BULLETINS

OF THE

Arrial Exprrinuent Asgaciation

Bulletin No, XxvIII Issued MONDAY, JAM 18, 1909

MR. MCCURDY'S COPY.

BEINN BHREAGH, NEAR BADDECK, NOVA SCOTIA

Alexander Graham Bell
Editor
Gardiner H. Bell
Assistant Editor
Charles R. Cox
\ldots.
Mabel B. McCurdy
Stenographer

2atyy or corryartig.

2. zifitoriai Hitas and Commentas-

Jan. 8 conferenees...

Jan. 11 MeCuxdy ${ }^{\boldsymbol{*}}$ aroposition releting to prom pulaion.
2. Heysandanort Torkto

Jan. 1 Curtiss to Boll about details
of engine... .4-4

Jan. E Curtias and HeCurdy te Hell about trial of Goon*.................4-4

Jan. 4 Bell to Curtiss and meCurty about patemt matturs...................4~4

Jan. 4 turtiss to Tras. Bell about ItoCurdy ${ }^{\text {a }}$ a moversentB......................4-4

Jan. 5 Curtiss to Bell about Diree torx ${ }^{2}$ mee朗的. $4-4$

Jan. 7 HeCurdy to Benl about his arrival at Iona.......................... $4-4$
$\operatorname{Jan} 12$ Beli to Curtian about neoassity of his preseace here..................... $5-5$
Jan 12 Bell to Mauro, Comeron, Ievic
Lettera fron thembérs.
Jant. 2 Curtias so tris. Bell about shipe ping "gixvornhart ${ }^{\prime \prime}$ to Haddeok......6m6

Jam. 9 Curtias to Bell about braks tentis and "Gilvar-Dart". $.7-7$

Frian of the "toon" Jan. 2 19092 Jy J.A.D. HeCurdy.e-10
(Contilnued on next pase).

3. Bainn Bhreach Forks:

Beinn Bhrangh Foxperiments reported by the Haitor....21-22
Junt. 4 Fasting righatty of Drome
Jan. 4 Testing stability of "@uery*..... $11-12$
Jan. 5 Firat trial of the equery"....... $12-14$
Jan. 5 Tomting naxible hydremurrfaces on the Dhonnas Beag.................24-16

Jan. 9 second trial of the "Guery"...... 16 - 29
Jan. 9 Ieating flaxible hydromarfaces tipen the "Crab" .ne...................... 10 m 2a

Thoughts concerning propulaion: By J.A.D. MeCurdy..22-ms
Thoughta conoerning propulaion from the stand-
point of pure Phyaicas By A.O. Bell.........................24-89 General romarka..........................24-26
The vaiue of m...........................26-26 The vilue of $7 .26-27$ The value of 淠........................28-29

Aerial Propuision from the atandpoint of Marine
Propulaiont By 7.w. Baldwin.e.................................. $30-37$
Marine propelierb...................... 50 -31
Puiling Fextur puahing. $31-38$
Hegative propulaion...................38-52
Inclination of line of thrust.e..32-34
Variable Pitch........................ $34-36$
Propalier Balanee...................... 36 m 57
4. Hisgevimpecus Cormunicustiong:

Iunning cormentes- Santos Dunont, Fwonty-eight Wright Huchinea, Wright, Mark Anthony, wrights last triala, Wright at tome, oscar Oatergron.
(Continued on next page)

M2untrationa.

1. Blue print illuatrating arrangoment of Plesk
inie hydromarfaces on the Dhonnas Beag Jon.5... 15
2. The "guery" under way propolled by hor oon motive power and provided with four seta of hydro-murfaces Jth.9 (upper picture)17
3. The "Guery", deprived of her engine and man,
rendy to be toured by the Gxuldrie Jan. 9
(lewar pleture) 17
4. The "Grab on the Central Whaxp at Hoinn
Mrraagh atianding on her floxible hydro=
surfineen Jan. 9 (upper picture) 20
5. The "Crubl tewed by the Gauldrieg, and aup- parted out of water upon her flexible hydromaurfaces Jan. 9 (iower picture). 20

Conterences.

Jan. G, 1009:- The Hew Year ia alvaya a time Por making good resolutions, and the merabers of the A.B.A., present at Beinn Bhreagh, have come to the conclusion that it would be a cood plan in the future that the deaultory meetinga they have hold in the headquarters building ahould becane ragular daily moetinga at 4 P.Me, to talk over the work of the Taboratory and thet a journal whould be kept recording the pointa dism cuszed.

The Pirat regular conference was held Wednesday Jan. 6; present, the Chairman Dr. A.G. Hell, and Mr. y. W. Balduin. Alao Mr. Fillian Y. Bedwin, Superintendent of the Laboristory, and Mr. Gardiner H. Bell, Asst. Wditor of the Bullatin.

Mr. J.A.D. MeCurdy, Socretary of the A.B.A., arrived at Beinn threagh thia morning (Jan. B) and was present at the third eonference held this afternoon. A.G.B.

"hare are wit at ${ }^{\circ}$.

Jane 12, 1909:- Wheme are we att It will be is good plan for us to look back over the line of experimenta to see clearky at what point we havo arrived and what are the ohief points We have now so consider. This is more particularly necaasary new becauae we have arrived ay a pariod of depreasion. We have had our upa and downs and we have now arrived at a point When we are, all of ua, decidedly doan.

Curtias has had an aggravating tive with his engine. HoCurdy ooudin't $22 y$ hia maiver-Darte when he hud impertant witnesses prosent and the WLoon" failed to rise from the maters.

Balduin has been uneble to get hia now hydrodrove, the "puery", to rise on her hydromarfaeen.

I have plannea Brose \#10. 5 to oarry a man and an engine of the wesight of a man, and the ongine for wich I have been waiting weighe twe or three meng so that there deen not aeen much proppeet for mying the machine as a kite as intended.

