IMAGE EVALUATION TEST TARGET (MT-3)

Photographic
Sciences
23 WEST MAIN STREET
WEESTER, N.Y. 14580

Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur
Covers daniaged/
Couverture endommagée
Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée
Cover title missing/
Le titre de couverture manque
Coloured maps/
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/cu illustrations en couleur
Bound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de le distortion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments:/
Commentaires supplémentaires:

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-etre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleur
Pages damaged/
Pages endommagées
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées
Pages detached/
Pages détachées

Showthrough/
Transpaicence
Quality of print varies/
Qualité inégale de l'impressionIncludes supplementary material/
Comprend du matériel supplementaire

Only edition available/
Seule édition disponible
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/ Les pages totalement ou partiallement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

Library

Indian and Northern Affairs
The images appearing here are the best quality possible considering the condition and legibility of the original copy and In keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated Impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following dlegrams illustrate the method:

L'exemplaire fiimé fut reproduit grâce à la générosité de:

Bibliothèque
Affaires indiennes at du Nord
Les images suivantes ont été reproduites evec le plus grand soin, compte tenu de le condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmaye.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la derniére page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la première page qui comporte une empreinte d'impression ou d'illustration et en tarminant par la derniàre page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra sur le dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, plenches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite, et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivents Illustrent la méthode.

LIST OF ILLUSTRATIONS.

WEIGHING ANCHOR OFF THE MAPLIN SANDS, NORE, JULY 15, 1865:Vignecte on Title-page.
THE REELS OF GUTTA-PERCHA-COVERED CONDUCTING-WIRE CONVEYED into tanks at the works at greenwich 14
VALENTIA IN 18ジ̃-1858 AT TIIE TIME OF THE LAYING OF THE FORMER CABLE 18
TRINITY BAY, NEWFOUNDLAND: EXTERIOR VIEW OF TELEGRAPH HOUSE IN 1856-1858 26
TELEGRAPH HOLSE, TRINITY BAY, NEWFOUNDLAND : INTERIOR OF MESS-ROOM, 185828
H.M.S. AGAMEMNON LAYING THE ATLANTIC TELEGRAPH CABLE IN 1858:
A WHALE CROSSES THE LINE 28
COILING TAE CABLE IN THE LARGE TANKS AT THE WORKS AT GREEN.WICH36-7
THE CABLE PASSED FROM TIIE WORKS INTO THE HULK LYING IN TIIETHAMES AT GREENWICH38

LIST OF 【LLUSTRATIONS

PAGETIIE OLD FRIGATE WITI HER FREIGIIT OF CABLE ALONGSIDE THE GREATEISTERN AT SHEERNESS39
PAYING-OUT MACHINERY 40
COILING THE CABLE IN THE AFTER-TANK ON BOARD THE GREAT EASTERN AT SHEERNESS :' VISIT OF II.R.H. THE PRINCE OF WALES ON MAY !4 42
FOLLILMMERUM BAY, VALENTIA, LOOKING SEAWARDS FROM THE POINT AT WIIICII THE CADLE REACIIES TIIE SHORE 44
THE CLIFFS, FOLLHEMMERCM BAY: POINT OF THE LANDING OF THE SHOIE END OF C.IBLE, JULY 22 41
FOILHLMMERCM BAY, VALENTA, FROM CROMWELL FORT : THE CARO- LINE AND BOATS LAYING THE E.ARTH-WIRE, JULY 21 48
THE GREAT EASTERN UNDER WEIGI, JULY 23 : ESCORT AND OTHER SHIPS INTRODLCED BEING THE TERIIBLE, TIIE SPIHNX, THE HAWK, AND THE CAROLINE 52
CHART, SHOWING THE TRACK OF THE STEAM-SHIP GREAT EASTERN ON HER VoYaGE FloM VALENTIA TO NEWFOUNDLAND $5 ;$
SPLICING THE CABLE (AFTER THE FIRST ACCIDENT) ON BOARD THE GRE.IT EASTERN, JULY 25 54
VIEW (LOOKING AFT) FROM THE PORT PADDLE-BOX OF GREAT EASTEIRN : SHOWING THE TROUGH FOR CABLE, ETC. 63
THE FORGE ON DECK ; NIGHT OF AUGCST 0: PREPARING THE IRON PLATING FOR CAPSTAN 68
LIST OF ILLUSTRATIONS.
sEARCHING FOR FAULT AFTER RECoVERY OF THE CABLE FROM THE BED OF THE ATLANTIC, JULY 31 71
IN THE BOWS, AUGUST 2: THE CABLE BROKEN IND LOST: PREPARING TO GRAPPLE 77
Getting out one of the large buoys for launching, august 2 79
general view of port magee, de., from the heights below cora beg: the caroline laying the shore end of the cable, JULY 22 $81)$
INTERIOR OF ONE OF TIIE TANKS ON BOARD THE GREAT EASTERN:CADLE PASSING OUT$8 i j$LaCNCHING BUOY ON AUGUST 8, iN Lat. $51^{\circ} 25^{\prime} 30^{\prime \prime}$; LONG. $30^{\circ} 56^{\prime}$(Marking spot where cable had been grappled)88FORWARD DECK CLEARED FOR THE FINAL ATtEMPT AT GRAPPLING,ACGUST 1193

THE

ATLANTIC TELEGRAPH.

I sham not detain the realers of this brief narrative with any sketch of the progress of electrical science. There itre text-books, cycloprediats, imel treatises full of information concerning the men who worked in early days, and recording the labours of those who still toil on, investigating the laws and developing the applications of the subtle ageney which has long attractel the attention of the most arrute, ingenious, aut sucecssful students of natural philosophy. For the last two centuries the greater number of those whose names are known in science have made electrical experiments a filvourite pursuit, or turned to them as an agreeable recreation from severer studies. The rapidity with which electricity travels for considerable distances through insulated conductors soon suggested its use as a means of transmitting intelligence; but the ligh tension of the currents from frietion marchines, and the difficulty of insulating the comeluctors, were practioal ohstarles to the employment of the devices, some of them ingenious, recommended for that purpose from yar to year. Otto Von Guericke, and his globe of sulphur; Grey, with his glass tube and silken cords; and Frunklin, with his kite, were, however, the precursers of the philosophers who hatve done much, and whose stuecessors may get do much more, for the wordd, It is not easy to decide whether it is the man who gives al new idea to the work, or he who embodies that idea in a form and turns it into a fact, who is deserving of the credit to be assigned to any invention. A vague expression of belief that a certain eme may be attained at a future period by means then unknown does not constitute a discovery, and does not entitle the person who utters it, verbally or in writing, to the honour which is due to him who indicates

Merifically the way of achiesing the ohject, or whe actually aromplishes it by metherls he has rither invented or applied. Thu Marguis of Woresester errtainly did mot invent the stram-engine ; nether did Watson, Salsa, Summering, or hombles, or any other of the many early experimentalists, diseover denetrie telography. But there is a degree of credit due to those who, contending with imperfeet materials and want if knowledge, persist in working out their idens, and sureed in ressuing them from the region of chameras. The inventions of one remder eapable of realisation the ideas of another, which but for then had remained drams and visions. The introduction of a novel product into "ommeree, of the chaner diseovery of some property in a "ommon material, may draw a projent out of the limbo of impracticalilities, A surgestion at one period may be mome valuab than an invention at another, and adaptations may In more useful than diseoveries. Indeed, when the testimmen on which men's mputations, as finders or makers, rest, is eritically examined, a suspicion is often generated that there have bern many Vespuedis in the word who have given mames to phaces they never fomod, and taken or received eredit for what they never did.

If any person takes an interest in detemining who was the inventor of electrie telegraphy, he slould study the works und mark the improvements of the natural philosophers of the last as well us of the present, century, and he can then mrive at some result withont exciting natiomal jealousy, or injuring individual suseeptihilities. Humbult assigns the credit of making the first clectrie: telegraph to Salva, who comstructed a line 26 miles long, from Madrid to Aramjue\%, in 1793. Russia chams the homour of having invented aerial telegraphic lines, because Baron Son Shailling proposed a line for the Emperor from St. Petersburg to Peterhoff, Delow Cronstadt, in 14:34, aul was laughel at by seientifie Museovites for his pains. But the Baron errtainly did transmit messiges along wires supurted by pokes in the airs. The Count du Moneel, in his recent "Traité de Télégraphie Eleetrique", gives to Mr. Whentstone the palm as the original inventor of sulmarine Cables, to which award, no doubt, there will be some dissent. Mr. Whatstone, however, as early as 1840 , brought lofore the House of Commons the project of a calke, to be laid between bover aud Cubias, though he does not seem to lave had at the time any decided views as to the mode in which insulation was to be oltained. In 1843, Professor Morse, detailing the results of some exjeriments with an electric magnetic telegraph between Washington and Baltimore, in a letter to the Secretary of the United States, wrote: "The practical inference from this law is that a telegraphic communication on the electric-magnetio plan, may with certainty be estublished across the Atlantic Ocem. Startling as this may seem
now, 1 num "omfident the time will rome when thix project will be wenlisel." Pat for the experiments and diswoveries of Ocrsted, Sturgem, Ampere, Davy, Henry, mad Farnday, and a long list of others, such suggentions would have remmined ns little likely to be realised as the Bishop, of Chandatl"s notions of a flying-machine, or the crude theories of the alchemists. He who first produces a prantival resultsomothing which, however imperfect, gives a result to be seen and felt, and uppreeliated by the senses-is the true mourins-the maker and inventor, whom the word should recognise, no matter low mulla may be done by others to improve his work, surh of those improvers being, after his kind, deserving of recognition for what he does. A yem Jefore Profensor Monse wrote the letter to Mr. Spencer, he took some steps to show that which he prophesied wats practicable. In the nutum of the year 1842 lhe stretched a submane mable from Castle Garden to Govemoms lsland in the harmour of New York, demmentrated to the American Institute the possibility of efferting rhetric communication throug the scon, and submitted that telegruphic commmication might with rertianty be astahlished neross the Athantic. later in the sume year he sent a current aroms the cimal at Waslington. But that was not the first current tramsmited muler water, for as early an 1×39, Sir W. Oshanglmessy, the late Superintendent of Electric Telegriphs in Iudia, hauled an insulated wire neross the Honghly at Caleutta, and produced clectrical phenomema at the other side of the river: In 1846, Col. Colt, the patentee of the revolver, mul Mr. Rolinson, of New York, laid a wire across the river from New Yook to Brooklyn, and from Long Istand to Concy Istimed. In 1849, Mr: Walker sint messages to shore through two miles of insulated wire from a battery on hoard it steamer ofl' Folkestone.

It was in 18.51 that an elvetrice rofle was attually laid in the open sea, and worked suceessfully ; and the wire whieh then comnerted Dover with Calais was beyoud question the first important line of submarine telegraph ever attempted. In the year 1850, Mr. Brett oltained a concession from the Fiench Government for effecting this oljeet,-an olject regarded at the time as one purely chimericul, and deeried liy the press ats a gigmutic swindle. 'The calle which was made for the purpose consisted of a solid eopper wire, covered with gutta perela. When tested by Mr. Woollaston, it was fouml to be so imperfect from air holes in the gutta-perclit, that the water fomend its way to the copper wire,-an imperfection which was however shortly repaired. This cable was manufactured at the Gutta Pereha works, on the Wharf Roald, City Road, under the superintendence of the late Mr. Samuel Statham; was then coiled on a drum, and conveyed by steamtug to Dover, and in the year 1850 was payed out from Dover to Calais. The landing-place in France was Cipre Grisnez, from which place a few messages
passed, so as to comply with the terms of the concesssion and test the areuracy of the principle. The communication thus established hetween the Continent and England was, after in few hours, abruptly stopped. A diligent fisherman, plying his vucation, took up part of the cable in his trawl, and cut off a piece, which he bore in trimmph to Bonlogne, where he exhilited it as a specimen of a rare seaweed, with its centre filled with gold. It is helieved that this "peseatore ignobile" returned again and again to search for further specimens of this treasure of the deep: it is, at all events, perfectly certain that he sucececled in destroying the sulmarine cable.

This aceident caused the attention of scientific men to be direeted to the discovery of some mode of preserving submarine rables from similar casualties, and a suggestion was made by Mr. Küper, who was engaged in the manufacture of wire ropes, to Mr. Woollaston and to Mr. T. R. Crampton, that the wire insulated with gutta-percha should form a core or centre to a wire rope, so as to give protection to it during the process of paying out and laying down, as well as to guard it from the anchors of vessels and the rocks, and to secure a perfect electrical continuity.

Mr. Crampton, who had already aceepted the eontract for laying the eable between England and Franee, and had given up much of his time to the study of the subject, adopted this iden, and in 1851 he and severol gentlemen associated for the purpose laid the cable between Dover and Calais, where it has sinee remained in perfect order, constituting the great channel of electrical communication between England and the Continent. It was made by Wilkins \& Weatherly, Newall \& C'o., Küper \& Co., and Mr. Crampton. The exertions of the last-named eminent engineer in laying the first calle under water, and his devotion to an olject towards which he largely contributed in moncy, are only known to a few, and have never been adequately acknowledged.

The success of that form of cable laving been thas completely established, several lines of a similar character were laid during the following years between England and Ireland and parts of the Continent: one, 18 miles long, across the Great Belt, made by Newall \& Co. ; one from Dover to Ostend, by the same makers and by Küper \& Co.; one from Donaghadee to Portpatrick, by Newall \& Co. ; one from Holyhead to Howth; and one from Orfordness to the Hague.

The superiority of a line with wire-rope cover to other descriptions of cable was illustrated in 1853. At that period the Electric and International Telegraph Company determined upon laying down four wires between England and the Continent, but they rejected the heavy cable, and :depted the suggestion of their ent and ying his he bore eaweed, molile " asure of ying the asualties, nufacture the wire pe, so as down, as , secure a
the cable the study associated has since communiVeatherly, ast-named ion to an to a few, stablished, s between ng, across d, by the matrick, by ess to the
engineer to use form separate cables of light wire. The cost of maintaining thesc light cables from injury ly anchors, \&re, was so great that they were picked up, and heary cables of great strength were substituted, which have given uo trouble or anxicty, and have always been in good orler.

The Otd World hat twelve lines of summane cable laid ere the T'nited States turned their attention to the nses of such forms of telegraph. Italy hat heen comected with Corsia by a line 110 milus longe, and Denmark had joined one of bur little islands to the other, ere the Great Republie gave a thonght to the matter. But there were excuses for such indifference. Thw Telegraphie system, to whieh Morse, Bain, House, and others, had given suel development, although the first line was not constructed till 1844, extended rapidly all over the vast extent of the Athantic and Gulf Statcs. The preple were on the same eontinent, the land was all their own, their greatest rivers could be traversed by wires ; and so it was that, whilst Mr. Morse was engaged in proterting his patents, and the Americans, self-ontainel, were not looking heyoul the limits of their shores, a British North American Provinee took the first step which was mate at the other side of the Atlantic to lay down a submarine calle. In $18.51-\therefore$ a project was started in Newfomdland, to run a lind of steamers between Galway amb St. John's in comnection with a telegraph to Cape Ray, where a summane Cable was to bre laid to Cape Breton, and thenee the news wats to be earried hy means of another calbe from New Brunswick to Prince Elwarl's Island. The Roman Getholir Bishop of Newfomelland is stated to have heen the original proposer of a seheme for comeeting the island with the United States, hat the credit of actually laying down the first submane calle at the wher side of the Athantie belongs wo Mr. S. N. Gisborme, an lenglish engineer. He hat been previonsly engaged in the telegraph department at Montreal, and had some knowledge of the subjert, but he happened to be in London at the time of Brett's suceess. On his return to America he applied himself to get up a Company for the purpose of facilitating telegraphic commmication letween Europe and the United States. After murh diffieulty the Company was formed, and an Act was passed by the Legishature of Newfoundland, in 18.52, eonferring the important privileges upon it, in event of the eompletion of the project in Newfomulland, whirh are now possessed by the Athantic Telegraph Company. Mr. Gisbome was superintendent and engineer of the Company, and he set to work with energy to eonstruct a road from St. John's to Cape hay, over a harren and resourecless tract of 400 miles, and made a survey of the coast line, during which he was exposed to great hardships. He suceecded at last in laying an insulated eable, made by Newall \& C'o., from New Brunswick to Prinee Edward's Ishmel arross the Straits of Northumberlamd, 11 miles long, in
2.2 'athoms of water ; but was not surcessful in a similar attempt to connect Newfoundland with Ceipe Breton. Meantime the Company became involved in pecuniary difficulties, and Mr. Gishorne, early in 1854, on the suspension of the works, proceeded to New York, where he hoped to find money to enable him to carry out the telegraphic scheme among the keen speculators and large-pursed merchants. Through an accidental conversation at the hotel in which he was staying, he obtained an interview with Mr. Cyrus Field. He laid his plans before that gentleman, who had no desire to resume an active career, having just returned from travelling in South Ameriea, with the intention of enjoying the fortune his industry and sagacity had secured ere he had arrived at tho middle term of life. But Mr. Fiehd listened to Mr. Gishorne with attention, and then began to think over the project-"To lay these submarine calles so as to comect Newfomdland with Maine ?-Good. To run a line of steamers from St. John's to Galway ?-Certainly. It would shorten the time of receiving news in New York from Europe four or five days." And so the brain worked and thought. Then suddenly, "But if a cable ean be laid in the bed of these seas-if the Great Atlantic itself could be spamed?" Here wass an idea indeed. Deep, and broad seas had been traversed in Europe, but here was one of the great oceans of the world, of depth lut faintly guessed at, and of nigh ${ }^{2000}$ miles span from shore to shore! Would it be within the limits of human resources to let down a line into the watery void, and to comnect the Old World with the New? What a glorious thought! Was it a vision, or was it one of those inspirations from which originate grand enterprises and results which change the destimies of the world? Mr. Field terminated his reflections that night by an eminently practical measure. Ere he retired to rest he sat down and wrote two letters,-one to Lieut. Maury, U.S.N., to ask his opinion coneerning the possibility of laying down a cable in the bottom of the Atlantic : the other to Professor Morse, to inguire whether he thought it paretirable to send an cleetric current through a wire between Europe and America. Lieut. Maury, in answering in the affimative, wrote, "Curously enough, when your letter came I was looking over my letter to the Secretary of the Navy on that very sulject." And, in fiect, on the 22nd Felnuary, 1854, Lient. Maury made a. long communication to Mr. Doblin, Sccretary, United States Navy, from the Observatory, Washington, respecting a series of decp-sea soundings made by Lieut. Berryman, U.S.N., brig Dolphin, from Newfomdland to Helam, in connection with researches on the winds and currents, carried on for the National Observatory. It is obvious that Lieut. Maury, as well as many others probably, lad thought of the same idea as Mr. Fiell. He says, "The result is highly interesting, in so far as the bottom of the sea is concerned, upou the n of the able him e-pursed he was is plans , having cujoying I at the ion, and so as to ers from ng news ked and scas-if

Deep it oceans ran from wn a line glorious niginate Ir. Field Ere he S.N., to ttom of it pracmerica. h, when on that made a rom the alle by nd, in or the others esult is fon the
fluestion of a submarine telegraph arross the Atlantic ;" and he goes on to make it the sullject of a special report, in which oecurs the following passages ;-
"This line of deep-sea soundings seems to be deeisive of the question as to the practicability of a Submarine Telegraph between the two continents, in so firl as the hottom of the deep sea is concerned. From Newfoundland to Ireland, the distance between the nearest points is about 1,600 miles ; * and the bottom of the sea between the two pares is a phatean, which seems to have been phaed there esprecially for the purpose of holding the wires of a Sulmarine Tehegraph, and of keeping them out of harms way. It is neither too deep nor too shallow; yet it is so deep that the wires, lant onere lambed, will remain for ever leyomd the reach of vessels' anchors, icelergs, and drifts of any kind, and so shallow that the wires may be readily lodged upon the lottom. The depth of this phatem is quite regular, gradually inereasing from the shores of Newfoundland to the depth of from 1,500 to 2000 fathoms as you approach the other side. The distance between Ireland and Cape St. Charlis, or Cape St. Lewis, in Labrador, is somewhat less than the distance from any point of Ireland to the nearest point of Newfomilland. But whether it would be better to leal the wires from Newfoundland or Labrudor is not now the question ; nor do I pretend to consider the question as to the possilility of finding a time calm enough, the sea smooth enough, a wire long enough, a ship, hig enough, to lay a coil of wire 1,600 miles in length; though I have no fear lut that the enterprise and ingenuity of the age, whenever called on with these prollems, will be ready with a satisfactory and practical solution of them.
"I simply address myself at this time to the question in so far as the bottom of the sea is concemed, and ans far as that the greatest practical diffienties will, I "prelieme, he found after reaching soundings at either end of the line, and not in the deep seal. ** Therefore, so far as the bottom of the deep sea between Newfoundland, or the North C'ape, at the mouth of the St. Lawrence, and Irehud, is concerned, the practicalinity of a Sulmarine 'Telegraph across the Atlantic is provel.,"

Professor Morse, in 1843, iudinated his conviction that a magnetic current could be conveyed across the Atlantic, and his reply to Mr. Field was now given with increased confidence to the same effect. Thus encouraged, Mr. Fied took measures to form a Company to purchase the rights of the Newfomdand Company, and to comect Newfoundland with lreland by means of a sulmarine telegraph across the Atlantic. He entered into an agreement with Mr.

[^0]Gishorme for the purchate of the privileges of the Company for 80001 ., muler certain ronditions. Then he put down the names of ten of the principal capitalists in New York, and proceeded to mfold his project to cach in succession : and having secured the alhesion of Mr: Cooper, Mr. Taylor, Mr. Roherts, Mr. White, and the allviee of his brother, Mr. D. Fiell, be called a mecting of these gentlemen at his house on \bar{t} th March. Similar meetings took phace at his residence on 8 th, 9 th, and 10th, and after full discussion and comsideration it was resolved to form "The New York, Newfoundland, aml London Telegraph Company," of whieh Peter Comper was President; Moses Thylor, Treasurer ; C'grus Field, C. White, M. O. Rolnerts, Directors ; and D. D. Fiedl, Comsel. Mr. C. Fidel, his brother, and Mr. White were commissioned to proceed to Newfomadiand, to obtain from the Legislature an act of incorpmation, and set out for that purpose on Marel 15th. On their anval at St. Joln's, the Gevemor convoked the Executive Comeril. Ite also sent a speciat message to the Legislature, then in session, recommending them to pass an act of incorporation, with a guaranter of interest on the Compamys bondes to the amome of 50,0007 ., and to make them a grant of fifty syume miles of land on the islime of Newfomulame, comelitional on the completion of the Telegruph.

After some little delay; the legislature, with one alverse member only; granted the valuable privileges to the Company which were sulsequently transfirreel to the Atlantic Telegrath Company. They constitute, in fiet, it monopoly of telegraphie rights in Newfoundlanel, the value of which was enhaneed afterwards ly similar concessions from the state of Mane, Nova Scotia, Prince Ehwarl's Island ; and liberal canconagement from Canadit. There is much to he said against concessions, and monopolies, and patents, on abstract groumls; but it is fuite clear that in certain rircumstances men will not venture money and spend time, without the prosjeet of the ulterior advantages surh protertion is caleulated to ensure. The Govermment has, however, informed Colonial and Provincial Legislatures that in future Her Majesty will be advised not to give her ratification to the creation of similar monopolies. By their chartered rights the new (ompany obtainel the exclusive privilege for fifty yats of landing catbes on Newfoundlam and Labrator, which embraces a coast extenting southwardly to Prince Edwards Island, Cape Breton, Nova Sontia, the State of Maine, and their respective dependencies; and westwardly to the very entrance of Hudsons Staits. The Company also secured a grant of fifty square miles of lam on the completion of Telegraph to Cape Breton ; a similar concession of additional fifty square miles when the Cable shall have been laid between Ireland and Newfomdland : a guarante of interest for

ler certain

 pitalists in med having te, and thir men at his n 8th, 9th, d to form of which White, Il. rother, antl nfrom the Tarch 15 th. uncil. He mmending 1 the Comifty squme apletion ofnber only; ntly transmonopoly enhameed tia, Priner s much to grounts; ot venture tages such informel oc advised
By their c for fifty mbraces a ton, Nova and west;o secured h to Cape Cable shall uterest for
twenty years at 5 per cent. on 50,0007 . ; a grant of 50001 . in moncy towards louilding a road along the line of the Telegraph; and the remission of duties on the importation of all wires and mac. crials for the use of the Company.

The Company also obtained from the Legislature of Prince Edward's Island, in May, 1854, the exelusive privilege for fifty years of landing eables on the ec ast ; a free grant of one thousand aeres of land ; and a grant of 3001 . currency per anmum for ten years.

From Canala the Company oltained an Aet authorising the building of telegraph lines throughout the Provinces, accompanied hy the remission of duties on all wires and materials imported for the use of the Company.

Nova Scotia, in 1859, gave the Company a grant of exclusive privilege, for twenty-five years, of lauding telegraphic cables from Europe on the shores of the Province.

The State of Maine accorded the Company a grant of the exclusive privilege, for twenty-five years, of landing Emropean telegraph cables on the seaboard.

From Great Britain eventually the Company obtained an ammal subsidy of $14,000 l$. sterling until the net profits of the Company should reach 6 per cent. per annum, on the whole eapital of $350,000 l$. sterling, the grant to be then reducel to 10,0001 . sterling per ammum, for a period of twenty-five years; two of the largest steamships in the navy to lay the calle, and two steamers to aid them; and a careful examination of the soundings by vessels of the Royal Navy.

From the United States the Company obtained an ammal subsidy of $\$ 70,000$ until the net profits yielded 6 per cent. per anmm, then to be reduced to $\$ 50,000$ per annum, for a period of twenty-five years, subject to termimation of contract ly Congress after ten years, on giving one year's notice. The United States government also granted the steamship Aretic to make soundings, and steam-ships Niagara and Susquehauna to assist in laying the cable. A government steamer was also ordered to make further soundings on the coast of Newfomdland.'

Long ere the Company had been placed in possession of such beneficial rights, and obtained such ia large amount of favour, Mr. Field, who threw every energy of body and mind into the work, and was entrusted by his brother directors with the general management of aftairs, proceeded to carry out the engagements the Company had entered into with the local legislatures. It has been said that the greatest boons conferred on makind have been the to men of one idea. If the laying of the Athantic Cable be among these bencfits, its consummation may certainly be attributed to the man who, having many ideas, devoted himself to work out one idea with a gentle force and a patient vigour which converted opposition and overcume indifference. Mr. Field may be likened either to the
core, or to the external protection, of the Cable itself. At times he has been its active life ; again he has been its iron-bound guardian. Let who will claim the merit of first having said the Atlautic Cahle was possible, to Mr. Fiell is che the inalienable credit of having made it possible, and of giving to an abortive conreption all the attributes of healthy existener.

The first step in the great enterprise, now fairly inaugurated, was the connection of St. John's with the telegraphic lines already in operation in Canada and the United States.

Mr. Field was despatched to England, as there were no firms established for the manufieture of submarine calles in the United States, to order the neeessary work to be done, and to raise money. He previonsly ordered specimens of eable to be made, so that when he landed in England they were ready for his inspection ; and soon after his arival he entered into a contract with Messss. Kilper \& ('o. (subsequently Glass, Eliot, \& Co.) for a cable to le laid across the Gulf of St. Lawrence. He held interviews with eminent engineers and clectricians, among whom were Mr. Brunel, Mr. (now Sir C.) Bright, Mr. Brett, aud Mr. Whitehouse, respecting his larger project, which led to extended and valuable experiments. The cable for Newfoundland was formed in three strands, and had three conducting wires; and Mr. Fied undertook to lay it, under the direction of Mr. Canning. In August, 1855, the first attempt was made ; but off Cape Ray at violent gale arose, and it was deemed necessary by the master of the vessel to cut the cable. This disappointment was not in the least a discouragement. Another contract was made by Mr. Field with Messrs. Küper \& Co. to make and lay a cable at their own risk, which was executed by Mr. Canning in the Propontis the following year. The station is at Point-an-Basque, near the western extremity of Newfoundland, and the telegraph rums across the island to Trinity Bay.
'... 1.2 opportunities for scientific experiments afforded by the manufacture of these rables were not neglectel. The possibility of tromsmitting signals under water without fatal loss of power from the increased length of eircuit was the first fact determined. The attention of the experimentalists was then directed to aseertain whether, having regard to existing theories, it would be possible to carry even a single conductor across the Atlantic without the aid of a cable so ponderous and so costly as to render it useless in a commercial point of view. A series of direct experiments were it once undertaken, which resulted in the establishment of the fullowing facts:-first, that retardation of movement, in consequence of increasing distance, did not oecur at a rate which could serionsly affect a cable across the Atlantic ; secondly, that increased dimensions in insulated marine conductors
as leen its claim the is clue the ortive conconnection la and the hished for e neerssary ins of cable his inspecssiss. Kiper s the Gulf slectricians, ;, and Mr. al valuable Is, and had lirection of Cape Ray he vessel to uragement. ग. to make lanning in , near the e island to
ure of these nder water c first fact o ascertain rry even a lerous and s of direct ent of the of increasable across conductors
augmented the difficulties in oltaining velocity, so that bulk in a cable woukd not he requisite ; and, thirdly, that a velocity and facility which would satisfy all mere commercial and financial requirements in a line crossing the Athantic, might be attained in the largest circuits. The next step was to actually make signals through 2000 miles of wire. This was accomplished through the kindness of the directors of the English and lrish Magnetic Company, who placed at the disposal of the experimentalists 5000 miles of under-ground wire. On the 9 th of October, 1856, in the quiet of the night time, the experiment was tried suceessfully. Signals were distinctly and satisfactorily telegrophed through 2000 miles of wire, at the rate of 210,241 , and 270 per minute.

There was still a matter of the last imprortance to be determined. Was the state of the bed of the Atlantic really such as to warrunt the conclusion that a wire 2000 miles long could be deposited and remain there without injury?

Mr. Field, in order to ascertain this fact, obtained from the government of America the assistance of Lient. Berryman, U.S.N., in the steam-ship Aretic, who succected, in July, 1856, in taking soundings accross the λ thantic at distances varying from 30 to 50 miles, and, ly means of scoops, or quills, bringing up specimens of the bottom, which, upon microscopic examination, proved to be composed of fine shells and simed.

As capital was needed for the exceution of the enterprise which the confidence of moneyed men in the United States did not induce them to supply, and as it was desirable to enlist the support of the capitalists of Great Britain, Mr. Field was now authorised to form a company, with branches in both comutries. Having secured the services of Mr. Brett, Mr. (now Sir C.) Bright, Mr. Woolhouse, and others, on the 1st of November, 1856, as Viee-President of the New York, Newfoundland, and London Telegraph Company, he issucd an claborate, ible, and argumentative cirenlar in landon, headed, "Atlantic Telegrallh," and made a tour through the great towns, addressing meetings in support of the project.

On the 6th of November, 1856, the prospectus was issued, with a nominal capital of 350,0001 ., represented by 350 shares of $1000 l$. cacl, and within one month the entire of the calital hatd been subscribed for; and the first instalment of $70,000 \mathrm{l}$. piad up.

One hundred and six shares were taken in London, eight-cight in the United States, cighty-six in Liverpool, thirty-seven in Glasgow, and the remainder in other parts of Englaul. Mr. Field stood as subscriber of 58,000l, and represented all America.

But it was not only from the public of Great Britain the project met encouragement. Ere the new company wis formed, Mr. Field (13th September,
1055) addressed Lord Clarendon, requesting aid, and protection and privileges, and on the 20 th November received a reply from the Secretary to the Treasury, engaging to furnish slips for soundings, and to consider favourably any request for help in laying the Cable, to pay 14,0000 . (4 per cent. on capital) as remuncration for Government messages, till the net profits were 6 per cent., when the payment was to become 10,000 l. for twenty-five years, and the Royal assent was given to the Aet of lncorporation of the Company July 27 th, 1857.

Mr. Firld received far more encouragement in Great Britain, in Parliament and out of it, tham he did at home. His bill was nearly rejeeted in the United States Senate, and it is stated only twenty-seven shares of the first stock were at first sulbscribed for in the States. On the motion of Mr. Srward, a resolution was passed in the Senate, United States, on the $2: 3 r$ rd December, in compliance with which the Presilent transmitted a copy of an aplication from the New York Ottice of the New York, Newfoundland, and London Telegraph Company, dited Deecmber 15 th, in which the Directors set forth "their earnest desire to secure for the United States Govermment erpual privileges with those stipulated for by the British Government in a work prosecuted thus far with Americim capital," and then recounted the terms agreed to by the Lords of the Treasury. On January 9th, 18.57, Mr. Seward introduced a bill in the Senate to give and reecive precisely the same privileges on the part of the United States Govermment. It wis violently opposed, was only carried ly one vote, and was not approved till March 3rd following.

The money lxing now forthcoming, the Provisional Directors of the Company proceeded to order the Atlautic Cable. Mr. Field was anxious that the order should he given to the firm which had manufietured the St. Lawrene (able, but the Board thought it would be better to divide the contriact, and on the 6th December, 1856, they entered upon agreements with the Guttia Percha Company for the supply of 2,500 miles of core, consisting of copler wire, with a triple covering of insulating substance, at 40% per mile; and also with Messis. Glass, Elliot, \& Co., of East Greenwich, and Messrs. Newall \& Co., of Birkenhead, respectively, for the suply from cach of $1,2.50$ miles of the completed Cable for 62,000l. Within six months from that day, nimely, on the 6th of July, 1857, the entire Cable was completed.

The poliey of dividing the contrict for the manulacture of the Galle was questioned at the time. When one portion of the Cable was to be made at East Greenwich and the other at Birkenhead, how was it possible that there could be any uniformity of supervision, any integrity of design, or any individual responsibility? Ag:in. how was it possible that the textile strength or conducting
power of the Cable could be tested as satistactorily as would have been the case were its manufieture entrusted to one firm? And, as it happened, the twist ram from right to left in one half, and from left to right in the other half of the Cable.

Before the prospectus was issued, every attention was paid that the characteristies of the Cable should be suited to its work; that it should not he too dense, lest its weight should render it umanagoable in the sea-nor too light, lest it should be at the merey of the currents as it went down. It was decided that it should weigh a ton per mile, should be just so much heavier than the water which it dipphacel in sinking, and of such structure ats could be casily coiled and get be a rigid line, while its centre should be composed of wire capable of conveying clectrical symbols through in extent of more than 2000 miles, and should retain complete insulation when immersed in the ocem. It wats a sulject of close and anxions inquiry how to obtain a Callle of this form and character: No fewer than sixty-two different kinds of rope were tested before one was determined on.

