IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences

Corporation

CIHM/ICMH Microfiche Series.

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/

Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculée
Cover title missing/
Le titre de couverture manque
Cololired maps/
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with oither material/
Relié avec d'eutres documents
Tight binding may ceuse shadows or distortion along interior margin/
La re liure serrée peut causer de l'oinbre ou de la distortion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Colcured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorées, tachetées nu piquées
Pages detached/
Pages détachées

Showthrough/
TransparenceQuality of print varies/
Qualité inégale de l'impression

Includes supplementary material/
Comprend du matériel supplémentaire
Only edition available/
Seule édition disponible

Pages wholly or partialiy obscured by errate slips, tissues, etc., have been refilmed to ensure the best possible image/ Les pages totalement ou partieliement obscurcies par un feuillet d'errata, une pelure. etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

Additional comments:/
Commenteires supplémentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

Librery of the Public Archives of Canada

The images appearing here are the best quality possible considering the condition and legibility of the originai copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on ties last page with a printed or liliustrated impression, or the back cover when appropriate. Ail other original copies are filmed beginning on the first page with a printed or iilustrated impression, and ending on the iast page with a printed or illustrated impression.

The last recorded frame on each microfiche shali contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichover applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entireiy included in one exposure are flimed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The foliowing diagrams illustrate the method:

L'oxemplaire filmd fut reprodult grâce à la générosité de:

La bibliothèque des Archives pubiiques du Canade

Les images suivantes ont $\mathbf{6 t 6}$ reproduites avec le plus grand soin, compte tenu de la condition et de is nettet' de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont ia couverture en papier est imprimbe sont filmés en commençant par le premier plat et en terminent soit par la dernidre page qui comporte une empreinte d'impression ou d'iliustration, soit par ie second plat, selon le cas. Tous ies autres exemplaires originaux sont filmés en commençant par la première page qui comporte une empreinte d'impression ou d'illustration et en terminant par ia dernibre page qui comporte une telle empreinte.

Un des symboies suivants apparaitre sur ia derniàre image de chaque microfiche, seion le cas: le symboie \longrightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tabieaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul clich6, il est filmé a partir de l'angle supérieur gauche, de gauche à droite, ot de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

$$
\begin{array}{llllll}
& & & & & \\
\mathbf{V} & \mathbf{O} & \mathbf{Y} & \mathbf{A} & \mathbf{G} & \mathbf{E}
\end{array}
$$

TOWARDS

THENORTHPOLE.

A
$\begin{array}{llllll}\mathbf{V} & \mathbf{O} & \mathbf{Y} & \mathbf{A} & \mathbf{G} & \mathbf{E}\end{array}$ TOWARDS

THENORTHPOLE.

UNDERTAKEN
BY His MAJESTY'S CoMMAND
1773
BY CONSTANTINE JOHN PHIPPS Mulorave.
LO ND ON;
printed by w. bowyer and j. Nichols,
FOR J. NOURSE, BOOKSELLER TO HIS MAJESTY.
IN THE STRAND.

- MDCCLXXIV.

$$
1774
$$

'TO

T H E K I N G.

S I R E

As a Sea Officer addreffing Your Majesty on a profeffional fubject, I might juftly be accufed of fingular ingratitude did I not avail myfelf

[vi]

myfelf of this opportunity of reminding the World, that the Voyage to explore how far Navigation was practicable towards the North Pole, was undertaken at a Period peculiarly diftinguifhed by Your Majesty's gracious Attention to Your Navy.

In a Time of profound Peace Your $\mathrm{M}_{\mathrm{ajesty}}$, by a liberal Addition to the Half Pay of the Captains, relieved the Neceflities of many, and gratified the Ambition of all, at once demonftrating Your Majesty's regard to their Welfare, and Remembrance of their Services.

The Armament which followed in a few Months, and Your Majesty's Review of that Armament which by the Difpatch of its Equipment

Equipment had prevented a War, afforded to Your Navy the moft flattering and diftinguifhed Mark of Royal Favour, and to Your Majefty an additional Proof of that Alacrity for Your Service which had fo recently received both its Reward and Encouragement from Your Majesty's Protection.

Permit me, Sire, to add, that Your Majesty's gracious Approbation of my Endeavours, and the Permiffion I have been honoured with, of infcribing the foilowing Account of them to Your Majesty, are ftrong Proofs of that Indulgence with which Your Majesty receives every Attempt to promote Your Service.-An Indulgence which, at the fame Time that it cannot fail of animating the Zeal of others more worthy of

[vini]

Your Majesty's Notice, has added to the moft devoted Attachment the warmeft Gratitude of,

Sire,

Your Majesty's moft dutiful

Subject and Servant,

I NTRODUCTION.

THE idea of a paffage to the Eaft Indies by the North Pole was fuggefted as early as the year 1527 , by Robert Thorne, merchant, of Briftol, as appears from two papers preferved by Hackluit; the one addreffed to .. ng Henry VIII; the other to Dr. Ley, the king's ambaffador to Charles V. In that addreffed to the king he fay., "I know it to be my bounden duty to manifeft this " fecret to your Grace, which hitherto, I fuppofe, has " been hid." This fecret appears to be the honour and advantage which would be derived from the difcovery of a paffage by the North Pole. He reprefents in the ftrongeft terms the glory which the kings of Spain and Portugal had obtained by their difcoveries Eaft and Weft, and exhorts the king to emulate their fame by undertaking difcoveries towards the No:th. He fates in a very mafterly flyle the reputation that muft attend the attempt, and the great benefits, fhould it be

B crowned
crowned with fuccefs, likely to accrue to the fubjects of this country, from their advantageous fituation; which, he obferves, feems to make the exploring this, the only hitherto undifcovered part, the King's peculiar duty,

To remove any objection to the undertaking which might be drawn from the fuppofed danger, he infitts upon " the great advantages of conftant day-light in feas, " that, men fay, without great danger, difficulty, and peril, " yea, rather, it is impolible to pafs; for they being paft " this little way which they named fo dangerous (which " may be two or three leagucs before they come to the " Pole, and as much more after they pafs the Pole), it is " clear from thenceforth the feas and lands are as tem" perate as in thefe parts."

In the paper addreffed to Dr. Ley he enters more minutely into the advantages and practicability of the undertaking. Amongft many other arguments to prove the value of the difcovery, he urges, that by failing northward and paffing the Pole, the navigation from England to the Spice Iflands would be Chorter, by more rhan two thoufand leagues, than either from Spain by the Straits of Magellan, or Portugal by the Cape of Good Hope; and to thew the likelihood of fuccefs in the enterprize he fays, it is as probable that the cofmographers thould be miftaken in the opinion they entertain of the
I NTRODUCTION.
polar regions being impaffable from extreme cold, as, it has been found, they were, in fuppofing the countries under the Line to be uninhabitable from exceffive heat. With all the firit of a man convinced of the glory to be gained, and the probability of fuccefs in the undertaking, he adds,-" God knoweth, that though by it I fhould " have no great intereft, yet I have had, and ftill have, no " little mind of this bufinefs: fo that if I had faculty to " my will, it fhould be the firft thing that I would un"derfand, even to attempt, if our feas Nortbward be " navigable to the Pole or no." Notwithftanding the many good arguments, with which he fupported his propofition, and the offer of his own fervices, it does not appear that he prevailed fo far as to procure an attempt to be made.

Borne, in his Regiment of the Sea, written about the year 1577, mentions this as one of the five ways to Cathay, and dwells chiefly on the mildnefs of climate which he imagines mutt be found near the Pole, from the conftant prefence of the fun during the fummer. Thefe arguments, however, were foon after controverted by Blundeville, in his Treatife on Univerfal Maps.

In 1578 , George Beft, a gentleman who had been with Sir Martin Frobifher in all his voyages for the difcovery of the North Weft paffage, wrote a very ingenious difcoutfe, to prove all parts of the world habitable.

INTRODUCTION.

No voyage, however, appears to have been undertaken to explore the circumpolar feas, till the year 1607, when "Henry Hudfon was fet forth, at the charge of certain " worihipful merchants of London, to difcover a paffage " by the Nortl: Pole to Japan and China." He failed from Gravefend on the firft of May, in a hhip called the Hopewell, having with him ten men and a boy. I have taken great pains to find his original journal, as well as thofe of fome others of the adventurers who followed him; but without fuccefs : the only account I have feen is an imperfect abridgement in Purchas, by which it is not poffible to lay down his track; from which, however, I have drawn the following particulars:-He fell in with the land to the Weftward in latitude 73°, on the twenty-firft of June, which he named Hold-with-Hope. The twenty-feventh, he fell in with Spitfbergen, and met with much ice; he got to eighty degrees twentythree minutes, which was the Northernmoft latitude he obferved in. Giving an account of the conclufion of his difcoveries, he fays, "On the fixteenth of "Auguft I faw land, by reafon of the clearnefs of the " weather, fretching far into eigbty-two clegrees, and, by " the bowing and Chewing of the ky , much farther; " which when I firft faw, I hoped to have had a free fea " between the land and the ice, and meant to have com" paffed this land by the North; but now finding it was " impoffible, by means of the abundance of ice com" paffing us about by the North, and joining to the " land;
INTRODUCTION.
" land; and feeing God did blefs us with a wind, we re" turned, bearing up the helm." He afterwards adds: "And this I can affure at this prefent, that between " feventy-eight degrees and an half, and eighty-two de" grees, by this way there is no paffage."-In confequence of this opinion, he was the next year employed on the North Eaft difcovery.

In March 1609, old ftyle, " A voyage was fet forth by the" right worfhipful Sir Thomas Smith, and the reft of the " Mufcovy Company, to Cherry Illand, and for a further " difcovery to be made towards the North Pole, for the like" lihood of a trade or a paffage that way, in the fhip called " the Amity, of burthen feventy tuns, in which Jonas " Poole was mafter, having fourteen men and one boy."He weighed from Blackwall, March the firft, old ftyle; and after great feverity of weather, and much difficulty from the ice, he made the South part of Spitfbergen on the 16th of May. He failed along and founded the coaft, giving names to feveral places, and making many very accurate obfervations. On the 26th, being near Fair Foreland, he fent his mate on fhore; —and fpeaking of the account he gave at his return, fays, "Moreover, I was " certified that all the ponds and lakes were unfrozen, they " being frefh water; which putteth me in hope of a mild, " fummer here, after fo Charp a beginning as I have had; " and my opinion is fuch, and I affure myfelf it is fo, that " a paffige may be as foon attained this way by the Pole,
"a as any unknown way whatfoever, by reafon the fun doth " give a great heat in this climate, and the ice (I mean " that freezeth here) is nothing fo huge as I have feen in " feventy-three degrees."

Thefe hopes, however, he was foon obliged to relinquifh for that year, having twice attempted in vain to get beyond $79^{\circ} 50^{\prime}$. On the 2 Ift of June, he ftood to the Southward, to get a loading of filh, and arrived in London the laft of Auguft. He was employed the following year ($\mathbf{1 6 1 4 \text {) in a }}$ fmall bark called the Elizabeth, of 50 tuns. The inftructions for this voyage, which may be found at length in Purchas, are excellently drawn up: They direct him, after having attended the fifhery for fome time, to attempt difcoveries to the North Pole as long as the feafon will permit; with a difcretionary claufe, to act in unforefeen cafes as fhall appear to him moft for the advancement of the difcovery, and intereft of his employers. This however proved an unfortunate voyage: for having ftaid in Crofs Road till the 16 th of June, on account of the bad weather, and great quantity of ice, he failed from thence on that day, and fteered $\mathbf{W} b \mathrm{~N}$ fourteen leagues, where he found a bank of ice: he returned to Crofs Road; from whence when he failed, he found the ice to lie clofe to the land about the latitude of 80°, and that it was impoffible to pafs that way; and the ftrong tides making it dangerous to deal with the ice, he determined to ftand along it to the Southward, to try if he could find the fea more open that way, and fo
get to the Weftward, and proceed on his voyage. Hefound the ice to lie neareft SW and SW bS and ran along it about an hundred and twenty leagues. He had no ground near the ice at $\mathbf{x} 60,180$, or 200 fathoms: perceiving the ice ftill to trend to the fouthward, he determined to return to Spitsbergen for the fifhery, where he loft his thip.

In the year 1614 , another voyage was undertaken, in which Baffin an Fotherby were employed. With much difficulty, and after repeated attempts in vain with the fhip, they got with their boats to the firm ice, which joined to Red-Beach; they walked over the ice to that place, in hopes of finding whale-fins, \&c. in which they: were difappointed. Fotherby adds, in his account: " Thus, " as we could not find what we defired to fee, fo did we" behold that which we wifhed had not been there to be " feen; which was great abundance of ice, that lay clofe " to the fhore, and alfo off at fea as far as we could " difcern." On the eleventh of Auguft they failed from-Fair-Haven, to try if the ice would let them pafs to the Northward, or Northeaftward; they fteered from Cape Barren, or Vogel Sang, NEbE eight leagues, where they met with the ice, which lay EbS and WbN. The fifteenth of Auguft they faw ice frozen in the fea of above the thicknefs of an half-crown.

Fotherby

Fotherby was again fitted out the next year in a pinnace of twenty tons, called the Richard, with ten men. In this voyage he was prevented by the ice from getting farther than in his laft. He refers to a chart, in which he had traced the Chip's courfe on every traverfe, to thew how far the ftate of that fea was difcovered between eighty and feventy-one degrees of latitude, and for twenty-fix degrees of longitude from Hackluit's headland. He concludes the account of his voyage in the following manner:
"Now, if any demand my opinion concerning hope " of a paffage to be found in thofe feas, I anfwer; that it " is true, that I both hoped and much defired to have " paffed further than I did, but was hindered with ice; " wherein although I have not attained my defire, yet " forafmuch as it appears not yet to the contrary, but " that there is a fpacious fea betwixt Groinland and king " James his new land [Spitsbergen] although much pefter" ed with ice; I will not feem to difwade this worfhip" ful company from the yearly adventuring of 150 or 200 " pounds at the moft, till fome further difcovery be made " of the faid feas and lands adjacent." It appears that the Ruflia company, either fatisfied with his endeavours and defpairing of further fuccefs, or tired of the expence of the undertaking, never employed any more Chips on this difcovery.

All thefe voyages having been fitted out by private adventurers, for the double purpofe of difcovery and prefent advantage ; it was natural to fuppofe, that the attention of the navigators had been diverted from purfuing the more remote and lefs profitable object of the two, with all the attention that could have been wihhed. I am happy, however, in an opportunity of doing juftice to the memory of thefe men; which, without having traced their fteps, and experienced their difficulties, it would have been impoffible to have done. They appear to have encountered dangers, which at that period muft have been particularly alarming from their novelty, with the greateft fortitude and perfeverance ; as well as to have fhewn a degree of diligence and nkill, not only in the ordinary and practical, but more fcientific parts of their profeffion, which might have done honour to modern feamen, with all their advantages of later improvements. This, when compared with the accounts given of the ftate of navigation, even within thefe forty years, by the moft eminent foreign authors, affords the moft flattering and fatisfactory proof of the very early exiftence of that decided fuperiority in naval affairs, which has carried the power of this country to the height it has now attained.

This great point of geography, perhaps the moft important in its confequences to a commercial nation and
maritime power, but the only one which had never yet been the object of royal attention, was fuffered to remain without further inveftigation, from the year 1615 till 1773, when the Earl of Sandwich, in confequence of an application which had been made to him by the Royal Society, laid before his Majefty, about the beginning of February, a propofal for an expedition to try how far navigation was practicable towards the North Pole; which his Majefty was pleafed to direct fhould be immediately undertaken, with every encouragement that could countenance fuch an enterprize, and every affiftance that could contribute to its fuccefs.

As foon as I heard of the defign, I offered myfelf, and had the honour of being entrufted with the conduct of this undertaking. The nature of the voyage requiring particular care in the choice and equipment of the fhips, the Racehorfe and Carcafs bombs were fixed upon as the Atrongeft, and therefore propereft for the purpofe. The probability that fuch an expedition could not be carried on without meeting with much ice, made fome additional ftrengthening necelfary: they were therefore immediately taken into dock, and fitted in the moft compleat manner for the fervice. The complement for the Racehorfe was fixed at ninety men, and the ordinary eftablifhment departed from, by appointing an additional number of officers, and entering effective men inftead of the ufual number of boys.

I was allowed to recommend the officers; and was very happy to find, during the courfe of the voyage, by the great affiftance I received on many occafions from their abilitics and experience, that I had not been miftaken in the characters of thofe upon whom fo much depended in the performance of this fervice. Two mafters of Greenlandmen were employed as pilots for each hip. The Racehorfe was alfo furnifhed with the new chain-pumps. made by Mr. Cole according to Captain Beniinck's improvements, which were found to anfwer perfectly well. We alfo made ufe of Dr. Irving's apparatus for diftilling frefh water from the fea, with the greateft fuccefs. Some finall but ufeful alterations were made in the fpecies of provifions ufually fupplied in the navy; an additional quantity of fpirits was allowed for each hip, to be iffued at the difcretion of the commanders, when extraordinary fatigue or feverity of weather might make it expedient. A quantity of wine was alfo allotted for the ufe of the fick. Additional clothing, adapted to that rigor of climate, which from the relations of former navigators we were taught to expect, was ordered to be put on board, to be given to the feamen when we arrived in the high 1 tritudes. It was forefeen that one or both of the fhips might be facrificed in the profecution of this undertaking; the boats for each hip were therefore calculated, in number and fize, to be fit, on any emergency, to

$$
\mathbf{C}_{2} \quad \text { tranfport }
$$

I NTRODUCTION.
tranfport the whole crew. In fhort, every thing which could tend to promote the fuccefs of the undertaking, or contribute to the fecurity, health, and convenience of the ships' companies, was granted.

The Board of Longitude agreed with Mr. Ifrael Lyons to embark in this voyage, to make aftronomical obfervations. His reputation for mathematical knowledge was too well eftablifhed to receive any addition from the few opportunities which a voyage in fuch unfavourable climates could afford. The fame Board fupplied him with fuch infruments as they imagined might be ufeful for making obfervations and experiments. The Royal Society favoured me with fuch information as they judged might ferve to direct my enquiries, whenever the circumftances of the voyage thould afford me leifure and opportunity for making obfervations. Befades thefe learned bodies, I was obliged to many individuals for hints; amongft whom it is with pleafure I mention Monficur D'Alembert, who communicated to me a fhort paper, which, from the concifenefs and elegance with which it was drawn up, as well as from the number of interefting objects that it recommended to my attention, would have done honour to any perfon whofe reputation was not already eftablifhed upon fo folid a foundation as that learned philofopher's. To Mr. Banks I was indebted for very full inftructions in the branch of natural hiftory, as I have fince been for his
affiftance

> I NTRODUCTION.
affirtance in drawing up the account of the productions of that country; which I acknowledge with particular fatisfaction, as inftances of a very long friendhip which I am happy in an opportunity of mentioning.

As a voyage of this kind would probably afford many opportunities of making experiments and obfervations in matters relative to navigation, I took care to provide myfelf with all the beft infruments hitherto in ufe, as well as others which had been imperfectly, or never, tried.

The length of the Second Pendulum in fo high a latitude as I was likely to reach, appearing to me an experiment too interefting to be neglected, I defired Mr. Cumming to make me fuch an inftrument as he thought would beft anfwer the purpofe. That modefty and candour which always attend real merit, induced him to lend me the identical pendulum with which Mr. Graham had made his experiments, rather than furnifh me with one of his own conftruction; but the judgment as well as fkill with which the apparatus joined to it was contrived and executed, notwithftanding the fhortnefs of the time, will, I am fure, do him credit.

The Board of Longitude fent two watch machines for keeping the longitude by difference of time; one conftructed by Mr. Kendal, on Mr. Harrifon's principles; the

I NTRODUCTION.

the other by Mr. Arnold. I had alfo a pocket watch conftructed by Mr. Arnold, by which I kept the longitude to a degree of exactitude much beyond what I could have expected; the watch having varied from its rate of going only $2^{\prime} 40^{\prime \prime}$ in 128 days.

In the Journal which follows, I mean to confine myfelf to the occurrences of the voyage as they fucceeded in order of time; which, for the convenience of the generality of readers, I have reduced from the nautical to the civil computation: to this I fhall add, by way of Appendix, an account of all the experiments and obfervations under their refpective heads, that thofe who intereft themfelves in any particular branch, may find whatever they want, unmixed with foreign matters; while thofe who may wifh only to trace the whole progrefs of the voyage, as well as thofe who may be fatiffied with the general refults of the experiments, will find the account unincumbered with that detail which I wifh to fubmit to others, who may chufe to examine more minutely, and compare the facts with the conclufions.

A voyage of a few months to an uninhabited extremity of the world, the great object of which was to afcertain a very interefting point in geography, cannot be fuppofed to afford much matter for the gratification of

I NTRODUCTION.

mere curiofity. The experiments and obfervations may poffibly from their novelty, and the peculiar circumftances of the climate in which they were made, afford fome entertainment to philofophers ; and might perhaps have been more numerous and fatisfactory, if the purfuit of the great object of the voyage had not rendered them, however interefting in themfelves, but a fecondary confideration.

(20c|

J O U $\quad \mathrm{R} \quad \mathrm{N} \quad \mathrm{A} \quad \mathrm{L}$.

-

D
(1)

[19]

$\begin{array}{lllllll}J & O & \mathrm{U} & \mathrm{R} & \mathrm{N} & \mathrm{A} & \text { L. }\end{array}$

APRIL 19th, 1773 , I received my commiffion for the Racehorfe, with an order to get her fitted with the greatelt difpatch for a voyage of difcovery towards the North Pole, and to proceed to the Nore for further orders.

23d. The fhip was hauled out of dock.
May 2 ift. The fhip being manned and rigged, and having got in all the provifions and ftores, except the Gunner's, we fell down to Galleons.

22d. We received on board the powder, with eight fixpounders, and all the gunner's fores. Lord Sandwich gave us the laft mark of the obliging attention he had fhewn during the whole progrefs of the equipment, by coming on board to fatisfy himfelf, before our departure, that the whole had been compleated to the wifh of thofe who were embarked in the expedition. The Eafterly
D 2 winds
J OUR N A L.
winds prevented our going down the river tiil the 26 th, when I received my inftructions for the voyage, dated the $25^{\text {th }}$; dircding me to fall down to the Nore in the Racehorfe, and there taking under my command the Carcals, to make the beft of my way to the Northward, and proceed up to the North Pole, or as far towards it as poffible, and as nearly upon a meridian as the ice or other obftructions might admit; and, during the courfe of the voyage, to make fuch obfervations of every kind as might be ufeful to navigation, or tend to the promotion of natural knowledge : in cafe of arriving at the Pole, and even finding free navigation on the oppofite meridian, not to proceed any farther; and at all events to fecure my return to the Nore before the winter fhould fet in. There was alfo a claufe authorizing me to procced, in unforefeen cafes, according to my own difcretion; and another claufe directing me to profecute the voyage on board the Carcafs, in cafe the Racehorfe fhould be loft or difabled.

27th. I anchored at the Nore, and was joined by Captain Lutwidge, in the Carcafs, on the 3oth: her equipment was to have been in all refpects the fame as that of the Racehorfe, but when fitted, Captain Lutwidge finding her too deep in the water to proceed to fea with fafety, obtained leave of the Admiralty to put fix more guns on fhore, to reduce the complement to eighty men, and return a quantity of provifions proportionable to that re-

$$
\mathbf{J} \mathbf{O} \mathbf{U} \mathbf{R} \mathbf{N} \mathbf{A}
$$

duction. The officers were recommended by Captain Lutwidge, and did juftice to his penetration by their conduct in the courfe of the voyage. During our ftay here, Mr. Lyons landed with the aftronomical quadrant at Sheernefs fort, and found the latitude to be $51^{\circ} 3 I^{\prime} 30^{\prime \prime}$, longitude $0^{\circ} 30^{\prime}$ Eaft. The Eafterly winds prevented our moving this day and the following.

June 2d. Having the wind to the Weftward of North, at five in the morning I made the fignal to weigh ; but in lefs than half an hour, the wind fhifting to the Eaftward and blowing frefh, I furled the topfails. The wind came in the afternoon to NbE ; we weighed, but did not get far, the tide of flood making againft us.

3d. The wind blowing frefh all day Eafterly, we did not move.
$4^{\text {th }}$. The wind coming round to the Weftward at fix in the morning, I weighed immediately, and fent the boat for Captain Lutwidge, to deliver him his orders: At 10 A. M. longitude by the watch 5^{\prime} E. At noon the latitude obferved was $55^{\circ} 37^{\prime} 36^{\prime \prime} \mathrm{N}$. At eight in the evening we had got as far as Balfey Cliff, between Orford and Harwich. Little wind at night.

5th. Anchored in Hofeley Bay at half paft feven in the evening, in five and an half fathom water. Orford Caftle NEbN.

Angle

J OUR NA L.
Angle between Aldborough Church and Orford
Light House.
Light Houfe and Orford Church, - - 1816
Orford Church and Cattle, - - 220
Cattle and Hofeley Church, - - - 10059
Hofeley and Balfey Church, - - - 3527
6th. At five in the morning, the wind at SS W, weighed, and food out to lea, finding I might lofe two tides by going through Yarmouth Roads. Examined the \log line, which was marked forty-nine feet; the glass was found, by comparing it with the time-keeper, to run thirty feconds: at noon latitude observed $52^{\circ} 16^{\prime} 54^{\prime \prime}$, longitude by the watch $1^{\circ} 30^{\prime} 15^{\prime \prime} \mathrm{E}$. Angle between Southwold and Walderiwick, $10^{\circ} 39^{\prime}$ Walderfwick and Dunwich, - - - 2021 Dunwich and Aldborough, - - - 4653 Southwold NW $\ddagger \mathrm{N}$, fuppofed diftance three leagues. We conclu. 1 the latitude of Southwold to be $52^{\circ} 22^{\prime}$, and longitude $1^{\circ} 18^{\prime} 15^{\prime \prime}$ E. The dip was $73^{\circ} 22^{\prime}$.

7th. The wind was Northerly all day, and blew frefh in the morning. We had flood far out in the night and the day before, to clear the Lemon and Ower.

8th. Little wind molt part of the day, with a very heavy fidel. Stood in for the land. At half part ten longitude by the watch $0^{\circ} 4 x^{\prime} 15^{\prime \prime} \mathrm{E}$. At noon the latitude

JOURNAL.
was $53^{\circ} \cdot 38^{\prime} 37^{\prime \prime}$. We faw the high land near the Spurn, in the evening.

9th. About noon Flamborough Head bore $\mathbf{N} \mathbf{W}$ b N diftant about fix miles: we were by obfervation in latitude $54^{\circ} 4^{\prime} 54^{\prime \prime}$, longitude $0^{\circ} 27^{\prime} 15^{\prime \prime} \mathrm{E}$; which makes Flamborough Head, in latitude $54^{\circ} 9^{\prime}$, longitude $0^{\circ} 19^{\prime}$ $15^{\prime \prime}$ E. In the afternoon we were off Scarborough. Almoft calm in the evening.

10th. Anchored in the morning for the tide in Robin Hood's Bay, with little wind at NW : worked up to Whitby Road next tide, and anchored there at four in the afternoon, in fifteen fathom, with very little wind.

11th. Calm in the morning; compleated our water, live fock and vegetables. At nine in the morning longitude obferved by the watch $1^{\circ} 55^{\prime} 30^{\prime \prime} \mathrm{W}$; Whitby Abbey bore $\mathrm{S} \frac{1}{} \mathrm{~W}$. Weighed with the wind at SE, and fteered NEbN to get fo far into the midchannel as to make the wind fair Eafterly or Wefterly, without being too near either Chore, before we were clear of Shetland and the coaft of Norway.

12th. The wind at SE, and the fhip well advanced, I ordered the allowance of liquor to be altered, ferving the fhip's company one-fourth of their allowance in beer, and the other three-fourths in brandy; by which means the
beer was made to laft the whole voyage, and the waten confiderably faved. One half of this allowance was ferved immediately after dinner, and the other half in the evening. It was now light enough all night to read upon deck.

13th. The weather fill fine, but confiderably lefs wind than the day before, and in the afternoon more Northerly. The longitude at ten in the morning was found by my watch $0^{\circ} 6^{\prime} \mathrm{W}$. We took three obfervations of the moon and fun for the longitude; the extremes differed from one another near two degrees: the mean of. the three gave the longitude $1^{\circ} 37^{\prime} \mathrm{E}$. At noon the latitude obferved was $59^{\circ} 32^{\prime} 31^{\prime \prime}$. We found a difference of 36^{\prime} between the latitude by dead reckoning and obfervation, the fhip being fo much more Northerly than the reckoning. The diftance by this \log was too fhort by forty-three miles. A log marked forty-five feet, according to the old method, would have agreed with the obfervation within two miles in the two days' run. 'The circumftance of fteering upon a meridian, which aiforded me fuch frequent opportunities of detecting tinc errors of the \log, induced me to obferve with care the comparative accuracy of the different methods of dividing the line, recommended by mathemiticians, or practifed by feamen. In the afternoon I went on board the Carcafs to compare the time-kcepers by my watch. At fix in the evening the longitude by my watch $0^{\circ} 4^{\prime} \mathrm{E}$. This evening the fun

J O U R N A L. fet at twenty-four minutes paft nine, and bore about N NW by the compafs. The clouds made a beautiful appearance long after to the Northward, from the reflection of the fun below the horizon. It was quite light all night: the Carcafs made the fignal for feeing the land in the evening.

14th. Little wind, or calm, all day; but very clear and fine weather. Made feveral different obfervations for the longitude by the fun and moon, and by my watch. The longitude of the fhip was found by my watch, at ten in the morning, to be $I^{\circ} 11^{\prime} 45^{\prime \prime} \mathrm{W}$. The longitude by the lunar obfervations differed near two degrees from one another. By the mean of them the hip was in longitude $2^{\circ} 57^{\prime} 45^{\prime \prime} \mathrm{W}$. Some Shetland boats came on board with fifh. At noon the latitude by obfervation was $60^{\circ} 16^{\prime} 45^{\prime \prime}$. At one in the afternoon the dip was obferved to be $73^{\circ} 30^{\prime}$; and at eight, 75° i 8^{\prime} : the evening calm, and very fine; the appearance of the fky to the Northward very beautiful. Variation, by the mean of feveral obfervations, $22^{\circ} 25^{\circ} \mathrm{W}$.

15th. By an obfervation at eight in the morning, the longitude of the fhip was by the watch $0^{\circ} 39^{\prime} \mathrm{VV}$: Dip 74° 52^{\prime}. At half paft ten in the morning, the longitude, from feveral obfervations of the fun and moon, was 0° $17^{\prime} \mathrm{W}$; at noon being in latitude $60^{\circ} 19^{\prime} 8^{\prime \prime}$, by obfervation, I took the diftance between the two thips by E the
the Megameter; and from that bafe determined the pofition of Hangcliff, which had never before been afcertained, though it is a very remarkable point, and frequently made by fhips. According to thefe obfervations it is in latitude $60^{\circ} 9^{\prime}$, and longitude $0^{\circ} 56^{\prime} 30^{\prime \prime} \mathrm{W}$. In the Appendix I hall give an account of the manner of taking furveys by this inftrument, which I believe never to have been practifed before. At one, obferved the dip to be 75°. A thick fog came on in the afternoon, with a flat calm; we could not fee the Carcafs, but heard her anfwer the fignals for keeping company. Variation, from the mean of feveral obfervations, $25^{\circ} 1^{\prime} \mathrm{W}$.
r6th. A very thick fog in the morning; latitude obferved at noon $60^{\circ} 29^{\prime} 17^{\prime \prime}$: the dip was obferved at nine in the evening to be $76^{\circ} 45^{\prime}$. In the afternoon, the weather clear, and the wind fair, fteered NNE: fent Captain Lutwidge his further orders and places of rendezvous.

17 th. Wind fair, and blowing frefh at SS W, continued the courfe N N E: ordered the people a part of the additional clothing: faw an Englifh floop, but had no opportunity of ending letters on board, the fea running high. At ten in the morning, longitude by the watch $0^{\circ} 19^{\prime} 45^{\prime \prime} \mathrm{W}$: at noon, the latitude obferved was $62^{\circ} 59^{\prime} 27^{\prime \prime}$. The hip had out-run the reckoning

$$
\begin{array}{lllllll}
J & O & U & R & N & A
\end{array}
$$

eleven miles. I tried Bouguer's log twice this day, and found it give more than the common log. Variation $19^{\circ} .22^{\prime} \mathrm{W}$.

18th. Little wind all day, but fair, from SS W to S E: ftill fteering NNE: latitude obferved at noon $65^{\circ} 18^{\prime}$ 17". At three in the afternoon, founded with 300 fathom of line, but got no ground. Longitude by the watch x° ó $30^{\prime \prime} \mathrm{W}$.

1gth. Wind to the N W. Took the meridian obfervation at midnight for the firf time : the fun's lower limb $0^{\circ} 37^{\prime} 30^{\prime \prime}$ above the horizon; from which the latitude was found $66^{\circ} 54^{\prime} 39^{\prime \prime} \mathrm{N}$: at four in the afternoon, longitude by the watch $0^{\circ} 58^{\prime} 45^{\prime \prime} \mathrm{W}$: at fix the variation 19° [1' W.

20th. Almoft calm all day. The water being perfectly fmooth, I took this opportunity of trying to get foundings at much greater depths than I believe had ever been attempted before. I founded with a very heavy lead the depth of 780 fathom, without getting ground; and by a thermometer invented by lord Charles Cavendifh for this purpofe, found the temperature of the water at that depth to be 26° of Fahrenheit's thermometer; the temperature of the air being $48^{\circ} \frac{1}{2}$.

Junc. We began this day to make ufe of Doctor Irving's apparatus for diftilling frefh water from the fea: repeated trials gave us the moft fatisfactory proof of its utility: the water produced from it was perfectly free from falt, and wholefome, being ufed for boiling the hip's provifions; which convenience would alone be a defirable object in all voyages, independent of the benefit of to ufeful a refource in cafe of diftrefs for water. The quantity produced every day varied from accidental circumftances, but was generally from thirty-four to forty gallons, without any great addition of fuel. Twice indeed the quantity produced was only twenty-three gallons on each diftillation; this amounts to more than a quart for each man, which, though not a plentiful allowance, is much more than what is necefflary for fubliftence. In cafes of real neceffity I haye no reafon to doubt that a much greater quantity might be produced without an inconvenient expence of fuel.

2Ift. A frefh gale at SE all day; fteered N N E: At four in the morning we fpoke with a fnow from the feal fihhery, bound to Hamburg, by which we fent fome letters. At fix in the morning the variation, by the mean of feveral obfervations, was $23^{\circ} 18^{\prime} \mathrm{W}$. Longitude by the watch at nine was $0^{\circ} 34^{\prime} 30^{\prime \prime} \mathrm{W}$. Latitude obferved at noon $68^{\circ} 5^{\prime}$.

$$
J \quad O \quad U \quad R \quad N \quad A \quad L
$$

22d. Calm moft part of the day; rainy and rather cold in the evening. At noon obferved the dip to be $77^{\circ} 5^{\prime}$.

23d. Very foggy all day; the wind fair; altered the courfe and fteered N E and E N E, to get more into the mid channel, and to avoid falling in with the Weftern ice, which, from the increaling coldnefs of the weather, we concluded to be near. At feven o'clock in the morning, being by our reckoning to the Northward of 74°, we faw a piece of drift wood, and a fmall bird called a Redpoll. Dip obferved at nine in the evening to be $81^{\circ} 30^{\prime}$.

24th. Very foggy all the morning; the wind came round to the Northward. The dip obferved at noon was $80^{\circ} 35^{\prime}$. In the afternoon, the air much colder than we had hitherto felt it; the thermometer at 34°. A fire made in the cabin for the firf time, in latitude $73^{\circ} 40^{\prime}$.

25th. Wind Northerly, with a great fwell; fome fnow, but in general clear. At eight in the morning, the longitude obferved by the watch was $7^{\circ} 15^{\prime} \mathrm{E}$. Made feveral obfervations on the variation, which we found, by thofe taken at feven in the morning, to be $17^{\circ} \mathrm{s}^{\prime} \mathrm{W}$; by others at three in the afternoon, only $7^{\circ} 47^{\prime} \mathrm{W}$. I could not account for this very fudden and extraordinary decreafe,
decreafe, as there were feveral different obfervations taken both in the morning and evening, which agreed perfectly well with each other, without any apparent caufe which could produce an error affecting all the obfervations of either fet. At cight in the evening the longitude by the moon was $12^{\circ} 57^{\prime} 30^{\prime \prime} \mathrm{E}$, which differed $2^{\circ} 35^{\prime}$ from that by the watch. Little wind at night.

26th. Little wind all day; the weather very fine and moderate. The latitude obferved at noon was $74^{\circ} 25^{\prime}$. The thermometer expofed to the fun, which fhone very bright, rofe from 41° to $6 I^{\circ}$ in twenty minutes. By each of two lunar obfervations which I took with a fextant of four inches radius, at half paft one, the longitude was $9^{\circ} 57^{\prime} 30^{\prime \prime} \mathrm{E}$; which agreed within thirty-feven minutes with an obfervation made by the watch at half an hour after three, when the longitude was $8^{\circ} 52^{\prime} 30^{\prime \prime} \mathrm{E}$. Dip $79^{\circ} 22^{\prime}$.

27 th. At midnight the latitude obferved was $74^{\circ} 26^{\prime}$. The wind came to the S W, and continued fo all day, with a little rain and fnow. The cold did not increafe. We fteered NbE . At feven in the morning the variation, by a mean of feveral obfervations, was found to be $20^{\circ} 38^{\prime} \mathrm{W}$. We were in the evening, by all our reckonings, in the latitude of the South part of Spitfbergen, without any appearance of ice or fight of land, and with a fair wind.

28th. Lefs wind in the morning than the day before, with rain and fleet: continued iteering to the Northward. At five in the afternoon picked up a piece of drift wood, which was fir, and not worm-eaten : founded in 290 fathom; no ground. At fix the longitude by the watch was $7^{\circ} 50^{\prime} \mathrm{E}$: between ten and eleven at night, faw the land to the Eaftward at ten or twelve leagues diftance. At midnight, $\operatorname{dip} 8 \mathrm{I}^{\circ} 7^{\prime}$.

29th. The wind Northerly; ftood clofe in with the land. The coaft appeared to be neither habitable nor acceffible; it was formed by high, barren, black rocks, without the leaft marks of vegetation; in many places bare and pointed; in other parts covered with fnow, appearing even above the clouds : the vallies between the high cliffs were filled with fnow or ice. This profpect would have fuggefted the idea of perpetual winter, had not the mildnefs of the weather, the fmooth water, bright funfhine, and conftant day-light, given a chearfulnefs. and novelty to the whole of this ftriking and romantick. fcene.

I had an opportunity of making many obfervations near: the Black Point. Latitude obferved at noon $77^{\circ} 59^{\prime} 11^{\prime \prime}$. The difference of latitude, from the laft obfervation on the 27 th at midnight to this day at noon, would according to the old method of marking the log have been two hundred and thirteen miles; which agrees exactly with the obfervation. At three in the afternoon, brought to and founded 110 fathom; ioft muddy ground: hoifted out the boat and tried the :lream ; found it, both by the common and Bouguer's $\log _{g}$ (which agreed exactly) to run half a knot North; Black Point bearing E N E. At four the longitude by the watch was $9^{\circ} 3 \mathbf{I}^{\prime} \mathrm{E}$: at eight the variation, by the mean of nineteen obfervations, I I ${ }^{\circ} 53^{\prime} \mathrm{W}$. I could not account from any apparent caufe for this great change in the variation: the weather was fine, the water finooth, and every precaution we could think of ufed to make the obfervations accurate. The dip was $80^{\circ} 26^{\prime}$. Plying to the Northward.

30 h. At midnight the latitude by obfervation was $78^{\circ} 0^{\prime} 50^{\prime \prime}$. At four in the morning, by Lord Charles Casendifh's thermometer the temperature of the water at the depth of 118 fathoms was 31° of Fahrenheit's; that of the air was at the fame time $40^{\circ} \frac{1}{2}$. At nine in the morning we faw a hlip in the N V , flanding in for the land. Having little wind this morning, and that Northerly, I ftood in for the land, with an intention to have watered the hip, and got out immediately, but was prevented by the calm which followed. At noon the latitude obferved was $78^{\circ} 8^{\prime}$; the dip $79^{\circ} 30^{\prime}$. At two in the afternoon we founded in 115 fathom; muddy bottom: at the fame time we fent down Lord Charles Cavend Ih's thermometer, by which we found the

$$
J O U R \quad N A L
$$

July, weather very fine, and fo warm that we fat without a fire, and with one of the ports open in the cabin. At noon the latitude obferved was $78^{\circ} 13^{\prime} 3^{\prime \prime}$; Black Point bearing $\mathrm{S} 78^{\circ} \mathrm{E}$; which makes the latitude of that point nearly the fame as that of the fhip, and agrees very well with the chart of this coaft in Purchas.

2d. Little wind, and calms, all day ; the weather very fine. At fix in the morning five fail of Greenlandmen in fight. At noon the latitude obferved was $78^{\circ} 22^{\prime} 41^{\prime \prime}$. I took a furvey of the coaft, as far as we could fee: I took alfo with the megameter the altitudes of feveral of the mountains: but as there is nothing particularly interefting to navigators in this part of the coaft, I fhall only mention the height of one mountain; which was,
fifteen hundred and three yards. This may ferve to give forme idea of the appearance and fcale of the coat. At half pat fix the longitude by the watch was $9^{\circ} 8^{\prime} 30^{\prime \prime} \mathrm{E}$: Variation $14^{\circ} 55^{\prime} \mathrm{W}$.

3d. Latitude at midnight $78^{\circ} 23^{\prime} 46^{\prime \prime}: \operatorname{Dip} 80^{\circ} 45^{\prime}$. The weather fine, and the wind fair all day. Running along by the coat of Spitbergen all day : feveral Greenlandmen in fight. Between nine and ten in the evening we were abreaft of the North Foreland, bearing E bS ${ }_{\frac{1}{2}} \mathrm{~S}$, diftance $1 \frac{1}{2}$ mile. Sounded in twenty fathom; rocky ground.
th. Very little wind in the morning. At noon the latitude by observation was $79^{\circ} 31^{\prime}$. Magdalena Hook bore $\mathrm{N} 39^{\circ} \mathrm{E}$ diftant about four miles; which gives the latitude of that place $79^{\circ} 34^{\prime}$; the fame as Fotherby obferved it to be in 1614. Stood in to a fall bay to the Southward of Magdalena and Hamburgher's Bay: anchored with the fleam anchor, and fent the boat for water. About three in the afternoon, when the boat was fent on fore, it appeared to be high water, and ebbed about three feet. This makes high water full and change at half an hour pat one, or with a SS W moon; which agrees exactly with Baffin's observation in 1613. The flood comes from the Southward. Went afore with the aftronomex, and inftruments, to obferve the variation. A thick fog came on before we had completed the observations.

$$
\mathrm{J} O \cup \mathrm{O} \text { N A L. }
$$

The hip driving, I weighed and ftood out to fea under an eafy fail, firing guns frequently to thew the Carcafs where we were; and in lefs than two hours joined her. Soon after (about four in the morning of the 5 th) the Rockingham Greenland Ship ran under our ftern, and the mafter told me he had juft fpoke with fome fhips from which he learnt, that the ice was within ten leagues of Hacluyt's Head Land, to the North Weft. In confequence of this intelligence, I gave orders for fteering in towards the Head Land; and if it fhould clear up, to fteer directly for it; intending to go North from thence, till fome circumftance fhould oblige me to alter my courfe.

5th. At five the officer informed me, that we were very near fome illands off Dane's Gat, and that the pilot wihhed to ftand farther out; I ordered the hip to be kept NbW , and hauled farther in, when clear of the iflands. At noon I fteered North, feeing nothing of the land; foon after I was told that they faw the ice: I went upon deck, and perceived fomething white upon the bow, and heard a noife like the furf upon the fhore; I hauled down the ftudding fails, and hailed the Carcafs to let thern know that I hould fand for it to make what it was, having all hands upon deck ready to haul up at a moment's warning: I defired that they would keep clofe to us, the fog being fo thick, and have every body up ready to follow our motions inftantaneoufly, determining to fand on under fuch faii as fhould enable us to keep

$$
F_{2} \quad \text { the }
$$

the hips under command, and not rif parting company. Soon after two finall pieces of ice not above three feet fquare paled us, which we fuppofed to have floated from the fore. It was not long before we fay fomething on the bow, part black and part covered with finow, which from the appearance we took to be iflands, and thought that we had not flood far enough out; I hauled up immediately to the N NW and was foo undeceived, finding it to be ice which we could not clear upon that tack; we tacked immediately, but the wind and fear both fating directly upon it, we neared it very faff, and were within little more than a cable's length of the ice, whilft in flays. The wind blowing frefh, the hips would have been in danger on the lee ice, had not the officers and men been very alert in working the hip. The ice, as far as we could then fee, lay nearly EbN and WbS . At half part feven in the evening, the hip running entirely to the Southward, and the weather clearing a little, I tacked, and flood for the ice. When I fam it, I bore down to make it plain; at ten the ice lay from $\mathrm{N} \mathbf{W}$ to Raft, and no opening. Very foggy, and little wind, all day ; but not cold. At eleven came on a thick fog. At half pat midnight, heard the furge of the ice, and hauled the wind to the Eaftward.

6th. Clear weather all day, and the wind Eafterly off the ice. In the morning I food in to make the land plain. At fix, was within four miles of the ice, which

J O U R N A L.

bore from ENE to W N W : at ten near Vogel Sang: at noon, latitude obferved $79^{\circ} 5^{\prime} 39^{\prime \prime}$; wind Eafterly. Continued plying to windward between the land and the ice: was within a quarter of a mile of the ice, which lay from ENE to NNW, when I tacked at two in the afternoon; and within half a cable's length at midnight: the Carcals was a great way aftern and to leeward all day. Being fo near the laft rendezvous, I did not chufe to bring to for her, but was very anxious to avail myfelf of this favourable opportunity, having the wind off the ice and clear weather, to fee whether there was any opening to the N E of the Head Land. By all the accounts from the Grcenlandmen this year, and particularly the laft account from the Rockingham, as well as from what we had feen ourfelves, the ice appeared to be quite clofe to the N W. We had feen it from E S E to W N W. It was probable that the fea, if open any where, would be fo to the Eaftward, where the Greenlandmen do not often venture, for fear of being prevented from returning by the ice joining to Spitfbergen. I determined therefore, fhould the wind continue in the fame quarter next day, to find whether the ice joined to the land, or was fo detached as to afford me an opportunity of paffing to the Eaftward. In cafe of the ice being faft I could, with the wind Eafterly, range clofe along the edge of it to the Weftward. The weather exceedingly fine. At fix in the afternoon, the longitude by the watch was $9^{\circ} 43^{\prime} 30^{\prime \prime} \mathrm{E}$.
J O U R N A L.

