Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée

Covers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieureBlank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peur que certaines pages blanches ajoutees lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n^{\prime} ont pas ètė filmées.

Additional comments:/
Coınmentaires supplèmentaires:
Irregular pagination.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachées

Quality of print varies/
Qualité inégale de l'impressionContinuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-tête provient:

Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de ia livraisonMasthead/
Gënérique (périodiques) de la livraison

This itern is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

On the Influence of Drying on tho Active Prinoiples of Plants."

Jx wlt. LEOROLD SCHOUNHOODT, Apolhecary at litige.

The author extended his examination to 29 plants, solected for tho importance and frequontly of their use in medicinc. The process of examination was bised upon the principles of Stas' method.
The carefully collected plants, when possible collected of wild growth, were divided into tiso equal parts, one of which was dried, if necessary, with artificial heat, then powdered, the losa in drying replaced by water, after maceration for $2 \dot{4}$ hours displaced with 05 per cent. alcohol, and the tincture treated like that of the fresh portion.

The other half of the fresh plant was reduced to small fragments, macerated with 95 per cont. alcohol ior 24 hours, then expressed and nyain macerated as before. The liquids were united, filtered and distilled at a temperature of 66 to $0 n^{\circ} \mathrm{C}$., the residue filtered and the filtrate evaporated over sulphuric acid under a bell-glass; the residue upon the filter was lsept separate.

Tho treatment of planes, containing alkaloids was modified by adding tartaric acid to the tincture, to ensure the solubility of tho alksloid in the aqueous solution of the alcoholic extract.
Treatment of the dry cxtract.-1. Plants zuth alkaloids. The dry extract was mixed with its own weight of burned lime, the muxture treatcd with twice the weight of 95 per cent. alcuhol, and after 24 lours with four yarts of ether, well agitated and then decanted; the sediment was twice treated in the same manner. The liquid was eraporated spontaneously, the residue dissolved in dilute sulphuric acid, filtered, precipitated by carbonate of potassa and dissolved by absolute alcohol.
This second evaporation usually yielded the alkaloid crystallized, particularly from the fresh plants. In the case of liquid alkaloids, caustic instead of carbonate of potassa was taken, and ether in place of aicolol; after proving its identity, the quantity of the alkafoid was estimated by titration with oxalic acid.
The comparative treatment of plants with alkaloids frequently gave very exact results, particularly when the alkalotds or their salts aro crystallizable; this was less frequently the case when the plants contaned no alkaloids and the active principle is meumpletely characterized.
2. Plunts reithout alkuloids. The dry extract was treated with strong cther, and the filtrate evaporated spontaneously; the undissolved portion was treated with a mixture of 8 rol. strong cther and 2 vol. 95 per cent. alcohol, snd the filtrate ovaporated spontameously. Thie residue was treated with cold distilled water, and the liquid evaporated orer sulphuric acid.
The table on page 136 contains the results oltained by the author with theimost important drugs.
The leares of Ancmonc Pulsatilla, collected

[^0]in April, yiedded fresh, but not dried, ancmonin, little amorphous alkaloid, amd a yellow, very acricl resinous mattei:

Checidonium majus (herb), collected in July, yielded, after drying, only chelidenina, but no chelery thrina.
Nicotiana Tabucum (leaves), collected in July, yielded two grm. pure mentina; after drying scarcely half the quantity.
Digitalis purpurca (leaves, Jmuc). Tho extract yielded to alcoholic ether 0.60 grm . of ${ }^{\text {a }}$ straw-yellow, very bitter substance; from the dried leaves a little less and deeper yellow.

Mrenyanthes trifoliacu (leaves, August), yielied 0.45 dran menyanthin; from the dried leaves uncrystalizable.
Marrubian vulyare (leaves and tops, June), yielded 0.70 crystallized marrubin; from the dried, about one-half.
Tunacetum vulgare (flowers July). Bitter principle, darker from the dried.
Alsinthizum vulyare (leaves and tops, cultivated, July). The dried yields less aromntic preparations, and an extract-like, bitter pranciple.
Ergot (July). Carefullydnedand pordered; it was divided into two pasts, one of which was kept under alcohol in a well-filled bottle, the other kept dry m a paper box for ten months, after which tume it was macerated for fifteen days in the same quantity of alcolnol. The two portions were then treated exactly alike. The ergot was exhansted with alcolol in a displacement apparatus, the tincture evaporated in a water-bath, and finally over sulphuric acid. The extract was trented with distilled water, and the filtrate concentrated at the ordinary temperature over sulphuric acid.
The extracts, exhausted by water (less about one-fourth), yielded to ether alout five-sixths of their weight, and the restuve, about one-cighth of the alcolwhic extract, was a red granular powder-Wiggers' ergotin. The etherial solution, on evaporation, yielded fixed oil and crystallized cholesterni. The fixed oil, from the old ergot, was orange-red, that from the fresh (kept under alcolol) was thinner and orange-yellor. No other differenco was thus far observed.
The concentrated aquevus solution of the alcoholic extract had separated more of Wig gers' ergotin and crystals of mycose; the clear liquid was eraporated as before to near dryness (the residue of the fresh was more granular), and, since pure ether was without ' effect, treated with alcohohc ether, whech on evaporation yielded yellow actentar crystals, regarded as pure Bonjean's ergotine ($0.2 \overline{5}$ per cent. from the fresh, $0 \cdot 20$ from the old). The extract treated with alcoholic ether was entirely soluble in absolute alcoliol except a littlo mycose; on spontancous erayuration a littlo more mycoso was separated, and then a reddish (rather darker from old ergot) oily mass was left, consisting mainly of lactic acid.
Rhus radicans (ceaves, July). The distillate from the dried leaves was without odor and acid reaction, and did not reduce the salts of silver, platinum, and gold.
Ruta graccolens (leaves, July). The tincinre of the fresh leares deprived of the alcohoi by distillation senarated an odurous green oil, which, removed hy cther, left a yellowish grinular glucoside of a bitter, somerthat acrid taste. Frmm the dried leares the oil wns not obtained, and the glucosido mercly as a brown extrict.

Valeriana officinalis (root colleced in Septomber, from high dry situations). The resin of the dried root is more acrid them in the fresh; 2000 grms. of the former yielded 1 grm . valerianic acid. The distillato from tho fresh root was neutral, had a slight odor, but on expmsure to the air in the presence of alkahes, yielded $1 \cdot 5$ valurianic acid.
Prunus Lautucerists (leaves, Juic). Loso all their virtues by drying.
Brymmia diaical (ruet, October). Results , 山hke from the fresh and dried.
Swulda lielcnient (root of secound yenr's growth, October). The constituents are somewhat altered. The sugar is obtained from the fresh rout in white heargomal prisms, from tho dried root granular.

Saponaria efficinalis (root, October). The saponin from the fresh root is whito granular, from the dried amoryhons colored.

Junipropus Sabinut (leaves and tops, July). The dried yields a browner, less odorons, more acrid tincture.

Aspid: wn Filix-mus (rhizome, September). The tincture of the dried browner and more acrid, but weaker in odor than from the fresh. The disuillate from the atter has a disagreeable odor and taste, reciuces the salts of the noble metals, and evaporated with potassa, leaves a soap-like residuc-properties which are not observed in the distillate of the tincture from the dried rhizome.

His experiments lead the author to the followng conclusions:-

1. Dried plants never represent entirely the fresh. The generation of valunble constituents during the drying process, as valerianic acid in valerian, must be regarded as exceptional.
2. The alterations produced in drying consist in the votalization of n portim of the volatile constituents and in the oxidation of most of the fixed and the remaining volatile constituents. During the drying process the water in the cells is partly replaced by air, the mfluence of wiich upoa the remaining constutuents is intensified by the porosity of the dry plant.
3. It is almays advantageous to use fresh plants for the proparation of alkaloids and lother active principles, and to employ as low a templerature as possible.
4. The composition of the fresh plants is more simple than is frequently supposed; they generally contain, besides cellulose, tho saccharne, starchy and albuminous principhes and the mineral salts, a volatile principle, etther a carbohydrogen or aldehyde; a bitter 1 or acrad principle, which is either an alkaloid or glucoside; a coloring principle and often fat.
5. 'To reduce the injurious influence of the atmosphere, it appears advisabic to hasten the drying and then compress the dry plants, as is the custom in North America.

Tinoture of Ohloride of Iron.*
BX R. ROTHER.
On certain conditions an excuse fould bo barely rdmissiblo for obtrudng wilh further remark3 on a subject so prolific in literature, and which has supplied such a dificult theme to eninent authority as the tincture of chloride of iron But a revien of those extrnorduary labors which hare in time emannted from an array of talent, induces the convio-

- From the Itamancist, Jals.
tion that the result is not commensurato with the rownde of morit, and ratler generates a senso of pain, as such deserving offurts latro been 80 uselessly exorted. It is therefure crident, which has been too often reiterated, that an aceurato and mactical formula yot romains on tho list of pharmacentical desideratu.

As a preliminary it may be bo briafly stated that no process, however simple, is more completo in overy sense, than dissulving a chefinite quantity of the crystallized dry perchloride of iron in a mensured quantity of alcoliol, or mixtare of water and alcohol, to conform with tho requirements of the oflicinal product, of which overy thid ounce represents nearly one hundred grains of tho dry chloride, containing twolve equivalents of Tater.

Butas, however, this process is too imburect and expensivo to mect with gencral approval when the dry hiorade lins to be prepured by the pharmai atist, the question remains, Can this bo derived fromi the mamiacturer at a sufticiently moderate prace to justify its omploymont ? and if so, let it be transferred to the MLateriat Medicit list, thereby, at 1 robably a small adrance on tho present cost, a uniform standard is obtamed of unaoubted reliability.

The old process, hased upon the very indefidate and unstable aub-curbonate, is not sciontific, and entirely unworthy the adranced state of phammacy of the present dity, and un especial "revelation" is requisite tu elucidate tho rery tangible fact that it must be discarded if a reliatble product $1 s$ the aim of the opicintor.

The objectionable feature of this mocess is the transition proparty of the hydrated oxide by which it readily passes from the amorphonsto the crystalline varnety at slightly elevated temperatures, and even by exposure
to theatmosphere when spontaneously dried. to theatmosphere when spontineously dried.
Hence this instability renders it very indefiHence this instability renders it yery indefi-
nite regarding behavior to acids, as the modified variety is cither not at all or very difficulty soluble.

