IMAGE EVALUATION
 TEST TARGET (MT-3)

Photographic Sciences Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleurCovars damaged/
Couverture endommageCovers restored and/or laminated/
Couverture restaurde evou pelliculdeCover title missing/
Le titre de couverture manque
Coloured maps/
Cartes géographiques an couleur
Coloured ink (i.e. other than blue or black)/
Encre de coulaur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches ot/ou illuatrationa en coulour
Bound with other material/
Relíd avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La re liure serrée peut causer de l'ombre ou de le distorsion le long de le marge intérieure

Blank leaves added during restoration may appear within the iext. Whenever possible, these have been omitsed from filming/
II se peut que certaines pages blaisches ajoutdes lors d'une rearauration apparaissent dans le texte, mais, lorsque cele útait possible, ces pages n'ont pas ded filmdes.

L'Institur a microfilmd le maillour exemplaire qu'il lui a dte possible de se procurer. Les details de cet exemplaire qui sont peut-dtre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui pauvent exiger une modification dans la md́thode normale de filmage sont indiqués ci-dessous.

Coloured pages/
 Pages de couleur

Pagea damaged/

Pages endommagdes

Pages restored and/or laminated/
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages decolordes, tachettes ou piqueses
Pages datached/
Pages dótaches
Showthrough/
Transparence
Quality of print varies/
Qualité ind́gale de l'impression
Inciudes supplementary material/
Comprend du matériel supplémentaire
Only edition available/
Seule édition disponible
Pages wholly or partially obscured by errata slips, tissues, efc., have been refilmed to ensure the best possible image/ Les pages totalament ou partiallement obscurcies par un feuillet d'errata. une pelure. etc., ont été flimdes é nouveau de façon à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de reduction indiqué ci-desaous.

Additional comments:/
Commentaires supplementaires:

The last recorded frame on aach microfiche shall contain the symbir \rightarrow (meaning "CONTINUED"), or the symbci ∇ (meaning "END"), whichovar applies.

Maps, plates, charts, etc., may be filmed at differant reduction ratlos. Those too large to be ontirely Included in one exposure are flimad beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'oxemplaire films fut reprodult grice ite génd́rosité da:

La blbllothidque des Archives publiques du Canada

Les images suivantes ont ćt'́ reprodultes avec is plus grand soin, compte tenu de la condition at de la nettute de l'exempiaire filmb, ot en conformite svec les conditions du contrat de filmage.

Les exemplaires originaux dont is couverture an papier est Imprimbe sont filmfe on commangant par io promiar plat et en terminant soit par ia derniłre page qui comporte une emprainte d'impression ou d'iliustration, solt par lo second piat, selon le cas. Tous les autres exemplaires originaux sont filmbs en commangant par la premldre page qui comporte une empreinte d'impression ou d'iliustration ot en terminart par la dernilire page qui comporte une teile empreinte.

Un des symboles sulvants apparaitra sur la dernilire image de chaque microfiche, selon ie cas: ie symbole \rightarrow signifie "A SUIVRE", ie symbole ∇ signifie "FIN".

Les cartes, pianches, tableaux, etc., peuvent ©tre filmés da des taux de réduction différents. Lorsqua ie document est trop grand pour etre reproduit an un seul cilche, il est film' 4 partir de l'angle supfrieur gauche, de gauche à drolte. et de haut on bas, en prenant io nombre d'images nécesseire. Les diagrammes sulvants lllustrent la méthode.

(All rights reserved.)
 ADVANCE PROOF-(Subject to revision).
 This Proof la sent to you for discussion oniy, and on the express understanding that it is not to be used inr any other purpose whatsoever.-(See Sec. 40 of the Constitution.)
 Craudian \$ociety of Civil ©ugimeers. incorporated 1887.

TRANSACTIONS.
N.B.-This Soclety, as a body, does not hold Itaelf responsible for the facte and opinions stated in any of its publientious.

> THE ERRORS OF LEVELS AND LEVELLING.
> PAR'T II.-LEVELLING.

By Prof. O. H. McLeod, Ma. E., M. Oan. Soc. C.e.

To be read on Thursday, 18th December.
In eonsidering the errors of levelling, reference will only be made to such operations as are ordinarily included under the name of spirit levelling, omitting any referenee to trigonometrical levelling, in which the spirit level plays an equally important part. It will first be proper to remark that spirit levelling may be broadly divided into two classes: The ordinary levelling undertaken in conneetion with railways, eanals, drainage, etc.; and "geodesie" or "preeise" levelling, where the highest attainable aceuraey is sought in fixing the elevations of inland points with reference to a eommon mean sea-level datum. Nearly all European countries are carrying out sueh systems of levelling in eonneetion with trigonometrieal surveys; and in the United States many thousands of miles have been run under the direction of the Coast and Gcodetic Survey, the Lake Survey and the Mississippi River Commission. Some few hundreds of miles have, I believe, been levelled in Canada by precision methods, but 1 have not the details before me.

