Canadian Architect and Builder.

 \title{- T포표요
 \title{
- T포표요
 Canadian Architect and Bullder,
 A Monthly Journal of Modern Constructive Methods,
}
(With a Weekly Intermediato Editioo-The Canauian Conthact Recoud),
fublisied on tile timed saturday in eacir montil in the interbst or
ARCHITECTS, CIVIL AND SANITARY ENGINEERS, PLUMBERS, DECORATORS, BUILDERS, CONTRACTORS, AND MANU. FACTURERS OF AND DEALERS IN BUILDING MATERIALS AND APPLIANCES.

C. H. MORTIMER, Publisher,

 14 King Street West, - TORONTO, CANADA.62 TEMPLE BUILDING, MONTREAL.

Abstract

\section*{UUBSCRIPTYON:}

The Canadian Anciutect and Builoer will he mailed to any address in Canada or the United States for $\$ 2.00$ per year. The price to sulyscribers in forcign countries, is $\$ 3.50$. Subscriptuons are payable in advance. The paper will be discontinued at expiration of terns paid for, if so stipulaced by the sulscriber; bus where no such understanding exists, wijl be continned until instructions to discons. tinue are received and all arrearages paid.

ADVERTESEMFNTS. Prices for advercising sent promptly on application. Orders for advertising thould reach the office of pabication not later than the jath dny of the nomth, and changes of advertisements not later than the sth day of the month.

SADITOR'S A NNOUNCREIENTS. Contributions of tecionical value to the persons in whose interests this journal is published, are cordially invited. Subscritises are also requested to forward tews. paper clippings or written items of interest fram their rerptctive localities. the Arehtifectirat A snoctathons of Ontarto amf Quebec.

The publisher desires to ensure the rgular and prompt detinery of this dournal to cvery subseriber, and reguests that any carrse of complaint in this particnlar be reported at once to the office of publiention. Subtribiers twho may change their address should also give trompt notice of same, and in doing so, showld-give both she ofd and now address.

THE competition for the proposed new City Hall al Quebec has resulted in the usual fizzle. "Three plans received prizes and the other three were bought for $\$ 300$ each. And now one of the competitors is handed all six sets of plans with instructions to draw up new plans emboclying the best points of each, the whole to be done under the superintendence of the city engineer. And so it goes on. When will the profession awake to a sense of their humiliating, position, and insist, as a condition of their entering a competition, that a proper code be dratwn up and that competent jurlges be appointed.

Ir was rather late in the day for the Canadian competitors for the Mentreal Board of Trade buibling to ery out about the alleged unfairness of the award. If they had heeded the advice of both the Ontario and Quebec Associations they would have been spared the trouble and expense which they were put to without hope of reward, and would have helped to sustain these Associa tions in their protest against the unfair clauses in the conclitions of the competition. We must say we bave no sympathy with these disgruntled parties, some of whom probably thought they had seized a golden opportunity when their more competent brethren bad decided to hold themselves aloof.

There scems to be a persistent effort in certain quarters to create a sentiment in favor of operating the Toronto street milway by the civic authorities. To our mind the simplest solution of the problenl seems the best, viz., the city' to onvn the roddeded onty. By this means all guestions of repairs, best form of tracks, curves and switches; ete., is in the hands and under the sole control of the caty. The city would then be in a position to grant running powers over certain sections to more chan one company. It is certain that as the city grows new routes will be developed. These new rontes will require access to the heart of the city (as witness alicatdy the application of the Metropolitan and the Toronto and Weston companies) and it will never do to grant an independent right of w:ty to cach, as down town streets are already more than monopolized to the detriment of
velicular waffic. It has penerally been the case, when the company constructs the road-bed, that development slowly follows the growth of population, whereas, if in the bands of the city, development could be made in certain desirable instances to proceed atnd attrate population. The civic atheritics could make all needful regulations as to service, speed, frequency, over-crowding, fares, extensions, motive power, location of stables or power houses, method of application of power, position of wires or cables, rent of tracks, and in fact everything necessaty to insure the establishment of a model system, with the minimum of trouble and responsibility on the part of the city.

We are pleased to notice that an effort is being mate by the City Engineer of Toronto in regard to the control or inspection of projecting signs, with a view to the safety of the public. We would go further-abolish them, and that other hideous deformity; the wooden veramelalis or shed which covers so many of our shop; fronts. For our part we cannot understand how civilized beings with the slightest claim to the possession of taste in regard to the architectural appearance of their shops and warehouses can for a moment consent to have the fronts of these buildings disfigured and bedaubed as they are wont to be. No. I buikds a pretentions front, and tavishes his money on tera colta, pressed brick or cut stone. He no sooner assumed possession and bid good bye to his architect, than he hoists a great boatd abomination in front of and covering hundreds of clollars worth of ornament. No. 2 must do something to attract the public gaze from No. 1, and so procures a V shaped structure projecting atwiy out inte the street and secured to the light woodwork of a window frame or cornice with equally light rods and bolts which the first hurricane will wench and heri to the pavement, to the danger of the pedestrians beneath. No. $\hat{S}_{\text {y }}$ not to the ourdone, concocts something bigker and more atrocious, and so it groes on from bad to worse. Could we not have a by-haw forbilding all projecting signs? Surely the street does not belong to these people, and if they with bave uglincss, why not compel them to keep off the street line with it? We would be glad to see a commission of public censors appointed, with authority to compel some attention to taste in such matters. Our citizens ind visitors would soon notice a wonderfill claninge for the better in our business fronts, and the shop-keepers themselves would be constrained to admit that it was a good thing that they were saved from their own abominations.

The, National Assocantion of Master Bualders, of the United States, now a well-organized body, hekl its fifh annual convention in New York, last month. One bundred and sixty ont delegrates were in ittendance, representing some thity-five cilies scattered from the Atlantic to the Pacific Const. In addition to the regular delegates, the alternates and visitors make up a list of over five hundred. Some important business was transiacted. The Committee on Arbitration reported, advocating the settlement of disputes between employers and employees by referees. We are glad to see such an influential orgabization pul itseff on record in repard to this most important question, and although no very definite rules were recommended, an important step hits been taken which ought to bear good fruit in the course of time. No doubt each year will see some practical detail added in im. provenent to the suggestions already put on record. The uniform contract, adopted at it former convelifon, and looked upon as nearly perfect by a complacent commitee, had apparently no clatuse making the contracor responsible and holding the owner harmess for all accidents, elamnges, Ne., through the carelessncs: or neglect of the former. No wonder lawyers fourish when such looscness in drating up contracts prevails. The Trade Schools in New York and Plibidelphia were visited by the delegates, and the olject lessons thereby presented ought to bear good fruit. The leading men in the convention have expressed themselves as convinced that the best and most permanent wotk which may be aecomplished by the Association will be the education of workmen by means of such schools. The quality of the work done by the pupls was a matter of astonishment to those who had not been cognizant of the standard set up by these institutions. The master buiklers of the Domimion of Canada would do well to imitate their brehtren across the line. A Dominion

Association would prove of incalculable good if developed on rihgt lines and with a broad policy looking to improved methods of building, the improvement of their workmen, and rational methods of settling disputes.

There bave been in use in the large cities of the United States for some time various systems of automatic firc-alarms for stores, warehouses, etc. Some of these are now being brought forward in this country, and it is usual for the insurance companies to make some inducement to their clients when they are employed. When the alarm gong is located in the rom or residence of an employee, or some other person connected with the concern, they would no doubt serve a useful purpose. It has been the practice in some cases to connect the building by means of a wire with the nearest fire station, but such a method cannot be too strongly deprecated. To do this it is necessary to sneak a wire over house tops or by some similarly devious route. This wire is liable to be a continual trouble. On the one hand, too much reliance may be placed on its being in order, and necessary vigil:ance in other directions relaxed, when through some cause it is incapable of transmitting a signal; and on the other hand, a false signal may be sent in, causing the brigade a run for nothing. This would not be of much moment except for the fact that some day a genuine alarm might be sent in, and on account of the previous cries of "wolf" when there was no wolf, a fatal amount of credulity might be attached to the warning. A' preferable plam would be to place a continuous ringing gong on the outside of the house itself to call the attention of all and sundry to the fact that something was wrong within. The action of the sun on a fat roof has frequently been the means of sending in an alarm of fire when the thermostats have been closely adjusted; and if they are not closely adjusted, a fire might make considerable headway before notice was given. The proposal to connect these thermostats with the nearest fire alarm box to spring the alarm from the box, cannot be too strongly condemned. The less complication there is about a city fire alarm system the better, and the more likely it is to remain in working order when actually needed. The automatic fire alarm is good in its place, and might fiequently be the means of saving a large amount of property, but keep it separate from the municipal system by all means.

THE RECENT O. A. A. CONVENTION.

The Convention of the Ontario Association of Architects closed so near the time of going to press last month, that we had not the opportunity to say all we desired with reference to it. The tone of the whole proceedings inclicated that the Association had settled down to solid business, and that the members were beginning to realize their position as an incorporated body, with the responsibilities connested therewith.
The address of the President, Mr. Storm, was concise and business like, reviewing the bistory of the Association up to date, and dwelling specially on the fact of incorporation having been obtained during the past year. If eyery architect would live up to the standard enunciated in the closing sentences, the profession would be one to be truly proud of, and would rank as it ought, and we hope soon will, with the other learned professions.

It was a source of great gratification to know that the incorporation of the Ontario Association was so quickly followed by that of the Quebec Association, some nine months only intervening. The incorporation of the latter was of course easier of accomplishment than the former, as it had the action of the Ontario Legislature for a precedent, while the pioneer Association had to vigorously work up their claims in the face of the absence of all precedent, being the first organization of the kind to receive incorporation.

It will now be in order for the two Associations to close up their ranks and work shoulder to shoulder with the object of ultimately obtaining such legislation as will permit only thor: ouighly qualified men to designate themselves "Architects."
The holding of the Convention in the School of Practical Science was a good idea, and the members availed themselves largely of the kindness of Prof. Galbraith and of Mr. Wright, the lecturer in the Architectural Department, who conducted the visitors over the building and explained the workings of the various departments. The equipment, which is still comparatively incomplete, will probably be in full working order by the next convention. The School and the profession will undoubtedly in the days to come be mutually helpful. The theoretical of the former blending with the practical experience to be gained in the offices of the latter, should combine to produce well rounded and thoroughly compelent men in the near future.
An interesting discussion arose out of a resolution requesting the Council to prepare a form of certificate for the use of members of the Association. Tlise discussion naturally ran into the question of the architect's responsibility in the matter, some spenkers suggesting that the words " 1 hereby certify," \&c., were too positive and committal, and that the words "To the best of my knowledge" should be put in as a safeguard. The resolution was lost after a vigorous summing up by the l'resident, who took a manly view of the subject, saying, " 1 don't think any of these suggestions *** are favorable to us as a profession. If we undertake a certain duty, and we have certain responsibilities, we should shoulder them fairly and properly. If we issue a certificate it should show in its face what it is worth. It is as much as to say: " 1 am satisfied that the work has been done
so far, and that man is entitled to so much money.' Take that responsibility, and hold it, and stand by it."

The question of an Association code which would govern the conditions of competitions entered into by members, caused a discussion which will no doubt be of benefit to some who are inclined to be weak-kneed. The Council was instructed to draft a code for future consideration, and will doubtless bring forward one which will be of great benefit alike to the public and the profession.

The clief points of discussion brought out by the reading of Mr. Bousficld's paper on "Architectural Education," were in reference to the draft curriculum which is being formulated by the Council. The trend of the debate indicated a decided desire on the part of members for an ultimately high standard of qualification, while not at present being too severe upon the students who have not had the opportunity or means to fit themselves for the coming examinations.

It seemed to be a matter of considerable surprise to the members when they were told in the Registrar's report that there were 140 names on the roll. This number must certainly embrace almost every practitioner in the Province. If it does, and even if not, it is evidence that the Association may become a power in the land-a power for good to themselves and also to the public.
If the Association is true to itself and to the traditions of a noble Guild, it cannot help but raise the standard of professional ethics, improve the building art both in matters of construction and design, and increase the respect, esteem and confidence of the public.

ESTIMATES WANTED.

The publisher of the Canadian Architect and Builder will pay $\$ 20$ in cash to the subscriber who sends to this office on or before the first day of May next, the most complete, most accurate and best arranged bill of quantities taken from the measured drawings of a residence published in this paper. The competitor who is awarded second position will receive a copy of the Canadian Architect and Buildier free for the term of one year.

The dawings upon which estimates are invited are those of a residence which has actually been built. They are accordingly practicil, and the judges of the competition will have the advantage of being placed in the possession of all the data concerning the cost of the work.
Accompanying the drawings will be found complete specifications, with explanatory sketches where required.

In judging this competition regard will be had to perspicuity of arrangement of items, and the value of the schedule submitted as a practical guide to contractors who desire to be made acquainted with the most simple and accurate method of arriving at estimates of cost.

Competitors taking part in this competition must be subscribers to the Canadian Architect and Builder.

Competitors must send in their bills of quantities signed only with a nom de plume, and must forward with them a separate, sealed envelope, containing their nom de plame, together with their actual names and addresses.

This competition is designed to result in practical benefit to contractors and architectural students in particular.
To the hap-hazard methods of estimating in use by the majority of contractors in Canada to-day, in lieu of methods based upon well-defined rules, can be traced the otherwise inexplicable variation of tenders, often ranging to 50 and 60 per cent. In the light of such wide variation, it may be a matter of regret, though not of surprise, that contractors find it so difficult to make a profit, and that every year so many of them go to the wall. It is with a view to assist contractors to estimate on a proper basis, and thus to avoid working to no profit, if not to actual loss, that this competition has been arranged.

It is hoped also that it may prove a help to architectural students, who will be called upon to present themselves for examination in this and other subjects.

Mr. Langley, of the firm of Langley \& Burke, architects, Toronto, and Mr. Brown, of the firm of Brown \& Love, contractors, have kindly consented to act as judges, their decision will and be final.

Let the interest manifested in this competition by contractors, students, etc., correspond to the importance of the subject, and the result should be highly satisfactory and valuable to every reader.

PROVINICIAL LAND SURVEYORS.

