Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for scanning. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of scanning are checked below.

Coloured covers /

Couverture de couleur
Covers damaged/
Couverture endommagée
Covers restored and/or laminated /
Couverture restauree et/ou pelliculee
Cover title missing /
Le titre de couverture manque
Coloured maps /
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serree peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

L'Institut a numérisé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de numérisation sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées
Pages restored and/or laminated /
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorees, tachetées ou piquees
Pages detached / Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression

Includes supplementary materials / Comprend du matériel supplémentaire

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from scanning / Il se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas eté numérisées.

T12

UPRER CANADA JOURNAL

Or

-

FOR NOVEMBER AND DECEMBER, 1852.

ORIGINAL COMMUNICATIONS.

Anv. XXIV.-The ITip-Joint, considerations on its injuries and disease. deduced from Anatomy. By S. J. Stratrond, M.R.C.S., Eng., Toronto.

Introdectiox.
The injuries and diseases of the hip-joint, are often among the most complicated and undefinable, which the professional masi has to deal with;-extremely difificult of accurate diagnosisdreadfully degrading to the practitioner, should he, through ignorance or carelessness, fail in his jutgment. Nay, he is accountaWe for the inevitable lameness and deformity which results, net only in a Court of Justice, but also to public opinion; while the hapless patient, a cripple for life, haunts him like an evil spirit, at every turn of the road, reminding him of his incapacity or negligence. What an incentive then, to the study of these diseases, especially when we are assured that there are some varieties which, even with the most profound knowledge and careful attention, will leave painful marks behind chem. These aceidents and diseases of the hip-joint should consequently form a study of patamount importance to the Surgeon, challenging in him the most profound and accurate knowledge of the anatomical structure, and
functions of the part-a knowledge, not the mere cram of a tyro but a permanent and abiding impression of careful dissection, athl inductive study. It must be the thorough convigion of every practical Surgeon, that from our just notions of thefmatomy and physiology of the part, shall we draw our true imptessions of its pathology; these will give a wonderful simplicity and eatre of comprehension to our subject, that would otherwise certainly deceive and confound us. If then such knowledge is indispensable i.t practice, be assured that the consideration of the different str ctures, which enter into the composition of the hip-juin, st mili precede our reflections of its diseases; for from their nature and character, will be deduced the variety of symptoms, that in beacons must guide our judgment to a just conclusion.

The hip-joint is the most marked instantee of the tall and socket-joint in the body-it possesses the greatest amount of motion, and carries the heaviest weights of any such character on joints. The head of the bone is the point or axis, on which the movements of the body centre-it has a coutimual and ahidiug motion-we cannot turn the limb, or incline the body, whant causing mure or less rotation of the head of the bone in its sochet. Should we bend the trank or turn the limb, the motion is nut in the spim, on in the leg, but actually in this joint. Occasionaly it bears the whole weight of the body, and not untrequently a heav ioad begides. During progression the load is contmually tramstetred from one joint to the other-may even should we tarn in hed, the least movement of the body infuences this joint, and although at oftea bears the whole weight of the body, it moves in all pussible urections, with an ease and facility most wondertul. The hatejoint ast, madoubtedly bears the whole weight of the body, but itmovenemt are more confined, having but the action of the simple hinge, while that of the hip-joint, allows the greatest possible amdut of motion, with the most perfect security to the articulahor. Strould then the hip-joint be diseased or injured, we can at ones ace unt for the horrid pain, the least movement of the hady causes the patient, and shall observe that lie lies fixed and stationary in bed, abjuring the least change of position, or shake of his bed.

The Acetabulom or socket for the liead of the thigh-bone is formed in the centre of the os imnominatum, or largest bone of the pelvis In carlv life the bone is divided into three distinct Hivisions, which are united by intermediate cartilage, and all cons. hined as in a centre. These several divisions are called the ilium, ischinm and pabis. But in the adalt they are all united into ons bone, and together constitute the deep and firm socket for the head of the thigh bone. During the greater part of youth these paris
till have a cartilaginous union, are imperfectly ossified, consefuently they have more vascularity than the fall formed bone; hence may be one of the reasons of the greater tendeucy to disease ot this period of life, while this formation admits the possibility, that these divisions may now be burst asunder by the forcible driving into the acetabulum of the head of the thigh-bone. Vear this line of junction of these bones, we may see the deep and circular pit, which lodgres a mass of fat, and gives attachment to the round ligament. The free edges of the acetabulum are eked mut with cartilage, so as greatly to deepen its cavity; the upper part formed by the ilium, is the deepest and strongest, here the head of the thigh-bone lies deep covered by the broad and strong lips - here, too, rests the whole wait of the body when in the erect pasiton; and we care easily understand that when a person falls from a heirht, fhimitivhts upon his feet, the greatest resistance is offered at this point, which being transferred to the neck of the thind-bone, it not unireqently yiflds to the impulse. Not so with be lower part, for not having to bear the weight of the body, the head of the thigh-bone is mach more superticially lodged. Its margin is but partially formed of bone, and is filled in with ligament to complete the cup. Here, too, there being least presvure from the head of the bone, is situatel that mass of fat, wheh erves greatly to amplify the labricating apparatus of the joint ; tued to be called the ligamentum mucosun. So large a joint require to be contanty moistened with fuid to facolitate the movenents, and the liniur membtane of this apparatus has to be largely supplied with blond, and here, in a notch in the bone, we thid the spot where the bloodvessels enter atie from presure during me varied movements of the heal of the thigh-bone. This defiriene! of bone in the margin of the aceabuhum, which is filled up with ligament, may be one of the reasons why lnation downwards int, the thyroid hole may be more easy, aldhatyoh it is not more erequent, than upuards upon the dorsum of the ilimm.

The head of the thigh bone differs in character from any other mone in the boily. It is beautifully round, almost a perfect ball, "xept where it juins the neek. It is covered with a beausitul mooth and elastic cartilage wherever it. surface touches the odyloid cavity-this is also lined with a similar structure, and permits movement, with the greatest ease and facility: The head of the humerus, thongh of a somewhat similar character, and perhaps admitting of equal latitude of movement, has not the depth and trength or perfect form of the head of the thigh bone; for while the liead of the shoulder bone is the smaller segment of a larger circle, and is, as it were, just haid against the glenoid cavity: this the larger segment of a lesser cirde, is so entirely baried within the deep and firm cavity of the hip-joint, that even in the dead subject it requires considerable force to remove it from the socket,
even after the capsular ligament has been completely divided. Upon the superior face of the bone we see the dimble to which the roundligament is attached,--Which direct attachment to the bottom of the acetabulum, may constitute one of the means to prevent luxation,-at the same time, by the vessels that course along it, it presenforatimited and imperfect supply of blond to that very isolated structure - the neck of the thigh-boue.

The head of the thigh-bone is placed upon an extended neck, which is essential to its free moyements. It is placed at an angle witly the shaft of the thigh-bone in the most unfayorable direction. -from the oblique direction in which it bears the weight of the body; it removes the great trochanter to a considerable distance from the pelvis, and hereby constitutes a fulcrum for the more powerful action of the different muscles which surround, and produce the variad movement of this important joint. It is particularly worthy of remark, that when we stand erect, the weight of the body is fairiy balanced between both necks of the thigh-bones, undoubtedly in a most unfavourable direction; but when we rest the bady upon.one foot, the neck of the bone becomes more direct, and its position-is placed to bear the increased weight with more advantage to itself. This occurs in every movement of the body. As we walk each bone alternately bears the whole weight, and as it rolls in its socket, still beautifully maintains its direct position in the axis of the body. Our surprise, too, is not lessened when we ebserve that this transverse neck is the smallest, and most imperfectly nourished part of the thigh-bone, $\mathbf{s o}^{2}$ that it must foreibly impress uponour minds the possibility of fracture of this part, from any direct impulse propagated from above, as in a great leap or on our unexpectedly alighting from a height on the feet. When this happens, especially in old people, whose bones are nore hrittle from the diminished amount of chondrine, fracture of this part is very liable-to occur. And we should also observe that the neek of this bone varies in length, and obliquely, as we advance in years. In youth it is long, and placed obliquely; while, as dd age adyances, it becomes shorter, and more horizontal; thereby increasing the disadvantage under which old people especially labour, in these kinds of accidents. The round head of the bone, too, in youth is connected to the neck loy cartilage-it has been said to be separated at this epiphisis by accident; but we have no very clear or direct evidence of the fact; and did it occur, it would, in all probability, either give rise to disease of the joint, and its distinctive character be lost in its stages; or, as no displacement of the bone would occur, the iujury would, in all probability, get well without our recognizing its nature.

