## IMAGE EVALUATION TEST TARGET (MT-3)



Phoiographic Sciences Corporation


# CIHM/ICMH Microfiche Series. 

## CIHM/ICMH Collection de microfiches.

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographicaliy unique. which may alter any of the imagas in the reproduction, or which may significantly change the usual method of filming, are checked balow.


Culoured covers/
Couverture de couleu:-Covers damaged/
Couverture endommagée
Covers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/os illustrations en couleur
Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion alung interior margin/
La reliure serrée paut causer de l'ombre ou de la distortion le long de la marge intérieureBlank leaves added during restoration may appear within the text. Whenaver possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutces lors d'une restauration apparaissent dens le texte. mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le inailfeur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.


Coloured pagas/
Pages de couleurPages damagad/
Pages endommagées
Pages restored and/or laminated/
Pages restaurées et/ou pẹliculées
Pages discoloured, stained or foxed/
Pages ćácolorées, tachetées ou piquées
Pages detached/
Pages détachées
Showthrough/
TransparenceQualizy of print varies/
Qualité inágale de l'impression


Includes supplementary material/
Comprend du matériel supolémentaire
Orily eciition available/
Seule édition disponible
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/ Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure. etc., ont été filmées á nouveau de façon à obtenir la meilleure image possibla.

Additional comments:/
Commentaires supplémentaires:

This itom is filrised at the reduction ratio checked below/
Ce docurnent est filmé au taux de réduction indiqué ci-dessous.


L'exemplaire filmé fut reproduit grâce à la générosité de:

## La bibliothèque des Archives publiques du Canada

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papler est Imprimée sont filmés en commençant par le premier plat et en terrninant soit par la dernière page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la premlere page qui comporte une empreinte d'impression ou d'illustration et en terminant par la derriìre page qul comporte une telle empreinte.

Un des symboles suivants apparaitra sur la dernìre image de chaque microfiche, selon le cas: le symbole $\rightarrow$ signifie "A SUIVRE", le symbole $\nabla$ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmás à des tecux de réduction diffórents. Lorsque le docuinent est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche a droite, et de haut en bas, en prenant le nombre d'Images nécessaire. Les diagrammes suivants illustrent la méthode.

NARRATIVEof theOPERATIONSOF THE
BRITISH NORTH AMERICANBOUNDARY COMMISSION,1872-76.
BY
CAPT. FEATHERSTONHAUGH, R.E.
Fhom the "professional papers" of the comps of noyal ENGINEERS, VOL. XXIII.
WOOLWICH:
A. W. and J. P. Jackson, library, fhomas strekt.1876.

## PAPER VIII.

NARRATIVE OF THE OPERATIONS OF THE BRITISH
NORTH AMERICAN BOUNDARY COMMISSION, 1872-76.

By Capt. FEATHERSTONHAUGH, R.E.

The boundary between the British possessions and those of the United States on the Continent of North America had, previous to the appointinent of this Commission, been marked from the Allantic Ocean, westward, to the northwest angle of the Lake of tho Woods, and from the Paeifie Occan, eastward, to the summit of the Rocky Mountains.

In the interior of the continent between these terminal points, the boundary was unmarked, though determined, geographically, by the Convention of the 20th October, 1818. This portion of the country comprised between the meridians of $95^{\circ} 14^{\prime}$, and $114^{\circ}$ wcsi longitude, was, to a great extent, unknown, but was believed to be all prairie land or bare plain, with the exception of the swampy districts between the Lako of the Woods and the Red River of the North. West of the 100th meridian the great Ameriean desert, alluded to in most of the books of travellers in these regions, was supposed to lie; further on the "bad lands" of the Missouri were said to be crossed by the line, and further on again were the hunting grounds of the Blaekfoot and Blood Indians, who were reported to be unfavourably disposed to intruders. All these obstacles turned out, as will be seen in the course of this narrative, to be overrated. The great American Desert was certainly deserted; but grass, water, and, at one time of the year, buffalo abounded in it; the "bad lands" were small in extent, and the Indians were friendly.

The north-west angle of the Lake of the Woods had been identified and marked by Commissioners from both nations in the year 1826, and from this point, according to the Convention, the boundary was to run due south as far as the 49th parallel of norti. latitude, and then along the said parallel to the l'acifie Ocean. The portion between the Pucifis Ocean and the summit of the Roeky Mountains having been marked in 1858-62. the work of the present commission came to an end when the later were reached.

## The staff of the British Commission were the following :- <br> H.M. Commissioner, Major Cameron, K.A. Secretary, an officer of the Royal Engineers. Chicf Astronomer ) Two Astronomers ; Officers of the R.E. Two Surveyors. One Surgeon. Oue Geologist and Naturalist. One Comnissariat Officer. One Veterinary Surgeon. Four Sub-Assistant Astronomers. Three Assistants to the Surveyors. One Assistant Surgeon.

The last fourteen of these offices were filled by Canadian gentlemen, who were nominated by the Government of the Dominion. There were also in the permanent employment of the commission 44 non-commissioned officers and men of the Royal Engineers, one waggon-master, 12 depôt keepers, (who were persons qualified to undertake the cure of provisions and to issue stores and rations), and i3 officers' servants.

During the period of work in the field, teansters, axemen, and labourers were hired for the season at so much a day. The number oi' these in each year are shown in the tables at the end of the appendix. The detail of the trades of the non-commissioned officers and mon of the licyal Engineers, and lists of the instruments and stores brought from Engiand for the use of tho commission are given in the samo place.

## departure fhom england, 1872.

The Commissiongr and the Seeretary left England in July, 1872, and proceeded to Washington, U.S. From thence they went to Ottawc., tho capital of the Dominion of Canada, and finally started for Red River in the beginuing of September.
The officers and men of tho Royal Engineers, having with them. all the instruments and outfit whieh had been purchased in England, left Liverpool on the 22nd August, 1872, Captain Anderson, F.E., the chiof astronomer, being in command of the party, and they reached Quebec at the end of the month. Hence they proceeded by water to Toronto, on Lake Ontario, thence by railway to Collingwood, on the Georgian Bay, where they embarked in one of the Lake Superior hine of steamers, which took them to Duluth, in the Stato of Winconsin, U.S. The destivation of the party for this port had been reported by Captain Anderson to the Major-General commanding tho United States troops in the district; and, on arrival, a teiegram was roseived from the AdjutuntGencral of the division giving the requisite authority to pass through the country, and offering, with great consideration, that an officer of the staff shou! 1 accompany the party to the frontior. As no peouliar difficulties were anticipated, it was not thought necessary to accept this kind offer, as the doling bo would have entailed a lorg journey upon the officer concerued.

Leaving Duluth by the railway, the party travelled for 30 miles up the gorge of the St. Louis river, the scenery of which is remarkably bold and picturesque, the stream following a number of precipitous descents, broken by large pools of still, clear water, around which immense slabs of rock lie tossed in every conecivable position. The railway runs along the norin sido of the gorge, and crosses the numerous lateral ravines, which open into it, on high trestle bridges, mostly built on a curvo plan, and so arranged that the traveller, looking out of the carriage windows, sees no roadway beneath him but only the rocks, perhaps 100 feet below. Although the delicate but strong construction of these bridges was admired, yet a feeling of relief was experienced when they had been all passed. Emerging on to the level country at the top of this gorge, the North Pacific Railway carried the party due west, to its intersection with the Red River of the north, a distance of 350 miles, the first 150 being through woods and swamps, after which the open prairie was reached.

The first aspect of scenery over country similar to which the party wero destined to work for so many miles, could not fail to bo interesting, and even impressive; but, as a mere landscape, the prairie, as seen from a small elevation, has few elements of beauty. The spectator appears to be in the middle of a small circle, just as is tho case at sea, and the feeling which is induced is that of an oppressivo nionotony. After about 18 hours travel by rail, the detachment reached Moorhead on the Red River, where they overtcok the Commissioner and the Secretary. Arrangements were here made for the transport of the baggago and stores, \&c., by carts, along the coach road northwards, and the party commenced their march in the same direction. The road follows the general course of the Red River, running from point to point of the numerous bends of that stream, and on the evening of the third day, the head of the navigation at that season was reached at a placo called Frog Point, abovo which, during most of the year, the wate: is too shallow for steamers. The men, baggage, and stores were all embarked here, on the "Dakota," one of the Kitson led River line of steamers. These vessels, on account of tho shallowness of the stream and its numerous bends, are of peculiar construction. The hull is very shallow, drawing only about threo feet of water, and they have a singlo paddle wheel placed at the stern. Whea ous of theso steamers ta'res barges or freight boats with her, they are lashed to her sides, or even placed in front of her bows, it being impossible to tako them in tow on account of the paddlo wheel. In asconding the river when a sharp turn has to be passed, it is usual to run the steamer sideways against the bank in the angle of the bend, get her head round, and start again in tho new direction.

After two days steaning the commission arrived at the frontier on the 20 th of Septenber, and went under canvass on the prairio on the north sido of tho lino; the United States commission were camped a short distance off, having arrived about ten days before. The Canadian officers and other members of the British commission had also arrived by tho "Dakota," or by tho previous steamer, and the entire staff was now ready to commence work.

At this timo there were ouly three or four buildings on or near the 49th
parallel, where it strikes the Red River. One of these was the Canadian Custom House, another was the Hudson Bay Post, which was surronnded with a palisade; the others were mere huts, inhabited by Half-bieeds. The exact position of the boundary was not known; by some persons it was supposed to be three-quarters of a mile north of all these buildings, though the general opinion placer :: very much where it was oventuolly found to be. Major Twining, of tho United States Engineers, was already engaged in observations for latitude with the zenith telescope; and the British astronomers commenced to do the same on a meridian conveniently near to that of the Ameriean observatory tent.

The group of buildings mentioned above was at that time called North Pembina, the village of Pembina being two miles further south, whero the river of the same namo flows into Red River. The United States custom house is in this village, and Fort Pembina, which contains a garrison of threo companies of Uniicd States infantry, is one and a half miles further south again, on tho west bank of Red River.

The British and United States Commissioners having agreed upon a plan of operations for the autumn, the British Commission was divided into the following working parties:-

3 Astronomical parties; 3 Surveying parties ; Staff.
The astronomical parties were in charge of Captain Anderson, Captain Featherstonhaugh, and Lieut. Galwey, R.E.; and the surveying parties were under Colonel Forrest, of tho Canadian Militia, P.L.S.,* Mr. A. L. Rnssell, P.L.S.,* and Sergeant Kay, R.E., respectively.

Each astronomical party was equipped with a zenith telessope, a portable transit instrument, a sextant, two sidereal and one meantime chronometers, a 7-inch transit theodolite, chain and arrows, \&e. Eaeh surveying party had a 5 -inch transit theodolite, three prismatie compasses, ehain and arrows, sketehing cases, and mathematical instruments sufficient for plotting the traversing.
Whilo tho various parties were preparing for the ficld, a snowstorm of great violence commeneed on the day following the equinox, and continucd for 48 hours. It had been preceded by the passage of large floeks of wild geese to the south, which went screaming over the camps, being generally at a great elevation. This storm, though sufficiently unpleasant, was taken by the local people as a presage of a lato winter, and this proved to bo the case.

The folloving plan of operations for the autumn and winter was agreed upon between the Commissioners. The position of the north-west angle of the Lake of the Woods, as marked in 1826, was to bo identified, and the necessary surveys of the shore were to be made; the meridian line from here southwards to the 49th parallel was to be traced and marked; the intorsection of the western shoro of the Lake of the Woods by the said parallel was to be determined by joint astronomical observations; and as many intermediate points as possiblo between the Lake and tho Red River were to le established, taking into consideration the nature of the country and the lateness of the season. The joint determina-

[^0]tion of the boundary at North Pembina was also to be finished, and the surveys on each sido of the line were to be pushed forward in an easterly direction.
The article of the Conventicn of the 20th October, 1818, under which the Boundary Commissions wero constituted, is as follows :-

## Article II.

"It is $\varepsilon_{1}$.ed that a line drawn from the most north-western point of the Lako of the Woods along the 49th parallel of north latitude-or, if the said point shall not be in the 49 th parallel of north latitude, then, that a line drawn from the said point due north or south, as the case may be, until the said line shall intersect the said parallel of north latitude, and from the point of such intersection due west along and with the said parallel-shall be the line of demarcation between tho torritories of His Britaanic Majesty and those of the Ulitod States, and that the said line shall form the southern bounuary of the said territories of His Britannic Majesty; and the northern boundary of the territories of the United States from the Lake of the Woods to tho Stony Mountains."
The north-west angle of the Lake of the Woods being considerably to th.e north of the 49th parallel, a meridian line had to be traced southwards.

In the beginning of October, the maia bodics of both commissions started for the north-west angle of the Lake of the Woods, leaving one of the British astronomieal partics at North Pembina to finish the observations for latitude; the surveyors on each sido had also commenced woraigg in an easterly direction along the 49th parallel. On arriving at the north-west angle, Major Twining and Licut. Galwey proceeded in boats across the Lake of the Woods to Buffalo Point, where joint observations were commenced for latitude. Tho commissioners and the two chicf astronomers pitched camp at tho north-went angle, and a search wes eommenced for the referenee monument erected by the international commissioncrs appointed under the 7th Article of the Treaty of Ghent. "'The most north-western point of the Lake of tho Woods," mentioned in the 2nd Article of the Convention of 1818 (quoted above) was agreed and declared by these commissioners to be at a specified distance measured in a given direction from this monument. At tho same time the latitude and longitude of the said " north-west point" were given. It was evident that the first method of identifying the "north-west point" was far the most accurate, provided the reference monument rould be found. The range of tho possible position of the north-west point, in longitude, was fortunately limited by the width of the bay, which was not more than 100 yards, its sides running north and south. Observations for latitude wero therefore taken with the sextant, and the position of the reference monument was in this way found within tho limits of the error of the sextant observations, and of the width of the bay, supposing that the observations taken at the time when the reference monument was constructed were correct. The probable error of the latter observations was, however, unkuown; nor was there any information at that time as to what instrument had been used in taking then. The scarch for the reference monument occapied three days, at the end of which time some Indians appeared, who said they could polnt out its site. They accordingly indicated a apot which was covered with
water about 13 inches in depth, and here the remains of a square crib of logs were found. This was assumed to be the reference monument, and the position of the north-west point was determined by laying off the six measured courses leading; thereto, as speeified in the Treaty of Ghent.

Observations for latitude were then taken with the zenith telescope by Capt. Anderson, R.E., by which the latitude of the north-west point, found as deseribed in the preeeding paragraph, was determined to be 3.7 seconds greater than it was stated to be by Dr. Tiarks, the astronomer to the commission under the Treaty of Ginent.

It was afterwards aseertained that Dr. Tiarks had used a sextant, and that his observations had been taken, not with a view of determining the absoluto position in latitude and longitude of the spot in question, but only its position relatively to another point, which appeared to have equal claims to be considered the north-west angle of the lake. The discrepancy, bowever, is very small, and the position of the north-west point, as determined from the spot where the remains of the erib of logs was found, was finally agreed to by the Commissioners of both nations. The work was preceeded with at the time on the supposition that such would be the agreement on the subject, and a meridian line was laid off by the astronomers of both commissions, passing through the northwest point.

About the beginning of November, the two astronomical parties at Buffalo Point had completed their observations, and were baek at the north west angle. The United States commission then withdrew from the field, and retired to winter quarters at Detroit on Lake Erie. Lisut. Galwey and his party returned to North Pembina by the same way that they had come, and proceeded along the 49th paralle! about 20 miles eastward, to a well marked ridge, which runs from south to north, being the edge of the Red River valley, and alse the eastern limit of the prairies. Lieut. Green, of the United States Engineers, had traced an easterly line, tangent to the 49th parallel at Red River, as far as this, and for about 14 miles beyond it to a place called Pointe d'Orme, where the boundary strikes the Roseau River. Lieut. Galwey establisbed an astronomical station on the ridge, and commenced observing abont the middle of November; having determined the latitude, and erected a substantial mark, he returned to North Pembina.