The convention of the Association of Provincial Land Suryeyors, held in Toronto a fortnight ago, was one of interest and profit. The address of the President, Mr. Sankey, showed that during the six years since the Association was organized, forty papers on various subjects have been presented to the members. The question of incorporation is now the most important one engaging attention. A movement is also on foot with the object of affiliating the various Provincial Associations with the Dominion Association. The officers elected for the current year are as follows: President, Villiers Sankey; Vice-President, E. Stewart, Kincardine; Secretary-Treasurer, A. J. VanNostrand ; Councillors, H. B. Proudfoot, M. Gaviller, T. H. Jones, James Dickson, H. J. Bowman, M. J. Butler, H. D. Ellis, C. Unwin, J. C. McNabb, W. R. Aylesworth ; Scrutineers, T. B. Speight and F. L. Foster.

overeog.

(Comtespondence of the Canadian Ahchitect and Builder.)
Mr. J. F. Peachy, architect, has been authorized to prepare plans for the proposed new city hall, appropriating any good points be may find in the designs submitted in the late competition, in which Mr. Peachy was alsoa prize winner. The owners of designs not awarded prizes lave allowed the city to retain their plans, the latier paying each competitor $\$ 300$. Mr. Charest, who was awarded ist prize, has since then been appointed architect in the Pubtic Works Department : Mr. P. Cousin of that Department has resigned, and entered upon private practice.
Work on the skating rink, the reconstruction of which has been delayed for nearly two years owing to some misunderstanding between the directors and the Fedeml Government, is to be stutted as suon as the weather permits. It is to be of the same size as the forater rink, the roof arches, of which are to be used again. The general plan is being entirely changed, some new features, including a curling rink, being introduced. The contract has been awarded for $\$ 10,000$ to Geo. Boiteau ; H. Staveley, architect.
Mr. Raymond, architect, has given nut contrncts for a wholesale store on St. Paul street for Messrs. Dupuis, probable cost $\$ 15.000$.
Several private residences and some stores are talked of for SI. John strect, but at the time of writing the elections are so absorbing that nothing clse receives much attention.
The "Fortress Hotel " Co. receiver tenders for their proposed new building on 1gth utt. The lowest tenderers are Quebecers. Several Montreal apd one Brockvills contractor also made bids. The plans upon which tenders 'were called were those made by Messtr. Rotch \& Tilden, Bosion. The cost of building, when entirely completed, will probably reach $\$ 220,000$. No tender has so far been accepted.
The Roberval Hotel at Roverval, Lake S. John, is being largely increaser in capacity by the addition of two new wings, besides anotber building containing billiard room and bowling alley; the hotel, with the additions. will comprise about 150 bed rooms. The new dining hall, to be finished in spruce, will have seating' capacity lor 160 persons. The building is being constructed by day work, with Mr. Laggs as superintendent, from plans prepared by H. Staveley, architect.
The Florence proprietor is alse increasing his accoinmodation by the addition of a 5 th storey to the north wing orhis estiblishment. Mr. Trudet, we believe, always acts as his own architect.

PERSONAL.

Mr. F. H. Berlingutt, architect. Quebee, left that city for Europe, on the Ith inst.
Ald. Hanley, a leading contractor of Belteville, Ont., paid the Arcitrect and Builder a visit a few days ago.
Mr. Henry S. Powell, architect, of Tilbury Centre, bas succeeded to the practice of the late Mr. J. R. Kilburn, of Stratford.
Mc. M. Demers, a popular contrictor of Montreal, was presented by his friends a few evenings ago with a gold watch and chain.
Mr. D. B. Dick, arehitect, Toronto, will give an annual prize for proficirncy in the first. year to students in the archingetural course at the School of Practical Science.
The Canadian Architect and Bullder was recenily favored with a visit from two of the oldest and most estecmed contractors of Hamition. Ont, Mr. John Webb and Alderman Hancock.
The Canadian architect and Bulloer desires to extend to Mr. Theo. Daoust, archicect, Montreal, hearty congratulutions in view of like untrimonial contract into which he recently entered.
Messrs. Darling \& Curry, architects, Toronto, have recently taken ieto partoership Messrs. Sproatl \& Pearson, also of that city. The firnm name has been changed to Darling. Curry. Sproatt \& Perrson. Extensive additions, alterations and improvements are being made to Darling \& Curry's offices in the .Vail Building, to mect the requirements of the new firm. Every modern contrivance calculated to systematize and facilitate operations will be utilized in the new offices, which, when completed, will be second to none in the Dominton.

TORONTO ARCHITECTURAL SKETCH CLUB.

The members listened to a paper of unusual interest on Tuesday, 24th inst., given by Mr. G. A. Reid, R.C.A. The subject was "Architecture from an Artist's Standpoint." Mr. Reid showed his appreciation of architecture by the many clever points made during the course of the evening, his numerous sketches in oils and pastelle bringing the subject before bis audience in a very lucid and pleasing way. It is intended to publish the paper in full in the Canadlan Architect and Builder for April, illustrated by pen and ink drawings by Mr. F. S. Challener from the original sketches.

An interesting discussion followed the paper, in which Messrs. Darling, Sam Jones, Curry, Simpson, Gregg and others took part.
The competitive drawings for "A Stone Mantel" were then criticized by Mr. Frank Darling in his usual facile manner, Mr. E. B. Jarvis being awarded first place in the senior division, and Mr. Ernest Rolph frst place in the junior division.

It is a fact for congratulation to the Club that it has to a large extent the co-operation of the architects in its work, and especially so that a number of the younger architects enter the competitions. It is hoped in time that more will be induced to go in
for them, as it is one of the primary objects of the Club that this should be so. The impression that the competitions ought to be restricted to draughtsmen and students is entirely erroncous and utterly incompatible with the feeling of the constitution.

At this meeting it was resolved by a majority vote of those present that the regular meetings should be held on Monday instead of Tuesday as beretofore, and in accordance with this, the next meeting was held on Monday, gth inst. Mr. W. A. Langton gave a clever paper on "Richardson and His Works," which was listened to altentively by all present. At the close quite a lively discussion took place. As Mr. Langton spent a number of years in Mr. Richirdson's office in Boston, he was well prepared to speak on the subject, and did so in a most interesting manner, receiving a hearty vote of thanks for his trouble.

OUR ILLUSTRATIONS.

"Canadian architect and hullder" competition for a CITY HOUSE-DESIGN SUBMITTED RY "HIS ASPIR-

ANT" (MR. MURRAY WHITE.)
The bascinent walls to be carried up to ground line in good rubble masonry, composed of the best quality of an approved stone, well bondecl, laid in the best prepared mortar, atid the joints, both inside and outside, to be struck with the trowel. The stonework above ground line to be of the best approved local stone, built in courses, to be neatly pointed and well bonded. The sill and head courses to he neatly tooth chiselled. Brick walls in basement to be built of hard clinker bricks. The walls from the stonework up to the first floor joists to be built of the best selected red bricks of a uniform color, laid English boond in mortar, stained in dark brown. Above ground floor the exterior walls are to be composed of 4 in . studding, shaded both sides with matched sheeting, and lined on inside before battering with a double thickness of sheathing paper. When parts are to be tiled, the best approved tites are to be used, of a rich, daik red color ; the gables to be lathed and plastered, one coat to go entircly over surface before strips are nailed on; plaster to be stained a dark brown color. The lumber throughout to be of good clear pine, and flooring to be selected free from knots, etc. The hall, dining room and parlor to be finished in black ash, oiled and varnished; the rest of interior finish to be of clear pine, stained and oiled.

TORONTO ARCHITECTURAL SKETCH CLUH COMPETITION FOR stone mantel-design by ar. bigar b. jarvis,
awarded first rosition.
SCHOOL HOUSE AND ASSEMmiY hall. AT THE HOVS indusTRIAI. SCHOOL, MIMICO-HENRY SIMPSON,

ARCHITECT, TORONTO.
plans, etc., in canadian architect and builder comPETITION FOR BILL OF QUANTITIES.

THE R. C. A. EXHIBITION.

The Royal Canadian Academy exhibition bas attracted considerable attention, and copious comments and criticisms have appeared in the daily papers with atrocions attempts at ithustration. The anticipations formed by the reading of some of these criticisms are rudely shocked in many cases when the spectator finally reaches the gallery and sees for himself. One cannot help feeling that their remarks are in some cases tempered by personal ol other interests. It would be refreshing to have an estimate of the exhibition as a whole and a critique of the inclividual efforts from some authority, unbiased and competent.

The architectural exhibit is snugly ensconced in the Secretary's den, and modestly greets the persistent seeker after architectural art. It is well that it is thus enshrined, as the baker's dozen representing our glorious itrt would be hopelessly lost were it placed in one of the larger rooms.

We must confess to a feeling of real disappointment when we finally reached the sanctum. The sketches of a residence on St . George strect by Mr. Townsend, two designs for churches by Messrs. Strickland \& Syınons, and a view in Glent, Jelgium, by Mr. Andrew Taylor, were the only numbers which could be singled out as even fairly rendered. Mr. Taylor's design for a residence had the fault of being stiffly inked in before being colored; his Branch Bank of Montreal did not err in this respect, but lacked all attempts at light and shitde. Mr. Storm's perspective of the new Victoria College is somewhat effective when pewed at a dislance, but coarse and rough when studied near enough to take in the design. The rendering of two houses by Messrs. Gordon \& Helliwell and Mr. Taylor's Technical College Building is scratchy and devoid of light and shatle. On the whole one cannot help feeling that there is a want of imagination betrayed by the majority of the exhibitors, and that many old friends are still playing on the sanic string as of yore-their trees, their rocks, waves and beaches, their homely humam beings are the same old acquaintances.

The finer kind of coal ashes from domestic fires make exeellent cement when used with common lime, the cement being four or five times as strons as common mortar. Those frop steam boilers seem to be of sand in ordinary lime mortar made at too high a temperature for this, but cain be used in ware.

ERRATA.

TORON'LO, FEl. $251 \mathrm{~h}, 1891$.
Editor Canaidian Abciutpett and Buildbe.
Dear Sik,-1 congratulate you on the expedition shown by your staff in turning out so vapilly your February number, notwithstanding the large mass of extra matter; and as stenoprapler of the Convention, I am delighted with the accuracy with which your compositors have done their work. However, as arclutects are noted for accuracy in detail, it is due to them that you allow me to correct two small errors. Onc is the insertion on page 17, lime 6 , of the name of Mr. Gambier-l3ousfield as speaker. Remarks attributed to him should form a continuation of Mr . Goninlock's. 'The other error is a very slight one on page 18 . In the middle of my remarks, the wotd Bur ring whuld no doubt puzze your readers, who know in one of that matine. The word should be bitmer. . This is a case of the compositor "taking the bun," and thus spoiling the pun.

Fraternally,
Thos. Bentioutil.

WORKS OF PALLADIO AND VIGNOLA.

MONT!REAI, March 7th, isgi.
Edior Canadias dichither and buhimba
Deak Sik, -In one of the works of Curilt's "Rudiments of Architecture" there is a paragraph on page 130 which says " ladladio and Vignola the restorers of renuine architecture, are the authors whose works will be consulted with greatest advanlage by those who desire to make any advance in the science, and most particularly by those who wish to obtain further knowledie on the use and abose of its detail." Would you kindly give me the names of their principal works in the next number of the C. A. \& 13 . and oblige.

Vours truly,
LUGient: Payette.
I'alladio's four books transtated by (i. J.coni, 1726, or I Ware, 1738, (both folios) will probalbly give our cotrespondent atl he requires. They are, however, expensive. Both authors have produced valuable works on the "live Orders of Architec ture," a tatuslation of one of Vignolits being called "The Regular Architect, or the General Rule of the Five Orders of Architecture," igog. Hut most of these books ate rare.-ED. C. A. \& 13.]

COMPETITIONS

Qubiale, March 12th, 1891,
edito Casabian arcimtret anto bumbomen
DEAR Str,--In the February number of your journal you published the following answers to certain questions from a Quebee correspondent: "The name of the authon of a competition design should not be attached to bis clrawings, atnd when so attached, said drawing should be ruled out as being informat. It would manifestly be unfair to allow a signed drawing to remain in the competition and even more unjust to award 10 such : drawing a preminum."
I am disposed to believe that in answering thus to your Quebec correspondent, you merely hiad a desire of express a personal opinion as to the way competitions ought to be carried out, and that in to way did you wish to intress upon your readers that there existed fixed and aecepted rules for competition, and which were always followed.
With the majority of members of the profession I an of the opinion that it would be a good thing for us to have such rules, which would insure a uniform method of calling competitions and of judging them. But Mr. Editor, since there exists at present wo such acepted and uniform rules, those calling at competition are guite free, it would seem, to araft anything they like or may think proper in the way of instructions to the competing architects. We camot, therefore, and have not iny fixed methor to impose upon any one in this matter.

Supposing, for example, (n thing which is quite possible and even probable according to me) that the querics of your Quebec correspondent apply to a real case, and that the instructions issued to the competitors do not justify the answers as given by you, what then? Is not such a thing possible? I mianiain that it is, and moreover, that the judge or judges in a competition are to be fuided in their duty solely br the instructions issucd th the compefifors so far as the admission or puttiog aside of plans is concerned, and on the points on which a decision is to be given. We know of a competition for a certain public work, unfinished yet, and which has involved the expenditure of several millions, where the instructions to the competitors inade no inention about using a moto or signing their plans: and the plans were all signed.

Now if similar instructions were issued in the case of your correspondent, and one of the competitors made use of a motto, does he thereby invalidate any or all other plans which may have been signed by their authors? If so, there would be risk sometimes of awarding first premium to the plan which least conformed to the needs contained in the instructions.

I've been a little long perhaps, but the question of competitions is an interesting and many sided one, on which there exists a number of different opinions among members of the profession, not only here in Canada but on the Contincat atso, as may be
seen by frequent correspoudence and editorials in the professional journals from across the water.