The instruments employed in spirit levelling may for conveniesee be divided into three elasses,-the dumpy, the wye, and the preeision level. The form of the dumpy and wye as employed for ordınary levelling need not be described here. The precision level appears under a variety of forms. Those which have been used in the best European work and in Ameriea are of the wye type. The level tube is detached and used as a striding level ou the collars of the teleseope. One wye is moveable in a vertical direction under the control of a mierometer serew, in order to obtain the suall final adjustment neeessary to bring the delieate level employed to a central position on the scale. There is a wide rauge of seale value in the levels employed in the two elasses of work, and also amongst the individual instruments used in eaeh elass. This divergenee is mueh more marked in the ordinary levelling instruments than in the geodesie instruments. In illustration of this point, the seale values of the levels (as they cance from the hands of the maker) belonging to MeGill College are given in the table below. The seale values employed for geodesic instruments are usually within the liuits of $3^{\prime \prime}$ and $6^{\prime \prime}$ per division of $\underline{2 m m}^{2}$; equil respeetively ${ }^{\prime}$ to $3.75^{\prime \prime}$ and $7.5^{\prime \prime}$ per div. of 0.1 in ., the length of the division on the levels referred to below.

Soale Values at 65° Fuli.

Kind of Instrument.	Maker's Name.	Scale value per div'n of 0.1 in .	Optical powers.
12 in . Wye level.	Hammeraley.	$75^{\prime \prime}$	18 and 26
14 in. Dumpy level "A."	DO_{0}	$21^{\prime \prime}$	18 * 26
14 in , do "6 "l3."	1\%	$26^{\prime \prime}$	20 " 25
$14 \mathrm{im}$.	Stanley.	$27^{\prime \prime}$	20 " 25
14 in . do *	Troughton \& Sin.ms.	$14^{\prime \prime}$	18 " 30
18 in . Wye. "	Buil \& Berger.	$12^{\prime \prime}$	37

The optieal powers in this list will be referred to hereafter.
Before proeeding to a consideration of the errors of levelling, it will be necessary to revicw brictly the methode of adjustment in the several forms of instruments, and in this conneetion certain defeets of construction will most conveniently be referred to.

The object of all methods of adjustment is to bring the line of alght parallel to the line tangent to the inner surface of the level tube at its zero point,-this line will in this paper be referred to as the "bubbleaxis." In the dumpy this condition can only be reached by the direct methool of reading the rod on two "pegs," the difference in the level of which is known, one point being near the instrument while the other is several hundred feet distant, and slifting either the position of the cross hairs or of the level tube, until the readings give the true difference in level. The ouly error in this methed is the slight one due to the curvature of the earth, amounting to about $\frac{1}{100}$ th of a foot in 600 feet, and to one-quarter that amount in 300 feet.
The methud usually employed to obtain the difference in level of the pegs is by setting the instrument at a point midway between them. The errors of the readings then being the same, the difference is the true one. A second method of determining this differenoe of level, which is not, I believe, so gencrally practised and perhaps not known to all Engineers, is as follows:-First set the instrument over one of the pegs, se that the eye end will just swing elear of the rod, held vertically on the peg. When the instrument is level, view the rod through the telescope, with the eye at the object end; the centre of the small circular portion of the rod thus seen ean be accurately estimated and its position read by the aid of a peneil or knife edge held against the rod. Then read the rod as usual on the distant peg. Now move the instrument over the second peg, and obtain a reading of the rod as in the ease of the first peg. Then read the rod on the first peg which is now the one distant from the instrument. If we call the difference of the rod readings in the first position of the instrument m, and the difference of those in the scoond position n, then the true difference in the elevation of the pegs is $\frac{m-n}{2}$. Results thus obtained, being from four separate readings instead of two, and being independent of the aceuraey of any horizootal me:surement, are susceptible of greater precision than the usual method. The instrument and rod are now in position for the neeessary adjustment, and the distant rod reading will be corrected by the above amount.

It is customary to adjust the wye level by the indirect method. The line of sight heing examined for coincidence with the axis of the collars by revolving the teleseope in its wese, the bubble-axis is then tested for parallelism with the beurings of the collars by turuing the telescope end for end in its wyes, and the necessary corrections applied. This method is based on the assumption that the collars of the telescope are true eylinders, aud have equal diameters-an assumption which is often wide of the mark. In the ease of one level whiels I have used the error due to this cause amounts to somewhat over $\frac{1}{200)}$ th
of a foot in $\mathbf{1 0 0}$ feet, a eondition of adjustment which should be quite iuaduissible for grond railroad levelling. It is not an uncommon eircumstance, in my experience, amongst users of wye levels, to find the fulfilment of the first portion of this test-the revelution of the telescope in its wyes-aceepted as a guarantee of the perfection of the whole. Such an error of judgucut is of eourse impessible with persons aequainted with the theory of the instrument; but alas, the holder of the pesition of "Engineer" in this free country of ours may readily be a touch abare theoretical considerations.