During the time that Captain Anderson was observing for latitude at the north-west point of the Lake of the Woods, his party were engaged in cutting through the woods in order to prolong the meridian line southwards. There were a number of Chippewa Indians camped at the angle, and twelve of the strongest looking were hired as axemen. Many days passed, however, before they could be got to understand that the work had to be done regularly, and continued for so many hours a day. They would commence in the morning sometimes with great vigour, but would soon stop, light a fire, and sit round it smoking; then when, after much trouble, the non-commissioned officer or sapper in charge had got them to work again, they would suddenly break off and procced gravely to Captain Anderson's tent, perhaps somo two or threo
miles off, where they would ask for more pay or more food. After a fortnight, only half-a-dozen of these men were able to continne at work, tho others breaking down through want of stamina. They were all miserably clad, and the working in tho iey water of the still uufrozen swamps was very severe upon them ; they were, however, useful in carrying luads when the camp was shifted southwards along the line, or when supplies were being brought up. About three weeks after the cutting had been commenced, the frost set in, and greatly improved matters by giving a hard and dry fcoting, the timber became less thick and of smaller size, and three white men heving been engaged ns axemen, the work progressed more quickly. As the Lake of the Woods was approached, the woods merged gradually into small half dead tamaraes, which were replaced in the immediate vicinity of the shore by willow bushes. The length of this cutting was 16 miles and 397 feet, the ground passed over was all ewampy, with the exception of a ridge of red granite (in situ) 6 miles south of the N.W. Point. The timber was birch, cedar, and tamarac.

On the 21st November the cutting was finished, and marks having been left by which the permanent iron monuments might be erected as soon as they could be provided, Captain Anderson withdrew his party and returned to North Pombina. Here observations for longitude were commenced, the local time being compared by means of the electric telegraph with that of Chicago in the State of Illinois, U.S. The local time at North Pembina was obtained with a portable transit, Lieut. Galwey taking the observations; while the electrio signals for comparing the chronometer with that at Chicago were sent by Captain Anderson. Mr. Lindsay Russell, Deputy Surveyor General of the Dominion of Canada, undertook the necessary work at the Chicago end of the wire. The weather was unfavourable, being cloudy and very cold; but the result was satisfantory, the probable error being about two seconds of are, or 130 feet.

Meanwhile Captain Featherstonhaugh, who had finished the observations for latitude at North Pembina, took his party to Lake Roseau, which is about 60 miles east of the Red River, in order to establish an astronomical station, and mark the boundary in the vicinity. Between the Lake of the Woods and Pointe d'Orme on the Rosenu river, mentioned just now, there ere, on the boundary, about 60 miles of almost continuous swamp, in the midst of which are ridges covered with valuable pine timber. Some firm ground was reported to exist on the shores of Lake Roseau, which was represented on the maps as being intersected by the boundary. Captain Featherstonhaugh and yarty, accompanied by a guide, after a long detour to the south to avoid being entongled prematurely in the swamps, reached the lake and found that the parallel was 6 miles north of it. After some trouble, a gravelly ridge was discovered to the northwest, which was sufficiently noar to the parallel of 49 deg., and the astronomical instruments were set up here on the 27th Oetober. Considerable advantago was derived in getting through the soft parts of the journcy from the presence of a pair of oxen amongst the teams. These animals, though apt to be looked upon as cucumbrances when they are in company with horses becauso they travel slowly, and can only do 15 miles a day, will take a load through bogs, in

Which the latter are quite helpless. On the 17th, an aurora of remarkable brilliancy was observed at a place 8 miles south of Lake Rosean; besides the usual bow and streamers, an arch of light about two degrees wide was formed passing through the zenith from east to west. A constant wave or pulsation of luminosity advanced from the castern end of tais arch and travelled slowly by successive impulses along it. The effeet lasted aivout three quarters of an hour, and although there was a very bright full moon, the aurora quite held its own in vividness.
$\Lambda$ for Chippewa Indians were seen about here, but they appeared to be an idle set, without anything striking in their appearance or bearing. They subsist chiefly on fish caught in the lake, a resource which does not always keep them from want.

After completing the obscrvations for latitude, Captain Featherstonhaugh set his men to cut east and west tangent lines (i.e., straight lines tangeut to the parallel) through the woods, the intention being to eut about ten miles to the east, and then to work west ward as far as Pointo d'Orme. It was soon found, however, that the muskegs or swamps which lay to the east were so continuous that progress during the open season would be very slow indeed, and it was resolved to work only west ward, in which direetion tho trees were much larger, and there was some sort of foothold to be obtained. These muskegs aro four or five feet deep in many places; they have on the surface a skiu of sod which scarcely supports the weight of $n$ man, and when it is piereed the muddy water riscs in the hole nearly to the top. A person breaking through goes down to his middle, and has somo trouble in getting out again. The westerly line being continued, considerable difficultics were shortly expericnced in the work, the frost which set in on the 10th November having been unfortunately preceded by snow, which for sume time prevented the ground from freezing. The men wero unskilled in the use of the ase, and the swamp-holes between the tries, which it was impossible to avoid, kept them constantly half wet through. This, with the thermometer at zero, or but a little above it, could not fail to be a serious thing, and, besides the direet saffering from the cold, many were attacked with diarrbœa, one man beeoming dangerously ill with congestion of the liver. Anxiety was always felt also as to the safety of the supply teams, which had to traverso 100 miles of open country, where a snowstorm might prove dangerous. The cutting, however, was eontinued, and after about 4ì miles had been completed through the spruce and tamarac, the party, to their great satisfaction, emerged on to the open surface of the great Roscau sw.... This was then just frozen over, and, as far as the cyo could reach, the glare 1 - a stretched away to the horizon towards tho south and south-west, with small tuf.s of grass here and there, and thin wreaths of snow curling up before the wind that swept across it. Desolate as tho aspect was, tho change was welcomed from tho wet and fatiguing work in the woods, and the lino was quickly taken across the open, the sick man being sent back to head-quarters, and the guide directed to find a direct road along tho parallel from P'ointe d'Orme. A day or two of the great cold now set in, giving the finishing touch to tho swamps and rivers, and causing the party to
wis! for the shelter of the woods again. On days like this, wher protected from the wind, any one will get along tolerably well, though the thermometer be 20 deg. or 30 deg. below zero, but the slightest breeze produces great discomfort, and it is very difficult to pay the proper attention to surveying operations. On several occasions the eyelids would feei as if they were abouc to be frozn down, the ends of the lashes becoming tipped with ice; the first realization of this produces unbounded surprise to the person concerned.

About the middle of December, Captain Featherstonhaugh's party struek tho end of a line which Mr. Russell's men had cuc for a distance of six miles westward fr in Pointe d'Orme, and the Lake Roseau astronomical station was thus connected in longitude with Nortl. Pembina. There still remained nearly thirty miles immediately west of the Lake of the Woods, over which the line had to be traced, if possible. Colonel Forrest and his surveying party who had traversed the shore of the lake from the north-west angle southwards to the Butfalo point astronomieal station, wero now at work cutting frem the latter place westward, but no news had been receivid of their progress. Major Cameron becoming, however, anxious as to the welfare of those in the field, desired that the work should cease, if the exposure was likely to continue so severe, and Captain Anderson, ${ }^{m 1} \cdot \mathrm{o}$ had just completed the observations for longitude at Red Ri ;er, set out for Pointe d'Orme with Mr. Herchmer, the commissary, iu order to be able to report upon the advisability of persevering. Upon conferring with the offecrs who were at this place, it was concluded that the work could go on, the principal astronomical observations being finished, and the health of those concerned having been good since the ground had all become frozen. In aecordanee with this opinion, measures were taken at head-quarters to stoek depôts at Pointe d'Orme and at Pine River, north of Lake Roseau, aud parties of axemen were sent to eonstruet a $\log$ hut for this purpose at each place, stables being also commenced at the former spot.

The survey of the 6 -mile belt north of the boundary was now continucd towards Pointe d'Orme, aud the line which had been traced aeross the prairics from Red River to the same place requiring to be checked, the two astronomical parties commenced this work. Unfortunately tho weather beean colder and colder, the thermometer registering 51 degs. below zoro of Fahrenheit on the 23rd of December, and it became ditticult to take the most simplo observations of stars frr azimuth with the proper precision, owing to the freezing of the lubricating oil in the internai parts of the instrum, is, and of the oil in the lamps illuminating the field of view. Lieuc. Galwey's party, being on tl:e perfectly open prairie immedintely cast of he Red River, wero particularly exposed during this severo spell.

About the end of the year, no news having been received for somo timo from Colonel Forrest, who had hithertu drawn his supplies from the government lepôt at the north-west angle of the Lake of the Woods, Captain Andcason, with a dog train and some provisions, set out for Lako Roseau, and travelled up the Eust Roseau River to the 49th parallel. Colonel Forrest was found to bo about five miles to the east, and having relioved the wants of dio party, Captain

Anderson returned towards Pine River, and was met whilst on Lake Rosean, by the terrib'. storm of the 7 th, 8 th, and 9 th of January, which prevailed over the whole of Manitoba and Minnesota. For three days, with the thermometer at 20 deg. below zero, the wind blew with exivaordinary force, raising mists of fine snow fror, the surface, so that the air became of a milky opacity, and objecte were invisible at a few yards distance. In Minnesota ${ }^{*}$ eighty persons were frozen to death, many of them being children on tieir way home from school; and a coach-load of passengers, as well as the hoises, suffered the same fate. Captain Anderson and those with him took refuge in one of the small islands of poplar near the shores of the lake, and being able to keep $c_{0}$ fire alight, escaped without harm. The parties at work on the prairie fortunately took the alarm in time, and got back to their camps; but two men, ono of them a sapper, who were driving in a waggon a few miles from North Pembina, were obliged to come to a lialt, cut the horses loose, and remain wrapped in their buffals robes for two daya and nights inside the waggon, without food or fire. They eventually reached head-quarters withont having suffered serious injurs.

After this, for the remainder of the winter, the weather was fine. and the lengthening days and bright aun made mattera more cheerful; but the cold concinuell steadily $\pm$ ntil the equinox, the thermometer falling as low as 40 deg. below zero even pa late as the 1 st of March. The parties, however, being now well sheltered, were more comfortable than would be imagived. The perfect stilness of the woods disarms the most extreme cold of half its severity, and the dark green foliage of the fir and pine is a pleasant relief to the eye, where all else is an endless glare of white. The spruce boughs laid on a waterproof sheet, furnish dry and comfortable couches on the surface of the snow itself, and an ample supply of good frewood is found on the outskirts of the growing timber. At night the trees, under the influence of the frost, crack with surprising loudnesg, the effect being like that of pistol shots heard at a little distance. Canadian grouse and prairie fowl are tolerably numerous; they sun themaelves on fine dayu, sitting . $\perp$ the topa of the trees; they feed on berries, and are in fairly good condition. Butcher birds and woodpeck, 1 are also seen, and the snow is covered in many places with the tracks o? rabhits. Large game are very acarce; even the Indians never seemed tc find any mooso, though one or two were known to be about Lake Roseau.

Mock suns and moek moons were frequently aeen, and on one oceasion two mock Venuses were visible. This is believed to be a rare occurrence. On these occasions the air was observed to be filled with fluating spicule of ice, whioh settled gradusliy down when they attained a certain sizo. Sometimes just after dawn a peculiar efieet was observed, due to the presence of these spicule. From the point of the horizon above the jet unrisen sun, a prismatic beam of light extended 30 deg. or 40 deg. towards the zenith, anc' to the right and left two similar beams, only not so vivid, reached nearly the same altitude. The three beams stretched higher and 'iighor is the sun approached the horizon, until the

[^1]real and the two mock orbs rose together, each sending the prismatic rays both upwards and downwards. The effect gradually faded away after this as the day advanced. After Christmas, snow shoes came into general use, the men soon learning how to walk in them; indeed there is little difficulty in deing so. It is a mistaike, however, to suppose that these contrivances enable a man to travel over snow with as much ease ss he wculd over grass. In some cases where a track is partially beaten, or in the spring of the year when there is a crust on the surface, very quick walking can be accomplished by their aid, bat under ordinary circumstances, all that a suow shoe does is to enable a man to progress slowly where, without them, ho would not get on at all.

During February and March, the remaining portions of the bonndary between the Lake of the Woods and the Red River were cut through the woods and temporarily marked with posts of 8 in . diameter. The survey of the 6 mile belt north of the line was also completed, and nothing remained to be done in this part of the country except the putting up of the iron pillars and permauent monuments. This was postponed until the next year.
By the 1st of April the parties had all returned to North Pemhina, where they were lodged in quarters which had been built by a contractor from Fort Garry during the early part of the winter. These buildings, which were named "Dufferin," are situated on the left r: western bank of the Red River, about two miles north of the boundary; they can accommodate about 11 officers, 80 men . and 180 horses or ox6n. There are also thres stores, containing 5,000 square feet of flooring, and a bakehouse capable of baking 200 loaves (of $1 \frac{1}{2} \mathrm{lbs}$.) in one batch.
During the next six weeks, preparations were mads for the summer season's work, for which the necessary supplies inad been ordered from St. Paul in Minnesota, U.S. Mr. W. Boswell, the veterinary surgeon, brought from Ontario in Canada a train of 180 horses for the commission. After leaving the railway at Moorheal, they were taken up the coach road along the banks of the Red River; but this stream having risen about 30 fect, as is usually the case in spring, had so flooded the oountry that men and horses had to be constantly swimming the numerous coulees or watercourses which run into the main stream. After a laborious journey, the train arrived safely at Dufferin.

Tho United States commission arrived at Fort Pembina, U.S., at the end of May, and a plan of operations was agreed upin for marking the boundary across the prairies. The following was the general arrangement:-The latitude was to be determined by astronomical observations at intervals of 20 miles alrag the parallel, and the points so determined were to be connected by surveyed lines. In taking 20 miles as tho intervals between the astronomical stations, the time of observing at each station, and the time of connecting two stations by survey, hand to be considered as well as the relative accuracy of each operation. With the zenith telescope, the time occupied in determining the latitude of each stacion might be assumed as 7 days on an average, three clear nights being sufficient for the observations.
The connection of two astronomical stations was effected by laying off a line
from one of the stations at right angles to the meridian, and prolonging this line until it struck the meridian of the second station, the whole distance being chained, and pickets left in the ground. The proper offsets to the parallel were then measured wherever permanent marks were intended to be erected. The average progress of auch work was 5 miles a day ; so that of two separate parties, one running the line as it was called, and the other observing for latitnde, the former would complete its work first. But in the British commission, the astronomical party had to do both, so that the time question was not of such direct weight, although it was of course evident that the fewer the astronomical stations the quicker would the whole work be done.

Tnis was a rcason for not putting the stations closer together than 20 miles; but other considerations prevented their being placed much further apart. The probable error, that is to say, the measure of accuracy of the determination of the latitude of a station by the zenith telescope, was expected to be about 10 feat, and, as a matter of fact, it was rarely found to be greater, and in most cases less. The error in laying down the direction of the line might be assumed at 5 seconds, which would produce a deviation of $1 \frac{1}{8}$ inches a mile, or $2 \frac{1}{\frac{1}{8}}$ feet in 20 miles, and the error of prolonging the line was expected not to be greater than one minute of azimuth at the end of 20 miles, which would be equal to a deviation of 30 feet. It may be remarked, however, that the error in running the line was very rarely more than 30 seconds at the end of 20 miles, and generally less.

About two thirds of this latter deviation could be got rid of by taking fresh observations for direction and correcting the intermediate pickets, so that there remained 10 feet of uncertainty in the position of any point on the latter portion of the line; that is to say, the determination of all the intermediate points by survey was as accurate as if astronomical observations had been taken at each of these points, supposing the direction of the plumb-line to stri'ie the earth's surface at the same angle over the whole span of 20 miles; or, in case of any variation, supposing it to vary regularly from one end to the other. (See the remarks in the Appendix on the deviation of the plumb-line.)