It has veen recently ascertained that this transformation in stmeturo is greatly angrmented by the presence of sulphates, even traces, and by complete removal of these, or their exclusion altogether, invariability is sectired. This mar be atfected by the method proposed, or perhaps to advantage by first tion betricen moderately dilute solutions of protosulphate of iron and chloride of calcium, washing the crystalliue precipitate of or better by straining through muslin, and cither precipitating the iron from the filtrate at once with carbonato of solia, or after oxidation by means of chlorate of potassa and
chlorhydric acid witi anmonia or carbonate chlorhydric acid witin anmonia or carbomate of sodn. oxide inmediately. The precipitates are best dried on porous tilesat ordinary temperature. Thus obtnined, the hydrated oxide is simays solnble in the necessary quantity of chiorhydric acid to form sesquichloride.
*Tho rague assortion that the official subcarbonate, when recently precipitated, dissulves readily enough in the prescribed quantity of acid, admits of ambiguity, and is cntircly orroneous. $13 y$ the term "recently precipitated" anity be understood the moist,

[^1]fresh precipitato of protocarbonato of iron, of which six ounces vould indeed dissolvo in ono pint of chlorhydric acid, with yot 2831.49 grains of tho acidi in excess, as one pint of it veighs $8467 \cdot 79$ grains, and only 5026.3 grains can bo nouteralized by tho protocarbonato.

But the recent precipitato is not the oflicinal sub-carbonate which when nnished lins lost all or nearly all its carbonate, acid, and is thereforo hydrated oxido envoloping quantitios of proto-carbonate only sufficient to produce feeblo cffervescence in contact with the acid. But again: Six ounces of pure lydhated oxide cin not dissolve in one pint of the acid, since 9989. 3 grains, equal to 20 ounces, and 389.3 grains of tho samo will be necessary.

In regard to the present officinal process, it las been stated (through misinterpretation) that it directs to simply leat the iron with the acid to the boiling joint, and then decant. This is again fallacious, as an inspection of the ofticinal formula will testify.

Tho mixtme of iron and acid is directed to stand (at ordinary temperature) until effurvescenco has ceased. This will depend, in a great measure, on the division, and mure so un the guality of the iron used, and to some extent on the concentration of the acid. The cifervescence ceases when all, or nearly all, of the acid has been decomposed. This will always bo the caso whon the mixture is pemitted to stand some consideroble time; otherwise the decomposition of the last yortions of the acid must bo hestened by the final application of heat. The action prograses most favorably when tho acid is moderately diluted ; this also prevents a considerable loss that is otlocrwiso incured by fuming.

Tho suggestion to haat the iron and acid until effervescence ceases, would cause the loss of much of the latter, or say nothing of the ordeal the operator would be subje. to, unless the process was conducted in open air. No pharmaceutisi can fail to se the inapplicability of such a method.

In tho present ofticinal formula nitric acid is auded to peroxidize the iron. The process throughout is clegant in theory, and beautiful in design, but exccedingly dificult and circumstantial in practice, especially when moderately largequantitiesareoperated upon, and therefore will invariably be avoided in preference to anys other less laborious and tedious.

The use of nitric acid is very objectionable, since the iron solution must first be brought to the boiling point before its addition. This gives rise to denso and disagrecable fumes of chlorhydric acid gas first, and again to equally obnoxious vapors of hyponitric acid; moreover, the subsequent boiling to expol any remaining binoxide of nitrogen is appt to jroduco heavy crusts of peroxide on the sides of the vessel, which are very edifficult to remove.

Now, the nitric acid can be substituted to great advantarce by chlorato of potassa; this does away with boiling temperatures and loss of material incurred thercby. One equivalent of iron as protochlorido requires but a trelfth of one equivalent of the chlorate for peroxidation. $12(\mathrm{FeCl})+6(\mathrm{HCl})+\mathrm{KO}$, $\mathrm{ClO}^{5}=6\left(\mathrm{Fc}_{2} \mathrm{Cl}_{3}\right)+\mathrm{KCl}+6 \mathrm{HO}$, with the employnent of a very moderato leat, or none at all, if loft in contact for somo time previous to dilution. No effervescence occurs, and the green color of the solution changes instantly to red, is the oxidation is complete
at tho moment of adding tho chlorate. Λ twelfth of an equivalont of chlorido of potassium is simultanconsly formod (equal to 288.84 grains in four pints of tho tincturo , which is in part deposited after tho nddition of the slcolol; but, should its presence bo any oljjection, tho chlurato of potassa could ho replaced by chlornto of sodn, is the chloride of sodium generated will bo insolublo in alcoholic liquids, and consequently removed. Tho necessary amount of chlorato of potassa requisito to replace the nitric acid of the formula will be 474.44 gjains with chlorato of soda 411.8 grains.

Another process equally practical, or perhaps more so, than the nbovo modification, is based upon the method of double decomposition, or eminently adapted to pharmacy in mumerous instances. Protosulphate of iron is decomposed by chlorido of sodium; chlorlydric acid added to tho mixture, slightly warmed and treated with chlorato of potassa or soda; alcohol is then added, and the whole ailowed to stand for some time, then filtered, and tho residue washed with alcohol to bring tho filtrato to tho required measure.

The addition of alcohol produces a voluminous precipitate in the iron solution, which is sulphate of soda, probably in combination with wator. This precipitate rapidly loses its bulkiness, and a heary granular deposit romains. This is evidently anhydrous sulphate of soda, which can bo easily separated and washed. The principle of this process is founded on the following reaction:
$12\left(\mathrm{FeO}, \mathrm{SO}_{3} 7 \mathrm{HO}\right)+11(\mathrm{NaCl})+6(\mathrm{HCl})$ $+\mathrm{KO}, \mathrm{ClO}_{5}=6\left(\mathrm{Fe}_{2} \mathrm{Cl}_{3}\right)+11\left(\mathrm{NaO}, \mathrm{SO}_{3}\right)$
$+\mathrm{KO}, \mathrm{SO}_{3}+90 \mathrm{HO}^{2}$ $+\mathrm{KO}_{3} \mathrm{SO}_{3}+90 \mathrm{HO}$.
It is expected that any pharmaceutical chemist who vishes to try these processes will be sufliciently competent to calculato his own formula from this dati. But for the berefit of the tyro it has been deemed advisHo to submit the following formula, which aen properly executed as above described, ill yield a result in every respect indentical rith the officinal reqirements:
Hake of Crystallized protosul-
plate of iron, 6449-6 grains. Chloridesodiun, $6449 \cdot 6$ grains.
$2388 \cdot 2$
Chorate potassa, 4744 grs. or chlor. sod.......................
Chlorhydric acid, sp. gr. 1•16.
Alcohol.
$411 \cdot 8$

Water.
$6 \frac{1}{2}$ Troy oz.

Chicago, Jume 24th, 1869.

Peroxide of Hydrogen, the New Remedy for Disbetis."

BX C. GILEERT WHEELER, PIF. D.
Within the last fow months sereral notices have appeared in the medical journals of Europe, and the castern portion of our own country, with regard to the amployment of peroride of hydoren in the treatment of diabetic patients. Remarkable success seemas to have accompanied its use to such an extent as to arrakion a very considerable interest anong medical men with regard to this hitherto little known compuund. At the recent annual mecting in this city of the State Medical Association, this remedy was brought to the notice of that body by Dr. N. S. Davis, in tho able roport of the committeo on drugs aud medicines. This report will be
found in the Chicago Medical Examiner for tho present month.
Tho circumstance, then, of its coming before the public, as thus stated, and likely snon to be an articlo not unfrequently pre-
scribed, makes it appropriate that the nanture and properties of the substance should bo more generally and fully known, especially ns our ordinary text boolss on choonistry and pharmacy contain very littlo with regard to it. Although peroxide of lydrogen has not been studied by chemists as fully na nany other compounds, yet much is to be met with in chemical jourmals, especinlly those of Germany and France, which has not ns yet found its way into American scientific liternaure.
Poroxido of hydrogen binoxide or deutoxido of lydrogon, hl sic poroxide and oxygenated water, are synonyms for a conpound of two atoms of hydrogen with two of oxygen, or of two parts by weight of the forner with thuty two of the latter, and lharing the formula, $\mathrm{H}_{2} \mathrm{O}$; water being H 2 O , or the formula $\mathrm{H}_{2} \mathrm{O}_{2}$ according to the antiquated dualistic-nomenclature. It was discovered in 1818 by Thenaxd, an eminent French chemist.* Hias never been prepared direct from its elements, nor obtained perfectly pure, but always in an aqueous solution, the most concentrated haring a specific gravity of 1,452 . According to Schocnbein, it results from various chemical reactions, but soon spontanconsly decomposes. It is formed when the peroxides of barium, strontium, calcium, potassium or sodium are decomposed with acids. It forms during the electrolysis of water acidulated with sulphuric cacid, also in many instances where slow oxidation is in progress, and under conditions such as give rise at the same time to the formation of ozone, as, for instance, during the oxidation of phosplonns in moist air.
Schoenbein believes, that, in this caso, the oxygen of the air is transformed into ozone and antozone, its clectrical opposite, and this latter then combines with tho water present to form peroxide of hydogen. In the familiar nethod of exlibiting the formation of ozono by heating platinum in a ressel of air containing also a small quantity of water and ether, there is formed an appreciabls quantity of peroxide of lyydrogen along with ozone. Some chemists believo that in all cases where oxidation takes place in moist air, more or less peroxido of hydrogen is formed, as in the rusting of metals, the decay of organic substances, or the respiration of animals, t and that in these processes it plays an important part.
Notwithstanning the manypossible methods of forming the peroxide, only those are practically usoful, based upon the deconposition of barium peroxido by means of an acid in presence of rater.
In the original nethod of Thenard, hydrochioric acid was employed. But the purifcation and concentration is, by this mothod, very difficult and circumstantial. Pelouzo employed hydrofluoric acid, also hydrofluosilic acid. But by far tho most satisfactory method is that of Bilard, as modified by
Duprey. \ddagger A very xapid current of pure Dupreg.f A vory xapid current of pure
carbonic acid is passed through distiled water, and peroxide of bariun added in small quantities, care being taken to have the acid almays in excuss. After filtration, the solu-

[^2]timn is concontrated under the receiver of an air-pump. A vory dilute solution of the poroxide may also be obtained, in the following manner, which, for experimental purpose, is an excellent method, nud admits of execution sufficiently rapid to be suited for the lecturo table, a small amount of the peroxide of potassimu is prepared by melting the metal in a test tribo, amd passing, for a fow minutes, a current of oxygen throngh the same ; the peroxide is then added, in small quantities, to an aqucons solution of tartaric acid, and tho filtrate will bo found to contiun a sutticient quantity of the peroxide of hydrogen for tho usual tests.

