The Institute has attempted to obtain the best original sopy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée

Covers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/ La reliure serrée peut caciser de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décclorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-téte provient:

Title page of issue/
Pas: de titre de la livraison

Caption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison

Additional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

Table of Conteinte.

Konthly Report of the Provincial Model-Farm at Rougemomi....
Selection in grain-growing.
Our Engravings.
Crop report; Georgia
De omnibus rebusPractical Farm Drainage.54
The Oultr-a of Sheep.57Steaming recd for Cattle.

OnionsSaving Mapure in Summer.60Killing Daisies nod Thisites60
Management of Poultry Manure 61 61
Hindrances to Oabbage Cultcre
Ensilage 62
Destruction by and of the Wireworm 62

Fraits for Eiport

Monthily Roport of the Provincial Model-Farm at Rougemont.

Notes on tiry Indian cons sown on the fahm --Today, June 6, we observed, with pleasure and surpise, that the corn planted on the 1 sl inst. was already up. Some of the stalks are from an inch to an inch and a half high.

It must be the exseifent preparation which the land has undergone, combined with a favourable scason, whioh has cansed the rapid germination of this grain, generally so loath to sprout: warm rain almost every night, and a glorious sun all day.

The field in whioh the corn was sown was heavily dunged, ploughed, and harrowed. The drills vere made, 3 feet apart, with the plough, and drawn very straight for the greater case in hoeing. Every 30 inches, a shovel-full of dung was placed in the drills, with an inch of earth oa the top of it, in whioh were set 4 or 5 grains of corn, covered by about 2 inches of mould.

This was rather a long job, but it answers better than the use of machines, as the seed finds itself in immediate contact with the dung. The corn finds in the manure on which it rests all the food necessary to basten its germination and growth; and, as it inoreases in size, the roots and rootlet imbibe from the land around them, full of manure as it is, the supplies requisits to furnish fine grain and an abundant harpest. A small quantity of phospluate and ashes pas also sprinkled on the drills. The Direotor of Agricalture called our attention to the fact, that this field was in an exceptional state; otherwise, the use of machines (sowing-machines?) would have done just as well.

Treatginnt of Fruth-tabes.-. When the branches are cut or broken, a styptic should always bo applied to the
(1) Phosphate is a vaguish term. Mineral or ammonialin? Was the ash of wood or of coal? A. R.J.F.
wonnd; otherwise, water will, inevitably, enter thereby, and the tree will rot. An excellent material for this purpose is composed of: $\frac{1}{3}$ suet, $\frac{1}{3}$ resin, $\frac{\frac{7}{3}}{}$ bees-wax-e C_{2} ally suitablo for wounds made in pruning.

If this is thought too expensive (becs-wax costs $15 \mathrm{c} . \mathrm{a}$ pound), fresh oow-dung mixed with a little coal-tar will answer all parposs.

There are three good plans for preserving trees from the ravages of rats, mice, and other rodents: the first consists in treading down the snow round the trees for a radius of about 3 feet. Begin in March, and repeat aftor each fall of snow. Secondly, make a heap of earth round each tree 30 inohes in diameter and 18 inches high. Thirdly, the most simple way of all, sarround each tree with a triangle or square, made of boards, two feet high. The boards must be well fitted, to prevent the rodents from injuring the bark.

Green-mezat.-Indian-corn, Hungarian grass, and oats, are of the greatest utility as forage for cattle, winter as well as summer ; but they are costly, especially oats, which commonly sell for 50 c . a bushel at secd-time. When sown for consumption by cattle in the green state, corn is the most profitable : it may be sown very late, and the yield is enormous.

Corn, as we saw, requires rioh and well prepared land. It may be sown in suoh land as late as 13th or 20 th of Jaly; at which time the farm work is pretty light. Sown as above, the com may be cut by the midale of Scptember, and will probably be 51 feet high, yielding 25 tons to the arpent (equal to about 29 tons to the acre. Tr.). Considering the abundant yield, we should always grow at least an arpent of corn for forage?

Oats sown easly may be mown four or five times, but they should not be cut low, lest the roots should be injured.

Paturin des pbea, or frana forn.-A grass which, from ignorance of its good qualities, is too generally neglected. Sown very thickly, it forms an excellent pasture for miloh cows, and has the advantage of being remarkably early. In spite of the late spring, I saw on the 12th June stalles of this grass 22 jaches high, and berinaing to flower. Cut when in bloom, I have no doabt that this plant would make excellent hay for cattlo in winter; and it grows so fast that two orops a year might easily bo harvested. When allowed to stand too long, nothing will eat it; it should be fed off very early, and as the uplands dry off soonest in the spring, tho lowlands should be reserved for later consumption: nothing injares the latter soils more than oattle poaching them into mad before they are well dried. This grass is as common as it is good and early. (1)

Lrare.-Lime is commonly found in three states: carbonate, sulphate, and phosphate. (2)

- (l) I don't recognise the palurin by that name. June grass?
A. R. J. F.
(2) And in a dozen others; mariate, nitrate, ozalate, \&c.
A. R. S.F.

As phosphuric and is a food indispensable in the formation of gecin, we must come to the conclusion that phosphate of lime ahould be used on almost all soils, especially on clays and moory land.
In moory soils, the laok of limo producos cortain effects injurious to the quallty of the crops. These soils contain a great amount of vogetnble matter, and lime prepares this matter for the plants to feed upon by converting the aitrogeu hold in oombination into ammonia and nitrio aoid. It also neutralises the acid humic matter. Muck or black earth sometimes contains as much as 97070 of vegetable substances, and in these eoils, unloss lime, in a caustio stato, and phosphoric acid be liberally employed, the crop will be light in grain, though abundant in straw.
Lime is not a manure but an improvement. And, so, when land grows sorrel plentifally, it is an crident proof tha. it contains acidity in abundance, and that lime is wanted to dissipate it. (1) From the French.

> D. C. Emile Rox.

Selection in grain-growing.

BY JAMES OHEESMAN, MONTREAL.

The prinoiple of selection has long been appreciated by stook-breeders, and they have largely profted by the application of its teaohings. As applied to the growth of ocreals it has not found a very wide acoeptance, not having had timo to force itself on the attention of the average farmer. The founde: of the practioc of seleoting grain for seed is Major Hallett, F. L. S., Brighton, England. In 1861, ho planted tea grains of wheat, from a variety known there as Bellevuo Talavera wheat, which up to that time had been bown as a spring wheat, and was declared to be quite incapablo of withstanding the frost of wintar. (2) Nine of the ten plants from these grains were killed by the severe frost, but the other plant, although from the same ear, remained as healthy and vigorous as any of the winter varieties of wheat by their side. From this surviving plant sced has been selected, and grown year after year as a winter wheat. Close observation shows that in the cercals, as throughout nature, no two plants or grains are exactly alike in productive power, and henee, that of any two or greater number of grains or plante one is alFays superior to all the othors, although the superiority can only be ascertained be actual field tests. It may consist in several particular characteristios, as power to withstand frost; prolifioness; size and character of car ; size, form, quality and weight of grain ; length and stiffness of straw ; powers of tillering; rapidity of growth; and many others.
Throughoat continued observations and experiments, extending over twenty years, the grower has foand only three instances recorded in which there were two ears on a plant
(1) Sorrel, runex acclosella, almost niways hows itself on eandy and gravelly loams with a clay subsoil when such land is first brought into cultivation. The sorret diappear after drainage in places where, as in my part of England (Kent), lime is hardly ever used. "Tom Gisborne "says tbnt, as regards our cultivated crops, the acidity is a caput morturin-i. e. of ao consequence one way or
other.
A. R. J. F. other.
(2) Bellevue Talavera - a Spanish wheat, cultirated for many years by Col. Lecouteur, Bellerue, Jersey. The graia is long in sbape, and in colour of an opaque whito ; makes aplendid biscuite (crachers, not rolls), and is worth from 18 c to 25 c a bubiel more than ordinary white wheats. How Blajor Hallett can sag "it was sown up to the year 1861 as a spring whest and was incapable of withstanding the frosh " I don't nodcrstand, seeling that his neighbour Wm. Rigden, my old farm-tutor, had cercainly grown it regularly as a fall-wheat some years beforo 1862 , when 1 went to him. Tho crop generally ripens a week before otber wheats, a ω d renting farmers ussally have a feld of it, which is thrested out and sold in harrest time to pay the wages. A. R. J. F.
containing an equal number of grains, and one of these rolated to the Bellovue Talavera wheat, which must be considered quite exceptionai as to variation. In both the othor instances there was only a low stago of development, the equally finest two cars of cach plant containing but 59 and 49 respectively. In every case whore the plant presonted an oar containing 60 grains and upward, the next best car was of less contents than the finest one. la twenty such instances takon oonsecutivoly and without omission, and reforring to seven variocies of wheat, the average differeace hetroon the contents of the first and second ears was seven and a half grains. The difference in four of these instances was only one grain, but in othor four it amounted to from seventecn to ninetecn grains. The superior productive power of a gran over that of another may oonsist in a greater number of ears upon the plants it produces, or in their individually containing a greater number of grains.

During these investigations, no single oiroumstance more foroibly illustrated the necessity for repeated selection than the facterthat, of the grains in the same ear, one is found to oxcel greatly all the others in vital power, as in the case of the Bellevue Talavera. The original two ears together contained 87 grains; these were all planted singly. One of them produced ten cars containing 688 grains, and not only could the produce of no other single grain compare with thom, but the finest ten cars which could be colleoted from the produce of the whole of the other 86 grains contained only 598 ; yet supposiug that this superior grain grow in the smaller of the two original ears, and that this contained but 40 grains, there must still have been 39 of these 86 grains whioh grew in the same ear. So far as regards contents of ears.

The doxt year, the grains from the largest ear of the finest plant of the previous year were planted singly, twelve inches apart, in a continuous row; one of them produced a plant consisting of fifty-two eare; those next to and on oither side of it of twenty-nine and seventeen ears respectively; and the finest of all the other plants cousisted of only forty ears.

The following are the chief points of the standard in the order of their importance, but all have to be duly considered:

1. Hardihood of constitation.
2. Traeness to type.
3. Quality of sample.
4. Productiveness.
5. Power of tillering.
6. Stifness and toughness of straw.
7. Earliness of ripening.