Surrounding these parts, and completely inclusitg them as in a cavity, is the strong capsular ligament. "It is refiected from the external neriosteum nad margin of the acetabulum, to be inserted
into the base of the neck of the Femur, and encloses the whole joint as it were in a shut sack. The thickness of this ligament wares; upon the upper and its outer side it is very dense, and here, streugthened by the addition of ligamentous bands, it is singularly thick and strong; while on the inmer and lower side it is so diminshed in density that it does not possess one-fifth this strength and toushoess. Gulike other ligaments of this character, it consists of fiores whach interlace with each other in every direction,-so that the whole forms a structure of great toughness and strength, that must requre an immense force to lacerate it; but dislocation cannot oceur without its rupture-a fact that must impress the inasination with some idea of the force necessary to produce these accoleats. While after some varieties of fracture of the neck of the thigh-tone, it is powerful enough to su,port the whole weight of the body resting upm the fractured bone.

Again, this cavity of the coxo-femoral articulation is completely haed with a serous or synovial membrane which closely covers the head and neck of the bone; is reflected on the capsular ligament, dips down into the cavity of the acetabulum; covers the round ligament, and is fully reflected over the fatty stracture at the buttom of the joint. This structure consists of a basement membrane; is supplied with a system of blood-vessels, and is lined with epthehum cells, wheh produces the mucous exalation, that lubricates the whole surface of the joint.

The blood-vessels which supply the several structures of the hip-jomt are, no doubs, sufficient to nourish and support it in a wormal comdition, athough all bones covered and surrounded by a serous membrane seem to want the facility of supply, which is wot wanting to those covered with muscular tissue: hence, when we find the fracture of the neck of the Femur to occur within the capsular ligament, no blood-vessels can arrive at the head of the boue, solated at every part, except by the round ligament; and sho shd this have been originally deficient, or accidentally torn, the head would be wichout nourishment, all vascular communication with the body would cease, and, as a consequence, the bone mast die. That such has actually occurred, I have no means of proving; but it is a result which we should do well to keep in view.

The fatty matter or fimbrice which lie at the bottom of the socket were once supposed to be a gland of peculiar structure, but are now found to be masses of fat, lurking in a sort of hollow, from whence the round ligament proceeds, doubtless acting, in some degree, the part of a cushion, so as to stop the vibratory influence of a blow upon the trochanter,-it lies hid, as it were, and is scarcely influenced by the motion of the joint,-it is covered with reflections of the synovial membrane,-it seems greatly to increase itsextent, and to afford an abundant supply of lubricating fuid. These parts may doubtless be injured by a blow upon the
trochanter, driving the head of the bone deep into the socket. which not unfrequently gives rise to intense inflammatory action that.ends in discase of the joint, and permanent lameness.

The round ligament, as it has been called, is rather triangular act its base in the colyloid cavity, but becomes round towards its apex, when it is inserted into the depression in the head of the Femur. The position and character of this ligament, would appear to be intended, to prevent the removal of the head of the bone from its socket-that it does so, in many cases appears cufficiently evident-but in others, it is so very lax, thin and powerless. that it is impossible to imagine it can have any such nfluencewhile in some cases it is entirely wanting.

Moreover all these parts are covered with great and powerfa? muscles, which are intended to move the joint ; so voluminous are they in character, that the bones can searcely be distinguished through them; and when from injury, effusion has taken place in the parts surrounding the joint, great obscurity as to the mature of the accident may occur, by the-hiding of the several prominent points that used to serve ns marks to guide oar judgment. In cases of fracture of the neck of the thigh bone, the limb is more or less powerfully retracted by the action of these muscles; while in dislocation they spastoodically act, with a force that confines the bone against the pelvis with a powerful effort, and will not permit the least movement. Again, when inflammatory action shall have occurred within the joint, the excruciating pain compels the muscle to restrain the least movement of the joint, and holds the bone with a spasmodic grasp that plaimly indicates the intensity of the patients suffering. In disease or injury of the hip-joint, a thorough knowledge of the position and action of these several muscles. is indispensible, and must materially facilitate our just comprehension of the pathology and injuries of the part; will point out the action of those muscles, which, when the bone is displaced from the acetabulum, will be shortened and relaxed, and form no imperiment to its return into the socket; while it will also indicate the condition of others, which having the distane between their origin and insertion greatly increased, will he constantly and powerfully thrown into a state of spasmodic actiom. these will retract or tarn the bone into some abnormal positin: facts of vast importance in the consideration of this subject. and if duly studied, will afforl us data of inestimable service, towards forming a correct diagnosis of the mature of the atcident or character of the disease:

We may plainly perceive from the nature of the lip-joint, that the movements are great and varicd, that it can execute flexion, extension n_{5} abduction, adduction, circumduction, and rotation of the limbi, movements performed by warious sets of museles which, arising fromithe pelvisj, act upon the thigh either singulatly
or combined. We must also remember that when the thigh becomes a fixed point, the same muscles act upon the trunk and serve to move it in caried directions-thus in walking when the action is alternate-first the limb is moved in advance by the muncles which at upon it from the trunk, and when this is fixed firmly upon the ground, the same muscles act upon the trunk, and roll the pelvis upon the head of the thigh bone. For the most part these large and poweriul museles may be conveniently arranged according to their actions; some among them are antenden to move the thigh backwards and watwards, such as the gintens mosimus, medius and minimus; while the second set moves it backwards and rolls it apon its axis, such as the pyritorms obturator externus and internus, gemeli and gudratus fomosis: and hastly, those which move the thigh forwards and innards, the psons magnus, ihacus, internus, and pectinalis. Odher mundes when dothe the limb, no doubt produce a nove or less directaction upon the joint, but they do nut seem so powerfully to influesce the time in is abnormal positions, and consequently wih not requre sucta minute attention.

The gluteus maximus arises from the back part of the crest on the ilium, from the junction of the iliumand sacrum, the sacro-senatic ligaments, and from the os coxeygis. It is a harge square and fienty muscle, proceeding in an oblique direction duwnwards, is insorted hy a flat and broad tendon inte the root of the trochanter and line of the linea aspera, for abont three inches of its outer sade. This muscle forms the chief contour of the hip, covering up the other muscles, and when in action serves to extend the thigh upon the peltic, and addnct it towards its fellow, but when the thigh is faed it draws the pelvis backwards and inclines it to its own side. The cluteus medius is placed immediately below the former muscie, ant is considerably smaller in size, thimer, and fan shaped, anning from the anterior and middle third of the crest of the shinm. trom the semicireular line matiked apon the dorsum of that bone. its fibres converging descend direetly downwards and form a short Hat. and strong tendom, that is incerted into the fore part, and top of the trochanter major. The muscle corresponds in action with the gluteus maximus, serves to increase its motive power, and to make it more perfect in its elaracter, as an extensor of the thugh. 'The gluteus minimus is a thin, regularly radiated muscle. the deepest of these three museles immediately nest to the bone. It arises from the lowest part of the dorsum of the ilium. tmmediately above the part which forms the sacket of the thighhone, and from the borcier of the sciatic notel. Its nibres converge downwards, cover the acetabulum and neck of the femurthd form a round strong tendon, xulich is inserted into the forepart of the trochanter, and immediately above the neck of the ungh-bone. The use of this musgle is evideatly imended sth,
further to increase the power of the two former glatei; it corresponds with them in action, but its fibres being deeper seated. are more confined in their origin, and much shorter-will be much more deficient in power, and its action must te simply that of an extensor of the limb.

Taken as a whole, these muscles present a most powerful moans of keeping the body erect upon the thighs; enabling man to assume that position which so strongly characterizes him from the brute creation. We find this series of powerfnl muscles arising from one of the largest and mostextended bones of the hody, their fibres proceeding downwards from a very large segment of a circle. are inserted into the upper part of the thigh-bone, douhtless the separate contraction of each set of fibres approximating their origin and incartion, may either abduct, adduct or extend the limb, according to their position; but if they act consecutively they will serve to rotate the thigh-bone in its socket, move it in a circle upon its axis, and turn the toe outwards or inwards according to their individual action.

The great nerves and vessels, which make their exit from the pelvis through the sacro-sciatic foramen, issue beneath the pyriformis muscle, and descend through the space between the trochanter major and tuberosity of the ischium, are l:ere covered and defended by these mascles. and must not be forgotten in our general consideration of the anatomy of this region. We must bear in mind that disease of the great sacro-sciatic nerve is oftell intensely painful in its character, the pain being grently increased upon motion of the limb;-so much so, that the spasmodic regidity of the thigh, has been mistaken for disease of the hip-join, especially when it has happened in young children.

