The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommage

Covers restored and/or laminated/
Couverture restaurée et/ou pelliculce

Cover title missing/
Le titre de couverture menque

Coloured maps/
Cartes g6ographiques on couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrie peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been umitted from filmingi If se peut que certaines pages blanches ajoutées fors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages nont pas èté filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les details de cet exemplaire qui sont peut-fitre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleur

\square
Pages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restauries et/ou palliculies

Pages discoloured, stained or foxed/
Pages décoloriées, tachetées ou piquéesPages detachecil
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)!
Comprend un (des) index
Title on header taken from:/
Le titre de l'en-tête provient:

Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la livraison

Masthead/
Gérérique (périodiques) de la livraison

Additional comments:/
Commentaires supplér ، antaires:

This item is filmed at she reduction ratio checked belo; / Ce document est filmé au taux de réduction indiqué ci-dessous.

Published under direction of the Board of Agriculture of Nova Scotian

Halifax, 1st Junc, 1875.
The Secretary of the Central Board of Agriculture leaves, by the Steamer to-day for England. Diring his absence, any information connected with the Boarl, or its operations, $n r^{n}$, be obtained on applying to Members of the Boarl in the respective Districts.

The Address of the Secretary for the next three months will be: Professor Earoson, Neroport, near Dundee, Scotland.

Tife fino clump of Elcharis Ayazcilon in the Conservatory of the Hon. Provircial Sucretary at Oakland, which was noticed somo time ago, is sending up another crop of its magnificent blossoms. It is obvious that this plant flowers very freels then properly managed. The following extracts, culled from various numbers of The Garden, (an excellent Iinglish periodical lent to us by Mr. Jack), may -be-usciul to those of our realers who wish to see the nodding bells of Eucharis in their conservatories:
"So mpidly has this noble stove plant grown in the estimation of the plantgrowing public, that it is already almost as indispensable to the stove collection as the lily of the valley and the white camellis to the bouquet-maker. Indeed, the Encharis bids fair to rival cither of these, even rith the Covent Garden people, and it is very extensively used among cut flowers For room, stove, and, in the summer, conservatory decomation, it is equally valuable. To this we have to aild that the best plants of it ever shown
were grown by Mr. Howard, garlener at Bedford Hill, Balham, and that his success resulted from heavy waterings occasionally with mild liquid manure, a genial stove temperature, and ropeatedly syringing them when in a state of groirtl. It is another illustration of the fact that cultivators generally have a poor idea of the true requirements of plants as regands moisture at the root when in a growing state. The splendid specimens we allude to, like other thinge grown by the same skilful cultivator, were not, when in want of water, simply watered once, but the first was considered merely a preliminary dose, and tirn others given. The fact is that, instead of the common statement, made so repeatedly in the gardening juurnals, that most plants perish from over watering, being true, the opposite is the case. Mosi pot plants that die perish from insufficient matering. Let it not be inferred from this that we recommend frequent waterings, one thorough one will save a doien dribblings such as gardeners too often give, and therefore save time, and bo far more effective and wholesome for the plants."
"I have grown this plant for four or five geare, but have not been able to flower it. Can you or any of your readers help me?-Anateur. [Mr. Howarl, of Balham, replies as follows: The Eucharis Amazonica should be placed in a stove or warm frame, well exposed to tbe light. An ordinary warm cilng frame will do. Let the temperature be from cighty-five to nincty-fire degrecs, giving little air, and syringe tho plant well carly in the morning, and at $2 \mathrm{p} . \mathrm{m}$, when the air should be taken off, no matter how hot the sun is Under such conditions the plant will throw up flower spikes in ton days if in a healthy state"

Abstract

"This is one of the most valuable of winter flowering plants, not that it usually flowers during the dull season of the year, but it is one of those accommodating plants that may be forced into flowor at any time by the use of bottem heat and a little judgment. Some ten or trelve plants potted and placed in a tan bed a month sgo, are now throwing ap flower spikes. Their great waxy blooms are well nigh invaluable for bouquets, floral decontions, or for ladies' hair. For the last mentioned purpose they stand unrivalled, Phalenopsis blooms even not excepted."

It may be well to explain that the Eucharis, like all other llants, must have its periud of rest after ble ming, and that then the copious waterings, syri.. ng and bottom heat have to be carefully avoided.

Tue Amherst Gawette quotes a few Horse Itens that may well bear repeition:

A writer in the "Spirit of the Times" claims for Geo. M. Patchen, the sine of Godfrey's I'atshen, the credit of having made the fastest two mile time in harness ever made, except Flora Teraple's. Sho made it in 4.502 aud Patchen made it in $4.51 \frac{1}{2}$.
J. IN Keene, of Californin, has sold to C. W. Kellogs, the Sam Francisco millionaire, the trotting stallion Sam Furdy, fur $\$ 50,000$. This is the highest figure ever paid for a trotting stallion.

At the meeting of the Pacific Jockey Club, San Francisco, in November next, a purse of $\$ 30,000$ in gold will be offered for a furi-mile and repent mice, open to the world; $\$ 15,000$ to the first horse,
$\$ 6,000$ to the second, $8:, 000$ to the thind, nul $S 4,000$ to the fourth. Horses from limope will bey allowed si,500 for trivel. ling expensers, and from east of the Rucliy Mountains \$1,000.

Mr. U. A. Hickok has challenged Occident to trot againet Juigo Fullerton, over 1)exter Park in Chicago, or over either Flectwood or Prospect I'rak in New York, two mees for $\$ 5,000$ or $\$ 10$, 000 a side, the races to be mile heats, three in five, to waggon, and to be trotted between the lst and 15 th of June. Half forfeit on ench race.

A Camden, (N. J.) house, has built a sulkey weighing 48 pounds, ordered by Budd Doble, for the Califormia wonder, Occident; a sulkey woighing 54 pounds for λ. L. Hickok, for the trotting horse Sam Purdy; a sulkey weighing 48 pounds, for Goldsmith Maid; and a sulkey weighing 50 pounds, for the bay mare Nettic.

Mcesrs. John and Howard Smith, Fort Lawrence, lrought at auction from Mr. Chris. Delesdernier, last week, a fine pair of yearling steers for which they paid \$101.-Amherst Guzette.

We had the pleasure, the other day, of examining a ciooice selection of Hardy Ferns in the Greenhouse of Ex-Alderman Barron. They came out to him in the Caspian, and, they are, with very few exceptions, the first plants of their several sinds that. have been imported into the Province. We must defer any critical remarks upon them until their fronds, only now beginning to start, have acquired their jull growth. But some of our readers are botanists and may, natually, like to hear what the novelties are like. We may therefore notice, in anticipation, some of the more interesting ones. There are "Fashions" in Ferns as in everything else in England. Mr. Jarron has succeeded in obtaining the most fashionable sorts. Of the Lady Fern he has got that magnificent variety called by botanists Victorice, which in grace and beauty is not excelled in the vegetable kingdom. Then he has the fern for a cottage on a Cambrian wild, Polypodium Cambricum, which is one of the most elegant plants that can be hung up in a greenhouse in an oyster shell. Likerrise there is the remarkable Walking Fern. It does not profess to walk as fast as Weston or O'Leary, but sends out shoots like the strawberry, and thus monopolises the ground wherever it grows. It is American in origin and may seem to be actuated by a faith in the manifest destiny. Asplenium marinum is a bright and dark coloured fern that lines the caves on the cast const of Scotland with a brilliant verdure. Mr. Barron's plant is the strongest of the kind we bave ever seen. Asplenium
fontanum is an English forn by tmalition only. Its home is on the Siwiss Alpis, and it is just possible that turiste may have rooted it out thure. It iea very emmil species, and the neatest of all the ferns. Of the Hart's Tongue fern (Scolopendrium vulgare) Mr. Marron has ubtained several varietics. There is first the fastiginted or stug-horn form, then several others, but the greatest beanty of all is the phaited or gophered sort, whoso particular name we do not exactly know, with ribbon-like fronds gophered on the margin as negularly and neatly as a new-style lady's collar. But the great feature of the collection is the number of tasselated and other ornamental varieties of Instrea filix-mas, Lastrea angulare, Athyrium filix-femina, \&c., which have origimated in England during the recent fashionable Fern Mania, and which our excellent friend Mr. Jarron has introduced to Nova Scotia. We must visit these ferns agrain after they have expmaded their fronds, and tell our readers more particularly what they are like.

Tre best neply we can make to the following is to print it. We have had numerous applications for Bulls this spring, but cannot find many really desirable animals for sale:
"We wish to purchase a bull for the coming scason. We decided to have a 2 year cld or 3 year Ayrshire-good size -dark red colour, or as near as possible. We want a good one, for two reasonglst. Our stock is reduced to almost minus nothing; 2nd. Good animals will tend to strengthen our socicty. Could you inform us where we could get one of that stamp, or where we can get the information. If you could it would save us expense and trouble, as we have no idea of the whereabouts of any. We are willing to pay a good price for a good animal, rather than a low price for a poor one. I remain, \&e., Johi M. Ballie, Rosevillo W. O., Earltown."

Wimme the last ten years very great improvement has taken place in some branches of Rural Economy in this Province. Increased attention has been given to the rearing of live stock,-so much so, indeed, that in various Counties we now meet with whole "Herds" of thuroughbred Short Horn, Devon, and Ayrshire Cattle, whose births and pedigrees are iadividually reconded as carcfully as if the bovine Dukes and Duchesses were prospective heirs to broad acres, and inheritors of veritable titles of nobility. In like manner, an immense impetus has been given to the Dairy department by the establishment of Cheese Factories, both in the Western and Esstern Counties, and in Cape Breton. Extensive orchands have
been established in localitics where they wero unknown before. In and about. Halifax and uther towns, Conervatories and Vineries have been neared, Gamlert Culture has buen greatly alvanced, and many Nurseries, for the supply of trece and plants, have been established. It is certain that in some districts tho cultivation of Root Crops has been extemded. The means of harvesting the Hay (isop) have been improved by the general introduction of Hurse Mowers, Horse Kakes, Tedders,and other lnbour-anving machines. And, whilst wo survey these substintial evidences of advancement, whilst we complacently say to ourselves, In these ten years we have greatly enhanced the value of our Cattle, we have transferred, perhaps, one-thirl of the harlest labour of the farm from our own shoulders to the proper beast of burden, we have established a Dairy system that s 'ioves our households of drudgery, and brings a handsome annual retum, we have formed orchards that now fill our cellars with the most beratiful fruit,-in the midst of theso contemplations the feeling naturally arises that, if these are the advantages secured within the last decade, how much more shall we be able to accomplish in the ten years to come, should preace and prosperity be vouchsafed to our Province.

The improvement of live Stock, the use of Machinery, Fruit Culture, Cheese manufacture, these have already taken such a hold that their continued auccess and progressive development may be looked upon as almost eecure. But, with all this accomplished, there is still a terrible defect in our Agriculture, a defect that exists all over tho Continent of North America, and which it is, hence, very difficult for our native farmers to thuroughly understand. If our tarmers will only seriously set before them the removal of that defect as the work of the next ten yenrs, we can promise that the improvement will be more conspicuous than all others together that have ever been made in Nova Scotia, that it will tend more to elevate the farmer, to increase his comfort and wealth, to cheapen the food of the people, to encourage the rise of other industries, and to promote the development of our country's resources in general, than anything else whatever that can be devised or reasonably hoped for.

The defect we refer to is the want of any proper system of Rotation of Chops We know that, on individual farms, a methodical system is followed, the mesult. often of much observation and thought and experiment. and in such cases he would be a bold man, and inconsiderato withal, who would undertake to suggest improvement. But, taking farms generally over the Province, it is obvious that no deninite system of rotation is pursued, except what may, out of courtesy, be
called: The one Courso System with accidental variations.

Attention has been bo contimually called to the subject of Rotation of Crops that nothing now remains to be said that hies nut been said beture. Mureover, simple as it may seem, we have found it so extremely difticult to explain what is rally meant by " Rutation of Crops," to those who have not resided in conntries where it prevails, that we do not wonder that a deaf car has been su often turned to the subject. It is a subject that, in fuct, requires to be viewed in all its aspucts, and in connection with the changes of the whole management of a tarm which it involves, befure even an imperfect notion of what it means can be attained. Rotation of Crops involves Hirhl Cultivation, a heavy outlay of capital for Machinery and Stock, a large expenditure for artificial manure and feeding stuffs, and fir labour. It also involves very large returns in the forms of roots, grain, fatted cattle, wethers, lambs, wool, pork, with, perhaps. butter and cheese. Wo shall not go into the financial details at present, but merely remark that the calculations can be made with the greatest nicety beforchand, and that a carcful, judicious man, who keeps within the bounds of his capital, is in no dauger of disaster.
The object of Rotation of Cmps, and of the High Cultivation which its carrying out involves, is to realize from the soil the greatest prolitable retura with the least possible expeuditure by which that greatest return can bo obtained. This is accomplished by a systematic method of cultivation, the purpose of which is so to manure and cultivate and treat every crop as not only to maintain the sail in a stato of constant fertility, but to have it always in the very best possiWe condition for the coop which is to follors. The Rotation that suits one farm will not suit another, and the Rotation that may be adopted on a worn-out firm at the outset may soon have to be changed for one, which, as the land improves, will sive more speedy returus in money.