In the Cable finally alopted, the central conducting wire was "1 strund made up of seven wires of the purest copper, of the gange known in the trade as No. 22. The strand itself was about the sixteenth of an inch in diameter, and was formed of one straightly drawn wire, with sis others twisted romul it; this wats aceomplished by the eentral wire being dragged from a drum through a hole in a horizontal table, while the table itself revolved rapidly, under the impulse of stem, carrying near its ciremmferenee six reels of drums each amed with copluer wire. Every drum revolved upon its own horizontal axis, and so delivered its wire as it turned. This twistel form of conducting wire was first adopted for the rope laid aeross the Gulf of St. Sawrenee in 18.56, and was employed with a view to the reduction to the lowest prssible amome of the chance of contimnity being destroyed in the cirenit. It seemed impobable in the highest degree that a fracture could be aeridentally produced at precisely the same spot in more tham one of the wires of this twisted strand. All the seren wires might be broken at diflerent parts of the stramb, even some hundreds of times, and yet its capacity for the tranmission of the electric current not destroyed, or reduced in any inconvenient degree. The copper used in the formation of these wires was assayed from time to time during the manufacture to insure absolute homogencity and purity. The strand itself, when subjected to strain, stretehed 20 per cent. of its length without giving way, and indeed without having its conducting power much modified or impaired.

The copper strand of the Cable was rolled up on drums as it was completed, and wats then taken from the drums to receive a coating of three separate layers
of refinel gutta prechat these brought its diameter up to abont three-cighths of an iuch. The coating of gutti percha was made unusually thick, for the sake of diminishing the influene of induction, and in order that the insulation might be reudered as perfect us possible. This latter olject was alse furthered by the several layers of the insulating material being laid on in succession; so that if there were aceidentally any flaw in the one coat, the imperfection was suro to be renoved when the next deposit was added. To prove the etficaey of the proceeding, a great number of holes were made near together in the first conting of a fragment of the wire, und the second coat was then upplied in the usuul way. The insulation of the strand was found to be perfect under these cireumstances, and continued so even when the core was suljected to hydraulic pressure, amounting to five tons on the square inch. The gutta percha which was employed for the coating of the conducting strand, was prepared with the utmost possible care. Lumps of the erude substance were first rasped down ly a revolving toothed cylinder, placed within a hollow case, the whole piece of apparatus somewhat resembling the agricultural turnip machine in its mode of action. The raspings were then passed betweon rollers, macerated in hot water, and well chumed. They were next washed in cold water, and driven at a boilingwater temperature, by hydrulic power, through wire-gauze sieves, attuched to the bottom of wide vertical pipes. 'The gutta percha came out from the sieves in plastic masses of execeding purity and fineness, and those masses were then squcezed and kneaded for hours by screws, revolving in hollow eylinders, called masticators; this was done to get the water out, und to render the substance of the gutta percha sound and homogencons everywhere. At each turn of the serew, the plastic mass piotruded itself through an opening left for feeding in the upher part of the masticator, and was then drawn batck as the serew rolled on. When the mechanieal texture of the refined mass was perfected by masticating and kneading, it was placed in horizontal cylinders, heated by steam, and squeczed through them by serew pistons, driven down by the machinery very slowly, and with resistless foree. The gutta percha emerged, under this pressure, through a dic, which received the termination of both cylinders, and which at the sume time had the strand of eopper wire moving along through its centre. The strands were drawn by revolving drums between the cylinders, and through the dic. They entered the die naked bright copper wire, and issued from it thick, dull-looking cords, a complete coating of gutta percha having been attached to them as they traversed the die. Six strands were coated together, ranging along side by side at the first covering. Then a series of three lengths of the strund received the second coat together. The third cout was
-cighthes of the sake tion might red by the so that if nas sure to cey of the the first applied in fect under lijected to ttil percha mared with ped down hole $\mathrm{p}^{\text {picce }}$ its mode hot water, a boilingtached to the sicves sses were n hollow to render At each ming left awn buck mass was cylinders, down by emerged, of both ing along ween the oper wire, ta percha re coated of three cont was

communicated to a solitimy straml. The strand and its triple coating of gutta pereha were together designated" the core."

The eopper strund was formed and coated with gutta percha in two mile lengths. Lach of these lengths, when completed, was immersed in water, and then carefully tested to prove that its continuity and insulation were both perfect. 'The continuity was ascertained by passing a voltaic current of low power throngh the strand from a battery of a single pair of plates, and cansing it to record a signal after issuing from the wire. A different and very remarkalle plan wals adopted to determine the amount of insulation. One pole of a voltaic battery, consisting of 500 pairs of plates, was connected with the earth; the other pole was united to a wie which coiled round the needle of a very sensitive horizontal galvanometer, and then ran on into the insulated strund of the core, the end of which was turned up into the air, and left without any conlucting communication. If the insulation was perfeet, the earth would form one pole of the battery, and the end of the insulated strand the other pole, and the cirenit be quite open and uninterrupted ; consequently no current would pass, and the needle of the galvanometer would not be deflected in the slightest degree. If on the other hand there was any imperfeetion, or permeability in the sheath of gutta percha, a portion of the electricity would force its way from the strand through the faulty plates and surrounding water to the earth, a current would be set up, and the needle of the galvanometer deflected; the deflection being in proportion to the current which passed, and therefore its degree would become a measure of the amount of imperfection.

When about fifty of the two-mile lengths of core were ready, these were placed in the water of the canal which ram past the gutta pereda works, and were joined up by their ends into one continuous strund of 100 miles, the joints being eovered with gutta percha. The hundred-mile length was then put through is carcful serutiny in the same way that the smaller portions were tried, -and next it was halved, quartered, and sepraited into groups of twenty, ten, and finally two miles, and each of these were again separately examined, and tested in comparison with similar lengths previously approved.

Whenever separate lengths of the gutta purcha covered core were to be joined together, the gutta percha was scruped away for a short distance from the ends, and these were made to overlip. A piece of copper wire was then attached by firm brazing, an inch or two beyond the joint on one side, tightly bound round until it reached to the same extent on the other side, and then was there firmly brazed on again. Λ second binding was next rolled over the first in the same fashion, and extended a little way beyond it, and finally several layers of gutta
perchat were carefully laid over, and all round the joint ly the agency of hot irons. If the core on each side of the joint was dragged opposite ways until the joint yielded, the outer investment of the wire umrolled spirally as the ends were pulled asunder, ann so the comblucting continuity of the strmel was maintained, although the mechanical contimuity of the strand itself was broken.

The two-mile coils of completed and proved core were wound on large drums with projecting flanges on each side, the rims of which were shod with iron tires, so that they might be rolled alout as broad wheels, and made to perform their own locomotive offices as far as possible. When the core was in position on these chamelled drums, the circumferene of the drum was dosed in carefully by a shect of gutta percha, which thus constituted its core-filled chamel a sort of cylindrical box or packing ease. In this smug nest each completed coil of core was wheled and dragged away to be transferred to the manufactory, cither at Birkenheal or Greenwich.

The core-filled drums, having arrived at the factory of the Cable, the drums were mounted by axles, and kept ready so that one extremity of the length of eore might be attached to the Cable as it was spun out, when the drum previously in use hat been exhaustect. During the unrolling of the eore from the drum, it was wound tightly round by a serving of hemp, saturated with a composition male chiefly of pitch and tar, the winding being effected by revolving bolbins as the core was drawn along. This hempen serving constituted a bed for the external cont of metallic wires, and prevented the insulating sheath of gutta pereha from being injured by pressure during the final stage of the construction. Each new length of core was attached to the Cable by precisely the same operation as that used at the gutta percha works in joining the two-mile coils for testing; shortly before an old irum was exhalusted, its remainder was rapidly pulled off and placed in the joiner's hands, so that it might be made continuots with the core on a new drum, before the outgoing Cable began to draw upon it.

When the core was covered in with its great coat of hemp and tar, and carefully gauged to ascertain the "ruality of its dimensions everywhere, it was ready to be turned into the completed Cable. This final operation was effected as the core was drawn up through the centre of a horizontally revolving whed or table. The table turned with great rapidity, and carried near its ciremmference eighteen bobbins or drums. Each of these drums was filled with a strand of bight charcoal iron wire, and had two motions, one round its horizontal axis, and one round an upright pivot, inserted into the revolving table, so that it delivered its strand always towards the centre of the table as it was carried swiftly round ly the revolution. The iron strand was of the same diameter as that which was used for
hot irons. I the joint reve pullect , although rge drums iron tires, form their n on these fully by a a sort of oil of core , cither at he drums length of previously a drum, it mposition g boblins d for the of gutta Istruction. operation r testing ; pulled off ; with the and earewas ready ted as the 1 or table. eighlteen ight charone roume its strund d by the 4 used for
the copper core. There were also seren irom wires in cach strand, exactly like those for the eopper strant. Eighteen iron strambs were thas firmly twisted round the central coms, as the "closing machine" whintert. The core, acted on by the rollers of the marhinery, rose through the middle of the table, aut went up towards the ceiling. Thar irom strands hanced rome it, as it wont up, in a filmylooking spectre-like cone, which narwod ant grew more matter-offact amd distinct as it ascended, until it glittered in a rompact metallic twist, tightly embineing the core. The eightecm strands of seven-themal wire were used for this metallic envelope in phate of eighteen simple wires of the same size as the strand, because by his moms greater flexibility and strength were obtained for the weight of material employed.

Each strand machine worked day and night, and in the twenty-fune hours spun ninety-eight miles of wire into fourtect miles of straml. Jhere were several strand mathines at work in the factorics, and these wery twenty-fom hours made $:, 0.58$ miles of wire into 29.4 mils of strumt. As muth ats thirty miles of cable were made in a single day. The cutire length of wire, copper, and iron employed in the manufacture, momuted to $3: 3 n, 500$ miles, enough to girdle the carth thisteren times.

As the closed Cahbe was complater, it wat drawn out from the wall of the factory, and passed throgh a cistom comtaning pitch ant tar, and was then
 brushed ower with pitch and tar), and there remainel mat cmbanked on boart the ressel which romeyed it to its final home. At both the Geremwich and birken-
 prosess of construction. These were finally mitend torether into me continums rope, as the callde was stowel away in the vessel which camped it to sea.

Such is a deseription of the cialle finally alopted, and whel when eompleted weighel from nineteen humbedweight to one ton per mile, and bore a direct strain of from fom to five tons withont heraking.

The mext question which arose for comsideration was, hew the Cahle was to be latid in the ocen. The Great Eistern, then knewn as the Leviathan, alone conld
 triced. She might prove at failure, and in doing se, involve that of a far greater and a far more impertant experiment.

It was then determined that the responsibility should be divider, and the burden be catrasted to two versels of simather dimensims. The british Government placen at the service of the Company the Agamemmon line-of-tattle ship, and the govermment of the United States of America sent over the Niagana.

The Agamemon was comsidered to be admirably adapted for reeeiving the Gable, by reason of her peeuliar construetion; her engines leing situated near the stem, and there being amidships a magnificent hold, forty-five feet square and twenty fect deep between the lower deck and the kecl. In this receptacle one half of the ('ible was distributed round a central core in a compact, single, and nearly circular coil. She lay moored off the wharf at Greenwich, and the Cable was drawn into her hold by a small journeyman engine of twelve-lorse power, the rope rumning over shenves borne aloft upon the masts of two or three harges, so moored between the wharf and the ship as to afford intermediate support. The Niagara, though not by construction well adapted for the Cable, was rendered $s^{\text {o }}$ by julicious alterations at Portsmonth. She arrived in the Mersey on 2end June, and was regarded with much emriosity and interest in Liverpool, where Captain Hudson and his officers received every attention. The Cable was coiled on board her in three weeks. Cork Harbour was selected as the place where these vessels should rendezvous, and make all innal arrangements; from whence they were to proceed to the completion of the task, piloted by the U.S. frigate Susquchanna and H.M. frigate Leopard, both paddle-wheel steamers of great power.

Within the barouy of Iveragh, in the county of Kerry, on an island six miles long by two broad, lies the village of Knightstown and harbour of Valentia, the most westerly port in Europe. It is at the southern entrance of the open bay of Dingle towards the sea. Doulas Head on the east, and Reenadroolan Point on the west, mark the entrance to the narrows. It can boast of two forts erected by Cromwell. The Skelligs-two picturesque and rugged pinnacles of slate-pierce the surface of the sea about eight miles S.W. of the harbour ; and one of these, the "Great Skellig," erowned with a light-house, towers to a height of 700 feet.

It was deciled by the Company that the Niagara should land the shore (nd in Valentia, and pay it out till her cargo was exhausted mid-way, where the Agamemnon was to take up the tale and carry it on to Newfoundlanl. The time best adapted for depositing the Cable in the ocean was determined after much thought and deliberation. The result of Lientenant Many's olservations was, that in the months of June and July the risk of storms is sery small, unless immediately on the roast of Ireland, while the records of the Metcorological Departments, both in England and America, showed that for fifty years no great storm had taken place at that period. It was finally arrangel to alopt Licutenant Maury's views, "that between the 20th July and the 10th of August both sea and air were in the most favourable condition for
civing the d near the quare and ptacle one single, and the Cable power, the larges, so port. The s rendered Mersey on Liverpool, The Cable cted as the angements; tod by the el stcamers d six miles f Vilentia, of the open eeandroolan past of two d pimacles charbour ; owers to a 1 the shore way, where foundliand. was deterLicuteuant the risk of the recorls howed that was finally July and ndition for

laying down the Cable," and that the vessels should be dispatched so as to reach the rendezvous in mid-ocem, where the Cable was to be spl' l, as soon alter the 20 th of July as possihle. It had been ascertained that the uistance over which the Calle was to be laid wats $1,8: 34$ mike, but 600 auditional miles of Cable were provited, being an allowance of 33 per cent, of "slack."

Arrangements hat been made that when the vessels joinch company off Cork the entire length of the Cable should be tempornily joined up for the purpose of being tested through its entire length, als also to allow of some experiments being made to prove the efficieney of the signalling apparatus. The Cable was arranged so as to come up from the hold of the ship sweeping round a central block or core planted in the midst, to prevent any interference of the mrolling strauds with one another, or too sulden turns, which might twist the Cable into kinks; having reached the open spate above the deek, it was to be womel ont and in, round four grooved sheaves, geared together by cogs, and planted so firmly on girders as to render it impossible that they should be thrown out of the square. From sla anes accuratcly grooved the Cable proceeded three or four fect above the poop-derk, until it passed over a fifth grooved sheave stameling out upon rigid amm over the stern. From this it wouht make its plunge into the deep still sea, and as the vessel moved away to be dragged out by its own weight, and by the hold which it would have aequired uron the bottom of the sea. The prying-out shates were large grooved drums, five feet in diameter, and set in a vertical plane, one direetly before the other, and laving a frietion drum geared to them in such a way that its shaft revolvel three times as fast as theirs, the axis of the drum being encircled ly two blocks of hard wood, which could be gripped clese upon its circumference by screw power, so as either to retard or arrest altogether the movement of the sheaves. The serew was worked by a crank, at which a trustworthy officer was stationed, to keep a wary eye upon an indicator nemr to express the exact amome of strain thrown upon the Cable at cach instant. In the electrician's department there were to be signals every second ly clectrical currents passing through the entire length of the Cable, from shore-end, or from ship to ship. At the side of the vessels patent logs loung down into the water, to messure the velocity of the ship. One of these wheels, in the immersed \log, was arrauged to make and break an chectric circuit at cerery revolution, a gntta percha coverel wire rumning up from the revolving wheel on to the deck of the ship, that it might carry the current whenever the circuit was mate, and record there, upon a picce of apparatus provided for the purpose, the speed of the vessel. The brakesman was to watch the tell-tale which would indicate the strain on the rope, and work his crank and loosen his grip whenever
this secmed to be tow great ; or tighten his grip if ever the bell ceased to repert that the checrival way firm coud to coud of the Cable was free and un-
 defond the table from fouling in mase any neressity should arise fin harking the vessels. The hermemon hand bern jury-rigged fin the sorvie, her havy masts
 of sudden and malinesenstorm, armugements had lwe math to slip the Cable. On the decks of the pryingent vossels two harge weds were phaced, eath womed romed with two and athalf miles of a very strong ansiliary ('able composed of ironwire only, and capable of resisting a stain of ten to twede tons. Should the Telegraph (ablde be culangered it would be divided, and the sea end attionded to
 out, would phace the lable in a dipth of ocem where its safety would be sectured until all danger had passed. In fine, every posible contrivance that ingemuity could devise or scientific knowledge could suggest, atecording to the aperience then attained, hard been adopted in urder to secure suceess. Those who had toiled so long with wearich lrain and anxions heart, undismayed by dificultiosnot disheartened by failure, hoping when hope seemed presumptuons, but not despairing even when despair seemed wishom, now felt that their part had been accomplished, that the mems of securiug the result had now paisisel beyond man's control, and rested solely with a lligher lower.

On the 29 th of July, 1 s.5T, the U.S.S. frigate Niagina mrivel at Queenstown, having been preceded by II.M.S. Lerpand and II.M.: ('yelops, which latter stemer had taken the somulings of the inteaded beed of the Cable. The Niagatal was aecompuind hy the L.S.S.S. Suspuchama, to act ats her couvoy. H. II.S. Agamemmon laul ahrady arrived.

The Earl of Corliste, Lord-Lientemant of lreland, ever anxions to give such (ancoluagement as his presence could afford to any undertaking which promised to do goonl, camedown from Dublin to Valentia, and attended a dejemer given by the linight of kerry to edebrite an event in which the keenest interest was erineed, although the heart of the comatry was thrilled liy the dreadful intelligenee of hadian mutinics and revolt. The comitry people flocked to the little island, and expressed their joy by morrymakings, danees, and bonfires. In an cloynent speed Lord C'arlisle declated that though disappointment might be in store for the promoters, it would la dhast eriminal to feel discoumgement then-" that the pathway to great achievements, has frequently to be hewn out amidst perils and difficulties, and that preliminary failure is cver the law and condition of ultimate sucesss." 'These were prophetic worls; in others, still to be fulfilled, "Let us hope," he said.

reasent to

 and unvessels to king the ny masts tur werent he cille. h womuld 1 of irunwild the taclurel to mindly let serined ugromity spricice who had cullicslut not ad been nl man's custown, li litter le. 'the convoy. ve such misel to in by the crincent, f Indian pressed dh Lord moters, away to icultics, ucecss," he siid. new material link betwere the Old Wind amb the New. Moral links there hat been-links of rate, links of rommeree, limks of friomdship, links of litutature, la
 ones, is to give them a life mal intensity they newo han lrefore. 'Jho link which is now to eonneet us, like the insidet in a couplet of our pet,
'While exinisituly tine,
Fecks at each thecad and moven alohy tho line."
If anything rould overome the tembency of men to vatienate, it surely would be the suld history of the last few years in the Inited states. The condition of
 speech, which also puints ont the inestimable value of the telegraph as a cone servator of peate. "We maty as we take our stand here on the extremest rocky side of our lelowed hreland, leave, as it were, ledind us the wats, the strifes, and
 be, imperfect as onf powers maty be, inaterpate in striet diplomatic fomm ans our eredentials may be ; yot, in the fite of the mapatheded ciremmstanees of the phace and the hour, in the inmediate neighbomhoorl of the mighty vessels whose apearance may be beatiful upon the waters, even as are the feet upon momtains of those who preach the (iosiel of peace--as a homage due to that serene seience which often adfords higher and holier leswons of hamony and goodwill than the wayward gassions of man are always ipt to learn-in the face and in the strength of such ciremmstances, let us phedge ourselves to eternal peate between the Ohd Work and the New. Why, gentlemen, what excuse would there be for misumberitarling? What justifioation could there be for war, when the disaming messigg, when the full cxplantion, when the genial and healing comsel maly be wafted even across the mighty Athatie, quicker than the sumbean's path amd the lightning's flash?" At that moment Great Jonitain was just disengaged from a war with Rassia and a war with Persia, and was actively engaged in a war with (hina, and with mutinies in hadia. France was preparing to deal Austria a deadly how ; America looked pityingly across the Atlantic, and wondered at our folly and our crimes.

On dugust the oth, 18.5\%, the shote emt of the Cimble wats seemed in the little cove selected for the purpose in Valentia, on the cliffs above which a telegriphie station had been ereeted, and was hauled up anidst the greatest enthusidsm, Lord Carlisle participating in the joy and the labour.

On the evening of Fribay, Augnst 7th, the squadron suiled, and the Niagara
eommened paying out the Cable vary slowly. About four miles of the whe Gable hat been payed out, when it beame contangled with the mathinery, by the

 came to andor for the night. Next day a spliee wat made, the ship resumed her wouse, atul at noon on Sumday, Iugust 9 th, 95 miles haul heen payed ont.

 of :san miles from Vialentia. At the time the ship was going from there for four kimots, and was able to pay ont 5 to is ${ }^{3}$ miles per homr, the presure shown by the inthatere being 3000 h., but the strain being mo doubt much greater.

This loss proved fatal to the first attempt to lay the Atlatic Cable, an on

 on the quantity repuirel lye the whe distame.

 the following yand. In addition to the eapital of the Company was propesed and agred to. 'I'he greater pat of the antum was devoted to prepatations fine the renewed etlorts of the Company. The part of the Cable which was left was landed at Kegham, $5: 3$ miles of the shore-end were recovered, and the Combany again aphed to the british and Ameriom Govermments for the services of the same vesols which hand been previonsly hent to them. Alessis. Gilass, Elliot, \& (b., were entristed ly the directors of The Athantie Telegraph ('ompany to mandiacture a further hergth of goo miles, to replace that which was lost or damaged, thas making a total of 3,012 miles of ('able, so as to gham anamat acedents ly giving an allowance of 40 per eont. of slack. The payingote apmaths was also inymoved, so that the rogine in charge alone should control the egress of the ('ible, insteal of nsing the hand-wheel, which, ung the formur oedasion, hat catased much danger in rough weathere.
'Ihe manufartures of the machinery were Messis. Lanton \& Amos, of SouthWank, under the superintendence of Ms. Pemm, Mr. Fiehel, Mr: Lhojel, Mr. Everett, and Mr: Bright.

The important part of the apparaths consisted of Appold's self-regulating luake, so aljusted and constracted as always to exert a certain amount of resistance, regulated by the revolution of the wheels to which it wats aphied. More
the shore y, loy the gryed in Niagara resumed youl out. On the d lwown distinle e tor four hown by

le, ats on

 to rullew ber cent.II.M.S. I of the ne it to (uxect and tons for left wals Comservices s. Ciliss, clegrainh It which o is to k. The e alune which,

 ralalded thase in charge of the marhine to lix the pressure of the hrake. In the new "hlaratus the hake was atached ofer two drums comeded with the two

 machine of fome wherds, but simply wome wer wice to and romel the other, and so on four times, till it wats finally payed down into the water. 'Thus, the wire was
 Wheds, whended with the hake or frietion drums, past the register which indi-

 guard against any chance of mishap, mot mere tham half this man was put

 utmonst that was allowed to comer upun the wire.

The hakie of the paying-nut mardine nsed on the oerasion of the first atempt
 the new mathilue any fone could in at moment case it, until there was no resistinne at all heyond the s ewt. strain on the wire.
 which regrisered prexisely the stain in pumds at which the coil wats ruming but. Fiocing this register was a sterriug whed, similar to that of an ordinary vesset, and comected in the same way with rompound levers, which :etat upm the bake. The oflow in marge of the apmatus stond ly this wherd, and watehet the recrister of strain or pitch of the vessol, oprening the haveses lyy the slightest movement of his ham, and letting the Cable rm freely as the stern rose. The sane oflicer, however, could not by any passibld method increase the actual strain on the Cable, which remained always according to the friction at which the hake was at first aljusted ly the engineer.

All was ready for the expedition before the time indicated, and the directors and the public looked with confidence to the result. Instead of landing a shore-
che at Valutia, and making a jumetion of the Cable, it was deriderl that the ships Shonld prowed together to a peint midway butwem Trinity Bay and Valcotia, there splice the cible, and then forn their bows cast and west, ant proced to their distimations.

 the two former having previonsly male an experimental amise in the Chamel with the Cahke, whin were very satisfactory, in all repects.

Expriencel mariness gazed with aprehensim at their depth in water as
 ansiety lest there should be now wimb, and that the sterk of coabs might lee exhamsted hefore their mission was aremplished. Before midnight, however, a gradually inereasing gate gethered in a stom, while the barometer marked

 lalwoming fenfully.

 comfusion. Wire the masts to yidh, the ship womb row still more violently, the ('able would shift, and cary exery one with it to destracion. Captain

 luffere the gate and risk the thanes of bexing ferpect by the monster scas ill purnit.

On the elst the Agamemmen was mblat to lear up for the remberous in midterean, which she reatherl on the with, after sixtern days of dinger ant
 owdeal with less himger and difficulty.

 out 4: miles, it snapmell close to the ship.
he shij, allentis, reed to

T.S.N.S.

 mouth, Chamel
ater as

 ce sume ight loe owever, markecl ly Mr, topsails (17), and I, from menc.m III :IIII Mently, aptisin sulciti) run stels

 known. The Agramemmen hat rum 118 miles, and pairl ont $1: 16$ miles of (Gallde, when the upper deck coil hecme exhanstent. Speed wats slackenem, in order to shift the Cable to the lower doek, when suddenly it snimped, withont any $1^{\text {ere- }}$ ceptible callse, muder a stain of mily 2000 pounds. The weather was calm;
 stain; everything fivourahle; and yot the Cable parted, silently and suddenly.
 payed out, and lost $1+4$ mites of it.

On the $12 h^{2}$ July, the A gmemmon, after an exentful cruise of thirty-there days, mached Quedistown, har ving left the remlezrons on the bith, whither she haw gom in the lome of meeting the Niagam. I apecial mecting of the Comprang wats callew, and the expedition wats orlered to go to sea. There wats still ruite sumbecont Cable remaining, and it was detemine to makn another attempt immediatcly: The way in which the (Gable patchel on the thind necansion wats the only thing calculated to create doubt and apmenemsion. The two wher
 was something in the latter not sul (asy of explanation, and which seremed to pint to some mysterions ageny existing in the depthe of the wem, beyond the perection of science or man's control.

At midnight on the Qsth of July, 18.5 , the Aganemmon and Niagata once more met in mid-ucem, and on the lillowing moming splied the Cable, which was this time destined to tend so murh towards solving the great problem. On the 30th, 26:5 miles hand been paikd out. On the 31st, itot milas. On the 1st August, sist miles. (On the Qund, 12.56 miles. On the thh, $18.5 t$ mikes; and on the oth, 2022 mikes. The Aqmemmon now andored in Dowlas bay, Yalentia, and preparations were made to join the oecan and shore ents. On the
 in :an hour after she reseived a signal across the Athatic that the Coble had been landed from the Aganemmon.

Mr. Fied at moe telegraphent the unws to the Now Yowls press, and the intelligence flew all over the Cuiom, where it wats receivel with the most extralordinary manifestations of delight. The information was receivel more equally in England.

On the th of Augnst, many an anxions heart wats lightened loy reading in the Times the following tekegrem :-
" Valentia, August 6th.
"End of Cable safely landed, close by pier, at Knightstown, being carried on the palde-boxes of the Valorous-expect to be open to public in three weeks."

Mr. Field's dispateli to the Associated l'ress of New York was followed by two to the President, to which Mr. Buchanan sent a suitable reply. A message was sent to the Mayor of New York also, to which an answer was returned next day.

On Augnst the 9th the telegruphie wires reported that " Newfomedland still answered, but only voltaic eurrents."

On the 10th it was stated "Coil currents had been received-40 per minute casily "-followed by the modest words, "Please send slower for the present."

Oh we 14 th a messigge of 14 words was trmsmitted, and on the 18 th the Directurs in England thus spoke to their brethren in the other hemisphere: "Europe and Americu are united ly telegraphic communieation. 'Glory to God in the highest, on earth pace, gookwill towards men." This message oecupied 35 minutes in tramsmission. It was rapidly followed by a message from the Queen of England to the President of America, which ocenpied 67 minutes in transmission, and was repeated. The text was as follows:-

"To the President of the United States, Washington:

"The Queen dexires to rongratulate the President upon the suceessful completion of this great international work, in which the Queen has taken the deepest interest.
"The Queen is convineed that the President will join with her in fervently loping that the Electric Cable which now comects Great Britain with the United States will prove an additional link between the nations whose fricmenhip is foumded upon their common interest and reciprocal esteem.
"The Queen bas much pleasure in communicating with the President, and renewing to him her wishes for the prosperity of the United States."

The reply of tile mesident.

" Washington City, August 16, $180 ̈ 6$.
"To Mer Majesty Vietora, Queex of Great Britan:
"'The President cordially reciprocates the congratulations of Her Majesty the Quech on the success of the great international enterprise aceomplished loy the seicnce, skill, and indomitable conergy of the two countries. It is a triumph

more glorions, beanse fitr more useful to mankind, than was ever wom loy congueror on the fich of battle.
"May the Athatie 'Telempaph, mider the hessing of Hearen, prove to be a hond of perpetual peare and friomblip between the kindred nations, and an instrument destined liy Divine Providene to diffuse religion, civilisatiom, liherty, and law throughout the world. In this view will not all mations of Cluistendem spontanconsly mite in the checlaration that it shall be for ever nentral, and that its commonimations shall he heh salered in passing to their phares of destination, even in the midst of hostilities?
(Signed) "Janes buculanan."

On the same day a message was reecived from Mr. C. Fiehl, comsisting of is words, which oceupiced $2 \cdot 2$ minutes in transmission.

The mighty agoney which hand heen made sulservient to the dictates of man, lad tomeched the hearts of two mations by expressing mutnal esterm and respert, hat hand not yet exureised its higher prerogatives. On the 2 lat of August it flathed tidings of great joy; and hrought relicf to those who, but for it, would have languished in very weariness and pining. The Enropa and Ambia, each thickly freighted with hmman lives, had come into collision in mid-orean. So much was known, but there was nothing to appease the ansioty of those whose friemds and relatives were on boarl. Fourteen diys must clapse before the mavisul of the next stemmer. Within fourtecm homs, however, the Atlantic telegretph wires allayed intense dread and anxious feats: " Newfomelland. - Eurena and Arabia have been in collision-one hat put into St. Johms-no lives are lost-all well."

On the esth of August it was amomerd that "the Cable works splemblly," and shortly after the New York jommals reemed how the entive comtinem had goue mad for very joy, how frasting was the orter of the day, and how Amerienu intellect had achiever the gratest scientifie trimmph of the age.

On the the of Sptember, 1858, the following letter appeared in the Times, addressel to the editor :-
"Sciptember Gith, 185 s .
"Sir,-I am instructed lyy the Directors to inform you that, owing to some cause not at present ascertained, hat believed to arise from a fault existing in the Cable at a point hitherto undiseoverel, there have been no intelligible signals from Newfoundand sinee one cidlock on Friday the 3rd inst. The Directors are now in Valentia, and, aided by various scientific and practical electricians, are
investigating the eanse of the stoppage, with a view to remedying the existing difficulty. Under these circumstances no time can be named at present for opening the wire to the public.
"Geo. S.lwand."
Such was the foreshadowing of the great calamity that was so soon to follow. Public excitement became intense. The market value of the Atlantic Telegraph Stock assumed a downward tendency, and fell rapidly. But the projectors had not been ielle. A rigid inquiry had been immediately instituted by Professor Thomson, Mr. Varley, and Sir Charles Bright, which enabled them to arrive at a conclusion that the fault must he on the Irish coast. Consequently the Cable was underrun for three miles, cut and tested; but no defect being found, it was again spliced. During all this period its electrical condition had become so much deterionated that such messages as passed required to be constantly repeated.

So matters went, hope and fear alternating, until the insulation of the wiro became suddenly worse, and at last the siguals ceased to be intelligible at Newfoundland altogether. Scientific inguiry tended to show that the fault lay about 270 miles from Vilentia, at the mountain range which divides the depths of the Atlantic from the shallow water on the lrish shore. This steep range, or sloping bank, which, on leing sounded, shower? a difference of 7,200 feet in elevation in a distance of eight miles, had been crossed by the Agimemmon an lowr lefore the expected time, anl it was said a sufficient quantity of slack hat not been thrown out, so that the Cable was suffered to hang suspended in the water. But this was of course mere conjecture, and the failure most prolablly was precipitated by iujudicions attempts to overcome defective iusulation by increased battery power.

The conelusions finally arrived at by the Scientific Committee appointed to report as to the causes of the failure of the Cable were, first, that it had been monufactured too hastily ; secondly, that a great and meequal strain was brought on it by the machincry; and thirdly, that the repeated coilings and uncoilings it nuderwent served to injure it. To such caluses was the failure to be attributed, not to any original defeet in the gutta percha.

Mr. Varley stated his opinion that there musi have been a fault in the Cable white on board the Agamemnon, and before it was submerged ; but none of the theorics accomited for the destruction of a Cable on which half a million of money had been expended, and which (if suceessful) two governments had contracted to subsidise to the gross amount of $28,000 l$. yearly. Thus were anmihilated, silently

and mystriomsisly, all thase hopes whid had survired so many disillpoiutments, noul which for at moment had heren so abmudantly realisect.
 sermed certain, mither was there now any yimbling to dexair.

In the month of $\Lambda_{\text {pril, }} 1860$, the Directurs of the Athantie Thlegraph Company sent out Captain Kell and Mr. Varley to Newfomulhand to cmendene to recoser some portion of the Cable; theireffirts showed that the surver whid hand hern taken must have beon very insulfirient, ame the groumd was much worse than was expectela. They recovered five miles of the (ible, amd asecrtained two farty, mamely, that the gut't perelia was in mo degree deteriomeded, and that the electrial combition of the core had heen improwed by thre yoars' sulmerwion. In 1 stie several attempts were also made to recorer sume of the Cable from the Itixh side, hat with ano pactical advantare ; and in conserpenee of violent stoms the attempt was abmimbed.

The great C'ivil War in America stimulated enpitalists to renew the attempt; the public mind herame alive to the impurtane of the project, and to the inereased farilities which promised a suceresful issue. Mr: Fichl, who comprased
 and agitatel the fuestion in Lomden anel Now Yenk.

On the 20th of December, $186^{2} 2$, the Athatie Company issmed its propereths, setting forth the valuable privileges it had acefuiren-amongst others, the cxirlusive right to land telegraph wires on the Athuntic const of Labmar, Newfomullime Prince Edward's Islam, and the State of Mane-and invited pullie sulsectiptions. The firm of Glass, Elliot, \& Co., sint in tenders to provide a Cable at a cost of $£ 700,000$; a sum of $£ 137,000$, licing $20 \mathrm{l}^{\mathrm{wr}}$ cent. upon the capital of the Company, to be paid to them in old ungnaranted shares of the Company, provided they were suceessful.