The systom of selection here pursued is as follows: A grain produces a plant, consisting of many cars. Then, are planted the grains from these ears in such a manner that each ear occupies a row by itself, each of its grains occupying a hole in this row, the holes being twelve inches apart every Way. At harvest, after the most careful stady and comparison of the plants from all these grains, the finest ono is selected, which is proof that its parent-grain was the best of all, under the peculiar oircumstances of that season. This process is repeated annually, starting every yoar with the proved best grain, although the verification of this superiority is not obtained until the following harvest.
Tho subjoined statemont will illustrate this system of aclection, is the facts given are due to its influence alone: tho find of aced, the iand, and the system of cultare employed, were preciscly the same for every plant for fcur conscoutive years; neither was any manure osed, wor any artificial means of fostering the plants resorted to.
The following table shows the oharacter of each additional generation of selcetion :

Yesis.	EVAS SBLKCTED.	Ileight.	Containing grains.	Number of cars on finest stool.
		Inches.		
1857	Original ear.	$4 \pm$	47	-
1858	Finest ear.	61	79	10
1859	Finest ear.	71	91	22
1860	Ears imperfect fiom u'pl	.	..	39
1861	Finest car.	83	123	63

Thus, by means of repeated selection alone, the length of the cars has been doubled, their contents nearly trebled, and the "tillering " power of the seed inoreased fivefold.
The following table gives similar increased cuntents of ear obtained in the other varicties of wheat:

Grains in original car.	KIND OF THEAT.	Grains in improved car.
45	Original Red commenced in 1857.	123
60	Hunter's White commenced in 1861.	124
60	Victor:a White commenced in 1862.........	114
32	Golden Drop commenced in 1864....	96

It was supposed by ancient writers that the powers of grains differed in relation to their positions in the ear. This Major Hallett investigated in 1858, by planting the grains of ten cars on a plan showing their several positions in the ear. The only general result, among most conflictiog odes, was that the smaliest grains, those most remote from the centre of growth, exhibited t hroughont, most unexpeotedly, a vigor equal to that of the largest; and that the remarked worst grains, in onc or two ${ }^{\text {n }}$ ntanoes, did not by any means fall so far short of the good ones as had been axpected. Frequent trials have also been made of the comparative power of large and small, plump and thin grains, and, in the oase of oats, which produce a small grain attachod to a large one, trials as to their respective powers-with uniform results, vis, that, in good grains of the same pedigree, neither mere size nor situation in the car supplies any indication of the superior grain.

Very close observation during many ycars leed to the discovery that the variations in the cereals which Nature pre. serts to us are not only hereditary, but that they proceed ufon a fixed principle, and from them hos been educed the following law of development of cereals:

1. Every fully-doveloped plant, whether of wheat, oats, or barley, presents an ear superior in productive power to any of the rest on that plant.
2. Every such plant contains one grain whioh, upon trial, proves more productive than any other.
3. The best grain in a given plant is found in its best ear.
4. The superior vigor of this grain is transmissible in different degrees to its progens.
5. By repeated carcful selection the superiority is aocumulated.
6. The improvement, which is at first rapid, gradually, after along series of jeari, is diminished in amount, and eventually so far arrested that practioally a limit to improvemont in the desired quality is reached.
7. By still continuing to select, the improvement is mairtained, and practically a fixed type is the result.

Thin Smeding wita Selfetion.-Let us discuss what is possible by a combination of thin seeding with sclection. In order to do this, we must look at the present modes of cultivating the cercals. Gonfining ourselves for the moment to what alone, we know that from two to five bushels per acce are sown. The bushel of ordivary wheat contains 700,000
grains and more, and, taking two bushels per aore as tho quantity sown, we have about $1,500,000$ grains per aore. Major Hallett has counted at harvest the number of ears upon a quarter of an acro of wheat (drilled 20th of November with one and a half bushel of seed per acro, and whioh proved an exceptionally heavy arop of fifty-six bushels per nore), and the number of ears found was 934,120 per acre, or not so many ears as the grains sown. Here, it is ovidont, from the number of grains sown, that cither the natural powers of tillering could not have been exeroised, or that the greater part of the seed must have been sown uselessly. Doubtless some of the grains did produce more than one car, but this onlymakes the oase still worse for the romainder. Not only was the number of ears below that of the grains sown, but each car was but the stanted survivor of a struggle for existence. A high authority has said that, if a sauare yard of thickly-sown wheat be counted in sping, and the supposed number of ears then recorded, it would be found that ninety per cent of them vould be found missing at harvest. Beyonu all question, in thickly-sown wheat, very many of what anpoar as stems in the spring dio away before harvest, and bave thus grown not only uselessly, but in the struggle for existenve havo starved and stunted those which ultimately came to cars.

In ordinary English crops the number of ears produced per acre being taken as about $1,000,000$, and the crop as 34 oushels, we have, at 700,000 grains per bushel, $23,800,000$ grains per acre, or an average per car of only 23 to 24 gralns; and, if more than $1,000,000$ ears per acre be olaimed, it must be at the expense of their contents. Five imperial pints $(=6.1$ Amerian measuro) of wheat per acre planted in September, 12 inohes $\times 12$ inches, gave $1,001,880$ cars per aore, or 67,760 cars in exoess of those produced on the other side of the hedge from 11 bushel, or more than shirteen times the seed. Again, $6 \cdot 1$ pints (American measure) of wheat planted 12 inohes $\times 12$ inches, October 17 th, gave 958,320 per acre; and planted similarly, October 4th, 966 , 792 per acre; while one bushel, planted Uctober 15th, gave only 812,160 .

Two plants of 24 ears each gave 1,911 and 1,878 grains, or 79 per oar; 20 ears per foot, at 48 grains only per car, would produce 88 bushels per acre. All the conditions of time and space being fulfilled, we can obtain from a single parent-grain as many cars as are ordinarily obtained from lwenty grains, with this most important advantage, viz.: theso cars being produced from plants which have attained (or nearly so) perfect development of their growth, contain more than double the common number of grains, and their contents may be largely increased by the continued annual selcotion of the most vigorous parcnt-grains. These small quantities may be drilled on a large scale in the following manner : The object is to insure perfect singleness and ragalarity of plant, with uniformity of depth. The two latter may be obtained by the drill, as may the former also by adopting the following plan: The seed-cups ordinarily used in drilling wheat are 60 larga that thoy deliver in bunches of grains, consisting of six or seven, which fall together within a very small area, from whioh a less produce will be obtained than if it nad been occupied oy is single grain. Tho additional grains are thas not only wasted, hat are positively iajurious. By using seed cups which are only large cnougt to contaic one graia at a tine, a stream ar single grains is delipered, and the dosired object, viz., the dopasiting of grains singly, at onee attained. The intervals in the rows Will not bo caxactly nniform, but they will be sufficiently so far all practical purposes. The width of these intervals will, of course, depend on the speed with which the seedbarrel revolves, which can be regulated at will by adjusting
the gear which drives it. By this mode of drilling, the advantage of the "broad cast" system is obtained (equal distribution), as the rows may be olose together, and the grains as thin m in the rows as may be desired. (1)
The orop should be hoed, as soon and a frequently as possible, with a horse hoc. If the seed has been sown early; this should be done in the autumn, as it causes the plants to tiller and occupy the whele ground before winter sets in. It is essential to the success of thin seeding to keep the land perfectly free from weeds during the growth of the crop.
Now, what are the advantages of Major Hallett's system? A bushel of pedigree wheat (original red) produced from single grains, planted 12 inches 12 inches, contains abuut 460,000 grains, while a bushel of ordinary wheat contains 700,000 or more grains. Therefore, in two crops consisting of exactly the same number of graius, the crop from thin seeding would be upward of 70 bushels against 46 bushels per acro. Again, a bushel of pedigree barley, produced from grains planted singly, contains 390,400 graias, while a bushel of ordinary barley contains upward of 550,000 , or, in two crops of equal numbers of graios, the one would be 55
but on the showing, wo have a pessible saving of $\$ 77,500,000$ in sced only for the wheat orop alone. Ono dollar and a half per bead of the population is worth attention.

The roots of wheat sown in August become by the middle of October so developed as to render it quite safe from lifting by the frost, and attacks of wire-worm would be almost unknown. If winter wheat were all drilled by the 10 th of September, the entire fall would be at the farmer's disposal for clearing the land and sowing spring orops early. The orop wou'd not becomo winter proud, or be laid by the summer rains. The harvest would be from two to three weeks carlier. The harvest being over at least a fortnight carlier, would be of immense advantayo in clearing land. Seasons are frequently most unfavorable to late sown cereale, but they are scarcely ever so to early-sown oues. On wull-farmed lands, on the commun practice, the average contents of the wheat-cars must be from 20 to 30. Were it giown on Major Hallett's system, the average contents would be, at the very least, from 40 to 60 , and far more likely, from 60 to 90 ; for under such a systam, so smail an ear as one of 40 grains is quite the exception. And this increase of the contents of the cars

BERESEIRE BOAR.

bushels, the other 39 bushels, per acre. Thus, in the increased size alone we get and increased crop of forty to fifty per cent.

The eaving of seed from such a plactice is immense. The Wheat area of the United States is not less than $40,000,000$ acres, and the average seeding ic very much higher than two bushels per acre. But, if these figures be taken as a basis, we shall not err on the wrong side. To plant grain at the rate of one berry to each square foot would be equal to 43,560 grains per acre of 4,840 square yards, or less than two English quarts. This shows that the farmers of the United Sthtes have it in their power to reduce their consumption of seed.wheat from $80,000,000$ bushels to 2,500 , 000. Good seed-wheat ought ce.tainly to be worth a dollar a bushel out West, and is worth very much more in the East;
(1) Thin sowing, on land in good condtion, no doubt produces the heaviest crop. The danger is, that if any disease attacks the wheat, the luxuriant thin sown always catches it fearfully, while the thicker sown only suffers moderately. The ordinary drill will plant 2 pecks to the acre with regularity, hut Newberry's ciober wonid drop a gallon per acre if required. I have seen in Ontario a dozen picces of wheat covering the ground by the end of September with only a bushel to the acre. In Quebec, I should not like to sow less than 6 pecks, I confess Spring wheat not less than 12 pecks-it has no time to tiller. A. R. J.F
would be obtained without any diminution of their number ; the orop, in fact, would be doubled where now fairly good farming yields 30 Lushels to the acre. These promises are not illusions, sinee a good many men in European countrics, and in the United States also, have accomplished great results in agriculture by the application of sommonly accepted principles of sciencc. Major Hallett has himself grown 216 bushels from three acres with one bushel of seed, or 72 bushels to the acre; and over a whole field 82 bushels of barley, weiging 57 pounds to the bushel, from only two gallons of seed per acre.
In reference to the point of time of sowing, it mast be borne in mind that the rate of growth for wheat during the different months in England is as follow:
Wheat sown on September 1st

Taking this as the relative rate of wieat-growih, when it is up, then wheat which is up on the lst of September makes in the first fifteen days of that month a growth equal to that of the whole of October; in the next ten days, a growth equal to that of the whole of November; and, in the last five days of Sepfember, a growth equal to that of the
first twenty days of Decomber; or, in other words, wheat up on Septomber lst has a double autumn for a growth before wister sets in; and, indeed, the case is in reality muoh stronger than this, for, if winter were to sot in oarly, there would be for wheat sown at the ond of Ootober little or no autumn growth above-ground. The importance of every day (especially the carly days) of Soptember growth aan not bo overrated. To illustrate this, Miss Hallett made two very accurate drawings, whioh her father produced publicly. They were taken on December 30th, of two plants of wheat, each from a single grain, one of whioh was up on September 1st, the other on September 19th, and had thus lost the growth (after having come up) of the first nincteon days of Septem. ber, the development of the carlier being double that of the later. These facts olearly point to the necessity of sowing in August. Nature, too, in shedding the grain it August, seems to indicate it as the proper time, or rather as a not unfit time, or the species would not be perpetuated. Within the present century it was the custom of many English farmers to go to wheat-showing whenever it rained. during harvest. (l)
conduoted between the end of August and the 10th of Soptem. ber, at the rate of two to three gallons per aore; for oach week later to the end of Soptember, a gallon extra. When obsorving the unimpeded growth of coreals, thero is seen to exist a striking variation in their modes of growth and powers of production. The superiority of some individuals over others is so marked in various ways as to lead irresistibly to the conclusion that it must be hereditary, and on this fact the whole argument for seleoted seed-grain rests.

