The Institute has attempted to obtain the best original copy available for silming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleurCovers damaged/
Couyerture endommagéeCovers restored and/or laminated/
Couverture restauree et/ou pelliculieCover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avac d'autres documents

Tight binding may cause shadows or distortion
along interior margin/
La reliure serrée peut causer de l'nmbre ou de la distorsion le long de la marge intérieure

\square
Blank leaves added during restoration may appear within the text. Whenever possible, these have been omirted from filming/ II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte. mais, lorsque cela ètait possible. ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-ठtre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagées

Pages restored and/or l.rninated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/ Pages décolorées, tachetées ou piquées
$\square \begin{aligned} & \text { Pzges detached/ } \\ & \text { Pages détachies }\end{aligned}$

Showthrough/
Transparence
Quality of print varies/
Qualité inégale de l'impression
Continuous pagination/Includes index(es)/
Comprend un (des) index
Title on header taken from: /
Le titre de l'en-rEte provient:

Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison

Additional comments:/
Commentaires supplėmentaires:
Various pagings.

This item is filmed at the reduction ratio cheaked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

For Power, Rallways, Lighting.

For any Pressure up to 40,000 Volts. arc dynamos and enclosed arc lamps W. A. JOHNSON ELECTRIC

STANLEY TRANSFORMERS

The Standard of the World for

Incandescent Lighting Are Lighting
 Operating Motors
 Power Transmission

DIMINISH

OPERATIMG

EXPEHSES

We furnish a Guarantee of the EFFICIENCY and REGULATION of each Transformer and will Insure them for one per cent. per annum.

THE ROYAL ELECTRIC CO.

ROBERT A. ROSS, E.E
 ELECTRICAL AND MECHANICAL EMGIKEER
Specificationa, Ilans, Supervition, Valuation and Advice on Electric and Steam Elant Tamilton Chambert, 37 8t. Join 8t., MONTRYaL

J. ALEX. GULVERWELL

 ELECTRICAL and FNEYOI DONYCD mrchanical... fininulil divili Special Agent Royal Victoria Life. Late Local Manager Toronto and Central Ontatio for Kopxl Victoria Life.Forment with Edison General Electric Ca, Canailian 5 Kino Street West - TORONTO

CEORCE WHITE-FRASER

 Neth. Ans. Inat Elec. Eng. Mem. Can. Sos. C.E.Advice in Management of Central Stations Alterations, Extenuions, Testr-Stcamor Wate Plani, Favimates, Specífications, Constraction Power and Electric Plants.

18 Imporial Loan Building, 82 Adelaide St. E. - TORONTO

FIRSTBROOK BROS. Eing St Rast, - TORONTO
manupactumexs of
TOPPINE,
BIDE-BLOCKB
and OROBS-ARM8. FRITE FOR YAKTICULAKS.

Manufacturers will find it to their advantage to use the columns of the Electrical News in making announcements.

THIPMIS

Send for our Illostrated Catalogce add "Unique"
Telephones
For Main Line and Warohouse Use.
Oaly Te'ephone tande that dres pot get cot of acjustiment Satisfacion Gaxamteed. Sold Outrishe ar Low Prica. No Exorbian: Rogatice
sole Xeaziacturest....
JOHN STARR, SON \& CO., Limited.
P.O. Box 448 - HALIFAX, N.S.

(エIMITED) MONTFEEALS GANADA

Electric Light Line Wire Incandescent and Flexiblo Cords

Americanite, Magnet, Once and Annunclator Wires
Cables for Aerial and Underground Use.
U. S. Factory: American Electrical Works, Providence, R. I.

New York Store: P. C. Ackerman, Agent, 10 Cortland Street.
Chicago Store: F. E. Donohoe, Agent, 24! Madison Strect.

Crocker PATENT TURBIIE

sherbrooke street Rallway Power Plant4s anch Crocker Wheli in Horisontial Betting.

INDIVIDUALS and CORPORATIONS...

conemplating the developmen of Water Power for

Electrical, Mining or

Manufacturing Purposes
are invited to send for our figures.
We make a Specialty of furnishing Complete Plants, designed to meet the requirements of the particular locality, thus securing High Efficiency and Satisfactory Results.

32 Lansdorme St. - SABRBROOKB, QUB.

MUUPORDSS IIMPROVED BOLLER

Large heating surface. Adapted to forced draft increasing horse power without foaming or priming. Specially arranged for using bad water with little or no scale formation.

๑MCCORMICK TURBINES~

Estimates Paralshod for Complete Power Plants, and Results Guaranteed

S. MORGAN SMITNE CO. - YORE, PK., U.S.A.

THE

Goldie \& McCulloch Co manufacturters of

IMPROVED STEAM
ENGINES

Flouring Mills, surd the Eres the Mont Complete biul or filowtern himprosemem.
Wool Machinery, Wood-Working Machinery Saw Mill, Shingle and Stave Machinery, Fire and Эurglar-Proof Safes and Vault Doors.

The " Ineal." Migh Speed Engine, Direct-Connectfid.
SPECIAL ATTENTION called to the " WREBLOCK "IMPROVED STBAM BRGINB,
 equalled for Simpllcity, Bmelency and Econory in Working, and Especially Adapted for Blectric Lighting, Strect Rallways, Etc.

BAIRD \& TR円円

MANGFACTIRERS OF THE fixil
Mlso J. R. Baird's Blectrical, Gas and Gasolice Engines, Water Motors, Etc.

EHEIME, BOLIER, MIII IILD FICTOAY REPARIIIG Works: 39 Finkle St.,

Woodstock, Ont.

JUBILEE SHAKING GRATES
 The Most DURABLE, EffICIENT and ECONOMICAL Bar in the World.

More Heat from Soft Coal, Slack or Screenings than from the Best Select Lump or Steam Coal burned on Stationary Bars. 10 to 25% Saving in Fuel Billa easily effected by using chenper fuel on JUBILEEE BARS.

Manufactured by
ing Jumlkn ciratk lian Cu., Torma

 could with the nhd grater You have alicaly taken a mernurandum of ilie trate 0 th were mate of the old nad the new grates; we hase checkent wer the figures to 'd) and find then guite corret.

THE JUBILEE GRATE BAR CO. of Tovonto, Limited, Office amal Fuctorlf: Enplanele, Foot of Weat Mrarket St., TOHONTO, ONRAMIO und THE GOLDIE A McUULI,OCH CO., Limitet, Gatt, Ontario

 Write Us for Prices ...ON...

SWITCHES, DYNAMOS AND MOTORS AUTOMATIC MOTOR STARTERS

and all Electrical Devices and Repairs

T. \& H. ELECTRIC CO.
 255-7 James St. North, HAMILTON 58 Adelaide St. West, TORONTO

(0) FIITERS

Giver a Smooth, Even, Steady Speed, © pecially desirable in Electrical Operations. Will run for hours with litte or no atlention. Fully guaranteed.
Our Booklet tells all about it. Write for it.

Steam and Power

Single, Duplex or Triplex The Most Powerful on the Market. Write for Catalogacs.

JOHN MCDOUGALL - Galedonlan Iron Works. MONTREFLL, QUE. There is Nothing Too Good for your Boiler IT IS THE HEART OF YOUR FACTOR

GLEAN BOILERS
 Save Repair Bills and Shut-Downs.
 our ZINKOLENE and Special Compounds are MONEY-MAKERS or you.

CANADIAN

Electrical News

AND

STEAM ENGINEERING JOURNAL.

ELECTRIC LIGHTING OF RAILWAY CARS.

Is European countrics the electric system of car lighting has been adopted very largely. Almost all the private railroads of Sweden and Norway have electric light, also many German and Austrian private railroads, as, for instance, the Dortmund (ironall-Enscheder, the provincial mailroad of Westphalia, the AltdammColberg, the Marienburg-Mlawka, the Prignitythal, the Mecklenburg Firederic-William, the WittenbergPerleberg, the Arad-Czanad, etc. Many of these have adopted this method of lighting within the past three years. In the United States we also find the system in use to some extent.
Not to be outdone by other railroads, the directors of the Canadian Pacific Railway have for some time been investigating the various methods of lighting, as a result of which they are now equipping ten sleeping cars with the American Railway Electric Light Company's system, of which illustrations are given herewith.
This system of car lighting consists of a dynamo mounted upon the truck of the car, one end of which is supported by a stirrup from
the train may reach great extremes of variations, and the dynamo, being directly geared, would normally reach great extremes of current, the current generated by the dynamo is kept substantially unitorm diring all the variations of speed between twanty miles per hour

System of Electric Lithting for Ralliway Cars.
the truck, and the other by the axle. It is driven by a direct gear, which revolves two and one-half times to every revolution of the car wheel. The part resting on the axle rests on a split sleeve. This split sleeve finds its bearings by means of adjustable jaws, so arranged as to take up any irregularity of

Sistem of Electric Ligiting for Railifay Cars.
and the maximum ability of the locomotive. In other words, although the dynamo at a speed of sixty miles per hour is revolving three times as fast as it is at a speed of twenty miles per hour, the amount of current generated is the same.

In connection with this there is an automatic cut-out, so adjusted as to throw the dynamo into circuit with the lamps upon its reaching a potential equal to that of a small storage battery supply, and throwing it out of circuit upon its dropping below. The effect of this is that when the lamps are burning, and the train running at twenty miles per hour, the lamps are fed directly from the dynamo, and the small surplus of current goes through the batteries. When the speed falls below twenty miles per hour the cut-out works automatically, and as long as it continues at its low rate of speed the lights are drawn direct from the storage batteries, which are capable of supplying the lights independent of the dynamo for from six to twelve hours.
The porter is given no instructions beyond being told to turn the lights on when he wants them, and turn them off when they are no longer required.
the axle, and they engage close to the wheels, leaving the central part of the axle free to spring in rounding curves and going over irregularities in the road, and concentrating the weight where it is least felt.
A peculiar feature of this system is the regulating device. This is so arranged that although the speed of The system is being installed on the C.P.R. cars by the America, Railway Electric Lizht Co.. of New York.
Another feature of this system is, that in running during the daytime, when the batteries are full, the very act of turning off the lights cuts down the efficiency of the dynamo to a point where it generates only the
normal current necessary to pass through the batteries in order to keep them in the best of condition.

Should it be desirable, as it very frequently is, to introduce electric fans into the sleeper during we heated months, the current generated by the dyamo would be

Vien of Anhe: Device--Sistem of Eleftric lighting for Rallifiy Cars amply sufficient to keep a large number of them, if required, in operation, white yet serving the batteries with all that they required.

An evidence of the improvement in business conditions attending the manufacturing and other interests throughout Canada is markedly indicated by the large number of isolated electric lighting plants being installed this season, and the many increases in the generating capacity for both lighting and power work which are being made in central station plants.

Mr. D. A. Gordon, of Wallaceburg, Ont., who has secured a franchise for the installation of an incandescent electric lighting plant in the town of Tweed, has recently given an order to the Canadian General Electric Company for one of their 500 light single phase alternators. The order also includes the necessary material for the erection of a complete lighting plant.
Mr. T. Ahearn, president, and Mr. J. D. Fraser, secretarytreasurer of the Otlawa Street Railway Company, were in attendance at the annual convention of the American Street Railway Association held in Boston last month. As a result of their observation, the company will adopt a system of took-keeping recommended by a special committee of the association. This system will, it is claimed, secure uniformity in the accounts of all the strect railways throughout Canada and the United States, and enable comparisons to be made of expenses in all departments.

AN ELECTRIC DELIVERY WAGON.

Tus first electric motor wagoa to be used in Canada solely for a commercial purpose was recently added to the delivery equipment of the Robert Simpson Company, Limited, of Toronto, and has been in service for the past six weeks. The vehicle, of which a view is shown on opposite page, was Companactured by the Fischer Equipment Company, of Chicago, and is known as their No. 2 coach delivery wagon, the equipment consisting of forty 120 ampere hour cells of batteries, which operate two $21 / 2 \mathrm{~h} . \mathrm{p}$. motors. The motors as applied to the propulsion of this vehicle are independent in their action one from the other, inasmuch as one motor is attached independently to either rear wheel of the vehicle. These motors are four pole machines, with series wound fields and also series wound armatures, on which but two brushes, ninety degrees apart, are used. The windings of the armature itself are what is known as coil wound, that is, coils are wound up on formers and subsequently placed in slots in the armature, the construction of the latter being what is known as the iron wound form, with but one-sixteenth inch clearance between the armature core and the field magnet, the object being to give the greatest torque with the smallest amount possible of field energy. In other words, the-air gap being reduced to the smallest possible space, and the magnetic circuit; consisting of cast steel in the pole pieces and shect steel laminated
discs in the armature, reduce the amount of field winddiscs in the armature, reduce the amount of field winding to a minimum, and hence its resistance is very low. The commutators are made very large, and current is delivered to them through carbon \cdot brushes, which have an area of contact with under under one hundred per

Regithing Devict-Sustem of Electric lighting for Rimliway Cars.
cent. over load equal to 40 amperes per square inch of contact surface. The speed of the motor is 1,000 revolutions at $21 / 2 \mathrm{~h} . \mathrm{p}$., and is directly geared with a $21 / 2^{\prime \prime}$ pinion to a $26^{\prime \prime}$ driving wheel fastenea to the wheel of
the wagon, which wheel is 46 inches in diameter, and at atheusand revolutions of the motor gives a speed to the ielmi le of a trifle over tourteen miles per hour.
Tite batteries of the vehicles are arranged in four ray, and the control of the various speeds of the wagon are divided into three; one in which the four trays are in parallel to the noturs, giving twenty volts; one in which two each of the four trays are in series and the two series in parallel, giving forty volts ; and one, the maximum speed, in which all four of the rays are in series, giving eighty volts. The output of the batteries at the three hou discharge is $27 \frac{1 / 2}{}$ amperes for three consecutive hours, and the amperage required of the two motors to operate the vehicles at fourteen miles per hour on a hard level road is 26 , that is, thirteen amperes per motor, which gives a three-hour continuous run on a level roadway at fourteen miles per hour-ant actual mileage catpacity of forty-two miles on one charge of the batteries. The wathon is only rated, however, at twenty-five miles on one charge of the batteries, as high winds, muddy roads, grades, etc., crate an extra demand for power which nust be provided for; also, the fact must be considered that oftentimes batteries will not be fully charged.
One of the strongest features of the construction of the wagon is claimed to be the brake application, the controller handle and the brake handle being identical and arranged in such a way that the brake cannot be applied without first cutting off the current from the motors, and the current cannot be

Storage Batteries Used in Eleectric Deinerk Wigon.
turned on to the motors without first liberating the brake. This makes it impossible for an inexperienced man to make any mistakes in handling the wagon. The batteries are arranged in trays, as before said, so that they can be divided for control at different speeds, also so that they may be removed from the vehicle for the insertion of duplicate sets, but means are also provided whereby the batteries can be charged in the vehicle, and this is the common way of operating, the current first being cut off from the motors, which is made absolute by the removal of the key after the switch is set in position, and the controller being set upon third speed, which connects all the batteries in series. In this way they are charged directly for 110 volt circuit. The time required for charging under these conditions, when the batteries are fully discharged, is about three hours.

From the foregoing it will be seen that by charging the batteries at noon, it is possible to operate the vehicle sixty or seventy miles per day. The motors are mounted on ball bearings, as are also the wheels of the vehicle, and unless specially ordered, the wheels are of regular carriage type set in hard rubber tires. The motor suspension and arrangement of
running gear of the wagon is such that no matter how uneven the road is, no strain is brought to bear upon the gears as between the motor and driving wheels, as the Front axle is independent in its adjustment to unevenness of the road. The accompanying illustrations were

Electric Dhlivery Wagon of the Ronert Simpon Company, Toronto.
kindly loaned by the owners of the carriage, the Robert Simpson Company.

Mr. Jay P. Graves, manager of the Big Three Gold Mining Company, at Rossland, B. C., has just placed an order with the Canadian General Electric Company for a 75 kilowatt synchronous motor. This notor is to be used in the development of their mine at Rossland, and the current for its operation will be derived from the power circuits of the West Kootenay Power and Light Company.

