting on polished rock; and all the furrows are parallel over a large extent of country. This parallelism does not bespeak the action of water; for in that case there would be none of the scooping out that we sce in the action of glaciars; the motion would not be always in the same direction; but if the fragraent of a ruck becomes frozen in, it is kept in one position, and we should have therefore straight parallel grooves.

But not to dwoll longer on the action of mere slaciers, let us pass to the consideration of icebergs. We know that icebergs carry fragments of rock in the samo way as glaciors; that is, fragments of rock rest on glaciers when they como to the sea, and are then conveyed away by tho floating iceberg, as well as by the moving glacier on land. This las been wberved even in latitude
46° in Chili. Scorrssy tells us that he met in lat. 69° an icebergin the Atlantic with 100,000 tons of rock upon it. But in 1839 there was met in tho South Atlantic an iceberg 1,300 miles from any known land, from which projected a block twelve feet thick: how much rock was buried beneath the surface was not kuown. I lonot say that this was 1,300 miles from any land-but only from any hinown land. Now as this was floating at a considerable rate: from Sonth to North-as it melted the rock would fallto the bottom of the sea, and if the loed should be raised some day, wo shoukd have boulders at an immense diztance from their starting point. The shores of the Antarctic regions are thus eovered with coast ice a mile or two in thickness-stranded ice containing great quantities of rocks. Thus as the glaciers descend to the sea, they float off, the rocks fall to the bottom, and the floor of the occan is thus strewed over with them, and if the ice melt in still water tho formation would be unstratified, bectuse all the roeks fall perpendicularly through the water. But if there were a eurrent, then an assorting power would be exereised, and wo should have regular strata.

I now come to a remarkable feature to which I must allude, as I spoko of it at the beginuing of my lecture, but of which I can only speak briefly. I mean the appearance of Alpine rociss on tho peaks of the Jura. The western valley is eomposed of talcose granite and greiss. Then going farther East we come to the Bernese Al_{p}, whero the mountains are composed of crystaline limestone, gneiss and other rocks, frequently of highly crystalino marble, fragments of gneiss, \&c. Next are the $\mathrm{Al}_{1}, ~$ of the smaller cantons, Glaris, Schwytz, Uri, Zug, \&c. Now the phenomenon alluded to is this. We have the great valley of Switzerland between the Jura and the Alps. The Alps are from 10,000 to 15,000 feet ligh, and the Jura only one-third as high. N.w we have the same blocks in the plain below, in Lake Geneva and others, perched upon the Jura Mountains, at all hights and of all sizes-one in particular, celebrated zuder tho name of Pierre i Bot, near Neufchatel, no less than forty feet in diameter, composed of guciss from the Alps. The wholo chain of the Jura is composed of fassiliferous limestone, entirely different from the Alpine rocks; so that we have no other resort than to suppose that these rocks must have originated in the Alps. All agree that those on the central part of tho Jura came from the Bernese Overland; then, again, tho block of state of the Glaris regien sent over ita
crratics
on the
of Mon
Saus
posed t
some g
rise of
hynothe
suppose being ca that the How is
pometin
never
ona; th
factory
is that
rock su
carried
so that
the cou
Arve a
Limma
all anal
rememl
one bal
that we
flat, wh
that the
these bl
er bolie
to a dil
with al
Ther
oceurre
tude as
geologi
upheav
less lof
mation
havo
the Al_{I}
have st
paso th
know
Georg
ayenite
the gre
sent th
Chiloo
is abou
whe Jua
and the
at halt
give ri
erratics to tho Eastern Jura, near Besle, and those on tho Western Jura havo como from the region of Mont Blanc and the Valais.
Saussure, Van Buch and other writers supposed that these phenomena wero produced by some grand rush of waters in consequence of the risc of the Alps from the ocean; a most violent hypothesis contrary to facts now known. If we suppose that this wis the canse of thesc rocks being carried across this great valley, how is it that they did not all fall down into the valley ? How is it possible that they should be whirled nometimos for several thousand fcct? This has never becn explaincd to the satisfaction of any ons; though to be sure this is rather morc satisfactory than no hypothcsis. But the remarkable fact is that wo have on parts of tho Jura fragments of rock such as we must suppose glaciers must havo carried straight across the valley fifty miles wide; so that tho western stream seems to havo followed the course of the Rhonc, tho Central that of the Arve and the eastern that of the Reuss and the Limmat. But to suppose all this is in defiance of all analogy of tho motion of glaciers; for we must remember that they could have an inclination from onc bank to the other of only two degrees; so that we should have then moving along a dead flat, which is contrary to all the laws of glaciers, that they should walk across this level and lodgo these blocks upon the Jura peaks. I should rather bolievo this however than that they are owing to a diluvial rush, which is 'utterly inconsistent with all the laws of the transportation of mattor.
There is another ypothesis suggested by tho occurrencc of glaciers in Chili in the same latitudo as tho Swiss Alps. Wo may suppesc from geological changes, known to be going on in the upheaval of the land, \&c., that the Alps wero less lofty than they now are, during the boulder formation, and the Jura also. The sca may then have covered the hottom of that dcep valley and the Alps-at one half their present hight-would have stood as high as the Chilian Andes. Suppose they sent down glaciers to the sea, as we hnow they do in South imerica, where Sir Grorge Ayres has seen them with blocks of Ryenite and granite. Theso might be stranded in tho great valley, which, in that case, would repreacnt the channel that now separates the island of Chiloe from the main land. The island of Chiloe is about 100 niles long, and may well represent Whe Jura Chain. Tho Andes represent the Alps, and the channel the intervening valley. The Alps at half their present hight, would be sufficient to give rise to glaciers, which, descending to the
sea, would become icebergs and float blocks acros* tho channol. In point of fact thero are found on the island of Chilo3 blocks of syenite in one part and of granite in another, which might have been carried from different points of the sides opposite. Now if an uphcaval woro to take place on the Chili Const, which should lift up tho Andes-dry up the intervening channcl-and lift up Chiloeso that it would appcar to be a chain of mountains wo should have the same puzzling appearance to future gcologists. It would be wondcred how these blocks of granite and syenite could havo crossed the valloy from the Andes and perch d themselves on the Chilian Mountains. This hypothesis is infinitely more satisfactory than the one which attributes tho phenomena to the extension of glaciers from tho Alps to the Jura, or to the diluvial rush of Saussure. There havo been found also moraines on tho Jura which have polished and scratched the sarface-implying that formerly thero were glaciers here also. This may have happened when the climato more resembled that of Chili.

