IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

23 WEST MAIN STREET WEBSTER, N.Y. 14580 (716) 872-4503

CIHM Microfiche Series (Monographs)

ICMH
Collection de microfiches (monographies)

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée

Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée

Cover :itle missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Reliè avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela ètait possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui pessent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

\square
Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculéesPages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continue

Includes index(es)/
Comprend un (das) index

Title on header taken from: /
Le titre de l'en-tete provient:

Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison

Additional comments:/
Corrmentaires supplémentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

National Library of Canada

The images appearing here are the best quality pussible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in pririted paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grâce à la générosité de:

Bibliothéque nationale du Canada

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papler est imprimée sont filmés en commençant par le premiar plat et en terminant soit par la darniere page qui comporte une empreinte d'Impression ou d'illustration, soit par le second plat, aalon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la premí̀re page qui comporte une empreinte d'impression ou d'ilustration et en terminant par la dernière page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE'", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être flimés è des taux de réduction différents. Lorsque le document est trop grand pour être reprodult en un soul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite. et de haut en bas, en prenant le nombre d'ímages nécessaire. Les diagrammes suivants lilustrant la méthode.

INTRODUCTION 'IO THE STUDY

OF THE

AND
THEIR TREATMENT

BY THE
SCIENTIFIC USE OF SPECTACLES.

BY
A. M. ROSEBURGH, M.D., toronto.
[Re-printed from the Canadian Journal for January, 1866.]

TORONTO :
printed by lovell \& gibson, 67 yonge street. 1866.

The fo of lectur have not lishing t only to medical In thei to the el berg Wel reatise of $\mathrm{N}_{\mathrm{y}} \mathrm{F} \mathrm{Syd}$

From the Canadian Journal for January, 1866.

THE

OPTICAL DEFECTS OF THE EYE,

AND

THEIR TREATMENT
 br mar SCIENTIFIC USE OF SPECTACLES.

BY A. M. ROARBRUGH, M.D.
(Read before the Canadian Inetitute, February 3rd, iŝ66.)
The following pages were written as an introduction to a course of lectures recently delivered by me on the diseases of the eye. I have not thought it necessary to alter the form, as I propose publishing them as a pamphlet, hoping that they may be useful, not only to the members of my ophthalmic class, but to Canadian medical students generally.
In their preparation, I must here acknowledge my indebtedness to the elaborate works of Mr. J. Z. Laurence and Mr. J. Soelberg Wells, of London, and especially to the very comprehensive freatise of Professor Donders, of Utrecht, published in 1864 by the Now Sydenhem Society.

Chapter I.-Optical Considerations.

The eye is pre-eminently an optical instrument, and the phenomena of vision all depend upon the laws of optics. Hence, a knowledge of some, at least, of the elementary principles of light is essential to a correct appreciation of the physiology of the eye. The diagnosing of ontical defects of the eye,-long and short sight, \&c. \&c., and their treatment with the scientific use of spectacles, require some knowledge of the laws of refraction, and the properties of convex and concave lenses.

The philosophy of the ophthalmoscope can hardly be understood unless the principles of both refraction and reflection are thoroughly mastered.

You will therefore, I hope, not consider the time ill spent if, before proceeding with the investigation of diseases of the eye-you review with me somo of the elementary principles of optics which lis at the foundation of all ophthalmic science.
The nature of light is not known. I can no more tell you what light is, than your professor of physiology can tell yon what life is. We know that the sun shines, but how it shines we cannot tell.
"Two different theories have been advanced of the more intimate nature of light." "One, the Newtonian (corpuscular) conceives that each luminous point is constantly giving off a succession of luminous corpuscles which follow each other in uninterrupted succession on an imaginary line or axis like a string of beads on a rigid thread."

The undulatory theory (Christian Huychens') on the other hand considers space as pervaded by a subtle gaseous fluid or ether; that luminous bodies have the power of communicating to this ether a wave motion which affects the retina the same as $\frac{1}{2}$ vibrations of the air affect the auditory nerve.

Sir John Herschel, speaking of the great ingenuity of the undular tory theory says, "if it is not true it deserves to be."

The sun is the great natural source of light; as it shines by its own light it is called self-luminous. The fixed stars are also self \mathbf{l} luminous; so is a lighted lamp and bodies in a state of ignition. But most bodies by which we are surronnaed, are seen only by reflected
ligh
befo and

E
infin alone light diver are c
-Fig passin rays the po
The
rays a The po a focus

Stric the ne from th ever, w pupil tance twenty
A gc lighted 2 amall upon tl the ope

IONs.

and the phenomena nce, a knowledge ght is essential to
The diagnosing ht, \&c. \&c., and les, require some fies of convex and
ly be understood on are thoroughly
e ill spent if, beof the eye-you optics which lie
re tell you what yon what life is. e cannot tell.
e more intimate -) conceives that sion of luminous uccession on an d thread."
the other hand or ether; that to this ether a brations of the
of the undula
shines by its are also selffluignition. But ly by reflected
light The light from an object seen by moonlight is reflected twice before it reaches the eye. The moon reflects the light from the sun, and the object, the light which it receives from the moon.

Every luminous object gives off, or radiates, in every direction, an infinite number of straight lines of light. Each of these lines taken alone is called a ray of light. A bundle of rays is called a beam of light when the rays run parellel to each other. When the rays diverge from a luminous point or are made o converge to a focus they are called a pencil of rays, thus :

-Fig. 1 represents a pencil of rays diverging from a flame F, after passing a couvex lens they are rendered parallel and these parallel rays passing the second convex lena B, the rays are converged to the point (focus) P.

The parallel rays may be called a parallel pencil; the diverging rays a divergent pencil, and the convergent raye a convergent pencil. The point where rays of light meet is called the focal point or simply a focus.

Strictly speaking, there is no such thing in nature as parallel rays; the nearest approach we have to it are the rays of light we receive from the sun and the fixed stars. Practically, for our purpose however, we may consider rays of light parallel that are received by the pupil of the eye from objects that are twenty feet distant or any distance greater than that. Pencils of light from objects less than twenty feet distant are more decidedly divergent.
A good illustration of a divergent pencil can be obtained from a lighted lamp or candle in a dark room. If a piece of card board, with a small circular opening in it, be held near the lamp, you will have, upon the opposite wall, an illuminated spot of the same shape as the opening in the card, but very much larger.

This will prove not only that the rays diverge, but also that the r., 6 proceed in straight liues.*

Convox lenses:-We shall now procced to the consideration of conver lenses, which, for our purpose, is the most important part of the subject. Lenses are made of various transparent substances as amber, alum, quartz, glass, diamond, and even of ice. Those in ordinary use are made of glass. When the two surfaces of a convex lens have the same degree of curvature, the lens is said to be equiconvex. When one of the surfaces is flat or plane, the lens is called a plano-consex lens. Glass spectacles used by old persons for reading, \&e., are commonly made double convex.

In order to simplify the subject as much as possible, let us confine our attention to lenses that are equi-convex.
mett The prop the
(" Convergent pencils of light do not exist in nature. Parallel pencils or diver-
gent pencils of rays can be rendered convergent by means of a convex lens. Thus in fig. 1 , the raye diverging from I, are made to converge to P by the convex lansed, A. and B.)
but also that the onsideration of con. portant part of the ent substances as of ice. Those in arfaces of a conver is said to be equi, the lens is called 1 persons for read.
ible, let us confine
of which A, B, is , G, H, of which cle F, G, H, will mon to both cirThe line A, E, is led the diameter. d by the axis) is
des of a double experiment of
el pencils or diver. convex lens. Thus the convex lanseef,
aetting fire to wood, paper, \&c., by means of a burning or sun glass. The explanation of this is simply that the convex lens possesses the property of converging a portion of the sun's rays to a point called the focus.

In Fig. 3, P, P, represent a pencil of parallel rays converged to a focus at F by means of the double convex lens, L.