The town of Renfrew, Ont., is now receiving cheap light as the result of competition. Early in the eighties, Mr. A. A. Wright installed an arc plant, and later put in an incandescent system, operated by steam. Shortly after he had put in the latter plant, Messrs. Mackey \& Guest, who owned and operated a grist mill on the Bonnechere river, were prevailed upon to establish an incandescent plant, and operated it in connection with their grist mill, using water power. As a consequence the price dropped from one cent per lamp per

Revershle Switch Used in Elfectric Deinvery Wagon. hour to three-fifths of a cent, at which it still remains Some time ago an attempt was made by the companies to amalgamate, but the negotiations fell through.

A new electric light plant will be added to the Frontenac Hotel, Round Island Park, near Kingston.

FIRST CONVENTION OF THE MARITIME ELECTRICAL ASSOCIATION.

The first regular convention of the Maritime Electrical Association was held in the assembly room of the Church of England Institute, Halitax, N.S., on Tuesday, Sept. 27th, 1898, at $10: 30 \mathrm{a} . \mathrm{m}$. The tollowing persons were present
E. L. Nash, Lunenburg ; J. Daley, Digby ; Fred. A. Bowman, J. H. Winfield, New Glasgow ; J. A. Anderson, J. Graham, W. Pickies, F. A. Hamilton, P. R. Colpitt, E. T. Freeman, C. E. Harris, I. H. Smith, J. C. Siebert, J. Christie, Halifax ; S. G. Chambers, J. L. McDonald, Truro ; J. A. Young, Sydney; W. A. Winfield, Windsor; L. C. Gilling, Bridgewater; J. B. Mortimer, Toronto.
The President, Mr. F. A. Bowman, of New Glasgow, occupied the chair. The minutes of the organization meeting held last April were read and approved, after which the president made a few opening remarks, stating that it had been thought advisable to make the first convention largely of a social nature, as that was the first step towards harmony and strength. The committee of the Halifax members, he stated, had gone to a great deal of trouble in order to provide for the entertainment of the association, but unfortunately the weather had marred the arrangements. It had been arranged to have an excursion by steamer on the harbour, with lunch at Bedford, but this would have to be abandoned owing to the rain.
The secretary-treasurer then read his report, as follows:

At our first meeting held on April $121 \mathrm{~h}, 1898$, fifty-six gentiemen handed in their names either personally or by proxy, signifying their intention of becoming members of the assuciation. Since then there have been three members elected, making a total of fifty-nine. The receipts have been : 45 miembership fees, $\$ 90.00$, and the expenditure, for various items, $\$ 57.55$, leaving a cash balance of $\$ 32.45$. There are fourteen fees still unpaid. 1 onay be permitted to call attention to the fact that the membership fees already paid in are intended to cover the present association year, which ends 3 ist March, ${ }^{1899}$. We must therefore depend, for the financial requirements of the prewent jear, solely upon the balance in hand, the unpaid fees and the fees of new members who may come in durine the year. Thus you will see that there is need for personal effort to extend the membership, and for careful husbanding of resources, in order to finish the year with a balance on the right side. J. H. Winfield, Secretary.
The president then called the attention of the members to the necessity for an increase in membership, and requested them to use their best endervors to get others in their respective districts to become members of the association. The majority of the managers of the different companies had already joined, anci if they would induce their directors and larger shareholders to take an interest in the work he thought much good might be accomplished.
The president then read his address, as follows :

president's address.

In greeting you at this the first regular convention of the Maritime Electrical Association, it gives me great pleasure to foel that, in meeting here to-day, we have made a great step in advance. We have the honor of being the first section of the Dominion to establish a local organization to work in unision with the central one, the Canadian Electrical Association. As was pointed out in the circular letter issued previous to our organization meeting last April, it was felt that owing to the magnificent distances with which we hsve to deal in this, our greal Dominion of Canada, it was impossible to arouse a very deep interest in the Canadian Electrical Association among the electrical men in these provinces because it would be impossible for many of them to sltend the conventions. It is difficult to get up a warm enthusiasmin an in stitution the leading men of which you have never met, and may never mect, and the meetings of which you do not hope to be able to attend. Although the benefits to every one belonging to that association would be undoubtedly great, it is hard under these circumstances to get men to see if. They feel as if they were paying their annual fees without receiving an equivalent. It was therefore thought that if an association of a more local character were formed, that would draw together those who are able to go only a comparatively short distance, and if its conventions were held at points accessible to them, they would get to know each other, and also to realize the benefits of such an association, and would then be more ready and willing to give their support to the larger central in:titution, either by individually becoming membirs of it, or as a body lending their weight to assist it in any work affecting the industry generally, or in both ways.
When our movement towards organization was announced to the Canadian Electrical Aseociation, we received some very kind
words from them. The executive council expressed the hope that mealls would be found to have the two associalions work in unison. At this our first convention we have not been able to get a very extended list of papers to lay before you, and there is not a very large amount of business to be transncted. The spring and sum. mier is recognized by all workers in technical asmocintions an being the most difficult in which to get pmpers written. This is uaturally so, not only on account of the weather, which is nuch morecont dicive to outdoor recreation than to indoor writing, but also because in our business most of us are busy working at extent sions and improvements in vur ourside plant at this time of exten. and in prepmring for the rusin of the fall and early winter's year, On the other hand, the senson is well adauled to what min hork very large and important part of the work of our first convention, that is to say, the getting to know each other. Dotted down a we are all over the Maritime provinces, considernble distances apart, comparatively few of us know many of those engared in the sume business, except in the nenrest towns. If this firs meeting accomplishes no more than to do away with some of this state of affairs, and to send the members home feeling that they know more nbout their co-workers in these provinces, nuld that they have picked up some knowledge of other plants, a great and rood work will have been done, and a solid foundation lad for future use. The local Halifax members have grasped this idea most stronfly, and have gone about its accomplishttent in an energetic fashion that will appeal very strongly to our sociability Being myself from an outside town, I feel at liberty to thank them for their houpitality to us, and, ns President, I thank them for their efforts to make our first convention a success. The presen time was selected becanse cheap railway fares are available, and because it was thought that many who would be coming to the exhibition could not make a second trip a month or so one way orthe other from it. This renders the efforts of our Halifax membe the more laudable, ax the present time is distinctly inconvenien to them, owing to the crowds that are in the city. We are gathered here as members of a business which is eminently a creation of and typical of the age, and in this gathering together we are also following the trend of the times.
Centralization and organization are the ruling idens in every department of work to-day, and in fact almost equally so in our amusements. There is no question that the marvellous progress of the latter purt of this century is due aimost entirely to this movement. Individual workers could never have accomplished the resulta that have been attained within the life time of the youngest of us, if they had worked each on his own line without knowledge of what others had done or were doing. The capabilities of the greatest are limited, and each one, if he is to advance himself and his work, must begin where the man before him left off; there must be no time wasted in travelling over the same ground. Experience shows also that to really get the fullest benefit from another man's work, you must not only study him in print, in the abstract as it were, but also in the concrete, in the fieah and blood. Year by year we find the number of conventions and annual meetings steadily increasing in numbers, size and importance. This in itself is a proof that they meet a need, and accomplish good results. It is very easy for those who stay at home and never join in any of these gatherings to say that they are just a fad and a fauhion and will die out ahortly ; that people feel very big to go to a convention and perhaps read a paper, and get their names in print. But hard-headed business men would long ago have ceased to patronize them if they had not seen the practical good that comes from them. Conventions are human inalitusions, and therefore are a mixture of good and evil, and often do not reach the ideal of the leaders and more earnest minds in them, but nevertheless, I do not believe that there is any person who has ever attended oric, unloss he is given over 10 a apirit of absolute cynicism or pessimism, but will admit that he has derived great benefit from it. Each one of us is struggling along in our larger or smaller sphere, meeting our special difficulties as beat we can, conquering them after a long struggie, or sometimex being conquered by them, doing what we think is right and best, and always wishing that we knew more or could fearn more. Ve always have a fioating wish, more or less strong, according to the amount of self-conceit and self-masertion that we possess, to know how someone elme would get out of the dificulty we are in. There is also an ides that powsibly the other man may have a better method or a better avstem than we have. It is this feeling that is at the root of the convention idea. The strong movement of the last few years towards standard methods, not only of manufactures, but almo of keeping accounts and making up re ports, is the result of the foeling that more good benefit is derived from exchanging figures with your neighbors than by keeping yourself and your affairs secret. From this idea grows a conven lion, and at it are gathered together a number of men who are all siruggling with the same businens and therefore often with exactly the same difficulties. Papers are read and discussed, and we get a number of good ideas. The papers are generally on broad, fundamenta! principles, and were it not for the discussion and the personal opinions and experiences brought out in it, we would not ferive as much benefit as if we sat down at home and carefully perused them in our technical journals.
But outside of the convention hall, between the sessions, at the hotel table, on the little excursions that generally take place, in quiet corners of the hotel office, you see little groups of two or three in earnest converation. It is in those groups that much of the best work of the meeting is done. It is remarkable how even in an assembly of several hundreds, where the majority are neceskarily unknown to me another, those whose experiences are somewhat familiar are drawn together. You meet those whom you already know, and are introduced to othern, and the conversation at course gravitates towards the lipes of work in which
rou are all interested, and it will not confine itself, as the formal jou ,re all interested, and it will not contine iself, as the formai actual details of work and methods. Presently you find that the cther fellow is asking you if you ever had such and sucha dificulty, and how you mannged it, or how you did a certain piece of work and what it cost you. You lay your heads together amd compare notes and exchange figures, and as a result you bolh find out just where you are making a mistake, or what mould have been a belter method of going to work. All this, perbaps, sounds very true and trite to you, and you all feel that jou hmell it before.
Whell I I warat to impress upon you as to the great value of conrentions may be divided under two heads. Firstly, if you have beell working comparasively alone, without anyone near youl in the same line of business, there is n great deal of encouragement just to get into such a gathering and have it brought home to you that you are one member of so large and important a business. You see the style of the majority of the men about you, and feel that they are after all not all of so much greater ability than you that yourself, and if they are succeeding there is no reason why you should not; you hear those few who renlly do stand head and shoulders above the crowd speaking of the difficulties and problems they have to meet, and you feel that if they have so much trouble with all their foresight, experience and ability to belp them, it is nat to be wondered at if you get into a hole sonctimes. Second'r, you make acquaintances which later ripen into close business and parsonal friendships, and when the time comes for united action on some point affecting the industry, you know just who is the one to lead and who is to be depended upon.
The feeling about the interchange of information has been weadily gaining ground for many years. In former times the reat strength of each man's business was the trade secrets he bad that no one elme had, and the fact that if he built a machine you had to go to him for every bolt to repair it, because no one else's bolt would fit. To-day it is all different; everything must be made to a standard, and all parts must be interchangeable. With this progress the trade secret has largely vanished, and information as to processess and method of manufacture is gathered and spread broadcast by technical societies and trade journals.
The vital question back of all this, namely, the cost of production and the methods of keeping accounts, has been the longeit to yield to this movement for the disvemination of knowledge. Men seemed to think that while they could afford to tell their neighbor a good deal or all about how they did their work, in order that they might set ideas in return, that they must keep their methods of keeping costs and the conts themselves closely secret ; that if they lot their compelitors and the public know juat what it cost them to do work and what profit they were making, that the knowledge would be used against them. This feeling is now disappeating to a certain extent, and during the last two or throe years information has boen made public that would hardly have been entruated personal friends previous to that. Signs of this are all around us. One of the leadfing engineering periodicals has been publishing series after series of articles on shop cost, and methods of keeping them. In these the articles on shop cont, and methods of keeping them. In these the methods of accounting the actual costs are given from many of the
largest and most succossful works in the United States. The fact largest and most succossful works in the United States. The fact
that so much space in this journal has beè given to this subject thet so much space in this journal has been given to this subject
shows not only that the articles are highly appreciated, but that the shows not only that the articles are highly appreciated, but that the heads of these establishments hnd it to foir advantage to give out this information. Another sign is the formatiou of a committee of he the formation among the atreet railway men of a Street Railway the formation among the street railway men of a Street Railway Accountants Association, which held itt second convention two
weeks ago in Boaton, simultaneously with the street railway conweeks ago in Boston, simultaneously with the street railway con-
vention. Similar work is being done in the steam railway world. vention. Similar work is being done in the steam railway world.
Probably the keen competition and the reduction of prices, and with them of profits, has largely forced on this movement, it being in many casos a matter of good policy if not of actual self. defence to show the public that prices are being forced down to or below the living point, and to break up the idea that nearly everyone has, consciously or unconsciously, that enormous profis are made in every other business except his own.
I would like to say a few words on the matter of the preparation of papers. Every association, except those with the largest and most learned membership, experience considerable difficulty in getting papers for the meetings. Much of this is due to a misunderstanding on the part of the members. They have an idea that a paper must be a learned discourse of corsiderable length, compoeed on a subject that no one else has touched upon, or else bringing out some stritiogly new or original ideas on some older subject. They think that it must have an oratprical prologue to properly introduce the subject, 2 lot of.mathematical formulze strewn through it like the currants in a cake, and some illustrations with letters of reference all over them to represent the raiains, and then the wholo thing closed up by an eminently logical peroration; that they must accompany the reading of it by elaborate verbal explanations, and have a blackboard at hand that they must cover with $x s, y s$ and 28 , until the audience has been worked up into such a state of bewilderment that it is ready to accept any statement the author likes to make. Now, this is an entirely mistaken notion. The theoretical make. Now, this is an entirely mistaken notion. The theoretical is, and we could not do without them. But we have room and a very large demand for shorter and more practical papers. The large societies and institutes can be deponded upon to give us an unlimited supply of the former class, but it is from just such men as wo have among our own members that the Latter class mest come. What we want is short practical papers touching on the difficulties and experiences that we all have in our daily work. The English and experiences that we all have in our daly work.
Institution of Civil Engipeer, the leading engineering society in the world, with a memberihip of over 6000 , publishes many very short papers each your. as well as the longer ones, which it, of course, has comparatively little difficulty in obtaining. The short ones, as a
rule, come from practical engineers all over the world. One man has had some trouble with a bridge pier and he sends in his exper. ience, and a couple of paces of print holda it all. Others have met other small problems and attacked them succensfiliy, and they sive their fellow members the benafit of their work. Several of the large societies on this side of the Atlantic are doing the same thing and sending to their members each month a number of small papers many of which cover only one paye. A member of one of these societies assured mo that he got many very valuable suggestions from them. Some, of courso, were not directly in the line of work which he was following, and others contaiced points that he par ticularly wanted to know.
I want, therefore, to impress on you all that if asked to present a paper you do not begin to say that you bave neither time nor ability, because you have both if you look at the matter in the light in which I bave been trying to put it to you. Every one of us has had some experience that it would be useful to others to know of, and every one of us is capable of writing it down in a few plain words so that it can be understood. Do not think that a matter is too small to be worth lalking about. If an experience has boen of value to you it will be of value to someone else, and that someone else will be glad to get it, and your telling it to him will save him having to work it all out for himself. Even if he has had the same experience be has dealt with it in a different way perhapa, and will say so in the discussion, then each learns from the other and the rest of the association has the experience of you both to draw from. Again, a paper that does not amount to a great deal in itself may start a discussion that will draw out much valuabie information. This is a very common experience in technical socielies. The discussion often does not follow the lines of the paper at all, but the paper suggests some idea to a listener and ho brings it forward and it is taken up by others and the ball set rolling.
So 1 repeat, if you are asked for a paper do not blush modestly and disclaim the requisite time, knowledge and ability, but stop and think over your work and see if there is not something that wifl be of value to others to know. Perhaps you spiked and painted a lot of poles and kept account of the material and labor on them. Now, this is a very simple every-day operation in the business, but I will venture to say that a great many of your fellow members would be very glad of some information as to probable cont and quantities. I know I had a good deal of difficulty in procuring it the firat time I needed it, and am open to receive much more than I now poscesa. Again, postibly you have had some difficulty with a dynamo. something that has baffed you for a long timeand that you ant up alongside of that mechine for nights to try and find, and at jast when you did find it, it was so simple you folt half ashamed of yourselt for not having discovered it sooner. But do you not think that an account of the trouble with the method you adopted in your search might be just what some one else wanted? Or perhaps you have been successful in your method of lighting some hall, lodge room or church. I will give just one illustration of this. Some two or three years ago some one wrote for a leading electrical journal a short account of a method he had successfully emploved in lighting a lodge room for a secret society. The article barely filled a column of the paper. Some time later I was called on for estimates for lighting a new lodge room for such a society. I remembered the article and, referring back to it, used many of the writer's ideas. A fairly vigorous canvass was nocessary to get the scheme through in its entirety, and I was greatly aidod in it by taking the number of the periodical and pointing out that what I was recommending was what had been found satisfactory elseewhere. I mention this be cause I believe many would have thought the ideas in that article much too simple and self-evident to be worth publishing. I am much too simple and self-evident to be worth publishing. I am
sure that I voice the sentiments of a large number when I sty that sure that I voice the sentiments of a large number when is si,y that and I know they would be willingly published if contributed. I spoke of your being asked to present papers. Do not stop to be drummed up and asked. When you come across something of interest make a note of it and write it out aimply and plainly and send it in.

