The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleur
\square Covers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculèeCover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couieur (i.e. autre que bleue ou noire)Coloured plates and/or illistrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intéricure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ Il se peut rue certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorcnue cela ètait possible. ces pages n'ont pas èté filmees.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a èté possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachées

Showthrough/
TransparenceQuality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/ Le titre de l'en-téte provient:Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de depart de la livraison

Masthead;
Généique (périodiques) de la livraison

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

PROCEEDINGS

(1)

THE CANADIAn INSTITUTE,

TORONTO.

BEING A CONTLNUATIUN UF "THE ('ACADIAN JOURNAL UF SCIENCE, LITERATURE ANU HISTORY."

NEW SERIES. VOLUME I.

TORONTO:
PRINTED FOR THE CANADIAN INSTITUTE by comp, clare a co., chlborye street, 1 SS \ddagger

NOTES ON MANITOBA.

NOTES ON THE PHYSICAL PHENOMENA OF MANITOBA AND THE NORTH-WEST TERRITORIES.

From Observations made during Explorations in 18y2, 1875, and 1879. BY JOEN MACOUN, M.A.

The region to which the following romarks will mainly apply is bounded on the south by parallel of Lat. 49°; on the north by parallel of Lat. 60°; on the east by meridian 95°; on the west by the line of the Rocky Mountains. An area, in round numbers, of 667,600 square miles.

For many years this vast region was almost a blank on our maps -little was known of it, either by Englishmen or Canadians, beyond the fact that furs were obtained therefrom. It was not so, however, with the Americans. More than twenty years ago they recognized its value, foretold its great future, and even described it as the prospective granary of the world.

In 1857, Capt. Palliser was commissioned by the British Government to examine the country south of the 54 th parallel. Commencing his examination at the international boundary, in the vicinity of the Red River, he made a few traverses and reached Fort Ellice late in season. Proceeding up the right bank of the Qu' Appelle to its head, he crossed the South Saskatchewan and proceeded northward to Carlton, where he wintered. In June, 1858, he turned to the southwest and spent the summer on the Great Plains, wintering that year at Rdmonton. In the following spring he again proceeded south to the boundary, but afterwards passed to the west into British Columbia.

He reported in very favorable terms of the northern portion of the country that he had traversed, but of the southern portion he spoke much less favorably-alleging that running water was very scarce; that no wood was to be seen except in the river valloys; and, that owing to the enormous herds of buffalo which covered the plains at that time, feed in many places was poor.

As far as public opinion was concerned the only immediate result of this exploration was that a certain district in the north became

Enown as the "Fortile Belt" and that the southern part, about which so little was said, was set down, or assumed, to bo arid and of slight value; an opinion still generally prevalent and mainly fostered by writers whose views have been based on a misinterpretation of Capt. Palliser's remarks.

The survey of the International Boundary and the establishment of the Mounted Police Force in 1874, tended in some degree to dispel the cloud which hung over the south. Their frequent journeys have done much since then in the same direction, yet in the minds of the general public, and even of many others who should be better informed, the old prejudice, in a measure, exists against it.

In this position of the question the past only repeated itself. How many are the instances of wealth unknown having passed for centuries under the eye of the dwellers on the spot unappreciated and untouched?

In our day the growth of the Dominion, demanding a through communication from east to west, and the exigencies of the overpopulated countries of the old world, have brought it about, that. we should be the means of enlightening the world as to the extent of the resources of the "Great North-West," and in so doing, possibly of acting as special agents, fulfilling the beneficent intentions of the all-wise Creator.

Explorers have traversed its length, and settlers have here and there dotted the new land and the reports of one and the other only stimulate us to further research.

Amongst those sent out to explore, I was first commissioned by Mr. Fleming, in 1872, to examine the flora of the prairies between Winnipeg and Edmonton. The same year I was despatched in company with Mr. Charles Horetzki to explore the Peace River and examine the country on its banks. The results were the discovery of the low passes through the Rocky Mountains and of an extensive tract of fertile country, since known as the Peace River District.

In 1875, I accompanied Mr. Selwyn, Director of the Geological Survey, in the capacity of botanist, to British Columbia and from thence by the Peace River Pass to the east of the Rocky Mountains. Circumstances compelled me to descend the Peace River from the Rocky Mountains to Lake Arthabaska and I was thus enabled to see the country as far north as lat. 59°. Turning eastward at this point a journey of 1,200 miles brought me to Winnipeg.

The general conclusions which I arrived at from my explorations of 187% and 1875 were: lst, 'hhat as there was but ne flora common to the region extending through from eight to twelve degrees of latitude, or as far north as 60°, and as that flom required a high summer temperature for its existence, the thermoneter would be found to show a correspondingly even distribution of heat throughout the whole region.

2nd. That exceptional or special conditions must exist to proluce that high and even distribution of heat discovered as ranging over so great an area.

These conclusions have since been established as facts by the recorded observations sent in from the Meteorological Stations at Wimnipers, Fort Muleod, and Fort Calgary in the south, and Fort Rae and Fort Simpson in the north. (See Meteorological Report for 1878.)

In 1879 my attention was mainly directed to an investigation of The causes of the supposed aridity of the district lying to the sonth. I found a parched surface, dried and withered grasses, and in short, every appearance of the existence of such aridity ; but closer examination showed that these indications were illusory. At the point. "Blackfoot Crossing" lat. $50^{\circ} 43^{\prime}$ where the consequences of arility appeared the strongest, I came upon grounc, broken up in the spring, bearing excellent crops of all kinds-oats being four feet high, while on the land outside the fence the grass was burnt up and all other vegetation withered. From this I argued that the rainfall in the district was evidently ample for the requirements of vegetation, but that, until the baked crust was broken, it could not percolate the ground as rapidly as it fell and so a great portion was evaporated by the dry atmosphere and lost. Thus the apparent aridity vanishes before the first efforts of husbandry. Next to the question of aridity was that of the high and even temperature of climate. On this point I simply accumulated data bearing on the observations of former years, all of which tended to prove that the great plain to the north-westward, and north of lat. 49^{c}, extending along the Saskatchewan and other rivers between the 100th and 115th meridians, and the narrow strip of coast north of Montery, California, present decided features of difference from other districts of the American continent. These differences and peculiarities I shall now deal with seriatim.

TEMPERATURE.

It was long ago asserted as a principle by Geologists that, " land in quantity situated to the southward of lat. 40° ncrth very materially raises the temperature of lands lying so the north of such parallel." (Sir C. Lyell.) To the expression "land in quantity," I would add when its character is that of a desert or arid nature. Another maxim has been laid down by a well known writer on American Climatology (Blodgett) " that high arid plains are indicative of great summer heat, of an arid atmospluere, and of little rain or snowfall. Now the conditions required to test the accuracy of both these propositions are presented in the position occupied by the North-West Territory. South of our boundary within the United States lies a vast tract of land, generally arid or desert, of which at least 500,000 square miles are embraced in a plateatu which has a general level of 6,000 feet. At Laramie City, in lat. 42° it is about 7,000 feet above sea level, from thence northward it rapidly falls off so that when it reaches our boundary in lat. 49° at Pembina, it is considerably under 1,000 feet. At the base of the Rocky Mountains it is under 4,000 feet. From the boundary the plain extends far to the north and only terminates at the Arctic Sea. In such a wide range of latitude it might well be expected that a considerable difference of temperature would be found. The following Table, however, shows the temperature as being wonderfully uniform :(See Metereological Report, 1878.)

Place.	Lat.	Long. W.	May.	June.	July.	Aug.	tean of ner Mon
Wimmipeg	49.53	97.07		59.2	65.8	63.3	62.8
Fort McLeod. .	49.39	113.42		60.6	63.3	57.0	60.3
Norway House.	54.00	98.00		54.9	63.5	61.2	59.9
Fort Simpson.	61.52	121.25		58.8	63.4	63.2 !	61.8

In the same parallels of lat. in Europe the temperature is recorded as follows: (See Blodgett.)

Pusce.	Lat.	May.	Junc.	July.	Aug.	Mean of Summer Months.
Penzance, S.W. England	50.08		59.5	62.1	61.1	
Cracow, in Poland	50.04		64.0	65.8	64.9	60.9
Konigsberg, in Prussia..	54.42		57.4	62.6	61.7	64.9
St. Petersburg, in Russia	59.56					

We therefore see that the summer temperature of the North-West Territories is exceptional, and may be taken as confirmatory of the views quoted. Believing, however, that in addition to the quoted causes, there are others which contribute to this result of exceptional temperature, I purpose, for the present, to treat it simply as a fact to be noted for further comment, and pass on to the subject of isothermals. The recorded lines of equal temperature show that the various lines of heat, as they make westing from the castern coast of the continent, tend in summer to curve upwards from the Gulf of Mexico in a north-westerly direction to a point in lat. 50° long. 110° west. At this point the mean summer temperature is $70^{\circ} \mathrm{F}$., while at Winnipeg, on the same parallel of lat., but 15° farther east, the temperature is but 65°. Tracing these isothermals still further north, the line of greatest heat passes near Fort Vermillion in lat. $58^{\circ} 24^{\prime}$ and long. $116^{\circ} 30^{\prime} \mathrm{W}$. I may mention that at this point I found barley cut on August 6th, 1875, and wheat almost ripe. Still farther north and west, the table shows that Fort Simpson has a mean summer temperature of $61^{\circ} . S \mathrm{~F}$. Turning to the west coasti, the isothermal lines commence to turn northward from the Gulf of California, and for a time skirt the western side of the Rocky Mountains. On reaching the low point of the chain between lat. 41° and 45° they turn to the east, cross the mountains, and strike the Doininion boundary on the 115 th meridian. Thesc westerly currents, named the "Chinooks," have been known to cause a rise in the temperature of 60° in a few hours. When in that country I enquired from a half breed about their effect on the snow. His reply was, "the Chinook licks up snow, water and ali."

After crossing the Rocky Mountains the thermometric current of the west meets that of the east at or about Hand Hills in lat. 51.20°, long. 112°. There; in 1879, I found that for days together, during August, the thermometer in the shade registered from 87° to $92^{\circ} \mathrm{F}$. From the Hand Hills the united currents following their resultant direction carry the temperature (of latitude extending almost to New Orleans) over the plains of the North-West, and confer on it the blessing of a climate, not only exceptional as regards character, but productive of results to the agriculturist, which, I believe, are unsurpassed in any other part of the world.

Returning, however, to the course taken by the east and west currents before their union at the Hand Hills, it is a matter for con-
sideration, why that from the cast should depart, not only, from the natural law which would give to it an eastward, in place of a westward, bend as it rises northward from the Gulf of Mexico, but also from that of the western current which follows the natural law and bends to the eastward.

The answer to this question is the key and the solution of clmost every climatological peculiarity of the North. West.

The data which we have for the investigation of the question: Why does the eastern current of heat proceeding north-westward from the Gulf of Mexico bend to the west? are:

1st. Recorded observations which show that land of a desert character is heated to a greater degree than that without its bounds.

Ind. Recorded observations which show that currents of air are constantly on the move to the spots where the land is most heated.

3rd. The fact that to the westward of the tract ruming northward from the Gulf of Mexico lies the "Great American Desert," which, from the preceding statements, must exercise an influence on the air around it.

To my mind, no argument is needed to show that the cause of the divergence of the eastern thermometric current to the westward is solely due to the position and effect produced by the. American Desert. A confirmation of this inference is offered in the eastern hemisphere where the south-east trade winds are drawn out of their course by the heated atmosphere of Western Indies, and result in the South-West Monsoon, and further by the north-eastern trend of the isothermals in Northern Asia. In the transition from summer to winter we find the Desert losing its temperature (terrestrial and atmospheric), and consequent attractive influence on air currents warmer than its own, the first effect of which is that the isothermals pass away from their northern altitude and sink southward next, when freed from the desert influences, they no longer trend to thewestward, but to the eastward. On the withdrawal of the southern warm currents, other currents from the north and from the west follow them up, particularly on the east side of the Rockies, and establish the prevailing north-west winter winds, which, being affected by the temperature of the Arctic Regions on the one hand, and by the Mountains on the other, bring the minimum line of cold so far to the south. Were the American Desert an inland sea, the summers of our plains would lose their exceptional character, and our wintors woull be like those of Eastern Europe.

In a paper like the present, however, it would be out of place to discuss the climate of the eastern hemisphere ; but it could be shown that precisely similar causes to those which I have specified can be traced as existing there, and as being productive of the same results.

HUMIDITY.

The rainfall of the North-West offers as favorable a contrast to that of other districts as the temperature has shown. Rains come just when they are wanted and cease when vegetation not only no longer requires them, but when their continuance would be injurious and detrimental to harvesting. Formerly the rainfall of a country was judged by the average for the whole year. Such a comparison, however, is misleading. What we want to know is the quantity that may be expected to fall:
(a) During the period of vegetation and its distribution month by month. (b) During the harvest months.

The period of vegetation in the North-West embraces May, June, July and August. The harvest months are September and October. To show how favorably these two conditions are determined for the North-West I append the following tabularly arranged statements of rainfall:

TABLE I.-FOR THE FOUR MONTES OF VEGETATION.

Place.	Position.		Ranfall is Inches.				Total for 4 3 Montris.
	Lai.	Alt.	May.	Junc.	July.	Aug.	
Winnipeg, N. W. T.	$49 \cdot 53$	$7 \cdot 40$	$2 \cdot 17$	$3 \cdot 42$	2.68	$7 \cdot 11$	15.37
Toronto, Ontario....	$43 \cdot 39$	3.50	$2 \cdot 98$	3.04	$3 \cdot 72$	$2 \cdot \mathrm{Sl}$	12.55
Fort Riley, Kansas..	9.03	13.00	$4 \cdot 14$	3.05	1.05	2.99	11.29
Rochester, New York	43.07	5.06	3.04	3.25	3.01	2.60	11.90

TABLE II.-FOR THE TWO MONTHS OF HARVEST.

place.	Positios.		Rainfall in Inches.		Total for 2 Months.
	Lat.	Alt.	Sept.	Oct.	
Winnipeg, N. W. T.	49:53	$70 \cdot 40$	0.73	0.03	0.76
Toronto, Ontario....	$43 \cdot 39$	3:50	4.45	2.96	7.41
Fort Riley, 「ansas .	39.03	13.00	$4 \cdot 13$	0.02	$4 \cdot 20$
Rochester, New York	43.07	$5 \cdot 09$	3.05	3.39	6.41

Having stated what the recorded facts as to rainfall are, I will give my reasons for asserting that these facts are but the necessary consequences of the physical conditions existing in the West of the North American Contiuent.

In the early part of this paper I referred to the position of the Great American Desert and pointed out one of its effects on the air currents rising northward from the Gulf of Mexico-viz,, its power to attract and draw ther to itself, and to the westward of their natural course. Another effect, now first mentioned, is that arising from the heat given off from the surface by radiation during the summer months. The Gulf air currents, laden with moisture, when drawn over the desert are met by the rarified and heated air ascending from its surface, and that rainfall which in the ordinary course they would shower down (being prevented from falling) passes on and is wafted by the prevailing winds in the direction of our NorthWest, where, being removed from the effects of the desert heat, they give forth their long borne and priceless load in the form of our summer rains.

Having shown cause for the summer rains, I may, now, state that the simple "suspension of those desert effects which gave the summer rains" is the cause of the almost total absence of rain in the autumn and winter periods.

It was shown when writing on the winter temperature that as the desert cooled down the main air currents from the Gulf of Mexico no longer pursued a westward course but passed to the eastward. This change of direction takes them over the region of the Canadian Lakes where they deposit that rainfall which in summer fell on the plains of the North-West.

AGRICULTURAL OPERATIONS.

The progress of the seasons and the labours of the husbandman may be summarized as follows:

Early in April the hot and unclouded sun clears from the lands the last of its light snow-covering-thaws, and at the same time dries the ground sufficiently to fit it for the plough-and almost simultaneously for seeding. Germination guickly follows and the young roots, moistened by the thawing of the subsoil, follow the pores opened out by the disintegrating power of the winter frosts, and penetrate to a depth inconceivable to those who have not put the
matter to the test. By the time that the rains of May and June come the roots have a firm hold of the ground, and growth is extraordinary. The July and early August mans nourish and swell the ear of the now ripening crops, and complete the promise of the early spring. Towards the end of August the winds change and the almost rainless period sets in and continues all winter. The Farmer harvests his crop without loss and in the highest possible condition; stacking it in the open without even the necessity of thatching it for the winter.

> TO STOCK BREEDERS

The advantages are equally great. Storms of sleet or wet snow are unknown on the Western Plains. Such snow as does fall is always dry and light, hence cattle and horses may be left out the whole winter without the possibility of suffering from wet. Intense cold they may experience, but stock-raisers know that where such cold is dry their cattle take no harm. Hence cattle can be, and are raised, on the North-West Plains without the necessity for buildings for mintering them.

SOME OBSERVATIONS ON TEE PHILEBUS OF PLATO,

THE POSITION OF TEE ROWERS IN THE WAR-SHIPS OF THE ANCIENTS, \&c.

BY W. D. PEARMAN, M. A.
Classical Tutor and Dean of Residence in University College, Toronto.

Euripides, Iphigenia in Aul. v. S08. In this line, Dindorf and others have taken exception to the word $\ddot{\alpha \pi} \pi \alpha \delta s$-for which some read with Bothe eṽ̃auôar, while others adopt Musgrave's conjecture
 not only as being the MSS. reading, but also in point of sense.

Achilles states that the men of the expedition, chafing at their detention at Aulis, are not all similarly situated: Some, like him-

 "others may speak for themselves, he will state his own case." As
 they have wives, have no children." These, then, would belong to the class specially exempt from military service, under the Mosaic dispensation (cp. Deuteronomy, ch. XX. v. 7; XXIV.v. 5). Hence
 "so constraining a desire for this service hath befallen Hellas."

Ibid. v. 1143.
Those who have adopted Porson's alteration of $x \dot{\alpha} \mu \nu \eta, \quad$ into $x \dot{\alpha} \mu \eta s$, seem to have overlooked the fact that the imperative force is neither absolutely necessary nor, as I think, desirable. Agamemnon, dumbfoundered at finding his designs discovered, lets falls the exclamation, "I am lost! my secret is betrayed!" While he is hesitating and thinkins what to say next, Clytemnestra sarcastically resumes, "I know all! your very silence amounts to a confession, so that you need not weary yourself with a long and idle story." Of course, if we retain xáuvgs, the period after noh.ג. must be removed.

Fomer, Iliad, B. XVIII. v. l19. àprahéos pólu: suggests itself to me as the original of H.orace's "splendilde bilis" (Sat. II. iii. 141). I have never been able to persuade myself that such a master of epithets, as Horace undoubtedly was, would have allowed himself to use such an apparently meaningless epithet as splendida, without some special reason. Now this verse of Homer's would seem to have passed into a proverb (the description of yojos, in the verses immediately preceding it, is quoted by Plato, Philel. 47 E.); and it is probable that Horace, with this phrase of Homer's floating idly in his memory, wrote splendidu as a translation of àpyul? to reflect that this word was from a diffreent root than the similar sounding derivatives of d̀prós "bright and glistening." Horace himself tells us, in more than one passage, that he repeatedly conned the Homeric poems ; and we frecuentiy find scraps from the Iliad and Odyssey, literally rendered and introduced, apparently, quite as much for the purpose of displaying Horace's archeological lore, as from the appositeness of the quotation. If this assumption of mine be correct, it curiously illustrates Pindar, Pyth. IV. v. 109. isuraís
 locum) that Pindar has miscopied Homer's ppeat 1 surals
 variously derived from àuaupús and from an Indo-European madra.
 together," i.e., confusus as opposed to distinctus.
 Eñ!б-ápsyos. This passage illustrates, in the most striking manner, the necessity for attention to the distinctions of tense in the Greek verb. I have never seen it correctly translated. Xenophon is deploring a tumultuous spirit which had developed itself among the soldiers. He says that, owing to their menacing behaviour on a certain occasion, many people had been so much alarmed that they had cast themselves into the sea in their efforts to escape, "and whoever did not happen to know how to swim was in a fair way for being drowned." If $\begin{aligned} & \pi \\ & \pi i \nmid \varepsilon \varepsilon \tau \\ & \text { had signified "was drowned," as it is }\end{aligned}$ usually rendered, Xenophon would not have failed to dwell upon the loss of life occasioned by this outrage.

Livy, B. IX. cp. 16, furnishes an example of a far more amusing, but perhaps more excusable, mistranslation than the above. Writers of Roman history gravely tell us that Papirius Cursor was such a
martinet that, according to Livy, when his troopers applied to him for some relaxation of their discipline, he replied: "Yes, I will relieve you from the obligation of giving a pat to your horse's back when you dismount." The words are "ne nihil remissum dicatis, remitto, 'inquit,' ne utique dorsum demulceatis, quum ex equis descencletis." If any one, who has ever ridden without a saddle, will recall his first instinctive movement on dismounting, equo lassus ab indomito, he will have no doubt either as to the nature of the action or the owner of the dorsum.
 retained (as one of the exceptions to the rule against ${ }^{2} r$ with Fut. Indic.), when the sense plainly requires $\grave{\alpha} \nu \eta \bar{\eta}=_-i . e .$ "neque adest neque adfuturus est ex inferis." The speakers have ascended, Ardiæus is still below, cp. 615. E.

 letter c has suffered elision at the hands of the copyist.

 says that all the MSS. agree in exhibiting this reading; however, as he finds it unintelligible, he concludes that there is a mistake somewhere. He would read Exácooze, in which sense some commentators have wished to explain $\begin{gathered}\text { éxa } \\ \text { a } \\ \text { a } \\ \text {. If }\end{gathered}$ it does not savour too much of presumption, I should say that the error arose from their not perceiving that $\varepsilon \not \approx \alpha \sigma \tau 0 \%$ was in construction with $\dot{\alpha} \rho \in \theta \mu, \dot{y} y-n o t$ with

 each of the subordinate genera-("each" of the "two or three, \&c.," 16. D.). The rest of the construction might be explained thus:

 Stallbaum has not noticed a manifest reference to the old proverb, "primus qui ipse consulit, \&c." Cp. Hdt. VII. 16; Sophocles, Antig. v. 720 ; Livy, XXII. 29.

Ibid. 20. D. à $\nu a \gamma x a t o \sigma^{\prime} \alpha \tau o \nu$. The meaning of this word is obviously "the least one could say." This sense of divajxacózatos is frequently lost sight of, e.g., in the Gorgias 505. E., where (as I pointed out, in the Journal of the Canadian Institute for 1872) the idea conveyred
is that the dialogue, if carried on by Socrates alone, would be a very poor affair, cp. Repub. 369. D.

 Stallbaum defends $\gamma \varepsilon \nu \frac{0}{} \sigma \tau \eta$, which is evidently a play upon the jingle voũs and γ^{\prime} roous, on the ground that Hesychius and Suidas both mention it as a word used by Plato, as a synonym for γ| | |
| ---: | :--- |
| νi | $i r$ | or ouryenjos, but gives up the Jatter part of this passage as a "locus manifesto corruptus." For my own part, I cannot see the necessity

 as far as I can see, the two statements are exactly parallel.

 to other parallels, one might compare the customary ellipse with èv
 and Euripides, Phœniss. v. 583.

Ibid. 44. D. òvбzミр́́бuara. This word, which Pollux mentions with disapproval and Lobeck condemns, although manifestly a reading of the highest antiquity, is, I am tempted to believe, a corruption
 sentence. The bastard $\delta u \sigma \% s \rho \dot{\sigma} \sigma \mu \alpha \sigma \alpha$ would, I think, be the natural offspring of $\delta 0 \sigma \chi \chi^{\rho \rho \varepsilon i a s ~} \mu \varepsilon \tau<\dot{\alpha}$. The union of the two words being brought about by the feeling that a neuter plural, agreeing with r $\dot{\alpha} \lambda$.a, would suit the construction much better than the somewhet a wkward juбұє $\rho \varepsilon i a \varsigma$.

 says " $\pi \rho o \sigma \tau \dot{\alpha} \tau \tau \omega y$ Bodl. Ven. II. Dein libri omnzes j́òovaīs, quod de coniccturcu Sclützii in j́bovás mutavimus."

I am inclined to think that $\pi \rho o \sigma \tau \alpha \dot{\alpha} \tau \omega \nu$ is really $\pi \rho o ̀ s ~ \tau \dot{\alpha} \tau \tilde{\omega} \nu$, it being a frequent practice in MSS. to represent double letters by a letter of larger type. Hence recurrent letters are often omitted, and vice versa, according as the eye of the copyist was attracted by a difference in the size of the letter. Here I believe that the original

 and would translate thus: "Sometimes inconceivablo pleasures, and at others (the contrast between the internal and the external
sensations) pains mingled with pleasures." With regard to the construction, roúvous aposs zzsivous is the ordinary mode of expressing cmmity or opposition between two parties.
 Here, as Stallbaum says, "deest aliquid ad loci integritatem." Butt-
 $\xi \cup \mu \beta \dot{\beta} \lambda \lambda \eta=a$, , which suits the sense admirably, but is too violent a remedy. Ast imagines that $\tilde{\eta}$ has fallen out after $\varphi 0 \% \bar{\eta}$; but, as Stallbaum says, this would hardly suit the sense. I am inclined to think that the most natural remedy would be to supply \bar{j}, which would readily be absorbed in the final syllable of $\varphi 0 / \underline{\eta} \bar{\eta}$ (see note on 46. E.), and would suit the sense equally with Buttmann's reading. I would render-" But concerning those in the soul, where it contributes (to the mixture) opposite sensations to those of the body, viz., pain in immediate contrast with the body's pleasure, icc."

The I'riveme.

In a scries of papers, which have appeared, from time to time, in the Revue Des Deux Mondes, entitled "La Marine De L'Avenir Et La Marine Des Anciens," M. le Vice-Amiral Jurien de la Gravière, well known as a naval officer holding high command in the Crimean and Mexican campaigns, has examined historically the naval expeditions of the Ancients, with a view to their bearing on the tactics likely to be adopted by modern navies. In the course of his remarks, he finds it necessary to refer to the much vexed question of the Trireme. Was the Triremis or Tporip $\begin{aligned} \text { s, of the Aucient Greeks and }\end{aligned}$ Romans, a vessel with three banks of oars, one above the other, as the Dictionaries tell us? The answer, which he gives to this question, is that which has been given by every practical seaman, from the old Sieur Barras de la Penne, Capitaine des galères du Roi, down to the present time. All seem to agree that, even if a vessel so constructed might manage to move in smooth water, it would be almost impossible for it to manœuvre in a rough sea, or in the rapid alternations of a naval combat. How then can we credit the existence of such monstrosities as quinqueremes and naves sedecin ordinum, not to speak of the teorapoxovtrip \bar{s} of Ptolemy Philopator?