Peroxide of hydrogen, when in the most concentrated aqueons solution, is a colorless, transparent liguid; it lins never yet benn frozen, and is less volatile than water. Concentrated sulutions aro strungly bleaching in their action on culoring matters, have a bitter taste, act on the skis, causing it to become white and give rise to ttchug sensaespecially on heating. $\begin{aligned} & \text { rapidly } \text { decompose. } \\ & \text { Dilute } \\ & \text { solut1ons will }\end{aligned}$ especially on heating. Dilute solutions will keep for months at ordinary temperatures. The peroxide is slightly soluble in ether, amd this solution is the renedy recently brought beforo tho public as "ozonic ether," and is used in similar cases as the aqueous solution, and in doses of from 10 to 30 manns three or four times a day in water.
Peroxide of hydrogen is an active oxydising body, and doubtless its efficiency in darbetis depends on this circumstance. Dr. Richnrdson proposes to uso it as a substituto for iodine and mercury in constitutional frrms of serofula and syyhilis. The strength of the solution is such that the peroxido on decomposition should yield a volume of oxygen ten times as great as the volume of the solvent.
There are numerous good tests for the peroxide. Two of the incist delleato are the following - I. To a freshly 1 repared starch solution add iodide of potassium, then the peroxide, and finally a solution of sulphate of iron; a blue color at once appears. II. A slightly acid solution of pervangannte of potassa is at once decolorized.
This latter may serve as the basis of a quantitative test, by using a solution of the permanganate of buown strength, and thus the practical pharmacist has a means at hand of readily testing the relative strength of his solution of tho peroxide from week to week, with a view to establishing the proper dose. This, for an ayuevans solution of the strength above given, is one to four fluid drachms repeated three times a day.

Indelible Ink for marking Linen.*

dy dr. remana.
The following are a number of formulx for preparing indelible ink to be made use of in narking lincn. As they have been all thoroughly well-tried and found effectual, it is to be hoped they may prove of some use to the public.
The linen is first moistened with a fluid, consisting of a maxture of, 2 parts carbonate of soda in ciystals, 2 parts gum arabici 8 parts of water, and then dried. When quite dry, it is rubbed with n glass cloth to render it as smooth as possible, so that it may bo easier to wite upon. The composition of
${ }^{\bullet}$ Fro:u the'Scientinc Amorlcan.
the ink itsolf is as fullows : 1 今 s pts, nitrato of silver, 16 pits. distilled water, 2 lits. gumarahac, fipt. of sayp green. The nitrate of silver is first disolred in the distilled water, and the gun-arabic aud say green are subsequently added.
It is necessary to writo with a quill pen, nll metallic pens excelt yold ones, deconmosing the ink. It is a good plan to trace the letters with a pencil before writing them.
Marking linen is most conveniontl:- effected by using a pencil and a sumall coppier plato with perforations correspanding to the letters required. This plato is laid upon the linen, and the ink is applied with a poncil to tho cut-ont spaces, so that these spaces, and these alone are smenrel with ink.
The following ink is of service for marking linen with a percil, when a metallic pattern-tracer is employed. $2{ }_{1}$ its. Nitrato of silver, 4 pts. distilled water $2 \downarrow$ pts. gmo arralic, 3 yits. carbmante of soda crystals, 5 pts. liquid ammonia.
The best way to prepure the ink is first to dassolve the nitrate of silver in the liquid nmmonia, and the gum-anabic and soda in the distilled water. The two solutions are then mixed togethor aurl slightly warned, when the whole misture lecomes brown. A fery drops of a solution of masenta, makes the ink somewhat more distinct. It is of courso unnecessary in this method to previously moisten the spot with gum-arabic solution.
For very tino linen the following ink is best employed: 4 pts. Nitrate of silver, 24 pts. distilled water. To this solution liquid ammonia is added, until the precipitate which is first formed is re-dissolved. Then a little sap green, indigo, etc., are ground together, and dissolved in a solation of 4 pts. gum-arabic, and this solution and that of the nitrate or silver mixed together. Tho whole is then diluted until it occupies 32 prarts. This ink is very limpid and easy to write with.
When dry a hot iron necd only bo passed over the surface of the linen, when the letters will at once make theirappearance, their tint buing a deep black. This ink does not injurinusly affect even the finest linen.
The discovery of an aniline black has led to the employment of this coloring matter in marking linen.
This ink has the advantage of being cheaper than the ink prepared fron nitrate of silver. It has also another advantago over the latter salt, viz, that it is clemmelly mudelible. Tho ink made with nitrate of silrer can bo removed by washing the linen with a eolution of hyposulphite of sod, or by moistening it with a solution of bichloride of copper and
then wasling with liquid aumonia then washing with liquid anmonia. This is not the case with the aniline ink, the color of which cannot be remored by any agent whatever. Linen therefore marked with this ink can never be appropriated by any persun but the rightful owner.
Such aniline ink may be preprared in the following way $81 \mathrm{grs}$. of Bichloride of copper are dissolved in 30 grains of distilled water, then are added 10 grains of common salt, and 9ξ grains of liquid ammonia. A solution of 30 grains of hydrochlurate of aniline in 20 grains of distilled water is then added to 20 grains of a solution of gunnarahic, cuntainining 2 pts. water, 1 pt . grunarabic, and lastly 10 grains of glycerin. Four parts of the aniline solution thus prepared are mixed with one part of the ropper
solution.

The liquid which results has a green appearance, ind may be at once employed for marking linen, since it invariably becomes black after a fow days. A steel pen may we omployed as well as a quill. If it is desirablo not to wait so long for the appearancs of the black color, a hot iron may be passed over the writing when the ink is dry, or the linen held over tho flame of a spirit lanp, or over a hot plate, or hot water, when tho black tint will readily appear.

It is a good plan to put the linen when marked into a tepid solution of soap, which lins the effect of bringing out a fine bluish tint. The ink must be so lumpd that it is ablo to permente the tissue of the linen, so that the marks appear on both sides.

It is advisable to mix the solutions together, only when the ir' has to te made use of.

The ink is perfectly indelible, and so ensy tn write with that the finest devices may be drawn with it.

A very cheap brown making ink may be prepared from binoxide of manganese, as follows: 4 pts. acetate of manganese dissolved in 12 pts. of water.

The place of the linen where the marks lanve to be made, must be previously moistened with the following solution: 1 pt. yellow prussiate of potash, $\frac{1}{5}$ pt. gum-arabic, 3 pts. water. Tho linen having been saturated with the above solution, is then dried, and afterwards marked with the manganese solution. On the letters becoming dry, the following solution is spread over the spot with a pencil: 4 pts. carbonate of potash, 10 pts. water. The letters then become brown, aud their color cannot be removed by alkalies, nor by acids, with the excention of dilute hydrochloric acid.

A purple marking ink can bo prepared by employing bichloride of platinum. 1 pt. buclloride of platinum, 16 pts. distilled water.
The place where the letters have to be written, must bo moistened with a solution of 3 pts. curbonate of soda, 3pts. gum.arabic, 12 pts. water. The spot is then dricd and mado smooth. After the letters have been written with the platinum ink and become dry, the linen is moistened with a solution of i pt. chluride of tin, 4 pts distilled water, when an intenss and beautiful purple red makes its appearance.

CANADIAN PMARMACEURICAE SOULETY.

President,
WM. ELLIOT, Ess.

The reyular matings of the Socicty tale place on the first Welnesday cocning of cach month, at the Mcelunics' Thstitute, when, after the transaction of business, there is a paper read, or discussion ongayed in, upon subjects of interest and valie to the memiers.

The Socicty almits as members, Chemists anul Druygists of good standine, oul thew assistants and apprentices, if clected by a majority rote, and on puyment of the following fees:
Principals
$\$ 100$ per Annum Assistants \& Aporentices, 200
The Journal is furnishal frre to all mombers.

Partics voishiang to join the Socicty may send their names for proposal to any of the members of the Suciety. A copy of the Constitution and By-laves of the Society will be furnished on application.

HENRY J. ROSE, Sccretary.

> THE GANADIAN
> Ziturmacrutical ifntrant.

TUIONTO, ONT., SEPTEMBER, 1860
Corvespondence and general commanica.
tions. of a chanacter suited to the olygets of this Jounsar, me invited, ame will always be welcome. 'the writer's name should accompany his 'ommunication, but aut aceessarily for publheation.
Subscriptions wall not be acknowledgen? by letter, ns our semding the paper may be taken as sultivient evilence of the reccipt of the money. All conmmunieations conacected with the paper to be aldressed, prost-pinit,
 'lonomro."

INTRODUOTION OF THE GETRIOAL SYS-
 TEM OF WEIGHTS AND MEASURES INTO PHARMAOY.

Our readers have been already apprised of the discussion which has taken place, amongst English pharmacists, relative to the adoption of the metrical system of weights and mensures, in pharmacy. No decisive step has yęt been taken, but there seems to be an evident wish, on the part of the more intelligent class of druggists, to press the matter to an issue. It will readily be seen that a great deal of onymsition will have to be overcome, owing to the strong conservatism of the English people. The old troy grain, however unscientific its derivation, and the ounce and pound, though lacking in harmony, retain a hold on the public mind which it will be difficult to supplant. The revolutionizing of a system of weights and measures, is, in every country, an operation of no small marnitude, implying, for a time, an inestimable amount of inconvenience and perplexity. Practical men aro rery apt to question the propriety of incurring this trouble, and are slow to recognize advantages purchased at so great a cost, especially if the system in use gives tolerable satisfaction. One of our cotemporaries goes so far as to say that the lives of Her Miajesty's subjects would be materially shortened hy the introduction of the metrical system, from the great amount of annoyance incident thereto. We have no fear on this score, and think that Her Majesty's lieges would be none the worse of the requisite brightening up. Of a general revolution, however, including all classes, we fear there is little hopes for many years to come. When we hear a true-born Britisher denanding his quantum of the national bererage, by asking for "five decilitres of 'arf-and-arf," we shall be prepared to receive or believe anything.
In regard to pharmacy, the ense is entirely different. The pharmacist is, or should be,
an educated man, free from the prejudices whicli characterize tho common mass, and to whom the acquiroment of a now bystem would be an easy and pleasing tiask-easy, in this case, from the benutiful simplicity and harmony which characterize it-pleasing, from the conviction that a step is being taken which promises to bo of permanent advantage, and which adds to the general adrancement of knowledgo.
The want of a satisfactory and rational sybtem of weights and measures lias long been felt in pharmacy. Witness tho frequent vacillations between troy and nvoirdupoiswino and imperial ; all of which, have, in turn, proved unsatisfactory; the only result being a Babolistic confusion of quantities, truly perploxing. Dc we wish to mako a preparation from a former phamnacooia, it becomes necessary to know the value of the quantities at the time-the ounce of to-day is not that of a few years ago, and drachms and scruples, are heard of no more.
It has been asserted that the decimal system is not perfect; that it is not as convenient as an octavial one; that the standard taken docs not admit of more ready verification than with others. These are, no doubt, valid objections, but when taken with the fact that it has been tried and recommended by the greater part of the scientific men of the day, and that the civilized nations of the earth havo either adupted it, or are contemplating doing so-these objections are of small weight.