July. 7th. At five in the morning the wind was Northerly, and the weather remarkably clear. Being near the ice I ranged along it. It appeared to be clofe ail round; but I was in hopes that fome opening might be found to get through to a clear fea to the Northward. I ran in amongtt the fmall ice, and kept as clofe as poffible to the main body, not to mifs any opening. At noon, Cloven Cliff W a feven leagues. At one in the afternoon, being ftill amongft the loofe ice, I fent the boat to one of the large pieces to fill water. At four we fhoaled the water very fuddenly to fourteen fathom: the outer part of Cloven Cliff bore $W \ddagger N$: Redcliff, S $\ddagger E$. The loofe ice being open to the E N E, we hauled up, and immediately deepened our water to twenty-eight fathom; muddy ground, with fhells. At half paft four, the ice fetting very clofe, we ran between two pieces, and having little wind were fopped. The Carcafs being very near, and not anfwering her helm well, was almoft on board of us. After getting clear of her, we ran to the Ealtward. Finding the pieces increafe in number and fize, and having got to a part lefs crowded with the drift ice, I brought to, at fix in the evening, to fee whether we could difcover the leaft appearance of an opening : but it being my own opinion, as well as that of the pilots and officers, that we could go no farther, nor even remain there without danger of being befet, I fent the boat on board the Carcafs for her pilots, to hear their opinion; they both

$$
\begin{array}{lllllll}
J & O & U & R & N & A & L
\end{array}
$$

declared that it appeared to them impracticable to proceed that way, and that it was probable we hould foon be befet where we were, and detained there. The ice fet fo faft down, that before they got on board the Carcafs we were faft. Captain Lutwidge hoifted our boat up, to prevent her being ftove. We were obliged to heave the fhip through for two hours, with ice anchors, from each quarter; nor were we quite out of the ice till midnight. This is about the place where moft of the old difcoverers were ftopped. The people in both hips being much fatigued, and the Carcafs not able to keep up with us, without carrying ftudding-fails, I fhortened fail as foon as we were quite out, and left orders to ftand to the Northward under an eafy fail: I intended, having failed in this attempt, to range along the ice to the $\mathrm{N} \mathbf{W}$, in hopes of an opening that way, the wind being fair, and the weather clear; refolving, if I found it all folid, to return to the Eaftward, where probably it might by that time be broken up, which the very mild weather encouraged me to expect.

8th. Little wind in the morning, and a fwell fetting on the ice, we were obliged to get the boats a-head, to tow the Chip clear; which they effected with difficulty. A breeze fpringing up when we were within two cables. lengths of the main body of the ice, ftood in for the land, and tacked at two, to ftand to the N W for the ice; but the weather coming thick between five and fix, I ftood
flood in again for the land. It clearing up foo after, I bore away again iv W for the ice. At ten, fpoke with a Greenland Ship which had jut left the ice all clofe to the N NW. Between eleven and twelve the wind came to the S W, with an heavy fwell, and thick weather. Double-reefed the topfails, and tacked at twelve, to fund in for Hacluyt's Head Land, not thinking it proper to run in with the fat ice to leeward in thick weather, without even the probability of an opening; and propofing if that weather continued, to complete the hip's water, and be ready with the first wind, off or along the ice, to look out for an opening, and run in. To avoid any inconvenience which from the experience of the preceding day I perceived might happen, from too many running to one place on any fudden order, 1 divided the people into gangs under the midfhipmen, and stationed them to the ice hooks, poles, crabs, and to go over upon the ice when wanted.

9th. Having a fair opportunity, and $S W$ wind, food to the Weftward ; intending, when the weather was clear, to make the ice to the Northward, and run along it. About twelve, clearer; flaw the faft ice to the Northward, and the appearance of loofe ice to the NW : food directly for it, and got amongst it between two and three; fteering as much to the Northward as the fituation of the ice would permit. At fix observed the $\operatorname{dip} 8 \mathrm{I}^{\circ} 5^{\prime}$. At half part feven, found the ice quite fat to the Weft, being

$$
\mathrm{J} O U R \mathrm{~N} \boldsymbol{\mathrm { O }} \mathrm{~L} .
$$

in longitude $2^{\circ} 2^{\prime} \mathrm{E}$, by our reckoning, which was the fartheft to the Weftward of Spitibergen that we got this voyage. At eight the fog was fo very thick, that we could neither fee which way to pufh for an opening, nor where the Carcafs was, though very near us. That we might not rifk parting company with her, I was obliged to ply to windward under the topfails, tacking every quarter of an hour to keep in the opening in which we were, and clear of the ice which furrounded us. At four in the afternoon we were in $80^{\circ} 36^{\prime}$.
roth. We loft the Carcafs twice in the night, from the very thick fog, and were working all night amongtt the ice, making very fhort tacks; the opening being fmall, and the floating ice very thick about the fhip. The fituation of the people from the very fatiguing work and wet weather, made the moft minute precautions neceffary for the prefervation of their health: we now found the advantage of the fpirits which had been allowed for extraordinary occafions; as well as the additional cloathing furnifhed by the Admiralty. Notwithftanding every attention, feveral of the men were confined with colds, which affected them with pains in their bones; but, from the careful attendance given them, few continued in the fick lift above two days at a time. At nine in the morning, when it cleared a little, we faw the Carcafs much to the Southward of us. I took the opportunity of the clear G weather weather to run to the Weftward, and found the ice quite fold there; I then food through every opening to the Northward, but there alfo foo got to the edge of the folid ice. I was forced to haul up to weather a point which ran out from it. After I had weathered that, the ice clofing fart upon me, obliged me to fer the forefail, which, with the frefh wind and fmooth water, gave the Ship fuck way as to force through, it with a violent froze. At one in the afternoon, immediately on getting out into the open fea, we found a heavy fuel feting to the Northward; though ariongft the ice, the minute before, the water had been as froth as a mill pond. The wind blew ftrong at SS W. The ice, as far as we could fee from the malt head, lay ENE: we fteered that courfe close to it, to look for an opening to the Northward. I now began to conceive that the ice was one compact impenetrable body, having run along it from East to Weft above ten degrees: I purpofed however to ftand over to the Eaftward, in order to afcertain whether the body of icc joined to Spitfbergen. This the quantity of loofe ice had before rendered impracticable; but thinking the Wefterly winds might probably by this time have packed it all that way, I flattered myself with the hopes of meeting with no obstruction till I fhould come to where it joined the land; and in cafe of an opening, however fall, I was determined at all events to puff through it. The weather clearer, and the land in fight.

$$
\begin{array}{lllllll}
J & O & U & R & N & A & L
\end{array}
$$

ruth. At half part four in the morning the longitude by the lunar obfervation was $9^{\circ} 42^{\prime} \mathrm{E}$. And at the fame time by my watch $9^{\circ} 2^{\prime}$ E. Cloven Cliff SS E, diftant eight miles. This would make the longitude of Cloven Cliff $9^{\circ} 38^{\prime} \mathrm{E}$; which is within twenty minutes of what it was determined by the obfervations and furvey taken in Fair Haven. At noon the latitude obferved was $80^{\circ} 4^{\prime}$; Vogel Sang. W SW. Little wind and a great fuel in the morning. Calm mot part of the day.
rath. Calm all day, with a great fuel from the SW , and the weather remarkably mild. At eight in the evening longitude $1 y$ the watch $10^{\circ} 54^{\prime} 30^{\prime \prime}$ E : Cloven Cliff SUbS. The Carcass drove with the current fo near the main body of the ice, as to be obliged to anchor; the came to in twenty-fix fathom water.

13 th. Calm till noon, the hip driving to the Weftward with the current, which we obferved to be very ireguar, the Carcafs being driven at the fame time to the Eaftward. Near the main body of the ice, the detached pieces probably affect the currents, and occafion the great irregularity which we remarked. We had found an heavy fell from the $S W$ thee two days. At two in the afternoon it came on very fuddenly to blow frefh from that quarter, with foggy weather: we worked into Vogel

Sang, and anchored with the bet bower in eleven fathom, fort clay.

The place where we anchored is a good road-ftead, open from the NE to the NW. The Northeafternmoft point is the Cloven Cliff, a bare rock fo called from the top of it refembling a cloven hoof, which appearance it has always worn, having been named by tome of the first Dutch navigators who frequented thee feas. This rock being entirely detached from the other mountains, and joined to the reft of the inland by a low narrow ifthmus, preferves in all fituations the fame form; and being nearly perpendicular, it is never difguifed by frow. Thee circumfrances render it one of the molt remarkable points on the coat. The Northwefternmoft land is an high bluff point, called by the Dutch, Vogel Sang.. This found, though open to the Northward, is not liable to any inconvenience from that circumftance, the main body of the ice lying fo near as to prevent any great fea; nor are flips in any danger from the loofe ice felting in, as this road communicates with feveral others formed by different iflands, between all which there are fafe paffages. To all the founds and harbours formed by this knot of iflands, the old Englifh navigators had given the general name of Fair Haven; of which Fotherby took a plat in 1614: that in which the Racehorfe and Carcafs lay at this time they called the North Harbour ; the harbour of Smeerenberg, diftant about eleven miles, (in which we anchored in August) they named the

J O U R N A L.
the South Harbour. Befides thefe, there are feveral others; particularly two, called, Cook's Hole, and the Norways, in both which feveral Dutch thips were lying at this time. Here the fhore being fteep-to, we completed our water with great eafe, from the ftreams which fall in many places down the fides of the rocks, and are produced by the melting of the fnow. I fixed upon a fmall flat ifland, or rock, about three miles from the fip, and almoft in the center of thofe illands which form the many good roads here, as the propereft place for erecting a tent, and making obfervations. The foggy weather on the 14th prevented us from ufing the inftruments that day. I regretted this circumftance much, fearing it would deprive me of the only probable opportunity of making obfervations on Chore in thofe high latitudes, as our water was nearly recruited: however, having little wind, with the weather very fair from the 15 th to the 18th in the morning, I made the beft ufe of that time. Even in the cleareft weather here, the fky was never free from clouds, which prevented our feeing the moon during the whole of our ftay, or even being fure of our folar obfervations, Mr. Lyons never having been able: to get equal altitudes for fettling the rates of going of the time-keepers.. Once indeed we were fortunate enough to obferve a revolution of the fun, of which I availed myfelf to determine the going of the pendulum adjufted to vibrate feconds at London, Daring the courfe of this experiment, a particular and conftant attention was paid to the fate of the thermometer, which I was furprifed to find differ fo little about noon and midnight; its greater height was 5°, at eleven in the forenoon; at midnight it was 51°.

On the 16 th, at noon, the weather was remarkably fine and clear. The thermometer in the shade being at 49°, when exposed to the fun rofe in a few minutes to $89^{\circ} \frac{1}{2}$, and remained fo for come time, till a fall breeze springing up, made it fall 10° almoft inftantly. The weather at this time was rather hot; fo that I imagine, if a thermometer was to be graduated according to the feelings of people in there latitudes, the point of temperature would be about the 44th degree of Fahrenheit's fcale. From this inland I took a furvey, to afcertain the fituation of all the points and openings, and the height of the mott remarkable mountains : the longeft bare the inland would afford was only 618 feet, which I determined by a crops bale, as well as actual meafurement, and found the refults not to differ above three feet. To try how far the accuracy of this furvey might be depended upon, I took in a boat, with a fall Hadley's fextant, the angles between leven objects, which interfected exactly when laid down upon the plan. I had a farther proof of its accuracy forme days after, by taking the bearings of Vogel Sang and Hacluyt's Head Land in one, which corresponded exactly with their pofition on my chart.

On the 17 th, the weather being very clear, I went up one of the hills, from which I could fee feveral leagues to the NE: the ice appeared uniform and compact, as far as my view extended. During our ftay here, we found the latitude of the inland on which the obfervations were made, to be $79^{\circ} 50^{\prime}$; longitude $10^{\circ} 2^{\prime} 30^{\prime \prime} \mathrm{E}$; variation $20^{\circ} 33^{\prime} \mathrm{W}$; dip $82^{\circ} 7^{\prime}$: latitude of Cloven Cliff $79^{\circ} 53^{\prime}$: lungitude $9^{\circ} 59^{\prime} 30^{\prime \prime} \mathrm{E}$: Hacluyt's Head Land $79^{\circ} 47^{\prime}$; longitude $9^{\circ} 11^{\prime} 30^{\prime \prime} \mathrm{E}$. The tide rofe about four feet, and flowed at half an hour after one, full and change. The tide fet irrregularly, from the number of illands between which it paffed; but the flood appeared to come from the Southward.

18th. The calm weather fince the 14 th had given us full time to finifh the obfervations, and complete our water: a breeze fpringing up in the morning, I went alhore to get the inftruments on board. Between one and two we weighed, with the wind Wefterly, and ftood to the Northward. Between eleven and twelve at night, having run about eight leagues, we were prevented by the ice from getting farther. We ftood along the edge of it to the Southward. At two in the morning, being embayed by the ice, I tacked, and left orders to ftand to the Eaftward along the edge of the ice, as foon as we could weather the point; hoping, if there hould be no opening,

$$
\mathrm{J} O U R \mathrm{~N} \quad \mathrm{~A} \mathrm{~L} .
$$

between the land and the ice, that I Should at leaf be able to ascertain where they joined, and perhaps to difcover from the land, whether there was any profpect of a paflage that way : At that time the ice was all folid as far as we could fee, without the leapt appearance of water to the Northward.

19th. At fix in the morning we had got to the Eatward among the loofe ice which lay very thick in fore, the main body to the Northward and Eaftward: the land near Deer Field not four miles off, and the water foaled to twenty fathoms. Here we found ourselves nearly in the fame place where we had twice been flopped, the ice fituated as before, locked with the land, without any paffige either to the Eaftward or Northward : I therefore flood back to the Weftward. At noon the Northernmost part of Vogel Sang bore SUbS, diftant about feven leagues. The weather being very fine, and the wind to the Eaftward, we were enabled to coat along the ice to the Weftward, hauling into all the bays, going round every point of ice in fearch of an opening, and ftanding clofe along by the main body all day, generally within a hip's length.

20th. At half after three in the morning the land was out of fight, and we imagined ourfelves in rather more than eighty degrees and an half; forme of the openings being

J.O UR N A L.
near two leagues decp, had flattered us with hopes of getting to the Northward; but thefe openings proved to be no more than bays in the main body of the ice. About one in the afternoon, we were by our reckoning in about $80^{\circ} 34^{\prime}$, nearly in the fame place where we had been on the gth. About three we bore away for what appeared like an opening to the S W ; we found the ice run far to the Southward.

21 ff . We fill continued to run along the edge of the ice, which trended to the Southward. At noon we were in the latitude of $79^{\circ} 26^{\prime}$, by obfervation, which was twenty-five miles to the Southward of our reckoning. Finding that the direction of the ice led us to the Southward, and that the current fet the fame way, I ftood to the Northward and Weftward clofe along the ice, to try whether the fea was opened to the Northward by the wind from that quarter. At nine in the e ening we had no ground with 200 fathom of line. At ten we got into a fream of loofe ice. The weather fine, but cool all day, and fometimes foggy.

22d. At two in the morning we bore away to the NE, for the main body of the ice; the weather became foggy foon afterwards. At fix we faw the ice; and the weather being fill foggy, we hauled up to the SSE, to avoid being embayed in it. 'The air very cold.
$\mathrm{H} \quad$ 23d.

23d. At midnight, tacked for the body of the ice. Latitude obferved $80^{\circ} \times 3^{\prime} 38^{\prime \prime}$ Rainy in the morning; fair in the afternoon: ftill working up to the Northward and Eaftward, with the wind Eafterly. At fix in the evening, the Cloven Cliff bearing South about fix leagues, founded in 200 fathom: muddy ground; the lead appeared to have funk one third of its length in the mud. At two in the morning, with little wind, and a fwell from the South Weft, I flood to the Northward amongtt the loofe ice: at half paft two the main body of the ice a cable's length off, and the loofe ice fo clofe that we wore fhip, not having room or way enough to tack; ftruck very hard againft the ice in getting the fhip round, and got upon one piece, which lifted her in the water for near a minute, before her weight broke it. The fhips had been fo well ftrengthened, that they received no damage from thefe ftrokes; and I could with the more confidence purh through the loofe ice, to try for openings. Hacluyt's Fiead Land bore $\mathrm{S} 50^{\circ} \mathrm{W}$ diftant about feven leagucs.

24th. By this fituation of the ice we were difappointed of getting direetly to the Northward, without any profpect after fo many fruit'efs attempts of being able to fucceed to the Weltward; ner indeed, could 1 with an Eafterly wind and heavy fwell attempt it, as the wind from that quarter would not only pack the loofe ice clofe to the Weftward, but by fetting the fea on it, make it as improper to be approached

J O U R N A L.

approached as a rocky lee fhore. To the Eaftward on the contrary it would make fmooth water, and detach all the loofe ice from the edges; perhaps break a ftream open, and give us a fair trial to the Northward; at all events, with an Eafterly wind we could run out again, if we did not find it practicable to proceed. Finding the ice fo faft to the Northward and Weftward, it became a defriable object to afcertain how far it was poffible to get to the Eaftward, and by that means purfue the voyage to the Northward. Thefe confiderations determined me to ply to the Eaftward, and make another pufh to get through where I had been three times repulfed. In working to the Eaftward, we kept as near the body of the ice as poffible. At noon the Cloven Cliff bore S W bS about feven leagues. At fix we were working to the NE, and at nine we fteered to the SE, the ice appearing more open that way: we had frefh gales and cloudy weather. The fhip ftruck very hard in endeavouring to force through the loofe ice. At midnight the wind frefhened, and we double reefed the topfails. It was probably owing to the frefh gales this day, as well as to the fummer being more advanced, that we were enabled to get farther than in any of our former attempts this way. We continued coarting the ice, and at two in the morning the north part of Vogel Sang and Hacluyt's Head Land in one bore $\mathrm{S} 65^{\circ} \mathrm{W}$; Cloven Cliff $\mathrm{S} 52^{\circ}$ W ; the neareft part of the hore about three leagues off. When I left the deck, at four in the morning, we were very near the fpot where the hips had been faft in the ice
on the 7 th in the evening, but rather farther to the Eaftward; we had paffed over the fame fhoal water we had met with that day, and were now in twenty fathom, rocky ground ; fill amongt loofe ice, but not fo clofe as we had hitherto found it.

25th. At feven in the morning we had deepened our water to fifty-five fathom, and were fill amongtt the loofe ice. At noon we had deepened our water to feventy fathom, with muddy bottom, at the diffance of about three miles from the neareft land. By two in the afternoon we had paffed Deer Ficld, which we had to often before attempted without fuccefs; and finding the fea open to the NF, had the moft flattering profpect of getting to the Northward. From this part, all the way to the Eaftward, the coaft wears a different face; the mountains, though high, are neither fo fleep or fharppointed, nor of fo black a colour as to the Weftward. It was probably owing to this remarkable difference in the appearance of the fhore, that the old navigators gave to places hereahouts the names of Red Beach, Red Hill, and Red Cliff. One of them, fpeaking of this part, has defcribed the whole country in a few words: "Here (fays " he) I faw a more natural earth and clay than any that I " have feen in all the country, but nothing growing "thereupon more than in other places." At two in the afternoon we had little wind, and were in light of Moffen Inland, which is very low and flat.

$$
\begin{array}{lllllll}
J & O & U & R & N & A & L .
\end{array}
$$

The Carcafs being becalmed very near the ifland in the evening, Captain Lutwidge took that opportunity of obtaining the following exact account of its extent, which he communicated to me.
" At ıo PM, the body of Moffen Ifland bearing. " EbS diftant two miles; founded thirteen fathoms; "s rocky ground, with light brown mud, and broken fhelis. "Sent the mafter on Chore, who found the ifland to be " nearly of a round form, about two miles in diameter, " with a lake or large pond of water in the middle, all " frozen over, except thirty or forty yards round the edge "s of it, which was water, with loofe pieces of broken ice, "s and fo fhallow they walked through it, and went over " upon the firm folid ice. The ground between the fea " and the pond is from half a cable's length to a quarter " of a mile broad, and the whole illand covered with " gravel and fmall ftones, without the leaft verdure or " vegetation of any kind. They faw only one piece of " drift wood (about three fathom long, with a root on it, * and as thick as the Carcafs's mizen maft) which had " been thrown up over the high part of the land, and lay " upon the declivity towards the pond. They faw three " bears, and a number of wild ducks, geefe, and other " fea fowls, with birds nefts all over the illand. 'There " was an infcription over the grave of a Dutchman, who " was buried there in July 177 I . It was low waterat eleven " o'clock when the boat landed, and the tide appeared to " flow eight or nine feet; at that time we found a current

$$
\mathbf{J} O \quad \mathrm{O} \quad \mathrm{R} \quad \mathrm{~N} \quad \mathrm{~A} \quad \mathrm{~L} .
$$

" carrying the Ship to the NW from the inland, which " before carried us to the SE (at the rate of a mile an " hour) towards it. On the Weft fide is a fine white " fancy bottom, from two fathoms, at a hip's length "from the beach, to five fathoms, at half a mile's " diftance off."

The foundings all about this inland, and to the Eaftward, fem to partake of the nature of the coat. To the Weftward the rocks were high, and the flores bold and fleer to; here the land fhelved more, and the foundings were foal, from thirty to ten fathom. It appears extraordinary that none of the old navigators, who are fo accurate and minute in their defcriptions of the coat, have taken any notice of this inland, fo remarkable and different from every thing they hadfeen on the Weftern coast; unless we could fuppofe that it did not then exit, and that the ftreams from the great ocean up the Weft fide of Spitsbergen, and through the Waygat's Straits, meeting here, have raifed this bank, and occafioned the quantity of ice that generally blocks up the coat here-abouts.-At four in the afternoon, hoifted out the boat, and tried the current, which fat NEbS, at the rate of three quarters of a mile an hour. At midnight, Moffen Inland bore from SEbS to SbW , diftant about five miles.

26th. About two in the morning, we had little wind, with fog; made the signals to the Carcass for keeping

J OURNAL.
keeping company. At half an hour after three in the afternoon, we were in longitude $12^{\circ} 20^{\prime} 45^{\prime \prime} \mathrm{E}$; variation, by the mean of five azimuths, $12^{\circ} 47^{\prime} \mathrm{W}$. At nine we faw land to the Eaftward; fteering to the Northward with little wind, and no ice in fight, except what we had paffed.

27th. Working fill to the NE, we met with fome loofe ice; however from the opennefs of the fea hitherto, fince we had paffed Deer Field, I had great hopes of getting far to the Northward; but about noon, being in the latitude of eighty and forty-eight, by our reckoning, we were ftopped by the main body of the ice, which we found lying in a line, nearly Eaft and Weft, quite folid. Having tacked, I brought to, and founded clofe to the edge of the ice, in 79 fathom, muddy bottom.

The wind being ftill Eafterly, I worked up clofe to the edge of the ice, contting it all the way. At fix in the evcning we were in longitude $14^{\circ} 59^{\prime} 30^{\prime \prime} \mathrm{E}$, by obfervation.

28th. At midnight the latitude obferved was $80^{\circ} 37^{\prime}$. The main body ot the ice ftill lying in the fame direction, we continued working to the Eaftward, and found feveral openings to the Northward, of two or three miles deep; into every one of which we ran, forcing the hip, wherever we could, by a prefs of fail, amongt the loofe ice
J O U R N A L.
which we found here in much larger pieces than to the Weftward. $\dot{A} t$ fix in the morning the variation, by the mean of fix azimuths, was $11^{\circ} 56^{\prime} \mathrm{W}$; the horizon remarkably clear. At noon, being clofe to the main body of the ice, the latitude by obfervation was $80^{\circ} 36^{\prime}$: we founded in ici fathom, muddy ground. In the afternoon the wind blew frefh at NE, with a thick fog; the ice hung much about the rigging. The loofe ice being thick and clofe, we found ourfelves fo much engaged in it, as to be obliged to run back a confiderable diftance to the Weftward and Southward, before we could extricate ourfelves: we afterwards had both the fea and the weather clear, and worked up to the North Eaftward. At half paft five the longitude of the fhip was $15^{\circ} 16^{\prime} 45^{\prime \prime} \mathrm{E}$. At feven the Eafternmoft land bore $\mathrm{E}: \mathrm{N}$ diftant about feven or eight leagues, appearing like deep bays and iflands, probably thofe called in the Dutch charts the Seven Iflands; they feemed to be furrour.ded with ice. I ftood to the Southward, in hopes of getting to the Southeaftward round the ice, and between it and the land, where the water appeared more open.

2gth. At midnight the latitude by obfervation was $80^{\circ} 2 \mathrm{t}^{\prime}$. At four, tacked clofe to the ice, hauled up the forefail and backed the mizen topfail, having too much way amongft the loofe ice. At noon, latitude obferved $80^{\circ} 24^{\prime} 56^{\prime \prime}$. An opening, which we fuppofed to be the

J O U R N A L.
the entrance of Waygat's Straits, bore South; the. Northernmoft land NEbE; the neareft fhore diftant about four miles. In the afternoon the officer from the deck came down to tell me, we were very near a fmall rock even with the water's edge; on going up, I faw it within little more than a hhip's length on the lee bow, and put the helm down: before the hip got round, we were clofe to it, and perceived it to be a very fmall piece of ice, covered with gravel. In the cvening, feeing the Northern part of the iflands only over the ice, I was anxious to get round it, in hopes of finding an opening under the land. Being near a low flat illand oppofite the Waygat's Straits, not higher, but much larger than Moffen Illand, we had an heavy fwell from the Southward, with little wind, and from ten to twenty fathom: having got paft this ifland, approaching to the high land to the Eaftward, we deepened our water very fuddenly to 117 fathom. Having little wind, and the weather very clear, two of the officers went with a boat in purfuit of fome fea-horfes, and afterwards to the low inland. At midnight we found by obfervation the latitude $80^{\circ} 27^{\prime} 3^{\prime \prime}$, and the dip $82^{\circ} 2^{\prime \frac{1}{2}}$. At four in the morning I found, by Bouguer's log, that the current fet two fathon to the Eaftward. At fix in the morning the officers returned from the ifland; in their way back they had fired at, and wounded a fea-horfe, which dived immediately, and brought up with it a number of others. They all joined in an attack upon the boat, wrefted an car from one of the

J O U R N A L.

July. men, and were with difficulty prevented from faving or overfetting her; but a boat from the Carcafs joining ours, they difperfed. One of that hip's boats had before been attacked in the fame manner off Moffen Illand. From Dr. Irving, who went on this party, I had the following account of the low ifland.
" We found feveral large fir trees lying on the Thore, " dixteen or eighteen feet above the level of the fea: fome " of thefe trees were feventy fect long, and had been torn "up by the roots; others cut down by the axe, and " notched for twelve-feet lengths: this timber was no " ways decayed, or the ftrokes of the hatchet in the leaft " effaced. 'There were likewife fome pipe-ftaves, and wood " fahhioned for ufe. The beach was formed of old timber, "fand, and whale-bones.
"The ifland is about feven miles long, flat, and " formed chiefly of flones from eighteen to thirty inches " over, many of them hexagons, and commodiouly " placed for walking on: the middle of the ifland is " covered with mofs, fcurvy grafs, forrel, and a few " ranunculufes then in flower. Two rein-deer were " feeding on the mofs; one we killed, and found it fat, " and of high flavour. We faw a light grey-coloured " fox; and a creature fomewhat larger than a weafel, " with fhort ears, long tail, and fkin fpotted white and " black. The ifland abounds with fmall fnipes, fimilar " to the jack-fnipe in England. The Ducks were now
" hatching

J O U R N A L.
" hatching their eggs, and many wild geefe feeding by " the water fide."

When I left the deck at fix in the morning, the weather was remarkably clear, and quite calm. To the NE , amongft the inands, I faw much ice, but alfo much water between the pieces; which gave me hopes that when a breeze fprung up, I fhould be able to get to the Northward by that way.

3oth. Little winds, and calm all day; we got fomething to the Northward and Eaftward. At noon we were by obfervation in latitude $80^{\circ} 3 \mathrm{I}^{\prime}$. At three in the afternoon we were in longitude $18^{\circ} 48^{\prime} \mathrm{E}$, being amongft the iflands, and in the ice, with no appearance of an opening for the fhip. Between eleven and twelve at night I fent the mafter, Mr. Crane, in the four-oared boat, amongft the ice, to try whether he could get the boat through, and find any opening for the hip which might give us a profpect of getting farther; with directions if he could reach the fhore to go up one of the mountains, in order to difcover the ftate of the ice to the Eaftward and Northward. At five in the morning, the ice being all round us, we got out our ice-anchors, and moored along-fide a field. The mafter returned between feven and cight, and with him Captain Lutwidge, who had joined him on fhore. They had afcended an high mountain, from whence they commanded a profpect extending to the Eaft and North Eaft ten or twelve leagues, over one continued plain of froth unbroken ice, bounded only by the horizon: they alpo flaw land ftretching to the SE, laid down in the Dutch Charts as iflands. The main body of ice, which we had traced from Weft to Eat, they now perceived to join to there iflands, and from them to what is called the North Eat land. In returning, the ice having clofed much fince they went, they were frequently forced to haul the boat over it to other openings. The weather exceedingly fine and mild, and unufually clear. The ferne was beautiful and picturefque; the two Chips becalmed in a large bay, with three apparent openings between the inland which formed it, but every-where furrounded with ice as far as we could fee, with fome freams of water; not a breath of air; the water perfectly froth; the ice covered with frow, low, and even, except a few broken pieces near the edges : the pools of water in the middle of the pieces were frozen over with young ice.

31f. At nine in the morning, having a light breeze to the Eaftward, we caft off, and endeavoured to force through the ice. At noon the ice was fo clofe, that being unable to proceed, we moored again to a field. In the afternoon we filled our calk with frefh water from the ice, which we found very pure and loft. The Carcafs moved, and made fat to the fame field with us. The ice meafured eight yards ten inches in thicknefs at one end, and leven yards

- rimmy.timn

- Civemy rimin

J O URNAL.

yards eleven inches at the other. At four in the afternoon the variation was $12^{\circ} 24^{\prime} \mathrm{W}$: at the fame time the longitude $19^{\circ} 0^{\prime} 155^{\prime \prime} \mathrm{E}$; by which we found that we had hardly moved to the Eaftward fince the day before. Calm moft part of the day; the weather very fine; the ice clofed faft, and was all round the fhips; no opering to be feen any where, except an hole of about a mile and a half, where the fhips lay faft to the ice with ice-anchors. We completed the water. The fhip's company were playing on the ice all day. The pilots being much farther than they had ever been, and the feafon advancing, feemed alarmed at being befet.

Auguft ift. The ice preficd in falt; there was not now the fmalleft opening; the two thips ware within leis than two lengths of each other, feparated by ice, and neither having room to turn. The ice, which had been all flat the day before, and almoft level with the water's edge, was now in many places forced higher than the main yard, by the pieces fqueezing together. Our latitude this day at noon, by the double altitude, was $80^{\circ} 37^{\prime}$.

2d. Thick foggy wet weather, blowing fref to the Weftward; the ice immediately about the fhips rather loofer than the day before, but yet hourly fetting in fo faft upon us, that there feemed to be no probability of getting the fhips out again, without a ftrong Eaft, or North.

Augur.

$$
\mathrm{J} O U R \mathrm{~N} \text { A } \mathrm{L} \text {. }
$$

North Eaft wind. There was not the fmalleft appearance of open water, except a little towards the Weit point of the iJorth Eaft land. The feven iflands and North Eaft land, with the frozen fea, formed almoft a bafon, leaving but about four points opening for the ice to drift out, in cafe of a change of wind.

3d. The weather very fine, clear, and calm; we perceived that the hhips had been driven far to the Eaftward; the ice was much clofer than before, and the paffage by which we had come in from the Weftward clofed up, no open water being in fight, either in that or any other quarter. The pilots having expreffed a wifh to get if poffible farther out, the fhips companies were fet to work at five in the morning, to cut a paffage through the ice, and warp through the fmall openings to the Weftward. We found the ice very deep, having fawed fometimes through pieces twelve feet thick. This labour was continucd the whole day, but without any fuccefs; our utmoft efforts not having moved the Chips above chree hundred yards to the Weftward through the ice, at the fame time that they had been driven (together with the ice itfelf, to which they were faft) far to the NE and Eaftward, by the current; which had alfo forced the loofe ice from the Weftward, between the iflands, where it becane packed, and as firm as the main body.

N N

AUn-an ssam.

J O U R N A L.
4th. Quite calm till evening, when we were flattered with a light air to the Eaftward, which did not laft long, and had no favourable effect. The wind was now at $\mathrm{N} W$, with a very thick fog, the fhip driving to the Eaftward. The pilots feemed to apprehend that the ice extended very far to the Southward and Weftward.

5th. The probability of getting the hips out appearing every hour lefs, and the feafon being already far advanced, fome fpeedy refolution became necefiary as to the fteps to be taken for the prefervation of the people. As the fituation of the fhips prevented us from fecing the fate of the ice to the Weftward, by which our future preceedings mult in a great meafure be determined, I fent Mr. Walden, one of the midfhipmen, with two pilots, to an ifland about twelve miles off, which : have diftinguifhed in the charts by the name of Walden's Inland, to fee where the open water lay.

6th. Mr. Walden and the pilots, who were fent the day before to examine the fate of the ice from the ifland, returned this morning with an account, that the ice, though clofe all about us, was open to the Weftward, round the point by which we came in. They allo told me , that when upon the illand they had the wind ver: freth to the Eaftward, though where the fhips lay it had been almoft calm all day. This circumftance confiderably lefiencel the hopes we had hitherto entertained of the immediate effect of an Eafterly wind in clearing the bay. We had but one alternative; either patiently to wait the event of the weather upon the Chips, in hopes of getting them out, or to betake ourfelves to the boats. The flips had driven into Coal water, having but fourteen fathom. Should they, or the ice to which they were fat, take the ground, they mut be inevitably loft, and probably overfet. The hopes of getting the flips out was not haftily to be relinquinhed, nor obtinately adhered to, till all other means of retreat were cut off. Having no harbour to lodge them in, it would be impofible to winter them here, with any probability of their being again ferviceable; our provifions would be very fort for fuck an undertaking, were it otherwife feasible; and fuppofing, what appeared impoffible, that we could get to the neareft rocks, and make forme conveniences for wintering, being now in an unfrequented part, where flips never even attempt to come, we could have the fame difficulties to encounter the next year, without the fame refources; the remains of the flip's company, in all probability, not in health; no provifions; and the fca not fo open, this year having ermainly been uncommonly clear. Indeed it could not have been expected that more than a very foal part fhould furvive the hardhhips of fuck a winter with every advantage ; much lefs in our prefent fituation. On the other hand, the undertaking to move fo large a body for

$$
\begin{array}{lllllll}
J & O & U & R & N & A & 1 .
\end{array}
$$

fo confiderable a diftance by boats, was not without very ferious difficulties. Should we remain much longer here, the bad weather mult be expected to fet in. The ftay of the Dutchmen to the Northward is very doubtful: if the Northern harbours keep clear, they ftay till the beginning of September; but when the loofe ice fets in, they quit them immediately. I thought it proper to fend for the officers of both hhips, and informed them of my intention of preparing the boats for going away. I immediately hoifted out the boats, and took every precaution in my power to make them fecure and comfortable : the fitting would neceflarily take up fome days. The water fhoaling, and the Chips driving faft towards the rocks to the N E, I ordered canvals bread-bags to be made, in cafe it fhould be neceffary very fuddenly to betake ourfelves to the boats: I alfo fent a man with a lead and line to the Northward, and another from the Carcafs to the Eaftward, to found wherever they found cracks in the ice, that we might have notice before either the fhips, or the ice to which they were faift, took the ground; as in that cafe, they muft infantly have been crufhed or overfet. The weather bad; moft part of the day foggy, and rather cold.

7th. In the morning I fer out with the Launch over the ice; fhe hauled much eafier than I could have expected; we got her about two miles. I then returned with the people for their dinner. Finding the ice rather K more more open near the hips, I was encouraged to attempt moving them. The wind being Eafterly, though but little of it, we fet the fails, and got the fhips about a mile to the Weftward. They moved indeed, but very flowly, and were not now by a great deal fo far to the Weftward as where they were befet. However, I kept all the fail upon them, to force through whenever the ice flacked the leaft. The people behaved very well in hauling the boat; they feemed reconciled to the idea of quitting the fhips, and to have the fulleft confidence in their officers. The boats could not with the greateft diligence be got to the water fide before the fourteenth ; if the fituation of the fhips did not alter by that time, I fhould not be juftified in ftaying longer by then. In the mean time I refolved to carry on both attempts together, moving the boats conftantly, but without omitting any opportunity of getting the fhips through.

8th. At half paft four, fent two pilots with three men to fee the ftate of the ice to the Weftward, that I might judge of the probability of getting the flips out. At nine they returned, and reported the ice to be very heavy and clofe; confifting chiefly of large fields. Between mine and ten this morning, Ifet out with the people, and got the Launch above three miles. The weather being foggy, and the people having worked hard, I thought it beft to return on board between fix and feven. The hips had in the mean time moved fomething through the ice, and the

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

$$
\mathbf{J} \mathbf{O} \mathbf{U} \mathbf{R} \mathbf{N} \mathbf{A}
$$ night there was little wind, and a thick fog, fo that I could not judge precifely of the advantage we had gained; but I ftill feared that, however flattering, it was not fuch as to juftify my giving up the idea of moving the boats, the feafon advancing fo faft, the prefervation of the fhips being fo uncertain, and the fituation of the people fo critical.

9th. A thick fog in the morning: we moved the fhip a little through fome very fmall openings. In the afternoon, upon its clearing up, we were agreeably furprized to find the fihips had driven much more than we could have expected to the Weftward. We worked hard all day, and got them fomething more to the Weftward through the ice; but nothing in comparifon to what the ice itfelf had drifted. We got palt the Launches; I fent a number of men for them, and got them on board. Between three and four in the morning the wind was Wefterly, and it fnowed faft. The people having been much fatigued, we were obliged to defift from working for a few hours. The progrefs which the hips had made through the ice was, however, a very favourable event: the drift of the ice was an advantage that might be as fuddenly loft, as it had been unexpectedly gained, by a change in the current: we had experienced the inefficacy of an Eafterly wind when far in the bay, and under the high land; but having now got through fo much of the K_{2} ice,

J O U $\quad \mathbf{R} \quad \mathrm{N} A \mathrm{~L}$. ice, we began again to conceive hopes that a brink gale from that quarter would food effectually clear us.
roth. The wind fringing up to the NNE in the morning, we fat all the fail we could upon the flip, and forced her through a great deal of very heavy ice: © he ftruck often very hard, and with one ftroke broke the flank of the belt bower anchor. About noon we had got her through all the ice, and out to fa. I flood to the NW to make the ice, and found the main body jut where we left it. At three in the morning, with a good breeze Eafterly, we were ftanding to the Weftward, between the land and the ice, both in fight; the weather hazer.
i th. Cameto an anchor in the harbour of Smeerenberg, to refrefh the people after their fatigues. We found here four of the Dutch hips, which we had left in the Norway when we failed from Vogel Sang, and upon which I had depended for carrying the people home in cafe we had been obliged to quit the hips. In this Sound there is good anchorage in thirteen fathom, fandy bottom, not far from the Chore: it is well haltered from all winds. The inland clofe to which we lay is called Amfterdan Inland, the Wefternmoft point of which is Hacluyt's Head Land : here the Dutch ufed formerly to boil their whale-oil, and the remains of forme conveniencies erected by them for that purpofe are fill vifible. Once they attempted to make an eftablifhment, and left forme people

Tamadxax

 $54-2 x+y^{2}+2$

$J \quad \mathbf{J} \quad \mathbf{R} \quad \mathrm{~N} A \quad L$.
to winter he e, who all perifhed. The Dutch fhips ftill refort to this place for the latter feafon of the whale filhery.

12th. Got the inftruments on fhore, and the tent pitched; but could not make any obfervations this day or the next, from the badnefs of the weather.
$13^{\text {th }}$. Rain, and blowing hard : two of the Dutch Chips failed for Holland.

14th. The weather being fine and little wind, we began our obfervations.

18th. Completed the obfervations. Calm all day. During our ftay, I again fet up the pendulum, but was not fo fortunate as before, never having been able to get an obfervation of a revolution of the fun, or even equal altitudes for the time. We had an opportunity of determining the refraction at midnight, which anfwered within a few feconds to the calculation in Dr. Bradley's table, allowing for the barometer and thermometer. Being within fight of Cloven Cliff, I took a furvey of this part of Fair Haven, to connect it with the plan of the other part. Dr. Irving climbed up a mountain, to take its height with the barometer, which I determined at the fame time geometrically with great care. By repeated obfervations here we found the latitude to be $79^{\circ} 44^{\prime}$, which by the furvey correfponded correfponded exaetly with the latitude of Cloven Cliff, determined before ; the longitude $9^{\circ} 50^{\prime} 45^{\prime \prime} \mathrm{E}$; dip 82° 8^{\prime}; ; variation $18^{\circ} 57^{\prime} \mathrm{W}$; which agrees alfo with the obfervation made on fhore in July. The tide flowed here half paft one, the fame as in Vogel Sang harbour.

Oppofite to the place where the inftruments ftood, was one of the moft remarkable Icebergs in this country. Icebergs are large bodies of ice filling the vallies between the high mountains; the face towards the fea is nearly perpendicular, and of a very lively light green colour. That reprefented in the cugraving, from a fketch taken by Mr . D'Auvergne upon the fpot, was about three hundred feet high, with a cafcade of water iffuing out of it. The black mountains, white fnow, and beautiful colour of the ice, make a very romantick and uncommon picture. Large pieces frequently break off from the lcebergs, and fall with great noife into the water: we obferved one piece which had floated out into the bay, and grounded in twentyfour fathom; it was fifty feet high above the furface of the water, and of the fame beautiful colour as the Iceberg.

A particular defcription of all the plants and animals will have a place in the Appendix. I fhall here mention fuch general obfervation, as my fhort ftay enabled me to make. The ftone we found was chiefly a kind of marble, which diffolved eafily in the marine acid. We perceived no marks of minerals of any kind, nor the leaft appearance of prefent, or remains of former Volcanoes. Neither did we meet with infects, or any fpecies of reptiles;

$$
1
$$

Y(iiri" 少"II" , Virtring
reptiles; not even the common earthworm. We faw no fprings or rivers, the water, which we found in great plenty, being all produced by the melting of the fnow from the mountains. During the whole time we were in thefe latitudes, there was no thunder or lightning. I muft alfo add, that I never found what is mentioned by Marten (who is generally accurate in his obfervations, and faithful in his accounts) of the fun at midnight refembling in ap. pearance the moon; I faw no difference in clear weather between the fun at midnight and any other time, but what arofe from a different degree of altitude; the brightnefs of the light appearing there, as well as elfewhere, to depend upon the obliquity of his rays. The fky was in general loaded with hard white clouds; fo that I do not renember to have ever feen the fun and the horizon both free from them even in the cleareft weather. We could always perceive when we were approaching the ice, long before we faw it, by a bright appearance near the horizon, which the pilots called the blink of the ice. Hudfon remarked, that the fea where he met with ice was blue; but the green fea was free from it. I was particularly attentive to obferve this difference, but could never difcern it.

The Driftwood in thefe feas has given rife to various opinions and conjectures, both as to its nature and the place of its growth. All that which we faw (except the pipe-ftaves taken notice of by Doctor Irving on the Low Ifland) was fir, and not worm-eaten. The place of its growth I had no opportunity of afcertaining.

The nature of the ice was a principal object of attention in this climate. We found always a great fwell near the edge of it; but whenever we got within the loofe ice, the water was conftantly fimooth. The loofe fielr's and flaws, as well as the interior part of the fixed ice, were flat, and low : with the wind blowing on the ice, the loofe parts were always, to ufe the phrafe of the Greenlandmen, packed; the ice at the edges appearing rough, and piled up; this roughnefs and height I imagine to proceed from the fmaller pieces being thrown up by the force of the fea on the folid part. During the time that we were faft amongft the Seven Inlands, we had frequent opportunities of obferving the irrefiftible force of the large bodies of floating ice. We have often feen a piece of feveral acres fquare lifted up between two much larger pieces, and as it were becoming one with them; and afterwards this piece fo formed aeting in the fame manner upon a fecond and third; which would probably have continued to be the effee, till the whole bay had been fo filled with ice that the different pieces could have had no motion, had not the fream taken an unexpected turn, and fet the ice out of the bay.

19th. Weighed in the morning with the wind at N N E. Before we got out of the bay it fell calm. I obferved for thefe three or four days, about eleven in the evening, an appearance of dufk.

r. 1991.	$\cdots 3 \%$.	i, 325 .	11. 865.
(1.220) ${ }^{8 .}$.fiztoo.	Ri869.	0.16 .50.
r.321.	.1.1.449)	1. 711.	/1.1041.
11.210.	11.1101.	\%11.49\%.	

$$
\begin{array}{llllllll}
\mathbf{J} & \mathbf{O} & \mathbf{U} & \mathbf{R} & \mathbf{N} & \mathbf{A} & \mathbf{L} .
\end{array}
$$

20th. At midnight, being exactly in the latitude of Cloven Cliff, Mr. Harvey took an obfervation for the refraction; which we found to agree with the tables. The wind Southerly all day, blowing freh in the afternoon. About noon fell in with a ftream of loofe ice, and about four made the main ice near us. We food to the W N W along it at night, and found it in the fame fituation as when we faw it before; the wind frefhened and the wather grew thick, fo that we loft fight of it, and could not venture to ftand nearer, the wind being S S W.

2 ft . At two in the morning we were clofe in with the body of the Weft ice, and obliged to tack for it; blowing frefh, with a very heavy fea from the Southward. The wind abated in the afternoon, but the fwell continued, with a thick fog.

22d. The wind fprung up Northerly, with a thick fog; about noon moderate and clearer; but coming on to blow freh again in the evening, with a great fea, and thick fog, I was forced to haul more to the Eaftward, left we fhould be embayed, or run upon lee ice.

The feafon was fo very far advanced, and fogs as well as gales of wind fo much to be expected, that nothing more could now have been done, had any thing been left untried. The fummer appears to have been uncommonly
favourable
favourable for our purpofe, and afforded us the fulleft opportunity of afcertaining repeatedly the fituation of that wall of ice, extending for more than twenty degrees between the latitudes of eighty and eighty-one, without the fmalleft appearance of any opening.