From our considerations of the normal actions of these muscles we can easily understand that should the neck of the femur te broken across, that bone will be drawn up on the dorsum of the ilium. The degree of this distortion will depend upon the positive seat of the fracture, was it within the tense and firm capsular ligament, it would be hut little elevated above its natural position. but was it without that texture, and implicating the shaft of the bone, its retraction might amount to several inches, and tle deformity be sufficiently marked by the oye. Was the lead of the bone dislocated upon the dorsum of the ilium, the shaft of the bone would be thereby elevated above the plane of the acetabuhm the origin and insertion of these muscles, consequently approxis mated; they would be relaxed and loose a great degree of their power over this bone. Such also, (but slightly modifiedi. would be the case in dislocation into the ischiatic noteh, but when we have laxation into the thyrod hole, the thigh-bone has descended, the distance between their origin and insertion is considerably increased, consequently they are in powerful action and serve to
retract, abduct and rotate the thigh-bone outwards. Again when the head of the bone rests upon the pubis, the plane of the trochamter is but slightly elevated, some fibres of these muscles will be in a state of contraction, while others will be more or less relaxed. The fibres arising from the os coccygis and sacrum will now roll the thigh-bone outwards and retract it backwarks. These ficts are clear indications of the intense interest with which we must regard the action of these muscles, whenever the coso-femoral artieulation is the seat of injury.

The next set of muscles are those which flex the thigh upon the body, adduct the limbs and turn the toe outwards, these are the psoas magnus, iliancus inturnus, and pectinalis. The pesa magnus is a musele that comes from the anterior part of the spinal column, and descends downwards passing over the edye of the pelvis, to be inserted into the femur; it serves with the iliacus internus to balance the muscles on the back part of the hip, and to preserve the equilibrium of the body. This long round mucle fills up the space upon the side of the spine, it comes from under the ligamentum arquatum of the diaphragm, arising from each of the lumber vertebra in succession-the transverse process as well as the bolies-it then descends until it reaches the sacro-iliae symphysis, and is then united to the internal iliac muscle, descending with it under Poupar's ligament, to be inserted into the lesmer trochanter, and ront of that proces=. The union of this musele with iliacus internus, and its insertion into the same spot, gives them the same mode of action, and has led many anatomists to consider them as part of one and the same muscle. The iliaens intermus lies upon the concavity of the ilium. It arises from the inner lip of the ereat of the ilinm, the transverse process of the lant lumber vertebra, adhering to the concavity of the ilium, as far as the brim of the pelvis, and to the fore-part of the bone muler the spinons procesq-radiating it is gathered torether and forms a temdon which slides over the os pubis as over a pulley; as sonn as it has passed under Pompart's legament, its tendon united with the tendon of the psons magnus hends obliquely round and downwards to be ingerted into the trochanter minor of the os femoris. The netion of these two powerful muscles, is to flex the thigh upon the truak, and by the obliquity of their insertion, to rutate the bone outwards, as well as to adduct the limbs-but should the thigh be the fixed point, they will serve to bring the trank forward and to bend it downwards. When the neck of the thigh bone has been broken, and is retracted upwards by the glutei, the action of these muscles serve to adduct and rotate the thigh, and to turn the toe outwards,-the action of these muscles is much more marked, when the fracture occurs without the capsular ligament and the bone rests high upon the ilium. In dislocation upwards upon the dorsum of the ilium, the distance between the edge of the pubis
where these muscles are reflected, and the lesser trachanter being considerably increased-these muscles are fully called into action, and serve, with another, set, to fix and confine the head of the thigh-bone close to the pelvis. Was this bone free, they would now evert the toe, but being lo, and down tight upon the os imominatum, the head of the femur behind and the trochunter major before, the shaft of the bone is rolled upon itself, and is so fixed that the foot is permanently turned inwards, and from the lesser rochanter being now some distance round the femur, their action sarves to advance the leg, and point the the across its fellow. When the head of the bone is placed in the sacro-sciatic noteh, a somewhat similar effect is produced; but when it is lodyed in the thyroid foramen the distance between the point of deflection of these muscles, atud the lesser trochanter their insertion, is diminished from the bone being rotated outwards,-was it not fur the powerfulaction of the antagonist muscle, which serve forcibly to abduct and draw the thigh backwarks they might be somewhat relaxed. When the dislocation is upon the edge of the pubis, the relasation is even more complete.

The jectinous is a broad, flat, quadrangular muscle arising from the crest of the pabis, and descending obliquely downwards and backwards, is inserted by a flat tendon into the lesser trochanter and tinea aspera. The action of this muscle must considerabiy atsimulare itself to that of the foregoing-bending round the thighboue, and being inserted some distance down, it must serve to pull the thigh upwards, to adduct it towards the central line, also to alsance the bone, and to rotate the toe outwards. Einder fracture of the neck of the thigh-bone, or when this bone is displaced from its socket in ether of the varieties above menticned, the action of this muscle must be similar to those of the psons maguus and iliacus internus.

The third set_of musles which have a peculiar action upon the coxn-femoral articulation, and which it will be mecessary for us to consider, are, for the most, part, smad museles, baving their origut in the very neighbourhood of the hip-joint: these are principally rotators of the joint, and, from the angle at which they are inserted, mas he pecalarly powertul in the production of such mayements of the limb. There are the Pyriturmis, the two Genelli, the obturator externus and internus, and the Quadratus femoris.

The Pyriformis is a muscle of a flat pyramidal shape, bying horizentally alour the lover margin of the, Gluteus Medius, hut is partiv zeparated from it, as at comes from within the cavity of the Pelvis. It arises by theree on four flushy diyitations from the hollow of the sacrum and the sacrossciatic noteli. The fleshy fbres pass from thetrorigin horizontally, antwards and downwards, and furm a rund tendon wheh .to sumewhat conneeted with the: neighbonring mu-cles, especialiy the Gemellus superior, and is
inseried into the back part of the upper edge of the great trochanter. The action of this musele must be to pull the trochanter backwards, and raise it nearer to the ischiatic notch, consequently to rotate the thigh-bone outwards; it has an action similar to other small muscles which arise in this region, save that fromits origin, being placed on a plane superior to its insertion, it serms to assist the glutei museles, and is then partially an extensur and abductor of the limb. The great nerves and blood-vessels of this rergion are in comection with this muscle: some come out of thr pelvis above it; others below-facts that should point out to us how liable they must be to participate in the injuries and diseases of the hip-joint. In fracture of the neck of the thish-bonc this musele will tend to raise the shaft of the bone, and with its fellous be a powerful means of turning the toe outwards. Wie can easily understand, however, that when the trochanter-major is implicated in the injury. its incertion may be altogether detached from the shaft of the bone, when, as a matter of course, its influence must cease. This may accomnt, in some degree, for the great disputes which Surgeons have long carried on with unseemly violence, as to whether invertion or evertion was a diagnostic mark of fracture of the neck of the thigh-bone. In dislocation of the head of the bone upon the dorsum of the ilium, the trochanter-major is advanced forsard, as well as raised above its natural plane; so that we find the muscle upon the stretch, and as a consequence, with its fellows, it assists powerfully to bend down the bone upon the pelvis with a spasmodic action that defies our effort to evert the foot. When the dislocation is in the sacro-sciatic notch, the trochanter is neither so elevated or so much advanced: hence the tension of these muscles is not so great. When the head of the bone is placed in the thyriod hole, it is advanced forwards, the thigh is rotated outwards, - the plane of the trochanter is considerably depressed, but ap proaches towards the wetabulum,-in consequence of the change of position, the bone is here firmly hedd by the spasmodic action of the muscles. bat not with that perfect immorability which is evinced when it lies upon the dorsmon of the ilium. Should the bone rest upon the crest of the pubis, the action of this muscle and its congeners would still be of a similar character; but from the elevated plane of the trochanter, the pyritorinis muscles would not be so powerfully excited into action as in its former situntion.

The superior and inferior gemelli, altl ough they have been classed hy Anatomists as distinct muscles, are scarcely more than accessory fasciculi to the obturator internus muscle. The upper one of these arises from the spine of the ischinm; and the lower from the tuberosity of the bone. They are placed one on eather side of the tendon of the obtarator internus muscle, and form a grove for its reception, and as it advances completely envelop it,
and are inserted with it into the trochanteric fossa. The action of these museles mast correspond with that of the pyreformis, both in the normal and aboumal state of the coxo-femoral articulation; save that the point of their origin being lower than that of the former muscles, their power to elevate the bone will be lessened or entirely abnegated.

The obturator internus musele arises from all the interual surface of the obturator liganent; from the inner ellyes of the thyroil hole, and from the bone which surromils it. Its origin is both fles!y and circular; its fibres converge, and run along the os ischium; turn round that bone between the spine and the tuber wehi, over a cartilagenous pulley like surface; its tendon passing between the heads of the genelfi is inserted with them into the trochanter-major. Altiough this musele arises within the pelvis, and passes immediately behiad the coxo-femoral articulation, yet, as the tendon turns over the ischium, the direction of its action is completely coanged, and it becomes allied to the muscles which we have just deseribed, participates with then in the mode of action when the joint is in its natural state, and sympathizes with them in its altered condition.