Plainly some other solution must be found ; for the fact that there were vessels so named is too well attested to admit of dispute. The first idea, which would naturally occur to one, is that these vessels received their names, not from the number of their oars, but from
the number of men at each oar; and this is the view taken by most of the opponents of the theory of three or more tiers of ours. A very strong argument in its favour is derived from the practice on board the war-galleys of the 16 th and 17 th centuries, in which each oar was worked by five rowers: quinqueremes they are called by the advocates of this view of the question. But, reply the others, in this case, how do you account for the terms opavitns, 乡upions and Gaגa $\mu i=\eta=$, which, say they, were unmistakably applied to the upper, middle and lower tiers of rowers respectively, and to the oars used by them? Barras de la Penne (following the Scholiast on Aristophanes, Ranae), thinks that they received these names from their position, fore, aft or amidships. The $\theta \rho \alpha \nu i \ln$, who sat nearest to the stern, was placed higher than the oukupitns, used a longer oar and received higher pay. In his opinion, the confusion has arisen from a failure to realize the well known fact that remus is often used with the signification of remex; just as we say "a good oar" for "a good oarsman." Certainly many passages, in the Ancient Classics, admit of this explanation ; but there are others, in which the supraposition of the one class of rowers seems to be too clearly indicated to be disposed of thus easily. Lastly, the great difficulty has always been the fact that, although, in the great majority of pictures representing war-ships, only one tier of oars is to be seen; still in a few coins and some monuments, notably in the figures on Trajan's column, vessels are depicted, in which we apparently distinguish two tiers of oars.

Here, I think, lies the way out of this last difficulty. Why only two? "Because there was not room for more on the coins," say the apologists; but this does not apply to the marbles. It has been remarked that, where there are two tiers visible, the oars in the lower tier do not exactly resemble those in the upper tier; and it has been suggested that one of these tiers consists of dummies-possibly, guards to prevent one oar from interfering with the other. It may bo objected that such dummies would have materially impeded the vessel's progress, against a wind or through rough water. After reading M. de la Gravière's vigorous protest against the admission of what be has stated to be a practical impossibility-whatever history or the monuments might say to the contrary-I was led to the conclusion that there must be some mode of reconciling fact with tradition; and the following suggested itself to me as not improbable.

One has often noticed in old wood cuts, and in most pictures drawn by children, an attempt to exhibit two opposive sides of an object, without regard for the perspective. Now one way of doing thisone sometimes sees it done inteutionally in drawings of machineryis to raise the outer side above the other. As I take it, in the few instances in which we find a second tier of oars, the artist, knowing that a spectator would see the oars only of the rowers nearest to him, the rowers themselves being partly hidden by the bulwarks, while the rowers on the other side, being further from the intervening bulwarks, would be more conspicuous, wished to bring their oars also into view. No doubt this error in the perspective, once introduced by the original artist, would be carried still further by the copyist, who possibly never saw such a vessol in his life; and this too would explain some of the strange comments which are to be found in later writers. With regard to the supraposition of the rowers, I cannot but think that, especially in very large vessels, where each oar was manned by ten or sixteen rowers, it would be necessary for the men at the upper extremity of the oar to be placed higher than those nearer to the thole pin; otherwise they would hardly have been able to reach the end of the oar when it was dipped in the water. As the upper part of the oar would necessarily describe a greater curve than the lower, it would be natural that the pay of the Thranite should be higher than that of the Thalamite. In the case of Ptolemy's ship, it is probable that the rowers relieved one another, and did not all row at the same time. When I had arrived at the above conclusion, it occurred to me that the term ourauitns admitted of a very significant derivation (it is ordinarily supposed to be connected with odikajos, i.e. "the man who sits in the hold"). The aperture through which the oar projected was called $\dot{\eta} \theta a \lambda \alpha \mu i \alpha$ scil. $\sigma \pi \eta^{\prime}$; and, as I take it, both these words are derived from $\sigma \times a \lambda \mu{ }^{\prime} \sigma_{5}$, "the thole pin" to which the oar was fastened; $\sigma \times a \lambda_{\mu} \sigma_{5}$ naturally passes into $\sigma x \alpha \lambda \alpha \mu 05$. On calculating the probabilities in favour of this derivation, I came across one or two other words for which it seemed to me more natural to assume a parallel phonetic change, than to assign them to the roots to which they are ordinarily referred: e.g., $\theta \dot{\omega} \pi \tau \omega$ is suggestive of $\sigma x \dot{\omega} \pi \tau \omega, 0 \dot{\alpha} \pi \tau \omega$ of $\sigma \times \dot{\mu} \pi \tau \omega$ (cp. т $\alpha \phi \rho 05$). Accordingly $\delta \theta a \lambda a \mu i t \eta s$ would be the rower who sat nearest to the thole pin. As I thought that the probabilities were in favour of this view, I ventured to communicate it to the Admiral, who had
expressed his anxiety to oltain some solution of the difficulty ; and he, in acknowledring my letter very politely, has condescended to express his satisfaction with my explanation. About a fortnight after the despatch of my letter, I received a very curious confirmation of this derivation, at least in part, from some remarks, which appeared in a following number of the Revur, by M. le Contre-Amiral Luigi Fincati, of the Italian navy, who has criticised MI. de la Gravière's statements. M. Fincati, speaking of the Venetian navy, says that the rowers were protected by vertical shiclds placed above the "armatures" (outriggers) on which the oars worked. These shields, he says, were successively called talamii, taluri, ali and morti; and the θ whapirns was so called, because he sat ne:urest to the talamii. M. Fincati's view, although pronounced impracticable by the French Admiral, is remarkible. He maintains that, until the latter half of the 16 th century, the war-ships of the Mediterrancan were always, par excellence, triremes. The crew was composed of two hundred men; of whom one hundred and fifty were rowers, seated three and three on the twenty-five benches placed on either side of the vessel; he thinks that these benches were arranged obliquely, and that each man had a separate oarr ; so that the oars reached the water in groups of three, at intervals corresponding with the distance between the benches: but he adds that, about the middle of the 16 th century, this arrangement was altered, and the three men rowed with one oar. He cites as his authorities the Historie del mio tempo of Natal Conti, the Armata Navale of Pantero Pantera, Cristoforo da Canale, and other writers to which I have not access. However, the probabilities seem to be decidelly in favour of M. de la Graviere, who is even less disposed to allow the possibility of this arrangement than of the old one. Just imagine what would happen, with three men on a bench, each having a good long oar in his hand, if one of them chanced to "catch a crab," or was knocked over at a critical moment! his swinging oar would throw the whole equipage into a state of disastrous confusion. In one of the early numbers of the Revue, M. de la Graviere mentions the fact that the Maritime Statutes, of the 14th century, speak of the galleys as crmatae ad tres remos ad banchum "equipped for three oars to a bench;" and sich passages as this are, in all probability, the source of what I cannot help calling the error of M. Fincati and his authorities. Barras de la Penne has warned us that we must not suffer ourselves to be misled by the word remus. And, besides, a prassage from Zosimus (flor. A.D. 420) which has oiten been cited
on the opposite side, expressly tells us that, although Polybius had described the Romans and Carthaginians as using vessels with six banks of oars, they had ceased to construct even triremes long before his time.

Doletus, indeed, the virulent adversary of Brasmus of Rotterdam, tells us (A.D. 1537) that he saw such a quinquireme, at Tenice, "prima adolescentia;" but, unfortunately, he tells us also that the rowers were placed in tiers, one above the other: an arrangement of which M. Fincati himself almits the impossibility. Now Doletus may le easily disposed of: he is defending himself against a charge of ignorant appropriation from a work hy the learned Bayfius; and it is absolutely necessary for him to bring out something original. Bayfius has ended by deckaring his doubts as to the possibility of three or more tiers of oars: Dolctus finds no difficulty in saying that he has seen. No one, who has waded through the foul torrent of invective in which Doletus indulges, would take his word for anything. Moreover, he says "prima culolescentia:" let us trust that he had forgotten. After examining with some care the numerous passages cited ly Bayfius, Mcibomius, Opellins, Scheffer and Voss, I have come to the conclusion that most of them may be satisfactorily explained. Considerable latitude must, of course, be allowed in the calse of quotations from the poets-although there is one passage, in particular (Arrian, Etuped. Alexund. VI. 5), which can only be accounted for on the theory that some interpolator has been at work. Finally, we must not lose sight of the fact that Ancient war-ships were not constructed on such rigidly scier tific principles or with such exact workmanship, that barely possible positions and intricate combinations may be assumed for seating the men and adjusting their oars: on the contrary, the doubt must be given against such; and no arrangement but the simplest and most feasible can be accepted, if we are to believe that, in the First Punic war, the fleet of Duillius was ready to sail within sixty days of the felling of the timber, or that, in the Second, Scipio's was built in still less time. Moreover, we must bear in mind that intricate combinations require absolute order; and however much this might have been observed (and Xenophon tells us that it was observed, adding that the trireme was crowded with men $\sigma \varepsilon \sigma \alpha \gamma \mu \leqslant \nu \eta \grave{\alpha} \nu 0 \rho \dot{\omega} \pi \omega \nu$) on ordinary occasions; yet, with a shower of darts falling on the men and the waves leaping up against the oars, it must occasionally have been impossible to avoid confusion, and that too at the critical moment.

In conclusion, I will examine one or two of the most notable passages, which present considerable difliculty at first sight.

Xenophon, II. G. II. i. 28, where Conon is surprised at Egos Potamos: the crews, which had dispersed on shore, rush hurriedly to their ships; but the enemy is upon them, before the vessels can be manned; and they have to push off in the following condition:
 (we. find elsewhere δ bupoons and δ onjris used as synonyms). It has generally been assumed that this must mean that some of the ressels had only one or two of their three bankis of oars mamed. But we know, from other sources, that each rower had his proper station at a particular oar ; and it is much more likely, in my opinion, that instinct would be supreme in the confusion; so that, as each man hurried up, he would rush to his particular oar (whether his station was fore or aft, below or above), and proceed to cast it loose, without waiting for his comrades of the same bench or (for the sako of argument) "tier:" I would explain thus: "Some of the ships had but two men to an oar, others but one, dre."

Lucan, Pharsal. III. v. 536, foll.:
" Validasque triremes,
Quasque quater surgens exstructi remigis ordo Cormmovet, et plures quae mergunt aequore pinus, Multiplices cinxere rates: hoc robur aperto Oppositum pelago. Lunata fronte recedunt Ordine contentae gemino crevisse Liburnae. Celsior at cmuctis B uti praetoria puppis Verberibus senis agitur, molemque profundo Invehit et summis longe petit acquora remis."
Here we have biremes, trivemes, quadriremes, quinqueremes, and the lexeris of Brutus.-Exstructi remigis:-As I have said before, in these huge vessels, the men nearer the upper extremity of the oar must have been placed higher than those nearer to the thole pin; but, if each man had. a separate oar, how long and awkward the highest must have been! The Liburnue, which were light, swift sailing vessels, are said to have been content "ordine gemino"naturally, as the Liburnae did not stand so high out of the water, their oars would be shorter and more easily managed. Whereas the praetoria puppis, which towered above all the others (celsior, \&ic.), would, necessarily, have longer and heavier oars; hence each was plied by six men. Scaliger's objection, that the words "summis remis" suggest that this vessel had other oars nearer to the water,
may be met, I think, with the answer that these ours are not summi as compared with others in the same ship, but in comparison with those of the other vessels. Again Bayfius cites passages in which we are told, incidentally, that the quinqueremes breasted a rough sea better than the trivemes; ; and this could hardly have been the case if their oars, necessarily longer and heavier, had been mamed by a single rower.
※schylus, Agam. v. 1618.

Here, of sim? 乡orī are supposed to be o! 乡orĩat—and Paley renders "those on the upper benches." But it is more matural to understand here, the officers and fighting men; who occupied a higher position, in both senses, than those who "sat at the oar below." The haughty taunt of Agisthus is shorn of half its sarcasm, if he merely contrasts himself with fellow workers, who occupied it position but one grade lower than his own.

Although this passage docs not hear directly upon the subject of my remarks, I cannot help noticing, as I have not seen it elsewhere, a curions explanation which Tsanc Voss gives of the phrase
 was roughly calculated loy the number of benches which were passed at a stroke ; fast travelling. in his day, was a stroke which drove the galley a distance of seven benches. According to his view, "with an eleven oar stroke," would mean that the distance between eleven benches was passed at each stroke. Scheffer quotes Silius, where a light Libumian galley is said to have passed more than its own length at each stroke. Pun. XIII. v. 240 .
> " Quanta est vis agili per caerula summa Liburnae, Quac, pariter quoties revocatae ad pectora tonsae Percussere fretum, ventis fugit ocior, et se, Quam longa est, uno remorum praeterit ictu."

Of course, the actual speed would depend upon the time of the stroke. Voss tells us that twelve hundred stadia (about 140 milec) a day, was considered very fast sailing for a Liburnian, whereas the modern galleys went much faster-often covering a distance of 1,400 stadia in that time.

ASIATIC TRIBES IN NORTE AMERICA.

BY JOIEN CAMPBELL, M. A.
Professor in the Presbyterian Culleje, Montreat.

In a former paper on the Algonquins l directed attention to the difference between the grammatical forms of that people and those of the nations by which they are surrounded, or whose territory borders on the Algonquin area. I also indicated that the Algonquin dialects exhibit traces of Turanian influence, which I referred to the proximity of tribes speaking languages whoso structure is largely Turanian. This Asiatic influence appears, even more strikingly, in the arts and exercises, dress, mamers and customs of the Algonquins. The birch-bark canoe and wigwam, the modes of warfare ?nd hunting, the skin dress and lodge, the snowshoe, ornamentation with porcupine quills, the calumet, are not in any sense Polynesian. Neither are they aboriginal, or adaptations made first upon this continent to the necessities of the country. They existed, as in a measure they still exist, in northern Europe and Asia, before the time of Herodotus, when the Scythian took the scalp of his slain enemy. The Mralay Algonquin adopted the implements, dress and customs of the people who occupied the country at the period of his immigration ; but retained his soft, liquid speech, with much of his oceanic construction of language, and most of the traits of the Polymesian character. His quiet reserve is as unlike the mamers of the rude, boisterous and fun-loving Athabascan as is the silent dignity of the Malay compared with the noisy childish ways of the Papuan. By nature indolent and caring little for power obtained by bloodshed, he fell before the restless and warlike froquois. That the Algonquins held their own, and did not become incorporated with tribes of Asiatic origin, is doubtless owing to the large numbers that at one period must have established themselves upon this continent. This adaptation of an oceanic population to continental modes of life, with all the differences of climate and productions, and the preservation of their ilentity for many ages, is one of the most remarkable phenomena known to ethological science.

Although I must apologize for the scantiness of my materials, I feel that I am in a position to indicate the origin of three inportant Indian families, with which the Algonquins have long been in contact; these are the Timel or Athabascans, the Iroquois, and the Choctilws. The first named are the neighbours of the Algonquins on the north, but appear also as an intrusive people as far south as Mexico. The Iroquois are scattered among the Algonquins; and the Choctaws and Cherokees, who are simply disguised Iroquois, were originally situated to the south of the Algonquin area. The Timneh family I associate with the Tungusians of Siberia and Northern China; and the Iroquois and Choctaws, with the populations of north-eastern Asia, classed by Dr. Latham as Peninsular Mongolidae. It is to these immigrants that we owe the peculiar features of Americin Indian life.

The Timneh are the Chipweyans of Mackenzie, Carver and the older travellers, the Athabascans of many writers, the Montagnais of Father Petitot and others who have copied his statements. In the number of their tribes they exceed those even of the large Algonquin family, and they occupy a similarly extensive area, but oue upon which civilization has littlo encroached. Among the more important tribes may be mentioned the Chipweyans or Athabascans proper, the Coppermines, Beavers, Dogribs, Ticullies, Tlatskanai, Koltshiane, Atnah or Nehanni, Sursees, Nagailer, Tenan-Kutchin, Kutcha-Kutchin, Yukon or Ko-Yukon, Digothe or Loucheux, Sicami, Unakhotana, Kenai or 'Tehanin-Kutchin, Inkulit, Ugalenzes, Umpquas, Hoopas, Wilacki, Tolewah, Apaches, Namajos, Mescaleros, Pinalenos, Xicarillas. In reference to their habitat I cannot do better or more briefly than by quoting the words of Mr. W. H. Dall in his "Report on the distribution and nomenclature of the Native Tribes of Alaska and the Adjacent Territory." This great family includes a large number of American tribes, oxtending from near the mouth of the Mackenzie south to the borders of MLexico. The Apaches and Navajos belong toit, and the family seems to intersect the continent of North Americi in a northerly and southerly direction, principally along the flanks of the Rocky Mountains. The northem tribes of this stock extend nearly to the delta of the Yukon, and reach the sea-coast ar Cook's Inlet and the mouth of the Copper River. Eastward they extend to the divide between the watershed of Hudson's Bay and that of Athabasca and the Mackenzic River. The designa-
tion (Timneh) proposed by Messrs. Ross and Gibbs, has been accepted by most modern ethnologists. The northern Timene form thrir tribal names by affixing to an adjective word or phrase, the word tinneh meaning "people," in its modifications of tinnel, tince or tenue, or in one group the word kutchin, having the same meaning. The last are known as the Kutchin tribes, but so far as our knowledge yet extends are not sufficiently differentiated from the others to require special classification by themselves." Mr. Dall gives in the Appendix to this report a vocabulary of the Yakutats about Mount St. Elias, whom he classifies as Koljush or Thlinkeets, but whose language is plainly Timeh. They differ also from the Thlinkeets by the absence of the lip-ornament and the totemic system, and by eating the blubher and flesh of the whale, which the Thlinkeets regard as unclean.

The word "Timneh" in its various forms dinnie, dene, dinay, toene, tana, ttyamij, tine, tineze, tingi, tenghie, tinday, tinlay, \&c., answ?rs to the lenni, ilenni, renoes, ililew, irirew, inini, eyinew of the Algonquin, and should be a guide more or less to the affliation of the people so designated. Such a form is not $:$ 'y rare, nor is it, on the other hand, very common. Of similar furms in America, as among the Nootzans, Algonquins and some non-Tinneh Mexican tribes, I need not speak. The Celtic dyn, duine are nearer than any other known to me, and the Celtic languages in their now-Aryan features, which are few and evidently ingrafted, belong to the Ural-Altaic class. In Africa we find such forms as tna, thohen, among Bushmen and Hottentots, with iden, dim, de., in the Niger region. The Hebrew culum appears not only in the Semitic area, but also among non-Semitic Africans, in the Caucasus, and further east, as a monument, perhaps, of Mahomedan Semitic influence. In Polynesia forms like tangata, tamata present some resemblance, but I am not aware that those who employ these terms, any more than the people above mentioned, designate themselves by any such name. It is different with the Altaic family with which I have associated the Timmeh. The Tungusians call themselves Thengus, Donki, and are termed Tung-chu by their Chinese neighbours, the former being also in several tribes the words for man. Inasmuch as the Mantchn dynasty in China is Tungusim, there is every reason to respect the Chinese appellation. The Loucheux tenghie, and the Tenan-Kutchin tingi, like the Beaver tineze, are our Tungusian tungus and donki. Similarly the Tungus alee and the Mintehn cheche are the Uminqua
ekhe, and the Tacully chaca, woman. The Tungus tirgani, day, is the Koltchane tiljcan; tog, fire, the Ugalenze takak; dzsho, house, the Kutchin zelh; okat, river, the Tacully okox: chalkito, belly, the Ugalenze.katgott; gal, hand, the Tlatsk:mai kholuct; oyot, nose, the Navajo hutchih; amai, father, the Tlatskanai mama; and anya, mother, the Kenai anna. In the accompanying vocabulary a comparison is instituted between a collection of 'limneh words derived from various sources and part of the material of the Tungusic languages furinished by Klaproth.

The Tinneh languages exhibit their Northern Turanian character in the absence of true gender, and the substitution for it of a distinction between noums as intelligent or unintelligent, noble or ignoble, animate or inanimate. This it has in common witli the Tungus. The formation of the plural by affixing an adverb of quantity marks equally the Timeh languiges and the Mantchu. The adverb of quantity thas employed, which is lau in certain tribes, is like the Turkish plural in ler. There is the closest affinity between the Tungus and the Timneh languages in regard to the innumerable modifications of the verb to express variety and quality of action found in each. Both groups agree in prefixing the pronoun to the verb, thus differing from the Ugrian and Turkish order of pronominal affixes. Occasionally, however, the temporal index is infixed between the pronown and the verbal root in Tinneh, while, as far as known to me, it is final in the Tungusian languages, as it is in several tenses of the Timneh. In Tungus and Tinneh, equally, the accusatives precede the verb. The formation of the genitive by preposing the noun possessor, followed by the third personal pronoun, to the object possessed, characterizes both families. They agree, also, in employing post positions only instead of prepositions. The Mautch adjective is generally prefixed to its noun, but in some, at least, of the Tinneh dialects it follows. Yet the possessive adjective precedes as in Matchn. The above mentioned grammatical relationships of the Timneh and Tungus, although far from exhaustive, are sufficiently important to give weight to any other evidence linguistic or ethnological that may be adduced.

Various writers, generally, however, in seeking to account for the origin of the Esquimaux, have referred to the pressure northwards and eastwards of Tartar tribes in the fourteenth and previous canturies; and, among the nations whom they supposed the Yakuts
and other Tarlars to have displaced, enumerate the Tungus. This is exceodingly probable, and so far agrees with the Timnch traditions reported by Mackenzie and Father Petitut. These state that the enemies of the Tinnch, who were very wicked men, dwelt to the west of their nation; that, flecing from them, they crossed a shallow sea, passing from island to island in a bitierly cold climate, and at last found the sea to the west of them and their cnemies to the east. Such traditions plainly indicate the northern Asiatic origin of the Timeh, and, together with their vocabulary and grammar, limit them to an original home in the neighborhood of Siberia. Mr. Dall and other observers bear testimony to their love of a gipsy, vagabond life, which Martin Siuer, in his account of Billing's expedition, has similarly remarked upon in speaking of the Tungus. The latter stated in reference to this customary moring continually from place to place that the Tungus did so to avoid the contraction of disagreeable odours; and the traveller Hearne, in his "Voyage to Hudson's Bay," mentions a similar dislike to bad smells among the Timeh tribes. In regard to personal appearance nothing can be said of stature, for, while some writers describe the Tungus as tall, athletic and straight, others speak of them as generally below the middle size. The same apparently contradictory statements are made regarding the Timneh, showing that both Tungus and Timneh present much variety in this physical characteristic, although the writers on both sides are agreed that neither in the one family nor in the other is there any tendency to corpulence. The small eyes, high cheekbones, low forehead and coarse back hair of the Tungus are alluded to by Santini and Saner, and identical features are ascribed to the Tinneh by Hearne, Mackenzie and later writers. Although both peoples are generally in the habit of clepilation, it is not universal among either the Tungus or the Timeh. Somo of the Tungus tribes, such as the Tshapojirs, tat-too their faces after the prevailing Siberian fashion with bars or straight lines on the cheeks and forehead, and so, according to many authorities, do the Chipweyans and other Tinneh tribes.

The Tungus is inclined to bo demonstrative, mirth-loving, communicative, and the contrast in this respect between the undignified, fun-making and talkative Athabascan and the resorved, grave and silent Cree, his neighbour, has escaped few travellers in the North. West. The docility of the Tinnel is a frequent subject of favorable
comment ; and Martin Sauer in this respect accords the palm to the Thugus over all the Siberian peoples he met with in his journeyings. By this feature the Tinneh are separated from the Tartar Yakuts, in spite of the Yakutats being Timmeh, and from the Peninsular tribes represented by the Koriaks and Ainos. The latter, especially, are fierce, intractable warriors, which the Tinneh are not, for, although cruel enough in their conduct towards the feeble Esquimaux, they stand in wholesome dreal of the Algonquin Cree, who, though of a widely different race, reminds them of their ancient foe, the Yakut. Mongolian craft and cumning mark the Athabascan, who, with all his docility, is wanting in the savage nobility, the regard for truth and honor, that characterize equally the Algonquin and the Iroquois. He is in no sense the typical red-man of history and romance, but affords an opportunity for novel portraiture of Indian character to the Coopers and Mrayne Reids of the North-West.

In domestic and social relations there is absolute identity of custom among Tungus and Timneh. Government and laws they have virtually none, and are thus incapable of any combination for purposes of conquest. In this respect, however, the Mantchus, a 'Tungusic people, present a notable exception. The understanding among them relative to property in game, berries and personal effects coincides on both continents. The marriage ceremony is a simple act of purchase in either case, the only difference being that the modern Tungus having *domesticated the reindeer, barters that animal for his wife, while the Athabascan must needs offer some othor equivalent. Polygamy characterizes the two peoples, who are equally jealous in regard to their wives. But they agree, also, in the absence of chastity among the ummarried, and in the un-American custom of lending their daughters, sisters and female slaves to those whom they honor with their hospitality. The first wife occupies the highest position among Tungus and Timeh, and, although the place of the married woman is as in most barbarious nations, one of subjection, a larger share in domestic and even in public counsels is granted her in both nations than is generally accorded to American Indian matrons. In matters of religion there is much resemblance, both families being demonolators and sacrificing to evil spirits, the dog being an object of revereace, and their festivals and religious dances partaking of the same character. They agree in consulting young men who have previvisis prina:el themselve.j by a process of fasting in the inter-
pretation of dreams, and in a species of divination by means of the shoulder-blades of the deor, a practice common to the Tinneh and Tungus with the Lapps and other northern nations of the castern hemisphere, but unknown, so far as I am aware, among other American tribes.

One of the most remarkable resemblances between the customs of the two peoples appears in their funeral rites. The Tungus, as reported by Santini and Sauer, place their dead in wooden boxes, which they leave above ground and sometimes suspend to the branches of trees. Mr. Dall, in treating of the Unakhotana and Tehanin Kutchin, uses almost the same language as the Asiatic travellers in referring to the mode of sepulture of these tribes. Abernethy, with Santini and Sauer, inform us that the Tungus bury with their dead all their arms and implements, and that their mourning, which is at first violent, lasts generally for a whole year. Mackenzie, Hearne and Father Petitot bear witness to the similar violence and long duration of mourning for the dead among the Tinneh, and to the burying of all the personal effects of the deceased.