If the statious had been at a greater distunce apari, aly 30 miles , the deviation in runnirg the line would have been, of course, one half greater; it would have been often necessary to go hack to correct crrors, and the work would have been altogether less manageable. Other reasons for the interval adopted were, that it was eonsidered desirable that the different parties should not be more than a day's march from each other, and that the whole commission should not sover more than a certain span of country at any one time.

The adopted interval of 20 miles was of course not rigidly adhered tn. Astronomical stations were placed at well marked natural fcatures, such as the banks of rivers, the edges of mountainous districts, \&e, irrespective of tho precise mileage in longitude, but the average of 20 miles was obscrved throughout the first summer's work. 'This average was increased to 21 miles during the last summer's work, because this number vias a measure of the whole distance that remained to be done.

The permanent marks along the boundary wers agreed to be placed at intervals of one mile between the meridians of 96 deg . and 99 deg . west longitude, which are the east and west limits of the province of Manitoba, and at intervals of three miles in the country west of 99 deg. The former set of marks were to be iron pillars firmly fixed in the ground; the latter wets to be mounds of stones wherever these could be procured, or, failing them, of earth.

Drawings of the iron pillars are given in Pl. X.
It was further agreed that the astronomers of the two commissions should take alternate stations, each party making good the connecting survey up to that 20 miles west of it. An exception was made in the case of the first two stations west of the Red River, at which the astronomers of both commissions took independent observations. The surveyors covered 3 width of six miles north and south of the line, the British and American parties working each on their own side. Table 3 gives a detail of the British parties, shewing their transport and camp equipage.

The nature of the boundary extending for a long distance across an uninhabited and unknown country in which no supplies would probably be obtainable, the shortness or the summer season, and the scarcity of wood and water, combined to render it neeessary for the work to be done with as much expedition as was consistent with efficiency ; at high preseure, so to speak. Under such circumstances, it was desirable that the astronomical parties, whose progress reguluted that of the whole commission should not be delayed even for a day by having to explore for water or to take preliminary observations before getting up the zenith telescope, which it was desirable to place as nearly on the 49th parallel as possible. It was also necessary that depóts of provisions should be established without delays at the proper intervals, and that the roads to these depôts should be practicable for heavy teams. It was evident that mismanagement or mistakes on these points would produce great delay and extra expense, and a reconnaissance party was accordingly formed, consisting of 20 scoutsmounted men-with sufficient transport to carry food for a fortnight, if necessary. Captain Anderson, who, as chief astronomer, was in charge of the field operations of the commission, adopted the plan of taking this reconsaissance party on ahsad of all the others about 100 or 150 miles along the 40 th parallel, making a sketch of the country as he travelled, and keeping his course by sextant observations for latitude and time. Having with him four mean-time pocket chronometers, whose rates were known, he obtained the longitudes of particular points with sufficient accuracy to enable him to mark on the ground the sites for the astronomical stations at the average intervals of twenty miles, and to sclect and map dowa the positions for the depôts where water was permanently to be found. On returning to the starting point of the reconnaissances, the travelling rates of the ohronometers were ohecked by the local time, and in this way very accurate sketches were propared, tracings of which were furuished to the officers in oharge of the different parties, so that they were always well informed as to the nature of the country they were about to traverse. By this means also, an early knowledge of the main featuren of the
slx-mile belt being acquired, the amonnt of survey work that wrould have to be done was estimated, a.nd the necessary arrangementa made.
By the first week in June, both the commissions had set to work, and the boundary was marked across the weatern side of the Red River valley as far as Pembina Mountain, which is a sudden rise of about 300 feet in the prairie level, and is really a sort of step or escarpment, having no western edge, only an eastera one. Being, however, intersected, where the boundary strikes it, with numerons ravines which stop the prairie fires coming from the west, it is covered with timber and bush, and has the appearance, as seen from the east, of a mountainous ridge. One of the British astronomical parties detached part of its complement to cut and trace the line through the eight miles of wood which occur here; while the maia bodies of the two commissions, diverging round the north and south edges of the timbered land, erossed the Pembiua River, and took up astronomical stations acrose the sixty miles of prairis which intervene between it and Turtle Mountain, where a site for a depôt had been selected by the British reconnaissance party.
'Iurtle Mountain is a well wooded district, consisting of numerons small hills, which gradually rise to as much as 500 feet above the plains, and are covered with poplar, birch, and oak. Between these hills are countless swamps and lakes, the water being unable to get away. The shape of the mountain, as scen from the west, is very like that of a turtle, a smaller detached ridge representing the head, and the name is derived from this resrmblance. At the middle of July, nearly all the British and United States parties ware assembled round the north-eastern skirts of the mountain, and the escort of cavalry which accompanied the United States commission was also encamped here. Grass, fuel, and water were abundant, but the plague of flies was aimost intolerable; the horses, which could not feed properly, suffered considerably in condition, and all hands had to wear mosquito veils and gauntlets. The number of mosquitoes in the summer in these countries is quite incredible, and the reality is worse than the anticipation. It may suffice to say that oxen have been known to be choked by them, and that on a still warm night the noise they make beating agaiust the outside of a tent, resembles that of rain. The only time that there is any relief from them is in the middle of the day, when the heat of the sun prevents their appearing; a moderate breeze will also keep them quiet.

The 1st British astronomical party which had established the point where thie boundary enters the mountain from the east, was oharged with taking the line into the interior, working westward. One of the United States parties travelling round the north side of the woods, determined the position of the 49th parallel on the western edge of the mountain, and oommenced to out in an easterly direction, so as to meet the others half way. The dense growth of peplar and bush which were met with on buth lines, and the frequent swamps and pieces of wator whioh the boundary traversed, oaused this work to progress but slowly; roads or bridle paths had to be cut round the impassable portions, and the soft places "corduroyed," to enable the paok animala to get over them. The interior of the mountain is, however, singularly beautiful, owing to the
gracefin outlines of the hills, covered with leafy poplars, and the perfect stillness of the lakes, the shores of which are clothed with foliage down to the water's edge. From a high point in the cutting about three miles from its commencement, the mounds, marking the 49th parallel on the prairie to the eastward, could be seen stretching in a gentle but well defined curve for a distance of 15 miles, thus giving the spectator a very graphio idea of the size and figure of the carth.

Seeing that the work of cutting through these woods would be a tedions but practicable operation, Captain Featherstonhaugh divided his party in two, and taking with him about ten men and his astronomical instraments, started for the plains further west, leaving the remainder in charge of Mr. W. F. King, aub-assistant astronomer, to continue the cutting and tracing of the line to the halfway point. As matters fell out, however the United States party who were working eastward, met at the end of 10 miles with such large lakes, that although they erossed them and marked the line on the eastern margin, they went no further, and Mr. King. to complete the work, had to carry on his cutting for 24 miles, which he finished at the end of September.

Meanwhile, the reconnaissance had been carried 150 miles further west, and the astronomical parties of both commissicns had taken ap their stations across the plains for nearly this distance. The Sauris River which runs through about 300 miles of this oountry, was erossed by the boundary fous times, and proved a, great resource to the expedition. This stream, which is scarcely entitled to be called a river, if its width and yolume of water are considered, flows for most of its course at the bottom of a valley averaging a mile in width, with high and steep banks. The actual watercourse is fringed with oak and poplar, whir¹ supplied the parties with fuel. Above the third crossing, however, the trees disappeared, and this spot, which was the site of one of the prineipal depôts, was named Wood End in consequence. The work advancing steadily by 20 -mile spans, reached this point at the end of August, and Lieut. Galwey, R.E., took up an astronomical station at the foot of the Grand Coteau, whieh here crosses the boundary in an oblique direction. This remarkable range of hills runs for some hundreds of miles across the plains from south-east to north-west, starting from latitude 44 deg. near the Missouri, and extending far intn the British territories. From a little distance it resembles a well defined coast-line seen from the sea; it is, like the plains at its foot, perfectly bare of trees, and looks, perhaps, even more desolate than they do. The interior of the Cotean has been aptly described by Mr. G. M. Dawson, the geologist and naturalist of the boundary commission, as a "confusion of abruptly-rounded and tumultuous hills," the tops of which are stony ; but the sides and the small basins between them have some good soil, and there are numerous swamps and lakelets. At the time that the boundary commissions entered the Coteau, the grass over the whole country was beginning to burn, and it was with some difficulty that the different parties obtained pasture. The autumn fires, driven by high winds, sweep over the surface with great rapidity; and although, from the shortness of the grass in these latitudes, there is not much netual danger to life, the tents of
a pitched camp may very easily get burnt if a good look out be $r$ kept. One of the astronomical parties, caught by a change of wind, was regu rly "stampeded" one day when on the march; the other, from the same c. use, bad a desperate fight with a fire they had themselvea lighted to leeward; and one of tho surveying parties had to tear down their tents and get everything across the frieodly stream of the Souris, losing some of their clothes in the process. Getting clear of the Coteau, which is about thirty miles wide, the different parties were on the prairie once more; but they had passed the watershed, and the streams now flowed south to the Missouri. However small these might be, they bad one quality, which the stagnant Souris had lacked for so long-they ran-and the difference was very welcome. Some wood also was found in the big ravines, and the members of the commissions had began to congratulato themselves ou being in a more comfortable part of the country, when on the 22nd of September. a snowstorm of the same violence and suddenness as that which occurred at Red River on the same day in the preceding year, burst upon them. At this time the different parties were at or on their way to their final stations for the year, and every day was of importance, considering the long journey of 400 miles that they had to make back to the settlements. The storm, however, put a stop to all work for nearly a week, and those who were fortanate enough to be near any ravincs, took shelter in them; this weather was particularly severe upon the horses, which had to be kept tied up to prevent their runuing away, it being difficult to find for them any grass long enough to cat. Horses when exposed to these storms, will, if they get loose, run for miles straight before the wind, and it is necessary to tis them up securely, to avoid losing tha $m$ altogether.

After the weather had moderated, there remained one or two weeks' work before turning eastwurd, and Captain Ande son, after making arrangements for the provisioning of the parties of the British commission during this time, started on the fifth and final reconnaissance of the year. Reaching station No. 23, which was at thu 408 mile point from Hed River, on the 2nd of October, he pursued his journcy westward for about ticixizen miles, and on attaining the summit of a high ridge running north and anuib, came suddenly on the eastern edge of the "bad lands." These extraordinary surfaces are doo to the rapid waste of the soft clayey tertiary formations by the melting snow water and the rains in the spring of the year. Steep irregular hills of clay, to quote Mr. Dawson again, on which scarcely a trace of vegetation exists, are found, separated by deep, nearly perpendicular sided, valleys, which are furrowed from top to base by innumerable runnels, converging into larger furrows below; the ecarred and seamed conical masses, and the glare of the white clays of whieh the whole surface is composed, give a very peculiar aspect to the landscape. Progress with wheeled vehicles was here quite impossible without more roadmaking than there was time for; but the 430 mile point was reached on horseback, and the site of station No. 24 was selected and marked as the first of the ensuing season.
From this point Captain Anderson tarned northwards, in crder to reconnoitre
a site for a principal depüt amongst the valleys of the Woody Mountain range, which is about twenty miles north of this part of the boundary. Reaching the summit of thers hills, an extensive view was obtained of the surrounding country; to the west, a wide and precipitous ravine appeared to cross the line at a distance of about fifteen miles, while to the north was a level plain, stretching to the horizon. The ravines below the feet of the party were well wooded, but were now filling up with drifted snow, and some buffalo were seen taking refuge in them. Turning eastward from this wild spot, Captain Anderson proceeded to explore the hills, in order to find the camp of the Half-breeds, who were known to spend the wintur in one of the valleys. Some Sioux Indians, who were met travelling towards the south, pointed out the right direction, and the place was reached after a day's journey. Abonteighty families of Halfbreeds, who migrated from the Red River valley, form a sort of settlement here in the winter time residing in huts. In the summer they abandon their dwellings, and go out on to the plains near Milk Hiver, taking their women and children with them, it not being considered safe to leave them unprotected at Woody Mountain. Having found a suitable site, with wood and water, for a large depôt fer the next season's work, and having determined its latitude and longitude, Captain Anderson started for the Red River on the 8th of October, and gathering up with him on the way all the survey parties, depot keepers, etc., who still remained in the field, he reached Dufferin on the 31st of Uctober, the two astronomical parties and some of the others having arrived shortly befure.

Thus ended the first surnmer's work, during which the two commissions had established twenty-one astronomical stations, and ohained and marked 408 miles of the boundary, of which 43 were cut through woods. The country had also been surveyed for a width of 6 miles north and south of the boundary, each commission working on its own side. In the case of the British. parties, the width of 6 miles was extended to 15 in some places, and they traversed, with the theodolite and chain, 857 miles, covering with their work a total area of 3,004 square miles. The chained and marked tangent lines were used as bases for the survey, and the traversing along the important watercourses was in all cases commenced from and closed upon them.

The oommissariat arrangements during the season may be briefly deacribed. 'ihe total length of the line of work was 408 miles in longitude, and about 430 by the actunl routes travelled. Along this distance four principal depôts wera established, viz., at Pembina Mountain, Turtle Mountain, second crossing of the Souris, and Wood End, the intervals from one to the ocher being about 90 miles. Provisions were hauled to these depôts by the commissariat horse-trains of 30 Whitewater waggons, and by a hired train of 17 Hed River carts. Sub-depett were made between the principal ones, viz., at Long Kiver, at the first crossing of the Souris, and on the Grand Coteau. These pluces were chiefly used for storing oats and small quantitiea of rations for the teamsters of the supply traing as they passed to and fro.

Each party had one or two special waggons told off to it for keeping it sup-
plied with food. These waggons travelled backwards and forwards from the party to the nearest depôt.

## Rations.

The ration of food allowed to each man was:-



All these articles were not issued daily to each man, but these were the relative proportions allowed. The total weight of food per day was about 40 oz .
For each horse the dcily allowance was 9 lbs. of oats; the Red River ponies received none duaing the summer.
For the use of the animals on the journcy homewards, hay stacks were made at certain spots, at intervals of about forty miles; but, unfortunately, some of these were destroyed by the prairie fires.
The operations of the commission for 1874 were arranged to be carried on in a vers similar manner to those of 1873. Depôts were to be established in succession at intervals of 80 miles, from which the parties should draw their provisions. As the work, however, would commence at a point 430 miles from the Red River, and constantly recede still further, it was necessary to have n new basc upon which the expedition could rely for the summer and autumn of 1874, and also for the ensuing winter, should any work remain to be done during 1875 . Woody Mountain-where there was an ample supply of wood, and where penimican and dried buffalo meat could be obtained, if required-was chosen as the new base, and a contract was made with a merchant at Helenn, in the State of Montana, U.S., for the supply of 29,000 bushels of oats, to be delivered by him at the mountain on the 15 th of June, 1874. A large number of additional waggons and draught oxon having been purchased, (see the Tables), five months' provisions for the whole expedition were paeked early in May, and at the same time the parties were equipped and went under canvass, ready to start ns soon as the grass should be long enough for the animals to feed on it. The two Ca nadian gentlemen who had filled the posts of surveyors during 1873, having retired from the commission, Lieut. Rowe, R.E., who had arrived from England in August of that year, and had taken part in the astronomical work in September and October, took over eharge of tho surveying operations, and tho three survey parties were amalgamated into one under lim. The six-mile belt of survey from Woody Mountain up to the Rocky Mountains, was ordered to be reduced to three miles.