I remain, yours truly,
An Architect.
[The reply to our correspondent in February number was based on the supposition that the competitors wese instructed to send in their designs under moto. If such was not the fact, the calse is of course materially altered, and there would appear to be no reason to find fault because first place was given to a signed drawing. We bave on several occasions outlined the rules which should govern competitions. The imijoity of the profession are probably in accord with them, as suggested in the above letter, and if they will abstain from entering competitions, the conditions of which their juctginent cannot approve, they will greatly assist in bringing about the reforms which they profess to desire.-Ed. C. A.\& B.]

A DIFFICULT PROBLEM.

Editur Canaulan Arcinithet min Bulliek.
DEAR Sik, -Encouraged by your kindly invitation to propound quesions, the answers to which maty be of scientific interest, and reminded by the locomotive boiler explosion, an engraving of which appears in the last number of the Scientific Americill, that 1 am still without an answer to a question I propounded at the time in relation to a similar occurrence in Quebee some years ago, I now beg to renew the query.

From what height must a portion of boiler plate (one quarter inch thick, some fifteen feet in area, and iberefore weyghing about 150 lbs.), torn from an exploted stationary steam boiler and launched intn the air, have fatlen to have been found by me standing upright in a log of white pine timber twenty-four inches square, into which it had penctrated to a depth of fourteen inches, almost exactly at right angles to the grain of the log.

The base of the parabolit described by the missile did not exceed too feet. The rigged piece of plate hatd been blown out almost to a plane by che force of the explosion, and must have descendel in ant almost vertical direction, as that in which it would meet with the least resistance from the retarding atinosphere, or in a plane parallel to the falling ler of the parabolin, whitever its position may have been in the ascending branch of the course.
If it be considered that a good man with all his might could harelly drive the sharp edge of an ase into a stick of timber, across the grain, 10 more than half an inch, it will be felmitted that the blunt-edged piece of plate alluded to must have descended from an immense height, thas to imbed itself to such a depth as fourteen inches in a log of two feet in breadlh.
This occurrence took place at Archer's steam mills at Sillery Cove, some five miles from the city, killing the engineer in clarge ; and it was on the occasion of my appearing before the coroner's jury that I visited the premises immediately after the accident.
C. Billearges,

City Engineer, Quebec.
[It would be almost imposisil)le to calculate the force necessary to make such a cut without making some experiments in order to form a sound basis for the calculation. However, some idea of the force may be formed in another way. We may assume that when the boiler exploded there was not less than eighty lbs. pressure shewn on the stean gauge. The sudden rupture of the boiler would permit its contents to escape into the atmosphere. Experiments in the fow of steam have shown that steam at eighty lbs. pressure will flow into the atmosphere through a safety valve at a rate equal to a velocity of 1,456 feet per second. This being the case, it is not unlikely that the piece of boiler plate started on its upward fight with an initial velocity not less than 1,000 feet per second. Leaving out of account the resistance of the air, a body projected vertically into the air at such a velocity would go^{o} up three miles before it stopped and began to fall. Agiin deducting the one-third for friction of the air while deseending, the plate woukd strike the log with a velocity of nearly 550 feet per secend. This velocity of a body of 150 pounds weight would be approximately represented by a pressure of $7,0,000$ pounds on the surface of the log. The surface struck by the plate would be twenty-four inches by one-quarter inch, making six squatre inclies, and the force of the blow would therefore have been about 116,600 llbs. per square inch, and we need not wonder that the log was cat to a dicph of fourteen inches before all the energy was expended. - Enitor C. A. \& R.]

The Art Decorating Company has Icen formed at Sit. John's. Que. for the purjose of meauufacturing the finer classes of ctay goods.
The Richmond Slate Quarrying, Manufacturing and Asbestos Company has been incorporated at Richmond, Qut., with a capital stock of $\$ 150.000$ for the purpose of quarrying and mandincturing roofing slate and prorlucts of slate, and of pottery, clay, asbestos and other ninerals.
The Boyton Wall Pluster and Cement Manufacturing Co. of Kingston has been incorporated with a capital stock of $\$ 60,000$. The prometers are James Minnes, E. A. Kirkpatrick. John Hewton, Robert L. F. Strathy, C. James Minnes, E. A. Kirkpatrick. John Hewwon, Robert L. F.
F . Gilderslecve, Jolin Gaskin, Isanc Newlands, all of Kingston.
Ineorporation is being sought for the Drummond McCill Pipe Foundry Co., of Montrenl, to manufacture enst iron, gas, water, and other piprs mond, Montreal : Thos F, Grifin Detrolt: Divid H Gilbert, F. Drum

COMPETITION FOR BILL OF QUANTITIES.

Following are the specifications accompanying annexed plans in the above competition :

EXCAVATOR, MASON AND bKICKLAYER

Exenvate the gromin as required for the cellars, and fountintion of walls, chimney breasts, glazed pipe drains, etc. All vegetable mould to be put to one side for fulure use as arceice. fil in whd ram and use the superinuous earth in terataing and levsling the ko, or cart away, is may be directed. The excavation to be 9 larger on rall swes than the building. and no filling to be tone till stone walls are plaskred outshie all inspected. The diains tmarke G. on plans to be excence with the best vitried salt glazed pipe (Scotch or Anerictu), laid to proper fall as may be directed, jointed in cellment, with all necessary benks, junctions and traps complete. cleaning out trap as shown, pipe from sanme 10 be carried to within $18^{\prime \prime}$ of surface and covered with sione flag. (All sewnge drains inside of bai ding will be of fron as per plumbers' spucifications.) Lay $3^{\prime \prime}$ common tile weeping drains as shown proyerly graded and connected to main dmans behind running traps as sliown. Foundation walls to liave footings of broad, flat stones $6^{\prime \prime}$ thick, projecting $4^{\prime \prime}$ on ench side of wall above, and no stone to be less than half the total width of footing. The walls to be carried up to the height sloown in goad rubble tuasonry, composed of lake or other approved slone of the best cuality, laid in the liest prepared moriar, well built and bonded logether, and having the joints on each side neatly struck with the trowel; the portion showing above ground and where lined is to be of brown Credit Valley stone in courses, neatly tape pointed in wall. The jambs to be tooth chiselled and to show a narrow draft on outer face. Plaster or parge outside of foundation walls frem footings to finished ground line with $1 / 5$ Portland cement mortar. None bith hard bricks will be allowed on the premiecs. Brick walls in bisement to be built of hard elinker lrieks, with a neat struck joint. Build in all briek walls in basemem a double course of roofing slate on top of footings a ${ }^{* \prime}$ wider than wall to prevent rising of danip. Pier earrying front steps to be of Jard clinker up in brickwork of best hard, well-burnexl bricks laid in best prepared nord tar. Projecting bays to be tied to main walls at every gth course with stout thoop iron lond carried well into walls. Provide four (4) wrought iron stmps $2^{\prime \prime} \times 5^{\prime \prime \prime}$ to be forked and built into bricktrork, and well spiked to studding of front where prepared for tiles. The walls to be faced with the very best selected Cirlton or other equally approved red bricks, selecied of dark cotor, true and straiglit, laid in English bond. and finished earefully with a bead toot joint in mortar colored with Cabot's or other equally approved dark brown moriar stinin ; bricks to lo weil wetted. On compleion of gutters, thoroughly clean down with acid. Inside walls of back porch to be faced with white bricks finished with neat bead tool joint. Turn relieving arclics of at lenst two rimgs over all openings of doors, windows, \&ec., and neat ent and pointed :trehes at openings as shown. Build in strips for battens at every 2 ft . in height in all outer walls aud wherever else directed-strips to be provided by the carpenter. . Beant fill on ail walls to underside of floor and roof hoarding. making all spaces thoroughly tight and weather proof. Turn projer arches over fire place openings on $2 /^{\prime \prime} \times 1 /{ }^{\prime \prime}$ wrot iron camber bar, all flues to be formed circular $g^{\prime \prime}$ dianeter, carefully buite round moulds 3 ft . long, which are to be dmwn up a few inches at atime as the work procecds, Provide and build in proper galvanized iron collars to one the in each room (except those having fire places). Fiues not connected with fireplaces to have proper iron soot doors in iron franes. Form ash dumps from ground foor fireptices as shown, having ison soot doors set in east ison frames. Lenve $0^{\prime \prime} x I^{\prime \prime}$ open ing into vent flue near ceiling of kitchen, and $7^{\prime \prime}$ dianneter imto same fue near ceiling of ball room. Chimneys to lee carricd up in brickwork of unifom color with projecting courses for caps. Beed in noortar all bond timbers. phties, etc., and buitd in ill lintels, wood bricks, frames. cut stone and other work required to the set in masonry or brickwork. Sipport foot of iron soil pipes with $9^{\prime \prime} \times 9^{\prime \prime \prime}$ brick pier, three courses high. Form substratumi of concrete floor with a $6^{\prime \prime}$ layer of clean broken stone clips, poutnded fiat ankl evel. The emire cellar floor to be laid in concrete $3^{\prime \prime}$ thick. of Portand centent, sharp sand and coarse grarel in proper proportions, and all but laundry and back porch fioated toa smoosh surface with a coasting of Poriland cenvent and sand $K^{\prime \prime}$ thick. Laundry and poreb joists will lew bedded in conreta. All hearths to have as brick timmer archas ind to to of coterele is specifed for celar floors. Fibished heariles will las of tile proviterl ly the proprictor. Rrick work to be built from outside scaftolding which is to lee left for the use of other tratlus till direeled to the rentoverl by the architects, specia care being taken to prevent watls being splashed from seaffolding. The
labels and strings where shown to be one course of plinth brick, set this: (A).

(A)

Provide and set sils of Credit Valley stone to base ment windows, to be 6 in . $\times 9$ in. and weathered; fuel cloors will have wnod sills. The sills to all other windows as tinted brown to be executed in the best quality of Portage Entry stone, or other approved brown stone, throated, ehiselled, or rock faced, weathered and seatel; rear sills may lee of Ohio
stone. Heads of fuct doors to be of brown stone stone. Heads of fuel doors to be of brown stone in. high. Head of entrance door to be of Porlage Entry stone, $1 / 2$ bricks thick, cross tooth eljiselled. Corbels al fromt pilasters to lee of similar tone similarly finished. Carefully set in fine mortar and protect with boarcing thl the completion of the wark. Brichitayer to attent on other males in the execution nutd for the perfect completion of the work.

CAhlPENTER AND JOINER.

The lumber for the catpenters' work to le of good description of white pine thoronghly sensoned, free from sap, shakes, loose or large knots, or other imperfections, and to hold the full sizes shown or specified, when fixed in the lauilding; good sound seasoned hemlock may be used for joists and afters. The joiner's work (unless ollerwise seevifed) to be of best duserip ion of white pine, clear and thoroughly seasoned. Inside work on gronnd and first Hoor will be varnished. Provide and fix all necessary centreings and tuang pieces to openings of toors and where rtquiled. Provide and ix lintels to all openings of sloors and windows, crmbered at top, and not ces than $6^{\prime \prime}$ in deptil at centre, and resting $6^{\prime \prime}$ on walls on cach side. Pro. vide strips $23^{\prime \prime} x$ " to be built into walls under bearings of joists and elsewhere as required for fixing skirtings, trinmings of doors, windows, etc., and ther finishings, and at every 2 feet in height of outer walls, on which to nail batlens. Baten all outer wails, (including netic where necessary) and elscwhere as required with $2 \times 14^{\prime \prime}$ batiens, at $16^{\prime \prime}$ centres-battens not to be placed till wails are parged. Porches will not te plastered. Provide proper grounds for fixing trimmings, etc. Cellar hoor of latundryand porch to have $x^{\prime \prime}$ cedar joists beddet in concrete. Ground, first and nitic floor joisls o be $10^{\prime \prime} \times 2^{\prime \prime}$ at $16^{\prime \prime}$ eentres properly trimmed nt fire places, wells of stairs, elc., trimmers to be 4 linek or doulde $2^{\prime 2}$ nhe immet with donble tenons. l'ut a tier of $2^{\prime \prime} \times 2^{\prime \prime}$ lerring bone strutting to ench bearing of joists on
all floors. Prepare floors for pugging at gables where projecting beyond wall line with one inch boarding. Sloping roofs. $6^{\prime \prime} \times 2^{\prime \prime}$ rafters at I6 centres, and villeys 8 in. $\times 3$ in., plates 9 in. $\times 3$
in., collars 6 in. $\times 2$ in. at 16 in. centres. Ends of in., collars $6 \mathrm{in} . \mathrm{x}_{2}$ in. at 16 in. eentres. Ends of
mfiers to be dressed where visible. Sloping rouis to be haid with dresseal $\% \mathrm{in}$. nantched boarding in witles not exeecding 7 mm . free from loose knots, shakes, or sipp, well nailed. Put saddles behind chimneys boarded as roof and $3^{\prime \prime}$ rounded roll 10 ridges. Put dressed faciat ard $\mathbf{I}^{\prime \prime}$ beaded soffit 10 eaves, and
bed noukding. (B) Gables to he $4^{\prime \prime}$ of studding at it in bed noukding. (13) Gables to be $4^{4 \prime}$.of studding at 8 in. centres, slaeted boal sides with narrow mateved stufi and lined on inside before battening with a double thickness of sheathing paper well lapped; balten as syecifited for otber walls, sheet soffits with nartow, pouble bearled stuff matclecd on double shenthing parper made close and tight at wolls, etc., nud (C) form ta ves and bed nouldings, as shown. Beams and corlect at side gable to be dressed and moulded as shown (D) ; cerings to windows to le moukded as shown. Front gable to have demil notiklert large