The next of these small muscles, and placed lowest in the horizontal plane, is the quadratus femoris. It is in shape like a parallellogram. It arises from the tuberosity of the ischium, and is inserted into the lower and posterior border of the trochantermajor and intertrochanteric line. Its action is similar to that of the muscies just described. It pulls the thigh directly backwards, and assists to rotate the bone outwards. When the head of the thigh-bone is placed in an abnormal position from injury or disease, the influence upon this muscle must strictly correspond in effect with those just adverted to. Except that when the trochanter is morbidly elevated, the inferior plane of its origin causes it to be more powerfully acted upon, than any of this set of muscles.

The lats of this set of muscles which surrounds and moves the hip-joint is the obtarator externus. It is situated on the outside of the pelvis, and exactly opposed to its namesake on the inside. It arines from the rami of the ichium and pubis, where they form the ohturator foramen, from the obturator ligament, leaving room for the passage of the blood-vessels and nerves. It is a short musce- its ormin broad, and towards its insertion narrow, so that it is of a comeal form. It is soon gathered into a round tendon wheh twists under the neck of the thigh-bone, between it and the pelvis, and is inserted into the deepest part of the digital cavity of the great trochanter. From the way that the teadon of this muscle winds around the neck of the thigh-bone, its action must correspond with the small muscles at the back of the hip; for although it arises in a plane anterior to the thigh-bone, stili the direction of its power must be changed by the reflection of its tendon, which acts upon
the neck of the bone as on a pulley, so that it must tend to draw the trochanter backwards. In dislocation backwards and upwards it ean vearely escape being torn, stretched to its utmost extent, as it must lee. It will always act as a most powerful means of restraining the movement of the bone in this abonomal condition; so also in diolocation in the sacro-sciatic noteh it must experience great extention, and be liable to a similar adverse condition: but should the head of the thigh-bone be placed in the thyreid hole, or upon the crest of the pubis, the points of its origin and insertion will be so greatly approximated that the muscle will be completely relaxed.

In the above description I have endeavoured to indicate the normal and abnormal action of these several muscles which have a peculiar and direct action upon the coxo-femoral articulation. Doubtless there are other museles which arise from the pelvis, and are inserted into the thigh-bone and leg, which have a general and secondary influence upon the artieulation; but as their bearing does not seem directly to aid us in our diagnosis, a minnte deseription may not be necessary. It may not, however, be unworthy par icularly to note, that during inflammation of the hip-joint, we find all these museles powerfully combined to steady and fix the articulation, preventing the least possible movement; for movement in this case would be attended with excruciating pain. As I have before remarked, during disease of the great isehiatic nerves, we have a similar state of rigid spasmorlic action of all those mnseles, producing an apparant immovability of the limb, which has been mistaken for disuase of the hip-joint; and after this affection of the nerve has continued for a cousiderable period it has produced a shrinking of the muscular tissue from disuse, and a Hattening of the prominence and contonr of the hip, which has been rualtingly appealed, to as a proof of disease of the joint.

Diseases of the Hip-Jonm.
In the forgoing review of the nature and character of the hip-joint, it has been shown that the bones form a most perfect ball and socket joint; that they are clothed with a beautiful elastic cartilage; are covered and bound together with a firm fibrous ligament, while the whole joint is completely lined with a beaunul s)uovial membrane that constitutes it a shut sack; above all, it is surfounded and covered with numerous powerful muscles that perform the great and varied movements of which this joint is susceptible. We have so far seen all these several parts in a normal condition, working with ease, and almost without our being sensible of their extent or their character; but we must now contemplate them in an abnormal state, for ve shall find that each of these varied tissues of the hip joint are liaile individual disease: it may commence plainly in one, but after a tin. implicate all the ather structures of the joint, involving all, indiseriminate destruction; so also may the accidents to which it a liable evince
great variety, and peculiar complexity of character. As a correct course of arrangement in the description of these complaints, I shall proceed from within outwards, and follow consecutively the varieties of disease to which each stricture is liable.

Diseases of the Synotial Membrane.

The lining membrane of the coxo femoral articulation is liable to acute and \times.ome inflammation,-these may be followed by alit the vanous consequences, the results of these diseases, similar in character to those which show themselves in other like serous membrane, suchas hyperomia of the vessels, the effusion of serum of congulable lymph, the formation of pus; also ulceration and absorption of its structure; and it may likewise be the seat of the deposit of tubercular or cancerous mat er.

Inflai ymition of the Synotial Membrane.

Infammation of the synovial membrane is a disease of freguent occurrenere. It may be idiopathic or cansed by local injury, it may be local or dependent upon constitutional diathesis; and doubters nearly every case win be more or less modified by sucis preatianity. To onable us acemately to fullow am appreciate the true value of the symptoms of this disease, a cunct madertanding of the chacacter of the implicated structure is eleary necessary. The sy novial membrane bears a great analogy to the serous structures in othar parts of the hody. It consists of a beantiful basement membrane which is more or less firmly comuected by areola tisste to parts with which it lies in contact. The areolit tissue constitutes the chief thichness of the structure, comfen upon it great strength atm elasticity, and is commonly hown as the subserotis tisude. The basement membrane consists of a yellow fibrous element, whose filaments interlace cach other in avers direction. The subserous tisule is frely traversed with blowvessels and nerves, that serve to nourish and give sensibility to the structure. Un its free surface we find a layer of pavenent epithelium: this consisss of cells that secrete or forms the true macous fluid, which, with the serous exhalation of the lasement membrane, is intended to lubricate the joint, and prmit the free movement of one part upon athother in every direction. This fynovial membrane is spreal over the inner surface of the eapsulir ligament, surrounds the ligamentum trres, dips down upon the cartilage which lines the colyloid eavity, and is reflected over the head and week of the thigh-bone.

On the first outset of inflammatory action the patient complains of dryness of the part; stys he can hear the joint serapeperhaps this is of short duration; it doubtless depends upon the increased density of the blood which is sent to the vascular strusture. The capillaries of the basement membrane now carry die red globules of the blood in increased quantity, and with greater velocity, the vessels dilate, the colourless corpuscles of the blood