The focus for parallel rays is called the principal focus. It is always the same distance from the optical centre in the same lens. The length of the focus for parallel rays is, in equi-convex lenses, equal to the length of the radius of curvature.
The shorter the focus, the greater is the "power" or "strength" of the lens. A lens that can bring parallel rays to a focus at a distance of one inch from the optical centre of the lens, would be called a one inch lens. Another lens whose focus is two inches from the optical centre, is called a two inch lens, and so on. Convex lenses therefore receive their names according to the number of incher or fraction of an inch, the principal focus is distant from the centre of the lens. The strongest lenses used for spectacles are what are called cataract glasses; they are worn by patients who have had their crystaline lenses removed. Their strength ranges from 2 to 4 inches focal length. The weakest spectacles that are ordionrily used have a focus of 36 inches. Convex lenses having a foca* of 36 inches do not enlarge the letters of a book at the ordinary reading distance.
Let us now see what practical application we can make of this principle of convex lenses.
Supposing that a person accustomed to using convex spectacles, gets one of the glasses broken, and applies to you to learn the strength of the glass that would be necessary to replace the broken one, or in other words-to learn the strength of the glass that is still whole. How would you proceed? One method is to use the lens as a sun glass, and ascertain by measurement, how far from the glass, the sun's rays are brought to a focus. If you find, for instance, that the focus is 10 inches from the lens, you will have ascertained that the person has
been wearing glasses of 10 inch focus, or as they are sometimes called No. 10 convex, or simply +10 (plus 10).

Tho method, however, that is usually adopted, depends upon a property of convex lenses that will be more fully explained further on.

If, for instance, you hold up a 10 inch convex lens at a distance of 10 inches from a white wall-the wall being about 20 feet from an open window, opposite-there will appear, behind the lens, upon the wall, an inverted, mininture picture of the window, nnd trees or build. ings, \&c., in front of the window. If the lens be held at a greater or less distance from the wall than the focal length of the lens, the inverted picture will be indistinct. Measuring the distance therefore that the lens must be held from the wall, to produce the sharpest picture, will give the focal length of the lens.

Suppose, now, that we bring the lens to within, say 5 feet of the window, and hold a sheet of white paper at the principal focal distance behind the lens, viz., at ten inches, we will find a change in the in. verted picture, there will still appen: distant buildings, trees, \&c. but the sash of the window will be very indistinct. If, however, we more the aheet of paper 12 inches from the leas-that is, two inches farthe: from the lens, we will again see the image of the sash but scarcely any trace of the buildings, trees, \&c. This experiment is an illustration of the fact that the nearer an object approaches the front of a conves lens, the farther will be its image behind the lens; thus, when an objec is 5 feet or rather 60 inches from the front of a 10 inch convex lens the inverted image is found to be 12 inches lehind the lens; when 30 inches, it will be 15 in .; when 20 , that is, double the length of the focus, the image will be double the. length of the focus behind the lens ; viz., 20 inches; when 15 inches, the image behind the lens wil be removed to 30 inches. As the object approaches the principa' focal distance of the lens the image recedes much more rapidly; thus when at 12 inches, the image will be 60 inches; when at 11 , the image will be 110 inghes behind the lens. When however we bring the ob ject to within 10 inches of the lens-that is, at its principal focus there will be no image formed behind the lens, as the rays after pass ing the lens will be parallel.
(I would strongly urge you, gentlomen, to perform all these expen ments for yourselves, as in that way only can you become familis with thesc important principles. These latter experiments can b performed best in a dark room-taking for an object the flame of lamp or candle).

The

Wh

From the above we can casily understand the principle, ${ }^{\prime}$ ', that the less divergent the rays of a percil (that is, the nearer they approach parallel rays,) incident or falling upon a convex lens, the nearer will the focus of the convergent pencil be to the principal focus of the lens. 2nd. The more divergent the incident pencil, the less convergent (the more nearly parallel) will be the refracted pencil, and the more distant will its focus be from the principal focus of the lens.
Questions of the following nature very often arise in optica, viz., the length of the principal focus of a convex lens being given, and the distance a certain object is in front of it;-to ind how far behind the lens will be the inverted image of the object. Or to express it more technically, the length of the principal focus of a convex lens' being given snd the length of the divergent incident pencil, to find the length of the focus of convergent refracted pencil. Thus: Suppose you had the following question : A 10 inch lens is 60 inches from an object; how for behind the lens will be the inverted image?
This could be solved immediately, by actual trial, and measurement, but this is not always practical.
The rule given in some text books on optics is as follows : multiply the length of the divergent incident oencil, that is, the distance the object is from the lens, by the focal length of the lens, and divide by the difference; thus : $60 \times 10=\dot{0} 00,60 \cdots-10=50,600$ divided by $50=12$; or $\frac{80 \times 10}{60-10}=\frac{600}{50}=12=$ the distance behind the lens.
There is another property of convex lenses which I must not omit to mention ; namely, what is called it magnifying power.
When a convex lens iu placed between the eye and an object,the object being at a less distance from the lens than ite principle focus, the object will appear enlarged or magnified. The ahorter the focus of the lens, the greater is its magniíying power. Thus, a 4 inch lens has a greater magnifying power than an 8 inch lens; a 22 inch lens greater than a 4 , and a 1 inch greater than a 2 inoh lens. The 1 inch lens has, in fact, double the magnifying power of a 2 inch lens; a 2, double that of 4 iach ; a 4 iuch, double that of an 8 inch, \&c.
the "power" of a lens is therefore inversely proportional to its focal length. For this reason a different form is used in expressing the "power" or strength of a lens. A 1 inch lens is takon as unity,
and as a 2 inch lens is just half the strength, it is simply expresed $\frac{1}{2}$, and as a 3 inch lens has just one-third the strength of a 1 inch, it is written $\frac{1}{3} ;$ a 4 inch is $\frac{1}{4} \&$ c. We will find that this nomenclature is not only very convenient, but scientificaily correct.

For example, suppose we have two lenses of 4 inch focus each, and we wish to know their combined "power" when used as one lens;
 have, therefore, the magnifying power of $\frac{1}{2}$, which is the reciprocal of 2, and are consequently, together, equal to a 2 inch lens, which can be proved by actual measurement. Again, suppose we have a 6 inch lens, and a 12 inch lens, and we wish to know their combined strength, $\frac{1}{0}+\frac{1}{12}=\frac{9}{12}=\frac{1}{4}$ which represents the power of a 4 inch lens; the 6 and tho 12 inch lenses taken together being equal to one lons having a focus of 4 inches.
To save repetition, I may here state that when a consave lens enters into combination with a convex lens, it has a neutralizing effect upon the convex lens. If we have a convex 6 and a concave 6 the one would neutralize the other, -thus $\frac{1}{8}-\frac{2}{0}=0$. But if the convex lens has the higher power, the concave lens simply weakens it-that is, lengthens its focus-thus, if we have a conver 6 and a concaipe 9 the result will be $\frac{1}{6}-\frac{1}{8}=\frac{3}{18}-\frac{2}{18}=\frac{1}{18}$, which represents the strength of one lens having a focus of 18 inches. If, however, the concave lens has the higher "power" it will simply be weakened by the concave lens,-the combination will be equal to a concave lens having a lower "power," or a longer focus than the concave lens taken,-thus reversing the last example, suppose we have a concave B and a convex 9 , we will then have $-\frac{1}{6}+\frac{1}{8}$ or aimply $\frac{1}{\frac{1}{b}}-\frac{1}{6}=\frac{\frac{3}{18}}{18}-\frac{8}{18}=-\frac{1}{18}$, which represents the strength of a concave lens having a focus of 18 inches.

This fractional nomenclature (taking 1 for numerator and the focal length of the lens for denominator) will assist us also in understanding the principle of the formation of images at different distances behind a convex lens, according to the distance of objects in front of it.

Let me remind you that when an object, for instance the flame of a candle, is placed in the focus of a convex lens, the diverging rays of light from the object are rendered parallel by the lens. Thus, a lens having a focus of 20 inches will render parallel pencils of light diverging from an object 20 inches from the lens. Bearing this in mind let us again try the solution of the following question, pro.
pound 210 in of the light what d

Now of the from t to divi 60 in would 1 Deduct portion are equ pairallel falling principl illustrat inches thow h divergin this $\frac{\lambda^{1}}{16}$ bring th

Fig. 4 ton inch one havi The 30 is so as to parallel are conve lens, viz.,
; is simply expresed ength of a 1 inch, it it this nomenclature rect.
nch focus each, and used as one lens; $\frac{1}{2}$. The two lenses is the reciprocal of ach lens, which can se we have a 6 inch combined strength, 4 inch lens; the 6 to one lens having
hen a concave lens neutralizing effect and a concave 6 $=0$. But if the s simply weakens 3 a convex 6 and $\frac{1}{18}$, which repreinches. If, how. it will simply be will be equal to r focus than the mple, suppose we $-\frac{1}{6}+\frac{1}{9}$ or simply of a concave lens
nerator and the us also in underifferent distances cts in front of it. nee the flame of θ diverging rays lens. Thus, a pencils of light Bearing this in question, pro-
pounded nut long since, viz. :-When an object is 60 inches in front of 210 inch convex lens, how far beinind the lens will be the inverted image of the object? Or, to express it differently, when a divergent pencil of light emanates from a point 60 inches from a 10 inch convex lens, at what distance behind the lens will the pencil be converged to a focus?

