## Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for scanning. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of scanning are checked below.

## Coloured covers /

Couverture de couleur
Covers damaged/
Couverture endommagée
Covers restored and/or laminated /
Couverture restauree et/ou pelliculee
Cover title missing /
Le titre de couverture manque
Coloured maps /
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serree peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

L'Institut a numérisé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de numérisation sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées
Pages restored and/or laminated /
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorees, tachetées ou piquees
Pages detached / Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression

Includes supplementary materials / Comprend du matériel supplémentaire

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from scanning / Il se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas eté numérisées.

## TIIE

## UPPERGANAD JOURNAL

17

Medical, Surgical and Physical Science.

## ORIGNAL COMMLNCATIOXS.

ART. LIII.-The Hip; juint: (onsiderations on its injuries and deserses, deduced from the ehutomey. Iby S. J. Stratmord, M.
R.C.S. England, Towomo. Comemued from No. S.


## Continucd.

In our last communication we cntered fully into the consideration of the action of the several museles which operate upon the thigh-bone; we especially indicated their position and influence, when dislocation apon the dorsumx of tire ilium had taken place-and if we shall have duly appreciated their cundition, we shall be able to deduce from them the symptoms which indicate the nature of this accifent, and serve to distinguish it from every other affection owhich this joint is liable.
In the first place, the limb is shortened-the position of the head of the bone is placed in a line considerabiy supefior to the cotyloid cavity, in some instances, several Heches above it; secondly, the toe is turned inwards by the
 grsum of the ilium-ihirdly, the limb is liexed upon the hdy, and kept in an advanced position by the action of the Woas magmus and iliacus internus muscles. Its fixed imFobility in this position serves to distinguish it from fracture She neck of the thigh bone. If we torn the patient mon Wbelly, and examine the region of the articulation, we rind展reat deficiency in the prominence of the hip, which does Karrespond with the opposite side. Should we extend Knee, place the hand upon the hip-joint, and use the of as a lever, then try to rotate the joint, we shall find 3 c
this impossible, and may observe the head of the bone and trochanter major stationary, and resting upon the pelvis, while the head of the bone may be observed removed backwards out of its true position. Should we measure the limbs, having duly marked the line of the anterior superior processes of the ilium, we measure from this point to the inferior margin of the patella, then we sball find the dislocated thigh considerably shortened, often by several inches, and this shortening we are unable to diminish by any ordinary traction of the limb.

Having by these means ascertained the nature of the accident, that it is truly a dislocation of the thigh bone, upwards and backward, we set ourselves to consider the cause that placed the bone in this position, and the course which the head of the bone took to arrive at it. When we have reflected upon this point, we shall clearly perceive that the route which the head of the bone took to arrive at its present location must be exacily reversed to enable it to return into the cotyloid cavity. When we undertake truly 10 reverse this course, it will be found that it relaxes all those muscles which now serve to render the bone immoveable in its new position. The posture of the limb forcibly adducted, rotated inwards, and flexed upon the pelvis, was the position it assumed at the moment the head of the bone started from its cotyloid cavity; this position continued the same after the capsular and triangular ligaments were lacerated, and while the head of the bone was driven upwards upon the dorsum of the ilium. It was not until an attempt was made io straiten the limb, that the powerful action of the muscles came into play, fixed the bone and rendered it in. moveable. To reduce this dislocation, then, we return the limb to this same position, flex it powerfully upon the body and adduct it at the same time; now we have relaxedthe pyriformis, the gemelli, the obtarator internus, and quadrat. tus muscles. By sweeping the frochanter major round towards the back of the pelvis, we have freed the joint froin the constricting power of these museles; and by rotation of the foot outwards, we shall have relieved the obturator externus: now traction forward, assisted with continued rotation of the foot outwards, will bring the head of the bone opposite to the cotyloid cavity - when abductiond the limb, assisted by the action of the muscles, will replat the bone in the socket.

Should any difficulty be experienced in the traction of the bone forwards, or should the spasmodic influence of the muscles still bind down the bone, so as 10 prevent itsfor ward movement; the long lever, the thigh bone, may
employed to adduct the limb, so that the upper extremity of the shaft of the bone, or the trochanter minor, may be made to act upon the edge of the cotyloid cavity, or on the bones of the pelvis, as upon a fulcrum; when gentle traction, and continued eversion of the foot will surely bring the head of ithe bone into the true position for reducing the dislocation. Among other points that must not be neglected in all these attempis at reduction is the employment of chloroformthis will not only obviate ihe pain natural to such an operation, but will greatly facilitate the reduction, by depriving the muscles of all power of resistance; so that it seems almost impossible to fail in our endeavours, atter this method of practice, provided we have a just appreciation of the true course to be followed in our attempts at reduction.
Daring the employment of this method to reduce the dislocation of the thigh bone, the amount of traction necessary 10 restore the head of the bone in apposition with its cotyloid cavity, will be found trilling, comparatively speaking, with the power that is required to reduce the dislocation by direct ferec. In ihe one instance, a correct knowledge of the anatomy of the part enables us quietly to replace the bone in the position the most favorable for its reductionwhile in the second, when we use the pullies, the force necessary to overcone the retractile power of the muscles acts as a stimulus to their more powerfal comraction, and ofien forms the chief impediment to the object we have in niew. Let us compare the ease and facility of these attempts at reduction to the formidable array of extension and counter-extension-the employment of pullies and use of riglent traction. Even Dr. Fergason conlesses that such means had often failed, even after continuous and oft-repeated attempts-while in afew minutes afterwards be had known the dislocated bona easily relieved by hand; he says, "in some persons, after the pullies have been used fra considerable time, and when, perhaps, the rope has been relaxed in despair, a kind of collapse has supervened, when the muscles will become so flaceid, that a very slight degree of force, compared with that previously applied, will produce the desired effect." What can be more plain than in this case, that the violence of the muscular action was the cause of failure? and had the surgeon but traly considered the anatomical peculiarities of the part, and have been directed by them, it is clear that he could tare produced this effect-muscular relasation-simply by position, without having recourse to the pullies, to overcome the muscular action by continuous and painful traction sufficient to produce fatigue. I think that this view of
the case must also present itself, not only in the dislocation of the hip-joint, but in every variety of such displacement that shall occur in practice; and that it is a principle that should be thoroughly studied by every surgeon who hopes to follow his profession with comfort to himself, or benefit to his fellow-creatures-at all events, it is an axiom not to be forgotten in all these cases of dislo: cation, that the main object is always accuraiely to reverse the course which the head of the bone took to arrive at its abnormal position.

If, after we have prosecuted our efforts at reduction, and presented the head of the bone to the cotyloid cavity; we observe a sudden jerk or snap ; we may be pretty certain that the reduction has been accomplished; added to this a facility of movement, and a loss of that deformity which was lately to be observed-when we see that all distortion has disappeared, that the two hips are symmetrical, there can no longer exist a doubt of our success, when our. efforts may cease, and the patient may be conveyed to bed. The subsequent treatment of this injury to the joint consists in the applications of the means required to relieve the inflammatory action of the part; should this occur to any extent, general bleeding, leeches or cupping, assisted with nauseating doses of tarterized antimony, may be employed : perfect rest, or only the most subdued motion of the joint, is all that should be allowed until this condition has been relieved. Should chronic swelling, with pain, continue, friction, with stimulating liniments, may be used, or should this remain obstinate with any indications of chronic disease within the joint, the use of blisters, issues or seatons may be advocated. These means will generally restore the parts to health, unless some constitutional influence interfere to prevent it, such as gout or rheumatism, when, of course, this condition must be submitted to due consideration, and treated accordingly.

## DISLOCATION OF THE EEMUR INTO TIIE ISCIIATIG NOTOH.

The head of the thigh bone may be removed from the cotyloid cavity, and lodged in the sciatic notch. This variety of dislocation is produced by causes and influences very similar in character to those which produce the removal of the bone from its socket and placed it on the dorsum of the ilium. In this variety the flexion of the thigh upon the pelvis must have been less extreme than in the preceding case-its adduction was so great that the bones of the pelvis acted as a fulcrum for the long lever, the thigh bone, and the head of the bone was raised from the cotyloid cavity by these means, while the continued opyr-
ation of the force lacerated the ligaments, and forced the bead of the bone into the ischiatic noteh,-here it rests upon the pyriformis muscle, sciatic vessels and nerves. lying upon the same plane with the acetabulum, the head of the bone sinks into the soft parts, and the trochanter minor does not appear to be rotated so far inward and backwards as in the former variety. The influence of all the museles detailed in the former variety of dislocation here produce similar results, save that they are not so extreme; for, although the head of the bone has taken the same direction, it is not elevated to the same level, and the muscles are, consequently, not so powerfully upon the stretch. The consequence of these facts is, that although the dislocation of the head of the femme into the sciatic noteh has been described as bachwards and downwards, the limb is but litle lengthened, for the ischiatic notch is nearly upon the same horizontal plane with the cotyloid cavity. The fixed inversion of the toe is, in this instance, not so extreme, because the soft parts on which the head of the bone rests yield to a certain degree, while the spasmodic action of the muscles conlining neither the head of the bone nor the trochanter major, are not pressed so forcibly against the haunch bone, a slight mobility may be felt upon using the foot as a lever, but no rotation of the limb outwards can be permitted. When we attempt to restore the limb to the strait position, it is not found io be so powerfully flexed upon the bory, because the psoas magnus and iliacus internus museles are not placed so greatly upon the stretch, their point of insertion not being carried so far backwards or so greatly devated. If we examine the hip, we find a great hollow, where the prominence of the trochanter major used to appear and upon careful manipulation, the head of the bone may be found resting in the sciatic notch.
As we have said, the result of the position of the thigh bone upon the action of the muscles inserted into it, in its present abnormal situation, differs but slighty from the effects caused by the variety of dislocation previously des-tribed-the fibres of the pyriformis, gemelii, obturator intenus and quadratus lemoris muscles, would be still excited, but not so violently as in the preceding instance; for, dthough the hearl of the bone now lies in a line parallel to is original position in the cotyloid cavity, it is removed monsiderably backwards, while the obturator externus and pectinalis would be greatly upon the stretch, confining the bne with considerable power. The psoas magnus and liacus internus, will also act considerably upon the thigh fone, bat not so powerfully as in the preceding kind of
dislocation, because their insertion is not raised so high or thrown so forcibly backwards, as when the head of the bone is placed upon the dorsum of the ilium. The action of the glutei muscles will also be partially excited, especially those fibres which proceed from the anterio: portion of the pelvis, and help to rotate the toe inwards-I have said the influence of the displacement of the bone in its present position is that all the muscles are similarly but not so powerfully excited into action, as in the preceding variety of displacement; while individual muscles of the hip-joint do not suffer so exceedingly, all are still obnoxious to the least movement of the parts in any direction, and would hold the bone with a certain amount of spasmodic action that powerfully confines it in its new position; evendid not the head of the bone sink down among the soft parts, so as in some degree to become hooked under the ischiatic notch, and hence to be confirmed in the situation in which it had fallen, these facts will be sufficient to distinguish dislocation backward " and downwards, as it has been called, from fracture of the neck of the thigh bone.

The process necessary for the reduction of this displacement of the head of the thigh bone, and its removal from the ischiatic noteh, must be perfectly consistent with the principles already evoked under the former head of displacement upon the dorsum of the ilium-viz., that the head of the bone must follow a course exactly the reverse from that which placed it in its abnormal position. When we attempt this reduction, the thighmust be bent upon the pelvis to a greater extent than is necessary in the preceding variety-this movement of the limb will give a greater facility of action, will permit the head of the bone to roll in its new situation, and, in a great degree, free it from the spasmodic influence of the muscles-when powerful adduction, acting upon the extremity of the thigh bone, as upona lever, and this resting upon the pelvis, will raise the head of the bone from its new situation in the sciatic notch, while traction forwards, assisted with rotation of the bone outwards, will bring the articulating surfaces into immediate opposition, then the actions of the muscles will generally restore the parts into their true situation with an audible sound. These means, we maintain, will accomplish the reduction of the head of the bone into the cotyloid cavity; without the use of pullies, without submitting the patieat to the horrid pain and terrible severity of forcible extension of the limb; under such an operation the force must ant upon the muscles already strained to their utmost, or acted upon with spasmodic violence, so as, in many instances, 10
cause their laceration, thereby increasing the great injury, which has already produced no little danger to the articulation.
There is a point, however, in regard to the reduction of dislocation upon the dorsum of the ilium that it would be well here to point out, and is exemplified by the treatment we have just recommended; it is, that if, in changing the position of the head of the thigh bone, we flex the limb too powerfully upon the pelvis, we must be careful that we do not carry it beyond the right angle, otherwise we may be liable to change the position of the head of the bone from the dorsum of the ilium to that of the sciatic notch-such accidents we believe to have happened, especially in those cases in which the reduction of the head of the bone was expected to be accomplished simply by the relaxation of the musclesand traction upon the limb, withont looking to the extended limb as the powerful lever which caused the dislocation, and was able by a similar influence to raise the bone from ils abnormal position, and place it in the coryloid cavity. This is a point that should be particularly attended to in our attempts to reduce the dislocation of the femur when the bone is lodged upon the dorsum of the ilium; and when the aceident we have above suggested shall occur, it will be a clear demonstration that the simple relaxation of the muscular apparatus has been insufficient, that the true principle which should have effect in all these operations is the employment of the powerful lever, the thigh bone acting upon the pelvis as its fulcrum; to accomplish the returi of the head of the bonc to its articulation. Doubtless, proper position, inducing muscular relaxation, will be a poient aid in our atiempts ; but, although an essential element, it mast not be set down as the main feature in this new operation for reducing dislocations; we advisedly sey for reducing dislocations, for we maintain that the principles that we have endeavored to set forth are universally applicable to all and every variety of these accidents, and we believe that at a futare day the use of the pullies will be completely discarded in all such cases.