Hine the inter surface of the walls of these dilated vessels. The red corpuscules still continue to float on, but are evidently greath increased in quantity, with regard to the more fluid plasma of the blood; but after a short time complete stagnation occurs, and this even appears to extend to the artery, and the commencement of the rein: even now, hiowever, some bf the capillaries may still be pervious, and the blood inoving with great rapidity through them. The dryness of the serous membrane in the first stage of infiammatory aetion doubtess depends upon the deficient amount of fuid phasma passing through the capillaries, 50 that the serum neither ransudes the basement membrane, nor is it freely ahsorbed by the minute cells apon its surface: hence a marked deficiency of the natural secretion of the part, and dryess of the surface of the joint. When the circulation of the blood is perfectly normal in its capillary versels, they are traversed with a considerabe anome of thin serous fluid, mixed with the red corpuscles; and inrough the coats of these capillary vessels, a certain amount of the seroushoid trausudes, aud alco passes the basement membrame, by the laws of pulnsmonic action-the mucons secretion in the joint being the denser fluid, hence its course; but when the distenden ressels are filted with staguant red gobales, and their walls lined with the colourless corpascles, the serum, now greatly deficient, ceases to pass through their cuats: hence the deficient supply of the joint. son. however, this state of things is changed: the movement of the hon! corpucele may by degrees resume its course; the normal state of the circulation is again established, so that the lubnicating fluid is pientifully supplied to the joint; and the disease is carer'. Should the infammatory divease increase, the natural consequence of the obstruction of the capillaries in the subserous tissue, is the effusion of the more fluid parts of the blood; it transudes from the cireulatiag apparatus of the basement membrane, in all probability the coate of the veins, and spreading through the subserous tissue, traverses the basenent membrame in considerable guantity, so that we lave the fluid of the joint greatly increased in guantity : in some cases amounting to a species of dropsy, or hodrope artienli. as it used to be called. The cells on the free surface of the membraue are abundantly suppiied with. nourishment ; consequently , their formation is now rapin, and the anount of mucous forme: by them, and added to the secreted fluid, is so increased in quantity, so as, in some cases, to give the contents of the joint al `ost a gellatinous appearance: commonly, however, if the effusion-is rapid, the secretion is but the fluid serum of the blood, with but little fibrine or lymph, and some of the salts of the blood in a state of solution. Again, at this period, we may find the increased activity of the circulation progressing with that rapidity, that rapture of the over distended blood-vessels is the consequence. The blood may escape into the subserous tissue, be effused into its meshes-it may
here remain; the blood globules may be dissolved and the busement membrane be lighly coloured with the dissolved pematim that may occasionally give a tint to the fluid effused in the joint; or ryain the fluid foreed into the dense basement membrane may 80 distend it, that some of the blood corpuseles shall pass through it by laceration of its fibres, and so become mixed with the serous fluid in the joint, and give it a red colour. I think this, however, but seldom happens, unless ulceration of the basement membrane has occurred, when the open mouths of the bloodvessels may bleed and it be mixed with the fluid serum. When the effused fluid become profuse in the hip-juint so as to distend the capsular ligament, although it cannot be felt to undulate, its swelling may be perceptible, through the muscles of the hip, and it may be distinguished both in the groin, and at the nates. As the disease proceeds, the parts in the immediate neighbourhood of the joint are now influenced in the conjestive action; the capsular ligament, the perichondrium, and even the areola tissue, without the hip-joints, participates in the hypercemic action. The patient complains of a sense of weariness and lassitude down the limb, even amounting to nain, especially if the neighbouring nerves feel its influence. The pain is now acute upon the movement of the joint, is increased on pressure, or when the patient attempts to walk, or even allows the limb to swing loose, so as to operate on the inflamed surfaces. The pain, however, is not of that excruciating character which exhausts the powers of the patient, as when mater is formed in the joint, as when it exhibits the more serious infuence which that product of disease is sure to produce upon the constitution ; for after rest the pain in a great degree subsides. As the inflammatory action increases in intensity, the least movement of the socket produces exceuciating pain, and a spasmodic condition of all the museles of the limb occur-an effors of nature to preserve perfect quiet. Should this state of things last for a considerable period, or the disease become chronic, a wasting of the ghtei and other muscles of the hip, is the result of this imperfect action of the muscular fibres. The bold contour of the hip is lost, and the parts are shronk and wasting. The same necessity for a state of absolute rest causes the patient, shouid he stand erect, to rest the whole weight of the body on the sound leg; nay, even so great is the desire to prevent the least pressure of the inflamed surfaces one upon the other, that a curved position of the spine is also maintained while lying in bed, -the trunk is inclaned upon the thigh, and all the muscles connected with the joint are perfectly relased. As a consequence of this position, the pelvis is changed from the horizontal line, and inclines cowards the affected hip. The spine also is twisted, and one shoulder is raised higher than the other, $s 0$ that one imagines from their appearance the diseased thigh is shoter than the ocher, but upon due examination we find that the length
of the limb is some what increased, sometimes by inches. The increase in the length of the limb is caused, doubtless, by the hyperamic condition of the blood-vessels of the whole joint, and by swelling and effusion into its cavity. Now also the patient comphains of a morbid heat in the part, which is often obvions to our sensations, while he also experiences more or less inflammatory tever, and other symptoms indicating constitutional irritation. Upon the application of proper means, the dina se may now subside, the effined thaid be absorbed, and the joint regain its natural figure and mobility. A fact however of considerable importance in the character of this empphant is its liability to return whenever the limb is exposed to cold, or exercise in an extrome degrec-nay withont the evidence of any such reavon, it is extremely liable to happen-while the causes that serve w the productom, and poristaner of this inflammatory action may doubtens be due to the state, and condition of the Blood; a peculidr dyserase as is evidenced by the appearance and charater of the whole constitution.
lnstead of subsiding, should the Disease still progress, the congestive stage becomes extrem, or more or leses complete stasis of the blood (orpucle in the datated camblares has been the result durivg the oscillation conncted with thas retardation of the blood corpuscles, they apply themolues more chuse to each other-and in the eomplete starbatim of the bood, the ressel is entirely filled with bloud corpusches closely ageregate l, torming an apparently homerrenious mabs-a state of mescabed plasticity of the blood, would at this period also appear to be a logal condition partly dependent epon the separation and arglomeration of the red tolobules in the capillary vensel, a case that must evidently interfere with the correct nutriuon of the serous membrane, partiy from the escape of the more fluid parts at the blood from the coats of the veins tuto the arcolis tissue; we fira that in acute infammation of any extent, this condition of increased plasticity pervades the whole system; if we draw blook at the very onset of the disease we fued the blood without a marked buffy coat, but if at a later period veneiection is employed, fibrine is found remarkably to aboumi in the system, and will contina to do so as long as the increased activit of the circulaton, caused by the febrile or constitutonal irritation, shall form an impediment to the due appropriation of the material iatended for the mutrition of the several paris of the body, or at least until the derangement of the digestive appratus, failing in its functions, shall have been a means of stopping the supply introduced into the blood- The local Hyperomia haviur become more extensive, strous effusion permeates the veinous coats for a great exent of their surfaces, and the fluid parts of the blood remaining in the now intensely diseased structure contains a greatly increased amomit of congulable lymph, it is hovever perfectly fluid as it passes through the coats of
the bloodivessels, it has been said to be the especial production of the arteries, while that of the serous fluid was said to be that of the veins, but in the ca;i!laries I scarcely think that such a distinction can hold-escaping into the areola tissue according to the state of its plasticity it hows onwards and completely fils its meshes, surrounds each element of the several structures in close contact as fluid morter poured in between the stones-it coagulates and becomes more or less firm-or it transudes the basement membrane and is poured into the cavity of the ioint, unfit for the nourishment of the epithelial cells, from its increased density; it covers the serous membrane with a plastic material that soon becomes firm-the layers of epithelial cells, have been shed, and under the false membrane are seldom renewed, so that the coagulated fibrine comes in inmediate contact with that structure the basement membrane; or had there been previously cousiderable serum effused into the joint, this may be seen floating in it, in the shape of flocculent masses; the senum may aftenwards or at least its more fluid parts have been absorbed, leaving the denser material behind. Suci however appears not to be the case, should the plastic material pervade the whole structure of the serous membrane-for the meshes of the basement membrane filled with fibrine and its surface covered by the effused lymph, the fluid parts of the serum are enclosed in a structure forminga slat sack, that appears to have little exosmotic action; this amorphose material may form a cytoblastema for the development of the different cell formations, that follow as a necessary consequence in the progress of the disease. On the first commencement of congestion in the capillaries, the white globules of the blood, line the walls of the vessels, during the effusion of the plastic material above alluded to, these will doubtless in a greater or less extent be carried with it, contained in the mother liquor, the effused liquor samguinis they present to us the source of the future development of the cell formations, No doubt the relaxation and dilatation on the one hand, and pressure from within the vessels on the other, the plasma will be pressed out from among the aggregating corpuseles and even these, upon a further increase of the forces may escape from the vessel in a very considerable quantity, and may constitute the exudation corpuscles. Gerber says that " the exu"dation corpuscles ure in every respect the same as the lymph cor"puscles; they generally form many superimposed layers, bring "laid flat one upon the other and so constituting membranes "that resemble the tissellated epithelium, when the connecting "medium has diappeared so that the edges of the primary round "Corpuscle thrnst against eachother, are thus rendered polygonal "under the microscope, an ever increasing linear arrangement of "the exudation Corpuscles, which are more intimately united at " zwo opposite points in one line, by neans of the comecting cyto-
'bluctuma than any where else, is apparent." Douhtless the law of
analagous formation will influence the character of these exudation... Corpuseles; so also will the state of the constitution, the positiye condition of the mother liquor, and the nature of the diseased action have an influence upon the formation and growth of the celd, -In this instance the minute capillary vessels, which have their: seat in the subserous structure, a variety of areola tissue-hence the product of the formation ve may anticipate will be of that discription, and this is fuily proved by old adhesions between the serous surfaces-in this instance according to Vogel we find the exudation corpuscles" are nucleated primary cells which lengthen "at both ends, and assume a finsiform shape, the extremities of "these unite with one another, and then are furmed long varicose "fibres. From these caudate cells arise the fibres of areola tissue; "a cell being converted into a single fibre, or else by assuming "a groved artangment, and these groves deepening, and finally "sphtting into a bundle of fibres."-Such doubtless is the process which is evinced in the devellopment of false membrane in the cavities of the joints. When such structure becomes persistent as may be observed in old adhesions, a certain amount of vascular organization is necessary to preselve the comnection with the general system, and we can commony observe vessels carryiag red blood to pervade this new formation, when it has arrived at maturity, and the joint has in some degree regained its normal condition. At this time also the false membrame will be found covered with a synoveal or serous tissue, having true epithelial eells spread upon its surface, requiring the epigenesis of vascular structure to carry on the functions of the new developments. The epigenesis of these new blood-vessels appears to be clothed in a degree of myste: y. Vogel declares that hoth the blood-vessels and the red blood itself which they contain-are developed in the very interior of the false membrame, without any connection with the old system-such however hardly appears consistent with the laws of analagous formation-it would rather appear that a certain amount of the blood globules laving escaped from the ruptured ressel among the effased amorphose blastema, have arranged themselves in rows, which appears to be a law constantly presenting itself-their flat sides are agglutinated, the centre mucleus is removed, leaving the circmimerance as the coat of the vessel: which being now hollow and in comnection with the rascular system, becomes the carrier of the mutritive fluid necessary to the nourishment and support of the new formation.