The decimal systom of coinage has been found of great utility, and no nation which has ndonted it would now think of its abandomment. For gur own part, and we know Te spenk the sentiments of the people of Canala, and the United States, we should bo very loth to return to the days of pounds, shillings, and pence-not to mention farthings, and sundry other nondescript and various denominations. The increased facilities for keening accounts which the new system possesses, has effected a saving of time, which, in large establishments is pecuniarily perceptable. The introduction of the metri. cal system of weights would be of still greater service to drugrists, who, as a class, are unfortunately seldom troubled with the contemplation of large figures in théeir'ledgers, and rhose weekly profits can often be computed by the aid of a little digital enumeration.

The great difficulty in the way of the introduction of the new system appears to be the apparent trouble of associating a just idea of quantity with the new weights. Numerous expedients have been suggested; such as tho making of coins to represent certain weights; the cutting of postage stamps of a size, indicative of a certain measurement. These would prove material helps, by bringing the
new quantities frequently before the observation, but we are inclined to the belief that this difficulty has been much oxaggernted, and think that an hours stndy of tho now weiglits, and tho uso of a set of French weights and measures, for evon a fow days, would insure, in the great majority of instances, the requisite familiarity.

We notice that the Pharmaceutical Board, of Great Britian require a knowledgo of tho new system, from those who come before them for examination. This may be held to imply that the next pharmacupuia will require such knowledee, and we think this more than likely. If such be the case, it is time that attention was directed to the subject, so that that when our trausatlantic fathers shall command, our apprentices may bo found as familiar with grammes and litres, as they now aro with the common denominations of the old avoirdupois.
In another page will bo found a tablo of the values of the more common French weights and measures, together with a series of useful rules, for the intermutation of the two systems.

THE PEROENTAGE SYSTEMI.

In another column will be found a communication from an estecmed correspoudent in Montreal, complaining of the mustico of a system, which, though widely prevalent, is none the less to be discountenanced-we refer to the allowing of a percentage on prescriptions. That sucls a system exists to a large extent throughoit Canada, is an undeniable fact; that it is undignified on the part of the profession; unfair when practised by the druggist; and dishonest towards the public, is equally apparent. We shall cndeavour to prove this.

In the first place we hold tho physician and druggist, with their respective callings, as distinct and separate; the right of one is to prescribe, that of the other to dispense; cach is, or should be, capable of performing his part without colliding with the other; and should keep to that part-in the strictest sense, "minding his own business." The recent Medical Act very sharply defines the line of demarkation, over which the druggist may not pass; by enacting that "no person shall be.entitled to recover any charge in any court of law for any medical or surgical advice, or for any attendance, or for the performance of any operation, or for any medicino which ho shall hare both supplied and prescribed, unless he shall prove upon the trial that he is registered under this Act" (i. c. unless he be a legally qualifed medicine practitioner.) If then the druggist is so effectually cut off, by medical lam from any profits he might derive from prescribing, we
think the charge of "rundignified" profossional business may well hio at the door of the physician who tries to add to his gains by pilfering the scanty camings of the poor nothecary.
A correspondent of the Montreal Star, appears to take a similar view of the subject, he says:
"Is it fair? Is it,honest? Unfortunately I am a druggist. and as such I am frequently called upon by my customers to prescribe for their little ailments. Knowing that it is not lavful in the country for druggists to prescribo, I invariably rofer them to the doctor, and what return do you think I get for doing so ? Why, sir, in nine cases out of ten, my customer is mescribed fur by the ductor, and sent to some other store to get his prescription dispensed ; mad this is an every day nccurrence. Now, I should like to ask the doctor, whether the druggist has any incentive to keep within the lavs, and not pmach on the doctors' preserves?
The only remedy which the druggists, who refuse to commit themselves to this abominable percentage system, can apply, is to open the eyes of the public to the fact, that they have a perfect right to to take their prescriptions to their own family druggist, and that for a doctor to order them not to do so, is a piece of impertinence and professional humbug, which very few families in England wolld submit to.

When a doctor knowingly influences his patient, to leave the drug store, where ho may have dealt with satisfaction for years, in order to send him elsewhere, and that for $n o$ other reason, but becauso he had an underhand arrangement, whereby he gets back part of the money paid to the druggist for medicines, in addition to his regular fee, it is such a self-cvident breach of medical etiquetto, as well as such a mean piece of injustice to druggists generally, that it is surprising, that men who aro forever pitching intw quackery and humbug, and who hold positions as professors of medıcal colleges, should be guilty of such practices."
From a perusal of the above paragraph, the London Chemist and Druggist is led to to think that "the members of the medical profession, in Canada, do not appear to be immaculate." We are inclined, in some measure, to the same opinion, and rather think if druggists would ask a percentage from physicians to whom they recommend patients, the medical profession would stigmatize the interference with a stronger term than "undignified."
The charge of unfaimess alleged against those giving a percentage, may be diposed of at the same time with that of dishonesty to the public.

It may be assumed as a law of fair trading that every article has a certain just value, which isregulated by certain known conditions, but which cannot be departed from, without doing injustice, cither to the purchaser or the seller. The honest druggist calculates the average value of materials and labor, adds what he considers a.just profit, and asks for his mixture a certain fixed price, allowing of no abatement, either to doctor or patient.

The result is that his prescription book is lem and famished, whilo that of his rival, neross the strect, who allows 33 per cent. to the prescriber, literally stamds out with futness. Ho wonders how the thing is managed, and perhaps consoles himself with thinking that his compromising opponent is playing a losing game for the salie of custom. Perhaps he is. There is another way, however, of unravelling the mystery, of which the Montreal Withess has got the cue. In remarking on a similar case that jommal says :
"'ihe druggist preferred by the doctor churged a highes price, and, on one ocunsion, through a cheap and incficient assistant, furnislod a very dangerous substituto instend ${ }^{-}$ of the right medicine." Cheap drugs, incompetent assistants, and high prices, reveal the secret; either this or lead loss, for we hold that no honest trade can admit of a reduction of 33 per cent. in its profits-and this we are assured is the usual percentago. This, like all other evils, will work its own cure. The public cannot long remain blind to such a timsy artifice, and the sooner the veil is mised, the better for henest men.

THE COMING U. S. PHARMSACOPGIA.

We nutice the announcement of a meeting, to be held at Washington, on the first Wednesday in May, 1870, for the purpose of revising the U.S. Dispensatory. Delegates, not to exceed three in number, are invited from each of the incorporated Medical Societies, and Colleges, and incorporated Colleges of Pharnacy, throughout the United States.
Although, in Canada, we are not supposed to be directly interested in the revision of an authority of a different nationality, yet wo are sure thatshe coming volume will be looked for, here, with as much anxiety as on the other side; nor do we think the wish to have the revision as complete as possible is less sincere. We have always looked upon tho U. S. P. as an admirable work, not only as furnisining good, practical formula, but as conveying an incomparable amount of information on the subjects on which it trents, acceptable to buth master and pupil. Were it not for our national vanity we might institute a comparison which would be quite flattering to our American cousins; but suffice it to say, that we believe the Dispensatory to be more widely disseminated throughout Camada than any other authority, and this fact speaks for itself.

We approve of the plan pursued in reference to this work; that is tho combination of the formula and directions with the materia medica, and chemistry of the different preparations. It may bo argued that a bulky volume is produced, which is not so good for reference. This is to some cxtent
true, but, we think, is more than counterbalanced by furnishing information readily, when required. Besides, where one druggist is in possession of separate works on chemistry, plarmacy and materia modica, a hundred can afford to purchase a Phamancopceia.

It is commonly said that unasked advice is not accoptable; we should, however, like to make two suggestions in regard to the coming volume. One is the total abandomment of the estimintion of quantitics by measure ; the other is the adoption of the metrical system of waights. These would tend much to acenracy and convenionce, and, we think, are essential to a scientific completeness.

OUR LIBRARY AND HUSEDM.

DON:.TIONS WANTIED.

The formation of a Library and Museum was one of the first objects contemplated by the society. Without these valuablo auxilliaries, our association would, indeed, be incomplete. Donations lave from time to time been received, and we lave the promise of material help from our friends in Europe. At the ammal election of officers, last July, wo were appointed Librarian and Curator, in which capacity we now appen to those interested in the welfare of the Society, for assistance in the undertaking. Specimens of natural products, chemical or pharmaceutical preparations, of other objects of interest to druggists, or likely to prore instructive to students, are solicited, and in all cases will be acknowledged in the Jounnal.
We hope, also, by the assistance of our friends, to be able to establish a library, which, in the ovent of the formation of the contemplated school of Pharmacy, will be absolutely indispensible. For this end a considerable sum of money will be required, for which we must mainly depend on the generosity of those who have the advancement of the cause at heart.
Parcels directed in care of any of the wholesale druggists in town, will reach us, or may be sent directly to our address.

Monthly Meeting. - Whether owing to the state of the weather, and the consequent attendance required at the soda-water founthins to dispense " nectar" to a thirsty populace, or whether to be attributed to the number of druggists absent on holiday exped.tions, we know not ; but at all events, on the night of meeting, tho attendance was so small that it was thought advisable to adjourn without the transaction of business. Norr the "heated term" is over, wo trust that a larger number will attend; and for the future it might be well to dispense with the
meetings during the hottest summer months. Notice of miotion has been given regarding the changing of the time of mecting from Wednesday until Friday evenings. This will not como into effect until the mecting after next, but it will be certainly a chango for the better. Wednesday evening is, in Toronto, pre-eminently dovoted to roligious exercises, and from this canse a large number of druggists are prevented from being preser.t at tho meetings of the Socicty, duty being properly regarded before pleasure.

EDITORIAL SUMMARY.

Cungitraga Instrats.

Mr Collins, Curator of tho Mrusemu of the Pharmaceutical Society of Great Britain, who kindly presented the Society here with a succimen of the abore plant: lately sent us a reprint of his papur-"On some New or Littleknown Vegetahle Products"-in which the Chuquiragua reccives the following notice:-
"This prickly plamt, the leaves and young shoots of which are very highly prized at the commencement of any kind of fever by the Indinns of Columbia, I noticed in London last summer, a bale of it having been sent to Messrs. Im Thum and Co., described as "a medicinal griss from Guajaquil." It seems to have been first offered for salo in this country in 1864. This plant seems to have a. "eady attracted the attention of writers on Mi.ceria Medica. Mérat and de Iens* notice it as being "a plant of Upper Peru, employed a.t Payta in the form of an infusion against fevers."
Dr: J. Leon Soubciran, in a note read before the Societe de Pharnacie de Paris, after noticing its habitat, observes:-
"The Indians say that the deroction or infusion of this plant, which is very hitter, is of grent power in fevers; especinlly such as intennittent or bilious. In the towns, alcoholic tiuctures, syrups, etc., prepared from this plant, are used by the physiciams. Drs. Jameson and Gandam, of Quito, have employed it in numerous cases with great success" \dagger
The fullest account I have met with respecting this plant is in a lefter by Dr. Raphacl Barahona (Physacian to the Miedical Hospital and Professor of Physiology in the University of Quito, quoted by Professor Jameson in a paper on the Compusitu of the Andes. \ddagger The paper is too long to repeat here, but Dr. J3arahona gives, as the result of lengthened public and private practice, a very high character of the medical value of this plant. The Chuquiragua is a very abundant plant in South America, and grows up to the snow line on the Andean Momenins, its small glossy leaves of about 4 inch long, and its large, bright yellow composite flowers rendering it a pretty object, which ronld look well in European gardens. The whole of the plant is very bitter, but the leaves seem to be the most powerful. The plant, at all events, deserves a chemical analysis. My specimens appear to be the var. microphylla of Cluquiraga insignis.