Let it not be supposed, from what has been stated, that the use of artificial fertilizers is sought to be prejudiced. On the contrary, if improvement can be secured without them, it will bo imwensely greater when aided by them. But, while the purchase of good sced of pedigree stook in small quantity, though the farmer bought it at six dollars (Major Hallett frequently obtains five), would be a very economical proceeding, if he does not use more than two gallons, the cost of Which would only be one dollar and a hale per aore; the buy. ing of common seed at one dollar, and using two to three bushols, involves a greator outlay. Therefore, in proposing this reform, it will be seen that it does not mean spending

BARKSEIRE SOW.

In determining the space to be assigned to each grain, we must deal with seed the result of continued selection, for the vital powess of the different grains of ordinary wheat are so very unequal that it would be impossible to fix upon any uniform distance. In planting grains of wheat in August, singly and twelve inohes apart each way, all the requisite conditions of time and space seem to be best fulfilled, as will be seen further on. Wheat has been planted September 9th, 9 inches $\times 9$ inches, and produced at the rate of 108 bushels per acre. It must be borno in mind at all times that it is a matter for mature study and judgment to correctly apportion the quantity of seed to the time of sowing, and to all the existing surrounding circumstances. A large quantity of seed sown early, is just as much opposed to reason as a small quantity of seed sown late, and in fact more so, as in the first case it will become wiater-proud and can not succeed, while the season may be such as to enable the latter to do so. As a general basis, the drilling of wheat on a large scale might be
(1) In 1850 , it was the castom in the Soath of England to begin wheat sowing about the 15th of October, except onthe Cotswold hills, a bleak spot, where the new wheat in stack in one field was neighbour to the "brairding" wheat in the next. If the winter was mill, the sheep were turned in sometimes as often as 6 times in a eeason.
more, but less, on seed. The weeding, if dope properly, may cost two dollars per aore; and if, after this, the grower has any money to spend on fertilizers, let him invest it by all means. As a general rule, it may be confidently asserted that what would be saved in the outlay for seed would pay the cost of horse-hoeing.

Considering how rapid is the improvement of the process of selection during the first five years; its effect on the wheatcrop of the country would be enormous. If we take 600 , 000,000 bushels of wheat as the present product (which is much less than it is), than doubling the crop and adding at the very least fifty per cent improvement in quality to the grain, We should obtain an increase of about $\$ 750,000,000$, Without bringing an additional acre into cultivation. I.have not said much of thie effect on the corn-crop; but on a crep of $1,750,000,000$ bushels, at an average value of 38 cents, it would, if but fifty per cent increase in five years could be realized on 27.5 , be astounding. To-day; the areain com is not less than $65,000,000$ acres; 12.50 bushels increase, at 40 cents per bushel, would be five dollars an acre, or $\$ 325$, $000,000: \$ 1,075,000,000$ of additional food in the short space of five years would give a new impetus to the milling trade in this country, and the hog-business would grow with a rapidity out of all proportion to its past career. Neither
steel nor electricity oan promise anything so great in so short a time, and no roform accomplished in this century will be able to measure this one.

Who will be the first to carry out such a scheme? In the Washington Department of Agriculturo and in soveral other parts of the country, pedigreo cercals have been used, but the resulta have not been taken auch advantage of. The experimentalists of the State College farming-stations are especially qualified to lead in se important a work. The time is not far distant when intensive rather than extensive oulture must he the rule of Amcrican farming. Already, in the East and in the South, men are finding it pays better to cultivate 100 aores well than 300 aeres carelessly. When the hunger for large areas abates, wo may hope to see attention paid to better cultivation. The toil and misery, disappointment and mortification, of skimming broad acres for meagre results must give place to farming for profit. The change, when it comes, will be aided to some extent by professional guides and public men, but the foundation for it is within. The farmer is a near neighbor of hard facts, and living in days when everything is questioned, ajad nothing is taken for granted-when every institution in the land has to make good its claim to existence by the, results produeed-he is not likely to be duccived, or to grub any longer at the shadow for the substance. His wealth and happiness consist not in the number of his acres so much as in the principles of his farm practice. He will discover, as many of his confieres have already done, that the fatare of American agriculture will be determined by the extent to which fundamental truths of science are applied. (1)

OUR ENGRAVINGS.

Cuts to illustrate the articie on drainage; v. p. 57.
Bertishire Boar and Sour.-
A crupper strap for an untruly bull.-
We have found the method shown in the accompanying cut, to answer perfectly when properly applied. A new piece of three-quarter-inoh rope (C) is securely fastened to the ling in the nose of the bull and passed between the horns and along the back, and made fast around the tail, like the crupper of a harness. This rope is pulled tight until the pose of the bull is raised highi in the air. A suroingle, or belly-band (B), made with a broad strap having a slot or ring (B) on the back for the rope to pass through, is firmly buckled around the waist of the bull. A strap (D) is buckled round the horns and over the rope to hold it in place. The staff (A) is then attached to the ring in the nose, and if everything has been properly done there will be no danger.

The point which is to be enjoined is to see that the bull's nose is drawn as high in the air as it can be, and no mistaken idea of its being oruel should allow of its being half done, for it is only by lifting his nose high in the air that he is prevented from using his horns. A very new rope is liable to stretch, and therefore a good strap is better, and it may be shortened or leagthened at pleasure. The whoie process is similar to the use of the check-rein on a horse and is no more painful to the bull, while its use, of course, is only temporary. Rural New Yorker.

Crop report; Georgia.
 OATS

"Have not yielded as well as last jear, nor was the area sown
(1) There can be no harm in trying the experiment on a modcrate scale, though when I remenber the magnificent bariog which tbe fissex men used to grow with seed frem the fens of Cambridgeshire, their own barley being always sold for malting, and tho fen barley being "chicken-rictuals," I cannot be'p thioking that quality of soil and judicions cullivation aro more influential than pedigree. But then I am an old fogy.
to them so large. Tho quality of the grain, however, is go.lerally superior, though the straw has been short on account of the spring drought. The yield compared to an average is reported in the whole State, 87 ; in North and Middle Georgia, 89 ; in Southwest Georgin, 83; in East Gcorgia, 80, and in Southeast Georgia, 85.

The avorage yield per aore this year, in the whole State, is 14.5 buehels against 19 last year. In North Geargia the average yield is roported 17 bushels; in Middle Georgia, 15 ; in Southwest Georgia, 12; in East Gorgia, 11, ond in Southeast Georgia, 14 bushels.

whsat.

The yicld of wheat in the State, compared to an average crop, is 88 per cent ; in North Georgia, 81 ; in Middle Georgia, 88; in Southwest Georgia, 91 ; in East Georgia, 94. None is reported in Southeast Georgia.

The average yiold per acre in the State is one bushel less than last year. It was 8 bushels last year and 7 this. The yield per aore in North, Middle, and Southwest Georgia is 7 bushels, and in East Georgia 6 bushels. None reported in Sontheast Georgia. The wheat has, with the exception of a few counties in North Georgia, been free from rust or otber casualties, excopt the injury from freezes during the winter, and consequently the quality is generally good."

Georgia dous not seem, from the " crop report," to be in a very prospecrons state. Seven bushels (Winchrster) per acre can't pay', neither can 14 bushels of oats.

> A. R. J. F.

De omnibus rebus. ortb-bitina.

I see that a question concerning this vice is asked in the Journal d'Agriculture for June. I know of no cure, after the habit is confirmed, but a strap buckled as tightly as possible, without stifling the subject, round the neek at its junction with the head will be found useful in checking the practice. In all well managed Eaglish stables, the cry from the groom, "got at oribbing?" i. e. "what are you (the horse) doing, gnawing your manger?" is constantly heard, and prevents the commencement of the habit. It is a breach of warranty to sell a urio-biter or wind-sucker as sound. I have never seen a horse troubled with this vice since I have been in Canada.

Taste of wool in mutton.-A very erroncous expressiou for \& very disagrecable sensation. The horrid flavour arises from not emptying the eheep of its entrails immediately after death. A sheep should fast for 24 hours before bning slaughtered, and be emptied at once.

Why does the hind-shin of a bullocis make better and stronger soup than the fore shin, weight for weight? I wish our butchers wonld cut up the cattle in a different way. The two joints, " rump" and " aitch-bone," are unknown here. Why aitch ? A saddle of mutton, i. e. the two loins, cannot be had, my butoher tells me, beoause the slaughterers at the abattoir persist in breaking the sheep's back. The difference between the flavour of a saddle and a loin is not to be expressed in terms; and if the widest part (the ribs) is out straight across into double chops an inch thick, and quichly broiled, the writer will be thanked by the cater, and the remainder of the joint will not be found too large for a small family.

Crops in England.-I have flaming acoounts of the state of the crops in England. The weather seems to have been all that could be desired. Poor farmers, they have had a
turn of good luck at lasti The aoreage of fall-wheat is not as large as usual, but the othor grain and the pulso o.nps are splondid.

Crops in the United States.-It is difoult to arrive at the trutb about the condition of the orops in the States; lies apon lies are told in the reports for commercial purposes. California alone is said to have $1,000,000$ tons of wheat to spare, or $33,333,333$ bushols ! Whioh statoment, tho proverbial Jow, Apclla, would not believe.

Crops in Quebec.-On tho light lands the orops of all kinds aro doing well. I hear of $2 \frac{1}{2}$ tons and 3 tons per acre of new grass overy day. On the heavy lands, I regret to say, the reverse is the ease. The Montreal Star of July 10th states that the rain-fall of the last 3 months has not been greater than usual. All very true, no doubt, but the land was never dry, and the orops were 60 wn late. I am affaid for the clays.

Failure of the Clover-plant.-Boussingault, the French agricultural chemist, suggests that the failure of the cloverplant arises from the exportation of the products of the farm. "If," says be, "the fodder is consumed on the spot, the greater part of the constituents of the plant will return to the manure after passing through the cattle; and as a clovercrop takes up 77 lbs of alkali per aore (potash and soda), the food of clover will be always at its ordors. It will bo quite otherwise if the fodder is taken to market; and it is to the repeated exportations of the produce of artifioial grasses that the failure of clover, as observed in soils which have long yielded it in abundance, is undonbtedly due."