Preeeded by a road-making detaehment, whieh bridged the streams and corduroyed tho swampy parts of the last year's trail, the parties of the commission left the Red River on the 20th of May, under the charge of Captain Anderson, and on the 3rd of June found themselves on the banks of the Souris River, which at this time of the year was 55 yards wide, and 7 or 8 feet deep. As there were more than 100 waggons, spring carts, etc., and large quantities of stores, it was thought advisable to bridge the streain, which was done by eonstrueting cribs of wood, which were sunk at suitablo intervals, and whieh carricd the superstructure. Having crossed over, the commission parties pursucd their journey somewhat moro rapidly than before, the oxen improving daily in eondition and travelling power, when on the 11th of June a most unfortunate accident happened to Licut. Rowe, who, by the falling of his horse, was so severely injured, that it was eonsidered unsafe to move him from the spot for some days. Dr. Burgess and Captain Ward remained with him until he was able to be taken on to Woody Mountain, six weeks afterwards.

The train, procceding on its journey, arrived at the foot of the Grand Cotenu on the 13th of June. Here the two astronomical and the surveying parties were detached, and followed the old track along the parallel aeross the Coteau; the remainder, with the commissariat train, took the Trader's road, which runs in a north-westerly direction along the foot of the hills to Woody Mountain. On the 20th of June, just a month after leaving Red River, the parties eommeneed work at their respective stations, and about a week or ten days later the United States' commission which had come up from the line of the Missouri River, appeared on the parallel, and at once commenced operations, so that by the 5 th of July three astronomical stations had been established, and 80 miles of boundary had been ehained and marked. In this part of the work the great ravine of Frenchman's Creek, or White Mud River, was erossed. This immense trough is 6 miles wide and 320 feet in depth below the prairies on either sido; its castern edges are preeipitons. The whole floor of the valley is eut up into gullies and slopes of shale, and the stream itself rushes over a pebbly bed in a smaller ravine at the bottom of the big one. No passage for wheeled vehicles could be found down these eliffs on the line, and the British partics had to use a pass about 16 miles to the north, the United States' commission finding one almost the same distance to the south. Getting elear of this obstacle, the two commissions with their next stations covered the plateau which extends from Frenchman's Creek to Milk liver; the surface of this plain is composed of white clay, in which the grass gresw sparingly, and in which water is very scarce. At this time of the year, in the height of summer, the direct heat of the sun, aided by the reverberation from the soil, was oppressively great, and the aspect of tho country was moro like a desert than any that had been previously traversed. The supply of wood now totally failed, and the cooking was done by using the buffalo ehips, which lay scattered in great profusion over the ground; strange to say, however, it was here, where game appeared to be least likely to be found, that the buffalo were first eneountered. In July, when the pools of water are fast drying up under the sun, and when the grass of their
more southern pastures has been consumed, these animals make their way northward to the fertile valleys of the Saskatehewan and its tributaries. They appear to eling to the line of the Milk River, probably because they depend upon its water. With the buffalo wero found their constant attendants, tho Iudians, both Sioux and Assinebonies. These people were well clothed and armed, and appeared to have plenty of food; they always begged for a small quantity of tea, sugar, and flour, and were partieularly keen after matehes, whieh they evidentiy valued highly. They asked numerous questions abont the objects of the expedition, and appeared relieved to hear that no idea of a ruilway lay at the bottom of it. As far as could be known, the fact of a boundary being marked between tho British and American territorics scemed to bo welcome to them, and it is said that they were rather disappointed that a wall or continuous bank was not set up across the plains, a thing which they had been led to expect. It was on this clay plateau also that in the middle of July an extrnordinary swarm of grasshoppers was met with; the ground was covered with them, nna the air was so full of them, that the appearance was exactly like that of a snow starm, to which they bave often been compared by travellers.

Reaching the Milk River, whieh Captain Anderson had reconnoitred for forty miles of its equrse before finding a crossing place, the eommissions passed by a large camp formed by the Half-breeds from Woody Mountain and from the valley of Frenchman's Creek. There were about 200 tepees or tents, each containing a family, and it was estimated that there were 2,000 horses, ponies, etc., belonging to the hand. The camp was a large rectangle, the sides of which we.e formed by the tents and carts, and the animals were driven every night into the enclosure thus provided. These Half-breeds are educated to a certain extent; they profess the Roman Catholic religion, and thero was a priest with them at this time; they keep up a sort of military discipline founded on mutual consent, and the necessity of defending themselves from the Indians; outlying videttes are regularly maintained at some niles from the camp, so as to give early notice of the approach of any party suffieiently numerous to be formidablo to them. In the summer time these people hunt the buffain for the sake of its flesh, which they dry or convert into pemmican; in the autumn and early winter they kill them for the sako of the skins, which are taken during the ensuirg spring to the Missouri and to Fort Garry, where they are exchanged for groceries, clothes, and ammunition.

Crossing the Milk River at a point abont cight miles sonth of the line, the astronomical parties teok up their stations over the country between tho grygo of this stream and the West Butte. The valley of the Milk River is another of those rugged and impassable troughs cut out in the soft cretaceous formations by the action of water; it is about a mile wide and 300 feet in depth, the sides being precipitous and of a dark and gloomy tint. There are numerous tributary ravines, which enter the main gorge at right angles; these contain narrov buffalo paths, along which the herds pass in scarch of water, or in order to cross to the north. The stream itself winds from side to side of the botiom of tho valley, and is fringed with timber where the boundary strikes it. The survey
party, anfortunately still deprived of the superintendence of Lieut. Rowe, but very ubly directed by Mr. W. A. Ashe, sub-assistant astronomer, had here a hard picce of work with the traverse of the tortuous watercourse and the rugged cliffs on each side of it; they carried it, however, to a distance of ten miles up stream, the general course of the river coming from the west after a few miles northing.

The plains between Milk River and the Threo Bnttes are a sort of neutral ground between the Indian tribes, and are generally left unoceupied by them; the Sioux and Assinebonies do not appear to eross to the west bank of the stream, and the Blackfeet, who eling to the skirts of the Rocky Mountains, rarely approach the Buttes. As a consequence, perhaps, of this state of things, this strip of country was, in July, 1874, full of buffalo, which wero slowly moving north in large herds; from them the different parties obtained ample supplies of fresh meat, which, although not equal in quality to the flesh of the deer and antelepe, was preferable to the hard beef that the much travelled oxen afforded. On this part of the boundary, and on this part alone, rattlesnakes were found ; they were not numerous, but werc tolerably large; they lived in holes on tho open plain, and always seemed to get out of the way without attempting to strike even when a horse stepped ever them by aceident. The rattle they make is very rapid, and appears to fill all the air without coming from any particular spot; it resembles the scund of a pot boiling over.

At the end of July the two commissions were all eneamped ronnd the foot of the Sweet Grass Hills; Major Cameron and the United States' Commissioner, Mr. Arehibald Campbell, beth passed on their way to the Rocky Mountains about this time, and the work was male good up to the westernmost Butte on tion 30th of July. These isolated masses, called on tho maps the "Three Buttes," but known by the hunters and Half-breeds as the "Sweet Grass Hills," are three distinet peaks, which rise to a height of 3,000 feet above the plains at their feet. Seen from tie north, they have a grand and majestic appearance from the contrast they present to the monotonous level of all the surrounding eountry. Their sides are clothed with pine timber, and numerous springs issue from them; the water from these running down in small rivulets on to the plains is soon swallowed up by the arid soil. At a short distance to the north of the boundary here, the bodies of about twenty Crow Indians were found who had been killed by the Blackfeet in the preceding autumn. It appears that the vanquished party had stolen some horses from the others, and, being pursued, had been overtaken before they had reached the shelter of the hills; sma!l rifle pits had been seratched up by them in haste when they had had to turn and fight, but they had been overpowered. The bodies had been stripped, scalped, and hacked about a good deal; there were one or two very large men anougst them.

From some high ground ncar the West Butte depôt tho Rocky Mountains could be seen lining the western horizen, the snow and ico on their summits being elearly distinguished in the morning sun. The reconnaissance party pushing on to St. Mary's River, which is about twenty miles from the mountains, found a suitablo site for a depêt and an astronomical station between them and
we, but here u rugged ailes up w miles neutral - them; : of the untains, things, moviug plies of eer and fforded. fonnd; 8 on the pting to y make trticular e foot of issioner, suntains 3utte on Buttes," tre three eir fect. the con-

Their rem ; the on swaloundary en killed ed party vertaken had been but they ed about
ountains summits ty pushpuntains, hem and
it, and the commissariat train were at once sent on to this spot with thirty ciays provisions for the working parties. The distance from the Weat Batte was abont 80 miles. During the first half of August the astronomical stations and tangent lines were completed across this span, and the survey party commenced the traverse of St. Mary's River, their work being extended again to e width of six miles north of the line, for the remaining part of the boundaly. A further reconnaissance shewed that the 49th parallel, striking an immenso mass called Monnt Wilsen, passed over the crest of it, and intersected on its further side u largo piece of water called Waterton Lake; it then followed an inaceessible ravine for about nine miles', till it reached the watershed ridge, on which a monument had been erected by the Boundary Commission of 1861. It was agreed that the British astronomical parties should take up two stations, one at the point already mentioned at the depôt west of St. Mary's River, and the other on the eastern fiank of Mount Wilson, the tangent lines being traced and chained up to the latter. The United States' Commission were to determino the position of the boundary on Waterton Lake, and the conneetion, in longitude, with the terminal monument of 1861 was to be effected by traversing round the northern aide of Mount Wilsou and up the Kootezay Pass. Major Cameron indeed endeavoured to find a direct route along the boundary from Waterton Lake westward; jut although he nearly reached the terminal monument, he coald not quite do so, and it was evident that chaining would be impossible except up the pass. In accordance with these arrangements, the three last stations of the work were established in the third and fourth weeks of August, some triangulation having to be done from the zenith teleseopes to the parallel, on account of the difficult nature of the country preventing the instruments being taken as near to the line as usual. It was now the end of the summer, but the weather was still clear and varm, and the beautiful scenery, amidst which the parties auddenly found themselves, contrasted strongly with the monotouous plains on which they had been working for so long. Instead of short and scanty herbage, the grass was now luxuriunt and rich; clear and impetuous streams took the place of muddy and stagnant pools, and the eye was once more rejoiced with the sight of trees and foliage. Wild fowl and dusky grouse abounded, and the rivers were fu:. of salmon treut of from 3 to 5 lbs. in weight.

The direction of the mountain range is from south-east to north-west; the boundary, striking it obliquely, passes about six miles north of Chief's Mountain, which stands out into the plains at right angles to the main chain; the line then crosses the immense mass of Mount Wilson, which fills up seven miles in longitude, and falls into Waterton Lake. This beautiful piece of water, which is 9 miles long and about 1 mile wide, lies between mountains, whose sides rise precipitously for 3,000 or 4,000 feet from the water's edge, and resembles somewhat the Lake of Lucerne, in Switzerland; the view also, from the top of one of the mountains ai its northern end, is, in some respeots, like that from the Righi. On one side nothing is seen but a crowd of mountain peaks filling the whole perspective; on the other, a level plain strctches to the horizon, and seems to differ only in colour from the sca. The lake, lying immediately below
the fect of the spectator, lends its beauty to the scene; aud a unique grandeur is d ived from the reflection that the mountains extend in unbroken series to the $I_{\text {acific }}$ Occan, 400 miles away, while the plains, bare and treeless, stretch for twice that distance in an opposite direction.

Following the Indiun trail up the Kootenay Pass, Captain Anderson, with Mr. Dawson, the ge logist, and the reconuaissance party, crossed the watershed into British Columbia, and coming upon the old trail of the Boundary Commissions of 1861 , followed it io the terminal monument, which is situated on a very curicus saddle-back, with precipitous sides, the mountain tops to the north and south rising straight up from it. Owing to its sheltered position, the monument was in perfect preservation, and a survey was carried back from it to the point where tho Kootenay Pass trnil crossed the watershed. Mr. Ashe's party, bringing their traverse up the pass from the plains, reached this point on tho 27 th of August, and the connection between the work of the two Commissions was thus completed. 'The United States' survey partics laving triangulated from the north end of the lake down to the astronomical station on its western shore, cennected the latter with the termival monument by another route.

Meanwhile the two British astronomical parties had completed their last stations, and after about ten days spent in cutting through the dense woods on the foot hills of the mountains, and triangulating up the difficult valley of the Belly River, had mado good tho boundary up to the sides of Mount Wilson.

Notining more remained to be done in the mountains, and after a day or two spent in visiting tho Lake and tho Kootenay lass, the parties struck their cumps and commenced their homeward march. It was not without reluctance that the beautiful and luxuriant scenery of the mountain valleys was left behind, and the dreary piains onco more entered upon ; but all knew how long a journey lay before them, and how suddenly ana unistakeably the winter migat commence, so that, once started, the hope of getting back in good time was an effieient stimulus to travelling; the horses and ponies were alsu in remarkably good condition from their fortnight's reposo and good living. 'The two astronomical parties were the first to leave, having still to put up the stone mounds as far as the commencement of the sea:on's work; this was left to be done on the return journey, in order to cconomize time; they travelled along the line doing aiternate purts of the work, and camping together at night. The buffalo were found in vast herds on the same ground as before, but appearing now to bo stationary or inclining towards the south, and numerous as were the carcasses of thoso killed by the Indians and Half-brceds, the survivors were so countless, that the loss appeared insignificant by comparison. Captain Allderson with the survey and the reconnaissance parties, left the mountains on the 20 th of $A$ ugust, and gathering up with him the depot-kecpers and men as he went along, followed the main trail back $t=$ Wouly Mountain, which ho reaehed on tho 16 th of September. 'Ihere he was joined by the astronomical parties under Captain Featherstonhaugh and Licut. Galwey, who had passed Frenchman's Creek by the southern erossing, and having erected the last of the stone mounds, arrived at the rendezvous on the 10th of September.

The united parties, numbering 167 offieers and men, and about 200 horses and ponies, with 100 waggons, carts, ete., commenced the last half of the homeward journey together, under Captain Anderson; the Commissioner and Captain Ward having started back a short time previously, travelling light with two or three attendents only. The usual equinoctial storm was now daily expeeted, and other sources of anxiety were not absent, a telegram haviag been received, via Fort Benton, on the Missouri, to the effect that the Cres, who inhabit the country north of the line, intended to attack tho Commission Train on its way eastward. Notwithstanding these expectations of unpleasant occurrences, nothing could have been more successful or enjoyablo in its way than tho march proved to be. The enowstorm did not come, the Crees kept their dis. tance, and the weather remained warm and fine up to the very end. Haystacks had been made at the end of each probablo day's mareh, near water, so that the animals were always well supplied with food during the night, without the risk of leaving them to graze after dark; and when they arrived at Dufferin, the horses, despite their march of 800 miles, were in perfect condition. Passing, in due course, the now familiar camping places of Wood End, the Souris hiver crossings, Turtle Mountain, ete., it was not without regret that they were left behind for tho last time; and, despite tho many disadvantages of the prairio and plains, there is no doubt that persons who have spent much timo on them, aequire a sort of attachment to them that more pleasing landseapes fail to inspire. What the reason of this may be it is difficult to say; but the feeling is probably the same as that which a sailor has for the sea.

On the 11 th of October the trnin renched Dufferin after a march of 860 miles by road, which had been accomplished in fort y-three days, including halts.

The work done by the two Commissions in 1874 was as follows :-17 principal astronomical stations were established by observations with the zenith telescope; the connecting sight lines between the stations, extending over 330 miles, were chained throughout; a final span of 20 miles in the Rocky Mountuins, which was impassablo, was covered by traversing, and the country on each side of the line was surveyed for a total width of 6 miles up to St. Mary's River, and for $n$ width of 12 miles between it and British Columbia. Meteorological observations were taken at the West Butte during the month of August, and barometer readings for altitude above the sea were obtnined over the wholo of tho comntry traversed. Magnetic observations for dip and declination of the needle and lor total magnetic force, were taken at 'Turtle Mountain, Wood End, tho 'Threo Lurtes, and the Rocky Mountnins; these observations, combined with those taken previously at the Lake of the Woods and at I)ufferin, form a eomplete series from which the curves of maguetic forso have been laid down on tho map of the country.