On the 4th of March, 1863, a large number of the leading merchants in New York assembled in the Chamber of Commeree in that eity, for the purpose of hearing some new and interesting facts relative to the Atlantic Telegraph enterprise. The many advantages which would arise to Amerien were alparent, and, among others, was the improvement of the agricultural position of the country by extenting to it the facilities, already enjoyed by England and Fromere, of commanting the forcign grain materts; as well as the avoidance of misunderstandings between America ame ather countris.**

[^1]Sine 1858 , what was a mere experiment had berome a practical reality. The Gutta Percha Company had prepared no less than forty-four submarine Cables, enclosing 9000 miles of conducting wire, which were in daily use, and not one of which had required to be repaired, exeept at the shore end, where they were exposed to ships' anchors. At the meeting in New York, Mr. Fiekl read a letter from Glass, Elliot, \& Co., in which they offered to undertake to lay the Cable between Ireland and Newfoundtand on the most liberal conditions. The terms which they proposed were,-First, that all actual disbursements for work and material should be recomped each week: secondly, that when the C'able was in full working order, 20 per cent. on the actual profits of the Company should be paid in shares to be delivered monthly, while at the same time they offered to subscribe $£ 25,000$ towards the ordinary capital of the Company. The Euglish Government also agreed to guarantee interest on the capital at 8 per cent., during the operation and working of the Cable, and to grant a yearly sulsidy of $£ 14,000$. Mr. Fiedd further directed the attention of the meeting to the line to San Franeisco (a single State), as evidence of what business might be expected. The estimated power of the Cable was a minimum of 12 and a maximum of 18 words per minate. If it were to be worked for sixteen hours per day for 300 days in each year, at a charge of 2 s. 6ct. per word, the income would amount to $£ 413,000$ a year, which would be a return of 40 per cent. upon a single Cable. After the failure of the last Cable a Commission of Inquiry, consisting of nine members, had sat for two years, and, by their report, afforded valuable information. The British Government hat also dispatched surveying expeditions, which reported most favourally as to Newfouncliand. In reference to the objection, that in case of war the Cable would be under the sole control of the English Govermment, it was to be rememberel that it would be laid under treaty stipulations.

After a lengthened disenssion on varions matters comnected with the project. it was proposed by Mr. A. Low, and manimously resolved, "That, in the opinion of this mecting, a Cable can, in the present state of telegraphic seience, be laid between Newfoundland and heland with almost absolute certainty of success, and will when laid prove the greatest lencfit to the people of the two hemispheres, and also profitable to the chareholders. It is, therefore, recommended to the public to aid the undertaking."

Messrs. Glass, Elliot, \& C'o. had long successfully manufactured Cables in accordance with all the improvements that had taken place in machinery, as well as in the manufacture of gutta percha, since the laying of the Cable of 1858. Their experience as contractors in laying lines might be estimated by

the report of the Jurors of the Exhibition of 1862. They had been identified with the listory of sulmarine telegraphy from its earliest existence, and now, laving previously incorporated the Cutta Perchat Company, they aceepted the offer made by capitalists of influence and became absorbed in "The Telegraph Construction and Maintenance Compmy," of which Mr. Pender, M.P., was chairman, and Mr. Glass managing director.

The British Govermment were willing to atssist by sulsidy and guarmene, and there lay the Great Eastern, the only vessel in the work suited for the undertaking, seeking for a purchaser. The huge shij, which cost $\mathfrak{E} 640,000$, was chartered ly the Directors of the T'elegraph Construction and Maintenance Company, who scemed bent upon solving the problem of its existence, and on showing what great things it was destined to accomplish. (aytain James Anderson, an accomplished officer of the Cmard line, was asked to take the rommand, and received leave to do so, and it was with satisfaction the Directurs leaned his willingness to midertake the task.

In Mary, 1864, a contract previously cutered into was ratifice, providing that all profit should be contingent on success, and that all payments were to be made in unissued slares of the Athantie Telegraph Company. A resolution wats also passed, authorising the raising of additional capital lyy the issue of 8 per cent. guarmited shares, of which Glass, Elliot, \& Co., were to receive 250,0001 , and also 100,0001 . in debentures. The form of the C'able selected was similar in its component parts to that of 1858 , but widely different in the construction and quality of the materials. It had been reported on most fivvourably by the Committee of Selection, and was at once aceepted by the contractors; the Directors of the Company recognising the assiduity and skill of Mr. Class in the investigations as to the best deseription of C'ible.

The following official account * states so minutely crery particular comected with the Cable during the proeess of formation, down to its shipment on board the Great Eastern, that no hetter description cam be given :-

It differed from the Calle of 1857-8, as to its size, ass to the weight and methool of application of the materials of which it was composed, as to its specific gravity, and as to the mode adopted for its external protection.

For the same reason as before, the copper conductor employed in the Cable was not a solid rod, lant a strind, composed of seven wires, cath of which ganged 048 parts of an iucl. It was found practically that this form of conductor, in which six of the wires were laid in a spiral direction around the seventh, was a

[^2]most effectual protection against the sumble or complete severance of the copper wire.

 panich ly loss of insulation-owing to the great difficulty in diseovering the lonality of surla a fault. Leen the lust deseription of eoprer wire can seldom be redied unem for equality of strength throughout, and in some instanes an ine on even a less pertion of the wire will frowe to be slightly myatallised, and womequently incerpable of resisting the efferets of coiling or paying out if bronght to lear upon the part, though no external difference be at all apparent between the weak pention and the remander of the sample. By proceding, bwerer, as in the present case, the combuctor was divided into seven sections, and the risk of seven wak places occurring in the same soot leing exceedingly remote, the probability of a hearh of contimuity in a strund conductor was ahmost nil.

The weight of the new conductor was nemy three times that of the former one -being 300 pemels to the nautical mile against 10 pomeds per knot to the condurtor of 18.5 . The atoption of this increased weight had referemere to the inerease of commereal sped in the working of the new Gable expected to accrue therefrom, and wat fombed mon the prineiphes of eombuction and induction, now well muderstood, which consist in the law that the conductivity of the conductor is as its sectional area, while its inductive capacity (wherely speed of thensmission is retardel) is as its circumference only; and, as the maximum speed at which the original Cable was ever worked did not exeeed two and a-half words per minute, it would follow loy calculation, taking into accomut the thickness of the dielectric suromuling the present conductor, that, using the sime instruments ats in 18.5 , a speed of three and a-half to fom worls per minute might he expected from the new Cahe ; but it was stated by the electricians that owing to the improved modes of working long Gables that have heen discovered since 18.5, an increate of speed up 10 six or even mope words frre minute might le secured loy the adoption of suitalle apmanatus.

The purty of the eoprer empheyd, a wery important item, atheeting the rate of transmission, had heen earfully provided for. Exery pertion of the comburtor was submitteal to a searching test, and all comper of a lower conductivity than 8.5 per cent. of that of pure copper wis carrfinlly rejected.

The covering of the conductor with its diclectrie or insulating shemeth was effected as follows:-The centre wire of the copper strand was first covered with a coating of gutta percha, reduced to a visciel state with Stockholm tirr, this being the preparation known as "Chattertomis Compound." 'lhis roating must be so
thick that, when the other six wires forming the strand were laid spirally and tightly round it, every intristice was completely filled up and all air cxcluded. The olject of this process was two-fold ; first, to prevent any space for air between the conductor and insulator, and thus exclude the increass of inductive artion attendant upon the alsenee of a perfect union of those two agents, aml, seroud, to secure mechanieal solidity to the entire core ; the conductors of some carlier Cables having leen fomed to be to some extent loose within the gutta percha tube surrom mechanical injury, and imperfect centricity than those in which the preliminary precaution just deseribed had been made use of. The whole eonductor next received a coating of C'hatterton's Compound outside of it ; this, when the core was completed, quiekly solidified, and became almost as hard as the remainder of the subsequent insulation. It was then surroumled with a first eoating of the purest gutta percha, which being pressed arome it while in a plastic state by moms of a wery aceurate die, formed a first continuons tule along the whole conductor. Over this tube was laid ly the same process a thin covering of Chatterton's Compound, for the purpose of effectually closing up any possible pores or minute llaws that might have escaped detection in the first gutta perchat tube. To this covering of Chatterton's Compound succeeded a sccond tube of pure gutta pereha, then another conting of the compound, and so on alternately until the eonductor had received in all four coatings of compound and four of gutta pereha. The total weight of insulating material thus applicd was 400 pounds to the nautical mile, against 261 pounds in the Cable of 1857-8.

The core, completed as deseribed, and which had previously and repeatedly been under electrical cxamination, was at length submergel in water of a temperature of 7.5 deg. Fah., and so remained during twenty-four hours. This was done that the subsequent electrical tests for conduetivity and insulation might be made under circumstances the most unfavourable to the manufacture, from the well-known fact, that the insulating power of gutta percha is sensilhy decreased loy heat. It also ensures uniformity of conlition to the core under test, anl, the temperature in which it was tested being higher loy 20 deg. than that of the water of the North Atlantic, there was plenty of margin against any disappointment from the effects of temperature after submersiom. At the expiration of the term of sorking, the coils of core submitted to that process were expected to show in insulation of not less than $5,700,000$ of V'aley's standarl units, of of $1.50,000,000$ of those of Sicmens's standard. This of itself wats a very severe test, Lat no portion of the core showed a less perfection than that of double of either of the above high standards.

Having passed this ordeal, and having been tested on separate instruments
and by a different electrical process by the oftiecrs of the Athantic Telegraph Company, in order to verify the observations of the contractors, the core was tested for insulation under hydraulie pressure, after which it was carefully unwound from the reels on which it had been wound for that purpose, and every portion was carefully examined by land as it was rewound on to the large drums on which it was seut forward to the covering works at East Greenwich, to receive its external protecting sheath. It was then again submerged in water, and required onee more to pass the full clectrical tests above referred to. Finally, euch reel of core was very carefully seeured and protected from injury, and in this state was sent to East Greenwich, where it was immediately placed in tanks provided for it. In these it was sovered with water, and the lids of the tanks leeing fastened down and locked, it remained until demanded for completion.

The manufacture and testing of the "core" of the Atlantic Cable having been completed at the Gutta Perelat works as described, a telegraphie line was therely produced which, without further addition of material or substance, beyonel that of copper and gutta percha, proportionable to any required increase in its length, would be perfect as an electrical commmicator through the longest distances and in the deepest water, in which element moreover it ancars to be chemically indestructible, if the experience of some fourteen years may be taken as evidence. At this poi..t, however, the final form to be assumed by the decpsea Cable was subject to important mechanical considerations, which came into play across the path of those purely electrical ; and upon the mamer in which these considerations are met and dealt with, depend, not merely the primarily successful submersion, but the ultimate durability and commercial value of decp-sea Cables.

The problem in the case of the Atlantic Telegraph enterprise may be thus stated. Given a submarine telegruph eore like that already described, constructerl on the best known principles and perfect as to its electrical conductivity and insulation-it is required to lower the sume through the sea to a maximum depth of two and a-half miles, so as not merely not to allow the insulating medium to be torn or strained, but so as not even to bring its normal clasticity into play against the more tensile but perfectly inelastic material of the conductor. For if' the core were lowered into very deep water like that referred to without further protection, even supposing it to escape actual fracture by the adoption of extrilordinary precaution and by the aid of fine weather, it is evident that whenever, as would be highly probable, either in the act of paying out, during the lifting or mancenvring of the ship, or even from the effects of its own weight, the gutta perchis sheath became extended to the limit of its elasticity, the copper in the
centre would bo stretehed to a corresponding extent, and, the tension being removel, the gutta percha in returning to its original length would pull baek the now elongated copper, whieh thenecforward would in every such caso "buekle up," and exert a constant lateral thrust against the gutta percha; ending, probably, in its ultimate escape to the ontside, and the consequent destruction of the core as an electrical agent. Moreover, in the event of an clectrical fault being diseovered in any submerged portion of the Cable during the proeess of "payingout" in deep water, it is of paramount importance towards its recovery and repair, that the engineer should have such an assurance in the quality and strength of his materials as will enable him confidently to exert a known force in hauling buck the injured part, without apprehension of damage to the vital portion of the Cable.

The solution of this question must therefore be found in adding mechanical strength externally to the core, by surrounding it with such materials and in such a manner as to relieve it from all that strain which it will unavoidably meet in depositing it in its required position. In the ease of the original Atlantic Cable this was attempted by first surrounding the core with tarred hemp, which in its turn was enveloped spirally by eighteen strands of iron wire ; each strand consisting of seven No. 22 $\frac{1}{2}$ gauge wires. The entire weight of the Cable so formed was, in air 20 ewt. per knot, and in water 1333 per knot. Being capable of bearing its own weight in about five miles perpendicular depth of water, and the greatest depth on the route being two-and a half miles, its strength was calculated at about as much again as was absolutely requisite for the work. This was thought at the time to be a sufficient margin, and certainly in 1858, owing to the greatly improved machinery employed, this Cable was payed-ont with great facility and without undue strain, although portions of it had been lost by hreaking during several previons attempts in the same summer. Subsequent investigation and experience, however, led to the conclusion, that in respect, not only to its meehanical properties, but especially with regard to its relative specific gravity, and to other points in its construction, the Cable of 1858 was very imperfect; and, with a view to ensure every practicable improvement in the structure of their new hine, the promoters of the undertaking, so soon as they found themselves in funds, during 1863, issued advertisements with a view to stimulate inquiry into the subject, inviting tenders for Cables suitable for the proposed work. The specimens that were sent in, as the result of this public appeal, were submitted to the scientific advisers of the Company, who, after careful experiments with all the specimens, unanimously recommended the Atlantic Company to allopt the principle of the C'able proposed by Glass,

Elliot, \& Co., whose experience and success in this description of work are well known. The Committec, however, stipulated thet they should settle the actual material of which the Cable was to be ultimately composed, and that these should be carefully and separately experimented on before fually deciding upon it ; and in conserpucnce of this stipulation upwards of one humdred and twenty different specimens, being chiefly variations of the prineiple adopted by the Committee, were manufactured and suljected to very severe experiment, as were also the various deseriptions and quantities of iron, hemp, and Manilla proposed as components of these respective Cables. The result of it all was that the Committee recommended tho Cuhle that was adopted as being, in their opinion, " the one most callenlated to insure sucecess in the present state of our experimental knowledge respecting deep-sea Cables," taking care at the same time, by enforcing a stringent specification and constant supervision, to guard against any possible laxity in the details of its construction. The Cable so decided on weighed $35 \frac{3}{4}$ ewt. per knot in air, but in water it did not exceed 14 ewt., being only a fraction heavier in that medium than the old Cable, though bearing more than twice the strain-the breaking strain of the new Cable being 7 tons 15 ewt. In water it was capable of hearing eleven miles of its own length perpendicularly suspended, and consequently had a margin of strength of more than four and a-half times that which was absolutely requisite ior che deepest water. The core having been received from the gutta perchat works, and carefully tested to note its electrical condition, was first taken to receive its padding of jute yarn, whereby the gutta percha would be protected against any pressure from the external iron sheath, which latter succeeded the jute. On former oceasions this padding of jute had been saturated in a mixture of tar before being applied to the gutta percha ; but experience had slown that this procecting might lead to serions fallacies as to the electrical state of the core, cases having been repeatedly found where faults existed in the core itself-amounting to an almost total loss of insulation-which, however, were only discovered after being submerged and worked through, owing to the partial insulation conferred for a time upon the bad place by means of the tarred wrapping. The Atlantic core, therefore, was wrapped with jute which had been simply tanned in a solution of catechu, in order to preserve it from decay, and as fast as the wrapping proceeded the wrapped core was eoiled into water, in which, not only at this stage, but ever afterwards until finally deposited in the sea, the Cable, complete or incomplete, was stored, and the water loeing able to freely pass through the tarred jute to the core, the least loss of insulation was at once apparent by the facility offered by the water to conduct away to earth the whote or a portion of the testing current.

Pr

The iron wire with which the jute cover was surrounded was specially prepared for this purpose, and is termed ly the makers (Messis. Wehster \& Iforsfill) "Homogeneons Iron." It was manufactured and rolled into rods at their works at Killamarsh, near Sheffield, and drawn at their wire factory at Hay mills, near Birmingham. This wire approaches to steel in regarel to strength, hut lyy some peculiarity in the mode of preparing i^{+}, is deprived entirely of that springiness which prohibits altogether the use of stecl as a covering for the outsides of submarine eables. Ten wires were laid spirally round the core, and each of these wires was of No. 13 gange, and was under contract to bear a strain of 8.50 to $1,100 \mathrm{lb}$., with an clongation of half an inch in cyery fifty inches within those breaking limits. The Cable, as competed and surounded by these wires, had not the slightest tendency to spring, as would be the ease if the metal were hare steel, and could be handled with great facility.

Before, however, these ten wires surounded the core, cach sepurate wire had to be itself covered with a jacket of tarred Manillia yarn, the object of which is at once to proteet the iron from rust and to lighten the specific gravity of the mass, while adding also in some degree to the strength of the external portion of the Cable. The wire was drawn horizontally forward over a drum through a hollow cylinder, on the outside of which bobbins filled with Manilla yarn revolved vertically, and the yarns from these bobbins, being made to converge around the wire is it issued from the end of the cylinder, were thas spun tightly round the former. These Manilli-covered wires being wound upon large drums ready for use, the core, which we left some time back surrounded with jute, was passed round several sheaves, which conducted it below the floor of the factory, from whenee it was drawn up again through a hole in the centre of a cireular table, around the circumference of which were ten receptacles for ten drums, containing the Mamilla-covered wire. Between these drums massive iron rods, fastencd to the circumference of the table, rose, and converged around a small hollow cone of iron through the upper flooring of the factory, at a height of 12 or 14 feet above the table. The jutecovered core was pulled up vertically, and passel on straight through the hollow interior of the cone alrealy mentioned, which latter formed the apex of the converging rods. This done, the ten wires from the ten drums were drawn up over the outside of the same cone, and as they rose heyond it converged around the core, which latter, being free from the revolving part of the machinery, was simply drawn out; while the circular table being now set revolving by stean power, the ten wires from the drums were spun in a spiral around the core, thus completing the Cable, which was hauled out of the factory by the hands of men, who at the same time coiled it into large iron tanks, where it was covered with water,
and was daily subjected to the most eareful electrieal tests, both by the very experienced staff of the contractors and loy the agents of the Atlantic Telegraph Company.

The distance from the western coast of Ireland to the spot in Trinity Bay, Newfoundland, selected as the landing-place for the Cable, was a little over 1,600 nautical miles, and the length of Cable contracted for, to cover this distance, including the "slack," was 2,300 knots, which left a margin of 700 knots, to cover the inequalities of the sea-bed, and to allow for contingencies. On the first oceasion 2,500 statute miles were taken to sea, the distance to the Newfoundland terminus on that oceasion being 1,640 nautical miles; and, after losing 385 miles in 1857, and setting apart a further quantity for experiments upon paying-out machinery, sufficient new Cable was manufactured to enable the Niagara and Agamemnon to sail in 1858 with an aggregate of 2,963 statute miles on board the two ships, of which about 450 statute miles were lost in the two first attempts of that year, and 2,110 miles were finally laid and worked through.

The greatly increased weight and size of the Cable would have made the question of stowage a very embarassing one had it not been for the existence of the Great Eastern steamship, there being no two ordinary ships afloat that would be capable of containing, in a form convenient for paying-out, the great bulk presented by 0,300 miles of a Cable of such dimensions. This bulk, and the now acknowledged neeessity for keeping Cables continuously in water, made their influence to be felt in a very expensive manner to the Company and to the contractors throughout the progress of the work, even at this early stage. The works at Morden Wharf had to be to a very large extent remodelled to meet these contingencies. Eight enormous tanks, made of fiveeighths and half-inch plate iron, perfeetly watertight, and very fine specimens of this deseription of work, were erected on those premises, and these tanks then received au aggregate of 80 miles of Calle per week. Four of the tanks were circular in shape, and each contained 153 miles of cable, being 34 ft . in diameter and 12 ft . deep. The other four were slightly elliptical, being 36 ft . long by 27 ft . wide, and 12 ft . deep, and contained each 140 miles. The contents of all these, as they became full, were transferred to the Great Eastern at Sheerness, for which service the Lords of the Admiralty granted the loan of two sailing-ships, laid up in ordinary at Chatham, namely-the Amethyst and the Iris.* These ships had to undergo very considerable alteration to

[^3]

$$
-(\mathrm{m},-\mathrm{l}
$$
render them suitable for the work, portions of the main deck having to be removed-fore and aft--to make room for watertight tanks, which here, as elsewhere, were to be the medium for holding the Cuble. The dimensions of the two tanks on board the Amethyst were 29 ft . diameter ly 14 ft . 6 in. in depth, and each held 153 miles of Calle; of those on the Iris, one was 29 ft . diameter and 14 ft .6 in. deep, and held $15: 3$ miles, und the other held 110 miles, and was 24 ft . wide, and 17 ft . deep.

The Great Eastern steamship was fitted up with three tanks to receive the Cable, one situated in the forehold, one in the afterhold, and the third nearly amidshinn. The bottoms and the first tier of phates were of five-eighths iron, and each tank, when completed to this height, and tested as to its tightness by filling it with water, and found or made to be perfectly watertight, was let down from its temporary s pports on to a bed of Porthand cement, three inches in thickness, and the building up and riveting of the remaining tiers was continued. The beams beneath each tank were shored up from the floor beneath it down to the kelsou with niue inches Baltic baulk timber, and it will give some idea of the magnitude of the work to state that upwards of 300 loads of this material were required for this purpose alone. The dimensions of the fore tank were 51 ft .6 in . diameter by 20 ft .6 in . in depth, and its capacity was for 693 miles of Cable. The middle tank was 5.3 ft .6 in . broad, and 20 ft .6 in. deep, and held 899 miles of Cable, and the nfter ta_k was 58 ft . wide and $20 \mathrm{ft}$.6 in . deep, and contained 898 miles. The three tanks were thencfore capable of containing in all 2,490 miles of the new Cable.

The experience gained on hoard the Agamemnon and Nagara, and the practical knowledge obtained by the telegraphie engineers, were turned to gool account in erecting the new machinery on the deek of the Great Eastern for paying-out the Cable.

Over the hold was a light wrought-iron V wheel, the speed of which was regu* lated by a friction wheel on the same shaft. This was connected with the paying-out machinery by a wrought-iron trough, in which, at intervals, were smaller wrought iron V wheels, and at the angles vertical guide wheeis. The paying-out machinery consisted of a series of V wheels and jockey or riding wheels (six in number); upon the shafts of the V wheels were friction wheels, with brake stril)s weiglited hy levers and ruming in tanks filled with water: and upon the shafts of the jockey wheels were also friction straps and levers, with weights to hold the Cable and keep it taut round the drum. Immediately before the drum was a small guide wheel, placed under an apparatus called the knife, for keeping the first turn of the Cable on the drum from riding or getting over another turn. The knives, of which there were two, could be vemoved and adjusted with the greatest ease by slides similar to
a slide-rest of an ordinary tuming-lathe. One knife only was used, to ann teing kipt realy to replace it if necessary. The drum, round which the Cuble \cdot. inas G feet diancter and 1 frot hroad, and upon the same shaft were fixed two Appold's lrakes, roming in touks filled with water. 'There was ulso a duplicate drum and pair of Appold's brakes fitted in position and rearly for use in case of accident. Upon the owrlanging cints of ihe slafts of the drums driving pulleys were fitted, which could he comected by a leather helt for the purpose of hringing into use the duplicate brakes, if the working brakes should be out of order. Between the duplicatr drom and the stern wheed were pheed the dynamometer and intermediate whels for indiating the strain upon the Cable. The dynumometer wheel was placed midway letween the two intermedinte wheels, and the strain was indicated by the rising or falling of the dynamometer wheel on a graduated seale of ewts. attached to the guide roxls of the ilymmometer slide. The stern wheel, over which the Cable passed when leaving the ship, was a strong V wheel, sulported on wrought-iron girlers overhanging the stern, and the Cable was protected from injury liy the flanges of this wheed by a bell-mouthed cast-iron shich surrombling half its circumference.

Close to the dymmometer was phacel an apparatus similar to a double-purchase crab, or winch, fitted with two steering wheels, for lifting the jockey or riding wheels with their weights and the weights on the main brakes of the drum, as indications were shown upon the dynamometer scale.

All the brake wheels ran in tanks supplied with water ly pipes from the padde-box tauks of the ship.

The Cable passed over the wrought-iron V wheel over the tank along the trough, between the V wheels and joekey whecls in a straight line ; four turns romend the drum where the knife comes into action over the first intermediate wheel, under the dynamometer wheel, and over the other intermedinte and stern wheels into the sea.

This dynamometer was only a heavy wheel resting on the rope, but fixed in an upright frame, which allowed it to slide freely up and down, and on this frame were marked the figures which showed exactly the strain in pounds on the Cable. Thus, when the strain was low the Cable slackened, and the dynamometer sumk low with it ; when, on the contrary, the strain was great, the Cable was drawn "tant," amb on it the dynamometer rose to its full height. When it sunk too low, the Cable was generally ruming away too fast, and the brakes had to be applied to check it; when, on the contrary, it rose rapidly the tension was dangerous, and the lrakes had to be almost opened to relieve it. The simplicity of the apparatus for opening and shutting the brakes was most beautiful. Opposite the dyna-

mometer was placed a tiller-wheel, and the man in charge of it never let it go or sla kened in his attention for an instant, but watched the rise and fall of the dynamometer as a sailor at the wheel wateles his compass. A single movement of this wheel to the right put the brakes on, a turn to the left opened them. A good and experienced hrakeman would generally contrive to avoid either extreme of a high or low strain, though there were few duties connected with the laying of submarine caldes which were more anxious and more responsille while thry last, than those comected with the management of the loukes. The whole machine worked beautifully, and with so little friction that when the brakes were removed, a weight of 200 lb . was sufficient to draw the Cahle through it.

In order to guard against any possible sources of accident, every preparation was made in case of the worst, and, in the event of very bad weather, for cutting the Cable adrift and lonoying it. For this purpose a wire rope of great strength, and no less than fire miles long, laving a distinctive mark at every 100 fathoms, was taken in the Great Eastern. This, of course, was only carried in ease of desperate eventualities arising, and in the earnest hope that not an inch of it would ever be recpuired. If, as unfortunately happened, its services were wanted, the Cahle could be firmly made fast to its extremity, and so many hundred fathoms of the wire rope, according to the de, the of water the Cable was in, measured out. To the other end of the rope an immense buoy was attached, and the whole would then lee cut adrift and left to itself till better weather.

On the 24th of May, His Royal Highness the Prince of Wales, aecompanied by many distinguished personages, paid a long visit to the Great Eastern, for the purpose of inspecting the arrangements made for laying the Calle. His Royal Aighness was received by Mr. Pender, the Chairman of the Telegraph Construction Company ; Mr. Glass, Managing Director ; and a large number of the electricians and officers comected with the undertaking. After partaking of breakfist, the Prince visited cach prortion of the ship, amb witnessed the transmission of a message sent through the coils, which then represented in length 1,395 natical miles. The signals transmitted were seven words, "I WISH SUCCESS TO THE ATLANTIC CABLE," and were received at the other end of the coils in the course of a few seconds-a rate of speed which spoke hopefully of suceess.

On Monday, the 2:Oth of May, the last mile of this gigantic Cable was completed at Glass, Elliot, \& C'o's wonks: an event celchnated in the presence of all the eminent seientific men who had latwored so zealously in the promotion of the
mulertaking at Greenwich. When the tinkling of the bell gave notice that the machine was empty, and the hast coil of the Cable stowed away, the mighty work, the accomplishment of which was their dream by night and their study by day, strai completed. For eight long montlis the huge machines laad been in a constant whirl, manufacturing those twenty-three hundred nautical miles of Cable destined to perform a mission so important, and yet it would be difficult to point to a single hour during which they did not yield something to cause care and anxicty.

On Wednesday, the 14th of Jume, the Ametlysst completed her final visit, and commenced to deliver the last instalment of the Cable to the Great Eistern.

On the 24 th the Great Eastern left the Medway for the Nore, carrying 7000 tons of Cable, 2000 tons of iron tamks, and 7000 tons of coal. At the Nore she took in 1,500 additional tons of coal, which brought her total dead-weight to 21,000 tons.
Mr. Gooch, M.P., Chairman of the Great Eastern Company and Director of the Telegraph Construction aud Maintenance Company ; Mr. Barber (Great Eastern), Mr. Cyrus Field, Captain Hamilton, Directors of the Atlantic Telegraph Company ; M. Jules Despescher ; Mr. H. O'Neil, A.R.A. ; Mr. Brassey, Mr. Fairtaim, Mr. Dudley, the representatives of some of the principal jounals, and several visitors, went round in the vessel from the Nore to Ireland.

The whole of the arrangements for paying-out and landing the Cable were in charge of Mr. Canning, princijal Engineer to the Telegraph Construction and Maintenance Company, Mr. Clifford being in charge of the machinery. These gentlemen were assisted by Mr. Temple, Mr. London, and eight experienced engineers and meehanists. A corps of Cable layers was furnished by the Telegraph Construction and Maintenance Company.

The Electrical Staff consistell ot

C. V. de Sauty . Clinef.
H. Saunders

Electrician to the Malta and Alexandria Telegralph.
Willoughby Smith
Electrician to the Gutta Percha Company.
W. W. Biddulph . Assistant Electrician.
H. Donovan . . Do.
O. Smith . . . Do.
J. Clark . . . Do.
J. T. Smith . . Instrument Clerk from Malta and Alexandria Telegraph. J. Gott . . . Do. Do. Do.
L. Schaefer . . Mechanician.

The Stuff at Volentic uces composed of

| J. May Superintendent. | | | |
| :--- | :--- | :--- | :--- | :--- |
| T. Brown Assistant Electrician. | | | |
| W. Crocker | Do. | | |
| G. Stevenson . . | Instrument Clerk from Malta and Alexandria Telegraph. | | |
| E. George | Do. | Do. | Do. |
| H. Fisher | Do. | Do. | Do. |

All the arangements at Valentia were under the direction of Mr. Glass.
Mr. Varley, chief electrician to the Atlantic T'elegraph Company, was appointed to report on the laying of the Cable, and to see that the conditions of the contract were complied with. Associated with him was Professor W. Thomson, LL.D., F.R.S., of Glasgow. His staff was composed of Mr. Dcacon, Mr. Medley, Mr. Trippe, and Mr. Perry.

Several young gentlemen interested in engineering and science were accommodated with a passange on board.

At noon on July 15th the Great Eastern, in charge of Mr. Moore, Trinity pilot, druwing 34 ft .4 in . forward, and 28 ft .6 in . aft, got up ler anchor, and at midnight on July 16 th was off the Lizard. On Monday, 17 th, she came up with the serew steamer Caroline, freighted with 27 miles of the Irish shore end of the Cable, weighing 540 tons, and took her in tow. Then a gale set in, which gave occasion to the Great Eastern to show her fine qualities as a sea-loat when properly handled. Even those who were most prejudiced or most diffident, admitted that on that score no vessel could behave better. This trial gave every one, from Captain Anderson down, additional reason to be satisfied with the fituess of the great ship for the task on which she was engaged. Next day, T'uesday, July 18th, she encountered off the Irish coast a strong gale with high westerly sea, through which she run at the rate of six knots an hour. The Caroline, which rolled so heavily and pitched so vigorously as to excite serious apprehensions, broke the tow rope in the cousse of the day, and ran for Valentia harbour, where she arrived safely, piloted by the Great Eastern ; and the Great Eastern, passing inside the Skelligs, stood in close to Valentia Lighthouse, and sent a boat ashore to communicate. H.M.s. Terrible, Captain Napier, and H.M.S. Sphinx, Captain V. Hamilton, were visible in the ofting, having sailed at the end of the previous week from Queenstown for the rendezrous, outside Valentia. Captain Anderson having fired a gun to announce his arrival, steamed for Berehaven, in Bantry Bay, and anchored inside the island on Wednesday morning, July 19th, in 17 fathoms. Here the Great Eastern lay, preparing for her great
errimd-perhaps, as it may prove, her exclusive " mission,"-on Thursday, 20th, Friday, 21st, and Saturday, e2nd July, whilst the Caroline was landing the shore end of the Cable in Foilhummerum Bay in Valentia. During her stay in Bantry Bay, many visitors, high and low, came on board the Great Slip, but it was belicved all over the country that she was going to Foilhummerum. The greater portion of those anxious to see her male the best of their way t, that secluded spot, to which there was once more attached an interest of a civiliwad character ; for, if comntry legends be true, there must have been some regard paid to Foilhummerum Bay by no less a person than Oliver Cromwell, testified yet by the grey walls of a ruined fort, and traces of a moat and outer wall, on the greensward above the point which forms the northern entrance to the lonely bay. This crisp greensward, glistening with salt, lies in a thin crust over the eliffs, which rise shecrly from the sea some three or four linndred feet ; and for what Oliver Cromwell or any one else could have crected a fortalice thereon, may well battle conjecture, umless the builder; having a far-reaching mind, saw the importance of watching the most westerly portion of Europe, or anticipated the day when Valentia would be recognised as one of the landmarks created ly the necessities of commercial and social existence. Taking advantage of the shelter afforted by a gradual descent inland of the soil, a few cabins have been placed by the natives-half-fishermen, half-huslandmen-Archytas-like, spaming land and sea, and making but poor subsistence from their efforts on both. The little bay, which is not much above a mile in length, contracts from a breadth of half so much, into a watery cul-de-sae, terminated by steep banks of shale, earth, and high eliff, furrowed by watereourses; and on the southernmost side it is loeked in by the projeceing ledges of rock forming the northern entrance to the Port Magee chamel, It is su guarded from wind and sea, that on one side only is it open to their united action, but as the entrince looks nearly west, the full roll of the Atlantic may break in upon it when the wind is from that point; and indeed there is not wanting evidence that the wild ocem swell must tumble in there with frightful violence. Jagged fragments of masts and spars are wedged into the rocks immovably by the waves, and the cliffs are gnawed out by the restless teeth of the hungry water into deep caves. But then a sea from that point would run parallel with the line of the Cable, and would sweep along with and not athwart its course, so that the strands would not be driven to and fro and ground out against the bottom. Except for a couple of hundred feet near the shore at the top of this cove, indeed, the bottom is sandy, and the rocks inside the sand line were calculated to form a protection to the Cable, once deposited, as the greater part of its course liay through a channel which had been cleared
which
Oliver
y well w the ted the by the shelter
\qquad g land little
\qquad
h, and ked in
Magee
t open of the indeed there into estless would
d not
0 and or the inside

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences

$$
7
$$

11
of the boulders with the intention of rolling them back again at low water, to cover in the shore end. Lieutenant White, and the hardy and hard-working sailors of the Coastguard Station at Valentia, had been indefatigable in sounding and buoying out a channel from the beach clear out to sea, within which the Caroline was to drop the Cable. A few yards back from the cliff, at the head of the cove, the temporary Telegraph Station reared its proportions in imitation of a dwarf Brompton boiler-a building of wood much beslavered with tar and piteh, of exceeding plainness, and let us hope of corresponding utility. Inside were many of the adjuncts of comfort, not to speak of telegraphic luxury, galvanometers, wires, batteries, magnets, Siemens's and B. A. unit eases, and the like, as well as properties which gave the place a false air of campaigning. A passage led from end to end, with rooms for living and sleeping in to the right and left, and an instrument room at the far extremity. Here, on a narrow platform, were the signal and speaking apparatus connected with the wires from the end of the Cable, which was secured inside the house. Outside the wires were carried by prosts in the ordinary way to the station at Valentia, whence they were conveyed to Killarney, and placed in communication with the general Telegraphic system over the world. The Telegraphic staff and operators were lotged in primitive apartments like the sections of a Crimean hut, and did not possess any large personal facility for enjoying social intereourse with the outer world, although so much intelligence passed through their fingers. But Foilhummerum may in time become a place with something more real than a future. If vessels from the westward do not like to make 'heir number outside, there is nothing to prevent their running into Valentia for the purpose, at all events. On the plateau between the station and the cliff, day after day hundreds of the country people assembled, and remained watching with exemplary patience for the Big Ship. They came from the mainland across Port Magee, or flocked in all kinds of boats from points along the const, dressed in their best, and inelined to make the most of their holiday, and a few yachts eame round from Cork and Bantry with less rustic visitors. Tents were soon improvised by the aid of sails, some eloths of canvas, and ours and boathooks, inside which bucolic refreshment could be obtained. Mighty pots of potatoes seethed over peat fires outside, and the reek from within came forth strongly suggestive of whisky and bacon. Flags fluttered-the Irish green, with harp, crown surmounted; Fitzgerald, green with its blazon of knight on horse rampant, and motto of "Malahar aboo "一faint suspicion of Stars and Stripes and Union Jack, and one temperance banner, audaciously mendacious, as it flaunted over John Barleycorn. Nor was music wanting. The fiddler and the piper had found out the island and the festive spot, and seated on a bank, played planxty and jig to a
comple or two in the very limited circle formed in the soft carth by phastic feet or ponderous shoemasonry, around which, sitting and standing, was a dense crowd of pell-bound, defighted spectators. In the bay lelow danced the lighe canvascoverel eanoe or comele in which the native fishermen will face the mountain lillows of the λ thantic when no other boat will venture forth; and large yawls filled with country people passed to and fro, and the bright groupings of colour formed on the cliffs and on the waters by the red, scarlet, and green shawls of the women and girls, lighted up, the seene wonderfully.