The Tungus live in tents made sometimes of skins, at others of birch-bark, as do the Tinneh, who have separate words to denote an ordinary house of the latter character and a skin-lodge. Both peoples are great fishers, hunters and berry-gatherers, while the Algonquins and other Indian tribes confine their attention largely to hunting. The use of the bow is characteristic of Tungus and Tinneh. Nore remarkable is the presence in the Timmeh area, as attested in Washington Irving's "Astoria," Pickering's "Races of Man," and Dr. Gibbs' "Report on the Tribes of Western Washington and North-western Oregon," of the corslet of pliable sticks interwoven with grass and sinews, which Abernethy found among the Tungus. It is supposed to be the only kind of defensive armour known in America. The Tungus, in common with other Ural Altaic tribes, use the snowshoo; but I am not able to compare its formation with that of the Timneh tribes which Mackenzie and Hearne characterize as being of superior workmanship. The birch canoe, generally regarded as peculiarly American, is Tungusian in its origin. "The Tongusi," says an author quoted by Mr. Mackintosh, whose book on "The Discovery of America and the Origin of the North American Indians" was published at Toronto in 1836, "use canoes made of birch-bark, distended over ribs of wood and nicely sewed together.

The Canadian and many other American nations use no other sort of boats. The paidlles of the Tongusi are broad at each end ; those of the people near Cook's River and of Onalaska are of the same form."

Sauer and Mackenzie refer to the insensibility to cold of the Tungus and Timeh respectively. The former, referring to the dress of the 'Iungus, says: "Their winter dress is the skin of the deer or wild sheep, dressed with the hair on; a breast-piece of the same which ties round the neck and reaches down to the waist, widening towards the bottom, and neatly ornamented with embroidery and beads; pantaloons of the same materials, which also furnish them with short stockings, and boots of the legs of rein-deer, with the hair outward; a fur cap and gloves. Their summer dress only differs in being simple leather without the hair:" Referring to the Chipweyans or Athabascans, Mackenzie writes: "There are no people more attentive to the comforts of their dress, or less anxious respecting its exterior appearance. In the winter it is composed of the skins of deer and their fawns, and dressed as fine as any chamois-leather, in the hecir. In the summer their apparel is the same, except that it is prepared without the hair. Their shoes and leggings are sewed together, the latter reaching upwards to the middle, and being supported by a belt. The shirt or coat, when girded round the waist, reaches to the middle of the thigh, and the mittens are sewed to the sleeves or are suspended by strings from the shoulders. A ruff or tippet surrounds the neck, and the skin of the head of the deer forms a curious kind of cap. A robe made of soveral deer or fawn skins sewed together covers the whole." The same author, speaking of the Dogribs, refers to the elaborate ornamentation of the breast-piece and other parts of their dress; and other travellers have described it in like terms. Santini dwells upon the fanciful and tasteful designs wrought with coloured percupine quills in which the Tungus indulged, and their coronet or had-band of leather, ornamented with embroidery and feathers. To the latter, Mackenzie makes reference also in connection with the Dogribs; and many writers have celebrated the ingenuity in quill-work of the whole Tinneh family, who were probably the teachers of this art to the populations of North America. Finally, although this is a matter not of dress, but of food, both the Tungus and the Tinneh are in the habit of eating the undigested food, principally lichen, in the stomach of the deer, which they mix with berries and other ingredients, as Saver and Hearne respectively
testify. Such a collection of parallel facts has rarely heen presented for the comnection of one or more peoples of unknown derivation, and would be impossible as mere coincidences. The only characteristics in which the Tungus may be said to differ from the Timeh are the truthfulness of the former and the complaining ways of the latter. But the evidence of Sauer to the first of these is not conclusive as to its characterizing the whole Tungus family,* nor can it be said that all the Tinneh tribes are equally unreliable. In docility the two families agree. The Tungus of Sauer were cheerful, and so are the Timnel in general, although inveterate grumblers, at least in certain tribes, as may be the case with some of the Tungus were more hown concerning them. Certainly, no two families representing the uld world and the new present closer affinities in name, vocabulary, grammar, physical appearance, dress, arts, manners and customs than do the Tungus of Asia and the Tinnel of Americia.

Before dealing with the Iroquois, who should in geographical order next claim our attention, I prefer to take up the origin of the Choctaw-Cherokee family, which shows its Asiatic connections more clearly, and which will tend to illustrate and confirm the Iroquois relationships. The original area of the Cherokee-Choctaw confederacy extended from Tennessee southward to the Gulf of Mexico. The Cherokees and Choctaws are generally regarded as distinct peoples, although their languages have much in common. The tribes included under the generic name Choctaw, are the Choctaws proper, the Chickasaws, Creeks or Muskogees, Hitchitees and Seminoles, all of whom are famous in history. They were originally a warlike, encroaching population, of a proud, fierce spirit, differing alike from the reserve of the Algonquin and the childishness and docility of the Athabascan. The character of the Iroquois is that of the Choctaw, and these are the great warrior tribes of North America who brought into the continent its peculiar arts of warfare as the Tinneh family gave to it its peculiar arts of peace. The Choctaws, we are told by Dr. Latham, Catlin, and others, used to flatten the head, and may thus be supposed to connect with the Salish or Flathead family of Oregon. But for the present we seek to discover their old world relationships rather than those of the new. The northern Asiatic people who flatten the head are the Koriaks, who inhabit the extreme

[^0]west of Siberia to the north of the peninsula of Kamtsclartia, to the centre of which certain tribes extend. Their languages are allied with the Kamtchatdale, Corean, Aino, Japanese, and Loochoo, and partake more or less of a Mongolian character, being, however, well differentiated from any Ural-Altaic division such as the Ugrian, Tartar, Mongol or Tungus. It is with these Koriaks that I find good evidence for associating the Cherokee-Choctaw confederacy.

In the first place identity of name, although in itself apt to be fallacious, may, as in the case of the Tungus-Tinnel connection, lead to truth. The Koriaks exist in two great divisions, a northern, known as the Tchuktchi, and a southern, the Koriaks proper or Koraeki. The former call themselves Tshekto, men or people, and they are the original Choctaws; the latter, who bear the name Koraeki, are the parent stock of the Cherokees. This looks so exceedingly plain that the question may be asked why was it not discovered before. The answer seems to be, that investigators liave been so long theorizing and refining that they managed to overlook plain facts lying upon the surface. Koriaks in Alaska have been looked for, but Tchuktchis in Tennesee and Mississippi would have been regarded as very much out of place. The Koriaks are of good stature, with features more pleasing and prominent than the Mongol. Dr. Lathan mentions "their general resemblance in respect to physical conformation to the American Indians." They are warlike and independent, and have encroached upon the Yukagirs and Kamtchatdales, as the Choctaws and Cherokees did upon the southern tribes of the United States. Abernethy states that among the Koriaks the mothers give, as they imagine, a decorous form to their children when infants by applying three 'boards, one on the top to give them a flat head, and one on each side to give them a sharp forehead." This is the Choctaw process of which Catlin speaks. Sauer relates that the T'chulstchis had a game resembling "prisoner's bars," and at the same time mentions the facility with which they threw stones from a kind of sling. The game popularly known as Lacrosse, common to the Choctaws and Iroquois, must, I think, be referred to, and I regret that I have no work treating fully of Koriak manners and customs by which this may be confirmed.* The Tchuktchis and the Choctaws are alike fond of such athletic sports as

[^1]ruming and wrestling, and in this respect present a marked contrast to neighbouring Asiatic and American tribes. They are equally noted for manual dexterity and mechanical skill, with capabilities for self improvement, as the present civilization of the Cherokes and Choctaws attests, and as is evident from the fact that the highly civilized Japanese are nearly related to the Koriaks. A Choctaw tradition, reported by Catlin, states that, a long time ago, the Choctaws "commenced moving from the country where they then lived, which was a great distance to the west of the great river and the mountains of snow, and they were a great many years on their way." It is worthy of note that the Tuhuktukis (? Tchuktchi) are mentioned as members of the Cherokee confederacy.

In treating of the Choctaw language I find it necessary to compare ts dialects with those of the Peninsular family in general, owing to the pancity of my collection of Koriak and Tchuktchi terms, and to the fact stated by Dr . Latham, that of the Peninsular languages the grammatical structure of only one of them, the Japanese, is known. The same writer adds that "the Peninsular languages have a general glossarial connection with each other," and "in the opinion of the present writer, the Peninsular languages agree in the general fact of being more closely akin to those of America than any other." The Choctiaw word for man hatali is the Japanese otoko, and the Muskogee chaukch is the Loo Choo chu. The Choctaw tike, tekchi woman is the Loo Choo tackiki. Boat is peni in Choctaw, and fiune in Japanese: and bone is foni in Choctaw and fone in Japanese. The two Tchuktchi terms for father, amnakica and attula, are represented by the Choctaw unke and the Cherokee chutokta. The Cherokee agaula and the Choctaw kullo, fish, are equally derived from the Tehuktchi ikhatik. The Tchuktchi name for god is istla and the Choctaw hoshtalli, while the Muskogee god, efecieesa, is not unlike the Japanese jebisu. The Tchuktchi aganak woman is the Cherokee ageyung; the Tchuktchi unako to-morrow, the Choctaw onaha; the Tchuktchi nouna, water, the Cherokee omma. Bui I must refer to the accompanying vocabulary for the lexical evidence thus introduced.

In regard to grammatical forms, absence of gender characterizes the Choctaw and Peninsular languages, and the same may almost be said in regard to number. Case is marked in both groups by pos positions. The form of the genitive is worthy of special note. In the case of each the possessor, with an affix originally representing
the third personal pronoun, precedes the object possessed; in other words the Choctaw and Peninsular languages practice the post-position of the nominative. Thus in Japanese "the bone of the man" is rendered
otoko no fone,
hatak in foni.
and in Choctaw
Bimilarly, "the finger of the woman" is in Loo-Choo-
tackki noo eebee, and in Choctaw tekehi in ibbak-ushi.

These furms, which give us the English, man's bone, woman's. finger, and in which in, no, noo represent the possessive inflection 's, together with the close resemblance in the actual words employed, illustrate the nearness of the Choctaw to the Peninsular idiom, and render a reference to Tchuktchi grammar unnecessary. The personal pronouns precede the verbal root in Loo-Choo and Japanese as well as in Choctaw, and the temporal index of the verb is final. For the past tense $t a$ is the Japanese and tee the Loo-Choo index, while in Choctaw it is tuli, tok. The Choctaw futures in ching, he and ashki are like the Mongol in iya, ho and sogai. In the formation of the passive the Chortaw sometimes inserts an like the Turkish, but in other cases simply changes the final rowel, as in Japanese. The Choctaw negative, k or $i k$, combined with the initial pronoun, is the prefixed Mantchu ako. In Choctaw, Japanese and Loo-Choo the accusative precedes the governing verb, and the place of the adjective secms in either case to be sometimes before, at others after the noun it qualifies. According to Santini, the Koriak verb, like the Tungus, is susceptible of all the modifications denoting variety and quality of action which characterize the American families of language. The Choctaws are undoubtedly the Tshekto, and the Cherokees the Koraeki.
A.family more important in many respects, at any rate to the Canadian student of American ethnology, is that known as the Wyandot, which, in general terms, includes the Hurons and Iroquois. These fall into two divisions, a northern and a southern, the latter being, in the historical period, natives of North Carolina, and thus in proximity to the Choctaws. The most important of the southern tribes were the Tuscaroras and Nottoways. The northern tribes were, and are still in part, in the neighborkood of the great lakesHuron, Ontario and Erie. The Huron, or Wyandot confederacy;
embracing many tribes comparatively unknown to fame, occupied the more northern, and the Iroquois or Five Nations, the southern part of the area. In the latter confederacy, said to be from three to five centuries old, were included the Mohawks, whose real name, according to Dr. Oronhyatekha, himself a distinguished Mohawk, is Kamyenkehaka, "the flint poople," the Oneidas, Onondagas, Cayugas and Senecas. The Tuscaroras, migrating northward, united with them at a comparatively recent period to form the Six Nations, now found on the Bay of Quinte and on the Grand River. An Iroquois tribe originally inhabited the site of Mcntreal, and were known as the Hochelagas ; and another still exists at Caughnawaga on the opposite side of the St. Lawrence. The Caughnawagas, St. Regis Indians and other scattered tribes, are generally known by the generic name Iroquois. A body of Hurons or Wyandots still exists in the neighbourhood of Quebec, where, in the days of warfare between them and the Iroquois, they sought French protection. Of the great nation that once occupied the extensive Lake Huron country, scattered fragments only remain. Some, with their ancient foes and relatives, the Iroquois, are found in the Western States, but the most important band is that found at Amherstburg on the Detroit River, whose history has been written in a somewhat rambling but amusing fashion by one of their number, Peter Dooyentate Clarke.

A peculiarity of the Wyandot-Iroquois dialects is the absence of labials, w being the nearest approach to the sound of these letters. In this they differ not only from the Algonquin tongues but from their related forms of speech, the Choctaw-Cherokee. The Mohawk makes a free use of the letter r, which in many cases possesses a certain virile force. This is sometimes replaced by l in Oneida, and in Onondaga, Cayuga and Seneca, by a breathing. Thus boy is raxha in Mohawk, laxha in Oneida, haksaah in Onondaga. The Tuscarora forms though cliffering from those of the five nations, agree with the Mohawk in presenting a recurrence of the harsh r, so little known to Algonquin speech. As far as I am able to judge, the affinities of the Wyandot proper or Huron are with the Tuscarora, which, from its resemblance to the Cherokee, I am disposed to regard as the oldest and purest form of the Wyandot-Iroquois language. The resemblance that exists between many words of the Tuscarora and Cherokee has been noted in the Mithridates, and is capable of large illustration. For instance, arrow is kanah in Tus-
carora, gahnee in Cherokee; dog cheeth Tuscarora, cheer Nottoway, keethlah, keira Cherokee ; Fire ccheeleh Mohawk, otchecre Tuscarora, cheela, cheera Cherokee; man itaatsin Ninekussar, atseeai Cherokee; woman ekening Tuscarora, ageyung Cherokee; boy doyato Huron, atsatsa Cherokee; child yetyatsoyuh Tuscarora, oostekuh Cherokee; death guikeya Iroquois, choosa Cherokee; face ookahsa Tuscarora, issokuth Cherokee; father aiktaa Huron, tawta Cherokee; mother nekets Tuscarora, akatchee Cherokee; good ayawaste Huron, seohstaqua Cherokee; girl yaweetseutho Wyandot, ayayutsa Cherokee; mountain onondes Seneca, de., naune Cherokee; tongue honacha Iroquois, yaknohgah Cherokee; water aouin Huron, ohneka Iroquois, ommah Cherokee. The following are a few instances of the agreement of Choctaw and Wyandot-Iroquois words. The Iroquois entiekeh and the Choctaw neetak, day; the Mohawk ojistok and the Choctaw phitchek, star; the Iroquois onotchia and the Choctaw noteh, tooth; the Cayuga haksaah and the Choctaw ushi, boy; the Seneca hanee and Troquois johnika and the Choctaw chinkeh, unky, father; the Iroquois nenekin and the Choctaw nockene, man; the Iroquois kninonk and the Choctaw kanchi, to buy, are not accidental coincidences, but indications of that relationship which a similarity of character and modes of life render probable.

A curious instance of the transference of a word from one meaning to another is afforded in the Choctaw numeral three, tukchina. Now, there can be no doubt that this is the Mohawk techini, the Cangmawaga tekeni, the Cayuga and Onondiga dekenih, which however denote two, instead of threc. That tukchina and techini are the same word is evident from the fact that eight, which in Choctar is untuchinct, is in Nohawk sct-dekonh, in Cunghnawaga sartekon and in Onondaga dekenh. I am disposed to think that the Choctaw form is the trie one, as the relation of eight to three gives five, the unit generally employed in compositions under ten. The Choctaw ten, pocole, is the Oneida oyelih, the absence of the initial lahial being a neeessity of Troquois language.

What the Cherokee-Choctaws are, such in a great measure must be the Wyandot-Iroquois judging from the specimen of lexical or glossarial connection already given. What their relation is to the Peninsular family of Asia may easily be shown by comparison, although in philology it is not always true that languages which resemble the same language resemble one another. There may also
be several degrees of resemblance. In some languages the words are so feeble, consisting largely of vowels, that the comparison of any two such languages in different parts of the world gives but unsatisfactory results, unless some litw governing the variation of vowelsounds could be discovered. In Iroquois, Choctaw, and in the Peninsular tongues words are generally strong, with a good deal of the bold Koriak-Cherokee character and Tchuktchi-Choctaw independence, so that the framer of a comparative vocabulary, into which one of these languages enters, will find little difticulty in deciding questions of likeness. There are, however, two things which render comparison less simple in the case of the Iroquois languages than in that of the Choctaw. The first of these has already been alluded toit is the absence of labials, and, in this connection the uncortain power of w in English and French renderings of Iroquois words. If it were always the equivalent of a labial, as it sometimes undoubtedly is, much of the dificulty would be removed. At times it seems to represent the liquid m, which is also a labial. The second hindrance is found in the additions to the original root which appear in the Iroquois as we compare it with the Choctaw and Peninsular languages, and which is evident even in comparing the older with the newer Wyandot forms. The Iroquois word has grown uncomfortably by means of prefix, affix and reduplication of syllables, sometimes apparently for purposes of euphony, at others, it wonld seem in a. retrogade direction to evolve by synthesis a concrete out of a comparatively abstract term. Were I better acquainted with the less known memiers of the Peninsular family of languages with which the Iroquois stands in the closest relation, I might have to modify this opinion.

I am not at present aware of any Asiatic names with which to associate those of the Wyandot family. The word Wyandot, like Oncida, Onondaga, Nottoway, may relate to the Esquimaux term innuit and the Samoied ennete, meaning man. In Arrapaho, one of the Algonquin dialects, man is enanitah. The Wyandot forms for man are oonquich, ungoul, aingahon, ungue, nenekin, (r)onkwe, (l)onque, hajinah, hauj-eenoh, onnonhoue, aneehhah, nehah, eniha, aineehau, (r)aniha-etschinak, ita-atsin, entequos, agint, (r)atsin, (r)atzin, de. Still, Esquimanx and Simoied forms appear-the Esquimaux enak and Samoied nienec. But the tino aino and the Japanese hito, otoko, may be found in the second an:l third groups.

The Wyandot family has undoubtedly miscellaneous Asiatic affinities in point of language. The remarkable term kanudra, denoting bread, is the Magyar kunyer, just as wish (five) is the Esthonian wiis. Rain in Mohawk is ayokecnore, a peculiar form, and this is the Turkish yaghmur; and the 'Turkish besh (five) is also the Cayuga wish and the Mohawk wish. The Magyar lutya is the Tuscarora cheeth (dog) and the Lapp oadze is the Huron auoitsa (flesh). The M.ohawk negative yagh is the Turkish yok, and waktare, an Iroquois word meaning "to speak," is the Yakut itture. Stone is odasqua in Iroquois and tash in Turk, and tooth is otoctseh in Tuscarora, dish in Tark. To hide is kasetha in Irguoois and leistya in Yakut, and field is kaketce in Iroquois and choolu in Yakut. The Onondaga word jolacharota (light) is the Lapp jalakus, with an increment. Two is ohs Mohawk, ausuh Tuscarora, and uch Twrk, ews Yaknt. while seven is jaddu in Mohawk, Oneida and Onondaga, and yeddi in Turk.

It may be asked why, when the Ugrian and Tartar languages relate so closely to the Troquois by unmistakable roots, I turn aside to the Peninsular. I do so for various reasons: First, because certain peculiarities of Turkish and Ugrian grammar, such as personal and possessive pronominal aftixes to verbs and nouns, are wanting in Iroquois. Second-Because the Peninsular languages are at least as near in lexical affinity to the Iroquois as are the Ural-Altaic: and, thirdly, because the Choctaw-Cherokee dialects, which are undonbtedly of Peninsular origin, are too like the Iroquois to admit of seprazation.

The Koriak origin of the Iroquois is given in the identity of the Koriak war-god, Arioski, with the Iroquois Areskoui. The resemblance of these names has often been noted, but it has been regarded as a coincidence similar to that which exists hatween them and the Greek Ares, curious, but of no scientific value. Mr. Mackintosh, in the little book to which I have already alluded, draws many parallels between the manners and customs of the Koriaks and the American Indians, several of the latter being Iroquois customs. Unfortunately this industrious author regarded the Amexican aborigines en masse, and mixed up Koriaks and Tungus in his comparisons. Still, his facts, to which I cannot now refer, are valuable. Arioski is not the only Iroquois word in Koriak. The Koriak or Tchuktchi khatkin, guetkin are the Troquois hetken, bad:
agwat is oohuwa, boat; rizaka and iegnika are ronwaye and aqueicuria, boy; aghynak is eghnisera, day; nutenut, nunn, are ononentsia, neujah, earth ; atta, annak and illiguin are ata, hanec and lahkeni, father; annak is yonełs, fire; githat is atchita, foot; kaaguk is lowwa, great; nujak is onuchquira, hair; khigan, kilhiyuin are hiunyage, heaven, sky; gaitigen is kelanquaw, moon; nnak is uneheh, mother; ekigin is agwaghsene, mouth; chynga is yuungah, nose; kiuk is joke, Jaihyoehakiouh, river ; anighu is ouniyeghte, snow; gutuk is otoatseh, tooth; utut is ohotee, tree; mok and nouna are ohneka and nekahuons, water; aganak is eleening, woman; acik is osae, young; ainkanka is eniage, eninya, finger; unako is enionhene, to-morrow; kanujak is kanadzia, copper; and kulle is oyelih, ten. In some of these words, the increment of which I have spoken, will be observed. Thus, aghynak becomes eghnis-era; nujak is lengthened to onuchquira, anighu to ouniyegh-te; unako, the Choctaw onaha, to-morrow, takes an interpolated r, which is probably a mere strengthening of the vowel ", and adds ne, eniorke-ne. The strength of the Iroquois words comes out well in the Japanese and Loo-Choo. Thus we have kuru, Japanese, Karo Mohawk, come; Lkurrazzee, Loo-Choo, arochia, Huron, hair ; kokurro, Jap., hahweriacha, Iroquois, heart; atchperoo, Loo-Choo, otorahawte, Huron, hot; korossu, Jup., leerios, Iroquois, kill; sheerousa, Loo-Choo, kearager, Mohawk, white; teeroo, L.ooChoo, atere, Iroquois, basket. Terms for man, woman and child are fainly represented in this group:- Iito, otoko, Jap., give ituatsi:, etschinuk, hatgina, mann; tacleki and intuyo, Loo-Choo, give ntaikai and yonkwe, woman; Kodoma, Jap., is kotonia, and zoocka, Loo-Choo, woccanoune, child. The Aino, which furnishes in its ethnic term for man, an equivalent to aineehau, cnilha, in zia sister adds the original of the Iroquois tsiha, akzia. Its oondee, arm, is the Iroquois aonuntsa; cahani, boat, is gahomhzo ; koznetsou, moon, kanoughquaw and eghinda; wakhn, water, auwenh; askippi, finger, oosookiway ; and o, yes, io. The Kamtchatdale is also fairly represented in Iroquois. Its form for axe, Fiv sqe:a, is the nearest I know to the Iroquois askwechia; adkang, bad, is the Iroquois hetken; Ketshidzshi, brother, finds its analogues in yatsi, atsiha; lioquasitch, come, in kats; kossa, dog, in çheeth; kivutshquikolsh, see, in athahtos; quaagh, face, in oolahssah; chetshitshoo, girl, in yuceetseutho, caidaizai; settoo, hand, in choth; ; lisut, house, in ganasnte; Finschoo, sister, in akchitha, sce. The Iroquois third personal pronoun ra, re is the

Japanese are, and the Loo-Clioo aree. The Iroquois numerals are more Ugrian and Tartar than Peninsular, so far, at least, as my vocabularies enable me to judge. The presence of many Ugrian and Tartar words in common Iroquois speech is a phenomenon for which I camnot at present account. The same phenomenon appears in the Quichua of Peru.

The Iroquois grammar might be Nongol or Tungus as well as Japanese or Peninsular. It is neither Ugrian nor Tartar. It marks a distinction between nouns as virile and non-viite, similar to that of the Koriak. It possesses a plural in final ke, like the Magyar in k and the Mantchu in sa. It has also a dual like sume of the Ugrian languages. It forms the genitive in the same way as the Ural Altaic and Peninsular languages in gencral, by preposing the genitive, followed by the third personal pronoun, to the nominative. The pronom in the accusative, or regimen of the verb, precedes it as in Japanese, Mongol, \&c., but this doas not seem to be always the case with the accusatives of nouns. Another peculiarity of Iroquois grammar is that the small number of proper adjectives in the language follow the noun they qualify, while, in the Ural-Altaic languages, and sometimes in the Peninsular, they precede. Still the possessive adjectives are preposed as well as the word akwekon, all, and similar terins. The personal pronouns precede the verbal root, and the temporal signs follow it, as in Mongol, Tungus and Japa:ese. The Iroquois also agrees with the Ural-Altaic and Peninsular languages in employing post-positions only. Like the Mantchu, Northern Chinese and Choctaw, the Iroquois possesses the exclusive and inclusive phual of the first personal pronoun. It also has separate terms for elder and younger brother and sister, in common with all the Turanian languages. The Iroquois grammar is thus in its main features Choctaw and Peninsular.