How there ia one thing that atrikes me in looking back over our Airficultias. That we have, all of us, struck the saxe mang - a dirificulty in propulsion. Zhia aubjeet then ahould, I think, be caretuliy considered and discussed by us. I an not myself faciliar with the aubject of motora and therefore aubuit with diffidence a few elementwry thoughts for alscusation, relating to the propulaion of a flying machInes and I hove asked 通. HeCurdy to propare also a thort atatement of certain views he has expressed to me upon the awne aubject wich aqpeax to ne to be novel and to be very important if well founded. A.G.B.

Mocturdy's pronosision relating to Prenulsion.

(2) atven a woightioss aeroplene of a mpecified aros hand silted up in front at a speciried angle it will take a certain propeller thruat to move it horisontally against the resiatance of the air at a speciried speed.
(2) If this weightless aereplane travele horizontalIy through the ast at the tpeciried volocity and with the spocified inelinstion it will bo capable of supporting a certain loud.
(5) It aill take no more power to drive the losded aeroplane at the aupporting velacity than to drive the utw loaded one. The propeller thrust will be the sacie in both cases.

This ia an important proyoaition if true. A.0.B.

golanrane frosu Hermers.

Curtian to Bo2ke

 daj. Have bovinty murer piten apeed, and two hundred and seventy-five 1b3. puil. Seven and one-hale poot propeller. pirect drive. Iovolutions nine hundred and sixty.

> (signed) G.H. Curtiss

Cursias and YoCurdy to Boll.

Hermendeporto Hozer Jono Is 1909:e Cave vaudoville pere
 succeastul, aecond aorodrome teat fairly aucceastu, third submarine tent moat aucceasful of ali. Brperiments ended.
($8 y_{\text {gnod }}$) Curtise wnd HeCurdy.
Bed1 to Curtisas and MoCurdys.
 rormance. Hope Heturay Uexe Patent mattera at a etandatill wating you arrival here. Please cose on at once.
(Bigned) Grahan Bell.

Curtign to MrBa Be2\%.

$$
\text { (signed) } 0 . \mathrm{H}_{\text {. Curtise }}
$$

Curtisa co Boll.

Horroondsport, H. Y_{m} Jane 5. 2009telin2l oosse at once if abm s0lucoLy neoomairy but have to raturn by the fourteenth for Direetor ${ }^{\boldsymbol{6}}$ a Meeting, and othar important buainess. See letter. You have wy proxy in patent zattors.
(signed) G. H. Curtiss. $^{\text {. }}$

Hoturdy so Bel.

 tomignt.

Bullatin Ho.xXyIII -is

Hed to Curtias.
Baddeck, HeStan Jans 22, 1909s-Your presence nocesaary to बevoinine wo nawne sobagignod to the appliestion for a patent. Fo pracy will meet the oase. Plamso core frradistoly after your bireetor⿻${ }^{6}$ s keeting if poanble.
(signea) Oraham Bell.

Med. to Mauro, Gayaron, Lounta Maakie.
Haddeck, Hosea Jan. 22, 2909:- Hewnondaport mombers made ne cocvents on apecification. PLease formard anvended claims for our conaldoration as to nowes of inventors. All morbers will be hore at the and of this weok.
(signed) Graham Bell.

Curelas to Mra. Bo2d.

To Itra. A.O. Bnil.

Hannondgnorta Hoxor Jane Zan 2909s- John ia plarning to loave this afterneon for Baddeck, although we have not had an opportunity to try the oboon*. Nverything has been reody now for aome time awaiting favorable weather conditiona.

Inoien and his acheolminte were here for a day or two last weote, and I believe John ia going by way of Toronte. I an sorry we oould not have made the teate with the "Loone, but it is pretty alow buaineas in the winter tire won you have to mait a woots or sore at a time for a good day and than aorething tany haspen to provent a auocessful trial. Te are preparing to ghip the milvermbarte to Beadeck. The orates are made and we wili etart taking it down tomorrow. We have dolayed thia m ilttie thinking we night get a ohavee to give it mether trial. There hat beon a lot of problems, eapecially with propeliarB, which were hard to figure out.

We have had no crouble with the ongine of late, asm oept for the freesing tw at the time tro Bell wan heres in faet. the only real ongine trouble we have had wan the cylinders blewing eff. We will bring the engine to the ahops and give it a therrough teat before shipping it to Buddeck. Wha have kept the moter in one machine or the other nearly ail of the time and have not had any opportunity to make any long runs. As seon as this can be done I mill cone to Baddeck. (signod) G.ll. Gurtias.

3ulletin Ho.xOrvIII

Curtian to Be21.

To A.0. Bex1, Baddeck,

Hermondaparte. Hoyer Jane 9. 1909: since reading in the last Builetin about Malarin'a brake teat of the sour eyinder motor, I oun eonvinced that it vill be beat to make a thorouts teat of the oight oylinder berore ahipp ing it to Maddeck. We will sase teat a motor aimilar to the one you have as it is evident that Balderin was not getting full power, whough 10 HaP . at 1000 ia not so bad conaidering that the ongine at the sime would mpeed only se 1400 iale.

All the parta of the mailvermbart", together with materials, teols, silk, ete* belonging to the Aasociabion, went forward by expreas Jan. 6th. Atter reaching Bath it Whe found neeeasary to send by freight al far as Wiagara Yalla on account of the siae or the package. If the Canadian Brpreas cars will accocmodate it, it will 150 by expreas from there, otharaine it will go all the way through by frelght.

$$
\text { (signed) a. } \mathrm{H} \text {. Curtise. }
$$

 Beinn Hhreagh Jano. 9, 19098- On Jamanry 2, 1909 the WLoon". fitted with its hydromaxinoes, was taken fron the ahed over to the haad of the Iatre. Arter whe mas pleced in the water betweon har docks the engine was atarted by itr. Curtias and the operatoris aeat taken by Meturdy. At the asgnal to Let go the started aluggiahly Porward, and ntter rumning for about 200 yarde rose on her hydromurfaces with the pontoons completely out of "mater.