It would he gratifying if in such a primitive spot one could shut his eyes to the painful evidence that the vices of civilisation-if they be so-had erept in and lipit the souls of the people in dangerons pleasures. But it could not be denied that the spirit of gambling and goummadise were there. Seated in a diteh, with a borard on their knees, four men were playing "Spoil Five" with carts, for diserimination of which a special gift must have been required; but they were ats silent, eager, and grave, as though they hat been Union or Portland chanpions contesting last trick and rul. Near them was one who summoned mankind to tempt eapricious Fortume ly mems of an iron skewer, rotating an axis above a piere of tarpanlin streteled on a rucle table, which was enlivenet l,y rays of vivid colour. At the end of cach ray was an object of art-the guerdon of success-an old penknife, brass tobacco-hox, tooth-comb, thimble, wooden mutmeg, or the like. A very scarecrow professor of legerdemain and knawery hid his peat, and challenged detection, and divided public: attention with a wizard who presided over a wooden circle with a spinning needle in the centre to point to rutii, at end of which were copper moneys deposited by the adventurers, who generally saw them whiskel off into the magician's grimy pocket. An aucient woman, spiming, and guarding a basket of most atrabilious eonfectionery, and a stall garnished with buttons and gingerbread, completed the attractions of Foilhmmmerum during this festive tinee.

The matter of wonler was, what the people flocked to see, for it must soon have been known the Great Eastern was not there. The Hawk and the Caroline, as they went into Valeutia, did duty successfully for the Big Ship, and the steam-yacht Alexiundra, belonging to the Dublin Ballast Board, and I1.M. tender Advice, created a sensation as they appeared in the offing on their way to the sime rendezvons. All that related to the Cable and the laying of it possessed the utmost interest for the country people, simply because the Cable went westwarels across the occan to the home of their hopes. Many of the poor people believed that it would facilitate communications with their friends in the land to which their thoughts we for ever touling, remembering

perhaps the words of Lord Ciutisle when be told them of the alvantages the 'Tlelegraphic Cuble would confer upon them.

The village of Kuightstown witnessed an umsual influx of visitors, and those whom the hospitable roof of Glenlean could not stretch its willing caves over, found something more than shelter in the inn and in the comfortable houses which acted as its suremsules on the orrasion. But there was in the midat of all the pleasinable cxritement of the moment a tinge of dissatisfaction, because the people had persuaded themselves that if they were not to see the Great Eastern in the harbour, they would at least have H.M.S.S. Terrible and Sphinx, and the satellites of the Leviathan in their anchomge, and all they beheld of the men of war was their smoke and faint outlines on the distant horizon.

The Terrible and Sphinx might have coaled in Valentia, and waited there for the arrival of the Great Eastern, of which they could have heard by telegraph, instead of towing colliers to Cork and going into Berehaven, where there is no telegraph. Now, as to this harbour, let it he admitted at onee that its entrance is only 180 yards broal. But the "Narrows" of Valentia Harbour is like a very short neck to a bottle, und after less tham a ship's length, the channel enlarges sufficiently to allow several vessels to sail abreast in water whieh is never rough enough to prevent the passige of loats to Begennis or Renarl Point. Indeed, Capt. Wolfe's report to the Hydrographer to the Admiralty expresses an opinion that the Needles' passage is more intricate and dangerous. The Skelligs on one side and the Blasketts on the other mark the approieh very distinetly. Inside, there is 600 acres, or more than a square mile, of harbour, with good holding ground, having a maximum of six furlongs and a minimum of three furlongs water.

The disappointment caused by the cautious indifference of the Terrible and Sphinx to the advantages of lying snugly inside Valentia Harbour was felt acutely. The Knight of Kerry, who has taken such an interest in the undertaking, and all the inhabitants, regarded it as a mark of distrust in the safety of the anchorage and in the facility of aecess to it, which was without any justification, and some aseribed it to less creditable influences and oljects; but no one could believe that the officers in command of the ships kept out ut sea in such weather, wearying the crews and wasting coals, without direct orders, or that they would hesitate to ron in, if left to themselves, as soon as it was evident the point of rendezvous ten miles from shore was not intended as a permanent station. The harbour had been visited by H.M.S.S. Stromboli, Hecate, Leopard, Cyclops, the U.S. frigate Susquehanna, and many large merchantmen, including the Carrier Dove, a vessel of 2,400 tons.

On July 19th a channel was made down the cliff to the beach for the shore
chel of the Cable, which was carried down in an outer ease through a culvert of masonry, and deposited in a cut made as far into the sea as the state of the
 Varlese phan, wan cariel out into the hay from the station, and saffly depmited matride the chamel marken for the Calke. 'Tlue (aroline went round from Salential to Foilhmmarrum, and on July gend the shore coul of the Cable was ramied from her wer a hridge fommed of twenty-five yawla belonging to the district, amid great cherering, and hauld up the clifls to the statiom. The suffe arrisal of the teminal wire in the building, in the presene of a large asemblage, took place at 1245 , Gremwinh time, mul as the day was fine, the seene, to which the theet of lwats in the hay gave musual ammation, was witnessed to the greatest advantage.

When the excitement cemsed hy the lameing of the Gahk wats abated, the Kuight of Kerry was malled (in to spoak to the perople assembled outside the Instrument lioom, and said :-"I feel that in the presence of so many who have taken an artive and a newful part in this umbertaking, it may serm almost prosumpturn in me to open my mouth on this measion ; hat from the very logimning I have folt an interest which 1 am sure the humblest person here hats alsin felt in the surcess of this the greatest mutertaking of molern times. I brimer there mever has heon an muldertaking in which, not to speak dispurag. ingly of the commercial firit and the great resomeres and strength of the land, that valuable spirit has been mixel ul with so much that is of a higher muture, combining all the most nolle sentiments of our minds, and the feelings intended for the most beneficial purpose, which are ealeulated to cement one grent universe, I may say, with another. I do not think we should he quite silent when surh an madertaking has been innugnated. It has been disenssed whether this ceremony should be opened with a prayer or not. Whether that shall lee done or not, I am sure there is mot a person present who does not feel the utmost thamkfulness to the Giver of all Good for having cmabled those who have taken an active part in it to bing this great modertaking to what 1 am sure will have a haply issue. I do not think :mything could be fitly added to the sentiment of the first message which was conveyed, namely-- Glory to Goxt in the highest, on carth peace, gool will toward men.' I shall not detain you with another word, hat will only ask you all to give the heartiest cheers for the suceess of the undertaking. I will also take the liberty of asking you, when you have done that, to give three checers for a gentleman who has come here at great inconvenience, and has done us very great honour in doing so, and who descrees them, not only from his position and character, but also from
ulvert of the 11 Nr. msited from de was to the he sale whlage, which to the
al, the de ther a have almost (1) very in here times. Nantige land, nature, atended great silent the ther t shaill ied the se who $t \mathrm{l}$:m added - Glory all not cartiest asking ho has
doing so from

the interest which he has always shown in this undertaking. I call upon you to give three hearty eheers for Sir Robert Peel."

The meeting responded very heartily to the call, and when silence was restored, Sir Robert Peel siid : "Gentlemen, as the Knight of Kerry has well olserved, this is one of the most important works that this country conld have heen engaged in, inasmuch as it tends to draw us together in a link of amity and friendship, with a mighty continent on the other side of the Atlantie. I trust, as the Knight of Kerry las so justly olserved, that it may teme not only to promote the peace and commeree of the word, lut that it may also lead to a umion of feeling and to good frllowship between those two great comentries; and I trust that as it has been so happily inangurated to-liay, so it may be sueressful under the exertions of those who have taken part in it to-liay ame for some time $p^{\text {nost }}$. (imntemen, I think the progress of this mulertaking hesiowes that we should pay the highest compliment to those who hase ben a tively rugaged in carrying it out to the stage at which it has arviser We are abuut to lay down, at the very buttom of the mighty Atlantie, whirh heats against sour shomes with everlasting pulsations, this silver-toned zone, to join the S'nited Kingdom and Ancrica. Along that silver-toned zone, l trust, may pass words which will teme to promote the commere amd the interest of the two countries; and 1 am sure we will offer up prayers for the suceess of an malertaking, to the aremplishment of which persevering industry and all the mrelanieal skill of the age have been brought to bear. Nothing has been wanting in human skill, and therefore for the future, as now, let us trust the hand of Divine Providence will be upon it : and that as the great vessel is about to stem acmoss the Atlantie no mishaps or misfintune may necur to imperil or obstruet the surcess of the work whirh hats now been so happily commenced. I ask you all to give a chere in homour of my molle friond here, the Kinght of Lerry, who has just begon the work."

The demand was enthusiastieally emplied with, for the Kinight is an immense favourite with all the dwellers in lis little deminion.

Sir Rolert l'eel then sairl: "Now, gentlenen, prolally one of the first messages that will be sent lay this Cable will be a communieation from the sovercign of this great country to the great merer of the mighty continent at the other side of the Atlantic. I will azk you to give three cheers for her Majesty the Queen." (Cheers.) Sir Rolurt P'ocl in conclusion, saild: "I give you, with hearty grool will, health aut happiness to the ruler of the United States, l'resident Johnson." (The toast was reerived with low cheers.)

Mr. Chiss, who was called on to arknowledge the hearty reception given to his name and the Compan's, sail: "On behale of myself and those comncted with
me in this modertaking, I beg to returu gou thanks. I am glat that our labmurs hate becol "pipreciatad by those aromed us. I assure gou that the work that has beren so farl completed has beem a souree of great amsiety to he all ; hut that anxicty has leen relieved very meh ly the fact that we have now huded a Chble which we one and all believe to be perfect. I helieve that mothing em interfere with the sureessful laying of the C'able lout the hand of the Almighty, who rules the wimls and waves. So far as haman skill has gome, 1 believe we have prowherd all that cam lo desimed. Wre new offor ipe mur prayers to the Amighty that Ho will grant suteress to our umbertaking."

The Doxology was then smug, with which this part of the proeredings elosed, aml the clectricians busied themselves with seeuring the shore eme comfided to their charge in its new home.

At 2 billork in the afternom the C'aroline, towed by the Hawk, and

 mesoge was sont through the Gable to Frithmmermen, and a dispatch was furwardel to the Gerat Eistern, in Batry Bay, to come romed with all sured.

 returnel from the (arolime in the comse of the might, got up stram and left
 basenger fin the Great Eastern, amme the former lwing Sir R. Pon, the Kuight of Korry, and C'aptain Lowd doln Hay, liy 3 p.m. the Hawk hat reatherl the

 the limulward end of the main Cabla form the after tank of the Great Eastern, and
 the wht of the main Calle to the Carolime Sir li. Peel, the Kinght of Kerry, Lard Johm ILay, Mr. Caming, and others, got on lomed the (ireat Eastern in sucersion tripe of the lawk's hats : but the ladies, who had comes so far and had sutficired tow in mider to ser the finmoms vessel, comble not ronture, as there was at swell our which made it dillicult to ambark on : 1 proarh the gangway ladders. After an homis enjogment of the almost terrestrial straliness of the Great Easterm, the visitors departed, amid lomed rheres, to the hawk, and at 5.10 p.m. it was repred by the elertricians that the tests of the splice loetween the main Cable ame the shore rud were complete, and that the shore end was much improved in
its clectrical condition by its immersion in the water. The boats were hoisted in by the men-of-war and ly the Great Eastern, adienx and grond wishes were exchanged, and, with 'reats full of confidence, all on loard wet about the work lofere them.
'The light of the C'abla was slipued from the C'iroline, at $7 \cdot 15$ p.m., and the Great Eastern stood slowly on her course N.W. 1 W . Then the 'Te rible and Sphens, which hat ranged up ahmensile, and sent their (rews intu the shrouds and up to the tops to give her a parting cheer, defivered thor frimolly houdsides with vigome and rearived a similar grewting. Their colous were hathed down, and as the sme set a hooul stram of golden light was thrown armas the smonth billows towards their lows as if to indicate and illumine the path marked ont hy the hame of Heavel. 'The hrake was eased, and as the Great Eastern moved ahoal the

 seat orer the stern where. The (Ghle came up with ease from the after tamk, and was payedront with the utmont regulaty from the "lparatus. 'The systom of sigmals to and firm the ship wats at once in play between the eleertricians on bward and thase at lioilhummerme. On hard there were two representative boties --the chectricians of the Telcgraph ('onstruction and Mantename Compmy,
 Vandey, Profesen Thomson, and assistants. The former were to test the deetrial state of the Cable ats it was heing payd-out, and to keep up sigmats between the ship and the shore. 'The latter, who hat he pewer of interference or control, wore simply to erpert on the tosting, and to eartify, on their arrial in Newfountlamb, whether the Geble fulfilled the eombitions operified in the contract. The merlamisal arrangements for paying-out ther rable were in charge of Mr. ('aming, enginer-in-chicf to the Tolegraph Construction and Maintemane Combbany, whan might be comsidered as having sumpeme control wer the ship out her. In the epace on dedk between the captain's state-room and the entrane to the grand salom, was the 'Trsting-Roum-a dathened damber, into which were led combucting wires from the colds of the Calle, for the matal to which they were subjected by the chectriaims, at a talle whereon were phaced galsamometers and insulation and resistancr-testing machincs.
'lhe instructions for signalling, determined mon ly the detremians of the 'Telegraphic Construction and Aaintenance Company, were as follows:-

1. During the paying-out of the Cable, from the moment of starting until the emb is

2. The tests will be for iusulation, for contimuity, and to determine the resistance of the conductor, the whole length of Cable being joined up in one length.
3. Each serics of tests will commence at the hour (Grecuwich time), and will last one hour.
4. The insulation test will consist of 30 minntes' electrification of the Cable, commencing at the hour, and lasting till 30 minutes past the hour. Readings of the gatvanometer to be taken every minute, commencing one minute after contact with the battery, the hattery to consist of 40 cells.
a. At 30 minutes past the hour signals will be reecived from the shore for 10 minutes. Culess the ship wishes to communicate with shore by special speaking instruments, in which casce, instead of recoiving signals from the shore, ship will put on a C to E current to oppose deflection on shore. Galmanometer to arrest shore attention, and when joinel, give the call as in paragraph ! : the ordinary signals will be \boldsymbol{z} reversals of 2 minutes each.
5. At 40 minutes, C of Cable will be taken to 10 minutes.
6. At 50 minutes signals will be sent to the shore, and for the ordinary signals © reversals, 2 minutes cach, commencing \mathbf{C} to \mathbf{E}.

8 . Then a repetition of the same tests to be mate and contimed withont any interval.
9. In case it becomes necessary to speak to shore by speaking instroments, the signal will be given at the 50 minutes, and at the 30 minutes, as in paragraph 5 , ly sending 8 ? minutes' reversals, commencing $Z \mathrm{Z}$ to E , and changing over to the speaking instruments, on receiving acknowledgment of call from shore (which will be also $8 \$$ minutes' reversals), communication or message to be sent, and when acknowledgment of message and rejly (if any) is received, then the system of testing is to be resumed, as if no iuterruption had taken place.
10. Every 50 natuts, of Cable payed-out will be signalled at the same time (riz, at the 50 mins), thus, instead of 5 reversals of 2 minutes, 10 reversals of 1 minute will be made commencing Z to E .
11. Every 50 nauts. distance run will be signalled to the shore; the signal will be 2 reversals (commencing Z to E), each 2 minutes' duration-2 reversals, each 1 minute's duration, and 2 reversals, each 2 minutes' duration.
12. Should any defeet in signals be perceived, or bad time kept, notice will be given to the shore by signalling at the 50 minutes-thus, ly giving 2 reversals of 5 minutes' duration, commencing Z to E .
13. In sounding, signal will be one current of 10 minutes' duration, Z to \mathbf{E}.
14. Land-in-sight signal will be likewise one current of 10 minutes' duration, Z to E .
15. Greenwich time will be kejpt, but a column will be devoted in journals and sheets to ship's time.
16. After the insulation test is taken, it is to be worked out thus-The same deflection at the 1 th minute's reading will be obtained with the same battery through resistance, and a shunt to the galvanometer. The amount of resistance multiplied by multiplying power of the shant, and galvanometer multiplied by the length of the Cable, will give the G. p. R. pre nt.

$$
1
$$

17. The copper resistance of the Cable will be taken after :" mimutes' electrifiention.
18. No change in the instruments, wires, or comections (other than the batteries, if necessary), to be made on any account, miless such instromente, de., Decome defective-any neeussary rlange to be made as quickly as possible.
19. Should the rolling of the ship gemerate a magnetie curat of suticient strength to embarrass the sigmals, a strugger curvent for the sigmals will be pit on on shere, and a shant used with the galvanometer on board, notice to the shore to put on more power will be given ly one eurrent of is minutes, commencing Z to E, and is reversals of 1 minute's duration.
20. The iron eath of the Cable will be used buth on board and wh shore-other earths, however, to be in realiness for use, if neeessary.
21. Full particulats of every test and every wecurrence in the testingrom to be enterel in jumanal, tuguther with the name of the electricians on duty, and the time of their coming on mat gring off luty.
2. After the end is landed, should sighals fuil, the paying-out system to be resumed matil signals are re-established.
23. In ease of a minute fiult appearing, such as will partially affect the signalling, but which will not stop the commmieation entively, notice will be given to shore to reduce battery power. Such notice will be given at the 50 minutes, by sending is reversals of 1 minute each, commencing Z to \mathbf{E}, and 1 current of is minutes' duration.
-4. A proper supply of lamps, glasses, oil, and wicks; instrument ink and instrument paper, in sufficient quatities; paraffin, wieks, and spare lamp-glasses for the instrument lamp; lamp-brushes, tools, sulphate of sopper, stationery, de., to be always realy for use.
2.). Nu person except those on duty, and the engincers and the offieers authorised by the Atlantic Telegraph Company, to be allowed in the instrument room on any pretence.
26. The batteries to be kept in an efficient state, especially those for sembing reversals -their foree taken periodically, and if any variety oceur, they must be renewed, or brought u_{p}, to the original force.
27. Supplies of every material needful for such purpose to be in constant readiness.
28. The actual end of the Cable to be brought to the instrument tables, and well insulated.

SHIP'S SIGNALS.

To open commonication.-8 reversals, commencing Z to F , cach $\frac{1}{4}$ minute.
50 mats. payed out.- 10 reversals, commeneing Z to E , each 1 minute.
50 nauts. distance run, signal will be, 2 reversals, each 2 minutes, commencing Z to E .

$$
\begin{array}{llllllllll}
" & " & " & \underline{Q} & " & " & \mathbf{1} & " & " & " \\
" & " & " & \underline{9} & " & " & \underline{ } & " & " & "
\end{array}
$$

Defeetive signals.-2 reversals, commencing Z to E , each is minutes.
In soundings. -1 eurrent of 10 minutes, Z to E .
Land in sight.-1 " , " "

Notice to increase power,-1 current of 5 minutes, commencing $7 /$ to E , and ; eversals of 1 minute's duration.

Notice to reduce power. - is reversals of 1 minute, commencing Z to E , and 1 current of 5 mimites.

SHORF:

1. During the paying-ont of the (able, from the moment of etarting until the emd is landed at Newfomblland, a system of testing will be applided withont interminsion.
2. The tests will b_{n} for insulation, for continuity, and to determine the collur mastane of the combuctor:
3. Each series of tests will commence at the hour (Grecowich time), and will last I hour. Buth the insulation and $\mathrm{C} R$ tents will be made mon bad.
4. The insulation test will be made on hared, and to conable that to be dome, the eme of the Cable must be insulated un shore for 30 mimutes, commemeing at the home.

万. At the 30 minutes gast the lour, sighals will he sent to the ship for 10 minutes.
 oppos shores current on his grabrameter, to arrest shores attention, and will, when gained, give the call as in frampaph 10 .

7. At the 40 minates, Cable to be fut to carth direet, withont any instrmant being in cirenit.
8. At the .t) minutes, signals will be received from the ship. 'The ordinary sighal will be or reversals, cad 2 mimute ${ }^{\prime}$ duration.
9. Then a rejetition of the same series to be made and continued.
10. Should ship desire to open commmiation by special speaking instruments, notice will te receivel by a signal of 8 reversals (giving a detlection the oppusite to the ordinary signals) of $\frac{1}{4}$ minutris duration.
11. After retuming the same nignal to the ship as an aknowledgment, the speaking instraments to be put in cirenit, and the message from the ship revivel, and when ackuowledgment of message, or reply, is given, the regular systern of signals to be resmmed as if no iuterruption had vecurred.
12. Every 5 t) mats. of the (abla payed-ont will le signalled to the store by signal (instead of the ordinary signals). This signal will be 10 reversals of 1 minute eachthe first curent giving a deflection the opposite side to the first eurrent of the ordinary siguals.
13. Fivery $\mathbf{5}$ o nants. distance run will be signalled to the shore: the signal will be 2 reversals of 2 minutes' duration, 2 reversals of 1 minute's duration, and 2 reversals of 2 minutes' Jnation-the first eurrent giving a deflection opposite to the first deflection of the first ewrent of the ordinary signal.
14. Should ship receive weak or defective signals, or bad time kept, notice will be given by semding $:$ reversals of 5 minutes cach, commencing the opposite side to the vodinary signals.
1.5. When the ship gets into sommings, notice will be given by sombing one current of

16. When land is in sight, metien will be given by the same signal.
17. Fromwicl, time to lee kept, hat a columen the devoted to local time in the dournals mand she te.
15. So mbnge in instrmments, wives or comections (inther than the haterins, if
 neersany change to low mode as guickly ns possithe.
19. Shand the rolling of the ship wemerate a magnetic corrent of sufficiont strmgth to combarmas the sighals, a stronger coment for tho sighals bust he put on by whore on recoiving notion from the ship; the motice will be given hy 1 current of is minutes', and is reversals of 1 minutes's duration.
 howeser, will be in realiness fore onse if necessary.
$\because 1$. Full partionlars of every oremrence in the testing-roon will be entered in jommats, togerther with the mame of the "hetricians on duty, and the time of their coming on and grining off duty.
$\because 2$. When the end is landed at Nowfomblam, should signals fail at any time, the payingont system to bu resumed until signals pass agatu frecly.
≥ 3. On reeniving a signal of is reversals of 1 mimute's, and a current of imbintes' duration, show mest reduce the hatery power used for sending reversats by one-half, and on ar repetition of the same signal again reduce the power one-half, antil (shoulal notiee contimu to be given to that eftect) the minimum of power be reached.
-4. Shore mat not have the privilane of opening a maversation, or to use or call for the use of the shecial speaking instrments, under any eiremstances, except to give notice of any accilnut that may emse an interruption of sigmals, or that may affect the safety of the Cable or sigmals.
O.). Should any interruption of signals from the ship oceur beason of an accident on board, shore will continue to free the Cable at the umal time, and to put to earth direet at the usual time, and in the intervals to put into circuit with the Chhle a galvanometer, and watch the same for sigmals, and contime doing so until communication with the ship is restored, or information is received ly other means from the ship.
26. On re-establishment of commmication, shore must not ask any yuentions, but take the resumption of sigmals as an indieation of all being well again, and will contime to follow the series of tests as if nothing had hapmened.
27. Shore will take time from the ship; should any irtegularity in the reception of signals from the ship oceur, such irregularity must be entered in jommals, and must not form a gromel for shore's altering his time, but shore must follow blindly cery ehange (should one take place), as if the most correct time had been kept.
28. A proper supply of lamps, glasses, oil, and wicks; instrment ink and instrument paper, in sufficient quantitics; paraffin, wicks, and spare lamp-glasses for the instrument lamps; lamp-bushes, tools, sulphate of eopper, stationery, se., to be always ready for use.
29. No person, except those on duty, and the officers authorised by the Atlantic Telegraph Company, to be allowed in the instrument room on any pretence.
30. The batteries to be kept in an efficient state, expecially those for sending reversals -their force taken ; wrinlically, and if any variation oreur, they must be renewed, or hrought u, to the original fores.
31. Supplies of all materials neeessary for sutila purjuse to be in eonstant readiness.
:i2. The actual end of the Cable to be broight to the instrument tables, and well insulated.

SHORE SIGNALS.

33. Ortinary-5 reversals, cach two minutes, commencing C to E.
34. To open commmieation on acknowledgment.-8 reversals, cach a minute, commencing Z to E .

As the voyage of the Grat Eastern promised to le so interesting to electricians; and enginedre, seveal young gentlemen who worked in the testingroom and in the enginere's department received a passige, as we have mentioned, but there was 10 person on board who was not in some way or other engaged on the bosiness of both companies, or comected with the management of the ship. The voyage commenced most faromably. The rate of speed was increased to 3 knots, then to 4 knots, then to 5 knots, and finally, to $6 \frac{1}{2}$ lenots an homr, and the Cable flew from each coiled flake as if it were eager to push up through the controlling lands of the so-called erinoline, anel to phonge into the sea. At $10.49 \mathrm{p} . \mathrm{m}$., Greenwieh time, 50 miles of C'able had been payed-out, and the process contimed to midnight with equal case and regulanity. In orler to make cach day's proceedings distinct, and to take the reater wer the course so that he can follow the expedition readily by the aid of the acempanying chart, I propose recorting events in the form of a diary.

Mometry, July ath.-The moming was execelingly fine, and the ship proeceded steadily at an arerage rate of 6 knots an hour, with a light favouring wind and a calm sea. Those who were up betimes had just taken a turn or two on deck, wateling for the early dawn, when they observed some commotion in the neighborlood of the Testing-Room, and soon afterwards the shipes engines were slowed and stopperd. According to D'rofessor 'Thomson's galvanometer, which is used in the system emphoyed in testing, a rey of light reflecterl from a tiny mirror suspended to a magnot travels along an sulde, and indieates the resistanee to the passage of the curvent along the Cable by the deflection of the magnet, whinh is marked by the comse of this sleeck of light. If the light of the mirror tavels beyond the index, or out of bomds, an escape of the moment is taking place in the Cable, and

what is technically called a fault has onerured. At 3.15 it.m., whent 8.4 miles of ('ille hat been pairl out, the electrician on duty satw the light suddenly glide to the end of the seale, and then vanish. The whole stafl were at once arousel the news soon flew through the slip. After testing the Calle for some time by signalling to aud from the shore, Mr. de Siunty satisfied himself that the fault which hat oceurred was of a serions character, and measures were taken aceordingly to rig up the pieking-up apparatus at the low, to take in the Cable till the defective portion was reached and cat out. Such an carly interruption to our progress cansed a little chagrin, but the veterms of submarine telegrophy thought nothing of it. Whilst the electricions were testing, to olitain liata respecting the locality of the fault, the fires were got up in the boilers of two small engines on eleck to work the picking-up machinery. At 4 am. a gun was fired by the Great Eatstern to call the attention of the Terrible and Sphinx to our proceedings, and they were also infinmed loy signal of the injury. Notwithstanding the skill and expericuce of the scientific gentlemen on haird, there wats a great vagueness of opinion among theme respecting the place where the fault lay. Some believert the defective part was near the shore, and probably at the splice of the shore cmo with the main Callhe ; others thought it wats castward or westwarl of the same $\mathrm{p}^{\text {hace }}$; and calentations, varied ly uncertain indications given by the currents showing that the fault itself was of a variable character, amd permitted the currents of electricity to eseape irregulaly, were made by the scientifie staff, which fixed it at points from 22 to 42 miles-one at 60 miles-from the ship. But repeated observations gave closer results. Mr. Varley came to the conclusion that the fiult was not very far from the ship; and Mr. Sinuler:, a gentleman who had much experience in fault-finding, arrived at the conviction that it was not more than 9 or 10 miles astern.

The best test taken by Mr. Saunders, $1: 30$ a.m., Greenwieh time, July 20 , after the Cable had been ent down to 78.5 miles, gave-

$$
\begin{aligned}
& \text { Resistance, shore end disconnectel, } 2,600 \text { units. } \\
& \quad " \quad, \quad \text { to earth, } 312 \text { " }
\end{aligned}
$$

Let a and b be the lengths of Cable-conductor, having resistimees equal to the first and second of these numbers; l the length of Ciblle, and D the distane of the fitult. The ordinary formulit gives

$$
\mathrm{D}=b-\sqrt{ }(n-b)(1-b)
$$

Hence, l being 78:5, and a and b being calenlated from the observed copperresistance of the conluctor in the after-tank, and varions assumed tempeatures of the seal, we should have, were the measurements perfect, results ats follows :-

Copper resistance of Cable in after tank, per mintical mile, olserved 4.44 units at 61° temperature.

Distanees of the fanlt calenlated necordingly from cul in ship, when cut at 78.5 miles of eable from shore end.

Hence 4.42 units at 59° temperatime

4%	,	$53{ }^{3}$	"	-	$10 \cdot 1$,
425	"	40^{\prime}	,	-	220	"
402	"	30^{\prime}	"		27.2	

This would give 22 miles for the most prolable distance of the fault, ats 40° is the most proballe mean temperature of the first submergel length of 75 miles. The true distane proved to be very mearly 3 miles. The discrepance is owing partly of course to want of absolute acemala in the measurements, but prohably more to the vaination of the resistance of the fault during the interval between the two measurenents.

Lom chains were lashed firmly to the Ciable at the stem, and secured to the wire rope carried romed outside the ship to the picking-up apmatus at the bows. As the paying-ont stopperl, a strain came on the Cable, which was down in 400 fathoms of water, and it needed nier management to keep the ship stemty, ats she hat no ster rage way: The (Ghbe, having been shatkled and seenred, was severed at 8.50 anm, and flew with its shackling into the sea, plump astern. The stoppers which held the wire rope were released, and the rope was payed-out malidly as the Cahle sumk, in order that the shipis head might be lomght romel, il prosille, so as to take the Cable in over the bows in as straight line with its course.

The Great Eastern dropped to leeward when her engines stopued. When the che of the Cable wats got in over the bows, and the picking-up engine was sat to work, it was discovered that the locomotive boiler intended to keep up a head of stean for the marhinery; was defective. Stemm was then supphed by one of the boilers of the ship: the drums and whecls of the picking-up mathinery began to revolve, slowly dragging in the Galle over the bows, with a strain which at times rose from 10 cwt. to 30 ewt, leaving a very large margin before the beaking point was reached. The shipis bows were kept up to the line of the Cable with great deverness, and Mr. Caming and his assistants were perfectly satisficd with their progressis. It would be too much to expect that all on board should be so easily contented; for in fact the process of pirking-up, is of the slowest-a mild an lom was consid yord to be a fair rate of sueced, and a mile and a-quater was something to bee very thankful for. Still, the prowere of retuming to treland and getting back to the shome end, at the highost of these retrogressive ederities, did not ireve attra-tive. Our position, ly whervation at nom, wats Lat. $52^{\circ} 2^{\prime} 30^{\prime \prime}$, Lomg. $12^{\circ} 17$. $5^{\prime \prime}$. As the Cable was in biar working order, Ahr: Caming tramsmitted a message to Mr: Glass at Knights-

 if the shore end of the cable were defective. If that were th ans, is posed to sacrifice the pertion of Cable alrealy laid, to return 1 nak an spliee of the main line with the shore emd, and to start afrest. Whe womme of the evening a message was recerved from Mr. Glass, informing Mr. Caming that the Hawk should be sent out as som as she had coalen the Caroline. The Trmible sent her First Lientenant, Mr. Prowse, on board, to see if she contd remer us any assistance. The Sphinx was busied in taking summings all romme tha ship, whinh slowed deptlis varying from 400 to 480 fathoms. The neration of pirking up proweeled all day and all aight-the weather being fine but chouly.
 towards the Geratt Eastrin. The wind was still light amd the sea moderoute. Ail during the night the process of picking up was carefully carriont on, the lige Ship hehaving leautifully, and hanging lightly wer the (able, as if fearful of breaking the skmber eorl which swayed up and down in the oceam. Imben, so delieately did she answer her hofon and eoil in the film of therat-like ('alle over her bows, that she put one in mind of an elephant taking up a straw in its proboscis. At $7 \cdot 15$ am., Greenwich time, 93 miles of Cable hawl herell picked up from the sea, and the thin greyish conting of mul which dropped from it showed that the bed of the Athantie here was of a suft ooze. 'Thu Gable hatl bern cut twire on board, to cmado the chectricians to inply tests separately to the coils in the tanks. At 9 am., ship's time, when somewhat more than $10 \frac{1}{1}$ miles hand bem hauled in, to the joy of all the "finult, wats diseovered. The Cathle came in with flagrant evidence of the miselhicf. The cause of so much anxisty, delay, and bitter disappointment turned out to be a pieer of wire of the same kime as that used in the protecting strands of the Cable itself. It was two inches long or su--rather hent in the midelle, with one cond sharp amd hight, as if from a sharp fracture or being rat ley a pair of pliens-the other ber bhat and jaggel. This pime of wire had lwen formed through tha outer consering of the Cable into the gutta prechat, so as to injure the insulation, bat mo ome could teri how it get into the tank. 'The general impurssiom was, that it was a pioce of Gable or other wire which hat bern aceridently warried into the timk, innd forcel into the coil by the pressure of the paying-ont machinery as the Cable flew hetween the jorkey-wheels.