## 

This variety of displacement of the head of the thigh bone is, as in the preceding kinds of dislocation, invariably the result of the application of indirect force applied to the limb, or to the trank of the body-a force that constitutes the femur a lever, while the fulcrum on which it acts is still the bones of the pelvis; by these means it raises the head of the thigh bone from the cotyloid cavity, and the same force being continued lacerates the capsular liga-
ment, and lodges the bone upon the obturator muscle in the thyroid hole. A man, for example, puts his shoulder to a falling load, the extended limb slips from under him, and falling at an angle, he is crushed under the load, and his thigh bone is dislocated into the thyroid hole. When we examine the injured part, we find the dislocated limb some two inches longer than the other; the knee is raised, and the thigh cannot be extended in a strait line with its fellow; it is forcibly abducted, and the foot is turned somewhat outwards. If we place the patient in the erect position, we find that the trunk is bent forwards to accommodate the extended limb-the trochanter major is less prominent than on the opposite side, and the head of the thigh bone can sometimes be felt if we make pressure in this region with the hand, it will be observed at the inner part of the thigh towards the perineum, upon the rotation of the limb-in this position, a slight movement of the head of the bone is, in these cases, always permitted-still a power of rotation is necessarily prevented. Should we now mea. sure the anterior superior spinous process of the ilium, and the trochanter major, and compare it with the opposite side, it will be a sufficient test of this variety of dislocation-and serve to distinguish it from inflammation within the joint, with which this variety of displacement has been occasionally confounded.

In this displacement of the head of the femur into the thyroid hole, the increased length of the limb is dependent upon the change of position of the bone; the head of the bone is now placed in a plane considerably below that which it had previously occupied in the cotyloid cavily: The forcible abduction, and the fexion of the limb is also caused by the action of the muscles, now morbidly influenced by the unnatural position of the bone. As soon as the head of the thigh bone has been forced from its normal position, and has arrived at the thyroid hole, the head of the bone is thrown forward, nearer io the median line, and the trochanter major approaches the acetabulum; so that while it has descended considerably below its nataral po: sition, it has approximated to the bones of the pelvis-not standing out from the cotyloid cavity at its natural angle; we find the asual prominence which it produces in the hip to have disappeared. By the descent in the position of the femur, those muscles which arise from the interior and back: of the pelvis, such as the pyriformis, the gemelli, the obtus rator internus, and the quadratus, are all placed upon the. stretch: of these, the fibres of the pyriformis, from theif: arising in a line far above the trochanter major in its pre-
sent position, suffers the most ; still all exert an action upon the thigh that assists to keep i in a permanent state of abduction, and to evert the foot. As to obturator externus, this from the advance of the head of the bone towards its origin, will be found in a state of complete relaxation. Not so with the fibres of the pectinalis muscle, which is inserted below the trochanter minor, almost in a direct line downwards ; this, from the descent of the femur, will now be considerably acted upon. Such, also, is the case with the adductor brevis. But from the advance of the head of the bone towards the redium line, approximating, in some degree, their origin and insertion, these muscles will only serve to assist in producing the eversion of the limb. The psoas magnos and iliacus internus muscles are also placed in a somewhat similar predicament, by the descent of the thigh bone; they also tend to keep the limb rotated outwards. The three glutei muscles situated upon the back of the hip are also now placed very considerably upon the stretch-these muscles are inserted into the rochanter major and linea aspera, the bone having descended to a plane considerably below its normal position; hence the distance of their origin and insertion is increased, thence their inordinate action; but the approsimation of the trochanter major to the pelvis may, however, somewhat diminish their tension. These muscles, by their spasmodic action, serve to keep the thigh bone fixed and immoveable, but do not counteract the action of the liexor muscles. The fibres of the gluteus maximus, especially those which arise from the back and lower parts of the pelvis, such as from the posterior portion of the semicircular line of the ilium, from the vertical sacro-iliac ligament, and from the crest of the sa--crum and are inserted into the tinea-aspera: these, no doubt, serve greatly to keep the limb in a state of abduction. Doubtless, it is the great strength of this muscle which is permanently able to counteract the powerful action of the pectinalis and adductor brevis muscles that would otherwise serve to adduct the thigh ; and, as a proof of this position, it is worthy of remark, that the two last named muscles are not unfrequently torn during the accident which gives rise to this variety of displacement. In addition, we find, as a necessary consequence of the descent of the lemur, that all those muscles which arise from the pelvis and are inserted into the lower parts of the femur and bones of the leg, are now considerably upon the stretch, and not only assist to abduct the thigh, and bend it upon the body, but also to flex the leg upon the thigh. In this variety of dislocation into the thyroid bole, all the muscles of the hip and
thigh suffer more generally than in the preceding varieties, hence a more compound and complicated influence acts upon the bone in this abnormal position, and serves to keep. the thigh abducted, and the toe everted when the body is inclined forwards; but when the line of the pelvis and vertebral column is strait, the thigh must be flexed upon the body, and the leg upon the thigh, with a similar amount of abduction and evertion of the limb.

To accomplish the reduction of the dislocation of the femur, when the head of the bone is placed in the thyroid hole, our duty must be directed to the principles which have formed our guide in the other varieties of the displacement. We must, in the firsi place, resiore the limb to the position in which it was placed at the moment of the accident ; consequenty, the limb will be flexed upon the body, and powerfully abducted. This movement will relax all the museles acting most powerfully upon the bone in its abnormal position. At the same time we may constitute the thigh bone a lever; while the trochanter major, acing upon the margin of the colyloid cavisy as upon a fulcrum, will serve to raise the head of the bone from the thyroid hole. We should gently invert the toes daring this movement;: when, as the inversion of the limb is slowly acermplished, these combined actions, assisted by the imfluence of the muscles, will raise the bead of the bone, and bring it opposite to the cotyloid cavity, aln ji without any excrion upon our part. The psoas magnus, the iliacus internus, the glutcus maximus, and pyriformis museles, are those which: principally serve to raise the head of the bone from the obturator foramen, when we have, by appropriate positionand influence, given them an opportunity. if the cmploymem of these means, under the influence of choroform, are not sufficient to ancomplish the retum of the bone into the acetabulum, we may use genile pressure at the knee, after: we have accomplished the movements of adduction and inversion,-bave brought the head of the bone to the inferior margin of the colyloid cavity; or at that moment; judicious extension, calling into action the inlluence of the muscles, which we have relaxed by position, will speedils clevate the head of the bone directly upwards, and it will be forced inio the cotyloid cavity, with an audible noise When in this position care must ise ialen that we do nol. too forcibly adduct the limb, do not carry it beyond its normal position, or we may cause the head of the bone 10 pass. round to the back of the pelvis and lodge it in the sciavienoth before the muscles have a chance to raise the head of this bone from the lower level at which it is placed in disloca-
tion into the thyroid hole. In all such cases it must be observed that in these means we have a most powerful instrument of good or evil in car hands, and we mast be careful to use it judicionsly. We think it is plain, then, that by this concentration of movement, that the head of the bone will, on reducing this dislocation in the thyroid, be made to follow a course diametrically opposite io that which placed it in its abnormal position, and that by these means it may be returned into the acetabulum with the very greatest facility, wilhout the use of pallies, and without the pain and all the paraphernalia of extension and counterextension.
When we consider the nature of this displacement of the thighbone, it cain scarcely be necessary to point out the absurdity of endeavoring to reduce the dislocation of the head of the thigh bone in the thyroid hole by violent extension of the limb. The muscles are all now in powerful action, in consequence of the descent of the femur, and by further extension, we shall not only funther increase the malposition and dreadfully aggravate the patient's sufferings, but we may lacerate the maseles; and if we powerfally adduct the limb at the same time that we make this extension, the head of the thigh bone may slip under the acetabulam, and find iself lodged in the isehiatic notch: a point from which Sir Asilley Cooper says it could not be reduced. Doubtle sit could not, under the usual mode of action employed in these cases; but, if we reflect upon the course, the bone has token in this hind of accidem, to arrive at the sciatic notri, we shall plainly see that a preciscly reversed movement, assisted with the muscular relaxation we have before suggested, will carry the bone back again into the thyoid hole: the original course of the dislocation being daly considered, and the movements being properly directed, will again place the bone in is natural position. In all these cases, it is really astonishing how much more easily the spasmoric rigidity of muscular action may be dlayed by relasation, and the reduction accomplished, than it can be overcome by main foree; when this last has ten empleyed, it has been usual to expect to overcome the aseular rigidity by the employment of means that influtace the whole system-by producing syncope and general claxation of the whole frame, cither by bleeding or tariarind antimony ; but by the judicicus employment of position Fall the ceess we may obviate the necessity for all such fitemt and debilitating remedics, especially if we use tloroform.
Art. LiV.-Estimated comparisons in Normal and, Alnormal Anatomy : or data for the prosecution of morlid investigations ; by Dr. ruaelles; member of the Romal M.D., Plitadielplia.
Lablef V.-Chonima from May 10 to Juna $1,1849$.

| CASE. | Femajes. |  |  |  | malit. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1. | 11. | 117. | iv. | 1. |  | In. |  | $\checkmark$ | vi. | rit. | vils. |
| Ase | $2 \mathrm{yrs}$. | 6 yrs. | 35 yrs . | 4.2 yrs. | 10 yts | 31 Jrs. | 35 y | 40 rrs | 40 yrs . | 45 yrs. | y | 73 |
| Size | 0, m670 | 1, 11870 | 1, m 600 | 1, 12550 | 1, m 170 | $1 \mathrm{~m}, 690$ | 1, m 7401 | , m bxic | 1, m $4 \leq 0$ | 1, m 700, | 1146 | , 12600 |
| Weight of Dirain | 1280 gr . | 1250 | 1350 | 1270 | 1400 | 1.76 | 1500 | 1370 | 1800 | 1480 | 1430 | 1370 |
| Weight of liungs | 360 | 450 | 380 | 000 | 350 | 1070 | 1250 | 670 | 1000 | 1200 | 900 | 1003 |
| Weight of Ileart | 50 | 80 | 220 | 230 | 150 | 880 | normal | 290 | 270 | 400 | 320 | 850 |
| Weight of Liver | 200 | ...... | 1150 | 1150 | 1000 | 1850 | 2480 | 1400 | 1400 | 1450 | 1250 | 1270 |
| Weight of right Kidar | 30 | 100 | $\{120$ | 90 | 60 | 250 | 150 | 230 | 3150 | 160 | $120)$ | 230 |
| Woight of left Kiducy .................... | -30) | 100 | $\{130$ |  |  | 200 | 100180 | 200 | \} 120 | 150 | 120 |  |
| Sticight of spleen ......................... | 30) | 70 | 100 | 130 | 80 | 200 | 480 | 100 | 100 | 200 | 100 | 15\% |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Duration of the Disease.................. | 12 hours | 18 hrs. | 12 hrs . | 16 hrs. | .... | 7 hrs. | sev'ldays | 12 hrs . | 16 hirs. | yev'ldays | 15 hise. | 9 hrs |
| Oceurrence of the rigidity of death aftor the negh mortem oxamination. | 24hrs.not | 28 hrs. present. | 15 hrs. present. | $38 \text { hrs. }$ present | . $\cdot$ |  | 15 hrs. present | 2.4 hrs. present | 12 lirs. present | 35 hrs. present | 13 lirs. present | 20 hiss. present |

## onselvations go rabse v., on fur chomain.

If we direct our attention to the pathological phenomena and truly characteristic anatomical alterations in Cholera, we observe under the operation of the morbific cause the following:-
1.- A retardation and final paralysis of the contractions of the heart, as also of the contractility of the larse arteries.
2.-A diminution in the quantity of blood exposed to the influence of atmospheric oxygen in the langs, indicated by a derrease in weight of the later.
3.-A. diminution or cessation of all secretions, probably induced by a retardation of the circulation.
4.-A gradual eessation of all contractile power in the organic muscular fibres of glandular ducts. Those which convey the bile, and the gall-bladder, no longer discharge their contents; the ureters do not expel the milky liquid contained within the pelvis of the lidneys; and-finally, even the intestines cease to empty themselves. A similar paralysis, in risible degree, is exhibited by the muscular fibres of the bronchi; and it is alone to this cause, with a reduction of the moisture of the vocal cords, that I ascribe the diminished voice and the peculiar hoarseness of the disease.
5.-A A decrease of the temperature, continuing parallel with the commencement of cyanosis, according to my examinations, in the hand, falls rapidly to $75^{\circ} \mathrm{F}$. in the axilla, $10 \mathrm{SSO}^{\circ}$.
6.-If, upon the other hand, in the integrity of the brain and spinal marrow, the cramps appear only as reflex phenome:a, nevertheless the sympathetic nervous system must be vieved alone, and primitively, as effected by the cause of the disease.
7.-The medium between the latter and its operation upon the nervous system appears to be the blood. The absence of the phenomena of coagulation, even if not always comiplete, indicates an alteration in the character of the blood.
8.-An innoculation of the disease through the blood or by the stomach, by means of the intestinal discharges, I hare tried, in all stages, upon rabbits and frogs, without success.
9.-The anatomical alterations observed by me are as Collow:-
The rice water, or whey-like discharges from the bowels,

[^0]put in a tall glass vessel, separated into a sediment, and a clear serum, always albuminous. As a general rule, the sediment consisted of nuclei (mucus corpuscles) of epithelial cells, such as fill the simple glandular follicles, but never contained perfect epithelial cells. Cryptogamic plants were never observed in it. Once only didl see infusoria (monas, navicula),* and rarely the filaments first noticed by Brehm, and regarded by him as probably resulting from the transformation of epethelial cells. Eracuations by vomiting, when consisting of a rice-water-like liquid, presented the same components as the former, in addition to epithelial cells of the stomach; but when greenish in color they contained but few epithelial nuclei or cells.

In all cases, the brain exhibited considerable peripheric hyperœmia, and sometimes, also, an augmentation of the sub-arachnoid fluid.

In all, too, the bronchia were distinguished by dimination, and frequently absence of mucus, and the lungs were remarkably impoverished of blood, so as to produce a considerable reduction in their weight. In the normal condition, in the adult, both lungs weigh about 1200 grammes; but in cholera cases, which hed proved fatal in the course of a few hours, they mostly feil far short of this number. In a longer duration of the affection they again increased in weight, but never reached the normal standard. $\dagger \mathrm{Be}$ sides the anemic condition of the lungs, ecchymoses of various sizes were sometimes found either in their parenchyma or beneath the pleura. At times, also, the upper surface of the lungs appeared more inflated than usual; that is, the air-cells contained a greater quantity of air without being torn, and this condition has been indicated as emplysema, which it is not, but the resuli of the di: minished or paralyzed contractility of the bronchi during life.