Although it is now some years since we prepared the following notes of a discussion on this subject in England, they have lost none of their value, and we therefore commend them to the notice of our readers, on the understanding that we shall return to the subject at a future time with the view of presenting a workable elastic scheme, adapted to the various circumstances of our Nova Scotian farmors. It will be seen that each will have to adopt his orrn Rotation, but there are underlying principles, scientific and commercial, upon which all must be based:
From the carliest times of agriculture, the neressity of a Rotation of Crops, has in one shape or another beea more or less fully re
cognized. A correct system of retation must be foranded upon chenical and physiologital laws; but tho importance of a rutation of some kind was well recognised long before either ciemistry or plassiology were brought in as hant-mads to Arriculture. Now that these subjects are recurnised as important, not only to "book farmers," but also, and in an especial manner to the practical firmer in the performance of daily duties-the subject of rotation still continues to hold a high position anong the questions of practical arriculture, and it 3 solution will be received as a boon to the farmer's art. We have advaneed so far; we ean now explain, in at measure, b, a reference to scientific principles, the rensun why rotations are requisite ; and the principal desideratum is $\&$ knowledge of the most profitable details of practice. Every year sees us nearer the settlement of such points; and the discussions that have taken place at the Central Farmers' Club, and in the Agricultural Journals during the past few weeks, have afforded valuable contributions to our knowledge. Even at the beginning of the present century, so much attention was being paid to the subject of rotation, that Sir Johu Sinclair, in his work on Scottish Husbandry, observed:-"Of all the subjects included in the present enquiry, this perhaps is the most important, and the most difficult to discuss," the returns transmitted to him on this subject exceeding 80 in number. It must depend upon the judgment of the farmer, says Sir John. to adopt those modes of cropping best suited to the climate where he resides, the nature of the soil he cultivates, the size and situation of his farm, and a varicty of other circumstances which will necessarily require his attention in determining which ought to be preferred:-for every farmer must be aware, in fixing on his rotations, that it is necessary for him to ascertain, not only the various articles for the production of which bis farm is calculated, and which are likely to yield him the greatest profit; but also the succession in which these articles ought to be raised, so as not to diminish the fertility of his soil; or, as Lond Kames bas well observed, so to intermix his crops as to make the greatest posible profit, consistently with Eeeping his land in order.

One of the most productive discussions that have taken place on this subject is that of the Central Farmers' Club in winch the leading speaker, Mr. Thomas, referred first to the agriculture of the reign of the earlier Georges, when two crops and a fallow were the rotation which prevailed, and that of the Romans, when a fallow every other year pruvailed. He then spoke of the inprovements first effected in agrinultun north of the Tweed. He said:-I believe I an only doing justice to our friends north of the Tweed, ${ }^{\text {in }}$ I state that it was the agriculturists of that country who, at the close of the last century took the lead in those vast improvements which began to distinguish our husbandry. They observed that the same crops repeated consccutively became smaller and smaller in their produce, whilst with intervening crops of clover or rests the produce increased, and this led them to the conv \quad tion, which the science of chemistry has now clucidated, that cereals and bulbs each extracted a different substance from the soil, and that this extracted matter, whatever it was, was in time restored either by the effect of the atmosphere or the agency of manure. The rescarchea of the agricultural chemist were then unknown, but the idea was
correct in the main; and thus first arose the fimous agrienlural system of alternate corn and green crops, which has so long maintained its ascendency. The rotation of cropping which on strong lands in Scotland first ofr tained, and still retains the greatest favour, is the six counc-always gremising that tho land must be fint made dry by drainingusually commencing with a fallow, or fallow crops, such as tares, or coleseed, and then wheat, beans, barley, clover and wheat. It is sometumes altered to fallow, whent, clover, oats, beans, wheat; but by some there is an objection to this course, from the bern crop being so late in the rotation as to cause more diffeculty in keeping it clean. But, if a landlord will insist that his tenant shall be bound down to one course of cropping, perhaps none better than one of these two could be found. The cultivation of the turnip soils of Scotland may be included with those of England. Whilst this energy was being displayed by our northern friende, enterprise and experiments were not wanting in England. J. W. Coke, afterwards Earl of Leicester, bad succeeded to his yast estates in Norfolk, where a soil naturally poor, only produced the poorest crops when their cultivation was attempted, but the greater part presented only sturile sheep walks, or was devoted to the purposes of the warren. His active and energetic mind deplored such a state of thing 3 , and he resolved unon improvement. He saw that the soil wanted solidity before it would yield productive crops of corn, and the turnip and clover seemed to afford a remedy. And hence sprung the famous rotation of turnips, barley, clover, and wheat, which appeared for many years to promise unparalleled and permanent success. The Swedish turaips, then called ruta baga, were then Girst introduced to this country. Ked clover had been but little cultipated, and the invariable luxuriance of these two crops, and also of corn crops which succecded them, seemed to point out the Norfuik system as one withont a rival. Was it to be wondered at, then, when landlords beheld the gigantic improvements which were here displayed, that they were anxious to introduce the like into their respective estates; and when they found persuasion unavailing, to compel t.jeir tenantry to improve by coercion? There can be no doubt but that when the stringent covenants and restrictions to which I have bad so often to allude were first intreduced, both their object and their tendency was to introduce an improved system of agriculture; but it has at last broken down, after holding its supremacy over halt a century ; and, indeed, that it contained the germ of its own dissolution was clearly seen many years back, by the late Sir J. Sinclair, and many other eminent agriculturists. I know not how the case may be in Nortolk; but this I do know, that in every part of England with which I an intimately acquainted, there is one universal lamentation over the difficulties which the system now presents. The Swedes, though more certain of a crop than they once were, through the agency of peculiar manures, are yet subject to strange and inexplicable discases; sometimes resulting, as was the case last year, in the total ruin of the crop. The baricy, where the crop of Swedes had proved large, and had been fed on the ground with the addition of cake or corn, we find in fruitful seasons laid flat on the ground; and when a period of wet takes place at the ume of harvest, seriously sprouted, even before touched with the scythe, the grain un-
fit for the maleter, ant tho strour valuelegs as fodeler. The tarmer then fimh that his youner clovers have been killed be the lorganeme of the harley crop; the sext jear produces him cither an inferior crop of haty or a seanty run for his thow, and the succeoding one fields him but an inferior crop of wheat; for every practical man knows low much the proluce of this crop, when it suceededs clover, is intinenced by the degree of tertility in its predeceseor, occaviomed, no douht, by the amomet of roots left in the gromed, as has been pointed out in more than one lecture of our friend Mr. Neshit. let us endeavour now to aserertain the cause of this disease among the Swedes (the cause of the frequent failare of the remaining three crops I have already allucied to) and then see if we can throw out some hints for an improvement of the rotation. That when a longer period than four years elapeses between the crop of Swedes, the crop is ustally found to be heaver, and success more certain, is well known. A remarkable instance of this I may quote, as taking place in a parish adjoining the one in which I reside. At the close of last year my neighbour Mr. A. W. Crouch, in common with the rest of us, loat almost the entire crop of a fine piece of Swedes in a certain large fied, by some inexplicable disense; but across this large field was a broad belt of maguificent Sweles, totally uninjured by discase, and presenting a marvellous contrast to their decayed and offensive neighbours. What was the cause? Each part of the field bad been manured alike, and each acre had received the like attention. The sreret was this-four years previously this belt of sound bulls hat been preceded by Mangel Wurzel; the remainder of the field had at the same period been cropped with Swedes. Oar friend Mr. Joseph Paine fias told me that the same phenomenon occurrel on the occupation of a near relative of his, and I have witnessed it in other places as well. Let us at least gather something from these remarkable fates. Mr. Thomas tinen proposed alterations on the 4 -counse system not as a rule, but as a relaxation of a rule pussible under certain circumstances. Let us now suppose, said he, that we change the rotation from the four to a five course ; and that it be turnips, wheat, barley, clover, and wheat. Its advantages would be these. In the course of 20 years it would be found that the four crops of Swedes each at five years' distance from each otier, would have produced a greater aggregate amount of fool than five emps would have done, each four years distant from the other, and that the bulles would be much freer from cither disease or failure. I then propese to take a crop of wheat, as our Scotch brethren aluost invariably do. We know by practice that our ordinary wheats succeed remarkably well when sown early atter turnips. We have then the Talavern, and other prolific Spanish wheats to fall back on; and, lastly, the April wheat which nay be sown with security up to the lst of May. Imay here mention in parenthusis that a remarkably good farmer (now lan sorry to say no longer a member of this club), and who adopts the rotation we are discussing-I mean Mr. Shaw of Cotton End-uows much of the wheat dailled atter turnips with Italian rye-grass, for the keep of his couples during the month of March, and, ploughing this land about the 1st of April, sows it with barley and ordinary clover seeds. It is, however, very doubtful whether the Italian rye-grass could be intro-
duced in this manner to any large extent. Noxt, then, in order to the whent, comes the batey-the proseribed act-t wo white straw crops togelher. The expernence ofevery one who has tried this tells him that this is the very mode to obtain a line sample of mating batley ; and, as there appears to be mo prospect of a remission of the mall tax, this, to thow who cultivate the grain, is a great object indeed. But I do not propose to sow this second white straw eron without bestowing ugron the land some nitrogenous manare. I shombla to it an the form of giano. Our friend Mr. Mechi would, no doubt, llo it with lipuid manure. l'erhaps other means would answer the purpose, int I agree with the hate Mr. P'usey. "that liquid manure is a pretty , tor, but solid dung is for farming in carnest." By guano I, of course, mean genuine Peruvian, and not the worthless trish which is under that name vended by hosts of unprincipled dealers. I read in the ruport for East-Lothian, in the Journal of the Moyal Agricultural Society, "It is now found that guano, at the rate of two cwt per acre, can always be applied with profit to the oat crop however high the condition the land may be in; and if this applies to the Oat Crop (Barley is but little grown in Scotland) I imagine it must apply to the Barley alsu. The idea of growing liarley atter wheat, or two crops of Barley consecutively, is not new. In Rachelor's report of Bedfordshire, 1807, he says, "harley is a favourite crop towarls Biafle wade, and is frequently sown after wheat;" and speaking of another part of the country he says"The large quantity of Loudon and other manure which is here used, cateses the barley to grow too luxurantly to make it prudent to venture the clover to be sown in the first scason. The barley is therefore repeated for that purpose, and with better success." But in much more recent times, we find the same course recommended. In the report for Dorsetshire, peblished in the Journal of the Royal Apricultural Society, it is mentioned as becoming universal. In Mr. Caird's report, too, on the farming of Lancashire, he is loud in the prase of a Mr. Longton, of Rain Mill, and adds (p. 268) :-" Mr. Longton is decidedly of opinion that barley after wheat is the oest management with which he is acquainted." With such examples, there would be no doubt about the success of the clover crop, and,after a luxurant crop of clover, but little of that of the whent.

Mr. I. Paine, Bedfordshire. remarked that he had long recorgnised the diffieulty of getting his turnips every fourth year, and the subject emmected with his name, which Mr. Thomas had mentioned, came under lis notice about tro years ago.
It happened that on a 30 acre piece., well cultivated for turnipt, and with a good plant, the greater part of the field became blighted during the summer ; the only exceptions being about seven acres, which had borne a crop of pease during the routine of the previous four years, and which was constantly eight years from the Swede crop, and above an acre and a half wheh had been well limed. Here the produce was very groal, but these portions were all that was worth a farthing, though the entire field bad been sown with the sane seed, under precisely similar circumstances. When the process of hocing was performed, a more luxurant crop could not be seen ; yet, within six weeks from that time, saving the two portions referred to, the roots were not worth picking up. What was the conclusion
to which he naturally came? Why, that the faule lay in sowing the turnips too frefuently. For hes own part he was inclined to think that, through the agency of artificial mammers. the farmer might in some districty cultivate his land even upon a six course. Were the Englials turnip introduced in one counse, and the Sivede in another, he believed it would alon le found greatly to aid the prowth and firtility in the latter. Certainly a plan simlat to that which he hatd alopted with clover: was attended with much atviantage. That phath wiss to sow mixed clovers (white clover, grataes and so on, not broad (lover) in onte course, and then broad cloeer in the following course. If the sceds of turnips were "comsed" in this same way, he waw no reason why equal benetit should not arise from pursuing that system.

Mr. M. Baker observed-The true principle in the rotation of corps appear to le, not to bring in rotation in successive jears such crops an draw from the land the same description of support, but rather that one crop should so alternate with another as to supply its successor with food, or at all events, nut be injurious to it. On lands well managed the following would admit of a green crop of rye or tares, or rather veçetables, to conclude with turnipe. On his light land he always took rye before turnins, after the tutaij barley, and then clover. The turnips furnished abundant food for the barley, and the barley was a good preparation for the clover. To the clover succeeded wheat, then followed an autumnal fallow, manured slightly aum barley again. But of course the rotation must vary iecording as the deseription of soil varied or changed, therefore che firmer shonld have the privilege of selecting that mode of rotation which was best adapted to the soil. Upon his light land also, many gentlemen present had seen the experiment, he had adopted the system of taking oats after turnips, and wheat after oats, and he found that he conld grow better wheat in this order than by any other process he had ever tried. In fact tise crop was a most productive one-his last yiedding, upon being thresled out, forty bushels an acre, and whenever be could get that quantity he was satisfied. The time had now arrived when the old iden about the extanstion of the soil ought to be entirely abandoned. There was no such thing as exhaustion of the soil. Only give him an opportunity of clearing the crops as they caune in rotation, and an ample supply of manure of an organic character, and be could go on producing crops year by year for ever, and, in other words, earry ous what hat been irvnically termed the "everlasting shifi."