Mensures were at once taken to make a new splice amb joint, rejecting the Cable picked ul, a growl deal of which had been strained in the process. Signals were made to the fleet that the enemy had been detecterl, at 9 a.m., ame the Terrible replied, "I congratulate you." First a spliee was mate in the Cable where

 splice and joint of the enel of Cahbe powarls the whore and the omi from the after tank was mext made. 'Then these splices were earefully testend and fomul berfert, and the stram of "lentricity was one mone sent diberet to Valdentia.

 half a mild of wire had been paid out, when sumbenly all communication between the shew and ship wased altugether: From great contentmont there was sudden
 to emi of the ship, which again lay in restless guict on the watros. 'The fares of the most cherefful berame orerast-ghomy fordodiugs filled munts minds all at mere. Why had the lawk hern semb hadk! Why were not more testematio hnfore she lift? Away workel the electricians in their rowm, comecting and diswomerting, putting in and taking out stns-intensifying and reducing empronts. Not a sign! Not a shadow of a sign! Mr. do Sauty suggested they
 done wrong in sponding time wer the spliwe betwern the two tamks at the critieal moment when they shomblaw herol watehing the signals from the shore
 heads, as if they could learn anything from the dumb mote wires and the elicking of the chrommeters, or fiom the silent operators who lent over the instruments. At $3 \cdot 15$ prom. the Cable betwern the two tanks was again ent, amd examination was mank to make sure merror had lee made in the communications. Again the Wemisome energy of the picking-np apparatus was to be called into play-ome more the (Galle was to be shackled and thown overtoand, and handed up to the hows and pulled ont of the water. Such a Penelone's wed in 24 hours, all out of this single theme, was surely dishearteming. The ('able in the fore and the main tanks answered to the tests most perfectly: But that Gable which went seavard
 fidure of Mr. Fibll were shaken in that supwe home, and in his hoart he may for a moment have sheltwel, though he did not murture, the thonght that the dream of his life was imbed but a chimera. Who could bear up against a life of picking-up? And our paying-unt seemed to have such an unduce share of the

 distane from Heat's loontent, 1,590 miles. The rommmaination with share

 of midnight.

 Whist the spliees were being mathe in Inaided and sume of the deretricians were indined to think that the system wats defertise, bucanse the intervals were so lone

As the seat and wind mas al hathe, the apeed of the ship wats diminishat fome
 night.

 through the heary seit, and burind her bows in form with dugered determination.

The Sphins gate very mmistakal) indications of having a harder migma than she hargained for, as she rongaged in her task of taking soundings, which now had heceme importimt. Wie were getting into deep water, having passed the hank on which there is only 200 fathoms, and hand come suddenly to the shepe begeming with \quad goo fithoms, and rmening in one degree to 1,750 fathoms. This slope is not, however, severer tham that of Hollorn-hill, though it lowks very severe upon the malp. 'Towarls nom the sea aml wind inereased. The Sphene, whieh first sent down topgallant masts, finally sent down topmasts, hut was unable to make heal in the sea way, and dropped further and further astern. At nom our course was W.S.W. 3_{4}^{3} W., the wind being strong on the port how, and the weather thirk all romul, with drizaling mist. Our pesitiom was made ont to be Latt. $52^{\circ} 18^{\prime} 42^{\prime \prime}$, Long. $1.5^{\circ} 10^{\prime \prime}$, Nistaner run $111 \frac{1}{2}$ miles, Cable paid out 125 milss, total distance from Valcutia 18 s miles. At $1 \cdot 45$ p.m. the 'Terrible signalled that the Sphins was mable to keep up with us, lout the Cable was ruming so masily it was resolved not to diminish our speed. latter in the afternom, the Tervild sent down topgallant masts; later again, she signalled that we were gonige tow fast for the Sphinx ; but as the Gireat Eastern was not exceeding (B_{2} knots an homr, at whirh mate the ('alde wolled off easily from the drums, the engineers didl wot think it advisable to reduce her speed, and so the Sphins wass left liuthere astern, till it length she was lull down on the grey horizom. Earch hour it berame mone impertant, to knew what depth of water we were in; and
 defective mature of the arrangements with the Alminalty, which had furnished only
 There was nome on boart of the Great Eastern. In teep-sea somdings a special apparatus is repuisite, and the learls and the lines ordinarily ased by men-of-war mbly penctate the upher stratil of the waters of the Atlantic. It was eonjec-
 ley a slightly increased pressure on the dymmometer, that its trail was lengthening in the watery waste were it ruflled the smooth surface of the one two miles behw. The insulation tests showed an improvement, and the transmission of signals botween the shij, and the shere afforded most satisfactory indications. At night the wind came romud to the north-west, the sea somewhat decrased, and as exening elosed in, the Terrible drew up on our beam, working two lwilers; hut when night fell, the Sphinx wais seareely visilde on the distant horizon.
duly 27 th.-Morning broke on a bright bounting sea amb clear bue sky. From the Testing-Room came gratifying reports of the improved insulation of

the Cable, which had been cansed by the immersion of the Calle in eolder water. We ware now approaching an undulation in the bed of the Atlantic in which the somudings decreased rather abruptly from 2,100 to 1,529 fathoms. The engincers were perfectly satisfied with the mamer in which the machinery was working, and the mode in which the Cable ran out. The complete suceess of the enterprise, after this fair start, appeared to be a matter beyond doubt. The fore tank was now got ready for the paying-out of the Cable as soon as the coils in the after tank should be exhansted, and the framework for the crindine was ereeted over the hatchway: At noon, our position by observation wats Lat. $5 \geq 2^{\circ} 34^{\prime} 30^{\prime \prime}$, Long. $19^{\circ} 0^{\prime} 30^{\prime \prime}$, distance run $1+1$ miles, distance fiom Valdentia 320 miles, Cable paid ont 158 miles. The Terrible was on our port beam at some distance, but the Sphinx was nowhere visible, although our speed had not much exceeded 6 knots an hom. There was in the miversal henevolener of the moment a feeling of sympathy for our lagging guardians. The conviction grew that the work was nearly accomplished. Some were plaming out journeys through the United Stater, wthers speculated on the probability of aport in Newfomudhand : the date of our arvival was already detemined uron. The sound of the piano, a tribute to our own contentment, rose from the salom, and now and then the notes of a violin became centuined in the melodious labyrinth through which the amatewr professors wandered with uncertain fingers. The artists sketehed rigorously. Men stretched their legs lustily along the decks, or penetrated, with easy euriosity for the first time into the recesses of the I eviatham that bore them. None of them inded found out the hiding-place of the ghost who hannts the ship ; but they diseovered crypts under the tanks, and memdered and crept about the shafts and boilens of the tremendous gloominess-vast and dark as the IFalls of Eblis. The ghost on hourd the Great Eerstern, to which I have alluded, is believed to be the disembodied essence of a $\mathrm{p}_{\text {wow }}$ plate-riveter, who disalpeared in some aperture of the naseent ship, never to be seen of mortal eye again, and who was supposed to have been riveted up ly the hammers of preparation so closely that not cern his spirit could escape. And so it, or he, is heard at all hours, with ghostly hammer, talp-tip-tapling on the iron walls of his prison as incessimt as that eruel Ratven, even through the clangour of donkey-engines and the crash of matter. There was now and then is slight indication of masteadiness, which made one uncertain whether the wine was very strong or the Great Eastern unsually froliesome; but, as a matter of fact and truth, not a man alowed cond imagine as he sat in the grand saloon that he was at sea at all. Every hour on board the ship increased our regard for all her qualities, exeppt her eapacity of making noise and producing smoke,
but both of these were tokens and meressary eonditions of her high working encrgis.
 - not a hitell in (allde, marlinery, or ship. It was worth while to go aft and look at the Cable as, every inth seamerl ly watelful ayes, and noterl in laoks, it flew through the whole appaintus of jockers and droms and dyamoneters, and then in a gentle curve skimmed the surfice of the wean more than gol feet astern ere it went "phomp, phomging down amial the assombly of the whates." Our comse was N.W. ? W., and the wind at W.N.W., mint tow strong, was just

 19,50 fithoms in depth. There was sumething almost mometomous in our suc-
 and $t w o$ funnels and paldie-loxes, win the romed bhe shichd of which the Great Easterm was the luss. Evelu the seathirls hand hegun to lease us, and a whate
 as an emved treat. Is the departure of the Sphanx lated left one flamk open, and that the most vulumble, the (ireat Eastern sigmalled to the 'Tervila to

 she remained thronghout the day and night. 'There was a sense of companionship, in sewing her nowr us.
 night." Such was the repert from elentricians, and cugineres, and oflieress this moming. The chetrical combition of the cable furnished results most satisfactory to Mr. Vindey and to Profesme 'Thomson. 'The tests showed that in coppreresistance, insulation, and every other burticular, the ('able was exhiliting an excel-
 and gassed away to sea as easily as the lightuing flash itself; and Yaldotial was joined to us lye a lengthening thend, which sermod stronger and more sentiont as it longthemed. In the night the Thmille had vanished, lut she came in sight in the morning, and drew up eldeer to us. As the sea was calm, and the Cable ran out so beautifully, the sieet of the stemmer, and conserquent rate of paying-sut of the Calle, were increased; and it looked as if there was really no limit to the velocity at which the proeses conld be condured umber favouring diremstances. Yes;
"Hearts Content" on August ith wats emtain. What mould prevent it? The
 again. So we prowd over our maps and marked out the somolings in the little hay in Newfomultand and imagined what sort of phaw it was, as men will do of spots they have nemer risiter.

 Distanee to Ifearts Content, 1.0128 miles. The Great Eastern had passed aree the valley in thu phatem where the Atlantir derpens to $2 .+100$ fithoms. At 9

Hinpy is the Cable laying that has no history. Inere might the days perorel
 ill-omerned activity alout the 'lesting-Rom, whirh hat bern visible for some time, reached its climas. The engines were showed, in five minutes the great ship was motionless. In an instimt afterwards wery one was on derk, and the evil tillings flew from lip to lip. Some thing was wrong with the Cable again. But. the worst was nut known. "Another finlt," was the word. When I went inter the Thesting-Rown :und found all the cherribims so grase, 1 sulpected more serious mischief than a dimination of insulation ; and so it was. They had fomm "deand carth "-in other worls, a complete destruction of insulation, and an muinterrupted escape of the "urent into the scat. Abont its mikes (namtical) had heen payedout when the ship stopled so sumbenly, L'p to a'to odock, p.m. (Greenwich time), signals had been reververl from the shore in regular motime. It 3 ardoek the efectricians on beard hegan to send the corrent thengh to the shore, and in thre minutes afterwards the galsamometer indisated "deal rairth." S s it was pretty clear the injury wass close to the ship, and hatd gone over in the interval between 240 p.m. and $3: 4$ p.m. At $: 3^{\text {h }}: 3^{\prime} 30^{\prime \prime \prime}$ (Giremwich time), the electrician on duty siar the index light of Thomson's galvanometer Hy out of lomuls whilst he was pasing at current to Valentia. The nature of the injury was sor decident as to almit of no douldt.

But in order to make assurance doubly sure two ruts were madr in the Cable, whilst the stem was being got up forward to be in realiness for the most retrograde of all back wari movements-picking-ul? The whole length of ('alld in the tanks was first tested, and fomm to be in allmirable comdition. Then a test outward gave "dead carth" nut firl overbobrel. The mext cut at the bottom of the coil in the after tank gate the same result. The thirel eut was mear the top of the eoil in the after tank, and confirmed the testimony of the other two tests. The usual preparations were then made to shackle the Cable ere
it was cut and rast werlmand with it. tow rope of imon wirw, an preation which always mansed the graves misgrings, It was admitted that there was a

 first it might alluar matural tor burk the ship, and take up the (Gh) from the

 soremed against, "faults." the mond of taking them in would have to be amemed.

This was one of the mont hatassing days we hat yot menementerd; but it prowed 10 to the the most trying we were to comber in our shat eventful histury. Ill our calculations were falsified. Newfomadimel was serom at its trum
 transfer of the ('abld from tern th the how, on every oreasion of pieking-ip).

 ultimate suceres of the caterprise herame strengethened rather than dimimished.

Whilst the texts were luing male the Cable was ruming out lye its own weight and the drifting of the ship, at a strain varying from sowt. to 20 ewt, giviug at "Sery fathom and incrase of labour in the sulsergut pirking "p. The sailons regarded the process of entting the (iblle with distrust; hat the
 system of iron chains, irom rope, strelers, and hights, is wery compliwated. The
 let run out for fear of the ship dragging um it : and to the Enexprieneed ye it lowkent as if the Grat Eastern were bent on smanding the thin hack thead which ent the waves like a knifi-hlinte ass she rose amb fell on the swell. When the strain increasech, the ('ibble rall with an mige of serething form frittering before it harkwats and forwards in the tratek of the ship, taut as a bar of sted. It was a redief to ste the coul "out at last, amd splash wer, with slarkle chain : mel wire mine, inter the watere. Then bexan an orderly tumult of men with stmplers aml giy repes along the bulwats: and in the shomes, and over the buats, from stern to stem, are hength after length of wire repe How ont alter the 'ables. The men water the command of Mr. C:mang were skilful in their work; hat as they mamoned and elambered along the sides, amb over the boats, aud round the paldle-hoses, hanling at hawers, and slipping hights, and holdiug on aml lettiug go stoppers, the sense of risk and fear for the Cable eould not be got out of one's head. The chief otticer, Mr. Halpin, by personal exertion, made himself conspicuous, and rendered effectual assistance ; and Capt.

Anderson, on the bridge, watched and diveted every movement of the ship with skill and vigilanee. But still pitches and foulings wonld take phace for ant instant, amd it needed all ome confidenere in Mr. C'aming and his stafl to tolerate this picking-mp system with any tempere. Thousands of fathons down we knew the che of the malbe was dragging along the bottom, fiereely tugged at by the Great Eastern throgh its iron lime. If line or Gable parted, down samk the Cable for exor. At last ome minds were set at rest by the rommemerment of
 pointed castwards. 'The irom wire rope was at length coming in over the bows through the picking-ny mathiney: ha due, but in weary time, the eme of the ('able appened above the surfare, and was hanled on board and passed aft towarts the drom. The stern is on these oceasions deserted: the datek of wheres, hefore so active, reases; and the forwatel pate of the vessed is rrowited with those engager in the work, and with those who have only to bow on. The little chimmers of the loulers at the bows vomit forth elomk of smoke, the two corentric-looking angines working the piek-up elomes ant
 dymmometer phay their parts, and all is life and hostle forwands, as with slow mentual staming the (ablate is draggen up fem its watery berl.
'The day hatd bern foggy ar mather hazy, Light grey sherets of drizzling cloud Hew over the surfice of the sea, and wet men talking of icebergs and Aretis: stoms; but towards avening the wind foll, and a eold clammy vapour setted down on ship and sea, bringing with it a learlen calm ; so that the wives lost their tumbled erests, and shept at last in ahmost ummomming slumber. bint the ligg ship slept not. The elank and beat of marhinery ceased never, and the elull mill-like ratter of Cable apparatus seemed to become more active as the night wome on. The forge fires glame on her decks, amd there, out in the midst of the Athatic, anvils rang and sparks Hew ; and the spertator thought of some village far away, where the blacksmith worked, mased by ('able anxietios and greed of suecoly mews. As the blaze shot up, ruddy, mellow, and strong, and flumg arms of light aloft and along the glistening decks, and then died into a red
 ing, and strange figures and fines were called out from the darkess-anishedglinted ont again-rushed suddenly into foregromed of hright pictures, which faded soon away-Hickered—went ont—as they were ralled to life ly its warm bereath, or were buried in the outer thakness! Outside as all was olsennity; but now and then vast shatows, which moved across the are of lighted fogbank, were projected far away by the flate ; and one might well pardon the passing mariner
whose bank hiftein him in the night acrows the track of the great ship, if, crossing himself and praying with shuddering lips, he fanced he beleld a phantom ship freightel with an wil crew, and erer after tohl how he had ween the workshms of the luferno floating on the beosom of the oecem. It wats indeed a most womdrons ame unearthly sight! 'The very vanes on the mastheals, the ring-luhts in the hulwarks and deeks, the hooks and the cordage, were tourhed with such brightuess that they shome as if on fire ; whilst the whole of the fore part of the ship was in darknoss ; and on tooking aft, it appeared an though the stem were on fire, or that hae lights were being harnell every moment. For hom after lowr, the work of "picking-up" went on. The term is objectionahle; it rather imdicates a lonisk, lively process-a lind pieks up a wom-a lady picks up a pin-a shapre pirks up a flat -hut the matline working at the lows of the Great Eastern assuredly was not in any one way engaged in brisk or lisely work. Most doggedly at times thid the Cable yirll. As if it knew its home was deep in the bed of the Athantie, and that its insulation and all the oljects of its existence would le gained and bettered ly remaining there, it straned against the power which sought to pull it forth; and the dynamometer showed that the resistance of the rigid corl was equivalent to $2 \frac{1}{2}$ toms. At times, again, it came up merely with coy reluctance, amb again becume sullen as though it were already troubled by the whims of two worlds and partook of their fancirs. No trace was visible of its having tonched the lwtom for the 212 miles which were hauled in, hat the men observed signs of amimal life on it, ant certain creatures which they called "worms" were detached and fell on deck, a specimen of which I sought for in vain. As the Cable was hatuled in, the men who ecoiled it aft, and guided it through the machinery; felt it carefully with their hands to detect any "fault" or injured part, and the line of large ship's lanterns hung up along the deck showed how ceuciully they did their work. It was $5 \cdot 40 \mathrm{p} . \mathrm{m}$., Greenwich time, or abont 3.40 p .m., ship's time, when the end of the Calhe came in board; but it was not till six hours and ton minutes laul elai sed ($9: 50$ prm., ship's time) that the part of the Cable where the mischief lay was pieked up. The defective portion was fomed at the very part of the Cable which was going over the stem when the ocem galvamometer indirated "llead carth." It was at once cut out, and reserved to be examined by Mr. Caming. The necessary ste ${ }^{\text {ss }}$ were next taken to test the rest of the Cable. The shore end was spliced and jointed to a freshend of the Cable from the after tank. These necrations were fimished lefore midnight ; but it was not judged expedient to resume the process of paying-ont till the morning. As yet no one knew the nature of the injury to the Cable. No one could account for the hiteh; but it certainly did not affect any one's helief in suecess. Mr. Fichd, to

whom such aceidents are never discouraging, remarked pleasantly during the crisis of picking-up, "I have often known Galles to stop working for two hours, no , me knew why, and then begin again. Mowt likely it's some mistake on shore." What em disemange a leliever! It was even "ombert to him to remember that this very day eight years ago, a splice was mate in the first Athatic (Gble, very murh in the same phace. But to all it had leed a most trying day. And when night came, amb some retired to the mest they liad won so well, there, constiant on the palde-lox. stowel Captain Aukersm, watching the course and comeluct of his ship.

If the paying-mut could have been stopped at onere, and the Cable takion in owe the stern, the delay would have been wery trilling; lont that was impossible. The pirking-up (necessatily slow under the most favouralle ciremimane wis) wis rendered musually tedions loy the indticieney of the lwilers. An interval of 19 hours hat oceured, and these faults and stopprges hand cansed so murla halwur
 whilst Mr. Malpin, Mr. (lifforl, Mr. Caming, the eloctrietims, and the whole staff, were exposel to an equal strain till the Cable was over the paying-out whends again.

July 30the (Sumetuy).-The weather was exceedingly thick all night-a forg lung roumd the shif, and the drizaling rain was so cold as to give an impressime there was ice close at hame, but the water showed it was crromeons, as the tempebature was $\bar{s} s^{\circ}$. It was a deal malm, and the Great Eastern scemed to thoat ou a grey and polished surfare of cloud. The prepartions for paying-out were compheted and tested. There would have heen a better result hat not an aredelent oreured this morning as the Cahle was heing pased aft from the bow, in order to transfer it from the picking-up, the paying-out machinery. Owing to a sudden jar it flew off from the drum, and before the madherery combld be stopled several fathoms had beome entangled amid the wheels, and were so much injured that it was necessary to cut out the pieces, and make two new spliees and
 onee more, our commanications with Valcutia leing most matisfictory. 'Tlu' Cable electrically was all that could l_{n} desired, its rombition loing represented ly 1,500,000,000 British Asockition mits. At noon our position was Lat. 52. 30',

 hard curves, presenting a very different apparance from the emsy ductile lines in which it lay in the tank. The deffertive purtion of the (eable was mot examined to-day, and divine servier was postroned till $2=30$, in order to give some time for sleep and rest to the exhmeted and hand-worked stall and workers of all
kinds on lowat the ship. The weather continued thick and hazy, a fiesh breeze from the N.N.W. not dispersing the eold grey chouds ame mist. The Trutble alone was in sight, and it was comjectured that the Sphinx must have passed on luring the night, and that she would arrive in Healts Content hefore us. The somud and sight of the wheds and drums revolving again after so long a rest were wory gratifying, and it was fombly hoped that this fault on dean carth womld he the last, as it was now evident nothing clae was to be feared, and nothing clse humanty goeaking could present the (Gble lecing haid. In the Cable itself lay all the sourees of mise hade. If there were no faults or dead earth, the paying-out wath a matter of the mest easy mutine and most positive certainty. When the opeation lat to be reversent, the

 the thread of thught between two continents, with all which depembed on it, to rest and rust in the depthe of the seal. My mind comblatere get rid of the image of the Great Eastern puling at the Calle as if she were amimated be a maderolent

 strugeg whilst Cabla amd Ship wete adjusting that mutual relations, when-admit-
 starles to the managment of the ship, arising from want of strelage way ats som
 to gowern events, while the affair of picking-ulp is guing' on." 'Ther weather was fivourable, the ship perfection, amb yet here wore these delays arising from callses now one rould foresee or prevent on remedy in any hat the ome way, and that a way frought with dansers: A visit to the stern, where the (Gable was molling away

 us to a sednes of the rontingencies on whirh it depembed, that we could abtertain
 Werame sum interested in the matertaking. There was a womberne semse of power in the Gevat Shiz and in her wonk; it wan gratifying to human pride to fere that mam was mastring spare, and trimphing over the wimls :und waves ; that from his
 therogh which tha whetient lightning would thasle fine wem instinct with the sympathirs, passions, imb interests of two mighty mations, and binding tegether
 10 ll .

Momdry, In!! 31st.-We have been passing over the valley in the Atlautie which is mope than two miles clecel. With the morning came the news that all hatd gone well during the night. Some had got up an hour after midnight to watch the transfer of the coil from the after to the fore tank, which was looked forward to with interest, as it was supposed to lue attended with some little difficulty. But they were agrerably disappointed; the operation was effected with the utmost facility. At $3: 30$ oclock am. the ship was stopped, to permit the transfer to be matle. At $3: 50$ a.m. the calle was ruming ont of the fore hold, passing down the trough, and going out ower the stom as she stemmed ahearl again. The Great Eastern was now near a fatal soot-somewhere below us lay the bomes of three Atlantie Cables.

But all during the formom, engineers and electrivians, agreed in the mest favourable statements rexpecting the (able and its progress. At ! anm. (Greenwieh time) 868 miles hand beren run out, and 760 miles mate from lamd. In the foremonn Mr. Camning loought to trial the evils in whel the peceant part that hat wrought surh mischief existed. 'The Court was held at the dow of the Testing-Room. Mr. de Sulty acted as julge. The jury consisted of cells, wires, and galvamometers. The areused calle, cut in junks, was suljected to a silent examination, and many fathoms were promomed not guilty, flake loy flake, till at last the eriminal was detecterl and at omee eariod off by Mr. ('aming. The process of examination was comelurted in Mr. Clifford's cablin, to which a fow anxious spectatens were admitted. The core was latid hare by untwisting the. strants of Manilla porved with iron, and before a foot of it was uncovered an exclamation literally of horron eseapel wor lips: There, diven right through the ematre of the coil su as to tomel the immer wires, wats a piece of iron wiee, might as if "ut with niperss at one ened and broken off short at the other. It was tricul with the gange, and frome to be of the same thickness as the wire used in making the protecting eover of the Calle. On examining the strames a mark of' a dut was pereepised on the Manilla where the wire had entered, hut it did ment come through on the other sible. In fart, it correpoumbed in longth exactly with the limmeder of the Gahle, sor that the ends dial not pajeet beyone the outer surfier of the covering. Now here was at oure, we thought, demonstration of a villamens design. No man who saw it could doubt that the wire had been clasen in by a skilful hamb. Ame is that was so, wats it not likely that the former fanlt had leen coused in a similar mamer, and that it was not the result of accilent Then, again, it was conions that the formere fault oecurred when the same ging of men were at work in the tank. It was known there were enemies to the manufaeturers of the Cible; whispers went about that one of the cablemen had expressed
gratification when the first fanlt oecurred. It was a very solicitons moment, and Mr. Camning felt a great responsibility. He could not tell who was guilty, and in trying to punish them or him he might disgust the goon men on whom so much depended. He at onee accepted in ofler made by the gentlemen on board the ship to take turn about in doing duty in the tauk and superiutembling the men engaged in baying-out the Cable. 'Then he cansed the cablemen to le summened at the bows, and showed them the coil and the wire. After they had examined it curionsly, he asked the men what they thought of the iujury, and they one and all, without hesitation, expressed their opinion that it must have been done on purpose by some one in the tanks. Lyneh law was talked of, and if the man rould have been pounced upom, and left to the merry of his fellows, he would have fared ill that day. Nor was the feeliag of anger and indignation diminished by the knowledge that the $l^{\text {numishment awarded loy haw forences of such a charmeter }}$ was a paltry fine and short imprisomment. The men who were engaged in the tank at the time of the oceurence were transferred to other duties, and the volunteer inspectors established a roster, and began their course of duty-one going on for two hours at a time, arol being relieved in order, so that night and day the men engaged in paying-nat the Cable were under the eyes of very vigilant watchmen. It was a painful thing to have to do, hat the men admitted it was not only justifiable but neressitry, and dedared they were very glan the measure was adopted. It was fondly hopel that this surveilance would save us from a recurrenee of the delay to which the expedition had heen subjected, and ulterior steps were postponed till the shore was 1 carched, when it was iutended to institute a rigid inquiry. At nown our 1 wsition was, Lat. $52^{\prime \prime \prime} 99^{\prime} 90^{\prime \prime}$, Long. $31^{\circ} 53^{\prime}$. Length of Cable prayd-out since yesterilay 134 miles: total kength paid out, 903 mikers. Distance, from Valentia, 793 miles; from Heart's Content, 8719 miles. We had crossed the centre of the are of the great circle.

Thessilay, An!pest 1st.-Thu Great Eastern continued on her way without let or hindmane all night amb early moming, inereasing her sueed to 7 knots an homr, although there wats a strong breeze at times, The seat continued to favour us greatly, and the ship;s deck sarcely ever varied from a lorizontal plame. At nown our pusition was, Lat. $51^{\circ} 52^{\prime} 30^{\prime \prime}$, Long. $36^{\circ} 33^{\prime} 30^{\prime}$: making 155 miles rum siner yester lay. Cable paid out $1081 \cdot 55$ miles. Distane from Valentia, 948 miles: distane from Heart's Content, 717 miles. We were without soundings: but it was supposed we were passing over the line on the chart where they varied from 1975 to 2250 fathoms. The Terrible was at her usual station, about two miles away ; lut we gave up all hopes of seefing the Sphinx till we reached Heart's Content. It was caleulated that at our present rate we would see.

lamb on Fritay evening, or first thing on Saturlay moming. In prepration for our arival the erew were cmpheyd in transforming the showe cond of the cable from the main to the after tank. It would be prinfinl to dwell on the temom of our ronversation. The wisestr on forgot the lessens of the past few days. It sermol Guite certain that the right step hard been taken, and that the man, or men, who hand comsed the prerious mishaps lad been effectually checkmated. The praises of the Great Bastern were on every tongue. Hand no fimlt oremred, our task would haw been mealy ended ly this time. Her mision is muloultedy the laying of Athatic Cables, and she diel it molly as far as in her lay on this occasion.
 by a dense fog, rase from the west ward. Then it sudenly shifted to N.N.W.; but although the sea was high, there was no rolling or pitching, and none of the sochers were aromsed from slumber, which was favoured ly the reaseless rumble of the machinery. They were, howerer, awakened hut too speretily, Again the great enterprise on which so much depended, ant on which so many hearts and ryes were fixed, wats ruldy checked.

As I have said, the gale did not in the least affect the ship. She went on through the heary sea steady as an islam, ruming ont the Cable at the rate of 7 linots an hour ; and when the wind shifted to N.N.W. our course was altered to N.W. lyy W. . W., through a sea which fell as mpidly ats it had risen. The misis was now at hamb. I was armsed about \& widoek am., Greenwich time (shipis time being more than two hours (arlier), by the slowing of the engines, ans on looking out of my port salw, from the foam of the paddes prossing ahead, that the ship was moving astern. In a moment afterwarls I stood in the 'Testing-Room, where Mr. de Sauty, the centre of a small group of electricians, anong whom was Professor 'Thomson, was bemding over the instrments, surromed by his amxions staff. 'The chronometer marked 8.6 a.m., Greenwich time. In reply to my question as to what was wrong, Professor Thomson whispered, "Another bad famlt." This was indecel surprising and distressing.

In order to make the history of the day consecmioio, I will relate as closely as possible what occurred. Mr. Fied went on duty in the tank in the early morning, relieving M. Jules Despeseher. Some twenty mimutes before the fall wan noticed, whilst Mr. Field was watching, a grating noise was heard in the tank as we coil flew out over the flakes. One of the men exclamed, "There goes a piece of wire." 'The word wats passed up through the crinoline slaft to the watcher. But he either did not hear what was said, or neglected to give any intimation, as the warning never reached Mr. Temple, whe was on duty at the stern at the time. At 8 am., Greenwich time, being the begimning of an hour, and therefore the
time whan in reqular series the ele

 traversing the whan length of the (ablo to the shore, a langer pertion of the stream was eseaping through a breareh in the guttit perchat inter the seal. If the glantity of the current estaping had heen miform, the flectricians could
 In the present instanes, however, the test, vaniot gratly, and showed a varying fault. When the current is sent thengh a wire from one pald it promers an rlectro-shomical artion on the wire and at the phace of the injurs, which heals to

 buwer, menter the insulation of the Cable fion a time. The finlt in the present

 but from a comparisin of time it was imaginel that the falty part was mot far atstern, and that it was in the portion of Galde which went ower at sodock in the moming, or a little loffine it : and althongh the time was mot acenately fixed whin Mr: Fituld hearl it, the grating mise was supposed to atise from some ranse romerterl with the fault. Hial the engine ers foresern what sulsepuently securred they might hase resolved to go on, and take the chance of working throgh the fanlt. Profusor 'thomson hats since givell it as his opinion that the fault could have been worked throngh, and that the Cable combld have transmittel messiges for a long time at the rate of four worls at mimuth-
 that the Cable could have worked fore several months, at all erents. But it does mot : 1 pear that Mr: Coming hand any reason to act on the views of these gentlemen, and it was quite: sure, when the end was landed in Ilearts 'montent, Ar. Vably could not have given his certificate that the (able wats of the contant stamdard. Ne:ther Mr. Varley nor Mr. Prolesson Thomsem had amy power to
 gromally indined to regat with exclusive attention their own departmem in the mited task, and to look to it sulely:

Noulting was left hat to piek of the cable. Steme wats got up in the builets fier the pirking-up, mathery, the shatekles and wire whe were prepared, and,

 nair the top of the tank in the foremon to make at tist, wen af the foremen berecived in the Hake umlermath that which had passed out with the grating misis when the fault wan derlared, a piere of wire puopeting from the (thble, and when he towk it in his fingers to perent it catching in the passing coil, the wire home short ofl. I salw it a few minutes alterwards. It was a piace of the wire of the Cable itself, not gmite threw inches hong: ane ome rather shatp, the other with a chan hight fiacture, and bout wey murh of the same way as the pieter of wire whirh caused the first limlt. This was a wery mious discovery, It gave a mew
 dendly misediefl within itself. What we han tal.en for asansinatiom might have
 starten through the Manilla in the timk. How many similar pieres might have broken without long delleten or ansing loss of insulation? The mark of design in the serome fanlt were very striking ; lan the fromke of matelinery in motion are extramdinary and what lowked so like purpeed malier might, after all, In: the
 parties in the ship-thuse who beriesol in matice, amt those whe attributen all our divasters to areident. In the come the latere selhod ineduded nemby all on harel the ship, and it was gemerally thought that in the Cable, or, mather, in what had heon intemberl as its protection, wats the sumer of ite weakness and ruin.

Belfere the and of the Cable was finally sharklan to the wire repre, texts were apherel to the portion in tanks. The first rut was mate at the ohe ephice, between the main and fore tanks, and the Cable was fomed perfect. The serome cut, at theee miles from the encl of the cable, showent the fault to he werbourl. Whaidst the tests were going on, and the "ablemen got the pieking-up grar in readiness, the

The chain and rope weme at last seremed to the Cable, muter the eyes of

 the Gable was cot and sliperd werluard astern, fastemol to its from guardians. The depth of water was estimated at 2 (oon fathoms. As it went owe and down in its fatal dive, whe of the men said, "Away gons our talls with Valenta,", Mr. de Sauty did not inform the operator at Valeutia of the mature of the abrupt stoprage. We hat now breme so hardmet to the diagers of the stip overloard, and the sight of the (able straming for jts bife in contest with the big Ship, that the eutting amb slipping excited no appehension; but mothing could reconcile men to the picking-up machinery, and its monotonous
petrogression. The wind was on omr startmand beam, and the Gable was slipped over at the port quater, and curried romul on the port side towarts the ship's bows, in orler that the vessell might go over it, and then come up more readily to the (able, heal to wind, when the piekinur-up lowgu. 'The drift of the ship was comsiderable, aml it was mot rasy-indeed, pussilde-to control her morments; but, notwithatamling all this, the wire hoy-rope was got up to the marchinery in reasomable time. Still the ship's lieat-do what Capt. Anderson would, and he did as muel ne any man could-did not come round easily. Even a punt will mot turn if sho has no way on her, aud it takes a gooch deal of way-more than she eoould get with silfety to the (Gihle-to give stecrage to the Great Easterll. As she slowly drifted and eame romud by degrees quite imperefetible to those who did not keep a elose wateh on the compass, the wire roje was payed-out ; and at last, as the shijp bews turned, it was taken in over the marhinery, and was passed alt through the drums, amd the pieking-up apparatus coiled it in very showly away till the ent of the Cable was hauter up out of the sea.