The appreciation of the address was evidenced by hearty applause.

Mr. Hamilton : I feel that we owe thanks to our president for his interesting and able address. There is so much suggested by it that it is hard to deal with it in a fitting manner. The principal suggestion is perhaps that bearing on the preparation of papers. Most of us feel that the writing of a paper is a hard task, but we must feel encouraged by his remarks. While on my feet I would like to say, in reference to this our first meeting, that it is unfortunate that the elements are against us, but the attendance is encouraging, and I trust this will be the foundation of larger and better meetings in the future. Exchange of ideas at first is hard, but as we get to know each other it will become easier. Speaking of the class of papers as mentioned by the president where chasing the wily X is indulged in, they are valuable for reference, but the discussions they invoke are both useful and interesting. I feel that it is not my province to make any further remarks, but again wish to express my appreciation of the president's address.

Mr. P. R. Colpitt : I feel diffident about speaking of papers after Mr. Hamilton, as he has prepared a paper, while I, though invited to contribute one, did not, but I heartily second all his remarks. I beg to move the
acceptance of the president's address with the thanks of the meeting.

Mr. Daley : I have much pleasure in seconding that motion.

The motion was put by the secretary and carried.
The president then thonked them for the vote of thanks.

Mr. J. A. Young said he was very glad to have the opportunity of listening to the address. This was the first meeting he had attended, and he thought the suggestion of geting to know each other was a grood one. "I am away down in Sydney, and it is hard to get any one to talk 10 ," he said. Referring to the president's remarks regarding poles, be stated that he would probably have to erect eight or nine miles of pole line shortly, and though he had already erected some fitteen or twenty miles, he did not possess all the information he required, and by such meetings as this one could acquire many valuable pointers.

Mr. Daley then brought forward a letter just received from his town council calling upon him to execute a bond of indemnity against any damages the town might be liable for, through his poles and wires being in the streets, and desired to know the experience of other members in this matter.
Some discussion took place, during which it was shown that if a company was possessed of a proper charter this matter was thoroughly provided tor without a bond.

Mr. Nash : As this is an experietice meeting, I would like to give one. I noticed some time ago that there was a lot of hot air over my hoiler, which was serving no uselul purpose, and it occurred to me that it would be a good plan to obtain a blower and introduce this air under the grate bars, but my directors tailed to see the point. On Xew lear's day we had a terrible windstorm and our chimney uas suddenly reduced in height from to to 25 fect. I immediately telegraphed to boston for a blower. When it arrived il belted it to the engine, ran a pipe to the grate bars, and have been happy ever since. Our meume has increased about $\$ 300$; and the coal consumption remains the same, so that 1 think the blower has paid for itselt. I have figured that the blower has increased my capacity ahout 10 , and can often get over the peak of the load with one boiler, while before I always had to use two.

The president said he was glad Mr. Nash had hrought up this matter, as it was the kind of discussion that was needed. Continuing, he said the question of torced draft had lately heen growing in importance. It is a question with most of us, he said, between putting up an iron stack every three or four years or evpending a large sum on a brick one. Iron slacks do not last with us as they do in the western provinces, owint to the greater corrosion catused by the dampness of the atmosphere. This was an illusiration of the benent of our local association, as it gave an opportunity to discuss a question that would never have come up in an association holding its meetings farther west.

Mr. Chambers said he hardly expected to speak on the question of forced draught, but he had studied it considerably of late, and thought that some of its advantages were over-rated; netertheless, he expected to install shortly a blower in his own plant. There was another matter that might be mentioned, viz., that of the automatic stoker. He thought much of the advantage claimed for that was due to the improsed draugh:.

Mr. Freeman stated that Mr. Nash's plant was under a hill and his natural dratt was at times poor.

Mr. Nash explained that he had a gate in the outlet which regulated the fow of air, and when the gate was erifely closed the belt of the blower ran very slack, showing that very little power was heing used.

Mr. Colpitt said that in a Sturievant blower, when the oullet was ciosed, the whole body of ait in the blower was in motion and called for comparatively little power to keep it moving, whereas as soon as the valre was opened, and the air in the blower forced out, fresh air entered at the centre and had to be put in motion, calling for an expenditure of energy. In seply to a
yuestion of the president, Mr. Nash stated that he wed Cape Breton slack coal.

Mr Daley asked tor the experiences of any of the members who were using jet condensers.

Mr. Chambers said that in plants of over 80 horat power and with water cheap, it would pay to inctall a condenser. His own plant had a capacity of 300 horser power and the saving was enormous, but in 60 or so horse power it hardly paid for the trouble and expene of installation.

Mr. Nash: Another question I would like to ank is, what is the advantage of insulation on the conductors of long distance transmission lines at high potentat? I am about to utilize a water power and will have a transmission line of some eight or nine miles.

In the discussion that followed attention was drawn to the fact that all the great transmission plants, such as those at Montreal and Niagara Falls, used bare wire exclusively. It seemed to be the unanimous opinion of the members that covering on a wire carrying over 2,000 volts was largely a snare and a delusion.

The president mentioned that Capt. Brophy, of the American underwriters, condemned the use of a cojering on high potential wires. Alter some further discussion it was decided to finish the business at the morning session, doing awas with the afternoon meeting, as several of the members were anxious to get away.

The question of time and place of next meeting was then taken up. It was muved by Mr. E. T. Freeman, seconded by Mr. S. G. Chambers, that the next meeting be held at Halifax some time in January. Carried.

The president then introduced Mr. F. A. Hamilton, who read a paper on "Electric Ciong Buoys," which is printed elsewhere.

The president remarked that the paper was singularly appropriate for the tirst meeting of a maritime astoniation. The question of signalling in foggy weather had been very much in evidence in the technical journals during the lact few months, owing to the loss of the French liner la bourgoyne, and other recent accidents at sea.

Mir. Chambers: I have lictened with great pleasure to Mr. Hamilton's paper, but think we all would hate enjoyed it more had we been able to have gone from here to the steamer for the excursion as originally proposed, and seen for ourselves the need for such a sy stem of ignalling. I have much pleasure in moving a wote of thanks to Mr. Hamiton for his interesting paper.

Mr. Daley seconded the motion, which was carried unanimously.

The president then conveyed the thanks of the mecting to Ar. Hamilton for his able paper.

Mr. Hamilton, in reply, requested permission to read a letter which he had received from Mr. W: H. Preece. of the English poit office, in which he expressed his approval of the system, but suggested the use of alternating currents, thus doing away with the use of springs, which would be apt to stick.

Mr. Chambers: Is there a way of producing a noise at a dictance by electricity, other than by a bell, that would be suitable for a fire alarm?

Mr. Hanilton : That opens up a wide field. A motor could be used to drive an air compressor which could store the compressed air in a chamber, and thus be utilized to blow a whistle.

Mr Chambers: That has been tried in the States, but the arr leaked out, and when the alarm was wanted it would not wark.

Mr. Colpitt thought that the buoy would be too small to contain the mechanism necessary to ring a bell of sufficient size to be heard any distance.

Mr. Hamilton explained that a small bell could be heard a long distance to leeward, and his idea was to get the buoys far enough out so that a vessel could alsays run to leeward of them without coming in dangerous proximity to the coast. The bell would be placed high up on the mast and the other mechanism low down in the buoy to counterbaiance the bell.

Mr. Daley then moved, seconded by Mr. Anderson. that this convention do now adjourn. Carried.

COST OF COPPER FOR TRANSMISSION CIRCUITS.

The accompanying diagram, showing the cost of copper for transmission circuits, was prepared by Mr. Chas. F. Scott, electrical engineer of the Westinghouse Blectric Manufacturing Company, and embodied in a paper on "Electricity in Paper Making," read before the American Paper and Pulp Association. The curves enable one to find the cost of copper for transmission circuits with any given percentage of line loss, the distance in feet or miles, and the voltage, and will no doubt be found useful.
Mr. Scott's paper explained in a brief and simple manner many of the characteristics of electricity and electrical apparatus, and showed in what way and under what conditions they might be profitably employed in the paper-making industry. His conclusions as to the efficiency of electrical apparatus are given in the following words:
"The full load efficiency of generators, both of direct current and alternating current, varies with the size and type, but for machine of 100 horse power and over

Curges Showing Cost of Copren for Trinsamsion Circiots.
cent. in sizes from 5 to 100 horse power, and is go per cent. to 96 per cent. for larger sizes. Efficiency of transmission lines and distributing circuits depends upon the I:.M.F., the amount of copper and upon the cost. The approximate efficiency of a transmision plant will therefore be between limits about as follows:

"In local distribution from low voltage generators the losses in raising and lowering transformers are of course eliminated, and the range of efficiency becomes 66 per cent. to 86 per cent."

THE BULLIER CALCIUM CARBIDE PATENT CANCELLED.

The Berlin Patent Amt has nullified Bullier's calcium carbide patent, and in view of the constantly growing importance of acetylene, it is worth while to review the facts of the case. Bullier was Moissan's special demonstrator, and the patent was granted in 1894 for the only practical process of producing calcium carbide in the electric furnace. This German patent of the French chemist becomes the property of the Neuhausen Aluminium Company, and as they made diffculties over granting licenses it was a stumbling block in the way of the development of the acetylene industry in Germany. Hence, now that it is swept out of the way, carbide "ill quickly become cheap in the fatherland. As a matter of fact, it is astonishing that the German patent was ever granted, o: that the Frenchman Bullier should have claimed the invention. Wilson, an American, obtained English and American patents in 1893 for the production of calcium carbide exactly in the same manner, and even his patents were not now unassailable, seeing that a German chemist, Professor Borchers, had made the first communication of the method of producing calcium carbide ten years be-
the variation may he from 90 or 91 per cent. to 95 or 96 per cent. The efficiency of alternating current transformers, in the same way, may be said to vary from 96 or 97 per ce:.t. in sizes less than 100 horse power and 97 or 98 per cent. in larger sizes. The efficiency of motors both for direct current and alternating current varies from So or 85 per cent. to 90 per
fore. The German Patent Ant accorded the patent to Bullier for crystallized carbide, but Lord Kelvin affirms that the calcium carinide sent to him by Wilson in ssoz was in perfect crystals. - Invention.
"I find The News sery interesting and instructive, and I donit intend to be without it."-AIr. H. Large, Guclph, Ont.

PCHLASHED ON the tentil of herey month hy

CHAS. H. MORTIMER,

Offie: Confederation Life Builimag, Curnet Vunge and Kuhmand streel. IOFOINTO, Telphane $3^{6 / 2}-$ OANADA.
 Bell Telephume za(w)

A DFEBTISEMENTS.

 pee eding date if whe Chatice thathertucenents with le made whenever desired, withost cont to the aderiser, hut ing should reath the oftion as catly as the 26 th day of the month.

nchachifitions.

 subscription should is remantrd by currency, registered letter, or paxial ordes

 Unon Si. go bet annun. Sulncrupions are payable in adsance. The paper aill be
 cunt mue ate recenel and all artratakes pand
Sulncribere ma); thave he mailinf address changed ac often as desired. When ordering change, always gue she old as well as the new adders.
The Publither should ter notficd of the failure of sulscribers to receive theis paper riompty and regularis

EDITOH'S A YNOUNCEMRNTS.
Correspunderce is innted upwn all topics legitimately coming within the scoge of this poumal
The "Canadian Electrical Fewa"' has been appointed the othctal paper
of the Canadan Electical Association.
CANADIAN ELECTRICAL ASSOCIATION.

OFFICERS:
 Fxesment:

W. H. HKOWNf., Manager Kogal Electric Company, Montreal. stiticn-Patsinket:
H b IWIG:at. Iresudent (: N W. Telegraph Cu. Turontu. znn Vice-Px:mener:
A. A. IHON. Supermiendent Ottana Filectric Co, Oteawa. Sucretart-Thiast'reta:
 Fxacitisy Connitian:
OHS WR1GiHT, Manager Toronto Filectic Light Company. Toronto.

 WILI.AAM THOMPSON. Supermendens Waterworhs and Electric light Ilant,

 If R bifinEAC Manager Catarace Jower Co. Hamilton F. E. Ciky, Manager Backard Filectrich Con, St. Catharines, Ont.

M.ARITIME EIECTRICAL ASSOCIATION.

 Serietary liravuret. J. 11 Wintiti.ln, local Marages Nova Srotax Ielephope Co.

Nex Gis gow, N S

CANADIAN ASSOCIATION OF STATIONARY ENGINEERS.

prewient. W F CHiphaN.

Hrockville. Ons
ilamilion, Yat.
Imomiteal yat.
Iresico. Ont.
Watertoa Ont

Precident A Al!
Kegurar. A \& EINKiNS
Treasirer, k. Vickit.

loNixis.-F Uucherl!
EiACAK.A FAl.LS-W rhaluge
Informatwn rrgarding examanaitons wili be furnithed on applicaticen is any

Short-Sighted Methods.

From information to hand, we are of the opinion that the movement in fator oi municipal control of electric lightung is being adsanced by the unpopular methods of some ot the pritate lighting companies. In guite a number of instances these companies have not pursued a busmen policy calculated to satisfy their customers and enable then. to retain their business. They have acted on the principle, and, in fact, have in some instances been foolish enough to assert, that the customers must take light under whatever conditions and terms the company might see fit to impose. Such companies have not attempted to keep their plant in an up-to-date condition, but have endeavored to run their business with as litte outlay for apparatus and operating expenses as possible. As might easily have been foreseen, the result of this line of policy has been forfeit of the sympathy and grodwill of the consumers on whom the success of the business must depend, and the dissatisfaction thus engendered has, in many instances, taken the form of active opposition and advocacy of municipal control. Electric lighting companies must recognize the fact that they are in identically the same position as the proprietors of stores and other enterprises which depend for their success on the extent to which they cater to public requirements, and they must not seek to avoid any reasonable amount of trouble to give satisfactory service to their customers. Their object should be to please by every means the persons from whom their business derives its revenue. It will be found to be good policy for the manager of the company to frequently drop in on his customers and learn whether they have any conplaints to make regarding the character of the service.

At the present time, when several municipalities are considering the advisability of installing electric light

Specracations for
Blectne Plants. plants, the question of having proper specifications on which to tender is one of much importance to manufacturers of electrical apparatus. It is, of course, preferable to have specifications prepared by a competent and unbiased electrical engineer, in order that all tenderers may be placed on the same footing, and that the municipality may obtain the best apparatus for the money invested. But where such an engineer is not employed, it becomes the duty of the official deputed to draw up the specifications to obtain as much information as possible on the subject. As our readers know, the city of London, Ont., recently invited tenders for an arc plant, upon specifications prepared by the city engineer. Exception was taken to these specifications by at least one company, on the ground that they were such as to exclude some manufacturers of electrical apparatus from tendering. While in some respects the specifications could have been amended with advantage, we are of the cpinion tha: on the whole they gave quite general satisfaction, as will be seen by reference to a number of letters from interested persons, printed elsewhere in this issue. These letters will, we believe, serve a useful purpose, inasmuch as they show the prevailing opinion with regard to the conditions which should be embodied in specifications of this character. It is regarded as a mistake, so far as the purchaser is concerned, to place such restricsions on ienderers as will shut out good apparatus and limit the field for competition. A greater error is to specify a certain make of apparatus, thus permitting the manufacturer of same to fix his own
price for the goods. This was the mistake, and about the only serious one, committed by the city engineer of l.ondon. By specifying the Adams-Bagnell single carbon lamp, he excluded the manufacturers of all other lamps from tendering, and gate the Adams-Bagnell people the contract at any price they wished to name.