Several speakers expressed their opinons on the subject of leases, and in conclusion Mr. Owen Wallis proposed the following re solution :-" Resc.:ed, that it is the opinion of this meeting that the landlord who bimis his terantry down to a prescribed routine, from which they must not, under a penatty, deviate, infliets both upon them and the puit lic a very serious injury withont conferrng any correxponding alvantage." Mr. Smintljis seconded the motion which was put to the mecting and carried unanimously.

The whole subject, in its various phasee, las been well brought under revievy in a recent editorial article in the 'North British Agriculturist,' from which it may be advisable to quote a few remarks, before proceeding to discuss details, especially as these refer to the procecdings of the Club above referred to.

The editor of the " North British Agrientturist" ohacerves:- The exhaustion of a soil of the mutrient matter in a soluble state by a particular plant is on of the known causes which render a variation in the kind of plants cultivated desirable. But exhaustion may be remedied by the application of tertilising ingredients; still the phants do not grow wifh that healdiful vigour neecessary to probuce a uil erep-showing that orgranised structures (plants) require to be placed in certain conditions apart from the supplies of the materials essential for promoting their growth. The theory of the exeretion of phants was readily taken up, and for a time believed as the explanation of this; but recent investigations have tended to throw diseredit on the dheory. At present there is considerable uncertainty as to the cause, or more properly the causes, which render soils unsuitable for the frequent growth of the same kimi of plant. Apart from the questions which relate to the excretion of plants, or the solubility of the nutritive clements, other canses, hitherto not much brought ino view, alfeet healthy growth. * The most important point in question of rotasion is, whether the freguent repectition of the same plant tends to induce fungi, or to inereass insect depredations. There have been no well conducted obervations as to the amount of influence the frequent repetition of the wheat pham has upon the presence of fungi or the propagation of the wheat midge. *So fiar as our observations go, the growing of wheat alternately with other phants appears to diminish the liability of the development of fungi. This, however, may be traceable to the higher cultivation of the soil, incident to the frequent repetition of the wheat plant. As regards insect depredations, the more freguent repetition of wheat, in East-Lothian for instance, has not increased the ravages of the midges-these nyprear to be diminishing; but the nature of insect attacke generally depends so much upon the character ot the season, and upon causes beyond observation, that speculation is liable to mislead. - It might have been presumed that the growing of wheat successively would have some inthence in increasing the number of insects, but this does not appear in the Lois-Weedon experiwents. - Some strange anomalics are presented in connection with the frequent cultivation of eertain plants, or rather varieties of plants of the farm, more especially of the oat, and certain of its more tender varities. Oats can be grown successionally for troo, turee, or even five years, and frequently without any per:eptible diminution of their healthy gmisth, if hardy varieties are selected; but the st cannot be cultivated successfully with a leguminous crop (beans, pease, \&c), intervening; we have seen frequent examples of this. On the other hand an intervening turnip or potato crop does not appear to affect to the same extent the succeeding ont crop. Again, wheat can be cultivated alternately with green crops, without any apparent diminution of health or produce, or any increased tendency to disease. In experiment with beans and wheat alternawly, the beans being grown in drills, recciving al light dressing of manure, at the end of several years the beans had almost ceased to yield cither scrax or grain, while the wheat crop appeared grachsally to increase in straw, grain, and quality of grain The frequent repetition of wheat, when the condition of the soil is maintained,
and esperially if the soil is suitable for the krowth of wheat, appeare to diminish the tendener to become mildewed, or otherwise unhealthy in growth, either of the straw or grain. The tembeney to ball, however, is exceptional, being more lialle to recur inless considerable care is exercised. Beans and barley grown alternately on the richest cane soils, apredily become sickly in growth, with a reduecd jroduce and inferior quality of grain. Several examples of this have come under our obervation, and the deterioration generally. wis very rapid and marked. It would appear that of all the cerceals, wheat possesses the power of continuing to giow without any apparent diminution of the p. duce, provided the constituents furnished in the mamarial clements are present. Oats are next to wheat in this respect, aithough certain anomalies are occas:onally presentel. Barley, of the three cereals, repuires the longes: interval to produce abundantly. Of the green cropk, the turnip plant cannot be grown successionally, except in very exceptional instances; neither can it be cultivated with eertainty to alternate with a cereal crop. There have been full crops grown twice, alternating with a white crop; but thas soil was a heavy loan in high condition, and the turnip crop comparatively new to the soil. Neither manures nor cultivation will overcome the tendency to diminisited weight ofr oots. But, apart from the diminished weight of roots, with the increased tendency to be attacked rith the fungus termed the dry rot, there is the tendence to anbury (finger-and-tor). Although this disease is uncertain in its appearance, sometimes attacking the turnip when grown at wide intervals of time, and even when turnips have been grown for the first time, and is one of the most anomalous of the diseases of the cultivated plants, it is now established that when the disease once appears in a ficld it rapmly extends, if the turnap crop is repeated at a stort interval, unless the land has been manurially treated, as with lime incorporated with the soil in autumn."
"The four course system, at no period a highly desirable one, has now become even more unsuitable, from the impossibility of securing a vigorous growth of the clover plant once in four years, and also of the turmip in the same short period. The difficulties connected sith such a frequent growth of the turnip crop have been attempted to be obviated by alternating white or yellow turnip with the Swedish turnip, and latterly the mangold with the turnip. In the case of the clover plant, the sulstitution of white clover for red alternately in the four years, has also been acted upon, but this has not been very succesful. The failures of the clover plant have been very imperfectly tracel, but are so general that red clover cannot be repeated zucecesfully every four gears."

ONE of the most promising noveltics in the way of Verctabies is the Alate or Winter Cucumiber, introduced to Paris, from Straslurg, by M. Weber, an Army Surgeon. It is eaten in the winter time just like a common curumber, but it may be kept all winter on a dry shelf, without the troable of pickling. Its flesh is less watery than that of the common cucumber, and it has an artichoke flavour with a dash of filbert, which is said to be
an improviment, "querilly when tho c:arminar is cooked and serwed with saby.

Tut: new ruse, "siant George," has bern tixured in the Brdsidue Iherticole and the Lomblan f'lorist. No donitt it will be sught for neat it. George's day, hener this hint to our enterprising rose áruwers.

NOVA SCOTIA DEVON STOCK REGISTER.

(Continuct from p. 259, Nou. for A uy. 187.4.)
3LI.J.s.
CXVI.—Sim Mastings. Calvel Nov: 2, 18T4. Brad ly and the property of Colone! laurie, Oakfield, N. S.
Sire, Havelock, cui.
1)am, Maid of Maller Hill, by Wilmot. f. dam, Lady Anne, by Lond Elgin.九. g. dam, Fanny, hy Ion Juan.
if. f. g. dam, liouleths (1483), by the Duke (57(1).

CNVIII-Lomi Chane Calved goh April.1875. Bred and owned by Col. Laurie, Uakfield.

Sire, Haveluck, cur.
1):m, 1'rimrose, by Wilmot.
g. dam, lady Ame, by Lord ligin
g. g. dan, jommy, by I on duan.
g. g. g. dam, loulette (14×3), by tino Duke (570).

HFIFER.
CXVII.--Tulir. Calved list December, 1874 . Bred by and the property of Col. Iaurie, Oakfiehd, N. S.

Sire, Haveluck, cvi.
Jam, Iady Pink, by Wilmot.
g. dam, Lady Anne, by Lord Elgin.
g. g. dam, Fanny, by Don Juan.
g. g. g. dam, Ruulcte (1483), by the

Duke, (570).

ANOTIER NEW SOCIETY IN COL CHESTER.

The people of Farltown, County of Colchester, are taking measures fur the: formation of an Agricultural Socicty, and have applied to the Central Buard, ilirough their Member, W. A. Patterson, Esip, M. P. P. The Society promises to be a strong one. The following lettur will explain particulars:-

$$
\text { Es nı.тows, April 24, } 1 S 75 .
$$

Dear S: r,-Yunr letter, conthining infurmation concerning the forming, de., of an Agricultural Suciety, came to hand. I am happy to inform you that we have succeeded in forming one, and to all appearances, a flourishing one, as all appear to be active and anxious. Our list contains forty-five (fis) members, and the sum of furty-five dullars ($3 \frac{1}{3}$), is paid in to the Treasurer, ($\$ 1$ each.) The Society will be known as the Earltown Agricul-
taral Socicty. Tho officersare:-Jno. S. MeKay, Presielont; Alex. Mekity, Vire President; Juhn M. lkillin, Sectetury; John MeLiay, Treusurer; Alex. Dhillie, Ales. Ferguson, John Ross, Danl. Baillie, Wim. Sutherland, Directors.

The attested certificato of payment, which is not required to be sent in until Decenbor, you will find enclosed. Wo expere to derive some benefit from the Society during the coming Summer, at least we intend to be of some trouble to the officers, therefore we thought it right to forward certificate, \&c., as it were a guaranted of good faith. J. M. 13 .

PLASTER.

Old Banss, Thuno, Mfuy 14, 1575.
Having seen the article from the Journa!, published in Truro Sun, where you say that if you knew where Ground Plaster could be had you would advertise it for the benefit of yuur readers, I beg to say that I can furaish it at 'Iruro for Sl per barrel.

George Burgess.

A NEIV AGRI. SOCIETY AT SALAON RIVER, BEAVER HARBOUR, CO. OF HALIFAX.

A public meeting was leld at Salmon River, Beavour Harbour, on the 27 the day of December, 1874, at which Henry Balcom, Sein., Esu., was appointed Chairman, and the Rev. Ldward Ansell, Sec'y.

The meeting having been called to order, it was resolved to organize an Agricultural Society for this part of the Eastern Shore, to be called the "Salmon River, Beaver Harbour, Agricultural Society," for the purpose of improving the breed of horses, cattle, sheep and hoga The following ofticers were appointed :- Michael O'Leary, President ; Samuel Balcom, VicePresident; Directurs, Charles Hartling, Leonard Winters, John Fraser, Normin Campbell, Capt. A. Komkey.

Norman Campbell, was appointed Representative of the Society for transacting business and other matters.

Rev. Edward Ansell, Secretary and Treasurer.

The Roll of membership (42) was exhibited, and power was given to add to their number; and the completed List now accompanies these minutes.

Heniry Balcoy, Sir, Chuirman.
EDivard Ansell, Secretury.

FORCING ASPARAGUS.

Those who are fond of this delicious vegetabie, and desire to lengthen its season, cau do so with littie trouble or expense by starting some roots under glass in a hot-bed in the marly part of March. Two sashes, 3×6 each, will, under care-
ful trentment, give a couple of buuches every other day for a mooth or sn, until such time as the out-of-door growth comes into market. The hot-beds can be made in the way descrived in the Weekly Tribune of January 19. Old asparagus roots are the best for forcing. When the hed is made the roots may be sot eight or ten juches apart and covered with about three or four inches of rich soil; then put on the sashes and cover at night with strav mats or other covering to protect from cold weather. The bed will require trequent watering to keop the carth moist; this should be done at midday, and always with tepid water. The temperature of the bed may be nigh up to 70 degrees. This plan of forcing asparagus could be carried on with some profit by florists by arranging beds of earth under the tables in forcing-houses, and planting old asparagus roots. The heat requisite to start young plants would be quite enough to force an early growth of asparagus, which would sell readily at high prices in market during March and early part of April.-Tritune.
[Asparagus may likewise be forced $b_{\bar{y}}$ simply putting a hot-bed frame and sashes over a portion of the Asparagus bed.ED. J. A.]

CHEESE FACTORIES.