I hould here conclude the account of the voyage, had not fome obfervations and experiments occurred on the paffage home.

In fteering to the Southward we foon found the weather grow more mild, or rather to our feelings warm. Auguft 24th, we faw Jupiter: the fight of a far was now become almoft as extraordinary a phenomenon, as the fun at midnight when we firft got within the Arctic circle. The weather was very fine for fome part of the voyage; on the 4 th of September, the water being perfectly fmooth with a dead calm, I repeated with fuccefs the attempt I had made to get foundings in the main ocean at great depths, and ftruck ground in fix hundred and eightythree fathoms, with circumftances (which will be mentioned in the Appendix) that convince me I was not miftaken in the depth; the bottom was a fine foft blue clay. From the 7th of September, when we were off Shetland, till the 24th, when we made Orfordnefs, we had very hard gales of wind with little intermiffion, which were conftantly indicated feveral hours before they came on by the fall of the barometer, and rife of the manometer : this

$$
\begin{array}{llllllll}
\mathbf{J} & \mathbf{O} & \mathbf{U} & \mathbf{R} & \mathbf{N} & \mathbf{A} & \mathbf{L} .
\end{array}
$$

proved to me the utility of thofe infruments at fea. In one of thefe gales, the hardeft, I think, I ever was in, and with the greateft fea, we loft three of our boats, and were obliged to heave two of our guns overboard, and bear away for fome time, though near a lee fhore, to clear the flip of water. I cannot omit this opportunity of repeating, that I had the greateft reafon on this, as well. as every other critical occafion, to be fatisfied with the behaviour both of the officers and feamen. In one of thefe gales on the 12 th of September, Dr. Irving tried the temperature of the fea in that ftate of agitation, and found it confiderably warmer than that of the atmofphere. This obfervation is the more interefting, as it agrees with a paffage in Plutarch's Natural Queftions, not (I believe) ivefore taken notice of, or confirmed by experiment, in which he remarks, " that the fea becomes warmer " by being agitated in waves."

The frequent and very heavy gales at the latter end of the year, confirmed me in the opinion, that the time of our failing from England was the propereft that could have been chofen. Thefe gales are as common in the Spring as in the Autumn : there is every reafon to fuppofe therefore, that at an early feafon we fhould have met with the fame bad weather in going out as we did on our return. The unavoidable neceffity of carrying a quantity of additional ftores and provifions, rendered the hips fo deep in the water, that in heavy gales the boats, with many of the ftores, muft probably have been thrown L. 2 overboard;
overboard; as we experienced on our way home, though the fhips were then much lightened by the confumption of provifions, and expenditure of flores. Such accidents in the outfet mult have defeated the voyage. At the time we failed, added to the fine weather, we had the further advantage of nearly reaching the latitude of eighty without feeing ice, which the Greenlandmen generally fall in with in the latitude of feventy-three or feventy-four. There was alfo moft probability, if ever navigation fhould be practicable to the Pole, of finding the fea open to the Northward after the folftice; the fun having then exerted the full influence of his rays, though there was enough of the fummer ftill remaining for the purpofe of exploring the feas to the Northward and Weftward of Spitbergen.

C'AI.RRT'

 Stuered by

hIS Mats:STYS SLonP

RACEIIORSE

A $\quad \mathrm{P} \quad \mathrm{P} \quad \mathrm{E} \quad \mathrm{N} \quad \mathrm{D} \quad \mathrm{I} \quad \mathrm{X}$.

ค\$

$$
A \quad P \quad \mathrm{P} \quad \mathrm{E} \quad \mathrm{D} \quad \mathrm{I} \text {. }
$$

Eftablifhment of Officers and Men for the Racehorse.

ONE Commander.
Three Lieutenants.
One Mafter.
One Boatfwain.
One Gunner.
One Carpenter.
One Purfer.
One Surgeon.
One Surgeon's Mate.
One Cook.
Three Mafter's Mates,
Six Midfhipmen.
One Captain's Clerk.
Two Quarter Mafters.
One Quarter Mafter's Mate,
Two Boatfwain's Mates.
One Coxfwain.
One Mafter Sail-maker.
One Sail-maker's Crew.
One Gunner's Mate.
One Yeoman of the Powder Room.
One Quarter Gunner.
One Armourer.

Two Carpenter's Mates.
Two Carpenter's Crew.
One Steward. One Corporal. Fifty Scamen. Two Pilots.

In all Ninety-two.

Comparative Table of the Latitudes and Longitudes of fome remarkable Places.

Places.	By Sir Jonas Mcore.		$\begin{gathered} \text { by the } \\ \text { Atlas Maritinus. } \end{gathered}$		$\begin{gathered} \text { By Robertlon's Navi-? } \\ \text { gation. } \end{gathered}$		$\begin{aligned} & \text { By Oblervations made } \\ & \text { this Voyage. } \end{aligned}$	
	Latitude.	Longitude.	Latitude.	Longitude.	Latitude.	Longitude.	Latitude.	Longitulc.
	\bigcirc	- 1	-	-	-	- 1	-	-
Queenborough,	5130	- 37 E		- •		- • -		- \cdot.
Sheernefs,	-	- 37 E	- \cdot	- ${ }^{\circ}{ }^{\circ}$	- .	-	$5^{1} 31$	- 30 E
Orfordnets,	5220	1 I) E	5214	I 36E	5217	111 E		- . ${ }^{\circ}$
jouthwold,	-	- - ${ }^{\text {- }}$	- .	- \cdot	- -	- \cdot	-	1 : 8 E
Flamborough Head,	548	- 49 W	5+ 9	- 10E	548	- 11 E	549	- 19E
Whitby,	5435	11.4 W	5428	022 W	$5+30$	- 50 W	-	- 55 WW
Hangcliff,	-	- \cdot	- 8	-	-		609	- 56 W
Black Point,	7832	1310 E	775^{8}	- . -	7^{8} -	1050 E	7813	1033 E
Hakluvt's Head Land,			775		$79 \quad 55$	12 OF	17947	911 E

TABLE

Bearings and Diftances.

June

NW $\frac{1}{2} \mathrm{~N}$, diftance 3 leagucs.

7° W, diflance 3^{6} leagues.
$10^{\circ} 30^{\prime} \mathrm{F}$, diftance 22 leagues.
A. $2^{\circ} 10^{\prime} \mathrm{E}$, diftsuce 35 leigrues.
$\mathrm{N}^{\circ} 50^{\prime} \mathrm{E}$, diftance 47 leagues.
is $\operatorname{li} \mathrm{V}$, diftance 41 leagucs.
$\mathrm{N}_{1} 0^{\prime} \mathrm{W}$, diftance 103 leagues.
$\mathrm{N} \boldsymbol{o}^{\prime} \mathrm{W}$, diftance 122 Leagues. Itangcliff, $\mathrm{S} 59^{\circ} \mathrm{W}$, 10 or it miles.
$\therefore \mathrm{W}$, diftance 10 or 11 miles.
$\mathrm{N} 2^{\circ} \mathrm{W}$, diftance g leagucs.
$\mathrm{N} 2^{\circ} \mathrm{W}$, diftance gleagucs.
$\mathrm{N} \quad 34^{\prime} \mathrm{W}$, diftance 5^{6} leagucs.
N $30^{\prime} \mathrm{W}$, diftance 102 leagues.
$\mathrm{N} 52^{\prime} \mathrm{W}$, dittance $12:$ lcagues.
$\mathrm{N} 3 \mathrm{I}+\mathrm{t}$ W, diftance 138 lagues.
$\mathrm{N} \quad 44^{\prime} \mathrm{W}$, diftance 157 lengues.
$\mathrm{Nr}^{\prime} \mathrm{W}$, diftance 2 II leagues.
, W, diftance 243 leagues.
$459^{\prime} \mathrm{W}$, diftance 265 lengues.
N $6^{\prime} 9^{\prime} \mathrm{W}$, dittance 289 leagucs.
N $5^{\circ} 3^{8} 8^{\prime} \mathrm{W}$, diftance 296 leagues.
N $\mathbf{3}^{\circ} 1^{\prime} 7^{\prime} \mathrm{W}$, diftance 314 leagues.
N $1^{\circ} 6^{\prime} \mathrm{W}$, diftance 35° leagues.
$\mathrm{N} 2^{\circ} 24^{\prime} \mathrm{W}$, diftance 360 leagues.
N $3 \mathrm{NE}+\frac{\mathrm{E}}{2}$, diftance 9 miles.
N aft, diftance 18 miles.
$\mathrm{N} 361^{\circ} \mathrm{E}$, diftance 27 miles.
$\mathrm{N} \mathrm{c}_{2} 2^{\circ} \mathrm{E}$, diffance it leagues.
$\mathrm{N} \quad \mathrm{k}, \mathrm{N} 25^{\circ} \mathrm{E}$, diftimec + milcs.
N $3 \mathrm{k}, \mathrm{S}_{3} 3^{\circ} \mathrm{E}$, diftance 17 miles.

- int, $\mathrm{S}_{8} 3^{\circ} \mathrm{E}$, diftance 5 lengues.
$.65^{\circ} \mathrm{W}$, dittance 5 leagues,
$-20^{\circ} \mathrm{W}$. Vogel Sang Point, $\mathrm{S}_{4} 5^{\circ} \mathrm{W}$, diltance; or 8 miles.
$\mathrm{N} 4 \mathrm{nt}, \mathrm{S} 47^{\circ} \mathrm{E}$, diftance 55 miles.
$W_{n t}, S 63^{\circ} 15^{\prime} \mathrm{E}$, diftance 8_{+}miles.
- int, $\mathrm{S}_{4} 8^{\prime} \mathrm{W}$, diftance 9 miles.
- int, S $25^{\circ} \mathrm{W}$, diftance 6 miles.

TABLE

A P PEN

Table of Days Wor

sle of Days Works.

TABLE

| | |
| :--- | :--- | :--- |
| | |

le of Days Works.

| Magnetic |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Obfervations. |

Table

Day of 1 Mouth

Bearings and Diftances.

Auguft :Head Land, S $34^{\circ} \mathrm{E}$, diftance 10 leagues.
;Head Land, $\mathrm{S} 74^{\circ} \mathrm{E}$, diftance 70 miles .
:Head Land, $\mathbf{N} 74^{\circ} 27^{\prime}$ E, diftance 82 mics.
:Head Land, N $16^{\circ} 20^{\prime}$ E, diftance 188 miles.
:Head Land, N $9^{\circ} 34^{\prime} \mathrm{E}$, diftance 23^{2} miles.
:Head Land, $\mathrm{N}_{1} 1^{\circ} 3^{\circ}$ E, diftance 278 miles.
Head Land, $\mathrm{N}_{14}{ }^{\circ} 30^{\prime} \mathrm{E}$, diftance 133 leagues.
$:$ Head Land, $\mathrm{N}_{15} 5^{\circ} 18^{\prime} \mathrm{E}$, diftance igileagues.
: Head Land, $\mathrm{N}_{19^{\circ}} \mathrm{2I}^{\prime} \mathrm{E}$, diftance 162 leagues.
:Head Land, $\mathrm{N}_{16} 6^{\circ} 24^{\prime} \mathrm{E}$, diftance 183 leagues.
:Head Land, $\mathrm{N}_{144^{\circ} 15^{\prime}} \mathrm{E}$, diftance 195 leagues.
Head Land, $\mathrm{N}_{11}{ }^{\circ} 44^{\prime} \mathrm{E}$, diftance 2225 leagues.
Sept. Head Land, $\mathbf{N} 12^{\circ} 16^{\prime} \mathrm{E}$, diftance 227 leagucs.
Head Land, $\mathbf{N} 10^{\circ} 57^{\prime} \mathrm{E}$, diftance 237 leagues.
Head Land, $\mathrm{N} 10^{\circ} 14^{\prime} \mathrm{E}$, diftance 280 leagues.
Head Land, $\mathrm{N}_{12^{\circ}} 51^{\prime} \mathbf{E}$, diftance 303 leagues.
Head Land, $\mathrm{N} 10^{\circ} 3^{8 \prime} \mathrm{E}$, diftance 3^{21} leagues.
Head Land, $\mathrm{N} 10^{\circ} 12^{\prime} \mathrm{E}$, diftance 35^{\prime} leagues.
Head Land, N ro 39^{\prime} E, diftance 394 leagues.
Head Land, N $9^{\prime} 16^{\prime} \mathrm{E}$, diftance 403 leagues.
Head Land, $\mathrm{N}^{8} 43^{\prime} \mathrm{E}$, diftance 413 leagues.
Head Land, N $6{ }^{\circ} 25^{\prime}$ E., diftance 435 leagues.
Head Land, $\mathrm{N}_{5}{ }^{\circ} 15^{\prime} \mathrm{E}$, diftance 4.4^{6} leagues. Head Land, $N 6^{\circ} 3^{\prime}$ E, diftance 459 leagues.
Head Land, N $6^{\circ} 15^{\prime} \mathrm{E}$, diftance 477 leagues.
: Head Land, N $7^{\circ} 27^{\prime}$ E, diftance 486 leagucs.
:Head Land, N $6^{\circ}{ }_{56} 6 \mathrm{E}$, diftance 50% leagues.
Head Land, $\mathbf{N} 7^{\circ} \mathbf{2}^{\prime} \mathrm{E}$, diftance 535 leaguc-
:Head Land, $\mathrm{N} 7^{\circ} 4^{\prime} \mathrm{E}$, diftance 537 learrues.
; Head Land, $N 7^{\circ} 6^{\prime} \mathrm{E}$, diftance 543 leagues.
; Head Land, $\mathrm{N} 7^{\circ} 5^{\prime} \mathrm{E}$, diftance $5+6$ leagucs.
: Head Land, $\mathrm{N} 7^{\circ} \mathrm{E}$, diftance 550 leagues.
: Head Land, N 7° E, diftance 555 leagues.
; Head Land, $\mathrm{N} 3^{\circ} \mathrm{K}$, diftance 55^{2} leagucs.
: $\mathrm{N} 62^{\circ} \mathrm{E}$, diftance 12 leagues.
is, SW by S, diftance 5 miles.
ply Bay, Orfordncis Lighthoufe $\mathrm{N} 36^{\prime} 30^{\prime}$ E. Hofely Church, S $82^{\circ} \mathrm{W}$, ice from the fhore, 1 milc.

A $\mathbf{P} \quad \mathbf{P} \quad \mathbf{E} \quad \mathbf{N} \quad \mathbf{D}$

Table of Days Work

Day of the Month.	Courfe.	Diftance.	Latitude in	Longitude,					Obi
				By the Watch.	By Kendal.	By Arnold.	By Lunar Obfervitions.	$\begin{gathered} \text { By the } \\ \text { Reckoniug. } \end{gathered}$	Dip.
			-	- 11	- 11	- , "	- $1 /$	-	-
Auguft 20	N $34^{\circ} \mathrm{W}$	30	8011	- • •		- . . -		740 E	
Algur 21	S 83	50	805	- . . -	254 156	
22	S $\quad 4 \mathrm{~W}$	42	7924	- . . .	- . . -	1	
23	S 15 E	139	7710	- • -	- . . .	- • •	458	
24	S 12 E	77	7558 obr.			613	
25	S 25 W	48	7515 obf.	. . . -	$\cdots \cdot \cdot \cdot$	- • -	451	
26	S 23 W	127	7319	- \cdot	- . -	- • -	- . . .	146	
27	S 28 W	57	72290 bf.	-•••	$\cdots \cdot \cdot \cdot$	$\cdots \cdot \cdot$	$\cdots \cdot \bullet$	- 14.4 W	
28	S 6: W	44	729	- • • -	- • -	$\cdots \cdot$ -	- • • •	1.49 1 1 18	
29	S 5 E	70	7059	$\cdots \cdot$ •	- • -	$\cdots \cdot \cdot \cdot$	$\cdots \cdot \cdot$	1 1 1 188 I 8 E	
30	S 41 E	54	7017 obf.		628 30E	- . - .	- • • •	- 18	
31	South	96	6847 obr.	3240 E	62830 E	$\cdots \cdot$ -	-•••		79
Sept.	S 64 W	7	6844		.	- • -	- . - .	- ${ }^{-1}$	
	S 12 E	33	68 i1 obf.	- 30 E		- • -	- - -	${ }^{\circ} \mathrm{C} 3^{3} 8$	
3	S 510 W	133	6559 obr.	24130 E	$6 \quad 8{ }_{45} \mathrm{E}$	- .	- . - .	c ${ }_{0}{ }^{8}$	
4	$\begin{array}{llll}\mathrm{s} & 8 & \mathrm{~W}\end{array}$	60	6459 obr.	.	- - .	$\cdots \cdot \cdot$	- • - •	O 12.1	
	S 17 W	63	$64 \bigcirc$	- $-\dot{\circ}$ -	- ${ }^{\text {a }}$ E	- • •	- • \cdot	0 1 1 12	
6	S 5 W	92	6229	- $5^{8} 30 \mathrm{E}$	4715 E	- • -	- • •		
	S 17 W	142	6014 obr.	- . . -	- . - .	- • -	- • -	235 1 1	
8	S 59 E	51	5948 obr.	- . . -	- . -	- .	- . -	1	
9	- 32 E	31	5922 obr.	- . - .	- • • -	$\cdots \cdot$.	- ••		
10	S 43 E	96	589 obr.	- • -	- ••	$\cdots \cdot$	- .	1 1 1 1 1	
11	$\mathrm{S} \quad 7 \mathrm{~W}$	33	5737 obf.	- . -	- •	$\cdots \cdot$	-	1 1 1 52	
2	S 37 E	42	5657 obf.		- . \cdot	- • -	- • -		
13	S $1+\mathrm{V}$	55	5640 obf	$\cdots \cdot \cdots$	- .	-		1 1 0 0	
14	S 66 W	61	5540 obi.	-•••	- . . .	$\cdots \cdot$.	-		
15	S 14 E	69	$5+33$	- . \cdot	$\cdots \cdot$ -	$\cdots \cdot \cdot$	-	$\bigcirc 29$	
16	S 21 W	83	5315	-•••	-••	\cdot	$\cdots \cdot$.	0 7V	
17	S 59 W	6	5312	- •	- . \cdot	.	.	${ }^{0}{ }_{0}{ }^{7}$	
18	S 8 WV	19	5253 obr	- -	- •	$\cdots \cdot$.	(0111	
19	S 37 W	14	$5^{2} 42$	- . \cdot	- • -	$\cdots \cdot$.	$\cdots \cdot$.	0 0 0 0 0 16	
20	S 36 E S	15	5231 obf .	$\cdot \cdot \cdots \cdot$	$\cdot \cdot \cdot$	$\cdots \cdot$.	$\stackrel{.}{-} \cdot$	- 5	
1	S 24 E	16	5217 obf.	- • -	- • - •	- • -	- ••	0 1 1	
22	W by N	55	5228 obr.	-•••	$\cdots \cdot \cdot \cdot$	- -	- .	135 049	
23	S 50 E	39	5240 obl .	- • \cdot	$\cdots \cdot \cdot$	$\cdots \cdot$.	$\stackrel{.}{-}$	149 23	\cdots
24	N 80 W	63	5216	- •	$\cdots \cdot$ -	-••			
5				$\bigcirc 4345 \mathrm{E}$	32425				

of Days Works.

Observations on different Methods of meafuring a Ship's Way.

THE degree of accuracy with which the diftance run by a hip can be meafured, is a thing of great importance, but unfortunately not eafily to be afcertained, from the great variety of circumftances which may occafion errors in the reckoning, and which, though not depending upon the meafure of the fhip's way, may in voyages not nearly upon a meridian be confounded with thofe that do. The circumftances of the prefent voyage gave me the faireft opportunity of trying this experiment, the weather being fine, and the courfe very nearly upon a meridian; fo that an error of one point could not make more than the difference of one mile in fifty in the diftance. When the difference of latitude is the fame as the diftance, it gives frequent opportunities of comparing the reckoning with the obfervation, and whatever error is found muft be attributed to the imperfections in the manner of meafuring the diftance. Moft of the writers on this fubject have attributed the errors to a faulty divifion of the \log-line.

Before Norwood meafured a degree, the length of a minute had been crroneounly fuppofed 5000 feet; in $\mathrm{P} \quad$ confequence
confequence of which, the log line, from the firf ufe of that inftrument about the year 15%, was invariably marked forty-two feet to thirty feconds. Norwood, when he publifhed his Seaman's Practice, flated the true meafure to be fifty-one feet to thirty feconds; but, as the hip would really run more than is given by the log, and it is right to have the reckoning ahead of the fhip, he recommended marking the \log line fifty feet to thirty feconds. It does not appear at what time an alteration either in the marking the log, or the length of the glafs, took place in confequence of thefe obfervations: Sir Jonas Moore in his Navigation which was publifed in the reign of Charles II. mentions, that the feamen, having found the old log not to anfwer, had fhortened the glaifs to twenty-five feconds, which was equal to a line marked fifty feet with a glafs of thirty feconds; but he rather recommends reftoring the half minute glafs, and making the correction on the line. Since that time the feamen, whether from finding the allowance of one foot in fifty not a fufficient compenfation for the accidental errors to which the log is fubject, or from a preference of a meafure nearly equal to the ftatute mile, have ufed a line of forty-five feet to thirty feconds, or a glafs of twenty-eight feconds to forty-two feet.

All the writers I have met with, who have treated of the \log, except Wilfon, have complained of the feamen not having adhered to Norwood's meafure. Norwood himfelf,

A P P E N D I X.
himfelf, however, feems to have been aware of the neceflity of fubmitting to the teft of experiment the advantages of a new meafurement derived from theory. In the preface to his Seaman's Practice he fays, "Becaufe I " am perfuaded we have at this day as many excellent navi" gators in this kingdom, and as great voyages performed, " as from any other place in the world, I thould be glad " to hear of the experimental refolution of this problem by " fome of them, though it were but running eight or ten " degrees near the meridian ; for fo I doubt not but what " I have here written thereof, would receive further con" firmation and better entertainment than happily it will " now, being fo much different from the common "opinion."

Had the errors in the diftance arifen only from a fault in marking the line, nothing would have been more eafy than to have removed that difficulty, by comparing carefully the different meafures with the obfervations, and adhering to that which had been found to correfpond beft with them. But the diftance meafured by the \log being rendered uncertain by many accidental circumftances, it becomes difficult, or rather impoffible, to. find any length of line which will fhew invariably the diftance run by the fhip, or even to afcertain with precifion that meafure which will at all times come neareft the truth. Some of thefe circumitances are :

$$
P_{2} \quad \text { I. The }
$$

A P P E N D I X.

1. The effects of currents.
2. The yawing of the Mip going with the wind aft, or upon the quarter, when fhe is feldom fteered within a point each way : this I mention as an error in the diftance, and not in the courfe; fince, though the fhip by being yawed equally each way may make the intended courfe good upon the whole, yet the diftance will be fhortened as the verfed fine of the angle between the line intended and that fteered upon.
3. By the fhip being driven on by the fwell, or the log during the time of heaving being thrown up nearer the fhip.
4. By the log coming bome, or being drawn after the fhip, by the friction of the reel and the lightnefs of the log. Norwood mentions thefe two laft, and fays, "For "6 thefe caufes, it is like, there may fometımes be allowed " three or four fathoms more than is veered out; but this, " (as a thing mutable and uncertain) being fometimes " more, fometimes lefs, cannot be brought to any certain s' rule, but fuch allowance may be made as a man in his " experience and difcretion finds fit."
5. By the log being only a mean taken every hour, and confequently liable to error from the variations in the force of the wind during the intervals, for which an arbitrary correction is made by the officer of the watch; and though men of ikill and experience come near the truth, yet this allowance muft, from its nature, be inaccusate.

Thefe

$$
\text { A P P E N D } \mathrm{I} \text {. }
$$

Thefe circumftances did not efcape M. Bouguer's attention, and his ingenuity fuggefted to him an improvement of the common log, which would correct the errors likely to arife from the moft material of thefe circumftances: a defcription of this improvement he publifhed at large in the Memoirs of the Academy of Sciences for the year 1747 ; it has fince been abridged in the edition of his Navigation by De la Caille. It appears extraordinary that this \log fhould never have been made ufe of by others;-the great reputation of the author, as well as the very good reafons he offers in favour of his improvement, werc fufficient inducements to me to try the experiment.

In the log which I made ufe of,
The length of the cone was - 12 inches.
The diameter of the bafe - 5 r .
The weight of the cone - 25 ounces.
The diagonal length of the diver - 14 inches.
The length of each fide - 9 .
The weight of the diver - $26 \frac{1}{2}$ ounces.
The length of line from the diver to the cone, 50 feet; the \log line 5 Ifet to a knot.

Whether M. Bouguer's log will (as he expected) correat the errors arifing from currents in the common $\log , 1$ had no opportunity of difcovering in this voyage.

The fecond error, which no \log will correet, cannot be attended with any bad effect, as it mult make ths reckoning,
reckoning, in whatever degree it takes place, ahead of the fhip.

By obferving M. Bouguer's rules in comparing it with the common \log, which for that purpofe muft be reckoned at fifty-one feet, it will, I think, very fully correct the third and fourth, which are the molt material errors; as the agitation of the fea from winds does not exceed the depth to which the diver is let down, and the weight of the whole machine prevents the friction of the reel from having an effect in any degree equal to that which it has on the common log.

The fifth arifes from the imperfection it has in common with the \log generally ufed.

At firft, on the paffage out, I contented myfelf with heaving Bouguer's log occafionally, to obferve what precautions were neceffiry to be taken to prevent errors, as well as to find whether its variations from the common \log were on the fame fide as the meridian obfervation required. I found that it was neceffary to take care that the diver thould be of fuch a weight as to let only the top of the cone fwim; but not heavy enough to fink it, as in that cafe it would be liable to an error in excefs, by meafuring the depth that the diver would fink in addition to the hip's way. It was necefliary to put a veight of lead to the bottom of the diver, to fink it down to its

A P P E N D I X.

place before the Mray line was out. The line between the diver and the cone fhould not be more than fifty feet, that being as great a depth as it will fink to whillt the ftray line is rurining off the reel when the fhip has much way through the water.

On the paflage out, the longeft period of my trying this log between two obfervations, was from the twenty-fifth to the thirtieth; in which time the Thip had run four degrees, and the reckoning by Bouguer's log was eighteen miles aftern of the Chip: but as it appears that the Chip on the twenty-fixth, with the wind Northerly, and making barely an Eaft courfe, was found by the obfervation to be twenty miles to the Northward of her reckoning, that diftance mult be attributed to a current; therefore if that current had not taken place, Bouguer's log would have been, inftead of eighteen miles aftern, two miles ahead of the fhip.

On the paflige home it was tried from the latitude of eighty degrees eleven minutes to fixty-eight degrees eleven minutes; in which diftance, though the fhip was much yawed from the fea being frequently upon the quarter, this log was only thirty-one miles ahead of the fhip, which might be owing entirely to that circumftance without any other caufe.

The fate of the common \log on the paffage out, when the weather was remarkably finc and water in general finooth, was, from the latitude of fixty degrees thirtyfeven minutes to feventy-cight degrecs eight minutes, with

$\begin{array}{llllllll}\text { A } & \mathbf{P} & \mathrm{P} & \mathrm{E} & \mathrm{N} & \mathrm{D} & \mathrm{I}\end{array}$

the line marked fifty-one feet to thirty feconds, one degree fifty-eight minutes aftern of the fhip, with the line marked forty-five feet to thirty feconds, four miles ahead of the thip. On the paffage home, the \log at fifty-one fect to thirty feconds, thirty-five miles aftern of the hip; at forty-five to thirty feconds, one degree feven minutes ahead of the fhip. As far therefore as the experience of this voyage extends, it appears that the errors of the log marked forty-five feet are always on the fafe fide, and that thofe of the longer marked line are always fhort of the run; but that Bouguer's is much more accurate than either.

It is not to be expected that the obfervations of a fingle voyage can be fufficient to determine the merit of any infrument, particuiarly one of fo much confequence as the log. I thought it right, however, to give an account of the trial I made of the different methods, and of fuch remarks as occurred to me.

In the following table the courfe is put down, in the firft column, for all the diftances and latitudes; after the diftance and latitude, according to each marking of the \log, there is a column for the difference between that latitude, and the latitude obferved. I thought it beft to continue the reckonings without corrections, as if there had been no obfervation, in order to thew the difference upon the whole run, as well as trom one obfervation to another.

TABLE.

A $\quad \mathbf{P} \quad \mathrm{P} \quad \mathrm{E} \quad \mathrm{N} \quad \mathrm{D} \quad \mathrm{I}$

B L E.

1 the Voyage Out.

the Common Log, marked 51 Feet.

$\left\{\begin{array}{l} \text { Latitude } \\ \text { by } \\ \text { Account. } \end{array}\right.$	
6036	\bigcirc
6246	-13
64 51	- 27
6543	. . .
663^{2}	-
6730	- 35
6953	- . -
7119	- . \cdot
$\begin{array}{lll}72 & 18\end{array}$	- • •
7242	123
7242	143
$\begin{array}{ll}73 & 35\end{array}$
$\begin{array}{lll}75 & 34 \\ 75 & 5\end{array}$	
$\begin{array}{llll}75 & 5\end{array}$	2 I
7610	15^{3}

$\left\lvert\, \begin{gathered}\text { By Bouguer's } \\ \text { Log, marked } \\ 5 \text { I Feet. }\end{gathered}\right.$

Differcuce of the||Bouguer's Log, increafed by Diftance by the $\frac{1}{4}$ of the Difference of the Common and Diftance by the Common Bouguer's Log, each markedjı Fcet.
and Bouguer's Log.

Diftance.	Latitude by Account.	Diffrence between the Latitude by Account aud Obfervation.
-	- •	- • •
-		- \cdot
- • •		- • . .
-	- • -	-•••
-		- -
- •		-
-	- • • -	- .
34 $66 \frac{1}{2}$	$\begin{array}{ll} 74 & 5 \\ 75 & 7 \end{array}$. 020
$127 \frac{1}{4}$	7712	-
	77 36	- 23
219	77 50	018

Latitude

by Obfervation. | 0 | 1 |
| :---: | :---: |
| 60 | 29 |
| 62 | 59 |
| 65 | 18 | 68 5

\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
74	\cdot	
74	5	
74	25	
\cdot	\cdot	\cdot
\cdot	\cdot	
77	59	
78	8	

the Voyage Homc.

$$
\begin{array}{llllllll}
\mathrm{A} & \mathrm{P} & \mathrm{P} & \mathrm{E} & \mathrm{~N} & \mathrm{D} & \mathrm{I} & \mathrm{X} .
\end{array}
$$

I alfo tried two perpetual logs; one invented by Mr. Rufiell, the other by Foxon, both conftructed upon this principle, that a Spiral, in proceeding its own length in the direction of its axis through a refifting medium, makes one revolution round the axis; if therefore the revolutions of the fpiral are regiftered, the number of times it has gone its own length through the water will be known. In both thefe the motion of the fipiral in the water is communicated to the clock-work within board, by means of a fmall line, faftened at one end to the fpiral, which tows it after the fhip, and at the other to a findle which fets the clockwork in motion. That invented by Mr. Ruffell has a half fpiral of two threads, made of copper, and a fmall dial with clock-work, to regifler the number of turns of the fpiral. Foxon's has a whole fyiral of wood with one thread, and a larger piece of clock-work, with three dials, two of them to mark the diftance, and the other divided into knots and fathoms, to thew the rate by the halt minute glafs, for the convenience of comparing it with the \log.

This log, like all others, is liable to the firt error, as well as to the fecond. The third it partakes of in a very fmall degree, only affecting the reckoning by that quantity which the fpiral is thrown towards the hip; whereas in the \log the fame circumftance affeets the whole rate for the hour. The fourth it is entirely free from, as well as the fifth. It will have the advantage of every other in

A P P E N D I X.

fmooth water and moderate weather, when it is neceffary to ftand on one courfe for any particular diftance, efpecially in the night, or a fog, as it meafures exactly the diftance run. It will alfo be very ufeful in finding the trim of a hip when alone; as well as in furveying a coaft in a fingle fhip, or in meafuring diftances in a boat between headlands or fhoals, when a bafe is not otherwife to be obtained; both which it will do with the greateft accuracy in fmooth water, with a large wind, and no tide or current. But notwithftanding thefe advantages, which will make it very ufeful and worth having, I doubt much whether it might ever be fubflituted entirely in the room of the common log. Machines eafily repaired or replaced have advantages at fea, which fhould not lightly be given up for others more fpecious.

$$
A \quad P \quad P \quad E^{\prime} N \quad D \quad I \quad X
$$

Observations on the Ufe of the Megameter in Marine Surveying.

THE greateft difficulty in marine furveying is that of obtaining an accurate bafe, from the extremities of which the angles may be taken with precifion, for afcertaining the bearings and diftance of headlands and floals, when either want of time or other circumftances make it impracticable to land and meafure a bafe. The ufual way is, to eftimate the diftance by the log, and to take the angles by the compafs. This method is liable to many errors, and affords no means of correcting or difcovering them. The Megameter, conftructed upon the principles of the object-glafs micrometer, defcribed by M. de Charniere and applied by him to fird the longitude at fea, I thought might be ufefully applied to marine furveying. That which I ufed was made by Ramfden, with fome improvements. The advantages I imagined might be derived from this infrument were, a more correct and expeditious manner of determining the pofition of coafts, and the diftance of fhoals or the fhip from headlands. This inftrument being divided to ten feconds, an angle may be taken by it with great accuracy to five feconds. The height of a hip's maft-head above the water being known, it is eafy to find with this infrument, by a fingle obfervation, the diftance between

R 2
two
two Ships, and confequently to determine a bafe. The angles being taken with an Hadley's quadrant from each of the flips, to the objects whofe fituations are defigned to be afeertained, the diftance may be found; and, confequently, their relative fituations. If there is a megameter in each hip, the altitudes taken from both fhips at one inftant, and the angles of the different parts of the contt intended to be furveyed obferved with an Halley's quadrant at the fame time, will give the fituation with more accuracy and expedition than any method of furveying from hips hitherto pracifed; with the farther advantage of the certain means of detecting any error in the obfervation, fo as to judge whether it is of fufficient importance to be attended to. The only precautions necefliry are; to make the obfervations at the fime inftant, to prevent their being affected by any alteration in the relative pofition of the fhips, as a very fimall one there would occafion a confiderable error in the diftance; and to be careful in chufing objects fufficiently defined and remarkable. This method of furveying has the further advantage of giving the feale of a coalt ; Seamen, though they judge very accurately of their difinace from places upon coarts well known to them, are very often miftaken when they fail in with land they have never feen before; of which we had, at firft, fome inftances in this voyage, the height of the mountains, before we knew the fcale of the coaft, making us always think ourfelves nearer the land than we really were. Where the coaft is at all

$$
A \mathrm{P} \quad \mathrm{P} \mathrm{E} N \mathrm{D} \mathrm{I} \mathrm{X} .
$$

ros
high, the megameter affords a very accurate and expeditious method of determining the height of all the points, when their diftances are found; and thence, the heights being known, of afcertaining immediately by a fingle obfervation the fituation of the hhip, or the latitude of any point by the bearings at the time of a meridian obfervation: the direction and rate of currents or tides may alfo be found in this manner with geat accuracy. I made feveral cofervations during this voyage with the megameter, fome of which I hall give as examples; they were fufficient to prove to me the great accuracy that may be attained with this inflrument after fome practice. The utility of fuch a method of obtaising a furvey on an enemy's or undeferibed coatt, as well as that of being able to prove the truth of charts ly a fingle offervation, is obvious.

June the fiftenth, the thip being in latitude $60^{\circ} 19^{\prime}$, longitude $0^{\circ} 39^{\prime} \mathrm{W}$, Hangcliff bore $\mathrm{S} 6_{3}{ }^{\prime} \mathrm{co} 0^{\prime} \mathrm{W}$; variation, $23^{\circ} \mathrm{W}$.

The altitude of the Carcafs's maft, by the megameter, was $35^{\prime} 48^{\prime \prime}$; height of the malt, 102,75 fect; hence the diflance between the Racchorle and Carcafs was g86r fect: angle between the Carcals and Hangcliff, $35^{\circ} 48^{\prime}$; between the Racchorfe and Hangeliff, $87^{\circ} 00^{\prime}$; From whence the difference of latitude was found $10^{\prime} \mathrm{S}$; difference of longitude $\mathbf{I}^{\prime}{ }^{\prime} \mathrm{W}$. Therefore, the latitude of Hiangeliff is $60^{\prime \prime} g^{\prime}$; longitude $c^{\prime} \equiv 6^{\prime} \mathrm{V}$.

$$
A \quad P \quad P \quad E \quad N \quad D \quad I \quad X .
$$

July the fecond, to try how far the megameter could be depended upon, I obferved the altitude of the Carcaf's mart $2^{\circ} 23^{\prime} 48^{\prime \prime}$; the angle between the main-yard and main-topfail yard, $0^{\circ} 44^{\prime} 26^{\prime \prime}$; hence the diftance between the main-yard and main-topfail yard came out - \quad - 1,750 feet. By meafurement it was found - 34, $\mathbf{1 2 5}$ feet. Difference 2,375 feet.
The diftance between the two hips, deduced from the altitude of the maft, was 2457 feet. By the angle of the main and main-topfail yard, the diftance between them being 34,125 feet, 2640 feet.

Difference 183 feet.
Which is not more than the fhips might have changed their pofition in the time of reading off and fetting down the firf obfervation before taking the fecond.

An error of ten feconds in the obfervation of the angle fubtended by the maft at this diftance, would make an error of two feet and three quarters in the diftance. At the diftance of a nautical mile it would produce an error of fixteen feet. At other diftances the error decreafes as the fquares of the diftances decreafe; and at other heights it decreafes as the heights decreafe.

$$
A \quad \mathbf{P} \quad \mathbf{P} \quad \mathbf{E} \quad \mathbf{N} \quad \mathbf{D} \quad \mathrm{I} \text {. }
$$

Whenever the diftance of the object, whofe angle is taken by the megameter, does not exceed that of the vifible horizon, the very fmall portion of the carth's furface intercepted between the object and obferver, may be confidered as a plane, to which the object is perpendicular, and the diftance may be concluded by refolving the right-angled triangle, formed by the upright object, and lines drawn from the obferver's ftation to the top and bottom of it.

But in greater diftances, the bottom of the object being concealed from the fight of the obferver, it becomes neceffary to have recourfe to a different calculation.

The only cafes which can occur in practice are two; the one when the height is given to fiad the diftance; the other when, the diftance being known, the height of the object is to be deduced from the obfervation: both which are eafily folved by the following prastical rules.

To find the Diftance.

To the apparent altitude of the object above the fenfible horizon, add the complement of the dip anfwering to the height of the obfervcr's eye above the fea; the fum is the angle BAE (fig. $1:$); and fay: As the femidiameter of the earth increaled by the height of the object, is to the femidiameter increafed by the height of the

$$
A P \quad P E N D I X
$$

cye; fo is the fine of $B A E$, to another fine, which is that of the angle B; the difference between 180°, and the fum of the two angles $B A E$ and B, is the value, in degrees and minutes, of the arc GC of the earth's furface intercepted between the eye and object. Multiply the number of minutes and decimal parts of a minute in this are by the value of one minute in miles, fathoms, or fuch meafure as may be molt convenient, and you will have the diftance in the like neafure.

$$
\begin{array}{lllllll}
\mathrm{E} & \mathrm{X} & \mathrm{~A} & \mathrm{M} & \mathrm{P} & \mathrm{~L} & \mathrm{E} .
\end{array}
$$

The height of Snow Pcak being 1503 yards, its appasent altitude above the horizon of the fea was obferved to be - \quad - $\quad-\quad 1^{\circ} 47^{\prime} 6^{\prime \prime}$ The height of the eye being 16 feet,

$$
\begin{aligned}
& \text { the complement of the dip is }--82^{\circ} 56^{\prime} 11^{\prime \prime} \\
& \text { The fum is } \operatorname{EAB} \frac{91^{\circ}}{43^{\prime} 17^{\prime \prime}}
\end{aligned}
$$

To the femidiameter of the earth in yards 6966382 - - . - 6966382 Add the height

Add the height
of the object 1503 of the eye 5
Semidiam. + height Semidiam. + height of the object 6667885 of the eye

$$
6,66387^{\frac{1}{3}}
$$

$$
\begin{aligned}
& \text { A P P E N D. I X. } \\
& \text { As } 6967885 \text { Co. Ar. } 3, \mathrm{r}_{5} 68990 \\
& \text { To 6966387 }{ }^{\frac{1}{3}} \\
& \text { Sois Sine E-A B } 90^{\circ} 43^{\prime} 17^{\prime \prime} \\
& \text { 6,8430076 } \\
& \text { To fine } B
\end{aligned}
$$

Thercfore the diftance is 22,22 minutes, or nautical miles. This multiplied by - 2040 the number of yards in - one minute, The product 45328,8 is the diflance in yards.

To find the Height.
To the apparent altitude of the object above the fenfible horizon, add the complement of the dip anfwering to the height of the obferver's eye above the fea, the fum is the angle BAE ; to this add the horizontal diftance of the eye and object in degrees and minutes, and fubtract the fum from 180°, the remainder is the angle B : then fay, as the fine of B is to the fine of $B^{\top} A^{\top} E$, fo is the femidiameter of the earth increafed by the height of the eye to a fourth number; from which fubtracting the femidiameter of the earth, the remainder is the height of the object.

A P PEND DX.

E X A M P L E.

July the fecond, the apparent altitude of Snow Peak was obferved to be, at the diftance of 37507 yards or $18^{\prime} 30^{\prime \prime}, \quad 2^{\circ} 122^{\prime} 20^{\prime \prime}$ The height of the eye being 5 yards, the complement of the dip is - - $89 \quad 5611$ Hence the angle BAE $92 \quad 8 \quad 3 \mathrm{I}$ Horizontal diftance | $18 \quad 30$ |
| :--- | :--- | :--- |
| $92 \quad 27 \quad 1$ |

Subtracted from 180
Angle B $87 \quad 3259$
Semidiameter of the carth 6966382
Height of the eye $5{ }^{5}$
Semidiameter + height of the eye $6966387^{\text {f }}$
As fine B $87^{\circ} 32^{\prime} 59^{\prime \prime}$ Co. Ar. 0,0003972
To fine BAE $92 \quad 8 \quad 31 \quad 9,9996965$
So is femidiameter + height
 Semidiameter 6966382

Height 1506 in yards.

DEMON-

$$
\begin{aligned}
& \begin{array}{llllllll}
\mathbf{A} & \mathbf{P} & \mathbf{P} & \mathbf{E} & \mathbf{N} & \mathbf{D} & \mathbf{I} & \mathbf{X} .
\end{array} \\
& \text { DEMONSTRATION. }
\end{aligned}
$$

Let G FC (plate I. fig. i.) reprefent the furface of the earth, E its center, B C the height of a hill or other object rifing perpendicular from C ; A is the place of the obferver's eye, whofe height above the level of the fea is A G. Draw AH perpendicular to AE, and AF touching the circle GFC in F. Then HAF is the dip, EAF its complement, DAB is the apparent altitude of the object above the fenfible horizon; to this add EAD, the fum is EAB. In the trianglc EAB, the fide EA is the fum of the femidiameter $E G$ and $G A$ the height of the obferver's eye; E B the fum of the femidiameter EC and CB the height of the object; the angle AEB is meafured by GC the horizontal difta :ee between the obferver and object. Now in the firft cafe there are given in the triangle EAB, the fides EA, E B, and the angle $B A E$, to find the angle AEB; and in the fecond there are given the angles $\mathrm{BAE}, \mathrm{AEB}$ and the fide EA , to find the fide E B and confequently BC. The trigonometrical folutions of thefe cafes are the above practical rules.

Observations on the Variation.

THE Variation of the compafs, always an interefling oljeet to navigators and philofophers, became peculiarly fo in this voyage from the near approach to the Pole. Many of the theories that had been propefed on this fubject, were to be brought to the teft of obfervations made in high latitudes, by which alone their fallacy or utility could be difcovered. They of cours: engaged much of my attention, and gave me the fulter: opportunity of experiencing, with regret, the many imperfections of what is called the Azimuth compars. This inftrument, though fufficiontly accurate to enable us to obferve the variations fo as to fteer the fhip without any material error, with the precaution of always ufing the fame compafs by which they are taken, is far from being of fuch a conftruction as to give the variation with that degree of precifion, which fhould attend experiments on which a theory is to be founded, or by which it is to be tried. The obfervations taken in this voyage will fully evince this, by their great variations from one another in very hort intervals of time; nor is this difigreement of ficceffive obfervations peculiar to the higher latitudes, and oo be imputed to a near approach to the Pole, as I found it to take place even upon the Englifh coaft.

As to the obfervations themfelves, they were taken with the greateft care, and the moft fcrupulous attention

$$
A \quad P \quad P \quad E \quad N \quad D I X .
$$

to remove every circumftance which might be fuppofed to create an accidental error; the obfervations being taken fometimes by different people with the fame compals, in the fame and different places; fometimes with different compaffes, changing the places and the obfervers repeatedly, to try whether there was any error to be imputed to local attraction, or the different mode of obervation by different perfons. I have fince my return tried the compaffes by a meridian as well as by taking azimuths, and find them to agree with one another, though the fame compafs fometimes differs from itfelf a degree in fucceffive obfervations.

That every perfon may (as far as is poffible without having been prefent at the time) be enabled to judge of the degree of accuracy to be expected in fuch obfervations, as well as the degree of attention paid to thofe made by us, I have fet down every circumftance that I thought matcrial, giving every part of cach obfervation, with each feparate refult, and the mean of every fet, with the weather at the time. Whenever I mention its blowing frefh, it was only comparatively with refpect to the relt of the voyage, no obfervation having been made in any weather which might not generally fpeaking be called fine.