> (To be continued.)
hat. XXV. - On the White Glolutes of the Blood in Diseases. By James Boveli., M.D., Toronto.
One of the ablest Physiologists of the day-Mr. Carpenter has for some time advacated the opinion that the White Corpusdes of the Blood were truly assimilating cells, whose office it ic to

2t

prepare the pabulum for the growth of the tissues. "It is well," ho cays," to observe, that this process, which constitutes the act of organization, may be clearly made out in the higher plants and a nimals, to consist of two stages; the first of these being the further preparation or elaboration of the fluid matter, by certain alterations, whose nature is not yet so clear, so as to render it anganizable, or fit to undergo oryanization: the second being the aot of organization itself, or the conversion of the organizable matter into the sulid texture. Thus for example we do not find that a solution of dextrine (or starch-gum) is capable of being at unce applied to the development of vergetable tissue, although it is identical in composition with Allulosi ; for it must first pass thro' a stage ill which it possesses a peculiar glutinous character, and exhibits a tendency to sponfaneous congulation that seoms like an attemptat the production of organic furms. And in like manner, the Albumen of Anmals is evidently not capable of being applied to the nutrition of the fabric until it has been first converted into Faran." And Mr. C. continues to puint out thit by the action of vital force akin to that of Cataly, i., a mew arrangement of the particles of Dibrin again takes place, "producing subtances which differ both as to structure and properties from the materinls employed."

Now if we examine into this question carefully, employing uniy the linht which Mr. Cappenter has thrown upon the history of histulurical formatime, it seems impossible that one single clement of the Blood only can be employed in the proecss of nutritrition; and in morbid Epirenesis we have abundant proof that such is not the case.

In animals as in phant-observes Mr. C-there are two proncipal modes in which cells may be developed; viz., within the cavity of a premexisting cell, or in the midst of a plastic flaid or blastema for the latter. "The material which is requred is one containing lebrone, a substance which, althoterh elosely resembling albumen, if not identical with it, in chemical composition, differs from it in possessing the tendency to pass spontaneously into a sohd condition when withdrawn from the living vessels, and to assume, in thus coagulatind, a more or less divtinet fibrous arrangement. In fact we may regard it as albumen undergeing the first stage of Organisation and Vitalisation. The degree to which this process has already taken place, affects the fimmative power of the Audd blastemu; thas we find that the cuaralated lymph thrown out for the reparation of injulies, possesses it in a hipher degree than does the ordmary plasma if the bluwd, or liguor Sanguinis. So that whitst the latter is only ready for appropriation by tissues already existing, the former possesses in itself the power of origmating uno rissue, when placed in favorable circumstances to do so. This tisane may consist of hitle else than simple fibres, or it may contain
fully deyelopen cells, intermingled with these according to the circumstances monder which it is developed.

Is it really true, as stated by Mr. C., that the congulable lymph thrown ont for the reparation of injuries possesses the formative power in a higher degree than docs the ordinary plasma of the bload?

By reference to Mr. Paget, and to his Reviewer, we shall find that the "formative power of the effused plasma is only apparently higher since that of the solids is lowered, or eyen ins abeyance.

Surely then it is not correct to say that the formative power is possessed in a higher degree by lymph thrown out for the reparation of injuries. To build up an argmment, therefore, for the essentiality of Fibrin to nutrition, on the behaviour of that substance after its abstraction from the body, orits exudation under diseased states, is untemable: fur it seems probable, observes Mr. Carpenter in his General Physiology, that the animal tissues have less converting power than those of plants; and that not only each tissue, but each part of the same tissue selects some different material from the blood. For there are certain morbid matters, whose presence in the blood is manifested by the perversion of the nutritive process in certain spots of the body only, these spots being similar in size and situation on the two sides; so that it would seem that the ouly parts of any tissue which are really identical in composition, are those which occupy symmetrical positions or opposite sides of the body. "Now in the healthy state, as in those diseased caditons whichafford more striking exemplifications of this princple, every part of the body, by taking from the blood the peculiar substance which it veeds for its own nutrition, thereby removes from it a certain part of its constituenis which would interfere with the nutition of the rest of the body if retained in the circulation, as in the case of the exterpation of one gland throwing back on the system a quantity of urea \&c., the remaining organ enlarges itself there being an increased cell growth for the elimination of the salts of the urine.

Whether the principles advanced by Mr. Simon be really true or not, it is at all events evident that the opposite doctrine which attribute's to the white corpuseles the office of elaborating fibrin, aud to fibrin the sole agency in building up the tissues may be leyitimately questioned, and ere we attempt to silence Mr. Simon's views it would be well to ascertain that no discrepancies exist in the generally received theory. It may be that the term. "excrementitious" applied by Mr. Simon, conveys more than was intended; for there are parts of the fabric into which fibrin enters, largely, and in those very parts whose office is to give elasticity or support, and whose life is low and their nutrition slow, they undergoing but little change. "As every component part of the most complteley orgauised fabrichasan individual life of its own,
so must each cell have a limited duration, quite irrespective of the fabric at large, except in so far as they may tead to increase or diminish its functional netivity. That this duration varies greaty in the different kinds of tissue. Now, in those tissues whose function instead of being vital is simply physical, as in the case of parte that afford mechanical support or resist tension, or supply plasticity, we find their term of existance prolonged with the general life of the animal.

The same indisposition to spontaneous change, as Mr. Carpenter remarks, shows itself in the simple fibrous tissues which after their first firmation seem to require but little maintenance, their chemical composition being such as indisposes them to spontaneous decay, and ther functions in the ecouemy beins purely physical. Hence when these tissues are formed by the transformation of cells, it seems as if these cells, in becomingr commected into fibres had almost entirely parted with the distinguishing attributes of vitality, and had thus passed into a condition in which no necessary limitation is imposed on their continuted extstence. It may be stated as a general rule, that the duration of an organized structure is nery closely related to the activity of its vital manifestations; and that, this, again is related, on the one hand, to the character and attributes of the tisule, and on the other to the cundition in which it is placed." If the Fibrin of the Blood be then, the "prepared pabulum" out of which all the tissues are formed, and if it be susceptable of passing into the higher grades of developement, it secms uarprising that it shonh be so grenemally found in parts of low deg ree of vitality, as in forming the animal structure of the egg-shell and of the shells of molluses,-tendon, and fibrous cissue,-where itoccupies so low a scale of vitality and takes rank with those structures whose constitution preserves them from decay. Whenever a higher manifestation of vital force is necessary, when the tissue is in the ascending scale of developement, instantly we diseaver in the blastema "dimly shaded minute dots; and as it is acquiring further consistence, some of these dots seem to aryregate themselves so as to form little round, or oval clusters, bearing a strong resemblance to cell-nuclei," mntil a mure perfect tissue be formed.

Besides the fact that the cell is not of one structure throughout, but behaves as regards its cell-wall, cell contents and nucleus, differently to various re-agents; we have now others which prove that the function of nutrition camnot go on, unless there be also an amount of those other constituents of the Blood, albumin and fatty matter; for as the researches of Dr. Bennett, and Dr. Thompson have shown, in Phithisis there is no difficiency of fibrin, bat on the contrary, a preponderance: and so soon as Cod-liver is taken, and the foumdation "of good molecula r base" laid, as quickly does the nutrition of the body go on, and the fibrin falls to its healty stardard; the red-blood increasing as the fibrin diminishes.

It is also stated to be a law, that for a blastema to be capable
of developement, it is necessary that it should be in contact with a living tissue. To effect this, it is necessary that there should be a connecting or attiehing medium, and without doubt the fibria of blood is the best and surest instrument for attaining such an end, and is, in the language of Mr. Simon, the scaffolding by which the tissues are built up.

> To be Continued.

Art XXVI.-Case of Radical Cure of Prolapsus Ani. By Thos. Deazeley, L.R.C.S.I., Professor of Surgery, Trinity College, Toronto.
In the month of December, 1849, I was consulted by a Mrs. N - who had been the subject of prohapsus ani for nearly twenty years, during the whole of which time she was unable to walk even the shortest distance, for the moment she attempted to do so, the bowel protruded.