Now, we know that a lens of 60 inches focus, placed in the position of the 10 inch lens, would render the rays parallel that fall upon it from the object 60 inches distant. Were it possible, therefore, to divide the 10 inch lens into two lenses, one having a focus of 60 inches to render the rays parallel, the remaining portion would bring these parallel rays to a focus at its principle focus. Deducting then ${ }_{0} \frac{1}{0}$ from $\frac{1}{10}$ will give the strength of the remaining portion of the lens $\frac{1}{10}-\frac{1}{60}=\frac{5}{60}=\frac{1}{12}$; the two parts then $\frac{1}{60}$ and $\frac{1}{12}$ are equal to the one lens $\frac{1}{10}$. And, as the $\frac{1}{4}$ will render the rays parallel trom the object 60 inches distant, ad these parallel rays falling upon the other part $\frac{1}{12}$, they will be brought to a focus at the principle focus of this part, viz: at 12 inches from the lens. Let us illustrate this with another example. Suppose that an object is 30 inches in front of a convex lens of 10 inch focus, and we wish to foow how far behind the lens will be the focus of a pencil of rays diverging from a point in the object. We will have $\frac{1}{15}-\frac{1}{30}=\frac{2}{30}=\frac{1}{1}$; this $\frac{1}{16}$ represents the power of a 15 inch lens, which we know will bring the parallel rays to a focus at 15 inches behind the lens.

Fig. 4 illustrates this; 0 represents an object 30 inches from a ten inch convex lens, the lens supposed to be divided into two parts, one haring a focus of 30 inches, and the other a focus of 15 inches. The 30 inch lens refracts the rays of the div rgent peucil $d, d, d,{ }^{-} d$, so as to render them parallel, as shown at P,P,P,P,P. These parallel rays, meeting the 15 inch lens, are again refracted and are converged to a focus at F, which is the principle focus of the lens, viz., at 15 inches.

Fig. 1, page 3, represents a 10 inch lens, at a distance of 20 inche
from an object, F. The lens is supposed to be divided into twt equal parts, of 20 inch focus each : the first half renders the dive: ging pencil parallel, and the second half converges the parallel pen. cil to a focus, at 20 inches from the lens; $\frac{1}{10}-\frac{1}{20}=\frac{1}{20}$.
(Dr. Giraud-Teulon, of Paris, has ascribed the origination of thi above theory to Mr. J. Z. Laurence, of London, to whom mit are very much indebted, for his praiseworthy efforts to popularize this hitherto neglected, field of Physiological and Pathological Optics?

Let me next direct your attention to certain optical considerations which have a most important application, in the treatment of optica defects of the eye.

Befor subject mation Many is admit pears ul picture also be fow inch

The p
You may remember that in a former experiment, a 10 inch lew was held ten inches from a white wall, so as to show the miniatur inverted picture of the window, \&c., 20 ft . distant; and that whe: the lens was brought to a distance of 60 inches from the window, i was found that the image of the window was formed 12 inches be bind the lens, instead of 10 inches, and that at 10 inches, the imas was so indistinct as to be scarcely recognizable.

Now suppose that a 12 inch lens be immovably fixed 12 inches from the same wall, it will then be in a proper position to bring pas allel rays to a focus on the wall, where it will form an inverted pic ture of the window, and objects at a distance beyond the window.

If we now bring the flame of a lamp, for instance, to a distanc of 60 inches from the lens, no distinctly defined image of the flami will appear upon the wall; but if, by any means, we can render th: pencil parallel that diverges from the flame, the 12 inch lens wit then converge it accurately to a focus upon the wall, where we wil have an inverted image of the flame.

From the knowledge that we have now obtained, we know the a 60 inch lens placed in front of the 12 inch lens will render thes rays parallel. All that we have to do then is to combine a 60 inc: lens with the 12 inch lens: the 60 inch lens to render the rays par ellel that diverge from the flame, 60 inches distant, and the 12 incl lens to converge these rays to a focus, at the principal focal lengt of the lens. This is exactly what we do in supplying old peopl with convex spectacles. Their eyes are constructed to bring paralle rays to a focus, on the retina; but the rays from near objects ars too divergent to be focussed upon the retina without artificial aid this deficiency is what we supply with suitable glasses.

Let A uhort dis of diverg direction minate t sinall ori box, and

Rays of these back of t pencils of one ray tion of t back of t of the bo The reas the same flame, aft part of t flame mu upper pa

EYE. distance of 20 inche be divided into $t_{m t}$ alf renders the diver rges the parallel pen $\frac{2}{20}=\frac{1}{20}$.
he origination of the ndon, to whom rts to popularize this Pathological Optics: ptical considerations treatment of optica
ent, a 10 inch lev show the miniatur int; and that whe: from the window, i ormed 12 inches be 10 inches, the imat
bly fixed 12 inche: sition to bring par rm an inverted pic ond the window. tance, to a distang image of the flam we can render th 912 inch lens wil wall, where we wil
ned, we know tha s will render thes combine a 60 ind nder the rays par t, and the 12 inc. ncipal focal lengt plying old peoph d to bring paralle near objects aly out artificial aid; ses.

Before leaving the consideration of optical lenses, there is one subject to which I wish to direct your attention; namely, the formation of an inverted image behind a convex lens.

Many of you are, probably, familiar with the fact, that when light is admitted into a darkened room, through a small orifice, there appears upon the opposite wall of the room, an inverted, dim, shadowy picture of buildings, trees, \&c., in front of the aperture. This can also be seen, on a smaller scale, by holding a sheet of white paper a few inches from the key-bole of a darkened hall.

The philosophy of this is seen in Fig. 5.

Let A, B, represent the position of a flame of a lamp that is a short distance in front of an aperture of a darkened. box. Pencils of divergent rays of light radiate from the apex of the flame in every direction ; one of these pencils is represented in the figure to illuminate the end of the box, and one of the rays escaping through the amall orifice c; this ray passes in a straight line to the back of the box, and strikes the point a, which it illuminates.

Rays of light diverge from the lower part of the flame, also; one of these rays is shown to enter the aperture c, and to pass to the back of the box at b. In a similar way it might ke illustrated that pencils of light radiate from every point in the flame A, B, and that one ray from each point passes into the box and illuminates a portion of the back. In this way we get an illuminated spot at the back of the box, which is an exact counterpart of the flame in front of the box, but inverted, the apex of the flame pointing downwards. The reason that the picture is reversed is that, as rays of light (in the same medium) pass in straight lines, a ray from the top of the flame, after passing the aperture, must necessarily pass to the lower part of the back of the box; and a ray from the lower part of the fime must necessarily (in moving in a straight line) pass to the upper part of the back of the box. You will observe, also, that the
size of the image depends upon its distance behind the apertur if the image is as far behind the aperture, as the object is in frot the image will be of the same size as the object, if half the distang half the size, as seen at f, g.

If, in the above experiment, the aperture be enlarged, it will: found that the image at the back of the box will become much $:$ distinct; the more the aperture is enlarged, the more indistinctr be the image. The reason of this indistinctness in the image is th when the aperture is enlarged, a number of diverging rays from t point in the flame pass through the aperture, and each one repa the image, so that the parts of the image overlap each other.

This is shown in Fig. 6. A, B, represents the flame of the lat and C,E, D, F, the image behind an aperture. The aperture supposed to be just large enough to admit two divergent rays, el of these rays produces a separate image; thus, the point A is: peated twice at D and F, and the point B is repeated at C and The larger the aperture, the more light is admitted, but the m indistinct is the image.

If now, a convex lens be inserted in the enlarged aperture, thi divergent rays that enter the aperture (from every point of: object) are converged to a focus; thus in

Fig. 7.

Fig. 7. a othe in point A a rays from manner, enter the WA will t of the obj paper we upon thin behind ; al glass be re portion) o pied-bein callod an æ ablo circum lize with $t l$ behind the程䗉
The hun diandeter. crytaline converity o about one it When a of rest), par and a very upon that bick of the dertitned ro opponite sid in frocatof t The impr through the municates to more, than "God has w
behind the apertur: be object is in frot , if half the distana
e enlarged, it will ill become much ! e more indistinct in the image is th erging rays from 0 and each one repe p each other.
te flame of the lat e. The aperture divergent rays, ea the point A is epeated at C and sitted, but the $\mathrm{m}:$
rged aperture, the every point of : (hity of the cornea, is equal to a conver lens having a focus of about one inch (more accurately $\frac{18}{28}$ of an inch.)