Trmediately it was noticed that inatead of ruming macethiy as was anticipnted, gradualiy gaining in apeed, a treandous ecamotion was ereated in the water my the hydrow surfaees, and the maximum apeod attained by the mochine peoned to be about 8 or 10 milem an hour.

After running down the Ieve for a short distance the machind whowing no increase of lift, the engine was aceidentally finut off by the broaking of an electric wire; thare being no wind, however, the was casily towed back to the (ook by neans of a rov-bont.

Hewnpaper men on whore reported that the machine was seen flying over the Lake and were very onthuaiaptie about What thoy thought a Inight. Fheir ixpression, however, was derived from the faet that, although the boats thenselves wore out of the water, they $\operatorname{didn}^{6 t}$ realise that the nydroe burfaces wore still on the water.

We were aetiafied by this time that the hydromure taees, as had alrondy beon auggeated by itr. Bell, wore eten
timen too laxgow. They had been made to rit to the boats in secketa so that they could be easily remeved. Fith the ald of this construction and the help of a save the hydro-gusfaces were entirely ramoved fron the bonta.

The first trial had beon mate arter Iive ofelock In the afternoon and it was, therefore, geite dartc; but by the time overything was in reediness for a aeoond trial the moon had come up and the whole Iake slooded with light.

About seven obelook the aecond trial of the moon" without hydromsurfnces was rade. As she whot from the dockit after the aignal maa given to let ge, I relt a autden jar and realiged at the time that whe hod atruek aesething profectIng fron the dooks, howover thought nothing mere about it st the time as in a aecond or two we were well out on the Lake. She had her old apoed baek again thia time and, aithough net measured, avened to be about the ame an in former experio ments (37 alzas an hour).

The course taken was about hall a msle dow the Take, twrning and coning baok. By this time the wind had risen to about, I chousd judge, 25 milea an hous, and so, before the rom-boat could get uy to me, I arirted to leemard of the deek about 200 reet. The fachine was, howover, easily towed to the doek, canal bot fashion, mon walking along the shore pulling by noans of a rope. Fo aooner, howover, had we brought: her abreast of the piers (the port pontoon being adjacent to the pieara) than ahe began to aink, the atarboard boat and
"ing going compiotely down in about 12 feet of water. The boat had aprung a leak, thit mas a certainty, and it was a queation among the men at the tine thether the leak was oanaed by the Jar aa ahe was $20 t \mathrm{ge}$ from the docks or whether I had run into sone floating loe which was quite abundant. Hy means of rope and pries the "Loon" was hauled fros the water without eamaing pry dovnge to the mikhine, and invaatigation ahowed that the atean poat or the atarboard pontoon had been ontirely ripped out by coning in contact With one of the posta of the piera as ohe was getting amy. This left a hole about is inches high by 4 inches broad. Fhile the machine was kept under way the water found not time to enter thia hole but as goon as the machine was brought to a atandestil2 the mater poured in tund as it was comparatively dark it was unnoticed by the apectators.

The nachine mas left on the ahore for the night and taken to the ahed early the next morning, Jamary s_{2}, where she was diseanilied and put amay for the winter.

$$
J_{\bullet} A_{0} D_{0} \mathrm{MeC}
$$

Drema 170. 5.

Jan: 4. 19098* Aerodrome Yo. 5 has been stal2 further atrengthoned by wiring fron the ridgemole to the keel atick, and by patting tenaion wires in at other partis of the structo ure. The two banka of cella wtich had beon preparod to fill In the apaces on etther alde of the central body frome laet Bulletin xCIV p. 46) no longar fit, on scoount of the heavy bending there and tr. Baldain recormonda oostting them sum togethor and substithting aone open fromowork thich mil2 not interfere vith the aviatort s view below and on either side. He thinks the aerodrone in now aufficiantly atrong, and he tested its rigidity tomay by gotting into it wile it was supported froa below at only four pointa four meters apart, there boing no axpyert directhy beneath the centar. He rew ports that the whole structure seeried aolid sind atood his weight of 275 1bse porfectiy well. The acrodrone is now ready to reeelve the ongine bed and propelier which will now be fisted in. A.t.is.

Rentine the gtahility of the mouerx".

Jan. An XeOgs- Bxperivente wore made teoday in Beinn Bhreagh Harber so teats the atebiLity of Budawin'a new hydredrocio The quexye without sny hydromaurfaces tyon her. Ihe ongine had been provided with a balanee wheel of axinller diaustex than beroxe so that it could bo placed nearer the bottom of the boat thua lowering the conter of gravity. The proesas
of teating vas an Poxlowas-
The "greery was houled ovor on her bean onds in the water until a poaition mas resohed such that a very iittle further tip would have upaet hor. She was held steadily in this oriticul position of unstable equilibriva while a plumb-line was Aropped fron the top of the strueture to the wator to anesrtain the vertien height of this point. The horiaontal distance of the plumbeline from the boat at the witer level was alao measured, mo as to obtain horisontal and vortioal readinge from which the angle of tip could be ealeulated.

Fith Br. Buldwin on boase the critionl pesition was reached when the basemine mespured 23 inches, and the plumbLine 42 inches. Fikhout any one on board the base-line meam sured it inches and the vertieal 42. A.G.A.

