The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/ Couverture de couleurCovers damaged/
Couverture endommageCovers restored and/or laminated/
Couverture restauróe et/ou pelliculbeCover title missing/
Le titre de couverture manque

Coloured maps/
Cartes geographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

\square
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
\square Bound with other material/
Relie avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the taxt. Whenever possible, these have been omitted from filming/
II se peat que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmoes.

Masthead/
Générique (périodiques) de la livraison

Additional comments:/
Commentaires suppómentaires: Parts of pages 87-8 are missing.

This item is filmed at the reduction ratio checked below/
Ce decumant est filmé au taux die réduction indiqué ci-dessous.

YOL. II.-NO. VIII.
COBOURG, APRILI. I, 1848.
C.

放社. -1
 BLIGHTS OF THE WHEAT.

In pursuatice of the plan announced in tho first chapter, attention will be next directed to the fungi found on the leaves and chiaff-scales of the wheat-plant. They are different in appearance from puccinia, but one of them sometimes affords reason to suspect that it is in nearer alliance with it, than has hitherto been imagined by botanists who have obsorved the two separately. These fungi are called uredines, thio plural of uredo, which is a term derived from the Latin word uro, to burn, because the discoloration of the parts of plants affected by them produces a burnt appearance. The uredines are chiefly found on the young or old leaves of corn-plants, and occasionally on the -stems; but, in the last instance, it has been surmised that the indigetions similar to uredo are caly immature forms of puccinia. We shall soon have to advert to this point. There is no stage of growith in which the wheatplant is free from the attacks of a uredo. Early in the spring it is found on the young blades; and this year (1846) it was in süch quantities in some districts, that the fields looked quite yellow with if, and at one time it produced much alarm. Laterin the season, it often abounds in the glumes and paleac of the ear, Even after the grain is formed. Thesc yellow or orange. uredines are of two kinds. One of them, from the oblong'form of its spores, is called uredo lincaris, the other uredo rubigo, whose spores are nearly spherical. Uredo rubigo means red rust, and no name could possibly convey a truer idea of its ap. pearance: Both these uredines are slosely allied to the rust on the leaves of rose-trees, called uredo rosce. Their colour varies from orange to a brownish hue, and they cause the parts attacked to look as if they were dusted with rustiness of these colouis: ' They belong to the order coniomycetes, or dusty fun. gus! It is a rare thing to find any wheat-field altogether free

Chiaff-3calesfected byred. sobup, bighly magaified. from them at any season of the yar. When the chaff-scales ar cudtacked, the spots look exactly as iney are repescnted in the one here drawa, and the matter forming them exudes like a red gum from the inner surfacè. Hence, red-gum is a name sometimes given to it; but it is most frequently known as red-robin, red-rust, or red-rag.

The chaff-scale delineated here, gives no further indication of the character of this fungus, than the manner in which it comes out and spots the parts of the plant where it vegetates. To sce the form of the spores requires a very high power of the microscope, by which it may first be viewed as an opaque object, and then a small bit should be scraped off and treated in the way described in the case of puccizia gramizis:. The spores will appear of the formis accurately exhibited in a drawing by Mr. Leonard, from"a specimen given him by the author to examine and figure: The fine threads of the nycelium, or spawn, are extremely well shown. Thus magnified; the organization of these fungi is perceived to be beatitifully delicaie, and the red gunimy powaris fount to bécomposed of in umeratle spores growing from. hhel spainethreads, as tiéforeprésented.

Spores of uredo, magaified 210 dameters, showing the myceliun.
The botanist therefore becomes completely acquainted with. the distinctive character of the uredo by the aid of the micro. scope, while the vegetable physiologist is enabled to form an. opinion on its peculiar habits aud modes of growth. The real habits of this common disease of the wheat-plant, are no longer: veiled by inaccurate observations, or popular imaginations.. The mystery is cleared up, and the cultivator who has often witnessed the discoloration of his crops by this fungus, without any real knowledge of its nature, maty now become thoroughly acquainted with the oliject of his frequent surprise and annoyance.

Very often, as happened in the spring of 1843 and in that of the present year, 1846, the corn-fields have semed quite to droop under the influence of this parasite. The aspect on such occasions is so sichly as to create serious alarm. But the arrival of a fow bright warm days soon dissipates the evil.: The genial beams of the sun seem completcly to vanquist it, so that it disappears in an astonishing manner, and a healthy greenness speedily succeeds to the sear and yellow tints that: have disheartened the farmer. 'The fact is, that when the sun dries up the superfluous moisture, the fungus camot spread, and health returns. It reminds us of the moral maladies which disappear before the light of truth.

We will now procced to notice the opinion of certainiemin nent botanists, that uredo rubigo and uredo linearis are only imperfect forms of minute fungi, which, in their perfect state, are known by other names. For example, it is said the uredo of the rose passes into a condition called aregma. So it is considered by professor Henslow, an eminent and most judicious observer, that uredo in the corn passes to puccinia. He pub. lished an able paper in the "Agricultural Journal" for $18: 11$, on what he designated "the Specific Identity of the Fungi producing Rust and Mildew; ;and his arguments are ingenious and well worthy of perusal. The point is considered by him as fairly established by observation of certain intermediate forms, confirming their conmexion and proving the identity of their origin. With regard to these appearances, the author desires to state that, in the autumn of 1845 , he found in a wheat-field many specimens of yellow-looking blotches on the straiv, which.seemed to confirm the professor's opinion. Examination by the aid of his own microscope, revealed forins similar to those drawn and described in the paper recently:alluded to. He placed a specimen in the hands of Mr. Leonard; requesting him to observe and delineate what he saw... The result was the group here shown, in which the several stages

Yarrous forms of the spores of the vereat mildow of isty magnificd, $2: 10^{\circ}$ diamitery.
suspected as existin may be seen. It looks certainly tike a case of transition. Thithowever, that the author can as yet venture to assert is, that oome puccinia have clearly the ap. pearance of uredo before the seplum, or division of the spores into chambers, is fully developed. In a splendid figure by Corda, these various forms are given with great effect as they burst the epidermis; and the drawing of that incomparable delineator of fungi confirms the opinion that the last observasion is the one that is safe and accurate. Questions of this kind will be viewed at first sight as purely botanical, though they certainly tend ultimately to the comblination of science and practice. For if cortain parasitic fungi, hitherto supposed to belong to genera entirely distinct, can be shown to be specifically identical, there will be a reasonable expectation that any remedy or palliative discovered for the disease in one stage, will preclude the necessity of seeking a different corrective in another. Rust and mildew may then be checkecr by a common treatment. More observations are, however, still required on this curious subject. A remark from Professor Henslow is worthy of notice. He says that the rust seems to be more common and more dreaded on the continent than the mildew, whilst with us the mildow is considered a far greater pest than the rust. "Is it," he adds, "that our climate is better suited to the more complete development of the spores of these parasitic fungi, and that our continental neighbours are more rarely favoured with the opportunity of secing them in their most perfect form?"

The rust is perhaps the least alarming in England of all the parasites attacking the wheat. Unquestionably it passes off in the way described more readily than any other; but when that beneficial influence of sunshine is not effectually exerted, a deterioration of the crop takes place. When it is found in later stages of growth, and on the glumes and palex of the chaff, it is more injurious than when it merely appears in the carlier periods of growth.
This is the proper place for a few remarks on certain other fungi, not so common as the red-rust, or red-robin, which-are occasionally found on the leaves of the wheat plant. One of these is the erysiphe graminis, almost universal on it in 1848, but which did not seem to do much harm, and upon which therefore there is no need to enlarge. On the continent, there are two species of moulds which are extremely curious, and one of them is fearfully destructive. The former, called chionyphe, from its being developed during snow, was discovered in Iccland, by Thieneman. Two other species have since been seen in the neighbourhood of Dresden, where they were abundant. This singular mould is found on the snow, when it just melts before the sun, without any general thaw. It consists of spreading shining fleecy patches, and the reproductive portion of it is sometimes red and sometimes green. As soon as the enow melts, it appears on the young herb in a stratum re. sembling a cobweb of great delicacy, which is not of long duration. It is most likely due to the existence of some animal matter in the soil, and is extremely remarkable; though by reason of its vanishing so quickly, not attended with disastrous results.

Not so the other, called by Unger Lanosa Nivalis, with reference also to its coming in time of snow. Unlike the last, this fungus is developed beneath the snow, and is excessively injurious both to grass and corn. During the spring of 1846, a description of it was published in the "Gardener's Chronicle." It appears in white patches, a foot, or even more, in diameter, tinging the snow with a red hue, arising from the spores of the fungus, which are of this colour. When a spore is greally magnified, the coloured contents are very perceptible. A completely withered plot is left behind, wherever this fungus has run its cuurse. When snows have come on without previous frosts, it has been known to destroy whole crops, particularly of barley and ryc. In places where it prevails, the farmers plough up the frozen surface, so complete is the mischief effected on the young plants. Happily for us, it has nos yet reached Great Britain; but that it will not, no one can predict, for all fungal diseases are very alarming, and may appear when least expected, especially in a climate where the shememary ae they do is ours.

The next parasitic fungus is the one which so materially affects the flower of the wheat-plant, and which has in many An ear of Barley spoiled by the uredo segetum.

An enr of Wheat spoiled by the uredo segetum.

places prevailed most extensively this summor, 1846. It is mach more minute than those previously described. The name given to it by botanists, is urcho segefum. Farmers call it by various appellatives, as "smut, dust-brand, bunt-ear, chimney-sweeper;" the last designation evidently arising from its looking exactly like a coating of soot adhering by some gummy subsinnce to the young ear.

It reduces the ears both of wheat and barlay to the condition figured in the drawings, and has the same effect upon oats. The black masses of sooty powder are the spores of the fungus which are here delineated, magnified 375 diameters.
Spores of uredo segetum in wheat, Sposes of uredo segelum in basley, magnified 375 diameters. magnitied 375 dianeters.

The specimens from which these drawings are made, were gathered by the author in the summer of 1845 . The ears were, in both cases, completely ruined. Some farmers say they like to see a little of it, because it is always accompanied by a good crof. Certainly, as professor Henslow well observes, the "little" can only be, with any propricty, on the principle of the less the better. Undoubtedly every ear attacked is destroyed, as is evident from the first instant it emerges from its hose, or sheath. The extreme smallness ot the spores of this fungus may be inferred from the drawings, but still further from M. Bauer's investigations. He says the one hundred and sixity-thousandth part of a square inch contained forty-nine of them. Hence he calculates that not less than seven millions eight hundred and forty thousand would be-feuniced to cover a sifuare inch English measure. It has, inded, beet aquestion with some persons, whether these appearnees a 0 due to a mass of diseased cells, and that they are not fuygiat all. But the answer to this is, that diseased cells woald not germinate, which these uredines unquestionably do. There is no apparent difference, generally speakings, between the spores of this uredo in wheat and barley; but there is certainly a degree of dissimilarity in those delineated in the fighres before us. This is probably due not to the dif. ference in the fungi themselves, but to the matrix where they grow; and there is great reason to believe that the produce of fungoid matter does vary in this manner, and even to a greater extent, with the peculiarities of the matrices by which they are nourished. If the spores of this uredo are so small, what must the sporules be as to dimensions? The highest imaginable power of a microscope could only be expected to exhibit them as a vapory cloud. The next question is, how the fungus acts upon the part of the plant which it principally affects.

When the plant is attacked by this fungus, the first injuries are found upon the interior portions of the flower, which render it completely abortive. In a short time afterwards, the pcdicels, or little stalks, to which the forets are attached, swell and look hard and fleshy. At length the whole is consumed; and the ear, particularly in the case of wheat, becomes dismantied of all its reproductive organs, and the remainder is powdered over with the before-mentioned black, dusty smut, which has a most disagreable appearance. In all speciment
the author has ever seen, the fungus has been visible only in the ear. M. Bauer, however, states that it has been found in some other portions of the plant. These instances are certainly very rare, and have been noticed by scarcely any observers. In some seasons, immense quantities of it may be seen, during summer, in the corn-fields, long before the rest of the grain reaches maturity. All these cars are, as we have said, destroyed by it, and therefore the amount of crop greatly diminished. But as its spores are scattered to the winds for weeks before the ripening begins, the farmer scarcely sees it during the harvest, and consequently thinks but little about it. This is probably the true solution of the prejudice in its favour.

There is every reason to believe that the fungus enters the plant by means of its sporules being so small that they find aceess with the ascending sap. by the spongioles of the roots. With this sap the spores circulate, and are developied as has been described. Some difficulty attends this view; but it will be partly cleared up in the next chapter. There, also, allusion will be made to the remedies which are conmon to this and the parasite to be next described.

a LITtLE FARM, BUT GREAT PRODUCT AND PROFIT-HINTS TO FARMERS.

We are enabled by favor of the Secretary of the American Instiute, to publish ihe following interesting extract from the forthconing Report of that Institution:

New Yonk, Feb. 20, 1848.