The ball-play or lacrosse of the Iroquois, like that of the Choctaws, must be traceable to an Asiatic region, and may relate to the * well-known game of the Basques in Western Europe. A large family of nations and languages has yet to be recognized, that, with the Ural-Altaic class, shall include the Basque in Europe, the Berber, Elaussa and Kashma in Africa, the Timelh, Iroquois, Choctaw, and, perhaps, the Dacotah and Aztec of North America,

[^2]and the Aymara and Quichua of the Southern Continent; and, intermediate between the Asiatic and American divisions, the Peninsular languages of Asia will occupy an important position. The Altaic languages least in sympathy with this family are the Mongol, whose affinities are largely Dravidian. At the base of this large family the Accad stands, whose relations are probably more Peninsular than anything else; and next to the Accad in point of antiquity and philological importance is the pre-Aryan Celtic, which lives in the Quichua of to-day, as I showed in a contribution to the Scciete Americaine do France, and in a list published by Dr. Hyde Clarke in the Journal of the Anthropological Institute. Dr. Hyde Clarke had long before connected the Accad and the Quichua-Aymara, and had linked the Houssa with the Basque. He has also directed attention to Basque similarities in Japanese and. Loo-Choo. Most of the tribes composing this family were known to the ancients as Scythims, so that the ancestors of our modern Iroquois may have over-run Media and plundered the Temple of Venus at Ascalon, tantalized the army of Darius or talked with Herodotus in the Crimea. Types of mankind, in a savage state, do not greatly change, as may be seen by comparing the Tinneh or Algonquin tribes with the Iroquois and Choctaw. Languages long retain their earliest forms, as is apparent in the Japanese somots and Loo-Choo shimutzi, which are just the old Accadian sumui, samak, a book, that were spoken in ancient Babylonia perhaps four thousand years ago. This continent may yet iurnish materials in philology and kindred departments to lay side by side with the literary and art treasures of the ancient seats of empire on the Euphrates and Tigris, by which to restore the page of long-forgotten history. At any rate there is a path from the Old World into the New by the Asiatic Continent, as well as by the islands of the sea. Discouragements enough have been placed in the scholar's way by one-sided minds and students of a single language or science. It is time to treat them with the contempt that all narrowness deserves, and to aim at making ethology more than a statement of unsolved problems.

It would be well for all who hold the essential diversity of American from other grammatical forms, to ponder the statement of one, who, himself no mean philologist, has generally shown little favour to any attempts that have been made to reconcile the Old World and the New in point of language. I allude to MI. Lucien

Adam, who, after a comparison of Algonquin, Iroquois, Dacotah, Choctaw, Tinnel, Maya-Quiche, Aztec, Muysca, Carib, Guarani, Quichua and Kiriri grammars, adds this important note: "In fact the preceding languages are all more or less polysynthetic, but this polysynthesis, which essentially consists in suffixing subordinate personal pronouns to the noun, the postposition and the verb, equally characterizes the Semitic languages, the Basque, the Mordwin, the Vogul, and even the Magyar." As far as American philology is concerned the question of the unity of the human race remains where it has been fixed by Revelation. I close this paper with a sentence from Dr. Daniel Wilson's address before the American Association: "The same lines of research (as those which have demonstrated Aryan unity) point hopefully to future disclosures for ourselves, helping us to bridge over the great gulf which separates America from that older historic and prehistoric world ; and so to reunite the modern history of this continent with an ancient past."

I.-COMPARATIVE VOGABULARY OF THE TINNEH AND tu'ngus languages.

The material of this and the following vocabularies has been derived from Rughsh, Irencin and German sources, with variant orthography. I have not thought fit to make any other alteration than that of replacing the German j with y, as such Euglish vowel sounds as ah, ce sufficiently attest their origin.

	Tinneh.	Tungos.
arm	ola, T. (Tacully)	ngala
axe	taih, K. (Kutchin)	tukka
	shashill, 'T.	shutio
bad	tschoolta, Kn. (Kenai)	kanult
bear	sus, T.; yass, C. (Chipweyan)	leki, kuti
beard	tarra, D. (Dogrib)	tshurkan
bed	kaatsch, U. (Ugalenze)	sektau
belly	kngott, U.	chukito
bird	kakashi, Kn.	gasha
	tsoje, Ko. (koltshane)	doghi
black	thhlsme, Tlt. (Tlatskanai)	sachalin
blood	sko, T. shtule Um. Umpqua)	shosha
boat	tsi, T.'	djaw
boy	kaha, B. (Beaver)	kuakan
bread	kliuthein, k.	kiltora
brother	chah, K.; cclull, T.	aki
bull	chasski, U . ahkik. K.	chjukun etsche
child	beye, 'r. quelaquis, C .	minja, bujadjui ni., aljukan
	ischynake, Kn.	kunga
clothes	thuth, C.; togaai, Kn.	tetiga
cold	nikkudh, K .	inginikde
	hungkox, T .	inginishin
	oulecadze, B.	yullishin
come	chatchoo, L. (Louchenx)	tschi
copper	thetsra, K .	tschirit
day	tilican, Ko.	tirgani
daughter	nitchit, K.	unadju
deer	Datshish, Ko.	buchu
driuk	esdan, Mo. (Montagnais)	undau
	chidetleh, L.	koldakoo
ear	xonade, Kit.	Schen
	szulu, K.	korot

earth	Tinneir. ne, Na (Navajo); nance, Um.	tungus.
mat	beha, L.	bishui
eye	cta, Mo.	ceslia
tive	mama, Tit. telmal ; takat, U	nma
figh	tenck, At. (Atnab) ; takak, 0.	tona, tors
	lue, Mo. -	ollo
forchead	sekata, Y. (Yukon)	onkot,
	getsi, K , Tornh, (Tolewah)	${ }_{\text {a }}^{\text {asatkan }}$
give	hamilta, C .	Omult
go	antonger, Y.	genigar
good	sutehon, T .	ssain
great	unshaw, c .	ekzsham
	choh, K.	choydi
hand	kholai, Tit. ; hullah, Na.	tschurin
	imla, Mo.	$\underset{\text { mala }}{\text { gata }}$
head	edzai, D.	udjoo
heaven	jujam, Kn .	мjan
house	zeh, K.	dizsho
husband	athotees, c .	edee
	etsayoh, B .	oddiu
	deneya, Mo.	cdin
ice	ttatz, U.	djuko, dischuche
iron	shlestas, T.	sele
knife	teish, T.	utseh
	tlay, L.	
life	clistur, K .	awdanna
lightning	namitunkun, K .	imi
lip	cdanne, Mo ${ }^{\text {a }}$	tathian
man	tengi, $\mathrm{K} . ;$ tingi, Tm. (Tenan-Kutchin); tenghie, L.	tungus, donki
	sylkia, U.	chacha
	payyalmay, P. (Pimaleno)	bey
mother	amma, Kn .	enie
	an, Mo.	
mountain	schhell, T. tauri, Mo.	tscholkon urra
no	aume maw, B.	umi
nose	neuzeh, it.	ningsta
	huntcha, H. (Hoopah)	onokto
old	saiyidhelkai, K.	sagdi
pipe	tekatski, T.	tagon
rain	naoton, T.; tsin, K. tchandellez, Mo.	oodan, uddun tukdol
red	delicouse, C .	cholachin
river	okox, T.	okat
salt	tedhay, Mo.	tak
see	eshi, Mo.; utschtschiilia, U.	itschetschim
serpent	nadudhi, Mo.	
sleep	azut, U.	adjikta
smull	astekwoo, Tlt.	adsighe
son	${ }_{\text {max }}^{\text {nacoutza, }}$ tsiah,	ujuktschukau
spoon	scliti, U.	${ }_{\text {dsuil }}$
star	sumshact, IJ.	Onikia
	klune, Y .; shlum, T .	haulen
stone	tschayer, P .	djollo
sun	chokonoi, Na.; chignonakai, Co. Coppermine.	schigun
thunder	Shoonnahaye, M. (Mescalero)	shuu
thread	mo, Mo.	adio
tongue	tsoola, T .	tschola
tooth	egho, X. (Xicarilia); shti, Tol.	ikta
wife	sak, T.	
wind	atse, Y .	Sarkan
wolr	yess, C.T.	gusko
write	ekhe, Um.; chaca, T. edesklis, Mo.	heghe, cheche dokli
The	neh numerals do not agree with the	Tungus, but
intimat	elated to those of the Koriaks, Tchuk	s and Kam

dales. This must be the result of intercourse between the Tinneh and these peoples in an Asiatic home, as the general vocabulary of . the Timnch shows comparatively little likeness to those of the socalled Peninsular family.

Tinneit.

1. tahse, A. (Apache); tashte, Co.; tashayay, M. etscha, T.; titstoh. Tol. tihlagga, K.; aitschlia, Um.; tathlai, Na. kisslekta, I. (Ingalik)
2. natoke, IIt.; inteka, I.; nateakeha, At. techn, Kn.; gatte, U. nach, II.; nekni. K.; nacheh, Tol.; nạkhe, C. nahke, D.; onghaty, 13 .
3. tokchike, Kn.; toek, W (Wilacki); tatak, Um. tahek, M.; tiik, K.; taakei, Ac.; tauh, Na. kahyay, M.
4. teucheh, Tol.; tuntschik, Um.; teetutye, Si. (Sicanni) dine, D. $:$ tin, Na.; tang, K.
5. inla, lakken, D.
swoila, Tol.; schwullak, Um.; cinwoln, II.
sesunlase, Mo.; skumlai, T.
6. cooslac, W.; ulkitake, T.
7. tluzuddunkhe, C. etsedetsenekai, K . ookaidingkee, Si. hoitahee, UnI.; tauatee, B.; tsaytch, Tol.
S. coostak, W.
elkedinghe, \mathbf{C}.
8. taligeeahttah, C. \&

Peningular.

dysak, Kamtchatdale atashek, T'chuktchi attiajlik, T.
vitakaw, Koriak
hyttaka, ytahigau, K.
niochtsh, K.
tschok, tsook, lisa.
ginch, K .
tschak, tsehaak, tschana, Ka. ishtiama, T.
monlon, myllygen, I.
(sombula, sabljak, shumblia, sumula, Samoied)
sewinlak, T. (6)
gylkoch, kylkoka, Ka.
tscholudınug, Ka. (ठ)
etachtanu, Ка.
ahdanuth, etuchtunuk, Ka.
itatyk, Ka.
tshookotuk, Ka.
tselinludunug, Ka.
tschuaktuk, Ka.
tschaaktanak, Kia.
II.-COMPARATIVE VOCABULARY OF THE CHEROKEE-CHOCTAW AND PENINSULAR LANGUAGES.

day	nectak, C.
devith, die	illi, C., ilzah, M.
devil	askinı, Clı.
doy	ophe, C .
driuk	ishko, C.
mar	istehuchtsko, M.
	cheelane, Ci.
cat	pa. impa, C.
	ahlestahyunghungskaw, Ch.
c:	akang, C.
evening	oosunghe, Ch .
	yhofkusuy, M.
eye	tolltlowah, M.
	mishkin, C .
far	hopiyi, M.
father	aki, C.
	unke, aunkke, C.
	tawta, Ch.
	iliky, M.
female	tek, C .
fight	bohli, C.
finger	ibbak-ushi, C.
tisla	atsatih, Ch.
	agaula, Cu.; kullo, C.
	nume, \because.
flesh	ahpisochah, il.
fox	chrola, C .
fruit	uni, C.
girl, danghter	take, C.
	chuchhoostee, M.
go	ahe, C.; aguy, M. foka, C
god	hoshtahli, C.
good	chito, C.; heetla, M.
gouse	shilaklak, C.
grass	hasook, C.
great	tlakkeh, M.
	chito, C .
green	pahuyhlammyomuy, M.
hail	gahnasookha, Ch.
hair	gitlung, Ch.
	pase, pache. C.
	nutakhish. C. (beard)
head	skoboch, Chickasav
	nislikubo, C.
	есаu, M.
heart	chunkush, C .
	elfaga, M.
	oonche, Ch .
heaven, sky	gullungluddee, Ch .
hot	ukanawung, Ch.
honse	chookka, ${ }^{\text {c }}$
	okte, C.
life, live	okchaya, C.
light	egah, Ch. ; hiyiaguy, M.
lightning	anahgahleske, Ch.
love	immuyuyhluy, M.
man	hottok, C.
	nockene, C .
	chaulieh, M.
moon	teenonentoghe, Ch .
	.halhasie, M.
morning	onnihile, C. ; sunahlae, Ch .
mother	iehskie, ML; akachee, Ch.
mountain	nunichaha, C .
mouth	tsiawli, Ch.
	chaknoh, M.
neck	innokewau, M.
night	ninnok, C.; nennak, M.
nose	kohyoungsahil, .Ch.
old	suprokuc, C .
prince	miko, C.
rain	ema, C.
	omba, C.

nitchi, L.
wiillagyn, K.; haiulwa, A.
akimma, J.
stahpu, 1.
ign, A.
tschiftuchk, T.
welolongen, C .
ipprath, imbi, A.
allotlonim, Kil.
kitga, $L_{\text {. }}$
aigomkie, 'T.
vabe, J.
lilet, K.
mamako, J.
yemper, J.
chichi, J.; isch, K.
una, A.; amaka, T.
teteoya, J.
illugin, T.
tackki, L.
pilluak, T.; buchi-ai, J.
yubi, J.; ecbee, L.
ctschuda, Ka.
ikahluk, T.
emnen, K.
tubish, Ka.
tchasalhai, Kr.; gitgalgom, K.
ewynati, K.
talckki, L.
chtshitshoo, Ka.
iku, yuka, J.
apkas, A.
istlia, T .
hota Corcan; kuwodai, J.
lachlach, T.
kusa, J.; cwuk, T.
lukuklin, K.
chytschin, Ka.
ichtsehitschi, k.; sjiu, A,
aplela, K .
kannik, T.
kitigir, K.
bode, Corcin; feejee, L. (beard)
mujak, T.
schaba, A.; kobe, J.
naskok, T.
kashko, τ
shin, J.
sampeh, A.
minjugu, lia.
keilak, T,
kikang, Ka.
ke, uehi, J.
tschikuth, T.
kakowa, Kat
ehobyehei, K.
kumylgilat, K.
okmukulingin, K .
otokn, J.
ningen, J.
chu, L.; chujakutsch, K.
tankuk, 'T.
jailgat, K .
emukulas, Ka. (unhaicl, Yukagir)
okkasmn, J.
naju, K.; naigak, T.
zelyilda, Ka.
sekiangin, K.
ingik, K .
nigynok, K.; unjuk, T.
kajakam, Ka.
gepinowli, K.
miko, J.
ame, J.
apftu, A.

rel	aski, M.; aguskah, Ch ,	azgutsch, Kn.
	keekahgeh, Ch.	akai, J.
	chahti, M.	kawachtuk, T.
river	hucha, \mathbf{C}.	gychi, Ka.
	bok, C.	bez, A.
	equmnih Ch .	gojem, K.
run	clumfia, C.	- shuppon, J.
	sitkuscha, M.	chikuten, J.
salt	hupi, C.	schipoo, 4.
sea	amaquohe, Ch. wehuts, Ilitchitee	umi, J.; mok, imah, T.
sick, sickness sister	abeka, C.	biyoki, J.
	unggedo, Ch.	onna-kiyodai, J.; tschagado, K.
	nocksishtike, C.	najahak, T.
skin sleep	hakschup, C.	kawa, J.
	gahlehah, Ch.	keilkat, K.
	nusi, C.	netsuki, J.
	nogobuscha, M.	soibushi, J. (sleep together)
small snow	chotgoose, M.	chiisai, J.
snow	ungnawtsi, Cu.	anighu, K .
	tilligue, M.	hlhigwuh, K.
star	owohchiken, Hitchitce	hoshi, J.
	phontchik, C.	foshi, J.
summer	miski, C.	natsu, J.
	kolikee, Ch .	ka, J.; kuiga, T.
	tomopulleh, Chickasaw	adomplis, Ka.
sum	neetak-husil, C. (Day-star)	nichi, J. (day) hoshi, J. (star)
	neetahusa, M.	matschak, 'T.
	kalesta, Cli.	kulleatsch, K .
take throat	1shi, C.	okn, A.
	ahgelega, Ch.	igliak, T.
thander.	hiloha, C . jyrajaa, C.	kyhal, kyigala, kihinclan, K. rai, J. urgirgerkin, 'I'.
to-morr tongue tooth tree walk water	onaha, C.	unato, T.
	soolish, C.; istetolahswah, M.	etschilla, K .
	innotay, M.	wuttinka, T.
	iti, C.; itta, Chickasaw; uhduh, Ch .	utut, K.; uttu, T.; uuda, Ka.
	yahkahbuscha, M.	hakobu. J.
	uekah, C.	waku, A.
	ahmanh, Ch.	emuk, T.; mima, K .
whil: wolf woman	hatki, M.	haku, J.; attych, Ka.
	yahah, M.	haigngeh, K .
	choyo, C .	jo, J.
	ageyung, Ch.	aganak, T.
	tike, tekchi, C.	tackici,
1.	humna, M.	onnon, K .
2.	tuklo, C.; toogalo, Chickersaw	tzugelsch, Kia. (3)
3.	tsawi, Ch.; totcheh, M.; tukchina, C.	tsook, Ka.
4.	uslita, C.	ishtama, T .
	nungcil, Ch,	nijach, K.
5.	tahlapi, C.	tachlima, \mathbf{T}.
6.	hannali, C .	nummalan, onnamyllangan, K.
7.	untuklo, C.	nitachmallangga, K .
8.	untuchina, C .	tschooktunuk, T.
9. 10.	ostabah, M.	stammo, T .
10.	pocole, C .	kulle, T.

III.-COMPARATIVE VOCABULARY OF THE WYANDOT-IROQUOIS		
AND PENINSULAR LANGUAGES.		
above	clmeken, Iroquois	useni, Japanese
arm	onentcha, I.	oondee, Aino
axe	askirechia, I.	kvasqua, koshcho, Kamtchatdale
	nokeuh, Tuscarora	inggako, Koriak
	ahdokenh, Mohawk	adaganu, K.
baskef	atere, I (Ironuis) [M. (Mohawk)	teeroo, Loo-Choo ; zaru, J. (Japanese)
bear	onehereuh, 'Т. (Tuscarora) ; oorıharlee,	ahliak, Tchuktchi
bad	hetken. I.	chaitkin, K. (Korink)
	washuh, T.	wasa, Loo-Choo [egchka, T. (Tchulitchi)
belly	kwichta, I.	ksuch, Ka. (Kamtchatdale); aktscha-
below	magaenta, M. chtiake, I.	nanchiim, T. jechtok, T.
belt	ontagwarinchta. I.	ririt, irit, T.
black	hontsi. I.	nudchen, T.
	tetiuealas, O. (Onsidu)	natchala, T.; kytyhalu, K.

bloud	cotnuh, T. ; gatkum, N. (Nottoway)	lietsu, J.
	hutkwensa, I. ; otquechsn, On. (Onon-	
luily	gu-ierongue, oieronta, 1. [llagu.	gilgin, K. ; karada, J.
hente	onna, H. (lluron)	hohe, J. ${ }^{\text {der }}$
	hechtienda, I. ; akstiyeh, I.	kotsu, J.
low	awraw, T.	erit, K.
boy, son	laxha, O.	laki, K.
	ronwaye, M.	rinika, T.
	haksaah, On. ; eawook, S. (Seneer)	akek, jakak, K.
brother	ataquen, II.; jattatege, On.	utoko-kiyodai, J. ; tyga, Kia
	haenyeha, II.	eninichse, K.
	teetoteken, S .	itsehamitugin, T.
	tecahgattahnoonduclih, M.	tschamdakal, K .
	yatsi, H .	ktashidzshi, Kı.
burn	gatchatha, I .	yatti, L.
	kotonia, I.	kodomo, J.
	cleahhah, H .	chigazi, A. (Aino)
	woccanoune, T.	wocka, Loo-Choo (young)
cold	wathorats, I. ; lurea, II.	kiyctaru, J.
come	karo, M. ${ }^{\text {a }}$,	kuru, J
copper	quennies, M. ; kanadzia, I.	akagnne, J.
day	entiekeh, I.	nitchi, L. (Ioo-Cheo)
	ennisera, l.; eghnisera, M.	nichi, J.; aghynak, T.
10	Yornuhuh. I.	halui, K.; hallugg, Ka.
dog	yunyenoin, H.	okonai, J.
	cheeth, T.	getten, T.; sheda, A.
	erhar, M.; cheer, N.; tschierha, On.	atar, chatalan, K.
drink	kenha, I.	gang, L.
duck	Soluck, M.	igyletsch, Ka.
ear	ohuchta, On.	tschiftuche, 'I'.
	suntunke, N.	tschintak, T.
earth	ohetta, I.	ttati, Corear.
	onouentsia, 1.	nutemut, K.
	uenjah, S.; ahunga, 0.	nuna, T.
cat	higuech, I.	ku, J.
	tehatskahons, M.	tekitschgyn, T.
cgg	onlionchia, I .	nohk, mukn, A.; njhach, K:a.
	koktha, I.	hate, J.
evening	yougarlahsickhah, M. teteinret H	aigaveroe, k.
	teteinret, H . acoina fr.	aathin, Ka.
ese	acoina, H . kaka S. okaghha, C. (Cayuga)	gam, J.
father	, ;okn (Cayuga) ionniba I.; ibani ${ }^{\text {C }}$	shigi, A.; ik, T.
	aihtar, H.; ata, 'T.	atta, T .
	rakeni, M.; lahkeni, 0 .	illigin, T.
	onasa, I.	hannee, L.
field fingers	kaheta, I.	tahata, hatake, J.; getschigyn, K.
fingers	eyingia, H .	ailanka, T .
fre	Sthhuguehiahgheh, If.	tschilgit, K.
fre	ontchichta, I .	mndji, 1 .
fish	yoneks, T.	mmmak, ekmok, T.
	ycentso, H. ${ }^{\text {a }}$	ctschuda, ha. entschudu, Kia.
	kenyuck, S .	amnegui, 'r.
fout	saseeke, N.	shakil. J.
	oosa, T.	assi, J.
forehead	ochsita, On.: achita, H.	githat, T.
forehead	akentstara, I .	kjtshal, K.
fox	oyentsa, H.	kuitschitsch, Ka.
frog	skwarak, I.	gayeru, J.; Mitschkat, K.
gill, daughter	kaunuhwukh, T.	ingewek, $\dot{\mathrm{K}}$.
	kayung, 0 .	suwingh, Ka.
	ikhehawog, C.; kearrook, S.	gufikuku, K.
go	keyahwe, wahetky, I.	katchu, Ka.
	yehatcatyese, M.	utashish, Ka.
sod	ocki, H.	egeg, K.
	tezhuskahau, H.	duzdeachtschitsch, Ka.
grood	oogenerle, M. ; ioyanere, I.	gemelewli, K.
great	kowa, I. tatchanawihis x	
	tatchanawihis, X .	chytschin, Ka.

hair	arochia, I. ahwerochia, I. onuchquira, On. ononkia, C .	Imuchshach, K. ; ruh, A. tscheracher, Ka. kytyhuir, kitigir, K. ; kar-nu, A. nujak, T.
hime	oshonsia, I:	soan, C. (Corcan)
	chotta, I.	syttu, Ka.
hare	tahhoot-almaykuh, M.	Whl-huta, K.
he	ra, I.	are, J. kashira J
head	noatsheern, F . nontsi, I. ; :moonjec, M.	kashira, J. naskok, '1.
beart	hahweriacha, I.	kokoro, J.
heaven, sky	quaker-wntika, N. kianyaye, I. garomhiarue, I.	goku-rakin. J ; rikita, A. ; kochall, Ka. chain. kin. ; khinul, K. cherwol, K .
hom	kanagial, I.	tscheonok, T .
hot, heat	otarahaute, H. yoonaurihun, T.	hotern, J. nomling, K .
hanase	kanosiod, (., ; knnoughsode, M. anonchia, H .	kisd, kishit, Ka, ennit, 'T.
hunger. hungr	cautsore, 0. cadagcariax: 0.	katsuyern, J. shandageri, A.
kill	kerios, I.	koroshi, J.'
knife	kainana, C .	ko-katana, J.
life	youhe, M.	inochi, J.
	konnhe, I.	kyjunilin. T.
lip	hechkwar, I.	kkovan, Ka.
love	enorongwa, M. ; aindoorookwar, H .	(anurak, Yukagir)
male	hatgina. I.	otoko, J.
man	nenekin, I; aingahon, H .	nilken, ${ }_{\text {chor }}$,
	eniha, N ; ancehah, T ,	ainuh, A.
	oonquich, M.	kengitseh, Ka. ; oikyo, A. ; ickkeega, L.
moon	kamnughkwaw, C .	(hinimsha, Yukagir); kounetsou, d.
	kelanyuaw, M.; karakkwa, I.	gailigen, k.
mother	ena, N ; meheh, H. ; eanuh, T .	aingba, anguan, Ka.
	ikilmom, M. a ${ }^{\text {a }}$,	ella, elhi, K. ; illia, Kia.
mountain	kaumatauta, 0 .	kimita, A.
	onontilh, H.; onontes, On.	enshida, namud, Ka.; neit, T.
mouth	chigue, I.	kuchi, J.
	yasook, 0	syeksye, saaxa, Ka.
	sishakaent, C.	sckiangin, K .
	oosharunwah, T. agwarhsene, M.	gikirgin, djekergen, K. ekigin, T .
much	eso, 1 ; aysoo, Mr.	osa osa, J
	avquayakso, M.	oowhoko, L.
nail	ohetta, I.	wegyt, 'T'
	oocheelah, M.	wachelang, K .
name	osemat.	nimma, K.
navel	hotchetuta, I.	hozo, J.; katkatschik, T.
neek	oncaya, M.	
night	sonrekia, I.	ukuru, anzkari, A.; unnjuk, T.
	kawwassonneak, 0. nelisola, S.	kyunnuk, ha. nikita, T'.
nose	yaunga, H.	cuku, K. ; hana, J.
	oteusag, N.	tatuk, T.; ahdum, idu, Δ.
	oojyasa, 'T.	echaech, yachehaya, 3 .
	kakondiah, S.	kaakang, ka.
	geneuchsia, M.	chyngak, r.
	enuchsakike, C.	enigytan, K .
place	kiterons, I.	kakeru, J.
rain	inkemmores, I.	(yagmur, Turk)
red	quechtaba, S .	kawachtuk, T.
	guwenta-rogon, I.	nitschel-rachen, k .
	tucotquaurauyuh, T. ; oniquahtala, 0	tshatshaln, Ka.
river	kihade, C. ; geihate, On.	kiha, Ka.: knigutt, T.
saliva	wtchera, \mathfrak{L}.	yodare, J. ${ }_{\text {c }}$
shoes	onokqua, T.	hunginn, C.
silver	hwichtanoron, I.	elnipel-wychtin, K. ahtschitsch, kutchaan, Ka; tchakyhetch
Sister	tsiha, I. ; akzia, On. ; auchtchee, T.	ahtschitsch, kutchaan, Ka; tchakyhetch rus, A.
skin	hoserochia, I . hnonk, I.	nakka, T.
sleep	wakitas, I.	kangwitkis, \mathbf{K}.
small	ostonha, I.	uitschenan, Ka.

suow, to snow	wakerens, I. ogera, On. onyeiak, S. ; ounlyeghte, M. atakea, 11.
spring (season)	knngweeteh, M
star	ojechsoondan, S.
	ujishondn, C .
stomach	utskwena, I.
stone	cwrumay, T .
stummer	akenhn, M. ; kayahneh, S.
yun	kelanquaw, M .
	karakkwn, I.
	ladicha, II.
	onteka, I .
	lieetay, I'; aheeta, N.
	kachquaw, S. ; kaaghkwa, C .
tongue	ennasa, I.
tooth	onouweelah, C. ; onawira, I. otoatseh, 7 :
throat	niarigue, I.
thunder	kaweras, I.
village walk	kanata, 1.
	erai, H .
	abientycse, M.
water	anveah, T. ; awwa, N. ohncka I.; oncegha, Mrinchussar
weep	garkentat, I.
white	kearagea, M.
	kentaken, 1.
	keanakea, C.
winter	koashlakke, O.; kosem, Y.
	oxhey, H.; koogehlies, T.
wolf	ahquohhon, M .
woman	yonkwe, M. O.; ckening, T.
	otaika, H.
write	khmatons, I .
year yellow	osera, I.
	hotgikikwarogon, I.
	cheenamiarle, M.
young	osae, N.
1.	anji, T.; unti, N.
2.	uskot, M.
	techini, M.
	nekty, T.
	teghia, 0 .
3.	shegh, S.; segh, C:; ahseh, M.
	ahsenh, O.; aushank, H.
4.	hayerih, M.
	kayelih, 0.
	huntak, 'T.
6.	wisk, M., \&c.
7.	tehoatak, On.; tsatak, M.
8.	nakruh, 'f.
	tagheto, 0 .
9.	tutonh, M.; tiohton, Cumghnuwaga.
	liohto, C.
10.	oyelih, 0.

yuki, vakigafuru, J.
korjel, Ka.
anightu, T.
idakuwa, A.
auchtohn, T.
agajin, Ka.
ashangit, Kia.
iknwan, J.
whrangon, K.
явкап, А. ; кеgmu, Т.
galenkuletsen, Ka.
kulleatsch, Ka.; tirkiti, T.
laatseh, 1'.
matschak, T.
tida, I. ; tyketi, K.
koatseh, Kis.
entsel, Ka.
wannalgn, K.
gutuk, 'T.
regury, A.
kyhal, kyigala, ikigigrihan, K .
guina. K.
hiroi, I.
ita. J.; atehoong, L. .
walina, 1 .
inh, K. ; mok, emak, T.
terngatirsin, 'T.
sheronsa, L; shiroi, J.
nilgachen, K : rata-gamep, Λ.
genggahlan, Ka.
kollealas, Kia.
acksachsaan, K.
aigugeh, chgahuwn, K.
imago, L.; agranak, 't.
tackki, I.
katchoong, L.
gytscharudo, Ka.
mutelgrachen, T.
duch-karallo, Ka.
atschtk, T .
ingsing, K .
dysiak, Ka
ni-techaw, K.
niechtsch, K .
ytechgan, K.
tsook, hit.; giuch, T.
sang, L.
gyrach, K.
tsagelch, Ka.
niyach, ngshakaw, K.
asheki, A.
itatyk, Ka.
angrotkin, T.
tshookotuk, Ka.
tschachatonoh, tchamatada, Ka .
tschuaktuk, Ka.
kulle, T.