When a normal eye is directed to a distant obje ; (i. e. in a state of reat), parallel rays of light are brought to a focus upon the retina, and avery minute inverted picture of the object is sharply defined upon that membrane. If the sclerotic eoat be removed from the back of the eye of an ox, and the eye be placed in an aperture of a deretuned room, with the cornea looking, for instance, towards the opponite side of the street, an inverted image of the buildings, \&c., in finctof the aperture will be seen at the back of the eye.

The impression that objects make apon the retina, is conveyed through the optic nerve to the brain, but in what manner this communicates to the mind a knowledge of the appearance of objects, is more, than we can tell. We can simply say with Potterfield, that "God has willed it so."
are aware, however, that although the eye may be free from
disense, and the connection between the retina and brain in ere way perfect, if the optical mechanism of the eye be in any way deff tive so as to produce ill defined images upon the retina,-vision be indistinct, and that tho distinctuess er indistinctness of visi will be in exact proportion to the distiuctness or indistinctness of inverted picturo. Hence the necessity of understanding the opt of the eye in order to comprehend the pathology and treatment the numerous optical defects to which it is liable.

Case 1. Let me here take an example. A few weeks ago a pit sician of this city sent a patient for my advice, fearing that be losing the sight of his left eye. Upon examination, I found that had what we call "paralysis of accommodation" of that eye.
He could see distant objects with perfect distinctness, but n ohjects he was unable to define; he could not read large type unl the letters were very large, and several feet from the eye. Thee was, in fact, simply passive, like a convex lens, or a camera-obsa with the screen to feceive the image immovably fixed at the princi! focus of the lens, and could only bring parallel rays to a focus the retina.
I found that by rendering the diverging rays parallel, by mean a convex lens, he could see near objects distinctly; by placing ai inch convex lens before that eye, he could read fine type at six ind with a 10 inch lens at ten inches, with an 18 inch lens at eight inches, \&c. \&c. The 6 inch lens rendered the rays parallel ti diverged from the letters six inches distant, and these parallel m falling upna the eye were brought to a focus upon the retina. 6 inch lens does not increase the apparent size of letters one-hy. whereas this patient could not see letters ten times the ordinary at six inches, or auy distance less than about two feet from the er The 10 inch lens rendered the rays parallel from objects ten ind distant, and the 18 inch lens from objects eighteen inches distant
The eye was unable to bring diverging rays to a focus upon b retina; in other words it had lost the power of "accommodation (We can temporarily paralyse the accommodation of the eye by apt ing a strong solution of Atropine.)

A normal eye differs from the glass lenses we have been descrit in the fact that it can, not only focus parallel rays upon the retion, also rays that diverge from objects as near as from four to six or eip inches from the eye. When parallel rays fall upon a 1 inch corr
lens, they object, for inches of inch behin lamp upo behind the
Now wh it has no that would same purp power, as t bat also to of the eye, that has it rays parall

is 31
ina and brain in ere lens, they are brought to a focus one inch behind the lens, but if an e be in any way deff the retina,-vision udistinetness of visi or indistinctness of derstanding the opt ology and treatment ble.
few weeks ago a , fearing that he : sation, I found that " of that eye. distinctness, but n read large type un om the eye. The s, or a camera-obser y fixed at the princif llel rays to a focus
s parallel, by means actly ; by placing a fine type at six inch inch lens at eight the rays parallel ti and these parallel . s upon the retina. ize of letters one-b times the ordinary wo feet from the em om objects ten ind teen inches distant s to a focus upon bature, -a thine the theory that it is caused by an increase in the curof "accommodatio on of the eye by app
be external muscles, but it tha now ascertained the the believed to be produced by nerfers muscles, but it is now ascertained that the accommodation can remain norice with all the external muscles paralysed.
The live was thought, by othere, to have the power of increasing the refractive owner the eye, but it was proved by a case that ocourred in Dr. Von Graefe's
Fis. 8 represents the section of a normal eye. When it is accommodited for distant objects parallel rays P, P, are focussed upon the retion at F , while diverging rays from O , would form a focus at fd . When, however, the eye is accommodated for the near abject \mathbf{O}, these liverging rays are focussed upon the retina at F. The manner in which this increase in the refractive power of the eye s effected is still a disputed point. Most physiologists however are ature,-a thickening from before backwards, of the crystaline lens.*
\square object, for instance the flame of a lamp, be brought to within four inches of the lens, we know that the focus will fall farther than one inch behind the lens. If we wish to receive the inverted image of the lamp upon a screen, the screen must be held one inch and a third behind the lens.
Now when an object is brought to within, say four inches of the eye, it has no power to move the retina backwards to receive the image that nould be formed behind that membrane, but, what answers the same purpose, it has the property of so far increasing its refractive power, as to be able not only to render parallel, these diverging rays, but also to focus them upon the retina. This increase in the power of the eye, is equal to the addition of a 4 inch lens in front of an aye that has its "accommodation" paralysed, as a 4 ineh lensIrenders rays parallel that diverge from objects four inches distant.
 retins at F while didecs paralle rays P, P, are focassed upon the a e have been descritid ys upon the retina, om four to six or ciptection that accommodation can still be effected with dentirg absenee of the iriis.
 be ago it accommodated for a near object it undergoes thenfollowing changes :-

The "near" and "far" point.-The nearest point to which object can be brought to an eye and be seen with perfect distinctness, if called the "near" point, and the farthest point of distinc vision i called the "far" point.
In a normal eye the "near" point is about seven inches from th front of the cornea, and the "far" point is at an unlimited distance In childhood, however, the "near" point is about $3 \frac{1}{2}$ inches from th: tre and rec des as age advances. At the age of forty the "near" poin: of a normal eye is nearly eight inches from the eye.

When the "near" point recedes to a greater distance than eight inches from the eye it becomes inconvenient; such an eye is called presbyopic or long-sighted.

When the "far" point is not unlimited, but is at a definite distanc from the eye, as for instance from six inches to four or five feet from the eye-such au eye is called myopic or short-sighted.
Range of Accommodation.-The distance between the "near" and "far" point in any eye, is called the "range of accommodation." If a person can read distinctly very fine type at four inches.from the eye, and can also see clearly at an infinite distance the range of accommo. dation would be said to equal $\frac{4}{4}$ because, when such an eye is directed to objects at an infinite distance, (accommodated for parallel rays) in order to see clearly objects only four inches distant, it is necessary to increase the curvature of the crystaline lens, or in other words the "power" of the eye to an extent equal to the addition of a 4 inch con. vex lens ; the power of which is expressed by $\frac{1}{4}$. If a person's "near" point is at eight inches from the eye, and his "cra" point at an infinite distance. his range of ascommodation would be said to equal ! If the "near" point of a myopic eye be 3 inches, and the "far" point be 12 inches, we get the range of accommodation by the equation $\frac{1}{3}-\frac{1}{12}=\frac{1}{4}$.

Chapter III.-Myopia.

Concave Lenses.-Before proceeding to the consideration of Myopia, it will be well for us to glance at some of the properties of concave lenses ; and, in order to simplify the subject, we will confine

[^0]t point to which objett perfect distinctness, it int of distinc vision
seven inches from the an unlimited distance out $3 \frac{1}{2}$ inches from th forty the "near" poizs eye.
\mathbf{r} distance than eight such an eye is called
at a definite distana four or five feet fron ghted.
een the "near" and accommodation." - inches from the ege e range of accomma ch an eye is directel for parallel rays) in nt , it is necessary to in other words the tion of a 4 inch conr If a person's "nest" "far" point at an d be said to equal $\frac{1}{d}$ des, and the "far" mmodation by the
e consideration of f the properties of ect, we will confine
moves forward; sid. be anterior surface of not change its posi.
ourselves to equi-concave lenges. An equi-concave lens is bounded by two surfaces, which are portions of the concave side of two circles which have equal radii.