T. B. Wakeman, Esq., Sup. Ag't Am. Ins.

Dear Sir,-Circumstances have recently brought within my observation the situation and condition of the Bloomingdalc Asylum.
The Asylun has 40 acres of land, 10 of it in wood. In. cluding buildings and immediate enclosures, perhaps about 30 acres under cultivation, as garden and farm. I was so much pleased, and in particular with the management and produce of this branch, and thought it so honourable to the Governors of the Hospital, that I sought for and obtained a copy of the summary of its debtor and creditor amount. I hasten to com. municate the sum to you, believing it will be an cxhibit of great usefulness to the American Institute. It illustrates the benefits and the profits which will arise from the proper care and cultivation of the soil; it shows what you may expect to accomplish if the Legislature, in its wisdom, should grant the petition of the American Insitute, to establish an Agricullural Sciool and Experimental Farm near this city.
1 think the extilit enclosed is a volume of very usefoli infor. mation. It is seed, from which, with suitable cultyoation, Agriculture may raise very prufite:ble crops.

Truly yours,
 JAMES TAĹ LM/DGE.

Statement of the Products of the Bloomingdale Asis fum Farm of 30 acres under cultivation, with the market value, for 1847:
mat, milk, ac.
40 tons Hay at $\$ 10$ per ton - $\$ 40000$ 1236 pounds Pork at 6 cts. per lb . 7776
663 pounds Butter at 25 cts. per 1 b . 16575 $44 E 8$ gallons Milk at 16 cts. per gallon 71800
303 dozens Eggs at 1s. per dozen 3738
150 pounds Poultry at 6 cts. per 1 b .
Total
\$1,408 47
fruits.
260 bushels Apples at 50 cts. per bush.
20 bushels Pears at $\$ 1$ per bush.
$\$ 10000$
2000
150 bushels Cherries at 81 per bush.
25 bushels Currants at 81 per bush.
15000
15 bushels Peaches at 81 per bush.
2500
1200 pounds Grapes at $6 \ddagger$ cts. per lb .
1500
8 bushels Strasvberries at $\2 ? per bush.
7500
1600

vegetables.

000 bushels Potatoos (sound) at 75 cts. per bush. - 87500
180 bushels Sugar Beets at $37 \frac{1}{2}$ cts. per bush. . . 6750
100 bushels Blood Reets at 50 cts. per bush. . . 5000
460 bushels 'Turnips at $31 \ddagger$ cts. per bush. . . 14375
28 bushels Carrots at 50 cts. per bush. . . . 1400
120 bushels Parsnips at 50 cts. per bush. - . . 6000
45 bushels Onions at 75 cts. per bush. . . . 6750
150 bushels Corn at $37 \frac{1}{2}$ cts. per bush. 5625
20 bushels Egg Plants at 50 cts. per bush. . . 1000
125 bushels Radishes at $\$ 1$ pe: bush. 12500
120 bushels Beans at 50 cts. per bush. 6000
65 hushels Peas at 75 cis. per bush. 4875
75 bushels Pumpkins at $37 \frac{1}{2}$ cts. per bush. . . 2812
130 bushels Squashes at $37 \frac{1}{2}$ cts. per bush. . . 4875
210 bushels Spinach at 75 cts. per bush. . . . 15750
40 bushels Asparagus at $\$ 3$ per bush. - . . 12000
140 bushels Tomatoes at 50 cts. per bush. . . 7000
100 bushels Cucumbers at 75 cts. per bush. . . 7500
1 bushel Nasturtions at $\$ 2$ per bush. . : . 200
4 bushels Peppers at 75 cts. per bush. . . . 800
52 bushels Rhabarb at $\$ 2$ per bush. - . . . 10400
75 bushels Citron Melons at 10 cts. per bush. - 750
2500 heads Celery at 3 cts. per head
7500
3000 heads Cabbages at 4 cts. per head 12000
1000 heads Leeks at $\frac{1}{2}$ ct. per head - 500
2000 heads Salsify at 1 ct. per head 2000
4000 heads Lettuce at 2 cts per head 8000
Total
\$2,293 62
Farming Depariment in account current with Bloominglale Asylum,
To* Farmers' Wages, \$781 00|By am't Vegetables \$2,293 62 ". Board 52000 " Hay \& Milk 1,40847 " Implements - 2080 " Fruit - 40100
" \dagger Manure - - 31100 " Live stock sold 17800
" Live Stock purch'd 19138
" Grain, feed, \&c. 29ä 64 Total . . \$4,281 00
" Balance - . 2,251 27
Total - 84,28100
Will the mass of our Farmers never learn the lesson hore so plainly taught? How many of them have been skinning one to three hundred acres all their lives, their lands growing poorer and they no richer, who, when exhorted to mend their ways, make answer, " Oh , I would farm better, if 1 only had money enough to buy manures, hire help, \&c." Why, Sir, why won't you see that you should sell half, three.fourths, or even seveneighths of your land, if need be, until you have money enough to cultivate what is left thoroughly, though it be but a patch of four acres? Those, well tilled, will produce more than a hundred used in the miserable old way.-N. Y. Tribune.

DOMESTIC ECONOMY IN COOKING FOOD FOR MILCH COWS.

Next to our inability to oblain the greatest amount of produce from a given space of land, is the loss in domestic eco nomy by an injudicious appropriation of that produce. We look on foreign competition in our grain market as an evil, forgetful that such competition enables us to support our poor at a cheaper rate than, under present circumstances, wo can do with our produce. Let us but once raise from our land the greatest amount it is capable of producing, with the least possible expense-which cun be done by skilful labour, when the people will be properly instructed, and which cannot be surpassed in quality in any other country, and more cheaply than such can be supplied to us by foreignere-and wo will soon have our markets remunerating, because our producors as consumers, will bo found our best customers, and thus keep in our country that which we now must pay strangers for, feeding their people while at noork, profitable to them, in prat

[^0]+ Parchaed (in Eddition to thep mede on the Faras.)
ducing food for our people while idle, rnd, as a consequence, ruinôssto us.

I'a obtain the greatest amount of mutrinent fiom a given amount of any ordinary fiod, wheher for man or beast, tlat food must have tadergone a chemieal changer, by which the grealest amount of residue, if we can use the nipression, is canterted imo flish, fat, milk, or butter. To diacuss these aubjeots in a purely sciontifie manner, womld be quite beside our pesvince, if in our powar to do so, and when done "ould, perhaps, be lithe understool by the class for whose instruction We write; we uill, herofino, emfine our remarks to a few practical details, und a few familiar i lustrations.

Every poor housowife, who has reared a family, knows that getuel; broth, or builed food, whether animal or yegetable, when ofed by a nurse, will produce move food in its inother's milk Gor an infant, than if such fond consinted of dry breal, corned beef, or raw vegetables; and every lady who has cmployed a uurse must haiw that the ductor will advise giving the marse XX to drink; so it is with the animals of the farm, where the greatest unount of mik is capreto id the fond that will best produce it must be reduecd to liquid, and. in som. cases, a slightly fermonted state, to be productive of the b ot results.
We have found that from $2 \frac{1}{2}$ to 32 stones of grot oats, or from 2 to 3 stunes of barley per week (if matted so much the better), and prepared as we shall hercafter describe, will pro. duce an amount of milk in cow, of ordinary capacities, of sufficient quantity, and valuod at bd. per grillon over what would be produced by such cows if fed on hay and ordinary grass, after all expenses in coohinis, ns wuhd pay for the outs afls. to 18. 2d. per stone, nod for the barley at from 1s. to 1s. 3d. per stone, nud if, by reducing the quantity of onts or burley, s.ly one-fourth to one-half, mad by adding from one fourid to one-half the usual quantity of mangol. wurzel, or carrols, or parsnips, half builed or half steramed, and braised gr crushed, the results would to stall better, because tho latler cupdean be grown so much choper, and because, Also, it is less ssigable at marhet. Thas, say at the rate of from one apd a half to two stuues of carrots or parsiaps, and from three to four stones of matiacls per day, for a medium or large sized milch cow, with the pruportionate amount of barley or onts, as already statud, will increase the milk of such a cow, in some cases, over 100 per cent. mure than she would give fird on dry hay, in the urdinary way; besides, there will be arsying of one. fourth, at least, of the usual quantity of has consumed, by cutting one-half of it, and mising it in the com. found about to be mady up. The process is simply this:chaff the hay, bruise or rather cut the grain, and crusta the roots; get them all into a large tub or beeve, wooden box or petallic puppement, and pour in boiling water over them; Goycr tho eintire up cluse? ${ }^{\text {g }}$, so as to keep in the steam, and, at the end of two hours, let off the liquad; apply fresh, boil. ing'water, which, covered, Iet stand, two and a half hours more; draw off the higiuid agan, apply ficsin builng water, and cover as defore; at the end of thre hours draw off the hquid again; apply fresh water and cover up, and ht to rest so till next moraing; then draw oft, and saix all togethere and let th rest from thifty sitit to forty-eight hours befure being used, when afberdinte of three buclecifuls, or 15 g: llons, will to had for deh day, n bucketfal at cach of their feed-, those at morning had at night-Given before milkin; r, and a bucketful will atso bo hind for a mid day feed, and a bucketful of the grains, so called, to give nt night, when the stalls are being made up;
a litto hajy to be riven after each feed of the liquid, a litto hay to be triven after each feed of the liquid, and also int night -gnod sweet straw will do in the latter case ; it will do in overy case where a saving of hay is an ubject.
In thas feedin't hilch cows each should exerecise his own judgnient, accorting to the difterent circumstances that ench tnust be govcrned br; afugy bearing in mind the strict prin. dipied econoln:. If the of: ... be to increase fesh and fat,

 Such of our practical miends as will adopt theso. sugges.
ions, we aro suff:nill:inprove on them eccording so their
circumstances; we will be most happy to hear of such, and if wo can further and them, need we say our grealest pleasure will be, to have it in our power to do so.

THE PRINCIPLES AND EFFECTS OF DRAINING.

A superabundance of water on the surface of bogs, fens, and marshes, is so obvious a cause of grent and manifold evils, as nut to reguire explanation; yet it operates, in many respects, quite as leaicntly as an excess of moisture in the cultivated land of peopled districts. "The water which is retaine d under the s.il on impervious layers of earth," remarks a writer in the Quarterly Journal of Agricullure, "effects incalculable mis. chicf. While hidden water remains, manure, whether putrescent or caustic, can impart no fertility to the soil; the plough, the harrow, and even the roller, cannot pulverize it into a fine mould; the grass can contain no nutriment for live-stock, as the finersorts disuppear, and their places are usurped by coarse aquatic plants; the stock can never receive a hearty meal of grass or straw from land in such a state; they are always hungry and dissatisfied, and of course remain in low condition; the trees acquire a hard bark, stillened branches, and soon become the prey of innumerable parasites; the roads in the neighinurhood are constantly soft and rutted; the ditches and furrows are either plashy or like a sponge full of water, suitable receptacles for the newt and the frog; the circumam. bicint air is always damp and chilly, and from early autumn to late in spring, the raw hoar-frost meets the face like a wet clolh, morning and evening; in winter, the frost incrusts every furrow and plant with ice, not strong enough to bear one's weight, but just weak enough to give way at every step, while the snow lies lurking in crevices behind the sun till late in the spring-fit feeding.ground of the woodcock and snipe; and in sumner, musquitoes, green flies, midges, gnats, and gadflies, torment the cattle, the labourer, and his horses, from morning to uight, whilst the sheep get scalded heads and eaten up by maygots during the hot blinks of sunshine." Yet dismal and horrible as is this catalogue of evils, it does not point at one half of the principles on which draining operates, or name one half of the calamities which it conquers or repels.

The excessive humidity of our climate, particularly through. out all Ireland and the western parts of Scotland and England, might suggest the probability of draining being as requisite for the corn-fields of our country as irrigation is for the rice-fields of the tropics. An excess of either moisture or drought is seen by all observers to injure most cultivated crops; and an excess plthumidity in one set of climates, corresponding to an exce $\$$ of ${ }^{n}$ ridity in another set, might seem to the most unreflectihg mitis - A be a provision of the all-wise and all:beneficent Cicator, to provike man to the exercise of forethought, pru: dence, and heaklhful manual labour. Farmers cannot control the clouds of either a dry climate or a wet one; but they can, with con parative ease, supplement the former's deficient supplies of rains by irrigation, and draw off the latter's excessive supplics by draining. "It is the nature of the climate, then, that regulates the necessity for draining; and as the humid seasons greatly outnumber the dry ones in this country, we must therefure adopt that necessity. Had our climate been like that of ftaly, not only no draining would have been in general necessary, but our rivers, like hers, would have been directed into channels to irrigate our lands, in order to preserve to them that pleasant verdure in the height of summer, on which the eye gazes with so much delight, amid the rich luxuriance and the plains of Lombardy."
Plants of difierent species have wide differences of constitution for relishing or distiking moisture, as well as for enduring extremes of heat and cold; and, with very feiv exceptionis, such plants as agree whith much moistur contain exceedingiy hatle of the elements of nutrition for either man or beast.Through succulent aquatics, such as can thrive in the presence of constam surface water, are chiefly sphagnums, hypnums, algat, cotion.grasses, and other cryptonams and worthless phe. nibgams, fitted only to accumalate themselves into the substance of bew fens, and morasses; and"the leas decided aqua. tics, of such wsthrive only above subioni water or with but the
occasional presence of surface water, are chiefly rushes, sedges, coarse bents, and other tall and bulky herbage, large-rooted, and usurping enough to prevent the growth of tine grasses, and consisting principally of elements and secretions which the stomach of no domestic animal can digest. The draining of morasses, therefore, brings them into a condition for producing Iand plants; the draining of wet grass lands disposes them to exchange their coarse herbage for the finer grasses; and tho draining of corn fields deters them from giving a coarse aquatic character to their produce, and enables them to bear their crops in the menner of superior fertility. "On drained land," remarks Mr. Stephens, "the straw of white crops shoots up steadily from a vigorous braird, strong, long, and at the same time so stiff as not to be easily lodged with wind or rain. The grain is plump, large, bright coloured, and thin-skinued. The crop ripens uniormly, is bulky and prolific, more quickly won for stacking in harvest, more easily thrashed, winnowed, and cleaned, and produces fewer small and light grains. The straw also makes better fodder for live stock. Clover, in such land, becomes rank, long, and juicy, and the flowers are large and of a bright colour. The hay from it wons easily, and weighs heavy to its bulk. Pasture-giass shoots out in every direction, covering the ground with a thick sward, and produces fat and milk of the finest quality. Turnips become large, plump, as if fully grown, juicy, and with a smooth and oily skin. Potatoes push out long and strong stems, "ith enlarged tubers, having skins easily peeled oti, and a mealy sub. stance when boiled."