ADDENDUM.
THE DACOTAE FAMILY.
It is only since writing the foregoing article that I have found the relations of this important family. The Dacotah languages differ so widely in their vocabulary, or rather in their vocables, from the Iroquois, that, in spite of grammatical construction, and the equally warlike character of the two people, it was hard to imagine a community of origin. In the labials that are wanting in the W yandot
dialects, the Dacotah is peculiarly rich. So complete is the compensation made by the Dacotah dialects for Wyandot shortcomings in this respect, that labials utterly unknown to the original root start up, everywhere, as terminal, redial, and even initial sounds. On the other hand, the strong Mohawk r is almost absent in Dacotah; the $U_{1 \text { sarokas, Minetarees and Mandans, who sometimes employ }}$ this letter, being very sparing in its use. Nor, can it be said, save as a rare exception, that there is an l in Dacotalh to atone for the comparative absence of r, with which, in the Iroquois dialects, it is at times interchanged. The general vocabulary has miscellaneous Siberian affinities, largely with the Samoied, and many with the Ugrian languages. (I may say that I use the word Ugrian to denote the Finnic-Magyar family of languages as opposed to the Altaic, which includes the Tartar, Mongol and Tungus, since I cannot see the propriety of extending it, as has often been done, to the whole UralAltaic division). I was thus upon the point of making the Dacotabs a Samoied colony, and had, incieed, communicated the likelihood of such a relationship to correspondents interested in American philology, when light broke upon the subject in connection with the terminations of verbal forms, which, being followed up by other coincidences, settled the matter in favour of a Peninsular origin for the Dacotahs, as well as for the Iroquois and Choctaws. The Hon. Lewis H. Morgan has shown that the Dacotah and Troquois dialects are allied, and that the latter separated from the parent stock at a much earlier period than the former.

The Dacotahs, better known as the Sioux, and the Nadowessies of Carver and other older writers, are a warlike, intrusive people, of good stature, and generally pleasing appearance, with capabilities of no mean order, and exhibiting, as in the case of the Mandans, a considerable advance in culture beyond the neighbouring tribes. They occupy a seat portion of the centre of the continent, being essentially an inland people like the W yandots and Choctaws. Their hunting-grounds extend from the Red River to the Saskatchewan southwards to the Arkansas, and are chiefly found between the Mississippi on the east and the Rocky Mountains on the west. They are thus the neighbours of many Algonquin tribes, with which they are more or less intermixed. The principal tribes of this family are the Sioux or Dacotabs proper, the Yanktons, Winnebagoes, Assineboins, whose name is Algonquin, Mandans, Upsarokas or Crows,

MEnetarees, Ioways, Osages, Ottoes, Omahas, Quappas, Konzas and Hidatsas. Their warlike and independent character is well known, especially in comnection with their recent encounter with the American troops and the subsequent withdrawal of some of them to Canadian territory.

The Dacotah word for man, male, is wika, wicasta, and this is the Tchuktchi uika; while other terms, such as hihna and oecteka, relate to the Aino aino and the Japanese otoko. Similarly, the words for woman, veingy, winnoicjakh, wakki-angka and tawikit, represent the Loo Choo innago, the Tchuktchi aganak, and the Loo Choo tackki. The general lexical resemblances of the Dacotah and Peninsular, within the limits, at least, of my somewhat defective vocabularies, are not by any means so close as between the Choctaw and the Peninsular. Still, there are some striking forms. Such are the Dacotah echong, make, and the Loo Choo oochoong; dowang, sing, and the Loo Choo ootayoong; yazang, sick, and the Loo Choo yadong; cangte, heart, and the Japanese sing, \&c. The Kamtchatdale connects intimately with some of the Dacotal dialects, particularly with the Assineboin. The Dacotah voahcheesh, child, is the Kamtchatdale pahatshitsh; matsi, knife, is wattsho; toka, sevant, is tshequatsh; isto, arm, is settoo; ataki, white, is attagho, drc. The Tchuktchi necessarily is connected; and we have 2. . Dacotal ceneek, eejingyai, cinglesi, boy, in the Tchuktchi iegnika; cang, day, is gaunak; nijikah, hair, is nujale; nalsso, head, is naskok; ecat, small, is ekitachtu; neah, mini, water, is, nouna; tehha, lake, is tonga; onkahuk, finger, is ainhanka, \&c, Of the few Corean words known to me, several answer to the Dacotah equivalents; thus the Dacotah ukkui, ear, is the Corean qui; uohta, good, is hota; paykee, hair, is bode; cezi, tongue, is chay; and pezi, grass, is phee.

I have mentioned verbal terminations as my guides to the affiliation of the Dacotah languages. In Dacotah a common termination for verbs is that variously rendered ang, ong, ung, as in yatkang, eat, nahong, hear, palmung, spin, tongwang, see, echong, make, manong, steal. Captain Clifford, in his vocabulary of the LooChoo language appended to Basil Fall's voyage, draws attention to a similar termination of the verb. He says: "I have, throughout the vocabirlary considered the termination oong to denote the infinitive and have translated it as such, even when the sense points to another word, merely to preserve consistency; there are, however, a few excep-
tions to this, and some of the verbs will be found to terminate in ang, $i \cdot g$, cuvng, ong and ung." The Japanese infinitive in $m i$, to which there are many exceptions, does not resemble this termination, but connects with the Turkish infinitive in melc and the Magyar in ni. Neither does the common LooChoo and Sioux form resemble the Mautchu in re, or the Mongol in bus. We are thus, I think, justified in holding that the Dacotah verbs echong, make, dowang, sing, and yazang, be sick, are the same words as the LooChoo oochoong, ootayoong and yadong, having meanings identical. But a confirmation of the Peninsular origin of the Dacotahs even more interesting is afforded by a comparison of the Assiniboin infinitive, or at least verbal termination, with that of the Kamschatdale. The Assiniboin verbs in their simplest form end in, atch, itch; thus we have passnitch, tusnitch, to love, wumnceatch, to go, eistimmatch, to sleep, aatch, to speak, wauktaitch, to kill, vaumnahyatch, to see, aingatch, to sit, malnnitck, to walk, \&c. Similanly in Kantchatdale we meet with kasichtshitch, to stand, koquasitch, to come, kashiatsh, to rum, ktsheemrgutsh, to sing, kassoogatsh, to laugh, looogaatsch, to cry itc. It is true that the Kamtchatdale kowisitch, to go, and kiwatshquikotsh, to see, are unlike the Assiniboin wunnaeatch and waumnakyatch, except in their terminations; but, as I have already indicated the connection of the Dacotill and Kamtchatka vocabularies, this is an objection that fuller knowledge of Kamchatdale would probably remove. It was the verbal terminations of Sioux in $n g$ and of Assiniboin in tch that decided thie question in my mind of the Old World relations of the Dacotah family of language and tribes. Those who are better arquainted with the Peninsular languages may be able to account for diversities in the Dacotah dialects by corresponding differenees in them. That two such unusual forms as the LooChoo and Kamchatdale should occur in one American family is very strong presumptive evidence in favour of that family's Peninsular derivation.

The grammatical construction of the Dacotala languages may be said, at least, to interpose no obstacle in the way of a Peuinsular origin. The absence of tiue gender, and a distinction between nouns as animates and inanimates; the formation of the genitive by simple prefix to the nominative, with or without the third personal pronoun ; the use of pronominal prefixes, and of post positions; the place of the regimen before the governing verb, are all in favour of
such an origin. The post position of the aljective, which my knowledge of the Dacotah dialects does not enable me to say is universil. finds its analogue in some Japanese and Loo Choo forms. The inclusive and exclusive plural belongs to the Siberian area, and is Turamian. The post position of the negative sni answers to the post position of nang and nashere in Loo Choo. And the use of two tenses only, a present-past and a future, reminding the philolosist of the Semitic and Celtic languages, presents no barrier to the relationship, inasmuch as the temporal index follows the verbal root, while the pronoun precedes it. It is worthy of note that while there is a general agreement in grammatical forms among the Iroquois, Choctaw and Dacotah languages, they specially coincide in marking the difference between transitive and intransitive verbs by the use of distinct pronominal particles. Judging from the identity in fcrm of the Sioux and Assiniboin verbs to the Loo Choo and Kamtchatdale respectively, I would be inclined to regard the Dacotah family as a far more recent off-shoot from the Peninsular stock than the Iroquois or the Cherokee Choctaws, a view which is favoured by the geographical position of the several tribes.

The ball play or lacrosse of the Choctaws and Iroquois is practised by the Assiniboins, whose method of boiling by dropping heated stones into a skin substitute for a cauldron, bas, according to Catlin, grained them their Cree name of "Stone Indians." Pottery was extensively manufactured by the Mandans; and the large: handsome skin lodges of the whole Dacotali family present a marked contrast to the wigwams of the Timneh and Alyonquin tribes. The Mandan lodges, excavated to a slight distance and covered with earth, with the exception of a hole in the centre, are the same as those of the Koriaks and Tchuktchis.* The lascivious dances of many Dacotah tribes resemble those of the Kamtschatdales. One physical peculiarity of this family is the long hair of the warriors which often sweeps the ground. My limited knowledge of the inhabitants of the Peninsular area does not enable me to say whether this feature characterizes any of its populations. The Sioux have a story of a maiden's leap from a precipice into the water, the "Lover's Leap" of Catlin, which recalls the tradition of the Leucadian Rock and the Hyperborean practice alluded to by many ancient writers. If this be a

[^3]Koriak tradition, the Leucadian Corax, and Charaxus, the brother of Sappho, may be terms of ethnical significance. I have little doubt that the ancient Koriak habitat and centre of diffusion was the Chucasus, where the Coraxi and Cercetac dwelt. The Assyrian ininscriptions should shed light upon this important family, which finds such large representation on the North American Continent.

A few of the Dacotah numerals show their Peninsular connection hy agreeing with those of the Iroquois and Choctaws. Thus the Dacotah onje, eyungkae, youke, woonge, one, are the Iroquois anji and enslor; while amutcat, another form of the same number, is like the Iroquois onskat. The Otto tekeni, two, is the Iroquois terfini. I can hardly think that it is a borrowed word, inasmuch as the Sioux saldogang, eight, is the Iroquois sahdekonh, and the relation of two and eight was exhibited in the Choctaw tukchina and untuchina. The Dacotah weckeechem, wikchemma, ten, are probably the same as the Iroquois wasenh; andichechoh, kakhoo, five, agree with the Muskogee chahglie. While a more extensive comparison than the materials at my disposal have enabled me to make would be very desir:able, it will, I think, be confessed by competent judges, that, for the purposes for which the paper has been written, it is not necessary. It will be a simple matter for other students to follow out the lines of research that I have indicated and in a measure iilustrated, and either confirm the conclusions arrived at, or otherwise account for the phenomena on which they are based.

COMPARATIVE VOCABULARY OF THE DACOTAH AND PENinsUlar Languages.

:rm	ada, Hidxtsa ; arda, Mrandan	ud
	isto, Dacotah, Yankion [(Dacotah)	settoo, Kamtchatdale
arrow	mahha, M. (Mandan) ; ma, mong, D.	mechim, Ka. (Ramichatdal
	minja, Os. (Osagc)	machmiuche, K. (Koriak)
axc	ashuas, D.; оceopa, A. (Assiniboin) ahems oumine D	kvosqua, Ka.; kal-kapak, T. (T'chuktchi
bad	schicha, D. ; ishia, H. (Ifidatsa)	ashiki, J.
beard belly	iki, H. ; cshaesha, U. (Upsaroka)	hige, J.; uika, T. [piigi, K.
	ikpi, D. chesia. Os.	fuku, J. ; pai, Corcan; ksucb, Ka. aksheka, T.
bult	bare, U.	hara, J.
bindbird	ipasaki, H. ; ipiyaka, D.	our, J., L. (L.00-Choo) ; tapshin, T.
	dikkappe, U.	tzkepf, A. (Aino)
	tsakalia, H.	tac, C. (Corean)
black	chippushaka, U.	nufsunke, K .
	ceokhpazec, D. [JYinnebago	aehkuropech, A.
blood	uoai, Y. (Yankion), waheehah, TV.	auku, T.
	wance, Om. (Onaha)	kehm. A.
	idi, H. ; edia, U.	ketsu, J.
boat	wata, D.	agwat, K. ; ntuat, hetwutt, Ka.
	mati, H. ; maheshe, U.	maachdylmu, Ka.
bone	hidu, F .	kotsu, J.; kutsi, L. ; kotham, Kı ; ha-
bow	etazeeria, D. [hnopah, M.	edzak. Ka. [tamfa, K.; atitam, 'T.

girl, daughter	heenukhahhah, W. shemashinga, Os.	kanaz, A, shinzo, J
give	khu, nceuje, D.; ku, H.	qui-ung, L. : katehu, Ka.
go	dah, U.; de, D.	tont, tent, kia
good	itsicka, U.; tsaki, H. tontrai, Os.	matschinka, 'T. itainoktok, T .
	wohta, D.	hota, C.
grass	preit D. ; beka, U. ; mika, II.	phee, C. ; wuk, wehci, T.
hail	makkoupah, U.	yoln, J. (to haii)
hair	nijihah, Q ; masheah, U. ; natoo, Ot.	mntihushi, C ; mujak, nujet, T.
	arra, Mıl	ruh, A. ; tseracher, kia.
hand	Shatee, Min. ${ }_{\text {Slhagai, Om. }}$	syttu, sotomi, Ka.
	Sake, D ; saki, M. ; sharah, D;	ki, Is ; cluketseh, chakatsch, Ka.
he	ma, U.; nee, Min ; necah, W, ount, M	oatt, onto, unin, is
heiad	nass. Ot ; nahsso, W. ; nanthu, 1 .	nashko, maskok, T .
hear	la, D.; pah, Y.; pahhih, Q.	mpa, .1; liusi, L
heart	nasse, U ; nochteh, Q. matah, Min.	mokguek, nunjusu, Ka.
	canctio, D .	shing. J.
heaven, sliy	ammahhe, U. ; mahagh, Os.	ame, J.
	choustumgateh, A.	kuinitschkit, K.
	ahre, U.; arraise, Min.	karai, J.
	dsafosh, M.	attise, L.
	dindita, D .	danki, J.
house	tshe, I.; assua, U. ; chechah, W.	uche, ke, J ; zise, A.
	tipi, D.; tecpee, $\mathrm{Y}_{\text {- }}$ t teib, A.	zibu, tschay, tschibi, C.
	ote, M. ; ati, H. ; tea, D ; tshe, I.; attee, Min.; tecah. Os	katchi, L. ; yadu, taku, J.
1	be, U.; vich, Q.; veca, Os.	wu, T.
ice	cagha, D.	cigu, 15.
knife	matsi, Min. ; mitsa, U. ; mahce, Ot, Om	wattshoo, Kia : majiddi, a.
lake	tehha, W.	to, A.; touga i^{\prime}.
leaf	ape, wapa, D.	wha, L. (jipan, Iukagir)
	moncyalipe, U :	niep, A .
life, live	nija, D.; nee, Os.	incolhi, J.
	ti, D ; itshasa, U.	itchitchee. L .
right	thieshe, U. ; cdayhush, M.	atchat, Ka.
	ohjajo, Y.	choisychei, K .
love	wahtscheeng, D .	eiwatschim, K.
mako	ahmutcheshe, U. echoner, D	aksmatjen, K.
man	wica, D. ; wahshecgae. Ot. ; weechasha,	ickicera, L. ; okkai, A. ; uika, T.
	wongahah, W.; winelia, A.; neka, Us; mattra, Min	ningen, J.; kenge, Ka. nuthira K
	hickechewechasta, D.	oyachutseh, T.
	hilme, D.	ainu, A.
	oecteka, D.	otoko, J.
	lida, H	hito, J.
moon	hangeta-wi, J) (night-sun)	tangkitli, K. (night) ; fi, hi, J. (sun)
	minnatatche, U.	man-getsu, J. (full-moon)
mother	ina, humg, D. ; enaugh, Os.	ainga, T ; anguan, Ka.
mountain	khyajhah, D.; haiaca, Y.; ohai, T. paha, 1.; avocavec, Nin.	oka, J. : gycigoi, K. [kagir). pehguktseh, ka; bukion, K. (реа Yu-
	mahpo, almahabbe, U.	ftufa, tenup, Ii.
mouth	iiptshappa, Min.	jecp, C.
nail	shaka, D ; shakahaugh, Os ; saki, H.	kugi, J.; kukuh, Ka.
near	askahanh, D.	kikio, T
neck	shuah, U.	kuiich, Ka.
	cloti, H. ; dote, D. ; tashai, Ot.	iiteg, T. ; hutdehm, K.
	apeeh, Min.	kubi, J., L
night	hangretn, D .	tyingfouti, K.; unnjuk, T.
	estugr, M.	atziroo, L .
no	honkosha, Os.	ninge, K.
	barnetkah, U.	biin:lkitlin, Ka.
	ca, D. ; cah, A.	iya, J.
pouch	wozuha, D.	ioosa, L.
rain	maghazu, D.; mahajon, Y; nezuma, Os. naunshce, Om.; neezhuh, W.	Ita, T muehemuks, K. ; neptshuk, inaduach-
	naunshee, Om.; neezhuh, W. hkahoosh, M.	muchemuks, K. ; neptshuk, imaynachazgatsch, Ka.
	himnah, U.	ame, J : kimisch, Ka.
	harai, Min. [hecat, U.	furi, J.
red	hishi, H : islshee, Min ; sha, D. ; his-	akassa, I. ; akai, J.
river	wakpa, D ; wacoua, X. [U. ; azi, H.	woyampih, K .
	passahah, M. ; watishka, Om.; ahesu,	peth, fez, bez, bezu, A.

robe run
salt
sea servant shew. shoe shoulder
sick
$\sin g$ sister
sit
skin
slecy
small
snow speak
star
steal stone
storm
sun
sword
tail
take
they
think
thou
thunder tomorrnw tonglue
tooth
tree
fillage
warrior
wash
water
we
weep
white
wife
wind woman
wood
malietoh, M.
doozakon, D.
akharoosh, Os.
miniskstya, D. ; amahota, E.
tehha, tehchuna, W.
toka, D.
kikaki, H.
hangpa, D. ; hompel, Q.
opah, Min.; hupn, H.
id!aspa, H .
hiyete, D.
amdn, D.
yazang, D.
dowang, D .
wetonga, Os.
itakisa, II.
aingatch, A.
uka, koku, D.; aduaka, K.
ishtingma, D.
inughumme, U.
cistimmutch, A.
tscheestin, tonana, D.
ecat, U.
beah, U. ; pau, Os. ; pat Ot ; an, W. ekitachtu, T.
ide, H.
ia, D.
whekangpi, D.
peekahhai, Ot.
likakia, M.; jcka, H.; cekah, Min.
ki, D.
ceyong, Y .
cengro, Ot-
tattasugery, Os.
meeneajui, On. ; menahkah, M.
wee, D. ; pee, Ot. ; weehah, W.
magasagye, D .
tsitia, H
ichm, evaku, D.
conah, M.
echin, D.
nish, D.; nche, Min.; ney, W.; nca, A ; eamy, A. ; nanji, J.
walkeeang, D .
hayahkaytsechat, D
dezi, H. ; tshedui, D. thersi, Min - hatsai, C.
dehzeehah, W.; dehzeh, Q .
hi, D., H. ; he, I , W., Ot ; hih, K. ; ha, J., L.; ji, C. hee, Y.; ea, U. ; ii, Min.
nahnah, W.
utoe, D.
ameteh, Min.
ahkitshutah, D.
ankedaugh, Os.
nassi-battsats, U.
yuzaza, D.
nih, Q.; neah, Os.; ninah, W.
mini, D. ; meenee, Y.; minne, U.
passakah, M.
juidi, H .
bero, U
onkia, D. ; ungeaip, 1.; unguar, Os.
cheya, D.
ataki, H.; hotecclakec, Min.
sang, D
ska, D, Ot., Om. ; skah, W., Q., Os.;
moorse, M.
moab, U.; mega, I.
hootsee, U
meha, M.; meyakatte, U; meeyai, XIIn;
wingy, winnokeja, D. ; nogahah, W.
wakka-angka, D.
tawicu, D .
umah, D. ; emauh, Os.
tschang, D.
money, U.
takine, takoni
shiang, kangaye, J.
makak, T.
tschasgoa, A.
hashira, J.
mashoo, L.
ta, C. ; atui, aducka, A.
tshequatsh, Ka.
kuke-ru, J.
hungim, C. ; angesuf, K.
sabock, L.
tapsut, tapfka, A.; tschilpit, T.
kutta, L. ; knta, J.
ondee, A. (arm).
yadong, L.
utan, J. ; ootayoong. L.
ichtum, Ka.
tschakyhetsch, K.
ecoong, L.
[kotschi, C.
ka, L. ; kawa, J.; kooogh, Ka. ;
tungykushih, Ka.
mo aru, A. ; milchamik, IS.
miichaten, T .
takine, takoni, A. ; uitschenan, Ka.
upas, A. ; pangopag, K.
ii, in, J.
ashangit, Ka.
fosi, L.
hoshi, J.
ikia, A.
uigum, T.
whraugon, K .
techtok, T. ; tschitchutscha, Ka.
matschak, T.
fi, J.
masiddee, A.
dzoo, L .
ecchoong, L.; uke-ru, J.; uhk, oku, A.
oamas, K.
yeglikegic, T.
dytschil, Ka.
nan, C. ; nih, A.
atanym, Ka
machi, J.
shisotsn, J. (soldier)
gunsotsu, J. (soldier)
bushi, J. (soldier)
yusugu, J.
iuh, K.; nouna, T.
nouna, mok, T.; mimel, K.
peh, A.
mese, L.
warera, J.; muru, K.
wankuta, T.
kia, T.; tschisgoa, A.
attych, Ka.
chein, C.
haku, J.
maroo, A.
mazy, 1 .
kytes, K.; kyttych, tschichutsha, Ks.
innago, L. ; mennokoosi, A.
aganak, T.
tackki, L.
newem, T.
tschitschini, A.
nammo, \mathbf{C}.
write yellow yesterday you
aknkashi, H. tsidi, H . tanneehah, D. dero, U. ductsa, H . wajitah, D.
jungihah, W. ; cyunkac, I.; onje, D. dopa, H. nopa, D. ; noopah, Min ; nopi, W. noue, ot.; nowae, 1 .
tekeni, ot.
rabecnee, Om.; laubenah, Os.
tana, Ot.; tanye, I.; tahni, W. topa, H., D. ; topah, Min,, Y.; toba, tome, A.
tuah, Q.;.toua, Ot.
(Om.; tobah, Os.
satsch, w. ; sattou, Q. ; sahtah, K ;
sahtsha, Min.; thata, I.
kihu, H. ; kakhoo, M.; cheehoh, Min. asheak, $\Delta . ;$ goo, L.; go, J.
6. ahkewe, H ; shaque, Ot.; kohui, W. iishn, C.
akama, H.; kemah, M.; acamai, Min.; ihgunen, ywam, A. ahcamacat, U.
schappel, Q.; shappeh, K. ; shapah, Os. juwambe, A.
7. shahco, D. ; shakoce, Y.; shagoa, A.; iikii, C.; shichi, J. shako, W.
[naphh, Q.
painumbe, Om.; panompah, Os.; pen- aruwambi, A.
S. dupapi, H. ; kela-tobaugh, Os. duhpyhs, tubishambi, A
pehdachenih, Q.
tatueka, M.
pigayuk, T.
shahembohen, D.; shakundohu, Y.
kraerapane, I.; kraerabane, Ot.; krai-
rabaini, Om.
perabine, Om. (rabeence $=3$). $5+3$. raph, A. (3).
schunkkah, Q.; shanke, Ot.; shonka, chonatschinki, K.
Om.; shankah, Os
nowassapai, Min ; napehingwangka. D. syhmahyyhs, sincsambi, sinobsam, A. nuhpectchewunkuh, Y.
mahpa, دI. $5+4$ yhnap, A. (4).