Having faid fo much of the inaccuracy of the inftrument, I mult add, that I think fome general and rather curious inferences may fafely be drawn from thefe S 3 obfervations.
obfervations. One is, that the variation near the latitude of eighty, if it alters at all with time, does not alter in any degree as it does in thefe latitudes: the variation having been found by Poole in 1610 to be $22^{\circ} 30^{\prime} \mathrm{W}$ in latitude $78^{\circ} 37^{\prime} ; 18^{\circ} 16^{\prime} \mathrm{W}$ in Crofs Road in latitude $79^{\circ} 15^{\prime}$ \mathbf{N}; and $17^{\circ} 00^{\prime}$ within the foreland in latitude $78^{\circ} 24^{\prime}$. By Baffin in 1613 , in Horne Sound, latitude $76^{\circ} 55^{\prime \prime}$, the variation from the meridian was $12^{\circ} 14^{\prime} \mathrm{W}$; but by his compars 17° : his compais "was touched 51 Eafterly," that being the variation in London at that time : in Green Harbour, latitude $77^{\circ} 40^{\prime}$, he obferved the variation $13^{\circ} 11^{\prime}$ W. Fotherby in 1614 , made the variation in Magdalena Bay, latitude $79^{\circ} 34^{\prime} \mathrm{N}, 25^{\circ}$ o0' W; and in latitude $79^{\circ} 8^{\prime}$, two points. Neither Poole nor Fotherby mention whether their variations are reckoned from the meridian, or whether their compaffes, like Baffin's, were fitted to the variation at that time in London. If Fotherby's were taken with a compafs in which a correction was made for the variation at London, his obfervation agrees exactly with thofe made by me in Vogel Sang and Smeerenberg; and thofe of Poole and Baffin differ fo little from mine, that the difference need not be regarded. But the variation in London now differs from what it was at that time above twenty-fix degrees.

The other inference is, that in going to the Eaftward in the latitude of eighty, the Wefterly variation decreafes very confiderably from a difference in the longitude.

Table

Table of the Obfervatio					
Day of the Month.	Latitude in	$\begin{gathered} \text { Longitude } \\ \text { in } \end{gathered}$	$\begin{aligned} & \text { Altitude of the } \\ & \text { Sunis Lower } \\ & \text { Limb. } \end{aligned}$	Sun's Magnetic Azimuth.	Sun's tr mutl the
$\begin{aligned} & \text { Junc } 6^{\text {th }} \\ & \text { at } 7 \text { AM. } \end{aligned}$	5220	- ,	$\begin{array}{lll}0 & 1 \\ 36 & 50 \\ 37 & 4 \\ 37 & 39 \\ 37 & 56 \\ 3 & 20\end{array}$		100 101 101 102 102
$\text { at } 7^{14^{\mathrm{th}}} \mathrm{AM} .$	6020	17 V	$\begin{array}{rrr}31 & 4+ \\ 32 & 2 \\ 32 & 16 \\ 32 & 36 \\ 3 & 1 \\ 3 & 15 \\ 33 & 35\end{array}$	$\begin{array}{lll}\text { S } & 59 & 30 \mathrm{E} \\ 58 \\ 575 \\ 57 & 30 \\ 57 & 30 \\ & 56 & 50 \\ & 56 & 35\end{array}$	98 99 99 100 101 102
$\begin{gathered} 14^{\text {th }} \\ \text { at } 6 \mathrm{PM} . \end{gathered}$	6020	- 39 W	$\begin{array}{rrr}13 & 51 \\ 13 & 25 \\ 13 & 3\end{array}$	N44 43 15 43 43	67 66 65
$\text { at }_{7}^{15^{\mathrm{tb}}}$	6020	- 39 W	$\begin{array}{lll}29 & 48 \\ 30 & 29 \\ 31 & 50 \\ 31 & 56 \\ 32 & 19 \\ 32 & 34 \\ 32 & 52\end{array}$	$\begin{aligned} & \mathrm{N} 11750 \mathrm{E} \\ & 12030 \\ & 12230 \\ & 12252 \\ & 12310 \\ & 12415 \\ & 12540 \end{aligned}$	95 96 98 99 99 100
$\text { at }_{1}^{1} 5^{\mathrm{th}} \mathrm{PM} .$	6020	- 39 W			
$\begin{gathered} 17^{\text {th }} \\ a: S^{\prime} A M . \end{gathered}$	6230	- 4 W	$\begin{array}{rrr}32 & 8 \\ 32 & 50 \\ 33 & 16 \\ 33 & 45\end{array}$	$\begin{array}{cc} \mathrm{N}_{120} 30 \mathrm{E} \\ 12215 \\ 123 & 10 \\ 124 & 10 \end{array}$	101 102 103 104
$\begin{aligned} & 19^{\text {th }} \\ & 6 \\ & \mathrm{PM} . \end{aligned}$					

$$
\text { A P P E N D } \mathbf{I} \text { X. }
$$

of the Obfervations of the Variation.

Table

Table

A P P E

Table of the Obfervat

Day of the Month.	Latitude in.	$\begin{aligned} & \text { Longitude } \\ & \text { in. } \end{aligned}$	Altitude of the Sun's Lower Limb.	Sun's Magnctic Azimuth.	Sun's mut the
$\begin{aligned} & \text { June } 21^{n} \\ & \text { at } 6 \text { AM. } \end{aligned}$	6812	- 37 W	$\begin{array}{cr}0 & 1 \\ 17 & 20 \\ 17 & 43 \\ 18 & 47 \\ 19 & 0 \\ 19 & 11 \\ 19 & 30 \\ 19 & 55 \\ 20 & 0\end{array}$	$\begin{array}{cc}\circ & \prime \\ \times 1 & 35 \\ 95 & 30 \\ 95 & 30 \\ 97 & 50 \\ 96 & 30 \\ 98 & 30 \\ 98 & 0 \\ 100 & 0 \\ 99 & 30\end{array}$	
$\begin{gathered} 25^{\text {th }} \\ 7 \mathrm{AMM} . \end{gathered}$	7355	715 E		$\begin{array}{ccc}\text { E } & 3+30 \mathrm{~S} \\ 3+ & 0 \\ 36 & 30 \\ 30 & 30 \\ 37 & 30 \\ 37 & 30 \\ 37 & 30\end{array}$	$\begin{aligned} & 10 \\ & 10 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \end{aligned}$
$\text { at }{ }_{3}^{25^{\text {th }}}$	7410	836	$\begin{array}{ll} 19 & 36 \\ 19 & 30 \\ 19 & 17 \\ 17 & 12 \\ 17 & 0 \\ 16 & 58 \\ 16 & 45 \\ \hline \end{array}$	$\begin{array}{ccc}\mathrm{N} & 6 & 5 \\ 6 & 30 \mathrm{~W} \\ 65 & 30 \\ 65 & 50 \\ 57 & 40 \\ 56 & 30 \\ 55 & 40 \\ 55 & 28\end{array}$	73 73 73 64 64 63 63
$\text { at } 7_{7}^{2 y^{t h}} \mathrm{AM} .$	74 20	943	$\begin{array}{rrr}25 & 40 \\ 25 & 26 \\ 26 & 2 \\ 26 & 16 \\ 26 & 35 \\ 26 & 55 \\ 27 & 8 \\ 27 & 36 \\ 28 & 35 \\ 28 & 50\end{array}$	E.24 30 S 22 30 23 20 25 30 25 30 26 0 29 30 28 40 35 35 36 5	$\begin{array}{r} 95 \\ 96 \\ 96 \\ 97 \\ 98 \\ 100 \\ 100 \\ 102 \\ 106 \\ 107 \\ \hline \end{array}$

e of the Obfervations of the Variation.

in's Magnetic Azimuth.	Sun's true Azi- muth from the North.	$\begin{array}{\|l\|} \hline \text { Weft Variation } \\ \text { from each } \\ \text { Obfervation. } \end{array}$	Me.li of the Obtervations.	Remarks.
- 1	- 1	- 1	- ,	
9530 E	7020	2510		
9530	7118	2412		
9750	74 ○	2350		
9630	7432	2159		
9830	75 -	2330	2318	I'ich Breczes, not much Sca.
98 -	7548	2212		
100 -	7650	2310		
9930	$77 \quad 2$	2228		
$3+30 \mathrm{~S}$	10336	20 5t		
34 -	10722	163^{8}		
3630	11026	164		
$3^{8} 30$	11056	$173+$	179	Blowing frem, a good deal of Sca.
373°	11130	16 -		
3730	11446	1544		
6530 W	7346	816		
6530	7321	751	747	
6550	736	716		Bowing frefh, with fome Sca;
57 56	6457	717		but not enough, in my opinion, to have occalional fo stent
5630 5540	6416 63	$\begin{array}{ll}7 & 46 \\ 8 & 9\end{array}$		to have necalioned fo great : difference.
5540 5528	$\begin{array}{ll}63 & 49 \\ 63 & 24\end{array}$	$\begin{array}{cc}8 & 9 \\ 7 & 5\end{array}$	747	
2230	95629 96	19 16)	
2320	9645	1635	1715	
2530	973^{6}	1754		
2530	9852	1638	1650	
26 -	1002	155^{8}		
2930	10050	1840		
2840	10236	$16+$	1722	
3535	10620	1915	19 -	
$36 \quad 5$	10720	18.8	19 -	

Table of the Obfervation

Day of the Month.	Lititude in.	Longitude ili.	Altitude of the Sun's Lower Limb.	Sun's Magnetic Azimutl.	$\begin{aligned} & \text { Sun's true } \\ & \text { muth } \\ & \text { the Nor } \end{aligned}$
	$\cdots \quad 1$	- 1	- ,	-	-
			27.5	E. 3540 S	1033
June 27h			28.2	$33^{6} 33$	1041
at 7 AM .	7420	943 E	2814	3530	105
			2822	3520	1053
			301	E $46 \bigcirc$ S	112
at 7 AM .	$7+20$	943	3017	4720	113
			3041	46 I	1144
$\text { at }{\stackrel{29}{ } 8^{\text {th }}}^{\mathrm{PM}} .$	782	750	2120	N 7030 W	795
			219	6730	78
			210	6830	774
			2050	6740	77
			2042	6620	762
			1713	$47 \quad 5$	59
			1710	4545	54
			175	4530	58
			165^{5}	4415	574
			1655	$4+35$	572
			1651	$4+30$	57
$\begin{gathered} \quad 29^{\text {th }} \\ \text { at } 8 \mathrm{PM} . \end{gathered}$	$7^{8} \quad 2$	75°	1641	N 43 ro W	561
			163^{8}	433°	$5^{6} 5$
			1630	43 -	55
			1629	43 -	55
			1624	4142	543
			1620	410	541
			1614	4115	533
			164	4030	$5^{2} 4$
July 2^{4} at 5 PM .	$78 \quad 22$	98	By the Mean of Three Obfe		
	7950	102	At the Illand.		
$\text { at } \begin{gathered} 26^{\prime h} \\ 4 \mathrm{P} \\ \hline 1 \end{gathered}$	$8 \subset 18$	1212		S 8_{4} ○W	
			2233	$8_{4} 10$	108
			2225	8425	107
			2223	8440	107
			2222	$8_{5} 10$	107

A PPENDIX.
f the Obfervations of the Variation.

Magnetic imuth.	Sun's true Azimuth from the North.	Welt Variation from the Obfervation.	Mean of the Obfervations.	Remarks.
-	- 1	- ,	\bigcirc,	
3540 S	1033^{6}	229		
3633	10414	22.16		
3530	1050	2030	2111	
3.520	10530	1950		
76 oS	1122	235^{8}		
7720	1137	2419	238	
46	11447	2113		
7030 W	7950	920		
3730	78 3!	111	1 1010	
3830	774^{8}	911		
6740	77 -	920	934	
6620	7624	104		
475	$59 \quad 2$	1157		Light winds, the water finooth.
4545	5846	131	1236	
4530	5820	1250		
$4+15$	5742	1327		
$4+35$	5726	12. 51	1257	
$4+30$	$57 \quad 4$	1254		
43 +0 W	5610	1230		
4330	$5{ }^{5}$	1222	1216	
$43 \bigcirc$	558	128	1216	
$43 \bigcirc$	$\begin{array}{ll}55 & 4\end{array}$	124)	
4142	5435	${ }_{13}^{13} 13$		Light winds, the water fmooth.
410	5412	13 13 12		
4115	533^{8}	1223	1216	
4030	$5^{2} 42$	1212		
Mean of Three Obfervations.			1455	Light winds, the water finooth.
At the Ifland.			203^{8}	
8_{4} ○W	10914			
8410	10848	125^{8}		
$8_{4} 25$	10757	1222	1247	Light airs, the water finooth.
8440	10746	1226		
8510	10745	1225		

.ion.

Accuunt
'rable of the Obfer ations o

Buy or the Nouth.	$\begin{gathered} \text { Linituric } \\ \text { in. } \end{gathered}$	$\begin{aligned} & \text { L.ongrade } \\ & \text { in. } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { Ambit of thy } \\ \text { Smis io iowe } \\ \text { Limb. } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { Suns shinetric } \\ \text { Azimuth. } \end{gathered}\right.$	Suli's truc A muth fro the North.
$\begin{gathered} \text { Junc } 23^{\text {b }} \\ \text { and } \end{gathered}$	3030	$15+\mathrm{E}$			
$\begin{aligned} & \text { July }{ }^{1+1} \\ & \text { at }+\mathrm{P} 1 . \end{aligned}$	8335	190			
	$79+4$	951	At Smecrenterg.		
$\begin{aligned} & \text { Aug, } 1^{\prime \prime} \\ & \text { it }+\mathrm{PM} . \end{aligned}$	6846	324	153	N 8759 W	10732
$\text { at } 0^{3} 0^{2}$	$68+7$	3^{2+}	435 +31 +10 4 3 3 31 3	$N 5345 \mathrm{~W}$ 5330 5335 5315 5330 523 30	$\begin{array}{ll}79 \\ 79 \\ 78 & 37 \\ 77 & 41 \\ 77 & 19 \\ 76 & 51 \\ 76 & 30\end{array}$
	6547	227	$\begin{array}{rrr}17 & 13 \\ 16 & 42 \\ 15 & 59 \\ 15 & 10 \\ 13 & +2 \\ 13 & 0\end{array}$	N 8625 V $8+30$ 8235 7840 75 750 7345	$\begin{aligned} & 11148 \\ & 11034 \\ & 10924 \\ & 10624 \\ & 10334 \\ & 10034 \end{aligned}$
$a \stackrel{4}{8}_{8}^{\mathrm{A}} \mathrm{AM}$	654	221	$\begin{array}{lll}18 & 33 \\ 19 & 2 \\ 19 & 2 \\ 19 & 30 \\ 20 & 45 \\ 21 & 45\end{array}$	$\begin{array}{llll}\text { S } & 43 & 30 \mathrm{E} \\ 41 & 0 \\ 40 & 30 \\ 39 & 15 \\ 39 \\ 37 & 45 \\ 33 & 30\end{array}$	11456 11612 117 118 118 12040 123 123
$5^{\text {th }}$	6345	216	Moon's true Amplitule		2516
$20^{\prime \prime}$	5257	130	. .		

he Obfer ations of the Variation.

Account
S 7

$$
A P P E N D I X
$$

Account of the Observations made with the Martne Dipping Needle, conftrueted for the Board of Longitude by Mr. Nairne, from whom I received the following defcription of the inftrument.
" ${ }^{\text {r }}$ HE figure (plate 9.) is a reprefentation of the inftrument, hanging by an univerfal joint on a " triangular ftand. It is adjufted fo as to hang in a plane " perpendicular to the horizon, by means of a plumb line, " which is to be fufpended on a pin above the divided " circle, and the dovetail work, which alters the pofition " of the inftrument, by turning the button A. The two " 90° on the divided circle, are adjufted f_{0} as to be per" pendicular to the horizon, by the fame plumb line and " the adjufting fcrew B: and at the loweft 90°, when " it is adjufted, the pointer \mathbf{C} is fixed. The length of the " magnetic needle is twelve inches, and its axis (the cuds. " of which were of gold alloyed with copper) refted on " friction wheels of four inches diameter, each end on two " friction wheels; which wheels were balanced with great " care. The ends of the axes of the friction wheels were " likewife of gold alloyed with copper, and moved in fmal! " holes made in bell metal; and oppofite the ends of the " axes of the needle and the friction whecls, were flat " agates finely polifhed. The magnetic needle vibrated S 8
" within " each way, as far as fixty-five degrees, into degrees and " half-degrees: the other divifions were two degrees and a " half; the needle being very nearly balanced before it was " made magnetical: but by means of the crofs D, fixed " on the axis of the needle (on the arms of which were cut " very fine fcrews, to reccive the finall buttons $d d$, that " might be frrewed nearer or farther from the axis) the " needle could be adjufted both ways to a great nicety, " after it was made magnetical, by changing the fides of " the needle, and reverfing the Poles. As this needle at " fea could feldom remain at reft; to remedy in a great " meafure this inconvenience, the divided circle is made " moveable by turning the button E; fo that when it is " ufed at fea, the divided circle is moved till fome prin" cipal divifion is the mean of the vibrations: then that " number of degrees and half-degrees diftant from the " pointer, fubtracted from ninety, gives the dip, if the " needle is properly balanced : but left it fhould be fome" what out of balance, the moit certain way is, firft, to " take the dip with the face of the divided circle to the Eaft, " and afterwards to the Weft, and then changing the ends " of the needle by reverfing the Poles, and taking the dip " as before, with the divided circle frontirg the Eaft and "Weft : and the mean of thofe four dips will be the moft " accurate. In each cafe, when the dip is taken, the in" ftrument muft be fo placed that the needle vibrates in " the magnetic meridiain."

$$
A \quad P \quad P \quad E \quad N \quad D \quad I \quad X .
$$

The obfervations on the dip of the needle, during this voyage, were made with great care: firft the dip was obferved with the divided arch to the Eaft, the inftrument being placed as near as poffible in the magnetic meridian; it was then turned, and the obfervation made with the divided arch to the Weft: the poles being changed, the oblervation was repeated in the fame mamner. The actual obfervations are expreffed in the fecond, third, fourth, and fifth columns; and the mean refult in the fixth. It appears by thefe obfervations that the dip increafes in going North.

There is no reafon at prefent to fuppofe that the dip is liable to any variation in the fame place at different periods of time, it having been obferved in London by Norman, who firt difcovered it in 1592 , to be $71^{\circ} 50^{\prime}$; and by Mr. Nairne, in 1772, about 72°. The difference between thefe obfervations, taken at fuch diftant periods, is finaller than that found between feveral of Mr. Nairne's obfervations compared with each other; and therefore we have no reafon to conclude that the dip has alk ed fince Norman's time: the care with which his inftrument was conftructed, and his obfervations made, leaves no room to doubt of their accuracy.

IMAGE EVALUATION TEST TARCET (MT-3)

Photographic Sciences Corporation

$$
\begin{array}{llllllll}
\mathrm{A} & \mathrm{P} & \mathrm{P} & \mathrm{E} & \mathrm{~N} & \mathrm{D} & \mathrm{I} & \mathrm{X} .
\end{array}
$$

TABLE of the Observations made with the Marine Dipping-Needee.

$\begin{aligned} & \text { Day of the } \\ & \text { Month. } \end{aligned}$	Weft.	Eaft.	Wert.	Eaft.	$\begin{array}{\|c\|} \hline \text { Meant } \\ \text { Dip. } \end{array}$	Place of Obfervation.
				- ,		
June 2 P. M.	73	7315	7320	743°	73 31	\} Latitude 51 35 near the
$2 \mathrm{P} . \mathrm{M}$.	7430	73	7320	7330	7335	\} Buoy of the Upper Middle.
$5 \mathrm{P} . \mathrm{M}$.	7020	73	7315	7215	7212	Off Harwich.
$6 \mathrm{P} . \mathrm{M}$.	720	75	72	7430	7322	In Southwold Bay.
${ }_{14} \mathrm{P}$. M.	7230	7330	74	74	7330	Off Shetland.
8 P . M.	7515	7530		7630	7518	Of Shetland.
15,8 A. M.	7430	7430		7530	7452	Latitude 6018
P. M.	7430	7530	75			
16 P. M.	770	7630	7680		7645	
22 Noon		7730			7752	Latitude 7045
23, 9 P. M.	81 30	80	83	8130	${ }^{81} 30$	Latitude 7240
24 Noon	8230	7930	8130		8035	Latitude 7322
P. M.	$77{ }^{\circ} \mathrm{O}$	7730	81		7930	Latitude 733^{6}
26, 2 P. M.	7730	80	82		7922	Latitude 7430
28 Mid.	$83 \quad 30$		82		$8_{1} 7$	Latitude 7748
29, 2 P. M.	7915	81	$78 \quad 30$	83	8026	Latitude $78{ }^{8}$
30 Noon	7645	7930	8230	7945	7930	Latitude 788
July 2, Mid.	80	8230	80	7930		Latitude 7824
9, 6 P. M.	8245	$\begin{array}{ll}81 & 45 \\ 8 \\ 8\end{array}$				Latitude 8012
15			82 82	82 308	$\left\|\begin{array}{cc} 81 & 52 \frac{1}{2} \\ 82 & 7 \frac{1}{2} \end{array}\right\|$	On Shore. Latitude 7950
$29 \mathrm{Md}$.			${ }^{82} 80$	81 10	82 72	Latitude Latitude 80 50
$\begin{array}{r} \text { Auguft } 14 \\ 31 \mathrm{P} . \mathrm{M} . \end{array}$	$\left\|\begin{array}{ll}83 & 0 \\ 79 & 30\end{array}\right\|$	$\left\|\begin{array}{cc} 83 & 0 \\ 77 & 45 \end{array}\right\|$	81 15 30 ol		$\left\|\begin{array}{ll} 82 & 8 \frac{3}{4} \\ 79 & 4 \end{array}\right\|$	At Smeerenberg. Latitude $79^{\circ} 44^{\prime}$ on thore. Latitude $69^{\circ} \mathbf{2}^{\prime}$

Account

$$
\begin{array}{llllllll}
\mathrm{A} & \mathrm{P} & \mathbf{P} & \mathrm{E} & \mathrm{~N} & \mathrm{D} & \mathrm{I} & \mathrm{X} .
\end{array}
$$

Account of the Instruments made ufe of for keeping the Meteorological Journal.

THE Marine Barometer was made by Mr. Nairne, from whom I received the following defcription:
" The bore of the upper part of the glafs tube of this ba" rometer, is about three-tenths of an inch in diameter, and " four inches long. To this is joined a glafs tube, with a " bore about one-twentieth of an inch in diameter. The " two glafs tubes being joined together, form the tube of " this barometer ; and being filled with mercury, and in" verted into a ciftern of the fame, the mercury falls down " in the tube till it is counterbalanced by the atmofphere.
" In a common barometer, the motion of the mercury up " and down in the tube is fo great at fea, that it is not " poffible to meafure its perpendicular height; confequently, " cannot fhew any alteration in the weight of the atmo" fiphere: but in this marine barometer, that defect is reme" died. The inftrument is fixed in gimmals, and kept in a " perpendicular pofition by a weight faftened to the bottom " of it.

T 2 " The
" The perpendicular rifing or falling of the mercury is " meafured by divifions, on a plate divided into inches and " tenths, and by a Vernier divifion into hundredths of an " inch, which is fixed to the fide of the tube."

The Hygrometer I was favoured with by M. De Luc; and the following account is a literal tranflation of that which he gave me in French.

The part of M. De Luc's Hygrometer which is affected by the impreffions of the moifture of the air, is a hollow cylinder of ivory, two inches eight lines long, and internally two lines and a half in diameter. It is open only at one end; and the thicknefs of its fides, for the length of two inches fix lines from the bottom, is but threefixteenths of a line. It is this thin part which does the office of an hygrometer; the remaining part of the cylinder, towards its orifice; muft be kept a little thicker, being deftined for joining it to a tube of glafs, thirteen or fourteen inches long. This junction is effected by means of a piece of brafs, and the whole is cemented together with gum lac.
M. De Luc's reafon for chufing ivory as the hygromoter, is, that this matter appeared to him more proper: than any other for receiving the impreffions of the moifture of the air, without fuffering thereby any effential change.

$$
\begin{array}{llllllll}
\text { A } & \mathbf{P} & \mathrm{P} & \mathbf{E} & \mathrm{~N} & \mathrm{D} & \mathrm{I} & \mathrm{X} .
\end{array}
$$

The cylinder made of it becomes more capacious, in proportion as it grows moifter. This is the fundamental principle of the inftrument: M. De Luc has fince found, that upon letting this cylinder lie fome time in water of an uniform temperature, it fwells to a certain point, after which it dilates no further. This circumftance furnifhed him with a maximum of humidity; and, confequently, with one point of comparifon in the fcale of the hygrometer; and this point he has fixed at the temperature of melting ice. For meafuring the differences in the capacity of this ivory cylinder, and thereby difcovering its different degrees of moifture, M. De Luc makes ufe of quickfilver, with which he fills the cylinder, and a part of the communicating glafs cube. The more capacious this cylinder is, or, which is the fame, the moifter it is, the lower does the mercury ftand in the glafs tube; and vice verfa. Now M. De Luc has found, that the loweft point to which it can fink, is that where it flands when the ivory cylinder is foaked in melting ice : he therefore names this point zero, in the fcale of his hygrometer; and confequently, the degrees of this fcale are degrees of dryne \mathcal{s}, counted from below upwards, as the quickfilver rifes in the glafs tube.

To give thefe degrees a determinate length, and thus render the hygrometers capable of being compared with each other, M. De Luc employs in conftructing them fuch glafs tubes as have been previoufly prepared, by being made into thermometers, and filled with mercury, fo as boiling water, and to take exaetly the diftance between thofe points by any fcale at pleafure. That done, the bulb of this preparatory thermometer muft be broken, and the quickfilver it contains exactly weighed. It is by knowing the weight of this, together with the diftance between the fixed points of the thermometer, that the fcale of the hygrometer is determined. For inftance, let the weight of the quickfilver be one ounce, and the diftance between the two abovementioned points, one thoufand parts of a certain fcale: then fuppofe that the quickfilver in the hygrometer, to which this tube is to be applied, weighs only half an ounce; this will give a fundamental line, confifting of five hundred parts of the fame fcale. The fundamental line, thus found, is applied to the fcale of the hygrometer, beginning at zero, and meafuring it off about four times over, that the whole variation of the inftrument may be comprehended. Each of thofe fpaces being afterwards divided into forty equal parts, gives fuch degrees as M. De Luc has found moft convenient. In general terms, the length of the fundamental line of the hygrometer, muft be to the interval between the two fixed points of the preparatory thermometer, as the weight of the quickfilver in the hygrometer, is to the weight of the quickfilver in that thermometer.

This proportion between the fcale of the hygrometer and that of the preparatory thermometer, furnihes an

A P P E N D I X.

eafy method of correcting in this inftrument the effects of heat upon the mercury it contains.
It will eafily be conceived, from the confruction of the fcale of this hygrometer, that if its cylinder of ivory was fuddenly changed into glafs, the inftrument would become a true thermometer, in which the interval between the points, anfwering to melting ice and boiling water, would be divided into forty parts. If, therefore, a thermometer, with a fcale fimilarly divided into forty parts between the fixed points, be placed near the hygrometer, it will thew immediately the correction to be made on that inftrument for its variation as a thermometer; with fome reftrictions, however ; of which M. De Luc has given an account in the paper he fent to the Royal Society on the fubject of this hygrometer.

That part of the frame of the inftrument on which the fcale is marked, is moveable; fo that, before obferving the points at which the mercury ftands, it may be pufhed upwards or downwards, according as the thermometer has rifen or fallen with refpect to the point of melcing ice: and thus the indications of the hygrometer can at once be freed from the errors which would arife from the difference in the volume of the quickfilver, on account of the different degrees of heat.

Defcription

Defcription of the Manometer, conftructed by Mr. Ramfden.

The Manometer ufed in this voyage was compofed of a tube of a finall bore, with a ball at the end; the barometer being at 29,7 , a fmall quantity of quickfilver was put into the tube to take off the communication between the e:. srnal air, and that confined in the ball and the part of the tube below this quickfilver. A fcale is placed on the fide of the tube, which marks the degrees of dilatation arifing from the increafe of heat in this ftate of the weight of the air, and has the fame graduation as that of Fahrenheit's thermometer, the point of freezing being marked 32. In this fate therefore it will fhew the degrees of heat in the fame manner as a thermometer. But if the air becomes lighter, the bubble inclofed in the ball, being lefs compreffed, will dilate itfelf, and take up a fpace as much larger, as the compreffing force is lefs; therefore the changes arifing from the increafe of heat will be proportionably larger; and the inftrument will hew the differences in the denfity of the air, arifing from the changes in its weight and heat. Mr. Ramfden found, that a heat, equal to that of boiling water, increafed the magnitude of the air from what it was at the freezing point $\frac{404}{7.000}$ of the whole. From this it follows, that the ball and the part of the tube below the beginning of the fcale

Abstract

A P P E N D I X. fcale is of a magnitude equal to almoft 414 degrees of the fcale.

If we have the height of both the manometer and thermometer, the height of the barometer may be thence deduced by this rule; as the height of the manometer increafed by 414 , is to the height of the thermometer increafed by $414 ;$ fo is 29,7 , to the height of the barometer.

This inftrument, though far from complete, having been conftructed in a hurry for the purpofe of a firt experiment, and liable to fome inaccuracies in the obfervations from not having the thermometer with which it was compared attached to it: feldom differed from the marine barometer í of an inch. Should it be improved to that degree of accuracy of which jt feems capable, it will be of great ufe in determining refractions for aftronomical obfervations, as well as indicating an approaching gale of wind at fea.

A P P E N D I X.

Metcorological Journal.

Diy of the Munth.	Time.	Fahrenheit's Thermometer.	B:a (\%) incter.	$\begin{array}{l\|l} \hline \text { Hy- } \\ \text { gro- } & \mathrm{nc} \\ \text { me- } & \mathrm{m} \\ \mathrm{cct} & \mathrm{re} \end{array}$	$\begin{aligned} & \text { lol } \\ & \text { no- } \\ & \text { mee- } \\ & \text { ter. } \end{aligned}$	Latitude.	Lengitude.	Winds and Weather.	Kemarits, 8x.
June $4^{\text {'h }}$	6 A. M. Nonlu. 4 P. M. ${ }_{6} \mathrm{P}$. M. Midnight.	$\begin{aligned} & 58 \frac{1}{2} \\ & 58+\frac{1}{2} \\ & 58 \frac{1}{2} \\ & 58 \\ & 58 \end{aligned}$	$\left\|\begin{array}{cc} \text { In. aec. } \\ 0 & \cdot \\ 20.99 \\ . & 0 . \\ 29,95 \\ 0 & 0 \end{array}\right\|$					NNIV, hazy weather. $\left.\begin{array}{l}\text { NW, } \\ \text { NW, } \\ \text { NWW, } \\ E \text { by },\end{array}\right\}$ cloudy.	
$5^{\text {th }}$	6 A. M. Nooll. 6 I'M.	$\begin{aligned} & 50 \frac{1}{2} \\ & 59 \frac{1}{2} \\ & 54 \\ & \hline \end{aligned}$	$\begin{aligned} & 29,93 \\ & 29,9^{\circ} \end{aligned}$	$\begin{aligned} & 75 \\ & 79 \frac{1}{2} \end{aligned}$	- \cdot			N hy W, cloudy. $\left.\begin{array}{l}\text { NE, } \\ \text { ivE by } E,\end{array}\right\}$ hazy.	
$6^{\text {th }}$		$\begin{aligned} & 54 \\ & 61 \\ & 56 \end{aligned}$	29,90 29,9,	$\begin{aligned} & 73 \frac{1}{2} \\ & 73 \end{aligned}$		${ }_{6} 57817$	$\cdots 30 \mathrm{E}$	SSW, tair. SW, by S, \} hazy.	
$7^{\text {th }}$	Nooll.	54	29,88	$7+$	- .	5359	239	N by E, hazy.	
$8^{\text {th }}$	Noon. 6 l'. M.	$\begin{aligned} & 58 \\ & 53 \end{aligned}$	$\begin{gathered} 3 \mathrm{C}, 04 \\ ; 0,03 \end{gathered}$	$\begin{aligned} & 75 \\ & 75 \frac{3}{2} \end{aligned}$		5336	- 56	$\left.\begin{array}{l} \text { NNE, } \\ \text { SSE, } \end{array}\right\} \text { hazy. }$	
$9^{\text {th }}$	Noun. 6 I'. M.	58	$\begin{aligned} & 30,05 \\ & 29,99 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		54.2	012	$\left\{\begin{array}{l} \text { SSE, } \\ \text { S by E, } \end{array}\right\} \text { hazy. }$	
$10^{\text {th }}$	Nuon.	$54 \frac{1}{1}$	30,25	68	- .	54 27	$0^{*} 31 \mathrm{~W}$	NNE, cloudy.	
$11^{\text {ih }}$	Noon.	58	29.90	70	- •	- . \cdot	- 31	SE, cloudy.	
$12^{\text {th }}$	Noon.	54	2,.. 73	62	-	5628	10	SF. hazy.	
$13^{\text {th }}$	$\begin{aligned} & 6 \mathrm{~A} . \mathrm{M} . \\ & \mathrm{Noon} . \\ & 6 \mathrm{P} . \mathrm{M} . \end{aligned}$	$\begin{aligned} & 51 \frac{1}{2} \\ & 57 \\ & 51 \frac{1}{2} \end{aligned}$	30.07	6-1	,	. 5934	$\begin{array}{ccc}\cdot & \cdot & \dot{E} \\ - & 0 & \\ \cdot & \cdot & \cdot\end{array}$	$\} \mathrm{E}, \text { clear weather. }$	
$14^{\text {th }}$	Noon.	60	30,16	62	. .	6021	040 W	N , clear weather.	
$15^{\text {th }}$	Noon.	581 ${ }^{\frac{1}{2}}$	29,96	6.		6019	- 48	NE, foggy.	
$16^{\text {ch }}$	$\begin{aligned} & 6 \mathrm{~A} . \mathrm{M} . \\ & \text { Noon. } \end{aligned}$	$\begin{aligned} & 49 \\ & 55 \end{aligned}$	$29,54$	61		-60 37	$03 i$	SSW, hazy. SW, foggy.	
$17^{\text {th }}$	Noon. Midnight.	$\begin{aligned} & 52 \\ & 49 \end{aligned}$	${ }^{29,64}$	63	. \cdot	$6_{63} \cdot 0$		$\left.\begin{array}{l}\text { SSW', } \\ \text { SSI:, }\end{array}\right\}$ cloudy.	
$18^{\text {th }}$	G A. M. Noon. 6 P. M. Midnight.	$48 \frac{1}{2}$ 52 50 48		${ }_{62} \cdot$	$54 \frac{1}{2}$	65 60	$0: 7$	SSE, cloudy. \}SE, foggy.	
$10{ }^{\text {th }}$	Noon.	49	29,73	$62 \frac{1}{2}$	[54, ${ }^{\text {a }}$	\| 6614	- 27	SE, cloudy.	

Meteorological

Meteorological Journal.

$\begin{gathered} \text { Day of } \\ \text { the } \\ \text { Month. } \end{gathered}$	THime.	Fiblien- beit's Thermometer.	Barometer.	$\begin{aligned} & \text { ny- } \\ & \text { goo- } \\ & \text { me- } \\ & \text { mer. } \end{aligned}$	$\begin{aligned} & \mathrm{Mi} \\ & \text { no- } \\ & \text { me. } \\ & \text { ter. } \end{aligned}$	Latitude.	Longitude.	Winds and Weather.	Ifumirks, as.
June 2017	$\begin{aligned} & \text { 4. A. M. } \\ & \text { Noon. } \\ & \text { Midnight. } \end{aligned}$	$\begin{aligned} & 43 \\ & 48 \frac{1}{2} \\ & 44 \frac{1}{2} \end{aligned}$	$\left\|\begin{array}{c} \text { In, dec. } \\ \hdashline 29,90 \\ \cdot \cdot \cdot \cdot ~ \end{array}\right\|$	${ }_{6} 2$	47	 0. 67°	$\begin{array}{ccc} \hline \circ & \prime \\ 0 & \dot{4} 6 & \dot{E} \end{array}$	N, fiur weather. Calm, cloudy, SSW, fair.	
$2 \mathrm{I}^{\text {2 }}$	Noon. Midnight.	$\begin{aligned} & 50 \\ & 41 \frac{1}{2} \end{aligned}$	29,85	65	47	684	$\circ 3^{2}$	SSli, frefh, cloudy. S, cloudy.	
$22^{\text {d }}$	6 A. M. Noon. Midnight.	$\begin{aligned} & 41 \\ & 42 \frac{1}{2} \\ & 37 \frac{1}{2} \end{aligned}$	${ }_{29,80^{\circ}}$	66	44	7045		$\left.\begin{array}{l}\text { W, } \\ \text { WSW, } \\ \text { E, }\end{array}\right\}$ clouds.	Thermometer in the air being 43°, in the furface witer of the fea it was 31°. At 6 A. M. Thermo meter expoied to the Sun 5^{\prime} rote 12°.
$23^{\text {d }}$	6 A. M. Noon. 6 P. M. Midnight.	$\begin{aligned} & 38 \\ & 40 \\ & 38 \\ & 37 \end{aligned}$	${ }^{29,77}{ }^{\circ}$	$\stackrel{6}{4}^{\circ} \cdot$	44	$7^{72} 22$.		$\left.\begin{array}{l} \text { SW, } \\ \text { SSW, } \\ \text { SE, by E, } \end{array}\right\} \text { foggy. }$	
$24^{\text {th }}$	6 A. M. Noon. 6 P. M. Midnight	$\begin{aligned} & 37 \frac{1}{2} \\ & 40 \\ & 37 \\ & 3+ \\ & \hline \end{aligned}$	$30,0{ }^{\circ}$ 30,15 3	$6_{3}{ }^{\circ}$	3^{3}.	${ }^{7} 3^{6} 22$.		$\left.\begin{array}{l}\text { SE by E, } \\ \text { WSW, }\end{array}\right\}$ foggy. N, clear weather. NNE, cloudy.	
$25^{\text {th }}$	2 A. M. 3 A. M. + A. M. © A. M Noon. 8 I'. M.	$\begin{aligned} & 41 \\ & 35 \\ & 36 \\ & 36 \\ & 36 \\ & 36 \\ & 37^{\frac{1}{2}} \end{aligned}$		${ }^{6}$	34	$\left(\begin{array}{rrr} \because & \cdot & \\ 74 & 5 \end{array}\right.$	944	$\left.\begin{array}{l}\text { NNE, } \\ \text { NE, by N, }\end{array}\right\}$ hatzy.N, by E, $\}$ cloudy.N byN, fqually, hail and thect.NNE, cloudy.	
$26^{\text {th }}$	Noon. 8 P. M.	$\begin{aligned} & 40 \frac{1}{2} \\ & 41 \end{aligned}$	${ }^{30,33}$	$82{ }^{\text {8 }}$,	391	7425	${ }^{11}{ }^{16}$.	NE by N , fair weather. alnoot calm, cloudy.	
$27^{\text {th }}$	Noon. $6 \mathrm{P} . \mathrm{M}$. Midnight.	$\begin{aligned} & 40 \\ & 39 \\ & 39 \end{aligned}$	$\stackrel{30,00}{\square}$	87	$\left\|4+\frac{1}{2}\right\|$	75.21	${ }^{9}+3$.	WSW, cloudy and finow IVSW, cloudy. SSW, ran.	
$28^{\text {th }}$	6 A. M. Noon. Midnight.	$\begin{aligned} & 38 \\ & 39 \\ & 39 \\ & 39 \frac{5}{2} \end{aligned}$	${ }_{29,6}{ }^{\circ}{ }^{\circ}$		\cdots	${ }^{7} 77^{36}$	${ }^{8} 5^{52}$.	SSW, rain. S, hary and rain. ENE, clondy.	
$29^{\text {'h }}$	Nnon. Midnight.	$\begin{aligned} & 39 \\ & 37 \frac{1}{2} \\ & \hline \end{aligned}$	$\therefore \dot{\square}$	1.	$1:$	781	$9^{9}{ }^{48}$.	N by E, hazy. NNE, tair.	

Meteorological

132

A P P E N DIX.

Meteoiological Journal.									
$\begin{aligned} & \text { i ialy ot } \\ & \text { the } \\ & \text { Month. } \end{aligned}$	Time.		$\begin{aligned} & \text { Baro- } \\ & \text { meter. } \end{aligned}$		$\left\lvert\, \begin{aligned} & \mathrm{Mit-} \\ & \text { no- } \\ & \mathrm{moc}- \\ & \mathrm{ter} . \end{aligned}\right.$	$\begin{aligned} & \text { Liti- } \\ & \text { tude. } \end{aligned}$	$\begin{aligned} & \text { Tongi- } \\ & \text { rude. } \end{aligned}$	Winds and W'eather.	Remarks, \%c.
June 3019	Noon. Midnight.	42 42	II1. dec.	106		\circ 8 8	1058 E	$\left\{\begin{array}{l} \text { Calim and cloudy. } \\ \left\{\begin{array}{l} \text { Variable winds and } \\ \text { fail. } \end{array}\right. \end{array}\right.$	The rife of the Hy grometer was occifioned by a fire being lighted in the cabin.
July $1^{\prime \prime}$	Noon. 8 P. M. Midnight.	$\begin{aligned} & 44 \\ & 50 \\ & 49 \end{aligned}$	29,63	${ }^{84}$	50	7^{78}	${ }^{10} 53$.	WSW, hary weather. Caln and tair. N, fine weather.	At Noon, Thermome. ter expoled to the fun rofe 10° in 10^{\prime}.
$2^{\text {d }}$	Non. Midnight.	$\begin{aligned} & 43^{\frac{1}{2}} \\ & 45 \end{aligned}$	29,7 ${ }^{1}$	79	50	;822	$\stackrel{10}{ } 15$	SSW, fair weather. Calm and cloudy.	At 6 P. M. Thermome. ter expofed 10^{\prime} to the Sun rofe to 76°.
$3{ }^{\text {d }}$	Noun. Midnight.	$\begin{aligned} & 43 \frac{\pi}{2} \\ & 40 \frac{1}{2} \end{aligned}$	$\because:$	\cdots	-	7836	1015	S, hazy. SE, cluudy.	
$4^{\text {th }}$	$\begin{aligned} & \text { Noon. } \\ & 6 \mathrm{P} \text { P. } \\ & \text { Midnight. } \end{aligned}$	$44 \frac{1}{2}$ 40 40	$\stackrel{29,94}{\square}$	$:$:	.	7931	$\begin{aligned} & 957 \\ & ! \\ & \hline \end{aligned}$	Calm and fair. Calm and clear. Variable and foggy.	-
5^{43}	$\begin{aligned} & \text { Noon. } \\ & \text { Midnight. } \end{aligned}$	41	${ }^{29.94}$	-	-	7955	${ }^{9} 17$	SW, foggy. s , clondy.	
$6{ }^{16}$	LToon. 6 P. M. 8 P. M.	$39 \frac{1}{2}$ 41 $38 \frac{1}{2}$	29,80	-	:	${ }^{79} 57$	337	SE, fair. \}SE, cloudy.	
$7{ }^{\text {th }}$	Noon. 6 P. M. Miduight.	$\cdot_{39 \frac{1}{2}}^{39^{\frac{1}{2}}} .$	29,78 $\begin{aligned} & 29,81 \\ & 29,8\end{aligned}$	$\because:$.	$\because:$	$\because \bullet$.	$\begin{aligned} & \} \mathrm{N}, \text { rainy. } \\ & \mathrm{N} \text { bum, cloudy. } \end{aligned}$	Thermometer placed clofe to a piece of ice, fell from $39^{\circ} \frac{1}{2}$ to 37°.
$8{ }^{6}$	f. A. M. Nona. GI. M. Midnight.	$\begin{aligned} & 40 \\ & 39 \frac{1}{2} \\ & 37 \\ & 39 \end{aligned}$	${ }^{29,8,8}{ }^{\circ}$	$\therefore:$	\because	-		$\left.\begin{array}{c}\mathrm{N} \text { by } \mathrm{E}, \\ \mathrm{W} \text { by } \mathrm{S},\end{array}\right\}$ cloudy. SE, foggy. SW, cloudy.	Near the ice.
$9^{\text {th }}$	(1 A. M. Noon. 6 P. M. Midnight.	$\begin{aligned} & 40 \\ & 49 \\ & 38 \\ & 38 \end{aligned}$	29,78 29,83 $\cdots \cdot$			$80^{\circ} 7$	$\dot{5} 5$	$\begin{aligned} & \text { SW, cloudy. } \\ & \text { SSW by S, cloudy. } \\ & \text { S by W, thick fog. } \end{aligned}$	At 3 P. M. Thermonuter expofed to the wind blowing from the ice, tell in 5^{\prime} from $42^{\circ} 1039^{\prime \prime}$. Near the ice.
$10^{\text {m }}$	Noon. Midnight,	$\begin{array}{r} 39 \frac{7}{2} \\ 38 \frac{1}{2} \\ \hline \end{array}$	12986		.	$\begin{array}{r} 80 \quad 22 \\ \hline \\ \hline \end{array}$	$2 \begin{array}{ll} 2 & 12 \\ 0 \\ \hline \end{array}$	SSW, thick fog. Ssiv, clond.	Amung the ice.

Meteorological

A P P E N D I X.