This Fon't do at all. In the Fastern connties of England, olover fails if sown oftener than every third rotation 12 years), and, there, nothing but grain, pulse, meat, and milk is exported. Tons upon tons of cattle food and and artificial manures are imported; and yet the clover fails on repetition. The canse of its failure seems to be meohesnical: the land becomes too loose to hold the roots. Boussingault recommends potash, wood-ashes, or soda: Lawes san find no manure for olover.

Liebig admits that the physical conditions essential to the fertility of a soil are usually neglected in the calouletions of tho ohemist; and the fact that, in the fine soils under the chalk hills of Sussex no good crop of wheat can be grown after vetches, unless a crop of rape or turnips, fed off by sheey, intervene, shows the importance of the point in question. "The sheop-fold brings gold", is an old and true proverb in my part of England.

I am constantly having it dinned into my ears, that there is no manure like farmyard dung. Well, nobody denies it. The question is simply this: have we onough farmyard duy to dress our land with as it ought to be dressed? We all know that we have not. Then why not use such assistance as the various special manures, artificial and natural, afford us? Bones, sulphate of ammonia, and nitrate of soda, bought of trustrorthy dealers and added to our home supplies, will never deceive us.

We all let our grain orups stand too long before outting. Mr John Hannam, North Deighton, Yorbshire, tried several experiments on the proper age for reaping grain-crops, with the following results as regards wheat:-

N• 1, cut quilegreon on 12th Augnat,gave a roturn per acre of 11170
" 2, grcen, 18th August.. 13 B 0
"3, raw, 26th August. 14180
"4, not quile so rath, 30th August...... 14 t7 4
" 6 , quils ripe, 9 'h Soptember 13118
Hence, a loss of 1148 per acre on $n^{0} 1$ compared with $n^{0} 6$.

11 -	0	58	${ }^{\prime}$	${ }^{6}$		${ }^{1}$	${ }^{6}$	b.
A gain of	1	64	"	*		"	"	
A gain of	1	68	4	16	16	"	*	
A gain of	3	10	${ }^{6}$	'		"	"	¢

Wheat reaped two weoks bofore it is ripe gives an advantage in every point, vis.:

The last item, woight of straw, I should have expected to have shown a higher perocntage. Mr Stephons, in argaing this question in his "Book of the Farm, says: "Upon one ocoasion I out down a few ahooks of potato oats when quito green, though full in ear, to allow oarts to pass to a place destined for the site of a hay-stack, and after standing till the rest of the field was brought in, they were threshed with tho flail by themselves, and the sample was the most beautiful grain I ever saw."

A baddish season for the vineyards, I fear. Heary rains and much wind at blooming lime must have done great da. mage. I haar nothing about the sugar-beet industry this year. Oan any one toll me how it is getting on? Pretty expensive work, hoeing heets with wages at $\$ 40$ a month 1 I hear that Farguson's and the Longuenil vinejards are doing well.

Devonshire butter.-The albuminoids of milk embrace tro constituents of similar composition, cascin and albumen. Casein (oheeso) is not coagalated by boiling, but albumen is. At $134^{\circ} \mathrm{F}$., albumen begins to show flakes in the liquid in whioh it is heated, and at $160^{\circ} \mathrm{F}$. it becomes solid; so that, in the manafacture of Devonshire batter, it is not necessary to heas the milk higher than the latter degrec. Still. as the hest is never equal all over the pan, and as stirring to equalize the temperature is not admissible here, I should be tempted to warm up to $170^{\circ} \mathrm{F}$. If a thermometer is used, it should be inserted before beginning to heat the milk, and placed in the middle of the pan half-way down the depth of the milk.

OXEN V. HORSES.-An experiment was tried some years ago as to the relative value of horses and ozen for agricultural labour. The oxen ate 250 lbs of tarnips a day, each! Each horse ato lo lbs. of oats daily; both having oat-straw ad lib. The conclusion arrived at was, that, on farms, horses should be employed exolusively.

SHEEP IN 184d.-What a Fonderful difference in the price of multon in 1844 and 18831 "Hampshire Down erres are kept on small farms for produoing carly lambs for the London marict, and tho ewes themselves are also sold fat in the antamn; the average cost of the ewes per head being about 248.; the retarn, including lamb and wool, from 50s. to 65s. Baker of Writlle, 1844 . Now, the ores, brokenmouthed or crones, i. e. old ones, would cost from 60 s , to 65s., and the return would be someth ang like this; fat lamb, 5 stone, at $8 \mathrm{~s}=40 \mathrm{~s}$. ; awe's wool, 6 lbs , at $10 \mathrm{~d}=5 \mathrm{~s} . ;$ fat ewe; 12 stone, at $6 \mathrm{~s}_{0}=72 \mathrm{~s}$; a total of $£ 5.27 .0$; more than double.

The cause and physical action of dem were little understood before the experimente of Dr Wells, in 1814. Before
that time, the formation of dew war, supposed to be the cause of the cold observod with it, and he, originally, entertainod the same opinion.
"But," ho says, " I began to see reason, not long after my regular course of experiments commenced, to doubt its truth, as I frund that bodics would sometimes become colder than the air, without being dewed; and that, when dew was formed, if different times were compared, its quantity, and the degite of cold which appeared with it, were very far from being in the same proportion to each othor. I came, at last, to the conclesion that dew is th. produotion of a preceding cold in the substanoes on which it appears; and that the cold which produces dew is itself produced by the radintion of heat from those bodics upon which dew is deposited."

The formation of dew not only does not produce cold, but, like every precipitation of water from the atmosphere, produces heat. As the earth becomes colder than the atmosphere on dewy nights, by reason of a radiating energy, and as the moisture suspended in the latter possesses the atmospheric tenperature, dew, with respect to the surface of the earth, is warm. Were it not that this antagonistic marming
by the heapy rain, and furmers, dronding the weather, wore induocd to let them stand too long before outting. A long experience has taught me that when grass is ready it should be mown. When eireen, elover and other grasses will stand lots of wet with very little damago; but when fully ripe, a heavy crop, such as was commonly to be seen this year, is ruined past redemption by one heavy shower. I saw plenty of olover, which was fit to mow on the 25th of June, laid, kneed-down, and still unout on the 18th of July. Bad, mouldy hay should never be given to horses. If, unfortunately my readers have any, I counsel them to out it into ohaff, sprinkle it with a misture of a quarter of a pound of linseed (orushed) in a gallon of boiling wator, with a little salt, for each head of stook, and give it to their cattlo. They will eat it, then, at all ovents, though it won't do them muoh good-oat straw, cut greenish, is much better for them. The hay.erop is a very pretty thing, and suits lazy people exactly; but I think some of us depend too much upon it. There ought to be a good scoond cut of closer by the ond oi Au-gust-cut it as soon as it comes into bloom.

A CRUPPYR STRAP FOR AN ONEUI F BULL.
process counteracts, on cloudless and serone mights, the rapid escape of heat from the earth by radiation, it is probable that the temperature of the soil would be depressed, during the sun's absence, by a greater amount than it is elevated during its presence; and that the extremes of hcat and cold, during the 24 hours, might be so great as to destroy vegetable life in the summer season. The least experienced observer may easily satisfy himself of the superior cold of the carth's surface, and elear nights, relatively to that of the atmosphere. Fioar frost-frozen dew-frequently forms on grass When the thermometer in the air indicates a temperature some degrees highor than the freezing point, $32^{\circ} \mathrm{F}$. This phenomenon shows that the earth, or the leaves of plants, were colder than the atmospherc, and belosp the freezing point, when the deposition of dew took place. Hence, buckwheat is often destroyed by frost, when the suspended thermometer has not fallen below $45^{\circ} \mathrm{F}$. during the night in which the damage was done.

There will, I fear, be an immense quantity of inferior hay this year. The poung seeds, clover prinoipally, were all lisid

Aaidity in land.-I remember perfectly well that, in the carly days of superphosphate, a correspondent of the English Royal Agricultural Society's Journal greva a fair crop of turnips with no other manure than dilute sulphuric acid! I cannot lay $m y$ hands on the passage at present, but I will try to find it in the library of the Montreal Natural IIistory Society. By the bye, it is rather curious that the whole series of R.A.S. Journals contained in that collection should be uncut!

Radiation.-Professor Huxley lately gave some experiments in a lecture to the Royal Society in London, to show the difference in temperature of the air and the surface of the earth. Two stout poles were fixed firmly in the ground eight feet apart, and a cord stretched between them. From the centre of the cord a thermometer was suspended, with its bulb four feet from the ground, on the earth was placed a pad of cotton wool, and on it a second thermometer, the objeot of the arrangement boing to determine the difference of temperature between the two thermometers, whioh were only four feet vertically apart:

Sky olodderss; honr-frost ; wind haít, from N. E.

Timo.	Air.	Wool.	Differenco.
$650 \mathrm{~A} \mathrm{M}$.	$31 \cdot \mathrm{~F}$.	$25^{\circ} \mathrm{F}$.	$6 \times$
720 "	322	241	8
740 '	34	25	9
7 P. M.	35	36	${ }^{9}$
730 "	35	26	10
830 "	34	241	91
940 "	33	242	8
1020	33	24	\bigcirc

A. R. J. F.

Practical Farm Drainage, by C. G. Elliot, Drainage Engineer. Indianapolis, Ind. 1882.

Though this little book treats principally of the drainage of prairip-soils, I do not hesitate to say that it will be found a great help to any one who intends to embark on the most effective of all land improvements. I find little or nothing stated in the work with which I disagree, and the information is given in very olear shape.
"Open drairs (ditohes) are simply an aid to natural drainage, acting principally upon the upper six or eight inches of soils. Late in the summor, if the season is dry, the lower soil will be found partially dry, but generally it never becomes well drained excopt at the surface. We mast have ditches, but they should be regarded only as neeessary accessaries to under draius."

TILE DRAINS.