Ecchymoses were sometimes found upon the heari, and its cavities always contained a variable quantity of bood of the consistence of syrup, in more than half the numbr. of cases coagulated; but the coagulum was usually in small quantity. The fibrine of the later sometimes in. cluded a remarkable quantity of lymph-corpuscles, or spherical milk-white globules, covered with minate granules, but in other cases these did not exist.

[^1]The endocardium generally was normal, and rarely of a clouded blood-red hue.
The aorta, and principal renoustrunks, usually comained a liquid syrup-like blood. The blood-corpuscles were normal, and retained this appearance for several days after post mortem cxamination.

The stomach commonly contained a rice-water-like liquid, sometimes in small quantity, and ordinarily colored, more or less albuminous, and usually consisting of serum and epithelial fragments. Frequently there was a considerable accumulation of gas.
The gastric mucous membrane was pale, and presented eechymoses in the cul-de-sac, but was not softened.
The contents of the small intestine were commonly mill-white, or of a clear gray color, and rarely yellowish or redish, and consisted of a serous liquid and a sediment, composed of the exfoliated cylindrical epithelia of the mucous membrane and its vill.
Sometimes the intestinal mucous inembrane was strongly injected, and the vilii throughout its entire extent were always deprived of the epithelium, but the follicles of Lieberkulin only partially.
The glands of Brumer, the solitary glands and plaques of Peyer, frequently were swollen with their natural milky liquid;* and it is worthy of remark that alihough this tamefaction sometimes did not exist in those who died wihh twenty-four hours from the commencemen of the disease, yet, generally, it was absent only in such as had been longer ill-tumefaction of the glands was absent in five cascs out of eleren. Sometimes the isolated glands were burct, and then exhibited a distinct central epening, and when those of the plaques of Peyer were burs, the later presented a reticulated appearance. I niew the tumefacion of these glandula as the result of setention induced by the disease of the normal licquid, which is produced in chelification. In typhoid, a dry eradation is deposited in the shandak, consisting of wellSown nuclear structures.
The contents, ilikewise, of the large intestine consists of a rice-water-like liquid, composed of a strongly albuminous ymm and a sedimen!; in which, however, epithelial cells te scarcely any longer risible. The macous nembrane is antly pale, and so epithelinm only parially exfoliated.
The serous iavestment of the intestinal canal was some-

[^2]times injected, and at others pale. The mesenteric glands were sometimes yellowish, of the size of a hazel nut, tumefied and infiltrated with an albuminous liquid.

The liver contained blood only in its large venous trunks, and in the first victims of the epidemic-drunkards and scrofulous children--was fatty ; but this condition was rather the result of former disease.

The gall-bladder was filled with black albuminous bile, and the biliary ducts with epithelia without bile. The spleen was generally soft.

The kidneys contained liquid blood in their venous trunks, and sometimes exhibited ecchymoses upon their surface.

The calyces and pelvis were filled with a milky liquid, consisting of serum and epithelial cells, and a similarfluid, containing the separated epithelia of the tubuli uriniferi, was compressible from the papillæ renales.

The cortical substance sometimes was anemic, at others vascular.

The bladder mostly contracted contained a small quantity of turbid liquid, rendered so by flocculi of epithelium, from the mucous membrane, which was ecchymosed.

Sometimes no albumen was detected in the urine, at others a small quantity, but rarely in that contained within the bladder.

No opportunity was presented to me to examine cholera cases in which vavities existed in the lungs, although persons in such a condition died in this place. In a ferr instances only did I find tubercles in the mesenteric glands." Some pregnant women also died of cholera, but of these I have indicated no case in the table.

[^3]
## REVIEW.

ON RHEUMATISM, RHEUM ATIC GOUT, AND SCIATICA, thezr Pathology, Symptoms, and Treatment.-By Henry Wilfinm Fuleer, M. D., Gantab: Feliov of the Royal College of Physicians, Iondon: Assistant Physiciun to St. Georse's Hospitul, fe., de. New York: S'amuel S. and William Wooll, 261 Peurl Sisect, 185!. Toronto: FI. Roussell.
Among the diseases whici flesh is heir to, rheumatisn holds a very prominent part; and often entails among its consequences and results some of the most formidable of human ailments. Cold from time immemorial has had the credit of causing this complaint. The effects of cold upon the human constitution are, however, vasily different from the symptoms of rheumatism; while Dr. Fuller clearly and unequivocally proves that the sudden change of atmospheric temperature, although it may be occasionally an exciting cause, camot of itself produce the disease. When the true cause is present, cold may serve to develope the local symptoms; biai even these are shown continualiy to happen without the possibility of such influence baving effect-hence we must look to the peculiar condition of the blood-we must call in the aid of organic chemistry to assist in demonstrating the fact, that rheumatism depends upon a poisoned condition of the sanguineous system. It is certainly well said, " that there is nothing now under the sun," for in the nineteenth century we have recourse again to the humoral pathology-a materies morborum-a load of peccant humours plainly involved in the consideration sidiscase. At the same time that we hope to steer clear in this matter of the wild mazes and theoretical coreclusions of our ancestors, we mast not shut our eyes, or refuse the sanction of our senses, to the positive deductions of science. The certainty that rheumarism depends upon a poisoned condition of the blood, is a fact that involves an immense amount of important considerations. It presupposes a possibility of demonstrating the true state and condition of normal blood; and this will require not only a lengthened analysis of the blood, in a great varicty of healthy indiriduals, but would involve a lengthened comparison of their several peculiarities and conditions of tife; while it also indicates the certainty of two great facts, that the mass of the blood may be readered abnormal-may be poisoned;
either by the character of the materials absorbed into the circulating system, or from the delayed excretion of matter that should have been removed from the body.

Physiology teaches us that the circulating system, the heart, the arterics, the capillaries, and the veins-which although infinitely extended and often extremely minute, are perfectly continuous one with the other-and the fluids and solids which they contain, naturally find no exit or entrance, except through the walls of these vessels, by endosmotic, and exosmotic action-hence we find that this system of blood vessels bears all the characters, and assumes all the attributes, of a shut sac. Without doubt, certain independent living animal cells are formed in the blood, grow in the circulating fluid, and perform certain indispensable functions necessary to the amimal economy, such as formation of fibrine and the development of animal heat; that after a time they die, are disintegrated and broken up, when the ingredienis of which their cell walls were composed must be removed from the system as effete and useless matter. In no case is the circulating system more than a ready means of conveying to the various organs of which the animal body is composed the means of nutrition, and this is more immediately effected by the capillaries; while each and every one of the organs have, however, a distinct and separate nutritive apparatus peculiarly its own, while the blood, propenly so called, never enters into them. In the nervous ganglia, the muscles, the cartilages, the bones, the mucous and serons membranes, and the glands, the circulating system does no more than present to the structures the ingredients, which each appropriates by its own peculiar apparatus to develop the organs, or assist them to perform their functions; hence in all these cases a constant change is progressing in the blood. All these organs are supplied by exosmotic action with the ingredients used in their construction, or employed in their functions-and when they have been used, they are returned into ti.e circulating system, to be removed from the body by the exosmotic operations of the several excretory organsthe kidneys, the liver, the skin, and the langs. Without doubt, a very considerable compensative action is offein permitted to each of these organs; bai a continued deficiency in function will, sooner or later, prodece ai accumulation of matter that should have been excrefed from the blood, and this may become a source of poisoning to the whole system. At an early slage of this abnormal condition, the symptoms produced might be indistincti; scarcely appreciable to common observation as resulition
from such a cause; but when they are considerably augnented they will surely produce certain powerful effects upon the whole system, that not unfrequently terminate in death-hence we are perfectly warranted in saying that there are ingredients acting as poisons that may be taken into the circulating system, by the intestinal canal, by the lungs, and by the skin; that there are others which may be generated in the body from the matter intended for excretion, modified by chemical influences, but producing its effects upon the blood, or from the undue accumulation of this matter that should have been removed by the excretory organs, causing great irritation of the whole system. To enter into a full and comprehensive view of the subject of blood poisoning, all these points should fairly enter into our consideration; but to do so at this time would occupy more space and time than we can properiy allot to the subject. It will suffice to show that Dr. Fuller clearly proves that these diseases-henmatism, rheuma:ic gout, and sciatica-are plainly produced by one or other of these varicties of blood poisoning, and that cold and other exciting causes are only the means of calling forth some of the most prominent symptoms of these diseases.
The sue nature of the cause of some of these diseases, long since suggested by Dr. Proul, has been adopted by Dr. Thodd, and is now sanctioned and confirmed by Dr. Fuller; it is, that this disease is dependent upon an abnormal quantity of lactic acid in the blood. At the same that we can agree with these celebrated physicians, that in many cases of acute rhenmatism they are perfectly correct in their inductions, still we must dissent from the idea that this material can be considered as the universal cause of all the diseasesso admirably treated of by Dr. Fuller. Dr. Garrod has plainly demonstrated that in rheumatic gout, the urate of soda may be found in the blood; while in sciatica, iu very many ases the oxylate of lime, which may be distinguished in the urine, and without doubt often cxists in the blood, is the cause of these neuralgic complaints. Abundance of the crystals of uric acid, urate of ammonia, or the oxylate of lime, constanty present themselves in the urine of persis subject to, or recovering from attacks of these diseases, froving the existence of morbid materials in the blood; ?monstrating that this excretcry function is removing fchemical result, if not a positive cause of the disease.
It has been established that lactic acid is a normal fiment in the animal body. It is a substance when mentrated inodorous, and thick like syrup; it cannot be
solidified by imense cold, while it dissolves readily in water, alcohol, and ether, has a powerful acid reaction, and displaces not only the volatile, but even the mineral acids from their salts. With the basis it forms mitral salts, all of which are soluble in water, but cannot be made to crystallize. The chemical composition of the acid salts is $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{5}$; the analogy which it bears 10 sugar in this point of view is particularly striking. Another fact worthy of consideration is, that lactic acid may be extracted from the " juice of flesh"-that is, from muscular fibres. It has been observed that some slight difference may be shown to exist in the properties of its salts under these circumstances, hence it has been distinguished as lactic acid a., in contradistinction from lactic acid b, which is shown to be present in the gastric juice.

The lactic acid b., as a constituent of the gastric juice; may be observed in the stomach of carniverous, as well as. herbiverous animals-hence it is shown to be a secretion from the blood; while in the small intestines of herbiverous animals it is shown to exist in a vastly increased amount, the excess being dependent upon the direct transformation of amylaceous matters in the alimentary canal. The presence of lactic acid has not beeir ciearly demonstrated in the blood; but as Lehmann remarks, " the simplest induction proves that it must be present in it, even if it remains but for a short period." The presence of lactic acid in the muscular substance, in the gastric juice, in the urinary and cutaneous secretions, indicates that it pervades the system very generally, and shows that it must occasionally exist in the great medium of communication among all these structures-the blood. Mr. Carpenter declares that "the fact appears 10 be , that, in the healthy state of the system, lactic acid is decomposed by the respiratory process, or Is eliminated from the blood by the secretory operations, at. fast as ir finds its way into the circulation; and thus, asin the case of area, it never accumulates in the blood in such a degree as to make its presence evident, unless it be introduced in undue proportion, or its eliminat on be checked." It seems probable that when the "blood piesents an acid reaction, as happens in some diseases, thisis to be attributed to an excess of lactic acid, since bisis substance, although not distinctly detected in such blood; has been clearly made out in the fluids excreted from ity The presence of lactic acid a. in the juice of flesh is certait, and its amount would appear to be in a considerable degree proportioned to the amount of exercise to which these structures have been submitted-activity of function
induces increased vascular circulation, and an augmented amount of the changes which proceed from it-hence it may be one of the means of accumulating this material in the Dlood. The conclusions which Mr. Carpenter arrives at with regard to the presence of lactic acid in the human system are the following: "On the whole, then, it may be positively affirmed, that lactic acid is a normal constituent of the human body, and that it is to be looked upon under two aspects, both as to its origin and its destination. Its origin may be attributed-1st. To the direct transformation of the amylaceous and saccharine constituents of the food. 2nd. T'o the metamorphosis of muscular, and probably other azotzed tissues. On the other hand, its destination may be considered as being-1st. To supply a pabulum for the combustive process, and thus to contribute to maintain the heat of the body; and 2nd. To take part in the reduction of the albuminous, and the other constituents of food in the slomach, eitber by itself acting as a solvent, or by decomposing the chlorides of calciam, or sodium contained in the gastric fluid, ain by thas setting free hydro-chloric acid. Its presence in the urinary secretions may be regarded as exceptional ; the kidneys aliording (so to speak) a safety valve, whereby the accumulation of lactic acid in the blood is prevented." The importance of these considerations with regard to lactic acid must be sufficiently obvious, when it is shown to be the cause of acute rheumatism-in all probability dependent upon a delayed excretion of this material from the system-where its presence can be demonstrated as avounding in almost every part of the system. Under these circumstances it may be clearly shown to act as a poison-the sympioms demonstrate it-and the intensity of these symptoms can be shewn to bear a close relation to the amount of the material in the blood; when not excessive, the symptoms will commonly appear anomalous, and difficuit of interpretation, which will be cleared up only on the first attack of acute rheamatism.
It has been shown that the blood circulating in the vessels is merely a vehicle for the conveyance of the nutritive material to each organ of the body; when a poison shall exist in this circulating laid, it will be conveyed to all parts of the system, and may prove a sourec of irritation to every structure. Some poisons appear to have more partiality for one organ or tissue, some for another. We always find it attacking the weakest points in the human body-parts that are most cxposed, bave been overworked, or otherwise injured. The structure to which lactic acid seems most obnoxious is the white fibrous tissue; this
enters into the formation of the aponeuretic sheaths, the fascia; the capsules of the joints, the ligaments, the tendons, and the fibroserous membranes of the body; hence the joints and their surrounding structures, the valvular apparatus of the heart, the lining membrane of the arteries, and the external covering of the heart, the pericardium, Sc., are most commonly implicated in this disease. There may be recognized some slight difference in the modus operandi of the poison in some of these parts. The lining membrane of the heart and arteries, as a matter of necessity, suffers from proximity to the diseased fluid; while the fibrous tissues appear to have anatomical peculiarities that induce the attack.