We have repeatedly received letters of euquiry respecting the details of a cheese factory, from parties contemplating the starting of such. We now publish, as the best answer we can give to such correspondents, a communication from Mr. Willard, furnished by him to the Royal Agricultural Society of England, and which concisely covers the whole ground :
"There are a few factorics where the milk is purchased by, and the business carried on wholly under control, of one or more proprietors, thus making it a separate and distinct interest from that of patrons.
"The popular method of organizing factories, and one which seems to give good satisfaction, is to make them joint stock concerns. The ground is splected and an estimate made of buildings, machinery, and fixtures. The whole cost is then divided up into shares of fifty to one hundred dollars each, and the neighbouring farmers, or those favourable to the movement, take stock in proportion to the number of cows from which they are to deliver milk. Officers are chosen and the company managed as a joint stock company. Usually a committee, or some one person selected from the patrons, is chosen as a salesman of the cheese, whose duty it is to make sales at best prices to be had, arrange dividends, and pay over shares to patrons, deducting of course the
price per ;ound for nanufacturing, which is made to cover all expenses, including the per centage on cost of buildings and fixtures.
" A grod cheesemaker is employed as manager and manufucturer at a certain price per pound of the cheese manufactured. This manager employs his labourers or assistants, and pays all expeuse of ruuning the factory, taking care of cheese, keeping record of wilk delivered daily by different patrons, entering tho same on the booiss of the factory and upon the passbooks of patrous. Often the company employ the manufacturer and all the bands at fixed salaries.
"The milk is weighed at the factory whon delivered, and as experience has shown that every ten pounds of milk (as an average for the season) should maku one pound of cured cheese, firm, solia, and in good marketable condition, each farmer thus 'ass a daily record in his passbouk of what his herd is yielding.
"The manager is employed with the understanding that he is to make a good, fair article, and his product is examined from tume to time by committees, by experts, and by patrons, as they see fit, and thus bad work is soon detected. If the managemeut is not satisfactory the cheesemaker is discharged or the causes of the bad work treced out and rectified.
"The stockholders and those delivering milk meet from time to time and deliberate as to sales, each one voting according to the number of cows from which he delivers milk, and in this way instructions are issued to the sulesman.
"Theu there is another method of establishing factories. Oue man, or a company, erects buildings, and is to all expense in ruaning the factory, charging by the pound of cured cheese for manufacturing. The cheese in this instance, it will be seen, belongs to patrons, who appoint a salesman and control the product precisely as under the othe: method.
"It will be observed that under this system of checks all men who deliver milk are upon an equal footing, where no advantage can be aken, for the farmer, if he chcoses, can weigh his milk at home and compare it with the figures entered at the factory upon his pass-book. The company is responsible for milk delivered. The account is payable in cheese, this part of the system being somerrhat like that in making deposits at bank.
"1. 'Number of cows (average.)'-The number of cors varies greatly, from 300 to 1,500 or more. Our experience shows that a factory with less thian 300 cows will not pay expenses, including interest on cspital invested in factory, fixtures, \&c., unless an extra rate be charged for manufacturing. Extremely large factories, say of 1,500 cows, do not give the best retura to farmers. There is usually more waste; the mills coming from a long distance is
often in a bad condition, and the work at tho factory is, from timo to time, huried and sligited. The best results are obtained, woth as to quality and quantity of product, where the factory uses the milk of from 500 to 800 cows, and not above 1,000.
"2. 'Size of buildings.'-Improvements are constantly making in buildings. The early factories were made rude and imperfect structures. The late erections are more substantially built, but very phain in style, with no pretensions to architectural beauty. This is a mistake. A competent architect should be employed, who should give designs for a hamdsome exterior, imposing, graceful and pleasing to the eye. The cost would not be very much more, but the value of such buildings would be greatly e.nanced, and could be turned to good account in case they were abandoned for cheese making.
"In some of our establishaments the manufactur:ug department and curing rooms are uuder one roof-in others they are separated. The system of marketing cleeese in America is somewhat different from that in Eugland. The cheese is not held tor so great a length of time while curing. We try to send our cheese to market when it is from thirty to sixty days old. There are few curing rooms built with the design of holding cliecse for the entire season.
"Without attempting to give model luildings, or those considered by some as the besh, it will perhaps suffice to present two or three plans of thoso esteemed as among the first-class.
"The Fairfield and the Willow Grove send out cheese favourably known in the Euglish markets. They have for several years received 'top prices' from Englioh shippers.
"The Fairfield factory is located in Herkimer Co., N. Y., eight miles from Little Fal's, the largest country cheese market in America. It receives the milk of 1,000 cows. The manufacturing department and curing rooms ('dry house') are under one roof. The establishment is one hundred and forty-eight feet long by thirty-eight feet wide, and three stories high. The second and third stories are for curing-rooms. The manufacturingroom is forty by twenty-eight feet; press room, thirty-five by thirty-ane feet. The boiler, five-horse power, stauds in a separate room, and cost four hundred and fifty dollars. The manufacturing room is providod with double vats for cheese making. These vats are each sixteen feet long, three feet four inches wide, and cighteen inches $d^{r} \cdot p$, holding six huudred gallons.
"We may remark bere that vats of this size aud proportion are convenient for work, and are usually adopted at the factories. They are double-that is, the inner one of tin setting in a wooden vat, with spaces between the two at the sides
and bottom where the heat is applied, either steam or hot water.
"The Willow Grove factory is in Oneida county. The dry house sets upon high stone piers, and is one hundred by thirty fect, iwo stories. The manufacturing department is in a separate building, being thirty by twentyeight fect, with press rooni twenty-six by fourteen fect. The factory has capacity for the milk of 1,000 cows.
" Wight's Whitesboro factory, in Oncida county, has also e high reputation in the Eaglish markets. It was erected fur six hundred cows. Dry house one hundred and four by thirty feet, two stories. Directly opposite stands the manufacturing department, which is twenty-six by lifty fect.
"3. 'Cost of Buildings.'-This, ot course, varies in different localities, and must be regulated according to has:e in architecture, cost of material, labour, \&c. Factories in the State of New York cost from $\$ 3,000$ to $\$ 10.000$.
"4. 'Cost of Muchinery.'-The priacipal cost under this head will be for steam boiler, milk vats, presses and hoops. Steam boiler, with fixtures, say $\$ 501$; vats, $\$ 100$ each ; screw presses, $\$ 4$ each. A factory for six hundred cows may be fitted up in good rumning order for from $\$ 1,200$ to $\$ 1,500$. Vats with lieater attached, which will obviate huving steam boiler, are sold (six hundred gallon size) for about \$200 each.
" 5. 'Cupital Invested.'-If ground or factory site be added, this $9 \cdot{ }^{\circ} \cdot{ }^{2}$ tion is answered in Nos. 3 and 4. Sites for factories are often leased at small rentals, and for a series of years.
"6. 'Work People Employed.'- A factory with six hundred to eight hundred cows will need five hands, and perhaps, when the curing rooms are full, more help. The manufacturer or head manager, if skilful, will command from $\$ 800$ to \$1,200 and board, for the cheese making season, nine months. The second man, who, perhaps, has worked at the lusiness for a year or more, gets, say from $\$ 35$ to S45 per month and board, and women from 54 to $\$ 5$ per week and board.
"Women not unfrequently take charge of factories as head manufacturers at salaries as high as $\$ 100$ per month and board. Boys and girls, or young persons of immature age, are not usually employed. The head manufacturer at the factory is expected to 'take off his coat' and do a good day's work every day, seeing to the delivery of the milk, working at the curds, the presses, and with a sharp aye to see that all moves on in order and on time.
" ' Quantity of Milk Received.'-This, of course, must depend on a variety of circumstances-goodness of cows, quality of pasturage, the season, time of commencing and closing operations.
"The Weeks factory, at Verona, Oneida
county, in 1867 had an nverage of 640 cows; lengrli of season, 209 days; pounds of milk received $2,481,615$; grecal cheeso made, 261,904 pounds; cured cheese, $2 \dot{j} 0,540$ pounds; shrinkage, four and onethird per cent ; pounds of milk to green chrese, nino and forty-eight one-hundredths; pounds of milk for cured cheese, nine and ninety-one onc. hundredths.
"The gross receipts per cow (average for the season, exclusive of income from butter and checse, made before the factory was opaned, aud after close,) varied from \$34 to $\$ 78$, the former being the poorest dairies and the latter the best.
"The cheese sales in 1867 were very low in America, the average at the Weeks fuctory being only $\$ 14.40$ per one hundred pounds. The receipts other years have been very much larger, but it is always well in estimates of this kind to keep on the medinan side. Some of the fuctories in Herkimer county make an average of five hundred younds to the cow, and at present prices for cheese (twenty cents,) this would give $\$ 100$. This would not be a fair estimate, however, for a novice to base dairy prospects upon.
"8. 'Distance (maximum and average) which the Mill: is brought.'-The average distance from which the milk is brought will not exceed one and a half miles, and perhaps in the old dairy districts in New York a little less. Four or tive miles may be set down as the maximum, except in rare cases, as at the West, where wo have reports of ailk being carted eight miles and more, and yet, if cooled at the farm, arriving at the factory in good condition. Such a loug distance is regarded as altogether too far to cart milk with profit, especially on our Americain roads, which for the most part are bud during a cousiderable portion of the year.
"The practice of cooling milk at the farm does not usually obtain among dairymen. Cauuing milk too warm and hauliug it in this condition to the factory, results in great losses to the American dairymen. It is now several years since wo commenced urging upon our dairymen the importance of cooling the milt at the farm and as soon as drawn from the cow, and, most especially, have we urged this principle siuce returning from a visit to European dairies.
"In 1866 the American Dairymen's Association employed the writer to go abroad and make a carcful examination of European dairies, and to report upon their management. After an extended observation over the dairy districts of Great Britain, and an examination of the English methods, it was clear that in a matter of cleanliness, care of milk and of stock, management of pasturage, \&c., the English were in advauce of us; but, in machinery and appliances for manutac-
turing, the Americans wero a long way in advance of the Euglish.
"Our reports upon Finglish meihods, \&c., have effected a great change in American dairy practice, and it is pleasnut to know that the bal practices of our dairymen are being corrected. We are now beginuing to cool milk at the farm, and it need not be said the character of American cheeso has greatly improved.
" $\boldsymbol{A s}$ to our factory system :-Unitormity and excelience of product is almost niways certain where good milk is delivered at the factory. The machinery and appliances for manufacturing render checse making comparatively easy. Everything is so arranged as to avoid lifting and heavy work. The manufacturer must exhibit high skill in manufacturing. He makes cheese making a study and adopts it as a profession, und a good salary is paid for skilled service, which induces greater efforts for success, and hence constant improvement is going on.
"9. 'Pounds of Cheese made per an-num.'-This has been auswered under previous heads. We may remark, however, that a little less than ten pounds of milk is considered a fair average (the season throngh) for one pound curch cheese. Some skilful manufacturers will get an average of one pound cured cheese from nine pounds milk, aul some report even better than this.
"10. 'Charge of Making.'-The usual charge in large factories is apventy-five cents per one hundred pounds of cured cheese. This includes care of cheese until sold. If the factory is small, one cent per pound is charged. A large number of factories charge two cents per pound, and furnish everything requiredbandage, annatto, rennet, and the boxes in which the cheese is placed for shipping. Hauling cheese to railroad depot is done by patrons.
"11. 'Disposal of the Whey.'-The whey is usually fed to hogs at the factory. Ample pens and yards are provided by factories. Each farmer delivering milk is allowed me hog at the factory for every five cows. He can have a pen where he can keep his hogs separate from others or turn them in the yard with others. Then whey runs to large reservoirs near the pens, and when the hogs are to be fed a fancet is opened which lets the whey into the troughs.
"At some factories the whey is carted home by farmers when they return after delivering milk. Quite recently a process has been invented for taking the butter from the whey-or rather two processes, the hot and cold.
"In the hot process the whey is run off sweet from the curds into a large copper vat placed over an arcls. Heat is here applied until the mass indicates a temperature of oue huadred and eighty degrees. . Acid (sour whey) is added also.

Thc oil and albuminous matter quickly rises, is skimmed off and set in a cool place. The next day it is ehurned at a temperature of from fifty-six to sixty-eight degrees. About twenty pou's of butter is thus obtained from tive hunured gallous of whey. The butter is of grood colour, and when the process is properly conducted, of fair quality for present use.
"We liave seen and tasted of samples could not readily be distinguished from butter made from cream, and it sold to butter dealers in the market at the same price with other butter.
"At some of the factories the whey is considered a perquisite of the manufacturer, who purchases hogs and feeds them upon it.
"It should be remarked that when the butter is taken from the whey us above, the whey is then used for feeding swine. It is fed sweet, and iu practice it is claimed the pigs thrive upon it quite as well as when fed in the usual way."-Canada Farmer.

LIVE STOCK AT THE CENTENNIAL.

It is understood that the Contennial Commission has coucluded to have the Live Stock display at the International Exhibition, within the months ot September and October, 1876; the periods deroted to each class and family being fifteen days, and the division as follows:

Horses, mules aud asses, (as one class), from September first to fifteenth.

Horned Cattle, (of all varieties), from September tweatieth to October fifth.

Sheep, swine and goats, [as one class], from October tenth to twenty-fifth.

Poultry will be exhibited as a permane7t and also as a temporary show, the first commencing on the upening of the Exhilition, the latter from October twen-ty-fifth, to November tenth.

Animals must be of pure blood to be qualified for admission, [rotting stock, fat and draught cattle excepted] and even those of pure blood must be highly meri torious.
The exhibition being open to the whole world, it is of the first importance that we bring forward the best of their kina only, as the character of our stock will be judged by the geueral average of those exhibited.
Exhibitors will be expected to provide for feeding therr stock.

All forago and other food will be furnished at cost prices at depots conveniently located within the grounds.

Exhibitors will also be expected to furnish their own attendsnts, on whom all responsibility of the care of ieeding, watering and cleauing the animals, aud also of cleaning the stalls, will rest.

Though the Commission will erect ample accommodation for the exhibition and protection of Live Stock, coutributors
who way desire to mako special arrangemetis for the display of their stock, will be afforded facilities, at their own cost.

All auimals will be under the supervision of a veterinary surgeon, who will e.rnmine them before admission to guard argainss iufection, 一and who will also make a daily inspection, aud report.

In case of sickuess, the animal will be removed to a suituble enclosure, specially prepared for its comfort and medical treatment.

Rings will be provided for the display and exercise of horses aud cattle.

It is highly important that all who design exhibiting, should now make application, as the extent of preparation uecessary can only be regulated by an eatimate based upon actual demands.

Inquiries may be addressed to the Chief of the Bureau of Agriculture, Philadelplia.

POMOLOGY.

It is the purpose of the Centennial Commission of the International Exhibition, aud an especial object of interest to the Bureau of Agriculture, which has been charged with the reception of Fruits for exhibition, to afford every inducement and facility for a full and complete display of the fruits of the U. S. varied climates, and also those of more northern and tropical regions.

It being questionable as to the practicability of exhibiting many perishable fruits, the products of the tropics, models in wax and plaster will be acceptable.

Such a display of Pomological products as herein designated will, it is axpected, cover the entire period during which the Exhibition will be open, though at all times varying 1∞ impetance aud extent. For instarce, berries and other small fruits will be included in this department, and of these there will be certain classes, as strawberries frcm the South, ready for exhibition on the opening day; and the variety and quantity will be presented in an increasing scale as the season advances.

It will be perceived readily, that the most important display will be made during the months of September and October.

The classification, and arrangement of location of fruits sent for exhibition, will be according to their species aud variety; all of similar character leing assembled together, that a more sat factory couclusion may be reached as o the respective merits of like producis from differeut soils aud States; thus ril grapes, from whatever source, will be placed in one positio:: the same with apples, pears, and the entire list of cultivated and wild fruits, and nuts.