After the return to Dufferin, three swall parties were sent out to put up tho iron pillars along that portion of the boundnry which forms tho southern limit of the province of Manitoba. The sites of these pillurs had been marised by temporary mounds and stakes by the British astrononical parties in the preceding spring; one half of the whole number of pillnrs having hion set up, viz.,
every other one, the remainder were put ir. by the United States' Commission in 1875.

This completed the field work of the Boundary Commissions.

> A. F.

## POSTSCRIPT.

By Captain S. Anderson, R.E.
The foregoing paper has been limited to an account of the execative work of the Boanciary Commission, and the names mentioned are those which naturally occur in the course of the narrative. It is the wish, however, of myself and tho other R.F. Officers concerned to express here how much we were aided in our respective parts of the work by tire Canadian Officers of the Commission. Without their thorough and efficient co-operation and assistance, the marking of the Boundary would have taken a much longer time, and would have been a much more arduous task to us.

The following are the names and appointments of the officers of the Commission nominated by the Dominion of Canada:--

Executive.-Surveyors.-Lieut. Colonel Forrest, of the Canadian Militia, P.L.S., and Mr. A. L. Russell, P.L.S. These gentlemen were in chargo of surveying parties during the winter of 1872 and the summer of 1873.

Sub-Assistant Astronomers.-Messrs. G. F. Burpee, W. F. King, W. A. Ashe, and G. C. Coster were attached to the astronomical parties as assistants to the astronomers. They had charge of the computations, reductions, \&o., and the subsidiary observations for time were sometimes taken by them. Mr. G. F. Burpee had charge of part of the survoying work during the winter of 1872. Mr. W. F. King superintended the tracing and cuttiag of the Boundary through Pembina Mountain and Turtle Mountain, the latter being a long and difficult work. Mr. W. A. Ashe had charge of all the surveying work in 1874 owing to the accident wlich happened to Lieutenant Rowe. Mr. D'Arcy East (late IR A.) was employed first as surveying officer, and latterly (1874) as Commander of the scouts. With him was associated Mr. G. G. Crompton (lato R.N.), who cor uucted many of the reconnaissiances of 1874.

Administrution.-Commissariat.-Mr. L. W.: "erchmer (late 46th Regiment) was the Commissary of the Buandary Comaission. The line of supplies which he had to maintain was, in 1873,400 miles long, and, in 1874 , it extended to 860 miles. Mr. Herchmer, in carrying out his work, made many hard journeys, with only one attendant, through the heart of the Indian country.

Medical Department,-Dr. I'. J. W. Burgess, M.B., was surgeon to tho Commission, and took part also in the botanical researches. Ho had under his charge during the progress of the work many scrious cases of sickness and of severe injuries. Under his skilful treatment all his patients recovered. Dr. T. Milman, M.D., Surgeon's Assistant, was in medicul chargo of the parties in the ffeld during most of the season of 1874.

Veterinary Surgeon.-Mr. W. G. Boswell, in addition to the usual duties of his appointment, was chargod with the selection and purchase of the transport
animals, horses, oxen, and dogs, and of the waggons and carts composing the transport train of the Commission. Mr. Boswell, in carrying out the duties of his department, made extensive journeys through Canada, Minnesota, and Montana.
Natural History.-Mr. G. M. Dawson, geologist and naturalist to the Commission, examined the whole of the country traversed. Mr. Dawson, whose name is well-known in connection with these sciences, has published in Canada an exheustive report on the geology" and flora of the Boundary Line.
S. A.

## APPENDIX.

## Metiods of Astronomical Observations.

Inttudes. The method of determining the latitude which was agreed to be pursucd by the two Commissions was by observations of the differences of tio zenith distances of north and south stars with the zenith telescope. This instrument is of American invention, and is exclusively adopted in the United States Coast Survey for the determination of latitudes; its use and theory are described in Vol. II. of Chauvenet's "Practical and Spherical Astronoray." The rensons which led to the adoption of this instrument for the work of the boundary survey were its portability, the simplicity both of the observations and of the subsequent computations, and the accuracy of the results. Table 9 of this Appendix gives the cosstracts of the observations takea by the astroromers of the British Commission with this instrunent, shewing tho number of observations at each station, tho number of days on whioh observations were taken, the total time occupied in completing each station, and the probable error ef the results. Consideration of this table appears to show that the performances of the zenith telescope justify its selection for a work of tho nature of the Boundary Commission.
The zenith telescopes used by the British Commission were three in number, two of them having been made by Würdemann, of Washington, U.S., in the year 1860, and one by Messrs. Troughton and Sims, of London, in 1872. They were 32 inches in foeal length, with object glasses $2 \frac{1}{2}$ inches in diameter. Each instrument was packed in two enses, which weighed, when full, 78 lbs . and 120 lbs, respectively.
The number of stars used hy the British Conmission for the latitude observations was 107 in all. Tho places of 66 of theso wero taken from the Nautical Almanack or from the Greenwich catalogue of the epoch 1864; 30 from the Greenwich catalogue, epoch 1860:18 from the Greenwich catalogue, epoch 1850; and 53 from the British $\Lambda$ ssociation catalogno of the epoch of 1850.

The relative weights assigned to these catalognes were taken iuto account as follows*:-
Let $\varepsilon \delta$ he tho probable error of the declinations in each catalogne, ther: the assumed values of $\epsilon^{2} \delta$ are:

- See Chauvenet, Vol. II., par. 233.
Greerwich catalogue of 1864, Nautical Almanack of current year, Greenwich catalogue of 1860 , with 4 or more observations0.25
Greenwich eatnlogue of 1860 , with less than 4 observations, Greenwich catalogue of 1850, with 6 or more observations0.40
Greenwich catalogue of 1850 , with less than 6 obscrvations ..... 0.50
Bricish Association catalogue, with the additional modern authority of Argelander (2), Bessel, Brisbane, Henderson (2), Johnson (2), Pond, Rumker, Taylor (5), Wrottesley (2)
British Association cataloguo, on the authority of Bradley, Piazzi, and Taylor

British Association catalogue, on the authority of Groombridge alone.. 2. 3
When a star was found in more than one of the catalogucs, the place assigned to it by the one having the most relative weight was used.
Devlation of tho The commonly received idea of a parallel of latitade is that of a plumb-llne. circle on the earth's surface, formed by the intersection with it of a plane parallel to the plane of the equator; the 49th parallel of north latitude being therefore such a circlo 49 degrees north of the equator. The only way of determining a first poiat on this or any parallel, is by finding a point whose zenith is the required number of degrees from the celestial equator. It is then assumed that the plumb-line from the point in question to its apparent zenith is truly vertical, and that the point on the ground is the same number of degrees from the terrestial equator that its apparent zenith is from the celestial ono; but experience has shewn that this is not the casc. The plumb-line ean, strictly speaking, never be said to be truly vertical; local attraction, due to irregularicies in the density and figure of the carth, pull it tc oue side or the other, and as there is no check. on this, the absolute amount of the devintion at any one spet cannot be ascertained; but when a connection is made by actual survey between two noints, situated at some distance apart, whose latitudes have been determined astronomically, the relative deviation of the plumb-line at the two spots is at once appurent. Deviations of this kind were almost constantly found to oceur on the boundiry line, so that the parallel passing through one station would not, if continued with the proper curvature, be identical with the parallel passing through the next station, and so on. Under these circumstances, it was a question for consideration whether the points determined astronomically to be in latitude 49 deg . N., should be simply joined, or whether a mean line parallel to the equator should be adopted.

On the British sido, the epinion of the Astronomer Royal was obtained, and he recommended that in no caso should there be any departure "in the smallest degree from the points determined by the actual use of astronomical instruments."

It was agreed between the British and United Stat ; Commissioners that the astronomical determinations of cach station should lo adhered to, and the intermediate monuments and mounds between tho stations were set up on lines having the same eurvature as the 49 th parallel of latitude, but not parallel to the equator. Had the boundary been marked throughout on a curve parolled
to the equator, not more than a very small portion of it would have had, astronomically, the latitudo of 49 deg ., and the work would have taken much longer to do.
The subject of deviation of tho plumb-lino is discussed in Article 86, Vol. I., of Chauvenet's work, before alluded to.
Table 10 of this Appendix gives a list of the station errors, showing how mueh each station is north or south of station No. 1.
Longitudes. The determination of the longitude at Nortl Pembina, in November, 1872, was effected by comparing, by means of the elcetrio telegraph, the local time with that of the observatory at Chicago, in the State of Illinois, United Siates, the length of the electric circuit being about 950 miles.

The local time at North Pembina was obtained by observing transits of standard nautical alraanac stars with a portable transit instrument of 30 inches focal length, and an object glass of $2 \frac{1}{2}$ inches in ciameter. This instrument was constructed by Messrs. Troughton and Sime, in 1872. A box sidereal chronometer, by Sewill, was used on this oceasion.
Time observa- The local time for the reduction of tho zenith telescope observatlons. tions was obtained by the use of tho sextant, either by day or night, by the transics of zenith stars obsorved with the zenith telescope, or by transits observed with the portable transit. The latter instrument was, however, rarely mounted for this purpose; the other methods, though inferior, being sufficiently accurate.
Stands for The stauds upon which the zenith telescopes and the transit inlarge instru-
ments. struments were set up, were designed and constructed by Messrs. Troughton and Sims, of London. A drawing of the stand mado for the portable transit instrument is given in Pl. 1X. Tho dimensions of the metal top plates are adapted in plan to those of tho iron stand, in whose pillars are the $\mathbf{V}$ shaped bearings in which tho transit telescopo revolves. This iron stand was of the kind shown in PI. V. of Chauvenet, Vol. II. The wooden stand was so arranged that the weight fell nearly equally upon eacin foot, as is evident from the diagram plan. A small movement in azimuth was obtained by the V shaped groovos in the metal top plato being made moveable along slots in the plate itself.
For tho zenith telescope the stands were somewhat smaller, but were similar in general construction. The instrument itself being a circular ono, rovolving on a contral pillar, tho weight was always equally distributed betweon the three foot serows which earried the pillar; the plan of the top plate of the wooden stand was, therefore, an equilateral triangle, and no movement in azimuth was of courso required for tho V shaped grooves.
Tho stands packed quito wat when they were taken to pieces, and were transported very easily; tho weight of those for the portable transit being about 170 lbs . each, and of those for tho $\boldsymbol{z}$-nith teleseope about 140 lbs . It was at first supposed that logs of wood would be more suitable whenever they could be obtained; but this was found to bo an error. What was required was not stability against a horizontal disturbing forec, but against the tremors of the ground
produced by the necessary movements in the observatory tent. A post inserted in the ground has its sides in contact with the soil, and every footstep on the surface above is transmitted directly to them; the wooden stands were free from this effeet, because their construction allowed of their being insulated as it wero. This was dono by digging a hole in the middle of the observatory tent, 2 feet squaro and 18 inches deep, the floor of the hole being levelled; the foot plates were then bedded carefully, each in its proper place, and the stand placed upon them. Any tremor from the surfaee of the soil was caught by the sides of the hole, or, if it did go as deep as its floor it could hardly affect the foot plates, as it would travel laterally underneath them. As a matter of fact, these stands were perfectly steady; they were used for $2 \frac{1}{2}$ years, and carried over nearly 3,000 miles of ceuntry without suffering at all in serviceability. Two pests, each 8 feet long and 2 feet in diameter, would have weighed $1,600 \mathrm{lbs}$; whereas the two stands only weighed 310 lbs ., and being in parts they could, if necessary, have been carried wherever men could climb.
Observatory A photograph of one of the observatory tents is given at tho tents.
end of this paper. The tent is shewn as if it opened at the sides, and this was the original construction, but it was found that this was very inconvenient, the guys being much in the way of a person entering the tent at night, and there being a danger of his striking the instrument, which, when adjusted for observing a star of moderate elevation, pointed iowards the doorway. The sides of the tent walls were therefore sewn up, end a door opened in one end. The roof opening was about $2 \frac{1}{3}$ feet wide, and for this width, the roof when closed, was douislo, so as to keep out rain, each flap being buttoned or buekled down to the tops of the tent walls; when the roof was to be opened, the fleps were unbuttoned from the walls and were then pulled back by halyards passing through single bloeks fastened to the tops of tho tent poles. Wheu the root had to be elosed, the flaps were pulled forward agaiu by other halyards. There wero four single blocks in all, and four halgards, two of each boing oatside the tent, and two inside.
Azhnuths. The true direction of the conneeting sight lines between the astronomical stations was obtained by one of three methods. Ist, by laying down a meridian with the portable transit instrument, and turning off an angle of $90^{\circ}$ on a 7 -inch transit theodolite; 2nd, by observation with tho 7 -inch theodolite of the horizontal angular distance at a know' jine between a circumpolar star at or near its elongation, and a fixed referring object on the earth's surface; 3rd, by the ame operation as the last, using a cireumpolar star, at any part of its course, as the point of reference.
'Iho first oi these methods was tho most aeeurate, and was often used at the initial point of the connecting sight lines, where they were tangent to the parallel. It required more preparation than tho other two methods, which were well adapted for checking the direction of the sight lines as they progressad.
Reconnalssance The observations for latitude and long'iade taken on the reconobservntions, naissances for fixing the approximate position of the astronomical stations and makiug a sketch map of the country, were taken with an 8 -inch sex-
tant, the snn and the stars being both used. The 8 -inch sextants, specially made by Messrs. Troughton and Sims for this expedition, were very good instruments of their class; with them a set of ten observations on a north and on a south object ior latitude could always be depended upon within 100 yards. In cases whero eombined observations of objects on both sides of the zenith could not be obtained, the instrumental error of the sextant, which had been investigated, was applied. On the march the instruments were carried in a light spring waggon, and were always at hand for taking observations on the sun daring the day at the hours best suited for finding the time and latitude.

For the longitudes, the local times were eompared with that brought forward on four mean-time pocket chronometers, whose travelling rates were ascertained by taking them back to the starting point and observing for time there, after each reconnaissance. The resulting longitudes so obtained over long distances of 100 miles and upwards, served as a check on the survey. The reconnaissance sketches we $>$ made with the aid of a small prismatio compass.
Method of The method of working generally prastised by the astronomical Working prac-
tised ty the astised by the as-
tronomical astronomical station, usually at about 3 p.m., though sometimes partics. much later, the first step was to select, for the observatory tent, an elevated spot from which an uninterrupted sight line could be obtained to a distance of about three-fourths of a mile, either due north or due south. The eamp was then pitched at a sinort distance off, so that neither the north or south, nor the east or west lines from the observatory tent came within 100 yards of it.

The true time of the last astronomical station having been brought forward on a pocket mean time chronometer, or sometimes on an ordinary watch, the sidereal ehronometer was started by it, allowance being made for the difference of longitude obtained from the reconnaissance sketches, and observations for time on the sun in the west were taken with a sextant for combination with equal altitudes the next morning. The zenith telescope wae next mounted and adjusted, the direction of the meridian being obtained by observation of the transit, according to the time by account, of a circumpolar star as soon after sunset as practicable.

When darkness had set in, the latitude observations were commenced, a correction to the approximate time being soon obtained by taking transite of two zenith stars, and were eontinued throughout the night until dawn began to appear, the meridian being also altered if necessary during the course of the obser. vations. The next morning equal altitudes were taken on the sextant corresponding to those obtained the previous evening, and the true chronometer crior during the night being now known, the computers could set to work at once to reduce the latitude observations. A first value of the latitude of the zenith telescope was obtained before the afternoon, and a spot was selected the proper distance north or south of it, so as to be nearly on the 49th parallel, and, if possible, on the meridian of the instrument, from which point the sight line, tangent to the parallel, should be commenced; a viow of nearly a milo dus east or west, and also north or south being essential. The seven-inch theodolite was
mounted here, and as soon as Polaris could be found in the evening, an approximate meridian was established and a mark set up. The theodolite was then replaced by the portable transit instrument which was directed on this mark. All this could gencrally be done withoat interfering with the zenith telescope observations for latitude, which it was important to complete as soon as possible. These were continued on the second night without interraption; bat, in the early part of the evening, and from time to time during the night, opportunities would occur for observing the transits of stars across the meridian of the transit instrument. The azimuth of this meridian was thus obtained within one or two seconds, or less, of are, with much less trouble and fatigue to tho eye than is involved in the use of a circular instrument. The reading of the fine divisions of a metal are by artifcial light is a great strain upon the sight, and is to be avoided whenever observations of more importance are to be made soon afterwards.