The symptoms of acute rheumatism, as laid down by Dr. Fuller, serve to demonstrate and confirm these facts; premising however, that the acute character of the attack will in a great degree depend uponthe previous healthy condition. of the blood, in which the poison has been accumulated. When this fluid contains an abundance of fibrine, and abounds in the red corpuscles-the system is in tone-the constitutional excitement will be great on the admixture of this poison; but when the blood is degraded, the powers of the constitution depressed, then will the intensity of thè: constitutional symptoms be of a lower grade, and the complaint will not demonstrate so great an intensity of action, upon the admixture of the same amount of poison. The detail of the sympioms, as given by Dr. Fuller, are very. characteristic, and demonstrative of the condition we have: been endeavouring to exemplify (see page 54.) "Acute rheumatism, as its name imports, is characterised by symptoms of acute disease. It is generally ushered in by: a smart attack of fever, accompanied with a quick bound. ing pulse, a foul tongue, loaded urine, profuse acid, sour smelling perspiration, and wandering pains in the limbs: After a varying duration, the pains fix on one or more of the larger joints, which become hot, red, swollen, and: exquisitely tender on pressure. Unlike inflammation: arising from truly local causes, this rheumatic inflamma tion shifts repeatedly, and oftentimes rapidly, from jointito joint, displaying in each great apparent intensity, yet rarely, producing permanent mischief; so that the joint which to-day seems to threaten suppuration, may to-morrow evince no mark of the violent invasion it has undergone. Some times the swelling extends a considerable distance from the joint itself, and is evidently chiefly external to the articulation, for there is a puffiness about the parts affected; and the hollows and depressions in the vicinity of the joints:
are filled up by effiasion into the areolar tissue. At others the inflammation is less superficial; there is less reducss, and the swelling, which is more defined and limited in extent, is evidently due in a great measure to inflammation of the synovial membrane, with effusion of fluid within the joint, for the distended capsule projects at those parts where the surrounding tissues offer least resistance. In most instances the two varieties of swelling are intimately blended, the diffuse fibrous symptoms predominating at one period of the disease, the synovial symptoms at another; but in proportion as the synovial symptoms become more prominent, and the diffuse fibrous symptoms less marked, so does the case assume more and more the characteristic of that form of disease, which I purpose describing under the title of rheumatic gout.
"From first to last, the disease may run its course without the implication of any internal organ; but not unfrequently it is accompanied by inflammation of the pericardium, or the lining membrane of the heart, as also, by inflammation of the lungs and pleara.
"The second variety presents characters of gout, more or less blended with those of rheumatism. It is frequently met with in persons who have a taint of gout in their systems, and seldom otherwise occurs in carly life. It is not accomparied by the profuse sweating of rheumatism, very seldom involves the heart or its membranes, but not unfrequenly attacks the eye, the stomach, and the lungs. The articular inflammation is usually confined to one or two joints, very generally affects the smaller joints, is wholly within the capsule, is much less migratory than in true rheumatism, is marked by less external reduess, and is accompanied by less active symptoms of fever. But it is more obstinate in its contimance, more apt, when in an acule state, to induce disorganization of the joints; more prone, even in a less active form, to give tise to permanent thickening and cnlargement, and often to frightful and iremediable distortion."
We consider that the distinction which Dr. Fuller here draws between acute rheumatism and rheumatic gout is just the reverse of the common acceptation of these terms. In our experience, the synovial varicty is far more frequenty athended with the concomitants of endo-carditis and pericarditis, than the affection of the fibrous texture of the joint, Thich spreads externally. We consider that it is necessary that the distinction between these two rarietics of disease thould be clearly diagnosed, and left without confusion in the mind of the practical physicion; as it is more than
probable that organic cheinistry will at some future period clearly demonstrate a variety in the causes that produce the difference of the symptoms, and may perhaps lead to a distinction in the treatment of each. At all crents, it is clear that the fibrous structures of the joint-the ligameuts -are the primary seat of these complaints; that in the one variety, the inflammatory action spreads to the synovial membrane; while in the other the surrounding areola tissue is implicated in the disease. It is clear that in the varieties here spolien of the poison appears to evines a peculiarity of action, that would hypothetically demonstrate a variety in the cause.

In the case of acute rheumatism, the primary influence of the poison is without doubt experienced by the ligament; but that in this case the inflammatory action son spreads to the nutritive apparatus of the synovial membrane -effusion of serum transuding the capillary vessels and passing the basement membrane, quickly distends the cavity of the joint; the epithelial structures are also shed in considerable quantity, and might be found floating in the fluid. The nutritive apparatus of the ligament has this peculiarity, that in a state of lealth it is possessed of very minute transparent vessels, that carry but a serous fluid, which is all that is required to moisten the fibrille of this structure, and now the ligament is white and glistening; these vessels are in comection with the general system of capillary vessels of the body; consequently, under inflammatory excitement they will admit a much more dense blood, containing a small proportion of the red corpuscles: hence is derived the pink colour plainly observable in similar stractures, while under such a condition. The supply of iluid distends and swells the fibrous element, causing a dull heavy pain in the part; without doubt the accumblation of the poison in this structure is the irritating cause which produces this grade of inflammatory action-a hypercemic condition of the vessels-which in liganentons structures is seldom exceeded. When lactic acid is the cause of the discase, the capiliary vessels of the synovial membrane seem speedily to participate in the condition, and from the nature of their fanctions, quickly yicld an increased amoment of serons haid, which constitutes the rapid swelling of the joint-and these same vessels willalso often facilitate by endosmotic action its speedy removalpresenting a rapidity of translation from one joint to the other, which constrtutes a marked feature of this complaini The serous ellusion is also a most marked complexiyd acute rheumatism; while it is frequently a ready meanst
anloading the capillary vessels, or staying the progress of inflammatory action-acting as a safety valve to the ligament-that leaves but little permanent change in the fibrous clement and vastly facilitates a return to health. Occasionally, however, this condition of inflammatory action may be exceeded, fibrine or blastema may be thrown out, and more permanent and destructive disease of the joint be the result.

When the symptoms of rhemmaile gout present themselves, the vascular structure of the ligament is still the promary seat of the disease; a similar condition of vascularity presents itself; the fibrous structure is swelled and softened, and becomes of the same pinis colour ; while the pain of distension is sufficiently marked. Now, however, the poison is shown by Garrod to be composed of the urate of sodu; and this substance appears to have a most marked affinity to the fibrous element. During the formation of bone, the carbonate and phosphate of lime seem to be incorporated into the fibrous elements-so as the resulh of gout, especially of chronic gout, the ligamentons structures of the joint appears to receive a deposit of the urate of soda; it is incorporated into the fibrous element in the form of tophi or chalk stones; hence the presence of this substance in greater or lesser amount during an attack of rheumatic gout, constitutes the more permanent and firmer swelling that exists in this disease. The denser character of the exching cause likewise seems less to dispose it to influence the synovial apparatus, while the areola tissue surrounding the joint seems more disposed to participate in this change. From these facts, and the character of the symptoms in these diseases, we think that it is natural to conclude that there are two poisons-that these may act in conjunction-may vary in their individual amounts; hence the explanation of the several varieties that occur in these two complaints-acute rheumatism, and rheumatic gout. If, then, we can at this early period hypothetically show the probability of the variety in the cause of these diseases, we feel but litte doubt that organic chemistry will ere long be able to demonstrate their individuality, and will in all probability show a separate and distinci cause for chronic rheumatism, as well as the various kinds of neuralgic affections besides.
iTo ice continucd.

## GITORIAL DEPARTMETY.

## MEDICAL REFORM.

Among the medical reforms which we would desire to press upon the notice of the Government is one of vast importance to the commanity and of considerable interest to the Medical Profession: it is the care and medical treatment of the indigent poor in the commry districts.

With regard to the medical treatment of the poor when they become sick, there are no legal means in Canada whereby they can claim necessary assistance at such a ime. Should the poor man who procures his bread by his daily labour, bappen to be overtaken by sickness, or meet with an accident, he has to trust 10 individual charity and philanhropy, as well as to the generous feelings of the medical practitioner. Hereiofore, in Canada, land and labour have been abundant, and a home was to be obtained by the labouring man with great facility; but now, from the high price of land, and its more complete settlement in all thee better agricultural districts: bat facility will be greally diminished; so that in process of time riches and poverty will show as marked a distinction as is to be observed in Eurofe. At the present moment the middle classes vastly predominate in Canada; there is litte or no disianction of rank, for almost all have abundance-few are particularly rich;-but a change is coming over the spirit of the dream, and as riches abound, abundance and splendour will more clearly show itself, while poverty and distress will increase in a similar ratio. The large fortunes thai are now being made by engineers and contraciors upon our public works: the sudden wealih that is accummated by our speculatos in land and provisions; to say nothing of the slower proensees by which fortunes are made by our farmersand mannfacturers-all tend to the same end: the accumulation of money inio the bands of the few. These, as in otnet countries, will soon make a marked distinction between rick
and poor. Even now, although it may be an execption to the rule, very many persons are in a state of poverty-many, donbtless, from aceidental circumstances over which they had no control; while in a vast majority of cuses it is to be feared the cause originated in their own improvidence or rice. Still, under any circumstances, it is the duty of the State, it is an implied contract in the civil compact of the social condition, to watch over and protect the helpless, the infirm and impotent, as well as to panish and reform the vicious. The latter has been abundamly provided for, but the wants of the former are unheeded and meared for; and this is a lasting stain on this Christian comntry, and a disgrace tu the civilized times we live in. When a poor man becomes sick, or meets with an accident, in any of the larger cities of Canada-such as Toronto, Kingston, \&e.he has a public hospital to apply to, and he can there get that gratuitous relief and assistance which his sickness demands. Not so in the country pars: when siek in such a place, he is under the necessity of applying to a private medical man for assistance; and, be it said to their praise, the vast majority of country practitioners readily yield thepoor sufterer all the aid and assistance that their skill can command; medicines are freely supplied, and offen the pauper is indebted to his medica! attendant for a considerable portion of the necessaries of life.
Under these circumstances, we respectfully urge that this is a most unjust condition of afiairs,-a state of thinge that inflicts a very heavy and unjust burden upon the medical practitioner in the country,-in a great degree shifting the pablic burden of caring for the poor, and supplying his rants during sickness and disease, upon him. This unforanate condition involves one of two dilemmas-either that the medical atiendant goes unpaid for his services, or that te poor patient goes unatiended, and lacks that surgical are and attention that would in all probability speedily Store him to health and vigour. Nor is this all; for it Squently happens that the poor man has a wife and family spendent upon his daily exertions: these aso suffer. To apoor man it is misery and death-io the conntry medical
practitioner it is an injustice at present most heavily felt, in consequence of the depressed condition of the Medical Profession, and the high pice of all the necessaries of life. At the present time, in very many instances, it is as much as the medical practitioner can do, with all his anxiety and labor, to obtain a sufficient remuneration for his services, to enable him to live and supply the wants of his family: hence it is rank injustice that his generous sympathies should so often and so largely be drawn upon by the indigent ponr, without chance of receiving any remuneration for his services. Is there any other trade or profession in Canada that would be willing to be continuously spent in the service of humanity, save the Medical Profession? We would sty to the public, forget not the old adage-" Drive nol the willing horse too hard;" and from the Government we would claim that some means be devised to remedy this unjust condition of affairs. At least things should be placed upon this footing-that the poor man goes not unheeded and uncared for in sickness and distress; and if the public services of the medical man are required in the attendanee upon the poor, that he should not go unrewarded for his services. It should also be remembered that medicine is not the only want required in the condition we speak of; there are many other necessaries and comforts required, without which the skill of the physician is often comparatively useless. Even these should not be withheld; for in far less civilized and favored countries than Canada, these calls of humanity are not disegarded. ' It is therefore a positive disgrace that proper means are not adopted by the body politic, whereby the poor sick man may get proper medical assistance, and the indigent and impotent pauper may be taken care of at the public expense.

There is another point, also, in which we would view this case: it is, that the poor man funds it necessary in many cases to employ the quack-first, because he thinks that he can get his services cheaply, and even then would no: be compelled by law to pay him. The fear of debt and diff. culty makes him place his confidence in uneducated persons,
and in consequence, his powers of labor or the condition of his constitution are not unfrequently irreparably damaged or destroyed, when the patient becomes a helpless weight upon the charity and kindness of his neighbours, if death is not the speedy termination of his case. We maintain that the poor man should have the best advice in such cases that the country could afford, and that the public should pay for it. It would be a certain means of encouraging the talent and industry of the Medical Profession, while it rendered the presence of the quack in the country places uncalled for and unnecessary; the poor man would get speedy and effectual relief, and neither he nor his family wonld be thrown a burden upon the public.
If these facts are true-and we challenge their contradic-ton-it certainly behoves the Government to take some steps to counteract so disgraceful a position of affairs. In the first place, we would suggest that the Government introduce a law compelling the municipal councils of every city numbering upwards of 10,000 inhabitants to establish a public hospital, and that all county towns and larger villages should be obliged to support a public dispensary and a poorhouse, where the wants of the poor during sickness might be gratuitonsly relieved. Every township should be required to appoint a medical officer, who should visit and attend the destitute poor, and be paid by the municipality. Such natural and necessary relief and convenience would place the poor man, labouring under siekness, or the effects of accident, in a position that would in the generality of eases enable him readily to return to his duties, and would save many a valuable life to the community; and, what is of not a little consequence, shift the burden from off the shoulders of the charitable medical practitioner, who has commonly to bear it.
In all such casesnone but the liceused medical practitioner should be permitted by law io be employed: this would be some encouragement to a proper and eflicient study of the science, and it would prevent the quack from engaging in the public services of the poor, getting all the benefits, and then casting the weight and responsibility upon the Medical

Profession. We may be excused mentioning a rase in point. A certain railroad compans, not 100 miles from Toronto, it is said, employ a noted Homeropathic to attend their servants; they hire his services by the year for a good round sum, and in all cases in which the natural powers of the constitution are able to struggle out a cure, he is perfectly successful; but in all those cases demanding serions: medical or surgical treament, he seinds the patient to the Toronto hospital. If this is not the climax of imposition rud bumbug upon the poor employe, we know not what is. It is a clear demonstration that the Medical Profession are badly treated, and are likely to continue so to be, moness some remedial means are adopted by the Govermment that shall place the profession in a better and more respectable condition. Without doubt the only means that can be available under such circumstances is the incorporation of the Medical Profession, with suficient powers to manage their own affairs, while it will encourage the leaming and promote the talent of its members.