She ocenpied an easy chair during the day, and was carried to bed at night. Her general health did not appear to suffer much; her bowels were regular, but at each motion the gut descended and required to be carefilly replaced before she could bear to be removed. She had never suffered from piles. Around the margin of the anas there were a uumber of tulds composed of thickened integument and very loose cellular tissue, the sphincter offered little resistance to the return of the rectum when protruded, the whole of the coats of which appeared to descend, nor did it afterwards enntrate with sufficient firmness to retain the bowel in its place, when the erect position was assumed and progression attempted. There was no disease of the rectum itself.

A dose of eastor oil was ordered, and after the bowels had been well freed, I excised the whole of the redundant folds which ocenpied the margin of the anus and directed her to remain in bed. On the third day she had a motion from her bowels without the rectum deseending; on the following day she was able to walk through her room without any difficulty; in a few days, however, the mucous membrame began to har downwards after each motion, and was returned with more difficulty thin before the operation. After the bowels were again well freed with castor oil, I passed a epecuium ani into the rectum, with a fissure two lines wide and two inches long on each side; this of course left exposed two portions of the mucous membrane, equal in size to the fissures in the speculum; to these I applied the actual cautery, the remainder of the rectum being safely guarded by the speculum itself. This operation cauterised two lines of the mucous membrane, one on each side; the speculum was now turned half way round in the cavity of the rectum, so as to expose two other lines at equal distances between the first; to these the actual cautery was also applied: thus four lines of the muccus membrane were easily cauterised without the slightest injury to the surrounding parts.

Efusion of firine into the submucous cellular tissue, and adhesive inflammation between the mucous and muscular conats followed, and a radical cure was the result. The sphincter after a shors time completely recovered its tone.

Art. XXVII.-Disease of the Kidumy, consequent on Disease of the Bladiler, in a Child. By Euwand M. Hodnen, M. C., \&e.
August 26.-James A——, aged 9 months, born of mulatto parents, las, up to the present time, appeared to enjoy good health. The child is fat and robust, and is now brought to me in consequence of his bowels having been in an irritable state fur the lass two or three days.

He is not weaned: has no fever, pulse natural, tongue coated and white, bowels not tender on pressure, stouls slimy and offensive, but not frequent. Ordered-OI. Recini, immediately to be followed by powders containimg Mydr : cum Creta, Pulv: Ipecac: and Pulv: Rhei-ter die.

September 2. -The mother brought the child to me this morning, saying that he appeared griped in his bowels, and that the stuols were rather enstive and lisht-coloured. The powders which had been ordered on the $26 t h$ ultimo quickly reliesed the state he was then in, and he had continned vell anail to-dry. He now appears to suffer pain occanomally in the bowels, 1 ut which is not increased upon pressure: pulse guick, skm moist atul confortable, toague white. Ordered a powder composed of Calomel and compound Jalap immedately, and Calome! and Ipecac: to be given cuery night and morning.

September 3, 7 p. m.-I have just been sent for, to sre the child, who appears to be suffering yreat pain: his breathing is quick, head bedewed with perspration, skin warm but not hot, pulse smail and frequent. Bowels were not freely acted upon by the powder of yesterday. He appears to strain violently every few minutes, and he has passed his urine regularly- He is not inclined to take the breast, the stomach does not reject its contents, and he prefers being left in the cradle. Supposing the tenesmus to arise from the Calomel which had been given, I ordered a full dose of Oil, with an lnjection, and warm fomentations to the abdomen.

September 4.-He is much in the same state as yesterday morning, none of the symutorns being relieved; the countenane is indicative of pain, the respiration hurried, bowels have not been freely relieved, pulse very ģuick, no tenderuess on pressure in any part of the abdomen, and he made water freely this morning at 9 , A. A. A more active aperient was ordered, the injections and fomentations to be repeated.

3 , D, M. - About two hours ago the child was attacked with
ronvulsions, which continued for an hour, after which he became quiet but insensible, in which state he still continues. Head hot, pupils dilated and insewible, pulse still frequent, and sharper than it has ever been; his breathing is hurvied, and the bowels have been copiously moved. I now bled him to Biiss, but the lips becoming blanched, the bleeding was immediately stopped. No other change took place in any of the symptoms until half-past 10, p. m., when he disd suddenly, no other comvahion havag taken place.

September 5. - Post morten examination sixteen hours after death. Chest perfectly hatthy. Abdomen, stomach. liver, and intestines presented no almormal appearance whatever. The right kidney was cnormonsly cularged, of a grey ish, mottled appearance, and weighed, when deprived of fatty and celluhar tissue, three ounces and Ziss. The left hidney was also enkarged, and presented the same apparatue as the right, but not in so marked a maner: both ureters wreffled with urime, and fully as large as the little finger. The hadher was nut increased in oize; it felt hard, and was allerent to the anterior surface of the rectum to the extent of ? of an inch. This adhesion was of recent date, as moderate traction was sufficient to separate them. The surfaces in contact were in a state of ulceration, execpt at the circumference: thumg that in the iladier the mane conld be forced by gentle pressure, the openinfs, however, being humerous and extremely small. 'The uleer on the corresponding portion of the rectum was suporficial, not extending deeper than its peritoneal coar, hut begond this the intestiae was much thinkenal by the deposition of lymph.

On cutting into the bladder it was found thickened to an inordinate extert, particularly its mucons and hascular coats, the latter teing unwards of $\frac{1}{4}$ of an inch in thickness. The mucous coat was norrugated, softened, and very pale. The kidneys, ureters, and bladder contained $1 \frac{1}{2}$ oz of highiy albuminous urine, but unfortunately the vessel in which it was received being upset, no more minute examination of the urine could be made.

Every other organ ia the body was in a perfectly healthy and natural condition.

The mother of this child told me that she had lost two other children at about the same age, and as far as she could judge under similar symptoms, but no post mortem examination of them had been made.

It is evident that the adhesion between the bladder and rectum was an effort of nature to relieve herself, by an artificial opening, of a quantity of urine, which, in consequence of the diseased condition of the bladder, was pent up until decomposition took place, and by its then irritating qualities, acted as an extraneous body.

sit
 UPPER CANADA JOURNAI」

or

FOR NOVEMBER AND DECEMBER, 1859.

TORONTO, DECEMBER $15,1852$.

GENERAL HOSPITAL, TORONTO.
We have been given to understimd that the Trustees of the Genmal Hospital have it in contemplation to make some important alterations in this Institution: what the exact nature of those changes are to be, we are not yet authorised to state. Deriving a pretty good income (something like $£ 100$ per annum) from Students fees, it has been deemed neeessary to make provision for lessening the pressure which has been thrown on the present Staff by the great increase of Students, by appointing other officers to aid in the responsible duties which devolve on the Hospital attendants. The Honble Dr. Widmer zealous and active as ever in the discharge of his duties, has, we believe, been mainly instrumental in effecting this desirable change; and it is to be hoped that the good intentions of the Trustees wil be carried nut by the combined exertions of the Old Staff, and those new Members yet to be appointed. If actuated by a sincere love for Science, the Members of the Staff of the General Hespital may effect much towards the advancement of the Medical Profession in this Province; let the moral and intellectual advancement of that Profession be their grand aim; and all minor dfficuities and hindrances, to harmonious and hearty so-operation will vanish. The whole Profession in Upper Canada
is interested in the General Hospital, and the eyes of all are directed to it as the School of Practical Education for this part of the comitry: very maturally therefore the conduct of those who are entrusted with the heavy responsibility of moulaing the plastic mind of youlh is anxiously watched, and much interest displayed in cheir progress as teachers. lat the commencement of every great undertaking, diffeuhies are sure to fall in the way; but these serveing but to nerve and stimulate to renewed chertion bring at hast success. So we crast it will prove in the instance before us.

The Howinal affords ample opportanity for Clinical Instruction, and is copable of accomodatian as many Patients as the justly celebrated Meath Hoppital. There was a time when the Staff of that Instituion were known only within "the limits of the City of Dublin," sow their fame is the commen property of the Profession, and their world-wide reputation the great atration for sindents. Patient inhontry and above all, broherly mion and solf-acrificing devotion to Seience, raised those men io the high powition which they occupy. And if it is the desire of those pisiledged to hold the honcratile offee of Physian or Suryeon to our Hospital, to advance Midical Science in Canada, they mast endeavons to emulate their brethren in the Nother-land, and haying avide self, join hand in hand for the furtherance of the commun good.