Meteorological Journal.									
$\begin{aligned} & \text { Day of } \\ & \text { the } \\ & \text { Month. } \end{aligned}$	Time. ${ }^{\text {F }}$	Fahrenheit's Thermo nicter.	$\begin{array}{\|c\|c\|} \hline \text { Baro- } \\ \text { mater. } & 1 \\ & 5 \\ & 11 \\ & 10 \end{array}$		Ma- no- me. ter.	Lati-	$\begin{aligned} & \text { Longi. } \\ & \text { tude. } \end{aligned}$		Remarhs, sic.
July $1 \mathrm{I}^{\text {th }}$	3 A. M. 4. 4. M. Noon. Midnighr.	$\begin{aligned} & 41 \\ & 37 \\ & 42 \\ & 44 \end{aligned}$			$:$			$\begin{aligned} & \} \text { SSW, with rain. } \\ & \text { Calm and fiar. } \\ & \text { Light airs and bair. } \end{aligned}$	At ro A. M. Thermo. meter exproted to the Sun 30^{\prime} fote 26°. At 7 I'.M. Thermone ter fell fuddenly to :ibout $8{ }^{\circ}$.
$1{ }^{\text {th }}$	Noon. 8 P. M. Mudnight.	$\begin{aligned} & 45 \\ & 45 \\ & 44 \end{aligned}$	$29,5^{8}$. $:$	$\because: ~$	FNE, cloudy. Cidm, clouds. Calm and tair.	Light winds.
${ }^{13^{\text {th }}}$	Noon. 8 P. M.	46 42	29,63			- .	- . . .	$\begin{aligned} & \text { Caln and cloudy. } \\ & \left\{\begin{array}{c} \text { SW by s, ligally } \\ \text { and cloudy. } \end{array}\right. \end{aligned}$	
$14^{\text {th }}$	Noon. Midnight.	$\begin{aligned} & 36 \\ & 38 \end{aligned}$	- . .		.	\because.		ENE, roggy: ENE, cloudy.	$\begin{aligned} & \text { Tha } \\ & \text { to r. } \\ & 80^{\circ} \% \text {. } \end{aligned}$
$25^{\text {th }}$	Noon. Midnight.	45	- : .		-	\cdots	\cdots.	$\left.\begin{array}{l}\text { NNE, } \\ \text { W, }\end{array}\right\}$ fair.	
${ }^{16}{ }^{\text {/h }}$	Noon. Midnight.	49	\because.	\because		- •		\} Light airs and clear.	Thermonerer expuin tio he Sun a co a 89ㅇ.
${ }^{17^{\text {th }}}$	$\begin{aligned} & \text { Noon. } \\ & \text { Midnight. } \end{aligned}$	$\begin{aligned} & 49 \\ & 45 \end{aligned}$	$\cdots:$	\because !			$\cdots \quad$.	$\}$ Light airs andelear.	
${ }^{18}$	Noon. Midnight.	$\begin{gathered} 45 \frac{5}{2} \\ 42 \end{gathered}$: $:$.		-		$\because \quad . \quad$	$\}$ NW hy W, cloudy.	Anoug the loofe ice.
$19^{\text {th }}$	Noon. Midnight.	$\begin{aligned} & 42 \\ & 39 \end{aligned}$	29,60				$\cdots .$.	SE, foggy. E, cloudy.	Thermmeter expood to the Sun 30^{\prime} rote to 89°.
$20^{\text {th }}$	Noon. Midnight.	$\begin{aligned} & 37 \\ & 33 \frac{1}{8} \end{aligned}$	$\underline{29,70}$	ito	$37 \frac{1}{2}$	80.30	$\begin{array}{ll}326 \mathrm{E} \\ \cdot & \\ & \end{array}$	NE, 1 finow and flect.	Near the ice. The rifing of the Itygrometer was occafioned by a firc lighted in the cabin.
21^{*}	$\begin{array}{\|lll} \hline 4 & \text { A. } & \text { M. } \\ 9 & \mathrm{~A} . & \mathrm{M} . \\ \text { Noon. } \\ 6 & \mathrm{P} . & \mathrm{M} . \\ \text { 10 } & \mathrm{P} . & \mathrm{M} . \\ \text { Midnight. } \end{array}$	$\begin{aligned} & 33 \\ & 33 \frac{1}{2} \\ & 34 \\ & 35 \\ & 32 \frac{1}{2} \\ & 32 \end{aligned}$		$\begin{aligned} & 73 \\ & 73 \\ & \hline 73 \\ & \hline \end{aligned}$	$3+\frac{i}{2}$ $3+$ \vdots \vdots	${ }^{-} 79^{9} 2{ }^{2} 7$		F, hazy and frow. SWW, $\}$ hazy. ivNiW, cloudy. SIW, hiazy. SW' by S, cloudy.	Clofe to the ice.

Metcorological

A P P E N D X
Meteorological Journal.

Day ot Monh.	Time.		$\begin{aligned} & \text { Baro } \\ & \text { meter. } \end{aligned}$	$\mathrm{Hy}-$ pro- me- ter.	Ma- no- me- ter.	$\begin{aligned} & \text { Lati- } \\ & \text { tude. } \end{aligned}$	Longitude.	Winds and Weather.	Remarks, \&c.
July $22{ }^{\text {d }}$		$\begin{aligned} & \circ \\ & 34 \\ & 35 \\ & 39 \frac{1}{2} \\ & 35 \frac{1}{2} \end{aligned}$	In. dec.		$\begin{aligned} & 30 \frac{1}{2} \\ & 33 \\ & . \end{aligned}$		632		Thermometer placed near the frozen ropes fell to $32^{\circ} \frac{1}{2}$.
$23^{\text {d }}$	+ A. M. Noon. ${ }^{6} \mathrm{l}^{\prime}$. M. Midnight.	$\begin{aligned} & 37 \\ & 36 \\ & 36 \frac{x}{2} \\ & 37 \frac{2}{2} \end{aligned}$	${ }^{\circ} 29,74{ }^{\circ}$	$\begin{aligned} & 4^{\circ} \\ & 4^{\circ} \end{aligned}$	$\begin{aligned} & 36 \\ & 40 \\ & 39 \frac{1}{2} \end{aligned}$	${ }^{\circ} 80^{\circ} 24$	$\begin{array}{lll} 9 & 59 & \dot{E} \\ \cdot & \cdot & \cdot \end{array}$	$\begin{aligned} & \text { E by N, hazy. } \\ & \text { E, rain. } \\ & \text { E, clovdy. } \end{aligned}$	Hygrometer placed in Bitacle.
$2^{\text {th }}$	Noon. Midnight.	$\begin{aligned} & 39 \\ & 37 \end{aligned}$	${ }^{29,41}$	43	$\begin{aligned} & 41 \\ & 44 \end{aligned}$			$\overline{\mathbf{E},} \mathbf{E N E}\}$ cloudy.	Near the floating ice.
$25^{\text {b }}$	Noon. + P. M. Midnight	$\begin{aligned} & 39 \frac{1}{3} \\ & 35 \\ & 39 \frac{\pi}{2} \end{aligned}$	${ }^{29,64}{ }^{\circ}$	$\begin{aligned} & 39 \\ & 39 \frac{2}{2} \end{aligned}$	$4{ }^{41}$. . .	$\because \quad$.	NW hy N, hazy. N, cloudy. Light airs and foggy:	
:6	Noon. Miduight.	$\begin{array}{r}39 \\ 39 \\ \hline\end{array}$	${ }^{29,90} \cdot$	39	$\begin{array}{r} 32 \frac{1}{2} \\ 4^{2} \\ \hline \end{array}$	8017	1322	NNW, foggy. SSLE, cloudy.	
27^{16}	+ A. M. Noon. 8 P. M. Midnight.	$\begin{array}{r}39 \\ 38 \\ \hline 39 \\ \hline\end{array}$	$\mid{ }^{30,17}{ }^{\circ}{ }^{\circ}$	-	$\begin{aligned} & 40 \frac{3}{4} \\ & 3^{2} \end{aligned}$	$\begin{array}{r}80 \\ \cdot \\ \cdot \\ \hline\end{array}$		E, cloudy. ENE, $\}$ hazy. E by N, cloudy.	
28 ${ }^{\text {b }}$	+ A. M. ૪ A. M. Noon. 4 P. M. Midnight.	$\begin{aligned} & 36 \\ & 37 \\ & 37 \\ & 35 \frac{5}{2} \\ & 36 \\ & 36 \end{aligned}$		6: ${ }^{\text {a }}$	$26 \frac{1}{4}$ 27 $37^{\frac{1}{2}}$ 33 263 27 27	$\left(\begin{array}{l}80 \\ 86 \\ \square\end{array}\right.$	$\begin{array}{rr} 15 & 30 \\ : & ! \\ \vdots & ! \\ \hline \end{array}$	Hazy. Pogy: E by $\mathrm{N}, \mathrm{fogg}$. $\} \text { SE, hazy. }$	6 A. M. Thermometer expoled to the Sun 15^{\prime} rofe $9^{\circ} \frac{1}{2}$. Ansong the ice.
$29^{\text {th }}$	Noon. Nidnight.	$\begin{array}{r}42 \\ 42 \\ \hline\end{array}$	$3^{3^{0},+3}$:	33	8025	1818	ESE, clear. SSE, tair.	
$30^{\text {'h }}$	Noon. Midnight.	$\begin{aligned} & 48 \\ & 44 \end{aligned}$	${ }^{30,43}$	861	27	80 31	. . . \cdot	NE by N, clear. Calin and tair.	
$3{ }^{\text {- }}$	Noon. Viduight.	$\begin{aligned} & 48 \\ & +8 \end{aligned}$	$\begin{aligned} & 30,43 \\ & 30,+5 \end{aligned}$	9^{92}	40		. . .	Light airs at E, tuir. Calm and fair.	
lusuit ${ }^{\text {a }}$	Voon. Widnight.	${ }^{48}$	$\begin{aligned} & 3 c, 45 \\ & 30,4,5 \end{aligned}$	${ }^{73}$	$36 \frac{1}{2}$	80 37	. . . $\cdot 1$	Light airs at E, hazy. NNW, foggy:	
$2^{\text {d }}$	Noon. Hithigh.	$\begin{aligned} & 4+ \\ & 4 \end{aligned}$	$\begin{aligned} & 30,34 \\ & 30.33 \end{aligned}$. .	! :		$\left\{\begin{array}{l} \text { NIW, } \\ \text { NNIV, } \end{array}\right\} \text { foggy. }$	
3^{4}	$\begin{aligned} & \text { Ming. } \\ & \text { GP. M. } \end{aligned}$	47.	\| 30,17	46	3^{8}		. . .	$\}^{\text {Light airs and lair }} \begin{gathered}\text { weather. }\end{gathered}$	

Mcteorological

Meteorological Journal.

Day ot the Month.	Time.	Fahrenheit's Thermometer.	Barometer.	$\begin{array}{\|l\|l} \hline \text { Hy- } \\ \text { aro- } \\ \text { aro- } \\ \text { me- } \\ \text { ter. } \end{array}$	Ma- no- me- ter.	$\begin{aligned} & \text { Litti- } \\ & \text { tude. } \end{aligned}$	Longitude.	Winds and Weather.	Kemarks, © ${ }^{\text {ce. }}$
Aug. $22^{\text {d }}$	Noon. Mianight.	$\begin{aligned} & 37 \\ & +36 \frac{1}{2} \end{aligned}$	In. dec.			$\begin{array}{cc}0 & \prime \\ 79 & 2+ \\ 0\end{array}$	$\begin{array}{cc}0 & 1 \\ 1 & 56 \mathrm{E} \\ . & 0\end{array}$	NE, hazy: NNE, rain.	
$23^{\text {d }}$	2 A. M. Noon. 4 P. M. Midnight.	$\begin{aligned} & 32 \frac{1}{2} \\ & 37 \\ & 35 \frac{1}{2} \\ & 35 \end{aligned}$		$3^{3} \cdot{ }^{\circ}$	31 34.	$\begin{array}{rrr}77 & 10 \\ \cdot & \cdot & \\ \cdot & \cdot\end{array}$	4. 4 . .	NNE, rain and lleet. \}W by N, cloudy.	
$24^{\text {th }}$	4 A. M. Noon.	35 42	$\left.\right\|_{29,79}$	31	$31 \frac{1}{2}$ 33	$\cdots{ }^{7} \times 15$	${ }_{6} 13$	SW, cloudy. Caln and cloudy.	
$2 ;^{\text {th }}$	4 A. M. Noon. Midnight.	$\begin{aligned} & 36 \frac{\pi}{2} \\ & 42 \\ & 37 \end{aligned}$	$\left\lvert\, \begin{gathered} 29,79 \\ 0 \end{gathered}\right.$	3°.	40 ${ }^{\frac{1}{1}}$	7512	451	$\left.\begin{array}{l}\mathrm{E}, \mathrm{S}, \\ \mathrm{S} \text { by } \mathrm{E},\end{array}\right\}$ cloudy. SE, rain and flect.	
26:1	Noon. 6 P. M. Midnight	42 45 42	$\begin{aligned} & 29,71 \\ & 29,71 \\ & 29,78 \end{aligned}$	$\begin{aligned} & 26 \\ & 25 \\ & 25 \frac{1}{2} \end{aligned}$	42 41 \cdot	$73 \quad 19$	1 . 6^{6}	SE by S, rainy. S, hazy. S, cloudy.	
$27^{\text {th }}$	4 A. M. Noon. Midnight.	. $\begin{aligned} & 43 \\ & 45 \\ & 46\end{aligned}$	${ }^{29,79}$	${ }^{2} 3$.	$\begin{aligned} & 47 \frac{1}{2} \\ & 4^{2} \\ & 0 \end{aligned}$	$\begin{array}{ccc} 7_{2} & 4 \\ 7^{2} & \cdot & \end{array}$	$\begin{array}{cc} 0 \\ 0 & 14 \\ 0 & 0 \end{array}$	$\left.\begin{array}{l} \text { SW by S, } \\ \text { SSW } \\ \text { SSW, } \end{array}\right\} \text { hazy. }$	
$2 \mathrm{~S}^{\text {th }}$	+ A. M. Norn. ${ }_{4}$ P. M. 8 P. M. Sidnight.	$\begin{aligned} & 45 \frac{1}{4} \\ & 40 \\ & 45 \\ & 41 \frac{1}{2} \\ & 42 \end{aligned}$		$\cdot \begin{array}{ll} 25 \\ 0 \end{array}$	$\cdot \left\lvert\, \begin{aligned} & 42 \frac{1}{4} \\ & 42 \\ & 4=\frac{1}{2} \\ & \cdot\end{aligned}\right.$	$\left\|\begin{array}{ccc} 0 & 0 & 0 \\ 7 & 2 & 9 \\ 0 & \cdot & 0 \\ 0 & \cdot & \cdot \end{array}\right\|$		SSW, Euggy. W by S, tog and rain. $\}$ NW, hazs.	
$29^{\text {th }}$	Sioon.	4012	30,00	28	35	719	128	SW, fair.	
$30^{\text {th }}$	$\begin{aligned} & +A . M . \\ & \delta A . M . \\ & \text { Noon. } \\ & 8 \mathrm{P} . \mathrm{M} . \end{aligned}$	44 +4 53 48	$30,28^{\circ}$	33	$\begin{gathered} -\begin{array}{l} 35 \frac{1}{2} \\ 35^{\frac{1}{2}} \\ 39 \\ . \end{array} . \end{gathered}$	$\left\lvert\, \begin{array}{rrr} 0 & \cdot & \cdot \\ 70 & 29 \\ \cdot & \cdot & \cdot \end{array}\right.$	-官	$\left\{\begin{array}{l} W \\ \text { by } \\ \text { W by } \\ \text { b } \\ \text { Wh } \\ \text { WN: } \\ \text { VN, } \end{array}\right\} \text { cloudy. }$	
$3{ }^{3 t}$	$\begin{aligned} & \text { A. A. M. } \\ & \text { Y A. M. } \\ & \text { Nuon. } \end{aligned}$	$\begin{aligned} & 44 \\ & 48 \\ & 55 \end{aligned}$	$j 0,23$	39	$\begin{aligned} & 42 i_{2}^{2} \\ & 38 \end{aligned}$	$\left[\begin{array}{ccc} 09 & 3 \\ 09 & \\ 0 \end{array}\right.$	-官	$\left\{\begin{array}{l} \text { WNW, cloudy. } \\ \text { Variable and fair. } \end{array}\right.$	
Sept. $1^{\text {st }}$	Noon. 19.P. M.	$\begin{aligned} & 50 \\ & 46 \frac{1}{2} \end{aligned}$	30,23	. 54	- $\begin{aligned} & 38 \\ & 38\end{aligned}$	${ }^{69} 00$	$\mathrm{Cl}_{0}^{0} 2^{-}$	S, $\left.{ }_{\text {WNW, }}\right\}$ cloudy.	
2 d	Nool. 6 P. M. 8 P. M.	$\begin{aligned} & 57 \\ & 52 \\ & 52 \frac{1}{2} \\ & \hline \end{aligned}$	30,09 . \cdot	. $\begin{aligned} & 32 \frac{1}{2} \\ & 44 \\ & . \\ & 40 \\ & 4\end{aligned}$	49 39 39	$\|$68 14 \cdot \cdot	$4 \begin{array}{cc}0 \\ 0 & 3 \\ 0 & 0\end{array}$	E, cloudy. ESE, hazy, BSE, foggy.	

Meteorological Journal.

Day of the Month.	Time.		$\left\lvert\, \begin{aligned} & \text { Baro- } \\ & \text { meter. } \end{aligned}\right.$	$\begin{aligned} & \mathrm{Hy}=- \\ & \text { gro- } \\ & \text { mer } \\ & \text { rer. } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { Ma- } \\ & \text { no- } \\ & \text { me- } \\ & \text { her. } \end{aligned}\right.$	$\begin{aligned} & \text { Lati- } \\ & \text { tude. } \end{aligned}$	Longitude.	Winds and Weahher.	Remarks, \&c.
Sepr. $3^{\text {d }}$	$\begin{aligned} & \text { L A. M. } \\ & \text { \& A. M. } \\ & \text { Naon. } \\ & \text { B P. M. } \\ & \text { Midnight. } \end{aligned}$	$\begin{aligned} & 0 \\ & 52 \frac{2}{2} \\ & 52 \frac{2}{4} \\ & 65 \\ & 56 \\ & 53 \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { In. dec. } \\ & \vdots \\ & 30,06 \\ & \vdots \\ & 0 \end{aligned}\right.$	$\begin{aligned} & 25 \\ & 23 \frac{1}{2} \\ & 34 \frac{1}{2} \\ & 32 \frac{1}{2} \\ & 30 \end{aligned}$	$\begin{gathered} \hline \circ \\ 39 \frac{1}{2} \\ 40 \\ 59 \\ 48 \\ 48 \frac{1}{2} \\ 48 \end{gathered}$	\% ${ }^{\circ}$	$\begin{array}{lll} \hline 0 & 1 \\ 0 & \vdots & \cdot \\ 0 & 8 & E \\ 0 & 0 & \cdot \end{array}$	$\begin{aligned} & \text { ESE, fugg. } \\ & \left.\begin{array}{l} \text { ESE, } \\ \text { SE, } \\ \text { SSE, cloudy. } \\ \text { ESE, clear. } \end{array}\right\} \text { hazy. } \end{aligned}$	
$4^{\text {th }}$	8 A. M. Noon.	$\begin{aligned} & 62 \\ & 58 \end{aligned}$	$30,00^{\circ}$	$\begin{array}{r} 29 \\ 37 \\ \hline \end{array}$	$\begin{array}{r} 51 \\ 51 \\ \hline \end{array}$	${ }^{6} 645^{\circ}$	$\dot{0} \cdot 12 \mathrm{~W}$	ESE, clenr. Calm and cloudy.	
$5^{\text {th }}$	$+\mathrm{A} . \mathrm{M}$. 8 A. M. Noon. Midnight.	$\begin{aligned} & 56 \\ & 58 \\ & 57 \\ & 56 \end{aligned}$	•. . 29,81 \cdot \cdot	30 44	$\begin{aligned} & 51 \frac{1}{2} \\ & 52 \\ & 52 \\ & 51 \end{aligned}$	6358		SE, cloudy. SE, clear. \{SE by E, cloudy and SE by E, cloudy.	
6 \%	2 A. M. 4 A. M. Nool. 8 P. M. Midnight.	$\begin{aligned} & 55 \frac{1}{2} \\ & 56 \frac{1}{2} \\ & 59 \\ & 56 \\ & 56 \frac{1}{2} \end{aligned}$		$\begin{aligned} & 44 \\ & 45 \\ & 39 \\ & .9 \end{aligned}$	$\begin{aligned} & 51 \\ & 52 \\ & 60 \\ & 54 \\ & 58 \\ & \hline \end{aligned}$		112	, $\}$ SE by E, cloudy.	
$7^{\text {th }}$	8 A. M. Nooln.	${ }^{58}$	${ }^{29,02}$	36	$\begin{aligned} & 61 \\ & 64 \end{aligned}$	$60^{\circ} \mathrm{i}$	$2 \dot{35}$	$\}$ SE, hazy.	
$8^{\text {b/ }}$	$\begin{aligned} & \text { A. M. } \\ & 8 . A . \mathrm{M}_{1} \\ & \text { Nivon. } \end{aligned}$	54 $54 \frac{1}{2}$ 56		$\begin{gathered} 33 \frac{1}{2} \\ 3.3 \\ 36 \end{gathered}$	$\begin{aligned} & 65 \\ & 66^{2}+\frac{1}{2} \\ & 66 \end{aligned}$	5935	19	SW, fmall rain. S pually and rain. SW by S, hazy.	Frefh gales.
$9^{\text {th }}$	Nuon.	56	28,70	41	661	$59 \quad 9$	-37	WSW, hazy.	Frefh gales.
$10^{\text {oth }}$	- • .	-••	-••	-		- .	-•••	$\cdots \cdots \cdots$	The weather was fo bad, and the hip had fo much motion, tha the barometcr could not be obferved this day.
$11^{\text {th }}$	Noon.	58	29,20	41	59	5725	$13^{2} \mathrm{E}$	SIV, hazy.	Fielh gales.
$12^{\text {th }}$	Noon.	57	29.30	39	61	5657	: 55	NW, iqu.tily.	
$13^{\text {th }}$	Noon.	56	29:\%	30	53	$56 \quad 4$	131	SSW, rain.	At t A. M. a very hare gake of wind. Squaly weather.
$14^{\text {'h }}$	$\begin{aligned} & \text { 9А. М. } \\ & \text { Nuoun. } \\ & \hline \end{aligned}$	${ }_{52}$	$\left.\begin{aligned} & 29,79 \\ & 29,89 \end{aligned} \right\rvert\,$	10°		$1{ }^{\circ} 55^{\circ}$		\} NW, dito.	$1\}$ Hart cales.

Meteorological

138 A P P E N D I X.

Meteorological Journal.									
Day or the Month.	'Time.	Fahrenheit's Thermometer.	$\begin{aligned} & \text { Baro- } \\ & \text { metcr. } \end{aligned}$	$\mathrm{Hy}-$ gro- mic- tcr.	$\left\lvert\, \begin{aligned} & \text { Ma- } \\ & \text { no- } \\ & \text { me- } \\ & \text { ter. } \end{aligned}\right.$	$\begin{aligned} & \text { Lati- } \\ & \text { tude. } \end{aligned}$	Longitude.	Winds and Weather.	Remarks, \&c.
15^{16}	Noon.	57	$\begin{array}{r} \mathrm{In}, \mathrm{dec}^{2} . \\ 29,59 \end{array}$			0 $5+33$	-1,	WSW, rain.	Very hard gales.
16^{16}	Noon. 9 P. M. 10 P. M.	57.	$\begin{aligned} & 29,90 \\ & 29,70 \\ & 29,60 \end{aligned}$	${ }^{40}$.		5^{5313}	- $0 \cdot 1$	W, cloudy.	$\begin{aligned} & \text { Moderate. } \\ & \} \text { Squally. } \end{aligned}$
$17^{\text {th }}$	Noon.	55	29,50	37	$5+$	5312	- 7	WNW, hazy and rain.	
$18{ }^{\text {th }}$	Noon.	57	29,77	44		5253	015 W	W by S, cloudy.	
$19^{\text {th }}$	Noon,	61	30,08	50		5242	029	W by S, cloudy.	
2014	Noon. Midnight.	61.	$\begin{aligned} & 30,00 \\ & 29,90 \end{aligned}$	4^{8}	-	$5^{2} 31$.	- 16	SW by W, hazy. W by S, eloudy.	Freth gales. Moderate.
$21^{\prime \prime}$	10 A. M. Noon. 101'. M.	61 63 .	$\begin{array}{r} 29,88^{\circ} \\ 29,23 \end{array}$	44 $4+$ +	\because	$5^{5} 2^{\circ} 17$	${ }^{-} \cdot{ }^{\circ}$	SW by W, cloudy. SW by S, inoderate. S, hazy.	Frefh gales. Frefh gales.
22^{4}	Noon. 6 P. M.	60	29,23 29,43			5223	135	$\begin{aligned} & \left\{\begin{array}{l} S W \text { by } S, \text { hard gales } \\ \text { and fqually. } \\ \text { WNW, rain. } \end{array}\right. \end{aligned}$	Squally. Strong gales.
${ }^{3} 3^{4}$	Noon. 6 P. M.	${ }^{5!}$.	$\begin{array}{r} 29,91 \\ 29,70 \end{array}$	5°	:	52.	\bigcirc	W, cloudy. SW by W, ditto.	$\}$ Moderate.
$24^{\text {th }}$	Noon.	57	29,50	45	- .	5216	233	SSW, choudy.	
25^{41}	8 A. M. Noon. II P. M.	${ }^{6} i^{\circ}$	$\begin{aligned} & 29,66 \\ & 29,66 \\ & 20,80 \\ & \hline \end{aligned}$	$4{ }^{\circ}{ }^{\circ}$. .	-	.	$\left\{\begin{array}{l} S W, \\ \text { SWhy W, } \\ \text { WSW, } \end{array}\right\} \text { cloudy. }$	

$$
\begin{array}{llllllll}
\mathbf{A} & \mathbf{P} & \mathbf{P} & \mathbf{E} & \mathbf{N} & \mathbf{D} & \mathbf{I} & \mathbf{X} .
\end{array}
$$

MISCELLANEOUS OBSERVATIONS.

Observations for determining the refraction in high latitudes.

JUNE the thirtieth, at midnight, the diftance of the two oppofite horizons, taken by me with Ramfden's fextant, was $179^{\circ} 54^{\prime}$; the height of the eye being fixteen feet above the level of the fea.

Auguft the fifteenth, at midnight, by the aftronomical Quadrant, the altitude of the fun's upper limb $4^{\circ} \quad 16^{\prime \prime} 55^{\prime \prime}$ lowes limb $3^{\circ} 4^{6^{\prime}} \quad 0^{\prime \prime}$.

App. Alt. Sun's

| center | - | 4 | 0 | 32 | | - | 4 | I | 19 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Co. Declin. | - | 75 | 56 | 13 | | | | | | Barometer, 29,6 Thermometer, 37°

A $\mathbf{P} \quad \mathbf{P} \quad \mathbf{E} \quad \mathbf{N} \quad \mathbf{D} \mathbf{I}$ X.
Auguft the twentieth, at midnight, the fun's meridian altitude by Mr. Harvey, $\quad 2^{\circ} 25^{\prime} 00^{\prime \prime}$. Dip - $3 \quad 49$
221 II
Semidiameter +1552
Altituds of the Sun's center $237 \quad 3$
Co. Declin. 77 31 26
App. Latitude 80. 829
Refr. by the tables $\quad 16 \quad 44$
True Latitude 79 5I 45
Hakluyt's Head-land SBE
Cloven.Cliff - - - EBS ${ }^{\frac{1}{2}} \mathrm{~S}$
Variation - - - $19^{\circ} 30^{\prime} \mathrm{S}$.

It may not be improper to mention here that Baffin, in 1613, made an obfervation of the refraction when the fun was in the horizon, in latitude $78^{\circ} 46^{\prime}$, which alfo agrees exactly with Dr. Bradley's tables. It may therefore be prefumed that the refractions in the higher latitudes follow the fame law as in thefe.

Specific Gravity of Ice, tried by Dr. Irving.

A piece of the moft denfe ice he could find, being immerfed in fnow water, thermometer thirty-four degrees,fourteen fifteenth parts funk under the furface of the water.

In brandy juft proof, it barely floated: in rectified fpirits of wine it fell to the bottom at once, and diffolved immediately.

September the fourth, at two in the afternoon, we founded with all the lines, above eight hundred fathom. Some time before the laft line was out, we perceived a flack, and that it did not run off near fo quick as before. When we got the lines in again, the firft coil came in very eafily, and twenty fathom of the next, after which it took a great ftrain to move the lead; a mark was put on at the place where the weight was perceived, and the line meafured, by which the depth was found to be fix hundred and eighty-three fathoms. The lead weighed above one hundred and fifty pounds, and had funk, as appeared by the line, near ten feet into the ground, which was a very fine blue foft clay. A bottle fitted properly by Y Dr.

$$
\text { A P P E N D } 1 \text { X. }
$$

Dr. Itving (none of thofe fent out having given fatisfaction) was let down, faftened to the line, about two fathom from the lead. A thermometer plunged into the water from the bottom flood at forty degrees:-in water from the furfice at fifty-five degrees;--in the Chade, the heat of the air was fixty-fix degrees.

Experiments to find the Temperature of the Water at different Depths, made with Lord Charles Cavendilh's Thermometer.

$\begin{gathered} \text { Day of ric } \\ \text { Mouth. } \end{gathered}$	$\begin{aligned} & \text { Depth in Farthom: } \\ & \text { to which it was } \\ & \text { funk. } \end{aligned}$	Temperature of the Water as hewn by the Intrument.	Correction tor Compreflion and unequal Exp:anfion of Spirits.	$\left\|\begin{array}{cc} \text { Tcmperature } & \text { of } \\ \text { the Sea at the } \\ \text { greatent } & \text { Depth } \\ \text { to which it was } \\ \text { funk, corrected } \\ \text { for Coonpreffion } \\ \text { and Expanfiou. } \end{array}\right\|$	$\begin{gathered} \text { Heat of the } \\ \text { Air. } \end{gathered}$
		-	-	-	-
June 20	780	15	11	26	$48 \frac{8}{2}$
30 A.M.	118	30	1	31	$40 \frac{1}{2}$
P.M.	115	33	0	33	44 ${ }^{\frac{3}{4}}$
Auguft 31	673	22	10	32	$59 \frac{1}{2}$

It appears from the Experiment of July ift, in which the Inftrument was compared with Fahrenheit's Thermoizeter at different Heats, that the Experiment cannot be depended on to lefs than two or three Degrees, as the Refults drawn from the different Comparifons would differ by about five Degrees.

Experiments to determine the Temperature of the Watcr at different Depths of the Sea, and Quantity of Salt it contains; made with the Bottle fitted by Dr. Irving. A Meafure, containing 29 Ounces 59 Grains of pure Snow-water, was ufed as a Standard; Thermometer 59°, Barometer $3^{\circ}, 06$.

Sea water taken up at the back of Yarmouth Sands, was in the following ratio to diftilled water:

$$
\begin{aligned}
& \text { which is, as 10192: 10477,7; or, as } 1: 1,02803 \text {. }
\end{aligned}
$$ The quantity of dry falt produced from the above water, was 13 dwts. 15 grs.; it appears, therefore, that fea-water contains more air than diftilled water.

The refults of the experiments made with Lord Charles Cavendilh's thermometer, and thofe with the bottle fitted by Dr. Irving, differ materially as to the temperature of the fea at great depths; I. hall give an account, therefore, of the precautions ufed by Dr. Irving to prevent the temperature from being altered; as well as of the allowance made by Mr. Cavendifh for compreflion, as they communicated them to me.

The following is the account of the precautions takenby Dr. Irving to prevent the temperature of the water being changed in bringing up from the bottom:
> " The bottle had a coating of wool, three inches thick, " which was wrapped up in an oiled fkin , and let into a " leather purfe, and the whole inclofed in a weh-pitched " canvafs-bag, firmly tied to the mouth of the bottle; fo " that not a drop of water could penetrate to its furface. " A bit of lead fhaped like a cone, with its bafe downwards " and a cord fixed to its fmall end, was put into the bottle; " and a piece of valve leather, with half a dozen flips of " thin bladder, were ftrung on the cord, which, when " pulled, effectually corked the bottle in the infide."

The following is Mr. Cavendih's account of the corrections to be made for Lord Charles Cavendifh's thermometer.
> " The Thermometer ufed in thefe experiments is fully "defcribed in the Philofophical Tranfactions, Vol. L. Page " 308 ; fo that I imagine it is unneceffary to mention it " here. But fince the publication of that volume, the late " Mr. Canton difcovered, that Spirits of wine and other " fluids are compreffible; which muft make the thermometer. " appear to have been colder than it really was, and renders " a correction neceffary on that account. There is another "-fmaller correction neceffary, owing to the expanfion of " ipirits of wine by any given number of degrees of " Fahrenheit's thermometer being greater in the higher " degrees than the lower. As the method of computing " thefe two corrections is not explained in that paper, it " may be proper juft to mention the rule which was made " ufe of in doing it.".

"In adjufting the degrees on the fcale of this therman " meter, the tube was. intirely full of Mercury, or the " Mercury ftood at no degrees on the fcale, when its real heat " was 65° of Fahrenheit. Let the bulk of the Mercury con" tained at that time in the cylinder be called M, and that " of the fpirits, S ; let the expanfion of firits of wine by " 1° of Fahrenheit, about the heat of 65°, be to its whole "bulk,

A PP EN DI X.

 "bulk at that heat, as s to $\mathbf{1}$; and let its expanfion by one " degree at any other heat, as $65^{\circ}-x$, be to its bulk at 65°, " as $s \times \overline{1-d x}$ to 1 ; let the expanfion of Mercury by one " degree of heat be to its bulk at 65°, as m to \mathbf{x}; and let " $\frac{s_{1}+M m}{s s}$ be called G; let the compreflion of fpirits of " wine by the preflure of 100 fathom of fea-water, "when the heat of the firits is nearly the fame as " that of the feal at the depth to which the thermo" meter was let down, be to its bulk at 65°, as \mathbf{C} to \mathbf{I}; " the compreflion of the Mercury is fo finall that it may "be neglected; let the thermometer be let down \mathbf{N} " hundred fathom, and when brought up and put into water " of $65^{\circ}-\mathrm{F}$ degrees of heat let the Mercury in the tube "ftand at E degrees; consequently the heat, as Shewn by " the thermometer, is $65^{\circ}-\mathrm{F}-\mathrm{E}$: and let the real heat of " the fa at the depth to which it was funk be $65-x$ degrees; " then $65^{\circ}-x=65^{\circ}-\mathrm{F}-\mathrm{E}+\frac{\mathrm{CN}}{\mathrm{si}}-\frac{\mathrm{E} d \times \overline{\mathrm{E}+\mathrm{F}+x}}{2 \mathrm{G}}+\frac{\mathrm{CN} d x \overline{+x}}{2 \mathrm{G}}$. "In this thermometer $S=1160 ; M=97$; the expanfion of " the fpirits ufed in making it by 1° at the heat of 65°, was " found to be $\frac{1}{1786}$ of their bulk at that heat; that is $s=$ " $\frac{1}{1786} ; m=\frac{1}{11500}$; therefore $G=1,013$. From M. DeLuc's " experiments* it appears, that the expansion of Spirits of " wine by 1° at any degree of heat, as $65^{\circ}-x$, is to its " expansion by I° at 65°, nearly as $I-\frac{x}{315}$ to 1 : there. " fore, $d=\frac{1}{315}$. The compreffibility of the fpirits used for " " this thermometer at the heat of 58°, was found to be[^0]
A P P E N D I X.

" exaelly the fame as Mr. Canton determines it to be at that
" heat ; and therefore its compreflibility at all other degrecs " of heat is fuppofed to be the fame as he makes it. Ac" cording to his experiments ", the compreffion of fpirits of " wine by the prefliure of $29^{\frac{1}{2}}$ inches of Mercury at the " heat of 32°, id eff, nearly the heat of the fea in thefe ex" perimenis, is $59 \frac{1}{4}$ millionth parts of its bulk at that heat ; " therefore $\frac{\mathrm{C}}{5 \mathrm{G}}=\mathrm{I}, 9$ and $65-x=65-\mathrm{F}-\mathrm{E}+\mathrm{N} \times$ " $1,9-\frac{\mathrm{E} \times \overline{E+F+x}}{6_{3} 8}+\frac{\mathrm{N} \times \frac{1,9 \times \overline{F+x}}{6_{3} 3^{8}} \text {." }}{}$

Observations made by Dr. Irving of the heat of the fea agitated by a gale of wind, and that of the atmofphere.

September the twelfth, the thermometer plunged into a wave of the fea, rofe to 62°; the heat of the atmofphere 50°.

This experiment was frequently repeated during the gale, and it gave nearly the fame difference. At night, when the weather became moderate, the heat of water 30 fathoms below the furface was 55°; the furface and the atmofphere were 54°.

September the twenty-fecond. The fea-water was 60°; the atmofphere, 59° : the wind at SW , a frefh gale.

> Pnilofophical Tranfactions, Vol. LIV, page 26I.

Observations for determining the height of a Mountain in Latitude $79^{\circ} 44^{\prime}$; by the Barometer, and Geometrical Meafurement.

- Obfervations taken by the Barometer, by Dr. Irving.

AUGUST the eighteenth, the day remarkably clear:
At 6^{h} in the morning, the barometer by the fea Iochen. fide flood at - - - - 30,040
The thermometer 50°
On the fummit of the mountain, about an hour and three quarters later than the firft obfervation below, - - - - - .28,266 Thermometer 42°
About an hour later at the fame place - - 28,258 Thermometer 42°
By the fea fide, where the firf obfervation was made, and about three hours later - - 30,032 Thermometer 44°

Height of the mountain calculated by M. De Luc from the firft obfervation - - - 1585 feet From the fecond obfervation - - 1592 Mean - - - $\quad \underset{\text { Means }}{ }$

Means ufed to afcertain the Height of the Mountain Geometrically.

A point was fixed upon, in the moft convenient place the ground would admir of between the fummit of the mountain (a well-defined object) and the fea fide; from hence, in a right line from the mountain, a flaff was placed at the fea fide, by a Theodolite made by Ramiden, with two telefcopes and double Vernier divifions. The initrument was carefully adjufted; firft, by levelling the ftand with a circular level, and afterwards the whole inftrument by the crofs levels. From hence (A) at right angles to the fation at the fea fide (C) and the top of the mountain (E), a bafe was meafured each way to (B) and (D) of eight lines of feventeen fathom each; in all, five hundred and forty-four yards. The divifions of both the Verniers were carefully examined, both at fetting off the fation by the fea fide, and thofe at the extremitics of each bafe, the fixed telefcope being kept directed to the fummit of the mountain, and the moveable one directed at right angles each way, both divifions of the Vernier coinciding exactly. Station ftaves were fixed perpendicular by the vertical hair of the telefcope. The altitude of the mountain was then taken with the vertical arch, as a means of dotecting any error in the obfervation, and was found to be Z

$$
\mathbb{S}^{\circ}
$$

$8^{\circ} 50^{\prime}$. The diftance not enabling me to take the depreffion of any particular part of the falf by the fea fide under the land on the other fide accurately, I fent a man to ftand clofe before it, and took the depreffion nearly to his eye, which was found to be $\mathrm{I}^{\circ} 54^{\prime}$. The inftrument was then removed to the ftation on the right (B). The inftrument being adjufted with the fame precautions as before, and the fixed telefcope pointing to the center ftation (A) ; the angle to the mountain was $84^{\circ} 5^{\prime}$, the angle to the ftation by the water fide (C) $294^{\circ} 44^{\prime}$. The inftrument was then removed to the ftation by the fea fide (C), the fame precautions ufed in adjufting, and the fixed telefcope pointing to the center (A) in one with the mountain, the angle to the ftaff on the right (B) was $24^{\circ} 44^{\prime}$. Intending to make the triangle BC D ifofceles, and imagining there might be fome little error from the unevennefs of the ground, I fet off on the theodolite an angle equal to the laft, having a perfon ready with a ftaff on the bafe line to fix it where that angle fhould interfect on looking through the telefcope; I found it cut cractly at the ftaff D $335^{\circ} \mathbf{1 6}^{\prime}$, and from thence concluded the meafure of the bafe to be exact. I then took the altitude of the mountain by the vertical arch $7^{\circ} 44^{\prime}$. I then removed the inftrument to the fation (D) to take the third angle; but from the badnefs of the ground, I could not place the inftrument exactly over the fpot where the ftaff ftood; from hence I took the third angle of the triangle; the fixed telcfcope pointing to (A) and the fame precau-

$$
A \quad P \quad P \quad E \quad N \quad D I X .
$$

tions of adjuftment being obferved, the angle to C came out $65^{\circ} \times 5^{\prime}$; lefs by one minute than it fhould have been. I then took from the fame place the angle to the mountain (E) $275^{\circ} \mathbf{r}^{\prime}$; more by one minute than the correfponding angle at the oppofite ftation (B): but the crrors correcting each other, the whole angle $C D E=150^{\circ} 14^{\prime}=$ the whole angle CBE.
By the triangle ABC, AC comes out $177 \mathrm{r}, 4$ feet:
By the triangle ABE, AE comes out 9265,0 feet:
Therefore the diftance $C E$ is - 11036,4 feet.
Angle of the mountain's elevation feen from C $7^{\circ} 44^{\prime}$:
Height of the mountain above \mathbf{C} - $\quad \mathbf{4 9 8 , 8}$ feet:

+ height of \mathbf{C} above the water's edge
5:
Height of the mountain above the water's edge 1503,8 feet.
I prefer this obfervation to the others, becaufe the three angles of the triangle ABC came out exactly 180 degrees by the obfervation. The diftance AC found by the computation, differed only four feet from that by the meafure; but, the ground being uneven, I did not depend upon the meafure, but took it merely as a check upon the operation, to detect an error, in cafe of any great difference.
The diftance found by the fimilar triangles BCE and CDE comes out - 11037 feet; The angle of the mountain's elevation feen
from A was - - $8^{\circ} 50^{\prime}$;
Hence the height of the mountain above
A was found - - 1439,8 fect:
Depreffion of \mathbf{C} feen from \mathbf{A} was $\mathbf{I}^{\circ} 54^{\prime}$;
Z 2 Hence

Hence the height of A above C is - 58,7 feet; Height of the mountain above C 1498,5 feet : + height of C above water's ctge - 5 ; Height of mountain above the level of the fea $1 \stackrel{\jmath}{ } 03,5$ feet; which differs from that found by the fingle angle three tenths of a foot.

I cannot account for the great difference between the geometrical meafure and the barometrical one according to M. De Luc's calculation, which amounts to 84,7 feet. I have no reafon to doubt the accuracy of Dr. Irving's obfervations, which were taken with great care. As to the geometrical meafure, the agreement of fo many triangles, each of which mult have detected even the fmalleft error, is the moft fatisfactory proof of its correctnefs. Since my return, I have tried both the theodolite and barometer, to difcover whether there was any fault in either, and find them upon trial, as I had always done before, very accurate.

Fig. II.

Fig. 1.

Observations for determining the Acceleration of the Peniulum.

Defrription of the Pendulum with which the Obfervations were made, by Mr. Cumming.
" 「HE apparatus with which the following experiments were made, was prepared for the voyage " with all the care which the fhortnefs of the time " would admit, and particular attention was paid to its " fimplicity. The pendulum was that which the late Mr. " George Graham had conftructed, to afcertain the exact "diftance between the center of motion and center of " ofcillation of a pendulum to vibrate feconds at London.
"The ball is a fphere of folid brafs, whofe diamcter is " three inches and ninety two hundredth parts of an inch; " and whofe weight is nine pounds and one quarter.
"The rod is a round ftecl wire, one tenth of an inch " thick, and is fo firmly ferewed into the ball, that it " cannot be unfcrewed by hand, nor the length of the " pendulum altered without the application of proper " inftruments for that purpofe, there being no adjufting. "fcrew as in clock-pendulums.
"The axis of the pendulum is of hard-tempered feel, " nearly two inches long, and moves on angular or knife" pivots, whofe edges are formed with great care, fo as to " lic exactly in the fame right line; the pivots are formed "s nearly to an angle of thirty-eight degrees from the edge " to the back; the tharpnefs of the edges is taken off, " and they are carefully rounded, fo that the lower parts " of both (on which the pendulum moves) form parts of " one continued cylinder, whofe diameter is rather lefs " than the two hundredth part of an inch.
" Thofe pivots move in angular notches made in two " pieces of hardened fteel, each a quarter of an inch thick ; " the notches are formed to an angle of one hundred " and twenty degrees, with their bottoms fomewhat " rounding, and formed fo that the whole length of the " pivot has an equal bearing in them; the ends or extremi" ties of the pivots are floped from the edges on which - 'hey move, towards the backs, or upper fide; and " two plates of hardened fteel are fcrewed againft the " angular notches in which the pivots move, fo as to " confine them always to the fame place in the notches, " and prevent fuch irregularities as might otherwife happen " if the fhoulders of the pivots fhould chance to touch.

[^1]$$
A \quad P \quad P \quad E \quad N \quad D \quad X .
$$
" fides fomewhat flattened) is fitted, without fhake, but " in fuch manner that it moves freely therein from back " to front, round a fteel pin which paffes horizontally "through it and the axis, that both the pivots may " have an equal bearing, and the pendulum may hang " truely perpendicular, without any tendency to bend its " rod, and by that means alter its time of vibration, even " though the axis be not accurately adjufted to a level " pofition : The error which might arife from accidental " friction on the above fuppofition, of an inaccurate " levelling of the axis, is obviated by means of the feel " plates againft which the very central point of the loweft " pivot mult in fuch cafe act.
" To the other end of the axis, is fcrewed a pair of " pallets, conftructed nearly on Mr. Graham's principle "of the dead-beat, but differing from it in having a " degree of recoil which tends to render the longer vibra" tions of the pendulum as quick as the fhorter: but " this precaution is the lefs neceflary, becaufe the weight " which keeps the machine in motion is fo adjufted, as " to make the angle of conftant vibrations as nearly as " poffible the fame with the angle of fcapement; that is, " to make the vibrations the fhortef, that will admit " of the wheel to cfcape the pallets: by this means, " if the oil applied Chould become glutinous, fo as to " diminifh the action of the wheel on the pendulum, or " if any other circumftance fhould happen to fhorten the
" arc
" ate of vibration of the pendulum, the weight which " keeps it in motion mult be increafed, till it is found juft " fufficient to keep the machine going; by which means " there is a certainty that the pendulum vibrates fimiliar " arcs in each experiment, even if the obferver fhould not " attend to that circumitance.
"The fwing-wheel is made of tempered fteel, and the " points of its tecth are left much thicker than they " ufually are in clocks, in order to avoid accidents; it " has thirty teeth, and carries with it a divided circle " which fhews feconds.
"On the axis of the fwing-wheel there is a pinion, on " which another wheel acts : and in the axis of this laft, " there is a fmall pulley, in the groove of which is applied " the line which keeps the machine going, by means of " a weight and counter-weight, in the manner defcribed "by Huygens in the eighth and eighteenth pages of his "Horoiogium ofcillatorium: this method is the fimpleft " of any for keeping the whecls in motion while the " weight is winding up, and is peculiarly advantageous "in fuch machines as this, which require frequent " winding: the weight applied to this machine was fix " ounces Troy, which with a defcent of thirty-two inches " kept it going for threc hours, with a vibration of three " degrees.

A. $\quad \mathbf{P} \quad \mathbf{P} \quad \mathbf{E} \quad \mathrm{N} \quad \mathrm{D} \quad \mathrm{I} \quad \mathrm{X}$.

"The whole is contained in a ftrong brafs frame, " fcrewed on the top of a three-legged wooden ftand, " three feet four inches high : the front legs extend three "feet eight inches in the direction of the vibration, and " the back leg extends three feet four inches from each of " the front legs, at which diftance the three legs are " fo connected at bottom, by horizontal rods, that " they cannot poffibly alter their relative pofition; by " thefe means the point of fufpenfion of the pendulum " is rendered much more immovable than could ise " done in any portable clock having a cafe of the ufual " dimenfions, without great trouble, and an apparatus ill " fuited for experiments of this nature.