Jana 5, 1909ze On account of ice in Beinn Bhreagh Harbor and Baddeck Bay it sha neceasaury to earry the "Query" over to the Central Whart to raach open water. Here she zade her firat trial tomay. It is also noteworthy that this was the rixat time an atteryt had been made to ateor a boat with the ruder in the bow instead of in the Btern. The aeriat rudder fornorly maed on the Dhonnas Boag was orployed. It noasured three feet by three and was placed rive feet fron the bow. There was no subnorged ruader.

Propollerate Fivo propeliors ware exployed 88 mohosin alameter, $22^{\circ} 30^{\circ}$ at tipi gearing 8824.

Foiphtye Fotal weight 647 1beg, (Huci with बuriraces ote 225203 , engine and frave 273 1bs, propollars and chain 60 2ba, battery and coil $14 \mathrm{Lbs}_{\mathrm{p}}$ Mr. Baldvin $175 \mathrm{Mbs}_{\mathrm{g}}$ total 647 jbs).
Tydromurfaceate
b0w, onf boy rirt five fuet fron atern. Bnoh
aet consiatad of three blades, curvature 2il5,
upaced 6 inches apart, and the hydromeurves
vere all set at an angle of 5 degrees. the
blades were all $3 \mathrm{~s} / 26$ inches wide frors fore
to aft. In the front aets the top blades were
30 inchea long from aide to side, the miadle
blates 24 inchea and the botten bladea 18
inchos. In the after aet the top blade meaaured
26 Inchea from side so alde, the middle blade
24 inches, and the bottem blinde 28 inches.

Frg. A The "query", rumatig under hor ovin power with doubze propeliers covared 200 meter's in 28 seconds.

The angino howevar was not running very well. The "query" aid not lift out of the water, mathough her bow lifted to sbout anidships. The ateability wal all that could be doaired, but the sorial rudder did not steer hor. This was probably due to the fact that the ruder had been placed almost directiy over the iront set of hydro-surfsoes fhioh would naturally prevent her from turning. In this experiment the auxiliary perts of the engine were open.

马rye 2 The auxiliary porta wore then closed and the engine aidemoh better; but, as the rudder was useless, no eatinate of apeed could be taicon. During the courae of this experknent Baldwin ehifted hia poaition aa far forward as peasible to eorreat the lifting by the bow. This ingroved the longitualinal balanee but the boat did not rise clear of the water.

Earg. 3 The hydromarfaces were then rentoved and the -Query" tried again without thoa. The speed was much improved but no meamuraments were made. Baldwin thinke it was probably more than 15 miles an hour. Steering hovever proved to be
imposalble although in this ease there were no hydromur faces to interfere with the steering aetion. The onisaion of the hydromaurfaces minterialiy ispaired the stability of the buat. A.O.B.

Herthle hydxomburtaon on the Dhonnas BangJana 5. 19098- The Bhonnsa Beag no Longer belng needed for Balduin's axporinente, ane was soman fitted with fiexible hydromaurfaces sas muggested in maitorial Oct. 27, 2008 (see

1tr. Bedwin deaigned and made the hydro-anriaces from the genaral deseription given in the Riditorial, and withous any apeeific instructions concerning dimenciona etc. He has supplied the following cetaile illustrated by a blue print.
 उWoan tho truasea mupporting the hydromaurfaees 8 fte 6.5 inchess normal angle made by the hydromauffaces winth the deck of the boat 60°. There were six hydro-surfaces in the front set, and two in the arter net - made of wood. In the front aet the outer pair of sua facos vere 4 foet 9 inchos long and two and a hale Inches wide. Thoy wore $12 / 16$ of an inch thick at the top tapering to $5 / 16$ of an inch thick at the botters. The intermediate pair were four feat iong, two and a haif inchea ride, and $5 / 8$ of an inoh thick at the top tayering to $3 / 16$ of an inch thick at the betton. The inner pair were three and a haif feet long. twe and a hulf inches wide, and 7/8 of an Inch thick at the top tapering to $3 / 26$ of an inch at the bettern.

In the aftirr aet thare was a mingle pair asch fous feet ninc inohes longs tro and a haif inches wide, and $11 / 16$ of an inch thick at the top tape ering te $3 / 26$ of an inch thiek at the bottiom.

Flaichtis Fotal weight of Dhomnas Beag fítted Friziriexible hydro-auxfaces 200 1bs. (mul $90 \mathrm{Lbs}_{0}$ outriggers and flouta $28 \mathrm{ibs}_{\text {p }}$ forward truas and attached mydro-aurfaces 42 ibs aftar truas and hydromaturfaces 26 2blt piece of iron used to balance boat properiy of ibs total 200 2be).

Fonerfinent:- The Bhonnas Bets provided with Ilexible hycro-aurfmoes as above deacribed, was taken tomay (Jan.5) to the Contral Thaxf and Launched upon Bedacek Bay. The was then towed by the Gmaldrie, and the Pollowing obaervations 0 of speed and pull were made.

Speed
Pual

The Dhonnas Beag did not aucceed in riaing clear of the water on hor floxible hydromurfaces. She rose hovever every time the towing-ine wam pulied rapidiy in by hand ahoulng ahn was nonr hor mupporting apeed.

It became obvious that the whole arrangemont was too heavy to be aupported upon these aurfinces at the syeed of the Gauldrie and it man decided to attach then to a light Prase instead of the Thonnas Beag and try them again another day. A.G.B.

Second Frial of the muery".

Ian. 9. 1009: In the exparizents (Jan.5) the "Guery" had failed to rise out of water, indioating that her aubmereged surfaces ware not large enough. she had been provided with three sets of hydromurfaces two at the bow and one at the stern, and she had shown a tendenoy to riae at the bow more than the stern. It was then decided to increase the araa of hor aubmorged aurfacos by giving her anothor set at the stern.

Tooday (Janc.9) whe whe tried with four seta of hydrom wurfaces Like thome deseribed in noten Jans $\mathrm{B}_{\text {, }}$ twe in front and two behind (aee photographa in thin BuL2etin).