Almough it is only a few years since canadian Materiale. the first electric railway was buil: in Canada, it is now possible to obtain in this country all the materials necessary for the complete equipment of an electric road. In the case of the street railway recently completed at St . Thomas, Ont., we observe with pleasure that, with the exception of the overhead joists and fixtures, the line was built and equipped with Canadian material, the total cost being $\$ 85,000$. The rails were made at Hamilton, Unt.; the engines at Amherst, N.S.; dynamos and electricai equipment at Peterboro', Ont., and the cars at Ottawa. We would gladly welcome more examples of this character, as upon the building up of our industries depends the future of the Dominion of Canada.

The Maritume Blectrical assoctation.

The Maritime Electrical Association is to be congratulated, as a new organization, upon the steps which have been taken to establish the foundation of a useful society. It is true that unless other than social advantages are to result from the formation of such associations, their existence is likely to be of short duration. This is fully recognized by the members of the Maritime Electrical Association, the proceedings of the first meeting of which are printed in this issuc. Associations of this character permit of the discussion of questions having a local bearing which, even if taken up by a Dominion association, would interest but a comparatively small percentage of the members. In Canada, perhaps more than in other countries, owing to its vast territory, there exists the necessity for local urganizations, and we thersfore predict a reasonable measure of success for the association in question. We have no fear that the interests of the Canadian Electrical Association will be likely to suffer as the result of the formation of local organizations of this character; on the contrary, they should be a source of strength to the more important body. In the presidential address of Mr. Bowman are found many suggestions by which the members should profit. The practical experiences related by the members are likewise instructive. May the association extend in membership and usefulness.

Some of the electrical companies are

Penty Wise ano
Poxed Foollsh. pursuing a "penny wise and pound foolish " policy with regard to the efficient operation of their plant. It would seem to require but little argument to show that machinery which has cost many thousands of dollars should not be entrusted to the care of an incompetent operative, yet we find managers of companies secking to save money by cutting down the wages of operatives to a point which must result in bringing them only the services of incompetent men. An instance of this kind came to our notice recently, in which the owners of an electric light plant were compelled to replace two 100 horse power boilers and a 75 horse power engine, which had been rendered useless by lack of knowledge and carelessness
on the part of the engineer in charge. The boilers, which had only been a short time in use, had rarely, if ever, been cleaned, and contained deposits of mud which resulted in the shell being burned and the boilers rendered unsafe. A high speed engine had been racked to pieces and the usefulness of a more valuable one so impaired as to render it unfit for the required service. After all this damage had been done and a loss of many thousands of dollars incurred, the manager of the company begran to look around for a competent engineer. When toid that he would have to pay at least $\$ 05$ per rronth for an efficient man he said, "Why, that is $\$_{30}$ per month more than we have been accustomed to pay." Notwithstanding, he at last came to a realization of the fact that to double the engineer's salary might, after all, be the means of affecting a saving in operating expenses, and it is the purpose with the new machinery to install a man competent to properly operate and care for it.

IT is admitted by the management of

Steam vs. Electric Railways.
steam railways that great inroads are being made upon their local passenger business by electric railways. The latter are steadily spreading out, and it is difficult to say to what extent they will become competitors to long distance roads. The fact is recognized that there are obstacles to be overcome in connection with the economical operation of electric railways in rural municipalities. In ten years up to and including 1893, the number of passengers carried on the steam railroads in the state of Massachusetts increased at the rate of $5,825,000$ a year. The next four years they decreased at the rate of $4,766,000$ a year, owing to competition from electric roads, as in these same four years the number of passengers carried by electric railways that enter Boston increased over 3^{1} per cent. The experience of railroads in the vicinity of Chicago and other cities is identical in this particular. If steam railroads are to compete successfully with electric systems, it will be necessary to give cheaper fares and greater attention to the comfort of passengers. Uncleanliness is one of the greatest objections that can be urged against the steam road. But it is not alone the passerger traffic that has been and will be affected. The electric roads are now reaching out, with some success, for freight business. In this connection we observe that a successful test of the Bonner rail wagon, as described in a paper by Mr. W. T. Bonner, read at the last convention of the Canadian Electrical Association, was made recently at Toledo, Ohio. The purpose of this wagon is to convey farm produce to market, its construction being such as to permit of the wagon being separated from the truck and transported on the electric railvay to point of destination. Should this scheme work out satisfactorily, as some believe it is likely to do, the field for the electric railway will be greatly broadened.

The analgamation las taken place since our last issue of the Westinghowse Electric and Manufacturing Company, of littsburg, Pa., and the Walker Company, of Cleveland, Otio, two of the leading electrical cencerns in the L'nited States. This is regarded as one of the noov important transactions that has been recorded for some ime. inasmuch as, besides making a particularly strong combination, it puts an end to latigation affectung Walker apparatus. Hy the change the Walker Company is brought under the terme of the agreement which has existed for two and one-half ycars between the Genctal Electric and Westinghouse companies. In a few years the Walker Company have built up an extenive business, and we are glad to leam that their factories are to be continued.

AN ALTERNATING CYCLE-CURVE RECORDER.

Tur study of alternating current phenomena by means of the delineation of the curves, which represent the mode of variation of the pressure and ctirrent throughout the cycle, has been rendered so familiar by the labors of Hopkinson, Kyan, Fleming, and many other observers, that no : $:$ ology is needed for introducing a new piece of apparatus intended to reduce the labor involved in this method of investigation. Briefly stated, the function of the Cycle-Curve Recorder is to describe automatically, without any interference on the part of the observer, a cuntinuous pen and ink curve representing the cyclical variation of the quantity to be recorded. The immediate object of its construction was the study of the variations of the form of the current or pressure cycle-curves of a particular form of alternator with variations in the character of the load on the station at different times in the day. The labor involved in this study by any of the usual means was such as to be prohibitive. The action of the present apparatus, however, is so completely automatic that it can be set to record the form of the cycle-curve every half hour throughout the day, and may then be locked up and left to itself, to continue recording for so long a period as may be desired. The complete carrying out of this programme was unfortunately interrupted by my appointment to to the chair of physics at University College, London, and it is now unlikely that I shall have leisure to pursue the investigation myself; sufficient, however, has already been accomplished to show that the apparatus is capable of very accurate work, and is likely to prove a labor-saving device of considerable utility.

The apparatus consists essentially of a recording potentiometer working in conjuction with a cycle contact maker, whicn selects the P. D. to be recorded from a particular point of the cycle in the usual manner. By means of a simple worm gearing, the contact brushes are slcwly revolved, and the point of the cycle sclezted is continuousily varied concurrently with the motion of the record shect, so that the variations of the P.D. throughout the cycle are recorded in the form of a continuous curve. The recording pen is of the usual pattern, and is directly attached to the sliding contact of a delicate relay on the potentiometer bridge wire. This relay is made to actuate a pair of motors in such a manner as to keep the sliding contact always at the balance point. The drum on which the record sheet is wound may be of the ordinary kind, revolving once in an hour, but if continuous records of the forms of the cycle are required, extending over a longer period without changing the sheet, it is necessary to replace the simple drum by a continuous band. The width of the shect, which limits the scale of the record, has hitherto been about 8 inches, which is found to give a sufficiently open scale for most practical purposes.

Tiie Recording: Porentiometer. - The recording potentiumeter was not originally designed for this particular purpose. I had, as a matter of fact, previously applied it to a great variety of other uses, such as the recording of variations of voltage, current, power, resistance, temperature, pressure, etc. The idea of making a po:entiometer or Wheatstone iridge record its balance point automatically, in the manner described, is a very obvious one. I first endeavored to carry it into praclice when working with platinum thermometers at the

Cavendish laboratory in 1886 . With this object I selected the most delicate polarized relay that 1 could find in the apparatus room, and connected it up in the place of the galvanometer in my apparatus. I very soon found that in order to record temperatures successfully to the tenth of a degree, I should require a relay about a thousand times more delicate than the best of the post office pattern. After making several other experimental relays with selenium cells, etc., i gave up the attempt for the time, and did not return to the subject till the conclusion of the McGill College session in April, 1897 . I then succeeded in constructing a sufficiently delicate relay, and in obtaining records of temperature in pen and ink, on a scale as large as 1 cm . to the degree Fahrenheit. Several of these early temperature and volt records were exhibited at the meeting of the Canadian Royal Society on June 23rd, 1897, and some of them have been reproduced in the Canadian Royal Transactions for that date. The apparatus itself has been recently exhibited at the conversazione of the Royal Society in London, and on other occasions in Canada, where the first instruments were constructed. It is hoped that an improved pattern, as made by the Instrument Co., Cambridge, may be exhibited at the forthcoming meeting of the British Association at Bristol, and that a description of the final form may then be published. In the meantime it may be of interest to describe the cycle contact-maker, and to give some account of the special difficulties which were encountered in connection with this particular application of the recorder.

The Cycle Contact-Maker. The idea oî applying the instrumert in conjunction with a suitable cycle con-tact-maker for the recording of cycle curves automatically, first occurred to me in connection with the investigation of the form of steam temperature cycles in the cylinder of a steam engine by means of a very sensitive platinum thermometer, as described in a paper by Proi. Nicolson and myselt, "On the Law of Condensation of Steam," which was read and discussed at a meeting of the Institution of Civil Engineers in November, 1897, and has since been published in their Proceedings, Vol. C.iXXI. The application to alternating current cycles followed as a matter of course, being, in fact, very much the simpler application of the two. The method of obtaining a continuous record by means of a continuous motion of the cyclical contact point in unision with the record sheet or plate, was employed by Blondel (The Electrician, Vol. XXVII, p. 603), who made use of a spot of light reflected from a dead-beat galvanometer on to a slowly moving photographic plate, the deflection of the galvanometer being proportional to the instantanesus value of the P.D. or current to be recorded. The objection to the method above sketched, apart from the fact that it gives a photographic and not a pen and ink record, is principally that it is a deflection method and not a null method. In the present instance, in addition to the usual objections to a deflection method, there is the difficulty of the variable resistance of the cycle contact in the galvanometer circuit. In the null method, with the potentiometer, changes in the contact resistance are immaterial, and there are no errors introduced by inequality of scale, or hysteresis of the suspension.

The Sincuronous Motor. - When completing the equipment of the McDonald Physics Building in 1893 , for the application of the cycle-curve method to the study of alternating current phenomena, 1 ordered a smail laboratory aiternater of the Pyke and Harris pat-
tern, mounted on a bed-plate with a suitable continuous current motor. My reason for choosing this particular type of machine, with its uverhung spider carrying the revolving keepers, was that it could be fitted with a cycle contact in a very simple manner, and could be used, either as a generator or as a synchronous motor, for delineating cycle curves of larger generators. The cycle contact brushes consisted of a pair of fine steel springs mounted side by side on a short projecting arm carried by a divided circle centred on the circular face of the field magnet, which was concentric with the shaft. The ends of the springs rested on the edge of an ebonite disc turned in position on the shaft, into the circumference of which were fitted, at intervals of a complete period, a number of narrow contact pieces of steel, each about one-hundreth of a cycle in width. This form of contact was found to wear very well and to give excellent results, provided that the disc was clean and running perfectly true. The performance of the contact was tested by taking curves, first by the potentiometer balance method, and then by the deflection method under the same conditions. In the second case, any variation in the contact resistance would be made evident by an unsteadiness of the galvanometer. The results compared very favorably so long, as the resistance of the galvanometer was made as high as possiole, but even in this case it was obvious that the potentiometer méthod was greatly to be preferred. I, therefore, abandoned the attempt to fit up an automatic recording apparatus of the Blondel type, as 1 had at first intended, and did not return to the question of obtaining automatic records, until the completion of the recording potentiometer at a later date appeared to offer a more convenient and accurate solution of the prob1 cm .

On making the first experiments with the recording potentiometer, I found, as I had anticipated, that the resistance of the cyclical contact was a matter of considerable importance. In order to secure the maximum sensitiveness for small differences of potential, it was necessary to make the resistance of the relay or galvanometer of the order of 10 ohms. Under these circumstances it was evident that any imperfection of the contact, although it would have no effect on the position of the balance point on the potentiometer bridgewire directly, would reduce the sensitiveness of the relay, and thus make the position of the pen lag behind the correct reading, owing to want of quickness in following. With the object of reducing the resistance of the contact, the width of the strips in the circumference of the ebonite disc was increased, and they were made to project slightly and slope back at an angle with the edge of the disc, so as to maintain the contact as long as possible. It was found, however, that with the 9 in. contact disc originally fitted on this machine, the peripheral velocity was too great for this form of contact, and the brushes had a tendency to juinp and break, especially at high speeds. To get over the difficulty of the peripheral velocity, without abandoning the steel spring contact, a small fan notor of a common type was fitted with a synchronising rotor, and an ebonite contact disc of 1 in. diameter. This was fitted with an oil pad to keep the contact clean, and gave very fair results up to speeds of 60 or 80 cycles per second. It would no doubt be possible to make some better form of contact for the purpose, out, as the small motor worked fairly well, and the time at my disposal was
limited, 1 did not think it worth while to make any more experiments in this direction at the time.

The drum on which the record was taken in the potentiometer was made to revolve once an hour by means of an ordinary clock contained in the barrel. The simultaneous revolution of the contact brushes might have been very simply secured by means of a similar clock. But in order to secure sufficient power, and to avoid any possibility of slipping, it seemed preferable to obtain the motion from the spindle of the motor itself by means of worm gearing. It might appear at first sight that this would lead to a certain loss of accuracy, as the interval on the drum corresponding to the wave length of the cycle would vary with the speed of the motor. In reality, however, the accuracy of the record $1 s$, in any case, limited by the constancy of speed and voltage of the generator. The contact springs were mounted on an ebonite arm on the face of a worm wheel capable of turning freely on a boss concentric with the shaft of the motor. The tangent worm was driven by another worm wheel, the worm of which was driven by a large pulley belted with an India rubber band to a small pulley on the shatt. Each of the worm wheels had 100 teeth, and the ratio of reduction could be varied by varying the ratio of the pulleys. In the records here reproduced, the speed of revolution of the contact springs was adjusted to be about 20 min . to the half wave, as tnis happened to give the best proportions to the curve with the drum revolving once an hour, and a scale of 1 in. to 50 volts on the record. The small synchronous motor, fitted in this manner with a slowly-revolving cycle contact, was complete in itself, and proved to be extremely convenient and portable, the whole weighing only 10 or $i_{5} \mathrm{lbs}$. It was generally brought up to speed when starting by means of a small direct-current motor, but a hand wheel and belt would probably be in many cases more convenient. Such faults as it was found to possess were not inherent in the method or design, but were due to the cheapness of the machine and the roughness of the workmanship. The poles and clearance were unsymmetrical, the rotor badly balanced, and there was too much friction and slack in the bearings and brushes, faults which might naturally be expected in a cheap commercial motor hastily adapted, but which could be easily remedied in making a special instrument for the purpose. The curves here reproduced, which were taken with the first rough experimental apparatus, must not, therefore, be regarded as a tair test of the capabilities of the method. And when we consider that the curves, in addition to the mechanical defects of the motor, include all the variations of speed and voltage of the supply company, it scems likely that the accuracy of the apparatus under favorable conditions will be limited only by the scale of the record, and the fineness of the line traced by the pen. The current cycle curve of the small motor itself is much the most irregular. This might naturally be expected, and is probably to be explained by variation of the friction, which would necessitate variation in the torque and in the angle of lag of the rotor. The majority of the irregularities are, however, too small to show clearly when reduced to half the original scale. This is very creditable to the steadiness of the voltage and speed of the Royal Electric Supply Company.