[^2] " is made to vibrate till 60 on the fecond-circle comes to " the index, and is then to be held at the extremity of " its vibration by a trigger; on prefling which with the " fnger, the pendulum is difengaged in an inftant : hence " the vibrations mult be of equal extent in every experi" ment.
" The wooden ftand which fupports the pendulum is " fo confructed, that it forms an oblong fquare box, in " which the pendulum, with every part of its apparatus, " is with great facility and expedition packed; fo fecurely " that no part can receive damage; and the whole is fo " portable, that it may with eafe be carried on a man's " fhoulder to any acceffible place.
" This pendulum immediately before the voyage was "compared with a well-regulated eight-day clock, and in " twelve hours its beat did not differ fenfibly from that of " the clock; Fahrenheit's thermometer being then at 60°."

July the fixteenth the Pendulum and the Equatorial Infrument were landed on a fmall rocky ifland in latitude $79^{\circ} 50^{\prime} \mathrm{N}$; and the pendulum being carefully fet up in a fmall tent erected for that purpofe, and its pofition truly adjufted, a thermometer was fufpended on the hook behind the pendulum-rod; and the pendulum being re-

[^3]\[

$$
\begin{array}{llllllll}
\text { A } & \mathrm{P} & \mathrm{P} & \mathrm{E} & \mathrm{~N} & \mathrm{D} & \mathrm{I} & \mathbf{X} .
\end{array}
$$
\]

peatedly put in motion, it was found to ftop, till a murket bullet and a half was added to the weight, which was found fufficient to keep it in motion; when it was thus found to continue its vibration, it was locked by the trigger at $60^{\prime \prime}$. The equatorial inftrument was fet up on a bafis of folid rock, and being in this cafe to be ufed only as a tranfit inftrument, no attempt was made to adjuft it either to the latitude or meridian of the place; but the azimuth and equatorial circles being truely levelled, the telefcope was directed towards the fun, and fo elevated that it fhould pafs as near as poffible through the middle of the field. The inftrument being thus prepared, the Weft limb of the fun was obferved to touch the Eaft fide of the vertical wire in the telefcope at $5^{\text {h }} 19^{\prime} 28^{\prime \prime}$ in the afternoon, by the watch; and at the fame inftant the pendulum was unlocked, and kept vibrating till after the fun had completed its revolution, and its Weft limb was again feen to touch the fame fide of the vertical wire.

From the vertical pofition of the wire and the time of the day, the fun's morion had a degree of obliquity with refpect to the wire, which muft occafion its diameter to take a longer time in pafling than if it croffed the wire at right angles: this pofition of the wire, together with the change of the fun's declination, prolong the time of the fun's coming again to the wire; fo that there was an interval of ewenty-four hours, forty-nine feconds and a half, from the time that the fun's limb touched the wire on the fixteenth day of July, to

A a 2
the the time of its return to the fame wire on the feventeenth day*.

During the time of this revolution of the fun, an account was kept of the thermometer, and feveral comparifons made of the rate of the going of the pendulum with my fecondwatch : in making which, I always took the time by the watch, when the peirdulum fhewed $60^{\prime \prime}$: thefe comparifons were chiefly intended to prevent a miftake of a whole minute in eftimating the acceleration of the pendulum, which only flewed feconds, having no index for minutes :

A P P E N D 1 X.

minutes: and as a candid inveftigation of a matter that had fo much engaged the attention of the beft philofophers and mathematicians was the only object of my wifh, I judged it beft, in the firft place, to give the obfervations juft as they were made, regukuly numbered, that they may be readily referred to from the following tables, in which the order of the original obfervations is varied, according to the periods of time between each pair of obfervations. By thus giving the foundations on which thr conclufions depend, all perfons, who chufe it, may traes and examine every ftep towards the conclufion, and by that means be enabled to detect any error that may have crept into the operation; or draw fuch further conclufions as their ingenuity may fuggeft, and the materials here given may warrant.

To find the time of the fun's diancter paffing a vertical lair. (Cotes, Eflim. Error. Theor. 21.)
As the product of $\left\{\begin{array}{l}\text { Cofine declination } \\ \text { Colinc } S .\end{array}\right.$ Colinc S. - Comp. Ar. 0,00778 $\begin{array}{lllr}\text { Is to the product of Radius and } \mathrm{Cof} \text {. Altitude ; } & \text { - } & \text { - } & 19,97298 \\ \text { So is the fun's diameter in time } 135^{\prime \prime}, 6, & - & 2,13226\end{array}$

Although the obfervation of the fun's diameter paffing the wire has no immediate connection with our conclufion; yct the agreement between the calculated and the obferved time of its pafling, ferves to fhow that the proper allowance was made forthe obliquity of the direction in which it paffed the wire.

A P P E N D I X.

$\begin{gathered} \text { Day of the } \\ \text { Month. } \end{gathered}$	N°	$\begin{gathered} \text { Time by the } \\ \text { Watch. } \end{gathered}$	Time by the Pendulum.	Thermometer.	Remarks.
		${ }^{\text {h }}$, "	"		
July 16th $\}$ P. M.	1	51928	60	$50\{$	Equatorial fixed.
	2	63000		49 ${ }^{\frac{1}{2}}$	
	3 4	7 7 8 8 0000000	-	50 49	
	4	8 8 8 30	\cdot.	49 49	
	6	90000	-	45	
	7	93000	- •	45	
	8	100000	- \cdot	45	
	9	110000	- \cdot	45	
	10	113000	- .	$48 \frac{1}{2}$	
	11	120000	- \cdot	$4^{8 \frac{1}{2}}$	
	12	123000	${ }^{\circ}$	46	
	13	123914	60	51	
17th A. M.	14	1 1 2 00000	60	$50 \frac{1}{2}$	
	15	255	60	49	
	16	50000	-	45	
	17	60000	- .	44	
	18	70000	- \cdot	$49{ }^{\frac{1}{2}}$	
	19	80000	- \cdot	47	
	20	90000		$49 \frac{1}{2}$	
	21	11223	60	581	
	22	120020	60	56	
P. M.	23	10000	- \cdot		
	24	23000	-	$52 \frac{1}{2}$	
	25	33000	-	56	
	26	$\begin{array}{ccc}4 & 00 & 00 \\ 4 & 46 & 10 \frac{1}{2}\end{array}$	${ }_{60}{ }^{\circ}$	$55{ }^{5}$	
		$4 \begin{array}{llll}46 & 102\end{array}$		52	Tranfit of
	28	$\left[\begin{array}{llll}5 & 19 & 24\end{array}\right]$	4 $\frac{1}{2}$	$\{$	the Sun's Weft limb.
	29	- .	25	$\{$	Tranfit of the Sun's Eaft limb.
	30	5249	60	51	

$$
A \quad P \quad P \cdot E \quad N \quad D \quad I \quad X
$$

It has already been faid that the watch was ufed only to prevent an error of wobole minutes, in eftimating the time gained by the pendulum in twenty-four hours; the exact period of twenty-four hours being determined by the revolution of the fun.

In order to obtain the acceleration of the pendulum, the original obfervations are transferred from the foregoing table, to that which follows, for the convenience of arranging them according to the length of the intervals, beginning with thofe of the Chorteft duration: fo that the conclufion from each period becomes a check upon thore that follow.

In this table the firfl column refers to the original obfervations, from which a conclufion is here to be drawn; thus, in the firft line, we find 27 - 30 , by which is meant that a couclufion is to be drawn in this line from obfervations 27 and 30 , that is, from the acceleration of the pendulum from four hours, forty-fix minutes, ten feconds and a half, to five hours, twenty-four minutes nine feconds in the afternoon, July 17.

The fecond column expreffes the interval of time by the watch, between each pair of obfervations referred to in the firft.

The third column fhews how much the pendulum gained on the watch, in each period exprefled in the fecond.

The fourth column hews the mean height of the Thermometer for each period.

The fifth column expreffes the difference between this mean height, and 60°, the height of the thermometer at London when the penduium was adjufted.

The fixth column thews the contraction of the pendulum rod by the degree of cold exprefled in the fifth column, according to Mr. Smeaton's experiments, publifhed in $\mathrm{N}^{\circ} 79$ of the Philofophical 'Tranfactions for the year 1754.

The feventh column: hews how much this contraction would make the pendulum gain during each period of the fecond column.

The eighth coiumn fhews how much the pendulum would have gained on the watch in each period, if the thermometer had remained at 60°, and therefore no contraction of the pendulum-rod had taken place.

The ninth column hews how much the watch ought to have loft in each period, allowing it to have loft uniformly at the rate of four feconds in twenty-four hours, as was obferved by the tranfit.

The tenth column fhews how much the pendulum would have gained on the watch, in each period; allowing for its lofing at the rate of four feconds in twenty-four hours, and fuppofing the thermometer to have remained conftantly at 60°.

The eleventh column fhews how much the pendulum would gain per hour according to the rate of acceleration given in the tenth column for each period.

TABLE

ined by tch, cor for th meter.	Time 9 Time loit by the Watch, accord- ing to its Rate of going, as de termined by the tranfit.	10 Time gained by the Pendulum on the Mean Time, alowing for the Thermometer, Watch's lofing.	$\begin{gathered} 11 \\ \text { Ratio of Acce- } \\ \text { leration per } \\ \text { Hour. } \end{gathered}$
	"	"	"
44	0,10	1,34	2,12
97	0, 15	2,82	2,93
72	-0,37	4,35	1,92
15	0,78	8,37	1,75
56	0,90	9,66	1,79
13	0,95	11,18	1,95
59	1,05	12,54	1,97
94	1,2I	11,73	1,60
95	1,34	43,61	5,37
02	1,51	46,51	5,12
67	1,60	16,07	1,67
74	1,72	48,02	4,62
69	1,88	50,81	4,47
22	2,30	54,92	3,96
62	2,41	56,2I	3,88
39	2,68	59,71	3,70
78	2,78	61,00	3,64
70	2,94	59,76	3,37
67	2,11	62,56	3,34
92	3,90	71,02	3,02
28	4,01	72,27	2.02

				T A	$B \quad \mathrm{~L}$
Obfervations with the Pendulum from the 16 th to					
$\begin{gathered} \text { Obervations } \\ \text { Oeferred to. } \end{gathered}$	$\stackrel{2}{\text { Duration in }}$ Duration in Tine by 保 the Tiratch．	Seconds gained hy the Pendu． lanmon the Watth．	$\left\|\begin{array}{c}4 \\ \text { Mean } \\ \text { Height } \\ \text { of the } \\ \text { Ther－} \\ \text { more－} \\ \text { ter．}\end{array}\right\|$	Differcnce between the Height of the Thermometer at the Time of adjuft－ ment at London， and at the Time of Oblervation．	6Contraction of of the P cendulun rod rol the cold，in parts of an Inch．$\|$
$\square$$27-30$$21=22$$13-15$$22-27$$22-30$$21-27$	H ${ }^{\prime \prime}$	＂	－	－	
	－ $375^{8 \frac{1}{2}}$	$1 \frac{1}{2}$	52	83	，0020
	－ 5757	3	57		，0007
	21555	5		$\begin{gathered} 3 \\ 10 \frac{3}{4} \end{gathered}$	，0027
	$4455^{\frac{1}{2}}$	$9^{\frac{1}{2}}$	$53^{\frac{3}{4}}$	61	，0015
		11	53	7	，0017
	$54347 \frac{1}{2}$	$12 \frac{1}{2}$	$54 \frac{1}{2}$	$5^{\frac{1}{2}}$	，0014
$21-30$	62146	14	54震	$5^{\frac{1}{2}}$	，0014
1－13	71946	14	$47 \frac{1}{2}$	$12 \frac{1}{2}$	$, 003 \mathbf{i}$
$15-21$	$8 \quad 714$	46	$48 \frac{3}{4}$	11 年	,0028
$15-22$	9511	49	$50^{\frac{3}{4}}$	1248	，0023
$1-15$	93541	19	4^{8}		，0030
$13-21$	$\begin{array}{llll}10 & 23 & 9 \\ 11 & 21 & 6\end{array}$	5 I	$49 \frac{1}{2}$	1 $10 \frac{1}{2}$	，0025
$1 \begin{aligned} & 13-22 \\ & 15-27\end{aligned}$	$135151 \frac{1}{2}$	$58 \frac{1}{2}$	52	8	
15 － 27	$\begin{array}{cccc}14 & 29 & 0 \\ 16 & 6 & 56 \frac{1}{2}\end{array}$	00	$5{ }^{1 \frac{3}{4}}$	$8 \frac{1}{4}$	，0021
$13-27$		$63 \frac{1}{2}$	54	6	，0015
$13-30$	164455	65	$53^{\frac{3}{4}}$	6 $11 \frac{1}{4}$	，0016
$1-21$	174255	6568			
$1-22$	184052			$10 \frac{3}{4}$	，0027
$1-27$	$232642 \frac{1}{2}$	$77 \frac{1}{2}$79	$50 \frac{5}{2}$5050	$9 \frac{1}{2}$ 9	$\begin{aligned} & , 0024 \\ & , 0024 \\ & \hline \end{aligned}$
$1-30$	24441				

um from the 16 th to the 18 th of July, 1773, in Latitude $79^{\circ} 50^{\prime} \mathrm{N}$.

between ght of the meter at e of adjuftLondon, the Time of ation.	6 Contraction of the Pendulum rod by the cold, in parts of an Inch.	7 Time gained on the Watch by the contraction of the Pendulunt rod.	8 Time gained by the Pendulum on the Watch, corrected for the Thermoneter.	Time loft by the Watch, according to its Rate of going, as dctermined by the tranfit.	10 Time gained by the Pendulum on the Mean Time, allowing for the 'Thermometer, and Rate of the Watch's lofing.	11 Ratio of Acceleration per Hour.
		/	11	"	"	/
	,0020	0,06	1,44	0,10	1,34	2,12
	,0007	0,03	2,97	0,15	2,82	2,93
$0 \frac{3}{4}$,0027	0,28	4,72	0,37	4.35	1,92
67	,0015	0,35	9,15	0,78	8,37	1,75
\%	,0017	0,44	10,56	0,90	9,66	1.79
$5^{\frac{1}{2}}$,0014	0,37	12,13	0,95	11,18	1,95
$5^{\frac{1}{2}}$,0014	0,41	13.59	1,05	12,54	I,97
$2 \frac{1}{2}$,0031	1,06	12,94	1,2I	1 1,73	1,60
$\frac{1}{1}$,0028	1,05	44,95	1,34	43,61	5,37
$9{ }_{4}^{1}$,0023	0,93	48,02	1,51	46,51	5,12
2	,0030	1,33	17,67	1,60	16,07	1,67
$0 \frac{1}{2}$,0026	1,26	49,74	1,72	48,02	4,62
0	,0025	1,31	52,69	1,88	50,81	4,47
8	,0020	1,28	57,22	2,30	54,92	3,96
$8 \frac{1}{4}$,002 I	1,38	58,62	2,41	56,2 1	3,88
6	,0015	1,11	62,39	2,68	59,71	3,70
6雨	,0016	1,22	63,78	2,78	61,00	3,04
$1 \frac{1}{4}$,0028	2,30	62,70	2,94	59,76	3,37
$0 \frac{3}{4}$,0027	2,33	65,67	3, 11	62,56	3,34
$9^{\frac{1}{2}}$,0024	2,58	74,92	3,90	71,02	3,02
9 $\frac{3}{4}$,0024	2,72	76,28	4,01	72,27	2.00

B b

A P P E N D I X.

It appears by the original obfervations that the pendu. lum began its vibrations at $60^{\prime \prime}$, the inftant in which the firft limb of the fun was obferved to touch the fide of the vertical wire in the telefcope of the Equatorial, that is, at five hours, nineteen minutes, twenty-cight feconds in the afternoon by the watch, on the 16 th of July; and by every comparifon of the pendulum with the watch, that the pendulum was conftantly gaining on the watch, and in a period of twenty-four hours, four minutes, forty-one feconds, had gained on the watch feventynine feconds; and when the revolution of the fun was completed, it appeared, that the watch had loft four feconds in the exact period of twenty-four hours; therefore, if four feconds loft by the watch, be fubtracted from feventy-nine, the time gained by the pendulum on the watch, it will leave feventy-five feconds for the time gained by the pendulum on the mean, or true time, no deduction being here made for the contraction of the pen-dulum-rod by the cold.

The odd fifteen feconds are determined by obferving, that the pendulum fhewed four feconds and a half exactly when the fun had again returned to the vertical wire; fo that this period is determined wholly by the fun, and totally independent of the watch; but as the watch is found by the fame obfervation to have loft only four feconds, recourfe is had to the intermediate comparifons of it with the pendulum, which clearly fhow that the

C c
pendulum
pendulum had gained one whole minute, together with the fifteen feconds determined by the pendulum and the revolution of the fun: and although it appears by the eleventh column of the foregoing table that the watch did not lofe uniformly at the rate of four feconds in twentyfour hours, yet its mean rate leaves as little doubt with regard to the whole minute gained by the pendulum, as if its going had been perfectly uniform during the whole time. For, if from the fum of all the periods in the fecond column, and of all the accelerations in the tenth, a mean rate be taken, it makes the acceleration of the pendulum on the watch to be 80 ", 79 in twenty-four hours, which differs from the acceleration obferved by the revolution of the fun only $5^{\prime \prime}, 75$; and from the rate of going of the watch, determined by the revolution of the fun, only $\mathbf{1}^{\prime \prime}, 79$: hence there can be no pofible room to fuppofe an error of a whole minute.

Although the period of twenty-four hours, and the rate of going of the watch for that time, are very accurately determined by the revolution of the fun; it may not be improper here to take notice, that from a mean of fix altitudes of the fun, taken by a very good aftronomical quadrant of eighteen inches radius, the watch was computed to have loft $5^{\prime \prime}$, in twenty-four hours, which. differs from the rate given by the rerolution of the fun only $\mathbf{1}^{\prime \prime} \frac{1}{2}$; this may ferve to thew how far the mean of a great number of obfervations by the fame obferver and

$$
\text { A P P E N D } 1
$$

infrument may be relied on, when there is no other obfervation to check or corroborate.

It may alfo be pioper here to mention, that the time by the watch was not obferved at the inftant that the fun had returned to the vertical wire, and at which the pendulum was obferved to fhow $4^{\frac{1}{2}}$ feconds, my attention being wholly engaged in obferving the pendulum. The watch was found to have loft $77^{\prime \prime}$ \& by the pendulum, in twenty-three hours, twenty-fix minutes, forty-two feconds and a half. An allowance according to this rate for $34^{\prime} 4^{\prime \prime}$ (the fupplement of the laft obfervation by the watch to the time of the fun's paflage when the pendulum fhewed $4{ }^{\prime \prime} \frac{1}{1}$) amounts to $\mathbf{I}^{\prime \prime}$.

From whence it follows, that the Weft limb of the fun touched the Eaft fide of the vertical hair at five hours, twenty minutes, thirteen feconds and a half, by the watch; which had therefore loft four feconds in twentyfour hours.

As the comparifon of the watch and the pendulum in this one inflance is not from actual obfervation, at the infant, but fuppofes that the watch had kept for thirtyfour minutes to the fame rate of lofing at which it had been obferved to lofe for nearly twenty-four hours immediately preceding; the time by the watch tbus found is inferted in the table of obfervations withiu Cc 2 hooks
hooks to diftinguifh it, that every perfon may have an opportunity of judging how far it ought to be admitted. Upon the whole it appears, that by the revolution of the fun, corrected for the oblique direction in which it paffed the vertical wire in the telefcope, the change of declination and the equation from the time of its Weft limb touching the wire on the 16 th, to the time of its touching the fame wire on the 17th of July, that the pendulum gained feventy-five feconds in twenty-four hours. But as the mean height of the thermometer for the time of this experiment was $9^{\circ} \frac{3}{4}$ lower than 60°, the height at which it was at London when the pendulum was compared with the clock; the pendulum ought on this account, according to Mr. Smeaton's experiments, to have been contracted $\operatorname{ros}^{24} \sigma^{2}$ of on inch, and to have gained on that account $2,{ }^{\prime \prime} 72$; fo that the acceleaztion of the pendulum arifing only from the difference between the latitude of London and $79^{\circ} 50^{\prime} \mathrm{N}$, is $72^{\prime \prime}, 28$.

The pendulum was continued in motion, and the comiparifons between it and the watch made as before, with intention to take a fecond revolution of the fun: but at eleven o'clock next morning, the wind being fair, and the weather cloudy fo as to afford no profpect of feeing the fun in the afternoon, the inftruments were taken on board, and the Chips failed immediately.

Auguft

$$
A \quad P \quad P \quad E \quad N \quad D \quad I \quad X .
$$

Auguft the fourteenth, we landed the Pendulum, Equatorial Inftrument, and aftronomical Quadrant on Smeerenberg Point, latitude $79^{\circ} 44^{\prime} \mathrm{N}$; and fet up the pendulum in every refpect as formerly defcribed. The equatorial and quadrant were alfo fet up, and prepared for obfervation.

The pendulum was fet a going when it was exactly $6^{\text {h }} 0^{\prime} 0^{\prime \prime}$ P. M. by my watch, from which time it was frequently compared with the watch, till $5^{\mathrm{h}} 50^{\prime}$ A. M. the $15^{\text {th }}$; when the pendulum fopped. It was again fet a going with the additional weight which had formerly been ufed, when the watch was exactly $6^{\mathrm{h}} 00^{\prime} 00^{\prime \prime}$, and continued going from that time till after five in the morning of the 18 th, in which time the thermometer was obferved, and the watch and pendulun compared, as in the fullowing table: many altitudes of the fun were taken with the quadrant, on the 15 th A. M. but without any further opportunity till the 18 th A. M. when they were repeated to afcertain the rate of the watch's lofing.

A P P E N DIX.

$\begin{aligned} & \text { Day of the } \\ & \text { Month. } \end{aligned}$	N°	$\begin{aligned} & \text { Time by the } \\ & \text { Watch. } \end{aligned}$	Time by the Pendulum.	Thermometer.	Remarks.
		h $1 /$	"	。	
$\left.\left\lvert\, \begin{array}{c} \text { Aug. inth, } \\ \text { P. M. } \end{array}\right.\right\}$	1	60000	60	44	
	2	$72953 \frac{1}{2}$	60	43	
	3	$12 \begin{array}{llll}13 & 30 \frac{1}{2}\end{array}$	60	40	
15th, A. M.	4	50009	60	36	The Pendulum
	5	60000	60	35	fet agoing with the additional
P. M.	6	$20922 \frac{1}{2}$	60	$\left\{\begin{array}{l}36 \\ 36\end{array}\right.$	Weight.
	7	85949	60	37	
	8	20000		$\{36$	
				$\left\{3^{5 \frac{1}{2}}\right.$	
	9	30000	-	37	
	10	40000	-	36	
	11	50000	-	37	
	12	60000	-	36!	
	13	70000	-	37	
	14	80000	-	37	
	15	90000	-	37	
	16	100000	-	37	
	17	110000	-	37	
Noon	18	120000	-	37	
P. M.	19	10000	-	37	
	20	2 O1 $39 \frac{1}{2}$	60	37	
	21	3 O1 34:	60	37	

A P P E N D I X

The

The following table is conftructed in every rcfpect the fame as that defcribed page 16_{3}, and differs from it only in having an additional column, in which is given the rate of acceleration of the Pendulum in twenty-four hours, according to the time by the watch, corrected by a mean of fixteen altitudes of the fun taken on the 15 th, and a mean of thirty-nine altitudes on the 18 th of Auguft, from which the watch appears to have loft, during the interval of the three days, at the rate of $23^{\prime \prime}, 7$ per day. The rate of acceleration of the pendulum in twenty-four hours being thus determined, agreeable to the acceleration obferved in each of the laft eight periods, being thofe of the longeft duration; and thefe obfervations being already corrected for the thermometer; a mean is taken from the whole as the true rate of acceleration of the pendulum on mean time in twenty-four hours.

TABLE

$\begin{array}{lllllll}\mathbf{P} & \mathbf{E} & \mathbf{N} & \mathrm{D} & \mathrm{I} & \text { X. }\end{array}$						
$\begin{array}{lllll}\mathbf{A} & \mathbf{B} & \mathbf{L} & \mathrm{E} & {[B .]}\end{array}$						
om the 14th to the 16th of Auguft, 1773, in Latitude $79^{\circ} 44^{\prime} \mathrm{N}$.						
$\begin{gathered} \text { Oion of of } \\ \text { Pentulumn } \\ \text { by the } \\ \text { in parts } \\ \text { n Inch. } \end{gathered}$		8 Time guned by the i^{2} chdulum 0 the Watch, cor rected for the Thernometer.	9 Time bat by the Warth accord- iny to ist Rate of ofing, as de. terninene by he Altudes of the Sun.			I2 Ratio of acceleration of the Pendulumn on the MeanTimein'「wcuty- Four Hours.
	/	"	"	"	"	
1057	0,26	4,74	0,99	3,75	3,75	
1042	0,25	6,25	1,47	4,78	3,19	
050	-, 54	11,96	2,31	9,65	4, II	
050	1,25	24,75	5,63	19,12	3,4 5	
49	1,41	28,09	6,14	21,95	3,52	
6	2,26	35,24	8,04	27,20	3,34	
54	2,70	48,30	10,86	37,44	3,41	
6	4,17	55,83	14,79	41,04	2,73	- ${ }^{\prime \prime}$
- 54	5,75 5,86	91,75	22,71	69,04	3,00	- : 72,07
2055	5,86	90,64	22,73	67,91	2,95	- - 70,79
د063	6,60	96,40	23.55	72,85	3,05	- - 73,24
2054	6,00	95,50	23.72	71,78	2,99	- - 71,71
2057	6,75	101,25	24.59	76,66	3,08	- $\quad 73,98$
0055	6,49	102,5 ${ }^{\text {I }}$	24,43	78,08	3,07	- $\quad 73,86$
0055	12,20	192,30	45,49	146,8I	3,06	- $\quad 73,57$
0056	16,67	263,83	63,20	200,63	3,13	${ }^{\text {- }}$ Mean ${ }^{75,23}$

$$
\text { A } \mathbf{P} \quad \mathbf{P} E \quad \mathbf{N} \quad \mathbf{D} \quad \mathrm{I} \text { X. }
$$

From the refult of this table, the time gained by the pendulum in twenty-four hours of mean time, after deducting the acceleration on account of the contraction of its rod by the cold, is feventy-three feconds, and fix hundredths of a fecond; which is one fecond, and two hundredths of a fecond more than by the refult of the obfervations of the 16 th and 17 th of July. But although the rate of going of the watch from the 15 th to the 18 th days of Auguft, was afcertained by a mean of fifty-five altitudes of the fun, I am inclined to give the preference to the obfervations of July, where the exact period of twenty-four hours was determined by a revolution of the fun, obferved with a telefcope whofe magnifying power was fixty. And notwithftanding that the height of the thermometer during the time of obfervation in Auguft was remarkably uniform, and that the watch was found by the comparions with the pendulum to have loft during the whole time as uniformly as could reafonably be expected; yet a fmall irregularity in its rate of going near the beginning or end of the obfervation, might occafion the difference of this refult from the former.

As the time corrected by the mean of fix altitudes of the fun taken on the 16 th and 17 th July, differed only one fecond and a half from that obferved by the revolution of the fun, there is reafon to believe that the period of three days, determined by a mean of fifty-five altitudes, taken on the 15 th and 18 th of Auguft, might be relied on to one fecond at moft : and that, although the conclufion from the obfervations of Auguft are not fo decifive, on account of its depending in fome fmall degree on the regularity of the watch, it frongly corroborates the conclufion from the obfervations in July, as it proves that the acceleration of the pendulum proceeded from an uniform caufe, which produced equal effects in each cafe. This is yet further proved, by comparing the pendulum when it returned to London with the fame clock with which it had been compared before the voyage, the thermometer being at this time alfo at 60°, and the additional weight of a mufket bullet and a half being applied to the weight which kept it going; the pendulum and the clock were found to agree fo well, that no fenfible difference could be diftinguifhed in their beats for the fpace of twelve hours.

From all which circumftances it may fairly be concluded, that a pendulum which vibrates feconds at London, will gain from feventy-two to feventy-three feconds in twenty-four hours, in latitude $79^{\circ} 50^{\prime}$; allowing the temperature of the air to be the fame at both places.

$$
\begin{array}{llllllll}
\text { A } & \mathrm{P} & \mathrm{P} & \mathrm{E} & \mathrm{~N} & \mathrm{D} & \mathrm{I} & \mathrm{X} \text {. }
\end{array}
$$

Thefe obfervations give a figure of the earth nearce to Sir Ifaac Newton's computation than any others which have hitherto been made.
According to Sir Ifaac Newton the Pendulum gains in latitude $79^{\circ} 50^{\prime}, \quad 66^{\prime \prime}, 9$;
In which cafe the equatorial diameter
would be to the polar as - - 230to229:
According to Mr. Bradley's computation, from Mr. Campbell's obfervations, 76,6;
Equatorial diameter to the polar as - 201 to 200: According to Maupertuis, - - 86,5;
Equatorial diameter to the polar as - 178to179:
According to my obfervations, - $\left\{\begin{array}{l}72,28 \\ 73,06 ;\end{array}\right.$
Equatorial diameter to the polar as - $\left\{\begin{array}{l}212,9 \text { to } 211,9 \\ 210,7 \text { to } 209,7 \text { : }\end{array}\right.$
The mean of which is very nearly as - 212 to 211 .

Fig. I. Is a general view of the apparatus when fitted up; the pendulum being locked by the trigger, and ready for an experiment:
Fig. 2. The upper part of fig. 1 , on a larger fcale, in order to fhew the feveral parts more diftinelly.
Fig. 3. Reprefents the whole frame and apparatus when packed for carriage.
Fig. 4. Is the cap which covers the wheels and pallets, detached from fig. 3.
A. Fig. I. The pendulum-ball.
B. B.

The pendulum-sod:
C. C. Fig. 2. The axis of the pendulum.
D. - An oblong hole in the axis, into which the end of the pendulum-rod is fitted, and fecured by means of the fteel pin d.
E. E. - The upper part of the wooden frame; to which the threc legs are ftrongly fixed by hinges and table-joints, and on which is fcrewed
F. F. F. F. A frong brafs frame which fupports the pendulum and wheels.
G. G.
G. G. Fig. i. A flat board that forms one of the fides of the box, fig. 3, and has two fmall mortifes near its ends, which receive the points of the fore-legs of the ftand; two finall iteel rods, which are jointed near the lower end of the back-leg hook into the ends of this board, fo as to preferve the relative polition of the three legs unalterable: and near the middle of it is fitted
H. - A piece of filvered glafs, with a diamond line on it from back to front, for adjufting the pofition of the ftand: and
I. - The trigger for locking the pendulum.
K. - A wooden wedge which is occafionally put under either end of the board G. G. to adjuft the fand to its proper pofition; and when packed, is put ir, its place, as reprefented in the figure.
L. L. L. Pieces of wood fcrewed to the legs, having cavities in them which embrace the pen-dulum-ball when the legs of the fand are brought together in order to be packed, as in fig. 3.
M. - A flat piece of wood, under the ends of which are confined the fteel rods that conncet the back leg of the flands to the board G. G: when the ftand is packed.

N. A turn

N. - A turn-button, under which the line which carries the weights is put when packed for carriage.
O. - A pin on which the weights are put when packed.
P. . The pulley and ratchet by means of which the machine is kept going whilft it is winding up.
Q. - The weight that keeps the pendulum in motion.
R. - The counter-weight.
S. - The index which fhows the feconds on a divided circle fixed on the axis of the fwingwheel.
T. - The thermometer fufpended on a hook immediately behind the penduluin wire.
W. W. Two leather Atraps that fecure the whole when packed, as in fig. 3.

NATURAL

1゙ix.s
(;

14. 1.

A

$$
\begin{array}{llllllll}
A & P & P & E & N & D & 1
\end{array}
$$

N A T U R A L H I S T O F Y.

THOUGH the fhortnefs of my ftay at Spitfbergen, and the multiplicity of occupations, in which I was neceffarily employed, during the greateft part of that time, rendered it impoffible for me to make many obfervations on its natural productions; yet as there are among thofe few fome which have not before been made public, I am in hopes that this article will not be found wholly unprofitable. The following catalogue, imperfect as it is, may ferve to give a general idea of the fparing productions of that inhofpitable climate.

As modern naturalifts have formed the technical terms of their fcience out of the Latin, it becomes neceffary to make fome ufe of that language, in order to render the defcriptions of fuch things as are new, intelligible to thofe for whofe ufe they are intended: I fhall always, however, annex Englifh names to the fcientifick ones, when fuch are to be found. .
'Trichechus Rofmarus, Linn. Syn. Nat. 49. 1. Arctick Walrus. Penn. Syn. Quadr. p. 335 .

This animal, which is called by the Rullians More, from thence by our feamen corruptly Sea Horde, and in the Gulph of St. Lawrence Sea Cow, is found every where about the coaft of Spitbergen, and generally where-ever there is ice, though at a diftance from the land. It is a gregarious animal, not inclined to attack, but dangerous if attacked, as the whole herd join their forces to revenge any injury received by an individual.

Phoca Vitulina. Linn. Syjf. Nat. 56. 3.
Common Seal. Penn. Syn. Quadr. p. 339. Found on the coat of Spitsbergen.

Cans Lagopus. Linn. Shf. Nat. 95.63.

 Arctick Fox. Penn. Syn. Quadr. p. 155.Found on the main land of Spitbergen and illands adjacent, though not in any abundance. It differs from our Fox, betides its colour, in having its ears much more rounded. It fuels very little. We ate of the flefh of one, and found it good meat.

$$
\begin{array}{llllllll}
A & P & P & E & N & D & 1
\end{array}
$$

Ursus Maritimus. Linn. Syft. Nat. 70. 1.
Polar Bear. Penn.Syn. शıadr. p. 192.T. 20. F. r. Found in great numbers on the main land of Spitfbergen; as alfo on the illands and ice fields adjacent. We killed feveral with our mufquets, and the feamen ate of their fleth, though exceeding coarfe. This animal is much larger than the black bear; the dimenfions of one were as follows:
Length from the fnout to the tail, - $\quad 7 \quad$ Feet. Inches.
Length from the fnout to the fhoulder-bone, 23
Height at the thoulder, - \quad - 43
Circumference near the fore legs, - - 70
Circumference of the neck clofe to the ear, 2 I
Breadth of the fore paw, - - - 7
Weight of the carcals without head, Ikin
or entrails, - - - 6Iolb.
Cervus Tarandus. Linn. Syf. Nat. 93. 4.
Rein Deer. Penn. Syn. 2uadr. p. 46. T. 8.
F. 1.

Found every where on Spitfbergen.
We ate the fleh of one which we killed, and found it excellent venifon.

Balaena Myficetus. Linn. Syf. Nat. 105. i. Common Whale. Penn. Brit. Zool. p. 85 .
Ff
This

$$
A \quad P \quad P \quad E \quad N \quad D \quad I \quad X .
$$

This fpecies, which is fought after by the fifhermen in preference to all other whales, is found generally near the ice. We faw but few of them during our ftay.

Balaena Pbyfalus. Linn. Syff. Nat. 106. 2. Fin Fih. Penn. Brit. Zool. p. 41. Found in the ocean near Spitfbergen.

A $\quad \mathrm{V} \quad \mathrm{E} \quad \mathrm{S}$.

Anas mollifima. Linn. Syf. Nat. 198. 15.
Eider Duck. Penn. Brit. Zool. p. 454 . Found on the coaft of Spitfbergen.

Alca arctica. Linn. Syff. Nat. 21 r. 4.
The Puffin. Penn. Brit. Zool. p. 405. Found on the coaft of Spitfbergen.

Alca Alle. Linn. Syjf. Nat. 2 I 1.5.
Found on the coaft of Spitfergen in great abundance.
Procellaria glacialis. Linn. Syj. Nat. 213.3.
The Fulmar. Penn. Brit. Zool. p. 43 r.
Found on the coaft of Spitfbergen.
Colymbus Grylle. Linn. Syff. Nat. 220. 1. Found on the coaft of Spitfbergen.

$$
\text { A. } \mathbf{P} P \mathbf{P} \quad \mathbf{N} \quad \mathrm{D} \boldsymbol{I} \text {. }
$$

Colymbus Troile. Linn. Syf. Nat. 220. 2. Found on the coaft of Spitfergen.

Colymbus glacialis. Linn. Syff. Nat. 22 1. $5 \cdot$
The great Northern Diver. Penn. Brit. Zool. p. 413 .
Found on the coaft of Spitbergen.
Larus Rifa. Limn. Syf. Nat. 224. I. Found on the coaft of Spitfbergen.
$L_{\text {arus Parafiticus. Linn. Syff. Nat. 226. } 10 .}$ The Aretick Gull. Penn. Brit. Zool. p. 420.
Found on the coaft of Spittbergen.
Larus Eburneus, niveus, immaculatus, pedibus plumbeo-cinereis.
Found on the coaft of Spitbergen.
This beautiful bird is not defcribed by Linnxus, nor, I believe, by any other author; it is nearly related indeed to the Rathfher, defcribed by Marten in his voyage to Spitfbergen, (See page 77 of the Englifh tranflation) but, unlefs that author is much miftaken in his defcription, differs effentially from it. Its place in the Sy/ema Natura feems to be next after the Larus nevius, where the fpecifick difference given above, which will diftinguifh Ff 2
it from all the fpecies defcribed by Linnxus, may be inferted.

Description.

Tota avis (quoad pennas) nivea, immaculata. Roftrum plumbeum. Orbite oculorum crocex.
Pedes cincreo-plumbei. Ungues nigri. Digitus Pofficus articulatus, unguiculatus. Alic cauda longiores. Cauda æqualis, pedibus longior. Longitudo totius avis, ab apice roftri ad finem caudx,
Longitudo inter apices alarum expanfarum, - 37

Sterna Hirundo. Linn. Syff. Nat. 227. 2. The greater Tern. Penn. Brit. Zool. p. 428. Found on the coalt of Spitibergen.

Emberiza nivalis. Linn. Sy/f. Nat. 308. 1.
The greater Brambling. Penn. Brit. Zool. 32 r .
Found not only on the land of Spitfbergen, but alfo upon the ice adjacent to it, in large flocks: what its food can be is difficult to determine; to all appearance it is a granivorous

$$
\begin{array}{llllllll}
A & \mathbf{P} & \mathbf{P} & \mathbf{E} & \mathbf{N} & \mathrm{D} & \mathbf{I} & \mathbf{X} .
\end{array}
$$

granivorous bird, and the only one of that kind found in thefe climates, but how that one can procure food in a country which produces fo few vegetables, is not eafy to guefs.

Cyclopterus Liparis. Linn. Sy/t. Nat. $414 \cdot 3$. Sea Snail. Penn. Brit. Zool. III. p. 105. Two only of thefe were taken in a trawl near Seven Ifland Bay.

$$
\begin{array}{llllll}
\mathrm{P} & \mathrm{I} & \mathrm{~S} & \mathrm{C} & \mathrm{E} & 9 .
\end{array}
$$

Gadus carbonarius. Linn. Syjf. Nat. 438. 9.
The Coal Fifh. Penn. Brit. Zool. III. p. $15=$. Though we trawled feveral times on the North fide of Spitbergen, and the feamen frequently tried their hooks and lines, yet nothing was taken except a few individuals. of this and the foregoing feecies.

[^4]
A P P E N D I X.

Found in the flomach of a fcal, caught near the coaft of Spitbergen.

Cancer Borcas, macrourus, thorace carinato aculeato, manibus lævibus, pollice fubulato incurvo. Tab. XII. Fig. 1.
This fingular fpecies of Crab, which has not before been deferibed, was found with the former in the fomach of a Seal; its place in the Sylicma Nature feems to be next after Cancer Norwegricus.

Description.

Thorax ovatus, tricarinatus: Carince laterales tuberculofx, antice fpina acuta terminata; Carina dorfalis fpinis tribus vel quatuor validis armata; antice producta in roftrum porrectum, acutum, breve, Thorace quintuplo brevius; prater fpinas carinarum, anguli laterales thoracis antice in fpinas terminantur.

Antenne dux, thorace fere triplo breviores, bifidx: Ramulus fuperior craffiufculus, filiformis, obtufus; Inferior gracilis, fubulatus.

Palpi duo, duplicati; Ramus fuperior foliatus, feu explanatus in laminam ovalem, obtufam, longitudine antennarum, intus et antice villis ciliatam; Ramus interior antenniformis, fubulatus, multiarticulatus, antennis triplo longior.

Parafatides

A P P E N D I X.

Parafatides decem, anteriores parvi; poftremi magni, pediformes articulo ultimo explanato in laminam ovalioblongam.

Pedes decem, duo primores cheliferi, carpis incraflatis, reliqui fimplices; pares fecundi et tertii filiformes, graciles; quarti et quinti craffiufculi.

Cauda thorace longior, fexarticulata; articulis quinque anterioribus carinatis, carinis fpina antrorfum vergente armatis; articulus fextus fupra bicarinatus, muticus, terminatus foliclis quinque, articulis caudx longioribus; intermedio lanceolato, acuto, porrecto, craffo, fupra planiufculo, quadricarinato carinis interioribus obfoletis, fubtus concavo; lateralibus ovali-oblongis, obtufis.

Neuferi decem (nulli fub articulo uitimo) duplicati: Foliolis lanceolatis, ciliatis.
$O b f$. Specimina magnitudine variant, alia triuncialia, alia feptem uncias longa.

Cancer Ampulla, macrourus, articularis, corpore ovali, pedibus quatuordecim fimplicibus, laminis femorum poftici paris ovato-fubrotundis.
Tab. XII. Fig. 3.
This fingular animal was alfo taken out of the fomach of the fame feal in which the two former were found.. Its place in the Syfema Naturic is next to Cancer Pulex.

Description.

Description.

Infectum ex ovali-oblongum, glabrum, punctulatum, articulis quatuordecim compofitum, quorum primus capitis cft, feptem thoracem mentiuntur, et fex caudam tegunt.

Capitis clypeus antice iuter antennas in proceffum conicum, acutum defcendit.
Antenne quatuor, fubulata, articulata, fimplices, corpore decuplo breviores.

Pcdes quatuordecim, fimplices, unguiculati; fomora poftremi paris poftice acuta, lamina dimidiato-fubrotunda, integra, magna, quatuor lincas longa.

Caula foliata, foliolo unico brevi bifido: Lacinic lanceolate, acute.

Ne: 4 ltori duodecim, duplicati, fubulati, pilis longis ciliati, pofteriores retrorfum porrecti.

Olf. Specimina magnitudine variant, uncialia et biuncialia erant.

Cancer mugax, macrourus, articularis, pedibus quatuordecim fimplicibus, laminis femorum fex pofteriorumi dilatatis fubıotundo cordatis.

Tab. XII. Fig. 2.
This animal, which has not before been defcribed, fhould be inferted in the Syfena Nature near Cancer Pulex; it was taken in the trawl near Moffen Ifland.

$$
\begin{array}{llllllll}
\text { A } & \mathrm{P} & \mathrm{P} & \mathrm{E} & \mathrm{~N} & \mathrm{D} & \mathbf{l} & \mathbf{X} .
\end{array}
$$

Description.
Infectum oblongum, comprefliun, dorfo rotundatum, glabrum, fefquiunciale, articulis quatuordecim compofitum, quorum primus capitis eft, feptem thoracem mentiuntur, et fex caudam efficiunt.

Capitis Clypeus finu obtufo antice pro antennis emarginatus.

Antenne quatuor, fubulate, multiarticulata; fuperiores corpore fextuplo breviores, bifidx: articulo bafeos communi, magno; Ramulus interior exteriori duplo brevivi.

Inferiores fimplices, fuperioribus duplo longior:s.
Pedes quatuordecim, fimplices, unguiculati, unguibus parum incurvis. Femora fex pofiericra pofice aucta.

Lamina foliacea, fubrotundo-cordata, dimidiata, margine integra, magna, (tres lineas longa.)
Cauda apice foliata. Foliolis duobus, oblongis, obtufis, parvis.

Neufferi duodecim, duplicati, lineari-lanceolati, pofteriores retrorfum porrecti, ut facile pro appendicibus caudx fumantur.

Cancer Pulex. Linn. Syfl. Nat. p. 1055. 8 r .
Taken up in the trawl along with the former.

> Gg VERMES.

$$
V E R M E S
$$

Sipunculus Lendix, corpore nudo cylindraceo, apertura fubterminali. Tab. XIII. Fig. i.

Found adhering, by its fmall fnout, to the infide of the inteftines of an Eider Duck. Mr. Hunter, who at my requift diffected it, informed me that he had feen the fame fpecies of animal adhering to the inteftines of whales.

Description.

Corpus croceum, fubsylindraceum, tres lineas longum, craffitie pennæ pafierinx, utraque extremitate parum attenuatum, apice terminatum in Rofrum anguftum corpore quintuplo brevius, quo tunicis internis inteftinorum fefe affigit; prope alteram extremitatem Apertura fimplex, pro lubitu extenfibilis.
A. A piece of the inteftine, with the animals adhering thereto.
B. One of the animals magnified.
C. The fame cut open.

Ascidis gelatinofa. Linn. Syf. Nat. 1087. 2.
'Taken

A P P E N D I X.
Taken up in the trawl, on the North fide of Spitfbergen.

Ascridia rufica. Linn. Syff. Nat. 1087.5.
Taken up likewife in the trawl, on the North fide of Spittbergen.

Lernea brancbialis. Linn. Syf. Nat. rog2. i.
Found in the gills of the Sea fnail mentioned before.
$\mathrm{C}_{\text {Lio }}$ belicina nuda corpore fpirali.
Marten's Spitfergen Englifh, p. 141. t. Q. fig. e. Snail llime fifh.
Found in innumerable quantities throughout the Artick feas.

Description.

Corpus magnitudine pifi, in fipam ad inftar helicis involutum.

Alc ovata, obtufx, expanfix, corpore majores.
$\mathrm{C}_{\mathrm{L} 10}$ limacina nuda, corpore obconico.
The Sea May Fly. Marteris Spitferger Englif, p. 169. Tab. P. f. 5.

$$
\text { G g } 2
$$

This

$$
\text { A } \quad \mathbf{P} \quad \mathbf{P} \quad \mathrm{E} \quad \mathrm{~N} \quad \mathrm{D} \quad \mathrm{l}
$$

This little animal is found where the laft is, in equal abundance, peopling as it were this almolt uninhabited occan. Marten fays that they are the chief food of the whale-bone whale; and our fifhermen, who call them by the name of whale food, are of the fame opinion.

Medusa capillata. Linn. Sy/f. Nat. ro97. 6. Sea Blubber.
Taken up on the paffage home, about the latitude 65°.
Asterias pappofa. Linn. Syff. Nat. 1og8. z.
Taken up on the North fide of Spitbergen.
Asterias rubens. Linn. Syff. Nat. 1099. 3. Sea Star.
Alfo taken up in the trawl on the North fide of Spitibergen.