Exhibitors may be assured that the proper arrangements will be made for the
united interest of thomselves, and pomological science.

It is hoped that the Pomological Societies of the severnl Stares, and individual cuitivators genorally, will co-operato in an offort to place bofore the world creditable evidence of the resources and capacity of the country in respoct to fruit culture and products.

The Exhibition will open in Philadelphia on the 10th day of Miy, 1876, and close the 10 th day of Novomber following.

LILIUM AURATUM.

The following letter, describing the very successful cultivation of this mngnificent flower on the shores of Cape Corl, will be real with interest, proving, as it would seem, that a light soil and thorough drainage aro necessary to bring it to its highest state of perfection. I have not before heard ot so fine a specimen on this side of the Atlantic:

In accordance with my promise, I herewith send you the statement regarding the growth of tue Liliam auratum at Cohut, 1874, and other circumstauces which seem to bear upoll the case.

Mrs. Augistus T. Perkius began to cultivate the Lilium auratum in lier garden at Sandanwood so early as 1871.

The position of the garden is on a bluff fifty-five feet high, overlooking Cohut Bay to the Northwest, aud distant from the edge of the bank about forty feet. The gardea is surrounded with yellow pine trees. The : riginal soil is mere sand. producing nothiog but pine and dwarf oak.

After the garden was laidi nut the sand wasmoved from the beds to thedepith of two feet, leaving the spaces round theu. for paths. The beds were filled with a ccis. post made of black mud, dug frome a nond mixed with the sand taken from the beds, and enriched wilh manure from stables near at hand.

All the bulbs did will, some reaching three or four feet in lieig'bt, and having from fifteen to twenty fine liuricto ou the best plants.

The lily which has caused some attention, owing to the size it attained in the Autumn of 1874, and which was exhibited at the Feir at Barus Hill, threw up three shoots which still stand (Feb 17th, 1875) and by careful measurement reach the oxtraordinary height of seven fect and eleven inches. When on exhibition, it had sixty-one flowers, and Capt. Wm. Childs, who prepared it fo the fair, says that it had already lost th 3e, and that it bore 64 flowers in all.

The well at Sandanwood which is near the garden is dug through fifty-five feet of clear sand, fres from stones, and with faint traces of iron in it. This shows the character of the soil to its whole depth. _ Gardener's Monthly.

AGRICULTURAL MACIINERY A'T THE CENTENNIAL.

Tho Centennial Commission is making thorough provision for the reception and display of agricultural machinery and implements.

A section of the Agricultural IIall, an imnosing structure covering ten acres, will he set aside for the exhitition of turm appliances, and it is anticipated that this feature will be second to none in the agricultural department of the Interuacounl Exhihition.

It will be evident to the manufacturers of agricultural machinery that as this national exhibition, is also open to the competition of the wholo world, which has been invited to participate, our past progress and present position will be closely scrutinized, and we shall be judged by the general average :- Therefore, the admission of any object will be granted only when it possesses a character of unquestiouable worth, and in the case of machinery, under the ruling of the Commision, the olements of merit are held to iuclude consideraticus reluting to "originality, invention, util:iy, quality, skill, workmanship, fitness for purpose intended, adaptation to public wants, economy, aud cost."

Within the Agricultural Hall will be steam power and all necessary appliances for driving all such machinery as cotton gins, sugar presses, plautation mills, threshers, fanning mills, \&c.

It is contemplated to test in the field, plows for animal and stchm power, reapera, mowers, tedders and hay rakes.

Manufacturers designing to compete in the field will be required to use the same machines as they offer on exhibition.

The
\because
cuar on = 1 .
of articles within the on Jau. 5th, 1876, and $\cdot h$, the exhibition open-
ith, and continuing six ing on Dīuy mentin.
inquiries may be addressed to the Chict at Eureau of Agriculture, Philadelphia.

UTILIZING FRUITS.

(From the Transactions of the Illinois State Horlicullural Socicty, asreported in "Western Horticulturist."

The report upon utilizing fruits is of general interest, for who does not, at the present day, use fruit or its products in some form or other, even to hard cider. The work upon the report was divided among the committee. Mr. Periam of the committee spoke upon the preservation of orchard fruits in their natural state, and of drying and canning. In treating this division of the subject, Mr. P. said :

All that is necessary in order to keep
fruits porfectly, in fresh or natural state, is to phace them in a dry, puro a mosphere, at. a temperature of thirty-five to thirty-cight degrees. This has been accomplished by the plan of Prof. Nyce, and also in Schooley's preservatory, tho essential features differing in in great degree. Tho plan adopted by Pinf. Nyce was to keep the temperature of the room at thirty-four degrees, and the atmosphero dry by means of the refuse of salt works, chioride of calcium, commonly called "bitterns." It is thus stated by Prof. Nyce:
"In a room or any confined vessel when filled with fruit in the gradual process of ripening, carbonic acid and water are constantly being generated. Six pounds of carbon and one of hydrogen will take up all the oxygen contained m one hundred and twenty pounis of air. The oxygen, especially if the fruit be ripe ani the room warm, will usually be consuned in forty-eight hours. The atmosphere would then be made up of the nitrogen of the air and carbonic acid. The former is destitute of all active properties, good or bad. The latter is not found to have any action on fruit immersed therein. Hydrogen and carbon then cease to be evolved from the fruit, as thero is no agent to mite with them, in the same way that they ccase to be evolved from a burning candle when air is removed. Decomposition ceases in both cases, from the same canse."

It is simply the application of a principle laid down by Leibig, who says:
"Decay is much retarded by moisture. and by the substance being snirounded with an atmosphere of carbonic acid, which prevents the air from coming in contact with decaying matter."

From this it wrold appear that the more perfectly tie fruit is ripened, the better it will seep, care being taken that it be not overripe, the process of after ripening being a pursly chemical process, the starch being gradually converted into sugar, for, however much starch a green fruit may contain, it is gradually changed during the prociess of ripening, until not a tra e of starch may be left; for again Leibig says: "The more starch the green fruit contains, the more sugar will be evolved during the process of ripening."

The same principle was used in the plan not long since promulgated, the inrention being to place the fruit in watertight packages, and fill the interstices with carionic acid gas, but as a matter of course, the plan did not work except in theory.

The fruit houses of Mr. Nyce were two-story buildings, the upper clamber containing ice, the sides and floor being double, three fect thick and filled in with some nonconductor, so thai the fruit room should be practically air-tight. The
fruit was placed ou shelves or racks, to the depth of two or threc feet. I bave had tomatoes preserved for three mouths in the house in Chicago, which came out in perfect condition. The Chicago house, however, did uot pay, and it was soon, I believe, abandoned.

The elements, therefore, of a complete preserving atmosphere are a uniform temparature, just above the freeziug point, dryness, purity, and the exclusion as far as possible of the great agent of the de-composition-the oxygen of the atmospere. Whoever can secure these conditious most cheaply will best succeed in kecping apples, pears, and grapes, aud, with pleaty of these fruits out of their natural season, there is a forivne to whomsoever succeeds in its accomplishment.

I think the best place for keeping fruits in their natural state is in fruithouses with double walls, secure at the same time from frost and the constant clanges of the atmosphere; for, dowever cheap dried or cauned fruits are in the market, first-class natural fruits will alwayz command a remunerative price A curious fact in connection with seasons of extreme plenty like the oue just passed, is, that being plenty, so much fruit is wasted that a scarcity almost always follows.

Where the soil is perfectly dry :o a sufficient depth, or capable of perfect drainage, a fruit-house may be readily built under a barn cr carriage-house, provided no stock is kept in the barn. The walls should be seven feet high, and if three sides are under the grounc, the other side may be exposed to the weather if the ventilators and wiudows are double.
To prevent frost entering through the open floor, it will only be necessary to have the beams one foot decp, the floor to be made of common two-inch plank, the joists or beams to be covered with matched boards for the cciling; if the in-ter-spaces are filled with sawdust, or some materinal of like nature, frost will not enter. A tmp-door shou d be provided for taking out truit or entering the cellar in cold weather. If the whole cellar is not wanted for fruit, it can be partitioned off, and a part used for storing vegetables. If the fruit in a cellar of this description be kept in tight packages, the temperature zalay rua down to twenty-eight degrees for several days together, next the walls, without injury to the fruit, provided the packages are tight; and as an index to the temperature, a sufficient number of thermometers sh uld be kept, at top and bottom, to indicate the degree of cold, so that when the frost once gets in to the room, means may be taken to obriate it.

One of the principal reasons of failure in keeping fruit is that care is not taken to keep it unitormly cool from the time of picking, and as near the freczing point as possible. This may be measurably at-
trined by admitting the air at night, and closing it in the day-time until hard weather comes or:. It is the true seeret of greatest success.
Before leaving this branch of the subject, I would say that all plans for the preservation of fruits in their uatural stute aim at seeping them just above freczing point, as Nyce's, Schooley's, \&ec, are founded upon principles only differing in the details. Oue other plan that may receive a passing notice is Sunith's method of driving out the atmospheric air from the packages contaiuing the fruit, by meaus of the introduction of carbonic ac.d and nitrogen through a tube ; this is effected by first passiug a curreut of common air thrcugh a vessel of buraing charcoal; and, althongh the phan is feasible, it has not resulted in profit.
We now cone to preservation of fruits by drying. This plan has beet practiced from renote times by simple exposure to the air; but the fruit becomes sn black from oxygenation and dust, that its market value is slight. In order to be saleable it must be dried by the application of heat. This is performed in a variety of mays by the simple radiation of heat, and by currents of hot air forced either up through the prepared fruit, or down from above. The last is, we believe the Ruttan system, and is used principally for dryiug grain.
Mr. Dunlap, a member of the committee, spoke of the liquad products of fruits, cider and cider-vinegar. He claimed ω know how to make cider and cider-vincgar, aud what he should say upon the subject had been gathered from his own experience aud practice.
When your apples begin to drop from the tree, then is the time to begin to gather them. You assort the perfect specimeus for market, and the remainder, which is sumetimes the half of the crop, are to be made into cider or cider vinegar. The best cider is made from sound winter fruit. Some varieties of apples often ripen their fruit prematurely, and you must be prepared to utilize the product by patting the same into cider or vinegar. Ordinarily one half of the summer apples must go into cider-vinegnt, which will, under proper treatment, be ready for the market a year after.

I was in an orchard this summer, where there were not less than seven hundred bushels of apples that were a!lowed to drop from the trees, because the orner said it would not pay to ahip them, and these were fine, besutiful red-cheeked apples as auy could wish, and would have made two thousand five hundred to two thousand eight hundred gallons of the best cider, that could have been sold for tweatyfive cents per gallon.

The orchardist must be prepared to arail himself of ceery advantage in his situation. He must be independent of the applo
market. I say to my customers, when you can pay me fifty ceuts per bushel for my apples you can have them. When the price fulls below that I press them. I have cider made on the thirteenti day of August, that is sweet and good. I know that if I can't make the apples pas, I can make the cider pay, aud the refuse, not fit for market at auy time, is put into vinegar.
Some say rotten apples won't make good vinegar. This is a mistake. The Shaker vinegar, so much sought after and praised, is made of rotten apples, exposed to the summer sun, and summer rains. Cider made in this way has sold for seventy-ive cents and a dollar per gallon. Rotten apples make good vinegar, but to make goal cider we use sound app!?s.
I am told that some make vinegar and can't sell it, and why can't they sell it? Because they do uot have a clear, good article. Iustead of racking the vinegar off, before stirring the barrel from its place, they perhap,s roll it into the wagon, and stir it all up, and then it is impossible to settle it, and the grocery man will not have it.
There is another thing. I like to have my cider-vinegar high colored, and for this parpose, I let it stand in the vat twe:ve hours. We can ordinarily get about four gallous of juice out of a bushel of apples, in the method we adopt. We press out about three gallons of cider from the bushel, and in making vinegar we re-press this promace, and get another gallon, so that from a hundred bushels of apples we get four bundred gallous of juice.
It is necessary to put into the grocers' hauds strong vinegar, because, among other reasons, the grocer fiuds it very convenient sometimes, to put in four cr five gallons of water. But if a customer comes and says," Here, I want vinegar for pickles," the honest (?) grocer will be careful and not give him the watered vinegar.
To make good cider and vinegar there is needed care, skill, experience, and-if done on a large scale-capital, so that it may be questinned whether the min wih a small orchard should attempt to bo both producer and manufacurer. Might it not be better for him to sell to the matufacturer? It is not always that the small farmer can afford to lie out of his money, even if he had the tact and business ability to carry on a manufacturing establishment.
Another thing, to sell a manufactured article requires a previouslร earned reputation. A man who is not known in the market, might not be able to sell to advantage, but when a man has worked up a trade, and it is known that he makes a good article, he has no trouble in selling. There are gentlemen in this house who have thousands upon thoussands of gailons
of ciler; you do not hear much about it, they have their customers, they come aud take it and pay all that the man's cider is worth.
There was a time when it was difficult to get the grocery men to take our cider and pay for it. They could buy sulpharic acid cheaper. But when the people came to know the difference between ihis proisoned stuff and pure cider-vinegar, they were not so slow to choose the latter, and pay what it was worth; and when grocery men refused to buy my cider-vinegar, I godd direct to their customers until they were finally glad to "try a few barrels," and they have been trying my cider-vinegar ever siuce.

BARON LIEBIG.

(Continted from last No.)