Description of the Curves. - The first pair of curves are of a familiar type, representing the volt and current
cycles on the primary of a 5 h.p. transformer with a closed magnetic circuit, when working at a very low magnetic induction with no load on the secondary. The experimental transformer was not comected directly to the primary mains of the Royal Electric Co., but to the 100 volt side of the lighting circuit transformer, which was otherwise unloaded. The volt and current cycles were not taken simultaneously, but on successive days. The correct relative lag of the current curve is readily obtained on the record sheet, by setting the worm wheel carrying the contact springs at the zero mark, and putting the worm in gear at the moment when the pen reaches the zero line on the drum. The scale of amperes is placed on the right of the figure in each case corresponding to the ampere curve marked (a); the scale of volts is placed on the left and corresponds to the curve of volts marked (v). The scale of the bridgewire was adjusted in the present case to be 2 in . to the volt. The current to be delineated was passed through a non-inductive resistance of one ohm, so that the scale of the record was 2 in . to the ampere. For the volt curve, one-hundredth part of the voltage was taken by means of a ratio box. The scale was, therefore, 2 in. to 100 volts. The horizontal time scale in each case simply marks the speed of revolution of the record sheet on the drum. The length of a wave on this scale depends on the time required by the contact springs to turn through the interval corresponding to a cycle. This was determined by the speed of the motor, and by the ratio of the reducing gear. It would not have been difficult either to drive the recording drum from the motor, or to drive the contact springs by clock work, in both of which cases the wave length on the record would have been constant. It would probably be more interesting, however, at least in view of the possibility of taking all day records in this manner, to have the variations of speed recorded by the variations of wave-length. The forms of the curves given in Fig. 1 were verified indirectly by compari-

Flli. : (a) Vas, math Kroord of Cur ent Cole, an Pomary of Unlazded Trans. former (Wi) Automan Kerord of Vols-Cycle of Stanley Alicmators of the Koyal Fiectic Co. Montreai. Tanen by Sy nhtironuw Motor at the Mlithonald Thgsics lluilding. one mile disant Speed, bs Cyiles per Second.
son with curves taken off the same transformer under conditions as nearly similar as possible, by the potentiometer method, with a sensitive galvanometer in place of the relay and automatic recorder, and using the Pyke and Harris alternator as a synchronous motor. They were aiso verified by describing the hysteresis loop in each case, and comparing it with the results of ballistic tests. It was apparent that the results given by the automatic recorder were at least as accurate as those obtained by the much more laborious method of eye observations and subsequent plotting.

The pair of curves exhibited in Fig. 2 were taken on
the same record sheet about the same time of dats. The volt curve is practically a repetition of the previou, volt curve. At other times in the day, under different conditions of load on the supply station, the form of this curve was found to be considerably modified. The inequalities of the curve, which are seen to be moyt conspicuous near the vertex of the wave, were in all probability chiefly due to variations of speed and voltage at the station. The current curve in Fig. 2 is the current curve of the small synchronous motor itself, and was located on the record sheet, as previously ex-

FIG 2. Automatic Record of Volt and Current Cycles on small Synchronous Motor wibl Uncyinmetrical Slot in Pole Piecer The minute irregularities of curse aredue th variations of xpeed and voltake of supply. Connected to the mains of the Royal Electric Co. Kecord taken at the Mch nuld Physics Building. Mct;ill College, Montreal.
plained, as nearly as possible, in its true phase-relation to the volt curve. The load on the motor was largely due to eddy currents and hysteresis, in addition to mechanical friction. The mechanical friction was certainly variable, and the load due to eddy cuirents would diminish as the motor became heated. The curve shows a curious want of symmetry, which is no doubt partly to be explained by these causes, and partly by the want of symmetry of the construction of the motor itself. The dip in the crest of each wave is due to an unsymmetrical slot in each of the poles of the motor. These slots were occupied, in its original state, as a synchronous induction motor, by copper plates, partially shading the poles, the function of which was to give sufficient starting torque to the squirrel-cage armature, when used as a fan motor. The other irregularities of the curve are such as might naturally have been expected under the conditions described. The curve itself is of no value except as an illustration of the performance of the recorder. It is quite possible, however, that a study of similar curves, obtained from motors under different conditions of load and supply, might give valuable information with regard to the best conditions of working and the best methods of construction.
The pair of curves exhibited in Fig. 3 are not cycle curves, but are given as an illustration of the sensitiveness of the recorder and of the different uses to which the same instrument may be put. The change from one kind of record to the other is effected by changing the scale of the bridge-wit, by substituting a different wire and unplugging suitable resistance coils. In the curve Fig. 3 (a), representing the discharge of a small storage cell through a constant resistance, the scale of P.D. on the bridge-wire of the recorder was only 1 millivolt per inch, the record being intended as a test of the delicacy of the instrument. The P.D. to be recorded was taken from the potential terminals of a standard resistance of one-thousandth of an ohm,
through which the current was passed. The scale of the record was therefore 1 in . to the ampere. The resistance of the bridge-wire had been adjusted to be one-twentieth of an ohm per inch by means of a suitable shunt, and the current through it was adjusted to be 20 milliamperes by means of an adjustable resistance and a standard cell. The smoothness and steadiness of the record obtained under these conditions were very satisfactory, considering that the power expended on the shunt was only one-fortieth of a watt, at a current of 5 amperes. As compared with the more common types of recording ammeters it will be observed that the resistance of the shunt required is extremely low. The scale, moreover, is exactly one of equal parts, and the co-ordinates of the record are rectangular, as the pen is moved along a straight slide instead of describing a circular arc. The same recording instrument and scale can also be used for any range, from 20 milliamperes to 20,000 amperes, by connecting it to different shunts of suitable magnitude in each case.
The record shown in Fig. 3 (b) affords an even more severe test of the capabilities of the recorder. The current for the bridge wire in this case was taken off the power circuit, and was adjusted to be 3° milliamperes at 550 volts, so that the scale of the bridge-wire

numb
~…
riG; -(a) Discharge Cunve of a Small Storage Cell. (b) Record or Load on i. 500 Kilowatt Generator of the Montreal Street Railway; Co. saken at the Power House. Note changes of lead due to starting and stnpping other engines. These two cu.ves were taken on the same instrument, changing only the shunt.
was 2 in. to three millivolts. The P.D. to be recorded was taken off a low resistance shunt in the circuit of the large 1,500 kilowatt generator of the Montreal Street Railway. The shunt was one of very low resistance, so that the P.D. to be recorded on the bridge-wire was only 3.30 millivolts for a circuit of 1,000 amperes through the shunt. The scale of the bridgewire being 1 in. to 1.5 millivolts at 550 volts, and being made to vary directly as the volts, the record was obtained in watts, on a scale of 250 kilowatts to the inch. The P.D. on the bridge-wire in this case was slightly larger than in the previous instance, but the performance of the instrument was in reality more remarkable, because it was hanging on the wall of the power house, in close proximity to the large machines and engines, and was exposed to a great deal of vibration and other disturbance. The record itself presents some features of interest which may be briefly referred to. The large engine (No. 7) was started a little before $4 \mathrm{p} . \mathrm{m}$., so as to be in time for the evening load, which reaches a maximum between 6 and $7 \mathrm{p} . \mathrm{m}$. A load of about 1,000 amperes was switched on, and gradually increased to over 2,000 in the course of the next 10 minutes. Other engines were started in a similar manner about 5:10 and 5:45, as the main load increased. The starting of these engines had the effect of diminishing the load on the big generator temporarily, as shown on the record. Between 6 and 7 p.m. four engines of $1,000 \mathrm{~h} . \mathrm{p}$. each were running, in addition to
the big engine. One of these was shut down at 7 p.m., causing a temporary increase in the load on No. 7. About 7:30 p.m. the load on No. 7 was gradually reduced to 1,000 amperes, and it was cut out of circuit at 7:45 p.m., after which the reading of the record rapid!y falls to o. In power records of this kind, where the load is rapidly varying 10 or 20 per cent. up and down from second to second, it is necessary, in order to obtain a clear and legible curve, that the recording pen should automatically average these rapid fluctuations, a result which is readily secured with the present instrument by suitably limiting the rate at which the pen can follow a sudden charge of load.

The foregoing illustrations do not by any means exhaust the possible limits of delicacy of the recording apparatus. It would be easy to make the relay much more sensitive, if required for special work. The present pattern is very simple, and is quite delicate enough for all ordinary purposes. For obtaining cycle records it is evidently impossible to work with so small a P.D. on the bridge-wire, as the galvanometer circuit is closed for a small traction only of each cycle. For this reason a special bridge-wire was constructed of insulated wire wound in a fine screw thread on a brass rod in a manner similar to that commonly employed in rheostats for fine adjustments. The method of winding in a screw thread gives great regularity and uniformity almost equal to that of the plain wire. Brass is far preferable to hard rubber for accurate work, and there is no difficulty in obtaining sufficiently perfect insulation. The objection to the spiral is that the contact is not quite continuous, but in the present instance, the steps on the record due to the fine screw thread were much smaller than the irregularities due to variation in speed and voltage of the supply. For finer work, however, it might no doubt be preferable to use a straight continuous wire in conjunction with a more delicate form of relay.

The cycle records above reproduced were taken on one of my recording instruments by Mr. L. W. Gill, B A.Sc., one of the research students at the McDonald Physics Building of McGill College, who also assisted me by making a spiral bridge-wire and parts of the small synchronous motor to my designs. --The Elec. trician.

The city of New Westminster, B. C., is resisting the proposal of a company to tap the water of the Coquitlan Iake, and develop electric power. The civic authorllies believe that the city will require as a reservoir all the water supply over which it has a right.

The Eleetrical News is indebted to the Royal Electric Company for a souvenir of the recent convention of the Canadian Electrical Association held in Montreal. It consists of a photograph, 15 by 20 inches in size, of the members and visitors to the convention, taken in front of the power house of the Chambly Manufacturing Company at Chambly, Que., in which, as our readers know, Royai Electric apparatus is installed.

A recent issue of the Electrical World contains a description of a new central station buift by the Paris Compressed Air Company, of Paris, France, a concern which is engaged in electric lighting on an extensive scale. The general plan on wheh the lighting system of this company in lad out is one which has never come into use in Canada or the Cimed States, being what is known as the five wire system, making use of an extencion of tice three wire principle. Current is generated all 500 volts, and distributed on two wire feeders to sub-station, whercin are storage batteries connected across the main, from which run five wire distribution systems, the pressure beng cqualized between the four ten-volt eorcuts of the distribution sy stem in series niah cach other by means of batterics. In this way a great cconomy of copper is effected over the ordnary three wire system.

SPECIFICATIONS FOR THE LONDON ARC PLANT.

We have received the following letters relative to the specifications prepared for the installation of an are plant for the city of London, Ont.:

Montreat., Scpl. sth, 888.
(ifnthemen: Replying to your favor of August 301 , I would sity that it appears to be a pretty fair specification to cover this (law of phant. Any criticisms which I have to make would be contined to the question of the advisability of placng restrictions on the tenderers which, if lived up to, may shot out good apparatun. For thin standard apparatus the tenderer will offer his ntandard imes, and any rentrictions as to speed, efficiency, heating. elt.. will have no effect on the tenders made, but may be used to block wot certain bids when the contract is let. It appears to be more adsisable, where standard apparatus is required, to request cachlenderer to state athe guarantee what his apparatus is catpatbe of dong in regard to heating, regulation, efficiency, insulationss, cte.
I abo nutice that no break down test is specified, but the insulation is to be 259,000 ohms, a figure much too low for this apparaths; the test in any case being useless except as a precaution before appling the high voltage test.

Yours truly,
Robert A. Ross, E.E.
St. Catharines, Ont., Sept. 7 th, 1808.
Dtak Sir, We have lookird over the specifications carefully and conseder them very complete and a sufficient protection to the city. The only criticiom we could make is that one particular ntyle of are limp is mentioned under the heading of "Are lamps" in the first line of this article. There are probably several other lamps benides the Adams-lagnell which would be equally as satisfatory and which could be obtained in Canada, whereats it would be necesmary to import the Adams-Bagnell lamps at considerable expernce. The size of dyamo and description would seem to indicate that the Brush soo light machine was the one required. The upecifications might have been broadened somewhat in this respect, though the wording is not stuch as to absolutely exclude other makes of dynamos.
Taken as a whole, the specifications are rather above the ordinaly upecifiations met with in bidding on municipal plants, and aside from the items anove mentioned contain no features which would exclude reputable manufacturers from bidding, while on the other hand the city appears to be amply protected, and should under melt specifications obtain a very serviceable plant.

Yours very truly,
The: Dachard Electric Co., Limited.
E. E. Cary, Manager.

Montreal, Sept. 3rd, i8g6.

(ikntitmen: Not being directly interested in the manufacture or sale of are light apparatus, the question is not of sufficient importance for as to ghe as cumplete criticism an y ou might desire. We may my, howeser, that on going over same we rather think as a Whole the specification is, from the point of view of the engineer, a very good one, except that one has but to read between the lines to see exactly what class of apparatus is aimed at.

Brictly, we consider the specifications on dynamos good. Guarantee on dy nambs altogether too excessive, as we do not see Why any manufacturer should be compelled to practically offer a blanket insurance on the whole plant against fire, water or lightmugh for one year. The specifications for testing instruments are all right, except that we doubt whether an instrument can be mede that will hand being left in current at all times without altering the calibration.
.Ire lamps. In this section we may say that the engineer has had sufficicnt confidence in himself to name the style of are iamp desmed. Here we consider he should stop, without asking for such a complete guarantec as " shail be free from hissing, flacking or flumg when prouded with ordinary commercial standard carbunn : also, where does the limit come in for " no complicated dock work mechamsm ? Lamp guarantec is fair; hangers and hauging equapment all right, except that manilla rope is not salisfactory for the work required.

Sulichbesird apparatus is fatr, "ubthe exception that we do not see why he thould put in the clause " with least possible danger to short circuit or error." Why not make it "with no possible danger."

Line construction is apparently all right. Not being acquainted with local conditions can make no comment.

Wire. This section is lengthy without striking the point. The wire is to be covered with a triple covering of insulated material. Quertion: What class of insulated material is required, dry mud or pure para rubber?

Acceptance of pl. ant. We do not think it fair that such exacting specifications should be left in the hands of the city engincer or an electrical expert to be chosen by him, but rather that one should be named before, or mutually agreed upon. Finally, we would sity that in our belief it is absolute folly in view of the present advanced state of the art, to install 9.6 ampere machines and open are lamps for municipal are lighting.

Yours respectfully,
John forman,
Per Geo. H. Hill.

PICTON, Ont., Sept. 19th, 1898.

Dear Sir,-In your September number you publish copy of specifications for clectric plant for city of London, and ask for the opinions of electrical men on the same. I am not a manufacturer, wether am I what you wou'd 11 an elecirical engineer, but am somewhat interested in electrical work, and I therefore offer the following short notes on the specifications:

The specifications are, 1 think, so far as the city of London is concerned, very complete, but they are a shade hard on certain manufacturers. The first, and about the most objectionable feature that strikes me, is the guarantee of the dynamo. The engineer says "the machine or machines must stand a sudden short circuit for a period of five minutes." Now, who ever saw a $t 00$ light dynamo, 9 if amperes, about 75 horse power, that would stand a short circuit for five minutes and not burn up, and if the building was not fireproof it would surely set it on fire also. A regulator under those conditions would require to act very quickly, in fact: think it would have to shift the brushes from the heaviest point, where they would certainly be with 100 lights on a 100 light machine, to lightest point in five to ten seconds to avoid burning the dynamo very badly. Now, if regulator works in this short space of time, what is the use of limiting the test to five minutes. You may as well make it five hours, for the machines would not be generating any current after the brushes had been shified to their lightest point.

As to the are lamps, what is the use of asking for tenders and stating the name and style of lamp bv specifying the Adams-Bag. nell single carbon lamp? Does this not exclude all other makers of lamps from tendering for this part of the plant? If the AdamsBagnell is the best lamp, and the city of London are bound to have them, why not buy then direct from the makers and thereby get a better price than they would by advertising and asking for a certain make of lamp. The makers, or agents for this lamp, can tender away up and still get the centract, as the corporation have already said we must have this make of lamp. Had the cotporation asked for tenders in the usual way, they would likely have received a tender for this lamp, which would have been down among the rest; then they could have accepted this tender, and at the same time not caused the Adams-Bagnell Lamp Company to think that they were the only lamp makers in the world.

Yours truly,
T. O. Crandel.