AN ANCIENT HAUNT OF

THE CERVUS MEGACEROS:
 OR, GREATIRISHDEER.

BY DANIEL WILSON, LL.D., F.R.S.E.
President of University Collcge, Toronto.

(Read before the Canadian Institute, lith January, 1879.)

The following notes of a tourist's observations in a brief visit to a locality of great interest alike to the palmontologist and the archrologist, were originally prepared with no further object in view than the contribution of a paper to be read at one of the evening meetings of the Canadian Institute, in the winter following the Irish explorations to which they refer.

The reconstruction of the geography of the Palæolithic Age, and the re-animating its haunts with the extinct manımalia known to us now only by their fossil remains, furnish materials for a romance of science more fascinating to the thonghtful student than all the fanciful creations of fiction. The geologist speaks of that time as recent when the temperature of southern France was such as to admit of the reindeer and the musk-ox, or sheep, haunting the low grounds along the skirts of the Pyrences. But the term recent is used not in a historical, but a geological sense ; and is employed in the full recognition of the evidence of enormous revolutions, by which changes have been wrought, the results of which are now seen in the climate, the physical geography, the fauna and flora of modern Europe. Nor lave these revolutions been limited to the Eastern Hemisphere ; though some of the climatic phenomena of the North American continent still perpetuate characteristics that help us in the interpretation of the strange disclosure of Europe's pleistocene era. Within the preceding geological age the whole northern hemisphere experienced an enormous climatic change, which attained its niaximum in the glacial period. Far to the south of the British

Islands Europe presented a condition similar to that of Greenland at the present time; and during the prevalence of this period of extreme sold the glacial drift, boulder clay, and stratified sands and gravels, were deposited over the whole of Northern Europe, and over North America, as far south as the 39 th parallel, during prolonged submergence under an aretic sea. Then followed the changes of that subsequent period, during which the physical geography acquired its latest development, and the present contiients gradually assumed the characteristics fitting them for existing conditions of life.

Of nearly a hundred species of mammals recognized in the rostglacial deposits of Europe, fifty-seven still occupy the same localities; whilst others, such as the reindeer and the musk-sheep have withdrawn to northerly areas. A continuous chain of life, however, is indicated by the prolongation of about twelve pliocene species into the post-glacial fauna of Great Britain. But, along with those, numerous new species appear; and changes of an altngether novel character are inaugurated by the presence among them of man.

The revolution wrought in physical geography, in climate, and in all the accompanying conditions of life, during the pleistocene age are most clearly illustrated by the chazacter and distribution of the mammalia, of which fifty-three species are represented in the remains found in the gravels and cave deposits. The Elephas primigenius, or mammoth, common both to Europe and America, has become extinct in the old world, subsequent to the advent of man. It is still an open question whether in the new world man coexisted with the mastodon; but in the eastern hemisphere at least, more than one species of proboscidian abounded, and in vast herds overspread the northern plains of Europe and Asia. Along with those there were three or four species of rhinoceros, a large hippopotamus, and other forms of animal life pointing to a condition of things widely differing from anything known within the historic period. The herbivora included both deer and oxen, some of which still survive in more limited northern areas; and those, along with the mammoth, woolly rhinoceros, Irish ell, and reindeer, were preyed upon by numerous carnivora, including the extinct cave lion and great cave bear, the ursus ferox, or grizzly bear,-now the strongest and most ferocious of all the carnivora of the American continent, -and the cave hyæna, which has still its living representatives in South Africa.

In the variations of temperature which marked the retrocession of the expiring glacial influences in central Enrope, throughout the region extending between the Alps and the mountain ranges of ScotJand and Wales, the winter resembled that which even now prevails on the North American continent, in latitudes in which the moose, the wapiti, and the grizzly bear, freely range over the same areas where during a brief summer of intense heat enormous herds of buffalo amually migrate from the south. A similar alternation of seasons within the European glacial period can alone account for the presence, alongside of an arctic fauna, of animals such as the hippopotamus and the hyæna, known only throughout the historical period as natives of the tropics. The range of temperature of Canadian seasons admits of the Arctic skua-gull, the snow-goose, the Lapland bunting, and the like northem visitors, meeting the king-bird, the humaning-bird, and other wanderers from the gulf of Mexico.

Such conditions of climate may account for the recovery of the remains of the reindeer and the hippopotamus in the same drift and cave-deposits of Europe's glacial period. The woolly mammoth and rhinoceros, the musk-sheep, reindeer, and other arctic fiuna, may be presumed to have annually retreated from the summer heats, and given place to those animals, the living representatives of which are now found only in tropical Africa. No class of evidence is better calculated to throw light on some of the obscure questions relative to primeval man, than that which exhibits him associated with the long displaced or extinct mammals of that transitional period. Man, it is no longer doubted, was contemporameons with the mammoth before its disappearance from southern France; and occupied the cave-dwellings in the upper valleys of the Garonne, while the reindeer still abounded there. In fact, the palrolithic hunter of central Europe, and the extinct carnivora of its caves, alike preyed upon the numerous herbivora that then roamed over fertile plains and walleys reaching uninterruptedly, northward and westward, beyond the English Channel and the Irish Sea ; just as the Buffalo-now hastening to extinction,-still ranges over the vast prairies of the North American continent.

Amoug the fauna of this transitional period in Europe's prehistoric era, one animal, the magnificent deer, known as the Cervus megaceros; the Megaceros Hibernicus, or. Great Irish Elk, occupies in some respects a unique position, and specially invites study. In
its limited endurance as a species it contrasts with the reindeer, along side of the fossil remains of which itshorns and bones repeatedly occur; and its circumscribed area gives a peculiar interest to any indications of its co-existence with man. The evidence furnished by the abundance of its remains in certain localities tends to sliggest the idea that, at a time when the British Islands were only the more elevated portions of the extended continent of Europe,-which then included in one continuous tract the English Channel, the German Ocean, and the Irish Sea, with a prolongation westward, embracing the Atlantic plateau now submerged to the extent of about one hundred fathoms:--the farourite haunts of the Cervus megaceros were in plains and fertile valleys which, throughout the historic period have been mostly buried under the sca.

In the ingenious speculations of the late Professor Fdward Forbes on the migrations of plants and animals to their later insular Habitats, he assumed a land passage to Ireland, consisting of the upraised marine drift which had beden deposited on the bottom of the glacial sea. Over this he specially noted the presence of numerous remains of the fossil elk in the fresh water marl of his own native Isle of Man. In Scotland, on the contrary, where the reindeer existed apparently from the time when it was the contemporary of the mammoth, to a period, historically speaking, recent, authenticated examples of the Cervus megaceros are extremely rare; whereas its designation alike as the megaceros Hibernicus, and Irish ells, is based on the occurrence of its skeletons more frequently in Ireland than elsewhere. It has indeed been assumed that there now lie submerged beneath the Irish Sea, the once fertile plains which, towards the close of its existence, constituted the favourite haunt of this magnificent fossil deer.

It is not until the newer pliocene period is reached that the palæontologist encounters the amply developed horns of the gigantic bisons and uri ; and that a corresponding size characterises for the first time the antlers of the Cervus Sedywickii, the Cervus dicranios, and of the Cervus megaceros, pre-eminently noticeable for the enormous dimensions of its spreading antlers. Along with the remains of the latter, or 'n corresponding postpliocene deposits, those of the reindeer, which still survives both in Northern Europe and in America, are also found, at times in considerable abundance.

At the meeting of the British Association, at Dublin, in 1878, an intelligent local naturalist, Mr. Richard J. Moss, of the Royal

Dublin Society, took advantage of one of the excursions organizel for the purpose of visiting the special attractions of the neighbourhood, to invite a party to explore an ancient habitat of the Trish fossil deer, at the Ballybetagh Bog, in the parish of Kilternan, about fourteen miles south of Dublin. The encouragement to reseurch was great, for on two previous occasions the bog had disclosed numerous remains of the Cervus megaceros, and during the earlier excavations a fine specimen of the horns of the reindeer, now preserved in the Museum of the Royal Dublin Society, was also found.

Excavations made preparatry to the arrival of the excursionists revealed enough to furnish ample encouragement for further exploration. Saturday (August 17th) was devoted to a tentative examination, with disclosures that abundantly encouraged renewed research : and on the following Monday a small party revisited the spot, under the efficient guidance of Mr. R. J. Moss, and his brother, Dr. Edward L. Moss, R. N., who most liberally undertook the entire charge of the exploration. The results of this renowed investigation of the ancient lacustrine depository of the remains of the fossil deer, though necessarily limited to the labours of a couple of days, proved highly satisfactory; and prepared the way for a systematic exploration of the site at a later date. Meanwhile a brief notice of the sulject may possess some interest for others besides those who shared in the exciting operations of a busy but most pleasant holiday.

Ballybetagh Bog lies at the bottom of a glen about 600 feet abore the sea, with hills of slight elevation on either side. Here some forty years ago, in making a cutting through the bog for the purpose of turning the water of a spring, known as the White Well, into a stream that flows through Kilternan, the first discovery of the remains of the fossil deer was made; but as the excavations were then carried on with no scientific object in view the chief value resulting from them was the demonstration of the existence there of abundant remains of the great extinct deer.

In 1875, attention was anew directed to the locality; Professor A. Leith Adams and Mr. R. J. Moss visited Ballybetagh Bog, and the latter gentleman undertook a systematic investigation, in concert with Dr. Carte, of the Dublin Society. No record had been preserved of the precise spot where the previous remains had been found, and considerable labour and research had to be expended before the proper site for renewed exploration could be determined.

An account of this exploration was contributed by Mr. Moss to the Royal Trish Academy in which he thus describes the formation under which the fossil remains lay: "Ithe first foot of material removed consisted of peat; under this there was a stratum of sand of an average depth of about two fect. The sand lay upon a brown coloured clay which extendel for about two feet, and lay upon a bed of granite honlders. The spaces between the lower parts of the houlders were filled with a fine bluish-grey clay." Here amongst the boulders, and surrounded with the brown cliy, mineteen skulls. with many broken pieces of horn and bones were found: and the result in all was the recovery of thirty-six skulls with antlers more or less imperfect, mostly belonging to young deer, along with detached horns and bones, representing in all about fifty individuals of the Cervus megaceros. Among the specimens recovered at the earlier date about thirty individuals of the same gigantic fossil deer had been represented; although both explorations involved only a very partial examination of this remarkably rich lacusbrine depository. But the result of Mr. Moss' cirreful investigation was to determine the precise locality where research might be renewed to like advantage at any future time; and here it was accordingly that a party of members of the British Association were invited io join him in hunting the Irish elk in its ancient habiant among the Wicklow meres.

The scene of this interesting exploration is the site of an ancient tam, where for arges the moss has been accumulating, till a peat formation of varying thickness overlies a sandy clay intermingled with forms of vegetable matter, and at times with fallen trunks of trees. The whole rests on a bed of clay interspersed with granite boulders, as already described. Among these, but not below them, the bones of the fossil elk occur. But before describing the incidents of the recent exploration, it may be well to make some general reference to the gigantic decr once so abundant in the range of mountains which extend there in a north-westerly direction from the south coast of Dublin Bay, and to the general bearing of the evidence as to the probability of its co-existence with man.

An examination of the detritus and included fossils, the accumulations of fossiliferous caves, and the disclosures of peatmosses, shows that when the earliest ascertained colonists entered on the occupation of the British Islands-whether then insular or continental,-the low
grounds were extensively traversed by a net-work of lakes, and the surrounding country was covered with forest, and overrm by animals known to us now chiefly by the researches of the paleontologist. But also it is anong the glimpses which that prolonged transitional period furnishes, that we catch, towards its prehistoric close, evidence not only of the presence of mam, but of the introduction of the domesticated animals of Europe. Among its fossil mammalia the true Cervidue, to which the Trish elk belongs, appear to be, geologically speaking, of recent origin. No remains of extinct genera of the deer family thus far discovered in either hemisphere have been found to extend farther back than the upper miosecne; and Mr. A. Russel Wallace recognises the whole family as an Old World group which passed first to North America, and subsequently to the Southem continent. The remains of many extinct species belonging to existing genera occur in the post-pliocene and recent deposits both of Europeand America ; but no representative of the deer family has thus far been found in South Africa or Australia.

Of the numerous ascertained fossil deer many forms are known only by fragmentary remains; but few great collections of Natural History fail to possess a well preserved skeleton of the Irish elk. Strictly speaking the Cervus megaceros is not a true elk, like the living Moose (Alces palmatus). It takes its place intermediately between the Reindeer and the Fallow deer (Dama vulyaris), and has its living analogues in the European Red Deer (Cervus elaphus), and the Wapiti (Cerous Canadensis) of the American Continent. The abundance of its remains in some localities, as in the Ballybetagh Bog, their high state of preseryation, and their position genemally in bogs and lacustrine deposits, overlaid by bog oak and other remains of the latest forests; and at times by actual evidences of human art : all tend to suggest the idea of this gigantic deer having coexisted with man. It was contemporaneous, not only with the mammoth the woolly rhinoceros, and other extinct European mammalia of a like unfamiliar type, but also with an ihportant group of wild animals which not only survived into that transitional period in which the geologist and the archaologist meet on common ground; but some of which have still their living representatives. Of the former the gigantic Urus (Bos primigenius) is the most notable, with its recognized relationship to the larger domesticated cattle of modern Europe. Of the latter the most interesting is the Reindeer.

It bears a near affinity to the Irish elk; they co-existed under similar circumstances, and even at times in the same localities. All three were contemporaneous with the Ursus spelaus, the Felis spelcea, and other great post-pliocene carnivora; and their remains abound in the ancient cavern haunts of those extinct beasts of prey.

The cave-bear and the Irish elk appear to have been limited to a temperate range, and have both become extinct; and the remains of the latter occur in such abundance in recent deposits that there is a strong temptation to assume the occurrence of some sudden change, climatal or otherwise, which abruptly exterminated this great fossil deer. The Urus and the Reindeer were both in existence in Britain within historic times; whereas the evidence thus far adduced in proof of the co-existence there of the fossil elk with man, pertains exclusively to the palæolithic pexiod ; and in so far as Ireland is concerned, where its remains occur in greatest abundance, the conviction is reluctantly forced on us that the great Irish deer had finally disappeared from its firma before man made his appearance there. This, however, as will beishown, is not an opinion even now universally accepted, either by archæologists or geologists.

In the post-pliocene age the cave lions, bears, and hyænas, of Germany, France, and the British Isles, preyed on the Irish ells, along with the reindeer, mammoth, wooly rhinoceros, the fossil horse and ox ; and the bones of all of them occur among the cave deposits in which traces of primitive art reveal the early presence of man. Professor Boyd Dawkins in his record of researches in the Somerset caves, in 1862-3, mentions the remains of the Irish Elk as 35 in number, where those of the Mammoth, the Reindeer and the Bison numbered 30 each, the ihinoceros 233, the. Horse 401, and the cave Hyæna 467; while thirty-five implements or other evidences of human art suggested the contemporaneous presence of man. Remains of the Megaceros have in like manner been identified in the Devonshire Caves; and especially in Kent's Hole Cave in the same strata with flint and bone implements. Its bones are included among the specified contents of the famous sepulchral cave of Aurigiac, at the northern foot of the Pyrenees; and its remains. have been recognized in seventeen different cave deposits to the north of tho Alps; in eleven of which there are indications of the presence of palrolithic man.

So far as evidence thus far points no traces of human art suggest the presence of man either in Scotland or in Ireland, at the period of palæolithic art, so abundantly illustrated in the contents of the caves and river gravels of southern England. But the Irish elk is not only the latest among the extinct mammalia of Europe's palæolithic period; it is recognized as surviving into its neolithic period. Its remains occur in the caves of the reindeer period in southern France, as in those of Laugerie Basse and Moustier ; and arificially worked and carved bones of the reindeer have been recognized in more than one of the Swiss caves. Their presence has excited special attention in that of L' Echelle, between the great and little Salève, from its close vicinity to Geneva, owing to the proof it affords of the coexistence of man and the reindeer within the area which subsequently formed the hunting ground of the lake-dwellers of Switzerland; whilst no trace of either the megaceros or the reindeer bas been found among their abundant illustrations of the arts alike of the neolithic, and of the bronze period.

The weight of evidence thms tends to favour the idea that the fossil elk was coexistent with the men of Europe's Palæolithic are, jy whom the reindeer was so largely turned to account, alike for food and the supply of material for their primitive arts; while it became extinct long before the more enduring reindeer withdrew entirely beyond the temperate zone. In Ireland, however, as hereafter noted, the abundant remains of its great fossil deer occur, geologically speaking, so nearly upon the horizon of its prehistoric dawn, and so little removed from some of the primitive evidences of man's presence there, that it will excite little surprise should further evidence of a wholly indisputable character demonstrate the survival of the Cervus megaceros within the Neolithic period, and contemporaneously with man ; as in the remoter age of the Drift Folk of southern England it is now believed to have been an object of the chace, and a source of food, clothing, and tools.

When once it is admitted that the great fossil deer was contemporaneous with the men of central Europe, in its Reindeer period; and his to be included among the fauna familiar to the Drift Folk of southern England: this special question as to its survival in Ireland within any poriod of the presence of man has its chief value in relation to his own advent there; for this is not a mere question of geographic:ll distribution, but deals with the relative
age of prehistoric man in Central Europe, in Southern England, and in the later post-pliocene areas of Northern Europe. Meanwhile it will suffice to note some of the discoveries which have already been advanced in favour of the idea that the great fossil deer of Ireland was not unknown to its earliest inhabitants as one of its living fauna.

Professor Jamieson and Dr. Mantell long ago noted the discovery, in the County of Cork, of a human body exhumed from a depth of eleven feet of peat bog. It lay in the spongy soil beneath. The soft parts were converted into adipocere, and the body, thus preserved, was enveloped in a deer-skin of such large dimensions as to lead them to the opinion that it belonged to the extinct Trish ells.

At the meeting of the British Association, at Newcastle, in 1863, Professor J. Beetes Jukes exhibited a right tibia, with a portion of one of the antlers of a Cervus megaceros, recovered from a bog near Logim, Comuty Longford. They were found along with other remains of the skeleton, embedded in shell-marl two or three feet thick, resting on blue clay and gravel. A deep indentation on the tibia, about two inches broad and a quarter of an inch deep, was exactly fitted to receive the antler-tyne. "They looked," says Professor Jukes, "as if they had been each chipped out with some sharp instrument," and he added, "The impression left on my mind from a first inspection was that these indentations were the best evidence that had yet turned up in proof of man having been contemporaneous in Ireland with the Cervus megaceros, and having left his mark upon the horns of an animal soon after its death, which he had himself probably killed." * I was present in the section at the Newcastle meeting, and examined with much interest this supposed lethal weapon of the men of the era of the great Irish deer, adduced on such credible authority as seemingly deternining the question of their coexistence in Ireland. But more careful observations, added to the apparent fact that the indented bones and antler had lain alongside of other portions of the skeleton embedded in the marle, has since led to the conclusion that this supposed primitive weapon was the chance product of natural processes still in force. Such seemingly artificial indentations and abrasions are now found to be by no means rare, as will ba seen from spacimens now produced, of similarly marked bones of the C'ervus megaceros

[^4]from Loch Gur, County Limerick.* The opinion which is now generally accepted is that these abrasions and indentations are due to the juxtaposition of the sharp point or edge of one bone and the side of another, while subjected to a prolonged immer:sion in the enoist clay or marl. But to this it is further assumed must be superadded the combined action of friction with pressure consequent on the motion of the bogs in which such bones are embedded. The boggy ground in which they chiefly occur is subject not only to a perpendicular oscillation, consequent on any vibration from passing weights shaking the ground, or even from the wind; but also it undergoes a periodical contraction and expansion by the alternate drying and saturating with moisture, in the summer and winter months; and thus indentations and cuttings, like those ordinarily ascribed to a flint knife or saw, are of frequent occurrence on the bones of the great fossil deer. To this subject Dr. A. Carte drew the attention of the Royal Geological Society of Dublin, in 1866, in a paper, entitled: "On some Indented Bones of the Cervus megaceros, found near Lough Gur, County Limerick," and I am now enabled to exhibit for your own inspection additional illustrations from the same locality illustrative of this phenomenon, furnished to me by Mr. Pride, Assistant-Curator of the University Museum.

In some of those the indentations are such as few would hesitate at first sight to ascribe to an artificial origin; and so to adduce them as evidence of the contemporaneous presence of man. But they occur, not on separate bones, but on portions of fossil skeletons recovered from the lough under circumstances which wholly preclude the idea that they had been detached and carried off for purposes of art ; or that the indentations upon them can have been the work of human hands.

Professor Jukes was present when Dr. Carte's paper was read, and referred to former statements of his opposed to the idea of the contemporaneous presence in Ireland of man and the Cervus megaceros. "They knew," he said, "that man did exist contemporaneously with that animal in England; and then arose the geological question, was Ireland at that time already separated from England and the continent? Was the great plain which formerly connected the British

[^5]Islands with the continent already worn away, or had man already crossed over from England to Ireland? They knew that man had existed in England probably before England was separated from the continent."

But, whatever be the final determination on this interesting question of the co-existence of Man and the Cervas megaceros in Ireland, the bones of the latter are recovered there in enormous quantities, not infrequently in a condition admitting of their being even now turned to account for economic uses; and examples have undoubtedly been found there bearing unmistakeable evidence of human workmanship. One of the most interesting of these was an imperfect Irish lyre dug up in the moat of Desmond Castle, Adare, and exhibited by the Earl of Dunraven, at a meeting of the Archrological Institute in 1864. The relic was of value as a rare example of the most primitive form of the national musical instrument; but greater interest was conferred on it by the opinion pronounced by Professor Owen that it was fashioned from the bone of the Trish Elk.

In weighing such evidence it is manifestly important to keep prominently in view the fact already referred to, that the bones and horns of the fossil deer are recovered in a condition not less fit for working by the modern turner and carver than the mammoth ivory or the bog oak, which are now in constant use by them. In the Goat Hole Cavern at Paviland, Glamorganshire, Dr. Buckland noted the discovery of large rings or armlets and other personal ornaments made of fossil ivory, lying alongside of a human female skeleton, and in near proximity to the skull of a fossil elephant. The tusk of another fossil elephant, recovered at a depth of twenty feet in the boulder clay of the Carse of Sterling, is now preserved in the Edinburgh University Museum, in the mutilated condition in. which it was rescued from the lathe of an ivory turner. This, so far as Scotland is concerned, is an exceptional example of the manufacture of fossil ivory, but we are very familiar with the fact that the tusks of the Siberian mammoth have long been an article of commerce.

In a paper "On the Crannoges of Lough Kea," by Mr. G. H. Kinohan, of the Geological Survey, read before the Royal Irish Academy in 1863, he describes a fine head of the Cervus megaceros found, along with abundant evidences of human art, in a large crannoge on Lough Rea. It measured thirteen feet from tip to tip of its horns; but Mr. Jukes suggested the probable solution of its discovery under
such circumstances to be, not that the megaceros had been hunted and killed by the cramoge builders, but that they had found the gigantic deer's head, "and put it up for an ornament or trophy, as is done at the present day.":*

So far, at least, it thus appears,-notwithstanding the indisputable proofs of the employment of the bones and horns of the Cervus megaceros by primitive manufacturers of the Neolithic age ; and the survival of this gigantic deer throughout the Paloolithic age of human art:-that evidence is still wanting to satisfy the scientific enquirer as to the co-existence of man and the great fossil deer in Ireland, where, more than in any other locality, this might be expected to occur. The primitive lyre found in the moat of Desmond Castle was undoubtedly fashioned from the bones of the extinct deer; but the material may have been recovered, as in modern times, from the marle of some neighbouring bog, and turned to account like the bog oak so abundantly used in modern art; rather than have been wrought by the Neolithic craftsman from the spoils of the chase.

Iu 1859, Sir W. R. Wilde read a lengthened communication at t:ro successive meetings of the Royal Irish Academy, "Upon the unmanufactured animal remains belonging to the Academy." In arranging its collection of Irish Antiquities his attention was drawn to numerous crania and bones, chiefly of carnivora and ruminants, from river beds, bogs and crannoges; including sixteen crania, and upwards of seventy detached fragments of skeletons of the Cervus megaceros. The circumstances under which they were recovered have not been in all cases preserved, and no distinct evidence tends to confirm the idea of their contemporaneity with man. In remarking on the then novel recognition of the remains of Trish fossil deer in the tool-bearing gravel drifts of Abbeville, Sir W. R. Wilde observes: "As yet we have not discovered any Irish name for it. If the animal was here a contemporary of man, it certainly had become extinct long before the lrish had a knowledge of letters." \dagger It is, however, altogether consistent with the evidence of a succession of races in the British Isles, and throughout Europe, to find that this era of the long extinct fossil mammalia pertaining to the Palreolithic, or even to the Neolithic age of primitive art, has no record in the oldest of the living languages. The same is true of others of

[^6]the extinct mammalia, of which evidence of their familiarity to the men of the Neolithic period is abundant. It is indeed worthy of note that, while the ingenious artists of central Europe's Reindeer period have left wondrously graphic carvings and drawings of the mammoth, the fossil horse, and of the reindeer and other cervidæ, no very clearly recognizable drawing of the great fossil deer has been found. It has indeed been assumed to be the subject of more than one representation of a large horned decr, but the identification is at best doubtful. This is all the more noteworthy, as the characteristics of the great deer are such as could not fail to attract the notice of an artist capable of so successfully representing the salient features of the reindeer, as illustrated in familiar engravings of it,such as that from the Kesserloch, Schaffhausen, traced on a piece of one of its own antlers. If the engravings assumed to represent the Cervus megaceros are indeed efforts at its depiction, their less definite character may be due to the rarer opportunities for studying an unfamiliar subject.