Both soils and subsoils have wide diferences of capacity for moisture, so that a degree of humidity of climate which is eminently fertilizing to one kind of land, may produce a great excess of moisture upon another. Humus, clay, and chalk readily absorb moisture to the degree of saturation; and when they are presented with more than a saturating dose of it, they retain it as if they were vast beds of minute sponges, and as completely prevent its percolation as if they were strata of tallow or of metal; while silicious sands and gravels, on the other hand, can receive none of it into their granules, and allow it to percolate amongst them with all the freedon of a rapid und constant filtration. Soils of humus, clay, or chalk, therefore, if not freed from an enormous proportion of "ater ly drainage, will necessarily produce nothing but aquatic plants in climates which naturally enrich and fertilize arenaceous soils; and substrata of clay or chalk, especially substrata so high as to sustain the relation of immediate subsoils, if nut constantly tapped and fissured by the action of drains, "ill so arrest the descent of the water of prolonged or heavy rains, as to cause the repletion and drowning of even sandy surfaces. The composition and structure of the earth's crust, also-the great number of its materials, their diversity, their misture, their differences of mechanical condition. their geognostic relations, the distarbed connexions of alluviums and rocks, of strata and crystalline protrusions-occasion amazing differences and sudden transitions of retentiveness and porosity, rendering one place thirsty and insatiable, and another spouty and disgorging, and sometimes producing as great and unconquerable a neces. sity for artificial drainage on the farm, as for natural drainage at the sources of rivers. But we reserve a full view of the saturating of land from springs and subterranean stagnations to the sections on respectively strata-draining and subsoil. draining.

The natural or artificial stagnation of considerable bodies of water frequently occasions, not only the loss to cultivation of the extent of surface whicin the water covers, but a very mischievous excess of moisture in circumjacent cultivated land. Lakes and ponds, in many instances, are so shallow and cover such beds of rich alluvium, that the draining of them is one of the cheapest and easiest possible methods of obtaining an accession of good land; and even some lakes and ponds which are deep, ard which cover rocky, gravelly, or otherwise barren bottoms, are, in some instances, the causes of such wide-spread wetneas and spoutiness of both soils and subsoils, that the draining of them is well repaid by the permanent drying of the surrounding lands. The water of ditches which surround
fields, also, particularly of such as extend along the highest side of the fields, often finds its way downward into the poromp parts of the subsoil, oozes up to some parts of the surface of the fields, and a liects, in wet weather, as great and mischiovous discharges and plas!iness as the ontbursting water of a stropg perennial sping. The water of tams, large surface drains, and small cutilind tivule ts, whencver thowing along a higher level than that of adj.econt filds and meadows, is likemise a frequent cause of considerable lecal wetuess of land ; and may be pointed unt as a species of drainare which itself requires draining, and as illusthating the necersity of maintaining all sources of water, whether natural or artilicial, at a lowor level than the proper sent and alinent of plants in the adjacont lands.

The dying of land by draming produces a most powerfulf effect upon the foot ot cattle, exterminating noxious aquatic plauts, improving the quality of the finer grasses, vastly in. creasing ine amount of nourishment, and occasioning an agreeable dryness and a palatable flavour in both roots and leaves. Giass lands which were firmorly wet, ponched, and rustiy, become thickly carpeted witi tine nutritions grasses, maintain a greatly increased number of sheep and cattle, prevent the sheep from b.ing attached with rot, render the cattle goodtempered and kitully, and occas:on the flesh of both shoep and caule to be greaty improved in puints and flavour. "In the southern districts of Scotland, particularly in the counties of Berwick, Roxburgh, Silhirk, and Prebles," said Sir John Sin. olair in 1817, "nost of the prineipal sheep farms have been very much drainnd, and the "cousequence is, that the size, quality, and htalthfulness of the suck in these districts have been therely so mueh inprower as appears almost incredible to those whe were acytamited with the former state of sheepfarming in tho e part. In many of these farms, the rent has increased fourfidd, and the rut is now hardly known." Even the stiflist and most retentive elay lands, such as, with slight or imperfect draiming, "ould be thonoughy poached by cattle, and would bring a perithee of rot upn sheep, may, by a process of complete sabmit-draminer, be rendered excellent turnip soils, perfectly healliy for all live stock, and capa'sle of being folded or fiduat by she p in cilher summer or winter.

Th: testure of wet lamd multiphies the labours of tillage, and is vastly improved in its workable capacities by draining. Its texiure, even though werywhe re consisting of the same materals, is excecdingly and fitully varions in hardness and softness Some portions of it are sengy with the springing or the percolating of water ; some arie comblidated by the successive expulsion of moisture, tread of cattle, and drying the ceaporation; some are tough with the matted and elastic roots of carices and semiaquatic grasses; some are stubborn and refractory with the firm imbedding of suall stones; and some present a rapid succession of depts and shatlons of soil, ready at one moment to fling up the plungh to the surface, and at another to tempt it down to a perilous and inpraciacable depth. A ploughman in working such land, must practise the utmost steadiness of eye and skill of hand; he is kept on a cotstant tension of vigilance and effort; he is worn with exertion, tantalized in his efforts, vexed and plagued in temper, put to a severe and constant trial of all his powers as a ploughman, and all his patience as a man; and even though he should be one of the ablest, most experienced, most persevering, and best tempered operatives of his class, he will utterly fail to maintain uniformity of depth in the furrow-slice, or to effect regularity or tolerable goodness in general execution. His plough will dip in some places, and be tilted up in others; it will now be arrested and now let go, so as to make a succession of violent strains and jerks upon the horses; and it will in few places lay the furrowslices completely over, or so effectually detach their lower edges frum the basement-soil, as to make their upturned sides cohere in the manner of a continuous mass. The harrows, too, will rather scratch the iops of the furrow-slices, than tear their whole body into powder; and the roller will effect sueh a compression as to render the surface somewhat like thatof a footpath. But when even the wetlest and most clayoy, arable land is completely drained, it acquires a free, friable, homo-
geneoun texture, ss sweetly and facilely workable as that of a naturally light arenaccous soil. "Being all alike dry, its texture becomes uniform; and being so, the plough passes through it with an uniform freedom; and where ordinary. sized stones obstruct its course, the plough can easily dislodge them. The plough by its own gravity tends to raise a deep furrow ; and the furrow on its part, though heavy, crumbles down and yields to the pressure of the mould-board, forming a friable, mellow, rich looking mould, not unlike the granular texture of raw sugar. The harrows, instead of being held back and starting forward, swim smoothly along, raking the ooil into a smooth uniform surface, entirely obliterating the prints of footmarks. The roller compresses the surface of the moil, and leaves what is below in a soft state for the expansion of the roots of plants."

ON THOROUGH DRAINING.

Those who are practically acquainted with the cultivation of the soil, must be aware that the profits of draining wet land arise in many different ways, viz. less seed, less manure, less labour, and more easily performed, and can be wrought comfortably almost in any kind of weather. These are adiantages of no minor importance, and if duly weighed, are no doubt valuable; however, they do not form part of the profits generally calculated on by the unobserving Farmer. He only looks to the increased produce of crops oblained by the operations of draining and subsoiling; and although I never met with an individual that had performed these operations thoroughly, but admitted that he had been amply repaid for his labour, yet I believe very fow can tell in what shape, or in what length of time; as is exomplified in the case of a clever Land Surveyor, when lately pursuing his vocation in the lower district of Aberdeenshire, I believe chiefly for the purpose of arranging matters regarding the Arainage of land. Ainongst all the principal Agriculturists in the district, within iwenty. five milen from Aberdeen, he only found one person possessed of any correct data of the returns, from a rotation of crops on \& field prior to being drained and sulsoiled, and the same after those operations had been performed.

Now, as this is a point of primary importance to the Agricultural public. especially to those immediately contected with draining, I shall here give a short statement of the produce of a field, on the home farm of Haughton, Alford, six years previous to being drained, and four years afier. The information has been kindly communicated by the Farm Overseer, and carefully poted from his farm accounts, the accuracy of which can no doubt be depended on. The acre is the Scotch measure; and the feld in question contained five and a half acres. The surface soil was poor, black, and mixed with gravel, running from four to sis inches defp, resting on a stiff bound pan, composed of poor yellow clay and gravel, strongly impregnated with the oside of iron, to the depth of about two feet. below which it became more porous and open. It was ploughed from shree year-old grass, or rather trom rushes and bent, in the autumft af 1837. At that time, the water in many places was atanding above the surface. It produced a crop of oats in 1838 Qf one and a half grs. per acre. In 1839 it was under turnips, laid doun with 25 cubic yards well made farmyard dung per acre. The scason proved rather wet, and the crop cankered, and turned red; the turnips were very small and coarse, scarcely worth pulling. In 1840, oats and grass seeds were sown, and the season being pretty dry, the produce was three gra. oats per acre. The winter following was favourable, and she sole of grass kept pretty well; and in 1841, the yield of hay per acre was one hundred and forty stones of twenty-two 2bs. In 1842 and '43 the field was in pasture grass, and was valued at thirty shillings per acre. In January 1844 the thorough dreins were opened thirty feet apart,* thirty inches deep, and six inches wide at bottom, filled with four-inch stones to the depth of sixteen inches, closely turfed, and covered with

[^1]subsoil firmly beaten down. The leading drains were three feet deep ${ }^{\text {with }}$ a built conduit of five inches wide and seven high. The whole cost of draining was $£ 5$ per acre, exclusive of cartages. The crop of oats in 184.4 was rather lote, but produced a fair quantity of straw, and three and a half qrs. of oats per acre, brsides a considerable quantity of small oats, which in consequence of lateness had not come to maturity. In February 18.45, the fleld was subsoled by a plaugh drawn by four horses to the depth of sixteen inches, and cost $\mathrm{f}^{2} 2$ per acre, including the dirging out of large boulders, which were pretty numerous. It was then put under vellow turnips, manured with 24 yards of good farm-yard dung, in conjunction with six bushels of bone.dust per acre. The yield was good, and was estimated at twenty tons per acre. In 1846 the field was sown with oats and grass secds, and gave a pretty close equal crop of five qrs. of good oats per acre, and straw in proportion. The grasses were close, strong, and healthy. Last year (1847), the yield of hay per acre was 260 stones of 22 İbs.:-
comparative statement of crops.

increase after draining.
Per Acre.
Vaiue of Incrense.
1844, Outs alter lea, 2 qrs., with the atraw, at 30s. $£ 300$
184;, Yellow Turnips, 17 tons, at 7o. 64. per ion 676
1816 , Oats afier turaps, 2 qre, with the straw, at 358. . . 3100 1847, Hay, 120 atones per acre, at 7d. 3100

Profit, in whole, for fuur crops
£16 76
If it were necessary, similar statements couid be adduced to shew the good effects of drainage and subsoiling ; but the above seems quite sufficient to substantiute the fact, that these im. provements will pay handsomely, even on very ordinary soil.

TIIE DAIRY.

The Dairy-house should be situated on a porous soil, and on the inp or decluity of a hill, or in circumstances otherwise thoroughly favourable to constant ventilation, " ec air, asd entire freedom from vapours and noxious gases, and it should also enjoy shelter, whether by the configuration of its site or by screens of trees, from northerly, easterly, and south, easterly winds. The principal parts of a dairy-house are the milk-room, the work-room, and the cheese room.