[^3]
Cotraspanderc.

QUESTIONABLE TRADING.

Tu tho Ealtor of tho Dinmmacentical Juumal:
Sir,-Yours being the recognized organ of the druggists of the Dominion, I beg to address you on a subject which has recently been brought before the pablic of this city, through the medim of the press. I alludo to the undignified and, in my opinjou, the dishonest practice of giving a percentage to physicians for their prescriptions.

In private conversation, I have freduently brought up the subject to my confreres, buit I have never heard one of them enter into a defence of the system; in fact, one of the simmers, in this respect, assured mo that his best, i.c, his wealthiest, customers, who aro in the habit of consulting a leading physician here, were continually being influenced away from him, in order to induce them to get their prescriptions dispensed it a leading drug store, where the physicietr is paid 33] per cent. on all the prescriptions he can send. What wonder, then, that the avarice of this physician should overrido all his better foelings ?
I was on Great St. James Street not ten minutes since, and saw one of my best and oldest Sherbrooke Street customers go into a drug store which I know pays a percentago to hor physician. The lady in question has been an habitue of n:y shop for more than eight years, and yet she never brought a singlo prescription to be dispensed. Notwithstanding the pressure against the druggists of Montreal who refuse to give way to this unfair and degrading system, I must say that their turn is coming, and the more publicity is given to the matter, the better it will be for the nonpercentage men.
The public may be hoodwinked for a timo by a designing physician and a dishonest apothecary ; but depend upon it, when they see through the little game, the upright man, who asks for a fair field and no favor, will have no canse to be ashamed.

Yours truly, Chemicus.
Montrealy, Aug. 20, 1860.

BOOK NOTIOESS.

Researches intu the Constitution of the Opium Bases. By Augustus Mlatthinson, F.R.S., and C. R. A. Wrigit, B.Sc.
This pamphlet contains the substance of a paper brought before the Royal Society, announcing the discovery of a new base, which the authors propose calling Apomorphia. Perfectly pure morphia, supplied by the Messrs. M‘Farlane, Edinburgh, was subjected to the action of hydrochloric acid (10 cubic centims, of 35 per cent. acid to one granme morphia), in sealed tubes, and heated
to 140° to 100° fur two or three hours. 'The product was the hydrochlorate of the now base, a substince difioriatg greatly from morphin. In slcohol, cther, and chloroform it is soluble, and to a slight extent in water siso. A table, showing tio most marked reactions of apomorphia, as contrasted with morphia, is given. Thu physiological oficets of tho new system aro very different from those of morphia: one quarter of a gazin produces vomitisy in from four to ten minutes, and no ill after-etfects are ralized. It will probably be introilueed into medicine as a non-irvitant emetic.
The Piramacist aid Embircar. Fiecomd. Chicago. July.
We are glad to see that the success which has attended this jummal has been such as to warrant its appearance as a monthly. It is published, as before, under tho sinaction of the Chicngo College of Pharmacy, and is cdited by Alíred E. Ebert, assisted by E. H. Sargent, the rormer editor. Tho cause of pharmacy in th:o West will, no donbt, be mach adranced by the abie effots of this journal, and wo trust it will meet with the learty and deserved support of druggists, both in the Unitud States and Cimala.

Tinoture Iodinii Decolorata."

ey ciads. o. culituay, m.d.,
Prof. of Clemistry in the alissouri Stedien! Conlege.
A colorless tincture of iodine for external application to the face, neck and liands, has so many obrious advantiges orer the common oflicinal compounds that various efforts have been made to obtain a reliable prepartition, which, while it retains the valuable properties of the iodine, does away with its objectionable features. Most prominent among these objections are the mosightly stains inseparable from the use of the common tinetures. Different formule have been from time to time made public for accounlishing decoloration; some of them using alkaline sulphites, hyposulphites, which convert the freo iodine into an alkaline iodide, :and have no preference over a simple solution of iodide of potessium or sodium. Others cffect the discharge of the color by carbolic acid, which certainly gives good results, but may not always be considered a desirable addition; others again convert the free iodine of either the simple or compound tincture into ammonia compounds-by the addition of aquarmmonire in various proportions, and this seems to me the method de ing preference over the others ou account - the greater volathity of the resulting product, and its better adaytion to speedy absorption. The formulio based upon the action of ammonin, however, differ widely in their propoztions of iodine and of ammonia among themselies, and from the corresponding officinal preparations of the U. S. Pharmacopeeia, and varying so much in strength thoy have, perhaps on that account, found less faror than they deserve.
Now, the Tinctura iodinii, U.S. P., con-
-From the St. Louls 3fedical Rejorter.
tains 30 grains of iodine per ounce, all of it uncombined. The Tincturt Iodinii Compositn, U.S. P., contains 38 grains of iodine, (lo grains of freo iodine and 23 grains of oodine combined with potassiun), As the iodine in the colorles3 preparation does not exist in a frce state, but in that of ammonia comp ounds, which acts somewhat less energetically thin the free metalloid, the proportions of the compound tincture, 3 g grains of iodime per omice, are probebly the best, and this wond require abont one and one quarter vunces per pmat.
To cxactly convert this amome of iodine into colorless iodide of ammoniu:n, 309 winims (abont five fluid-drachas) of Aqua Am monise fortior U. S. P. (speo. grav. $0 \cdot 3 n 0$) per pint, or about 20 minims per ounce are requisitc. The pmblished fomata give considerably more than that, some of them recommending half at piat; sume only four Huid-ousces per pint of tincture, imat all of them agrec in using vastly more tham theory regures, and therely mate the preparatum objectionable on accomnt of irritatang ammonia valur, which though it may prove very useinl in many case3, shoud certainly not always bo prescut; at least its addition shout be left to extemporaneons prescription. On the other hand, the cmployment of only the theoretical guantity resuits in decoloration so slonely as to be practically and virtually inapoliuble.

Experiments instituted to ascertain the least amount of ammonia by which the tincture conld be rendered colurless in at reasonable suace of time, sure the following results. Into nine vials the ingredients for the tincture were placed in varying proportions, thus:
Iodine, ors. $28 \quad 3838$ IV V V1 VII Vill IA Alenhel 55 Aq. An. foit. $13 \underset{1}{1} 1$

No special peceantions were taken in regavd to the regulation of light or temperature. The iodme was completely dessolved in the alcohol before the addetion of ammonia, which aceasioned a copious dart preciputate re-dissolving in a few homs. No. 1 was simply kept for comparison of color. Evea during the first iew hours a slight decolowtion appeared in every wial, lat was most decided in No. 9, which bleached from day to day, and on the thind day retained waly a deep strat color, while the others hat lost their color in strice proportion to the cuantity of ammonia prescnt-No. 2 being yet very dark, though considerably lighter than No. 1.

For complete decoloration, No. 9 required 5 days; No. 8,8 days; No. 7; Il days; No. 6, 15 days; No. 5, 21 days; No. 4, 27 days; No. 3, 37 days; No. 2, at the expintion of six weeks, still retained considerable color, being as dark as No. 8 on the second day.
From the above data the following worhing fornula woud appear most app:opriate Eor

$$
\begin{aligned}
& \text { general application: } \\
& \begin{array}{lcc}
& \text { For } 1 \text { lint. } & \text { For } 1 z . \\
\text { Indine, } & 1 f \sigma \% \text { grains. }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Aqua Ain. fort. } 3 \text { f. } \alpha \approx \text {. }
\end{aligned}
$$

Dissolve the iodine completely in the alcohol thenald the ammonia. This occasions at first adar: precipitate of iodide of nitrogen, which, however, suon re-dissolves and is entirely decomposed. Sat asido for four weeks or until perfectly colorless. Occasional shaking up is advantagcous.
hasten tho process of decoloration, but should be aroided. When puro materials aro employed no filtution is necessary.

If, howerer, the presence of iodide of potassinm should be decmed preferable, according to the proportions of tho l'incturs Iodinii Composita, U.S. P., the amonut of numonia may ho still further reduced, as over half of the whole amosut of iodine present is alrendy in combination with potassium. Tho following cxperiment was male to ascertain the best pruportions-f furu vials wero filled with:
 No. 4 lost color very quickly, and on the fourth day was only of a pale straw color; while No. 1 was yet very dark, though much lighter than the tincture withont smmonia; the intermediate numbers were also intermedinte in calor. For completo decoloration, Nu. 4 required 6 days; No. 3, 9 days; No. 2, 27 days; No. 1, 3 a days. The proportions of No. 1, therefure, wonld be least objectionable on account of its small quatity of ammonia, though reguring rather a long time for decolcuation.

A modification of th:is process for a speedy prepanations of colonless tincture of iodine Withont excess of ammonia has suggested itself to me, and up.m trial giren sitisfactory results; I would only recommend it in cases where the shortness of time forbids the en:ployment of the othor. Whis consists in speedily decolorizing the solution of iodine in atcohol by a surphes of ammonia, and, after decolomation, carefully mdding hydrochloric acid motil the reaction remains but feebly alkaliac. The hydrochloric acid forms with the free ammonia chloride of ammonimu, which, being but slightly soluble in alcohol, is nearly ith precipitated in the form of a white crystalline powder, while the iodide of ammonium and iodate of nmmonia remain in solution. An addition of even Ω slight excess of acil wonld destroy the preparation, sestoring the color of the tincture, by decomposing the ammonia compounds of iodine; the precipitate cim be readily removed by filtation. Very strong alcohol should be employed in this process, as the completeness of the precjuitation of chlorido of ammoninm is in direct proportion to the strength of the alcohol. As some of the chloride of a muonium, however, remains in all cases, and more material is required to accomplish the same object, I should give the simpler process of slow decoloration by addition of a minimum of ammonia the preference.

Filtration under Piessure.

Professor R. Bunsen of Eeidelberg has recently devised a very excellent improvement in the tedions, but all important operation of filtration. This new method may easily bo applied whenever a supply of water and a good fall of from 10 to 30 feet are at disposel. In all towns with water works and dmins, it is easy to put this method into practice; the saving of time is enormous, for Bunsen finished a washing of chromium hydrato in 13 minutes, while, according to the old process, 7 hours were required, representing a saving of 97 per cent. of time. This method vill evidently be of very great use to the phasmacist.is

Lunsen proved that the rapidity of filturation is very nearly proportional to the pressuro under which it is effected. In the ohd way, when filtration is performed in the ntmosphere, the pressure is but very small. The new method consists in receiving the fittrato in a partinl vacuum, so that filtration takes place under a pressure noro or less nearly equal to that of the atmosphere- 30 to 34 fect, instead of a fev inches of water.