For convenience ouly is it desiruble that the bubble should remain central while the instrument rotates about its vertical axis. In the dumpy this adjustment must be made before, nud in the wye after, the essential adjustments have been completed. It is commonly stated in defence of the indireet methid, that there is a saving of time as compared with the direct or "peg" method. Suel is however not my experience. The time-consuming portion of the work is the making of the necessary corrections to the level tube and retieule. In the essential adjustments by the indirect methed both may require correction, whereas in the direct method only one of them-preferably the reticule--should be moved. We have then in comparing the relative eonvenienee of the two, on the one hand the matter of setting up the instrument once and making two or three rod readings, and on the other the complete adjustment of the level tube. I had rather set op ten instruments and make as many rod readings, and could do it
in less time, than adjust on bubble tube. This indirect nethod seems to me to have, fire the purposes of ordimary levelling, no one point to commend it in prefirence th the direet methon, and has the disadvantage that it dow not guarantere currect adjuathent, unless the pivots lhave, after car fiul examination, been asectained to be equal ; or the propor correction determines and applicd. The wye is undoubtedly the most seientifle instrument, :mend for preeise worli has some advan-tages,-sueh, for example, ws the possibility of chiminating the error due to waut of' coincidenee of the sliding tube with the line of sight. In a wel! construeted dnmpy however this error must nlways bo trifling. I have never been able to understand whiy the wye level should be used in ordinary levelling in prefercuec to the dumpy. The wye form is more diffieult of construction, more expensive, less rigid when construoted, and henee more liable to get out of repair. The most abominable instrument ever put in the hund of man is an old and shaky wyo level. I subuit that in the interest of good work, if not of ceonomy, the construction of the we form for ordinary lovelling should be abandoned in favor of the wore compaet and rigid dumpy. The modification of the dumpy, such an Cushing's reversible level and othor deviations from the type fiom, do not, for similar reasons, commend themselves to me. The adjusturents for coinoidence of tho optical axes of the objective lens and the eye-pieee with one another and with tho axis of the tube, provided for in the wye but not in tho dumpy, are really makers' adjustucuts, and exeept in the case in which the axis of the objective slide makes an angle with that of tho tube are not essential to correct work. A very important point to be atteaded to iu the coustruction of all levels, and in the examination of them from time to time by the Engineer, is that the object lens is not loose in its cell, and that the cell is not loose in the telescope tube. Both these defects aro apt to oceur through time. The tightening band at the back of the cell shoukl serew into place in order to permit such a defeet being rectified. An instrument having a loose objective is impossible of adjustment and fatal to good work.
The accompanying eut taken from Fauth's catalogue, represents an instrument of the form used in geodesie work. The pattern employed by the United States coast and Gcodetic Survey differs slightly from this instrument, which is the one preseribed by the Interuational Geodetio Commission, held in Berlin in 1864, and used in this country on the Lake and Mississippi River_surveys.

The following deseription ni the invtrum rut is taken from Johnson's theory and practice of surveying:-
"The bubble is enelosed in a wooden ease (metal case in the ent), " and rests on top of the pivats or rings : it is carried in the hand "when the instrument is trausported. A mirror is provided which
" enables the observer to read the bubble without moving his eye from
"the cye-piece. There is a thanb-crew with a very fine thread
" under one wye, which is used for the final levelling of the telescope
"when pointed on the rod. There are three levelling-screws and a
" eircular or box level for conveniene in setting. The telescope
"bubblo is very delicat, one division on tho seale oorresponding to "about three seconds of arc. The bubble tube is ohambered also, "thus allowing the length of the bubble to bo adjusted to different "temperatures. The mugnifying power is about 45 diameters. "There are three horizontal wirts provided, set at such a distanee " apart that the wire interval is about one-hundredth of the distanco
" to the rod. The tripod legs are covered with white oloth to dim-
" inish tho disturbing effects of the sun upon them. The level itself is "always kept in tho slade while nt work.
"The levelling-rod is made in one piece. three metres long, of dry " pine, about four iuches wide on the liae, and strengthened by a " piece at the back, muking a \mathbf{T}-sh pod eross-section. The rods are
" eelf-reading, that is, they are without turgets, and are graduated to " eentimetres. An iron spur is provided at the bottom, whioh fits " into a socket in an irou foot-plate. The end of the spur should be "flat and the bottom of the socket turued out to a spherieal form " convex upwards. A box-level is att:ehed to the rod to enable the "rodman to hold it vertically, aud this in turn is adjusted by " means of a plumb-line. Two handles are provided for bolding the "rod, and a wooden tripod to be used in adjusting the rod-bubble.
" The decimetres are marked on one sido of tho graduations and the
" centimetres on the other; all figures are inverted since the telescope
" is inverting."
In the use of such a level according to the methods of pregise evelling, it is neecssary to determiue the iustrumental constants:-