While we are upon this subject, it will be well to warn the Government that in all probability the cholera will again visit the country this season, and that it is not improbable the lines of the numerous public works now progressing in Canada will be the scene of sad sickness, destitution, and trouble, unless some efficient means are adopted to prevent or coanteract it. To our mind, the next session of the Provincial Parliament would be the most appropriate period for introducing some general law upon the subject that should efficiently meet and overcome all the public difficulties we have here pointed out.

## THE MEDICAL BOARD.

We copy the following extract, on the subject of the Medical Board of Canada West, from the Carleton Place Herald; it is a part of a long communication sent fron' Toronto to the editor of that journal, on the passing events of the day, and as it is well and temperately written on the subject, we commend it to the attention of our readers.
"During the past week the Provincial Medical Board met for the examination of eandidates for license to practise physic, Sc., and as this body bears an important relation and a deep responsibility io the Canadian public, a few remarks in reference to it may not be uninteresting to your readers. The board is composed of members of the profession from various parts of the province, but few attend except the local residents, on whom the whole labor devolves.
"The hon. C. Widmer, venerable for his years and bigh standing in the medical profession, is chairman of the board; and the other members present are chiefly the professors of the two medical schools now in operation here, and the ex-professors of the late University Medical School. Formerly the proceedings were carried on with closed doors, but medical men and students of medicine are now permitted io witness the examination.
"In order to prevent a pre-arrangement aind 'priming up' on the subject of examination, no candidate is examined by his own teachers, but by some of the other members present, who are chiefly comected with rival institutions. Such being the composition of the board, it is easy to imagine that when rival animosities run high the candidate may be sacrificed on the shrine of jealousy or party feeling. It is lamentable that such should be the case, but that it is so is undeniable by all who are familiar with the proceedings.
"This medical board has the reputation of being the strictest as regards qualification, Sc. on this continent, and that it is so is shewn by the fact that many who enter the profession in the cities of the Enited States are nuable to oblain license bere; and some who are doubiful of success, or have teen rejected, find it easier to pass through the hands of the medical board of Lower Canada.
"This stricmess on their part is commendable, and if persisted in will gain for them the respect and confidence of the people of Canada, as well as elevate the character of the prolession in this province.
"During the present meeting of the board fourteen candidates presented themselves for examination, six of whom passed-lour from the Toronto School of Medicine, and wo from the Trinity Medical School. A daily paper has remarked that " the examinations are very rigid," he might have added that some of them were very unfair. These remarks are not made by one smarting under a sense of conceived injustice; on the contrary, the writer is perfectly
mprejudiced from any such cause, but such was the unanimous opinion of those witnessing the examinations, and it is well known that the proceedings were at times characterized by the absence of harmony, and much unpleasant feeling."

It will be but fair to remark that one of the two gentlemen who are set down as belonging to the medical department of Trinity College was actually educated at the Toronto School of Medieine ; but from some quarrel amons the students of that school, purposely excited by political party spirit outside its walls, quitted that institution during he Session, and hence has given the rival school the credit of his education. With regard to the striciness of the Mudical Board, we can rouch for its truth, and are perfectly certain that either of the students that passed the examination above alluded to, could have gone before the examiners of the Royal College of Surgeons in London, and have auswered their examination with far greater ease than the one that was put to them, on this occasion; and what is more they would not have been subjected to the antagonistic animus exhibited at the time. Indeed it must be a matter of surprize to all, that with so large a majority of the members of the Medical Board—nearly double the number-certainly opposed to the Toronto School of Medicine, that so many of its studente should have passed their rigid examination. It certainly does great credit to the students, and must be a matter of congratulation to their teachers. When these facts are contrasted with the statements so ofien made during the past winter in the Toronto Patriot, with a desire to injure and destroy the school, it must be a clear demonstration either that the Editor of that Journal was really ignorant of the truth in this matter, or was deceived by some interested parties, who hoped to make political capital ont of it.

## THE MEDICAL PROFESSION.

The following honorable tribute to the English Medica: Profession, is copied from the London News. In no part of this wide world is a greater amount of true knowledge acci-
mulated by the medieal man than in England; yet you see him humble, assiduous, untiring in his duties, seeking practical knowledge among the poor and needy; while without money and without price he yields 10 suffering humanity the fullest share of his consolation and experience. Well might we say "go thou and do likewise."
"Our medical men are strange compounds. No set of professional people in the world are more learned, more benevolent, or more practical in their own particular walk of life. No men are more laboriously active in the calse of charity. In wet and cold, in winter and summer, in country and in town, there is never a day or an hour in the year but some or other of the medical fratemity are administering to the poor gratis. They are, taken altogether, as well-intemtioned, as kindly, and as ill-paid a race as any student of the genus homo has met with. So far at any rate as that mass of human knowledge which is made up of ascertained scientific truths is concerned, they are also the best informed professional men in the country. The clergy may, and do, know more about dead languages and classical literature. The lawyers may, and do, know more about the means by which in different ages men have been ruled and cajoled, and infinitely more about the noble art of getting up in the whid. But about those sciences in which the world makes headway-chemistry, geology, natural philosophy-and other multitudinous ramifications of inquiry into the laws of the universe in their relation to animated nature-the medical men are by far the best informed professional class in the commmity."

## TRINITY COLLEGE TORONTO.

Mr. Wm. Gilmor passed his final examination, and the following gentlemen the first examination for the degree of Bachelor of Medicine :-
Mr. Weston Hermman,
Mr. Edvin Goodiran,
Mr. W. Bettridge, B. A.
Mr. Isaac Ryall,
Mr. David E. Burdett,
Ma. Paue R. Lewis.
James Povell.
Dean of Faculty of Medicine.
Daily Cuboms:

It is worthy of remark that these gentemen instead of 30
going up before an antagonistic Medical Board to obtain a license to practise physic, \&e., are examined by their own teachers in their own class rooms; and when they shall have passed another examination under precisely similar circumstances, (if we make no mistake in the matier), they will receive a licence to practice from the Governor General, without the necessity of presenting themselves at the Provincial Medical Board. One gentleman has already received such a license, and we believe that Mr. William Gilmor is, by this arrangement, cntitled to one also. We, however, feel convinced that there is a misapprehension of the law, on the part of the Govermment in this matter, and think it but right, public attention should be drawn to it.

## PROGRESS OF QUACKERY.

The following delectable morceau we extract from the Philadelphia Medical and Surgical Journal. Comment on our part is unnccessary.

We lately saw in a Western journal an account of a person who having obtained a charter for conferring medical degrees, was selling them at the reasonable price of twenty dollars a sheep-skin. The following instance of obtaining what may be denominated an "Aberdcen or Royal College of Physicians' Degree," exhibits, we fear evidence of a similar system of diploma-selling existing in our country, both in and out of the regularly organized schools:-

[^4]
## SELEOTGD MATMRT

## A COURSE OF LECTURES ON ORGANIC (HEMLSTLX.

Dolitered in the Laborutory of the Royal Institution of Giverit Britain, by Dr. A. W. Mofmann, F.R.S., Projessor of the Royal College of Chemistiy.

Lectuna VIII.
In the last lecture you became acquainted with the Chemical character, and with some of the applications of ferrocyande of potassium. The relation of this substance to cyanide of potassium, and the manner in vhich it may be derised from the latter compound were likewise mentioned. It remains now to describe to you the process by means of which this irr portant salt, which is the starting point for the preparation of all cyangen conpounds, is manufactured upon a large seale, and to add a few remarks upon the formation of cyanogen generally.
The ordinary method of manufacturing yellow prussiate of potassa consists in fusing animal charcoal with carbonate of potassa. Not every kind of sbimal charcoal is equally appicable. Generally dried tlesh, horns, hoofs, and hide; are carbonized for this purpose; white the animal charcoal obtained by the carbonization of bones-the bone black of commeree-is reserved for the operations of the sugar refiner. A considerable quantity of the animal charcoal, for making prussiate of potash, is produced by carbonizing ofd shoes and boots. And so it is that the substances discarded every yenr, in steh enormous quantity, that every one must wonder what becomes of the accumbertion, are made to re-appear on the dresses of our ladies, after havag pased through a series of chemical changes.
Animal charcoal, which is very rich in nitrogen, is fusel in large iron vesclk, with its own weight of carbonate of potassa, until effervescence has eatiely ceased, the fused mass being continually stirred during the whole treration.
Two stages may be distinguished in this process. In the first placo the arbou reduces the potassium of the carbonate of potassa, exactly as it does the preparation of potassium, which, as you know, is obtained by fusing arbonate of potassa with wood charcoal. The free potassium, however, insead of being disengrged as in the latter operation, meets with carbon and ritrogen, with which it combines in the proportion in which these substances tom cyanogen. The result is cyanide of potassium, which is, horrever, still valaminated with a great variety of impurities. The mass, when treated with water, acts upon the iron of the vessels, or upon the iron originally ariained in the nitrogenous substances employed : these it dissolves. The thin this reaction replaces the potassimm of one ernivalent of the cyanide: becyanide of iron formed in this mamer combines with two additional fivalents of cyanide of potassium to form ferrocyanide. The potassium, course, becomes oxidized, either by the oxygen of the atmosphere, or by tht of the water, whose hydrogen is evolved.
The solution of the ferrocyanide is now evaporated when the salt crystalive Ose on two crystallisations renderit perfectly pure. It is remarkable the the ordinary mode of manufacturing ferrocyanide of potassium is enby dependent upon the co-operation of processes of vitality, inasmuch as timal substances are involved in the reaction. It is, however, possible also bhhin cyanides, by uniting carbon directly with the nitrogen of the wosphere. The experiments of Bunsen and Fownes have proved that if trcoal perfectly free from nitrogen-sugar charconl was used for this pur-sh-be thoroughly mixed with carbouate of poiassa, and exposed at a yery
high temperature, to a current of nitrogen, a certain gnamtity of cyande of putasitm in promed. This grocess has heen actually adopted for the production of trorymine of potasman, upon a large scale, and considerable phatities of the aht are sail to be prennced in this mamer. Whe mixture is heated for this purpose, in vertical flues of brick work, through which a current of atmopheric air is foreed by mechanical means, the air having ben previusly ilpuived of its axyen, by passing through a column of ignited cohe. After ten or twelve homs the mass is maked out of the flue, exhanted with water, and the shation of eamine converted into ferrocyande, by digestion wite finely ilivided stathic irm.

The tirect formation of cyanogen presents considerable interest, inasmuch as this boly belongs to those substane-, in the generation of which but a ter ? ears ago the action of forces was assumed, differing from those concened in the production of ordinary chemical compoumls. For this reason I shouh have dewied to have demonstrated this formation of cynogen before pou. Tincriunately, however, I an prechded from the actual experimen, in conseguence of the high temperature as well as lengih of time, which it would require. Fut $T$ have arraged an apparatus which will allow us to construct cyangers, if not from its elementa, at all events from some of their simplest compounhs, the direet iomation of which is beyond all doubt. This gas-holder contains carhonic uxide; at is in comexion with a flask conaining a strong sulution of ammonia, from which, especially if the flask be gently heatel while the gas is passing, a considerable guantity is carriedores with the carbonic oxide. The mixed gases are deprived of part of their water by passing through a system of tubes, containing lime; and they ult mately arive in a tube contaning $\leq 10 n g y$ phanum, which is heated in a gas furnace. On the wher side ai the rimace :a delivery tube dips ints water. it this hiph temperature, and ia contact with the spongy plainum, whici is a remarkable promoter of elemical combination, the oxygen of the carionic oxite. and the hyiregen of the ammonia combine to form rater, while cathen amb hitrogen unite to form cyanogen, which is disengaged from the delivery the in the form of cyanide of ammonium. Two equivalents of carbonic oxide, and two equivalents of ammonia contain the elements of ing equivalents of water, and one equivalent of cyande of ammonima.

$$
2 \mathrm{CO}+2 \mathrm{NH}_{3}=2 \mathrm{HO}+\mathrm{NH}_{4} \mathrm{C}_{2} \mathrm{~N}
$$

To jrave the presence of this compound, we avail ourselves of the proces with which we berame aequanted in the kest lecture. By the addition ofs solution of protoxide of iron, we convert the cyanide into a ferrocyania? This, when mixed with sesgui-chlorile of iron, and is small quantity $\mathrm{c}^{\circ}$ hydrochloric acid, to disso?re the precipitated oxide, will readily causet fine color of Prussian blue to appear.