Asterias Ophiura. Linn. Syf. Nat. 1 100: in.
We likewife took this up in the trawl, on the North fide of Spitfbergen.

Asterias peCtinata. Linn. Syf. Nat. inoi: 14.
This, as well as all the reft of this genus, was taken up in the trawl on the North fide of Spitibergen.

Cilton

$$
A P P E N D I X
$$

Chiton ruber. Linn. Syf. Nat. 1107. 7. Coat of Mail Shell.
Taken in the trawl, on the North fide of Spitfbergen.
Lepas Tintinnabulum. Limn. Syf. Nat. 1168. 12. Acorn Shell.
Was picked up on the beach of Smeerenberg harbour; but as it is much worn and broken, it is impoffible to be certain, whether it is a native of thofe feas, or has been brought there by accident.

Mya truncata. Linn. Sylf. Nat. 1112.26.
Likewife found on the beach in Smeerenberg harbour.
Mytilus rugofus. Linn. Syf. Nat. 1156. 249 .
Was found with the former on the beach at Smeerenberg.
Buccinum carinatum, tefta oblongo-conica tranfverfim ftriata; anfractibus fuperioribus oblique obtufeque multangulis; inferioribus unicarinatis.
Tib. XIII. Fig. 2.
Found on the beach at Smeerenberg harbour.
N. B. The fhell has been reverfed by a miftake of the engraver.

Turbo belicinus, tefta umbilicata convexa obtufa: anfractibus quatuor lavibus.

Taken up in the trawl, on the North fide of Spitßergen.

Serpula Spirorbis. Syff. Nat. 1265. 794.
Found in plenty fticking to the ftones and dead fhells in Smecrenberg harbour.

Serpula triquetra. Linn. Syjf. Nat. 1265. $795 \cdot$
Found with the laft adhering to dead fhells.
Sabella fruffulofa, tefta folitaria libera fimplici curvata: fragmentis conchaceis fabulofifque.

Taken up in the trawl on the North fide of Spitfbergen.

Description.

Vagina fithamea vel longior, craflitie pennæ anferinæ, undique tecta fragmentis concbaceis frpe magnitudine unguis, et fabulis magnitudine feminum cannabis.

Millepora polymorpha. Linn. Syj. Nat. 1285. 53. Varietas rubra.

Found thrown up on the beach at Sneerenberg harbour.

A P ए E N D 1 X .
Cellepora pumicofa. Limn. Syjf. Nat. 1286. 56.
Found on the beach at Smeerenberg.
Synolcum turgens. Tab. XIII. Fig. 3.
Taken up in the trawl, on the North fide of Spittbergen.
This animal is quite new to the Natural Hifforians, and fo different from the Zoophytes which have been hitherto defcribed, that it may be confidered as a diftinet genus, whofe characters are the following:

Animalia nonnulla, ex apice funguli ftirpis fefe aperientia.

Stirpes plures, radicate, carnofo-ftupofe, e bafi communi eredta, cylindracex, apice regulariter pro animalibus pertufe.

It hould be inferted next to the Alcyonium, with which it in fome particulars agrees, but differs from it materially in having the openings for the animals only at the top, and the animals themfelves not exferted like polypes (Hydra) which is the cafe in the Alcyonium.

Description.

Stirpes plures, radicate, carnofo-flupofe, digitiformes, cylindracea, fuperne paulo craffiores, oltufue, magnitudine digiti infantis, fuberecta, apice orificiis nonnullis perforate, inferne dilatatix feu explanata in bafin communem lapidibus adhxrentem.

Orificia

IMAGE EVALUATION TEST TARGET (MT-3)

Orificia fex ad novem, ordine circulari plerumque difpolita; fub fingulo orificio cavitas longitudinalis, forfitan fingulo animali propria, in qua
$\mathrm{I}^{\text {mo }}$ Faux angufta, brevis.
$2^{\text {do }}$ Inteffinum inftar ftomachi dilatatum, oblongoovatum, inferne foraminibus duobus pertufum; inter illa foramina aliud defcendit inteftinum, valde anguftum, filiforme, arcum brevem formans.

Cavitas, qux per totam ftirpem longitudinaliter pro fingulo animali deorfum tendit, fuperne ab inteftinis vix diftincta, infra illa autem cylindrum exhibet granulis parvis (forfitan ovulis) repletam.
A. Shews the animals adhering to a ftone.
B. One of the animals feparate, a little magnified.
C. The fame cut open lengthways.
D. The fame cut open acrofs.

Flustra pilofa. Linn. Syf. Nat. 130 I. 3.
Found adhering to ftones in Smeerenberg harbour.
Flustra membranacea. Linn. Syff. Nat. 1301.5.
Found with the laft mentioned fpecies.

$\begin{array}{llllll}\mathbf{P} & \mathbf{L} & \mathrm{A} & \mathrm{N} & \mathrm{T} & \text { Æ. }\end{array}$

Agrostrs algida panicula mutica contracta, calycibus brevifimis inxqualibus.

Tir.
liii. \because.

A

\therefore (!)! 1 ricilı!

$$
\begin{array}{llllllll}
\mathbf{A} & \mathbf{P} & \mathbf{P} & \mathbf{E} & \mathrm{N} & \mathbf{D} & \mathbf{1} & \mathbf{X} .
\end{array}
$$

This fmall grafs, which has not before been known to botanifts, may be inferted among the fpecies of Agrofis next to the misima.

Description.

Gramen in cæffitibus nafcens.
Radix fibrofa, perennis.
Folia plurima radicalia, paucilfima caulina, glabra, latiufcula, longitudine culmi, patula, bafi dilatata in vaginas laxas.

Culmi adfcendentes, glabri, fefquiunciales.
Panicula lineari-oblonga, contracta, ftricta, multiflora.
Calycis Glume membranacea, albidx, glabra, muticx, inæquales: exterior minutiffima, ovata, obtufa; interior oblonga, acuta, corolla quintuplo brevior.

Corolle Glumce oblongx, acuta, carinate, mutica, glabra, femilineares: exterior paulo longior.

Stamina tria.
Stigmata duo.
Semen unicum, oblongum, utrinque acuminatum, a corolla liberum.

Tillea aquatica. Linn. Spec. Plant. 186. 2.
Juncus campefris. Lina. Spec. Plant. 468.17.
Hh
Saxifraga

A $\mathrm{P} \quad \mathrm{P} \quad \mathrm{E} \quad \mathrm{N} \mathrm{D} \boldsymbol{1} \mathrm{X}$. Saxifraga oppofitifolic. Linn. Spec. Plant. 575.18. Saxifraga cernua. Linn. Spec. Plant. 577. 26. Saxifraga rivularis. Likn. Spec. Plant. 577. 28.

Saxifraga cıejpitofa. Linn. Spec. Plant. 578. 34.
Cerastium alpinum. Linn. Spec. Plant. 628. 8.
Ranunculus fulpbureus, calycibus hirfutis, caule fubbifforo, petalis rotundatis, integerrimis, foliis inferioribus fublobatis, fupremis multipartitis.

Ranunculus quartus. Mart. Spitz. Engl. p. 58. T. T. F. d.

Obf. Primo intuitu Ranunculo glaciali fimillimus, differt autem, quod Petala rotundata, integerrima, intenfe lutea, fulgida; et Folia minus fubdivifa; fuperiora fiffa, laciniis oblongo-lanceolatis integerrimis; inferiora caulina. lata, plana, leviter triloba vel quadriloba.

This new plant Chould be inferted next to Ranunculus glacialis.

Cochlearia Danica. Linn. Spec. Plant. 903. 3.
Cochlearia Groenlandica. Linn. Spec. Plant. 904. 4.
Salix herbacea. Linn. Spec. Plant. 1445. 16.
Polytrichum commune. Limn. Spec. Plant. 1.573. 1.

$$
\begin{array}{llllllll}
\mathbf{A} & \mathbf{P} & \mathbf{P} & \mathbf{E} & \mathrm{N} & \mathrm{D} & \mathbf{I} & \mathbf{X} .
\end{array}
$$

Bryum Hypnoides. Linn. Spec. Plant. 1584. 21.
Befides thefe, there were two other kinds of Bryum, the fecies of which could not be determined, for want of the fructification; the one refembled Bryum trichoides læte virens, \&cc. Dill. Mufc. 391, t. 50, f. 61 ; and the other Bryum hypnoides pendulum, Dill. Muj. 394, t. 50, F. 64, C.

Hypnum aduncum. Linn. Spec. Plant. 1592. 23.
Jungermannia julacea. Linn. Spec. Plant. 160 I. 20.
Another fpecies of Jungermannia was alfo found, but without fructification; it is not much unlike Lichenaftrum ramofius foliis trifidis. Dill. Mu/c. 489, t. 70, f. 15 .

Lichen ericetorum. Linn. Spec. Plant. 1608. 12.
Lichen Iflandicus. Linn. Spec. Plant. 16it. 29.
Lichen nivalis. Linn. Spec. Plant. 1612. 30.
Lichen caninus. Linn. Spec. Plant. 1616.48.
Lichen polyrrbizos. Linn. Spec. Plant. 1618. 57.
Lichen pyxidatus. Limn. Spec. Plant. 1619. 60.
Lichen cornutus. Linn. Spec. Plant. 1620. 64.
Hh \%
Lichen

Lichen rangiferinus. Linn. Spec. Plant. 1620. 66.
Lichen globiferus. Limm. Mant. 133.
Lichen pafchalis. Linn. Spec. Plant. 162 I. 69.
Lichen chalybeiformis. Linn. Spec. Plant. 1623. 77.

Account of Doctor Irving's Method of obtaining freh Water from the Sea by Diftillation.
A. S the method of rendering falt water frefh, by Royal Navy in the year 1770, and practifed in this voyage, is an object of the highelt importance to all navigators, and has not hitherto been generally known, I have added the following very fullaccount of its principles, apparatus, and advantages, with which I was favoured by Doctor Irving himfelf.
" $P_{\text {revious }}$ to an account of this method of rendering. " fea water frefh by diftillation, it may not be improper "to give a fhort detail of the experiments which have " been formerly made by others on this fubject; pointing " out at the fame time the feveral difadvantages attending " their proceffes, and the general caufes which obftructed " the defired fuccefs.
"Without entering into an account of the earlier expe" riments, it will be fufficient to take a view. of fuch as " have been profecuted with moft attention, for the " laft forty years.
"The firtt of thefe was the procefs of Mr. Appleby, " publifhed by order of the Lords of the Admiralty, in the " Gazette of June 22d, 1734. By the account of that " procefs it appears, that Mr. Appleby mixed with the " fea water to be diftilled, a confiderable quantity of the " Lapis Infernalis and calcined bones. The highly un" palatable tafte of the water, however, exclufive of the " extreme difficulty, if not impoffibility, of reducing the " procefs into practice, prevented the further profecution " of this method.

[^5]$\begin{array}{llllllll}A & P & P & E & N & D & \mathbf{I} & \mathbf{X} .\end{array}$
" diminifhed by the ventilation: fo that more than double " the ufual quantity of fuel was neceffary to produce the " fame effeet. Befides this method by no means improved " the tafte of the water.
" The next who attempted any improvement was the " learned Doctor Lind, of Portfmouth. He diftilled fea " water without the addition of any ingredients; but as " the experiment he made was performed in a veffel con" taining only two quarts, with a glafs receiver, in his " ftudy, nothing conclufive can be drawn from it for "the ufe of chipping. Indeed experiments of the like " kind had been made by the chemints in their labora" tories, for at leaft a century before.
> " In the year ${ }^{7} 765$, Mr. Hoffinan introduced a Still of a. " new conftruction, with a fecret ingredient; but the large " fpace which this machine occupied, being feven feet " five inches by five feet eight inches, and, with its ap"paratus, fix feet feven inches high, made it extremely " inconvenient: at the fame time that, on account of its " hhallow form, the ufe of it was impracticable during " any confiderable motion of the flip. The water ob" tained, likewife, poffeffed all the difadvantages common " to the preceding methods.
"A About the fame time experiments were made with a " ftill of the common conftruction, and Mr. Dove's in" gredient. This method was attended with no advan" tage over any that had been formerly ufed; the diftilled " water was moft unpalatable; and the enormous fize of " the apparatus, which occupied a fpace of thirteen feet " feven inches by fix feet one inch, and fix feet five inches " in height, rendered it impracticable on board hips. "An experiment was immediately afterwards made with " the fame fill without any ingredient ; the refult, how" ever, was uniformly a moft unpalatable tafte of the ${ }^{6}$. water.
" About this period, alfo, M. Poiffonnier of Paris intro"duced into the French marine a fill, three feet fix " inches long, two feet wide, and eighteen inches deep. "A portion of the chimney paffed through the upper "part of the ftill, much in the fame manner as that of "Mr. Hioffiman: thefe gentlemen fuppofed that by this " means they fhould fave fuel. The mouth of M. " Poiffonnier's ftill was thirteen inches wide, on which he " placed a tin plate, pierced like a cullender, with thirty" feven holes of fix lines diameter each; to thefe were " fixed tin pipes, of the fame bore and feven inches long, "terminating withia the ftill-head. The intention of " this contrivance is to prevent any of the water in the " ftill from paffing over into the worm, while the Chip " is in confiderable motion.

$$
A P \quad P \quad E \quad N \quad D \quad I \quad X .
$$

"In cvery other refpect M. Poifionnier employs " a fill-head, worm-pipe, and worm-tub, with all its "ufual apparatus; and he directs fix ounces of foffil "alcali to be mixed with the fea water at each diftilla" tion, to prevent the acid of the Magnefia falt from " riling with the vapour, when falt begins to form on the " bottom of the ftill. It is probable that in M. " Poiffonnier's ftill, which was even more fhallow in its "form than Mr. Hoffiman's, fome of the water might be " thrown up toward the worm; in which cafe the pierced " plate with pipes might be of fome fervice in breaking the " direction of the water. But by Doctor Irving's tube " this inconvenience is entirely prevented, as experience "fully evinces, viz. in a voyage to Falkland's Inands, " where it has been ufed in diftillation every day; in " fevera! voyages to the Eaft Indies; and in this voyage, as " is mentioned in the Journal.
" M. Poiffonnier, in correcting this error in the " conftruction of his 1till, has introduced another of the " moft capital nature in diftillation. For by means of " the pipe-cullender, the vapour will meet with the " greateft refiftance to its afcent, which will retard the "progrefs of diftillation in a very high degree, and " increafe the Empyrcuma.
"From all the experiments abovementioned, it " is evident, that no method had hitherto been " invented of making fea-water frefl, which was

[^6]" not attended with fuch inconveniences as rendered " the feveral proceffes of farce any utility. The defects " of the various methods above enumerated, may be re" duced to the following heads:
" I. The fimall quantity of water produced by the " ordinary methods of diftillation with a ftill-hcad, and " worm, could never be adequate to the purpofes of " hipping, though the apparatus fhould be kept in con"ftant ufe; and at the fame time, this mode of diftilla" tion required a quantity of fuel, which would occupy " greater fpace than might be fufficient for the fowage " of water.
" 2. A fill-burnt tafte, which always accompanies this " method of diftillation, and renders the water extremely " unpalatable, exciting heat and thirft, if drank when " recently diftilled.
" 3. A total ignorance with refpect to the proper time " of ftopping the diftillation, whereby falt was permitted " to form on the bottom of the boiler; which burning, " and corroding the copper, decompofed the felenitic and " magnefia falts, caufing their acids to afcend with the " vapour, and act on the ftill-head and worm pipe, im" pregnating the water with metallic falts of the moft per" nicious quality.
" 4. The fpace occupied by the fill, ftill-head, and " worm-tub, renders the ufe of them in moft cafes totally " impracticable on board hhips. Add to this, their wearing " out fo faft on account of the caufes above mentioned, " the

A P P E N D I X.
" the great expence of the apparatus, with the hazard of " the ftill-head being blown off; and the inconveniences " thence arifing.
" 5 . The ufe of ingredients, which though omitted in " fome experiments in fmall, were neverthelefs erro" neoufly confidered as effential to the making fea-water " fweet and palatable by diftillation.
" 6. The inconvenience of a cumberfome apparatus, " calculated only to be eventually ufeful in unexpected " diftrefs for water, but conftantly occupying a great deal " of room in a fhip , too neceffary for the ordinary pur" pofes to be fpared for that object.
"Having fpecified the principal defects of the feveral " meth 's hitherto propofed for making fea water frefh, " it will be proper before ftating the advantages of Doctor " Irving's nethod, to confider briefly the principles of "diftillation in general, and the chemical analyfis of " fea water.
" Water, in an exhautted receiver, rifes in vapour more " copioufly at 180° of Fahrenheit's thermometer, than in " the open air at 212°, which may be confidered as its " boiling point.
"It therefore follows, that any compreffion upon the " boiling fluid checks the vapour in rifing, and confe" quently diminifhes the quantity of water obtained. This " is clearly examplified in the fleam-engine, where the
" confumption " confumption of water in the boiler is very inconfider" able, in comparifon to what would happen if the "compreffion arifing from the throat-pipe and valve of " that machine was taken off, and the prefiure of the " atnoofphere only admitted. But by the reftraint of that " valve, the vapour becomes hotter, and increafes in " rarity and elafticity; qualities effential to the purpofes " of the engine, although the reverfe of thofe which " ought to take place in common diftillation. For the " columns of vapour fhould be removed from the boiling " fluid as falt as they afcend, without fuffering any other " reffitance than that of the atmofphere, which, in the " ordinary bufinefs of diftillation, cannot be prevented.
" The impropriety of the common procefs of diftillation, " will appear evident by comparing it with the above " principles and facts.

[^7]
$\begin{array}{llllllll}\text { A } & \mathbf{P} & \mathbf{P} & \mathrm{E} & \mathrm{N} & \mathrm{D} & \mathbf{I} & \mathbf{X} .\end{array}$

" and elafticity of the vapour confined by this conftruction. " In the mean time, the external furface of the pipe " communicates heat to the water in contact with it, " which, inftead of being entirely carried off, mixes with " the furrounding fluid, and heats the whole, rendering " it unfit for condenfing the vapour within; efpecially " when it is confidered that the fubftance of the pipe is at " leaft a quarter of an inch thick.
"From what has been faid, it is plain, that the quan" tity of diftilled water will be leffened in proportion to " the refiftance made to the afcent of the vapour, while " the difficulty of condenfation will be greatly augmented, " in confequence of the increafed heat and elafticity of " the vapour. But thefe difadvantages, owever great, " refpecting the mode of diftillation, give rife to another " evil of a ftill more important nature, as affecting the " diftilled fluid with a noxious burnt tafte or empyreuma; " occalioned by the vapour, highly heated, pafling over " fo much furface of metal, viz. the ftill-head, crane-neck, " and a pipe of fix or feven feet in length, before it reaches " the water in the worm tub.
> "Having difcuffed the fubject of diftillation, we come " now to treat of the chemical analylis of fea water.

> " Sea-water,
"Sea-water contains chiefly a neutral falt, compofed of " foffil alcali and marine acid. It likewife contains a falt ${ }^{6}$ which has magnefia for its balis, and the fame acid. "i Thefe two falts are blended together in our common " falt in England, which is prepared by quick boiling "d down fea water. But when the procefs is carried on by " the fun, or a flow heit, they may be collected fepa" rately; that which has the foffil alcali for its balis "cryftallizing firf ; and this is of a valtly fuperior quality " for preferving meat, and for the other culinary pur"pofes. The mother liquor now remaining, being " evaporated, affords a vitriolic magnefia falt, which in "England is manufactured in large quantities, under the "s name of Epfom falt.
" Befides thefe falts, which are objects of trade, fea${ }^{6}$ water contains a felenitic falt, a little true Glauber's falt, " often a little nitre, and always a quantity of gypfeous " earth fufpended by means of fixed air.
"The fpecific gravity of fea-water to that of pure dif${ }^{6} 6$ tilled water, is at the Nore as 1000 to 1024,6 ; in the " North fea as 1000 to 1028,02.
" The quantity of falt obtained by boiling fea-water in ${ }^{6}$ different latitudes, from $51^{\circ} 30^{\prime}$ to $80^{\circ}, 43$ N. L. is in" furted in a table in the former part of this Appendix.

$$
\begin{array}{llllllll}
\mathbf{A} & \mathbf{P} & \mathbf{P} & \mathrm{E} & \mathrm{~N} & \mathrm{D} & \mathrm{I} & \mathrm{X} .
\end{array}
$$

" Sea-water, when boiled down to a ftrong brine, admits " with difficulty the feparation of frefh water from it; the " diftillation becoming flower as the ftrength of the brine " increafes, fo that a greater quantity of fuel is confumed " in procuring a fmaller portion of water, and this like" wife of a bad quality. From this effential circumftance " arifes the neceffity of letting out the brine by the cock " of the boiler, when the diftillation is advanced to a " certain degree; and of adding more fea-water to con" tinue the procefs if required.
" The defects of the feveral fchemes formerly propofed for " rendering fea-water frefh being pointed out, the general " principles of diffillation explained, and the component " parts of fea-water analytically examined; the advan" tages of the method invented by Doctor Irving remain " to be fated, which may be reduced to the following:
"r. The abolihing all fills, fill heads, worm pipcs, " and their tubs, which occupy fo much face as to "render them totally incompatible with the neceffary "bufinefs of the Chip; and ufing in the room of thefe, " the Mip's kettle or boiler, to the top whereof may oc"cafionally be applied a fimple tube, which can be eafily " made on board a veffel at fea, of iron plate, fove " funnel, or tin Cheet; fo that no fituation can prevent a " Thip from being completely fupplied with the means of " diftilling fea-water.
" 2. In confequence of the principles of diftillation " being fully afcertained, the contrivance of the fimpleft " means of obtaining the greateft quantity of diftilled " water, by making the tube fufficiently large, to receive " the whole column of vapour; and placing it nearly in a " horozontal direction to prevent any compreffion of the "fluid, which takes place fo much with the common " worm.
" 3 . The adopting the fimpleft and moft efficacious " means of condenfing vapour; for nothing more is re" quired in the diftillation but keeping the furface of the " tube always wet; which is done by having fome fea" water at hand, and a perfon to dip a mop or fwab into " this water, and pafs it along the upper furface of the "tube. By this operation the vapour contained in the " tube will be entirely condenfed with the greateft rapi" dity imaginable; for by the application of the wet mop " thin theets of water are uniformly fpread, and mechani" cally preffed upon the furface of the hot tube; which " being converted into vapour, make way for a fucceffion " of frefh fheets; and thus both by the caporation and " clofe contact of the cold water conftantly repeated, the " heat is carried off more effectually than by any other " method yet known.
" 4 . The carrying on the diftillation without any addi" tion, a correct chemical analyfis of fea water having " evinced the futility of mixing ingredients with it, either ** to prevent an acid from rifing with the vapour, or to " deftroy

$$
\begin{array}{llllllll}
\mathrm{A} & \mathrm{P} & \mathrm{P} & \mathrm{E} & \mathrm{~N} & \mathrm{D}
\end{array}
$$

"deftroy any bituminous oil fuppofed to exift in fea " water, and to contaminate the diftilled water, giving it " that fiery unpalatable tafte infeparable from the former " proceffes.
" 5 . The afcertaining the proper quantity of fea water " that ought to be diftilled, whercby the frefh water is " prevented from contracting a noxious impregnation of " metallic falts, and the veffel from being corroded and " otherwife damaged by the falts caking on the bottom " of it.
" 6. T...e producing a quantity of fweet and wholefome " water, perfectly agreeable to the tafte, and fufficient " for all the purpofes of fhipping.
" 7 . The taking advantage of the dreffing the fhip's "provifions, fo as to diftil a very confiderable quantity " of water from the vapour which would otherwife be " loft, without any addition of fuel.
" To fum up the merits of this method in a few " words:
"The ufe of a fimple tube, of the moft eafy con* " ftruction, applicable to any Chip's kettle. The rejecting " all ingredients. Afcertaining the proportion of water to " be diftilled, with every advantage of quality, faving of "fuel, and prefervation of boilers. The obtaining frefh " water, wholefome, palatable, and in fufficient quantitics. K k

Taking
"Taking advantage of the vapour which afcends in the " kettle while the flips provifions are boiling.
" All thefe advantages are obtained by the abovernen" tioned fimple addition to the common hip's kettles. "But Doctor Irving propofes to introduce two further " improvements.
"The firft is a hearth, or fove, fo conftructed, that the " fire which is kept up the whole day for the common "bufinefs of the hip, ferves likewife for diftillation; " whereby a fufficient quantity of water for all the œcono" mical purpofes of the Chip may be obtained, with a very " inconfiderable addition to the expence of fuel.
" The other improvement is that of fubflituting, even " in the largeft fhips, caft-iron boilers, of a new con" Aruction, in the place of coppers."

Directions for Distilling Sea-Water.
"As foon as fea-water is put into the boiler, the tube " is to be fitted either into the top or lid, round which, " if neceffary, a bit of wet linen may be applied, to " make it fit clofe to the mouth of the veffel; there will " be

$$
\text { A } \mathbf{P} \quad \mathbf{P} \quad \mathbf{E} \quad \mathbf{N} \quad \mathbf{D} I \quad \mathbf{X}
$$

" be no occafion for luting, as the tube acts like a funnel " in carrying off the vapour.
"When the water begins to boil, the vapour fhould st be allowed to pals freely for a minute, which will " effectually clean the tube and upper part of the boiler. " The tube is afterwards to be kept conftantly wet, by "paffing a mop or fwab, dipped in fea-water, along its " upper furface. The wafte water running from the mop, " may be carried off by means of a board, made like a " fpout, and placed beneath the tube.
"The diftillation may be continued till three fourths of " the water be drawn off, and no further. This may be " afcertained either by a gauge-rod put into the boiler, " or by meafuring the water difilled. The brine is then " to be let out.
"Water may be diftilled in the fame manner while the " provifions are boiling.
" When the tube is made on hore, the beft fubftance "for the purpofe is thin copper well timned, this being " more durable in long voyages than tin plates.
"Inftead of mopping, the tube, if required, may have "a cafe made alfo of copper, fo much larger in diameter " as to admit a thin heet of water to circulate between

$$
\mathrm{Kk}_{2}
$$

" them
"them, by means of a fpiral copper thread, with a pipe " of an inch diameter at each end of the cafe; the " lower for receiving cold water, and the upper for "carrying it off when heated.
" When only a very fmall portion of room can be "conveniently allowed for diftillation, the machine " (N° 2. in the Plate), which is only twenty-feven inches " long, may be fubftituted, as was done in this voyage. "The priucipal intention of this machinc, however, is to " diftil rum and other liquors; for which purpofe it has " been employed with extraordinary fuccefs, in preventing " an empyreuma, or fiery tafte."

Explanation of Plate XIV.

"Figure 1, reprefents in perfpective a fection of the "two boilers taken out of the frame. In the back "part at D, E, are feen openings for the cocks. On " the top is a diftilling tube A, B, C, five inches dia" meter at A, and decreafing in fize to three inches at C; " the length from B to \mathbf{C} is five feet. Near \mathbf{C} is a ring " to prevent the water which is applied to the furface " from mixing with the diftilled water. In the infide of " the tube, below B, is a fmall lip or ledging, to hinder " the diftilled water from returning into the boiler by the " rolling of the hip.

$$
\begin{array}{llllllll}
A & P & P & E & N & D & \mathbf{l}
\end{array}
$$

"In figure 2, A, B, C, D, reprefent a vertical fection " of a copper box, twenty-feven inches long, feven inches " wide, and eleven in height, tinned on the infide. In " the bottom F , is an aperture about fix inches in diameter, " having a ring to fit on the fill or boiler. The dotted " lines which run nearly horizontal, are veffels of thin " copper, tinned on the outfide, two feet long, feven " inches wide, and three quarters of an inch deep. At " G is a funnel to receive cold water, which is conveyed σ into the veffels by communicating pipes, contrived in " fuch a manner as to form a complete and quick circu" lation of the water through their whole extent. When " the water is become hot by the action of the feam, it " is difcharged by the horizontal pipe at A. E is a pipe " from which the diftilled water or fpirits run, and is bent " in fuch a form, that the liquor, running from it, acts " as a valve, and hinders any feam from efcaping that " way. On the top of the box, at H , is a fafety-valve, " which prevents any danger from a great accumulation * of vapour, not condenfed for want of a proper fupply " of cold water."

$$
\text { A } \mathbf{P} \quad \mathbf{P} \quad \mathbf{E} \quad \mathbf{N} \quad \mathbf{D} \quad \mathbf{I}
$$

Account of the Astronomical Observations and Time-Keeprrs, by Mr. Lyons.

"'THE obfervations for finding the time at lea, were taken with a brafs Hadley's Sextant of eighteen " inches radius, made by Dollond; and fometimes by " Captain Phipps, with a fmaller of four inches radius, " made by Ramiden, which commonly agreed with the " other within a minute. The error of the fextant " was generally found by obferving the diameter of the "Sun; which if the fame as double the femidiameter "fet down in the Nautical Almanac, fhewed that the " inftrument was perfectly adjufted; if it differed, the " difference was the error of the fextant. It was necef"fary to know this error of adjuftment very exaety, " and therefore I generally repeated the obfervation of " the Sun's diameter feveral times, and from the mean " of the refult found the error of the fextant. This error "will equally affect all the obfervations taken near "the fame time, and therefore cannot be difcovered "from the comparifon of feveral obfervations. Under "the equator, an error of one minute in altitude, near "the prime vertical, will only preduce an error of ar four feconds in the apparent time; but in the latitude

A P P E N D I X.
" of eighty degrees it will caufe an error of twenty-three " feconds. As we generally took feveral fucceffive ob" fervations, any error in the obfervation itfelf will be " generally independent of the reft; and as I have calcu" lated each feparately, the conclufions will hew which " are erroneous, by their differing much from the mean " of all, which cannot but be very near the truth.
"In calculating thefe obfervations, I found by the " logboard how much we had altered our latitude fince " the laft obfervation; and fometimes, when we had " an obfervation the noon following the obfervation " for the time, the latitude of the Chip at the time "the altitudes were taken was inferred from it. As moft " of our altitudes were obferved when the fun was near " the prime vertical, a fmall error in the latitude will " not produce any confiderable change in the time; " indeed, if it is exactly in the prime vertical, it will not " make any change at all.
"To find the Longitude from thefe obfervations: to " the apparent time found by calculation, apply the "equation of time according to its fign, which will " give the mean time; the difference between which and " that marked by the watch, will fhew how much it is " too llow or too faft for mean time.

"Captair

A $\quad \mathbf{P} \quad \mathbf{P} \quad \mathrm{E} \quad \mathrm{N} \quad \mathrm{D} I \mathrm{X}$.
"Captain Phipps's pocket watch, made by Mr. " Arnold, when compared with the regulator at Green" wich, May 26th, was twenty-four ficonds too flow; " it was there found to lofe twelve feconds and a quarter "a day on mean time. From this it is eafy to find " what time it is at Greenwich at any moment fhewn by " the watch.
" The watch was compared every day about noon " with the two time-keepers made by Meff. Arnold and " Kendal; and from this comparifon, and their rates of " going previoufly fettled at Greenwich, together with " knowing how much they differed from mean time at " Greenwich before we fet out, was calculated the table " which hews what the mean time is at Greenwich " according to each time-keeper, when the watch is at " twelve hours.
"By the help of this table, we may eafily find the " longitude of the hhip, as deduced from the going " of each time-keeper. Having found how much the " watch is too falt or too flow for mean time at the " fhip, we know what the mean time is at the fhip " when the watch is at twelve hours; and by the table "we can find what is the mean time at Greenwich at " the fame time, fuppofing each time-keeper had kept "s the fame rate of going as it had before our departure:
$\begin{array}{llllllll}\text { A } & \mathrm{P} & \mathrm{P} & \mathrm{E} & \mathrm{N} & \mathrm{D} & \mathrm{I} & \mathrm{X} .\end{array}$
" the difference of thefe mean times will give the lo igi" tude of the fhip.
"For example, June 19 th, in the afternoon, the " watch was $I^{\prime} 24$ " too flow for mean time at the place " where we obferved; therefore, when the watch fhews " twelve hours, the mean time at this place was $12^{h} \mathbf{I}^{\prime} 24^{\prime \prime}$. "At this time I find by the table, that according to " Kendal's time-keeper, the mean time at Greenwich was " $12^{\text {h }} 2^{\prime} 7^{\prime \prime}$: from this fubtracting $12^{\text {h }} \mathbf{I}^{\prime} 24^{\prime \prime}$, the mean " time at the $\mathrm{h} i \mathrm{p}$, the remainder, $0^{\prime} 43^{\prime \prime}$ is the difference " of meridians; which, converted into parts of a degree, "gives $0^{\circ} 10^{\prime} 45^{\prime \prime}$ for the longitude of the fhip according " to Kendal, which is to the Weftward, becaufe the mean "s time at the fhip is lefs than that at Greenwich.
"When we were on fhore, the obfervations were " made with an Aftronomical Quadrant, divided by Mr. " Ramfden, of eighteen inches radius, which was " placed on a folid rock of marble; the error of the line " of collimation was found by inverting the quadrant, " which was adjufted by a fpirit level. The weather did " not permit us to take correfponding altitudes of the " Sun, fo that we determined the apparent time by com" putation from altitudes of the Sun's limb; having before " fettled the latitude of the place of obfervation, from " meridian altitudes of the Sun's limbs taken with " the fame inftrument.
" The Latitudes of the fhip were determined moft com" monly by the meridian altitude of the Sun': lower limb; " in a few inftances, by that of his upper limb, when the " lower was not fo diftinet, or was hid by clouds. The " height of the eye above the level of the fea, in all thefe " obfervations, was fixteen feet. When we could not get "a meridian obfervation, we made ufe of the method " defcribed in the Nautical Almanac for 177 I , from two " altitudes taken about noon, and at a little diftance from it.
" It fometimes happens that we can only take fome " altitudes very near the time of noon. If we have " obferved any altitudes of the Sun near the prime vertical, " we may thence determine how much the watch is too " faft or too flow for apparent time; and confequently, " how much the time when the altitudes were taken, is "diftant from noon; it therefore remains to find how " much thefe altitudes are different from the meridian " altitude. This may eafily be found by the following " Rule :

[^8]\[

$$
\begin{array}{rllllllll}
\text { A } & \mathbf{P} & \mathbf{P} & \mathbf{E} & \mathrm{N} & \mathrm{D} & \mathrm{I} & \mathrm{X} . \\
& & & & & & & & \\
\hline
\end{array}
$$
\]

" June the twenty-firt, the altitude of the Sun's center " was obferved to be $46^{\circ} 6^{\prime}$ at $16^{\prime} 45^{\prime \prime}$ after apparent noon; " the latitude by $\approx=$ count was $67^{\circ} 17^{\prime}$; the Sun's declination " being then $23^{\circ} 28^{\prime} \mathrm{N}$, the fuppofed meridian altitude " $46^{\circ} 11^{\prime}$.

" As the altitudes for determining how much the watch "differs from apparent time were taken near the prime " vertical, a great error in the fuppofed latitude will make " a very infenfible change in the apparent time; nor will " it create any great difference in the variation of altitude " near noon in a given time, as will appear by the following " computation:

L 12

"Suppofe " greater than before.

$$
\begin{array}{lllllllll}
& \mathbf{E} & \mathbf{X} & \mathbf{A} & \mathbf{M} & \mathbf{P} & \mathbf{L} & \mathbf{E} & \text { II. }
\end{array}
$$

" June the twentieth, the altitude of the Sun's center " was obferved $o^{h} 28^{\prime} 38^{\prime \prime}$ after midnight, to be $r^{\circ} 13^{\prime}$, the " latitude by account beino $67^{\circ} 40^{\prime} \mathrm{N}$.

"There were two time-keepers fent out for trial by the " Board of Longitude ; one made by Mr. Kendal after Mr. " Harrifon's principles; the other, by Mr. Arnold: this " laft was fufpended in gimmals, but Mr. Kendal's was " laid between two curhions which quite filled up the box. " They were both kept in toxes fcrewed down to the " fhelves of the cabin, and had each three locks; the key " of one of which was kept by the captain, of another by " the firt lieutenant, and of the third by myfelf; they " were wound up each day foon after noon, and compared " with each other and with Captain Phipps's watch. They " ftopped twice in the voyage, owing to their being run " down; they were fet a-going again, and as they had been "daily compared together, it was eafy to know how " long each had ftopped, from the others that were fill " going; this time is allowed for in the table of the mean " time at Greenwich by each time-keeper.
" When we were on fhore at the inland where we ob" Served July 15 th, we found how much the watch was too " flow for mean time. When we returned from the ice to " Smeerenberg, and again compared the watch with the " mean time, allowing the fmall difference of longitude " between the ifland and Smeerenberg, we found that it " went very nearly at the fame rate, as it did when tried " at Greenwich: fo that its rate of going was nearly the " fame in our run from England to the inland, from thence "to the ice and baek again to Smeerenberg; and in our:
" voyage from thence to England, as we found on our " return. By this means we were induced to give the " preference to the watch, and to conclude that the " longitude found by it was not very different from the " truth.
"The principles on which this watch is conftrueted, as "I am informed by the maker, Mr. Arnold, are thefe: the " balance is unconnected with the wheel-work, except at " the time it reccives the impulfe to make it continue its " motion, which is only while it vibrates 10° out of 380°, " which is the whole vibration; and during this fimall " interval it has little or no friction, but what is on the " pivots, which work in ruby holes on diamonds: it has " but one pallet, which is a plane furface formed out of "a ruby, and has no oil on it.
" Watches of this confruction go whilf they are wound " up ; they keep the fame rate of going in every pofition, " and are not affected by the different forces of the fpring: " the compenfation for heat and cold is abfolutely ad" juftable.
"Time-keepers of this fize are more convenient than " larger, on feveral accounts; they are equally portable " with a pocket watch, and by being kept nearly in the " fame degree of heat, fuffer very little or no change from " the vicifitudes of the weather.

$$
A P P E N D I X .
$$

" This watch was exceedingly ufeful to us in our obfer" vations on land, as the other time-keepers could not " fafely be moved: and indeed, in the prefent voyage, " where they were on trial, it was contrary to the intent " for which they were put on board, and might have been " attended with accidents by which the rate of their going " might have been greatly affected.
" The longitudes by Mr. Arnold's larger time-keeper " are very different from thofe by the watch in our voyage " back from Spitßergen to England; owing, probably, to " the balance-fpring being rufted, as we found when it " was opened at the Royal Obfervatory at Greenwich, " on our return.
" The longitudes found by the Moca are deduced from "diftances of the Moon from the Sun's limbs, or from "Stars, taken with the fextant; whilft the altitudes of " the Moon and Sun, or Star, were taken by two other " obfervers.
"In one inflance (June 26th) the obfervations were all " made by Captain Phipps with the fimall fextant fuc"ceffively; and the altitudes of the Moon and Sun at the " very inftant the diftances were obferved, are deduced "from the changes in thefe altitudes during the interval " of obfervation.

"I have

A P P E N D I X.

" I have calculated the longitude from each fet of " obfervations feparately, to thew how near they agree " with each other, and what degree of precifion one " may expect in fimilar cafes.
" Obfervations of the diftances of the Moon and Sun, or "Stars, may be ufeful to inform us if the time-keepers " have fuffered any confiderable change in their rate of " going. For if the longitude deduced from the moon "differs above two degrees from that found by the " watches, it is reafonable to imagine, that this difference " is owing to fome fault in the watch, as the longitude "found by lunar obfervations can hardly vary this " quantity from the truth: but if the difference is much " lefs, as about half a degree, it is more probable that the " watch is right, fince a fmall error in the diftance will " produce this difference.
"The diftances of the Moon from Jupiter were ob.. " ferved, becaufe Jupiter is a very bright object; and the " obfervations are eafier and lefs fallacious, particularly " that of the altitude, than thofe of a fixed ftar, whofe " light is much fainter. This method, however, requires " a different form of calculation, from that of the obferved " diftance of the Moon from a fixed ftar, whofe diftances " are computed for every three hours, in the Nautical "Almanac. The principal difficulty in the calculation " is to find the Moon's longitude from the obfervation of
" the diftance. This I have endeavoured to facilitate by " the following problem, which may be applied to any " zodiacal ftar, and will be of ufe when the far fet down " in the Ephemeris cannot be obferved.

$$
\begin{array}{lllllll}
& \text { " } & \mathrm{R} & \mathrm{O} & \mathrm{~B} & \mathrm{~L} & \mathrm{E}
\end{array} \mathrm{M} .
$$

" Having given the diftance of two objects near the " ecliptic, with their latitudes, to find their difference of " longitude.

$$
\begin{array}{llllllll}
& \text { S } & \mathbf{O} & \mathbf{L} & \mathrm{U} & \mathrm{~T} & \mathrm{I} & \mathbf{O}
\end{array} \mathrm{~N} .
$$

"Find an arc A, whofe logarithmic fine is the fum of " the logarithms of the fines of the two latitudes and the " logarithmic tangent of half the diffance, rejecting twenty " from the index of the fum.
"Find an arc B, whofe logarithmic fine is the fum of " the logarithmic verfed fine of the difference of latitude, " and the logarithmic cotangent of the diftance, rejecting " ten from the index of the fum.
"Then A added to the cbferved diftance, and B fub" tracted from the fum, leaves the difference of longitude. "If one of the latitudes is South, and the other North, "the fum of the two arcs A and B fubtracted from the " diftance: leaves the difference of longitude.

> Mm "EXAMPLE.
" Auguft the thirty-firft, the obferved diftance of the " Moon's center from Jupiter, cleared of refraction and " parallax, was $32^{\circ} 35^{\prime} 52^{\prime \prime}$, the Moon's latitude being " $\mathrm{I}^{\circ} 47^{\prime} \mathrm{N}$, and that of Jupiter $\mathrm{I}^{\circ} 36^{\prime} \mathrm{S}$.
"Latitude $1^{\circ} 47^{\prime \prime}$ Sine 8,4930 Difference of Latitude, $3^{\circ} 23^{\circ}$ Vcrs, Sin. 7,2413
"Lat. 4 - 1 3" \quad Sine 8,4+59
"Half diltance 16 is Tang. 9,4660
Ditance 3236 Cotang. 10,1941
"Arc A. $o^{\prime} 52^{\prime \prime}$ - - Sine 26,4049 Arc B. $9^{\prime} 25^{\prime \prime}$ - - Sirc 17,4354
"The fum of thefe Arcs - $10^{\prime} 17^{\prime \prime}$ Subtracted trom
" the diftance
" Knowing the longitude of Jupiter from the Ephe" meris, and the difference between it and that of the " Moon, we may infer the longitude of the Moon by "obfervation: and from the longitudes fet down for " noon and midnight of each day in the Nautical "Almanac, find the apparent time at Greenwich when " the Moon had that longitude, which compared with " the apparent time at the Ship, will give the difference " of meridians.

A Table thewing what the Mean Time is at Greenwich, by each Time-keeper, when the Pocket Watch made by Arnold is at $1 z^{\text {h }}$.