isoards, as shown. (D) sectured in strongest nimiker. Ruof of resar poret to have tressed maters, and i 1/x int. nutuched aukl beadel clressed roof boirding.
 Partitions to have beads, sills and braces 4 in. $x_{3} 3$ int. door sluds 4 in. x_{4} in., or clouble 4 in. $x 2$ in.: common studs 4 in. 2 in., 16 in. centres, all to be properly framed and cross braced, those carrying joists or rafters 10 have beads 3 in, x in. in., and upper studs to be carried down to them and to lee well braced. Studs to le placed Ons liat in confined phaces. The ground
and first foors to be haid with $3 i$ in. and first floors to be laid with 36 in.
diresseth, tongued and dresseth, tongued and grooved seasoned
ilooring of the best quality in boards exceeding $31 /$ ill in quidth wind nailed to exeecding $31 / 2$ i11, in width, Ulind nailed to joists, and properly cleaned of on comple-
tion: attic aud bascument (where called for) to be laid with $\overline{z i n}$ in. matched thooring of good guality, in loards not exceeding 5 mm . in width, floors in attic to extend to watl line. Ground and first floors to be laid on thickorssed i in. boarding laitl diagonatly will a double thickeess of carpet felt between. Carpenters not to liy' any floors thll all gos or olher pipes are put in, and finished loors not to lee hid till completion or ming and
 and returned nosings, Etivetio and fille and cin irickers, in im. risers, wo 7 in. pandled and moulded mewels at font, and the rest 5 in. turned and and 2 in
 well ${ }^{2}$ ind pall all and moulted panciling, End of stair facing entratice to hate batustrade as shown. (F). Back stairs to have 3 in, rounded latrelwood rail, 4 min . hardwoord newels, and square bahsers, to have 3 m . reads. roundid and retmrmed nosings and scolin in in. risers. put together int the hes manser, with 13 in . wall strings. Stairs to cellar to hatee clese strings. 2 ill treads. 3 in. rounded rail, + in, $x+$ in,
chammered nowels. The kitelson. back chamered nowels. The kitelien. back staits and phnerises to beaded sheeting 3 fi, high, and bath roont 5 ft. high, blind nailed to proper grounds, and finished with moulded capping ; boards not to execed 4 in. in width. exeept in bath roon, where they will not exceed $21 / 6$ and to be dombie bended or moukede. brawing and dining rooms, hall, ves-

double fucin mulded skirtings, ind the roons and hall on 9 in . simgle facin 36 in. lbick, all properly scriberd to floors and nailed 9 in. simgle facia $3 /$ in. tbick, all properly seriberd to floors and nailed Trim at registers and eut for plumbers. and hat air pipes. put si in. staff beads to all projecting angles in kitehen and attic. Bracket down for plasler arches on provinal foor and first tloor, as shown by douled for phaster arches born for cove in rlaving room. Tive cellar windows (except where otherwise specifitel) to have 6 in. $x ;$ in. solid rehated and except where oflerwise specifteli) 10 have 6 in, $x+$ in. solid rethited and
chamfered frames, $11 / 4$ in. sash hung at top with 3 in. butts, and to be furnisled with iron water-bars, \& in. barrel bolts and books to hold them open. Cold air inlet to le protected with stout wite baving $5 / 4$ in. thesh and well secured. Fuel doors to have 2 in. oak silk, 10 le ig in, panellecl and prepared with stops fur glazing, Imong at (op) and fumished with hooks aml 6 in. leols. The whote of the windows alove cellar (except whele otherwise specified) to bave proper boxed frantes; 2 itn. clotible sunk sills, oull side fanging stiles, $\mathbf{1} / 4 \mathrm{in}$. moulded sashes luang with the Lerse sash cord over the best iron ande pulleys. Frome drawing room window to linve boxed lemel, fixed fanlight, moulded transom as shown. Four (4) windows on front elevation to have $2, \%$ in. sashes with stops in preparation for plate glass. Windows to Ie fastened with approved fasteners of the value of $\$ 4.50$ per doz., nod furnished with best bronze ring willdow lifts. Bed roont windows, first floor, front clevation, to have simple monded piasters, sils, beads and iransoms as shown, fanlights to be nixed and prepared with siops for lead glazing. Short window at first main stair landing, and that in linen closet, to have solid rebated frames, with stops for lead work. Wimiows in coat closet under main stairs, and sirle windows in attic to have casmment sash with dipand water bar, properly binged, to bive knobs, and sectured wilh brass
golts. Dormers to be according to detnils and to bave casement sash with drip and water bar. 10 be properly hung and fastened with spilng catches and brass bolt. Fit to four windows in west elevation 136 in . ousside venthäns propect:; lung and fastened. Prepare four windows in fromt elevation for Willer sliding blinds with all necesanry stopa. fillets blocks, cte. oom. ptete. That on ground floor will be made to slicle in pockets, behind window rebaicd aud covered with linged finp. Entrance door to have 6 in. $x 4$ in. door to be 334 in oak veneered on outside, panclled and moulded and pre. door to be $2, y$ in. oak veneered on outside, parelings alsove for glazing, 10 be hung with three 5 in. Joose pated with mouldings alsove for glizing, to be hong with three 5 in . loose
butt bronze thinges, and furnished will hall door lock of the value of 53 , and hatving $2 h$ in bronie knobs. Vestibule doors to be $21 / 3 \mathrm{in}$, panelled and hatving $2 f$ in, bronze knobs. Vestibule doors to be $2 / 8$ in, panelied and moulded below, and prepared with mouldings above for glass, doors hang in rebaterl and moulded jambs with tliree pairs of 4 in . loose butt bronze hinges. and furnished with 4 in . Americinn rebale mortice locks, brass bolts, keys, brolize knobs and furniture, 9 in. bronze flush bolts. Back porch
door to be $15 / 4$ panclled and bead fiush, hung on $6 \mathrm{in} . \times 3 \mathrm{in}$. rebated and doot to be 13,4 panclled and bead fush, hung on 6 in . $x 3 \mathrm{in}$. tebated and
chamfered jambs, having 2 in , oath sill, to be properly hung and furnished chameret jambs, having 2 in, oak silf, to be properly hung and furnished bolted fanlight. Sile porch door to be similine, but to liave hall door lock of bolted fanlight. Sile poren door to be similat, but to have hal door lock of
the value of $\$ 2$ porcelain and plated furniture. The doors to the two p inthe mine of $\$ 2$ porcelain and prated furniture. The doors to the iso pithcipal foors to te $1 y_{2}$ paneled and monded and hung to $1 y_{1}$ in. rebated
jambs. Doors to prineipal roonis, ground floor, to be hung and furnished as specifien for vestibule doors, thowe to fival floor to be bung wills 4 in . toose bull Bertin bronze hinges and furnished with y in. Americnn mortise locks, brass bolts and keys, and porcelain and plated furniture. Slisling doors to have proper overhead irack, and to be furnished with Clarke's patent bingers, and with sliding door lock and flush handles. 'Jhe other doors throughout (unless otherwise specified) to be 13/ in. panelled and moulded, hung with 4 in. loose butis to $1 \% \mathrm{in}$. loose jambs, and furnished with Anverimn mortise locks, brass bolits and porechin and phatel furnivure, two doors in attic to have pivoled fanlights. Closet doors to be $t \%$ moulded one side. furnished with locks and furnittre to corre:pond with other cloors. Doors marked "swing" to be 134 in . thick hung with nickle plated. Chicigo spring hinges, and furnished with poreclain finger plates, both sides, and lorass holts. Opening marked "c curtains" will not have doors but to be prepared for them, with related janbs, casings, etc. Duors in basement to be $11 / 3$ in. batten in $11 / 3$ in. jambs, having stops planted on. hung with 4 in . butts, and furnisthed with rim locks and mineral furniture. Architrives on ground floor m in buitding to be $5!$ in. double faced with band moulding. Architraves on first floor to be similar $4 / 2$ in. wide. Architraves in small rooms, passages, kitchen, attic, ctc., 10 be 4 in . mounded with plain chamierud blocks. Put 2! in, pieture mould at spring of cove in driwing room. Windows, except those to two principal roonis, ground floor, to have i! in. moulded window boards, bed moulds and moulded aprons. Windows of dmwing and dining rooms to have paneiked and moulder window backs. Front steps to have turned newels, moukerd raid
and balustrade as shown, treads to be $1 \% / \mathrm{in}$., and slatted. Kitehen pantry to le fitted up with six tiers of 1 in. tressed and beaded shelving supported on proper bearings. Fil up dressers in kitchen and service pantry, havimg il/a in. panclled and movided doors, properly bung and faslened, it in. bended sthelving-lower portion to be wider and to lave drawers and cup. boatds below, Tavine properly hinged and fastened doors, all necordink to detail: top of wider portion of dresser will be flash with top of sink, and to
be of hardwood grooved for drainer. Bed room closets to have beaded be of hardwood grooved for drainer. Bed room closets to have beaded shelves as shown, 5 in . beaded ratil nind strong bronzed metal lonoks, 9 in . apart. Provide 30 feet of beaded mail with hooks 9 in. apart, to be placed where divected, also 100 feet of shelving on bearers, all in addition to that specified for closels. Hnuging shelf in larder to be of i 36 in. stuf, suspended from ceiling with four $\frac{1}{1}$ in. Wrought iron rods. Fit up two tiers of a $/ /$ in. shelving at each end of farder on proper supports. Linen eloset to have wide shelves six in height, at ends, and enclose those nt one end with hinged cedar fronts, fastenedl with spring eatches. The steps in back porch to be of pine a 1 in, treads, 1 in. risers, 2 in, strings, rounded rail, bir bothsters
and chamfered newels. Fit up stands for kitectell and cellar sinks with hard and chamfered newels. Fit up stands for kitchen and cellar sinks with hard wool capping. Do all necesssyry attendance and fitting for bath, basin and water closets (not includitif plumbers work). Case plumbers work where
required with narrow sheeting binged and bolsed at front. The capping of requirel with narrow sheeting hinged and bolted at front. The capping of moulded brackets; w. e.'s to have double lids for slop sink. Front of bath to be of same sheeting as specified for room; panelled, hinged and bolted doors to front of basin. Provide ath necessary buxing and beaded nins to pipes ; do any necessiry cutting for plumber. W. c. in celtar to be enclosed with sheeting, and bitten door, and hung and furnished as other basement doors. Door to be kept 6 in. from floor and ceiling. Borrowed light as shown. Put a in. planking in yard at doorway. as shown on 4 in. $x+$ in. cedar sleepcrs. Form slalled waiks as slown whin $2 \mathrm{im} . x 2$ in. dressed stulf, dressed three sides, on 4 in. $x 3$ in. cedar sleepers; put sounded curbat edges of that o main entrance. Put sicie gateas shown formed with natrow pickeis, and strong friming hung with strong T hinges and furnished with wrought iron lhumb latch, luolt and padiock, dressed and rounded cedar posk, and having chamfered head piece. Erect short piece of pieker fence 6 fee high on south side io harmonize wibs gat, ils astron piece on worth side ol porch. Fuel bins to be constmeled of 2 ith. hotizontal planking, stronely nailed to 4 in. $x 4$ in. poske extendink from floor to ceiling; the front to be mir duts of dry in mutched stuff with hinged vilve which will close ink from floor when opening that from outside. Carpenter to attend on other trades in the exceution and for the perfect completion of the work.

Stacter.
Line valleys whith galvanized iron 15 in. wide, increasing to 18 in. neor oot. Joints to be soldered where in danger of snow backing un water, and o have 4 in. lap in other places. Cover ridges, etc., with No. 28 iron. Step and cloak flash agninst all walls, chimmeys and checks and apron of dormer. Put strip of galvanized iron 5 in. wide, 3 in. on root and 2 in. drip over back of, gutter, well securerl. Cover flat of cornice over three windows on first foor with galvanized iron. lapped, 1acked and soldered and wurned up 6 in . behind tiling. Cover the sloping roof, including back poreh and choeks of dorincr. with hest quality of Canadian roofing slate forn the Rocktand quatries of about 20 in. $\times 11$ in. size, and having double courses at caves. Shates to be lifd on lieavy felt provided and hid hy slater. All exposed portions of dormer to be earefully covered with felt well lipped. Cover east nad south gables as shown with Dancy's. Ontario, o thet equally approved tiles, of good rich. dark red color, well sucured 10 walls, and laid on heavy fek, well haped and tacked.

TINSMITI.

Put 4 in. eave troughs of galvanized iron to eaves of back porch, find 5 n. do. to enves of house of No. 28 gauge iron. ßutters to be stiffened with $7 \cdot 16 \mathrm{in} . \times 7-16 \mathrm{in}$. Wrot Put thrs and well secured to rafters, and to have ancks cirrice up to sinics. put thrte (3) stacks of 4 in . octagon down pipes to house and one 3 in. to lanck porch, all to be of the very best iron No. 28 with iron hoolfasts, and extending tn surface of ground and there connected
with drain pipes with proper caps to pipes. Cirry 3 in. down pipes from guiters on south gable to main eaves.