Fig. 9. A, B, one of the concave surfaces of the lens. \mathbf{C} is the centre of curvature, and \mathbf{C}, \mathbf{R} the radius of curvature. When parallel rays, P, P, strike one surface of the lens, they have a divergence upon learing the second surface of the lens, as if they proceeded from the centre of curvature, \mathbf{C}, which, in an equi-concave lens, is also the principal focus of the lens. \mathbf{C}, \mathbf{R}, is the focal length of the lens. In a convex lens, the focus is measured behind the lens; in a concave lens, it is measured in front of it. If we call the focus of the conver lens positive, we must call the focus of the concave lens negative. When parallel rays of light fall upon a convex lens, they are converged to a focus. When they fall upon a concave lens, they are made to diverge. A convex lens enlarges, and a ooncave diminishes the apparent size of objects. The focal length of a convex lens is measured behind; and that of a concave lens, in front of the lens. They are, therefore, entirely opposite in all their properties; and, for this reason, a convex lens is called a positive lens; and a concave onc, a negative lens. Or, shorter still, they are indicated by the plus $(+)$ and minus $(-)$, algebraic symbols ; thus, +5 , and -5 ; or, $+\frac{2}{6}$, and $-\frac{1}{6}$. To ascertain the focal length of a concave lens, we ascertain what convex lens it will neutralize.

1. In a myopic eye, parallel rays, as well as those that have a certair regree of divergence, are focussed in front of the retina; and, the inverted image of distant objects being formed in the same position, the picture upon the retina will be ill-defined, and vision for distant object consequently indistinct.

Patients with myopia complain that, although their vision for near shjects is perfect, they cannot see objects at a distance with any dis-
tinctness. They can read the smallest type, when brought near ti eyes, even better than persons with normal vision, but they are n able to recognize their friends at a distance of fifteen or twenty fee
In order to enable such persons to see distinctly at a distance, it necessary for them to wear concave spectacles of such a strength, th the parallel rays from distant objects may have such a degree of dirs gence, that, falling upon the myopic eye, they may form a focus up the retina. Theoretically, we should prescribe concave glasses such a strength that their focus will correspond with the patier "far" point. Thus, if the "far" point be at 12 inches, we shot prescribe - 12, as a twelve inch concave lens, placed before such| eye, will give parallel rays from distant objects the same degree divergence as if they proceeded from the "far" point of the ef namely, at 12 inches from the eye. Thus, in Fig. 9, P. P. represe parallel rays falling upon the concave lens, A. B. ; they are made diverge, as if coming from the focus, C., and falling upon the divergingly, they are focussed upon the retina at F. Practically, bo ever, we would find that - $\mathbf{1 2}$ would be rather too strong, and thst 15, or -16 would probably answer better. As a rule, the weat glasses should be worn that will enable the patient to see disi objects with distinctness.
In testing the degree of myopia, we use a series of test types th are so constructed that No. I (smallest) can be distinctly seen andr by a person having normal vision, at a distance of 1 foot ; No. Il 2 feet; No. V, at 5 feet; No. XX, at 20 feet; and so on. Asp men of these types will be annexed to this paper. The types 1 also used in testing the acuteness of vision in Presbyopia, Hypen tropis, Amblyo ia, \&c.
2. In deter aining the degree of myopia in any case, we ascer the greatest distance at which No. I test types can be read distinct if at 10 inches, the "far" point will be at 10 inches, and the my; would be called $\frac{-1}{10}$; if at 6 inches, the myopin would be called From this we can, as stated above, get a proximate knowledge of ${ }_{c}$ strength of the concave lens necessary to relieve the myopia. suis cannot
3. A myopic eye, when in a state of rest, is adjusted for üvergstaphyloma. raya. To enablo such an eye to see distant objects, that is, to br 2 d . "Oa parnllel rays to a focus on the retina, it is necessary to give therding the parallel rays a preliminary degree of divergence by the interposisauve an inc of the proper concave lens.

EYE.

en brought near ion, but they are fifteen or twenty fee tly at a distance, it such a strength, th uch a degree of dive lay form a focus up e concave glasses ad with the patien: ; 12 inches, we shoo placed before such s the same degree " point of the es g. 9, P. P. represe B.; they are made falling upon the? F. Practically, ho oo strong, and that s a rule, the weals patient to sec dist
ies of test types t listinctly seen and n of 1 foot ; No. Il, and so on. A $8 p$ aper. The types: Presbyopia, Hyper:
any case, we ascers san be read distinc uches, and the myo in would be called aate knowledge of the myopia.

Myopia can be distinguished from every other defect of vision, by the fact that concave glasses improve vision for distant objects. If we have no concave giasses convenient, we can diagnose it from Amphyopia, (insensibility of the retina) by the following ready method:-A person with normal vision can read disianctly, No. I test type at 12 inches, and even a little farther. We will suppose that a patient's vision is so impaired, that he can only read No. II at 6 inches; if he is not also myopic, he cau also read No. IV at 12 inches, or No. LX at 180 inches-that is at 15 feet. However impaired then a person's vision may be, unless he be also myopic, he can see as well proportionately, at one distance as at another. On the contrary, a person with myopin, say $\frac{1}{8}$, can see the smallest type (much smaller than No. I,) at 6 inches, but he cannot ree No. II, or even No. V, at 12 inches.

This disease is often hereditary. Over excrtion of the eyes upon near objects at the age of pubcrty, (about 14 or 15) is a very frequent cause of myopia.

Short-sighted persons often inquire if we would arlvise the use of spectacles. There can be no objection to wearing glasses that will enable them to see distant objects; for their eyes are thus changed to normal sues, but as most persons use their eyes much more frequently upon near than upon distant nbjects; the glasses should be no stronger tian necessary. Some contend, however, that short-sighted persons should dispense with glasses for reading, writing, \&sc. Prof. Donders, however, recommends their use for this purpose, for the following reasons :-
1st. "Because strong convergence of the optic axes is necessarily paired with tersion of the accommodation. The latter is an associated action, not arising from the mechanism of the convergence, but exiating within the eve itself, and may consequently easily lead to an increase of the myopia. Besides this, the pressure of the muscles upon the eye ball appears to be greater when the optic axes are convergent, than when they are parallel, and this increase of pressuse cannot but tend to givo rise to the development of posterior adjusted for üivergstaphyloma.
ects, that is, to br $\cdot 2 \mathrm{~d}$. "On acconnt of tho habit which short-sighted persons have of ecessary to give thereding their head forwards during reading or writing. This must e by the interpositasuse an increased flow of blood to the eye, and an increased tension Finitit the eye itself. Owing to this development of sclerotico-chooiditio posterior, effusions of blood and detachnent of the retina
which are so apt to ocelar in short-sighted persons, are undoubted greatly promoted. For this reason, we should always tell the pationts to read with their head well thrown back, and to wiite at sloping desk. But it may, on the other hand, be urged that it just in looking at near objects that myopic persons have an adra tage, for they can see them remarkably distinctly. And the gra danger is, that after reading for a short time witin spectacles, $:$ patient, on getting somewhat fatigued will, instead of laying the bo aside, approach it nearer to the eye, in order to gain greater retir images, and thus strain and tax his power of accommodation much. If we, for instance, give a patient whose far point lies a: inches, a pair of spectacles which enable him to read at 12 inches, will, if not very careful, after a short time almost insensibly bri the book nearer to his eyes, and thus have to make use of a grea: amount of accommodation. If he does this frequently, be will so increase his myopia. The greater the range of accommodation t less harm will spectacles do, and vice versa. Spectacles may also used for near objects in those cases of myopia in which astheno: (depending upon insufficiency of the internal recti muscles) abo itself as soon as the patient has read or worked at near objects fo short time. Whilst these forms of myopia may be furnished π spectacles for near objects, it is very dangerous to permit their: in patients whose range of accommodation is very limited, and n. moreover, suffer perhaps from such an amount of amblyopia (ge rally depending upon sclerotico-choroiditis posterior) that th cannot read No. 4 or 5 Jäger even with the most accurately cho: glasses. Such patients will bring the object very close to the in order to obtain large retinal images, the accommodation will greatly strained, the intra-ocular tension be increased, and gr mischief will be sure to ensue. If there is much amblyopia, sper cles should not be permitted at all for near ohjects." ${ }^{*}$

In cases where the myopia is extreme, therp arually co-eviots terior staphyloma of the selerotic. Von cricute says it is presen: all cases of myopia where the "far" point is less than five inch the myopia being less than $\frac{1}{6}$. Out of sixty cases of myopia exs ined by J. Z. Laurence, forty-four had posterior staphyloma.

The presence of this disease can be easily diagnosed with onisthalmoscope. (See Hulke or Zander on the ophthalmoscof

Pos evaib of the detach preven tomed
Don slo ind er

Who
1st.
2nd.
3 rd. rays.
sth.

Yon and dir upon t parallel howere (if con is, ther of the When power o hyperm
verging at © defi motropi improve one.

This within t of Glase

4Mr. J. \%. Taurence, of London, recommends that deeply concave lenses be tifth A. From order to obstet their "dazsllng " effect.-(Med. Times and Gazette, Oct. 22nd, 1864.)