On the second day the computations were continued, and preparations were made for commencing the sight line to connect with the station to the west. For this purpose the seven-inch theodolite was placed over the spot where the portable transit had stood, and an angle of $90^{\circ}$ was turned off to the west, giving a line approximately tangent to the parallel. A mark was set up on this line at a distance of about three-quarters of a mile, or more, if possible. The angle betwoen this mark and that in the north was then read off on different parts of the arc, and in reversed positions of the face of the instrument, and the mean of these angular readings combined with the azimuth of the meridian, gave that of the eight line, which was gencrally a few seconds north or south of west. The sight line was now ready for prolonging westward, its deviation being left ancorrected, but being taken into account in computing the offsets to the parallel. On the third night the zenith telescope observations were continued and completed, subsidiary observations for correcting the constants of the instrument being taken if required.

On the third and fourth days the computations were finished and chocked, and as soon as the final value of the latitude of the zenith telescope was obtained, the required measurement to the parallel was made, and the mound marking the station erected. During the fourth and fifth nights additional observations for azimuth were taken, as well as any additional ones required for the latitude. The sidereal time was obtained from day to day 'y equal altitudes of the sun, and also by observations of the transits of zonith stars at night; sextant observations of stars for this purpose were rarely resorted to, as they would have occupied time required for other purposes.

The time of completing a station, which, according to the above description, would be four days and five nights, was actually always more than this. Sometimes the first night could not be used for latitude observati.ns, owing to the party having arrived too late at the station to make the necessary preparations, and one night out of three was generally cloudy or unfavourable to obscrvation owing to thunderstorms or gales of wind. The average time necessary to complete one station was seven days during the summer months. In order to provide ageinst delays from cloudy weather, it was always the object of the officer
in charge of the astronomical work to obtain as early as possible an approximate value of the latitude, within 20 or 30 feet, and an approximately true meridian; having obtained these, the tangent line could be commenced, and, in the event of cloudy weather setting in, could be prolonged for nine or ten miles, while, if the sky remained clear, the astronomical observations were carried on to completion. It may be remarked, that though clonds were not unfrequent, rain, except during thunderstorms, was unknown in the summer months.
When the astronomical station was completed, and the mound marking the parallel erected, the camp was shifted to some spot where water was to be had, about half way to the next astronomical station. During the march, the line was run with the seven-inch transit theodolite from the initial point, or from wherever it had been already taken to while the party was encamped at the station. From the new camping ground the line was continued as far as the next astronomical station, if possible; but if it was not within working distance, the camp was again shifted to an intermediate point. The prolonging of the tangent line was done with the seven-inch transit theodolite, each point in advance being determined by two observations with different faces of the instrument, to eliminate the residual collimation and errors of level adjustment. The time occupied in running an avera, $e$ distance of 20 miles of line was about four days, to which three more must be added for laying down the offsets from the tangent to the parallel, where the monuments or mounds were to be erectedviz., at intervals of three miles--and for constructing the mounds themselves.

The offsets from the tangent line to the parallel were computed as follows:Each offset consisted of the following elements:-

C, a constant element, being the distance of the initial point of the tangent line north or south of $49^{\circ}$.
$\delta \mathbf{P}$, the distance measured along a meridian between the tangent line and tho parallel, which interval increases as the square of the distance from their point of contact.
$\varepsilon A$, the correction to be applied to the tangent line for any small deviation from its true direction.
$\delta E$, the proportional part of the station error due to the deviation of the plumb-line, and including also the probable errors of the astronomical observations at each station.

C, of course required no computation.
$\delta \mathrm{P}$, was computed according to the following formula :-

$$
-d L=K B \cos Z+K^{\prime} C \sin Z+h^{\prime} D
$$

where $d \mathrm{I}_{4}=$ difference of latitude of the two points, $\mathrm{K}=$ length of side connecting them,

$$
\begin{aligned}
& B=\frac{1}{R \operatorname{arc} 1^{\prime \prime}} \\
& C=\frac{\tan L}{2 N R \operatorname{arc} 1^{\prime \prime}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{D}=\frac{\frac{3}{e^{2}} \sin \mathrm{~L} \cos \mathrm{~L} \text { are } 1^{\prime \prime}}{\left(1-e^{2} \sin ^{2} \mathrm{~L}\right)^{\frac{3}{2}}} \\
& h=\mathrm{KB} \cos \mathrm{Z} \\
& \mathrm{R}=\frac{a\left(1-e^{2}\right)}{\left(1-e^{2} \sin ^{2} \mathrm{~L}\right)^{\frac{3}{2}}} \\
& \mathrm{~N}=\frac{a}{\left(1-e^{2} \sin ^{2} \mathrm{~L}\right)^{\frac{1}{2}}}
\end{aligned}
$$

$A=$ equatorial radius of the carth $=6974127 \cdot 31$ yards; $\theta=$ eccentricity $=0.081696830 ; \mathrm{Z}=$ azimuth of tangent counting from south around by west, whence west $=90^{\circ}$; east $=270^{\circ}$.

This formula becomes in the present case $-d \mathrm{~L}=\mathrm{K}^{2} \mathrm{C}$; or, taking offset in yards $=d$, distance along tangent line $=\mathrm{D}, \log d=2 \log \mathrm{D}+2.915491$.
If $d$ and D are taken in chains, $\log d=2 \log \mathrm{D}+1.342423$.
$\delta \mathbf{A}=\mathbf{D} \sin \mathrm{A}, \mathrm{A}$ being the azimuthal error of the tangent line, D the distance from the initial point.
$\delta E=\frac{D . E}{X}, E$ being the station error, $X$ the distance between the two stations.
It was convenient to call northern offsets + ; southern offsets $-; \delta \mathbf{P}$ was always + ; the others might be either.

Azimuth observations were taken at or near the end of the line to verify its direcion, and any small error which had accumulated in the process of laying it down was distributed over its whole length.

When this work was finished, the party started for their next station, about 80 miles further west, on arriving at which the same proccss was re-commenced. Astronomical In using astronomical instruments when the thermometer is observatiusin
cold weather. down to zero of Fahrenheit or below it, the oil with which the internal bearings are lubricated is partially frozen, and the motions of revolution become very stiff. With theodolites the best remedy is to take them to pieces and carcfally remove all the oil; the freedom of motion will then be restored. With the zenith telescope it is not advisable to do this, but the evil is less as the greater momentum of the parts overcomes the resistance offered by the congealing oil, and force can be used with less danger to the correctness of the obscrvation, which is not one of azimuth. Precautions have to be taken, however, against the freezing of the lamps, and of the oil in the works of the chronometers. The best way of doing this is to erect a small tent sufficiently near to the observatory to be within reach of the voice at its ordinary pitch; in this tent, which is warmed with a small stove, are the assistant with the chronometer and note-beok, and another persen whose business it is to keep always ready a sparo lamp to replace the one at the instrument as soon as its oil freezes. The observer in the large tent has thus, during the intervals of work, a ready searce of warmth to which he can resort, and he is not troubled with considerations as to the welfare of his assistants. By using these precautions, observations were
frequently taken during the winter of 1872, throughout a gra at part of the night, when the thermometer was $30^{\circ}$ belew zero of Fahrenheit, without any one suffering serious inconvenience.

The instrument on these occasions was a 7 -inch theodolite in the open air, the tent with the stove being placed near it. The plan of using merely an open fire, horever large, was liable to failure, as it afforded little or no protection to the chronometer, of which the rate, when it is exposed to severe cold, will vary seriously. For accurate time-observations when records of fractions of seconds are required, it would be difficult, however, to separate the observer and the chronometer without using an electric chronograph.
Tables. Tables were prepared for facilitating the compntations. These were:-
I. Table of factors for collimation, level, and azimuth errors of a transit instrument, computed for latitude $49^{\circ} \mathrm{N}$, for the visible heavens. The same for the five circumpolar stars for every $10^{\prime \prime}$ of change of N.P.D. during the season.
II. Azimuths of Polaris (at a mean declination) for hour angles, from 0 to 12 hours, computed for every 10 minutes for lat. $49^{\circ} \mathrm{N}$. This table was used for laying down an approximate meridian.
III. Differential table of refractions for zenith telescope observations. See Chauvenet, Vol. II., chapter or zenith telescope.
IV. Values of $\frac{\sin ^{2} \frac{1}{2} t}{2 \sin 1^{\prime \prime}} \sin 2 \delta$ up to 1 minute of time.
V. Values of $\frac{2 \sin ^{2} \frac{1}{2} t}{\sin 1^{\prime \prime}}$ up to 5 minutes of time. .
VI. Values of $\frac{\cos \varphi \sin \text { N.P.D. }}{\sin 2 \mathrm{D}}$ for lat. $49^{\circ} \mathrm{N}$, from N.P.D. $+6^{\circ}$
to N.P.D. $+76^{\circ}$.
VII. Values of $37.5 \sin ^{3} 1^{\prime \prime} \times t^{3}$ up to 30 minutes of time. This and the three preceding tables were used in connection with the zenith telescope observations.
IX. Azimnths of eight circumpolar stars at elongation, for every tenth day during the season, for latitude $49^{\circ}$, and for every milo north of it up to 6 miles.
X. Approximate time of the above elongations after noon on any day of the year.

This table was formed by computing the sidereal interval between the upper transit and elongations of each star, and adding or subtracting this interval to or from its R.A. Turning the result into mean time, and adding to it the mean time of the preceding sidereal noon (taken from the Nautical Almanac), the sum was the mean time of the elongation, i.e., it was the time by an ordinary watch. The object of this table was to enable any one who was not possessed of the means of obtaining the true local time to know, without computation, when to be ready to observe a circumpolar star at elongation. Such a person could always set his watch with sufficient accuracy hy the rising or setting of the sun.
Forms.
Printed forms were prepared in England for recording the astronomical observations; the computations were much facilitated by this.

Star places.
The apparent places in declination and right ascension of the an used in the zenith telescope observations were computed beforehand for every tenth day throughout the working season; from these the places for any night were found by interpolating to first differences.

An instrument of the size of the zenith telescope may have its Generse re tho focussing tube moveable by a large mill-headed screw, or it may be use of the zenith telescope. arranged so that, when once focussed, it is held by capstan-headed screws. If the latter plan be adopted, there will be no danger of the length of the focus being altered by accident, but occasionally it will be fonnd that the instrument is slightly out of focus, owing to change of temperature. A good plan is to focus the instrument on a cold night, and again on a warm one, noting the temperatures, and to observe in each case for the value of the revolutions of the micrometer. Two different values will be obtained, that at the lowest temperature being the highest. A table may then be formed of the micrometer values for cach degree of temperature intermediate between those at which the observations were taken, the charge in the values being mado proportional to that of the tewperatures. If the instrument has a mill-headed focussing screw, the observer can now adjust for distinct vision every night, or two or three times in a night, noting always the temperature, and using in the computations the corresponding micrometer values.

As with the zenith telescope, the accuracy of the observations depends greatly upon the true value of the micrometer revolutions, it is advisable to take the additional precaution of equating the north and south $z$ rith distances of the atars on which the final result depends.

The opening of the roof in the tent or house in which the observations are taken, should not be too narrow. On one occasion, owing to a desire to use the same tent opening for two large instruments, the line of sight from the zenith telescope passed within 3 inches of the canvas on one side. It was found that the observations gave very bad results, and the arrangement had to be altered. A similar case is recorded in the preface to the Greenwich catalogue of 1860 as having occurred there. It appears that the currents of warm air passing round the edge of such an opening produce irregular refractions, and the line of sight should have 12 inches of clear space on each side of it.

Observations during twilight are not relinble. There is always a temptation to take them, especially immediately nfter sunset, because the night is lengthened by so much; but it is best not to do so, because, in the first place, the focus of a large instrument rapiciy changes at this time owing to the fall cin temperaturs, and does not attaic a er astant state till darkness has quite set in ; in the second place, owing to the sun illuminating the upper portion of the atmosphere only, there is a late:al irregularity of refraction, which cannot be taken into account, but which makes itself felt in the results. This was especially noticed in azimuth observations.

The maker of a zenith telescope should construct the striding level of adequate size; it should be as long as possible consistent with the dimensions of the instrament ; if it is too short it gives the observer a great deal of trouble.

Before taking a series of observations with the zenith telescope, a programme should be ruled out in the note-book ; this programme shonld contain-

1. The time at which each star will come into the fleld of view.
2. The setting on the vertical arc.
3. The zenith distance of the star.
4. The micrometer division near which the star will appear.
5. The B.A.C. number of the star.
6. Whetber the star is north or south of the zenith.
7. A place where the actual time of observation will be entered.
8. A place where the reading of the micrometer will be entered.
9. A place for the readings of the level.
10. A column for remarks.

There will thus be ten columns, and the programme shonld include every star that is expected to be observed during the night ; then, if only one pair is obtained, a fresh programme should be ruled out for the next night, otherwise there will be confusion.

By following this plan exactly, much trouble will be saved both to the observer and the computer.
Portable Portable transit instruments should have two lamp stands, so
transits. thange the posit when the instrnment is reversed, it may not be necessary to ing the azimath. over when the diagonal eye-piece is being used. The verniers should not be underneath the ens
because it will then be nearly impossihle to ends of the axis of the telescope, lamp which illuminates the field of view. to read that one over which is the the cap of its stand too accuratc', becanse, when it thus cannot be got out of its stand if requiren it gets hot, it expands, and should have the illumination of thequired. All astronomical instruments removed from the maker's hands. Their fields of view examined before they are bad illumination is a serious defect, and difficult to remedy. detail, bnt, in reality,
Computera. A compter should be a neat and quick writer; he can be tanght everything else as the work proceeds.
List of equip. Some lists of eqnipment are given in the tables at the end of this
ment, \&o. ment, \&o. paper ; some others, not necessary to put in detail, are
Medical Equipment.-This consisted of two complete sets of Messers. Savory and Moore's medical field panniers, Nos. 1 and 2.
Photographic Equipment.-This consisted of two sets of field equipment, selected by Captain Abney, R.E.
Signalling Equipment.-This consisted of 6 of Walker's lime lights, with the necessary stores.
Norton's Tube Wells.-Two pumps complete.
Chemical Equipment.-Blow pipe, test tubes, reagents, \&c., for examining minerals.