7rme 2f- The \#puory made a run from the Contral Wharf under hor oum metive power propelled by two propellern as on the Pomarr ecealion (Jun.5). She did not seen to ge at any grast ayoed the hydromarfaces neenting to aet am a drag more than a holp: Hor did the riae fron the water.

It is somenthat remarigable that ao far even in Bala\#in'a moat auccesatul exper inente with the Dhennaa Beag, with the bent well out of witer, and with only the hydrosurfaces subuargod, ne great speed has been obtained. In fact the apeed without the hydro-aterfinees has been groater than Fith thon. the atme thing aeora to be true of the "graery". Vo oniy hope that the nev Curtiss ongine we expeet from Itanmondaport may give us aurficient power to mase theas anell aurfaces ahow what there may be in them. with our present engine power it in obvious that we cannot ifrt the "Guery" out of the water without eniarging the area of the aubenerged aurfaces which is inadvisable fron the apoed point of view. or without iightening the boat which is inpracticmblo.
 the boat moula rise out of the water at the apeed of the Gauldrie if relieved of the woight of the engine and mane The engine trib taken out of her, and the angty hull towed by the Gaularie at a apeed of about aeven niles un hour. The apeed proved to be insurfieiant and ahe ald not rise. The pull on the towing-1ine thas ateady at 40 lba .

It ia hoped that better resulte may be obtained with the new angine, but we cen hardiy expeet dirferent reaul ts with the prosent engine unlesa wo use largor autmorgod aurw

Bextha mytromartegen upen wha Crabe.
 ible hydromaxyfuees Jen. 5 in place of the Bhonnas Beag turns out to be not ac very 1ight after all. Weight 146 Ibs. It conaiats of a roagh wooden franework made of thick boarda to Which the truases caxrying the R2exible rods are attached. It is a vary olumay orude contrivance and when it was placed upon the Central Wharg to have its photegragh taken we all Laughed hoartily at the riaieulous appoarance st made wobbling about on ita sleizible legs and naned it at once The Crab". (5ee photograph in Ehis muletin)

Whon the "Grabe whe pisced tomeny in the water it flouted low not being provided with apeeial floste. Then towed by the Gauldrie however, the framewort rowe out of the water about 26 inches axyported upon its flexible hydroo surfaees (zoe photograph in this Bulvetin). Puil about 70 1bs.

Fhen wre look at the crude conatruction of the pree sent apparatus and note that it rose out of the water at the low apeed of 7 niles, one oxunot avoid wiating to see the expeximent tried again with a more earefuliy made mashine. We cannet Anterrupt nore ixportant exper inente, but we may perhaps be able to apare time to tent an apparatus posieasIng a large number of thinner and nore Plaxible rods, a

rogular tooth-eent aort of arrangoment, saking uy in mumber of rode for the weaknose of the individual meenbers. In order to have IRexibility the rede should individualiy be thin and auppie, and the load ahould be diatributed through a large number of them, instead of being concentrated upon a

Jan. 11. 1909:- 20 get an idea of the carrying power of the -gilver-Dart" and of the propeller thrust required to maintain the nachine in Plight I arployed the tables and Pigures given tas by Iangley and Lilienthal and nurived at the fole loving renults.

Absure a apeed of travel rolatively to the bir of 35 milee ment.

The zachine pilea at an angle of attack of 6° and there are 480 ft. of supporting surface. The equivalent flat surface of the machine fron its structural point of view including the surface area which the operator and power plant preaent anounts to $\mathbf{2 7 . 9 4}$ sq. ft .

Under these conditions the machine will support a total laad of $\mathbf{1 4 8 4}$ 2bes. and the propeliar thrust required would be 192.9 2bs.

We are only eauaing the nachine to carry 860 2bs. Ia this an meonoaical atate of affairs or not, os could we just as woll earry the full eapselty of the machine froen our thesretical conelusions.?

In general terns here ia the proposition. Burpose a purely theoretian plane - which will be weightless a to advance horiatontally through the sir at a given apeed and maintaining a cofinite angie of attack. The reaction of the normal preasure of the air on this plane will produce two reaules which we call $119 t$ and drift.

The plane traveling horizontelly at this angle of
attack and at the peed will negeasarily aupport a certain derinite lead.

The plane traveling horizontally at the angle of sttack and at this ageed will require a definite propeller thrust.

Wow to we gain anything in erricioncy by having our machine weigh leas than the exrrying power of the planes. The ondy difference noticed by the apectatoris at Fort Meyer, betmeen the Rifght of the Iright mehine when carrying one man, and earrying two men was that the mad ine took longer to acquire its necenanary speed before taking the air, when it carried two men, because itis masa was thon freater then with one man.

The propelier puin was juat the awme in both cases, and the apeed of the machine when rhying was the ame in both cases.
gungry- Doas the slying machine adjust itgelf autom natiealiy in referenee to the angle of attack sceording to the load wiah it is required to lift.
J.A.D. McC.

pont or puce pixsies: by A. G. Bol2.

Jan. H2 2909:- All s2ying machines dopend for their prom pulaion upon the inurtine of the air.

The uaual method of propulaion conaista in puahing air backwards by means of an oxtended surface, or propeller blade. The reaction thon pushea the machine formards.

In order to typiry the essential sction in ita sipe pleat form, inagine a couple of bolla with a compreased asiral apring betoreen then. In thia conooption one bail repremonte the machine, the other the air that is puahed bockwards, and the apiral spring botween then typiries the ongine powes exyloyed. Beleane the wpring, and the balls are pushed apatt, the machine going one way, and the air the other.