PLUNDER AND GAS FITTER

Lay on through house best tested iron piping. berinning with is in. at meter, and connected with various points marked on ptans with letters P for pendants aud Is for brackets, mipples left enpped ready for fixtures.
Pipes to diminish according to position to s in. $y_{\text {in }}$ in., and $1 / 2$ in., all to be Pipus to diminish accorcling to position to I in., $1 / 4 \mathrm{in}$., and $1 / 2 \mathrm{in}$., all to be thoroughly tested. Drop lights to be taken out of the side of supplies and all supplics to brackets to rise from supply leyelow, and in no case to drop from pipes overhead. Lay on suparate supply from separate meter, 10 two fre-piaces on ground foor and 10 gas-stove in kitchen, beginning with $\%$ in. and diminishing to $8 / 8 \mathrm{in}$. Provide cocks with keys at fireaplaces. Lay on water to sinks, bath, basin and water closets with \%in. 6 lbs. lead supply. Service from street line to line of branches to fixture to be $\$ / \mathrm{in}$. 8 lbs . lead. Provide hose connection at window of furnace rooms with key cock, and provide stop and waste cock near foor, Put 34 in . brass stop and waste cock immediately inside wall of house, and all pipes to be graded to this point. Nit up in bath room best No. 14 gange, tinned and planished copper bath 6 fa. lonk, with $3 / 2$ in. 6 lbs. lead, hot and cold supply, and best heavy plated Fuller double bath cocks, plated rose and $1 / / 8$ in. overfow, $11 /$ in. Waste, Dubois trap, and brass trap screw, and plated plug and chain. Wasi basin of ixst marbled carinenware, oval, and having Molts standing waste, is in. counter sunk marble top, 1 in. back and end, 12 in. bigh. beavy plated Fuller cocks, $1 / 2$ is hot and cold lead supply and $13 / 1$ in. lead on liy means of br as clamps brovide and fit up on frst floor an all por cop hy means of br. ss clamps. Srovide and fit up on first foor an all por. celan fushing rim wash-out closet, equal in value to the Inodoro or Unitas, with lead lined tank, having bmekets, vaives, supply, overfow, ball cock, \&c., complele. Provide porcelain drip tray. Soil pipe to be 4 in . of cast iron carrict from drain 2 icet beyond wall to 4 lect above roof at point of cral tar and joints carcfuly caulked with anku coaied borh sides with pipes and teplace carth properly leveled, and cart away surpus if ane pipes and replace earth properly leveled, and cart away surplus if any. Pipe to be of weight calied or in city by-law. Provide all necessary traps and hand-hoks, with brass cleaning scrows as shown. Foot or sojl pipe will be supported on brick pier built by mason. Canry 2 in. cist iron waste from kitchen sink along celing of celiar 10 main soll pipe, sapported on wro't iron hangers, Carry a 3 in. cast jron vent pipe from basement closet nections for vents from the various traps as required. The 4 in soil pipe to nections for vents rom the vatious traps as required. The 4 in . soil pipe to be enlallo carenuly fash on to roof with ib oz, cope with in syo syphon cistern, etc complete Ventilate from seat to with 4 in. imp. syphon, cistern, ele." complete. Veninate fron stat to sprcial hue in lammed valve register in vent flue near ceiling of bathroom 7 in, diameter x entmek valve register in vint her a 9 in. tilatu. ' nim by pernse of at in enst iron pipe connected to denin and corried lilatc drmin by means of a 4 in . cast iron pipe connected to druin and carned 2 sicet above finished ground lise with return bend top. Put under bath and wash basin on firs foor proper sajes of 3 lbs. lead with $/ 4 \mathrm{in}$. waste with brass fiap valve on the simp empaying over kitchen sink. Carty proper saies under all pipes crossing ceilings. to be of marble, $1 / 4$ in. thick and counter sunk; put brass strainer on outle ized iron sink 2 ft . 6 in . long, with brackets and enamelled back and having ith in beavy lead waste with Dubois trap and brass trap screws and hot and cold supply of 16 in. lead pipe with bross Fuller cocks Fit up in and cold supply of $x_{i} \mathrm{in}$. iead pipe with brass Fuller cocks. Fit up in kitchen at back of slove on proper stind a heavy golvanized wron round supply, $1 / 4$ in. brass connections with, whove in kitehen with shut-oft cock supply, $1 / i \operatorname{in}$. brass connections with slove in kitenen with shut-oft cock pipe and cock at bottom; also place $1 / 4$ in. stop cock on supply pipe phe and cock at bottom; also place $2 / 4$ in. stop cock on supply pipe.
Boiler to be supplicd from prussure : provide conbined sife and vicuuni valve. Fit up small cast pron sink in cellar, having is in, ind macuun trapped and supplied as other sink. Overflow pipe from basin and bath to be branched into dip of traps from sime. Make all necessiry Y branches for work as required, all waste pipes to have vents of $1 \mathrm{y} / \mathrm{in}$. and 2 in . lead pipe, carried into 3 in. pipe before mentioned. Vents for w. c.'s to be 3 is. pape, carried into 3 in. pipe before mentioned. Vents for w. c. s to be 3 in.
diancer. Provide and fix from hall near head of main stairs to kitchen a proper tin speaking tube, with silver plated moulh pieces, etc, complete All to be left complete and perfect in every particular. All work to be in conformity with cily by laws.

ILASTEREEM.
Inner face of all outside walls. including attic. to be widl rentered with best hair mortar after being built and befor: battening is execuled, and make thoroughly tight also between all joists, ete, entering thervin. also with mortar its in. thick. Lath the partitions, ceilings soffis of deairs and other pances prepired for lathing, with the best sawn pine laths, I in. wide or ceilings and 1 y in. for walls, 5-16 in. apart, ends butted and joints broken every 18 in. Outer walls will be battened for lathing. Porch will dot be plastered. Plastering to bu of the best two cont work hard white fuish. The ceilings of cellars throughout to have two coats hard white inish. The first coat of plaster in all cases to be continued behind skirt ings. trimaings, etc. Form sighty roumed cormers to nil projecting angles to prineipal rooms and hall on groumd and firt floors. Simple cor in drawing room springing from woodtn picture mould. Plaster cornice in dining room to be 24 in . girth, in hall 20 in ., and in vestibule 15 in . Put \% ft. moulded centres to dining and drawing rooms, and 18 in. dianreter o hall. Form simple moulded buams in ground and first floors as shown by dotted lines. Twice lime whiten walls of cejlars. The whide to be executed with the best description of materials and workmanship, and to be eft sound and perfect after making good after other tmdes Plasterer to emove rubbish attel broom out floors on completion. Leave woodwork lean and ready for painter.

PAinter and glaziek.
The whole of the internal and external dressed woodwork usually painted and except where otherwise specified, inchading outside steps and slattod and linseed oil paint of approved sints the work to be properly knotted and stopped, and well rubbed down ufter first and second coats. This wood work of glound and first floors to be sta ned, oiled and twice varnished with best copal varnish. Treads and risers of main and back stairs to be stainer and twice oiled. No inside blinds to be inclutied in uender. Outside vene. tians to four rear windows to le piinted threc coats after priming. The visible galvinized iron work to be painted three costs. Except where otherwise specified, the whole at the windows and fanlights, glass doors, etc., to be glazed with double diamond star glass, selected free from fiaws and defects, to be well pultied and back putlicd, and bradded, the whole of the sashes to be primed before glazing. Glaze lour windows on enst elevation with $1 / 4 \mathrm{in}$. polished pinie glass, and the small square lights of casl windows in attic with rolted eathedral giass of selected tints. The giass in fuel doors obe 4 in . rough rollod plate secured with stops. Other glass in cellar to
Vol. IV.]
The Ganadian

(anadian Arachitect Competition fora Younc Arachiect's House
To Cost \$4000.20

$$
\begin{aligned}
& \text { Scole of Plans ond Elavations Sulmutted by "His Aspiranil". }
\end{aligned}
$$

Athe Plan
Th L

Besement Plon

Vol. IV.]
The Eanadian
chitect and ßuilder.
[No. 3 .

Competition
$\underset{\text { cale }}{\text { Sor Bill }}$ of Quantities
vol. IV] Ifhe Canadian $A_{\text {rchitect and }}$ ßeruilder.

be diamond star. The two windows at staircase landings and fanlights of four windows in east elevation to be glazod with stained glass provided by proprietor. Glass in vestibule doors will be provided by proprieior. Glas in entrance door to $\%$ in. be polished plate, bevelled. Glass in lanilights as marked to bs ground ; glaze borrowed light in basement w. c. with ground diamond star glass. Clean windows, scrub floors before and after painting, and doave any necessary re-glazing required.

AN ACT TO INCORPORATE THE PROVINCE OF QUEBEC ASSOCIATION OF ADOHITECTS.

Wherens it is deemed expedment for the betler protection of the public interests in the erection of public and private buildings in the Province of Quebec, and in order to enable persons requiring professional aid in architecture, to distinguish bietween qualified and unquallified architects, and to ensure a standard of efficiency in the persons practisiag the profession of architecture in the Province, and for the furtherance and advancement of the att of architecture
And whereas the persons hereinafter named have, by petition, set forth hat it is desirable that they, toyether whin such other persons as may b hereafter associated with tbem, be incorporated by the name of "The Province of Quebec Association of Architects," having for its object the acquirement and interchange of professional knowledge amongst its mem bers, and more particularly the aequisition of that species of knowlege which shall promote the artistic, scientific, and practical cfficiency of the profession of architecture: Thereforc, Her Majesty, by and with the advice and consent of the Legislature of Quebec, enacts as Poilows.

1. This act may be cited as" The Province of Quebee Architects Act.
2. J. W. Hopkins, F. X. Berlinguet, Vietor Roy, A. C. Hutchinson, A F. Dunlop, A. Rara, A. T. Taylou, M. Perraull, J. F. Peachy, J. Nelson
W. E. Doran, C. Clift, Chas. Baillairge, W. T. Thomas, W. McLen Wal bank, Jos, Venne, A. J. Pagean, S. Lesage. J. A. Proudfoot Bulman. J. Z Gauthier, J. Y. Resther, Theo. Daoust. G. E. Tanguay, D. Ouellet,). H Bernard, J. Wright, L. R. Monbriant, G. G. Lauguedoc, J. A. Chausse, R Findlay, A Gendron, L. C. Ernest Page, H. Staveley, J. B, Resthurr, J. Brown, W. H. Hodgson, J. H. Banel, A. F. Fowler, E. C. Hopkins, Eri Mann, and all other persons who may be hereafter associaled with them shall be, and are hereby constituted a body politic and corporate, under the name of "The Province of Quebec Association of Architects" hercinafte referred to at the " Association."
3. The said Association shall have power :
4. To acequire and hold all hands and property wecessary and required, in order to carcy out the objects and purposes for which lacurporation is sought, provided that the annnal value of the real estatc, held at one time for the actuat use of the Association, shall not exceed five thousand dollars and the said Association shall also have power to sue and be sued, and mplead in their corporate name:
(2). To make and pass by-laws in accordance with ths Act for the direc tion and management of the Association; the admission to the study and practice of the profession of architecture, and all rules that may be deemed necessary for the maintenance of the dignity and honor of the said profession and aiter or amend the same when deemed advisable.
5. The head office of the Association shall be in the city of Montreal
6. The said Association shall be governed by a Council, herennafter referred to as the "Council," consisting of a president, two vice-presidents, a secre taty treasurer, and six members, all of whom shall be members of the Asy-laws of the Association.
by-laws of the Associacion.
The first Councit to consist of the firateleven persons named in the first sec The first Council to consist of the firsteleven persons named in the first sec.
tion of this Act ; and they shall hold office until thelr successors are elected. tion of this Act ; and they shall hold office until their successors are elected, 6. The said Council shall meet al the cily of Monireal, within one month They shall make such by-hws as may be necessary for the government They shalt make such by-laws as may be necessary for the government of
the Association, subject to ratification at the first annual meeting of the Association.
7. The Council shall, through their secretary, give notice in the Quebee onrial Gazelfe of the completion of its organization; whereupon any person praclising the profession of architecture within the Province, on the coming nto force of tbis Act, may become a member of the Association by causing his name to be registered with the secretary of the Associntion within six months after such notuce, and by paving to the secretary
In case any such person, as aforesaid, omits to be registered within the said period or six monilhs, ibrough absence, illness or inadvertence; such person may, at the discretion of the Council, be adinitted to enrollment as an architect.
The Conncil may also admit to membership nill members of associations of architects in the sister provinces, also members of the Royal Institute of British Architecis, and of foreign assoctations of architects of equal standing on their presenting their credentials.
Architects not members of these associations, who shall have practised for five years, shall be admitted without serving as students, but shall be required to pass the final examinations.
8. Any other person who applies for admission to registration as an architect, after the coming into force of this Act. shall not be less than twenty-one years of age, and shall have served as a student not less than four years with a principal or principals entitled to register under this Act. or with any other principal or principals approved by the Council, and bave passed such qualifying examinations as may be sequired by the by-kaws of be Association except in the cases provided for by this Act.
a. The Council shall admit, as students or associates, those desirous of entering the profession of architecture.
Candidates must give one month's nolice to the secretary, giving their full immes.
They shall pay such fees and submit to such examinations as shall be necessary in that behall.
Graduates in arts or sciences of any mniversity in Her Majesty's Domirion. or of the Rolytechnic School of Montreal, shal! not be required, however. to pase any preliminary exuminations ; provided that any person who, before the passing of this Act, whs entered as a student for a shorter term hon fiye years, but nut less than three years, wibl a principal or principals approved by the counci, shall, on sed by Coumil be tititlod to passing the examinations prescribed by the Council, be entited to register under this Act.
Notice and evidence of existing studentship shall be given to the secretary be aceompanied with such fee as the Council shall. from time tinie. direct, and with prope certificatp of such studentship.
Upon and. after the passing of this Act, students sball serve such term ns requited to be served by the provisions of this Act, under indenture to n egislered architect, which indenture and any assignment hercol with af payment of such fee as the Council may by regulation direct.

The Council may shorten the period of studentship to a term, however, on not less than three years in favor of graduates of any recognized college or school of architecture or technology
The Council shall admit after sufficient examination every graduate of a recugnized school of architecture or technology after one year's study under principal approved by the Council provided the course of studies fultowed by such candidate shall brive been not less than four years.
10. The Council shall appoint an examiner or examiners for the purpose of ascertaining and reporting on the qualification of all persons who shal present themselves for admission to the study or practice of architecture.
The Council shall also prescribe the subjects for such examinations which shall take place in January and July on the days previously fixed and ndvertised by the Councl
It. The Council shall fix a tariff for the services of members which, when approved of by the Liewenant-Governor in Council, and published in the Official Gaveffe. shall be accepted in all courts of law as evidence of the value of such services. except there be atn agreement in wring.
12. The time and place of the annual meeting of the Association and of special meetings thercof, and for meetings of the Council, shall be fixed by bydaws, also the mode of summoning and conducting the same.
In the absence of any rule or regulation ns to the summoning of meetings or the Association or of the Council, it shall be lawful for the president, or in the event of his absence or death, for the secretary to summon the same
at such time and place as to such officer seems fit, by circular. letter to be mailed to each member.
13. From and after the firsi day of July, a Ega, no person shall be entitled to take or use the name or titte of "Registered Architect," either alone or in combination with any other word or words, or any name, title or descrip. tion implying that he is registered under this Act unless he be so registered. Any person who, after the above date, not being registered under this Act. takes or uses any stuch name, tille or description as aforesaid, shall be lable on summary conviction, to a fine not exceeding $\$ 25.00$ for the first offence and not execeding $\$ 100.00$ for each subsequent offence.
14. The secretiry shall, in every year, cause to be printed. published and kept for inspection at bis office free of charge, under the direction of the Conncil, a correct register of the names in alphabetical order aceording to the surnames, with the respective residence in the form set forth in schedule "A" 10 this Act or to the like effect, of all persons appearing on the general register on the first day of January in every yenr, and such register shall be called the "Arehttects' Register," and a copy of such register for the time being. purporting to be so printed and published as aforesaid, shall be primat tacie evidence in all courts and before all justiess of the peace, and thers, that the persons therein specified are registered according to the provisions of this Act: provided alwnys that in case of any person whose name does not appear in such copy under the hand of the secretary, the entry of the nanie of such person in this register shall be evidence that suah person is registered under the provisions of this Act.
The secretary shall keep a similar register of student associates.
r5. Members and student associates shall pay on such registration an annual fee as shall be required by the by-laws.
The names of those in default shall be removed from the respective registers by the secretary, after one month's notice to the parties, and shall no be re-instated except epon the payment of all arrears and such fine (if any) as may be imposed by the by-laws of the Association
16. The Council may direct that a name be removed from the register in the following cases, (that is to say) at the request or with the written consent of the person whose name is 10 be removid, or where the name has been incorrectly entersd. or where a person registered hiss, after the passing of this Act, been convicted either in Her Majesty's dominions or elsewhere, of an oflence which, if committed in Her Majesty's dominions, would be a misdemeanor or higher oftence, or where a person registered is shown 10 have buen guilty after bis registration and either in Her Mnjesty's dominions elsewhere, of any conduci or breach of the by thws orders or regulations of "The Province of Quebec Association of Architects" or of conduc infamous in a professional respect.