Day of ine Mo:mh.		Arno!d.	Kondal.	Watch.			Day of the Month.	Annold.	Kendal.	Watch.
June		h ' 11 h	h, " h	h,				b 11 h	h ' 1	h ' "
		120381	115950	12149			July 27	115034	$\begin{array}{llll}12 & 5 & 27 \\ 12 & 5 & 48\end{array}$	$\left.\begin{array}{llll} 12 & 1 & 3 & 5 \\ 12 & 1 & 3 & 17 \end{array} \right\rvert\,$
		12111	$12001+1$	$12 \quad 2$			28	114959	125648	$\begin{array}{llll} 12 & 1 & 3 & 17 \end{array}$
		121161	120251	$12 \quad 15$			29	114931	12612	121329
		$12 \quad 13{ }^{12} 1$	$120+51$	$\begin{array}{lll}12 & 2 & 27\end{array}$			30	1158857	12645	$12 \begin{array}{lllll}12 & 12\end{array}$
	612	121501	120551	$12 \quad 239$			31	11 48 9 1	12652	1221354
		$\begin{array}{lll} 12 & 2 & 6 \end{array}$	$12 \quad 110$	1225			Aug. 1		1270	12 it 6
	812	12 2 8 1	$12 \quad 1010$	1234			2	1146341	12712	$121+19$
	912	$\begin{array}{lllllll}12 & 1 & 50\end{array}$	120531	12316			3	11545	$\begin{array}{lll}12 & 7 & 32\end{array}$	$121+31$
	012	$12 \begin{array}{lllll}12 & 2 & 3 & 1\end{array}$	$\begin{array}{llllll}12 & 1 & 5 & 1\end{array}$	12328			4	If $4+39$	$\begin{array}{lll}12 & 7 & 34 \\ 12\end{array}$	12.1443
	12	$12 \quad 2111$	$12 \begin{array}{llllll}12 & 1 & 28 & 1\end{array}$	12340			5	It 143343	$\begin{array}{llll}12 & 7 & 38 \\ 12 & 7 & 31\end{array}$	$\begin{array}{lllll}12 & 14 & 5 \\ 12 & 14 & 5\end{array}$
	1	122161	$12 \begin{array}{lllll}12 & 1 & 34 & 1\end{array}$	12353			0		12731	$12 \begin{array}{lll}12 & 15\end{array}$
	1	$\begin{array}{llllll}12 & 2 & 4\end{array}$		1245			12	$\begin{array}{llll}11 & 58 \\ 11 & 5 & 7\end{array}$	- •	-
	1	$12 \quad 2 \begin{array}{lllll}12 & 10\end{array}$	12 1 38 1	12417			13	1115632	- \cdot	
	1		$12 \quad 143$	$12 \quad 429$			14	11.5051612	$\begin{array}{lll}12 & 5 & 21 \\ 12 & 5 & 3\end{array}$	12121645
	1	$12 \quad 1591$		12442			15	$1: 548$	$\begin{array}{llll}12 & 5 & 38\end{array}$	$\begin{array}{llllll}12 & 16 & 58 \\ 12 & 17 & 10\end{array}$
	71	$12 \quad 2061$	$1214{ }^{12} 12$	12454			16	$11: 5240$	1285	$12 \begin{array}{lllll}12 & 17 & 10\end{array}$
	1	$\begin{array}{lllll}12 & 2 & 5 & 1\end{array}$	$121^{12} 515112$	1256			17	1115127	$1 \begin{array}{lll}12 & 0 & 10 \\ 12 & 6 & \end{array}$	$\begin{array}{lllll}12 & 17 & 2 & 3 \\ 12 & 17 & 35\end{array}$
	1	12214	$12 \begin{array}{lllll}12 & 2 & 1\end{array}$	$\begin{array}{llll}12 & 5 & 18\end{array}$			18	11508	12633	$\begin{array}{lllll}12 & 17 & 35 \\ 12 & 17\end{array}$
	1	$12 \quad 2 \begin{array}{lll}12 & 2\end{array}$	$122^{12} 20311$	12531			19	11188411		
	1		$\begin{array}{lllll}12 & 2 & 5 & 1\end{array}$	12543			20	11 $11+7{ }_{11}$	$\left\|\begin{array}{llll} 12 & 6 & 5 & 2 \\ 12 & 6 & 5 & 8 \end{array}\right\|$	$\begin{array}{\|ccc\|}12 & 18 & 0 \\ 12 & 18 & 12\end{array}$
	1	$12 \begin{array}{llll}12 & 1 & 4 & 1\end{array}$	12 2 3 1				21	11 45 23 1 11 4 3 1		
	1	$12 \begin{array}{llll}12 & 1 & 13 & 12\end{array}$	1212 1 30 1	1268			22	111 4.3 3 31112	$\begin{array}{llll}12 & 6 & +7 \\ 12 & 6 & 5\end{array}$	$\begin{array}{llll}12 & 18 & 2 \\ 12 & 18 & 3 \\ 12\end{array}$
	1	1212	121^{12}	$\begin{array}{lll}12 & 6 & 20 \\ 12 & 6 & 32\end{array}$			23	$\left\|\begin{array}{lll} 11 & 4 & 51 \\ 11 & 39 & 1 \\ 1 \end{array}\right\|$	$\begin{array}{lll} 12 & 6 & 55 \\ 12 & 6 & 58 \end{array}$	$\begin{array}{llll}12 & 18 & 36 \\ 12 & 18 & 4 \\ 12 & 19\end{array}$
	1	12 0 24 12 11 59 5 1 12	1212 1 17 1 12 0 59 12	$\begin{array}{lll}12 & 6 & 32 \\ 12 & 6 & 44\end{array}$			24		$\begin{array}{lll}12 & 6 & 58 \\ 12 & 6 & 56\end{array}$	$\begin{array}{llll}12 & 18 & 4 \\ 12 & 19 & 1 \\ 12 & 19 & 3\end{array}$
	1	$\left\|\begin{array}{lll} 11 & 59 & 52 \\ 11 & 59 & 44 \end{array}\right\|$	$\begin{array}{lll} 12 & 1 & 4 \end{array}$	$\begin{array}{lll}12 & 6 & 47 \\ 12 & 6 & 57\end{array}$			26	$11355^{6} 1$	12658	121913
	1	$11 \begin{array}{lllll}11 & 59 & =6 \\ 10\end{array}$		12 7			27	i1 317	127815	$\begin{array}{lllll}12 & 19 & 25 \\ 12 & 10 & 3\end{array}$
	1	1159111	$12 \begin{array}{llll}12 & 1 & 12\end{array}$	12721			28	113217	$1275{ }^{12}$	${ }_{12}^{12} 129388$
	301	115855	12059	12734			29	$\begin{array}{lllll}11 & 30 & 17\end{array}$	12732	121950
July		115	12217	$\begin{array}{lll}12 & 7 & 46 \\ 12 & 7\end{array}$			30	11289	$\begin{array}{llll}12 & 7 & +3 \\ 12 & 7 & 5\end{array}$	$122^{12} 1202$
		$\begin{array}{llll}11 & 58 & 29\end{array}$	12 12 10	$\begin{array}{lll}12 & 7 & 5^{8} \\ 12 & 8 & 10\end{array}$			Sept. ${ }^{31}$	$\begin{array}{llll}11 & 20 & 14 \\ 11 & 24 & 5\end{array}$	$\begin{array}{llll}12 & 7 & 57 \\ 12 & 8 & 13\end{array}$	$\begin{array}{cccc}12 & 20 & 15 \\ 12 & 20 & 27\end{array}$
	3	$\|$11 58 20 11 58 14	$\|$12 1 21 12 12 1 31	$\begin{array}{lll}12 & 8 & 10 \\ 12 & 8 & 23\end{array}$			Sept. 1	$\begin{array}{lllr}11 & 24 & 5 \\ 11 & 21 & 46\end{array}$	$\left\lvert\, \begin{array}{lll}12 & 8 & 1 \\ 12 & 8 & 13\end{array}\right.$	$1 \begin{array}{llll}12 & 20 & 27 \\ 12 & 20 & 3, \\ 12 & 20 & \end{array}$
	4	$\left\|\begin{array}{rrr} 11 & 58 & 14 \\ 11 & 58 & 2 \end{array}\right\|$	$\left\|\begin{array}{lll}12 & 1 & 31 \\ 12 & 1 & 39\end{array}\right\|$	$\begin{array}{lll}12 & 8 & 23 \\ 12 & 8 & 35\end{array}$				$\begin{array}{llll}11 & 21 & 46 \\ \text { I1 } & 19 & 43\end{array}$	$\left\lvert\, \begin{array}{lll}12 & 8 & 13 \\ 12 & 8 & 38 \\ 12 & 8\end{array}\right.$	$\left\lvert\, \begin{array}{llll}12 & 20 & 31 \\ 12 & 20 & 51\end{array}\right.$
	0	1155750	12147	$\begin{array}{llll}12 & 8 & 47\end{array}$			4	1117829	12853	$1 \begin{array}{llll}12 & 21 & 4 \\ 12 & 21 & 4\end{array}$
	7	1115742	12159	12859			6	$\begin{array}{lllll}11 & 14 & 59 \\ 11 & 1 & 59\end{array}$	1204	$12 \begin{array}{lll} 12 & 1 & 16 \\ 1 . & 21 & 2 \end{array}$
	8	1155726	12210	12912				1112202	$\begin{array}{lll}12 & 9 & 22 \\ 12 & 4 & 22\end{array}$	1: 212123
	,	115720	$12 \quad 225$	1294				it 11936	12922	$12 \begin{array}{llll}12 & 21 & 40 \\ 12 & 29 & \\ 12\end{array}$
		$1{ }^{1} \square^{5} 595$	$12 \begin{array}{lll}12 & 23\end{array}$	$\begin{array}{lll}12 & 9 & 36 \\ 12 & 9 & 49\end{array}$			11	11 3 53 10 57 16	$\left(\begin{array}{lll}12 & 9 & 4 \\ 12 & 9 & 4 \\ 12\end{array}\right.$	$\begin{array}{llll}12 & 22 & 5 \\ 12 & 22 & 30\end{array}$
	11	$1 \begin{array}{lll}11 & 56 & 47 \\ 11 & 56 & 25\end{array}$	$1 \begin{array}{lll}12 & 2 & 45 \\ 12 & 2 & 4 \\ 12\end{array}$	$\begin{array}{rrrr}12 & 9 & 49 \\ 12 & 10 & 1\end{array}$			11	1057111	$\left\lvert\, \begin{array}{ccc}12 & 9 & 40 \\ 12 & 10 & 10\end{array}\right.$	$\begin{array}{llll} 12 & 2 & 2 & 30 \\ 12 & 22 & 54 \end{array}$
	12	$\begin{array}{llll}11 & 56 & 25 \\ 11 & 56 & 13\end{array}$	12	$\begin{array}{rrr} 12 & 10 & 1 \\ 12 & 10 & 13 \end{array}$			14	10350	121031	$\begin{array}{ccc}12 & 23 & 54 \\ 12\end{array}$
	13	11 56 13 11 55 33	12 21258	$\begin{array}{lll} 12 & 10 & 13 \\ 12 & 10 & 25 \end{array}$			15	$104^{2} 31$	121047	$\begin{array}{lllll}12 & 2 & 3 & 19\end{array}$
	14 15	$\left\lvert\, \begin{array}{ccc}11 & 5 & 33 \\ \cdot & \cdot & \cdot\end{array}\right.$	$12.24+$	121033			16	10.3936	12114	$1 \begin{array}{lllll}12 & 23 & 31\end{array}$
	10	115520	$12 \quad 234$	121050			37	103559	$\begin{array}{llllll}12 & 11 \\ 12 & 11 \\ 12\end{array}$	$\begin{array}{lllll}12 & 2 & 2 & 4 & 7 \\ 12 & 3\end{array}$
	17	1155 5	12235	12112			18	$10{ }^{10} 12153$	12.1147	$12 \begin{array}{lll}12 & 2 & 5\end{array}$
	18	$115+56$	12318	121114			19	102711	121152	2 24 4 . 4 8 2 20
	19	$115+21$	$12 \begin{array}{lll}12 & 32\end{array}$	121127			20	10230	$\begin{array}{llll}12 & 12 & 15\end{array}$	$: 2$ $2+$ 12 2
	20	$115+1$	$12 \quad 3{ }^{12}$	121139			21	101818	121240	$12 \begin{array}{lll}12 \\ 12 & \ddagger\end{array}$
	21	115339	12359	121151			3	$\begin{array}{lll}10 & 8 & 54 \\ 10 & 4 \\ 1\end{array}$	$12 \begin{array}{lllll}12 & 1 & 39\end{array}$	$\begin{array}{llll}12 & 24 & 47 \\ 12 & 2 & 5 \\ 12 & 9\end{array}$
	22	115315	$\left\lvert\, \begin{array}{lll}12 & 418 \\ 12 & 4 & \\ \end{array}\right.$	$1 \begin{array}{llll}12 & 12 & 4 \\ 12 & 12 & 16\end{array}$			24	10 4 1 9 5 3 5	$\begin{array}{lllll}12 & 1 & 4 & 10 \\ 12 & 1+ & 37\end{array}$	$\begin{array}{lllr}12 & 2 & 5 & 9 \\ 12 & 2 & 5 & 21\end{array}$
	23	1115250	$\left\|\begin{array}{lll} 12 & 4 & 38 \end{array}\right\|$	$\left\lvert\, \begin{array}{lll} 12 & 12 & 16 \\ 12 & 12 & 28 \end{array}\right.$			26	${ }^{9} 953554$	$121+5 y$	$\begin{array}{llll}12 & 2 & 5 & 4\end{array}$
	24	$\begin{array}{llll}11 & 5 & 2 & 15 \\ 11 & 51 & 48\end{array}$	$\left\|\begin{array}{rrr} 12 & 4 & +7 \\ 12 & 5 & 9 \end{array}\right\|$	$\left\lvert\, \begin{array}{lll} 12 & 12 & 28 \\ 12 & 12 & 40 \end{array}\right.$			27	${ }^{9}+8{ }^{4} 8$	12 215	$1223+4$
	25 26	11 51 48 11 51 10	$\left\|\begin{array}{lll}12 & 5 & 9 \\ 12 & 5 & 16\end{array}\right\|$	$\begin{array}{\|lll} 12 & 12 & 40 \\ 12 & 12 & 53 \\ \hline \end{array}$						

M m 2
Obdervations
$\begin{array}{lllllllll}236 & \text { A } & \text { P } & \text { P } & \text { E } & \text { N } & \text { D } & \text { I } & \text { X. }\end{array}$
Obfervations for finding the Longitude by the Time-keepers.

Obfervations

Obfervations for finding the Longitude by the Time-keepers.

$\begin{aligned} & \text { Tiune by } \\ & \text { the } \\ & \text { Warth. } \end{aligned}$	Alt, of the Sun's lower Alt, of the Sin's Limb. Center.
" 11	- ' "
$9+35$	+t +1 0
$\begin{array}{lll}9 & 0 & 10 \\ 4 & 7 & 0\end{array}$	++55 0 +5 3 45 9 0 $4 ;$ 17
9 9 10 7250	${ }_{52} 3^{4} 000$
At $2^{\text {b }}$ by we Watcle, mean Time ar Ar Creenwich, by the Watel!, 1)ifference of Meridians, Loakitude of the Ship,	

June 11, A. M.

$$
\begin{array}{lllllllll}
238 & \text { A } & \text { P } & \text { P } & \text { E } & \mathrm{N} & \mathrm{D} & \mathrm{I} & \mathrm{X} .
\end{array}
$$

Obfervations for finding the Longitude by the Time-keepers.

Obfervations

Obfervations

Obfervations for finding the Longitude by the Time-keepers.

Obfervations

A $\mathbf{P} \quad \mathbf{P} \quad \mathbf{E} \mathrm{N} \mathrm{D} \boldsymbol{I} \mathrm{X}$.

Obfervations for finding the Longitude by the Time-keepers.

242

A P P E N D I X.
Obfervations for finding the Longitude by the Time-keepers.

Obfervations

A P PENDIX.

$\mathrm{N}_{1} 2$
Obfervations

Obfervations for finding the Longitude by the Time-keepers.

Obfervations
A P P E N D I X.

Obfervations for finding the Longitude by the Time-kecpers.

A P P E N D I X.

Obfervations for finding the Longitude by the Time keepers.

Obfervation

Obfervations for finding the Longitude by the Time-kecpers.

At Snmectentery, Latt. $79^{\circ} 44^{\prime}$ By the Afronomical Quadrant, Correction for Error of Quadrant - 32"								
1.iy of the Month.	fime by the I'ach.	Ah. of the Sun's lower Limb.	Alt. of the Sun's Cemer.	Apparent Time.	Mlinn Time.	With 100 nlow.	Eq.	Co. Decl.
$\begin{gathered} \text { Augunf } 14 \\ \text { P, M. } 4 \end{gathered}$, "	- ' "		- 11	"	' "	' "
	$\begin{array}{llll}5 & 38 & 30\end{array}$	12240	$12 \begin{array}{lll}125 & 0\end{array}$	$\begin{array}{lllll}6 & 30 & 21\end{array}$	$63+31$		$4+10$	755030
	5 5 4737	1200	12110	$\begin{array}{lllll}6 & 39 & 31 \\ 6 & 59 & \end{array}$	$\begin{aligned} & 6 \\ & 6\end{aligned}+3412$	5681		
	6115	11240	11 3440	$\begin{array}{lllll}6 & 53 & 24\end{array}$	$6{ }_{6}^{6} 57414$	$5{ }^{56} 119$		
	$\begin{array}{llll}6 & 2 & 39\end{array}$	112150	113140	$\begin{array}{lllll}6 & 5+59 \\ 6 & 5\end{array}$	6598	56		755050
	$6 \begin{array}{llll}6 & 5 & 2\end{array}$	11150	1:25 4°	$6{ }_{6}^{6} 5654$	7 l	$5{ }^{56} 5$		
	$6{ }_{6}^{6} 688$	11120	112240	${ }_{6}^{6} 584$	$\begin{array}{llll}7 & 2 & 14\end{array}$	56		
	$\begin{array}{lll}6 & 7 & 24\end{array}$	1190	$\begin{array}{lll}11 & 19 \\ 11 & 16 \\ 118\end{array}$	65915	$\begin{array}{rrrr}7 & 3 & 25 \\ 7 & 4 & 9\end{array}$	$\begin{array}{rrr}56 & 1 \\ 55 & \\ 5\end{array}$		
	6839	1160	111640	7 0-0	$\begin{array}{llll}7 & 4 & 9\end{array}$	553°	$4+9$	
	6945	113	$1: 1340$	7131	$7 \quad 540$	5555		
	6113	110	111040	$7{ }^{7} \quad 2$ 7	$7{ }^{7}$	554		
	61544	10480	105830	$7{ }_{7}^{7} 723$	71132	$55+8$		$75 ; 10$
	$\begin{array}{lll}6 & 1641\end{array}$	1045	105530	$\begin{array}{llll}7 & 8 & 41 \\ 7 & 4\end{array}$	71250	56		
	61751	10420	105230	$\begin{array}{llll}7 & 9 & 5 \\ 7 & 11 & 4\end{array}$	$\begin{array}{lll}7 & 1 \\ 7 & 1 & 3\end{array}$	$5{ }_{5}^{5} 8$		
	61910	1039	104920	7118	$\begin{array}{llll}7 & 15 & 17\end{array}$	50		
	62022	10360	104620	71220	$716=9$	${ }^{5} 67$		
15, A. M.	+5657	1360	131720	$5 \begin{array}{llll}5 & 48 & 53\end{array}$	55^{2} 5 50	5553	$3+57$	755920
	$+5920$	1312	132320	55159	5550	$55+0$		
	5220	1321	133220	55432	55829	50		
	$5 \begin{array}{lll}5 & 3 & 35\end{array}$	$13 \begin{array}{lll}13 & 24 & 0\end{array}$	133520	$555+3$	55940	565		
	5446	1327	133810	5 56 55	$6{ }_{6}^{6}$	$\begin{array}{ll}54 & 6 \\ 55 & 6\end{array}$		755930
	$5 \begin{array}{lll}5 & 7 & 6\end{array}$	13330	134420	$\begin{array}{llll}5 & 59 & 5 \\ 6 & 0\end{array}$		555^{6}		
	$5{ }_{5}^{5}$	13360	$13+720$	$\begin{array}{llll}6 & 0 & 12 \\ 6 & 1 & 2\end{array}$	$\begin{array}{rrrr}6 & 4 & 9 \\ 6 & 5 & 21\end{array}$	$55{ }^{5} 5$		
	$\begin{array}{llll}5 & 9 & 12\end{array}$	1339	135030	$\begin{array}{llll}6 & 1 & 2+\end{array}$	$\begin{array}{llll}6 & 5 & 21 \\ 6 & 6 & 28\end{array}$	5\% 9		
	$\begin{array}{lllll}5 & 10 & 2 & 3\end{array}$	13420	135330	$\begin{array}{llll}6 & 2 & 31 \\ 6 & 3 & 11\end{array}$	$\begin{array}{llll}6 & 6 & 28 \\ 6 & 7 & 38\end{array}$	56		
	$51113+$:3450	135630	$\begin{array}{llll}6 & 3 & 41\end{array}$	$\begin{array}{lll}6 & 7 & 38 \\ 6 & 8 & 40\end{array}$	56 50 50		
	51243	13480	135930	$\begin{array}{llll}6 & 4 & 49\end{array}$	$\begin{array}{llll}6 & 8 & 4 \\ 6 & 9 & 53\end{array}$	$\begin{array}{ll}50 & 3 \\ 50 & 4\end{array}$		
	$\begin{array}{cccc}5 & 13 & 49 \\ 5 & 20 & 42\end{array}$	$\begin{array}{cccc}13 & 51 & 0 \\ 14 & 9 & 0\end{array}$	$\begin{array}{rrr}1+ & 2 & \vdots \\ 1+20 \\ 1+20\end{array}$	$\begin{array}{rrrr}6 & 5 & 56 \\ 6 & 12 & 4 t\end{array}$	$\begin{array}{rrrr}6 & 9 & 53 \\ 6 & 15 & 41\end{array}$	$\begin{array}{cc}50 & 4 \\ 55 & 59\end{array}$		753940
	$\begin{array}{llll}5 & 20 & 42 \\ 5 & 22 & 56\end{array}$	$\begin{array}{lll}14 & 9 & 0 \\ 1+15 & 0\end{array}$	$1+20$ $1+26$ 14 14	$\begin{array}{llll}6 & 12 & 4 \\ 6 & 14 \\ 0 & 14 & 59\end{array}$	$\begin{array}{llll}6 & \text { is } & 56\end{array}$	55 56 50		755940
	$\begin{array}{cccc}5 & 22 & 50 \\ 5 & 24 & 2\end{array}$	$1+95$ $1+18$	142940	$\begin{array}{llll}6 & 16 & 5\end{array}$	$620 \quad 2$	56		
	$\begin{array}{llll}5 & 27 & 29\end{array}$	14270	143^{8} 40	$\begin{array}{lllll}6 & 19 & 23\end{array}$	62325	50		
	$+578$	12150	12260	55051	$55+14$	5711	$3+=8$	650
18, A. M.	5031	12240	12350	55413	55741	5710		
	5146	12270	12380	555512	$55^{58} 49$			
	$\begin{array}{lll}5 & 2 & 51\end{array}$	12300	12410	$\begin{array}{llll}5 & 56 & 29\end{array}$	55957	5701		
	$\begin{array}{llll}5 & 3 & 57\end{array}$	12330	$1: 44$	55735	$\begin{array}{lll}6 & 1 & 3\end{array}$	576		
	${ }_{5} 56115$	12390	125010	55951	$6{ }_{6}^{6} 319$	$\begin{array}{lll}57 & 8 \\ 57\end{array}$		
	$5 \quad 7 \quad 10$	12420	125310	$\begin{array}{lll}6 & 1 & 2\end{array}$	$6+30$	5710		
	51152	12540	1358	$\begin{array}{llll}6 & 5 & 35\end{array}$	$\begin{array}{lll}6 & 9 & 3 \\ 6 & 10 & 10\end{array}$	57811		
	5130	12570	13810	$6 \quad 642$	61010	574		
	$\begin{array}{llll}5 & 15 & 15\end{array}$	1330	131420	$\begin{array}{llll}6 & 9 & 0\end{array}$	61228	3713		
	$\begin{array}{llll}5 & 16 & 32\end{array}$	1360	131720	$\begin{array}{llll}6 & 10 & 8\end{array}$	$6{ }_{6}^{6} 1338$	574		
	$\begin{array}{lllll}5 & 17 & 39\end{array}$	$\begin{array}{llll}13 & 9 & 0\end{array}$	132020	$6: 1115$	61443	$\begin{array}{ll}57 & 4\end{array}$		
	$\begin{array}{llll}5 & 19 & 60\end{array}$	13150	$1 ; 2620$	$\begin{array}{lllll}6 & 13 & 29\end{array}$	61657	$\begin{array}{lll}57 & 7 \\ 5\end{array}$		
	52055	43180	132920	$61+37$	$\begin{array}{llll}6 & 18 \\ 6 & 19 & 5 \\ 6\end{array}$	57 57 57 10		
	5224	13210	$133^{2} 20$	$6: 548$	61910	57812		3: 10
	$5{ }_{5}^{5} 2424$	13270	$133^{8} 20$	${ }_{6}^{6} 1818$	$\begin{array}{ll}6 & 21 \\ 6 & 21 \\ 6 & 31\end{array}$	57		
	52535	13300	134120	$6{ }_{6}^{6} 191911$	$\begin{array}{lllll}6 & 22 & 39 \\ 6 & 24 & 5\end{array}$	57		
	$\begin{array}{llll}5 & 27 & 4\end{array}$	13360	134730	62129	$\begin{array}{llll}6 & 24 & 57 \\ 6 & 20\end{array}$	$\begin{array}{cc}57 & 1 \\ 57 & 4\end{array}$		
	52855	13390	135030	61236		57		

Obfervations

Obfervations for finding the Longitude by the ' Time-kecpers.

Day of the Month.	Tinne by the Watch.	Ait. of the Sun's lower Limb.	$\left\lvert\, \begin{gathered} \text { Atr. of the } \\ \text { Sun's } \\ \text { Center. } \end{gathered}\right.$	Apparent Time.	Me:in Time.	Watch too flow.	Eq. Tine.	Co. Decl.
	${ }^{6} 1 / 1$	- '"	- "	b 11	a 11	' "	' "	' "
$\begin{aligned} & \text { Anguit } 18 \\ & \text { A. ML. } \end{aligned}$	5375^{3}	1430	$1+1+40$	6 31 4t	63511	5713	$3+2$	765720
	54123	$1+120$	$1423+0$	63544	63911	5748		
	$5 \mathbf{4}_{5} \mathbf{2} 2$	1+ 1: 0	142540	- 633619	63946	5718		
	$5 \begin{array}{llll}5 & 4 & 39\end{array}$	14180	$1+2940$	$\begin{array}{llll}6 & 37 & 27\end{array}$	6 to 54	5715		$76 \quad 5730$
	54549	$1+270$	$1+3540$	$\begin{array}{llll}6 & 39 & 1\end{array}$	64224	5639		
	5474	$1+270$	$1+3840$	$6+0+9$	$6+416$	5712		
	$5+513$	$1+300$	$1+1140$	64^{2} 2 1	645128	$57 \quad 15$		
	54^{\prime}) 21	$1+330$	144440	$\begin{array}{llll}6 & 43 & 9\end{array}$	6 4 6 3	5715		765740
	5599	$1 ; 00$	151150	$\begin{array}{llll}6 & 53 & 27 \\ 6 & 5 & \end{array}$	$6 ; 654$	5715		
	6 0-53	15030	151450	$\begin{array}{llll}6 & 5+37\end{array}$	$65^{8} 84$	57 11		
	$6{ }_{6}^{6}$	15060	151750	$655+5$	65912	5714		
	$\begin{array}{llll}6 & 3 & 8\end{array}$	$1 ; 90$	152050	$65^{\prime \prime} 53$	7 - 20	5712		
	$\begin{array}{lll}6 & 4 & 17\end{array}$	15120	152350	658	$7 \quad 30$	5713		
	6	15150	$15: 650$	65912	$7 \begin{array}{lll}7 & 2 & 39\end{array}$	5710		765750
	$\begin{array}{llll}6 & 6 & 36\end{array}$	15180	1: 2950	7 7 0124	7 7 51	5715		
	$\begin{array}{lll}6 & 7 \\ 6 & \\ \end{array}$	15210	153250	$7 \begin{array}{lll}7 & 1 & 3\end{array}$	$\begin{array}{lll}7 & 5 & 0\end{array}$	5718		
	$\begin{array}{lllll}6 & 11 & 19\end{array}$	15300	$15+150$	$7 \quad 5 \quad 1$	$\begin{array}{llll}7 & 8 & 28\end{array}$	579		
	$\begin{array}{llll}6 & 13 & 32\end{array}$	15360	154750	78719	71046	5714		
	61449	15390	15510	$\begin{array}{llll}7 & 8 & 33\end{array}$	7120	5711		
	$\begin{array}{llll}6 & 16 & 1\end{array}$	15420	15540	$7 \quad 943$	$\begin{array}{llll}7 & 1 & 3 & 10\end{array}$	$\begin{array}{ll}57 & 9\end{array}$		
18, P. N.	51049	12180	12290			5653	$3+21$	77 6 so
	$5 \begin{array}{llll}5 & 12 & 5 \\ 5 & 1 & 6\end{array}$	1:1220	122300	$\begin{array}{llll}6 & 6 & 35\end{array}$	$\begin{array}{lccc}6 & 9 & 56\end{array}$	57		
	$51+6$	1290	I'2 200	6743	6114	56		
	$\begin{array}{llll}5 & 15 & 14\end{array}$	1260	12170	6851	61212	565^{8}		
	51616	1230	12140	6 6 958	$\begin{array}{llll}6 & 13 & 19\end{array}$	573		
	$\begin{array}{lllll}5 & 17 & 22\end{array}$	1200	121180	6 115	61426	574		
	$\begin{array}{llll}5 & 18 & 40\end{array}$	1150	12880	$\begin{array}{lllll}6 & 12 & 13\end{array}$	$\begin{array}{llll}6 & 15 & 34\end{array}$	5654		
	$\begin{array}{llll}5 & 19 & 35\end{array}$	11540	1250	$\begin{array}{lllll}6 & 1 & 3 & 21\end{array}$	61642	577		
	$5{ }_{5} 2048$	115150	$1 \begin{array}{lll}12 & 1 & 50\end{array}$	$61+27$	61748	57 0		
	52151	$11+80$	$\left\lvert\, \begin{array}{llll}158 & 50\end{array}\right.$	61540	6191	5710		

I. Aug. ${ }^{14}$, P. M.|Il. Aug. 15 , A. M. |III. Aug. 18, A. M.|IV.Aug. 18, P. M.

At $12^{\text {b }}$ by the Wath, nean
Time ar Snecrenberfen
At Greenwich, by the liath,
Difference of Meridians, $\quad 03917 \quad 039 \mathrm{Is}$
Longitude oi Smeerenberg, $9^{\circ} 49^{\prime}$ is $5^{\prime \prime}$ 年 $9^{\circ} 8^{8^{\prime}} 45^{\prime \prime}$,
$\begin{array}{lll}12^{\mathrm{h}} 57^{\prime} 11^{\prime} & 12^{\mathrm{h}} 57^{\prime} & 1 \\ 12 & 17 & 35\end{array}$
$\begin{array}{lllllll}12^{\mathrm{h}} & 56^{\prime} & 2^{\prime \prime} \quad: 2^{\mathrm{h}} ; 6^{\prime \prime} \quad 0^{\prime \prime}\end{array}$

$$
\circ 39,36
$$

$\bigcirc 03926$ Mean ot the firit, fecond, and fourth, $9^{\prime}+9^{\prime} 40^{\prime \prime}$; of all, $9^{\circ} 50^{\prime}+5^{\prime \prime} 9^{\circ} 51^{\prime} 30^{\prime \prime}$
$\left.\begin{array}{l}\text { At s in by the Wath, mean } \\ \text { Time ar Smerenberg, } \\ \text { At Grecuwich, by Kend.s, }\end{array}\right\}$
bitierense of Meriailams,
Loungitude of surece enberg,

$12^{\text {4 }} 57^{\prime} 11^{\prime \prime}$	$12^{\text {b }} 57^{\prime}$:
12631	12633
${ }^{\circ} \frac{50}{40} 0^{\prime \prime}$	$\begin{gathered} \circ 5^{5028} \\ 0 \\ 37^{\prime} 0^{\prime \prime} \end{gathered}$

Mcin $1:^{\prime \prime} 39^{\prime}$! ;"E.

Obfervations

Obfervations for finding the Longitude by the Moon.

Obfervations

Sifference rom Lonitude at Iulnightr.	Appareut Greenwich.	Apparent Time at the S̈hip.	Difference of Meridians.	Longitude of the Ship.
"	' "	- 111	, "	- ' "
- 816	1215	$1 \begin{array}{llll}12 & 3^{6} & +9\end{array}$	2110	51730
$\bigcirc 13$	122440	$\left\lvert\, \begin{array}{llll}12 & 53 & +3\end{array}\right.$	293	71545

$2^{\prime} 5=$

if	Hanginade ot the "Itwon corrected by Parulliax.	Appirent 'Tunc at the Ship.	Appatent 'lime :t Greenwich.	$\left\|\begin{array}{c} \text { Diference } \\ \text { of Ne- } \\ \text { ridims } \end{array}\right\|$	
	3011	h, "	", "	' 11	
5	$\begin{array}{lllll}0 & 13 & 5 & 59\end{array}$	1065	$108+3$	239 W	Latitude of Jupiter, $1^{0} 37^{\prime} \mathrm{S}$
3	014232	102232	103114	$10+2$	longitude, $0^{3}-{ }^{-0} 4^{\prime}$
7	-14 1438	103616	$10+5+$	S ${ }^{4}$	Wiath mos thow tor? $35^{\prime} 12^{\prime}$
i	-14 14 29	$\begin{array}{llll}11 & 1 & 19 \\ 11 & 16 & 4\end{array}$	10 it $2+$	655 K.	Apparent lime. $\mathrm{f}^{\text {a }} 12$
	-1420 5^{6}	11160.	11713		

syitude the loon.	Dittance oi the Moon and the Nonagelimal.
	3,
$13+7$	4843
$1+17$	41655
$14+8$	42334

A $\mathbf{P} \mathbf{P} \mathbf{E} \mathbf{N}$

Obfervations of the Mo

Augur 31, P.								
Time by the Watch	Alt. ofJupi-ter.Alt. of the Moon's lower Limb.	Diftance of Jupiter and the Moon's farther Limb.	True Diftance of the Centers.	Difference between the Dittunce and Difference of Longitude.	Difference of Longitude.	Longitude of Jupiter.	Latitude of the Moon.	Latitud of Jupite
n , $\prime \prime$ 8 5 5 3	0 \prime 0 \prime $\prime \prime$ 10 25 9 0 0	$\begin{array}{ccc}\circ & \prime \prime \\ 32 & \\ \\ 32 & \end{array}$		- 1017	$\begin{array}{lllll}3 & 0 & 1 & \prime \prime \\ 1 & 2 & 25 & 35\end{array}$	 0 0 c 0 $\prime \prime$	147 N	36
$\begin{array}{llll}9 & 3 & 27\end{array}$	10 59 9 36 0	32470	32 27 7	- 1010	$1 \begin{array}{lllll}1 & 2 & 17 & 37\end{array}$	- 72	147	
93245	$\begin{array}{lllllll}13 & 19 & 10 & 5 & 0\end{array}$	32-9 0	32733	- 1010	$1 \quad 15723$,		
9 9 125	14.40111360	32220	385988	- 1010	11498	. . .	$1+3$	
$\begin{array}{llll}10 & 38 \\ 11 & 4 & 25 \\ 1 & 48\end{array}$	17 45 12 49 0	$\begin{array}{llll}31 & 58 & 0 \\ 31 & 28 & 0\end{array}$	$\begin{array}{llll}31 & 31 & 27 \\ 30 & 57\end{array}$	- 1010	1121170	- 7300	+	
$\left.1 \begin{array}{llll}11 & 43 & 18 \\ 1 & 35 & 37\end{array} \right\rvert\,$	20 5 13 6 0 22 45 9 55 0	$\begin{array}{llll}31 & 28 & 0 \\ 30 & 33 & 0\end{array}$	30 29 29 54	-1010 -1010	$\left\|\begin{array}{ccccc}1 & 0 & 47 & 14 \\ 0 & 29 & 4+ & 28\end{array}\right\|$ -1	$\begin{array}{llll}\cdot & \cdot \\ 1 & 3^{8}\end{array}$	
September								
Time by the Watch.	$\left\lvert\,$Alt. of Jupi- ter.Alt. of the Moon's lower limb.\right.	Ditamee of Jupiter and the Moon's farther Liinb.	True Dif: tance of the Centers.	Differenec between the Diatance and Difference of Langitude.	Difference oi Longitude.	Longitude of Jupiscr.	Latitude of the Moon.	Latitud of Jupiter
, "	- " 0 , "	- ' "				-		
115920	215517888	1880	173822	12	0172621	072330	14 N	136
$1 \begin{array}{llll}12 & 16 & 14\end{array}$	2: 81178	1840	173356	-			1

Seprember 3, P. M. with the Megameter, Correćtio

$\begin{aligned} & \text { Jime by } \\ & \text { Whe } \\ & \text { Wiath. } \end{aligned}$	Alt. of the Moon's lower Limb.	$\begin{aligned} & \text { Alt. of } \\ & \begin{array}{c} \text { Jupi- } \\ \text { ter. } \end{array} \end{aligned}$	Diltance of Jupirer and the Moon's Wectem Limb.	True Dif. tance of the cemers.	Phatalla: in Lam gitude.	$\begin{array}{\|l\|l} \text { Parallax } \\ \text { m. } & \text { in Luti- } \\ \text { c. } & \text { tude. } \end{array}$	Parallax in Altitude.	$\begin{gathered} \text { Latitude } \\ \text { of the } \\ \text { Moon. } \end{gathered}$		Difference Dhe Diftan ren Difference gitudc.
h 1 $\prime \prime$ 9 30 53 9 45 20 10 1 4 10 26 7 10 40 54	0 11 15 27 0 16 47 0 18 6 0 20 14 0 21 30 0		$\begin{array}{cccc}0 & 1 & 11 \\ 6 & 40 & 0 \\ 6 & 5 & 4 \\ 7 & 1 & 10 \\ 7 & 8 & 4 \\ 7 & 16 & 10\end{array}$	$\begin{array}{ccc}0 & 1 & \prime \prime \\ 6 & 57 & 58 \\ 7 & 10 & 42 \\ 7 & 19 & 8 \\ 7 & 26 & 2 \\ 7 & 3+ & 8\end{array}$		"11-1"	$\begin{array}{lll}1 & 11 \\ 52 & 13 \\ 52 & 51 \\ 52 & 28 \\ 51 & 47 \\ 51 & 21\end{array}$	$\|$0 1 1 7 1 8 1 8 1 9 1 9		\| $\begin{aligned} & \text { 二2 } \\ & =2 \\ & =2\end{aligned}$
The Elements of the ab										
								Declination ot \qquad Midheaven.	Alt. of the A culaninating l'oint.	Angle betwce Meridian an Secondary to Ecliptic.
					${ }^{\text {a }} 1$	\bigcirc - ${ }^{\text {c }}$		-	-	-
					100	313210	103517	1736 S	74	1546
					110	328 4 10	254812	1256	114	1945
					$12 \circ 3$	343 6 11	11407	712	1728	2223

A $\mathbf{P} \mathbf{P} \mathbf{E} \mathbf{N} \mathbf{D} \mathbf{1}$.

ervations of the Moon and Jupiter.

Augut 31, P. M.

ngitude Jupiter.	Latitude of the Moon.	Latitude of Jupiter.	Longitude of the Moon by Oblervation.	Longitude of the Moon by Ephemeris.	$\begin{gathered} \text { Difference } \\ \text { from } \\ \text { Langitude } \end{gathered}$	Apparent Time at Greenwich.	Apparent Tine ut the Ship.	Difference of Meridiant.	$\left\lvert\, \begin{gathered} \text { Longitude } \\ \text { of the } \\ \text { Ship. } \end{gathered}\right.$	
$\begin{array}{ccc} 0 & \cdot & \prime \prime \\ 7 & 29 & 0 \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ 0 & \cdot & \cdot \\ 7 & 30 & 0 \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & . \end{array}$	$\begin{array}{ll} 0 & \prime \\ 1 & 47 \\ \cdot & \mathrm{~N} \\ \cdot & \cdot \\ 0 & \cdot \\ 1 & 43 \\ : & \cdot \\ \cdot & \cdot \\ 1 & 3^{8} \end{array}$	$\begin{array}{ccc} 0 & 1 & \\ 1 & 36 & \mathrm{~S} \\ \cdot & \cdot & \cdot \\ \cdot & . & . \end{array}$		$\left\|\begin{array}{cccc} & \text { at } & 6^{h} & \\ 1 & 0 & 1 & 11 \\ \text { if } & 3 & 39 & 54 \\ & \text { at } & 9^{h} & \\ 11 & 5 & 17 & 57 \\ 1 & & & \\ & 3 t & 12^{h} \\ 11 & 6 & 55 & 45 \end{array}\right\|$	$\left\|\begin{array}{ccc} \text { at } & 6^{h} \\ 0 & 1 & 11 \\ 1 & 2 & 3 \\ 1 & 39 \\ 1 & 3 & 29 \\ \text { at } & 9^{n} & \\ 0 & 13 & 40 \\ 0 & 21 & 55 \\ 0 & 49 & 46 \\ 1 & 2 & 3 \\ 49 & 49 \\ \text { at } & 12^{41} \\ 0 & 48 & 17 \end{array}\right\|$	$\left\lvert\, \begin{array}{ccc}h & 1 & 11 \\ 8 & 33 & 22 \\ 8 & 48 & 20 \\ & & \\ 9 & 25 & 7 \\ 9 & 40 & 17 \\ 10 & 31 & 29 \\ 11 & 30 & 34 \\ 13 & 29 & 40\end{array}\right.$	$\begin{array}{ccc}h & 1 & 11 \\ 9 & & 37 \\ 9 & 37 & 31 \\ 10 & 6 & 49 \\ 10 & 25 & 58 \\ 11 & 12 & 29 \\ 12 & 17 & 22 \\ 14 & 9 & 41\end{array}$	1 11 52 15 49 21 41 4^{2} 45 41 41 0 46 4^{8} 40 1	(130cc $\begin{array}{ccc}0 & 1 \\ 13 & 3 & 45 \\ 12 & 20 & 15 \\ 10 & 25 & 30 \\ 11 & 25 & 15 \\ 10 & 15 & 0 \\ 11 & 42 & 0 \\ 10 & 0 & 15\end{array}$	Mcan $11^{\circ} 13^{\prime} \mathrm{F}$.

September 1, P. M.

ingitude Jipiter.	Latitude of the Moon.	Lantude ot Jupiter.	Longitude of the Msonl by Obtervation.	Longitude of the Moon by Ephemeris, at Midnight.	Difflerence trom Longitude at Mulnight	Apparent Time at Greenwich.	Apparent Time at the Stip.	Difference of Meri. dians.	$\left\lvert\, \begin{gathered} \text { Longitude } \\ \text { of the } \\ \text { Ship. } \end{gathered}\right.$
72330	$\begin{array}{ll}0 & 1 \\ 1 & 4 N \\ \cdot & \cdot\end{array}$	0 1 36 0 .	$\left\|\begin{array}{ccccc}1 \\ \hline 1 & 0 & 1 & 11 \\ 11 & 19 & 57 & 9 \\ 11 & 20 & 1 & 35\end{array}\right\|$	$\|$1 0 11 11 19 4 5 53	0 1 11 0 8 16 0 13 2	$\left\|\begin{array}{ccc}\text { h } & 1 & 11 \\ 12 & 15 & 39 \\ 12 & 24 & 40\end{array}\right\|$	$\left\lvert\, \begin{array}{ccc}0 & 1 \\ 12 & 36 & \\ 12 & 59 \\ 53 & 49\end{array}\right.$	$\begin{array}{cc}\prime & \prime \prime \\ 21 & 10 \\ 29 & 3\end{array}$	$\left\|\begin{array}{cccc}0 & 1 \\ 5 & 17 & 30 \\ 7 & 15 & 45\end{array}\right\|$

with the Megaucter, Correction for Error of Adjutment, $+2^{\prime} ; z^{\prime \prime}$.

$\begin{aligned} & \text { itude } \\ & \text { the } \\ & \text { oon. } \end{aligned}$	Apparent Latitude of the Moon.	Ditierence between the Dittance and Differense of Longitude.	Difterence of Longitude.	Appurent Longitulc of the Mivon.	Lamgitule of the Moon cor reted by 1:ir.llis.	App.reиt Tame at the Ship.	Appaneut Time it Greenwich.	$\left\|\begin{array}{c} \text { Difierence } \\ \text { of Ane- } \\ \text { ridians } \end{array}\right\|$	
	- ,	"	\bigcirc	${ }^{\prime}$	- 11	h , "	,	"	
	159 S	22	65736	- $1+{ }^{1} 36$	- 135359	106	${ }_{10} \quad 8 \quad 43$	239 V	Lanitude of Jupiter
8	159	- 22	$\begin{array}{llll}7 & 10 & 20\end{array}$	$014+20$	014 232	10 2032	1031214	$10+2$	itude, os
8	159	- 21	78 7 18 1	- 14 $2: 47$	0 14.938	103616	1045	8	arch tho thav for
9	: 58		72541	$01429+1$	$0141+29$	$\because 1$	1054	855 L	prirent 'lime, f
	158	21	73347	- 143747	042050	16	117		

Elements of the above Calculation.

a- Alt. of the Angle between the Alt, of the Longitade Longitude Ditance of of culminat- Meridian and the Nonage- of the No- of the the Moon ing l'oint. Secondary to the fimal.

bing Point.	Ecliptic.		-		magetinal.
	0.	- ,	,	: 0 ,	

s

$$
\begin{array}{lllll}
\mathbf{F} & \mathrm{I} & \mathrm{~N} & \mathrm{I} & \mathrm{~S} . \\
& \mathrm{P}_{\mathrm{p}} & & \\
\hline
\end{array}
$$

DIRECTIONS to the BOOKBINDER.
\mathbf{N}° I. Chart fhewing the Track of the Racehorfe andCarcafs during the Expedition towards the NorthPole.To face the Title.
II. View of the Land from Cloven Cliff to Hakluyt's Headland, taken July 18. To face page 48
III. View of the Racehorfe and Carcals July 31. 60
IV. Views of Land round the Seven Illands Bay, 63
V. View of the Racehorfe and Carcafs Auguft 7th. 66
VI. The Racehorfe and Carcafs forcing through the Ice Auguft 1 oth. 68
VII. View of an Iceberg. 70
VIII. Plan of Fair Haven, 8cc. 72
XV. Chart fhewing the different Courfe iteered by the Racehorfe, from July 3d to Auguft 22d. 76
IX. The Dipping Needle. 119
X. Diagrams. 152
XI. The Pendulum. 182
XII. Natural Fiiftory. 194
XIII. Natural Hiftory. 200
XIV. Diftillation. 222

[^0]: * Modifications de l'Atmofphere, volt I. page 252.

[^1]: "Towards one end of the axis is pierced an oblong " fquare hole, from the upper to the under fide, into " which the upper end of the pendulum rod (having its
 " fides

[^2]: " In the middle of the horizontal bar that connects the " front legs is fixed a piece of filvered-glafs, by means of " which the whole machine is readily adjufted to its "proper pofition: the lower part of the pendulum" ball hangs directly over this mirror, on which is drawn " a line from back to front; and when the image of a " fmall pin, which is fcrewed into the lower part of the " pendulum, is feen bifected by this line viewed directly in " front, the pofition of the machine is properly adjufted.
 "On the back leg of the ftand, immediately behind the " pendulum, is a hook to hang a thermometer on, for " making frequent obfervations of the temperature of the " air. In order to prepare for an experiment, the pendulum A a
 " is

[^3]: peatedly

[^4]: $\begin{array}{lllllll}\mathrm{I} & \mathrm{N} & \mathrm{S} & \mathrm{E} & \mathrm{C} & \mathrm{T} & \mathrm{A} .\end{array}$
 Cancer Squilla. Linn. Syjf. Nat. 105 1. 66.
 The Prawn. Merr. Pin. 192.

[^5]: "Another procefs for procuring frefh water at fea, " was afterwards publifhed by Doctor Butler. Inftead of " the Lapis Infernalis and calcined bones, he propofed the " ufe of foap leys; but though the ingredients were fome" what varied, the water was liable to the fame objections " as in the preceding experiment. Doctor Stephen " Hales ufed powdered chalk ; and introduced ventila" tion, by blowing fhowers of air up through the diftil" ling water, by means of a double pair of bellows. It " was found by this method, that the quantity of freh " water obtained in a given time, was fomewhat greater "than what had been procured by the procefs of Mr. "Appleby. This invention, however, was fubject to "feveral difadvantages. The air box which lay on the " bottom of the flill, as well as the chalk, much ob" fructed the action of the fire upon the water, at the "fame time that the boiling heat of the latter was
 " diminihed

[^6]: I i
 66 not

[^7]: "In the common method of diftillation, the whole " column of vapour from a fill of whatever lize, after " afcending to the fill-head, muft not only find its paflage " through a pipe of fcarce an inch and half diameter; but "defeend contrary to its fpecific gravity through air " which :s fifteen times its weight, in fpiral convolutions: " : courfe ío extremely ill adapted to the progrefs of an " elaftic vapour, that frequently the fill-head is blown off " with incredible violence, owing to the increafed heat

[^8]: "To the logarithm of the rifing, taken out of the " tables in the Nautical Almanac for 177 r , add the com"plement arithmetical of the logarithmic cofine of the " fuppofed meridian altitude; from the fum (the index " being increafed by five) fubtract the logarithm ratio " (found by the rules in the abovementioned Ephemeris) "the remainder is the logarithmic fine of the change in". attitude.

 "EXAMPLE.