The mill-house nught to be of sufficient capacity to contain one day's milk of all the cows which are kept upon the farm. It must be cool, of umform temperature throughout the year, thoroughly veutilated, and perfectly free from damp vapours and bad sinells; and it must be always kept clean, dry, and swect aired. Its trmperature in any part of the year must not rise above 55° nor fall below 50°, else it will certainly injure the milk; and this temperatiore can be maintained only by means of deep cooling shade in the season of intense sunshine, and of a stove, surrounding flaes, or some hindred appliance, in the season of cold winds and of frost. It may be constructed ether by sinking the floor some feet under ground, and making the roof a prolonged arch of stone or brick, or by having the floor on a icve! with the surrounding surface, and forming the roof in the ordinary manner, with a covering, not of slates or of tiles, but of straw.thateh, or of turf or 'divots;' and in the latter case, it ought to enjoy the shade of overhanging treas or of adjoining lofty buiddings. The distance between fioor and ceiling ought to be at least ten feet; the floor should be a close pavement of polished sandstone, or of tiles, with all its seams so completely puttied as to prevent the entrance or stagnation of even the ...nallest portion of liquid, and with a prevaling uelination toward a drain for carrying off the water; and the bench or tahle for holding the milk-pans should consist of polished marble, or of beech or plane.tree, or at worst of polished sandstone, and should extend round the
walls-if the milk-house be a sunken one-at a line a litle below the leval of the outer ground, or, in any cann, not more than three feat from the floor. 'I'wo windows may open toward respectively the north and the north.enst, and should be covered with a sieve of brass wire, or anc wire, impenetrable in mice, and a shect of gauze.cloth within the wire, such as to cxclude flies and yot to admit light and a curreat of air. If ouly one window can be thus cunstructed, or the two be insufficient in size for abundant ventilation, air holes, covered with wire, should be cut a little nbove the milk.bench and on opposite sides of the ronm; and if the windows cannot be opened toward the north or the north-east, but look in some other direc. tion, each must be shaded with a buard, sis placed as to admit a current of air, and at the same time to exclude the rays and heat of the sun. Glazed windows may be added for the win. ter; yet, except in either very cold or very hot weather, they are quite useless, and ought always to stand open. "A com. plete ventilation," remarks Sir John Sinclair, "may be preserved by a number of openinge in the outside walls near the floor, covered with canvas or wire.cluth, to which sliding shatters are fitted on the inside. If there is no apartment above, a ventilator should be made on the roof, coveled with weather boarding, and communicaling with the cerling of the milkroom by an enclosed box or case formed betwixt the scantlings, with openings both on the under side next the celling, and on the upper side io the ventilator in the roof. Where there is :oo apartment above, the case in the ceiling should have openings at the ends through the walls, with wire-cloth coverings. 'Two of these cases should be made in the ceiling, with two openings to each from it, about one foot sqare, perfornted with holes or covered with wire-cloth.' The milk. bench, the floor, and the walls of the house, ought all to be so closely constructed as not to admit of the lodgement of milk, dirty water, dampness, or any impurity; the milk-bench and the floor onght to be carefully washed and dried everv time that milk or water is dropeped on them; the walls and the ceil. ing ought to be frequently sivept, so that no dust may accu. mulate or cobwibs be formed; and the drain which carries off the water should be kept as clean as the floor itself, and should communicate, not with any sink or pond, but with an outward chan:ael of perfectly free and open conveyance. When a hitle rill of water from a closely adjacent spring can be made to flow along the drain of the malk room, it has a finely cooling and purifying eflect, carrying off cflluva, keep. ing up continual ventilation, and maintaining consant freshness and sweetness in the air. The work-room requires to be as near as possible to the milk.house for convenience, and yet to be sufficiently distant and separate not to communicate to the milk-house any of the steam from its boler or of the effluvia from its floor. It must have a closely paved floor, and bo quite clean, and perfectly frec from stagnations of milk, from putrefaction of curd, from lodgements of dust, from foul vapours, and from all other kinds of impurities. On all small farms, the work-room ought to be of ample capacity for all the operations of the dairy, both direct and subsidiary; on large farms, it ought to comprise three apartments-one for chuning, one for making checse, and one for cleansing the utensils and vessels. A verandah round both milk house and work. ronm is nlso a very desirnble contrivance, shading the milkhouse from the sun in summer, somewhat aiding its warmits in winter, and allowing the dairy utensils to be dried and aired in rainy weather. The cheese-room ought, in every instance, to be a separate apartment, no matter in what part of the farmery, but claan, moderatcly cool, perfectly dry, and quite free from bad vapours and gnses.-Rural Cyc.

ON THE NATURE AND ECONOMY OF GRASSES.

Go where yon will, your eye rests both on hill and dale. mountain and valley, all clad in beauty and enlivened with " nature's living greer;" "all," as the poet truly says, "lovely to behold." This tribo of the vegetable kingdom is indigenous to almost every species of soil-and I may say, likewise, that it is natural to every clime; in fact, I may very appropriately consider them among our domesticated plants, inas-
much as you are sure to find it in every part of the world where both man and the lower orders of animated creation have obtained for thecuselves a habitation. Thus, while it constitutes the food as well as the couch of the most important and valuable anmals with which the service of man is blessed, yet it forms, at the same time, the most variegated and splendid carpets with which the Almighty, in the plenitudo of his wisdum, has graciously thought fit to adorn the surface of the fertile land he has created for the sustenance of the various classes and orders of animated nature; and, as I have before stated, so do I now repeat, that there is no vegetable which is so extensively and profusely grown in the wide garden of the known globe, as that of grass; and we may inquiro with some degree of truch and philosophy, and ask ourselves this simple question, What kind of ammal diet does man par. taice of, which, when alive-the creature whose remains form his food-did not, in a state of nature, subsist upon some one, or perbmps many, of the natural giasses? The question is casily solved, when I sny, None.

Like every other species of vegetable which man, in a stato of civilization, has become acquainted with, the grasses are capable of being improved to a very considocable extent; and the more we examine anto the philosophy of agriculture, the more do we daily witness the benefits which the hand of acience is capable of conferring upon mankind. In many parts of the globe we find the grasses, when in their natural siatos, innutritions in their propertics, extensive in their height, and rank in their qualities. Examples of this fact we find in the almost interminable and dreary plains of New Holland, and many parts of North and South America. Now, contrast these with the luxuriant pastures of England, and examine their nutritinus properties, although we must acknowledge the diminution in their dimensions, yet, in the manner they are cultivated by the British agriculturist, they not only are valuable as food for his cattle, but a source of grent pecuniary profit in many instances, they rewarding his talent and toil.

All nations that we are acquainted with who have distinguished themselves by their advancement in the science and art of agrieulture, and those collateral departments of human knowledge which are generally attendant on the results of civilization, have at all periods more or less devoted some considerabie share of their time, skill, and attention to the cultiva. tion of not only the grasses in particular (as so especially deno. minated), but other articles of food for the due sustenance of their dumesticated animals; accordingly, if we but turn our attention to the pages of history, we shall soon discover that it had been successfully practisted in the first century of the Christian era; that it was progressively continucd by the inhabitants of surrounding nations, and especially by the natives of the low countrics, which, Mr. 'Turner tells us, were, at that perind, equally celebraied for the cultivation of not only the science of ngriculture, but also the collateral branches of human knowledye, manufactures and commerce. 'Towards the middle and termination of the seventeenth century, instructors in these important subjects made their appearance in various parts of this nighty empire, and it would, did space permit, form a pleasing retrospect, to historically sketch the various improvements which have been gradually but successively made from that period down to the present. I do not, on thia occasion, intend to give your readers anything like a history of agriculture, but merely a few observations respecting the introduction of the tribe of fodder grasses, \&c. into this country, and their nature, which, I hope. at least to the naturalist and botanist, cannot fail of proving interesting.

On referring to both the records of sacred and profane history, we shall find that the Jews, Egyptians, and Greeks, with many of the inhabitants of surrounding nations, displayed considerable care, skill, and attention in the cultivation of the cereal plants, and those which were conducive to their subsistence and clothing, as well as other comforts. Iam well aware that in those days of primitive civilization, the sole wealth, or nearly so, of a monarch, a noble, or a landed proprietor, consisted in his fiocks and herds; yet, as far as my researches have gone, I do not think that they cultivated ang
of ibo plants now omployed by us as the means of subsistene". for the animals they bred, reared, and domesticnted; neither can. I discover any evidence that this was done by surround. ing and contemporary nations, and a very loug perind elapsed befure they receiyed that due attention they so richly deserve; in fact, it was not until unighty, luxurinus, and imperial con. quaring Romo was in the zenith of her grandeur, that when the taila of the baltic field were over, and her warliko nobles, sonators, and soldiers, retired from the turmoils of war, to seek repose in tha nseful nand delightful calm pursuits of agricul. turo, when ang Columella quaintly remarked, "The enrth delightod op. ba p ploughed with a share adorned with laurels, and $^{\text {and }}$ by a ploughmañ wh had been ndorned with a triumph." The ancient llomans paid considerableattention to tho cultivation of whent, barley, onts, rye, far or spelt, beans, de., which they cullivated for brend; but they also grew both grass and herb. age for their animals, among which i may mention red chover, lucerne, fonugreek, and lupines, with a great variety of other leguminous plants, which they gave, boih in their green and dried states, to their live stock, and also the rape and the turnip; but from the seeds of some of the cerealia, they fed their working oxen, their farm, war, and pleasure horses. The pea, bean, and many other legumitnos plants, were employed by them for the same purpose. Bat we well know that Rome fell from its high and lofty state: that a series of barbarous ages succeoded the grandeur of this once immense empire, nind with it fell also some of the most nseful arts; science was obscured, and, to a great extent, that of agriculture generally, especially that portion which taught mankind the manner by which the grasses and other plants employed as food for their domesticated animals were produced, and, as a recent author justly romaris, that "if the growth of clover, lucerne, Ac., was at all contianed, it must have been so to a very limited extent, and that most likely confined to the countries where their usefulness was most generally appreciated."

THE HORSE: HIS BREEDING AND MANAGEMENT.

by Mr. if. n. micmardson.

We were sprating of horse tan ing : to resume. Some years sinee I met with a person named O'Hara, whose performances I enn affirm to hive been truly wonderful, and very similar to thase described as having been performed by Sulluvan.Whether O'Mara was acquainted with Sullivan's secret or not, I cannot say; but he seemed, at all events, able to produce equally surprisine effects. On one necasion, when under the influence of liquor, O'llara was heard to declare that his seeret Iny in rocking the horse: but on another nceasion, when equal. ly tipsy, he spoke of biting the animal's ear or lip,-I forget which, but I think it was the former.

The following anecolote is related of Sullivan, by Castiry, in "The Veterinnrian":-"At the spring meeting of 1804 , Mir. Whniey's Kiva Pippix was brought on the Currash of Kildare to run. He was a horse of the most extraordinary envage and vicions disposition. His particuler propensity was that of flying at and zorrying any person who came within his reach; and if he had an opportunity, he would get his head round, seize his rider in the leg with his teeth, and drag him down from his back. For this season he was always ridden with what is enlled a sicord, which is a strong, flat stick, having one end attached to the cheek of the bridle, and the other In the girth of the saddle-a contrivance to prevent a horse of this kind from getting at his rider.
"King Pippin had long been difficult to manage, and danferous to go near to, but on the occasion in question he could not get out in run at all. Noboly conld put the bridle on his head. It being Easter Monday, and consequently a great holidny, there was a large coneourse of people assembled on the Curragh, consisting principally of the neighbouring pea. santry: and one countryman, more fearless than the rest of tho lookers on. forgetting, or perhaps never dreaming that the helter part of courage is discretinn, volunteered his services to br.die the horso. No sooner had he committed hinself in this operation, than King Pippin seized him somewhere abont
tho shoulders or chest, and, says Mr. Watts (Mr. Castley's informant), "I know of nothing I can compare it to so much ns n dog shaking a rat.' Fortunately for the poor fellow, his body was very thickly covered wills clothes, for on such occa. sions an Irishman of this class is fond of displaying his ward. robe, and if be has three conis at all in the world, he is sure to put them all on. This circumstance, in all probablity, saved the individunl who had so gallantly volunteered the forlorn hope. His person was so deeply involved in extra inte. guments, that the horse never got fairly hold of his skin, and I understand that he escnped with but little injury, beside the sadly rent and totally ruined state of his holiday toggery. Tho 'Whispener' whs sent for, who, having arrived, was shut up with the horse all night, and in the murning be exhi. bited this hitherto ferocious nnimal, following him about tho course like a dog-lying down at his command, suffering his mouth to be opened, and any parson's hand to be introduced into it ; in short, as quiet, almost, as a sheep. He came out the same meeting, and won his race, and his docility con. tinued satisfactory for a considerable time; but at the end of about three years, his viee returned, and then he is said to have killed a man, for which be was destroyed."

Some time ago ars article in connexion with the subject of horse faming, appeared in the Times newspaper, in which al. lusion was made to Mr. King, proprietor of 'the learned horse,' then exhibiting in London; and it was stated that Mr. King professed his art to depend on the compression of a certain nerve in the horse's mouth, calied 'the nerve of susceptibulity."

The secret of Sullivan's summary mode of taming the horso is likely ever to remain a mystery; but it is certain that a power little removed from his is attainable by a very simple process. That Sullivan's son, however, either had not inherited the secret from his father, or was unable to put it in practice, is evident from the many failures which nttended his attempts. Amongst others we take the following from Mr. Castley's account:-"We had in the regiment a remarkably nice horse called Lancer, that has always been very diffcult to shoe; but seven or eight years ago, when we first got him, he was downight vicious in that respect. When the regiment was stationed in Cork, the farrier-major sought out thepresent Sullivan, the son of the celebrated whisperer, and brought him up to the barracks. in order to try his hand upon Lancer, and make him more peaceable to shoe; but 1 must say this person did not appear to vossess any particular controlling power over the animal, more than any other man. Lancer seemed to pay no attention whatever to his charm, and at last fuirly beut him out of the forge."