Posterior staphyloma is a serious complication in myopia, as the suasibility of the retina becomes more or less impaired In the position of the bulging of the selerotic, and in some cases the retina becomes detached from the choroid. It is the existence of this digeaso that prevents improvement in cases of myopia, as the eye becomes flattomed with advanciug age.

Donders considers that in myopia, the antero-posterior diameter is 2 so at fanlt ; that is, it is too much elongated, and that the cornen wad crystaline lens have usually a normal curvature.
Sho characteristics of a myopic eye, are*
1st. Parallel rays are focussed in front of the retina.
2nd. The "far" point is at a definite distance and positive.
3rd. When the eyo is in a state of rest it is adapted for divergent гау

4th. Concave glasses improre vision.

Cifapter IV.-Hfpermetropia.

Yon will remember that when a normal eye is in a state of rest, and directed to a distaut object, parallel rays are brought to a focus upon the re'ina, and that when a myopic eye is in a state of rest, parallel rays are brought to a focus in front of the retina. When, however, a hyperemtropic eye is in a state of rest, parallel rays would (if continued) form a focus behind the retina. Hypermetropia is, therefore, the reverse of myopia. In myopia, the refraciive power of the eye is excessive, and in hypermetropia it is not strong enough. When the accommodation of a myopic eye is paralysed, it has the power of focussing none but diverging rase upon the retina, but a bypermetropic eye under the same circumstances can focus only converging ray: upon the retina. The "far" point of a myopic eye is aif definite distance and positive, but the "far" point of a hyper. metropic eye is at a defiuite distance and negative. Concave glasses improve the vision for a myopic eye, and convex for a hypermotropic one.

This is an affection which has received very little attention until within the last ten years. It was indeed noticed by Dr. McKenzie of Glasgow, in 1841, but it was not until about five years ago that

[^1]Prof. Donders, of Utrecht, from his elaborate researches on this subject, first pointed out how common this affection is, and how frequently it is the sole cause of that peculiar weakness of sight (formerly so little understood) called asthenopia.
Donders believes that this condition of the eye depends more upon a shortening of the antero-posterior diameter of the eye, than upon a too low degree of its refractive power; that the cornea and crys. taline lens have a normal degree of curvature, and that parallel rays would form a focus at the normal distance behind the lens, were the retina far enough back to receive it.

A very good illustration of a hypermetropie eye is one in which the crystaline lens has been removed in the operation for cataract. To enable such an eye to see distinctly, sven distant objects, it is neces. sary to place in front of it a strong convex lens of about four inches focus, called a cataract glass. The eye having too low a refractive power to converge rays to a focus, on the retina, it is necessary to give rays falling upon the eye, a preliminary degree of convergence; the eye having sufficient power to complete their refraction to a point uponthe retina. We do the same thing in relieving cases of hypermetrophia.

Fig. 10 represents a hypermetropie eye in a state of rest. $\mathbf{P} \mathbf{P}$ are parallel rays which are focussed behind the retina at f. L, Fig. 11, is a convex lens which changes tl., parallel rays to convergent ones, at c, c, as if they came from the direction $a b$ and $d e$, which again are refracted by the eye, and brought to a focus upon the retina at F.
When a hypermetropie cye is in a state of rest, and directed to dis. tant objects, it is adjusted for convergent rays; images upon the retina will consequently be ill defined, and vision will be indistinct. To remedy this, it is mecessary for the eye to increase its refractive power by increasing the antero-posterio diameter of the crystaline lens, so as to bring parallel ravs to a focus on the retina.

Wh or acc tax hi diverg comm than a "near becom arise Dia! his eye xxx., xx. at his visi same t . sec., un distanc dation them; presum compla pronou lens he
Agai distance at 20 fc convex hyperm
In or in any c power canes of dation distant their on former necomm of his e . mina, a
researches on this ection is, and how weakness of sight
depends more upon the eye, than upon he cornea and crys. , and that parallel e behind the lens,
is one in which the n for cataract. To objects, it is neces. f about four inches too low a refractive is necessary to give convergence ; the fraction to a point fing cases of hyper.
of rest. $\mathbf{P} \mathbf{P}$ are at f. L, Fig. 11, o convergent ones, $\mathrm{d} d e$, which again on the retina at F. nd directed to dis. images upon the will be indistinct. ease its refractive of the crystaline tina.

When a person with hypermetropia, attempts to read or write, or accommodate his eyes to short distances, it is necessary for him to tax his accommodation to its utmost extent, in order to bring the diverging rays to a focus on the retina. This excessive effort at accommodating the eye for short distances, can not be kept up for more than a few minutes, when the ciliary muscle begins to relax,-the "near" point commences to receed, and (if he is reading) the letters become indistinct. The eye also feels fatigued, and other symptoms arise which will be referred to when speaking of Asthenopia.

Diagnosis.-When we suspect a patient has hypermetropia, we test his eves as follows :-We place a series of test-types, No. xv., xx., xxx., \&c., at a distance of about 20 feet. If he can read No. xv. or xx. at this distance, his acuteness of vision is normal. We then try his vision with weak convex glasses, say No. 50, and if he can read the same type, at the same distance, we try successively No. $40,36,30,24$, sec, until we reach the glasses that render the test type indistinct at that distance. Some persons may possibly be able to relax their accommodation so as to see as well at a distance, with convex 50 lenses, as without them; and not be hypermetropic ; it would, however, be very strong presumptive evidence of its presence; and if, in addition, the patient complain of the symptoms of Asthenopia, we would be generally safe in pronouncing it a case of hypermetropia. The shorter the focus of the lens he can use, the stronger is the presumptive evidence of the disease.

Again, if another patient be tested with the same type, at the same distance, and we find that he can not read a smaller type than No. xL. at 20 feet without spectacles, and that he can read No. xv. or xx. with convex glasses, say +10 or +12 , his would be called a case of hypermetropia absolute.

In order, however, to test accurately the degree of hypermetropia in any case, it is necessary to neutralize one element in the refractive power of the eye; namely, the power of accommodation. In most canes of hypermetropia, particularly in young subjects, the accommodation of the eye is so constantly exercised, even when directed to distant objects, that it is quite impossible for them, by any effort of their own, to completely relax that accommodation. I related in a former chapter, the case of a patient who had lost the power of secommodating his eye to different distances. As the refraction of his eye was normal, parallel rays were brought te a focus upon the metina, and vision for distant objects remained perfect.

Had his eye been hypermetropic, parallel rays would not have bet sufficiently converged by the refractive power of the eye, to form focus upon the retina; vision would, consequently, have been ind tinct. By placing, however, the proper convex lens in front of sur an eye, the requisite preliminary convergence would be given to rays, to enable the eye, with its low refractive power, to focus the rays upon the retina, and thus reuder vision distinct.
The lens used in such a case would indicate the degree of hyp metropia. If the lens were $a+15$ inch, the hypermetropia woi equal $\frac{1}{10}$ if a +10 , the hypermetropia would be $\frac{1}{10}$, and so forth.
We have, however, the means of temporarily producing this of dition of the eye by artificial means. By applying a four gha solution of atropine to the eyc, within two hours the action of it ciliary muscle will be completely paralysed. A solution of ont of atrobpine to an ounce of pure water (also a solution of the extn of belladonna) will dilate the pupil widely, and in some cases, r render the eye slightly presbyopic, but it will not paralyse the acce modation.