The mysterious cause of the practical failure of Liebig's new system lay in a fundamental error committed hy thegreat chemist bimself. The alkalis and the phosphates are the most essential mineral Sagiceients of the plants. whicl, by aid of the mauure, must be restored to the soil ; they dissulve most readily in water. Therefore, Liebig thought it necessary to melt tiem together with silicious and argilhaceout earth :o prevent their being washed off by rain, which he thought would otherwise have been the consequesce of their excessive solubility, and to give the roots of the plauts time for their gradual absorption.

But whilst we all of us were taking unnecessary pains and trouile to fabricate an insoluble union of alkalis and phosphates, nature herself, in her mysterious and powerful laboratory, had already achieved this task for us. We had failec to perceive and to understand the natural law which makes the arable soil fit to retain, without any further preparation, the nutritice mineral iagredients supplied to it in a soluble state, and to put them into the most favorable condition for absorption.
To be sure, it was no unknown fact that soluble mineral ingredients are partially absorben by the earth, and experiments had been made which showed that saline solutions, after their filtration through the earth, experience a notablo cbange, and that part of the salt contained in them is absorbed. Yet, as far as the science of agricultural chemistry is concerned, Liebig, after a series of most trying andj troublesome investigations, was the first to disrover and to set in regular scientific order the effects of the natural law of absorption.
This discovery at once showed him the cause of his artificral manure'sinefficiency. The decp emotion felt by him when he at last had reached che solution of this formi-
dable and most :mportant problem may best be known from his own words:
"After having discovered the mysterions cause of my manure's ineffictency, I felt like a man who zecovers from mortal prostration, and now, seeing and perceiving clearly this most natural law, may previous blindness seems quite inexplicable to me. Indeed, human intelligence is ofen singularly limited, and fails to perceive the nearest and simplest facts when they do not harnonize with one's preconceived order of thoughts. Having deprived the alkalis of their solubility, and imbedded them, by a melting process, into silicious or argillaceous earth, I had impeded their analgamation with the soil and done everything in iny power to weaken their action. Only then, after so many y iars, 1 understood the reason of my failure; every single mineral ingredient supplied to the soil produced its proper effect, but my own science had made them ineffective! Alas! I myself had done everything to impede the acknowledgment and the general propagation of iny doctrine; I had been my owr morst foe by the erroneous composition of the artifcial manure, which otherwise might so nuch sooner have restored the fertility of the exhausted soil! I had sinned against the supreme wisdom of the Creator, by attempting a needless amehoration of his works. Struck with fatal blindness, I believed that one part of that wondier ful system had been forgotten, wlich, by a constant and uninterrupted series of admirable natural laws, produces and maintains regetable life on the surface of the cartio. Feeble and impotent worm, I had though: in possible to redress an error made by the Creator!"

Often Liebig has been blamed for liaring changed his mind as to the best method of employing artificia? manure; however, these reproxches cannst be considered as well founded. Liebig has simply confessed his former eiror in the most upright and dignified manner. Ths change caused in his opiniong bs the discovery of the original source of his practical failure was only natural.
Liebig' abctrine concerning the influence of mineral ingredients upon regetable life (simply called Miseralhheorie," in Germany), has of late begun to conquer another large field of application. being more and more followed in the cultivation of forests, which gradually has been raised to the rank of a veritable science. and, especially in Germant, to a very high degree of perfection. However, as far as the scientific cultiration of forests and the application of Liebig's mineral theory to it are concerned, much is to be done still, and in the pursuit of this great tack the sure leadi:g hand and energetic will of the master himself are sadly missed by his popils.
The infuence of Liebig upon the inrestigation of animal life has in do wise been ioferior to his researches into the mysterious procestes which form the origin, growth, ard decay of vegetable substance; his discoreries concerning the noarishment of baman and animal organ-
isms are likewiso founded on his extraordinary knowletge of organic chemistry, and, like his "Mineraltheorie," have opened entirely uew pathe for the progress of scieuce.

Liebig's researchea conceruing animal life and the nourishment of animal organisms may be divided into two sections, of which the first embraces the mere chemical scrutiny and aualysis of organic matter, to which operation the name of Organic Chemistry is generally given: the other, which enbraces the science of physiology as well as of chemistry, determines the practical influence of the analyzeal materials upon the animal orgauism.

Justus vou Liebig discovered aud proclaimed as the fundamental principle of nourishment that the chief jugredients of the ilood are already existing in the food of man and auimals, and that they ezyerieuce but a yery slight transformation when their origival substave-vegetable matter-is changed into flesh aud blood.
"The food of men and animals." says Liebig, "consists of two entirely different substances. One of them, which contains nitrogen and albunen, forns the blood and fleshy parts of the body, and consequently they are cailed plastic elements of nutriton; the other, which contains no nitrogen but tat and so-called hydrates of carbon, is in cevery respect like ordinary fuel, and naintains the elevated temperature which is memarked in every animal body; it is commonly called - generator of caloric, or means of respiration.' Sugar, starch, and gum, belong to this class; they are nothing but transforned wood fibre, and the progress of chernistry has taught us to reverse the natural order of this checuical transformation, and to make sugar, starch, and gum out of wood fibre. But of all these substances which maintain the warmth of the body through the medium of respiration, fat or grease is predominant, and, as far as the amount of carbonic matter is concerned, nearly equal to the crdiaary fossil coal.
"We literally heat our bodies with combustible materials, which are nearly ident:cal with those which are employed in heating our stores, and which differ from wood and coal in no other respect but in the fact that they are soluble in the juices of our body, which the latter are not"

The celebrated experiments made with the respiratory apparatus of our days, have somerrhat modificd these doctrines: but the modifications can not in auy way lessen Liebig's scientific glory; or the contrary, it is only just, thankfully to acknowledge that the enlarged and augmented experience of modern times is due to the impulse and example given by him.
The importance of Liehig's other works concerning the rational inpprorement of cattle, and ur his beneficial inventions of the extract of meat, the mill for infants, etc., is so well knowa in the whole world, that it is scarcely necessary to mention them. On the whole, we can say that
these inventions have been the hasis of an entirely new science, unknown betore Liebig-the science of Nutrition!

As to us, who are proud ol having been his pupils, we are all convinced that we can not do more honor to his memory than by the imitation of his example. Like Liebig himsell, those who have been iniiated into the mysteries of nature by his powerfal and induefatgable genius, will always endeavor to employ their knowledge for, and direct their atteation toward, the benefit of humanity.
As an exterior token of gratitude, the erection of a uatioual monument to Liebig has been proposed, and will soon be carried ous, the idea having met with an enthus:astic reception from all sides, and contributions, not a ferv of them coming from America, having been collected for that purpose from every part of the globe.

But we repeat it, a "monumentum aere pereunius" will be created to lis memory by the progressive development and propagation of his ideas and inventious; such a monument will proclaim his works and merits to the latest geuera-tions.-International Revievo.

our progress in ornamental gardening.

By Walter Elder, Philadelphia, in Gardenc)'s Monthly.

Our progress in ornamental gardening has of late years been marked by the introduction of manp antique ideas. The Romans and Grecks were famous for their gardrn fantasies; and now these are finding imitators amongst us. They were fond of rustic arbors.- we have the form; but galvanized wire works furnish a substiture for wood, and also material for encirclings of the basket flower beds upon our lavins. Our uumerous and inproved species and varieties of climbers, aud almost endless kinds of bedding plants, or ornamental foliage, make our fautasies far more pleasing then those of the olden time. Our Basket Rosaries bloom irom May to Norember. Our shburdance of fancy stones and sinining, shells. make our artificial Rockerics pleasing. We have suitable plauts for decoraing old quarries, holes, craggy rocks, and wails that support embankments. Our terraced slopes are clothed with ornamental plants, for which there is a good selectiou. Eveu marshes can be made beautiful. Fountains with fish make admirable embellishments. Water lirds make our larger ponds and lakes picturesquely beautiful. Decaying arees, with holes in their stems, are turned to account; ornamental plants set in the holes, of en make unique odàities. Large old logs of treps, lying in some unsuspected nooks, hollowed like longboats, then
filled with rich compost and planted with ornamental things, are odd looking, and often please.

In a former article, I said, that we were well supplied with ruses, rustic stands and hanying baskets, for growing curious and pretty plants in. Our garden statuary is yet very limited, but in that we shall increase as time passes on.

All the alove, and other cusiosities, should be introduced into our large parks, and some of them in puiblic city gardens, as they give additional charms to other objects in oruamental gardening.

transplanting evergireens.

By E. Mumning, in Gardencr's Monthly.
As the season will soon arrive for tree planting. a few timely hiuts to the inexperienced may not be amis. The subject selected is the planting and after mauagement of Evergreens. Great interest is manifested nt this time in this important branch, both in home adornment and for shelter. Aod why should it uot, seeing the rapid destruction going on in our forests? If inmediate attention be not directed to this important branch of our country's prosperity, our children will have to lament our neglect The grewth of trees is the work of cime. Mouay will not buy forests where none exist. Alreads we perceive how much more windy and cold our country is getting as our noble forests disappear. Our Western neighbours in Illinois, are already alive to its importance. Look at the millions of Evergreens and Larches anuually raised by our friends Robert Douglas \& Son, of Waukegan. This snows conclusively there is a great demand for these beautiful aud useful producious. Our Western friends have suffered long from waut of attention 10 this important matter. With these fer preliminary remarks I shall proceed to the subject.

After an experienca of fifteen years, more or less, in Evergreen pianting, I have found it invariably best to transplant Evergreens just at the time in the Syring that the buds begin to swell. If trees are properly moved aud properly planted at this time very few will fail; but as many others as well as myself have to. get their trees frequently hundreds of miles away, the planting cannot always be done at the risht time. In my experieuce I have had to plant sometimes quite carly in April-over a month before the proper time. In this case the best and surest was is to protect the transplanted tree from the effects of cold winds, snows and hard freezing. For ordinary sized Evergreens, a flour barrel turned over the transplanted tree till the 15th of May in this latitude will pretty surely save it Without this precaution it would be pret-
ty sure to die. My plan on receiving a bale of evergreans is to opon it immediately, wet the routs with water, not too cold, and heel them in immediately in mellow soil till plantel. Above all, never expose the roots of an evergreen to cold wituds or eun. Most rees are benefitted by shortening in the branches. If the ground is dry, water when planted, and and mulch. If the :ree is well handed and planted it will usually make a pretty good growth the first season, and with ordinary care, pass the next winter uninjured. If it has made but a feeble grovth the first summer it should be protected the following winter, as it is only an invalid. Many trees are saved by this precaution. Moit Evergrecus transplant readily and successfully if they have been well packed und carefully haudled. Some nurserymen recklessly expose the roots to the sun or cold for hours. In all such cuses the trees will mosily tail, or if they start at all, will be au eye sore, and die the following winter.

window Gardening.

Fifty years ago plants were common!y grown in cottage windows, those mors generally employed being Fuchsia globosa, Fair Helen Geranium, Mrusk, several Mesembryanthemums. Cactuses, and crimson China Roses. Moro recently, the newer varieties of Calceolarias, Fuchsias, Campanulas, Balsam and Pe largoniums have been enployed, while. at the present time. we employ, Fige, Paims, Ferns, and the very choicest of exotic plants for the indoor decoration of dwellings, not orly in the quiet country, but also anid the dust and bustle of the busy city. We gladiy welcome any work that contributes to the wide-spread infuence of domestic floriculture, an influence that contributes so much to our comfort and happiness in a smoky atmosphere of a town residence. Looking at the subject from a commercial point of view, we find many large establishments devoted entirely to the culture of decorative plants in small pots, while thousinds of pounds are spent yearly in Loudon for the pretiy litle decorative plants so often met with in the windor cases and apartments of town mansions. We look on the decoration of our dwellings with hesithy phants and fragrant blossoms as the sign of a more heallhy appreciation of nature; as the embodiment of all that is beautiful and attainable in art. We have several very flourishing window gardening societies estallisherd, not only in the metropo:is, but also in other large cities and towns, as Hull. Minnchester, Nottingham, and Shetfield. Window gardening is evidently becoming quite as fashionable an amusement for lasiies in America as it is with us here at home, and Mr. Robinson's work seenis calculated to formard progress
in this direction, and is full of the most saried intormation with regard to the culture and arrangement of the variou: plants most generally used for window aud room culture.

One advantage which American house gardeners have over our Engiti-h trumds is that they can ifut so many of their pot pilants out in the open air in summer. Indeed not only window plants but large numbers of greenhouse phanis can be treated in the same way ; of course some care has to be taken in the f.ll, when they have to be pust into pots again, but this is no great difficulty. As for unhealthy pot or tub plants, such for instance as gardenias, oranges or lemons, oleanders, pittosporums, camellias, azalras, or any thing of this class, there is no better way of treating them medicinally [surgicat!'y] than to cut them hack severely, and plat out into sich garden soil. It is alivaga best in these cases to leave some green leaves and young twigs. If cut down to old bare sterns, once in a while, they will not break again.-The Garden.

THE HORSE.