An account published some years ago by Mr. Catlin, whose experience among the American Indians has obtained for him so much celebrity, bids fair to sulve the mystery, or at leas! to suggest some important inferences. Ho thus describes tho mode in which the Indians tame the wild horse. "He coils the lasso on his arm, and gallops fearle-sly into the herd of wild horses. He soon gets it over the neck of one of tho number, when he instantly dismounts, leaving his own horse, and runs as fust as he can, letting the lasso pass out gradually and carefully through his hands, until the horse falls for want of breath, and lies helpless on the ground. The Indian advances slowly towards the horse's head, keeping the lasso tight upon his neek, until he fastens a pair of hobbles on the animal's two forefect, and also loosens the lasso, giving the horse a chance to breathe, and passing a noose round the under jaw, by which he gets great power over the affigbted animal, that is rearing and plunging when it gets breath, and by which, as he advances, hand over hand, towards the horse's nose, he is able to hold it down, and prevent it from throwing itself over on its back. By this means he gradually advances until he is able to place his hand on the animal's nose, and over its eyes, and at length to breathe into its nostrils, when it soon becomes docile and conquered, so that he has little else to do than to remove the hobbles from its feet, and lead or ride it to the camp. The animal is so completely conquered. that it submits quietly ever after, and is led or rode awry with very little difficulty."

Mr. Youatt, in his excellent volume on "The Horse," gives the following interesting note:-"Mr. Ellis, B. A. of Trinity Collego, Cambridge, happened to read this (Mr. Catlia.'s) ac. count, and ho folt a natural desire to ascertain how fir this mode of horse-taming might be employed among Bratish horses. He soon bad the opportunity of putting the veracity of the story to the test. His brother.in.law had a filly, not yet a year old, that had been removed from her dinm three months before, and since that tome had not been taken ont of the stabla. A great nmateur in evers ihag relating to borses was present, nod, at his request, it was determined that the experiment of the efficacy of breathing into the nostruls should bo immediately put to the test. The filly was brought from the stable, the amateur leading her by the halter. She was quite wild and bolted, and dragged the amateur a considerable distance. He had been using a short halter; he changed it for a longer one, and was then able to lead the little scared thing to the front of the house.
"The experiment was tried under manifest disadvantage, for the filly was in the open air, several strangers were ubout her, and both the owner and the amateur were rather seeking amusement from the failure than knowledge from the success of their experiment.
"The filly was restive and frightened, and with great difi. culty the amateur managed to cover her eyes. At length he succeeded, and blew into the nostrils. No particuiar effect seemed to follow. Ite then brealhed into i, r roverils, and the moment he did so, the filly, who had very much resisfed, ha. ving her eyes blindfolded, and had bern very restive, stood pertectly still, and trembled. From that time she hecame very tractable. Another gentleman also breathed mio her nostrils, and she evidently enjoyed it, and kept putting up her nose to receive the breaths.
"On the following morning she was led out again; she was perfectly tractable, and it seemed to he almust impossible to frighten her. A circumstance which in a great measure cor. roborated the possibility of casily taming the most ferocious horses, occurred on the next day. A man in a neighbouring farm was attempting to break in a very restive colt, which foiled $h: m$ in every possible way. After scveral manceuvres, the amateur succeeded in breathing into one of the nostrils, and from that moment all hecame easy. The horse was com. pietely subdued. He suffered himself to be led quietly away with a loose halter, and was perfectly at command. He was led through a field in which were four horses that had been his companions; they all surrounded him; be took no notice of them, but quietly followed his new master. A surcingle uss buckied on him, and then a saddle, and he was finally fitted with a bridle. The whole experiment occupied about an bour, and not in a single instance did he rebel.
"On the next day, however, the breaker, a severe and ob. stinate follow, took him in hand, and, according to his usual custom, began to beat him most cruelly. The horse broke from him, and became as unmanageahle as ever. The spirit of the animal had been subdued, but not broken."

From Bcll's Weekly hessenger.

THE MIXTURE OF FOOD.

In our recent observations on the feeding of live stock, we have had occasion to notice, incidentally, the advantages of a mixture of food. It may be useful to many of our readers If we pursue this portion of the investigation more in detail, and endeavour to see our way a little more clearly in this important practical inquiry. Before we look to the result of our experience on this head, or that of other practical farmers, it may be well to examine one or two of the explanatory obser. vations of men of science on the subject. "In the rearing of young animals of all descriptions," remarks Mr. Karkpek, an eminent Cornish veterinary surgeon (Jour. R. A. S. v. 5, page 262), "it must be evident that substances rich in nitrogen are particularly tequired for the growth of the various parts of the hody, since there is no part of an organ that contains less than 17 per cent. For the growth of bone, muscle, blond, membranes, skin, horn, hair, and cellular tissue, a sertain
amount of this substance is nbsolutely necessary. In the cearing of horses, whero the object is to produce a great development of muscle, this is particularly required; hence it is the practice of intelligent breeders to supply the young siock with a proper allownice of onts, pens, beans, nud shelter daring the winter, and it is from the want of these requisites that so many thousands of borses are rendered worthless." The observation of Mr. Karkcek is confined to the chemical composition of the food, and its effect in the production of muscle, but the advantnges of mixing food are not confined to these and other chemical advantages; there are mechanical advantages, as well as chemical good effects, produced by tho mixture of certain food, such ns straw and huy, or chaff, with bettor and more concentruted food, advantages which are alluded to by Professor Lyon Playfair (Journal R. A. S., V. 4, p. 235), whon he observes:-
"I am quite aware many farmers entertain the opinion that culting hay is only of use in the facilities which it affords for mixing with the hay, straw, or other inferior folder. Straw, except when new, is not a very nutritious food, for we find a great part of it unchanged in the freces of tho anımal fed upon it. Its principal uso is to give a bulk to the food taken; even in the casse of turnips, a food of considerable bulk, straw is necessary, because turnips contain nearly 90 per cent, of water, which becomes soon separnted. Thus it is that entlle fed upon turnips voluntarily take 2 lb . or 3 lb . of straw daily, or as much as will serve to give the necessary bulk to the food. The dygestive process of herbivorous animals is very compli. eated. The food is primarily taken info the first stomach or rumen, which is analogous to the crop in birds. Here it is moistened with a secretion from the stomach. The conrse unmasticated food is thenco transmitted into the second stomach, or reticulum, where it is rolled up into little balls, one of which from time to time is returned to the mouth to be further comminuted and insalivated. After this reduction, it is sent into the manyplus or third stomach, where it is further reduced to a pulpy mass, and in this state enters the fourth stomach, where true digestion commences. The object of the inst three stomachs beng merely to obtain a proper conminution of the food, it is necessary to have that food of suff. cient bulk, otherwise the peristaltic motion of the stomach would be impeded. This would appear fo bo the reason for giving straw with turnips and other kinds of succulent food. The expression of the farmer is "that straw corrects their watery nature," which means, increases their bulk whon their water has lefthem and weduced their volume. Ruminalion is requiste in order to keep an ox in healith. A little straw or hay is accordingly necessary to enable it to chew the cud. We know a case in which barley-meal and boiled potatoes were given to cows without hay or straw. Constipation re. sulted, and the cattle nearly perished from the ignorance of the feeder. From these considerations we are induced to consider that a greater return will be made by food partly but not ton much reduced. The turnip-slicer is known to save food, and this arises from the fact that the sheep expend leas force in eating sliced than whole turnips, and to their being enabled to ho down more constantly. On simitar grounds are we to ascribe the advantrge of steaming food, or reducing it to the state which the first three stomachs would otherwise have to do at a grent expenditure of force, and consequently of food to produce it."

THE Fattening of catrle.

Stall feeding of cattle for the shambles, is now become a most important feature of modern husbandry, and as improve. ment of the soil counties to progress in our densly populated country, in like manner most increase the number of beasts annually fed for the acquirements of a rapidly increasing po. pulation. We are quite well a ware, that in many of the fur nip growing localities, the best methods of feeding are porfect. Iy understood by those who have long studied and practised the art; and that in England it has been carried put to an extent that is far from being profitable or commondable, and can be looked upon ne nothing short of deliberate waste and
imprudence, as any who has seen tho frightful monsterg fed eut of all shape, and annually exhibited at the Smithfield Show, will readily aver. For not only are the animals pam. pered with every kind of food tinat can bo thought of, and that should have rather beon used by a starving pensantry ; but they are brought on such a piteh of nily fatness, that often the flesh camon le used, except by those who bave the stomachs of cannibals. Many however, are but tyros on the art, and only feeding two or three beasts annunlly, who, in course of a few yours, as draining increases, may be leeding as many dozans; and. from chsersations lately taken in a large district, where potatues used to constatute, almost solely their green crop, but where, from necossity, they are forced agninst their will, $t 0$ resurt to turnips, the method practised is truly ludicrous, and much in want of reformation; and to such, a few hints, if acted upon, may be of a little servica.

It has long been a point at issue, whother feading beasts should be tied up, or kept lonse in pens, in pairs, with a comfortable shed to lie in. We are of opinion that those tied up will fatten fastest, as the less exeroise the animal takes, the faster will he take on; wherens those in pens, particularly if they have much freedom, will range about to an extent that will require nearly a fourth of more food to make them fatten equal to those tied up, which in the end will tell heavily against the profit of the feeder. It is, however, assertedand we believe with a gond deal of reason on its side-that from the exercise taken, the quality and solidity of the beef, will be much increased; but that is a point which should not be looked to by the feeder, as the butcher who buys the beast will not give one penny more for it on that account than for one of equal weight, bowever soft the beef may be. Seeing then, that fat and weight in the shortest period possible, is the greal object, the means by which that can be obtained, should be carefully sought, and closely attended to.

In feeding at the stake, the greatest regularity in their meals should be observed. They should be commenced with the softer varicties of turnips, such as white or red ghobe, which should be followed by yellow, and lasily by the hardy Swede, so that as the amimal increases in fat, the quality of the food is also increased. Before feeding in the morninganil more particularly if the weather is frosty-a little dry fodder should be given, as cold turnips taken into the empty stomach chills the animal, and sometimes produces shivering. The first feed past-which should be by seven o'elock-the byre neatly cleaned, well hitered, and some fodder given, the animals should be left in perfect quiet thll mid-day, when their second feed should be given, and the same arder oibserved thll the time for giving the third and last feed for the day; the liyres should again be cleaned of the dimor, and the animals left till eight oclack, when any bits of turnip in their stalls should be removed-for fear of choking during the night - wome fodder given, and the byres shat up fur the night. Particular care should be taken to have the feeding houses well ventiated, so that the effinvia may be speedily carried off. Warmith is also a desirable object, and a thermometer on the wall to regulate the temperature should be in every feeding-house; for however much moderate heat may facilitate the fatteuing process, an over degrea of it, such as when the animals can scarcely breathe, must be equally hurtful, and as much to be avoitied as extreme cold. A regular applicatuon of the curry-comb daily iey undispensable, as enaducive to the general health of the amimal, as clearing the skin of any hardened scurf, and promoting free egress to moderate perspiration. Many animales, when first tued up, particularly if north country, are so rough in the coat, that a great waste is daily sustained by their unlimited perspiration. In all cases of this kind, when others of the lot may be thin of hair, and require a high temperature for their comfort, we recommend clipping-we have tried it, and can vouch for it as a very great improvement, and have seen the anomals after ibeing relieval of their shaggy coat, under whech they were continually in a state of wetness, improve every day with extraordinary rapidity. When potatoes were abumiant, and! prices low, one feed per day was an excellem change of diet, and a
good doal practised. But under existing circumstances they cannot be spoken of in the same light. Where no mixture of food is given in which salt can bo administered, pieces of rocksult should be kept in the stall in reach of the animals, so as they could lick as much as they required, the advantages of it heing too well known to require explamation. Under such trentment a well.bred beast will feed in sixteen or twenty weeks. We have been only treating of the plain modes of feeding, without using any extraneous rarticle whatever; and really the high system of forcing is practised in so many dif. ferent ways, that it would be a difficull matter to decide which has the precedence. Oil:cake, begun in small quantities, say 2 lbs. per day, and increased to 6 lbs ., is an excellent auxiliary, and in respect to the improvement of the manure stands unrivalled. Bean-meal, baked into balls, is alse much used, and there is no doubt whatever prodices a better quality of beef than oilacake; it has also the effect of increasing the weight of tallow more than beef, the cakelaying on the fat outwardly, which is always a desirable ohjert for the seller. Numbers are now in the habit of steaming all the food, and, we have no douht, in a short time the practice will be universal. - Ayrsliare Agriculturist.

on the value and management of TURNIPS.