1. The angular value of one division of the level tube. This may be found in the ficld by sighting on a rod at a known distance, taking readings of the bubble along the whole length of the graduated part of the tube, but it is more satisfaetorily determined on a solidly mounted level trier.
2. The incquality in the diameter of the telescope collars. This is found by reading the striding level on the collars in the two reversed positions, thus eliminating the error tue to the unequal length of the striding level leys and obtaiuing the true inclination of the surface of the rings. The telescope is then reversed in its wyes and the levelling repeated. The differenee in the two inclinations, divided by four, gives the angular value of the error or correction sought.* The following observations are given as an example:-

Inclination of upper surface of collars $=\overline{0.50}$
Telescope reversed in Wyes.

Inclination of upper surface of collars $=3 . \overline{00}$

$$
\frac{\text { Difterence of readings }}{4}=\frac{3.00-0.50}{4}=0.625
$$

The value of one division of the level was $=\mathbf{s}^{\prime \prime}$. Hence, correction in seconds of arc $=5 \times 0.625=3.12$, and the eye end is the largest, requiring a negative correction to all roll realings.
3. The ratios of the portions of the rod interecpted between the three wires and the distanees of the rod. This for the double purpose of obtaining a measure of the length of cights and furnishing a oheck on the readings.
The adjustments-makiny due allowance for the fact that the level tube is moveable-are the same as those for the ordinary wye. Sinee, however, it is impossible to do anything exactly, and in the best work the smallest errors should be provided for, the after-treatment of the adjustments is essentially different. They are reduced to as near zero

- Sce Chauventet's Astronomy, Vol. II, p. 153.
as possible, and the outstanding errors determined as follows: -1 . The difference in the avernge of the three rod readings in the two reversed positions of the teleseope tube gives twice the oollimation error of the mean line of sight, at the known distanee of the rod. 2. The inclina. tion of the bubble-axis to tho top surface of the rings is found by taking a series of readiags of the bubble in the reversed positions, the average of the mean differences at the eye end and at the objeet end, for level direet and level reversed, gives twice the correetion required for the inclination of the level tube. Thus, in the example already given, the difference is $0,0 \mathrm{div}$, and the correction $0.3 \times 5.0=1 .{ }^{\prime \prime} 50$.

Theae determinations are made at the begioniog and the end of eael day's work, and their resulting values combined with the eorreetion for inequality of collars, applied, in the reduction of the notes, to all rod readings.
Methods of work. The method of using these instruments differs from ordinary work only in that there are three rod readings for each setting of the rod, and the reading employed is the mean of these. In some oases the bubble is kept eentrul by means of the miorometer sorew and the reflecting mirror ; and in other cases only approximately so, the ends being read and reeorded by an assistant. A correction is, in the latter ease, afterwards applied to each rod reading for the inelination of the line of sight. The three readiags of the rod in each position ohould alwaysbe compared before the level is moved, in order, if neoessary, that any doubtful reading may be oheoked. Self-reading rods uaually graduated to centimeters and estimated to millimeters are emploged on the Lakes aud Mississippi River surveys, and in most of the European work. On the Coast and Geodetie Survey target rods are used, and the method of work there pureued is much more elaborate than the foregoing.
The methods of levelling are sometimes deseribed as single or duuble levelling, aecording as single or double back and fore sight are taken. The latter has been the practiee of the Coast Survey, and is a selfoheeking system-in so far at least as the readings, are oonoernedreally amounting to two lines of levels in the same direotion. The single system is however the more generally adopted. There is a deeided cconomy in time and in accuracy of result in the use of two rods alternating with one another on turning points.