There is mather iormation of cyanogen, which may more easily be esix bited experimentally, and which, from reasons which you will appreciatety amd bye, prosents even more interest. In common oxalate of ammonia, $\boldsymbol{w}^{2}$ bon and nitrogen are present in the proportion in which they form cyanger while hydrogen aud oxygen cxist in the same proportions as in waier. fact, when merely looking at the formula, you may vien oxalate of arme nia as a combination of cyangen with satit:

$$
\mathrm{C}_{2} \mathrm{O}_{3}, \mathrm{NH} 0=\mathrm{C}_{2} \mathrm{~N}-4 \mathrm{HO} .
$$

Now experiment slows that eymogen is prodnced from oxalate of ammet muder the influctuce of substances whiciz heve :a powerful aitractias: water. When dry axalate of ammonia is heated with an isydrous phopi-f soid, there is a considerable quantity of cyanagen evolved, which, sithen it is not perfectly pure, nevertheles lurns with, the claracteristic ris flame exhibited by this gas when obtained from cyande of mercurs. experiments which I showed you in the last lecture sufficiently prort: tendency of cyamgen to assimilate ,ther clements or compounds. associated with these it constitutes new molecular groaps, endowed $r$ different properties. Thus we saiv that when iron is absorbed into its stituents, the monolnsic radicai cyanogen became converted successirety
the bihasic ferrocyanogen, and lastly into ferrocyanogen, which is capable of miting with 3 equivalents of metals. It is true that none of these secondary radicals have hitherto been isolated ; but in most eases the compounds were long known before the raticals themselves were obtainel in the separate state. A similar set of secondary radicals, which have not yet been isolated. are assumed by chemists to exist in a series of compounds which i havenow to bring under your notice. A solution of cyamide of potassium, when digested for some time with finely divided sulphur, dissolves a considerable quantity, and the filtered liquid now contains a new substance. It is sufficient for this purpose to pour a boiling solution of cyanide of potassium'through a filter, upon which flowers of sulphur are sprend. This nem substance is formed in lurge quantity when eyanide of potassiun is fused with sulphur ; and likewise when ferrocyande of putassium, or better still, when a mixture of this salt and carbonate of potassa is treated in the same manner. The new salt thus produced, which has received the name of sulphocyande of potass "um, differs entirely from the original compound. Cyanide of potassium, when perfectly pure, has searcely any action upon a solutiou of sesquichloride of iron. Sulpho-cyanide of potessium strikes a beautiful deep blool-red colour, with the silts of sesquiuxide of iron. While cyande of potassium crystallises in cubes or octahedrons, the sulphe-cyanide shoots into magnificent slemder white needle, frequently traversing the liquid from one sille of the ressel to the uther. It crystallises particulary well from alcohol, in which it is less soluble than in water. If the compusition of this ealt be compared with that of cyanide of putassium, it is fumel that it contains the elements of the latter - 2 equivalente of sulphur. Its formula is $\mathrm{KCy} \mathrm{S}_{2}=\mathrm{K}$. Csy. It may be considered as atcombination of potassium with a compound radical, to whici the name of sulpho-cyangen has been given, and which contains the elements of cymugen, and ent. of suiphur. Diny efforts have been made to separate shis radical, and chemists at one prend believed that they ha:d succeded. If a concentrated sulution of tho putassium salt be submitted to the action of chlorine, a beatimul sulph alow powder is separated. This was lung considerelas the radical amid acoribed under the name of sulphocyanugen. Later researches, however, proved that the tro substances in question differel in their compusition, the latter containing as certain amount of hydrogen.

Sulphocyande of potassim produces insoluble precijitates in solutions of most metals. The salts thus formed correpund in their composition with the potassium salt. The lead and silver salts are white precipitaies, yielding, on being treated with sulphureted hydrogen, free hydrosulphocganic acid.

| $\mathrm{KCsy}=$ | Sulphocyanide of Potassium. |  |
| :--- | :--- | :--- |
| $\mathrm{Mb} \mathrm{Csy}=$ | $\#$ | Lead |
| Ag Csy | $\#$ | Silver |
| $\mathrm{MCsy}=$ | $"$ | IIrdrogen (iree acid). |

Hydro-sulphncyanic acid, is an acid," cohnurless limuin, which is readily decomposed, forming hydrocyanic acid, and sereral other products. It camot be obtaimed by the action of stronger acils, such as hyidrochloric or sulphuric acids, upon sulphocyanide. On adding concentrated hydrochloric acil to a saturated solution of sulphoy:anhe of potassiam, a yellow erystalline precinitate takes place. This substance, however, is a pruduct of the decomposition of hydro-sulphocyanic acil. It contans a large quatity of suiphar, and is colled persulphocyanic acid.

Sulphocyanide of potassium is an exceedingly waluahle reagent for salts of sesquibxide of iron, affording a ready necans of distinguishing them from the salts of the protoxide, which are not aftected by it. Ca mecount of the great facility with which cyaniles pass into sulphey:minles, the characteristic reaction of the latter with sesquichloride of iron may she, ibe used to trace the presence of cymides in minute quantities. This test is particularly useful, if the cyanide exist under circumstances under which the aprolication fof the owlinary tests locomes inconvenient, as in cases where it is mixed rith orgauic substauces and other salts. The experiment may be made conveniently
in the following manner : Two watch glasses are selected which exactly fit each other. The salt to be tested is placed in the lower one with a small quantityof suphuricacid and then cevered with the other watch glass, the inner surface of which is moistened with a few drops of yellow sulphide of ammonium, which, combining with the liberated hydrocyanic acil?, is partly converted into sulphocyanide of ammonium. On gently heating the upper watch glass, the sulphide of ammonium is volatillized, while the sulphocyanide remains, which may now be tested in the usual manner. Cyanide of potassium, when submitted to the action of oxygen, exhibits a perfectly analogous deportment. When heated in contact with air, this salt absorbs two equivalents of oxygen, and is converted into a new salt, corresponding to sulphocyanide of potassium.

$$
\mathrm{KCy} \mathrm{~S}_{0}, \mathrm{KCy} 0^{2}
$$

According to this formula, it might be cailed "oxycyanide of potassiun," but it is better known by the haboratory term of "cyanate of potassa." For the preparation of this compound on at larger scale, the oxygen is more frequently employed in a state of combination than in its free condition. Protoxide of lead, or minimm, is oftea used for the purpose. The minimm is gradually introduced into cyanide of potassium, fused in a Messian crucible, where it is instantly deprived of its oxygen. On account of the facility mith which cyanide of potassium is oxidized under these circamstances, this salt constitutes one of the most valuable reducing agents of the laboratory. Nor is it:absolutely necessary to use cyanide of potassium; ferrocyanide of potassium may be likewise employed. An interesting mode of forming this compound consists in lecating a mixture of two parts of dry ferrocyamide of potassium with one part of finely divided peroside of manganese in comtact with the atmosphere. A tinder-like combustion ensucs, as is evident from the change of colour, and the combination of the cvolution of heat, eren after the gas has been tarned off. The erude mass resulting from cither of these processes, is extracted by hot dilute spirit, which, in cooling, deposits the potassium salt; water cannot he used for this purpose. The new salt dissolves with the greatest facility in this liquid ; but on atterpting to obitain crystals by evaporation, we soon find that a perfect decomposition ias taken place, torrents of ammonia are evolred, and the salt which is ultimately left consists entircly of carbonate of potassa. This change is brought about hy the action of the water, the elements of which are appropriated by the consituents of the salt. One equiralent of cyanate of potassa contains two equiralents of carbon 1 eq. of nitrogen, one equivalent of potassiam, and two equiralents of oxyen ; ald to these the oxygen of 3 equivalents of water, and you have enough oxygen to convert the whole of the carbon into carbonic acid and the putassium into potassa, while the nitrogen combines with the liberated hydrogen to form anmonia.


From the potassium compound, a series of metallic salts may be prepared by double decomposition; thus on adding solutions of silver or lead, white precipitates are produced, in which the potassium is rephaced by the tro metals mentioned $\mathrm{K} \mathrm{Cy}_{2} \mathrm{O}_{2} \mathrm{Af} \mathrm{Cy}_{2}$ ib $\mathrm{Cy} \mathrm{O}_{2}$ But all attempts to xC place these metals by lyrirogen-i.e., to produce the acid of the series-by the incthods generally adopted for that purpose, have hitherto failed. I hare alluded to the facility with which the hydrosulpho cy:apic acid is decomposed -the corresponding oxygen acid is even far more readily sltered. On adding laydrochinexic or dilute $\mathrm{SO}_{3}$ to the potassime compound, $a$ penctrating odour it perccived, reminding you of sulphurons or acetic acid, which evidently belongs to tine cyanic acid liberated; but after a few secondsa
powerfulefferrescence of $\mathrm{CO}_{2}$ ensucs, and the liquid which was previously free from anmonia, now contains the ammonia salt of the acill which was cmployed, and which may be readily shown by the addition of caustic lime, when the ammonia will be liberated. It is evident that the acid when set free undergoes the same decomposition which was observed on evaporating the potassium compound.
Cyanic acid has, nevertheless, been obtained, and, indeed, under circumstauces so interesting and so instructive, that I canuot refrain from entering into some details respecting its formation. In order that you may understand the train of experiments winich has led to this result, I must remind you of the deportment exinibited by many mineral chlorides; when coming into coutact with water, a decomposition of the latter cusues. We obtain hydrochloric acid, and an oxide of the element with which the chlorine was combined. I perform the experiment with terchloride of antimony. The action of water produces instantancously a precipitate of white teroxide of antimony. If a compound of chlorine vith cyanogen could be obtained, it would not be impossible that the action of water on this sabstance would proluce the acid in question.

$$
\begin{aligned}
& \mathrm{SoCl}_{6}+3 \mathrm{HO}=\mathrm{S}_{6} \mathrm{O}_{3}+3 \mathrm{II} \mathrm{Cl} \\
& \mathrm{Cy} \mathrm{Cl}+\mathrm{HO}=\mathrm{CyO}+\mathrm{IICl} .
\end{aligned}
$$

Now, chlorine combines with eyanogen very readily. It is only uecessary to bring together in a suitable ressel cyanide of mercury and chlorine, when, on the one hand, chloride of mercury, and on the other, chloride of cyanogen, is produced. 'this body is a gas at the common temperature, but may be liquified by exposure to a frigorific mixture. In this stite it may be preserred Then scaled in stroug glass tubes.
The deportment of this substance, however, greatly differed from what chemists had anticipated. It was found that water had no effect whaterer upon this chloride. Indeed its formation is greatly facilitated by the presence of water, and I hold in my hand a solution of this gas in water, which was prepared some weeks ago. The penetrating odowr, and the expulsion of an inflammable body upon application of heat, at once betray the presnce of this compound. If the chloride of cyangen gas be passed into at solation of potassa, decomposition ensucs, chloride of potassium and cyasate of potassa are formed, but the latter undergoes almost instantancously the decomposition which has been repeatedly mentioned; it is converted into arbonate with evolution of ammonia. The liquid chloride of cyanogen which is preserved in sealed tubes, passes, however, rapidly into a new modification, which cxhibits a perfectly different deportment rith potassa. fiter a few days, long slender crystals begin to appear in the liquid; these gradually augment, and after the lapse of it week or two, the whole liquid bas solidified into a erystalline mass. On opening the tube we find there is in longer the slightest odour perceptible. The compound which previously wited below the freczing point of water is now converted into a substance Wifulty fasing and boilius at as tenperature net much lower than the fusjopoint of tin. The analysis of titis substance inas led to the remarkable iand, tinat it has exactly the same compusition as the gaseous chiloride of Truogen. Now whatexphanaion can be given of this difference of propertis exhibited by tro substurces of exactly the same composition? This tplanation has been furnished by the examination of the deasity of the two shetances when in the state of vapour. And here you have an exaunte of eraluable aid which the chemst derives from the important process which bis an opportunity of lescribints to yon in one of the former lectures. this axamination shows that the vapour density of the solide chloride of cyanfon is three times that of the chloride of cynogen gas; is: olher words, ta in the passage of the gas into inc solil the mohecales lave been opFimated in such a manner that the same volume of gas, after the change whaten place, contains three times the weight of matter which was origiwiy present in it. We accordingly represent the composition of the gasins chloride by the formula.

And that of the solid compound by the expression $\mathrm{Cy}_{3} \mathrm{Cl}_{3}$. substances related to each other, like the gaseous and solid chloxides of cyanogen, are called isomeric or poiymeric substances. The cyanogen series is particularly rich in examples of this description. Solid chloride of cyanogen is not affected by water, but is readily attacked by a boiling solution of potassa. The products are perfectly different frem those which are observed in the decomposition of the gaseous chloride. No carbonic acid, no ammonia is produced. We obtain the potassa salt of an extremely stable acid, which may be boiled with potassa without undergoing decomposition. Neither have its acids any action upon it. On adding concentrated hydrochloric acid to the solution of the potassa salt, a white crystalline precipitate takes place, which, when redissolved in boiling water, furnishes long slender prisms of the acid. This substance, remarkably enough, has exactly the composition of the acid which formed the starting point of this discussionnamely, cyauic acid, its formula being in fact

If $\mathrm{Cy} \mathrm{O}_{2}$.
The deportment of this acid, however, shows at once that it is not really cyanic acid. Boththe acid and its salts belong to the stablest compounds of organic chemistry, while, as I showed you, the cyanstes are ephemeral. This different deporiment, together with the origin of the acid from the solid chloride of cyanogen, rendered it very probable that the crystalline acid might bear to the acid in the cyanates, exactly in tlee same relation which the solid and gaseous chloride of cyanogen hare to each other : and that the new acid was formed by the coalescence, as it were, of three atoms of cyanic acid into one atom of a more complete acid, having the same composition, which, in this case, would be expressed by the formula,

$$
\mathrm{H}_{3} \mathrm{Cy}=\mathrm{O}_{i}
$$

This rier has been borne out most beautifully by a close examination of the salts of this acid. It has been established that the new acid, which is called cyanuric acid, is unquestionably :o tribasic acid-i.c., that it contains like phosphoric acid, three atoms of hydregen, which are replaceable by metals. Consequently, it produces three series of salts, which are represented by the formula, M. expressing one equivalent of a metal,

$$
\left.\left.\mathrm{M}_{3} \mathrm{Cy}_{3} \mathrm{O}_{6} \quad \mathrm{M}_{2}\right\} \quad \mathrm{My}_{3} \quad \mathrm{O}_{6} \mathrm{H}_{2} \mathrm{H}_{2}\right\} \mathrm{C}_{3} \mathrm{O}_{0}
$$

The white precipitate produced by the addition of nitrate of silver to a solution of the potassium salt, belougs to the first series, it contains $\mathrm{Ag}_{2} \mathrm{Cf}_{3}$ $O_{c}$, and has, consequently, the same per centage composition as the cyanate which, as you saw, contains Ag Cy On, from which it. differs, however, in it deportment. With potassium, two salts

$$
\left.\left.\begin{array}{c}
\mathrm{K}_{2} \\
I I
\end{array}\right\} \mathrm{Cy}_{3} \mathrm{O}_{6} \text { and } \mathrm{I}_{2}\right\} \mathrm{C}_{5=} \mathrm{O}_{6}
$$

may be prepared, which sufficiently distinguish cyanuric from cyanic acid, salts of this composition being impossible with a monobasic acic.