It was $10: 30 \mathrm{am}$., Greenwich time, when the Cable came in over the bow. We were now in very deep water, but hat we heen a few miles more to the west we should have been over the very deepest part of the Athantio Platean. It was believed the fanlt was moly six miles away, and com dean mightall we might hoper to have the fault on hower, make a new spliere, and procerel on umr way to Heart's C'ontent, geographially abont doo milos away. 'The pirking-np, was, as usual, execedingly terlions, and one low aml fortysix minutes dapserl before one mile of Cable was got on bowal : then one of the engines' ecerntric graur got ont of order, and a mam had th stand ly with a hamlapike, aided lyy a wergge of woon and an chastic band, to aid the machinery. Next the surply of stram firiled ; and as wow then as the stean was got up, there was not watere enough in the boiker, and so the picking-up ceased altogether. But at last all these impediments were remediad or overome, and the operation was proceeded with hefore nom. Lat the reader turn his fare towards a window and imagine that he is stamding on the lows of the Great Eastern, and then on his right will lee the starboud, on his left the port sidn of the ship. The motion of the vessel was from right to left, amd as she drifterl, she tugged at the Cahle from the right hamb side, where he seemed to be andhered in the sea. There was not murh rolling or pitching, but the set of the waves ran on her port-low. There are in the bows of the Great Eastern two large hawse-pipes, the iron rims of which project beyond the line of the stem ; against one of these the Cable caught on the left-hand side whilst the ship was drifting to the left, and soon began to chafe

and strain agninst the how. The Great Eastern could not go astern, lest the Cable should he snapped, and without motion there was no power of stecrage. At this critical moment, too, the wind shifted, so as to render it more "iffieult to kerep the head of the ship up to the Cable. As the C'able ehafed so much that there was danger of its parting, a sharkle, chain, and rope belonging to one of the Cable-huoys were passed over the bows, and seenred in a light below the hawse-pipe to the C'alle. These were then hauled so as to bring the Cable to the right-hame side of the bow, the ship, still drifting to the left, and the oblingue strain on the wires became considemble, but it was impossille to diminish it by veering out, as the length of Cable after it was eut at the stem for the operation of pirking-up left little to spare. In the bow there is a large iron wheel with a deep groove in the cirememerence (teehnically callen a V whecl), by the side of which is a similar lout smaller whed on the same axis. The Cable and the rope together were brought in over the bows in the groove in the larger wheel, the Cable being womd upon a drum behind by the pieking-up machincry, which was once more in motion. and the rope leing taken in round the capstan. But the rope and Cable did not come up, in a right line in the V in the wheel, hut were drawn up oblipucly. Still, up they eame. The strain shown on the dynamometer was high, but was not near the breaking point. The part of the Cable which had suffered from chafing was coming in, and the first portion of it was inhourd; sutdenly a jar was given to the dyamometer by a jerk, eansed either by a heave of the vessel or by the shackle of wire-rope secured to the Cable, and the index jumped far alowe (6) ewt., the highest point marken on it. The 'hain shackle and wire-rope clambered up out of the groove of the V where, got on the rim, and rushed down with a crash on the smaller wheed, giving a severe shock to the Cable. Almost at the same moment, as the Cable and the rope travelled slowly abong through the machinery, just ere they reathet the
 leaped ower intervering spare and flashed inte the sea. The shock of the instant was as sham ats the shapping of the Cable itself. No worls combd deserithe the litterness of the disalymintment. 'The Coble gene: gone for ever down in that fearful depth! It was emough to move me to tears ; and when a man eme with the biece of the coul lashed still to the chain, and showed the tortured stamels-the tom wire-the lacerated eore-it is 10 exaggration to say that a feeling of pity, as if it were some sentient "reature which ham heen thats mutilated and dragged asmeder hy hrutal forme, moved the spectators. Captain Moriarty was just coming to the foot of the companion to put up his daily statement of the ship's position, having had excellent ohservations, when the news eame. "I fear," he said, "w ?
will not feel much interested now in knowing how far we are from Heart's Content." However, it was something to know, though it was little comfort, that we had at noon run precisely 116.4 miles since yesterlay ; that we were $1,062 \cdot 4$ miles from Valentia, 6066 miles from Heart's Content; that we were in Lat. $51^{\circ} 25^{\prime}$, long. $33^{\circ} 6^{\prime}$, our comse leing $76^{\circ} \mathrm{S}$ and $25^{\circ} \mathrm{W}$. But instant stremuons artion was demanded! Alas! artion! There arome us lay the placid Atlantic smiling in the sum, and not a dimpte to show where lay so many hopes buried. The 'Terrible was signalled to, "the Calle has parted," and soon bore down to us, and came-to ofl our port beam. After bricf consideration, Mr. Caming resolved to make an attempt to recover the Cable. Never, we thought, had alchemist less chance of finding a grold button in the dross from which he was secking aurum potalile, or philosopher's stone. But, then, what would they say in England, if not even an attempt, however desperate, were made? There were men on hoard who had picked up Cables from the Mediterranean 700 fathoms down. The weather was beautiful, but we had no soundings, and the depth was matter of conjecture; still it was settled tant the Great Eastern should stemm to windward and castwarl of the positi a in which she was when the C'able went down, lower a grapmed, and drift down across the course of the track in which the Cible was supposed to be lying. Although all utterance of hope was suppressed, amd no word of confidence escalped the lijes, the morking shadows of both were treasured in some fuict nook of the fancy. The dowtrine of clanees rould not touch such a contingency as we had to speculate upon. The ship stood away some 13 or 14 miles from the spot where the aceident ocenred, and there lay-to in wimooth water, with the Temible in company. The grapmel, two five-amed aurhors, with flukes sharply eurved and tapering to an oblique tooth-like endthe hooks with which the giant Despair was going to fish from the Great Eastem for a take worth, with all its belongings, more tham a million, were hrought mp to the hows. One of these, weighing 3 cwt., shackled and secured to wire hooy rope, of which there were five miles on board, with a hreaking strain caleulated at 10 tons, was thrown over at 320 , ship's time, and "whistled thro" the sea, a prey to fortune. At first the iron still slowly, hat soon the momentum of desent increasen, so as to lay great stress on the pircking-np machinery, which was rendered availalle to lowering the nevel messenger with warrant of seareh for the fagitive hiden in mysterious caverns benoath. Length flew after length ower cog-wheel and drum till the iron, waming with work, heated so as to convert the water thrown upon the machinery into clouds of steam. The time passed heavily. The electricians room was closed; all their subtle anparatus stood functionless, and cell, zinc, and copper threw off superfiuous currents in the datkened chamber. The jockeys

had run their race, and reposed in their iron saddles. The drums beat no more, their long reveillee euded in the mutfeel roll of denth; that which had been broken could give no trouble to break, and man shmmed the region where all these mute witnesses were testifying to the vanity of human wishes, All life died out in the vessel, and no noise was heard exeept the dull grating of the wirerope over the wheels at the be, ws. 'The most apathetic would have thenght time rumble of the Cable the most grateful musie in the world.

Away slipped the wire strands, shackle after shackle: ocean was indeed insatialle ; "more" and "more," cried the danghter of homse-leen from the hark night of waters, and still the rope deserembed. One thomand fathoms-fifteen humdred fathoms-two thonsand fathoms-humdrels again mounting mp-till at last, at $5 \cdot 6$ p.m., the strain was diminished, and at 2,500 fathoms, or 15,000 feet, the grapmel reached the leel of the Atlontie, and set to its task of finding and holling the Cable. Where that lay was of comse heyond haman knowledge; but as the ship drifted down arross its course, there was just a sort of head-shaking surmise that the grapmel might catch it, that the ship might find it, that the irom-rope might be brought up again-and that the (able armoss it might-here wals the most hazardous hitch of all-might come up withont hreaking. But 2,500 fathoms: Alas!-and so in the darkness of the night-not more gloomy than her errund-the Great Eastern, having clearel away one of the great booys and got it over her bows, was left as a sport to the wind, and drifted, at the rate of 70 feet a minute, down upon the imaginary line where the Cable had sunk to useless rest.

August 3rd.-All through the night's darkness the Great Eastern groped along' the bottom with the grapnel as the wind drifted her, but cumning hamds had placed the ship so that her course lay right athwart the line for which she was fishing. There were many on board who believed the grapmel would not catch anything but a roek, and that if it eaught a rock or anything else it wonld break itself or the line withont anyone on hoard being the wiser for it. Others contended the Cable would be torn asunder by the grapmel. Others calculated the foree required to draw up two miles and a-half of the Cable to the surfice, and to drag along the hottom the length of line needed to give a bight to the Cable eaught in the grapmel, so as to permit it to mount two and a-half miles to the deek of the Great Eastern. After the grapuel touched the bottom, which was at $7 \cdot 45$ o'clock, p.m., hast night, when 2,500 fathoms of rope were payed-out, the strain for an hour and a-half did not exceed 55 ewt.; lont at 10 p.m. it rose to 80 cwt. for a short time, and the head of the ship yielded a little from its course and came up to the wind. It then fell off as the strain was reduced to 5.5 cwt.
which apparently was the nomal force put on the ship by the weight of the rope and grapmel. This moming the same strain was shown by the dynamometer, and it varied very slightly from midnight till if cidock athe. Then the low of the ship and the index of the dymamometer coincided in their testimony, and whilst the Great Eastem swayed gradually and turned her heald towards the wimb, the index of the maehine recorded an increasing pressure. It legan to be seen that there was some ageney working to alter the course of the ship, and the dynamometer showed a strain of 70 ewt. The news soon spread ; men rushed from compass to dynamometer: "Wr have eaught it ! we have eanght it!" was herrel frome every lip.

There wats in this little world of ours as mell ever-varying excitement, as muth dation and depression, as if were a forens into which converged the joys and sorvows of humamity. When the Gireat Eastern first became sensible of the stress brought unom her ly the grappling iron and rope she shook her heal, and kept on her conrse, disinprointing the hopes of those who were watching the dynamometer, and who saw with delight the rising stain. This happened several times. It was for a long time doubtful whether the greipmel hed to amything more tenacions than the ooze, which for a moment arrested its progress and then gave way with a jerk as the ship drifteds : lout in the early momeng, the long steady $\mathrm{p}^{\text {will }}$ made it evident the anved prongs hal laid their grip on a solid booly, which yiedded slowly to the pressure of the vessel as she went to leeward, but at the same time resisted so forcibly as to slew round her bow. The seicutifie men calculated the foree excreised ly graphed and rope alone to be far less than that now shown on the dynmometer. And if the Great Eastern had indeed got hold of a substance in the bottom of the Athantic at once so temaeions ame so yielling, what could it loe but the lost C'uble ?

At 640 am., Gremwich time, the bow of the ship was brought up to the grapmel line. The machinery was set to work to pull up the 2,500 fathoms of rope. The index of the dynmometer, immediately on the first revolutions of the wheels and drums, rose to 85 cwt. The operation was of couse exceedingly tedions, and its difliculty was increased by the nature of the rope, whieh was not made in a continuous picee, but in lengths of 100 fathoms each, seemed hy sharkles and swivels of large size, and presumably of proportionate strength. It was watched with intense interest. The bows were crowded, in spite of the danger to which the spectators were exposed loy the snapping of the wire-rupe, which might have caused them serions and fatal injuries. At $7 \cdot 15$ velock, a.m., the first 100 fathoms of rope were in, and the great iron shackle and swivel at the end of the length were regarled with some feelings of triumph. At 75.5 a am. the seeond

length of 100 fathoms was on board, the strain varying from 65 to 75 cwt. At 8.10 a.m., when 400 fathoms had heen purchased in and coiled away, the driving spur-wheel of the machinery lroke, and the rope smapped, the strain being 90 cwt . at the time. The whole of the two miles of wire rope, grapuel and all, would have been lost, lout that the stoppers eaught the shackle at the end, and saved the experiment from a fatal termination. The operation was suspended for a short time, in order to permit the damage to be made gool, and the rope was transferred to the capstan. The hazardous nature of the work, owing to the straining and jerking of the wire rope, was painfully evinced by the occurrence of aceidents to two of the best men on Mr. Camning's staft-one of whom was cut on the face, aud the other had his jaw laid open. At uoon nearly half a mile of rope was gathered in With every length of Cable drawn up from the sea, the spirits of all on board became lighter, aud whilst we all talked of the uncertainty of such an accomplishneat, there was a sentiment stronger than any one would care to awow, inspiring the secret confidence that, having caught the Cable in this extraordinary manner, we should get it up at last, and cul our strange eventful history by a triumphant entry to Heart's Content. Already there were divers tieories started as to the best way of getting the Calle on bourd, for if Mr. Caming ever saw the bight, the obvious question arnse, "What will he do with it?" The whole of our speculations were abruptly terminated at ≥ 50 oclock, p.m. As the shackle and swivel of the eleventh lengith of rope, which would have made a mile on hoard, were passing the maehinery, the head of the swivel pin was wrung off by the strain, and the 1,400 fathoms of line, with grapurl attached, rushed down again to the bottom of the Atlantic, carrying with it the bight of Cable. The shock was bitter and sharp. The nature of the mishap was quite unforeseen. The engineers had culculated that the wire rope might part, or that the Cable itself might break at the bight, hut no one had thought of the stout iron shackles and swivels yielding. 'To add to the gloominess of the situation, the fog, which lat so long been hanging round the ship, settled dowr delasely, and ohtiged the (iveat Eastern to proceed with extreme caution. But cithongh the event dampeed, is did not extinguish, the hoper of the engineers. Sr. Canning and Mr. Clifford an once set their staff to ben! $\mathfrak{2}, 500$ fathons of spare wire rope to another grapuel, and to prepare a buoy to mark the spot as nearly as could be guessed where the rope hat parted, and gone down with the light of the Cahle. The Great Eastern was to stemn away to windwad of the course of the Cable, and then drift down upon it about three miles west of the place where the aceident oecurred. Fog whistles were blown to warn the Terrible of our change of position, and at 1.30 , ship's
time, the Circat Eastern, as she stemed slowly away, fired a gun, to which a real or faneied response was leard soon afterwarls. As she went ahead, guns were fired "very 20 minutes, and the steam-whistles were kept going, but no reply was made, and she proceeded on her course alone. It was impossille to obtain a moon-day olservation, and the only course to be pursued was to steam to windward for 14 or 15 miles, then to lay-to and drift, in the hope of procuring a faromalle position for letting go the secome grepmel, and catching the Cable once more.

Alugnst 4 th.-The morning found the Great Eastern drifting in : dense fog. In order to gange the mature of the tark before them, the engineers litted up a somding tackle of all the spare line they could get, and hove it overboarl with a heavy lead attached. The sinker, it is believed, touched bottom at 2,300 fathoms, hut it never came up to tell the tale. The line broke when the men were fulling it in, and 2000 fathoms of cord were added to the maze of cable and wire rope with which tiee bed of the Atlantie must be vexed hereabonts. The fog cleared away in the morning, and the Terrible was visilde astern. Presently one of her buats put offt, with a two-mile pull luffore her, for the Great Eastern. Lientemant Prowse was sent to know what we had beem doing, and what we intended to do. Ha returned to his ship with the information that Mr. Caming, fill of artermination, if not of hope, wonld renew his attempt to grapple the Cable, and haul it up oner more. At nom, Captain Amberson and Staff-Commander Morianty, who hat been very much perphexd at the obstinate refusal of the sun to shime, amb might he seen any time between 8 a.m. and nown parading the lmilge sextant in hand, taking sights at spare, surereoted in (b)taining an olservation, which gave our position Lat. $51^{\circ} 34^{\prime} 30^{\prime \prime}$, Long. $37^{\circ} 54^{\prime}$. The Great Eastern had driftel 34 miles from the phaee where the Cable parted, and as she hate stemmed 12 milex, her position was 46 miles to the cast of the end of the Cable.

Meantime the engineers' stafl' were busy making a solid strong raft of timber balks, 8 feet square, to serve as a hase to a hooy to be anchored in 2 , $\mathbf{j} 00$ fathoms, as near ass wasible to the comese of the Cable, and some niles to the westwarl of the place where the grapmel-repe parted. A portion of coble, which han been a goosl deal strained, was used as tarkle, fin the purperse of sereming the raft and booy ter a mushroona anchor. The buny, which we shall call No. 1, was painted real, and was summontel by a black hall, above which rove a staff, bearing a real flag. It was securely lashed on the raft. At 10 p.m., Greenwich time, the buoy No. 1 was hove overboard, and sailerl away over the grey lealen water till it was brought up by the anchor in Lat. $51^{\circ} 28^{\prime}$, Long. $38^{\circ} 42^{\prime} 30^{\prime \prime}$. The Great Eastern,
having thus marked a spot on the ocean, proceeded on her cruise, to take up a position which might enable her to cross the cable with the new grapmel, aud try fortune onee more. Some rescarches made among the coils of telegraph Cal. confirmed the opinion, that the iron wires in the outer protective coating were the somrees of all our calamities, :und fortified the position of those who maintained that the faults were the result of acecilent. In some iustances the wires were started ; in others they were broken in the strands. By twisting the wire, great variations in quality becme apparent. Some portions were very tough, others snapped like steel. It is to be regretted that the stientific council who recommended the Challe did not test some parts of it in the paying-out apparatus with a severe struin, as they might have detested the inherent fauls in the fabric. It is quite possible hundreds of broken cuds exist in the Cable already laid, though they have done no harm to the insulation.

Siturdelay, Ampust sth.-'There was no change in the weather. A grey mist enveloned the Great Eastern from stem to stern, hanket-like ats slepe itedf. The haze-for so it was mather than a fug- -got lighter soom after 12 orflock, but it was guite out of the question to attempt an observation of a longitudinal chanacter. The stemm-whistles picercel the fug-haks miles away. Shoals of grompuses, blark fish, porjonises, came out of the obscure to investigate the source of such dead clamow, mal blew, spouted, and rolled on the topes of the smooth unctuons-looking folds of water that undulated in hroad sweeping billows on our heam. Our great object was to get sight of the huoy, and by that means make a guess at our position. At $12: 30$ p.m. the Terrible was sighted on the port beam, ant our fog music was hushed. At $2: 30$ widhock, p.m., the Terrible signalled that the hoy was three miles distant from lure. This was quite an agreeable inedent. Every eye was strained in scarch of the missing buey, and at last the small reel hag at the top of the staff was made out on the horizon. At 345 widock, prim., the Great Easteru was abroast of the huey, which was hailed with murh satisfiction. It bore itself havely, thongh rather more depressed than we had anticiproted, and it was like meeting an old frieme, to see it bobbing at us up and down in the necan. It wats resolved to steer N.W. ly N. for 5 or if miles, so as to pass some miles beyond the Cable, and then, if the wind answered, to drift down and gralnde. The Great Eastern signalled to the Terrible, "Please watch the buoy;" and, under her trusty watch and ward, we left the sole mark of the expedition fixed on the surfice of the sea, and stood towards the northward. The wind, however, did not answer, and the grapued wan not thrown overboard.

Aug. Bith, Simelay.-It was wery thick all through the might-fog, main, drizale alternately, and all togrother. When morning broke, the Torrible was
visille for a moment in a lift of the veil of grey vapour which hung down from the sky on the faed of the waters. The lnoy was of course quite lost to view, mur did we see it all day. At 1045 am. Captain Amberson read prayers in thee sallown. At noon it was guite hopreless to form a comjecture respecting the position of the sun or of the horizon, but Captain Moriarty and Captain Aushasm were ranly to pomere unen either, ame as the kast gleam of light came forth, sextants in hand, like the figures which indicate fine weather in the Gemman hygrometers. The sea wat calm, rolling in lazy fokds under the ship, which searedy combescended to nutiee them. She is a wouder: In deflault of anything else, it wass something to lie on a sollin in the ladies' salon, went try to think you really were on the losom of the Athantic, bat a bulkhoul creaking, nut a lamp moving, not a glase jingling. Unter the influcure of an minown current, the Great Eastom was drifting stradily against the wind. When the ciramstamee was noticed, it combld only be referred to the "Gulf Strem," which is hedd answerable for a good many things all over the world. At 4 p.un. the bnoy was suppresed to be 15 miles N.W. ${ }_{2}^{1}$ N. of n , the wind heing E.SE., hut it was ouly out of many calculations ('aptain Mowiarty
 whecration for three days, ame until we conld determine the ship's pesition (xanctly, and get a growl wind to dift down on the Cable, it would be puite useless to put down the grapmel.

The buoy wass sulposed to he some 12 miles distant from the end of the Gable, and not firr from the slack male loy the Great Eastern. If we got this Alack, the ('alla would come uf more casily on the grapucl. Of cousse, if the
 spot wher the wise repre and grapul sank. If the (able could be caught, it
 and a purtion of slack, and then to graphle for it a secom time within a mile or sul of the emid, on to try and take it iniomel without breaking. Some suggestel that the Gerat Bantern should steam at once to Trinity Bay, where the fleet was lying, and ask the almiral for a conple of mon-uf-war to help us in grappling ; hat those acepainted with our naval resourees derlared that it would be usedess, as the shipe would have no tirkle alnatel fit for the work, and cond not get it wen at Inalifis. Others remmender an immediate retmen to Eugland for a similar purpose, to get a complete outhe for grappling lefore the seasom was advameel. and to return to the cod of the Cable, or to a spot 100 miles mast of it, wher the witcer is mot sh deep. What was powitive was, that morre than 1,100 miles of the most ${ }^{\text {nerfert }}$ (able wer laid, as regarls dectrical
conditions, was now lying three-quarters of the way across from Valentia to Newfoundlame.

Momdluy, Auy. Thl.-During the night it was mining, fogging, drizaling, clouding over and muler, hoing anything lont howing, and of worse as we drifted hither and thither,--the largest that that eurents and waves ever toped with, —we han no notion of any partioular value of wur whereanmes. But at
 we stecred gently towards low and fomm that she wat kreping watch wem the
 W.N.W. till we came nealy ahreast of the buey shently before ! am., when it wals altered to N.W. 'The wind was light and from the northivard, and the
 and drift down on the line of the ('able when the foge clated and the wiml favorared.

The frat of scamanship which wats aceomplished, thet the work wo mealy
 termination all the more hitter. The remarkable diftionlty of sum at task as Staff-Commander Moriarty and Captain Anderson exerutend cammot be understond withont some sort of appreciation of the olstardes before them. The AthantiGable, ats we sadly remonler, drepped into the manown alysis on Ang. .2. Wic hand wowndings. In the night the (Great Eestem driftem ame steammed 2.5 miles from the eme of the Cable-then ber alway with a grapmed overnard, and 2..500 fathems of wire rope attacherl, and sterred so as to come actuss the course of the Cable at the botom. On the morning of lays 3rd, the incerasing strain on the line which towed the erripel gave rise to hop at first, and finally to the
 time, when obout 900 fathoms of grapmed line hat been hated in, the hatel of a swisel pin lowse and 1,400 fithoms of line, with grapuels amd Alantic Cable, went down th the hoteme Then the Great Eastam difted again in a fog

 it was estimated that the water was almat $2!2$ miles deep. A hum phaced on a raft, which sumk sud deap that omiy a suall thastafl :and bieck bull, were visible,
 the profomel hat as it was met realy when the Cable lowes, the buoy was shijped over at the distane of some miles from the pheer where the fetal fracture towk place, in the hope and belinf that the anchor womb come up somewhere near the slank c:umed by the pirking-up' "perations. still in fog, which shat the 'lenible out of sight, the (ireat Batem premed for another attempt. Next day
(August 5), with the assistance of the Terrible, she came upon the buoy, and having stemed away to a farourable position, so as to come down on the course of the Cable again, remained drifting and steaming gently, on the look-out for the buoy, which it was very difficult to diseover owing to the fog and to the current and winds acting on the ship. The weather did not permit any observations for longitude to be made during the whole of this periot. On Aug. Fth we passed the lonoy and stecred N.W., and at $11 \cdot 10$ a.m., ship's time, $1 \cdot 47$ p.m., Greenwieh time, another grapmel, with 2,500 fathoms of wire rope, was thrown over, and the Great Eastem, with a favourable wind, was let drift down on the course of the Calle, about half way between the hooy and the broken end. At 125 ship's time, the grapmel touched the hottom in 2,500 fathoms water, having sunk, owing to improved apparatus, in half the time ronsumed in the first operation. In six hours afterwards, the eyes which were watching every motion of the ship so anxionsly, perecived the slightest possible indieation that the grapmel was lohding on at the louttom, aud hat the ship's head was coming inf towarls the morthward. It is net possifle to dereribe the joyous exeitement whirls diflused itself wer the Great Eastern as, with slowl,-incrasine rertitude, she yidled to the stain from the grapmel and its prize, and in an hour and
 to loring op her bow to the stiain, and the machinery of the picking-up apparatus, much improw i aud strengethencel, was set in motion to draw in the grapnel by means of the calstan and its steam power. The stain slown by the indicator inereased from 48 cwt. to 66 cwt . in a short time ; but the engines did thene wenk stataly till s.10, when one of the whechs was broken by a jerk, which callseel a slight delay. The grapmel-rope was, however, hauled in ly the capsime at a mifom rate of 100 fathoms in 40 minutes; but the strain went on grablually incersing till it reached 70 ewt. to 7.5 ewt At $13: 30$ p.m. shind: time, or a'3 anm, Greenwich, 300 fathoms were abourd, and at midnight all thuse when were mit angaged on duty comected with the operation retired to pest, thankful and encomaged. In the words of our signal to the Terrible, all was going "Al "hopefully." Throughout wor slumbers the clank of the machinery, the shrill whistles to $g^{\prime \prime}$, wh alpod, or twon astern, sounded till morning came, and when one lyy one the ritizens of our little work tumed up on deek, each felt, as he salw the wheres "evolving and it wire repe uncoiling frome the drums, that he was assisting at an attcmp,t of singular andacity and sucecss. A moonlight of great bighthess, a might of quict loveliness had favoured the enterprise, and the links of repe hard come in one after another at a speed which furmished grounds for hope that if the cud of the day witnessed similar progress, the Cable would be at the surface lofare nightelfll.

August 8th.-This morning, about 730, one mile-one thousand fathomshad been recovered, and was coiled on deek. The Cable, however, put out a little more vigour in its resistance uud the strain went up to 80 ewt., having touched 90 cwt. once or twice previonsly. No matter what happencl, the perseverance of the engineers and seamen had been so far rewaded by a very extraordinary result. They had canght up a thin Cable from a depth of 2,500 fathoms, and had hauled it up through a mile of water. They were hauling at it still, and all might be recovered. But it was not so to be. Our speculations were summarily disposed of-our hopes sent to rest in the Atlantic. Shortly before 8 oclock, an iron shackle and swivel at the end of a length of wire rope cane over the bow, passed over the drums, and had been wound three times round the capstan, when the head of the swivel bolt "drew," exactly ats the swivel before it, hat dene, and the rope, parting at once, flew round the capstan, over the dun...s, through the stops, with the irresictille force on it of a stran, indicated at the time or a little previously, of 90 . It is wonderful no one was hurt. The end of the rope flomished its iron fist in the air, and struck out with it right and left, as thongh it were animated by a desire to destroy those who might arrest its progress. It passed through the line of eablemen with an impatient sweep, dashed at one man's heal, was only balked by his sudden stoop, and menacing from side to side the men at the bow, who fortunately were few in number, and were warned of the danger of their position, splashed overboard. All had been done that the means at the disposal of engineers and officers allowed. The machinery had been altered, improved, tested-every shackle and swivel had been separately examined, and several which looked fanlty had been knockel off and replaced, but in every instance the metal was found to be of sujerior quality. It wats $7 \cdot 43$ a.m., ship's time, exactly, when the rope parted. The sad news was signalled to the Terrible, which had been following our progress anxionsly and hopefully during the night. Her flags in return soon said, "Very sorry," and she steamed towards the Great Eastern immediately. Mr. Caming and Mr. Gooch, and others, consulted what was best to be done, and meantime the buoy and raft which had been prepared in anticipation of such a catastrophe as had occurred, were lowered over the bows with a mooring rope of 2,500 fathoms long, attached to a broken spurwheel. The bnoy was surmounted by a rod with a black ball at the top over a flag red, white, and red, in three alternate horizontal stripes, and on it were the words and letters:-" Telegraph, No. 3." It floated rather low on a strong raft of timber, with corks lashed at the corners, and by observation and reckoning it was lowered in Lat. $51^{\circ} 25^{\prime} 30^{\prime \prime}$, Long. $38^{\circ} 56^{\prime}$. The old buoy at the time it was slipped bore S.E. by E. 13 miles from the Great Eastern. As there were still

Photographic Sciences
Corporation

nearly 1,900 fathoms of wire rope on boird, and some 500 fathoms of Manillia hawser, Mr. Canning resolved to make a third and last attemplt ere he returned to Sheerness. Captain Anderson warned Mr. Canning that from the indications of the weather, it was not likely he could renew his search for two or three days, lont that was of the less consequenee, inasmuch is it needed nemrly that time for Mr. Canning's men to secure the shackles and prepare the apparatus for the third trinl.

At $9 \cdot 40$ a.m., just as the bnoy had gone over, a boat eame alongside from the Terrible, and Mr. l'rowse, the First Lientenant, toarded us to know what we were going to do, to compare latitude and longitude, and to report to Captain Napier the decision arrived at by the gentlemen comected with the management of the Expedition. 'The Great Eastern hal still about 3,500 tons of coal remaining, and the Terrible could wait three days more, and still keep coal enough to enahle her to reach St. John's. It 11:30 the Great Eastern stood down to the second buoy, for the purpose of fixing its exact locality ly olservation. Soon afterwards the weather grew threatening, and at 2 p.m. we were obliged to put her head to the sea, whieh gradually increased till the Great Eastem began for the first time to give signs and tokens that she was not a fixture. The Temille stomed on ahead on our port side, and for some time we kept the boy equi-distant between us. At night, the wind increased to half a gale, and it was agreed on all sides that thongh the Great Eastern could have paid out the C'able with the utmost ease, she could not have picked up, and certainly could not have kept the grenmel hine and Cable under her bows in such weather. But the steadiness of the vessel was the constant theme of praise. During the night she just kept her head to the seat The Terrible, which got on our purt and then on our starboard low, signalled to us not to come too close, and lefore midnight her lights were invisible on our port guarter-one fumel down.

Aug. 9th.-Our course was W.N.W. during the night ; weather thick and rainy -strong southerly wind ; sea rumming moderately high. At 6 a.m., having run hy reckning 3 . miles itom the buoy, our course was altered to E.S.E., so as to bring us back to it. The state of the weather delayed the artifieers in their work. It rained heavily, the deek was by wo means a herizontal plane, and it was doubtful if Mr. Canning and Mr. Clifforl, using all possille diligence, could get tackle and machinery in order lefore the following forenom, su that it was not necessary to make any great speed. The reputation of the ship was enhanced in the cyes and feelings of her passengers lyy the mamer in which she had behaved in the undoultedly high breeze and heary sca. The former sas admitted by sailors to be a "gale," though they seemed to think the force of the wind was affected by

the adlition of the prefix "summer," an if it mattered much at what time of the year a gale llows. The latter, when we tumed tail and went lefore it, soon developed a latent tendeney in the Great Fastem to obey the rules goveming borlies flowting on liquids under the action of summer gates. She rolled with a grovity and grandeur hecoming so lage a ship once in every 11 or 12 secouls; hat on dessending from the high dedks to the satoon, one fomed no difficulty in walking along fron che to cond of it withont gratuitous babancings or umpene litated halts and progresses. It was a grey, gloomy, clondy sea and sky-not a sail or a birl visible. In the forenoon the Temible came in sight, lying-to with her topsail set, and it was holeed she was somewhere near the bowy At nom our
 Great Eastern, as som as she wats near enough, asked the Terrible, "Do you see the huy ?" After a time, the answer flew ont, "No." Then she added that she wats "waiting for her position," and that sle "believes the booy to le S.S.E." of us. Our course was altered S. ly E. $\frac{1}{2}$ E., and the look-out men in the top swept the sea on all sides. The Trarible also started om the seareh. At 3×20 p.m. the two ships were within signalling distance again-sea decreasing, wind falling fast. The Terrible asked, "Did you see buoy?" which wats answered in negative, and then inquired if the Great Eastern was going to grapple agsin, which was replied to in the attirmative-Captain Anderson busy in one calin and Staff-Commander Moriarty busy in another, working diagrams and calculations, and coming nearer und nearer to the little speek whieh fancies it is hidden in the ocean: with very good reason, too, for the search after such an object on such a field as the Atlantic, ruftled ly a gale of wind, might well be esteemed of very doubtful success. But the merchant captain and the naval staff-rommander were not men to be beaten, and in keen friendly competition ran a race with pencils and charts to see who could determine the ship's position with the greatest aceuacy, being rarely a mile apart from ench other in the result. The only dubious point related to the bnoy itself, for it might have drifted in the gale, it might have gone down at its moorings, or the Cable might have parted. There were strong currents, as well as winds and waves. The moment the weather moderated in the forenoon, the whole body of smiths and carpenters, and workers in iron, metal, and wood, were set to work at the alterations in the machinery for letting out the grapnel and taking it in again. A little army of skilled meehanies were exereising on deck; workshops and forges were established, and some of the many chimneys which aise above the bulwarks of the Great Eastern, and put one in mind of the roofs of the streets seen from the railway approaches to London, began to smoke. The smiths forged new pins for the swivels, and made new shackles and swivels ; the capenters made casings
lor callstan: ropemakers examined and serume the lengthe of wire rope, and a mew hawser was bent on to make up for the defingory of hoy rope. At last, the much-sughth-for wigeet was diseotered-the huy was visilhe sume 2 miles distant. The Cereat Eavern mate haste to amomer the news to the Temrible, and just as her flags were grong aloft, a fhetering of hunting was visible in the rigging of the 'Tomild, and the signalnan rad her hrief statement that the bung was where we silw it was, thus proving that hoth vessets dropued on it at the same time. The finding of the little black paint on the face of the Atlantir was a feat of mavigation which gave great satisfaction to the worthy performers
 buny: 'The 'Tomible ama up on the wher wide of it, and the Great Eastem and the man-of-war lay-tu watching the tiny back baill, which bohbed mend
 By dint of energetie exertion, Mr. ('aming hopent to have his grapmel and tackle quite rally the moment the ship was in pasition on the momen. It was a sight
 Sterners, and l'yarmom at lollows, forge, and anvil-fires bataing-hailing sparks
 the fierer lows-amatems and artists amiming-the seal kepping watell and ward chatsile, and the ham of vines from its myriad of sentry waves rising allowe the clank of hammers which were closing the rivets in of the mail in which we were to do hattle with old oeran for the captive he buths in his dismal dangems bedow. Will he gichl up, hiss prisuner?
 -all were amplicions for the renewed attempt, which must also be the last if our talle le brak. A light hereze from the west succeded to the gale, and a strong current setting to the castward prevailed wer it, and carvied the Great Eastern nearly 7 miles dead aganst the wime from ! p.m. last night till 4 a.m. this moming, thes taking her away from the boy: The swell subsided, and such wind as there was faroured the plan to dift across the comse of the ('able about a mile to westwarl of the phace where the last glapmed was lost. Without mond trouble the (irat Eantem, having come uron the first lowy, cuaght the serond buy, and both were in sight at the same moment. Authorities diffiered comerning their clistance. One maintained they were $7 \frac{1}{2}$ miles, the other that they were 10 miles aphrt. At $10: 30$, Gremwich time, when we were between $1 \frac{1}{2}$ and 1_{4}^{3} mile distant from the course of the Gbble, the bow learing S.S.E., the grepuel was thrown over, and 2,460 fathoms of wire rope and hawser were 1 aid out in 4s minutes.

As there was a coment still setting against the matorly wind, which hand increased in strongth, ('aptain Ambeson at first got all fore-andeaft ramvas on the ship, to which were alded alterwarls her fore amd maintepsals; her comse was set N. IV. by N., but she made little healway, and drilted to S. W. It $11 \cdot 10$ allin., shipis time, an increased stailu on the grapuel line was shown ly the dymanometor, mul at the same fime the head of the Great Eastern began to then slowly nerthwards from her tow course.