Toronto, Ont., Sept. 23rd, 1898.
Deak str,-Keplying to your favor of Aug. 30 h, requesting my criticism of the London specifications, a copy of which you enclosed, would say:-
These specifications are quite comprehensive, and provide for a complete installation of high quality, hence a technical criticism will te more or less superfluous. some adverse comments have, I believe, been engendered among a number of manufacturers of electrical apparatus by the action of the consulting engineer for the city of London in demanding through the specifications the furnishing of are lamps made solely by a certain well-known company, and sold in Canada by themseives exclustvely, therehy practacally prohibitung or at least discouraging the nakers of other lamps from tendering their respective types or makes. On this matter I have no objection to expressing my opinion as a consuling engineer.

Befure dealing directly with the subject proper, it will perhaps be as well to briefly outline the position and duties to be reasonably expected of i_{2} : consulting engineer in matters of this nature, in order that the apparent motives which actuated the city engineer in the present instance may the more readily be appreciated.

In the majority of proposed electrical enterprises entailing the ex-
penditure of large sums of money, the general design and lechmical details of the imtallation are placed under the drection of an expert or engineer making a specialty of such work : this engincer, after carefully ascertaining the conditions under wheh the plant will operate and the requirements it may be expected to fultill, formulates the reqpisiste specifications enumerating and descrbing the general and speciat apparatus to comprise the complete equpuent, the number of each separate knd or piece of apparalus, its capacty and other necessary general details, and lastly, but most important, the minimum degree of goxd qualty and perfection in the apparatus permisable to ensure favorable consderation of the tender. The tendency is now fortunate:y gimmg ground among engineers to call fur and anstrt on the purchane of was) the haghest and most perfectly developed apparatus, electical of mechanical. Tenders are then received and examined by the engeneer, and thove providing for that quality of appanatus best adapted to meet the requirements fully are usually recommended for acceptance. I ay "wually recommended," since it occasionally happens that temited finances exert a strong influence in determining the quality of the apparatus to be accepted by the purchaser. Assuming the highest quality io bave been accepted on the engineer's recommendation, atter ruception and examination of tenders, at least two very inportant results will have been attaned: Firstly, the purchaser of the apparatus will have benefitted to an apprecialle extent financially through the competitive prices received from the manufacturers of at acceptable grade of apparatus : and secondly, a very strong incentive will have been offered the namufacturers to continue developing and improving their ses ral unes of manuficture to the utaust hamits of perfectun cotenporaneousb) atanable--an incrntive which cannot tail at least ultimately in producing results having an mestimable value for the human race in general.
It seems to me that the city engincer of London has faithfully endeavored to fulfill the duties of his responstble pontion with the aloove ends in view, since he has not only provided for the supplying of what he believes to be the best are lamp on the market, but has otherwise specified qualaties in the remaining portions of the plant which are certainly of a high degree. What his reasons are, however, for concluding that lout one make of are lamp is alove all others the best adapted to meet the particular requirements of his clients I do n_{1}, propose to discuss, and will therefore await his reply or explanation, if he be disposed to publish one. For my own part, I am of the opinion that when articles or apparatus of general manufaciure, such as are and meandescent lamps, supplies, dynamos, engines and builers, etc., are to be purchased by tender, it will be atore to the advantage of all concerned (the clients as well as the manufacturers) for the engineer to avoid specif)ing any partacular make, even though it be of a type slighty atferent from the average, and instead to so present the requirements, conditions and guarantees to be fulfilled, etc., by means of a reasonably close specific description or general specifications, that the supplying of the reguisite quality or essential type of apparatus can be provided for under the usual conditions.
If the engineer should teel justified in purchasing a specific make of apparatus before tenders for the remaining portions of the equipment are asked, and accordingly signfies thas intemion in his specificatuons, he sendets liable the establishing of a precedent which has zepeatedly proven detrimental to the best interests of clents and the electracal business in the Unted Statec. The reason for this should tee apparent to the readers of jour valuable paper who have had experience in these matters.

Vours sery truly,
koderick J. Parker.

PERSONAI.

Mr. Gardner, of the Ottawa Electric Company, has taken charge of No. 2 power house.
Mr. F. A. Cambridge has been appointed electrician for the city of Winnipeg, Man. One of the chief duties will be the inspection of electric wiring.

Mr. Alex. Humter, for over thirty years ansistant chief operator for the Great Northwestern Telegrapls Company, Toronio, dued last month. He was well known to the telegraph fraternity throughout the Dominion.
Mr. Charles B. Routh, of the Ottawa Electric Light Company's arc light station, has severed his connection with the company, and will in future reside in British Columbia, where he has secured a lucrative position.

The honor of being elected a member of the Executive Committee of the Street Rathay Accountants Association of America was conferred upon Mr. J. D. Fraser, secreiary-treasurer of the Ottawa Electric Railway Company, at a receat convention.

Dr. John Hopkinion, the well-known English electrical engineer, was killed at Rerne, Swizzerland, while ascending the high Alps without a gurde. Dr. Hopkinson had devoted much attention to electrical research, havilig given the rewults of his experiments in various papers read before the Royal Society and other institutions. In the vear 1893 he made some inprovements in the Edison dynamo, which proved to be of exceptional insportance in dynamo construction. He developed to a large extent the theory of alternating dynamus, and receired from the Westinghouse Company the sum of $\$ 9,000$ for his British patents on the three-wire sysien of distribution, which he invented simustaneously with Edison in the United States. At the time of his death, it was Dr. Hopkinson's intention to shortly vail for New York, to form a syndicate to develop other recent inventions.

The Maritime Sulphute Fibre Co., Chatham, N.B., have ordered a $500 \mathrm{~h} . \mathrm{p}$. cross compound condensing engine from the Robi Engineering Co., 10 replace their present $250 \mathrm{~h} . \mathrm{p}$. simple engine and to provide for contenplated enlargements of their plant. They expect their new engine to effect a large saving in fuel over the type they are now using, as well as to give miach better speed regulation.

CANADIAN ELECTRICAL STUDENTS' COMPETITION.

Ir is the intention of the publishers of the Eiser fracin. News to offer two or more pieses to students of electricity in Canadian schools and universities, for the best essay on a specified subject. The conditions and full particulars will be published in the libectracal. Niows for November. Meanwhile, it can be stated that the proposal has been favorably received by the athorities of some of the leading schools. It is hoped that the students for whose benefit chiefly the competition is being instituted, will take an active interest and thereby ensure its success.

PROF. R. B. OWENS.

Professon R. 13. Owens, E.E., who has recency received the appointment (0) the W. C. McDonald Chair of Electrical Engineering at McGill University, Montreal, in succession to Professor Carus-Wilson, is a comparatively young man. He was chosen from among the teaching staff of the great universities of the United States, and brings with him a record for marked originality, ability and energy.

Professor Owent was born in the southern part of Maryland, a state of which his mother's great grand-

Prof. K. 13. Owens,
Profesor of Electrical Enginecrang, Moçall Uuiversis Monteal.
father was the first Democratic governor. He spent three years in an old military school at Maryland, and was the youngest to graduate since its founding in 177.4. After a brief connection with the old Baxter Motor Company, he resumed study at Johns Hopkins Cliviversity in Baltimore, under Dr. Louis Duncan, and obtained a high standing in mathematics and physics. He was then for a time with the Excelsior Company in New York, and put in and superintended the Thomson. Hnuston station at Greenwich, Conn. In the year 1891 he obtained the degree of E.E. from Columbia University, having been a student under Professor Crocker.

In his organization work at Nebraska University Prof. Owens attained a high degree of wuccess. He was first appointed Adjunct Protessor of Electrical Engineering upon the opening of that department, becoming professor in 1894, and in 1895 he assumed full charge of the Department of Electrical and Steam Engineering, which position he resigned recently. While thus engaged he succeeded in building up the engineering course of that university to a high standard. He was one of the judges of electrical exhibits at the World's Fair. Prof. Owens has recently been elected to a Tyndal! Fellowship by Columbia C'niversity, and is director of Bureaus of Electricity and Machinery at the Trans-Mississipi Exposition at Omiha. He is also a member of the Western Society of Engineers, the Amcrican Society of Mechanical Engineers, and the council of the Society for the Promotion of Engineering Education, and vice-president of the American Institute of Electrical Engineers.

ELECTRIC GONG BUOYS AUDIBLE VERSUS VISUAL SIGNALS.*
 H ト A. Havolome E E.

It is now some five years or more since 1 first made the proposition contained in this paper, vi\%, to make use of electricity for the purpose of facilitating navigation, more especially in providing a system of signal buoys by means of which the mariner would be enabled to reach his destination with comparative ease and safety, underconditions which normally would beboth difficult and dangerous. The idea formulated was briefly as follows:
To connect by means of a submarine cable a system of buoys, filted with powerful electric gongs, these buoys to be placed in the offing in such positions that

FIG. i.
vessels could, without risk, run to leeward of them and consequently come within range of the gong signals.

It is well known that whilst even the report of a cannon can be heard but a short distance to windward, the camparatively feeb!c note of the automatic whistling buoy will be distinctly audible five or six miles to leeward. Bearing in mind this fact, it would seem reasonable that the vibrations which it is possible to cause by striking a bell by means of power produced and controlled by electricity could be heard some considerable distance down the wind. With this object in view I planned out the system hereinafter described.

Before procceding to explain the details of the method proposed, 1 would beg to be permitted to submit a few observations with regard to the necessity of providing means for tacilitating the entrance of vessels to our harbors.

Whilst it cannot be denied that the whistling buoy, commonly known as Courtney's automatic buoy, has done, and is doing good service, it must be admitted that something more is needed in the way of guides to the mariner, for these ponderous whistling buoys must necessarily be moored in shallow water, and, conscquently, in the majority of cases, near the shore, so that in the endeavor to "pick up" the sound of the whistle it is necessary to run the vessel nearer to the shore and to outlying dangers than is desirable. Lei us take the approaches to Halifax Harbor as a typical case.

An automatic buoy is moored on the Outer Bank, 5 miles from Sambro light, in a depth of twenty-four fathoms, and another nine miles to the north-eastward of this in 37 fathoms. To stand in to leeward of these buoys in thick weather during a southerly gale would be a hazardous proceeding, as there are many outlying dangers in the vicinity.

[^0]Taking into account the fact that the conditions of weather are such that south in the wind means fog, rain or snow, it is evident that a vessel must pass inside the buoy, that is to say, between it and the land, before the sound of the whistle will be heard. There are times, it is true, when the buoy signal will be audible in the other direction, for instance during fog unaccompanied by wind, jut the point I wish to emphasize will be at once recognized when the combined conditions of a south-east gale with rain are considered. Under these circumstances we have thick weather and, for a vessel approaching the land, a lee shore. The vessel has perhaps made a rapid passage across the Atlantic. A master of ortho-dromics has navigated the latest triumph in marine architecture to within an hour's run of her destination, but, owing to thick weather, and the absence of any indication as to his whereabouts, the prudent mariner has perforce to point his ship to the wind and await more favorable conditions. It is possible that after groping about in the fog and rain, anxiously listening for the moan of the automatic buoy, and continually heaving the lead, the worn out but vigilant commander is fortunate enough to come within the range of the spasmodic toot of the buoy, but the chances are against any such lucky hit, and at the very best many hours are lost in the endeavor to establish the position of the ship, under conditions not altogether unaccompanied by danger.

Now, what would be of incalculable value to the mariner could be provided by means of a system of audible signals placed broad off in the offing at such a distance that vessels could coldly stand in to leeward, and therefore be sure of coming within range of the signals.
In order to multiply the chances of altaining the desired result, at least three buoys should be distributed across the approaches to the harbor, in a manner to be hereafter determined by those who are the best qualified to select the respective positions. The writer would here merely suggest the placing of these buoys in the positions indicated on the accompanying chart, on which it will be seen that the distribution is such that in standing across, in perfectly safe water, and parallel to the coast, a vessel could pass to leeward of the buoys, so

Fig. 2
that in approaching the vicinity of the harbor, a few short runs in the direction shown by the arrows would bring the ship near to and to leeward of one of the buoys.

It is, of course, well known, and recognized, with no small degree of admiration for the skill and nerve displayed, that there are certain captains for whom the weather is always clear-that is to say, it is never too thick to prevent their running in, even to the very whart, without a glimpse of anything, save perhaps the ghostly form of Meagher's Beach light-house but it is only fair to state that such instances are not the rule, and here it may be remarked that the chief object aimed
at is to assist the ocean liner and other vessels that have run long distances, and not so much the coaster, with a comparatively short departure. At the same time, the fact must not be lost sight of that the additional facilities here proposed would be of inestimable value to every description of craft, including pilot vessels, which could, under the conditions proposed, patrol in safe waters.

Having indicated in a cursory manner the needs and objects of the proposed scheme, I now proceed to the details connected with the apparatus required. This part of wy subject may be conveniently considered under the following heads, viz., buoys, moorings, fittings, cables and signalling appliances. A suitable form of buoy is that known as the " spar buoy," which consists of an iron cylinder terminating at each extremity in the trustum of a cone. Such a buoy is shown in Fig. 1, in which a sectional elevation is presented. The fittings consists of shackles, thimbles, bridle chain, staff and junction box. The moorings consist of the cable itself, connected to the buoy in the manner hereinafter described. Another form of buoy is shown in Fig. 2. The shape is that of a truncated cone, the base of which is the segment of a sphere with a cylinder attached, a cylinder being also recessed in the cone for the reception of a detachable cylindrical box in which the electrical and mechanical appliances are placed, and over which the bell is supported. A tube through which the cable is led is run through the middle of the buoy.

The upper part of the buoy not including the cylindrical portion is the air chamber, and the lower part provides a space for water ballast, and at the extremity of this two arms are attached, between which the cable is secured in the manner shown at B, Fig. I , and at A and B, Fig. 3. The two parts of the cable art crossed and "seized" and worked over the thimble (b), and further "seized" below the latter. Above the thimble the two parts, twisted together and served, are led through the pipe inside the buoy, or up the side of the buoy if necessary,

protection in this case being afforded by means of battens or other suitable appliances. A bridle is attached below the thimble and secured at a convenient place, for the purpose of facilitating the operation of disconnecting the buoy from the cable.

The main line - that is to say, the cable connecting the outer position with the station on shore-I divide into as many sections as there are buoys. Each section is connected by means of couplings, the ends of the sections being fitted with thimbles through which the coupling bolts are passed.

The coupling pieces consist of two cast iron plates, in which are three bolt holes and three slots. These plates are crowned or rounded above and below in order to provide a hollow chamber for the cable connections.

The bolts serve the double purpose of holding the two plates together and securing the cable ends to the coupliagr. The hollow receptacle affords protection to the joints between the man cable and the branch linev leading to the busy. A sutable sort of coupling is shown in Fig. 4. The main cable ends 1 and 2 and the branch cable 3 are placed in theit respective sloty and secured in position by means of the top plate and the bolts, ats shown in the diagram.
The yoke and chayn are for the purpose of lacilitating the operattion of buoging the bight, as explained hereafter.