I will now stato one more fact of some interest here. I observe that Mr. Mather, the State Geologist, to whom was committed tho investigation of this part of the country, says that on the Eastcrn extremity of Long Island aro blocks that have come from the ncighborhood of the Palizades or from different parts of the Highlands. Traveling farther on he saw another group which camo from the Connceticut region opposite ; then to trap, porphory and other rocks from New Haven. Still farther were Rhodo Island rocks and so in different parts were groups corresponding with strate opposito. In these cascs wo have not to call in the action of glacicrs nor of iccbergs to explain this. It may have been caused by tho action of coast icc. Ice might float thither carrying these blocks and being strandcd lodge its load; then the next year might come a little more. Capt. BayFIELD after fixing the position of one block found ic carried away scveral yards. The experience of Dease and Simpson shows the immense power of these icebergs. The Utica, too, which has just arrived talks of icebergs in this latitude, 400 feet high above the water and as thero are eight cubic fect bclow for one above the surface, we may judge of tho cnormous sizo of these icebergs which were several miles in circumfercnce. They grate aleng tho bottom of the ocean, ploughing up mud and sand, with a forco sufficient easily to movo a building like this, or even tho wholo city of New-York before them: This is the kind of action tiat produced those contortions of which I have speken.

56

The top of a asad-bank in the botom of the sea my geological tour and to visit vurious parts of the has been exposed to violent thrust of this kind and whilo the atrata below remained horizontal, those above weuld be forced back and folded over upon theinselves.
I will now leave this sulject half-told, na I have been obliged to leave so many others of equal importance; and still more at which I have not been able even to glance. In concluding I may take this opportunity-us this is tho last lecture 1 shall have the pleasure of delivering in the United States bufore my retury tu Lurope, being about io roxume

West and of Canadn-not only of thanking you for the great attention you havobeen so kind as to show me but also to acknowledge the welcono which has attendod me throughout iny tour from Lake Erie to the Savamah river: and which has mado me in this comntry feel as much athome as though I were in England; and I assure you that I shall iblways look back to the time spent hero with a home-feeling, which will always make it difficult for me to regard Aurerica as a foreigu land.