The Medical Profession in Toronto, have hatcly been enjoyiner a great treat in the Microscopical demonstrations of Dr. Goadby, formerly of the Royal College of Surgeons, in London. The Dr. has exhibited an immense number of the most beautiful prepartion of animal and vegetable tissues; to the production of which, and to the study of Minute Amatomy, he has devoted very many years. The Dr. has abo discovered and adopted a new mode of injecting the diffierent vascular stucture, which under the Miscroscope are rendered peculiarly distinet, and have been the admiration of all beholders. The necessity of arranging his preparations in a mode suitable to their exlitition by the Microscope, also compelled him to employ a perfectly new mamer of preserving anatomical specimens, and this he las rendered suitable to the preservation of every variety of structure cithr as a wet or $d r^{-r}$ a. paration. The Dr. has been carnestly solicited to affora : ${ }^{n} \mathrm{t}$ explanations and descriptions in writing, of the several plans and methods he has anopted to secure such beautiful results-and the consequence has been that he has engayed to furnish the proprietor of the "Upper Camada Journa!," with a Practical Treaties on the Art of Muhing and Preserving Microscopical and other Preparations, with numerons :"lustrtions; which will printed in a neat neat demy sro. Pampilet, consisting of batween 100 and 150 pages, at the low price of five shilling per copy.

The methods indicated are extremely simple and easy of occomplishment, so that we doubt not they will be found of inestimabe value by all who desire permanently to preserve specimens in Natural History, as well as in Comparative and Human Anatomy.

We notice by the Papers received from the West Indies, that Yellow Fever-'Thphus Ieterodes, -was very urievonsly aflicting the people of Barbados, Martinique, and some of the other istands. And it was noted by the French Military Mellical Staff and by the Medical men at Barbados, that the increase and virulence of the Fpidemic was influeneed in a marked manner by the Wind; the disease being asgravated and increased as long as it blew from the Sonth. This is an observation which is very important to have made, and it is to be hoped that attention having been once drawn to the fact, that in future in all Epidemies greater attention will be given to Meteorological Whenomina oecuring at the time.

We notice that Dr. McDomell of St. Patrick's Hocpital, Montral, has been appointed on the Commission to inquire into the management of the Mariene Hospital. We may expect thegefore a good report.
"Spovianroes Combestion- - A child, in Fredericton, a few days ago, burned its leg against a stove. The mutherimmediately applied limeed oil and enten wool, with a tight badage over all; in a short time the screams of the chind induced the mother to remove the bamdaye, when it was discovered that the cotton wool had taken fire, and had considerably increased the size of the burn."

Finding the above in one of the Jomrmals of the day, we insert it; for although we are much inclined to doubt the actual fact as erpressed, yet as $S_{\text {pontaneons Combinstion is known to have oceur- }}$ red on board a ship, in cotton which had become accidentally moistened with oil, it is certainly possible

Lahilude, 43 deg. 39.4 min. N. Longilude, 79 de5. 21.5 min. W:

Mran highest observedtemp. 350.50 Meandally range:
Nesin registered mindmum 39,60) 150.69
Geateat daily range, $26^{5} .5$, from 4 p.m. of G.h to a.m. of \%ib.
Warmest day, 2nd, Mean temperature, $590.5 \overline{7}$, Diference.
Coldest day. 16 th Mrantemperature, 36,$58 ; 820.95$

The "Moals" are detived fronisix observations dally, viz:-at 6 and 8, a.m.; and 1,4, 20, ati 13 p. m.

The column headed " Magnet" is an atempt in disingbisb the character of each day as refurd the frequeury or extent of tian il icsuations of the Magnetic declimation indicated by the aetf-repiolertng lastrtuments at Turonto. I'tim classifcation to to some extent arbitrary, anc may require funtry modification, but has been faund tolerably dufintie as far 28 applied. It is as follons:-
(a) A marked absence of Nagnelical disturbance.
(b) Unimportant morcments,-not to be called disturbance.
(c) Marked divuriance, -whether shewn by trequever or amount ot derlation from the rommat curve.-iut of no great limportance.
(d) A ereater degrec of disturbance.-lut not of loar conthuance.
(e) Considerable disturbance-lasting more or less the whoie day.
($)$ A invguetical disturbance of the first class.
The day is reckoned from noon to noon. Ifivon letices are placed, the frat applies to the carliw thelater tis the later part of the trace. Althonch the declination it particilarly reforied so, randy happens that the rame terms are not appilcable to the changes of the horizontal furce atso.

Torento, Ostober, IS.2.

Elevation above Lake Ontario, 108 fect.

Sum of the Atmospheric Current in Mriles, resoived into the four Cardinal Durcetions:

Nor:h			Thast.
1339.	1071.35	497.95	1146.51

Mean yelocity of the wind-t. 57 miter per hour.
Max. velocity-lis 9 miles per hour, from \& to 0 p.m. on twih.
2 Iost wind day- 59 h : meran welocity- 10.52 miles per hour.
Least windy day-2nd: men velocity-083. ditio.
Hour of fieatest mean velocity-nnon: mean reluciry-c $\$ 8$ de.
Hour of least \quad. -10 pm : do. -3.00 to.
Xiean diunual variation- 3.48 mites.
Compalativi table won shirysamen.

± 1	Thangantuky				Days halna		$\frac{\text { Wind. }}{\text { Mintes. }}$
	Mean	Max	M1n	Itange			
1840	if 41	6*.3	:3,3	14 6	13	1.560.	
1841	41.+7	$2 \times .3$	$\because 3$	330	6	$1.30{ }^{\circ}$	
1812	4.154	685	340	385	8	5385	
1542	41.57	6.5 .7	21.5	41.2	12	$3.290{ }^{\circ}$	
1814	43.24	00.6	12.4	51.8	T	1.24,	
3615	46.16	9.3.7	200	12.7	11	1.7601	
3M15	11.67	69.7	20.7	19.0	13	41201	
1 T 47	44.418	63.0	203	117	13	4359	
$186 \times$ 3×00	16.69 48	4i : so	\%is	358 33.7	113	1.350 8.965	4.78
2×39	45 41	$6{ }^{6} 5$	248	\$1.8	10	\% 085	\$.30
3×13	47.831	动1	250	111	13	1. 680	4.38
1882	480	70.7	29.5	4091	12	5280	- 4.47
*1ヵ	16.901	cs.60.	23.77	41.83	10.8	3101	4.78.

Latitude, 43 deg. 30.4 min. N. Longílude, 79 deg . 21.5 min . W.

My:an. restucted mumanngo e5, 5 $\quad 9=31$

$$
\begin{aligned}
& \text { Warmest day, 15th, mean temperature } 43=5 \pi\} \text { bifierence. }
\end{aligned}
$$

Flys anow of the scason, from \dot{G} ta 9 a m. on the 11 th.
 13, p.m.

 fostruments at torotits The dhusthention is to ame vitent arbitrary, and mas require future modi-

(a) A mathed absence of Japmetical diturbunes.

(d) A areater dyprof ot dinturbice-minslra more or less the whele day-
(c) E(onsherabie disturtance of the first ctass.

 happeas that the exme sermate not aptlicable to the chauges of the nrizontal force alas.

Toronto. November, 1852.-

Elcuation above Lake Ontario, 103 fcet.

Sum of the Atmospheric Current in ifiles. resolved into the four Cardinal Dtections:

Nots.		South.	1.rst,
1291	2327.69	5 27.00	1378.64

Mean velocity of the sind-bisis miles per hour.
Pras. relocity-19.5 milles per hour, from 2 so 3 p.m. on 27 th.
Most wimdy day-12th; mean relocity-13.9I nathes per hour.
l.c3st windy day-ith: mean velocity-2.1L ditto.

Hour of greatest mean selocity-mona mean yelocits- 5 : 0 , do.
Hour oflenst $\quad 4 \quad-9 \mathrm{p} . \mathrm{m} .:$ do. - 5.34 do.
Alean diurnal variation-3. 5 miles.
SOMPARATIVE TABLE FO: SEPTMBMEF.

悹					$\frac{\text { lisin. }}{\text { Dissifithe }}$		Whal.
	Mean.	Max.	Mim	4nniz			गedir velucty.
1840	3.5.90	\$1. 8	≥ 0.3	339	5	1.220	Milles.
1811	35,35	63.2	7.6	53.6	5	$\underline{0.450}{ }^{\circ}$	
185	33.12	30.6	7.6	430	9	5.810	
1843	33.14	81.2	11.4	35.8	10	4.705	
1845	34.82	498	12.0	37.5	3	Imat'	
185	360	53.8	7.6	51.2	7	1.105	
1846	40.85	55.5	18.2	37.3	12	5×05	
1847	38.74	53.2	7.8	50.4	14	3.150	4.77
1698	34.31	433	16.5	32.8	9	2.020	4.51
1842	4233	567	25.4	28.3	10	2.315	178
13501	3865	62.3	18.7	41.2	7	2.955	5.27
1851	33.72	20.1	16.5	336	6	3.655	4.70
1852	3580	30.4	18.7	31.7	7	1.755	6.50
Mean!	(36.21)	\$4.65	14.92]	39.74	8.5	3.105	6.14