Cleveland Bays are justly esteemed for their great exertions in the coal and lime seavon. The weight carried, distance travelled, and time this is performed in, for several meeks together, aro certain proofs of their activity, strength, and hardines. Their colour is motly bay; and their form is such, t^{2} - the mares, put to a full-blood stallion, ureed excellent hunters and saddle-horse: ; and. to a baf-hlood horse, capital coachers or carri.ge-horses. The breed of sadillehorses is confined, in a great measure, to Forkshire, Lurhanm, and Northumberland. The East-Riding of Yorkshire has bcen long eminent in that line. The annual fairs held at Northallerton, Howder:, and $\mathrm{Y}_{\mathrm{L}} \therefore$, exhibit the largest shows of these useful creatures. Perhaps it may be owing to this that Yorkshiremen are in general called jockies, or knowing hands in regard in horses; and, indeed, you will scarce meet with a farmer in that country, especisily in the low part it, who is not skilled in them. Since bay and other light-going horses have been preferred to the black breed for carriages, the Yorkshire breeders have gone so much upon these, that the old breed of riding or saddle-horses is much worn out. This is owing, perhaps, not only to the greater demand for the latter, but also to the coach-horses being a stronger and larger breed, so that if they bappen. from blemishes, not to answer for the harness, they suit for the plough or cart, while the saddle-horse, from the same misfortune, is rendered in a great measure oseless. The heavy black horses are almost universally bred tirrough the midland counties, particularly Liecester-
shire, Warwickshire, and Devenshire. It is the nuiversal custom, in those districts, for the farmers to $u=0$ the mare only for labour; these aro all put to the horse, the male propuce of which supply the ariny, London, and most of the south and western counties with hores for their farming teams. The largest go the capital for dray-horses, the next supply the farmers in the southern cou.ties for their waggons, ploughs, \&e., and the rest mount our cavalry, or are traiued for carriages, while a few of the cnoicest are very properly preserved for stallions. The vanity of many of the farmers of the south. in regard to their teams, is most extraordinary. In Berkshire, and that neighbourhajd, you will frequently meet a narrowwheeled waggon, with six stalliuns, one before the other. The first horse, besides having on a huge bridle, covered with fringe and tassels enough to half load a commou Yorkshire cart-horse, has six bells hung to it, the next five, and so on tu the last, which has only one; and it is really diverting to see with what a conceited air the driver struts and brandishes his long whip. A strange contrast this, with the poor Highlander carting home his peass for wimer fuel, when frequentis both horse and cart are not of the same value as the harness used on a Berkshire waggon-horse. The reader will not be surprised, when I answer him, that I have, in the north of Scotlame, many times seen a horse and cart conveying peat or tarf, when the whole appartus contained neither iron, leather, nor hemp. The collar, or "brecham," was made of stram, the backband of plaited rushes, and the wheels of wood only, without bush of metal or binding of iron. But the present system of farming requires horses of more mettle and activity, hetter adapted for rave!ling, and more capable of enduring fatigue, than those ahove mentioned. It is long siace I was told by the Cloveland farmers, that the black horse conld not stand the work, nor go at the rate of their own comstry horses -that whenever they were put past their pace, they greaved, aud frequently went blind. Iet it is in this industrious part of Yorkshire, and in Norfolk. Suffolk, \&c., that we must look for farming horses able to go through fatigue and hardship, able: to walk at a pace that others cannot, and able to trork six days in every week in the year. It is a well-known fact, that these will, upon an averane, wear as loug again as the rough fleshy-legged black breed. The best and hardiest horses for the draught I ever remember to have seen, proceeded from a cress between the country mares by the 'Tees' side, and a frecign stallion. They are not tall horses, risit:g only from about tourtecn hands three inches to fifteen hauds three inches, exceedingly strong made, with short clean-boned legs, very
firm carcases, and equal to any fatigue. The Welsh horses are a very hardy breed, but rather sinall for the teata; but when thoy are good goers, few or noun can egual them fur the road. None stind our turnpikes like them ; and I well rumember one that I rode for many years, which, to the last, would have gove upon a pavernent by choice, in preterence to a softer road. Tho Scutch horses, like the Wel-h, are exceedugly hardy, but too small for the draught, except tho Clydesdale horses, \&c., taken notice of before. Those properly called Galloways are now rarely to be met with, from an inexcusable uattention to the brect, which is nearly lost. From their name, we may suppose: they originated from the county of Gulloway, and, it is generally said, were owing to crossing with the Spauish horses, when a part of the insincible armada was shipwrecked upon those rocky coasts. There is much probability in the account, bit whether true or not, is not so material, and the ioss of so valuable a breed of little horses is to be la-mented.-J. W.

Ansapolis Cheese Factorifg. - Mr. W. B. Troop, M. P. I', writes to the Baidgetown Monitor to draw the attention of the public to the value and operations of the Cheese facturies in the County of Annapolis, by giving an accomnt of the bur:ness done by the Granville Factory, ia five months of the seison of $1874:-$ Total number prounds of milk
manufactured.

$$
403,270
$$

Total number jwunds of Chees?

> manufactureal.................... 33,73S

A veruge pounds of milk to pound
ot Checse.
Averuge price per pound of Cheese
at Fachery.
13 cts.
Net price per 100 pounds milk to shireholders.
$\$ 1.06$
The above Factory is the only one in the Western half of Anuapolis County. In the jastern half are seven others, most of them larrer, and, from the best information, they manufacture about une hundred ind sixty toms during the season, which shows a cash value of about fortssix thousand dollars, from only a part of the dairy of the County in five munths.

Froit Crops.-The prospects for fruit growers in the States are very discouraging. Grapes are very generally killed in Olio; blackberries in the Eastern States. The strawberries were dried up by the drought, and prices hardIy areraged ten to irrelse cents per quart. Pears were badly cut by late frorts. Mr. lhatcham veites irom Ohio: "Our apples and pears will be a very short crop, as well as the smaller fruits geuerally. I have never seen so poor prospects for fiuit growers."

Reports of Agri. Societies.

THE ANNUAL REPORT OF KING'S

 COUN'TY AGRI. SOC'Y. FOR 1874.(Continued from last ATo., p. 352.)

POTATOES.
Late reports in counection with the potato are not satisfactory. Although you went into the planting business with your usual aptitude, under the most favorablc conditious of weather and ready soil, it docs not appear that the average was increased over that of the previous season. Iuformation obtained from various sectious, though much diversified, leads to the conclusion that the crop bas suffered by disease a diminution full onethird. The effect has been observed principally in the late varieties. With early kinds, on light soils, the resuits were the opposite. The Early Rose appears to have given gereral sxtisfaction, and its culture is rapidly exteuding. It is a strong robust grower in sandy loam, aud, with extra attention, the yield is often a pleasant surprise. The crop should be lifted when it is sufficiently matured to bear handling without injury to the skin, which, if planted early in Mryy, will be the last of August; if allowed to remain in the ground aiter that period the chances are that you will experience a grievous surprise. "It is better to be sure than sorry."

Any attempt to grow the new varieties that have been iutroduced of late years, in ordinary soils, scantily manured, is only trifling with the tubers. The potato requires plenty of manure, and so applied that the plant during the different stages of its growth may reccive an abundant supply of nourishment. The Farly Rose has been experimented with for the last six years, with varied success. The greatest yield noted was in the year 1870, the product of fire aud a half rods weighing 1980 pounds of clean bright potatoes, all perfectly sound. A foot note appetiding gives the folloring:-"This is cousidered a remarkable yield, and has created some curiosity, bnt not to ally alarming extent, as the great yiclas of fifty years ago are still fresh in the memories of some who came to view them."

The Early Vermont is a new variety of recent introduction; it is said to be a cross of the Jackson White and Garnet Chili. This new seedling besro a close resemblance to the Early Rose in habits of growth and general appearance of tuber, so alike are the two that it would puzzle an expert to tell the difference. This coinsidence is unfortunate, as its identity will be merged in that of the Rose. It is said to be earlier, a week or ten days, than its congener, perbaps so : of this wo have no defiuite proofs. The past season the Vermont was treated to a
novel mode of culture, which incrensed the product to a seusible degree. The process was simple. Threo rods of ground were solecied for the experiment, on which beets had grown the previous season, the soil was not disturbed further than to open trenches a spade in depth, and three and a half feet apart; manure from the barn-cellar was spread eveuly in each to the depth of three inches, the seed prepared with two tair eyes to a sct, and distributer it cinh drill a foot apart, and covered with tho inches of mold. The spare earth from the trench was leveled with a coarse rake which left the drills slightly depressed over the seed; on making their appearance a cultivator was run twice through each row gaged to two inches. The cultivation was continued ouce a weok, until the vinea interfored, they were then earthed up with a hoe and left until the last week in August. The yield was five bundred and ninetyfour pounds (094) of first class table potatoes, perfect!y ripe, uniform in size, and, in quality and appearance, equal to those grown in burnt land. The Garnet Chili is another seedling worthy of attention; for exportation it is rated superior to the Prince Albert or Calico; on soil adapted to its requirements it promises to be a leading variety. In planting potatoes we suggest the necessity of giving greater space between the rovs, which will admit of a more extended and thorough cultivation, also a more liberal supply of barn-yard manure, that from neat cattle is to be preferred. A few experiments with some of the early varieties on suitable ground will do more to convince yon of iheir real worth than a ten acre patch of diseased tubers.

Bona fide members of this Society will receive one pound of the Early Vermont, on application to the Secretary, (George Hamilion, Esq.,) as a specimen for trial, on the understanding that a correct statement is to be readered to the Secretary of the yield in pounds, character of soil, and mode of treatment.

FRDIT.

This subject presents greater attractions to the horticulturist than to the farmer. The iruit-grower is generally more enthusiastic, devoting his time and patienco to a special object. It is not essential that farmers should be growers of fruit nther than pomme de terrc, their time can be fully occupied with the labours of the field and the care of their stock, but it is essential that horticulturists should possess a hromledge of somie of the first principles of agriculture. The busbandman is indebted to horticulture for many of the vegetable products that be now cultivates-the different varieties of fruit, large and small, also many of the ingeniously contrived implements adapted to fine culture. Your method of
farming is not exceptional, it is pcculiar to many districts of the Proviuce. You have a mu!tiplicity of special objects always on band, often 80 many that you are "put to your trumps" to know what to do with them. Indeed, your method may be styled a thoroughly mixed husbandry; theso innumerable special objects demand unusual atteution, and skill, and judgment, and quickness, and-and-aud eversthing, the highest intellect. The officers, conscious of their very limited knowledge in this multiplo mixed method of farming, which clutches in its grasp the culture of fruit with its mysterious complexities, approach tho subject with much diffidence, but, aware of the great importance of this industry, and the iuterest that many members of this Societs take in the propagation of the different kiuds of fruit, we feel constrained to present a few remarks relative to the subject. To announce the fact of a full crop of apples the past season, would add nothing to your stock of knowledge, but to proclaim that troothirds of that fruit, from a commercial point of view, was worthless wouid perhaps start your ideas some. Growing fruit is one thing, selling is another, and as long as the home market was equal to the supply, to the veudor the character of the fruit was rarely a disturbing element, although to the consumer it would cften prove a fruitful suarce of elemental ejaculation. The home market is getting shaky under the anvual increasing quantity of fruit, and other ways for the distribution of apples will have to be sought out. For varieties havinga commercial value, the foreign market presents a broad field, and a few venturesome gentlemen have made occasional explorations, with what success we are not prepared to say, but we think the thanks of orchardists due to men who have made an attempt to introduce Nova Scotis apples into the markets of England. In the foreign markets there is no playing " fossum ;" you will have to deal with men of peculiar intellect, we won't say that they will aitempt to cheat, but they will make you walk straight, and any sideling trom the narrow way only iadds to the expense. If the barrels or packages are faulty, which too frequently is the case, in size, weight and general appearance, or carelessness in packing, loose and of uneven size, or nomenclature, with the innumerable other little things that jog along in counection, the whole transaction is faulty, and when the till of sales is handed over, the balance that you have been suffering to see, if it don't give you the lock-jaw, may prove a lasting sourca of particular grief.

It does not appear that much progress has been made in developing new and useful varieties, or that we have evinced any great desire to add to our stock of
winter fruits, which some prefer to mark as "spring or long-keepers." In the selection of varieties, our aim has been to get size and colour, overlooking real worlh, and our better juigment has beon too frequently iufluenced by the tree agent's portfolio. There is a little too much puff-ball in connection with our fruit ; in the nmateur ring we shine with selected specimens of our autumn beauties, but in the comonercial ring we are at a discount.

Members who contemplate extending the area of their orchards by the addition of trees, and those in the incipient stage of the business, would do weli to exercise judgasent when selecting varieties. At present we have no list of fruits that are adapted to the yarying circumstances of soil and situation ; until such a list is furnished it would be premature to make any special reference further than to notice a few stanuard winter kinds, such as, Nonpareil; the Incomparable, so extensively grown in Aunapolis County; Baldsvia, a general favourite and profitable market apple; Rhode Island Greening, an old variety always accrptable and succeeds well id a great many situations; Northern Spy, not always reliable, not an early bearer, and needs the best of culture; Yellow Bellfower; Cimamon; Bishop Pippin, no orchard should be without this valunble apple, which, with fair usage, is not parlicular as regarús soil or situation.

In the autumn class may be mentioned Gravenstein, this apple is said to have originated at Custle Gravenstein, in Halstin; it has been over thirty years in the country, and has given great satisfaction wherever grown, tree hardy and prolific, it kept long loses its flavour. It is surprising that this famous apple has not been more extensively disseminated. Its compere, the handoome Chenango Strawberry, promises to become one of the best (autumn apples), preferred by some to Gravenstein, and is gradually making its way to the front. Maiden's Blush, not much grown, a profitable frait, and for drying is not excelled by any other, tree hardy, productive and early bearer. Summer varietips are of small account ; you know all about that, the imported article suits that ground best, so we leave it.