For this purpose two things are necessary, a strengthening of the filter and the prodiction of a vacuum.

For tho latter purposo air pumps are applicable; the vapor of water, and especially the corrusive vapors of acid, wonld soon deteriorato the machine. The vacum is casiest produced by means of a strem of water flowing down a vertical tube $\lambda \mathrm{BC}$, which latter is comnected with the recciver by
 a tube BD, which at an acute angle, enters the main tube A SC. If the tubo BC be passel through one or two storics, and connected below with : drain, a very effective filtration mader pressuse will be possible. Even a fall of 8 fect is quite effective.

The receiver D consists of a strong glass vessel to receive the filtrate, closed air tight by means of a good stopper (best of rubber) through which the fuanel and is glass tube pass, likewise air tight. The glass tube is connected with the tabe DB by means of a stoui rubber tube. In the very accurate funnel is a circular and very thin piece of platinum foil, slit up along one of ats radii, and folded exactly like a smouth filter; this plati-num-foil filter serves to enable the paper filter to sustain the pressure, but does not hinder the filtration. The circular plate of platinum is from 1 to $1 \frac{1}{2}$ inches in diameter.

The operation of this apparatus will now readily be understood. As soon as the water falls down the tube ABC, air is borne along betireen the drops (as in the old Citalonial bellows.) If the apparatus is tight, the ar can only come from the receiver, which therefore rapidly will bo evacuated, so that the pressure of the atmosphere being no longer balanced from inside of the receiver, will force the liquid rapidly through the filter. Gustavus Hinrices, in the Pharmacist.

Sympathetio Inks.

Various chemical substances aro used as sympathetic inks-a moderately dilute solution of chloride of cobalt is perhaps the most popular. Letters written with it are first scarcely perceptible, but when gently warmed they become quite visible, being at first of a rich red color, which rapidly changes to green. Advantage has been taken of this fact to produce drawings, in which the houses, branches of trees, etc., are drawn wath ordinary India ink, while, for the foliage, the cobalt ink is used. So long as the pietures remain cold, they represent is cheerless winter scene; but when brought near the fire, they rapidly assume the brilliant and beantiful fo iage of spring or summer. This phenomenon is mentioned in a bouk on alchemy, plinted in the year 1705 , and bearing a title which we trinslate, Clue to the Cabuet of the Sccret Trcas ay of Nature. In 1730, a vagrant alchemist performed the trick in l'aris for money; but it has nuw ceased to be a wonder, and is considered only as one of the many amusing plays of chemistry.

Freuch and English Weights and Measuros.

Gralus. A.oz. B.IP. Pripor		
1 Centigramme =	$=0 \cdot 164$	
1 Decigramme	$=1.64$	
1 Gramme	$=15 \cdot 43$	
1 Kilugramme	$=16432.3$	$0=35.274=32.151$
	Fl. drue	m. Fi. oz. Pint.
	Gramurs.	35.215 $=1761$
1 griun	$0 \cdot 605$	1 Fluiddr. 0.0035
1 Ar . nz .	$=28 \cdot 349$	1 Fluidoz. 0.0284
$1 \mathrm{Ar} . \mathrm{ll}$.	$=453 \cdot 593$	1 Pint 0.0.579
1 Troydr. P.L. $=$	$=3.889$	1 Gallon 4-0434

1 Troyoz. l.L. $=31 \cdot 103$
1 Truy Ib. P.L. $=373.242$
Note. - For all practical purposes we may reg:rd-
The centigramme to equal $1-7$ th of a grain; "d decigramme " 15 grain;
" grimme " 155 grains;
"kilogranme " $\left\{\begin{array}{l}35^{-} \text {oz. Av., B.P. or } \\ 32\end{array}\right.$
" Jitre " 32 oz. Troy, P.L
" on. Av., B.P. " 28 grammes;
" oz. 'J'roy, P.L." 31 grammes.
The Tables printed in the British Pharmacopkeia furnish exact data for all culculations comected with Pharmaceutic weights and measures, including thoso involved in the intermutation of the British and Frencla, systen-. But calculations made with such unwic.dly numbers :s $15432 \cdot 348$, 15432 , $3 \cdot 549$, and $437 \cdot \circ$ are necess:uily very troublesome, and the results obtaneal may easily be misinterpreted by those who have had little practice in operating with decimal fractions. To aroid the tronble of multiplying and drviding by such mumbers, the fullowing simple rules may be adopted, when absclute accuracy is not reçuired -

Miltiply by 44, and ctill a cipher to the proluct.

$$
\text { Examples:-1×44} \begin{array}{rl}
-44 & \text { or } 440 \text { grains. } \\
4 \times 44 & =176 " 1760 \\
8 \times 44 & =352 \\
16 \times 3520 & " \\
16 \times 44 & =704
\end{array}
$$

[The results thus obtained exceed the thue cquivalents by $2 \frac{1}{2}$ grains per ounce, and may be readily conrected when necessary by suberaction. For example, 1760 less four limes 23, or 10, equals 1750, the exact number of grains in 4 oz.]

Multiply by 23 and cancel four fugures on the right of the product.
Examples. $-875 \times 23=2,0125$ or 2 oz . $4375 \times 23=10,0625$ " 10 " $7000 \times 23=16,1000$ " 16 "
[The fractional values of one-quarter, unehalf, and three-quarters of an ounce, are respectively indicated by numbers approximating to 2500,5000 , and 7500 in the cancelled portion of the product. Thus $766 \times 23=1,7618$ or 1 oz.]
to convelit yrfach omamas niso raglisa cllatss.
Multeply ly 154 and cancel the last figure of the product.

[The results thus obtained como very near to the true equivalents. With 1000 grammes or 1 kilogramme, the difierence dees not amount to 33 grains.
 ol.ammes.
Multipl!y by Go cend cuncel thres figures on the right of the product.
Examples : $-437 \times 65=23,405$ or $23 \mathrm{gram} \mathrm{\prime s}$. $2625 \times 65=170,625 " 170$ " 4.
$7000 \times(65=455,000<455$ [The results thus obtained are sufficiently accurate for all practical purposes. The crror with 7000 grains, os 1 lb . does not amount to $1 \frac{1}{2}$ grammes.]
to convent fiesch come cminhethes moto Fi.in miscims.
Multiply bs 28 and cuncel two figures on the right of the product.
Examples. $-11 \times 28=3,08$ or 3 flirs. $1000 \times 28=230,00$ " 280 "، [The results obtained by this mule aro pretty ateurate. The error with 1000 culsic centimetres, or 2 litre, corresponds to about 2 drachms.]
 (8.राmernes.

Mrultiply by 35 cend cancel the last juyure of the product.
Example3. $-8 \times 3 \mathbf{3}=28,0$ or 28 cub . cont. $160 \times 35=560,0 " 560$
[The results are a little too low; howevor, the ervur with 160 fl drachms or 1 pint, does nut amount to 8 culue centrimetres.] J. C. B.
-Firne Chemists' and Irugyists' Alananac, 1868.

A Nev Hypnotic.

Chloml, and 'lrichluracetic acid, will, under certan conditions, in alkaline solutions, generate cliloroform. This fact has beon turned to prefit by Dr. Uscar Liebreich, of Berlin. Ho has administered an aqueous solution of chloal, hypodermeally, first to rabbits, and then to a patient. $0 \cdot 1$ gramme, thus administered to a young rabbit, produced an effect withim ten minutes. The animal fell into a deep sleep, during which he could be moved in any way without awaking; the respiration and pulso vere somewhat retarded, regularly and reflex excitability remained. An adult rabbit received 0.3 gram., and went through the same serics of phenomena; finally losing rellex excitability, he lay for some hours breathing quietly, then awoke suddenly, and seemed quite well. Subsequent experments upon a patient in the Charite Hospital seem to show that chlom, administered by the stomach or by subcutaneous injection, is a sure hypnotic, free from danger and follorred by no ill results. It acted well even when large doses of opiuin or morphine failed. It is not yet an article of commerce, but, it is hoped, will soon be manufactured upon a large scalc. [Virbhow's Arch., 47 B. 1 H.]In Boston Med. and Sury. Journal.

Wercarial bintment.

MI. Van der Anwermaulen suggests the addition of water to mercurial ointment, to facilitate the subdivision of the mercury. He taikes, to 100 parts of mercury, 100 of lard and 5 of water, and claims to use buta iow minutes f.r the thorough incorporation of the sulbstances, while the ointment, after four months, yet retained its color and freshuess.Pharmacist.

Testing the Strength of Acetio Adid.

In attempting to determino the strensth of acetic neid by means of tho hydrometer, it will be romarked that cortain anomalies present themselyos: thus, thers is no difference in tho sprecifice gravities of acids contammg respectively 53 and 100 per cent cf true acetic hydrate, both having precisely tho sanmo density, 1063, at 60^{7} Eahr. (water $=$ 1,000). Tho heaviest liquid acid is that containing 80 per cent., the specilic gravity of which is a trifle over 1073; but from this point upwards to the acid of 93 per cent., there is no apprectable difterence in the gravity. Asain, a ammple weighing 1037 may cither ropresuat in acid of 60 per cent., or may contain is much as 98 per cont of true nciu. It is, therefore, customary to guarantee the highest degree of concentration by specifying tno tomperature at which the acid becomes solid, or, rather, tho highlest puint at which the already ghacisl achd resists liquefaction. Anvther guido which may often prove serviceable in the identification of an acid which, although of a high degree of concentration, is not actually ghacial, is tho fact observed, wo belicve, independently by M. Bortholot ind Mr. E. Chambers Nicholson, that such acid becomes infammable when the temperature is raised to the boiling-point, it will be funme that the vapuor takes fire on applying a lighted mantch, and burns steadily as long as the ebullition is mantained; if, however, 10 per cent. of water be mixed with the sample there will be a great dificulty in causing inflamuntion, and the vapour when ignited will only burn with a limbent flane of pale blue senarated cone3. whilst ivelow this strength the acid vapour is altogether uninflanmable. By this test, then (avoidiug a too prolonged ebullition, whach increases the strength of a weak acid), wo have a ready means of cstimating the quality of liquid samples of a high degree of cencentration without restoring to the more tedions nethod of acidinctry. It has only to be state:l, in conclusion, that the boiling-point of the ordinary qualities of acetic acid, although highor, is solittle removed from that of water that the indications of the thermometer are not much more to be relied upon than those of the hydrometer. In many resplects carbolic acid imitates the deportment of acetic acid in the characters above described; it likewise becomes glacial upon separation of the last traces of water:-Photographic Journal.

The Manufacure of Glycerine.