About the beginning of the present century the culture of turnips in this country seems to have been but very imperfectly understood, and they were consequently, considered to bo an exhausting and unprofitable crop. When we take a retrospective view of the general mode of their treatment at that period, it appears pretty evident that they must have been so; for to quote $t^{\prime} \mathrm{e}$ old Farmer's own words, who says, 'I min' wed fity years ago, fan ther wis naebod; but the muckle Farmers growing neeps, an' thae only had twa or three butts [the shortest of the old crooked ridges] the piece. The lan was aye ploughed wi' the ousen alore winter after carrying nine or ten craps o' corn, it gat anither fur i' the $\dot{s}{ }^{p} r i n g$, an' ten twal duble tinings wi'the harrows, syne abont three week's after Whitsunday it was mucked, an' the muck plutghed down, wect harrowed, an' the neep seed sawen braid cast out atween the twa foremoist fingers an' the thumb, and either hapnt wi' a rake, or a gude trale o' whin busses. Fan the send was gude they war aye bra an, thick, an' fan we boed them we first took bye the plant wi' wis' gaun to leave, an' pat on our fit upont, an' cutted out a' the lave wi' the hoe for ten or twal inch roun', took by anither, an' pat on our fit upon it, an' so on till they wa: r a' hoed. In those days thero wis only a few men in the quentry that wis thought capable 0 'hoeing nerps, an' thae jiest gade fra toun to toun an' wrougnt at them the hale simmer, their wages wis generally a saxpense i ' the day an' thir meat. The neeps wis aye unen sma', hat fine an'sweet, they war aye required for the family an' a cow or twa for gien'milk, unless fat the baads [Hares] ate in wiater.' Such a mode of turnip IIusbandry has now happily given way to a more profitable and better system, and during the last thirty years the cultivation of this valuable root has gradually increased from small patches, seldom reaching the twentieth part of each farm, so as now to occupy the place of a rotation, gencraily one-sixth, and sometimes oven one-fifth part of the whole arable land. This four-fold increase is of itself sufficient to shew that Farmers have found turnips to form one of the most profitable and useful crops in their rotetion, not only directly for the feeding of cattle, but also indirectly for feeding the land, which may be clearly inferred from the luxuriant crops of grain and grass which almost invariably succeed a good turnip crop: and in place of exheusting the soil (when properly managed), they have proved themselyes to be an excellent restorative. In many of our rural districts the rearing of turnips has now arrived at a high state of perfection, which may no doubt be attributed to varions causes, particularly the use of bones, drying and thoroughly pulverising the land, and the better preparntion of farm-yard dung. And where all these (combined with good management) have been adopted, 25 tons of Swedish bulbs per acre are now no
uncommon crop. That quantity when their nutritive juices are preserved, will feed two bullocks of about 8 cwt . each, finr a period of 20 weeks, 200 lbs , with plenty of good straw, being the maximum quantity required for each benst per day; and if the animal is thriving and of ordinary good quality, regularly fed, and clean kept, it will increase in weight and fit during the 20 weeks about 22 cwt. or 2 lbs. per day. Thus we may assume that 5 ewt. of the best animal food enn be produced fromi one aere of good turnips, which, on an average of years, is worth $£ \mathbf{E} 10$ s. per ewt. The indirect value of a turnip crop can scarcely be estimated, but is derived in variotis ways-viz. the great increase in quantity and quality of farm-yard dung, the use of tops plonghed into the land, and many valuable saline mntters drawn from the atmosphere when growing, and imparted to the soil. These facts clearly prove that turnips are the Farmers' most profitable crop, and well entitled to his best attention.
Having given a cursory view of the culture and value of furnips, I shall now advert to a few practical pointo regarding thejr management, which appears to be far behind in the march of improvement. The white and red globes shoulc: be all used before December, the different kinds of yellow come next in order, and the Swedes left till the months of March, April or May, unless where cattle are to be early ferl off, and in this case the Swedes may be used sooner. Milch cows should get no Swedes; they increase fat very much but always !essen the quantity of milk.

NEW MODE OF PREPARING BONES FOR MANURE.

By Pif. Pubsex, Esq., M. P.

Having succeeded in discovering a simple process fur the cheaper use of bones as manure, I beg to state shortly the grounds which led me to the inquiry, and the proofs of its success.

In a few pnges of the Society's Journal, on the use of bones and sulphuric acid I mentioned (two years since), that, if bones and moist peat-ashes are thrown in a heap together, the mixture heats violently, and the bones in a few days almost disappear, white their strength as manure is found to have greatly increased. This effect I ascribed to sulphuric acid contained in the peat-ashes; but it was a mistake, for the mixture, when examined chemically by Dr. Hofman, shewed little or no sulphuric acid; and that Professor suggested that the decomposition muct arise as in many animal and vegetable substances, according to Baron Lielig, from the presence of moisture.

This hint was the more encouraging, because if peat-ashes were not a necessary ingredient of the process it would be no longer confined to those Farmers, a small mumber comparatively, who have peat-ashes at command. I therefore procu red ihree cart-loads of crushed bones, and, having wetted them, mixed one cart-load with two loads of peat-nshes, another with two loads of conl-ashes, and the third load of bones with two loads of sterile white sand, dug up from some depth, and quite unfit in itself to support vegetation. The three heaps were made up as compactly as possible side by side.In a few days they all heated rqually, becoming too hot in the middle to be borne by the naked hand; in a few more, the bones had disappeared in each heap equally,boing reduced in general to a blue mouldy substance. Some corroded frag. ments, indeed, remained in the centres; and the outsides, to the depth of five or six inches, were unchanged, because there the heat was insufficient.
The experiment having so far succeeded, the next step, of course, was to try the effects of the dissolved bones on the land, and in May 1846, they were used upon halfacre lots of early turnips in equal proportions; the crops produced by each mixture were equally gond. But as a single experiment does not, I think, justify one in patting forth the recommen. dation of a new practice, I waited for the result of another year's trial, which I will now lay before the Society.

It was made in July of tho prosent year with common turnips. The object was to test the now preparation by compa. ring it, on the one hand, with unprepared bones, and on the other, with bones dissolved by sulphuric acid, called superphosphate.
The land is a hot stonebrash nowly taken in hand and very much out of heart. Bones act upon it very strongly; for tho trial-lots are part of seventy acres of turmps and swedes, a good crop produced by superphosphate. notwithatanding the drought ; bat wherever that preparation was purposoly missed, the yield was not more than four, or at most five; tons to the acre.
The trial was made on the supposition that certain quantities of each manure were likely to yield equal produce; and it was proposed to test the dititrence, not of produce from the same cost of manure; bint of cusf for nearly the same amount of produce. The arixture was made in this case by throwing together a waggon-lond of crushed bones wetted, and, by a mistake of the workmen, half that quantity only of sand.The heap, however, heated vidently, and was in a few days fit for use. Three bushels of the mixture are valued higher than two bushels of bones, berause the heap sank during the process one foot in four, shewing, as 1 had suspected, that from the shrinking of the the bones, thete would be more than two bushels of bones in thren of the mixture.

First Experiment.

The amount of produce was nearly equal, as I had hoped it might be, and both preprarations sinew a large saving as against unprepared bones. In another experiment a latger quantity of each manure was applied with the foliowing re-sults:-

Cost of manure									Produce

On the threc last lots it will be seen the manures were npplied, each at the rate of about half as mach again as on tho first three lots. The reason was this: 1 proved in a former Journal, by a careful exjecriment desised for the purphese, that some manures, when applied in increased guantity, do not produce a corresponding incrcase of crop-liave, in fact, a limit beyond which it is vain to apply them. This view, having sines been confirmed by the experience of othere, may now be regarded ns founded in the latis of wetetation. It is also strikingly confirmed here, for, by incrosing the disse of sulphated bones rather more than one balf, we get no increase of turnips: and by increasing the rough boucs one half, while swelling the expense from 40 s. to 70 s., we get no increase worth speaking of. It would be a fallary, hiserfore, to compare different manures without knowing whether each hand been used to the proper extent and no further; and this is the exaggeration which I wished to avoid.
The result of the whole seems to recommend decidedly the mode of preparing bones which I propose, and, but for a mis. take of my men in mixing so small a proportion of sand, I belneve the effect would have been stronger. Practically I think that the manuring virtue of bones is incrensed from three to four fold by this simple process, which cannot be said to cost anything. It is within reach of every one to practise on a large scale and nt a few days' notice. Though I mixed barren sand with the bones for the sale of experiment, any light loam would no doubt answer as well or better -the soil itself, in fact, of any farm where bones themselves are likely to answer; and the labour is so trifing that it is
not worth sponking of not worth speaking of.
not

The quantify of bones applied should be between five bushels and oight bushols per nere. Bones prepared in this way do not produce at first so lively an effect on the young plants as bones prepared with sulphuric acid. Thus, in this trial, lot B looked for many weeks worse than its neighbours, yet in soidd food chat lot has turned out the best of the whole.

This mode of preparation has been tried, at my suggestion, by a neighbouring Farmer, Mr. Edmonds, who mused up oighty bushels of bones with sand in a single heap of a circular form, and, having applied them at the rato of eight bushels per acre, tells me that le shall henceforth use bones in no other manner. This is no doubt the right shape for a heap, because the exterior being cool will always remain unchanged, though this defect might be removed by a covering of carth. Some bulk of bones is necessary, I think, to produce tho hent, and the bones, as woll as the material mixed with them, should be moistened if dry.

Another Farmer, Mr. Davy, who tried the mixture of bones with ashes at my suggestion, informs one that sixteen bushels of unprepared bones, four bushels of unprepared bones, four bushels of heated bones, and two bushels of sulphated bones, or superphosphate, gave each the same yield of swedes. The principle at worls is evidenlly putrefaction taking place in the gelatinous substance of the bone; but no disgasting smell is produced, merely a strong odour of ammonia when tho heap is opetied. Most of this ammonia is probably drilled into the land-an advantage over the process of dissolving bones in acid, which seems to drive the ammenia away.

In proposing this simple method, I do not mean that other ingredients may not be mixed up edvantagcously, if experi. ence should prove their necessity. But thes is less likely, as the whole ductrine of manuring plants with the ingredients of their ashes is rendered very donbtful by Mr. Lawes's careful experiments. In any case, however, the process now proposed will be equally applicable. Since this inquiry was began, If it mentioned by Baron Liebig that moistened bones ge nerate heat and cater into putrefaction. The application of this principle is what I now feel warranted, after two years' careful triul, to recominend to the notice of English Farmers. It is the same principie as, when carried to excess, shews itself in the formidable shape of spontancous combustion; but I entertain the hope that this law of nature, whicia has hitherto only been known to us by setting fire to our ricke, or kindling the cargoes of ships, may at last become a willing handmaid in enriching our fields.

agricult

(Conciucled.)

"Five and twenty ycars ago," said Mr. P. Shirrefi in 1828, "the varicty of qurnip cultivated in East Lothian was spurious and worthless in the extreme; but since its seed has been judiciously propagated, the crops of this root have been improved in nutritious value upwards of three hundred per cent." The propagation of only undegenerated seeds of the best varicties, while it would greatly increase the bulk of erops and considerably improve their quality, is an improvement which reither destroys any existing investment of capital, nor involve: any new expenditure of miney or labor, but only requires a litice sitention in the selecting of seeds, a listle pasence in propegating them, and a litte care in kepping them free from interm ature. Mr. Shirreff calculates that, as the result of a few years' practice of this most cheap and casy improvemem, the dispo a able produce of each Farmer might probably, on the average, be increased nearly ten per cent.; and he adds, "The facility of propagating genuine seeds will hecome manifest from a statement of my practice. In the spring of 1823, a vigorous wheat plant near the centre of a field was marked oul, which produced 63 ears that yielded 2.473 grains. These were dibhled in the autumn of the same year; the produce of the second and third seasons was sown broadcast in the ordmary way; and the 4th harvest put me in posiession of nearly 40 quarters of sound grain. In the spring of this year (1sow) I pianied a fine porpletop Swedish turnip, that yielded (exclusive of the seeds picked by birds, and those inst in threshing and cleaning the produce,)

100,296 grains-a number capable of furnishing plants for up. wards of five imperial acres. One.tenth of an acre was sown with the produce, in the end of July, for a seed crop, part of which it is in contemplation to sow for the same purpose in July 18:29. In short, if the produce of the turmip in question had been earefully cultivated to the utmost extent, the third year's produce of seed would have more than supplied the demand of Great Britain for a season."

The power of distinguishing new or special varieties of seeds, and of instantly or rapidly forming a judgment of their compa. rative value, is of great importance to any farmer, not only for his guidance in selecting seeds by purchase, but for enabling him to detect any desirable new varieties which might happen to appear among his own crops. "Valuable varieties," remarks Mr. Bishop, in his "Casual Botany," "may sometimes appear to :hose who have had it not in their power to prove them by trial ; and if they have, the probability is, that the means to be employed require more care, time, and attention than they are disposed to bestow on plants the merits of which are doubiful; whereas, were such persons capable of forming an estimate of the worth of the varieties from their-appearance, then would they use means for their preservation, whenever their appearance was found in indicate superiority." That this is an attainment of considerable inportance, will be readily allowed; yet that it in some cases requires the most strict attention, appears from the circumstance of varieties being oftentimes valuable, though not conspicuously so. Let us suppose, for instance, that in a field of wheat there cxists a plant, a new sariety, having two more fertile joints in its spike, and equal to the surrounding wheat in every other respect,-a man accustomed to make the most minute observations would scarcely observe such a varieiy, unless otherwise distingtished by some peculiar badge; nor would any but a person versed in plants know that it was of superior value if placed before him. How many varieties answering this description may have existed and escaped observation, which had they been olserved and carefully treated would have proved an invaluable acquisition to the community! The number of fertile joints in the spike of the wheat generally cul. ti:ated, varips from eighteen to iwenty two; and the inhabitants of Great Britain and Ireland amonut to nearly the same number of millions; therefure, as the wheat produced in those islands has been of late years sufficient, or nearly sufficient, to supply the inhabitants the:rof ith bread, it is evident that a variety with two adduional fertile joints, and equal in other respecis to the varicties at present in cultivation would, when it became an object of general culture, afford a supply of bread to at least two millions of souls, wiblout even anoher acre being brought into cultivation, or one additional drop of sweat from the brow of the husbandman.