Varieties of fruits have piled up pretty respectably of late years, so much sothat the inex perienced cultivator is much perplexed to make a selection, and, no doubt, is inclined to wish the heap conspicuously reduced. Your better guide will be to endeavour to ascertain what sorts meet With the readiest sale in the markets having special reference to the foreign, and what kiads succeed best in your neighbour's grounds. With respect to trees, the opinion is gaining in farour of those raised in the nurseries of the Pro-
vince, or still better in your own immediate locality. A ready method of advancing an orchard is , where piacticable, to set seedlings of four yenrs old and upwards; one year will be sufficient to establish their roots, they may then be gratted at the desired height using such yarieties as you desire to propagate. The selection of trees and varieties for a plantation is a most essential point, and it is well to consider the uses to which the fruit is to be appropriated. and select accordiugly. If the intention is to establish a commercial orchard, varieties should be chosen adapted to the markets designed to be supplied. If a family orchard, a more varied collection will be requisite, and in this you may consult four own taste without reference to your neighbour's palate. There will be apples wanted for sauce, for baking, for drying, and all kinds of palatal fruition; the quantity for cider will perbaps be gorerned by your temnerance proclivities. The probable size of the family will likewise have to be considered, and due allowance made for grand-cbildren; litile people consume some apples, and you may safely calculate on a peck for each young oue every treaty-four bours from August to May. If the household should number five daughters and five sons, which, taken every way, is a fair average, possibly three acres with the interstices filled with pears, plums and sunary small fruits, would afford a reasonable supply.

As the greater portiou of the members of this Association are interested in truit culture, and some extengively so, we desire before closing our remarke, to direct attention to a sulject which we deem worthy of consideration. It appeaid to be almost a unanimous conclusion that the Yellow Nerrton Pippin, the "Anerican Apple," of world-wide notoriety, can not be grown in Nova Scotia to anylhing more than ordinary fruit. The same has been said of a good many other things, "it can't be did." We are not disposed to cave in under this negation, without some attempt to l:now whether this credulity is based on fact. We have soils eligible for all fruit trees, when well managed, ard if this famous fruit reguires anything peculiar in treatment, such as soil, stock, or situation, let us make an effort to know it. You have plenty of trees that requirs touching up, and we recommend all who appreciate the value of a first-class apple to appropriate a few to the experiment. One successful branch will be worth more to the country than the anaual grant to the Board of Agriculture. We also wish to call your attention to Winter Pears, partucularly to varieties that will yield without flinching. We do not wish to insinuate that you have too many antumn varieties, hut you have some to which soil and situation are not congenial, most of you plant them
but do you all reap benefit from tho grove? If you can get hold of a few varieties that will keep atid ripen as readily as some of. your first class winter apples wo advise you to do so. There are good pears to be had that will keep nearly all winter, viz.: Easter l3eurré, d'Alencon, Lawrence, Princess St. Germain, Winter Nelis (early winter), one of the best. If you make it your business to grow these in quantity-say barrels of them-you would find a ready market at your own gate, without having to ran to your ueighbour's gate to disposo of them.

The Society now owns one superior bull, two rams, two boar pigs, and a number of farm implements.

The officers for 1875 are: Wm. II. 0. Haliburton, President; Thomas Tuzo, Vice Pres.; John Simson, 2nd Vice Pres.; George Hamilton, Sec'y and Treas.; Edward McLatchy. Asst. Sec.; Nathan L. Fuller, Samuel Palmeter, George C. Johnston, Edward R. Bishop, George C. Graham, Committce.

All of which is most respectfully submitted,

The King's County Agricultural Sociely, to George Mamilton, Sec'y. anil Treasurer:

$18 \% 4$.

Ds.
To balance rendesed 31st Dec., $18 \div \% \ldots . . .86824$
To paid Charles Rejd, keep of Pjir 3 months 900
\because ". Fredk, Borden, kecp of Bull 1 vear 6360
" "J. A. Haliday, prinding IIand Bills
in 1872, omitted.............................
To paid Nath. Faulkner, keep of Pijg 3 mos. 900
" "" so much charifed by the Cenital
Bonrd for "Jonrnals" … Ha... nil...
To paid J. A. Cogswell, for Hand Bills ...
": "̈ Charles T. Fritze, use of Hall....
" "A Andrem Borden. use of IIall........
" " Joseph B. Bowser's bill expenses
incurred by him......................
Allowance to Sec'y. stationery and postafes
To paid Fdward M. Cose's bill services of
Buil..
To paid Nathaniel Fankner's bill for a lig

chased.................................... 1800
T, paid John A. Taylor, for keep of lig one
month.
400
$\$ 21530$
184.

Mr Cash from Charles Reid. scrrices of Pip. $3 \quad 325$ " from George Ilamilton, for lig purchased...............................
By Cash from Fradk. Borden, services of 2150
By Cash from Fredk. Borien, for services

By Cash from Nathaniel Falkner, services of
Boar Pig
be purcbased.....
By I'rovincial Gract for 18,3................ 61 . 51
${ }^{\circ} \mathrm{F}$ Cash frm George Familton, use of Ram 25
. " from Jas. Eiderkin, usc ot ham... from Jas. Elderkid, for sertices of

Br dues from members............................ 4500
Br Cash from Edward M. Cose, use of Ram
Dy Csshfrom Enoch A Forsyth for dues... 100

Balunce due Secretary and Treasurer...... 55.91 Grant tor 1874. Jess amonnt subscribed to Extibi tion luad, not drawn.
G. Insmitos, Sec'y. and I'reus

RIVER JOHN AGRI. SOCIETY, CO. PICTOU.
Rtver Joun, F̌eb. 22nd, 1875.
At a meeting of the River John Agricultural Society, held in McKenzie Hall, Jas. Langell was appointed Chairman, and Robt. Sutherland, Secretary: The meeting, regreting that they allowed the regular term of meeting to pass, do now resolve to proceed to elect their oflicers, and do the business of the regular Annual Meeting. The following oliicers were then duly appointed:
John McLean, President; Jas. R. Langell, Vice-President; Bobt. Sutherland, Secretary; John McKenzic, Treasurer; Abraham Langell, Nelson Sutherland, Jas. J. Stramburg, IVm. McIntosh, Geo. Gordon, Directors.
David Matheson, Esq., of Pictou, was then nominated for appointment to the Central Board.

Robert Sutherland, Sec'y. James Lasigell, Vice-Pres.

Treasurer's account of River John Agrcculural Succely for 1874: 1873.
Di.

To paid Jas. Strambury Bull services....... $\mathbf{6} 00$. .. Coristy langill note of hand for bor-
rowed minoncy to purchase stock.......... 5670
To paid A braham Langill keeping Bull...... 4 t10
"i IT Robert Sutherland services.......... 200
". "Jas. Laugill keeping Bull............. 7 \%
Amount to Balance. $\begin{array}{r}57570 \\ \hline 93\end{array}$
1873.

Cl
58563
l3y cash from last year. .8301
lrovincial Grant.
4662
J.ess for Jourmals.

O0 4362
Subscriptions of members for year............. 40 ou 88563
1874.

By balance on hand.: 8993

LOWER MUSQUODOBOIT AGRI. SOCIETY.

The annual meeting of this Society was held on the first Tuesday of December, and I am happy to say it never was in a more flourishing state than it is at present, siuce its formation 20 years ago. As long as we continued the practice of purcbusing seeds we made no headway, but when ofe turned our attention to purchasing thorough-bred stock quite an interest was taken in the Society. The bull "Tichborne" that we purchased from the Central Board two years ago has given good satisfaction. We are looking forward to another importation by the Central Board.

Last September we held a Local Exhibition, though the season was unfavourable for roots, yet it was a very respectable affair. Thanks to some frienás in Halifax, who gave so liberally to cur exhibition fund. At a meeting held shortly after the Exhibition, it was agreed to hoid another one next autumn.

The following persons were elected for
the ensuing year:-President, Donald Archibald, M. P. P.; Vice-President, Thomson Bell; Secretary and Treasurer, Charles N. Sprott; Directors, J. 12.
McCurdy, John Cruickshanko, Audrew Cruickshanks, Arthur Gladwin and Wm. Sedgewick.

Colouel Laurie was nominated as a representative of the Central Board.

The following is the 'Treasurer's acct. :

necerpts.

Balance
A Grant, less $\$ 4$ for "Jourual, $:$ and $\$ 7.40$
for bariey.
7005
10 members.. 1000
Hecejved trom A. Anderson, $\mathbf{\$ 1 2}$, A. G. Jones,
M. 1'., \$15, and J. B. Eliot, St

Prize for bull Tichbourne at İaliax Exhibi-
tion................. 1500
Services of Bull 150
Recerved from members........................... 8550

ETPENDITUHES

Paid for keeping st k, taking bull to Exhi-
bition at halifax, fitting up place for Local
Exhibition, \&c.............................. . . S76 29
Paid prizes at Exhibition...................... . . . 8775
$\$ 16404$
Balance on hand $\$ 6896$

Charles N. Sprott, Secy.

WALLACE AGRI. SOCIETY, CO. CUMBERLAND.

The annual meeting of the Wallace Agricultural Society was held Dec. 1st, 1874, in accordance with the Act for enccuragement of Agriculture. The President in the clair.

The proceedings of the Society for the past year being read, the Treasurer and Secretary submitted the following financial statement of funds of the Society, which was approved:
Balance from late Treasurer................... $\$ 2432$
Provincial Grant, $\$ 42.53$, less balance fue
Central Board, S16.5t............... 2601
Snbscription of 41 members...................... 4100
Received for young pigs sold.................. . . 1180

Paid for keeping bull winter, $7 \frac{1}{2}$ mos.
at S4........................ $\$ 3000$
Paid for kecping bull summer, 6 mos.,
at $\$ 5$..................................
Paid for White Chester Boar..... .
Incidental expenses........... 6 60 750
Baiance in Treasarer's hands......... 52563
The officers for the ensuing year were elected as follows :-President, Nathanael Stevens; Vice-President, Wm B. Hurstis; Ireasurer, John W. Diorris; Secretary, John Robertson; Directors, Samuel Brown, Jumes Annas, James Huestis, John A. Steele, Ichabod Betts.

William B. Huestis, Esq., was nominated Representative to the Central Board for District No. 4.

The stock owned by the Society is one Devon Bull, and thia fall a White Ciester Boar was purchased.

The Society parposes that as soon as the funds will admit, to expend it in the further purchases of thorough-bied stock.

The crops in this district are over an
average. The hay crop was heavy, the wheat and oats crops were good, both in yield aud quality. Potato crop about an average, \&c.

Joan Robertson, Seciy.
Wullace, December 28th, 1874.

Advertisements.

SCHOOL GROUNDS, \&C.

NO. 1. Prizes of $\$ 25, \$ 15$ and $\$ 10$ will be given to the three Public Free Schoul Grounds in tho County, of not less than half au acre in area, best protected by evergreen hedges.
2. $\$ 20, \$ 10$ and $\$ 5$ for best three dozen named Apples, (not duplicates), frown in any k'ublic Fireo School Grounds of the County. Trees planted since 1870. Apple 'rrees irum Pilling's Nursery, planted in Joseph Burrill's grounds last slay, bore fruit last season; many of them will bear dozens of apples this year.
3. $\$ 25, \$ 15$ and $\$ 10$ will be given at the next Annual Exhibition of the County Agricultural Society for best threc Bouquets, composed solely of flowers grown as above. No School to receive more than one prize, but may counpete for all.Vick's Floral Gude for 1875 supplied gratis to any School in the County, on application to C. E. Brown.
4. $\$ 5, \$ 3$ and $\$ 3$ for the best three quarts 0 named Strawberricy grown as above this seasonduplicates not allowable. Notice of competition to be sunt to C. E. Bruwn, in June, and Strawberries to be brought to I. E. Baker's oflice on the tourth Saturday in July. Oce of our largent growers acserts that his best crop was from plants set the same spring.
5. $50, \$ 15$ and $\$ 10$ to the three Schools or Grounds provided with best Gymnastic Appliances, within two ycars.
6. $\$ 10, \$ 3$ and $\$ 2$ to the three Pupils of whom the most meritorious act towands a schoul-fellow or a teacher may be recorded in 1875.
7. $\$ 25, \$ 15$ and $\$ 10$ for the three best Essuys on abore sertes of prizes, by any teacher of the County.

Prizes in Nos 1 and 2 open for five years, if not awarded before. In 1, 2, 3 and 5 notice of competition to be sent to the Inspector of Schools in August; entries to be made for, and prizes will be awarded at the followius Annual County Exhibstion. In 6 and 7 awards will bo made by the undersigned at the close of the year.

CHARIES E BROTVN.
LOKAN E. BAKER.
Yarmonth, April 29, 1875.

Ground Bones! Ground Bones !!

CHEAP, PORTABLE, LASTING IN EFFECT.
The most eficacioun Fertilizer for every udad of crop.
With a view to mecting the growing demand for thia vory valuable Mrnure, the Proprictors of the Wellington Tannery are now completing their arrangerments for supplying the abovo, carly in May.

Hrices, delivered at Wellington Station :
tin. Bones.................. 824.00 per ton.
Fino ground Bones....... 30.00 per ton.
Bonce will be packed in barrels or puncheons. Orders for any quantity, from one barrel upwards, will receive prompt attencion and despatch.
Intending purchasers are requested to forward their ordersas carly as possible to tho Manager. WELLLNGTON TANNERY, Oalficld, Halifax Ca.

TVANTED.

By the Cnion Arricultural Socicty of Pagwash, a Pure Bred Short Gorn Durbam BULL $L_{\text {, }}$ one os two years old; or a Dovon of the same age. Persons having such animals to dispose of, will please correapond with the subscriber, stating age and price. l'edigree must be warranted.

TIIOS. A. FRASER Sec'y.