The squaresails were at one taken in. (ireat animation prevailerl at the
 Aelusive, and the shipe contimed to drift to S. ame W., tho boy bemines. S. 'The bow swept romel, varying from W. and by N. to N. W. and by N. At noon the (ireat bastom, if all reckenings were right, was but half a mile from the (Gable, and the offieres hoped she would come across it about half a mile west of the spot where slu last hooked it. Bint at $: 3: 30$ prom. the list hope vanisheel. 'The ship mast hy that thme have long passed the comse of the ('able. Captain Amerson had and ideat that we graphed it for a moment soon aftor mom, when the shipis heanl came: 3 points to the N., amd the strain inereased for a moment to GO 'Wt. 'The hory was now :3 to 3 miles E.-ship's hearl being IV.N.W. AII that could be (lone wis to take up grapmel, ame make another cast for the ('able The wind inereased from wastward. At 4.15 p.m. ship's head was sut N. ly E by serew, in order to enabla the graperel line to be taken in, and the watan Was set to hanl up the grapuel. The wire rope came over the bows mastameded, imel in very bat condition. Anela controvery arose repecting the camse of this miselicef. Some, the pationl men, mantaning it wats becanse there were not swivels emongh on it ; others, the theoretial men, demonstrating that the swives hatd mothing to do with the tomsion or detorsim; and both arguing as keronly with resperet to what was happening 2 miles below them in the sea as if they
 ame atthough no one had expresse mand eonfilene in the experiment, every one was chagrined at the aspect of the tertured wire as it came corling amel twistimg inboarl from its almotive mission. At midnight 1000 fathoms hath beren hamled ins.

Angust 11 the. Wething tor meore of the might and carly mominge, same that both were fine, and that the eapsan took in the iron fishing-line easily till $5 \cdot 0$ am., ships time, when the grapmed rame en to the bows. 'The canse of the failure was at one explained : the grapuel rould not have amght the cable becanse in going down, or in draging at the bottom, the chain of the shank had canght round one of the flukes. From the condition of the rope it was
calculated that we were in only $1,9.50$ fathoms of watre, for nearly 500 futhoms of it were covered with the grey oore of the bottom. The collectors sermed away at the precions gathering all the morning, and for a time forgot their sorrows.

It wis now a dead calm, and Mr. Cimming mustered his fores for amother attempt for the Gable! He urerhanled the wire repre, and exoreised hawsers out of crypts all over the ship.
" Hope lives eternal in tho human breast."
Although the previous trials, with hetter gear, hat proved unsuccessful ; nlthough the tackle now used was a thing of shreds and patches; although Mr. Caming and others said, "We are going to make this attempt became it is our duty to exhathst every means in our power," and thereby implied they had little or me confilence of suceess; there was seareely a man in the ship, who did not think "there is just a chance," amd who would not have made the endeavour had the matter heen left to his own deeision. It was some eneouragement to ascertain that there were only 1,950 fathoms of water helow us. It was argued that, if the Cible comld be broken at the light, another drift about a mile from the loose cond would be certain to suceeed, as the loose eme would twist romed the eastward portion of the Cable, and come up at a diminished strain to the surface. A grapmel with a shorter shamk was selected for the next trial. The eablemen were set to work to coil down the new rope and hawsers hetween a circular enclosure, formed by uprights on the deek behind the eapstan. Ropemakers and artifieers examined the rope which had heen alrealy used. They serwed the injured strauds with yann, renewed furtions chafed to death, tested bolts anel sharkles and swivels, and bent on new lengtlis of rope and hawser, whilst the ship was proeceding to take up her position for another demonstration against the Cahle. The line now employed, the last left in the ship, was a thing of shreds and fatches. It eonsisted of 1,600 fathoms of wire rope, 2.20 fathoms of hemp, and 510 fathoms of Manilla hawser, of which 1,760 fathoms could be depremted upon, the rest being "suspicions." The morning was not very fine ; but the wind was light, and on the whole favourable, and the only circumstance to canse doubt or uneasiness was the current, the influence of which could not le determined. The observations of the officers rendered it doubtful whether the buoy No. 2 had drifted, and it was rather helievel that in the interval between the breaking of the gramel and the letting-go of the buoy, the Great Eastern herself haid drifted from the place, and thus caused the apparent discrepaney in position. At $7 \cdot 45$ a.m. the ship was alongside buny No. 2 once more, and thence proceeded
\square

to an advantageous bearing for drifting down on the Cable with her grapnel. The Terrible kept about two miles atway, regarding our operations with a melancholy interest. At $11: 30$ a.m., ship's time, the Great Eastern signalled "We are going to make a final cffort," aund soon afterwarls, "We are son'y you have had such uncomfortahle waiting." At 1:56 p.m., Greenwich time, when buoy No. 2 was bearing E. by N. about two miles, the ship's head being W. and by S., the grapnel was let go, and soon reached the lottom, as the improvements in the machinery and carstan enabled the men to pay it out at the rate of fifty fathoms a minute. The fore-and-aft canvas was set, to comnteract the force of the current, and the Great Eastern miftel to N.E, right aeross the Cable, before a light brecze from S.W. At first there was mly a strain of 42 ewt. shown, and the ship went cuite steadily and slowly towards the Cable. At 3:30 p.m. the strain increased, and then the Grat Eastern gave some little sign of feeling a restraint on her actions from below, her head describing unsteady lines from W.N.W. to W. by S. The serew engines were gently brought into play to keep her head to the wind. The machinery and capstan, which had been put in motion some time previously to haul in the grapnel cable, now took it in casily and regularly, except when a shackle or swivel jarred it for a moment. Every movement of the ship was most keenly watched, till the increasing strain on the dynamoneter showei that the same grip on the bottom which had twice turned the head of the Great Eastem, was again placed on the grapnel she was dragging along the bottom of the Athintic. The index of the dynamometer rose : it marked 60 ewt., then it jerked up to 6.5 cw. ., then it reached 70 cwt., then 75 ewt. : at last its iron finger pointel to so ewt. It was too much to stand by and witness the terrible struggle between the crisping, yielding hawser, which was eoming in fast, the relentless iron-chal ealstim, and the fieree resolute power in the black sea, which seemed endued with demoniacal energy as it tugged and swerved to and fro on the iron hook. But it was beyom preadventure that the Atlantic Cable had loeen hooked and struck, and was coming up from its oozy bed. What alternations of hope and fear-what doubts, what sanguine dreans, dispellecl by a moment's thought, only to revive again! What need to say how men were agitated on hourd the ship? There was in their breasts, those who felt at all, that intense ruict exeitement with which we all attend the utterance of a supreme decree, final and irrevocable. Some remained below in the saloons-fastened their eyes on umread pages of books, or gave expression to their feelings in fitful notes from piano or violin. Others went aft to the great Sahara of deek where all was lifeless now, and whenee the iron oasis had vanished. Some walked to and fro in the saloon ; others paced the deck amid-
ships. None liked to go forward, where avery jat of the machinery, every shackle that passel the drum, every clank, made their hearts leap into their mouths. Captain Anderson, Mr. Caming, Mr. Clifforl, and the ofticers and men engaged in working the ship and taking in the grapuel, were in the hows of course, and shared in the common anxiety. At dinmer-time 500 fathoms of grapmed rope had been taken in, and the struin was moming beyond se cwt. Nothing else eould be talked of. The boldest ventured to utter the worls "Heart's Content" and "Newfommelland" once more. All through the unguiet meal we could hear the shill whistle through the acoustic tube from the bow to the bridge, which warmed the gmartermasters to stop, reverse, or turn ahead the serew engines to meet the exigencies of the strain on the grapmel rope. The evening was darkling and raw. At $6: 301$ left the salom, and walked up and down the deck, under the shalter of the padlle-box, glancing forward now and then to the how, to look at the lonsy crowd of engine cres, sailors, and cablemen gathered round the rope coming in over the drum, which just rose clear of one of the foremasts, and listening to the warning shouts as the shackles came inbourd, and hurthed through the machinery till they flomedered on the huricane deck.

Alout 20 minutes hat chapsed when I heard the whistle sound on the lridge, and at the same time saw one of the men ruming aft anxionsly. "Theres's a heavy strain on now, sir," he said. I was groing forward, when the whistle blew again, and I hearel rries of "Step, it!" or "Stop, her!" in the bows, shouts of "Look out !" and agitated exdanations. Then there was silence. I knew at once all was ower. The machinery stood still in the bows, and for a moment every man was fixed, as if turned to stone. there, stambling blank and mute, were the hardy constant toilers, whose toil was ended at last. Our last bolt was sped. Just at the moment the fracture took phace, Statf-Commander Moriarty had come up from his calbin to amomee that he was quite certain, from his calculations, that the vessel had dragged ower the Cable in a most favouralle wint. It was 940 p.m., Greenwich time, and 76.5 fithoms had been got in, laving little more of the hempen tackle to be reerosered, when a shackle came in and passed through the machinery, and at the instant the hawser shapped as it was drawn to the rapstan, and, whistling through the air like a rouml shot, would have amried death in its course through the arowided groups on the hows, but for the determination with which the men at the stompers hed on to them, and kept the morderons and straight in its career, as it sped back to the Athantic. It was scarecly to be hoped that it had passed hambessly away. Mr. Cameng and others rushed forward, exclaiming, "Is any one hurt !" ere the shout "It is gone!" had
subsided. The battle was over! Then the first thought was for the wounded and the dead, and Goxl be thankel for it, there were nother to ald to the grief of defeat. Nigh two miles more of iron coils, and wire, and rope were alded to the entanglement of the great labyrinth made by the Girat Eastern in the beed of the oeem. In a few speonds cerery man lonew the worst. The bow was deserted, and all came aft and set about their duties. Mr. Clifford, with the end of a hempen hawser in his hand, tom in twain as thongh it were a soll of brown parer -Mr. Caming alrealy recovered from the shock, and giving orders to stow away what had come up from the sea- ('aptain Anderson directing the elinef engineer to get up stem, and prepare for an immodiate start.

The result was signalled to the Thrible, which came down to ns, ame as she was bound to St. Jolm's to take in cools to enable here to return to England, all who had Insiness or frionds in America prepared their dispatehes for her hoit. The wind and sea wore rising, as if anxions to hury us from the seme of the nine days' struggle. The Great Lastem's heme was already turned westwards. All wore prompt to leave the ejot which soom would hater mon moth of the night and day long lalnums-for the hooys whish whirled up and down and round in the waway would probably hecome waifs and stays on the orem, and all that was left of the expedition for a time were the entries in log looks-"Lat. 512.4^{\prime} Long. $35^{\circ} 59^{\prime}$; and of Calle down N. . 50 W. $1 \frac{3}{1}$ mile"-amd such memorics as amimate men who, having witnessed lonve fights, with alverse fortme, are encouraged therely to persevere, in the sure conviction that the grood work will in the cond be aceomplished. It was wild and dark when Lientenant Prowse set off to regain his ship. The flash of a gom from the 'Trmihe to recall her cutter lighted up the gloom, and the glate of an answemg blue light, burned by the boat, revealed for an instant the full of the man-of-war on the hearing waters. Thore wats a profound silene on hard the ligg ship. She struggled against the helm for a moment as thongh she still yamed to pursue her couse to the west, then bowed her leal to the angry sea in amission of defeat, and moverd slowly to meet the rising smo. 'The signal lantems Hasled from the Terrible, "Farewell:" The lights from unr patdlo-loex piereed the night, "Goonl-by! 'Thank yom," in sad admowledgment. Then eade afed on lere way in solitude and davkness.

The progress of the mulertaking exeited the utmost interest, not only in (brat Britain, but ower all the civilised word. Twiee a diy the telegraph at Foilhummernus spread to all parts of the carth a lorief acoount of the doings of the Great Ship. Ahnost as soon as ome of the mexpected imperiments which mared the suressful issue of the enterprise arose, the public were informed
of it, and could mark on the maly the spot where saikr, "ngineer, and dectrician were engaged in their work on the bosom of the wide Athatie ere their bahnurs wern overs. The Grat Eaternis pesition could he tamed on the chart, and the comser of the Gable, in its mesern resting-phase, could be followerl from diay to
 those cugage in paying-ont the (ahle were reatine by the certainty with which the faults were detectel, and the comparative fardity with which the Cable was taken up from the seal. Athongh the varions delays which wermerd por dued some discouragement and measiness anmerg thase what had workd so hard ant cmanked so murh in the grand project, the ease with which communication was restured ats often ats it was injured or intermpted lyy fants and deal carth, inspired confidene in the eventhal sumess of the attempt. But only thase actually witnesses of the wonderful facility with which the ('able was paid nut felt the convietion that the (ablde combld be laid. The publie only binew the general results, and did not appreriate properly the nature of the difficulties to which the frustration of their herpes was the. Whan the last fault oeremerel, the dertricians at Valentia were left without any prerise indiontions of the nature of the Whatruction, of of the procerdings of thase on home ; but they andually catcolated within a few fathoms the exact locality of the injury: and when the oun of the Gable samk into the depths of the owem, the practioal wizants of Foilhumurem
 When all communication censel with the Great bistem momerasiness was exciterl, becemse a similar wernt hand oe omed before for many homs, and the ship speke
 dias, , med the needle was still, and the light nowed nest in the diakemed chamener at Fiblhummerum. It may be exnerised with what soliritule the men, in whese watchfulness all the slegping and waking world were interested, hoksed out for some sign of the revisal of the eurest in the dull weins of the subtle mechanisin.
 more than the chmons stake they hat put in the mulertaking. 'Their ferlings were shared by the mass of the peerple, and Iler Majesty was amimaterl by the same solicitude is her subjeets. For there hat bern prophets of wil hefore the experlition sailed, and men their voires ware mised again, and foumd aredene anong these who distrusten the magnifieent ship which wis then calmely hreasting
 whose nomal eondition is deipair of every scheme, growl, usidul, nowl, or great.

columns, and although the original articles did not indicate any apprehension of a catastrophe, it was evident the public mind was becoming uneasy. The feeling increased. The , arespondenee augmented in volume, and, let it be said, in wildness of eonjecture and mismundness of premises and conclusions. Those who were inelined to believe that the Great Eastem had gone to the bottom were comforted by the reflection that the two men-of-war would save those who were on board. Had they known that the Sphinx hard disappeared, and that the Great Eastern was mueh better able to help the Terrible, in a time of watery trouble, than the Therrible would be to aid her, they would have despaired indeed.

All the white those on board engaged in their work-grappling and lifting, difting and sailing-were enjoying themselves as far as the uncertainty attendant on their work would allow them, and were in a state of repose harely disturbed, as the time wore on, by surmises that people at home might begin to entertain doubts as to what had lecome of the expedition. Even these speculations would have had no agitating influence hat the electricians on board communicated with the shore before they cut the end of the Cable on the last occasion. It would have surprised and amused officers and crew if they could have known that the vessel, which they were never tired of praising and admiring, was pronounced by eminent engineers to need strengthening; that she lad sunk in the middle, or had fagged ; or if they could have read confident assertions that the grand fabrie in which they were so comfortally lodged and entertained and borne was unsafe and radically faulty ; that good authorities had declared she was hogged. Undoubtedly there were grounds of anxiety, hut none for anticipations and predictions of the worst. It would not he fair to omit to mention that in some instances the most romect and close eonjectures were made concerning the position of the ship and the work in which she was engaged, as well as the causes of the long-continued silence. Several letters appeared, in which the writers tried, with singular justice of reasoning, to stem the current of alarm. The press generally abstained from any adverse speculations ; but it was rather behind the public feeling in that respect. It cannot be denied that the news-agent who hailed the Great Eastern at Crookhaven with the words, "We did not know what to make of you. Many think you went down," expressed the conviction of a great number of persons all over the kingdom, on the 17th August.

Early on the morning of that day the Great Eastern eame in sight of land, and soon after 7 o'elock a.m. steamed into Crookhaven, to land a few passengers and to communicate with the telegraph station at that solitary and romantic spot. Ere noon the news of the safety of the ship relieved many an anxions thought, sileuced miny a tongue and pen, and dissipated many a gloomy apprehension. It
maty be suid that the return of the Great Enstern was a suldjeet of national rejoicing. Every newspaper in the kinglom eontained articles on the topic. The narrative of the voyage, which was written on board, and sent to all the principal journals before the Great Eastern arrived at the Nore, so that the public were at once placed in possesssion of every fact comected with the proceedings, almost simultaneously, wats read with the utmost avility, and when the facts were known, all men coneurred in the justice of the lealing artieles which, without exception of note, drew fresh hopes of suceess from the record of the causes which led to the interruption of the enterprise. The energy, skill, and resolution displayed in the attempt to recover the Cable were admitted and prased on all hands. But what most excited attention was the fact that the Calle hand act mally been hooked three times at a depth of two mantical miles, and cariod ul halfway to the top. The mont seeptical were convinced when they became aware of the hard material evidence on that point. Next in point of interest perbaps was the conduct of the Great Eastern herself. A great revulsion of sentiment took place in favour of the vessel which had litherto been mfortunate in her management, or in the conditions under which she hat lreen tried.

Whilst the most profound ignormee respecting the fite of the Great Eastern prevailed, an Extmordinary General Neeting of the Atlantic Telegrald Company was held on 8th August, in pursuance of a notice issued on 24th July previous, to consider the expediency of converting into Consolidated Eight per Cent. Preferential Stock the Eight per Cent. Preferential Capital of the Atlantic TelegraphCompatiy, consisting of 120,000 shares of 5 . each, and of converting into Ordinary Consolidated Stock the whole of the Ordinary Share Capital, consisting of 350 shares of the par value of 10001 ., and 5,463 shares of the par value of $20 l$., and to issuc either in ordinary stock or in shares the sum of $137,140 l$. of ordinary eapital, authorised at the Extraordinary General Meeting of Mareh 31st, 1864, and agreed to be issued in instalments fully paid up, to the contractors from time to time after the suecessful completion of their contract.
The directors also gave notice that they intended to seek authority from the shareholders to issue such amounts of new waital as may be required for the construction and laying of a second Atlantic Telegraph Cable under powers of their Act of Parliament, and to attach to such capital such privileges and such advantages and conditions as might be determined. The Right IIon. J. S. Wortley, cheirman, who has exhibited unshaken confidenee and untiring energy in the post he occupies, had a difficult task leefore him, but even then he could exhort his liearers to courage and perseverance. As he well said, "But there are two things from which we may derive consilerable consolation. This great enterprise has

1 rejoicing. narrative ll journals : at once 20st simulknown, ull xception of led to the yed in the But what wekel thre tol. 'The d material duct of the vour of the n the conCompany mevious, to t. PruferenhCompary, ry Consoli0 shites of issuc either authorised o be issued er the sucfor the concrs of their and such S. Wortley, in the post exhort his two things erprise has
been the suljeet of disenission in every civilised nation in the world. The eyes of seience have been fixed mon it ; and the acuteness of criticism has becu bronght to bear on it. We have had our detractors, and there have been seepties; and what are the two main points on which they have founded their secepticism? One is, that the great depth of nearly three miles must hring extrandinary pressure on the Cable, must injure it ly perforating the covering, and must in fact destroy the insulation. The other point was the impossilility, as they contended, of emmmonicating intelligible signals throngh so great a length, or 'leap' as they term it, as 1,600 miles. But we had a scientific committee, who made experiments, and who assured themselves that there was nothing in cither of those oljections ; and now we have in aldition the much more practical and raluable proof of experience. What are the fiets? Some lays lefore the interruption of the messages the Great Eastern passed over the deepest portion of the ocean (with one slight exception) which we have to traverse letween Europe and America. She passed safely over a depth of 2,400 fathoms, telegraphing perfect signals. This entirely disproves and refutes the first oljection and doubt which existed in the minds of those seeptical gentlemen, because the Cable was laid in great depthe, varying from 1,500 to 2000 fithoms, and even in 2,400 fithoms; and so far from the great pressure at that depth injuring the C'ible, the Compmy's signals appear from their telegrams to have improved every yard they went; and the signals through 2,400 fithoms of water were as purfect as, if not more perfect than, those at a less depth. That is in confirmation of the old Cable having worked at those depths. Then I say that our seirntific committee, and those who said that the pressure would not have an injurious effect, have been fully borne out ; and that the result has proved that, so far from injuring it, pressure improwes the Cialle. In spite of these facts, 1 see here al commmuication from a gentleman to one of the public journals only yesterluy, in which he says, that looking at the pessure of a colum of water efual to so many atmonpheres, it must destroy the Cable ; and he aulds with confidence, that the Cable must he at the present moment a perfect wreck! And then he says that the Company never made experiments to satisfy thenselves what this number of atmospleres would do to the Cable. He writes in perfect ignorance, that the seientific committee las the means afforded them by this Company of applying a weight of 60001 l . to the square inch; but after having proceeded to a certain extent with that experiment, and tried a very large amome of pressure, and finding that the Cable, so far from deterionating, was improved by the compression of its elements, they thought it unnccessary to carry the experiments further. Aud now we have the result to corroborate their views."

On Oetoler 12, an Extraordinary Genemal Meeting of the Athantic 'Telegrath Company was heh, at which the Chairman, the Right Mon. J. S. Worthey, propused a Resolution rescinding those passed at the Genewal Meeting in August. He reminded them the Capital was originally issued in 1000/, shares. After that in additional amount of capital was raised in 20l. shares; and after the first failure a further capital of $600,000 /$. in $5 l$. shares, and an 8 per cent. preferenee, was raised. Under these circumstances they suceeeded in ruising the necessiry sum enabling them to sem out the last expedition, and they now proposed that notwithstanding that guarmite of \& per cent. to issue an new preferential capital at the rate of 12 p pre cent. They hand negotiatel with the same contractors who hand hitherto had charge of laying the Cable, and they were willing for the sum of 500,0001 . to take out a sufficient quantity of Cable, together with that which was left in the ship amounting to about 1000 miles, amd in the first place to go across and hay a new Cable, and then to come back and pick up the ohd one, epliee it, and continue it to Newfoundland. He might say at once, that not only the contractors, but all who were engaged in the undertaking, were representel there that day, as well ats the able staff of scientifie men to whom they were so muth indebted upon the last expedition, and he said in their presence that they all had extreme confidence that they would not only be able to lay the new (able but to pick up the old one, mend it, and relay it. It was proposed that in addition to the $500,000 \mathrm{l}$. there should, if the Cable was successfully haid, be a contingent profit to the contractor, which would be paid in money. It was apprehended that the additional 100,000 . asked for would be quite sutticient to meet any contingency that might arise. The formal Resolutions rescinding those passed at the meeting in August last were carried manimonsly; and it was Resolved, "Thatt the Cipital of the Company be increased to an amount not exceeding $2,000,000 l$., by the creation and issae of not exceeding 160,000 new shates of $5 l$. each, and that such new shares shall bear and be cutitled to a preferential dividend at the rate of $12 l$. per cent. per annm on the amount for the time heing paid up thereon, in priority to any dividend or on any other capital of the Compauy, and shall also, in proportion to the amount for the time being paid up thereon, be entitled to participate equally with the other capital of the Company in any moneys applicable to dividem, which upon each declaration of dividend may remain after paying or providing for the said divident of $12 /$. per cent. per ammom, the preferential dividend of $8 l$. per cent. per immm payable on the consolidated a per cent. preferential stock of the Company, and a dividend at the rate of 4 per cent. per amum on the consolidated ordinary stock and ordinary shares of the Company."
'Telegrath , proposed gust. He ter that an irst failure renee, was ssury sum 1 that notealpitill it os who hand he smon of which wats , go across e, sphice it, t ouly the inted there ce so muth ley all haid able but to ddition to contingent ended that any conssecl at the sed, " That 1,000,000l., Cach, anel end at the up thereon, l shall also, entitled to cys applicmain after m, the preated 8 per 4 per cent. res of the
 Maintenince Compiny, in consideration of the sum of 500,000t, which has heen agread on as the cost priare of the coble if painl for in cash, have alrealy commemed the manufacture of the new (able, to be laid down during 1866 leetween Ireland and Newfoundland. The contractors, if the said Cible be suceessful, but not otherwise, are to have in shares ambleash a profit at the rate of 20 per cent. upon the cost. The contractors also undertake during 1866, without any further charger whaterer, to go to sea with suffirient ('able, incluling that now laft on baird the
 sluwn to be neecesary, and to use their best cmbleavours-in the sureses of which they express cutire hedief-to recower, repuir, and complate in working order between lreland and Newfomeltand, the prexemt lioken ('ible, which has been ancertained by recent caurful clectrical tests to be in perfect order throughout its entire lengeth. It will he seen that airemmstances have thus emabled the boird to effert a very considemble exommy in the (companys fresent opections, for in the
 considerably less amount tham wouk have been exumded if the Calde of this gear had leen suceessfully laid, iuml inother had heen purehased seprately. Subseriptions were invited for the sum of 600,0001 , in 120,000 shares of $5 /$. carch.

This new capital will not only create fiesh property, hut probally resuscitate the old; and the expericnce of the present year shows that by these means the existing 8 per cent. Preference Stock will, in all probability, be agoin plated at par in the market loffore the sailing of the ship next year.

These new shares will aceordingly be entitled to take precedence as to dividend over all the other existing stuek of the Complamy, and to participsite pror rate in all subsequent dividends, bonuses, or bencfits, after 8 per cent. shall have been paid upon the second preference stock and 4 per cent. upon the ordinary stock.

The profits to be expected on the completion of this work, if cach of the two proposed Cables can be worked at the very low rate of only tive words 1 rer minute upon each Cable for sixtern hours a day at five shillings fer word, the tratlic, alter paying the dividend charges of 12,8 , and 4 per cent. respectively, amometing together to 144,000 l. upon the celpital comprisel in those different stocks, ind after paying the very liarge sum of 50,000 , a year for working expenses, would leave a very large balane for paying further dividemets or hommes on the Company's total capital, both ordinary and preferential, or for reserve funds if preferred.

A calm examination of the courses which led to the suspension of the Great

Eastron's work, inmpine thase whese judgments were free from prejudice with the helief that a servies of' ateridents, in their nature emsily gumed against in future, hat lueren the sule callses of the frostration of the cuterprise. If the extemal conating had not heren injured, mo faulte mond have oremrend, and if there
 surecess of the 'Tollgraph becomes assured the moment the oxeurrenee of faults can be ohviated, we their detertion can loe followed by imandiate reparation. 'These
 the public, and lig the cmomoms grinus which must reward esen at temperary
 the Dirertors of the Great ship Compray by which the 'Telegraph ('onstruetion
 and another mogotiation ended in obtanning the serviees of Captain Aublerson in charge of her.

Now it maly le fairly comeludel, from our expricuer of the " Athantic Telegraph Experlitions" in 1857, 1858, and 1865, -That a submarine telegraph (able can be laid hetweon Ireland and Newfomallam, berause it was actually done in 1858. 'That mowigess call be tramsmitted through a Cible so laid, because 271 messuges were sent from Newfoudland to Vallentia, and 129 messages from Villentia to Newfrmatland, in 1858. That the insulation of a Calle increases very much after its sulmarsion in the cohl therp water of the Athatie, and that its conducting jower is cousiderably improved therely. That the steamship Grat Eastern, from here size and comstant stradiness, and from the eontrol over her afforded by the joint use of pathlle and serew, remders it possible and safe for her to lay an Atlantice (Gible without regard to the weather. That the egress of a Coble in the course of locing laid from the Great Eastern maty be siffely stoplyed on the appearane of a fiult, and with strong tackle :mil growl hauling-in machinery, the fault may be lifted from a lepth of over soov fathoms, and cut out on board the ship, and the Galle rexplieed and laid in proffect condition. That in a depth of two miles " Cable can be caught it the bottom, because four attempts were made to graiple the Cable in 1865, and in three of them the Cible was caught by the grapuel.

The paying-out machinery, constructed ly Messis, Caming and Clifford, and used on board the Great Eastern in 1865, worked jerfectly, and can le confildently relied on for laying Gables across the Atlantic. With the improved telegraphie instruments, for long submarine lines, of Professor W. Thomson and Mr. Varley, a speed of more than eight words per minute can be oltained through such a circuit as the Atlantic Cable of $\mathbf{1 5 6 5}$, between Ireland and Newfoundland; as the umount
jurlice with ngainst in e. If the mill if there ease. 'The f faults ran oll. 'These uficlence of temperary into with 'minstruction 1 of yems, n Aurlerson
c 'Telegraph fable cam be 18.58. 'Allat essages were , Nowfoumlch :ifter its acting power an, from her by the joint in Atlantic 11 the course varance of a ault may be 3lip, and the f two miles re made to aught by the Clifford, and e confidently 1 telegraphic Mr. Varlcy, a such a circuit is thie mmount
of slack actually payed-out did not exered 1.4 per cent., which would have made the total Cable laid butwern Villentia and Heart's Content less than 1,900 miles.

The Cable of 1865, thongh eapable of lowaring a strain of 7 tons, did not "xperience more than 14 ewt. in lecing payel-out into the decpent water of the Atlantie between heland amd Newfoundmad.
'There is no diffieulty in mooring luags in the dep water of the Atlantie bet ween lreland and Newfoumblam; a lmoy, even when monerd by a piece of the Athantic Cable itself which had been previonsly lifted from a depth of over 2000 fathoms, has ridden out a gille.

More tham four miles of the Athatic ('able have bern recovered from a depth of owe two miles, aul the insulation of the gutti-perehat-overed wire was in no way whatever impaired, either by the depth of water or the strains to which it had been suljeceted by lifting and passing through the hauling-in "plamens.

The Cable of 1865 , owing to the improvements int rolue ed into the manuficture of the gutta perela, insulated more than me humber times better than Cables mate in 1858, then considerol perfert, and still working. The improvements effected since the begiming of 1851 in the comblating power of the emper wire, ly selecting it, has increased the nate of signalling possible through long subminme (ables by more than 33 per cent. Electrical testing can be conducted at sea with such certainty as to discover the existence of faults in less than a minute of their oceurrence. If a steam-engine be attached to the paying-out machinery, so as to permit of hauling-in the Calle immediately a fanlt is discovered, and a slight modification made in the construction of the extermal sheath of the Cable, the cause of the faults experienced will be entirely done away with ; and should a fiult occur, it can he picked up even before it has reached the bottom of the Atlintic.

The Great Eastern is now undergoing the alterations which will rember her absolutely perfect for the parpose of laying the new Cable and pieking up the old, and next year will see the renewal of the enterprise of comnecting the Old World with the New ly an enduring link which, under God's blessing, may confer unnumbered blessings on the nations which the ocean has so long diviled, and add to the greatness and the power which this empire has achieved by the energy, enterprise, and persevermee of our countrymen, directed by Providence, to the promotion of the welfare and happiness of mankind. Remembering all that has occurred,--how well-grommed hopes were deceived, just expectations frustrated, -there are still grounds for confilence, absolute as far as the nature of human
allaite permite them in any colvalation of fature events to loe, that the gear 1866 will withess the consmmation of the rerentest work of rivilised man, and the grament expesition of the development of the farmbes bestowe on him to overcome material diftionltiens.
'The last word tranmitted throngh the ohd 'relegraph from Enrope to America, was "Forward," and " loorward" is the motho of the enterprise still.

APPENDIX.

APPENDIX.

A.

ATLANTLO THELGRAPII COMIPANY.

directons.

G. P. BIDlHER, Esq., C.E. FRANCLS LE BRETON, Raq. EDWARD CROPPER, Esq.
sir EinWard CUNallo, Bart. SAMt'lil GURNET, Bst., M.P. cartain a. T. hamhloton.

E:DWARD MOUN, Fin daORGE PEADODY, Ris. Joms lenderi, Esif, M.I'
honorary Dinector-W. It. Atepienson, Eiq.
Hoxi)RARY MHECTORS IN THE CMITED STATES,
 peter coorer, lisq. New York. WILRoN t. JifNT, Esq. Niw York. WILLIAM E. DODGE, lisq. New York. A. A. Low, Esq. Nuw York. howard Ioterer, Emq, New York.
howorary dibecturs in british kohti americh.
hugh ALLINN, Esi., Montreal, Camadi. Whalan cunalb, Em, Lalifix. Nowa codia.

Whliter Grisive, Rsq., St. John's, Newfomiliamd. THomas C. KINNEAR, Lsq., Inalimx, Noma Sotia.

ATLANTIC TELEGRAPI COMPANY-continued.

consultino seientifio committee.
Wililam Filmbairn, Esq., F.R.S., Manehester. CAPTAIN DOUGLAS GALTON, R.E., F.R.S., London.

PRORESSOR WM. TIIOMSON, F.R.S., Glasgow. PROPESSOR C. WILEATSTONE, F.R.S., London JOSEPII WHITWORTII, Esq., P.R.S., Maneheater.

Ilonorary Congulting Enaineer in Amertoa-GEneral Marsitall lbfrerts, New York
Offices-12, St. Helen's Place, Bishopsgate Strect Within, London.
Secretary and General Superintendent-GEORGE SaiVARd, Esq.
Eltactictan-CROMWELL F. VARLEY, Esq. | Soltcitors-MESSRS. FRESHFIELDS \& NBWMAN.
Audim-II. W. BLACKBURN, Esq, Bradford, Yorkshire, Public Aecountant.
maniers.
In Loondon-The Bank of England, and Messrs, Glyn, Nills, In Scotland-The British Lineu Company and its Branches. \& Co.

In Iancushire-The Consolidated Bank, Manehester.
In Ireland-The National Bank and its Branches.

In New York-Messts, Duncan, Sherman, \& Co.
In Canada and Nove Scotia-The Bank of British North America.

In Ncufoundlend-The Union Bank of Nowfonathand.

B.

(I'nitiny the Business of the Guttu Percha Company with that of Messrs. Glass, Elliot, d Company)
is constituted as follows:-

DIRFCTORS.
JOHN PliNDER, Esq., M.P., Chairman.
ALEXANDRR IIRNRY CAMPBELL, Esq., M.P., Vice-Chairman.
PICHARD ATWOOD GLASS, Esq. (Glass, Elliot, \& Co.), Munaging Dircctor.
menry ford barclay, Esq. (Gutta Percha Co.) DANIEL G00Cif, Esq., C.E., M.P.
thomas brassey, Esy.
(H ORGE BLLIOT, Esq. (Glass, Elliot, \& Co.)
alexander strutilers finlay, Esq., M.p.
samuel gurney, Esq., M.P.
LORD JOHN HAY.
JoHN SMITH, Esq. (Smith, Floming, \& Co.)

Banxrrs-TIIE CONSOLIDATED BANK, London and Manchester.
solicitors.
MESSRS, BIRCHAM, DALRYMPLE, DRAKR, \& WARD. I MESSRS. BAXTER, ROSE, NORTON, \& Co.
Spcretart-Willian shuter, Esq.
C.

The following will be some of the Improvements in the Picking-up Machinery and in the Vessel to fit her for her next voyage, and it is believed that the Great Eastern will be as perfect and as adminably adapted for her work as human hands can make her.

The whole apparatus will be strengthened and improved by grooved drums, and more boiler power added, and other drums will be provided for lowering away booy-rope when grappling.