Relatively to one another, each ball moves with the same velocity. that iat One ball novea away from the other Just an frat as che other moves anay from it: But, ralative$2 y$ to the durrounding equieacent air or to the earth, they move with airferent velocities dopendont upon thoir mass or weight, the heavier boty moving with alower velocity. They move in oppoalte directions with equal meqgentich (not equas veloeities), thich is aixply another way of asying that metion and renetion are equal and opyosite".

Let $\begin{aligned} & \text { t represent the mase or weight of the machine, }\end{aligned}$ and V its veloeitys Let m represent the massi or weight of the air that is puahed backwards by the propeller and v its veloeity: And let the airection which the machine movea be considered as * and the opposite direction as - : Thon $u(4 V)=m(-V)$ orte

$$
1 W=-W
$$

Our object is to propel the nachine at a certain velocity sufficient to austain it in the air. The values of M and V are therefore rixed. The machine has a certain know weight or maxs (in) and must acquire a certain knovn velocity (V) in order to be sole supporting. Our problem then is to obtain values for m and v euch that $w=\ldots$ mv.

Ve have two elements here to consider: m, the mass or weight of the air puahed back by the propeller and $\mathrm{v}_{\text {, }}$ the velocity of the dimplaced air.

If the weight of the diaplaced air is equal to the weight of the nachine, then the velocity of the diaplaced aix Fill be equal to the velooity of the machine. If m is leas than H , then v wili be greater than V_{5} and yieg veruas.

Fron the atandpoint of pure physica we have only two elements to consider, m and v; but fram the mechanical point of view we have three elenents that produce and control the motion of the diaplaged air.

Considering our propeller as forning a portion of a perfect serew having the anme pitch from center to eircunference the three mechanical alements involved axes-
(1) The anount of aurfaee in our propelier blades; (2) The piteh of the propelieri and (3) The apeed of its rotation.

It may be sela then to tranalate the twe physiena elecsente mand \bar{y} in terrus of the aurface, pitch, and apeed of rotacion ar tha propelier.

Yatue of

 surfsee of the propeilor, Keeping the piteh and apeed of rotation constant than the Largor the surface the groater will be the zasas of adr pushed book by it, sud proportioneliy greater.

Pitchs- It aise vorias direetiy with the piteh. Keoping the surface and apeed of rotation conatant the graater the piteh the greater will be the masi of air puahed back at eseh rotation, and proportionally groater.

Botnstient- It aleo varles airectay with the apoed of rotation. Keoping the aurface and piteh oonstant then the greater the apeed of rotation the greater will be the mase of air thrown beok per aecond, and proportional2y greater.

Verue of x

Surfaces- The value of v does not depond at all upon the surface of the propeller.

Keeping the pitch and speed of rotation constant then the largar the aurface the greater will be the mass of air thrown back by the propeller, but the velocity of the dism placed air will not be affected.

Pitch:- The veloeity of the alaplaced air varies directly with the pitch.

Keeping the aurface fand the apeed or r tation constant then the greater the pitch the greater the velocity of the dimplaced air and proportionaliy gromter. For exw axple:- Buppoae the prapeliar to make one rotation per aecm ond; thong if the piteh is ono notery the velocity of the diaplaced air will be one aetor per gecond. If the pitch ia two seters, then the veloeity will be two metera per sec* ond etc.

Rotation:- The veloeity of the diaplacod air varies directly with the apeed of retation.

Keoping the murface and pitoh of the propelier conatant then the graater the apeed of rotation, the greater will be the veloeity of the aiaplaceg air and projortionally graater. For exazpleze Let the pitch of the propeller be onc neter, then if the propolier rotates once par aecond the velocity of the displaced air will be one neter per second. If it rotates twice per second the velecity will be two metera par second etc.

It ia noteworthy that the value of a deponds upon all three elarants, surface, pitch and speed of rotation; wherem as the value of v depende upon only two - the piteh and apeed of rotation. Variations in the auount of surface can only affect the amount of air throun back and not its valocity.

Yalue of m8.

Surfeget- The propeling foree (or miv) ia directly propertional to the aurface of the propelier.

Keoping the pitch and apoed of rotation conatant the greater the surface the greater the mase (m) of the dinm placed sir, but its volocity is unchanged, so that changes In the amount of aurtace arfeet only the alemont of the propelilng foree wiv. Thus the totnl value of mv varian directly an the axrface.

Pitoht- The propeliling force av varies directiy as the square of the pitch.

Keoping the aurface and apeed of rofation constant then the greater the pitch the groater the zussa (a) of the air threwn beck and the greater its velocity (v). Thua both the mand velessents vary with the pitch. If we double the pitch we meve trice the saass of air at double the velocity and the value of av in rour rold etc.

Batishions- The propeliing foree or wvoriea direckly ad the square of the apead of rotatione

Kouping the auriace and pitch constant, then the greater the apeed of rotation, the greater will be the mass (a) of the air thrown back and the greator ita velocity (v). Thus both the mand velanente vary with the apeed of rotation. If we double the apeed of rotation we sove twice the masa of air at double the velocity; and the value of sy would be rour rold ete.

That the value of aty varioe in ainmie proportion to the surfince of the propelier, wnd in double proportion to the pitch and apesed art ratation.

Bees this indicate that groat pitch and great apeed of rotation, rather than grent aurfiee, is what ia wanted in the propelier of a Ryying mohine? A.G.B.
(20 be continued).

Fatreat Itrom Mrarine Pronoluergis By P.W. Maldwin .

A few pointe taken from itro Barmaby ${ }^{6}$ a book on Marine Propeliers ${ }^{\circ}$ aeen te be directly mppliesble to aurial prom

(pal) The princiyie upon which neariy all marine propeliers wort is the projection of a wase of mater in a direction oppoaite to that of the required motion of the vessel.