If we test, in this manner, the case of suspected hypermetry mentioned above, and find that after his accommodation is p a lysed, he is not able to read No. xxx. even with +50 , and 4 the only glass with which he can read No. xv. and No. xx. 20 feet is +20 ; his hypermetropia is therefore $\frac{1}{20}$. But as could see as well with +50 as without them, before his acco modation was paralysed; he had a manifest hypermetropia of The differcnce between his total hypermetropia and his manil! hypermetropia will give the amount of the latent hypermetrof which he overcame with the exercise of his accommodation, name $\frac{1}{3} \frac{1}{3}$, thus $\frac{1}{20}-\frac{1}{80}=\frac{1}{35}$:*

Asthenopia, according to Donders, depends almost invariably hypermetropia. He describes it as follows: "The power of vision usually acute,-and nevertheless, in reading, writing, and other di work, especially by artificial light, or in a gloomy place, the objt after a sliort time, become indistinct and confused, and a fceling fatigue and tension comes on in, and especially above the eyes, nee sitating a suspension of work. The person affected now often int untarily closes his eyes, and rubs his hand over the forehead,
eyelids.
the same
Aecor tion cor give of gie pains cases ext year ago, symptom even on forehead the lid object for Others, a that, afte that they close the same sym

In rega when it is of the acc glasses to cases), a c will proba As age a normal Treatm for the pal to enable the accom the patien approxima degree of y sary to pa strength, i When we that we mı lauta about

[^2]s would not have be of the eye, to form ntly, have been ind x lens in front of sur would be given to power, to focus the ;tinct.
the degree of hype hypermetropia woi e $\frac{1}{10}$, and so forth.
y producing this cr upplying a four gn jurs the action of i solution of one solution of the extr ad in some cases, ot paralyse the acce
;pected hypermetro: commodation is pa with +50 , and t $x v$. and No. $x x$. fore $\frac{1}{20}$. But as m, before his acco hypermetropia of ${ }_{i}$ pia and his manil latent hypermetrof commodation, name
almost invariably The power of vision riting, and other c: my place, the obje ased, and a feeling above the eyes, net ected now often int ver the foreheadt

[^3]eyelids. After some moments rest, he once more sees distinctly, but the same phenomena are again developed more rapidly than before."
According to my own experience with these cases, the above description corresponds very closely with the description that most patients give of their symptoms. Some give more prominence to the neuralgie pains which they experience in and around the eye, and in some cases extending to the back of the head. I was consulted, about a year ago, by a lady from the town of Simcoe, C.W., who had all these symptoms in the most aggravated form. If she attempted to read even one line, it gave her so much pain in her eyes and forehead that, for several years, she had scarcely dared to even raise the lid of a book. She was unable to keep her eyes upon any one object for more than an instant at a time, without causing her pain. Others, again, do not speak of any pain or fatigue of the eye ; but that, after reading a short time, the letters become indistinct, so that they are obliged to stop or look away at something distant, or close the eyes for a short time, when they can again proceed, the same symptoms recurring.

In regard to the prognosis in hypermitropia, Donders thinks that when it is once developed it never gives way. All the inconvenience of the accompanying Asthenopia can be relieved by wearing the proper glasses to relieve the hypermetropia; but the cause, namely (in most cases), a congenital flattening of the eye-ball from before, backwards, will probably remain through life.

As age advances, the "near" point recedes from the eye, as in a notmal eye, so that in time it becomes complicated with presbyopia.

Treatment.-In order to correct this optical defect, it is necessary for the patient to wear a pair of convex spectacles of sufficient strength to enable him to see distant objects distinctly, without any effort of the lecomodation. In cases where the hypermetropia is absolute, and the patients are not able to see distinctly at any distance, they can, approximately, by trial, select the glasses that will remedy the low degree of refraction of their eyes. But, in all other cases, it is necessary to paralyse the accomodation, and test with lenses of different strength, in order accurately to ascertain the degree of hypermetropia. When we ascertain this fact, we also know the number of the glasses that we must prescribe for them. The effect of the atropine usually latts about a week, after which the patient can commence wearing neters. Before, however, he use the spectacles that he is to wear
permanently, his accomodation must first be gradually relaxed by th use of weaker lenses. Donders' rule is to prescribe first that gla that will neutralize his manifest hypermetropia, and $\frac{1}{4}$ of his later hypermetropia, and every two or three weeks change them for stronger pair, as he becomes accustomed to their use, until the glasis are reached that we found to be necessary to correct his hypermetr pia. Thus, if a patient las a total amount of hypermetropia equ to $\frac{1}{10}$, and a manifest hypermetropia of $\frac{1}{30}$, his latent hypermetrop ($\frac{1}{10}-\frac{1}{80}=\frac{1}{15}$), would equal $\frac{1}{15}$; one fourth of $\frac{1}{15}$ is $\frac{1}{60}$; this added to $\frac{1}{30}\left(\frac{1}{30}+\frac{1}{60}=\frac{3}{60}=\frac{1}{20}\right)$, equals $\frac{1}{20}$. We would therefo: prescribe, at first, 20 inch convex spectacles, which we would aftel wards change successively for $+18,+16,+14, \& c$., until he has relaxed his accomodation that he can, with ease, wear +10 . will not be until he becomes accustomed to this last pair that all h: symptoms of Asthenopia will disappear.

Strabismus. - Prof Donders was the first to direct attentlon to th fact, that nearly all cases of convergent strabismus arise from th presence of hypermetropia. We know that when both eyes ar directed to a nea: object, they are very much converged, -the opit ases cross at the point to which they are directed. If one eye b covered, and the opposite eye be accommodated for its "near" point the convered eye vill be found to be very decidedly converged toward the nose, -to have. in fact, a temporary convergent squint. This arises from the constant association of the act of accommodating th eye for short distances, with the act of contracting the internal rec muscles. The hypermetropic, however, being obliged to exert th accommodation of their eyes, even when looking at distant objects, i is easy to understand that they would be inclined to contract the internal recti-muscles unduly, so as to increase this pewer of accom modation. This converges the eyes to a point at a nearer distana than the object looked at, and causes one of the eyes to turn inward while the other is fixed upon the object. When, therefore, they wis to see distinctly with one eye, they instinctively turn in the other At first the convergent strabismus is seen occasionally only, andif this stage may be prevented by using the proper spectacles to corree the hypermetrophia. After the squint has existed sometime, if becomes confirmed and cannot be cured without an operation.

If the convergence exceeds three lines, a partial tenotomy, upo cach eye, should be performed, and the effect controlled by a conjune

tival s

 operat
rRE EYE.

gradually relaxed by to prescribe first that glu pia, and $\frac{1}{4}$ of his late: eeks change them for heir use, until the glass, correct his hypermett of hypermetropia equ his latent hypermetrop urth of $\frac{1}{18}$ is $\frac{1}{60}$; thi ${ }^{1}$. We would therefor which we would afte $14, \& c$., until he has: ease, wear + 10.1 is last pair that all hi
direct attention to th bismus arise from th when both eyes at converged,-the opit: rected. If onc eye b for its " near" poin dly converged towart vergent squint. This of accommodating th ting the internal ree obliged to exert th g at distant objects, ined to contract the this pewer of accom it at a nearer distann eyes to turn inward 1, therefore, they wis ely turn in the other asionally only, andis - spectacles to correr existed sometime, i an operation. rtial tenotomy, upo trolled by a conjuns
tival suture, by which means we have the power of regulating our operation, in proportion to the effect we wish to produce.
When Strabismus shows itself in childhood, it should be treated without delay, for, if not corrected, the vision of the "cross-eye" will very icon become impaired.

To get the full henefit of spectacles, in cases of hypermetropia, they should be used both on the street, and at church, as well as when reading or writing,-in fact whenever the eyes are used.

The characteristics of a hypermetropic eye then are :
1st. Parallel rays form a focus behind the retina.
2nd. The "far" point is at an definite distance and negative.
3rd. The eye, in a state of rost, is adjusted for convergent rays.
4th. Convex glasses improve vision.
5th. This affection is usually accompanied by symptoms of Asthenopia and Amblyopin, and frequently by convergent strabismus.

Chapter V.-Presbyopra.

This affection usually develops itself between the ages of 40 and 45. Most persons at this age, although previously enjoying excellent vision, complain that their sight, particularly in the evening, is beginning to fail for near objects, as small print, \&c., although they can see distant objects as well as ever.
In reading they will hold the book or paper at nearly arm's length and perhaps bring the lamp almost between their eyes and the page. Resding in this manner soon fatigues them, and they are obliged frequently to rest,-ol to resort to spectacles.

In childhood, when the vision is normal, the "near" point is from $3 \frac{1}{2}$ to 4 inches from the eye, and the "far" point at an unlimited distance; that is, we can see objects distinctly as near as from $3 \frac{1}{8}$ to 4 inches from the eye, and we can see objects clearly (the size being in proportion to the distance) from that to an indefinite distance. As age advances the "near" point recedes. At the age of 40 the "near" point is about eight inches from the eyes. When tho "near" point recedes to a greater distance than 8 inches, Donders calls it a case of presbyopia; Laurence, however, thinks that it should not be cal!ed presbyopia unless the "near" point is at least 10 inches from the eye.

Presbyopin, then, is not an optical defect of the nature of myopis or hypermetropin, but is simply a lessening of the accommodatira power of the eye.

It is supposed to depend upon, or to be caused by, the crystalins lens becoming hardened as age advances, so that it does not yiel: sufficiently to the contraction of the ciliary muscle.