- When the Council strall have removed the name of any person from the register, the nause of that person shall not be again entered upon the register, except by a resolution of the Council or by an order of a court of competent jurisdiction
The Council may, by resolution, direct the secretary to restore to the egister any name removed therefrom either without fee or upon payment of such fee not execeding the fees in arrears or unpaid, and one additional renewal fee as the Council may, from time to time, fix; and the secretary shall restore the name aecordingly.
The name of any person removed from the register at the request of such person or with his consent, shall, unless it might, if not so removed, have been removed by order of the Coancil, be restored to the register, on his applieation and on payment of such fees not exceeding such fees as shall be
in arrears, and one Additional registration fee, as the Council from time to in arrears, and
time, may fix.
In the event
In the event of removal or expulsion an appeal shall lic to the Association which, at a genernl mecting. may reverse the decision of the Council.

17. Subject to the other provisions of this Act all notices and documents required by or for the purpose of this Act to be sent, mny lee sent by post. and shall be decmed to have heen received at the time wheh the letter conaining the same would be delivered in the ordinary course of the mail : and in proving such sending, it shall be sufticient to prove that the letter conregistered and put in the post.
Such notices and documents may be in writing or in print, or partly in writing and partly in print, and when sent to the Council or other authorities, shall be decmed to he properly addressed, if addressed to the said bodits or authorities; or to some officer of the Council, or nuthority, at the principal place of business of the Council or authority, and when sent to a person registered under this Act. shall be deemed to be properiy addressed.
if addressed to him according to his address iegistered in the register of the if addressed
18. All moncys arising from fees payable on registration or the anmual runewal fees, or from the sale of copies of the register or otherwise, shall be paid to the secretary of the Council, and by him pain over to the treasurer, obe appliod, in accordance with such regulations as may be made by the Council, for defraying the expenses of registration, and the other expenses of the execution of this Act, and suoject thereto lowards the support of with the profession of architecture, or towards the promotion of learning and edueation in connection with architecture.
The Council shall have power to invest any sum not expended as above. in such sceurities as shall be approved by the Government of the Dominion in such sceurities as shati be approved by the Government of the Dome the of Canada or of the Province of Quebec, in the name of any thee of such invested sums shall be added to and considered as part of the ordinary income of the Assoclation.
The Association may also use surplus funds or invested eapital for the
rental or purchase of Jand-or premises, or for the building of premises to
serve as offices, exatminntion halls, libraries, museums, or for any olher public purpose connected with architecture:
19. It shall be the duty of the secretary to keep the register in accordance with the provisions of this Act, and the by-laws, orders, and regulations of the Council.
All deeds of the Ascociation shatl be signed by the president and secretary and sealed with the common seal of the Assocmation.
20. This Act shall come into force on the day of ils sanction.

SCHEDULE A.

Date of
Refis-
tration.

Name.

HOT WATER WARMING IN DOMINION BUILDINGS DURING THE PAST TEN YEARS.

br D. Ewart and Walter R. Billings.

T'HE authors of this paper advance no claim for originnlity or noveliy, it being prepared merely to atternpt to convey to the Association an outline of some of the practice adopted in warming the various Dominion buildings with hol watet plants.
The relative merits of hot water and sceam as warming agents cannot be gone into here. They were fully considered by the chief architect who more than ten years ago sulisfied himiself on that point, and since then the Domin ion buildings have almost invariably been heated with hot water, excepting when the intermittent use of the buiking or where the use of machinery therein rendered steann more advisable, and in such few buildings as the Smend-Dowd system or the use of wood stoves were preferable.
Nearly 100 buildings ranging in size from small viltage post oflices to the Langevin block at Ottawa, have been successfully heated by warm- water and we will at once proceed to give you an iden of the class of p'ant so far adopted.
Among furnaces, the wrought iron pipe furnace, invented forty years ago by a veteran hot water heating engineer of Muntreal, to whom the excellence of the modern direct hot water heating apparatus is mainly due, stands firs lor quick circulation, durability, and ccomomy ol fuct. The surcessful pracice of the Girm inaugurated by this engineer, simown throughout the breadio chadna and rambling ouildings such os convents and asylumes satisforg ly and with a lower expenditure of fuel than could be obtained from low ly, and with a lower expenditure of fuef han could be obiained from low pressure steall plants in buildings of precisely the same chanacter, at a time whe distributed througout long, low buildings, evenly and cconomically, no e disly tue to tiod of furmace employed, and could not so readily, wns largely due to the tind of furnace employed, and could not so readily bave iron sectional furnaces then in.the market.
Owing to prime cost of the pipe furnace and its need to be built in brickOwing to prime cost of the pipe farnace and its netd to be buit in brick-
work, the chief architect has used some of the excellent sectional heaters now in the market for small and mediun sized buildiags of compact layout; but in all others where anthracite coal is used, the wrought iron pipe furnace is in all others
Where the use of bituminous coal is more economical than anthracite the pipe furnace chokes too mapidly, and the more slugpish or less mapidly circulating wrought iron tubularas well as the cast iron sectional furnacesare used for the large and small buildings respectively. The tubular furnace differs from the steam cylindrical boiler onty in hnving the steam space as well as the water space filled with tubes. It is built in brickwork, the grate under the proximal end, the flame and gases of combustion passing backward under the shell to a chamber behind the distal end, returning from thence to a second chamber at the proximal end, and passing finally cither backward over the shell to the chimney, if the draught be good enough, or passtng at once into the smoke pipe, in the case of the draught being a medium one In these eylinders the tubes have usually been $3^{\prime \prime}$, but the experience of the Department would indicate that $4^{\prime \prime}$ tubes would not be too large.
The advantages of the cast ifon sectional furnace is its relative small size and cost, and that it does for both bituminous and antloracite coal. In the smallest buildings no main larger than $a^{\prime \prime}$ is required. so that these furnnces is manufactured are ready to set up , but in medium sized buildings where larger mains were required, and in those cases where twin furnaces were considered preferable to single ones, headers for the conncction of the mains had to be providec.
In some eases where a single furnace is used, its sudden failure in cold wenther may be at scrious matier, especially if the furnace beconte entirely disabled in a town where n dupliente furnace cannol be at once obtained. In the enise of a grecshouse, such a case is worse than its occurrence in an official building. but, in any case, the want of heat even for a few days is a serious matter, besides the trouble to the officials. It would be a scrious matter to the carctaker who tives on the premises and whose solemeans of heating would then be his cooking stove. Failures, however, are of extremey rave occurrence, and in case of a pipe furnace, seldom seridus, bring usually the breaking of a cast iron connection. When plugeing the pipe is all that is necessary, intil a fitter can be had. To guard against the disagreeable probabilities referred to, twin furnaces are sometimes used with advan-age-in which case the headers are connected with both furnaces, the connections having gate valves so arranged that one or both furnaces can be used as required.
-For the piping, wrought iron pipe lars been used throughout, even the stacks of $4^{\text {p }}$ piping at the greenhouse of the Central Experimental Farm being of this kind. All pipe fittings nnd the furnace headers are; however. cast iron.
In the arrangement and layout of the mains, what may becelled the direct

[^0]system, i. e., that which offers the shortest distance and ensiest flow to and from the heatiog surface, is used. The flow and return mains are councerparts, and go side by side. In no case hns the system some architects adopt of baving a separate fiow and return from the furnace to ench heating tract been used, although, ill some cases, one or more mains are taken. of the header exclusively. for the use of the ground floor. When separate mains, as aforesaid, are used for supply of ground floor healing surface, they are always taken of nidlength of the hender, where the circuiation is more lively, the miuns of the upper floors taking the outside, and, in a 3 . circulation of the water to and greater beight of ceiling in the ground floor, circulation of the water to and greater height of ceiling in the ground foor: equal to that of the first and second floors combined, leaving all i siorey annexes out of the question. In the eases refersed to, where the ground floor minins are separdte from those of other'floors'; the two upprt floors are served from the same horizontal mains, but in all cases, whether the risers are all taken from one train, or whether lie riscrs of the ground foo: havea separate main, the first and second floors are taken fromi the same sets of risers. These risers are straight from bottom to top, the upper run being diminished in sectional area at the point where the connection of the lower tract of heatung surface is taken off. The practice of taking the upper run of a side branch of a T below the connection to the valve of the lower tract of heating surface is never used. . However, in nearly all cases the horizontal mains in the basement are trunks of which all the tisers are branches, hose serving the ground floor being devoted to it alone, while as stated in the foregoing, the others may each serve two floors.
The relative sazes of hrit water mains, branches and connections, both horizontal and rising, require some working out. Schumann and other standard writers give the rule: "The sectional area of a branch pipe must equal the areas of all the connections, and the area of a main pipe. must equal the aren of all branches." Thie fallacy of this view is casily dennonstrated, for as the internal surface, and consequently the friction, is proportionately much greater in smaller than in larger pipes, consequently thesa need not have proportionately so large a sectional area as those: In proof of this I subjoin a table gyving in one column the amount of theting surface in square feet, for the several sizes of connections, based on a proportionate he amounts used in good practice with quick circulating furnace and evenly circulating pipes:

Bore of main or connection.	Quantity of heating surface based on a proportionale increase from 90^{\prime} to a $\mathrm{I}^{\prime \prime}$ comnection.	Qunntity used in good prac lice with well circulating plant.
1 inch	50 square feet	50 square feet
$11 / 4$	$8_{4}{ }^{\text {" }}$	84 - ${ }_{4}$
13/2 ${ }^{\text {c }}$	152	200 "
$2{ }^{2}$	200 -1 4	+00 * . 4
$21 / 2$.	314	833 "4
$3 \quad 4$	450 -	1,000 "