But if, as Sir W. R. Wilde, says, no native Trish name has been discovered for the great fossil deer; an ingenious identification of it has been assumed with one of the objects of the chace referred to in the Niebelungen Lied. There, after the hunter has slain a bison, an elk, and four strong uruses, he crowns his feats with the slaying of a fierce schelcin. It is no sufficient argument against such identification that the poem abounds with allusions to fire-dragons, giants, pigmies, and other fanciful creations. The "lusty beaver," the elk, " the ravin bear," and other contemporary, though now extinct, animals of Scotland, are introduced in the fanciful vision of "The King's Quair:"
"With many other beasts diverse and strange."
But any reasons adduced for identifying "the fierce schelch" of the Niebelungen Lied as the Cervus megaceros are sufficiently vague and slight; and so far the uatured opinions of archæologists appear to coincide with those of the geologists, that this extinct deer did not coexist with man in Treland.

But, whatever be the ultimate conclusion as to the period of its final disappearance there, no doubt is entertained as to this extinct deer having been contemporaneous with palæolithic man in western Europe, and even in England. Only two or three traces of its remains have been found in Scotland ; and if in Ireland-seemingly its latest special habitat,-it had finally disappeared before the advent of man there; the results are significant in reference to the period of
its extinction; as well as to the order of a succession of events in the prehistoric dawn. Indications of the presence of man must be looked for as following in natural sequence to the geological reconstruction of specific areas, and their evidences of climatic changes in the postglacial period. Sir John Lubbock remarks in his "Prehistoric Times," when referring to the Cervus megaceros: "Though there is no longer any doubt that this species coexisted with man, the evidence of this has been olbtined from the bone caves, and from strata belonging to the age of the river-drift gravels. No remains of the Irish elk have yet been found in association with bronze ; nor indeed are we aware of any which cam be referred to the later, or Neolithic Age." When the subject was under discussion at the meeting of the British Association at Dublin, Professor W. G. Adams affirmed most definitely the co-existence of palæolithic man and the fossil clk; while admitting the absence of any such evidence where the remains of the latter are now found in greatest abundance. "There is," he said, "no evidence that in Ireland man existed contemporary with the Megaceros, or had any thing to do with its extinction; whereas we have authentic evidences of the coexistence of man with this animal in England."

This conclusion, however consistent with the proofs thus far obtained, camnot as yet be recognized as one so absolutely settled as to render further research superfluons. Whistles formed of phalanges of the reindeer are among the most characteristic implements of the more ancient French caves; and one found by M. E. Piette, in 1871, along with various fint implements, in the Cavern of Gourdan (Haate-Garonne), pierced not only with a mouth-piece, but with finger-holes along the sides, is aptly described by him as a neolithic flute. There is nothing therefore in the mere design or workmanship of the primitive Irish lyre incompatible with its execution at the period when the Irish elk survived; if it can be shown that it was coeval with man in Ireland. Professor Boyd Dawkins when drawing attention to the fact that out of 48 well ascertained species living in the palaeolithic period, only 31 are found surviving into the neolithic period, adds : "The cave bear, cave lion, and cave hyæna had vanished away, along with a whole group of pachyderms; and of all the extinct animals, but one, the lirish elk, still survived." There is indeed something peculiar and exceptional in this magnif. cent deer which so specially claims a place among the extinct mam-
malia of prehistoric Ireland. Its range, alike in place and in time, appears to have been more circumscribed than that of most, if not all of the animals with which it is found associated in post-pliocene deposits. Traces of it, indeed, have not only been noted to the south of the Alps, but Professor Brandt has identified its remains among the cave disclosures of the Altai Mountains. But on both continents it had a similar temperate range; and no remains of it have been dis ${ }^{-}$ covered in the extreme north of Europe. 'To this the nature of its food may have contributed; while the mammoth and the reindeer were able to subsist within the Arctic circle, as well as in temperate ranges common to them and to the gigantic elk. But circumscribed though the range of the latter appears to have been, its enormous dimensions, conjoined with seemingly gregarious habits, were incompatible with limits so greatly restricted as the Isle of Man, if not indeed with those of Ireland; and hence the probability of the assumption that its extinction preceded, or speedily followed the period when the British Islands became detached from the Continent of Europe.

The Cervus meguceros attained a height of nearly eleven feet, and bore an enormous pair of antlers, measuring at times nearly fourteen feet from tip to tip. The head, with its ponderous pair of antlers, is estimated to have exceeded 100 lbs . in weight when living. To this the frequent miring of the deer in the lakes and bogs, where their remains abound, has been ascribed; nor is it improbable that the ultimate extinction of the species may have been due to the abnormal development of such head-gear, while its large antlered contemporary, the Reindeer, still survives.

Mr. R. J. Moss was led from his former careful observations to conclude that Ballybetagh Bog occupies the site of an ancient lake or tarn which stretched along the bottom of the glen. The west side of the glen is flanked by the southern side of a hill, and another of less elevation hems it in on the east. The embouchure of the lake appears to have been at the southern end; and whether we assume that the deer when swimming across the lake got entangled in the stiff clay at the bottom, and so were drowned; or that they resorted to the lake to die, it would seem that their bodies drifted with the current to the outlet of the lake, and hence the enormous accumulation of their remains in one place. In describing one of the trenches opened by him, Mr. Moss says; "At the north end
the stony bottom was reached at a depth of only four feet; it dipped towards the southern end, where it was about five feet from the surFace. The northern half of this trench did not contain a single fragment of bone or horn; the southern half was literally packed with them."* The remains found in the course of this exploration represented about fifty individuals, the majority of the bones being those of young deer.

The result of the more hasty excavations recently made, was the discovery of two skulls and several portions of horns on the first day. On the second day a trench was opened, and cut through an accumulation of 27 inches of peat, resting upon about 22 inches of sandy clay, intermingled with roots and traces of various forms of vegetation. Underneath this among granite boulders, three fine heads were found ; one of them of the largest size, and in nearly perfect preservation, with antlers measuring about eleven and a half feet from tip to tip.

There was something startling in the success of our expedition : thus setting out from the busy scenes of Dublin, with all the bustle of its crowded thoroughfares, and not less crowded scientific sections; and landing among will uncultured bogs, to dig down, and at once light upon the remarkable evidences of an extinct famma once so abundant. There were not even wanting sceptical doubters ready to hint at previous preparations having facilitated a too easy discovery. In this, however, we profited by the careful and intelligent labours of Mr. Moss at an earlier date; and all who put themselves under his guidance were amply rewarded by the results.

It is worthy of note that, neither on this occasion, nor in the older excavations was a true marl found underlying the peat, or clay. The rock of the district is granite; being part of a band of granite five miles broad, which extends from Dublin Bay in a south-westerly direction into the County of Waterford. A granite sand was found in some places to a depth of three feet; and Mr. NLoss, after careful examination, describes the underlying clays as almost entirely free from calcium carbonate, and having every appearance of a granitic origin. But a little to the north of the section thus described, a light-coloured marl, rich in calcium carbonate, makes its appearance almost under the turf.

[^7]Thus far about eighty individuals of the great fossil elk, and one reindeer, are represented in the remains recovered from the Ballybetah Bog, without any traces of the co-existence of man having been observed. But no better locality could be chosen to test the question. Lying though this interesting locality does, in such near vicinity to the Irish metropolis, it has been left nearly untouched by the hand of man within the whole historic period, during which cathedral and castle, college, mart, and wharf, have crowded the banks of the Liffy. The traces of the primitive architecture of remoter eras have thereby' escaped defacement. The general contour of the district remains little changed. The aspect.is wild and savage; and it requires no very great exercise of the fancy to restore the ancient mere, reclothe its shores with forests, the buried trunks of which abound in the underlying peat, and reanimate them with the magnificent herds of the great fossil decr. Here are still the unefaced memorials of primitive art. On the rising ground on the south-east margin of the bog stands a large chambered cairn, which has been rifled; and the exposed chamber shows the megalithic structure characteristic of the most ancient works of this class. There is also a circle near it formed by an enclosure of stones and earth, which is regarded by the natives with superstitious awe. According to the belief of the peasants, if their cattle stray into this enclosure they will dic.

Here, then, it is probable that the bed of the neighbouring tarn or bog must contain soine evidences of the primitive arts of the Cairnbuilders, with means for determining the relative date of their presence there, as compared with the true age of the Cervus megaceros. A report of the successful operations which rewarded the brief labours of the excursion party was made to the executive council of the British Association, and steps were taken with a view to a systematic and thorough exploration of this favourite haunt of the great fossil Irish elk, one of the most remarkable among the fauna of Europe's Palæolithic period.

ON THE OCCURRENCE OF

PETROLEUM IN TEEE NOhTH-WEST TERRITORIES,

WITH NOTES ON NEW LOCALITIES.

BY ROBERT BELL, M.D., F.G.S.
Senior Assistant Direstor of the Geological Survey of Caniada.

The existence of petroleum at several places on the Athahaska River las long been known. Numerous details on the subject are to be found in Sir John Richardson's Journal of a Boat Voyage in 1848. Some of these localities are also described by Professor Macom, Botanist to the Geological Survey, who passed through the same region in 1875, and noticed an additional locality on the Peace River, about 10C•miles west of its junction with the Slave River. Last autumn I was informed of the occurrence of petroleum in some new localities further north than those hitherto known, by Mr. Hardisty, formerly resident at Fort Simpson, who kindly gave me particulars in regard to them. In 1877, I was able to establish the Devonian age of the rocks lying to the south of James' Bay, and one of my assistants discovered indications of petroleum in these strata about fifty miles from Moose Factory.

All these oil regions have certain geological relations in common. Having collected together all the notes by explorers who have written about such matters, as well as any information which I could gain from other travellers, I propose to offer a few remarks upon the subject. I shall first refer to the localities in the Athabaska-McKenzie Valley, enumerating them in their order from south to north.

In following the ordinary route of travel from the southward, this valley is entered by a sudden descent of 600 feet to the Clear-water River at the north end of the Methye Portage, which leads across from the head-waters of the Churchill River. The Clear-water is a small stream flowing westward to the Athabaska. The first known
locality for petroleum is met with on this river ten miles from its junction with the main Athabaska, at which distance, Professor Macoun says, "the men pointed out a tir-spring in the stream, at which they very often got tar."

He also states that tar oozes from the black shales, 150 feet thick, at the forks of these two rivers. Sir John Richardson says these shales are underlaid by soft limestone, "which forms the banks of Athabaska River for thirty-six miles downwards" (from the forks). "The beds vary in structure, the concretionary form mather prevailing, though some layers are more homogeneous and others are stained with bitumen." Limestones, occupying a similar position, re-appear on the Peace River near the oil-spring, already referred to, and are there described by Professor Mracoun as "almost wholly made up of those branching corals (Alveolites) so common in Devonian rocks, intermixed with a species of Zaplurentis in great aboudance, some of the higher strata being largely male up of these." When at a part of the river about midway between the forks and Aithabaska Lake, a distance of about one hundred miles, the same gentleman remarks:
"I found below a light grey sandstone, partly saturated with the tar, and overlying this, there was at least fifteen feet of it completely saturated, and over this again, shale largely charged with alkaline matter. This was the sequence all the way, although at times there was much more exposed. Where we landed the ooze from the bank had flowed down the slope into the water and formed a tarred surface extending along the beach over one inundred yards, and as hard as iron ; but in bright sunshine the surface is quite soft, and the men when tracking 'along shore often sink into it up to their ankles." Sir John Richardson says: "About thirty miles below the Clearwater River the limestone-beds are covered by a bituminous deposit upwards of one hundred feet thick, whose lower member is a conglomerate inaizag an earthy basis much stained with iron and colored by hitumen. * * Some of ${ }^{\circ} \mathrm{e}$ beds above this (conglomerate) stone are nearly plastic from the quantity of mineral-pitch they contain. Roots of living trecs and he:baceous plants push themselves deep into beds highly impregnate? with bitumen; and the forest where that mineral is most abundant does not suffer in its growth. * * Further down the river still, or abou three miles down the Red River (of the Athabaska), where there was once a trading establishment, now remembered as ' La Vieux Fort de la Riviere

Rouge,' a copious spring of mincral pitch issues from a crevice composed of :and and bitumen. It lies a few hundred yards back from the river in the middle of a thick wool. Several small birds were found suffocated in the pitch." * * At the deserted fort mamed - Pierre an Calumet,' cream-colored and white limestone cliffs are covered by thick beds of bituminous sand. * ${ }^{*}$ A few miles further on the cliffs for some distance are sandy, and the different beds contain variable quantities of bitumen. Some of the lower layers were so full of that mineral as to soften in the hand, while the upper strata, containing less, were so cemented by iron as to form a firm dark-brown sandstone of much hardness. * * The whole country for many miles is so full of litumen that it flows readily into a pit dug a few feet below the surface. In no place did 1 observe the limestone alternating with these sandy bituminous beds, but in several localities it is itself highly bituminous, contains shells filled with that mineral, and when struck yields the odor of stinkstein." Elsewhere, this author describes these bituminiferous sands as resting unconformably upon the limestones, and, indeed, they must be of much more recent age, as he states that "in one of the cliffs not far below the Clear-water River, the indurated arenaceous peds resting on the limestone contain pretty thick laycrs of lignite, much impregnated with bitumen, which has been ascertained by Mr. Bowerbank to be of coniferous origin, though he could not determine the genus of the wood."

In approaching Athabaska Lake the banks of the river of the same name become low and consist of gravel and reddish earth, then sand and finally only alluvial soil. The last evidence of the bitumen consists 0^{f} rolled balls on pebbles of sand cemented together by the tar, whicl e been carried down by the river. According to Prof. Maconn, these balls are very abundant and in places form beds of "tar conglomerate" in the river banks often two feet thick. Mr. Hardisty, who passed up this river last summer (187i), informs me that the banks on both sides are frequently composed of sand cemented by pitch, which softens in the sun and renders the walking very disagreeable. Masses of the more hardened varieties lie about on the river shores like lumps of coal.

At its western extremity, Athabaska Lake discharges its waters northward by the Slave River into Slave Lake, receiving the Peace River from the west, a short distance below the outlet. Fort Chipe-
wyan is situated on Athabaska Lake where Slave River leaves it and Fort Resolution is built on the south shore of Slave Lake where the same river enters it. Sir John Richardson says that on this river, thirty miles from Fort Chipewyan, there is a limestone cliff "the lower beds of which have a compact structure, a flat conchoidal fracture and a yellowish-grey color. Some of the upper beds contrin mineral pitch in fissures" and they also hold Devonian fossils.

The western extremity of Slave Jake is about 115 miles west of Fort Resolution and here it disclarges its waters by the McKenzie River. Numerous islands uccur in this part of the lake, the largest of which is Big Island, so celebrated in the writings of northern travellers for its productive fishery. The next localities for petrolemm which I shall notice are two of those about which I was informed by my friend Mr. Hardisty. One of them is situated about ten miles north-eastward of the Big Island Fishery. Here the oil rises from the bottom of the lake in about five feet of water, in a bay, and at a distance of a mile and a half from the shore. This bay is the one most nearly opposite to Big Island. The petroleum is of a dark color and in calm weather in summer it spreads itself over the surface of the lake, but in winter it keeps the water open directly over the source from which it rises, forming a round hole in the ice, in which it accumulates to a sufficient depth to be easily dipped out. It has the ordinary smell of petroleum, is very liquid and when thrown upon a fire it explodes. In many places along this part of the north shore of the lake petroleum oozes out of the earth and its smell is quite noticeable to the traveller in passing by the coast. On the main shore of the next bay east of the one above referred to, there is a copious spring or puddle of tar and pitch mixed with leaves and sticks, which, if cleared out, would no doubt fill up with liquid oil. This spring was discovered by Mr. John Hope, of the Hudson Bay Company. The western part of Slave Lake is shallow and its bottorn and shores are underlaid by bituminous limestone and dark, bituminous shales of Devonian age. Mr. Woodward in referring to some of the corals from these limestones mentions that their cysts are filled with bitumen.

Perhaps the most remarkable locality for petroleum in the NorthWest 'Territories is one described to me by Mr. Hardisty as occurring about-seventy miles eastward of Fort Simpson, which is situated on the MeKenzic River ai the junction of the Iiard. This locality is
in the depths of the forest, near no lake or stream of sufficient size to mark the place. The on ssues from springs in the form of great holes in the ground, down which poles may be plunged as far as they will reach without meeting with any resistance bevond that of the slimy liquid. The Indians fill tight boxes with the partially inspissated petroleum at these springs and haul it to Fort Simpson on sleighs in winter. Here it is boiled down to a proper consistence and used for pitching boats.

In giving a general description of the geology of the McKenzic River, Richardson says, "a shaly formation makes the chief part of the banks and also inuch of the undulating valleys between the elevated spurs. It is based on horizontal beds of limestone and in some places of sandstone which abut against the inclined strata of the lofty wall-like ridges or rests partially on their edges. The shale crumbles readily and often tatkes fire spontancously, occasioning the ruin of the bank, so that it is only by the encroachment of the river carrying away the debris that the true structure is revealed." At a high point below Fort Simpson, known as "The Rock by the River's Side," the bituminous shales are described as having a very great similarity to those at the junction of the Clear-water and Athabaska Rivers. The same author describes thick beds of bituminous shale as occurring on the western shores of Great Bear Lake, which dij;charges westward by a comparatively short river into the McKenzie River. Below the confluence of these great streams the same shaleis seen rumning down the banks of the one last mentioned. "Underlying the shale, horizontal beds of lime are exposed for some miles along the McKenzie and from them issue springs of salinc sulphurous waters and mineral pitch." In approaching the Artic Ocean the McKenzie River is hemmed in to a width of only about one-third of a mile by rocks which, from their forms, have given the locality the name of "'The Ramparts." Here Richardson says, " the cliffs have been denuded of the covering of shale which exists higher up the stream, but the limestone of which they are chicfly formed is stainec' with bitumen either in patches or whole layers."

From the foregoing it will be perceived that I have traced a highly bituminous character in the rocks of the Athabaska-McKenzie Valley all the way from the Clear-water branch to the Ramparts, a distance of no less than one thousand miles in a straight line. The continuation of the same rocks is known to extend to the northward
and to the southward of the above limits far enough to give a total length of two thousand miles. They belong to the Devonian system and have a strong resemblance to the petroleum-bearing strata of Western Ontario. The corals of the Corniferous formation are often filled with bitumen like those of the limestones of the Athabaska and McKenzie Rivers; and the pyrites and carbonaceons maiter of the black shales of Kettle Point, on Lake Huron. un:ler the influence of air and moisture, have given rise to a sort of spontaneous combustion like that of the shale of the McKenzie. Southward of the Clear-water River the petroleum-bearing formation strikes across the Saskatchewan, between Cumberland House and The Forks, and, passing through lakes Winnipegosis and Manitoba, it continues southward up the Red River valley, and is lost in the United States. On the shore of Lake Winnipegosis, brine springs issue from these rocks, and salt is also found in abundance near Slave River and between Slave Lake and Great Bear Lake. Petroleum may be looked for all along the strike of this great Devonian formation in our North-TWest Territories, including the tract at the eastern base of the high grounds on the west side of the lakes of the Winnipeg basin.

I shall conclude by referring very briefly to the indications of petroleum found to the south of James' Bay. In this region the limestones have a strong resemblance to those of the Athabaska, being of a yellowish color, and more or less of a bituminous character. The fossils which I collected in 1875 and 1877 on the Moose River and its branches have established the Devonian age of the formation. Gypsum and carbonate of iron occur in it in quantities of economic value. In 1877, on the Abittibi branch of the Moos, thirty-nine miles from its mouth, Mr. A. S. Cochrane, a member of my party, found a brownish-black shale, like that of the Athabaska, which emits a bright flame and an odor of sulphur when strongly heated. This shale is underlaid, as on the Athabaska, by soft bituminous yellow limestone, at one place impregnated with petroleum, which extends for ten miles up the river. In this district, as well as in the North-West 'lerritory, these rocks consist of pure carbonate of lime, while the underlying Silurian strata, in both regions, are dolomitic.

NOTES ON RELATIVE MOTION.

BY J \triangle MES LOUDON, University College, Turonto.

1. Motion of a point in a plane.

At time t let the moving axes be $0 \xi, O_{\eta}$, and P a point (ξ, η) in their plane. At time $t+\delta t$ let these axes coincide with $0 \xi^{\prime}, O \eta^{\prime}$, and P with P^{\prime}; then the ξ and η components of the displacement $P P^{\prime}$ are - $\omega \eta \delta t$, $\omega \xi \delta t$, respectively, if ω is the rate at which the axes turn round $O \zeta$. Let a moving point be at P at time t, and at Q at time $t+\delta t$, the co-ordinates of Q referred to $O \xi^{\prime}, O \eta^{\prime}$ being $\xi+\dot{\xi} \partial t$, $\eta+\dot{\eta} \delta t$; then the absolute velocity of the moving point is ultimately $\frac{P Q}{\partial t}=\left(\frac{P P^{\prime}}{\delta t}, \frac{P^{\prime} Q}{\delta t}\right)$, the ξ and η components of which are $\dot{\xi}-\omega \eta, \dot{\eta}+$ $\omega \xi$, respectively.

Putting $\dot{\bar{\xi}}-\omega \eta=u=O A$, and $\ddot{\eta}+\omega \xi=v=O B$, the component velocities at time $t+\delta t$ become $u+i t \delta t=O A^{\prime}$ along $O \xi^{\prime}$, and $v+$ $\dot{v} \delta t=O B^{\prime}$ along $O \eta^{\prime}$. Hence the absolute acceleration ultimately $=$ ($\frac{A A^{\prime}}{\delta t}, \frac{B B^{\prime}}{\delta t}$), the components of which are

$$
\begin{aligned}
& u-v \omega=\ddot{\xi}-2 \omega \dot{\eta}-\eta \dot{\omega}-\omega^{2} \xi \text { along } O \xi, \\
& \dot{v}+u \omega=\ddot{\eta}+2 \omega \dot{\xi}+\dot{\xi} \dot{\omega}-\omega^{2} \eta \text { along } O \eta .
\end{aligned}
$$

2. Motion of a rigid body round a fixed axis $O \zeta$, the axes $O \xi, O_{\eta}$ being fixed in the body.

At time t the whole momentum is $-M \omega\rangle=O A$ along $O \xi$, and $M \omega \xi=O B$ along $O \eta$, where ξ, η are co-ordinates of the centre of inertia. At time $t+\delta t$ the momentum is $-M F_{\eta}(\omega+\omega \delta t)=O A^{\prime}$ along $O \xi^{\prime}$, and $M \xi^{\prime}(\omega+\omega \hat{o} t)=O B^{\prime}$ along $O \eta^{\prime}$. The changes of momentum per unit time are, vuerefore, ultimately $\frac{A A^{\prime}}{\delta t}, \frac{B B^{\prime}}{\delta t}$, whose components are

$$
\begin{array}{r}
-M \eta \omega-M \kappa \omega^{2} \xi \text { along } O \xi, \\
M \xi \omega-M \omega^{2} \eta \text { along } O \eta .
\end{array}
$$

At time t the whole moment of momentum is (employing OA, OTS in a new sense)
where

$$
\begin{gathered}
-\beta \omega=O A \text { along } O \xi, \\
-a \omega=O B \text { along } O \eta, \\
C \omega \ldots \text { along } O \zeta, \\
\alpha=\Sigma m \eta \zeta, \quad C=\operatorname{\Sigma in}\left(\zeta^{2}+\eta^{2}\right), \text { etc. }
\end{gathered}
$$

At time $t+\delta t$ the moment of momentum becomes

$$
\begin{aligned}
& -\beta(\omega+\dot{\omega} \delta t)=O A^{\prime} \text { along } O \xi^{\prime}, \\
& -a(\omega+\dot{\omega} \delta t)=O B^{\prime} \text { along } O \eta^{\prime}, \text { etc. }
\end{aligned}
$$

Hence the changes per unit time of moment of momentum are ultimately $\frac{A A^{\prime}}{\delta t}, \frac{B B^{\prime}}{\dot{\delta t}}, C \dot{\omega}$, the components of which are - $\beta \dot{\omega}+\alpha \omega^{2}$ along $O \xi,-\alpha \dot{\omega}-\beta \omega^{2}$ along $O \eta$, and $C \dot{\omega}$ along $O \xi$.
These, it will be observed, are of the same form as when the axes are fixed in space.
'2. 'To measure the absolate velocity and acceleration of a point referred to axes moving in space round 0 .

Let the motion of the axes be due to rotations $\theta_{1}, \theta_{2}, \theta_{3}$ measures alung themselves. Then, proceeding as in $\S 1$, the displacements of a point $P(\xi, \eta, \zeta)$ due to these rotations are $\left({ }_{5} 0_{2}-\eta \theta_{3}\right)$ it along $O \xi$. $\left(\xi \theta_{3}-\xi \theta_{1}\right) \delta t$ along $O \eta$, and $\left(\eta \theta_{1}-\xi \theta_{2}\right) \delta t$ along 0ξ. These added to the relative displacements ($\dot{\xi} \partial t, \dot{\eta} \delta t, \dot{\zeta} \delta t$) of the moving point give the absolute displacements. Hence the components of the absolute velocity are

$$
\begin{aligned}
u & =O A=\dot{\xi}+\zeta \theta_{2}-\eta \theta_{s} \text { along } O \xi, \\
v & =O B=\dot{\eta}+\xi \theta_{3}-\zeta \theta_{1} \text { along } O \eta, \\
w & =O C=\dot{\zeta}+\eta \theta_{1}-\xi \theta_{2} \text { along } O \zeta .
\end{aligned}
$$

Again, let the velocities at time $t+\delta t$ be $O A^{\prime}=u+i v o \partial t$ along $O \xi^{\prime}$, ete.; then the absolute accelerations are ultimately $\frac{A A^{\prime}}{\delta t}, \frac{B B^{\prime}}{\delta t}, \frac{C C^{\prime}}{\delta t}$, whose components are

$$
\begin{gathered}
\dot{u}-v \theta_{3}+w \theta_{2} \text { along } O \xi, \\
\dot{v}-w \theta_{1}+u \theta_{3} \text { along } O \eta, \\
\dot{w}-u \theta_{2}+v \theta_{1} \text { along } O \leftrightarrows
\end{gathered}
$$

These become, on reduction,

$$
\ddot{\xi}-2 \theta_{3} \dot{\eta}+2 \theta_{2} \dot{\zeta}+\zeta \dot{\theta}_{2}-\eta \dot{\theta}_{3}-\left(\theta_{1}^{2}+\theta_{1}^{2}+\theta_{3}^{2}\right) \ddot{\xi}+\left(\xi \theta_{1}+\eta \theta_{3}+\zeta \theta_{3}\right) \theta_{1}
$$ along $O \xi$, etc.