The most beautiful result, however, obtained in these researches was the decomposition observed by lrofessor Wohler, in submitting cyanuric aeid to the action of heat. When distilled in a small retort, cyanuric acid is antirely volatillized, and there is collected inthe receiver-which, for this purpose, has to be cooled with ice-a clear, colourless, transparent liquor, haring a powerful puagent odour, similar to that of acetic or sulphurous acid. This substance has exactly the same percentage composition as cyanuric acid, with which however it has scarcely any other preperty in commor The character of this compound prures that the substance obtained by this peculiar round-about method is, indeed, the rery cyanic acid which re vainly endeavored to produce by the ordinary processes employed for thest paration of acids from their saline compounds. When coming in conixi with water, this pungent liquid yields at once $\mathrm{CO}_{2}$ and $\mathrm{NII}_{5}$, is decompositix to which I have frequently adverted, and which alone would be sufficient is characterise it as a cyanic acid. It is evident, then, that by the action ${ }^{d}$ heat one equivalent of cyanuric acid splits into 3 eq. of cyanic acid,

$$
\mathrm{H}_{5} \mathrm{Oy} \mathrm{O}_{0}=3 \mathrm{n} . \mathrm{Cy} \mathrm{O}_{3}
$$

and that in this process exactly the reverse oceurs of wint happens in the formation of the solid chloride of cyangen.
Cyanic acidas obtained by this methed, hasa very transient existence. A few minutes after its preparation. it enters into a sort of cbullition and then suddenly solidifies into a white prevelain-like solid, perfectly insoluble in water, and which has again the same percentage composition as cranic and cyanuric acil, from both of which it differs. It is anotioer polymeric modification of the same molecular group, and is called cyanelide, or insoluble eranuric acid. In what mamer, however, the molecules are arranged in this compound it would be difienit to say, inasmuch as cramelide is a most indifferent substanee. producing no kin!? of combination, an! yielding as the sole products of decomposition, cyanic or cyanmer acid.
But the list of polymeric compounds is not completed by cymmelide. There is still another-perhaps the most interesting of all-to which I have to call your attention for a few moments, and which, as you will see directlyis produced by a perfectly different process. Einder the name of Howards and Drugnateliis fulminatiag compounds, two salts bave long been known. which are produced by the ation of nitrous acid upon alcobol, in the presence of mercury or of silver. 'these substances, as indicated by their mane. are explosive in the extrenc. Their composition was utterly unknown about 25 years ago, when hichig, at that time suin umber the guitume of Gay Lassac, embarked in their investigation. The resuit of the celcbrated ingury of thase two philosophers, in which hiciers s mame appazed for the firt time before the scientific wond, was, timat these substances are closely related to the cyanates and cyamurates, that, in fact, the fuminating silver bas exactly the same percentage composition as eyanate and cyanmrate on silrer. But let us first see hom this substance is produced. This beaker contuins a saturated solution of nitrate of silver in aleohol : into this solation lpass the vapour of nitrons acid. As it is disengaged by the action of nitrie seid upon arsenions acid, yon ohecre that it becomes thrbid most instantaseoosly. The white crystaline powier which separates is fubminate of silres. The reaction is easily intelligible. Let us add together the elements of one equivalent of alcohol, two of nitreus seid, :ad two of protexide of sirer; thus by subtraciag six equiralenis of water, we arive at a formula shich, when divided by tro, coincides with that of cyanate of silver:

| alcohol | 0 |
| :---: | :---: |
| nitrous acid, | $N=0$. |
| ox. of silve | 0245 |
| C. 110 | 0 Mag |
| of water | 1160 |
|  |  |
| 1 t |  |

The experiment which I have slown you will illustate the formation of this mapound. In practice. however, both the silver and mercury salts are obyised in a somewhat different mamer. In this case the nitrous acid is fir-以hed by the action of the nitric acid upon a portion of the alcolal. Eutshate of mercury, for instance, is made by dissolvims one part of mercury Strelse parts of nitric acid (of sp. gr. 1. 36) and adding this solution in amtori to eleven parts of spirits oi wine (or s 0 per cent). "ite heat of: rider bath is sufficient to canse a most viment reaction, the detaits of whieh bin will better understand after I have treated of alcohol. Sufice it to say At 3 portion of the alcohol is more or less oxidized, a variety of volatile probelig being formed, which are collected in the receiver.
The nitric acid, reduced to the state of nitzous, acts upon the remaimier of Eleohol, and thus produces the sall. Joth fuminate of silver and of merFi, but especially the latter, are used in the manufacture of percussion mo. The preparations of these salts bas to be performed with the grentest Nantions. The fearful, catastrophe at Apothecaries' Hall, which foused * yotimely end of Mr. Hennell, is still fresh in the memory of many.

On aceount of the rapidity with which the explosion of the fulminates takes place, they are not employed for charging firearms.
A remarkable composition, containing fulminate of merctiey and collodion Igun eution dissolved in ether), together with several other explosive compounds. has howerer heen of late prepared for this purpose by Messrs. (iersheim and Wiminarter, of Yiemn, which deserves the attention of those who take an interest in matters of this kind. This mixture does not explode unless submitted to prwerful percussion : it may be handled with periece safety. 'ine explosion, although extremely powerfu, is sufficiently slow for the propusion of the builet. Lastly, the preseace of collodion protects the other constituents from the action of moisture.

The identity of eompesition of the fummates with the cyanates and cyanurates, sulbstanecs from which their properties so essentially difter, has naturally attracted the attention of chemical enquirers. They have endeavoured to accome for this remamable difference in a mamer similar to the mode of explamation surgested for the dilierent deportment of cyanic and cyanuric acids. Acloser cxamination of the several fulminic salis has also in this case elucuditen the guestion. On adding poiassa to a solution of fulminate of silver in irown precipitate of protoside of silver is produced. It is found, however that by moms the whole amome of silver is tims precipitated; hail of it remains in sulation, which on eraporation furnishes a crystalline salt. containing buth silver and potassium. The simplest expression into which the analysis of this compound can be translated is the formula

$$
\mathrm{Mr} \mathrm{KC}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}=\operatorname{lr} \mathrm{K} \mathrm{C}_{2} \mathrm{O}_{4}
$$

Anatogus compunds are formed by trating fuminate of siver by soda or haryta, the existence of which uaturally leads to the assmption that funamic arid is a biba-ic acid, and that the compesition of fuminate of siber ithelf must he remerented by the formula

$$
\mathrm{A}_{2}, \mathrm{Cr}_{2} \mathrm{O}_{3}
$$

Chemints have not yet sheceeden in preparing the hydrogen com. pound corresponding to the silver satt that is free fulminic acid. If the falminate of potassium and silver which 1 have justnow mentioned, be treated with aines acit, the potassim is climinated in the form of nitrate, and it. placed by hydrogen, an acid silver sali of the formula

$$
\mathrm{Ar}_{4} \text { II } \mathrm{Cy}_{2} \mathrm{O}_{3}
$$

heing producel. The last eq. of silver, however, cannot be removed nithmat entirely destroying the componnd, which splits into hydrocyanic acid and a vaicty of products not yet sufficiently examined. If fulminic acid cooth he selpatatol-and its isolation afier what hasbeen experieaced in the casod vambe acil, appars hy no means improbable-it would have the compositio $\mathrm{H}_{2} \mathrm{Cy}_{2} \mathrm{O}_{\mathrm{i}}$
This fomula places tuminic acid between cyanic and cyanum acids, :s shown in the following table, and satisfactorily accounts for the disiminaty of yroperties exhibited by the salts of the three ismmeric acids.

$$
\begin{aligned}
& \text { Cyanic ac:d }=11 \mathrm{Cy} \text { Op monobasic. } \\
& \text { Fulminic },=N \mathrm{~N}_{2} \mathrm{O}_{2} \text { hinasic. } \\
& \text { Cyanuric } "=\mathrm{Ni}_{3} \mathrm{Cr}_{3} \mathrm{O}_{6} \text { tribasie. }
\end{aligned}
$$

The fact that tise fulminates are produced by proces ss so essentialiy diffe ent from those useci in preparing the cyanate sad cyenurates, has induct some chemists to doubt the actual existence of so cluse a relation betren these several acids. It is truo weither cyanates nor cyontrates have hithern been converted into fulminates; but experinents perfomed not long agoty Dr. Gladstonc have proved that the decomposition of fulmiaties inraridt arives rise to the formation of members of the cyanic series, among whichsth pho-eyanide of ammonium and uiea may be apecialiy mentioned. The hated o:e of the most interesting compounds of cyanic :acid, will claim our parit cular attention in the next lecture.

## oN GObT AS IT AFFECTS TH: BHADDIBH.

By Dr. Robert B. Todd, E.M.S. \& *
[Preceding his observations by mentioning some case in wheh pus is found in the bladder, Dr. 'lodd goes on to consider the subject of grout in the bladder. Me says:]
Gout appears to me to manifest itself in the bladder in four different ways.
lst. It manifests itself as a distinct aud very obvious inflammatory affection; so that I inagine, in these cases, the mucous membrane of the bladder mould be found red and inftamed, presenting. indeed, the ordinary appearauce of the mucous membrane in a state of inflammation. This condition must, howerer, be distinguished from inflammation of the bladder. occurring from other causes, and unconnected with any specific inflammation. Gouty infammation of the bladder is an analogous affection to gouty intmmation of the lungs, gouty bronchitis, or gouty pheumonia, and gouty inflammation of the stomach. In cases of this kind there is a great tendency to the secretion of pus by the mucous membrane of the bladder. If there be any difficulty in the free evacuation of the pus, the urine becomes alkaline, from the retention of a surall quantity of the secretion, and the subsequent decomposition of the cirea; the highly alkaline mine, in its tara. keeps ug the irritability of the bladder, and promotes the secretion of anore pus. In this way, cither a weak or paraiytic state of blader, or ar enlarged prostate, or a stricture in the urethat, may stand in the way of the complete restoration of this organ to its healthy functions.
Indly. Fouty inflammation attacks the bladder in a different mamer to that last described, so as to produce incontinence of mine. A gouty man becomes troubled with incontincace of urine, and we find that this incontisence depends upon a highly irritable state of the mucons membrave of the bldder, and a consequent inability of that organ to retain the urine, ami zot upon a paralgtic state of the sphineter reaice musele. Tin this form. the sensibility of the mucons membrane is ray much cralted, and the thdder hecomesintolerant of the presence of the smallest quantity of wine, sothat the evacuation of its contents is constantly taking place at short inierais. The prominent symptom then, in such cases, is frequent micturidin of small quantities of urine, the wine being pale, acid, devoid of mucus ghus; sometimes, it may be, albuminous, owing to the existence of gouty dease of the kidneys.
It is difficult to define the exact pathoionical condition of the mucous zabrane of the bladder in this affection. It is an irritable rather than an jiammatory state,-a condition in which the sensibility of the mucous sembrane of the bladder is grently cxated, owing to the influence of the zaty poison, which seems capable of irritating the bladder as cathamidine hes. The cases in which it is apt to occur are generally in elderly persons, those systems seem thoroughly :mbued with gout, and in whom deposits sist in the joints, or the tendinous sheaths, or in the arteries. It occurs iod persons, and often accompanies ealargement of the prostate gland. $B$ Benjamin Brodie describes eases which, I suspect, are of this nature, eprimary canse of the symptoms being sout. He says, "An elderly an comphins of frequent attachs of giddiness. Sometimes, in malking, shead turns rownd, so that he is ia danger of falling; and this symptoin Tobably arises from :itered stracture of the arteries of the brain, causing sitaperfect state of the carebral circulation. This state of things is some3is attended with an irxitable condition of the bladder. and, although the sin is of a healthy quality, and the bladder itself is free from disease, the shant is tormented with a constant micturition, voiding his urine without o, but at short intervals, and in small quantity."
कीly A thimid class of cases exhibits a eondition onposite to that which I Fe just described, in which, instend of the patient's being unable to retain Fa small quantity of urine in his bladler, he is sududenly or rapidy (sed with an inavility to pass water, and the blader becomes distended whequence, causing great pain and suffering. The essential difference Tren these tro conditions consists in this, that in the former case the
natcous membrame is rendered highly irritable hy the gouty poison, and bept so by some imitating quality of the mine, but in the latter case tise mascular coat is the seat of the affection. There is ample eridence to show, that museles may be attacked by the rhematic or by the gouty poison. Thus, in subjects of gouty diathesis, it is not uncommon to meet with sudden and severe affections of external muscles, accompanied with constitutional disturbance similar to that of acute gout. I am just now attending a nobleman in whom very decided constitutional distarbance, accompanied by listressing intermission of the hearts action, preceled for some time the cudden appearance of a ver painful intiammatery affection of the same portion of the gastrocnemius muscle on each side, which came on the sudden way in which gont is apt to do. Lambage is an instance of gonty affection of muscles. The intercostal muscles are often similarly attacked, giving rise to a most pamul affection, which oceasiomally ends in plearisy, or even pleuropneumons. Jnst in the same way gout may attack the muscular fibres of the lladder, stomach or colon: and in the cases of retention of urine such as 1 am describing it affects the muscular coat of the bladerer so as to paralyse it. in a mamer analogous to that in which the active principle of belladoma may atfeet the museular itheres of the iris, and cause a dilated, immoveable pupil.