The foregoing list is not offered as a carefully wi rked out scheme, but as an indicator of the fallacy of direct proportions. in the early days, some of the public buildings were piped on the rule found in most manuais, but with disadowant.
A large heating firm has in one plant a six inch main supplying 30,000 lineal feet of $1^{\prime \prime}$ pipt ($10,000^{\prime}$) in heating surface, circulating well, whilst in lineal feet of 1 "pipt (10,000) in heating surface, circulating well, whilst in another plant where the length of the main is greater, 7,000 lineal feet of Another example by the same firm-the plant at the McGill University Montreal, has a $2 \frac{1}{2}$ inch mnin circulating 2,500 lineal feet of $I^{\prime \prime}$ pipe in heat ing surface.
The intention in laying out an apparatus is to arrange the branches of the main in such a manner that all will circulate evenly, and if the risess for the supply of upper flats and the ensily flowing wall colls could be taken from the distal end of the horizontal main, and those for the ground floor and the cast iron madiators could be placed at the proximat end, being careful in both cases 10 calculate the individual instances at their exact proportionate rate of circulation, the mauer would be an easy one ; bu as the occurrence of such a case falls little short of a firly average mimele we do not take is into account, and various shifts lave in consequence to be made to get over the difificultics. in carrying out nuany of which we are dependent on the skill of the fitter employed. For instance, when it can be helped we must no take off many branches in the same neighborhoor, and on no oceasion take of the main a quick circulating and a sluggish branch close together. In the hatter case, where the two neighbors are flows, one witl rob the other, tund if they are returns, the one containing the warmer water returning wil back up the other and thus obstruct the circulation of the heating trace connected with it.
The custom las been to luke all branches off the top of the horizontal mains, but oceasionally, as a check, a branch is inken of the side of the maims.
The practice is to allow a radiator value both 10 the flow and the return of weh radiator or coil, For all ground flow surface and for any riser which returns or teeds but one coil on any upper foor, only the fow valve is connect ed to the radiator, while the return valve is placed in the cellar with the draw off valve beside it, in order that the single heating tract may be conreniently emptied without disturbing others-a convenience which must bu foregone in the case of one riser feeding or returning more than one radial or or coil, as in such a case, all the heating surface served by the return pip must be emptied at once. The ordinary peet valve is used on all mains beaders and branches, and wherever a valve is needed, excepting on supply conncctions of ground floor and attic heating surface, and to any heating ract which is the hast on the riser, in all of which exceptions globe angle valves are more suitable as well is cheaper.
The best kind of heating surface to employ is n matter of great import ance, and one which should be decided before the nrmngement und sizes of piping and the quantity of benting surface can be decided on. In the public buildings it was a matter presenting some difficulties.
In steany heating practice, effective radiators such as the Nason; Walworth at al, Which are atmetive in appearanec, economical of foor arca, and rapit in returning the water to the boiler, were in the market at a figure which always been their only preference to hox coils, the appearance of which has always been their only drawback. Ten years ago the so-called hot water adiator known to the profession was sluggish in action and pessessed of bu one inct, leing used by hcating engineers who where educated to the use of the now almost obsolete one ppe sysiem. Naked box coils, although excelent circulators, were objected to in some of the more preteutious used, thus andin order to hide them, cast iron sereens and marble slabs were the pipes, and affording a recepincle for dust slunys difficult io remove and the removal of which receptacie for dust, niwnys diticuit to remove 0 tright. These difficulios 05 well as that in some cases the oxigencies of limited wall space in slairuay balls and in rooms of large area having many
openings or other interruptions of the continuity of wall surface, rendering necessary a large quantity of heating surface in a small heater, cause several Canadian firms to encourage the invention and commence the manuact sement of the more recent being good circulators and. inferior in ficiency to box coils, wall coils or circulations only. There are, however, efficiency to box coils, wall coils or circutations only. There are, however, cheapast varieties, even though they may show the largest number of cstimonials, not being necessarily the most scientifically constructed, and it behooves the architect to examine if possible their.bebnvior, and to make a comparative test:
The wall coils (circulations) found most effective are 1×8 pipes or 1×6 pipes, although 2×8 and 2×6 are as frequenaly used owing to want of long reaches of uninterrupted wall. A mumber of 2×6 and 2×8 wall circulations in the Lankevin bloels at Ottawa, have each 500 feet of $\mathrm{I}^{\prime \prime}$ pipe, and several of the I $x 8$ have 300 feet. The hest form so far used, is that sometimes called a trombone coil. Thiking a $\mathrm{I} \times 8$ for example, wi have at one end wo d-branch headers one above the other, the supply and four of the heating pipes connected to the upper, and the return and four pipes to the lower -the pipes of each series of four being parallel with each other, but the upper and lower scries converging towards the distal end, where they unite by semi-circular connections which afford the mininuum of frection. These afford a rapid circulation, and being widely distributed, ensure more rapid diffusion of heat than can be had from closely packed stacks and clusters of pipe;-or from the more widely known radiator.
In a large number of cases box coils, wall coils mod radiators were used in the same building. and the difference in rapidity of flow of water in these three species complicated the problem, and sometinjes brought about unexpected results-e. g., of the risers, those to an upper hoor, and of heaters, the wall coils; had the best circulation: and as the radiators (the slowest circulations) were usually situated on the ground noor, whence the waler had less tendency than to the upper flocrs, the ground floor had two factors against a good circulation, while the upper foor had the willingness of the water to rise, and the advantage of the best circulating heaters in their favor. A series of rule; for computing quantities of beating surface proportionate to the given eubic contents, can be had in any of the books on heating, but in this clinate, an urchitect soon learns to use them merely as a basis for departure. Conditions vary so much, that even if this paper were a general one, there woukl not be space enough for its general consideration ; but the conditions in the case of one ordinary post office are so nearly those of unother, that onee a quantity is found productive of content in one, the-sime is used in the olhers. So fara proportion of five lineal feet of one inch pipe (535 squate feet of heating surfact) to etch too cubic feet of space, has been found sufticient in rooms having but one side to the weather, provided the circulation be good. When two or more sides are exposed. dive leating surface is increased $\mathbf{1} \%$ for every 2% in surfuce outside wall. Where wall coils or circulations not more than a pipes high and i pipe wide are used, a very considerable reduction in the quintity of heating surfacc is wade. The plass surface formula usually given by Baldwin. Schumann and others, is also taken into consideration
In open stairways n liberal allowance on the ground floor, very litte on the first floor, and none on the attic, stems good practice. Corridors which do not nbut on the outside wall require a very small amomt of surface, not more than I f. linent of pipe (3 of heating surthee) per 100 cubic fee of air, a proportion which the best heating firms us:* In churches and in
hospital wards, double this quantity, always bearing in mind that these figures hospilal wards, double this quantity,
refer to a mpialy circulating plant.
refer to a mpialy circulating plant.
The custom of carrying rising mans between studding in partitions and The custom of currying rising mans between studding in partitions and Pipes when carefully put up were found not unsightly, and the circulation Pipes when earefuly put up were found not unsightly, and the circulation
better when in the rooin than in the walls. Morcover, they are more readily got at, and contribute a certain addition to the heating surface in the roon. got at, and contribute a certain addition to the heating surface in the roon. open to the atm sphere. It has three connections-one from the bottom to the furnace, one from the top to the furnace roons where it aets as a telltale when the fircman is careless enough to let the wnter in the apparatus looil, and one at the side to a feed tatik. It is placed above all the coils, and slould have sity, f-26th or $1-281 \mathrm{~h}$ of the contenis of the apparatus, so as to have room for the amount gained by the water in expainding from the tenperature of lise supply to 180° or 200°.

The President : I am sure we are all deeply indebted to the authors of this elaborate paper.

Mr. Helliwell: I would like to move a vote of thanks for the paper we have just heard.

Mr . Symons : I have much pleasure in seconding that.
Mr. Gambier-Bousfield : This is.a teclnical paper that I am sure we would all be delighted to study at leisure, in conjunction with the plans. I would therefore ask Mr. Billings if he would kindly leave the paper in the hands of the editor of the CANADIAN ARCHITFCT ANO BUILDER, who wishes to reproduce all these papers. I heartily concur in the vote of thanks.

Mr. Billings : I will be very happy to leave the paper. There must be architects in the west here who bave had considerable experience in hot water heating. The Department of Public Works in Ottawa is the only one I know that gets up a full specification for leating. I understand that the Treasury Department at Washington supply blue plans-or at least white plans made by the same process-to the different firms who tencler for heating.

Mr. Edwards: I an rather surprised that they find five feet of inch pipe to the hundred sufficient down in the colder section. In our practice we have for the lower fiat eight, and, if very much exposed, ten fect to the hundred; for the upstairs we use six ; and I have not found at any time that it has been at all extravagant in the aboundance of pipe.

Mr. Bousfield: I understood Mr. I Billings to have said that that would probably be the minimum, because his calculations were based upon a rapidly flowing system.

Mr. Billings: Oh, yes. If you have a large building and a cast-iron furnace you won't certainly produce anything of that kind. The great thing, of course, is to return as rapidly as possible. We use much larger furnaces thatn you use here-ordinary wrought-iron oncs.

The vote of thanks was carried heartily.
Mr. Burke: How do you account for the tremendous difference in results in different buildings ?

Mr. Billings : It is very often due to the amount of external
wall surface; there are other factors, but that is the chief. There are lots of problems to be worked out. The Montreal engineers experimented a great deal on the convents-those long, rambling building's-and the difference between the old and new buildings of the Ville Marie Convent-one heated by steam and the other by hot water-was a saving in the latter of over thirty per cent., and very much better heat.
Mr. Burke : Do you use medirect heating in your system?
Mr. Billings: No; it is all direct. Indirect heating in a cold climate is wo use. We can hardly. leave it to the caretaker employed on a small building to ventidate the building.
Mr. Townsend: Is there any supply of air more than that which comes in by doors and windows?
Mr. Billings: No ; but in the post office you don't want any more than comes in through the doors--that has been our great trouble; we have too much air in the day time. The air is all right at night when there is electric light; but where you have gas naturally you have bad air.
Mr. Curry: There are so many factors in the question of heating that it is a very difficult question to show which is the the better plan by mere statement. As far as I can see, it is almost. impossible to make a fair comparison as between systens the question has not been solved, and will not be for some time. 1 think, all things considered, that you must get better value from your fuel passing through the steam boiler than through the hot water boiler. Your boiler is at a higher temperature and is therefore more likely to burn the gases than in the ho water apparatus. In the latter, in ordinary circumstances, the temperature is not high enough to consume the gases fully, ind you consequently must lose ithat amount of heat value. (Hear hear). Then, again, if you burn the fuel and convey it to different parts of the buikling, why should the one be so much more econom:cal than the ofher? 1 will admit that for small houses bot water is more serviceable. For large buildings it is a question that depends very largely on circumstances, and on the person putting in the apparatus. There is no doubt that in a smatl room with one radiator in it, steam is rather a nuisance unless it can be regulated in some way, and water is very much nicer to heat it; but ayiin, you require such a large amount of hot water heating surface that it becomes in many cases a nuisance. You can't have a room full of coils; you want to put some furniture in. (Laughter.) What I would like to know is what has been done in a frir spirit to find out the gelative value of the two systems? This question of a man experimenting with a thing to prove what he believes is all.a mistake-he generally does prove what he does believe; and so it goes on. Then again, as far as hot water heating is concerned, apparently the Departonent have not made any use of indirect heating. I think in this country hot water heating with an indirect system is almost impossible, unless you have a man up day and night who can watch the different dampers and close the heat bere and there, and close off the aur, and other things. It would be almost impossible to prevent occasional freezimg of the pipes and consequently-repairs; whereas with steam it is possible to heat a building on an indirect system very comfortably-far ahead of hot water in my opinion, and wilh comparatively little care. It has been done, and bas given grent satisfaction; and what has been done can be done again. As to fuel, I know that induect stean heating requires a large amount, as it necessarily must when you bring in fresh air and warm it up; but you have the advantage of fresh air, whereas with hot water it is the same thing as stoves, heating the old air over and over again, and the amount of air you generally get in from crevices-which generally comes in from the windward side, and is allowed to pass out of the building to the leevard side. What I would like to know is, whether the Department have made the attempt to find out by actuat comparison the difference in the value of the beaters as manufactured here and also in the States; and also if they have made any test on a fair basis as between steam and hot water heating?

Mr. Billings : The trouble in following Mr. Curry is that he has gone into the whole question of heating. Before going into the matier, all the best plants in the Dominion had been care fully examined, and all the work previously done by the Department gone into; tables lad been kept as to the consumption of coal, and so on. There is nothing against indirect beating with hot water any more than there is with steam. As to the results with coal, you don't get any results at all with stean until you get steam; whereas with hot water, the very minute the water is even a fraction of a degree over the temperature of the room, you are begimuing to gain the licat; that is one of the points on which you can count. Excuse me if I don't recollect all the things you have said, Mr. Curry, (laughter) but it was a very wide speech. So far as the different kinds of radiators are concerned, they have been very carefully tested. We have scen the test of the different kinds, but of course we would not care to say anything about it here. As you sity very rightly, wall circulations take up a great deal of room; but still, on on the wall, where they are only one pipe wide, they are not so very much in the way. You can put a cap or moulding over thein so that anything being pushed back won't strike them. I read in Mechanics of a very interesting test last winter in New Jersey, where they built two green-houses and put the same ganatities of pipe in both. After laying the fire we find one great advantage in favor of hot water is, that we don't require'to fire more than once every twelve hours; a man does not require
to run and see whether his fire is all right and his guage-cocks are all right; and if about the same heat is wanted it will go on all right without any trouble to anybody. In the test I referred to, the same quantity of pipe was used, and they got 26% in favor of hot water. That is the only. tesi I have seen recorded. It scemed satisfactory enough, but still it would nờ be an answer to everything. I was not 'sure whether Mr. Curry said that you could leave stcam heating apparatus and it would be perfecily safe at night.
Mr. Curry: I know there are two stean plants in this city which can be kept running eight hours without touching.

Mr. Edwards: That is low pressure steam?
Mr. Curry: Yes.
Mr . Billings: I have seen an apparatus in Otawa run for cighteen hours, but of course a man couldn't do it every time.
Mr. Curry: lt is not a rare thing to have our hot water radiators caught in exposed positions-vestibules, or where the pipes come up near outside walls-partly through the great change in temperature.
Mr. Billings : We don't put our pipes in walls-we keep them in the room. It is very easy to frecze pipes, 1 know. Of course there are all kinds of objections against hot water; and there are objections against steam. Still, I would very much rather hear any questions on the practice we have been using, than any relative differences between hot water and steam. It is reilly those who have made up their minds that hot water is best that we intended more to speak to. There are no better judges, 1 think, of whether, in an ordinary building, one kind of heating is better than another, than the nuns. They like to be warm, and they are in the house all the time, and I hatve spoken to a numoer of those that are in command of the heating apparatus, and I never yel found any of them that believed steam to be better. The Superior of the Providence Nuns, in Montreal, came from Boston, and she got Mr. Wallworth to put into the very large building a low pressure steam heating apparatus, which is magnificent so far as fitting and practice are concerned. When they went to build their other house, which was just about the same size, they had been making comparisons with steam, and they found the difference was over a hundred tons of coal in a building of the same size, so adopted hot water instead.

HINTS ON ESTIMATING.
 by Oiven b. Maginnis.

Wilen fguring on special finished joiners' work, as cupboard fronts, loset fronts, doors, dressers, etc., if in quantity, send the list to the mill for an estimate, and add your own percentage of profit; if one or two only, figure on the time and stuff your, own workmen will consume in making them and add profit, and avold taking mill prices for shop prices, and vice versa.
If you have a job of fencing to do in the early spring, do not make the common mistake of allowing only the ordinary time for digging the posi hotes It must be remenbered that the surface of the ground is imprea. nutted with solid frost to a depth averaging from $18^{\prime \prime}$ to $36^{\prime \prime}$. and it is so hard that it must be broken with a crow- bar or pick-axe. which will take swice the tine to do; therefore charge twice as nuach as in summer time. Another thing, before figuring on digging of any description, surwey your ground carefuily, nond if necessary use the boring rod to ascertain what sort of material your men will linve to handle, and estimate nceording to its nature and the time you know from experience it will take them to complete the job.
If a carpenter has doors to trim up to $7^{\prime} 6^{\prime \prime}$ high, which have common samight faced jambs and ordinary corntr blocks, irimemd and modded casings, hee ean safely figure selting the jambs at 15 cents 2 set and trim at 15 cents a side complete, as an good mechanie will set 20 sets of jambs in a day and pit on 25 silles of trim. Figuring wages at $\$ 2.50$ pCr day, the buider wilh get a good profit.
A good mechanic will fit and hang 12 pine doors in a day of ten hours, and do theni right, so with wages at $\$ 2.50$ per day, pine doors can be fitted ind hung for 25 cente a piece. By following this simple method of estimating labor, any butilder zoho Anotws his men may colculate bis labor very safely. Never overrate your men, and if you are unuequainted with their eapabil ties as mechanics, make your armngements so that if you can't change them for better, you may not lose by their slowness or want of skill. It would be wise so select an efficient staff of rapid and accurate mechanjics and retain them while it is possible, and when you must lay them off retain cheir addresses, so that you may again hire them when neecssary.
When approximating mails in quanity, it is wise to allow a certain percentage for poor nails, lient nails, nad those lost or spoiled in driving, as this always in all cases tells.
Finally, as profitable estifmating consists in providing against the expendture of time, fabior or material likely to be unprovided 「or, it is judicious to spend all the lime possible in making allowanee for small delails which are absolutely necessary, and which only involve more expense and loss if not provided for in the amount of the estimate when sent in.