In reviewing the construction of levelliug instruments, the principal points to be held in mind as conducive to the best results in the various departments of work would seem to be. First,-stability of construction ; sceond, properly constructed levels of sufficient delicaoy; third, adequate optical power for the purpose in view. The first condition should be secured by a proper distribution of the metal, for the attainment of a maximum of strength from a minimum of material. The second and third are to a certain extent interdependent. For railroad and canal work from 10 "to 20 "per division of 0.1 " would seem to be limiting values for the seale values oflevels. Levels having a acale value of 12 " are entirely satisfactory on ordinary work, while those beyond $20^{\prime \prime}$ I have considered iss lacking in seasitiveness. It has always seemed to me better to have an over-sensitive than an undersenaitive level, admitting the diffeulty of keeping the former ceatral.
Increased optieal power is of eourse secured at the saerifiee of light and definition. The powers demanded for our instrument are however mueh within the limit of good lenses, under the ordinary conditions of illumination. Referring to the list of instruments already given, the practice of the makers of dumpy levels seems to be keep in the neighborhood of 25 for the higher powers fer 14 in . instruments. The objeet lenses of all these instruments would I think stand higher powers. With a good objeet glass of 1.5 in . aperture there should be no difficulty is using a power of 40 under the ordinary conditions of sceing. In the emaller apertures of the wye levels the matter of loss of light becomes serious. But the makers of wye levels seem altogether born to perversity,-having decided to use an object glass of small aperture, they must of necessity add to this a four lens eye-picee, as if it were any advantage to get au crect image. The four lens, inverting eyepiece has no advantage over the ordinary erceting eye pieoe, and its use results in serious loss of light, giving a comparatively indistinet image -one of the most fruitful sourees of error in levelling.

The nes of the mirror int level tubew to view the bubble is not in nuch favor with enginecrs as it should be. The usual procesw of reading the rod while standing in a diffirent position from that in which the instrument was levelled must neeessarily introduce errors of a serious nature. When the mirror is used it should alwing be placed at the same inelination, and the observer whoull by trinl, assinted by nnother person, obtain that position of thr cye in which the bubble may be viewed without parallax, and trom which lie will alwayn afterwards observe it.
It is usual to classify sources of orror somewhint as follows : -1 , instrumental errors; 2 , errors from unstable supports; 3 , errors of observation; 4, personal errors ; 5 , atmospherie urrors. The ohief source of error from inatrumentel eatases is no doubt due to either a permanent or temporary lack of parallidixm between the line of sight and the bubble-uxis. No adjustment can be perfect, and even if perfect under stated eonditions is jiable to ohango under other conditious. The eauses which might producen change in adjustment due to the influence of varying temperature on the glass of tho level has been disoussed in the first part of this paper. A temperary elange may result from the unequal heating of the mital of tho instrument, which would probably take place in bright weather when levelling, in a direction towards or away from the aun. The direct action of tho sun should be avoided by the use of a shade-a heavy canvas umbrella io used on geodetio work. In order to obviate the effect of uny possible oliange in the scale value of the level, readings should never be tuken when the bubble is at any considerable distance from central. If' the bubble is sluggish there is a possible source of error in its being read before final settlement. This latier difficulty ean be overcome, with a chambered lovel, by avoiding the use of short bubbles. Errors arising from defects of adjustment are of course completely elimiunted by equality of sights, except in suoh a oase as that mentioned ubove, where, on account of the direct heating action of the sun, a change may take place between sights. Such changes are much more likely to affect the results of ordinary lev dling where thew is an interval of timo between centering the bubble and reading the rod. Errors of this nature are, though small for any given sight, of serious consequence through ulways being in the samo direotion, or oumulative in charaeter. If there be, of necessity, a difference in the lengths of sights, he possible error so introdued shoull bs asatr.alizal by making, on the tirst opportunity, a similar differenee in the opposite direction. In the Indian Survey sights are made equal by ehaining. Where, as for example in erossing a wide river, a long foresight is uavoidable, the wethod of reciprocal levalling, explained in conusction with the peg adjustment, should be employed. This also eliminates the error due to curvature of the earth. Where there are two vertieal wires and the rod is read nnywhere between them, there may bo a slight error introduced through the laek of horizontality of the wire. This should be provided for in making the adjustment by swinging the telescope, when eorreetly levelled, around its vertieal axis, and rocking the reticule ring until the wire is observed to eontinuously biscat a fixed point. Where no rod level is used, as is usually the ease in ordinary levelling, it is however more important that the vertieal wire should be truly vertieal ; and where both eannot, in this case, be seeured, the rod should always be read in the same position with horizontal wire. Wye levels should always have a means of preventing the telescope from rotating in the wyes.

Errors due to the rod will also fall under this chass, and we should first look to the accuracy of its length und uniformity of its graduation. Mr. I. W. Wright in his work on the adjustment of observations remarks that:-
"An important source of error in spirit levelling, and oue very "commonly overlooked, is the change in length of the levelling road "from variations of temperature. From experiments made by the " Prussian Land Survey, in which the rods were compared daily with " a steel standard, the following fluctuations in length were found for " four rods made of seasoned fir:-

Rod 13, from May 19 to Aug. 180.61 mm . per metre.