"The good effects of drainago previously mentioned cannot be brought about by a system of open draina, only as such a aystem is constructed for the parpose of aziording sufficient outlets for nnderdrains. In observing, the process of natural drainage as shown in fig. 4, we see that suolh drainage is. very slow, since it depends upon the nature of the soil and the relation of the contour of the sub-soil to the surface. Open drains are simply an aid to natural drainage, aoting principally upon the upper six or eight inches of soil. Deeper than this, the soil, during the spring-time, is tough and compact; scarcely allowing the plowshare to cut and turn it to the surface, because of its adhesive nature. At the same time, a fery inohes of the surface soil which has been surface-drained and acted upon by the sun and air, will be friable. Later in the summer, if the season is dry, the lower soil will be found partially dry, but generally it never becomes well drained except at the surface. Wo must have ditohes, but they shoald be regarded only as necessary accessaries to under-drains, if we wish to realize their fall benefit. A tiledrain, in order to accomplish its parpose perfeotly, should possess the following requisites:
It should consit of pipes of sufficient size, laid at proper depths, to oarry away all water which may come to them.
Each line should bave a perfectly free ontlet.
The pipes should have sufficient space between them at the ends to permit water to enter.
Each separate line should be laid on an incline, or series of inclines, of regular grade.
The tiles should be of good material and well-borned, in order to be a permanent improvement."
Perfectly true, as to olay soils, the running water puddles the bottom of the ditoh, and prevents the drainage water from rising into it. In a gravelly, or moory subsoil, however, this is not the oaso: I have seen, in Berkshire, Eng., blocks of 10 aeres each, in a soil of the latter deseription, perfectly dried by ditohes 4 feet deep all round the pieces.

How water enter's a tile (pipe) drain. Fig. 1.-This little
out shows the way in whioh the water of drainage enters the drain.
how watbr enters a tile dratn.
" A correot understanding of this will holp us to determino the best way to make the joints, and also to looato the lines as regards their distance apart. The tiles should have their cads joined as olosely as the inequalities arising from moulding and burning vill adimit of. When this is done, there will yot romain suffioiunt space for the water to pass in or out, but not enough to admit soil, except in tho form of very fine. silt. At tho bottom of the drain and nearly on a level. with either side of it, the earth is saturated with water, that is, it can hold no more. The plane forming the upper surface of this saturated earth is called the watertablo. Figure 1 shows a cross-section of a drain, the ourved line $A B$ representing the water table, or line of saturation, the darker part of the figure representing the saturated carth, and the lighter portion above the water table the drained soi.. When rain falls upon the surface it descends direotly downward by the force of gravity. When all the particles ${ }^{\circ}$ of the drained soil contain all they will hold by absorption, the water passes down until it reaches the saturated soil; when, as it can go vo further, it saturates the lower portion of the drained soil, thus oausing the water-table to change its place and rise higher. As the water table rises, the water rises through the joints of the tiles. nad they being inelined, a flow begins and continucs until the watertable recedes to

Fig. 1.
the floor of the drain, whan the flow ceases. It will be seen that the water-table will vary in height with the quantity of drainage water in the soil. When the water table rises to the top of the drain, the tile will discharge a stream as large as its calibre. If the water-table rises higher than this, additional head is given, and the velocity of flow is increased, brit the dopth of drained soil is deoreased. The fact that the tiles are porous does not increase the flow or add to their draining properties. They would be as suitable for draining purposes if made of glass, or of glazed ware, as when made of porous olay, for they will be tazed to their full capacity by water flowing into the joints. The water-table does not extend on a level indefinitely on cither side of the drain, but rises as it recedes, the angle of rise varying with the nature of the soil. This-faot will be alluded to again in the disenssion of the distance apart of the drains. "
A better desoription could not be given. It puts an end to ti: absurd idea of a drop of rain hunting its way between clods of earth, and at last trickling into the drain. Gravity does it all, and no water enters the pipes until the whole body of earth up to the surfuce has received as innoh water as it can hold.
As for the dopth at which drains should be laid, we must notiforget that, nfter drainage, air takes the place of the sarplus Fater. The inert soil matter is slowly changed into plant-food, making the whole depth of drained soil the natiral home, or feeding ground, of the roots of plants:
"I have „ften been interested in noting the ideas most
peoplo have as to how far and how deep the roots of plants extend. The majority guess roots of grass and clover penetrate between five and ten inches, and are surprised to find that hey reach soveral fect. I have some roots of timothy, clover, and other plants, dug from a vary heavy clay soil, a good quality of brick clay, se compact and hard that a sharp knife, in cutting it, leaves a sarfuce as smooth and shiny as it would cut on the end of a pine board. I have traced the roots of the timothy to a depth of two feet and four inches, and the clover three feet and two inches. A number of years ago a very intelligent German farmor, named Schubert, made some very interesting observations upen the roots of plants as they grow in the field. An excavation, five or six feet deep or more, was dug in the soil so as to leave a vertical wall. Against this wall a jet of water was played by means of a garden sprinkler: the earth was washed away, and the roots of the plants growing thercin laid bare. The roots thus exposed in a field of rye, in one of beans, and in a bed of garden peas, presented the appearance of a mat or felt of white fibers, extending to a depth of about four f'cet.
"Roots of wheat sown September 26, and uncovered the 26th of April, had penctrated three and a half feet, and six weeks later about four feet, below the surface. In one case, in a light subsoil, wheat roots were fonad as deep as seven feet. The roots of the wheat in April constituted forty per cent of the whole plant. Hon John Stanion Gould, I be-
"For convenience in leveling for drainage purpose, we begin at the place which wo consider the lowest point upon the farm or field, and make a proliminary level survey in order to find the clevation of the lowest portions of land requiring drainago, and the distance of such places from the common outlet. We assume the the starting or outlet point at the surface of the ground to be 100 fect abovo an imaginary plane below called the datum plane or dalum. Placo the instrument at some convenient distance from this point (the distance will depend upon the power and acouraoy of the instrument), take a reading at the point A. fig. 8, which we will assume for illustration to be four feet; add this to the assumed elevation of Δ, and we have 104 feet, which is the height of the line of sight or of the instrument above datum. Now take the rod to B, and take a reading, which we will assume to be two feet. Subtract this reading from the height of the instrument and we have 102 as the elevation of the point B. Change the instrument to some plase beyond B, as at C. Take another reading at B, oalled a backsight, or commonly a plus sight, which we will suppose is 1.5 feet. Add this to the elevation of B for the height of the instrument in its new position, which is 1035 feet. Take a reading at C. which is one foot. Let these operations be repeated until the elevation of all points desired is found. Observe, that at every change of the instrument a back-sight must always be taken upon the last point at whioh a reading was taken, and

Cut 2.

Cut 3.
lieve it is, says that he "has seen the root of Indian sorn extending os ven feet downerard," and Prof. Johason states that " the roots of maize, which in a rich and tenacions earth extend but two or three feet, have been traced to a length of ten or even fifteen feet in light, sandy soil. "Roots of clover, when growing in a rich, mellow soil, extend far, both laterally and vertically. Prof. Stockbridge "washed out a root of common clover, one year old, growing in the alluvial soil near the Connecticut river, and found that it descended perpendicularly to the depth of eight fect." Lucerne roots are stated to reach a depth of treenty and even thirty feet. Alderman Mechi, in England, tells of a neighbor who "dug a parsnip, which measured thirteen feet six inches in leagth, but was unfortunately broken at that depth."

THE NEABER 4 FEET DEEP THE PIPES ARE LAID, TEE BETTER -

Cut 2 shows a faulty outlot, and needs no description.
Ler elling is too often neglected. No one, however, who wishes to do draining-work to the best of his abilily, should omi' it. Thepractised eye and hand of men who, like some of our English drainers, have passed thirty or forty winters at this job, may generally be trusted, but even they tometimes make mistakes Cut 3 shows the process in a very practical manner. I tried to describe it in words in my artieles on drainage in the Journal for December 1880, but I left off with a horrible sense of failure. Let Mr Elliott try:
its reading added to the elevation of that r sint for a new height of the instrument. Also subtract every fore-sight reading from the height of the instrument, to obtain the elevation of that point.

Cut 4 presents a good outlet, built of stones or brick, the pipe is divided by a wire passing through holes drilled in the tile to prevent the entrance of vermin.
"Junctions of the main and small drains should alrays be at an augle as nearly 30° as possible. If a greater angle is necessary, the mouth of the branch tile should be ourved " cut 5. This and most of the other points were falify treated in my artioles on drainage before mentioned, and I have nothing to add to what I said there.

Abtiud R. Jenner Fust.

THE CULTURE OF SHEEP.

GEN. CASSIOB 3H. CLAY.

Feed and Water.

IT is useless to attempt the culture of sheep without grass. Sheep are gencrally said to be costive. Thie ia the case only in large areas where watcr is soarce and the grasses dry. The intestines being long, on dry food the moisture is exhausted before the excretions are voided. But I find when my sheep are in the finest state of culture they are no more costive than cattle or horses. Sheep fill go longer without water than any of our other domestic animals because as they alwass prefer the young, juicy grasses and weeds, there is more
water taken into tho system in their oase than in that of other stook in feeding. But sheep, if allowed, will water caoh day as regularly as cattlo or horges. The constitution of the shecp is, however, adapted to tender, juioy grasses, and hence in England, a moist country and full of grasses and succulent roots, the sheep have attained an improvomont which oan only be rivaled in suok places as this, where the sheep graze all the year round. In the North, where grass fails in winter, roots, euch as turnips, beets, cte., should be fed every day with hay, straw, fodder and grain, or whatever, cles is used. But here thoy will paw away the deopest snows and graze, and only need a little grain and hay when the grass is weakened in natriment by excess of cold. For nearly thirty years I have eaten sheep in every season thus fed, and always find them fat enough and at times too fat, even in winter. There is quite a rage now about siloes and ensilage; but I am not at all convinced that this system is practically useful. It was no doubt known to the anvients, and its disuse seems to be an argument against it. I am of the opinion that dry corn-fodder out, even in the North, very fine and fed with beets, grair and cotton-seed, or oil-cale or turaips, will be cheaper and more wholesome than any ensilage. I give my opinion. I have never tried it, and I never will. I have known many sheep lost by feeding whole grains of maize in bulh to sheep. Hence, my father was in the ha bit of sowing this grain broadeast to his sheep; and I have

Cat 4.
followed his example. They will in a fem minutes piok up their rations of a gill or a half a gill as quiokly as a daicken. But when eaten in bulk, instead of cuewing eaoh grain. they will swaliow it rapidy, and colic or diarrhea is the consequence. When corn is fed in barns and woughs, the grain should be ground isto meal or grits, and if some hay or ground cob or other " roughness " were mixed with it, so much better would it be.

TEE DISEASES OF SHEEP.