" PLASTER AND : PLASTERING."

Toronto, February 13, 1891.
Ediot canabian architbet and bullobe.
Sir,-1 have just come across a book in the Public Library, No. 1319 D, entitled "Plaster and Plastering," by Hodgson, and as there are a number of slatements' In it thnt are mol quite correct, with your permission I will point some of them: out.
To be as brief as possible: I have not quoted the statements in the book that require correction, but simply italicised the word that shows the cor. rection, For cxample, on page 11 it says thal "a durby is a floal," so I
have italicesied the word "not" as follows. "A darby is noo a flose." With the above explanation the reader will understand the corrections following :
P. 12. - No mould will finish a mirre
P. 17.-Laths should nof be made of hemlock, as they will ofien twist of the ceiling.
P. 23 .-Very fine sand is $n o t$ well suited for plastering. Burnt clay should never be used as a subsutute for sand in plastering, as it is only a question or time when it will kall off.
P..p. 27 and 28.-Mastic should not be.put on with a brush, but with a Howel. Poriland cement and chaik would be far more likely to crack iban Poriand mixed with sand.
P. 31. - Sands for floating should not be formed close together. The less you have the better, as they get dry, and when you fill in between thern, the mortar shinks and leaves a hollow space between. Any room from 13 to 20 fett would only. need one screed in the cenire of the ceiling in addition oo one running round the angle ; and for foating in the wall, if height does not exceed 14 ht , one screed at the top would do, put on borizontally, and the ground at the boltom forming the other.
P. 30.-The floating for stucco should not be lefi smooth; it should be eft hevel and true, but a good key left in in from the rule.
P. 33--Putty and plaster for cornices (or any other work) after getting stiff should never be wetted or knocked up to retard the setting. - To do so is to kill in.
P. 37.-For outside work Plaster of Paris stould never be used, but cither Portand. Medina, or Roman cement.
P. 48. - The scratehing for first coat of plastering on lath work should be done the same day that it is pwt on, and not left for three or four clays. The second coat dors not need scratching.
P. 4g. - There is ne trowel used for hand floating, but a hand floas.
P. 64 - Under the head of "Itenis," the book gives the cost of 100 yards of three coal plastering. with wages for plasterer at the rate of $\$ 3.00$ per day. The toral cost is $\$ 16.00$, or 16 cents per yard. The conclusion is arrived al as follows:

You will notice the hnir is of a very fine quality if price is anything to go by. It must surely be "Plasterers' Hair," as we sometimes see adverised, and not 'Cow Hair for Plusterers' Use." Then ngain there are no luths used, although the nails were there, and also the lather who charged his cime. No puity or plaster used, and yet the plasterer finished it, or at least got paid for doing so, but it appears there was no labourer, or else he gave his ume for nothing.
The beautiful simplicity of the multiplication and addition is a marvel. No wonder it was done for $\$ 16.00$. As the book has heen written for the benefit of young plasterers, I think it well to call the attemion of your readers to the nbove errors.

Yours truly.
G. M. Gandek

PUBLICATIONS.

A very interesting Chrisimas number of the Australiant Builder, pullished ul Sydney. N. S. W., has reached our table. We shall have the plensure of receiving the Bütlder regularly in future.
That excellent journal, the Donnsion Iluystrated, is steadily improving under its present onergelic managertent, and is as steadily groviving in putslic favor. The enlargement 1024 pages weekly afforded opportuntity for great improvement in its literary contents, the contributors to which now nelude many well-known writers. Historie skerches, healthy fiction, erisp ditorials on current topics, brixht correspondence from London, New York, Toronto, and orher citie, sports and pastimes, humorous sketches. dian scenes, events and personages, a charming journal for Canatian readers.

NOTICE TO CORRESPONDENTS.

If the writer of the letter signed "Plumber," forwarded to this journal for publication, will comply with a well-known journalistic rule, by forwarding his name and address, ats a guarantee of good faith, his communication will be published. We cannot print anonymous letters without knowing who are the authors.

Quebec Architects:

J. W. Hophins, R.C.A.
E. C. Hojkins.
J. W. \& E. C. HOPKINS,

Architects anu Valuators;
145 St. Jomes Street. . Federal MONTREAL bell Telephome $999 . \%$, Fideral :Telephone gas.
F. X. berlinquet,

Architect and Valuator.
201 St. John Street,
QUEBEC.
Victor Roy.
1.2. Gauthier.
$R^{\text {OV G GAUTHIER }}$
Architects and Valuators, 180 St. James Street. - MONTREAL. Hell Telephone 27 s 8.
CHRIS. CLIFT,
Arcleitect and Valuator, rBo St. James Street.

MONTREAL Bell Telephone 1956.
W. E. DORAN.

Architect anul Valzator,
8_{5} ST. James Street, MONTREAL, Bell Telephone ragg. Federal Telephone ist.
A. C. HUTCHISON, R.C.A.,

Architect and Faluator, 18i St. James Strect. - MONTREAL. Bell Telephone 8s8.
A. F. DUNLOP, R.C.A.,

Architect and Faluator,
162 Si. James Sureet, \qquad MONTREAL. -Bell Telephone 16as. - Federal Telephone gor.

A. RAZA,

Architect and Valuator,
3 Place D'Armos Hill.
MONTREAL Bell Telephone g61.
M, Perraulk.
A. Mesnard.

Perrault \& mesnard,
AFOFITTHOT白
is \& 17 Place d'Armes Hill. - MONTREAL. Bell Telefhene Gys. Fedeval Triephone 83s.
A. T. Taylor, F.R.I.B.A. R.C.A., C. H. Gordon, Taylor a cordon,
A.EROXITMOTS

Union Buildings, 43 St. Francois Xavier St. Bell Telephene $\mathbf{a s i n g}^{8}$.
J. F. PEACHY,

Architect and. Fahuator,
444 St. John Street.
QUEBEC.
J. NELSON, A.R.C A.,

Architect and Faluator,
1724 Notre Dame Sireer, . MONTRTAL. Federal Telephone ${ }^{380}$.
JOHN JAMES BROWNE,
Architect and Valuator,
207 St. James Street. MONTREAL J. B. RESTHER \& SON

AROEITIEDOTE
Officet: fanserral Building, MONTREAL 107 St. Jamest Sf. Telephone 1800

THE BEST MAKERS IN AMERICA, ENGLAND AND FRANCE.
A large variety, most carefiully selected, for sale by
JOHN MURPHY,
2301 St. Catherine St., MONTREAL.
$\mathbf{W}^{\text {M. T. THOMAS, }}$
Arehitect and Vahector; 294 St. James Street, - MONTREAL.
A. G:: Fowler. $\because, \quad \because$, , Jo H. Dowe.

FUWLER R ROWE,

Architects und Valuators, 198 St. James Street. - MONTREAL. Bell Telephone 3694.

Theo. Dasoss.
Arthur Genciron.
DAOUST \& GENDRON,
AROEITROIS
99 St. Jances Sercet. - MONTREAI Bell Tekephonc 2340.

R OUERT FINDLAY,

Archttect and Faluator,

Naw Yurk Life Bldg, is Place d'Armes, Montrial. Hell Telephone 2557.
J. H. BERNARD,

Architect and Taluator,
Imperial Building, Sl Jomes Streel, MONTRFAL. Bell Telcphone 2785.
W. H. HODSON,

Architect and Faluator.

45\% St, Antoine Street, - MONI REAL.
$\mathbf{W}^{\text {RIGHT }}$ \& SON
Architects and Valuators,
Mechauics' Institute Building, MONTREAL. (Room 23)
J. Haynes.
G. de G. Languedoc.

Languedoc \& haynes,
Arohitsots and Civil Engineers,
Offices: 162 St. James Streat, MONTREAL Bell 'Telephone No. 1723.
J. A. P. Bulman,

Architect and Vahtator,
156 St. James Sireet, - MONTREAL.

$S^{\text {MON LESAGE, }}$

Architect and Ctvil Eugineer,
17 Place dArmes Hill, . MONTREAL. Befl Telephone $\mathbf{1 8 6 \%}^{3}$
C. CHAUSSE \& E. MESNARD,

AROETTBOTA

Room 34 Imperial Building. MONTREal. Bell Telephone 2o8o. - Federal Telephone 846.
H. ${ }^{\text {staveley, }}$

AFOEFITEOT

113 St. Peter Street,
QUEBEC.
J. alcide chausse,

ARCEITEDT
No. 77 St. Jame: St., - MONTREAL.
Bod Telephone 3 sts.
Archiltects, if you want a first-olass artiole,

Samples and pricas on application to
BUNTIN, REID \& CO., Agents. TORONTO.
P. Lorie.
A. Lorric.
P. LORTIE \& SON,

- Architects and Velucutors, 1933 Notre Dame Street, - MONTREAL. 193811 Talephone 1836 . Federal Telephone 4.07 .

Montrieal Contriletor:
PETERITAL工,

BULLDER,

132 Bishof Stheet.
MONTREAI.
JAMES AMESS,
BUILDER AND CONTRACTOR, 260 St. James Street, - MONTREAI.

JAMMES DOIK, BR., CABPENTER AND BUILDER.
Jobbing promply attended to. Telephone No. ${ }_{4}^{382}$. Corner Guy and St. Catharine Sts., Muntreal.
J. BENTAMMN DAGENAIS, SUccessor to Gohier \& Datenais,
No. 210 Guy Street - MONTREAL All kinds of repairs dune on short notice; prices mod. erat-: Estimatess ruraished. Federal Telephone isssResidence: 36s Richmond.

EDFPARD HAMILTON,

Carpenter and Builder
to St. Bernard Street, MONTREAL.
Shop and Office Fituing and General Joubine promptly allended to.

MqCRAE WATSON,
Practical Plumbers.
Gas, Hot Water and Steam Fiters, \&c. 796 Dorchester Street. - MONTREAIFive doers west of Leaver Hall. Telephone No. ${ }_{1} 1$ te.

JOHN MURISON \& CO., Carpenters and Joiners. 41 JURORS ST., (ncar Bleury,) MONTREAL. Al Jobbing prompily atuended to ar reasonalye ram 8.
Shop finting a apecialty. Telephone No. 2964.
W. a.

General Contractors and Builders

> Room 56, Imperial Building
ion St. James Street, * MONTREAL. Repaits to Mrasoury and Cut Stone Work prominity attended to. Feyeral Telephone 930 .

Stenofraphers.
hOLLANO BROS. \& URQUHART. STENOCRAPHERS AND TYPEWRITERS, No. 173^{8} Notre Dame St. . MONTREAL.

Iteil Telephona No. $\$ 96\}$.
 NELLA DIXON.

STEMOCRAPHY AND TYPEWRITING,
6s Teaple Building. - MONTREAL Bel Telebhone No. 1891.

manimactured hy
CO.
ADAMAMT MFG.
60.g 100 Esplanade East, $\underset{\text { TELEPHON: } 2081 .}{ }$ \qquad
TO ARCEITECTS.
Office and good-will for sale, or will take partinct ; .. city. For full particulars, address RUIL,PRR.

PHOTO-ENGBAVING

By the Latest Methods.

HALF-TONE

Direct from Photos a Specialty.

CUTS

For. Newspapers, Magazines, Books, Catalogues, and all advertising purposes, mate with promptness and despitch.

REPRODUCTIONS

Guaranteed as good as copy.

Sumples'rnd prices on "pphivation.

The Canadian
 Photo Engraving Burean

20.3 YONGE sin.

- TORONTO.

MOORE \& ALEXANDER.'*

Proprietors.
T The accompanying cut is a sample of our. Half-Tone.

Hospital for Sick Cimimelen. 'Toronto, Can.-Piastrred with Adimiant

Adamant

 is the Modern Wall Plaster, while old style mortar is a relic of the dark ages, and has been tolerated for centuries for the want of a better substitute.Adamant dries within three days; lime mortar is soft and damp for weeks.

Adamant only requires heat for ten hours after application in the coldest weather; ime mortar requires heat and constant care for at least a month in such weather.

Adamant is not affected by fire or water, and cannot be broken or marred by furniture. Crumbling walls, falling ceilings and defaced decorations are unknown where Adamant is used, It is mixed with water, and applied by any mason, in the ordinary manner. It has been used all over this country and abroad for the last four years, and is endorsed by architects, engineers, and scientific men.

Write to anll of the unlersifmed for information:

[^1]The United Adamant Eio. Haltimore, Met. The St. Louis Adamint Co., St Solis. Mo. The New Enghand Adnunnm Co., Boston, Mnss. The Ohio Adamant Pinster Có.. Coluribus, Ohio. The Ohio Phater Co., Cleveland. Ohio
The Nebraska Adnmant Co., Omaha, Neb.
Tlie Adamant Plaster Coo., Indiannpolis, lnd.
The Connecticut Adnmant Co., Now Haven, Cons.
The South-Enstern Adamant Co:, Savanmah, Georgia. Adamdnt Plaster Mry. Co., Tacomin, W. T.
The Adamant Mig. Co., Toronto, Cnn:

[^0]: Architects. $\begin{aligned} & \text { Pead at the Third Annual. Convention of the Ontario Association of }\end{aligned}$

[^1]: The Adamant Manufneturing Co.. Syracuse, N. V. Adamant Manufacturing Co.. Bennett Bulding. N. Y. the Keystone Plaster Co., Philadelphin, Pa The Keystone Plaster Co., Pitsiburg, Pa. The N. W. Adrmant Co.. Minneapolis, Mimn. Tlie N. W. Adnmant Co., West Superior. Wis The N. W. Adamant Co., Milwaukee, Wis. The Michigan Adamant Co., Detroit, Mich. The Michigan Adanant Co., Grand Rapids, Mich. The New Jersey Adamant Co., Hinrison, N. J. The Chicage Adamant Co., Chicngo: : III.