One grand means of improving seed.corn is, on the first occa. sion of sowing, to obtain the finest and most productive quality suitable to the particular soil and climate, in clean it, as thoroughly as possible, from all broken grain ard seeds of weeds, and to give it the best condition of cultivation which good draining, gond tillage, and good exposure can command; and then, for a series of years, at the time of the ripening of the crop, to select as large a number as time and circumstances will permit, of the strongest and healthiest of the plants, for the seed corn of the next year's sowing. Two plants growing beside each other, under the same conditions of culture, often differ widely in both their total and their nutritious contents; and the practice of selecting some of the strongest and plumpest for intermixture with the portion of crop set apart for seed-corn, would have the additional advantage of creating the habits of minute and discriminating observation which Mr. B. desiderates, and might probably :ead to the detection of some entirely new and valuable varicties. Plants which grow together in enormous numbers, like the cereal grans and the other common vegciable prodaetions of a farm, are constantly exhibiting individual instances of great change in their habits of growth, of development, and of fructification, from the operation of chemical agency in the soil, of obscure expansions or contortions in the individual organism, of electric or gaseous influence in the armosphere, of fie bybridizing power of foreign varieties which happen to be present, and
of several other causes to which superficial thinkers are not likely to advert; and were the plants raised from choice and selected seed, observed from year to year with a tolerably know. ing eye-were they evenglanced at, along the sides of a field, during a few minutes of each of several days when their ripen. ing is in progress-they could scarcely fail, on almost every farm, to present some specimens which would richly reward the observer's care. Yet a judicious man, in all his observations and efforts for the improvement of seed corn, will bestow an hundred-fold more pains in improving a confessedly good variety already in possession, than in nursing a new variety of doubtful character, or making a strenuous effort to offer an original contribution to the good varieties of the shops. Some far-mers-and these not always well qualified for the task-seem to have almost a passion to become the discoverers of new varieties of grain, and to give their names in connexion with them to the world; and many have expended large portions of their time in watching, and nursing, and foreing pet plants of their detection, with no other result than blank disappointment, or at the best the contribution of varieties which had little or nothing to recommend them but their novelty. The system of accidental discovery, in fact, has, with a very few exceptions, been a plague to the discoverers, and a nuisance to the world; and hence the necessity of new varieties being sought only by minute, practised, and scientific observation, or by the artificial but still more certain process of hybridizing.-Rural Cyc.

Talk about Horse Shoes.-Horse shoes have varied little in Europe, retaining now very nearly the form, even of that figured in the mosaic before mentioned. But the most ancient Circassian horse shoe appears to have been round; and if the figure of it remaining in a brand be correct, it had only three nails or clamps secured on the outside of the hoof. Another round horse shoe is in use among the modern Egypn tians, and parlly the Syrians; it is a round plate with a hole in the middle; the common shoe, also used, has the ends turned against the heel. In other parts of Turkey, the plate is square behind, and rounded at the toe. On the continent of Europe, the ends, particularly in winter, are cocked; and when there is ice on the ground, both are frequently pointed. Rough shoe. ing, if confined to making the nail heads prominent, we know, from ample experience to be of very little service, and often dangerous; for the heads snap off, and tise shoe is without power of holding on the ice: nay, it is then liable to come off altogether. The great difficulty in the management of a horse's fout seems to have been how to combine the preservation of the corneous substance without contracting the heel. Iron shoes, with a hinge at the toe have been tried, it appears, in vain. Veterinarians, after infinite experiments, have certain. ly succeeded in designing an improved shoe; but, after all, it seems that, like the ladies' shocs of China, cramping the feet to some extent is inherent in the material; and, in sandy countries, unshod horses have many advantages. We have known Indiarubbe: successfully adopted to restore the feet of horses seriously injured; and it may still be a question whether a composition of the same gum and coarse hair or felt, mixed with iron filliugs, might not be made to answer the most requisite qualities of iron shoes without producing their defects.-New Sporting Magazine.

Improved Durham Calves-Thorough-bred. 노조옹․

 IHE Subscriber not intending to rearhis BULL CALVES of this season, will be able occasionally to supply Breeders th a tew Calves of Herd-Book P'cdigree, at $£ 15$ each, three montusipld. Early application is recommended.ADAM FERGUSSON, Woodhil, Watedown P. O., C. W.
Note-The Calves will have been got by Althorpe by Symmetry, Jain Non Parcil; or by Earlof Durham by Dulic of Wallington, dam Non Pa-riti-Skd HERD Bоos.
le, the roan Bull ALTHORPE, imo years old, who gained

Newcastle

COBOURG, CANADA WEST, APRIL 1, 1848.

We have to acknowledge the receipt of a voluminous communication from a correspondent in Haldimand, who doubtless is a practical Farmer, and whose sentiments we fully appreciate; but we could wish that our friend would condescend to be a little less florid in his language and style, even to the extent of being common-place ; for it would be totally impossible for us either to print the article entire, or to spare the time necessary for a revision, acceptable to our general readers, to do justice to the subject and its writer.

Our correspondent is evidently a man of sense and given to observation; his ideas are just, and his sentiments pure and excellent. . But he has fallen into the error of obscuring his real meaning by lofiy phraseology, which renders his purpose too often, nearly unintelligible. We have to cater for the mass, and as the generality of our readers are not learned men, we are necessarily compelled to use great plainness of speech, and to prefer simple energy to lofty eloquence, in order to convey the greatest amount of information to the largest number.

Our friend is a practical farmer, not above receiving instruction, even though it should be "book farming." He sets a just value on Agricultural publications, believing (very truly) that much valuable information is procurable through their medium. He regrets the indifference manifested by too many to such sources of instruction; but while regretting such apathy, expresses a conviction that it is on the wane, and that numbers are not only benefitted themselves, but are disseminating instruction to their neighbours, beyond the present circulation of the papers themselves. We are fully certain that our correspondent is able successfully to advocate the adoption of such papers generally, from a firm conviction of their beneficial tendency; and we ourselves are convinced that amidst a farming population, no work is calculated to be more last. ingly beneficial as a class-book in our common schools, than the Agricultural publications of the day.
Our Correspondent takes a view of the earlier progress of Agriculture,-of the rude implements then in use, now so greatly improved, -of the employment of animals for the more laborious operations of Agriculture, to lighten and soften the primeval curse,-expresses gratitude to the Almighty for his fostering care in causing the earth to bring forth its increase, correspondit:g to the wants of man,-contends that no more, in an average of years, 'ian a fair proportion for the necessities of the whole human family, is produced, for that a surplus would neither tend to an increase of wealth or happiness. He notices the improvements consequent on a just selection of seed, its applicability to certain soils, seasons, situations and climates, and the necessity for a wise and systematic rotation of crops.

He touches, too, upon that bane of the farmer, prolonged credit, and stigmatizes it as injurious to the farmer's peace and happiness; extois the honourable calling of the farmer, which should never be compromised by any excesses,-advocates stcady perseverance, skill, and economy, while he deprecates the growth of grain for distillation,-and contends for the application of the growth of so many misapplied acres to the feeding of an extra amount of stock; the manure from which
would more than counterbalance the amount of remuneration arising from tho sale of the grain for such a purpose, and arguts that a rapid improvement would soon be visible on our farms fiom such a conrse of procedure, and that no necessity would exist for the purchase of foreign manures, and contends that a great deterioration of the scil must ensue from an oppo. site practice. He exhibits the true independence of a practical scientific farmer, and places the agriculiturist in his proper light, as engaged in a most honourable and needful employment, which makes him at onee a safeguard to the state, and the most genuine benofictor of the whole human race.

We cannot suppuse our correspondent aimed at inystifying us,- the general temer of the communication precludes such a thought; but while the style bord ris on the hyperbole, we must confess that it nearly passes our limited comprehension how to separate the pure metal from the gliterering tinsel.

We believe, from a conviction of the native good sense of our correspondent, that he will take these remarks in the kindly spirit in which they are dictuted, and that his next paper,which we hope soon to be favoured with,-will exhibit solid, without highly wrought superfluous matter, and we are quite sure it will be generally acceptable to our readers.

TO THE PRESIDENTS, VICE-PRESIDENTS, DIRECTORS, SECRETARIES, AND MEMBERS OF THE agricultural societies, throughout WESTERN CANADA.

Gertlemien:

At a Meeting of the Directors of the Provincial Agricultaral Association, lately held at Toronto, an extract from the proceedings of which is hereto appended," you will observe that amongst other things, the l'resident is directed to address the Agriculturists throughout the Province in behalf of the Asso. ciation.

You are aware that an Act incorporating this Ins:itution has been recently passed, and that under its provisions, wo Exhibitions have been held,-one in Toronto in October 1946, and the second in Hamiton, in Oc:ober last. It is also decided that the next Exhibition shall be held in Cobourg, in the Newcastle District, an the first Tuesday, Wednesday, Thursday, and Friday in October next.
The Premiums awarded at the two former Exhibitions, amounted to about twelve hundred pounds; of this sum, nearly three handred pounds remain yet unpaid. The amoum required for Premiums at the next Exhibition, will fall lithe shert of seven hundred pounds.

Thus, Gentemen, you will see that nearly one thousand pounds will be required for the above purpose, and for this the Provincial Assoriation are wholly dependem upon you.

An application will be made at the next Session of the Legislature for a grant from the public funds in aid of this im. porant Institution, and it is confidently expected to be successful. But it must be cleatly understood that no part of this can be got for this year's operations: and under the se circumstances, the Soci- iy must. as on former occasions, appeal to you for the contritution of a sum equal to the amount of Premiuns to be awarded at the next Exhibition.
It is proper that you should be informed that, in future, all sums of money, voted or otherwise, raised for this oly. "ct by the several Agricultural Nocieties throughout the Province, shall be applied solely to the payment of Jremiume; and that the local expenses, for encilsures, erections of buildings, and other acosssary preparation, stasll be borne by the inhabitants of

[^2]the locality in which the Exhibition for the time being shall be holden.

Besides the sum necessary for the last montioned purpose, which will not be less than E 250 n , to be raised by subseriptions in the vicinity of Cobourg, I am authorised to state that the several Agricultural Societies in the Collorne and Newcastle Districts have appropriated nearly $\mathcal{L}_{2} 250$ towards the Premiums.

Placed, as I have the honour to be, at the head of this Institution, which must, if properly supported, command an influ: ence upon the destinies of Canada beyond that of any other Association, it would indeed be surprising, if on that account alone, I slould not feel a great anxiety and lively inierest in the success of our infant society. But being a practical farmer myself, and having spent nearly half a century amidst the practical operations as well as the science of Agriculture, in a part of Iler Majesty's dominions which stands unsurpassed for,spirit, real, and industry in the cause of husbandry, I cannot sufficiently espress to you the deep solicitude with which I regard the dawn of a scientific system, which has done so much for the Farmers of the British Isles.
Amidst the various Associations formed on every hand for the purpose of fostering and protecting the arts, sciences, and the numerous learned professions, it would indeed be strange, as it would be disreputable to the people of this Province, if this Association, calculated as it is to support and encourage that great class of the community to whom all others must look for the supply of food, should be permitted to languisil for want of pecumiary sustenance.

It has been charged, and I fear with too much truth, upon Agriculturists, that improvements in husbandiry encounter great dificulties, if not direct opposition, from thase whose interest it is to support them, and therefore work their way very slowly; whereas innovations and improvements made in the mechanic and manufacturing deparments are seized upon and turued to advantage as soon as promulgated. The reason of this is obvious. Manufacturers, mechanics, mercantile men, and various other classes, are generally residents of, and congregated in, the towns and villages, and have intercourse and interchange of sentiments. by reason of greater facilities than the farmers, from their isolated position, can ever possess. We must therefore, if we would improve our condition, either physically, morally, or mentally, remove the obstacles by increased cxertion, and determine to unite and make common cause with our brethren all over the world, in placing our profession upon a scientifl foundation, by which, with far less labour and toil, we may expect to reap advantages which every other effort and exertion in the power of man will fail to accomplish.

From such considerations have arisen those numerous pub. lie Societies from which so many advantages have been pro-duced,--Societies for promoting science and literature, arts. and manufactures, and for encouraging knowledge, industry;' and virtue in general. Foremost amongst these Associations may be ciassed those for the support of manufactures and agiz: riculture.

Now, as all are more or less intimately concerned in the benefits, and dependent on the skill of the tillers of the soil, it behores all to aid and assist in all measures calculated to bé:netit the community at large. It is, indeed, imperative on all who have a spark of patriotism, to combine with such bodiess as are formed for carrying out to the utmost the wholeavaile able resources of the country, and the genius and abilities of is population.
In proportion as we can raise amongst ourselves those ne. cessaries which all demand, and those supplies which theimorie wealthy require, in such proportion will be our true happipest and independence.

Wealth, in whatever shape, must in Canada, as andagricul. tural country, spring from the soil, and proceed from the skill and industry of the farmer; and to encourage that industry and develope that skill, such Societies as "The Proyincial Agricultural Association" are formed, and in the Benefits ari: sing from such institutions, every class must participate-witi. san, mechanic, manufacturer, and merchiant.

Experience has so fully proved that without unity of purpose no community can expect to accomplish anv great object, that it would seem a work of supererogation to dwell upon that topic.
From small beginnings, within the term of about twonty years, a partial and imperfect organization has indeed been going on in isolated situations within the Province; and although some. local benefit has been derived, still it is evident, without a combination and centrulization of our energies, no lasting good to the Province at large need be looked for.