Anyone looking into English works apon the diseases of sheep would be deterred perhaps from their culture. The sheep has a small brain and weal- -nervous system, and in consequence yields readuly to disease. It bas therofore been my study to avoid diseases, especially here. The consequence has been that to me almost all the diseases of sheep are prac. tically unknown.
The rot, the scab and the foot-mt, the most formidable diseases of English sheep-culture, are to me strangers. The sheep-fly, at times, kills two or three per cent of my flock, and other seasons more. This fly, like the Estrus bovis io cattle, is a great noisance to shcep. As soon as the weather gets Farm the fly attacks the shcep, feeding on the mucns of the nose, and laying its egss there. After it has gono through the larval state it falls to the gronnd, and there rests as a ohrysalis till spring, when it comes out a fy and again attacks the sheep. Some of them making their way into the interior bones of the head, enter the braia, and late in the vinter sill the sheep. I have cut them from the brain as large as an
ordinary peach borer, say three-quartors of an inoh long, thiekor, with a similar head and body. It hae been said that coal-oil poured iato the nostrils after the symptoms apper suoh as stapidity, vartigo, aud standing pithout appat motion in onc place. will kill the larvo, but I have nover suooeeded in curing a sheep. These flies seem to run the sheep almost mad, and they will lie a long Summer day huddled together without moving or feeding; at night, they venture out. Whenever I cateh my sheep I put pine tar on the nose and face, and as long as this lasts I think it a security against the fly. The same remedy is used by putting the tar about salt troughs so that their noses touoh it. No doubt tar is good, but the loss is so small that I don't care to worry myself and the shesp about the fly. Sometimes the sheep's foot grows iato too long an outer hoof on soft grounds, when it must be trimmed with a sharp knife, but not to the quick. I don't find it necessary to wash my sheep with tick cures. Fat is a soverciga remedy against vermin, though I make the shearer kill what few ticks are seen; and I pat sulphar in my salt troughs in the early spring, when they begin to rub themselves.

By patting on bells, a size between the ordinary sheep and cow-bell, in the proportion of one bell to ejery five sheep, I lose but fer sheep from dogs. Sheep-killing dogs are generally timid, and the great olatter of the bells alarms them; and in reasonable distances the master can come to the rescue

Cut 5.
with the shotgun. It is a good plan also to pat cows with young calves among sheep. They rill attack any dog that appears and run bim off. If all else fails, they may de poisoned with strychnine, or eanght in pens gradually sloped and open at the top like the old-style wolf-pen. Bat after all, my prinoipal loss, as great as all others pat together has been that the South Downs, being short-legged and very broad on the loin, get on their baoks and, unable to turn over, die. When the editor of the Indiana Farmer, who risited me over a year ago, was told of this, I sam an incredulous expression on lis face; so without ado, I sont for my shepherd and asked him about the fact, which he at once proved. As the value of the Sonth Downs has improved of late gears, I have adopted the rale to have tho shepherd visit them all onee a day, count, and turn over those lying on their backs. (1)
This last year I lost for the first time several of my lambs of 1882-none of my old sheep boing affected-although I turned them together ather the young ones began to die. I was told that it was probably the rot, bat tarning to a fall treatise on that subjeot I found no symptoms of that disease, especially no flokes in the liver. The sheep ato well enongh, but dwindled in flesh, and in a ferm months died. On dissection I found all things normal, but some small pimples on the lower intestines ; so I attribute it to maiaria, similar to typhoid fever in man. The summer was unusually wet, and my lambs I found, being separate, bad kept under one tree all the season, for I had failed to move them in the par-
(1) I should think so! A. R.J. F.
ture as they were well divided into groups ; I had with them few cattle and great abundance of grass. The disense, however, ceased in the fall, and some that were emaciated have recovered their usual flesh. I have thus named all the ills of sheep that have come under my obse vation, and attribute my exemption from disease to the peouliar olimate, soil and breed, for the South Down is no doubt the most hardy of sheep, ard salt and ashes are great aids to health. Cuuntry Gentleman.

Steaming F63d for Cattle. Letter from Mr. Crozier.

Eds. Cojntry Gentleman.-I am in receipt of your fa or of Jan. 23d, and in reply to the questions you enclose, I beg to say I have not steamed any feed for cattle for the past three years. I still steam for my hogs and horses. I grow large quantities of corn fodder, cut it green, and put it up in large stooks in the field until it is cured ; then it is hauled to the barn and put by for winter feeding. It is cut up in half-inch lengths, also the same quantity of peas and oats, say ton for ton. These are mixed with a ton of pulped mangolds, 400 pounds of bran and 400 pounds of grouad oats, and a little cottonseed meal and salt. The whole is thoroughly mixed and left until it commences to heat a little. Then each corr gets one bushel basketful night and morning; and afterward cach cow gets peas and oats.

My experience in steaming is that it produced more milk -in fact it strained the cows too much, and the calves when dropped were not so strung as they are on tho feeding now given. I Enow that we get more butter now than I did while steaming. Last season, from January 1882 to January 1883, I sold 9,100 pounds of butter from 32 cows, and would have done better but for the very dry, hot summer we bad here. During the season of 1881 I made 9,540 powads of butter from about the same number of cows. Were I selling or making milk for market, I certainly would steam all the food for the cows, as it increases the milk record, I think, some 15 or 20 per cent. It is to get the most butter with the least expense that I now feed cors; as I depend entirely on butter to meet my bills, which it has done ap to the present time.

ONIONS.

"An onion is the most vilificd and worst traduced esculent there is, and yet it is one of the most delicions, to some per sons, that the earth produces. There is one thing that it lacks, and that is popularity. I know men who, if they experience the slightest whiff of an onion, become so sick that they are in the deepest imaginable misery for hours thereafter. What I eay is no exaggeration in the least. Assistant Prosecuting Attorncy Hooper is afflicted that way. On the other hand there are those who are so passionately fond of onions that they would rather eat a mess of enions than to sit down to the finest banquet in the land General Sawiel F. Hunt, of Ohio, is one of them. General Hunt is an enthusiast on itie subject of onions. He told me once, that every time he visits the residence of a friend of his, who makes a specialty of raising a particularly fine species of onions, he eats so many that he is ashamed of himself. Many a time he slips off to a restaurant, and enjoss a feast of his favorites in several courses. He says those are the happiest moments of his life. To the traveling man, the onion is the best friend in the world. You can't think of any shape that an onion is not good in: boiled, sterred, fried, baked, fricassed, escalloped, roasted, piekled or ram, they are palatable and delicious. Cooked with potatoes, beefsteak, turkey, or duck, they are exceedingly savory. Just let a fellow banging around the country, disgusted
(1) Precisely ms idea. A. IR. J. F.
with the fare he receives at out-of the way hotels or boardinghouses, eat a raw onion, and see hovi it will brace him up. if you have taken too much tea of an evening, and feel the worse for your bout the neat morning, manage to get outside of an onion or troo, and see how it will help you. Onions are excellent cures for heavy colds, as everybody knows. Then, when a fellow becomes wakeful, just let him fill up on nice sliced onions. Gracious to goodness, what a comfurtable drowsiness will come over him ! He forgets all care, and sinks into a regular old-fashioned, forty-knot suooze that does him a power of good, I tell you. "Poultry Journal.

Onions are good, there no coubt about it. Many a time have I gone down into the country in the middle of the London season wo cat them, alroays allowing a blank day to elapse before my return to town. Spania:ds and Portuguese live upon onions, almost, and a genuine Welshman will eat you half a dozen at a meal; not mild, tame things like ours, but pungent potato-onions, the very smell of which as he cuts them, or rather champs them with his tepth, has often brought tears into my eyes. If any one desires to know to what degree of perfection stench may be brought, let him go to the gallery of any theatre in Spain or the Soath of France, and thecombined odours of onions and garlic will—faugh !
A. R. J. F.

Saving Manure in Summer.

There are differeat modes of saving manure the materials for which accumulate on the farm. The common or carelesa farmer throws out the clearings of his stables, and allows his cattle to run in the yard, their droppings and the stable manure being washed awry by rains, and all the liquid portions wasted, except such as may be accidentally absorbed by the straw and litter. Others, more carcful, secure the liquid manure by means of gutters in the stable floors, or by the uso of enough litter and absorbents to prevent its waste. If much straw is employed, the manure heaps are left esposed to rains, if there is bat little litter, the heaps are sheltered to prevent washing. These various modes of treatment are mostly confined to the acoumalations during winter: but to obtain the largest amount, the required care should be continued through the whole year. Too often a waste of materials is permitted in summer. The aniount of manure might be greatly increased by saving all that nay be had the year round. Compost heaps may be formed for securing liquid as well as solid matters that are often permitted to become lost. Housckeepers are sometines puzzled to knowf what to do with the various refuse substances at house-cleañing, and straw beds bave been actually emptied into the public streets. Weeds from the garden share the same destination. The tops of early potatoes are left scatiered over the ground to the annoyance of the futare plownian, instead of devoting them to the manure heap. To these might be added the serapings of gatters and ditches, dooryard leaves maste from the kitchen, bones, and fish, the daily cleanings. the pig pen, pea vines, vault cleannggs nheich have been mized by daily additions of coal ashes or road dust, and druppings from the hen-honse; and then, throwing over this compost-mediey a snffioient amonat of slops and other liquids to promote some fermentaiion, in s for months the heap may be worked over after some decomposition has taken place.

The farmer and gardener who takes the pains to secure these fertilizing materials accomplishes tro objects in one. He clears away offensive matter, and he adds to his yearly supply of manure. By carefally preventing any waste at his baras, besides adding all these resources, the amonnt of tomemade fertilizers may be at least tripled, as compared with the amount obtained by the carcless farmer. (1)
(1) An exaggeration, of courso-gratly increased, no doubl
A. R. J. F.

Quite coarse and apparently unpromising materials may be converted into finoly pulverized ferthlizers by means of some fermentation, and working over after rotting together for some months. In this conueotion, and for lllastration, the mode by whioh fine manure is sometimes made for the nicer gardening operations, may be alluded to. The various coarse and firous matters, or common manure, 18 alternated in layers with road dust, turf, leaves, \&c., and made into a square heap. A depression is made in the top in the form of a shallow kettle, to receive slops or liquid manure. The heap should be kept moist by the supply in thes reservoir, but not so wet that the air cannot penetrate it to promote fermentation. In the course of a few months the heap will be ready to work over In large quantities, thib manure will be a capital thing for top dressing the ground when sowing winter wheat; on a small scalo and fincly pulverized with a due amount of sand, it will answer vell for window-gardening.

Country Gentleman.

Killing Daisies and Thistles.

Eds. Country Gentlearan-Many farmers fail to find time to pall thistles and mustard in grain, and white and fellow daisics in meadows. Where grain-heids are fall of thistles, or jellow with mustard, the grain must be destroyed if an attempt is made to remove these weeds by hand. Such fields ought never to have been sowed to grain, as no-more than an unprofitable half-crop can be expected-often not that. Ficlds tbat are overrun with weeds should be thoroughly summer fallowed, not simply plorred once after spring work and before haying, and the weeds allowed to ron to seed during the rest of the scason, but plowed well at least a halfdozen times, commencing in early spring and extending until late fall, with the pulverizer kept at work in the intervals botween plowings. The farmer who does this work consciestiously will bo most agreeably surprised as the good results aecompliched in a single season. Although land may be full of weeds, seeds germinato and are destroyed by subsequent cultivation. Land cannot be cleaned while foul seeds lie dormant in the soil. There are ficlds which have comparatively little of mestard or thistles, and these shonld be removed by haad before they ripen their seeds. Thistles and mustard, both, mature faster than grain, and can be removed carly enough in the scason, so that the work will not materially in jure the grain. This work should be attended to at once.