14	$"$	$"$	20	$"$	16	0.40	$"$	$"$	$"$
9	$"$	$"$	24	sept.	6	0.37	$"$	$"$	$"$
10	$"$	$"$	2.4	$"$	6	0.43	$"$	$"$	$"$

"It in quite powible that errors from this source may largely exceed "the errors arising from the levelling itwlf. Baeh beld party should "therefore be provided with the means of making a daily cumparison " of the rods used, with a standard of length. A steel metre and a " mierometer mloroseope mounted on a ntand would be all that would " be necensary."
The maximum expausion above guoted would amount to 007 of a foot in tho length of a 14 foot red. It will be noted that the variation of tenperature is not given. Hxperiments conducted by Prof. Van de Sande-Bakhuyzen en the stives used in the Netherlands, give reaults of much less mugnitude then the above. Ho found the rate of expansion for seasoad fir rods to be 4.4 miorrl per metro, par degree eentigrade, and that other ehanges amounted in all to not more then .05 mm. per metre.
For ordinary work the self-reading tulescopo rod is almost univer sally adopted, on aeeount of its portability and convenience in usoThe rods of this form, though sold as "standard" by the makers, are. liablo to be most inaecurate. Of the seven 14 ft . self-reading rods la use at McGill College, four are within .002 of a foot of being corroor, one is .006 toe short, and twe are $\mathbf{0 1 4}$ too long, at 62° Fah. Thore are then two of these reds, und surprising as it may нeem, both from the same makers-a Loudon firin of high repute-which differ between themselves to the extent of 020 of a foot. Two 12 ft . target rods by different American makers are within 002 of the correct length. Amongst a lot of' five teleseopo rods, recently measuredin the warehouso of a dealer, onc was found to be .020 too long at 14 feet and . 015 too long at 17 feet. In most of the above cases the total error was roughly dissributed throughout the length of the rod. In that last mentioned, and in one of the College rods, tho graduation was somerthat irregular.

Where reds are properly construeted they should not be influeneed to any great extent by moisture. The utmost precaution should however be exereised to keep them dry. In the Swiss levelling the errors due to temperature and moisture nre stated as being "small, slow in action, und somewhat irregular." The reports published from time to time of extreme changes from moisture are no doubt due to improper protection. Where rods are used under proper direction they are of coarse subjeet to careful comparison with the national standard, and any errors in their leagths allowed for

Errors arising from unstalle supports may oceur through the instrument or the rod, and are usually of it cumulative character. The instrument may settle slightly between the ruading of the back a and fore sights, or the converse may occur, depending upou the churaeter of the ground. Similarly, the turning points may settle or spring up between sights. In soft ground, settlement is likely to oceur; while in stiff elay both iostrument and rad-if the litter is supported on a peg driven in tho ground-may spring back slightly. Pegsare preferred as turning points for soft ground and for hard soil or roads, plates having a projeoting knob or spherical hule for the rod, as already explainod. The rod should never be renoved from the point until all the readings have been made, and the weight of the rodman should never be allowed to rest upon it. When both instrument and rod move in the same direction the effects are addiive, und the charaeter of the soil continuing the same over a considerable streteh of country, a large error may be aecumulated. To obviate such a result, Colonel Walker adopted, in India, the plan of alternating the order of observations at suceessive stations of the instrumenr, by reading the back staff first on one station and the forward stuff first ou the next. 'The error may in part at lenst be eliminated by levelling between beneh-marks in opposite direetions. Duplicite levels in opposite direetions between benches or along the whole length of line slould completely eliminate it. This is indeed the sovereign cure for all errors of a cumulative character, Mr. Hirseh, one of the Directors of the Swiss preeision levelling.
has shown that the error due to settloment, other things being equal, in propurtional to the hogeth of liwe run. In ordinary levelling operntiom, the character of the gromil affecto the work in a different way, the feet of the observer compress the prumill near the tripod legs, and displace the line of sight in the interval of time between levelliug and reading the rel. Tho ohviate this. Culond tionlis has recommend of that two of the lage be nilways pheed parultel th the line of wight. The use of the mirror,"alrenly notieed, would alser remave this source of error.
The largest souree of oberemationel armon is bilined to be due to the want of carcful centering or reading the bubble. Wivery leveller should know what rod reading is envered ly a nange of one division of his bubble at a given disthuce of, say 100 fiet, in order that he may fully appreciate the cflect of urrors of this kind.