The following modus operandi is proposed: The cable hating been pride out from the whore to the end of the first length, the areond section is connected to it by means of the coupling. Having carefully jomed the cores and secured the two ends of the cable to the conphng by means of the boles, paymg out is re-

sumed, and at the same time a small anchor buoy is slipped with a convenient length of rope attached, the connection being thus readily accessible.
The yoke to which the chain carrying the buoy rope in attached is for the purpose of preventing the anchor buoy tackle from being twisted up around the coupling ats it and the cable are lowered to the bottom.
The same operations are performed at the end of each section, with the exception of the end one. Here the first branch cable is connected by a perfect joint between it and the main line. The branch cable, being paid out to near the end, is secured to the buoy and the latter is slipped. The cable is then picked up at the various couplings and the branch lines connected and paid out at right angles to the main cable.
As the buoys are moored by the cable itself, it is necessary that this be provided with some protection against abrasion. This object is effected in the following manner: A rounding of chain is applied over a length of cable depending on the depith of water in which the buoy is moored and the nature of the botton. It is to reader the examination of this portion of the system comparatively easy that paying out at right angles to the main cable is recommended; besides this, it reduces the chances of wear and tear on the main line, which remains undisturbed whenever the buoy moorings are examined.
The following explanation concerning the operation of altaching a buoy to a branch cable may be of interest : Having paid out a branch line to within a few fathoms of its end, attach a slip rope. Pass a heaving line down through tube of buoy and bend on to thimble at end of cable, pull the latter up the tube, remove cover placed over the cores for protection, secure the conductors to their respective terminals in the connecting box, insert pin through eye of thimble and close the box, at the same time pass bolt through thimble of cable at heel of buoy, attach bride chain to cable and secure it to tripod of buoy. Drop buoy and cut slip rope. In picking up the buoy and moorings the following precautions should be observed: On disconnecting the junction box, attach a "tail" of heaving line througla the eye of thimble, in order to provide a means of saving the ends of core from being used as a lanyard. Secure cover over tube and close junction box. Shackle on bridle chain, heave away and cant buoy; remove bolt at heel of buoy. In order that the bolt may be easily withdrawn when the strain is taken up by the bridle, the latter may be attached to the cable at a distance of about a fathom below the thimble that carrics the bolt by which the cable is secured to the buoy.
The Signalling Apraratus.-In my original design the plan was to employ electro magne's and gongs, of large dimensions, placed on the flagstaffs. The following is an exiract from a letter dated January 31st, 1893, in which I explained my proposed scheme:
"In reply to enquiries respecting my proposed system of electric bell buoys, I beg to furnish the following information: Electric bells when exposed to wet or moisture are apt to fail owing to the contacts becoming oxidised, and this is probably the chief reason why electricity has not been applied, in the manner now suggested, to marine signalling. To obviate the difficulties hitherto presented and to protect the electrical contacts from the action of damp and salt, I enclose the electro magnet and contacts in a scaled clamber or box, which whilst being impervious to water does not impair the action of the rod to which the bell hammer is attached. The sealed box containing the electro magnet is, logether with the gong mounted on a cage, supported by a staff which is carried by a tripod attached to the buoy. The electric cable is passed through a tube in the buoy or up the
outside of the latier and connected to the terminals in the box. The cable is attached to the buny in the following manner: Two parts of the cable are crossed and "seized" and worked over ${ }^{3}$ thimble and further "seized" and served below the thimble. A bolt passed through the eyes of the armis of the buoy secures the thimble, which carries the cable to the buoy: The ground parts of the cable are prolected from abrasion by a "rounding" of chain applied over a sufficient length to not only provide against chafe, but to ensure enough weight to moor the buoy. The type of cable recommended as most suitable for mooring the buoy consists of one made up of two closings of armor, applied in opposite directions in order to prevent any tendency to twist or kink."

Here followed a description of bloy, moorings, etc., and an estimate of cost.

The leasability of the system here proposed could be easily and cconomically proved by means of some old cable and a buoy of sumable dimensions fitted in the manner described."

The advantages claimed for this mithod of producing audible signals are:
ist. The certainty of the sound being emitted during calm weather when there is not sufficient swell to cause a whistling buoy to act.
and. Its usefulness for positions where there is no swell, such as in rivers, harbors, and channels not open to the sea.
grd. The convenence with which the apparalus can be handled, the buoys, and consequently the moorings, being light.
fth. Its adaplability for positions in deep water where the mooring of a whistlius buuy would be attended with great difficulty.

In pesitions where only a short lengils of cable would be required to connect the buoy and the shore the cost would be small, and in places where the water is smooth and the bottom favorable, light buoys and moorings could be used. There are doubtless many positions where the system would be of great value.

In reconsidering this matter 1 have recognised the necessity for providing a system by means of which each buoy would signal its own number, and the plan is to arrange the apparatus in such a way that in the case of a system comprising several buuys or'y one is in circuit at a time, so that the full power available on the line is concentrated at one point. In the case of three buoyswhilst number one buoy is striking its number, the other two are out of circuit, and when buoy two is in operation, one alld three are mute, likewise when number three appeals to the elements, one and two are silent.

The simple mechanism required to accomplish this result consiyts of a mall electric motor, which, besides performing the operation of working the lever which connects the rod leading up to the bell hammer, winds the spring of a system of clockwork by means of which the current is switched on and off at each buoy

This purtion of the apparatus, together with the bell, can be readily shipped and unshipped, so that the appliances can be easily examined an overhauled. There are possibly others who have taken up this subject since I first mooted the question. It would be interesting to know what advances they have made, and it is to be hoped that the remarks contained in this paper will give rise to such discussion as may pave the way to practical results, for there can be little doubt but that much useful work is to be done in the direction indicated.
In conclusion, I desire to state that I emphatically disclaim any intention of reflecting on the usefulness of electrically lighted buoys or of automatic whistling buoys, both of which are of the utmost value in their respective spheras. I merely claim for the system concerning which your opinion is asked a place in the advanced line of our littoral outposts.

TRADE NOTES.

The McLaughlin Carriage Co., of Oshawa, Ont., have ordered a 100 horse power Robb-Armstrong engine from the Robb Engineering Co., Amherst, N. S.

The Warwick Clothing Manufacturing Company, of Warwick, Que., are lighting throughout by electricity. The order for the necesshry apparalus has been given to the Royal Electric Co.

Messns. Bonin, Wilson \& Company, of Montreal, have recently ordered from the Canadian General Electric Company a 100 -light incandescent dynamo for their premises al Berthier

The Lachine Rapids Hydraulic \& Land Co. have awarded to the W. A. Johnson Electric Co., of Turonto, a contract for all the transformers (of the Wagner type) required for a year.

The Canadian Pacific Railway have purchased from the Koyal Electric Company one of their 50 light 2000 candle power are dynamos, together whth 52 arc lamps, for use in their car shops at Hochelaga.

The exhibit of John Starr, Son \& Cu. at the recent Halifax exhibition was very creditable and attracted much attention, being awarded a diploma and medal by the judges. The current used for the illumination was generated by their dynamo in Machinery Hall. Two telephone switchboards were to be seen, for fifty subscribers each, gotten up in handsome cases. Two styles of telephones were exhibited, stationary for the wall and portable for desk use. These instruments are made by John Starr, Son \& Co., and are fitted with the new Starr transmitter, patented in Canada and elsewhere, the feature of which is the double diaphragm, enabling sound to be transmittsd with increased distinctness. They are adapted for cither long or short distance telephoning, and cannot easily get out of adjustment. They also strow ì complete line of electric supplies.

The Northey Mfr, Co, of Torenta, are building a horseless carriage, to be prepelled ly a 6 h p. gasoline engine.
Mescrs. H. Vick \& SOns, of Orillia, recently ordered from the Canadian General Electic Company a so likht incandiscent dyuamo.
The town of Newmarket, Ont., has granted a franchise for an electric railway to the Metropolitan Kailway Company.
A young man mamed Aikens was killed last month by the explosion of a boiler in the brickyard or F. W. Entricken, near Tavistock, Ont
The Fredericton Electric Company have under consideration the erection of a new power hause, rendered necessary by insufficient nccommodation.
The Midinnd Elevator Co., of Midland, Ont., are havi \& piaced in their elevator a fify tight T.H wynamo, from the works of the Royal Electric Company.
The Deseronto Iron Company, of Deseronto, Ont., have closed a contract with the Canadian General Electric Company for a 200 light dy tamo, with marble switchcoard for smme.
The Packnrd Blectric Company, Limited, of St. Catharines, Ont., have issued a neat booklet, giving the code word for various terms and phasues used in the electical supply tiade. This should pr ve very useful to central statio .s
Messrs. Tromanhauser Brie, of Guterich, have placed an order with the Conadian General Electric Company for a pron light Incandescent dynamo which they propobe to install to light their elevalur buildings.
The Bell Telephnne Company expert.to have their new building in Quebec com. pleted cariy in January. The company are also doing consilerable work in she way of placing large cables underground.
The Britith Columbia Electric Railway Company, in order to meet the increased
 Company for additional car eyuipments of the well-known C.G.E. z, 0 o type.
Mr. Percy Domaille has been iustru ted by the Hiamilton City Council to prepare

The Y M. C A. or Montreal have exablishat n courres for the study of electricity, under the direction of Mr. Loust A. Herdar,
ment will be equipped with the latest apparatus for experimental work.
It is rumored that, wi a resule of the franchise granted by the city ur Outawa to the Company, the Deachenes Elecer its effort to secure a franchise for electric light and power from the city.
The Canadian Pacific Railuny smelter, at Trail, B. C., recently p'aced an order with the Canadian General Electrit Co. for a so light 2,000 e.p. Brush arc dynamo,
together with the necesary tamps for same. Thee are to be used at their smetter together with
Mesmers John Ballantine a Son, ef Preaton, have given a contract to the Capadian General Electric Company for a lighting plant, including a 100 light dynamo with inssruments. The order includes the wiring up of their premiss fer use of incandes cent electric lighting.
The atorage sheds of the Montreal Street Railway Company at Hochelaga were destroyed by fire on Septeniber :6th. Sixty cars were burned, on which there was an insurance of $\$ 2,500$ each. Seven sweepers, just half of the companys equip mient, were a'su destroyed
The city council of Hamitton, Ont., hist agreed to extend the franchise of the Hamilton Street Railway Company for fifteen years from 1913 . It is said that as result of this extension, the compuny will undertake conside improvements to Theshatan caly date
The scheme 10 utiliee the water power of Whiteman's Creek for the supply of elec. tric light and power to the city of Brantford, Ont., and vicinity, bas been revived. Thoters claim that 7 s h.p. could be obtained the year round
The village council ot Acton, Ont., have appointed a committee to visit Aurora, secure all posible information on the sillject The report which will shortiy be secure all possible mformation on the s sibect The report which will
prevented, will likely recommeld the instalation of a plant by the village.
The earnings of the Toranto Street Railway Company for the fortnight commenc. ing Monday, Auguet 2qth, and ending Saturday, September 1uth, 1808, were the largest on record. During the two weeks the company carried $;, 870.208$ passengers, making a total inciease in receipts over the saine period last yerr of $\$ \mathbf{r s , 2 6 7 . 1 1}$.
The Hamilton Blast Furmace Company, o Hamilton, Ont., have given a contract to the Canadian General Electric Company for the installation of a 130 light incandexcent dynamo with suitchboard and the necescary instruments, and are also
having therlactory wiret: up for the use of incandescent lights and long buming having the r lactory wire
direct current are lamps
The new contract between the city of Brantford and the Brantford Electric and Operating C. miany came into force recently. Instead of arc lishts of 68,000 candle promer, $\$ 8 \cdot 95$ to $\$ 33$ per laulp. licandescent lights have been reduced from $\$ 10$ for from $16 \mathrm{c} . \mathrm{p}$. lamps to $\$ 9.60$ for 32 cp .
The T. Exton Company, Limited, of Toronto, have given an order to the Cana. dian General Electric Company for the in tallation of a 230 kitowatt direct connected generator, with marble swicch board, contuining the necessary instruments for the
generator. When this generator is installed the T. Eaton Company will have three generator. When this generator is installed the T. Eaton Company will have three
g20 kilowatt generators and two 50 kilowatt generators of the Canadian General 130 kilowart genertors and two 50
Electric Companys well. known type.
The annual meeting of the Great Northwestern Telegraph Company was held in Toronio on September asth, at which the following directors were reeelected: H. P. D. \boldsymbol{N}. Baird, James Hedley. A. S. Irving, W. C. Mathew of Torone, Richard Fuller, of Hamilton. Hon. William McDougall, C.B., of Ottawiz, and Charles A. Finker of New York, directors ; Genrge D. Perry was reappoinited secreanry and auditor, and Arthur Cox treasurer. The staiement of the yea's business showed 2 considerable improvement over the previous year.
A public demonstration of the Bonner tail waggon, as described by Mr. W. T. Bonner in a paper read at the last convention of the Canadian Elecerical Associatiun, was made at Toledo, Ohin, on Sepeember oth, and was reesarded with much interext by the peblic. SNl. Bonner showed how the wagons were unloaded from the trucks by niexns of incline planes, and how they were again lotided py reversidg the former operatim. repular rate for carloads. The company will have rexular sehedule time for through trains to cutside towns, and will do \approx general fright business in traffic which is two small for the railroads to handle advaniageously.
A meeting of the hareholders of the Royal Electric Company has been called for October 88 th , for the purpose of, suthorizing an isue of preferred stock, and the acquisition of shares in the Chambly Mig Co. for an additional amoumt of \$100,000.

 nledging preference seck the cornpany is now in 2 position to command caritalin
England at a materially fow rate of inter:ss. In view of the continued and constant growth of the company's bucinest, demanding large extencions and additions, the board of directors diem it advisable to raise, for the time being, additional capital in England by means of a loan on the pledge of preference paid-up sock.

EDWARD SLADE

Electrical Contractor
 and Erigineer........

BABCOCK \& WILCOX water tube steam bollers

First Invented in 1856. HAVE A RECORD OF

UNPRECEDDNTED SUCCESS

Nearly
2,000,000 Horse Power now in use, with Sales Averaging 20,000 Horse Power per month.

Large Book, "STEAM," sent free upon application.

Babcock \& Wilcox, Limited. LONDON and GLASGOW

 Head Office for Canada : 202 St. James Street, MONTREAL.

KINGSLEY Watep Tubp Steam Boileps

For Power and Marine Purposes-Adaptable to the Highest Pressures.

HIGHEST ECONOMY GUARANTEED

Head Sales Office tor Canada :

SPARKS.

The Chambers Electric L.ight Company, Truro, N. S., have added to their plant a 1,200 light dynamo.
Some of the aldermen of Hull, Que., are discussing the question of municipal ownership of electric light.
A charter for an electric or steam railway from Sault Ste. Marie, Ont., to Michopicoten, has been applied for.
The Stevens Manufacturing Company, of London, Ont., have discontinued the electrical department of their business.
The Vernon \& Nelson Telephone Company has completed its wephone line from Greenwood City, B.C., to Spokane, Wash.
The C. O'Dell Eleciric Company, of Annapolis, N.S., have just installed a Leonard-Batl automatic engine in their lighting station.
The council of the town of Mitchell, Ont., will submit a by-law to the ratepayers to borrow the sum of $\$ 5,000$ to improve the electric light plant.

During Exhibition week the Ottawa Street Railway Company carried $267, c 0 n$ passengers. This was in increase of 31,000 over the record of the previous year.
The C. P. R. telegraph operators at Winnipeg, Man., have entablished at institutc, containing as reading room and library. Neans will be afforded for the study of electricity.
The Bell Telephone Company have reduced their prices in Chatham, Ont., from $\$ 25$ to $\$ 20$ for telephones in dwellings. The rental for stores and business places remains the same.
Mr. Thos. Hilliard, of the Winnipeg branch of the Canadian General Electric Company, has just installed two generators for the Brandon Electric Light Company, of Brandon, Man.
The Hanilton Electric Light and Power Company have lately placed in their lighting station one 2,000 light Royal alternator and one soo h.p. 250 volt direct current Royal power generator.
The town of Galt, Ont., by a vote of the ratepayers, has decided to operate the gas and electric light plants. Unless the existing works are laken over, entirely new plants will be installed.
The town of Barrie, Ont., having authorized the purchase of an electric light plant, negotiations are now pending looking to the taking over of the Barrie Electric Light Companys plant at a valuation.
The Toronto Street Railway Company is building a new shed for the housing of street cars. It will be 3^{24} feet long, 60 feet wide and 20 feet high, closed in with corrugated iron siding and hisving gravel roof.
The town council of Ingersoll, Ont., has appointed a committec, consisting of Mayor Mills and Aldermen Clarke, Macauley, Horsman and Fleet, to negotiate for the purchase of the Ingersoll Electric Light Company's plant.
A scheme is said to be on foot for the construction of an electric railway from Waverley, N. S., $t o$ Darmouth, thence to Musquodoboit Harbor and Litlle Musquodoboit. The promoters will shortly discuss the matter with the Dartmouth Board of Trade.
The Citizens' Electric Light Co., of Smiths' Falis, Ont., are increasing their clectric lighting plant, and have purchased from the Foyal Electric Co. One of their 1,500 light "Royal" incandescent dynamos, with station apparatus complete. This is to be installed at once.
Tenders were received as follows by the city council of S:. John, N.13., for fitting up the ferry steamer" Western Extensirn " with an electric light plant: James Hunter, $\$ 337$; F. W \& J. W. Myers, S375: Geo. F. Calkins, \$oso. The icnder of James Hunter will likely be accepted.
The Toronto Strect Railway Company is said to be considering the advisability of extending the Tormio and Scarboro railuay, from the present terminus, at the Humt Club, to the west side of the Highland Creek hill, a distance of seven miles. Mr. James McDougall, C.E., has made a survey of the propmed route.
The Canadian Electric \& Water Power Co., of Yerth, Ont., are installing a ${ }^{5}$ h.p. iwo-phase S.K.C. motor. This is the third installation within as short time, and shows what can be done with the polyphase system for developing a power trade for electrin light companies and assisting to make the much desired day load.