## TABLE $I$.

Return of the Non-Commissioned Officers and Men of the Royal Engineers serving with the North American Boundary Commissiou, showing their Regimental Rank and Trades.

| Nos. | Rank. | Trades. | Abstract of Trades. |
| :---: | :---: | :---: | :---: |
| 1 | Sergt. Major. | Mason ....................... | 1 Baker |
| , | Qr, Mr. Sergt. | Clerk | 2 Bricklayers |
| 2 | Sergeants...... | Clerk ....................... | 5 Carpenters |
| 4 | Corporals...... | Surveycr .................... | 6 Clerks |
|  |  | Clerk Smith .................... | 1 Mason |
|  |  |  | $\begin{aligned} & 4 \text { Photograpl } \\ & 1 \text { Saddler } \end{aligned}$ |
|  |  | Surveyos \& Draughtsman | 1 Sawyer |
| 4 | 2ud Corporals | Smith ....................... | 2 Shoemakers |
|  |  | Saduler....................... | 6 Sniths |
|  |  | Clerk $\qquad$ | 8 Surveyors from Ordnance Survey |
| 5 | Lce, Corporals | Brieklayer ..................... | 1 Tailor |
|  |  | Surveyor .................... | 3 Tinsmithg |
|  |  | Brker ...................... | 1 Wheelwright |
|  |  | Surveyor ................... |  |
| 27 | Sappers....co.0 | 1 Bricklaytr .............. | Amongst the four photographers |
|  |  | 5 Carpenters .............. | there were 1 millwright, 1 wheel- |
|  |  | 1 Clerk ...................... | wright, 1 caryenter, and 1 sur- |
|  |  | 4 Photographers.... ....... 2 Shoemakers \& Surveyors | veyor; 2 shoemakers were also surveyors. |
|  |  | 3 Smiths ............... .... | Of the above, 1 clerk, 1 shoo. |
|  |  | 5 Surveyors................. | maker and surveyor, and 1 tin- |
|  |  | 1 Tailor ................... | smith became casualties during |
|  |  | 3 Tinsmiths................ | the first six months, ard were ro- |
|  |  | 2 Wheelwrights ........... | placed by 1 harnessmaker, 1 shoe- |
| 44 |  |  | maker and photographer, and 1 tailor. |

Remarks - The men having two trades were employed at either as required; one tailor not being found sufficient, another was applied for when a casuaity occurred.

One of the non-commissioned officers was a certified instructor in military signal. ling, including the uso of the lime-light apparatus,

## TABLE II.

Return of the Clothing and Equipment of the Non-Commissioned Officers and Men of the Royal Engineers on duty with the North American Boundary Commission.


TABLE III.
Detail of the parties of the North American Boundary Commission at work in the field during the Summer of 1873 and 1874.

| Personnel. | Offlcers. | $\begin{gathered} \text { staft } \\ \text { s. and } \\ \text { N.C.Os. } \end{gathered}$ | Men. | Horses. | Ponies. | Oxen. | Vehicles. | Tents. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Commissioner's Party. |  |  |  |  |  |  |  |  |
| Commissioner .. | 1 |  |  | 1 |  |  |  |  |
| Secretary, Captain Ward, R.E. | 1 | $\cdots$ | $\cdots$ | 1 | $\ldots$ | .. |  |  |
| Clerks ............................ | $\cdots$ | 1 |  | $\cdots$ | . | $\cdots$ | $\cdots$ |  |
| Photographers.coro............... | $\because$ | $\because$ | 4 9 | - | . | . $\cdot$ | . | . |
| Cooks ................................... | $\because$ | $\cdots$ | 1 | $\cdots$ | $\because$ | $\because$ | $\because$ | $\because$ |
| Servants ...... | $\cdots$ | $\cdots$ | 2 | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ |
| Storeman ...... | $\cdots$ |  | 1 |  | . |  |  |  |
| Whitewater waggons ........... | . | $\ldots$ |  | 4 |  | $\cdots$ | $\dot{2}$ |  |
| Red River carts ................. | $\ldots$ | $\ldots$ | $\ldots$ |  | $\dot{5}$ | $\cdots$ | 3 |  |
| Spring waggons ................. | , | , | $\cdots$ | 2 | .. | $\ldots$ | is |  |
| Bell tents ................. | - | . | . | ., |  | . |  |  |
| H. B. Cy, $\quad$................. | . | $\cdots$ | $\because$ | $\cdots$ | $\because$ | $\cdots$ | $\because$ | 7 |
| Lumberers " .................. | - 0 | - | $\cdots$ | - | $\cdots$ | . | - | 2 |
| Chief Astronomer's Party. |  |  |  |  |  |  |  |  |
| Captain Anderson, R.E.......... | 1 |  |  | 1 |  |  |  |  |
| Commander of Soouts ......... | 1 | $\cdots$ | $\ldots$ | . | i | $\because$ | $\cdots$ |  |
| Leaders of Scouts .................... | . | 4 |  | $\cdots$ | : | . | . | $\cdots$ |
| Scouts ..................... | . | - | 26 | $\ldots$ | 26 | . | . | . |
| Servants . | $\cdots$ | $\cdots$ | 4 | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ |
| Whitewater waggons. | $\cdots$ | ". | $\because$ | 6 | $\because$ | $\cdots$ | 3 | $\cdots$ |
| Spring waggons ................. | $\cdots$ | $\cdots$ |  | 2 |  |  | 2 |  |
| Water cart ......... | .. | $\ldots$ | $\because$ | 1 | $\cdots$ | . | 1 |  |
| Boll tents ............ | $\cdots$ | - | - | . ${ }^{\text {, }}$ | - | $\cdots$ | . | 3 |
| 1st Astronomical Party. |  |  |  |  |  |  |  |  |
| Capt. Featherstonhargh, R.E. | 1 | $\cdots$ | $\cdots$ | 1 | - | . | - |  |
| Mr. W. F. King ................. | , | $\cdots$ | $\cdots$ | . | -• | $\cdots$ | - | . |
| Mr. W. A. Ashe ................. | 1 | i | $\cdots$ | $\because$ | . | . | . $\cdot$ | . |
| Senior Non.-Com. Officer ...... | $\cdots$ | 1 |  | . | . | . | . | . |
| Royal Engineers, rank and file | . | . | 7 | $\cdots$ | . | . | . | . |
| Storeman . ............ .............. | . | . | 1 | . | $\cdots$ |  | . |  |
| Teamsters ......... .............. | . | . | 7 | . | . | . | . | . |
| Cooks ... | . | . | 2 | . | . | . | . | . |
| Servants ${ }_{\text {Axemen in }}$ Turtle Mountain............. | . | . | 7 | . | $\cdots$ | $\cdots$ | . | . |
| Axemen in Turtle Mountain... | $\cdots$ | $\cdots$ | 7 | io | . | $\cdots$ |  | . |
| Spring waggons .................... | $\because$ | $\because$ | $\because$ | 1 | $\because$ | $\cdots$ | 5 | $\cdots$ |
| Water carts....................... | $\because$ | $\because$ | $\because$ | 2 | $\cdots$ | $\cdots$ | 2 | $\because$ |
| Bell tents................. | $\ldots$ | . | . |  | $\cdots$ | $\cdots$ |  | $\dot{3}$ |
| H. B. Cy, ", ................. | $\ldots$ | .. | . | .. | . | $\ldots$ | . | 9 |
| Lumberers " ................. | $\cdots$ | $\cdots$ | - | - | $\cdots$ | $\cdots$ | . | 3 |

TABLE III.-Continued.


TABLE III.-Continued.


TABLE III,-Continued.

| Personvel. | Officers. | $\begin{gathered} \text { Staff } \\ \text { nnit } \\ \text { n.c.os. } \end{gathered}$ | Men. | Horses, | Pontes. | Oxen. | Vehicles, | Tents. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Commissm iat Trains continued. |  |  |  |  |  |  |  |  |
| Teamisters . . . . . . . . . . . . . . |  |  | 44 |  |  |  |  |  |
| Servant | . | - | 1 | $\cdots$ | $\cdots$ | $\cdots$ | $\ldots$ | $\ldots$ |
| Whitewater wargons | $\cdots$ | $\cdots$ | . 1 | $\ddot{20}$ | $\cdots$ | 48 | 36 | $\cdots$ |
| Red River carts. | . | $\cdots$ | . | 2 | if | 48 | 14 |  |
| H. B. Cy. tents | $\cdots$ | . | . | . | . | $\ldots$ | 14 | i |
| Lumberers | . | $\cdots$ | $\cdots$ | $\cdots$ | $\bullet$ | $\ldots$ | ... | 7 |
| Water earts | $\cdots$ | $\cdots$ | $\cdots$ | i | - | ... | - | 12 |
| V'eterinary Surgeon's Party. $\square^{\text {Premen }}$ |  |  |  |  |  |  |  |  |
| Vet. Surg. Mr. W. G. Boswell. | 1 |  |  |  |  |  |  |  |
| Waggon inaster ...... . . . . . | 1 | i | ". | 1 | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ |
| T. imsters. | $\because$ |  | $\because$ | $\cdots$ | - | ... | ... | ... |
| Servant. | $\cdots$ | $\because$ | 1 | $\cdots$ | $\cdots$ | $\ldots$ | $\cdots$ | ... |
| Whitewater waggons | $\because$ | $\cdots$ |  | $\ddot{0}$ | $\because$ | $\cdots$ | i | ... |
| Red River carts .... | $\cdots$ | $\because$ | $\cdot$ | 2 | $\because$ | ... | 1 | ... |
| Bell tents | $\because$ |  | $\cdots$ | . | 2 | ... | 2 |  |
| HI. B. Cy, \# |  | $\cdots$ | $\cdots$ | $\ldots$ | $\cdots$ | ... | $\ldots$ | 1 |
| Lumberers ", | $\cdots$ |  | $\cdots$ | $\ldots$ | $\because$ | ... | ... | 2 |
| Depôts. |  |  |  |  |  |  |  |  |
| Depôt keepers |  |  |  |  |  |  |  |  |
| Artificers, Royal Engineers . . | $\because$ | 1 | 8 | ... | $\cdots$ | $\cdots$ | $\cdots$ | $\ldots$ |
| Axemen and labourers ...... |  |  | 18 | ... | $\ldots$ | $\ldots$ | $\cdots$ | $\cdots$ |
| Haymnkers . . . . . . . . . . . . . |  |  |  |  | $\cdots$ | $\ldots$ | $\cdots$ | ... |
| (1873) Total | 18 | 23 | 230 | 100 | 59 | 48 | 112 | 93 |
| (1874) Total ....... | 16 | 22 | 219 | 114 | ¢\% | 210 | 179 | 66 |

Rowe, R.E. The increase in the numbers of party, which was under Lientenant the long distnnce ( 800 miles) over which supplies hand waggons $W^{n-}$ on aceount of in the number of tents was becanse bell tents wero almost to carric.. The decreaso of the H. B. Company pattern.

TABLE IV,
Astronomical Instruments.

| No. | Articles. | No. | Articles, |
| :---: | :---: | :---: | :---: |
| 3 | Zenith telescopes | G |  |
| 2 | Transits, $30^{\prime \prime}$ with $2 \frac{1}{2 \prime \prime}$ npertures on portable iron stan | 6 | Large atands for astronomienl instrments |
| 1 | Transit | 1 | Alt-naimuth, with vertical cirele, |
| 1 | Transit, small |  | $14^{\prime \prime}$ ln diameter |
| ${ }_{6}$ | Sexlante, 8 inch | 0 | Chronometers, hox, regulated to |
| 6 | Artindal horizons, mereurinl, with roofs | 12 | Chronometers, pocket, regulated to menn solar time |
| 6 wets | Tron bottles containing mercury spare glasses for roofs of artificial horizons | 3 | Observing tents |

TABLE V. .
Surveying Instrumenti.

| No. | Articles. | No. | Articlers. |
| :---: | :---: | :---: | :---: |
| 18 | Prismatic compasses in sling cases | 3 | Transit theodolites, 7' |
| 36 | Pocket compasses, magnetic | 1 | " " $\mathrm{O}^{\prime \prime}$ |
| 5 | Abney's Levels | 4 | " $\quad$ " ${ }^{\prime \prime}$ |
| 2 | Pocket Sextants, Lest | 4 | Everest's " 4" |
| 6 | Sketching cases, large | 6 | Azimuth compasses in boxes |
| 6 | ", small | 6 | Telescopes, small, in sling cases |
| 1 | Binocular glass, with hinge | 4 | Watches, F.assell's |
| ${ }^{5}$ | Binocular glasses in sling cases | 1 | Chain, steel, standard in box |
| 12 | 66 feet chains and arrows | 6 | Flags, black, large |
| 6 | Tapes, 100 feet | ${ }_{6}^{6}$ | " whit small |
| 6 | " 50 feet | 6 | " white, large |
| 6 | Portable levels in wood frames Telescopes, naval, with caps and slings | 6 | " " sinall |

TABLE VI.
Mageetic Instruments.

| No. | Articles. | No. | ARTICIEs. |
| :---: | :---: | :---: | :---: |
| 1 | Vibration apparatus <br> Portable declinometer | 1 | Azimuth compass <br> Dip circle and tripol stand |

TABLE VII.
Meteorological Instruments.

| No. | Articles. | No. | Articles. |
| :---: | :---: | :---: | :---: |
| 4 | Standard barometers with brass tripod stands, fitted in leather iravelling cases | 3 3 | Regnanlt's hygrometers, with ono thermometer to each Glaisher's rain gauges |
| 2 | Mountain barometers with brass tripod stands, fitted in leather travelling cases | 2 | Metal aspirator jars, with taps and India-rubber tubing Maximum thermometers |
| 2 | Brackets with bronzed fittings fci two barometers | 6 2 | Minimum ditto Long ditto, ranging to $150^{\circ}$ |
| 6 | Earth thermometers in brass frames, with moveable cover and fitting to enable each to be inserted 1, 2, or 3 inches in the earth | 2 8 | below zero <br> Sola: radiation in vacuum ther. mometers <br> Anemometers, Robinson's Extra glasecs for water cups of |
| 3 | Earth thermometers in brass frames for use at depth of 3 feet | 6 Pairs | hygrometers <br> Gold band aneroid barometers, selected, R.E. pattern, the |
| 2 | Standard wet and dry bulb hy. grometers Common ditto - |  | pairs adjusted to sliew the same readings |

TABLE VIII.
SCIENTIFIC BOOES AND FORME.

| No. | Articles. | No. | Articlers. |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & 6 \\ & 6 \end{aligned}$ | Nautical Almanacs, 1872 | 1 |  |
| 6 | " " $\quad 1873$ | 1 | the meridian |
| 6 | $\prime \prime$  <br> 0 1874 <br> 1875  | 1 | Longitude of Valentia-Astrono- |
| 1 | B.A.C. Cataloguo. 1850 | 1 | mer Royal |
| 3 3 | Greenwich Catalogues, 1850 | 3 | Tables of barometric corrections |
| 3 | " " 1860 | 400 | to 32 deg. Fahr. |
| 2 | Bessel's Refraction Tables, modi- | $400$ |  |
|  | fied and expanded, being the appendix to the Greenwich Observations of 1853 | 800 500 | Forms No. 2. Observations for latitude with the zenith telescope |
| 6 | Geodetical Tubles, Ordnance <br> Trigonometrical Trblea | 500 | Forms No. 3. Observations for <br> - latitude with the alt-azimuth |
| 3 | Logarithms of Sines and Cosines of Time | 100 | Forms No. 4. Observations for latitude with the transit in- |
| 3 | Tables of Logarithms-Babbago |  | strument placed in the prime vertical |
| 12 |  | 100 | Forms No. 5. Errors and rates of |
| 3 | Practical and S̈pherical Astrono. my-Chauvenet, 2 vols. | 200 | chronometers <br> Forms No. 6. Comparisons of |
| ${ }_{2}$ | Practical Astronomy - Loomis | 200 | chronometers with standard |
| 2 3 | Plane and Spherical Trigonome-try-Chauvenet | 200 | orms No. 7. Longitude by transfer of chronometers |
| 3 | Practice of Navigation, Raper | 200 | Forms No.8. Longitude by moonculminating stars |
| 3 | Shortrede's tables | 12 ream | Apparent places of stars, for |
| 5 | Admiralty Manual of scientific enquiry | 200 | zenith telescope observations Form A. Latitude by meridian |
| 3 | Matcorology-Kaemtz | 200 | observation of sun or star |
| 3 | " Practical-Drew | 200 | Form B. Time by equal altitudes of sun or star |
| 3 | " - - Buchanan | 500 | Form C. Time by altitudes of |
| 3 | Outlines of Astronomy-Herschel |  | east and west stars |
| 3 | Popular Astronomy-Airy | 500 | Form D, Latitude by circum. |
| 3 | Heather on mathematical instruments |  | meridian altitudes of sun or star, and by altitudes of PO . |
| 3 | Hygometrical tables |  | laris at any time |