Note.-These resolutions are most readily effected as follows: $A A^{\prime}$ is equivalent to $A D$ along $O \eta, D H$ along $O \zeta$, and $H A^{\prime}$ along $O \xi$; and similar
resolutions are effected for $B B^{\prime}, C C^{\prime}$. The values of $A D, D I I$, etc., are at ance derived from the displacements in time δt of the points ($1,0,0$), ($0,1,0$), $(0,0,1)$. The latter are, respectively,

$$
\begin{array}{rll}
0, & \theta_{3}, & \theta_{2}, \\
-\theta_{3}, & 0, & \theta_{1}, \\
\theta_{2}, & \theta_{2}, & 0,
\end{array}
$$

each multiplied by δt; from which the values of $\Lambda D, D H$, etc., are obtained by multiplying the first set by $O A$, the second by $O B$, and the third by $O C$. Moreover, the parts $H A^{\prime}$, etc., remain unchanged in magnitude when resolved along $O \xi, O_{\eta}, O \zeta$, if infinitesimals above the first order be neglected. Thus, in the present case, $H A=\dot{u} \delta t, A D=u \theta_{3} i t, D H=-u \theta_{2} \delta t$.
t. If, in the previous case, the origin moves, its acceleration must of course be added to the expressions found in $\S 3$. These formulas mily be tested by the following well-known example. Let O be on the earth's surface in latitude λ, and let $O \xi$ be drawn south, $O \eta$ east, and O_{5}^{5} vertical. Then ω being the earth's rotation and r its radius, the accelerations of O are

$$
\begin{array}{lll}
-\omega^{2} r \cos \lambda \sin \lambda \text { along } & O \xi, \\
-\omega^{2} r \cos ^{2} \lambda & O_{5}^{\xi}
\end{array}
$$

Also, $\theta_{1}=-\omega \cos \lambda, \theta_{2}=0,0_{3}=\omega \sin \lambda$, and $\dot{0}_{1}=0=\dot{0}_{2}=\dot{0}_{3}$.
Hence the acceleration of m at (ξ, η, ζ) are
$\ddot{\varphi}-\omega^{2} r \cos \lambda \sin \lambda-2 \omega \dot{\eta} \sin \lambda-\omega^{2} \xi \sin ^{2} \lambda-\omega^{2} \zeta \sin \lambda \cos \lambda$,
$\ddot{\eta}+2 \omega \dot{\zeta} \cos \lambda+2 \omega \dot{\xi} \sin \lambda-\omega^{2} \eta$,
$\ddot{\zeta}-\omega^{2} r \cos ^{2} \lambda-2 \omega \dot{\eta} \cos \lambda-\omega^{2} \zeta \cos ^{2} \lambda-\omega^{2} \xi \sin \lambda \cos \lambda$,
along $O \xi, O \eta, O \xi$, respectively.
5. To measire the changes in the rotation of a rigid body with one point fixed, the axes moving as in $§ 3$. Lot the rotations to which the displacement of the body is due be at time $t, \omega_{1}=0 A, \omega_{2}=0 \mathrm{H}$, $\omega_{3}=O C$ measured respectively along $O \xi, O \eta, O \%$. Then since at time $t+\delta t$ these become $\omega_{1}+\dot{\omega}_{1} \delta t=O A^{\prime}$, etc., along $O \xi^{\prime}, O \eta^{\prime}, O_{3}^{\prime \prime}$, the absolute changes per unit time in the rotation are ultimately

$$
A_{\delta t}, \frac{B B^{\prime}}{\delta t}, \frac{C C^{\prime}}{\delta t}
$$

Resolving these, we get for the required components

$$
\dot{\omega}_{1}-\omega_{2} \theta_{3}+\omega_{3} \theta_{3} \text { along } O \xi, \text { etc. }
$$

6. To measure the change in the whole absolute momentum of a rigid body, one point of which is fixed at 0 , the axes moving as in $\$ \S 3,5$. Since the absolute momentum of m in the position (ξ, η, ζ) at time t is

$$
m\left\{\zeta\left(\omega_{2}+\theta_{2}\right)-\eta\left(\omega_{3}+\theta_{3}\right)\right\} \text { along } O \xi, \text { etc., }
$$

it follows that the whole absolute momentum at that time is

$$
\begin{aligned}
& z\left(\omega_{2}+0_{2}\right)-y\left(\omega_{3}+0_{3}\right) \text { along } O \xi, \\
& x\left(\omega_{3}+0_{3}\right)-z\left(\omega_{1}+0_{1}\right) \text { along } O \eta, \\
& y\left(\omega_{1}+0_{1}\right)-x\left(\omega_{2}+0_{2}\right) \text { along } O \zeta,
\end{aligned}
$$

each multiplied by M, where (x, y, z) is the position of the centre of inertia. Calling these components $\mu_{1}=O A, \mu_{2}=O B, \mu_{3}=O C$, respectively, it follows that at time $t+\delta t$ they become $\mu_{1}+\ddot{\mu}_{1} t$ $=O A^{\prime}$ along $O \Sigma^{\prime}, \mu_{2}+\dot{\mu}_{2} \delta t=O B^{\prime}$ along $O \eta^{\prime}, \mu_{3}+\dot{\mu}_{3} \delta t=O C^{\prime}$ along $O_{s}^{\prime \prime}$. The changes in the whole momentum per unit time are, therefore, $\frac{A A^{\prime}}{\delta t}, \frac{B B^{\prime}}{\partial t}, \frac{C C^{\prime}}{\delta t}$, whose components are

$$
\begin{aligned}
& \dot{\mu}_{1}-\mu_{2} 0_{3}+\mu_{3} O_{2} \text { along } O \xi \\
& \dot{\mu}_{2}-\mu_{3} \theta_{1}+\mu_{1} \theta_{3} \text { along } O \eta \\
& \dot{\mu}_{3}-\mu_{1} 0_{2}+\mu_{2} 0_{1} \text { along } O \xi
\end{aligned}
$$

Since $\dot{x}=z \omega_{2}-y \omega_{3}$, etc., these expressions become, on reduction, M times
$z\left(\dot{\omega}_{2}+\dot{0}_{2}\right)-y\left(\dot{\omega}_{3}+\dot{0}_{3}\right)+\omega_{1}\left\{\left(\omega_{1}+0_{1}\right) x+\left(\omega_{2}+0_{2}\right) y_{2}+\left(\omega_{3}+0_{3}\right) z\right\}$

$$
+\left(\omega_{1}+0_{1}\right)\left(0_{1} x+0_{2} y+0_{3} z\right)_{1}-x\left\{\left(\omega_{1}+0_{1}\right)^{2}+\left(\omega_{2}+0_{2}\right)^{2}+\left(\omega_{3}+0_{3}\right)^{2}\right\}
$$ for the first, with similar values for the other two.

7. To measure the changes in the whole absolute moment of momentum under the same circumstances as in §6. Since the absolute moment of $n \prime$'s momentun at time t is m times

$$
\left(\omega_{1}+\theta_{1}\right)\left(\eta^{2}+\zeta^{2}\right)-\left(\omega_{2}+a_{2}\right) \xi \eta-\left(\omega_{3}+0_{3}\right) \zeta \xi \text { along } 0^{\circ},
$$

with corresponding components along O_{η}, O_{ξ}, it follows that the components of the whole moment of momentum at that time are

$$
\begin{aligned}
& A\left(\omega_{1}+\theta_{1}\right)-\gamma\left(\omega_{2}+0_{2}\right)-\beta\left(\omega_{3}+0_{3}\right) \text { aiong } O \xi, \\
&-\gamma\left(\omega_{1}+0_{1}\right)+B\left(\omega_{2}+\theta_{2}\right)-\alpha\left(\omega_{3}+\theta_{3}\right) \text { along } O \eta, \\
&- \beta\left(\omega_{1}-0_{1}\right)-a\left(\omega_{2}+0_{2}\right)+C\left(\omega_{3}+\theta_{3}\right) \text { along } O 5,
\end{aligned}
$$

where

$$
A=\Sigma m\left(\eta^{2}+\zeta^{2}\right), \quad a=\Sigma m \eta \zeta, \text { etc. }
$$

Let these components be called $\nu_{1}=O A, \nu_{2}=O B, \nu_{3}=O C$, respectively. Then at time $t+\delta t$ they become $\nu_{2}+\dot{\nu}_{1} \delta t=O A^{\prime}$ along $O \xi^{\prime}$, $\nu_{2}+\dot{\nu}_{2} \delta t=O B^{\prime}$ along $O \eta^{\prime}$, and $\nu_{3}^{\prime}+\dot{\nu}_{3} \delta t=O C^{\prime}$ along $O \xi^{\prime \prime}$. Hence the changes of the moment of momentum per unit time are

$$
\stackrel{A A^{\prime}}{\delta t}, \frac{B B^{\prime}}{\delta t}, \frac{C C^{\prime}}{\delta t},
$$

whose components are

$$
\begin{aligned}
& \nu_{1}-\nu_{2} \theta_{3}+\nu_{3} \theta_{2} \text { along } O \xi, \\
& \nu_{2}-\nu_{0} \theta_{1}+\nu_{1} \theta_{3} \text { along } O \eta, \\
& \nu_{3}-\nu_{1} \theta_{2}+\nu_{2} \theta_{1} \text { along } O \zeta,
\end{aligned}
$$

Now, since $\xi=\zeta \omega_{2}-\eta \omega_{3}$, etc., it follows that

$$
\begin{aligned}
\dot{A} & =2 \Sigma m(\eta \dot{\eta}+\zeta \dot{\zeta}) \\
& =2\left(\gamma \omega_{3}-\beta \omega_{2}\right) \\
\dot{B} & =2\left(\alpha \omega_{1}-\gamma \omega_{3}\right) \\
\dot{C} & =2\left(\beta \omega_{2}-\alpha \omega_{1}\right) \\
\dot{\alpha} & =\Sigma n(\eta \dot{\zeta}+\zeta \eta) \\
& =(C-B) \omega_{1}-\gamma \omega_{2}+\beta \omega_{3} \\
\dot{\beta} & =\gamma \omega_{1}+(A-C) \omega_{2}-\alpha \omega_{3} \\
\dot{\gamma} & =-\beta \omega_{1}+\alpha \omega_{2}+(B-A) \omega_{3} .
\end{aligned}
$$

Hence tic above values for tho component changes of moment of momentum become

$$
\begin{aligned}
& A\left(\dot{\omega}_{1}+\dot{\theta}_{1}\right)-\gamma\left(\dot{\omega}_{2}+\dot{\theta}_{2}\right)-\beta\left(\dot{\omega}_{3}+\dot{\theta}_{3}\right)+2\left(\omega_{1}+0_{1}\right)\left(\gamma \omega_{3}-\beta \omega_{12}\right) \\
& -\left(\omega_{2}+\theta_{2}\right)\left[-\beta\left(\omega_{1}+\alpha m_{2}+(B-A) \omega_{3}\right]-\left(\omega_{3}+\theta_{3}\right)\left[\gamma \omega_{1}+\right.\right. \\
& \left.(A-C) \omega_{2}-\alpha \omega_{3}\right]-\theta_{3}\left[-\gamma\left(\omega_{1}+0_{1}\right)+B\left(\omega_{2}+\theta_{2}\right)-\alpha\left(\omega_{3}+\right.\right. \\
& \left.\left.0_{3}\right)\right]+\theta_{2}\left[-\beta\left(\omega_{1}+\theta_{1}\right)-\alpha\left(\omega_{2}+\theta_{2}\right)+C\left(\omega_{3}+\theta_{3}\right)\right]
\end{aligned}
$$

for the first; with similar expressions for the other two.

CANADIAN INSTITUTE.

REPORT OF THE COUNCIL FOR 1880-81.

The Council of the Cauadian Institute in presenting their Thirty Second Annual Report, are gratified in being able once more to congratulate the Institute on another year of satisfactory work throughout the Winter Session.
The advantages resulting from the admirable accommodation for all the ordinary meetings of the Institute which the new building supplies, fully justify the action of the Council in recent years in incurring an outlay necessarily involving a burden of debt, which must continue for some time to hamper the action of the Institute in varions ways; and especially to absorb to a large extent the funds which would otherwise be available for the important object of the printing proceedings. So important has it appeared to the Council to reduce the debt as speedily as possible, that however reluctant to delay the issue of their printed proceedings, they have allowed a year to clapse without any new issue. This has enabled the Treasurer to devote the money to the reduction of the debt, and the Council have accordingly the satisfaction of reporting a diminution of the capital sum due, and a corresponding reduction of the annual charge payable on the mortgage effected on the building.
The debt remaining at the close of the last financial year amounted to $\$ 5,500$, involving an annual payment of interest of $\$ 440$. Since then the Treasurer has made a further payment of $\$ 500$ in reduction of the mortgage debt, reducing it to $\$ 5,000$; and also has effected an arrangement whereby the annual interest is reduced from 8 per cent. to 7 per cent., making the amount of present ammual interest $\$ 350$.

It is inevitable that the exist nnce of a debt involving an amual charge which absorbs to so large an extent the annual surplus over and above ordinary expenditure, must hamper the exertions of the Council and of all the members of the Institute ; and greatity diminish its efforts in the cause of Canadian Science and Letters. The Ccencil accordingly recommend to their successors and to the members at large, a renewed effort for the reduction of this debt, so as to place at their disposal an annual revenuc adequate for the printing of the proceedinge, and the carrying out on an adequate scale the legitimate work of the Institute.
Appended to this Report are abstracts showing-(1) The present condition of the membership, including 124 ordinary and life members; (2) The Papers communicated at the meetings during the year; (3) The additions to the Library during the same period, and (4) The Treasurer's balance sheet, with a roport of the receipts and liabilities of the Institute at the present date.

All which is respectfully reported.
DAN. WILSON, President.

FINANCIAL S'TA'LEMEN'T.

report of treasurer on income and expenditure from lst april, 1880, to lst aphil, 1881.

1880.

To Summary. \$ cts.
" Annual Subscriptions
36200
"Government (x̆rants. 1,50000
" Journals sold . 713
" Subscriptions to Building Fund. 21300
"Rent from Warehouse 83 (0 .
$\$ 3,16513$
1880. Creditor.

By Summary. S cts.
"Amount due to Treasnrer.. 10. . 86
"Express Charges 735

" Advertising .. 3100
" Postage 387
" Lecture Fee 400
"Honsekeeping Contingencies . 6 . 10
"Repairs ... 612
"Fuel... 68 . 75
" Taxes 1139
" Magazines . 82 . 45
" Salary to Secretary . 33600
" Binding of Books . 720
" Reduction of Mortgage ... 50000
" Interest on Mortgage 41250

\$2,165 13
Copy of Cerifificate from Auditors.
$==$
We Certify to having compared the vouchers of the above entries of expenditure, and find the same correct. The amount of receipts is properly added, shewing balance in Treasurer's hands of five hundred and eleven $\frac{33}{100}$ dollars.

WM. HENDERSON. GEORGE MURRAY.
Comments.
It will be seen that two annual Government Grants appear in this year. 'This results from the earlier meeting of the Legislature in 1881 and earlier obtainment of the Grant.

The total amount of receipts from subscriptions to the Building Fund is $\$ 1,347.00$, of which $\$ 1,000.00$ has been applied to the reduction of debt, said lebt being now $\$ 5,000.00$, and the interest has been reduced from 8% to 7%, by permission of the Mortgagee.

COMMUNICAIIONS.

The following valuable and interesting papers and communications were read and received from time to time at the ordinary meetings held during the Session 1SS0-S1 :
April 3, 1SS0.-By T. H. Monk, Esq., on "Vital Statistics." Prof. Ramsay Wright, described some West Indian Flukes, exhibited by Mr. Troutman, L.D.S.

April 17, 1SS0.—Prof. Jas. Loudon, M.A., "Investigations in Relative Motion." Dr. Diniel Wilson, LL.D., on the "lmitative Faculty as a Race Distinction."
May 1, 1SS0.-Prof. Macoun, M.A., on the "Climate of Manitoba and the North-West Territory."
October 30, 1SS0.-Dr. Daniel Wilson, LL.D., Inaugural Address, on the "Independent Origin of Written Language on the American Continent."
November $27,1 S S 0$. Dr. Daniel Wilson, LL.D., on the "Mare Crisium," illustrated by telescopic views, illustrative of Lmar Physics. Prof. R. Ramsay Wright, exhibited a series of wax models, illustrative of Natural History. Dr. Jos. Workman, on "Marco-Elepsia."
December 11, 1SS0.—Dr. Jos. Workman, on "Moral Insanity; What is it?"
Jamuary S, 1SSI.-A communication from the Director of the Imperial Observatory of Poulkova, on the "Proposal for establishing a Prime Meridian," by Sandford Fleming, C.M.G. Dr. Danicl Wilsou, LL.D., on the "History of the Calendar."
Januarey 22, 1SS1.—John Notman, Isq., on "Meteors." A. Elvins, Esq., on the "Mare Imbrium, and Lanar Crater Copernicus," illustrated by Photographic views taken by the author.
lebruary 19, 1S81.-C. B. Biggar, Esq., on the "Climate of South Africa." Wm. Oldright, M.A., M.D., on "Sanitary Legislation."
March E, 1SS1.-A. H. Elwin, C. E., on "Some of Faraday's theories of Electricity."
April 2, ISSl.-Rev. Dr. Scadding : "A Boy's Books ; Then and Now-1S1S1SSI."
April 16, 1SS1.-Dr. Daniel Wilson, "Some Notes on Ben. Jonson and his Orthography."
April 23, 1SSI.-Rev. Dr. Scadding, "A Notice of the late Elstow Edition of Bunyan." Professor Loudon, "Acoustic Experiments."
membersinf.
Members at the commencement of Session 1SS0-Sl 134
Menl;ers elected during the Session δ
142
Deaths ... 1
Members retired . 15

Total Membership, March 31st, 1881........... 126
Composed of :
Honorary Members.. 2
Life MEmbers .. 17
Ordinary Members .. 107

United Sintes:

Ammual Report of the Museum of Comparative Zoology at Harvard College.
Bulletin of the Museum of Comparative Zoology at Harvard (college, Nos. 1-11.
Bulletin of the Essex Institute, Salem, Massachusetts.
Proceedings of the Academy of Natural Sciences, Philadelphia, 1880.
Penn. Magazine of History and Biography, Philadelphia, No. l-4, Vol. 4.
Contributions to the Geology of Eastern Massachusetts from the Boston Society of Natural History.
Proceedings of the American Antiquarian Society. Nos. 74-5.
Transactions of the Academy of Science of St. Louis.
Bulletin of the Buffalo Society of Natural Sciences.
Harvard University Library Bulletin.

- Annals of the New York Academy of Sciences, 1880.

Report of the Director of Central Park Menagerie, New York, ISSO.
Annals of the Lycemm of Natural History of New York.
Thirteenth Ammal Report of Peabody Institute, Baltimore.
Publications of the Missouri Historical Socicty of St. Louis. Nos. 1-4.
Publications of the Buston Society of Natural History, part 3.
Journal of Speculative Philosophy of St. Louis, 1850.
Bulletin of the Philosophical Society of Washington. Vol. 1-3, 1850.
Annual Report of New York State Museum of Natural History, 1875-79.
Brief of a Title of the Seventeen Townships of County of Luzerne, by Henry M. Hayt, Harrisburg.
Variable Stars of Short Period, by E. C. Pickering, Cambridge.
American Journal of Science, $1 S 50$.
Journal of the Frankin Institute, 1880.
England :
Proceedings of the Geological Society of London, No. 136-141, 187S-1880.
Proceedings of the Royal Geographical Society, London, 1880.
Journal of the Royal Microscopical Society, Vol. 3.
Quarterly Journal of the Geological Society, London.
Transactions of the Manchester Geological Society, Vol. 15 to pt. 2 Vol. 16.
List of the Geological Society of London, 1878-1879.
Annual Report of the Leeds Plilosophical and Literary Society, 1879-1880.
Journal and Transactions of the Victoria Institute, 1 SS0.
Journal of the Royal Geographical Society, London.
The Relation between Science and Religion, by Bishop of Edinburgh.
The Annealed Jaws from the Wenlock and Ludlow Formations, by G. J. Hinde, F.G.S.
Scotland:
Transactions and Progress of the Botanical Society of Edinburgh, Vol. 13, part 3.
Report of Temperature, Winter 1178-1879, Edinbargh.
Transactions of Geological Society of Edinburgh, 1880.
Transactions of Royal Society of Edinburgh, 1877-8-9.

Ikeland:
Annual Report of the Belfast Naturalist Field Club.
Transactions of the Royal Irish Academy, Dublin, 1879-1880.
Scientific Progress of the Royal Irish Academy, Dublin, 1878-9-80.
Journal of the Royal Dublin Society, 1878.
Scientific Transactions of the Royal Dublin Society, 1878-9-80.
The following additions and donations have been made to the Library of the Canadian Iustitute during the past year :
Ganada:
The Canadian Naturalist, Montreal.
The Canadian Journal of Medical Science, 1880.
The Canadian Pharmaceutical Journal, 1880.
Journal of Education, Quebec, 1580.
Annual Report of the Entomological Society, Ontario, 1880.
Descriptive Catalogue of the Economic Minerals of Canada, Montreal, 1880.
Canadian Entomologist, 1880.
Report of Meteorological Service of Canada, 1880.
Annuaire de l' Institut Canadien, Quebec, No. 7, 1880.
Report of the Toronto Water Works, 1880.
Report of Progress Geological Survey of Canada, 1878-1879.
La Revue Canadienne of Montreal, Janvier, 1881.
France:
Memoirs de la Societe Ingenieurs Civils, 1880.
Catalogue of the National Society of Natural Sciences of Cherbourg, 1878.
Bulletin of the Geological Socicty of France, 1880.
Memoirs of the National Society of Natural Sciences of Cherbourg, 1877-S.
Annales Des Mines, 1879.
Eloge de M. Louis. By M. J. Beclard, 1874.
Extracts D'un Memoire sur les Moyeus De Prevenir Ies Dissetts-par lo C. A. Hugo.
'Torina :
Cosmos. By Guido Cora, for 1880.

Italy :

Atti della Societa Toscana di Scienza Naturale, 1880.

Wien :

Jahrbuch der K. K. Geologischen Reichsanstadt, 1879-80.
Mittheilungen der Kais. und Kon. Geographischen Gesellschaft, 1879.
Verhandlungen der K. K. Zoologisch-Botanischen Gesellschaft, 1879.
Munchen :
Sitzungsberichte der K. b. Akademie der Wissenschaften, 1878-9-80.
Ignatius Von Loyola der Romischen Curie, 1879.
Meteorologische und Magnetische Beobachtumgen der K. Sternwarte bie München, 1879.
Dresdes:
Sitzungs-Beritchte Nat. ges Gesellscliaft. Isis in Dresden, 1879-80-1.
The Royal Association of Sciences, Naritchten, 1879.
Hanouer:
Erster Jahr't Geographische Gesellschaft zu Hannover, 1879.

INDIA:
Memoirs of the Geological Survey of India, 1879-80
Records of the (Xeological Survey of India, 1879-80.
Now South Walas:
Journal and Proceedings of the Loyal Socicty, New Sonth Wales, 1878.
'Iransactions and Proceedings of the New //caland Institute, 1879.
Mexico :
Aunales del Museo Nacional De Mexico, 1878-80.
Boxis :
Verhandelungen der Natur'ehen Vereines der Prusisehen Rheinland, Westfalens, 1879-80.
Hamburg:
Association of Natural Sciences, 1880.
Amsterdina :
Verhandelungen der Koninklijke: Akaderaie, Von Wetenschappen, 1879.
 chippen, 1879.
Jaarbock Van de Koninklijke Akademic, Van Wetenschappen, 1878.
Cupenaacien :
Royal Danish Society of Siciences, 0versigt, part 3, 1879, part 1-2, 1880.
Harlem :
Archives Neulandaises Sciences Exactes et Natur's : per Holland Society of Sciences at Harlem, 'Iome XIV-XV, 1879-80.
Archives du Musec 'Teyler, Vol. V. 1880.
lingmen :
The Association of Natural Sciences of IBremen : Abhandlungen, 1879-80.
Beilage, No. 7, of Natural Sciences of Bremen: Abhandlungen, 1879-80.
Prag:
K. K. Nternwarte \%a Prag : Peobachtungen, 1879.

UTRECHT:
Meteorologisch Jaarboek, 1879.
Madrid:
Annuario de Observatorio de Madrid, 1877-8.
Resumeu de la Observaciones Metcorlogicas, 1875-8.
Fraveschivenf:
Jahresbericht des Vereines fur Naturwisserschaft, \%u Braunschweig, 1879-80.
'The following publications are subseribed for by the Institute :
The Contemporary Leview.
The Nineteenth Century.
American Journal of Medica! Science
Medical Science.
Hardwick's Science (xossip.
Popular Science Monthly.
Scientilic American.
Scientific American Snpplement.
English Mechanic.
Nature.
Medical Times and Gazette.
Blackwood's Magazine.
London Quarterly Review.
Britislı Quarterly Review.
Edinburgh Review.
Westminster Review.

[^0]: "Wood, in his "Uncivilized Races," characterizes the Tungus as good-matured, but fall of deceit.

[^1]: * A game identical with our American Lacrosse is played in Japan. See Wood's Uncivilized Races.

[^2]: *The Basque game, as I learn from my colleague, Professor Coussirat, who has frequently witnessed it, is all but identical with that of the lroquois.

[^3]: * According to Klaproth, the Foriaks call the Tchukichis Mainetang, which may be the orisinal of the name Mandan.

[^4]: - Dublin Quarterly Journal of Scicnc, iv. 212.

[^5]: *The principal bones of a nearly complete skeleton of the Cervus megaceros, from Loch Gur, were exhibited to the Canadian Institute; and the various characteristic indentations, on what must have been an undisturbed skeleton in situ, were pointed out.

[^6]: * Dublin Quartcrly Journal of Scicnce, iv., 125. †Proccedings of R. I. A. vii., 195.

[^7]: * Procecdings R. I. A., 2nd Ser., Vol. II.