A Technical Commission, appointed by the city of Paris, France, has lately concluded tests of 110 mechanical stokers, and awarded a prize of 5,000 frances to the one xiving the best results. The comperitive stokers represented ${ }^{6} 6$ from France, 19 from England, four from Germany, zhree from America, ihree from Aus-tria-ifungary, two from ltaly, one from Belgium and one from Poland.
The Western Canada Teiephone Company, Limited, composed of British tockholders, has been incorporated, with a capital of G60,000, to acquire and construct seicphone lines and dral in machinery relative thereto in British Colunibia. Ainong the promoters are J. 11. Wade, Bradford, and K. I. Cratchicy, Dewsbury, Eugland.

No definite information is to hand regarding the intentions of Messn Waines, of New Yurk, the purchasers of the Niagara Central kailway, it is rumored, however, that they are considering the advisability of converting the road into an electric system. The plans may also include the extension of the road to fort Dalhousic.
The tender of the W. "A. Johnston Electric Company, ofToronto, has been xccepted by the town of Becton, Onl., for the installation of an electric :ight plant, at the price of $\$ 1,900$. Two insiallation of an electric: :Cht plant, at the price of $\$ 1,900$. Two
other tenders were received, al $\$ 2,200$ and $\$ 3,15^{1}$. Steps will be
taken at once to erect a power house and purchase the necessary engine and boiler.
The Metropolitan Railway Company propose to extend their railway north to Lake Simcoe, west to Schomberg, and in a northeasterly direction to Jackson's Point, Roach's Point and Beaverton. When the extensions are completed, there will be a special service for light freight, as well as a regular passenger service. The new power house now being constructed at Bond Lake will replace the present one near Tannery Hollow.

Fiveryone has heard something of the wonderful fruit district of the Niagara Peninsula, and has promised that some day they would visit the great garden spot of Canada. The managenent of the Hamilton, Grimsby and Beamsville electric railway, which runs through the district, has just issued a handsomely illustrated booklet, describing the whole peninsula, and telling a good deal of the wunders of the fruit harvest there. It will be sent free to anyone writing for it.
Concrete has been adopted in place of stone for the masonry in the subways of the Chicago, Milwaukee \& St. Paul railway crossing under the Chicago elevated railway tracks. The side walls, foundations and arches are being constructed of it, and an unusual arrangement has been adopted whereby a 5 horse power Ransome concrete mixer is belt-driven by a Fairbanks gasoline engine. It is stated that 3,000 cubic feet of concrete is mixed and delivered in ten hours by a force of six men.
The sharcholders of the Montmorency Electric Power Company, of Quebec, have ratified the action of Hheirdirectors in selling the property of the company to the Quebec, Montmorency and Charleboix Railway Company. The shareholders of the Montmorency company not only receive for each $\$ 100$ share of their stock in that company a share of an equal amount in the Quebec, Montmorency and Charlevoix railway, but also a twenty year debenture of $\$ 100$ at 5 per cent.

Reverting to the recent fire at the London Electric Company's works at London, Ont., we leam that the second night affer the fire the lamps were again lighted. It is said that two hours after the fire was discovered an order was placed for new belting, and twelve hours later it was being fitted to the machines. The gencrators which were destroyed were also replaced at the earliest possible moment. The citizens are to be congratulated upon the efficient service rendered by the company, under the management of Mr. C. B. Hunt.
The directors of the Hamilton, Grimsby and Beamstille Railway Company were recently waited on by 2 deputation of farmers in the township of Louth, who requested that the railway be extended from Beamsville to St. Catharines. Mr. K. S. Martin, on behalf of the company, stated that to do this it would be necessary to obtain a new charter. The building of the road, he said, would depend upon the cost of construction, a report on which would be made by Nr. James Patlerson, the companys engineer.
The C.P.R. Company's new transcontinental telegraph wire, it description of which appeared in the Electrical. News for June last, was completed within the past month, and at 50° clock on September 20 th the first messiage was flashed from Montreal to Vancouver. The line passes via Vaudreuil and the short line to Oltawa, and thence by the main line to the coast. The actual distance covered is about 2,900 miles, constituting probably the longest direct line in circuit for daily work in the world. To pass across this immense distance signals occupy only one-fifth of a second.

Signs of the Times
 ARE MADE BY
 Imperial Lamps
 THE MOST SUCCESSFUL

LAMPS ON THE MARKET.

We have won every test made with the IMPERIAI. I_AMP, including test made by Canadian Government. We have never lost a customer on Imperial Lamps; we challenge comparisons. Can others say the same?

CAT. A. LOG. Get one of ours.
JOHIN FORMAN
ELECTRIC SUPRLIES
644 Craig Streot - MIONTMREAL

CANADIAN GENERAL ELECTRIC CO. (LIMITED)

Long-Burning Arc Lamps...

Alternating and Direct Current

Single and Double Globes: Carbon and Rod Feed For Indoor and Outloor Use.

Rubber-Covered and WeatherProof Wires, Flexible Cord, Magnet Wire,
 Annunciator Wire, Sockets, Rosettes, Cut-Outs, Switches, Shades, Shade-Holders, Porcelain and Clay Tubes, Porcelain and Clay Insulators, Glass Insulators, Floor Insulators, Wall Insulators.

Thomson Recording Watt Meters

Registers in Watt Hours. Adapted for either Alternating or Direct Current Circuits.
Accurate throughout its Entire Range.

Armorite, Armorduct, Interior Conduit, Vulca, Circular Loom Tubing, Domestic and Imported Carbons, Arc Lamp Globes, Cross-Arms, Toppins, Electric Heating and Cooking Appliances, Portable Testing Instruments.

Incandescent Lamps

If you have not received a copy of our ILLUSTRATED CATALOGUE, send for one.

CANADIAN ASSOCIATION OF STATIONARY ENGINEERS.

Homiriat. An. 1.
At a regular meeting of Montreal No. 1 , held in their hall, No. 1863 Notre Dame street, recently, it was unamimously carried that the meeting of September zth be ath open meeting, w which the public in general, and all those interested in the C.A.S.E., be cordially vited. The subject under discussion that evening was a paper on the "Precipitation System of Sewage Disposal," as in operation at Hamilton, Ont., by P. McNaughton.

MR.aNTHORD No. 4 .

The above association has elected the following officers: I'resident, Arthur Ames; Vice-l'resident, Thos. Pilgrim; Secretary, O. S. Merrill, Brantford Carriage Co.; Treasurer, A. C. Walker: Conductor, J. Nichols; Door-Keeper, A. Mckinnon. The Secretary writes that they are in a prosperous condition, having made all arrangements for the coming winter.

Why dow it cost less to run a condensing engine than a noncondensing one with the same mar hanery running in the factory? Simply because the former develop, less total power that the latter. The areat of the card will be the same, but the aterage height abowe the vacuan line will be less in the former case, and this is what determines the tot:al power des eloped at a given sped.
Cement for Lemther Beiting.-The importance of suitable cement for making joints in leather driving belts has led the Society of Chemical Industry to endorse the following formula : Firut equall parts of good hide glue and American isinglass, softemed in water for to hours, then boiled with pure tannin until the whole maw is suctig, the surface of the joints to be roughened and the cemem apphed hot ; second, one fitogramme of fanely , hredded guta: percha digented over a water bath with to kilogrammes of benzol until quite dinolved, when two kilogrammen of linseed oil varnish are stirred in: third, one and a hailf kilogrammen of inely shredded india rubber are completely diwolved in to kilogramme of carbon bisulphide by heating, and while hot bae kilogramme of hisilac and one of turpentine are added. and the oolation heated uptil the two latter ingredients are also dinolved; fourth, one kilogramme of beat glae is dissolved at a moderate heat in one and a half kilogrammes of water. and thickened to the consistivency of syrup. One huadred grammen of thick turpentine and five grains of carbolic acid are carefully atiried in while hot: the mixture to te poured into flat tin pans and allowed to cool, then cut into pieces and dried in the air. The cement is made liquid with a little vinegra and applied to the folint with a braw; this being done, the two ends of the joint are properly placed iogether ind thoroughly pressed between wo iron plates heated to a temperature of aboun $\mathbf{~ G O}$ deg. Fath.

AN EXCELLENT SUPPLY CATALOGUE.

Tifat a first-class catalogue is appreciated by the trade is appar ently recognized by the Car adian Cieneral Electric Company, whin have, in their recent production relating to electrical supplies. sur passed all previous attempts in this direction This supply cata logue contans some 350 pages, seven by ten inches in size, and en closed in a beautiful cover Upon opening the book we find in the front meely printed half tone allustrations of the company's work at l'eterboro', the head office and warehouse in Toronto. and the branch offices at Montreal, Vancouver. Winnipeg and Halifa, Then comes the catalogue proper of the various lines of electrical gonds, duvided into the following departments Switches, socket, and receptacles, cut-outs, miscellaneous incandescent supplies, in candescent lamps, shades, fixtures, construction material, tools, arc light supplies, instruments, rheostats and circuit breakers, lightning. arresters, transformers, marine appliances, fan motors, electric cooking and heating appliances, bell supplies and house goods. We find also valuable wiring tables and data. the telegraph code. an index to code words. index to materials, and the rules of the National Board of Fire Underwriters for the installation of wiring and apparatus for electric light. heat and power. A'together, it ia book of almost inestumable value to central station managers and purchasers of electrical supplies, and a credit to the compilers. the Canadian General Electric Company

MOONLIGHT SCHEDULE FOR NOVEMBER.

Day of Month	1.ight	Fxtinguith.	$\begin{aligned} & \text { No.or } \\ & \text { Hour } \end{aligned}$
	11.s.	H.M.	11.3.
1.	P.M. 5.10	P.M. 8.50	3.40
2	5.10	" 8.50	. 3.40
3....	5.10	" 9.30	4.40
4.	" 5.10	" 10.50	5.40
	" 5.10	. 11.50	6.40
	" 5.10	...M. 12.50	7.40
7....!	" 5.10	2.00	S. 50
	- 5.10	. 3.00	9.50
	" 5.10	" + .00	10.50
10.	" $5 \cdot 10$	5.00	11.50
\square	" 5.19	6.00	13.50
12...	" 5.10	6.00	12.50
13	5.10	6.60	12.50
14....	" 5.10	6.00	12.50
15.	" $5 \cdot 10$	6.00	12.50
16	" 5.19	0.00	13.5
17	" 5.60	6.00	12.50
18..	, 5.10	$\cdots 0.00$	12.50
19	" 5.10	(2.06)	12.50
20..	$\cdots 7.00$	" 6.00	11.00
21.	$\cdots 10.00$	" 6.00	S.00
22		" 6.00 l	
23.	A.M. 12.10	3×0
-4.0	2.0	" 6.00	$4 . \infty$
25.	" .i.00	" 6.00	3.00
26.	3.60	$\cdots 6.00$.3.00
27.	Soligit.	Xulight.	
2 s .	Nol.ght.	No Light.	
29	Xolight.	Sio light.	
30..	1.M. 5.00	P.9.9.9.00	+00

 nery in enne in vease ceseroenre deure to vetile in

Manafacturers ot
) STORACE BATTERIES
of any required capacity.
We make a Sprcialty of Medical and thental haterice kathrice of all hinds Kefited azd Kecharsed as reasmatle rates
Arents clesised in different localitios

SUTTON'S BOILER COMPOUND

ALEX. BARRIE \& CO. alanuzactureks or
 and CABLES
Tel. 1074 - 589 8t. Raul Street, MONTRBAL

JAMES MILNE

Mem. Can. Soc. Civ. Eng. Late Gen. Sup't. Toronto Incandescent Light Co. Teacher Electrical Engineering, Steam and Steam Engine, Toronto Technical School.

CONSULTING ENGINEER

Plans, Specifications, Superintendence, Advice, Estimates on Stcam, Hydraulic and Electrical Plants. `Special Machinery designed.
Specialties: Steam and the Steam Engine, including Evaporative Tests, Efficiency Tests of Steam, Hydraulic and Electrical Plants. Central Station Management reports carefully prepared.
0filee: 80 Canada Life Building,
-TORONTO, OKT.

Cuaphes F. Clarin, Jident. Jared Cutitenden; ESTAULISHED $18 \mathrm{\mu g}$.
THE BRADSTREET
MERCANTILE ACENCY
THE BRADSTREET CONFANY. Propnitors
846 \& 348 Broadway, NEW YORK.
Offoces in the principal cities of the United Siates, Canada, the European Continens, Australia, and in London, England.
The Bradstreet Company is the oldest, and, finaninlty, the strongert organimation of its kind-wirorkiog in oop interest and un der one ghanageraent-with wider sens, and it expends more money overy year for the collection and dassemination of information than any imilar institation in the world.

TORONTO OFFICES:
MeKinnon Bldg., Cor. Jordan \& Melinda Sts. thos. C. IRVIGG, Superintendent.

If you want to
SIㅗㄴ
ANYTHING
to the wholesale and retall hardware merchants and manufactarers

ANYWHERE
In Canada, you can reach them through

THE CANADIAN
hardware and Metal Merchait MOrTREAL and TORONTO
Circalates in Erery Province.

The Packard Electric Co., Limied makers of

Lamps w' Transformers

SOLE AGENTS FOR

Ssheeffer Recording Watt Meters

Sockets, Cut-Outs, Wiring Supplies, Induction Alternators, Etc., Etc., Etc.

MUNDERLOH \& CO. 6i St. Sulpice St., MONTREAL

NEWARK, N.J., U.S.A.
VTESTON STANDARD PORTABLE Direct-Reading VOLTMETERS, MILLIVOLTMETERS, VOLTAMMETERS, AMMETERS, MILLIAMMETERS, GROUND DETECTORS AND CIRCUIT TESTERS,
OHMMETERS, PORTABLE GALVANOMETERS
Oar Porable Instrumenas are recomized as THE STANDARD the warld over. Our STATION AMMSETERS =nd VOLTMETERS are unsurpassed ia point
of extreme accuracy and lowess consumpion of eaerky. Fexton Portabso Gaivano meter-for Endeg Work.

An aducrisement in the Electrical News brings prompt retums.

Gan I Become an Elegtrioal Engineep?
 For our free book entitled "Can I Become An Electrical Engineer ?" address

The Electrical Engineer Instituto of Correspondence Instruction

KAY ELECTRIC MOTOR CO.

Manufacturers of the

System of

DYNaMOS
AND

MOTORS
For all Purposes.

Dy namos for Ele 1 rotyg:ag and Electrophatug, Incandescent Wiring, Electrical and Me hanical leppuring. Agents in Toronto, St. Catharines, Gueiph and Othana. Evimates and luformation cheerfuliy given.
Iddress all Correspondence to-
32 and 34 Bay Street North, HAMILTON, ONT.

OAKMBELTING

TORONTO
22 FRONT STREET EAST

THB OTTAWA PORCELAN \& CARBON CO., Limited. ompawa,

monifacterers of

CRID01 TOLDTS $\begin{aligned} & \text { for all kinds of Arc Lamps, including cored } \\ & \text { and solid carbon for incandescent circuits. }\end{aligned}$

ALSO.

Motor Brushes and Specialties in Carbon for Telegraph, Telephone and Electric Light Supplies
 orcelain Insulators, Cleats, Door Knobs, and all kinds of Pressed Porcelain for Electrical and Hardware Lines
all goods guaranteed to give satisfaction

LONDON, CANADA

[^0]: - Paper resb at the fins convention of the Maritime Electrical desociation. Sep iember ayth, iEos.