If the weigent of the mass of vister setod upon by the propelier in pounde por aeeond $\boldsymbol{\pi}$ 쿻 ant if tho oternuaxd veloaity in feet per aecond inparted to it in relation to still water $m s_{0}$ thon the reantion which eonatituties the propelling force is
$\frac{18}{8}$ where $\mathrm{g}=32.2$ feat per seoond and this is
Independent of the rom of propeling appaxatus altogethor. A A commenly lenom as the resl slip, but will here be genoraliy reforred to the the rate of seceleration, or nore shortiy, as the meceleration.

Then the vessel is in motion at a regular apeed,
the rasetion $\frac{\sqrt{5}}{5}$ is aqual to the rasistanco.
Se long as there is a resistanee to be overeme by the propeller, there is no posaibility of reducing the real alip or acceloration s to zere, aince a necestaxy eondition would be that v_{5}, the weight of water acted upon, was infinitely large.

Warine Pronelvers, by Sydney \%. Barnaby (Spon and Channberling 12 (cortiand $3 t . y_{0} \%$, 1900).

When a propelior is to be denigned for any given aet of conaitions, it is of the firat importance that the reLation betweon the mata of water aeted upon and the acceleration imparfied to it mhould be such,

That while the product $\frac{1}{5}$ ghall equal the oatimsted resiatanee of the thip, sind the aize and rate of rotion er the propelilng apparatue auch as ahall suit the conattions of the ense, the aconomic result may yot be the best atm tadnable, or uny onky fral ahort of the maximun by an artount which ia calculable, and which it muy be demirable to sacririce in order to obtain other advantages.
(9. 3). There is a certein quantity of work wich mast be 2ogt under all efrewenghnees, and it in equal to the anount of onergy of the diacharged water soving astern with a veleedty, 5 selative to atill water.

As this energy varios as the woight multiplied by the sghare of the valocity, it follouts that if the quantity of water meted uyon is caublea, the loas from thin oause is doubled, but if the aecoloration ia doublea, the loas is inoreaned rourfold. Whis axplains why the hyaraulie propeller, which sa foroed to get ugon m much less area of columen shan the seraw, appowara at auch a disadvantage wisen comparea with its.
(pest) In the Wuning varaus Pushing, Dowts there are fous acrews, but in gome of those built in Anerica two only are exployed, one forward and ono aft, driyen by the same shaft, an arrungerant witioh appears to be inferiar.

The forvard sorvew of one of these latter vessels was eatimated to auguent the reaistance of the hull by 23.5 por cent and its propeliling erficieney wat only 43 per cent of thet of the after aerew.

Terativo Propuzaton.

(p.et) If a aexev is placed behine ti stern so bluef that the supply of water is ixpeded, it win draw in water at the conter of the driving foree and throw it off from the tipa of the blaten litive a contrifugnal puyph It in recorded that an attergt to propel a aquaremended eaiason by meana of a acrew roguzted in the ealmon going astern, wich ever wiy the serew was driven.

Tnolination of line of Maruat.

(p.47) Thore is a diandvantage connected with an incilned aerem ahaft shich pointe to the advisability of plaeing the arkit nearky horizontel as poasible.

The reault of depressing the and of the athart is to eause the arfeetive piteh to vary through every part of the revolution. If the inelination be aupposed to be 45° for example, that part of the blade which is intended to have a pitch or three aisenoters has in reality an offective pitoh varying frean nothing to infinity.

It in of eourse etvious that the pitch or the blades in rolation to the axis is unchanged by any altorition in the direction of the ahart, but whatever the pitch in relation to the axial may be, if the axis were to pass vortieally out through the bottem of the ship, the virtual or erfective
pitch, measured in the direction of motion is nil. If a serer does mot move along but has a motion of rotation only the reasatameo or the water to the blades is the same whatover be the airwabson of the athar'ty but if the propeller be slowed so move forward, whit at the asur time it be cone strained to move horizontally, the shaft being inclined to the horizontal, then the realatance of the water to the blades is not uniform, but varies over every part of the revolution. This will perhaps be made clearer by an examination of the phases through which a blade passes during one revolution. It is convenient and suitable to consider the action of a screw as sindiar to that of an inclined plane moving past the stern.

Fig. 21

Fig. 22

In Fig. 22 the full line represents the upper blade as a plane moving froe port the starboard; the dotted line reproaments the Lower blade sa s plane moving frow starboard to port.
In Figs 22 the shaft is horizontal and the full line shows the blade going down, and the dotted line the blade coning rap.

In Fig. as the that ia inclined at 45°, the full line again showing the blade going coon, and the dotted line the blade coning up. Ae the chip moves forward the water may be supposed to glow to the serow in approximately hortzontel lines, and the blade which at one part of the revolut. ion is edgewise to the mater; at another is square on to $1 t$, and the reanit is an irregular pressure causing vibration. Another way of looking at it is this: A particle of inter mooting the amending blade has its motion relative to the vessel arrested completely, while aparticle on meeting the forward edge of the descending blade would require to have its velocity infinitely accelerated in a horizontal direction, to enable it te esoupe frons under the blade. This is what ia saint by saying, that in the above oxanyle, the effective pitch varies from nothing to infinity during asch revolutions

Yexiable Pitch.

(p 49) then the length of the propeller in the direaction or the axis is anal, that is, fin the blades are narrow, there is probably not much to be gained by departing free n a true helical murine, or what is called a uniform pitchy but when the blades are wide the pitch should increase in the direction of the length of the propeller, that is, the after edge or the blade should have a coarser pitch them the forward edge. The reason for this way be aeon by reform ring to Fi g. $\mathbf{B}_{\text {. }}$

Aft

The columa of wnder passing through the acrev is contraetinc In area and Incrensing in velocity.

Blades of unifommpitch would only be atrictiy apm propriate if the colum while pasaing through the serew were parailel and maintained a constant mpeed.