When the illumination of the two ends of the bunble is ditferent, an error in centering is almost sure to follow, here being a tendency to bring the lubble too mueh towards the light. Error is also introdueed through parallax, the bubble being viewed obliquely to its leugth. It has recently been urged by a German observer-Dr. Reinhertz - that the bubbless should be viewed in protlle. Cleurness of the glass and distinetness of the graduations have much to de with the aceuraoy of bubble readings. Errors of rod reading are more common with a target than with a spenking rod. The best check on the former is for both rodman and leveller to mike independent readngs, Whero throe wires are used, crrors with self-reading rods are of very rare oecurrence. The menn of the three readings is ulon without doubt more ncourate than a single reading on a target rod. It does not by any menns follow thut becouse a target rod eads to 001 of a foot that the reading is aceurato within that limit. A differcnee in the illumination of the rod will also affeet the rellutive necuracy of the readings, and a line ruming east and west will prolubly show different results, according as it is levelled in the forenoon or ufternoon.

Under personal errors we have mercly to note that each observer has his own peculiarities, which will largely affict the resulting difference of level over a great lenghth of line. This is in fact the personal equation of the obscrver. To quote from the report of the Chicf Engineer, U. S. A., for 1884: "These diserepnucies vary with differ"ent observers, and are not even constaut for the sume observer, are " nearly propurtional to the distance, and seem tw be independent of "the nature of the ground, the direetion in which the work is done, "the season or the numuer of supportiog the rod." The results of some reecnt levels on the Mississippi survey go to show that this personal equation may be nomewhat evmescent. particularly with young observers, and that cerery line of levels should be duplionted in opposite directions by the same observer within the shortest possible limite of time. in orter to reduce the probability of change in the personal equation. With skilled obscrvers of long practice, this habit is probably a constant from year to year.
For the cffiets of atmospherre errors I camot do better than quote from Profissor J. B. Jolnson, who was fir some time cugaged on work in comection with the Lake survey. (Van Nostrands May. for Oct. 1883.)
"Errors from this source may be classified as coming from: 1, " Wind; 2, Tremulousness; 3, Variable Refraction.
" 1 . Wind generally shakes the instrument, and wake, the holdiug "of the rod difficult or impossibte. For two seasms I have used a " tent on windy days to protect the instrument, aod with great sucess. "Good woik can be done in this way so long as the rod can be held. "We also have large square canvas umbrellas that can be set on the " pround to the windward of the instrument, and these effectually "shield them in ordinary windy wenther.
"The tents used were wall-tents, $5 \times$ lif fect, and one 8 -foot centre " pole. A square iron trame, $3 \times 3 \frac{1}{2}$ feet, sewed into the canvas near "the top, furmed the lateral support there. It was held down by six " or cight steel pins, 18 inches loug and inch diameter, with Hat " heads. These passed through irou rings sewed into the bottom. " There were openings for the line of sight and a flap for the observer " to enter and pass out with the instrunuent. These temes were made " to be used on Gulf coast at a very windy season, when one half tho
" time would have been lont from high winde without them. Tha rod.
" men aupported their rods by atieks held in the hand and hraced
"againat the rod at an angle, resthing on the ground. Carre had to bo
"exerelsed that the roula were not thereby lifted from their noekets in
" the foot platen.
"\$. Tremuloumess is cansed by a difference of temperature between "atr and ground, and nlwnys necurs in clear wenther alter the nun in "a few haurs high. 'thim canses the target, or fgnerem on a speaking " rod, to appear to muve up, and down, giving riwe to what is knowlo an "dausing" or " boiling." This simply couses un uneernainty in " the reading, deperading direetly on the degree of unsteadiness. It " Ia a componsating error, and the observer must be his owa judge as "to when ho must atop work in order to obtain the regnired degreo of " precision. The only remedy in to mhorten the length of sight ; but an " there are some errors that multiply directly with the number of nights " takeu in a given distanee, thero is alao a limit tu which this remedy " may be proftably carricd. I do net think it advisable to use sighta " Jems than 100 feet if the highest aecoracy is sought, und perhapt "never more than 400 feet, even whea the atuesphere in perfeetly
"eleur and steady. In clear weather nut mere than 3 or 4 hours a " day ean be utilized fir the lesest work.
" 3. Variable refraction oecura when the numshine suddenly onnen " upor leaven the line; this happena along the edge of timber or under " the brow of' a hill, un when the line rapidly energes fron or comen " into the ahade from the nun's muvement, or on partially doudy dayn, " when the sun is ulternately covered und elear. When from the firnt " source, it oecurs about 8 a.m. and 4 p.in. It is a peculiar phouonue" non, and is more common in winter than in summer. The atmoghere " is apparently ateady uul the sight well tuken; but upon cheeking it, "the reading has changed, und may her observed to change gralually or " sudd mly, and sometimes to recover a part or allof its eriginal move" meut, when the inatruments wers known to be ntuble. I have neen
"thene changes of reading amount to 5 millimetera, or $1-5$ of an inch
"in a diatance of $\mathbf{1 0 0}$ meters, or $3 \mathbf{8}$ feet. If the atnosphere is found
" to be in this condition, the work should be stopped for a while, as "this state of affairs is not likely to continuc long."