The means for such an union have now been afforded by the Act passed for the Incorporation of the Provincial Association; and a grant of five thousand pounds per annum has been made to aid in the formation and extension of District, County, and Township Societies; but no money has, ns yet, been appropriated for the support of this Institution.

It remains, therefore, for you, Gentiemen, and indeed the whole of the population (tor all are interested,) to say whether you will apply part of your means, either public or private, to the support of this your own Agricultural Society, and thereby place it on a fair basis,-or whether, by withholding your aid at this critical juncture of its history, you will ruin the pros. pects now opening before you.

Such a result I cannot by possibility anticipate, and in the fullest confidence of your support, commit the interests of the Institution to your keeping.

I have the honour to be, Gentlemen,

Your very obedient servant,

ADAM FERGUSSON,
President of the Provincial Agricultural Association, C. W.
For the Newcastle Farmer. GOD SPEED THE PLOUGH.
God speed the Plough ! the toiling Plough, O'er hill and valley farr:
A blessing on lis sunturnt brow, Who grinds its shining shate:
A blessing on his frortile iand,
And on his loaded uain;
And on the merry harveat band, That reap the ripened grain.

God speed the Plongh ! the peaceful Plough : Sword! rust within! hy sheath,
A most rnatorselegs thing art thou, The chosen friend of death :
Go, moulder with live Gelnis and Shields Of days long since gone by :
For the Plougli hath won o'er bloodless fields, A Hulier Victory.

Gnd speed the Plough ! the noble Plough, The tiller's manly toil:
That hids. the golden harvests glow, O'er all the fruititul o 0 :?
Not ours the Glive ar the Vine, Ol sunny France and Spain:
Thou bas! winhield the oil and wine, But giv'st the blessed grain.

Now, Ploughman trac: the furrow fair, Along the cultured mead:
Then, Father: to thy fostering care,
We leave the precious seed:
Thon, who hast heard the Lion's cry, And fed the Raven's brood:
Send down thy blessing froin on high, And give shy children food.
parg, 17th March, 1348.
R. A. P.

EXPERIMENTS WITH COMMON SALTT.

(From: Corsespondents of Gardencrs' Chronicle.)

fried salt on a four-acre field, newly broken up, and ooats, the plant very fine, but in March nearly destroywireworm, and when harvested, produced about ton or等 m hs only. 1 sent to the salt pans near us and got 0 . Sonewty whent ploughed in for a seed furrow, and sown worm trudifrescreatures seem to lie in a bed. It was in the next
ploughing and marling totally destroyed. Where salt is sown, the wheat continues to look green longer, and is about ten days later for the sickle than those wheats sown at, the sarmo time, and where no salt was applied.
2. Experiment was in a field sown to turnips. The wireworm was thinning them so rapidly that my foreman suid they would single my turnips for the man who was hoeing them. The weather was showery, and I had sown two to three bush. els of salt per acre. On examining the roots, the wireworms were found stiff and dead, and the crops came away luxuriantly, and I had a fine piece of turnips.
8. Fieid of seven acres was sown with salt. The turnips and oats were good; but I did not get ensirely rid of the wire. worn till I had marled the land well. The whent cropgood and the grain heavy. As tho climate here is very dry, 1 sowed salt, as it causes the soil to 1 ptain its moisture much longer. 1 have also found it very beneficial to grass seeds. I consider the benefits arusing from salt used in misens and dung.heaps to be these :-It destroys the eggs of insects and slugs harbour. ed in them: also prevents the germination of seeds of noxious weeds, which are commonly coiveyed to the field in the dung cart, and so propagated; prevents firefang, and causes the heap to retain its moisture. In addition to these effecte, it is beneficial in like manner to the future crop.

In ieference to the use of salt as a condiment, I had a cow attacked with jaundice, or the "yellows." It was ailing several months, and looked poor though fed upor thrnip. I generally kept a lump of rock salt in the yard, but had none at this time. I got some blocks and gave her one, which she daily licked, and shortly became quite fat and sleek in her cout. I gave it to sheep, horses, and rarely are my animals ill.-X. Y. Z.-Hants.

Salt was tried here this year as an experiment of its action on roo!s-po:atoes, Swedes, and mangold warzel. Potatoes, no effect whatever visible; Swedes, beneficia! ; mangold wurzel, beneficial in a higher degree.-Sigma.

White Carnots.-My long practice in the cultivation of the soll, and a due regard to Nature's laws, embolden mo to write to you for that information you are pleased to impart on such suljects. From my observation on causes affecting tho growth of vegetable productions by electricity, I referred this subject, which is of great importance, to men who have taken out their degrees in the school of philosoply, and who have more time to display their theoretical reasoning ; but the lluler of all events, as in the case of the potato blight, has thought fit to confound their, arts and reasoning; as said hitherto, "Thus far shalt thon go, and no farther."

In my observation on a former occasion, relative to the premature growth of the Belgian white carrot, I said they had been frequently complained of this year by those who soved their seed in April and May. I sowed my main crop during the first week in May, on a moory, drained bottom, with farmyard manure trenched in carly, and this sowing showed signs of premature growth, while the red Altringham, sown same time with the like preparation; showed no signs. I sowed the white Belgian carrot agrain on the lst of June, on the samo bottom, with lime and clay incorporated, and they showed no signs of starting for seed, and their roots are very little inferior to those sown in May. From these experiments, 1 conclude that the proper season for sowing this valuable root, the white Blegian carrot, is not known; and I further observe, as already hinted, that from the luxuriant top.growth of this biv ennial root, the application of too much manure, consistent with the preparation of the soil, should be guarded against.

To mafe Bread with Muriatic Aced. - Take 2lbs. of meal, add 2 drachms of bicarbonate of sodn, and mix the soda and meal as well as possible. Take 2 ounces by measure of muriatic acid, and add 10 ounces of water; of this strong acid take 2 ounces, and add a pint and a half of water; make an opening in the contre of the menl, and add this diluted acid as quickly as possible. mixing it effectunlly with the meal, which is immediately to be put into a tin shape, and at once placed in the oven, or pot, previously beated and ready to bake.Farmers' Gazeke.

fiscellaneous.

PLOUGH DEEP TO FIND THE GOLD.

Plough daep 10 find the gold, niy dooys! P!ough deep to find the gold!
Tlie earth hati treasuren in her breast *Unmeasured and untold.
diothe the mouniain tops with trees,
The sides with waving grain!
Why bring over tormy seas.
What liere wa may oltain?
Oh. Britain need not briug her bsead From countries new or old,
Would she give tiér ploughsliare apeed, And derru to find the gold! Plough deep to find the gold, sec.

Nark yon field of atately atooks
Rise on an Autumn doy !
Lusiy Labour jocund looks
A midst theia thick array ;
Mark the barri-yard's ample apaco
How grateful to behold !
Towers of riches fill the place-
Plough deep, and fiad the gold:
Plough deep to find the gold, sec.
Earth is grateful to lier sons
For all their care and toil;
Nothing yields such targe returns
As drained and deepened soil.
Science, lénd thy kindly aid,
Herariches to anfold;
Moved by plough or moved by spade, Stir decp to find the gold!
Dig deep to find the gold, my boys ! Dig deep to find the guld !
The earth heth treasures in her breast Unmeasurtd and nutold.

A Railway Gmost.-A ludicrous incident happened near Stockham, on the Lanceshire, Cheshire, and Birkenhead Railway, a few days ago. It is pretty well known that the ope. rations on this railvay have stopped for the present. A few men were left for the purpose of carrying on some minor ex. cavations which were thought necessary. About a month since a man was unforiunately killed by the falling in of the tunnel near the place where the men were set to work; and the men heard or thought they heard, most distinctly, the sound of a pickaxe on the very spot where he had been killed. The wind had been rather high for three or four days, but still they heard the monotonous sound of the dead man's work in the tunnel. At last it was agreed that one of them should descend and ascertain how matters stood, and if there should be anything to fear, a signal was to be given and the adventurer drawn up again. One of the party inmediately consented, boasting that he feared not dovil nor man. Accordingly, the rope was fastened round the waist of the hero, and he was let down the shaft, his companions ready, on the least notice, to draw him up. The boaster had not reached the bottom before a ery was heard from below, and such a twitch was given to the rope as plainly bespoke that something was the matter. The man was pulled up instamtly, with a countenance pale as deali, on which terror and consternation were strongly depicted. To the almost gasping inquiry of "What is it ?" "S What hast a' seen?" he related that, no sooner had he got to the botom, than he plainly saw the white, pale face of the dead man, which went backwards and forwards as if he was at work, but which he recognized immediately as the countenance of his late friend. The news was quickly spread in the neightourhoad, and the "railway ghost" was the theme of every longue; several persons went to hear the sound of the ghost at vork, umtil a dipsy man in a pot-valiant fit wouid be so obstinately bold as to go down and fight the ghost! will. ing to see how such an one would act, they let him down, and in about five minutes drew him up again, with the innocent ckuse of all their terror in his hends. It proved to be a large now tia poryder can which had been left there by the men, and which had been placed in rather a rickoty pasition on a pro.
jecting ätone. It was splashod winh mud, in such a mannery thrit itsomewhat resembled a man's'face, and the wind through theiexcavation-hadicaused it to jolt from and against thesside of tho tunnet.-Liverpö̃al Allian.

A Patuarin Tabie.-Thetfollowing valuable tablet was calculated by Jemer M. Garrett, Esq; of Essex county; Va^{2}; and first published-in Mr. Ruffian's Farmer's Register:* in - Tablemun box 24 inohes by 10 incles and winghes deept

A box 16 inches by 188.10 inches square and 8 inblies deep, whll contain a bushel, or 2,150 et 10 cubic inchesen t.

A box 12 inches by 112 . 10 inches squareand 8 inches deep, will coniain half a bushel, ord,074 cubic inchess. hos

A box 8 inches by $84-10$ inches square and 8 inches deef? will contain one peck, or 5376.10 cubic inches.

A box 8 inches by 8 inches square and 42.10 inches-deep, will contain one half peck, or 208 8-10 cubio inches.

A box 7 inches by 4 inchos square and 4 '8.10 fuches deepj will contain a half gallon, or $181.4-10$ cubic inches.

A box 4 inches by 4 inches square, and 42.10 inches deep; will contain one quart, or $672-10$ cubic inohes.

These measures come within a small fraction of a cubio inoh of being perfectly accurate, as near indeed as any mea. sures of capacity have ever yet-been made for common use; the difficulty of making them with absolute exactness has ne: ver yet been overcome.

Glory.-The following illustration of the fines in Hamle:-

> "Imperial Cosar dead, and turned to clay, Might stop a bole to keep the wind away ""
necurs in a Yorkshire paper: Millions of bushels of human bones have been transported from, the contizient to Hull for agricultural purposes. These, which were collected on the plains of Leipsic, Austerlitz, and Waterloo, were the bones of the bold, the brave, and the chivalrous, who fell fighting their country's battle; with whom were mixed the bones of the horses, and both were conveyed to Yorkshire, where they were ground to dust, sent to Doncaster, and sold for manure.

Catching Beetles.-A gentleman in Penrith; fibose house is much infested with beetles, got out of bed one night last week, and, after executing a few of-these gentry; lay down again, hoping to have peace. Hewever, he had got scarcely into a slumber, till he found one, as he imagined under his head, which he seized with a shudder and threw across the room with great violence, - when he discovered, but too late, that the supposed beettes was his watch seal, and that he had broken his watch to pieces by throwing it against the wall.

A New Rotary Four-horse Power- Engine in a Hat-Box.-Mr. Elijah Galloway has patented what has hitherto been esteemed much more as a philosophs:'s suvue of steam. power than a practicable invention. It is said to be so wondrously portable as not to weigh more than two or three cwl., and not to occupy more than half the space of an ordinan hat-box. A steam-pipe from the boiler brings the steam ip the receptacle; an eccentric crank is turned by the roty motion within it; and here is all the machinery said to necessary to propel the largest engines, whether mining, in rine, or locomotive. The Admiralty are said to have orde an estimate for supplying the Minz yith a fify horse goy one. They could not do better, we think, than name sug litle whirling machine the Minx itself, and provide it wit all-sufficient accommodation of a band-box.-The Buildert

Unwomanly Tasta.-The Marquis of Bredalbane been entertaining a shooting party at Taymouth. The 1 ess of Montrose shot four spiendid bucks in the marquis's fo three having royal heads, besides stalking in first-rfte hill or glen no object, and all obstacles easily surmonated game was in view.

An Excertion,-_Shalspeare says that is use suje
 swerat all,
Published bs H. JONES RUTTAN, at tho Ofico orthringomina

Trixis.-20. Gd. per anaum.

[^0]: * 5 in.summer-2 in winter.

[^1]: - The Overseer al Maughton considera the thorough drains thiry feet epart 100 wide : and alisough the land is pendered ordinarily dry, he thinks if would have been thore efficiept aad i' ing had the draitis beed only 21

[^2]: - Note fron. Sinuten o: Commare Mectina :

 Resoled.-That nn appest to the several Asrienltoral Sosieties of Weatern Canaca be drawia up sad circuiated, urging the necessily of renewed and vigorous action on the part of the Iriende of Agriculture. Manofactares, die suc. th-oughout the Province, especially for ilve porpose of suatainiag thia aseosiation. and that Thomas Page and Henry Rutian Esqra, of Cobru: \therefore de a Commitlee to carry this resolution into effect.