Glycerino is the bise of fat, as lime is the baso of marble ; potash, the liase of saltpetre; soda, the base of Gluuber's-salt, etc. The other constituent of the fat is one or more acids, as carbonic acid is that of marble; nitric acid, that of saltpetre ; sulphuric acia, that of Glauber's-silt, sic. The names of these fatty acids are stearic, margaric, and oleic; they are present in different proportions in different fats. Stearic is the most solid, and is the material from which the sosalled stearine candles are made; margaric acid is softer, and oleic acid is flum, like oil.
To separate the glycerine, it was formerly supposed to be necessury to convort the fat into soap. Soap is a conpound of an alhaline base with a fatty acid ; potash and soda give soaps solubhe in water; lime and osule of lead give soaps insoluble in watior. In the potagh and soda soaps, the greater portioni of
the glycerine remains in solution, ns glyeerine is very suluble in water; niso, in making a lime or lend soap, the iusoluble soany semarates, and leaves the gly cerine alone in solution in the water; for this reason, oxido of lead was usell to seprarate the glycerme from the fat. It was boiled with oxide of lead nad water, till all the floating fast was combined and sottled at the bottom, the water was then decantod, filtereel, and exaporated; it left the glycerino behind, which, however, wis alwass mure or less contaminated with traces of lead.
It was proved by Perkins, in Englund, in 1822, that in a steam engine, which worked under very great heat and pressure, and in which the condensed ste:m continually returned to the boiler, the fats nud oils, used for lubric:iting, becane, by tho combined action of water, heat, ;and pressure, decomposed into other substinces, which, after analysis, were by Famday pronomenced to be identiciel with ; the fatty acilds and glycerine. Althongh this was published at the tume, the hint was not acted upon till thirty years ufterward, when the use of superhented stean was introduced in Germany to decomyose fats into glycerine and the fatty acids, and ten ycars later the origimal discovery was acted upon in this country, and fat was exposed to water, heat and pressure in a steam-boiler, by which, under a temperature of 370° Falhr, and a cunsequent pressure of twelve atmusplares, the fat was perfectly dacouposed in a periol of about eight hums, an essential condition being to keep the water and fat in constant circulation, so is to mantain them in the form of an emulsion, which secures an extensive cuntact surface of the fat and water particles. The mixture of fat and water being removed, it was found that the water has abstracted from th. fat all its glycerine ; the fat still floating win the top has changed its neutral mature, and has become an acid. The water being ovaporated leaves an impure glyceriut behmd, which may be subsequently purified by tiltration through animal charcuah, or by carefme distilation.
It is clear that this last process of decomposing fat is only applicable on a large scalle. For small quantities the old method of making an insoluble lead-soap, ur its equivalent, is still the most simple. Manufacturer and Builder.

Pepper.

Pepper posses this peculiarity, that, white its production is limited to a small extent of the globe, it is in universal denand both :unong civilized and barinrous nations. Tho taste for this spice is no affar of caprice or fishion, and cousequently its consumption must increase in the ratio of the facility and cheapness with which the cultivator and the merchant can supply it. The quantity nlready produced per annum is $75,000,000$ pounds-namely, from Java, Sumatra, Borneo, the Malayan Peninsula, the Moluccas, and various regions lying ont the east side of the Gulf of Siam. There is, generally speaking, abundant room for improvement in the culture; what is especially required, however -and wo speak particulary with reference to India-is a larger application of European capital. When the price is high, a large extent of suitable land is at onco put under culture; but no sooner doos the price decline
phants, or to earich the impoverished soil, and tho cultivation is not only neglected, but pepper districts wholly dis:1pyear. The qum1thty of perper we have given as the aggregato yield naty nypar enomons; but tho numout mamed, if distributed monong the inlanhitants of the globe, would senrecty allord to each a grain a day. Unskilled cultivation is not the only fanit comected with the production of this spice. The avidity of cultivators and dealers to bring lepper tua market frequently tempts them to phack it before it is ripo, and frmm this canse it turns out heght, hollow and ill-thavoured. For yenss after tho discovery of the Eastern Archipeligo, pepper was tho principle article of export to Earopo. It is narrated that Vaseo de Gama londed two yessels with this article at the Syico Islands in twenty-four days. The first stmulus to the Easter:a trade, now being, so persistently pushed by the Americans was by the success attending the fitting ont of vesselsform Boston to what is known is the Pepper Coust. The trade is wholly in the lands of Europeans and Amerien:s, and, provided always libour conld be relied on, we know of no branch of investment that offers moro satisfactory re-turns.-Grocer.

Elizir of Oinchona with Iron.

A desidematum generally felt by the dispensing pharmacist is a unifurm and practical formilia for preparing these mumerous so-called E1 rirsuj Cinchom "- Ferrophosphated Elixir of Calisaya Bark," "Elixir of Bark and Iron," "Elixir Calisaya Ferratum," etc., ete.-tho manufactures of these scientificu specialties c'aiming unusunl shill in presenting this itvuluable combination of tontes to the medical profession and suffering hunanity.
The following suggests itself as is practical formula, being without a complex process, easy of 3xecution, yielding a permanent and ayrecable preparation, and always uniform in strength and composition:
Take of Pyrophosphate of jron, 1024 grains. Sulphate of cmehona, 128 grains.
Sulphate of quinia, 64 grains.
Oif of orange (fresh), one fluid drachm. Oil of lemon, half fluid drachin.
Oil of caraway seed, ten minims.
Cil of nutmeg, ten minims.
Oil of cloves, tive minims.
Oil of cimamon, five minims.
Alcohol, twenty-four fluid ounces.
Siuple syrup, four pints.
Water, two and a half pints.
Dissolve the sulphate of cinchona and the sulphate of quinia in the alcohol; add the oils and mix with simple syrup.
Dissolve the pyrophosplate of iron in the the water, and mix the solutions; fiter and add sumfient water through the filter to make the elixir measure eight pints.
Caramol may be added to color if deemed advisable. Each table-spoonful contains 4 grains of pyrophosphate of iron, $\frac{1}{2}$ grain of sulphate of cinclona and $\&$ grain sulphate of quinia.
To this elixir of cinchona with iron, am-monio-citrate of bismuth, one grain to each half lunid ounce, when added, fornss tho clixir cinchiona, iron and bismuth, and if strychnia, in the proportion of 1.50 grain to each half fluid ounce is added, it will produce the scientific and "valuable adjunct to the other constituents" under the title clixir ciachena, iron anl strycinia. O , tempora! 0 mores!

Tablo on the Influence of Drying on the Active Princip!es of Plants.

plasts, and wies conatren.	taserume.	misthl.,tite.	aminet on marim.	1xTh.act.	theatmiat with CaO and alcunona ktheit.
Aliopm Jellutoman. La:lves, Juuc, fresh. Dricel.	D.ank green, bitter. Brown-ycllow, bitter.	Almost inolorons am! testeless; no reaction. Inodurons, tasteless.	Deep green, almost wholly chlorophyil. Brown, resinous, inolorous, soluble in ether.	Dark hrown, faint odour, interse taste. Blackish, taste hitter and sweetish.	White, amorphons, alkaline; yields 0.53 gran." Crystallized with difficulty, but saturated same amonnt of ncid.
Tryus:yrmus niyer Leavus, June.	Derep grevn, odhur rirulls, tatic arriii.	Ohan amd taste f.int, no reactiona.	Dark green, soluble in cther, apparently fat and chlorophyll. Black, pitcla-like, soiu-	Brownish, bitter. Brown, inclorons, his-	White, nmolphons By:SO3 ani KOCO2 colorles necalts. -yichl 41 grar
Dried.	Derep brown, itwilorous.	Inoduronv, tasteliss:			Uncrystallizalde, faint alknline reaction.
Deeture Slranomium. IIerh, July.	Dask grown, acrin aml litter.	Weak, disagremable ollour and tasto.	Bhackish, virons olumr, fat, resin, sull chlorohivil.	Light brown, bitter somewhat nexin.	Crystalline, hitter, scrid, yield 0.65.
Drienl.	Brown, litter.	Inodoron:, thistedess.	Mh.ackish, inodorons.	ownish, bitt	With difleulty crystallizable -same saturating power.
Soluatum Datcamarce. Stums, late in Syptr: 'fle sane results with the dried stalls.	Light grewninh yellow, olvar nmphes.ant, tiasto sweet, hitlerisit.	disa,trew: hn: onlour.	fhark green, slight orlour.	(ivemish-brown, sweet, bitter, and slightl! acrid.	Amorphous; when re-precipitated from SOs nud triatca with alcolhol: crystals of solania. The lime retained a jellow, amorphsus glucosile -prohably piern glycion.
Culchicum autumate. Corms, Norember.	$\begin{aligned} & \text { i'cllowish, } \\ & \text { hrammo } \end{aligned}$	de:il ractim, slighty acrial.	Gremish, faint miluar of benzoin.	()s:ugye yellow.	Alkaline needles intermixed with greenish amorphous arrid matter, acids and alkalies destroyalkaline reaction nad erystidline structure.
Dricel.	Darker, more hitsor	So reaction, odour, or taste.	As alo:e	3rownish.	White amorphous colchicia, without alkaline reaction.
Aconilum Niapellrs. Cultiratal leatris, Julle.	Deep ment, bitter, thats acril.	Acil ranion, buraing taste ; salts of dichin, and P't, reduce:.	1) akdreen, virunsolonr, tasteslightlyacrih and bitter.		Hut result treated like Dulcamars, yielded 30 grm. neediles (aconellina?) and nbout -30 grm. oily aconitia, gragually becoming resinous. Anorghous, resin-like.
Dried.	Brown, bitter acrin.	No raction, oulour, or t:aste.	Blachish, slightly acin, sull acrid.		Amorphous, resin-like.
Conivm maculatara. Lenves, May:	Green, repulsite cdomr, very acrill.	Neatral, tasteless, faint, marcotic odomr.	Green, vily, virons ollour.	Light-b.own.	0.35 grna. conia.
Dried.	Light brown, taste Weaker.	Noarly inodorous.	Black, resinous, inulo. rous.	Bruwnis!.	- 10 grm, comin, amp prodncts of decomposition.

- From 250 gram:aes of the fresh itrug; the sulsequent figures refer to the same weight.

MISOELIANEOUS.

 Copmer.
Five kilos. of sulphate of copper are ground to a fine powder; this having been lone, the powder is placed in a suitable vessel, and 75 kilos. liquor ammonia added thereto. aiter the solution is effected, 10 lilos. of acetic acid are added, and the ressel containing the copper solution placed on a water-bath; as soon as crystals are observed on the top of the liquid, the latter is strongly stirred, which promotes the formation of crystals. By this process about 4 kilos. of neutral acetate of copper are obtained from the above quantity of sulphate, whilo the motherliquor gields some sub-acetate of copper afterwards. -Meniteur Scientifique.

Nictr Marking Ing: for Linen.