Erroru due to carelenness-and their nume is logion-need not be diseussed. We can make no provision fier the uets of the roduan, who, being sent to hunt up a turniug peint, triunuphantly brings it to you in his hand; or yet for the leveller, who ficils fursistently to distinguish between a 6 aud a 9 .
Looking at the uoavoidable errors of levelling in a more comprebunsive manner, we may regard them us composed of throe clases, eompensatiug errors, cumulative errors, and aceidental errors. The Girst elasnes should be so manipulated as tu climimete thenowelves during the progress of tha work. The second should be romoved by the amme observer repenting the work uader as nearly as possible the name condition., and in an opposite direction. Levels checked only in the samo direction give fullacious resulta. The third are the legitimate crrors iuseparable from all observations, and are proportional to the squary root of the distance. The errors of a properly conducted system of levels are usually gonsidered to be of this character, und their precision tested accordingly.

The limit of error allowud a thc.......... Ft.
U. S. Coast and Geodetic Survey is...... $0.029 \sqrt{\text { Ditt. in miles. }}$

Lake Survey..................................... . $041 \sqrt{\text { Diat. in miles. }}$
Mississippi River Commission................... . $021 \sqrt{\text { Dist. in miles. }}$
between duplicate lines.
The following intereating table of the results of levelling in Great Britain. India and Switzerland has beeu compiled by Mr. Wilfrid Airy, M. Inst. C.E.

Average differences in a sioglo mile of the reaults obtained by twe obervery, ou ground of different degrees of inclination.

Cmanatera of Ground.	Giemit Bmitas.	Inda.	Switzer. land.
	Fuot.	Foot.	Foot.
Nearly level, very favorable circuta. stances of weuther.	02330	.0142	. 0125
Slightly nodulating, gralients not exceenl. ing 1 in 100 .	.0238	. 0168	. 0148
Gralients between 1 in 100 and 1 in 20.	.0379	. 0208	. 0183
Gradients between 1 in 20 and 1 in 10.	.05196	.0350	. 0308
Gradienta steeper than 1 in 20.			. 0416

Nore.-The quantities in bold fince type nre estinated from analogy utlorded by Swiss levelling, as no direct data could be furnished.

In illustration of the high degree ol accuracy attained over long lines, the following is taken from the repart of the levelling operations in Iudia for 1866, by Colonel Walker:-

Secrion.	Lexgrin is Miles.	Maximing Divergence: of two Observens.	Teirminal Divergence.
		Foot.	Foot.
Caleutta to Tillingarhi.	242	0.20	0.15
Tillingarhi to Patka Gerouli,	346	0.10	0.38
Agra to Patka Gerouli.	342	0.15	$0.0 . i$

Some exeellent results over duplieated lines have in recent years, been obtained with the Wye levels used in the engineering braneh U. S. A. The methods adopted were practieally those of preeision leveiling. As an example of these I extract the following :-

Section.	Laxgtil in Mines.	Max. Miventience of rwo obsebvers is feet.	Termival. Drembexen is Feet.
Stous City to Fort Randal	179	. 0×2	. 060
Fort Ramlatl to Pierre, Dak.	190	. 15	.15.4

The best livelling has however undoubtedly been done in Switzerland. The fivd rules there alopted are as follows:-

1. The leveling to he exented ly equal rights whenever pasible ; the diflerdice hetwen the length of batek and fore sixhta never to exced ten metres.
2. The length of wight is as a rule to be limited as under:-
(1) Upon railroals with gradients 1 in 100 , to 100 metres.
(b) " " " steep gralient 50 , to 100 matre-
(c) ". highroads in the phins 30, to bif metres,
(d) " monntain rosels 10 , to 2 i) metres.
3. The pint level to he ahways shated from the am.
f. The three instrmental errors, viz: Collimation of optialanis, mequatity of pivots, and boblle error to be determined at lease onee each day.
b. The tield work to be carried on continumaly except on wet or windy days. Three kilometres at least shombld the tength or lime levelled per day along ruilway and two along highways.
4. Bencla marks to be ande at every kilometre, and to be clearly described in the field trook.
In preparing this paper I have comleavoured to toueh upon all classes of engineering levelting, naturally however the sulyeet being one which bears more partienarly ongeodesie work, I have givengreater attention th that department. In deprecalion ol'a passible eritieiste to the dibee that the mijor portion of the methods heruin detailel are of no consequence to "practical" Ensincers, I would beg to remind any so disposed that possibiy their partientar line of work hat not ambraced the whole sphere of labours af the profession. I would also wish to express the lupe that the members of the Camalian Sueiety of Civil Engineers may at some day mol liar distant be called to do geodexic levelling within the boundaries of their own counery.