This is the time when the meadors should be searched for white and jellow daisies. Unless they have blossomed, it will require a close search to discover all the daisies. If the grass is light, it is more convenient to wait ontil the daisies are in blossom, as it is then mach casier to get them all. It is somershat difficult to go over a meadow that will cut from troo or three tons of grass per acre, and make a clean job of palling daisies, unless they are in blossom, and cren then, such rank grass is quite apt to hide the daisies. The proper method is for a man to take a sharp hoe and a basket, osing the hoe to cut up the daisies, roots and all, and putting then into the basket to carry them from the field. Un account of the difficalty of finding the plants in the grass, it is advisable to go over the meadows twice, at an interval of a reek or ten days. If the deisies are palled and thrown down in the grass, the chances are that, sheltencd by the grass, they will take root and ripen tucir acide. It also a good plan Then operating the mofer to stop and dig up any daisies Which escaped the first cramination, and in such a case it is advisable to burn them, as the seeds are apt to be well matu:ed. There is a very usefal implement manufactured for the express parpose of digging daisies. It is similar to a hoe, excipt the edge is notched into several sharp tecth, which makes it much more efficient than an ordinary hoe.

It is a very good pian to mow a meadow carly, if it is in any way foul. To say nothing of the quality of hay mado from an early cutting, it certainly is worth while to out the weeds early enough in provent their ripeniog the eeeds. I also suggest that it is suspeoted that any manure on the farm is made from bay or grain containing foul sceds, it is a good practice to pile it up for six or eight months before using it. Such a course will bo very apt to prevent the germ. ination of foul sceds. Daisies rarely grow in grain, and mustard just as rarely in meadows. A heavy crop of clover is sure death to daisies. They seem to be smothered by the ranker growth of clover, and fail to mature their seeds. In a field where there is a growth of daisies, a generous use of fertilizers, especially of barnyard manure, and keeping the field seeded to clover, using an extra quantity of seed for this purpose, and breaking up every two years, cultivating for a while and again seeding to clover thickly, will finally eradicate the daisies.
E. K. Moreland.

St. Lawrence Counnty, N. Y.
Management of Poultry Manure.
Eds. Country Gentleman-A subscriber to your paper writes me a private note asking what I consider tho best method of preserving and preparing poultry manure for use. This is a matter of general interest, and I beg space enough to reply to this question in this way:

Ponltry manure is the most valuable of our home-made fertilizers : bat, like all other manures, it is not because it is made by fowls that it is so valuable, but because of the pecularly rich feeding of the fowls. This should not be forgotten in regard to all kinds of manure, because we can mako them rich or poor as we feed the animals well or ill. Poaltry manure of the ordinary kind is more or less valuable, according to its condition, as is shown here : There are in 1,000 pounds of hen manure 560 pounds of water, 16.3 of nitrogen, 8.5 of potash, and 15.4 of phosphoric acid. In 1,000 pounds of guano there are 148 pounds of water, 130 of nitrogen, 23 of potash, and 130 of phosphoric acid.

But if we get rid of the excess of water in the poultry manure, we nearly double its proportionate value, and bring it so much nearer in quality to guano. Again, gaano is reduced by decomposition to a very soluble condition, and its actual value is increased because of the immediate availability of its elements. If we can, then, so nrepare ben manure as to make its poteutial value available at once, we further add to its antual value, aad bring it still nearer in comparison to the value of the standard fertilizer gaano. Now this we can do, as suggested by my correspondent, by preparation. But this preparation must be such as will not waste any volatile element, which may be set loose in the decomposition, and that yet will produce the required decomposition. I have stadied and experimented over this matter, and think I have got this manare in its most available condition, because I have increased its solubility four times above that of its fresh condition. Further, I have added to its fertiliziog value by adding to the feed of my forls bran and crushed fresh raw bones, which they consume with avidity, and with the best results as regards their health, production of egss, and the certainiy of hatching and producing strong chicks. But these are mentioned only by the way. In testing poultry manuro with corn and melons, compared with stable manare and guate, I find a large handful of the former to be equal in every way to a heaping shovelifui of lue iest atable manure; and a small handfal (about one-fourth as mach) of guano. The manure is prepared in the following manner : Every week the droppings are scraped up from the floor, which is of earth, and put into barrels and kept ready. The floor is then well dusted all over with earth dug from the yard out-
side and thrown in very easily through the window; air-blaked lime is thon dusted over this until it is quite white. Tho droppings fall upon the lime, and when thoy are gathered, they aro soraped up with tho lime and the oarth and put into the barrels. The barrels arg kopt out of doors, but oovered to precent exposure to rain. In three months tho contents of a barrel beoome a brown soft puwder, having but little appearance of the manure left, and as 1 have said, is four times as soluble as the fresh manure when it is taken out of the house-lime and carth mized with it. Of the fresh manure, but two to threo parts are soluble after drying it, while ten to twelvo parts of compost, aftor three or four months, are soluble. I think manure made and prepared in this way is worth $\$ 20$ a ton, or seven times the value, here, of the best stablo manure,and one-fourth the value of Peruvian guano.(1) A flook of twenty-two hens, kept in oue house, has made, since November last up to last week, five barrels, or about 1,000 pounds of the mixed compost, of which at least one third is clear droppings. This quantity I am sure is worth $\$ 10$. I choose air-slaked lime in preference to plaster because of its useful effect in decomposing the manure, and the abundant organic matter-deonying sod-in the earth. 'the oarth absorbs any ammonia whioh may be formed in the com t^{\prime} ostis, in fact, one of those nitro bods which were once used to produce nitric acid by th. nitrification of urganic matter by the help of lime. The misturc is packed solidly in the barrels and is kept moist enough by absorption from the air to effect the nitrification. No doubt longer keeping wuald add still more to the solubility of the manure, ity nore completely disorganizing the organic matter, and more thuroughly effeoting the nitrification. Plaster will simply keep the clements in the manure inert, and mould be like putting the talent in the napkin or burying it in the earth, it is safe, but it has made no usury. lime effeots che neocssary decomposition, which plaster does not.
iz. STEWART.
Bergen County, N. J.

Hindrances to Cabbage Culture

- Eis. Cuestix Gentlemas-F. K. Morcland has miir ton well un the Farm Culture of Cabbuges (p. 41"), in which, though he speaks of the cabbage rorm, he mention. no remedy cacept "a fertile, zuil and carly, close-heading raricties," which he seome to thiuk "sufficient to onreome the evil." " This has not done it in any case. True, the Filderkraut has a very cinse and remarkably hard head, and that, with me, hres always eeauped the ravages of the worm, which some attributed to iis wonderful solidity, being, as some said, "so hard and solid that the worm cannot cu into it ; "bat, in my acquaintance with 1 t, I seldom sats a π urm ou the heed at all, the reason beng, as I think, tha. the outside and first-grown leaves upon which the moth lays its egss, and, of course, on which the inrere are hatched, fall or roll antay so far from the head that the worm has no way of access to it.

In the farm culture of cabbages, where one or mure acres are sot with them, where it would take too much time asd be too much trouble to the farmer to pick them from, or apply some exterminatur to crery head, a very good preventive of the depredations of the mutk i. to belt the entire field with a setting of turnips, say onc and a half rods wide, as the miller usually flutters only around the edge of a large field, and is about as fond of the turnips (Swede) as of cabbage. The turnip is little, if any, damaged by the worms. To guard against worms, we should not rish to make the setsing of a large fied all Filiderkrauts, or all "carly" ones, eved though both were proof against them.

Another evil to which the cabbage is subject, of which he speaks, is "club-foot," from which cause alone he has had
(i) It should be analysed. "I think' won't do now-a-dags.
A. K. J. F.
to ro-sot almost an entio plat. A certain remedy for this cril is salting, of whioh a tablespoonful may be put about the plant soou after it is set, though a better way is to broadeast a good coat of it, raking in or not, as you please, though raking is tho better way. liew, if any, orops pay as well as oabbages. If you hoe or stir the ground about them early in the nuormang, they will grow all the better for it. Montgomery Cuzuly N. Y.
O. E. HEWES.

Ensilage

Thgadvocates of ensilage are not to have it all their own way, even on the other side of the Atlantic. Professor Brown, of the Ontario College of Agriculture, has been carrying out some exporiments in feeding dairy corws with ensilage, anrl in his report he states:-" In competition with swede turnips ensilage corn gave 15 per cent less milk, 30 per ceat lese butter, and a poorer marketable butter in colour. The specific gravity of the milk obtained from the tro kinds of diet differed but little, but the vield per cow per day was 33lb. from turnips, and only 281b. from casilage. The percentage of oream stood respectively 12 and $12 \frac{1}{2}$ per cent. Hay and bran were used with both. "Professor Brown regards the use of ensilage as ndvisable only as a supplementary food or relish. Lord 'L ullenache has filled his first silo at Peekforton, and is confidut if meting with nuceess Lurd WalsingLam diso has cunstruoud four stors, and filled sume of them. He is covoring the grass with bran and then weigbting it wih boxes of gravel to onsure the exclusion of the air. The first will be opened in Novenber, other tro later on. and the last will not bo upeacd till about April nest. The Duke of Hawilton has constructed two siloes at Great Glenham, Suffule, and filled one of thend lant weck. They are built in the bays of a barn, and arc 22 feet long by 10 fret deep and 17 feet wide. Euglish paper.

Destruction by and of the Wireworm.