TABLE IX.
Abstract of the Observations for Latitude, taken with the zenith telescope, by the Officers of the British North American Boundary Commission, 1872-3.4.

| $\begin{aligned} & \text { 4. } \\ & \text { o. } \\ & \text { o. } \\ & \text { 菏 } \end{aligned}$ | Situation. |  |  |  |  | Remarks. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Feet |  |
|  | Ante of the Lake of the Woods. | 66 | 5 | 23 |  |  |
| 1 | Buffalo Point ........... | 94 | 5 | 10 | 8.88 | Autumn. |
| $\frac{9}{8}$ | Pine liver . ......... | 66 | 4 | 17 | 11 | Winter. |
| 3 | West Roscau .......... | 78 | 3 | 6 | 10.23 | Winter. |
| 4 | Pembina ....... ..... | 77 | 7 | 16 | 9.42 | Autumi. |
| ${ }_{6}^{5}$ | Pointe de Miehel ...... | 74 | 3 | 7 | $14 \cdot 18$ |  |
| 6 | Pembina Mountain, E... | 93 | 4 | 10 | $10 \cdot 5$ |  |
| 10 | Turtle Mountain, E | 92 | 4 | 6 | 9.02 |  |
| 12 | Souris Miver, 1st Crossiug | 86 90 |  | $11_{51}$ | 10.45 7.09 |  |
| 14 | Sours liver, 1st Crossing | 97 | 4 3 | 118 | $7 \cdot 09$ 11.14 |  |
| 16 | Short Creek ............ | 98 | 3 | 8 | 10.84 |  |
| 18 | Le Grand Coteru....... | 91 | 3 | 51 | $7 \cdot 09$ |  |
| 20 |  | 70 | 5 | $6 \frac{1}{2}$ | $9 \cdot 4$ |  |
| 22 | West loplar River ..... | 78 | 5 | $9{ }^{2}$ | $9 \cdot 83$ |  |
| 24 26 | Little Mocky Creek Cottouwood Coulé | 83 | 8 | 12 | 3.16 | Weather cloudy. |
| 28 | Cottonwood Coule ...... | 87 | 5 | 9 | $7 \cdot 70$ |  |
| 30 | West Fork, Milk liver . . | 66 | 3 | 6 | $5 \cdot 85$ |  |
| 32 | Milk River, West Bank.. | ${ }^{85}$ | 3 | 5 | 6.48 |  |
| 34 | West Butte .......... | 85 | 3 3 | 6 | 6.84 |  |
| 36 | South Branch of Milk | 85 | 3 | 5 | 5.26 |  |
|  | liver ...... .... | 66 | 3 | $5 \frac{1}{2}$ | 6.77 |  |
| 38 | Chief Mountain ........ | 79 | 3 | 6 | 5.16 |  |
| 39 | Belly River $\quad \ldots$. | 76 | 3 | $5 \frac{1}{8}$ | $9 \cdot 3$ |  |

PL.VIII.






CRUMENT.


7he V shaped aroove $m$ and the plate $n$ ary cast in one piece and ww moveable alone a slot in $p$.


ELEVATION, shoving one of to leas scomed an

Sireat of the abora, it mill sije.

## WOODEN STAND for a PORTABLE

NOTE. The twe cther legs are one inch longer than that shewn in the figure and are of areater width at tcp in order to fit the sides of the top-plate

top-plate (Gun Metal)


ELEVATION of legs whe

Diagresn I'an of' Stand
a.a.a. T'qu Patal
a.b.a. Legs , (2)


## A PORTABLE TRANSIT INSTRUMEN'T.

ELEVATION of legs when piot together


Diagionn IMan of' Strmal, whew put tegether



The 1-shapod , "reove m and the phate $n$ ave cost in che pioce and aro moveable alena ie sirit in IN.


FLEVATION shemze she of the
foese sormert in

Sorle af the abione it riall wise



## TABLE X.

List of the Astronomical Stations, shewing their distances fro $n$ Station No. 1 , their longitudes and their positions North or South of a smal circle passing through Station No. l, and parallel to the Equator,

| Nos. | Distance from <br> Station No. 1 |  | Distances N. or S. | By whom observed. | Long | tudes reen | est of h. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Miles. | Links. | Feet. |  | deg. | min. | sec. |
| N. W. Angle. |  |  |  | British. | 95 | 8 | $56^{7}$ |
|  | 0 | 0 | 0 | B. and U. S. | 95 | 16 | 55.26 |
| 2 | 31 | 7205 | 388 N | British, | 95 | 59 | 00.99 |
| 3 | 68 | 1283 | $470^{\circ} 2 \mathrm{~N}$ | do. | 96 | 46 | 51.85 |
| 4 | 88 | 4936 | 556. 1 N | B. and U.S. | 97 | 13 | 51.50 |
| 5 | 108 | 5962 | 588. 4 N | do. | 97 | 40 | 20.16 |
| 6 | 124 | 0002 | $533 \cdot 3 \mathrm{~N}$ | do. | 98 | 00 | 32.96 |
| 7 | 135 | 6307 | $459 \cdot 5$ N | U. S. | 98 | 16 | 06.29 |
| 8 | 165 | 1305 | 376.7 N | do. | 98 | 54 | 52.06 |
| 9 | 183 | 3911 | 213* 4 N | British. | 99 | 19 | $02 \cdot 36$ |
| 10 | 203 | $77 \pm 9$ | $54 \cdot 15 \mathrm{~N}$ | do. | 99 | 46 | $04 \cdot 26$ |
| 11 | 238 | 1510 | 154.91 N | U. S. | 100 | 31 | $13 \cdot 86$ |
| 12 | 258 | 744 | 240.21 N | British. | 100 | 57 | $29 \cdot 76$ |
| 13 | 281 | 1973 | 203.31 N | U. S. | 101 | 28 | 02.96 |
| 14 | 303 | 7150 | 40.01 N | British. | 101 | 57 | 56.06 |
| 15 | 325 | 3846 | 7.85 N | U. S. | 102 | 26 | $25 \cdot 16$ |
| 16 | 343 | 2892 | $183 \cdot 45 \mathrm{~N}$ | British. | 102 | 50 | $00 \cdot 86$ |
| 17 | 359 | 3254 | 203.25 N | U. S. | 103 | 11 | 11.26 |
| 18 | 377 | 2977 | 138.85 N | British. | 103 | 34 | 53.66 |
| 19 | 400 | 4925 | 414.06 N | U. S. | 104 | 05 | $33 \cdot 96$ |
| 20 | 426 | 5035 | $40 \cdot 36 \mathrm{~N}$ | British. | 104 | 89 | 53*5 |
| 21 | 451 | 1841 | 152.49 N | U. S. | 105 | 12 | $21 \cdot 36$ |
| 22 | 473 | 3454 | $334 \cdot 9 \mathrm{~N}$ | British. | 105 | 41 | $39 \cdot 16$ |
| 23 | 496 | 6906 | 157.29 N | U. S. | 106 | 12 | $34 \cdot 36$ |
| 24 | 522 | 4742 | $390 \cdot 7 \mathrm{~N}$ | British. | 106 | 46 | $31 \cdot 46$ |
| 25 | 550 | 6740 | 436.9 N | U. S. | 107 | 23 | $48 \cdot 16$ |
| 26 | 567 | 3881 | 543.6 N | British. | 107 | 45 | $45 \cdot 86$ |
| 27 | 588 | 1981 | $540 \cdot 9 \mathrm{~N}$ | U. S. | 108 | 13 | 09:26 |
| 28 | 615 | 3202 | 397. 1 N | British. | 108 | 48 | $59 \cdot$ อ\% |
| 29 | 642 | 218 | 836 N | U. S. | 109 | 24 | 7.76 |
| 30 | 655 | 2357 | $669 \cdot 3 \mathrm{~N}$ | British. | 109 | 41 | $38 \cdot 16$ |
| 31 | 677 | 281 | 446 N | U. S. | 110 | 10 | $19 \cdot 46$ |
| 32 | 702 | 3023 | 166.6 N | British. | 110 | 43 | 46.06 |
| 33 | 723 | 383 | 304•3 S | U. S. | 111 | 11 | $2 \cdot 56$ |
| 34 | 739 | 5780 | 571. 2 S | British. | 111 | 33 | $02 \cdot 66$ |
| 35 | 760 | 3160 | 167. 7 N | U. S. | 112 | 00 | $19 \cdot 46$ |
| 36 | 785 | 279 | 182'7 N | British, | 112 | 32 | $50 \cdot 36$ |
| 37 | 804 | 3361 | 116. 7 N | U. S. | 112 | 58 | $25^{\prime} 16$ |
| 38 | 825 | 6138 | 112. 5 S | British. | 113 | 26 | $35 \cdot 26$ |
| 39 | 836 | 3385 | 383. 5 S | British. | 113 | 40 | $38 \cdot 96$ |
| 40 | 846 | 240 | $10^{\circ} 6 \mathrm{~S}$ | U. S. | 113 | 53 | $19 \cdot 66$ |
| 41 | 853 | 25.29 | $134^{\prime} 6 \mathrm{~N}$ | B. and U.S. | 114 | 02 | $56 \cdot 46$ |

Note, - Station 41 was observed by the Joint Commission of 1861,

## PAPER IX.

## THE RECENT TRANSIT OF VENUS.

By Captain abney, R.E.

It may be of interest to cast a retrospective glance on the late Transit of Venus, recording, as far as is at present known, the results obtained, and also to leave on record the names and stations of the observers and their assistants, as so many of the corps were engaged on the work.

Some eighteen months before the actual transit teok place, the Astronomer Royal commenced his selection of observers to represent the English expeditions, and it is no secret that he endeavoured to secure the services of a far larger number of Artillery and Engineer officers than he was finally able to send out. As it was, the vacancies almest at the last minute were filled up by civilians who had had some previeus training in astronomy. As will be seen by the anncxed table, besides two Artillery officers, (both of the Marine branch) three Engineer officers were engaged in the expeditions, and the photographic assistants, to the number of fifteen, were wholly supplied by the corps. 'l'o Chatham the Astronomer Royal also looked for giving the necessary instruction in phutography, and at one time in our photographic school we had 18 men training for this special work, besides 5 officers and civilians at the observatory. Fortunately Lieut. R. Darwin, R E., threw himself into the photographic work, and took a great deal of the manipulative instruction into his hands, aiding most essentially in the matters of photo-heliograph drill, and amending the processes to be employed. At Greenwich a certain amount of hesitation was felt in adryting a dry plate precess at first, as all recent eclipse work, and the sun diagrams taken at Kew, and subsequently at the Reyal Observatory, had been taken by the wet method. It was only after we had successfully worked out a dry plate process, known as the "albumenbeer" process, that it was finally determined to adopt this methed. Its advantages consist in an absolute impossibility for the films to shrink during manipulation (a matter of the highest importance where exact measurements have to be taken), whilst at the same time the plates could be prepared weeks or months in advance; in fact in Egypt, during the transit, we exposed plates which had been prepared at home months before. The dry plate process employed is given in the ap-
pendix, and I believe it to be thoroughly reliable for all classes of work. The training of the Sappers commenced on the 1st January, 1874, and with the aid of the photo-heliograph lent by Sir G. Airy for the purposes of instruction, they were au fait at the process about May, soon after which the first expedition started for Kerguelin's land. During most of that time Lieut. Darwin was able at intervals to come to Chatham, keeping up his work at the Observatory at Greenwich at the same time.
I need not enter into the details of the instruments enployed at each station. Suffice it to say that each party was furnished with an altazimuth, a transit instrument, and equatorially mounted telescopes (none less than $4 \frac{1}{2}$-inch) for each observer. The amount of forethought neccssarily expended on the supplies and comforts for each expedition was immense, and none laboured so hard as Captain Tupman, R.M.A. He had been nominated by the Astronomer Royal as chief of the transit of Venus parties, and to him all looked for completing each outfit. It was an arduous task, but not quite an unthankful one, as owing to his readiness to afford help and information, the parties after their return had no omission to reproach him with. The arrangements also invoived a large increase in the work of the Astronomer Royal and of his chief assistant, Mr. W. H. M. Christie; their kindness and attention to the wants of all smoothed a way difficulties after difficulties as they cropped up.
The Astronomer Royal had chosen the stations for the English parties principally to obtain results by Delisle's method, whieh was dependent on the accurate observation of the times of 1st or 2nd apparent internal contact of Venus with the limb of the sun, together with a close determination of the longitude of eaeh station. If a figure be drawn showing the double zone formed by the shadow of Venus, and remembering that the planet crossed over the northern half of the sun's surface, it will be seen that eertain places in the northern hemisphere would come into apparent internal contact with the inner zone sooner than localities in the southern hemisphere at ingress, whilst at egress tho reverse would be the case. The difference in time of the observed contacts furnish the data by which the planet's distance (and henee the sun's distance) can be caleulated. A glance at the accompanying map will show that the Russian Government expeditions occupied a line across Siberia and on to Japan, and it will be further noted that, owing to the prevailing bad weather, and to the low altitude of the sun, in the majority of cases the observations were unsuccessful. In Egypt, however, wherc there were parties of various nationalities, the necessary contaets at egress were observed, and they give ample data for Delisle's method, when the southern stations, which observed the same contacts, are taken into eonsideration. The most favourable stations, where suecessful observations for Halley's method were taken, will be at once seen in the map; that is those where the difference of the length of the ehords, as measured by the interval of time elapsing between internal and external contaets, is greatest. For both methods it will be seen (if the observations have been well made) that the stations marked "suceessful" will give pairs, which, when combined, should give an aceurato determination of the planet's distance. It can hardly be expected, however, that some diserepancies msy not arise with risual observations, but supposing that
one half have to be rejected, yet, if the chances of error at each particular station be calculated, it will be found that there still remain abundant observations for the purpose required.

The phenomenon of the black drop or ligament connecting the planet with the sun's limb at the time of contact in very many stations was miswing. This, together with the light ring round Venus, caused by its atmosphere, it is believed puzzled many observers, and perhaps may have cuused them to record contact a little late. In one case, from my own knowledge, one observer was so engrossed in watehing the line of light round the planet's edge, that ho failed to record contact till 20 seconds after it had actually taken place.
Photography, however, cannot err in this manner, and from the results produced at various stations, there seems to be an absolute certainty that the correct time of contact at these stations will be known. Photographs of the sum, when visible, were taken by the English parties at intervals of every two minutes while the transit was taking place. 'The planet's central distance from the sun's centre is now being aceurately measured, and it has been found that such measurements are comparable to the $\frac{1}{6}$ th second of are. a result which is four times better than was anticipated. It may prove that the photographic results are more reliable than those obtained by the eye observations; at all events. it is presumable that they will be equally trustworthy, and will therefore be great checks on the accuracy of the latter. 'The spectroscopic observation of the contaets has led to a supposition that the diameter of the sun's dise which emits so-called actinic rays is not quite coincident with that which emits the visual rays. Be this well founded or not, it is quite evident that the times of contuct formed photographically must be comparable, whilst those arrived at by visual observations may have to be taken by themselves.

The longitudes of the English stations, exespt one, were obtained by the method of observing moon culninating stars and the transit of the moon, and iuvolved un mrduous series of observations extending over several lunations.

The exceptional station referred to was Cairo and Egypt generally, where the telorgraph was nsed for obtaining trae Greenwich time. All the Egyptian localities selected were connected by telegraph, and thus no difficulty was found in accurately dotermining the longitude of both Thebes and Suez. In the map it will be seen that some stations pbtained their lengitude by chronometers. 'The number of ehronometers used ensured aceuracy, and the loogitade obtained by this method may therefore be relied upon.

My thanks are duo to Captain W. A. Orde Browne, late R.A., for the loan of a tracing of a map showing the successful observing stations. A redaction of his original map uppeared in The Engineer last year.

W. de W. A.




[^0]:    * Provinclal Land Surveyor.

[^1]:    - This number is given in the Crifted States official account of the calamity.