In a case of pure presbyopia where, for instance, the "near" poir is 12 inches from the eye, vision will remain normal for all point beyond that distance. When the "near" point is 12 inches distan: and the "far" point at an infinite distance, the accommodation only $\frac{1}{12}$. Taking eight inches as the normal "near" point, $\frac{1}{8}$ woul. represent the normal necommodation. Deducting $\frac{1}{12}$ frem $\frac{1}{8}$ gire the degree of presbyopia thus: $\frac{1}{3}-\frac{3}{12}=\frac{1}{24}$. The degree 1 presbyopia in this case would then be $\frac{1}{24}$. This fraction $\frac{1}{2} \frac{1}{}$ alson presents the strength of the glasses necessary to correct the presb: opia, namely 24 inch convex. Practically, we would probab: find that a pair of 30 inch convex would answer better, as ti weakest glass that can bo worn with comfort, is the one that shoul be prescribed. A gain, if a person's "near" point be at 16 inches, L presbyopia ($\frac{1}{8}-\mathbf{1}^{1} \frac{1}{6}=1^{1} \sigma$) will be $\frac{1}{16}$, and a 16 inch convex lens woul enable him to read at 8 inches.
"There can be no question as to the advisability and necessity: affording far-sighted persons the use of spectacles. They should b furnished with them as soon as they are in the slightest degre annoyed or inconvenienced by the presbyopia. Some medical $\mathrm{m} t$ think that presbyopic patients should do without spectacles as lo: as possible, for fear the eye should, even at an early period, get used to them us soon to find them indispensable. This is, howere an error, for if such persons are permitted to work without glase we observe that the presbyopia soon rapidly increases."*

If, however, we call all cases presbyopia, where the "near" piin recedes to a greater distance than eight inches from the eye, it m . follow that ve may have presbyopia in cases of myopia and hype metropin. If a person's fiar point be at 20 inches from the eyel would be called near-sighted and if his near point recedes to inches from the eye, he would ln also far-sighted.

In some pergons, as age advances, the "far" point also recedes

[^4]as to re seldom prebyol reading a pair 0 and as with th for real Thus $\frac{1}{8}$ his hyp

In tl enable usually

The general the pres
he nature of myopis f the accommodatire
ed by, the crystalins hat it does not yieli cle.
ce, the "near" poin normal for all point t is 12 inches distan: e accommodation rear" point, $\frac{1}{8}$ woul" ting $\frac{1}{12}$ frem $\frac{1}{8}$ give F. The degree fraction $\frac{1}{27}$ alson: o correct the presb: we would probab: aswer better, as th: a the one that shou: at be at 16 inches, L h convex lens woul
ility and necessitr les. They should b the slightest degre
Some medical m k ut spectacles as lo: a carly period, get e. This is, bowert vork without glass: reases."*
re the "near" poin from the eye, it π. myopia and hype hes from the eye! point recedes to
point also recedes:
as to render the person hypermetropic ; this form of hypermetropia seldom exceeds $\frac{1}{2 \pi}$. When a person has both hypermetropia and prebyopia, it is necessary for him to use a stronger pair of glasses for reading, \&c., than for ordinary use. If a person for instance, wears a pair of 18 inch convex spectacles to correct a hypermetropia of $\frac{1}{1^{\frac{1}{8}}}$, and as age advances his "near" point recedes to 12 inches, even with the addition of his glasses, it will be necessary for him to wear, for reading, a pair of glasses having a focus of about $10 \frac{1}{2}$ inches. Thus $\frac{1}{8}-\frac{1}{12}=\frac{1}{2} \frac{1}{2}=$ presbyopia, this added to the lens to correct his hypermetropia, ($\frac{1}{18}+\frac{1}{26}=\frac{1}{10} \frac{1}{10}$ nearly) equals $10 \frac{1}{2}$ nearly.

In the very aged, it is necessary to prescribe glasses, that will easble them to read at 5 or 7 inches from the eye, as their vision is usually somewhat impaired.

The following table constructed by Dr. Kitchener may give a general idea of the glasses required at different periods of life when the presbyopia is unaccompanied by hypermetropia or amblyopia.

At 40	ears			focus.	At 70	years,			focus.
" 45	"	30	"	"	" 75	"	10	"	،
" 50	"	24	'	،	" 80	"	9	"	"
". 65	'	20	،	"	- 85	"	8	"	"
" 58	"	18	"	"	" 90	"	7	،	"
- 60	"	16	"	"	" 100	"	6	،	"
65	"	14	"	"					

Prof. Donders thinks that when there is no hypermetropia present we should generally advise those glasses to be worn that will enable the person to read distinctly No. I (smallest) test type at a distance of 12 inches.
There is an optical defect of the eye that is occasionally met with called astigmatism (from a and $\sigma \tau i \gamma \mu a)$ in which horizontal and vertical lines are not brought to a focus at the same distance behind the crystaline lens. It is relieved by glasses specially ground for each caise, these glasses are cylindrical. I have seen but one case of astigmatism.

A very comprehensive article on this subject appears in the Medical Times and Gazette, Nov., 1864, from the pen of \dot{J}. Zachariah Laurence, M.B., of London.

The paralysis of the accommodation of the eye I have already reierred to in a case on page 14.

SPECIMENS OF JÄGER'S TEST TYPES.

 No. I.-Brilliant, omitted for want of type.No. I1.-Pearl.

A person with normal vision sbould be able to read No. II at any distanee from aight foches to two feti th
semperance was virtue. They wrought with cheerf
of idiecess and plesure. They kept up the Chriatmas earol, sent tebour; but obrerved festivali as latem pancaks on 8 hrove-tide, shewed their wit on the Arst of April, sod religiowe knots on Valentine moralan,

No. HII.-Nonpareil.
Being apprised of our approach, the whole neighbourhood came out to meet their ministe drcssed in their fine cloths, and preceded by a pipe and tabor; a feast also was provided fn our reception, at which we eat checrfully down ; and what the conversation wanted iu wi:
No. VI.-Bourgeois.
was made up in laughter. Our little habitation was situated at the fo: of a sloping hill, sheltered with a beautiful underwood behind, and prat

No. V111.-Small Pica.
ling river before; on one side a meadow, on the other a green My farm consisted of about twenty acres of excellent land
No. X.-Pica.
having given a hundred pounds for my predecessor': good will. Nothing could exceed the ceatness of $m!$ No. XII.-Great Primer.
little enclosure; the elms and hedge. rows appearing with an inexpressible

No. XVI.-2-line Great Primer. and was covered with

Cannon. No. XX.-Sncllen.

THE EYE.

EST TYPES.

ant of type.
nce from eight lachee to two feel bn
ur $;$ but observed feetivals es intem love hnots on Valeatine moralig, usily cracked nuts on alehmelminn
me out to meat their minisle ; a feast also was provided te conversation wanted in wi
was situated at the fo: wood behind, and prait
n the other a green of excellent land
my predecessor: deatness of mi

and hedge-

 expressible
d with

 ich4-line Roman. No. $X X X$.-Snellen.

CHARLES POTTER,

\square
PIICIA IN,
20, King Street East, Toroato, ESTABLISHED, 19 Speotacles, Convex and
scopes, Telencopes, Concave Lenses, Opara Classer, Micn Manufacturer of Dr. Rosebrugh's Dbmonstrating Optimimotcong.
R. A. WOOD \& BRO., DISPENSING CHEMISTS doc., de:,
 TORONTO.

DR. ROSEBRUGH'S SOLUTION OF ATROPINE, AND OALABAR BEA
PAPER, SUPPLIED TO THE PROFESSION.

W. C. CHEWETT \& CO.,

Lithographers, Bookbinders, \&c., \&c.

ALL THE STANDARD WORKS AND TEXT BOOKS IN LAW AND MEDICINE, KEPT IN STOCK.

Books imported to Order, at Lowest Rates. Agenty for New Sydenham Society, and Braithwaite's Retrospect.

TTER,

Toronto, ESTABLISHED,

Opera Classez, Mion

 alwa, 1 0:1 hand.'Hacmosco:s.

BRO,

 EMISTS
IR T0 50.

IND CALABAR BEA ESSION.
co.,
gipintres \&c., \&c.

OKS IN LAW AND est Rates.

[^0]: 1st. The papil contracts; 2nd. The pupillary edge of the iris moves forward; srd. The peripheral porion of the iris moves backwards; 4th. The anterior surface of the lens becomes more convex (arched); 6th. The lens does not change its pot: tion; 6th. The cornea retains the same degree of curvature.

[^1]: - From Donders' system of classification.

[^2]: - Hypermetropia can easily be diagnosed with the ophthalmoscope.

[^3]: thalmoscope.

[^4]: -J. Soclberg Wella.