Miss Ormerod has given an interesting and valuabie lecture on " he wirerrorm ; its history, attacks, and remedies. " In these days of agrıcultural depressiuc it is disagreeable to find that the rirecrorm lives fur five years, ieeds all the time, and likis almost every hind of food. It is an insect, therefurc, which should be cleared out as speedily as possible. But it is obviously impossible for farmers to go through a hundred ace holding looking for worms the size of a short picee of fattined wire, thuogh they have three pairs of little claw legs, and jarss which they use only toc readily. The next best thing. therefore, is to destroy the eggs, render the residence of the grubs uncomfortable, or starve them by growing suod whioh they cannot cat. By compressing the soil they are unable to move about freely. By feeding sheep and cattle on the ground with cake, the worms get starved and trodden out of exi:-nnee. Chemical manares are also found serviceable. The burning of all grass, weeds, and roots is an effective, means of clearing aray the insects by destroying their shelter ; while the earthing (sic) of lithr fur use atter decaying is equivalent to dressing the ground with wircturms. About the only thing which they cannot stand is Kurrachee, or Indian cahe-realig, mustard cake : they feed grecdily apon it, and then dic. Mastard, therefore, is a good ciearing crop. (1)

Fruits for Export

At the reekly meeting of the Massachusetts Horticultural Society, held Jan. 27th, the subject of "The best kinds of fruits for export," occupied the discussions of the day. E. W. Wood, chairman of the fruit committee, recommended more
(1) And rape or cotton-seed-cake. broken to the size of a bazlenut. I duubt that sowing mustard will have much offect, as it is the garging that kils the brutes. A. R.J.F.
attention to grape culture for this purpose, and said thoro was a goneral impression that it coses a gront deal to grow grapes under glass, but that this could be very oheaply done in a cheap houso with the vines planted outside, without fire heat. The expense in such a house as but litlle more than out dnors. The border need not cost more than a flower or rose bed. Our warm sunstine gives a flavour greatly superior to that of grapes raiod in Furopo, and an English gardener, on tasting some Black Hamburghs here, without knowing the sort, thought ho had never seen a grape so fine. Mr. Wood also recom: noded late pears for export, atad named Bose, Duohesse d'Anjou and Dana's Hovey. Alluding to the fact that in $182^{\prime}, 1,400,000$ barrels of apples wero exportod, he aid that ninatenths of these wero Baldwins, and rooommended incroased planting on tho thousands of acres within twenty miles of Doston, whore the land could be bought for fifty dollars an acre. If nnis sold fresh, ovaporated fruit would find a market.
C. F. Curtis said that applos wero sold wholly at auoulon when received at liverpool, in lots of from twenty to a thousand barrils. Retail lot and odds and ends wore not wantod. If well and tightly packed in the barrele, they would bring highor prioss than sunb as would shake. The Baldwin was tho only sort which could bo obtained iu sufficieat quantity to soll by the thousand barrels. J. B. Moore reminded fruit growers that Boston is ono day nearer to Europo than NersYork. Whioh may make the difference between profit and loss. Mr. Wood said that the Newlown $P_{1 \text { ppin once brought }}$ the highest prico in London, but now the Baldwin wonld bring more. W. II Huat recommended the Huat Russet as better in sotae respeets than the Baldwin, as the tree is much morehardy and the fruit was not injured if once frozen. Mr. Curtis spoke favorably of cold stowage, by whish the keeping could be prolonged at least a month.

Country Gentleman.

$\$ 40.000$ IN PRESENTS

 Partial List of Presents to Be Civen Away,
 10
10
2
1
1
1
1
10
10

 THEFARM, FIELD AND FIRESIDE

 Fashion Department, Goadio and Embroldory Worke inustratomi of diferoge parts

FARNG, FELD AND FIRESIDE, 89 Randolph St., Chioago.

 SAMEA DVPONT, Hntanzin. Flan

 - "Ono articie in your paper in worth the whote iriee of a fearin anbecriptiong.

A PPARATIS FOR TIE MANTPACTCRE ut s, rup and sugre fom sorghum. Threerylifuder prosece, cartminc zoju ongincs; mekug vain, evaporators; thermonneters; areumeters- For sugar tnaking: Agpasmas for boining in vacuo; crystalltuing woilers; knuaders; contrifugale dr.

As wo nurselves are minafacturors of sugar nad wrup from the canc on a large scate, wo aro tua po. sficols to turnish nil moressart informalion contior ird with this new plant. \& cifcutar will be sent on roquest to that ofert
E.S. SA ANY,

E3eauharnois.

AREFULLX SELECTED SEEDS MOR TIHES farm anisarden, for sato by

WILLIAM EWING \& Co [Succossors to Ewing Brothers) Sood Merchants. 142 \& 144 Mc(1all St., Montra:
Besides a fall lane of all the bost rafoctios of FARM \& GARDEN SEEDS

SEED GRAIN

Wo call tho spocial attontion of Farmers to our
Stock of Stock of

GRASSES
for permanent pasture,
CLOVERS AND FORAGI PLANTS for kreen fecdins, and isrite correspondence from intonding purchasors.
FLOWER SEEDS AnD RLIOWERINQ PLANTS of overy varioty.
fillustrafed catalogues formarded on applica.
troe.

WELLS, RICHARDSON \& CO'S Improved BUTTER COLOR A NEW DISCOVERY.
CrFFor soreral years wo have furnishod tho Dairymen of America With an excelient artificial color forbutter; 80 meritorlous that it met with great suceses evers wiure rewiving the - Dairy fairs

Dair muit by patient and scientifio chemical research we have improved in eeveral points, and now offor this now color as the best in the world. it Will Not Color the Buttermills. It

Will Not Turn Rancid. It Is tho
Strongost, Brightest and Cheapest Color Made,
toind, while prepared in L , is is no componnd ed that it i, impussible fur il tu becume ranes GFBEWARE of all imutations, and of ail other on colors, for they
LCF If you cannot get the "Improved" writo us to know where and how to e - It withoub extra

WELAS, MICIILRDSOX \&CO., Barington, Ft. sept. $188 \overline{2}$.
HOR SALAE; PURE BRED SHEEP -SHROP (long shre Downs, Hampshire Downs, and Lincolns SAML.EADY,

Importer and breeder, North Halles, P. Q. march to aug.
MONTHEAL IORSE EXCHANGE, G. I'R. VI stock yards, Point St. Charles, Monireal. Will bo open for business on Thursday, 16th February, proximo.
All busmess connected with the purchase nnd sale of horses, includnge shipment, customs, and mane rance, conducted on strictly commercial principtes and at low rate of commission.
Fiorses and mares imported on order from Great Britain and France.
Monthly sales by auction of horses, carriages, and harness, calalognes of eales will contain a descriptholl of cach horse which will he guaranteed as des crabed, correspondence solicited.

C M. Acre \& Co., Montreal. References: Hon. A. W. Ogilvie, Senator Juseph Hickron, Esig, Gen, Man. G. T,R ; M. H Gauth, Esq M. P. ; Thos White, Esi., Trafic Mian, G. T.R.; J. J. Curran, Esq. M. P.; James McShanc Jr., Ésq., M. P. P.; D. McEachran, F. R.C.V.S march to aug.

AMBER SUGAR CANE

NETV MACHINERY.

NEW PARAGON GCEOOL DESKS.
M. BEATTY \& SONS, Welland, Ontario [2-Early Amber Cans Seed imported from Southern States. Send for Catalogue and Prices. may 10 sep .

TROTR SA, T, TB

THOROUGHBRED SHORTHORN. IIERE FORD.and AYRSIIIRE BULLS, of all ages, and at reasonablo figures. Also about 29 pairs of pure Bronzo turkess bred from the best imported strains. Apply to

JOHN L. GIBB.
CEEDS: Evans' 120 page Ilicstrated and deecriptive catalogue of unequalled veace TABLE
cants. cants.

WHLIAMM EVANS, Scedsinan, Montrcal.
TAWN MOWERS and SPRINKLELLS,GRASS Wringers. TVashers and Mansics, Cuilery, ploted Ware, and generalstock of Hardes, curiery, Pleted J. L. A. SURVEYER.
ug. 82. (Facing the Court Houso, Montral)
TSTABLLSHED 1839 -FROST \& WUUD. 1 Smith'sFalls. Ont. Manufacturers of Mowers \& Heapers, Horsc Hay Rakes, Sicel Ploughs, Cult Faiors, Ficld Rollere icc. \&c.
For particulare, Address:
may 79.
LARMONTH \& SONS
33 Colicge Sure et, Montréal.

1885 Vgrefabio and Flomer Hecd Catalocrue for 1888 whi be sent Frbs to all who apply Customers of last season need not write for it All seed sent from my establishment warranted to be both fresh and true to name, so far, that should lt prove otherwise, I agree to refill the
order gratis. M, cullection of veyetable seed is one of the musi extensive to be fuend an any American watalogue, and a large part of it is of my own growing As tho
 Potatoce Marblehead Enrly Corn, the IIubbard
 and akcore of other new Vegetables, I invitethe patron: those who plant my seed will be found my tiest advertise. ment James J. H. Cregory, Marblehead, Mass.

AWARD OF GOLD AND SLLVER MEDALS.
NEWELL \& CLIAPIN, 118 Bonavonture Stroet, Montreal.

These mills grind all'kinds of grain; as well as phosphates, quartz, plaster, clay, de., de.
They grind veay fast and without heating ; bequite no dressing; less labour; are simple in construction; less POWER nequined.
Please call or write for particulars. nov, to oct.

BARBWIRE B Foncing. First Prize awarded us at Exhibition held in Montreal, Sept 1882, and Silver Medal for the Machine used in the Manufacture of Same
"The Mantoba." Four Point Barb Galvanized Steel Wire Fencing Send for circulars and Price Lists. The Canada Wire Co,
H. R. IVES, President and Manager, may 18s. Queen Street, Montreal.

F®OFEATE

YOUNG STALLIONS AND FILIIES FROM my Hamblitontan stalhon, "Armunus." Aho, Shorthurn Bull Cailers, Berkshuro pigs, and Letcooter sheop. Apply to J. SHUTER,

Elmwood Stock Farm, Lennoxvillo, P. Q.
Jan. to fob.
Petitencote, Monireal.-Mr.James Drum. mond offers for salc thoroughbred Ayishire caute from his well known herd. A foor year old A yrahire Bull, winner of severalprizes, for salc. Apply as above. jan. to fob.

THE BEST

 For the land.SURERPMOSPITATE
Of the bestquality. EXCELLENT

PARIS GREEN

Pure, or mixed with ground plaster. For salesat

MEssas. LYMAN, SONS \& CO., 332 to 386, St. Paul St., Montreal. nov. 1880.

TRENCR ECUNOMIOAL RANGES. - THE most convenient range for cooking, combining great cconomy in fuel with perfect work and greas: durability. They are absolutely perfeci in cvery respect. We call arrange them to warm, by means of hot watergall the rooms of alarge house at nnco as well as gerformingallitie requiremente of the kitchen. We have our cumaces, al honurent in the St Lawrence Eall, Ollaum Hotel, City Club the Convent of Hochelaga Good Shepherd Si Brite and in the houses of Mossrs, Altred pinsonnesili Ed. Barnard (Diroctor of A riculiure) Varennes and hundreds of others wht allow us to refer to them for confirmation of the above statomenis.
For more ample fiformalion, apply 20 the undersigned. BURNS \& GURMLEY sep. $1 \$ 0$.

675, Cratg St., Montrea'
WILLIAAL i, Vans, isiporter \& GROIVER ond of Field, Garden and Flower Seeds. Nurseries and Seed Farms, Broadlands, Cote St. Paul. Fruitand Ornamental Trees. Shrubs, Roses, Grecnhousc and Bedding Plants, Vegetable i'lants, simall Fruits de. Agricultural Implements, Fictilisers, tc. Warehouses, Nos. $89,91 \& 93$ Mt Gill Street (conier) $106 \&$ 103 Founding Strcet and over St. Ann's martet Miontrcal.-Catalogucs frce on application. may 1879.

Forksic.

DWES \& CO, LACHINL, P.Q.-BREEDERS tage horaos, Hereford catle, and Berksmiaz pigs.

To Agricultnral Societies and others.-Printing, Book Binding and Wood Engraving, on the most favorable term done by the Printer of the llustraled Journal of Agrioullure, E. SENELAL \& FILS, 10 St. Vincent St., Montreal.