I will relate to you a case in illustration of this form of gout in the bladder. A harrister of great eminence in his profession was oblized to return in town from his cirenit, where he was largely employed, and, indeed, overworked. He had been seized with severe muscular pains in the thighs and loins, which 1 regaried as grouty. The patient was of a gouty family, gencrated lithic acid freely, and had passed a considerable quantity of lithic acid gravel. On a former occasion 1 hat attended him for one of those attacks of sudden affection of the intercostal muscles (gouty pleurodyne as I would call it), passing on to dry pleurisy. For these reasons, I was justifed, ithink, in rerarding and irenting these pains as gouty in lueir character. Atter he had been three or four days under ireatment for this affection, he found, one morning. on attempting to empty his bladder, that ii refused to disciarge its contents. A complete paralysis of the bladder had talien place. and evidently not from too great distension, as the pationt did not suffer much inconvenience, and the puantity of water which had accumuhated was not considerable. Cuder a soothing treatment, with slight counter-imitation over the region of the bladder, this paralytic state gare way within four-and-twenty hours, but it was several days before the full power and tone of the bladuer was restored.
4thly. Gout atiacks the bladder, in some cases, as follows (and I take my remarks on this head from a case which actually came under my notice):A gouty man indulges more freely in tise delicacies of the table than he is usually wont to do; perhaps he is guilty of some indiscretion in what be partakes, eating cheese or some other indigestible matter which disagress with him, and, before he goes to bed, he is suddenly seized with riolen: pains in the region of the bladder, which in some cases lasts an hour, butin others continues to torment the jatieat for iwo or three hours, proventing him from sleeping, and often producing great distress. This condition is usually relieved by free counter-irmitation, and the administration of alkalie:

If, then, you find a man labouring under amy of the four conditions thai $T$ bave described, and at the same time you are able to discover from history symptoms characteristic of a gouty diathesis, and you are convineti of the absence of calculus, you may feel satisfied that the symptoms art dependent upon a gouty inflammation of the bladder, and your treatmens will be infuenced accordingly. It must, homever, be born in mind, that s stone will cause the derelopment of very similar symptoms. :mel it will thent tere benecessary to somm the patient carcfully, in order to determine the presence or absence of stone. The sudden invasion, the existence of the ;outy diathesis, and the absence of other cames to account for the symp coms peesent, mark the peculiar mature of the affection, and concur if making us suppose the disease to be of gouty anture. Being decided ast
the diagnosis, what means are we to alopt to relieve the symptoms. The treatment in these cases is obvious and simple. First and most important. then, is a free counter-iritation; but you must apply your counter-irritation carefully, and conside: what form of counter-imitant will be best suited to the case. Blisters would be improper, because cantharidine, which is the actite principle of the blister, is a direct irritant to the mucous membrane of the bladder, and wond tend, therefore, rather to increase the distress. 'lurpentine must not be employed either, because it irritates the kidneys, and the irvitation is liable to be propagated to the blader. Mustard is the most effectual cometer-intitath which we can use in these cases, and has not the disadvantage of the former remedies. Strong ammonia may likerrise be used as a comater-imitant. Our next consideration must be to relice pain, which in many cases is a most wgent symptom, and we should endeavour to effect this in the speediest and safest manner possible. If the affection be of the first form, where pus is generated, the best course to pursue is to give an opiate in some way or other. This may be done by the endermic method, by rubbing in astrong opiate liniment over the region of the bladder. Or, what is much better, and more certain in its action, the opium may be given in the form of an enema injected into the rectum. . bout half a drachm of landnom, mixed with a small quantity of decoction of starch, of which not more than an ounce and a half, or two ounces. should be employed, may be gently injected into the rectum, and yon will find that it acts as a sort of wara poultice, containing opium, to the bladder; and in this way all kinds of irritability of this organ mar be relieved. The irritable state of the bladder caused by cantharidine (strangury) is effectually relieved in the same way, and gouty inflammation is benefited in like maner. The action of cantharidine, indeed, forms a pretty good illustration of the maner in which we may suppose the gonty poison to cause the resical irritability, and they may botin be reliceed in a similar manaer. If the patient is not quite relieved after the administration of the first cuema, you need not be afraid to give a second, provided that you are sure he exhibits no peculiar idiosyncrasy with respect to opium. Lu many cases of this kind you may give opiun also with advantage by the mouth, and especially in combination with suidorifics.
With reference to the treatment of all eases of gout, where the disease is apt to attack internal organs, T may give you this practical hint, and I strongly adrise you to bear it in mind whenever you may be cenled upon to treat gout of this mature. It is this, that these cases are of an asthenic character, and do not bear depletory measures; so that if you find a patient labouring under gout of the stomach, or gont affecting the bladder, you must not think of applying leccies, and employing the treatment which would be applicable to other forms of inflammation of these organs; for the abstraction of even so small a quantity of blood as mould be taken by the application of a fer leeches might do the patient serious mischief, and cause prostration from which he might never rally: On this point Sir Bemjamin Brodic has expressed a similar opinion; for he lays it down, that antiphlogistic treatment is inapplicable to that particular form of inflanmation of the blader which is of a gouty origin. With regerd to the exhibition of colchicum, I am of opinion, that, in many cases, it is inadmissible, and, in all; it shonld be given with great eaution and circumspection; for this so-called specific is certanly very depressing in its influence, and therefore casuitable to cases which partake of the asthenic character.

The treatment which, ia my experience, has been most bencficial for gont, when it athacks any of the hollow riscera, consists in employing free coun-ter-irritation-kecping up a moderate action of the bowel-paying attention to the functions of the slin, and promoting the action of this great secreting surface by the exhibition of sudorifices. Provided the mine he not alkaline. the administration of alkalies will be foum of service, and opium is emploved with great advantage for allaying the invitability of the affected organ, which is often productire of great distress to the patient.
As I have hefore hinted, there is much resemblance between the gouty
affections of tho bladder und those of the stomach. In the latter organ. gout shows itself by the sudden development of violent pain referred to the stomach. This is often attended with the generation of gas in immense quantities. which distends the organ. Another furm is, when the stomach is impatient of the smallest quantity of food, as the bladier is of urine. Incessant vomiting is the characteristic ssmptom of the form of the complaint. Sometimes these symptom: exist together. In other cases, the muscular coat becomes greatly weahened, and the foud is pushed on only very slowly into the bowel. It accumulates in and distends the stomach, which becomes dilated and large, and by reason of the atonic state of the organ remains so. In all the forms of the comphaint, but in none more than in this last form, the tendency to the generation of gas is a very promineut feature.-Med. Times and Gaz., May $\because 8,1853 . p .589$.
on an manis: concmetron, consistag of choldermhine.
By Dr: Willian D. Moore.
[This concretion seemed to hare been furmed in the intestinal tuise. The patient was a young lady. There had been obstingte constipation and cholicky pains for some time; and it was at length voided per anum.]

She had never suffered from jaundice, pain, or other symptoms, whereby the passage of a gall-stone could be inferred. The calculus in size and shape resembled a pullet's egg: it weighed 210 grains, but was specifically lighter than water, as was proved by its floating when placed in a ressel of that fluid. Its outer surface was tubercular, and exactly resembled that of a mulberry uriany calculus. Some shining scales were visible externally, and also throughout the mass when cut. On the application of heat it first fused, and then burned with a bright flame. It dissolved completely in boiling alcohol, and on cooling separated from its solution, as was seen under the microscope, in broad tubular crystals of cholesterine, which, with a small admixture of fecal matter, composed the bulk of the concretion.

Many writers have supposed that becanse caiculi found in the intestines. or voided per anum, have been proved to consist chiefly of cholesteriae, they must necessarily have formed in the grall bladder, and from that have passed either through the ducts, or hy ulceration, into the intestine; and in support of this riew, it has been argued that, where the parts are neither inflamed, nor in a state of spasm, the luctus choledochus may be considered to be in a passive state, admitting of an casy and gradual extension of its fibres, so as at length to allow of the free egress of the stone. It has also, indeed, been clearly proved by the example of a case in which a biliary calculus, in passing to the bowel, about a fortnight befure being voided per anum, induced jaundice, yet gave no pain; that "the progress of gall-stones (even when inordinate in their dimension) through the dacts, is not disproved by the absence of pain from the epigastrium. ${ }^{\text {" }}$

Ifowever admissible the foregoing facts may be, and couclusive as the case detailed by Dr. Wilson is, in establishing the proposition he advances, a little consideration will, I think, show, that the fact of a calculus consisting in whole or part of cholesteriue, is not sufficient to prove it to be of biliary origin. For cholesterine is, according to Bereclius, " universally diffused through all parts of the body, and dissolved in its fluids." Simon states that it is a normal constituent of the bile, of the brain, and of the spinai cord. "It has been found," he adds, "in the blood; in the vernia cascusa: in the fluid of hydrocele; in an encysted tumour of the abdomen of a woman; in the ovary and testicle in a diseased state; in ata abseess of the tooth; in a scirrhous structure in the mesucolon; in fungus medullaxis; in medullary sarcoma; and iu a vesical calculus extacted from a rlog." Such being true, it is of course easily concedable that a concretion composed of cholesterine might form under predisposing circumstances. in some portion of the intestinal tube.

Dr. Donglas Maclagan was aware of the fallacy of inferring the origin of such calculi from their compositiou, for in his paper on the Constitution of Intectinal Concretions, published in the London and Edinburgh Monthly Journal of Medical Science for September, 1841, he observes, after deseribing a case in which vast numbers of small concretions had been passed, in referenee to the question, as to whether these were a variety of gall-stone, that "the presence of cholesterine is no criterion. This substance is not only," he observes, "contained in the lihe, and is thas poured into the intestinal canal, where it may easily be deposited; but it is frequently found in situations tutally uncomectell with the biliary organs." This statement is so very explicit, that I shouh not have thought it necessary here to enter upon the question, did 1 not find that many are still of the opinion that concretions of cholesterine must necessarily be derived from the hepatic system.

In conclusion, with respect to the patient, in reference to whose symptoms Sir Menry Marsh was consulted, it is clearly possible that the concretion roided by her may have been, not of hepatie, but of intestinal origin; and it appears to me that, if this be admitted, it will also be allowed to be more probable that a harge calculus such as I have described should have formed in the intestine, than have passel in a young subject from the hepatic system to the bowel, cither through the ducts or by ulceration, without giving rise to pain or jaumdice.-Dublin Quarterly Jownal. Augus 1853; pagc 24.
[Dr: Christison remumis upon the frequency of habitual constipation amongst the better classec of society. Instances in which the bowels are only reliced once a week are comparatively common, and he records two cases of patients, aged 60 and 70 , who stated that they had never had their howels moved more than once a fortnight during their whole lives. Fin the rase about to be related the patient had not had a stool for three weels.]
On admission he had no appearance of any suffering. He seemed a fresh, vigormas, active, cineerfalman. He touk his food tolerably well; the pulse was natural, and the tongue was only a little furred. "The abrlomen," to quote the Lospital journal, "is much distended, especially in the iliac regions, where there are two large prominent swellings projecting laterally, so that the crest of the ilium on each side is quite swik, the tumours projecting much heyond the bones. There are verious irregular swellings at different parts of the ablomen, especinlly in the track of the colon. Over some of these percussion is quite dull: over others it is tympanitic. The circumference of the ahdomen, where largest, is 392 inches.:
As it was judged unsafe to give him active purgatives by the mouth at ohce, in case of the great rot heing firmly obstructed with hardened faces, a turpentine injection was promerly administered by the clinical clerk in charge of him. The result was "a prodigious discharge of facal matter of all 'mgrees of consistence," nurel of it composed of very hard seybala. A dese of jalop and calomel given immediately after this forerumer, brought army also a great mass of teenlent matter. Next day, being quite well, but wilh the abiomen as large as ever, another similar dose occasioned only an milinary discharge. On the third day, the swelling being equally great, tbough now quite uniform, and ererywhere clear on percussion, I gave himWhat has aiways appeavel to me the most cffectual of all sate energetic purnatives in cases of simple fecal accumulation-tro drachms of oil of turpentine with six drachms of castor oil in the form of emulsion. But he had only mo scanty loose discharges, and the belly continued in the same state, presenting especially the siugular enlargement and overlapping of the iliac regions.

It was now apparent that, owing to long continuous distension of the bowels with facees and gases, their musculur coat had lost its tone, in some recions at least, and especially in the coceme ame deecending colon. It was then proposed by the elinical clerk to resort to grahranism for reliel from this paralytic condition; which suggestion was at mee adopted. It is more than twenty-five years since galvanism was recommendel as a useful remedy in cases of obstinate constipation; and we can easily see that it mony be useful, and upon what principle it acts. The firsi way of using it was by directing the galvanic current from the mouth to the arms; and in that way it seems to have been most effectual and prompt in some cases. But its action is thas rather painful : and ulteriov observatiou has shown that passing the current in various direetions through the abdomen itself may be sufficient. This remedy seemed even more applicable to the state of our patient after the bowels had been cleared out. Aud aceordingly it auted with wonderful energy and success. After the current had been passed for some time from before backwards, as well as from side to side, he had, in an hour, a copious evacuation, in three hours another, and next morning a third. Flatus was also discharged in abundance; and the abdomen fell greatly, but still not completely, above all in the iniad regions. 'Jhe pain of the galvanic action, however, had been so great that the patient begred to have a day's respite. In fact, he declared his willingeness, and confirmed it with an oaih, that he would rather be shot than suomit to be gatranized a second time. On the secoud morning, however, the remedy was applied more gently, and on two mornings suisequently. Ife had a daily discharge from his bowels, and sometimes two. The abdomen had now become natural in size and form. Since then he has had a natural evacuation every morning, without aid from either laxative or galvanism. lle was dismissed after being fourteen days in hospital.

This is a case a little oul of the common run, but not without instruction: and I have therefore thought it well to bring the chief circumstances under your notice. It is an excellent illustration of the infiuence exerted by galvanism orer the animal functions. It appears to me to hold out a probability that the same remedy may prove serviceable in restoring the tone of the intestinal mitscles, in other forms of inconvenient chronic flatulent distension of the abdomen.-Monthly Journal of Medical Science, Sept. 185̈, p. 252.


[^0]:    FThe preceding tabe, with short notes appended upon the post mortem speenances, was originally published in the Menu. de Vicad des Scieuces Aruxilles, end is here repreduced with some additions.

[^1]:    *The monas, even ir myrinds of milions, is entireiy harmess as a parasite; and the naricula, also harmiess, did not belong to the intestinal cans, but most probably was talien in the drimk of the patient.-Trans.
    $t$ The weight of the langs in choicra approaches that observed in beleated criminals.

[^2]:    The sane appeavonces I have obseried in axeonted criminals. who were shlty.

[^3]:    *Phthisical patients were not exempt from cholera, although most observers remark the small number or even absence of such among the first rictims of epidemic; but it can be readily understood that so soon as the disease becomes more prevalent, tuberculous cases will be found among them.

[^4]:    A Roor Docron.-A (herbalist) Mr. Johnson, was lately examined before the Coroner, in London, for the death of a child under suspicious circumstances. The following conversation took place:

    Coroner-I see from the certificate that has been proluced that you have a diploma. Where did you get it from?
    Witness-From the United States of America.
    Coroner-I perceive that U.S. is attached to the certificate. Were you ever in America?

    Witness-NVo, I was never there.
    Coroner-Mow did you become qualified to aet?
    Witness-There are many others who obtain diphomas in the same way.
    Coroner-ILow? I camot umlerstand. If you were never in America, how did zou obtain your diploma?

    Witness-From an agent in this country, on the part of the college 5 f sugeons in America.

    Comer-1 see the initials M.R.C.S. What dues that mean?
    Witness-Member of the heformed College of Surgeons. It is at Ner Iork.