M. Kuhr recommends the followins pre-paration:-One part oi hypophosplitenf soda, and tro phats of gam ambic, are dissolved in siateen parts of distilled water. The tissuc, linen, or colton to be marked is thoroughly moistened with this liquid, and then left to dry. After having become well dried, the follosing liquid, composed of cono part of nitrote of sitver, and six paris of gam disse red in six parts of distillnd water, is used as narking ink, with a quill-pen. The mixtares hero deseribed are stated to yield an indeliblo and very deep black-colored ank. Comos, Junc, 1869.
fevar or yernillion.
It is a fact well known to artists, that the splendidly bright coloroi vermilion(cinnabar, sulphide of mercury) has a tendency, especially if it has been mixed with white-lead to become blackish brown and very dar: colored in a comparatively short time. This tendency of the vermilion is altogether obviated if, previous io beins mixed with oil, it is thoroughly and intimately mingled with about one-cighth of its weight of lowers of sulphrur.-Chemical Neyct.

Ifrandis trom Xlehens.

Experiments lately made in Sweden on a large seale, upon the production of brandy from lichens, and especially from the reindeer moss, have, it is said, prored so successfinl as to warrant the pmactical application of the process.-Chemical సíacs.

Alenhol tra:a garbazc.

A company has beca formed in Chicago, and will soon be in upemtion, for distilling alcohol and extmating soan greaso from ordinary city garbasc. The prucess is a pisented one, and consisks in takiug the garbse just as it is hauled eff in the city carty, dumping it into tight tanks, and boiling six hours at a temperature of 212 degrec. This dissolves the rhole mass, which is run into fermenting t.ahs and worked with yenst. The soap crease and impurities rise to tho top oi the tubs, and areskimmed off, snd the residuum is distilled
in the regular way. It is estimated that each barrel of garbage will yield three pounds of soan grease and four gallons of proof spirits. The soap grease is, of course, as good as any other, but the alcohol betrays its origin by an odor which requires further processes for its remoral. For many uses, however, it is as good as that derived from grain or molasses, and if its distillation is not too costly, will

Coroz Nist hatr oll.

Take of Oil Theobroma, one drachm.
Castor oil.
Alcohol 95 per ceat., of each fifteen ounces.
Glycerine pure, two ounces, or a sufficient quantity.
Melt together, with a gentle heat, the oil of of theobroma and castor oil ; transfer to a hottle, and gradually adding tho alcohol, then the glycerine as much as it will take without becoming milky.

White Farallare Pollah.

Is made by boaling ten parts of mater with ten parts max, and one part potash; afterward ten parts of water are added, and it is boiled till of a uniform thick consistency. It is thercfore but a kind of soap, in which wax takes the place of fat; when dry, it becomes insoluble in cold water, which only Washes the excess of potish from the surface and letres max, combined whit a small amount of potash-a compound which, with a little friction, takes a fine polish.

Gotrs mul Quexiss.

Nate on Dismessno.-J. C., St. Jolus, N. B., communicates the following: Having been ordered by at physician to make an ointment composed of three drachms of chloride of lime, and two ounces of lard, it was thought proper to rub up the chloride with a few drops of glycerine, in order to insure thorough incorporation. No sooner was the glycerine added than a violont action took place, accompanicd with hissing and the evolution of gas; the glycerine appearing as a brown crust. J. C. has never seen the reaction referred to, and asks our opinion.

We do not remember ever seeing any allusion to the action of chloride of lime on glycerine; but tried the experiment with a result similar observed by J.c. We have not pursued the subject further, from want of time, butshall endeavour to do so, reserving any remasks until we can speak with certainty. In the meantime it will be well for dispensers to bear the reaction in mind.

Chemichr Staiss ron Woov.-Walnut may be imitated by applying a solution of potash permangamate. The stronger the solution the decper will be the color. The stains of tho permanganate may be removed from the hands by dilute sulphuric acid. A yellow color, from a camary to a reddish-brown, may be produced by the nuplication of nitric acid. The color is developed and deepencd by holding the moodrork near the fire. When the desired shade is attained, stop the action by the application of water. Als excellent imitation of satin wood-such as is used to form the backs of hair brushes-may lie thus produced.

Subscriber wants a form for Ox Manmow Ponadi:, "made by Mr. Mratow hinself." We suppose the following will auswer the indication:

This will fill about 1 doz. 4 oz. pomades. Preservation of Gamlet:-Wo hare teceived several inquiries in regand to this subject, but ean offernothing lout the usual mothod-sus.cnsion of the garlic, contained in a net, in a cool place. This is said to be ineffectual; con any of our readers sumgest anything better?

> + Changse
W. T. Hunt \& Co., Summerside, have dissolved partnership. The business is now carried on by Thus. AFctininley, alone.

Alfert Gissing continues the business, in Princeton, fermerly mader the styic of Gissing © Bros.
M. W. Eeathfield, London, issignod.

Suicide of a Druagest's Assistant. - On the 28th of last month, an inquest was hehl, in this city, on the body of Charles Thomas Famesworth, who came to his death by suicide on the day previous. The ciremmstances of the case are ats follows: On the evening preceding his denth, Mr. Farnesworth presented himsel: at the Monkhouse Hotel, King Street, where, after talking and chatting pleasuntly with the boardeas mutil a late hour, he retired to bed. About nine o'clock on the foliowing morning, one of the domestics, on passing his bedroom door, was attracted by hearing him groan. She immediately man for assistance, the door was burst in, and the young man was discovered apparently in the agonies of death. Efforts were immediately made to effect resuscitation, but in vain, for in a few minutez he breathed his last. It arpears that deceased, during the day, had been trying to procure chloroform from several of the druggists, but, being refused, he prevailed on a boy to purchase for him tro pennyworth of cyanide of potassiam, from the effect: of which he died. Mr. Farnesworth came from Chester, England, to this comutry, in Ipril last. He sojourned for a short time in Ottawa and Kingston, in both places holding situations. A few months ago he came to Toronto, and engaged in onc of our city stures, where lie remained a short time, but ultimately had to be discharged on account of intemperate liabits. Not confining himself to spirituous liquors aloue, he was accustomed to use large quantitios of chloroform, which he inhaled by saturating a landkerchicf and laying it over his face, thus inducing stupefaction. On opening his trunk after his denth, no less than six empty chloroform bottles were found. Decensed ras about twenty-four years of age, and is suid to have been quite clerer, having acquixed a bmowledge of the drug business in England.
©rade dryort.

The checring accounts which have from tine to tine been received in regarl to the promise of an atundant larvest, are now happily rerified, and, as a consequence, business is beginning to show signs of increasing activity. All classes of commercial men look formard to the coming scason rith pleasurable anticipation, and there is every prospect that their lones will not suffer disappointment. A good price is being realized for grain, affording encouregement to farmers to put their produce in tho market, and thereby debaring a reneral of the "holding on" policy, to which the tightness of the past jcar may be, in grant part, attributed.

There is nothing nstounding to report in
regard to the prices of drubs. Wo append, however, a few changes:

Drugs.-Alcolool has advanced, and is non held at \$1.72t. Hermuda arrow root and Solazai Licorice are slightly lower. Opium still retains a ligh price, but Turkey is quoted at a reduction of 25 ceuts par lb . Turkish Rhubarb has falien considerably; other sorts slightly lower. E. I. Castor Oil, Oil Peppermint, and both qualities of MLusk are held at lower figures.

Chemicals.-Quotations show but slight changes; the salts of Morphia, however, in sympathy with $O_{\text {pium, }}$ are a trifle casier. Quinine is held at an adwance. Strychnine lower.

Dye Stuffs.-No chango, if we except Ext. Logrood in buxes, which has fallen $\frac{1}{3}$ cent per ll: and Quercitron which is now held ai 3 cents tu 5 cents.
Paints and Oils.-The call and prices have been about as last month, and quotations ghow but slight alteration. Whale Oil, refined, has gone down a trifle. Lard Oil, No. 2, is held higher.

Nort:-The notes pnoted in our price list are constantly varying, and are intended to show the limits withim whith a retail druggist shouhl supply himself. The range of prices is cansed by the diference betwern cesh and credit, whole packages and smaller lots, and, in some cases, difference of quality.

S. ALLCOCK, C. LALGHT \& Co.

Neadles, Fish Hooks, Fisting Tackle,
 TABLEAN1 POCKET CUTILEMY, FILES, \&C' Buttons, Thimbles, Steel Pens, Penoils, Rubler Combs, Chains, Pembants, Geucml Small Wares, and B.M1 and Fishing Twincs.
Merchants Suppical on the Most Lsberal Terins.
Wanmoisf-NTo. 39 COIBORNE STHEET, TORONTO.
And al IEEDDITCII, EngIand.
13•fm
S. STOODLEY, MSanngcr.

PEREUNIERY-

HANDEERCRIEF Extacts, Jockey Club, Frangipanni, Patchouly, West End, Musk, Epring Flowers, Mignonette, New Mown Day, Srrect Pea, and all tho popular scents.

Exira Quctity.-6 oz. Octargon Cut; 3 oz. Octasgon Cut; it oz. Plain, stoppered.
Best Guality.-I ${ }_{3}^{1}$ oz. Plain, stoppered.
No. 1 Quality. If oz. Squat Cork'd ; I oz. Stone Jug; 1 uz Qlass Jugs; 3 oz. Pancl; $\frac{1}{\geq}$ oz. Squat; $\frac{1}{3}$ oz. Squat; $\frac{1}{3}$ oz 0 val; f oz. Squat. Hair Öils, Pomades, Tooth Washes, Tooth Porders, Colognes, Latranders, Sachets, Camphor Ice and Koll, Toilet Vinegar, Afilk of Roses, etc., in all the popular styles.
Prico Listis on application to
LYMLN, ELLIOT \& Co.,
15\% King Strect East,

WEMOTESALE PRICES CUTREITTKSEPT, 1869.

[^0]: - Conikensed from Wittstein's VicrtcUahiresselir fitr prakt Plaxmn 186s, p. TS-100, ly J M. M. Ainericat Joumal of lyarniacy The antion who died Dre 1 . Ising Tras by tho Socicti noyalo des Scicnees Nmilirairs iNaturelles de Bmactles, awanled a givld mevlal for this exssy. thich veas iublisitedin Joum. de Ifed. do Uran. Isof and ISCS.

[^1]: - Pharmacist, vol. 1, No. i, p 73

[^2]: - Aunaal de Chimio ct Pliss. [2] rol. viil, p. 800. +Sco interestlus articlo on, in Erdman's Journal, vol SO, p. 303.
 \ddagger Compt Rend I $35,1 . \% 50$.

[^3]: * "Dectionary de Jatiere 3iedicale," tome il. p. 276.
 - 'Journal do Pharmaclo et de Chimie,' Oct,, "نS, 1. 303. \ddagger Trans. Bot. Soc. Edin. vol. ix. p. 115, 3farch, 1 ISC7.