If the length of oeluan occupied by the serem is surfiaient to silow a sensibl contraction to tuke place within ita linita, then the pitoh of the serem surface should aug mant at the sume rate as the weed of the colum of waser is acceleratea, in order that all partes of the blade may keep touch with it during ite passage. It was an early practice Introdueed by Flooderoft to vary the piteh in this manner (soo P. 22). the asu position being that by so coing a gradunl acceleration would be produced and not a audaen one. It is probmble that in no case coula water be acceleratod anddeniy by a aubnerged propeller, sud all that is reguired is that the surface of the server ahould be adspted as neariy sa poansble te the rate of flow through $1 t$, wich rate is deternined by the mean piteh of the serow auxfeeed that the varistion on each side of the mesn should be is very disricult te any, as it has not yet been deternined at what Slatence ahead of the nerem aecoleration of the water eome. mencem, or at what aistance astern it is completed, and the funk vileedty or race attained.

A2though we znow that the rens eontreatig of the rwee must be aecrewhat of the form shom in Fig. 8 , it is not poassible at present to derine its boundarias, and it oan therem fore only be atated in general texme that the greater the
alip ratio the groater would be the contruction, and conaequentiy the greater ahould be the variation of piteh on each aide or the moan. Since the alip ratie at a given offiesency inereases with piteh ratio, the variation should alao bear aome proportion to the piteh ratio. As the use or wide blades is frequentiy associated with high alip ratio, as for exauple, when aimneter is restricted by tine draught of water, not only' do thay oocupy a conalderable length of the contraeting eolum Fig. 8 , but alse the anrount of the contraction-is greatari; and if this reasoning is correet, there is a twofold advantage to be gained by giving an inorousing piteh to serews with wide blades.

Propeller Balanges.

(p. 5i) In order to prevent vibration from being set up by the propelier in long fine vesaels of high power, two thinge ahould be conaidared. The propeller uhould have a good running balance, and the centor or prescure thould be in the center or the diac. To onaure that the first condition is realised, esch biede must be or the aane weight, and the center of eravity of aach muat be at the sase ditotance from the axis of the shaft To astisty the seeond conaition is more diericult. If the sorew works in undiaturbed water and the surface of aach blade is ciaposed aymentrically about the whart, then the center of pressure will be in the center of the dige if the acrem is omused to advinee in the diraetion of the line of its shart.

Any inelination of the ahart from the 1 ine of advance tenda to throw the center of prosaure out of the center of

Bulletin Ho. Xorviry
the dise, roz the ressen already explained (see page 48),
and the asve effeet is produced to aose axtent by the inequality of the onvara motion of the water in the frietional wake in which thepropeliex works.

2ins OURTOOK OH AVIARTOHE by Aast. Bditor.

An extraet Irom Major Bquier ${ }^{\mathbf{2}}$ a apeech delivered before the Avoricean Assoeiation of Heohanieal Inginoers is $G^{\text {iven }}$ in the Beientifie Anoriean for January 2.

Ytencifron Mewupapore.

Bantes Dunont vouchsafed the following information in connection with his monoplane, te a reporter on the Paris edition of the London thais- Ex have ontirely abandoned the bi-plane syatem of aeroplano in faver of the monoglane wich I consider has immense advantages over the former. The one I have constructed in wy shed at Houiliy, ia extrensely light. Its weight when coaspleted will not axceed 150 kilogram ineluding the motor. As I do not weigh more than 50 kilogran namelf you will see that the total weignt it will have to Lift will notexceed 200 kilos. I axpect it to be very rajid, for the initial apeed I will require to leave the ground will De 36 miles an hour. Hy propeliera will revolve 700 revolutions to the ninute. Hy moter is $26 \mathrm{H.P}$. The entire machine is only 15 Pt. fin width. Ita total aurface is 9 aquare yarda. I have alxamdy exporimented with the machine over a distance of 400 yaris while in its incocylete istate and with very antiaractory reaulss, Host dealdeday I mail enter for the Daily tail Croasmehannel prise if my machine cocies up to ear poctation, but for the present, at any rate, I have no intention of crying to break ayybody* a record.

Parid. Prance. Dee. 98- Tuentymeeight Fright aeroplanea have alraedy beon aold at the Aeromatile geion mich closed tomarrow night after a wook ${ }^{\circ}$ s exiatence. The mach-
 They will be conatrueted by the French Society of Avistion at Duniciric.

Parian Jana 2a 190日s- The airwhis ahow hat elosed in a blate of giory, with \#ilbur Vright in his mbehine reaping the greateat praise.

Itr. Wright being anked to give hia opinion as to the future of teroplanes saldse $\mathbf{H t}$ is mposaible to predict. you know the rate of prophets. I to net however oaqeet to sen the aeroplane cone inte cormercial uae soon".

How Yorisa Das. Sh, 1008s- Hark Antony, an inventor, has perfeoted a dirigible bailoon which ean be operated by Ureless electrioity. Iy a copbintion of dots and daehea itr. Antony aays a change oan be effeeted in the novements of hia belloon in two seconds.
 tomay heid his last trial here. He then took dom the aereplane which will be tranaported on Honday to the Hallee Forics Hhere it wil2 be taken apart and sent to Patio Atr. Wright axpents to attop at Patr for a row wenks ondy.

Rona, Dap. 26, 190gse The ante for trials to be made here by שilhur Wright with hia aeroplane has net been sixed, but it will probably be next month. Instend of flying on a level with the ground the aereglane will start from the
ausalt of Itonte Mario, a hill over Looking the parade grourv, and the rlight will be over the right bank of the giber, where the builainge are low.
 deaigner of the U.s. torpede boat Malley is building a flying machine. It will be oorpleted at worceater, Mnas. by the end of the month. The papors do not say of whet type thita machine will be. G.it. ${ }^{\text {m. }}$