The paying-out machinery will have steam-power added to it, the spare drum fitted on the machine will be used for picking-up in connection with the paying-out drmm ; an extra drum and brake-wheel will also be placed near the stern for the propose of paying-out grapnel lines and buoy-rope, in ease it is found more convenient than at the bow.

The grapnel-rope, with shackles, swivels, \&e., will be made suffieiently strong to lift or break the bight of the Cable in the deepent water. The hawse-pipes and stem of the ship will be genarded to prevent the Cable from being injured. A guard will be placed round the serew to prevent the Cable and buos-rope fouling.
D.

statement of knots run and cable payed-out per day.

Sumay, July 23.-I.ff Berchaven at $1 \cdot 15$ a.m. Passed Skelligs at 8.0 a.m. ; bore awny N.W., med came 1 p , with Caroline at $8: 30 \mathrm{a} . \mathrm{m}$, about 25 miles N.W. of Valencia. $10: 30$ a.m., End got ont of afterholl. $11 \cdot 0$ a.m., 'Terrible and Sphinx came alongside. $12 \cdot 35$ p.m., Caroline got up end of shore-end Cable. 12% p.m., passed end of deep-sea Cable to Caroline over sternsheave of Great Eastern. $\overline{5} 20$ p.m., splice finished on board Caroline, and bight of Cable slipped. 6.50 p.m., took hands on board from Caroline. $x .0$ p.m., paddle and serew engines started.

Machinery ed that the or her work
dd more boiler rappling.
n fitted on the axtra drom aund apmel lines and
to lift or lireak will be gruarded w to prevent the

TEMPRRATURE OF THE SEA-WATER.

Datu.	Titne.	Degtees.	Date.	Time.	Degrees.
1805.			1865.		
July 26th	Noou.	59	August 4 th	Nool.	55
, 27 th .	"'	05	" ${ }^{\text {bth }}$	"	05
, 28th	"	36	" 6th	'"	50
", 29th .	"	is	, ith	"	54
" 30th	"	33	" Sth	"	55
" 31st .	"	5	" 9th	"	54
August 1st	"	09	" 10th	'	57
" 2nd .	"	59	" 11th	"	57
" 3rd	''	54	" 12th	"	54

s. CANANNG.

E.

TIIE FOLloWHNG IS A TABLE OF THE CABLES ALREADY LAID IN THE sbas ANI) OCEANS OF THE WORLD.

No.	Cuble	Welght.	length.	llos. $\text { G. } \mathrm{P}$	lus.	Length.	l.ongth of Cable.
1	lover and Cape Grisnea			13,230	33300	30	10
2	Dover and Cilais. . .	314,600	$2(6)$	11, $5: 20$	Tole	10.4	26
3	Molyhead, Ilowth	$1 \pm 6,480$	960	11,400	5400	s0	so
4	$\left\{\begin{array}{c}\text { Portpatriek and I\%o- } \\ \text { naghadee }\end{array}\right\}$	316,900	300	20,312	10,10J	130	2"
5	Demmark	164,748	16:	5400	$\because 0.2$	51	$1 \times$
6	Dover, Ostend	1,138,320	1080	73,120	36,450	5.10	91
7	Frith of Forth	7, 7 , 8100	200	S150	18,5:0	20	j
8	Italy, Corsiett	1,597,200	1:120	101, 4.40	4,530)	660	110
9	Corsiea, Sardinia.		120	93.10	10.30	60	10
10	Iolyhead, Ilowth	295,6.40	7 FiO	15.504	-31,300	76	76
11	Do. -	295,640	760	$1 \mathrm{j}, 504$	51,300	76	76
1:	$\left\{\begin{array}{l} \text { Portpatrick and White } \\ \text { hend } \end{array}\right\}$		8.48	312	2!, 280	10,530	16s 284
13	Sweden, lenmark . .	137,020	130	5\%88	$\underline{4633}$	$3!$	13
14	Black Sea			56,763	21,098	3.7	337
10	1) 0. (Prince Elward's Is-)	70,584	2076	24,632	11,678	173	173
16	$\left\{\begin{array}{r}\text { Prand, New Bruns- } \\ \text { land, } \\ \text { wiek }\end{array}\right.$	46,312	144	1005	1131	84	12
17	England, Hanover . .	807,680	3300	60,260	30,240	2240	280
18	- IIolland. . .	2,439, 8.40	1366	110,976	78,336	544	136
19	Iiverpool, IIolyhend	161,400	300	5935	3376	00	25
20	Channel Islands . .	450,306	837	14.787	10,230	93	93
21	Islo of Man .	193,680	360	7344	2430	36	36
20	England, Denmark .	2,734,200	1200	124,425	6700	1200	330
23	Folkestone, Boulogno	429,120	285	$\underline{20,520}$	7770	576	21
24	Sincrapore, Batavia.	564,300	9000	112,200	86,350	3850	350
2.)	Sweden, Gottland	215,064	765	10,176	60 IS	448	6.1
26	Tasmania	933,400	2100	34, 160	16,480	240	210
27	Ienmark, Great Bolt	203, 280	168	13,365	3628	81	14
28	Hacca, leru i ${ }^{\text {a }}$ (119,016	yoss	21,228	18,090	812	116
29	$\left\{\begin{array}{c}\text { Newfoundland, Capo } \\ \text { Mreton }\end{array}\right\}$	290,700	900	13,515	8500	395	$8{ }^{\circ}$
30	First Atlantic . ${ }^{\text {a }}$	3,110,800	428,400	748,000	310,000	23,800	3100
31	$\left\{\begin{array}{c}\text { Sardinia and Malta: } \\ \text { Dardanellos to Seio } \\ \text { andCandia tiomScio, }\end{array}\right\}$	3,326,400	$1:, 600$	111,300	70,000	4900	700
32	$\left\{\begin{array}{l}\text { and }{ }^{\text {andman }} \text { (romscos } \\ \text { Athens, to Sma and } \\ \text { Scio. }\end{array}\right\}$	631,101	830.1	S2,0:21	31,900	3633	519
33	Sardinia, Bona . . .	707,000	1000	12,350	80,000	500	12.)
34	Red Sea :md Imbia	6,120,714	63, 168	743,008	517.104	24, 5163	3509
35	Sicily and Malta	409,100	700	10,050	7600	490	71
36	Barcelona, Mahon \& ;	5334, ut 60	2580	$22^{2}, 520$	16,710	1260	180
37	$\left\{\begin{array}{c}\text { lviza to Majorca: St. } \\ \text { Antonia to lviza }\end{array}\right\}$	6:39,900	2700	3; 800	18,000	1200	150
38	Tonlon, Alpiors . . .	46.3,600	4800	93,600	14,6.10	3360	480
39	Corfu, Otranto	427,800	(6)0	11,700	2880	420	(10)
40	Toulon, Corsiea	189,100	1050	39,000	18,13:	13 CJ	105
41	Malta, Alexandria	$5,429,930$	27,630	10,745	532, 6.45	10,75	153\%
42	Wexford	687,20-1	756	36,288	23,436	1764	63
43	Jngland, Holland	$\bigcirc, 439,8.40$	1360	$110.9{ }^{-2}$	73,3306	id	136
44	Sardinia, Sicily	223,100	2300	4\% 以	36,000	1610	230
45	lersian Gulf -	9,677,544	17,988	357,500	202, 500	1409	1496

F.

SUBMARINE TELEGRAPIT ('ABLES

Sour in surcessful Working Order, the Insulated Wiose for whirh were mamufuetured buy the Gutha Perchur ('ompary, Patentees, Wharf Liocut, Cily Road, London.

A great many Cables of sliort lengths, not included in this list, are now at work in various parts of the world ; and other Cables, the Wires insulated by the Gutta Percha Company, hare heen laid by Mesirs. Felten \& Guilleaume, of Cologne, during the last eight years, anounting to uner 1000 miles. and which are now in working order.

G.

ATLANTLC TELEGRAPH COMPANY.

Report of the Direntors to the Estriordinary Genemal Mecting of shareholders, held at the London Tavern, Bisholsgate Street, on Thursiay, the Ith day of September, 1 stis.

> 12, it. Helen's Place, Londent, 13th Soptemeter, totio.

The sensation immediately consempent men the recent aceident th the Athatio 'Telegrapis Cable was one of profound disapmintment, bat this has to a great extent disapplated before the
 during the expedition.
 convenience and satety with which they can be coiled and texted and payd-ont since the frese Eastern has shown herself so well udilited to the work, hat it has mow also heen provel absolutely that in the erent of injury on the insulation, even atter suhnersion, and while sumk in the deepes water, electrivians are chabled with ease to calculate minntely the exact distane of the injured spot from ship or shore in a C'able 2,:30 miles long.

It has forther been proved that many miles of a (able like that selected by the Athath Telegraph Company can, if so injured, be hanled in and repared during the leaviest weather and from water 2000 fithoms in depth: and still more that even when a ('able is absolitely fractured, and the broken end lies at the hottom of an orem 2000 lathoms deep, it is perteetly possible to find it and to raise it, and cupally possible, aceording to the opinions of all those engruged in the recem expection, to bring mp the end of the Athanie Cable, which is in that situation, and to splice it to the Cable on board the fireat Batern, no as to complete the commmiention to Newfomdland, an soul ats apmatus of suitable stemgeth and comsenience cam be mantiactured.

In fact, so important have been the resilts of the last experition in moderating every clement of risk attendant on these mulertakings, that the sheresstul Submersinn of submarine (cables will henceforward take its place as an event insmable for a mondente preminm ly the Vuderwiters.

The birectors, after careful investigation, therefore have determined not to relat in striving to bring to ansecessfill issule the great work entrasted to their charge, but to press forwand in tha path of expricnce with incrensed vigilance and perseverance.

They have been encomaged in hlis view ly the lain mamer in which they have been met by the Contractors, with whom they have already cintered into at contact for renewed operations.

Under this contrat the Tedegraph Comatration and Mantenance Company mortake for the sum of avo,000/., which has heen arreed on an the cost price, at onve to commence the manutientre of and daring istif to lay down, a bew ('able between lreland and Newfomellimad.

The Contrmetors, it the said Cible be stecesstul, but not otherwise, are to hase, in shares and cath, a profit at the rate of 20 per ement mon anch cost.

The Contraters also midertake, without any further clarge whatever, to gro to sea with sulli"ient Cable, incloding that now beft on Inard the Great batem, and all proper applances and
 unecess of which they wirely bedieveto recover and repair and complete in wowine order between Imbun :mid Newthmiland, the pasem hroken cable.

It n it be seen that eiremmances have thos embled tho Board to effect a very considerable coonomy in the Companys present operations．

It would no doult have been a most gratifying circumstance if the recent aceidents had not happencd，and to the Direetors this ocenrence has been a grievons disappointment，but the cirenmstances surrounding the expedition and the inereased confidenee whieh，in spite of temporary discomfiture，has been given to the future of Deep－sen Cables，has emabled the Board to effeet a new contract for the repuir of the old Cable and for the submersion of a new one during 1866，on terms on satisfuetory that if hoth these operations should succeed，the Compuay will aetually be in posses． sion of two efficient（ables for a less amount by $100,000 /$ ，than they would have been obliged to ＂xpend if the Cable of this year had been successiful and the secoud Cable had been required to be purchased sepmately．

But the earring our of this contract，so adrantareous to the Atlantic＇Telegraph Company， involves the stremons cllints of the birectors to raise an amount of money ronging from a minimums

It is impossible that the Great Eastern ship conld go to sea agnin this year to mend the caisting C＇able，and therefore such an operation，as a separate adventure，must be put ont of the ghestion，und even if madertaken separately would in itself involve an expenditure of some 120，000 ，whereas for a smon of＂500，000．，the C＇ontractors are willing to make and lay a new Cable next year in ndition to the restoration of the ohd one ；they deprding entirely mon succens fin prolit．

The question which hats had to be comsidered ly the Directurs in the interest of the share－ holders has heen how best they might be embled to mise this mones．

The Eight per C＇ent．Preterence shares，though fine below their real value，stand at $2 /$ ，ws．per ahate．and it the Compay were to adopt the alternative of winding－up its affais，their intrinsic worth would not he tos．per share．

The expenditure of the new money will edtainly evente fresh property，and probably rents－ citate the old．

By its means the exinting light pre C＇ent．Pre wance strok will doubtless be phaced at pur in the market hefore the sailing of the ship uest year．

The Directors are，however，compelleci to offer an inducement to those who are willing to couse in and assist to phace in that position the Compuys＇s，at present，sinking property．

Acting moder advice，and belicving in the very large protits that modoultedly await this Compuny when sucessful，they desire to offer a first dividend of 12 per cent．，with participation in protits，alter s per cent．has been paid upon the existing pretiorence shares and a per ecout．apon the wh capital，to those who consent to smply the rerguisite finds．

The shareholders will have the ophortmity of subseribing for this new Preferential Stock， which is issued solely to protect their property．Those proprictors who subseribe to it are unai－ festly not injured in any way，as they ulsorb the whole protits of the Company．＇Those who do not subseribe pay in eflect a small premiun to the subseriber who comes forward to help them．It is cousidered by the Board that this is infinitely preferable to winding－up the Company，whereby the sharcholders would have the mortitication of seeing the whote of their property sacrifieed，and of secing an undertaking pass ont of their hands，when on the very eve of suceess，upon which so much attention has been bestowed，and so much experience gained by the expeaditure of their own tunds．

Such a sadrifiec is totally manesessury，for it can be ancertained by any one who will take the tronble to make a small calcutation，that if each of the two propened Cathes can be worked at the very low rate of only five words per minute upon each cable tior sisteen hours a day at five shillings per word，which is believed to be a mel lower rate than the pressure of busiacss wond admit of

mpany,

 ninutuend the of the if some w Cable succes.

Share. 3s. per intrinsic
ly resus${ }^{1}$ pur in to come ait this ation in apon the

I Stock, tre muni10 do not m. It is ereby the d, and $u t$ so much heir own take the red at the shilling. admit of
in the first instance, tho traffic, after paying the dividend charges of 10, a at per cent, r we tively, amounting together to 14,000 . upon the eapital comprised i_{12} thow ufter adding thercto the very large sum of 50,0001 . a-year for working ex: enormons balance for paying further dividends or bonuses on the Compan ordinary and preferential.
"ent monk , ind
ses, would l ia nit
total capit 1. , both

CHOICE GIFT-BOOKS.

ILLUSTRATED \& ILLUMINATED WORKS

PROHPCED AND PUBLSAHED UY

D A Y ANI SON, LIMITED.

ILLUMINATED WORKS.

The Grammar of Ornament: New and

One Thousand and One Initial Letters.

Seenes from the Winter's Tale. Illuminated

The History of Joseph and his Brethren.

Paradise and the Peri. By Thomas Moore.

A Welcome to Her Royal Highness the

A Sunday Book. Illuminated with Initial Lettors and border, Thirty-two piates, ail Lhmminated,
and hound, pree 6 s .
The Golden Calendar: An Illustrated Perpetmal Almnnack. Hy Wiattor setern. Comtaibing, it
 Pomms. Price ts. 2s.
The Prisoner of Chillon. By Lord Byron.

Handbook of Christian Symbolism. By W. nnd G, Audpley, Arethitatess Liverporis The Work 24 illustruted by eight heratitul jlatos, ruhly printed in gohit and colobra. These Platen contain the numt imaportant Symilaola, Eivablems, anil Attributes used in Chrietian Art Price, handsomely bound in eloth, 12a. 6d.
Keble's Erening Hymn. Illustrated and lluminaled. Dy Miss Eleasor Wariug. Sixteen Dlates, bound elegsut. Prico 216
Keble's Morning Hymu. By B. B. B. Size small tto., handsomely bound, with gilt edges, price 155.

The Penitential Psalms. Richly Illnminated, fy II. Nowl 11 umphreys. An entipely Now and toproved Daition bir Cliristmas, Intio, 32 pagen, eleguntly bound
Tho Church's Floral Kalendar. Compiled

Pensies Choisies. A Choice Collection of
 f". 2s.
The May Queen, By Alfred Tennyson. Illuminatid by Mrs. Hartley. Twenty-two puges, Itn., +leganely lastisel, 21a
Good Night and Good Morning. A Poem. Hy the kictit $11 \cdots n$. Lapil Homghtan. With Ilaminations

The Chilt. A beantiful little Poem. With
 cleg口 , butwi, prtw 2la.
The Promises of Jesus Christ. Illuminated

The Cromlech on Howth. A Poem. By

Monograns, Mediæval and Modern. Com.
 Arranged Derigned atd thely Fopraved on Copper by

 Clasers, Carvert, Morlellers, Emhroiderers, Haralid Mainters, Meduest Metul-Workera, \&e. Ne. Whe volume cloth, pilt eduee. 21A.
Thonghts in Versc upon Flowers of the
 Cuntly. Twelve Paisu (and Title), ench contumimg a Flower of the Nonth, with n Poem upyrapriate tor tbe nobbect, the whole surronnded with an elegunt Bu, rider.
The itomera,
 haskermind of Goll. The Work wid he expented it Chr wo.lithrgraphy, handestnely bramin in cloth, with
gilt edges, size Royn to., price \&ill. Is.
IIn Dec.
Gray's Elegy. Illuminated by Lady Wil. loughlyy. Elegnitly bound, price s.3. 3s. [In Dec.
Twelve Songs from the Plays of Shakspeare lluminated with suitshle Border in Gnld and Colonres, partly horrowed from Maminted Works of the Fifterath and Nixteanth Ceuturies. By Mra, II oskyns-Ahrahall.
Price $\mathrm{L}^{\prime} 1$ Is. Is.

TEXTS FOR ILLUMINATING.

Emblematic Scrolls: Texts of Holy Scripture 0utlined for Illumination, By F. M. R., Anthor of " Emblemstic Illuminatios."

Onf Suilling hach,

1. Fear net, 1 will hem thee.
2. look unto Me, and he ge aared.
3. Ay l'ease 1 give unto ysu.
4. The lord will provinie.
5. He elothed with humility
6. In Colo quies (iull laten is llest).

- Patient. Three Tove one another. Speak gently. Be 13. Bring forth therefore Fzuits meet for kepentance.

Onf Suilling and Sixpence bach,
16. Thise eyes ehall see the king in Ifis heauty, they shall hehold the land that is very far utf.
6. For Advent - The Day of the Lord comath! liopent ye, Watth adil Pray.
or Christman-Thon shalt eall hia neme Jeaua, for He aball ase His people from their sins.
8. The hay-spriyg from on High bath waited us.
19. For 1, ent - Whers confesseth and forsaketh hin aios ahall have Mercy.
20. Fur the trangzession of My people was Me strieken Including Pbitographa,-1. "Gived Shephoril." 2, "Eece Honno.'

1. For Easter-I nm the liesurrection and the Life
2. For Arension-I go th prepare a place for goo.

Scripture Texts for Churches, Schools, Parsonages, Dwelling-Houses. By W. and G. Audsley, Architeeta, Liverpool.

List of Texis.

1. 1 am the War, the Truth, and the Life.
w. Blessed are the merefinl.
2. Christ enttered for us, leasing us an example.
. Gind is nur refuge and strewnth.
. Fight the grood light of Farth.
ini. Keop yourspives from idelt.
10, Meayad sre the pure in heart.
3. Hin that loseth thot kuoweth vot God."
III. Feed My sheop.
I. God is Love.
1.. Cud it light.
4. Rejnice in the Lord alway.*
5. Blessed are they that mohirn, for they shall be eomforted. Futer ye in at the strait gate.
1iti. Bo justly, lore murce, and walk humbly with thy Gol.
6. h लased wrat

- phench not the spreit

20. Prsy withont esewnsp
21. Love nut the Wurlit.
22. I an the lsead of t.ife.
23. Grace and Trit'. chane by Jesum Christ
24. Allegsed sre t.ie peacemakior

The ond linea are printell on flatedrawingearilboard: ame, of

Tweuty five Texts, as above, fully Illumi naten, reduced imberards, prices ins, the surt ; thene serve
 at the eseh.
24. For Trinity-Thereare Thres that bear Reeord in Henvaa the Father, the Word, and the Holy (ibost; and these Threc are One.
25. My Preachee shall go with thee, and I will give thee lieat Onh Siflimg and Bixprici hach.
A. Ile shall give bia Angela charge over thee
7. Ento gou is horu as suvinur, which is Chriat the Lord. 10. I um come that ye mithet have life.
11. Chist is riseo ! Allelnia !

Two Sithtivgs Eich.

8. Glorg to Goul in the lighent. nn Farth Peace, Goodwill turitris man. Ineluding a Photogranh from a Pleture of "The Nativity ;" nlao Directions for Colonriag.
9. Be thou faithiul unto Desth, and 1 will give thee a erom of Life. With Photugraph of La liochu'a "Chriatian
2t. Of anch is the Kinglom of llearen. With Photograph (hat hare I dene, se. By Mia Horaley, 10×22, with Photograph.
IU. Speak. Loril, fur thy кorvant heareth. With Photograph.
10. Brhold thy King eometh unto thea. With botograph,
price 2a. Bh.

Faith, Hope, and Charity. Three beautifully llluminsted Nubjects, from the Origunal Drawings, hy the
late SIr, F. G. Delanutte. l'rice, for the Set of Throe, th. 18.
Faith, Mope, and Charity. In Outline, for Horninsturg, Fa. bil. the net of Three.
Ave Maria A Figure of the Holy Virgin, bearing in hor aras the infint sarionr, upon a diapered hlue sid sheer eround of theors-de-ha, sur rounded by a

 Lathoraphed hy Wherth. Werreb. P'rieolos, tid. Proods, with Fremeh mounts, 219
The Te Deum beautifully IIlumiaated. Size 1.5×29. Priec $5 s$.

The Lord's Prayer, Ten Commandments, and Rediet, in turlme for lllumanatiug, io two abecta of Card, veach is itnethes high.
Cards for Holy Christmas, Christmas Greetinus hrramed io appropriate ithmanated borimera, by and desigu, tid. each; or the four post-free va recespt of 20 stamps.
Christmas Decorations, Fancy Letters, in Two Colours, in paper, all Coppitalg, the whe three inchens, it. par duzen, post-itee; or latters dye imeles insh, la, per jurchager.

H.R.H. THE PRINCE OF WALES'S PHOTOGRAPHS OF THE HOLY LAND, ETC.

The Holy Land, Egypt, Constantinople, Athens, \&c. A Series of 49 Photographs, cabinet
 mall to., price L"z. 2a.
As a large demand is earfifenty expected for this interesting and hesutiful Series, the Pudivherg can only promise that
 Photograblas in the above list are emanently mapte! for the illustrathon of bibles, more than half being io the Holy Land.

Tinder the palronaye of the Sirertary of slate for India in council.
The People of India. Illustrated in a Series of Photographic Pictures, taken from the Life
 senrces, ly J. R. Melville. Edted by Furhis Wateon and John Walam kiaye.

WORKS ON ILLUMINATION.

TILE ONE GUINEL EDITION iN DECEMBER.
The Art of Illmminating, as practised in Europe from the Earlicst Times. Illustrated by Bordera, Initial Letters, Alphalets, se., splected from the Britiah VIneum, South Kensington Muapum, and other valnable Colleptions, hy W. R. Tymms. With en Easey on the Art, sud Inatructione us to ite Pructice is the Prosent Day, by M. Diphy Wgatt, Architect.

This magniflcent and eminnotly norricrable work rontaing Nincty six Plates, sll fully Illumioated, and printed in Colours sod Gold on Yellum Paper, and One Hundred sad Four Pages of fixt, surrounded hy Bordery in Colobig. Carunting the various llamitated Figures. The size of the work is emall Qurto, elegently bound, price fil. le, in every respect contuining the whole of the matter of the originul eostly volame.

The Art of rlluminating. By M. D. Wyatt and W. R. Tymms. The last 20 copses of this oplendid

What Illuminating Was, What it Should Be, nud How to Prictise it. lly M. Dighy Wyatt and and aixteen other Platea. Cloth elegent, price 5 s.
What Illuminating Was. An Historical Sketch by Mr. Diphy Wyatt und W.R. Tymmes. 72 pages, omall soo. Four lllatmanted Matos, with correajomang outlines for the lllammator to Colour, and Foar Plates of Alphaleta, T'exts, and Initial Letters. In etifl' paper Cosers, price Is. bid.; or, frce by post, Is. Ad.
Thia and the following Book form the emall Volume im. meitiately preceding this.

What Illuminating Shonld Be, and How it mary he l'ractised: Adrice to Artinte and Amateurs. By N. Wigly W yatt und W. R. Trmmes, 72 pages, small sro. Foor muminated fates, wion eorreapondeg ontlines for Texta, and Inatial lettere, is atiff painer corers, [s, 6d.; ur free by post, le. 8 d .

Emblematic Illumination; or, Forms, Colonra, and Knhloma suitable for llmminating Texts of Holy scripture in large strle. in ols or water-colours. Collocted und Edated hy V. W. ik. or Illuminated Figurea,
 descriptive aud explenstory Text. to. eloth, eleguat,
priee 5s. 6 d .

PAINTING IN WATER-COLOURS, ETC.

Painting in Water-Colours, The English Sehonl, ite Theory and Pravtice, Being a eomplete lix. position of the Art ua practised in the Presint bay
 Drawing und Painting at the liyal silitary Collpge, Addisenmhe, and Member of the New Hociety of Hainturs in Water.Colours. Folio Imperind, handsomely bound, price £'t. ty.
Sketching from Nature, in Pencil \& WaterColour. With llinta on tifht and Shalow, and on a
 the rest en Tinted l'aper with high lights, bound in eloth, price 21 s .

A Description of the Human Body: its Strueture and Functions, Illustrated by Physiologicul Diagrams, designed for the I'se of Teachers in Schoots and Young Mondeatined for the Medien Profestion, and fior paphar tnatruction gencrahy. Hy dohn Marahalh, F R.S., bi. IR.C.s., Surgeon to the Univeraity College ITospital, Eondon; und Leveturer on Anatomy in the Scienco and Irt Depmetment, suluth lienvington.
The Work containg 2 in fto. pages of Text, bound in eloth, atn! 153 Colnured llust rationa, arranged in ! Folin Plates, eseh mensuring lisin, by $7 \frac{1}{1,}$ in a Portfolio. Pried of the 1 to. Vol. aud suall Fillo .ntas, 2le.

ILLUSTRATED WORKS.

Memorial of the Marriage of H,R,H. the Prince of Whles.und H.L.H. the Princesa Alaxindra of beanurk, By W. II. Musaell, LL, D. (late speciat Corre gponilent of the Timera). Furty.two Phate in Coloura and bound, folio, price ks. fis, or for une of s limited number of 2001, nulerbly tlushed, harge paper copice, price Elo. lus.
The Atlantic Telegraph Cable, 1865, A listory of Nulmarite Trocorruby, including an Arconnt of the Laying of the Atlante Tele, raph Cable in Fris, med of the Incid ntas, Processex, nad Machinery connected with the Manhmerne mind haying of the Cuble in whis form-
 Hussell, X:sq., J.L. G., who proceds in the Grat Euxtron to Ameriem. actermpanied hy Rollert Dadles, E--q., to whom is entruated the illiutration if the pitire collume, which, hy evpress prermission, will he dellested to II X. .H. the l'riner of Wales. The work will he fully illustrated, heudeotwely bound, sizo tho., price 21e, to suberriberg. E / n Dee

Ti-Ping Tien Kwo, or the History of the Ti.ping Rrormution, incluting hig ,urn Adrentures. By An Yuglish Ti-pmg. One wolutur, roval two , eloth, prico 21s., containing some imb pages, Eisht CliromorlithoErapha, num
Docmants.
The wark will comprige the Prersnnal Adrentures and Prac. tian Figerien of of the Author during foar yeara' service nad interveniran with the Ti.pings in Chima ; lusides which it will
 Politust, Military, and Suceisl Organization. A full Deserip. tiwn of its Extraordinary Leadder, Hung suit thhuch, and his

 thitunte of China, and the firneral and Commercial Intereste uf Great Brituin, With a thorough fes iew of the Policy of
 Intervention and llostlities mainst the Ti-ping latriots, who, "rigmally, thr whath their acepetame of the bhbe mit Almandon-

ILLUSTRATED WORKS.

Travels and Discoveries in the Levant. By C. T. Newton, N.A., Kerper of the Greek and Roman Antiquitiea at the Britinh Maseomit Wuh nonieroue ture, Laodecnpes, Dlans, and Woodecta of smaller antiqnities. Sonne of the Landscapea are in aquatiot; others etehed by Measts. W, and A. Severn. Price L2. 26., two vols., eloth.
An Excursion in the Peloponnesus, By the late Bight llon. Bir Thoman Wyse, K.C.B., LL.D., Her Majeaty's Earoy Extraordinary and Minister Plentpo tentiary at the Court of Greece from 1819 to 1868. With nameronn Ilinstratiens. Didited by his Niece, W. M. Wyae, Two vola., atper-royal svo. l'rice £3. 3a,

Byzantine Architecture. A Collection of Monumenta of the Farlinst Times of Christianity in the Easat, sceompramied hy Historical ned Archaobogical De eriptions. Hy Charlea Texier, Member of the luatitute of Franee; IL morary Fellow wif the Roynl lonitute of

 in Acia Minor. Size filu, contaime $2: 31$ pageat Test, 7) Platé-many in full Colours-anii 27 Wood Edgrasinga, haddoomely bound, prico L0. 68.
History of the Recent Discoveries at Cyrene, made duringan Fxpeditiun to the Cyramaica in Cubnom, $1, y$ Rentenant R. Muritoch smith, ReE, and Commander E. A. Porcher, R.S. mider the Huss iew of Her Majesty's Governuent. By liemetant R. Murdioth snith, 13. F. With Numerous Ihnatrations in doulle-tinted linho.
 smatl Futio Volume of no Hhistrations, with lixplanatury Text, hmited to 300 Copies, 13 . 6 is.

The Principal Ruins of Asia Minor, Illustrated and Ineserilied hy Chariea Trisier, Member of the nasitute of France: Member of the Rayal Acalems of cieoce of Mumch: Homorary Felmw of the Rasal hati ate of British Archaterty; formerly luwerthr of the FineWorks in Algeria: mid K. Popllewell Pullan, F.R.I.B.A.

 Text, hound in cloth, prwe ith ts. Only 3(4) coples pristed.

Notes on Architecture and Ornament. By J. 13. Warmg. Prue of the work, wiststuge of Sesenty Ithates, with Deacriptiso atod critical Letter-press, t.3. 3 ss .
bonnd in cluth.

Modern English Poets, \&c, Forty-seven Honatratise titchung hy the Jumer Vithing cith. one solume, sro., cluth elegant, price lua bid.

Historic Scenes in the Life of Martin Luther. By I. II, Marle D'Aubizue With 12 Lan limeraving, elegant.

The Gorilla and the Dove; Outlines of a Foyape without bapuvery towaris the tharce of the Nile. By W. II. W. tin shetchea in Pen and lak, with Deseripuse Text, to. anper-roy al, clotb gilt, 21 a.
Scotland Delineated. Seventy-two Plates andi Tirxt. Iladeomely sod elvganily boubd in clotb, gith, 13. 108.
Loved and Lost. By Louisa Anne Meredith, suthor of niany Valn bete and Popular Worha, smailavo.

Queen Emma; a Narrative of her Mission to England. Deniy lemo. l'rice bid.

The Cathedral or Abbey Church of Yona,-18 Arehitectural Drawings and Detaila, and a Letter-prean Introdnetion by the Rught IRev. the Biahop of Argyll and the lelee. Size deviy to. Beand in oloth, C1. 1 s .
[Prepariag.
Some of my Bush Friends in Tasmania. By Mrs. Louign Anne Mrredath, Anthor of "Onr Wild Flowera" (Kaglinh), "Kumavee of Ninture," "Notea and Nhetches of New Bonto Wales," "My Home in Tasmania," de.
The mont beaudifnl Dook ever pablished on Flowers, Derries, and lareets.
"The plates and borderings will antisfy the moat fastidions eye. . . . $\lambda_{\text {a }}$ a whole, without disparaging rixal elaimante to the honours of presentation, we may safely aflirm that it ia a trinmph of tloral taste and lithographie skill." thenerm.
Sise, amall folio; 1 1thates in Chrmo-lithography; 1 tbeantiful lordera ahaded in sepis: and lut pages of Text. Elegavely bound, gild edges, fe. 2s.

The Harbours of England, by the late J. Turner, R.A. Eugrupel hy hupton, with lhastrative Text by J. Jiashin. Twelve l'hated by Turver, elegantly bound, jirice $2 l$ la.
The Crystal Palace and Park, Sydenham. A series of Twenty-shree Virws and Title in Double-tinted lithography; cunsuatigg "f riewa of the Architeetoral Courta, the fierins of the Palare, and the nosst Striking Featuria in the Park. I: xecuted in dunble-tinted lithography from lornuings by ethinent Artiste, und IhotoSubiess by Mi. Dighy Wratt, Aruhtert. Imperial hos. wath Muminated Tithe-pure armi Ornamental Cover. By M. Dindy Wyat, Architect. I'rice dil. 1le did.

The Idylls of the King. Sixteen Illustrations drann and etched ly hmy Butts, Wediented, hy found, price sl, 2 d .
"Baby." Dedicated to the Mothers of England by A. W. Fher en Plates, with Text, wa bap favey cuver, pries 1s.

The Past, Present, and Future Almanack, A Permanent Cnlmular. Pist Free, (hith, In id.; L.wather,
 date, in any month of any ycar, past, presebt, or tuture.

Rhymes and Lines on English Gothic Church

Texts from the Holy Bible explained by the help of the Ancient Monuments; with a few Plans and
Viewn ty Samuel Sharne, Authur of the "Mistory of Viens l,y Shmuel Sharpe, Aushre of the "History of

Voices of Joy and Thanksgiving. Being a
 than Year. With Woudcut Mastratuon by C. E. Manothby.
"Awake or Dreaming?" A Dog's Story. Writen and Illostrated by tbe Brothers Wugtail

Busy Bees. A Characteristic Representation of the Whime and Fancirs of Lufint Minds. By George Roherts. With Twisva Mlatrations in Chromol lithokraphy by Cordelia Walker.

Preparimg.-I Norel, in there Vols. seo., by W. H. RUSSELL, Esq., LI.D.D., late Special C'orrespondent of the "Times."

[^0]: * "From Cape Frocls, Newfomatland, to Erris Lhead, Ireland, the distance is 1, G1t miles; from Cape Charles, or Capo St. Lwis, babnator, to ditto, the distance is 1,601 miles."

[^1]: * Short-lived as was the former Cable, it hat survived lome enongh to proye its value in a financial point of view. Amongst 400 messages which it hal transmitted, was one that had been dispatched from London in the morning ani reached Halifax the same day, directing "that the fiond Regiment were not to roturn to England." This timely warning saved the country an expenditure of 50,0001 .

[^2]: * Communicated to the Mechanies' Magarine.

[^3]: * It may here be stated that Admiral Talbot, in command at the Nore, gave every aid to the modertaking; and that Captain Hall, of the Shoerness Dockyard, was indefatigable mund nust serviceable in forwarting the work whilst the Great Eastern lay in the Medwny and nt the Nore.

